

Guide to Advanced Empirical
Software Engineering

Forrest Shull • Janice Singer • Dag I.K. Sjøberg
Editors

Guide to Advanced
Empirical Software
Engineering

Forrest Shull
Fraunhofer Center for Empirical
 Software Engineering
College Park
Maryland
USA

Dag I.K. Sjøberg
Simula Research Laboratory
Lysaker
Norway

Janice Singer
NRC Institute for Information Technology
National Research Council
Ottawa
Canada

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library

ISBN-13: 978-1-84800-043-8 e-ISBN-13: 978-1-84800-044-5

Printed on acid-free paper

© Springer-Verlag London Limited 2008

Apart from any fair dealing for the purposes of research or private study, or criticism or review,
as permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced,
stored or transmitted, in any form or by any means, with the prior permission in writing of the publishers,
or in the case of reprographic reproduction in accordance with the terms of licences issued by the Copyright
 Licensing Agency. Enquiries concerning reproduction outside those terms should be sent to the
 publishers.

The use of registered names, trademarks, etc., in this publication does not imply, even in the absence of
a specific statement, that such names are exempt from the relevant laws and regulations and therefore
free for general use.

The publisher makes no representation, express or implied, with regard to the accuracy of the information
contained in this book and cannot accept any legal responsibility or liability for any errors or omissions
that may be made.

9 8 7 6 5 4 3 2 1

Springer Science+Business Media
springer.com

Library of Congress Control Number: 2007934531

Contents

Contributors . vii

Introduction . 1

Section I Research Methods and Techniques

Chapter 1 Software Engineering Data Collection
for Field Studies . 9

 Janice Singer, Susan E. Sim, and Timothy C. Lethbridge

Chapter 2 Qualitative Methods . 35
 Carolyn B. Seaman

Chapter 3 Personal Opinion Surveys . 63
 Barbara A. Kitchenham and Shari L. Pfleeger

Chapter 4 The Focus Group Method as an Empirical
Tool in Software Engineering . 93

 Jyrki Kontio, Johanna Bragge, and Laura Lehtola

Chapter 5 Simulation Methods . 117
 Mark Müller and Dietmar Pfahl

Section II Practical Foundations

Chapter 6 Statistical Methods and Measurement 155
 Jarrett Rosenberg

Chapter 7 Missing Data in Software Engineering 185
 Audris Mockus

v

Chapter 8 Reporting Experiments in Software Engineering 201
 Andreas Jedlitschka, Marcus Ciolkowski,

and Dietmar Pfahl

Chapter 9 A Practical Guide to Ethical Research
Involving Humans. 229

 Norman G. Vinson and Janice Singer

Chapter 10 The Management of University–Industry
Collaborations Involving Empirical Studies
of Software Engineering. 257

 Timothy C. Lethbridge, Steve Lyon, and Peter Perry

Section III Knowledge Creation

Chapter 11 Selecting Empirical Methods for Software
Engineering Research. 285

 Steve Easterbrook, Janice Singer, Margaret-Anne Storey,
and Daniela Damian

Chapter 12 Building Theories in Software Engineering 312
 Dag I.K. Sjøberg, Tore Dybå, Bente C.D. Anda,

and Jo E. Hannay

Chapter 13 Building Theories from Multiple Evidence Sources 337
 Forrest Shull and Raimund L. Feldmann

Chapter 14 Replication’s Role in Software Engineering 365
 A. Brooks, M. Roper, M. Wood, J. Daly, and J. Miller

Bibliography . 381

Index . 383

vi Contents

Contributors

Bente C. D. Anda
Simula Research Laboratory, Department of Software Engineering
Lysaker, Norway, NO-1325
and
Department of Informatics, University of Oslo
Oslo, Norway, NO-0316
bentea@simula.no

Johanna Bragge
Helsinki School of Economics and Business Administration
Helsinki, Finland FIN-00101
johanna.bragge@hse.fi

Andy Brooks
University of Akureyri
Akureyri, Iceland IS 600
andy@unak.is

Marcus Ciolkowski
Software Engineering: Processes and Measurement Research Group (AGSE)
University of Kaiserslautern PO Box 3049
67653 Kaiserslautern
Germany
and
Fraunhofer Institute for Experimental Software Engineering, Fraunhofer-Platz 1
67663 Kaiserslautern
Germany
Marcus.Ciolkowski@iese.fraunhofer.de

John Daly
Formerly of the Department of Computer Science, University of Strathclyde
26 Richmond Street,
Glasgow, Scotland G1 1XH

vii

Daniela Damian
Dept. of Computer Science, University of Victoria
Victoria, British Columbia, Canada V8W 3P6
DanielaD@cs.uvic.ca

Tore Dybå
Simula Research Laboratory, Department of Software Engineering
Lysaker, Norway, NO-1325
and
SINTEF ICT
Trondheim, Norway, NO-7465
tore.dyba@sintef.no

Steve Easterbrook
Department of Computer Science, University of Toronto
Toronto, Ontario, Canada M5S 2E4
sme@cs.toronto.edu

Raimund L. Feldmann
Fraunhofer Center Maryland
College Park, MD 20742, USA
rfeldmann@fc-md.umd.edu

Jo E. Hannay
Simula Research Laboratory, Department of Software Engineering
Lysaker, Norway, NO-1325
and
Department of Informatics, University of Oslo
Oslo, Norway, NO-0316
johannay@simula.no

Andreas Jedlitschka
Fraunhofer Institute for Experimental Software Engineering, Fraunhofer-Platz 1
67663 Kaiserslautern
Germany
Andreas.Jedlitschka@iese.fraunhofer.de

Barbara A. Kitchenham
Keele University, School of Computing and Mathematics
Keele, Staffordshire, United Kingdom
b.a.kitchenham@cs.keele.ac.uk

Jyrki Kontio
Software Business Laboratory, Helsinki University of Technology
Helsinki, Finland FIN-02015 TKK
jyrki.kontio@tkk.fi

viii Contributors

Laura Lehtola
Software Business and Engineering Institute, Helsinki University of Technology
Helsinki, Finland FIN-02015 HUT
laura.lehtola@tkk.fi

Timothy C. Lethbridge
School of Information Technology and Engineering, University of Ottawa
Ottawa, Ontario, Canada K1N 6N5
tcl@site.uottawa.ca

Steve Lyon
Mitel Networks
350 Legget Drive
P.O. Box 13089
Ottawa, Ontario, Canada K2K 2W7
Steve_Lyon@mitel.com

James Miller
Department of Electrical and Computer Engineering, University of Alberta
Edmonton, Alberta, Canada T6G 2E1
jm@ece.ualberta.ca

Audris Mockus
Software Technology Research Department, Avaya Labs Research
Basking Ridge, NJ 07920, USA
audris@research.avayalabs.com

Mark Müller
Robert BOSCH GmbH
Corporate Sector Research and Advance Engineering
Dept. CR/AEC - Corporate Systems Engineering Process Group
Postfach 300240, 70442 Stuttgart, Germany
mark.mueller2@de.bosch.com

Peter Perry
Mitel Networks
350 Legget Drive
P.O. Box 13089
Ottawa, Ontario, Canada K2K 2W7
Peter_Perry@mitel.com

Dietmar Pfahl
Schulich School of Engineering, University of Calgary, Electrical and
Computer Engineering Department
Calgary, Alberta, Canada T2N 1N4
dpfahl@ucalgary.ca

Contributors ix

Shari Lawrence Pfleeger
Rand Corporation
Arlington, VA 22202, USA
shari_pfleeger@rand.org

Jarrett Rosenberg
Sun Microsystems
Palo Alto, CA 94303, USA
Jarrett.Rosenberg@ACM.ORG

Marc Roper
Department of Computer and Information Sciences, University of Strathclyde
Glasgow, Scotland G1 1XH
Marc.Roper@cis.strath.ac.uk

Carolyn Seaman
University of Maryland Baltimore County, Department of Information Systems
Baltimore, MD 21250, USA
cseaman@umbc.edu

Forrest Shull
Fraunhofer Center Maryland
College Park, MD 20742, USA
fshull@fc-md.umd.edu

Susan Elliott Sim
Department of Informatics, Donald Bren School of Information and Computer
Sciences, University of California, Irvine
Irvine, CA 92967-3440, USA
ses@ics.uci.edu

Janice Singer
National Research Council Canada, Institute for Information Technology
Ottawa, Ontario, Canada K1A 0R6
janice.singer@nrc-cnrc.gc.ca

Dag I. K. Sjøberg
Simula Research Laboratory, Department of Software Engineering
Lysaker, Norway, NO-1325
and
Department of Informatics, University of Oslo
Oslo, Norway, NO-0316
dagsj@simula.no

Margaret-Anne Storey
Dept. of Computer Science, University of Victoria
Victoria, British Columbia, Canada V8W 3P6
mstorey@csr.uvic.ca

x Contributors

Norman G. Vinson
National Research Council Canada, Institute for Information Technology
Ottawa, Ontario, Canada K1A 0R6
Norman.Vinson@nrc-cnrc.gc.ca

Murray Wood
Department of Computer and Information Sciences, University of Strathclyde
Glasgow, Scotland, G1 1XH
Murray.Wood@cis.strath.ac.uk

Contributors xi

Introduction

Empirical studies have become an important part of software engineering research
and practice. Ten years ago, it was rare to see a conference or journal article about
a software development tool or process that had empirical data to back up the
claims. Today, in contrast, it is becoming more and more common that software
engineering conferences and journals are not only publishing, but eliciting, articles
that describe a study or evaluation. Moreover, a very successful conference
(International Symposium on Empirical Software Engineering and Measurement),
journal (Empirical Software Engineering), and organization (International Software
Engineering Research Network) have all evolved in the last 10 years that focus
solely on this area. As a further illustration of the growth of empirical software
engineering, a search in the articles of 10 software engineering journals showed that
the proportion of articles that used the term “empirical software engineering” dou-
bled from about 6% in 1997 to about 12% in 2006.

While empirical software engineering has seen such substantial growth, there is
not yet a reference book that describes advanced techniques for running studies and
their application. This book aims to fill that gap. The chapters are written by some
of the top international empirical software engineering researchers and focus on the
practical knowledge necessary for conducting, reporting, and using empirical
 methods in software engineering. The book is intended to serve as a standard
reference.

The goals of this book are:

● To provide guidance on designing, conducting, analysing, interpreting, and
reporting empirical studies, taking into account the common difficulties and
challenges encountered in the field.

● To provide information across a range of techniques, methods, and quantitative
and qualitative issues, and in so doing provide a toolkit that is applicable across
the diversity of software development contexts.

● To present material that is adapted from work in other disciplines such as statis-
tics, medicine, psychology, and education, into a software engineering context.

We did not include introductory topics on how to design and run studies in
empirical software engineering, as this information has been covered adequately

1

F. Shull et al. (eds.), Guide to Advanced Empirical Software Engineering.
© Springer 2008

2 Introduction

in several other books and papers. To address these goals, the chapters in this book
are grouped according to three primary themes:

“Research Methods and Techniques” presents discussions on the proper use of various
strategies for collecting and analyzing data, and the uses for which those strategies
are most appropriate. Our aim in this section is to present ideas about strategies that
are less often used in our field, which perhaps may provide some ideas about less
conventional but still rigorous and useful ways of collecting data. We also aim to
provide detailed information on topics such as surveys that in our experience often
contain methodological errors.

“Practical Foundations” provides a discussion of several basic issues that a
researcher has to get right before a study becomes meaningful. This section discusses
important, global issues that need to be considered from the very beginning of
research planning. Chapters here discuss topics that are almost always going to be
important, regardless of the specific choices that are made about running the study.
Our aim in this section is to arm researchers with the information necessary to avoid
fundamental risks. For example, an entire study may be inappropriate if a researcher
doesn’t understand enough about metrics and statistics to collect the right measures;
a researcher may not get the chance to run the study he/she wants if there is no good
way to cooperate with industry; or the results may be jeopardized if incomplete data
is collected by the study and the researcher don’t respond appropriately.

Finally, “Knowledge Creation” looks beyond the challenge of running an appro-
priate study to provide insight on what is becoming one of the most important
challenges in empirical software engineering today–using a set of disparate studies
(all of which may employ different designs and metrics) to provide useful decision
support on a question of interest. The conversion of discrete scientific results into a
broadly useful “body of knowledge” on a topic is a difficult process, with many
opportunities for introducing bias if done incorrectly. Refining and employing
appropriate techniques in addressing this problem is one of the most important
challenges for ensuring the relevance of empirical software engineering and show-
ing its practical impact.

While we feel that all of these topics are of interest to many workers in this field,
we do wish to direct the attention of certain readers to certain parts of the book.
There are four target audiences for this book:

1. Practising software engineering researchers, whether they reside in academia or
in industrial research labs.

Of primary interest to such readers may be the section on “Knowledge
Creation,” since building knowledge from multiple sources of data, suitable
for providing higher level answers to problems, continues to be of more
importance to the empirical software engineering community as a whole. At
the same time, our methods for abstracting such knowledge are not yet well
codified, and the chapters in this section raise awareness as well as inform
researchers about the methods currently being employed.

Researchers may be primarily either quantitatively or qualitatively
inclined. Both types will find issues of direct relevance to the typical prob-

Introduction 3

lems that they encounter in the “Research Methods and Tools” section. That
section is designed to provide a mix of relevant and interesting content of
both types, as we feel strongly that the quantitative-qualitative distinction is
an arbitrary one, and interesting and relevant conclusions will always need to
combine a mix of both types of data. Overall, the methodological material
will inform readers about advanced and defensible techniques that they can
use in their research.

One last topic of special interest may be that of reporting guidelines in
“Practical Foundations,” which can provide readers with guidelines that they
can use for reporting their results, either internally within their organisations
or in the scientific literature.

2. Practising software engineers whose work involves data analysis. This category
includes, for example, quality assurance personnel.

As budgets are squeezed, there is more pressure to provide stronger evidence
and more convincing business cases to implement new technologies or make
process changes, and even to justify decisions already made. Therefore, any
knowledge that the engineers can use to help them achieve this goal is wel-
comed. The “Research Methods and Tools” section is of relevance to this
 target group. Insofar as readers may be expected to address real problems of
practical interest, we have tried to make available a set of techniques that may
be able to help them. As no two project environments and constraints are
exactly alike, having as wide a variety of methods to apply will be beneficial.
Moreover, the chapters in “Practical Foundations” that deal with the science
of measurement and how to deal with common problems, such as missing
data, may also be of help.

For example, one may consider using data collected about a new technol-
ogy to estimate its effect on a larger process (simulation), understanding
whether there are hidden costs of such changes by understanding more than
just the dollar figure involved (qualitative methods), evaluating the impact of
process changes within the organisation (through surveys of technical staff),
customer surveys (survey design and focus groups), and performing appropri-
ate analysis of factors affecting the incidence of operational defects when
there are missing values in the defect databases (dealing with missing values).
In particular, organisations following the improvement path stipulated by
contemporary maturity/capability models are primary targets since these
models emphasize measurement and quantitative control at higher levels of
maturity/capability.

Other topics that may be of particular relevance for individuals in industry
performing empirical studies can be found in “Practical Foundations.” For
example, given that quality assurance personnel usually rely on the co-operation
of the development and maintenance engineers, ethical behaviour will ensure
that none of the engineers are alienated. Furthermore, there may be legal
ramifications for unethical behaviour, particularly in countries with strong
labour laws (e.g., North European countries). The management of co-operation

4 Introduction

with universities will be relevant for those involved in joint industry-university
research projects. Since a successful collaboration depends on both parties,
the industrial side would also contribute to this success if they are aware of
these guidelines.

3. Graduate students in software engineering. The book could serve as a text for a
graduate level course on empirical methods, and/or as reference material for
students embarking on a research project.

All of the material in the book will be of direct relevance to graduate students.
Specifically, such readers may find valuable the coverage of the different
types of studies that can be performed in order to make a decision on which
approaches to follow during their research projects (“Research Methods and
Tools”). Even more importantly, topics under “Practical Foundations” will
help novice researchers recognize some of the background requirements in
running successful studies, contribute towards ensuring that their research is
well reported, and mitigate against the tendency of over-interpreting the
results of individual studies.

The section on “Knowledge Creation” will help students understand the
body of knowledge that may exist on their research topic and the importance
of relating their work to existing theories that have been built up in the area.

4. Reviewers of empirical research.

The overview of empirical methods with their strengths and weaknesses
(“Research Methods and Tools”), especially the discussion of appropriate
issues that can be tackled with the various methods, should help reviewers
make a better judgement of the quality of an empirical study.

The section on “Knowledge Creation” is especially important to review-
ers. First, it aims to inform such readers about, and increase the acceptance
of, replication. Replication is critical for any discipline to progress, and
reviewers are essentially the gatekeepers. The chapter on reporting guidelines
would assist reviewers in ensuring that sufficient detail is reported in pub-
lished manuscripts.

Perhaps the most relevant chapter under “Practical Foundations” for
reviewers is the one concerned with ethics. Reviewers have to judge whether
appropriate ethical behaviour was followed in published manuscripts. Again,
being the gatekeepers for a discipline, they can encourage or discourage cer-
tain behaviours.

When we first set out to put this book together, we were motivated by what we
as researchers felt was missing, a handy reference guide on some of the techniques
we are called upon to apply as part of our work or to review in others’ work. Little
did we understand at the time the kind of process we were embarking upon in trying
to fill that gap. We wish to thank all of the chapter authors for their high-quality
work and for helping to move this project along. We especially wish to thank all of

Introduction 5

the external reviewers (listed below) for contributing their effort to improve the
quality of the materials found here. We certainly hope that readers will find this, as
we intended, a useful and practical reference for their own work.

Forrest Shull

Janice Singer

Dag Sjøberg

External Reviewers

David Budgen

Reidar Conradi

Yvonne Dittrich

Tore Dybå

Tracy Hall

Natalia Juristo

James Miller

Helen Sharp

Susan Sim

Bhekisipho Twala

Paul Wernick

Bernard Wong

Murray Wood

Section I
Research Methods and Techniques

Abstract. Software engineering is an intensely people-oriented activity, yet little
is known about how software engineers perform their work. In order to improve
 software engineering tools and practice, it is therefore essential to conduct field
studies, i.e., to study real practitioners as they solve real problems. To aid this goal,
we describe a series of data collection techniques for such studies, organized around
a taxonomy based on the degree to which interaction with software engineers is
necessary. For each technique, we provide examples from the literature, an analysis
of some of its advantages and disadvantages, and a discussion of special reporting
requirements. We also talk briefly about recording options and data analysis.

1. Introduction

Software engineering involves real people working in real environments. People
create software, people maintain software, people evolve software. Accordingly
to understand software engineering, one should study software engineers as they
work – typically by doing field studies. In this chapter, we introduce a set of data
collection techniques suitable for performing such studies that can be used indi-
vidually or in combination to understand different aspects of real world environ-
ments. These data collection techniques can be used with a wide variety of
methods under a wide variety of theoretical and philosophical traditions (see
Easterbrook et al., Chap. 11).

To better showcase the qualities of the various techniques, we have created a tax-
onomy based on the degree to which interaction with software engineers is required.
The next section details the taxonomy. In Sect. 3, each technique is described in
detail. We talk briefly in Sect. 4 about recording options for the data and present a
brief overview of data analysis. We conclude the chapter with a discussion of how
these techniques can be used in the most appropriate fashion.

Chapter 1
Software Engineering Data Collection
for Field Studies1

Janice Singer, Susan E. Sim, and Timothy C. Lethbridge

9

F. Shull et al. (eds.), Guide to Advanced Empirical Software Engineering.
© Springer 2008

1 Based on Lethbridge, T., Sim, S., & Singer, J. (2005). Studying software engineers: data collection
techniques for software field studies, Empirical Software Engineering 10(3), 311–341.

10 J. Singer et al.

2. Field Study Data Collection Taxonomy

Table 1. presents a summary of the data collection techniques; the second column
shows the kinds of questions each can answer; the third column indicates the
amount of data generated by the technique, and the fourth column shows other
areas in software engineering where the technique is applied. Each technique is
categorized according to how much contact is required between the researchers and
the participants2. Direct techniques require the researcher to have direct involvement
with the participant population. Indirect techniques require the researcher to have
only indirect access to the participants’ via direct access to their work environment.
Finally, independent techniques require researchers to access only work artifacts,
such as source code or documentation. Selecting an appropriate technique will be
influenced by the questions asked and the amount of resources available to conduct
the study. Generally, direct techniques require more resources, both to collect the
data and to analyse it. Direct techniques are, however, the only techniques that
allow researchers to explore the thoughts and feelings of the software engineers.

3. Survey of Data Collection Techniques

In this section, we describe the data collection techniques listed in Table 1. We use
the taxonomy to organize the presentation of the techniques, beginning with direct
techniques, moving on to indirect techniques, and concluding with independent
techniques. Each of the techniques is described in the same way. First the technique
is described. Then its advantages and disadvantages are identified. Next, one or
more examples of its use in software engineering research are given. Finally, some
guidance is given regarding special considerations when reporting the technique
(for more information on reporting in general, see Jedlitschka et al., Chap. 8).

3.1. Direct Techniques

The first five techniques listed in Table 1 are what we call inquisitive techniques
(brainstorming, focus groups, interviews, questionnaires, conceptual modeling),
while the remaining ones are primarily observational. Each type is appropriate for
gathering different types of information from software engineers.

2 We recognize that there is some debate about whether to properly characterize people who
participate in research as subjects or participants. In this chapter, we have chosen to use the word
participant because in field studies, there is frequently a greater degree of collaboration between
those being studied and those doing the research.

1 Software Engineering Data Collection for Field Studies 11

Table 1 Questions asked by software engineering researchers (column 2) that can be answered
by field study techniques

 Used by researchers Also used
 when their goal is Volume by software
Technique to understand: of data engineers for

Direct techniques
Brainstorming Ideas and general Small Requirements

and focus background about gathering, project
groups the process and product, planning
 general opinions
 (also useful to enhance
 participant rapport)

Interviews and General information Small Requirements
questionnaires (including opinions) to large and evaluation
 about process, product,
 personal knowledge etc.

Conceptual Mental models of Small Requirements
modeling product or process

Work diaries Time spent or frequency of certain Medium Time sheets
 tasks (rough approximation,
 over days or weeks)

Think-aloud Mental models, goals, Medium UI evaluation
sessions rationale and patterns to large
 of activities

Shadowing and Time spent or frequency of tasks Small Advanced
observation (intermittent over relatively approaches to
 short periods), patterns of use case or task
 activities, some goals and analysis
 rationale

Participant Deep understanding, goals and Medium
observation rationale for actions, time to large
(joining the spent or frequency over
team) a long period

Indirect techniques
Instrumenting Software usage over a long Large Software

systems period, for many participants usage analysis
Fly on the wall Time spent intermittently in one Medium

 location, patterns of activities
 (particularly collaboration)

Independent techniques
Analysis of work Long-term patterns relating to Large Metrics

databases software evolution, faults etc. gathering
Analysis of Details of tool usage Large

tool use logs
Documentation Design and documentation Medium Reverse

analysis practices, general engineering
 understanding

Static and dynamic Design and programming Large Program
analysis practices, general comprehension,
 understanding metrics, testing,
 etc.

12 J. Singer et al.

Inquisitive techniques allow the experimenter to obtain a general understanding
of the software engineering process. Such techniques are probably the only way to
gauge how enjoyable or motivating certain tools are to use or certain activities to
perform. However, they are often subjective, and additionally do not allow for
accurate time measurements.

Observational techniques provide a real-time portrayal of the studied phenomena.
However, it is more difficult to analyze the data, both because it is dense and
because it requires considerable knowledge to interpret correctly. Observational
techniques can be used at randomly chosen times or when a software engineer is
engaged in a specific type of activity (such as whenever she is using a debugger).
Observational techniques always run the risk of changing the process simply by
observing it; the Hawthorne (Draper, 2004; Robbins, 1994) effect was first identi-
fied when a group of researchers found that output was not related to environmental
conditions as expected, but rather to whether or not workers were being observed.
Careful consideration of this effect is therefore warranted in implementing the
research and explaining its purpose and protocol to the research participants.

3.1.1. Brainstorming and Focus Groups

In brainstorming, several people get together and focus on a particular issue. The
idea is to ensure that discussion is not limited to “good” ideas or ideas that make
immediate sense, but rather to uncover as many ideas as possible. Brainstorming
works best with a moderator because the moderator can motivate the group and
keep it focused. Additionally, brainstorming works best when there is a simple
“trigger question” to be answered and everybody is given the chance to contribute
their opinions. A good seminal reference for this process, called Nominal Group
Technique, is the work of Delbecq et al. (1975). Trigger questions, such as, “What
are the main tasks that you perform?” or “What features would you like to see in
software engineering tools?” can result in extensive lists of valuable ideas that can
then be analysed in more detail.

Focus Groups are similar to brainstorming. However, focus groups occur when
groups of people are brought together to focus on a particular issue (not just generate
ideas). They also involve moderators to focus the group discussion and make sure
that everyone has an opportunity to participate. For more information on how to
conduct focus groups, see Kontio et al., Chap. 4.
Advantages: Brainstorming and focus groups are excellent data collection tech-
niques to use when one is new to a domain and seeking ideas for further explora-
tion. They are also very useful for collecting information (for instance about the
usefulness of a particular tool) from large groups of people at once. They are good
at rapidly identifying what is important to the participant population. Two impor-
tant side benefits of brainstorming and focus groups are that they can introduce the
researchers and participants to each other and additionally give the participants
more of a sense of being involved in the research process. Conducting research in
field environments is often stressful to the research participants; they are more

1 Software Engineering Data Collection for Field Studies 13

likely to be willing participants if they feel comfortable with the researchers and
feel they are partners in research that focuses on issues that they consider to be
important.
Disadvantages: Unless the moderator is very well trained, brainstorming and focus
groups can become too unfocused. Although the nominal group technique helps
people to express their ideas, people can still be shy in a group and not say what
they really think. Just because a participant population raises particular issues, this
does not mean the issues are really relevant to their daily work. It is often difficult
to schedule a brainstorming session or focus group with the busy schedules of soft-
ware engineers.
Examples: Bellotti and Bly (1996) used brainstorming during an initial meeting with
a product design group. The brainstorming meeting was held to identify problems
and possible solutions as seen by the team. This meeting gave the researchers an ini-
tial understanding of the team’s work and additionally let the researchers know how
existing technology was either supporting or inhibiting the work. A nice side effect
of the meeting was that it gave the researchers an entry point for communication
about the design process with their colleagues in the design department at Apple.

Hall and her colleagues have published a number of papers based on a large
study involving focus groups to understand software process improvement (see for
example, Baddoo and Hall, 2002; Rainer and Hall, 2003). In their studies, 39 focus
groups were implemented in 13 companies. The groups were comprised of between
four and six participants. The companies were chosen based on certain characteris-
tics, but overall were representative of the industry. Each session lasted 90 min.
There were three types of groups: senior managers, project managers, and develop-
ers. The focus groups were moderated and tackled very specific questions aimed at
understanding several factors leading to success and failure for software process
improvement.

Storey et al. (2007) conducted a focus group with a number of users of a tool
they developed. The focus group enabled the users to communicate with each other,
and additionally allowed for greater time efficiency when collecting the data than
interviews would have allowed.
Reporting guidelines: The reporting of brainstorming and focus groups is similar.
For both, the number of participants seen, and the context in which they were seen
should be reported. Where appropriate the role and expertise of the moderator
should be described. If specific questions were used, they should be detailed.
Additionally, the time spent on brainstorming or the focus group should be reported.
Finally, the type of data recording used should be described (e.g., video, audio,
notes, etc.).

3.1.2. Interviews

Interviews involve at least one researcher talking to at least one respondent.
Interviews can be conducted in two ways. In a structured interview, a fixed list of
carefully worded questions forms the basis of the interview. Usually, the questions

14 J. Singer et al.

are asked exactly as written, and no deviations occur. The data from structured
interviews is usually analysed using statistical analyses. In a semi-structured inter-
view, the interview generally follows more of a conversational flow. New questions
may be devised as new information is learned. Typically, some open-ended
questions that allow for greater interaction are asked. Furthermore, in some
semi-structured interviews, the interview will be structured around a framework of
potential topics as opposed to any specific questions. The data from semi-structured
interviews is usually analysed using qualitative analysis methods (see Seaman,
Chap. 2).
Advantages: Structured interviews are an efficient means of collecting the same
data from a large number of respondents. Semi-structured interviews tend to be
much more highly interactive. Researchers can clarify questions for respondents
and probe unexpected responses. Interviewers can also build rapport with a
respondent to improve the quality of responses.
Disadvantages: Interviews are time and cost inefficient. Contact with the respond-
ent needs to be scheduled and at least one person, usually the researcher, needs to
attend the meeting (whether in person, by phone, videoconference, or over the
web). If the data from interviews consists of audio- or videotapes, this needs to be
transcribed and/or coded; careful note-taking may, however, often be an adequate
substitute for audio or video recording. Finally, participants’ reports of events may
not mirror reality. For instance, in one of our interview studies, developers reported
that they spent a substantial amount of time reading documentation, but we did not
observe this to be true.
Examples: Interviews have been used in many studies because they fit well with
many types of methods and philosophical traditions. We have used interviews in
longitudinal studies as an aid in understanding how newcomers adapt to a develop-
ment team and software system (Sim and Holt, 1998). We interviewed newcomers
once every three weeks over a number of months to track their progress as mainte-
nance team members. Since this was an exploratory study, the interviews were
semi-structured with open-ended questions.

Curtis et al. (1988) used interviews to study the design process used on 19
different projects at various organizations. They interviewed personnel from three
different levels of the participating projects, systems engineers, senior software
designers and project managers. The researchers conducted 97 interviews, which
resulted in over 3000 pages of transcripts of the audio recordings. They found
three key problems common to the design processes: communication and coordi-
nation breakdowns, fluctuating and conflicting product requirements, and the
tendency for application domain knowledge to be located in individuals across
the company. They characterized the problems at each level of a model they
 subsequently defined.

Damian et al. (2004) used interviews of experienced personnel and senior man-
agement to examine how changes in the requirements engineering process affected
software development practice. Because there was limited historical data on the pre-
vious requirements process, the interviews were key to provide information on how
the changes were affecting the current practice. In addition to the initial interviews,

1 Software Engineering Data Collection for Field Studies 15

follow-up interviews were conducted after a questionnaire to elucidate the responses.
Overall, Damian et al. found the improved requirements process was useful to the
product development team in that it resulted in better documentation of require-
ments, understanding of the market need, and understanding of requirements.
Reporting guidelines: When reporting data from interviews, it is necessary to detail
the number and type of interviewees seen, approximately how long the interviews
took, the type of interview (semi-structured or structured), the way the interview is
recorded, and how the participants were selected. Additionally, if possible, provide
a copy of the questions in the report or an appendix.

3.1.3. Questionnaires

Questionnaires are sets of questions administered in a written format. These are the
most common field technique because they can be administered quickly and easily.
However, very careful attention needs to be paid to the wording of the questions,
the layout of the forms, and the ordering of the questions in order to ensure valid
results. Pfleeger and Kitchenham have published a six part series on principles of
survey research starting with Pfleeger and Kitchenham (2001) (see also Chap. 3).
This series gives detailed information about how to design and implement question-
naires. Punter et al. (2003) further provide information on conducting web-based
surveys in software engineering research.
Advantages: Questionnaires are time and cost effective. Researchers do not need to
schedule sessions with the software engineers to administer them. They can be
filled out when a software engineer has time between tasks, for example, waiting
for information or during compilation. Paper form-based questionnaires can be
transported to the respondent for little more than the cost of postage. Web-based
questionnaires cost even less since the paper forms are eliminated and the data are
received in electronic form. Questionnaires can also easily collect data from a large
number of respondents in geographically diverse locations.
Disadvantages: Since there is no interviewer, ambiguous and poorly-worded ques-
tions are problematic. Even though it is relatively easy for software engineers to fill
out questionnaires, they still must do so on their own and may not find the time. Thus,
response rates can be relatively low which adversely affects the representativeness of
the sample. We have found a consistent response rate of 5% to software engineering
surveys. If the objective of the questionnaire is to gather data for rigorous statistical
analysis in order to refute a null hypothesis, then response rates much higher than this
will be needed. However, if the objective is to understand trends, then low response
rates may be fine. The homogeneity of the population, and the sampling technique
used also affect the extent to which one can generalize the results of surveys. In addi-
tion to the above, responses tend to be more terse than with interviews. Finally, as
with questionnaires, developers’ responses to questions may not mirror reality.
Examples: Lethbridge (2000) used questionnaires that were partly web-based and
partly paper-based to learn what knowledge software engineers apply in their daily
work, and how this relates to what they were taught in their formal education.

16 J. Singer et al.

Respondents were asked four questions about each of a long list of topics. Several
questionnaires were piloted, but nonetheless a couple of the topics3 were interpreted
in different ways by different respondents. Despite this, useful conclusions about
how software engineers should be trained were drawn from the study.

Iivari (1996) used a paper-based questionnaire to test nine hypotheses about
 factors affecting CASE tool adoption in 52 organizations in Finland. The author
contacted organizations that had purchased CASE tools and surveyed key informa-
tion systems personnel about the use of the tool. Companies and individuals were
more likely to use CASE tools when adoption was voluntary, the tool was perceived
to be superior to its predecessor(s) and there was management support.
Reporting guidelines: When reporting data from questionnaires, it is necessary to
detail how the population was sampled (i.e., who the questionnaires were sent to,
or how respondents were chosen) and the response rate for the questionnaire, if
appropriate. Any piloting and subsequent modification of the questionnaire should
be explained. Additionally, if possible, provide a copy of the questions in the report
or an appendix.

3.1.4. Conceptual Modeling

During conceptual modeling, participants create a model of some aspect of their
work – the intent is to bring to light their mental models. In its simplest form, par-
ticipants draw a diagram of some aspect of their work. For instance, software engi-
neers may be asked to draw a data flow diagram, a control flow diagram or a
package diagram showing the important architectural clusters of their system. As
an orthogonal usage, software engineers may be asked to draw a physical map of
their environment, pointing out who they talk to and how often.
Advantages: Conceptual models provide an accurate portrayal of the user’s concep-
tion of his or her mental model of the system. Such models are easy to collect and
require only low-tech aids (pen and paper).
Disadvantages: The results of conceptual modeling are frequently hard to interpret,
especially if the researcher does not have domain knowledge about the system.
Some software engineers are reluctant to draw, and the quality and level of details
in diagrams can vary significantly.
Examples: In one of our studies, we collected system maps from all members of the
researched group. Additionally, as we followed two newcomers to a system, we had
them update their original system maps on a weekly basis. We gave them a photo-
copy of the previous week’s map, and asked them to either update it or draw a new
one. The newcomers almost exclusively updated the last week’s map.

In our group study, our instructions to the study participants were to “draw their
understanding of the system.” These instructions turned out to be too vague. Some

3 For example, we intended ‘formal languages’ to be the mathematical study of the principles of
artificial languages in general, yet apparently some respondents thought we were referring to
learning how to program.

1 Software Engineering Data Collection for Field Studies 17

participants drew data flow diagrams, some drew architectural clusters, others listed
the important data structures and variables, etc. Not surprisingly, the manager of the
group subsequently noted that the system illustrations reflected the current
problems on which the various software engineers were working.

We learned from this exercise that for conceptual modeling to be useful, it is
important to specify to the greatest extent possible the type of diagram required. It
is next to impossible to compare diagrams from different members of a group if
they are not drawing the same type of diagram. Of course, this limits researchers in
the sense that they will not be getting unbiased representations of a system.
Specifying that data-flow diagrams are required means that software engineers
must then think of their system in terms of data-flow.

In another project (Sayyad-Shirabad et al., 1997), we wanted to discover the
concepts and terminology that software engineers use to describe a software
system. We extracted a set of candidate technical terms (anything that was not a
common English word) from source code comments and documentation. Then we
designed a simple program that allowed software engineers to manipulate the con-
cepts, putting them into groups and organizing them into hierarchies. We presented
the combined results to the software engineers and then iteratively worked with
them to refine a conceptual hierarchy. Although there were hundreds of concepts in
the complex system, we learned that the amount of work required to organize the
concepts in this manner was not large.
Reporting guidelines: The most important thing to report for conceptual models is
the exact instructions given to the participants and a precise description of the tools
that they had available to them to model. The way the data is recorded should also
be outlined.

3.1.5. Work Diaries

Work diaries require respondents to record various events that occur during the day.
It may involve filling out a form at the end of the day, recording specific activities
as they occur, or noting whatever the current task is at a pre-selected time. These
diaries may be kept on paper or in a computer. Paper forms are adequate for record-
ing information at the end of the day. A computer application can be used to prompt
users for input at random times. A special form of the work diary is time sheets.
Many software engineers (particularly consultants) are required to maintain and
update quite detailed time sheets recording how many hours are spent per day per
activity category. These time sheets can be a valuable source of data.

If you are considering utilizing prompted work diaries, Karahasanovic et al.
(2007) provide a comprehensive comparison of this technique to think-aloud
protocol analysis (detailed below), evaluating its costs, impacts on problem solving,
and benefits.
Advantages: Work diaries can provide better self-reports of events because they
record activities on an ongoing basis rather than in retrospect (as in interviews and
questionnaires). Random sampling of events gives researchers a way of understanding

18 J. Singer et al.

how software engineers spend their day without undertaking a great deal of
observation or shadowing.
Disadvantages: Work diaries still rely on self-reports; in particular, those that
require participants to recall events may have significant problems with accuracy.
Another problem with work diaries is that they may interfere with respondents as
they work. For instance, if software engineers have to record each time they go and
consult a colleague, they may consult less often. They may also forget or neglect to
record some events and may not record at the expected level of detail.
Examples: Wu et al. (2003) were interested in collaboration at a large software
company. In addition to observations and interviews, they asked software engineers
to record their communication patterns for a period of 1 day. The researchers were
interested in both the interaction between the team members, and the typical
communication patterns of developers. They found that developers communicate
frequently and extensively, and use many different types of communication
modalities, switching between them as appropriate, and that communication
patterns vary widely amongst developers. As a slight variation, at the end of each
day, Izquierdo et al. (2007) asked developers to complete a communication diary
that detailed who they talked to and the purpose for the communication. These were
used as the basis to create social networks for the group.

As another example, Jørgensen (1995) randomly selected software maintainers
and asked them to complete a form to describe their next task. These reports were
used to profile the frequency distribution of maintenance tasks. Thirty-three
hypotheses were tested and a number of them were supported. For example, pro-
grammer productivity (lines of code per unit time) is predicted by the size of the
task, type of the change, but it is not predicted by maintainer experience, applica-
tion age, nor application size.

As a slight modification of the work diary, Shull et al. (2000) asked students to
submit weekly progress reports on their work. The progress reports included an
estimate of the number of hours spent on the project, and a list of functional
requirements begun and completed. Because the progress reports had no effect on
the students’ grades, however, Shull et al. found that many teams opted to submit
them only sporadically or not at all.

In an interesting application the use of time sheets as data, Anda et al. (2005)
describe a project where Simula Research Laboratory acted as both clients and
researchers in an IT project, where the actual contract was given to four different
companies, which allowed for a comparative case study. Although the applica-
bility of this model in empirical software engineering is limited (because of
the large amount of resources required), the paper nonetheless highlights how
this data can potentially be used in a study (when collected from accessible
sources).
Reporting guidelines: When reporting work diaries, the precise task given to the
software engineers (e.g., to record their communication patterns) must be described,
as well as how it was accomplished (e.g., reported to experimenter, recorded peri-
odically throughout the day, etc). Additionally, the tools made available to do so
should be detailed.

1 Software Engineering Data Collection for Field Studies 19

3.1.6. Think-Aloud Protocols

In think-aloud protocol analysis (Ericcson and Simon, 1984), researchers ask
 participants to think out loud while performing a task. The task can occur naturally
at work or be predetermined by the researcher. As software engineers sometimes for-
get to verbalize, experimenters may occasionally remind them to continue thinking
out loud. Other than these occasional reminders, researchers do not interfere in the
problem solving process. Think-aloud sessions generally last no more than 2 hours.

Think-aloud protocol analysis is most often used for determining or validating a
cognitive model as software engineers do some programming task. For a good
review of this literature, see von Mayrhauser and Vans (1995). Additionally, if you
are considering utilizing this technique, Karahasanovic et al. (2007) provide a com-
prehensive comparison of this technique to a form of work diaries, evaluating its
costs, impacts on problem solving, and benefits.
Advantages: Asking people to think aloud is relatively easy to implement.
Additionally, it is possible to implement think-aloud protocol analysis with manual
record keeping eliminating the need for transcription. This technique gives a unique
view of the problem solving process and additionally gives access to mental model.
It is an established technique.
Disadvantages: Think-aloud protocol analysis was developed for use in situations
where a researcher could map out the entire problem space. It’s not clear how this
technique translates to other domains where it is impossible to map out the problem
space a priori. However, Chi (1997) has defined a technique called Verbal Analysis
that does address this problem. In either case, even using manual record keeping, it
is difficult and time-consuming to analyze think-aloud data.
Examples: von Mayrhauser and Vans (1993) asked software developers to think
aloud as they performed a maintenance task which necessitated program compre-
hension. Both software engineers involved in the experiment chose debugging
sessions. The think-aloud protocols were coded to determine if participants were
adhering to the “Integrated meta-model” of program comprehension these researchers
have defined. They found evidence for usage of this model, and were therefore
able to use the model to suggest tool requirements for software maintenance
environments.

As another example of think-aloud protocol analysis, Seaman et al. (2003) were
interested in evaluating a user interface for a prototype management system. They
asked several subjects to choose from a set of designated problems and then solve
the problem using the system. The subjects were asked to verbalize their thoughts
and motivations while working through the problems. The researchers were able to
identify positive and negative aspects of the user interface and use this information
in their evolution of the system.

Hungerford et al. (2004) adopted an information-processing framework in using
protocol analysis to understand the use of software diagrams. The framework
assumes that human cognitive processes are represented by the contents of short-
term memory that are then available to be verbalized during a task. The verbal pro-
tocols were coded using a pre-established coding scheme. Intercoder reliability

20 J. Singer et al.

scores were used to ensure consistency of codings across raters and internal validity
of the coding scheme. Hungerford et al. found individual differences in search
strategies and defect detection rates across developers. They used their findings to
suggest possible training and detection strategies for developers looking for
defects.
Reporting guidelines: When reporting think-aloud protocol analysis, it is important
to provide an extremely precise characterization of the task the participant was
asked to undertake, including any tools at the participant’s disposal. The time taken
to complete the task and any materials provided to the participant are also
important to describe. Finally, the precise way in which the analysis occurs needs
to be closely detailed, especially if it is based on information processing theory or
a specific cognitive model.

3.1.7. Shadowing/Observation

In shadowing, the experimenter follows the participant around and records their activi-
ties. Shadowing can occur for an unlimited time period, as long as there is a willing
participant. Closely related to shadowing, observation occurs when the experimenter
observes software engineers engaged in their work, or specific experiment-related
tasks, such as meetings or programming. The difference between shadowing and
observation is that the researcher shadows one software engineer at a time, but can
observe many at one time.
Advantages: Shadowing and observation are easy to implement, give fast results,
and require no special equipment.
Disadvantages: For shadowing, it is often difficult to see what a software engineer
is doing, especially when they are using keyboard shortcuts to issue commands and
working quickly. However, for the general picture, e.g., knowing they are now
debugging, shadowing does work well. Observers need to have a fairly good under-
standing of the environment to interpret the software engineer’s behavior. This can
sometimes be offset by predefining a set of categories or looked-for behaviors. Of
course, again, this limits the type of data that will be collected.
Examples: We have implemented shadowing in our work in two ways (1997). First,
one experimenter took paper-and-pencil notes to indicate what the participant was
doing and for approximately how long. This information gave us a good general
picture of the work habits of the software engineers. We also used synchronized
shadowing where two experimenters used two laptop computers to record the soft-
ware engineer’s actions. One was responsible for ascertaining the participants’ high
level goals, while the other was responsible for recording their low-level actions.
We used pre-defined categories (Microsoft Word macros) to make recording easier.
Wu et al. (2003) also used pre-defined categories to shadow software engineers.

Perry et al. (1994) also shadowed software engineers as they went about their
work. They recorded continuous real-time non-verbal behavior in small spiral note-
books. Additionally, at timed intervals they asked the software engineers “What are
you doing now?” At the end of each day, they converted the notebook observations

1 Software Engineering Data Collection for Field Studies 21

to computer files. The direct observations contributed to Perry et al.’s understanding
of the software process. In particular, shadowing was good for observing informal
communication in the group setting. Similarly, Ko et al. (2007) also shadowed
software engineers. They asked the participants to think of the researchers as a new
hire to which they should explain what they were doing. From this data, they were
able to categorize the met and unmet information needs of software engineers.

As an example of observation, Teasley et al. (2002), were interested in whether
co-locating team members affects development of software. In addition to inter-
views and questionnaires, they observed teams, conference calls, problem solving,
and photographed various artifacts. The researchers found that satisfaction and
productivity increased for co-located teams.
Reporting guidelines: In reporting shadowing, the precise form of shadowing and/
or observation needs to be detailed, including whether any verbal instructions were
given to the participant to think out loud. Additionally, the way the information is
recorded must be detailed as well as the length of the session, and any other special
instructions given to the participants. It is also helpful to provide context informa-
tion, such as what activities the shadowed and/or observed participants were
engaged in, and whether this was typical or not.

3.1.8. Participant-Observer (Joining the Team)

Usually done as part of an ethnography, in the Participant-Observer technique, the
researcher essentially becomes part of the team and participates in key activities.
Participating in the software development process provides the researcher with a
high level of familiarity with the team members and the tasks they perform. As a
result, software engineers are comfortable with the researcher’s presence and tend
not to notice being observed.
Advantages: Respondents are more likely to be comfortable with a team member
and to act naturally during observation. Researchers also develop a deeper under-
standing of software engineering tasks after performing them in the context of a
software engineering group.
Disadvantages: Joining a team is very time consuming. It takes a significant
amount of time to establish true team membership. Also, a researcher who becomes
too involved may lose perspective on the phenomenon being observed.
Examples: Participant-Observer was one of the techniques used by Seaman and
Basili (1998) in their studies of how communication and organization factors affect
the quality of software inspections. One of the authors (Seaman) was integrated into
a newly formed development team. Over seventeen months, Seaman participated in
twenty-three inspection meetings. From her participation, Seaman and Basili devel-
oped a series of hypotheses on how factors such as familiarity, organizational dis-
tance, and physical distance are related to how much time is spent on discussion
and tasks.

Porter et al. (1997) also used the participant-observer technique. One of the
researchers, a doctoral student, joined the development team under study as a

22 J. Singer et al.

means of tracking an experiment’s progress, capturing and validating data, and
observing inspections. Here, the field study technique was used in the service of
more traditional experimental methods.

More recently, Izquierdo et al. (2007) joined a team over a period of 4 months
to understand how they processed information and became aware of changes.
Izquierdo did not participate in any development, but rather used the opportunity of
closeness to support data collection and a greater comprehension of the team
dynamics.
Reporting guidelines: Using the participant-observer technique, it is important to
report the role of the participant-observer in the team – whether they are actually
involved in any of the meaningful team activities or not. It is also important to
characterize how they interact with the team, and what access they have to team
material. Additionally, the length of time of the interaction needs to be reported.
Finally, a characterization of how data was collected, coded, and analysed must be
provided.

3.2. Indirect Techniques

Indirect techniques require the researcher to have access to the software engi-
neer’s environment as they are working. However, the techniques do not require
direct contact between the participant and researcher. Instead data collection is
initiated, then the software engineers go about their normal work as the data is
automatically gathered. As a result, these techniques require very little or no time
from the software engineers and are appropriate for longitudinal studies.

3.2.1. Instrumenting Systems

This technique requires “instrumentation” to be built into the software tools used
by the software engineer. This instrumentation is used to record information auto-
matically about the usage of the tools. Instrumentation can be used to monitor how
frequently a tool or feature is used, patterns of access to files and directories, and
even the timing underlying different activities. This technique is also called system
monitoring.

In some cases, instrumentation merely records the commands issued by users.
More advanced forms of instrumentation record both the input and output in great
detail so that the researcher can effectively play back the session. Others have pro-
posed building a new set of tools with embedded instruments to further constrain
the work environment (Buckley and Cahill, 1997). Related to this, Johnson and his
group have developed Hackystat, an open-source server-based system for monitor-
ing actions. Developers install sensors on their machines that then relay information
to a centralized server (see www.csdl.ics.hawaii.edu/Research/hackystat for more
information).

1 Software Engineering Data Collection for Field Studies 23

Advantages: System monitoring requires no time commitment from software
 engineers. Since, people tend to be very poor judges of factors such as relative fre-
quency and duration of the various activities they perform, this technique can be
used to provide such information accurately.
Disadvantages: It is difficult to analyze data from instrumented systems meaning-
fully; that is, it is difficult to determine software engineers’ thoughts and goals from
a series of tool invocations. This problem is particularly relevant when the working
environment is not well understood or constrained. For example, software engi-
neers often customize their environments by adding scripts and macros (e.g., in
emacs). One way of dealing with this disadvantage is to play back the events to a
software engineer and ask them to comment. Although in many jurisdictions,
employers have the right to monitor employees, there are ethical concerns if
researchers become involved in monitoring software engineers without their
knowledge.
Examples: Budgen and Thomson (2003) used a logging element when assessing
how useful a particular CASE tool was. The logger element recorded data whenever
an event occurred. Events were predetermined before. Textual data was not
recorded. The researchers found that recording events only was a shortcoming of
their design. It would have been more appropriate to collect information about the
context of the particular event.

As another example, Walenstein (2003) used VNC (Virtual Network Computing)
to collect verbatim screen protocols (continuous screen captures) of software devel-
opers engaged in software development activities. Walenstein also collected verbal
protocols and used a theory-based approach to analyse the data.

More recently, Storey et al. (2007) logged developers’ use of their TagSEA tool.
The logs were stored on the client machine. The software engineers downloaded
them to a server at specified intervals. The logs enabled Storey et al. (2007) to
understand how the tool was being used, and nicely complemented other data
sources such as interviews and a focus group. Similar to this study, Zou and
Godfrey (2007) used a logger to determine which artifacts software maintainers
were just viewing, and which were actually changed.
Reporting guidelines: The precise nature of the logging needs to be reported, including
any special instrumentation installed on the software engineer’s machines. This should
include a description of what exactly is logged, with what frequency. Any special con-
siderations with respect to data processing and analysis should also be detailed.

3.2.2. Fly on the Wall (Participants Recording their Own Work)

“Fly on the Wall” is a hybrid technique. It allows the researcher to be an observer
of an activity without being present. Participants are asked to video- or audiotape
themselves when they are engaged in some predefined activity.
Advantages: The fly-on-the-wall technique requires very little time from the partic-
ipants and is very unobtrusive. Although there may be some discomfort in the
beginning, it fades quickly.

24 J. Singer et al.

Disadvantages: The participants may forget to turn on the recording equipment at
the appropriate time and as a result the record may be incomplete or missing. The
camera is fixed, so the context of what is recorded may be hard to understand.
There is a high cost to analyzing the resulting data.
Examples: Berlin (1993) asked mentors and apprentices at a software organization
to audiotape their meetings in order to study how expertise is passed on. She later
analyzed these recordings for patterns in conversations. She found that discussions
were highly interactive in nature, using techniques such as confirmation and re-
statement to verify messages. Mentors not only explain features of the system; they
also provide design rationale.

Walz et al. (1993) had software engineers videotape team meetings during the
design phase of a development project. Researchers did not participate in the meet-
ings and these tapes served as the primary data for the study. The goal of the study
was to understand how teamwork, goals, and design evolved over a period of four
months. Initially the team focused on gathering knowledge about the application
domain, then on the requirements for the application, and finally on design
approaches. The researchers also found that the team failed to keep track of much
of the key information; as a result they re-visited issues that had been settled at ear-
lier meetings.

Robillard et al. (1998) studied interaction patterns among software engineers in
technical review meetings. The software engineers merely had to turn on a video-
tape recorder whenever they were conducting a meeting. The researchers analyzed
transcripts of the sessions and modeled the types of interactions that took place
during the meetings. Their analysis led to recommendations for ways in which such
meetings can be improved
Reporting guidelines: The precise nature of the recording needs to be reported,
along with any special instructions given to the participants. Additionally, any
problems with the recording need to be reported, such as developers forgetting to
record a meeting. Context information will also help to clarify the application of
the technique, such as where the recording occurred, what the typical tasks were,
who was involved, who was responsible for the recording, etc. Additionally,
any methods used to transform, transcribe, and analyse the data need to be
specified.

3.3. Independent Techniques

Independent techniques attempt to uncover information about how software engi-
neers work by looking at their output and by-products. Examples of their output are
source code, documentation, and reports. By-products are created in the process of
doing work, for example work requests, change logs and output from configuration
management and build tools. These repositories, or archives, can serve as the pri-
mary information source. Sometimes researchers recruit software engineers to
assist in the interpretation or validation of the data.

1 Software Engineering Data Collection for Field Studies 25

3.3.1. Analysis of Electronic Databases of Work Performed

In most large software engineering organizations, the work performed by developers
is carefully managed using issue tracker, problem reporting, change request and
configuration management systems. These systems require software engineers to
input data, such as a description of a problem encountered, or a comment when
checking in a source code module. The copious records generated for such systems
are a rich source of information for software engineering researchers. Besides the
examples provided below, see the proceedings from the International Workshops on
Mining Software Repositories.
Advantages: A large amount of data is often readily available. The data is stable and
is not influenced by the presence of researchers.
Disadvantages: There may be little control over the quantity and quality of informa-
tion manually entered about the work performed. For example, we found that descrip-
tive fields are often not filled in, or are filled in different ways by different developers.
It is also difficult to gather additional information about a record, especially if it is
very old or the software engineer who worked on it is no longer available.
Examples: Work records can be used in a number of ways. Pfleeger and Hatton (1997)
analyzed reports of faults in an air traffic control system to evaluate the effect of adding
formal methods to the development process. Each module in the software system was
designed using one of three formal methods or an informal method. Although the code
designed using formal methods tended to have fewer faults, the results were not com-
pelling even when combined with other data from a code audit and unit testing.

Researchers at NASA (1998) studied data from various projects in their studies
of how to effectively use COTS (commercial off-the-shelf software) in software
engineering. They developed an extensive report recommending how to improve
processes that use COTS.

Mockus et al. (2002) used data from email archives (amongst a number of different
data sources) to understand processes in open source development. Because the
developers rarely, if ever, meet face-to-face, the developer email list contains a rich
record of the software development process. Mockus et al. wrote Perl scripts to
extract information from the email archives. This information was very valuable in
helping to clarify how development in open source differs from traditional methods.
Reporting guidelines: The exact nature of the collected data needs to be specified,
along with any special considerations, such as whether any data is missing, or unin-
terpretable for some reason. Additionally, any special processing of the data needs
to be reported, such as if only a certain proportion is chosen to be analysed.

3.3.2. Analysis of Tool Logs

Many software systems used by software engineers generate logs of some form or
another. For example, automatic building tools often leave records, as source code
control systems. Some organizations build sophisticated logging into a wide spectrum
of tools so they can better understand the support needs of the software engineers.

26 J. Singer et al.

Such tool logs can be analyzed in the same way tools that have been deliberately
instrumented by the researchers – the distinction is merely that for this independent
technique, the researchers don’t have control over the kind of information collected.
This technique is also similar to analysis of databases of work performed, except
that the latter includes data manually entered by software engineers.

The analysis of tool logs has become a very popular area of research within
software engineering. Besides the examples provided below, see the proceedings
from the International Workshops on Mining Software Repositories.
Advantages: The data is already in electronic form, making it easier to code and
analyze. The behaviour being logged is part of software engineers normal work
routine.
Disadvantage: Companies tend to use different tools in different ways, so it is dif-
ficult to gather data consistently when using this technique with multiple
organizations.
Examples: Wolf and Rosenblum (1993) analyzed the log files generated by build
tools. They developed tools to automatically extract information from relevant
events from these files. This data was input into a relational database along with the
information gathered from other sources.

In one of our studies (Singer et al., 1997) we looked at logs of tool usage col-
lected by a tools group to determine which tools software engineers throughout the
company (as opposed to just the group we were studying) were using the most. We
found that search and Unix tools were used particularly often.

Herbsleb and Mockus (2003) used data generated by a change management
system to better understand how communication occurs in globally distributed
software development. They used several modeling techniques to understand the
relationship between the modification request interval and other variables including
the number of people involved, the size of the change, and the distributed nature of
the groups working on the change. Herbsleb and Mockus also used survey data to
elucidate and confirm the findings from the analysis of the tool logs. In general they
found that distributed work introduces delay. They propose some mechanisms that
they believe influence this delay, primarily that distributed work involves more
people, making the change requests longer to complete.
Reporting guidelines: As with instrumentation, the exact nature of what is being
collected needs to specified, along with any special concerns, such as missing data.
Additionally, if the data is processed in any way, it needs to be explained.

3.3.3. Documentation Analysis

This technique focuses on the documentation generated by software engineers,
including comments in the program code, as well as separate documents describing
a software system. Data collected from these sources can also be used in re-engineering
efforts, such as subsystem identification. Other sources of documentation that can
be analyzed include local newsgroups, group e-mail lists, memos, and documents
that define the development process.

1 Software Engineering Data Collection for Field Studies 27

Advantages: Documents written about the system often contain conceptual
 information and present a glimpse of at least one person’s understanding of the
software system. They can also serve as an introduction to the software and the
team. Comments in the program code tend to provide low-level information on
algorithms and data. Using the source code as the source of data allows for an up-
to-date portrayal of the software system.
Disadvantages: Studying the documentation can be time consuming and it requires some
knowledge of the source. Written material and source comments may be inaccurate.
Examples: The ACM SIGDOC conferences contain many studies of documentation.
Reporting guidelines: The documentation needs to be described as well as any
processing on it.

3.3.4. Static and Dynamic Analysis of a System

In this technique, one analyzes the code (static analysis) or traces generated by
running the code (dynamic analysis) to learn about the design, and indirectly about
how software engineers think and work. One might compare the programming or
architectural styles of several software engineers by analyzing their use of various
constructs, or the values of various complexity metrics.
Advantages: The source code is usually readily available and contains a very large
amount of information ready to be mined.
Disadvantages: To extract useful information from source code requires parsers
and other analysis tools; we have found such technology is not always mature –
although parsers used in compilers are of high quality, the parsers needed for certain
kinds of analysis can be quite different, for example they typically need to analyze
the code without it being pre-processed. We have developed some techniques for
dealing with this surprisingly difficult task (Somé and Lethbridge, 1998). Analyzing
old legacy systems created by multiple programmers over many years can make it
hard to tease apart the various independent variables (programmers, activities etc.)
that give rise to different styles, metrics etc.
Examples: Keller et al. (1999) use static analysis techniques involving template-
matching to uncover design patterns in source code – they point out, “… that it is
these patterns of thought that are at the root of many of the key elements of large-
scale software systems, and that, in order to comprehend these systems, we need to
recover and understand the patterns on which they were built.”

Williams et al. (2000) were interested in the value added by pair programming
over individual programming. As one of the measures in their experiment, they
looked at the number of test cases passed by pairs versus individual programmers.
They found that the pairs generated higher quality code as evidence by a signifi-
cantly higher number of test cases passed.
Reporting guidelines: The documents (e.g. source code) that provide the basis for
the analysis should be carefully described. The nature of the processing on the data
also needs to be detailed. Additionally, any special processing considerations
should be described.

28 J. Singer et al.

4. Applying the Techniques

In the previous section, we described a number of diverse techniques for gathering
information in a field study. The utility of data collection techniques becomes
apparent when they can help us to understand a particular phenomenon. In this
section, we outline how to record and analyze the data.

4.1. Record-Keeping Options

Direct techniques generally involve one of the following three data capture methods:
videotape, audiotape, or manual record keeping. These methods can be categorized
as belonging to several related continua. First, they can be distinguished with respect
to the completeness of the data record captured. Videotape captures the most complete
record, while manual record keeping captures the least complete record. Second,
they can be categorized according to the degree of interference they invoke in
the work environment. Videotaping invokes the greatest amount of interference,
while manual recording keeping invokes the least amount of interference. Finally,
these methods can be distinguished with respect to the time involved in using the
captured data. Again, videotape is the most time-intensive data to use and interpret,
while manual record keeping is the least time-intensive data to use and interpret.

The advantage of videotape is that it captures details that would otherwise be
lost, such as gestures, gaze direction, etc.4 However, with respect to video record-
ing, it is important to consider the video camera’s frame of reference. Videotape
can record only where a video camera is aimed. Moving the video camera a bit to
the right or a bit to the left may cause a difference in the recorded output and sub-
sequently in the interpretation of the data. Related to videotaping, there are a
number of software programs that allow screen capture and playback of the
recorded interactions. To be used with videotape, the video and the screen capture
must be synchronized in some way.

Audiotape allows for a fairly complete record in the case of interviews, however
details of the physical environment and interaction with it will be lost. Audiotape
does allow, however, for the capture of tone. If a participant is excited while talking
about a new tool, this will be captured on the audio record.

Manual record keeping is the most data sparse method and hence captures the
least complete data record, however manual record keeping is also the quickest,
easiest, and least expensive method to implement. Manual record keeping works
best when a well-trained researcher identifies certain behaviors, thoughts, or concepts
during the data collection process. Related to manual record keeping, Wu et al.
(2003) developed a data collection technique utilizing a PDA. On the PDA, they

4 It is often felt that videotaping will influence the participants actions. However, while videotap-
ing appears to do so initially, the novelty wears off quickly (Jordan and Henderson, 1995).

1 Software Engineering Data Collection for Field Studies 29

had predetermined categories of responses that were coded each time a particular
behaviour was observed. The data were easily transported to a database on a PC for
further analysis.

All three data capture methods have advantages or disadvantages. The decision of
which to use depends on many variables, including privacy at work, the participant’s
degree of comfort with any of the three measures, the amount of time available for
data collection and interpretation, the type of question asked and how well it can be
formalized, etc. It is important to note that data capture methods will affect the infor-
mation gained and the information that it is possible to gain. But again, these methods
are not mutually exclusive. They can be used in conjunction with each other.

4.2. Coding and Analyzing the Data

Field study techniques produce enormous amounts of data—a problem referred to as an
“attractive nuisance” (Miles, 1979). The purpose of this data is to provide insight into
the phenomenon being studied. To meet this goal, the body of data must be reduced to
a comprehensible format. Traditionally, this is done through a process of coding. That
is, using the goals of the research as a guide, a scheme is developed to categorize the
data. These schemes can be quite high level. For instance, a researcher may be inter-
ested in noting all goals stated by a software engineer during debugging. On the other
hand the schemes can be quite specific. A researcher may be interested in noting how
many times grep was executed in a half-hour programming session. Once coded, the
data is usually coded by another researcher to ensure the validity of the rating scheme.
This is called inter-coder or inter-rater reliability. There are a number of statistics that
can be reported that assess this, the most common is Kendall’s tau.

Audio and videotape records are usually transcribed before categorization,
although transcription is often not necessary. Transcription requires significant cost
and effort, and may not be justified for small, informal studies. Having made the
decision to transcribe, obtaining an accurate transcription is challenging. A trained
transcriber can take up to 6 hours to transcribe a single hour of tape (even longer
when gestures, etc. must be incorporated into the transcription). An untrained tran-
scriber (especially in technical domains) can do such a poor job that it takes
researchers just as long to correct the transcript. While transcribing has its problems,
online coding of audio or videotape can also be quite time inefficient as it can take
several passes to produce an accurate categorization. Additionally, if a question sur-
faces later, it will be necessary to listen to the tapes again, requiring more time.

Once the data has been categorized, it can be subjected to a quantitative or quali-
tative analysis. Quantitative analyzes can be used to provide summary information
about the data, such as, on average, how often grep is used in debugging sessions.
Quantitative analyzes can also determine whether particular hypotheses are
 supported by the data, such as whether high-level goals are stated more frequently
in development than in maintenance.

When choosing a statistical analysis method, it is important to know whether
your data is consistent with assumptions made by the method. Traditional, inferential

30 J. Singer et al.

statistical analyzes are only applicable in well-constrained situations. The type of
data collected in field studies often requires nonparametric statistics. Nonparametric
statistics are often called “distribution-free” in that they do not have the same
requirements regarding the modeled distribution as parametric statistics. Additionally,
there are many nonparametric tests based on simple rankings, as opposed to strict
numerical values. Finally, many nonparametric tests can be used with small samples.
For more information about nonparametric statistics, Seigel and Castellan (1988)
provide a good overview. Briand et al. (1996) discuss the disadvantages of nonpara-
metric statistics versus parametric statistics in software engineering; they point out
that a certain amount of violation of the assumptions of parametric statistics is legiti-
mate, but that nonparametric statistics should be used when there are extreme viola-
tions of those assumptions, as there may well be in field studies.

Qualitative analyzes do not rely on quantitative measures to describe the data.
Rather, they provide a general characterization based on the researchers’ coding
schemes. Again, the different types of qualitative analysis are too complex to detail
in this paper. See Miles and Huberman (1994) for a very good overview.

Both quantitative and qualitative analysis can be supported by software tools. The
most popular tools for quantitative analysis are SAS and SPSS. A number of differ-
ent tools exist for helping with qualitative analysis, including NVivo, Altas/ti, and
Noldus observer. Some of these tools also help with analysis of video recordings.

In summary, the way the data is coded will affect its interpretation and the possible
courses for its evaluation. Therefore it is important to ensure that coding schemes
reflect the research goals. They should tie in to particular research questions.
Additionally, coding schemes should be devised with the analysis techniques in mind.
Again, different schemes will lend themselves to different evaluative mechanisms.
However, one way to overcome the limitations of any one technique is to look at the
data using several different techniques (such as combining a qualitative and quantita-
tive analyzes). A triangulation approach (Jick, 1979) will allow for a more accurate
picture of the studied phenomena. Bratthall and Jørgensen (2002) give a very nice
example of using multiple methods for data triangulation. Their example is framed in
a software engineering context examining software evolution and development. In fact,
many of the examples cited earlier, use multiple methods to triangulate their results.

As a final note, with any type of analysis technique, it is generally useful to go
back to the original participant population to discuss the findings. Participants can
tell researchers whether they believe an accurate portrayal of their situation has
been achieved. This, in turn, can let researchers know whether they used appropriate
coding scheme and analysis techniques.

5. Conclusions

In this chapter we have discussed issues that software engineering researchers need
to consider when studying practitioners in the field. Field studies are one of several
complementary approaches to software engineering research and are based on a
recognition that software engineering is fundamentally a human activity: Field

1 Software Engineering Data Collection for Field Studies 31

studies are particularly useful when one is gathering basic information to develop
theories or understand practices.

The material presented in this chapter will be useful to both producers and
 consumers of software engineering research. Our goal is to give researchers a per-
spective on how they might effectively collect data in the field – we believe that more
studies like this are needed. As well, the reporting guidelines presented here will
help others evaluate published field studies: for example, readers of a field study
may ask whether appropriate data gathering or analysis techniques were used.

In this chapter, we divided the set of field study techniques into three main cate-
gories. Direct techniques such as interviewing, brainstorming, and shadowing place
the researcher in direct contact with participants. Indirect techniques allow
researchers to observe work without needing to communicate directly with partici-
pants. Independent techniques involve retrospective study of work artifacts such as
source code, problem logs, or documentation. Each technique has advantages and
disadvantages that we described in Sect. 2.

In addition to deciding which techniques to use, the researcher must also deter-
mine the level of detail of the data to be gathered. For most direct techniques one
must typically choose among, in increasing order of information volume and hence
difficulty of analysis: manual notes, audio-taping and videotaping. In all three
cases, a key difficulty is encoding the data so that it can be analyzed.

Regardless of the approach to gathering and analyzing data, field studies also
raise many logistical concerns that should be dealt with in the initial plan. For
example: How does one approach and establish relationships with companies and
employees in order to obtain a suitable sample of participants? Will the research be
considered ethical, considering that it involves human participants? And finally,
will it be possible to find research staff who are competent and interested, given that
most of the techniques described in this paper are labor intensive but not yet part of
mainstream software engineering research?

Finally, as technology and knowledge evolve, new data collection techniques emerge
– e.g., using web cameras to collect work diaries. A good place to learn more about these
new techniques is by following the human computer interaction and psychology methods
literature. As well, reading papers in empirical software engineering will highlight cur-
rent accepted techniques in the field, and how they may be used in practice.

In conclusion, field studies provide empirical studies researchers with a unique
perspective on software engineering. As such, we hope that others will pursue this
approach. The techniques described in this paper are well worth considering to bet-
ter understand how software engineering occurs, thereby aiding in the development
of methods and theories for improving software production.

References

Anda, B., Benestad, H., and Hove, S. 2005. A multiple-case study of effort estimation based on
use case points. In ISESE 2005 (Fourth International Symposium on Empirical Software
Engineering). IEEE Computer Society, Noosa, Australia, November 17–18, pp. 407–416.

32 J. Singer et al.

Baddoo, N. and Hall, T. 2002. Motivators of software process improvement: an analysis of
 practitioners’ views. Journal of Systems and Software, 62, 85–96.

Bellotti, V. and Bly, S. 1996. Walking Away from the Desktop Computer: Distributed Collaboration
and Mobility in a Product Design Team. Conference on Computer Supported Cooperative
Work, Cambridge, MA, pp. 209–219.

Berlin, L.M. 1993. Beyond Program Understanding: A Look at Programming Expertise in
Industry. Empirical Studies of Programmers, Fifth Workshop, Palo Alto, pp. 6–25.

Briand, L., El Emam, K. and Morasca, S. 1996. On the application of measurement theory in soft-
ware engineering. Empirical Software Engineering, 1, 61–88.

Bratthall, L. and Jørgensen, M. 2002. Can you trust a single data source exploratory software
engineering case study? Empirical Software Engineering: An International Journal, 7(1),
9–26.

Budgen, D. and Thomson, M. 2003. CASE tool evaluation: experiences from an empirical study.
Journal of Systems and Software, 67, 55–75.

Buckley, J. and Cahill, T. 1997. Measuring Comprehension Behaviour Through System
Monitoring. International Workshop on Empirical Studies of Software Maintenance, Bari,
Italy, 109–113.

Chi, M. 1997. Quantifying qualitative analyzes of verbal data: a practical guide. The Journal of
the Learning Sciences, 6(3), 271–315.

Curtis, B., Krasner, H., and Iscoe, N. 1988. A field study of the software design process for large
systems. Communications of the ACM, 31(11), 1268–1287.

Damian, D., Zowghi, D., Vaidyanathasamy, L., and Pal, Y. 2004. An industrial case study of imme-
diate benefits of requirements engineering process improvement at the Australian Center for
Unisys Software. Empirical Software Engineering: An International Journal, 9(1–2), 45–75.

Delbecq, A.L., Van de Ven, A.H., and Gustafson, D.H. 1975. Group Techniques for Program
Planning. Scott, Foresman & Co, Glenview, IL.

Draper, S. 2004. The Hawthorne Effect. http://www.psy.gla.ac.uk/ steve/hawth.html
Ericcson, K. and Simon, H. 1984. Protocol Analysis: Verbal Reports as Data. The MIT Press,

Cambridge, MA.
Herbsleb, J. and Mockus, A. 2003. An empirical study of speed and communication in globally

distributed software development. IEEE Transactions of Software Engineering, 29(6),
481–494.

Hungerford, B., Hevner, A., and Collins, R. 2004. Reviewing software diagrams: a cognitive
study. IEEE Transactions of Software Engineering, 30(2), 82–96.

Iivari, J. 1996. Why are CASE tools not used? Communications of the ACM, 39(10), 94–103.
Izquierdo, L., Damian, D., Singer, J., and Kwan, I. (2007). Awareness in the Wild: Why

Communication Breakdowns Occur. ICGSE 2007, Germany.
Jick, T. 1979. Mixing qualitative and quantitative methods: triangulation in action. Administrative

Science Quarterly, 24(4), 602–611.
Jordan, B. and Henderson, A. 1995. Interaction analysis: foundations and practice. The Journal of

the Learning Sciences, 4(1), 39–103.
Jørgensen, M. 1995. An empirical study of software maintenance tasks. Software Maintenance:

Research and Practice, 7, 27–48.
Karahasanovic, A., Hinkel, U., Sjøberg D., and Thomas, R. (2007). Comparing of Feedback

Collection and Think-Aloud Methods in Program Comprehension Studies. Accepted for publi-
cation in Journal of Behaviour & Information Technology, 2007.

Keller, R., Schauer, R. Robitaille, S., and Page, P. 1999. Pattern-based Reverse Engineering of
Design Components. Proceedings, International Conference on Software Engineering, Los
Angeles, CA, pp. 226–235.

Ko, A.J., DeLine, R., and Venolia, G. (2007). Information needs in collocated software develop-
ment teams. International Conference on Software Engineering (ICSE), May 20–26,
344–353.

Lethbridge, T.C. 2000. Priorities for the education and training of software engineers. Journal of
Systems and Software, 53(1), 53–71.

1 Software Engineering Data Collection for Field Studies 33

Miles, M.B. 1979. Qualitative data as an attractive nuisance: the problem of analysis.
Administrative Science Quarterly, 24(4), 590–601.

Miles, M.B. and Huberman, A.M. 1994. Qualitative Data Analysis: An Expanded Sourcebook,
Second Edition. Sage Publications, Thousand Oaks, CA.

Mockus, A., Fielding, R.T., and Herbsleb, J.D. 2002. Two case studies of open source software
development: Apache and Mozilla. ACM Transactions on Software Engineering and
Methodology, 11(3), 209–246.

NASA, SEL COTS Study Phase 1 Initial Characterization Study Report, SEL-98–001, August
1998. http://sel.gsfc.nasa.gov/website/documents/online-doc.htm.

Perry, D.E., Staudenmayer, N., and Votta, L. 1994. People, organizations, and process improve-
ment. IEEE Software, 11, 37–45.

Pfleeger, S.L. and Hatton, L. 1997. Investigating the influence of formal methods. Computer, 30, 33–43.
Pfleeger, S. and Kitchenham, B. 2001. Principles of survey research Part 1: turning lemons into

lemonade. Software Engineering Notes, 26(6), 16–18.
Porter, A.A., Siy, H.P., Toman, C.A., and Votta, L.G. 1997. An experiment to assess the cost-ben-

efits of code inspections in large scale software development. IEEE Transactions on Software
Engineering, 23(6), 329–346.

Punter, T., Ciolkowski, M., Freimut, B., and John, I. 2003. Conducting On-Line Surveys in
Software Engineering. Proceedings on the International Symposium on Empirical Software
Engineering’03, pp. 80–88.

Rainer, A. and Hall, T. 2003. A quantitative and qualitative analysis of factors affecting software
processes. Journal of Systems and Software, 66, 7–21.

Robbins, S.P. 1994. Essentials of Organizational Behavior, Fourth edition. Prentice Hall,
Englewood Cliffs, NJ.

Robillard, P.N., d’Astous, P., Détienne, D., and Visser, W. 1998. Measuring Cognitive Activities
in Software Engineering. Proceedings on the 20th International Conference on Software
Engineering, Japan, pp. 292–300.

Sayyad-Shirabad, J., Lethbridge, T.C., and Lyon, S. 1997. A Little Knowledge Can Go a Long
Way Towards Program Understanding. Proceedings of 5th International Workshop on Program
Comprehension, IEEE, Dearborn, MI, pp. 111–117.

Seigel, S. and Castellan, N.J. 1988. Nonparametric Statistics for the Behavioral Sciences, Second
Edition. McGraw-Hill, New York.

Seaman, C.B. and Basili, V.R. 1998. Communication and organization: an empirical study of dis-
cussion in inspection meetings. IEEE Transactions on Software Engineering, 24(7), 559–572.

Seaman, C., Mendonca, M., Basili, V., and Kim, Y. 2003. User interface evaluation and empiri-
cally-based evolution of a prototype experience management tool. IEEE Transactions on
Software Engineering, 29, 838–850.

Shull, F., Lanubile, F., and Basili, V. 2000. Investigating reading techniques for object-oriented
framework learning. IEEE Transactions on Software Engineering, 26, 1101–1118.

Sim S.E. and Holt, R.C. 1998. The Ramp-Up Problem in Software Projects: A Case Study of How
Software Immigrants Naturalize. Proceedings on the 20th International Conference on
Software Engineering, Kyoto, Japan, April, pp. 361–370.

Singer, J., Lethbridge, T., Vinson, N., and Anquetil, N. 1997. An Examination of Software
Engineering Work Practices. Proceedings of CASCON, IBM Toronto, October, pp. 209–223.

Somé, S.S. and Lethbridge T.C. 1998. Parsing Minimizing when Extracting Information from
Code in the Presence of Conditional Compilation. Proceedings of the 6th IEEE International
Workshop on Program Comprehension, Italy, June, pp. 118–125.

Storey, M.-A., Cheng, L., Singer, J., Muller, M., Ryall, J., and Myers, D. (2007). Turning Tags into
Waypoints for Code Navigation. ICSM, Paris, France.

Teasley, S., Covi, L., Krishnan, M., and Olson, J. 2002. Rapid software development through team
collocation. IEEE Transactions on Software Engineering, 28, 671–683.

von Mayrhauser, A. and Vans, A.M. 1993. From Program Comprehension To Tool Requirements
for an Industrial Environment. Proceedings of the 2nd Workshop on Program Comprehension,
Capri, Italy, pp. 78–86.

34 J. Singer et al.

von Mayrhauser, A. and Vans, A.M. 1995. Program understanding: models and experiments. In
M.C. Yovita and M.V. Zelkowitz (eds.), Advances in Computers, Vol. 40, Academic Press,
New York, pp. 1–38.

Walz, D.B., Elam, J.J., and Curtis, B. 1993. Inside a software design team: knowledge acquisition,
sharing, and integration. Communications of the ACM, 36(10), 62–77.

Walenstein, A. 2003. Observing and Measuring Cognitive Support: Steps Toward Systematic Tool
Evaluation and Engineering. Proceedings of the 11th IEEE Workshop on Program
Comprehension.

Williams, L., Kessler, R.R., Cunningham, W., and Jeffries, R. 2000. Strengthening the case for
pair-programming. IEEE Software, July/Aug, 19–25.

Wolf, A. and Rosenblum, D. 1993. A Study in Software Process Data Capture and Analysis.
Proceedings of the 2nd International Conference on Software Process, February, pp.
115–124.

Wu, J., Graham, T., and Smith, P. 2003. A Study of Collaboration in Software Design. Proceedings
of the International Symposium on Empirical Software Engineering’03.

Zou, L. and Godfrey, M. 2007. An Industrial Case Study of Program Artifacts Viewed During
Maintenance Tasks. Proceedings of the 2006 Working Conference on Reverse Engineering
(WCRE-06), 23–28 October, Benevento, Italy.

Chapter 2

Carolyn B. Seaman

Abstract Software engineering involves a blend of non-technical as well as technical
issues that often have to be taken into account in the design of empirical studies. In
particular, the behavior of people is an integral part of software development and
maintenance. This aspect of our subject presents complexities and challenges for the
empirical researcher. In many other disciplines, qualitative research methods have
been developed and are commonly used to handle the complexity of issues involving
people performing tasks in their workplace. This chapter presents several qualitative
methods for data collection and analysis and describes them in terms of how they
might be incorporated into empirical studies of software engineering, in particular how
they might be combined with quantitative methods. To illustrate this use of qualitative
methods, examples from real software engineering studies are used throughout.

1. Introduction

The study of software engineering has always been complex and difficult. The
complexity arises from technical issues, from the awkward intersection of
machine and human capabilities, and from the central role of the people perform-
ing software engineering tasks. The first two aspects provide more than enough
complex problems to keep empirical software engineering researchers busy. But
the last factor, the people themselves, introduces aspects that are especially diffi-
cult to capture. However, studies attempting to capture human behavior as it
relates to software engineering are increasing and, not surprisingly, are increas-
ingly employing qualitative methods (e.g. Lethbridge et al., 2005; Lutters and
Seaman, 2007; Orlikowski, 1993; Parra et al., 1997; Rainer et al., 2003; Seaman
and Basili, 1998; Singer, 1998; Sharp and Robinson, 2004).

Historically, qualitative research methods grew out of the interpretivist tradition
in social science research. Interpretivism, in turn, arose as a reaction to positivism,

35

F. Shull et al. (eds.), Guide to Advanced Empirical Software Engineering.
© Springer 2008

August 1999. © 1999 IEEE.

Qualitative Methods

Based on “Qualitative Methods in Empirical Studies of Software Engineering” by Carolyn
B. Seaman, which appeared in IEEE Transactions on Software Engineering, 25(4):557–572, July/

1

1

36 C.B. Seaman

which was and continues to be the prevailing (if implicit) philosophical underpinning
of research in the natural and physical sciences, including computer science and
software engineering. The positivist researcher views objective truth as possible, i.e.
that there exists some absolute truth about the issues of relevance, even if that truth
is elusive, and that the role of research is to come ever closer to it. Interpretivism, on
the other hand, posits that all truth is socially constructed, meaning that human
beings create their own truth about the issues of relevance to them, and these socially
constructed truths are valid and valuable. Qualitative methods, then, were required
to capture and describe these socially constructed realities. See Creswell (1998) for
a fuller explanation of positivism, interpretivism, other related philosophical frame-
works, and the role of qualitative research methods in them. For many social science
researchers, qualitative methods are reserved exclusively for use by interpretivist
researchers, and are not to be mixed with quantitative methods or positivist points of
view. However, in recent decades, researchers in information systems, human–
 computer interaction, and software engineering have begun using qualitative meth-
ods, even though the predominant, implicit philosophical stance of these research
areas remains positivist (Orlikowski and Baroudi, 1991). Thus, the perspective of
this chapter is that qualitative methods are appropriate for (even implicitly) positivist
research in software engineering, and a researcher does not have to subscribe whole-
heartedly to the interpretivist world view in order to apply them.

Qualitative data are data represented as text and pictures, not numbers (Gilgun,
1992). Qualitative research methods were designed, mostly by educational researchers
and other social scientists (Taylor and Bogdan, 1984), to study the complexities of
humans (e.g. motivation, communication, understanding). In software engineering,
the blend of technical and human aspects lends itself to combining qualitative and
quantitative methods, in order to take advantage of the strengths of both.

The principal advantage of using qualitative methods is that they force the
researcher to delve into the complexity of the problem rather than abstract it away.
Thus the results are richer and more informative. They help to answer questions
that involve variables that are difficult to quantify (particularly human characteris-
tics such as motivation, perception, and experience). They are also used to answer
the “why” to questions already addressed by quantitative research. There are draw-
backs, however. Qualitative analysis is generally more labor-intensive and exhaust-
ing than quantitative analysis. Qualitative results often are considered “softer,” or
“fuzzier” than quantitative results, especially in technical communities like ours.
They are more difficult to summarize or simplify. But then, so are the problems we
study in software engineering.

Methods are described here in terms of how they could be used in a study that
mixes qualitative and quantitative methods, as they often are in studies of software
engineering. The focus of this chapter is rather narrow, in that it concentrates on
only a few techniques, and only a few of the possible research designs that are well
suited to common software engineering research topics. See Judd et al. (1991),
Lincoln and Guba (1985), Miles and Huberman (1994) and Taylor and Bogdan
(1984) for descriptions of other qualitative methods.

The presentation of this chapter divides qualitative methods into those for
 collecting data and those for analysing data. Examples of several methods are given

2 Qualitative Methods 37

for each, and the methods can be combined with each other, as well as with
 quantitative methods. Throughout this chapter, examples will be drawn from
several software engineering studies, including (von Mayrhauser and Vans 1996;
Guindon et al., 1987; Lethbridge et al., 2005; Perry et al. 1994; Lutters and Seaman,
2007; Singer, 1998; Orlikowski 1993). More detailed examples will also be used
from studies described in Parra et al. (1997) and Seaman and Basili (1998) because
they represent the author’s experience (both positive and negative).

2. Data Collection Methods

Two data collection methods, direct observation and interviewing, are presented in
this section. These are useful ways of collecting firsthand information about soft-
ware development efforts. Historical qualitative information can also be gained by
examining documentation. Techniques for analysing archival documents are dis-
cussed in Taylor and Bogdan (1984). Another useful technique is focus groups,
which are treated extensively in the chapter by Kontio et al. (2007, this volume).

2.1. Participant Observation

Participant observation, as defined in Taylor and Bogdan (1984), refers to “research
that involves social interaction between the researcher and informants in the milieu
of the latter, during which data are systematically and unobtrusively collected.” The
idea is to capture firsthand behaviors and interactions that might not be noticed
otherwise.
Definitions of participant observation differ as to whether it implies that the
observer is engaged in the activity being observed (e.g. Barley, 1990), or only that
the observer is visibly present and is collecting data with the knowledge of those
being observed. To avoid this confusion in terminology, the term direct observation
is more usefully used when the researcher is not actively involved in the work being
observed.

Although a great deal of information can be gathered through observation, the
parts of the software development process that can actually be observed are limited.
Much of software development work takes place inside a person’s head. Such activ-
ity is difficult to observe, although there are some techniques for doing so. For
example, it is sometimes possible to capture some of the thought processes of indi-
vidual developers by logging their keystrokes and mouse movements as they work
on a computer (Shneiderman, 1998). This technique is sometimes used in usability
studies, where the subjects are software users, but it has not been widely employed
in studies of software developers.
Think aloud observation (Hackos and Redish, 1998) requires the subject to verbal-
ize his or her thought process so that the observer can understand the mental
 process going on. Such protocols are limited by the comfort level of the subject and

38 C.B. Seaman

their ability to articulate their thoughts. A good software engineering example of
this technique is the work of von Mayrhauser and Vans (1996), in which software
maintainers were asked to verbalize their thought processes while working on
understanding source code. The data was collected by audio- and video-taping the
sessions. Another example of a software engineering study based on thinking aloud
observations is Guindon, Krasner, and Curtis’s study of software designers
(Guindon et al., 1987).

A variation on think aloud observation is synchronized shadowing, described in
Lethbridge et al. (2005). With synchronized shadowing, two observers watch a sub-
ject perform some task while the subject is thinking aloud. Both observers record
their notes on laptops whose clocks have been previously synchronized to the second.
The two observers record different types of information. For example, one might
concentrate on the subject’s actions (keystrokes, commands, mouse clicks) while the
other concentrates on the subject’s goals and motivations (as evidenced by the sub-
ject thinking aloud). Both observers timestamp individual observations (using a
macro in the word processor) so that the notes can later be synchronized. The end
result is a detailed set of field notes that relates actions to goals.

Software developers reveal their thought processes most naturally when com-
municating with other software developers, so this communication offers the best
opportunity for a researcher to observe the development process. One method is for
the researcher to observe a software developer continuously, thus recording every
communication that takes place with colleagues, either planned or unplanned. A good
example of a study based on this type of observation is Perry et al. (1994). A less
time-consuming approach is to observe meetings of various types. These could
include inspection meetings, design meetings, status meetings, etc. By observing
meetings, a researcher can gather data on the types of topics discussed, the termi-
nology used, the technical information that was exchanged, and the dynamics of
how different project members speak to each other.

There are a number of issues of which an observer must be aware. Many of these
are presented here, based in part on the literature (in particular Taylor and Bogdan,
1984) and partly on the particular experience of this researcher with studies of
software engineering.

The observer must take measures to ensure that those being observed are not
constantly thinking about being observed. This is to help ensure that the observed
behavior is “normal,” i.e. that it is what usually happens in the environment being
observed, and is not affected by the presence of the observer. For example, observ-
ers should strive for “fly on the wall” unobtrusiveness. Ideally, all those being
observed should know beforehand that the observer will be observing and why.
This advance notice avoids having to do a lot of explaining during the observation,
which will only remind the subjects that they are being observed. The observer,
although visible, should not be disruptive in any way, in particular avoiding making
noise or movement that is distracting. The observer should always look for signs
that their presence makes any of the participants nervous or self-conscious, which
again may affect their behavior. Any such signs should be recorded in the notes that
the observer takes, and will be considered in the analysis later.

2 Qualitative Methods 39

The observer’s notes should not be visible to any of those being observed. In
fact, the notes should be kept confidential throughout the study. This gives the
researcher complete freedom to write down any impressions, opinions, or thoughts
without the fear that they may be read by someone who will misinterpret them.

The data gathered during an observation is ultimately recorded in the form of
field notes. These notes are begun during the actual observation, during which the
observer writes what is necessary to fill in the details later. Then, as soon after
the observation as possible, the notes are augmented with as many details as the
observer can remember. The information contained in the field notes should
include the place, time, and participants in the observation, the discussions that
took place, any events that took place during the observation, and the tone and
mood of the interactions. The notes can also contain observer’s comments, marked
“OC” in the text of the notes, which record the observer’s impressions of some
aspect of the activity observed, which may not correspond directly to anything that
was actually said or that occurred. For example, impressions about the setting of
the observation (e.g. quality of the light, temperature, noise level), the demeanor of
the people observed (e.g. if someone appeared to be agitated, ill, or tired), or the
internal state of the observer (e.g. if the observer is agitated, ill, or tired, or has
some strong emotional reaction to what is being observed) could all be recorded in
observer’s comments. The level of detail in the notes depends on the objectives of
the researcher. The most detailed are verbatim transcripts of everything said and
done, plus detailed descriptions of the setting and participants. Writing such
detailed notes is extremely time-consuming. Often what are needed are summaries
of the discussions and/or some details that are specific to the aims of the study. The
more exploratory and open-ended the study, the more detailed the field notes should
be, simply because in such a study anything could turn out to be relevant. In any
study, the observer should begin with very detailed notes at least for the first few
observations, until it is absolutely clear what the objectives of the study are and
exactly what information is relevant.

In many studies, there are very specific pieces of information that are expected
to be collected during an observation. This is often true in studies that combine
qualitative and quantitative methods, in which qualitative information from an
observation will later be coded into quantitative variables, e.g. the length of a meet-
ing in minutes, the number of people present, etc. When this is the case, forms will
be designed ahead of time that the observer will fill in during the course of the
observation. This will ensure that specific details will be recorded. These forms are
used in addition to, not instead of, field notes.

An example of a study based largely on observation data is Seaman and Basili
(1998), a study of code inspection meetings (hereafter referred to as the Inspection
Study). Most of the data for this study was collected during direct observation of
23 inspections of C++ classes. The objective of the study was to investigate the
relationship between the amount of effort developers spend in technical communi-
cation (e.g. the amount of time spent discussing various issues in inspection meetings)
and the organizational relationships between them (e.g. how much a group of
inspection participants have worked together in the past). Information about

40 C.B. Seaman

 organizational relationships was collected during interviews with inspection
 participants, described in Sect. 2.2. Information about communication effort was
collected during the observations of code inspections.

Figure 1 shows a form that was filled out by the observer for each observed
meeting in the Inspection Study. The administrative information (classes inspected,
date, time, names of participants), the responsibilities of each inspector (which
products each was responsible for inspecting), each preparation time, and who was
present were all recorded on the data form either before or during the observed
inspection. The amount and complexity of the code inspected was addressed during
interviews later.

Another form filled out during observations was a time log, an example of which
is shown in Fig. 2. For each discussion that took place during the meeting, the
observer recorded the time (to the closest minute) it started, the initials of the par-
ticipants in that discussion, a code corresponding to the type of discussion, and
some notes indicating the topic of discussion, the tone of the discussion, and any
other relevant information. The arrows in some of the lists of participants’ initials
indicate that a comment or question was made by one participant, specifically tar-
geted to another participant. In the margins of the time log, the observer also
recorded other relevant information about the participants, the setting of the meeting,
and other activities taking place. The number of minutes spent in each discussion
category was calculated from the time logs after the meeting.

Extensive field notes were also written immediately after each meeting observed
in the Inspection Study. These notes contained broader descriptions of observations
noted on the inspection data forms. Below is a sanitized excerpt from these field
notes:

[Inspector1] raised a bunch of defects all together, all concerning checking for
certain error conditions (unset dependencies, negative time, and null pointers).

[Inspector2] raised a defect which was a typo in a comment. She seemed slightly
sheepish about raising it, but she did nevertheless.

OC: [Inspector2] seemed more harsh on [Author] than I had ever seen her on any
of the [subcontractor] authors. My impression of her is that she would never raise
a typo as a defect with anyone else. Does she have something against [government
agency] folks?

[Inspector2] raised a defect concerning the wrong name of a constant.
[Inspector3] raised a defect having to do with the previous single dependency

issue. In particular, dereferencing would have to be done differently, although there
were several ways to fix it. [Inspector3] recommended using the dot instead of the
arrow.

In order to evaluate the validity and consistency of data collected during obser-
vations, rater agreement exercises (Judd et al., 1991) are often conducted. The
basic idea is to ensure not only that the data being recorded are accurate, but also
that the observer is not recording data in a form that is understandable only to him
or her. During three of the inspection meetings observed in the Inspection Study
(about 15%), a second observer was present to record data. The same second
observer was used all three times. All three were among the first half of meetings
observed, i.e. they occurred fairly early in the study. This was intentional, in order

2 Qualitative Methods 41

Fig. 1 Form used to collect data during observation of inspection meetings

Inspection Data Form

Class(es) inspected: Inspection date: Time:
Author:
Moderator:
Reviewers:

Name Responsibility Preparation time Present

Amount of code inspected:
Complexity of Classes:

Discussion codes:

D Defects
 Reviewer raises a question or concern and it is determined that it is a

defect which the author must fix; time recorded may include discussion of
the solution

Q Questions
 Reviewer asks a question, but it is not determined to be a defect.
C Classgen defect
 Reviewer raises a defect caused by classgen; author must fix it, but it is

recognized as a problem to eventually be solved by classgen
U Unresolved issues
 Discussion of an issue which cannot be resolved; someone else not at the

meeting must be consulted (put name of person to be consulted in () beside
the code); this includes unresolved classgen issues. It also includes issues
which the author has to investigate more before resolving.

G/D Global defects
 Discussion of global issues, e.g. standard practices, checking for null pointers,

which results in a defect being logged (does not include classgen defects)
G/Q Global questions
 Same as above, but not defect is logged
P Process issues
 General discussion and questions about the inspection process itself,

including how to fill out forms, the order to consider material in, etc., but not
the actual excecution of these tasks.

A Administrative issues
 Includes recording prep time, arranging rework, announcing which prod-

ucts are being inspected, silence while people look through their printouts,
filling out forms.

M Miscellaneous discussion

Time logged (in minutes)

D—— Q—— C—— U—— G/D—— G/D—— P—— A—— M———

42 C.B. Seaman

to get the greatest advantage from improvements made to data collection proce-
dures as a result of the exercise.

Before the observations in which she participated, the second observer was
instructed by the principal observer in the forms used for data collection, the codes
used to categorize discussions, the procedure used to time discussions, and some
background on the development project and developers. A total of 42 discussions
were recorded during the three doubly-observed meetings. Out of those, both
observers agreed on the coding for 26, or 62%. Although, to our knowledge, there
is no standard acceptable threshold for this agreement percentage, we had hoped to

Fig. 2 Time log used to document discussions during inspection meetings

2 Qualitative Methods 43

obtain a higher value. However, the two observers were later able to come to an
agreement on coding for all discussions on which they initially disagreed. The
observers generally agreed on the length of each discussion.

Many of the coding discrepancies were due to the second observer’s lack of
familiarity with the project and the developers. Others arose from the second
observer’s lack of experience with the instrument (the form and coding categories),
and the subjectivity of the categories. The coding scheme was actually modified
slightly due to the problems the second observer had. It should be noted that some
of the discrepancies over coding (3 out of 26 discrepancies) were eventually
resolved in the second observer’s favor. That is, the principal observer had made an
error. Another troubling result of this exercise was the number of discussions (five)
that one observer had completely missed, but had been recorded by the other. Both
the principal and second observers missed discussions. This would imply that a
single observer will usually miss some interaction.

The results of a rater agreement exercise, ideally, should confirm that the data
collection techniques being used are robust. However, as in the Inspection Study,
the exercise often reveals the limitations of the study. This is valuable, however,
as many of the limitations revealed in the study design can be overcome if they
are discovered early enough. Even if they are not surmountable, they can be
reported along with the results and can inform the design of future studies. For
example, in the Inspection Study, the results of the rater agreement exercise
indicated that the data collected during observations would have been more
accurate if more observers had been used for all observations, or if the meetings
had been recorded. These procedural changes would have either required
prohibitive amounts of effort, or stretched the goodwill of the study’s subjects
beyond its limits. However, these should be taken into consideration in the design
of future studies.

Recording of observations, either with audio or video, is another issue to be
considered when planning a study involving observation. The main advantage of
electronically recording observations is in ensuring accuracy of the data. Usually,
the field notes are written after the observation while listening to or watching the
recording. In this way, the notes are much less likely to introduce inaccuracies due
to the observer’s faulty memory or even bias.

2.2. Interviewing

Another commonly used technique for collecting qualitative data is the interview.
Interviews are conducted with a variety of objectives. Often they are used to collect
historical data from the memories of interviewees (Lutters and Seaman, 2007), to
collect opinions or impressions about something, or to help identify the terminol-
ogy used in a particular setting. In software engineering, they are often used to elicit
software processes (Parra et al., 1997). They are sometimes used in combination
with observations to clarify things that happened or were said during an observation,

44 C.B. Seaman

to elicit impressions of the meeting or other event that was observed, or to collect
information on relevant events that were not observed.

Interviews come in several types. In Lincoln and Guba (1985), a structured
interview is described as one in which “the questions are in the hands of the inter-
viewer and the response rests with the interviewee,” as opposed to an unstructured
interview in which the interviewee is the source of both questions and answers. In
an unstructured interview, the object is to elicit as much information as possible on
a broadly defined topic. The interviewer does not know the form of this information
ahead of time, so the questions asked must be as open-ended as possible. In the
extreme, the interviewer doesn’t even ask questions, but just mentions the topic to
be discussed and allows the interviewee to expound.

In a structured interview, on the other hand, the interviewer has very specific
objectives for the type of information sought in the interview, so the questions can
be fairly specific. The more structured an interview, the more likely it is to be
focused on quantitative, rather than qualitative data. The extreme of a structured
interview is one in which no qualitative information is gained at all, i.e. all
responses can be quantified (e.g. yes/no, high/medium/low, etc.). If the study is
qualitative, however, the interview must be flexible enough to allow unforeseen
types of information to be recorded. A purely unstructured interview is often too
costly to be used extensively. Therefore, many studies employ semi-structured
interviews. These interviews include a mixture of open-ended and specific ques-
tions, designed to elicit not only the information foreseen, but also unexpected
types of information. A good example of a software engineering study based on
semi-structured interviews is that conducted by Singer (1998), in which software
maintainers were asked about their practices. Some of the more structured questions
from this study include:

● How many years have you been programming?
● What languages have you had extensive experience programming in?
● How long have you worked on this project?

More open-ended questions included:

● When you get a maintenance request, how do you go about fulfilling it?
● What do you see as the biggest problem in maintaining programmes?

Again, as in the previous section on observation, the advice given here about inter-
viewing is based in part on the literature [in particular Taylor and Bogdan (1984)]
and partly on the experience and reflection of this author.

The interviewer should begin each interview with a short explanation of the research
being conducted. Just how much information the interviewer should give about the
study should be carefully considered. Interviewees may be less likely to fully participate
if they do not understand the goals of the study or agree that they are worthy. However,
if interviewees are told too much about it, they may filter their responses, leaving out
information that they think the interviewer is not interested in.

Another judgement that the interviewer must often make is when to cut off the
interviewee when the conversation has wandered too far. On one hand, interview

2 Qualitative Methods 45

time is usually valuable and shouldn’t be wasted. However, in a qualitative study,
all data is potentially useful and the usefulness of a particular piece of data often is
not known until long after it is collected. Of course, interviewees should never be
cut off abruptly or rudely. Steering them back to the subject at hand must be done
gently. In general, it is better to err on the side of letting the interviewee ramble.
Often the ramblings make more sense in hindsight. The opposite problem, of
course, is that of an interviewee who says the barest minimum. One strategy is to
ask questions that cannot possibly be answered with a “yes” or a “no.” Another is
to feign ignorance, i.e. to ask for details that are already well known to the inter-
viewer. This may get the interviewee talking, as well as help dispel any perception
they might have of the interviewer as an “expert.” It is also important to make it
clear that there are no “right” answers. Software developers sometimes mistakenly
believe that anyone coming to interview them is really there to evaluate them.

Like observational data, interview data are ultimately recorded in field notes,
which are governed by the same guidelines as described in the previous section.
Also, as described earlier, forms can be used and filled out by the interviewer in
order to facilitate the gathering of specific pieces of information. Another tool that
is very useful during an interview is an interview guide (Taylor and Bogdan, 1984).
An interview guide is not as formal as a data form, but it helps the interviewer to
organize the interview. It serves a purpose similar to a script. It usually consists of
a list of questions, possibly with some notes about the direction in which to steer
the interview under different circumstances. In a structured interview, the questions
are fairly straightforward, and they might be arranged in an “if-then” structure that
leads the interviewer along one of several paths depending on the answers to previ-
ous questions. In an unstructured interview, there might not be an interview guide,
or it may simply be a short list of topics to be touched on. Interview guides are
purely for the use of the interviewer; they are never shown to the interviewee.

The interviewer may make some notes on the guide to help him or her remem-
ber how to steer the interview, but the guide should not be used for taking notes
of the interview. In general, it is difficult for an interviewer to take notes and con-
duct the interview at the same time, unless the interviewer is very skilled. It is
useful, if the interviewee consents, to audiotape the interview. The tape can then
be used to aid the writing of the field notes later. Recording has the added advan-
tage that the interviewer can hear him/herself on the tape and assess his or her
interviewing skills. Another way to facilitate the taking of notes is to use a scribe.
A scribe is present at the interview only to take notes and does not normally par-
ticipate in any other way. Using a scribe takes the note-writing responsibilities
from the interviewer completely, which can be an advantage for the researcher.
However, verbatim notes are not possible this way, and the scribe does not always
share the interviewer’s ideas about what is important to record. The use of a scribe
is also often prohibitively expensive or intimidating to the interviewee.

Another study that we will use as a detailed example is Parra et al. (1997), a
study of Commercial-Off-The-Shelf (COTS) integration (hereafter referred to as
the COTS Study). The objective of the study was to document the process that
NASA software project teams were following to produce software systems largely

46 C.B. Seaman

constructed from COTS components. This type of system development, or “integration,”
was fairly new in the NASA group studied at that time. Consequently, there was no
documented process for it and it was suspected that a number of different processes
were being followed. The COTS Study team was tasked with building a process
model general enough to apply to all of the different ways that COTS integration
was being done. The model would then be used as a baseline to design process
measures, to plan improvements to the process, and to make recommendations for
process support. Interviews with developers on projects that involved a large
amount of COTS integration provided the bulk of the data used to build the process
model. Scribes, as described above, were used to record these interviews. Many
interviewees were interviewed multiple times, at increasing levels of detail. These
interviews were semi-structured because each interview started with a specific set
of questions, the answers to which were the objective of the interview. However,
many of these questions were open-ended and were intended for (and successful in)
soliciting other information not foreseen by the interviewer. For example, one ques-
tion on the COTS Study interview guide was:

What are the disadvantages of [COTS integration] in comparison with tradi-
tional development?

The study team had expected that answers to this question would describe techni-
cal difficulties such as incompatible file formats, interface problems, or low COTS
product quality. However, much of the data gathered through this question had to do
with the administrative difficulties of COTS integration, e.g. procurement, finding
information on current licences, negotiating maintenance agreements, etc. As a
result, a major portion of the study’s recommendations to NASA had to do with
more administrative support of various kinds for COTS integration projects.

Semi-structured interviews were also used in the Inspection Study (Seaman and
Basili, 1998). After each inspection meeting, an interview guide was constructed to
include the information missing from the data form for that inspection, as well as
several questions that were asked of all interviewees. The questions asked also var-
ied somewhat depending on the role that the interviewee played in the inspection.
An example of such a form is shown in Fig. 3. Most interviews in this study were
audio taped in their entirety. Extensive field notes were written immediately after
each interview. The tapes were used during the writing of field notes, but they were
not transcribed verbatim.

3. Data Analysis Methods

Collection of qualitative data is often a very satisfying experience for the researcher.
Although it is often more labor-intensive, it is also more enjoyable to collect than
quantitative data. It is interesting and engaging and it often gives the researcher the
sense that they are closer to reality than when dealing with quantitative abstrac-
tions. The analysis of qualitative data, on the other hand, is not always as pleasant.
Although the discovery of new knowledge is always motivating, the mechanics of

2 Qualitative Methods 47

Interview Guide

Logistical info: record name, office#, date, time

Organization:

How long have you worked on [project]? At [company]?

Have you work with any of the [project] members before on other projects?

Who on the [project] team do you interact with most?

To whom do you report?

To whom are you responsible for your progress on [project]?

Inspection process:

Who chose the inspectors?

How long did it take?

Why were those ones chosen in particular?

Which inspectors inspected what?

Who took care of scheduling?

Was it done via email or face-to-face?

How much time did it take?

What steps were involved in putting together the inspection package?

How much time did that take?

How are [project] inspections different from inspections in other [company]
projects you’ve been on?

How was this inspection different from other [project] inspections you’ve been
involved with?

Reviewed material:

How much was inspected?

How is that measure?

Were the inspected classes more or less complex then average?

 Fig. 3 An interview guide used in the Inspection Study

48 C.B. Seaman

qualitative analysis are sometimes boring, often tedious, and always more
time-consuming than expected. It is tempting to take shortcuts in the analysis
process, but rigorous analysis is necessary for the integrity of the research, and
results in more insightful, useful, and valid conclusions.

As in quantitative studies, data analysis should be planned up front, before data
collection begins. However, the difference is that qualitative researchers collect and
analyse data nearly in parallel, or at least alternate between the two. Qualitative
analysis begins as soon as some significant amount of data has been collected.
Preliminary analysis results also can modify subsequent data collection.

