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Introduction

Empirical studies have become an important part of software engineering research 
and practice. Ten years ago, it was rare to see a conference or journal article about 
a software development tool or process that had empirical data to back up the 
claims. Today, in contrast, it is becoming more and more common that software 
engineering conferences and journals are not only publishing, but eliciting, articles 
that describe a study or evaluation. Moreover, a very successful conference 
(International Symposium on Empirical Software Engineering and Measurement), 
journal (Empirical Software Engineering), and organization (International Software 
Engineering Research Network) have all evolved in the last 10 years that focus 
solely on this area. As a further illustration of the growth of empirical software 
engineering, a search in the articles of 10 software engineering journals showed that 
the proportion of articles that used the term “empirical software engineering” dou-
bled from about 6% in 1997 to about 12% in 2006.

While empirical software engineering has seen such substantial growth, there is 
not yet a reference book that describes advanced techniques for running studies and 
their application. This book aims to fill that gap. The chapters are written by some 
of the top international empirical software engineering researchers and focus on the 
practical knowledge necessary for conducting, reporting, and using empirical 
 methods in software engineering. The book is intended to serve as a standard 
reference.

The goals of this book are:

● To provide guidance on designing, conducting, analysing, interpreting, and 
reporting empirical studies, taking into account the common difficulties and 
challenges encountered in the field.

● To provide information across a range of techniques, methods, and quantitative 
and qualitative issues, and in so doing provide a toolkit that is applicable across 
the diversity of software development contexts.

● To present material that is adapted from work in other disciplines such as statis-
tics, medicine, psychology, and education, into a software engineering context.

We did not include introductory topics on how to design and run studies in 
empirical software engineering, as this information has been covered adequately 
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2 Introduction

in several other books and papers. To address these goals, the chapters in this book 
are grouped according to three primary themes:

“Research Methods and Techniques” presents discussions on the proper use of various 
strategies for collecting and analyzing data, and the uses for which those strategies 
are most appropriate. Our aim in this section is to present ideas about strategies that 
are less often used in our field, which perhaps may provide some ideas about less 
conventional but still rigorous and useful ways of collecting data. We also aim to 
provide detailed information on topics such as surveys that in our experience often 
contain methodological errors.

“Practical Foundations” provides a discussion of several basic issues that a 
researcher has to get right before a study becomes meaningful. This section discusses 
important, global issues that need to be considered from the very beginning of 
research planning. Chapters here discuss topics that are almost always going to be 
important, regardless of the specific choices that are made about running the study. 
Our aim in this section is to arm researchers with the information necessary to avoid 
fundamental risks. For example, an entire study may be inappropriate if a researcher 
doesn’t understand enough about metrics and statistics to collect the right measures; 
a researcher may not get the chance to run the study he/she wants if there is no good 
way to cooperate with industry; or the results may be jeopardized if incomplete data 
is collected by the study and the researcher don’t respond appropriately.

Finally, “Knowledge Creation” looks beyond the challenge of running an appro-
priate study to provide insight on what is becoming one of the most important 
challenges in empirical software engineering today–using a set of disparate studies 
(all of which may employ different designs and metrics) to provide useful decision 
support on a question of interest. The conversion of discrete scientific results into a 
broadly useful “body of knowledge” on a topic is a difficult process, with many 
opportunities for introducing bias if done incorrectly. Refining and employing 
appropriate techniques in addressing this problem is one of the most important 
challenges for ensuring the relevance of empirical software engineering and show-
ing its practical impact.

While we feel that all of these topics are of interest to many workers in this field, 
we do wish to direct the attention of certain readers to certain parts of the book. 
There are four target audiences for this book:

1. Practising software engineering researchers, whether they reside in academia or 
in industrial research labs.

Of primary interest to such readers may be the section on “Knowledge 
Creation,” since building knowledge from multiple sources of data, suitable 
for providing higher level answers to problems, continues to be of more 
importance to the empirical software engineering community as a whole. At 
the same time, our methods for abstracting such knowledge are not yet well 
codified, and the chapters in this section raise awareness as well as inform 
researchers about the methods currently being employed.

Researchers may be primarily either quantitatively or qualitatively 
inclined. Both types will find issues of direct relevance to the typical prob-
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lems that they encounter in the “Research Methods and Tools” section. That 
section is designed to provide a mix of relevant and interesting content of 
both types, as we feel strongly that the quantitative-qualitative distinction is 
an arbitrary one, and interesting and relevant conclusions will always need to 
combine a mix of both types of data. Overall, the methodological material 
will inform readers about advanced and defensible techniques that they can 
use in their research.

One last topic of special interest may be that of reporting guidelines in 
“Practical Foundations,” which can provide readers with guidelines that they 
can use for reporting their results, either internally within their organisations 
or in the scientific literature.

2. Practising software engineers whose work involves data analysis. This category 
includes, for example, quality assurance personnel.

As budgets are squeezed, there is more pressure to provide stronger evidence 
and more convincing business cases to implement new technologies or make 
process changes, and even to justify decisions already made. Therefore, any 
knowledge that the engineers can use to help them achieve this goal is wel-
comed. The “Research Methods and Tools” section is of relevance to this 
 target group. Insofar as readers may be expected to address real problems of 
practical interest, we have tried to make available a set of techniques that may 
be able to help them. As no two project environments and constraints are 
exactly alike, having as wide a variety of methods to apply will be beneficial. 
Moreover, the chapters in “Practical Foundations” that deal with the science 
of measurement and how to deal with common problems, such as missing 
data, may also be of help.

For example, one may consider using data collected about a new technol-
ogy to estimate its effect on a larger process (simulation), understanding 
whether there are hidden costs of such changes by understanding more than 
just the dollar figure involved (qualitative methods), evaluating the impact of 
process changes within the organisation (through surveys of technical staff), 
customer surveys (survey design and focus groups), and performing appropri-
ate analysis of factors affecting the incidence of operational defects when 
there are missing values in the defect databases (dealing with missing values). 
In particular, organisations following the improvement path stipulated by 
contemporary maturity/capability models are primary targets since these 
models emphasize measurement and quantitative control at higher levels of 
maturity/capability.

Other topics that may be of particular relevance for individuals in industry 
performing empirical studies can be found in “Practical Foundations.” For 
example, given that quality assurance personnel usually rely on the co-operation 
of the development and maintenance engineers, ethical behaviour will ensure 
that none of the engineers are alienated. Furthermore, there may be legal 
ramifications for unethical behaviour, particularly in countries with strong 
labour laws (e.g., North European countries). The management of co-operation 
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with universities will be relevant for those involved in joint industry-university 
research projects. Since a successful collaboration depends on both parties, 
the industrial side would also contribute to this success if they are aware of 
these guidelines.

3. Graduate students in software engineering. The book could serve as a text for a 
graduate level course on empirical methods, and/or as reference material for 
students embarking on a research project.

All of the material in the book will be of direct relevance to graduate students. 
Specifically, such readers may find valuable the coverage of the different 
types of studies that can be performed in order to make a decision on which 
approaches to follow during their research projects (“Research Methods and 
Tools”). Even more importantly, topics under “Practical Foundations” will 
help novice researchers recognize some of the background requirements in 
running successful studies, contribute towards ensuring that their research is 
well reported, and mitigate against the tendency of over-interpreting the 
results of individual studies.

The section on “Knowledge Creation” will help students understand the 
body of knowledge that may exist on their research topic and the importance 
of relating their work to existing theories that have been built up in the area.

4. Reviewers of empirical research.

The overview of empirical methods with their strengths and weaknesses 
(“Research Methods and Tools”), especially the discussion of appropriate 
issues that can be tackled with the various methods, should help reviewers 
make a better judgement of the quality of an empirical study.

The section on “Knowledge Creation” is especially important to review-
ers. First, it aims to inform such readers about, and increase the acceptance 
of, replication. Replication is critical for any discipline to progress, and 
reviewers are essentially the gatekeepers. The chapter on reporting guidelines 
would assist reviewers in ensuring that sufficient detail is reported in pub-
lished manuscripts.

Perhaps the most relevant chapter under “Practical Foundations” for 
reviewers is the one concerned with ethics. Reviewers have to judge whether 
appropriate ethical behaviour was followed in published manuscripts. Again, 
being the gatekeepers for a discipline, they can encourage or discourage cer-
tain behaviours.

When we first set out to put this book together, we were motivated by what we 
as researchers felt was missing, a handy reference guide on some of the techniques 
we are called upon to apply as part of our work or to review in others’ work. Little 
did we understand at the time the kind of process we were embarking upon in trying 
to fill that gap. We wish to thank all of the chapter authors for their high-quality 
work and for helping to move this project along. We especially wish to thank all of 
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the external reviewers (listed below) for contributing their effort to improve the 
quality of the materials found here. We certainly hope that readers will find this, as 
we intended, a useful and practical reference for their own work.

Forrest Shull

Janice Singer

Dag Sjøberg

External Reviewers

David Budgen

Reidar Conradi

Yvonne Dittrich

Tore Dybå

Tracy Hall

Natalia Juristo

James Miller

Helen Sharp

Susan Sim

Bhekisipho Twala

Paul Wernick

Bernard Wong

Murray Wood



Section I
Research Methods and Techniques



Abstract. Software engineering is an intensely people-oriented activity, yet little 
is known about how software engineers perform their work. In order to improve 
 software engineering tools and practice, it is therefore essential to conduct field 
studies, i.e., to study real practitioners as they solve real problems. To aid this goal, 
we describe a series of data collection techniques for such studies, organized around 
a taxonomy based on the degree to which interaction with software engineers is 
necessary. For each technique, we provide examples from the literature, an analysis 
of some of its advantages and disadvantages, and a discussion of special reporting 
requirements. We also talk briefly about recording options and data analysis.

1. Introduction

Software engineering involves real people working in real environments. People 
create software, people maintain software, people evolve software. Accordingly 
to understand software engineering, one should study software engineers as they 
work – typically by doing field studies. In this chapter, we introduce a set of data 
collection techniques suitable for performing such studies that can be used indi-
vidually or in combination to understand different aspects of real world environ-
ments. These data collection techniques can be used with a wide variety of 
methods under a wide variety of theoretical and philosophical traditions (see 
Easterbrook et al., Chap. 11).

To better showcase the qualities of the various techniques, we have created a tax-
onomy based on the degree to which interaction with software engineers is required. 
The next section details the taxonomy. In Sect. 3, each technique is described in 
detail. We talk briefly in Sect. 4 about recording options for the data and present a 
brief overview of data analysis. We conclude the chapter with a discussion of how 
these techniques can be used in the most appropriate fashion.

Chapter 1
Software Engineering Data Collection 
for Field Studies1

Janice Singer, Susan E. Sim, and Timothy C. Lethbridge
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1 Based on Lethbridge, T., Sim, S., & Singer, J. (2005). Studying software engineers: data collection 
techniques for software field studies, Empirical Software Engineering 10(3), 311–341.
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2. Field Study Data Collection Taxonomy

Table 1. presents a summary of the data collection techniques; the second column 
shows the kinds of questions each can answer; the third column indicates the 
amount of data generated by the technique, and the fourth column shows other 
areas in software engineering where the technique is applied. Each technique is 
categorized according to how much contact is required between the researchers and 
the participants2. Direct techniques require the researcher to have direct involvement 
with the participant population. Indirect techniques require the researcher to have 
only indirect access to the participants’ via direct access to their work environment. 
Finally, independent techniques require researchers to access only work artifacts, 
such as source code or documentation. Selecting an appropriate technique will be 
influenced by the questions asked and the amount of resources available to conduct 
the study. Generally, direct techniques require more resources, both to collect the 
data and to analyse it. Direct techniques are,  however, the only techniques that 
allow researchers to explore the thoughts and feelings of the software engineers.

3. Survey of Data Collection Techniques

In this section, we describe the data collection techniques listed in Table 1. We use 
the taxonomy to organize the presentation of the techniques, beginning with direct 
techniques, moving on to indirect techniques, and concluding with independent 
techniques. Each of the techniques is described in the same way. First the technique 
is described. Then its advantages and disadvantages are identified. Next, one or 
more examples of its use in software engineering research are given. Finally, some 
guidance is given regarding special considerations when reporting the technique 
(for more information on reporting in general, see Jedlitschka et al., Chap. 8).

3.1. Direct Techniques

The first five techniques listed in Table 1 are what we call inquisitive techniques 
(brainstorming, focus groups, interviews, questionnaires, conceptual modeling), 
while the remaining ones are primarily observational. Each type is appropriate for 
gathering different types of information from software engineers.

2 We recognize that there is some debate about whether to properly characterize people who 
participate in research as subjects or participants. In this chapter, we have chosen to use the word 
participant because in field studies, there is frequently a greater degree of collaboration between 
those being studied and those doing the research.
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Table 1 Questions asked by software engineering researchers (column 2) that can be answered 
by field study techniques

 Used by researchers   Also used
 when their goal is  Volume by software
Technique to understand: of data engineers for

Direct techniques
Brainstorming  Ideas and general  Small Requirements 

and focus  background about   gathering, project
groups  the process and product,   planning
  general opinions 
  (also useful to enhance 
  participant rapport)

Interviews and  General information  Small  Requirements
questionnaires  (including opinions)  to large  and evaluation
  about process, product, 
  personal knowledge etc.

Conceptual  Mental models of  Small Requirements
modeling  product or process

Work diaries Time spent or frequency of certain Medium Time sheets
  tasks (rough approximation, 
  over days or weeks)

Think-aloud  Mental models, goals,  Medium  UI evaluation
sessions  rationale and patterns to large
  of activities

Shadowing and  Time spent or frequency of tasks Small Advanced
observation   (intermittent over relatively   approaches to
  short periods), patterns of   use case or task
  activities, some goals and   analysis
  rationale

Participant  Deep understanding, goals and Medium 
observation  rationale for actions, time to large
(joining the  spent or frequency over
team)  a long period

Indirect techniques
Instrumenting  Software usage over a long  Large Software

systems  period, for many participants   usage analysis
Fly on the wall Time spent intermittently in one Medium 

  location, patterns of activities 
  (particularly collaboration)

Independent techniques
Analysis of work  Long-term patterns relating to  Large Metrics

databases  software evolution, faults etc.   gathering
Analysis of  Details of tool usage Large 

tool use logs
Documentation  Design and documentation  Medium Reverse

analysis  practices, general   engineering
  understanding

Static and dynamic  Design and programming  Large Program
analysis  practices, general   comprehension, 
  understanding   metrics, testing, 
    etc.
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Inquisitive techniques allow the experimenter to obtain a general understanding 
of the software engineering process. Such techniques are probably the only way to 
gauge how enjoyable or motivating certain tools are to use or certain activities to 
perform. However, they are often subjective, and additionally do not allow for 
accurate time measurements.

Observational techniques provide a real-time portrayal of the studied  phenomena. 
However, it is more difficult to analyze the data, both because it is dense and 
because it requires considerable knowledge to interpret correctly. Observational 
techniques can be used at randomly chosen times or when a software engineer is 
engaged in a specific type of activity (such as whenever she is using a debugger). 
Observational techniques always run the risk of changing the process simply by 
observing it; the Hawthorne (Draper, 2004; Robbins, 1994) effect was first identi-
fied when a group of researchers found that output was not related to environmental 
conditions as expected, but rather to whether or not workers were being observed. 
Careful consideration of this effect is therefore warranted in implementing the 
research and explaining its purpose and protocol to the research participants.

3.1.1. Brainstorming and Focus Groups

In brainstorming, several people get together and focus on a particular issue. The 
idea is to ensure that discussion is not limited to “good” ideas or ideas that make 
immediate sense, but rather to uncover as many ideas as possible. Brainstorming 
works best with a moderator because the moderator can motivate the group and 
keep it focused. Additionally, brainstorming works best when there is a simple 
“trigger question” to be answered and everybody is given the chance to contribute 
their opinions. A good seminal reference for this process, called Nominal Group 
Technique, is the work of Delbecq et al. (1975). Trigger questions, such as, “What 
are the main tasks that you perform?” or “What features would you like to see in 
software engineering tools?” can result in extensive lists of valuable ideas that can 
then be analysed in more detail.

Focus Groups are similar to brainstorming. However, focus groups occur when 
groups of people are brought together to focus on a particular issue (not just generate 
ideas). They also involve moderators to focus the group discussion and make sure 
that everyone has an opportunity to participate. For more information on how to 
conduct focus groups, see Kontio et al., Chap. 4.
Advantages: Brainstorming and focus groups are excellent data collection tech-
niques to use when one is new to a domain and seeking ideas for further explora-
tion. They are also very useful for collecting information (for instance about the 
usefulness of a particular tool) from large groups of people at once. They are good 
at rapidly identifying what is important to the participant population. Two impor-
tant side benefits of brainstorming and focus groups are that they can introduce the 
researchers and participants to each other and additionally give the participants 
more of a sense of being involved in the research process. Conducting research in 
field environments is often stressful to the research participants; they are more 
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likely to be willing participants if they feel comfortable with the researchers and 
feel they are partners in research that focuses on issues that they consider to be 
important.
Disadvantages: Unless the moderator is very well trained, brainstorming and focus 
groups can become too unfocused. Although the nominal group technique helps 
people to express their ideas, people can still be shy in a group and not say what 
they really think. Just because a participant population raises particular issues, this 
does not mean the issues are really relevant to their daily work. It is often difficult 
to schedule a brainstorming session or focus group with the busy schedules of soft-
ware engineers.
Examples: Bellotti and Bly (1996) used brainstorming during an initial meeting with 
a product design group. The brainstorming meeting was held to identify  problems 
and possible solutions as seen by the team. This meeting gave the researchers an ini-
tial understanding of the team’s work and additionally let the researchers know how 
existing technology was either supporting or inhibiting the work. A nice side effect 
of the meeting was that it gave the researchers an entry point for communication 
about the design process with their colleagues in the design department at Apple.

Hall and her colleagues have published a number of papers based on a large 
study involving focus groups to understand software process improvement (see for 
example, Baddoo and Hall, 2002; Rainer and Hall, 2003). In their studies, 39 focus 
groups were implemented in 13 companies. The groups were comprised of between 
four and six participants. The companies were chosen based on certain characteris-
tics, but overall were representative of the industry. Each session lasted 90 min. 
There were three types of groups: senior managers, project managers, and develop-
ers. The focus groups were moderated and tackled very specific questions aimed at 
understanding several factors leading to success and failure for software process 
improvement.

Storey et al. (2007) conducted a focus group with a number of users of a tool 
they developed. The focus group enabled the users to communicate with each other, 
and additionally allowed for greater time efficiency when collecting the data than 
interviews would have allowed.
Reporting guidelines: The reporting of brainstorming and focus groups is similar. 
For both, the number of participants seen, and the context in which they were seen 
should be reported. Where appropriate the role and expertise of the moderator 
should be described. If specific questions were used, they should be detailed. 
Additionally, the time spent on brainstorming or the focus group should be reported. 
Finally, the type of data recording used should be described (e.g., video, audio, 
notes, etc.).

3.1.2. Interviews

Interviews involve at least one researcher talking to at least one respondent. 
Interviews can be conducted in two ways. In a structured interview, a fixed list of 
carefully worded questions forms the basis of the interview. Usually, the questions 
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are asked exactly as written, and no deviations occur. The data from structured 
interviews is usually analysed using statistical analyses. In a semi-structured inter-
view, the interview generally follows more of a conversational flow. New questions 
may be devised as new information is learned. Typically, some open-ended 
questions that allow for greater interaction are asked. Furthermore, in some 
semi-structured interviews, the interview will be structured around a framework of 
potential topics as opposed to any specific questions. The data from semi-structured 
interviews is usually analysed using qualitative analysis methods (see Seaman, 
Chap. 2).
Advantages: Structured interviews are an efficient means of collecting the same 
data from a large number of respondents. Semi-structured interviews tend to be 
much more highly interactive. Researchers can clarify questions for respondents 
and probe unexpected responses. Interviewers can also build rapport with a 
respondent to improve the quality of responses.
Disadvantages: Interviews are time and cost inefficient. Contact with the respond-
ent needs to be scheduled and at least one person, usually the researcher, needs to 
attend the meeting (whether in person, by phone, videoconference, or over the 
web). If the data from interviews consists of audio- or videotapes, this needs to be 
transcribed and/or coded; careful note-taking may, however, often be an adequate 
substitute for audio or video recording. Finally, participants’ reports of events may 
not mirror reality. For instance, in one of our interview studies, developers reported 
that they spent a substantial amount of time reading documentation, but we did not 
observe this to be true.
Examples: Interviews have been used in many studies because they fit well with 
many types of methods and philosophical traditions. We have used interviews in 
longitudinal studies as an aid in understanding how newcomers adapt to a develop-
ment team and software system (Sim and Holt, 1998). We interviewed newcomers 
once every three weeks over a number of months to track their progress as mainte-
nance team members. Since this was an exploratory study, the interviews were 
semi-structured with open-ended questions.

Curtis et al. (1988) used interviews to study the design process used on 19 
different projects at various organizations. They interviewed personnel from three 
different levels of the participating projects, systems engineers, senior software 
designers and project managers. The researchers conducted 97 interviews, which 
resulted in over 3000 pages of transcripts of the audio recordings. They found 
three key problems common to the design processes: communication and coordi-
nation breakdowns, fluctuating and conflicting product requirements, and the 
tendency for application domain knowledge to be located in individuals across 
the company. They characterized the problems at each level of a model they 
 subsequently defined.

Damian et al. (2004) used interviews of experienced personnel and senior man-
agement to examine how changes in the requirements engineering process affected 
software development practice. Because there was limited historical data on the pre-
vious requirements process, the interviews were key to provide information on how 
the changes were affecting the current practice. In addition to the initial  interviews, 
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follow-up interviews were conducted after a questionnaire to elucidate the responses. 
Overall, Damian et al. found the improved requirements process was useful to the 
product development team in that it resulted in better documentation of require-
ments, understanding of the market need, and understanding of requirements.
Reporting guidelines: When reporting data from interviews, it is necessary to detail 
the number and type of interviewees seen, approximately how long the interviews 
took, the type of interview (semi-structured or structured), the way the interview is 
recorded, and how the participants were selected. Additionally, if possible, provide 
a copy of the questions in the report or an appendix.

3.1.3. Questionnaires

Questionnaires are sets of questions administered in a written format. These are the 
most common field technique because they can be administered quickly and easily. 
However, very careful attention needs to be paid to the wording of the questions, 
the layout of the forms, and the ordering of the questions in order to ensure valid 
results. Pfleeger and Kitchenham have published a six part series on principles of 
survey research starting with Pfleeger and Kitchenham (2001) (see also Chap. 3). 
This series gives detailed information about how to design and implement question-
naires. Punter et al. (2003) further provide information on conducting web-based 
surveys in software engineering research.
Advantages: Questionnaires are time and cost effective. Researchers do not need to 
schedule sessions with the software engineers to administer them. They can be 
filled out when a software engineer has time between tasks, for example, waiting 
for information or during compilation. Paper form-based questionnaires can be 
transported to the respondent for little more than the cost of postage. Web-based 
questionnaires cost even less since the paper forms are eliminated and the data are 
received in electronic form. Questionnaires can also easily collect data from a large 
number of respondents in geographically diverse locations.
Disadvantages: Since there is no interviewer, ambiguous and poorly-worded ques-
tions are problematic. Even though it is relatively easy for software engineers to fill 
out questionnaires, they still must do so on their own and may not find the time. Thus, 
response rates can be relatively low which adversely affects the representativeness of 
the sample. We have found a consistent response rate of 5% to software engineering 
surveys. If the objective of the questionnaire is to gather data for rigorous statistical 
analysis in order to refute a null hypothesis, then response rates much higher than this 
will be needed. However, if the objective is to understand trends, then low response 
rates may be fine. The homogeneity of the population, and the sampling technique 
used also affect the extent to which one can generalize the results of surveys. In addi-
tion to the above, responses tend to be more terse than with interviews. Finally, as 
with questionnaires, developers’ responses to questions may not mirror reality.
Examples: Lethbridge (2000) used questionnaires that were partly web-based and 
partly paper-based to learn what knowledge software engineers apply in their daily 
work, and how this relates to what they were taught in their formal education. 
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Respondents were asked four questions about each of a long list of topics. Several 
questionnaires were piloted, but nonetheless a couple of the topics3 were interpreted 
in different ways by different respondents. Despite this, useful conclusions about 
how software engineers should be trained were drawn from the study.

Iivari (1996) used a paper-based questionnaire to test nine hypotheses about 
 factors affecting CASE tool adoption in 52 organizations in Finland. The author 
contacted organizations that had purchased CASE tools and surveyed key informa-
tion systems personnel about the use of the tool. Companies and individuals were 
more likely to use CASE tools when adoption was voluntary, the tool was perceived 
to be superior to its predecessor(s) and there was management support.
Reporting guidelines: When reporting data from questionnaires, it is necessary to 
detail how the population was sampled (i.e., who the questionnaires were sent to, 
or how respondents were chosen) and the response rate for the questionnaire, if 
appropriate. Any piloting and subsequent modification of the questionnaire should 
be explained. Additionally, if possible, provide a copy of the questions in the report 
or an appendix.

3.1.4. Conceptual Modeling

During conceptual modeling, participants create a model of some aspect of their 
work – the intent is to bring to light their mental models. In its simplest form, par-
ticipants draw a diagram of some aspect of their work. For instance, software engi-
neers may be asked to draw a data flow diagram, a control flow diagram or a 
package diagram showing the important architectural clusters of their system. As 
an orthogonal usage, software engineers may be asked to draw a physical map of 
their environment, pointing out who they talk to and how often.
Advantages: Conceptual models provide an accurate portrayal of the user’s concep-
tion of his or her mental model of the system. Such models are easy to collect and 
require only low-tech aids (pen and paper).
Disadvantages: The results of conceptual modeling are frequently hard to interpret, 
especially if the researcher does not have domain knowledge about the system. 
Some software engineers are reluctant to draw, and the quality and level of details 
in diagrams can vary significantly.
Examples: In one of our studies, we collected system maps from all members of the 
researched group. Additionally, as we followed two newcomers to a system, we had 
them update their original system maps on a weekly basis. We gave them a photo-
copy of the previous week’s map, and asked them to either update it or draw a new 
one. The newcomers almost exclusively updated the last week’s map.

In our group study, our instructions to the study participants were to “draw their 
understanding of the system.” These instructions turned out to be too vague. Some 

3 For example, we intended ‘formal languages’ to be the mathematical study of the principles of 
artificial languages in general, yet apparently some respondents thought we were referring to 
learning how to program.
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participants drew data flow diagrams, some drew architectural clusters, others listed 
the important data structures and variables, etc. Not surprisingly, the manager of the 
group subsequently noted that the system illustrations reflected the current 
problems on which the various software engineers were working.

We learned from this exercise that for conceptual modeling to be useful, it is 
important to specify to the greatest extent possible the type of diagram required. It 
is next to impossible to compare diagrams from different members of a group if 
they are not drawing the same type of diagram. Of course, this limits researchers in 
the sense that they will not be getting unbiased representations of a system. 
Specifying that data-flow diagrams are required means that software engineers 
must then think of their system in terms of data-flow.

In another project (Sayyad-Shirabad et al., 1997), we wanted to discover the 
concepts and terminology that software engineers use to describe a software 
system. We extracted a set of candidate technical terms (anything that was not a 
common English word) from source code comments and documentation. Then we 
designed a simple program that allowed software engineers to manipulate the con-
cepts, putting them into groups and organizing them into hierarchies. We presented 
the combined results to the software engineers and then iteratively worked with 
them to refine a conceptual hierarchy. Although there were hundreds of concepts in 
the complex system, we learned that the amount of work required to organize the 
concepts in this manner was not large.
Reporting guidelines: The most important thing to report for conceptual models is 
the exact instructions given to the participants and a precise description of the tools 
that they had available to them to model. The way the data is recorded should also 
be outlined.

3.1.5. Work Diaries

Work diaries require respondents to record various events that occur during the day. 
It may involve filling out a form at the end of the day, recording specific activities 
as they occur, or noting whatever the current task is at a pre-selected time. These 
diaries may be kept on paper or in a computer. Paper forms are adequate for record-
ing information at the end of the day. A computer application can be used to prompt 
users for input at random times. A special form of the work diary is time sheets. 
Many software engineers (particularly consultants) are required to maintain and 
update quite detailed time sheets recording how many hours are spent per day per 
activity category. These time sheets can be a valuable source of data.

If you are considering utilizing prompted work diaries, Karahasanovic et al. 
(2007) provide a comprehensive comparison of this technique to think-aloud 
protocol analysis (detailed below), evaluating its costs, impacts on problem solving, 
and benefits.
Advantages: Work diaries can provide better self-reports of events because they 
record activities on an ongoing basis rather than in retrospect (as in interviews and 
questionnaires). Random sampling of events gives researchers a way of  understanding 
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how software engineers spend their day without undertaking a great deal of 
observation or shadowing.
Disadvantages: Work diaries still rely on self-reports; in particular, those that 
require participants to recall events may have significant problems with accuracy. 
Another problem with work diaries is that they may interfere with respondents as 
they work. For instance, if software engineers have to record each time they go and 
consult a colleague, they may consult less often. They may also forget or neglect to 
record some events and may not record at the expected level of detail.
Examples: Wu et al. (2003) were interested in collaboration at a large  software 
company. In addition to observations and interviews, they asked software engineers 
to record their communication patterns for a period of 1 day. The researchers were 
interested in both the interaction between the team members, and the typical 
communication patterns of developers. They found that developers communicate 
frequently and extensively, and use many different types of communication 
modalities, switching between them as appropriate, and that communication 
patterns vary widely amongst developers. As a slight variation, at the end of each 
day, Izquierdo et al. (2007) asked developers to complete a communication diary 
that detailed who they talked to and the purpose for the communication. These were 
used as the basis to create social networks for the group.

As another example, Jørgensen (1995) randomly selected software maintainers 
and asked them to complete a form to describe their next task. These reports were 
used to profile the frequency distribution of maintenance tasks. Thirty-three 
hypotheses were tested and a number of them were supported. For example, pro-
grammer productivity (lines of code per unit time) is predicted by the size of the 
task, type of the change, but it is not predicted by maintainer experience, applica-
tion age, nor application size.

As a slight modification of the work diary, Shull et al. (2000) asked students to 
submit weekly progress reports on their work. The progress reports included an 
estimate of the number of hours spent on the project, and a list of functional 
requirements begun and completed. Because the progress reports had no effect on 
the students’ grades, however, Shull et al. found that many teams opted to submit 
them only sporadically or not at all.

In an interesting application the use of time sheets as data, Anda et al. (2005) 
describe a project where Simula Research Laboratory acted as both clients and 
researchers in an IT project, where the actual contract was given to four different 
companies, which allowed for a comparative case study. Although the applica-
bility of this model in empirical software engineering is limited (because of 
the large amount of resources required), the paper nonetheless highlights how 
this data can potentially be used in a study (when collected from accessible 
sources).
Reporting guidelines: When reporting work diaries, the precise task given to the 
software engineers (e.g., to record their communication patterns) must be described, 
as well as how it was accomplished (e.g., reported to experimenter, recorded peri-
odically throughout the day, etc). Additionally, the tools made available to do so 
should be detailed.
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3.1.6. Think-Aloud Protocols

In think-aloud protocol analysis (Ericcson and Simon, 1984), researchers ask 
 participants to think out loud while performing a task. The task can occur naturally 
at work or be predetermined by the researcher. As software engineers sometimes for-
get to verbalize, experimenters may occasionally remind them to continue thinking 
out loud. Other than these occasional reminders, researchers do not interfere in the 
problem solving process. Think-aloud sessions generally last no more than 2 hours.

Think-aloud protocol analysis is most often used for determining or validating a 
cognitive model as software engineers do some programming task. For a good 
review of this literature, see von Mayrhauser and Vans (1995). Additionally, if you 
are considering utilizing this technique, Karahasanovic et al. (2007) provide a com-
prehensive comparison of this technique to a form of work diaries, evaluating its 
costs, impacts on problem solving, and benefits.
Advantages: Asking people to think aloud is relatively easy to implement. 
Additionally, it is possible to implement think-aloud protocol analysis with manual 
record keeping eliminating the need for transcription. This technique gives a unique 
view of the problem solving process and additionally gives access to mental model. 
It is an established technique.
Disadvantages: Think-aloud protocol analysis was developed for use in situations 
where a researcher could map out the entire problem space. It’s not clear how this 
technique translates to other domains where it is impossible to map out the problem 
space a priori. However, Chi (1997) has defined a technique called Verbal Analysis 
that does address this problem. In either case, even using manual record keeping, it 
is difficult and time-consuming to analyze think-aloud data.
Examples: von Mayrhauser and Vans (1993) asked software developers to think 
aloud as they performed a maintenance task which necessitated program compre-
hension. Both software engineers involved in the experiment chose debugging 
sessions. The think-aloud protocols were coded to determine if participants were 
adhering to the “Integrated meta-model” of program comprehension these researchers 
have defined. They found evidence for usage of this model, and were therefore 
able to use the model to suggest tool requirements for software maintenance 
environments.

As another example of think-aloud protocol analysis, Seaman et al. (2003) were 
interested in evaluating a user interface for a prototype management system. They 
asked several subjects to choose from a set of designated problems and then solve 
the problem using the system. The subjects were asked to verbalize their thoughts 
and motivations while working through the problems. The researchers were able to 
identify positive and negative aspects of the user interface and use this information 
in their evolution of the system.

Hungerford et al. (2004) adopted an information-processing framework in using 
protocol analysis to understand the use of software diagrams. The framework 
assumes that human cognitive processes are represented by the contents of short-
term memory that are then available to be verbalized during a task. The verbal pro-
tocols were coded using a pre-established coding scheme. Intercoder reliability 
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scores were used to ensure consistency of codings across raters and internal validity 
of the coding scheme. Hungerford et al. found individual differences in search 
strategies and defect detection rates across developers. They used their findings to 
suggest possible training and detection strategies for developers looking for 
defects.
Reporting guidelines: When reporting think-aloud protocol analysis, it is important 
to provide an extremely precise characterization of the task the participant was 
asked to undertake, including any tools at the participant’s disposal. The time taken 
to complete the task and any materials provided to the participant are also 
important to describe. Finally, the precise way in which the analysis occurs needs 
to be closely detailed, especially if it is based on information processing theory or 
a  specific cognitive model.

3.1.7. Shadowing/Observation

In shadowing, the experimenter follows the participant around and records their activi-
ties. Shadowing can occur for an unlimited time period, as long as there is a willing 
participant. Closely related to shadowing, observation occurs when the experimenter 
observes software engineers engaged in their work, or specific  experiment-related 
tasks, such as meetings or programming. The difference between shadowing and 
observation is that the researcher shadows one software engineer at a time, but can 
observe many at one time.
Advantages: Shadowing and observation are easy to implement, give fast results, 
and require no special equipment.
Disadvantages: For shadowing, it is often difficult to see what a software engineer 
is doing, especially when they are using keyboard shortcuts to issue commands and 
working quickly. However, for the general picture, e.g., knowing they are now 
debugging, shadowing does work well. Observers need to have a fairly good under-
standing of the environment to interpret the software engineer’s behavior. This can 
sometimes be offset by predefining a set of categories or looked-for behaviors. Of 
course, again, this limits the type of data that will be collected.
Examples: We have implemented shadowing in our work in two ways (1997). First, 
one experimenter took paper-and-pencil notes to indicate what the participant was 
doing and for approximately how long. This information gave us a good general 
picture of the work habits of the software engineers. We also used synchronized 
shadowing where two experimenters used two laptop computers to record the soft-
ware engineer’s actions. One was responsible for ascertaining the participants’ high 
level goals, while the other was responsible for recording their low-level actions. 
We used pre-defined categories (Microsoft Word macros) to make recording easier. 
Wu et al. (2003) also used pre-defined categories to shadow software engineers.

Perry et al. (1994) also shadowed software engineers as they went about their 
work. They recorded continuous real-time non-verbal behavior in small spiral note-
books. Additionally, at timed intervals they asked the software engineers “What are 
you doing now?” At the end of each day, they converted the notebook observations 
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to computer files. The direct observations contributed to Perry et al.’s understanding 
of the software process. In particular, shadowing was good for observing informal 
communication in the group setting. Similarly, Ko et al. (2007) also shadowed 
software engineers. They asked the participants to think of the researchers as a new 
hire to which they should explain what they were doing. From this data, they were 
able to categorize the met and unmet information needs of software engineers.

As an example of observation, Teasley et al. (2002), were interested in whether 
co-locating team members affects development of software. In addition to inter-
views and questionnaires, they observed teams, conference calls, problem solving, 
and photographed various artifacts. The researchers found that satisfaction and 
productivity increased for co-located teams.
Reporting guidelines: In reporting shadowing, the precise form of shadowing and/
or observation needs to be detailed, including whether any verbal instructions were 
given to the participant to think out loud. Additionally, the way the information is 
recorded must be detailed as well as the length of the session, and any other special 
instructions given to the participants. It is also helpful to provide context informa-
tion, such as what activities the shadowed and/or observed participants were 
engaged in, and whether this was typical or not.

3.1.8. Participant-Observer (Joining the Team)

Usually done as part of an ethnography, in the Participant-Observer technique, the 
researcher essentially becomes part of the team and participates in key activities. 
Participating in the software development process provides the researcher with a 
high level of familiarity with the team members and the tasks they perform. As a 
result, software engineers are comfortable with the researcher’s presence and tend 
not to notice being observed.
Advantages: Respondents are more likely to be comfortable with a team member 
and to act naturally during observation. Researchers also develop a deeper under-
standing of software engineering tasks after performing them in the context of a 
software engineering group.
Disadvantages: Joining a team is very time consuming. It takes a significant 
amount of time to establish true team membership. Also, a researcher who becomes 
too involved may lose perspective on the phenomenon being observed.
Examples: Participant-Observer was one of the techniques used by Seaman and 
Basili (1998) in their studies of how communication and organization factors affect 
the quality of software inspections. One of the authors (Seaman) was integrated into 
a newly formed development team. Over seventeen months, Seaman participated in 
twenty-three inspection meetings. From her participation, Seaman and Basili devel-
oped a series of hypotheses on how factors such as familiarity, organizational dis-
tance, and physical distance are related to how much time is spent on discussion 
and tasks.

Porter et al. (1997) also used the participant-observer technique. One of the 
researchers, a doctoral student, joined the development team under study as a 
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means of tracking an experiment’s progress, capturing and validating data, and 
observing inspections. Here, the field study technique was used in the service of 
more traditional experimental methods.

More recently, Izquierdo et al. (2007) joined a team over a period of 4 months 
to understand how they processed information and became aware of changes. 
Izquierdo did not participate in any development, but rather used the opportunity of 
closeness to support data collection and a greater comprehension of the team 
dynamics.
Reporting guidelines: Using the participant-observer technique, it is important to 
report the role of the participant-observer in the team – whether they are actually 
involved in any of the meaningful team activities or not. It is also important to 
characterize how they interact with the team, and what access they have to team 
material. Additionally, the length of time of the interaction needs to be reported. 
Finally, a characterization of how data was collected, coded, and analysed must be 
provided.

3.2. Indirect Techniques

Indirect techniques require the researcher to have access to the software engi-
neer’s environment as they are working. However, the techniques do not require 
direct contact between the participant and researcher. Instead data collection is 
initiated, then the software engineers go about their normal work as the data is 
automatically gathered. As a result, these techniques require very little or no time 
from the software engineers and are appropriate for longitudinal studies.

3.2.1. Instrumenting Systems

This technique requires “instrumentation” to be built into the software tools used 
by the software engineer. This instrumentation is used to record information auto-
matically about the usage of the tools. Instrumentation can be used to monitor how 
frequently a tool or feature is used, patterns of access to files and directories, and 
even the timing underlying different activities. This technique is also called system 
monitoring.

In some cases, instrumentation merely records the commands issued by users. 
More advanced forms of instrumentation record both the input and output in great 
detail so that the researcher can effectively play back the session. Others have pro-
posed building a new set of tools with embedded instruments to further constrain 
the work environment (Buckley and Cahill, 1997). Related to this, Johnson and his 
group have developed Hackystat, an open-source server-based system for monitor-
ing actions. Developers install sensors on their machines that then relay information 
to a centralized server (see www.csdl.ics.hawaii.edu/Research/hackystat for more 
information).
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Advantages: System monitoring requires no time commitment from software 
 engineers. Since, people tend to be very poor judges of factors such as relative fre-
quency and duration of the various activities they perform, this technique can be 
used to provide such information accurately.
Disadvantages: It is difficult to analyze data from instrumented systems meaning-
fully; that is, it is difficult to determine software engineers’ thoughts and goals from 
a series of tool invocations. This problem is particularly relevant when the working 
environment is not well understood or constrained. For example, software engi-
neers often customize their environments by adding scripts and macros (e.g., in 
emacs). One way of dealing with this disadvantage is to play back the events to a 
software engineer and ask them to comment. Although in many jurisdictions, 
employers have the right to monitor employees, there are ethical concerns if 
researchers become involved in monitoring software engineers without their 
knowledge.
Examples: Budgen and Thomson (2003) used a logging element when assessing 
how useful a particular CASE tool was. The logger element recorded data whenever 
an event occurred. Events were predetermined before. Textual data was not 
recorded. The researchers found that recording events only was a shortcoming of 
their design. It would have been more appropriate to collect information about the 
context of the particular event.

As another example, Walenstein (2003) used VNC (Virtual Network Computing) 
to collect verbatim screen protocols (continuous screen captures) of software devel-
opers engaged in software development activities. Walenstein also collected verbal 
protocols and used a theory-based approach to analyse the data.

More recently, Storey et al. (2007) logged developers’ use of their TagSEA tool. 
The logs were stored on the client machine. The software engineers downloaded 
them to a server at specified intervals. The logs enabled Storey et al. (2007) to 
understand how the tool was being used, and nicely complemented other data 
sources such as interviews and a focus group. Similar to this study, Zou and 
Godfrey (2007) used a logger to determine which artifacts software maintainers 
were just viewing, and which were actually changed.
Reporting guidelines: The precise nature of the logging needs to be reported, including 
any special instrumentation installed on the software engineer’s machines. This should 
include a description of what exactly is logged, with what frequency. Any special con-
siderations with respect to data processing and analysis should also be detailed.

3.2.2. Fly on the Wall (Participants Recording their Own Work)

“Fly on the Wall” is a hybrid technique. It allows the researcher to be an observer 
of an activity without being present. Participants are asked to video- or audiotape 
themselves when they are engaged in some predefined activity.
Advantages: The fly-on-the-wall technique requires very little time from the partic-
ipants and is very unobtrusive. Although there may be some discomfort in the 
beginning, it fades quickly.
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Disadvantages: The participants may forget to turn on the recording equipment at 
the appropriate time and as a result the record may be incomplete or missing. The 
camera is fixed, so the context of what is recorded may be hard to understand. 
There is a high cost to analyzing the resulting data.
Examples: Berlin (1993) asked mentors and apprentices at a software organization 
to audiotape their meetings in order to study how expertise is passed on. She later 
analyzed these recordings for patterns in conversations. She found that discussions 
were highly interactive in nature, using techniques such as confirmation and re-
statement to verify messages. Mentors not only explain features of the system; they 
also provide design rationale.

Walz et al. (1993) had software engineers videotape team meetings during the 
design phase of a development project. Researchers did not participate in the meet-
ings and these tapes served as the primary data for the study. The goal of the study 
was to understand how teamwork, goals, and design evolved over a period of four 
months. Initially the team focused on gathering knowledge about the application 
domain, then on the requirements for the application, and finally on design 
approaches. The researchers also found that the team failed to keep track of much 
of the key information; as a result they re-visited issues that had been settled at ear-
lier meetings.

Robillard et al. (1998) studied interaction patterns among software engineers in 
technical review meetings. The software engineers merely had to turn on a video-
tape recorder whenever they were conducting a meeting. The researchers analyzed 
transcripts of the sessions and modeled the types of interactions that took place 
during the meetings. Their analysis led to recommendations for ways in which such 
meetings can be improved
Reporting guidelines: The precise nature of the recording needs to be reported, 
along with any special instructions given to the participants. Additionally, any 
problems with the recording need to be reported, such as developers forgetting to 
record a meeting. Context information will also help to clarify the application of 
the technique, such as where the recording occurred, what the typical tasks were, 
who was involved, who was responsible for the recording, etc. Additionally, 
any methods used to transform, transcribe, and analyse the data need to be 
specified.

3.3. Independent Techniques

Independent techniques attempt to uncover information about how software engi-
neers work by looking at their output and by-products. Examples of their output are 
source code, documentation, and reports. By-products are created in the process of 
doing work, for example work requests, change logs and output from configuration 
management and build tools. These repositories, or archives, can serve as the pri-
mary information source. Sometimes researchers recruit software engineers to 
assist in the interpretation or validation of the data.
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3.3.1. Analysis of Electronic Databases of Work Performed

In most large software engineering organizations, the work performed by developers 
is carefully managed using issue tracker, problem reporting, change request and 
configuration management systems. These systems require software engineers to 
input data, such as a description of a problem encountered, or a comment when 
checking in a source code module. The copious records generated for such systems 
are a rich source of information for software engineering researchers. Besides the 
examples provided below, see the proceedings from the International Workshops on 
Mining Software Repositories.
Advantages: A large amount of data is often readily available. The data is stable and 
is not influenced by the presence of researchers.
Disadvantages: There may be little control over the quantity and quality of informa-
tion manually entered about the work performed. For example, we found that descrip-
tive fields are often not filled in, or are filled in different ways by different developers. 
It is also difficult to gather additional information about a record, especially if it is 
very old or the software engineer who worked on it is no longer available.
Examples: Work records can be used in a number of ways. Pfleeger and Hatton (1997) 
analyzed reports of faults in an air traffic control system to evaluate the effect of adding 
formal methods to the development process. Each module in the software system was 
designed using one of three formal methods or an informal method. Although the code 
designed using formal methods tended to have fewer faults, the results were not com-
pelling even when combined with other data from a code audit and unit testing.

Researchers at NASA (1998) studied data from various projects in their studies 
of how to effectively use COTS (commercial off-the-shelf software) in software 
engineering. They developed an extensive report recommending how to improve 
processes that use COTS.

Mockus et al. (2002) used data from email archives (amongst a number of different 
data sources) to understand processes in open source development. Because the 
developers rarely, if ever, meet face-to-face, the developer email list contains a rich 
record of the software development process. Mockus et al. wrote Perl scripts to 
extract information from the email archives. This information was very valuable in 
helping to clarify how development in open source differs from traditional methods.
Reporting guidelines: The exact nature of the collected data needs to be specified, 
along with any special considerations, such as whether any data is missing, or unin-
terpretable for some reason. Additionally, any special processing of the data needs 
to be reported, such as if only a certain proportion is chosen to be analysed.

3.3.2. Analysis of Tool Logs

Many software systems used by software engineers generate logs of some form or 
another. For example, automatic building tools often leave records, as source code 
control systems. Some organizations build sophisticated logging into a wide  spectrum 
of tools so they can better understand the support needs of the software engineers.
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Such tool logs can be analyzed in the same way tools that have been deliberately 
instrumented by the researchers – the distinction is merely that for this independent 
technique, the researchers don’t have control over the kind of information collected. 
This technique is also similar to analysis of databases of work performed, except 
that the latter includes data manually entered by software engineers.

The analysis of tool logs has become a very popular area of research within 
software engineering. Besides the examples provided below, see the proceedings 
from the International Workshops on Mining Software Repositories.
Advantages: The data is already in electronic form, making it easier to code and 
analyze. The behaviour being logged is part of software engineers normal work 
routine.
Disadvantage: Companies tend to use different tools in different ways, so it is dif-
ficult to gather data consistently when using this technique with multiple 
organizations.
Examples: Wolf and Rosenblum (1993) analyzed the log files generated by build 
tools. They developed tools to automatically extract information from relevant 
events from these files. This data was input into a relational database along with the 
information gathered from other sources.

In one of our studies (Singer et al., 1997) we looked at logs of tool usage col-
lected by a tools group to determine which tools software engineers throughout the 
company (as opposed to just the group we were studying) were using the most. We 
found that search and Unix tools were used particularly often.

Herbsleb and Mockus (2003) used data generated by a change management 
system to better understand how communication occurs in globally distributed 
software development. They used several modeling techniques to understand the 
relationship between the modification request interval and other variables including 
the number of people involved, the size of the change, and the distributed nature of 
the groups working on the change. Herbsleb and Mockus also used survey data to 
elucidate and confirm the findings from the analysis of the tool logs. In general they 
found that distributed work introduces delay. They propose some mechanisms that 
they believe influence this delay, primarily that distributed work involves more 
people, making the change requests longer to complete.
Reporting guidelines: As with instrumentation, the exact nature of what is being 
collected needs to specified, along with any special concerns, such as missing data. 
Additionally, if the data is processed in any way, it needs to be explained.

3.3.3. Documentation Analysis

This technique focuses on the documentation generated by software engineers, 
including comments in the program code, as well as separate documents describing 
a software system. Data collected from these sources can also be used in re-engineering 
efforts, such as subsystem identification. Other sources of documentation that can 
be analyzed include local newsgroups, group e-mail lists, memos, and documents 
that define the development process.
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Advantages: Documents written about the system often contain conceptual 
 information and present a glimpse of at least one person’s understanding of the 
software system. They can also serve as an introduction to the software and the 
team. Comments in the program code tend to provide low-level information on 
algorithms and data. Using the source code as the source of data allows for an up-
to-date portrayal of the software system.
Disadvantages: Studying the documentation can be time consuming and it requires some 
knowledge of the source. Written material and source comments may be inaccurate.
Examples: The ACM SIGDOC conferences contain many studies of documentation.
Reporting guidelines: The documentation needs to be described as well as any 
processing on it.

3.3.4. Static and Dynamic Analysis of a System

In this technique, one analyzes the code (static analysis) or traces generated by 
running the code (dynamic analysis) to learn about the design, and indirectly about 
how software engineers think and work. One might compare the programming or 
architectural styles of several software engineers by analyzing their use of various 
constructs, or the values of various complexity metrics.
Advantages: The source code is usually readily available and contains a very large 
amount of information ready to be mined.
Disadvantages: To extract useful information from source code requires parsers 
and other analysis tools; we have found such technology is not always mature – 
although parsers used in compilers are of high quality, the parsers needed for certain 
kinds of analysis can be quite different, for example they typically need to analyze 
the code without it being pre-processed. We have developed some techniques for 
dealing with this surprisingly difficult task (Somé and Lethbridge, 1998). Analyzing 
old legacy systems created by multiple programmers over many years can make it 
hard to tease apart the various independent variables (programmers, activities etc.) 
that give rise to different styles, metrics etc.
Examples: Keller et al. (1999) use static analysis techniques involving template-
matching to uncover design patterns in source code – they point out, “… that it is 
these patterns of thought that are at the root of many of the key elements of large-
scale software systems, and that, in order to comprehend these systems, we need to 
recover and understand the patterns on which they were built.”

Williams et al. (2000) were interested in the value added by pair programming 
over individual programming. As one of the measures in their experiment, they 
looked at the number of test cases passed by pairs versus individual programmers. 
They found that the pairs generated higher quality code as evidence by a signifi-
cantly higher number of test cases passed.
Reporting guidelines: The documents (e.g. source code) that provide the basis for 
the analysis should be carefully described. The nature of the processing on the data 
also needs to be detailed. Additionally, any special processing considerations 
should be described.
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4. Applying the Techniques

In the previous section, we described a number of diverse techniques for gathering 
information in a field study. The utility of data collection techniques becomes 
apparent when they can help us to understand a particular phenomenon. In this 
section, we outline how to record and analyze the data.

4.1. Record-Keeping Options

Direct techniques generally involve one of the following three data capture methods: 
videotape, audiotape, or manual record keeping. These methods can be categorized 
as belonging to several related continua. First, they can be distinguished with respect 
to the completeness of the data record captured. Videotape captures the most complete 
record, while manual record keeping captures the least complete record. Second, 
they can be categorized according to the degree of interference they invoke in 
the work environment. Videotaping invokes the greatest amount of interference, 
while manual recording keeping invokes the least amount of interference. Finally, 
these methods can be distinguished with respect to the time involved in using the 
captured data. Again, videotape is the most time-intensive data to use and interpret, 
while manual record keeping is the least time-intensive data to use and interpret.

The advantage of videotape is that it captures details that would otherwise be 
lost, such as gestures, gaze direction, etc.4 However, with respect to video record-
ing, it is important to consider the video camera’s frame of reference. Videotape 
can record only where a video camera is aimed. Moving the video camera a bit to 
the right or a bit to the left may cause a difference in the recorded output and sub-
sequently in the interpretation of the data. Related to videotaping, there are a 
number of software programs that allow screen capture and playback of the 
recorded interactions. To be used with videotape, the video and the screen capture 
must be synchronized in some way.

Audiotape allows for a fairly complete record in the case of interviews, however 
details of the physical environment and interaction with it will be lost. Audiotape 
does allow, however, for the capture of tone. If a participant is excited while talking 
about a new tool, this will be captured on the audio record.

Manual record keeping is the most data sparse method and hence captures the 
least complete data record, however manual record keeping is also the quickest, 
easiest, and least expensive method to implement. Manual record keeping works 
best when a well-trained researcher identifies certain behaviors, thoughts, or concepts 
during the data collection process. Related to manual record keeping, Wu et  al. 
(2003) developed a data collection technique utilizing a PDA. On the PDA, they 

4 It is often felt that videotaping will influence the participants actions. However, while videotap-
ing appears to do so initially, the novelty wears off quickly (Jordan and Henderson, 1995).
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had predetermined categories of responses that were coded each time a  particular 
behaviour was observed. The data were easily transported to a database on a PC for 
further analysis.

All three data capture methods have advantages or disadvantages. The decision of 
which to use depends on many variables, including privacy at work, the  participant’s 
degree of comfort with any of the three measures, the amount of time available for 
data collection and interpretation, the type of question asked and how well it can be 
formalized, etc. It is important to note that data capture methods will affect the infor-
mation gained and the information that it is possible to gain. But again, these methods 
are not mutually exclusive. They can be used in conjunction with each other.

4.2. Coding and Analyzing the Data

Field study techniques produce enormous amounts of data—a problem referred to as an 
“attractive nuisance” (Miles, 1979). The purpose of this data is to provide insight into 
the phenomenon being studied. To meet this goal, the body of data must be reduced to 
a comprehensible format. Traditionally, this is done through a process of coding. That 
is, using the goals of the research as a guide, a scheme is developed to categorize the 
data. These schemes can be quite high level. For instance, a researcher may be inter-
ested in noting all goals stated by a software engineer during debugging. On the other 
hand the schemes can be quite specific. A researcher may be interested in noting how 
many times grep was executed in a half-hour programming session. Once coded, the 
data is usually coded by another researcher to ensure the validity of the rating scheme. 
This is called inter-coder or inter-rater reliability. There are a number of statistics that 
can be reported that assess this, the most common is Kendall’s tau.

Audio and videotape records are usually transcribed before categorization, 
although transcription is often not necessary. Transcription requires significant cost 
and effort, and may not be justified for small, informal studies. Having made the 
decision to transcribe, obtaining an accurate transcription is challenging. A trained 
transcriber can take up to 6 hours to transcribe a single hour of tape (even longer 
when gestures, etc. must be incorporated into the transcription). An untrained tran-
scriber (especially in technical domains) can do such a poor job that it takes 
researchers just as long to correct the transcript. While transcribing has its problems, 
online coding of audio or videotape can also be quite time inefficient as it can take 
several passes to produce an accurate categorization. Additionally, if a question sur-
faces later, it will be necessary to listen to the tapes again, requiring more time.

Once the data has been categorized, it can be subjected to a quantitative or quali-
tative analysis. Quantitative analyzes can be used to provide summary information 
about the data, such as, on average, how often grep is used in debugging sessions. 
Quantitative analyzes can also determine whether particular hypotheses are 
 supported by the data, such as whether high-level goals are stated more frequently 
in development than in maintenance.

When choosing a statistical analysis method, it is important to know whether 
your data is consistent with assumptions made by the method. Traditional,  inferential 
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statistical analyzes are only applicable in well-constrained situations. The type of 
data collected in field studies often requires nonparametric statistics. Nonparametric 
statistics are often called “distribution-free” in that they do not have the same 
requirements regarding the modeled distribution as parametric statistics. Additionally, 
there are many nonparametric tests based on simple rankings, as opposed to strict 
numerical values. Finally, many nonparametric tests can be used with small samples. 
For more information about nonparametric statistics, Seigel and Castellan (1988) 
provide a good overview. Briand et al. (1996) discuss the disadvantages of nonpara-
metric statistics versus parametric statistics in software engineering; they point out 
that a certain amount of violation of the assumptions of parametric statistics is legiti-
mate, but that nonparametric statistics should be used when there are extreme viola-
tions of those assumptions, as there may well be in field studies.

Qualitative analyzes do not rely on quantitative measures to describe the data. 
Rather, they provide a general characterization based on the researchers’ coding 
schemes. Again, the different types of qualitative analysis are too complex to detail 
in this paper. See Miles and Huberman (1994) for a very good overview.

Both quantitative and qualitative analysis can be supported by software tools. The 
most popular tools for quantitative analysis are SAS and SPSS. A number of differ-
ent tools exist for helping with qualitative analysis, including NVivo, Altas/ti, and 
Noldus observer. Some of these tools also help with analysis of video recordings.

In summary, the way the data is coded will affect its interpretation and the possible 
courses for its evaluation. Therefore it is important to ensure that coding schemes 
reflect the research goals. They should tie in to particular research questions. 
Additionally, coding schemes should be devised with the analysis techniques in mind. 
Again, different schemes will lend themselves to different evaluative mechanisms. 
However, one way to overcome the limitations of any one technique is to look at the 
data using several different techniques (such as combining a qualitative and quantita-
tive analyzes). A triangulation approach (Jick, 1979) will allow for a more accurate 
picture of the studied phenomena. Bratthall and Jørgensen (2002) give a very nice 
example of using multiple methods for data triangulation. Their example is framed in 
a software engineering context examining software evolution and development. In fact, 
many of the examples cited earlier, use multiple methods to triangulate their results.

As a final note, with any type of analysis technique, it is generally useful to go 
back to the original participant population to discuss the findings. Participants can 
tell researchers whether they believe an accurate portrayal of their situation has 
been achieved. This, in turn, can let researchers know whether they used appropriate 
coding scheme and analysis techniques.

5. Conclusions

In this chapter we have discussed issues that software engineering researchers need 
to consider when studying practitioners in the field. Field studies are one of several 
complementary approaches to software engineering research and are based on a 
recognition that software engineering is fundamentally a human activity: Field 
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studies are particularly useful when one is gathering basic information to develop 
theories or understand practices.

The material presented in this chapter will be useful to both producers and 
 consumers of software engineering research. Our goal is to give researchers a per-
spective on how they might effectively collect data in the field – we believe that more 
studies like this are needed. As well, the reporting guidelines presented here will 
help others evaluate published field studies: for example, readers of a field study 
may ask whether appropriate data gathering or analysis techniques were used.

In this chapter, we divided the set of field study techniques into three main cate-
gories. Direct techniques such as interviewing, brainstorming, and shadowing place 
the researcher in direct contact with participants. Indirect techniques allow 
researchers to observe work without needing to communicate directly with partici-
pants. Independent techniques involve retrospective study of work artifacts such as 
source code, problem logs, or documentation. Each technique has advantages and 
disadvantages that we described in Sect. 2.

In addition to deciding which techniques to use, the researcher must also deter-
mine the level of detail of the data to be gathered. For most direct techniques one 
must typically choose among, in increasing order of information volume and hence 
difficulty of analysis: manual notes, audio-taping and videotaping. In all three 
cases, a key difficulty is encoding the data so that it can be analyzed.

Regardless of the approach to gathering and analyzing data, field studies also 
raise many logistical concerns that should be dealt with in the initial plan. For 
example: How does one approach and establish relationships with companies and 
employees in order to obtain a suitable sample of participants? Will the research be 
considered ethical, considering that it involves human participants? And finally, 
will it be possible to find research staff who are competent and interested, given that 
most of the techniques described in this paper are labor intensive but not yet part of 
mainstream software engineering research?

Finally, as technology and knowledge evolve, new data collection techniques emerge 
– e.g., using web cameras to collect work diaries. A good place to learn more about these 
new techniques is by following the human computer interaction and psychology methods 
literature. As well, reading papers in empirical software engineering will  highlight cur-
rent accepted techniques in the field, and how they may be used in practice.

In conclusion, field studies provide empirical studies researchers with a unique 
perspective on software engineering. As such, we hope that others will pursue this 
approach. The techniques described in this paper are well worth considering to bet-
ter understand how software engineering occurs, thereby aiding in the development 
of methods and theories for improving software production.
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Chapter 2

Carolyn B. Seaman

Abstract Software engineering involves a blend of non-technical as well as  technical 
issues that often have to be taken into account in the design of empirical studies. In 
particular, the behavior of people is an integral part of software development and 
maintenance. This aspect of our subject presents complexities and challenges for the 
empirical researcher. In many other disciplines, qualitative research methods have 
been developed and are commonly used to handle the complexity of issues involving 
people performing tasks in their workplace. This chapter presents several qualitative 
methods for data collection and analysis and describes them in terms of how they 
might be incorporated into empirical studies of software engineering, in particular how 
they might be combined with quantitative methods. To illustrate this use of qualitative 
methods, examples from real software engineering studies are used throughout.

1. Introduction

The study of software engineering has always been complex and difficult. The 
complexity arises from technical issues, from the awkward intersection of 
machine and human capabilities, and from the central role of the people perform-
ing software engineering tasks. The first two aspects provide more than enough 
complex problems to keep empirical software engineering researchers busy. But 
the last factor, the people themselves, introduces aspects that are especially diffi-
cult to capture. However, studies attempting to capture human behavior as it 
relates to software engineering are increasing and, not surprisingly, are increas-
ingly employing qualitative methods (e.g. Lethbridge et al., 2005; Lutters and 
Seaman, 2007; Orlikowski, 1993; Parra et al., 1997; Rainer et al., 2003; Seaman 
and Basili, 1998; Singer, 1998; Sharp and Robinson, 2004).

Historically, qualitative research methods grew out of the interpretivist tradition 
in social science research. Interpretivism, in turn, arose as a reaction to positivism, 
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which was and continues to be the prevailing (if implicit) philosophical  underpinning 
of research in the natural and physical sciences, including computer science and 
software engineering. The positivist researcher views objective truth as possible, i.e. 
that there exists some absolute truth about the issues of relevance, even if that truth 
is elusive, and that the role of research is to come ever closer to it. Interpretivism, on 
the other hand, posits that all truth is socially constructed, meaning that human 
beings create their own truth about the issues of relevance to them, and these socially 
constructed truths are valid and valuable. Qualitative methods, then, were required 
to capture and describe these socially constructed realities. See Creswell (1998) for 
a fuller explanation of positivism, interpretivism, other related philosophical frame-
works, and the role of qualitative research methods in them. For many social science 
researchers, qualitative methods are reserved exclusively for use by interpretivist 
researchers, and are not to be mixed with quantitative methods or positivist points of 
view. However, in recent decades, researchers in information systems, human–
 computer interaction, and software engineering have begun using qualitative meth-
ods, even though the predominant, implicit philosophical stance of these research 
areas remains positivist (Orlikowski and Baroudi, 1991). Thus, the perspective of 
this chapter is that qualitative methods are appropriate for (even implicitly) positivist 
research in software engineering, and a researcher does not have to subscribe whole-
heartedly to the interpretivist world view in order to apply them.

Qualitative data are data represented as text and pictures, not numbers (Gilgun, 
1992). Qualitative research methods were designed, mostly by educational  researchers 
and other social scientists (Taylor and Bogdan, 1984), to study the complexities of 
humans (e.g. motivation, communication, understanding). In software engineering, 
the blend of technical and human aspects lends itself to combining qualitative and 
quantitative methods, in order to take advantage of the strengths of both.

The principal advantage of using qualitative methods is that they force the 
researcher to delve into the complexity of the problem rather than abstract it away. 
Thus the results are richer and more informative. They help to answer questions 
that involve variables that are difficult to quantify (particularly human characteris-
tics such as motivation, perception, and experience). They are also used to answer 
the “why” to questions already addressed by quantitative research. There are draw-
backs, however. Qualitative analysis is generally more labor-intensive and exhaust-
ing than quantitative analysis. Qualitative results often are considered “softer,” or 
“fuzzier” than quantitative results, especially in technical communities like ours. 
They are more difficult to summarize or simplify. But then, so are the problems we 
study in software engineering.

Methods are described here in terms of how they could be used in a study that 
mixes qualitative and quantitative methods, as they often are in studies of software 
engineering. The focus of this chapter is rather narrow, in that it concentrates on 
only a few techniques, and only a few of the possible research designs that are well 
suited to common software engineering research topics. See Judd et al. (1991), 
Lincoln and Guba (1985), Miles and Huberman (1994) and Taylor and Bogdan 
(1984) for descriptions of other qualitative methods.

The presentation of this chapter divides qualitative methods into those for 
 collecting data and those for analysing data. Examples of several methods are given 
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for each, and the methods can be combined with each other, as well as with 
 quantitative methods. Throughout this chapter, examples will be drawn from 
several software engineering studies, including (von Mayrhauser and Vans 1996; 
Guindon et al., 1987; Lethbridge et al., 2005; Perry et al. 1994; Lutters and Seaman, 
2007; Singer, 1998; Orlikowski 1993). More detailed examples will also be used 
from studies described in Parra et al. (1997) and Seaman and Basili (1998) because 
they represent the author’s experience (both positive and negative).

2. Data Collection Methods

Two data collection methods, direct observation and interviewing, are presented in 
this section. These are useful ways of collecting firsthand information about soft-
ware development efforts. Historical qualitative information can also be gained by 
examining documentation. Techniques for analysing archival documents are dis-
cussed in Taylor and Bogdan (1984). Another useful technique is focus groups, 
which are treated extensively in the chapter by Kontio et al. (2007, this volume).

2.1. Participant Observation

Participant observation, as defined in Taylor and Bogdan (1984), refers to “research 
that involves social interaction between the researcher and informants in the milieu 
of the latter, during which data are systematically and unobtrusively collected.” The 
idea is to capture firsthand behaviors and interactions that might not be noticed 
otherwise.
Definitions of participant observation differ as to whether it implies that the 
observer is engaged in the activity being observed (e.g. Barley, 1990), or only that 
the observer is visibly present and is collecting data with the knowledge of those 
being observed. To avoid this confusion in terminology, the term direct observation 
is more usefully used when the researcher is not actively involved in the work being 
observed.

Although a great deal of information can be gathered through observation, the 
parts of the software development process that can actually be observed are limited. 
Much of software development work takes place inside a person’s head. Such activ-
ity is difficult to observe, although there are some techniques for doing so. For 
example, it is sometimes possible to capture some of the thought processes of indi-
vidual developers by logging their keystrokes and mouse movements as they work 
on a computer (Shneiderman, 1998). This technique is sometimes used in usability 
studies, where the subjects are software users, but it has not been widely employed 
in studies of software developers.
Think aloud observation (Hackos and Redish, 1998) requires the subject to verbal-
ize his or her thought process so that the observer can understand the mental 
 process going on. Such protocols are limited by the comfort level of the subject and 
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their ability to articulate their thoughts. A good software engineering example of 
this  technique is the work of von Mayrhauser and Vans (1996), in which software 
maintainers were asked to verbalize their thought processes while working on 
understanding source code. The data was collected by audio- and video-taping the 
sessions. Another example of a software engineering study based on thinking aloud 
observations is Guindon, Krasner, and Curtis’s study of software designers 
(Guindon et al., 1987).

A variation on think aloud observation is synchronized shadowing, described in 
Lethbridge et al. (2005). With synchronized shadowing, two observers watch a sub-
ject perform some task while the subject is thinking aloud. Both observers record 
their notes on laptops whose clocks have been previously synchronized to the second. 
The two observers record different types of information. For example, one might 
concentrate on the subject’s actions (keystrokes, commands, mouse clicks) while the 
other concentrates on the subject’s goals and motivations (as evidenced by the sub-
ject thinking aloud). Both observers timestamp individual observations (using a 
macro in the word processor) so that the notes can later be synchronized. The end 
result is a detailed set of field notes that relates actions to goals.

Software developers reveal their thought processes most naturally when com-
municating with other software developers, so this communication offers the best 
opportunity for a researcher to observe the development process. One method is for 
the researcher to observe a software developer continuously, thus recording every 
communication that takes place with colleagues, either planned or unplanned. A good 
example of a study based on this type of observation is Perry et al. (1994). A less 
time-consuming approach is to observe meetings of various types. These could 
include inspection meetings, design meetings, status meetings, etc. By observing 
meetings, a researcher can gather data on the types of topics discussed, the termi-
nology used, the technical information that was exchanged, and the dynamics of 
how different project members speak to each other.

There are a number of issues of which an observer must be aware. Many of these 
are presented here, based in part on the literature (in particular Taylor and Bogdan, 
1984) and partly on the particular experience of this researcher with studies of 
software engineering.

The observer must take measures to ensure that those being observed are not 
constantly thinking about being observed. This is to help ensure that the observed 
behavior is “normal,” i.e. that it is what usually happens in the environment being 
observed, and is not affected by the presence of the observer. For example, observ-
ers should strive for “fly on the wall” unobtrusiveness. Ideally, all those being 
observed should know beforehand that the observer will be observing and why. 
This advance notice avoids having to do a lot of explaining during the observation, 
which will only remind the subjects that they are being observed. The observer, 
although visible, should not be disruptive in any way, in particular avoiding making 
noise or movement that is distracting. The observer should always look for signs 
that their presence makes any of the participants nervous or self-conscious, which 
again may affect their behavior. Any such signs should be recorded in the notes that 
the observer takes, and will be considered in the analysis later.
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The observer’s notes should not be visible to any of those being observed. In 
fact, the notes should be kept confidential throughout the study. This gives the 
researcher complete freedom to write down any impressions, opinions, or thoughts 
without the fear that they may be read by someone who will misinterpret them.

The data gathered during an observation is ultimately recorded in the form of 
field notes. These notes are begun during the actual observation, during which the 
observer writes what is necessary to fill in the details later. Then, as soon after 
the observation as possible, the notes are augmented with as many details as the 
observer can remember. The information contained in the field notes should 
include the place, time, and participants in the observation, the discussions that 
took place, any events that took place during the observation, and the tone and 
mood of the interactions. The notes can also contain observer’s comments, marked 
“OC” in the text of the notes, which record the observer’s impressions of some 
aspect of the activity observed, which may not correspond directly to anything that 
was actually said or that occurred. For example, impressions about the setting of 
the observation (e.g. quality of the light, temperature, noise level), the demeanor of 
the people observed (e.g. if someone appeared to be agitated, ill, or tired), or the 
internal state of the observer (e.g. if the observer is agitated, ill, or tired, or has 
some strong emotional reaction to what is being observed) could all be recorded in 
observer’s comments. The level of detail in the notes depends on the objectives of 
the researcher. The most detailed are verbatim transcripts of everything said and 
done, plus detailed descriptions of the setting and participants. Writing such 
detailed notes is extremely time-consuming. Often what are needed are summaries 
of the discussions and/or some details that are specific to the aims of the study. The 
more exploratory and open-ended the study, the more detailed the field notes should 
be, simply because in such a study anything could turn out to be relevant. In any 
study, the observer should begin with very detailed notes at least for the first few 
observations, until it is absolutely clear what the objectives of the study are and 
exactly what information is relevant.

In many studies, there are very specific pieces of information that are expected 
to be collected during an observation. This is often true in studies that combine 
qualitative and quantitative methods, in which qualitative information from an 
observation will later be coded into quantitative variables, e.g. the length of a meet-
ing in minutes, the number of people present, etc. When this is the case, forms will 
be designed ahead of time that the observer will fill in during the course of the 
observation. This will ensure that specific details will be recorded. These forms are 
used in addition to, not instead of, field notes.

An example of a study based largely on observation data is Seaman and Basili 
(1998), a study of code inspection meetings (hereafter referred to as the Inspection 
Study). Most of the data for this study was collected during direct observation of 
23 inspections of C++ classes. The objective of the study was to investigate the 
relationship between the amount of effort developers spend in technical communi-
cation (e.g. the amount of time spent discussing various issues in inspection meetings) 
and the organizational relationships between them (e.g. how much a group of 
inspection participants have worked together in the past). Information about 
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 organizational relationships was collected during interviews with inspection 
 participants, described in Sect. 2.2. Information about communication effort was 
collected during the observations of code inspections.

Figure 1 shows a form that was filled out by the observer for each observed 
meeting in the Inspection Study. The administrative information (classes inspected, 
date, time, names of participants), the responsibilities of each inspector (which 
products each was responsible for inspecting), each preparation time, and who was 
present were all recorded on the data form either before or during the observed 
inspection. The amount and complexity of the code inspected was addressed during 
interviews later.

Another form filled out during observations was a time log, an example of which 
is shown in Fig. 2. For each discussion that took place during the meeting, the 
observer recorded the time (to the closest minute) it started, the initials of the par-
ticipants in that discussion, a code corresponding to the type of discussion, and 
some notes indicating the topic of discussion, the tone of the discussion, and any 
other relevant information. The arrows in some of the lists of participants’ initials 
indicate that a comment or question was made by one participant, specifically tar-
geted to another participant. In the margins of the time log, the observer also 
recorded other relevant information about the participants, the setting of the meeting, 
and other activities taking place. The number of minutes spent in each discussion 
category was calculated from the time logs after the meeting.

Extensive field notes were also written immediately after each meeting observed 
in the Inspection Study. These notes contained broader descriptions of observations 
noted on the inspection data forms. Below is a sanitized excerpt from these field 
notes:

[Inspector1] raised a bunch of defects all together, all concerning checking for 
certain error conditions (unset dependencies, negative time, and null pointers).

[Inspector2] raised a defect which was a typo in a comment. She seemed slightly 
sheepish about raising it, but she did nevertheless.

OC: [Inspector2] seemed more harsh on [Author] than I had ever seen her on any 
of the [subcontractor] authors. My impression of her is that she would never raise 
a typo as a defect with anyone else. Does she have something against [government 
agency] folks?

[Inspector2] raised a defect concerning the wrong name of a constant.
[Inspector3] raised a defect having to do with the previous single dependency 

issue. In particular, dereferencing would have to be done differently, although there 
were several ways to fix it. [Inspector3] recommended using the dot instead of the 
arrow.

In order to evaluate the validity and consistency of data collected during obser-
vations, rater agreement exercises (Judd et al., 1991) are often conducted. The 
basic idea is to ensure not only that the data being recorded are accurate, but also 
that the observer is not recording data in a form that is understandable only to him 
or her. During three of the inspection meetings observed in the Inspection Study 
(about 15%), a second observer was present to record data. The same second 
observer was used all three times. All three were among the first half of meetings 
observed, i.e. they occurred fairly early in the study. This was intentional, in order 
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Fig. 1 Form used to collect data during observation of inspection meetings

Inspection Data Form

Class(es) inspected: Inspection date: Time:
Author:
Moderator:
Reviewers:

Name Responsibility Preparation time Present

Amount of code inspected:
Complexity of Classes:

Discussion codes:

D Defects
  Reviewer raises a question or concern and it is determined that it is a 

defect which the author must fix; time recorded may include discussion of 
the solution

Q Questions
 Reviewer asks a question, but it is not determined to be a defect.
C Classgen defect
  Reviewer raises a defect caused by classgen; author must fix it, but it is 

recognized as a problem to eventually be solved by classgen
U Unresolved issues
  Discussion of an issue which cannot be resolved; someone else not at the 

meeting must be consulted (put name of person to be consulted in () beside 
the code); this includes unresolved classgen issues. It also includes issues 
which the author has to investigate more before resolving.

G/D Global defects
  Discussion of global issues, e.g. standard practices, checking for null pointers, 

which results in a defect being logged (does not include classgen defects)
G/Q Global questions
 Same as above, but not defect is logged
P Process issues
  General discussion and questions about the inspection process itself, 

including how to fill out forms, the order to consider material in, etc., but not 
the actual excecution of these tasks.

A Administrative issues
  Includes recording prep time, arranging rework, announcing which prod-

ucts are being inspected, silence while people look through their printouts, 
filling out forms.

M Miscellaneous discussion

Time logged (in minutes)

D—— Q—— C—— U—— G/D—— G/D—— P—— A—— M———
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to get the greatest advantage from improvements made to data collection proce-
dures as a result of the exercise.

Before the observations in which she participated, the second observer was 
instructed by the principal observer in the forms used for data collection, the codes 
used to categorize discussions, the procedure used to time discussions, and some 
background on the development project and developers. A total of 42 discussions 
were recorded during the three doubly-observed meetings. Out of those, both 
observers agreed on the coding for 26, or 62%. Although, to our knowledge, there 
is no standard acceptable threshold for this agreement percentage, we had hoped to 

Fig. 2 Time log used to document discussions during inspection meetings
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obtain a higher value. However, the two observers were later able to come to an 
agreement on coding for all discussions on which they initially disagreed. The 
observers generally agreed on the length of each discussion.

Many of the coding discrepancies were due to the second observer’s lack of 
familiarity with the project and the developers. Others arose from the second 
observer’s lack of experience with the instrument (the form and coding categories), 
and the subjectivity of the categories. The coding scheme was actually modified 
slightly due to the problems the second observer had. It should be noted that some 
of the discrepancies over coding (3 out of 26 discrepancies) were eventually 
resolved in the second observer’s favor. That is, the principal observer had made an 
error. Another troubling result of this exercise was the number of discussions (five) 
that one observer had completely missed, but had been recorded by the other. Both 
the principal and second observers missed discussions. This would imply that a 
single observer will usually miss some interaction.

The results of a rater agreement exercise, ideally, should confirm that the data 
collection techniques being used are robust. However, as in the Inspection Study, 
the exercise often reveals the limitations of the study. This is valuable, however, 
as many of the limitations revealed in the study design can be overcome if they 
are discovered early enough. Even if they are not surmountable, they can be 
reported along with the results and can inform the design of future studies. For 
example, in the Inspection Study, the results of the rater agreement exercise 
indicated that the data collected during observations would have been more 
accurate if more observers had been used for all observations, or if the meetings 
had been recorded. These procedural changes would have either required 
prohibitive amounts of effort, or stretched the goodwill of the study’s subjects 
beyond its limits. However, these should be taken into consideration in the design 
of future studies.

Recording of observations, either with audio or video, is another issue to be 
considered when planning a study involving observation. The main advantage of 
electronically recording observations is in ensuring accuracy of the data. Usually, 
the field notes are written after the observation while listening to or watching the 
recording. In this way, the notes are much less likely to introduce inaccuracies due 
to the observer’s faulty memory or even bias.

2.2. Interviewing

Another commonly used technique for collecting qualitative data is the interview. 
Interviews are conducted with a variety of objectives. Often they are used to collect 
historical data from the memories of interviewees (Lutters and Seaman, 2007), to 
collect opinions or impressions about something, or to help identify the terminol-
ogy used in a particular setting. In software engineering, they are often used to elicit 
software processes (Parra et al., 1997). They are sometimes used in combination 
with observations to clarify things that happened or were said during an observation, 
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to elicit impressions of the meeting or other event that was observed, or to collect 
information on relevant events that were not observed.

Interviews come in several types. In Lincoln and Guba (1985), a structured 
interview is described as one in which “the questions are in the hands of the inter-
viewer and the response rests with the interviewee,” as opposed to an unstructured 
interview in which the interviewee is the source of both questions and answers. In 
an unstructured interview, the object is to elicit as much information as possible on 
a broadly defined topic. The interviewer does not know the form of this information 
ahead of time, so the questions asked must be as open-ended as possible. In the 
extreme, the interviewer doesn’t even ask questions, but just mentions the topic to 
be discussed and allows the interviewee to expound.

In a structured interview, on the other hand, the interviewer has very specific 
objectives for the type of information sought in the interview, so the questions can 
be fairly specific. The more structured an interview, the more likely it is to be 
focused on quantitative, rather than qualitative data. The extreme of a structured 
interview is one in which no qualitative information is gained at all, i.e. all 
responses can be quantified (e.g. yes/no, high/medium/low, etc.). If the study is 
qualitative, however, the interview must be flexible enough to allow unforeseen 
types of information to be recorded. A purely unstructured interview is often too 
costly to be used extensively. Therefore, many studies employ semi-structured 
interviews. These interviews include a mixture of open-ended and specific ques-
tions, designed to elicit not only the information foreseen, but also unexpected 
types of information. A good example of a software engineering study based on 
semi-structured interviews is that conducted by Singer (1998), in which software 
maintainers were asked about their practices. Some of the more structured questions 
from this study include:

● How many years have you been programming?
● What languages have you had extensive experience programming in?
● How long have you worked on this project?

More open-ended questions included:

● When you get a maintenance request, how do you go about fulfilling it?
● What do you see as the biggest problem in maintaining programmes?

Again, as in the previous section on observation, the advice given here about inter-
viewing is based in part on the literature [in particular Taylor and Bogdan (1984)] 
and partly on the experience and reflection of this author.

The interviewer should begin each interview with a short explanation of the research 
being conducted. Just how much information the interviewer should give about the 
study should be carefully considered. Interviewees may be less likely to fully participate 
if they do not understand the goals of the study or agree that they are worthy. However, 
if interviewees are told too much about it, they may filter their responses, leaving out 
information that they think the interviewer is not interested in.

Another judgement that the interviewer must often make is when to cut off the 
interviewee when the conversation has wandered too far. On one hand, interview 



2 Qualitative Methods 45

time is usually valuable and shouldn’t be wasted. However, in a qualitative study, 
all data is potentially useful and the usefulness of a particular piece of data often is 
not known until long after it is collected. Of course, interviewees should never be 
cut off abruptly or rudely. Steering them back to the subject at hand must be done 
gently. In general, it is better to err on the side of letting the interviewee ramble. 
Often the ramblings make more sense in hindsight. The opposite problem, of 
course, is that of an interviewee who says the barest minimum. One strategy is to 
ask questions that cannot possibly be answered with a “yes” or a “no.” Another is 
to feign ignorance, i.e. to ask for details that are already well known to the inter-
viewer. This may get the interviewee talking, as well as help dispel any perception 
they might have of the interviewer as an “expert.” It is also important to make it 
clear that there are no “right” answers. Software developers sometimes mistakenly 
believe that anyone coming to interview them is really there to evaluate them.

Like observational data, interview data are ultimately recorded in field notes, 
which are governed by the same guidelines as described in the previous section. 
Also, as described earlier, forms can be used and filled out by the interviewer in 
order to facilitate the gathering of specific pieces of information. Another tool that 
is very useful during an interview is an interview guide (Taylor and Bogdan, 1984). 
An interview guide is not as formal as a data form, but it helps the interviewer to 
organize the interview. It serves a purpose similar to a script. It usually consists of 
a list of questions, possibly with some notes about the direction in which to steer 
the interview under different circumstances. In a structured interview, the questions 
are fairly straightforward, and they might be arranged in an “if-then” structure that 
leads the interviewer along one of several paths depending on the answers to previ-
ous questions. In an unstructured interview, there might not be an interview guide, 
or it may simply be a short list of topics to be touched on. Interview guides are 
purely for the use of the interviewer; they are never shown to the interviewee.