In the next two sections, we present several analysis techniques, roughly divided
into two categories, although the line between them is not well delineated. The first
set of methods (Sect. 3.1) is used to generate hypotheses that fit the data (or are
“grounded” in the data), normally used in exploratory, or grounded theory studies
(Glaser and Strauss, 1967). Section 3.2 describes some methods used to build up
the “weight of evidence” necessary to confirm hypotheses in confirmatory studies.
Following, in Sect. 3.3, we discuss the use of visualization of qualitative data,
which is useful in conjunction with any analysis approach, and for presenting
results. Finally, Sect. 3.4 presents some basic techniques for transforming qualita-
tive data for subsequent quantitative analysis. The methods presented in these sections
represent only a small sample of the methods, techniques, and approaches available
for analysing qualitative data. Yin (1994) and Miles and Huberman (1994) are
excellent sources for other data analysis approaches.

3.1. Generation of Theory

Theory generation methods are generally used to extract from a set of field notes a
statement or proposition that is supported in multiple ways by the data. The state-
ment or proposition is first constructed from some passage in the notes, and then
refined, modified, and elaborated upon as other related passages are found and
incorporated. The end result is a statement or proposition that insightfully and
richly describes a phenomenon. Often these propositions are used as hypotheses to
be tested in a future study or in some later stage of the same study. These methods
are often referred to as grounded theory methods because the theories, or proposi-
tions, are “grounded” in the data (Glaser and Strauss, 1967). Two grounded theory
techniques, the constant comparison method and cross-case analysis, are briefly
described below. See Seaman (1999) for a fuller description of these techniques as
applied to software engineering studies.

3.1.1. Constant Comparison Method

There are a number of methods for conducting and analysing single case studies. An
excellent reference for this type of research design is Yin (1994). Here, we will

2 Qualitative Methods 49

explore a classic theory generation method, the constant comparison method. This
method was originally presented by Glaser and Strauss (1967), but has been more
clearly and practically explained by others since (e.g. Miles and Huberman, 1994).

The process begins with open coding of the field notes, which involves attaching
codes, or labels, to pieces of text that are relevant to a particular theme or idea of
interest in the study. Codes can be either preformed or postformed. When the objec-
tives of the study are clear ahead of time, a set of preformed codes [a “start list”
(Miles and Huberman, 1994)] can be constructed before data collection begins and
then used to code the data. Postformed codes (codes created during the coding
process) are used when the study objectives are very open and unfocused. In either
case, the set of codes often develops a structure, with subcodes and categories
emerging as the analysis proceeds. Coding a section of notes involves reading
through it once, then going back and assigning codes to “chunks” of text (which
vary widely in size) and then reading through it again to make sure that the codes
are being used consistently. Not everything in the notes needs to be assigned a code,
and differently coded chunks often overlap. In the section of coded notes from the
Inspection Study, below, the codes T, CG, and S correspond to passages about test-
ing, the core group, and functional specifications, respectively. The numbers simply
number the passages chronologically within each code.
(T4) These classes had already been extensively tested, and this was cited as the
reason that very few defects were found. [Moderator] said: “must have done some
really exhaustive testing on this class”
(CG18) [Inspector2] said very little in the inspection, despite the fact that twice
[Moderator] asked him specifically if he had any questions or issues. Once he said
that he had had a whole bunch of questions, but he had already talked to [Author]
and resolved them all.
OC: Find out how much time was spent when [Author] and [Inspector2] met.
(S4) Several discussions had to do with the fact that the specs had not been updated.
[Author] had worked from a set of updated specs that she had gotten from her
officemate (who is not on the [project] team, as far as I know). I think these were
updated [previous project] specs. The [project] specs did not reflect the updates.
[Team lead] was given an action item to work with [Spec guru] to make sure that
the specs were updated.

Then passages of text are grouped into patterns according to the codes and sub-
codes they’ve been assigned. These groupings are examined for underlying themes
and explanations of phenomena in the next step of the process, called axial coding.
Axial coding can be thought of as the process of reassembling the data that was bro-
ken up into parts (chunks) in open coding. One way to do this is to search for a par-
ticular code, moving to each passage assigned that code and reading it in context. It
is not recommended to cut and paste similarly coded passages into one long passage
so that they can be read together. The context of each passage is important and must
be included in consideration of each group of passages. This is where the intensive,
or “constant” comparison comes in. The coded data is reviewed and re-reviewed in
order to identify relationships among categories and codes. The focus is on unifying
explanations of underlying phenomenon, in particular the how’s and why’s.

50 C.B. Seaman

The next step, selective coding or “sense making,” culminates in the writing of
a field memo that articulates a proposition (a preliminary hypothesis to be consid-
ered) or an observation synthesized from the coded data. Because qualitative data
collection and analysis occur concurrently, the feasibility of the new proposition is
then checked in the next round of data collection. Field memos can take a number
of forms, from a bulleted list of related themes, to a reminder to go back to check
a particular idea later, to several pages outlining a more complex proposition. Field
memos also provide a way to capture possibly incomplete thoughts before they get
lost in the next interesting idea. More detailed memos can also show how strong or
weak the support for a particular proposition is thus far. According to Miles and
Huberman, field memos are “one of the most useful and powerful sense-making
tools at hand.” (Miles and Huberman, 1994, p. 72)

Ideally, after every round of coding and analysis, there is more data collection to
be done, which provides an opportunity to check any propositions that have been
formed. This can happen in several ways. In particular, intermediate propositions
can be checked by focusing the next round of data collection in an effort to collect
data that might support or refute the proposition. In this way, opportunities may
arise for refining the proposition Also, if the proposition holds in different situa-
tions, then further evidence is gathered to support its representativeness. This
approach may offend the sensibilities of researchers who are accustomed to per-
forming quantitative analyses that rely on random sampling to help ensure repre-
sentativeness. The qualitative researcher, on the other hand, typically uses methods
to ensure representativeness later in the study by choosing cases accordingly during
the course of the study. This is sometimes called theoretical sampling, which we
will not discuss in detail here, but the reader is referred to Miles and Huberman
(1994) for a good explanation of its use and justification.

3.1.2. Cross-Case Analysis

In many software engineering studies, the data can be divided into “cases,” which
in quantitative studies might be referred to as “data points” or “trials.” When this
is possible, cross-case analysis is appropriate. For example, in the Inspection
Study, all data were collected from the same development project, so they could
be viewed as a single case study. Some of the analysis was done with this perspec-
tive (e.g. the analysis described in the previous section). However, some cross-case
analysis was also performed by treating each inspection as a “case.”

Eisenhardt (1989) suggests several useful strategies for cross-case analysis, all
based on the goal of looking at the data in many different ways. For example, the
cases can be partitioned into two groups based on some attribute (e.g. number of
people involved, type of product, etc.), and then examined to see what similarities
hold within each group, and what differences exist between the two groups.
Another strategy is to compare pairs of cases to determine variations and similari-
ties. A third strategy presented by Eisenhardt is to divide the data based on data
source (e.g. interviews, observations, etc.).

2 Qualitative Methods 51

In the Inspection Study (Seaman and Basili, 1998), we used a comparison
method that progressed as follows. The field notes corresponding to the first two
inspections observed were reviewed and a list of short descriptors (e.g. aggressive
author; discussion dominated by one inspector; really long meeting, etc.) was com-
piled for each inspection. Then these two lists were compared to determine the
similarities and differences. The next step was to list, in the form of propositions,
conclusions one would draw if these two inspections were the only two in the data
set (e.g. really long meetings are generally dominated by one inspector). Each
proposition had associated with it a list of inspections that supported it (beginning
with the first two inspections compared). Then the third inspection was examined,
a list of its descriptors was compiled, and it was determined whether this third
inspection supported or refuted any of the propositions formulated from the first
two. If a proposition was supported, then this third inspection was added to its list
of supporting evidence. If it contradicted a proposition then either the proposition
was modified (e.g. really long meetings are generally dominated by one inspector
when the other inspectors are inexperienced) or the inspection was noted as refuting
that proposition. Any additional propositions suggested by the third inspection
were added to the list. This process was repeated with each subsequent inspection.
The end result was a list of propositions (most very rich in detail), each with a set
of supporting and refuting evidence.

A different approach to cross-case analysis was used in the COTS Study (Parra
et al., 1997). Each development project that was studied was treated as a separate
case. The objective of the analysis was to document the COTS integration process
by building an abstraction, or model, of the process that was flexible enough to
accommodate all of the different variations that existed in the different projects.
This model-building exercise was carried out iteratively by a team of researchers.
The first step was to group all of the field notes by development project. Then, for
each project, the notes were used to build a preliminary process model for that
project’s COTS integration process. These preliminary models were built by differ-
ent researchers. Then the study team came together to study the models, identify
similarities and differences, and resolve discrepancies in terminology. From this,
one single model was built that encompassed the models for the different projects.
This aggregate model went through numerous cycles of review and modification by
different members of the study team. Finally, an extensive member checking process
(see Sect. 3.2) was conducted through individual interviews with project members,
a large group interview with a number of project personnel, and some email reviews
of the model. The resulting model can be found in Parra et al. (1997).

Cross-case analysis was also used in the Orlikowski study of CASE tool adoption
(Orlikowski, 1993). Data from the first case was collected and coded, then the sec-
ond case’s data was collected and an attempt was made to use the same set of codes
to analyse it. Of course, some codes were inappropriate or inadequate and so new or
modified codes resulted. These were then taken back to the first case, whose data
was re-sorted and re-analysed to incorporate the new concepts. This type of back-
and-forth analysis [sometimes referred to as “controlled opportunism” (Eisenhardt,
1989)] is a unique and valuable property of grounded theory research.

52 C.B. Seaman

3.2. Confirmation of Theory

Most qualitative data analysis methods are aimed at generating theory, as described
in the previous section, but there are a number of methods and approaches to strength-
ening, or “confirming” a proposition after it has been generated from the data. The
goal is to build up the “weight of evidence” in support of a particular proposition, not
to prove it. The emphasis is on addressing various threats to the validity of the propo-
sition. Although quantitative hypothesis testing methods seem more conclusive than
the methods we will present in this section, they really do not provide any stronger
evidence of a proposition’s truth. A hypothesis cannot be proven, it can only be sup-
ported or refuted, and this is true using either quantitative or qualitative evidence, or
both. Qualitative methods have the added advantage of providing more explanatory
information, and help in refining a proposition to better fit the data.
Negative case analysis (Judd et al., 1991) is a very important qualitative tool for
helping to confirm hypotheses. Judd et al. even go so far as to say that “negative
case analysis is what the field-worker uses in place of statistical analysis.” The idea
is incorporated into each of the analysis methods described in Sect. 3.1. When per-
formed rigorously, the process involves an exhaustive search for evidence that
might logically contradict a generated proposition, revision of the proposition to
cover the negative evidence, re-checking the new proposition against existing and
newly collected data, and then continuing the search for contradictory evidence.
The search for contradictory evidence can include purposely selecting new cases
for study that increase representativeness, as explained earlier, as well as seeking
new sources and types of data to help triangulate the findings.
Triangulation (Jick, 1979) is another important tool for confirming the validity of
conclusions. The concept is not limited to qualitative studies. The basic idea is to
gather different types of evidence to support a proposition. The evidence might
come from different sources, be collected using different methods, be analysed
using different methods, have different forms (interviews, observations, docu-
ments, etc.), or come from a different study altogether. This last point means that
triangulation also includes what we normally call replication. It also includes
the combining of quantitative and qualitative methods. A classic combination is
the statistical testing of a hypothesis that has been generated qualitatively. In the
Inspection Study (Seaman and Basili, 1998), triangulation occurred at the data
source level. Certain types of data (e.g. size and complexity of the code inspected,
the roles of different participants, etc.) were gathered multiple times, from obser-
vations, from interviews, and from the inspection data forms that each inspection
moderator filled out.
Anomalies in the data (including outliers, extreme cases, and surprises) are treated
very differently in qualitative research than in quantitative research. In quantitative
analysis, there are statistical methods for identifying and eliminating outliers from
the analysis. Extreme cases can be effectively ignored in statistical tests if they are
outweighed by more average cases. But in qualitative analysis, these anomalies
play an important role in explaining, shaping, and even supporting a proposition.

2 Qualitative Methods 53

As Miles and Huberman (1994) explain, “the outlier is your friend.” The Inspection
Study has a good outlier example. There were few cases in the study that illustrated
what happens when the group of inspection participants is organizationally distant
(i.e. include members from disparate parts of the organization). However, one case
could easily be identified as an outlier in terms of both its long duration and the
high number of defects reported in the meeting. This case also involved a set of
organizationally distant inspection participants. The unusual values for meeting
length and number of defects could not be explained by any of the other variables
that had been determined to affect these factors. Thus, we could hypothesize that
organizational distance had an effect on length and number of defects. In addition,
the case provided a lot of explanatory data on why that effect existed.
Replication, as with quantitative studies, is a powerful but expensive tool for con-
firming findings. Replication in the qualitative arena, however, has a slightly looser
meaning than in quantitative research. While a quantitative study, to be called a
replication of another study, is expected to employ to some degree the same instru-
ments, measures, and procedures as the original study [see the discussion by Andy
Brooks et al. (2007), this volume], a qualitative replication must only preserve the
conditions set forth in the theory being tested. That is, if the proposition to be tested
is something like

Gilb-type inspections of C++ code involving two inspectors and a moderator
will take longer but reveal more defects if the inspection participants have not
worked together before

then the replicating study must be of Gilb-type inspections of C++ code involv-
ing two inspectors and a moderator, some of which have participants who have
worked together before and some who have participants who have not worked
together before. Data do not necessarily have to be collected or analysed in the
same way that they were in the original study.

One last method for helping to confirm findings, which is particularly well suited
to most studies of software engineering, is getting feedback on the findings from the
subjects who provided the data in the first place. This strategy is sometimes called
member checking (Lincoln and Guba, 1985). Presenting findings to subjects, either
formally or informally, has the added benefits of making subjects feel part of the
process, helping them to understand how the results were derived, and gaining their
support for final conclusions. This is especially important when the results of the
study may change the way the subjects will be expected to do their jobs. This is usu-
ally what we, as empirical software engineering researchers, hope will happen.
Researchers in our area often have a marketing role as well, trying to promote the
importance and usefulness of empirical study in software engineering. Member
checking helps to accomplish this at the grass roots. Miles and Huberman (1994)
give several guidelines on how and when to best present intermediate findings to
subjects, including taking care that the results presented are couched in local termi-
nology, explaining the findings from the raw data up, and taking into account a
subject’s possible personal reaction to a finding (e.g. if it is threatening or critical).

Member checking was used extensively in the Inspection Study. An entire round
of scheduled interviews was devoted to this exercise, and it yielded a great deal of

54 C.B. Seaman

insight. For example, a finding emerged that indicated that, as the project progressed,
inspection participants were spending less and less time discussing unresolved issues
in inspection meetings, i.e. issues that eventually had to be referred to someone not at
the meeting. One subject, when presented with this finding, explained that this was
because developers were getting better at recognizing issues and problems that were
best referred to others, and were less likely now than at the beginning of the project
to waste time trying to resolve any issues they were not equipped to resolve. This was
an important insight, and in particular one that had not occurred to the researcher.

One of the most important ways to help confirm a qualitatively generated propo-
sition is to ensure the validity of the methods used to generate it. In previous sec-
tions, we have briefly addressed some of the validity concerns in qualitative studies.
One is representativeness, which has to do with the people and events chosen to be
interviewed or observed. In Sect. 3.1, there is a discussion of how, after initial
propositions are generated, cases for further study can be specifically chosen to
increase or ensure representativeness. Another validity concern is the possibility of
researcher effects on the study. Miles and Huberman warn of two types of researcher
effects and present some techniques for countering them. The first is that the pres-
ence of the researcher may affect the behavior of the subjects. This type of effect is
discussed earlier in Sect. 2.1. The second is that the researchers may lose their
objectivity by becoming too close to the setting being observed. A quote from one
researcher (Whyte, 1984) illustrates the second type of bias: “I began as a nonpar-
ticipating observer and ended up as a nonobserving participant.” In studies of soft-
ware engineering, it is unlikely that the researcher will be permitted to become
involved technically in the work being studied, unless that was part of the study
plan from the beginning, but it is possible for the researcher to become part of the
political and organizational context of the project without realizing it.

In summary, many qualitative methods for confirming theory are also employed
during theory generation. That is, as propositions are being generated, they are
immediately subjected to some testing before they are even reported as findings.
The idea is to build up a “weight of evidence” that supports the hypothesis, where
the evidence is as diverse as possible. This is not so different from the aim of quan-
titative research, in which a hypothesis is never “proven,” but evidence, in the form
of statistically significant results from different settings and different researchers, is
built up to support it. It could be said that some qualitative methods used to test
propositions are actually stronger than statistical tests because they do not allow any
contradictory evidence. Any data that contradict the proposition are used to modify
it so that the resulting proposition fits all the data. Ideally, any proposition, no matter
how generated, is best supported by both qualitative and quantitative evidence.

3.3. Data Modelling and Visualization

In theory, qualitative data can take a number of forms, including pictures and
images. However, in practice, most raw qualitative data is in the form of text. While

2 Qualitative Methods 55

text has the advantage of being able to fully capture the richness and complexity of
the phenomena being studied, it also has some drawbacks. First, text is linear in the
sense that only one passage can be read at a time, so concepts that are non-linear or
spatial can be difficult, cognitively, to capture by reading. Second, text is often
more voluminous than is necessary to express a concept. “A picture is worth a
thousand words” is sometimes very, very true. Finally, it can be difficult to visually
identify what parts of a textual dataset might be related to other parts without some
visual clues.

For all these reasons, visual modelling is often used in qualitative analysis for
several purposes. Diagrams of different types are often used as a mechanism for
presenting and explaining findings. In writing up qualitative work, using a diagram
can often save a lot of space when a concept is more succinctly summarized
graphically than textually. But diagrams also serve as a useful mechanism for the
analysis task itself. Graphical representations of data often help the researcher to
organize concepts and to reveal relationships and patterns that are obscured by
volumes of textual data. This is similar and analogous to the use of graphs and
charts when presenting quantitative results and data. Although there are numerous
types of diagrams that can be useful in various ways in qualitative analysis, we
will discuss two: matrices and maps (Dey, 1993) [called “networks” in Miles and
Huberman (1994)].

Matrices are especially useful when the data comes from a series of distinct
cases (i.e. sites, interviewees, episodes, etc.). In such a study, the researcher creates
a matrix in which the rows are cases and the columns are variables of interest. For
example, suppose a study has been conducted consisting of interviews with manag-
ers of a variety of software development projects. One useful technique to check the
representativeness of the data is to create a matrix of characterization information
on the cases from which data has been collected. The columns of the matrix would
include such characteristics as project size, application domain, experience of the
development team, etc. Filling in the cells of such a matrix for each case studied is
a useful exercise and gives the reader feedback on what background information is
missing, and what types of projects are missing from the sample.

Augmenting such a matrix with more columns representing emerging constructs
(i.e. codes or categories) is also a useful analysis technique. For example, suppose
in the previous example that many of the interviewees talked about development
team meetings, and this topic emerged as an important issue in the study. In the
(very simplified) matrix excerpt shown in Fig. 4 (from a fictitious study), we see
that the first few columns contain characterizing information on the cases, while the
last column contains passages that have been coded under “meetings.” Organizing
the data in this way clearly shows that the implications of development meetings
are very different for small projects than for medium projects. This insight might
not have been evident if the data analysis had relied solely on coding the textual
data. It’s usually advisable to use an electronic spreadsheet to create analysis matri-
ces in order to take advantage of searching and sorting capabilities.

Maps, or basic shapes-and-lines diagrams, are also useful for sorting out con-
cepts and relationships during qualitative analysis (Dey, 1993). Such maps are

56 C.B. Seaman

particularly effective at expressing complex concepts in much less space than one
is able to do with text alone. The format and symbols used in maps are limited only
by imagination; there are no rules governing them. There are, however, a few
guidelines that help make maps meaningful to the reader and useful to the
researcher. First, maps quickly lose their effectiveness if they become too compli-
cated. If it takes more space to explain how to read and interpret the map than it
would have to textually explain the concept depicted in the map, then the map is
not useful. While shapes and lines can be uninspiring, their simplicity makes them
ideal as a tool to illuminate complex concepts. On the other hand, the researcher
must take care to clearly and consistently define the meanings of both the shapes
and lines (and any other symbols used in the map). Because these symbols are so
simple, they can also be used in multiple ways, and it is tempting to use them in
multiple ways in the same diagram. So one must define, for a particular map,
whether the lines connecting shapes (i.e. concepts) signify causal relationships
(e.g. the presence of one concept causes the presence of the other), or temporal
relationships (e.g. one concept precedes another), or contextual relationships (e.g.
the two concepts tend to occur in similar contexts), etc.

Despite the need for simplicity, it is possible to include more than simple shapes
and lines in a map. Of course, different shapes can be used to denote different types
of concepts (e.g. aggregate concepts) (Dey, 1993). The thickness of a line can
denote the strength of a relationship, or the weight of evidence supporting it.
Colours and patterns can also be used to convey different meanings. Textual
annotations, within reason, are also usually needed to label elements on a map.

Miles and Huberman (1994) devote much of their book on analysis to the devel-
opment of different types of diagrams, and a very large number of examples and
variations are explained there. Many of them are similar in appearance and concept

Case Project
Size

Application
Domain

Experience of
Developers

Meetings

1 huge banquing mixed
“We spend way too much time
in meetings”

2 small banquing
“We try to touch base with the
whole team as often as we can”

3 small aerospace low

“The daily briefings are really
useful, although some people
say it interrupts their ‘real’ work”

4 large high

“We would all be so much
more productive if we could
somehow get rid of meetings”

5 medium communications high

“People don’t like to come to
meetings, but I guess most of
them are useful”

Fig. 4 An example matrix

2 Qualitative Methods 57

to diagramming techniques used in software development (e.g. control flow
diagrams, statecharts, process models, class diagrams). These are especially
appealing for software engineering studies because they are already familiar to our
community.

While maps can be used for a variety of analysis tasks, one specific use is par-
ticularly handy when the qualitative work is exploratory, and intended to lay the
groundwork for further empirical work. A good map of concepts and relationships
can serve as a research plan for follow-up studies by defining the concepts (i.e.
shapes) that need to be developed in further exploratory studies, and the hypotheses
(i.e. relationships represented as lines) upon which further confirmatory work can
be based. One version of this type of map is the causal network (Miles and
Huberman, 1994), a simple example of which is shown in Fig. 5, which identifies
factors affecting the efficiency of a software inspection. Such a map can be anno-
tated to show the hypothesized (or tested) strength of the relationships and refer-
ences to supporting evidence (e.g. identifiers for informants or coded segments).

Creating visual models of qualitative data, and the findings resulting from that
data, is a very useful tool for qualitative researchers. Modelling is useful in two
ways: during analysis to sort out ideas and relationships; and during presentation as
a way to convey findings to the reader. Modelling can be seen as a form of data
reduction because diagrams simply take up less space, and are more quickly
scanned and digested, than text. They also depict insights arising from the data that
are difficult to express succinctly in words.

3.4. Quantification of Qualitative Data

In many studies, it is appropriate to allow the analysis to iterate between quantitative
and qualitative approaches. There are several ways to quantify some parts of a body
of qualitative data. Such quantification is usually preceded by some preliminary

Preparation Effort

Size

Complexity

Work Product

Number of Inspectors

Inspection
EfficiencyType

Fig. 5 A causal network
showing hypothesized
causal relationships

58 C.B. Seaman

qualitative analysis in order to make sense of the main categories in the data. It is
often also followed by further qualitative analysis to make sense of the quantitative
findings, which then leads to further quantitative analysis or re-analysis, and so on.

The most straightforward way to quantify qualitative data is simply to extract
quantifiable pieces of information from the text. This is often also called coding,
but must be distinguished from the types of coding related to the grounded theory
approach, discussed in Sect. 3.1.

To understand the data transformation that takes place during this type of
coding, we need to address a common misconception about the difference between
quantitative and qualitative data. Qualitative data is often assumed to be subjective,
but that is not necessarily the case. On the other hand, quantitative data is often
assumed to be objective, but neither is that necessarily the case. In fact, the objec-
tivity or subjectivity of data is orthogonal to whether it is qualitative or quantitative.
The process of coding transforms qualitative data into quantitative data, but it does
not affect its subjectivity or objectivity. For example, consider the following text,
which constitutes a fragment of qualitative data:

Tom, Shirley, and Fred were the only participants in the meeting.
Now consider the following quantitative data, which was generated by coding

the above qualitative data:
num_participants = 3

The fact that the information is objective was not changed by the coding process.
Note also that the process of coding has resulted in some lost information (the
names of the participants). This is frequently the case, as qualitative information
often carries more content than is easily quantified. Consider another example:

[Respondent] said that this particular C++ class was really very easy to under-
stand, and not very complex at all, especially compared to other classes in the
system.

And the resulting coded quantitative data:
complexity = low

Again, the process of coding this subjective data did not make it more objective,
although the quantitative form may appear less subjective.

When coding is performed on a set of qualitative data, the measurement scale of
the resulting quantitative data is determined by the nature of the data itself, and is
not restricted by the fact that it was derived from qualitative data. For example, in
the “num_participants” example, above, the quantitative variable turned out to be
on an absolute scale. But in the “complexity” example, the variable is ordinal.

Coding results in more reliably accurate quantitative data when it is restricted to
straightforward, objective information, as in the first example above. However, it is
often desirable to quantify subjective information as well in order to perform sta-
tistical analysis. This must be done with care in order to minimize the amount of
information lost in the transformation and to ensure the accuracy of the resulting
quantitative data as much as possible. Often subjects use different words to describe
the same phenomenon, and the same words to describe different phenomena. In
describing a subjective concept (e.g. the complexity of a C++ class), a subject may

2 Qualitative Methods 59

use straightforward words (e.g. low, medium, high), that mask underlying ambiguities.
For example, if a subject says that a particular class has “low complexity,” does that
mean that it was easy to read and understand, or easy to write, or unlikely to contain
defects, or just small? This is why, as mentioned earlier, preliminary qualitative
analysis of the data to be coded is important in order to sort out the use of language
and the nuances of the concept being described.

Another situation that complicates coding is when something is rated differ-
ently by different subjects. There were eight inspections in the Inspection Study
in which the complexity of the inspected material was rated differently by differ-
ent participants in the inspection. In all but one of these cases, the ratings differed
by only one level (e.g. “average” and “high,” or “high” and “very high,” etc.). One
way to resolve such discrepancies is to decide that one subject (or data source) is
more reliable than another. Miles and Huberman (1994) discuss a number of fac-
tors that affect the reliability of one data source as compared with another, and
the process of weighting data with respect to its source. In the Inspection Study,
it was decided that an inspector was a more reliable judge of the complexity of
the code than the author, since we were interested in how complexity might affect
the inspection of that code. This assumption was used to resolve most of the
discrepancies.

Another approach to quantification of qualitative data is content analysis
(Holsti, 1969). Content analysis, originally developed for the analysis of human
communication in the social sciences, is defined in various ways, but for our pur-
poses can be described as an analysis method based on counting the frequency of
occurrence of some meaningful lexical phenomenon in a textual data set. This
technique is applicable when the textual data can be divided into cases along
some criteria (e.g. different sites or respondents). In any particular application of
content analysis, counting rules must be defined that make sense given the nature
of the data and the research goals. This is why preliminary qualitative analysis is
necessary, to determine the “nature of the data.” Counting rules can take several
forms, e.g.:

● Counting the occurrence of particular keywords in each case and then correlat-
ing (statistically or more informally) the counts with other attributes of the
cases

● Counting the number of cases in which certain keywords occur and then com-
paring the counts of different keywords, or comparing the set of cases containing
the keyword to those that do not

● Counting the occurrence of one keyword in proximity to a second keyword, and
then comparing that count to the number of occurrences of the first keyword
without the second keyword

There are numerous other variations on this theme. Note that the first example
above only yields meaningful results if one can assume that the frequency of use of
a particular word or phrase somehow indicates its importance, or the strength of
opinion about it or some other relevant characteristic. This is often not a reasonable
assumption because it depends too much on the speaking and writing style of the

60 C.B. Seaman

sources of the case data. A good example of the use of content analysis is Hall and
Rainer’s work (with others), in particular (Rainer et al., 2003) and (Rainer and Hall,
2003). Holsti (1969) provides a good reference on content analysis as used in the
social sciences.

4. Conclusions

The focus of this chapter has been to provide guidance on using qualitative research
methods, particularly in studies in which they are combined with quantitative meth-
ods, in empirical studies of software engineering. Nearly any software engineering
issue is best investigated using a combination of qualitative and quantitative meth-
ods. Some of the more common mixed method research designs include the
following:

● Qualitative data can be used to illuminate the statistical results employed to test
a hypothesis. This allows the researcher to go beyond the statistics to help
explain the causal relationships revealed by the quantitative results.

● When differences between subjects are an important part of the study design,
quantitative measures of individual performance can be augmented with qualita-
tive interview data that helps explain differences in performance, as well as may
identify other relevant differences that were not measured.

● In studying a new process or technique, qualitative data from an early observa-
tion study of groups using the technique can be used to identify relevant varia-
bles to be measured in a subsequent experiment to evaluate the performance of
the process or technique.

● Initial qualitative data, from interviews or document analysis, can serve as a
starting point for a case study by both setting the context for the researchers as
well as identifying important issues and variables for the study.

Finally, it should be noted that there are software packages on the market that
facilitate coding and other types of qualitative analysis [see Miles and Huberman
(1994), appendix, for an overview of qualitative analysis software]. Space does not
permit a full discussion of software tools, but one commonly used application is
NVivo™ from QSR International. NVivo aids the researcher in organizing, coding,
and grouping textual data, in defining and maintaining links between different
pieces of data, and in developing visual models of the data and of findings.

Empiricists in software engineering often complain about the lack of opportuni-
ties to study software development and maintenance in real settings. This really
implies that we must exploit to the fullest every opportunity we do have, by collect-
ing and analysing as much data of as many different types as possible. Qualitative
data is richer than quantitative data, so using qualitative methods increases the

 http://www.qsrinternational.com/

2

2

2 Qualitative Methods 61

amount of information contained in the data collected. It also increases the diversity
of the data and thus increases confidence in the results through triangulation,
multiple analyses, and greater interpretive ability.

References

Barley SR (1990) The Alignment of Technology and Structure through Roles and Networks.
Administrative Science Quarterly 35:61–103.

Brooks A, Roper M, Wood M, Daly J, Miller J (2007) Replication’s Role in Software Engineering,
this volume.

Creswell JW (1998) Qualitative Inquiry and Research Design: Choosing Among Five Traditions.
Sage Publications, Thousand Oaks.

Dey I (1993) Qualitative Analysis: A User-Friendly Guide. Routledge, New York.
Eisenhardt KM (1989) Building Theories from Case Study Research. Academy of Management

Review 14:532–550.
Gilgun JF (1992) Definitions, Methodologies, and Methods in Qualitative Family Research, in

Qualitative Methods in Family Research. Sage Publications, Thousand Oaks.
Glaser BG, Strauss AL (1967) The Discovery of Grounded Theory: Strategies for Qualitative

Research. Aldine Publishing Company, Somerset, NJ, USA.
Guindon R, Krasner H, Curtis B (1987) Breakdowns and Processes During the Early Activities of

Software Design by Professionals, in Empirical Studies of Programmers, second workshop,
Gary Olsen, Sylvia Sheppard, and Elliot Soloway, eds., 65–82, Ablex Publishing, Greenwich,
CT, USA.

Hackos JT, Redish JD (1998) User and Task Analysis for Interface Design. Wiley, New York.
Holsti OR (1969) Content Analysis for the Social Sciences and Humanities. Addison-Wesley,

Menlo Park.
Jick T (1979) Mixing Qualitative and Quantitative Methods: Triangulation in Action. Administrative

Science Quarterly 24(4):602–611.
Judd CM, Smith ER, Kidder LH (1991) Research Methods in Social Relations, sixth edition.

Harcourt Brace Jovanovich, Fort Worth.
Kontio J, Bragge J, Lehtola L (2007) The Focus Group Method as an Empirical Tool in Software

Engineering, this volume.
Lethbridge T, Sim SE, Singer J (2005) Studying Software Engineers: Data Collection Techniques

for Software Field Studies. Empirical Software Engineering: An International Journal
10(3):311–341.

Lincoln YS, Guba EG (1985) Naturalistic Inquiry. Sage Publishing, Thousand Oaks.
Lutters WG, Seaman CB (2007) The Value of War Stories in Debunking the Myths of

Documentation in Software Maintenance. Information and Software Technology 49(6):
576–587.

Miles MB, Huberman AM (1994) Qualitative Data Analysis: An Expanded Sourcebook, second
edition. Sage Publishing, Thousand Oaks.

Orlikowski WJ (1993) CASE Tools as Organizational Change: Investigating Incremental and
Radical Changes in Systems Development. MIS Quarterly 17(3):309–340.

Orlikowski WJ, Baroudi JJ (1991) Studying Information Technology in Organizations: Research
Approaches and Assumptions. Information Systems Research 2(1):1–28.

Parra A, Seaman C, Basili V, Kraft S, Condon S, Burke S, Yakimovich D (1997) The Package-
Based Development Process in the Flight Dynamics Division. Proceedings of the Twenty-
second Software Engineering Workshop, NASA/Goddard Space Flight Center Software
Engineering Laboratory (SEL), Greenbelt, MD, USA.

62 C.B. Seaman

Perry DE, Staudenmayer NA, Votta LG (1994) People, Organizations, and Process Improvement.
IEEE Software 11(July): 36–45.

Rainer A, Hall T (2003) A Quantitative and Qualitative Analysis of Factors Affecting Software
Processes. Journal of Systems and Software 66:7–21.

Rainer A, Hall T, Baddoo N (2003) Persuading Developers to ‘Buy Into’ Software Process
Improvement: Local Opinion and Empirical Evidence. Proceedings of the International
Symposium on Empirical Software Engineering (ISESE), IEEE, Los Alamitos, CA, USA.

Seaman CB (1999) Qualitative Methods in Empirical Studies of Software Engineering. IEEE
Transactions on Software Engineering 25(4):557–572.

Seaman CB, Basili VR (1998) Communication and Organization: An Empirical Study of
Discussion in Inspection Meetings. IEEE Transactions on Software Engineering
24(7):559–572.

Sharp H, Robinson H (2004) An Ethnographic Study of XP Practice. Empirical Software
Engineering 9:353–375.

Shneiderman B (1998) Designing the User Interface: Strategies for Effective Human-Computer
Interaction, third edition. Addison-Wesley, Reading, MA, USA.

Singer J (1998) Practices of Software Maintenance. Proceedings of the International Conference
on Software Maintenance, IEEE Computer Society Press, Los Alamitos, CA, pp. 139–145.

Taylor SJ, Bogdan R (1984) Introduction to Qualitative Research Methods. Wiley, New York.
von Mayrhauser A, Vans AM (1996) Identification of Dynamic Comprehension Processes During

Large Scale Maintenance. IEEE Transactions on Software Engineering 22(6):424–437.
Whyte WF (1984) Learning from the Field: A Guide from Experience. Sage Publications, Beverly

Hills.
Yin RK (1994) Case Study Research: Design and Methods. Sage Publications, Newbury Park,

CA, USA.

Abstract Although surveys are an extremely common research method, survey-
based research is not an easy option. In this chapter, we use examples of three
software engineering surveys to illustrate the advantages and pitfalls of using surveys.
We discuss the six most important stages in survey-based research: setting the sur-
vey’s objectives; selecting the most appropriate survey design; constructing the
survey instrument (concentrating on self-administered questionnaires); assessing the
reliability and validity of the survey instrument; administering the instrument; and,
finally, analysing the collected data. This chapter provides only an introduction to
survey-based research; readers should consult the referenced literature for more
detailed advice.

1. Introduction

Surveys are probably the most commonly used research method worldwide. Survey
work is visible because we are often asked to participate in surveys in our private
capacity, as electors, consumers, or service users. This widespread use of surveys
may give the impression that survey-based research is straightforward, an easy
option for researchers to gather important information about products, context,
processes, workers and more. However, in our experience this is not the case. In this
chapter, we will use actual survey examples to illustrate the attractions and pitfalls
of the survey technique.

The three surveys we will use as our examples will be discussed in the next sec-
tion. After that we will define what we mean by a survey. Then we will discuss the
main activities that need to be considered when you undertake a survey:

● Setting the objectives
● Survey design
● Developing the survey instrument (i.e. the questionnaire)
● Evaluating the survey instrument
● Obtaining valid data
● Analysing the data

Chapter 3
Personal Opinion Surveys

Barbara A. Kitchenham and Shari L. Pfleeger

63

F. Shull et al. (eds.), Guide to Advanced Empirical Software Engineering.
© Springer 2008

64 B.A. Kitchenham and S.L. Pfleeger

2. Example Surveys

In this section we describe three software engineering surveys that will be used as
examples throughout this chapter.

2.1. Technology Evaluation Survey

Recently we were involved in far from successful survey. A few years ago,
Zelkowitz et al. (1998) surveyed practitioners to determine their confidence in dif-
ferent types of empirical evaluations as the basis for technology adoption decisions.
Their findings indicated that the evidence produced by the research community to
support technology adoption is not the kind of evidence being sought by practition-
ers. To build on Zelkowitz et al.’s work, a group of researchers, including ourselves,
wanted to do a follow-up survey of managers, to find out what kinds of evaluations
they make of proposed technologies, and what kinds of evidence they rely on for
their technology decisions.

We had noticed that many newsletters often include reader survey forms, some
of whose questions and answers could provide useful insight into managers’ deci-
sion-making processes. We approached the publisher of Applied Software
Development; he was eager to cooperate with the research community, and he
agreed to insert a one-page survey in the newsletter and gather the responses. As a
result, we took the following steps:

1. We designed a survey form and asked several of colleagues to critique it. The
survey asked respondents to examine a list of technologies and tell us if the
technology had been evaluated and if it had been used. If it had been evaluated,
the respondents were asked to distinguish between a “soft” evaluation, such as a
survey or feature analysis, and a “hard” evaluation, such as formal experiment
or case study.

2. We “tested” the resulting survey form on a colleague at Lucent Technologies.
We asked him to fill out the survey form and give feedback on the clarity of the
questions and responses, and on the time it took him to complete the form.
Based on his very positive reaction to the questionnaire, we submitted a slightly
revised survey to the newsletter publisher.

3. The publisher then revised the survey, subject to our approval, so that it would
fit on one page of his newsletter. The questionnaire was formatted as a table with
four questions for each of 23 different software technologies (see Table 1).

4. The survey form was included in all copies of a summer 1999 issue of Applied
Software Development.

Of the several thousand possible recipients of Applied Software Development, only
171 responded by sending their survey form back; thus, the response rate was low,
which is typical in this type of survey. The staff at Applied Software Development

3 Personal Opinion Surveys 65

transferred the data from the survey sheets to a spreadsheet. However, when the
results of the survey were analyzed, it appeared that we had made errors in survey
design, construction, administration and analysis that rendered any results incon-
clusive at best.

2.2. Software Education Survey

Lethbridge (1998, 2000) conducted surveys to help him understand those areas
where practitioners feel they need more or better education. The goal of the surveys
was to provide information to educational institutions and companies as they plan
curricula and training programs. A secondary goal involved providing data that will
assist educators and practitioners in evaluating existing and proposed curricula.

Lethbridge and his team recruited participants for the surveys in two ways: by
approaching companies directly and asking them to participate, and by advertising
for participants on the Web. To determine the effects of formal education,
Lethbridge presented the respondents with a list of topics related to computer sci-
ence, mathematics and business. For each topic, the respondent was asked “How
much did you learn about this in your formal education?” The choices for answers
ranged on a six-point ordinal scale from “learned nothing” to “learned in depth.”
Other questions included

● What is your current knowledge about this considering what you have learned
on the job as well as forgotten?

● How useful has this specific material been to you in your career?
● How useful would it be (or have been) to learn more about this (e.g. additional

courses)? (This question appeared in the first version of the survey.)
● How much influence has learning the material had on your thinking (i.e. your

approach to problems and your general maturity), whether or not you have
directly used the details of the material? Please consider influence on both your

Table 1 Format of technology survey questionnaire

Technology/
technique

Did your
company
evaluate this
technology?

Soft Evaluation
techniques:
read case
studies,
articles,
talking with
peers, lessons
learned, or
other more
anecdotal
evidence?

Hard Evaluation
techniques:
feature
comparisons,
performance
benchmark,
or other more
quantitative
evidence?

Are you now
using the
technique in
some
production
work or most
production
work?

Specific software
technology

Yes/No Yes/No Yes/No Some/Most/None

66 B.A. Kitchenham and S.L. Pfleeger

career and other aspects of you life. (This question appeared in the second version
of the survey.)

2.3. Software Risk Management Survey

Ropponen and Lyytinen (2000) described an examination of risk management
practices. They administered a survey addressing two overall questions:

● What are the components of software development risk?
● What risk management practices and environmental contingencies help to

address these components?

To find out the answers, the researchers mailed a questionnaire to each of a pre-
selected sample of members of the Finnish Information Processing Association
whose job title was “manager” or equivalent. They sent the questionnaire to at most
two managers in the same company.

Ropponen and Lyytinen asked twenty questions about risk by presenting sce-
narios and asking the respondents to rate their occurrence with a five-point ordinal
scale, ranging from “hardly ever” to “almost always.” For example, the scenarios
included:

Your project is cancelled before completing it
and
Subcontracted tasks in the project are performed as expected.

The researchers posed additional questions relating to organizational character-
istics, such as the organization’s size, industry, type of systems developed, and
contractual arrangement. They also sought technology characteristics, such as
the newness of the technology, the complexity and novelty of technological
solutions, and the process technologies used. Finally, they asked questions
about the respondents themselves: their experience with different sizes of
projects, their education, their experience with project management, and the
software used.

3. What is a Survey?

To begin, let us review exactly what a survey is. A survey is not just the instrument
(the questionnaire or checklist) for gathering information. It is a comprehensive
research method for collecting information to describe, compare or explain knowl-
edge, attitudes and behavior (Fink, 1995). Fowler (2002) defines a quantitative
survey in the following way:

● The purpose of a survey is to produce statistics, that is, quantitative or numerical
descriptions of some aspects of the study population.

3 Personal Opinion Surveys 67

● The main way of collecting information is by asking questions; their answers
constitute the data to be analysed.

● Generally information is to be collected from only a fraction of the population,
that is a sample, rather than from every member of the population.

In this chapter we will concentrate on surveys of this type where data is collected
by means of a questionnaire completed by the subject. This excludes surveys that
use a semi-structured interview schedule administered by the researcher. We will
also exclude surveys using mainly open-ended questions, surveys based on observ-
ing participant behaviour and data mining exercises. Thus, we restrict ourselves to
surveys that collect quantitative but subjective data (concerning individual’s opin-
ions, attitudes and preferences) and objective data such as demographic information
for example a subject’s age and educational level.

4. Setting Objectives

The first step in any survey research (or any research, for that matter!) is setting
objectives otherwise referred to as problem definition. Each objective is simply a
statement of the survey’s expected outcomes or a question that the survey is
intended to answer. For instance, a survey may hope to identify the most useful
features of a front-end development tool, or the most common training needs for
new hires.

There are three common type of objective:

● To evaluate the rate or frequency of some characteristic that occurs in a population,
for example, we might be interested in the frequency of failing projects (Standish
Group, 2003).

● To assess the severity of some characteristic or condition that occurs in a popula-
tion, for example, we might be interested in the average overrun of software
projects (Moløkken-Østvold et al., 2004).

● To identify factors that influence a characteristic or condition, for example, we
might be interested in factors that predispose a process improvement activity
towards failure or towards success Dybå (2005).

The first two types of survey objective are descriptive: they describe some condition
or factor found in a population in terms of its frequency and impact. The second
type of survey looks at the relationship existing among factors and conditions
within a population.

As the objectives are defined in more detail, you should be able to specify:

● The hypotheses to be tested
● What alterative explanations are to be investigated or excluded
● What scope of survey project is appropriate to address the objectives
● What resources are necessary to achieve the objectives

68 B.A. Kitchenham and S.L. Pfleeger

At this stage it is important to decide whether a survey is an appropriate research method
to address the stated objectives. You need to be able to answer questions of the type:

● Is it clear what population can answer the survey questions reliably?
● Is there a method of obtaining a representative sample of that population?
● Does the project have sufficient the resources to collect a sample large enough

to answer the study questions?
● Is it clear what variables need to be measured?
● Is it clear how to measure the variables?

If you cannot answer all these questions positively, you need to consider whether a
survey is an appropriate means to address your research objectives.

5. Survey Design

Two common types of survey design are:

● Cross sectional: In this type of study, participants are asked for information at
one fixed point in time. For example, we may poll all the members of a software
development organization at 10 am on a particular Monday, to find out what
activities they are working on that morning. This information gives us a snapshot
of what is going on in the organization.

● Longitudinal: This type of study is forward-looking, providing information
about changes in a specific population over time. There are two main variants of
longitudinal designs, you can survey the same people at each time period or you
can survey different people.

Recall the three survey examples we introduced in Sect. 2. The Lethbridge survey
asked respondents about their levels of training and education (see Lethbridge,
1998, 2000). The Ropponen and Lyytinen (2000) study requested information
about risk management practices from Finnish software projects. The Pfleeger-
Kitchenham study sought to determine what kinds of evidence were used to support
technology adoption decisions. All three surveys were all cross-sectional studies, in
which participants were asked about their past experiences at a particular fixed
point in time. It is not simply coincidence that all our examples are of this type; in
our experience, most surveys in software engineering have this kind of design.

There are other more complex forms of survey design, for example designs that
compare different populations, or designs that aim to assess the impact of a change.
For information on such designs see, for example, Shaddish et al. 2002).

The other issue to decide is the way in which the survey will be administered.
Options include:

● Self-administered questionnaires (usually postal but increasingly Internet).
● Telephone surveys.
● One-to-one interviews.

3 Personal Opinion Surveys 69

The questions that can be addressed are influenced by this factor. In addition, strategies
for obtaining reliable data such as question ordering and wording differ according
to the administration method. Fowler provides a detailed examination of the pros
and cons of different administration methods (Fowler, 2002). In this chapter we con-
centrate primarily on self-administered questionnaires.

6. Developing a Survey Instrument

In this section, we turn to how to develop a survey instrument. Survey instruments,
which are usually questionnaires, are developed using the following steps:

● Search the relevant literature.
● Construct an instrument.
● Evaluate the instrument.
● Document the instrument.

We discuss instrument construction in this section and instrument validation and
documentation in Sect. 7, using the three surveys described in Sect. 2 to illustrate
good and bad practice.

6.1. Searching the Literature

As with any good investigative study, we must begin our work by looking through
the literature. We need such searches to:

● Identify what other studies have been done on the topic.
● Determine how the previous studies’ researchers collected their data. In particular,

we want to find out what questionnaires or other data collection mechanisms
were used.

There are many reasons for knowing what has come before. First, we do not want
unknowingly to duplicate someone else’s research. Second, we want to learn from
and improve upon previous studies. For example, if previous studies have devel-
oped relevant validated instruments or questions that we can adopt, it makes our
own survey easier to administer and validate. Similarly, if other researchers had
problems with response rates, we will be aware of the need to adopt measures to
address this problem. Finally, other studies may give us ideas about variables and
issues we need to consider in designing our own studies.

6.2. Creating or Re-Using an Instrument

In software engineering, we often start from scratch, building models of a problem
and designing survey instruments specifically for the problem at hand. However, in
other disciplines, it is rare to develop a new survey instrument. Researchers usually

70 B.A. Kitchenham and S.L. Pfleeger

rely on using existing instruments, perhaps tailored slightly to accommodate
variations on a common theme. This reliance on standard instrumentation has two
important advantages.

1. The existing instruments have already been assessed for validity and reliability.
2. By using common instruments, it is easy to compare new results with the results

of other studies.

When researchers in other disciplines cannot use an existing instrument, they are
often able to amend existing instruments. An instrument might be amended if:

● It is too long to be used in entirety.
● A different population is being studied from the one for which the original

instrument was designed.
● It needs to be translated.
● The data collection method is different in some way from the original instru-

ment’s data collection.

However, we must take care when considering amending an instrument. Our
changes may introduce complications that make the research more difficult. For
example:

● If the original instrument is copyrighted, we may need permission to change it.
● We must repeat pilot testing of the instrument.
● The new instrument must be assessed for validity and reliability.

Unfortunately, because most survey instruments in software engineering research
are developed from scratch, we introduce many practical problems. In particular,
software engineering research instruments are seldom properly validated.

6.3. Creating a New Questionnaire

A survey asks the respondents to answer questions for a reason, so the starting point
in designing the survey instrument should always be the survey’s purpose and
objectives. However, simply converting a list of objectives into a set of questions
seldom leads to a successful survey instrument. The type of question and wording
of the questions and answers need to be carefully designed.

6.3.1. Question Types

When formulating questions for a survey instrument, you can express them in one
of two ways: open or closed. A question is open when the respondents are asked to
frame their own reply. Conversely, a question is closed when the respondents are
asked to select an answer from a list of predefined choices.

3 Personal Opinion Surveys 71

There are advantages and disadvantages to each type of question. Open questions
avoid imposing any restrictions on the respondent. However, there are many different
ways respondents may choose to answer a question. Moreover, no matter how care-
fully we word the question, open questions may leave room for misinterpretation
and provision of an irrelevant or confusing answer. Thus, open questions can be
difficult to code and analyze.

6.3.2. Designing Questions

Once we have an idea of what we want to ask, we must give some thought to how
we want to pose the questions. Questions need to be precise, unambiguous and
understandable to respondents. In order to achieve that we need to ensure that:

● The language used is appropriate for the intended respondents and any possibly
ambiguous terms are fully defined.

● We use standard grammar, punctuation and spelling.
● Each question expresses one and only one concept so we need to keep questions

short but complete and avoid double-barrelled questions.
● Questions do not included vague or ambiguous qualifiers.
● Colloquialisms and jargon are avoided.
● We use negative as well as positive questions but avoid simply negating a

question or using a double negative.
● We avoid asking question about events that occurred a long time in the past.
● We avoid asking sensitive questions that respondents may not be willing to

answer in a self-administered questionnaire.

It is also important to make sure that respondents have sufficient knowledge to
answer the questions. It can be extremely frustrating to be asked questions you are
not in a position to answer. For example, of the three surveys described in Sect. 2,
two of the surveys (Lethbridge’s survey and the Finnish survey) asked respondents
about their personal experiences. In contrast, the survey of technology adoption
asked respondents to answer questions such as

Did your company evaluate this technology? Yes/No
Are you now using the technique in some production work or most production work?
Yes/No

In this case, we were asking people to answer questions on behalf of their company.
The questions may have caused difficulties for respondents working in large com-
panies or respondents who had worked for the company only for a relatively short
period of time.

To see how wording can affect results, consider the two Lethbridge surveys.
Each was on the same topic, but he changed the wording of his last question. In the
first survey Lethbridge, 1998, question 4 was:

How useful would it be (or have been) to learn more about this (e.g. additional courses)?

72 B.A. Kitchenham and S.L. Pfleeger

In his second survey (Lethbridge, 2000), question 4 was:

How much influence has learning the material had on your thinking (i.e. your approach to
problems and your general maturity), whether or not you have directly used the details of
the material? Please consider influence on both your career and other aspects of your life.

The first version of the question is considerably better than the second version,
because the second version is more complex and thus more difficult to interpret and
understand. In particular, the second version appears to be two-edged (referring
both to approach to problems and to general maturity) and rather imprecise (since
it may not be clear what “general maturity” really means). However, further reflec-
tion indicates that even the first version of the question is ambiguous. Is the
respondent supposed to answer in terms of whether (s)he would have benefited
from more courses at university, or in terms of whether (s)he would benefit from
industrial courses at the present time?

The survey of technologies posed questions about evaluation procedures in
terms of how the respondent’s company performed its evaluation studies. In partic-
ular, it asked questions about soft and hard evaluation techniques by defining them
at the top of two of the columns:

Soft evaluation techniques: Read case studies, articles, talking with peers, lessons learned
or other more anecdotal evidence? Yes/No
Hard evaluation techniques: feature comparison, performance benchmark, or other more
quantitative evidence? Yes/No

These questions include jargon terms related to evaluation that may not be well
understood by the potential respondents. Similarly, the researchers used jargon when
defining the technology types as well: CASE tools, Rapid Application Development,
4GLs, and more. Were the questions to be redesigned, they should spell out each
technology and include a glossary to describe each one. Such information ensures
that the respondents have a common understanding of the terminology.

6.3.3. Designing Answers to Questions

Answers are usually of one of four types:

1. Numerical values (e.g. Age)
2. Response categories (e.g. Job type)
3. Yes/No answers
4. Ordinal scales.

Numerical values are usually straightforward but other types of answer may cause
difficulties.

Response categories require all respondents to choose from a set of possible
categories. They should be:

● Exhaustive but not too long
● Mutually exclusive

3 Personal Opinion Surveys 73

● Allow for multiple selections if required
● Include an “Other” category if the categories are not known to be exhaustive

Yes/No answers are particularly problematic. They suffer from acquiescence bias
(Krosnick, 1990) as well as problems with lack of reliability (because people do not
give the same answer on different occasions), imprecision (because the restrict
measurement to only two levels) and many characteristics are broad in scope and
not easily expressed as a single question (Spector 1992). Consider the question in
the technology evaluation survey:

Are you now using the technique in some production work or most production work?

In this case our question about technology use doesn’t suit a two point Yes/No scale
very well. The question needs an ordinal scale answer.

Generally it is better to use an ordinal scale for attitudes and preferences. There
are three types of scale:

1. Agreement scales e.g. a response choice of the form: Strongly Disagree,
Disagree, Neither Agree nor Disagree, Agree, Strongly Agree.

2. Frequency scales e.g. a response choice of the form: Never, Rarely, Seldom,
Sometimes, Occasionally, Most of the time.

3 Evaluation scales e.g. a response choice of the form: Terrible, Inferior, Passable,
Good, Excellent.

Like response categories, ordinal scales need to be exhaustive but not too long.
Researchers usually restrict them to seven points. In addition, Krosnick recom-
mended points on a scale be labeled with words (to assist reliability and validity)
but not numbered (because numbers can be interpreted in unanticipated ways by
respondents) (Krosnick, 1990).

However, understanding (and hence reliability) may also be increased if we
define each point on a scale. For example, Lethbridge gives some indication of the
detail needed to define an ordinal scale in his survey. Each of his four main
questions has its own associated ordinal scale with responses defined in the context
of the question. For instance, the question “How much did you learn about this at
university or college” had the following scale:

Score Definition

1 Learned nothing at all
2 Became vaguely familiar
3 Learned the basics
4 Became functional (moderate working knowledge)
5 Learned a lot
6 Learned in depth, became expert (learned almost everything)

Although the intermediate points on the scale are a little vague, the end points are
clear and unambiguous. Lethbridge’s scale conforms to the normal standard of

74 B.A. Kitchenham and S.L. Pfleeger

using between 5 and 7 choices along an ordinal scale. Lethbridge’s scale is also a
reasonably balanced one. A scale is balanced when the two endpoints mean the
opposite of one another and the intervals between the scale points appear to be
about equal. Creating equal distances between the scale points is called anchoring
the instrument. It is difficult to create an anchored scale and even more difficult to
validate that a scale is properly anchored.

A final issue that applies to ordinal scale categories is whether to include a
“Don’t know” category. There is some disagreement in the social science commu-
nity about this issue. Some researchers feel that such choices allow respondents to
avoid answering a question. However, it may be counter-productive to force people
to answer questions they don’t want to, or to force them to make a choice about
which they feel ambivalent. The usual approach is to consider whether the respond-
ents have been selected because they are in a position to answer the question. If that
is the case a “Don’t Know” category is usually not permitted.

6.3.4. Measuring Complex Concepts

Spector points out some concepts are difficult to map to single self-standing ques-
tions (Spector 1992). This may result in one (or both) of two type of unreliability

1. If people answer in different ways at different time
2. If people make mistakes in their responses.

He proposes measures based on summated rating scales to address this problem.
A summated rating scale is a set of two or more items (i.e. questions) that address
a specific topic or aspect of interest. Having multiple items improves reliability by
reducing the chance of respondents making an error in their response and increases
the precision with which a concept is measured.

6.4. Questionnaire Format

For self-administered questionnaires, it is important to consider both the format
of the questionnaire and the questionnaire instructions. For formatting printed
questionnaires, use the following checklist (much of which applies to Web-based
questionnaires, too):

● Leave a space for the respondents to comment on the questionnaire.
● Use space between questions.
● Use vertical format, spaces, boxes, arrows, etc. to maximize the clarity of ques-

tions. However, do not overwhelm the respondent with “clever” formatting
techniques (particularly for Web Questionnaires).

● Consider the use of simple grids.
● Consider the use of a booklet format.

3 Personal Opinion Surveys 75

● Have a good contrast between print and paper.
● Stick to a font size of 10–12.
● Use a font that is easy to read.
● Avoid italics.
● Use bolding, underlining or capitals judiciously and consistently for emphasis

and instructions.
● Do not split instructions, questions and associated responses between pages.

The order in which questions are placed is also be important. Bourque and Fielder
(1995) recommend questions be asked in a logical order, starting with easy ques-
tions first. However, although most questionnaires include demographic questions
(that is, questions that describe the respondent) at the front of the questionnaire,
Bourque and Fielder suggest putting them at the end instead. They point out that
demographic details may be off-putting at the start of the questionnaire and so may
discourage respondents.

The questionnaire must be accompanied by various administrative information
including:

● An explanation of the purpose of the study.
● A description of who is sponsoring the study (and perhaps why).
● A cover letter using letterhead paper, dated to be consistent with the mail shot,

providing a contact name and phone number. Personalize the salutation if
possible.

● An explanation of how the respondents were chosen and why.
● An explanation of how to return the questionnaire.
● A realistic estimate of the time required to complete the questionnaire. Note that

an unrealistic estimate will be counter-productive.

6.5. Response Rates and Motivation

It is often very difficult to motivate people to answer an unsolicited survey. Survey
researchers can use inducements such as small monetary rewards or gifts, but these
are not usually very successful. In general, people will be more motivated to pro-
vide complete and accurate responses if they can see that the results of the study
are likely to be useful to them. For this reason, we should be sure that the survey
instrument is accompanied by several key pieces of information supplied to
participants:

● What the purpose of the study is.
● Why it should be of relevance to them.
● Why each individual’s participation is important.
● How and why each participant was chosen.
● How confidentiality will be preserved.

76 B.A. Kitchenham and S.L. Pfleeger

Lethbridge (1998) attempted to motivate response with the following statement:

The questionnaire is designed to discover what aspects of your educational background
have been useful to you in your career. The results of the survey will be used to help
improve curricula. All the information you provide will be kept confidential. In particular
we have no intention of judging you as a person–we are merely interested in learning about
the relevance of certain topics to your work.

By contrast, the technology adoption survey attempted to motivate response with
the statement:

Dear Executive, We are sponsoring a study for the University of X, and Professors Y and
Z. It is only through our cooperative efforts with the academic community that we bring
our commercial experiences to the classroom. Thank you for your help.

It fairly clear that Lethbridge’s statement is likely to be more motivating although
neither is compelling.

6.6. Questionnaire Length

Although we all know that we should strive for the shortest questionnaire that will
answer our research questions, there is always a temptation to add a few extra ques-
tions “while we are going to all the trouble of organising a survey”. This is usually
a mistake. You should use pre-tests (see Sect. 7) to assess how long it takes to
answer your questionnaire and whether the length (in time and number of ques-
tions) will de-motivate respondents.

If you have too many questions, you may need to remove some. Questions can
usually be grouped together into topics, where each topic addresses a specific
objective. One way to prune questions is to identify a topic that is addressed by
many questions, and then remove some of the less vital ones. Another way is to
remove some groups of questions. Keep in mind, though, that such pruning some-
times means reducing the objectives that the questionnaire addresses. In other
words, you must maintain a balance between what you want to accomplish and
what the respondents are willing to tell you. Validity and reliability assessments
undertaken during pre-tests can help you decide which questions can be omitted
with least impact on your survey objectives.

One way to reduce the time taken to complete a survey is to have standardized
response formats. For example, in attitude surveys, responses are usually standard-
ized to an ordinal scale of the form:

Strongly Agree, Agree, Disagree, Strongly Disagree.

If all responses are standardized, respondents know their choices for each ques-
tion and do not have to take time to read the choices carefully, question by question.
Thus, respondents can usually answer more standard-format questions in a given
time than non-standard ones.

3 Personal Opinion Surveys 77

6.7. Researcher Bias

An important consideration throughout questionnaire construction is the impact
of our own bias. We often have some idea of what we are seeking, and the way
we build the survey instrument can inadvertently reveal our biases. For example,
if we create a new tool and distribute it free to a variety of users, we may decide
to send out a follow-up questionnaire to see if the users find the tool helpful. If
we do not take great care in the way we design our survey, we may word our
questions in a way that is sure to confirm our desired result. For instance, we can
influence replies by:

● The way a question is asked.
● The number of questions asked.
● The range and type of response categories.
● The instructions to respondents.

To avoid bias, we need to:

● Develop neutral questions. In other words, take care to use wording that does not
influence the way the respondent thinks about the problem.

● Ask enough questions to adequately cover the topic.
● Pay attention to the order of questions (so that the answer to one does not influ-

ence the response to the next).
● Provide exhaustive, unbiased and mutually exclusive response categories.
● Write clear, unbiased instructions.

We need to consider the impact of our own prejudices throughout questionnaire
construction. However, we also need to evaluate our questionnaire more formally,
using methods discussed in Sect. 7.

7. Survey Instrument Evaluation

We often think that once we have defined the questions for our survey, we can
administer it and gather the resulting data. But we tend to forget that creating a set
of questions is only the start of instrument construction. Once we have created the
instrument, it is essential that we evaluate it (Litwin, 1995). Evaluation is often
called pre-testing, and it has several different goals:

● To check that the questions are understandable.
● To assess the likely response rate and the effectiveness of the follow-up

procedures.
● To evaluate the reliability and validity of the instrument.
● To ensure that our data analysis techniques match our expected responses.

The two most common ways to organize an evaluation are focus groups and pilot
studies. Focus groups are mediated discussion groups. We assemble a group of

78 B.A. Kitchenham and S.L. Pfleeger

people representing either those who will use the results of the survey or those who
will be asked to complete the survey (or perhaps a mixture of the two groups). The
group members are asked to fill in the questionnaire and to identify any potential
problems. Thus, focus groups are expected to help identify missing or unnecessary
questions, and ambiguous questions or instructions. As we will see below, focus
groups also contribute to the evaluation of instrument validity.

Pilot studies of surveys are performed using the same procedures as the survey, but
the survey instrument is administered to a smaller sample. Pilot studies are intended
to identify any problems with the questionnaire itself, as well as with the response
rate and follow-up procedures. They may also contribute to reliability assessment.

The most important goal of pre-testing is to assess the reliability and validity of
the instrument. Reliability is concerned with how well we can reproduce the survey
data, as well as the extent of measurement error. That is, a survey is reliable if we
get the same kinds and distribution of answers when we administer the survey to
two similar groups of respondents. By contrast, validity is concerned with how well
the instrument measures what it is supposed to measure. The various types of valid-
ity and reliability are described below.

Instrument evaluation is extremely important and can absorb a large amount of
time and effort. Straub presents a demonstration exercise for instrument validation
in MIS that included a Pretest, Technical Validation and Pilot Project (Straub,
1989). The Pretest involved 37 participants, the Technical Validation involved 44
people using a paper and pencil instrument and an equal number of people being
interviewed; finally the Pilot test analysed 170 questionnaires. All this took place
before the questionnaire was administered to the target population.

7.1. Types of Reliability

In software, we tend to think of reliability in terms of lack of failure; software is
reliable if it runs for a very long time without failing. But survey reliability has a
very different meaning. The basic idea is that a survey is reliable if we administer
it many times and get roughly the same distribution of results each time.
Test-Retest (Intra-observer) Reliability is based on the idea that if the same person
responds to a survey twice, we would like to get the same answers each time. We
can evaluate this kind of reliability by asking the same respondents to complete the
survey questions at different times. If the correlation between the first set of
answers and the second is greater than 0.7, we can assume that test-retest reliability
is good. However, test-retest will not work well if:

● Variables naturally change over time.
● Answering the questionnaire may change the respondents’ attitudes and hence

their answers.
● Respondents remember what they said previously, so they answer the same way

in an effort to be consistent (even if new information in the intervening time
makes a second, different answer more correct).

3 Personal Opinion Surveys 79

Alternate form reliability is based on rewording or re-ordering questions in
different versions of the questionnaire. This reduces the practice effect and
recall problems associated with a simple test-retest reliability study. However,
alternative form reliability has its own problems. Rewording is difficult because
it is important to ensure that the meaning of the questions is not changed and
that the questions are not made more difficult to understand. For example,
changing questions into a negative format is usually inappropriate because
negatively framed questions are more difficult to understand than positively
framed questions. In addition, re-ordering results can be problematic, because
some responses may be affected by previous questions.
Inter-observer (inter-rater) reliability is used to assess the reliability of
non-administered surveys that involve a trained person completing a survey
instrument based on their own observations. In this case, we need to check
whether or not different observers give similar answers when they assess the
same situation. Clearly inter-rater reliability cannot be used for self-administered
surveys that measure personal behaviors or attitudes. It is used where there is a
subjective component in the measurement of an external variable, such as with
process or tool evaluation. There are standard statistical techniques available to
measure how well two or more evaluators agree. To obtain more information
about inter-rater reliability, you should review papers by El Emam and his
colleagues who were responsible for assessing ISO/IEC 15504 Software Process
Capability Scale, also known as SPICE (see for example El Emam et al., 1996,
1998).

Two reliability measures are particularly important for summated rating scales:
the Cronbach alpha coefficient (Cronbach, 1951) and the Item-remainder coeffi-
cient. These measures assess the internal consistency of a set of items (questions)
that are intended to measure a single concept. The item-remainder coefficient is the
correlation between the answer for one item and sum of the answers of the other
items. Items with the highest item-remainder are important to the consistency of the
scale. The Cronbach alpha is calculated as

 a =
−

×
− ∑k

k

s s

s
T I

T1

2 2

2
 (1)

Where S
T

2 is the total variance of the sum of all the items for a specific construct
and S

I
2 is the variance of an individual item and k is the number of items.

If variables are independent the variance of their sum is equal to the sum of each
individual variance. If variables are not independent the variance of their sum is
inflated by the covariance among the variables. Thus if the Cronbach alpha is small
we would assume that the variables were independent and did not together contribute
to the measurement of a single construct. If the Cronbach alpha is large
(conventionally >0.7), we assume that the items are highly inter-correlated and
together measure a single construct.

80 B.A. Kitchenham and S.L. Pfleeger

7.2. Types of Validity

As noted above, we also want to make sure that our survey instrument is measuring
what we want it to measure. This called survey validity. Four types of validity are
discussed below.
Face validity is a cursory review of items by untrained judges. It hardly counts as a
measure of validity at all, because it is so subjective and ill-defined.
Content validity is a subjective assessment of how appropriate the instrument seems
to a group of reviewers (i.e. a focus group) with knowledge of the subject matter.
It typically involves a systematic review of the survey’s contents to ensure that it
includes everything it should and nothing that it shouldn’t. The focus group should
include subject domain experts as well as members of the target population.

There is no content validity statistic. Thus, it is not a scientific measure of a
survey instrument’s validity. Nonetheless, it provides a good foundation on which
to base a rigorous assessment of validity. Furthermore if we are developing a new
survey instrument in a topic area that has not previously been researched, it is the
only form of preliminary validation available.
Criterion validity is the ability of a measurement instrument to distinguish
respondents belonging to different groups. This requires a theoretical framework
to determine which groups an instrument is intended to distinguish. Criterion
validity is similar to concurrent validity and predictive validity. Concurrent validity
is based on confirming that an instrument is highly correlated to an already
validated measure or instrument that it is meant to be related to. Predictive validity
is based on confirming that the instruments predicts a future measure or outcome
that it is intended to predict.
Construct validity concerns how well an instrument measures the construct it is
designed to measure. This form of validity is very important for validating sum-
mated measurement scales (Spector 1992). Convergent construct validity assesses
the extent to which different questions which are intended to measure the same
concept give similar results. Divergent construct validity assesses the extent to
which concepts do not correlate with similar but distinct concepts. Like criterion
validity, divergent and convergent construct validity can be assessed by correlating
a new instrument with an already validated instrument. Dybå (2000) presents a
software engineering example of the validation process for a software survey using
summated measurement scales.

7.3. Validity and Reliability in Software Engineering Surveys

Generally, software engineering surveys are weak in the area of validity and relia-
bility. For example, for many years, in the extensive literature relating to the CMM,
there was only one reference to a reliability coefficient (the Cronbach’s alpha) and
that concerned the 1987 version of the Maturity Questionnaire (Humphrey, 1991).

3 Personal Opinion Surveys 81

Of the three surveys we discussed in Sect. 1.2, only the Finnish Survey
(Ropponen and Lyytinen, 2000) made a concerted effort to undertake reliability and
validity studies. The technology adoption survey used face validity only. Lethbridge
discusses the basis for his questions, but his discussion of validity is based only on
a post-hoc assessment of possible responder bias (Lethbridge, 1998, 2000). In con-
trast, the Finnish researchers used a panel of experts to judge the content validity
of the questions. They also attempted to assess the internal reliability of their instru-
ment. Unfortunately, they did not perform an independent pilot study. They ana-
lyzed their survey responses using principal components to identify strategies for
managing risks. They then derived Cronbach alpha statistics (Cronbach, 1951)
from the same responses. They found high values and concluded that their survey
instrument had good reliability. However, Cronbach alpha values were bound to be
high, because they measure the structure already detected by the principal compo-
nent analysis.

7.4. Survey Documentation

After the instrument is finalized, Bourque and Fielder (1995) recommend starting
to document the survey. If the survey is self-administered, you should consider
writing an initial descriptive document, called a questionnaire specification. It
should include:

● The objective(s) of the study.
● A description the rationale for each question.
● The rationale for any questions adopted or adapted from other sources, with

appropriate citations.
● A description of the evaluation process.

Furthermore, once the questionnaire is administered, the documentation should be
updated to record information about:

● Who the respondents were.
● How it was administered.
● How the follow-up procedure was conducted.
● How completed questionnaires were processed.

One of the major reasons for preparing documentation during the survey is that
surveys can take a long time. It may be many months between first distributing a
questionnaire and when we are able to analyze results. It takes time for respondents
to reply and for the researchers to undertake all necessary follow-up procedures.
This time lag means that it is easy to forget the details of instrument creation and
administration, especially if documentation is left to the end of the study. In general,
it is good research practice to keep an experimental diary or log book for any type
of empirical studies.

82 B.A. Kitchenham and S.L. Pfleeger

When questionnaires are administered by interview, specifications are referred
to as interviewer specifications and can be used to train interviewers as well as for
reference in the field.

Once all possible responses have been received and all follow-up actions have
been completed, we are in a position to analyze the survey data. This is discussed
in the following sections. However before tackling analysis we look at the problem
of obtaining a data set that is suitable for statistical analysis.

8. Obtaining Valid Data

When we administer a survey, it is not usually cost-effective (and sometimes not
even possible) to survey the entire population. Instead, we survey a subset of the
population, called a sample, in the hope that the responses of the smaller group
represent what would have been the responses of the entire group. When choosing
the sample to survey, we must keep in mind three aspects of survey design: avoid-
ance of bias, appropriateness, and cost-effectiveness. That is, we want to select a
sample that is truly representative of the larger population, is appropriate to involve
in our survey, and is not prohibitively expensive to query. If we take these sample
characteristics into account, we are more likely to get precise and reliable
findings.

In this section, we describe how to obtain a valid survey sample from a target
population. We discuss why a proper approach to sampling is necessary and how to
obtain a valid sample. We also identify some of the sampling problems that affect
software engineering surveys.

The main point to understand is that a valid sample is not simply the set of responses
we get when we administer a questionnaire. A set of responses is only a valid sample,
in statistical terms, if has been obtained by a random sampling process.

8.1. Samples and Populations

To obtain a sample, you must begin by defining a target population. The target
population is the group or the individuals to whom the survey applies. In other
words, you seek those groups or individuals who are in a position to answer the
questions and to whom the results of the survey apply. Ideally, a target population
should be represented as a finite list of all its members called a sampling frame. For
example, when pollsters survey members of the public about their voting prefer-
ences, they use the electoral list as their sampling frame.

A valid sample is a representative subset of the target population. The critical
word in our definition of a sample is the word “representative.” If we do not have a
representative sample, we cannot claim that our results generalize to the target

3 Personal Opinion Surveys 83

population. If our results do not generalize, they have little more value than a
personal anecdote. Thus, a major concern when we sample a population is to ensure
that our sample is representative.

Before we discuss how to obtain a valid sample, let us consider our three survey
examples. In Lethbridge’s case, he had no defined target population. He might have
meant his target population to be every working software developer in the world,
but this is simply another way of saying the population was undefined. Furthermore,
he had no concept of sampling even his notional population. He merely obtained a
set of responses from the group of people motivated to respond. Thus, Lethbridge’s
target population was vague and his sampling method non-existent. So although he
described the demographic properties of his respondents (age, highest education
qualification, nationality etc.), no generalization of his results is possible.

With respect to the Pfleeger-Kitchenham survey, we noted previously that we
were probably targeting the wrong population because we were asking individuals
to answer questions on behalf of their companies. However, even if our target popu-
lation was all readers of Applied Software Development, we did not have any
sampling method, so our responses could not be said to constitute a valid sample.

In contrast, in the Finnish survey, Ropponen and Lyytinen had a list of all mem-
bers of the Finnish Information Processing Association whose title was manager.
Thus, they had a defined sampling frame. Then, they sent their question-
naires to a pre-selected subset of the target population. If their subset was obtained
by a valid sampling method (surprisingly, no sampling method is reported in their
article), their subset constituted a valid sample. As we will see later, this situation
is not sufficient to claim that the actual responses were a valid sample, but it is
a good starting point.

8.2. Obtaining a Valid Sample

We begin by understanding the target population. We cannot sample a population
if we cannot specify what that population is. Our initial assessment of the target
population should arise from the survey objectives, not from a sense of who is avail-
able to answer our questions. The more precisely the objectives are stated, the easier
it will be to define the target population. The specific target population may itself
be a subset of a larger population. It may be specified by the use of inclusion or
exclusion criteria.

It is often instructive to consider the target population and sampling procedure
from the viewpoint of data analysis. We can do this during questionnaire design but
we should also re-assess the situation after any pretests or pilot tests of the survey
instrument. At this point we will have some actual responses, so we can try out our
analysis procedures. We need to consider whether the analyses will lead to any
meaningful conclusions, in particular:

● Will the analysis results address the study objectives?
● Can the target population answer our research questions?

84 B.A. Kitchenham and S.L. Pfleeger

Considering the first question, Lethbridge’s objectives were to provide information
to educational institutions and companies as they plan curricula and training pro-
grams. This goal raises obvious questions: which educational institutions and
which companies? Lethbridge’s target population was poorly defined but can be
characterized as any practising software engineer. Thus, we must ask ourselves
whether replies from software engineers who would have attended different educa-
tion institutions, worked in different companies or had different roles and responsi-
bilities would indicate clearly how curricula and training courses could be
improved. At the very least, general conclusions may be difficult. The results would
need to be interpreted by people responsible for curricula or training courses in the
light of their specific situation.

The next question concerns the target population. Will the target population
provide useful answers? Lethbridge did not apply any inclusion or exclusion crite-
ria to his respondents. Thus, the respondents may include people who graduated a
very long time ago or graduated in non-computer science-related disciplines and
migrated to software engineering. It seems unlikely that such respondents could
offer useful information about current computer science- related curricula or train-
ing programs.

Consider now the survey of technology adoption practices. We have already
pointed that the Pfleeger-Kitchenham target population was the set of organizations
(or organizational decision-makers) making decisions about technology adoption.
However, our sample population solicits information from individuals. Thus, our
sampling unit (i.e. an individual) did not match their experimental unit (i.e. an
organization). This mismatch between the population sampled and the true target
population is a common problem in many surveys, not just in software engineering.
If the problem is not spotted, it can result in spurious positive results, since the
number of responses may be unfairly inflated by having many responses from
organizations instead of one per organization. Furthermore if there are a dispropor-
tionate number of responses from one company or one type of company, results will
also be biased.

The general target population of the Finnish survey of project risk was Finnish
IT project managers. The actual sampling frame was specified as members of
Finnish Information Processing Association whose job title was “manager” or
equivalent. People were asked about their personal experiences as project manag-
ers. In general, it would seem that the sample adequately represents the target popu-
lation, and the target population should be in a position to answer the survey’s
questions.

The only weakness is that the Finnish survey did not have any experience-related
exclusion criteria. For instance, respondents were asked questions about how fre-
quently they faced different types of project problems. It may be that respondents
with very limited management experience cannot give very reliable answers to such
questions. Ropponen and Lyytinen did consider experience (in terms of the number
of projects managed) in their analysis of the how well different risks were managed.
However, they did not consider the effect of lack of experience on the initial analy-
sis of risk factors.

3 Personal Opinion Surveys 85

8.3. Sampling Methods

Once we are confident that our target population is appropriate, we must use a
rigorous sampling method. If we want to make strong inferences to the target popu-
lation, we need a probabilistic sampling method. We describe below a variety of
sampling methods, both probabilistic and non-probabilistic.

8.3.1. Probabilistic Sampling Methods

A probabilistic sample is one in which every member of a target population has a
known, non-zero probability of being included in the sample. The aim of a probabilistic
sample is to eliminate subjectivity and obtain a sample that is both unbiased and
representative of the target population. It is important to remember that we cannot
make any statistical inferences from our data unless we have a probabilistic
sample.
A simple random sample is one in which every member of the target population has
the same probability of being included in the sample. There are a variety of ways
of selecting a random sample from a population list. One way is to use a random
number generator to assign a random number to each member of the target popula-
tion, order the members on the list according to the random number and choose the
first n members on the list, where n is the required sample size.
A stratified random sample is obtained by dividing the target population into
subgroups called strata. Each stratum is sampled separately. Strata are used when
we expect different sections of the target population to respond differently to our
questions, or when we expect different sections of the target population to be of
different sizes. For example, we may stratify a target population on the basis of
sex, because men and women often respond differently to questionnaires. The
number of members selected from each stratum is usually proportional to the size
of the stratum. In a software engineering survey, we often have far fewer women
than men in our target population, so we may want to sample within strata to
ensure we have an appropriate number of responses from women. Stratified random
samples are useful for non-homogeneous populations, but they are more compli-
cated to analyze than simple random samples.
Systematic sampling involves selecting every nth member of the sampling frame. If the
list is random, then selecting every nth member is another method of obtaining a simple
random sample. However, if the list is not random, this procedure can introduce bias.
Non-random order would include alphabetical order or date of birth order.

8.3.2. Cluster-Based Sampling

Cluster–based sampling is the term given to surveying individuals that belong to
defined groups. For example, we may want to survey all members of a family
group, or all patients at specific hospitals. Randomization procedures are based on

86 B.A. Kitchenham and S.L. Pfleeger

the cluster, not the individual. We would expect members of each cluster to give
more similar answers than we would expect from members of different clusters.
That is, answers are expected to be correlated within a cluster. There are well-
defined methods for analyzing cluster data, but the analysis is more complex than
that of a simple random sample (for example, see Levy and Lemeshow, 1999).

8.3.3. Non-Probabilistic Sampling Methods

Non-probability samples are created when respondents are chosen because the are
easily accessible or the researchers have some justification for believing that they
are representative of the population. This type of sample runs the risk of being
biased (that is, not being representative of the target population), so it is dangerous
to draw any strong inferences from them. Certainly it is not possible to draw any
statistical inferences from such samples.

Nevertheless, there are three reasons for using non-probability samples:

● The target population is hard to identify. For example, if we want to survey soft-
ware hackers, they may be difficult to find.

● The target population is very specific and of limited availability. For example if
we want to survey senior executives in companies employing more than 5000
software engineers, it may not be possible to rely on a random sample. We may
be forced to survey only those executives who are willing to participate.

● The sample is a pilot study, not the final survey, and a non-random group is read-
ily available. For example, participants in a training program might be surveyed
to investigate whether a formal trial of the training program is worthwhile.

Three methods of non-probabilistic sampling are discussed below.
Convenience sampling involves obtaining responses from those people who are
available and willing to take part. The main problem with this approach is that the
people who are willing to participate may differ in important ways from those who
are not willing. For example, people who have complaints are more likely to provide
feedback than those who are satisfied with a product or service We often see this
kind of sampling in software engineering surveys.
Snowball sampling involves asking people who have participated in a survey to
nominate other people they believe would be willing to take part. Sampling contin-
ues until the required number of responses is obtained. This technique is often
used when the population is difficult for the researchers to identify. For example,
we might expect software hackers to be known to one another, so if we found one
to take part in our survey, we could ask him/her to identify other possible
participants.
Quota sampling is the non-probabilistic version of stratified random sampling. The
target population is spit into appropriate strata based on know subgroups (e.g. sex,
educational achievement, company size etc.). Each stratum is sampled (using con-
venience or snowball techniques) so that number of respondents in each subgroup
is proportional to the proportion in the population.

3 Personal Opinion Surveys 87

8.4. Sample Size

A major issue of concern when sampling is determining the appropriate sample
size. There are two reasons why sample size is important. First, an inadequate
sample size may lead to results that are not significant statistically. In other words,
if the sample size is not big enough, we cannot come to a reasonable conclusion,
and we cannot generalize to the target population. Second, inadequate sampling of
clusters or strata disables our ability to compare and contrast different subsets of
the population.

However, Fowler points out that there is no simple equation that can tell you
exactly how large your sample ought to be (Fowler, 2002). In particular, he rejects
sample size strategies based on a proportion of the population, typical sizes found
in other studies, or statistical methods based on expected error levels. His suggestion
is to consider your analysis plan and ensure that you have adequate sample sizes of
the smallest important subgroups in your population.

8.5. Response Rates

It is not enough to decide how many people to survey. We must also take steps to
be sure that enough people return the survey to yield meaningful results. Thus,
any reliable survey should measure and report its response rate, that is, the pro-
portion of participants who responded compared to the number who were
approached.

The validity of survey results is severely compromised if there is a significant
level of non-response. If we have a large amount of non-response but we can under-
stand why and can still be sure that our pool of respondents is representative of the
larger population, we can proceed with our analysis. But if there is large non-response
and we have no idea why people have not responded, we have no way of being sure
that our sample truly represents the target population. It is even worse to have no
idea what the response rate is. For example, we had 171 responses to our survey,
but we did not know exactly how many people subscribed to Applied Software
Development, so we could not calculate response rate. Similarly, because Lethbridge
solicited responses from companies via the Web, the size of the target population
was unknown; therefore, he could not calculate the response rate. Thus, in both
these cases the cost savings obtained by avoiding a direct mailing may have com-
promised the validity of the surveys.

It is not obvious what a sort of response rate we should expect. Baruch (1999)
reviewed 175 IS surveys and found a median response rate was 60%, but it may be
that conditions are different in SE than in IS. Currently, we have relatively few sur-
veys in SE and many of those do not publish response rates.

There are several strategies that can be used to improve response rates. Some
were discussed in Sect. 6.5, others include:

88 B.A. Kitchenham and S.L. Pfleeger

● If we expect an initial low response rate, we can plan for over-sampling. That is,
when we identify the sample size we require, we then sample more than the
minimum required to allow for the expected non-response.

● We should have follow-up plans to send reminders to participants.
● We should approach individuals personally, if necessary. One-to-one approaches

are particularly important if we want to assess the reason for non-response. For
example, the researchers in Finland phoned a random sample of people who did
not reply to their survey to ask them why they did not respond. This activity
allowed them to confirm that non-response was not likely to have a systematic
bias on their results.

● It may be possible to perform statistical adjustments to correct for non-response.

However, recent research has suggested that achieving higher response rates do not
necessarily mean more accurate results (Krosnick, 1990). If we have used probabil-
ity sampling, low response rates may not imply lower representativeness.

9. Analysing Survey Data

In this section, we assume that you have designed and administered your survey,
and now you are ready to analyze the data you have collected. If you have designed
your survey properly, you should have already identified the main analysis proce-
dures. Furthermore, if you have undertaken any pre-tests or pilot studies, you
should have already tested the analysis procedures.

We discuss some general issues involved in analyzing survey data. However, we
cannot describe in detail how to analyze all types of survey data, so we concentrate
on discussing some of the most common analysis issues.

9.1. Data Validation

Before undertaking any detailed analysis, responses should be vetted for consist-
ency and completeness. It is important to have a policy for handling inconsistent
and or incomplete questionnaires. If we find that most respondents answered all
questions, we may decide to reject incomplete questionnaires. However, we must
investigate the characteristics of rejected questionnaires in the same way that we
investigate non-response to ensure that we do not introduce any systematic bias.
Alternatively, we may find that most respondents have omitted a few specific ques-
tions. In this case, it is more appropriate to remove those questions from the
analysis.

Sometimes we can use all the questionnaires, even if some are incomplete. In this
case we will have different sample sizes for each question we analyze and we must
remember to report that actual sample size for each sample statistic. This approach is

3 Personal Opinion Surveys 89

suitable for analyses such as calculating sample statistics or comparing mean values,
but not for correlation or regression studies. Whenever analysis involves two or more
questions you need an agreed procedure for handling missing values.

In some cases, it is possible to use statistical techniques to “impute” the values
of missing data (Little and Rubin, 1987). However, such techniques are usually
inappropriate when the amount of missing data is excessive and/or the values are
categorical rather than numerical.

It is important to reduce the chance of incomplete questionnaires when we
design and test our instruments. A very strong justification for pilot surveys is that
misleading questions and/or poor instructions may be detected before the main sur-
vey takes place.

The questionnaire related to the technology adoption survey (shown in Appendix 1)
suffered badly in terms of incomplete answers. A review of the instructions to
respondents made it clear why this had happened. The instructions said:

If you are not sure or don’t know an answer just leave the line blank; otherwise it is impor-
tant to answer YES or NO to the first section of every Technique/Technology section.

With these instructions, perhaps it is not surprising that most of the questionnaires
had missing values. However, replies were not just incomplete; they were also
inconsistent. For example, some respondents left blank question 1 (Did your com-
pany evaluate this technology?) while replying YES to question 2, about the type
of evaluation undertaken. Thus, blanks did not just mean “Don’t know”; sometimes
they also meant YES. Ambiguities of this sort make data analysis extremely diffi-
cult and the results dubious.

9.2. Partitioning the Responses

We often need to partition our responses into more homogeneous sub-groups before
analysis. Partitioning is usually done on the basis of demographic information. We
may want to compare the responses obtained from different subgroups or simply
report the results for different subgroup separately. In some cases, partitioning can
be used to alleviate some initial design errors. Partitioning the responses is related
to data validation since it may lead to some replies being omitted from the
analysis.

For example, we noted that Lethbridge did not exclude graduates from non-IT
related subjects from his population nor did he exclude people who graduated many
years previously. However, he knew a considerable amount about his respondents,
because he obtained demographic information from them. In his first paper, he
reported that 50% of the respondents had degrees in computer science or software
engineering, 30% had degrees in computer engineering or electrical engineering,
and 20% had degrees in other disciplines. He also noted that the average time since
the first degree was awarded was 11.7 years and 9.6 years since the last degree.
Thus, he was in a position to partition the replies and concentrate his analysis on
recent IT graduates. However, since he did not partition his data, his results are
extremely difficult to interpret.

90 B.A. Kitchenham and S.L. Pfleeger

9.3. Analyzing Ordinal and Nominal Data

Analyzing numerical data is relatively straightforward. However, there are addi-
tional problems if your data is ordinal or nominal.

A large number of surveys ask people to respond to questions on an ordinal
scale, such a five-point agreement scale. The Finnish survey and Lethbridge’s sur-
vey both requested answers of this sort. It is common practice to convert the ordinal
scale to its numerical equivalent (e.g. the numbers 1–5) and to analyze the data as
if they were simple numerical data. There are occasions when this approach is rea-
sonable, but it violates the mathematical rules for analyzing ordinal data. Using a
conversion from ordinal to numerical entails a risk that subsequent analysis will
give misleading results.

In general, if our data are single peaked and approximately Normal, our risks of
misanalysis are low if we convert to numerical values. However, we should also
consider whether such a conversion is necessary. There are three approaches that
can be used if we want to avoid scale violations:

1. We can use the properties of the multinomial distribution to estimate the propor-
tion of the population in each category and then determine the standard error of
the estimate. For example, Moses uses a Bayesian probability model of the
multinomial distribution to assess the consistency of subjective ratings of ordinal
scale cohesion measures (Moses, 2000).

2. We may be able to convert an ordinal scale to a dichotomous variable. For exam-
ple, if we are interested in comparing whether the proportion who agree or
strongly agree is greater in one group than another, we can re-code our responses
into a dichotomous variable (for example, we can code “strongly agree” or
“agree” as 1 and all other responses as 0) and use the properties of the binomial
distribution. This technique is also useful if we want to assess the impact of
other variables on an ordinal scale variable. If we can convert to a dichotomous
scale, we can use logistic regression.

3. We can use Spearman’s rank correlation or Kendall’s tau (Siegel and Castellan,
1998) to measure association among ordinal scale variables.

There are two occasions where there is no real alternative to scale violations:

1. If we want to assess the reliability of our survey instrument using Cronbach’s
alpha statistic (Cronbach, 1951)..

2. If we want to add together ordinal scale measures of related variables to give
overall scores for a concept.

The second case is not a major problem since the central limit theory confirms that
the sum of a number of random variables will be approximately Normal even if the
individual variables are not themselves Normal.

However, we believe it is important to understand the scale type of our data and
analyze it appropriately. Thus, we do not agree with Lethbridge’s request for
respondents to interpolate between his scale points as they saw fit (e.g. to give a
reply of 3.4 if they wanted to).

3 Personal Opinion Surveys 91

10. Conclusions

This chapter has discussed the issues involved in undertaking survey-based research,
in particular surveys based on self-administered questionnaires. The main message of
this chapter is that, in spite of its ubiquity, survey-based research is not a simple
research method. It requires time and effort to understand the basic methodology as
well as time and effort to create, validate and administer a survey instrument.

We have only scratched the surface of survey methodology in this chapter. We
hope this chapter provides a useful starting point but we strongly advise that you
consult the text books and research referenced in this chapter before undertaking a
survey for the first time.

References

Bourque, L. and Fielder, E. How to Conduct Self-administered and Mail Surveys, Sage
Publications, Thousand Oaks, CA, 1995.

Baruch, Y. Response rate in academic studies – a comparative analysis. Human Relations, 52(4),
1999, pp. 412–438.

Cronbach, L.J. Coefficient alpha and internal structure of tests. Psychometrika, 16(3), 1951,
pp. 297–334.

Dybå, T. An empirical investigation of the key factors for success in software process improve-
ment. IEEE Transactions on Software Engineering, 31(5), 2005, pp. 410–424.

Dybå, T. An instrument for measuring the key factors of success in software process improvement.
Empirical Software Engineering, 5(4), 2000, pp. 357–390.

El Emam, K., Goldenson, D., Briand, L., and Marshall, P. Interrater Agreement in SPICE Based
Assessments. Proceedings 4th International Software Metrics Conference, IEEE Computer
Society Press, 1996, pp. 149–156.

El Emam, K., Simon, J.-M., Rousseau, S., and Jacquet. E. Cost Implications of Interrater
Agreement for Software Process Assignments. Proceedings 5th International Software
Metrics Conference, IEEE Computer Society Press, 1998, pp. 38–51.

Fowler, F.J. Jr. Survey Research Methods, Third Edition, Sage Publications, Thousand Oaks, CA,
2002.

Fink, A. The Survey Handbook, Sage Publications, Thousand Oaks, CA, 1995.
Humphrey, W. and Curtis, B. Comments on ‘a critical look’, IEEE Software, 8:4, July, 1991,

pp. 42–46.
Krosnick, J.A. Survey research. Annual Review of Psychology, 50, 1990, pp. 537–567.
Lethbridge, T. A Survey of the Relevance of Computer Science and Software Engineering Education.

Proceedings of the 11th International Conference on Software Engineering Education, IEEE
Computer Society Press, 1998.

Levy, P.S. and Lemeshow, S. Sampling of Populations: Methods and Applications, Third Edition,
Wiley Series in Probability and Statistics, Wiley, New York, 1999.

Lethbridge, T. What knowledge is important to a software professional. IEEE Computer, 33(5),
2000, pp. 44–50.

Little, R.J.A. and Rubin, D.B. Statistical Analysis with Missing Data, Wiley, New York, 1987.
Litwin, M. How to Measure Survey Reliability and Validity, Sage Publications, Thousand Oaks,

CA, 1995.
Moses, J. Bayesian probability distributions for assessing measurement of subjective software

attributes. Information and Software Technology, 42(8), 2000, pp. 533–546.

92 B.A. Kitchenham and S.L. Pfleeger

Moløkken-Østvold, K., Jørgensen, M., Tanilkan, S.S., Gallis, H., Lien, A. and Hove, S. A Survey
on Software Estimation in the Norwegian Industry. Proceedings 10th International Symposium
on Software metrics. Metrics 2004, IEEE Computer Society, 2004, pp. 208–219.

Ropponen, J. and Lyytinen, K. Components of software development risk: how to address them.
A project manager survey. IEEE Transactions on Software Engineering, 26(2), 2000, pp.
98–112.

Shaddish, W.R., Cook, T.D., and Campbell, D.T. Experimental and Quasi-Experimental Designs
for Generalized Causal Inference, Houghton Mifflin Company, New York, 2002.

Siegel, S. and Castellan, N.J. Nonparametric Statistics for the Behavioral Sciences, Second
Edition, McGraw-Hill Book Company, New York, 1998.

Spector, P.E. Summated Rating Scale Construction. An Introduction, Sage Publications, Thousand
Oaks, CA, 1992.

Standish Group. Chaos Chronicles, Version 3.0, West Yarmouth, MA, 2003.
Straub, D.W. Validating instruments in MIS research. MIS Quarterly, 13 (2), 1989, pp. 147–169.
Zelkowitz, M.V., Dolores, R.W., and Binkley, D. Understanding the culture clash in software

engineering technology transfer. University of Maryland technical report, 2 June 1998.

Abstract This chapter presents the focus group method and discusses its use for
 empirical research in the software engineering context. The background, process and
main characteristics of the method are presented, as well as guidelines for its use.
Moreover, the traditional as well computer-mediated focus group variations are com-
pared to each other. The chapter concludes in with a discussion of the applicability of
the method for software engineering research. In summary, the focus group method is
a cost-effective and quick empirical research approach for obtaining qualitative insights
and feedback from practitioners. It can be used in several phases and types of research.
However, a major limitation of the method is that it is useful only in studying concepts
that can be understood by knowledgeable participants in a limited time. We also empha-
size the importance of empirical rigor when the method is used in scholarly work.

1. Introduction

The software engineering community has begun to emphasize empirical research
methods to improve the validity and generalizability of research results (Basili et al.,
1986; Tichy, 1998; Wohlin et al., 2003; Zelkowitz and Wallace, 1998). The community
has also recognized the need to improve the amount and quality of empirical research
in the field (Buhrer, 2007; Kitchenham et al., 2004; Tichy et al., 1995). Experimentation,
in particular, has received much attention in software engineering literature (Juristo
and Moreno, 2001; Wohlin et al., 1999) and the community has clearly matured in its
use of empirical methods, as evidenced by an increasing number of empirical research
papers, textbooks, and emergence of conferences focusing on empirical research.

Increased attention in empirical methods has also interested software engineer-
ing researchers in having a broader range of empirical methods in their arsenal so
that appropriate methods can be selected and used for each research problem.
Similar conclusions have been drawn in related fields of information systems
(Benbasat, 1996; Galliers, 1991) and business studies (Ghauri et al., 1995).

Chapter 4
The Focus Group Method
as an Empirical Tool
in Software Engineering1

Jyrki Kontio, Johanna Bragge, and Laura Lehtola

93

F. Shull et al. (eds.), Guide to Advanced Empirical Software Engineering.
© Springer 2008

1 Based on Kontio, J., Lehtola, L., and Bragge, J. (2004). Using the focus group method in software
engineering: obtaining practitioner and user experiences, International Symposium on Empirical
Software Engineering, pp. 271–280, Redondo Beach, CA.

94 J. Kontio et al.

This chapter presents a specific qualitative research method, the focus group
method. We supplement current research by providing guidelines for the method’s use
in software engineering research. This chapter is largely based on our earlier paper
(Kontio et al., 2004), with extensions to the guidelines on the use of the method, and
on the comparison of traditional and three computer-mediated focus group variations.

2. The Focus Group Method

This section gives an overview of the focus group method in general, whereas the
next section presents experiences from the software engineering context.

2.1. Background and Definition

Focus groups emerged as a research method in the 1950s in the social sciences. The
open-ended interview format was extended to group discussion (Templeton, 1994),
hence becoming the focus group method. Morgan defines focus groups as a
“research technique that collects data through group interaction on a topic deter-
mined by the researcher” (Morgan, 1996). Focus groups are thus carefully planned
discussions, designed to obtain personal perceptions of the group members on a
defined area of research interest. There are typically between 3 and 12 participants
and the discussion is guided and facilitated by a moderator-researcher, who follows
a predefined questioning structure so that the discussion stays focused. Members
are selected based on their individual characteristics as related to the session topic
(so-called purposive sampling). The group setting enables the participants to build
on the responses and ideas of other participants, which increases the richness of the
information gained (Langford and McDonaugh, 2003).

Focus group sessions produce mainly qualitative information about the objects
of study. The benefits of focus groups are that they produce candid, sometimes
insightful information, and the method is fairly inexpensive and fast to perform
(Widdows et al., 1991). However, the method shares the weaknesses of many other
qualitative methods. Results may be biased by group dynamics and sample sizes are
often small. Therefore, it may be difficult to generalize the results (Judd et al.,
1991). Poorly conducted focus group sessions may, therefore, be particularly prone
to producing unreliable results.

Currently, the method is widely used, e.g., in sociological studies, market
research, product planning, political campaigning, defining business services, and
in system usability studies (Baker, 1991; Edmunds, 1991; Morgan, 1997; Neter and
Waksberg, 1964; Stewart and Shamdasani, 1990; Rubin, 1994; Widdows et al., 1991).
Focus groups can be used either as a stand-alone research method or in combination
with other research methods, e.g. with individual interviews or quantitative surveys
(Morgan, 1996).

4 The Focus Group Method as an Empirical Tool in Software Engineering 95

There are several textbooks and detailed guidelines available on how to plan
and run focus groups (Anon., 1997; Feig, 1989; Krueger and Casey, 2000; Nielsen,
1997; Templeton, 1994; Langford and McDonaugh, 2003), making the method
that is relatively easy to adopt and use consistently. McQuarrie (1994, 2001), for
instance, offers extremely useful focus group book reviews which can direct the
reader, a researcher, an industry practitioner, or moderator, to an appropriate
approach.

2.2. Steps in Focus Group Research

Based on several sources (Anon., 1997; Edmunds, 1991; Krueger and Casey, 2000;
Morgan, 1996; 1997), we have summarized the main steps of focus group research
as follows.

2.2.1. Planning the Research

Defining the research problem. The focus group method is best suited to obtaining
initial feedback on new concepts, developing questionnaires, generating ideas,
 collecting or prioritizing potential problems, obtaining feedback on how models or
concepts are presented or documented, and discovering underlying motivations
(Edmunds, 1991). According to Morgan (1996), among others, survey researchers
have increased their use of focus groups to provide valuable data on how the
respondents themselves talk about the topic of subsequent surveys, as the questions
posed in surveys are inherently limited.

The method is not suitable for all situations. Focus groups can seldom be used
to test hypotheses as samples are too small and group dynamics create an uncon-
trollable variable. In verbally conducted settings it is not easy to obtain subjective
quantitative assessments, as opinion leaders or group behaviour may influence the
results. It may be also hard to explore political or otherwise sensitive issues as peo-
ple may not reveal their true opinions in a public setting. Also, it is difficult to study
complex issues that are difficult to grasp in a short session, as people have limited
mental capacity to grasp complexity and interact simultaneously. Finally, there is
the issue of team dynamics and interaction wherein team members may be reluctant
to reveal their true subjective preferences. Such limitations might arise in defining
prices or cost preferences, for example (Edmunds, 1991).

Typically focus groups are not the only research method used in a study.
Morgan’s (1997) content analysis of abstracts revealed that a majority of the pub-
lished research articles using focus groups combined them with other research
methods. The most frequent pairings were with either in-depth, individual
 interviews or subsequent surveys (Morgan, 1997). When focus groups are used in
combination with other research methods, they can serve either as a primary

96 J. Kontio et al.

research method or as the secondary method in the study (Morgan, 1996). The role
of focus groups in the research process should be carefully defined in the planning
phase of research.

In some cases, it might be a good idea to use focus groups instead of other similar
research methods. For example, Fern’s (1982) results suggest that two 8-person
focus groups produce as many ideas as ten individual interviews. Thus, in case it is
more cost-efficient to arrange two group sessions instead of ten individual meet-
ings, focus groups are worth considering.

2.2.2. Designing focus groups

Typically focus group research should consist of 4–6 focus groups (Morgan, 1997).
The size of an individual focus group can vary from 3 to 12, but more typically
there are between 4 and 8 participants. Smaller groups seem to be more appropriate
with emotionally charged topics that generate high levels of participant involve-
ment, while larger groups work better with more neutral topics that generate lower
levels of involvement (Morgan, 1992).

Selecting participants. The value of the method is that it is very sensitive to the
experience and insight of participants. Thus, recruiting representative, insightful
and motivated participants is critical to the success of the focus group study.
Depending on the research question, participants may not have much experience in
the topic of the focus group – or they may be seasoned experts who can rely on their
years of experience when interacting in the group. However, when discussing novel
and innovative concepts or products to be launched, participants seldom have much
expertise on the topic.

Segmentation refers to strategies that consciously vary the composition of
groups. The most obvious kinds of segmentation captures something about the
research topic itself (Morgan, 1997). For example, if age differences are of interest,
it might be a good idea to separate groups based on the participants’ age.

Morgan (1997) argues that segmentation offers two basic advantages. These are:

1. Building comparative dimension into the entire research project.
2. Facilitating discussions by making the participants more similar to each other.

In practice, it is generally recommended that some over-recruiting take place as last
minute cancellations usually happen. It may also be useful to use pre-session ques-
tionnaires so that session time is used most effectively for discussions.

2.2.3. Conducting the focus group sessions

Basic sequence. An individual focus group event usually lasts 2–3 h and has a pre-
defined schedule and structure. The number of issues to be covered needs to be
limited so that sufficient time can be allocated for the participants to comprehend

4 The Focus Group Method as an Empirical Tool in Software Engineering 97

the issue and have meaningful discussion and interaction. Limited time also places
a constraint on the complexity of the issues selected.

The focus group session needs to be carefully managed for time while still
making sure that all main contributions can be made during the allocated time. The
moderator should thus be determined and have adequate skills in guiding group
dynamics. The session needs to be initiated by an introduction where the goals and
ground rules of the session are explained to participants. Each of the topics is usu-
ally presented one after another.

The discussion and interaction in a focus group session can take many forms. It
can be a structured discussion, where the moderator acts as a chair; it can involve
brainstorming techniques, such as affinity grouping or teamwork methods; polling
and voting using preference votes or the Delphi method (Adler and Ziglio, 1996);
comparison games; or even role plays (Edmunds, 1991). Some researchers are very
strict in defining what constitutes a genuine, interactive focus group discussion,
while others are more inclusive in this [see discussion in Morgan (1996)]. For
example Langford and McDonaugh (2003) are proponents of the more liberal view,
and they present 38 different tools and techniques that can be used to supplement a
traditional focus group discussion.
Data capturing. There are several alternatives for data capture during a session.
There can be additional observers taking notes during the session. Audio, video or
keyboard recording can be used, and artifacts used during the session can be cap-
tured if the session involves techniques producing such artifacts. It may also be
useful to arrange a debriefing session with some of the participants immediately
after the session so that fresh observations and interpretations from the session are
captured as fully as possible. It is obvious that relying on moderator notes will not
be sufficient because being a moderator is a full-time job in a focus group session.
It can even interrupt the discussion if the moderator starts making notes (Langford
and McDonaugh, 2003).
The role of the moderator. The role of the moderator is critical in a focus group
session. The moderator should facilitate discussion but not allow his or her own
opinions to influence the discussion. His or her main task is to listen and probe
deeper when necessary, requiring the moderator to be able to grasp substantial dis-
cussions quickly. It is often necessary to paraphrase participant points to ensure that
the contribution was correctly understood.

2.2.4. Analyzing the data and reporting the results

The data analysis and reporting of focus group studies can use the methods used
in qualitative data analysis (Bogdan and Biklen, 1982; Miles and Huberman, 1984;
Patton, 1990; Taylor and Bogdan, 1984; Myers, 2004). Quantitative data, if gath-
ered, can be analyzed using descriptive statistics and other standard quantitative
methods.

98 J. Kontio et al.

3. Experiences in the Software Engineering Context

We collected experiences from three focus group studies we have conducted
(Kontio, 2001; Lehtola et al., 2004; Sunikka, 2004). We provide here only short
summaries of the studies, as detailed reports on each of them are available else-
where [see broader account also in Kontio et al. (2004)].

The objective of the first study (Kontio, 2001) was to provide insights into why
and how organizations seek to improve their risk management (RM) practices, what
they intend to achieve with better RM, and what impediments preventing more
effective RM approaches from being used. Furthermore, we also wanted to obtain
feedback on specific characteristics of a RM method called Riskit (Kontio, 1997)
and the corresponding software tool (“eRiskit”). The study included three focus
groups having 12 participants altogether from several organizations.