The interviewer may make some notes on the guide to help him or her remem-
ber how to steer the interview, but the guide should not be used for taking notes 
of the interview. In general, it is difficult for an interviewer to take notes and con-
duct the interview at the same time, unless the interviewer is very skilled. It is 
useful, if the interviewee consents, to audiotape the interview. The tape can then 
be used to aid the writing of the field notes later. Recording has the added advan-
tage that the interviewer can hear him/herself on the tape and assess his or her 
interviewing skills. Another way to facilitate the taking of notes is to use a scribe. 
A scribe is present at the interview only to take notes and does not normally par-
ticipate in any other way. Using a scribe takes the note-writing responsibilities 
from the interviewer completely, which can be an advantage for the researcher. 
However, verbatim notes are not possible this way, and the scribe does not always 
share the interviewer’s ideas about what is important to record. The use of a scribe 
is also often prohibitively expensive or intimidating to the interviewee.

Another study that we will use as a detailed example is Parra et al. (1997), a 
study of Commercial-Off-The-Shelf (COTS) integration (hereafter referred to as 
the COTS Study). The objective of the study was to document the process that 
NASA software project teams were following to produce software systems largely 
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constructed from COTS components. This type of system development, or “integration,” 
was fairly new in the NASA group studied at that time. Consequently, there was no 
documented process for it and it was suspected that a number of different processes 
were being followed. The COTS Study team was tasked with building a process 
model general enough to apply to all of the different ways that COTS integration 
was being done. The model would then be used as a baseline to design process 
measures, to plan improvements to the process, and to make recommendations for 
process support. Interviews with developers on projects that involved a large 
amount of COTS integration provided the bulk of the data used to build the process 
model. Scribes, as described above, were used to record these interviews. Many 
interviewees were interviewed multiple times, at increasing levels of detail. These 
interviews were semi-structured because each interview started with a specific set 
of questions, the answers to which were the objective of the interview. However, 
many of these questions were open-ended and were intended for (and successful in) 
soliciting other information not foreseen by the interviewer. For example, one ques-
tion on the COTS Study interview guide was:

What are the disadvantages of [COTS integration] in comparison with tradi-
tional development?

The study team had expected that answers to this question would describe techni-
cal difficulties such as incompatible file formats, interface problems, or low COTS 
product quality. However, much of the data gathered through this question had to do 
with the administrative difficulties of COTS integration, e.g. procurement, finding 
information on current licences, negotiating maintenance agreements, etc. As a 
result, a major portion of the study’s recommendations to NASA had to do with 
more administrative support of various kinds for COTS integration projects.

Semi-structured interviews were also used in the Inspection Study (Seaman and 
Basili, 1998). After each inspection meeting, an interview guide was constructed to 
include the information missing from the data form for that inspection, as well as 
several questions that were asked of all interviewees. The questions asked also var-
ied somewhat depending on the role that the interviewee played in the inspection. 
An example of such a form is shown in Fig. 3. Most interviews in this study were 
audio taped in their entirety. Extensive field notes were written immediately after 
each interview. The tapes were used during the writing of field notes, but they were 
not transcribed verbatim.

3. Data Analysis Methods

Collection of qualitative data is often a very satisfying experience for the researcher. 
Although it is often more labor-intensive, it is also more enjoyable to collect than 
quantitative data. It is interesting and engaging and it often gives the researcher the 
sense that they are closer to reality than when dealing with quantitative abstrac-
tions. The analysis of qualitative data, on the other hand, is not always as pleasant. 
Although the discovery of new knowledge is always motivating, the mechanics of 
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Interview Guide

Logistical info: record name, office#, date, time

Organization:

How long have you worked on [project]? At [company]?

Have you work with any of the [project] members before on other projects?

Who on the [project] team do you interact with most?

To whom do you report?

To whom are you responsible for your progress on [project]?

Inspection process:

Who chose the inspectors?

How long did it take?

Why were those ones chosen in particular?

Which inspectors inspected what?

Who took care of scheduling?

Was it done via email or face-to-face?

How much time did it take?

What steps were involved in putting together the inspection package?

How much time did that take?

How are [project] inspections different from inspections in other [company] 
projects you’ve been on?

How was this inspection different from other [project] inspections you’ve been 
involved with?

Reviewed material:

How much was inspected?

How is that measure?

Were the inspected classes more or less complex then average?

 Fig. 3 An interview guide used in the Inspection Study
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qualitative analysis are sometimes boring, often tedious, and always more 
time-consuming than expected. It is tempting to take shortcuts in the analysis 
process, but rigorous analysis is necessary for the integrity of the research, and 
results in more insightful, useful, and valid conclusions.

As in quantitative studies, data analysis should be planned up front, before data 
collection begins. However, the difference is that qualitative researchers collect and 
analyse data nearly in parallel, or at least alternate between the two. Qualitative 
analysis begins as soon as some significant amount of data has been collected. 
Preliminary analysis results also can modify subsequent data collection.

In the next two sections, we present several analysis techniques, roughly divided 
into two categories, although the line between them is not well delineated. The first 
set of methods (Sect. 3.1) is used to generate hypotheses that fit the data (or are 
“grounded” in the data), normally used in exploratory, or grounded theory studies 
(Glaser and Strauss, 1967). Section 3.2 describes some methods used to build up 
the “weight of evidence” necessary to confirm hypotheses in confirmatory studies. 
Following, in Sect. 3.3, we discuss the use of visualization of qualitative data, 
which is useful in conjunction with any analysis approach, and for presenting 
results. Finally, Sect. 3.4 presents some basic techniques for transforming qualita-
tive data for subsequent quantitative analysis. The methods presented in these sections 
represent only a small sample of the methods, techniques, and approaches available 
for analysing qualitative data. Yin (1994) and Miles and Huberman (1994) are 
excellent sources for other data analysis approaches.

3.1. Generation of Theory

Theory generation methods are generally used to extract from a set of field notes a 
statement or proposition that is supported in multiple ways by the data. The state-
ment or proposition is first constructed from some passage in the notes, and then 
refined, modified, and elaborated upon as other related passages are found and 
incorporated. The end result is a statement or proposition that insightfully and 
richly describes a phenomenon. Often these propositions are used as hypotheses to 
be tested in a future study or in some later stage of the same study. These methods 
are often referred to as grounded theory methods because the theories, or proposi-
tions, are “grounded” in the data (Glaser and Strauss, 1967). Two grounded theory 
techniques, the constant comparison method and cross-case analysis, are briefly 
described below. See Seaman (1999) for a fuller description of these techniques as 
applied to software engineering studies.

3.1.1. Constant Comparison Method

There are a number of methods for conducting and analysing single case studies. An 
excellent reference for this type of research design is Yin (1994). Here, we will 
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explore a classic theory generation method, the constant comparison method. This 
method was originally presented by Glaser and Strauss (1967), but has been more 
clearly and practically explained by others since (e.g. Miles and Huberman, 1994).

The process begins with open coding of the field notes, which involves attaching 
codes, or labels, to pieces of text that are relevant to a particular theme or idea of 
interest in the study. Codes can be either preformed or postformed. When the objec-
tives of the study are clear ahead of time, a set of preformed codes [a “start list” 
(Miles and Huberman, 1994)] can be constructed before data collection begins and 
then used to code the data. Postformed codes (codes created during the coding 
process) are used when the study objectives are very open and unfocused. In either 
case, the set of codes often develops a structure, with subcodes and categories 
emerging as the analysis proceeds. Coding a section of notes involves reading 
through it once, then going back and assigning codes to “chunks” of text (which 
vary widely in size) and then reading through it again to make sure that the codes 
are being used consistently. Not everything in the notes needs to be assigned a code, 
and differently coded chunks often overlap. In the section of coded notes from the 
Inspection Study, below, the codes T, CG, and S correspond to passages about test-
ing, the core group, and functional specifications, respectively. The numbers simply 
number the passages chronologically within each code.
(T4) These classes had already been extensively tested, and this was cited as the 
reason that very few defects were found. [Moderator] said: “must have done some 
really exhaustive testing on this class”
(CG18) [Inspector2] said very little in the inspection, despite the fact that twice 
[Moderator] asked him specifically if he had any questions or issues. Once he said 
that he had had a whole bunch of questions, but he had already talked to [Author] 
and resolved them all.
OC: Find out how much time was spent when [Author] and [Inspector2] met.
(S4) Several discussions had to do with the fact that the specs had not been updated. 
[Author] had worked from a set of updated specs that she had gotten from her 
officemate (who is not on the [project] team, as far as I know). I think these were 
updated [previous project] specs. The [project] specs did not reflect the updates. 
[Team lead] was given an action item to work with [Spec guru] to make sure that 
the specs were updated.

Then passages of text are grouped into patterns according to the codes and sub-
codes they’ve been assigned. These groupings are examined for underlying themes 
and explanations of phenomena in the next step of the process, called axial coding. 
Axial coding can be thought of as the process of reassembling the data that was bro-
ken up into parts (chunks) in open coding. One way to do this is to search for a par-
ticular code, moving to each passage assigned that code and reading it in context. It 
is not recommended to cut and paste similarly coded passages into one long passage 
so that they can be read together. The context of each passage is important and must 
be included in consideration of each group of passages. This is where the intensive, 
or “constant” comparison comes in. The coded data is reviewed and re-reviewed in 
order to identify relationships among categories and codes. The focus is on unifying 
explanations of underlying phenomenon, in particular the how’s and why’s.
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The next step, selective coding or “sense making,” culminates in the writing of 
a field memo that articulates a proposition (a preliminary hypothesis to be consid-
ered) or an observation synthesized from the coded data. Because qualitative data 
collection and analysis occur concurrently, the feasibility of the new proposition is 
then checked in the next round of data collection. Field memos can take a number 
of forms, from a bulleted list of related themes, to a reminder to go back to check 
a particular idea later, to several pages outlining a more complex proposition. Field 
memos also provide a way to capture possibly incomplete thoughts before they get 
lost in the next interesting idea. More detailed memos can also show how strong or 
weak the support for a particular proposition is thus far. According to Miles and 
Huberman, field memos are “one of the most useful and powerful sense-making 
tools at hand.” (Miles and Huberman, 1994, p. 72)

Ideally, after every round of coding and analysis, there is more data collection to 
be done, which provides an opportunity to check any propositions that have been 
formed. This can happen in several ways. In particular, intermediate propositions 
can be checked by focusing the next round of data collection in an effort to collect 
data that might support or refute the proposition. In this way, opportunities may 
arise for refining the proposition Also, if the proposition holds in different situa-
tions, then further evidence is gathered to support its representativeness. This 
approach may offend the sensibilities of researchers who are accustomed to per-
forming quantitative analyses that rely on random sampling to help ensure repre-
sentativeness. The qualitative researcher, on the other hand, typically uses methods 
to ensure representativeness later in the study by choosing cases accordingly during 
the course of the study. This is sometimes called theoretical sampling, which we 
will not discuss in detail here, but the reader is referred to Miles and Huberman 
(1994) for a good explanation of its use and justification.

3.1.2. Cross-Case Analysis

In many software engineering studies, the data can be divided into “cases,” which 
in quantitative studies might be referred to as “data points” or “trials.” When this 
is possible, cross-case analysis is appropriate. For example, in the Inspection 
Study, all data were collected from the same development project, so they could 
be viewed as a single case study. Some of the analysis was done with this perspec-
tive (e.g. the analysis described in the previous section). However, some cross-case 
analysis was also performed by treating each inspection as a “case.”

Eisenhardt (1989) suggests several useful strategies for cross-case analysis, all 
based on the goal of looking at the data in many different ways. For example, the 
cases can be partitioned into two groups based on some attribute (e.g. number of 
people involved, type of product, etc.), and then examined to see what similarities 
hold within each group, and what differences exist between the two groups. 
Another strategy is to compare pairs of cases to determine variations and similari-
ties. A third strategy presented by Eisenhardt is to divide the data based on data 
source (e.g. interviews, observations, etc.).



2 Qualitative Methods 51

In the Inspection Study (Seaman and Basili, 1998), we used a comparison 
method that progressed as follows. The field notes corresponding to the first two 
inspections observed were reviewed and a list of short descriptors (e.g. aggressive 
author; discussion dominated by one inspector; really long meeting, etc.) was com-
piled for each inspection. Then these two lists were compared to determine the 
similarities and differences. The next step was to list, in the form of propositions, 
conclusions one would draw if these two inspections were the only two in the data 
set (e.g. really long meetings are generally dominated by one inspector). Each 
proposition had associated with it a list of inspections that supported it (beginning 
with the first two inspections compared). Then the third inspection was examined, 
a list of its descriptors was compiled, and it was determined whether this third 
inspection supported or refuted any of the propositions formulated from the first 
two. If a proposition was supported, then this third inspection was added to its list 
of supporting evidence. If it contradicted a proposition then either the proposition 
was modified (e.g. really long meetings are generally dominated by one inspector 
when the other inspectors are inexperienced) or the inspection was noted as refuting 
that proposition. Any additional propositions suggested by the third inspection 
were added to the list. This process was repeated with each subsequent inspection. 
The end result was a list of propositions (most very rich in detail), each with a set 
of supporting and refuting evidence.

A different approach to cross-case analysis was used in the COTS Study (Parra 
et al., 1997). Each development project that was studied was treated as a separate 
case. The objective of the analysis was to document the COTS integration process 
by building an abstraction, or model, of the process that was flexible enough to 
accommodate all of the different variations that existed in the different projects. 
This model-building exercise was carried out iteratively by a team of researchers. 
The first step was to group all of the field notes by development project. Then, for 
each project, the notes were used to build a preliminary process model for that 
project’s COTS integration process. These preliminary models were built by differ-
ent researchers. Then the study team came together to study the models, identify 
similarities and differences, and resolve discrepancies in terminology. From this, 
one single model was built that encompassed the models for the different projects. 
This aggregate model went through numerous cycles of review and modification by 
different members of the study team. Finally, an extensive member checking process 
(see Sect. 3.2) was conducted through individual interviews with project members, 
a large group interview with a number of project personnel, and some email reviews 
of the model. The resulting model can be found in Parra et al. (1997).

Cross-case analysis was also used in the Orlikowski study of CASE tool adoption 
(Orlikowski, 1993). Data from the first case was collected and coded, then the sec-
ond case’s data was collected and an attempt was made to use the same set of codes 
to analyse it. Of course, some codes were inappropriate or inadequate and so new or 
modified codes resulted. These were then taken back to the first case, whose data 
was re-sorted and re-analysed to incorporate the new concepts. This type of back-
and-forth analysis [sometimes referred to as “controlled opportunism” (Eisenhardt, 
1989)] is a unique and valuable property of grounded theory research.
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3.2. Confirmation of Theory

Most qualitative data analysis methods are aimed at generating theory, as described 
in the previous section, but there are a number of methods and approaches to strength-
ening, or “confirming” a proposition after it has been generated from the data. The 
goal is to build up the “weight of evidence” in support of a particular proposition, not 
to prove it. The emphasis is on addressing various threats to the validity of the propo-
sition. Although quantitative hypothesis testing methods seem more conclusive than 
the methods we will present in this section, they really do not provide any stronger 
evidence of a proposition’s truth. A hypothesis cannot be proven, it can only be sup-
ported or refuted, and this is true using either quantitative or qualitative evidence, or 
both. Qualitative methods have the added advantage of providing more explanatory 
information, and help in refining a proposition to better fit the data.
Negative case analysis (Judd et al., 1991) is a very important qualitative tool for 
helping to confirm hypotheses. Judd et al. even go so far as to say that “negative 
case analysis is what the field-worker uses in place of statistical analysis.” The idea 
is incorporated into each of the analysis methods described in Sect. 3.1. When per-
formed rigorously, the process involves an exhaustive search for evidence that 
might logically contradict a generated proposition, revision of the proposition to 
cover the negative evidence, re-checking the new proposition against existing and 
newly collected data, and then continuing the search for contradictory evidence. 
The search for contradictory evidence can include purposely selecting new cases 
for study that increase representativeness, as explained earlier, as well as seeking 
new sources and types of data to help triangulate the findings.
Triangulation (Jick, 1979) is another important tool for confirming the validity of 
conclusions. The concept is not limited to qualitative studies. The basic idea is to 
gather different types of evidence to support a proposition. The evidence might 
come from different sources, be collected using different methods, be analysed 
using different methods, have different forms (interviews, observations, docu-
ments, etc.), or come from a different study altogether. This last point means that 
triangulation also includes what we normally call replication. It also includes 
the combining of quantitative and qualitative methods. A classic combination is 
the statistical testing of a hypothesis that has been generated qualitatively. In the 
Inspection Study (Seaman and Basili, 1998), triangulation occurred at the data 
source level. Certain types of data (e.g. size and complexity of the code inspected, 
the roles of different participants, etc.) were gathered multiple times, from obser-
vations, from interviews, and from the inspection data forms that each inspection 
moderator filled out.
Anomalies in the data (including outliers, extreme cases, and surprises) are treated 
very differently in qualitative research than in quantitative research. In quantitative 
analysis, there are statistical methods for identifying and eliminating outliers from 
the analysis. Extreme cases can be effectively ignored in statistical tests if they are 
outweighed by more average cases. But in qualitative analysis, these anomalies 
play an important role in explaining, shaping, and even supporting a proposition. 
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As Miles and Huberman (1994) explain, “the outlier is your friend.” The Inspection 
Study has a good outlier example. There were few cases in the study that illustrated 
what happens when the group of inspection participants is organizationally distant 
(i.e. include members from disparate parts of the organization). However, one case 
could easily be identified as an outlier in terms of both its long duration and the 
high number of defects reported in the meeting. This case also involved a set of 
organizationally distant inspection participants. The unusual values for meeting 
length and number of defects could not be explained by any of the other variables 
that had been determined to affect these factors. Thus, we could hypothesize that 
organizational distance had an effect on length and number of defects. In addition, 
the case provided a lot of explanatory data on why that effect existed.
Replication, as with quantitative studies, is a powerful but expensive tool for con-
firming findings. Replication in the qualitative arena, however, has a slightly looser 
meaning than in quantitative research. While a quantitative study, to be called a 
replication of another study, is expected to employ to some degree the same instru-
ments, measures, and procedures as the original study [see the discussion by Andy 
Brooks et al. (2007), this volume], a qualitative replication must only preserve the 
conditions set forth in the theory being tested. That is, if the proposition to be tested 
is something like

Gilb-type inspections of C++ code involving two inspectors and a moderator 
will take longer but reveal more defects if the inspection participants have not 
worked together before

then the replicating study must be of Gilb-type inspections of C++ code involv-
ing two inspectors and a moderator, some of which have participants who have 
worked together before and some who have participants who have not worked 
together before. Data do not necessarily have to be collected or analysed in the 
same way that they were in the original study.

One last method for helping to confirm findings, which is particularly well suited 
to most studies of software engineering, is getting feedback on the findings from the 
subjects who provided the data in the first place. This strategy is sometimes called 
member checking (Lincoln and Guba, 1985). Presenting findings to subjects, either 
formally or informally, has the added benefits of making subjects feel part of the 
process, helping them to understand how the results were derived, and gaining their 
support for final conclusions. This is especially important when the results of the 
study may change the way the subjects will be expected to do their jobs. This is usu-
ally what we, as empirical software engineering researchers, hope will happen. 
Researchers in our area often have a marketing role as well, trying to promote the 
importance and usefulness of empirical study in software engineering. Member 
checking helps to accomplish this at the grass roots. Miles and Huberman (1994) 
give several guidelines on how and when to best present intermediate findings to 
subjects, including taking care that the results presented are couched in local termi-
nology, explaining the findings from the raw data up, and taking into account a 
subject’s possible personal reaction to a finding (e.g. if it is threatening or critical).

Member checking was used extensively in the Inspection Study. An entire round 
of scheduled interviews was devoted to this exercise, and it yielded a great deal of 
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insight. For example, a finding emerged that indicated that, as the project progressed, 
inspection participants were spending less and less time discussing unresolved issues 
in inspection meetings, i.e. issues that eventually had to be referred to someone not at 
the meeting. One subject, when presented with this finding, explained that this was 
because developers were getting better at recognizing issues and problems that were 
best referred to others, and were less likely now than at the beginning of the project 
to waste time trying to resolve any issues they were not equipped to resolve. This was 
an important insight, and in particular one that had not occurred to the researcher.

One of the most important ways to help confirm a qualitatively generated propo-
sition is to ensure the validity of the methods used to generate it. In previous sec-
tions, we have briefly addressed some of the validity concerns in qualitative studies. 
One is representativeness, which has to do with the people and events chosen to be 
interviewed or observed. In Sect. 3.1, there is a discussion of how, after initial 
propositions are generated, cases for further study can be specifically chosen to 
increase or ensure representativeness. Another validity concern is the possibility of 
researcher effects on the study. Miles and Huberman warn of two types of researcher 
effects and present some techniques for countering them. The first is that the pres-
ence of the researcher may affect the behavior of the subjects. This type of effect is 
discussed earlier in Sect. 2.1. The second is that the researchers may lose their 
objectivity by becoming too close to the setting being observed. A quote from one 
researcher (Whyte, 1984) illustrates the second type of bias: “I began as a nonpar-
ticipating observer and ended up as a nonobserving participant.” In studies of soft-
ware engineering, it is unlikely that the researcher will be permitted to become 
involved technically in the work being studied, unless that was part of the study 
plan from the beginning, but it is possible for the researcher to become part of the 
political and organizational context of the project without realizing it.

In summary, many qualitative methods for confirming theory are also employed 
during theory generation. That is, as propositions are being generated, they are 
immediately subjected to some testing before they are even reported as findings. 
The idea is to build up a “weight of evidence” that supports the hypothesis, where 
the evidence is as diverse as possible. This is not so different from the aim of quan-
titative research, in which a hypothesis is never “proven,” but evidence, in the form 
of statistically significant results from different settings and different researchers, is 
built up to support it. It could be said that some qualitative methods used to test 
propositions are actually stronger than statistical tests because they do not allow any 
contradictory evidence. Any data that contradict the proposition are used to modify 
it so that the resulting proposition fits all the data. Ideally, any proposition, no matter 
how generated, is best supported by both qualitative and quantitative evidence.

3.3. Data Modelling and Visualization

In theory, qualitative data can take a number of forms, including pictures and 
images. However, in practice, most raw qualitative data is in the form of text. While 
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text has the advantage of being able to fully capture the richness and complexity of 
the phenomena being studied, it also has some drawbacks. First, text is linear in the 
sense that only one passage can be read at a time, so concepts that are non-linear or 
spatial can be difficult, cognitively, to capture by reading. Second, text is often 
more voluminous than is necessary to express a concept. “A picture is worth a 
thousand words” is sometimes very, very true. Finally, it can be difficult to visually 
identify what parts of a textual dataset might be related to other parts without some 
visual clues.

For all these reasons, visual modelling is often used in qualitative analysis for 
several purposes. Diagrams of different types are often used as a mechanism for 
presenting and explaining findings. In writing up qualitative work, using a diagram 
can often save a lot of space when a concept is more succinctly summarized 
graphically than textually. But diagrams also serve as a useful mechanism for the 
analysis task itself. Graphical representations of data often help the researcher to 
organize concepts and to reveal relationships and patterns that are obscured by 
volumes of textual data. This is similar and analogous to the use of graphs and 
charts when presenting quantitative results and data. Although there are numerous 
types of diagrams that can be useful in various ways in qualitative analysis, we 
will discuss two: matrices and maps (Dey, 1993) [called “networks” in Miles and 
Huberman (1994)].

Matrices are especially useful when the data comes from a series of distinct 
cases (i.e. sites, interviewees, episodes, etc.). In such a study, the researcher creates 
a matrix in which the rows are cases and the columns are variables of interest. For 
example, suppose a study has been conducted consisting of interviews with manag-
ers of a variety of software development projects. One useful technique to check the 
representativeness of the data is to create a matrix of characterization information 
on the cases from which data has been collected. The columns of the matrix would 
include such characteristics as project size, application domain, experience of the 
development team, etc. Filling in the cells of such a matrix for each case studied is 
a useful exercise and gives the reader feedback on what background information is 
missing, and what types of projects are missing from the sample.

Augmenting such a matrix with more columns representing emerging constructs 
(i.e. codes or categories) is also a useful analysis technique. For example, suppose 
in the previous example that many of the interviewees talked about development 
team meetings, and this topic emerged as an important issue in the study. In the 
(very simplified) matrix excerpt shown in Fig. 4 (from a fictitious study), we see 
that the first few columns contain characterizing information on the cases, while the 
last column contains passages that have been coded under “meetings.” Organizing 
the data in this way clearly shows that the implications of development meetings 
are very different for small projects than for medium projects. This insight might 
not have been evident if the data analysis had relied solely on coding the textual 
data. It’s usually advisable to use an electronic spreadsheet to create analysis matri-
ces in order to take advantage of searching and sorting capabilities.

Maps, or basic shapes-and-lines diagrams, are also useful for sorting out con-
cepts and relationships during qualitative analysis (Dey, 1993). Such maps are 
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particularly effective at expressing complex concepts in much less space than one 
is able to do with text alone. The format and symbols used in maps are limited only 
by imagination; there are no rules governing them. There are, however, a few 
guidelines that help make maps meaningful to the reader and useful to the 
researcher. First, maps quickly lose their effectiveness if they become too compli-
cated. If it takes more space to explain how to read and interpret the map than it 
would have to textually explain the concept depicted in the map, then the map is 
not useful. While shapes and lines can be uninspiring, their simplicity makes them 
ideal as a tool to illuminate complex concepts. On the other hand, the researcher 
must take care to clearly and consistently define the meanings of both the shapes 
and lines (and any other symbols used in the map). Because these symbols are so 
simple, they can also be used in multiple ways, and it is tempting to use them in 
multiple ways in the same diagram. So one must define, for a particular map, 
whether the lines connecting shapes (i.e. concepts) signify causal relationships 
(e.g. the presence of one concept causes the presence of the other), or temporal 
relationships (e.g. one concept precedes another), or contextual relationships (e.g. 
the two concepts tend to occur in similar contexts), etc.

Despite the need for simplicity, it is possible to include more than simple shapes 
and lines in a map. Of course, different shapes can be used to denote different types 
of concepts (e.g. aggregate concepts) (Dey, 1993). The thickness of a line can 
denote the strength of a relationship, or the weight of evidence supporting it. 
Colours and patterns can also be used to convey different meanings. Textual 
annotations, within reason, are also usually needed to label elements on a map.

Miles and Huberman (1994) devote much of their book on analysis to the devel-
opment of different types of diagrams, and a very large number of examples and 
variations are explained there. Many of them are similar in appearance and concept 

Case Project 
Size

Application 
Domain

Experience of 
Developers

Meetings

1 huge banquing mixed
“We spend way too much time 
in meetings”

2 small banquing
“We try to touch base with the 
whole team as often as we can”

3 small aerospace low

“The daily briefings are really 
useful, although some people 
say it interrupts their ‘real’ work”

4 large high

“We would all be so much 
more productive if we could 
somehow get rid of meetings”

5 medium communications high

“People don’t like to come to 
meetings, but I guess most of 
them are useful”

Fig. 4 An example matrix
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to diagramming techniques used in software development (e.g. control flow 
diagrams, statecharts, process models, class diagrams). These are especially 
appealing for software engineering studies because they are already familiar to our 
community.

While maps can be used for a variety of analysis tasks, one specific use is par-
ticularly handy when the qualitative work is exploratory, and intended to lay the 
groundwork for further empirical work. A good map of concepts and relationships 
can serve as a research plan for follow-up studies by defining the concepts (i.e. 
shapes) that need to be developed in further exploratory studies, and the hypotheses 
(i.e. relationships represented as lines) upon which further confirmatory work can 
be based. One version of this type of map is the causal network (Miles and 
Huberman, 1994), a simple example of which is shown in Fig. 5, which identifies 
factors affecting the efficiency of a software inspection. Such a map can be anno-
tated to show the hypothesized (or tested) strength of the relationships and refer-
ences to supporting evidence (e.g. identifiers for informants or coded segments).

Creating visual models of qualitative data, and the findings resulting from that 
data, is a very useful tool for qualitative researchers. Modelling is useful in two 
ways: during analysis to sort out ideas and relationships; and during presentation as 
a way to convey findings to the reader. Modelling can be seen as a form of data 
reduction because diagrams simply take up less space, and are more quickly 
scanned and digested, than text. They also depict insights arising from the data that 
are difficult to express succinctly in words.

3.4. Quantification of Qualitative Data

In many studies, it is appropriate to allow the analysis to iterate between quantitative 
and qualitative approaches. There are several ways to quantify some parts of a body 
of qualitative data. Such quantification is usually preceded by some preliminary 

Preparation Effort

Size

Complexity

Work Product

Number of Inspectors

Inspection
EfficiencyType

Fig. 5 A causal network 
showing hypothesized 
causal relationships
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qualitative analysis in order to make sense of the main categories in the data. It is 
often also followed by further qualitative analysis to make sense of the quantitative 
findings, which then leads to further quantitative analysis or re-analysis, and so on.

The most straightforward way to quantify qualitative data is simply to extract 
quantifiable pieces of information from the text. This is often also called coding, 
but must be distinguished from the types of coding related to the grounded theory 
approach, discussed in Sect. 3.1.

To understand the data transformation that takes place during this type of 
coding, we need to address a common misconception about the difference between 
quantitative and qualitative data. Qualitative data is often assumed to be subjective, 
but that is not necessarily the case. On the other hand, quantitative data is often 
assumed to be objective, but neither is that necessarily the case. In fact, the objec-
tivity or subjectivity of data is orthogonal to whether it is qualitative or quantitative. 
The process of coding transforms qualitative data into quantitative data, but it does 
not affect its subjectivity or objectivity. For example, consider the following text, 
which constitutes a fragment of qualitative data:

Tom, Shirley, and Fred were the only participants in the meeting.
Now consider the following quantitative data, which was generated by coding 

the above qualitative data:
num_participants = 3

The fact that the information is objective was not changed by the coding process. 
Note also that the process of coding has resulted in some lost information (the 
names of the participants). This is frequently the case, as qualitative information 
often carries more content than is easily quantified. Consider another example:

[Respondent] said that this particular C++ class was really very easy to under-
stand, and not very complex at all, especially compared to other classes in the 
system.

And the resulting coded quantitative data:
complexity = low

Again, the process of coding this subjective data did not make it more objective, 
although the quantitative form may appear less subjective.

When coding is performed on a set of qualitative data, the measurement scale of 
the resulting quantitative data is determined by the nature of the data itself, and is 
not restricted by the fact that it was derived from qualitative data. For example, in 
the “num_participants” example, above, the quantitative variable turned out to be 
on an absolute scale. But in the “complexity” example, the variable is ordinal.

Coding results in more reliably accurate quantitative data when it is restricted to 
straightforward, objective information, as in the first example above. However, it is 
often desirable to quantify subjective information as well in order to perform sta-
tistical analysis. This must be done with care in order to minimize the amount of 
information lost in the transformation and to ensure the accuracy of the resulting 
quantitative data as much as possible. Often subjects use different words to describe 
the same phenomenon, and the same words to describe different phenomena. In 
describing a subjective concept (e.g. the complexity of a C++ class), a subject may 
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use straightforward words (e.g. low, medium, high), that mask underlying ambiguities. 
For example, if a subject says that a particular class has “low complexity,” does that 
mean that it was easy to read and understand, or easy to write, or unlikely to contain 
defects, or just small? This is why, as mentioned earlier, preliminary qualitative 
analysis of the data to be coded is important in order to sort out the use of language 
and the nuances of the concept being described.

Another situation that complicates coding is when something is rated differ-
ently by different subjects. There were eight inspections in the Inspection Study 
in which the complexity of the inspected material was rated differently by differ-
ent participants in the inspection. In all but one of these cases, the ratings differed 
by only one level (e.g. “average” and “high,” or “high” and “very high,” etc.). One 
way to resolve such discrepancies is to decide that one subject (or data source) is 
more reliable than another. Miles and Huberman (1994) discuss a number of fac-
tors that affect the reliability of one data source as compared with another, and 
the process of weighting data with respect to its source. In the Inspection Study, 
it was decided that an inspector was a more reliable judge of the complexity of 
the code than the author, since we were interested in how complexity might affect 
the inspection of that code. This assumption was used to resolve most of the 
discrepancies.

Another approach to quantification of qualitative data is content analysis 
(Holsti, 1969). Content analysis, originally developed for the analysis of human 
communication in the social sciences, is defined in various ways, but for our pur-
poses can be described as an analysis method based on counting the frequency of 
occurrence of some meaningful lexical phenomenon in a textual data set. This 
technique is applicable when the textual data can be divided into cases along 
some criteria (e.g. different sites or respondents). In any particular application of 
content analysis, counting rules must be defined that make sense given the nature 
of the data and the research goals. This is why preliminary qualitative analysis is 
necessary, to determine the “nature of the data.” Counting rules can take several 
forms, e.g.:

● Counting the occurrence of particular keywords in each case and then correlat-
ing (statistically or more informally) the counts with other attributes of the 
cases

● Counting the number of cases in which certain keywords occur and then com-
paring the counts of different keywords, or comparing the set of cases containing 
the keyword to those that do not

● Counting the occurrence of one keyword in proximity to a second keyword, and 
then comparing that count to the number of occurrences of the first keyword 
without the second keyword

There are numerous other variations on this theme. Note that the first example 
above only yields meaningful results if one can assume that the frequency of use of 
a particular word or phrase somehow indicates its importance, or the strength of 
opinion about it or some other relevant characteristic. This is often not a reasonable 
assumption because it depends too much on the speaking and writing style of the 



60 C.B. Seaman

sources of the case data. A good example of the use of content analysis is Hall and 
Rainer’s work (with others), in particular (Rainer et al., 2003) and (Rainer and Hall, 
2003). Holsti (1969) provides a good reference on content analysis as used in the 
social sciences.

4. Conclusions

The focus of this chapter has been to provide guidance on using qualitative research 
methods, particularly in studies in which they are combined with quantitative meth-
ods, in empirical studies of software engineering. Nearly any software engineering 
issue is best investigated using a combination of qualitative and quantitative meth-
ods. Some of the more common mixed method research designs include the 
following:

● Qualitative data can be used to illuminate the statistical results employed to test 
a hypothesis. This allows the researcher to go beyond the statistics to help 
explain the causal relationships revealed by the quantitative results.

● When differences between subjects are an important part of the study design, 
quantitative measures of individual performance can be augmented with qualita-
tive interview data that helps explain differences in performance, as well as may 
identify other relevant differences that were not measured.

● In studying a new process or technique, qualitative data from an early observa-
tion study of groups using the technique can be used to identify relevant varia-
bles to be measured in a subsequent experiment to evaluate the performance of 
the process or technique.

● Initial qualitative data, from interviews or document analysis, can serve as a 
starting point for a case study by both setting the context for the researchers as 
well as identifying important issues and variables for the study.

Finally, it should be noted that there are software packages on the market that 
facilitate coding and other types of qualitative analysis [see Miles and Huberman 
(1994), appendix, for an overview of qualitative analysis software]. Space does not 
permit a full discussion of software tools, but one commonly used application is 
NVivo™ from QSR International.  NVivo aids the researcher in organizing, coding, 
and grouping textual data, in defining and maintaining links between different 
pieces of data, and in developing visual models of the data and of findings.

Empiricists in software engineering often complain about the lack of opportuni-
ties to study software development and maintenance in real settings. This really 
implies that we must exploit to the fullest every opportunity we do have, by collect-
ing and analysing as much data of as many different types as possible. Qualitative 
data is richer than quantitative data, so using qualitative methods increases the 

 http://www.qsrinternational.com/
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amount of information contained in the data collected. It also increases the diversity 
of the data and thus increases confidence in the results through triangulation, 
multiple analyses, and greater interpretive ability.

References

Barley SR (1990) The Alignment of Technology and Structure through Roles and Networks. 
Administrative Science Quarterly 35:61–103.

Brooks A, Roper M, Wood M, Daly J, Miller J (2007) Replication’s Role in Software Engineering, 
this volume.

Creswell JW (1998) Qualitative Inquiry and Research Design: Choosing Among Five Traditions. 
Sage Publications, Thousand Oaks.

Dey I (1993) Qualitative Analysis: A User-Friendly Guide. Routledge, New York.
Eisenhardt KM (1989) Building Theories from Case Study Research. Academy of Management 

Review 14:532–550.
Gilgun JF (1992) Definitions, Methodologies, and Methods in Qualitative Family Research, in 

Qualitative Methods in Family Research. Sage Publications, Thousand Oaks.
Glaser BG, Strauss AL (1967) The Discovery of Grounded Theory: Strategies for Qualitative 

Research. Aldine Publishing Company, Somerset, NJ, USA.
Guindon R, Krasner H, Curtis B (1987) Breakdowns and Processes During the Early Activities of 

Software Design by Professionals, in Empirical Studies of Programmers, second workshop, 
Gary Olsen, Sylvia Sheppard, and Elliot Soloway, eds., 65–82, Ablex Publishing, Greenwich, 
CT, USA.

Hackos JT, Redish JD (1998) User and Task Analysis for Interface Design. Wiley, New York.
Holsti OR (1969) Content Analysis for the Social Sciences and Humanities. Addison-Wesley, 

Menlo Park.
Jick T (1979) Mixing Qualitative and Quantitative Methods: Triangulation in Action. Administrative 

Science Quarterly 24(4):602–611.
Judd CM, Smith ER, Kidder LH (1991) Research Methods in Social Relations, sixth edition. 

Harcourt Brace Jovanovich, Fort Worth.
Kontio J, Bragge J, Lehtola L (2007) The Focus Group Method as an Empirical Tool in Software 

Engineering, this volume.
Lethbridge T, Sim SE, Singer J (2005) Studying Software Engineers: Data Collection Techniques 

for Software Field Studies. Empirical Software Engineering: An International Journal 
10(3):311–341.

Lincoln YS, Guba EG (1985) Naturalistic Inquiry. Sage Publishing, Thousand Oaks.
Lutters WG, Seaman CB (2007) The Value of War Stories in Debunking the Myths of 

Documentation in Software Maintenance. Information and Software Technology 49(6):
576–587.

Miles MB, Huberman AM (1994) Qualitative Data Analysis: An Expanded Sourcebook, second 
edition. Sage Publishing, Thousand Oaks.

Orlikowski WJ (1993) CASE Tools as Organizational Change: Investigating Incremental and 
Radical Changes in Systems Development. MIS Quarterly 17(3):309–340.

Orlikowski WJ, Baroudi JJ (1991) Studying Information Technology in Organizations: Research 
Approaches and Assumptions. Information Systems Research 2(1):1–28.

Parra A, Seaman C, Basili V, Kraft S, Condon S, Burke S, Yakimovich D (1997) The Package-
Based Development Process in the Flight Dynamics Division. Proceedings of the Twenty-
second Software Engineering Workshop, NASA/Goddard Space Flight Center Software 
Engineering Laboratory (SEL), Greenbelt, MD, USA.



62 C.B. Seaman

Perry DE, Staudenmayer NA, Votta LG (1994) People, Organizations, and Process Improvement. 
IEEE Software 11(July): 36–45.

Rainer A, Hall T (2003) A Quantitative and Qualitative Analysis of Factors Affecting Software 
Processes. Journal of Systems and Software 66:7–21.

Rainer A, Hall T, Baddoo N (2003) Persuading Developers to ‘Buy Into’ Software Process 
Improvement: Local Opinion and Empirical Evidence. Proceedings of the International 
Symposium on Empirical Software Engineering (ISESE), IEEE, Los Alamitos, CA, USA.

Seaman CB (1999) Qualitative Methods in Empirical Studies of Software Engineering. IEEE 
Transactions on Software Engineering 25(4):557–572.

Seaman CB, Basili VR (1998) Communication and Organization: An Empirical Study of 
Discussion in Inspection Meetings. IEEE Transactions on Software Engineering 
24(7):559–572.

Sharp H, Robinson H (2004) An Ethnographic Study of XP Practice. Empirical Software 
Engineering 9:353–375.

Shneiderman B (1998) Designing the User Interface: Strategies for Effective Human-Computer 
Interaction, third edition. Addison-Wesley, Reading, MA, USA.

Singer J (1998) Practices of Software Maintenance. Proceedings of the International Conference 
on Software Maintenance, IEEE Computer Society Press, Los Alamitos, CA, pp. 139–145.

Taylor SJ, Bogdan R (1984) Introduction to Qualitative Research Methods. Wiley, New York.
von Mayrhauser A, Vans AM (1996) Identification of Dynamic Comprehension Processes During 

Large Scale Maintenance. IEEE Transactions on Software Engineering 22(6):424–437.
Whyte WF (1984) Learning from the Field: A Guide from Experience. Sage Publications, Beverly 

Hills.
Yin RK (1994) Case Study Research: Design and Methods. Sage Publications, Newbury Park, 

CA, USA.



Abstract Although surveys are an extremely common research method, survey-
based research is not an easy option. In this chapter, we use examples of three 
software engineering surveys to illustrate the advantages and pitfalls of using  surveys. 
We discuss the six most important stages in survey-based research: setting the sur-
vey’s objectives; selecting the most appropriate survey design; constructing the 
survey instrument (concentrating on self-administered questionnaires); assessing the 
reliability and validity of the survey instrument; administering the instrument; and, 
finally, analysing the collected data. This chapter provides only an introduction to 
survey-based research; readers should consult the referenced literature for more 
detailed advice.