The objective of the second study (Lehtola et al., 2004) was to clarify the practi-
cal challenges in requirements prioritization. We wanted to find out how and in
which phases of development work companies prioritize requirements, and who
performs the prioritization. We also clarified which factors have an effect on priori-
ties, and from which sources practitioners gather information on which they base
their priority decisions. In this study, one focus group with four participants from
two organizations was conducted.

Regarding the third study (Sunikka, 2004), the aim was to collect user opinions
about the usability of a university’s website. This information was used mainly in
planning the actual usability testing to follow, but the focus group results also
offered additional insights. The usability study as a whole consisted of several
phases: focus group discussion, web survey questionnaire, usability tests, and
 heuristic evaluations. The focus group was computer-mediated, and it had nine
participants invited from the personnel of the case university one of the main end-
user groups of the website under study.

We reviewed experiences from each study and constructed a mind map of the
experiences and lessons learned. These mind maps were compared and discussed
between authors, and the synthesized lessons learned are reported in the following
sections. In addition, we collected original focus group participants’ feedback in
informal discussions or in feedback surveys.

We did not track the effort spent during the studies but estimated it afterwards
using the Delphi method (Adler and Ziglio, 1996). These estimates are presented in
Table 1 by the main tasks.

3.1. Suitability

Our studies showed that the focus group method is suitable for gathering experi-
ence: all of the studies resulted in relevant and usable findings that were used to

4 The Focus Group Method as an Empirical Tool in Software Engineering 99

Table 1 Estimated effort in the studies (person hours)

 Risk study Usability
Task (3 groups) RE study study

Research problem formulation 15 5 3
Planning and preparation 25 10 10

(including rehearsing)
Selecting and recruiting 8 3 2

the participants
Conducting the sessions 9 3 2
Transcribing the data 11 6 0*

Analysis 15 6 10
Total 83 33 27
*Reports of computer-mediated discussion were generated automatically

guide or complement the research projects in which the focus group studies were
conducted. We believe that the types of issues that can be addressed by focus
groups include, among others, the following:

● Identifying relevant research questions
● Obtaining practitioner feedback on research questions
● Recognizing past experience that can be studied in more detail by other methods
● Initial evaluation of potential solutions, based on practitioner or user feedback
● Collecting “lessons learned” recommendations
● Identifying potential root causes of phenomena

Such issues can be relevant in all the main phases of a research life cycle. We illus-
trate this here using the general research phases defined by Glass (1995) and
extended by Kontio (2001). This research life cycle is divided into the informa-
tional, propositional, analytical, evaluative, and technology transfer phases. It
should be noted that not every phase is found in each research study, and the last
phase especially is typical only in constructive or design research.

In the informational phase the focus group method can be used to collect char-
acterizing information about current practices, experiences, or problems. In the
propositional phase the initial constructs, i.e., models, theories or prototypes, can
be subjected to practitioner and user opinions to provide early feedback. In the
analytical phase user feedback can be used to evaluate the operationalization of
constructs or to test their initial feasibility. In the evaluative phase focus groups can
be used to refine research questions, provide some of the empirical feedback, and
support the interpretation of empirical data.

Finally, in the technology transfer phase the focus group can help researchers
to package their contributions into a form that is more easily deployable by users.
In addition, a focus group session can also act as a “sales session” for research
results. We have included examples of potential research questions in Table 2 that
are relevant in this research framework.

100 J. Kontio et al.

McQuarrie and McIntyre (1986) offer guidelines on how to utilize focus groups
in the evaluation of new product concepts developed by technologically driven
companies. They distinguish six stages through which the discussions could evolve.
These stages are comparable to the actual adoption and diffusion processes regard-
ing new products (orientation, exposure, evaluation, pricing, extensions, product
modification). Nambisan and Wilemon (2000) and Nambisan (2003), among oth-
ers, have recently discussed how software development and IS in general could

Table 2 Research question examples for the focus group method in different research phases

Phase of research Description of the phase Suitable issues for focus groups

Informational phase Observing the current state- – What are most urgent or
 of-art and practice to relevant research questions?
 identify problems and – What kind of problems are
 potential solutions common in industry?
 – Why are some problems
 relevant or urgent?

 – What practices currently
 exist in industry?

Propositional phase Constructs are formulated, – What are possible solutions
 models are built, theories or hypotheses?
 proposed or formulated – What similar experiences
 exist in industry (has someone
 already tried or tested it?)?

 – Are the assumptions made
 realistic from practitioner
 and user perspectives?

Analytical phase Operationalization of the – Is the model understandable?
 constructs or models and – How can it be deployed into
 their analytical evaluation practice?
 and improvement – What are the potential
 problems in using or under-
 standing the model?

 – Are there any omissions
 or gaps in the model?

Evaluative phase Testing and evaluating the – Is there any data available,
 constructs or models can data be obtained?

 – Is the empirical study design
 sound and practical?
 – What does the data mean?

Technology transfer phase Transferring constructs, – Is the model packaged well
 models and/or new for operational use?
 knowledge into practice – What are the potential
 challenges in selling or
 using it?

 – How it could be
 packaged better?

4 The Focus Group Method as an Empirical Tool in Software Engineering 101

benefit from the research done in the field of new product development (NPD), and
vice versa. Thus, the framework provided by McQuarrie and McIntyre could well
adapt to software NPD processes as well, especially to those software products that
are targeted to normal consumers (e.g., software embedded in mobile phones).

3.2. Strengths

Discovery of new insights. The interactive nature of the group setting and participants’
different backgrounds seem to encourage and prompt participants to react to points
during discussion, reflecting and building on each other’s experiences. This may lead
to discovery of issues that researchers might not have been able to plan in advance, as
happened in our risk management and requirements prioritization studies.
Aided recall. On several occasions in the example studies, the points made by
 participants resulted in other participants confirming similar, almost similar and oppo-
site incidents or events. These insights might have been hidden in personal interviews.
Cost-efficiency. For the researchers the focus group method is a cost-efficient way
of obtaining practitioner and user experience as several participants can be “inter-
viewed” at the same time. In addition, many current research projects are conducted
with industrial companies and access to practitioners is limited due to their business
responsibilities. Practitioners find the method cost-effective as well.
Depth of interview. Focus group discussions allow in-depth exploration of the
r easons why the participants think the way they do. For instance, questionnaire
results usually reveal only what people think, not why.
Business benefits to participants. The practitioners in our studies gave positive
 feedback for having participated in the interactions during the session and found them
valuable even before receiving any reports or summaries. In informal feedback
 sessions they indicated two main reasons that provided immediate benefits to them:

● Benchmarking. The participants in our studies indicated that the sessions already
provided valuable information to them during the sessions. This seems to have
resulted from two factors. First, the discussions resulted in benchmarking expe-
riences and practices between the members of participating organizations.
Second, they seemed to value other participants’ experiences and insights. This
seemed to be a substantial advantage to participants.

● Networking. The focus group event seems to increase networking contacts and
incentives to increase cooperation between participants.

3.3. Weaknesses

Group dynamics. As the focus group discussion within a topic often takes place
without a predefined format, it is possible that the group dynamics or communi-
cation styles influence the level of activity. In addition, compared to a personal

102 J. Kontio et al.

interview, it is not as easy for the moderator to have control over the flow and
style of the discussion. This weakness can be compensated for by using struc-
tured discussion techniques or by the moderator balancing the discussion and
activating the less active participants.
Social acceptability. In group situations, social acceptability can influence the
points made during discussion. For example, it is possible that a participant can
volunteer incorrect information and disagreement may take place. Such situations
may be perceived as embarrassing by some participants, resulting in selective
contributions and volunteering of information. This weakness can be mitigated
by laying out appropriate ground rules at the beginning and by the moderator
taking an active role in conducting the discussion in those situations.
Hidden agendas. Some participants may have hidden agendas in the session,
e.g., due to business relationships between them, a motivation to appear in
a favorable light because of the potential publication of the results, or their
 company’s internal politics. Such hidden agendas may bias the results of the
session. This can be mitigated by selecting participants into sessions such that
business relationships are not present, by emphasizing the importance of open
information, and by guaranteeing or agreeing to the anonymity or confidential-
ity of results.
Secrecy. Some relevant information may be withheld because of proprietary or busi-
ness reasons. This can be avoided by the same procedures as mentioned above.
Limited comprehension. The time available for discussions in a focus group session
is limited and communication happens mostly only verbally during the discussion.
This means that complex issues or points are not necessarily understood by all
 participants – nor by the researchers. However, if the participants are all experts in
their area, the discussion may be surprisingly complex and deep for an outsider.
Nevertheless, there is an obvious limit to how complex an issue can be discussed.
This potential weakness can be mitigated by selecting participants of equal expertise
in the session, by providing more thorough briefings to participants, by providing
advance reading material to participants, and by partitioning complex issues in to
more “digestible” pieces.

4. Computer-Mediated Focus Groups

This section describes and evaluates the application of computer-support in the
conduct of focus groups. In particular, the emphasis here is on face-to-face focus
groups mediated by Group Support Systems (GSS) technology (Nunamaker et al.,
1991). The benefits and drawbacks of GSS-mediated face-to-face focus groups are
compared to traditional focus groups, and also to online (distributed) focus groups
that have recently gained popularity with increased use of the Internet. Figure 1
illustrates the framework of our analysis (cells with patterned background are
 analysed). Examples of software engineering research applications are also men-
tioned in this section.

4 The Focus Group Method as an Empirical Tool in Software Engineering 103

As early as in the late 1980s, Management Information Systems researchers
developed so-called Group Support Systems (also called Electronic Meeting
Systems), to alleviate the common process problems caused by task-oriented group
work, such as brainstorming (Nunamaker et al., 1991). These process problems
result from, for example, the need to wait for one’s own turn to speak, or the domi-
nance of one or a few participants. The strengths of computer-mediated GSS-
 sessions are built on:

1. Simultaneous and anonymous contribution via computers
2. Structured agenda
3. Real-time voting and multi-criteria analysis possibilities
4. Group memory during and after the sessions
5. Complete records of the electronic discussions

GSS technology is conventionally employed in a same-time same-place mode,
where the interaction between the participants is for the most part conducted via
personal computers. The majority of the meeting time may be used in deliberating
why participants think the way they do, and what to do about it. This is due to the
fact that finding out what people are thinking can be conducted in a few minutes
due to the parallel input mode – even with large groups of more than 15 partici-
pants. Field research results on GSS show savings up to 50% of individual work
hours and 90% of project time when compared to regular meetings and group work
(Fjermestad and Hiltz, 2000).

Extensive research on GSS usage exists, see for example the laboratory, case and
field research reviews (Fjermestad and Hiltz, 1999, 2000), or a recent study profil-
ing 2,000 GSS research articles (Bragge et al., 2007b). Despite the vast amount of
research studies on GSS, only a few of them have touched explicitly how the appli-
cation of GSS may benefit the conduct of focus group studies (Clapper and Massey,
1996; Easton et al., 2003; Klein et al., 2007; Kontio et al., 2004; Massey and

Phone-
Conference

Focus Groups
N/A

Traditional FTF
Focus Groups

Asynchronous
Online Focus

Groups

Synchronous
Online Focus

Groups

GSS-Mediated
FTF Focus

Groups

Distance of focus group participants

Same Place
Same Time

Different Place
Same Time

Different Place
Different Time

C
o

m
p

u
te

r-
m

ed
ia

ti
o

n
em

p
lo

ye
d

Y
E
S

N
O

Fig. 1 Framework of the focus group analysis

104 J. Kontio et al.

Wallace, 1991; Parent et al., 2000). However, as Reid and Reid (2005) state, “the
resemblance of focus groups to brainstorming groups is no accident – focus groups
are popular precisely because they generate a ‘flow of input and interaction related
to the topics that the group is centred around’ ” [citation from (Edmunds, 1999)].
Furthermore, Langford and McDonaugh (2003) view focus groups as a method that
encompasses many tools, and not just a plain group interviewing technique [see
discussion also in Morgan (1996)]. Thus, even if not explicitly mentioned, numer-
ous GSS-mediated brainstorming studies centred on a particular topic may be
regarded as focus groups, especially if their conduct otherwise follows the steps of
the focus group method.

There exists a few commercial GSS software systems on the market today.
GroupSystems is the most well known. Others are Facilitate.Pro, WebIQ,
MeetingWorks and Grouputer (Austin et al., 2006). Some of these tools provide
templates for the conduct of focus groups, which normally follow a structured
interview approach [see e.g. (Morgan, 1996)] with predefined questions. However,
utilizing the versatile features of the GSS technology it is also possible to use
 different brainstorming rules, scenario-based discussions, cognitive maps and a
variety of other techniques (Langford and McDonaugh, 2003; Morgan, 1996) in
a focus group.

Many of the applications in GSS studies concern software engineering or informa-
tion systems development (see e.g. Boehm et al., 2001; Bragge et al., 2005b; Chen
and Nunamaker, 1991; De Vreede et al., 2005; Elfvengren et al., 2004; Gruenbacher
et al., 2003; Halling et al., 2001; Liou and Chen, 1993; Rodgers et al., 2004; Van
Genuchten et al., 1997, 2001; Vitharana and Ramamurthy, 2003). This may be
 partially due to the fact that IT professionals are naturally attracted to using various
ICT tools to support their work. Processes have been developed especially for
requirements engineering (needs assessment, requirements elicitation or require-
ments negotiation), code inspections and usability studies.

The participants in software engineering related studies may involve people
designing and developing a system, people interested in the system’s use (e.g.,
end-users or customers), people having a financial interest, or people responsible
for system introduction and maintenance (Gruenbacher et al., 2003). User-centric
approaches, which are currently growing in popularity, come closest to focus
group studies. End-users are often nowadays widely geographically dispersed,
and not within traditional organizational boundaries (Bragge et al., 2005b;
Tuunanen and Rossi, 2004). Their inclusion in the software engineering process
calls for novel approaches.

The above-mentioned user-centric development, along with the commercializa-
tion of the Internet, has brought yet another variation of focus groups to the
researcher’s toolkit: online (or virtual) focus groups. Several authors provide case
descriptions or useful practical advice to researchers conducting online focus group
studies (Fraunhofer, 2002; Hansen and Hansen, 2006; Klein et al., 2007; Montoya-
Weiss et al., 1998; Newby et al., 2003; O’Connor and Madge, 2003; Oringderff,
2004; Reid and Reid, 2005; Sweet, 2001; Ten Pow, 2003; Turney and Pocknee,
2004; Wellner, 2003; Zinchiak, 2001).

4 The Focus Group Method as an Empirical Tool in Software Engineering 105

The online focus groups can either be conducted in the form of synchronous inter-
active groups, or in the form of asynchronous discussion boards. The information
systems that may be utilized in online focus groups encompass web-based versions
of GSS software, commercial focus group platforms, discussion groups, listservs,
chatrooms, bulletin boards, mailing lists, instant messaging systems and so forth.
Although these online forms provide many advantages over traditionally conducted
focus groups (e.g., anonymity, larger group size, savings in travelling and venue
costs), they also have distinct drawbacks, too. For example, the task of the moderator
can be much more demanding in online than in face-to-face settings. This is due to
the lower richness of the media used (Daft and Lengel, 1986). Media richness is
determined by a medium’s ability to provide immediate feedback, utilize multiple
cues and channels, and enable language variety (Montoya-Weiss et al., 1998).

5. Comparing the Benefits and Drawbacks of Different
Focus Group Variations

The literature offers several studies that thoroughly discuss a single type of focus group
or compare selected variations with each other (Clapper and Massey, 1996; Easton
et al., 2003; Hansen and Hansen, 2006; Klein et al., 2007; Massey and Wallace,
1991; Montoya-Weiss et al., 1998; Morgan, 1996; Newby et al., 2003; Parent
et al., 2000; Reid and Reid, 2005; O’Connor and Madge, 2003; Oringderff, 2004;
Sweet, 2001; Ten Pow, 2003; Turney and Pocknee, 2004; Wellner, 2003; Zinchiak,
2001). Based on this literature and also on our own experiences of conducting all main
types of focus groups (e.g., Bragge et al., 2005a, c, 2007a), we have gathered compara-
tive information on traditional, GSS-mediated face-to-face, as well as online focus
groups (synchronous and asynchronous). The results of these comparisons are
 presented in Tables 3–5. Moreover, we will discuss the comparison data with respect
to four issues: people, technology, process and costs. We have not cited the above
 reference sources in the tables or in the discussion to keep them more concise.

5.1. Traditional focus groups

Regarding people issues, the moderator’s task in traditional focus groups is easier
than with computer-mediated groups (that are lower in media richness, especially in
different-place settings), although the moderator must possess excellent social skills.
The participants may feel more satisfied with a familiar verbal and more social proc-
ess, and they do not have to possess typing skills (e.g., elderly people). However, the
participants can be recruited from a limited geographical distance, and they may be
shy about talking, especially about sensitive or controversial issues.

The media-rich interaction in the verbal process is high, and it can result in the
deepest insights. The process usually stays focused without any external distractions,
and if they happen, the facilitator can respond immediately. However, group

106 J. Kontio et al.

 thinking, domineering, communication apprehension, getting off-the-track, and
social rank related issues are common problems.

Concerning technology, the audio or even video recording of the session is quite
usual and routine. The latter is needed in case it is important to know afterwards
who said what. In traditional settings, it is possible to present handheld prototypes
or models. The travelling, venue, and transcribing costs are high. Traditional
focus groups can accommodate the lowest number of participants due to “serial”
 communication mode, thus more groups with relatively homogeneous participants
are needed (see Table 3 for a summary).

Table 3 Benefits and drawbacks of traditional focus groups

Benefits Drawbacks

+ Richer media, researchers may observe − High travelling costs (participants
nonverbal communication, and moderators)
such as body language, facial
expressions, tones of voice etc.

+ Moderator’s task is easier than with − High rental costs venue
computer-mediated communications
(especially those in different-
place settings)

+ Participants may feel more satisfied − High transcribing costs and long
with a verbal/social process delay in reporting
(especially older people)

+ The process usually stays focused − Limited time to speak per person
without any external distractions (e.g. with ten participants 6 min/
(and if they happen, the facilitator person in 1 h)
can respond immediately)

+ FTF discussion is a familiar form of − Possible dominance of some persons
communication to the participants

+ Participants don’t have to have typing − Group thinking (pressure to conform) and
skills (e.g. children, old people) communication apprehension (e.g. with
 sensitive issues) may occur

+ Possibility to utilize 3D-models, proto- − Comments and ideas evaluated
types, highly confidential material etc. based on the presenter, not the idea itself

+ Smaller probability for technical − Max. 12 participants per group
problems (audio and video recording
technologies needed in FTF sessions
are more mature than computer-mediated
communication technologies)

 − The more people, the more process losses
 due to the “serial communication” mode
 − The discussion might easily get off track;
 thus the moderator must be determined and
 knowledgeable about how to guide
 the group dynamics
 − Moderator must have excellent social skills
 − Requires homogeneity between
 participants, and thus often several groups
 − Need for videotaping if vital to know who
 said what

4 The Focus Group Method as an Empirical Tool in Software Engineering 107

5.2. GSS-mediated face-to-face focus groups

Concerning people issues, the moderator must be an expert in the GSS technology,
but his or her task is easier than in different-place settings due to the possibility
of giving verbal instructions and seeing the participants’ reactions. The moderator
must be mentally prepared for back-up plans due to technology breakdowns,
although they are rare. The participants can be recruited from a limited geographi-
cal distance as in traditional groups, but the groups can accommodate a larger
number and more heterogeneous participants due to the parallel communication
mode. The participants must possess fluent typing skills and they should be willing
to use computers. However, no other technology usage skills than simple e-mail
applications are needed.

The process must be planned carefully in advance, but several advantages accrue
from the anonymous computer-mediated mode: domineering and group thinking
are alleviated, confidential and honest sharing of opinions is encouraged, also
 negative or controversial feedback is easy to give, there are no social-rank related
problems due to the equal process, and comments are easily retrievable from the
written “group memory” also during the session. However, free-riding and flaming
may appear due to anonymity, and the first comments might be overtly influential
(anchoring effect). It is possible to include quick electronic polls or surveys in the
sessions, and discuss the results immediately. Due to the pre-planned and structured
process, it is easy to repeat the same agenda for several focus groups.

There is a need for dedicated room facilities with GSS technology (computers
for all participants, special group software, and a common white screen, at the
minimum). The equipment may however be rented from a service provider. The
costs are high due to travelling and the need for technology and GSS expertise, but
these costs are partially or even completely compensated for as there are no tran-
scribing costs, and more participants can be included in groups at the same time.
Accurate reports are immediately available with all computer-mediated communi-
cation (see Table 4 for a summary).

5.3. Online (distributed) focus groups

Many of the benefits and drawbacks of GSS-mediated face-to-face focus groups
apply to online focus groups, too. Thus, we will mainly concentrate here on issues
that are specific to different-place settings. Regarding people, the moderator must
be an expert in the chosen technology platform, and her task is quite challenging in
synchronous settings in case no additional audio or video conferencing systems are
used in parallel. “Techies” might be inclined to conduct online groups although
they may lack important qualifications needed for guiding group dynamics. The
moderator should be able to handle technology problems, which are quite possible
as the participants use their own computers with a variety of internet browsers.
There are no limits to the geographical participation, although in synchronous

108 J. Kontio et al.

 settings separate groups are needed when time zone differences are too large. The
number of participants in asynchronous settings can be larger than in same-time
settings, and the participants do not need as fluent typing skills. There is no need to
dress-up, and people who are normally hard to recruit can participate more flexibly
in their own homes or offices and even at the time that is the most suitable for them.
Youth, especially, is very accustomed to communicating via the Internet.

The process needs to be even more carefully planned and administered than in
face-to-face situations, and instructions need to be extremely clear and simple.
The process advantages of the anonymous communication mode are practically
the same as mentioned in the GSS section above. Clients may easily view the
group discussion without participants being aware of their presence. However,
the process is more exposed to external distractions, e.g. from family members or
 colleagues. Also, faster typists and those with faster Internet connections may
have more influence on the discussion.

There is a no need for dedicated facilities, and in the simplest form, online focus
groups can be conducted using freely available discussion board or similar
 technology. With synchronous settings, it is necessary for the participants to test

Table 4 Benefits and drawbacks of GSS-mediated, face-to-face focus groups

Benefits Drawbacks

+ Possibility to contribute simultaneously: − The medium is less rich (lack of body
efficiency increased, everybody’s language, facial expressions etc.),
answers collected for memory text may be misunderstood

+ Supports larger groups (e.g. 15–25) − High travelling costs (participants
and more heterogeneous groups and moderators)

+ Possibility for anonymous contributions: − High rental costs of venue
encourages confidential and honest with GSS
sharing of opinions. The comments can
however be tagged to enable identification
of the same person’s comments

+ Group thinking (social conformity) as well − Moderator must have expertise on
as domineering are alleviated GSS technology

+ Participants feel more comfortable giving − Not everybody is willing to use computers
negative or controversial feedback

+ Ideas are not evaluated based on − A backup plan needed in case of
the presenter technology breakdown

+ The process usually stays focused without − Fluent typing skills are needed; varying
any external distractions (and if they happen, typing speeds may have
the facilitator can respond immediately) unfavourable effects on the process

+ Possibility to include quick electronic − Anonymity might induce free-riding
surveys and polls, also discuss results or flaming (less discretion and tact)
and pinpoint disagreements

+ Transcription expenses are eliminated, − Not suitable if capturing body
the transcripts are complete and language is vital
immediately available

+ Structured agenda aids in keeping − Possibility for an anchoring effect (first
time and replicating several comment may be overtly influential)
groups with different participants

+ Moderator may give instructions verbally

4 The Focus Group Method as an Empirical Tool in Software Engineering 109

their connection to the dedicated forum in good time before the session starts. The
costs are relatively low as there are neither travelling nor transcribing costs involved
(see Table 5 for a summary).

Many market researchers recommend that topics related to web-based
 systems, information technology or the Internet are especially suitable for the

Table 5 Benefits and drawbacks of online focus groups (S or A in parenthesis if specific for
synchronous or asynchronous)

Benefits Drawbacks

+ No geographical limits for participation − The medium is less rich (lack of body
(except that separate groups may be language, facial expressions etc.),
needed for different time zones in S), text may be misunderstood
also rural areas reached

+ No travelling costs − Not everybody is willing to use computers
+ Possibility to contribute simultaneously: − Basic (A) or fluent (S) typing skills are

efficiency increased, everybody’s needed for both participants and
answers collected for memory the moderator

+ Also suitable for heterogeneous groups − Moderator must have expertise on
 the technology

+ Possibility for anonymous contributions: − Need for an Internet connection
encourages confidential and honest
sharing of opinions. The comments can
however be tagged to enable identification
of the same person’s comments

+ Group thinking (social conformity) as − Online information security risks involved
well as domineering are alleviated

+ Participants also feel more comfortable − Participants should pre-test the forum
giving negative or controversial feedback to eliminate technical difficulties (S)

+ Ideas are not evaluated based on − Max. ten participants/group for effective
the presenter management of online group dynamics (S)

+ Supports large groups of 25–40 − Faster typers and those with faster Internet
participants (A) connections may have too much
 influence (S)

+ Transcription expenses are eliminated − More difficult to verify participant identity
+ Transcripts are complete and immediately − Moderators need to know how

available to assure that all participants
 are contributing

+ Convenient as there is no need to dress up, − Larger probability for outside distractions (S)
and participation is possible from home,
office etc.

+ Possibility to contribute at a time that − Youth audience requires that the moderator
suits best (A) knows their “chat” vocabulary and
 use of emoticons etc.

+ Possibility to come back and continue − Anonymity might induce free-riding or
discussion (A) flaming (less discretion and tact)

+ Reaches groups that are hard to recruit − Not suitable if capturing body language
otherwise (e.g. parents, business is vital
professionals with limited time)

+ Incentive costs are smaller for participants − Not suitable if there is a need to show
 prototypes or 3D-models, or products need
 to be handheld

(continued)

110 J. Kontio et al.

Table 5 (continued)

Benefits Drawbacks

+ Youth is already more accustomed to − Not suitable if client material is highly
computer-mediated-communication than confidential
verbal discussions

+ Suitable for studying technology- − Show rates are lower than in FTF ses-
related topics sions, as participation requires a high level
 of motivation and interest. More over-
 recruitment is thus needed

+ Clients may view the group without − Developing rapport and gaining the trust
participants being aware of their presence of the participants is demanding

+ Provides social equalization and − Physically demanding to type and
egalitarian data collection read for 60–90 min virtually (S)
method as socio-economic
status, ethnicity, nationality or
gender may be unknown

 − “Techies” may attempt to conduct groups,
 although they might lack important
 moderator qualifications
 − Bulletin boards may be too exhaustive
 too read, and participants may just answer
 their own opinions (A)
 − Bulletin boards may generate an enormous
 amount of text that requires extra reading
 and analysis time (A)
 − “Pair friendships” may develop (participants
 engage in their own dialogue and
 alienate the rest)

online environment. Thus, software engineering researchers should consider
online focus group studies, too. Sweet (2001) concludes that the future prom-
ises many advancements for online groups including sophisticated visual aids,
real-time video and sound, accurate voice recognition, and videoconferencing.
We expect that the recent developments in IP-based multi-party video and audio
conferencing tools will bring online practice forward in the next 5 years. Many
end-users are already more familiar than business people with the utilization of
web-cameras, Skype and Messenger conversations and conferences.

5.4. Summary of focus group comparisons

Researchers utilizing focus groups should weigh the benefits and drawbacks of
these four main variations presented in Tables 3–5, and come to a conclusion as to
which variation is best for their particular study. As Sweet (2001), Montoya-Weiss
et al. (1998) and Zinchiak (2001) state, online (or other computer-mediated) focus
groups are not going to replace traditional focus groups – merely the research arena
is expanding as new tools are added to the pool of research techniques.

4 The Focus Group Method as an Empirical Tool in Software Engineering 111

6. Discussion

The focus group method is, by its very nature, prone to problems associated with
qualitative data. As the developers of models and theories may also act as the
researchers responsible for the focus group session, there is an obvious danger of
researcher bias influencing the results, either during the planning, during the
 sessions themselves, or during the analysis. However, e.g. Langford and McDonaugh
(2003) mention that it is usually better to use a moderator who is an expert in the
 subject matter and not in professional facilitation. Thus, we recommend that
 disciplined, objective and rigorous instrumentation and data analysis methods are
used in focus group studies and that all findings be based on traceable data.

We found the affinity grouping method to be a useful and effective tool in
obtaining inputs from practitioners and users. While we do recognize the limita-
tions posed by the short time available for discussions, we believe that it is also
possible to address more complex issues with focus groups. Compared to consumer
studies, the software engineering field contains some well-defined methods and
standards that are used fairly consistently across the industry, such as the UML,
CMMI, and FPA. Thus, it is possible to select a group of experts who are familiar
with a given, complex technology and use the focus group session to elicit these
experts’ insights.

It is also possible to use brainstorming, scenario-based discussion, cognitive
maps and a variety of other methods in a focus group. Langford and McDonaugh
(2003) discuss these and 35 other tools and techniques that can be utilized especially
regarding ergonomics and human factors design, but also regarding information
systems. They posit a view of focus groups as a method that encompasses many
tools, and not just a simple group interviewing technique. We also recommend the
use of other stimulating techniques that fit the characteristics of the situation.

As our effort data indicates (see Table 1), the actual sessions constitute only a
small share of total effort. Yet, these sessions provide more data and are perceived
as value-adding sessions to participants as well. Thus, we recommend that more
than one session be held when possible.

The role of the moderator is central in focus group sessions and is a particularly
challenging task in the software engineering domain, due to the complexity of the tech-
nology and issues involved. The moderator should have experience or be trained in
non-intrusive, neutral facilitation techniques and be cautious about his or her own bias
in the session. A practice session should be mandatory for all focus group studies.

We wanted to include the electronic focus group comparison in this chapter as
we believe that the computer-mediated technology is naturally prone to studies
in the field of software engineering, as well as in IS studies in general. It is easier
to get software users and developers to employ the technology than for example
carpenters or other craftsmen. Moreover, the future users of software are more
and more used to communicating via electronic media.

Our studies indicate that focus groups can provide valuable, complementary
empirical data quickly at low cost. However, there are potential sources for

112 J. Kontio et al.

unwanted bias. The method should be used properly and the sessions should be
planned and executed well and with appropriate rigor.

Due to its apparent ease of use and low cost, some researchers may be tempted to
use focus groups without proper planning and instrumentation. Such studies are likely
to contain biases and ignore much of the experience available. Therefore we recom-
mend that researchers take a closer look at the extensive variety of books on focus
group research, e.g., by starting with the valuable book reviews by McQuarrie (1994,
2001). Langford and McDonaugh (2003) is also a valuable source to start with.

We hope that the empirical researchers in the research community and in indus-
try learn to use the method with appropriate rigor. As the method is not frequently
used in the software engineering domain, we hope that the community develops
sound practices for applying the method so that it could establish itself as a reliable
research method in the field.

We ourselves plan to continue using the method in our future studies and in
addition we aim to develop repeatable focus group processes in the spirit of the
newly established field of collaboration engineering (Briggs et al., 2003).

References

Anon., Focus Group Kit, Vol. 1–6, Sage Publications, Thousand Oaks, CA, 1997.
Adler, M., Ziglio, E., Gazing into the Oracle: The Delphi Method and Its Application to Social

Policy and Public Health, Jessica Kingsley Pub, 1996.
Austin, T., Drakos, N., Mann, J., Web Conferencing Amplifies Dysfunctional Meeting Practices.

Gartner Research Report Nr. G00138101, Gartner Inc., 2006.
Baker, S.L., Improving Business Services through the Use of Focus Groups, Reference Quarterly,

30(Spring):377–385, 1991.
Basili, V.R., Selby, R.W., Hutchens, D.H., Experimentation in Software Engineering, IEEE

Transactions on Software Engineering, 12(7):758–773, 1986.
Benbasat, I., Rethinking Diversity in Information Systems Research, Information Systems

Research, 7(4):389–399, 1996.
Boehm, B., Gruenbacher, P., Briggs, R.O., Developing Groupware for Requirements Negotiation:

Lessons Learned, IEEE Software, 18(3):46–55, 2001.
Bogdan, R.C., Biklen, S.K., Qualitative Research for Education: An Introduction to Theory and

Methods, Allyn and Bacon Inc., Boston, MA, 1982.
Bragge, J., den Hengst, M., Tuunanen, T., Virtanen, V., A Repeatable Collaboration Process for

Developing a Road Map for Mobile Marketing. In Proceedings of the 11th Americas
Conference on Information Systems AMCIS, 2005a.

Bragge, J., Marttiin, P., Tuunanen, T., Developing Innovative IS Services Together with Wide
Audience End-Users, In Proceedings of the 38th Annual Hawaii International Conference on
System Sciences, Los Alamitos, CA, pp. 1–10, 2005b.

Bragge, J., Merisalo-Rantanen, H., Hallikainen, P., Gathering Innovative End-User Feedback for
Continuous Development of Information Systems: A Repeatable and Transferable E-Collaboration
Process, IEEE Transactions on Professional Communication, 48(1):55–67, 2005c.

Bragge, J., Merisalo-Rantanen, H., Nurmi, A., Tanner, L., A Repeatable E-Collaboration Process
Based on ThinkLets for Multi-Organization Strategy Development, Group Decision and
Negotiation, 16(4):363–379, 2007a.

Bragge, J., Relander, S., Sunikka, A., Mannonen, P., Enriching Literature Reviews with Computer-
Assisted Research Mining. Case: Profiling Group Support Systems Research. In Proceedings

4 The Focus Group Method as an Empirical Tool in Software Engineering 113

of the 40th Annual Hawaii International Conference on System Sciences (HICSS’07), IEEE,
Los Alamitos, CA, pp. 1–10, 2007b.

Briggs, R.O., De Vreede, G.J., Nunamaker, J.F., Collaboration Engineering with ThinkLets to
Pursue Sustained Success with Group Support Systems, Journal of Management Information
Systems, 19(4):31–64, 2003.

Buhrer, H.K., Software Development: What It is, What It should be, and How to get There, ACM
SIGSOFT Software Engineering Notes, 28(2):1–4, 2007.

Chen, M., Nunamaker, J.F., The Architecture and Design of a Collaborative Environment for
Systems Definition, Data-Base, 22(1–2):22–29, 1991.

Clapper, D.L., Massey, A.P., Electronic Focus Groups: A Framework for Exploration, Information
and Management, 30(1):43–50, 1996.

Daft, R., Lengel, R., Organizational Information Requirements, Media Richness, and Structural
Design, Management Science, 32(5):554–570, 1986.

De Vreede, G.J., Fruhling, A., Chakrapani, A., A Repeatable Collaboration Process for Usability
Testing, In Proceedings of the 38th Annual Hawaii International Conference on System
Sciences, Los Alamitos, CA, pp. 1–10, 2005.

Easton, G., Easton, A., Belch, M., An Experimental Investigation of Electronic Focus Groups,
Information and Management, 40:717–727, 2003.

Edmunds, H., The Focus Group Research Handbook, NTC Business Books, Lincolnwood, IL,
1991.

Edmunds, H., The Focus Group Research Handbook, NTC Business Books and American
Marketing Association, Lincolnwood, IL, 1999.

Elfvengren, K., Karkkainen, H., Torkkeli, M., Tuominen, M., A GDSS Based Approach for the
Assessment of Customer Needs in Industrial Markets, International Journal of Production
Economics, 89(3):272–292, 2004.

Feig, B., How to Run a Focus Group, American Demographics, 11(December):36–37, 1989.
Fern, E.F., The Use of Focus Groups for Idea Generation: The Effects of Group Size,

Acquaintanceship, and Moderator on Response Quantity and Quality, Journal of Marketing
Research, 19(1):1–13, 1982.

Fjermestad, J., Hiltz, S.R., An Assessment of Group Support Systems Experimental Research:
Methodology and Results, Journal of Management Information Systems, 15(3):7–150, 1999.

Fjermestad, J., Hiltz, S.R., Group Support Systems: A Descriptive Evaluation of Case and Field
Studies, Journal of Management Information Systems, 17(3):112–157, 2000.

Fraunhofer USA Inc., Summary of the Third eWorkshop on Agile Methods, Center for
Experimental Software Engineering, http://fc-md.umd.edu/projects/Agile/3rd-eWorkshop/
summary3rdeWorksh.htm, 2002.

Galliers, R.D., Choosing Appropriate Information Systems Research Approaches: A Revised
Taxonomy, in: Information Systems Research: Contemporary Approaches and Emerging
Traditions, H.-E. Nissen, H.K. Klein and R. Hirschheim, eds. Elsevier Science Publishers,
Amsterdam, pp. 327–345, 1991.

Ghauri, P., Grønhaug, K., Kristianslund, I., Research Methods in Business Studies, Prentice-Hall,
Englewood Cliffs, NJ, 1995.

Glass, R.A., A Structure-Based Critique of Contemporary Computing Research, Journal of
Systems and Software, 28(1):3–7, 1995.

Gruenbacher, P., Halling, M., Biffl, S., Kitapci, H., Boehm, B.W., Repeatable Quality Assurance
Techniques for Requirements Negotiation, In Proceedings of the 36th Annual Hawaii
International Conference on System Sciences, Los Alamitos, CA, pp. 1–9, 2003.

Halling, M., Gruenbacher, P., Biffl, S., Tailoring a COTS Group Support System for Software
Requirements Inspection, In Proceedings of the 16th Annual International Conference on
Automated Software Engineering, IEEE, Los Alamitos, CA 201–208, 2001.

Hansen, K., Hansen, R.S., Using an Asynchronous Discussion Board for Online Focus Groups:
A Protocol and Lessons Learned, In Proceedings of the College Teaching and Learning
Conference, Clute Institute for Academic Research, Littleton, Colorado 1–8, 2006.

114 J. Kontio et al.

Judd, C.M., Smith, E.R., Kidder, L.H., Research Methods in Social Relations, Harcourt Brace
Jovanovich College Publishers, New York, 1991.

Juristo, N., Moreno, A.M., Basics of Software Engineering Experimentation, Kluwer Academic
Publishers, Boston, MA, 2001.

Kitchenham, B., Dyba, T., Jorgensen, M., Evidence-Based Software Engineering. In Proceedings
of 26th International Conference on Software Engineering, IEEE, Los Alamitos, CA, pp.
273–281, 2004.

Klein, E.E., Tellefsen, T., Herskovitz, P.J., The Use of Group Support Systems in Focus Groups:
Information Technology Meets Qualitative Research, Computers in Human Behavior,
23(5):2113–2132, 2007.

Kontio, J., The Riskit Method for Software Risk Management, version 1.00. (College Park, MD,
University of Maryland, 1997) CS-TR-3782/UMIACS-TR-97-38, Computer Science Technical
Reports.

Kontio, J., Software Engineering Risk Management: A Method, Improvement Framework, and
Empirical Evaluation. Doctoral dissertation. (2001), Helsinki University of Technology, pub-
lisher: Center of Excellence, ISBN: 952-5136-22-1.

Kontio, J., Bragge, J., Lehtola, L., Using the Focus Group Method in Software Engineering:
Obtaining Practitioner and User Experiences. In Proceedings of the International Symposium on
Empirical Software Engineering (ISESE), ACM-IEEE, Los Alamitos, CA pp. 271–280, 2004.

Krueger, R.A., Casey, M.A., Focus Groups: A Practical Guide for Applied Research, Sage
Publications, Thousand Oaks, CA, 2000.

Langford, J., McDonaugh, D., Focus Groups. Supporting Effective Product Development, Taylor
and Francis, London, 2003.

Lehtola, L., Kauppinen, M., Kujala, S., Requirements-Prioritization-Challenges-in-Practice. In
Fifth International Conference on Product Focused Software Process Improvement, 2004.

Liou, Y.I., Chen, M., Using Group Support Systems and Joint Application Development for
Requirements Specification, Journal of Management Information Systems, 10(3):25–41,
1993.

Massey, A.P., Wallace, W.A., Focus Groups as a Knowledge Elicitation Technique, IEEE
Transactions on Knowledge and Data Engineering, 3(2):193–200, 1991.

McQuarrie, E.F., New Books in Review: The Handbook for Focus Group Research & Successful Focus
Groups: Advancing the State of the Art, Journal of Marketing Research, 31:377–380, 1994.

McQuarrie, E.F., New Books in Review: The Mirrored Window: Focus Groups from a Moderator’s
Point of View & Advanced Focus Group Research, Journal of Marketing Research,
38(November):515–516, 2001.

McQuarrie, E.F., McIntyre, S.H., Focus Groups and the Development of New Products by
Technologically Driven Companies: Some Guidelines, Journal of Product Innovation
Management, 1:40–47, 1986.

Miles, M.B., Huberman, A.M., Qualitative Data Analysis: A Sourcebook of New Methods, Sage
Publications, Thousand Oaks, CA, 1984.

Montoya-Weiss, M.M., Massey, A.P., Clapper, D.L., On-line Focus Groups: Conceptual Issues
and a Research Tool, European Journal of Marketing, 32(7/8):713–723, 1998.

Morgan, D.L., Designing Focus Group Research, in: Tools for Primary Care Research. Volume 2:
Research Methods for Primary Care, M. Stewart, F. Tudiver, M.J. Bass, E.V. Dunn and P.G.
Norton, eds. Sage Publications, Thousand Oaks, CA, 1992.

Morgan, D.L., Focus Groups, Annual Review of Sociology, 22(August):129–152, 1996.
Morgan, D.L., Focus Groups as Qualitative Research, Sage Publications, Thousand Oaks, CA,

1997.
Myers, M., Qualitative Research in Information Systems, http://www.qual.auckland.ac.nz /, 2004.
Nambisan, S., Information Systems as a Reference Discipline for New Product Development, MIS

Quarterly, 27(1):1–18, 2003.
Nambisan, S., Wilemon, D., Software Development and New Product Development: Potentials for

Cross-Domain Knowledge Sharing, IEEE Transactions on Engineering Management,
47(2):211–220, 2000.

4 The Focus Group Method as an Empirical Tool in Software Engineering 115

Neter, J., Waksberg, J., A Study of Response Errors in Expenditure Data from Household
Interviews, Journal of the American Statistical Association, 59:18–55, 1964.

Newby, R., Soutar, G., Watson, J., Comparing Traditional Focus Groups with a Group Support
Systems (GSS) Approach for Use in SME Research, International Small Business Journal,
21(4):421–433, 2003.

Nielsen, J., The Use and Misuse of Focus Groups, IEEE Software, 14(January):94–95, 1997.
Nunamaker, J.F., Dennis, A.R., Valacich, J.S., Vogel, D.R., George, J.F., Electronic Meeting

Systems to Support Group Work, Communications of the ACM, 34(7):40–61, 1991.
O’Connor, H., Madge, C., “Focus Groups in Cyberspace”: Using the Internet for Qualitative

Research, Qualitative Market Research, 6(2):133–143, 2003.
Oringderff, J., ‘My Way’: Piloting and Online Focus Group, International Journal of Qualitative

Methods, 3(3):1–10, 2004.
Parent, M., Gallupe, R.B., Salisbury, W.D., Handelman, J.M., Knowledge Creation in Focus

Groups: Can Group Technologies Help?, Information and Management, 38(1):47–58, 2000.
Patton, M.Q., Qualitative Evaluation and Research Methods, Sage Publications, Thousand Oaks,

CA, 1990.
Reid, D.J., Reid, F.J.M., Online Focus Groups. An In-Depth Comparison of Computer-Mediated

and Conventional Focus Group Discussions, International Journal of Market Research,
47(2):131–162, 2005.

Rodgers, T.L., Dean, D.L., Nunamaker, J.F., Increasing Inspection Efficiency through Group
Support Systems, In Proceedings of the 37th Annual Hawaii International Conference on
System Sciences, Los Alamitos, CA, pp. 1–10, 2004.

Rubin, J., Handbook of Usability Testing: How to Plan, Design, and Conduct Effective Tests,
Wiley, New York, 1994.

Stewart, D.W., Shamdasani, P.N., Focus Groups: Theory and Practice, Sage Publications,
Thousand Oaks, CA, 1990.

Sunikka, A., Usability evaluation of the Helsinki School of Economics Website. Master’s thesis,
Helsinki School of Economics, 2004.

Sweet, C., Designing and Conducting Virtual Focus Groups, Qualitative Market Research,
4(3):130–135, 2001.

Taylor, S.J., Bogdan, R., Introduction to Qualitative Research Methods, Wiley, New York, 1984.
Templeton, J.F., The Focus Group: A Strategic Guide to Organizing, Conducting and Analyzing

the Focus Group Interview, McGraw-Hill Professional Publishing, New York, 1994.
Ten-Pow, J., Fundamentals for Those Considering Online Focus Groups, On Survey Research

Intelligence, http://www.onsurvey.ca/supplemental/onfocus.pdf, 2003.
Tichy, W.F., Should Computer Scientists Experiment More?, IEEE Computer, 31(5):32–40,

1998.
Tichy, W.F., Lukowicz, P., Prechelt, L., Heinz, E.A., Experimental Evaluation in Computer

Science: A Quantitative Study, Journal of Systems and Software, 28(1):9–18, 1995.
Turney, L., Pocknee, C., Virtual focus groups: New technologies, new opportunities, new learning

environments, Proceedings of the 21st ASCILITE Conference, University of Wollongong,
New South Wales, Australia, pp. 905–912.

Tuunanen, T., Rossi, M., Engineering a Method for Wide Audience Requirements Elicitatation
and Integrating It to Software Development, In Proceedings of the 37th Annual Hawaii
International Conference on System Sciences, Los Alamitos, CA, 2004.

Van Genuchten, M., Cornelissen, W., Van Dijk, C., Supporting Inspections with an Electronic
Meeting System, Journal of Management Information Systems, 14(3):165–178, 1997.

Van Genuchten, M., Van Dijk, C., Scholten, H., Using Group Support Systems for Software
Inspections, IEEE Software, 18(3):60–65, 2001.

Vitharana, P., Ramamurthy, K., Computer-Mediated Group Support, Anonymity, and the Software
Inspection Process: An Empirical Investigation, IEEE Transactions on Software Management,
29(2):167–180, 2003.

Wellner, A.S., The New Science of Focus Groups, American Demographics, March 1 29–33,
2003.

116 J. Kontio et al.

Widdows, R., Hensler, T.A., Wyncott, M.H., The Focus Group Interview: A Method for Assessing
User’s Evaluation of Library Service, College and Research Libraries, 52(July):352–359,
1991.

Wohlin, C., Runeson, P., Host, M., Ohlsson, M.C., Experimentation in Software Engineering: An
Introduction, Kluwer Academic Publishers, Boston, MA, 1999.

Wohlin, C., Höst, M., Henningsson, K., Empirical Research Methods in Software Engineering,
Lecture Notes in Computer Science, Vol. 2765 7–23, 2003.

Zelkowitz, M.V., Wallace, D.R., Experimental Models for Validating Technology, IEEE Computer,
31(5):23–31, 1998.

Zinchiak, M., Online Focus Group FAQs, Quirk’s Marketing Research Review, http://www.quirks.
com/articles/a2001/20010712.aspx?searchID=2619905, July/August 2001.

Chapter 5
Simulation Methods

Mark Müller and Dietmar Pfahl

Abstract This chapter aims to raise awareness about the usefulness and impor-
tance of simulation in support of software engineering. Simulation is applied in
many critical engineering areas and enables one to address issues before they
become problems. Simulation – in particular process simulation – is a state of the
art technology to analyze process behaviour, risks and complex systems with their
inherent uncertainties. Simulation provides insights into the designs of develop-
ment processes and projects before significant time and cost has been invested,
and can be of great benefit in support of training. The systematic combination of
simulation methods with empirical research has the potential for becoming a pow-
erful tool in applied software engineering research. The creation of virtual software
engineering laboratories helps to allocate available resources of both industry and
academia more effectively.

1. Simulation in the Context of Software Engineering

This chapter aims to raise awareness about the usefulness and importance of simu-
lation in support of software engineering. Simulation is a standard technology in
many engineering disciplines and has been successfully applied in manufacturing,
economics, biology, and social science. Why can simulation enhance traditional
software engineering, too? Simulation models are means to analyze the behaviour
of complex processes. In the software process literature, according to our under-
standing, there is a general agreement that people who understand the static process
(i.e., process activities, artefacts, resources, roles, and their relationships), and have
data, still have difficulties to anticipate the actual process behaviour. This is due to
the inherent (dynamic) complexity of software development processes. Software
processes can contain iterations, such as rework loops associated with correction of
defects. This can lead to delays which may range from minutes to years. As a con-
sequence it is almost impossible for human (mental) analysis to predict the
outcome.

Traditionally, process analysis in software engineering research uses static
process descriptions like flow charts. This approach does not shed much light on

117

F. Shull et al. (eds.), Guide to Advanced Empirical Software Engineering.
© Springer 2008

118 M. Müller and D. Pfahl

the behaviour of a process over time. Therefore, the usual way to analyze process
behaviour is to perform the actual process in a case study and observe the results.
This is a very costly way to perform process analysis, because it involves the
active participation of engineers. Furthermore, results from a particular case
study cannot necessarily be generalized to other contexts. Another way of
 analyzing processes is to simulate them. Simulation models help to clarify
assumptions – often referred to as mental models, on how a process works. They
visualize and quantify the implicit mental models about the causes that govern
the observed process behaviour and thus support understanding, analysis, predic-
tion, and decision-support.

Simulation models are like virtual laboratories where hypotheses about
observed problems can be tested, and corrective policies can be experimented
with before they are implemented in the real system. Experience from applica-
tions in other fields than software engineering indicates that significant benefits
can be drawn from introducing the use of simulation for management decision
support. Furthermore, systematic experimentation with simulation models and
the integration of simulation-based experiments with empirical research (i.e.,
case studies and controlled experiments) can support the building of a software
development theory (Rus et al., 2002). Simulation-based virtual software
 engineering laboratories (Münch et al., 2003, 2005) can help focus experimentation
in both industry and academia for this purpose, while saving effort by avoiding
experiments in real-world settings that have little chances of generating signifi-
cant new knowledge.

In practice, process simulation models are frequently used to support project
planning and estimation. In a competitive world, accurate predictions of cost, quality
and schedule provide a significant advantage. For example, if cost estimates are too
high, bids are lost, if too low, organizations find themselves in a difficult financial
situation. In this context, simulation is a risk management method. It offers not only
estimates of cost, but also estimates of cost uncertainty. Simulation also allows for
detailed analysis of process costs (Activity Based Costing).

Simulation is effective only if both the model, and the data used to drive the
model, accurately reflect the real world. If quantitative output is expected, a simula-
tion can only be executed if it is supplied with quantitative expert estimates or
measurement data. Simulation may use industry data or results of quantitative
experiments. In order to limit data collection effort, the simulation modeller has to
focus on key variables, such as the percentage of design documents which pass or
fail review. Thus, as a side effect, simulation modelling supports the focusing of
measurement programs on relevant factors of an engineering process.

This chapter is structured as follows: Section 2 explains how simulation models
are developed. Section 3 summarizes the variety of application areas and provides
references to relevant publications. Sections 4 and 5 describe the simulation tech-
niques and tools used in software engineering. Section 6 provides a simulation
reference model which helps to design process simulation models. Section 7 covers
practical aspects of simulation modelling. Finally, the chapter concludes with an
outlook for trends in future simulation modelling research.

5. Simulation Methods 119

2. The Process of Simulation Modelling in Software
Engineering

This chapter provides an overview of the design and implementation of simulation
models. Additional information about process simulation paradigms and general
introductions can also be found in (Banks et al., 2000; Cellier, 1991; Law and
Kelton, 1999). Detailed descriptions of process simulation modelling methods
specialized to instances of the event-driven and continuous simulation modelling
paradigms can be found in (Rus et al., 2003) and (Pfahl and Ruhe, 2002), respectively.

Any process simulation modelling process consists of at least five steps
(cf. Fig. 1):

1. Formulation of the Problem Statement (modelling goal)
2. Specification of the Reference Behaviour (based on observation or

hypothetical)
3. Identification of Model Concepts (physical processes, information flows, deci-

sion rules)
4. Implementation of Executable Model (formal, executable representation)
5. Model Experimentation

The starting point of any simulation modelling project is the identification and
explicit formulation of a problem statement. The problem statement defines the
modelling goal and helps to focus the modelling activities. In particular, it determines

Refinement (with
focus on dynamic

aspects)

Abstraction

Formalization

Experimentation

Interpretation,
Evaluation,
Analysis

Virtual World Real World

Validation

Verification

Verification

Problem
Statement

Reference
Behavior

Simulation
Results

Model
Concepts

Executable
Model

Virtual World

Fig. 1 Iterative process of simulation modelling

120 M. Müller and D. Pfahl

the model purpose and scope. For software process simulation models, Kellner
et al. (1999) propose the following categories for model purpose and scope:

1. Purpose:
(a) strategic management
(b) planning, control and operational management
(c) process improvement and technology adoption
(d) understanding
(e) training and learning

2. Scope:
(a) a portion of the life cycle (e.g. design phase, code inspection, some or all of

testing, requirements management)
(b) a development project (e.g. single product development life cycle)
(c) multiple, concurrent projects (e.g., across a department or division)
(d) long-term product evolution (e.g. multiple, successive releases of a single

product)
(e) long-term organization (e.g., strategic organizational considerations spanning

successive releases of multiple products over a substantial time period)

In order to make the problem statement suitable for simulation-based problem-
solving, it is helpful to specify the reference behaviour. Reference behaviour
 captures the dynamic (i.e., time-dependent) variation of key attributes of real-world
entities. The reference behaviour can be both observed problematic behaviour (e.g.,
of quality, effort, or cost), which are to be analyzed and improved, and/or a desired
behaviour that is to be achieved. The importance of the reference behaviour for the
modelling process is twofold. Firstly, it helps identify important model (output)
parameters and thus further focuses the subsequent modelling steps. Secondly, it is
a crucial input to model validation because it allows for comparing simulation
results with observed (or desired) behaviour.

The next step is the definition of model concepts, which entail:

1. Existing process, quality, and resource models
2. Implicit or explicit decision rules
3. Typical observed behaviour patterns
4. Organizational information flows
5. Policies

Typically, model concepts can be in the form of quantitative or qualitative models,
which are abstractions of behaviours observed in reality. They capture implicit and
tacit expert knowledge and are formalized as rules. Usually, in this step, domain
experts play a crucial role not only because they often have knowledge that cannot be
found in documents or data bases alone, but also because they can help distinguish
relevant real-world information from what is irrelevant for the problem under study.

After the definition of model concepts the model is implemented in the simulation
tool. Consistent with the modelling technique and tool chosen, all the information,
knowledge and experience represented by the model concepts has to be transformed
into a computer executable language. The result is an executable model. Technical

5. Simulation Methods 121

simulation modelling expertise is crucial in the transformation of model concepts into
the formal model representation which eventually will be executed on a computer.

The last step is model calibration and experimentation with the executable
model, producing simulation results. Simulation experiments are performed to
understand the system’s behaviour. Experimentation goes hand in hand with model
calibration. Model calibration refers to the adjustment of simulation model param-
eters until the model output corresponds to real word data. Model calibration can
be done based on expert estimates or through parameter fitting based on historic
data. The calibration step is important in order to ensure that the model accurately
reflects real-world behaviour and is required to build confidence in simulation
results. After a model is calibrated, simulation experiments are performed to
 understand observed behaviour, to evaluate planning alternatives, or to explore
improvement opportunities. At this stage, iteration is likely in model execution and
modification as variables and model structures are changed and the simulation
model results are compared against each other. Thus, experimentation not only
provides simulation results, but also validates the simulation model. Guidance on
how to design simulation experiments in general can be found in (Banks et al.,
2000) and (Law and Kelton, 1999), and specifically for software processes in
(Wakeland et al., 2003).

Like software development projects, simulation modelling involves verification
and validation activities. In short, verification can be seen as an activity that ensures
that the model fits its intended purpose, while validation can be seen as the activity
that ensures that the model appropriately reflects the real-world behaviour.
Verification and validation are continuing activities throughout the modelling and
simulation life cycle. They help

1. To produce simulation models that represent system behaviour closely enough
to be used as a substitute for the actual system when conducting experiments

2. To increase the credibility of simulation models to a level that makes them
acceptable for managers and other decision makers

Verification activities check the internal correctness or appropriateness of a simula-
tion model, i.e. they ensure that the model was constructed in the right way. In
 particular, verification checks whether the transformation steps defined by the sim-
ulation modelling process have been conducted correctly. For example, verification
ensures that the identified model concepts have properly been implemented in the
executable model. For verification activities, expert knowledge on the simulation
modelling technique is a major requirement. To some extent, verification is sup-
ported by simulation modelling tools. For example, the consistency of units in
model equations can be automatically checked by a tool.

Validation activities check the external correctness or appropriateness of a simula-
tion model, i.e. they try to find out whether the right model (with regards to its
 purpose or application) was constructed. In particular, validation checks whether the
model represents the structural and behavioural properties of the real system correctly
(appropriately). For example, simulation results can be used to check the robustness
or sensitivity of model behaviour for extreme values of input data. Even though

122 M. Müller and D. Pfahl

 validation can be partly supported by simulation modelling tools, expert knowledge
about the real world system is needed to interpret the range of results obtained.

The simulation literature offers several proposals for verification and validation
of simulation models (Balci, 2003; Banks et al., 2000; Barlas, 1989; Forrester and
Senge, 1980; Law and Kelton, 1999; Sargent, 2003). For example, Balci (2003)
proposes more than 30 different verification and validation techniques, classified
into informal, static, dynamic, and formal. However, full verification and validation
of simulation models whilst desirable, are often practically impossible due to cost
and time restrictions (Pidd, 2004). Typically, only a subset of the available tech-
niques and methods for model verification and validation are used.

3. Applications of Simulation in Software Engineering

Simulation models have been applied in many technical fields and are increasingly
used for problems in business management and software engineering management.
This section summarizes applications of simulation and some of the benefits that
can be obtained.

Abdel-Hamid and Madnick (1991) were among the first to apply simulation
modelling in software project management. They focused on project cost estima-
tion and the effects of project planning on product quality and project performance.
During the last decade many new process simulation applications in software engi-
neering have been published, focusing on other specific topics within software
project and process management [e.g., Christie (1999a); Kellner et al. (1999);
Waeselynck and Pfahl (1994)]. Table 1 lists some significant publications in vari-
ous application areas.

4. Simulation Techniques

The way in which a simulation model works depends on the modelling technique
chosen. Generally, four important distinctions between types of simulation tech-
niques can be made.

4.1. Deterministic Versus Stochastic Simulation

Simulation models that contain probabilistic components are called stochastic,1
those that do not are termed deterministic. In the case of a deterministic simulation
model, for a fixed set of input parameter values the resulting output parameter values

1 The word “stochastic” is used here in a very broad sense of its meaning, i.e., referring to any type
of source of randomness, including, for example, mutation or cross-over generation in genetic
algorithms.

5. Simulation Methods 123

will always be the same for simulation runs. In the case of a stochastic simulation
model, the output parameter values may vary depending on stochastic variation of
the values of input parameters or intermediate (internal) model variables. Since the
variation of input and intermediate variables is generated by random sampling from
given statistical distributions, it is important to repeat stochastic simulation runs for
a sufficient number of times in order to be able to observe the statistical distribution
of output parameter values. This number depends on limitations to computing
power and how much confidence in simulation results is required.

4.2. Static Versus Dynamic Simulation

Static simulation models capture the variation of model parameters at one single
point in time, while dynamic simulation models capture the behaviour of model
parameters over a specified period of time.

Static simulation in software engineering is often used as a reference to stochastic
Monte Carlo simulation which does not investigate behaviour over time. Related
examples can be found in (Briand and Pfahl, 2000; Houston, 2003; McCabe, 2003).

Table 1 Simulation applications in software engineering

Application area in software engineering Selected publications

Project management Lee and Miller (2004), Lin et al. (1997), Padberg
(2006), Pfahl and Lebsanft (2000)

Risk management Houston et al. (2001), Neu et al. (2002), Pfahl (2005)
Product and requirements engineering Christie and Staley (2000), Ferreira et al. (2003),

Höst et al. (2001), Lerch et al. (1997), Pfahl et al.
(2006), Stallinger and Grünbacher (2001)

Process engineering Bandinelli et al. (1995), Birkhölzer et al. (2004),
Christie (1999b), Kuppuswami et al. (2003),
Mišic et al. (2004), Powell et al. (1999), Raffo
et al. (1999), Tvedt and Collofello (1995)

Strategic planning Andersson et al. (2002), Pfahl et al. (2006),
Williford and Chang (1999)

Quality assurance and management Aranda et al. (1993), Briand and Pfahl (2000),
Briand et al. (2004), Madachy (1996), Müller
(2007), Raffo and Kellner (2000), Raffo et al.
(2004), Rus (2002), Rus et al. (1999)

Software maintenance and evolution Cartwright and Shepperd (1999), Smith et al.
(2005), Wernick and Hall (2004)

Global software development Roehling et al. (2000), Setamanit et al. (2006)
Software acquisition management and

COTS
Choi and Scacchi (2001), Häberlein (2003),

Häberlein and Gantner (2002), Ruiz et al. (2004),
Scacchi and Boehm (1998)

Product-lines Chen et al. (2005)
Training and education Dantas et al. (2004), Drappa and Ludewig (1999),

Madachy and Tarbet (2000), Oh Navarro and van
der Hoek (2004), Pfahl et al. (2001)

124 M. Müller and D. Pfahl

4.3. Continuous Versus Event-Driven Simulation

Dynamic simulation models can be either continuous or event-driven. The difference
between continuous and event-driven simulation models is the way in which the
internal state of the model is calculated.

Continuous simulation models update the values of the model variables repre-
senting the model state at equidistant time steps based on a fixed set of well-defined
model equations. Essentially, the model equations in continuous simulation models
establish a set of time-dependent linear differential equations of first or higher
order. Since such mathematical systems usually cannot be solved analytically, the
differential equations are transformed into difference equations and solved via
numerical integration. The most popular representative of continuous simulation is
System Dynamics (SD) (Coyle, 1996). SD was originally invented by Jay Forrester
in the late 1950s (Forrester, 1961) and has its roots in cybernetics and servomecha-
nisms (Richardson, 1991). Since the end of the 1980s, when Abdel-Hamid and
Madnick published the first SD model for software project management support,
more than 100 other SD models in the application domain of software engineering
have been published (Pfahl et al., 2006). Thus, SD can be considered the most
frequently used dynamic simulation technique in this domain.

Event-driven simulation models update the values of the model variables as new
events occur. There exist several types of event-driven simulation techniques. The
most frequently used is discrete-event (DE) simulation. DE simulation models are
typically represented by a network of activities (sometimes called stations) and
items that flow through this network. The set of activities and items represent the
model’s state. The model’s state changes at the occurrence of new events, triggered
by combinations of items’ attribute values and activities’ processing rules. Events
are typically generated when an item moves from one activity to another. As this
can happen at any point in time, the time between changes in the model state can
vary in DE simulations. There exist several other – but less popular – types of
event-driven simulation, namely Petri-net based simulation (Bandinelli et al., 1995;
Fernström, 1993; Gruhn and Saalmann, 1992; Mizuno et al., 1997), rule-based
simulation (Drappa et al., 1995; Mi and Scacchi, 1990), state-based simulation
(Humphrey and Kellner, 1989; Kellner and Hansen, 1989), or agent-based simula-
tion (Huang and Madey, 2005; Madey et al., 2002).

4.4. Quantitative Versus Qualitative Simulation

Quantitative simulation requires that the values of model parameters are specified
as real or integer numbers. Hence, a major prerequisite of quantitative simulation is
either the availability of empirical data of sufficient quality and quantity or the
availability of experts that are willing to make quantitative estimates of model
parameters. Often, the quantitative modelling approach is costly and time-consuming
and might not be appropriate for simulations that aim at delivering simple trend

5. Simulation Methods 125

analyses. Qualitative simulation is a useful approach if the goal is to understand
general behaviour patterns of dynamic systems, or when conclusions must be
drawn from insufficient data.

QUAF (Qualitative Analysis of Causal Feedback) is a qualitative simulation
technique for continuous process systems (Rose and Kramer, 1991). The method
requires no numerical information beyond the signs and relative values of certain
groups of model parameters. QSIM (Qualitative SIMulation) is another well-
established qualitative technique for continuous simulation (Kuipers, 1986).
Instead of quantifying the parameters of the differential equations underlying the
continuous simulation model, it is only required to specify the polarity (i.e., posi-
tive or negative) of model functions, indicating whether they represent an increase
or decrease of a quantity over time.

In the case of event-driven simulation, for example, Petri-net based and rule-
based simulation can be conducted purely qualitatively, if events (e.g., the activation
of transitions in Petri-nets, or the execution of a rule in rule-based systems) are
 triggered exclusively based on the evaluation of non-quantitative conditions.

4.5. Hybrid Simulation

Dynamic simulation models that combine continuous with event-driven or deter-
ministic with stochastic elements are called hybrid simulation models. One benefit
of hybrid approaches is the possibility to combine the advantages of stochastic,
continuous and event-driven models. In the case of hybrid models that combine
continuous and event-driven simulation, however, the drawback is increased model
complexity. An example of a hybrid simulation model that combines continuous
with event-driven simulation can be found in (Martin and Raffo, 2001).

5. Simulation Tools

Today, many software tools are available to support the various simulation
 techniques described above. Compared to the first tools available in the 1960s,
1970s, and 1980s, most of today’s more popular tools have a user-friendly interface
and are inexpensive, making them practical to use for a large variety of decision
making situations. Today, most tools

1. Allow for rapid model development through using, for example
 (a) Drag and drop of iconic building blocks
 (b) Graphical element linking
 (c) Syntactic constraints on how elements are linked
2. Are very reliable
3. Require little training
4. Are easy to understand

126 M. Müller and D. Pfahl

Because of these features, simulation tools allow modellers to develop large detailed
models rapidly. Modern tools have followed the evolution of software languages
and software development environments. Now they focus on model design and a
proper visualization rather than on programming the simulation logic.

The simulation tools in today’s market place are robust and reasonably inexpen-
sive. Most tools cost in the range of $1,000–10,000, and free versions are available
for experimentation and evaluation. They run on standard PC hardware, and are
therefore affordable even for small organizations with tight budgets.

The number of simulation tools is large, in particular if one counts the ever-growing
number of simulation environment research prototypes developed at universities all
over the world. In principle, a simulation model based on any of the above
 mentioned simulation techniques can also be implemented in an ordinary program-
ming languages (e.g., Java®), or by using general purpose simulation languages
(e.g., MATLAB®). However, several commercial simulation tools use the most
important simulation techniques and are suited to support software engineering
problems. Table 2 characterizes three popular examples of simulation tools
 supporting SD, DE, and Monte Carlo simulation, respectively.

The choice of a simulation tool environment depends on several factors. Since
the prices are comparatively low, the most important factor is the appropriateness
of the simulation technique that is supported. In a professional simulation environment,
in conjunction to the simulation modelling tool, other tools are often used.
Professional simulation studies typically involve information systems or data bases
which store the input, calibration, and output data, a statistical distribution fitter to
analyze the calibration data, and an optimizer. High-end tools such as the more
expensive versions of VENSIM® and EXTEND® already include the distribution
fitters and optimizers.

Table 2 Examples of commercial simulation tools used in software engineering

Tool name Main focus Characterization Interesting features

VENSIM®
(Vensim,
2006)

Support of SD
simulation

Dynamic,
continuous,
deterministic and
stochastic,
quantitative

Optimization function, calibration
support, graphical modelling
language (using standard SD
symbols), animation, can
emulate event-driven simulation
to some extend by introducing
if-then-else-conditions

EXTEND®
(Extend,
2006)

Support of DE
and SD
simulation

Dynamic,
event-driven
and continuous,
deterministic and
stochastic,
quantitative

Optimization support, graphical
modelling language, strong
modularization capability;
statistical fitting (StatFit®),
library source code available

@RISK®
(@Risk,
2007)

Monte Carlo
simulation

Static, deterministic,
stochastic,
quantitative

Can easily be integrated with
standard spreadsheet tools (i.e.,
Microsoft’s EXCEL®), provides
functionality for distribution
fitting (BestFit®)

5. Simulation Methods 127

Next follows a brief introduction into the SD modelling tool VENSIM®, which
will be used in the presentation of a process simulation example in Sect. 6 below.

5.1. Essentials of System Dynamics Models

SD models are represented by a set of difference equations, which is resolved by
numerical integration. Model variables, which represent the model state are called
levels and have the following form:

 Level t dt = Level t + Integral Rate_in t Rate_out t+() () () − ())⎡⎣ ⎤⎦ dt (1)

The value of a level at a certain point in time2 depends on its value at the
 previous discrete point in time plus the integral of the inflows minus the
 outflows. The initialization of the level happens at the start time of a simula-
tion. In the world of difference equations this would correspond to the starting
conditions. In the example given by (1) there is only one inflow, represented by
the rate variable Rate_in(t) and one outflow, represented by Rate_out(t). Level
variables can be considered as containers or reservoirs that accumulate some
tangible (e.g., a pile of papers) or intangible (e.g., number of defects in a
d ocuments or motivation level of developers) entities, represented by some
countable attribute.

In the physical world, the quantities of the accumulated commodities in a
reservoir can be regulated through inflow and outflow pipes, each pipe having
a valve. In SD models rate variables play the role of valves. Like levels, rates
are represented by equations. Rates can depend on levels, e.g., if information
feedback concerning the quantity in a level affects the rate of flow elsewhere in
the model, on constants, or on auxiliary variables, which are used as abbrevia-
tions for intermediate calculations to break up more complex computations.
(2) gives an example of a rate variable that represents the development rate
(inflow) of a design document (level variable DesignDocSize). If DesignDocSize(t)
is less than the estimated expected size of the design document (constant
TargetSize), then the daily amount of design documentation added to
DesignDocSize equals the product of the number of active designers (Workforce
allocated at time t) and the average productivity per person (constant AveragePr
oductivityPerPerson). If the design document is complete, i.e., DesignDocSize ≥
TargetSize, then there is nothing to do and the rate variable DesignDevelopment
Rate equals 0. Thus no more is added to DesignDocSize unless or until some
other activity in the model reduces DesignDocSize or increases TargetSize.

2 “dt” denotes a time step from one discrete point in time to the next.

128 M. Müller and D. Pfahl

DesignDevelopmentRate t

IF THEN ELSE

DesignDocSize t Tar

() =

() < ggetSize,

Workforce t *AverageProductivityPerPerson, 0

(
())

 (2)

5.2. A System Dynamics Tool: VENSIM®

The VENSIM tool offers a development workbench supporting both textual and
graphical model representations. The symbols that are used for the basis model vari-
ables and constants follow a de-facto-standard for SD modelling. Level variables are
represented as boxes, while rates are represented as valves on pipes (double lines)
connected with these boxes. Constants and auxiliary variables are simply represented
by their names. Flows of information are represented by single-line arrows.

Figure 2 shows a screen shot of the VENSIM® modelling workbench with a
loaded view (sub-model) of a SD model representing the design phase of a software
development project. The flow through the pipes attached to level variables (e.g.,
design to do size and design doc size in Fig. 3) is regulated by rate variables,
 represented by valve symbols (e.g., development activity in Fig. 3). Auxiliary

Fig. 2 VENSIM workbench with activated equation editor

5. Simulation Methods 129

 variables and constants are represented simply by their names. Values of level, rate,
or auxiliary variables are calculated by evaluating functions of the form y = f (x

1
,

…, x
n
), where x

1
, …, x

n
 are other variables and constants. The variables and con-

stants involved in such a function are illustrated by a connecting arc (or pipe).
The definition of a function is done through a text-based equation editor. The

equation editor window automatically pops up if the details of an equation have not
yet been fully defined and the workbench button [y = x2] is pressed (see Fig. 2).
The equation editor not only provides an input window for specifying the exact
function but also provides fields for specifying the variable unit and an explanatory
 comment. The equation editor automatically performs simple syntax and consist-
ency checks. There exists also an equivalent textual representation of the entire
model (not shown in Fig. 2). The textual representation of model equations has the
advantage that string insertion, deletion, and renaming can easily be performed for
the complete model.

The list of buttons directly above the graphical modelling panel offers special-
ized functionality for adding, deleting, removing, renaming, hiding, and showing of
model variables. The column of buttons on the left hand side of the modelling panel
provides specialized functionality for model analysis and simulation output presen-
tation in the form of graphs or tables (cf. Fig. 3). For example, the window in the
lower right corner of the screen shot presented in Fig. 3 shows two levels of causal
dependencies between variables. Values shown in parentheses indicate feedback
loops. From the open window within the modelling panel one sees that:

Fig. 3 VENSIM workbench with activated analysis and output tools

130 M. Müller and D. Pfahl

 design doc size f development activity, verification activ= iity() (3)

while

development activity = f design doc dev status, design le(aarning status,

design to do size, productivity design learrning amplifier,

randomized average design dev rate)
 (4)

Graphs showing the reverse dependencies, i.e., variable or constant uses, can also
be automatically generated (not shown in Fig. 3). Other windows in Fig. 3 show the
output of one simulation run (here: Current-Design) in the form of tables and
graphs (lower and upper windows in the left half of the graphical modelling panel),
as well as information about the model structure.

6. A Reference Simulation Model for Software
Development Processes

This section shows a simulation model example and introduces the concept of a
simulation reference process. The model is implemented as a stochastic SD model
using the VENSIM® tool. Based on the example, a comparison between SD simula-
tion and DE simulation will be made, and the advantages and disadvantages of each
technique discussed.

6.1. A Generic Software Development Process

The following example presents a generic – in the sense of re-usable and adaptable –
implementation of a standard process typically occurring in any constructive
software development phase.

The left-hand side of Fig. 4 shows a typical development and verification work-
flow of any type of software-related artefacts. The work-flow presentation uses the
following symbols: boxes (for artefacts), ovals (for activities), hexagons (for
resources), and arcs (representing uses, produces, and consumes relationships). An
artefact may be, for example, a requirements, design, test, or code document. The
actual artefact to be developed and verified is positioned in the centre of the work-
flow. Before the development of this artefact can start, some input information must
be available. For example, a design documents needs to know which requirements
have been specified in a previous project stage. The development activity trans-
forms an available artefact input into a new or modified artefact, e.g., a set of
requirements into a design document. This artefact is then checked in a verification
activity. The result of the verification activity, e.g., an inspection, is a list of defects
in the newly created or modified artefact, which in turn is the basis for rework of

5. Simulation Methods 131

the artefact. The rework loop is indicated in Fig. 4 by the consumes-relationship
between the artefact defect log and the development activity. No distinction is
made between initial work and rework performed on previous output. Activities use
resources, e.g., personnel (implying some cost), tools (also incurring some cost,
and supporting certain techniques), techniques (implying a need to quantify
 productivity), and time.

For larger simulation models, covering more than one stage of the software devel-
opment process, instances of the generic work-flow shown in Fig. 4 can be combined
sequentially by connecting work-flows that create predecessor artefacts with work-
flows that create successor artefacts, and concurrently to represent work-flows
 conducted in parallel that produce separate instances of artefacts of the same type.

The right-hand side of Fig. 4 shows the control of the work-flow, expressed in
terms of states that the artefact can assume in relation to its development (upper
diagram) and verification activities (lower diagram), and the transitions between
states, including the conditions for activating a transition. For example, a develop-
ment activity related to the artefact “requirements” can either have not yet been
started (“non-exist”), be active (“active”), or it can be completed (“complete”). The
transition from “non-exist” into “active” is triggered as soon as the elapsed time t
is greater than the defined starting time of the related development activity.
A transition from “active” to “complete” is triggered, if all of the artefact inputs have
been used up in producing the output document (e.g., a design or code document).
If rework needs to be done in order to correct defects detected during verification,
then a transition from “complete” back to “active” is triggered. The state-transition
diagram associated with the verification activity is similar to that of the development
activity. The only difference is its fourth state, “repeat.” This state signals that a
repetition of the verification activity is needed after rework of the defects found in

time >
design
development
start time

design to do > 0 and
des doc ver status <> active

non-exist active complete

design to do = 0

des doc dev status =
complete

des doc > 0 and
des doc dev status <> active

des doc = 0 and
design faults per FP pending >
design doc quality threshold

per FP

des doc = 0 and
design faults per FP pending >
design doc quality threshold
per FP

non-exist active repeat

complete

Verification
Activity

consumes

produces

uses

consumes

consumes

produces

uses

Artefact
Input

Development
Activity

Artefact
(created/reworked)

Artifact
Defect Log

Resources
(Workforce,
Tools, Time)

Resources
(Workforce,
Tools, Time)

Fig. 4 Generic artefact development/verification process

132 M. Müller and D. Pfahl

the previous verification round has been completed. The decision as to whether the
verification step must be repeated depends on the number of defects found per size
unit of the artefact. For example, if requirements size is measured in Function
Points (FPs), then a threshold value can be defined in terms of defects per FP. If the
number of detected defects per FP is larger then the defined threshold value, then
verification has to be repeated, otherwise the document is considered (finally) com-
plete after rework.

6.2. Conceptualization of the Generic Software
Development Process

While the work-flow on the left-hand side of . 4 is static, the control-flow
 presented on the right-hand side contains some behavioural information. Both static
and behavioural information contained in the generic software development (and
verification) process are the basis for the creation of a related simulation model, e.
g., using the System Dynamics (SD). As will be shown below, the process shown
in Fig. 4 is actually a re-usable pattern that captures the most important aspects of
the work-flow, including activities and artefacts, as well as resources that will be
used. It also captures some behavioural aspects by specifying the possible states of
an activity (or the resulting artefact) and the feasible state transitions. However, for
the development of an SD simulation model more information is needed. First,
measurement data are needed for model calibration. Second, additional information
about managerial decision rules and control policies are needed in order to under-
stand the causal relationships that govern the process behaviour.

Table 3 lists attributes that often characterize the entities of the generic artefact
development/verification process (second column), and gives typical examples
(third column). The transformation of these attributes into SD model parameters
follows a regular pattern (cf. fourth column). The attribute “efficiency” of the entity
“activity” always maps to a rate variable. Attributes of artefacts and resources
 usually map to level variables. However, there are situations where an attribute
value of an artefact or resource is considered constant. In particular, this is the case
when – for the purpose of the modelling task – it is of no interest to model the
 variation of an attribute value. An example is the number of designers involved in
a design task which may be controlled by processes outside the scope of the activi-
ties to be modelled, e.g. senior management policy. The fifth column of Table 3
indicates how the values of model parameters are determined. Level and rate
 variables are calculated by their defining functions. Constants are either defined by
the model user (INPUT) or, in the case that they are used to calibrate the model,
based on expert estimates (EST) or derived from available empirical data (EMP).
Calibration constants are either deterministic (e.g., by taking the mean) or stochastic
(e.g., by triangulation of expert estimates or by statistically fitting the distribution
of empirical data).

5. Simulation Methods 133

Table 3 Mapping of generic process attributes to SD model parameters

Process description System dynamics

Entity Attribute Example
Parameter
type Quantification

Artefact Size Design/specification
document:

Level
Constant

Level
Constant

Level
Constant

CALC (from flow rates)
INPUT or EST or EMP

– Function points (FP)
– Pages
Code document: CALC (from flow rates)
– Lines of code (LOC) INPUT or EST or EMP
Test plan: CALC (from flow rates)
– Number of test cases INPUT or EST or EMP

Quality Spec./design/code/test
plan:

Level
Constant

CALC (from flow rates)
INPUT or EST or EMP

– Defects injected,
detected,
corrected

State Spec./design/code/test
plan:

– State values

Level CALC (flow rates emu-
late state-transition
logic)

Activity
Efficiency

Spec./design/code/test
plan:

– Development (and
rework) volume per
time unit

– Verification (and
validation) volume
per time unit

– Defect injection,
detection, correction
(® rework) per time
unit

Rate CALC (based on attribute
values of used
Resources)

Resource Size Workforce: Level CALC (from flow rates)
– Number of architects,

designers, program-
mers, testers, etc.

Constant INPUT or EST or EMP

Quality Workforce: Level CALC (from flow rates)
– Training Constant INPUT or EST or EMP
– Experience

Productivity Development, verifica-
tion, or validation
technique:

Constant INPUT or EST or EMP

– Number of pages,
FP, LOC, test cases
developed, inspected,
or tested per person
and time unit

(continued)

134 M. Müller and D. Pfahl

Figure 5 shows the network of individual cause-effect relationships (so-called
base mechanisms) of a SD model of the generic process. The most creative – and
 difficult – part during simulation model creation is the identification of cause-effect
relationships that essentially generate the dynamic behaviour of the system, i.e., the
variation of level variables over time. The control flows represented by the state-
 transition diagrams in Fig. 4 are not sufficient to explain the model behaviour,
because they do not specify how relations between model variables change in
response to value changes of the entities’ attributes. One possible network of base
mechanisms that (qualitatively) provides exactly this information is shown in Fig. 5.
A base mechanism is represented as a directed graph connecting two nodes (model
parameters), e.g., A → (+) B or A → (−) B. The arc that connects the nodes A and B
can have a positive or a negative polarity, represented by “+” or “−” respectively. A
positive polarity implies that B increases (or decreases), if A increases (or decreases).
A negative polarity implies that B increases, if A decreases and vice versa. Using this
encoding, the causal diagram in Fig. 5 can be read as follows:

1. If the workforce (e.g., the number of designers) is increased, then both develop-
ment (or rework) and verification rate increase.

Process description System dynamics

Entity Attribute Example
Parameter
type Quantification

Effectiveness Development, verifica-
tion, or validation
technique:

Constant INPUT or EST or EMP

– Number of defects
injected per
document size unit

– Number of defects
detected per
document size unit

Cost Workforce: Level CALC (from flow rates)
– Variable cost (e.g.,

hourly rate)
Constant INPUT or EST or EMP

Development,
verification,
or validation tools:

Level
Constant

CALC (from flow rates)
INPUT or EST or EMP

– Fixed costs (e.g.,
purchase price)

– Variable costs (e.g.,
leasing cost, storage
cost, energy cost)

CALC calculated by simulation tool; INPUT input by model user; EST estimated by experts
(modelled either deterministic or stochastic); EMP derived from empirical data (modelled either
deterministic or stochastic)

Table 3 (continued)

5. Simulation Methods 135

 2. If development and verification rates increase, then project duration decreases
(because the artefact is developed faster).

 3. If the artefact size is increased, then project duration increases (because a
larger artifact has to be developed at a given rate).

 4. If the defect threshold is increased (i.e., more defects per size unit have to be
found before a re-verification is triggered), then possibly fewer rework cycles
(incl. re-verification) have to be performed.

 5. If fewer rework cycles (incl. re-verification) are performed, then project dura-
tion decreases.

 6. If more re-work cycles are performed, then there is more learning and increased
product maturity.

 7. If there is more learning, then development productivity increases and defect
injection (per size unit) decreases.

 8. If defect injection (per size unit) decreases, then artefact quality increases.
 9. If artefact maturity increases, then defect detection (per size unit) decreases.
10. If defect detection (per size unit) decreases, then artefact quality decreases.

Figure 5 contains three underlined nodes (workforce, artefact size, and defect
threshold). These nodes represent either calibration or input parameters of the
 simulation model. The parameter “Defect Threshold” specifies the number of
defects needed to trigger a rework cycle. It determines whether a verification step
needs to be repeated (cf. in Fig. 4 the state-transition diagram associated with arte-
fact verification). The importance of the parameter “Defect Threshold” resides in
the fact that it not only plays a crucial role in the decision to repeat the verification

Learning

Defect
Injection

(per size unit)

Defect
Detection

(per size unit)

Development
(and Rework)

Rate
+

-

-

+

Verification
(and Re-Verification)

Rate

Defect
Threshold

(per size unit)

Workforce
(Headcount)

++

-

Artefact
Size

Project
Duration

+ +

--
Development
(and Rework)
Productivity
(per person)

+ Rework
Cycles

+

Artefact Quality
-

Artefact
Maturity

+

-

Fig. 5 Base mechanisms and causal network

136 M. Müller and D. Pfahl

step, but also because it triggers workforce learning and product maturation.
A repetition of the verification (and, as a consequence, the rework) step has multi-
ple effects. First of all, it increases project duration. On the other hand, it speeds up
the development (more precisely: rework) rate due to learning. Similarly, due to
learning, it reduces the defect injection (per size unit) during rework. Finally, it also
decreases the defect detection rate during the subsequent verification step due to
product maturation, because most of the defects have already been detected, and
there are only a few defects still contained in the artefact which are harder to detect.
The last two effects mentioned have a damping effect on the number of rework (and
re-verification) cycles, since they both make it more probable that the number of
defects detected during re-verification are below the value of model parameter
“Defect Threshold.” This is an example of negative feedback.

It should be pointed out that the causal network in Fig. 5 is only a subset of the
base mechanisms that typically drive the behaviour of a software project. For exam-
ple, normally one would expect an influence on development rate from defect
detection (per size unit). This, and possibly other base mechanisms, have been
omitted to keep the example simple and compact. For the same reason, base mecha-
nisms related to project effort consumption have been omitted.

6.3. Implementation of the Generic Process Using a System
Dynamics Tool

With the help of the causal network – in addition to the information already
 contained in Table 3 – the full set of simulation model parameters are determined,
and their type and role (from the perspective of the model user) can be defined. In
the following, an example SD simulation model implementation for the generic
code document development/verification process is presented.

Table 4 lists the complete set of model variables (second column), together with
their type (third column) and usage (fourth column). Column one helps to trace
back model parameters to the generic process map (cf. Fig. 4 with “artefact”
replaced by “code document”). Using the mapping scheme presented in Table 3,
the following mappings apply:

1. Size, quality, and state attributes of artefacts (Artefact Input, Artefact, Artefact
Defect Log Size) are mapped to level variables

2. Efficiency attributes of activities (Development Activity and Verification
Activity) are mapped to rate variables

3. Size, quality, productivity, and effectiveness attributes of resources (for
Development and Verification) are mapped to level variables or constants

The list of attributes in Table 4 is very detailed. For example, the quality attribute
information related to the code document distinguishes between the number of
defects injected, the number of defects detected, the number of defects undetected
(equals the difference between injected and detected defects), the number of defects

5. Simulation Methods 137

corrected, and the number of defects pending (equals the difference between
detected and not yet corrected defects). Additional distinctions could be made, e.g.,
between different defect types or severity classes. For the sake of the simplicity of
the presentation, these additional distinctions have not been included in the example
presented here.

Table 4 Mapping of static process representation to SD model variables

Process map element SD model parameter Type Usage

Artefact input [Size] code to do size Level Output
 initialization code dev start time Constant Input(E)
 initialization average code size in KLOC Constant Input(E)
 initialization code to develop Rate Internal
Artefact [Size] code doc size Level Output
Artefact [State Devel.] code doc dev status Level Internal
Artefact [State Verif.] code doc ver status Level Internal
 initialization code doc quality limit per KLOC Constant Input(P)
Artefact [Quality 1] code faults generated Level Output
Artefact [Quality 2] code faults detected1 (in one verification

round)
Level Output

 re-initialization detected code faults flush Rate Internal
Artefact [Quality 3] code faults pending Level Output
Artefact [Quality 4] code faults corrected1 (in one rework

round)
Level Output

 re-initialization corrected code faults flush Rate Internal
Artefact [Quality 5] code faults undetected Level Output
Artefact Defect Log [Size 1] code faults detected (total) Level Output
Artefact Defect Log [Size 2] code faults corrected (total) Level Output
Devel. Activity [Effic. 1] development activity Rate Internal
 calibration productivity code learning amplifier Constant Input (C)
Devel. Activity [Effic. 2] code fault generation Rate Internal
 calibration quality code learning amplifier Constant Input (C)
Devel. Activity [Effic. 3] code fault correction Rate Internal
Verif. Activity [Effic. 1] verification activity (= code to rework) Rate Internal
Verif. Activity [Effic. 2] code fault detection Rate Internal
Artefact State Trans. (Dev.) cdd status change Rate Internal
Artefact State Trans. (Ver.) cdv status change Rate Internal
Resources (Devel.) [Size] Workforce Constant Input (E)
Resources (Devel.) [Qual.] code learning status Level Output
Resources (Devel.) [Prod. 1] average code dev rate per person and day Constant Input (C)
Resources (Devel.) [Prod. 2] average code fault injection per KLOC Constant Input (C)
Resources (Verif.) [Size] Workforce Constant Input (E)
Resources (Verif.) [Prod.] average code ver rate per person and day Constant Input (C)
Resources (Verif.) [Effect.] code ver effectiveness Constant Input (C)
Res. State Trans. (Qual.) cl status change Rate Internal

Devel. development; Effic. efficiency; Prod. productivity; Qual. quality; Res. resources; Trans.
transition; Verif. verification; C calibration; E exploration; P policy

138 M. Müller and D. Pfahl

Model parameters that are of purely technical nature are printed in italics. For
example, in order to set up a simulation run, certain initializations have to be made,
or for the realistic calculation of model attributes, coefficients in the related model
equations have to be calibrated.

Typically, level variables play the role of output parameters, since they represent
the state of the modelled system. Constants play the role of input parameters.
Depending on their purpose, three types of input parameters can be distinguished:
policy (P), exploration (E), and calibration parameters (C).

Policy parameters like, for example, the variable code doc quality limit per KLOC
represent process specific threshold values which are evaluated in managerial deci-
sion rules. In the example, the threshold for the number of detected defects per KLOC
in a verification step determines whether a re-verification has to be performed.

Calibration parameters like, for example, the variable productivity code learning
amplifier help to quantify the effects imposed by one or more model variables on
another model variable realistic.

Finally, exploration parameters like the variables average code size in KLOC
or workforce represent those model parameters whose effect on the overall behav-
iour of the system is subject to analysis. In the example, the process completion
(i.e., the time when code development is complete) as well as code quality in terms
of the density of undetected defects after verification (code faults undetected/
average code size in KLOC) are model outputs that depend on other model varia-
bles including the size of the artefact to be developed (average code size in KLOC)
and available resources (workforce).

Figures 7–9 show the graphical representations (views) of the complete SD
model implementation for the code development and verification process:

1. Figure 6 captures the workflow in terms of size
2. Figure 7 captures the code development and verification states as well as the

workforce learning state
3. Figure 8 captures the workflow (or defect co-flow) in terms of quality

Fig. 6 Implementation of code development and verification work flow (view 1)

code to do
size

code doc
sizedevelopment

activity

verification activity

average code
size in KLOC

randomized average
code dev rate

<code learning
status>

<code doc
dev status>

<code doc
ver status>

average code dev rate
per person and day

code to rework

code to develop

<TIME STEP>

code dev start
time

average code ver rate
per person and day

randomized average
code ver rate

productivity code
learning amplifier

workforce

5. Simulation Methods 139

The level variables, represented by boxes, are calculated with the help of inflow
and outflow rates as defined by (1) introduced in Sect. 4. For example, level varia-
ble code doc size increases as a result of development activity and decreases as a
result of verification activity (because verified code needs to undergo rework). The
rate variables are calculated similarly to (2) introduced in Sect. 4.

In Fig. 6, the inflow rate code to develop initializes the level code to do size,
which otherwise would be equal to zero, and thus no development or verification
work has to be performed. At simulation time code dev start time, the value of
average code size in KLOC flows into code to do size. In the example implementa-
tion, code dev start time and average code size in KLOC are model inputs. These
two model parameters also define an interface to predecessor development and
verification processes. For example, if a predecessor process produces a design

code doc
dev status

code doc
ver status

cdd status change

cdv status change

code
learning
statuscl status change

<average code size
in KLOC>

<development
activity>

<code to do
size>

code doc
quality flag

code doc quality
limit per KLOC

<code faults
pending>

<code dev start
time>

<Time>

<code doc size>

<average code size
in KLOC>

Fig. 7 Implementation of state attributes (view 2)

code faults
generated

code faults
undetected

code faults
corrected 1

code fault
generation

code fault
detection

code fault
correction

code fault
pending

randomized average
code fault generation

rate

<development
activity>

<code learning
status>

code ver effectiveness

<code doc
dev status>

<code doc
ver status>

<development
activity>

quality code
learning amplifier

average code fault
generation rate

<verification
activity>

<code doc size><code to do
size>

<code to do
size>

<code doc size>

code faults
detected 1

detected code
faults flush

corrected code
faults flush

code faults
detected

code faults
corrected

Fig. 8 Implementation of defect injection, detection, and correction co-flow (view 3)

140 M. Müller and D. Pfahl

document, then the completion time and the size of this document can be used to
calculate code dev start time and average code size in KLOC.

Figure 7 shows the part of the model which calculates the states related to code
document development and verification as well as resource quality (learning). For
example, using the encoding 0, 1, and 2, for the states “non-exist,” “active,” and
“complete,” respectively, the rate variable cdd status change is calculated as shown
in (5) below.

cdd status change

IF THEN ELSE

code doc dev status 0 /* sta

=

=(tte non-exist

:AND:Time code dev start time,

1, /* transit

=
>=

“ ”

iion non-exist active

IF THEN ELSE

code doc dev status

“ ” “ ”→

=(11 /* state active

:AND:code to do size 0,

1, /* transition

=
<=

“ ”

 active complete

IF THEN ELSE

code doc dev status 2 /*

“ ” “ ”→

=(sstate = complete

:AND:code to do size 0:AND:code doc ver

“ ”

> status 1,

-1, /* transition complete active

0 /* do

<>
→“ ” “ ”

))) nnothing

 (5)

The first transition, from “non-exist” to “active,” executes as soon as development
has started, i.e., as soon as the simulation time is greater or equal to the defined
development start time. The second transition, from “active” to “complete,” exe-
cutes as soon as there is no code waiting for implementation any more. The third
transition, from “complete” back to “active,” executes as soon as there is some code
waiting for development and code verification is no longer active.

Figure 8 shows the defect co-flow, i.e., the injection (generation), detection, and
correction of code faults. Fault generation and correction occur in parallel with
code development and rework, while fault detection occurs in parallel with code
verification (and re-verification). For example, the rate variable code fault genera-
tion is directly correlated with the rate variable development activity. The actual
calculation of code fault generation is shown in (6) below.

code fault generation = development activity*

randomized aveerage code fault injection per KLOC*

(1/MAX(1, code learninng status quality code learning amplifier))∧

 (6)

From (6) it can be seen that there is only defect injection when development activity
> 0. The actual number of faults generated per time step depends on the number of
KLOC developed per time step and the randomized average code fault injection

5. Simulation Methods 141

per KLOC, which – in this example – is calculated by multiplying the average code
fault injection per KLOC with a random number sampled from the triangular
 distribution triang(0.9, 1, 1.1,), where 1 represents the most probable value, and 0.9
and 1.1 the minimal and maximal values, respectively. The last factor in (6) models
the learning effect. As soon as code learning status adjusted for the learning ampli-
fier becomes greater than 1, the learning factor is less than 1 and thus the number
of injected code faults decreases.

At the start of a simulation run, all model constants are initialized with a
default value which can be modified by the user. Figure 9 shows a graphical user
interface to the model, built using a Vensim utility, in the form of an input panel
with slide bars, default initialization, and admissible value range. For example,
variable code ver effectiveness is to be initialized with 0.75 (representing a defect
detection effectiveness of the code verification technique of 75%), and maximum
and minimum values of 0 and 1.

As soon as the simulation has started, the values of all model variables are cal-
culated by Vensim® at each time step, which represents, for example, one work day.
When the simulation run is complete the calculated values can be displayed either
in tabular form or as graphs showing the time line on the x-axis and the variable
value on the y-axis. Figures 10 and 11 below show example output graphs of the
example model.

The upper part of Fig. 10 shows the simulation output for the level variables
code to do size and code doc size. At simulation start (Time = 0), the amount of
code work to do, in this case 200 KLOC, flows instantaneously into code to do size.
This then decreases at a constant rate, caused by the development activity which
transforms code to do size into code doc size (cf. Fig. 6). Consequently, the value
of code doc size is exactly complementary to the value of code to do size, the sum
of both always adding up to 200 KLOC. The lower part of Fig. 10 shows the behav-
iour of the state variables controlling the behaviour of code development, code
verification, and learning, respectively. For example, one can see that code doc dev
status equals 1 (“active”) while code is developed. As soon as there is nothing more

average code ver rate per person and day
0

average code fault injection per KLOC
0 2

average code dev rate per person and day

0 0.4

average code size in KLOC

0 200

code ver effectiveness
0 0.75

code doc quality limit per KLOC
0 1 5

quality code learning amplifier

0 2
productivity code learning amplifier

0 1

workforce

0 201,000

10

1

100

2

52

5 5

Fig. 9 Simulation input panel

142 M. Müller and D. Pfahl

to develop, i.e., code to do size = 0, it switches to 2 (“complete”). At that moment,
code doc ver status switches from 0 (“non-exist”) to 1 (“active”). After some time
during which verification is done, depending on how many defects are found, code
doc ver status switches either to 2 (“repeat”) or 3 (“complete”). In Fig. 10, one can
see that after the first verification round it is signalled that a second verification
round needs to be performed (“repeat”).

Figure 11 shows a selection of diagrams related to code fault generation, detec-
tion, and correction. The model variable code faults undetected represents the
 difference between the numbers of injected and detected faults, while code faults

Fig. 10 Simulation output related to model views 1 and 2

code doc size

Time (Day)

KLOCcode doc size : Current-Codecode doc size : Current-Code

code to do size
200

100

0

200

100

0
0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100

Time (Day)

code doc dev status
2

0
0 15 30 45 60 75 90 0 15 30 45 60 75 90 0 15 30 45 60 75 90

Time (Day)

code doc dev status : Current-Code

code doc ver status

Time (Day)

code doc ver status : Current-Code

code learning status
4

0

4

0

Time (Day)

code learning status : Current-Code

KLOC

code faults pending

Time (Day)

code faults pending : Current-Code

code faults corrected

Time (Day)

code faults corrected : Current-Code

code faults undetected
400

200

0

400

200

0

0 10 20 30 40 50 60 70 80 90 100

0 10 20 30 40 50 60 70 80 90 100

0 10 20 30 40 50 60 70 80 90 100

0 10 20 30 40 50 60 70 80 90 100

Time (Day)

code faults undetected : Current-Code code faults detected : Current-Code

code faults detected
600

300

0

600

300

0

Time (Day)

Defect

Defect

Defect

Defect

Fig. 11 Simulation output related to model view 3

5. Simulation Methods 143

pending represents the difference between detected and corrected code faults. One
can see that fault detection occurs when verification is active, and fault correction
occurs when development (rework) is active.

6.4. Extension and Reuse of the Reference Simulation Model

The SD model developed in the previous section can be extended and reused in
several ways. For example, as mentioned earlier, it is possible to make the model
more realistic by adding a causal relationship between the number of errors
detected and the fraction (size) of the artefact to be reworked.

The more interesting aspect of reusability is illustrated by Fig. 12. The figure
shows the V-model software development process on the right hand side.
Simulation models representing the Design and Coding phases are presented as
boxes. For example, the Boxes labelled views 1C to 3C represent the SD model
views presented in Figs. 7–9. In Figs. 7–9, the code documents developed and veri-
fied in the coding phase are represented by one single level variable. There is no
differentiation between code sub-systems or modules. To facilitate a more detailed
representation of reality, i.e., explicit modelling of individual subsystems (or even
modules), the SD tool VENSIM® offers the possibility of “subscripting,” i.e., the
possibility of replacing a monolithic entity by an array of entities of the same type.
A subscript works like the index of an array. With the help of this mechanism,
potentially all variables used in the model views 1C to 3C can be duplicated. For
example, if five code sub-systems shall be modelled, they would be represented by
level variables code doc size [1] to code doc size [5], or, if 100 code modules are
to be modelled, the index of code doc size would run from 1 to 100, each index
representing the levels and rates associated with each module.

Requirements

Design

Code Unit Test

System Test

Integration TestView 1D
View 2D
View 3D

Subscripting

View 1C
View 2C
View 3C

Subscripting

V-Model:
Development,
Verification (Inspection),
Validation (Test)

Real-World Processes

Simulation Model

Requirements

Design

Code Unit Test

System Test

Integration TestView 1D
View 2D
View 3D

Subscripting

View 1D
View 2D
View 3D

. . .

View 1C
View 2C
View 3C

Subscripting

View 1C
View 2C
View 3C

. . . V-Model:
Development,
Verification (Inspection),
Validation (Test)

Fig. 12 Reuse-based construction of a simulation model representing a V-Model process

144 M. Müller and D. Pfahl

Finally, it is possible to represent the design and requirements specification
phases of the V-Model process by simply duplicating the code related views 1C to
3C. This can be done by copying a complete view and replacing the sub-strings
“code” by strings “design” in all variable names. Of course, the resulting Views 1D
to 3D (and 1R to 3R) have to be re-calibrated based on suitable data or expert
 estimates. The connection between subsequent views requires only a few informa-
tion links between variables, e.g., between model variables design doc size (which
plays in the design phase the role that code doc size plays in the coding phase) and
average code size in KLOC. These connections can be considered similar to “glue
code” used to connect reusable software components.

Figure 13 shows several simulation output diagrams for a code development and
verification process in which five sub-systems are developed concurrently. The size
of each subsystem varies between 35 and 45 KLOC, accumulating to a total of
200 KLOC. One can see the individual traces for each subsystem. The development
of one subsystem starts at Time = 0 (begin of coding phase), the others are more or
less delayed due to variation in completion of required design documents. Similar
graphs are generated for the design and requirements specification phases.

Figure 14 shows for each variable displayed in Fig. 13 the aggregated values of
the individual code sub-systems. If compared to the monolithic simulation (i.e.,
without subscripting) presented in Figs. 11 and 12, one can see that the overall
behaviour is similar but that some temporal displacement occurs due to late start of
coding of some of the subsystems.

With some additional minor modifications, it is possible to model five sub-
 systems in the design phase and, say, 100 modules in the coding phase. This
enhancement requires a mapping of sub-system subscripts (used in the design
views 1D to 3D) to module subscripts (used in the code views 1C to 3C). With this
modification, the quality views for design (3D) and coding (3C) generate the simu-
lation results shown in Fig. 15 (simulation time T = 0 at start of design phase). The
Design phase lasts from simulation time T = 1 until T = 140 days, while the Coding
phase starts at time T = 96 and ends at time T = 174 days. For each phase, the simu-
lated values of injected, detected, pending, and undetected faults are shown.

6.5. Comparison Between System Dynamics and Discrete-Event
Simulation

The simulation application example outlined in Sects. 6.2 and 6.3 demonstrated
how SD captures complex software process behaviour with a small set of core
modelling constructs (i.e., level and rate variables, and constants). This is possible
by creation of generic model patterns that are reusable in several ways, either by
replicating model variables via subscripting, or by duplicating complete sub-
 models (i.e., model views) by simple text replacement (e.g., replacing the string
“code” by the string “design”).

5. Sim
ulation M

ethods
145

code to do

60

30

0
0 15 30 45 60 75 90

60

30

0
0 15 30 45 60 75 90 0 15 30 45 60 75 90

Time (Day)

KLOC
KLOC
KLOC
KLOC
KLOC

KLOC
KLOC
KLOC
KLOC
KLOC

code to do[s1] : Current-CodeSub code doc[s1] : Current-CodeSub code faults detected[s1] : Current-CodeSub
code faults detected[s2] : Current-CodeSub
code faults detected[s3] : Current-CodeSub
code faults detected[s4] : Current-CodeSub
code faults detected[s5] : Current-CodeSub

code faults undetected[s1] : Current-CodeSub code faults pending[s1] : Current-CodeSub code faults corrected[s1] : Current-CodeSub

code doc[s2] : Current-CodeSub
code doc[s3] : Current-CodeSub
code doc[s4] : Current-CodeSub
code doc[s5] : Current-CodeSub

code to do[s2] : Current-CodeSub
code to do[s3] : Current-CodeSub
code to do[s4] : Current-CodeSub
code to do[s5] : Current-CodeSub

code faults detected

200

100

0

Time (Day)

Defects
Defects
Defects
Defects
Defects

Defects Defects Defects
code faults corrected[s2] : Current-CodeSub Defects

code faults corrected[s3] : Current-CodeSub Defects
code faults corrected[s4] : Current-CodeSub
code faults corrected[s5] : Current-CodeSub

Defects
Defects

code faults pending[s2] : Current-CodeSub Defects

code faults pending[s3] : Current-CodeSub Defects
code faults pending[s4] : Current-CodeSub
code faults pending[s5] : Current-CodeSub

Defects
Defects

code faults undetected[s2] : Current-CodeSub Defects

code faults undetected[s3] : Current-CodeSub
code faults undetected[s4] : Current-CodeSub
code faults undetected[s5] : Current-CodeSub

Defects
Defects
Defects

code doc

Time (Day)

code faults pending

80

40

0

Time (Day)

code faults corrected

200

100

0

Time (Day)

code faults undetected

100

50

0

0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
Time (Day)

Fig. 13 Simulation outputs for concurrently coding five sub-systems

146 M. Müller and D. Pfahl

Event-driven simulation techniques take a complementary perspective when
modelling the generic artefact development and verification process introduced in
Sect. 6.1. For example, instead of modelling the artefact as one monolithic
 document, e.g., of size 200 KLOC in the case of the code document, event-driven
simulation models individual code units as single items which are routed through a
sequence of processing stations, e.g., a station for development and a station for
verification. These items have several attributes, e.g., size, state, number of defects
(injected, detected, corrected), etc. The list of attributes can be extended or refined,
e.g., by introducing attributes to distinguish defect types and severity classes. The
attribute information determines, for example, the processing time in the develop-
ment and verification stations, and the routing of an item after leaving a station.

DefectsCode Development View (1C)
200 600

150

100

50

0
0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100

Time (Day)

KLOC Code Quality View (3C)

450

300

150

0

Time (Day)

code faults detected

code faults corrected
code faults
undetected

code doc

code to do
code faults
pending

Fig. 14 Aggregated simulation outputs for concurrent coding of five sub-systems

800

600

400

200

0

Defects

30 60 90 120 150 180 210 240 270 300

undetected
corrected

detected
injected

1 Design 140

542

428

114

800

600

400

200

0

0
Time (Day)

undetected

pending

corrected

detected

injected

96 Coding 174
654

522

132

Fig. 15 Aggregated simulation outputs for concurrent sub-system design and module coding

5. Simulation Methods 147

What distinguishes DE simulation from SD simulation is the degree of
model detail, the model representation, and the logic underlying the computa-
tion of model states. DE simulation modelling is very flexible and easily
 adaptable when it becomes necessary to add or change attributes of entities.
Moreover, in DE simulation it is possible to model the behaviour of distinct
real-world entities (e.g., artefacts, resources) of the same type individually,
while SD typically models the average behaviour of a large number of entities
of the same type. The possibility of subscripting mitigates this limitation of SD
only to some extent.

One disadvantage of DE simulation comes as a downside of its ability to
 capture many details. DE simulation tools like, for example EXTEND®, offer a
large number of different modelling constructs, often specifically tailored to
manufacturing processes. Although these blocks are reusable in several contexts,
more training is needed for the modeller to become familiar with the variety of
options and they have to be adapted to capture software development processes.
While DE simulation is capable to model production processes in greater detail,
SD simulation models can capture not only the “mechanical” aspects of software
development processes (which mainly consist of writing and checking different
types of documents), but also the cause-effect mechanisms underlying the process
behaviour. This includes the flow of information, which is important in software
engineering, in contrast to material flows. Typically, information about these
cause-effect relationships are part of the (mostly implicit) mental models of
 managers or decision makers, and contain intangible concepts like learning
(cf. variable code learning state in the example above), motivation, stress, com-
munication, decision policies, etc.

7. Practical Aspects

As a cautionary note it is well to remember that simulation has limitations and is
not a “silver bullet.” The predictive power of simulation strongly depends on the
degree of model validity. While many scientific and engineering fields base their
models on established physical laws, organizational models contain human aspects
and intangible processes. This leads to two problems: It is difficult to gather data
from human actors and it is very costly and sometimes not feasible to reproduce
simulated scenarios in reality for the purpose of model validation.

Simulation is a simplification of the real world, and is thus inherently an approx-
imation. As indicated in (Robertson, 1997) it is impossible to prove a priori the
correctness of a simulation model that aims at generating previously unobserved
and potentially unexpected behaviour. Thus, model verification and validation must
be concerned with creating enough confidence in a model for its results to be
accepted. This is done by trying to prove that the model is incorrect. The more tests
that are performed in which it cannot be proved that the model is incorrect, the
more increases confidence in the model.

148 M. Müller and D. Pfahl

Finally, one should not forget that simulation is neither a means in itself (it needs
to be followed by action) nor does it generate new ideas. It is still the software
manager’s and simulation modeler’s task to be creative in generating new scenarios
for simulation, and in applying the simulation results to improve real-world
 processes. Simulation does not automatically produce new facts such as knowledge-
based expert systems do (e.g., through inference).

8. The Future of Simulation in Software Engineering

The application of simulation techniques, in particular process simulation tech-
niques, offers several interesting perspectives for improving management and
learning in software organizations.

Business simulator-type environments (micro-worlds) can confront managers
with realistic situations that they may encounter in practice. Simulation allows the
rapid exploration of micro-worlds, without the risks associated with real-world
interventions and provides visual feedback of the effects of managers’ decisions
through animation. Simulation increases the effectiveness of the learning process,
because trainees quickly gain hands-on experience. The potential of simulation
models for the training of managers in other domains than software engineering has
long been recognized (Lane, 1995). Simulation-based learning environments also
have the potential to play an important role in software management training and
education of software engineers, in particular if they are offered as web-based
(possibly distributed multi-user) applications.

Analyzing a completed project is a common means for organizations to learn
from past experience, and to improve their software development process (Birk et
al., 2002). Process simulation can facilitate post-mortem analysis. Models facilitate
the replaying of past projects, diagnose management errors that arose, and investi-
gate policies that would have supplied better results. To avoid having a software
organization reproduce – and amplify – its past errors, it is possible to identify
optimal values for measures of past project performance by simulation, and record
these values for future estimation, instead of using actual project outcomes that
reflect inefficient policies (Abdel-Hamid, 1993).

To further increase the usage (and usability) of simulation techniques in soft-
ware engineering, the time and effort needed for model building must further be
reduced. One step in this direction is to provide adaptable software process simula-
tion frameworks. Similar to the process simulation reference model described
above, these frameworks can be used like a construction kit with reusable model
components. Supporting tools and methodological guidance must accompany
reuse-based simulation modelling. Furthermore, simulation tools should be con-
nected to popular project planning and tracking tools to decrease the effort of model
parameterization and to increase their acceptance by software practitioners. As
more and more companies improve their development process maturity, it is also
expected that process simulation will gain more attention in industry.

5. Simulation Methods 149

References

Abdel-Hamid TK (1993) Adapting, Correcting and Perfecting Software Estimates: a Maintenance
Metaphor. IEEE Computer 20–29.

Abdel-Hamid TK, Madnick SE (1991) Software Projects Dynamics – an Integrated Approach,
Prentice-Hall, Englewood Cliffs, NJ.

Andersson C, Karlsson L, Nedstam J, Höst M, Nilsson BI (2002) Understanding Software Processes
through System Dynamics Simulation: A Case Study, In: Proceedings of 9th IEEE International
Conference and Workshop on the Engineering of Computer-Based Systems, pp 41–48.

Aranda RR, Fiddaman T, Oliva R (1993) Quality Microworlds: Modeling the Impact of Quality
Initiatives Over the Software Product Life Cycle. American Programmer 52–61.

Balci O (2003) Verification, Validation, and Certification of Modelling and Simulation
Applications. In: Proceedings of the 2003 Winter Simulation Conference, pp 150–158.

Bandinelli S, Fuggetta A, Lavazza L, Loi M, Picco GP (1995) Modeling and Improving an
Industrial Software Process. IEEE Transactions on Software Engineering 21(5): 440–453.

Banks J, Carson JS, Nelson BL (2000) Discrete-Event System Simulation, 3rd edn, MOUS Test
Preparation Guides Series, Prentice-Hall, New York.

Barlas Y (1989) Multiple Tests for Validation of System Dynamics Type of Simulation Models.
European Journal of Operational Research 42: 59–87.

Birk A, Dingsøyr T, Stålhane T (2002) Postmortem: Never Leave a Project without It. IEEE
Software 19(3): 43–45.

Birkhölzer T, Dantas L, Dickmann C, Vaupel J (2004) Interactive Simulation of Software
Producing Organization’s Operations based on Concepts of CMMI and Balanced Scorecards.
In: Proceedings 5th International Workshop on Software Process Simulation Modeling
(ProSim), Edinburgh, Scotland, pp 123–132.

Briand LC, Pfahl D (2000) Using Simulation for Assessing the Real Impact of Test-Coverage on
Defect-Coverage. IEEE Transactions on Reliability 49(1): 60–70.

Briand LC, Labiche Y, Wang Y (2004) Using Simulation to Empirically Investigate Test
Coverage Criteria Based on Statechart. In: Proceedings of International Conference on
Software Engineering (ICSE), pp 86–95.

Cartwright M, Shepperd M (1999) On Building Dynamic Models of Maintenance Behavior. In:
Kusters R, Cowderoy A, Heemstra F, van Veenendaal E. (eds.) Project Control for Software
Quality, Shaker Publishing, Maastricht.

Cellier FE (1991) Continuous System Modeling, Springer Press, New York.
Chen Y, Gannod GC, Collofello JS (2005) A Software Product Line Process Simulator. In:

Proceedings of 6th International Workshop on Software Process Simulation and Modeling
(ProSim), pp 102–109.

Choi SJ, Scacchi W (2001) Modeling and Simulating Software Acquisition Process Architectures.
Journal of Systems and Software 59(3): 343–354.

Christie AM (1999a) Simulation: An Enabling Technology in Software Engineering. CROSSTALK
– The Journal of Defense Software Engineering 12(4): 25–30.

Christie AM (1999b) Simulation in Support of CMM-Based Process Improvement. Journal of
Systems and Software 46(2/3): 107–112.

Christie AM, Staley MJ (2000) Organizational and Social Simulation of a Requirements
Development Process. Software Process Improvement and Practice 5: 103–110.

Coyle RG (1996) System Dynamics Modelling – A Practical Approach, Chapman & Hall, London.
Dantas A, de Oliveira Barros M, Lima Werner CM (2004) A Simulation-Based Game for Project

Management Experiential Learning. In: Proceedings of 16th International Conference on
Software Engineering & Knowledge Engineering (SEKE), pp 19–24.

Drappa A, Ludewig J (1999) Quantitative Modeling for the Interactive Simulation of Software
Projects. Journal of Systems and Software 46(2/3): 113–122.

Drappa A, Deininger M, Ludewig J (1995) Modeling and Simulation of Software Projects. In:
Proceedings of 20th Annual Software Engineering Workshop, Greenbelt, MD, USA, pp 269–275.

150 M. Müller and D. Pfahl

Extend (2006) http://www.imaginethatinc.com/ (accessed on March 22, 2006).
Fernström C (1993) PROCESS WEAVER: Adding Process Support to UNIX. In: Proceedings of

2nd International Conference on the Software Process (ICSP), pp 12–26.
Ferreira S, Collofello J, Shunk D, Mackulak G, Wolfe P (2003) Utilization of Process Modeling

and Simulation in Understanding the Effects of Requirements Volatility in Software
Development. In: Proceedings 4th Software Process Simulation Modeling Workshop
(ProSim), Portland, USA.

Forrester JW (1961) Industrial Dynamics. Productivity Press, Cambridge.
Forrester JW, Senge P (1980) Tests for Building Confidence in System Dynamics Models. In:

Forrester JW et al. (eds.) System Dynamics, North-Holland, New York.
Gruhn V, Saalmann A (1992) Software Process Validation Based on FUNSOFT Nets. In Proceedings

of 2nd European Workshop on Software Process Technology (EWSPT), pp 223–226.
Häberlein T (2003) A Framework for System Dynamic Models of Software Acquisition Projects. In:

Proceedings 4th Software Process Simulation Modeling Workshop (ProSim), Portland, USA.
Häberlein T, Gantner T (2002) Process-Oriented Interactive Simulation of Software Acquisition

Projects. In: Proceedings of First EurAsian Conference on Information and Communication
Technology (EurAsia-ICT), LNCS 2510, Shiraz, Iran, pp 806–815.

Höst M, Regnell B, Dag J, Nedstam J, Nyberg C (2001) Exploring Bootlenecks in Market-Driven
Requirements Management Processes with Discrete Event Simulation. Journal of Systems and
Software 59(3): 323–332.

Houston DX (2003) A Case Study in Software Enhancements as Six Sigma Process Improvements:
Simulating Productivity Savings. In: Proceedings of 4th Software Process Simulation
Modeling Workshop (ProSim), Portland, USA.

Houston DX, Mackulak GT, Collofello JS (2001) Stochastic Simulation of Risk Factor Potential Effects
for Software Development Risk Management. Journal of Systems and Software 59(3): 247–257.

Huang Y, Madey GR (2005) Autonomic Web-Based Simulation. In: Proceedings of Annual
Simulation Symposium 2005, pp 160–167.

Humphrey WS, Kellner MI (1989) Software Process Modeling: Principles of Entity Process
Models. In: Proceedings of 11th International Conference on Software Engineering (ICSE),
Pittsburg, PA, USA, pp 331–342.

Kellner MI, Hansen GA (1989) Software Process Modeling: A Case Study. In: Proceedings of
22nd Annual Hawaii International Conference on System Sciences, Vol. II – Software Track,
pp 175–188.

Kellner MI, Madachy RJ, Raffo DM (1999) Software Process Simulation Modeling: Why? What?
How?. Journal of Systems and Software 46(2/3): 91–105.

Kuipers B (1986) Qualitative Simulation. Artificial Intelligence 29(3): 289–338.
Kuppuswami S, Vivekanandan K, Rodrigues P (2003) A System Dynamics Simulation Model to

Find the Effects of XP on Cost of Change Curve. In: Proceedings of 4th International
Conference on Extreme Programming and Agile Processes in Software Engineering (XP),
LNCS 2675, pp 54–62.

Lane DC (1995) On a Resurgence of Management Simulation Games. Journal of the Operational
Research Society 46: 604–625.

Law A, Kelton WD (1999) Simulation Modeling and Analysis, 3rd edn, McGraw-Hill, New York.
Lee B, Miller J (2004) Multi-Project Management in Software Engineering Using Simulation

Modeling. Software Quality Journal 12: 59–82.
Lerch FJ, Ballou DJ, Harter DE (1997) Using Simulation-Based Experiments for Software

Requirements Engineering. Annals of Software Engineering 3: 345–366.
Lin CY, Abdel-Hamid TK, Sherif J (1997) Software-Engineering Process Simulation Model

(SEPS). Journal of Systems and Software 38(3): 263–277.
Madachy RJ (1996) System Dynamics Modeling of an Inspection-Based Process. In: Proceedings

18th International Conference on Software Engineering (ICSE), Berlin, Germany, IEEE
Computer Society Press, pp 376–386.

Madachy RJ, Tarbet D (2000) Case Studies in Software Process Modeling with System Dynamics.
Software Process Improvement and Practice 5: 133–146.

5. Simulation Methods 151

Madey G, Freeh V, Tynan R (2002) Agent-Based Modeling of Open Source using Swarm. In:
Proceedings of Americas Conference on Information Systems (AMCIS), Dallas, TX, USA, pp
1472–1475.

Martin R, Raffo D (2001) Application of a Hybrid Process Simulation Model to a Software
Development Project. The Journal of Systems and Software 59: 237–246.

McCabe B (2003) Monte Carlo Simulation for Schedule Risks. In: Proceedings of the 2003 Winter
Simulation Conference, pp 1561–1565.

Mi P, Scacchi W (1990) A Knowledge-Based Environment for Modeling and Simulating Software
Engineering Processes. IEEE Trans. Knowledge Data Engineering 2(3): 283–294.

Mišic VB, Gevaert H, Rennie M (2004) Extreme Dynamics: Towards a System Dynamics
Model of the Extreme Programming Software Development Process. In: Proceedings 5th
International Workshop on Software Process Simulation Modeling (ProSim), Edinburgh,
Scotland, pp 237–242.

Mizuno O, Kusumoto S, Kikuno Y, Takagi Y, Sakamoto K (1997) Estimating the Number of
Faults Using Simulator Based on Generalized Stochastic Petri-Net Model, In: Proceedings of
the Asian Test Symposium (ATS), pp 269–274.

Müller M (2007) Analyzing Software Quality Assurance Strategies through Simulation,
Fraunhofer IRB, Stuttgart, pp 262.

Münch J, Rombach HD, Rus I (2003) Creating an Advanced Software Engineering Laboratory by
Combining Empirical Studies with Process Simulation. In: Proceedings 4th Process Simulation
Modeling Workshop (ProSim), Portland, USA.

Münch J, Pfahl D, Rus I (2005) Virtual Software Engineering Laboratories in Support of Trade-off
Analyses. Software Quality Journal 13(4): 407–428.

Neu H, Hanne T, Münch J, Nickel S, Wirsen A (2002) Simulation-Based Risk Reduction for
Planning Inspections. In: Oivo M, Komi-Sirviö S (eds.) Proceedings 4th International
Conference on Product Focused Software Process Improvement (PROFES), LNCS 2559,
Springer Press, Berlin, pp 78–93.

Oh Navarro E, van der Hoek A (2004) SIMSE: An Interactive Simulation Game for Software
Engineering Education. In: Proceedings 7th IASTED International Conference on Computers
and Advanced Technology in Education (CATE), pp 12–17.

Padberg F (2006) A Study on Optimal Scheduling for Software Projects. Software Process
Improvement and Practice 11(1): 77–91.

Pfahl D (2005) ProSim/RA – Software Process Simulation in Support of Risk Assessment. In:
Biffl S, Aurum A, Boehm B, Erdogmus H, Grünbacher P (eds.) Value-based Software
Engineering, Springer Press, Berlin, pp 263–286.

Pfahl D, Lebsanft K (2000) Knowledge Acquisition and Process Guidance for Building System
Dynamics Simulation Models: An Experience Report from Software Industry. International
Journal of Software Engineering and Knowledge Engineering 10(4): 487–510.

Pfahl D, Ruhe G (2002) IMMoS – A Methodology for Integrated Measurement, Modeling, and
Simulation. Software Process Improvement and Practice 7: 189–210.

Pfahl D, Klemm M, Ruhe G (2001) A CBT Module with Integrated Simulation Component for
Software Project Management Education and Training. Journal of Systems and Software
59(3): 283–298.

Pfahl D, Ruhe G, Lebsanft K, Stupperich M (2006) Software Process Simulation with System
Dynamics – A Tool for Learning and Decision Support. In: Acuña ST, Sánchez-Segura MI
(eds.) New Trends in Software Process Modelling, Series on Software Engineering and
Knowledge Engineering, Vol. 18, World Scientific, Singapore, pp 57–90.

Pidd M (2004) Computer Simulation in Management Science, 5th edn, Wiley, New York, pp 328.
Powell A, Mander K, Brown D (1999) Strategies for Lifecycle Concurrency and Iteration: A

System Dynamics Approach. Journal of Systems and Software 46(2/3): 151–162.
Raffo DM, Kellner MI (2000) Analyzing the Unit Test Process Using Software Process Simulation

Models: A Case Study. In: Proceedings 3rd Software Process Simulation Modeling Workshop
(ProSim), London, UK.

Raffo DM, Vandeville JV, Martin RH (1999) Software Process Simulation to Achieve Higher
CMM Levels. Journal of Systems and Software 46(2/3): 163–172.

152 M. Müller and D. Pfahl

Raffo DM, Nayak U, Setamanit S, Sullivan P, Wakeland W (2004) Using Software Process Simulation
to Assess the Impact of IV&V Activities. In: Proceedings 5th International Workshop on Software
Process Simulation Modeling (ProSim), Edinburgh, Scotland, pp 197–205.

Richardson GP (1991) Feedback Thought in Social Science and Systems Theory, University of
Pennsylvania Press, Philadelphia, PA, USA.

Robertson S (1997) Simulation Model Verification and Validation: Increase the Users’
Confidence. In: Proceedings of the 1997 Winter Simulation Conference, pp 53–59.

Roehling ST, Collofello JS, Hermann BG, Smith-Daniels DE (2000) System Dynamics Modeling
Applied to Software Outsourcing Decision Support. Software Process Improvement and
Practice 5: 169–182.

Rose P, Kramer M (1991) Qualitative Analysis of Causal Feedback. In: Proceedings of 9th
National Conference on Artificial Intelligence (AAAI), pp 817–823.

Ruiz M, Ramos I, Toro M (2004) Using Dynamic Modeling and Simulation to Improve the COTS
Software Process. In: Proceedings 5th International Conference on Product Focused Software
Process Improvement (PROFES), Kyoto, Japan, pp 568–581.

Rus I (2002) Combining Process Simulation and Orthogonal Defect Classification for Improving
Software Dependability. In: Proceedings 13th International Symposium on Software Reliability
Engineering (ISSRE), Annapolis.

Rus I, Collofello C, Lakey P (1999) Software Process Simulation for Reliability Management.
Journal of Systems and Software 46(2/3): 173–182.

Rus I, Biffl S, Hallig M (2002) Systematically Combining Process Simulation and Empirical Data
in Support of Decision Analysis in Software Development. In: Proceedings of the 14th
International Conference on Software Engineering and Knowledge Engineering (SEKE),
Ischia, Italy, pp 827–833.

Rus I, Neu H, Münch J (2003) A Systematic Methodology for Developing Discrete Event
Simulation Models of Software Development Processes. In: Proceedings 4th International
Workshop on Software Process Simulation and Modeling (ProSim), Portland, Oregon, USA.

@Risk (2007) @Risk Simulation Software: http://www.palisade-europe.com/ (accessed on June
26, 2007).

Sargent R (2003) Verification and Validation of Simulation Models. In: Proceedings of 2003
Winter Simulation Conference, pp 37–48.

Scacchi W, Boehm B (1998) Virtual Systems Acquisition: Approach and Transitions, Acquisition
Review Quarterly 5(2): 185–216.

Setamanit S, Wakeland W, Raffo DM (2006) Exploring the Impact of Task Allocation Strategies
for Global Software Development Using Simulation. In: Wang Q, Pfahl D, Raffo DM,
Wernick P (eds.) Software Process Change – SPW/ProSim 2006, Shanghai, China, May 2006,
Proceedings (LNCS 3966), Springer, Berlin, Heidelberg, pp 274–285.

Smith N, Capiluppi A, Ramil JF (2005) A Study of Open Source Software Evolution Data Using
Qualitative Simulation. Software Process: Improvement and Practice 10(3): 287–300.

Stallinger F, Grünbacher P (2001) System Dynamics Modeling and Simulation of Collaborative
Requirements Engineering. Journal of Systems and Software 59: 311–321.

Tvedt JD, Collofello JS (1995) Evaluating the Effectiveness of Process Improvements on
Development Cycle Time via System Dynamics Modeling. In: Proceedings Computer Science
and Application Conference (COMPSAC), pp 318–325.

Vensim (2006) http://www.vensim.com/ (accessed on March 22, 2006).
Waeselynck H, Pfahl D (1994) System Dynamics Applied to the Modeling of Software Projects.

Software Concepts and Tools 15(4): 162–176.
Wakeland W, Martin RH, Raffo D (2003) Using Design of Experiments, Sensitivity Analysis, and

Hybrid Simulation to Evaluate Changes to a Software Development Process: A Case Study.
In: Proceedings of 4th Process Simulation Modelling Workshop (ProSim), Portland, USA.

Wernick P, Hall T (2004) A Policy Investigation Model for Long-Term Software Evolution
Processes. In: Proceedings of 5th International Workshop on Software Process Simulation
Modeling (ProSim), Edinburgh, Scotland, pp 149–158.

Williford J, Chang A (1999) Modeling the FedEx IT Division: A System Dynamics Approach to
Strategic IT Planning. Journal of Systems and Software 46(2/3): 203–211.

Section II
Practical Foundations

Chapter 6
Statistical Methods and Measurement

Jarrett Rosenberg

Abstract Useful ways of measuring software engineering phenomena have to
address two challenges: defining realistic and valid metrics that can feasibly be col-
lected under the constraints and time pressures of real-world software development
contexts, and determining valid and accurate ways of analysing the resulting data
to guide decisions. Too often, the difficulties of addressing the first challenge mean
that the second is given little attention. The purpose of this chapter is to present dif-
ferent techniques for the definition and analysis of metrics such as product quality
data. Specifically, statistical issues in the definition and application of metrics are
presented with reference to software engineering examples.

1. Introduction

Measurement is ubiquitous in software engineering, whether for management,
 quality assurance, or research purposes. Effectively creating and using measure-
ments is critical to success in these areas, yet there is much confusion and
 misunderstanding about the best way in which to define, collect, and utilize them.
This chapter discusses the purpose of measurement and statistical analysis in
 software engineering research and development, and the problems researchers and
practitioners face in using these methods effectively; rather than a “how-to,” it is a
“when-to.” Section 2 discusses some fundamental issues in measurement and the
context of measurement. A number of the issues in this section are discussed in
the ISO/IEC 15939 standard, Information Technology – Software Measurement
Process. Section 3 discusses two basic aspects of creating effective measures: metric
 definition and metric evaluation. Sections 4 and 5 covers methods for description,
 comparison, and prediction for simultaneous and successive measurements,
 respectively, whether categorical or numeric. Section 6 returns to the context of
measurement in discussing the important topic of data quality.

155

F. Shull et al. (eds.), Guide to Advanced Empirical Software Engineering.
© Springer 2008

156 J. Rosenberg

2. Statistics and Measurement

Measurement is the process of assigning labels (typically numbers) to an attribute of an
object or action in such a way that the characteristics of the attribute are mirrored in the
characteristics of the labels. The assignment process and the resulting numbers are
called a measurement scale or metric. The reverse process is an interpretive one, and
thus if the measurement scale is inappropriate, then the corresponding interpretations of
its values will be incorrect. In using the terms “measurement” and “metric”, it is usually
clear from context whether the process or numerical result is being referred to.

The name “statistics” reflects the origin of the field in the collection of
 demographic and economic information important to the government of the modern
nation state. Such measures as the size of the population, the birth rate, and the
annual crop yield became important inputs to decision making. The term descriptive
statistics applies to such measures, whether simple or complex, that describe some
variable quantity of interest. Over the past century and a half, the field of inferential
statistics has been developed to allow conclusions to be drawn from the comparison
of the observed values of descriptive statistics to other real or hypothesized values.
These inferential methods require some assumptions in order to work, and much of
statistical theory is devoted to making those assumptions as flexible as possible in
order to fit real-world situations.

2.1. Statistical Analysis and the Measurement Process

Statistical analysis necessarily assumes some measurement process that provides
valid and precise measurements of some process of interest, as shown in Fig. 1.
The results of the statistical analysis are themselves the prerequisite to a decision-

The Process Being Studied

The Measurement Process

The Statistical Process

The Decision Process

Fig. 1 The roles of the measurement and statistical processes

6 Statistical Methods and Measurement 157

 making process which in turn affects the process of interest, the measurements
made on it, and the analyses done on those measurements. It is often the case that
too little thought is given to the multi-level nature of this situation: measurements
are made because it is possible to do so, statistical analyses are done in a formulaic
way, and decisions are made with little data or analysis. In the area of software
metrics, Basili et al. (1994) created the “Goal/Question/Metric” framework, which
emphasizes that every metric collected must be defined so as to answer some
 specific question, and every question posed must be relevant to some decision-
 making goal. This ensures that the entire process depicted in Fig. 1 remains aligned
with the overall goal: studying a process in order to make various decisions about
it (whether research conclusions or process improvements).

The reason for dwelling on such a banal topic is precisely because it is so often
taken for granted; problems with any of these processes or the relations between them
become easily lost in the assumption that the overall scheme of things is functioning
correctly. Yet if the statistical process is not functioning properly (e.g., incorrect
 analyses are being performed) decisions will be made on the basis of incorrect analysis
and bad outcomes may be misattributed to the decision-making process rather than
its statistical inputs. Similarly, it is typically assumed that the measurement process is
functioning correctly and that the data it provides are accurate and valid enough to
make a statistical analysis worth doing. As Fig. 1 shows, there is no point to a statistical
analysis if the data going into it come from a measurement process which is malfunc-
tioning. This involves not only the nature of the measurements involved (discussed in
Sect. 3), but also the quality of data obtained.

2.2. The Context of Measurement

While the context of measurement is typically taken for granted and not examined, it
nevertheless has a serious impact on the nature and quality of the measurements.

First, the meaning of measurements will vary depending on whether they derive
from observation or experiment. If the former, questions of potential bias arise due to
various sampling difficulties discussed below. Experiments, on the other hand, while
potentially giving precise measurements under controlled conditions, may suffer
from a lack of generalizability if they are not carefully designed and interpreted.

Second, it is often the case that the available measurements are not immediately
connected with the phenomena of interest: the measures may be what are termed
“leading” or “lagging” indicators. The former are highly desirable for forecasting,
but the latter are more common; both cases are problematic in steering an organiza-
tion, because the cause and effect are so separated in time. For example, “number
of customer-reported software defects” might seem to be a good metric for
 evaluating the performance of a software development organization, but it is usually
the case that today’s customer complaint stems from a defect introduced months or
years ago, perhaps by a different set of developers. Similarly, customer satisfaction
is typically measured and goaled on an annual or quarterly basis, but it lags a

158 J. Rosenberg

 company’s products and services typically by several years. Leading/lagging
 measures are thus difficult to use in managing day-to-day operations.

Third, while measurements are presumably for a purpose, they can often take on
a life of their own, produced because someone once decreed they should be pro-
duced, but with no-one paying much attention to them because the rationale has
been lost, or is no longer meaningful. Worse, the measurement process can have
side-effects, where the numbers are “massaged” or the work process altered in
order to produce the “right” results.

Finally, good measurements are actionable; they can be used to do something.
Measurements made for measurement’s sake are worse than useless: they divert
resources from the real problems. A single global measure of customer satisfaction
or product quality may alert management to a problem, but it gives no indication of
what to do. Over time, an organization or researcher will sharpen the questions
asked and the corresponding metrics used; this process forms the most important
context for measurement and analysis.

3. Creating Effective Metrics

Deciding on an appropriate measure or set of measures is neither as easy as it first
appears nor as difficult as it later seems. To be effective, a metric must be clearly
defined, have appropriate mathematical properties, and be demonstrably reasonable
(i.e., precise, reliable, and valid). Above all, however, a metric must be well-
 motivated. To be well-motivated, a metric must provide at least a partial answer to
a specific question, a question which itself is aimed at some particular research or
management goal. For example, how one chooses to measure the time to repair a
defect depends on the kind of question being asked, which could range from
“What is the expected amount of time for a specific class of defects to go from the
initial Reported state to the Repaired state?” to “What percent of all customer-
reported defects are in the Repaired state within two days of being first reported?”
It is usually the case that a single metric is not sufficient to adequately answer even
an apparently simple question; this increases the need to make sure that metrics
and questions are closely connected.

3.1. Defining a Metric

Metrics can be either simple or compound in definition. Simple metrics include counts
(e.g., number of units shipped this year), dimensional measures (e.g., this year’s
 support costs, in dollars), categories (e.g., problem types), and rankings (e.g., problem
severity). Compound metrics are defined in terms of two or more metrics, typically
combined by some simple arithmetic operation such as division (e.g., defects per
 thousand lines of code). The number and type of metrics combined and the method

6 Statistical Methods and Measurement 159

used to combine them affects how easily understood the compound metric will be.
This leads to ratios (e.g., defects per thousand units), rates (time-based ratios such as
number of problem reports per month), proportions or percentages (e.g., proportion of
customers responding “very satisfied” to a survey question), linear algebraic
 combinations (e.g., mean repair cost – the sum of all repair costs divided by the total
number of repairs), and indices (dimensionless measures typically based on a sum and
then standardized to some baseline value). Whereas simple metrics are always defined
in terms of some measurement unit, compound metrics such as percentages and some
linear combinations and indices can be dimensionless.

The definition of a metric affects its behavior (i.e., the likelihood of its taking on
various values), its possible interpretations, and the kinds of analyses which are
 suitable for it. This argues for the use of simpler, more easily understood metrics
rather than the creative development of new, compound ones with poorly understood
behavior. Indices in particular raise serious questions of interpretation and compari-
son, and are best used for showing long-term trends. The range of values a metric can
have does not always follow a bell-shaped Normal curve; for example, durations such
as repair times almost always have a highly skewed distribution whose tail values pull
the mean far from the median. Investigation of the distribution of a metric’s values is
one of the first tasks that must be undertaken in a statistical analysis. Furthermore, the
range of values a measure can take on can be affected by internal or external limitations;
these are referred to as truncation or limitation, and censoring.

Truncation or limitation refers to situations where a measure never takes on a
particular value or range of values. For example, repair time in theory can never
have a value of zero (if it does, the measurement scale is too coarse). Or one may
have results from a survey question which asks for some count, with an “n or more”
response as the highest value; this means that the upper part of the measure is
 truncated artificially. These situations can sometimes be problematic, and special
statistical methods have been developed to handle them (see Long, 1997; Maddala,
1986). A much more difficult case is that of censoring, which occurs with duration
data. If the measure of interest is the time until an event happens (e.g., the time until
a defect is repaired), then there necessarily will be cases where the event has not yet
happened at the time of measurement. These observations are called “censored”
because even though we believe the event will eventually occur and a duration will
be defined, we do not know how long that duration will be (only that it has some
 current lower bound). This problem is often not recognized, and when it is, the typical
response is to ignore the missing values. This unfortunately causes the subsequent
analysis to be biased. Proper analysis of duration data is an extensive sub-area of
 statistics usually termed “survival analysis” (because of its use in medical research);
its methods are essential for analyzing duration data correctly. See Hosmer and
Lemeshow (1999) or Kleinbaum (1996) for a good introduction.

Classical measurement theory (Krantz et al., 1971; Ghiselli et al., 1981) defines
four basic types of measurement scale, depending on what kinds of mathematical
manipulations make sense for the scale’s values. (Additional types have been pro-
posed, but they are typically special cases for mathematical completeness.) The
four are

160 J. Rosenberg

Nominal. The scale values are unordered categories, and no mathematical manipu-
lation makes sense.

Ordinal. The scale values are ordered, but the intervals between the values are not
necessarily of the same size, so only order-preserving manipulations such as
 ranking make sense.

Interval. The scale values are ordered and have equal intervals, but there is no zero
point, so only sums and differences make sense.

Ratio. The scale values are ordered and have equal intervals with a zero point, so
any mathematical manipulation makes sense.

These scale types determine which kinds of analyses are appropriate for a measurement’s
values. For example, coding nominal categories as numbers (as with serial numbers, say)
does not mean that calculating their mean makes any sense. Similarly, measuring the
mean of subjective rating scale values (such as defect severity) is not likely to produce
meaningful results, since the rating scale’s steps are probably not equal in size.

It is important to realize that the definition, interpretation, and resulting analy-
ses of a metric are not necessarily fixed in advance. Given the complexities shown
in Fig. 1, the actual characteristics of a metric are often not entirely clear until after
considerable analysis has been done with it. For example, the values on an osten-
sibly ordinal scale may behave as if they were coming from an underlying ratio
scale (as has been shown for many psychometric measures, see Cliff, 1992). It is
commonly the case that serial numbers are assigned in a chronologically ordered
manner, so that they can be treated as an ordinal, rather than nominal, scale.
Velleman (1993) reports the case where branch store number correlated inversely
with sales volume, as older stores (with smaller store numbers) had greater sales.

There has been much discussion in the software metrics literature about the
implications of measurement theory for software metrics (Zuse, 1990; Shepperd
and Ince, 1993; Fenton and Pfleeger, 1997). Much of this discussion has been
 misguided, as Briand et al. (1996) show. Measurement theory was developed by
scientists to aid their empirical research; putting the mathematical theory first and
the empirical research after is exactly backwards. The prescriptions of measure-
ment theory apply only after we have understood what sort of scale we are working
with, and that is often not the case until we have worked with it extensively.

In practical terms, then, one should initially make conservative assumptions
about a scale’s type, based on similar scales, and only “promote” it to a higher type
when there is good reason to do so. Above all, however, one should avoid uncriti-
cally applying measurement theory or any other methodology in doing research.

3.2. Evaluating a Metric’s Effectiveness

A measure can have impeccable mathematical credentials and still be totally
 useless. It order for it to be effective, a measure needs an adequate amount of preci-
sion, reliability, and validity. One also has to consider its relationships to other

6 Statistical Methods and Measurement 161

measures, as sometimes misleading results can occur when two related measures
are treated as if they were independent.

There are two different concepts sharing the term “measurement precision.” One
concept is that of the size of a metric’s smallest unit (sometimes called its “least
count”). Put another way, it is the number of significant digits that can be reported for it.
For example, measuring someone’s height to the nearest millimeter is absurd, since
the typical error in obtaining the measurement would be at least as large. Similarly,
measuring someone’s height to the nearest meter would be too crude to be of much
value. A common mistake is to forget that the precision of any derived measure,
including descriptive statistics such as the mean, can not be any greater than that of
the original measures, and is almost always less. Thus reporting the average height
of a group of people as 178.537 cm implies that the raw measurements were made at
the accuracy of 10 µm; this is unlikely. Such a result is better reported as simply
179 cm. The arithmetic combination of measures propagates and magnifies the error
inherent in the original values. Thus the sum of two measures has less precision than
either alone, and their ratio even less (see Taylor, 1997; Bevington and Robinson,
1992); this should be borne in mind when creating a compound metric.

The other concept of precision is the inverse of variability: the measurements
must be consistent across repeated observations in the same circumstances. This
property is termed reliability in measurement theory. Reliability is usually easy to
achieve with physical measurements, but is a major problem in measures with even
a small behavioral or subjective component. Rating scales are notorious in this
respect, and any research using them needs to report the test-retest reliability of the
measures used. Reliability is typically quantified by Cronbach’s coefficient alpha,
which can be viewed as essentially a correlation among repeated measurements;
see Ghiselli et al. (1981) for details.

A precise and reliable measure may still be useless for the simple reason that
it lacks validity, that is, it does not in fact measure what it claims to measure.
Validity is a multifaceted concept; while it is conventional to talk about different
types of validity, they are all aspects of one underlying concept. (Note that the
concepts of internal and external validity apply to experiments rather than
measurements.)

Content validity is the degree to which the metric reflects the domain it is
intended to measure. For example, one would not expect a measure of program
complexity to be based on whether the program’s identifiers were written in English
or French, since that distinction seems unrelated to the domain of programming
languages.

Criterion validity is the degree to which a metric reflects the measured object’s
relationship to some criterion. For example, a complexity metric should assign high
values to programs which are known to be highly complex. This idea is sometimes
termed discrimination validity, i.e., the metric should assign high and low values to
objects with high or low degrees of the property in question. In this sense it may be
thought of as a kind of “predictive validity.”

Construct validity is the degree to which a metric actually measures the conceptual
entity of interest. A classical example is the Intelligence Quotient, which attempts

162 J. Rosenberg

to measure the complex and elusive concept of intelligence by a combination of
 measures of problem-solving ability. Establishing construct validity can be quite
difficult, and is usually done by using a variety of convergent means leading to a
preponderance of evidence that the metric most likely is measuring the concept. The
simpler and more direct the concept, the easier it is to establish construct validity;
we have yet to see a generally agreed-upon metric for program complexity, for
example, while number of non-commentary source statements is generally accepted
as at least one valid metric for program size.

Finally, a metric’s effectiveness can vary depending on its context of use, in
 particular, how it is used in combination with other metrics. There are three pitfalls
here. The first is that one can create several ostensibly different metrics, each of
which is precise, reliable, and valid, but which all measure the same construct.
This becomes a problem when the user of the metrics doesn’t realize that they are
redundant. Such redundancy can be extremely useful, since a combination of such
metrics is usually more accurate that any one of them alone, but if they are assumed
to be measuring independent constructs and are entered into a multivariate statisti-
cal analysis, disaster will result, since the measures will be highly correlated rather
than independent. Therefore one of the first tasks to perform in using a set of
 metrics is to ascertain if they are measures of the same or different constructs. This
is usually done with a factor analysis or principal component analysis (see Comrey
and Lee, 1992).

The second pitfall is that if two metrics’ definitions contain some component in
common, then simple arithmetic will cause their values to not be independent of
each other. For example, comparing a pretest score and a difference score (posttest
minus pretest) will yield a biased rather than an adjusted result because the differ-
ence score contains the pretest score as a term. Another example is the comparison
of a ratio with either its numerator or denominator (say, defect density and code
size). Such comparisons may be useful, but they cannot be made with the usual null
hypothesis of no relationship (see Sect. 4.2), because they are related arithmetically.
This problem in the context of measures defined by ratios is discussed by Chayes
(1971), who gives formulas for calculating what the a priori correlation will be
between such metrics.

The third pitfall is failing to realize that some metrics are not of primary
 interest themselves, but are necessary covariates used for adjusting the values of
other metrics. Such measures are known as exposure factors since the greater
their value, the greater the likelihood of a high value on another measure. For
example, in demographics and epidemiology population size is an exposure
 factor, since the larger the population, the larger the number of criminals, art
museums, disease cases, and good Italian restaurants. Similarly, the larger a
source module, the larger the value of any of a number of other metrics such as
number of defects, complexity, etc., simply because there will be more opportu-
nity for them to be observed. Exposure variables are used in a multivariate analy-
sis such as Analysis of Covariance (ANCOVA) or multiple regression to adjust
for (“partial out”) the effect of the exposure and show the true effect of the
remaining factors.

6 Statistical Methods and Measurement 163

3.3. Statistical Analyses

Having defined appropriate metrics and ensured that data is properly collected, the
focus shifts to the question of how to appropriately analyze the data obtained. There
are three principal statistical tasks involved: description, comparison, and predic-
tion. It is useful to discuss separately the analyses appropriate to dynamic or
 temporal data, i.e., data which have time as a fundamental aspect, from static data,
which do not; however, all statistical analyses have some aspects in common.

The prerequisite for any data analysis is data cleaning: the auditing of the data for
complete and accurate values. This step typically takes at least as much time, if not
more, than the application of the statistical techniques themselves. Often data quality
problems prevent many of the intended statistical analyses from being carried out, or
create so much uncertainty about the validity of their results as to render them useless.
It is usually possible to gather some information from even poor quality data, but an
initial investment in data quality pays for itself in the ability to do more – and more
useful – analyses later. We will return to this issue in Sect. 6.

Statistical analyses are all based on models of the underlying data-generating
process; these models can be simple or complex, and can make more or fewer
assumptions. Parametric models assume specific functional forms such as the
Normal distribution for univariate data, or a linear regression equation for multi-
variate data. The parameters of these functional forms are estimated from the data
and used in producing descriptive statistics such as the standard error of the mean,
or inferential statistics such as the t-statistic used to test for a difference between
two means. Because they make stronger assumptions, parametric models can be
more useful – if the assumptions are true. If they are not true, biased or even wildly
inaccurate results are possible. Non-parametric models make few assumptions
(typically that the data are unimodal and roughly symmetrical in distribution) and
thus can be used in almost any situation. They are also more likely to be accurate
at very small sample sizes than parametric methods. The price for this generality is
that they are not as efficient as parametric tests when the assumptions for the latter
are in fact true, and they are usually not available for multivariate situations.

In the same way that a phenomenon typically cannot be captured by a single
metric, a statistical analysis typically cannot be done by conducting one test alone.
A good data analyst looks at the data from a variety of different perspectives, with
a variety of different methods. From this a picture gradually emerges of what is
going on. A word of caution, however: the conventional p-value of 0.05 represents
a “false positive” or spurious result rate of 1 in 20. This means that the more statisti-
cal tests that are performed, the more likely it is that some of them will be falsely
significant (a phenomenon sometimes called “capitalization on chance”). Large
correlation matrices are a good example of the phenomenon; to see why, compute
the 20 × 20 correlation matrix among 20 samples of 100 uniform random numbers:
of the 190 unique correlations, how many are statistically significant at the 0.05
level? It is thus seriously misleading to do dozens of tests and then report a result
with a p-value of 0.05. The usual way of correcting for doing such a large number

164 J. Rosenberg

Fig. 2 Two very different samples with the same mean and standard deviation

of tests is to lower the p-value to a more stringent level such as 0.01 or even 0.001.
The most common way of reducing the false positive rate among multiple tests is
called the Bonferroni procedure; it and several improvements on it such as the
Scheffé and Tukey methods are described in Keppel (1991). Often preferable to
multiple univariate tests is a single multivariate analysis.

4. Analyzing Static Measurement Data

4.1. Description

The first step in any statistical analysis is data description, and the first step of data
description is to simply look at the data. Figure 2 shows the histograms for two
different samples with the same mean and standard deviation; without looking at
these histograms, one would think from their descriptive statistics that both samples
were from the same population. Looking at the distribution of values for a metric
allows one to check for most frequent values (modes), outliers, and overall symmetry
of the distribution. If a distribution is skewed by a few extreme values (large or
small), many widely used statistics become misleading or invalid. For example, the
mean and standard deviation are much more sensitive to extreme values than
the median or percentiles, and so the mean of a skewed distribution will be far from
the median and therefore a somewhat misleading measure of central tendency. Thus
looking at the data allows us to determine which descriptive statistics are most
appropriate.

As pointed out above, descriptive statistics such as point estimates are subject to
error; it is important to quantify this error so that the precision of the point estimate can
be determined. The standard error of an estimate is a common way of representing

6 Statistical Methods and Measurement 165

the precision of an estimate; the range of values two standard errors on either side of
the estimate delimit the 95% confidence interval for that estimate, i.e., the interval
within which the true value of the parameter being estimated will fall 95% of the time.
A wide confidence interval indicates that the estimate is not very precise, thus
 knowing the precision is useful for gauging an estimate’s value in decision making.
The standard error increases as the sample size decreases, and the resulting impreci-
sion in estimates is what makes very small samples so problematic.

4.1.1. Measures of Central Tendency

The main feature of interest in a sample of non-temporal data is its “center of
mass”. For a roughly symmetric distribution, this will be essentially the same value
as its mode (most frequent value) and its median (50th percentile or midpoint).
The arithmetic mean is the most commonly used measure of central tendency
because of its intuitive definition and mathematical usefulness, but it is seriously
affected by extreme values and so is not a good choice for skewed data. The median
by definition always lies at the point where half the data are above it and half below,
and thus is always an informative measure (indeed, a simple check for skewness in
the data is to see how far the mean is from the median). The reason the median is
not used more often is that it is more complicated to calculate and much more
complicated to devise statistical methods for. When dealing with rates, the geometric
mean (the nth root of the product of the n data values) more accurately reflects the
average of the observed values.

4.1.2. Measures of Dispersion

Since two entirely different distributions can have the same mean, it is imperative to
also include some measure of the data’s dispersion in any description of it. The range
of the values (the difference between the highest and lowest values) is of little use
since it conveys little about the distribution of values in between. The natural measure
for distributions characterized by the arithmetic mean is the variance, the sum of
the squared deviations about the mean, scaled by the sample size. Since the variance
is in squared units, the usual measure reported is its square root, the standard deviation,
which is in the same measurement units as the mean. Analogues to the standard
 deviation when the median rather than the mean is used are the values of the first and
third quartiles (i.e., the 25th and 75th percentiles) or the semi-interquartile range,
which is half the difference between the first and third quartiles. These give a measure
of the dispersion that is relatively insensitive to extreme values, just like the median.
Another useful measure of dispersion is the coefficient of variation (CV), which is
simply the standard deviation divided by the mean. This gives some indication of how
spread out the values are, adjusted for their overall magnitude. In this sense, the
 coefficient of variation is a dimensionless statistic which allows direct comparison of
the dispersion of samples with different underlying measures (for example, one could

166 J. Rosenberg

compare the CV for cyclomatic complexity with the CV for module length, even
though they are measured in totally different units).

4.1.3. Measures of Association

The most common measure of association between two measures is the correlation
coefficient, which is a standardized way of describing the amount by which they
 covary. The correlation coefficient, r, is the square root of the amount of shared
 covariation between the two measures; thus while r2 is an easily interpreted ratio
measure (an r2 of 0.4 is half that of an r2 of 0.8), correlation coefficients are non-
 linear: an r of 0.4 is not half that of an r of 0.8, but only one-quarter as large. Because
they are adjusted for the amount of variation present in the variables being correlated,
correlation coefficients among different sets of measures can be compared. However, cor-
relation coefficients are sensitive to the range of variation present in each variable; in
particular, large differences in the two ranges of variation place an a priori limit on
the size of r. Thus, special forms of correlation coefficient have been developed for
the cases like that of a binary and a continuous variable.

4.1.4. Categorical Data

Categorical data come in two basic kinds: binomial data, where there are only two
categories, and multinomial data, where there are more than two. Description of
categorical data is typically done by means of the proportion or percentage of the
total each category comprises. While pie charts are a common graphical representa-
tion, histograms or polar charts (also called Kiviat diagrams or star plots) are more
 accurately read (Cleveland, 1994). It is important to not report proportions or
 percentages of small samples to a greater degree of precision than the data warrant:
11 out of 63 cases is not 17.46%, because the smallest percentage that can be
observed in a sample of 63 (i.e., one individual) constitutes more than one percent
of the sample.

There are a variety of measures of association between two categorical variables
(as long as the categories can be considered ordered), see Goodman and Kruskal
(1979); all of them can be thought of as special instances of correlation.

4.1.5. Ordinal Data

Ordinal data present special challenges since they contain more information than
simple categories, but ostensibly not enough to justify more sophisticated statisti-
cal techniques, or even the calculation of the mean and standard deviation.
Analysis of ordinal data therefore typically reduces it to the nominal level, or
promotes it to the interval or ratio ones. Both of these approaches can frequently
be justified on pragmatic grounds.

6 Statistical Methods and Measurement 167

A prototypical example of ordinal data is the subjective rating scale. The sim-
plest description of such data is simply its distribution, which is done the same way
as for multinomial categorical data. Since the number of scale values is limited,
simply listing the percentage of cases for each value is more useful than the range
or standard deviation. Since such data are often skewed (see Fig. 3 for an example
from a satisfaction rating scale), the median is a better measure of central tendency
than the mean. Since most responses pile up at one end, this has the effect of
 making the mean of the scale values most sensitive to changes in values at the other,
skewed end (in the case of Fig. 3, at the low-satisfaction end). Thus in Fig. 3 the
mean of the satisfaction ratings is paradoxically more sensitive to measuring
changes in dissatisfaction than satisfaction.

Correlation of ordinal values is typically done with non-parametric measures
such as the Spearman correlation coefficient, Kendall’s tau, or the kappa statistic
used for inter-rater reliability. Interpretation of such statistics is harder than correla-
tion coefficients because of the lack of equal intervals or ratios in ordinal values;
a tau or kappa value of 0.8 is not strictly twice as good as one of 0.4.

4.2. Comparison

Data are rarely collected simply for description; comparison to a real or ideal value
is one of the main aims of statistical analysis.

The basic paradigm of statistical comparison is to create a model (the null
hypothesis) of what we would observe if only chance variation were at play.
In the case of comparing two samples, the null hypothesis is that the two samples

F
re

qu
en

cy

Low 1 10 High
Satisfaction Rating

Fig. 3 An example of skewness in ordinal data (from a rating scale)

168 J. Rosenberg

come from the same underlying population, and thus will have descriptive statis-
tics (e.g., the mean) that differ only by an amount that would be expected
by chance, i.e., whose expected difference is zero. If the observed difference is
very unlikely to occur just by chance, then we conclude (with some small risk of
being wrong) that the two samples are not from the same population, but rather
two different ones with different characteristics.

The basic method of statistical comparison is to compare the difference in the
average values for two groups with the amount of dispersion in the groups’ values.
That is, we would judge a difference of 10 units to be more significant if the two
groups’ values ranged from 30 to 40 than if they ranged from 300 to 400. In the
latter case we would easily expect a 10-unit difference to appear in two successive
samples drawn from exactly the same population.

Statistical tests of comparison are decisions about whether an observed differ-
ence is a real one, and as such, they are subject to two kinds of error:

Type I error (symbolized by a) – incorrectly rejecting the null hypothesis, and
deciding that a difference is real when it is not,

Type II error (symbolized by b) – incorrectly not rejecting the null hypothesis, and
deciding that a difference is not real when it is.

The probabilities determined for these two types of error affect how a result is to
be interpreted. The value for alpha is traditionally set at 0.05; the value for beta
is typically not even considered; this is a mistake, because the value of (1 − b)
 determines the power of a statistical test, i.e., the probability that it will be able
to correctly detect a difference when one is present. The major determinant
of statistical power is the size of the sample being analyzed; consequently, an
 effective use of statistical tests requires determining – before the data are
 collected – the sample size necessary to provide sufficient power to answer
the statistical question being asked. A good introduction to these power analysis/
sample size procedures is given in Cohen (1988).

Because of this issue of statistical power, it is a mistake to assume that, if the
null hypothesis is not rejected, then it must be accepted, since the sample size
may be too small to have detected the true difference. Demonstrating statistical
equivalence (that two samples do, in fact, come from the same population) must
be done by special methods that often require even more power than testing for
a difference. See Wellek (2002) for an introduction to equivalence testing.

The classic test for comparing two samples is the venerable t-test; its
 generalization to simultaneous comparison of more than two samples is the
(one-way) analysis of variance (ANOVA), with its F-test. Both of these
are parametric tests based on asymptotic approximations to Normal distribu-
tions. While the two-sample t-test is remarkably resistant to violations of its
assumptions (e.g., skewed data), the analysis of variance is not as robust. In
general, for small samples or skewed data non- parametric tests are much
 preferred; most univariate parametric tests have non-parametric analogues
(here, the Wilcoxon/Mann-Whitney test and the Kruskal-Wallis test). A good
reference is Sprent (1993).

6 Statistical Methods and Measurement 169

Occasionally, one may wish to compare an observed mean against a hypothesized
value rather than another group mean; this can be done by means of a one-sample
t-test or equivalently, if the sample is large (>30), by a Z-test.

4.2.1. Categorical Data

Comparison of categorical data between two or more samples is typically done by
a chi-squared test on an n × m table where the rows are the samples and the columns
are the categories (see Agresti, 1998; Wickens, 1989). For tables with small cell
values (where the standard chi-squared tests are inaccurate), special computation-
ally intensive tests can be used instead (see Good, 1994). Frequently the description
and comparison of interest in categorical data is simply a test of whether the
 proportion of some outcome of interest is the same in two samples; this can be done
by a simple binomial test (see Fliess, 1981).

4.2.2. Ordinal Data

Comparison of ordinal data between two or more groups can be done by the same sort of
n × m table methods described above for categorical data (and some ordinal extensions
have been developed; see Agresti, 1984). Equally useful are rank-based techniques such
as the Wilcoxon/Mann-Whitney and Kruskal-Wallis tests mentioned above.

A common comparative analysis performed on rating scale data is to look for
improvements in ratings by comparing the means of two samples taken at different
points in time, such as repeated surveys with different respondent samples. Even if
calculating the mean for such a scale were reasonable (and it is for some ordinal
scales whose behavior appears similar to ratio scales), the mean is sensitive to those
few values at the skewed end which are of least interest. Thus any change in the mean
at best only indirectly reflects the phenomenon of interest. Using the median does not
have this problem, but suffers from the fact that the scale has few values and thus the
median is likely to be the same from one sample to the next. There are two ways to
compare such samples of rating scale data; both reduce the data to categorical data.
The first method is to compare the entire distribution of responses across both sam-
ples in a 2 × n table. The second method is to focus just on the category of greatest
interest (say, the highest one or two), and compare the proportion of responses in that
category in the two samples. While this method loses more information than the first,
it focuses on the main area of interest and is easier to report and interpret.

4.3. Prediction

Frequently, measurements are made in order to predict the value of other measure-
ments of interest. Such predictions do not have to be temporal ones; the notion of
correlation is at bottom a predictive one: knowing the value of one measurement on

170 J. Rosenberg

a unit, increases one’s knowledge of the possible value of other measurements on it.
The prototype of such prediction is regression. Originally limited to linear prediction
equations and least-squares fitting methods, regression methodology has been
extended over the course of the past century to cover an impressive variety of situa-
tions and methodologies using the framework of generalized linear models. Good
references are Draper and Smith (1998), Rawlings et al. (1998), and Dobson (2001).

The essential method of regression is to fit an equation to pairs of measurements
(X, Y) on a sample in such a way as to minimize the error in predicting one of the
measures (Y) from the other (X). The simplest such case is where the regression
equation is limited to a linear form:

 Y = a + bX + error

and the total error measure is the sum of squared differences between the pre-
dicted and actual observations. The regression coefficient b then reflects the
effect on Y of a 1-unit change in X. This notion of regression can then be generalized
to prediction of a Y measure by a set of X measures; this is multiple or multi-
variate regression.

Even an elementary discussion of the method and application of regression is
beyond the scope of this chapter (see Rosenberg, 2000 for one oriented toward
software metrics), but a number of pitfalls should be mentioned.

First, most regression methods are parametric in nature and thus are sensi-
tive to violations of their assumptions. Even in doing a simple univariate
regression, one should always look at the data first. Figure 4 shows a cautionary
example from Anscombe (1973); all four datasets have exactly the same
regression line.

Second, regression models by definition fit an equation to all and only the data
presented to them. In particular, while it is possible to substitute into the regres-
sion equation an X value outside the range of those used to originally fit the
regression, there is no guarantee that the resulting predicted Y value will be
appropriate. In effect, the procedure assumes that the relevant range of X values
is present in the sample, and new X values will be within that range. This problem
with out of range prediction complicates the use of regression methods for tem-
poral predictions where the X value is time, and thus new observations are by
definition out of range. For predicting temporal data, other methods must be used
(as described in Sect. 5.3).

Third, regression equations have an estimation error attached to them just like
any statistical estimate. Plotting the confidence bands around a regression line gives
a good indication of how useful the equation really is.

Fourth, multivariate regression assumes that the multiple predictor measures are
independent, i.e., uncorrelated with each other, otherwise the results will be incor-
rect. Since multiple measures are often correlated, it is critical to look at the pattern
of correlations among the predictor variables before doing a multivariate regres-
sion. If even a moderate amount of correlation is present, something must be done
about it, such as dropping or combining predictors.

6 Statistical Methods and Measurement 171

15

0
0 20 0 20

15

0

0 20

15

0
0 20

15

0

Fig. 4 Anscombe’s example of four different data sets with exactly the same best-fitting
regression line

4.3.1. Categorical Data

A frequent question of interest is how a binomial or other categorical variable can
be predicted from another one, or from one or more ordinal or continuous variables
(see El Emam et al., 1999 for an example in the area of software metrics). Such a
prediction is sometimes called termed a classification task, especially if there are
more than two categories; see Hand (1997) for a general discussion. The case of
predicting a dichotomous outcome is termed a diagnostic prediction from its
 prototypical example in biostatistics: predicting whether or not a person has a
 disease based on one or more test outcomes. The accuracy in such a diagnostic
 situation can be characterized by a 2 × 2 table, as shown in Table 1, where the
 predictor variable(s) are constrained to make a binomial prediction which is then
compared to the “true” value.1

Table 1. The structure of a prototypical diagnostic prediction

 Reality

Prediction Negative Positive

Negative True negative (A) False negative (B)
Positive False positive (C) True positive (D)

1 A known true value in such situations is called a gold standard; much work has been done on the
problem of assessing predictive accuracy in the absence of such a standard (see, for example,
Valenstein, 1990; Phelps and Huston, 1995).

172 J. Rosenberg

Predictive accuracy in this context can be measured either as positive predictive
accuracy (D/[C+D]), negative predictive accuracy (A/[A+B]), or both together
(A+D/[A+B+C+D]). Two other relevant measures are sensitivity, the probability of
correctly predicting a positive case, (D/[D+B]), and specificity, the probability
of correctly predicting a negative case, (A/[A+C]).

There is an extensive literature on binomial prediction; much of it has been
influenced by the theory of signal detection, which highlights a critical feature of
such predictive situations: the prediction is based not only on the amount of infor-
mation present, but also on some decision criterion or cutoff point on the predictor
variable where the predicted outcome changes from one binomial value to the other.
The choice of where to put the decision criterion inescapably involves a tradeoff
between sensitivity and specificity. A consequence of this is that two prediction
schemes can share the same data and informational component and yet have very
different predictive accuracies if they use different decision criteria. Another way
of putting this is that the values in any diagnostic 2 × 2 table are determined by both
the data and a decision criterion. The merit of signal detection theory is that it
 provides an explicit framework for quantifying the effect of different decision
 criteria, as revealed in the ROC curve for a given predictive model, which plots the
true-positive rate (sensitivity) and false-positive rate (1 – specificity) of the model
for different values of the decision criterion (see Fig. 5). The ROC curve provides
two useful pieces of information. First, the area under the curve above the diagonal
line is a direct measure of the predictive accuracy of the model (the diagonal line
indicates 50% accuracy or chance performance; a curve hugging the upper left

Fig. 5. An example receiver operating characteristic (ROC) curve

6 Statistical Methods and Measurement 173

 corner would indicate 100% accuracy). Second, one can graphically compare the
relative accuracy of two models by their ROC curves: if the two curves do not
intersect, then one model always dominates the other; if they do intersect, then one
model will be more accurate for some values of the predictor variables. A good
introduction to signal detection theory is Swets (1996). Zhou et al. (2002) provide
a thorough guide to its application.

Regression methodology has been adapted for predicting binomial outcomes;
the result is called logistic regression because the predictions have to be scaled by
the logistic transformation so that they range between 0 and 1 (see Kleinbaum,
1994; Hosmer and Lemeshow, 1989). Coefficients in logistic regression have a
somewhat different interpretation than in ordinary regression, due to the different
context. The results of a logistic regression are often also expressed in terms of
ROC curves.

4.3.2. Ordinal Data

Prediction of ordinal values is rarely done except by assuming that the values
reflect an underlying interval or ratio scale, in which case standard regression
 methods are used.

5. Analyzing Dynamic Measurement Data

One of the most frequent uses of metrics is to track some attribute over time, either
to detect or forecast changes in it, or to verify that the value is unchanging apart from
unavoidable random variation. Such time series data, as they are called, have as their
essential characteristic the presence of temporal structure. The chief structural
 patterns are trend, a long-term change in value, typically monotonic but sometimes
cyclic in an aperiodic manner, or both; and seasonal change, a cycle of change with
a fixed period, as with changes over the course of the seasons in a year. While the
usual goal is to identify these temporal components, sometimes the goal is to demon-
strate that no such components are present; such a time series is said to be stationary.
It should be noted that analyses of time series data require at least three seasonal
cycles worth of data, since estimating the seasonal component require more than one
season’s worth of data. Having less data seriously restricts the kinds of analyses that
can be done, and usually arises in situations more accurately termed longitudinal or
repeated measures analysis, where the goal is to examine relatively large-scale
 permanent changes such as physical growth or skill-acquisition. See Singer and
Willet (2003) and Crowder and Hand (1990) for examples.

In addition to the methods described below, there are a great many other types
of dynamic data analysis, such as survival analysis (mentioned briefly above), and
state space models. See Gottman (1995) and Haccou and Meelis (1994) for
examples.

174 J. Rosenberg

5.1. Description

As with any analysis, the first step is to look at the data. Figure 6 shows a typical dataset
containing a long-term increasing trend, with an additional seasonal component (every
12 months). The top panel shows the observed data, while the lower two panels display
the underlying trend and seasonal components, respectively. Methods for such time-
series decomposition are discussed in Bowerman and O’Connell (1993).

There are a number of ways such data can be used. The first way is simply to
describe the history of some process. Rather than summarizing the history by a
histogram or descriptive statistics such as the mean or standard deviation (which
would miss entirely the temporal aspect of the data), the time chart and its decom-
position into trend and seasonal components is the main focus.

Most discussions of time series analysis make the assumption that the observa-
tions are made with little or no error, otherwise the variation in the measurements
themselves could obscure the temporal patterns. This means that this sort of analysis
is best used on continuous measures (or counts) made with high reliability and
precision, rather than ordinal measures such as ratings.

It is always important to verify that the temporal measurements in a time series
are in fact equivalent. For example, fluctuations in the number of defects reported
for each month in a 1-year period might seem to warrant some concern about qual-
ity variation, but in that respect they may be illusory. Months may seem equal, but
they vary in length by up to 10%, and when the number of actual working days is

0 50 100 150 200
Weeks

Fig. 6 Time series decomposition chart for data in Fig. 6

6 Statistical Methods and Measurement 175

taken into account, they can vary by 25% or more. The same data adjusted for the
number of work days may show little variation at all. This is not to say that the first
approach is “false,” merely that it can be seriously misleading if the variation in
temporal units is not made clear. Even if the defect submission rate is constant from
month the month, the actual number of defects submitted will vary; the first piece
of information may be comforting for the quality manager, but the second piece is
more valuable to the support manager.

5.2. Comparison

Often the question of interest is: “Is the latest observation evidence of a change
in trend?” Such a question is difficult to answer on the basis of a single observation.
Often, however, that observation is actually a summary of a number of observa-
tions, for example, the mean of some set of measurements. In that case one can use
the same sort of statistical methods used with static data to compare the latest sam-
ple with the previous one. Typically, however, the sample sizes involved are too
small to detect the small level of change involved. A more common method of looking
for a change in trend is to compare the latest observation with the value predicted
for it by a forecast.

5.3. Prediction

Another major use of time series data is forecasting: predicting one or more future
observations based on the data at hand. The larger the amount of data at hand, the
better the forecasting that can be done. Even with few data, however, there are some
simple techniques that can be used. The simplest forecast technique is the so-called
naive predictor, which assumes that the future value will be the same as the present
value. This actually can be a useful first approximation in many cases, for example,
tomorrow’s temperature is likely to be similar to today’s. Other naive predictors can
be defined; for example, if there is a small amount of data beyond one seasonal
cycle (say 15 months, January of one year to March of the following year) one can
take the average difference between the observations made on the same part of the
cycle (January to March for both years) and use that as an increment for forecasting
the rest of second cycle based on corresponding values from the first.

Such naive predictors can be useful for first approximations, and can also serve
as concrete points of departure for discussions about possible alternative forecasts.
Perhaps most importantly, they can be used as baselines for evaluating the predic-
tive accuracy of more sophisticated forecasting techniques.

There are a variety of ways of quantifying the accuracy of forecasts, all of them
based on some measure of the difference between forecast and actual values. Chief
among these are (here “error” and “deviation” mean the same thing):

176 J. Rosenberg

Mean absolute deviation (MAD) the average absolute difference between observed
and forecasted values (this penalizes errors in direct proportion to their size, and
regardless of direction);

Mean squared error (MSE) the average squared difference between observed and
forecasted values (this penalizes errors as the square of their size, also regardless
of direction);

Mean percentage error (MPE) the average proportional difference between forecast
and actual values (i.e., (actual – forecast/actual), expressed as a percentage;

Mean absolute percentage error (MAPE) the average absolute proportional differ-
ence, expressed as a percentage.

There are many more possible accuracy measures, each with its advantages and
disadvantages; some may not be applicable with some kinds of data (for example,
MPE and MAPE do not make sense when the data are not measured on a ratio scale
with a zero point). Which to use depends on the purpose of the forecast, and which
kinds of errors are considered worse than others (see Makridakis, 1998).2

Assessing the overall accuracy of a forecast is more complicated than in the case
of static predictions with regression. A common technique is to set a desired standard
of absolute or relative accuracy beforehand, and then compare the accuracy of various
forecasting methods with that of a naive predictor. Often the choice of forecasting
methods comes down to a trade-off between accuracy and difficulty of computation.

An additional issue to consider in forecasting is whether a forecast metric is a
leading, lagging, or coinciding indicator, that is, whether changes in the metric
occur before, after, or at the same time as changes in some other metric of interest.
Leading indicators are highly desirable, but few metrics have that property. The
issue is important because a metric cannot be effectively used for process control
purposes unless its temporal connection with the process is understood.

5.4. Process Control

The other major use of dynamic, temporally oriented data is in determining that
there is not change over time. This is the area of statistical process control.

A process is performing effectively if its behavior only changes under conscious
direction; left alone it should remain stable, and measurements made on it should
remain the same apart from the inevitable and unimportant random variation. In the
1920’s Walter Shewhart at Western Electric devised a statistical method for quanti-
fying and monitoring the stability of a process, the control chart, examples of
which are shown in Fig. 7.

As can be seen, the control chart looks very much like a trend chart, except that
it is based on a defined control level or expected value of the measurements (the

2 These accuracy measures can also be used in assessing the fit of models to static data, of course,
but in the latter case there are more useful global goodness-of-fit measures such as R2 which are
used instead. Such measures are not available for forecasting dynamic data.

6 Statistical Methods and Measurement 177

solid line), as well as control limits (the dashed lines), which define the range of
 values that are expected to be observed if the process is operating stably at the
 control level (and thus differences in observed measurements are due simply to
 random variation). There are different types of control chart, depending on the kind
of measurement being tracked, such as continuous measures, counts, or proportions.
Multivariate control charts track several measurements jointly. The overall principle
is the same in each case: a baseline control level is established by a series of
 measurements of the process, and control limits are defined in terms of the observed
variability of the process (and possibly also the desired variability). One then plots
measurements of the process taken at regular intervals and looks either for measure-
ments lying outside the control limits (and thus indicating that the process is
 operating outside of its normal range, presumably because of some interfering
 factor), or for patterns in the measurements which suggest that the observed variability
is not random, but is due to some factor or factors affecting the process.

Figure 7a illustrates a process that is under statistical control; Fig. 7b shows one that
is out of control and Fig. 8a shows one that, while apparently under control (being inside
the control limits), shows patterns in the measurements that deserve investigation.

In the decades since they were first developed, there have been many different
variations developed to handle the variety of process control situations that arise. One
of the most useful variants is the cumulative sum or cusum chart, which is more
 sensitive at detecting changes in the level of process measurements. Cusum charts
work by accumulating the deviations from the baseline expected value of the process;
if the variation is truly random, the variations in one direction counterbalance those
in the opposite direction and the cumulative sum remains close to zero. If, on the other
hand, variations in the process are biased even slightly in one direction or the
other, then the cumulative sum will advance towards the upper or lower control limit.
This accumulation of small biases allows the trend to be detected earlier than would
be the case with a standard control chart. Figure 8 shows both a standard chart and a
cusum chart for a process that is drifting slowly out of control.

The theory and practice of control charts is highly developed and remains a
 central part of quality engineering. Good references are Montgomery (1996) and
Duncan (1986). More recently, Box and Luceño (1997) have elaborated the
 relationship between statistical process control and engineering control theory.

Fig. 7 Control charts showing (a) A process which is in control, (b) A process which is not in
control

178 J. Rosenberg

There are also statistical methods for the optimization of process metrics, such as
Evolutionary Operation (Box and Draper, 1969), response surface methodology
(Montgomery and Myers, 2002), and data envelopment analysis/stochastic frontier
analysis (Jacobs et al., 2006).

6. Data Quality

At this point, it is appropriate to return to the context of measurement and the depend-
ence of statistical analysis on the quality of the underlying data collection process.

Data quality is a critical problem in industrial management, yet one often only
vaguely recognized by decision makers who consume the ultimate endproducts of those
data. This problem has come to light with the development of data warehouses, as ware-
house developers discover that bad data can turn a data warehouse into a data garbage
dump. The first step, then, in using measurements is ensuring that those measurements
are of sufficient validity and accuracy to enable conclusions to be drawn from them.

The sources of data quality problems are manifold (apart from the question of
bad metrics, dealt with in Sect. 3). Chief among them are

● Organizational problems
● Lack of precise definitions
● Lack of data validation
● Missing data
● Sampling bias

6.1. Organizational Problems

It is common for metrics to be defined and collected by people other than those to
whom the metrics apply; this a recipe for trouble. The problem is exacerbated when
a process is evaluated by management on the basis of metrics that the people carry-
ing out the process find irrelevant or misguided; the inevitable result is distortion of

Fig. 8 A Process drifting slowly out of control as shown in (a) A standard control chart, (b) A
cusum chart

6 Statistical Methods and Measurement 179

the work process to produce acceptable numbers, rather than valid or meaningful
ones. For a metrics program to be successful, all parts of the organization involved
need to be in agreement on the meaningfulness of the metrics and their role in the
organization’s effective functioning.

6.2. Lack of Precise Definitions

Many problems are caused by lack of a precise definition for a measurement. For
 example, measuring defects in software for whatever purpose, be it research or quality
management, requires a clear definition of what constitutes a defect. This definition
may reasonably vary depending on the question being asked (and the goal that question
is answering), but whatever the purpose, the definition must address such issues as

● Are feature enhancement requests defects?
● Are usability problems defects?
● Are internally reported problems defects?

Similarly, measuring the time it takes to repair a defect requires addressing such
issues as

● When does the clock start?
● Does it start at different times for internally vs. externally reported defects?
● When does the clock stop?
● What time is recorded if the repair of the defect turns out not to be a repair after all?

If these issues are not addressed at the time the metric is defined, then they will
have to be addressed by those collecting the data if and when they arise. Not
 surprisingly, when that happens the results may not be as intended. The problem of
vague definition is exacerbated when the measurements must be collected by
 different groups or individuals who often have, or develop over time, different
interpretations of the definition. Such different definitions may go unnoticed for
long periods of time until some situation brings it out.

Detecting the lack of precise definitions is done most directly by looking for
explicit written documentation of what the definition of each of the measures is.
In the frequent case where such information is lacking, it becomes necessary to
interrogate those responsible for collecting, processing, and analyzing the data
to find out what they have been assuming the measures’ definitions to be; their
answers will often be conflicting.

6.3. Lack of Data Validation

A precise definition for a metric is no guarantee that the values recorded for it make
sense. It is very common to find observations with dubious or outright impossible
values, due directly or indirectly to data-entry problems. These range from typing

180 J. Rosenberg

errors to miscalibrated measuring devices to lack of understanding of the metric’s
definition. The presence of bad values is usually easy to detect if one takes the
trouble to look; frequently, as long as the measurement process produces values that
seem “reasonable” no-one bothers to audit the process to verify that the measure-
ments are correct. For example, consider measurements of resolution times for
customer problems that are derived from recording the dates and times when the
service ticket is officially opened and closed. If there is no validation done to ensure
that the closing time is chronologically later than the opening time, the derived
resolution metric might take on zero or even negative values (perhaps from subtrac-
tion of a constant amount from all tickets; this would only become negative in ones
with small values). Even if this occurs in only a small percentage of cases, it can
 seriously bias the estimates of resolution time. Simply dropping anomalous cases
when they are found is not a solution until investigation has shown that such cases
occur at random rather than for some systematic reason. Any particular case of bad
data may have many potential causes which must be investigated; an occasional
data entry error might be ignored, but a systematic distortion of entries cannot be.

Validation of data is the essential tedious first step of any data analysis. It can
be made much easier and faster if the data are validated as they are collected.
There are two difficulties which frequently prevent that from happening. First,
those collecting the data are often not the ones who will use it for analysis, and thus
have little understanding or interest in making sure that the data are correct. This is
not due to maliciousness; it is simply due to different motivation. To take the above
example, the people working the service desk have as their main goal the rapid
processing of as many service tickets as possible; data validation interferes with
this, with little or no visible benefit. Solving this problem requires educating man-
agement as well as the workers.

Second, even if validation is intended, it may be impossible to do in real time
without degrading process performance. The general solution here is to arrange
some way to do it “off line” rather than in real time, for example, validating new
database entries overnight.

Detecting problems of data validation is done by performing extensive assertion-
and consistency-checking of the dataset. For example, if the dataset contains measures
of duration, they should be checked to make sure that each value is greater than zero.
Often it is important to ensure that the value of one measure is logically compatible
with that of some other measure. For example, a problem resolution of “replaced
 circuit board” is not consistent with a trouble report classified as “software problem.”

6.4. Missing Data

It is rare to find a large dataset without missing values on at least some of its meas-
urements, and care must be taken that missing-value codes (e.g., “99”) are not mis-
takenly interpreted as genuine data values. (A particularly insidious case of this occurs
with spreadsheets, which treat missing data as actually having the value “0.”) This

6 Statistical Methods and Measurement 181

raises the possibility that an analysis using only the available data may be subject
to an unknown amount of error. The issues are therefore how much data can be
missing without affecting the quality of the measurements, and what if anything can
be done to remedy the situation. There is a large body of literature on this subject,
which is discussed in the chapter by Audris Mockus in this volume.

6.5. Sampling Bias

The problems just discussed are easy to observe and understand. More subtle but just
as serious is the problem of sampling bias. A precisely defined, thoroughly validated,
complete dataset can still be useless if the measurement process only measures a par-
ticular subset of the population of interest. This can be for a number of reasons:

6.5.1. Self-selection

It may be that only some units in the population put themselves in the position of
being measured. This is a typical problem in surveys, since typically there is little
compulsion to respond, and so only those individuals who choose to be measured
provide data. Similarly, only those customers with problems are observed by the
customer service department.

6.5.2. Observability

Some measurements by definition are selective and can lead to subtle biases. For
example, in a study of defect densities, some source modules will have no (known)
defects and thus a defect density of zero. If these cases are excluded, then state-
ments about correlates of defect density are true only of modules which have
known defects, not all modules, and thus cannot easily be generalized. Another
kind of observability problem can occur, not with the units being observed, but with
the measuring device. For example, if problem resolutions are measured in days,
then resolutions which are done in ten minutes are not accurately observed, since
their time must be rounded down to zero or up to one day.

6.5.3. Non-random Sampling

A frequent problem in surveys, this also plagues many other kinds of measure-
ments, including experiments where the selection of experimental units is not
properly considered. Lack of information about the population, coupled with a bias
to sample those units which are easy to sample, can result in a measured sample
which is quite unrepresentative of the population of interest.

182 J. Rosenberg

Detecting sampling bias can be difficult, because it typically happens before the
data are collected. It can sometimes be spotted by the absence of certain kinds of
data (customers from one region, service times longer than 1 month, etc.), but usu-
ally must be identified by studying the documentation for the data collection proc-
ess or interrogating the people who carry it out. Correcting sampling bias is
extremely difficult, since the basic problem is the complete lack of representation
for some part of the population. To the extent that the type and degree of bias is
known (also a difficult problem) it may be possible to adjust for it, but generally the
only solution is to make it clear just what subset of the population is described in
the dataset. A good discussion of detecting and coping with overt and hidden biases
can be found in Rosenbaum (2002).

As should be clear from the above, problems of data quality are ubiquitous and
difficult to deal with, particularly because there are only general guidelines for what
to do, and each case must be handled on its own terms.

7. Summary

This chapter has discussed the role of the measurement process, the need for
 metrics to be clearly defined, reliable, and valid in order for them to be effective,
and various statistical techniques and pitfalls in analyzing measurement data.
Understanding measurement is a crucial part in the development of any branch of
science (see Hand, 2004); the amount of effort devoted to it in empirical research
in software engineering reflects the necessity of answering some of the most
 fundamental questions facing computer science and engineering. Fortunately, we
can take advantage of the experience and knowledge gained by other disciplines,
and apply them with advantage in developing effective software measurement.

References

Agresti, A, Analysis of Ordinal Categorical Data. New York: Wiley. 1984.
Agresti, A, An Introduction to Categorical Data Analysis. New York: Wiley. 1998.
Anscombe, F, Graphs in statistical analysis. American Statistician. 27(1):17–21. 1973.
Basili, V, Caldiera, G, and Rombach, D, The goal question metric approach. In: Marciniak, J, ed.,

Encyclopedia of Software Engineering. New York: Wiley. 1994.
Bevington, P, and Robinson, D, Data Reduction and Error Analysis for the Physical Sciences, 2nd

ed. New York: McGraw-Hill. 1992.
Bowerman, B, and O’Connell, R, Forecasting and Time Series: An Applied Approach, 3rd. ed.

Belmont, CA: Wadsworth. 1993.
Box, G and Draper, N, Evolutionary Operation: A Statistical Method for Process Improvement.

New York: Wiley. 1969.
Box, G and Luceño, A, Statistical Control by Monitoring and Feedback Adjustment. New York:

Wiley. 1997.

6 Statistical Methods and Measurement 183

Briand, L, El Emam, K, and Morasca, S, On the application of measurement theory to software
engineering. Empirical Software Engineering. 1(1). 1996.

Chayes, F, Ratio Correlation. Chicago: University of Chicago Press. 1971.
Cleveland, W, The Elements of Graphing Data. Summit, NJ: Hobart Press. 1994.
Cliff, N, What is and isn’t measurement. In: Keren, G and Lewis, C, eds., A Handbook For Data

Analysis in the Behavioral Sciences, Vol. 1: Methodological Issues. Hillsdale, NJ: Erlbaum.
1992.

Cohen, J, Statistical Power Analysis for the Behavioral Sciences, 2nd ed. Hillside, NJ: Erlbaum. 1988.
Comrey, A and Lee, H, A First Course in Factor Analysis, 2nd ed. Hillsdale, NJ: Erlbaum. 1992.
Crowder, M, and Hand, D, Analysis of Repeated Measures. New York: Chapman and Hall. 1990.
Dobson, A, An Introduction to Generalized Linear Models, 2nd ed. New York: Chapman and

Hall/CRC. 2001.
Draper, N and Smith, H, Applied Regression Analysis, 2nd ed. New York: Wiley. 1998.
Duncan, A, Quality Control and Industrial Statistics, 5th ed. New York: Irwin. 1986.
El Emam, K, Benlarbi, S, and Goel, N, Comparing case-based reasoning classifiers for predicting

high risk software components. National Research Council Canada technical report NRC
43602/ERB-1058. 1999.

Fenton, N and Pfleeger, S, Software Metrics: A Rigorous and Practical Approach, 2nd ed. Boston:
PWS Publishing. 1997.

Fliess, J, Statistical Methods for Rates and Proportions, 2nd ed. New York: Wiley. 1981.
Ghiselli, E, Campbell, J, and Zedeck, S, Measurement Theory for the Behavioral Sciences. San

Francisco: Freeman. 1981.
Good, P, Permutation Tests. New York: Springer. 1994.
Goodman, L and Kruskal, W, Measures of Association for Cross Classifications. New York:

Springer. 1979.
Gottman, J, ed., The Analysis of Change. Hillsdale, NJ: Erlbaum. 1995.
Haccou, P, and Meelis, E, Statistical Analysis of Behavioural Data: An Approach Based on Time-

Structured Models. Oxford: Oxford University Press. 1994.
Hand, D, Construction and Assessment of Classification Rules. New York: Wiley. 1997.
Hand, D, Measurement Theory and Practice: The World through Quantification. Oxford: Oxford

University Press. 2004.
Hosmer, D and Lemeshow, S, Applied Logistic Regression. New York: Wiley. 1989.
Hosmer, D and Lemeshow, S, Applied Survival Analysis. New York: Wiley. 1999.
Jacobs, R, Smith, P, and Street, A, Measuring Efficiency in Health Care: Analytic Techniques and

Health Policy. Cambridge: Cambridge University Press. 2006.
Keppel, G, Design and Analysis: A Researcher’s Handbook, 3rd ed. New York: Prentice Hall. 1991.
Kleinbaum, D, Logistic Regression. New York: Springer. 1994.
Kleinbaum, D, Survival Analysis. New York: Springer. 1996.
Krantz, D, Luce, R, Suppes, P, and Tversky, A, Foundations of Measurement. New York:

Academic. 1971.
Long, J, Regression Models for Categorical and Limited Dependent Variables. Thousand Oaks,

CA: Sage. 1997.
Maddala, G, Limited-Dependent and Qualitative Variables in Econometrics. Cambridge:

Cambridge University Press. 1986.
Makridakis, S, Wheelwright, S, and Hyndman, R, Forecasting: Methods and Applications, 3rd ed.

New York: Wiley. 1998.
Montgomery, D, Introduction to Statistical Quality Control, 3rd ed. New York: Wiley. 1996.
Montgomery, D and Myers, R, Response Surface Methodology: Process and Product Optimization

Using Designed Experiments, 2nd ed. New York: Wiley. 2002.
Phelps, C, and Huston, A, Estimating diagnostic accuracy using a “fuzzy gold standard”. Medical

Decision Making 15:44–57. 1995.
Rawlings, J, Pantula, S, and Dickey, D, Applied Regression Analysis, 2nd ed. New York: Springer.

1998.
Rosenbaum, P, Observational Studies, 2nd ed. New York: Springer. 2002.

184 J. Rosenberg

Rosenberg, J, A methodology for evaluating predictive metrics. In: Zelkowitz, M., ed., Advances
in Computers, Vol. 23. New York: Academic. 2000.

Shepperd, M and Ince, D, Derivation and Validation of Software Metrics. Oxford: Clarendon
Press. 1993.

Singer, J and Willett, J, Applied Longitudinal Data Analysis: Modeling Change and Event
Occurrence. Oxford: Oxford University Press. 2003.

Sprent, P, Applied Non-Parametric Statistical Methods, 2nd ed. New York: Chapman and Hall.
1993.

Swets, J, Signal Detection Theory and ROC Analysis in Psychology and Diagnostics. Hillsdale,
NJ: Erlbaum. 1996.

Taylor, J, An Introduction to Error Analysis, 2nd ed. Sausalito, CA: University Science Books.
1997.

Valenstein, P, Evaluating diagnostic tests with imperfect standards. American Journal of Clinical
Pathology 93:252–258. 1990.

Velleman, P, Nominal, ordinal, interval, and ratio typologies are misleading. American Statistician.
47:65–72. 1993.

Wellek, S, Testing Statistical Hypotheses of Equivalence. New York: Chapman and Hall/CRC
Press. 2002.

Wickens, T, Multiway Contingency Tables Analysis for the Social Sciences. Hillsdale, NJ:
Erlbaum. 1989.

Zhou, X, Obuchowski, N, and McClish, D, Statistical Methods in Diagnostic Medicine. New
York: Wiley. 2002.

Zuse, H, Software Complexity: Measures and Methods. New York: Walter de Gruyter. 1990.

Chapter 7
Missing Data in Software Engineering

Audris Mockus

Abstract The collection of valid software engineering data involves substantial
effort and is not a priority in most software production environments. This often
leads to missing or otherwise invalid data. This fact tends to be overlooked by most
software engineering researchers and may lead to a biased analysis. This chapter
reviews missing data methods and applies them on a software engineering data set
to illustrate a variety of practical contexts where such techniques are needed and to
highlight the pitfalls of ignoring the missing data problem.

1. Introduction

The goal of this chapter is to increase the awareness of missing data techniques
among people performing studies in software engineering. Three primary reasons
for this presentation are:

1. The “quick-fix” techniques that drop the cases with missing values may yield
biased or inconclusive results. Such techniques are still widely (and often
implicitly) used in software engineering

2. Dealing with missing values is no longer a burden for a practitioner, because
easy to use statistical software is now available on popular platforms

3. Software represents a distinct data source with unique reasons and patterns for
missing data. For example, software studies tend not to have the luxury of large
sample sizes requiring analysis methods that use all available data, including
incomplete cases. Many properties of software can not be measured directly,
therefore investigators have to get the necessary information from people who
create and maintain a particular piece of software, leading to frequent and com-
plex patterns of missing data

Section 2 discusses sources of software data. The next section introduces an illustra-
tive example evaluating how a software process influences development time.
Section 4 presents a general statistical perspective for dealing with missing data with
an illustrative example. Section 5 discusses non traditional missing data problems
specific to the field of software engineering. A summary is provided in Sect. 6.

185

F. Shull et al. (eds.), Guide to Advanced Empirical Software Engineering.
© Springer 2008

186 A. Mockus

2. Sources of Software Data

Software engineering data come from several distinct sources. The three primary
sources are:

● Data collected through experimental, observational, and retrospective studies
● Software metrics or reported project management data including effort, size, and

project milestone estimates
● Software artifacts including requirements, design, and inspection documents,

source code and its change history, fault tracking, and testing databases

To narrow the scope of the presentation we did not include data sources produced
directly by software with little or no human involvement, such as program execu-
tion and performance logs or the output of program analysis tools. Such data
sources tend to produce tool specific patterns of missing data that are of limited use
in other domains.

Surveys in an industrial environment are usually small and expensive to con-
duct. The primary reasons are the lack of subjects with required knowledge and the
minimal availability of expert developers who, it appears, are always working
toward a likely-to-be-missed deadline. The small sample size limits the applicability
of deletion techniques that reduce the sample size even further. This may lead to an
inconclusive analysis, because the sample of complete cases may be too small to
detect statistically significant trends. If, on the other hand, the sample sizes are
large and only a small percentage of data are missing, a deletion technique (a tech-
nique that removes missing observations) may work quite well.

The values in survey data may be missing if a survey respondent declines to fill
the survey, ignores a question, or does not know the answer to some of the
questions.

Reported data on software metrics often contain the desired measurements on
quality and productivity. Unfortunately, the reported data are often not comparable
across distinct projects (Herbsleb and Grinter, 1998). The reasons include numer-
ous social and organizational factors related to intended use and potential misuse
of metrics, and serious difficulties involved in defining, measuring, and interpreting
a conceptual measure in different projects.

Reported data need extensive validation to confirm that it reflects the quantities
an analyst is interested in. Data collection is rarely a priority in software organiza-
tions (Goldenson et al., 1999). The priority of validating collected data is even
lower, often leading to unreliable and misleading software measures. In addition,
some software measures are difficult to obtain or have large uncertainty. Examples
of such measures include function point estimates or size and effort estimates in the
early stages of a project. Frequently data values are missing because some metrics
are not collected for the entire period of the study or for a subset of projects.

Software artifacts are large, highly structured, and require substantial effort to
interpret. Measures derived from software artifacts tend to be more precise and
consistent over time than measures derived from surveys and reported data. They

7 Missing Data in Software Engineering 187

measure the artifact itself, as opposed to the subjective perception of the artifact
captured by survey measures. Traditionally, software artifacts are measured
based on the properties of source code. Such measures include source code com-
plexity (Halstead, 1977; McCabe, 1976), complexity of an object oriented design
(Chidamber and Kemerer, 1994), or functional size (Albrecht and Gaffney,
1983). Instead of measuring the source code, it is possible to measure the properties
of changes to the code. This requires analysis of change history data, see, for example,
(Mockus, 2007). Artifact data may be missing or difficult to access for older software
artifacts because of obsolete storage or backup media. Consequently, software artifacts
are usually available or missing in their entirety, reducing the need for the tradi-
tional missing data techniques that assume that data are only partially missing.
Measuring such artifacts might require substantial effort, especially if they were
maintained using obsolete tools.

3. Example Data

To illustrate the application of missing data methods we will use a case study of
process improvement in a software organization (Herbsleb et al., 2000). The study
involved a medium-size, process-oriented software organization performing
 contract work. One of the study goals was to determine if the excessive detail of
software process had increased the development interval. In particular, the study
investigated the relationship of development interval and project tracking
measures.

The collected data came from three sources: survey questions, reported project
metrics, and the source code change history. The development interval was the
response or dependent variable. We model (predict) it using several project tracking
measures described below that are used as independent, predictor, or explanatory
variables.

3.1. Survey

A total of 68 surveys of 19 individuals evaluating three dimensions of project track-
ing process for 42 projects were collected.

The three dimensions of project tracking were defined by the following
questions.

1. Were the project’s actual results (e.g., schedule, size, and cost) compared with
estimates in the software plans?

2. Was corrective action taken when actual results deviated significantly from the
project’s software plans?

3. Were changes in the project’s plans agreed to by all affected groups and
individuals?

188 A. Mockus

Subjects evaluated three dimensions of project tracking with ordinal ratings: (1) –
“Rarely if ever,” (2) – “Occasionally,” (3) – “About half of the time,” (4) – “Frequently,”
and (5) – “Almost always.” When the subject did not have enough knowledge of the
project to answer the question, they entered “don’t know.”

To exemplify missing data techniques we simplify the analysis by treating each
survey as an independent observation. In our example several individuals evaluated
most projects and several projects were evaluated by a single individual. Therefore,
multiple reports on one project (or done by a single person) are not independent.
Unfortunately, adjusting for that dependence would distract from the presentation
of missing data techniques.

3.2. Software Change Data

The project interval and size data were obtained from change history databases. The
project interval was measured in days from the start of the first change until the com-
pletion of the last change. The project size was measured in number of logical
changes called Maintenance Requests (MRs).

3.3. Reported Project Data

The reported project data included size, staff months, number of faults, and inter-
val. Unfortunately, reported data were not consistent, therefore it was not used in
the models. While some projects measured size in function points (FP), other
projects measured size in lines of code (LOC). The reported function point and
LOC measures did not correlate well with the amount of code developed (as
obtained from change history) or with the reported staff months of effort.
Furthermore, the reported interval did not correlate with the duration of the
 development phase measured by the time difference between the last and the first
change. These serious validity problems made the reported data unsuitable for
 further analysis.

3.4. Missing Values

Change history databases for ten of the surveyed projects were moved off line and
unavailable for analysis. Because the response variable interval was missing for
those projects we excluded them from further consideration (other reasons are
given in the discussion of the types of missing data). An additional six cases were
dropped because all the project tracking questions were answered “don’t know.”
That left us with 52 cases (corresponding to 34 projects) for the analysis.

7 Missing Data in Software Engineering 189

The list of data quality problems in this example may seem enormous, but in our
experience such data quality is not unusual in a software study.

We used multiple linear regression [see, for example, (Weisberg, 1985)] to
model the project development interval. The project size and the three tracking
measures were independent variables. We included the project size as a predictor
because it affects the project interval.

Inspection of the variables showed increasing variances (a scatterplot with a
very large density of points at low values) for the interval and size. A square root
transformation was sufficient to stabilize the variance of the interval and size and
led to the following final model:

 Interval Size Tracking Tracking Tracking Err= + + + + +b b b b b0 1 2 1 3 2 4 3 oor. (1)

The following section describes various techniques to fit such models in the
 presence of missing data.

4. A Statistical Perspective on Missing Data

In statistical analysis the phenomena of interest is commonly represented by a
rectangular (n × K) matrix Y = (y

ij
) where rows represent a sample of n observa-

tions, cases, or subjects. The columns represent variables measured for each case.
Each variable may be continuous, such as size and interval, or categorical like file
or project.

Some cells in such a matrix may be missing. It may happen if a measure is not
collected, or is not applicable, for example, if a respondent does not answer a ques-
tion on a survey form.

The mechanism by which some cells are not observed is important to select an
appropriate analysis technique. Denote the response indicator

 R
y

yij

ij

ij

=
, ,

, .
⎧
⎨
⎪

⎩⎪

1

0

observed

missing
 (2)

Denote all the values of the observations that are missing Y
mis

 as and the rest as Y
obs

.
Let P(R|Y

obs
, Y

mis
, q) be the probability distribution function of R given a statistical

model specified by parameter q and all the values of Y. The data are missing at
random (MAR) according to Little and Rubin (1987) if

P R Y Y P R Yobs mis obs() ()| , , = | , ,q q

i.e., the distribution of the response indicator may depend on the observed values
but may not depend on the values that are missing. The data are missing completely
at random (MCAR) if a stronger condition holds:

f R Y Y f Robs mis() ()| , , = | .q q

190 A. Mockus

The MAR assumption allows the probability that a datum is missing to depend on
the datum itself indirectly through quantities that are observed. For example, in the
described data, the interviewees might remember less about smaller projects,
 resulting in higher likelihood that some of the survey’s values are missing. The
MAR assumption would apply, because the predictor “project size” explains the
likelihood that the value will be missing. MCAR assumption would not apply,
because the probability that a value is missing depends on project’s size. However,
if we do not have a measure of project’s size or simply do not include project’s
size in our estimation model, then even the MAR assumption is not satisfied. Such
case is referred to as data not missing at random (NMAR). The NMAR data can be
made to satisfy the MAR assumption if variables that characterize situations when
a value is missing are added. Therefore, it is important to add variables that might
predict the missing value mechanism to the dataset.

Personal income obtained via survey represents a typical example where the
MAR assumption is not satisfied. It is well known that extreme values of personal
income are less likely to be reported. Consequently, the MAR assumption is
 violated, unless the survey can reliably measure variables that are strongly related
to income. When extreme values are more likely to be missing, the probability that
a value is missing depends on the value itself and, unless other predictors can fully
account for that change in the probability of being missing, the MAR assumption
is no longer satisfied.

It is worth pointing out that it is impossible to test the MAR hypothesis based
on the dataset itself, since that would require knowing the values for missing obser-
vations. It could be tested by gathering additional information, for example, by
conducting a repeat survey for the missing cases. However, when the data are
 missing beyond the control of the investigator one can never be sure whether the
MAR assumption holds. It is possible to test the MCAR assumption, [see, e.g.
Little (1988); Kim and Curry (1977)]. However, the MCAR assumption rarely
needs to be tested, because the MCAR assumption rarely holds in practice and
because many easy-to-use MAR methods are available.

Situations where even the MAR assumption does not hold may require an
explicit model for the missing data mechanism. Such methods tend to be problem
specific and require substantial statistical and domain expertise. A concept related
to NMAR data (even though it is treated separately in literature) involves censoring
in longitudinal studies where some outcome may not be known at the time the study
has ended. For example, in software reliability we want to know the distribution of
time until a software outage occurs. However, at any particular moment in time
there may be many software systems that have not experienced an outage. Thus, we
only know that the time until the first outage is larger than the current system
 runtime for these systems, but we do not know its value. A common approach to
deal with censored data is to estimate a survival curve using Kaplan–Meier Estimate
(Kaplan and Meyer, 1958; Fleming and Harrington, 1984). The survival curve is a
graph showing the percentage of systems surviving (with no outage) versus system
runtime. It has been applied to measure software reliability in, for example,
(Mockus, 2006).

7 Missing Data in Software Engineering 191

Little and Hyonggin (2003) discuss ways to handle undesirable NMAR data
and recommend calculating bounds by using all possible values of missing
 variables (an approach particularly suitable in case of binary values), conducting
a sensitivity analysis by considering several models of how the data are missing,
or conducting a Bayesian analysis with a prior distribution for missing values. In
most practical situations we recommend attempting to measure variables that
 capture differences between missing and complete cases in order for the missing-
data mechanism to satisfy the MAR assumption. Methods that can handle MAR
data can then be applied.

In our example, the “don’t know” answers in survey questions reflect the lack of
knowledge by the subject and have no obvious relationship to the unobserved value.
One may argue that even the MCAR assumption might be reasonable in this case.
On the other hand, the ten cases for projects without change history present a com-
pletely different missing data mechanism. Because the projects are older, they are
likely to be different from newer projects in the analyzed sample. Data are missing
because these projects are old (and presumably different) and, therefore, the MAR
assumption does not apply. Consequently, the conclusions drawn from the analysis
of the relationship between project tracking and project interval may not apply to
old projects. We removed these projects from further consideration and narrowed
conclusions to explicitly exclude them. For simplicity, we also excluded six obser-
vations where all tracking measures are missing. One can argue against such a
decision, because these observations can still be used to make a more precise
regression relationship between project size and project interval.

Many statistical packages deal with missing data by simply dropping the cases
that have at least one value missing. Besides being inefficient (fewer observations
are used for inference), such a technique may be biased unless the observations are
MCAR. The MCAR assumption is rarely a reasonable assumption in practice.

Model based techniques where a statistical model is postulated for complete data
provide transparency of assumptions, but other techniques are often simpler to
apply in practice. Given that statistical software provides tools to deal with missing
data using model based techniques (Schafer, 1999; R Development Core Team,
2005) we would recommend using them instead of the remaining techniques that
have limited theoretical justification or require unrealistic assumptions. For com-
pleteness, we briefly describe most of traditional techniques as well. The goal of
traditional techniques is to produce the sample mean or the covariance matrix to be
used for regression, analysis of variance, or simply to calculate correlations. All
traditional methods produce correct results under the MCAR assumption.

For more in-depth understanding of the statistical approaches Little and Rubin
(1987) summarize statistical models for missing data and Schafer (1997) describes
more recent results. Rubin (1987) investigates sampling survey issues. Little and
Rubin (1989) and Schafer and Olsen (1998) provide examples with advice for
practitioners. Roth (1994) provides a broad review of missing data technique
 application in many fields.

Various missing data techniques have been evaluated in the software engineering
context of cost estimation. Strike et al., (2001) evaluate listwise deletion, mean

192 A. Mockus

imputation, and eight different types of hot-deck imputation and find them to have
small biases and high precision. This suggests that the simplest technique, listwise
deletion, is a reasonable choice. However, it did not have the minimal bias and
highest precision obtained by hot-deck imputation. Myrtveit et al. (2001) evaluate
listwise deletion, mean imputation, similar response pattern imputation, and full
information maximum likelihood (FIML) missing data techniques in the context of
software cost modeling. They found bias for non-MCAR data in all but FIML
 technique and found that listwise deletion performed comparably to the remaining
two techniques except in cases where listwise deletion data set was too small to fit
a meaningful model. k-Nearest Neighbor Imputation is evaluated by simulating
missing data in Jönsson and Wohlin (2004). Authors’ find the method to be ade-
quate and recommend to use k equal to the square root of the number of complete
cases. More recently, Twala et al. (2006) compare seven missing data techniques
using eight datasets and find listwise deletion to be the least efficient and multiple
imputation to be the most accurate.

In the following sections we consider several broad classes of missing data tech-
niques. Section 4.1 considers methods that remove cases with missing values. Ways
to fill in missing values are considered in Sect. 4.2. Section 4.3 describes techniques
that generate multiple complete datasets, each to be analyzed using traditional
complete data methods. Results from these analyses are then combined using
 special rules. We exemplify some of these methods in Sect. 4.4.

4.1. Deletion Techniques

Deletion techniques remove some of the cases in order to compute the mean vector
and the covariance matrix. Casewise deletion, complete case, or listwise deletion
method is the simplest technique where all cases missing at least one observation
are removed. This approach is applicable only when a small fraction of observa-
tions is discarded. If deleted cases do not represent a random sample from the entire
population, the inference will be biased. Also, fewer cases result in less efficient
inference.

In our example the complete case method loses 18 cases (around 34% of the
52 cases that we consider). Table 1 shows output from the multiple regression
model in (1).

Table 1 Multiple regression for the complete case analysis

Variable Value Std. error t Value Pr(>|t|)

Intercept 3.1060 5.2150 0.5956 0.5561
Sqrt(size) 0.4189 0.1429 2.9315 0.0065
Tracking1 0.9025 0.9885 0.9130 0.3688
Tracking2 0.5363 1.2332 0.4349 0.6669
Tracking3 0.7186 1.1033 0.6513 0.5200

7 Missing Data in Software Engineering 193

Multiple regression shows that the project size is an important predictor of the
interval but none of the process coefficients are significant at the 10% level
(although a 5% level is more commonly used, we chose to use a 10% level that is
more suitable for the small sample size of our example and, more importantly, to
illustrate the differences among missing data methods). It is not too surprising,
since more than a third of the observations were removed from the analysis.

Pairwise deletion or available case method retains all non missing cases for each
pair of variables. We need at least three variables for this approach to be different
from listwise deletion. For example, consider the simplest example where the first
of three variables are missing in the first case and the remaining cases are complete.
Then, the sample covariance matrix would use all cases for the submatrix represent-
ing sample covariances of the second and third variables. The entry representing the
sample variance of the first variable and sample covariances between the first and
the remaining variables would use only complete cases. More generally, the sample
covariance matrix is:

s
R R y y y y

R Rjk

jk ik ij j i
k

k k
j

i ij ik

=
− −

−
,

∑
∑

()()

1

where y R R y R R
j

k

i ij ik ij i ij ik= /∑ ∑ and R
ij
 and R

ik
 are indicators of missing values

as defined in (2). Although such method uses more observations, it may lead to a
covariance matrix that is not positive-definite (positive-definite matrix has positive
eigenvalues) and unsuitable for further analysis, i.e., multiple regression.

4.2. Imputation Techniques

The substitution or imputation techniques fill (impute) the values that are missing.
Any standard analysis may then be done on the complete dataset. Many such tech-
niques would typically provide underestimated standard errors.

The simplest substitution technique fills in the average value over available cases
(mean substitution). This underestimates variances and covariances in MCAR case
and is likely to introduce bias otherwise. Smaller variances may reduce p-values and,
therefore, may provide false impressions about the importance of some predictors.
Table 2 shows results using mean substitution. Table 2 shows that the project size is an

Table 2 Results for the mean substitution analysis

Variable Value Std. error t Value Pr(>|t|)

Intercept 3.1611 2.8054 1.1268 0.2656
Sqrt(size) 0.3904 0.1134 3.4437 0.0012
Tracking1 −0.0871 0.5903 −0.1475 0.8834
Tracking2 0.8557 0.7339 1.1660 0.2495
Tracking3 1.4568 0.7678 1.8975 0.0639

194 A. Mockus

important predictor of the interval and that the third dimension of tracking measure
(level of agreement by all affected parties to the changes in the software commit-
ments) might increase the interval. The coefficient is significant at 10% level.

Regression substitution uses multiple linear regression to impute missing values.
The regression is done on complete cases. The resulting prediction equation is used
for each missing case. Regression substitution underestimates the variances less
than mean substitution. A stochastic variation of regression substitution replaces a
missing value by the value predicted by regression plus a regression residual from
a randomly chosen complete case.

Table 3 shows results based on a basic liner regression substitution. For our
example the results are similar to mean substitution.

Other substitution methods include group mean substitution that calculates
means over groups of cases known to have homogeneous values within the group.
A variation of group mean substitution when the group size is one is called hot-deck
imputation. In hot-deck imputation for each case that has a missing value, a similar
case is chosen at random. The missing value is then substituted using the value
obtained from that case. Similarity may be measured using a Euclidean distance
function for numeric variables that are most correlated with the variable that has a
missing value.

The following two reasons prevent us from recommending simple deletion and
imputation methods when a substantial proportion of cases (more than 10%) are
missing:

1. It is not clear when they do not work
2. They give incorrect precision estimates making them unsuitable for interval

estimation and hypothesis testing

As the percentage of missing data increases to higher levels, the assumptions and
techniques have a more significant impact on results. Consequently, it becomes
very important to use a model based technique with a carefully chosen model.

While there is no consensus among all experts about what techniques should be
recommended, a fairly detailed set of recommendations is presented in Roth (1994)
and Little and Hyonggin (2003), where factors such as proportion of missing data
and the type of missing data (MCAR, MAR, NMAR) are considered. Roth (1994)
recommends using the simplest techniques, such as pairwise deletion, in the MCAR
case and model based techniques when the MAR assumption does not hold or when
the percent of missing data exceeds 15%. Because we doubt the validity of the

Table 3 Results for the regression substitution analysis

Variable Value Std. error t Value Pr(>|t|)

Intercept 3.5627 3.3068 1.0774 0.2868
Sqrt(Size) 0.3889 0.1242 3.1321 0.0030
Tracking1 0.0339 0.8811 0.0385 0.9695
Tracking2 0.6011 1.0760 0.5586 0.5791
Tracking3 1.5250 0.8518 1.7904 0.0798

ˆ ˆP S± 2

7 Missing Data in Software Engineering 195

MCAR assumption in most practical cases we do not recommend using techniques
that rely on it unless the percent of missing data is small.

4.3. Multiple Imputation

Multiple imputation (MI) is a model based technique where a statistical model is
postulated for complete data. A multivariate normal model is typically used for
continuous data and a log-linear model is used for categorical data. In MI each
missing value is replaced (imputed) by m > 1 plausible values drawn from their
predictive distribution. Consequently, instead of one data table with missing values
we get m complete tables. After doing identical analyses on each of the tables the
results are combined using simple rules to produce the estimates and standard
errors that reflect uncertainty introduced by the missing data.