1. Introduction

Surveys are probably the most commonly used research method worldwide. Survey 
work is visible because we are often asked to participate in surveys in our private 
capacity, as electors, consumers, or service users. This widespread use of surveys 
may give the impression that survey-based research is straightforward, an easy 
option for researchers to gather important information about products, context, 
processes, workers and more. However, in our experience this is not the case. In this 
chapter, we will use actual survey examples to illustrate the attractions and pitfalls 
of the survey technique.

The three surveys we will use as our examples will be discussed in the next sec-
tion. After that we will define what we mean by a survey. Then we will discuss the 
main activities that need to be considered when you undertake a survey:

● Setting the objectives
● Survey design
● Developing the survey instrument (i.e. the questionnaire)
● Evaluating the survey instrument
● Obtaining valid data
● Analysing the data

Chapter 3
Personal Opinion Surveys

Barbara A. Kitchenham and Shari L. Pfleeger
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2. Example Surveys

In this section we describe three software engineering surveys that will be used as 
examples throughout this chapter.

2.1. Technology Evaluation Survey

Recently we were involved in far from successful survey. A few years ago, 
Zelkowitz et al. (1998) surveyed practitioners to determine their confidence in dif-
ferent types of empirical evaluations as the basis for technology adoption decisions. 
Their findings indicated that the evidence produced by the research community to 
support technology adoption is not the kind of evidence being sought by practition-
ers. To build on Zelkowitz et al.’s work, a group of researchers, including ourselves, 
wanted to do a follow-up survey of managers, to find out what kinds of evaluations 
they make of proposed technologies, and what kinds of evidence they rely on for 
their technology decisions.

We had noticed that many newsletters often include reader survey forms, some 
of whose questions and answers could provide useful insight into managers’ deci-
sion-making processes. We approached the publisher of Applied Software 
Development; he was eager to cooperate with the research community, and he 
agreed to insert a one-page survey in the newsletter and gather the responses. As a 
result, we took the following steps:

1. We designed a survey form and asked several of colleagues to critique it. The 
survey asked respondents to examine a list of technologies and tell us if the 
technology had been evaluated and if it had been used. If it had been evaluated, 
the respondents were asked to distinguish between a “soft” evaluation, such as a 
survey or feature analysis, and a “hard” evaluation, such as formal experiment 
or case study.

2. We “tested” the resulting survey form on a colleague at Lucent Technologies. 
We asked him to fill out the survey form and give feedback on the clarity of the 
questions and responses, and on the time it took him to complete the form. 
Based on his very positive reaction to the questionnaire, we submitted a slightly 
revised survey to the newsletter publisher.

3. The publisher then revised the survey, subject to our approval, so that it would 
fit on one page of his newsletter. The questionnaire was formatted as a table with 
four questions for each of 23 different software technologies (see Table 1). 

4. The survey form was included in all copies of a summer 1999 issue of Applied 
Software Development.

Of the several thousand possible recipients of Applied Software Development, only 
171 responded by sending their survey form back; thus, the response rate was low, 
which is typical in this type of survey. The staff at Applied Software Development 
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transferred the data from the survey sheets to a spreadsheet. However, when the 
results of the survey were analyzed, it appeared that we had made errors in survey 
design, construction, administration and analysis that rendered any results incon-
clusive at best.

2.2. Software Education Survey

Lethbridge (1998, 2000) conducted surveys to help him understand those areas 
where practitioners feel they need more or better education. The goal of the surveys 
was to provide information to educational institutions and companies as they plan 
curricula and training programs. A secondary goal involved providing data that will 
assist educators and practitioners in evaluating existing and proposed curricula.

Lethbridge and his team recruited participants for the surveys in two ways: by 
approaching companies directly and asking them to participate, and by advertising 
for participants on the Web. To determine the effects of formal education, 
Lethbridge presented the respondents with a list of topics related to computer sci-
ence, mathematics and business. For each topic, the respondent was asked “How 
much did you learn about this in your formal education?” The choices for answers 
ranged on a six-point ordinal scale from “learned nothing” to “learned in depth.” 
Other questions included

● What is your current knowledge about this considering what you have learned 
on the job as well as forgotten?

● How useful has this specific material been to you in your career?
● How useful would it be (or have been) to learn more about this (e.g. additional 

courses)? (This question appeared in the first version of the survey.)
● How much influence has learning the material had on your thinking (i.e. your 

approach to problems and your general maturity), whether or not you have 
directly used the details of the material? Please consider influence on both your 

Table 1 Format of technology survey questionnaire

Technology/
technique

Did your 
company 
evaluate this 
technology?

Soft Evaluation 
techniques: 
read case 
studies, 
articles, 
talking with 
peers, lessons 
learned, or 
other more 
anecdotal 
evidence?

Hard Evaluation 
techniques: 
feature 
comparisons, 
performance 
benchmark, 
or other more 
quantitative 
evidence?

Are you now 
using the 
technique in 
some 
production 
work or most 
production 
work?

Specific software 
technology

Yes/No Yes/No Yes/No Some/Most/None
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career and other aspects of you life. (This question appeared in the second version 
of the survey.)

2.3. Software Risk Management Survey

Ropponen and Lyytinen (2000) described an examination of risk management 
practices. They administered a survey addressing two overall questions:

● What are the components of software development risk?
● What risk management practices and environmental contingencies help to 

address these components?

To find out the answers, the researchers mailed a questionnaire to each of a pre-
selected sample of members of the Finnish Information Processing Association 
whose job title was “manager” or equivalent. They sent the questionnaire to at most 
two managers in the same company.

Ropponen and Lyytinen asked twenty questions about risk by presenting sce-
narios and asking the respondents to rate their occurrence with a five-point ordinal 
scale, ranging from “hardly ever” to “almost always.” For example, the scenarios 
included:

Your project is cancelled before completing it
and
Subcontracted tasks in the project are performed as expected.

The researchers posed additional questions relating to organizational character-
istics, such as the organization’s size, industry, type of systems developed, and 
contractual arrangement. They also sought technology characteristics, such as 
the newness of the technology, the complexity and novelty of technological 
solutions, and the process technologies used. Finally, they asked questions 
about the respondents themselves: their experience with different sizes of 
projects, their education, their experience with project management, and the 
software used.

3. What is a Survey?

To begin, let us review exactly what a survey is. A survey is not just the instrument 
(the questionnaire or checklist) for gathering information. It is a comprehensive 
research method for collecting information to describe, compare or explain knowl-
edge, attitudes and behavior (Fink, 1995). Fowler (2002) defines a quantitative 
survey in the following way:

● The purpose of a survey is to produce statistics, that is, quantitative or numerical 
descriptions of some aspects of the study population.
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● The main way of collecting information is by asking questions; their answers 
constitute the data to be analysed.

● Generally information is to be collected from only a fraction of the population, 
that is a sample, rather than from every member of the population.

In this chapter we will concentrate on surveys of this type where data is collected 
by means of a questionnaire completed by the subject. This excludes surveys that 
use a semi-structured interview schedule administered by the researcher. We will 
also exclude surveys using mainly open-ended questions, surveys based on observ-
ing participant behaviour and data mining exercises. Thus, we restrict ourselves to 
surveys that collect quantitative but subjective data (concerning individual’s opin-
ions, attitudes and preferences) and objective data such as demographic information 
for example a subject’s age and educational level.

4. Setting Objectives

The first step in any survey research (or any research, for that matter!) is setting 
objectives otherwise referred to as problem definition. Each objective is simply a 
statement of the survey’s expected outcomes or a question that the survey is 
intended to answer. For instance, a survey may hope to identify the most useful 
features of a front-end development tool, or the most common training needs for 
new hires.

There are three common type of objective:

● To evaluate the rate or frequency of some characteristic that occurs in a population, 
for example, we might be interested in the frequency of failing projects (Standish 
Group, 2003).

● To assess the severity of some characteristic or condition that occurs in a popula-
tion, for example, we might be interested in the average overrun of software 
projects (Moløkken-Østvold et al., 2004).

● To identify factors that influence a characteristic or condition, for example, we 
might be interested in factors that predispose a process improvement activity 
towards failure or towards success Dybå (2005).

The first two types of survey objective are descriptive: they describe some condition 
or factor found in a population in terms of its frequency and impact. The second 
type of survey looks at the relationship existing among factors and conditions 
within a population.

As the objectives are defined in more detail, you should be able to specify:

● The hypotheses to be tested
● What alterative explanations are to be investigated or excluded
● What scope of survey project is appropriate to address the objectives
● What resources are necessary to achieve the objectives
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At this stage it is important to decide whether a survey is an appropriate research method 
to address the stated objectives. You need to be able to answer questions of the type:

● Is it clear what population can answer the survey questions reliably?
● Is there a method of obtaining a representative sample of that population?
● Does the project have sufficient the resources to collect a sample large enough 

to answer the study questions?
● Is it clear what variables need to be measured?
● Is it clear how to measure the variables?

If you cannot answer all these questions positively, you need to consider whether a 
survey is an appropriate means to address your research objectives.

5. Survey Design

Two common types of survey design are:

● Cross sectional: In this type of study, participants are asked for information at 
one fixed point in time. For example, we may poll all the members of a software 
development organization at 10 am on a particular Monday, to find out what 
activities they are working on that morning. This information gives us a snapshot 
of what is going on in the organization.

● Longitudinal: This type of study is forward-looking, providing information 
about changes in a specific population over time. There are two main variants of 
longitudinal designs, you can survey the same people at each time period or you 
can survey different people.

Recall the three survey examples we introduced in Sect. 2. The Lethbridge survey 
asked respondents about their levels of training and education (see Lethbridge, 
1998, 2000). The Ropponen and Lyytinen (2000) study requested information 
about risk management practices from Finnish software projects. The Pfleeger-
Kitchenham study sought to determine what kinds of evidence were used to support 
technology adoption decisions. All three surveys were all cross-sectional studies, in 
which participants were asked about their past experiences at a particular fixed 
point in time. It is not simply coincidence that all our examples are of this type; in 
our experience, most surveys in software engineering have this kind of design.

There are other more complex forms of survey design, for example designs that 
compare different populations, or designs that aim to assess the impact of a change. 
For information on such designs see, for example, Shaddish et al. 2002).

The other issue to decide is the way in which the survey will be administered. 
Options include:

● Self-administered questionnaires (usually postal but increasingly Internet).
● Telephone surveys.
● One-to-one interviews.
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The questions that can be addressed are influenced by this factor. In addition, strategies 
for obtaining reliable data such as question ordering and wording differ according 
to the administration method. Fowler provides a detailed examination of the pros 
and cons of different administration methods (Fowler, 2002). In this chapter we con-
centrate primarily on self-administered questionnaires.

6. Developing a Survey Instrument

In this section, we turn to how to develop a survey instrument. Survey instruments, 
which are usually questionnaires, are developed using the following steps:

● Search the relevant literature.
● Construct an instrument.
● Evaluate the instrument.
● Document the instrument.

We discuss instrument construction in this section and instrument validation and 
documentation in Sect. 7, using the three surveys described in Sect. 2 to illustrate 
good and bad practice.

6.1. Searching the Literature

As with any good investigative study, we must begin our work by looking through 
the literature. We need such searches to:

● Identify what other studies have been done on the topic.
● Determine how the previous studies’ researchers collected their data. In particular, 

we want to find out what questionnaires or other data collection mechanisms 
were used.

There are many reasons for knowing what has come before. First, we do not want 
unknowingly to duplicate someone else’s research. Second, we want to learn from 
and improve upon previous studies. For example, if previous studies have devel-
oped relevant validated instruments or questions that we can adopt, it makes our 
own survey easier to administer and validate. Similarly, if other researchers had 
problems with response rates, we will be aware of the need to adopt measures to 
address this problem. Finally, other studies may give us ideas about variables and 
issues we need to consider in designing our own studies.

6.2. Creating or Re-Using an Instrument

In software engineering, we often start from scratch, building models of a problem 
and designing survey instruments specifically for the problem at hand. However, in 
other disciplines, it is rare to develop a new survey instrument. Researchers usually 
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rely on using existing instruments, perhaps tailored slightly to accommodate 
variations on a common theme. This reliance on standard instrumentation has two 
important advantages.

1. The existing instruments have already been assessed for validity and reliability.
2. By using common instruments, it is easy to compare new results with the results 

of other studies.

When researchers in other disciplines cannot use an existing instrument, they are 
often able to amend existing instruments. An instrument might be amended if:

● It is too long to be used in entirety.
● A different population is being studied from the one for which the original 

instrument was designed.
● It needs to be translated.
● The data collection method is different in some way from the original instru-

ment’s data collection.

However, we must take care when considering amending an instrument. Our 
changes may introduce complications that make the research more difficult. For 
example:

● If the original instrument is copyrighted, we may need permission to change it.
● We must repeat pilot testing of the instrument.
● The new instrument must be assessed for validity and reliability.

Unfortunately, because most survey instruments in software engineering research 
are developed from scratch, we introduce many practical problems. In particular, 
software engineering research instruments are seldom properly validated.

6.3. Creating a New Questionnaire

A survey asks the respondents to answer questions for a reason, so the starting point 
in designing the survey instrument should always be the survey’s purpose and 
objectives. However, simply converting a list of objectives into a set of questions 
seldom leads to a successful survey instrument. The type of question and wording 
of the questions and answers need to be carefully designed.

6.3.1. Question Types

When formulating questions for a survey instrument, you can express them in one 
of two ways: open or closed. A question is open when the respondents are asked to 
frame their own reply. Conversely, a question is closed when the respondents are 
asked to select an answer from a list of predefined choices.
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There are advantages and disadvantages to each type of question. Open questions 
avoid imposing any restrictions on the respondent. However, there are many different 
ways respondents may choose to answer a question. Moreover, no matter how care-
fully we word the question, open questions may leave room for misinterpretation 
and provision of an irrelevant or confusing answer. Thus, open questions can be 
difficult to code and analyze.

6.3.2. Designing Questions

Once we have an idea of what we want to ask, we must give some thought to how 
we want to pose the questions. Questions need to be precise, unambiguous and 
understandable to respondents. In order to achieve that we need to ensure that:

● The language used is appropriate for the intended respondents and any possibly 
ambiguous terms are fully defined.

● We use standard grammar, punctuation and spelling.
● Each question expresses one and only one concept so we need to keep questions 

short but complete and avoid double-barrelled questions.
● Questions do not included vague or ambiguous qualifiers.
● Colloquialisms and jargon are avoided.
● We use negative as well as positive questions but avoid simply negating a 

question or using a double negative.
● We avoid asking question about events that occurred a long time in the past.
● We avoid asking sensitive questions that respondents may not be willing to 

answer in a self-administered questionnaire.

It is also important to make sure that respondents have sufficient knowledge to 
answer the questions. It can be extremely frustrating to be asked questions you are 
not in a position to answer. For example, of the three surveys described in Sect. 2, 
two of the surveys (Lethbridge’s survey and the Finnish survey) asked respondents 
about their personal experiences. In contrast, the survey of technology adoption 
asked respondents to answer questions such as

Did your company evaluate this technology? Yes/No
Are you now using the technique in some production work or most production work? 
Yes/No

In this case, we were asking people to answer questions on behalf of their company. 
The questions may have caused difficulties for respondents working in large com-
panies or respondents who had worked for the company only for a relatively short 
period of time.

To see how wording can affect results, consider the two Lethbridge surveys. 
Each was on the same topic, but he changed the wording of his last question. In the 
first survey Lethbridge, 1998, question 4 was:

How useful would it be (or have been) to learn more about this (e.g. additional courses)?



72 B.A. Kitchenham and S.L. Pfleeger

In his second survey (Lethbridge, 2000), question 4 was:

How much influence has learning the material had on your thinking (i.e. your approach to 
problems and your general maturity), whether or not you have directly used the details of 
the material? Please consider influence on both your career and other aspects of your life.

The first version of the question is considerably better than the second version, 
because the second version is more complex and thus more difficult to interpret and 
understand. In particular, the second version appears to be two-edged (referring 
both to approach to problems and to general maturity) and rather imprecise (since 
it may not be clear what “general maturity” really means). However, further reflec-
tion indicates that even the first version of the question is ambiguous. Is the 
respondent supposed to answer in terms of whether (s)he would have benefited 
from more courses at university, or in terms of whether (s)he would benefit from 
industrial courses at the present time?

The survey of technologies posed questions about evaluation procedures in 
terms of how the respondent’s company performed its evaluation studies. In partic-
ular, it asked questions about soft and hard evaluation techniques by defining them 
at the top of two of the columns:

Soft evaluation techniques: Read case studies, articles, talking with peers, lessons learned 
or other more anecdotal evidence? Yes/No
Hard evaluation techniques: feature comparison, performance benchmark, or other more 
quantitative evidence? Yes/No

These questions include jargon terms related to evaluation that may not be well 
understood by the potential respondents. Similarly, the researchers used jargon when 
defining the technology types as well: CASE tools, Rapid Application Development, 
4GLs, and more. Were the questions to be redesigned, they should spell out each 
technology and include a glossary to describe each one. Such information ensures 
that the respondents have a common understanding of the terminology.

6.3.3. Designing Answers to Questions

Answers are usually of one of four types:

1. Numerical values (e.g. Age)
2. Response categories (e.g. Job type)
3. Yes/No answers
4. Ordinal scales.

Numerical values are usually straightforward but other types of answer may cause 
difficulties.

Response categories require all respondents to choose from a set of possible 
categories. They should be:

● Exhaustive but not too long
● Mutually exclusive
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● Allow for multiple selections if required
● Include an “Other” category if the categories are not known to be exhaustive

Yes/No answers are particularly problematic. They suffer from acquiescence bias 
(Krosnick, 1990) as well as problems with lack of reliability (because people do not 
give the same answer on different occasions), imprecision (because the restrict 
measurement to only two levels) and many characteristics are broad in scope and 
not easily expressed as a single question (Spector 1992). Consider the question in 
the technology evaluation survey:

Are you now using the technique in some production work or most production work?

In this case our question about technology use doesn’t suit a two point Yes/No scale 
very well. The question needs an ordinal scale answer.

Generally it is better to use an ordinal scale for attitudes and preferences. There 
are three types of scale:

1. Agreement scales e.g. a response choice of the form: Strongly Disagree, 
Disagree, Neither Agree nor Disagree, Agree, Strongly Agree.

2. Frequency scales e.g. a response choice of the form: Never, Rarely, Seldom, 
Sometimes, Occasionally, Most of the time.

3 Evaluation scales e.g. a response choice of the form: Terrible, Inferior, Passable, 
Good, Excellent.

Like response categories, ordinal scales need to be exhaustive but not too long. 
Researchers usually restrict them to seven points. In addition, Krosnick recom-
mended points on a scale be labeled with words (to assist reliability and validity) 
but not numbered (because numbers can be interpreted in unanticipated ways by 
respondents) (Krosnick, 1990).

However, understanding (and hence reliability) may also be increased if we 
define each point on a scale. For example, Lethbridge gives some indication of the 
detail needed to define an ordinal scale in his survey. Each of his four main 
questions has its own associated ordinal scale with responses defined in the context 
of the question. For instance, the question “How much did you learn about this at 
university or college” had the following scale:

Score Definition

1 Learned nothing at all
2 Became vaguely familiar
3 Learned the basics
4 Became functional (moderate working knowledge)
5 Learned a lot
6 Learned in depth, became expert (learned almost everything)

Although the intermediate points on the scale are a little vague, the end points are 
clear and unambiguous. Lethbridge’s scale conforms to the normal standard of 
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using between 5 and 7 choices along an ordinal scale. Lethbridge’s scale is also a 
reasonably balanced one. A scale is balanced when the two endpoints mean the 
opposite of one another and the intervals between the scale points appear to be 
about equal. Creating equal distances between the scale points is called anchoring 
the instrument. It is difficult to create an anchored scale and even more difficult to 
validate that a scale is properly anchored.

A final issue that applies to ordinal scale categories is whether to include a 
“Don’t know” category. There is some disagreement in the social science commu-
nity about this issue. Some researchers feel that such choices allow respondents to 
avoid answering a question. However, it may be counter-productive to force people 
to answer questions they don’t want to, or to force them to make a choice about 
which they feel ambivalent. The usual approach is to consider whether the respond-
ents have been selected because they are in a position to answer the question. If that 
is the case a “Don’t Know” category is usually not permitted.

6.3.4. Measuring Complex Concepts

Spector points out some concepts are difficult to map to single self-standing ques-
tions (Spector 1992). This may result in one (or both) of two type of unreliability

1. If people answer in different ways at different time
2. If people make mistakes in their responses.

He proposes measures based on summated rating scales to address this problem. 
A summated rating scale is a set of two or more items (i.e. questions) that address 
a specific topic or aspect of interest. Having multiple items improves reliability by 
reducing the chance of respondents making an error in their response and increases 
the precision with which a concept is measured.

6.4. Questionnaire Format

For self-administered questionnaires, it is important to consider both the format 
of the questionnaire and the questionnaire instructions. For formatting printed 
questionnaires, use the following checklist (much of which applies to Web-based 
questionnaires, too):

● Leave a space for the respondents to comment on the questionnaire.
● Use space between questions.
● Use vertical format, spaces, boxes, arrows, etc. to maximize the clarity of ques-

tions. However, do not overwhelm the respondent with “clever” formatting 
techniques (particularly for Web Questionnaires).

● Consider the use of simple grids.
● Consider the use of a booklet format.
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● Have a good contrast between print and paper.
● Stick to a font size of 10–12.
● Use a font that is easy to read.
● Avoid italics.
● Use bolding, underlining or capitals judiciously and consistently for emphasis 

and instructions.
● Do not split instructions, questions and associated responses between pages.

The order in which questions are placed is also be important. Bourque and Fielder 
(1995) recommend questions be asked in a logical order, starting with easy ques-
tions first. However, although most questionnaires include demographic questions 
(that is, questions that describe the respondent) at the front of the questionnaire, 
Bourque and Fielder suggest putting them at the end instead. They point out that 
demographic details may be off-putting at the start of the questionnaire and so may 
discourage respondents.

The questionnaire must be accompanied by various administrative information 
including:

● An explanation of the purpose of the study.
● A description of who is sponsoring the study (and perhaps why).
● A cover letter using letterhead paper, dated to be consistent with the mail shot, 

providing a contact name and phone number. Personalize the salutation if 
possible.

● An explanation of how the respondents were chosen and why.
● An explanation of how to return the questionnaire.
● A realistic estimate of the time required to complete the questionnaire. Note that 

an unrealistic estimate will be counter-productive.

6.5. Response Rates and Motivation

It is often very difficult to motivate people to answer an unsolicited survey. Survey 
researchers can use inducements such as small monetary rewards or gifts, but these 
are not usually very successful. In general, people will be more motivated to pro-
vide complete and accurate responses if they can see that the results of the study 
are likely to be useful to them. For this reason, we should be sure that the survey 
instrument is accompanied by several key pieces of information supplied to 
participants:

● What the purpose of the study is.
● Why it should be of relevance to them.
● Why each individual’s participation is important.
● How and why each participant was chosen.
● How confidentiality will be preserved.



76 B.A. Kitchenham and S.L. Pfleeger

Lethbridge (1998) attempted to motivate response with the following statement:

The questionnaire is designed to discover what aspects of your educational background 
have been useful to you in your career. The results of the survey will be used to help 
improve curricula. All the information you provide will be kept confidential. In particular 
we have no intention of judging you as a person–we are merely interested in learning about 
the relevance of certain topics to your work.

By contrast, the technology adoption survey attempted to motivate response with 
the statement:

Dear Executive, We are sponsoring a study for the University of X, and Professors Y and 
Z. It is only through our cooperative efforts with the academic community that we bring 
our commercial experiences to the classroom. Thank you for your help.

It fairly clear that Lethbridge’s statement is likely to be more motivating although 
neither is compelling.

6.6. Questionnaire Length

Although we all know that we should strive for the shortest questionnaire that will 
answer our research questions, there is always a temptation to add a few extra ques-
tions “while we are going to all the trouble of organising a survey”. This is usually 
a mistake. You should use pre-tests (see Sect. 7) to assess how long it takes to 
answer your questionnaire and whether the length (in time and number of ques-
tions) will de-motivate respondents.

If you have too many questions, you may need to remove some. Questions can 
usually be grouped together into topics, where each topic addresses a specific 
objective. One way to prune questions is to identify a topic that is addressed by 
many questions, and then remove some of the less vital ones. Another way is to 
remove some groups of questions. Keep in mind, though, that such pruning some-
times means reducing the objectives that the questionnaire addresses. In other 
words, you must maintain a balance between what you want to accomplish and 
what the respondents are willing to tell you. Validity and reliability assessments 
undertaken during pre-tests can help you decide which questions can be omitted 
with least impact on your survey objectives.

One way to reduce the time taken to complete a survey is to have standardized 
response formats. For example, in attitude surveys, responses are usually standard-
ized to an ordinal scale of the form:

Strongly Agree, Agree, Disagree, Strongly Disagree.

If all responses are standardized, respondents know their choices for each ques-
tion and do not have to take time to read the choices carefully, question by question. 
Thus, respondents can usually answer more standard-format questions in a given 
time than non-standard ones.
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6.7. Researcher Bias

An important consideration throughout questionnaire construction is the impact 
of our own bias. We often have some idea of what we are seeking, and the way 
we build the survey instrument can inadvertently reveal our biases. For example, 
if we create a new tool and distribute it free to a variety of users, we may decide 
to send out a follow-up questionnaire to see if the users find the tool helpful. If 
we do not take great care in the way we design our survey, we may word our 
questions in a way that is sure to confirm our desired result. For instance, we can 
influence replies by:

● The way a question is asked.
● The number of questions asked.
● The range and type of response categories.
● The instructions to respondents.

To avoid bias, we need to:

● Develop neutral questions. In other words, take care to use wording that does not 
influence the way the respondent thinks about the problem.

● Ask enough questions to adequately cover the topic.
● Pay attention to the order of questions (so that the answer to one does not influ-

ence the response to the next).
● Provide exhaustive, unbiased and mutually exclusive response categories.
● Write clear, unbiased instructions.

We need to consider the impact of our own prejudices throughout questionnaire 
construction. However, we also need to evaluate our questionnaire more formally, 
using methods discussed in Sect. 7.

7. Survey Instrument Evaluation

We often think that once we have defined the questions for our survey, we can 
administer it and gather the resulting data. But we tend to forget that creating a set 
of questions is only the start of instrument construction. Once we have created the 
instrument, it is essential that we evaluate it (Litwin, 1995). Evaluation is often 
called pre-testing, and it has several different goals:

● To check that the questions are understandable.
● To assess the likely response rate and the effectiveness of the follow-up 

procedures.
● To evaluate the reliability and validity of the instrument.
● To ensure that our data analysis techniques match our expected responses.

The two most common ways to organize an evaluation are focus groups and pilot 
studies. Focus groups are mediated discussion groups. We assemble a group of 
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people representing either those who will use the results of the survey or those who 
will be asked to complete the survey (or perhaps a mixture of the two groups). The 
group members are asked to fill in the questionnaire and to identify any potential 
problems. Thus, focus groups are expected to help identify missing or unnecessary 
questions, and ambiguous questions or instructions. As we will see below, focus 
groups also contribute to the evaluation of instrument validity.

Pilot studies of surveys are performed using the same procedures as the survey, but 
the survey instrument is administered to a smaller sample. Pilot studies are intended 
to identify any problems with the questionnaire itself, as well as with the response 
rate and follow-up procedures. They may also contribute to reliability assessment.

The most important goal of pre-testing is to assess the reliability and validity of 
the instrument. Reliability is concerned with how well we can reproduce the survey 
data, as well as the extent of measurement error. That is, a survey is reliable if we 
get the same kinds and distribution of answers when we administer the survey to 
two similar groups of respondents. By contrast, validity is concerned with how well 
the instrument measures what it is supposed to measure. The various types of valid-
ity and reliability are described below.

Instrument evaluation is extremely important and can absorb a large amount of 
time and effort. Straub presents a demonstration exercise for instrument validation 
in MIS that included a Pretest, Technical Validation and Pilot Project (Straub, 
1989). The Pretest involved 37 participants, the Technical Validation involved 44 
people using a paper and pencil instrument and an equal number of people being 
interviewed; finally the Pilot test analysed 170 questionnaires. All this took place 
before the questionnaire was administered to the target population.

7.1. Types of Reliability

In software, we tend to think of reliability in terms of lack of failure; software is 
reliable if it runs for a very long time without failing. But survey reliability has a 
very different meaning. The basic idea is that a survey is reliable if we administer 
it many times and get roughly the same distribution of results each time.
Test-Retest (Intra-observer) Reliability is based on the idea that if the same person 
responds to a survey twice, we would like to get the same answers each time. We 
can evaluate this kind of reliability by asking the same respondents to complete the 
survey questions at different times. If the correlation between the first set of 
answers and the second is greater than 0.7, we can assume that test-retest reliability 
is good. However, test-retest will not work well if:

● Variables naturally change over time.
● Answering the questionnaire may change the respondents’ attitudes and hence 

their answers.
● Respondents remember what they said previously, so they answer the same way 

in an effort to be consistent (even if new information in the intervening time 
makes a second, different answer more correct).
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Alternate form reliability is based on rewording or re-ordering questions in 
different versions of the questionnaire. This reduces the practice effect and 
recall problems associated with a simple test-retest reliability study. However, 
alternative form reliability has its own problems. Rewording is difficult because 
it is important to ensure that the meaning of the questions is not changed and 
that the questions are not made more difficult to understand. For example, 
changing questions into a negative format is usually inappropriate because 
negatively framed questions are more difficult to understand than positively 
framed questions. In addition, re-ordering results can be problematic, because 
some responses may be affected by previous questions.
Inter-observer (inter-rater) reliability is used to assess the reliability of 
non-administered surveys that involve a trained person completing a survey 
instrument based on their own observations. In this case, we need to check 
whether or not different observers give similar answers when they assess the 
same situation. Clearly inter-rater reliability cannot be used for self-administered 
surveys that measure personal behaviors or attitudes. It is used where there is a 
subjective component in the measurement of an external variable, such as with 
process or tool evaluation. There are standard statistical techniques available to 
measure how well two or more evaluators agree. To obtain more information 
about inter-rater reliability, you should review papers by El Emam and his 
colleagues who were responsible for assessing ISO/IEC 15504 Software Process 
Capability Scale, also known as SPICE (see for example El Emam et al., 1996, 
1998).

Two reliability measures are particularly important for summated rating scales: 
the Cronbach alpha coefficient (Cronbach, 1951) and the Item-remainder coeffi-
cient. These measures assess the internal consistency of a set of items (questions) 
that are intended to measure a single concept. The item-remainder coefficient is the 
correlation between the answer for one item and sum of the answers of the other 
items. Items with the highest item-remainder are important to the consistency of the 
scale. The Cronbach alpha is calculated as
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If variables are independent the variance of their sum is equal to the sum of each 
individual variance. If variables are not independent the variance of their sum is 
inflated by the covariance among the variables. Thus if the Cronbach alpha is small 
we would assume that the variables were independent and did not together contribute 
to the measurement of a single construct. If the Cronbach alpha is large 
(conventionally >0.7), we assume that the items are highly inter-correlated and 
together measure a single construct.
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7.2. Types of Validity

As noted above, we also want to make sure that our survey instrument is measuring 
what we want it to measure. This called survey validity. Four types of validity are 
discussed below.
Face validity is a cursory review of items by untrained judges. It hardly counts as a 
measure of validity at all, because it is so subjective and ill-defined.
Content validity is a subjective assessment of how appropriate the instrument seems 
to a group of reviewers (i.e. a focus group) with knowledge of the subject matter. 
It typically involves a systematic review of the survey’s contents to ensure that it 
includes everything it should and nothing that it shouldn’t. The focus group should 
include subject domain experts as well as members of the target population.

There is no content validity statistic. Thus, it is not a scientific measure of a 
survey instrument’s validity. Nonetheless, it provides a good foundation on which 
to base a rigorous assessment of validity. Furthermore if we are developing a new 
survey instrument in a topic area that has not previously been researched, it is the 
only form of preliminary validation available.
Criterion validity is the ability of a measurement instrument to distinguish 
respondents belonging to different groups. This requires a theoretical framework 
to determine which groups an instrument is intended to distinguish. Criterion 
validity is similar to concurrent validity and predictive validity. Concurrent validity 
is based on confirming that an instrument is highly correlated to an already 
validated measure or instrument that it is meant to be related to. Predictive validity 
is based on confirming that the instruments predicts a future measure or outcome 
that it is intended to predict.
Construct validity concerns how well an instrument measures the construct it is 
designed to measure. This form of validity is very important for validating sum-
mated measurement scales (Spector 1992). Convergent construct validity assesses 
the extent to which different questions which are intended to measure the same 
concept give similar results. Divergent construct validity assesses the extent to 
which concepts do not correlate with similar but distinct concepts. Like criterion 
validity, divergent and convergent construct validity can be assessed by correlating 
a new instrument with an already validated instrument. Dybå (2000) presents a 
software engineering example of the validation process for a software survey using 
summated measurement scales.

7.3. Validity and Reliability in Software Engineering Surveys

Generally, software engineering surveys are weak in the area of validity and relia-
bility. For example, for many years, in the extensive literature relating to the CMM, 
there was only one reference to a reliability coefficient (the Cronbach’s alpha) and 
that concerned the 1987 version of the Maturity Questionnaire (Humphrey, 1991).
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Of the three surveys we discussed in Sect. 1.2, only the Finnish Survey 
(Ropponen and Lyytinen, 2000) made a concerted effort to undertake reliability and 
validity studies. The technology adoption survey used face validity only. Lethbridge 
discusses the basis for his questions, but his discussion of validity is based only on 
a post-hoc assessment of possible responder bias (Lethbridge, 1998, 2000). In con-
trast, the Finnish researchers used a panel of experts to judge the content validity 
of the questions. They also attempted to assess the internal reliability of their instru-
ment. Unfortunately, they did not perform an independent pilot study. They ana-
lyzed their survey responses using principal components to identify strategies for 
managing risks. They then derived Cronbach alpha statistics (Cronbach, 1951) 
from the same responses. They found high values and concluded that their survey 
instrument had good reliability. However, Cronbach alpha values were bound to be 
high, because they measure the structure already detected by the principal compo-
nent analysis.

7.4. Survey Documentation

After the instrument is finalized, Bourque and Fielder (1995) recommend starting 
to document the survey. If the survey is self-administered, you should consider 
writing an initial descriptive document, called a questionnaire specification. It 
should include:

● The objective(s) of the study.
● A description the rationale for each question.
● The rationale for any questions adopted or adapted from other sources, with 

appropriate citations.
● A description of the evaluation process.

Furthermore, once the questionnaire is administered, the documentation should be 
updated to record information about:

● Who the respondents were.
● How it was administered.
● How the follow-up procedure was conducted.
● How completed questionnaires were processed.

One of the major reasons for preparing documentation during the survey is that 
surveys can take a long time. It may be many months between first distributing a 
questionnaire and when we are able to analyze results. It takes time for respondents 
to reply and for the researchers to undertake all necessary follow-up procedures. 
This time lag means that it is easy to forget the details of instrument creation and 
administration, especially if documentation is left to the end of the study. In general, 
it is good research practice to keep an experimental diary or log book for any type 
of empirical studies.
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When questionnaires are administered by interview, specifications are referred 
to as interviewer specifications and can be used to train interviewers as well as for 
reference in the field.

Once all possible responses have been received and all follow-up actions have 
been completed, we are in a position to analyze the survey data. This is discussed 
in the following sections. However before tackling analysis we look at the problem 
of obtaining a data set that is suitable for statistical analysis.

8. Obtaining Valid Data

When we administer a survey, it is not usually cost-effective (and sometimes not 
even possible) to survey the entire population. Instead, we survey a subset of the 
population, called a sample, in the hope that the responses of the smaller group 
represent what would have been the responses of the entire group. When choosing 
the sample to survey, we must keep in mind three aspects of survey design: avoid-
ance of bias, appropriateness, and cost-effectiveness. That is, we want to select a 
sample that is truly representative of the larger population, is appropriate to involve 
in our survey, and is not prohibitively expensive to query. If we take these sample 
characteristics into account, we are more likely to get precise and reliable 
findings.

In this section, we describe how to obtain a valid survey sample from a target 
population. We discuss why a proper approach to sampling is necessary and how to 
obtain a valid sample. We also identify some of the sampling problems that affect 
software engineering surveys.

The main point to understand is that a valid sample is not simply the set of responses 
we get when we administer a questionnaire. A set of responses is only a valid sample, 
in statistical terms, if has been obtained by a random sampling process.

8.1. Samples and Populations

To obtain a sample, you must begin by defining a target population. The target 
population is the group or the individuals to whom the survey applies. In other 
words, you seek those groups or individuals who are in a position to answer the 
questions and to whom the results of the survey apply. Ideally, a target population 
should be represented as a finite list of all its members called a sampling frame. For 
example, when pollsters survey members of the public about their voting prefer-
ences, they use the electoral list as their sampling frame.

A valid sample is a representative subset of the target population. The critical 
word in our definition of a sample is the word “representative.” If we do not have a 
representative sample, we cannot claim that our results generalize to the target 
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population. If our results do not generalize, they have little more value than a 
personal anecdote. Thus, a major concern when we sample a population is to ensure 
that our sample is representative.

Before we discuss how to obtain a valid sample, let us consider our three survey 
examples. In Lethbridge’s case, he had no defined target population. He might have 
meant his target population to be every working software developer in the world, 
but this is simply another way of saying the population was undefined. Furthermore, 
he had no concept of sampling even his notional population. He merely obtained a 
set of responses from the group of people motivated to respond. Thus, Lethbridge’s 
target population was vague and his sampling method non-existent. So although he 
described the demographic properties of his respondents (age, highest education 
qualification, nationality etc.), no generalization of his results is possible.

With respect to the Pfleeger-Kitchenham survey, we noted previously that we 
were probably targeting the wrong population because we were asking individuals 
to answer questions on behalf of their companies. However, even if our target popu-
lation was all readers of Applied Software Development, we did not have any 
sampling method, so our responses could not be said to constitute a valid sample.

In contrast, in the Finnish survey, Ropponen and Lyytinen had a list of all mem-
bers of the Finnish Information Processing Association whose title was manager. 
Thus, they had a defined sampling frame. Then, they sent their question-
naires to a pre-selected subset of the target population. If their subset was obtained 
by a valid sampling method (surprisingly, no sampling method is reported in their 
article), their subset constituted a valid sample. As we will see later, this situation 
is not sufficient to claim that the actual responses were a valid sample, but it is 
a good starting point.

8.2. Obtaining a Valid Sample

We begin by understanding the target population. We cannot sample a population 
if we cannot specify what that population is. Our initial assessment of the target 
population should arise from the survey objectives, not from a sense of who is avail-
able to answer our questions. The more precisely the objectives are stated, the easier 
it will be to define the target population. The specific target population may itself 
be a subset of a larger population. It may be specified by the use of inclusion or 
exclusion criteria.

It is often instructive to consider the target population and sampling procedure 
from the viewpoint of data analysis. We can do this during questionnaire design but 
we should also re-assess the situation after any pretests or pilot tests of the survey 
instrument. At this point we will have some actual responses, so we can try out our 
analysis procedures. We need to consider whether the analyses will lead to any 
meaningful conclusions, in particular:

● Will the analysis results address the study objectives?
● Can the target population answer our research questions?
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Considering the first question, Lethbridge’s objectives were to provide information 
to educational institutions and companies as they plan curricula and training pro-
grams. This goal raises obvious questions: which educational institutions and 
which companies? Lethbridge’s target population was poorly defined but can be 
characterized as any practising software engineer. Thus, we must ask ourselves 
whether replies from software engineers who would have attended different educa-
tion institutions, worked in different companies or had different roles and responsi-
bilities would indicate clearly how curricula and training courses could be 
improved. At the very least, general conclusions may be difficult. The results would 
need to be interpreted by people responsible for curricula or training courses in the 
light of their specific situation.

The next question concerns the target population. Will the target population 
provide useful answers? Lethbridge did not apply any inclusion or exclusion crite-
ria to his respondents. Thus, the respondents may include people who graduated a 
very long time ago or graduated in non-computer science-related disciplines and 
migrated to software engineering. It seems unlikely that such respondents could 
offer useful information about current computer science- related curricula or train-
ing programs.

Consider now the survey of technology adoption practices. We have already 
pointed that the Pfleeger-Kitchenham target population was the set of organizations 
(or organizational decision-makers) making decisions about technology adoption. 
However, our sample population solicits information from individuals. Thus, our 
sampling unit (i.e. an individual) did not match their experimental unit (i.e. an 
organization). This mismatch between the population sampled and the true target 
population is a common problem in many surveys, not just in software engineering. 
If the problem is not spotted, it can result in spurious positive results, since the 
number of responses may be unfairly inflated by having many responses from 
organizations instead of one per organization. Furthermore if there are a dispropor-
tionate number of responses from one company or one type of company, results will 
also be biased.

The general target population of the Finnish survey of project risk was Finnish 
IT project managers. The actual sampling frame was specified as members of 
Finnish Information Processing Association whose job title was “manager” or 
equivalent. People were asked about their personal experiences as project manag-
ers. In general, it would seem that the sample adequately represents the target popu-
lation, and the target population should be in a position to answer the survey’s 
questions.

The only weakness is that the Finnish survey did not have any experience-related 
exclusion criteria. For instance, respondents were asked questions about how fre-
quently they faced different types of project problems. It may be that respondents 
with very limited management experience cannot give very reliable answers to such 
questions. Ropponen and Lyytinen did consider experience (in terms of the number 
of projects managed) in their analysis of the how well different risks were managed. 
However, they did not consider the effect of lack of experience on the initial analy-
sis of risk factors.
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8.3. Sampling Methods

Once we are confident that our target population is appropriate, we must use a 
rigorous sampling method. If we want to make strong inferences to the target popu-
lation, we need a probabilistic sampling method. We describe below a variety of 
sampling methods, both probabilistic and non-probabilistic.