The possibility of doing an arbitrary statistical analysis for each complete data
set and then combining estimates, standard deviations, and p-values allows the
analyst to use a complete data technique that is the most appropriate for their prob-
lem. In our example we chose to use multiple linear regression.

The attractiveness of the MI technique lies in the ability to use any standard sta-
tistical package on the imputed datasets. Only a few (3–5) imputations are needed
to produce quite accurate results (Schafer and Olsen, 1998). Software to produce
the imputed tables is available from several sources, most notably from Schafer
(1999) and R Development Core Team (2005). We do not describe the technical
details on how the imputations are performed because it is beyond the scope of this
presentation and the analyst can use any MI package to perform this step.

After the m MI tables are produced, each table may be analyzed by any statisti-
cal package. To combine the results of m analyses the following rules are used
(Rubin, 1987). Denote the quantities of interest produced by the analyses as P

1
,…, P

m

and their estimated variances as S
1
,…,S

m
.

● The overall estimate for P is an average value of P
i
’s: P̂ P m

i i= /∑
● The overall estimate for S is 21

(1)
ˆ ˆ()m

i im mi i
S S m P P+

−= / + −∑ ∑
A rough confidence interval for P is . This inference is based on a t distri-
bution and is derived under the assumption that complete data have an infinite
number of degrees of freedom. A refinement of the rules for small datasets is
 presented in Barnard and Rubin (1999). There P̂ has a t distribution with variance
 and degrees of freedom given by a fairly involved formula:

where n g= − /()m 1 2 , ^ 1
3 (1)n

nnn g+
+= − , n represents degrees of freedom for com-

plete data, and

1 1
1

n

n
+

ˆ
⎛
⎝⎜

⎞
⎠⎟

−

,

ˆ ˆP S± 2

196 A. Mockus

g = ∑
∑ +
−

+ −

1
1

1 2

k m S

m P P
i i

i i
k

()

() ()

.
ˆ

Sometimes the inference is performed on multiple quantities simultaneously, for
example, if we want to compare two nested multiple regression models, where the
more general model has one or more extra parameters that are equal to zero in the
simpler model. The rules for combining MI results in such a case are quite compli-
cated, [see, e.g., Schafer (1997, pp. 112–118)], however, the MI software (Schafer,
1999) implements required calculations.

4.4. Example

We used the norm package (Schafer, 1999) [also available as packages (Novo, 2002)
for R system (R Development Core Team, 2005)] for Windows 95/98/NT platform
to generate five imputations and ran multiple linear regression on each imputed data
table. The estimates and standard errors from the regression were combined using
multiple imputation rules. The norm package does not perform multiple regression,
but it provides the functionality to combine the results from multiple regression
analyses. We used this feature and the result is presented in Table 4. The coefficients
are not much different from the regression imputation, although the third tracking
dimension is now barely significant at the 10% level.

In most practical situations with a medium percentage of missing data there will
be relatively small difference between the results obtained using different missing
data methods (except for the complete case method), as happens to be the case in
our example. However, in many examples (like this one), where the conclusions are
based on p-values that are close to the chosen significance level, the use of MI is
essential. In particular, the mean substitution method was significant at 0.07 level,
but the MI method was not. If we, hypothetically, assume a world where results are
judged to be significant at 0.07 significance level (instead of our own world, where
the 0.05 significance level is most common), we would have reached different
 conclusions using different methods.

The example reiterates the fact that the standard deviation is underestimated in
imputation methods and, therefore, the significance values are inflated. Although
this example does not show large biases introduced by non MI methods, in general

Table 4 Results of multiple imputation analysis

Variable Value Std. error t Value Pr(>|t|)

Intercept 3.75 3.686 1.02 0.31
Sqrt(Size) 0.39 0.126 3.12 0.002
Tracking1 0.01 0.787 0.02 0.985
Tracking2 0.56 1.114 0.51 0.614
Tracking3 1.51 0.917 1.65 0.099

7 Missing Data in Software Engineering 197

it may be a serious issue. The example also illustrates the lack of efficiency of the
complete case method in line with the studies mentioned above.

5. Other Types of Unavailable Data

Software engineering has its own domain-specific types of missing data that are not
present in the general statistical treatment. Here we briefly present specific cases of
missing data in software artifacts. The first example deals with missing information
on software change purpose, and the second example deals with missing informa-
tion on software change effort.

5.1. Determining Change Purpose

Three primary driving forces in the evolution of software are: adaptive changes
introduce new functionality, corrective changes eliminate faults, and perfective
changes restructure code in order to improve understanding and simplify future
changes (Swanson, 1976, An et al., 1987). Models of software evolution must
take into account the significant differences in purpose and implementation of the
three types of changes (Graves et al., 2000, Atkins et al., 1999). However, few
change history databases record such information directly. Even if a record exists,
it is rarely consistent over time or across organizations. Fortunately, change
 history databases usually record a short description of the purpose for the change
at the maintenance request (MR) or lower level. Such description or abstract is
provided by developers who implement the change.

Work in Mockus and Votta (1997) used textual analysis of MR abstracts to
impute adaptive, corrective, or perfective labels to the changes. It classified MRs
as adaptive, corrective, or perfective depending on which key words appear in
these change abstracts. The classification scheme was able to tag around 85% of
all MRs.

5.2. Estimating Change Effort

A particularly important quantity related to software is the cost of making changes.
Therefore, it is of great interest to understand which factors have historically had
strong effects on this cost, which could be approximated by the amount of time
developers spend working on the change.

When performing historical studies of cost necessary to make a change, it is
important to study changes at a fine level (MRs as opposed to releases). Studying
larger units of change, such as releases, may make it impossible to separate the

198 A. Mockus

effects of important factors. For example, software releases typically contain a
mixture of several types of changes, including new code and bug fixes. Consequently,
the relative effort for the different types of changes can not be estimated at the
release level. Also, larger change units may involve multiple developers and distinct
parts of the code, making it difficult to estimate developer effects.

Measurements of change effort are not recorded in a typical software production
environment. Graves and Mockus (1998) describe an iterative imputation algorithm
that, in effect, divides a developer’s monthly effort across all changes worked on in
that month. The algorithm uses several measurements on each change including the
size and type of a change. Both measures are related to the amount of effort
required to make the change. The effort estimation tools provide valuable cost
driver data that could be used in planning and in making decisions on how to reduce
expenses in software development.

6. Summary

It should be noted that the quality of collected data will have more influence on
the analysis results and the success of a study than a choice of method to deal
with missing values. In particular, a successful data collection might result in few
or no missing values.

In many realistic scenarios the data quality is low, and some values are missing.
In such cases, the first step should be to determine the mechanism by which the data
are missing and add observations that may explain why the values are missing. This
would make the MAR assumption more plausible. For MAR (and MCAR) data,
multiple imputation mitigates the effects of missing values. Other research and our
case study have shown not only the importance of applying a missing data technique
such as imputation, but also the importance of carrying out multiple imputation. In
our case study we find that different conclusions may be reached depending on the
particular method chosen to handle missing data. This demonstrates that the selec-
tion of a proper method to handle missing data is not simply a formal exercise, but
it may, in certain circumstances, affect the outcome of an empirical study.

References

Albrecht, A. J. & Gaffney Jr., J. E. (1983), Software function, source lines of code, and develop-
ment effort prediction: a software science validation, IEEE Transactions on Software
Engineering 9(6), 639–648.

An, K. H., Gustafson, D. A. & Melton, A. C. (1987), A model for software maintenance, in
Proceedings of the Conference in Software Maintenance, Austin, Texas, pp. 57–62.

Atkins, D., Ball, T., Graves, T. & Mockus, A. (1999), Using version control data to evaluate the
effectiveness of software tools, in 1999 International Conference on Software Engineering,
ACM Press, Rio de Janeiro, Brazil, pp. 324–333.

7 Missing Data in Software Engineering 199

Barnard, J. & Rubin, D. B. (1999), Small sample degrees of freedom with multiple imputation,
Biometrika 86(4), 948–955.

Chidamber, S. R. & Kemerer, C. F. (1994), A metrics suite for object oriented design, IEEE
Trans. Software Eng. 20(6), 476–493.

Fleming, T. H. & Harrington, D. (1984), Nonparametric estimation of the survival distribution in
censored data, Communications in Statistics – Theory and Methods 20 13, 2469–2486.

Goldenson, D. R., Gopal, A. & Mukhopadhyay, T. (1999), Determinants of success in software
measurement programs, in Sixth International Symposium on Software Metrics, IEEE
Computer Society Press, Los Alamitos, CA, pp. 10–21.

Graves, T. L. & Mockus, A. (1998), Inferring change effort from configuration management
databases, in Metrics 98: Fifth International Symposium on Software Metrics, Bethesda, MD,
pp. 267–273.

Graves, T. L., Karr, A. F., Marron, J. S. & Siy, H. P. (2000), Predicting fault incidence using soft-
ware change history, IEEE Transactions on Software Engineering, 26(7), 653–661.

Halstead, M. H. (1977), Elements of Software Science, Elsevier North-Holland, New York.
Herbsleb, J. D. & Grinter, R. (1998), Conceptual simplicity meets organizational complexity:

Case study of a corporate metrics program, in 20th International Conference on Software
Engineering, IEEE Computer Society Press, Los Alamitos, CA, pp. 271–280.

Herbsleb, J. D., Krishnan, M., Mockus, A., Siy, H. P. & Tucker, G. T. (2000), Lessons from Ten
Years of Software Factory Experience, Technical Report, Bell Laboratories.

Jönsson, P. & Wohlin, C. (2004), An evaluation of k-nearest neighbour imputation using likert
data, in Proceedings of the 10th International Symposium on Software Metrics, pp. 108–118.

Kaplan, E. & Meyer, P. (1958), Non-parametric estimation from incomplete observations, Journal
of the American Statistical Association, 457–481.

Kim, J. & Curry, J. (1977), The treatment of missing data in multivariate analysis, Social Methods
and Research 6, 215–240.

Little, R. J. A. (1988), A test of missing completely at random for multivariate data with missing
values, Journal of the American Statistical Association 83(404), 1198–1202.

Little, R. & Hyonggin, A. (2003), Robust likelihood-based analysis of multivariate data with miss-
ing values, Technical Report Working Paper 5, The University of Michigan Department of
Biostatistics Working Paper Series. http://www.bepress.com/umichbiostat/paper5

Little, R. J. A. & Rubin, D. B. (1987), Statistical Analysis with Missing Data, Wiley Series in
Probability and Mathematical Statistics, Wiley, New York.

Little, R. J. A. & Rubin, D. B. (1989), The analysis of social science data with missing values,
Sociological Methods and Research 18(2), 292–326.

McCabe, T. (1976), A complexity measure, IEEE Transactions on Software Engineering 2(4),
308–320.

Mockus, A. (2006), Empirical estimates of software availability of deployed systems, in 2006
International Symposium on Empirical Software Engineering, ACM Press, Rio de Janeiro,
Brazil, pp. 222–231.

Mockus, A. (2007), Software support tools and experimental work, in V. Basili et al., eds,
Empirical Software Engineering Issues: LNCS 4336, Springer, pp. 91–99.

Mockus, A. & Votta, L. G. (1997), Identifying reasons for software changes using historic data-
bases, Technical Report BL0113590-980410-04, Bell Laboratories.

Myrtveit, I., Stensrud, E. & Olsson, U. (2001), Analyzing data sets with missing data: an empirical
evaluation of imputation methods and likelihood-based methods’ IEEE Transactions on
Software Engineering 27(11), 1999–1013.

Novo, A. (2002), Analysis of multivariate normal datasets with missing values, Ported to R by
Alvaro A. Novo. Original by J.L. Schafer.

R Development Core Team (2005), R: A Language and Environment for Statistical Computing, R
Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0. http://www.R-
project.org

Roth, P. L. (1994), Missing data: a conceptual review for applied psychologist, Personnel
Psychology 47, 537–560.

200 A. Mockus

Rubin, D. B. (1987), Multiple Imputation for Nonresponse in Surveys, Wiley, New York.
Schafer, J. L. (1997), Analysis of Incomplete Data, Monograph on Statistics and Applied

Probability, Chapman & Hall, London.
Schafer, J. S. (1999), Software for multiple imputation. http://www.stat.psu.edu/<jls/misoftwa.html
Schafer, J. L. & Olsen, M. K. (1998), Multiple imputation for multivariate missing data problems,

Multivariate Behavioural Research 33(4), 545–571.
Strike, K., Emam, K. E. & Madhavji, N. (2001), Software cost estimation with incomplete data,

IEEE Transactions on Software Engineering 27(10), 890–908.
Swanson, E. B. (1976), The dimensions of maintenance, in Proceedings of the 2nd Conference on

Software Engineering, San Francisco, pp. 492–497.
Twala, B., Cartwright, M. & Shepperd, M. (2006), Ensemble of missing data techniques to

improve software prediction accuracy, in ICSE’06, ACM, Shanghai, China, pp. 909–912.
Weisberg, S. (1985), Applied Linear Regression, 2nd Edition, Wiley, New York, USA.

Chapter 8
Reporting Experiments in Software Engineering

Andreas Jedlitschka, Marcus Ciolkowski, and Dietmar Pfahl

Abstract
Background: One major problem for integrating study results into a common body
of knowledge is the heterogeneity of reporting styles: (1) It is difficult to locate
relevant information and (2) important information is often missing.
Objective: A guideline for reporting results from controlled experiments is
expected to support a systematic, standardized presentation of empirical research,
thus improving reporting in order to support readers in (1) finding the information
they are looking for, (2) understanding how an experiment is conducted, and
(3) assessing the validity of its results.
Method: The guideline for reporting is based on (1) a survey of the most promi-
nent published proposals for reporting guidelines in software engineering and
(2) an iterative development incorporating feedback from members of the research
community.
Result: This chapter presents the unification of a set of guidelines for reporting
experiments in software engineering.
Limitation: The guideline has not been evaluated broadly yet.
Conclusion: The resulting guideline provides detailed guidance on the expected
content of the sections and subsections for reporting a specific type of empirical
study, i.e., experiments (controlled experiments and quasi-experiments).

1. Introduction

In today’s software development organizations, methods and tools are employed
that frequently lack sufficient evidence regarding their suitability, limits, qualities,
costs, and associated risks. In Communications of the ACM, Robert L. Glass
(2004), taking the standpoint of practitioners, asks for help from research:
“Here’s a message from software practitioners to software researchers: We (prac-
titioners) need your help. We need some better advice on how and when to use
methodologies.” Therefore, he asks for:

● A taxonomy of available methodologies, based upon their strengths and
weaknesses

201

F. Shull et al. (eds.), Guide to Advanced Empirical Software Engineering.
© Springer 2008

202 A. Jedlitschka et al.

● A taxonomy of the spectrum of problem domains, in terms of what practitioners
need

● A mapping of the first taxonomy to the second (or the second to the first)

Empirical software engineering (ESE) addresses some of these issues partly by
providing a framework for goal-oriented research. The aim of this research is
to build an empirically validated body of knowledge and, based on that,
 comprehensive problem-oriented decision support in the software engineering
(SE) domain.

However, one major problem for integrating study results into a body of knowl-
edge is the heterogeneity of study reporting (Jedlitschka and Ciolkowski, 2004). It
is often difficult to find relevant information because the same type of information
is located in different sections of study reports and important information is also
often missing (Wohlin et al., 2003; Sjøberg et al., 2005; Dybå et al., 2006; Kampenes
et al., 2007). For example, in study reports, context information is frequently
reported differently and without taking into account further generalizability.
Furthermore, specific information of interest for practitioners is often missing, like
a discussion of the overall impact of the technology on project or business goals.

One way to avoid this heterogeneity of reporting is to introduce and establish
reporting guidelines. Specifically, reporting guidelines support a systematic,
 standardized description of empirical research, thus improving reporting in order to
support readers in (1) finding the information they are looking for, (2) understand-
ing how an experiment is conducted, and (3) assessing the validity of its results.
This claim is supported by the CONSORT statement (Altman et al., 2001), a
research tool in the area of medicine that takes an evidence-based approach to
improve the quality of reports of randomized trials to facilitate systematic reuse
(e.g., replication, systematic review, and meta analysis).

As identified by Kitchenham et al. (2002, 2004), reporting guidelines are neces-
sary for all relevant kinds of empirical work, but they must address the needs of
 different stakeholders (i.e., researchers and practitioners). The specific need for
standardized reporting of controlled experiments has been mentioned by different
authors for a long time, e.g., Lott and Rombach (1996), Pickard et al. (1998), Shull
et al. (2003), Vegas et al. (2003), Wohlin et al. (2003), and Sjøberg et al. (2005). At
the same time, several more or less comprehensive and demanding reporting guide-
lines have been proposed, e.g., by Singer (1999), Wohlin et al. (2000), Juristo and
Moreno (2001), and Kitchenham et al. (2002). Even though each of these proposals
has its merits, none has yet been accepted as a de-facto standard. Moreover, most of
the existing guidelines are not explicitly tailored to the specific needs of certain types
of empirical studies, e.g., controlled experiments a comprehensive classification of
empirical studies is given by Zelkowitz et al. (2003).

The goal of this chapter is to survey the published proposals for reporting
 guidelines and to derive a unified and – where necessary – enhanced guideline for
reporting controlled experiments and quasi-experiments. Nevertheless, many of the
elements discussed throughout this chapter will also make sense for reporting other
types of empirical work.

8 Reporting Experiments in Software Engineering 203

2. Background

Empirical software engineering research is not the first research domain to
encounter problems with insufficient reporting. Other disciplines, such as medicine
and psychology, have experienced similar problems and have achieved various
improvements by standardizing and instantiating reporting guidelines, e.g., for
randomized controlled trials in biomedical research (Altman et al., 2001; Moher
et al., 2001), psychology (Harris, 2002), clinical practice guidelines (Shiffman et al.,
2003), and empirical results from psychological research (American Psychological
Association, 2001).

In the field of SE research, in 1999, Singer (1999) described how to use the
“American Psychological Association (APA) Styleguide” (2001) for publishing
experimental results in SE. In 2002, Kitchenham et al. (2002) provided initial
guidelines on how to perform, report, and collate results of empirical studies in SE
based on medical guidelines as well as on the personal experience of the authors.
Shaw (2003) provided a tutorial on how to write scientific papers, including the
presentation of empirical research as a special case. Additionally, standard text
books on empirical SE, such as Wohlin et al. (2000) and Juristo and Moreno (2001),
address the issue of reporting guidelines. Wohlin et al. (2000) suggest an outline for
reporting the results of empirical work. Juristo and Moreno (2001) provide a list of
the “most important points to be documented for each phase” in the form of “ques-
tions to be answered by the experimental documentation.”

Jedlitschka et al. presented a first version of a guideline for reporting controlled
experiments (2005a) during a workshop on empirical software engineering (Jedlitschka,
2005). Feedback from the workshop participants, as well as from peer reviews, was
incorporated into a second version of the guideline (2005b). In parallel, the guideline
was evaluated by means of a perspective-based inspection approach (Kitchenham
et al., 2006). This evaluation highlighted 42 issues where the guideline would benefit
from amendment or clarification and eight defects. The feedback from the perspective-
based inspection and discussions with its authors led to a second iteration of the guide-
line, where the amendments were incorporated if we found them appropriate and
defects were removed (Jedlitschka and Ciolkowski, 2006). Additional feedback from
individual researchers was also incorporated (Jedlitschka et al., 2007).

Table 1 characterizes the existing proposals for guidelines on reporting empirical
work in SE. The first row of the table lists the proposals, arranged with regard to their
publication date. The second row of the table describes the focus of the guidelines. The
entry “Empirical Research” indicates that the guidelines are not tailored to a specific
type of empirical research. Otherwise, the specific type is explicitly mentioned, e.g.,
“Controlled Experiment” or “Systematic Review.” The third row describes the phases
of an experiment covered by the guideline. The entry “All” indicates that the guideline
covers all phases of a study. The remaining rows list the structuring elements in the
proposed guidelines and map them to the structure of our proposal (last column).
Elements of existing proposals occurring twice in a column indicate that these
 elements can be mapped to two different elements of our new proposal.

204
A

. Jedlitschka et al.
Table 1 Overview on structuring proposals for reporting controlled experiments

 Wohlin et al. Kitchenham et al. Juristo and Moreno Kitchenham Jedlitschka et al.
 Singer (1999) (2000) (2002) (2001) (2004) (2007)

Type of study Empirical research Empirical research Empirical research Controlled experiment Systematic review Controlled experiment
Phases of study Reporting All All All All Reporting
Structure * * * * Title Title
 * * * * Authorship Authorship
 * * * * Keywords Keywords
 Abstract * * * Executive summary Structured abstract
 or structured
 abstract
 Introduction Introduction * Goal definition Background Introduction
 Problem statement
 Experiment planning Experimental context
 Introduction Problem statement Experimental context Goal definition Background Background
 Method Experiment planning Experimental design Design Review questions Experiment planning
 Review methods
 Procedure Experiment Conducting the Experiment execution Included and excluded Deviations from
 operation experiment and studies the plan
 data collection
 Results Data analysis Analysis Experimental analysis Results Analysis
 Discussion Interpretation Interpretation Experimental analysis Discussion Discussion
 of results of results
 Discussion Discussion and * Experimental analysis Conclusion Conclusions and future
 conclusion work
 – – – – Acknowledgments Acknowledgements
 Conflict of interest
 References References * * References References
 Appendices Appendix * * Appendices Appendices

An asterisk (*) indicates that the authors do not explicitly mention or describe details for this element, but it is assumed that the elements are implicitly
required.

8 Reporting Experiments in Software Engineering 205

We investigated the structures of published reports of controlled experiments in
empirical software engineering and have concluded that, in general, authors do not
use a common set of guidelines in determining what information to include in their
report. In other disciplines, such as medicine and psychology, editors have agreed
on a common reporting style, not only regarding the layout of the report, but also
its content. Given that the first publication of a reporting guideline for empirical SE
research by Singer (1999) was over 7 years ago and little has progressed since that
time, we conclude that significant effort needs to be invested to make sure that
guidelines are widely accepted and used. This is what other communities have
already learned (Altman et al., 2001; Harris, 2002).

Because of this, this chapter provides a description of the most common elements in
the various reporting guidelines, giving guidance to readers where we have diverged
from others suggestions. This guideline should be seen as a means for supporting both
authors of a report in providing relevant information in the appropriate place and read-
ers of a report in knowing where to look for a certain type of information.

3. Guideline for Reporting Controlled Experiments

In this section, we discuss what information should be presented in reports of
experiments. It some cases, it may be necessary to adapt the length of a report
depending on the requirements of the publisher. Therefore, the structure as pre-
sented in this section provides several options. For example, for a conference
paper (which is usually much shorter than a journal paper) it may be appropriate
to combine the description of the experiment planning and the deviations from
the plan as well as the description of the analysis procedure and the analysis,
whereas for a journal paper, it is generally appropriate to separate the content of
these sections.

In all reports, however, generally speaking, enough information has to be
 provided to enable readers to judge the reliability of the experiment. The need for
detailed provision of information is not specific for SE. It is, for example, also
pointed out by Harris (2002). We are well aware that due to limitations of pages
(e.g., for conferences), this is not possible in all cases, but the author should at least
keep this intention in mind while compiling the report.

As indicated in Table 1, our reporting guideline comprises the following
 elements: Title, Authorship, Structured Abstract, Keywords, Introduction,
Background, Experiment Planning, Execution, Analysis, Discussion, Conclusion
and Future Work, Acknowledgements, References, and Appendices.

Our proposal reflects the requirements of existing standards, such as APA, but
provides more structuring elements and asks for specific details that are not rele-
vant for many experiments in psychology, like a technology’s impact on the overall
project budget or time and on the product’s quality. Furthermore, our guideline
incorporates wording as it is common for experiments in empirical SE to also

206 A. Jedlitschka et al.

Table 2 Quick reference

Section Content Scope Priority

3.1 Title <title> + “− A controlled experi-
ment”; Is it informative and does it
include the major treatments and the
dependent variables?

Required

3.2 Authorship Does it include contact information,
i.e., a valid email?

Required

3.3 Structured
abstract

Background Why is this research important? Required

Objective What is the question addressed with
this research?

Required

Methods What is the statistical context and
methods applied?

Required

Results What are the main findings? Practical
implications?

Required

Limitations What are the weaknesses of this
research?

Conclusions What is the conclusion? Required
3.4 Keywords Areas of research the treatments,

dependent variables, and study type
Might be required

by the publisher
3.5 Introduction Problem

 statement
What is the problem? Where does it

occur? Who has observed it?
Why is it important to be solved?

Required

Research
objective

What is the research question to be
answered by this study? E.g., by
using the GQM goal template:
Analyze <Object(s) of study> for
the purpose of <purpose> with
respect to their <Quality Focus> the
point of view of the <Perspective>
in the context of <context>

Required

Context What information is necessary to
understand whether the research
relates to a specific situation (envi-
ronment)?

Required

3.6 Background Technology
under inves-
tigation

What is necessary for a reader to know
about the technology to reproduce
its application?

Required if not
published else-
where

Alternative
technolo-
gies

How does this research relate to alter-
native technologies? What is the
control treatment?

Required

Related studies How this research relates to existing
research (studies)? What were the
results from these studies?

If available

Relevance to
practice

How does it relate to state of the prac-
tice?

If available

3.7 Experiment
planning

Goals Formalization of goals, refine the
important constructs (e.g., the qual-
ity focus)
of the experiment’s goal

Required

(continued)

8 Reporting Experiments in Software Engineering 207

Experimental
units

From which population will the
sample be drawn? How will the
groups be formed (assignment to
treatments)? Any kind of rand-
omization and blinding has to be
described

Required

Experimental
material

Which objects are selected and why? Required

Tasks Which tasks have to be performed by
the subjects?

Required

Hypotheses,
parameters,
and vari-
ables

What are the constructs and their
operationalization? They have to be
traceable derived from the research
question respectively the goal of the
experiment

Required (for an
explorative
studies there
might be no
hypothesis
defined)

Design What type of experimental design has
been chosen?

Required

Procedure How will the experiment (i.e. data
collection) be performed? What
instruments, materials, tools
will be used and how?

Could be integrated
with execution

Analysis proce-
dure

How will the data be analyzed? Could be integrated
with analysis

3.8 Execution Preparation What has been done to prepare the
execution of the experiment (i.e.,
schedule, training)

Deviations Describe any deviations from the
plan, e.g., how was the data
collection actually performed?

3.9 Analysis Descriptive
statistics

What are the results from descriptive
statistics?

Required

Data set prepa-
ration

What was done to prepare the data set,
why, and how?

Hypothesis
testing

How was the data evaluated and was
the analysis model validated?

3.10 Discussion Evaluation of
results and
implications

Explain the results and the relation
of the results to earlier research,
especially those mentioned in the
Background section

Threats to
validity

How is validity of the experimental
results assured? How was the data
actually validated?

Required

Table 2 (continued)

Section Content Scope Priority

(continued)

208 A. Jedlitschka et al.

Threats that might have an impact on
the validity of the results as such
(threats
to internal validity, e.g., confound-
ing variables, bias), and, further-
more, on the extent to which the
hypothesis captures the objectives
and the generalizability of the find-
ings (threats to external validity,
e.g., participants, materials) have to
be discussed

Inferences Inferences drawn from the data to
more general conditions

Required

Lessons
learned

Which experience was collected
during the course of the
experiment

Nice to have

3.11 Conclusions
and future
work

Summary The purpose of this section is to
provide a concise summary
of the research and its results as
presented in the former sections

Required

Impact Description of impacts with regard to
cost, schedule, and quality,
circumstances under which the
approach presumably will not
yield the expected benefit

Future work What other experiments could be run
to further investigate the results
yielded or evolve the Body of
Knowledge

3.12 Acknowled-
gements

Sponsors, participants, and
contributors who do not fulfil the
requirements for authorship
should be mentioned

If appropriate

3.13 References All cited literature has to be
presented in the format
requested by the publisher

Absolutely required

3.14 Appendices Experimental materials, raw data, and
detailed analyses, which might be
helpful for others to build upon the
reported work should be provided

Might be made
available trough
technical
reports or web
site

Table 2 (continued)

Section Content Scope Priority

 support the reading of already published reports. The structuring elements are
 discussed in detail in the following subsections. Table 2 shows each element, along
with the section it is detailed in, and its particular sub-elements.

8 Reporting Experiments in Software Engineering 209

3.1. Title

The title of the report has to be informative, because the title (together with the
abstract) “alerts potential readers to the existence of an article of interest” (Harris,
2002). To attract readers from industry, it is important to use commonly used
 industry terms. Harris (2002) suggests avoiding phrases like “A Study of” or “An
Experimental Investigation of.” This might be true for psychology, but for ESE,
where we do not have explicit journals for experiments, we propose adding “– a
controlled experiment” (– a replicated controlled experiment, – a quasi-experi-
ment) if there are no limitations with regard to the title length. This helps the
reader to easily identify controlled experiments. Furthermore, if possible, it addi-
tionally aides the reader if the dependent variables and treatments can be speci-
fied in the title.

In fact, where the title length is limited, we believe it is more important to
include treatments and the dependent variables than “a controlled experiment.”
As an example of a succinct meaningful title, consider the following: The title
of a publication describing a controlled experiment to investigate technique X
compared to technique Y (the treatments) regarding the maintainability of a
product (dependent variable) could be “Comparing the Impact of Technique
X and Technique Y on Product’s Maintainability – A Controlled Experiment.”
From the perspective of a reader, both from research as well as from indus-
try, this title would allow for easily identifying the main aspects of the
publication.

3.2. Authorship

All individuals making a significant contribution should be in the author list or at
least acknowledged (c.f. Sect. 3.12).

Most report styles require contact details. If not, provide at least the e-mail
address of the responsible author. As authors might change their job, it is sometimes
more appropriate to provide the contact information of the more stable author – for
example a professor as opposed to a graduate student (Kitchenham, 2004), or, “to
be on the safe side,” provide contact information for all authors.

3.3. Structured Abstract

The need for a self-contained abstract is beyond any question. It is an important
source of information for any reader, as it briefly summarizes the main points of the
study and, moreover, is often the only part of a publication that is freely accessible
(Kitchenham, 2004). Abstracts should summarize the broad research questions.

210 A. Jedlitschka et al.

Additionally, for a single experiment, regardless of the format of the abstract,
authors should ensure that all relevant interventions or conditions (i.e., independent
variables) and dependent variables are mentioned. When more than one experiment
is reported in a paper, this may be infeasible, and instead authors will need to
describe their experiments in more general terms.

The exact format of the abstract needs more discussion. For example, Shaw
(2003) found that there is a common structure for the clearest abstracts consisting
of the following elements: (a) the current state of the art, identifying a particular
problem, (b) the contribution to improving the situation, (c) the specific result and
the main idea behind it, and (d) how the result is demonstrated or defended. For
reporting experiments in psychology, Harris (2002) suggests that an abstract should
describe the following aspects: (1) the problem under investigation, (2) the partici-
pants, (3) the empirical method, (4) the findings, and (5) the conclusions.

A large number of journals in medicine and psychology have imposed a special
form of the abstract, the structured abstract (Hayward et al., 1993; Bayley and
Eldredge, 2003), on authors to improve the clarity of abstracts. The most common
elements of structured abstracts are Background or Context, Objective or Aim,
Method, Results, and Conclusion.

Inspired by the lessons learned from medicine, we propose using a structured
abstract consisting of the elements listed below:

Background: Give a brief explanation of the motivation for conducting the
study. Example: “Software developers have a plethora of development technol-
ogies from which to choose, but often little guidance for making the decision”
(Shull et al., 2003).

Objective: Describe the aim of the study, including the object under examination,
the focus, and the perspective. Example: “We examined <technique1> vs.
<technique2> with regard to fault detection rates from the viewpoint of a quality
engineer.”

Method: Describe which research method was used to examine the object (e.g.,
experimental design, number and kind of participants, selection criteria, data
 collection and analysis procedures). Example: “We conducted a controlled experi-
ment using a 2 × 2 factorial design with 24 randomly assigned undergraduate
 students participating. The data were collected with the help of questionnaires and
analyzed using ANOVA.”

Results: Describe the main findings. Example: “<technique1> was significantly
more effective than <technique2> at an alpha level of 0.05.”

Limitations: Describe the major limitations of the research, if any. Example:
“Generalization of results is limited since the analyzed technique was applied only
to specify systems smaller than 10,000 lines of code.”

Conclusion: Describe the impact of the results. Example: “The result reinforced
existing evidence regarding the superiority of <technique1> over <technique2>.”

Furthermore, to address practitioners’ information needs, cost, benefits, risks,
and transitions should also be described.

8 Reporting Experiments in Software Engineering 211

Our recommendation to include the element Limitations in a structured abstract
follows a suggestion made in The Editors of Annals of Internal Medicine (2004),
since every piece of evidence has its limitations. This additional information helps
readers judge the transferability of the results to their context. It also prevents
uncritical acceptance by the reader.

It is important to use only a few sentences for each structuring element of the
abstract. Hartley (2003) found that the number of words increases by about 30% if
structured abstracts are used. But he claims that these “extra costs” pay back
because, with the additional information given in the abstract, a wider readership
might be encouraged and citation rates improve as do (journal) impact factors.
Several researchers who compared the use of structured abstracts to traditional ones
found advantages for structured abstracts, but no real disadvantages (Hartley, 2004;
Kitchenham, 2004).

From this discussion, we conclude that experimenters should certainly use
structured abstracts, but even if the abstract is written as text (without structuring
elements), it should still include all of the aforementioned elements. Where pub-
lishers limit the length of the abstract by number of words or number of lines, we
suggest prioritizing the traditional elements: background (one sentence), objective,
method, results, and conclusion, but recommend sticking with the structure.

As a final note, to attract readers from industry, authors should use terms that are
commonly used in industry in describing their research.

3.4. Keywords

Except for Kitchenham (2004) and Jedlitschka et al. (2007), existing guidelines do
not explicitly address keywords. Furthermore, keywords are not necessarily
requested by all publications. Nevertheless, if provided (and if free of any pre-
defined characterization, like ACM), keywords should describe the areas of
research, the treatments, dependent variables, and study type. The list of keywords
should complement the title, as it was described earlier, especially in cases where
it was not possible to include all pertinent information in the title. As with the title,
keywords help readers to identify relevant publications. This is especially important
because publishers use keywords for categorisation, and they are visible even in
cases where full access to the publication is restricted. Finally, keywords should not
be idiosyncratic, but should instead reflect common terms used in the field.

3.5. Introduction

The purpose of the introduction is to set the scope of the work and give potential
readers good reasons for reading the remainder of the publication (motivation).
The introduction needs to place the research into a wider context before introducing
the specific problem. As can be seen from Table 1, there are several variations with

212 A. Jedlitschka et al.

regard to the content of the introduction. In most cases, the introduction starts
with a broad description of the research area (Wohlin et al., 2000). With the excep-
tion of Wohlin et al. (2000), who recommend a distinct section to describe the
problem under study, all of the guidelines include the description of the problem
in the introduction. Further, Wohlin et al. (2000) and Kitchenham et al. (2002)
 suggest the introduction include an explicit description of the context of the study
(i.e., the environment in which it is run).

Thus, based on the various guidelines, as a minimum the introduction should
include a description of the Problem Statement, the Research Objectives, and the
Context of the research.

The problem statement supports readers in comparing their problems with the
problem investigated in the reported experiment, thereby judging the relevance of
the research to their questions. In general, the problem statement should provide
answers to the following questions: What is the problem? Where does it occur?
Who has observed it? Why is it important to be solved? In addition, any underlying
theory, causal model, or logical model should be specified.

The description of the problem statement should lead directly to the description
of the research objective. The research objective starts with a brief description of
the solution idea and the (expected) benefits of the solution.

Example adopted from (Ciolkowski et al. 1997): Recently, it was reported by […] that
defects in a software artefact increase cycle time and development costs. One possible
solution would be to start defect detection as early in the development cycle as possible,
for example by inspecting requirements documents. The benefit would be that the defects
from the requirements phase will not be incorporated in the later phases, which will result
in reduced cycle times and development costs.

The description of the research objective (or, as Wohlin et al. (2000) call it, the
“Definition of the Experiment”), should be as coherent as possible. One way to
achieve this is to use the goal template of the Goal/Question/Metric (GQM) method
formulated by Basili et al. (2001). This template includes several elements to be
filled in as shown below, with an example underneath.
Analyze <…> for the purpose of <…> with respect to their <…> from the point of
view of the <…> in the context of <…>.

The following example is adapted from Ciolkowski et al. (1997):

Analyze perspective-based reading and ad hoc reading techniques
For the purpose of evaluation
With respect to their effectiveness
From the viewpoint of potential users
In the context of the software engineering class at the University

For further examples of the use of the goal definition template to describe the
research objective, see Wohlin et al. (2000).

The description of the context is essential for practitioners as well as for
researchers. Practitioners need context information to see if the technique/ process/
tool under study would be applicable in their own organization. Researchers need
context information to understand the limits of the study (e.g., whether the results
are generalizable), to replicate results, and to aggregate results or perform meta-

8 Reporting Experiments in Software Engineering 213

analyses. To describe the context of the research, the CONSORT Statement
(Altman et al., 2001; Moher et al., 2001) suggests that the setting and locations of
a study are described. In software engineering this could include information
about application type (e.g., real-time system), application domain, (e.g., telecom-
munications), type of company (e.g., small or medium sized), experience of the
participants (e.g., professionals with on average 5 years of related practical
 experience), time constraints (e.g., critical milestones, delivery date), process (e.g.,
spiral model), tools (e.g., used for capturing requirements), size of project
(e.g., 500 person months). Furthermore, it is valuable to know whether there are
specific requirements with regard to the environment in which the technique, tool,
or method was applied.

A more formal description of context from a researcher’s viewpoint comprises
context factors that might affect the generality and utility of the conclusions. These
are generally detailed when describing the experimental design.

The introduction generally ends with an outline for the remainder of the paper.

3.6. Background

Researchers as well as practitioners need an understanding of the landscape of
the reported research, including alternative approaches and relationships
between different experiments (Jedlitschka and Ciolkowski, 2004b). Most
guidelines require appropriate citation, as described, for example, in the APA
style guide (2001).

In contrast to Singer (1999), who includes background information in the
Introduction, Wohlin et al. (2000), Juristo and Moreno (2001), Kitchenham et al.
(2002), Jedlitschka and Pfahl (2005a, b), and Jedlitschka et al. (2007) suggest
 presenting background information in a unique section.

At a minimum, the background should present: a description of the Technology
(or tool, method)1 under Investigation, a description of Alternative Solutions, i.e.,
other reports that address the same problem or are comparable from a technology
view point, a Description of Related Studies, i.e., empirical studies that have inves-
tigated the same or similar treatments, and, if appropriate, levels of Relevance to
Practice, i.e., how successfully the technique has been applied in industry. In the
following, we provide more details on each of these elements.

Because readers need to understand at some level what is being investigated
before they can understand how it relates to other work, the background will
 frequently begin with a brief description of the treatment and control variables of
the experiment. The detail of the description depends on the availability of earlier
publications and the length of the report. Moreover, for readers who have no
 specific background in the area, a more general reference, e.g., to a textbook, might
be helpful.

1 For ease of reading, we use technology as an umbrella term for technology, method, and tool.

214 A. Jedlitschka et al.

The description of alternative solutions/approaches helps to frame the work
within a larger research context. This description should not simply be a list of
related research (Shaw, 2003), but rather an objective description of the main find-
ings relevant to the work currently being reported. Alternative solutions should be
reported whether they are supportive of or contradictory to the current research
approach. Especially in the case of an experiment that compares different
approaches, it is crucial to objectively describe the alternative approaches. Note that
a comparison of the results of related work and the current results should be done
in the discussion section after the results have been presented (c.f. Sect. 3.10).

In the description of related studies, existing evidence (if available), in the form
of earlier studies and, especially, experiments, should be described. As with alterna-
tive solutions, the relation of the current research to other studies (existing evidence)
helps readers understand where this work fits into a larger research context.
Moreover, it supports the reuse of this study for replication or systematic review,
providing a sound basis for research and improving its value. If the reported study
is a replication, the parental study and its findings also have to be described.

In terms of relevance to practice, if applicable, if one of the treatments (technologies)
has previously been applied to real software projects or under realistic circumstances, a
short summary of the findings and related references should be provided.

3.7. Experiment Planning

This section, sometimes referred to as experimental design or protocol, describes
the plan or protocol that is used to perform the experiment and analyze the results.
It is important because, as Singer stated, this section is the “recipe for the
 experiment” (Singer, 1999). Therefore, it should provide all information that is
necessary to replicate the study and integrate it into the ESE body of knowledge. In
addition, this section allows readers to evaluate the internal validity of the study,
which is an important selection criterion for systematic review or meta-analysis
(Kitchenham, 2004; Kitchenham et al., 2002).

According to several guidelines (e.g., Harris, 2002), the experiment planning
section should describe the Goals, Participants, Experimental Material, Tasks,
Hypotheses, Parameters, and Variables, Experiment Design, Procedure for con-
ducting the study, as well as the Analysis Procedure. Using this order allows for
successive refinement of the details of the study. In some cases, however, a different
order might be appropriate.

The level of detail regarding the various elements depends on the kind of publi-
cation, respecting the required length of the report. Therefore, authors should
 prioritise the information according to what is most relevant for the particular
 audience. Alternatively, authors may consider combining several sections into one.
For instance, it might be appropriate to integrate the description of the procedure
with the description of the execution, or to integrate the description of the analysis

8 Reporting Experiments in Software Engineering 215

procedure with that of the analysis. Furthermore, it might be possible to put all
 relevant material into an appendix or longer technical report. If this is not possible,
archiving the information on a website may be an alternative. To address concerns
that arise in sharing protocols, including raw data and material, Basili et al. (2007)
propose an initial licensing model.

3.7.1. Goal(s)

Often the original research objective as described in the introduction is not concrete
enough. The purpose of this paragraph is, therefore, to define in more concrete
terms the main manipulations of the experiment. For example, the GQM template
provided in the introduction could be refined into something like:

Example adapted from Ciolkowski et al. (1997):

Goal 1: Analyze perspective-based reading and ad hoc reading techniques
For the purpose of understanding their effectiveness
With respect to the defect detection rate of individual developers

Goal 2: Analyze perspective-based reading perspectives
For the purpose of understanding their effectiveness
With respect to detecting different defect classes

The refinement of the main research question should be described and motivated to
allow for traceability down to the hypotheses, which will be described in later in
this chapter.

3.7.2. Participants

The participants (often referred to as subjects or, if not humans, experimental units)
need to be described in detail. Furthermore, the sampling strategy and the resulting
samples need to be described, including the number of participants (per condition),
the kind of participants (e.g., computer science students), and the populations from
which they were drawn. All measures for randomization have to be reported here,
especially the random allocation of participants to treatments. Where a statistical
power calculation has been used, assumptions, estimates, and calculations have to
be provided.

All participant characteristics that might have an effect on the results or restrict
the sample in some way should also be described in this section. This may include
experience with the techniques to be applied or mean/range of experience in years,
or educational level. For instance, if a certain level of experience is required, the
sample might be drawn from fourth-term computer science students (as opposed to
first-term students).

A description of the motivation for the participants to participate is mandatory.
For instance, it should be stated whether the participants were paid and if so, how
much, or whether they earned educational credits for taking part in the experiment.
Additionally, the answers to the following questions are of interest (Wohlin et al.,

216 A. Jedlitschka et al.

2000): What was the commitment of the participants? How was consent obtained?
How was confidentiality assured? How was participation motivated (induced)?

3.7.3. Experimental Materials

In this section, all experimental materials and equipment should be described. For
instance, if the study involves a questionnaire, questions should be described, as
should any other characterizations of the questionnaire, e.g., it had five sections
focusing on specific topics, with the topics named. As another example, in an
experiment looking at different reading techniques, the document used for the
application of the reading technique should be described in terms of its length,
complexity, seeded faults (number, type, interactions), etc. As with the participant
section, all characteristics that might have an impact on the results should be
 mentioned here as formally as possible. However, in case of conference papers, it
is often not possible to present all the materials in detail, so we suggest providing
more detail either in the appendix of an associated technical report, or using a
website.

Note that in this section, the materials should not be presented verbatim, but
rather described with as much detail as necessary for the readers to understand what
materials the participants interacted with during the experiment.

3.7.4. Tasks

Here, the tasks performed by the participants should be described in enough detail
so that a replication of the experiment is possible without consultation of the
authors. Redundancies with regard to the description of the technology in the
 background section (c.f., Sect. 3.6) should be avoided. If the description requires
too much space, the information should be made available in a technical report or
as a web resource. When space is a consideration, the task description could be
integrated with the description of the procedure. However, separating the two
descriptions makes it easier for readers to understand how the hypotheses, parameters,
and variables were derived.

3.7.5. Hypotheses, Parameters, and Variables

In this section, hypotheses, parameters, and variables should be described. This
description should be linked to the research objective already reported in the
introduction.

For each goal stated in the research objective, the null hypotheses, denoted H
0ij

,
and their corresponding alternative hypotheses, denoted H

1ij
, need to be reported,

where i corresponds to the goal identifier, and j is a counter for cases where more

8 Reporting Experiments in Software Engineering 217

than one hypothesis is formulated per goal. The description of both null and
 alternative hypotheses should be as formal as possible. The main hypotheses should
be explicitly separated from ancillary hypotheses and exploratory analyses. In the
case of ancillary hypotheses, a hierarchical system is appropriate. Hypotheses need
to state the treatments and the control conditions.

Continuing the example for Goal1 from Sect. 3.7.1 (adapted from Ciolkowski
et al. (1997)):

The goal of the experiment is to determine:
Q1: Which reading technique produces a higher mean defect detection rate?
One of the possible hypotheses is:
H

011
: Individuals applying a perspective-based reading (PBR) technique detect more

defects than individuals using ad hoc reading.

In the example hypothesis H
011

, the treatment is perspective-based reading and the
control condition is ad hoc reading. A further formalization of H

011
 and the alterna-

tive hypothesis H
111

 could be written in the following form (where MDDR stands
for mean defect detection rate):

H MDDR PBR MDDR ad hoc011 = () ()>

H MDDR PBR MDDR ad hoc111 = ≤() ()

It is important to differentiate between experimental hypotheses and the specific
tests being performed; the tests have to be described in the analysis procedure
section.

In addition to the hypotheses, there are two types of variables that need to be
described in this section: the dependent variable(s) (aka. response variables) and
the independent variable(s) (aka. predictor variables). As with the hypotheses,
dependent variables need be defined and justified in terms of their relevance to the
goals listed in the Research Objectives. Dependent variables are the variables that
are measured to ascertain whether the independent variable had an effect on the
outcome. Likewise, independent variables are variables that are frequently
 manipulated in the experiment and may influence the dependent variable(s).
Independent variables can include treatments, materials, and some context factors.
In this section, only independent variables that are manipulated or controlled
through the experimental design (i.e., causal variables) are described. For each
independent variable, its corresponding levels (aka. alternatives, treatments) have
to be specified in operational form. In the example given above, the dependent
variable is the MDDR. The independent variable is the type of reading technique,
which has two levels, PBR and ad hoc.

With respect to reporting, authors need to describe their metrics clearly. In
 particular, if a standardized set of metrics is available, authors have to explain
which of them are used. If existing metrics are tailored, the need for the tailoring
and the tailored metric have to be explicated. Based on Wohlin et al. (2000), Juristo
and Moreno (2001), and Kitchenham et al. (2001), Table 3 gives a schema for the
description of variables and related metrics.

218
A

. Jedlitschka et al.

Table 3 Schema for the description of variables

Name of the
variable

Type of the
variable
(independent,
dependent,
moderating)

Abbreviation Class
(product,
process,
resource,
method)

Entity
(instance of
the class)

Type of
attribute (inter-
nal, external)

Scale type
(nominal,
ordinal …)

Unit Range or,
for nominal
and restricted
ordinal scales,
the definition
of each scale
point

Counting rule
in the context of
the entity

Type of reading
technique

independent RT Method Reading
Technique

N.A. nominal N.A. PBR; ad hoc N.A.

Mean defect
detection rate

dependent MDDR Process Inspection
process

Internal: effi-
ciency;
external:
quality

ratio Number of
defects
per hour

>= 0 Number of
agreed upon
defects after
review meet-
ing / total
effort for
inspection
process in
hours

8 Reporting Experiments in Software Engineering 219

For subjective metrics, a statistic for inter-rater agreements should be presented,
such as the kappa statistics or the intra-class correlation coefficient for continuous
metrics (Kitchenham et al., 2002).

3.7.6. Experiment Design

In the Experiment Design subsection, the specific design has to be described.
Elements in this section that need to be described include whether the experiment
was a within – or between-subjects design, or a mixed factors design, with a
description of each of the levels of the independent variable. Juristo and Moreno
(2001) give a comprehensive description of designs for experiments. Moreover,
authors should describe how participants were assigned to levels of the treatments
(Kitchenham et al., 2002).

If, for example, an experiment examined the effect of PBR versus ad hoc
reading techniques on short and long times spent looking for defects on MDDR,
with different sets of subjects using the techniques, it would be reported as a 2
(reading technique) × 2 (time period) between-subjects design with reading
technique having two levels: PBR and ad hoc, and time also having two levels
(15 min and 30 min).

In addition to this formalization of the design, if any kind of blinding (e.g.,
blind allocation) has been used, the details need to be provided; this applies to the
execution (e.g., blind marking) and the analysis (e.g., blind analysis). If the
experiment is a replication, the adjustments and their rationales need to be dis-
cussed. If applicable, training provided to the participants has to be described.
Any kind of threat mitigation should also be addressed, i.e., what measures were
used to manage treats to validity. For example, a typical strategy to reduce learning
effects is to have subjects exposed to the various levels of a treatment in a random
or ordered fashion.

3.7.7. Procedure

The procedure section should describe precisely what happened to the participants
from the moment they arrived to the moment they left (Harris, 2002). This includes a
description of any training provided (e.g., the participants received a 2-h lecture
 introducing perspective-based reading). The procedure section should also include a
description of the setting (i.e., where the experiment occurred), and the schedule for
the experiment. Furthermore, details of the data collection method have to be
described, including when the data was collected, by whom, and with what kind of
support (e.g., tool). This is in accordance with Kitchenham et al. (2002), who state
that the data collection process describes the “who,” the “when,” and the “how” of
any data collection activity. Any type of transformation of the data (e.g., marking
“true” defects in defect lists) and training provided for such should also be described

220 A. Jedlitschka et al.

here. If there are limitations with regard to the numbers of pages, the description of
the procedure can be integrated with the analysis section.

3.7.8. Analysis Procedure

The statistical tests undertaken depend on the experimental design; therefore, the
experimental plan is finalized with a description of the analysis procedure detailing
which methods were used to test the hypotheses in analysing the data. If different
hypotheses are investigated, information for each hypothesis needs to be provided
separately. If any additional influences are expected, their analysis also needs to be
described, e.g., see Ciolkowski et al. (1997). If there are page limitations, the analy-
sis procedure can be combined with the analysis section.

3.8. Deviations from the Plan

In an ideal situation, the experiment was conducted exactly as it was planned. Then
the description in the procedure section (c.f., Sect. 3.7.7) is both, the representation
and the instantiation of the plan. In that case, this section is not needed. However,
deviations regarding the original plan are often experienced. Because this might
have an impact on both the validity of the results and the replicability of the study,
it is necessary to describe those deviations by describing the original plan when
deviations occurred. This includes all differences between the instantiated procedure
and the plan, for instance, regarding instrumentation and the collection process.
Deviations can occur regarding participation (who actually participated), schedule
(e.g., the time participants were given for the tasks), or data collection. In addition,
information about subjects who do not complete the study should be presented, for
example, five subjects did not attend the final session; as recommended by
Kitchenham et al. (2002). If possible, reasons for the non-completion should be
given; that information is worthwhile when replicating the study.

In the case of a limited number of pages, this description can be integrated with
the procedure section (c.f. Sect. 3.7.7). In addition, a general statement confirming
the process conformance could be given in the description of the analysis.

3.9. Analysis

According to Singer (1999), the Analysis section summarizes the data collected and
its treatment. In this section, the results should be described devoid of any interpre-
tation. When there are limited pages, authors might tend to add some interpretation
to the analysis section. However, according to existing guidelines, especially from
other disciplines, interpretation and results belong to clearly distinct sections. If it

8 Reporting Experiments in Software Engineering 221

is necessary to include interpretation in the analysis section, we strongly favour
establishing a clear distinction between the two (e.g., by using textual measures or
subsections).

If multiple goals were investigated, separate analysis subsections and an overall
(summarizing) analysis are required. Since the analysis procedures are already
described in the design section, the purpose of this section is to describe the
 application of the analysis methods to the data collected. The Analysis section
 generally contains three types of information: Descriptive Statistics, Data Set
Preparation, and Hypothesis Testing. When appropriate, a sensitivity analysis
should be reported in the hypothesis testing section.

Presenting the data by using appropriate descriptive statistics, including
number of observations, measures for central tendency, and dispersion, gives the
reader an overview of the data. Mean, median, and mode are example measures
for central tendency. Standard deviation, variance, and range, as well as interval
of variation and frequency are example measures for dispersion. To facilitate
meta-analysis, it is highly recommended [e.g., by Kitchenham et al. (2002)] to
provide raw data in the appendices or to describe where the data can be acquired,
e.g., from a website.

Additional processing (or preparation) of the data set may be required. Such
preparations should be discussed here. This includes, if appropriate, data transfor-
mation, outlier identification and their potential removal, and handling of missing
values, as well as the discussion of dropouts (i.e., data from participants who were
not present for all experimental sessions). Chap. 7 details methods for dealing with
missing values.

For hypothesis testing, special emphasis should be placed on how the data was
evaluated (e.g., by an ANOVA) and how the analysis model was validated. The
violations of the statistical assumptions underlying the analysis method (e.g.,
 normality, independence, and residuals) should also be described. The values of the
resulting statistics also need to be reported. Harris outlines what has to be reported
for different kinds of statistical tests (Harris, 2002). Singer (1999) recommends that
“inferential statistics are reported with the value of the test (effect size), the proba-
bility level, the degrees of freedom, the direction of effect,” and the power of the
test. To this list, we add the alpha value and the confidence interval where appropriate
(Dybå et al., 2006; Kampenes et al., 2007).

3.10. Discussion

The purpose of the discussion section is to interpret the findings presented in the
 previous section. This includes an overview of the results, threats to validity,
 generalization (where are the results applicable?), as well as the (potential) impact on
cost, time, and quality. Harris (2002) suggests starting this section with a description
of what has been found and how well the data fit the predictions. Related to this,
authors should discuss whether the hypotheses were confirmed or not. The discussion

222 A. Jedlitschka et al.

section should include information about each of the following three elements:
Evaluation of Results and Implications, Threats to Validity, and Inferences.

3.10.1. Evaluation of Results and Implications

The purpose of the evaluation of results and implications is to explain the results.
All findings, including any unexpected results, should be described in this subsec-
tion. Moreover, if the null hypothesis was not rejected, authors may include reasons
for why they believe this is the case. Several authors point out that it is important
to distinguish between statistical significance and practical importance (Kitchenham
et al., 2002) or meaningfulness (Harris, 2002). The results should also be related to
both theory and practice.

Although it is still very rare for SE experiments to develop theory, the implica-
tions of the findings should be related to the larger theory being developed, and how
they further explicate or illuminate that theory (see Chap. 12 for more information
about theory). The results should be discussed in the light of the objectives stated
in the introduction and also related to the previous work described in the back-
ground section. These two together should help to build a broader theoretical foun-
dation for the work.

With respect to practice, the results should be related to current and potential
practice, outlining how practice can be improved by applying the results. If the null
hypothesis was not rejected, it is not possible to give an interpretation in any direc-
tion; in particular, it does not mean that the null hypothesis is true, only that not
enough evidence exists to reject it. In some cases, the value of the effect is so small
that there may actually be no relevant application to current practice. This has to be
explicated as well.

In writing the discussion, it is important to (1) clearly state the results of the analy-
sis separately from any inferences or conclusions based on those results (Kitchenham
et al., 2002), (2) to ensure that the conclusions follow from the results (Kitchenham
et al., 2002), and (3) that conjectures be made with caution and kept brief, leaving
out fanciful speculation (Harris, 2002).

3.10.2. Threats to Validity

All threats that might have an impact on the validity of the results need to be
 discussed. This includes at least (1) threats to construct validity, (2) threats to
internal validity, (3) threats to external validity, and if applicable, and (4)
threats to conclusion validity. A more comprehensive classification of threats to
validity is given in Wohlin et al. (2000). Each of these four types of threats to
validity is defined below, and needs to be covered in a research paper. Ignoring
the threats can lead to the wrong conclusions regarding the validity of the
results. For example, a practitioner might assume that the results would apply

8 Reporting Experiments in Software Engineering 223

to his situation where the external validity could indicate problems regarding
generalizability.

Construct validity. Construct validity refers to the degree to which the operation-
alization of the measures in a study actually represents the constructs in the real
world. For instance, in measuring readability, a researcher may look at the time
required to read source code. The construct validity of this measure is the extent
to which the readability of source code is actually related to the time required to
read it. There are a number of threats to construct validity outlined in Wohlin
et al. (2000).

Internal validity. Internal validity refers to the extent to which the treatment or
independent variable(s) were actually responsible for the effects seen to the
dependent variable. Unknown factors may have had an influence on the results
and therefore put limitations on the internal validity of the study. Note that it is
possible to have internal validity in a study and not have construct validity. For
instance, it could be true that the manipulations in the study did actually affect
the outcome, and yet the manipulations did not map/represent the desired entity
in the real world.

External validity. External validity refers to the degree to which the findings of
the study can be generalized to other participant populations or settings. External
validity can often be a problem for controlled experiments in artificial environ-
ments where the same conditions may not hold in the real world. Wohlin et al.
describe three types of threats to internal validity dealing with people, place,
and/or time.

Conclusion validity. Conclusion validity refers to whether the conclusions
reached in a study are correct. For controlled experiments, conclusion validity is
directly related to the application of statistical tests to the data. If the statistical
tests are not applied correctly, this is a threat to the conclusion validity. Thus,
examples of threats to conclusion validity involve anything that causes a Type I
or Type II error.

To facilitate reading, subsections might be appropriate for each threat that has to
be discussed. Following the arguments presented by Kitchenham et al. (2002), it is
not enough to mention that a threat exists; the implications of the threat with respect
to the findings also need to be discussed.

Other threats than those listed above may also need to be discussed, such as
personal vested interests or ethical issues regarding the selection of participants
(in particular, experimenter-subject dependencies).

3.10.3. Inferences

In this section, the findings can be generalized, within the scope of validity, to
broader research questions or settings. This should be done carefully, based on the

224 A. Jedlitschka et al.

findings, by incorporating the limitations. All claims need to be supported by the
results. For technologies not currently in use, scale-up issues should be discussed.

3.11. Conclusions and Future Work

The final section of the report should describe, based on the results and discussion,
the following elements: Summary, Impact, and Future Work.

The conclusion section begins with a concise summary of the research and its
results as presented in the former sections. Unique to the domain of software
 engineering – in order to enable readers to get the most important findings with
regard to the practical impact in one place – in the conclusion we emphasize a
description, where possible, of the impact on cost, time, and quality, and a summary
of the limitations. Note that these conclusions can only be drawn if they were
directly investigated in the experiment.

Impact on Cost: What effort was necessary to introduce and perform the technique
(e.g., what are the costs of detecting a defect of a certain type with this technique?
Is there any impact on the cost of other steps of the development process, positive or
negative ones (e.g., reduced cost for rework)?)

Impact on Time: Is there any positive or negative impact on the time of the proposed
solution/technology/technique on other steps of the development process?

Impact on Quality: Is there any impact on the quality of the proposed solution/
technology/technique on the quality of other steps of the development process?

Besides the description of the impact, where possible and appropriate, a discus-
sion of the approach’s level of maturity, when the investments will pay back, and
consequences arising from the implementation will help readers to assess the
 technology. (Although in most cases artificial, we assume a rough estimate is better
than no information.)

If applicable, limitations of the approach with regard to its practical implementa-
tion should also be described, i.e., circumstances under which the approach
 presumably will not yield the expected benefits or should not be employed.
Furthermore, any risks or side-effects associated with the implementation or appli-
cation of the approach should also be mentioned.

Finally, an outlook to future work should be given. It should describe what other
research (i.e., experiments) could be carried out to further investigate the results
yielded or evolve the body of knowledge and theoretical constructs.

3.12. Acknowledgements

In this section, sponsors, participants, and (research) contributors who do not fulfil
the requirements for authorship should be mentioned.

8 Reporting Experiments in Software Engineering 225

3.13. References

In this section, all cited literature has to be presented in the format requested by the
publisher.

3.14. Appendices

In this section, material, raw data, and detailed analyses that might be helpful for
others to build upon the reported work should be provided (i.e., meta-analysis).

If the raw data is not reported, the authors should specify where and under which
conditions the material and the raw data could be made available to other research-
ers (i.e., technical report, web resource). Here a license model, such as the one
 proposed by Basili et al. (2007) can be used to ensure to all parties that their contri-
bution is acknowledged and the material is only used for the defined purposes. The
licensor can, for example, require that any publication based on the delivered data
has to be sent to him.

4. Conclusion

In this chapter, we have motivated the importance of reporting standards for matur-
ing empirical software engineering research. The contribution of this chapter is a
guideline for guiding researchers while reporting experiments in software engineer-
ing. The presented guideline unifies and extends the most prominent existing guide-
lines published by various authors (cf. Table 1). In addition to providing a uniform
structure of a reporting template, the guideline provides detailed guidance on which
information should be provided in the various sections of a report. This guideline
was developed for a specific type of empirical study, i.e., controlled experiments
and quasi-experiments. Nevertheless, many aspects discussed throughout this chap-
ter have to be reported in other empirical study reports, like case studies.

Thus, this chapter provides researchers with a means for structured and compre-
hensive documentation of empirical studies, especially experiments. In some cases,
due to page limitations (e.g., conference paper), it might not be possible to provide
all the proposed information. Although each paper should stand for itself, we have
discussed possible shortcuts by integrating certain sections. Furthermore, authors
should make use of technical reports or web resources to provide additional infor-
mation, including material, raw data, and detailed analysis.

During our work on guidelines, we learned that issues are related not only to
structure and comprehensiveness, but also to the information needs of stakeholders.
In this chapter, we presented, from our perspective, a quite comprehensive model,
addressing several stakeholders. To especially attract decision makers in industry,
we envisage tailoring this guideline for different audiences (e.g., by providing a

226 A. Jedlitschka et al.

guideline for reporting results from empirical research to practitioners). Researchers
doing replications or performing a systematic review certainly have different
 information needs than practitioners looking for candidate techniques for solving
their problems. Researchers need more technical information regarding the study as
such, whereas practitioners require information regarding the potential of the
 technique to actually solve their problems; that is, information on development
costs, product quality, and development schedule.

An important issue related to the dissemination task is to ensure that the guide-
lines are used in research practice. One possibility to enforce the usage of reporting
guidelines could be that program committees of SE workshops and conferences as
well as editorial boards of SE journals make the application of a standard reporting
scheme mandatory.

To facilitate the adoption of the guidelines, it would help to stress the benefits
that accrue to researchers who apply them. For example, one benefit could be
 simpler integration of individual results into a common body of knowledge. We
also assume that, generally, the SE publication process will become more efficient,
since crucial information will be found by reviewers (and other researchers) in the
same place every time.

Thus, we would like to conclude this chapter with a call for adherence to guide-
lines. Whenever reporting results of any kind of empirical studies, it is wise to think
about who shall read the publication for what purposes. This way, the report will
deliver the information needed for different stakeholder groups and audiences. The
guidelines will assist writers to emphasize the right information and the empirical
software engineering community to mature.

Acknowledgements While preparing the guidelines, we got valuable feedback from many
 people. Only the names of some of them can be listed here. We thank Janice Singer for her
 feedback and support, while finalizing this chapter, the unknown reviewers of the preliminary
version of this chapter, Claes Wohlin, who gave valuable insights and comments on an earlier
 version of the guidelines, Barbara Kitchenham and her team at NICTA for their valuable feedback
from the perspective-based reading of an earlier version, which helped to improve the guidelines,
and many others from the International Software Engineering Research Network (ISERN) for
fruitful discussions. Furthermore, we are grateful to Sonnhild Namingha from Fraunhofer IESE
for reviewing a previous version of this chapter.

References

Altman, D.G., Schulz, K.F., Moher, D., Egger, M., Davidoff, F., Elbourne, D., Gøtzsche, P.C.,
Lang, T. for the CONSORT Group (2001). The Revised CONSORT Statement for Reporting
Randomized Trials, Explanation and Elaboration. Annals of Internal Medicine, Vol. 134,
No. 8, pp. 663–694.

American Psychological Association (2001). Publication Manual of the American Psychological
Association, 5th edn, American Psychological Association, Washington, DC.

Basili, V.R., Caldiera, G., Rombach, H.D. (2001). Goal Question Metric Paradigm, in
Marciniak, J.J. (Ed.), Encyclopedia of Software Engineering, Vol. 1, Wiley, New York,
pp. 528–532.

8 Reporting Experiments in Software Engineering 227

Basili, V.R., Zelkowitz, M., Sjøberg, D.I.K., Johnson, P., Cowling, T. (2007). Protocols in the use
of Empirical Software Engineering Artifacts. Journal of Empirical Software Engineering,
12(1), pp. 107–119.

Bayley, L., Eldredge, J. (2003). The Structured Abstract, An Essential Tool for Researchers, In
Hypothesis. The Journal of the Research Section of the Medical Library Association, Vol. 17,
No. 1, 4 pp.

Ciolkowski, M., Differding, C., Laitenberger, O., Münch, J. (1997). Empirical Investigation of
Perspective-based Reading, A Replicated Experiment, Fraunhofer Institute for Experimental
Software Engineering, Germany, ISERN-97-13.

Dybå, T., Kampenes, B.V., Sjøberg, D.I.K. (2006). A Systematic Review of Statistical Power in
Software Engineering Experiments, A Survey of Controlled Experiments in Software
Engineering. Information and Software Technology, Vol. 48, pp. 745–755.

Glass, R.L. (2004). Matching Methodology to Problem Domain. Communications of the ACM,
Vol. 47, No. 5, pp. 19–21.

Harris, P. (2002). Designing and Reporting Experiments in Psychology, 2nd edn, Open University
Press, Buckingham.

Hartley, J. (2003). Improving the Clarity of Journal Abstracts in Psychology, The Case for
Structure. Science Communication, Vol. 24, No. 3, pp. 366–379.

Hartley, J. (2004). Current Findings from Research on Structured Abstracts. Journal of the
Medical Library Association, Vol. 92, No. 3, pp. 368–371.

Hayward, R.S.A., Wilson, M.C., Tunis, S.R., Bass, E.B., Rubin, H.R., Haynes, R.B. (1993). More
Informative Abstracts of Articles Describing Clinical Practice Guidelines. Annals of Internal
Medicine Vol. 118, No. 9, pp. 731–737.

Jedlitschka, A. (2005). Minutes from Third International Workshop on Empirical Software
Engineering “Guidelines for Empirical Work in Software Engineering”. IESE-Report 052.05/E,
Oulu.

Jedlitschka, A., Ciolkowski, M. (2004). Towards Evidence in Software Engineering, In
Proceedings of ACM/IEEE International Symposium on Software Engineering 2004
(ISESE2004). Redondo Beach, California, pp. 261–270.

Jedlitschka, A., Pfahl, D. (2005a). Reporting Guidelines for Controlled Experiments in Software
Engineering. IESE-Report IESE-035.5/E.

Jedlitschka, A., Pfahl, D. (2005b). Reporting Guidelines for Controlled Experiments in Software
Engineering, In Proceedings of ACM/IEEE International Symposium on Software Engineering
2005 (ISESE2005). Noosa Heads, Australia, pp. 95–104.

Jedlitschka, A., Ciolkowski, M. (2006). Reporting Guidelines for Controlled Experiments in
Software Engineering, Fraunhofer Institute for Experimental Software Engineering, Germany,
ISERN-06-1.

Jedlitschka, A., Ciolkowski, M. Pfahl, D. (2007). Reporting Guidelines for Controlled Experiments
in Software Engineering, Fraunhofer Institute for Experimental Software Engineering,
Germany, ISERN-07-1.

Juristo, N., Moreno, A. (2001). Basics of Software Engineering Experimentation, Kluwer
Academic Publishers, Boston, MA.

Kampenes, B.V., Dybå, T., Hannay, J., Sjøberg, D.I.K. (2007). A Systematic Review of Effect Size
in Software Engineering Experiments. Information and Software Technology, Vol. 49,
No. 11–12, pp. 1073–1086.

Kitchenham, B. (2004). Procedures for Performing Systematic Reviews, Keele University
Joint Technical Report TR/SE-0401, ISSN,1353–7776 and National ICT Australia Ltd.
NICTA Technical Report 0400011T.1.

Kitchenham, B., Al-Khilidar, H., Ali Babar, M., Berry, M., Cox, C., Keung, J., Kurniawati, F.,
Staples, M., Zhang, H., Zhu, L. (2006). Evaluating Guidelines for Empirical Software Engineering
Studies, In Proceedings of ACM/IEEE International Symposium on Software Engineering 2006
(ISESE2006).

Kitchenham, B., Dybå, T., Jørgensen, M. (2004). Evidence-Based Software Engineering, In
Proceedings of 26th International Conference on Software Engineering (ICSE’04), pp. 273–281.

228 A. Jedlitschka et al.

Kitchenham, B.A., Hughes, R.T., Linkman, S.G. (2001). Modeling Software Measurement, IEEE
Transactions on Software Engineering, Vol. 27, No. 9, pp. 788–804.

Kitchenham, B.A., Pfleeger, S.L., Pickard, L.M., Jones, P.W., Hoaglin, D.C., El Emam, K.,
Rosenberg, J. (2002). Preliminary Guidelines for Empirical Research in Software Engineering,
IEEE Transactions on Software Engineering, Vol. 28, No. 8, pp. 721–734.

Lott, C.M., Rombach, H.D. (1996). Repeatable Software Engineering Experiments for Comparing
Defect – Detection Techniques, Empirical Software Engineering Journal, Vol. 3.1,
pp. 241–277.

Moher, D., Schulz, K.F., Altman, D. for the CONSORT Group (2001). The CONSORT Statement,
Revised Recommendations for Improving the Quality of Reports of Parallel-Group Randomized
Trials, Journal of the American Medical Association (JAMA) Vol. 285, No. 15, pp.
1987–1991.

Pickard, L.M., Kitchenham, B.A., Jones, P.W. (1998). Combining Empirical Results in Software
Engineering, Information and Software Technology, Vol. 40, No. 14, pp. 811–821.

Shaw, M. (2003). Writing Good Software Engineering Research Papers – Minitutorial, In
Proceedings of the 25th International Conference on Software Engineering (ICSE’03). IEEE
Computer Society, Portland, Oregon, pp. 726–736.

Shiffman, R.N., Shekelle, P., Overhage, J.M., Slutsky, J., Grimshaw, J., Deshpande, A.M. (2003).
Standardized Reporting of Clinical Practice Guidelines, A Proposal from the Conference on
Guideline Standardization, Annals of Internal Medicine, Vol. 139, No. 6, pp. 493–498.

Shull, F., Carver, J., Travassos, G.H., Maldonado, J.C., Conradi, R., Basili, V.R. (2003). Replicated
Studies, Building a Body of Knowledge about Software Reading Techniques, In Juristo, N.,
Moreno, A. (Eds.), Lecture Notes on Empirical Software Engineering, World Scientific
Publishing, River Edge, NJ, USA, pp. 39–84.

Singer, J. (1999). Using the APA Style Guidelines to Report Experimental Results, In Proceedings
of Workshop on Empirical Studies in Software Maintenance, pp. 71–75. (dec.bmth.ac.uk/
ESERG/WESS99/singer.ps)

Sjøberg, D.I.K., Hannay, J., Hansen, O., Kampenes, B.V., Karahasanovic, A., Liborg, N.-K.,
Rekdal, A. (2005). A Survey of Controlled Experiments in Software Engineering. Transactions
on Software Engineering, Vol. 31, No. 9, pp. 733–753.

The Editors of Annals of Internal Medicine (2004). Addressing the Limitations of Structured
Abstracts (Editorial). Annals of Internal Medicine, Vol. 140, No. 6, pp. 480–481.

Vegas, S., Juristo, N., Basili, V. (2003). A Process for Identifying Relevant Information for a
Repository, A Case Study for Testing Techniques. In Aurum, A., Jeffery, R.,Wohlin, C.,
Handzic, M. (Eds.). Managing Software Engineering Knowledge, Springer-Verlag, Berlin,
pp. 199–230.

Wohlin, C., Petersson, H., Aurum, A. (2003). Combining Data from Reading Experiments in
Software Inspections, In Juristo, N., Moreno, A. (Eds.), Lecture Notes on Empirical Software
Engineering, World Scientific Publishing, River Edge, NJ, USA, pp. 85–132.

Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., Wesslén, A. (2000). Experimentation
in Software Engineering – An Introduction, Kluwer Academic Publishers, Boston, MA.

Zelkowitz, M.V., Wallace, D.R., Binkley, D.W. (2003). Experimental Validation of New Software
Technology. In Juristo, N., Moreno, A. (Eds.), Lecture Notes on Empirical Software Engineering,
World Scientific Publishing, River Edge, NJ, USA, pp. 229–263.

Chapter 9
A Practical Guide to Ethical Research
Involving Humans1

Norman G. Vinson and Janice Singer

Abstract The popularity of empirical methods in software engineering research is
on the rise. Surveys, experiments, metrics, case studies, and field studies are exam-
ples of empirical methods used to investigate both software engineering processes
and products. The increased application of such methods has also brought about
an increase in discussions about adapting these methods to the particularities of
software engineering. In contrast, the ethical issues raised by empirical methods
have received little attention in the software engineering literature. In this chapter,
we introduce four ethics principles of primary importance for conducting ethical
research. We additionally discuss and provide examples of applying these princi-
ples in the context of ethics review.

1. Introduction

How should an empirical researcher approach subjects?

How should data be collected and stored?

How can a researcher reduce subjects’ unease about being observed?2

Should a company’s name be mentioned in the acknowledgements of a paper?

Each of these real-life issues has an ethical dimension. As such, ethics play a role
in the proper management of a research project (Mirvis and Seashore, 1982) which,
in turn, affects the project’s success. Accordingly, it is important that empirical

1 Based on Singer, J.A. & Vinson, N.G. (2002). Ethical issues in empirical studies of software
engineering, IEEE Transactions on Software Engineering 28(12), 1171–1180.
2 Several recent publications (e.g. National Health and Medical Research Council et al., 2007) suggest
that it is more appropriate to refer to the people under study as research participants rather than research
subjects. However others (e.g. Canadian Institutes of Health Research et al., 2005) note that the term
“participant” is ambiguous, as it can refer to virtually anyone involved in the research project. To avoid
any such ambiguity we will use the term “subject” to refer to those people who are being studied.

229

F. Shull et al. (eds.), Guide to Advanced Empirical Software Engineering.
© Springer 2008

230 N.G. Vinson and J. Singer

researchers understand research ethics and their application. In this chapter, we will
introduce the major ethical concepts relating to Empirical Software Engineering
(ESE) research with human subjects and provide a practical guide to the ethics
review process3.

Because empirical research is relatively new to software engineering, discussion
of the ethical issues raised by ESE is still in its early stages (Harrison, 1998; Jeffrey
and Votta, 1999; Singer and Vinson, 2001, 2002). Therefore, we will rely on
 information from other fields to support our discussion. Nonetheless, our examples
will focus on situations ESE researchers are likely to face.

It is insufficient to simply expect scientists to behave ethically (Beecher,
1966a; McNeill, 1993). In an attempt to minimize unethical behaviour, govern-
ments and scientific communities have developed codes of research ethics
(McNeill, 1993). By providing a standard of behaviour for researchers to follow,
and by helping them reason about ethical issues in specific situations, it is hoped
that these codes of ethics will reduce the incidence of unethical behaviour
(Anderson et al., 1993; Frankel, 1989; Gotterbarn et al., 1999; McNeill, 1993).
However, it is ultimately up to individual researchers to ensure research practices
are ethical. In this regard, experience has shown that to behave ethically, people
must understand the ethical principles underlying codes of ethics and spend
the time and effort required to intelligently apply them to their own circumstances
(Anderson et al., 1993; Canadian Institutes of Health Research et al., 2005).
To quote the preamble of the ACM/IEEE-CS SE Code of Ethics and Professional
Practice, “the Code is not a simple ethical algorithm that generates ethical
 decisions” (Gotterbarn et al., 1999, p. 104).

Unfortunately, the ESE community has yet to develop its own code of research
ethics (Harrison, 1998; Jeffrey and Votta, 1999; Singer and Vinson, 2002)
Researchers must therefore try to apply codes from related disciplines to ESE
 studies. For ESE research practices similar to those of other disciplines, this does
not pose a problem. In this vein, codes from the social sciences and computing
 sciences are especially relevant. However, for research practices more common or
even unique to ESE, such as the use of source code as data (see El-Emam, 2001;
Vinson and Singer, 2001), the existing codes are of little value. In these cases, ESE
researchers will have to reason from ethical principles to determine an ethical
course of action. To support such reasoning, we provide a detailed explanation of
the main principles of ethical research in the first section of this chapter. We also
describe some common problems in applying these principles to ESE projects and
present solutions to those problems.

3 Scientific research raises a host of ethical issues such as the assignment of authorship, the
 relationship between graduate students and their advisors, and scientific fraud. These issues apply
broadly to most research disciplines (Committee on Science, 1992, 1993, 1995). Computer
 science and software engineering research raises additional issues (Wright, 2006). In this chapter,
we will ignore broad issues to instead focus on the ethical issues raised by the researcher/subject
relationship in ESE; issues such as those highlighted above.

9 A Practical Guide to Ethical Research Involving Humans 231

This chapter also includes a discussion of the role of Ethics Review Boards (ERBs)
and research ethics regulations. In the USA, Canada, and Australia most ESE projects
receiving government funding and involving human subjects must be reviewed by an
ERB to ensure that the project complies with the relevant ethical guidelines (Australian
Research Council (ARC), 2007; Canadian Institutes of Health Research et al., 2005;
National Health and Medical Research Council et al., 2007; Penslar, 1993). However,
because the regulations and guidelines still retain characteristics of their original focus
on biomedical research (Canadian Association of University Teachers (CAUT), 1997;
Lane, 2006; Sieber, 2001b), it can sometimes be difficult to determine whether and
how they apply to ESE (El-Emam, 2001; Lethbridge, 2001; Sieber, 2001a, 2001b;
Vinson and Singer, 2001; Vinson and Singer, 2004).

In general, Europe’s regulations focus on biomedical research. However, the
Research Council of Norway expects institutions to ensure that the necessary
 ethical precautions are taken (H.H. Simonsen, Senior Adviser, National Research
Council of Norway, personal communication (e-mail), July 20, 2006). Similarly in
the UK, the Engineering and Physical Sciences Research Council (EPSRC) holds
the institution responsible for ensuring that research ethics standards are followed
(Engineering and Physical Sciences Research Council (EPSRC), 2007, p. 31), but
it does not appear that ESE research need be reviewed by an ERB or comply with
a specific set of research ethics guidelines.

Europe does however have personal information privacy laws, as do Canada and
Australia (Patrick, 2006). These laws conform in large part to the Organisation for
Economic Co-operation and Development (OECD) Guidelines on the Protection of
Privacy and Transborder Flows of Personal Data (Organisation for Economic
Development and Co-operation (OECD), 1980; Patrick, 2006). While specific
implementations will differ from country to country, they will rest on the principles
we describe below. Moreover, researchers should note that it is not within the
 mandate of ERBs to ensure compliance to privacy laws.

In reading this chapter it is important to keep in mind the important distinction
between principles and regulations: research practices are rendered ethical primarily
by the application of ethics principles. Principles, if they are abstract enough, can be
applied to any relevant situation. In contrast, existing regulations are not well suited
to all research situations that raise ethical issues (Sieber, 2001a, b; Singer and Vinson,
2002). Consequently, simply complying with regulations can nonetheless result in
violations of the principles of ethical research (Beecher, 1966a; McNeill, 1993). The
distinction between rules and principles is particularly important for ESE researchers
since some of their research practices are not covered by existing regulations (Sieber,
2001a; Singer and Vinson, 2002). In order to conduct research ethically, ESE
researchers must not simply rely on complying with the rules but must be able to
apply ethical principles to their particular circumstances (Gotterbarn et al., 1999).

Accordingly, our goals in this chapter are to introduce the topic of research
 ethics, aid researchers with the ethics review process, and foster ethical decision-
making in the context of ESE research. In service of these goals we will first focus
on ethical principles and then present sample ERB documents. Knowledge of both
these components is vital to planning and conducting research projects.

232 N.G. Vinson and J. Singer

2. Ethical Principles

Singer and Vinson (2002) reviewed codes of ethics from government funding
 bodies, and biomedical, social science, and computing science professional organi-
zations to determine common principles relevant to ESE research practices. They
discovered four such common principles: informed consent, scientific value,
 confidentiality, and beneficence. The principle of informed consent stipulates that
potential subjects should be informed of all relevant facts about a study before mak-
ing an explicit, free and well-considered decision about whether to participate. The
study should also have some scientific value in order to call upon human subjects
to expose themselves to even minimal risks. Researchers must also undertake every
effort to maintain the confidentiality of data and sensitive information. Finally,
beneficence results from a weighing of the risks, harms, and benefits of the
 proposed research. Beneficence must be positive in order to proceed.

Note that all of these principles apply whether researchers are observing the sub-
jects’ behaviour directly (as in job shadowing (see Singer et al., Chap. 1)), or indirectly
(as when collecting command logs), or whether the subjects are simply providing code
to be examined. These principles also apply whether the subjects are students, employ-
ees, volunteers, or organizations (e.g. companies). Each of these principles is reviewed
below, and the implications for ESE researchers are discussed.

2.1. Informed Consent

The principle of full informed consent on the part of research subjects to participate
in a study follows from the more abstract principle of respecting an individual’s
autonomy (Fleuhr-Lobban, 1994). In essence, before the research begins, potential
subjects have the right to choose whether they will participate in the project. Ethicists
do not agree on the necessary components of full informed consent, but it is clear
that it must contain at least some of the following elements: disclosure, comprehen-
sion and competence, voluntariness, and the actual consent or decision (Faden and
Beauchamp, 1986). Below we provide an abstract description of each of these
 elements and then we focus more closely on consent in the context of ESE.

Disclosure refers to the information that the researcher must provide to the sub-
jects for them to make an informed decision about whether to participate in the
research. This information usually includes, but is not limited to: the purpose of
the research, the research procedure, the risks to the subjects, the anticipated benefits
to the subjects and the world at large, alternatives to participation (typically for
 students in a subject pool), the treatment of confidential information, the voluntary
nature of participation, and a statement offering to answer the subjects’ questions
(Sieber, 1992). As well, the disclosure should describe the type of data that will be
collected and the uses it will be put to (Patrick, 2006). The intent is to provide
potential subjects with all the information necessary to understand how the research
will affect them (Faden and Beauchamp, 1986). The need for comprehension

9 A Practical Guide to Ethical Research Involving Humans 233

 compels the researcher to present the information in a manner that the subjects can
understand, e.g. eschewing technical jargon that is outside the subjects’ repertoire.
Competence refers to the subjects’ ability to make a rational informed decision to
participate in the research. This element is intended to protect vulnerable subjects
who may not understand the nature of the research or the risks, such as children or
the mentally disabled. Finally, voluntariness specifies that informed consent must
be obtained under conditions free of coercion and undue influence, and that the
consent must be intentional. The subjects’ right to terminate their participation at
any time is also a component of voluntariness. Typically, the decision to participate
must represent an active authorization on the part of the subject, as opposed to a
tacit acceptance or mere formality (Faden and Beauchamp, 1986). In regard to the
specific elements of informed consent – disclosure, comprehension and compe-
tence, voluntariness, and the actual consent or decision – ESE researchers are not
likely to have trouble with comprehension and competence.

For field research in companies, it will almost always be necessary to obtain
consent from the company first, whether one is interviewing employees or simply
obtaining metrics on source code (ACM Executive Council, 1993). The wise
researcher will also try to convince the relevant managers to support the project.

When an individual can be identified from the data, consent is usually required,
regardless of the way in which the data are collected (Patrick, 2006). Indeed, the
ACM code (ACM Executive Council, 1993) explicitly forbids access to an individual’s
electronic data and communications, such as e-mail, without the individual’s prior
consent. In contrast, when there is no information in the raw data that could allow a
particular individual to be identified, informed consent of individuals will usually not
be required (Canadian Institutes of Health Research et al., 2005; Penslar, 1993). For
example, measurements of network traffic do not include data identifying individuals,
therefore, the informed consent of employees using the network would not be
required even though the employees are the source of some of the data.

Obtaining signed informed consent forms in participant observation field
research will often pose a problem (Fleuhr-Lobban, 1994; University of Toronto
Social Sciences and Humanities Research Ethics Board (SSH REB), 2005). When
using participant observation methods, the researcher becomes a member of the
community that is the object of study (Singer et al., Chap. 1; University of Toronto
Social Sciences and Humanities Research Ethics Board (SSH REB), 2005). In these
contexts, consent is an ongoing process. For example, as the research evolves, the
participants’ (subjects and researchers) roles will change and unforeseen risks may
arise (Fleuhr-Lobban, 1994; Mirvis and Seashore, 1982; University of Toronto
Social Sciences and Humanities Research Ethics Board (SSH REB), 2005). Given
the changing participant roles and the evolution of the research, it
is practically impossible to even prepare a consent form as described in the ethics
 regulations (see 45CFR§464; Canadian Institutes of Health Research et al., 2005).

4 Listed in the references section as: Public Welfare, Protection of Human Subjects, Code of
Federal Regulations, Title 45, Pt. 46 (45CFR§46), (2005), http://www.hhs.gov/ohrp/humansubjects/
guidance/45cfr46.htm

234 N.G. Vinson and J. Singer

At the outset of the study, the subjects should receive as much disclosure about the
study as possible, perhaps through a general announcement. Subjects should also
be made aware that their behaviour might be recorded. In addition, given the evolv-
ing nature of the research, the researcher should maintain an ongoing dialog with the
subjects, apprising them of relevant changes that can affect their consent (American
Anthropological Association, 2004; Fleuhr-Lobban, 1994; University of Toronto
Social Sciences and Humanities Research Ethics Board (SSH REB), 2005).

A distinction can be drawn between consent and assent, the latter being more
passive, more similar to acquiescence. When giving consent, the subject is required
to sign an informed consent document. In contrast, assent is limited to a verbal or
tacit agreement to participate. For telephone interviews or surveys, assent (in
 contrast to consent) is usually acceptable (Fowler, 1993), as long as the study poses
no real risk to the subjects and there is no collection of information that could be
used to identify the subjects. To give assent, subjects still need all the necessary
information to make an informed decision about whether to participate in the
research. They simply do not have to sign a form (Fowler, 1993). In a participant
observation context, the researcher’s primary subjects may sign a consent form at
the study’s outset, and then maintain their participation through assent as the study
evolves. For other participants whose interaction with the researcher is limited,
assent may be sufficient (University of Toronto Social Sciences and Humanities
Research Ethics Board (SSH REB), 2005).

Many codes of ethics (e.g., Canadian Institutes of Health Research et al., 2005)
set full disclosure as the standard for an acceptable informed consent. Full disclosure
is defined in contrast to deception, where the true intent and methods of the study
are not revealed to the subjects. For example, a social science researcher might
be interested in how women and men interact in small spaces. To examine this,
the scientist sets up an experiment in which subjects are told that they will process
some paperwork with a partner. They are led to believe that the partner, like them, is
a subject. However, in reality, the partner is part of the experimenter’s team and
is only pretending to be a subject. The partner’s role is to engage the subject in
 particular ways. The effects of those different engagement techniques on the
subjects’ behaviour are the true focus of the experiment. To avoid biasing the subjects’
responses, the subjects are told nothing of this, and therein lay the deceit.

Rather than full disclosure or deception, many ESE studies employ some form
of partial disclosure. Partial disclosure refers to providing the subjects with a less
than complete account of the study’s goal or hypotheses. If the subjects knew
the hypotheses in detail, they could well modify their behaviour as a function of
this knowledge, thus invalidating their data (Sieber, 1992; Worchel and Cooper,
1979). For example, consider an ESE experiment on source code searching. The
experimenters could partially disclose the goal of the study by simply telling subjects
that their patterns of file access and use will be recorded and examined. The
 experimenters mask the true goal of the study by formulating it in a more general,
abstract, and vague manner. After the subjects have completed the experiment, they
are provided with more detailed explanations of the experiment’s goals and hypoth-
eses. Since the subjects’ data have already been collected, these explanations will

9 A Practical Guide to Ethical Research Involving Humans 235

not affect the data’s validity. This is the least objectionable form of partial disclosure,
since it does not affect the subjects’ assessments of the risks of participation; full
disclosure is provided at the conclusion of the experiment (Smith and Richardson,
1983); and no outright deception is involved.

It is unlikely that research in software engineering will involve any great form
of deception. Nonetheless, Sieber (1992) gives excellent guidance, and Smith and
Richardson (1983) discuss the crucial role of debriefing in deception experiments.

Perhaps the most important aspect of disclosure is the risks of participation.
Many of the risks to subjects in ESE studies result from breaches of confidential-
ity. When employees serve as subjects, research reports can provide enough
information for managers (or other employees) to identify the data of individuals.
This can adversely affect the subjects’ careers if, for example, it is found that they
did not follow company procedures. Companies can also suffer if sensitive
 information is disclosed (see Sect. 2.2 Beneficence for other examples). It is
therefore important to inform the subjects of the limits of confidentiality and the
risks resulting from breaches of confidentiality as part of the disclosure process.
Note that it is also advisable to minimize these risks by employing the techniques
presented below in the section on confidentiality.

An additional difficulty in ESE is that the limited autonomy of many potential
subjects raises questions about voluntariness. Namely, employees of a company
that has approved a workplace research project and students in the researcher’s
class may fear a reprisal for not participating or may anticipate a reward for
 participating. For instance, an employee may fear upsetting his manager who
 supports the project, and a student may wish to curry her professor’s favour. These
expectations, even if they are false, taint the consent-giving process (Penslar, 1993).
Of course, employees are only vulnerable if their employer has approved (or
 disapproved) of the research project. Research taking place outside the workplace
context does not raise the possibility of employer coercion, even if it calls upon
knowledge of software engineering.

Several measures can be taken to reduce the perception of coercion. First, in the
case of field studies, researchers should emphasize to the potential subjects, and
their managers if applicable, the importance of voluntariness and confidentiality
of both participation and data. Second, researchers should establish explicit procedures
to protect confidentiality (see Sect. 2.3). If managers and professors do not know who
is participating, they can neither punish non-participants nor reward subjects.
Consequently, their influence over potential subjects is significantly diminished.

However, it is easy to conceive of cases in which the research project would be
carried out regardless of whether individual SEs consented or not (Vinson and
Singer, 2004). This is because, as employees of a company, SEs can be directed by
their managers to perform certain activities. In short, SEs are not fully autonomous
in the context of their employment. Unfortunately, respect of the individual’s
autonomy is the cornerstone of research ethics guidelines and regulations (Fleuhr-
Lobban, 1994). Thus in some cases, ESE field studies can conflict fundamentally
with research ethics guidelines and regulations in regard to the subject’s autonomy
(Vinson and Singer, 2004).

236 N.G. Vinson and J. Singer

For example a company may want metrics for several modules of code. Since
the code belongs to the company, it has a legal right to obtain code metrics, regard-
less of whether the SEs or development group managers consent to it. In such a
case, should a metrics researcher be required to obtain the consent of the individual
SEs and their managers before working on the project?

For studies involving students, researchers should avoid recruiting students in
the classroom setting and should avoid trying to recruit their own students. For
example, an upcoming study could be announced in every class, and interested
 students would place their names on a list held in a secretary’s office. This reduces
the possibility and the perception of intimidation. Researchers should also ensure
that the study has no impact on the students’ grades. This not only reduces the
 possibility of coercion, it also minimizes the risk of harming subjects through their
grades (refer to Sect. 2.2). Finally, students should also be given the opportunity of
withholding their data.

In sum, ESE researchers must obtain informed consent from their subjects,
whether these are individuals or organizations. However, it is unclear whether
 consent must be obtained from programmers when the research project is limited
to examining source code they do not own. Disclosure is a required component of
the consent process since it allows potential subjects to assess the desirability
of participation. However, if the risks are clearly stated, partial disclosure that
 simply masks the precise hypotheses being tested should be acceptable. Perhaps the
most serious difficulty for ESE researchers is the requirement of voluntariness.
Voluntariness is threatened by the potential for coercion (real or merely perceived)
of the employees and students. To limit the effects of coercion, researchers can
implement procedures to protect confidentiality and minimize the harm that would
result from breaches of confidentially. Techniques to minimize harm and protect
confidentiality are discussed in the following sections.

2.2. Beneficence

The degree of beneficence results from a weighted combination of risks, harms, and
benefits to the subjects and society from participation in a study (McNeill, 1993).
Researchers are required to maximize beneficence, particularly for research subjects.
In ESE, benefits tend to arise from the research topic (e.g. better training software),
whereas potential harm tends to arise from the research methods (e.g. having some
students use the training software instead of coming to class). Consequently, once the
research question has been chosen, researchers can usually maximize beneficence by
adopting methods that minimize the risk of harm to the subjects.

The principle of beneficence applies not only to the individual subject, but also
to groups of subjects, like particular ethnic or socio-economic groups (Canadian
Institutes of Health Research et al., 2005), and/or organizations, like companies.
Moreover, in the context of minimizing harm, the definition of “harm” is not
 limited to physical harm. Instead, it is very broadly construed, and contains such

9 A Practical Guide to Ethical Research Involving Humans 237

diverse elements as stress, the loss of dignity, self-esteem, or personal autonomy,
the disruption of day-to-day activities, tedium, and of course financial harm
(National Health and Medical Research Council et al., 2007; Sieber, 2001b).

In ESE, the greatest risk for harm often comes from breaches of confidentiality.
Imagine, for instance, that a metrics project allows a company to rank its programmers
by injected fault rate. An employee’s ranking could then affect future promotions. ESE
research can also harm organizations through financial loss resulting from the disclo-
sure of sensitive information. For example, a researcher may evaluate source code
from several companies and name the companies in an appendix to a published article.
Negative evaluations could lead prospective clients to choose competing products.
Accordingly, procedures that maintain confidentiality reduce the risks of harm. Such
procedures are discussed below in the section on confidentiality.

Social science research methods used in ESE studies also have a potential for
harm. For example, job shadowing, wherein a researcher closely observes a
 subject at work, can cause some people a great deal of stress. The risk of such
harm can be minimized by respecting and emphasizing the informed consent
provisions discussed earlier. In particular, when a subject shows discomfort, the
researcher can ask if anything can be done to alleviate the discomfort and may
remind the subject that she can withdraw from the study without penalty.
Interview and observation sessions should be scheduled in consultation with the
subjects to avoid times of high stress, such as immediately before a software
release. Schrier (1992) details several other techniques to reduce the stress that
can arise from being observed.

In the context of ESE, researchers may take on the role of software engineers.
The activities performed in this applied context can also harm the subjects, raising
ethical issues (Lethbridge, 2001). For example, consider a project on source code
re-engineering and automated translation. This will have a substantial impact on the
software engineers who maintain the code, especially if they do not know the new
code’s language. At the very least it will increase their stress, and at worse it will
place their employment at risk. Procedures can be implemented to minimize the
impact of the source changes on the software engineers. For example, researchers
can arrange for the software engineers to receive training in the new code’s lan-
guage. Researchers who introduce or modify technology should also avoid any
action that might damage the subject’s property. To continue our example of code
translation, it is the researchers’ responsibility to ensure that the translated code
functions correctly even though, in practice, testing and debugging will often be
carried out jointly by the researchers and the industrial partners. Similar issues arise
when introducing new software tools or modifying interfaces (Lethbridge, 2001).
When researchers take on the role of information technology provider, as illustrated
here, they can find guidance in the ACM and IEEE-CS/ACM SE codes of ethics. It
is not clear how and even whether research ethics regulations apply in these kinds
of contexts (Lethbridge, 2001; Sieber, 2001a). However, it is clear that the ethical
issues that can arise often fall outside the scope of research ethics. Mirvis and
Seashore (1982) extensively discuss such ethical issues from the perspective of the
various roles a researcher may adopt in an applied field research project.

238 N.G. Vinson and J. Singer

Beneficence can lead to an ethical quandary when studying an organization
and/or its members, or a company and its employees. In these cases, the reduction
of harm to individuals may be at odds with the reduction of harm to the organization.
For instance, if researchers uncover problematic processes in a company, whose
harm should they attempt to minimize? To minimize harm to the company, the
researchers should inform management of problems that could harm the company
through increased costs and reduced product quality. However this could result in
dismissals, thus harming individuals (Becker-Kornstaedt, 2001).

In the case of student subjects, classroom studies have the potential of harming
subjects’ learning and grades. For example, a classroom study comparing different
software development environments, each used by a different group of students for
class assignments, may influence the students’ grades. In contrast, a 1-h laboratory
study involving bug fixing should have no impact on grades. Consequently, a
 laboratory study is more acceptable from an ethical perspective than a classroom
study. If methodological considerations force the researcher to use the classroom
setting, several measures can be taken to improve its ethical acceptability. To reduce
the effect of the manipulated factor (e.g. type of programming environment) on
grades, each group of students could in turn be exposed to each level of factor. Over
the course of the semester, each student would have his grade affected by all levels
of the factor, rather than just one. Another possibility is to normalize the grades
across student groups.

To summarize, in many cases, risks of harm can be minimized by protecting
confidentiality. However researchers should use the least harmful yet still methodo-
logically valid procedure. Here, codes of ethics can provide some guidance, but
approaching the problem analytically and creatively will likely prove more useful.

2.3. Confidentiality

The principle of confidentiality refers to the subjects’ right to expect that any
 information they share with researchers will remain confidential. In general,
researchers should also conceal and protect subjects’ identities, whether they are
individuals or organizations such as departments in a company or companies
 themselves. Moreover, even information that is not directly related to the research
project should be considered private and kept confidential.

Confidentiality has three components: data privacy, data anonymity, and ano-
nymity of participation. Data privacy refers to the limitations imposed on access to
the data collected from the subjects. To maintain data privacy, the data should be
securely stored, with password protection and/or under lock and key. Access should
be limited to a small number of people, all of whom would normally be part of the
research team (Patrick, 2006).

Data anonymity is preserved when an examination of the data cannot reveal the
identity of the subjects. There are several means to preserve the anonymity of
the data. First, if at all possible, researchers should not collect any personal or

9 A Practical Guide to Ethical Research Involving Humans 239

organizational information that could lead to the identification of the subjects
(ACM Executive Council, 1993; Patrick, 2006). Such information is typically
referred to as personally identifiable information, identifiable private information
(45CFR§46.102(f)4) or identifiers. Avoiding the collection of personally identifia-
ble information reduces the possibility of breaches of confidentiality, and may even
allow researchers to avoid the requirement to obtain informed consent. For exam-
ple, subject numbers can be used instead of subject names. (However, if the names
were needed for a follow-up, a key linking the names to the numbers would be
securely stored apart from the data, preserving some degree of data anonymity.)
Note that personal characteristics other than names could also serve as identifiers.
For example, someone who knows the subjects could use programming experience
to associate some of the data to some of the subjects. Another way to anonymize
data is to report only aggregated data (such as cross-subject averages, medians,
standard deviations, etc.) instead of individual data points. Unfortunately, ESE
studies are often conducted with only a small number of subjects so that it may be
impossible to anonymize the data by simply aggregating data across subjects. In
this case, it is important to disclose the limits of confidentiality to subjects before
they decide to participate in the research.

Anonymity of participation is accomplished by hiding the identity of the subjects
from their colleagues, managers, professors, competitors, clients, and the public.
Protecting the subjects’ identities from managers and professors is particularly
 important since they can have the greatest impact on the subjects’ careers. Competitors
and clients have the greatest impact on companies and organizations, so researchers
should be particularly sensitive to concealing the names and identifying characteris-
tics of companies participating in research.

Recruitment should take place through some means that protects the subjects’
identities. For example, e-mail and sign up sheets that are only accessible to the
researchers offer some identity protection. Additionally, sampling from a large pool
of potential participants can protect the subjects’ identities. Therefore if an
employee or student is not participating in the research, the manager or professor
does not know whether the employee or student declined to participate or simply
was not asked to participate (assuming, of course, that neither the professor nor the
manager is an experimenter).

For data collection, it is best to see subjects in a private area. However, this
 cannot always be accomplished, as with observational studies in open office
(cubicle) settings. Anonymity could still be maintained through remote observation
(e.g. command logs) or observation at a time when confidentiality will not be
breached, such as early in the morning, or when a manager has a meeting. If neither
of these solutions is feasible, the potential subjects must be informed of the limits
of confidentiality before agreeing to participate.

Names of subjects or organizations should not be reported, even in the acknowl-
edgements section. Protecting the subjects’ identities in the body of a paper makes
little sense if identifying information is provided in the acknowledgements. Where
an identifier is necessary for clarity, authors should use misleading pseudonyms.
One should also avoid reporting identifying characteristics of companies under

240 N.G. Vinson and J. Singer

study. This is not always possible, particularly with case studies. If identifying
characteristics will have to be reported, the executives providing consent should be
informed of the resulting limits of confidentiality. Moreover, executives sometimes
request that their company by identified. In such a case, researchers should inform
them of the potential risks, and proceed with what makes the most sense.

The importance of confidentiality should be emphasized to all of those involved
in the study, whether they are researchers, research assistants, subjects, managers
or professors. Breaches in confidentiality lead to breakdowns in trust between
researchers and subject populations. This loss of trust can leave a researcher
 without access to a subject population. It is therefore paramount to protect the
 confidentiality of subjects and their data, and to inform subjects of any limits to
confidentiality.

2.4. Scientific Value

Scientific value has two components: the validity of the study, and the importance
of the research topic (McNeill, 1993; National Health and Medical Research
Council et al., 2007). First, if the study is not methodologically valid, its results will
not faithfully reflect reality. Consequently, the study will provide no benefit. A study
without benefit should not be undertaken (Freedman, 1987; McNeill, 1993).

In many of the codes of ethics promulgated by professions, the issue of
 competence is the counterpart to the issue of scientific validity (e.g. American
Psychological Association, 2002). In the context of ESE, competence refers to an
understanding of the standard research and statistical methodologies. ESE research-
ers should therefore be familiar with the appropriate and relevant methodologies or
consult with other professionals who possess the necessary competence.

Because ESE is a relatively new approach, if not a new field, there is still a
great deal of activity in the development of new methodologies, particularly in
regard to metrics. Methodological development poses a problem for evaluating
scientific value. Since it is difficult to assess a new methodology’s validity,
 precisely because it is new, it is difficult to assess the scientific value of the
 development of that methodology. One way to validate a new methodology is by
using it to replicate well-established results. ESE researchers wishing to develop
and use a new methodology should consider validating this methodology through
replication as soon as possible.

The previous sections of this chapter reviewed four ethical principles paramount
to conducting ethical research in ESE. Researchers should be familiar with these
principles and know how to apply them to their research projects. It is not sufficient
to simply follow a set of regulations. Each decision regarding ethics should be
made in consideration of the underlying principles.

The next section of the chapter introduces project review by summarizing the
history of the regulation of research by governments, and defining some common
terms associated with ethics review.

9 A Practical Guide to Ethical Research Involving Humans 241

3. Project Review

Several governments have mandated that an independent ERB review proposed
research involving human subjects to ensure compliance with ethical guidelines.
Canada, Australia, and increasingly the UK, are following the lead established by
the United States (45CFR§464; Canadian Institutes of Health Research et al.,
2005; Economic and Social Research Council (ESRC), undated; McNeill, 1993;
National Health and Medical Research Council et al., 2007). In this section, we
describe project review and its associated documents primarily from the US
 perspective since it has the most established process. This section, especially the
example documents, provides a very concrete (though limited) illustration of how
to apply the ethics principles discussed above. Accordingly, the information
 presented here is useful for all researchers, including those in Europe who do not
yet face project review.

In the United States, regulations requiring ethics review were put into place fol-
lowing the Jewish Chronic Disease Hospital case (McNeill, 1993). This case
involved hospital researchers who injected live cancer cells into patients without
their consent. Because the study was partially funded by the US federal govern-
ment, the scandal spurred the government to require ethics review of federally
funded research. Subsequent ethical transgressions eventually led to the creation of
the Common Rule (45CFR§464), the US federal regulation governing the ethics of
research projects involving humans (McNeill, 1993). By 1991, the Common Rule
had been adopted by several federal agencies, among them the National Science
Foundation, the Department of Education, the Department of Defence, and NASA,
which are the government agencies most likely to fund software engineering
research. This means that all research funded by these agencies is bound by the
Common Rule regulations (Sieber, 2001b).

The Common Rule requires that all research involving human subjects be
reviewed by an Institutional Review Board (IRB) (Penslar, 1993) (which we refer
to as an Ethics Review Board (ERB), as the specific terms for ERBs differ from
country to country). The ERB is an administrative body whose mandate is to
 protect the rights of research subjects. Generally, each university or government
agency has its own ERB to review all human subjects research projects conducted
by members of the ERB’s institution. Companies whose research is funded by the
federal government may also have an ERB or contract the services of private ERBs
(Heath, 1998; Penslar, 1993). In the US and Canada, the ERB has the authority to
approve, reject, propose modifications to, or terminate any proposed or ongoing
research involving human subjects under its jurisdiction (Penslar, 1993;
45CFR§46.1134; Canadian Institutes of Health Research et al., 2005). In Australia,
it is the institution that has the responsibility to ensure compliance with the national
ethics statement (National Health and Medical Research Council et al., 2007).

Only projects constituting research that involves human subjects are subject to
ERB review. It is the ERB’s responsibility to determine whether the proposed project
constitutes research and whether it involves human subjects. Research is defined in
the Common Rule as “a systematic investigation, including research, development,

242 N.G. Vinson and J. Singer

testing and evaluation, designed to develop or contribute to generalizable knowledge”
(45CFR§46.102(d)4). The key phrase here is “generalizable knowledge”. Generalisable
knowledge is not considered to result from quality assurance or performance reviews
undertaken within a specific context. For example, the evaluation of a professor’s
performance through the use of student questionnaires would not be considered
research because it does not contribute to generalisable knowledge in that the
 knowledge applies only to that professor. On the other hand, collecting student
 questionnaires to determine the characteristics of excellent professors constitutes
research because generalisable knowledge is produced in that the resulting “excellent
professor” profile can be compared to the profile of any other professor.

Some forms of human subjects research are typically exempt from ERB review.
The two most important exemptions for ESE research are surveys and the
 development of educational tests and materials. For a project to be exempted from
review, the data must not contain any information that can lead to the identification
of individual subjects. Additionally, reporting the data must not place the subjects
at risk for loss of employment, liability, financial loss or other risks to the subjects’
good standing in the community (Penslar, 1993). In general, then, when conducting
surveys or collecting evaluative education data, it is best to refrain from collecting
any information that could lead to the identification of an individual’s data (Patrick,
2006). Researchers should note that there is some confusion over what constitutes
research and that some regulations are unclear on the matter (Canadian Institutes of
Health Research et al., 2005; Lethbridge, 2001; Sieber, 2001a). Consequently, we
recommend that researchers consult with their ERB when in doubt about whether
their work constitutes research, and whether it is subject to review.

Besides determining whether a proposal involves research, the ERB must also
determine whether it involves human subjects. The Common Rule specifies that, to
involve human subjects, the research must involve the collection of identifiable
 private information or data from living individuals by interacting with them or
manipulating their environment. “Identifiable private information” refers to
 information that is normally not observed, recorded, or made public and can be used
to identify the subject who is the source of this information (45CFR§46.102(f)4). For
example, someone’s opinion about the utility of design reviews is typically considered
private information. In contrast, an opinion about design reviews that is published in
an article is considered to be in the public domain, and consequently, does not
 constitute private information. US and Canadian regulations explicitly exclude the
collection of public domain data from the definition of human subjects research
(45CFR§46.101(b)(4)4; Canadian Institutes of Health Research et al., 2005).

This definition of human subjects research leads to an interesting problem for
software engineering research. In particular, when source code is used as a data
source and individual programmers’ identities can be used as a variable in the anal-
ysis, it is not clear whether the research comes under the purview of the ERB
(El-Emam, 2001; Vinson and Singer, 2001). It could be argued that when the
 programmers identified themselves as authors of a certain piece of source code,
they had a reasonable expectation that this information would not be made public.
Of course, this would probably differ for open-source projects or information

9 A Practical Guide to Ethical Research Involving Humans 243

 collected from internet sources. Nonetheless, it is not entirely clear whether such a
project must be reviewed. Again, when in doubt, consult the local ERB.

In summary, projects that receive Canadian, Australian or US federal funding
and involve research with human subjects are required, in most cases, to be
reviewed by an ERB to ensure that it meets the relevant ethical standards. If inves-
tigators are unsure about whether their research must undergo review, they should
consult their local ERB. Avoiding ethics review when regulations specify that it is
necessary can result in loss of funding, not only for the researchers involved but
also for their institution as a whole. Therefore, ethics review and approval protects
not only research subjects, but the researchers as well. Finally, whether a project is
subject to review or not, it is prudent to adhere to the standards of ethical research.
These standards help researchers avoid the type of conflicts that can jeopardize
access to the subject population and the validity of the results.

3.1. Planning for Ethics Review

Planning for ethics review should be integral to the human subjects research
 process. Though approval times vary across institutions, it can take a considerable
amount of time for a project to be approved, particularly if it contains controversial
elements. For example, one local field study Singer conducted with employees as
subjects took over 4 months to be approved. Proper planning can reduce approval
time by increasing the odds that the proposal will be approved at the first review
meeting. Part of this planning should include talking to colleagues who have
already had a proposal approved, as they can provide much information about
appropriate forms and the ERB review process.

To aid researchers in this endeavour, in the following sections, we describe the
review process and provide examples of documents generally required by ERBs to
review research proposals. We also relate the forms’ contents to the ethics princi-
ples discussed earlier.

3.2. Review Process

Most institutions have their own ERB with its own procedures. However, the
 process typically begins with the researcher submitting documents describing
the proposed project to the ERB. (Note that potential subjects cannot even be
approached before the ERB has approved the project.) The ERB chair will then
determine whether the project involves more than minimal risk. Minimal risk
research is generally defined as research involving the same degree of risk that
people normally encounter in their daily lives (Penslar, 1993). Moreover, to be
judged of minimal risk, research must not involve vulnerable subject populations,
such as students or employees of a sponsoring or collaborating company. Employees

244 N.G. Vinson and J. Singer

and students are considered vulnerable due to the potential for coercion or undue influ-
ence from employers or professors (Penslar, 1993). Projects that involve more than
minimal risk are generally reviewed by the full board at periodic board meetings.
In contrast, minimal risk projects are often given expedited review, wherein only a
few board members need review the project. Moreover, since expedited review does
not require a board meeting, it is usually faster than full (board) review.

Some ERBs will also require a scientific review to ensure the project has
 sufficient scientific value. The requirement for scientific review can depend on the
project’s level of risk.

Departments in which minimal risk human subjects research is a frequent
occurrence sometimes have the authority to review and approve projects directly
rather than submitting them to the institutional ERB. However, this is unlikely to
be the case in computer science or software engineering departments, where few,
if any, departmental ERBs exist. Moreover, in Canada, regulations forbid such
departmental review boards, except for undergraduate research projects in the
context of a specific course (Article 1.4a, Canadian Institutes of Health Research
et al., 2005).

Projects are not always approved at first consideration. Moreover, when an ERB
requires changes or amendments to the original proposal, the changes or amendments
must usually also be reviewed by the ERB before approval can be granted. However,
this latter review may be expedited. The number and magnitude of changes required,
and therefore the time to final approval, will depend on the researchers’ experience
with the ethics review process, and on the ERB’s experience with ESE research.
To help researchers proceed more efficiently through the review process, below we
discuss the types of documents usually submitted when seeking ethics approval and
relate their contents to the foregoing material.

4. Documents Needed for Review

In the course of preparing documents for a review, it is often helpful to have a set
of example documents as a guide, as we provide here. However, it is important to
remember that the specific set of documents required will vary from one ERB
to another. Consequently, the most important part of preparing for a review is to
 consult the local ERB, or other department members who have been through the
ERB process. We have found that the requirements and filing procedures are often
available on the web.

As we cannot specify what individual institutions will require, this section
will present generic examples of the type of documents usually required. Our
web search showed that most institutions require that a proposal contain a cover
letter, a project description, a consent form, and a scientific review (see also
Sieber, 1992).

Each of the required documents is detailed below. Where appropriate, the elements
of the document are related to the four ethical principles described earlier.

9 A Practical Guide to Ethical Research Involving Humans 245

4.1. Cover Letter

The cover letter introduces the project to the ERB. It usually includes the principal
investigators’ names and contact information. It should be clear who will carry out
the research and who will be responsible for its supervision and conduct. It is
 usually sufficient to provide information about the principal investigators only; the
rest of the team need not be profiled. Also included in the cover letter is a note
indicating whether the proposal relates to a new project, a changed project, or an
annual review of an on-going project. If the project is a changed project or an
annual review, the cover letter should also include the project ID, which is usually
assigned at the time of initial approval.

The cover letter can include information about the qualifications of the researcher.
This is especially useful for a first proposal submitted to the ERB. Including a
 curriculum vita as an appendix can serve the same purpose. Finally, the cover letter
should include any additional information that the researchers believe will help the
reviewers assess the proposal, such as experience with the same subject population,
eagerness of the industrial site in maintaining subjects’ rights, etc.

4.2. Project Description

The project description usually has several specific subheadings. The ERB will
often ask researchers to respond to a set of standard questions referring to specific
aspects of the research, such as whether deception will be used, or whether subjects
will be drawn from a vulnerable population. Depending on the answers, researchers
may have to provide additional explanations. The answers will also often determine
whether the project is deemed of minimal risk, and so can undergo expedited
review (refer to Sect. 3.2).

Figure 1 shows an example of a project description that describes some
 observational research we conducted at an industrial site. Because the study used
employees as subjects (a vulnerable population), it was not deemed minimal risk,
and was therefore reviewed by the full board. The ERB was particularly interested
in recruitment and confidentiality issues.

4.2.1. Project Overview

The primary purpose of the project overview is to satisfy the ERB that the research
being embarked upon addresses an important question. It usually begins with a
short description of the project and its goals, including a short literature review. The
project overview also usually includes a description of the study’s design, including
the specific procedures, tests, interviews and interview schedules, and samples of
any questionnaires that will be used. Not everyone on the ERB will have expertise

246 N.G. Vinson and J. Singer

STUDIES OF SOFTWARE DEVELOPER WORK PRACTICES
Project Description

Project Overview

In the past, software engineering tools have been designed based on the intuitions of designers
and not the real needs of software engineers. The goal of this research is therefore to improve
software engineering tools by gathering tool requirements from the software engineering com-
munity. Following, Lethbridge and Singer (1998), we will be studying the work practices of
software engineers as they go about their daily work. Software engineers will be observed for
one hour on one day. Portable computers and paper and pencil will be used to collect data.
Additionally subjects will be asked to think out-loud while they perform their tasks. This think
out-loud data will be tape-recorded. All subjects will be informed of their rights as subjects
before participating. We will be under a non-disclosure agreement with the company pertain-
ing to the results of the study.

Subjects

Ten software engineers involved in the development of a large scale software engineering
project will be selected as subjects for this experiment.

Confidentiality and data storage

Because the data involves audiotapes where subjects may identify themselves or colleagues,
the data cannot be cleared of identifying features. To ensure security, all tapes, transcripts of
tapes, and computer logs will be stored in a locked filing cabinet in a locked office at the uni-
versity. The only people who will have access to the data are the principal investigators and
graduate students working with the team. All graduate students will be required to sign an
agreement to not disclose information to anyone outside of the research team. When publish-
ing results, all identifying information will be stripped from the data before it is published. If
it is possible for identification to occur, subjects will be shown the paper and asked to give
informed consent to the data usage before the paper is published.

Recruitment Procedures

Senior company management have identified the groups for us to contact. Recruitment will
occur via email to each group member. If a group member replies, a researcher will contact
the group member by phone to give more details of the research. If the group member is still
interested, an observation date will be set, at which time the group member will be given the
subject information sheet and the consent form. If the member agrees, the observation will
commence immediately. One week from the initial message, a reminder message will be sent
to all group members who did not respond to the initial message.
Regarding data collection, the researchers will ensure the confidentiality of the research sub-
jects in two ways. First, the managers will not be told who participated in the research. Second,
the researchers will randomly sample from those subjects who have indicated a willingness to
participate. In this way, the managers will not know whether subjects were simply not chosen
to participate or whether they chose not to participate.

Subjects will not be compensated for participating in this research.

(continued)

9 A Practical Guide to Ethical Research Involving Humans 247

Benefits, Harms and Inconveniences

There is no direct benefit to the subject for participating in this research. There is a benefit to
the software engineering community in the form of improved requirements for tool design to
support maintainers. There are no harms to participating in this research. Subjects may feel
slightly intimidated at the beginning of observation sessions, but in previous research this has
abated quickly.

There is no deception involved in this research

Fig. 1 An example of a project description form. See Sect. 4.2 for greater detail

in software engineering, so the overview and procedures should be written for a
layperson.

In general, the project overview allows the ERB to determine the project’s
 scientific importance (although not validity), which in turn helps the ERB estimate
scientific value and beneficence. If an ERB finds no scientific value to a project, it
is conceivable that the proposal will be rejected. Consequently it is important that
researchers fully motivate their research. Note that our example project overview
was kept short to save space.

4.2.2. Subjects

The subjects section should contain a description of the subject population. If more
than one type of subject is involved (e.g., chemistry students vs. computer science
students), all types should be adequately described. In this section, researchers
should include any information that helps the ERB understand why this particular
subject group is being sought, e.g. computer science students are familiar with a
particular language that relates to the study hypothesis.

The subjects section should also subtly convey the subject group’s familiarity
with the types of risks that will arise from participation in the experiment.
The following example illustrates how ethical concerns can change as a function,
not of methods, but of subject group. Consider an experiment in which subjects
experience a simulated airplane crash. If the subjects are test pilots, we can be
sure that they will have the knowledge and experience required to make a reasona-
ble decision about participation. If the subjects are undergraduates, we have to be
sure that the risks of participation are clearly disclosed. If the subjects are senior
 citizens, the risks of injury may be too great for the study to go forward. A descrip-
tion of the subject groups’ familiarity with the risks will therefore help the ERB in
its evaluation.

Similarly, the subjects’ context in regard to coercion or undue influence could be
described. One concern in research is that people could agree to participate simply

248 N.G. Vinson and J. Singer

because they perceive the researcher as a trusted authority who should be obeyed
(Kelman, 1972). This risk is even greater in medical research when a doctor adopts
the role of experimenter (Beecher, 1966b; Canadian Institutes of Health Research
et al., 2005; National Health and Medical Research Council et al., 2007). An ERB
once raised a similar objection to the author (Singer) recruiting SEs in person. The
ERB was concerned that the SEs would be intimidated by Singer’s (as the board
 perceived it) higher social status, and so would feel pressure to volunteer. The ERB
felt the SEs would be less intimated (and therefore less pressured) if the request took
place through e-mail. While this concern is unwarranted when it comes to North
American SEs, it is a legitimate concern in general (Kelman, 1972). Cultural
 differences could also have an impact, such that social status differences could affect
the recruitment of SEs for studies taking place outside North America. Moreover,
other social variables, such as age or gender, could also have an impact. Consequently,
a short explanation of the role played by social differences between SEs and
 researchers in recruitment should help the ERB with its assessment of the proposal.

Of course, the real problem for voluntariness in ESE is not social status but
the subject’s position in the organizational hierarchy, which can lead to undue
influence, if not coercion (Kelman, 1972) (refer to our section on informed
 consent). The subject’s position in the organization should be described here. Any
mitigations of the undue influence should be described in the relevant project
description sections (e.g. Recruitment Procedures).

Finally, ERBs are often concerned that neither the burden nor benefits of
research are disproportionally felt by a particular social group (Canadian Institutes
of Health Research et al., 2005; National Health and Medical Research Council
et al., 2007; Penslar, 1993). In ESE, this concern is most likely to manifest itself in
the scrutiny of any inclusion or exclusion criteria proposed by the researcher. For
example, researchers may want to exclude experienced SEs from their study. Any
such criteria will have to be justified.

4.2.3. Confidentiality and Data Storage

In this section, measures to secure the data should be described. The ERB will
want to ensure that data are protected from theft, interception, unauthorized read-
ing and copying. To maintain security, data is often stored in a locked facility that
can only be accessed by members of the research team. Some additional means
of protecting data are described above in the section on confidentiality.

Since studies with vulnerable subject populations (employees and students) are
common in ESE, this section might also include a description of the measures taken
to protect the subjects’ identities.

4.2.4. Recruitment Procedures

Since our example subjects are employees in an industrial setting (with the prior
consent of their managers), there is a possibility of coercion in the recruitment

9 A Practical Guide to Ethical Research Involving Humans 249

process. Thus, we included a separate section in our project proposal detailing
how we would recruit subjects while minimizing the possibility of coercion. An
example e-mail message for potential subjects is included so an ERB can ensure
that the language is neutral and does not in any way coerce the employees to par-
ticipate in the study (e.g. by mentioning that their manager thought the informa-
tion gained would be highly valuable to the company).

There are three important aspects to our recruitment procedures. First,
 recruitment is conducted via e-mail rather than in person. Second, the recruitment
e-mail message emphasizes that participation is voluntary and that no harm can
come from a refusal to participate. Finally, the e-mail message is sent to a larger
pool of potential volunteers than is necessary given the experimental design to help
ensure the anonymity of subjects.

ERBs will want to know whether subjects are being compensated for partici-
pation. The ERB wants to ensure that compensation is not so great that it will
induce subjects to take risks that they would not normally take. This is easy to
understand in the context of a medical study. For example, giving homeless
 subjects an excessive monetary reward for participating in risky medical research
would be deemed highly unethical, because it would be seen as a form of implicit
coercion. In software engineering studies, it is unclear what an appropriate
 compensatory scheme would be. Researchers intending to provide compensation
to subjects should provide the ERB with adequate information to understand the
compensatory scheme (e.g., software engineers will be paid in line with their
 salary on an hourly basis).

The ERB will also sometimes require a delay between the time the subject is
given information about the study and the time at which the subject actually con-
sents to participate. This is important in medical studies where the ERB needs to
make sure that the subjects fully consider the risks of participation, but it can also
be required in lower risk studies.

The ERB will also want to ensure that appropriate recruitment measures have
been taken to ensure the study’s validity.

It is advisable to provide more, rather than less, detail about how subjects will
be approached and recruited. Recruitment is at the heart of some very delicate ethi-
cal matters (such as confidentiality and voluntariness of informed consent), and
therefore the ERB will be quite serious in ensuring that recruitment is conducted
appropriately.

4.2.5. Benefits, Harms, and Inconveniences

The degree of acceptable research risk depends on several factors, as mentioned in
our section on beneficence. Consequently, the judgment of what constitutes an
acceptable risk can vary dramatically depending on the context of the research and
the risks to which subjects from a particular group are typically exposed. For exam-
ple, because of their situation, terminal cancer patients can incur more risk as part
of research into a treatment for their cancer than would be acceptable, say, for
healthy children. Consequently, when writing a proposal for ethics review, it is

250 N.G. Vinson and J. Singer

advisable to clearly present the risks and benefits subjects will incur through the
proposed research. However, we do not recommend that researchers try to antici-
pate ERB objections by listing a series of potential risks that will not arise out of
the proposed research. This exposes researchers to being required to provide addi-
tional information on each of the measures put in place to eliminate those risks.
It is important to recall that beneficence involves considering the relationship
between risks and benefits for the subjects and society. Consequently, it is important
to also clearly specify any benefit that may accrue from the research.

4.2.6. Deception

It would be unusual for an ESE study to employ outright deception. The section on
deception will therefore typically state that no deception will be employed. It is
important to remember that partial disclosure is not deception. Partial disclosure
and deception are discussed earlier in the section on informed consent.

4.3. Informed Consent

In order to give fully informed consent, subjects must be given all the information
needed to decide whether to participate in the research. In our proposal, we used
two forms (see Fig. 2). The first is a subject information sheet providing subjects
with an understanding of the research process and their potential involvement. The
second form is the actual consent form.

Generally, researchers will bring two copies of the informed consent form to the
subject. The subject will keep one copy for his reference, and return a signed copy
for the researchers’ records.

In participant/observation or ethnographic studies, where the researcher assumes
the role of an SE, it is impractical (if not impossible) to obtain written consent from
 everyone the researcher encounters. Regulations offer some flexibility in the
informed consent process (American Anthropological Association, 2004; Canadian
Institutes of Health Research et al., 2005; Penslar, 1993) but ERBs have been
 reluctant to avail themselves of this flexibility (American Anthropological
Association, 2004; Fleuhr-Lobban, 1994). Our suggestion to researchers is to
attempt to ensure that every subject who is at risk of harm provide written consent,
and to emphasize this to the IRB.

4.3.1. Subject Information Sheet

Though some ERBs do not require it, we have found it helpful to group all the important
information on one sheet. The subject information sheet contains the information neces-
sary for the subjects to decide whether to participate in the research. It should also inform
subjects of some of their basic rights, such as the right to withdraw without penalty.

9 A Practical Guide to Ethical Research Involving Humans 251

STUDIES OF SOFTWARE DEVELOPER WORK PRACTICES
SUBJECT INFORMATION SHEET

Traditionally, tools for software maintenance engineers are designed without knowing
much about the specific circumstances under which software maintenance engineers
work. Our research aims to correct this oversight by studying software maintenance engi-
neers as they go about their daily work. We want to know not only where you spend your
time, but also how you go about solving problems, what sources of information you con-
sult, how you interact with the software and hardware, and what you find the most enjoy-
able and the most difficult aspects of your work.

Participants for this project will be selected via their place of employment. As part of the
CSER initiative, certain corporations have agreed to allow us access to their employees.
Your employer has specified your group as a possible source of participants in our
research. The research will occur in your place of employment.
If you consent to participate in our research, we will observe you as you go about your work
in one 1 hour sessions. You simply do what you would normally do, and we use a computer
or paper and pencil to record your actions. Occasionally, we ask for clarification on a certain
procedure, but in general try to be silent observers.

Participation in this research project is voluntary. Participants can withdraw their consent to
participate and discontinue participation at any time without any consequences. Your
employer will not know whether or not you have participated, or whether or not you have
withdrawn participation. All collected data is strictly confidential, it will not be made availa-
ble to anyone (including your employer) except as aggregate data. In the case that you may
be identified in any reports, the researchers will ensure that you consent to the publication.
Collected data will only be used by members of this research project as analysis vehicles for
understanding the work practices of software maintenance engineers. The data will not be
used for any other purpose. All participants can review their own data at any time.

All participants have the right to obtain any publicly available documents that are pub-
lished about this research. All data collected is stored in a locked office at the National
Research Council or the University of Ottawa.

STUDIES OF SOFTWARE DEVELOPER WORK PRACTICES
INFORMED CONSENT

Research Contact: Ethics Contact:
Dr. Sam Jones Dr. Ellen Good, Ethics Ombudsman
Some University Some University
(800) 555-1212 (888) 555-1212
sam.jones@someuni.edu ellen.good@someuni.edu

I hereby give my consent to participate in the research proposal, Study of Software Maintenance
Engineers. I have been given a copy of the Subject Information Sheet. I have read this sheet and
understand what it says. I understand that this project involves research. I understand the proce-
dures that will be used.

I understand that my consent can be withdrawn at any time without any consequences.

I understand that I can view the data pertaining to me. I understand that all collected data is
strictly confidential and will not be seen by anyone except members of the research team, or
as aggregate data. I understand that all data is kept in locked offices at the NRC or University
of Ottawa.

(continued)

252 N.G. Vinson and J. Singer

I understand that this research will be used to better understand the work practices of software
maintenance engineers and this in turn will lead to better tool design. I understand that beyond
this, there is no personal benefit to me for participating in this research. I also understand that
there is no harm to me for participating in this research. There may be minor inconveniences as
the researchers set up their equipment. I understand that I will not receive any payment for my
participation in this research.

I understand that I may request additional information about this research at any time, but as
of now, all of my questions have been answered.

Name (Printed) Signature Date

Fig. 2 An example of an informed consent form (including the subject information sheet). See
Sects. 4.2 and 4.3 for further detail.

It begins with a brief statement of the background, purpose, and goals of the
research. The sheet should be comprehensible to the potential subjects. Jargon
should be avoided, but if technical terms will help explain the research, and the
potential subjects will understand the terms, then it is appropriate to use them.

The subject information sheet contains other pertinent information including
how the subjects were chosen; whether their employer has given them permission
to participate; the location of the research; and finally what is expected of them and
how long the their tasks will take. In observational studies, there is no experiment
per se, so subjects are generally told to engage in their normal behaviour but to be
aware that they might be observed.

The next section informs the subjects that their participation is voluntary and that
they may withdraw consent at any time without any consequences. All informed
consent forms will require such a statement to support the voluntariness of the
informed consent. The next several statements address confidentiality. Generally
these statements describe the confidentiality provisions as well as the limits on con-
fidentiality, if any. In our example, we assure the subjects that their employer will
not know whether they participated and will not have the opportunity to look at an
individual’s data. The subjects are also told that another informed consent will be
sought if it turns out that the reports could lead to the identification of individual
subjects. The subject information sheet assures subjects that they can look at their
data at any time. In some cases, subjects are informed that their data will be
destroyed at their asking.

The subject information sheet ends by telling subjects that they have the right to
published reports of the research. Additionally, it tells subjects where the data will
be stored.

Note that the subject information sheet is written from the perspective of the
researcher providing explanations to the potential subject, whereas the informed

9 A Practical Guide to Ethical Research Involving Humans 253

consent form is written from the perspective of the subject. That is, the statements
in the informed consent form begin with “I” and are not simply informational.

4.3.2. Consent Form

Research Project Title. The informed consent form must always include the title of
the research project as it appears in the documents submitted to the ethics board, so
the subjects can correctly refer to the research should they wish to contact someone
about their participation, e.g., to complain about their experience.

Contact Information. The informed consent form should also always provide a
research contact and an ethics contact. The research contact is the person the
 subjects would contact if they have any questions about the research, including
obtaining results or papers, scheduling sessions, etc. The ethics contact is usually
someone in the researcher’s organization who acts as an ethics ombudsman. This
is the person whom subjects should contact to voice any concerns about the way
they were treated during the research project, such as feeling coerced into partici-
pating. It is the responsibility of the ethics contact’s office to take complaints,
investigate them, and decide upon actions where warranted.

Consent and Comprehension. In this section, the subjects are actually giving their
consent to participate in the research project. This section also addresses the
 subjects’ comprehension of the proposed research. The subjects are basically
 stating that they understand what is required of them, and that they understand that
they will be participating in a research project.

Withdrawal. This section states that the subjects’ signatures attest to their under-
standing that they can withdraw from the research project without penalty. All
informed consent forms will require such a statement. This feature reinforces the
voluntariness of the consent.

Confidentiality. Here the provisions of confidentiality regarding the research
project and the data are reiterated.

Risks and Benefits. Here the subjects are asked to consent to the risks and benefits
incurred from participating as a subject. Note that the form states that the subjects
do not give up any legal rights by signing it.

Clarification. This statement regards the subjects’ understanding that they can
request additional information at any time. It also ensures that all the subjects’
questions have been answered. Remember that in order to give fully informed
 consent, the subjects must completely understand their role in the research project.
This statement just ensures that they have been given the opportunity to do so.

Signature. Finally, in all informed consent forms, the subjects are required to sign
and date the form appropriately. The experimenter is often also required to sign.
Subjects are then given a copy of the subject information sheet and the informed
consent form. In some cases, verbal assent is sufficient. For instance, with surveys

254 N.G. Vinson and J. Singer

or questionnaires, the assent implied by filling out and returning the document may
be considered sufficient evidence of consent by the ERB.

5. Conclusion

In this chapter we have presented four ethical principles that form the core of
 several research ethics guidelines and codes: informed consent, beneficence, confi-
dentiality, and scientific value. How can one ensure that ethics plays a role in a
research project? First, and foremost, researchers must educate themselves about
ethics, just as they would about methodology or data analysis. This includes educat-
ing graduate and undergraduate students about the primary tenets behind ethical
research. Ideally, this education should include practical as well as classroom expe-
rience. Researchers can also share their experiences with others so that the com-
munity as a whole develops its competency in this area.

Researchers also need to plan for ethics in their research, as one cannot always
quickly solve problems as they occur. For instance, in conducting a classroom
study, researchers need to have a plan for those students who do not wish to partici-
pate. Building likely scenarios can help researchers to understand specific issues
and have solutions in place to address them.

Finally, researchers need to consult others who can help them to plan and imple-
ment ethical research. For instance, ERBs have a great deal of expertise on ethics
and research. Researchers can use this important resource early in the planning
stages to address potential problems. This has the added advantage of educating
local ERBs on topics of importance to ESE researchers.

Ethical research does not happen by chance. Individual researchers must be
committed to making their research ethical. By addressing some of the issues
 surrounding ethics in ESE research, we hope to have given ESE researchers the
understanding they need to reason ethically about their own work.

Acknowledgements We would like to thank Paula Desjardins for her assistance in conducting a
survey of the types of documents submitted to ERBs.

References

ACM Executive Council. (1993). ACM code of ethics and professional conduct. Communications
of the ACM, 36(2), 99–105. http://www.acm.org/constitution/code.html

American Anthropological Association. (2004). Statement on Ethnography and Institutional
Review Boards. http://www.aaanet.org/stmts/index.htm

American Psychological Association. (2002). Ethical Principles of Psychologists and Code of
Conduct. http://www.apa.org/ethics/code2002.html

Anderson, R. E., Johnson, D. G., Gotterbarn, D., & Perrolle, J. (1993). Using the new ACM code
of ethics in decision making. Communications of the ACM, 36(2), 98–107.

9 A Practical Guide to Ethical Research Involving Humans 255

Australian Research Council (ARC). (2007). Research Ethics. www.arc.gov.au/about_arc/
research_ethics.htm

Becker-Kornstaedt, U. (2001). Descriptive software process modeling – how to deal with sensitive
process information. Empirical Software Engineering, 6(4), 353–367.

Beecher, H. K. (1966a). Ethics and clinical research. New England Journal of Medicine, 274(24),
1354–1360.

Beecher, H. K. (1966b). Consent in clinical experimentation: myth and reality. Journal of the
American Medical Association, 195(1), 124–125.

Canadian Association of University Teachers (CAUT). (1997, October). CAUT responds to tri-
council code. CAUT Bulletin. www.caut.ca/en/bulletin/issues/1997_oct/tricouncil.htm

Canadian Institutes of Health Research, Natural Sciences and Engineering Research Council, &
Social Sciences and Humanities Research Council. (2005). Tri-Council Policy Statement:
Ethical Conduct for Research Involving Humans. Public Works and Government Services
Canada. www.pre.ethics.gc.ca

Committee on Science, Engineering and Public Policy of the National Academy of Sciences,
National Academy of Engineering, and Institute of Medicine. (1992). Responsible Science:
Ensuring the Integrity of the Research Process (1). Washington DC: National Academy
Press.

Committee on Science, Engineering and Public Policy of the National Academy of Sciences,
National Academy of Engineering, and Institute of Medicine. (1993). Responsible Science:
Ensuring the Integrity of the Research Process (2). Washington DC: National Academy
Press.

Committee on Science, Engineering and Public Policy of the National Academy of Sciences,
National Academy of Engineering, and Institute of Medicine. (1995). On Being a Scientist:
Responsible Conduct in Research (2nd edn). Washington DC: National Academy Press.

Economic and Social Research Council (ESRC). (undated). Research Ethics Framework.
Swindon, UK: ESRC. http://www.esrcsocietytoday.ac.uk/ESRCInfoCentre/Images/ESRC_
Re_Ethics_Frame_tcm6–11291.pdf

El-Emam, K. (2001). Ethics and open source. Empirical Software Engineering, 6(4), 291–292.
Engineering and Physical Sciences Research Council (EPSRC). (2007). Funding Guide. Swindon,

UK: EPSRC.
Faden, R. R. & Beauchamp, T. L. (1986). A History and Theory of Informed Consent. New York:

Oxford University Press.
Fleuhr-Lobban, C. (1994). Informed consent in anthropological research: we are not exempt.

Human Organization, 53(1), 1–10.
Fowler, F. J. Jr. (1993). Survey Research Methods (1) (2nd edn). Thousand Oaks, CA: Sage.
Frankel, M. S. (1989). Professional codes: why, how, and with what impact? Journal of Business

Ethics, 8(2), 109–115.
Freedman, B. (1987). Scientific value and validity as scientific requirements for research: a pro-

posed explication. IRB: Ethics and Human Research, 9(6), 7–10.
Gotterbarn, D., Miller, K., & Rogerson, S. (1999). Software engineering code of ethics is

approved. Communications of the ACM, 42(10), 102–108.
Harrison, W. (1998). An issue of ethics: responsibilities and obligations of empirical software

engineering researchers. Empirical Software Engineering, 3, 7–9.
Heath, E. (1998). The noninstitutional review board: what distinguishes us from them? IRB, 20(5),

8–11.
Jeffrey, D. R. & Votta, L. G. (1999). Guest editor’s special section introduction. IEEE Transactions

on Software Engineering, 25(4), 435–437.
Kelman, H. C. (1972). The rights of the subjects in social research: an analysis in terms of relative

power and legitimacy. American Psychologist, 27, 989–1016.
Lane, B. (2006, August 16). Ethics draft provokes anger. The Australian. http://www.theaustral-

ian.news.com.au/
Lethbridge, T. C. (2001). Mixing software engineering research and development – what needs

ethical review and what does not? Empirical Software Engineering, 6(4), 319–321.

256 N.G. Vinson and J. Singer

McNeill, P. (1993). The Ethics and Politics of Human Experimentation. New York: Cambridge
University Press.

Mirvis, P. H. & Seashore, S. E. (1982). Creating ethical relationships in organizational research.
In J. Sieber (Ed.), The Ethics of Social Research, New York: Springer-Verlag, (pp. 79–104).

National Health and Medical Research Council, Australian Research Council, & Australian Vice-
Chancellors’ Committee. (2007). National Statement on Ethical Conduct in Human Research.
Australian Government.

Organisation for Economic Development and Co-operation (OECD). (1980). OECD Guidelines
on the Protection of Privacy and Transborder Flows of Personal Data. OECD.

Patrick, A. S. (2006). Privacy practices for HCI research. HOT Topics!, 5(2). http://www.carleton.
ca/hotlab/hottopics/Articles/February2006-PrivacyPract.html

Penslar, R. L. (1993). Protecting Human Research Subjects: Institutional Review Board
Guidebook. Washington DC: National Institutes of Health, U.S. Government Printing Office.
www.hhs.gov/ohrp/irb/irb_guidebook.htm

Public Welfare, Protection of Human Subjects, Code of Federal Regulations, Title 45, Pt. 46
(45CFR§46), (2005), http://www.hhs.gov/ohrp/humansubjects/guidance/45cfr46.htm

Schrier, J. (1992). Reducing stress associated with participating in a usability study. In Proceedings
of Human Factors’ Society 36th Annual Meeting, Santa Monica, CA.

Sieber, J. E. (1992). Planning Ethically Responsible Research: A Guide for Students and Internal
Review Boards (31). Thousand Oaks, CA: Sage.

Sieber, J. E. (2001a). Not your ordinary research. Empirical Software Engineering, 6(4),
323–327.

Sieber, J. E. (2001b). Protecting research subjects, employees and researchers: implications for
software engineering. Empirical Software Engineering, 6(4), 329–341.

Singer, J., Sim, S. E., & Lethbridge, T. C. (2008). Software engineering data collection for field
studies. In F. Shull et al. (Eds.) Guide to Advanced Empirical Software Engineering, Springer.

Singer, J. & Vinson, N. G. (2002). Ethical issues in empirical studies of software engineering.
IEEE Transactions on Software Engineering, 28(12), 1171–1180.

Singer, J. & Vinson, N. (2001). Why and how research ethics matters to you. Yes, you!. Empirical
Software Engineering, 6(4), 287–290.

Smith, S. & Richardson, D. (1983). Amelioration of deception and harm in psychological
research: the important role of debriefing. Journal of Personality and Social Psychology, 44(5),
1075–1082.

University of Toronto Social Sciences and Humanities Research Ethics Board (SSH REB). (2005).
Guidelines for Ethical Conduct in Participant Observation. http://www.research.utoronto.ca/
ethics/eh_policy.html

Vinson, N. & Singer, J. (2001). Getting to the source of ethical issues. Empirical Software
Engineering, 6(4), 293–297.

Vinson, N. G. & Singer, J. (2004). Consent issues raised by observational research in organisa-
tions. NCEHR Communiqué, 12(2), 35–36.

Worchel, S. & Cooper, J. (1979). Understanding Social Psychology, Revised Edition. Homewood,
IL: The Dorsey Press.

Wright, D. R. (2006). Research ethics and computer science: an unconsummated marriage. In
Proceedings of SIGDOC ‘06, Myrtle Beach, SC, USA.

Chapter 10
The Management of University–Industry
Collaborations Involving Empirical Studies
of Software Engineering

Timothy C. Lethbridge, Steve Lyon, and Peter Perry

Abstract In this chapter we will discuss some of the pragmatic considerations that
we believe university researchers and companies should consider when establishing
collaborative software engineering research projects; in particular, those involving
empirical studies of software engineers. The chapter is illustrated using as a case
study a research collaboration in which the authors are involved. We enumerate
the costs, benefits, risks and risk-reducing factors that can have an impact on all
the parties involved in the collaboration (the company, the faculty members and the
graduate student researchers). Understanding this information is needed to help
justify the research in the first place, and to manage it effectively. We then discuss
many of the activities that will be needed to plan and manage the project, including
such issues as attracting students, handling intellectual property, obtaining ethical
approval and interacting with participants. The main objective of the chapter is to
provoke some thoughts in the minds of those planning empirical research projects
in software engineering.

1. Introduction

Most software engineering tools and techniques are aimed at reducing cost, speed-
ing development and/or increasing software quality – all in the context of the
pervasive complexity and rapid change one finds in industrial software projects.
Researchers must conduct empirical studies in industrial settings in order to properly
understand the complexities of commercial software products and processes, and to
evaluate new ideas. This paper presents lessons we have learned through a univer-
sity-industry research collaboration in which the authors participated. The objective
of the paper is to help guide others who are considering embarking on similar
endeavors.

Empirical studies in companies can take many forms; the discussion in this paper
does not presuppose one form in particular. Studies will most often investigate software
engineering processes, but may also assess the usefulness of various technologies

257

F. Shull et al. (eds.), Guide to Advanced Empirical Software Engineering.
© Springer 2008

258 T.C. Lethbridge et al.

that software engineers use or develop. Some empirical studies, e.g. learning how
much of a typical project’s duration or effort is devoted to a certain activity, could
stand on their own: Their conclusions would be used for general decision-making.
Other empirical studies might enable the researchers to form hypotheses about, or
validate, their own research ideas. Examples of the latter include novel testing tech-
niques or programming languages.

Empirical studies can use a variety of techniques ranging from questionnaire-
based surveys, structured interviews and observation sessions to controlled
experiments (Lethbridge et al., 2005; Sjøberg et al., 2005). Almost all these tech-
niques involve people as research participants. Traditionally students have
performed this role, but as emphasized above, it is often essential to use industrial
employees in order to obtain accurate and relevant answers to many research
questions.

Researchers in empirical studies can take on the role of the indifferent outsider,
observing and measuring what goes on in the company. Or they can take on a more
participatory role, seeking to improve the industrial environment by conducting
action research (Potts, 2003; Baskerville and Wood-Harper, 1996; Checkland,
1991; Dittrich, 2002).

Conducting empirical studies in software companies is not easy. In this chapter
we will focus on how to plan and manage such projects; we will look at how to
justify such projects, find participants and staff, deal with the competing inter-
ests of the researchers and company managers, as well as various other issues.
Additional challenges, discussed elsewhere in this book, arise from the need to
conduct good science. The latter challenges include establishing adequate
experimental controls, choosing appropriate metrics, and properly analyzing the
resulting data.

Software engineering researchers are normally not trained in management. As
more of them recognize the imperative to conduct empirical studies in industry, we
expect increasing interest in learning from the experiences of others. In this chapter
we present a set of issues that researchers need to consider, illustrated by the case
study of a research project in which the authors collaborated.

The authors represent both industry and academia and have each conducted
research with several different partners. The academic author has also worked in
industry. The issues raised in this chapter are therefore derived from a variety of
experiences.

There is some existing literature about industry-university collaboration.
Conradi et al. (2003) discuss experiences in Norway in which several small and
medium enterprises (SMEs) and several universities jointly worked on process
improvement research. Some of the lessons-learned they present are similar to the
ones we present here, although our experiences relate more to individual per-
formance improvement rather than company process improvement. Beckman
et al. (1997) and Mead et al. (1999) provide some suggestions about another type
of industry-university collaboration – working together to design and deliver
educational programs. Arisholm et al. (1999) provide a series of small case stud-
ies about industrial collaborations, each with their own lessons learned. Finally,

10 The Management of University–Industry Collaborations 259

Rombach and Achatz (2007) summarize a variety of issues regarding research
collaborations.

In the next section we give a brief overview of the research project that will
serve as the case study. We then enumerate the benefits of university-industry
research projects and the factors that can lower risks. Following this we discuss
the costs and the risks themselves. We conclude by presenting a set of considera-
tions that industrial and university researchers should consider as they plan their
projects.

2. An Example Research Project:
The Mitel – University of Ottawa CSER Collaboration

We will illustrate this chapter with examples from our own experiences as
University of Ottawa researchers and Mitel managers conducting collaborative
research. These results are personal reflections gathered from brainstorming our-
selves about what worked, and how we could have conducted our research
better.

Mitel is a medium-sized telecommunications company, best known for its PBX
hardware and software. As with all telecommunications software, the Mitel systems
are very large.

In 1995 the Mitel managers (the second and third authors of this paper)
approached University of Ottawa researchers with a general research problem: How
to reduce the cost of maintenance of a large software system. As is normally the
case when starting such projects, we had particular ideas we wished to test. We
believed that one of the biggest difficulties faced by the engineers was an inability
to visualize the system’s design, due to its complexity and the sheer magnitude of
its code and documentation. In earlier research, the first author had developed a
knowledge base management system (KBMS) (Lethbridge, 1994) and believed that
if we modeled the Mitel system using this KBMS we would be able to help Mitel
engineers to understand their system better. Such a KBMS model was expected to
be especially helpful in enabling new design staff members to learn the Mitel
system, and become productive more quickly.

Since we wanted to apply good scientific method, we decided that an important
part of the research would be to study software engineers and their product (Singer
and Lethbridge, 1998). The objective of this was to better capture the nature of the
problem that the KBMS was supposed to solve, and to develop hypotheses that we
would later seek to confirm. Before long, we noticed several patterns in the work
of the engineers. In particular, they were spending a large amount of effort searching
code, and they were having significant difficulty manipulating and organizing
the results of their searches. They were thus finding it hard to effectively use this
information. As a result we changed our research direction considerably and
focused on designing a tool to solve these immediate and pressing problems.
Investigating the KBMS ideas dropped to a lower priority.

260 T.C. Lethbridge et al.

In 1996, Mitel joined the Consortium for Software Engineering Research
(CSER, www.cser.ca,), and the research project grew to encompass studies of various
features that might be appropriate in a software exploration environment. The tool
that we developed, TkSee (Lethbridge and Anquetil, 1997), saw continuous volun-
tary use by Mitel engineers from the date it was introduced (1996) until several
years after the project concluded in 2002. It also served as a test environment for
several aspects of the research. In the rest of this chapter, we will refer to this work
as the Mitel-CSER project.

Research on the Mitel-CSER project used many approaches: To gather data
from software engineers we measured their use of tools, interviewed them, asked
them to draw pictures describing their views of the architecture of some soft-
ware, and shadowed them. We developed a new shadowing technique called
Synchronized Shadowing, and a new approach to analyzing the large amount of
data that results – representing work patterns using use-case maps (www.use
casemaps.org). We have conducted usability studies (Herrera, 1999) to ensure
our tool is usable. We believe that if the tool has poor usability, this would nega-
tively impact user acceptance, hence we would not be able to tell if its core
functionality was useful or not. We also developed techniques for analyzing
Mitel software (Somé and Lethbridge, 1998) that are used to build the databases
that TkSee uses.

The research involved the academics immersing themselves in the industrial
environment – not to the extent of actually working on Mitel products, but
rather through being on the premises and actively trying to solve problems
faced by the developers. We therefore followed the research paradigm sug-
gested by Potts (2003), in which one ‘intertwines research and industry
intervention’.

Both the academics and the company benefited from the research. Mitel was
pleased with the impact of the tool, and the academics were able to produce many
publications, (e.g. Anquetil and Lethbridge, 2003; Anquetil and Lethbridge, 1999;
Sayyad Shirabad et al., 2003; Lethbridge and Singer, 2001; Liu and Lethbridge,
2002; Somé and Lethbridge, 1998).

However, there have also been several difficulties that turned the research into a
good case study. Most notably, it has not been easy to motivate graduate students
and others on the research team to embrace techniques that involve studying work
practices and software usability. It has also not been easy to strike a balance
between conducting well-designed and focused research on the one hand, and solving
difficult-to-characterize industrial problems on the other hand. We sometimes
spent excessive effort developing software of sufficient quality so that it can be
actually used by the engineers – necessary so we can determine if our ideas are
valid. We similarly had difficulty attracting a large enough population of users to
scientifically validate our ideas, although several Mitel users have used TkSee
extensively.

The Mitel-CSER research project is considered successful despite these difficulties.
We hope our accumulated lessons-learned as presented in this chapter will be
of value to others who embark on similar research.

10 The Management of University–Industry Collaborations 261

3. The Benefits of University-Industry Software
Engineering Empirical Studies

In this section and the next we will enumerate the positive and negative sides of
empirical software engineering research projects involving companies and univer-
sity research groups. Before starting any such project we believe it is important to
attempt to quantify these factors. The information may be used to help ‘sell’
research projects to either the company or the researchers, to plan such projects and
to manage risk.

In what follows we separately enumerate the benefits to the company, to faculty
members and to students involved in the research. These are summarized in Table 1
While many of these benefits might be self-evident, the parties may not necessarily

Table 1 Benefits of industry–company research collaborations

 Typical amount
 of benefit (impact *
Category of benefit Benefit type probability of occurrence)

To the company
Direct benefits • New or improved Medium

 technology or product
 • Data and knowledge useful High
 for decision making
 • Patents Low
Indirect benefits • Potential employees for Medium

 company
 • Ideas and expertise High
 of researchers
 • Public relations Medium
Factors lowering risk • Graduate students are often Medium

of research top achievers
 • Researchers have a personal Medium
 stake in success
 • Low cost compared to High
 in-house research
 • Government matching funds High
 and tax incentives
To researchers
Direct benefits • Funding High
 • Interesting and challenging High
 problems and data
 • Test-bed for ideas High
Indirect benefits • Exposure to the ‘real world’: High

 Provides valid and relevant
 knowledge, consulting
 and networking.

To the public
Indirect benefits • Advancement of state-of-the High
 art and state-of-the-practice

262 T.C. Lethbridge et al.

think of all of them. We believe that systematically analyzing these factors, quantitatively
if possible, should be done more frequently when research projects are planned.
Knowing the potential benefits we can, a) balance them with the costs to decide
whether the project (or an aspect of it) is worth doing and attract adequate funding,
and b) make sure we actively work to realize the benefits.

3.1. Potential Benefits to the Company

Benefits to the company fall into three categories: Direct benefits, indirect benefits
and risk-reducing factors. The direct benefits are what immediately spring to mind,
and result from success of the research. However the indirect benefits might be of
considerable value too. The risk-lowering factors are considered as a separate cate-
gory of ‘positive’ factors that make it worthwhile doing the research in conjunction
with universities as opposed to in-house.

3.1.1. Direct benefits

The most obvious direct benefit to the company is new or improved technology
(processes, techniques and tools) and products. Empirical software engineering
research does not itself normally directly create such improvements, but provides
data and knowledge useful for making management or design decisions.

For example, in the Mitel-CSER project our studies of software engineers gave
us design ideas and led to changes in research focus. Similarly, our studies of usa-
bility told us what tool improvements were necessary. We used data from an empiri-
cal study to develop the TkSee tool, which in turn reduced the elapsed time some
new employees took to learn about Mitel software. In fact the training time for
designers new to the product was typically halved, and this provided the most read-
ily quantifiable benefit of the project. It is important to note that this kind of benefit
requires management of technology transfer, an issue discussed by Zelkowitz
(1995) and Pfleeger (1999).

Technology transfer involves taking an idea from laboratory prototype to per-
manent use of a mature product within a company or industry as a whole. One of
the issues often faced is establishing the appropriate intellectual property frame-
work to do this – for us, this was not a challenge because we had a well-written
collaborative research agreement from the start, which anticipated close interac-
tion with the company and had clauses clearly describing IP rights. We did, how-
ever find three practical technology transfer issues challenging: Firstly we needed
to make our research software usable enough so that it could be used in daily
practice; in other words we had to approach ‘product quality’. We were able to
achieve this by following rigorous usability engineering techniques, such as usa-
bility studies. The second challenge was integrating TkSee with the corporate
tools and data infrastructure. Our database needed regular builds, and our server

10 The Management of University–Industry Collaborations 263

needed to be maintained. We were able to train a Mitel staff person to do this,
however, from time to time that person was unavailable, causing some down time.
The third challenge was spreading the use of the tool from one focused team to the
wider organization or industry as a whole. Although we attempted to do this, we
never had any ‘takers’ beyond the original team. We were not able to make the
extra investment of time and effort to broaden the technology transfer. We had
quite a lot of requests from outside Mitel to obtain TkSee, but we found it hard to
service these requests, since setting up the tool required a lot of time-consuming
configuration.

Another possible direct benefit of empirical studies is intellectual property: Such
studies might uncover data that could provide competitive advantage or a patentable
invention.

3.1.2. Indirect benefits

In today’s employment environment, where people with appropriate skills are often
hard to find, an important indirect benefit of research collaborations is the exposure
to the company of potential highly-skilled employees. Graduate students can learn a
considerable amount about the company during their research and develop a desire
to work there. It is important, however, for companies to actively recruit such stu-
dents (as they approach the completion of their degree) in order to realize this ben-
efit – in the Mitel-CSER project we learned this lesson only after the first few
years.

A related indirect benefit to the company is exposure to academic researchers
who can provide expertise and fresh ideas; this can be achieved through formal
presentations or informal discussions. Faculty members will also absorb corporate
know-how and the corporate needs for future stills; they will thus be in a better
position to educate future employees.

A final indirect benefit is the public relations value resulting from the joint pub-
lication of research results.

3.1.3. Risk-lowering factors

Research can be conducted using in-house employees instead of university research-
ers. In many cases, however, the specialized expertise is not available, and both the
uncertainty of the outcome, and the cost of the research are too high for the industrial
agenda. There are several benefits from using university researchers: Graduate stu-
dents tend to be talented individuals with the latest knowledge. They have a personal
stake in the project’s success and direct power over its success due to their need to
complete a thesis – their main reward, graduation, does not come until success is
achieved. Graduate students are also paid relatively little, seeing their work as an
investment in themselves. Added to this is the benefit of the guidance of experienced
faculty members.

264 T.C. Lethbridge et al.

Faculty members are also personally motivated to succeed in the research due to
their need to publish papers, although this can be a double-edged sword as we will
discuss later. Furthermore a faculty member’s time may be at least partly ‘free’ to
the company.

Finally, government matching funds that cover part of the cost to the universities
and tax incentives for industrial research all reduce the risk to the company.

The lists of direct and indirect benefits are similar to the benefits of industrial
collaboration reported by Conradi et al. (2003). Conradi et al. also discuss benefits
to individual participants, but don’t discuss the risk-lowering factors.

3.2. Potential Benefits to the Faculty Members, Graduate
Students, and the Public

Significant benefits also accrue to faculty members and graduate students. Both
categories of academic researchers directly benefit from significant amounts of
funding for their work, interesting intellectual problems and data to work with, and a
test-bed for their ideas. Indirect benefits include exposure to the ‘real world’; the
knowledge researchers acquire is likely to help the researchers improve other aspects
of their research as well as their teaching. Opportunities for networking and consulting
will also likely arise: Faculty members might find potential graduate students or other
collaborators in the companies, while students might receive job offers.

Finally, as mentioned at the beginning of the chapter, there is one important
public benefit to empirical studies in industry: They are necessary to properly
understand the complexities of software engineering, and thus advance the state-of-
the-practice, resulting in better and cheaper software-intensive products and
services in most parts of our society.

4. The Drawbacks of University-Industry Software Engineering
Empirical Studies

In this section, we present the drawbacks of university–company collaborations for
empirical software engineering research. These factors should be balanced against
the benefits discussed in the last section. Awareness of these factors can also
suggest ways to manage and reduce them. Table 2 provides a summary.

We divide the sets of drawbacks into those that primarily affect the companies, those
that affect the faculty members and graduate students, and those that affect the success
of the project as a whole (impacting everybody who is interested in the results).

We also divide the drawbacks into costs and risks. Costs are factors that can be
estimated directly, while risks are uncertainty factors for which one can estimate
their probability of occurrence and their impact on costs and benefits if they occur.

10 The Management of University–Industry Collaborations 265

Note that some projects are initiated by researchers while others are initiated by
companies who have an active need to solve to a problem. Some risks are consider-
ably higher in the latter case.

Table 2 Drawbacks of industry–company research collaborations

 Typical amount of drawback
Category of drawback Drawback type (impact * probability of occurrence)

To the company
Costs • Cash funding Varies from none to medium
 • Consumption of Varies, normally medium
 employee time
 • Office space and Normally low
 equipment
Risk factors • Different definitions Medium if the company has defined

 of success (bottom the problem; otherwise low
 line for industry vs.
 scientific results and
 publication for
 researchers)

 • Unknown consumption Low to medium
 of employee time
 • Inappropriate release Normally low for empirical studies
 of intellectual property
To researchers
Costs • Constrained research High if the company has defined
 freedom the problem; otherwise low
 • Excess consumption of time Moderate to high, depending on
 experience of researchers and
 research design
Risk factor • Company-initiated Varies from low to high depending

 cancellation on corporate priorities and
 rapport between researchers and
 the company

To the project as
a whole

Risk factors • Different perceptions of High if the company has defined to
 the problem the problem for researchers
 solve; otherwise low

 • Failure to staff the project Medium
 with sufficient numbers of
 skilled researchers
 • Unknown skill level of Varies from low to high depending
 researchers, including their on experience of researchers
 ability to estimate the
 required effort
 • Failure to find or keep Varies from low to high; depending
 adequate numbers on effort needed, management
 of participants support, and other factors
 • Inconclusive or non- Low, but higher when the objective
 useful results is to validate a hypothesis

266 T.C. Lethbridge et al.

4.1. Potential Drawbacks to the Company

The costs to the company of participation in research projects with universities include
direct cash funding of the research, consumption of employee and management time
as well as office space, equipment and other supplies devoted to the research. For
empirical studies, the time of research participants may be the greatest cost.

The following are risk factors that add uncertainty to the costs and benefits;
these are listed starting with the most significant. Note that we enumerate risks to
success of the project as a whole later in this section.

4.1.1. Different definitions of success

Unless a project is very small and the company is purely expecting indirect benefits
(see Sect. 3), then the company will expect some concrete result that will ultimately
impact their bottom line. Researchers, on the other hand usually have completely
different motivations for participating, the main one being publishing results. This
cultural conflict is explored in more detail by Zelkowitz et al. (1998).

This fundamental difference of interest can lead, in the worst case, to researchers
not paying any attention to the needs of the company. Normally, with well-
intentioned researchers, the impact is more subtle: The researchers might be
stressed about their thesis deadlines, paper deadlines or other academic requirements
and give priority to them. Or the researchers might deviate from a project plan that
interests the company because they find interesting side-problems that will more
readily result in publishable results.

This difference of interest is probably the biggest risk factor to companies, and
thus must be carefully managed. In the Mitel-CSER project, this risk factor had a
major impact – many graduate students wanted to direct their theses to topics that
related to, but were not directly central to, the original project plan. The faculty
member directing the project was also in the process of achieving tenure and so
spent considerable time writing papers – sometimes leaving the project plan to lan-
guish at a lower priority for long periods.

4.1.2. Unknown consumption of employee time

In some empirical projects, such as those involving completing surveys, this is not
a high risk. However for observational studies or those that involve open-ended
investigation the risk is higher.

4.1.3. Difficulty controlling release of intellectual property

Companies tend to worry that publication of research results might cause them to
lose competitive advantage. Some also have concerns about source code or design

10 The Management of University–Industry Collaborations 267

information getting into the hands of competitors. If these issues are discussed during
project planning (see Sect. 5), these risks can be minimized.

4.2. Potential Drawbacks to Faculty Members
and Graduate Students

There are two clear costs to the academic researchers of collaborating with
industry.

The first cost occurs when there are constraints placed on the freedom of
researchers to follow their interests. Software engineering is a very rich domain
with many potential problems and much data to be gathered. This richness, how-
ever, means that some problems will be considerably more interesting and easy to
publish about than others. When working on an industrially-sponsored project, the
researcher has a responsibility to the company and cannot readily sidetrack to pursue
ideas that might prove more publishable.

The second cost to the researchers is the substantial amount of human resources
that empirical studies take. Planning and managing an industrial research project
can take far more time than many types of work that can be done on campus and
with groups of students as participants.

A risk factor with big potential consequences to the researchers is that the com-
pany will undergo some form of reorganization or reprioritization, and cancel the
research in progress. The academic author has experienced this several times. In
fact, subsequent to the time when this paper was initially written, the Mitel-CSER
project itself was cancelled, just after an agreement had been reached to continue it.
The reason was simply a high-level decision from the corporate executives to cut
all possible costs, including all external research.

A contingency plan for such situations is to work with two or three different
companies on the same research problem, however this can be excessively time
consuming and may not be possible if the companies are competitors. In case of
project cancellation, all may not be lost. The data gathered so far can be reported
as preliminary results, and can serve as a point of departure for a new study, or it
can be combined with data in a later study. A sliver lining from a cancellation is
that the researchers then are freer to work with other companies, where they may
gain fresh perspectives. Indeed, we were able to replicate some of our work in IBM,
who we later worked with, lending increased confidence to our conclusions.

4.3. Risks to the Research as a Whole

The following risk factors are typical of empirical studies at present. They can
impact the ability to obtain useful results, or even to complete the project, and
therefore affect both parties (although they only affect the company if it is sponsoring
the project because it has a problem to solve).

268 T.C. Lethbridge et al.

4.3.1 Different perceptions of the problem

Academics without much experience in industry may have very different notions
about what software engineering involves and what are the real problems. On the
other hand, industry managers tend to vary widely in the software engineering knowl-
edge they possess. This can lead to difficulty communicating, and misunderstandings
about the problem that is to be tackled. This issue is very much related to classic dif-
ficulties in requirements analysis where, due to inadequate communication and pre-
conceived ideas, customers have one perception of the problem and software
engineers another.

4.3.2 Failure to staff project with sufficient numbers of skilled researchers

Empirical research has not customarily been widely performed in the software
engineering community, and for some people lacks a certain ‘respect’ or is considered to
be ‘soft’. The Mitel-CSER project has certainly suffered from this phenomenon; we
have on occasion tried to convince graduate students to become interested in such
studies and have found that they don’t see it as ‘real’ engineering. Empirical studies
of usability, as performed by human factors experts, are seen to be part of an
entirely different culture. For these reasons, it is hard for the project leaders to
attract researchers (graduate students, postdoctoral researchers and faculty) who
have expertise and interest. Hopefully this book will make a difference.

In addition to having questionable interestingness or respect, empirical projects also
often generate profuse volumes of data, which is very time-consuming to analyze. This
acts as a deterrent to software engineering researchers who are used to solving engineer-
ing problems. In the Mitel-CSER project, we attempted to use administrative assistants
to transcribe tapes in interviews, however this failed because the interviews used so
much technical jargon that the transcribers could not adequately understand them.

4.3.3 Unknown skill level of researchers

Even if staff can be found, conducting empirical studies is a skill in which not many
software engineering researchers have been trained – something this book hopes
to alleviate. Therefore the students, and even faculty, may well be on a learning curve
and may make mistakes. Of particular importance is the ability of the researchers to
estimate how much time empirical studies will take; our own lack of experience
meant that this we severely underestimated when we developed our project plan.

4.3.4 Failure to find or keep adequate numbers of participants

It is common for researchers to get a low response rate to surveys; we conducted
one mail-out survey as part of our research and obtained only a 2% response rate.

10 The Management of University–Industry Collaborations 269

Within companies, it may be possible to interest participants in observational or
interview-oriented studies, but it may be very hard to get enough people to use a
specific piece of software as part of their work, or to follow a certain methodology.
In addition, participants may leave the team or company, or withdraw from the
study for personal reasons. In the Mitel-CSER project, we have suffered from all of
these difficulties to a considerable extent, although we have been lucky to have a
large enough pool from which to draw new participants.

4.3.5 Inconclusive or non-useful results

No research is guaranteed success, otherwise it wouldn’t be research. However in
software engineering there tends to be a perception that any engineering problem
can be solved given enough work. Questions subjected to empirical studies, how-
ever, are often not answered by ingenuity, but rather by analysis of data. There
might not be enough data for statistical significance, or there might be too many
extraneous variables or methodological errors detected that the results are not
meaningful. See Trochim (2007) for excellent coverage of threats to validity.
Another point to consider is that an otherwise successful study needs to be well-
cited, and ‘find its place’ in the scientific literature if it is to be truly useful. A
study will be more likely to have impact if it uses similar measurement scales and
methods as other studies of a similar type. Williams et al. (2005) discuss this in
more details.

For companies, an answer to a research question might not require 95% confi-
dence. They may be able to base a decision on a 70% probability of something
occurring. Also a company may be satisfied with empirical studies that are simply
seeking to gather observations and trends. Success criteria therefore need to be
separately defined for both parties in a research collaboration.

In the Mitel-CSER project, neither of our two main empirical studies involved
controlled experiments. In one (Herrera, 1999) we explored techniques for conducting
usability studies, and in the other (Singer and Lethbridge, 1998) we gathered data
in order to generate work patterns. Both studies had largely qualitative out-
comes, generating tools or tools improvements, and lessons that could be used in
subsequent research. A key sign of success for the company was that the tools we
developed were useful to them. The key indicator of success for the researchers was
that we were able to publish a significant number of papers.

5. Planning Empirical Studies Projects

In this section we discuss the set of issues that need to be discussed and made part
of the project plan as a company-industry empirical research project is established.
These include: Justifying the project in the first place, issues that must be agreed
between the parties, obtaining ethics approval, staffing the project, working with
participants, and analyzing the data.

270 T.C. Lethbridge et al.

A checklist of the activities that should be performed during project planning is
presented in Table 3.

5.1. If the Company is Considering Initiating Research:
Should it Use University Researchers or Corporate Employees?

As discussed in Sects. 3 and 4, there are many benefits that companies can obtain
by involving university researchers, but there are also various risks. If the company
is initiating the research, it must first decide whether to instead use its own employees
for the research. A university research team will normally involve one or more fac-
ulty members and at least the same number of graduate students; since the faculty
members’ time is split divided among several tasks (teaching, administration and
other research), the bulk of the research is often performed by graduate students,
under the direction of the faculty members.

The main benefits to using university researchers are that they are a valuable pool
of talent, and cost less than in-house employees. University researchers often also have
very specific knowledge and research skills that cannot be found inside the companies.
The cost of this talent might be so low compared to the potential benefits that very little
further analysis is needed. In many countries, graduate students are paid significantly
less than company employees. Faculty members might be paid consulting fees for

Table 3 Checklist of activities that should be part of the planning and management process of
industry–university collaborations involving empirical studies

Activity Involves or decided by

• Decision: To use university researchers or in-house Company
employees (refer to Tables 1 and 2 for
decision-making information)

• Attracting companies Researchers
• Decision: Level and type of commitment (finances, Negotiated

resources, timetable, deliverables)
• Decision: How on-going management and risk Negotiated

management will be handled?
• Decision: What is the research focus, what are the goals Negotiated, but may be

and what are the research questions? largely determined by
 either party

• Decision: What participants will be available and when? Negotiated
• Decision: What information must be confidential? Negotiated
• Decision: How will publication of results be handled? Negotiated
• Decision: Who owns intellectual property? Negotiated
• Obtain ethics approval Researchers
• Find researcher team members and train them Researchers
• Plan the details of work with participants Researchers
• Plan for data analysis Researchers
• Evaluate the risks and manage changes Both parties

10 The Management of University–Industry Collaborations 271

some of the research, but they tend to spend much additional time on the research that
is just part of their normal university duties, paid by the university.

On the other hand if the research is of the type where the company absolutely
must have a rapid answer to a question, then there is a high risk in involving graduate
students who are prone to take their time completing courses and might want to
focus their thesis on another topic. Furthermore, an advantage of using corporate
employees is that they tend to have a greater knowledge of the company’s products,
needs and environment.

In summary, there is no single answer to whether it is better to perform research
in-house or involve university researchers: the decision depends on the type of
research to be done. In-house employees can work full time and may focus better
on the problem, but are normally much more expensive and may lack specific
expertise in the area of the research.

5.2. If the University is Considering Initiating:
How does it Make Contacts with Companies?

The biggest practical problem in studying work practices is obtaining a good sample
of participants. If a university researcher is initiating the project, it might be possible
in some cases to conduct a study using participants who are solicited individually (for
example they might be asked to fill out a questionnaire on the web on their own time).
However, it is usually necessary to work with teams within a company. Hence,
participation needs to be obtained from the management of one or more companies.

Finding suitable organizations is the first hurdle. While many researchers or
their institutions may have a few companies that are their perennial ‘contacts’ in
industry, empirical researchers should give thought to involving companies of several
different types to avoid introducing bias. The companies most likely to be willing
to participate are those already involved in research – particularly medium to large
companies whose primary business is software or computer products. Much harder
to penetrate are companies in other industries that develop specialized software or
in-house software, for example, banking and health care. In the past, we have expe-
rienced considerable frustration finding suitable managers to contact. Our only
advice is that unbiased research often requires considerable effort of this type. We
were lucky with the Mitel-University of Ottawa collaboration since both parties
sought out each other.

When the university researchers are the ones seeking the contacts, two levels of
management must be convinced to participate: Higher management must agree to
the involvement of the company as a whole, while first-level managers must agree
to the involvement of their teams. In both cases, obtaining and maintaining commit-
ment can be hard. Management will naturally be concerned about the costs of the
research, particularly in terms of time. Researchers have to effectively, but realisti-
cally, show that there are benefits to the company, which can balance the costs. The
costs and benefits presented in Sects. 3 and 4 can be used to make a case.

272 T.C. Lethbridge et al.

It is easier to make a case to a company when establishing a long-term relationship.
We have found companies are more open to empirical studies when other members
of the research team are tackling the company’s engineering problems (perhaps
using data from the empirical studies).

5.3. Key Success Factors: Mutual Understanding
in a Co-operative Relationship

Empirical studies of software engineering involve people studying people.
The fundamental requirement for a successful research project relationship is that
the two parties, the company based software engineers, and the academic research-
ers get to know and trust each other. A strong positive social relationship of mutual
respect and trust must be established and maintained between the company based
manager and the principal researcher. As usual in social matters it really helps if
people like each other. This relationship takes time to establish and it may take
many meetings spread out over several weeks to develop mutual understanding of
the research problem and opportunities for solutions. As Conradi et al. (2003) say,
it is important that the researchers have a, ‘humble attitude … towards the situation
of the practitioners’.

This dialogue must culminate in a research plan that is mutually acceptable to both
parties. Since longer-range research work will always play second fiddle to the
immediate product development needs of the company, it is vital that the company
manager be personally fully committed to supporting and carrying through the project. He
or she must see the value and want to carry it forward in order to accept the hindrance
to his day-to-day work. At the same time, expectations must be carefully managed.
Overly enthusiastic research promises or commitments of company time can lead
to fractured relations and harm the project. The project should have a time frame
that anticipates research results corresponding to the normal steps in progress of a
thesis.

It is also vital that each party understands and respects the agenda and impera-
tives of the other. This understanding should develop as the dialogue between the
two project leaders goes on.

5.4. Issues that Must Be Agreed Between the Company
and the Researchers

Once a company has established its willingness to participate, it is important to
reach agreement on a number of issues. The formality of the agreements will vary
with the size and duration of the research. A very large project requires more
detailed negotiations than a small one, particularly if financial support is involved.
A company will be interested in the project, but be more willing to participate if its

10 The Management of University–Industry Collaborations 273

managers were given a presentation about empirical software engineering and the
proposed methods. In such cases, the researcher should treat educating the organiza-
tion as part of the negotiation process, so they can proceed as partners in the
endeavor.

The following are areas where we believe agreements should be established to
help ensure the project’s success. In the Mitel-CSER project, some of these items
were included in a written agreement, but most were just tacit agreements that
evolved over time. If we were starting again, we would probably prefer to write
down more details, although there is always the danger that developing a more
detailed formal agreement (which might have to be approved by lawyers) would
cause inflexibility and possibly lengthy delays, thus potentially causing more harm
than good.

5.4.1 Level and type of commitment to the project

The first point of mutual agreement should be the level and type of commitment of
both parties to the project. Questions to answer are: What is the project’s expected
duration? How much support (e.g. space, time, equipment) is expected from the
company? What kind of results or specific deliverables, if any, are expected from the
researchers? Agreement on these issues often forms the basis for agreement on other
issues below.

For our project, Mitel has provided financing since its inception, with
NSERC (a Canadian Government funding agency) subsequently matching both
cash and in-kind contributions. Mitel also provides office space and equipment,
although the distance to the company and lack of direct-enough public transporta-
tion has meant that graduate students have usually preferred to work on campus.
The faculty member has on average spent one morning a week at the company,
although at the peak of the research he tended to spent several consecutive days
there. Over 80% of the faculty member’s research time has been spent analyzing
data and writing up the results, an activity not performed at the company site. We
have found it important to communicate with the company frequently during these
latter activities to ensure that long absences are not interpreted as delays in the
research.

In the first year of the project, we established a very ambitious timetable for the
research, which later proved to be unrealistic. Project plans developed in subse-
quent years were somewhat more accurate, but we still had an unrealistic schedule.
This was because we did not sufficiently allow for the fact that it might be hard to
find appropriate graduate students, that they are delayed by courses, comprehensive
exams, and other activities, and that they receive and often accept tempting job
offers and therefore drop to part-time status. The main problem with finding graduate
students is that most entering graduate students want to create new software, not
perform empirical studies. The delays from courses and exams arise because the
graduate students feel they have to give 100% of their time to these activities to
maximize their marks. We overcame these problems to some extent by hiring

274 T.C. Lethbridge et al.

people as research associates – such people have a stronger contractual obligation
than graduate students who are merely ‘supported’ in their studies. Unfortunately
market conditions make hiring skilled research associates difficult.

The only real deliverables that Mitel expects are features periodically added to
the tool, and regular reports about progress. However our plans were always rather
ambiguous regarding the level of quality expected, and we rarely met our target dates
(the whole software industry, of course, tends to have this problem). One problem
we faced was students and research associates implementing just enough software
to test their ideas, but not making the quality of the software high enough so that
Mitel could use it on a regular basis after their studies were complete. As discussed
earlier, the core TkSee tool was made highly usable, but add-on features created for
specific student studies were often never used seriously by Mitel employees.

5.4.2 The decision-making and management process

Since empirical research projects, especially long-duration ones, rarely proceed as
initially planned, there need to be agreements about how changes to plans will be
made. We believe that an active-risk management approach is needed: At the initial
stages, the risks (see Sect. 4) need to be identified and their magnitude estimated.
When researchers and company managers meet on a semi-regular basis, both
progress and the risk profile should be informally reviewed and changes to the
plans agreed.

Risk management was something with which the university researchers had little
experience at the start of the Mitel-CSER project. As the project progressed and
deviated from the original plans (albeit in parallel with significant success), we did
not do a good job of ensuring that both parties clearly understood the reasons for
the deviations. University researchers may well be able to learn from the manage-
rial expertise of the company in this regard, just as the company can learn from the
technological expertise of the researchers.

At one point we went too far in the opposite direction by regularly updating a
detailed project plan. That turned out to be far too time-consuming with not enough
benefit. We now believe the kind of regular management needed should involve
update and discussion of a very brief progress chart, and a short list of successes,
problems and risks.

5.4.3 Access to participants

Both sides need to agree on how many employees will participate in the study and
how much time is required from each employee. Sometimes an organization will
find it difficult to provide the personnel required by the ideal research design and
some compromise may be necessary.

In our project, Mitel agreed to a certain number of employee-hours per year to
be devoted to our project, but we did not accurately monitor this, and likely used

10 The Management of University–Industry Collaborations 275

somewhat less time than budgeted. A key point for Mitel was that before the
researchers initiated meetings with employees, they would check with management
to see who was busy with ‘critical’ or ‘deadline’ work, and avoid these employees
until they had more time.

5.4.4 Confidentiality of data

Some data needs to be kept confidential for corporate reasons; for example a com-
pany may not allow highly sensitive information such as source code or defect logs
to be taken off-site. Data about individuals needs to be kept confidential for ethical
reasons – we will discuss this further below. Data that are not confidential for either
of the above reasons can serve as the basis for discussions of the next point, publi-
cation of results.

We had to negotiate with Mitel regarding the confidentiality of certain data that
revealed aspects of their software’s design that needed to be kept a trade secret. We
were not able to take Mitel’s source code out of company premises: This proved
useful in some ways because it encouraged grad students to spend time at the company.
However it was also quite inconvenient at times.

5.4.5 Publication of results

It is difficult to predict which results will be sufficiently interesting to publish, partic-
ularly before data collection has begun. Understandably, companies are reluctant to
give blanket approval to disclosure of information. One solution is to set some ground
rules at the beginning, and deal with publications on a case-by-case basis. Although
this approach adds a step to the process of writing a paper, it has the benefit of provid-
ing researcher with an opportunity to verify their observations and conclusions.

On our case, our papers are reviewed for publication by the company at the same
time that peer review occurs. Officially, Mitel could have asked to approve them
before initial submission, however we established a good working relationship so
that we did not need to be so rigid: Mitel told us the kinds of things they didn’t want
made public and we wrote in a style that accounted for Mitel’s desires. At the same
time Mitel recognized that academics often have very short lead-times to submit
papers. They never rejected any papers, although they requested a few changes.

Another decision to be made is whether or not to identify the organization in the
publication. A company may want its contributions acknowledged, or it may not
want to be associated with ‘negative’ findings. Also, it may not be possible to
publish the identity of the company without compromising the anonymity of the
participants. This question can be dealt with in using the same approach described
above for results. Realizing that anyone could find out from various sources that
funded our research, we realized it would have been pointless to not mention
Mitel’s name. In some paper, the company employees also took a personal stake by
becoming authors.

276 T.C. Lethbridge et al.

5.4.6 Other intellectual property issues

In addition to publication of results and protecting trade secrets, the two parties
need to agree on what will happen if a patentable invention should arise from the
research. Achieving agreement in this area can be very time consuming. The degree
of sensitivity on the part of the company will depend on whether research results
could provide functionality central to their products. In the case of the Mitel
project, the benefits accrue to design efficiency. For these to be most valuable they
need to be incorporated in commercially available tools and so Mitel has little con-
cern about patents in this case. On the other hand another member of CSER is a
software tools company and it has a much greater interest.

The formal CSER agreement acknowledges inventions as belonging to the inven-
tors. Members have a free license to use any tools and techniques that arise
from the research within their individual businesses. If they wish to sell products
incorporating any CSER inventions then they must separately negotiate a license
with the inventor.

A final comment regarding the co-operation of companies: One should keep in mind
the possibility of a long-term relationship with the company. After going through the
effort of establishing a relationship it will likely be useful to extend it either by performing
a series of different studies, each building on the previous, or by performing longitudinal
studies where software engineers are followed over many years.

5.5. Obtaining Approval of the Research Ethics Board

It is now considered essential in most countries that any research project involving
human subjects should be scrutinized by a Research Ethics Board (REB) before the
project gets underway. This is something that social scientists and medical researchers
now take for granted, but which is not widely known in engineering. Even projects
involving simple questionnaires need to be evaluated.

Research ethics are the subject of Chap. 12 of this book. There are many issues
which are particularly important to industrial empirical studies, such as ensuring
that management doesn’t influence the freedom of participants to not participate or
to withdraw, and doesn’t see the raw data. Rather than presenting details about the
ethical issues themselves here, we will briefly list some points relevant to the
management of the ethics approval process.

The most important management issues for the empirical software engineering
researcher to do are:

● Become familiar with the REB process at their institution.
● Plan the project with sufficient care that no ethical guidelines are violated. This

means writing a proposal document in considerable detail so as to be convincing
to the REB – something that might be more time-consuming than anticipated.
The most important parts of such a document are the research protocol itself and
the informed consent form that must be signed by all participants.

10 The Management of University–Industry Collaborations 277

● Plan the project with sufficient time to allow the REB to make its decision, with
allowances for possible required changes and resubmission. REBs very often
nit-pick about details of proposals.

● Do not start any studies involving people until approval is received.

Long-term projects where the research is opportunistic in the sense that individ-
ual studies are planned on an on-going basis, may have to repeat this approval
process.

In the early days of the Mitel-CSER project we conducted the work without
REB approval out of ignorance, and because there was no formal mechanism for
such approval within engineering. That was later rectified; at the same time Canadian
research ethics guidelines have been strengthened and harmonized.

5.6. Staffing the Project and Training Researchers

Company-industry empirical research projects will normally involve graduate stu-
dents and perhaps postdoctoral fellows. As mentioned in Sect. 4, an important
difficulty such projects will face is attracting interested researchers.

One technique that may work is involving researchers from the social sciences
as collaborators. Many anthropologists and psychologists have developed an inter-
est in, and expertise in, software engineering processes. Such people would not be
able to solve engineering problems, and may have a weaker understanding of what
they are observing than engineers, but they should know more than the average
engineer about human behaviour, work practices, study methodologies and ethics.
The work of course is not lessened, but graduate students in these disciplines might
be more motivated to perform the detailed data analysis gathered from human
subjects involved in empirical studies.

In the Mitel-CSER project we have been fortunate to work with Janice Singer, a
scientist at the National Research Council who has a Ph.D. in psychology and has
also worked in software development. Our research group has also involved graduate
students in psychology from time to time.

It is essential for the entire research team to practice and refine the research
methodology before taking it on the road, otherwise many mistakes will be made
and data will be lost. Researchers unfamiliar with the techniques discussed in this
book will be surprised about how many difficulties can arise. For example the
wording of questions must be thoroughly tested to remove ambiguities. Also the
process of setting up cameras, recording, transcribing, and coding should be well
rehearsed.

In addition to understanding empirical study techniques, researchers should
normally spend considerable time in learning about their company. An under-
standing of corporate culture needs to be established so researchers can effectively
interact with the participants and correctly interpret data. The researchers need a
basic understanding of key aspects of the participant’s work, such as the problem
domain, the business context for the application, and the tools and process they are

278 T.C. Lethbridge et al.

using. Some of this knowledge can be gained during the study itself, but we have
found it more effective to have a learning phase in advance of the study.

5.7. Working with Corporate Employees and Managers

After establishing a research relationship with the company, obtaining ethics
approval and training the research staff, the next step is to establish relationships
with individual participants. Whether potential participants are willing to partici-
pate depends on several factors:

● The type of research: Being watched is of more concern to most people than, for
example filling out a survey. Also, long-term or time-consuming research might
attract fewer participants.

5.7.1 Whether the participants perceive management to be supportive

We have found it essential that management be enthusiastic about the research and
make this clear to their employees. Enthusiasm assures employees that they are not at
risk of being penalized for not getting their ‘regular’ job done while taking time out to
participate in the research. Since our research continued for a long period of time, and
many employees came and went during this period, management periodically arranged
meetings with the employees at which the researchers presented a status report and
sought input. However, for ethical reasons, managers should make it clear that participa-
tion is completely optional and they are not ordering people to participate.

A technique that we find useful is to use two consent forms. One is signed by the
manager, consenting to the participation of his or her staff and assuring them that there
will not be any management interference or impact whether or not they participate.
A copy of this is given to the participants along with their own consent form.

Whether the participant perceives some benefit to participation: Some partici-
pants will enjoy taking time away from their daily work; others may be interested
in the research for its own sake or because they feel they may gain something from
the results. In our research we always tried to make it clear to employees that we
were trying to develop tools that would be helpful to them. It was a concern when
our work took longer than expected that some participants might feel let down.

The personality and beliefs of the participants: We have found some employees
are more willing to participate than others. In fact, we have had situations where
participants actively dissuade us by saying that the work they are doing would not
be interesting enough for us to study. Leaving out such people might bias the
research, so we tried to encourage the employees to participate while continuing to
assure them it was optional.

Empirical research in companies can be mentally intense for researcher and partici-
pant. In order to get the most out of the work, the pace should not be rushed. Plenty

10 The Management of University–Industry Collaborations 279

of flexibility should be built into the day’s schedule and no more than two sessions
should be held in any day.

It is also important to understand that software engineers follow a development
cycle. This means that they are doing different activities at different times. Finding
what software engineers do during design and coding does not necessarily reflect
what they do during bug-fixing or requirements gathering. Therefore, data collec-
tion has to focus on one aspect of the development cycle, or must extend over sev-
eral time points to get an overall view of software engineering work.

Another consideration is software engineers’ time constraints. Researchers need
to find, to the greatest extent possible, data collection methods that do not affect the
software engineers’ productivity. Unfortunately, it is not always possible to gather
key information unobtrusively. When a time commitment is required from software
engineers, researchers need to make sure that they get the largest possible return for
that time.

5.8. Maintaining the Relationship

Maintaining an industrial research relationship takes continued work. Some of the
tactics we suggest are the following:

● Ensure all researchers (both faculty and students) have a regular presence in the
company premises, whether or not they are actively conducting studies. The
mere fact of being there, working on papers, theses, etc. shows a commitment.
Participating in company meetings social events can also help to solidify the
relationship.

● Report regularly on research progress, perhaps once every month. Even if
not much has happened (as is often the case when academics are in the midst
of teaching courses, and working on other matters), at least find something
to say.

● Offer to give presentations on various topics. These could include updating
employees on the status of the research, or giving a lecture on some topic that
might simply be interesting to the company. The company will therefore reap
value-added in terms of expertise that they can use to further justify continuing
the relationship.

5.9. Planning for Data Analysis

Data analysis is probably the most time-consuming phase of most empirical studies.
We will not discuss techniques here, since that is the topic of other chapters.
However, we wish to point out that it should, where possible, be carefully planned
at the project’s start.

6. Concluding Remarks

In this chapter we have discussed many of the issues we have faced when managing
university-industry empirical studies of software engineering. Our goal in present-
ing this information is to present the lessons we have learned, and hence to provide
guidance for others undertaking similar studies for the first time. The issues dis-
cussed, such as the benefits and drawbacks to be considered, establishing contact
with organizations and participants, staffing, and obtaining ethical approval, can be
made to work more smoothly through effective planning. We also strongly believe
in on-going evaluation and change management of the project as it progresses,
particularly considering the risk factors we identified.

Acknowledgements This work was supported by the Consortium for Software Engineering
Research (CSER) and the Natural Sciences and Engineering Research Council of Canada
(NSERC). We would like to thank Janice Singer of the National Research Council who partici-
pated in many of the discussions as we planned our research, and thus contributed many of the
ideas in this chapter. We would also like to thank anonymous reviewers for their valuable
suggestions.

References

Anquetil, N. and Lethbridge, T.C. (2003), A Comparative Study of Clustering Algorithms and
Abstract Representations for Software Remodularization, IEE Proceedings – Software,
pp. 185–201. Winner of the Mather Premium award.

Anquetil, N. and Lethbridge, T.C. (1999), Recovering Software Architecture from the Names
of Source Files, Journal of Software Maintenance: Research and Practice, 11,
pp. 201–221.

Arisholm, E., Anda, B., Jørgensen, M., and Sjøberg, D.I.K. (1999), Guidelines on Conducting
Software Process Improvement Studies in Industry, 22nd IRIS Conference (Information
Systems Research Seminar in Scandinavia), Timo K. Kakola (ed.), Computer Science and
information Systems Reports, Technical Reports TR-21, University of Jyvaskyla, Keuruu,
Finland, pp. 87–102, 7–10.

Baskerville R.L. and Wood-Harper, A.T. (1996), A Critical Perspective on Action Research as a
Method for Information Systems Research, Journal of Information Technology, (11),
pp. 235–246.

Beckman, K., Khajenoori, S., Coulter, N., and Mead, N. (1997), Collaborations: Closing the
Industry-Academia Gap, IEEE Software, 14(6), pp. 49–57.

Checkland, P. (1991) From framework through experience to learning: the essential nature of
action research, in Information Systems Research: Contemporary Approaches and Emergent
Traditions, H.-E. Nissen, H.K. Klein, and R.A. Hirschheim (eds.), North-Holland, Amsterdam,
pp. 397–403.

Conradi, R., Dybå, T., Sjøberg, D.I.K., and Ulsund, T. (2003), Lessons Learned and
Recommendations from Two Large Norwegian SPI Programmes, 9th European Workshop on
Software Process Technology (EWSPT 2003), Helsinki, Finland 1–2 September, Lecture Notes
in Computer Science 2786, Springer-Verlag, pp. 32–45.

Dittrich, Y. (2002), Doing Empirical Research on Software Development: Finding a Path Between
Understanding, Intervention, and Method Development, Social Thinking: Software Practice,
MIT Press, Cambridge MA, pp. 243–262.

280 T.C. Lethbridge et al.

10 The Management of University–Industry Collaborations 281

Herrera, F. (1999), A Usability Study of the TkSee Software Exploration Tool, M.Sc. Thesis in
Computer Science, University of Ottawa, http://www.site.uottawa.ca/∼tcl/gradtheses/

Lethbridge, T.C., Sim, S., and Singer, J. (2005), Studying Software Engineers: Data Collection
Methods for Software Field Studies, Empirical Software Engineering, 10(3), pp. 311–341.

Lethbridge, T.C. and Singer, J. (2001), Experiences Conducting Studies of the Work Practices of
Software Engineers, in Advances in Software Engineering: Comprehension, Evaluation and
Evolution, H. Erdogmus and O. Tanir (eds.), Springer-Verlag, ISBN 0–387–95109–1,
pp. 53–76.

Lethbridge, T.C. (1994), Practical Techniques for Organizing and Measuring Knowledge, Ph.D.
Thesis, University of Ottawa, http://www.site.uottawa.ca/∼tcl/thesis_html/thesis_ToC.html

Lethbridge, T.C. and Anquetil, N. (1997), Architecture of a Source Code Exploration Tool: A
Software Engineering Case Study, University of Ottawa, Computer Science Technical Report
TR-97–07.

Liu, H. and Lethbridge, T.C. (2002), Intelligent Search Methods for Software Maintenance,
Information Systems Frontiers, 4(4), pp. 409–423.

Mead, N., Beckman, K., Lawrence, J., O’Mary, G., Parish, C., Perla, U., and Walker, H. (1999),
Industry/University Collaborations: Different Perspectives Heighten Mutual Opportunities,
Journal of Systems and Software, 49, pp. 155–162.

Pfleeger, S.L. (1999), Understanding and Improving Technology Transfer in Software Engineering,
Journal of Systems and Software, 47, pp. 111–124.

Potts, C. (2003), Software-Engineering Research Revisited, IEEE Software, 10(56), pp.19–28.
Rombach, D. and Achatz, R. (2007), Research Collaborations between Academia and Industry,

Future of Software Engineering 2007, L. Briand and A. Wolf (eds.), ICSE 2007, IEEE-CS Press,
2007, pp. 29–36.

Sayyad Shirabad, J., Lethbridge, T.C., and Matwin, S. (2003), Mining the Maintenance History of
a Legacy Software System, International Conference on Software Maintenance (ICSM),
Amsterdam, IEEE Computer Society, pp. 95–104.

Sjøberg, D.I.K., Hannay, J.E., Hansen, O., Kampenes, V.B., Karahasanovi , A., Liborg, N.-K., and
Rekdal, A.C. (2005) A Survey of Controlled Experiments in Software Engineering, IEEE
Transactions on Software Engineering, 31(9), pp. 733–753.

Singer, J. and Lethbridge T. (1998), Studying Work Practices to Assist Tool Design in Software
Engineering, 6th IEEE International Workshop on Program Comprehension. A longer version
appears as: University of Ottawa, Computer Science Technical Report TR-97–08, Italy,
pp. 173–179.

Somé, S.S. and Lethbridge T. (1998), Parsing Minimizing when Extracting information from
Code in the Presence of Conditional Compilation, 6th IEEE International Workshop on
Program Comprehension. A longer version appears as University of Ottawa Computer Science
Technical Report TR-98–01, Italy, June, pp. 118–125.

Trochim, W.M.K. (2007), Research Methods Knowledge Base: Introduction to Validity, http://
www.socialresearchmethods. net/kb/introval.php, visited April 13, 2007

Williams, L., Layman, L., and Abrahamsson, P. (2005), Establishing the Essential Components
of a Technology-Dependent Framework: A Strawman Framework for Industrial Case Study-
Based Research, Workshop on Evidence-Based Software Engineering at the International
Conference on Software Engineering (ICSE) 2005, St. Louis.

Zelkowitz, M. (1995), Assessing Software Engineering Technology Transfer within NASA, NASA/
GSFC Technical Report, NASA-RPT-003–95, NASA/GSFC, January. http://www.cs.umd.edu/
users/mvz/pub/assessment.ps

Zelkowitz, M., Wallace, D., and Binkley, D. (1998), Culture Conflicts in Software Engineering
Technology Transfer, University of Maryland Technical Report. http://www.cs.umd.edu/users/
mvz/pub/expsurvey.pdf.

Section III
Knowledge Creation

Chapter 11
Selecting Empirical Methods
for Software Engineering Research

Steve Easterbrook, Janice Singer, Margaret-Anne Storey,
and Daniela Damian

Abstract Selecting a research method for empirical software engineering research
is problematic because the benefits and challenges to using each method are not yet
well catalogued. Therefore, this chapter describes a number of empirical methods
available. It examines the goals of each and analyzes the types of questions each
best addresses. Theoretical stances behind the methods, practical considerations
in the application of the methods and data collection are also briefly reviewed.
Taken together, this information provides a suitable basis for both understand-
ing and selecting from the variety of methods applicable to empirical software
engineering.

1. Introduction

Despite widespread interest in empirical software engineering, there is little guid-
ance on which research methods are suitable to which research problems, and how
to choose amongst them. Many researchers select inappropriate methods because
they do not understand the goals underlying a method or possess little knowledge
about alternatives. As a first step in helping researchers select an appropriate
method, this chapter discusses key questions to consider in selecting a method,
from philosophical considerations about the nature of knowledge to practical con-
siderations in the application of the method. We characterize key empirical methods
applicable to empirical software engineering, and explain the strengths and weaknesses
of each.

Software engineering is a multi-disciplinary field, crossing many social and
technological boundaries. To understand how software engineers construct and
maintain complex, evolving software systems, we need to investigate not just the
tools and processes they use, but also the social and cognitive processes surround-
ing them. This requires the study of human activities. We need to understand how
individual software engineers develop software, as well as how teams and organizations
coordinate their efforts.

285

F. Shull et al. (eds.), Guide to Advanced Empirical Software Engineering.
© Springer 2008

286 S. Easterbrook et al.

Because of the importance of human activities in software development, many
of the research methods that are appropriate to software engineering are drawn
from disciplines that study human behaviour, both at the individual level (e.g. psy-
chology) and at the team and organizational levels (e.g. sociology).These methods
all have known flaws, and each can only provide limited, qualified evidence about
the phenomena being studied. However, each method is flawed differently
(McGrath, 1995) and viable research strategies use multiple methods, chosen in
such a way that the weaknesses of each method are addressed by use of comple-
mentary methods (Creswell, 2002).

Describing in detail the wide variety of possible empirical methods and how to
apply them is beyond the scope of the chapter. Instead, we identify and compare
five classes of research method that we believe are most relevant to software
engineering:

● Controlled Experiments (including Quasi-Experiments)
● Case Studies (both exploratory and confirmatory)
● Survey Research
● Ethnographies
● Action Research

We describe the tradeoffs involved in choosing between these methods, but do not
provide a recipe for building research strategies, as we doubt that such recipes exist.
The selection of methods for a given research project depends on many local con-
tingencies, including available resources, access to subjects, opportunity to control
the variables of interest, and, of course, the skills of the researcher.

To illustrate the steps involved in deciding which method or methods to use, we
present two guiding examples. Two fictional software engineering researchers, Joe and
Jane, will explore how the various research methods can be applied to their work:

● Jane is a new PhD student interested in the effectiveness of a novel fisheye-view
file navigator. Her research is motivated by the fact that navigation is a primary
activity of software developers requiring a lot of scrolling and many clicks to
find files. “Fisheye-views” use a distortion technique that, if applied correctly,
display information in a compact format that could potentially reduce the
amount of scrolling required. Jane’s intuition is that the fisheye-view file navi-
gator is more efficient for file navigation, but critics argue that the more compact
information is difficult to read and that developers will not adopt it over the tra-
ditional file navigator. Her research goal, therefore, is to find evidence that sup-
ports or refutes her intuition that fisheye-view file navigators are more efficient
than traditional file navigators for navigation.

● Joe is a researcher in an industrial lab. His current interests are in understanding
how developers in industry use (or not) UML diagrams during software design.
This is because, as a student, his professors recommended UML diagrams be used
during software design, but his recent exposure to industrial practices indicates
that UML is rarely used. His research goal is to explore how widely UML

11 Selecting Empirical Methods for Software Engineering Research 287

diagrams are used in industry, and more specifically how these diagrams are
used as collaborative shared artefacts during design.

Throughout the remainder of the chapter, we explore how Jane and Joe develop
research strategies for their projects. We begin with an analysis of the type of
research question(s) they are asking, and the issue of what constitutes valid answers
to them. To address the latter question, we tour the main philosophical stances that
underpin empirical research. We then describe the five classes of research method,
and introduce criteria for distinguishing between them. Along the way, we explore
how Jane and Joe might use each method as part of their research strategies. We
end the chapter with a look at the practical considerations that affect their
choices.

2. What kind of Research Question are You Asking?

One of the first steps in choosing an appropriate research method is to clarify the
research question. While Jane and Joe have identified the problems they wish to
work on, neither has pinned down a precise question. In each case, they could focus
on a number of different research questions, each of which leads to a different
direction in developing research strategies. The classification of research questions
we use in this section is adapted from Meltzoff (1998).

Often, the most obvious question is not the best choice for a starting point.
Jane’s first attempt to formulate her research question is “Is a fisheye-view file
navigator more efficient than the traditional view for file navigation?”, while Joe
asks “how widely are UML diagrams used as collaborative shared artifacts during
design?”. Both questions are vague, because they make assumptions about the
phenomena to be studied, and kinds of situation in which these phenomena occur.
For example, Jane’s question only makes sense if we already know that some
people (who?) need to do file navigation (whatever that is?), under some circum-
stances (which are?), and that efficiency (measured how?) is a relevant goal for
these people (how would we know that?). Joe’s question presupposes that we know
what a “collaborative shared artifact” is, and can reliably identify one, and even
reliably say which things are UML diagrams. Defining the precise meaning of
terms is a crucial part of empirical research, and is closely tied with the idea
of developing (or selecting) an appropriate theory.

In the early stages of a research program, we usually need to ask exploratory
questions, as we attempt to understand the phenomena, and identify useful
distinctions that clarify our understanding. Suitable research methods for explor-
atory questions tend to be those that offer rich, qualitative data, which help us to
build tentative theories. Unless they are building on existing work that already
offers clear definitions, both Jane and Joe need to formulate exploratory ques-
tions, such as:

288 S. Easterbrook et al.

● Existence questions of the form, “Does X exist?” Jane might need to ask, “Is
file navigation something that (certain types of programmers) actually do?”
and, “Is efficiency actually a problem in file navigation?” Joe might need to ask,
“Do collaborative shared artifacts actually exist?”

● Description and Classification questions such as, “What is X like?”, “What
are its properties?”, “How can it be categorized?”, “How can we measure it?”,
“What is its purpose?”, “What are its components?”, “How do the components
relate to one another?”, and “What are all the types of X?” Jane might ask, “How
can we measure efficiency for file navigation?” and Joe might ask, “What are
all the types of collaborative shared artifacts?”

● Descriptive-Comparative questions of the form, “How does X differ from Y?”
investigate similarities and differences between two or more phenomena. Jane might
ask, “How do fisheye views differ from conventional views?” and Joe might ask,
“How do UML diagrams differ from other representations of design information?”

The answers to these questions result in a clearer understanding of the phenomena,
including more precise definitions of the theoretical terms, evidence that we can
measure them, and evidence that the measures are valid. In exploring these ques-
tions, Jane and Joe will refine their ideas about the nature of the phenomena they
are studying. It is possible that there are already good answers to these questions in
the published literature. Jane and Joe must still ask these questions. But a literature
survey, instead of an empirical study, may answer them.

Once we have a clearer understanding of the phenomena, we may need to ask
base-rate questions about the normal patterns of occurrence of the phenomena. If
we fail to ask base-rate questions, then we have no basis for saying whether a par-
ticular situation is normal or unusual. Example base-rate questions include:

● Frequency and distribution questions such as, “How often does X occur?”
and, “What is an average amount of X?” Often, these questions can be answered
in terms of a standard distribution of a characteristic within a well-defined popu-
lation. Joe’s original question appears to be a frequency question, but there are
many ways for him to formulate it more precisely. For example, he might ask,
“How many distinct UML diagrams are created in software development
projects in large software companies?” and he might discover the results follow
some standard statistical distribution.

● Descriptive-Process questions of the form, “How does X normally work?”,
“What is the process by which X happens?”, “In what sequence do the events of
X occur?”, “What are the steps X goes through as it evolves?”, “How does X
achieve its purpose?”. For example, Jane might ask, “How do programmers
navigate files using existing tools?”

Often, we are interested in the relationship between two different phenomena, and
specifically whether occurrence of one is related to occurrence of the other. Hence
we need to formulate some:

● Relationship questions such as, “Are X and Y related?” and, “Do occurrences
of X correlate with the occurrences of Y?” For example, Jane might ask, “Does

11 Selecting Empirical Methods for Software Engineering Research 289

efficiency in file navigation correlate with the programmer’s familiarity with the
programming environment?” Joe might ask, “Do managers’ claims about how
often they use UML correlate with the actual use of UML?”

Once we have established that a relationship exists between two phenomena, it is
natural to try to explain why the relationship holds by attempting to identify a cause
and effect. It is a common mistake to confuse correlation with causality. In general
it is much harder to demonstrate causality than to show that two variables are cor-
related. If high values of X correlate with high values of Y, it may be because X
causes Y, or because Y causes X. But it is also possible that X and Y share some
common cause and neither causes the other. Or perhaps they co-evolve in complex
ways so that there is no clear cause-and-effect. Causality questions include:

● Causality questions of the form, “Does X cause Y?” and “Does X prevent Y?”
Plus the more general forms: “What causes Y?”, “What are all the factors that
cause Y?”, “What effect does X have on Y?” In software engineering we often
ask whether using a particular tool or technique causes an improvement in qual-
ity, speed, and so on. Jane’s initial question appears to be of this type: “Do
fisheye-views cause an improvement in efficiency for file navigation?”

● Causality-Comparative questions investigate relationships between different
causes: “Does X cause more Y than does Z?” or, “Is X better at preventing Y
than is Z?” Unless Jane has good base-rate data for existing file navigation tools,
Jane’s causality question would be better formulated as “Do fisheye-views cause
programmers to be more efficient at file navigation than conventional views?”

● Causality-Comparative Interaction questions investigate how context affects
a cause–effect relationship: “Does X or Z cause more Y under one condition
but not others?” If Jane’s initial studies reveal a factor (e.g., distractions) that
affects causality, she might ask “Do fisheye-views cause programmers to be
more efficient at file navigation than conventional views when programmers
are distracted, but not otherwise?”

The classes of research question above are all knowledge questions focused on the
way the world is. Empirical research in software engineering addresses these types
of questions. In contrast, most non-empirical research in software engineering
focuses on a very different type of question concerned with designing better ways
to do software engineering (Simon, 1996):

● Design questions of the form, “What’s an effective way to achieve X?” or,
“What strategies help to achieve X?” For example, Joe’s research might lead
him to ask, “What is an effective way for teams to represent design knowledge
to improve coordination?”

These types of question are necessary when the goal is to design better procedures
and tools for carrying out some activity or to design suitable social or regulatory
policies. Such questions presuppose that the associated knowledge questions have
already been addressed so that we have enough information about the nature of the
design problem to be solved. In practice, a long term software engineering research

290 S. Easterbrook et al.

program involves a mix of design questions and knowledge questions as the
researchers investigate specific problems, how best to solve them, and which solu-
tions work best (Wieringa and Heerkens, 2006).

3. What will You Accept as an Empirical Truth?

Having specified the research question(s), it is worth considering what to accept as
valid answers. Different people make different assumptions about scientific truth.
Take, for example, Jane’s causal question: “Do fisheye-views cause an improvement
in efficiency for file navigation?” Jane’s PhD advisor insists that the only trustworthy
evidence to answer this question comes from experiments conducted under controlled
laboratory conditions, pointing out that the only conclusive way to prove that
A causes B is to manipulate A in a controlled setting, and measure the effect on B.
However, another member of Jane’s thesis committee is an experienced software
practitioner and he claims that laboratory experiments are useless, as they ignore the
messy complexity of real software projects. He points out that judgments about
“improvements” to file navigation are subjective, and contextual factors such as dis-
tractions have a major impact. He suggests that Jane should conduct her research in
the field, investigating what developers actually do on real projects

The different advice Jane receives reflects major differences in opinion over the
nature of truth, and how we arrive at it through scientific investigation. The con-
flicting advice arises from the different philosophical stances adopted by members
of Jane’s committee. To understand the different stances, it helps to know that phi-
losophers make a distinction between epistemology (the nature of human knowl-
edge, and how we obtain it) and ontology (the nature of the world irrespective of
our attempts to understand it). This separation helps us discuss what we accept as
scientific knowledge separately from debates about the content of that knowledge
(Chalmers, 1999).

Plato originally defined knowledge as justified true belief. In other words, to
know something, you must believe it to be true, and have a clear justification for
believing it to be true. However, epistemologists have argued for centuries about
what form that justification should take. Empiricists argue that all knowledge is
derived from our experiences and observations of the world, while rationalists
argue that some part of our knowledge is innate, hence not derived from experi-
ence. Constructivists argue that we cannot separate knowledge from the language
we use to express it – because the meanings of words are constructed by social
convention, so is our knowledge.

In this chapter we characterize four dominant philosophical stances (Creswell,
2002). The stance you adopt affects which methods you believe lead to acceptable
evidence in response to your research question(s). Being explicit about your stance
also helps when talking and writing about research. You might not be able to con-
vince other people to change their stance, but you will be able to argue cogently for
why you chose the methods you did.

11 Selecting Empirical Methods for Software Engineering Research 291

● Positivitism states that all knowledge must be based on logical inference from
a set of basic observable facts. Positivists are reductionist, in that they study
things by breaking them into simpler components. This corresponds to their
belief that scientific knowledge is built up incrementally from verifiable obser-
vations, and inferences based on them. Positivism has been much attacked over
the past century due to doubts about the reliability of our observations of the
world, and the complication that scientific “fact” built up in this manner some-
times turns out to be wrong. While positivism still dominates the natural sci-
ences, most positivists today might more accurately be described as
post-positivists, in that they tend to accept the idea (due to Popper) that it is more
productive to refute theories than to prove them, and we increase our confidence
in a theory each time we fail to refute it, without necessarily ever proving it to
be true. Positivists prefer methods that start with precise theories from which
verifiable hypotheses can be extracted, and tested in isolation. Hence, positivism
is most closely associated with the controlled experiment; however, survey
research and case studies are also frequently conducted with a positivist stance.
Note that a belief in reductionism is needed to accept laboratory experiments as
valid in software engineering – you have to convince yourself that the phenom-
enon you are interested in can be studied in isolation from its context.

● Constructivism, also known as interpretivism (Klein and Myers, 1999), rejects
the idea that scientific knowledge can be separated from its human context. In
particular, the meanings of terms used in scientific theories are socially con-
structed, so interpretations of what a theory means are just as important in judg-
ing its truth as the empirical observations on which it is based. Constructivists
concentrate less on verifying theories, and more on understanding how different
people make sense of the world, and how they assign meaning to actions.
Theories may emerge from this process, but they are always tied to the context
being studied. For example, an anthropologist studying the culture of a software
design team might seek to find out how different members of the team think
about and use the tools they have available, and build local theories that explain
why this particular team uses tools in the way that they do. This stance is often
adopted in the social sciences, where positivist/reductionist approaches have
little to say about the richness of social interactions. Constructivists prefer
methods that collect rich qualitative data about human activities, from which
local theories might emerge. Constructivism is most closely associated with
ethnographies, although constructivists often use exploratory case studies and
survey research too.

● Critical Theory judges scientific knowledge by its ability to free people from
restrictive systems of thought (Calhoun, 1995). Critical theorists argue that
research is a political act, because knowledge empowers different groups within
society, or entrenches existing power structures. Critical theorists therefore
choose what research to undertake based on whom it helps. They prefer partici-
patory approaches in which the groups they are trying to help are engaged in the
research, including helping to set its goals. Critical theorists therefore tend to
take emancipatory or advocacy roles. In sociology, critical theory is most

292 S. Easterbrook et al.

closely associated with Marxist and feminist studies, along with research that
seeks to improve the status of various minority groups. In software engineering,
it includes research that actively seeks to challenge existing perceptions about
software practice, most notably the open source movement, and, arguably, the
process improvement community and the agile community. Critical theorists
often use case studies to draw attention to things that need changing. However
it is action research that most closely reflects the philosophy of critical
theorists.

● Pragmatism acknowledges that all knowledge is approximate and incomplete,
and its value depends on the methods by which it was obtained (Menand, 1997).
For pragmatists, knowledge is judged by how useful it is for solving practical
problems. Put simply, truth is whatever works at the time. This stance therefore
entails a degree of relativism: what is useful for one person to believe might not
be useful for another; therefore truth is relative to the observer. To overcome the
obvious criticisms, many pragmatists emphasize the importance of consensus –
truth is uncovered in the process of rational discourse, and is judged by the par-
ticipants as whatever has the better arguments. Pragmatism is less dogmatic than
the other three stances described above, as pragmatists tend to think the researcher
should be free to use whatever research methods shed light on the research
problem. In essence, pragmatism adopts an engineering approach to research – it
values practical knowledge over abstract knowledge, and uses whatever methods
are appropriate to obtain it. Pragmatists use any available methods, and strongly
prefer mixed methods research, where several methods are used to shed light on
the issue under study.