8.3.1. Probabilistic Sampling Methods

A probabilistic sample is one in which every member of a target population has a 
known, non-zero probability of being included in the sample. The aim of a probabilistic 
sample is to eliminate subjectivity and obtain a sample that is both unbiased and 
representative of the target population. It is important to remember that we cannot 
make any statistical inferences from our data unless we have a probabilistic 
sample.
A simple random sample is one in which every member of the target population has 
the same probability of being included in the sample. There are a variety of ways 
of selecting a random sample from a population list. One way is to use a random 
number generator to assign a random number to each member of the target popula-
tion, order the members on the list according to the random number and choose the 
first n members on the list, where n is the required sample size.
A stratified random sample is obtained by dividing the target population into 
subgroups called strata. Each stratum is sampled separately. Strata are used when 
we expect different sections of the target population to respond differently to our 
questions, or when we expect different sections of the target population to be of 
different sizes. For example, we may stratify a target population on the basis of 
sex, because men and women often respond differently to questionnaires. The 
number of members selected from each stratum is usually proportional to the size 
of the stratum. In a software engineering survey, we often have far fewer women 
than men in our target population, so we may want to sample within strata to 
ensure we have an appropriate number of responses from women. Stratified random 
samples are useful for non-homogeneous populations, but they are more compli-
cated to analyze than simple random samples.
Systematic sampling involves selecting every nth member of the sampling frame. If the 
list is random, then selecting every nth member is another method of obtaining a simple 
random sample. However, if the list is not random, this procedure can introduce bias. 
Non-random order would include alphabetical order or date of birth order.

8.3.2. Cluster-Based Sampling

Cluster–based sampling is the term given to surveying individuals that belong to 
defined groups. For example, we may want to survey all members of a family 
group, or all patients at specific hospitals. Randomization procedures are based on 
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the cluster, not the individual. We would expect members of each cluster to give 
more similar answers than we would expect from members of different clusters. 
That is, answers are expected to be correlated within a cluster. There are well-
defined methods for analyzing cluster data, but the analysis is more complex than 
that of a simple random sample (for example, see Levy and Lemeshow, 1999).

8.3.3. Non-Probabilistic Sampling Methods

Non-probability samples are created when respondents are chosen because the are 
easily accessible or the researchers have some justification for believing that they 
are representative of the population. This type of sample runs the risk of being 
biased (that is, not being representative of the target population), so it is dangerous 
to draw any strong inferences from them. Certainly it is not possible to draw any 
statistical inferences from such samples.

Nevertheless, there are three reasons for using non-probability samples:

● The target population is hard to identify. For example, if we want to survey soft-
ware hackers, they may be difficult to find.

● The target population is very specific and of limited availability. For example if 
we want to survey senior executives in companies employing more than 5000 
software engineers, it may not be possible to rely on a random sample. We may 
be forced to survey only those executives who are willing to participate.

● The sample is a pilot study, not the final survey, and a non-random group is read-
ily available. For example, participants in a training program might be surveyed 
to investigate whether a formal trial of the training program is worthwhile.

Three methods of non-probabilistic sampling are discussed below.
Convenience sampling involves obtaining responses from those people who are 
available and willing to take part. The main problem with this approach is that the 
people who are willing to participate may differ in important ways from those who 
are not willing. For example, people who have complaints are more likely to provide 
feedback than those who are satisfied with a product or service We often see this 
kind of sampling in software engineering surveys.
Snowball sampling involves asking people who have participated in a survey to 
nominate other people they believe would be willing to take part. Sampling contin-
ues until the required number of responses is obtained. This technique is often 
used when the population is difficult for the researchers to identify. For example, 
we might expect software hackers to be known to one another, so if we found one 
to take part in our survey, we could ask him/her to identify other possible 
participants.
Quota sampling is the non-probabilistic version of stratified random sampling. The 
target population is spit into appropriate strata based on know subgroups (e.g. sex, 
educational achievement, company size etc.). Each stratum is sampled (using con-
venience or snowball techniques) so that number of respondents in each subgroup 
is proportional to the proportion in the population.
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8.4. Sample Size

A major issue of concern when sampling is determining the appropriate sample 
size. There are two reasons why sample size is important. First, an inadequate 
sample size may lead to results that are not significant statistically. In other words, 
if the sample size is not big enough, we cannot come to a reasonable conclusion, 
and we cannot generalize to the target population. Second, inadequate sampling of 
clusters or strata disables our ability to compare and contrast different subsets of 
the population.

However, Fowler points out that there is no simple equation that can tell you 
exactly how large your sample ought to be (Fowler, 2002). In particular, he rejects 
sample size strategies based on a proportion of the population, typical sizes found 
in other studies, or statistical methods based on expected error levels. His suggestion 
is to consider your analysis plan and ensure that you have adequate sample sizes of 
the smallest important subgroups in your population.

8.5. Response Rates

It is not enough to decide how many people to survey. We must also take steps to 
be sure that enough people return the survey to yield meaningful results. Thus, 
any reliable survey should measure and report its response rate, that is, the pro-
portion of participants who responded compared to the number who were 
approached.

The validity of survey results is severely compromised if there is a significant 
level of non-response. If we have a large amount of non-response but we can under-
stand why and can still be sure that our pool of respondents is representative of the 
larger population, we can proceed with our analysis. But if there is large non-response 
and we have no idea why people have not responded, we have no way of being sure 
that our sample truly represents the target population. It is even worse to have no 
idea what the response rate is. For example, we had 171 responses to our survey, 
but we did not know exactly how many people subscribed to Applied Software 
Development, so we could not calculate response rate. Similarly, because Lethbridge 
solicited responses from companies via the Web, the size of the target population 
was unknown; therefore, he could not calculate the response rate. Thus, in both 
these cases the cost savings obtained by avoiding a direct mailing may have com-
promised the validity of the surveys.

It is not obvious what a sort of response rate we should expect. Baruch (1999) 
reviewed 175 IS surveys and found a median response rate was 60%, but it may be 
that conditions are different in SE than in IS. Currently, we have relatively few sur-
veys in SE and many of those do not publish response rates.

There are several strategies that can be used to improve response rates. Some 
were discussed in Sect. 6.5, others include:
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● If we expect an initial low response rate, we can plan for over-sampling. That is, 
when we identify the sample size we require, we then sample more than the 
minimum required to allow for the expected non-response.

● We should have follow-up plans to send reminders to participants.
● We should approach individuals personally, if necessary. One-to-one approaches 

are particularly important if we want to assess the reason for non-response. For 
example, the researchers in Finland phoned a random sample of people who did 
not reply to their survey to ask them why they did not respond. This activity 
allowed them to confirm that non-response was not likely to have a systematic 
bias on their results.

● It may be possible to perform statistical adjustments to correct for non-response.

However, recent research has suggested that achieving higher response rates do not 
necessarily mean more accurate results (Krosnick, 1990). If we have used probabil-
ity sampling, low response rates may not imply lower representativeness.

9. Analysing Survey Data

In this section, we assume that you have designed and administered your survey, 
and now you are ready to analyze the data you have collected. If you have designed 
your survey properly, you should have already identified the main analysis proce-
dures. Furthermore, if you have undertaken any pre-tests or pilot studies, you 
should have already tested the analysis procedures.

We discuss some general issues involved in analyzing survey data. However, we 
cannot describe in detail how to analyze all types of survey data, so we concentrate 
on discussing some of the most common analysis issues.

9.1. Data Validation

Before undertaking any detailed analysis, responses should be vetted for consist-
ency and completeness. It is important to have a policy for handling inconsistent 
and or incomplete questionnaires. If we find that most respondents answered all 
questions, we may decide to reject incomplete questionnaires. However, we must 
investigate the characteristics of rejected questionnaires in the same way that we 
investigate non-response to ensure that we do not introduce any systematic bias. 
Alternatively, we may find that most respondents have omitted a few specific ques-
tions. In this case, it is more appropriate to remove those questions from the 
analysis.

Sometimes we can use all the questionnaires, even if some are incomplete. In this 
case we will have different sample sizes for each question we analyze and we must 
remember to report that actual sample size for each sample statistic. This approach is 
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suitable for analyses such as calculating sample statistics or comparing mean values, 
but not for correlation or regression studies. Whenever analysis involves two or more 
questions you need an agreed procedure for handling missing values.

In some cases, it is possible to use statistical techniques to “impute” the values 
of missing data (Little and Rubin, 1987). However, such techniques are usually 
inappropriate when the amount of missing data is excessive and/or the values are 
categorical rather than numerical.

It is important to reduce the chance of incomplete questionnaires when we 
design and test our instruments. A very strong justification for pilot surveys is that 
misleading questions and/or poor instructions may be detected before the main sur-
vey takes place.

The questionnaire related to the technology adoption survey (shown in Appendix 1) 
suffered badly in terms of incomplete answers. A review of the instructions to 
respondents made it clear why this had happened. The instructions said:

If you are not sure or don’t know an answer just leave the line blank; otherwise it is impor-
tant to answer YES or NO to the first section of every Technique/Technology section.

With these instructions, perhaps it is not surprising that most of the questionnaires 
had missing values. However, replies were not just incomplete; they were also 
inconsistent. For example, some respondents left blank question 1 (Did your com-
pany evaluate this technology?) while replying YES to question 2, about the type 
of evaluation undertaken. Thus, blanks did not just mean “Don’t know”; sometimes 
they also meant YES. Ambiguities of this sort make data analysis extremely diffi-
cult and the results dubious.

9.2. Partitioning the Responses

We often need to partition our responses into more homogeneous sub-groups before 
analysis. Partitioning is usually done on the basis of demographic information. We 
may want to compare the responses obtained from different subgroups or simply 
report the results for different subgroup separately. In some cases, partitioning can 
be used to alleviate some initial design errors. Partitioning the responses is related 
to data validation since it may lead to some replies being omitted from the 
analysis.

For example, we noted that Lethbridge did not exclude graduates from non-IT 
related subjects from his population nor did he exclude people who graduated many 
years previously. However, he knew a considerable amount about his respondents, 
because he obtained demographic information from them. In his first paper, he 
reported that 50% of the respondents had degrees in computer science or software 
engineering, 30% had degrees in computer engineering or electrical engineering, 
and 20% had degrees in other disciplines. He also noted that the average time since 
the first degree was awarded was 11.7 years and 9.6 years since the last degree. 
Thus, he was in a position to partition the replies and concentrate his analysis on 
recent IT graduates. However, since he did not partition his data, his results are 
extremely difficult to interpret.
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9.3. Analyzing Ordinal and Nominal Data

Analyzing numerical data is relatively straightforward. However, there are addi-
tional problems if your data is ordinal or nominal.

A large number of surveys ask people to respond to questions on an ordinal 
scale, such a five-point agreement scale. The Finnish survey and Lethbridge’s sur-
vey both requested answers of this sort. It is common practice to convert the ordinal 
scale to its numerical equivalent (e.g. the numbers 1–5) and to analyze the data as 
if they were simple numerical data. There are occasions when this approach is rea-
sonable, but it violates the mathematical rules for analyzing ordinal data. Using a 
conversion from ordinal to numerical entails a risk that subsequent analysis will 
give misleading results.

In general, if our data are single peaked and approximately Normal, our risks of 
misanalysis are low if we convert to numerical values. However, we should also 
consider whether such a conversion is necessary. There are three approaches that 
can be used if we want to avoid scale violations:

1. We can use the properties of the multinomial distribution to estimate the propor-
tion of the population in each category and then determine the standard error of 
the estimate. For example, Moses uses a Bayesian probability model of the 
multinomial distribution to assess the consistency of subjective ratings of ordinal 
scale cohesion measures (Moses, 2000).

2. We may be able to convert an ordinal scale to a dichotomous variable. For exam-
ple, if we are interested in comparing whether the proportion who agree or 
strongly agree is greater in one group than another, we can re-code our responses 
into a dichotomous variable (for example, we can code “strongly agree” or 
“agree” as 1 and all other responses as 0) and use the properties of the binomial 
distribution. This technique is also useful if we want to assess the impact of 
other variables on an ordinal scale variable. If we can convert to a dichotomous 
scale, we can use logistic regression.

3. We can use Spearman’s rank correlation or Kendall’s tau (Siegel and Castellan, 
1998) to measure association among ordinal scale variables.

There are two occasions where there is no real alternative to scale violations:

1. If we want to assess the reliability of our survey instrument using Cronbach’s 
alpha statistic (Cronbach, 1951)..

2. If we want to add together ordinal scale measures of related variables to give 
overall scores for a concept.

The second case is not a major problem since the central limit theory confirms that 
the sum of a number of random variables will be approximately Normal even if the 
individual variables are not themselves Normal.

However, we believe it is important to understand the scale type of our data and 
analyze it appropriately. Thus, we do not agree with Lethbridge’s request for 
respondents to interpolate between his scale points as they saw fit (e.g. to give a 
reply of 3.4 if they wanted to).
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10. Conclusions

This chapter has discussed the issues involved in undertaking survey-based research, 
in particular surveys based on self-administered questionnaires. The main message of 
this chapter is that, in spite of its ubiquity, survey-based research is not a simple 
research method. It requires time and effort to understand the basic methodology as 
well as time and effort to create, validate and administer a survey instrument.

We have only scratched the surface of survey methodology in this chapter. We 
hope this chapter provides a useful starting point but we strongly advise that you 
consult the text books and research referenced in this chapter before undertaking a 
survey for the first time.
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Abstract This chapter presents the focus group method and discusses its use for 
 empirical research in the software engineering context. The background, process and 
main characteristics of the method are presented, as well as guidelines for its use. 
Moreover, the traditional as well computer-mediated focus group variations are com-
pared to each other. The chapter concludes in  with a discussion of the applicability of 
the method for software engineering research. In summary, the focus group method is 
a cost-effective and quick empirical research approach for obtaining qualitative insights 
and feedback from practitioners. It can be used in several phases and types of research. 
However, a major limitation of the method is that it is useful only in studying concepts 
that can be understood by knowledgeable participants in a limited time. We also empha-
size the importance of empirical rigor when the method is used in scholarly work.

1. Introduction

The software engineering community has begun to emphasize empirical research 
methods to improve the validity and generalizability of research results (Basili et al., 
1986; Tichy, 1998; Wohlin et al., 2003; Zelkowitz and Wallace, 1998). The community 
has also recognized the need to improve the amount and quality of empirical research 
in the field (Buhrer, 2007; Kitchenham et al., 2004; Tichy et al., 1995). Experimentation, 
in particular, has received much attention in software  engineering literature (Juristo 
and Moreno, 2001; Wohlin et al., 1999) and the community has clearly matured in its 
use of empirical methods, as evidenced by an increasing number of empirical research 
papers, textbooks, and emergence of conferences focusing on empirical research.

Increased attention in empirical methods has also interested software engineer-
ing researchers in having a broader range of empirical methods in their arsenal so 
that appropriate methods can be selected and used for each research problem. 
Similar conclusions have been drawn in related fields of information systems 
(Benbasat, 1996; Galliers, 1991) and business studies (Ghauri et al., 1995).
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This chapter presents a specific qualitative research method, the focus group 
method. We supplement current research by providing guidelines for the method’s use 
in software engineering research. This chapter is largely based on our earlier paper 
(Kontio et al., 2004), with extensions to the guidelines on the use of the method, and 
on the comparison of traditional and three computer-mediated focus group variations.

2. The Focus Group Method

This section gives an overview of the focus group method in general, whereas the 
next section presents experiences from the software engineering context.

2.1. Background and Definition

Focus groups emerged as a research method in the 1950s in the social sciences. The 
open-ended interview format was extended to group discussion (Templeton, 1994), 
hence becoming the focus group method. Morgan defines focus groups as a 
“research technique that collects data through group interaction on a topic deter-
mined by the researcher” (Morgan, 1996). Focus groups are thus carefully planned 
discussions, designed to obtain personal perceptions of the group members on a 
defined area of research interest. There are typically between 3 and 12 participants 
and the discussion is guided and facilitated by a moderator-researcher, who follows 
a predefined questioning structure so that the discussion stays focused. Members 
are selected based on their individual characteristics as related to the session topic 
(so-called purposive sampling). The group setting enables the participants to build 
on the responses and ideas of other participants, which increases the richness of the 
information gained (Langford and McDonaugh, 2003).

Focus group sessions produce mainly qualitative information about the objects 
of study. The benefits of focus groups are that they produce candid, sometimes 
insightful information, and the method is fairly inexpensive and fast to perform 
(Widdows et al., 1991). However, the method shares the weaknesses of many other 
qualitative methods. Results may be biased by group dynamics and sample sizes are 
often small. Therefore, it may be difficult to generalize the results (Judd et al., 
1991). Poorly conducted focus group sessions may, therefore, be particularly prone 
to producing unreliable results.

Currently, the method is widely used, e.g., in sociological studies, market 
research, product planning, political campaigning, defining business services, and 
in system usability studies (Baker, 1991; Edmunds, 1991; Morgan, 1997; Neter and 
Waksberg, 1964; Stewart and Shamdasani, 1990; Rubin, 1994; Widdows et al., 1991). 
Focus groups can be used either as a stand-alone research method or in combination 
with other research methods, e.g. with individual interviews or quantitative surveys 
(Morgan, 1996).
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There are several textbooks and detailed guidelines available on how to plan 
and run focus groups (Anon., 1997; Feig, 1989; Krueger and Casey, 2000; Nielsen, 
1997; Templeton, 1994; Langford and McDonaugh, 2003), making the method 
that is  relatively easy to adopt and use consistently. McQuarrie (1994, 2001), for 
instance, offers extremely useful focus group book reviews which can direct the 
reader, a researcher, an industry practitioner, or moderator, to an appropriate 
approach.

2.2. Steps in Focus Group Research

Based on several sources (Anon., 1997; Edmunds, 1991; Krueger and Casey, 2000; 
Morgan, 1996; 1997), we have summarized the main steps of focus group research 
as follows.

2.2.1. Planning the Research

Defining the research problem. The focus group method is best suited to obtaining 
initial feedback on new concepts, developing questionnaires, generating ideas, 
 collecting or prioritizing potential problems, obtaining feedback on how models or 
concepts are presented or documented, and discovering underlying motivations 
(Edmunds, 1991). According to Morgan (1996), among others, survey researchers 
have increased their use of focus groups to provide valuable data on how the 
respondents themselves talk about the topic of subsequent surveys, as the questions 
posed in surveys are inherently limited.

The method is not suitable for all situations. Focus groups can seldom be used 
to test hypotheses as samples are too small and group dynamics create an uncon-
trollable variable. In verbally conducted settings it is not easy to obtain subjective 
quantitative assessments, as opinion leaders or group behaviour may influence the 
results. It may be also hard to explore political or otherwise sensitive issues as peo-
ple may not reveal their true opinions in a public setting. Also, it is difficult to study 
complex issues that are difficult to grasp in a short session, as people have limited 
mental capacity to grasp complexity and interact simultaneously. Finally, there is 
the issue of team dynamics and interaction wherein team members may be reluctant 
to reveal their true subjective preferences. Such limitations might arise in defining 
prices or cost preferences, for example (Edmunds, 1991).

Typically focus groups are not the only research method used in a study. 
Morgan’s (1997) content analysis of abstracts revealed that a majority of the pub-
lished research articles using focus groups combined them with other research 
methods. The most frequent pairings were with either in-depth, individual 
 interviews or subsequent surveys (Morgan, 1997). When focus groups are used in 
combination with other research methods, they can serve either as a primary 
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research method or as the secondary method in the study (Morgan, 1996). The role 
of focus groups in the research process should be carefully defined in the planning 
phase of research.

In some cases, it might be a good idea to use focus groups instead of other similar 
research methods. For example, Fern’s (1982) results suggest that two 8-person 
focus groups produce as many ideas as ten individual interviews. Thus, in case it is 
more cost-efficient to arrange two group sessions instead of ten individual meet-
ings, focus groups are worth considering.

2.2.2. Designing focus groups

Typically focus group research should consist of 4–6 focus groups (Morgan, 1997). 
The size of an individual focus group can vary from 3 to 12, but more typically 
there are between 4 and 8 participants. Smaller groups seem to be more appropriate 
with emotionally charged topics that generate high levels of participant involve-
ment, while larger groups work better with more neutral topics that generate lower 
levels of involvement (Morgan, 1992).

Selecting participants. The value of the method is that it is very sensitive to the 
experience and insight of participants. Thus, recruiting representative, insightful 
and motivated participants is critical to the success of the focus group study. 
Depending on the research question, participants may not have much experience in 
the topic of the focus group – or they may be seasoned experts who can rely on their 
years of experience when interacting in the group. However, when discussing novel 
and innovative concepts or products to be launched, participants seldom have much 
expertise on the topic.

Segmentation refers to strategies that consciously vary the composition of 
groups. The most obvious kinds of segmentation captures something about the 
research topic itself (Morgan, 1997). For example, if age differences are of interest, 
it might be a good idea to separate groups based on the participants’ age.

Morgan (1997) argues that segmentation offers two basic advantages. These are:

1. Building comparative dimension into the entire research project.
2. Facilitating discussions by making the participants more similar to each other.

In practice, it is generally recommended that some over-recruiting take place as last 
minute cancellations usually happen. It may also be useful to use pre-session ques-
tionnaires so that session time is used most effectively for discussions.

2.2.3. Conducting the focus group sessions

Basic sequence. An individual focus group event usually lasts 2–3 h and has a pre-
defined schedule and structure. The number of issues to be covered needs to be 
limited so that sufficient time can be allocated for the participants to comprehend 
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the issue and have meaningful discussion and interaction. Limited time also places 
a constraint on the complexity of the issues selected.

The focus group session needs to be carefully managed for time while still 
making sure that all main contributions can be made during the allocated time. The 
moderator should thus be determined and have adequate skills in guiding group 
dynamics. The session needs to be initiated by an introduction where the goals and 
ground rules of the session are explained to participants. Each of the topics is usu-
ally presented one after another.

The discussion and interaction in a focus group session can take many forms. It 
can be a structured discussion, where the moderator acts as a chair; it can involve 
brainstorming techniques, such as affinity grouping or teamwork methods; polling 
and voting using preference votes or the Delphi method (Adler and Ziglio, 1996); 
comparison games; or even role plays (Edmunds, 1991). Some researchers are very 
strict in defining what constitutes a genuine, interactive focus group discussion, 
while others are more inclusive in this [see discussion in Morgan (1996)]. For 
example Langford and McDonaugh (2003) are proponents of the more liberal view, 
and they present 38 different tools and techniques that can be used to supplement a 
traditional focus group discussion.
Data capturing. There are several alternatives for data capture during a session. 
There can be additional observers taking notes during the session. Audio, video or 
keyboard recording can be used, and artifacts used during the session can be cap-
tured if the session involves techniques producing such artifacts. It may also be 
useful to arrange a debriefing session with some of the participants immediately 
after the session so that fresh observations and interpretations from the session are 
captured as fully as possible. It is obvious that relying on moderator notes will not 
be sufficient because being a moderator is a full-time job in a focus group session. 
It can even interrupt the discussion if the moderator starts making notes (Langford 
and McDonaugh, 2003).
The role of the moderator. The role of the moderator is critical in a focus group 
session. The moderator should facilitate discussion but not allow his or her own 
opinions to influence the discussion. His or her main task is to listen and probe 
deeper when necessary, requiring the moderator to be able to grasp substantial dis-
cussions quickly. It is often necessary to paraphrase participant points to ensure that 
the contribution was correctly understood.

2.2.4. Analyzing the data and reporting the results

The data analysis and reporting of focus group studies can use the methods used 
in qualitative data analysis (Bogdan and Biklen, 1982; Miles and Huberman, 1984; 
Patton, 1990; Taylor and Bogdan, 1984; Myers, 2004). Quantitative data, if gath-
ered, can be analyzed using descriptive statistics and other standard quantitative 
methods.
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3. Experiences in the Software Engineering Context

We collected experiences from three focus group studies we have conducted 
(Kontio, 2001; Lehtola et al., 2004; Sunikka, 2004). We provide here only short 
summaries of the studies, as detailed reports on each of them are available else-
where [see broader account also in Kontio et al. (2004)].

The objective of the first study (Kontio, 2001) was to provide insights into why 
and how organizations seek to improve their risk management (RM) practices, what 
they intend to achieve with better RM, and what impediments preventing more 
effective RM approaches from being used. Furthermore, we also wanted to obtain 
feedback on specific characteristics of a RM method called Riskit (Kontio, 1997) 
and the corresponding software tool (“eRiskit”). The study included three focus 
groups having 12 participants altogether from several organizations.

The objective of the second study (Lehtola et al., 2004) was to clarify the practi-
cal challenges in requirements prioritization. We wanted to find out how and in 
which phases of development work companies prioritize requirements, and who 
performs the prioritization. We also clarified which factors have an effect on priori-
ties, and from which sources practitioners gather information on which they base 
their priority decisions. In this study, one focus group with four participants from 
two organizations was conducted.

Regarding the third study (Sunikka, 2004), the aim was to collect user opinions 
about the usability of a university’s website. This information was used mainly in 
planning the actual usability testing to follow, but the focus group results also 
offered additional insights. The usability study as a whole consisted of several 
phases: focus group discussion, web survey questionnaire, usability tests, and 
 heuristic evaluations. The focus group was computer-mediated, and it had nine 
participants invited from the personnel of the case university one of the main end-
user groups of the website under study.

We reviewed experiences from each study and constructed a mind map of the 
experiences and lessons learned. These mind maps were compared and discussed 
between authors, and the synthesized lessons learned are reported in the following 
sections. In addition, we collected original focus group participants’ feedback in 
informal discussions or in feedback surveys.

We did not track the effort spent during the studies but estimated it afterwards 
using the Delphi method (Adler and Ziglio, 1996). These estimates are presented in 
Table 1 by the main tasks.

3.1. Suitability

Our studies showed that the focus group method is suitable for gathering experi-
ence: all of the studies resulted in relevant and usable findings that were used to 
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Table 1 Estimated effort in the studies (person hours)

 Risk study  Usability
Task (3 groups) RE study study

Research problem formulation 15 5 3
Planning and preparation 25 10 10

(including rehearsing)
Selecting and recruiting  8 3 2

the participants
Conducting the sessions 9 3 2
Transcribing the data 11 6 0*

Analysis 15 6 10
Total 83 33 27
*Reports of computer-mediated discussion were generated automatically

guide or complement the research projects in which the focus group studies were 
conducted. We believe that the types of issues that can be addressed by focus 
groups include, among others, the following:

● Identifying relevant research questions
● Obtaining practitioner feedback on research questions
● Recognizing past experience that can be studied in more detail by other methods
● Initial evaluation of potential solutions, based on practitioner or user feedback
● Collecting “lessons learned” recommendations
● Identifying potential root causes of phenomena

Such issues can be relevant in all the main phases of a research life cycle. We illus-
trate this here using the general research phases defined by Glass (1995) and 
extended by Kontio (2001). This research life cycle is divided into the informa-
tional, propositional, analytical, evaluative, and technology transfer phases. It 
should be noted that not every phase is found in each research study, and the last 
phase especially is typical only in constructive or design research.

In the informational phase the focus group method can be used to collect char-
acterizing information about current practices, experiences, or problems. In the 
propositional phase the initial constructs, i.e., models, theories or prototypes, can 
be subjected to practitioner and user opinions to provide early feedback. In the 
analytical phase user feedback can be used to evaluate the operationalization of 
constructs or to test their initial feasibility. In the evaluative phase focus groups can 
be used to refine research questions, provide some of the empirical feedback, and 
support the interpretation of empirical data.

Finally, in the technology transfer phase the focus group can help researchers 
to package their contributions into a form that is more easily deployable by users. 
In addition, a focus group session can also act as a “sales session” for research 
results. We have included examples of potential research questions in Table 2 that 
are relevant in this research framework.
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McQuarrie and McIntyre (1986) offer guidelines on how to utilize focus groups 
in the evaluation of new product concepts developed by technologically driven 
companies. They distinguish six stages through which the discussions could evolve. 
These stages are comparable to the actual adoption and diffusion processes regard-
ing new products (orientation, exposure, evaluation, pricing, extensions, product 
modification). Nambisan and Wilemon (2000) and Nambisan (2003), among oth-
ers, have recently discussed how software development and IS in general could 

Table 2 Research question examples for the focus group method in different research phases

Phase of research Description of the phase Suitable issues for focus groups

Informational phase Observing the current state- – What are most urgent or
  of-art and practice to   relevant research questions?
  identify problems and – What kind of problems are
  potential solutions  common in industry?
  – Why are some problems
   relevant or urgent?

  – What practices currently
   exist in industry?

Propositional phase Constructs are formulated, – What are possible solutions
  models are built, theories  or hypotheses?
  proposed or formulated  – What similar experiences
   exist in industry (has someone
   already tried or tested it?)?

  – Are the assumptions made
   realistic from practitioner
   and user perspectives?

Analytical phase Operationalization of the – Is the model understandable?
  constructs or models and – How can it be deployed into
  their analytical evaluation  practice?
  and improvement – What are the potential
   problems in using or under-
   standing the model?

  – Are there any omissions
   or gaps in the model?

Evaluative phase Testing and evaluating the – Is there any data available,
  constructs or models   can data be obtained?

  – Is the empirical study design
   sound and practical?
  – What does the data mean?

Technology transfer phase Transferring constructs, – Is the model packaged well
  models and/or new  for operational use?
  knowledge into practice – What are the potential
   challenges in selling or
   using it?

  – How it could be
   packaged better?
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benefit from the research done in the field of new product development (NPD), and 
vice versa. Thus, the framework provided by McQuarrie and McIntyre could well 
adapt to software NPD processes as well, especially to those software products that 
are targeted to normal consumers (e.g., software embedded in mobile phones).

3.2. Strengths

Discovery of new insights. The interactive nature of the group setting and participants’ 
different backgrounds seem to encourage and prompt participants to react to points 
during discussion, reflecting and building on each other’s experiences. This may lead 
to discovery of issues that researchers might not have been able to plan in advance, as 
happened in our risk management and requirements  prioritization studies.
Aided recall. On several occasions in the example studies, the points made by 
 participants resulted in other participants confirming similar, almost similar and oppo-
site incidents or events. These insights might have been hidden in personal interviews.
Cost-efficiency. For the researchers the focus group method is a cost-efficient way 
of obtaining practitioner and user experience as several participants can be “inter-
viewed” at the same time. In addition, many current research projects are conducted 
with industrial companies and access to practitioners is limited due to their business 
responsibilities. Practitioners find the method cost-effective as well.
Depth of interview. Focus group discussions allow in-depth exploration of the 
r easons why the participants think the way they do. For instance, questionnaire 
results usually reveal only what people think, not why.
Business benefits to participants. The practitioners in our studies gave positive 
 feedback for having participated in the interactions during the session and found them 
valuable even before receiving any reports or summaries. In informal feedback 
 sessions they indicated two main reasons that provided immediate benefits to them:

● Benchmarking. The participants in our studies indicated that the sessions already 
provided valuable information to them during the sessions. This seems to have 
resulted from two factors. First, the discussions resulted in benchmarking expe-
riences and practices between the members of participating organizations. 
Second, they seemed to value other participants’ experiences and insights. This 
seemed to be a substantial advantage to participants.

● Networking. The focus group event seems to increase networking contacts and 
incentives to increase cooperation between participants.

3.3. Weaknesses

Group dynamics. As the focus group discussion within a topic often takes place 
without a predefined format, it is possible that the group dynamics or communi-
cation styles influence the level of activity. In addition, compared to a personal 
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interview, it is not as easy for the moderator to have control over the flow and 
style of the discussion. This weakness can be compensated for by using struc-
tured discussion techniques or by the moderator balancing the discussion and 
activating the less active participants.
Social acceptability. In group situations, social acceptability can influence the 
points made during discussion. For example, it is possible that a participant can 
volunteer incorrect information and disagreement may take place. Such situations 
may be perceived as embarrassing by some participants, resulting in selective 
contributions and volunteering of information. This weakness can be mitigated 
by laying out appropriate ground rules at the beginning and by the moderator 
taking an active role in conducting the discussion in those situations.
Hidden agendas. Some participants may have hidden agendas in the session, 
e.g., due to business relationships between them, a motivation to appear in 
a favorable light because of the potential publication of the results, or their 
 company’s internal politics. Such hidden agendas may bias the results of the 
session. This can be mitigated by selecting participants into sessions such that 
business relationships are not present, by emphasizing the importance of open 
information, and by guaranteeing or agreeing to the anonymity or confidential-
ity of results.
Secrecy. Some relevant information may be withheld because of proprietary or busi-
ness reasons. This can be avoided by the same procedures as mentioned above.
Limited comprehension. The time available for discussions in a focus group session 
is limited and communication happens mostly only verbally during the discussion. 
This means that complex issues or points are not necessarily understood by all 
 participants – nor by the researchers. However, if the participants are all experts in 
their area, the discussion may be surprisingly complex and deep for an outsider. 
Nevertheless, there is an obvious limit to how complex an issue can be discussed. 
This potential weakness can be mitigated by selecting participants of equal expertise 
in the session, by providing more thorough briefings to participants, by providing 
advance reading material to participants, and by partitioning complex issues in to 
more “digestible” pieces.

4. Computer-Mediated Focus Groups

This section describes and evaluates the application of computer-support in the 
conduct of focus groups. In particular, the emphasis here is on face-to-face focus 
groups mediated by Group Support Systems (GSS) technology (Nunamaker et al., 
1991). The benefits and drawbacks of GSS-mediated face-to-face focus groups are 
compared to traditional focus groups, and also to online (distributed) focus groups 
that have recently gained popularity with increased use of the Internet. Figure 1 
illustrates the framework of our analysis (cells with patterned background are 
 analysed). Examples of software engineering research applications are also men-
tioned in this section.
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As early as in the late 1980s, Management Information Systems researchers 
developed so-called Group Support Systems (also called Electronic Meeting 
Systems), to alleviate the common process problems caused by task-oriented group 
work, such as brainstorming (Nunamaker et al., 1991). These process problems 
result from, for example, the need to wait for one’s own turn to speak, or the domi-
nance of one or a few participants. The strengths of computer-mediated GSS-
 sessions are built on:

1. Simultaneous and anonymous contribution via computers
2. Structured agenda
3. Real-time voting and multi-criteria analysis possibilities
4. Group memory during and after the sessions
5. Complete records of the electronic discussions

GSS technology is conventionally employed in a same-time same-place mode, 
where the interaction between the participants is for the most part conducted via 
personal computers. The majority of the meeting time may be used in deliberating 
why participants think the way they do, and what to do about it. This is due to the 
fact that finding out what people are thinking can be conducted in a few minutes 
due to the parallel input mode – even with large groups of more than 15 partici-
pants. Field research results on GSS show savings up to 50% of individual work 
hours and 90% of project time when compared to regular meetings and group work 
(Fjermestad and Hiltz, 2000).

Extensive research on GSS usage exists, see for example the laboratory, case and 
field research reviews (Fjermestad and Hiltz, 1999, 2000), or a recent study profil-
ing 2,000 GSS research articles (Bragge et al., 2007b). Despite the vast amount of 
research studies on GSS, only a few of them have touched explicitly how the appli-
cation of GSS may benefit the conduct of focus group studies (Clapper and Massey, 
1996; Easton et al., 2003; Klein et al., 2007; Kontio et al., 2004; Massey and 
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Wallace, 1991; Parent et al., 2000). However, as Reid and Reid (2005) state, “the 
resemblance of focus groups to brainstorming groups is no accident – focus groups 
are popular precisely because they generate a ‘flow of input and interaction related 
to the topics that the group is centred around’ ” [citation from (Edmunds, 1999)]. 
Furthermore, Langford and McDonaugh (2003) view focus groups as a method that 
encompasses many tools, and not just a plain group interviewing  technique [see 
discussion also in Morgan (1996)]. Thus, even if not explicitly  mentioned, numer-
ous GSS-mediated brainstorming studies centred on a particular topic may be 
regarded as focus groups, especially if their conduct otherwise follows the steps of 
the focus group method.

There exists a few commercial GSS software systems on the market today. 
GroupSystems is the most well known. Others are Facilitate.Pro, WebIQ, 
MeetingWorks and Grouputer (Austin et al., 2006). Some of these tools provide 
templates for the conduct of focus groups, which normally follow a structured 
interview approach [see e.g. (Morgan, 1996)] with predefined questions. However, 
utilizing the versatile features of the GSS technology it is also possible to use 
 different brainstorming rules, scenario-based discussions, cognitive maps and a 
variety of other techniques (Langford and McDonaugh, 2003; Morgan, 1996) in 
a focus group.

Many of the applications in GSS studies concern software engineering or informa-
tion systems development (see e.g. Boehm et al., 2001; Bragge et al., 2005b; Chen 
and Nunamaker, 1991; De Vreede et al., 2005; Elfvengren et al., 2004; Gruenbacher 
et al., 2003; Halling et al., 2001; Liou and Chen, 1993; Rodgers et al., 2004; Van 
Genuchten et al., 1997, 2001; Vitharana and Ramamurthy, 2003). This may be 
 partially due to the fact that IT professionals are naturally attracted to using various 
ICT tools to support their work. Processes have been developed especially for 
requirements engineering (needs assessment, requirements elicitation or require-
ments negotiation), code inspections and usability studies.

The participants in software engineering related studies may involve people 
designing and developing a system, people interested in the system’s use (e.g., 
end-users or customers), people having a financial interest, or people responsible 
for system introduction and maintenance (Gruenbacher et al., 2003). User-centric 
approaches, which are currently growing in popularity, come closest to focus 
group studies. End-users are often nowadays widely geographically dispersed, 
and not within traditional organizational boundaries (Bragge et al., 2005b; 
Tuunanen and Rossi, 2004). Their inclusion in the software engineering process 
calls for novel approaches.

The above-mentioned user-centric development, along with the commercializa-
tion of the Internet, has brought yet another variation of focus groups to the 
researcher’s toolkit: online (or virtual) focus groups. Several authors provide case 
descriptions or useful practical advice to researchers conducting online focus group 
studies (Fraunhofer, 2002; Hansen and Hansen, 2006; Klein et al., 2007; Montoya-
Weiss et al., 1998; Newby et al., 2003; O’Connor and Madge, 2003; Oringderff, 
2004; Reid and Reid, 2005; Sweet, 2001; Ten Pow, 2003; Turney and Pocknee, 
2004; Wellner, 2003; Zinchiak, 2001).
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The online focus groups can either be conducted in the form of synchronous inter-
active groups, or in the form of asynchronous discussion boards. The information 
systems that may be utilized in online focus groups encompass web-based versions 
of GSS software, commercial focus group platforms, discussion groups, listservs, 
chatrooms, bulletin boards, mailing lists, instant messaging systems and so forth. 
Although these online forms provide many advantages over traditionally conducted 
focus groups (e.g., anonymity, larger group size, savings in travelling and venue 
costs), they also have distinct drawbacks, too. For example, the task of the moderator 
can be much more demanding in online than in face-to-face  settings. This is due to 
the lower richness of the media used (Daft and Lengel, 1986). Media richness is 
determined by a medium’s ability to provide immediate feedback,  utilize multiple 
cues and channels, and enable language variety (Montoya-Weiss et al., 1998).

5. Comparing the Benefits and Drawbacks of Different 
Focus Group Variations

The literature offers several studies that thoroughly discuss a single type of focus group 
or compare selected variations with each other (Clapper and Massey, 1996; Easton 
et al., 2003; Hansen and Hansen, 2006; Klein et al., 2007; Massey and Wallace, 
1991; Montoya-Weiss et al., 1998; Morgan, 1996; Newby et al., 2003; Parent 
et al., 2000; Reid and Reid, 2005; O’Connor and Madge, 2003; Oringderff, 2004; 
Sweet, 2001; Ten Pow, 2003; Turney and Pocknee, 2004; Wellner, 2003; Zinchiak, 
2001). Based on this literature and also on our own experiences of conducting all main 
types of focus groups (e.g., Bragge et al., 2005a, c, 2007a), we have gathered compara-
tive information on traditional, GSS-mediated face-to-face, as well as online focus 
groups (synchronous and asynchronous). The results of these comparisons are 
 presented in Tables 3–5. Moreover, we will discuss the comparison data with respect 
to four issues: people, technology, process and costs. We have not cited the above 
 reference sources in the tables or in the discussion to keep them more concise.

5.1. Traditional focus groups

Regarding people issues, the moderator’s task in traditional focus groups is easier 
than with computer-mediated groups (that are lower in media richness, especially in 
different-place settings), although the moderator must possess excellent social skills. 
The participants may feel more satisfied with a familiar verbal and more social proc-
ess, and they do not have to possess typing skills (e.g., elderly people). However, the 
participants can be recruited from a limited geographical distance, and they may be 
shy about talking, especially about sensitive or controversial issues.

The media-rich interaction in the verbal process is high, and it can result in the 
deepest insights. The process usually stays focused without any external  distractions, 
and if they happen, the facilitator can respond immediately. However, group 
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 thinking, domineering, communication apprehension, getting off-the-track, and 
social rank related issues are common problems.

Concerning technology, the audio or even video recording of the session is quite 
usual and routine. The latter is needed in case it is important to know afterwards 
who said what. In traditional settings, it is possible to present handheld prototypes 
or models. The travelling, venue, and transcribing costs are high. Traditional 
focus groups can accommodate the lowest number of participants due to “serial” 
 communication mode, thus more groups with relatively homogeneous participants 
are needed (see Table 3 for a summary).

Table 3 Benefits and drawbacks of traditional focus groups

Benefits Drawbacks

+ Richer media, researchers may observe  − High travelling costs (participants
nonverbal communication,   and moderators)
such as body language, facial
expressions, tones of voice etc.