Although there are examples of research from each of these stances in the software
engineering literature, the underlying philosophies are never mentioned. We
believe this has contributed to confusion around the selection of empirical methods
and appropriate evaluation of empirical research. In particular, it is impossible to
avoid some commitment to a particular stance, as you cannot conduct research, and
certainly cannot judge its results, without some criteria for judging what constitutes
valid knowledge.

4. The Role of Theory Building

A distinguishing feature of scientific study is the development of theories that
explain how and why certain phenomena occur, and allow predictions to be made.
Theories are therefore the building blocks of scientific knowledge. The different
philosophical stances differ in their ideas about the role of theory (Gregor, 2006).
To the positivist, science is the process of verifying theories by testing hypotheses
derived from them. To the constructivist, science is the process of seeking local
theories that emerge from (and explain) the data. To the critical theorist, theories
are assertions of knowledge (and therefore power), to be critiqued in terms of how

11 Selecting Empirical Methods for Software Engineering Research 293

they shape that power. To the pragmatist, theories are the products of a consensual
process among a community of researchers, to be judged for their practical utility.

A scientific theory identifies and defines a set of phenomena, and makes asser-
tions about the nature of those phenomena and the relationships between them.
A good theory precisely defines the theoretical terms, so that a community of
scientists can observe and measure them. A good theory also explains why certain
relationships occur. Positivists expect their theories to have strong predictive
power, and so look for generalized models of cause-and-effect as the basis for
theories. In contrast, constructivists expect theories to strengthen their under-
standing of complex situations, and so tend make more use of categorizations and
analogies. Theories are also judged for aesthetic value. Often there is more than
one theory that explains empirical observations, so the theories that are simpler,
or more elegant are preferred (LittleJohn and Foss, 2004).

As an example, Joe might develop a theory around the use of UML diagrams as
a stylized form of external memory. According to his theory, UML diagrams are
used to summarize the results of meetings and discussions, to remind participants
of a shared understanding that they have already developed. Joe’s theory must pre-
cisely define the meaning of terms such as “diagram,” “participants,” “discus-
sions,” in order to identify them in any studies performed. Joe’s theory should also
explain why people choose to use UML in some circumstances but not others, and
why they include certain things in their diagrams and exclude others. And finally,
it should be able to predict qualities of the diagrams that a software team might
produce based on certain factors.

It is important to understand that in any empirical study, theories have a strong
impact on how things are observed and interpreted. The theory becomes a “lens”
through which the world is observed. This happens whether or not theories are
explicitly acknowledged, because real-world phenomena are simply too rich and
complex to study without a huge amount of filtering. In quantitative research
methods, the theoretical lens is used explicitly to decide which variables to isolate
and measure, and which to ignore or exclude. In qualitative methods, the theoretical
lens is often applied after data is collected, to focus the process of labeling and
categorizing (“coding”) the data.

Few scientists give thought to how theories are created. A notable exception is
Grounded Theory, a technique for developing theory iteratively from qualitative
data (Glaser and Strauss, 1967). In grounded theory, initial analysis of the data
begins without any preconceived categories. As interesting patterns emerge, the
researcher repeatedly compares these with existing data, and collects more data to
support or refute the emerging theory. Despite its close association with the con-
structivist stance, Grounded Theory probably approximates how most scientists end
up developing theories. The difference is that Grounded Theory makes the process
explicit and systematic.

Theories also play a role in connecting research to the relevant literature. By
defining the key terms, the results of empirical studies can be compared.
Furthermore, theories support the process of empirical induction because an indi-
vidual study can never offer conclusive results. Each study adds more evidence for

294 S. Easterbrook et al.

or against the propositions of the theory. Without the theory, we have no way of
making sense of the accumulation of empirical results.

Software Engineering researchers have traditionally been very poor at making
theories explicit (Jørgensen and Sjøberg, 2004). Many of the empirical studies
conducted over the past few decades fail to relate the collected data to an underly-
ing theory. The net result is that results are hard to interpret, and studies cannot be
compared.

5. Selecting Methods

A method is a set of organizing principles around which empirical data is collected
and analyzed. A variety of methods can be applied to any research problem, and it is
often necessary to use a combination of methods to fully understand the problem. The
choice of methods depends upon the theoretical stance of the researcher(s), access to
resources (e.g., students or professionals as subjects/participants) and how closely the
method aligns with the question(s) that have been posed. Research Design is the proc-
ess of selecting a method for a particular research problem, tapping into its strengths,
while mitigating its weaknesses. The validity of the results depends on how well the
research design compensates for the weaknesses of the methods.

Below we describe in more detail the methods most likely to be applied in soft-
ware engineering contexts. Because these methods are adapted from a number of
different fields, there is no consistent terminology to describe them and even a lack
of consensus on how to distinguish these methods from one another. We have cho-
sen terms that should be familiar to software engineers and offer definitions and
distinctions that capture the spirit of the methods.

5.1. Controlled Experiments

A controlled experiment is an investigation of a testable hypothesis where one or
more independent variables are manipulated to measure their effect on one or more
dependent variables. Controlled experiments allow us to determine in precise terms
how the variables are related and, specifically, whether a cause–effect relationship
exists between them. Each combination of values of the independent variables is a
treatment. The simplest experiments have just two treatments representing two
levels of a single independent variable (e.g. using a tool vs. not using a tool). More
complex experimental designs arise when there are more than two levels or more
than one independent variable is used. Most software engineering experiments
require human subjects to perform some task. We measure the effect of the treat-
ments on the subjects.

A precondition for conducting an experiment is a clear hypothesis. The hypothesis
(and the theory from which it is drawn) guide all steps of the experimental design,

11 Selecting Empirical Methods for Software Engineering Research 295

including deciding which variables to include in the study and how to measure them.
For example, Jane might decide to run an experiment to test the hypothesis that fish-
eye views cause more efficient file navigation than traditional file tree explorer
views. This hypothesis is drawn from a theory that explains the effect. The theory is
that fisheye views correspond well to the way that people see and navigate in the
world, by offering more detail of a specific area of focus, together with a less detailed
overview of the peripheral regions, and a smooth way of moving the focus of atten-
tion. The theory suggests that less time spent scrolling and fewer clicks should reduce
navigation time. This suggests the treatments should be the type of file explorer view
used: fisheye view versus the traditional scrolled view, and the dependent variable
should be the length of time to navigate to a file.

The theory also helps to decide who the subjects are, and what the tasks should
be. To ensure the results of the experiment are valid, the subjects should be drawn
from a well-defined population – the idea is to demonstrate that the hypothesis
applies to the whole population by testing it on a representative sample. For her
experiment, Jane recruits computer science grad students as subject programmers,
and screens them to select subjects with lots of programming experience. In SE, it
is common to recruit students as subjects. This makes it easier to recruit a large
group of subjects, but reduces external validity – an analytical argument is needed
for why results on students might still apply to software developers in industry.

Control is important – variables other than the chosen independent variables
must not be allowed to affect the experiment. In Jane’s case, differences in skill
levels of her subjects may affect the experiment, so she might first divide her sub-
jects into groups (or blocks) according to their skill level, and randomly assign
subjects from each block to the two treatments, for a “between subjects design.” An
alternative is to use a “within subjects design,” in which each subject uses all treat-
ments; however this might introduce learning effects from one treatment to the
next, so this needs to be accounted for in the design. Jane needs to decide which
confounding factor is more important to control.

The experimental method is closely tied to the positivist stance. This is because
experiments are essentially reductionist – they reduce complexity by allowing only
a few variables of interest to vary in a controlled manner, while controlling all other
variables. If critical variables are ignored or controlled, the experimental results
might not generalize to real world settings. For example, in choosing to focus on
efficiency as a dependent measure, Jane ignores other possible measures, such as
awareness of the file structure that may result from other navigation techniques.
The reduction can also mask critical interaction effects, such as the interaction
between expertise and preferred navigation environment. For these reasons, if
Jane’s experiment confirms her hypothesis, it means she has evidence that fish-eye
views are more efficient (as she defines efficiency), but it doesn’t necessarily mean
that fisheye views are better suited to navigation!

The fact that experiments are theory-driven is both a strength and a weakness.
It is a strength because basing analysis on hypotheses derived from theories reduces
problems of “fishing for results”: some correlations occur by chance, and if we look
for long enough we’ll find them. On the other hand, being theory-driven forces us

296 S. Easterbrook et al.

to decide in advance which variables to ignore, and they might turn out to be
 important outside the laboratory setting.

Variants on experiments are possible and can be used in circumstances where a
true experiment is not possible. For example, in quasi-experiments the subjects are
not assigned randomly to the treatments. Quasi-experiments may be used, for
example, when, for ethical reasons, subjects must be allowed to choose their treat-
ment. Quasi-experiments are also used in the field. For example if an experiment is
performed in a company, there may be constraints on which employees can work
on which tasks. In time-series experiments, the effect of a treatment is measured in
discrete time steps over a period of time. These variations are less powerful than
true experiments, and require more careful interpretation.

5.2. Case Studies

There is much confusion in the SE literature over what constitutes a case study. The
term is often used to mean a worked example. As an empirical method, a case study
is something very different. Yin (2002) introduces the case study as “an empirical
inquiry that investigates a contemporary phenomenon within its real-life context,
especially when the boundaries between phenomenon and context are not clearly
evident.” Case studies offer in-depth understanding of how and why certain phe-
nomena occur, and can reveal the mechanisms by which cause–effect relationships
occur Flyvbjerg (2006). Exploratory case studies are used as initial investigations
of some phenomena to derive new hypotheses and build theories, and confirmatory
case studies are used to test existing theories. The latter are especially important for
refuting theories: a detailed case study of a real situation in which a theory fails
may be more convincing than “failed” experiments in the lab. The detailed insights
obtained from confirmatory case studies can also be useful for choosing between
rival theories.

A precondition for conducting a case study is a clear research question con-
cerned with how or why certain phenomena occur. This is used to derive a study
proposition that states precisely what the study is intended to show, and to guide
the selection of cases and the types of data to collect. As an example, imagine that
Jane is upset as her tool is not adopted by developers after her experiment. She
noticed in the post-experiment interviews that subjects frequently mentioned using
additional advanced features for navigation that do not involve the file explorer (the
only navigation tool available in the experiment). Hence, she poses the research
question “How do developers use navigation tool support for large systems under
development?”, and decides to focus on a specific proposition suggested by the
post-experiment interviews that “expert developers use many different strategies
for navigation, and move between them very rapidly.” This leads her to choose a
local company with several very experienced developers as her case, and to focus
on observational rather than interview data, to find out what the developers actually
do at a fine grain of detail.

11 Selecting Empirical Methods for Software Engineering Research 297

The selection of cases is a crucial step in case study research. Case study
research uses purposive sampling rather than random sampling. The aim is to select
cases that are most relevant to the study proposition. Sometimes a single case is
sufficient. This might be because it is a critical case for testing a well-formulated
theory: if the theory holds for this case, it is likely to be true for many others. Or it
might be an extreme or unique case that is expected to yield interesting insights
about what happens under extreme conditions, such as a crisis. Sometimes it is suf-
ficient to identify a typical case to gain more insight into common situations.
However, a multiple case design usually offers greater validity. The different cases
are best thought of as replications, rather than members of a sample. For confirma-
tory case studies, these can be chosen as literal replications, where each case
is expected to show the same results, or as theoretical replications, where cases are
expected to show contrasting results for predictable reasons. An example of
the latter would be if Jane’s theory predicted that experienced developers do file
navigation differently from novices. A multiple case study could include both
experts and novices, to confirm that the theory adequately explains both.

A variety of different data sources are typically used in case study research.
Qualitative data, including interviews and observation, play a central role, as these
offer rich insights into the case. Data collection is always performed with respect
to a well-defined unit of analysis. In software engineering, the unit of analysis
might be a company, a project, a team, an individual developer, a particular episode
or event, a specific work product, etc. Choosing an appropriate unit of analysis is
important, to ensure the study focuses on the intended phenomena. In Jane’s case,
she chooses the individual developer as her unit of analysis, allowing her to focus
on personal style of different developers. Other choices would lead the case study
in different directions. For example, choosing a project as the unit of analysis
would allow her to identify whether project teams develop shared navigational
styles, but would offer less insights into individual styles. Note that Jane’s case (a
company) has multiple embedded units of analysis (the developers). In some stud-
ies, the case is the same as the unit of analysis.

Case study research is most appropriate for cases where the reductionism of
controlled experiments is inappropriate. This includes situations where the context
is expected to play a role in the phenomena (for example if the stresses of a real
project affect developers’ behaviour), or where effects are expected to be wide
ranging, or take a long time (e.g. weeks, months, years) to appear.

The major weakness of case studies is that the data collection and analysis is
more open to interpretation and researcher bias. For this reason, an explicit frame-
work is needed for selecting cases and collecting data. Although an individual case
study often reveals deep insights, the validity of the results depends on a broader
framework of empirical induction. For example, in confirmatory case studies, evi-
dence builds when subsequent case studies also support the theory and/or fail to
support rival theories.

Case studies can be applied within all four philosophical stances, although different
stances affect the way in which cases are selected and the data analysis is performed.
For example, confirmatory case studies draw on the positivist perspective of

298 S. Easterbrook et al.

theory-driven research, but positivists also use exploratory case studies to develop
new theories [see Kitchenham et al. (1995), for an brief tutorial of software engi-
neering case study research using a primarily positivist perspective]. Constructivists
use exploratory case studies to investigate the differences of culture and perspective
in various settings. Critical theorists use both types of case study to draw attention
to situations that are regarded as problematic, selecting cases that are politically
important, or for which the participants themselves can be most expected to benefit.
The criteria for assessing the validity of a case study depends on which philosophi-
cal stance is taken.

5.3. Survey Research

Survey research is used to identify the characteristics of a broad population of
individuals. It is most closely associated with the use of questionnaires for data
collection. However, survey research can also be conducted by using structured
interviews, or data logging techniques. The defining characteristic of survey
research is the selection of a representative sample from a well-defined population,
and the data analysis techniques used to generalize from that sample to the popula-
tion, usually to answer base-rate questions.

A precondition for conducting survey research is a clear research question that
asks about the nature of a particular target population. Because it is usually infeasible
(and unnecessary) to poll every member of that population, survey research first
identifies a representative subset as the sample, and determines how to reach that
subset for data collection. Identifying the unit of analysis is important for determining
an appropriate sampling technique. For example, if the research question is about
software companies, then sampling over individual developers may give a biased
sample, with some companies being over-represented because several developers
from the same company were included. Furthermore, simple random sampling of
the population might also be inadequate. For example, if our unit of analysis is
individual developers, a random sampling might end up with most or all of
respondents working at a single, dominant company. In such a case, stratified
sampling techniques would be used, to identify subgroups within the population, so
that we can sample within each subgroup.

As an example, recall that Joe wished to understand more about how UML is
used in industrial settings, and how UML supports collaborative design. He con-
ducts a survey of software companies across the country to ask them whether they
use UML, and if so how. He decides to use individual developers as his unit of
analysis, so that he can focus on how different developers perceive the utility of
UML. He posts his survey to a number of carefully selected developer email lists,
and has a response rate of 10%. The results from the survey are interesting. He
discovers that only about 20% of the respondents use UML, and that the diagrams
are rarely used in shared settings. He also learns that class diagrams are the
most frequently used diagram, with sequence diagrams a close second.

11 Selecting Empirical Methods for Software Engineering Research 299

Joe could choose from a number of different designs for his study. For exam-
ple, if he just wishes to establish how widely UML is used, then he would use a
cross-sectional design to obtain a snapshot of participants’ current activities. In
contrast, a case-control design asks each participant about several related issues in
order to establish whether a correlation exists between them, across the popula-
tion. Joe might use this design if he wishes to explore whether there is a relation-
ship between, say, how long developers have used UML and how much they use
it for information sharing. A cohort study tracks changes over time for a group of
participants. Joe might use such a design, for example, to determine whether use
of UML changes over the life of development project, perhaps with “projects” as
his unit of analysis.

A major challenge in survey research is to control for sampling bias. Sampling
bias causes problems in generalizing the survey results, because the respondents to
the survey may not be representative of the target population. Low response rates
increase the risk of bias. For example, if the 10% who responded to Joe’s survey
were the least busy of his targeted developers, it may be that the survey missed the
most skilled, or most senior developers. Or perhaps only people who are frustrated
with UML answered his survey. In general, it is hard to obtain high response rates
unless significant inducements can be offered for participation, although it is some-
times possible to contact non-respondents to assess whether a systematic response
bias has occurred.

An even harder challenge is to ensure that the questions are designed in a way
that yields useful and valid data. It can be hard to phrase the questions such that all
participants understand them in the same way, especially if the target population is
diverse. Also, it is possible that what people say they do in response to survey ques-
tions bears no relationship to what they actually do, because they are unable to
introspect reliably on their work practices.

It is instructive to compare survey research with other empirical methods. In
Joe’s case, the survey research design is concerned with establishing what is true
of developers in general. If instead he wishes to gain deeper insights into
how developers actually use UML, or why they don’t, he might be better off
conducting a case study. This would sacrifice claims of representativeness
(because case studies do not use representative sampling) in return for deeper
insights into what happens in a small number of selected cases. On the other
hand, if he’s more interested in how UML changes how developers share infor-
mation, he might design an experiment or quasi-experiment to test for a causal
relationship.

Survey research falls almost exclusively into the positivist tradition. The desire
to characterize an entire population via sampling techniques requires a belief in
reductionism, and a concern with generalizable theories. If Joe is more interested
in understanding the culture of information sharing within development teams, he
might instead adopt a constructivist stance, and use ethnography or action
research.

Kitchenham and Pfleeger (Chap. 3) provide more detailed information on
conducting surveys.

300 S. Easterbrook et al.

5.4. Ethnographies

Ethnography is a form of research focusing on the sociology of meaning
through field observation. The goal is to study a community of people to under-
stand how the members of that community make sense of their social interac-
tions (Robinson et al., 2007). For software engineering, ethnography can help
to understand how technical communities build a culture of practices and com-
munication strategies that enables them to perform technical work collabora-
tively. An ethnography might focus on a broad technical community (e.g. java
programmers in general), or a small, closely knit community (e.g. a single
development team).

One notable feature of ethnography is that it avoids imposing any pre-existing
theories, but instead focuses on how the members of the community themselves
make sense of their social and cultural setting. The researcher explicitly considers
his/her own pre-conceptions and how they influence understanding of the studied
community. For example, the researcher might focus on phrases used by the com-
munity that seem strange to him, to discover how community members use lan-
guage to create categories that are meaningful to them. The result of an ethnographic
study is usually a rich description of the community being studied that helps to
build a detailed picture of that community’s culture.

The preconditions for an ethnographic study include a research question that
focuses on the cultural practices of a particular community, and access to members
of that community. Because of the focus on “member’s own categories,” the precise
boundaries of the community to be studied might not be known in advance, and
indeed the very notion of membership, and the idea of becoming a member, may be
important things to investigate. Using chain sampling, informants within the com-
munity are asked to identify representative members of the community, who identify
other members of the community, and so on.

As an example, consider the results of the survey that Joe conducted in the previ-
ous section. One conclusion from his study is that people don’t seem to use UML
in the way Joe expected. An ethnography would allow Joe to understand more
about how developers use and share UML. He identifies a development team that
allows him to observe design meetings for several weeks. He supplements his notes
on what he observes with a series of individual and group interviews to further
explore how well UML tools match the team’s design practices, and why some
groups in the company do not use UML.

A special form of ethnography is participant observation, where the researcher
becomes a member of the community being studied for a period of time. Here, the
researcher is not trying to understand the community via the observations of an
outsider, but rather through the privileged view that comes from membership. For
this to work, the researcher must be accepted by the community as one of them,
which may require a much longer duration for the study than “just a few weeks.” In
software engineering research, becoming a member might only be possible if the
researcher has the right technical background.

11 Selecting Empirical Methods for Software Engineering Research 301

Ethnographic research takes an explicit constructivist stance. Underlying ethno-
graphic research is the idea that members of a community construct their social and
cultural practices on the fly, and their perceptions of those structures also define
them. Because of that stance, ethnographic researchers don’t seek to prove hypoth-
eses and theories, but rather create local theories to improve understanding. This
philosophical stance distinguishes ethnography from case studies, surveys and field
experiments.

The biggest challenge in ethnographic research is to perform detailed observa-
tion, data collection and analysis while avoiding preconceptions. The researcher
needs a high degree of training in observational and qualitative data analysis tech-
niques. Sociologists have evolved a collection of techniques for recording observa-
tions correctly and for systematic data analysis, as well as for iterative research in
which clarifications are sought as new information becomes available. Ethnographic
studies in software engineering are valuable for discovering what really goes on in
particular (technical) communities, and for revealing subtle but important aspects
of work practices.

5.5. Action Research

In Action Research, the researchers attempt to solve a real-world problem while
simultaneously studying the experience of solving the problem (Davison et al.,
2004). While most empirical research methods attempt to observe the world as it
currently exists, action researchers aim to intervene in the studied situations for the
explicit purpose of improving the situation. Action research has been pioneered in
fields such as education, where major changes in educational strategies cannot be
studied without implementing them, and where implementation implies a long
term commitment, because the effects may take years to emerge. It has also been
adopted in information science, where organizational change can sometimes
require a long time to have an impact. However, even in these fields, action
research is a relatively new idea, and there is widespread discussion about appro-
priate methodology, and even debate on the validity of action research as an
empirical method.

A precondition for action research is to have a problem owner willing to col-
laborate to both identify a problem, and engage in an effort to solve it. In action
research, the problem owners become collaborators in the research. In some
cases, the researcher and the problem owner may be the same person. Two key
criteria for judging the quality of action research are whether the original problem
is authentic (i.e. whether it is a real and important problem that needs solving),
and whether there are authentic knowledge outcomes for the participants. It is
additionally important for the researcher to engage in a process of critical reflec-
tion upon his past, current and planned actions to identify how they actually
helped (or not) to solve the problem. Action research is also characterized by a
commitment to effect real change, and an iterative approach to problem solving.

302 S. Easterbrook et al.

For example, in the process of studying the use of UML, imagine that Joe’s
colleagues discussed with him their difficulty in integrating software components
and predicting the effects of such integration. Joe sees this as an opportunity to work
with them to try out ideas from model-driven development (MDD), and to study
firsthand how UML changes the way that developers collaborate. Joe initiates a
project to work with his colleagues to introduce MDD and to record the experi-
ences. Joe and the development team use a series of data collection techniques,
including periodic interviews, questionnaires, and focus groups, to ensure that they
establish a process of critical reflection over the life of the project. They use the
data collected to develop local theories that explain the experiences of the problem-
owners, which, with other research, can be generalized for other people interested
in adopting MDD. As new information becomes available, they update these theo-
ries to reflect the current understanding of the situation.

Action research is most closely associated with critical theory. In an action
research project, it is normally taken as self-evident that the problem needs to be
solved, and that the adopted solution is desirable: knowledge gained from the
research empowers particular individuals or groups, and facilitate a wider change.
With this philosophical stance, there is effectively a “moral imperative” to inter-
vene to solve the problem. Therefore, no attempt is made to establish a control
group: the moral imperative implies that it would be unethical to withhold the
intervention from some groups. Instead, the emphasis is on identifying useful les-
sons that help others who wish to pursue a similar change agenda. However, action
research can be linked to other philosophical stances by divorcing it from its eman-
cipatory roots, and focusing instead on practical problem solving. Positivists would
add a concern with careful comparison of the “before” and “after” situations, while
constructivists would focus on participants’ perceptions of the change process. The
key characteristic that differentiates action research from longitudinal case studies
and ethnographies is that the researcher is also an agent of change.

The biggest challenge for action research is its immaturity as an empirical
method. Although frameworks for evaluating action research have been proposed
(e.g. Lau, 1999), they tend to be vague or subjective, leading to accusations that
action research is ad hoc. Furthermore, organizational change is often inseparable
from organizational politics, and there is a danger that the research fails to address
this adequately, either by underestimating the importance of the political agendas
of the participants, or by overstating the “moral case” for implementing a change.
Researcher bias can be reduced through critical reflection, and by validating the
lessons learned through replication. Finally, action research may be expensive,
given the organizational commitment needed.

It could be argued that a great deal of software engineering research is actually
action research in disguise. Certainly, many key ideas in software engineering were
originally developed by trying them out on real development projects, and reporting on
the experiences. In this vein, Dittrich (2002) describes cooperative systems develop-
ment as a form of action research ideally suited to empirical software engineering. By
adopting the framework of action research more explicitly, it is likely that the design
and evaluation of such research can be made more rigorous. Action research is also

11 Selecting Empirical Methods for Software Engineering Research 303

an appealing framework for mixing research with professional activities, especially
for practitioners interested in reflecting on their experiences and passing on their
learning outcomes for the benefit of others.

5.6. Mixed-Methods Approaches

Throughout this chapter we have seen how Joe and Jane could have used different
methods as they learned more about their research topics. While Jane began with
the design of an experiment to test the efficiency of file navigation with the fisheye
view, she went on to perform a case study to explore some of the unexpected find-
ings from the experiment. This approach can be characterized as mixed methods
research – a more complex research strategy that emerged in the recognition that
all methods have limitations, and the weaknesses of one method can be compen-
sated for by the strengths of other methods (Creswell, 2002).

Mixed method research employs data collection and analysis techniques associ-
ated with both quantitative and qualitative data. The “mixing” might be within one
study, by using multiple data collection techniques, or among several studies. Key
decisions involve the strategy for data collection, and the sequence in which dif-
ferent methods are employed. While mixed method research is a powerful
approach to inquiry, the researcher is challenged with the need for extensive data
collection, the time-intensive nature of analyzing multiple sources of data, as well
as the requirement to be familiar with both quantitative and qualitative forms of
research.

We include here the description of three most familiar strategies described by
Creswell (2002):
The Sequential explanatory strategy is characterized by the collection and analysis
of quantitative data followed by the collection and analysis of qualitative data. The
purpose of this strategy is typically to use qualitative results to assist in explaining
and interpreting the findings of a quantitative study. It is particularly useful when
unexpected results arise from the quantitative phase. Jane’s example above follows
this strategy. When her experimental data indicated that developers switch rapidly
between navigation strategies, she decided to perform a case study for a more
in-depth exploration of a few developers and their navigation behavior. Damian
et al. (2000) provides another example of this approach.

The Sequential exploratory strategy is characterized by the collection and analysis
of qualitative data followed by the collection and analysis of quantitative data. Its
purpose is to use quantitative data and results to assist in the interpretation of qualita-
tive findings. This strategy is also useful for testing elements of an emerging theory
resulting from a qualitative study. For example, as a result of Joe’s ethnographic
study of collaborative design, he formulates some hypotheses about how UML
affects the quality of the source code in shared design tasks. To explore this further,
he uses a sequential exploratory approach to explore the impact of shared UML dia-
grams on code quality. He plans and conducts a survey of many different software

304 S. Easterbrook et al.

development projects, in which he measures the extent to which they use UML
for collaboration, and the number of code defects that can be attributed to com-
munication problems. For a published example of this strategy, see Damian and
Chisan (2006).

The Concurrent triangulation strategy is probably the most familiar and widely
used among the mixed-method approaches. This strategy uses different methods
concurrently, in an attempt to confirm, cross-validate or corroborate findings.
Triangulation is motivated by the fact that often “what people say” could be
different than “what people do,” and thus collecting data from multiple sources
helps improve validity. For example, Joe might incorporate additional data
collection techniques into his ethnographic study on the use of UML. He could
collect quantitative data from surveys of similar developers to compare against
the results of his ethnography. By collecting both types of data simultaneously,
rather than sequentially, each analysis can be adapted to explore emerging results
from the other. The challenge in this approach is that it may be difficult for the
researcher to compare the results of two analyses or to resolve contradictions that
arise in the results. In such cases a further source of evidence, or a follow up
study might be necessary. For a published example of this strategy, see Bratthall
and Jørgensen (2002).

Mixed methods research can be conducted within any of the philosophical
stances. For example, a positivist might combine experiments with confirmatory
case studies; a constructivist might mix ethnographies with surveys. However, both
positivism and constructivism may limit the ability to mix the methods. While
positivists strongly prefer quantitative evidence, and constructivists strongly prefer
qualitative evidence, mixed methods research emphasizes the use of evidence
from both quantitative and qualitative data. Therefore, mixed methods research is
more often associated with a pragmatist stance, where the emphasis is on using
those methods that most effectively address the research problem.

6. Data Collection Techniques

Once the research method has been selected, the researcher must decide which data
collection techniques are the most suitable for gathering data based on the study’s
unit of analysis. Multiple techniques can be used to gather data from different per-
spectives, as there are advantages and limitations to each technique. Indeed, using
multiple techniques allows the researcher to triangulate even within a single
method. If different kinds of data support the same conclusions, it strengthens the
study. Singer et al. (Chap. 1) provide an overview of various potential data collec-
tion techniques.

Selecting suitable techniques requires careful consideration of the research
design as well as the pragmatics of the research setting. It is important to note the
advantages and disadvantages of the different techniques from the perspectives of
the experimenter, the participants, the generalizability and reliability of the results.

11 Selecting Empirical Methods for Software Engineering Research 305

A careful blend of techniques can help to offset potential bias and leads to a more
comprehensive understanding of the research topic (Varkevisser et al., 2003). New
researchers should ensure they are familiar with the techniques they select, and that
they are aware of the potential pitfalls they may face. For example, it is always
advisable to pilot-test the data collection instrument, and to pilot-test not just the
collection aspect of the instrument, but also the analysis procedure. Many problems
do not arise until some data is analyzed and it is often possible to detect such prob-
lems with even a small data set. How to analyze the data collected is a topic beyond
the scope of this chapter. Wohlin et al. (2000) provide a summary of quantitative
analysis techniques for software engineering, and Seaman (Chap. 2) provides an
excellent guide to coding etc for qualitative research.

In the end, Jane chose to use a post-study questionnaire that collected both
quantitative and qualitative data (open-ended responses). During the study, she
observed and videotaped the users and their interactions with the computer so that
she could time how long it took to complete the navigation tasks she set for them.
She also instrumented the IDE they were using to count number of scrollbar selec-
tion events and number of mouse clicks. These numbers can be used with the
start/end times indicated on the annotated videotapes of the users. Interviews and
focus groups are used at the end of her field study to gather more ideas on how
navigation features could be improved in the IDE and why the fisheye view is or
is not used by some developers. Joe used questionnaires at different stages in his
research. He also conducted interviews and collected observations as a participant
in the observed group.

7. Empirical Validity

For empirical work to be acceptable as a contribution to scientific knowledge, the
researcher needs to convince readers that the conclusions drawn from an empirical
study are valid. Not surprisingly, the criteria by which researchers judge validity
depend on their philosophical stance.

For positivists, research is normally theory-driven. The key steps include deriving
study propositions from the theory, designing the study to address the propositions,
and then drawing more general conclusions from the results. Each of these steps
must be shown to be sound. Accordingly, positivists usually identify four criteria
for validity:

● Construct validity focuses on whether the theoretical constructs are interpreted
and measured correctly. For example, if Jane designs an experiment to test her
claims about the efficiency of fish eye views, will she interpret “efficiency” in
the same way that other researchers have, and does she have an appropriate
means for measuring it? Problems with construct validity occur when the
measured variables don’t correspond to the intended meanings of the theoretical
terms.

306 S. Easterbrook et al.

● Internal validity focuses on the study design, and particularly whether the results
really do follow from the data. Typical mistakes include the failure to handle
confounding variables properly, and misuse of statistical analysis.

● External validity focuses on whether claims for the generality of the results are
justified. Often, this depends on the nature of the sampling used in a study. For
example, if Jane’s experiment is conducted with students as her subjects, it
might be hard to convince people that the results would apply to practitioners in
general.

● Reliability focuses on whether the study yields the same results if other research-
ers replicate it. Problems occur if the researcher introduces bias, perhaps because
the tool being evaluated is one that the researcher herself has a stake in.

These criteria are useful for evaluating all positivist studies, including controlled
experiments, most case studies and survey research. In reporting positivist empirical
studies, it is important to include a section on threats to validity, in which potential
weaknesses in the study design as well as attempts to mitigate these threats
are discussed in terms of these four criteria. This is important because all study
designs have flaws. By acknowledging them explicitly, the researchers show that
they are aware of the flaws and have taken reasonable steps to minimize their
effects.

In the constructivist stance, assessing validity is more complex. Many researchers
who adopt this stance believe that the whole concept of validity is too positivist,
and does not accurately reflect the nature of qualitative research. That is, as the
constructivist stance assumes that reality is “multiple and constructed,” then
repeatability is simply not possible (Sandelowski, 1993). Assessment of validity
requires a level of objectivity that is not possible. Attempts to develop frameworks
to evaluate the contribution of constructivist research have met with mixed reac-
tions. For example, Lincoln and Guba (1985) proposed to analyze trustworthiness
of research results in terms of credibility, transferability, dependability, and con-
firmability. Morse et al. (2002) criticise this as being too concerned with post hoc
evaluation, and argue instead for strategies to establish validity during the research
process. Creswell (2002) identifies eight strategies for improving validity of con-
structivist research, which are well suited to ethnographies and exploratory case
studies in software engineering:

1. Triangulation: use different sources of data to confirm results and build a coher-
ent picture.

2. Member checking: go back to research participants to ensure that the interpreta-
tions of the data make sense from their perspective.

3. Rich, thick descriptions: where possible, use detailed descriptions to convey the
setting and findings of the research.

4. Clarify bias: be honest with respect to the biases brought by the researchers to
the study, and use this self-reflection when reporting findings.

5. Report discrepant information: when reporting findings, report not only those
results which confirm the emerging theory, but also those which appear to
present different perspectives on the findings.

11 Selecting Empirical Methods for Software Engineering Research 307

6. Prolonged contact with participants: Make sure that exposure to the subject
population is long enough to ensure a reasonable understanding of the issues and
phenomenon under study.

7. Peer debriefing: Before reporting findings, locate a peer debriefer who can ask
questions about the study and the assumptions present in the reporting of it, so
that the final account is as valid as possible.

8. External auditor: The same as peer debriefing, except instead of using a person
known to the researcher, find an external auditor to review the research proce-
dure and findings.

Dittrich et al. (2007) define a similar set of criteria specifically concerned with
validity of qualitative research for empirical software engineering.

For critical theorists, assessment of research quality must also take into account
the utility of the knowledge gained. Researchers adopting the critical stance often
seek to bring about a change by redressing a perceived injustice, or challenging
existing perspectives. Repeatability is not usually relevant, because the problems
tackled are context sensitive. The practical outcome is at least as important as the
knowledge gained, and any assessment of validity must balance these. However,
there is little consensus yet on how best to do this. Lau (1999) offers one of the few
attempts to establish some criteria, specifically for action research. His criteria
include that the problem tackled should be authentic, the intended change should
be appropriate and adequate, the participants should be authentic, and the research-
ers should have an appropriate level of access to the organization, along with a
planned exit point. Most importantly, there should be clear knowledge outcomes
for the participants.

8. Practical Considerations

In addition to the question of how well the methods fit a given type of research
question and philosophical stance, the choice of methods also depends on prac-
tical considerations. Often these practical considerations force the researcher to
change the original research design in terms of the choice of method, data
collection and analysis procedures. It is important to document the original
planned research protocol, and all subsequent deviations to it, to allow other
researchers to understand the study design, interpret the research results, and
replicate the study.

Most of the practical challenges relate to time, budget and personnel resources,
and access to data. Rather than describe the challenges for each method individu-
ally, we summarize the challenges related to groups of methods, according to the
type of data they deal with:

Methods that are primarily qualitative include ethnography, case study, and action
research. These methods rely on fieldwork, using techniques such as participant
observation and interviews. Key challenges include preparing good questions for

308 S. Easterbrook et al.

structured or semi-structured interviews, and finding the time and resources needed
to collect and analyze potentially large sets of data. The researcher needs a thor-
ough training in how to observe and record social behaviour. Access to the field
situation may require prolonged time in establishing a relationship with the subject
organization such that specific project data is made available. For ethnography, the
researcher needs to find a community where she is accepted as a member, which
might not be possible unless she has appropriate technical experience. For action
research, the researcher needs to balance the need to involve the organization in
helping to set appropriate goals for the research with the need to remain objective,
such that the research does not become merely consulting.

Methods that are primarily quantitative include controlled experiments and survey
research. These methods require more significant time in the planning of the
research than strictly qualitative methods. To achieve external validity for both
experiments and surveys, the researcher needs the time and budget to (1) define,
recruit and (if possible) randomly select a sample population that is representative
of the target population, (2) design and pilot the questions such that all respondents
are presented with questions that they interpret and understand in exactly the same
way (therefore careful attention to detail in phrasing the questions is needed), and
(3) define statistical tests ahead of time, in order to interpret the collected data. The
goal here is to plan ahead, for smooth analysis and interpretation of results.

All research conducted in industrial settings brings a number of challenges. It
can be very hard to gather data to find out what practitioners actually do, or what
needs to be improved in the organization, rather than what practitioners say they do
or think require improvement. Data quality can also be an issue (see Chaps. 1 and
7 for more on this issue). In return for access to the organization, the researcher
usually has to give up some control. For example, it is hard to observe and docu-
ment findings without interfering with the observed situation, especially when the
industrial partners want to know in advance what the expected outcomes are. It is
often difficult to know if changes are made through involvement in the research or
would have occurred anyway (c.f., the Hawthorne effect). Finally, obtaining per-
mission to publish the results can be a challenge. Delays in publication are likely if
the organization has concerns about inclusion of confidential data or insights in the
research. Singer and Vinson (2002) and Vinson and Singer (2004) discuss the
unique ethical challenges involved in research in industrial settings.

9. Conclusions

We have presented an overview of the choices involved in selecting appropriate
empirical methods for software engineering research. Our aim in this chapter was
not provide a thorough description of each method, but rather to cover the issues
that a researcher must face when deciding how to address a given research problem.
Further study, and possibly some specialized training may be necessary before a
researcher can apply a chosen method.

11 Selecting Empirical Methods for Software Engineering Research 309

We have described the key elements of empirical research design: A clear
research question provides a focus to your study. An explicit philosophical stance
helps you understand your research goals, and select an appropriate research
method. A research method helps you design a study, and decide what kinds of data
to collect and how to collect it. A theory helps you explain the data and relate it to
the research question and to previous studies in the literature. An appropriate set of
criteria for assessing validity helps improve the study design, and clarify the nature
of the conclusions.

We have not addressed a number of related topics, including replication and
meta-analysis. As the number of empirical studies in software engineering
increases, these become more important. In particular, it is only through empirical
induction that we come to trust the results of empirical research – i.e. the results
need to hold up across many different studies to be considered reliable. Meta-
analysis is the process of systematically comparing the results of multiple studies,
taking into account differences in the design and context of each individual study.
In current software engineering research, meta-analysis is hard to accomplish
because of huge variability in the style and quality of the published reports of
empirical work.

A key message throughout the chapter is that empirical research never produces
certain knowledge. Each of the methods we have available for empirical investiga-
tions help to elucidate the phenomena being studied, but each also has significant
flaws. Awareness of the limitations of each method should allow you to design a
study that minimizes the weaknesses. Furthermore, the flaws can be overcome by
mixing methods, and/or by conducting replications (see Brooks et al., Chap. 14, for
more information on replication).

We believe that clearer distinctions between research methods are necessary to
facilitate better study designs and clearer criteria for evaluating empirical research.
The definitions and distinctions we offer in this chapter are by no means widely
agreed upon, neither in the empirical software engineering community, nor in
related disciplines. For example, we have avoided the usual distinction between
qualitative and quantitative methods, as we believe the distinctions between meth-
ods are more subtle than simply the type of data collected. Instead, we have empha-
sized differences in philosophical stance, and in criteria used for designing studies
for each type of method. We hope that this chapter provides a first step towards a
consensus on empirical methodology in software engineering.

References

Bratthall, L. and Jørgensen, M. (2002) Can you trust a single data source exploratory software
engineering case study? Journal of Empirical Software Engineering, 7(1), 9–26.

Calhoun, C. (1995) Critical Social Theory: Culture, History, and the Challenge of Difference.
Blackwell, Oxford, UK.

Chalmers, A. (1999) What Is This Thing Called Science? 3rd Edition, Hackett Publishing Co,
Indianapolis.

310 S. Easterbrook et al.

Creswell, J.W. (2002) Research Design: Qualitative, Quantitative and Mixed Methods Approaches.
2nd Edition, Sage Publications, Thousand Oaks, CA.

Damian, D. and Chisan, J. (2006) An empirical study of the complex relationships between
requirements engineering processes and other processes that lead to payoffs in productivity,
quality and risk management, IEEE Transactions on Software Engineering, 32(8), 433–453.

Damian, D.E., Eberlein, A., Shaw, M., and Gaines, B. (2000) Using different communication
media in requirements negotiation, IEEE Software, 17(3), 28–36.

Davison, R.M., Martinsons, M.G., and Kock, N. (2004) Principles of canonical action research,
Information Systems Journal, 14(1), 65–86.

Dittrich, Y. (2002) Doing Empirical Research on Software Development: Finding a Path Between
Understanding, Intervention, and Method Development. In Social Thinking: Software Practice,
Y. Dittrich, C. Floyd, and R. Klischewski, Eds. MIT Press.

Dittrich, Y., John, M., Singer, J., and Tessem, B. (2007) Editorial for the Special Issue on
Qualitative Software Engineering Research, Information and Software Technology, 49(6),
531–539.

Flyvbjerg, B. (2006) Five misunderstandings about case study research, Qualitative Inquiry,
12(2), 219–245.

Glaser, B.G. and Strauss, A. (1967) Discovery of Grounded Theory: Strategies for Qualitative
Research. Sociology Press, Mill Valley, CA.

Gregor, S. (2006) The Nature of Theories in Information Systems, MIS Quarterly, 30(3),
611–642

Jørgensen, M. and Sjøberg, D.I.K. (2004) Generalization and Theory-Building in Software
Engineering Research. IEE Proceedings, Workshop on Empirical Assessment in Software
Engineering (EASE’04), at ICSE’04, pp. 29–36.

Kitchenham, B., Pickard, L., and Pfleeger, S.L. (1995) Case studies for method and tool evaluation,
IEEE Software, 12(4), 52–62.

Klein, H.K. and Myers, M.D. (1999) A set of principles for conducting and evaluating interpretive
field studies in information systems, MIS Quarterly, 23(1), 67–93.

Lau, F. (1999).Towards a framework for action research in information systems studies,
Information Technology and People, 12(2), 148–175.

Lincoln, Y.S. and Guba, E.G. (1985) Naturalistic Inquiry. Sage, Beverly Hills, CA.
Littlejohn, S.W. and Foss, K.A. (2004) Theories of Human Communication. 8th Edition,

Wadsworth Publishing, Belmont, CA.
McGrath, J.E. (1995) Methodology matters: doing research in the behavioral and social sciences.

In Human–Computer Interaction: Toward the Year 2000, R.M. Baecker, J. Grudin, W.
Buxton, A., and Greenberg, S., Eds. Morgan Kaufmann Publishers, San Francisco, CA, pp.
152–169.

Meltzoff, J. (1998) Critical Thinking About Research: Psychology and Related Fields. American
Psychological Association, Washington DC.

Menand, L. (1997) Pragmatism: A Reader. Vintage Press, New York.
Morse, J.M., Barrett, M., Mayan, M., Olson, K. and Spiers, J. (2002) Verification strategies for

establishing reliability and validity in qualitative research, International Journal of Qualitative
Methods, 1(2), 1–19.

Robinson, H., Segal, J. and Sharp, H. (2007) Ethnographically-informed empirical studies of
software practice, Information and Software Technology, 49(6), 540–551.

Sandelowski, M. (1993) Rigor or rigor mortis: the problem of rigor in qualitative research revisited,
Advances in Nursing Science, 16(2), 1–8.

Simon, H. (1996) The Sciences of the Artificial. 3rd Edition, MIT Press, Cambridge, MA.
Singer, J.A. and Vinson, N.G. (2002) Ethical issues in empirical studies of software engineering,

IEEE Transactions on Software Engineering, 28(12), 1171–1180.
Varkevisser, C.M., Pathmanathan, I., and Brownlee, A. (2003) Designing and Conducting Health

Systems Research Projects: Volume 1 – Proposal Development and Fieldwork. Chapter 10:
Data Collection Techniques. Available online at http://www.idrc.ca/en/ev-56605-201-1-DO_
TOPIC.html

11 Selecting Empirical Methods for Software Engineering Research 311

Vinson, N.G. and Singer, J.A. (2004) Consent issues raised by observational research in organisa-
tions, NCEHR Communique, 12(2), 35–36.

Wieringa, R.J. and Heerkens, J.M.G. (2006) The methodological soundness of requirements
engineering papers: a conceptual framework and two case studies, Requirements Engineering
Journal, 11, 295–307.

Wohlin, C., Runesson, P., Höst, M., Ohlsson, M.C., Regnell, B., and Wesslén, A. (2000)
Introduction to Experimentation in Software Engineering. Kluwer Academic Publishers,
Boston, MA.

Yin, R.K. (2002) Case Study Research: Design and Methods. Sage, Thousand Oaks, CA.

Chapter 12
Building Theories in Software Engineering

Dag I.K. Sjøberg, Tore Dybå, Bente C.D. Anda, and Jo E. Hannay

Abstract In mature sciences, building theories is the principal method of acquir-
ing and accumulating knowledge that may be used in a wide range of settings. In
software engineering, there is relatively little focus on theories. In particular, there is
little use and development of empirically-based theories. We propose, and illustrate
with examples, an initial framework for describing software engineering theories,
and give advice on how to start proposing, testing, modifying and using theories to
support both research and practise in software engineering.

1. Introduction

When should theorizing begin? “Theorizing should begin as soon as possible” What is the
bulk of data necessary to begin theorizing? When is it neither too early nor too late to
begin? Nobody can tell. It all depends on the novelty of the field and on the existence of
theoretically-bent scientists prepared to take the risk of advancing theories that may not
account for the data or that may succumb at the first onslaught from fresh information
gathered in order to test the theories: this takes moral courage, particularly in an era
dominated by the criterion of success, which is best secured by not attacking big problems.
Two things, though, seem certain: namely, that premature theorizing is likely to be wrong
– but not sterile – and that a long deferred beginning of theorizing is worse than any
number of failures, because (1) it encourages the blind accumulation of information that
may turn out to be mostly useless, and (2) a large bulk of information may render the begin-
ning of theorizing next to impossible. (Bunge, 1967, p. 384).

In mature sciences, building theories is the way to gain and cumulate general
knowledge. Some effort has been made to propose and test theories based on
empirical evidence in software engineering (SE) (Hannay et al., 2007), but the use
and building of empirically-based theories1 in SE is still in its infancy.

1 In this chapter, we focus on empirically-based theories; that is, theories that are built or modified
on the basis of empirical research. Hence, in the reminder of this chapter, we use “theory” as short
for “empirically-based theory” unless otherwise explicitly stated.

312

F. Shull et al. (eds.), Guide to Advanced Empirical Software Engineering.
© Springer 2008

12 Building Theories in Software Engineering 313

There are many arguments in favour of using theories. They offer common
conceptual frameworks that allow the organization and structuring of facts and
knowledge in a concise and precise manner, thus facilitating the communication
of ideas and knowledge. Theory is the means through which one may generalize
analytically (Shadish et al., 2002; Yin, 2003), thus enabling generalization from
situations in which statistical generalization is not desirable or possible, such as
from case studies (Yin, 2003), across populations (Lucas, 2003), and indeed,
from experiments in the social and behavioural sciences (Shadish et al., 2002),
with which experiments in empirical SE often share essential features.

Our position is that theories should be useful; we are not interested in theories
purely as an academic exercise. As such, we adhere to the view of the philosophical
school of pragmatism, “both specific beliefs and methods of inquiry in general
should be judged primarily by their consequences, by their usefulness in achieving
human goals” (Godfrey-Smith, 2001). Since SE is an applied discipline, SE theo-
ries should, at least ultimately, be useful to the software industry. Since each SE
setting is unique, the theories would need local adaptations to be directly useful in
concrete cases. Figure 1 illustrates that both research communities and industry
may benefit from using SE theories.

Arguments in favour of theory have been voiced in the SE community by
other researchers as well (Basili, 1996; Endres and Rombach, 2003; Herbsleb
and Mockus, 2003; Kitchenham et al., 2002; Land et al., 2003; Sauer et al.,
2000; Tichy, 1998; Jørgensen and Sjøberg, 2004). However, there has been little
focus on what the nature of SE theories should be like, and how they should be
described and built. Hence, in this chapter, we suggest that the description of a
theory should be divided into four parts: the constructs (what are the basic ele-
ments), propositions (how do the constructs interact), explanations (why are the
propositions as specified) and scope (what is the universe of discourse in which
the theory is applicable). Moreover, we propose a diagrammatic notation for

Fig. 1 Usefulness of theory for research and industry

314 D.I.K. Sjøberg et al.

describing the constructs, relationships and scope of a SE theory. In particular,
each construct should belong to, or be derived from, one of the four archetype
classes Actor, Technology, Activity and Software System. We believe that this
structure for describing SE theories will support both researchers who propose
theories and potential users of such theories.

The remainder of this chapter is organized as follows. Section 2 discusses catego-
ries of theories, elements of a theory and how theories may be formed and evaluated.
Section 3 presents the framework for describing SE theories. Section 4 illustrates
steps in theory building. Section 5 evaluates the example theory according to the
criteria given in Sect. 2. Section 6 summarizes and describes topics for future work.

2. What Theories Are

The question of what constitutes a theory is a source of continuing discussion.
Answers to this question depend on philosophical issues, practical issues, and not
least, the field of study – indeed, the purpose of this chapter is to outline sugges-
tions as to what theories for SE should be like.

There is no universally agreed upon definition of the concept of an empiri-
cally-based theory, nor is there any uniform terminology for describing theories.
What is agreed is that it is difficult to provide necessary and sufficient conditions
that delineate the concept of theory. Nevertheless, it is still possible to get a grasp
on what a theory is. In sciences that are relevant to empirical SE, such as information
systems, management, and social and behavioral sciences, discussions concerning
theory tend to revolve around the following issues: (1) what a theory does, (2)
what the elements of a theory are, (3) how theories are formed, and (4) how
theories are evaluated. In the following, we summarize some of the answers to
these questions.

2.1. What a Theory Does

The focus of this chapter is on theories that relate to observable phenomena, and
that are built and modified based on empirical research. According to several
accounts, this implies that a theory should offer explanations of why certain
phenomena occur in the sense of predicting them. Moreover, the predictions should
be testable, so as to render the theory refutable.

This familiar description of what a theory should do is hypothetico-deductive in
nature, and would seem particularly suitable for empirical research. However, there
are also other relevant modes of empirically-based theory. In the discipline of infor-
mation systems, Gregor (2006) has classified theories into five types according to
what they do.

12 Building Theories in Software Engineering 315

 I. Analysis. Theories of this type include descriptions and conceptualizations of
“what is.” Also included are taxonomies, classifications and ontologies in the
sense of Gruber (1993). The lack of explicit explanation and prediction dis-
qualifies this category as theory for many scholars (Bacharach, 1989; Sutton
and Staw, 1995; Nagel, 1979).

 II. Explanation. Theories of this type explicitly explain. What constitutes an
explanation is a nontrivial issue. However, a common view is that an explana-
tion answers to a question of why something is – or happens (rather than what
happens) (Van Fraassen, 1980; Sandborg, 1998). Current views insist that
explanations include notions of causality and asymmetry (if A explains B, then
B should not also be a viable explanation of A) (Salmon, 1989).

III. Prediction. These theories are geared towards predicting what will happen,
without explaining why. Examples are mathematical and probabilistic models
of social and natural sciences.

IV. Explanation and prediction. Theories of this type combine the traits of II and
III, and correspond to what many consider a “standard” conception of empiri-
cally-based theories.

 V. Design and action. These theories describe “how to do” things, that is, they are
prescriptive. Design science (Simon, 1996; Hevner et al., 2004; Hevner and
March, 2003; March and Smith, 1995) is influential here. Although there is
usually an implicit prediction that following the design principles will be ben-
eficial, it is a matter of opinion as to whether this category describes theories
(March and Smith, 1995).

These five types illustrate some of the diversity of what may be considered as
theories. Our focus is very much on theories that explain phenomena. Thus,
Types II and IV are those of primary interest. However, in practice, the explana-
tory function of a theory depends also on how the theory interacts with other theories
and the current level of knowledge. For example, many view physical theories as
belonging to Type III: Hawking states “that a physical theory is just a mathematical
model and that it is meaningless to ask whether it corresponds to reality. All that
one can ask is that its predictions should be in agreement with observation”
(Hawking and Penrose, 1996, pp. 3–4), a sentiment also expressed by Feynman
(1985). However, although they “merely” describe and predict what happens on
the quantum level, these theories can thereby also be said to explain phenomena
on the macro level (for example, why light refracts off oil films). Also, theories of
Type I, that merely describe, may well provide explanations for other theories
or phenomena. For example, the text comprehension model of Van Dijk and
Kintsch (1983) describes how mental models of increasing complexity form during
text comprehension. There are no explicit explanations or predictions, but in
conjunction to program comprehension, the model provides an explanation as to
why experts and novices follow different strategies when understanding code
(Burkhardt et al., 2002). Generally, what constitutes an explanation is very much
a pragmatic question.

316 D.I.K. Sjøberg et al.

2.2. What the Elements of Theory are

It seems to be broadly accepted that constructs and relationships between con-
structs constitute the basic building blocks of theories, and that it is important to
delineate a theory’s area of application by specifying scope conditions. Inspired by
Dubin (1978), Whetten (1989) describes these elements as building blocks of the-
ory in the following manner.

– What are the entities in terms of which a theory offers description, explanation,
prediction or prescription? These are the constructs of a theory. Examples are
“quarks” (quantum physics), “group process” (social science), “cognitive load”
(cognitive psychology) and “programming skill” (SE). According to some episte-
mological positions (e.g., logical positivism), constructs must represent directly
observable entities; while others (scientific realism) allow representations of hith-
erto unobserved entities (“gravity,” “quarks,” “feelings”) that are postulated to
exist; while still others (anti-realism, instrumentalism, pragmatism) see constructs
only as useful instruments to provide descriptions, explanations, etc. In SE, the
constructs would typically relate to people, organization, technology, activities
and software system.

– How are the constructs related? Relationships between constructs make up a
theory’s propositions, and describe how the constructs interact. Constructs and
their relationships are the basic constituents of all five types of theory above.
Describing how things are related may give rise to predictions (Type III and
Type IV theories).

– Why do the relationships hold? Answers to this question are what give the theory
explanatory power (Type II and Type IV theories). Parts of this may already be
provided in the propositions established above. Explanatory power may also
arise from a theory’s interaction in a research context.

– Where, When, and for Whom does the theory apply? Scope conditions are
statements that define the circumstances in which the theory’s propositions
are supposed to be applicable (Cohen, 1989).

2.3. How Theories are Formed

The ways in which theories are built, and from what, say much about what theories are.
Theories in SE may enter the stage in three ways to explain SE phenomena:

1. Theories from other disciplines may be used as they are.
2. Theories from other disciplines may be adapted to SE before use.
3. Theories may be generated from scratch in SE.

Modes (1) and (2) reflect that SE is a multidisciplinary discipline. Examples of the
first mode are the use of theories from cognitive psychology to explain phenomena
in program comprehension (Burkhardt et al., 2002; Abdel-Hamid et al., 1993;

12 Building Theories in Software Engineering 317

Ramanujan et al., 2000), and theories from social and behavioural sciences to
explain group interaction in requirements negotiation and inspection meetings
(Land et al., 2003). Examples of the second mode can be found in (Sauer et al.,
2000; Land et al., 2003; Herbsleb and Mockus, 2003), while the case described in
Sects. 3–5 is an example of the third mode.

This chapter focuses on the concept of “SE theory,” that is, theories with con-
structs and relationships defined from SE entities (Sect. 3). A SE theory thus arises
through modes (2) and (3). The latter mode, generating theories from scratch, raises
certain methodological issues as to how to build theories, and as a result, what theo-
ries are. In the following, we summarize some of these issues.

Referencing (Merton, 1968; Yin, 1984), Carroll and Swatman (2000) give three
levels of sophistication or complexity of theories (for information systems):

Level 1. Minor working relationships that are concrete and based directly on
observations

Level 2. Theories of the middle range that involve some abstraction but are still
closely linked to observations

Level 3. All-embracing theories that seek to explain social behaviour. (“Social
behavior” in (Carroll and Swatman, 2000) is here replaced with “SE.”)

These levels set milestones in theory generation, but they may also represent full
theories, depending on the rationale of the generation process one adheres to and
the purpose of one’s theory (Sect. 2.1). The development of SE theories from
scratch (3) is in early stages, and immediate efforts will probably focus primarily
on Levels 1 and 2. The case presented later produces a theory on Level 1.

The formation of theories is a process of continuous refinement and develop-
ment involving inferences both from practise to theory as well as from theory to
practise. Essential elements of this process are conceptual development, operation-
alization, confirmation or disconfirmation, and application, see Fig. 2.

Inductive methods sample singular observations in an enumerative fashion, in
order to generate laws (covering laws) and empirical generalizations (“grounded
theory” according to Glaser and Strauss (1967)). The inductive approach admits
Levels 1 and 2 as de facto theories.

Other approaches view Levels 1 and 2 merely as intermediary steps towards,
respectively, Levels 2 and 3. For example, the abductive approach to theory generation
(Peirce, 1958; Haig, 2005) uses induction only as a first step to define phenomena
(relatively stable, recurrent, general features) from observations, and then goes on
to generate explanatory theories that explain these phenomena. Abductive inference
(Peirce, 1958) introduces a creative aspect to theory generation, in that it transcends
observation and is no longer strictly bound by facts (data). Instead, explanations
rely on semantic models, i.e., simplified approximations of reality or useful concep-
tualizations (Franck, 2002; Rosenberg, 2001; Ruse, 1995). Examples are the ideal
gas model and the rational choice model in economics that continue to be useful for
educational purposes, even though empirical evidence disconfirms the literal
interpretation of these models; and various models of the human brain as an infor-
mation processing unit for explaining human cognition. This independence of

318 D.I.K. Sjøberg et al.

direct correspondences with reality is favored by aspects in the epistemological
directions of anti-realism, instrumentalism and pragmatism. Such models typically
constitute Type II and Type IV theories on Level 3. Methods such as induction and
abduction are essentials in the conceptual development of theories built from
scratch, see Fig. 2.

Deductive methods derive testable hypotheses from a theory and check these for
empirical support.

2.4. How Theories are Evaluated

The evaluation of theories involves both logical and empirical standards (Cohen,
1989). However, in order to be able to evaluate the goodness of a theory, we must
first establish the criteria by which it is to be evaluated. Several such criteria are
described in the literature (Bunge, 1967; Cohen, 1989; Dubin, 1978). Which criteria
one adheres to depends on the type of theory one is attempting to generate, as well
as on the framework of generation one is adhering to. For the purpose of evaluating
empirically-based theories in SE, we believe that the criteria shown in Table 1 are
most relevant.

The hypothetico-deductive framework sees the criterion of falsifiability (Popper,
1959), as the demarcation criterion between science and non-science. It assumes

Fig. 2 Theory development consists of inductive and abductive aspects and deductive aspects,
and may be initiated from both the practical or from the theoretical realm. Central to forming
theory is conceptual development, that is, the conception of pertinent constructs and relationships
through inductive and abductive processes. In order for the theory to be confirmed or discon-
firmed in a deductive process, the conceptual elements must be operationalized into observable
entities and measurable units on the one hand; and on the other hand, they must be applicable in
real situations in practical disciplines. (The figure is adapted from (Lynham 2002)).

12 Building Theories in Software Engineering 319

the presence of a falsifiable theory, which gives rise to hypotheses that are tested
by observation. Although this framework as such has been overtaken by other
frameworks (Ruse, 1995), the principle of testability remains fundamental for
empirically-based theories. There are no commonly agreed set of criteria for evalu-
ating testability, but we will emphasize the criteria as follows: (1) The constructs
and propositions of a theory should be clear and precise such that they are under-
standable, internally consistent and free from ambiguities. (2) It must be possible
to deduce hypotheses from the theory’s propositions, so that the theory may be
confirmed or disconfirmed. (3) The theory’s scope conditions must be explicitly
and clearly specified, so that the domain or situations in which the theory should be
(dis-)confirmed and applied is clear.

Note that in social and behavioral sciences, with which empirical SE shares
many methodological issues, deeming a theory as false based on its predictions, is
rarely feasible (Lindblom, 1987; Weick, 1989). If a prediction is not supported by
empirical evidence, alternative theories or refinements of existing theories are
sought, rather than theory rejection; or a new phenomenon is defined, which in turn
starts the theory generation process for that phenomenon. Moreover, several theo-
ries may provide descriptions, explanations, etc. for a given phenomenon; all of
which may be empirically adequate in the sense of not having been disconfirmed
(Rosenberg, 2001; Haig, 2005). One must therefore have criteria that give infer-
ences to best descriptions, explanations, predictions, etc. Therefore, in addition to
testability, other theory appraisal criteria are equally important.

Related to testability is the degree to which a theory is supported by empirical
evidence. Such evidence is also important in choosing among alternative descrip-
tions, explanations, predictions, etc. Empirical support requires that the theory is
tested in empirical research. Pursuing empirical evidence has the added advantage
of treating both confirming and disconfirming evidence as informative. Furthermore,
pursuing such evidence clearly points in the direction of designing a series of studies
that complement one another (Basili et al., 1999).

Table 1 Criteria for evaluating theories

Testability The degree to which a theory is constructed such that empirical
refutation is possible

Empirical support The degree to which a theory is supported by empirical studies that
confirm its validity

Explanatory power The degree to which a theory accounts for and predicts all known
observations within its scope, is simple in that it has few ad hoc
assumption, and relates to that which is already well understood

Parsimony The degree to which a theory is economically constructed with a mini-
mum of concepts and propositions

Generality The breadth of the scope of a theory and the degree to which the theory
is independent of specific settings

Utility The degree to which a theory supports the relevant areas of the software
industry

320 D.I.K. Sjøberg et al.

Explanatory power can be viewed as a theory’s ability to provide explanations of
why something happens. Two criteria are (Thagard, 1992): (1) Analogy, that is, the
degree to which a theory is supported by analogy to well-established theories.
Explanatory power is seen as increased if a theory’s constructs and relationships are
formulated in terms of what is familiar and understood. (2) Explanatory breadth, that
is, the degree to which a theory accounts for and predicts all known observations
within its scope. Some explanations apply to particular events, while others apply to
general phenomena or regularities. Nevertheless, if theory B can be deduced from
theory A, then theory A has more explanatory breadth than theory B (Cohen, 1989).
A theory of high explanatory breadth would include all relevant constructs and
relationships, and account for all known data in the field to which it applies. Thus, the
broader the scope of a theory (i.e., the range of phenomena encompassed by
the theory), the greater the explanatory breadth of its propositions.

Parsimony is the extent to which unnecessary constructs and propositions are
excluded. It is defined in (Bacharach, 1989) as the ratio of propositions to testable
hypotheses; the more hypotheses a proposition accounts for, the better. Thus parsi-
mony interacts with explanatory (and predictive) power. There is a delicate balance
with explanatory breadth, i.e., should some factors be deleted because they add little
additional value to our understanding? Or as Whetten (1989, p. 490) formulated it:
“Sensitivity to the competing virtues of parsimony and comprehensiveness is the
hallmark of a good theorist.”

Generality pertains to the extent to which a theory has a wide scope and how
setting-independent the theory is. A major purpose of generalizing is to increase the
explanatory breadth of a theory (Cohen, 1989). However, there is a trade-off here:
Higher generality means broader applicability, but may demand more effort in
operationalizing constructs and relationships to a given situation; while lesser gen-
erality might make a theory immediately applicable, but may compromise its
explanatory power by abandoning explanation in terms of basic underlying mecha-
nisms. Nevertheless, sensitivity to context is especially important for empirically-
based theories: “Observations are embedded and must be understood within a context.
Therefore, authors of inductively generated theories have a particular responsibility
for discussing limits of generalizability” (Whetten, 1989, p. 492).

Finally, and of particular importance in an applied field, such as SE, is the utility
of a theory, which refers to the degree to which the propositions of the theory can
be used as input to decision-making, understanding and prediction in a given indus-
trial setting (cf. Fig. 1). A good theory would thus be able to reduce the complexity
of the empirical world, or in the words of Kurt Lewin (1945): “There is nothing so
practical as a good theory.” The utility aspect is far from new; about a century ago,
this was also the focus of the pragmatists John Dewey (1899–1924) and William
James (1907): “An idea agrees with reality, and is therefore true, if and only if it is
successfully employed in human action in pursuit of human goals and interests, that
is, if it leads to the resolution of a problematic situation in Dewey’s terms.”2

2 The Internet Encyclopedia of Philosophy, http://www.iep.utm.edu/d/dewey.htm

12 Building Theories in Software Engineering 321

3. Framework for Describing SE Theories

An SE theory is supposed to explain or predict phenomena occurring in SE. The
typical SE situation is that an actor applies technologies to perform certain activi-
ties on an (existing or planned) software system. These high-level concepts or
“archetype classes” with examples of sub-concepts or subclasses are listed in Table 2.
One may also envisage collections of (component) classes for each of the (sub)
classes. For example, component classes of a software system may be requirement
specifications, design models, source and executable code, test documents, various
kinds of documentation, etc.

In addition, appropriate characteristics of the classes, and their relative effect,
should also be identified and measured. For example, the usefulness of a technology
for a given activity may depend on characteristics of the software engineers, such
as their experience, education, mental ability, personality, motivation, and knowl-
edge of a software system, including its application domain and technological
environment. Note that contexts or environments are supposed to be part of the
descriptions of the respective archetype classes.

Hence, we propose that the constructs of an SE theory should typically be asso-
ciated with these archetype classes themselves, any subclass specialised from them,
possibly successively, or any class that is a component of the archetype classes or
subclasses. The constructs could also be any of the attributes of those classes. An
SE theory may be defined as a theory that includes at least one construct that is SE
specific. For example, if the theory only relates to Actor, then the actor must be a
software engineer or an SE team, SE project, etc.

The challenge of selecting or defining appropriate subclasses or component
classes that represent constructs of a theory illustrates the need for commonly
accepted taxonomies in SE. If the constructs of SE theories do not follow from
well-defined and well-understood categories of phenomena, then new theories will
frequently require new constructs, and as a consequence theories become difficult
to understand and to relate to each other. Hence, development of taxonomies is
needed to support theory building.

In the social and behavioural sciences, several scholars argue that theories
should be general in the sense of being independent of time and place (Markovsky,
1994; Wagner, 1994; Cohen, 1989). SE theories, being more applied, and at the

Table 2 Framework for SE theories

Archetype class Subclasses

Actor Individual, team, project, organisation or industry
Technology Process model, method, technique, tool or language
Activity Plan, create, modify or analyze (a software system); see Sjøberg et al. (2005)
Software system Software systems may be classified along many dimensions, such as size,

complexity, application domain, business/scientific/student project or
administrative/embedded/real time, etc.

322 D.I.K. Sjøberg et al.

current stage of development, would seem to be somewhat dependent of both time
and place. The fact that reality changes also in the SE world means that the validity
or usefulness of an SE theory may be temporary. This, in turn, might indicate that
time should be a factor of an SE theory, for example, change in education, and thus
skill, of software engineers may change the validity of a theory. However, we
would recommend not including time as part of the theory, but rather attempt to
identify the underlying factors that may change over time. In the example of skill
above, one should indicate in either the propositions or scope that the theory applies
for a certain skill level.

Similarly, place is not interesting in SE per se. Place may be a placeholder for
cultural, organisational and technological context factors that may affect a theory.
However, we would also in this case urge scholars to be explicit on the underlying
factors that, we believe, would be associated with one of the four archetype
classes.

The constructs, propositions and their explanations, and the scope of a SE theory
should be explicitly and clearly presented. We will illustrate how these four parts
may be used in a simple example theory. This example is meant to illustrate the main
initiating steps of building an SE theory from scratch (Mode (3) at Level 1, Sect.
2.3). Table 3 shows the constructs, the propositions, two examples of explanations,
and the scope of an initial theory of the effect of using a development method based
on UML (Booch et al., 1999) (in contrast to not using a thorough and systematic
method covering all the phases from requirements analysis to testing). The back-
ground and steps in the development of the theory will be described in Sect. 4. For
space considerations, only explanations E4 and E5, corresponding to, respectively,
propositions P4 and P5 are shown in Table 3. The archetype classes associated with
the respective constructs are shown in Fig. 3.

We also propose a notation (partly based on UML) to illustrate theories graphi-
cally. Figure 3 shows the relationships among the constructs of the UML-based
development theory, including what affects what, using this notation. The notation
has the following informal semantics:

A construct is represented as a class or an attribute of a class. A class is drawn
as a box, and its name is written in the top of the box, e.g., “Distributed project” in
Fig. 3). A class may be a subclass (using the UML generalization arrow) or a com-
ponent class (drawn as a box within another box, e.g., “Team” is a component of
“Distributed project”). Typically, if the construct is a particular value of a variable,
then the construct is modelled as a subclass or component-class, e.g., the value
“Distributed project” of the variable “Actor.” On the other hand, if focus is on the
variation of values, then the construct is a variable that is modeled as an attribute,
e.g., “Costs.” An attribute is written as a text in the lower part of a class box (below
a horizontal bar).

A relationship is modelled as an arrow; an arrow from A to B means that A
affects B, where A is a class or an attribute, and B is an attribute. In a relationship,
B may also be a relationship itself, represented by an arrow. A is then called a mod-
erator, e.g., “Training” in Fig. 3. This means that A affects the direction and/or
strength of the effect of the relationship B (Baron and Kenny, 1986). The relationships

12 Building Theories in Software Engineering 323

are specified further into propositions of the theory, as indicated in Fig. 3; the
propositions P6–P8 are examples of moderators.

The scope of the theory is also illustrated in the diagram. Scope conditions are
typically modelled as subclasses or component classes. Figure 3 shows that our

Table 3 Constructs, propositions, example explanations and scope of the theory of UML-based
development

Constructs

C1 UML-based development method
C2 Costs (total number of person hours in the project)
C3 Communication (ease of discussing solutions within development teams and in reviews)
C4 Design (perceived structural properties of the code)
C5 Documentation (the documentation of the system for the purpose of passing reviews as

well as for expected future maintainability)
C6 Testability (more efficient development of test cases and better quality, i.e., better coverage)
C7 Training (training in the UML-based method before the start of the project)
C8 Coordination (of requirements and teams)
C9 Legacy code (code that has not been reverse engineered to UML-models)

Propositions

P1 The use of a UML-based development method increases costs
P2 The use of a UML-based development method positively affects communication
P3 The use of a UML-based development method positively affects design

P4 The use of a UML-based development method positively affects documentation
P5 The use of a UML-based development method positively affects testability
P6 The positive effects of UML-based development are reduced if training is not sufficient

and adapted
P7 The positive effects of UML-based development are reduced if there is insufficient coordi-

nation of modelling activities among distributed teams working on the same project
P8 The positive effects of UML-based development are reduced if the activity includes

modification of legacy code

Explanations

E4 The documentation is
 – More complete
 – More consistent due to traceability among models and between models and code
 – More readable, and makes it easier to find specific information, due to a common

format
 – More understandable for non-technical people
 – May be viewed from different perspectives due to different types of diagram

E5 Test cases based on UML models
 – Are easier to develop
 – Can be developed earlier
 – Are more complete
 – Have a more a unified format
Moreover, traceability from requirements to code and test cases makes it is easier to

identify which test cases must be run after an update

Scope
The theory is supposed to be applicable for distributed projects creating and modifying

large, embedded, safety-critical subsystems, based on legacy code or new code

324 D.I.K. Sjøberg et al.

example theory is constrained to “Distributed projects,” “Create, modify” activi-
ties, and “large, embedded, safety critical subsystems” of a software system. This
means, for example, that “Plan” and “Analyse” (two other subclasses of the arche-
type class “Activity”) are outside the scope of this theory. In this example, all the
archetype classes are included, but, generally, if any of the archetype classes are not
included, then it is assumed that the theory is so general that it is independent of
those classes. Note that one purpose of defining the four archetype classes is that
we claim that any scholar who propose a SE theory should at least consider whether
all of them should be included and specifed. For example, a theory of group per-
formance in software development technical review (Sauer et al., 2000) was per-
ceived by Land et al. (2003) to be too general for a SE context, and was thus
specialised to also include, for example, dependencies to various components of a
software system, such as requirements documents, designs, codes, test cases/plans
and user manuals.

Fig. 3 A theory for the effect of UML-based development

12 Building Theories in Software Engineering 325

4. Steps in Building SE Theories

The theory-building process in an applied discipline such as SE is a continuous and
iterative process of proposing, testing, and modifying theories. We do not always
have to start from scratch when proposing a new theory; we can often start the
process by adapting and modifying existing theories either from within SE or from
related disciplines. However, in many cases, there are no established theories,
neither in SE nor in the related disciplines, that are relevant for answering important
SE research questions. In these cases, we may attempt to build theories by conducting,
for example, case studies and experiments. We may also establish theories by
reviewing and synthesizing related research in SE or by reviewing and synthesizing
relevant research in related disciplines. Section 4.1 describes five steps in the build-
ing of theories. Section 4.2 illustrates each step by an example from an exploratory
case study of UML-based development. Note that in practice these steps will often
be carried out iteratively and partly in parallel.

4.1. Five Steps in Theory Building

4.1.1. Step 1: Defining the Constructs of the Theory

The first step of the theory-building process involves identifying and defining the
constructs of the theory. In the context of this first step, there are five ways in which
we might seek to make a theoretical contribution (Weber, 2003):

● Defining new constructs as the basis for building a new theory about some phe-
nomena. These constructs might encompass phenomena that have not been the
focus of prior theories. Alternatively, they might conceive phenomena that have
been the focus of prior theories, but in a different way. As a result, we need to
build a new theory of the phenomena that reflects this conception.

● Introducing new constructs into an existing theory to better account for the phe-
nomena that are the focus of the theory.

● Deleting constructs from an existing theory to provide a more parsimonious
account of the phenomena that are the focus of the theory.

● Adding and deleting constructs from an existing theory to provide a different, and
hopefully better, account of the phenomena that are the focus of the theory.

● Defining the constructs of an existing theory more precisely or conceptualizing
them in somewhat different ways.

4.1.2. Step 2: Defining the Propositions of the Theory

The second step of the theory-building process consists of specifying the proposi-
tions of the theory. In the context of this second step, there are four ways in which
we might seek to make a theoretical contribution (Weber, 2003):

326 D.I.K. Sjøberg et al.

● Defining new propositions among existing or new constructs in a theory to
better account for the phenomena that are the focus of the theory.

● Deleting propositions among the constructs of an existing theory to provide a
more parsimonious account of the phenomena that are the focus of the
theory.

● Adding and deleting propositions among the constructs of an existing theory to
provide a different, and hopefully better, account of the phenomena that are the
focus of the theory.

● Define the propositions in an existing theory more precisely or conceptualize
them in somewhat different ways, for example, by specifying the functional
form of a proposition previously conceived as a simple association between two
constructs.

4.1.3. Step 3: Providing Explanations to Justify the Theory

The third step of the theory-building process, providing explanations – the “why”
– of the theory, is probably the most challenging. The core issue of this step is to
provide explicit assumptions and logical justifications for the constructs and propo-
sitions of the theory. In the context of this third step, there are five ways in which
we might seek to make a theoretical contribution:

● Explicitly stating the assumptions of the conceptual underpinnings of the con-
structs and propositions of the theory.

● Challenging or extending existing knowledge of the constructs and propositions
of the theory.

● Borrowing perspectives from other disciplines to explain the constructs and
propositions of the theory.

● Providing logical justifications based on interpretations of an empirical study.
● Providing logical justifications based on interpretations of a synthesis of all prior

empirical evidence within the scope of the theory. Such synthesis, which possi-
bly includes replicated studies, might also expand the scope of a theory:

Methodological authorities generally regard replication, or what is also referred to as
“repeating a study,” to be a crucial aspect of the scientific method. … Heavily differenti-
ated replication leads to extensions of the scope of the result and hence its subsequent
practical applicability, that is, to other firms, other industries, different types of executives,
other years, or whatever. … Varying the conditions between different replications not only
extends the scope of the generalization and determines its limits, but also tells us about
some of the factors that do, or do not, affect the result causally.

(Lindsay and Ehrenberg, 1993)

4.1.4. Step 4: Determining the Scope of the Theory

The fourth step of the theory-building process is concerned with determining the
scope of the theory, which is especially important for empirically-based SE theories.

12 Building Theories in Software Engineering 327

In the context of this fourth step, there are two ways in which we might seek to
make a theoretical contribution (Weber, 2003):

● Specifying more precisely the values of a construct for which the theory will
hold, or conversely, specifying more precisely the values of a construct for
which the theory will not hold.

● Specifying more precisely the combinations of values of the constructs for
which the theory will hold, or conversely, specifying more precisely the combi-
nations of values of the constructs for which the theory will not hold.

4.1.5. Step 5: Testing the Theory Through Empirical Research

The last step of the theory-building process involves examination of the validity of
the theory’s predictions through empirical studies. In the context of this last step,
different types of empirical studies might be applied, which entails different
method-specific sub-steps as well as method-specific strengths and limitations in
the theory-building process. For example, the following separates case studies from
experiments with respect to theory building:

● In case studies, new insights typically evolve based on the data, while in experi-
ments, previous knowledge must often be applied to explain results.

● In case studies, hypotheses are examined for each case study unit, while in
experiments they are examined for an aggregate of the units using statistical
hypothesis building/testing.

● Theories derived from case studies tend to become less general than those
derived from experiments.

● Theories derived from case studies typically have more focus on explanations
than those derived from experiments.

In testing a theory, the following general steps must, nevertheless, be considered:

● Choosing an appropriate research setting and sample. The sample does generally
not only include the actors, but also the sample of technologies, activities (tasks)
and systems.

● Operationalizing theoretical constructs into empirical variables.
● Operationalizing theoretical propositions into empirically testable hypotheses.

For the purpose of describing the extent to which a theory has been validated, we
introduce the two terms scope of interest and scope of validity of a theory (Fig. 4).
“Scope of interest of a theory” is what we have simply denoted “scope of theory”
above. In contrast, a theory’s scope of validity refers to that part of the scope of
interest in which the theory has actually been validated. The scope of validity of a
theory is the accumulated scopes of validity of the results of the studies that have
tested the theory, or the studies from which the theory has been generated. Figure 4
shows that three studies have been conducted, and the area made up by the three
scopes of validity of the three studies corresponds to the scope of validity
of the theory (so far). The ultimate goal is that the scope of validity becomes equal

328 D.I.K. Sjøberg et al.

to the scope of interest. The first consideration to make in testing a theory is to
make sure that the study fits the theory’s scope of interest. Otherwise, the results
would be irrelevant to that theory. Moreover, in a given study, typically only a part
of the scope of interest can be tested. If that part has not been tested before, and is
supported by the study, then the current scope of validity has been extended.
However, note that empirical support or inconsistencies between theoretical propo-
sitions and empirical observations do not necessarily imply that the theory is validated
or disconfirmed, respectively. Judgements regarding the validity of the theory
require that the study is well conducted, and not encumbered with, for example,

● Invalid operationalization of theoretical constructs and propositions
● Inappropriate research design
● Inaccuracy in data collection and data analysis
● Misinterpretation of empirical findings

4.2. Example of Generating Theory from an Exploratory Case
Study: An Initial Theory for UML-Based Development in Large
Projects

The example theory presented in Sect. 3 was derived from an exploratory case
study that was conducted in the global company ABB (Anda et al., 2006; Anda and
Hansen 2006). The purpose of the case study was to investigate the use of a UML-
based method, and in particular to identify benefits and challenges, as well as their
causes, of applying such a development method in a large, distributed development
project. The goal of the project was to develop a new safety-critical process-control
system based on several existing systems. The development took place at four sites
in three countries. The total workforce comprised approximately 230 people, and
approximately 100 of them were involved in using the UML-based method. This
was the first project in ABB with large-scale use of UML. The company consequently

Fig. 4 Scope of interest versus scope of validity

12 Building Theories in Software Engineering 329

wanted to find out whether the UML-based development method improved the
quality of the development process and the resulting software product compared
with earlier projects that had not used UML.

Data was collected through individual interviews, questionnaires and project
documents.

4.2.1. Step 1: Defining the Constructs

In this case study, as is frequently the situation in case studies, much of the data
collected was in the form of texts, for example, transcripts of interviews and project
documents. These texts were subject to qualitative analysis based on the principles
of “grounded theory” (Strauss and Corbin, 1998), which is an established technique
for distilling concepts from textual data. Central concepts are candidate constructs
for a theory. Hence, the constructs of a theory derived from one or more case studies
in this way are well grounded in the data of the case(s).

The interviews of the case study were analyzed using the grounded-theory principles
of open, axial and selective coding. In open coding, categories of phenomena are
identified; in axial coding, categories are related to each other; and in selective coding,
the central categories that are candidates for constructs are identified. The following
characteristics of the actors (project, teams and individuals), activities and software
system, with corresponding definitions for use in this context, were identified and
evolved into the constructs given in Table 3.

4.2.2. Step 2: Defining the Propositions

After identifying the constructs, the next step in text analysis, according to
“grounded theory,” is to analyze emerging relationships between the constructs. In
the ABB case study, relationships were identified from the interviews, for example,
relationships were identified between the use of the UML-based development
method and several positive aspects of the project documentation such as more
documentation, better structured documentation. The identified relationships were
checked against each case, that is, against each interview. Relationships that had
clear support from the data were candidates for being included in the propositions
of the theory. Furthermore, the relationships were validated using questionnaires
(although not all relationships could be validated in this way) and compared with
literature on UML-based development. Finally, the relationships that were sup-
ported by all the data, and that included the candidate constructs identified in Step 1,
were aggregated in to the propositions described in Table 3.

Ideally, we would have liked the relationships expressed in the propositions to
be more quantitative, in accordance with the view of Dubin (1978, p. 170): “the
proposition predicts the specific values that one unit will have in relation to the
values of another.” Hence, the propositions listed in Table 3 may be regarded as
initial propositions. Follow-up studies may help quantify the propositions to some

330 D.I.K. Sjøberg et al.

extent, but it seems unrealistic in the near future to provide quantitative propositions
in SE. At least, another of magnitude of more empirical studies would then be
needed (Sjøberg et al., 2007).

4.2.3. Step 3: Providing Explanations

Explanations for each proposition were identified in the same way as were the
propositions. The difference between a proposition and an explanation is that the
former is a relationship among constructs, and the latter is a relationship among
constructs and other categories, which are not central enough to become constructs
(see explanation of “grounded theory”-terminology given under step (1)). This step
is typically more elaborate in theories derived from case studies than in theories
derived from experiments, because qualitative data, which typically are better at
explaining phenomena, are more frequently collected. For two of the propositions,
the corresponding explanations were shown in Table 3.

4.2.4. Step 4: Determining the Scope

Since this theory is derived from “grounded theory,” the scope of validity of the
study would form the starting point for the scope of the theory, which would generally
be too narrow to be interesting for a theory. Nevertheless, defining the initial scope
is not trivial; the number of potential scope conditions of a case study is large, and
there is little guidance in the SE literature regarding how the scope of a case study
should be documented, Kitchenham et al. (2002) state: “Be sure to specify as much
of the industrial context as possible. In particular, clearly define the entities, attributes
and measures that are capturing the contextual information.”

In practice, judgment must be exercised in the description of scope conditions
and the level of detail of their description. Below we will describe what we consider
to be the relevant conditions for the scope of validity of the theory (which is the
same as the scope of this case study since the theory is only based on one study so
far, see Fig. 3). We will then describe what we think should be the scope of the
theory. The scope of validity is too narrow as a scope of a theory, because it would
make the theory applicable to very few software projects. This theory is at Level 1
(Sect. 2.3), which indicates a scope of interest relatively similar to the scope of
validity of the study, but based on the study and on other work on UML-based
development, we propose a wider scope of the theory.

Technology

– Scope of validity: In the UML-based development method applied in the study,
use case diagrams, sequence diagrams and class diagrams were compulsory,
while the use of other UML diagrams was at the discretion of the individual
teams.

– Scope of interest: UML-based development methods

12 Building Theories in Software Engineering 331

Actor

– Scope of validity: The project was distributed with development at four sites in
three countries. Some of the teams were also distributed with team members
working at different sites. The teams were medium-sized (typically 8–10 people
in each team), the team members mostly had good knowledge of the application
domain, their educational background was typically at the level of an MSc, and
most were newcomers to the use of UML at the start of the project, but became
quite proficient in UML during the project due to it’s size.

– Scope of interest: Projects with distributed teams

Software system

– Scope of validity: The system to be developed was large (approximately 1,000
requirements and 3–4 mill. lines of code), which was divided into approximately
ten large subsystems. The software was embedded, C and C++ were used as
programming languages, the system was safety-critical and the development
followed the requirements of the safety standard IEC61508. Some parts of the
system were developed from scratch while others were based on legacy code of
existing systems.

– Scope of interest: Large, embedded, safety-critical system, possibly based on
legacy code.

Activity

Both scope of validity and scope of interest are “create” and “modify.”

4.2.5. Step 5: Testing the Theory

This example theory has not yet been tested.

5. Evaluating the Example Theory

This section evaluates the initial theory for UML-based development in large
projects described in Sect. 3 according to the criteria presented in Sect. 2.

Testability

The constructs and propositions of the theory are understandable, internally
consistent and free from ambiguities, at least from the point of view of developers
and practitioners familiar with the topic of the theory. Hypotheses can be derived
from the propositions, the scope conditions are clearly defined, although some of
the constructs, such as “large” and “distributed,” assume the existence of taxono-
mies of software systems in order to be precisely defined. The theory can be
empirically tested in case studies or surveys of development projects that fall
within the scope of the theory. Most material for such testing, in the form of inter-

332 D.I.K. Sjøberg et al.

view guides and analysis procedures are available for use, see (Anda et al., 2006).
Such empirical testing would consist in testing whether the propositions of the
theory are supported in other projects. The scope condition indicating “large
subsystems” means that it is difficult, that is, would be very costly, to test this
theory in experiments. We consider the testability of this theory as moderate.

Empirical support

There are few other empirical studies on benefits and challenges of UML-
based development. Three empirical studies on UML-based development have a
similar or wider scope than the scope of our theory (Baker et al., 2005; Petit,
2004; Dobing and Parsons, 2006). These studies all have a slightly different focus
than the study on which our theory is based, but they support different proposi-
tions of our theory; (Petit, 2004) supports P2 on communications, (Dobing and
Parsons, 2006) supports P4 on documentation, and (Baker et al., 2005) supports
P5 on testing. Furthermore, two studies on UML-based development have differ-
ent scope conditions; Arisholm et al. (2006) report a controlled experiment with
students performing maintenance activities. The results support P3 on design.
MacDonald et al. (2005) report a student project that supports P2 on communica-
tion and P8 on legacy development. If more empirical studies are conducted on
UML-based development, it may be possible to extend the scope of our theory
and in that case those two studies may also be included as part of the empirical
support for the theory. Since the example theory is supported or partly supported
by all comparable empirical studies on UML-based development, we consider the
empirical support for this theory to be moderate.

Explanatory power

Many factors influence the results of software creation and modification
activities. Hence, we expect that SE theories will seldom have high explanatory
power. This theory is at Level 1 (see Sect. 2) and accounts for some, but far
from all aspects of software creation and modification with the use of UML-
based development. We consider the explanatory power of the theory as low.

Parsimony

A theory derived from one case and with the use of “grounded theory” will
typically be quite complex, with many constructs and propositions, but we have
attempted to use a minimum of constructs and propositions in this theory. We
consider the parsimony of the theory as moderate.

Generality

The scope of this theory is narrow, something which is typical for theories at
Level 1 theories. We consider the generality of the theory as low.

Utility

This theory can be used in the decision making in projects for which it is
relevant with little adaptation. We consider the utility of the theory as high.

12 Building Theories in Software Engineering 333

6. Summary and Future Work

The motivation for the work reported in this chapter is that without a stronger focus
on theory building in the empirical SE community, we will probably continue to
produce many isolated, exploratory studies, which will limit our ability to aggre-
gate knowledge. Even a weak theory may frequently be better than no theory.

We have described a framework that we believe will benefit the process of pro-
posing, testing and modifying and describing SE theories. We illustrated the frame-
work with an example of how to build theories systematically from an exploratory
case study using the technique of “grounded theory.” Future work will include
describing how to build theories from experiments and from systematic reviews of
the SE literature.

The framework suggested above is not intended as “silver bullets” to build and
document theories; theory development requires significant reflection and skill
regarding study design and argumentation. Hence, there is a need for more system-
atic teaching of research methods and theory building as part of SE education.

During our work with a survey to identify and describe theories used in SE
experiments (Hannay et al., 2007), we experienced that there is no simple way of
identifying empirically-based theories that are used or built in SE. There are web
sites for collecting and documenting theories in psychology3 and information systems4.
In the same manner, Simula Research Laboratory has begun building a site for
empirically-based SE theories, see se-theory.simula.no. We believe that this will
make it easier for scholars to find relevant theories for their research and that this
will stimulate the community to collaborate on building new theories and on
improving existing theories.

Acknowledgements We would like to thank Magne Jørgensen and Reidar Conradi for useful
discussions and insightful comments, and Chris Wright for proofreading the chapter.

References

Abdel-Hamid, T.K., Sengupta, K. and Ronan, D., Software project control: an experimental inves-
tigation of judgement with fallible information, IEEE Transactions on Software Engineering,
19(6): 603–612, 1993.

Anda, B.C.D. and Hansen, K., A case study on the application of UML in legacy development. In
ISESE’2006 (Fifth ACM-IEEE International Symposium on Empirical Software Engineering),
J. Maldonado and C. Wohlin (eds.), Rio de Janeiro, Brasil, ACM Press, September 21–22,
pp. 124–133, 2006.

Anda, B.C.D., Hansen, K., Gullesen, I. and Thorsen, H.K., Experiences from using a UML-based
development method in a large safety-critical project, Empirical Software Engineering, 11(4):
555–581, 2006.

3 http://changingminds.org/explanations/theories/theories.htm
4 http://www.istheory.yorku.ca/

334 D.I.K. Sjøberg et al.

Arisholm, E., Briand, L.C., Hove, S.E. and Labiche, Y., The impact of UML documentation on
software maintenance: an experimental evaluation, IEEE Transactions on Software
Engineering, 32(6): 365–381, 2006.

Bacharach, S.B., Organizational theories: some criteria for evaluation, Academy of Management
Review, 14(4): 496–515, 1989.

Baker, P., Loh, S. and Weil, F., Model-driven engineering in a large industrial context – motorola
case study. In MoDELS 2005, LNCS 3713, L. Briand and C. Williams (eds.), New York,
Springer-Verlag, pp. 476–491, 2005.

Baron, R.M. and Kenny, D.A., The moderator-mediator variable distinction in social psychological
research: conceptual, strategic, and statistical considerations, Personality and Social
Psychology, 51(6): 1173–1182, 1986.

Basili, V.R., Editorial, Empirical Software Engineering, 1(2), 1996.
Basili, V.R., Shull, F. and Lanubile, F., Building knowledge through families of experiments,

IEEE Transaction on Software Engineering, 24(4): 456–473, 1999.
Booch, G., Rumbaugh, J. and Jacobson, I. The Unified Modeling Language User Guide, Boston,

MA, Addison-Wesley, 1999.
Bunge, M., Scientific Research: The Search for a System, New York, Springer-Verlag, 1967.
Burkhardt, J.M., Detienne, F. and Wiedenbeck, S., Object-oriented program comprehension:

effect of expertise, task and phase, Empirical Software Engineering, 7(2): 115–156, 2002.
Carroll, J. and Swatman, P.A., Structured-case: a methodological framework for building theory

in information systems research, European Journal of Information Systems, 9: 235–242,
2000.

Cohen, B., Developing Sociological Knowledge: Theory and Method, 2nd edn, Belmont, CA,
Wadsworth Publishing, 1989.

Dobing, B. and Parsons, J., How UML is used, Communications of the ACM, 49(5): 109–113,
2006.

Dewey, J., The Middle Works, 1899–1924, Vol. 15, J.A. Boydston, (ed.), Carbondale, Southern
Illinois University Press, 1976–1983.

Dubin, R., Theory Building, Free Press, New York, 1978.
Endres, A. and Rombach, D., A Handbook of Software and Systems Engineering. Empirical

Observations, Laws and Theories. Fraunhofer IESE Series on Software Engineering, Pearson
Education Limited, 2003.

Feynman, R.P., QED – The Strange Theory of Light and Matter, Penguin Science, Harmondsworth,
1985.

Franck, R., The Explanatory Power of Models, Dordrecht, Kluwer Academic Publishers, 2002.
Glaser H.G. and Strauss A.L., The Discovery of Grounded Theory: Strategies for Qualitative

Research, Hawthorne, NY, Aldine Publishing Company, 1967.
Godfrey-Smith, P., Pragmatism: philosophical aspects, International Encyclopedia of the Social

& Behavioral Sciences, 17: 11954–11958, 2001.
Gregor, S., The nature of theory in information systems, MIS Quarterly, 30(3): 611–642,

2006.
Gruber, T.R., A translation approach to portable ontology specifications, Knowledge Acquisition,

5(2): 199–220, 1993.
Haig, B.D., An abductive theory of scientific method, Psychological Methods, 10(4): 371–388,

2005.
Hannay, J.E., Sjøberg, D.I.K. and Dybå, T., A systematic review of theory use in software engi-

neering experiments, IEEE Transactions on Software Engineering, 33(2): 87–107, 2007.
Hawking, S. and Penrose R., The Nature of Space and Time, Princeton University Press,

Princeton, NJ, 1996.
Herbsleb, D.J. and Mockus, A., Formulation and preliminary test of an empirical theory of coor-

dination in software engineering, ACM SIGSOFT Software Engineering Notes, 28(5):
138–147, 2003.

Hevner, A.R. and March, S.T., The information systems research cycle, IEEE Computer Society,
36(119): 111–113, 2003.

12 Building Theories in Software Engineering 335

Hevner, A., March, S.T., Park, J., and Ram, S, Design science research in information systems,
MIS Quarterly, 28(1): 75–105, 2004.

James, W., Pragmatism: A New Name for Some Old Ways of Thinking, New York: Longman Green
and Co, 1907.

Jørgensen, M. and Sjøberg, D.I.K., Generalization and theory-building in software engineering
research. In Empirical Assessment in Software Engineering (EASE2004), IEE Proceedings,
pp. 29–36, 2004.

Kitchenham, B.A., Pfleeger, S.L., Pickard, L.M., Jones, P.W., Hoaglin, D.C., El Emam, K. and
Rosenberg, J., Preliminary guidelines for empirical research in software engineering, IEEE
Transaction on Software Engineering, 28(8): 721–734, 2002.

Land, L.P.W., Wong, B. and Jeffery, R., An extension of the behavioral theory of group perform-
ance in software development technical reviews, Proceedings of the Tenth Asia-Pacific
Software Engineering Conference Software Engineering Conference, pp. 520–530,
2003.

Lewin, K., The research center for group dynamics at Massachusetts Institute of Technology,
Sociometry, 8: 126–135, 1945.

Lindblom, C.E., Alternatives to validity. Some thoughts suggested by Campbell’s guidelines,
Knowledge: Creation, Diffusion, Utilization, 8: 509–520, 1987.

Lindsay, R.M. and Ehrenberg, A.S.C., The design of replicated studies, The American Statistician,
47: 217–228, 1993.

Lucas, J.W., Theory-testing, generalization, and the problem of external validity, Sociological
Theory, 21: 236–253, 2003.

Lynham, S.A., The general method of theory-building research in applied disciplines, Advances
in Developing Human Resources, 4(3): 221–241, 2002.

MacDonald, A., Russel, D. and Atchison, B. Model-driven development within a legacy system:
an industry experience report, Proceedings of the 2005 Australian Software Engineering
Conference (ASWEC’2005). IEEE Computer Society, pp. 14–22, April 2005.

March, S.T. and Smith, G.F., Design and natural science research on information technology,
Decision Support Systems, 15(4): 251–266, 1995.

Markovsky, B., The structure of theories. In Group Processes, M. Foschi and E.J. Lawler, (eds.),
Nelson-Hall Publishers, Chicago, pp. 3–24, 1994.

Merton, R.K., Social Theory and Social Structure, 3rd ed, The Free Press, New York, 1968.
Nagel, E., The Structure of Science, Hackett, Indianapolis, 1979.
Peirce, C.S., Collected Papers, Harvard University Press, Cambridge, MA, 1958.
Petit, R.G., Lessons learned applying UML in embedded software systems designs, Proceedings

of the Second IEEE Workshop on Software Technologies for Future Embedded and Ubiquitous
Systems (WSTFEUS’04), Vienna, Austria, May 11–12, pp., 75–79, 2004.

Popper, K., The Logic of Scientific Discovery, Hutchison, London, 1959.
Ramanujan, S., Scamell, R.W. and Shah, J.R., An experimental investigation of the impact of

individual, program, and organizational characteristics on software maintenance effort,
Journal of Systems and Software, 54(2): 137–157, 2000.

Rosenberg, A., Philosophy of Science: A Contemporary Introduction, Routledge, London, 2001.
Ruse, M. (1995). Theory. The Oxford Companion to Philosophy. T. Honderich, Oxford University

Press, New York, 870–871.
Salmon, W.C., Four decades of scientific explanation. In Scientific Explanation, P. Kitcher and

W.C. Salmon, (eds.), Minnesota Studies in the Philosophy of Science, Vol. 13, Minnesota
Press, Series, pp. 3–219, 1989.

Sandborg, D., Mathematical explanation and the theory of why-questions, The British Journal for
the Philosophy of Science, 49(4): 603–624, 1998.

Sauer, C, Jeffery, D.R., Land, L. and Yetton, P., The effectiveness of software development tech-
nical reviews: a behaviorally Motivated program of research, IEEE Transactions on Software
Engineering, 26(1): 1–14, 2000.

Shadish, W.R., Cook, T.D. and Campbell, D.T., Experimental and Quasi-Experimental Designs
for Generalized Causal Inference, Houghton Mifflin, Boston, MA, 2002.

336 D.I.K. Sjøberg et al.

Simon, H.A., The Sciences of the Artificial, MIT Press, Cambridge, MA, 1996.
Sjøberg, D.I.K., Dybå, T. and Jørgensen, M., The future of empirical methods in software engi-

neering research. In Future of Software Engineering (FOSE ‘07), L. Briand and A. Wolf,
(eds.), IEEE-CS Press, Minneapolis, US, pp. 358–378, 2007.

Sjøberg, D.I.K., Hannay, J.E., Hansen, O., Kampenes, V.B., Karahasanović, A., Liborg, N.-K. and
Rekdal, A.C., A survey of controlled experiments in software engineering, IEEE Transactions
on Software Engineering, 31(9): 733–753, 2005.

Strauss, A. and Corbin, J., Basics of Qualitative Research: Techniques and Procedures for
Developing Grounded Theory, 2nd ed, Sage, Thousand Oaks, CA, 1998.

Sutton, R.I. and Staw, B.M., What theory is not, Administrative Science Quarterly, 40: 371–384,
1995.

Thagard, P., Conceptual Revolutions, Princeton University Press, Princeton, NJ, 1992.
Tichy, W.F., Should computer scientist experiment more? 16 excuses to avoid experimentation,

IEEE Computer, 31(5): 32–40, 1998.
Van Dijk, T.A. and Kintsch, W., Strategies of Discourse Comprehension, Academic Press, New

York, 1983.
Van Fraassen, B., The Scientific Image, Oxford University Press, New York, 1980.
Wagner, D.G., The growth of theories. In Group Processes, M. Foschi and E. J. Lawler, (eds.),

Nelson-Hall Publishers, Chicago, pp. 25–42, 1994.
Weber, R., Editor’s comments, MIS Quarterly, 27(3): 3–12, 2003.
Weick, K.E., Theory construction as disciplined imagination, Academy of Management Review,

14(4): 516–531, 1989.
Whetten, D.A., What constitutes a theoretical contribution, Academy of Management Review,

14(4): 490–495, 1989.
Yin, R.K., Case Study Research: Design and Methods, Sage Publications, Thousand Oaks, CA,

1984.
Yin, R.K., Case Study Research: Design and Methods, Applied Social Research Methods Series

5, 3rd ed, Sage Publications, Thousand Oaks, CA, 2003.

Chapter 13
Building Theories from Multiple
Evidence Sources

Forrest Shull and Raimund L. Feldmann

Abstract As emphasized in other chapters of this book, useful results in empirical
software engineering require a variety of data to be collected through different studies
– focusing on a single context or single metric rarely tells a useful story. But, in
each study, the requirements of the local context are liable to impose different con-
straints on study design, the metrics to be collected, and other factors. Thus, even
when all the studies focus on the same phenomenon (say, software quality), such
studies can validly collect a number of different measures that are not at all com-
patible (say, number of defects required to be fixed during development, number
of problem reports received from the customer, total amount of effort that needed
to be spent on rework). Can anything be done to build a useful body of knowledge
from these disparate pieces?

This chapter addresses strategies that have been applied to date to draw conclu-
sions from across such varied but valid data sets. Key approaches are compared
and the data to which they are best suited are identified. Our analysis together with
associated lessons learned provide decision support for readers interested in choos-
ing and using such approaches to build up useful theories.

1. Introduction

Research in software engineering is often concerned with the development of new
techniques, methods, or tools for software development. It has long been recog-
nized that the weaknesses and benefits of such technologies can be identified by
conducting empirical studies (Basili et al, 1986, 1999). Empirical information is
necessary for researchers to refine the technologies, as well as for practitioners to
understand when such technologies are likely to be useful. Empirical evidence can
never prove that a technology will be useful under specific conditions, but such
evidence helps build theories to that effect. The more evidence that can be accumu-
lated, and the greater the extent to which the evidence is internally consistent, the
more confidence can be had in the theories they support.

337

F. Shull et al. (eds.), Guide to Advanced Empirical Software Engineering.
© Springer 2008

338 F. Shull and R.L. Feldmann

The chapter by Sjøberg et al. (Sjøberg, 2007a) in this book discusses the diffi-
culty of providing a precise definition of what a “theory” is. However, to avoid
misconceptions, we adopt their convention of focusing on empirically-based theo-
ries, which are built on the basis of empirical research to offer explanations of why
certain phenomena occur. We also adopt their criteria in saying that a good theory
is constructed in such a way as to be testable; is supported by evidence, perhaps in
the form of empirical studies; has explanatory power; contains the minimum
number of concepts and prepositions; is independent of specific settings; and has
relevance to the software industry. In accordance with Zelkowitz, we define empiri-
cal studies as a general form of research strategy that relies on analysis of the
results of application in some context (Zelkowitz, 2001). Empirical studies include
for example controlled experiments, case studies, and archival analyses.

Although a theory represents a proposed model of reality, these need not be formal
models. An example of a theory that aims to support decision-making by practitioners
might be, “When process conformance is good, software formal inspections will find
and remove between 60% and 90% of the extant defects in an artifact, under typical
conditions in many environments.” Theories may also build implicit models by
hypothesizing relationships between variables, such as “When applied by very small
teams, the cost to apply software formal inspections may be prohibitive.”

A single empirical study is a first step towards constructing theories related to
the effectiveness of a technique, method, or tool. However, such single studies usu-
ally have a low power. The findings become more reliable (and we have greater
confidence in the theories they support) if studies are replicated (i.e., are repeated
or conducted in different settings). Similar findings in replications increase the
confidence in the results. Multiple authors (e.g., Basili, 1999; Miller, 2000;
Kitchenham et al, 2004) point out that it is necessary to accumulate the material of
many studies to abstract robust and useful theories.

Based on our experiences, we define a “useful” theory as one which satisfies these
criteria: (1) There must be traceability to the supporting data, such that a level of
confidence is enabled. To have high confidence, there must be a rigorous way of
showing which sources of evidence support a theory. (2) The theory must be abstract
enough to be useful (i.e., it cannot hold only under certain unusual or unrealistic con-
ditions, but it has to be relevant for some subset of software development projects).

Building theories is difficult, mainly because solid theories need to be supported
by a significant body of evidence. But evidence is generated from many different
environments, for many different reasons, and there are no universal standards for
how to measure aspects of software development. For example, a researcher might
want to theorize that a particular practice helps improve software quality.
Supporting or extending this theory becomes difficult when some of the evidence
on which it is based measures software quality in terms of customer satisfaction,
some in terms of number of defects found after delivery, and some using the
number of defects removed from work artifacts.

A number of techniques have been applied to accumulate bodies of knowledge
and support theories based on them. The techniques range from informal, subjec-
tive, and unrigorous to formal, objective, and rigorous. In this chapter, we describe

13 Building Theories from Multiple Evidence Sources 339

three such techniques and summarize the process for applying them. Since research
techniques, just like development techniques, work well in some contexts and for
some goals but not for all, we also assess all of the techniques along a standard set
of dimensions to help understand the problems and conditions for which each is
most appropriate.

2. Theory Building

After the more general introduction to the problem in the last section, we now take
a closer look at the different tasks that need to be accomplished in order to build a
useful body of knowledge. First, we will introduce a general process description of
how theories can be built using available quantitative and qualitative evidence
(Subsection 2.1). Based on these general process steps we will compare and con-
trast various existing approaches in the following sections. Second, we will identify
and discuss a set of quality attributes for a body of knowledge (Subsection 2.2).
This set of attributes will allow us to better classify the existing approaches.

2.1. A Process Model for Building Theories

Several approaches exist for how to build a body of knowledge out of discrete
pieces of evidence. These approaches vary in specific details, such as the type of
evidence considered for the evaluation, or in the way of handling different evi-
dence pieces. However, all approaches need to integrate some essential process
steps to be repeatable and systematic: (1) Define the topic, (2) identify search
parameters, (3) find evidence, (4) analyze evidence, and (5) integrate evidence.
Fig.1 displays how these steps are connected and emphasizes the iterative nature
of the process.

For describing the process steps, and the basic activities associated with them,
we will use the following schema:
Step number/name: Clearly identifies the process step.
Input: Lists products and preconditions needed to execute the process step.
Actions: Describes the basic activities performed in this process step.
Output: Identifies the products generated by the process and post conditions.
Comments: Provides a practical example of what needs to be done in this step or

lists typical issues.

2.1.1. Define Topic

Before we can start collecting any evidence for a theory, the topic of the theory we
want to describe needs to be defined. In this first step one has to clearly identify the
object(s) that will be described by the theory. Ideally, this description not only

340 F. Shull and R.L. Feldmann

identifies the topic(s) but also provides the basic definitions for key terms and con-
cepts. Quality attributes, i.e., specific aspects of the object we are interested in,
need to be included in this definition process, too. Examples for such quality
attributes could be the effectiveness of the object regarding cost or time
reduction.

This process step can be triggered for several reasons. Typical examples are the
need for decision support on a given topic, or the interest of a researcher to identify
missing studies in a certain field. As a result of this step we create a Theory Topic
Definition Document (TTDD), which will be the input and basic reference for the
following process steps.

For formulating the goal in a more formal manner one might consider a specific
template or other structured approaches. The Goal Question Metric (GQM) approach
(Basili, 1994b; van Solingen and Berghout, 1999), for instance, provides a specific
goal template for describing measurement goals. We have found the GQM goal tem-
plate, as depicted in Fig.2 useful for helping to specify fairly straightforward theories,
since it helps make explicit the object that is being theorized about as well as the
properties of interest. Templates that are more comprehensive, for instance, have been
proposed in Sjøberg (2007b).

Note that some researchers in the social sciences recommend mapping studies,
prior to performing systematic review, in order to identify patterns in the research
literature and identify areas suitable for systematic literature review or meta analy-
sis or where more primary studies are needed (Petticrew and Roberts, 2006). This
activity, however, may be most relevant under certain conditions or study topics.

Define
topic

Identify
search

parameters

Find
evidence

Analyze
evidence

Integrate
evidence

– accepted forms of
 evidence

– sources to include

– conduct literature
 surveys, polls, and
 interviews

– filter results

– extract content
– standardize &
 document

– handle
 discrepancies

– abstract
 conclusion

Fig. 1 Basic process steps for building a theory based on multiple pieces of evidence

13 Building Theories from Multiple Evidence Sources 341

In conclusion, the first process step is summarized by using our schema in
Table 1.

2.1.2. Identify Search Parameters

Using the concrete topic definition in the TTDD, the next process step in building
a theory focuses on the search parameters for finding evidence. The evidence will
be the basis for our body of knowledge. Hence, it is crucial to (a) clearly identify
acceptable forms of evidence, and (b) describe how we will proceed to find the
evidence.

By determining the forms of acceptable evidence it is indirectly determined how
rigorous the overall process of building the body of knowledge will be. If, for
instance, only the most significant and best documented empirical results will be
considered, a highly rigorous process is most likely. The overall rigor becomes
more relaxed if, for instance, qualitative evidence such as lessons learned is
included.

Possible forms of evidence include: A rigorous empirical study with a compari-
son of the object under study to other existing practices, a controlled experiment in
a research environment, an industrial case study, literature surveys, a qualitative
statement of lessons learned, a poll, or even a single person’s opinion captured in a
white paper or interview. A good overview and classification of possible empirical
evidence can be found in (Zelkowitz and Wallace, 1998).

Along with the types of accepted evidence goes the definition of accepted (i.e.,
trusted) sources for such evidence. Such sources can range from books and archival

Analyze the [object]
for the purpose of [purpose]
with respect to
from the perspective of
in the context of

[quality aspect]
[view point]

[context]

Fig. 2 GQM goal template according to Basili et al

Table 1 Overview of process step 1

Step number and name ❶ Define topic

Input This process step can be started at any time; no specific input
documents are required

Actions Clearly describe the theory to be developed; provide basic defi-
nitions and include quality attributes

Output Theory Topic Definition Document (TTDD)
Comments Definitions may not be necessary if the relevant terms are com-

monly known

342 F. Shull and R.L. Feldmann

journals, where each piece of evidence is peer reviewed, to purely electronic
sources on the Internet, which may include promotional material of technology
vendors or companies.

Last but not least, we have to identify the possible search process we will use to
find the evidence. This is in part connected to the list of accepted sources. For
instance, evidence in journals can be found by searching specific internet cata-
logues of such journals (e.g., IEEE Computer Society Digital Library1 or The ACM
Digital Library2) or by a classical library search. A search for evidence on the
Internet offers even more possibilities: Which search engines are going to be used?
What keywords will be entered? How are the results filtered? In any case, it is nec-
essary to document the intended (and later applied) search process and routines so
it becomes obvious and repeatable for others.

As outcome products of our second process step, we generate a List of Accepted
Forms of Evidence (LAFE), a List of Accepted (i.e., trusted) Sources for the
Evidence (LASE), and a Search Process Definition (SPD). All of these results can
consist of separate documents, or can even be included in a single document. They
even might be added to the TTDD. However, for our generic process we assume
that each document will be handled separately.

We summarize the second process step by using our schema, in Table 2.

2.1.3. Find Evidence

While the first two process steps have been more concerned with the theoretical
foundation of the theory building, this third process step marks the start of the
practical work. The pieces of evidence for our body of knowledge are retrieved.
Therefore, the search is executed as documented in the Search Process
Definition (SPD).

Table 2 Overview of process step 2

Step number and name ❷ Identify search parameters

Input Process ❶ needs to be terminated; complete Theory Topic
Definition Document (TTDD)

Actions Identify and list the accepted forms of (empirical) evidence.
Provide an initial list of acceptable sources for the evidence.
Describe the search process that will be applied

Output List of Accepted Forms of Evidence (LAFE); List of Accepted
Sources of Evidence (LASE); Search Process Definition (SPD)

Comments Typically, this process step is executed in an iterative way. As
soon as some of the produced documents exist, they may be
evaluated and fine-tuned in the following process steps

1 On-line at http://www.computer.org/portal/site/csdl/index.jsp
2 On-line at http://portal.acm.org

13 Building Theories from Multiple Evidence Sources 343

This process step could include such activities as performing a literature survey,
conducting specific polls, or holding interviews with practitioners and experts.
All of the retrieved evidence should be documented in a Collection of Retrieved
Evidence for Theory (CRET). This step is summarized in Table 3.

2.1.4. Analyze Evidence

In this process step the potential evidence pieces in the CRET will be analyzed.
Therefore, one first has to take a look at the CRET and define the process for the
analysis. The process for analyzing the evidence has not necessarily been defined
before (e.g., in step 2) because it may be dependant on the evidence itself (e.g., its
quantity, quality, completeness, etc.). One also may have to further filter the CRET
and prepare the single evidence pieces for the analysis. As part of the analysis
activities the content of each evidence piece is extracted and prepared for the inclu-
sion into the body of knowledge. This extraction is based on the defined quality
attributes of the TTDD. Specific analysis methods will be discussed in the later
sections of this chapter.

As results of this process step one creates a Documentation of Chosen Analysis
Process (DCAP) and the Analyzed Evidence for Theory (AET). See Table 4 for a
summary of these actions and output.

2.1.5. Integrate Evidence

In this last step of the general process for building theories, summarized in Table 5,
the actual body of knowledge is described and documented. This includes the clear
identification and representation of all found and accepted pieces of evidence, the
handling of possible discrepancies in these different evidence pieces, as well as an
abstraction from the single evidence pieces. As a result of this final process step we
create a Structured Body of Knowledge (SBK).

To create the SBK several activities have to be performed. First of all the basis
for the SBK needs to be documented. This may be simply done by referring to the
AET or by integrating the AET evidence pieces into a specific data structure or

Table 3 Overview of process step 3

Step number and name ❸ Find evidence

Input Process step ❷ must have been started; initial versions of LAFE
and LASE exist, and SPD has been created

Actions Execute SPD; conduct literature surveys, polls, and/or interviews
Output Collection of Retrieved Evidence for Theory (CRET)
Comments For documentation purposes, the CET should include all of the

retrieved evidence pieces that match the LAFE and LASE cri-
teria. A filtering of these results will be conducted in the next
process step ❹

344 F. Shull and R.L. Feldmann

knowledge management system. Ideally, all evidence pieces have similar tenden-
cies or the same findings regarding the quality attributes under study. In this case it
is relatively easy to integrate all pieces of evidence into an abstraction. The abstrac-
tion is a transparent conclusion that summarizes the findings of all evidence pieces
regarding the theory and the quality attributes under evaluation. This abstraction
allows users to get a quick overview of the body of knowledge without having to
take a look at all evidence pieces. Specific methods for accomplishing this combi-
nation and extraction of evidence will be discussed later in this chapter.

Regardless of which integration method is chosen, one important goal is that
contradictory findings in the AET are clearly reflected in the final output. For
instance, the results of the process so far may show that for seven out of nine pieces
of evidence there are clear results that a technology reduces costs. But in the two
other pieces of evidence it is reported that there has been no cost reduction or, even
worse, that the cost has been increased. This inconsistency needs to be reflected
somehow in the abstraction of the body of knowledge.

In analyzing these inconsistencies, it is important to note whether the evi-
dence suggests that certain factors might be responsible for the different results.

Table 4 Overview of process step 4

Step number and name ❹ Analyze evidence

Input This process step can be started as soon as the first pieces of evi-
dence are added to the CRET. TTDD is used as a basis

Actions Define suitable process for analyzing the CRET
Filter and prepare results from CRET according to process
Extract content from evidence based on defined process

Output Documentation of Chosen Analysis Process (DCAP)
Analyzed Evidence for Theory (AET)

Comments In the general process for building theories we include the DCAP
in the analysis step. However, specific process may choose to
perform this considerations already as part of the earlier process
steps (e.g., step ❶ or ❷)

Table 5 Overview of process step 5

Step number and name ❺ Integrate evidence

Input This process step can be started as soon as the DCAP is existent
and the first pieces of evidence are available in the AET
documentation

Actions Standardize and make evidence available to users
Identify and handle discrepancies in the evidence set
Create an abstraction that integrates all evidence pieces into a

transparent summary
Output Structured Body of Knowledge (SBK)
Comments If not enough evidence is available for this process step, it might

be considered to redefine the search parameters (step ❷) or
repeat the search step ❸

13 Building Theories from Multiple Evidence Sources 345

For example, if the seven pieces of evidence, which support the idea that the tech-
nology reduces costs all come from large projects, and the contradictory evidence
comes from small projects, then it is possible to hypothesize that project size influ-
ences the effectiveness of the technology. It is important to note that influencing
factors may be attributes of the studies as well as attributes of the project; for exam-
ple, analysts might notice that beneficial effects are seen only in the studies of one
researcher and are missing in independent replications.

2.2. Quality Attributes for Classifying Theories

Before we take a detailed look at how different approaches instantiate the general
process steps, we introduce some quality attributes that apply to theory building
approaches. These quality attributes can be used to:

1. Characterize the specific aspects of a given theory building approach
2. Classify and compare the different theory building approaches so as to select the

most suitable

Based on our experiences with decision support and technology transfer, we choose
the following eight quality attributes as most relevant to robust and useful theories:
(1) Applicability for qualitative data, (2) applicability for quantitative data, (3) scal-
ability, (4) objectivity, (5) fairness, (6) ease of use, (7) openness, and (8) cost.

Since we are only intending to give tendencies on how these quality attributes
are met by different approaches to theory building, we will rate each approach for
each attribute as either: +, ±, or −. In this scheme a + indicates that the given
approach can produce output that is rated well for this attribute, while a − definitely
indicates that the approach is not well suited for users to whom this attribute is
important. A ± is used in the case where no clear tendencies can be identified.

2.2.1. Applicability for Quantitative Data

This attribute indicates whether or not an approach makes use of quantitative data
such as numeric measures of cost, quality, or schedule impact. Approaches that
explicitly do not include such information will be indicated by a −, while others
which explicitly include them will be indicated by a +.

2.2.2. Applicability for Qualitative Data

This attribute indicates whether or not an approach makes use of qualitative data
such as lessons learned, whitepapers, or expert statements and interviews. Some
approaches explicitly do not include such information (which will be indicated by
a −) while others explicitly include them (indicated by a +).

346 F. Shull and R.L. Feldmann

2.2.3. Scalability

This attribute addresses the question of how easy or hard it is likely to be to find
evidence that matches the constraints of the theory-building approach. That is,
given the current state of the software engineering literature, does the approach
scale up in that it can use a large set of publications as evidence, or is it limited to
only a small subset? Obviously this will depend on the particular theory and the
desired rigor of the analysis; however, this criterion attempts to give a (subjective)
rating of, on balance, how many evidence sources in the software engineering
domain will be found that are suitable inputs. A – indicates the approach is defined
in such a way that suitable evidence sources will be difficult to find, while a + indi-
cates the approach is designed to be more inclusive.

2.2.4. Objectivity

This attribute expresses how objective the approach is in handling the evidence. It
describes the extent to which subjective influences of the person(s) executing the
process are excluded. The more objective a process, the more deterministic its
output becomes. Hence, this attribute indirectly captures the extent to which the
process is repeatable. A + indicates the absence of subjective influences, while a −
indicates the potential presence of such influences. A ± is used in the case where
no determination can be made.

2.2.5. Fairness

This attribute describes the lack of bias in an approach. While objectivity describes
whether repeatable conclusions will be drawn from a given set of evidence, fairness
describes whether an approach will collect an appropriate set of evidence on which
to base conclusions. Approaches with no bias will be marked with a + while a −
indicates that the approach has the potential to include some bias.

2.2.6. Ease of Use

This attribute describes how easily the results can be accessed from a user’s per-
spective. Are results clearly understandable by everyone, or does one need specific
knowledge, for example about a domain, to interpret them? We rate outcomes that
require no additional knowledge with a + while others which require highly special-
ized knowledge are rated with −.

2.2.7. Openness

This attribute describes how open the process steps are for the user. Can interested
outside parties understand how the results were created? Are intermediate results
available so that various process steps can be re-applied by outsiders and the results

13 Building Theories from Multiple Evidence Sources 347

checked? Approaches which are explicitly open for users are rated with a + while
a − indicates approaches that operate as more of a black-box (end users are guaran-
teed only to see the inputs and outputs).

2.2.8. Cost

This is the last but definitely not the least important attribute in our list. “Cost”
expresses the level of time and effort investment necessary to get results. Regardless
of the benefits that can be achieved, some approaches may require substantial work
to produce and document the results. In such cases we clearly flag them with a −
while approaches with a + have exactly the opposite meaning, namely they are rela-
tively cheap to apply.

3. Approaches to Theory-Building

Given the multiplicity of evidence types in the software engineering literature, it
should not be surprising that multiple approaches have been applied to make sense
of this information. It is important to note that the software engineering literature
should be viewed as being stronger, not weaker, because it incorporates such a wide
variety of types of evidence, ranging from a single expert’s opinion, to aggregated
opinions of multiple experts, to anecdotal case studies, to rigorously measured data
from across dozens or hundreds of projects. However, this very disparity makes it
hard to aggregate well-supported theories and marshal the supporting evidence in a
way that is commonly accepted.

In this section, we introduce several approaches that have been proposed to rig-
orously and repeatably abstract well-formed theories from such data sets. Each is
mapped to the general process described in the last section so as to facilitate
comparison.

3.1. Systematic Literature Review

The approach to theory- and knowledge-building which has garnered the most
attention recently is the systematic review. The systematic review can be defined
as “a means of identifying, evaluating and interpreting all available research rele-
vant to a particular research question, or topic area, or phenomenon of interest”
(Kitchenham, 2004). It is in short a way to summarize across multiple studies on a
given topic what conclusions can be drawn. Note the emphasis on completeness in
the above definition (“…all available research…”), which is a major goal of the
technique. By taking a highly procedural approach to defining the problem of study
and searching the available literature, the technique aims to avoid the danger of
selection bias, in which only a subset of studies are canvassed (which just might

348 F. Shull and R.L. Feldmann

happen to be the subset that corresponds to a particular point of view). Systematic
review was a key method proposed to support the goal of evidence-based software
engineering, as articulated by Kitchenham et al. (2004).

The application of systematic review to software engineering was inspired by its
success in the medical field, a domain in which researchers must also abstract
actionable theories and conclusions from among many studies of the same
phenomenon.
Procedure. The procedure for the systematic review is described in detail in a tech-
nical report compiled by Kitchenham (2004). The major activities, as mapped to
our generic process description, are described below, and have been summarized
from that source unless otherwise noted. Kitchenham does note that the process is
likely to be highly iterative, with many transitions backwards and forwards among
the following activities. An important part of this procedure is to document the
planned activities for conducting the systematic review as a protocol, to facilitate
the review of the plan and ensure that decisions are made so as to support a review
that is as repeatable and rigorous as possible.

● Define topic. The guidelines state that the process should start from a well-
defined question, in which the population, intervention, contrast, outcome, and
context of interest have been made explicit. Kitchenham suggests starting in
natural language but converting to a structured question as the ideas become
refined.

● Identify search parameters. Next in the process, researchers must define a
repeatable strategy for searching the literature. Doing so requires setting clear
criteria for the following issues (among others):

❍ Which sources will be searched
❍ How sources will be filtered
❍ How quality of sources will be assessed
❍ What information will be extracted from sources
❍ How missing information will be handled

● Find evidence. Assuming the search criteria and range of permissible sources
have been defined in detail as above, finding evidence is then the process of
exhaustively searching all sources for any paper that matches the criteria.
Having the search specified in such detail helps ensure that the search process is
repeatable, that is, that multiple users conducting a search according to the same
criteria would find exactly the same sources.

● Analyze evidence. Analyzing the publications found in the search consists of
first filtering out unsuitable publications and then extracting the information
needed from those remaining.

❍ During this round of filtering, only primary studies should be selected for
inclusion in the systematic review. That is, researchers should analyze only
reports of studies that directly examined the research question. Analysis or
synthesis of studies performed by other researchers are not to be included
in the study in combination with primary sources. (Such surveys should

13 Building Theories from Multiple Evidence Sources 349

themselves be used as pointers to important primary sources or to compare
against the final outcome of the systematic review.) An important question is
whether certain types of studies or evidence should be excluded from consid-
eration at this point. However, Kitchenham notes that due to the number of
studies currently published in software engineering, researchers on most top-
ics will not be able to be so selective: “In software engineering, we will usu-
ally accept all levels of evidence. The only threshold that might be viable
would be to exclude level 5 evidence [expert opinion] when there are a rea-
sonable number of primary studies at a greater level…” (Kitchenham, 2004).
Still, the quality of each study included in the analysis must be assessed so
that this can be considered when the results from each study are compared
and contrasted during the integration phase.

❍ From each study that remains after the filtering is performed, the required
data for the analysis must be extracted. The guidelines suggest that a tem-
plate should be defined for each systematic review conducted and applied to
each publication, so that complete information is extracted from each and
organized consistently.

● Integrate evidence. Having defined in earlier phases concrete guidelines for
what type of evidence will be included in the systematic review, the guidelines
for how the evidence is to be integrated are not as specific. This is likely because
the methods which are feasible for each systematic review will depend largely
on how much and what type of evidence has been utilized, and on the specific
research question under study. Kitchenham does note that conclusions in soft-
ware engineering will need to be drawn from many different types of studies,
but guidelines for combining different types of studies are not given. Although
qualitative measures are allowed, it is recommended to convert each to a quan-
titative measure if at all possible. One way of reporting such results is via a for-
est plot, which is feasible if all studies measure the same treatment variable in
the same units (or using different measures that can be converted to the same
units).

Although not mentioned explicitly in our generic process, the systematic review
guidelines do contain an addition activity for documenting the review. The justifi-
cation for having this listed as a separate step is that the systematic review cannot
be considered complete until it has been validated; the authors suggest that such
validation is likely to happen via peer review. In the event that the report is pub-
lished as a technical report or some other non-peer reviewed document, it should
be made available via the web and a peer review organized for this purpose.

3.1.1. Lessons Learned in Application to Software Engineering

In the software engineering domain, this approach has been applied to a number of
different analyses, which are increasing in number each year. After a relatively few
applications published in 2004 and 2005, there has been a large increase in 2006 of

350 F. Shull and R.L. Feldmann

the number of systematic reviews, especially in Master’s theses and other student
work. Some key examples in which systematic review was applied to test a research
hypothesis include:

● Jørgensen (2004) conducted a systematic review of studies of estimating soft-
ware development effort. He found, first, that estimation based on expert judg-
ment was the most often-used approach. The systematic review found 15
different studies comparing expert estimates to estimates produced using more
formal models. The results about which estimation approach produced more
accurate estimates are inconclusive: five studies found expert judgment more
effective; five found formal estimation models more effective; and five found no
difference. However, Jørgensen was able to formulate a number of guidelines
for improving expert estimation, which are each supported by at least some of
the studies surveyed.

● Jørgensen and Moløkken-Østvold (2006) used a systematic review to test an
assessment of the prevalence of software cost overruns done by the Standish
Group. They investigated whether they could find evidence to support one of the
often-cited claims of the 1994 “CHAOS” report, namely that “challenged” soft-
ware engineering projects reported on average 189% cost overruns. This sys-
tematic review found three other surveys of software project costs. The
comparison could not be definitive, since the Standish Group did not publish
their source data or methodology. However, the researchers found that the con-
clusions of the Standish Group report were markedly different from the other
studies surveyed, raising questions about the report’s methodology and
conclusions.

● Kitchenham et al. (2006) undertook a systematic review to investigate the condi-
tions under which organizations could get accurate cost estimates from cross-
company estimation models, specifically, the conditions under which those
cross-company models were more accurate than within-company models. Seven
papers were found that represented primary studies on this topic. The results
were inconclusive: four found cross-company models were significantly worse
than within-company models, while the remainder found that both types of
models were equally effective.

Mendes (2005) applied systematic review for a slightly different goal: to assess the
level of rigor of papers being published in the field of web engineering. In this case,
it was not a single research hypothesis that was being explored; rather, Mendes was
assessing the percentage of papers in the field that could be included in a systematic
review of any hypothesis in this area, according to criteria for rigor that she set. 173
papers were reviewed and only 5% were deemed sufficiently rigorous, which
emphasizes that this approach ensures rigor by being quite restrictive about the
quality of papers accepted as input.

Some authors explicitly comment on the difficulty of applying the approach
given the state of the software engineering literature. Jørgensen (2004), for exam-
ple, mentions that few if any of the studies he identified met the criteria of reporting
the statistical significance of their results, defining the population sampled, or using

13 Building Theories from Multiple Evidence Sources 351

random sampling. For these reasons, it appears to be difficult to define the quality
criteria too rigorously, in case the number of studies that can be included become
too small to produce interesting results.

Because of the costly nature of applying this approach, some researchers have
done some tailoring of the approach in application. For example, even though a best
practice is to minimize bias by using two researchers to do the analysis, some
researchers who are applying the method feel it is practical to use only one.

3.1.2. Assessment

Systematic review does cover a range of sources from different environments. To
describe the conditions for which this analysis approach may best be suited, we
examine it in reference to our quality criteria:

● Applicability for quantitative data: +
● The literature contains several examples of research questions addressed by sys-

tematic review of quantitative evidence sources.

● Applicability for qualitative data: −
● At the moment, this approach seems less well suited for evidence sources that

contain qualitative data. Although methods for qualitative synthesis do exist
(e.g., Noblitt and Hare, 1988), none of the applications of systematic review that
we could find in the software engineering literature used qualitative data as a
substantial source of information. Moreover, the guidelines in this field
(Kitchenham, 2004) seem written with quantitative data in mind. It is likely that
this will need to be explored further in future applications.

● Scalability: −
● An assessment of this attribute would depend on how a given application defines

the quality and filtering criteria. However, we can say that applications to date
have typically used fairly restrictive criteria. The lessons learned cited above do
show that several authors have commented that a fairly small percentage of
publications were suitable for inclusion in the systematic reviews that they ran.

● Objectivity: +
● The procedure is very well specified. Although key filtering criteria are allowed

to be user-defined for each application, and so could theoretically be defined so
as to impair the objectivity of the study, this would presumably be caught during
the peer review of the study process and results.

● Fairness: +
● Fairness is typically high, since the search criteria are to be represented as search

queries and repeated in several repositories. The researcher must take all docu-
ments matching the query; he or she is not allowed to pick and choose
arbitrarily.

● Ease of use: +/−
● The procedure and results would be easily accessible to researchers, but the

amount of detail in the report would not be user friendly for supporting decisions

352 F. Shull and R.L. Feldmann

by practitioners. This can be mitigated by applying additional effort aimed at
creating multiple reports for different audiences, particularly by abstracting
actionable guidelines for practitioners from the research (see for example
Koyani et al., 2003).

● Openness: +
● The amount of detail that is required to be documented and included in the final

report of results makes this a very open process. In fact, peer review of each step
of the process is called for to ensure quality and rigor in the results.

● Cost: −
● Researchers have pointed out that systematic review is effort-intensive and

hence high cost: “Systematic reviews require considerably more effort than tra-
ditional reviews” (Kitchenham, 2004). Part of this cost is due to the fact that this
approach requires extensive and lengthy documentation. It is moreover not well
suited for application by a single researcher, since a “best practice” is to use at
least two researchers to minimize biases. Although we could find no comprehen-
sive estimate of costs for performing systematic reviews, anecdotally we did
hear from researchers who expressed some concern about their expensive nature
in comparison to the benefits received. One researcher questioned the wisdom
of adopting such techniques from the medical field, which has a research budget
many times that of the budget for software engineering.

3.2. Meta-analysis

Meta-analysis is a method for combining data from different datasets collected
during different studies, in order to statistically test a hypothesis. By using data
from multiple datasets, the meta-analysis allows the investigation of whether the
effect under study is robust across multiple contexts. By combining datasets across
studies, meta-analysis provides for the statistical test a larger number of data which
improves the chances of detecting smaller effect sizes than any test of a single
dataset in isolation.

Meta-analysis should be seen as a special case of systematic review, rather than
a distinct approach. It follows the same general process of systematically collect-
ing, analyzing, and integrating evidence, but specifies certain techniques that are
appropriate when the evidence is expressed in comparable, quantitative metrics.

Both meta-analysis and systematic review have a long history of use in other
disciplines. Its applicability to software engineering has been studied relatively
recently, as a way of getting greater benefit from the fairly few and expensive stud-
ies that are run on software engineering phenomena.
Procedure. The procedure for conducting meta-analysis in software engineering
has been specified in previous publications. The information below has been sum-
marized from Miller (Miller, 2000) unless otherwise noted. For purposes of com-
parison, we discuss the meta-analytic procedure for quantitative data using the
same broad steps as we used for the more general systematic review approach.
However, since this type of meta-analysis is concerned with a statistical test of

13 Building Theories from Multiple Evidence Sources 353

quantitative data, many of the phases can be described in more detail, and require
more constraints, than does the general systematic review process.3 We map these
activities to our generic knowledge-building process as follows:

● Define topic. The research topic investigated by a meta-analysis should be
expressed in the form of a relationship between two variables. Although this is
a matter of debate, the conservative approach is that the meta-analysis should be
done between two variables only. Separate analyses should be run if there are
more than two variables of interest.

● Identify search parameters. Although no specific guidelines are given on how to
run the search, a number of important constraints govern which sources can be
used in the meta-analysis:

❍ Meta-analysis requires some knowledge about the individual data sets that it
analyzes. Hence, only studies can be used which report the appropriate infor-
mation regarding the results. If the raw data is not available, then the process
requires from each source at least the mean, variance (or standard deviation),
number of subjects, and details about the normality of the data. When non-
significant results are reported an estimate of the statistical power of the
experiment should be included.

❍ Independence of the studies is important. Selecting studies among which
some dependencies exist can weaken or invalidate the results.

❍ Miller notes that “[c]urrently no work exists, which attempts to validate the
use of meta-analysis for non-experimental results,” and therefore recom-
mends that researchers in software engineering not use evidential data from
sources other than experiments in meta-analysis at this time. (The reasoning
is that the randomization which takes place in experimental studies elimi-
nates bias and confounding factors within the experimental results.) Thus it
may be more appropriate, and is certainly safer, to analyze the results from
different types of studies separately and then examine whether they tell a
consistent story.

● Find evidence. This activity should take the form of an exhaustive literature
search aimed at finding all empirical evaluations which describe relationships
between the two variables of interest.

● Analyze evidence. As some authors have noted, there is a first pass that is neces-
sary over the collected set of sources “to reconcile the primary experiments –
i.e., define a common framework with which to compare different studies. This
involves defining common terms, hypotheses, and metrics, and characterizing
key differences” (Perry et al., 2000). In a second pass, the data must be examined
more deeply for:

❍ Errors in the individual data sets that could be corrected

3 We recognize that procedures have been described for meta-analysis of qualitative data, e.g.,
Paterson et al., 2001, but as we are aware of no instances where they were applied in software
engineering research we keep this section focused on quantitative applications.

354 F. Shull and R.L. Feldmann

❍ Quality of the studies, in order to assign a weighting to each. In order to avoid
bias, Miller notes that the recommended practice is to organize an independ-
ent panel of experts

● Integrate evidence. Having compiled and created a common framework for
the individual data sets, integrating the evidence is done by means of run-
ning the proper calculation over the data values obtained. This will provide
a quantitative, statistically valid answer to the question of whether there is a
significant relationship between the two variables of interest. One important
note for the analysis is that Miller recommends that meta-analysis not be
employed to resolve differences among conflicting results. Meta-analysis
was designed to combine results from similar experiments, not to deal with
heterogeneous data sets.

3.2.1. Lessons Learned in Application to Software Engineering

In the software engineering domain, this approach has been applied in relatively
few cases. Certainly one of the most relevant of these is the study by Miller (2000),
in which meta-analysis was applied to abstract conclusions across defect detection
experiments (i.e., experiments that ask the question: “Which (if any) defect detec-
tion technique is most effective at finding faults?”). This was an important test of
meta-analysis in the software engineering domain, as defect detection techniques
are among the most often-studied software engineering phenomena. Hence, if suf-
ficient data could not be obtained on this topic, it would be difficult to understand
how meta-analysis could be suitable for many other topics in software
engineering.

However, the results from Miller’s study were inconclusive. On a review of the
literature, only five independent studies could be found which had investigated
similar enough hypotheses and used similar enough measures to be compared.
Upon analysis of the data the results of those studies were so divergent that meta-
analysis was not deemed to be applicable. A possible reason for this is that the
effectiveness of defect detection techniques is highly dependent upon the types of
defects in the artifact being examined; the studies included in Miller’s analysis did
not describe the defect type information in sufficient detail that a mapping could
be made to transform the results onto a common taxonomy. Thus, it could not be
assessed whether those studies applied the techniques to defect profiles that were
at all comparable.

A related use of this technique in software engineering was the attempt by Hayes
to abstract results across five studies of inspection techniques, where four of the
studies were either partial or full replications of the first (Hayes, 1999). In this case,
the study designs were all very similar, which should have facilitated the ability to
draw a common conclusion from this body of information. However, Hayes was
forced to conclude that the effect sizes were significantly different across the stud-
ies and hence that a meta-analysis was not an appropriate method for reasoning

13 Building Theories from Multiple Evidence Sources 355

about the underlying phenomenon. Hayes is able only to speculate about some
causes for this – for example, that the studies were run in different cultural contexts
and by subjects with different levels of experience – but it is worth noting that these
resulting hypotheses may be of as much practical interest to the research commu-
nity as a successful meta-analysis would have been.

A final application of meta-analysis in the software domain that is especially
worthy of note was a study conducted by Galin and Avrahami (2005). These
authors attempted to address the question of whether software quality assurance
programs work by conducting a meta-analysis of studies examining the effects of
the Capability Maturity Model (CMM) for software. The authors point out that
CMM has been one of the most widely-deployed software process improvement
methods for an extended number of years, and so would be among the most likely
approaches for which sufficient data would exist. For the same reason, this analysis
was also a good test of the suitability of meta-analysis for software engineering
research. In this case, the results were more positive: 22 studies were found that
examined the effects of the CMM on software process improvement and, of these,
19 contained sufficiently detailed quantitative information to be suitable for analy-
sis. The analysis did find substantial productivity gains when organizations
achieved the initial improvement levels of the CMM (although data was missing
that addressed higher levels of achievement).

In the end, the lesson learned about applying meta-analysis to software engineer-
ing seems to be that: “…the heterogeneity of current empirical results is a major limi-
tation in our ability to apply meta-analytic procedures” (Miller, 2000). Because of the
large amounts of variation from so many different context variables, which exists in
any set of software engineering experiments, we may be unable to generate statisti-
cally definitive answers for many phenomena other than those with the largest effect
sizes (e.g., organizations going from an undisciplined development process to achiev-
ing initial levels of the CMM). This is true even in cases which seem to lend them-
selves to cross-study analysis, for example, topics for which there is a rich body of
studies, some of which may even be replications of one another. For many other top-
ics of interest which do not have such a rich set of studies, which tend to be the ones
of most interest to researchers and practitioners, it is still an open question whether
the studies undertaken so far are additive and can be combined via meta-analysis to
contribute to an eventual body of knowledge.

3.2.2. Assessment

● Applicability for quantitative data: +
● When sufficient studies with quantitative results can be found, meta-analysis is

the most rigorous way of combining those results.
● Applicability for qualitative data: −
● Meta-analysis commonly relies on statistical tests that are not suited for qualita-

tive data. Methods for applying meta-analysis to qualitative analysis have been
described but not yet applied in the field of software engineering.

356 F. Shull and R.L. Feldmann

● Scalability: +/−
● As with any technique, the number of suitable studies that could be found would

depend on how the researcher defines the eligibility criteria. As an example,
Miller’s case study (Miller, 2000) starts with a relatively loose criteria (that all
studies measure the same effect) but notes that it could be tightened, for example
by stipulating that only a particular type of study design be used, or that small
studies be either dropped from the analysis or given less weight. However, given
the relative scarcity of software engineering data, the looser criteria is probably
suitable for the field now. Although the study by Galin and Avrahami was able
to use 19 out of 22 sources found, the more typical experience in software engi-
neering studies at the moment seems to be that a sufficient number of studies is
more difficult to find.

● Objectivity: +
● The objectivity of the approach should be seen as quite high: the procedure and

statistical methods are very well specified. Different meta-analyses applied to
the same datasets will always produce the same answer.

● Fairness: +/−
● Since no specific guidelines are given for how researchers should conduct the

literature search to find evidence sources, the process will be as fair and unbi-
ased as the researcher’s search approach.

● Ease of use: −
● The outputs of this approach are aimed more at researchers than at practitioners.

Training in statistical methods is necessary in order to apply the technique and
interpret the results correctly.

● Openness: +/−
● There are no special requirements of the technique with respect to openness. It

is to be expected that any serious meta-analysis would be subjected to peer
review on its way to publication, and hence should theoretically allow reviewers
to replicate the same analysis if desired.

● Cost: +/−
● There are no special constraints on cost. There are no special documentation

requirements.

3.3. An Experience Portal-Centered Approach

Scientists at the Fraunhofer Center – Maryland developed an approach for accumu-
lating and analyzing disparate evidence sources in 2002, to help the U.S. Department
of Defense provide information for a central best practices clearinghouse about
software acquisition and development. In contrast to the previous approaches dis-
cussed, there is no single comprehensive reference, although details of the approach
have been published (Shull and Turner, 2005; Feldmann et al., 2006). The general
method which was instantiated in the clearinghouse extends previous knowledge-
building approaches used in the Experience Factory method (Basili et al, 1994a)

13 Building Theories from Multiple Evidence Sources 357

and is known as EMPEROR (Experience Management Portal using Empirical
Results as Organizational Resources).

An important way in which EMPEROR differs from the Experience Factory as
well as from systematic reviews and meta-analysis is that it is designed to be exe-
cuted via a community rather than a single research team. EMPEROR provides a
mechanism for users in the field to submit their experiences with a given technol-
ogy and for such experiences to be reflected in the summarized knowledge. Thus,
it aims at abstracting conclusions at a different level than the previously mentioned
methods.

This approach was primarily designed for decision support but is also useful for
theory generation.
Procedure. The basic procedure for building knowledge through the EMPEROR
approach was defined in several papers (Shull and Turner, 2005; Feldmann et al.,
2006) and is summarized below. An important distinction from the previous
approaches in this chapter is that EMPEROR imposes lower barriers to including
information in the analysis, in order to be more inclusive of experiential informa-
tion from participants. Less-than-rigorous information may therefore be entered as
part of the knowledge base although it is labeled as such, and the summarized
analysis is checked later to make sure that such information has not been overly
relied on in forming conclusions.

● Define topic. As with other approaches, EMPEROR requires that the topic of
knowledge gathering first be defined. Although this topic definition might be in
the form of a hypothesis, it may also be simply a particular practice or technique
about which the available evidence should be summarized. In general, topics
investigated with this approach are of the form: What is the expected outcome
of using a particular practice in a certain environment?

● Identify search parameters. Also similar to other approaches, EMPEROR con-
tains a step in which the person applying the process must make explicit which
types of evidence will be acceptable to the search and in which venues to look
for that evidence. EMPEROR however is less restrictive and allows less rigor-
ous types of evidence to be included (e.g., interviews, experience reports, white
papers) both to get a more inclusive survey of the state of the practice and
because for many questions sufficient amounts of highly rigorous studies are
simply not to be found. This view of the software engineering literature is sup-
ported by many of the example applications of meta-analysis and systematic
review discussed in previous sections.

● Find evidence. The search for the evidence is conducted given the constraints
decided upon. When the published literature is found to be significantly lacking,
researchers are advised to consider conducting interviews with representative
practitioners in order to create additional workable knowledge. For each evi-
dence source, a template is filled out; the information entered in such a template
is expected to be largely textual. Where quantitative evidence is found it should
be recorded taking special care to record the unit of measure along with the val-
ues. It is not expected that all evidence on the same topic will be recorded in the

358 F. Shull and R.L. Feldmann

same measures or in measures that can be translated one to the other. This phase
of the procedure may go on for an extended period of time. Evidence may be
allowed to accumulate opportunistically, with new templates being filled out as
new evidence becomes available. The evidence found so far is made available
for interested parties, e.g., at a website that can be updated as new evidence is
found.

● Analyze evidence. As each evidence template is completed, it is assigned a
measure of trustability based upon objective descriptions of how rigorously the
practice under investigation was applied, the results were measured, and how
results were reported. An example trustability scale (Feldmann et al., 2006)
ranks each evidence source on a scale of 1 (signifying anecdotal evidence from
a single source) to 20 (sustained and measured evidence that has undergone peer
review).

● Integrate evidence. When sufficient evidence has been collected, a textual sum-
mary is constructed that describes the body of evidence that has been found. The
summary is authored by a subject matter expert, that is, someone with sufficient
knowledge of the topic area so as to be able to describe the important informa-
tion from the knowledge accumulated. Before being published, the summary is
reviewed by an objective, outside panel consisting of representatives from
industry, government, and academia. This panel reviews the summary from the
point of view of accuracy and objectivity (especially whether all of the conclu-
sions can be traced back to a statement in the evidence templates) and repre-
sentativeness (whether the evidence profiles that were used represent
environments of interest and whether the evidence sources used do not represent
a biased subset of users).

3.3.1. Lessons Learned in Application to Software Engineering

In the software engineering domain, this approach has been applied so far only in
the context of the US Department of Defense’s Best Practices Clearinghouse
(Dangle et al., 2005). This single project contains analyses of several different
practices, however, and hence several different example applications of the tech-
nique. These applications range from topics for which experiential data of all kinds
is very easy to find (e.g., the costs and benefits of software inspections or spiral
development) to topics for which the available data is much more scarce (e.g., the
costs and benefits of a process variant known as performance-based earned value
management).

As the project repository is currently in an initial phase, the approach will
shortly undergo a more thorough evaluation as the project resources are opened up
to the user community. Lessons learned will be analyzed and reported on in the near
future. Among the most important aspects to be tested in this effort, however, is the
question of whether an active community can be built around such a repository and
whether it will work to contribute to and refine the evidence collection and hence
the summarized information that can be built atop it.

13 Building Theories from Multiple Evidence Sources 359

3.3.2. Assessment

It is important to note again that the EMPEROR approach proceeds in a very dif-
ferent manner than the other ones discussed in this chapter. Analyses in this
approach are always open to review by the user community, so as to elicit informa-
tion that may have been missed in the initial review and to allow users to get the
benefits of information before the entire review has been completed. Also, rather
than take a restrictive approach and allow only the highest-quality evidence to be
included in the analysis, EMPEROR will allow less-rigorous types of evidence
(e.g., interviews, experiential anecdotes) as long as such evidence is always labeled
with an appropriate caveat. Our discussions with our user advisory group has indi-
cated that users are happy to get what guidance is available, as long as they know
the appropriate level of confidence to place in it. Given the dearth of highly-rigor-
ous studies that exists on many topics, there seems to be a need for workable
interim solutions that can give some guidance.

● Applicability for quantitative data: +
● The process makes no special distinction between qualitative and quantitative

data; it is equally well suited to both.
● Applicability for qualitative data: +
● Because the final summary of abstracted information is text-based, it is very

well suited to incorporating qualitative data.
● Scalability: +
● The process has been designed to be as inclusive as possible. Any incoming

evidence has only to pass a sanity check by a subject matter expert. However,
each admitted evidence source is always tagged with an objective indicator of
its quality.

● Objectivity: −
● The EMPEROR approach is more susceptible to subjectivity than the other

approaches. However, it contains safeguards that do try to guard against such
problems. For example, because the barriers to entry are low, evidence may be
submitted that is anecdotal and subjective. However, this evidence would be
tagged as of lower quality and should be marked as of less importance when the
summary is created. As another example, the summary itself is a textual sum-
mary that needs to combine many disparate sources of evidence and many dif-
ferent measures of a practice’s effectiveness. To guard against this, the process
requires that the summary is always created by an expert in the topic under study
and furthermore, that it be reviewed and accepted (or not) by an outside panel
of experts representing different points of view.

● Fairness: −
● Similarly to objectivity, the approach is susceptible to bias but contains internal

safeguards that attempt to mitigate this. For one example, there are no defined,
repeatable search criteria for finding evidence sources. However, by stipulating
that the in-process results are always visible to users, the approach allows users
who do not see their own experiences represented in the repository to submit

360 F. Shull and R.L. Feldmann

new evidence that includes their own point of view, helping to correct any bias.
As a second example, the textual summary may include bias if the included evi-
dence sources exhibit bias. However, the objective outside panel of experts that
reviews completed summaries is charged with assessing this. It may also be
worth noting that, unlike the other two approaches discussed in this chapter,
EMPEROR may suffer less from publication bias (i.e., the threat that negative
results on a particular topic, or results that do not match the conventional wis-
dom, are less likely to be written up or accepted as part of the published litera-
ture). EMPEROR avoids this by allowing the submission of less rigorous
unpublished experiential data (e.g., via interviews) that attempt to paint a more
accurate picture of the state of the practice.

● Ease of use: +
 A unique point of the EMPEROR approach is that final vetting of summaries

and results is done by representatives who look not only at the accuracy of
results but also of the usefulness for the targeted users.

● Openness: +
● All in-process evidence and summary information are provided, with traceabil-

ity links from one to another. Even the scoring models are made explicit, so that
users looking to understand why an evidence source received a particular trusta-
bility rating can see the underlying scoring model. This openness has advantages
that go beyond allowing peer review of the summaries that are produced. The
open nature of the EMPEROR approach, as reflected by the requirement to
publish in-process reviews, helps to identify areas where more evidence is most
important to find. For example, practices for which there is a large degree of
anecdotal information are ones which could benefit from a more rigorous study
to either confirm or deny the conventional wisdom. The process can also work
in the other direction: Practices for which there are a large number of rigorous
academic studies but no experiential information from industrial contexts may
be good candidates for early adopters in commercial environments to try out.

● Cost: +/−
● Another unique aspect is that the EMPEROR approach requires the publication

of all materials and results to date, even though the process is ongoing. Thus,
end users of the information need not wait until the entire process has been
completed to get some benefit. Building up the evidence sets and the resulting
summaries can be a costly process, but the entire cost is not required to be paid
before any benefit is seen by users of the information.

4. Discussion and Conclusions

For a direct comparison of the approaches, we summarize the evaluations for each
of the approaches along our eight quality attributes in Table 6.

The table helps to detect some interesting commonalities and differences among
the techniques:

13 Building Theories from Multiple Evidence Sources 361

● Basing theories on quantitative data seems to be the “standard” approach to
building up theories from across multiple studies, as all of the approaches are
designed to abstract theories from quantitative results. However, as has been
noted in many of the previous sections, sufficient quantitative data cannot
always be found for many topics of interest. For this reason, the additional qual-
ity attributes are especially helpful in making decisions about the applicability
of approaches for different issues.

● If the majority of experiential information on a topic is expected to be in the
form of qualitative data (or quantitative data collected using different incompat-
ible measures), the portal-centered approach is an appropriate choice for com-
bining the evidence sources to abstract a general theory. However, the price to
be paid for this ability is a reduction in the rigor (objectivity and fairness) of the
resulting conclusions. Although the portal-centered approach includes different
levels of quality checking that attempt to remove subjectivity and bias, there is
more risk in using this approach than there is for the other approaches, which
remove unrigorous evidence by definition.

● Similarly, there is a tradeoff to be had between the inclusiveness of the tech-
nique (scalability) and the rigor of the results (fairness and objectivity). The
portal-centered approach allows researchers to include less than rigorous evi-
dence sources in the analysis, although the confidence in each is marked with a
trustability score. However, again this introduces more risk than approaches
which will only accept the most rigorous evidence sources as input. The final
decision should of course be based on how much evidence is expected to be
available to support interesting and relevant theories on the topic of interest –
and the rigor of that decision should be understood and labeled.

● The ease of use attribute helps to highlight a major difference between the por-
tal-centered approach and the other two approaches: The portal-centered
approach focuses on providing decision support to practitioners (i.e., providing
useful information at the expense of complete rigor), while systematic review

Table 6 Approaches and quality attributes

Quality
attributes
⇒

Applicability
to
quantitative
data

Applicability
to
qualitative
data Scalability Objectivity Fairness

Ease
of
use Openness Cost

⇓ Approach
Systematic

review
+ − − + + +/− + −

Meta-
analysis

+ − +/− + +/− − +/− +/−

Portal-
centered
approach

+ + + − − + + +/−

362 F. Shull and R.L. Feldmann

and meta-analysis are focused on providing highly rigorous results (while trad-
ing away ease of understandability to practitioners). A related issue is that the
portal-centered approach intends to provide information that can support a given
decision, not provide a definitive answer to a research question.

● All of the approaches are “open” in that they provide some transparency of the
process to interested parties. Both, the systematic review and the portal-centered
approach have this as an explicit goal for providing high-quality information.

● All of the approaches are costly; none are cheap to apply. Systematic review
may have the most overhead in this regard, as has been commented by multiple
researchers who attempted to apply the process guidelines with full rigor. The
portal-centered approach is unique in defining useful in-process deliverables
that can be published to provide value to users before the final analysis is
completed.

As indicated by this comparison, there is no single approach that is capable of meet-
ing all of the quality attributes. A major theme that comes through in the analysis
is that full rigor is in tension with the ability to include all types of empirical infor-
mation and provide easy-to-understand conclusions aimed at practitioners. A key
challenge for the future may lie in managing these tradeoffs better, that is, in find-
ing new approaches that combine aspects of the approaches discussed in this paper,
to yield positive ratings along more of the quality attributes.

Ongoing research is attempting to address exactly this issue, for example by
providing relatively easy-to-use approaches for converting qualitative data into the
quantitative data that is usable by meta-analysis and systematic review (Port et al.,
2006), or by providing easy-to-use approaches for combining different studies that
retain more rigor (Mohagheghi and Conradi, 2006). As this work is fairly new and
has not yet been applied in many contexts, it is an open question of how successful
it will be in marrying rigor with a less costly, more practical approach. However,
such exploration is necessary if we as a field are to aim for truly robust approaches
to theory building that can best leverage the multiplicity of kinds and types of exist-
ing empirical evidence.

References

Basili, V.R., Selby, R., and Hutchens, D., (1986) Experimentation in software engineering. IEEE
Transactions on Software Engineering, 12(7): 733–743.

Basili, V.R., Caldiera, G., and Rombach, H.D., (1994a) Experience factory. In Encyclopedia of
Software Engineering, John, J. Marciniak, (ed.) Vol. 1, Wiley, New York, pp. 469–476.

Basili, V.R.,. Caldiera, G., and Rombach, H.D., (1994b) Goal question metric paradigm. In
Encyclopedia of Software Engineering, John, J. Marciniak, (ed.) Vol. 1, Wiley, New York, pp.
528–532.

Basili, V.R., Shull, F., and Lanubile, F., (1999) Building knowledge through families of experi-
ments. IEEE Transactions on Software Engineering, 25(4): 456–474.

Dangle, K., Dwinnell, L., Hickok, J., and Turner, R., (2005) Introducing the department of
defense acquisition best practices clearinghouse. CrossTalk, 18(5): 4–5.

13 Building Theories from Multiple Evidence Sources 363

Feldmann, R., Shull F., and Shaw, M., (2006) Building decision support in an imperfect world.
Proceedings of International Symposium on Empirical Software Engineering (ISESE), Vol. II,
Rio de Janeiro, Brazil, pp. 33–35.

Galin D. and Avrahami, M., (2005) Do SQA programs work – CMM work. A meta analysis.
Proceedings of IEEE International Conference on Software – Science, Technology and
Engineering (SwSTE05), Herzelia, Israel, pp. 95–100.

Hayes, W., (1999) Research synthesis in software engineering: a case for meta-analysis.
Proceedings of the Sixth International Software Metrics Symposium (METRICS’99), Boca
Raton, FL, p. 143.

Jørgensen, M., (2004) A review of studies on expert estimation of software development effort.
Journal of Systems and Software, 70(1–2): 37–60.

Jørgensen, M., and Moløkken-Østvold, K. J., (2006) How large are software cost overruns?
Critical comments on the Standish group’s CHAOS reports. Information and Software
Technology, 48(4): 297–301.

Kitchenham, B. (2004) Procedures for Performing Systematic Reviews, Joint Technical Report,
Keele University TR/SE-0401 and NICTA 0400011T.1.

Kitchenham, B., Dybå, T., and Jørgensen, M., (2004) Evidence-based software engineering.
Proceedings of the International Conference on Software Engineering, Edinburgh, UK, pp.
273–281.

Kitchenham, B., Mendes, E., and Travassos, G. H., (2006) Systematic review of cross- vs. within-
company cost estimation studies. Proceedings of the Evaluation & Assessment in Software
Engineering (EASE), pp. 89–98.

Koyani, S.J., Bailey, R.W., and Nall, J.R., (2003) Research based web design and usability guide-
lines. National Cancer Institute. Available for download at http://usability.gov/pdfs/guidelines.
html.

Mendes, E., (2005) A systematic review of web engineering research. Proceedings of the ACM/
IEEE International Symposium on Empirical Software Engineering, Noosa Heads, Australia,
pp. 408–418.

Miller, J., (2000) Applying meta-analytical procedures to software engineering experiments.
Journal of Systems and Software, 54: 29–39.

Mohagheghi, P., and Conradi, R., (2006) Vote-counting for combining quantitative evidence from
empirical studies – An example. Proceedings of International Symposium on Empirical
Software Engineering (ISESE), Vol. II, Rio de Janeiro, Brazil, pp.24–26.

Noblitt, G.W., and Hare, R.D, (1988) Meta-Ethnography: Synthesizing Qualitative Studies
(Qualitative Research Methods), Sage Publications Ltd., Thousand Oaks, CA..

Paterson, B., Thorne, S., Canam, C., and Jillings, C., (2001) Meta-Study of Qualitative Health
Research: A Practical Guide to Meta-Analysis and Meta-Synthesis, Sage Publications Inc,
Thousand Oaks, CA.

Perry, D., Porter, A., and Votta, L., (2000) Empirical studies of software engineering: a roadmap.
Proceedings of International Conference on Software Engineering, Limerick, Ireland.

Petticrew, M. and Roberts, H., (2006) Systematic Reviews in the Social Sciences. A Practical
Guide, Blackwell Publishing, Oxford.

Port, D., Kazman, R., Nakao, H., Hoshino, N., and Miyamoto, Y., (2006) Investigating a construc-
tive scorecard model for creating meaningful quantitative data from qualitative inputs.
Proceedings of International Symposium on Empirical Software Engineering (ISESE), Vol. II,
Rio de Janeiro, Brazil, pp. 27–29.

Shull, F. and Turner, R., (2005) An empirical approach to best practice identification and selec-
tion: the US department of defense acquisition best practices clearinghouse. Proceedings of
International Symposium on Empirical Software Engineering (ISESE), Noosa Heads,
Australia, pp. 133–140.

Sjøberg, D.I.K, Dybå, T., Anda, B.C.D., and Hannay, J.E., (2007a) Building theories in software
engineering. In Advanced Topics in Empirical Software Engineering: A Handbook, Shull, F.,
Singer, J., and Sjøberg, D.I.K (eds.), Springer, Berlin.

364 F. Shull and R.L. Feldmann

Sjøberg, D.I.K., (2007b) Documenting theories. In Experimental Software Engineering Issues:
Assessment and Future, Basili, V.R., Rombach, D., Schneider, K., Kitchenham, B., Pfahl, D.
and Selby, R, (eds.), Springer-Verlag, Berlin Heidelberg, pp. 111–114.

van Solingen, R. and Berghout, E., (1999) The Goal/Question/Metric Method, McGraw-Hill
Education, New York.

Zelkowitz, M., (2001) Models for industrial validation of new technology. ISERN workshop at
Strathclyde University. Available via http://isern.iese.de/network/ISERN/pub/meetings/
Glasgow2001/Agenda.htm.

Zelkowitz, M. and Wallace, D., (1998) Experimental models for validating technology. IEEE
Computer, 31(5), pp. 23–31.

Chapter 14
Replication’s Role in Software Engineering

A. Brooks, M. Roper, M. Wood, J. Daly, and J. Miller

Abstract We provide motivation for researchers to replicate experiments in
 software engineering. The ideology of replication is discussed. We address the
question: Is an experiment worth repeating? The current lack of replication studies
is highlighted. We make clear that exact replication is unattainable and we draw
on our first experience of performing an external replication. To categorise various
kinds of replication, we propose a simple extension to Basili et al.’s framework for
experimentation in software engineering. We present guidance as to the level of
reported detail required to enable others perform a replication. Our conclusion is
that there is only one route for empirical software engineering to follow: to make
available laboratory packages of experimental materials to facilitate internal and
external replications, especially the latter, which have greater confirming power.

1. Introduction

Experimental design is difficult and the experimental process can be error prone.
As a consequence, all experimental results should be reproducible by an external
agency. By other researchers successfully repeating an experiment, confidence is
built in the procedure and the result. Without the confirming power of external
replications, a result should be at best regarded as of limited importance and at
worst with suspicion and mistrust.

We distinguish two main forms of replication: internal and external. Internal
replication is undertaken by the original experimenters (or teams that contain mem-
bers of the original experimental team): they repeat their own experiment. External
replication is undertaken by independent researchers and is a critical verification step.
We are not concerned here with replication as it applies to an individual experimental
design.

The section that immediately follows provides motivation for researchers to
replicate experiments in software engineering. There then follows sections on
the theory of replication and replication in practice. As subsections of the latter,
we discuss criteria for deciding whether an experiment is worth repeating, the
 frequency of replication studies, the unattainability of an exact replication, and

365

F. Shull et al. (eds.), Guide to Advanced Empirical Software Engineering.
© Springer 2008

366 A. Brooks et al.

our first experience of performing an external replication. In the section that
then follows, to categorise various kinds of replication, we present a simple
extension to Basili et al.’s (1986) framework for experimentation in software
engineering. The penultimate section presents guidance as to the level of
reported detail required to enable others perform a replication. In the final
 section, we conclude that there is only one route for empirical software
 engineering to follow: to make available laboratory packages of experimental
materials to facilitate internal and external replications, especially the latter,
which have greater confirming power.

2. Replication: The Motivation

No one doubts the need for software engineers to work from principles and guide-
lines in which the professional community has high confidence, all the more so if
the application is safety critical. High levels of confidence are only attained when
independent researchers successfully replicate an experiment. Without the confirm-
ing power of external replication, many principles and guidelines in software
 engineering should be treated with caution.

Much is to be gained, therefore, by critical examination of previous experiments,
by identifying experiments that are worthy of replication, and by replicating these
experiments externally.

Huxley (1965) has noted,

And in science, as in common life, our confidence in a law is in exact proportion to the
absence of variation in the result of our experimental verifications.

So the greater the number of experimental verifications the better, at least until
such time as additional verifications carry no further power of confirmation.
Moreover, given the human component and the rich variety of software and hard-
ware technologies, it surely is beholden on the community to perform many, many,
such verifications. Only under exceptional circumstances should one-shot studies
involving subjects be relied upon. For example, when the following criteria are all
met: (1) a large number of subjects were used, (2) the effect present is so large, the
use of statistical tests to convince the reader that an effect exists are unnecessary,
and (3) peer review has not found any criticism with the work. Even then of course
the effect cannot be extrapolated to just any context. Thus, we strongly agree with
Curtis (1980) when he says,

…results are far more impressive when they emerge from a program of research rather than
from one-shot studies.

Much is said and written about quality control in software development
(e.g. Card (1990)). It is ironic, to say the least, that the quality control mechanism
of replication, especially external replication, is so little practiced amongst those
doing the science behind the engineering. There is an additional irony: because of

14 Replication’s Role in Software Engineering 367

the current state of software development practice, N-version programming has
been suggested as a fault recovery mechanism (see, for example Kelly et al.
(1991)). We know so little about doing it right, we end up replicating system
 functionality across several programs.

Concerning a particular flawed study in psychology which was accepted as
being valid for a long time, Broad and Wade (1986) wrote,

Why did nobody helping to raise generations of undergraduates…replicate the study?

Such a question could equally as well be addressed to many educators of
 software engineering students regarding numerous studies whose results are com-
municated often quite uncritically to students. We should all be motivated to carry
out replications or at least give support to those who do.

3. Replication: The Ideology

Subjecting theory to experimental test is a crucial scientific activity. Popper (1968),
however, explains that researchers must be sure of their results before reporting
them, stating,

We do not take even our own observations quite seriously, or accept them as scientific
observation, until we have repeated and tested them.

Coupled with this advice, modern scientific ideology now also demands that
experimental results are replicable by an external agency. For example, as Lewis
et al. (1991) rightly claim,

The use of precise, repeatable experiments is the hallmark of a mature scientific or engi-
neering discipline.

Furthermore, Goldstein and Goldstein (1978) take this one step further, stating,

We now take for granted that any observation, any determination of a ‘fact’, even if made
by a reputable and competent scientist, might be doubted. It may be necessary to repeat an
observation to confirm or reject it. Science is thus limited to what we might call ‘public’
facts. Anybody must be able to check them; experimental observations must be
repeatable.

Not only must the researcher make his work repeatable, however, some even
regard it as being beholden on the scientific community to execute replications just
to verify the experimental results, as we ourselves do. For example, Huxley (1965)
has stated,

In scientific inquiry it becomes a matter of duty to expose a supposed law to every possible
kind of verification…

Broad and Wade (1986), in their description of the scientific ideology, consider
replication to be the third check in verifying scientific claims, the first two being
the peer review system that awards research grants and the journal refereeing that

368 A. Brooks et al.

takes place prior to publication. They also describe the ideal of reporting experiments
as follows,

A scientist who claims a new discovery must do so in such a way that others can verify the
claim. Thus in describing an experiment a researcher will list the type of equipment used
and the procedure followed, much like a chef’s recipe. The more important the new
 discovery, the sooner researchers will try to replicate it in their own laboratories.

Replication is also concerned with the way the original hypothesis is expressed.
As Smith (1983) has stated,

Replication does two things: first, it tests the linguistic formulation of the hypothesis;
 second, it tests the sufficiency of the explicit conditions for the occurrence of the
phenomena.

For example, an original hypothesis may be linguistically expressed to almost
encourage conclusions to be expressed with the wrong meaning. Henry and
Humphrey (1990) state their hypothesis as follows: “the hypothesis of this study is
that systems designed and implemented in an object-oriented manner are easier to
maintain than those designed and implemented using structured techniques.” In
order to test this, their subjects were asked to make modifications to an object-oriented
system and a functionally equivalent procedure-oriented system. After their data
analysis, Henry and Humphrey concluded that the “experiment supports the
hypothesis that subjects produce more maintainable code with an object-oriented
language than with a procedure-oriented language,” which turns around the meaning
of the original hypothesis: the idea was not for subjects to produce code to be tested
for maintainability, but rather to test the maintainability of two different systems by
having subjects perform maintenance tasks on them.

Another important example is that criteria for subject participation in a software
engineering experiment may be insufficiently specific and, as a result, the replica-
tion yields different results due to variability unaccounted for between the
subjects.

4. Replication: In Practice

4.1. Determining Worthy Experiments

Even if an empirical study was found to be replicable in terms of the availability of
experimental artifacts, there can be, and usually are, several other reasons why one
should first be wary of devoting the resources necessary to performing a replication
study. The background may not be properly researched and the empirical study may
be addressing the wrong issue. Inappropriate methods may be used; for example,
when people are involved, very strictly controlled laboratory experiments may be
less useful than more qualitative or ethnographic forms of experimentation. Errors
of commission or omission may be made or experimental variables may be incorrectly

14 Replication’s Role in Software Engineering 369

classified. For example, Scanlan (1989) criticises Shneiderman et al. (1977) for not
making use of time as a measurable dependent variable (the subjects were all given
as much time as they required) and claims as a result that “any significant differ-
ence may have been washed out.” From his experimental result, however,
Shneiderman et al. called into question the utility of detailed flowcharts, stating
“we conjecture that detailed flowcharts are merely a redundant presentation of the
information contained in the programming language statements.” The experimental
flaw identified by Scanlan can be classified as an error of omission, and one which,
according to Scanlan, has seen “the decline of flowcharts as a way to represent
algorithms.” Scanlan then went on to design a new experiment to test the same
hypothesis using time as a dependent measure and claimed “my experiment shows
that significantly less time is required to comprehend algorithms represented as
flowcharts.”

Missing details may prevent the reader from forming their own view of the worth
of the data, for example, error estimates may not be provided for some or all of the
critical measures or raw data may be crudely summarised when it could have been
presented in full. Statistical procedures may be misapplied. Alternative interpreta-
tions may not be presented: when people are involved it is more than likely that more
than one interpretation can be placed on the data. We agree with Collins (1985) who
regards an experiment to have been incompetently performed if some alternative
explanation for the data has been overlooked. For example, in a comparative study
of C and C++ development times involving only four subjects, Moreau and
Dominick (1990) concluded that there was a significant difference in favour of C++.
One of the four subjects, however, took very much longer on the third C++ task. The
experimenters simply attributed this to a debugging difficulty, i.e. they appeared not
to have checked that use of C++ itself was the real cause of the problem. Failure to
discuss alternative interpretations of data can prevent a reviewer performing a mean-
ingful meta-analysis of the research area. (Brooks and Vezza (1989) is an example
of a paper providing the reader with alternative interpretations.)

Should the report of an experiment pass a detailed critical reading of its design,
execution, analysis and interpretation, then it can be deemed worthy enough to
replicate.

4.2. Frequency of Replication Studies

In schools, colleges, and universities, replication studies are performed daily. But
such studies are usually scaled-down versions of an original experiment, are
performed by students in the act of learning, and have no confirming power. As
Collins (1985) notes,

As more becomes known about an area however, the confirmatory power of similar-looking
experiments becomes less. This is why the experiments performed every day in schools and
universities as part of the scientific training of students have no confirming power; in no
way are they tests of the results they are supposed to reveal.

370 A. Brooks et al.

Those employed in research rarely perform replication studies. Again, as Collins
(1985) notes,

For the vast majority of science, replicability is an axiom rather than a matter of practice.

Broad and Wade (1986) also draw attention to the lack of replication work by
stating,

How much erroneous…science might be turned up if replication were regularly practiced,
if self-policing were a more than imaginary mechanism?

Broad and Wade (1986) reckon that the Simpson–Traction replication is,

…probably one of the very few occasions in the history of science in which the philoso-
pher’s ideal of replicability has been attained.

In 1961, Simpson had Traction watched while Traction unsuccessfully tried to
repeat a biochemistry experiment concerned with protein synthesis.

Of course, since Broad and Wade’s remark was made, there has been the saga of cold
fusion. Many laboratories around the world tried to repeat the cold fusion experiment
by Pons and Fleischmann – see Close (1990) or Amato (1993). Ordinarily, no scientist
would have dreamt of trying to replicate a poorly reported experiment. The lure of
cheap, relatively pollution free energy in abundance, was an exceptional motivation.

Historically the frequency of external replication work in software engineering
research has been low. For example, no mention of external replication studies were
made in Sharpe et al.’s (1991) investigation of the characteristics of empirical
software maintenance studies between 1980 and 1989, nor in Roper’s (1992)
selected annotated bibliography of software testing.

More recently, even with the advent of a specialist journal such as the Empirical
Software Engineering journal, the frequency of external replication work remains
low, with fewer than 15 publications specifically addressing replication since the
inception of the journal in 1996. A systematic survey of controlled experiments in
software engineering between 1993 and 2002 by Sjoberg et al. (2005) found only
twenty studies claiming to be replications of which only nine were external replications.
Interestingly, six of these nine external replications are said to have failed to
confirm the results of the original experiment.

This relative lack of output is likely because of the effort and resources needed
to conduct an experiment, the lack of availability of laboratory packages of experi-
mental materials, and last, but perhaps not least, the lack of glamour associated with
replicating the work of others.

4.3. The Unattainability of Exact Replication

Care must be taken, however, to clarify what is meant by replication. The Universe
is forever changing. Human observers and subjects are unique (Brooks (1980) and
Curtis (1980) report on empirically discovered programming ability differences

14 Replication’s Role in Software Engineering 371

ranging from 4–1 to 25–1). There is no end to the number of measurements that can
be made to describe the experimental setting. The art of experimental science is in
making neither errors of commission or omission. Accuracy of observations can
always be improved upon until such time as the Uncertainty Principle becomes
important. Strictly speaking, it is more correct to talk of partial replication and the
goal of performing as near exact replication as possible. Exact replication is
unattainable.

According to Broad and Wade, exact replication is an impractical undertaking
because the recipe of methods is incompletely reported, because to do so is very
resource intensive, and because credit in science is won by performing original
work. They do, however, draw attention to the important activity of improving upon
experiments. They state,

Scientists repeat the experiments of their rivals and colleagues, by and large, as ambitious
cooks repeat recipes - for the purpose of improving them. All will be adaptations or
improvements or extensions. It is in this recipe-improvement process, of course, that an
experiment is corroborated.

With respect to poor statistical power levels caused by too few subjects, Baroudi
and Orlikowski (1989) qualify this and note,

Where a study fails to reject a null hypothesis due to low power, conclusions about the
phenomenon are not possible. Replications of the study, with greater power, may resolve
the indeterminacy.

Statistical power is the probability that a particular experiment will detect an
effect between the control group (e.g. no use of inheritance) and the treatment
group (e.g. use of inheritance). Calculations of statistical power probabilities
depend on how many subjects take part, the size of any effect, and the p-value used
in statistical tests (often 0.05). If the effect size is not large, and too few subjects
are used, statistical power may be much less than 0.8 (a typical recommended
level). The effect may go undetected. A replication with twice the number of sub-
jects may boost the power level beyond 0.8 so that there is now a good chance of
detecting the effect – at least eight out of ten experiments will detect the effect. In
pioneering experimental work, it can be difficult knowing what effect size to
expect, and it becomes the duty of the investigator to use as many subjects as is
practically possible.

4.4. An Example: Our Replication of Korson’s Experiment

Korson (1986) and Korson and Vaishnavi (1986) designed a series of four experi-
ments each testing some aspect of maintenance. The experiment which was of
greatest interest to us (Experiment 1) was designed to test if a modular program
used to implement information hiding, which localizes changes required by a modi-
fication, is faster to modify than a non-modular but otherwise equivalent version of

372 A. Brooks et al.

the same program. The non-modular (or monolithic) program was created by
replacing every procedure and function call in the modular version with the body
of that procedure or function. Programmers were asked to make functionally
equivalent changes to an inventory, point of sale program – either the modular version
(approximately 1,000 lines long) or the monolithic version (approximately 1,400
lines long). Both programs were written in Turbo Pascal. The changes required
could be classified as perfective maintenance as defined by Lientz and Swanson
(1980) i.e. changes made to enhance performance, cost effectiveness, efficiency,
and maintainability of a program. Korson reckoned that the time taken to make the
perfective maintenance changes would be significantly faster for the modular
version. This is exactly what he found. On average, subjects working with a
modular program took 19.3 min to make the required changes as opposed to the
85.9 min taken by subjects working with a monolithic version of the program. With
a factor of 4 between the timings, and with the details provided in Korson’s thesis,
we were confident that we could successfully externally replicate Korson’s first
experiment.

Our external replication (Daly et al., 1994b), however, shocked us. On average,
our subjects working with the modular program took 48 min to make the required
changes as opposed to the 59.1 min taken with the monolithic version of the pro-
gram. The factor between the timings was 1.3 rather than 4 and the difference was
not found to be statistically significant.

To determine possible reasons for our failure to verify Korson’s results, we
resorted to an inductive analysis. A database of all our experimental findings was
built and data-mining performed.

A suggested relationship was found between the total times taken for the experiment
and a pretest that was part of subjects’ initial orientation. All nine of the monolithic
subjects appeared in the top twelve places when ranked by pretest timings. We had
unwittingly assigned more able subjects to the monolithic program and less able
subjects to the modular program. Subject assignment had simply been at random,
whereas in retrospect it should have also been based on an ability measure such as
that given by the pretest timings. The ability effect interpretation is the béte noir of
performance studies with subjects and researchers must be vigilant regarding the
lack of homogeneity of subjects across experimental conditions.

Our inductive analysis also revealed quite different approaches taken to program
understanding by our subjects. Some subjects were observed tracing flows of
execution to develop a deep understanding. We had evidence that the four slowest
modular subjects all tried to understand the code more than was strictly necessary
to satisfy the maintenance request. Others worked very pragmatically and focused
simply on the editing actions that were required. We call this pragmatic maintenance.
Our two fastest finishers with the monolithic program explained in a debriefing
questionnaire that they had no real understanding of the code.

Our inductive analysis revealed at least two good reasons as to why we did not
verify Korson’s results and taught us many valuable lessons about conducting
experimental research with human subjects. We were motivated to develop
an experiment that would be easily replicable, and which would show once and for

14 Replication’s Role in Software Engineering 373

all that modular code is superior to monolithic code, but it was clear to us that it
was more important to understand the nature of pragmatic maintenance. How do
software maintainers in industry go about their work? Is pragmatic maintenance a
good or bad thing?

5. A Simple Extension to Basili et al.’s Framework

As stated earlier, we are not concerned here with replication as it applies to an indi-
vidual experimental design.

What we mean by internal replication is when researchers repeat their own
experiments. For example, Korson (1986) and Korson and Vaishnavi (1986)
claimed to have succeeded in providing internal replicability and stated,

…the study has demonstrated that a carefully designed empirical study using programmers
can lead to replicable, unambiguous conclusions.

Internal replications involving an evolutionary series of experiments have some
confirmatory power. In many areas of science, internal replications, carried out
either by design, or as part of a program of research, or because the sensitivity of
the results required improving, are relatively commonplace.

By external replication we mean published experiments carried out by
researchers who are independent of those who originally carried out the empirical
work. Greater confirmatory power inevitably comes with external replications.

Exact replication is unattainable, so it is important to consider and categorise the
differences.

First, researchers must consider the experimental method. Should a similar or
alternative method be used? A basic finding replicated over several different methods
carries greater weight. As Brewer and Hunter (1989) have stated,

The employment of multiple research methods adds to the strength of the evidence.

Does a keystroke analysis of a software engineering task yield the same
conclusions as observing users’ performance on the task? Are the conclusions the
same as those obtained from a questionnaire survey of users who have performed
the task?

As a first step, the existing method could be improved. For example, the replica-
tion might add a debriefing session with subjects after the formal experiment is over
if no such debriefings too place during the original experiment. Such debriefings
can provide many useful insights into the processes involved. This type of improve-
ment does not compromise the integrity of the replication.

Second, researchers must consider the task. Should a similar or alternative task
be used? A basic finding replicated over several different tasks carries greater
weight. As Curtis (1980) has stated,

When a basic finding…can be replicated over several different tasks…it becomes more
convincing.

374 A. Brooks et al.

Does a complex refactoring task yield the same conclusions as a simple refactoring
task?

Or should the task be improved by, for example, making it more realistic? For
example, rather than refactor a small program of a few hundred lines, refactor
widely used open source software of many tens of thousands of lines of code.

Third, researchers must consider the subjects. For example, should a similar or
alternative group of subjects be used? A basic finding replicated over several different
categories of subjects carries greater weight. Does working with undergraduates
produce the same conclusions as working with postgraduates? Are the conclusions
the same as those obtained working with professional software engineers?

Or should the group of subjects be improved by, for example, by using more
subjects or more stringent criteria for participation?

A comprehensive framework for experimentation in software engineering was
established by Basili et al. (1986). The four main phases of the framework are:
definition, planning, operation, and interpretation.

In the definition phase, a study is characterized by six elements: motivation,
object, purpose, perspective, domain, and scope. For example: A motivation might
be to understand the benefits of inheritance. The object might be the maintenance
process. The purpose might be to evaluate. The perspective might be that of the
software maintainer. The domain might be the individual programmer working on
a program. The scope might be several programmers working on several programs,
which captures the notion of internal replication within an individual experimental
design.

In the planning phase, a study is characterised by design, criteria, and measure-
ment. For example: A 2 × 3 factorial design might be used if we have several
observations from two types of programmers (inexperienced and experienced)
across three types of programs (no existing inheritance, inheritance of depth three
used, inheritance of depth five used). Criteria might be the cost of implementing a
maintenance request. Measurement might be the time taken to fulfill the request, as
well as programmers’ views on the ease or difficulty of making the code changes.

In the operation phase, a study is characterised by three elements: preparation,
execution, and analysis. For example: In preparation, a pilot study might be
performed to check that implementing the maintenance request does not take an
excessive amount of time. In execution, start and end times might be recorded and
programmers’ views taken in debriefing sessions. In analysis, a 2 × 3 analysis of
variance might be applied and statistical results compared with programmers’ views.

In the interpretation phase, a study is characterised by three elements: interpreta-
tion context, extrapolation, and impact. For example: The context might include the
results of other published work on the maintenance of object-oriented programs.
Extrapolation might suggest that the results from the laboratory study are generalizable
to industry settings because professional programmers were employed in the study.
Impact might involve applying the results in an industrial context. Basili et al. also
point to another possible impact: that of replicating the experiment. They, however,
do not explicitly distinguish between replication by the original experimenters

14 Replication’s Role in Software Engineering 375

(internal replication) and replication by independent researchers (external replication).
We propose their framework should be extended to distinguish between internal
and external replication and its various forms where method, task, and subjects can
each be either similar, alternative, or improved. So, for example: Under impact in
the interpretation phase, the original experimenters might declare their intention to
(internally) replicate the experiment with an alternative group of subjects or they
might declare that the experiment needs now to be externally replicated. Under
motivation in the definition phase, independent researchers might declare a motiva-
tion to verify findings by externally replicating a study but with an improved
method.

We believe it unnecessary at this stage to work with more detailed categoriza-
tions of replication. We note that Sjoberg et al. (2005) chose to categorise replica-
tions simply as close or differentiated. By close replications they mean that as far
as possible the known conditions of the original experiment are retained. By differ-
entiated replications they mean variations are present in key aspects of the experi-
mental conditions such as the kind of subjects used.

Of course, if too many alternatives are used, or if the scale of any recipe-improving
is too substantial, it becomes debatable whether the study counts as a replication.
Initially, the power of confirmation will be high with external replication studies but
there will come a point when a result is so well established that the replication
ceases to have research value and the experiment should be moved from the
research laboratory into the teaching laboratory.

Across the vector of (method, task, and subjects), we categorize our
Korson (Daly et al., 1994b) replication as an example of (improved, similar,
similar). The method is categorized as improved because we debriefed our
subjects.

6. Reporting for Replications

Once an experiment has been performed, analyzed and the time comes for writing
the findings, the researcher must provide as much detail surrounding the empirical
work as possible in order to allow others to replicate. Jedlitschka and Pfahl (2005)
have reviewed reporting guidelines for controlled experiments in software
engineering, as is described elsewhere in this book, and present a proposal for a
standard. As a minimum, their guidelines on the reporting of experimental design,
analysis, and interpretation should be followed.

Unfortunately, numerous empirical studies in the software engineering literature
are lacking in that the experimental methods are poorly reported so that it is impos-
sible to perform an external replication study. For example, instructions and task
materials given to subjects may not be given in full, or may otherwise be unobtainable.
Various authors in the past have criticised poor reporting, for example Basili et al.
(1986) and MacDonell (1991).

376 A. Brooks et al.

In our Korson replication (Daly et al., 1994a), we found problems with several
details which prevented the fullest possible analysis and interpretation of both
Korson’s results and ours. Reporting inadequacies with the Korson experiment
were:

1. The experimenter employed monitors to time his subjects, and sort out problems
which might arise with hardware failure and the like. It was not reported, how-
ever, whether these monitors controlled when a subject was ready to move from
one experimental phase to the next, or simply just noted each phase time. Such
information would have prevented speculation about monitor variability across
the two studies.

2. Subject selection criteria was subjective in that almost any computer science
student who had completed a practical Pascal programming course could have
met it. For example, one criterion was “an amount of programming experience.”
This should have been more objective by stating the minimum experience
required, for example at least 2 years programming experience at college level.
This may have reduced subject variability.

3. Expert times for testing the program were not published. There were three sepa-
rate ways to test the program, one way taking much longer than the other two.
A comparison of results is required in order to explain variability that might have
arisen.

4. Pretest results were not published. This would have made important reading as
all subjects performed the same task; this would have allowed a direct compari-
son with our subjects’ times, and hence a direct comparison of the ability of our
subjects to the original subjects. When timings such as these are collected they
should always be published.

5. It was not made clear what was verbally communicated to the subjects prior to
the experiment: was additional information given to them, were any points in the
instructions highlighted, or was nothing said?

Of these reporting inadequacies, only the one regarding subjection selection is
explicitly addressed by the guidelines proposed in Jedlitschka and Pfahl (2005).
This illustrates the difficulties in conveying all necessary information required for
external replication.

The original researcher, Korson, however, went much further than many
researchers in reporting experimental details, and he must be commended for that.
In his thesis he published his code for the experiments (both the pretest and the
experimental code), and the instructions for both the pretest and experiment.
He published individual subject timings rather than just averages, along with the
statistical tests and their results. So, the original researcher has presented the
major issues surrounding his experiment, but has unfortunately omitted details
preventing the fullest possible interpretation of his work and the external
replication.

We believe it is impractical to convey all the information necessary for external
replication in a journal or conference paper. Experimental artifacts under considera-
tion such as designs, code, instructions, questionnaires, and the raw data, would
typically add too many pages as appendices. Such information is best conveyed

14 Replication’s Role in Software Engineering 377

over the internet as a downloadable laboratory package along with any underlying
technical report or thesis. With a laboratory package in place, original researchers
can more easily conduct internal replications, independent researchers more easily
conduct external replications, and meta-analysts more easily combine raw data.
Work by Basili et al. (1999) is exemplary in this regard, with the availability of lab-
oratory packages (http://www.cs.umd.edu/projects/SoftEng/ESEG/downloads.
html) stimulating a small family of internal and external replications and a conse-
quent improved understanding of perspective-based reading. Without a laboratory
package in some form, an experiment is unlikely ever to be verified through internal
or external replication. Given the scale of effort and resources required to conduct
an experiment, not to facilitate reuse of the experimental artifacts, by providing a
laboratory package, seems folly.

We agree with Basili et al. (1999) that somewhere in the laboratory package,
validity threats should be detailed so that these may be addressed in future replication
attempts. There is no advantage in performing a close replication – similar, similar,
similar – of an experiment where a serious validity threat is present. Making an
improvement to address a serious threat will yield a better experiment and results.

We also recommend that any laboratory package should report even seemingly
minor details, for example, verbal instructions made at the beginning of an experi-
ment, to enable others perform an external replication. There may be times, however,
when the only way reporting inadequacies are actually discovered is by replicating
an experiment and analysing the results.

7. Conclusions

Basili et al. (1986) established a comprehensive experimental framework for soft-
ware engineering in which replication is recognised in the scope of an individual
experiment and as an impact on future work. We have proposed a simple extension
to this framework to explicitly recognise internal and external replication and its
various forms: similar, alternative, improved, across method, task, and subjects. This
extension applies to the motivation and impact subsections of the framework.

Routinely we are told Tool X or Technique Y is a panacea to many of software
engineering’s problems, but where is the accompanying empirical evidence that can
stand scrutiny, that has been verified by an independent research team? We con-
clude that there exists only one route for empirical software engineering to follow:
to make available laboratory packages of experimental materials to facilitate inter-
nal and external replications, especially the latter, which have greater confirming
power. The work of the replicator should be seen as glamorous not gruesome. By
verifying results, so experiments can be subsequently crafted which software engi-
neering students can repeat as laboratory exercises. If results are not verified, we
need not be too despondent. As with our replication of Korson’s experiment, it is
very likely that the real issue requiring investigation comes to the fore. And those
involved in conducting the replication will have improved their investigation skills
enormously.

378 A. Brooks et al.

References

I Amato. Pons and fleischmann redux? Science, 260:895, 1993.
JJ Baroudi and WJ Orlikowski. The problem of statistical power in MIS research. MIS Quarterly,

13:87–106, 1989.
VR Basili, RW Selby, and DH Hutchens. Experimentation in software engineering. IEEE

Transactions in Software Engineering, 12(7):733–743, 1986.
VR Basili, F Shull, and F Lanubile. Building knowledge through families of experiments. IEEE

Transactions on Software Engineering, 25(4):456–473, 1999.
J Brewer and A Hunter. Multimethod Research: A Synthesis of Styles. SAGE Publications,

Newbury Park, CA, 1989.
W Broad and N Wade. Betrayers of the Truth, page 17 and 81. Oxford University Press, New York,

1986.
RE Brooks. Studying programmer behavior experimentally: the problems of proper methodology.

Communications of the ACM, 23(4):207–213, 1980.
A Brooks and P Vezza. Inductive analysis applied to the evaluation of a CAL tutorial. Interacting

with Computers, the Interdisciplinary Journal of Human-Computer Interaction, 1(2):159–170,
1989.

DN Card. Software quality engineering. Information and Software Technology, 32(1):3–10,
1990.

F Close. Too Hot to Handle The Story of the Race for Cold Fusion. W H Allen Publishing,
London, 1990.

HM Collins. Changing Order Replication and Induction in Scientific Practice, pages 19, 35, 43.
SAGE Publications, London, 1985.

B Curtis. Measurement and experimentation in software engineering. Proceedings of the IEEE,
68(9):1144–1157, 1980.

J Daly, A Brooks, J Miller, M Roper, and M Wood. An external replication of korson’s experiment.
Research report EFoCS-4-94, Department of Computer Science, University of Strathclyde,
Glasgow, 1994a.

J Daly, A Brooks, J Miller, M Roper, and M Wood. Verification of results in software maintenance
through external replication. In Proceedings of the IEEE International Conference on Software
Maintenance, pages 50–57. IEEE, Los Alamitos, CA, 1994b. ICSM’94.

M Goldstein and Inge F Goldstein. HOW WE KNOW An Exploration of the Scientific Process,
page 207. Plenum Press, New York and London, 1978.

SM Henry and M Humphrey. A controlled experiment to evaluate maintainability of object-oriented
software. In Proceedings of the IEEE Conference on Software Maintenance, pages 258–265,
1990.

TH Huxley. We are all scientists. In H Shapley, S Rapport, and H Wright, editors, The New treas-
ury of Science, page 14. Collins, London and Glasgow, 1965.

A Jedlitschka and D Pfahl. Reporting Guidelines for Controlled Experiments in Software
Engineering. Verification of results in software maintenance through external replication. In
International Symposium on Empirical Software Engineering, pages 95–104. IEEE, Los
Alamitos, CA, 2005. ISESE 2005.

JPJ Kelly, TI McVittie, and WI Yamamoto. Implementing design diversity to achieve fault tolerance.
IEEE Software, 8(4):61–71, 1991.

TD Korson. An Empirical Study of the Effects of Modularity on Program Modifiability. PhD thesis,
College of Business Administration, Georgia State University, 1986.

TD Korson and VK Vaishnavi. An empirical study of the effects of modularity on program modifi-
ability. In E Soloway and Iyengar S S, editors, Empirical Studies of Programmers: First
Workshop, pages 168–186. Ablex Publishing Corporation, Norwood, NJ, 1986. A Volume in
the Ablex Human/Computer Interaction Series.

J Lewis, S Henry, D Kafura, and R Schulman. An empirical study of the object-oriented paradigm
and software reuse. OOPSLA, 184–196, 1991.

14 Replication’s Role in Software Engineering 379

B Lientz and E Swanson. Software Maintenance Management. Addison-Wesley, Reading, MA,
1st edition, 1980.

SG MacDonnell. Rigor in software complexity measurement experimentation. Journal of Systems
and Software, 16:141–149, 1991.

DR Moreau and WD Dominick. A programming environment evaluation methodology for object-
oriented systems: part ii – test case application. Journal of Object-Oriented Programming,
3(3):23–32, 1990.

KR Popper. The Logic of Scientific Discovery. Hutchinson, London, revised edition, 1968.
M Roper. Software testing: a selected annotated bibliography. Software Testing, Verification and

Reliability, 2:113–132, 1992.
DA Scanlan. Structured flowcharts outperform pseudocode: an experimental comparison. IEEE

Software, 6(5):28–36, September 1989.
S Sharpe, DA Haworth, and D Hale. Characteristics of empirical software maintenance studies:

1980–1989. Journal of Software Maintenance: Research and Practice, 3:1–15, 1991.
B Shneiderman, R Mayer, D McKay, and P Heller. Experimental investigations of the utility of

detailed flowcharts in programming. Communications of the ACM, 20(6):373–381, 1977.
DIK Sjoberg, JE Hannay, O Hansen, VB Kampenes, A Karahasanovíc, N-K Liborg, and AC

Rekdal. A survey of controlled experiments in software engineering. IEEE Transactions on
Software Engineering, 31(9):733–752, 2005.

GP Smith. The problems of reduction and replication in the practice of the scientific method.
Annals of the New York Academy of Sciences, 406:1–4, 1983.

University of Maryland Experimental Software Engineering Group. Lab packages. http://www.
cs.umd.edu/projects/SoftEng/ESEG/downloads.html

Bibliography

Albrecht, A. J. & GaffneyJr., J. E. (1983), ‘Software function, source lines of code, and develop-
ment effort prediction: a software science validation’, IEEE Trans. Software Eng. 9(6),
639–648.

An, K. H., Gustafson, D. A. & Melton, A. C. (1987), A model for software maintenance, in
‘Proceedings of the Conference in Software Maintenance’, Austin, Texas, pp. 57–62.

Atkins, D., Ball, T., Graves, T. & Mockus, A. (1999), Using version control data to evaluate the
effectiveness of software tools, in ‘1999 International Conference on Software Engineering’,
ACM Press, pp. 324–333.

Barnard, J. & Rubin, D. B. (1999), ‘Small sample degrees of freedom with multiple imputation’,
Biometrika 86(4).

Chidamber, S. R. & Kemerer, C. F. (1994), ‘A metrics suite for object oriented design’, IEEE
Trans. Software Eng. 20(6), 476–493.

Fleming, T. H. & Harrington, D. (1984), ‘Nonparametric estimation of the survival distribution in
censored data’, Comm. in Statistics 13, 2469–86.

Goldenson, D. R., Gopal, A. & Mukhopadhyay, T. (1999), Determinants of success in software
measurement programs, in ‘Sixth International Symoposium on Software Metrics’, IEEE
Computer Society, pp. 10–21.

Graves, T. L., Karr, A. F., Marron, J. S. & Siy, H. P. (2000), ‘Predicting fault incidence using soft-
ware change history’, IEEE Transactions on Software Engineering 26(7), 653–661.

Graves, T. L. & Mockus, A. (1998), Inferring change effort from configuration management data-
bases, in ‘Metrics 98: Fifth International Symposium on Software Metrics’, Bethesda,
Maryland, pp. 267–273.

Halstead, M. H. (1977), Elements of Software Science, Elsevier North-Holland.
Herbsleb, J. D. & Grinter, R. (1998), Conceptual simplicity meets organizational complexity:

Case study of a corporate metrics program, in ‘20th International Conference on Software
Engineering’, IEEE Computer Society, pp. 271–280.

Herbsleb, J. D., Krishnan, M., Mockus, A., Siy, H. P. & Tucker, G. T. (2000), Lessons from ten
years of software factory experience, Technical report, Bell Laboratories.

Jönsson, P. & Wohlin, C. (2004), An evaluation of k-nearest neighbour imputation using likert
data, in ‘Proc. of the 10th Int. Symp. on Software Metrics’, pp. 108–118.

Kaplan, E. & Meyer, P. (1958), ‘Non-paramentric estimation from incomplete observations’, J Am
Stat Assoc pp. 457–481.

Kim, J. & Curry, J. (1977), ‘The treatment of missing data in multivariate analysis’, Social
Methods and Research 6, 215–240.

Little, R. & Hyonggin, A. (2003), Robust likelihood-based analysis of multivariate data with miss-
ing values, Technical Report Working Paper 5, The University of Michigan Department of
Biostatistics Working Paper Series. http://www.bepress.com/umichbiostat/paper5

Little, R. J. A. (1988), ‘A test of missing completely at random for multivariate data with missing
values’, Journal of the American Statistical Association 83(404), 1198–1202.

381

382 Bibliography

Little, R. J. A. & Rubin, D. B. (1987), Statistical Analysis with Missing Data, Willey Series in
Probability and Mathematical Statistics, John Willey & Sons.

Little, R. J. A. & Rubin, D. B. (1989), ‘The analysis of social science data with missing values’,
Sociological Methods and Research 18(2), 292–326.

McCabe, T. (1976), ‘A complexity measure’, IEEE Transactions on Software Engineering 2(4),
308–320.

Mockus, A. (2006), Empirical estimates of software availability of deployed systems, in ‘2006
International Symposium on Empirical Software Engineering’, ACM Press, Rio de Janeiro,
Brazil, pp. 222–231.

Mockus, A. (2007), Software support tools and experimental work, in V. Basili & et al, eds,
‘Empirical Software Engineering Issues: LNCS 4336:’, Springer, p. to appear.

Mockus, A. & Votta, L. G. (1997), Identifying reasons for software changes using historic databases,
Technical Report BL0113590-980410-04, Bell Laboratories.

Myrtveit, I., Stensrud, E. & Olsson, U. (2001), ‘Analyzing data sets with missing data: An empirical
evaluation of imputation methods and likelihood-based methods’, IEEE Transactions on
Software Engineering 27(11), 1999–1013.

Novo, A. (2002), ‘Analysis of multivariate normal datasets with missing values’. Ported to R by
Alvaro A. Novo. Original by J.L. Schafer.

R Development Core Team (2005), R: A language and environment for statistical computing,
R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0. http://www.
R-project.org

Roth, P. L. (1994), ‘Missing data: A conceptual review for applied psychologist’, Personel
Psychology 47, 537–560.

Rubin, D. B. (1987), Multiple Imputation for Nonresponse in Surveys, John Willey & Sons.
Schafer, J. L. (1997), Analysis of Incomplete Data, Monograph on Statistics ans Applied

Probability, Chapman & Hall.
Schafer, J. L. & Olsen, M. K. (1998), ‘Multiple imputation for multivariate missing data

problems’, Multivariate Behavioural Research 33(4), 545–571.
Schafer, J. S. (1999), ‘Software for multiple imputation’. http://www.stat.psu.edu/˜jls/misoftwa.

html
Strike, K., Emam, K. E. & Madhavji, N. (2001), ‘Software cost estimation with incomplete data’,

IEEE Transactions on Software Engineering 27(10), 890–908.
Swanson, E. B. (1976), The dimensions of maintenance, in ‘Proc. 2nd Conf. on Software Engineering’,

San Francisco, pp. 492–497.
Twala, B., Cartwright, M. & Shepperd, M. (2006), Ensemble of missing data techniques to

improve software prediction accuracy, in ‘ICSE’06’, ACM, Shanghai, China, pp. 909–912.
Weisberg, S. (1985), Applied Linear Regression, 2nd Edition, John Wiley & Sons, USA.

Index

abduction 318
abductive inference 317, 318
ACM code of ethics 230, 233, 237
ACM SigDoc 27
action research 258, 301–303, 307, 308
actor 322
analytical phase of research 99, 100
anomalies in data 52–53
anonymity 238–239
ANOVA 168
autonomy 232, 235
available case 193

Basili’s framework of experimentation in
software engineering 373–375, 377

Bayesian analysis 90, 191
behavioural sciences 313
benchmark 65, 101
beneficence 236–238
between subjects design 219
bias 77, 297, 299, 302, 306, 346, 347, 351,

352, 354, 359–360
binomial data 90, 166, 169, 171, 172, 173
blinding 207, 219
blocks 295
Bonferroni procedure 164
Brainstorming 11, 12–13, 97, 104

Calibration 121, 132
case study 50–51, 296–298, 313, 327, 329
case study

confirmatory 296, 297
exploratory 296, 328

casewise deletion 192
categorical data 166, 169, 171, 195
causality 289, 315
censoring 159

central tendency 165, 167
classical measurement theory 159
CMM 80, 355
codes

preformed 49
postformed 49

coding phase of simulation 143, 144
coding

axial 49, 329
selective 50, 329

coercion 235–236, 247, 248–249
cold fusion 370
Common Rule the 241, 242
compensation 249
complete case, method 192
compound metrics 158
conceptual development 318
conceptual modeling 16–17
conclusion validity 223
confidence in empirical results 337–338,

365–366
confidence interval 165
confidentiality 102, 216, 232, 238–240, 246,

248, 253, 275
confidentiality of data 232, 275
consent form 234, 250, 252, 253–254, 278
constant comparison method 48–50
construct validity 80, 161, 222, 223, 305
constructivism 291, 304
constructivists 290, 291, 293, 298, 302, 304
constructs 223, 313, 316
content analysis 59–60, 95
content validity 80, 161
context information 21, 24, 202, 212
controlled experiment 291, 294–296,

306, 308
convenience sampling 86
correlation 166, 289
cover letter 245

383

384 Index

criterion validity 80, 161
critical theorists 291–292, 298, 307
critical theory 291–292, 302
Cronbach’s alpha 79, 161, 221
cross-case analysis 50–51
cultural conflict 266

data
analysis 46, 279
anomalies in 52–53
binomial 90, 166, 169, 171, 172, 173
categorical 166
cleaning 163
collection 37, 219, 279, 297, 303,

304–305
confidentiality of 232, 275
missing 89, 180–181, see also Chapter 7
multinomial 166
nominal 90
objective 67
ordinal 90, 166–167, 169, 173
quality 178–182, 189, 308
subjective 58, 67
validation 88–89, 178, 179–180
visualization of 54–57

deception 234–235, 250
deductive methods 318 (also figure, pg. 318)
deletion techniques 186, 192–193
dependent variable 187, 209, 217, 294
descriptive statistics 97, 156, 161, 163, 164, 221
design documents 118, 130
direct observation 37, 39
disclosure

full 234
partial 234–235

discrimination validity 161
dispersion 165, 221
dynamic analysis 27

effect size 221, 352, 354, 355, 371
EMPEROR approach 357–360
empirical research project 257, 269
Empirical Software Engineering Journal 370
empirical support 318, 319, 332
empirically-based theory 312, 314
empiricists 290
epistemology 290
equivalence testing 168
ERB 231
ethics review boards 231
ethnographic research 300–301
ethnography 21, 299, 300–301, 307–308
evaluating theories 319

evaluative phase of research 99, 100
expedited review 244, 245
Experience Factory 356, 357
experience portal 356–360
experimental unit 84, 181, 207, 215
explanatory power 316, 319, 320, 332, 338
explanatory theory 317
EXTEND 126
external validity 222, 223, 295, 306

face validity 80, 81
fairness 346
falsifiability 318
field memo 50
field notes 39, 45, 48, 49
FIML 192
focus groups 12–13, 77, see also Chapter 4
forecasting 175
full information maximum likelihood 192
function points 132, 133, 188
fusion, cold 370

Goal/Question/Metrics (GQM) 206, 212, 215,
340, 341

goodness of a theory 318
Grounded theory 48, 293, 317, 329–330
group mean substitution 194
Group Support Systems 102–105
GSS 102–105

Hackystat 22
Hawthorne effect 308

IEEE-CS/ACM code of ethics 230,
233, 237

imputation
hot deck 192, 194
k-nearest neighbor 192
mean 192
multiple 192, 195–196

independent variable 217, 219, 294
induction 293, 297, 317
inductive analysis 372
industrially-sponsored project 267
inferential statistics 156, 163, 221
inflows 127, 139
informational phase of research 99, 100
informed consent 232–236, 250–254
input parameter values 122
Institutional Review Board 241
instrumentalism 316, 318

Index 385

integrating evidence 352, 354
intellectual property 262, 266, 276
inter-coder reliability (see also inter-rater

reliability) 29
internal validity 208, 223, 306
interpretivism 35–36, 291
inter-rater reliability 29, 79, 167, 219
interval scale 160
interview 13–15, 43–46, 82, 237, 268,

298–299, 329
guide 45, 47
scribe 45
semi-structured 14, 44, 308
structured 13–14, 44, 105, 298
unstructured 44, 45

Kaplan-Meier Estimate 190
Kendall’s tau 29, 90, 167
Kruskal-Wallis test 168

laboratory package 377
level variables 127, 128, 136, 138, 139
life cycle 120
listwise deletion 191–192
local theory 291, 292, 301, 302
logistic regression 90, 173
longitudinal study 14, 22, 68, 173, 190,

276, 302

mapping studies 340
MAR 189–192
mathematical theory 160
MATLAB 126
MCAR 189–192
mean absolute deviation 176
mean absolute percentage error 176
mean percentage error 176
mean squared error 176
mean substitution 193–194
measurement 74, 156

precision 161
process 156
scale 80, 156

measurement theory 159, 160
measures of association 166
measures of dispersion 165
median 165
medical research, evidence in 348
mental model 11, 16, 19, 1

18, 315
member checking 53–54
meta-analysis 221, 225, 352–356

qualitative 293, 309, see also Chapter 2
quantitative 36, 60, 97, 309

metric definition 158–160
metric evaluation 160–162
MI 195–197
minimal risk 243–244
minimize harm 236–239
Mining Software Repositories, International

Workshop on 25, 26
missing at random 189–192
missing completely at random 189–192
missing data 89, 180–181,

see also Chapter 7
mixed methods 60, 303–304
model calibration 121, 132
model validation 120, 147
moderator 94, 97
modes 164
MSR 25, 26
multinomial data 166
multiple imputation 195–197
multiple regression 162, 192, 196
multivariate regression 170

N-version programming 367
negative case analysis 52
NMAR 190–191
nominal data 90
nominal scale 160
non-parametric model 163
non-parametric test 29–30, 163, 167, 168
non-random sampling 181–182
not missing at random 190–191
null hypothesis 167, 168, 222, 371

objective data 67
objectivity 54, 48, 345, 346
object-oriented system, maintainability

of 368
observation 11, 12, 20–21, 37–43, 243, 244,

246, 250, 300
ontology 290
open coding 49, 329
open questions 71
open-ended question 14, 44, 67, 70
openness 345, 346–347
ordinal data 90, 166–167, 169, 173
ordinal scale 73–74, 76, 90, 160, 218
organizational characteristics 66
outflows 127
outlier 52–53, 164, 221
output parameter values 122–123
overrun of software projects 67, 350

pairwise deletion 193
parametric models 163
participant observation 21–22, 37–43, 234,

250, 300
peer review of studies 275, 342, 349, 358, 366,

367
perspective-based reading 212, 215, 217, 377
philosophical stance 36, 290
physical theory 315
pilot test 70, 78, 83, 305
positivism 35–36, 291, 316
pragmatism 292, 313, 316, 318
pragmatists 292, 320
prediction 163, 169–173, 175–176, 292, 314,

315, 319, 327
probability sampling 86, 88
problem statement 119–120, 204, 206, 212
process control 176–178
process improvement 120, 187, 258, 292, 355
product quality 46, 122, 158, 226, 238, 262
program comprehension 19, 315, 316
project cost estimation 122
project description 244, 245–250
project management 66, 122, 123, 186
propositional phase of research 99, 100
proposition 48, 50–52, 54, 296, 305, 313, 316,

19, 320, 322, 323, 329–330
publication bias 360
purposive sampling 94, 297

QSIM 125
QUAF 125
qualitative analysis of causal feedback 125
quasi experiment 202, 296
questionnaire 11, 15–16, 65, 70, 74, 242, 245,

298–299, 329, 373, 376, see also
Chapter 3

questionnaire specification 81
questions

base-rate 288
causality 289
exploratory 287
knowledge 289
open-ended 14, 44, 67, 70
relationship 288

quota sampling 86

random sample 85
randomization 85–86, 207, 215, 353
rate variables 127, 128, 132, 136, 139
rater agreement exercises 40
ratio scale 160

rationalists 290
recruitment of subjects 239, 246, 248–249
reductionist 291, 295
reference behaviour 119, 120
regression equation 170
regression methodology 170, 173
regression substitution 194
reliability 59, 77–79, 80–81, 160, 161, 306
repeated measures analysis 173
replication 53, 214, 216, 240, 302, 326,

see also Chapter 14
replication

close 375, 377
criteria for 368–369
differentiated 375
exact 370–371
external 365, 373
information required to allow 368–369
internal 365, 373
partial 371
reporting guidelines for 375–377

reporting guidelines
abstracts 209–211
acknowledgements 224
analysis 220–221
analysis procedure 220
appendices 225
authorship 209
background 213–214
conclusion 224
deviations from the plan 220
discussion 221–224
experiment design 219
experiment planning 214–220
goals 215
hypotheses 216–218
introduction 211–213
keywords 211
materials 216
participants 215–216
procedure 219–220
references 225
results 222
task 216
threats to validity 222–223
title 209

representative sample 68, 82, 295, 298
requirements 11, 98, 104, 120, 123, 130, 144,

186, 317, 322, 323
requirements prioritization 98, 101
research

design 294, 309, 328
method 286–287
question 100, 287–290, 309

386 Index

Index 387

Research Ethics Board 233, 276
response rate 15, 75, 87, 268, 298
risk management 66, 98, 118, 274
robustness 121

sample
size 87, 88, 94, 163, 168, 175, 185,

186, 193
representative 68, 82, 295, 298
bias 178, 181, 182, 299
method 83, 85–86
unit 84
chain 300
cluster based 85–86
convenience 86
purposive 94, 297
quota 86
random 85
snowball 86
stratified 85, 298
systematic 85

scientific review 244
scientific value 240, 244, 247
scope 120, 319, 320, 330
scope conditions 316, 323, 330
searching for empirical evidence 341–342
segmentation of participants 96
sensitivity analysis 191, 221
shadowing 11, 20–21, 38, 232, 237, 260

synchronized 20, 38, 260
similar response pattern imputation 192
simple metrics 158–159
Simpson-traction replication 370
simulation model

deterministic 122–123
dynamic 123
event-driven 124
static 123
stochastic 122–123

simulation
DE 124, 144–147
discrete event 124, 144–147
hybrid 125
modeling tools 125–127
qualitative 124–125
quantitative 124–125
SD 127–128, 144–147
system dynamic 127–128, 144–147
verification 121–122, 132

skewed distribution 159, 164
skill 267, 268
software engineering theory 314, 317
software industry 319

software metrics 157, 160, 170, 171, 186
software process 13, 21, 79, 117, 120, 148,

355
software process improvement 13, 355
software reliability 190
software system 314, 321, 321
specificity 172
static analysis 27
statistical analysis 29, 156–157, 163
statistical power 168, 215, 353, 371
statistical significance 222, 269, 350
stratified random sample 85, 298
structured abstract 209–211
subject information sheet 250–253
subject

selection of 376
vulnerable 233, 243, 248

subjective data 58, 67
substitution techniques 193–195
survey

design 68–69
documentation 81
instrument 69–77
instrument evaluation 77–82
reliability 78–81

survey research 298–299, see also Chapter 3
survival curve 190
synchronized shadowing 20, 38, 260
systematic literature review 340, 347–349

target population 82, 83
technology transfer 99, 100, 262–263
testability 319, 331
theory 313, 314
theory building 292, 325
theory development 318, 333
theory generation 48
think-aloud 11, 19–20, 37–38
threats to validity 222–223, 269, 306
time series 173, 174, 296
time sheets 11, 17, 18
transcription 19, 29, 108
treatment 294–296
triangulate 30, 52, 304
triangulation 30, 52, 132, 304, 306

concurrent 304
truncation 159
t-test 168–169
type I error 168, 223
type II error 168, 223

UML 322
unit of analysis 297

validity 52, 80, 161, 222–223, 305–307,
377

construct 80, 161, 222, 223, 305
content 80, 161
conclusion 223
criterion 80, 161
discrimination 161
external 222, 223, 295, 306
face 80, 81
internal 208, 223, 306

VENSIM 126, 128–130

verification 121–122, 132
visualization of data 54–57
voluntariness 232–233, 235, 236, 248,

252, 253
vulnerable subjects 233, 243, 248

weighting of evidence sources 354, 358
Wilcoxon/Mann-Whitney test 168
within subjects design 295
work diaries 11, 17–18

388 Index