+ Moderator’s task is easier than with  − High rental costs venue
computer-mediated communications
(especially those in different-
place settings)

+ Participants may feel more satisfied  − High transcribing costs and long
with a verbal/social process  delay in reporting
(especially older people)

+ The process usually stays focused  − Limited time to speak per person
without any external distractions  (e.g. with ten participants 6 min/
(and if they happen, the facilitator  person in 1 h)
can respond immediately)

+ FTF discussion is a familiar form of  − Possible dominance of some persons
communication to the participants

+ Participants don’t have to have typing  − Group thinking (pressure to conform) and
skills (e.g. children, old people)  communication apprehension (e.g. with
  sensitive issues) may occur

+ Possibility to utilize 3D-models, proto- − Comments and ideas evaluated
types, highly confidential material etc.  based on the presenter, not the idea itself

+ Smaller probability for technical  − Max. 12 participants per group
problems (audio and video recording
technologies needed in FTF sessions
are more mature than computer-mediated
communication technologies)

 − The more people, the more process losses
  due to the “serial communication” mode
 − The discussion might easily get off track;
  thus the moderator must be determined and
  knowledgeable about how to guide
  the group dynamics
 − Moderator must have excellent social skills
 − Requires homogeneity between
  participants, and thus often several groups
 − Need for videotaping if vital to know who
  said what
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5.2. GSS-mediated face-to-face focus groups

Concerning people issues, the moderator must be an expert in the GSS technology, 
but his or her task is easier than in different-place settings due to the  possibility 
of giving verbal instructions and seeing the participants’ reactions. The moderator 
must be mentally prepared for back-up plans due to technology breakdowns, 
although they are rare. The participants can be recruited from a limited geographi-
cal distance as in traditional groups, but the groups can accommodate a larger 
number and more heterogeneous participants due to the parallel communication 
mode. The participants must possess fluent typing skills and they should be willing 
to use computers. However, no other technology usage skills than simple e-mail 
applications are needed.

The process must be planned carefully in advance, but several advantages accrue 
from the anonymous computer-mediated mode: domineering and group thinking 
are alleviated, confidential and honest sharing of opinions is encouraged, also 
 negative or controversial feedback is easy to give, there are no social-rank related 
problems due to the equal process, and comments are easily retrievable from the 
written “group memory” also during the session. However, free-riding and flaming 
may appear due to anonymity, and the first comments might be overtly influential 
(anchoring effect). It is possible to include quick electronic polls or surveys in the 
sessions, and discuss the results immediately. Due to the pre-planned and structured 
process, it is easy to repeat the same agenda for several focus groups.

There is a need for dedicated room facilities with GSS technology (computers 
for all participants, special group software, and a common white screen, at the 
minimum). The equipment may however be rented from a service provider. The 
costs are high due to travelling and the need for technology and GSS expertise, but 
these costs are partially or even completely compensated for as there are no tran-
scribing costs, and more participants can be included in groups at the same time. 
Accurate reports are immediately available with all computer-mediated communi-
cation (see Table 4 for a summary).

5.3. Online (distributed) focus groups

Many of the benefits and drawbacks of GSS-mediated face-to-face focus groups 
apply to online focus groups, too. Thus, we will mainly concentrate here on issues 
that are specific to different-place settings. Regarding people, the moderator must 
be an expert in the chosen technology platform, and her task is quite challenging in 
synchronous settings in case no additional audio or video conferencing systems are 
used in parallel. “Techies” might be inclined to conduct online groups although 
they may lack important qualifications needed for guiding group dynamics. The 
moderator should be able to handle technology problems, which are quite possible 
as the participants use their own computers with a variety of internet browsers. 
There are no limits to the geographical participation, although in synchronous 
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 settings separate groups are needed when time zone differences are too large. The 
number of participants in asynchronous settings can be larger than in same-time 
settings, and the participants do not need as fluent typing skills. There is no need to 
dress-up, and people who are normally hard to recruit can participate more flexibly 
in their own homes or offices and even at the time that is the most suitable for them. 
Youth, especially, is very accustomed to communicating via the Internet.

The process needs to be even more carefully planned and administered than in 
face-to-face situations, and instructions need to be extremely clear and simple. 
The process advantages of the anonymous communication mode are practically 
the same as mentioned in the GSS section above. Clients may easily view the 
group discussion without participants being aware of their presence. However, 
the process is more exposed to external distractions, e.g. from family members or 
 colleagues. Also, faster typists and those with faster Internet connections may 
have more influence on the discussion.

There is a no need for dedicated facilities, and in the simplest form, online focus 
groups can be conducted using freely available discussion board or similar 
 technology. With synchronous settings, it is necessary for the participants to test 

Table 4 Benefits and drawbacks of GSS-mediated, face-to-face focus groups

Benefits Drawbacks

+ Possibility to contribute simultaneously:  − The medium is less rich (lack of body  
efficiency increased, everybody’s  language, facial expressions etc.),
answers collected for memory  text may be misunderstood

+ Supports larger groups (e.g. 15–25)  − High travelling costs (participants 
and more heterogeneous groups  and moderators)

+ Possibility for anonymous contributions:  − High rental costs of venue
encourages confidential and honest  with GSS
sharing of opinions. The comments can
however be tagged to enable identification
of the same person’s comments

+ Group thinking (social conformity) as well  − Moderator must have expertise on
as domineering are alleviated  GSS technology

+ Participants feel more comfortable giving  − Not everybody is willing to use computers
negative or controversial feedback

+ Ideas are not evaluated based on  − A backup plan needed in case of
the presenter  technology breakdown

+ The process usually stays focused without  − Fluent typing skills are needed; varying
any external distractions (and if they happen,  typing speeds may have
the facilitator can respond immediately)  unfavourable effects on the process

+ Possibility to include quick electronic  − Anonymity might induce free-riding
surveys and polls, also discuss results  or flaming (less discretion and tact)
and pinpoint disagreements

+ Transcription expenses are eliminated,  − Not suitable if capturing body
the transcripts are complete and  language is vital
immediately available

+ Structured agenda aids in keeping  − Possibility for an anchoring effect (first
time and replicating several  comment may be overtly influential)
groups with different participants

+ Moderator may give instructions verbally
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their connection to the dedicated forum in good time before the session starts. The 
costs are relatively low as there are neither travelling nor transcribing costs involved 
(see Table 5 for a summary).

Many market researchers recommend that topics related to web-based 
 systems, information technology or the Internet are especially suitable for the 

Table 5 Benefits and drawbacks of online focus groups (S or A in parenthesis if specific for 
synchronous or asynchronous)

Benefits Drawbacks

+ No geographical limits for participation  − The medium is less rich (lack of body 
(except that separate groups may be    language, facial expressions etc.),
needed for different time zones in S),    text may be misunderstood
also rural areas reached

+ No travelling costs − Not everybody is willing to use computers
+ Possibility to contribute simultaneously:  − Basic (A) or fluent (S) typing skills are

efficiency increased, everybody’s   needed for both participants and
answers collected for memory   the moderator

+ Also suitable for heterogeneous groups − Moderator must have expertise on 
   the technology

+ Possibility for anonymous contributions: − Need for an Internet connection
encourages confidential and honest
sharing of opinions. The comments can
however be tagged to enable identification
of the same person’s comments

+ Group thinking (social conformity) as  − Online information security risks involved
well as domineering are alleviated

+ Participants also feel more comfortable  − Participants should pre-test the forum
giving negative or controversial feedback   to eliminate technical difficulties (S)

+ Ideas are not evaluated based on  − Max. ten participants/group for effective
the presenter   management of online group dynamics (S)

+ Supports large groups of 25–40  − Faster typers and those with faster Internet
participants (A)   connections may have too much
   influence (S)

+ Transcription expenses are eliminated − More difficult to verify participant identity
+ Transcripts are complete and immediately  − Moderators need to know how

available   to assure that all participants
   are contributing

+ Convenient as there is no need to dress up,  − Larger probability for outside distractions (S)
and participation is possible from home,
office etc.

+ Possibility to contribute at a time that  − Youth audience requires that the moderator
suits best (A)   knows their “chat” vocabulary and
   use of emoticons etc.

+ Possibility to come back and continue  − Anonymity might induce free-riding or
discussion (A)   flaming (less discretion and tact)

+ Reaches groups that are hard to recruit  − Not suitable if capturing body language
otherwise (e.g. parents, business    is vital
professionals with limited time)

+ Incentive costs are smaller for participants − Not suitable if there is a need to show 
   prototypes or 3D-models, or products need 
   to be handheld

(continued)
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Table 5 (continued)

Benefits Drawbacks

+ Youth is already more accustomed to  − Not suitable if client material is highly
computer-mediated-communication than   confidential
verbal discussions

+ Suitable for studying technology- − Show rates are lower than in FTF ses-
related topics   sions, as participation requires a high level 
   of motivation and interest. More over-
   recruitment is thus needed

+ Clients may view the group without  − Developing rapport and gaining the trust
participants being aware of their presence   of the participants is demanding

+ Provides social equalization and  − Physically demanding to type and
egalitarian data collection   read for 60–90 min virtually (S)
method as socio-economic
status, ethnicity, nationality or
gender may be unknown

 − “Techies” may attempt to conduct groups, 
   although they might lack important 
   moderator qualifications
 − Bulletin boards may be too exhaustive 
   too read, and participants may just answer 
   their own opinions (A)
 − Bulletin boards may generate an enormous 
   amount of text that requires extra reading 
   and analysis time (A)
 − “Pair friendships” may develop (participants
   engage in their own dialogue and 
   alienate the rest)

online environment. Thus, software engineering researchers should consider 
online focus group studies, too. Sweet (2001) concludes that the future prom-
ises many advancements for online groups including sophisticated visual aids, 
real-time video and sound, accurate voice recognition, and videoconferencing. 
We expect that the recent developments in IP-based multi-party video and audio 
conferencing tools will bring online practice forward in the next 5 years. Many 
end-users are already more familiar than business people with the utilization of 
web-cameras, Skype and Messenger conversations and conferences.

5.4. Summary of focus group comparisons

Researchers utilizing focus groups should weigh the benefits and drawbacks of 
these four main variations presented in Tables 3–5, and come to a conclusion as to 
which variation is best for their particular study. As Sweet (2001), Montoya-Weiss 
et al. (1998) and Zinchiak (2001) state, online (or other computer-mediated) focus 
groups are not going to replace traditional focus groups – merely the research arena 
is expanding as new tools are added to the pool of research techniques.
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6. Discussion

The focus group method is, by its very nature, prone to problems associated with 
qualitative data. As the developers of models and theories may also act as the 
researchers responsible for the focus group session, there is an obvious danger of 
researcher bias influencing the results, either during the planning, during the 
 sessions themselves, or during the analysis. However, e.g. Langford and McDonaugh 
(2003) mention that it is usually better to use a moderator who is an expert in the 
 subject matter and not in professional facilitation. Thus, we recommend that 
 disciplined, objective and rigorous instrumentation and data analysis methods are 
used in focus group studies and that all findings be based on traceable data.

We found the affinity grouping method to be a useful and effective tool in 
obtaining inputs from practitioners and users. While we do recognize the limita-
tions posed by the short time available for discussions, we believe that it is also 
possible to address more complex issues with focus groups. Compared to consumer 
studies, the software engineering field contains some well-defined methods and 
standards that are used fairly consistently across the industry, such as the UML, 
CMMI, and FPA. Thus, it is possible to select a group of experts who are familiar 
with a given, complex technology and use the focus group session to elicit these 
experts’ insights.

It is also possible to use brainstorming, scenario-based discussion, cognitive 
maps and a variety of other methods in a focus group. Langford and McDonaugh 
(2003) discuss these and 35 other tools and techniques that can be utilized  especially 
regarding ergonomics and human factors design, but also regarding information 
systems. They posit a view of focus groups as a method that encompasses many 
tools, and not just a simple group interviewing technique. We also recommend the 
use of other stimulating techniques that fit the characteristics of the situation.

As our effort data indicates (see Table 1), the actual sessions constitute only a 
small share of total effort. Yet, these sessions provide more data and are perceived 
as value-adding sessions to participants as well. Thus, we recommend that more 
than one session be held when possible.

The role of the moderator is central in focus group sessions and is a particularly 
challenging task in the software engineering domain, due to the complexity of the tech-
nology and issues involved. The moderator should have experience or be trained in 
non-intrusive, neutral facilitation techniques and be cautious about his or her own bias 
in the session. A practice session should be mandatory for all focus group studies.

We wanted to include the electronic focus group comparison in this chapter as 
we believe that the computer-mediated technology is naturally prone to studies 
in the field of software engineering, as well as in IS studies in general. It is easier 
to get software users and developers to employ the technology than for example 
carpenters or other craftsmen. Moreover, the future users of software are more 
and more used to communicating via electronic media.

Our studies indicate that focus groups can provide valuable, complementary 
empirical data quickly at low cost. However, there are potential sources for 
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unwanted bias. The method should be used properly and the sessions should be 
planned and executed well and with appropriate rigor.

Due to its apparent ease of use and low cost, some researchers may be tempted to 
use focus groups without proper planning and instrumentation. Such studies are likely 
to contain biases and ignore much of the experience available. Therefore we recom-
mend that researchers take a closer look at the extensive variety of books on focus 
group research, e.g., by starting with the valuable book reviews by McQuarrie (1994, 
2001). Langford and McDonaugh (2003) is also a valuable source to start with.

We hope that the empirical researchers in the research community and in indus-
try learn to use the method with appropriate rigor. As the method is not frequently 
used in the software engineering domain, we hope that the community develops 
sound practices for applying the method so that it could establish itself as a reliable 
research method in the field.

We ourselves plan to continue using the method in our future studies and in 
addition we aim to develop repeatable focus group processes in the spirit of the 
newly established field of collaboration engineering (Briggs et al., 2003).
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Chapter 5
Simulation Methods

Mark Müller and Dietmar Pfahl

Abstract This chapter aims to raise awareness about the usefulness and impor-
tance of simulation in support of software engineering. Simulation is applied in 
many critical engineering areas and enables one to address issues before they 
become problems. Simulation – in particular process simulation – is a state of the 
art technology to analyze process behaviour, risks and complex systems with their 
inherent uncertainties. Simulation provides insights into the designs of develop-
ment processes and projects before significant time and cost has been invested, 
and can be of great benefit in support of training. The systematic combination of 
simulation methods with empirical research has the potential for becoming a pow-
erful tool in applied software engineering research. The creation of virtual software 
engineering laboratories helps to allocate available resources of both industry and 
academia more effectively.

1. Simulation in the Context of Software Engineering

This chapter aims to raise awareness about the usefulness and importance of simu-
lation in support of software engineering. Simulation is a standard technology in 
many engineering disciplines and has been successfully applied in manufacturing, 
economics, biology, and social science. Why can simulation enhance traditional 
software engineering, too? Simulation models are means to analyze the behaviour 
of complex processes. In the software process literature, according to our under-
standing, there is a general agreement that people who understand the static process 
(i.e., process activities, artefacts, resources, roles, and their relationships), and have 
data, still have difficulties to anticipate the actual process behaviour. This is due to 
the inherent (dynamic) complexity of software development processes. Software 
processes can contain iterations, such as rework loops associated with correction of 
defects. This can lead to delays which may range from minutes to years. As a con-
sequence it is almost impossible for human (mental) analysis to predict the 
outcome.

Traditionally, process analysis in software engineering research uses static 
process descriptions like flow charts. This approach does not shed much light on 
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the behaviour of a process over time. Therefore, the usual way to analyze process 
behaviour is to perform the actual process in a case study and observe the results. 
This is a very costly way to perform process analysis, because it involves the 
active participation of engineers. Furthermore, results from a particular case 
study cannot necessarily be generalized to other contexts. Another way of 
 analyzing processes is to simulate them. Simulation models help to clarify 
assumptions – often referred to as mental models, on how a process works. They 
visualize and quantify the implicit mental models about the causes that govern 
the observed process behaviour and thus support understanding, analysis, predic-
tion, and decision-support.

Simulation models are like virtual laboratories where hypotheses about 
observed problems can be tested, and corrective policies can be experimented 
with before they are implemented in the real system. Experience from applica-
tions in other fields than software engineering indicates that significant benefits 
can be drawn from introducing the use of simulation for management decision 
support. Furthermore, systematic experimentation with simulation models and 
the integration of simulation-based experiments with empirical research (i.e., 
case studies and controlled experiments) can support the building of a software 
development theory (Rus et al., 2002). Simulation-based virtual software 
 engineering laboratories (Münch et al., 2003, 2005) can help focus  experimentation 
in both industry and academia for this purpose, while saving effort by avoiding 
experiments in real-world settings that have little chances of generating signifi-
cant new knowledge.

In practice, process simulation models are frequently used to support project 
planning and estimation. In a competitive world, accurate predictions of cost, quality 
and schedule provide a significant advantage. For example, if cost estimates are too 
high, bids are lost, if too low, organizations find themselves in a difficult financial 
situation. In this context, simulation is a risk management method. It offers not only 
estimates of cost, but also estimates of cost uncertainty. Simulation also allows for 
detailed analysis of process costs (Activity Based Costing).

Simulation is effective only if both the model, and the data used to drive the 
model, accurately reflect the real world. If quantitative output is expected, a simula-
tion can only be executed if it is supplied with quantitative expert estimates or 
measurement data. Simulation may use industry data or results of quantitative 
experiments. In order to limit data collection effort, the simulation modeller has to 
focus on key variables, such as the percentage of design documents which pass or 
fail review. Thus, as a side effect, simulation modelling supports the focusing of 
measurement programs on relevant factors of an engineering process.

This chapter is structured as follows: Section 2 explains how simulation models 
are developed. Section 3 summarizes the variety of application areas and provides 
references to relevant publications. Sections 4 and 5 describe the simulation tech-
niques and tools used in software engineering. Section 6 provides a simulation 
reference model which helps to design process simulation models. Section 7 covers 
practical aspects of simulation modelling. Finally, the chapter concludes with an 
outlook for trends in future simulation modelling research.
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2. The Process of Simulation Modelling in Software 
Engineering

This chapter provides an overview of the design and implementation of simulation 
models. Additional information about process simulation paradigms and general 
introductions can also be found in (Banks et al., 2000; Cellier, 1991; Law and 
Kelton, 1999). Detailed descriptions of process simulation modelling methods 
specialized to instances of the event-driven and continuous simulation modelling 
paradigms can be found in (Rus et al., 2003) and (Pfahl and Ruhe, 2002), respectively.

Any process simulation modelling process consists of at least five steps 
(cf. Fig. 1):

1. Formulation of the Problem Statement (modelling goal)
2. Specification of the Reference Behaviour (based on observation or 

hypothetical)
3. Identification of Model Concepts (physical processes, information flows, deci-

sion rules)
4. Implementation of Executable Model (formal, executable representation)
5. Model Experimentation

The starting point of any simulation modelling project is the identification and 
explicit formulation of a problem statement. The problem statement defines the 
modelling goal and helps to focus the modelling activities. In particular, it determines 
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Fig. 1 Iterative process of simulation modelling
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the model purpose and scope. For software process simulation models, Kellner 
et al. (1999) propose the following categories for model purpose and scope:

1. Purpose:
(a) strategic management
(b) planning, control and operational management
(c) process improvement and technology adoption
(d) understanding
(e) training and learning

2. Scope:
(a) a portion of the life cycle (e.g. design phase, code inspection, some or all of 

testing, requirements management)
(b) a development project (e.g. single product development life cycle)
(c) multiple, concurrent projects (e.g., across a department or division)
(d) long-term product evolution (e.g. multiple, successive releases of a single 

product)
(e) long-term organization (e.g., strategic organizational considerations spanning 

successive releases of multiple products over a substantial time period)

In order to make the problem statement suitable for simulation-based problem-
solving, it is helpful to specify the reference behaviour. Reference behaviour 
 captures the dynamic (i.e., time-dependent) variation of key attributes of real-world 
entities. The reference behaviour can be both observed problematic behaviour (e.g., 
of quality, effort, or cost), which are to be analyzed and improved, and/or a desired 
behaviour that is to be achieved. The importance of the reference behaviour for the 
modelling process is twofold. Firstly, it helps identify important model (output) 
parameters and thus further focuses the subsequent modelling steps. Secondly, it is 
a crucial input to model validation because it allows for comparing simulation 
results with observed (or desired) behaviour.

The next step is the definition of model concepts, which entail:

1. Existing process, quality, and resource models
2. Implicit or explicit decision rules
3. Typical observed behaviour patterns
4. Organizational information flows
5. Policies

Typically, model concepts can be in the form of quantitative or qualitative models, 
which are abstractions of behaviours observed in reality. They capture implicit and 
tacit expert knowledge and are formalized as rules. Usually, in this step, domain 
experts play a crucial role not only because they often have knowledge that cannot be 
found in documents or data bases alone, but also because they can help distinguish 
relevant real-world information from what is irrelevant for the problem under study.

After the definition of model concepts the model is implemented in the simulation 
tool. Consistent with the modelling technique and tool chosen, all the information, 
knowledge and experience represented by the model concepts has to be transformed 
into a computer executable language. The result is an executable model. Technical 
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simulation modelling expertise is crucial in the transformation of model concepts into 
the formal model representation which eventually will be executed on a computer.

The last step is model calibration and experimentation with the executable 
model, producing simulation results. Simulation experiments are performed to 
understand the system’s behaviour. Experimentation goes hand in hand with model 
calibration. Model calibration refers to the adjustment of simulation model param-
eters until the model output corresponds to real word data. Model calibration can 
be done based on expert estimates or through parameter fitting based on historic 
data. The calibration step is important in order to ensure that the model accurately 
reflects real-world behaviour and is required to build confidence in simulation 
results. After a model is calibrated, simulation experiments are performed to 
 understand observed behaviour, to evaluate planning alternatives, or to explore 
improvement opportunities. At this stage, iteration is likely in model execution and 
modification as variables and model structures are changed and the simulation 
model results are compared against each other. Thus, experimentation not only 
provides simulation results, but also validates the simulation model. Guidance on 
how to design simulation experiments in general can be found in (Banks et al., 
2000) and (Law and Kelton, 1999), and specifically for software processes in 
(Wakeland et al., 2003).

Like software development projects, simulation modelling involves verification 
and validation activities. In short, verification can be seen as an activity that ensures 
that the model fits its intended purpose, while validation can be seen as the activity 
that ensures that the model appropriately reflects the real-world behaviour. 
Verification and validation are continuing activities throughout the modelling and 
simulation life cycle. They help

1. To produce simulation models that represent system behaviour closely enough 
to be used as a substitute for the actual system when conducting experiments

2. To increase the credibility of simulation models to a level that makes them 
acceptable for managers and other decision makers

Verification activities check the internal correctness or appropriateness of a simula-
tion model, i.e. they ensure that the model was constructed in the right way. In 
 particular, verification checks whether the transformation steps defined by the sim-
ulation modelling process have been conducted correctly. For example, verification 
ensures that the identified model concepts have properly been implemented in the 
executable model. For verification activities, expert knowledge on the simulation 
modelling technique is a major requirement. To some extent, verification is sup-
ported by simulation modelling tools. For example, the consistency of units in 
model equations can be automatically checked by a tool.

Validation activities check the external correctness or appropriateness of a simula-
tion model, i.e. they try to find out whether the right model (with regards to its 
 purpose or application) was constructed. In particular, validation checks whether the 
model represents the structural and behavioural properties of the real system correctly 
(appropriately). For example, simulation results can be used to check the robustness 
or sensitivity of model behaviour for extreme values of input data. Even though 
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 validation can be partly supported by simulation modelling tools, expert knowledge 
about the real world system is needed to interpret the range of results obtained.

The simulation literature offers several proposals for verification and validation 
of simulation models (Balci, 2003; Banks et al., 2000; Barlas, 1989; Forrester and 
Senge, 1980; Law and Kelton, 1999; Sargent, 2003). For example, Balci (2003) 
proposes more than 30 different verification and validation techniques, classified 
into informal, static, dynamic, and formal. However, full verification and validation 
of simulation models whilst desirable, are often practically impossible due to cost 
and time restrictions (Pidd, 2004). Typically, only a subset of the available tech-
niques and methods for model verification and validation are used.

3. Applications of Simulation in Software Engineering

Simulation models have been applied in many technical fields and are increasingly 
used for problems in business management and software engineering management. 
This section summarizes applications of simulation and some of the benefits that 
can be obtained.

Abdel-Hamid and Madnick (1991) were among the first to apply simulation 
modelling in software project management. They focused on project cost estima-
tion and the effects of project planning on product quality and project performance. 
During the last decade many new process simulation applications in software engi-
neering have been published, focusing on other specific topics within software 
project and process management [e.g., Christie (1999a); Kellner et al. (1999); 
Waeselynck and Pfahl (1994)]. Table 1 lists some significant publications in vari-
ous application areas.

4. Simulation Techniques

The way in which a simulation model works depends on the modelling technique 
chosen. Generally, four important distinctions between types of simulation tech-
niques can be made.

4.1. Deterministic Versus Stochastic Simulation

Simulation models that contain probabilistic components are called stochastic,1 
those that do not are termed deterministic. In the case of a deterministic simulation 
model, for a fixed set of input parameter values the resulting output parameter values 

1 The word “stochastic” is used here in a very broad sense of its meaning, i.e., referring to any type 
of source of randomness, including, for example, mutation or cross-over generation in genetic 
algorithms.
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will always be the same for simulation runs. In the case of a stochastic simulation 
model, the output parameter values may vary depending on stochastic variation of 
the values of input parameters or intermediate (internal) model variables. Since the 
variation of input and intermediate variables is generated by random sampling from 
given statistical distributions, it is important to repeat stochastic simulation runs for 
a sufficient number of times in order to be able to observe the statistical distribution 
of output parameter values. This number depends on limitations to computing 
power and how much confidence in simulation results is required.

4.2. Static Versus Dynamic Simulation

Static simulation models capture the variation of model parameters at one single 
point in time, while dynamic simulation models capture the behaviour of model 
parameters over a specified period of time.

Static simulation in software engineering is often used as a reference to stochastic 
Monte Carlo simulation which does not investigate behaviour over time. Related 
examples can be found in (Briand and Pfahl, 2000; Houston, 2003; McCabe, 2003).

Table 1 Simulation applications in software engineering

Application area in software engineering Selected publications

Project management Lee and Miller (2004), Lin et al. (1997), Padberg 
(2006), Pfahl and Lebsanft (2000)

Risk management Houston et al. (2001), Neu et al. (2002), Pfahl (2005)
Product and requirements engineering Christie and Staley (2000), Ferreira et al. (2003), 

Höst et al. (2001), Lerch et al. (1997), Pfahl et al. 
(2006), Stallinger and Grünbacher (2001)

Process engineering Bandinelli et al. (1995), Birkhölzer et al. (2004), 
Christie (1999b), Kuppuswami et al. (2003), 
Mišic et al. (2004), Powell et al. (1999), Raffo 
et al. (1999), Tvedt and Collofello (1995)

Strategic planning Andersson et al. (2002), Pfahl et al. (2006), 
Williford and Chang (1999)

Quality assurance and management Aranda et al. (1993), Briand and Pfahl (2000), 
Briand et al. (2004), Madachy (1996), Müller 
(2007), Raffo and Kellner (2000), Raffo et al. 
(2004), Rus (2002), Rus et al. (1999)

Software maintenance and evolution Cartwright and Shepperd (1999), Smith et al. 
(2005), Wernick and Hall (2004)

Global software development Roehling et al. (2000), Setamanit et al. (2006)
Software acquisition management and 

COTS
Choi and Scacchi (2001), Häberlein (2003), 

Häberlein and Gantner (2002), Ruiz et al. (2004), 
Scacchi and Boehm (1998)

Product-lines Chen et al. (2005)
Training and education Dantas et al. (2004), Drappa and Ludewig (1999), 

Madachy and Tarbet (2000), Oh Navarro and van 
der Hoek (2004), Pfahl et al. (2001)
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4.3. Continuous Versus Event-Driven Simulation

Dynamic simulation models can be either continuous or event-driven. The difference 
between continuous and event-driven simulation models is the way in which the 
internal state of the model is calculated.

Continuous simulation models update the values of the model variables repre-
senting the model state at equidistant time steps based on a fixed set of well-defined 
model equations. Essentially, the model equations in continuous simulation models 
establish a set of time-dependent linear differential equations of first or higher 
order. Since such mathematical systems usually cannot be solved analytically, the 
differential equations are transformed into difference equations and solved via 
numerical integration. The most popular representative of continuous simulation is 
System Dynamics (SD) (Coyle, 1996). SD was originally invented by Jay Forrester 
in the late 1950s (Forrester, 1961) and has its roots in cybernetics and servomecha-
nisms (Richardson, 1991). Since the end of the 1980s, when Abdel-Hamid and 
Madnick published the first SD model for software project management support, 
more than 100 other SD models in the application domain of software engineering 
have been published (Pfahl et al., 2006). Thus, SD can be considered the most 
frequently used dynamic simulation technique in this domain.

Event-driven simulation models update the values of the model variables as new 
events occur. There exist several types of event-driven simulation techniques. The 
most frequently used is discrete-event (DE) simulation. DE simulation models are 
typically represented by a network of activities (sometimes called stations) and 
items that flow through this network. The set of activities and items represent the 
model’s state. The model’s state changes at the occurrence of new events, triggered 
by combinations of items’ attribute values and activities’ processing rules. Events 
are typically generated when an item moves from one activity to another. As this 
can happen at any point in time, the time between changes in the model state can 
vary in DE simulations. There exist several other – but less popular – types of 
event-driven simulation, namely Petri-net based simulation (Bandinelli et al., 1995; 
Fernström, 1993; Gruhn and Saalmann, 1992; Mizuno et al., 1997), rule-based 
simulation (Drappa et al., 1995; Mi and Scacchi, 1990), state-based simulation 
(Humphrey and Kellner, 1989; Kellner and Hansen, 1989), or agent-based simula-
tion (Huang and Madey, 2005; Madey et al., 2002).

4.4. Quantitative Versus Qualitative Simulation

Quantitative simulation requires that the values of model parameters are specified 
as real or integer numbers. Hence, a major prerequisite of quantitative simulation is 
either the availability of empirical data of sufficient quality and quantity or the 
availability of experts that are willing to make quantitative estimates of model 
parameters. Often, the quantitative modelling approach is costly and time-consuming 
and might not be appropriate for simulations that aim at delivering simple trend 
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analyses. Qualitative simulation is a useful approach if the goal is to understand 
general behaviour patterns of dynamic systems, or when conclusions must be 
drawn from insufficient data.

QUAF (Qualitative Analysis of Causal Feedback) is a qualitative simulation 
technique for continuous process systems (Rose and Kramer, 1991). The method 
requires no numerical information beyond the signs and relative values of certain 
groups of model parameters. QSIM (Qualitative SIMulation) is another well-
established qualitative technique for continuous simulation (Kuipers, 1986). 
Instead of quantifying the parameters of the differential equations underlying the 
continuous simulation model, it is only required to specify the polarity (i.e., posi-
tive or negative) of model functions, indicating whether they represent an increase 
or decrease of a quantity over time.

In the case of event-driven simulation, for example, Petri-net based and rule-
based simulation can be conducted purely qualitatively, if events (e.g., the activation 
of transitions in Petri-nets, or the execution of a rule in rule-based systems) are 
 triggered exclusively based on the evaluation of non-quantitative conditions.

4.5. Hybrid Simulation

Dynamic simulation models that combine continuous with event-driven or deter-
ministic with stochastic elements are called hybrid simulation models. One benefit 
of hybrid approaches is the possibility to combine the advantages of stochastic, 
continuous and event-driven models. In the case of hybrid models that combine 
continuous and event-driven simulation, however, the drawback is increased model 
complexity. An example of a hybrid simulation model that combines continuous 
with event-driven simulation can be found in (Martin and Raffo, 2001).

5. Simulation Tools

Today, many software tools are available to support the various simulation 
 techniques described above. Compared to the first tools available in the 1960s, 
1970s, and 1980s, most of today’s more popular tools have a user-friendly interface 
and are inexpensive, making them practical to use for a large variety of decision 
making situations. Today, most tools

1. Allow for rapid model development through using, for example
 (a) Drag and drop of iconic building blocks
 (b) Graphical element linking
 (c) Syntactic constraints on how elements are linked
2. Are very reliable
3. Require little training
4. Are easy to understand
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Because of these features, simulation tools allow modellers to develop large detailed 
models rapidly. Modern tools have followed the evolution of software languages 
and software development environments. Now they focus on model design and a 
proper visualization rather than on programming the simulation logic.

The simulation tools in today’s market place are robust and reasonably inexpen-
sive. Most tools cost in the range of $1,000–10,000, and free versions are available 
for experimentation and evaluation. They run on standard PC hardware, and are 
therefore affordable even for small organizations with tight budgets.

The number of simulation tools is large, in particular if one counts the ever-growing 
number of simulation environment research prototypes developed at universities all 
over the world. In principle, a simulation model based on any of the above 
 mentioned simulation techniques can also be implemented in an ordinary program-
ming languages (e.g., Java®), or by using general purpose simulation languages 
(e.g., MATLAB®). However, several commercial simulation tools use the most 
important simulation techniques and are suited to support software engineering 
problems. Table 2 characterizes three popular examples of simulation tools 
 supporting SD, DE, and Monte Carlo simulation, respectively.

The choice of a simulation tool environment depends on several factors. Since 
the prices are comparatively low, the most important factor is the appropriateness 
of the simulation technique that is supported. In a professional simulation environment, 
in conjunction to the simulation modelling tool, other tools are often used. 
Professional simulation studies typically involve information systems or data bases 
which store the input, calibration, and output data, a statistical distribution fitter to 
analyze the calibration data, and an optimizer. High-end tools such as the more 
expensive versions of VENSIM® and EXTEND® already include the distribution 
fitters and optimizers.

Table 2 Examples of commercial simulation tools used in software engineering

Tool name Main focus Characterization Interesting features

VENSIM® 
(Vensim, 
2006)

Support of SD 
simulation

Dynamic, 
continuous, 
deterministic and 
stochastic, 
quantitative

Optimization function, calibration 
support, graphical modelling 
language (using standard SD 
symbols), animation, can 
emulate event-driven simulation 
to some extend by introducing 
if-then-else-conditions

EXTEND® 
(Extend, 
2006)

Support of DE 
and SD 
simulation

Dynamic, 
event-driven 
and continuous, 
deterministic and 
stochastic, 
quantitative

Optimization support, graphical 
modelling language, strong 
modularization capability; 
statistical fitting (StatFit®), 
library source code available

@RISK® 
(@Risk, 
2007)

Monte Carlo 
simulation

Static, deterministic, 
stochastic, 
quantitative

Can easily be integrated with 
standard spreadsheet tools (i.e., 
Microsoft’s EXCEL®), provides 
functionality for distribution 
fitting (BestFit®)
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Next follows a brief introduction into the SD modelling tool VENSIM®, which 
will be used in the presentation of a process simulation example in Sect. 6 below.

5.1. Essentials of System Dynamics Models

SD models are represented by a set of difference equations, which is resolved by 
numerical integration. Model variables, which represent the model state are called 
levels and have the following form:

 Level t dt  = Level t  + Integral Rate_in t   Rate_out t+( ) ( ) ( ) − ( ))⎡⎣ ⎤⎦  dt  (1)

The value of a level at a certain point in time2 depends on its value at the 
 previous discrete point in time plus the integral of the inflows minus the 
 outflows. The initialization of the level happens at the start time of a simula-
tion. In the world of difference equations this would correspond to the starting 
conditions. In the example given by (1) there is only one inflow, represented by 
the rate variable Rate_in(t) and one outflow, represented by Rate_out(t). Level 
variables can be considered as containers or reservoirs that accumulate some 
tangible (e.g., a pile of papers) or intangible (e.g., number of defects in a 
d ocuments or motivation level of developers) entities, represented by some 
countable attribute.

In the physical world, the quantities of the accumulated commodities in a 
reservoir can be regulated through inflow and outflow pipes, each pipe having 
a valve. In SD models rate variables play the role of valves. Like levels, rates 
are represented by equations. Rates can depend on levels, e.g., if information 
feedback concerning the quantity in a level affects the rate of flow elsewhere in 
the model, on constants, or on auxiliary variables, which are used as abbrevia-
tions for intermediate calculations to break up more complex computations. 
(2) gives an example of a rate variable that represents the development rate 
(inflow) of a design document (level variable DesignDocSize). If DesignDocSize(t) 
is less than the estimated expected size of the design  document (constant 
TargetSize), then the daily amount of design documentation added to 
DesignDocSize equals the product of the number of active  designers (Workforce 
allocated at time t) and the average productivity per  person (constant AveragePr
oductivityPerPerson). If the design document is complete, i.e., DesignDocSize ≥ 
TargetSize, then there is nothing to do and the rate variable DesignDevelopment
Rate equals 0. Thus no more is added to DesignDocSize unless or until some 
other activity in the model reduces DesignDocSize or increases TargetSize.

2 “dt” denotes a time step from one discrete point in time to the next.
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5.2. A System Dynamics Tool: VENSIM®

The VENSIM tool offers a development workbench supporting both textual and 
graphical model representations. The symbols that are used for the basis model vari-
ables and constants follow a de-facto-standard for SD modelling. Level variables are 
represented as boxes, while rates are represented as valves on pipes (double lines) 
connected with these boxes. Constants and auxiliary variables are simply represented 
by their names. Flows of information are represented by single-line arrows.

Figure 2 shows a screen shot of the VENSIM® modelling workbench with a 
loaded view (sub-model) of a SD model representing the design phase of a software 
development project. The flow through the pipes attached to level variables (e.g., 
design to do size and design doc size in Fig. 3) is regulated by rate variables, 
 represented by valve symbols (e.g., development activity in Fig. 3). Auxiliary 

Fig. 2 VENSIM workbench with activated equation editor
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 variables and constants are represented simply by their names. Values of level, rate, 
or auxiliary variables are calculated by evaluating functions of the form y = f (x

1
, 

…, x
n
), where x

1
, …, x

n
 are other variables and constants. The variables and con-

stants involved in such a function are illustrated by a connecting arc (or pipe).
The definition of a function is done through a text-based equation editor. The 

equation editor window automatically pops up if the details of an equation have not 
yet been fully defined and the workbench button [y = x2] is pressed (see Fig. 2). 
The equation editor not only provides an input window for specifying the exact 
function but also provides fields for specifying the variable unit and an explanatory 
 comment. The equation editor automatically performs simple syntax and consist-
ency checks. There exists also an equivalent textual representation of the entire 
model (not shown in Fig. 2). The textual representation of model equations has the 
advantage that string insertion, deletion, and renaming can easily be performed for 
the complete model.

The list of buttons directly above the graphical modelling panel offers special-
ized functionality for adding, deleting, removing, renaming, hiding, and showing of 
model variables. The column of buttons on the left hand side of the modelling panel 
provides specialized functionality for model analysis and simulation output presen-
tation in the form of graphs or tables (cf. Fig. 3). For example, the window in the 
lower right corner of the screen shot presented in Fig. 3 shows two levels of causal 
dependencies between variables. Values shown in parentheses indicate feedback 
loops. From the open window within the modelling panel one sees that:

Fig. 3 VENSIM workbench with activated analysis and output tools
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 design doc size f development activity, verification activ= iity( )  (3)

while

 

development activity = f design doc dev status, design le( aarning status, 

design to do size, productivity design learrning amplifier, 

randomized average design dev rate)
 (4)

Graphs showing the reverse dependencies, i.e., variable or constant uses, can also 
be automatically generated (not shown in Fig. 3). Other windows in Fig. 3 show the 
output of one simulation run (here: Current-Design) in the form of tables and 
graphs (lower and upper windows in the left half of the graphical modelling panel), 
as well as information about the model structure.

6. A Reference Simulation Model for Software 
Development Processes

This section shows a simulation model example and introduces the concept of a 
simulation reference process. The model is implemented as a stochastic SD model 
using the VENSIM® tool. Based on the example, a comparison between SD simula-
tion and DE simulation will be made, and the advantages and disadvantages of each 
technique discussed.

6.1. A Generic Software Development Process

The following example presents a generic – in the sense of re-usable and adaptable – 
implementation of a standard process typically occurring in any constructive 
software development phase.

The left-hand side of Fig. 4 shows a typical development and verification work-
flow of any type of software-related artefacts. The work-flow presentation uses the 
following symbols: boxes (for artefacts), ovals (for activities), hexagons (for 
resources), and arcs (representing uses, produces, and consumes relationships). An 
artefact may be, for example, a requirements, design, test, or code document. The 
actual artefact to be developed and verified is positioned in the centre of the work-
flow. Before the development of this artefact can start, some input information must 
be available. For example, a design documents needs to know which requirements 
have been specified in a previous project stage. The development activity trans-
forms an available artefact input into a new or modified artefact, e.g., a set of 
requirements into a design document. This artefact is then checked in a verification 
activity. The result of the verification activity, e.g., an inspection, is a list of defects 
in the newly created or modified artefact, which in turn is the basis for rework of 
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the artefact. The rework loop is indicated in Fig. 4 by the consumes-relationship 
between the artefact defect log and the development activity. No distinction is 
made between initial work and rework performed on previous output. Activities use 
resources, e.g., personnel (implying some cost), tools (also incurring some cost, 
and supporting certain techniques), techniques (implying a need to quantify 
 productivity), and time.

For larger simulation models, covering more than one stage of the software devel-
opment process, instances of the generic work-flow shown in Fig. 4 can be combined 
sequentially by connecting work-flows that create predecessor artefacts with work-
flows that create successor artefacts, and concurrently to represent work-flows 
 conducted in parallel that produce separate instances of artefacts of the same type.

The right-hand side of Fig. 4 shows the control of the work-flow, expressed in 
terms of states that the artefact can assume in relation to its development (upper 
diagram) and verification activities (lower diagram), and the transitions between 
states, including the conditions for activating a transition. For example, a develop-
ment activity related to the artefact “requirements” can either have not yet been 
started (“non-exist”), be active (“active”), or it can be completed (“complete”). The 
transition from “non-exist” into “active” is triggered as soon as the elapsed time t 
is greater than the defined starting time of the related development activity. 
A  transition from “active” to “complete” is triggered, if all of the artefact inputs have 
been used up in producing the output document (e.g., a design or code document). 
If rework needs to be done in order to correct defects detected during verification, 
then a transition from “complete” back to “active” is triggered. The state-transition 
diagram associated with the verification activity is similar to that of the  development 
activity. The only difference is its fourth state, “repeat.” This state signals that a 
repetition of the verification activity is needed after rework of the defects found in 

time > 
design 
development
start time

design to do > 0 and
des doc ver status <> active

non-exist active complete

design to do = 0

des doc dev status =
complete

des doc > 0 and
des doc dev status <> active

des doc = 0 and
design faults per FP pending >
design doc quality threshold 

per FP

des doc = 0 and
design faults per FP pending >
design doc quality threshold 
per FP

non-exist active repeat
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Fig. 4 Generic artefact development/verification process
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the previous verification round has been completed. The decision as to whether the 
verification step must be repeated depends on the number of defects found per size 
unit of the artefact. For example, if requirements size is measured in Function 
Points (FPs), then a threshold value can be defined in terms of defects per FP. If the 
number of detected defects per FP is larger then the defined threshold value, then 
verification has to be repeated, otherwise the document is considered (finally) com-
plete after rework.

6.2. Conceptualization of the Generic Software 
Development Process

While the work-flow on the left-hand side of . 4 is static, the control-flow 
 presented on the right-hand side contains some behavioural information. Both static 
and behavioural information contained in the generic software development (and 
verification) process are the basis for the creation of a related simulation model, e.
g., using the System Dynamics (SD). As will be shown below, the process shown 
in Fig. 4 is actually a re-usable pattern that captures the most important aspects of 
the work-flow, including activities and artefacts, as well as resources that will be 
used. It also captures some behavioural aspects by specifying the possible states of 
an activity (or the resulting artefact) and the feasible state transitions. However, for 
the development of an SD simulation model more information is needed. First, 
measurement data are needed for model calibration. Second, additional information 
about managerial decision rules and control policies are needed in order to under-
stand the causal relationships that govern the process behaviour.

Table 3 lists attributes that often characterize the entities of the generic artefact 
development/verification process (second column), and gives typical examples 
(third column). The transformation of these attributes into SD model parameters 
follows a regular pattern (cf. fourth column). The attribute “efficiency” of the entity 
“activity” always maps to a rate variable. Attributes of artefacts and resources 
 usually map to level variables. However, there are situations where an attribute 
value of an artefact or resource is considered constant. In particular, this is the case 
when – for the purpose of the modelling task – it is of no interest to model the 
 variation of an attribute value. An example is the number of designers involved in 
a design task which may be controlled by processes outside the scope of the activi-
ties to be modelled, e.g. senior management policy. The fifth column of Table 3 
indicates how the values of model parameters are determined. Level and rate 
 variables are calculated by their defining functions. Constants are either defined by 
the model user (INPUT) or, in the case that they are used to calibrate the model, 
based on expert estimates (EST) or derived from available empirical data (EMP). 
Calibration constants are either deterministic (e.g., by taking the mean) or stochastic 
(e.g., by triangulation of expert estimates or by statistically fitting the distribution 
of  empirical data).
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Table 3 Mapping of generic process attributes to SD model parameters

Process description System dynamics

Entity Attribute Example
Parameter 
type Quantification

Artefact Size Design/specification 
document:

Level
Constant

Level
Constant

Level
Constant

CALC (from flow rates)
INPUT or EST or EMP

– Function points (FP)
– Pages
Code document: CALC (from flow rates)
– Lines of code (LOC) INPUT or EST or EMP
Test plan: CALC (from flow rates)
– Number of test cases INPUT or EST or EMP

Quality Spec./design/code/test 
plan:

Level
Constant

CALC (from flow rates)
INPUT or EST or EMP

– Defects injected, 
detected, 
corrected

State Spec./design/code/test 
plan:

– State values

Level CALC (flow rates emu-
late state-transition 
logic)

Activity
Efficiency

Spec./design/code/test 
plan:

– Development (and 
rework) volume per 
time unit

– Verification (and 
validation) volume 
per time unit

– Defect injection, 
detection, correction 
(® rework) per time 
unit

Rate CALC (based on attribute 
values of used 
Resources)

Resource Size Workforce: Level CALC (from flow rates)
– Number of architects, 

designers, program-
mers, testers, etc.

Constant INPUT or EST or EMP

Quality Workforce: Level CALC (from flow rates)
– Training Constant INPUT or EST or EMP
– Experience

Productivity Development, verifica-
tion, or validation 
technique:

Constant INPUT or EST or EMP

– Number of pages, 
FP, LOC, test cases 
developed, inspected, 
or tested per person 
and time unit

(continued)
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Figure 5 shows the network of individual cause-effect relationships (so-called 
base mechanisms) of a SD model of the generic process. The most creative – and 
 difficult – part during simulation model creation is the identification of cause-effect 
relationships that essentially generate the dynamic behaviour of the system, i.e., the 
variation of level variables over time. The control flows represented by the state-
 transition diagrams in Fig. 4 are not sufficient to explain the model behaviour, 
because they do not specify how relations between model variables change in 
response to value changes of the entities’ attributes. One possible network of base 
mechanisms that (qualitatively) provides exactly this information is shown in Fig. 5. 
A base mechanism is represented as a directed graph connecting two nodes (model 
parameters), e.g., A → (+) B or A → (−) B. The arc that connects the nodes A and B 
can have a positive or a negative polarity, represented by “+” or “−” respectively. A 
positive polarity implies that B increases (or decreases), if A increases (or decreases). 
A negative polarity implies that B increases, if A decreases and vice versa. Using this 
encoding, the causal diagram in Fig. 5 can be read as follows:

1.  If the workforce (e.g., the number of designers) is increased, then both develop-
ment (or rework) and verification rate increase.

Process description System dynamics

Entity Attribute Example
Parameter 
type Quantification

Effectiveness Development, verifica-
tion, or validation 
technique:

Constant INPUT or EST or EMP

– Number of defects 
injected per 
document size unit

– Number of defects 
detected per 
document size unit

Cost Workforce: Level CALC (from flow rates)
– Variable cost (e.g., 

hourly rate)
Constant INPUT or EST or EMP

Development, 
verification, 
or validation tools:

Level
Constant

CALC (from flow rates)
INPUT or EST or EMP

– Fixed costs (e.g., 
purchase price)

– Variable costs (e.g., 
leasing cost, storage 
cost, energy cost)

CALC calculated by simulation tool; INPUT input by model user; EST estimated by experts 
(modelled either deterministic or stochastic); EMP derived from empirical data (modelled either 
deterministic or stochastic)

Table 3 (continued)
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 2.  If development and verification rates increase, then project duration decreases 
(because the artefact is developed faster).

 3.  If the artefact size is increased, then project duration increases (because a 
larger artifact has to be developed at a given rate).

 4.  If the defect threshold is increased (i.e., more defects per size unit have to be 
found before a re-verification is triggered), then possibly fewer rework cycles 
(incl. re-verification) have to be performed.

 5.  If fewer rework cycles (incl. re-verification) are performed, then project dura-
tion decreases.

 6.  If more re-work cycles are performed, then there is more learning and increased 
product maturity.

 7.  If there is more learning, then development productivity increases and defect 
injection (per size unit) decreases.

 8.  If defect injection (per size unit) decreases, then artefact quality increases.
 9. If artefact maturity increases, then defect detection (per size unit) decreases.
10. If defect detection (per size unit) decreases, then artefact quality decreases.

Figure 5 contains three underlined nodes (workforce, artefact size, and defect 
threshold). These nodes represent either calibration or input parameters of the 
 simulation model. The parameter “Defect Threshold” specifies the number of 
defects needed to trigger a rework cycle. It determines whether a verification step 
needs to be repeated (cf. in Fig. 4 the state-transition diagram associated with arte-
fact verification). The importance of the parameter “Defect Threshold” resides in 
the fact that it not only plays a crucial role in the decision to repeat the verification 
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Fig. 5 Base mechanisms and causal network



136 M. Müller and D. Pfahl

step, but also because it triggers workforce learning and product maturation. 
A repetition of the verification (and, as a consequence, the rework) step has multi-
ple effects. First of all, it increases project duration. On the other hand, it speeds up 
the development (more precisely: rework) rate due to learning. Similarly, due to 
learning, it reduces the defect injection (per size unit) during rework. Finally, it also 
decreases the defect detection rate during the subsequent verification step due to 
product maturation, because most of the defects have already been detected, and 
there are only a few defects still contained in the artefact which are harder to detect. 
The last two effects mentioned have a damping effect on the number of rework (and 
re-verification) cycles, since they both make it more probable that the number of 
defects detected during re-verification are below the value of model parameter 
“Defect Threshold.” This is an example of negative feedback.

It should be pointed out that the causal network in Fig. 5 is only a subset of the 
base mechanisms that typically drive the behaviour of a software project. For exam-
ple, normally one would expect an influence on development rate from defect 
detection (per size unit). This, and possibly other base mechanisms, have been 
omitted to keep the example simple and compact. For the same reason, base mecha-
nisms related to project effort consumption have been omitted.

6.3. Implementation of the Generic Process Using a System 
Dynamics Tool

With the help of the causal network – in addition to the information already 
 contained in Table 3 – the full set of simulation model parameters are determined, 
and their type and role (from the perspective of the model user) can be defined. In 
the following, an example SD simulation model implementation for the generic 
code document development/verification process is presented.

Table 4 lists the complete set of model variables (second column), together with 
their type (third column) and usage (fourth column). Column one helps to trace 
back model parameters to the generic process map (cf. Fig. 4 with “artefact” 
replaced by “code document”). Using the mapping scheme presented in Table 3, 
the following mappings apply:

1. Size, quality, and state attributes of artefacts (Artefact Input, Artefact, Artefact 
Defect Log Size) are mapped to level variables

2. Efficiency attributes of activities (Development Activity and Verification 
Activity) are mapped to rate variables

3. Size, quality, productivity, and effectiveness attributes of resources (for 
Development and Verification) are mapped to level variables or constants

The list of attributes in Table 4 is very detailed. For example, the quality attribute 
information related to the code document distinguishes between the number of 
defects injected, the number of defects detected, the number of defects undetected 
(equals the difference between injected and detected defects), the number of defects 
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corrected, and the number of defects pending (equals the difference between 
detected and not yet corrected defects). Additional distinctions could be made, e.g., 
between different defect types or severity classes. For the sake of the simplicity of 
the presentation, these additional distinctions have not been included in the example 
presented here.

Table 4 Mapping of static process representation to SD model variables

Process map element SD model parameter Type Usage

Artefact input [Size] code to do size Level Output
 initialization code dev start time Constant Input(E)
 initialization average code size in KLOC Constant Input(E)
 initialization code to develop Rate Internal
Artefact [Size] code doc size Level Output
Artefact [State Devel.] code doc dev status Level Internal
Artefact [State Verif.] code doc ver status Level Internal
 initialization code doc quality limit per KLOC Constant Input(P)
Artefact [Quality 1] code faults generated Level Output
Artefact [Quality 2] code faults detected1 (in one verification 

round)
Level Output

 re-initialization detected code faults flush Rate Internal
Artefact [Quality 3] code faults pending Level Output
Artefact [Quality 4] code faults corrected1 (in one rework 

round)
Level Output

 re-initialization corrected code faults flush Rate Internal
Artefact [Quality 5] code faults undetected Level Output
Artefact Defect Log [Size 1] code faults detected (total) Level Output
Artefact Defect Log [Size 2] code faults corrected (total) Level Output
Devel. Activity [Effic. 1] development activity Rate Internal
 calibration productivity code learning amplifier Constant Input (C)
Devel. Activity [Effic. 2] code fault generation Rate Internal
 calibration quality code learning amplifier Constant Input (C)
Devel. Activity [Effic. 3] code fault correction Rate Internal
Verif. Activity [Effic. 1] verification activity (= code to rework) Rate Internal
Verif. Activity [Effic. 2] code fault detection Rate Internal
Artefact State Trans. (Dev.) cdd status change Rate Internal
Artefact State Trans. (Ver.) cdv status change Rate Internal
Resources (Devel.) [Size] Workforce Constant Input (E)
Resources (Devel.) [Qual.] code learning status Level Output
Resources (Devel.) [Prod. 1] average code dev rate per person and day Constant Input (C)
Resources (Devel.) [Prod. 2] average code fault injection per KLOC Constant Input (C)
Resources (Verif.) [Size] Workforce Constant Input (E)
Resources (Verif.) [Prod.] average code ver rate per person and day Constant Input (C)
Resources (Verif.) [Effect.] code ver effectiveness Constant Input (C)
Res. State Trans. (Qual.) cl status change Rate Internal

Devel. development; Effic. efficiency; Prod. productivity; Qual. quality; Res. resources; Trans. 
transition; Verif. verification; C calibration; E exploration; P policy
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Model parameters that are of purely technical nature are printed in italics. For 
example, in order to set up a simulation run, certain initializations have to be made, 
or for the realistic calculation of model attributes, coefficients in the related model 
equations have to be calibrated.

Typically, level variables play the role of output parameters, since they represent 
the state of the modelled system. Constants play the role of input parameters. 
Depending on their purpose, three types of input parameters can be distinguished: 
policy (P), exploration (E), and calibration parameters (C).

Policy parameters like, for example, the variable code doc quality limit per KLOC 
represent process specific threshold values which are evaluated in managerial deci-
sion rules. In the example, the threshold for the number of detected defects per KLOC 
in a verification step determines whether a re-verification has to be performed.

Calibration parameters like, for example, the variable productivity code learning 
amplifier help to quantify the effects imposed by one or more model variables on 
another model variable realistic.

Finally, exploration parameters like the variables average code size in KLOC 
or workforce represent those model parameters whose effect on the overall behav-
iour of the system is subject to analysis. In the example, the process completion 
(i.e., the time when code development is complete) as well as code quality in terms 
of the density of undetected defects after verification (code faults undetected/ 
average code size in KLOC) are model outputs that depend on other model varia-
bles including the size of the artefact to be developed (average code size in KLOC) 
and available resources (workforce).

Figures 7–9 show the graphical representations (views) of the complete SD 
model implementation for the code development and verification process:

1. Figure 6 captures the workflow in terms of size
2. Figure 7 captures the code development and verification states as well as the 

workforce learning state
3. Figure 8 captures the workflow (or defect co-flow) in terms of quality

Fig. 6 Implementation of code development and verification work flow (view 1)
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The level variables, represented by boxes, are calculated with the help of inflow 
and outflow rates as defined by (1) introduced in Sect. 4. For example, level varia-
ble code doc size increases as a result of development activity and decreases as a 
result of verification activity (because verified code needs to undergo rework). The 
rate variables are calculated similarly to (2) introduced in Sect. 4.

In Fig. 6, the inflow rate code to develop initializes the level code to do size, 
which otherwise would be equal to zero, and thus no development or verification 
work has to be performed. At simulation time code dev start time, the value of 
average code size in KLOC flows into code to do size. In the example implementa-
tion, code dev start time and average code size in KLOC are model inputs. These 
two model parameters also define an interface to predecessor development and 
verification processes. For example, if a predecessor process produces a design 
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Fig. 7 Implementation of state attributes (view 2)
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document, then the completion time and the size of this document can be used to 
calculate code dev start time and average code size in KLOC.

Figure 7 shows the part of the model which calculates the states related to code 
document development and verification as well as resource quality (learning). For 
example, using the encoding 0, 1, and 2, for the states “non-exist,” “active,” and 
“complete,” respectively, the rate variable cdd status change is calculated as shown 
in (5) below.

 

cdd status change

IF THEN ELSE

code doc dev status 0 /* sta

=

=( tte non-exist

:AND:Time code dev start time,

1, /* transit

=
>=

“ ”

iion non-exist active

IF THEN ELSE

code doc dev status

“ ” “ ”→

=( 11 /* state active

:AND:code to do size 0,

1, /* transition

=
<=

“ ”

  active complete

IF THEN ELSE

code doc dev status 2 /* 

“ ” “ ”→

=( sstate = complete

:AND:code to do size 0:AND:code doc ver

“ ”

>   status 1,

-1, /* transition complete active

0 /* do 

<>
→“ ” “ ”

))) nnothing

 (5)

The first transition, from “non-exist” to “active,” executes as soon as development 
has started, i.e., as soon as the simulation time is greater or equal to the defined 
development start time. The second transition, from “active” to “complete,” exe-
cutes as soon as there is no code waiting for implementation any more. The third 
transition, from “complete” back to “active,” executes as soon as there is some code 
waiting for development and code verification is no longer active.

Figure 8 shows the defect co-flow, i.e., the injection (generation), detection, and 
correction of code faults. Fault generation and correction occur in parallel with 
code development and rework, while fault detection occurs in parallel with code 
verification (and re-verification). For example, the rate variable code fault genera-
tion is directly correlated with the rate variable development activity. The actual 
calculation of code fault generation is shown in (6) below.

 

code fault generation = development activity*

randomized aveerage code fault injection per KLOC*

(1/MAX(1, code learninng status quality code learning amplifier))∧

 (6)

From (6) it can be seen that there is only defect injection when development activity 
> 0. The actual number of faults generated per time step depends on the number of 
KLOC developed per time step and the randomized average code fault injection 
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per KLOC, which – in this example – is calculated by multiplying the average code 
fault injection per KLOC with a random number sampled from the triangular 
 distribution triang(0.9, 1, 1.1,), where 1 represents the most probable value, and 0.9 
and 1.1 the minimal and maximal values, respectively. The last factor in (6) models 
the learning effect. As soon as code learning status adjusted for the learning ampli-
fier becomes greater than 1, the learning factor is less than 1 and thus the number 
of injected code faults decreases.

At the start of a simulation run, all model constants are initialized with a 
default value which can be modified by the user. Figure 9 shows a graphical user 
interface to the model, built using a Vensim utility, in the form of an input panel 
with slide bars, default initialization, and admissible value range. For example, 
variable code ver effectiveness is to be initialized with 0.75 (representing a defect 
detection effectiveness of the code verification technique of 75%), and maximum 
and minimum values of 0 and 1.

As soon as the simulation has started, the values of all model variables are cal-
culated by Vensim® at each time step, which represents, for example, one work day. 
When the simulation run is complete the calculated values can be displayed either 
in tabular form or as graphs showing the time line on the x-axis and the variable 
value on the y-axis. Figures 10 and 11 below show example output graphs of the 
example model.

The upper part of Fig. 10 shows the simulation output for the level variables 
code to do size and code doc size. At simulation start (Time = 0), the amount of 
code work to do, in this case 200 KLOC, flows instantaneously into code to do size. 
This then decreases at a constant rate, caused by the development activity which 
transforms code to do size into code doc size (cf. Fig. 6). Consequently, the value 
of code doc size is exactly complementary to the value of code to do size, the sum 
of both always adding up to 200 KLOC. The lower part of Fig. 10 shows the behav-
iour of the state variables controlling the behaviour of code development, code 
verification, and learning, respectively. For example, one can see that code doc dev 
status equals 1 (“active”) while code is developed. As soon as there is nothing more 
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to develop, i.e., code to do size = 0, it switches to 2 (“complete”). At that moment, 
code doc ver status switches from 0 (“non-exist”) to 1 (“active”). After some time 
during which verification is done, depending on how many defects are found, code 
doc ver status switches either to 2 (“repeat”) or 3 (“complete”). In Fig. 10, one can 
see that after the first verification round it is signalled that a second verification 
round needs to be performed (“repeat”).

Figure 11 shows a selection of diagrams related to code fault generation, detec-
tion, and correction. The model variable code faults undetected represents the 
 difference between the numbers of injected and detected faults, while code faults 

Fig. 10 Simulation output related to model views 1 and 2
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pending represents the difference between detected and corrected code faults. One 
can see that fault detection occurs when verification is active, and fault correction 
occurs when development (rework) is active.

6.4. Extension and Reuse of the Reference Simulation Model

The SD model developed in the previous section can be extended and reused in 
several ways. For example, as mentioned earlier, it is possible to make the model 
more realistic by adding a causal relationship between the number of errors 
detected and the fraction (size) of the artefact to be reworked.

The more interesting aspect of reusability is illustrated by Fig. 12. The figure 
shows the V-model software development process on the right hand side. 
Simulation models representing the Design and Coding phases are presented as 
boxes. For example, the Boxes labelled views 1C to 3C represent the SD model 
views presented in Figs. 7–9. In Figs. 7–9, the code documents developed and veri-
fied in the coding phase are represented by one single level variable. There is no 
differentiation between code sub-systems or modules. To facilitate a more detailed 
representation of reality, i.e., explicit modelling of individual subsystems (or even 
modules), the SD tool VENSIM® offers the possibility of “subscripting,” i.e., the 
possibility of replacing a monolithic entity by an array of entities of the same type. 
A subscript works like the index of an array. With the help of this mechanism, 
potentially all variables used in the model views 1C to 3C can be duplicated. For 
example, if five code sub-systems shall be modelled, they would be represented by 
level variables code doc size [1] to code doc size [5], or, if 100 code modules are 
to be modelled, the index of code doc size would run from 1 to 100, each index 
representing the levels and rates associated with each module.
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Fig. 12 Reuse-based construction of a simulation model representing a V-Model process
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Finally, it is possible to represent the design and requirements specification 
phases of the V-Model process by simply duplicating the code related views 1C to 
3C. This can be done by copying a complete view and replacing the sub-strings 
“code” by strings “design” in all variable names. Of course, the resulting Views 1D 
to 3D (and 1R to 3R) have to be re-calibrated based on suitable data or expert 
 estimates. The connection between subsequent views requires only a few informa-
tion links between variables, e.g., between model variables design doc size (which 
plays in the design phase the role that code doc size plays in the coding phase) and 
average code size in KLOC. These connections can be considered similar to “glue 
code” used to connect reusable software components.

Figure 13 shows several simulation output diagrams for a code development and 
verification process in which five sub-systems are developed concurrently. The size 
of each subsystem varies between 35 and 45 KLOC, accumulating to a total of 
200 KLOC. One can see the individual traces for each subsystem. The development 
of one subsystem starts at Time = 0 (begin of coding phase), the others are more or 
less delayed due to variation in completion of required design documents. Similar 
graphs are generated for the design and requirements specification phases.

Figure 14 shows for each variable displayed in Fig. 13 the aggregated values of 
the individual code sub-systems. If compared to the monolithic simulation (i.e., 
without subscripting) presented in Figs. 11 and 12, one can see that the overall 
behaviour is similar but that some temporal displacement occurs due to late start of 
coding of some of the subsystems.

With some additional minor modifications, it is possible to model five sub-
 systems in the design phase and, say, 100 modules in the coding phase. This 
enhancement requires a mapping of sub-system subscripts (used in the design 
views 1D to 3D) to module subscripts (used in the code views 1C to 3C). With this 
modification, the quality views for design (3D) and coding (3C) generate the simu-
lation results shown in Fig. 15 (simulation time T = 0 at start of design phase). The 
Design phase lasts from simulation time T = 1 until T = 140 days, while the Coding 
phase starts at time T = 96 and ends at time T = 174 days. For each phase, the simu-
lated values of injected, detected, pending, and undetected faults are shown.

6.5. Comparison Between System Dynamics and Discrete-Event 
Simulation

The simulation application example outlined in Sects. 6.2 and 6.3 demonstrated 
how SD captures complex software process behaviour with a small set of core 
modelling constructs (i.e., level and rate variables, and constants). This is possible 
by creation of generic model patterns that are reusable in several ways, either by 
replicating model variables via subscripting, or by duplicating complete sub-
 models (i.e., model views) by simple text replacement (e.g., replacing the string 
“code” by the string “design”).
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Event-driven simulation techniques take a complementary perspective when 
modelling the generic artefact development and verification process introduced in 
Sect. 6.1. For example, instead of modelling the artefact as one monolithic 
 document, e.g., of size 200 KLOC in the case of the code document, event-driven 
simulation models individual code units as single items which are routed through a 
sequence of processing stations, e.g., a station for development and a station for 
verification. These items have several attributes, e.g., size, state, number of defects 
(injected, detected, corrected), etc. The list of attributes can be extended or refined, 
e.g., by introducing attributes to distinguish defect types and severity classes. The 
attribute information determines, for example, the processing time in the develop-
ment and verification stations, and the routing of an item after leaving a station.

DefectsCode Development View (1C)
200 600
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0
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Fig. 14 Aggregated simulation outputs for concurrent coding of five sub-systems
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What distinguishes DE simulation from SD simulation is the degree of 
model detail, the model representation, and the logic underlying the computa-
tion of model states. DE simulation modelling is very flexible and easily 
 adaptable when it becomes necessary to add or change attributes of entities. 
Moreover, in DE simulation it is possible to model the behaviour of distinct 
real-world entities (e.g.,  artefacts, resources) of the same type individually, 
while SD typically models the average behaviour of a large number of entities 
of the same type. The possibility of subscripting mitigates this limitation of SD 
only to some extent.

One disadvantage of DE simulation comes as a downside of its ability to 
 capture many details. DE simulation tools like, for example EXTEND®, offer a 
large number of different modelling constructs, often specifically tailored to 
manufacturing processes. Although these blocks are reusable in several contexts, 
more training is needed for the modeller to become familiar with the variety of 
options and they have to be adapted to capture software development processes. 
While DE  simulation is capable to model production processes in greater detail, 
SD simulation models can capture not only the “mechanical” aspects of software 
development processes (which mainly consist of writing and checking different 
types of documents), but also the cause-effect mechanisms underlying the  process 
behaviour. This includes the flow of information, which is important in  software 
engineering, in contrast to material flows. Typically, information about these 
cause-effect relationships are part of the (mostly implicit) mental models of 
 managers or decision makers, and contain intangible concepts like learning 
(cf. variable code learning state in the example above), motivation, stress, com-
munication, decision policies, etc.

7. Practical Aspects

As a cautionary note it is well to remember that simulation has limitations and is 
not a “silver bullet.” The predictive power of simulation strongly depends on the 
degree of model validity. While many scientific and engineering fields base their 
models on established physical laws, organizational models contain human aspects 
and intangible processes. This leads to two problems: It is difficult to gather data 
from human actors and it is very costly and sometimes not feasible to reproduce 
simulated scenarios in reality for the purpose of model validation.

Simulation is a simplification of the real world, and is thus inherently an approx-
imation. As indicated in (Robertson, 1997) it is impossible to prove a priori the 
correctness of a simulation model that aims at generating previously unobserved 
and potentially unexpected behaviour. Thus, model verification and validation must 
be concerned with creating enough confidence in a model for its results to be 
accepted. This is done by trying to prove that the model is incorrect. The more tests 
that are performed in which it cannot be proved that the model is incorrect, the 
more increases confidence in the model.
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Finally, one should not forget that simulation is neither a means in itself (it needs 
to be followed by action) nor does it generate new ideas. It is still the software 
manager’s and simulation modeler’s task to be creative in generating new scenarios 
for simulation, and in applying the simulation results to improve real-world 
 processes. Simulation does not automatically produce new facts such as knowledge-
based expert systems do (e.g., through inference).

8. The Future of Simulation in Software Engineering

The application of simulation techniques, in particular process simulation tech-
niques, offers several interesting perspectives for improving management and 
learning in software organizations.

Business simulator-type environments (micro-worlds) can confront managers 
with realistic situations that they may encounter in practice. Simulation allows the 
rapid exploration of micro-worlds, without the risks associated with real-world 
interventions and provides visual feedback of the effects of managers’ decisions 
through animation. Simulation increases the effectiveness of the learning process, 
because trainees quickly gain hands-on experience. The potential of simulation 
models for the training of managers in other domains than software engineering has 
long been recognized (Lane, 1995). Simulation-based learning environments also 
have the potential to play an important role in software management training and 
education of software engineers, in particular if they are offered as web-based 
( possibly distributed multi-user) applications.

Analyzing a completed project is a common means for organizations to learn 
from past experience, and to improve their software development process (Birk et 
al., 2002). Process simulation can facilitate post-mortem analysis. Models facilitate 
the replaying of past projects, diagnose management errors that arose, and investi-
gate policies that would have supplied better results. To avoid having a software 
organization reproduce – and amplify – its past errors, it is possible to identify 
optimal values for measures of past project performance by simulation, and record 
these values for future estimation, instead of using actual project outcomes that 
reflect inefficient policies (Abdel-Hamid, 1993).

To further increase the usage (and usability) of simulation techniques in soft-
ware engineering, the time and effort needed for model building must further be 
reduced. One step in this direction is to provide adaptable software process simula-
tion frameworks. Similar to the process simulation reference model described 
above, these frameworks can be used like a construction kit with reusable model 
components. Supporting tools and methodological guidance must accompany 
reuse-based simulation modelling. Furthermore, simulation tools should be con-
nected to popular project planning and tracking tools to decrease the effort of model 
parameterization and to increase their acceptance by software practitioners. As 
more and more companies improve their development process maturity, it is also 
expected that process simulation will gain more attention in industry.
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Chapter 6
Statistical Methods and Measurement

Jarrett Rosenberg

Abstract Useful ways of measuring software engineering phenomena have to 
address two challenges: defining realistic and valid metrics that can feasibly be col-
lected under the constraints and time pressures of real-world software development 
contexts, and determining valid and accurate ways of analysing the resulting data 
to guide decisions. Too often, the difficulties of addressing the first challenge mean 
that the second is given little attention. The purpose of this chapter is to present dif-
ferent techniques for the definition and analysis of metrics such as product quality 
data. Specifically, statistical issues in the definition and application of metrics are 
presented with reference to software engineering examples.

1. Introduction

Measurement is ubiquitous in software engineering, whether for management, 
 quality assurance, or research purposes. Effectively creating and using measure-
ments is critical to success in these areas, yet there is much confusion and 
 misunderstanding about the best way in which to define, collect, and utilize them. 
This chapter discusses the purpose of measurement and statistical analysis in 
 software engineering research and development, and the problems researchers and 
practitioners face in using these methods effectively; rather than a “how-to,” it is a 
“when-to.” Section 2 discusses some fundamental issues in measurement and the 
context of measurement. A number of the issues in this section are discussed in 
the ISO/IEC 15939 standard, Information Technology – Software Measurement 
Process. Section 3 discusses two basic aspects of creating effective measures: metric 
 definition and metric evaluation. Sections 4 and 5 covers methods for description, 
 comparison, and prediction for simultaneous and successive measurements, 
 respectively, whether categorical or numeric. Section 6 returns to the context of 
measurement in discussing the important topic of data quality.
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2. Statistics and Measurement

Measurement is the process of assigning labels (typically numbers) to an attribute of an 
object or action in such a way that the characteristics of the attribute are mirrored in the 
characteristics of the labels. The assignment process and the resulting numbers are 
called a measurement scale or metric. The reverse process is an interpretive one, and 
thus if the measurement scale is inappropriate, then the corresponding interpretations of 
its values will be incorrect. In using the terms “measurement” and “metric”, it is usually 
clear from context whether the process or numerical result is being referred to.

The name “statistics” reflects the origin of the field in the collection of 
 demographic and economic information important to the government of the modern 
nation state. Such measures as the size of the population, the birth rate, and the 
annual crop yield became important inputs to decision making. The term  descriptive 
statistics applies to such measures, whether simple or complex, that describe some 
variable quantity of interest. Over the past century and a half, the field of inferential 
statistics has been developed to allow conclusions to be drawn from the comparison 
of the observed values of descriptive statistics to other real or hypothesized values. 
These inferential methods require some assumptions in order to work, and much of 
statistical theory is devoted to making those assumptions as flexible as possible in 
order to fit real-world situations.

2.1. Statistical Analysis and the Measurement Process

Statistical analysis necessarily assumes some measurement process that provides 
valid and precise measurements of some process of interest, as shown in Fig. 1. 
The results of the statistical analysis are themselves the prerequisite to a decision-

The Process Being Studied

The Measurement Process

The Statistical Process

The Decision Process

Fig. 1 The roles of the measurement and statistical processes
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 making process which in turn affects the process of interest, the measurements 
made on it, and the analyses done on those measurements. It is often the case that 
too little thought is given to the multi-level nature of this situation: measurements 
are made because it is possible to do so, statistical analyses are done in a formulaic 
way, and decisions are made with little data or analysis. In the area of software 
metrics, Basili et al. (1994) created the “Goal/Question/Metric” framework, which 
emphasizes that every metric collected must be defined so as to answer some 
 specific question, and every question posed must be relevant to some decision-
 making goal. This ensures that the entire process depicted in Fig. 1 remains aligned 
with the overall goal: studying a process in order to make various decisions about 
it (whether research conclusions or process improvements).

The reason for dwelling on such a banal topic is precisely because it is so often 
taken for granted; problems with any of these processes or the relations between them 
become easily lost in the assumption that the overall scheme of things is functioning 
correctly. Yet if the statistical process is not functioning properly (e.g., incorrect 
 analyses are being performed) decisions will be made on the basis of incorrect  analysis 
and bad outcomes may be misattributed to the decision-making process rather than 
its statistical inputs. Similarly, it is typically assumed that the measurement process is 
functioning correctly and that the data it provides are accurate and valid enough to 
make a statistical analysis worth doing. As Fig. 1 shows, there is no point to a statistical 
analysis if the data going into it come from a measurement process which is malfunc-
tioning. This involves not only the nature of the measurements involved (discussed in 
Sect. 3), but also the quality of data obtained.

2.2. The Context of Measurement

While the context of measurement is typically taken for granted and not examined, it 
nevertheless has a serious impact on the nature and quality of the measurements.

First, the meaning of measurements will vary depending on whether they derive 
from observation or experiment. If the former, questions of potential bias arise due to 
various sampling difficulties discussed below. Experiments, on the other hand, while 
potentially giving precise measurements under controlled conditions, may suffer 
from a lack of generalizability if they are not carefully designed and interpreted.

Second, it is often the case that the available measurements are not immediately 
connected with the phenomena of interest: the measures may be what are termed 
“leading” or “lagging” indicators. The former are highly desirable for forecasting, 
but the latter are more common; both cases are problematic in steering an organiza-
tion, because the cause and effect are so separated in time. For example, “number 
of customer-reported software defects” might seem to be a good metric for 
 evaluating the performance of a software development organization, but it is usually 
the case that today’s customer complaint stems from a defect introduced months or 
years ago, perhaps by a different set of developers. Similarly, customer satisfaction 
is typically measured and goaled on an annual or quarterly basis, but it lags a 
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 company’s products and services typically by several years. Leading/lagging 
 measures are thus difficult to use in managing day-to-day operations.

Third, while measurements are presumably for a purpose, they can often take on 
a life of their own, produced because someone once decreed they should be pro-
duced, but with no-one paying much attention to them because the rationale has 
been lost, or is no longer meaningful. Worse, the measurement process can have 
side-effects, where the numbers are “massaged” or the work process altered in 
order to produce the “right” results.

Finally, good measurements are actionable; they can be used to do something. 
Measurements made for measurement’s sake are worse than useless: they divert 
resources from the real problems. A single global measure of customer satisfaction 
or product quality may alert management to a problem, but it gives no indication of 
what to do. Over time, an organization or researcher will sharpen the questions 
asked and the corresponding metrics used; this process forms the most important 
context for measurement and analysis.

3. Creating Effective Metrics

Deciding on an appropriate measure or set of measures is neither as easy as it first 
appears nor as difficult as it later seems. To be effective, a metric must be clearly 
defined, have appropriate mathematical properties, and be demonstrably  reasonable 
(i.e., precise, reliable, and valid). Above all, however, a metric must be  well-
 motivated. To be well-motivated, a metric must provide at least a partial answer to 
a specific question, a question which itself is aimed at some particular research or 
management goal. For example, how one chooses to measure the time to repair a 
defect depends on the kind of question being asked, which could range from 
“What is the expected amount of time for a specific class of defects to go from the 
initial Reported state to the Repaired state?” to “What percent of all customer-
reported defects are in the Repaired state within two days of being first reported?” 
It is usually the case that a single metric is not sufficient to adequately answer even 
an apparently simple question; this increases the need to make sure that metrics 
and questions are closely connected.

3.1. Defining a Metric

Metrics can be either simple or compound in definition. Simple metrics include counts 
(e.g., number of units shipped this year), dimensional measures (e.g., this year’s 
 support costs, in dollars), categories (e.g., problem types), and rankings (e.g., problem 
severity). Compound metrics are defined in terms of two or more metrics, typically 
combined by some simple arithmetic operation such as division (e.g., defects per 
 thousand lines of code). The number and type of metrics combined and the method 
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used to combine them affects how easily understood the compound metric will be. 
This leads to ratios (e.g., defects per thousand units), rates (time-based ratios such as 
number of problem reports per month), proportions or percentages (e.g., proportion of 
customers responding “very satisfied” to a survey question), linear algebraic 
 combinations (e.g., mean repair cost – the sum of all repair costs divided by the total 
number of repairs), and indices (dimensionless measures typically based on a sum and 
then standardized to some baseline value). Whereas simple metrics are always defined 
in terms of some measurement unit, compound metrics such as percentages and some 
linear combinations and indices can be dimensionless.

The definition of a metric affects its behavior (i.e., the likelihood of its taking on 
various values), its possible interpretations, and the kinds of analyses which are 
 suitable for it. This argues for the use of simpler, more easily understood metrics 
rather than the creative development of new, compound ones with poorly  understood 
behavior. Indices in particular raise serious questions of interpretation and compari-
son, and are best used for showing long-term trends. The range of values a metric can 
have does not always follow a bell-shaped Normal curve; for example,  durations such 
as repair times almost always have a highly skewed distribution whose tail values pull 
the mean far from the median. Investigation of the distribution of a metric’s values is 
one of the first tasks that must be undertaken in a statistical  analysis. Furthermore, the 
range of values a measure can take on can be affected by internal or external  limitations; 
these are referred to as truncation or limitation, and censoring.

Truncation or limitation refers to situations where a measure never takes on a 
particular value or range of values. For example, repair time in theory can never 
have a value of zero (if it does, the measurement scale is too coarse). Or one may 
have results from a survey question which asks for some count, with an “n or more” 
response as the highest value; this means that the upper part of the measure is 
 truncated artificially. These situations can sometimes be problematic, and special 
statistical methods have been developed to handle them (see Long, 1997; Maddala, 
1986). A much more difficult case is that of censoring, which occurs with duration 
data. If the measure of interest is the time until an event happens (e.g., the time until 
a defect is repaired), then there necessarily will be cases where the event has not yet 
happened at the time of measurement. These observations are called “censored” 
because even though we believe the event will eventually occur and a duration will 
be defined, we do not know how long that duration will be (only that it has some 
 current lower bound). This problem is often not recognized, and when it is, the  typical 
response is to ignore the missing values. This unfortunately causes the  subsequent 
analysis to be biased. Proper analysis of duration data is an extensive sub-area of 
 statistics usually termed “survival analysis” (because of its use in medical research); 
its methods are essential for analyzing duration data correctly. See Hosmer and 
Lemeshow (1999) or Kleinbaum (1996) for a good introduction.

Classical measurement theory (Krantz et al., 1971; Ghiselli et al., 1981) defines 
four basic types of measurement scale, depending on what kinds of mathematical 
manipulations make sense for the scale’s values. (Additional types have been pro-
posed, but they are typically special cases for mathematical completeness.) The 
four are
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Nominal. The scale values are unordered categories, and no mathematical manipu-
lation makes sense.

Ordinal. The scale values are ordered, but the intervals between the values are not 
necessarily of the same size, so only order-preserving manipulations such as 
 ranking make sense.

Interval. The scale values are ordered and have equal intervals, but there is no zero 
point, so only sums and differences make sense.

Ratio. The scale values are ordered and have equal intervals with a zero point, so 
any mathematical manipulation makes sense.

These scale types determine which kinds of analyses are appropriate for a measurement’s 
values. For example, coding nominal categories as numbers (as with serial numbers, say) 
does not mean that calculating their mean makes any sense. Similarly, measuring the 
mean of subjective rating scale values (such as defect severity) is not likely to produce 
meaningful results, since the rating scale’s steps are probably not equal in size.

It is important to realize that the definition, interpretation, and resulting analy-
ses of a metric are not necessarily fixed in advance. Given the complexities shown 
in Fig. 1, the actual characteristics of a metric are often not entirely clear until after 
considerable analysis has been done with it. For example, the values on an osten-
sibly ordinal scale may behave as if they were coming from an underlying ratio 
scale (as has been shown for many psychometric measures, see Cliff, 1992). It is 
commonly the case that serial numbers are assigned in a chronologically ordered 
manner, so that they can be treated as an ordinal, rather than nominal, scale. 
Velleman (1993) reports the case where branch store number correlated inversely 
with sales volume, as older stores (with smaller store numbers) had greater sales.

There has been much discussion in the software metrics literature about the 
implications of measurement theory for software metrics (Zuse, 1990; Shepperd 
and Ince, 1993; Fenton and Pfleeger, 1997). Much of this discussion has been 
 misguided, as Briand et al. (1996) show. Measurement theory was developed by 
scientists to aid their empirical research; putting the mathematical theory first and 
the empirical research after is exactly backwards. The prescriptions of measure-
ment theory apply only after we have understood what sort of scale we are working 
with, and that is often not the case until we have worked with it extensively.

In practical terms, then, one should initially make conservative assumptions 
about a scale’s type, based on similar scales, and only “promote” it to a higher type 
when there is good reason to do so. Above all, however, one should avoid uncriti-
cally applying measurement theory or any other methodology in doing research.

3.2. Evaluating a Metric’s Effectiveness

A measure can have impeccable mathematical credentials and still be totally 
 useless. It order for it to be effective, a measure needs an adequate amount of preci-
sion, reliability, and validity. One also has to consider its relationships to other 
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measures, as sometimes misleading results can occur when two related measures 
are treated as if they were independent.

There are two different concepts sharing the term “measurement precision.” One 
concept is that of the size of a metric’s smallest unit (sometimes called its “least 
count”). Put another way, it is the number of significant digits that can be reported for it. 
For example, measuring someone’s height to the nearest millimeter is absurd, since 
the typical error in obtaining the measurement would be at least as large. Similarly, 
measuring someone’s height to the nearest meter would be too crude to be of much 
value. A common mistake is to forget that the precision of any derived measure, 
including descriptive statistics such as the mean, can not be any greater than that of 
the original measures, and is almost always less. Thus reporting the average height 
of a group of people as 178.537 cm implies that the raw  measurements were made at 
the accuracy of 10 µm; this is unlikely. Such a result is better reported as simply 
179 cm. The arithmetic combination of measures  propagates and magnifies the error 
inherent in the original values. Thus the sum of two measures has less precision than 
either alone, and their ratio even less (see Taylor, 1997; Bevington and Robinson, 
1992); this should be borne in mind when creating a compound metric.

The other concept of precision is the inverse of variability: the measurements 
must be consistent across repeated observations in the same circumstances. This 
property is termed reliability in measurement theory. Reliability is usually easy to 
achieve with physical measurements, but is a major problem in measures with even 
a small behavioral or subjective component. Rating scales are notorious in this 
respect, and any research using them needs to report the test-retest reliability of the 
measures used. Reliability is typically quantified by Cronbach’s coefficient alpha, 
which can be viewed as essentially a correlation among repeated measurements; 
see Ghiselli et al. (1981) for details.

A precise and reliable measure may still be useless for the simple reason that 
it lacks validity, that is, it does not in fact measure what it claims to measure. 
Validity is a multifaceted concept; while it is conventional to talk about different 
types of validity, they are all aspects of one underlying concept. (Note that the 
concepts of internal and external validity apply to experiments rather than 
measurements.)

Content validity is the degree to which the metric reflects the domain it is 
intended to measure. For example, one would not expect a measure of program 
complexity to be based on whether the program’s identifiers were written in English 
or French, since that distinction seems unrelated to the domain of programming 
languages.

Criterion validity is the degree to which a metric reflects the measured object’s 
relationship to some criterion. For example, a complexity metric should assign high 
values to programs which are known to be highly complex. This idea is sometimes 
termed discrimination validity, i.e., the metric should assign high and low values to 
objects with high or low degrees of the property in question. In this sense it may be 
thought of as a kind of “predictive validity.”

Construct validity is the degree to which a metric actually measures the conceptual 
entity of interest. A classical example is the Intelligence Quotient, which attempts 
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to measure the complex and elusive concept of intelligence by a combination of 
 measures of problem-solving ability. Establishing construct validity can be quite 
difficult, and is usually done by using a variety of convergent means leading to a 
preponderance of evidence that the metric most likely is measuring the concept. The 
simpler and more direct the concept, the easier it is to establish construct validity; 
we have yet to see a generally agreed-upon metric for program complexity, for 
example, while number of non-commentary source statements is generally accepted 
as at least one valid metric for program size.

Finally, a metric’s effectiveness can vary depending on its context of use, in 
 particular, how it is used in combination with other metrics. There are three pitfalls 
here. The first is that one can create several ostensibly different metrics, each of 
which is precise, reliable, and valid, but which all measure the same construct. 
This becomes a problem when the user of the metrics doesn’t realize that they are 
redundant. Such redundancy can be extremely useful, since a combination of such 
metrics is usually more accurate that any one of them alone, but if they are assumed 
to be measuring independent constructs and are entered into a multivariate statisti-
cal analysis, disaster will result, since the measures will be highly correlated rather 
than independent. Therefore one of the first tasks to perform in using a set of 
 metrics is to ascertain if they are measures of the same or different constructs. This 
is usually done with a factor analysis or principal component analysis (see Comrey 
and Lee, 1992).

The second pitfall is that if two metrics’ definitions contain some component in 
common, then simple arithmetic will cause their values to not be independent of 
each other. For example, comparing a pretest score and a difference score (posttest 
minus pretest) will yield a biased rather than an adjusted result because the differ-
ence score contains the pretest score as a term. Another example is the comparison 
of a ratio with either its numerator or denominator (say, defect density and code 
size). Such comparisons may be useful, but they cannot be made with the usual null 
hypothesis of no relationship (see Sect. 4.2), because they are related arithmetically. 
This problem in the context of measures defined by ratios is discussed by Chayes 
(1971), who gives formulas for calculating what the a priori correlation will be 
between such metrics.

The third pitfall is failing to realize that some metrics are not of primary 
 interest themselves, but are necessary covariates used for adjusting the values of 
other  metrics. Such measures are known as exposure factors since the greater 
their value, the greater the likelihood of a high value on another measure. For 
example, in demographics and epidemiology population size is an exposure 
 factor, since the larger the population, the larger the number of criminals, art 
museums, disease cases, and good Italian restaurants. Similarly, the larger a 
source module, the larger the value of any of a number of other metrics such as 
number of defects, complexity, etc., simply because there will be more opportu-
nity for them to be observed. Exposure variables are used in a multivariate analy-
sis such as Analysis of Covariance (ANCOVA) or multiple regression to adjust 
for (“partial out”) the effect of the exposure and show the true effect of the 
remaining factors.
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3.3. Statistical Analyses

Having defined appropriate metrics and ensured that data is properly collected, the 
focus shifts to the question of how to appropriately analyze the data obtained. There 
are three principal statistical tasks involved: description, comparison, and predic-
tion. It is useful to discuss separately the analyses appropriate to dynamic or 
 temporal data, i.e., data which have time as a fundamental aspect, from static data, 
which do not; however, all statistical analyses have some aspects in common.

The prerequisite for any data analysis is data cleaning: the auditing of the data for 
complete and accurate values. This step typically takes at least as much time, if not 
more, than the application of the statistical techniques themselves. Often data quality 
problems prevent many of the intended statistical analyses from being carried out, or 
create so much uncertainty about the validity of their results as to render them useless. 
It is usually possible to gather some information from even poor quality data, but an 
initial investment in data quality pays for itself in the ability to do more – and more 
useful – analyses later. We will return to this issue in Sect. 6.

Statistical analyses are all based on models of the underlying data-generating 
process; these models can be simple or complex, and can make more or fewer 
assumptions. Parametric models assume specific functional forms such as the 
Normal distribution for univariate data, or a linear regression equation for multi-
variate data. The parameters of these functional forms are estimated from the data 
and used in producing descriptive statistics such as the standard error of the mean, 
or inferential statistics such as the t-statistic used to test for a difference between 
two means. Because they make stronger assumptions, parametric models can be 
more useful – if the assumptions are true. If they are not true, biased or even wildly 
inaccurate results are possible. Non-parametric models make few assumptions 
(typically that the data are unimodal and roughly symmetrical in distribution) and 
thus can be used in almost any situation. They are also more likely to be accurate 
at very small sample sizes than parametric methods. The price for this generality is 
that they are not as efficient as parametric tests when the assumptions for the latter 
are in fact true, and they are usually not available for multivariate situations.

In the same way that a phenomenon typically cannot be captured by a single 
metric, a statistical analysis typically cannot be done by conducting one test alone. 
A good data analyst looks at the data from a variety of different perspectives, with 
a variety of different methods. From this a picture gradually emerges of what is 
going on. A word of caution, however: the conventional p-value of 0.05 represents 
a “false positive” or spurious result rate of 1 in 20. This means that the more statisti-
cal tests that are performed, the more likely it is that some of them will be falsely 
significant (a phenomenon sometimes called “capitalization on chance”). Large 
correlation matrices are a good example of the phenomenon; to see why, compute 
the 20 × 20 correlation matrix among 20 samples of 100 uniform random numbers: 
of the 190 unique correlations, how many are statistically significant at the 0.05 
level? It is thus seriously misleading to do dozens of tests and then report a result 
with a p-value of 0.05. The usual way of correcting for doing such a large number 
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Fig. 2 Two very different samples with the same mean and standard deviation

of tests is to lower the p-value to a more stringent level such as 0.01 or even 0.001. 
The most common way of reducing the false positive rate among multiple tests is 
called the Bonferroni procedure; it and several improvements on it such as the 
Scheffé and Tukey methods are described in Keppel (1991). Often preferable to 
multiple univariate tests is a single multivariate analysis.

4. Analyzing Static Measurement Data

4.1. Description

The first step in any statistical analysis is data description, and the first step of data 
description is to simply look at the data. Figure 2 shows the histograms for two 
different samples with the same mean and standard deviation; without looking at 
these histograms, one would think from their descriptive statistics that both samples 
were from the same population. Looking at the distribution of values for a metric 
allows one to check for most frequent values (modes), outliers, and overall  symmetry 
of the distribution. If a distribution is skewed by a few extreme values (large or 
small), many widely used statistics become misleading or invalid. For example, the 
mean and standard deviation are much more sensitive to extreme  values than 
the median or percentiles, and so the mean of a skewed distribution will be far from 
the median and therefore a somewhat misleading measure of central tendency. Thus 
looking at the data allows us to determine which descriptive statistics are most 
appropriate.

As pointed out above, descriptive statistics such as point estimates are subject to 
error; it is important to quantify this error so that the precision of the point estimate can 
be determined. The standard error of an estimate is a common way of representing 
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the precision of an estimate; the range of values two standard errors on either side of 
the estimate delimit the 95% confidence interval for that estimate, i.e., the interval 
within which the true value of the parameter being estimated will fall 95% of the time. 
A wide confidence interval indicates that the estimate is not very precise, thus 
 knowing the precision is useful for gauging an estimate’s value in decision making. 
The standard error increases as the sample size decreases, and the resulting impreci-
sion in estimates is what makes very small samples so problematic.

4.1.1. Measures of Central Tendency

The main feature of interest in a sample of non-temporal data is its “center of 
mass”. For a roughly symmetric distribution, this will be essentially the same value 
as its mode (most frequent value) and its median (50th percentile or midpoint). 
The arithmetic mean is the most commonly used measure of central tendency 
because of its intuitive definition and mathematical usefulness, but it is seriously 
affected by extreme values and so is not a good choice for skewed data. The median 
by definition always lies at the point where half the data are above it and half below, 
and thus is always an informative measure (indeed, a simple check for skewness in 
the data is to see how far the mean is from the median). The reason the median is 
not used more often is that it is more complicated to calculate and much more 
complicated to devise statistical methods for. When dealing with rates, the geometric 
mean (the nth root of the product of the n data values) more accurately reflects the 
average of the observed values.

4.1.2. Measures of Dispersion

Since two entirely different distributions can have the same mean, it is imperative to 
also include some measure of the data’s dispersion in any description of it. The range 
of the values (the difference between the highest and lowest values) is of little use 
since it conveys little about the distribution of values in between. The natural measure 
for distributions characterized by the arithmetic mean is the variance, the sum of 
the squared deviations about the mean, scaled by the sample size. Since the variance 
is in squared units, the usual measure reported is its square root, the standard deviation, 
which is in the same measurement units as the mean. Analogues to the standard 
 deviation when the median rather than the mean is used are the values of the first and 
third quartiles (i.e., the 25th and 75th percentiles) or the semi-interquartile range, 
which is half the difference between the first and third quartiles. These give a measure 
of the dispersion that is relatively insensitive to extreme values, just like the median. 
Another useful measure of dispersion is the coefficient of variation (CV), which is 
simply the standard deviation divided by the mean. This gives some indication of how 
spread out the values are, adjusted for their overall magnitude. In this sense, the 
 coefficient of variation is a dimensionless statistic which allows direct comparison of 
the dispersion of samples with different underlying measures (for example, one could 
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compare the CV for cyclomatic complexity with the CV for module length, even 
though they are measured in totally different units).

4.1.3. Measures of Association

The most common measure of association between two measures is the correlation 
coefficient, which is a standardized way of describing the amount by which they 
 covary. The correlation coefficient, r, is the square root of the amount of shared 
 covariation between the two measures; thus while r2 is an easily interpreted ratio 
measure (an r2 of 0.4 is half that of an r2 of 0.8), correlation coefficients are  non-
 linear: an r of 0.4 is not half that of an r of 0.8, but only one-quarter as large. Because 
they are adjusted for the amount of variation present in the variables being correlated, 
correlation coefficients among different sets of measures can be  compared. However, cor-
relation coefficients are sensitive to the range of variation present in each variable; in 
particular, large differences in the two ranges of  variation place an a priori limit on 
the size of r. Thus, special forms of correlation coefficient have been developed for 
the cases like that of a binary and a continuous variable.

4.1.4. Categorical Data

Categorical data come in two basic kinds: binomial data, where there are only two 
categories, and multinomial data, where there are more than two. Description of 
categorical data is typically done by means of the proportion or percentage of the 
total each category comprises. While pie charts are a common graphical representa-
tion, histograms or polar charts (also called Kiviat diagrams or star plots) are more 
 accurately read (Cleveland, 1994). It is important to not report proportions or 
 percentages of small samples to a greater degree of precision than the data warrant: 
11 out of 63 cases is not 17.46%, because the smallest percentage that can be 
observed in a sample of 63 (i.e., one individual) constitutes more than one percent 
of the sample.

There are a variety of measures of association between two categorical variables 
(as long as the categories can be considered ordered), see Goodman and Kruskal 
(1979); all of them can be thought of as special instances of correlation.

4.1.5. Ordinal Data

Ordinal data present special challenges since they contain more information than 
simple categories, but ostensibly not enough to justify more sophisticated statisti-
cal techniques, or even the calculation of the mean and standard deviation. 
Analysis of ordinal data therefore typically reduces it to the nominal level, or 
promotes it to the interval or ratio ones. Both of these approaches can frequently 
be justified on pragmatic grounds.
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A prototypical example of ordinal data is the subjective rating scale. The sim-
plest description of such data is simply its distribution, which is done the same way 
as for multinomial categorical data. Since the number of scale values is limited, 
simply listing the percentage of cases for each value is more useful than the range 
or standard deviation. Since such data are often skewed (see Fig. 3 for an example 
from a satisfaction rating scale), the median is a better measure of central tendency 
than the mean. Since most responses pile up at one end, this has the effect of 
 making the mean of the scale values most sensitive to changes in values at the other, 
skewed end (in the case of Fig. 3, at the low-satisfaction end). Thus in Fig. 3 the 
mean of the satisfaction ratings is paradoxically more sensitive to measuring 
changes in dissatisfaction than satisfaction.

Correlation of ordinal values is typically done with non-parametric measures 
such as the Spearman correlation coefficient, Kendall’s tau, or the kappa statistic 
used for inter-rater reliability. Interpretation of such statistics is harder than correla-
tion coefficients because of the lack of equal intervals or ratios in ordinal values; 
a tau or kappa value of 0.8 is not strictly twice as good as one of 0.4.

4.2. Comparison

Data are rarely collected simply for description; comparison to a real or ideal value 
is one of the main aims of statistical analysis.

The basic paradigm of statistical comparison is to create a model (the null 
hypothesis) of what we would observe if only chance variation were at play. 
In the case of comparing two samples, the null hypothesis is that the two samples 
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Fig. 3 An example of skewness in ordinal data (from a rating scale)
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come from the same underlying population, and thus will have descriptive statis-
tics (e.g., the mean) that differ only by an amount that would be expected 
by chance, i.e., whose expected difference is zero. If the observed difference is 
very unlikely to occur just by chance, then we conclude (with some small risk of 
being wrong) that the two samples are not from the same population, but rather 
two different ones with different characteristics.

The basic method of statistical comparison is to compare the difference in the 
average values for two groups with the amount of dispersion in the groups’ values. 
That is, we would judge a difference of 10 units to be more significant if the two 
groups’ values ranged from 30 to 40 than if they ranged from 300 to 400. In the 
latter case we would easily expect a 10-unit difference to appear in two successive 
samples drawn from exactly the same population.

Statistical tests of comparison are decisions about whether an observed differ-
ence is a real one, and as such, they are subject to two kinds of error:

Type I error (symbolized by a) – incorrectly rejecting the null hypothesis, and 
deciding that a difference is real when it is not,

Type II error (symbolized by b) – incorrectly not rejecting the null hypothesis, and 
deciding that a difference is not real when it is.

The probabilities determined for these two types of error affect how a result is to 
be interpreted. The value for alpha is traditionally set at 0.05; the value for beta 
is typically not even considered; this is a mistake, because the value of (1 − b) 
 determines the power of a statistical test, i.e., the probability that it will be able 
to correctly detect a difference when one is present. The major determinant 
of statistical power is the size of the sample being analyzed; consequently, an 
 effective use of statistical tests requires determining – before the data are 
 collected – the sample size necessary to provide sufficient power to answer 
the statistical question being asked. A good introduction to these power analysis/
sample size procedures is given in Cohen (1988).

Because of this issue of statistical power, it is a mistake to assume that, if the 
null hypothesis is not rejected, then it must be accepted, since the sample size 
may be too small to have detected the true difference. Demonstrating statistical 
equivalence (that two samples do, in fact, come from the same population) must 
be done by special methods that often require even more power than testing for 
a difference. See Wellek (2002) for an introduction to equivalence testing.

The classic test for comparing two samples is the venerable t-test; its 
 generalization to simultaneous comparison of more than two samples is the 
(one-way)  analysis of variance (ANOVA), with its F-test. Both of these 
are parametric tests based on asymptotic approximations to Normal distribu-
tions. While the two-sample t-test is remarkably resistant to violations of its 
assumptions (e.g., skewed data), the analysis of variance is not as robust. In 
general, for small samples or skewed data non- parametric tests are much 
 preferred; most univariate parametric tests have non-parametric analogues 
(here, the Wilcoxon/Mann-Whitney test and the Kruskal-Wallis test). A good 
reference is Sprent (1993).
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Occasionally, one may wish to compare an observed mean against a  hypothesized 
value rather than another group mean; this can be done by means of a one-sample 
t-test or equivalently, if the sample is large (>30), by a Z-test.

4.2.1. Categorical Data

Comparison of categorical data between two or more samples is typically done by 
a chi-squared test on an n × m table where the rows are the samples and the columns 
are the categories (see Agresti, 1998; Wickens, 1989). For tables with small cell 
values (where the standard chi-squared tests are inaccurate), special computation-
ally intensive tests can be used instead (see Good, 1994). Frequently the description 
and comparison of interest in categorical data is simply a test of whether the 
 proportion of some outcome of interest is the same in two samples; this can be done 
by a simple binomial test (see Fliess, 1981).

4.2.2. Ordinal Data

Comparison of ordinal data between two or more groups can be done by the same sort of 
n × m table methods described above for categorical data (and some  ordinal extensions 
have been developed; see Agresti, 1984). Equally useful are rank-based techniques such 
as the Wilcoxon/Mann-Whitney and Kruskal-Wallis tests  mentioned above.

A common comparative analysis performed on rating scale data is to look for 
improvements in ratings by comparing the means of two samples taken at different 
points in time, such as repeated surveys with different respondent samples. Even if 
calculating the mean for such a scale were reasonable (and it is for some ordinal 
scales whose behavior appears similar to ratio scales), the mean is sensitive to those 
few values at the skewed end which are of least interest. Thus any change in the mean 
at best only indirectly reflects the phenomenon of interest. Using the median does not 
have this problem, but suffers from the fact that the scale has few values and thus the 
median is likely to be the same from one sample to the next. There are two ways to 
compare such samples of rating scale data; both reduce the data to categorical data. 
The first method is to compare the entire distribution of responses across both sam-
ples in a 2 × n table. The second method is to focus just on the category of greatest 
interest (say, the highest one or two), and compare the proportion of responses in that 
category in the two samples. While this method loses more information than the first, 
it focuses on the main area of interest and is easier to report and interpret.

4.3. Prediction

Frequently, measurements are made in order to predict the value of other measure-
ments of interest. Such predictions do not have to be temporal ones; the notion of 
correlation is at bottom a predictive one: knowing the value of one measurement on 
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a unit, increases one’s knowledge of the possible value of other measurements on it. 
The prototype of such prediction is regression. Originally limited to linear prediction 
equations and least-squares fitting methods, regression methodology has been 
extended over the course of the past century to cover an impressive variety of situa-
tions and methodologies using the framework of generalized linear models. Good 
references are Draper and Smith (1998), Rawlings et al. (1998), and Dobson (2001).

The essential method of regression is to fit an equation to pairs of measurements 
(X, Y) on a sample in such a way as to minimize the error in predicting one of the 
measures (Y) from the other (X). The simplest such case is where the regression 
equation is limited to a linear form:

 Y = a + bX + error 

and the total error measure is the sum of squared differences between the pre-
dicted and actual observations. The regression coefficient b then reflects the 
effect on Y of a 1-unit change in X. This notion of regression can then be generalized 
to prediction of a Y measure by a set of X measures; this is multiple or multi-
variate regression.

Even an elementary discussion of the method and application of regression is 
beyond the scope of this chapter (see Rosenberg, 2000 for one oriented toward 
software metrics), but a number of pitfalls should be mentioned.

First, most regression methods are parametric in nature and thus are sensi-
tive to violations of their assumptions. Even in doing a simple univariate 
regression, one should always look at the data first. Figure 4 shows a cautionary 
example from Anscombe (1973); all four datasets have exactly the same 
regression line.

Second, regression models by definition fit an equation to all and only the data 
presented to them. In particular, while it is possible to substitute into the regres-
sion equation an X value outside the range of those used to originally fit the 
regression, there is no guarantee that the resulting predicted Y value will be 
appropriate. In effect, the procedure assumes that the relevant range of X values 
is present in the sample, and new X values will be within that range. This problem 
with out of range prediction complicates the use of regression methods for tem-
poral predictions where the X value is time, and thus new observations are by 
definition out of range. For predicting temporal data, other methods must be used 
(as described in Sect. 5.3).

Third, regression equations have an estimation error attached to them just like 
any statistical estimate. Plotting the confidence bands around a regression line gives 
a good indication of how useful the equation really is.

Fourth, multivariate regression assumes that the multiple predictor measures are 
independent, i.e., uncorrelated with each other, otherwise the results will be incor-
rect. Since multiple measures are often correlated, it is critical to look at the pattern 
of correlations among the predictor variables before doing a multivariate regres-
sion. If even a moderate amount of correlation is present, something must be done 
about it, such as dropping or combining predictors.
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Fig. 4 Anscombe’s example of four different data sets with exactly the same best-fitting 
regression line

4.3.1. Categorical Data

A frequent question of interest is how a binomial or other categorical variable can 
be predicted from another one, or from one or more ordinal or continuous variables 
(see El Emam et al., 1999 for an example in the area of software metrics). Such a 
prediction is sometimes called termed a classification task, especially if there are 
more than two categories; see Hand (1997) for a general discussion. The case of 
predicting a dichotomous outcome is termed a diagnostic prediction from its 
 prototypical example in biostatistics: predicting whether or not a person has a 
 disease based on one or more test outcomes. The accuracy in such a diagnostic 
 situation can be characterized by a 2 × 2 table, as shown in Table 1, where the 
 predictor variable(s) are constrained to make a binomial prediction which is then 
compared to the “true” value.1

Table 1. The structure of a prototypical diagnostic prediction

 Reality

Prediction Negative Positive

Negative True negative (A) False negative (B)
Positive False positive (C) True positive (D)

1 A known true value in such situations is called a gold standard; much work has been done on the 
problem of assessing predictive accuracy in the absence of such a standard (see, for example, 
Valenstein, 1990; Phelps and Huston, 1995).



172 J. Rosenberg

Predictive accuracy in this context can be measured either as positive predictive 
accuracy (D/[C+D]), negative predictive accuracy (A/[A+B]), or both together 
(A+D/[A+B+C+D]). Two other relevant measures are sensitivity, the probability of 
correctly predicting a positive case, (D/[D+B]), and specificity, the probability 
of correctly predicting a negative case, (A/[A+C]).

There is an extensive literature on binomial prediction; much of it has been 
influenced by the theory of signal detection, which highlights a critical feature of 
such predictive situations: the prediction is based not only on the amount of infor-
mation present, but also on some decision criterion or cutoff point on the predictor 
variable where the predicted outcome changes from one binomial value to the other. 
The choice of where to put the decision criterion inescapably involves a tradeoff 
between sensitivity and specificity. A consequence of this is that two prediction 
schemes can share the same data and informational component and yet have very 
different predictive accuracies if they use different decision criteria. Another way 
of putting this is that the values in any diagnostic 2 × 2 table are determined by both 
the data and a decision criterion. The merit of signal detection theory is that it 
 provides an explicit framework for quantifying the effect of different decision 
 criteria, as revealed in the ROC curve for a given predictive model, which plots the 
true-positive rate (sensitivity) and false-positive rate (1 – specificity) of the model 
for different values of the decision criterion (see Fig. 5). The ROC curve provides 
two useful pieces of information. First, the area under the curve above the diagonal 
line is a direct measure of the predictive accuracy of the model (the diagonal line 
indicates 50% accuracy or chance performance; a curve hugging the upper left 

Fig. 5. An example receiver operating characteristic (ROC) curve
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 corner would indicate 100% accuracy). Second, one can graphically compare the 
relative accuracy of two models by their ROC curves: if the two curves do not 
intersect, then one model always dominates the other; if they do intersect, then one 
model will be more accurate for some values of the predictor variables. A good 
introduction to signal detection theory is Swets (1996). Zhou et al. (2002) provide 
a thorough guide to its application.

Regression methodology has been adapted for predicting binomial outcomes; 
the result is called logistic regression because the predictions have to be scaled by 
the logistic transformation so that they range between 0 and 1 (see Kleinbaum, 
1994; Hosmer and Lemeshow, 1989). Coefficients in logistic regression have a 
somewhat different interpretation than in ordinary regression, due to the different 
context. The results of a logistic regression are often also expressed in terms of 
ROC curves.

4.3.2. Ordinal Data

Prediction of ordinal values is rarely done except by assuming that the values 
reflect an underlying interval or ratio scale, in which case standard regression 
 methods are used.

5. Analyzing Dynamic Measurement Data

One of the most frequent uses of metrics is to track some attribute over time, either 
to detect or forecast changes in it, or to verify that the value is unchanging apart from 
unavoidable random variation. Such time series data, as they are called, have as their 
essential characteristic the presence of temporal structure. The chief structural 
 patterns are trend, a long-term change in value, typically monotonic  but sometimes 
cyclic in an aperiodic manner, or both; and seasonal change, a cycle of change with 
a fixed period, as with changes over the course of the seasons in a year. While the 
usual goal is to identify these temporal components, sometimes the goal is to demon-
strate that no such components are present; such a time series is said to be stationary. 
It should be noted that analyses of time series data require at least three seasonal 
cycles worth of data, since estimating the seasonal component require more than one 
season’s worth of data. Having less data seriously restricts the kinds of analyses that 
can be done, and usually arises in situations more accurately termed longitudinal or 
repeated measures analysis, where the goal is to examine relatively large-scale 
 permanent changes such as physical growth or skill-acquisition. See Singer and 
Willet (2003) and Crowder and Hand (1990) for examples.

In addition to the methods described below, there are a great many other types 
of dynamic data analysis, such as survival analysis (mentioned briefly above), and 
state space models. See Gottman (1995) and Haccou and Meelis (1994) for 
examples.
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5.1. Description

As with any analysis, the first step is to look at the data. Figure 6 shows a typical dataset 
containing a long-term increasing trend, with an additional seasonal  component (every 
12 months). The top panel shows the observed data, while the lower two panels display 
the underlying trend and seasonal components, respectively. Methods for such time-
series decomposition are discussed in Bowerman and O’Connell (1993).

There are a number of ways such data can be used. The first way is simply to 
describe the history of some process. Rather than summarizing the history by a 
histogram or descriptive statistics such as the mean or standard deviation (which 
would miss entirely the temporal aspect of the data), the time chart and its decom-
position into trend and seasonal components is the main focus.

Most discussions of time series analysis make the assumption that the observa-
tions are made with little or no error, otherwise the variation in the measurements 
themselves could obscure the temporal patterns. This means that this sort of analysis 
is best used on continuous measures (or counts) made with high reliability and 
precision, rather than ordinal measures such as ratings.

It is always important to verify that the temporal measurements in a time series 
are in fact equivalent. For example, fluctuations in the number of defects reported 
for each month in a 1-year period might seem to warrant some concern about qual-
ity variation, but in that respect they may be illusory. Months may seem equal, but 
they vary in length by up to 10%, and when the number of actual working days is 

0 50 100 150 200
Weeks

Fig. 6 Time series decomposition chart for data in Fig. 6
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taken into account, they can vary by 25% or more. The same data adjusted for the 
number of work days may show little variation at all. This is not to say that the first 
approach is “false,” merely that it can be seriously misleading if the variation in 
temporal units is not made clear. Even if the defect submission rate is constant from 
month the month, the actual number of defects submitted will vary; the first piece 
of information may be comforting for the quality manager, but the second piece is 
more valuable to the support manager.

5.2. Comparison

Often the question of interest is: “Is the latest observation evidence of a change 
in trend?” Such a question is difficult to answer on the basis of a single observation. 
Often, however, that observation is actually a summary of a number of observa-
tions, for example, the mean of some set of measurements. In that case one can use 
the same sort of statistical methods used with static data to compare the latest sam-
ple with the previous one. Typically, however, the sample sizes involved are too 
small to detect the small level of change involved. A more common method of looking 
for a change in trend is to compare the latest observation with the value predicted 
for it by a forecast.

5.3. Prediction

Another major use of time series data is forecasting: predicting one or more future 
observations based on the data at hand. The larger the amount of data at hand, the 
better the forecasting that can be done. Even with few data, however, there are some 
simple techniques that can be used. The simplest forecast technique is the so-called 
naive predictor, which assumes that the future value will be the same as the present 
value. This actually can be a useful first approximation in many cases, for example, 
tomorrow’s temperature is likely to be similar to today’s. Other naive predictors can 
be defined; for example, if there is a small amount of data beyond one seasonal 
cycle (say 15 months, January of one year to March of the following year) one can 
take the average difference between the observations made on the same part of the 
cycle (January to March for both years) and use that as an increment for forecasting 
the rest of second cycle based on corresponding values from the first.

Such naive predictors can be useful for first approximations, and can also serve 
as concrete points of departure for discussions about possible alternative forecasts. 
Perhaps most importantly, they can be used as baselines for evaluating the predic-
tive accuracy of more sophisticated forecasting techniques.

There are a variety of ways of quantifying the accuracy of forecasts, all of them 
based on some measure of the difference between forecast and actual values. Chief 
among these are (here “error” and “deviation” mean the same thing):
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Mean absolute deviation (MAD) the average absolute difference between observed 
and forecasted values (this penalizes errors in direct proportion to their size, and 
regardless of direction);

Mean squared error (MSE) the average squared difference between observed and 
forecasted values (this penalizes errors as the square of their size, also regardless 
of direction);

Mean percentage error (MPE) the average proportional difference between forecast 
and actual values (i.e., (actual – forecast/actual), expressed as a percentage;

Mean absolute percentage error (MAPE) the average absolute proportional differ-
ence, expressed as a percentage.

There are many more possible accuracy measures, each with its advantages and 
disadvantages; some may not be applicable with some kinds of data (for example, 
MPE and MAPE do not make sense when the data are not measured on a ratio scale 
with a zero point). Which to use depends on the purpose of the forecast, and which 
kinds of errors are considered worse than others (see Makridakis, 1998).2

Assessing the overall accuracy of a forecast is more complicated than in the case 
of static predictions with regression. A common technique is to set a desired standard 
of absolute or relative accuracy beforehand, and then compare the accuracy of  various 
forecasting methods with that of a naive predictor. Often the choice of forecasting 
methods comes down to a trade-off between accuracy and difficulty of computation.

An additional issue to consider in forecasting is whether a forecast metric is a 
leading, lagging, or coinciding indicator, that is, whether changes in the metric 
occur before, after, or at the same time as changes in some other metric of interest. 
Leading indicators are highly desirable, but few metrics have that property. The 
issue is important because a metric cannot be effectively used for process control 
purposes unless its temporal connection with the process is understood.

5.4. Process Control

The other major use of dynamic, temporally oriented data is in determining that 
there is not change over time. This is the area of statistical process control.

A process is performing effectively if its behavior only changes under conscious 
direction; left alone it should remain stable, and measurements made on it should 
remain the same apart from the inevitable and unimportant random variation. In the 
1920’s Walter Shewhart at Western Electric devised a statistical method for quanti-
fying and monitoring the stability of a process, the control chart, examples of 
which are shown in Fig. 7. 

As can be seen, the control chart looks very much like a trend chart, except that 
it is based on a defined control level or expected value of the measurements (the 

2 These accuracy measures can also be used in assessing the fit of models to static data, of course, 
but in the latter case there are more useful global goodness-of-fit measures such as R2 which are 
used instead. Such measures are not available for forecasting dynamic data.
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solid line), as well as control limits (the dashed lines), which define the range of 
 values that are expected to be observed if the process is operating stably at the 
 control level (and thus differences in observed measurements are due simply to 
 random  variation). There are different types of control chart, depending on the kind 
of measurement being tracked, such as continuous measures, counts, or proportions. 
Multivariate control charts track several measurements jointly. The overall principle 
is the same in each case: a baseline control level is established by a series of 
 measurements of the process, and control limits are defined in terms of the observed 
variability of the process (and possibly also the desired variability). One then plots 
measurements of the process taken at regular intervals and looks either for measure-
ments lying outside the control limits (and thus indicating that the process is 
 operating outside of its normal range, presumably because of some interfering 
 factor), or for patterns in the measurements which suggest that the observed variability 
is not random, but is due to some factor or factors affecting the process.

Figure 7a illustrates a process that is under statistical control; Fig. 7b shows one that 
is out of control and Fig. 8a shows one that, while apparently under control (being inside 
the control limits), shows patterns in the measurements that deserve investigation.

In the decades since they were first developed, there have been many different 
variations developed to handle the variety of process control situations that arise. One 
of the most useful variants is the cumulative sum or cusum chart, which is more 
 sensitive at detecting changes in the level of process measurements. Cusum charts 
work by accumulating the deviations from the baseline expected value of the process; 
if the variation is truly random, the variations in one direction counterbalance those 
in the opposite direction and the cumulative sum remains close to zero. If, on the other 
hand, variations in the process are biased even slightly in one direction or the 
other, then the cumulative sum will advance towards the upper or lower control limit. 
This accumulation of small biases allows the trend to be detected earlier than would 
be the case with a standard control chart. Figure 8 shows both a standard chart and a 
cusum chart for a process that is drifting slowly out of control.

The theory and practice of control charts is highly developed and remains a 
 central part of quality engineering. Good references are Montgomery (1996) and 
Duncan (1986). More recently, Box and Luceño (1997) have elaborated the 
 relationship between statistical process control and engineering control theory. 

Fig. 7 Control charts showing (a) A process which is in control, (b) A process which is not in 
control
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There are also statistical  methods for the optimization of process metrics, such as 
Evolutionary Operation (Box and Draper, 1969), response surface methodology 
(Montgomery and Myers, 2002), and data envelopment analysis/stochastic frontier 
analysis (Jacobs et al., 2006).

6. Data Quality

At this point, it is appropriate to return to the context of measurement and the depend-
ence of statistical analysis on the quality of the underlying data collection process.

Data quality is a critical problem in industrial management, yet one often only 
vaguely recognized by decision makers who consume the ultimate endproducts of those 
data. This problem has come to light with the development of data  warehouses, as ware-
house developers discover that bad data can turn a data warehouse into a data garbage 
dump. The first step, then, in using measurements is ensuring that those measurements 
are of sufficient validity and accuracy to enable conclusions to be drawn from them.

The sources of data quality problems are manifold (apart from the question of 
bad metrics, dealt with in Sect. 3). Chief among them are

● Organizational problems
● Lack of precise definitions
● Lack of data validation
● Missing data
● Sampling bias

6.1. Organizational Problems

It is common for metrics to be defined and collected by people other than those to 
whom the metrics apply; this a recipe for trouble. The problem is exacerbated when 
a process is evaluated by management on the basis of metrics that the people carry-
ing out the process find irrelevant or misguided; the inevitable result is distortion of 

Fig. 8 A Process drifting slowly out of control as shown in (a) A standard control chart, (b) A 
cusum chart
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the work process to produce acceptable numbers, rather than valid or meaningful 
ones. For a metrics program to be successful, all parts of the organization involved 
need to be in agreement on the meaningfulness of the metrics and their role in the 
organization’s effective functioning.

6.2. Lack of Precise Definitions

Many problems are caused by lack of a precise definition for a measurement. For 
 example, measuring defects in software for whatever purpose, be it research or quality 
management, requires a clear definition of what constitutes a defect. This definition 
may reasonably vary depending on the question being asked (and the goal that question 
is answering), but whatever the purpose, the definition must address such issues as

● Are feature enhancement requests defects?
● Are usability problems defects?
● Are internally reported problems defects?

Similarly, measuring the time it takes to repair a defect requires addressing such 
issues as

● When does the clock start?
● Does it start at different times for internally vs. externally reported defects?
● When does the clock stop?
● What time is recorded if the repair of the defect turns out not to be a repair after all?

If these issues are not addressed at the time the metric is defined, then they will 
have to be addressed by those collecting the data if and when they arise. Not 
 surprisingly, when that happens the results may not be as intended. The problem of 
vague definition is exacerbated when the measurements must be collected by 
 different groups or individuals who often have, or develop over time, different 
interpretations of the definition. Such different definitions may go unnoticed for 
long periods of time until some situation brings it out.

Detecting the lack of precise definitions is done most directly by looking for 
explicit written documentation of what the definition of each of the measures is. 
In the frequent case where such information is lacking, it becomes necessary to 
interrogate those responsible for collecting, processing, and analyzing the data 
to find out what they have been assuming the measures’ definitions to be; their 
answers will often be conflicting.

6.3. Lack of Data Validation

A precise definition for a metric is no guarantee that the values recorded for it make 
sense. It is very common to find observations with dubious or outright impossible 
values, due directly or indirectly to data-entry problems. These range from typing 
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errors to miscalibrated measuring devices to lack of understanding of the metric’s 
definition. The presence of bad values is usually easy to detect if one takes the 
trouble to look; frequently, as long as the measurement process produces values that 
seem “reasonable” no-one bothers to audit the process to verify that the measure-
ments are correct. For example, consider measurements of resolution times for 
customer problems that are derived from recording the dates and times when the 
service ticket is officially opened and closed. If there is no validation done to ensure 
that the closing time is chronologically later than the opening time, the derived 
resolution metric might take on zero or even negative values (perhaps from subtrac-
tion of a constant amount from all tickets; this would only become negative in ones 
with small values). Even if this occurs in only a small percentage of cases, it can 
 seriously bias the estimates of resolution time. Simply dropping anomalous cases 
when they are found is not a solution until investigation has shown that such cases 
occur at random rather than for some systematic reason. Any particular case of bad 
data may have many potential causes which must be investigated; an occasional 
data entry error might be ignored, but a systematic distortion of entries cannot be.

Validation of data is the essential tedious first step of any data analysis. It can 
be made much easier and faster if the data are validated as they are collected. 
There are two difficulties which frequently prevent that from happening. First, 
those  collecting the data are often not the ones who will use it for analysis, and thus 
have little understanding or interest in making sure that the data are correct. This is 
not due to maliciousness; it is simply due to different motivation. To take the above 
example, the people working the service desk have as their main goal the rapid 
processing of as many service tickets as possible; data validation interferes with 
this, with little or no visible benefit. Solving this problem requires educating man-
agement as well as the workers.

Second, even if validation is intended, it may be impossible to do in real time 
without degrading process performance. The general solution here is to arrange 
some way to do it “off line” rather than in real time, for example, validating new 
database entries overnight.

Detecting problems of data validation is done by performing extensive  assertion- 
and consistency-checking of the dataset. For example, if the dataset contains  measures 
of duration, they should be checked to make sure that each value is greater than zero. 
Often it is important to ensure that the value of one measure is logically compatible 
with that of some other measure. For example, a problem resolution of “replaced 
 circuit board” is not consistent with a trouble report  classified as “software problem.”

6.4. Missing Data

It is rare to find a large dataset without missing values on at least some of its meas-
urements, and care must be taken that missing-value codes (e.g., “99”) are not mis-
takenly interpreted as genuine data values. (A particularly insidious case of this occurs 
with spreadsheets, which treat missing data as actually having the value “0.”) This 
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raises the possibility that an analysis using only the available data may be subject 
to an unknown amount of error. The issues are therefore how much data can be 
missing without affecting the quality of the measurements, and what if anything can 
be done to remedy the situation. There is a large body of literature on this subject, 
which is discussed in the chapter by Audris Mockus in this volume.

6.5. Sampling Bias

The problems just discussed are easy to observe and understand. More subtle but just 
as serious is the problem of sampling bias. A precisely defined, thoroughly validated, 
complete dataset can still be useless if the measurement process only measures a par-
ticular subset of the population of interest. This can be for a number of reasons:

6.5.1. Self-selection

It may be that only some units in the population put themselves in the position of 
being measured. This is a typical problem in surveys, since typically there is little 
compulsion to respond, and so only those individuals who choose to be measured 
provide data. Similarly, only those customers with problems are observed by the 
customer service department.

6.5.2. Observability

Some measurements by definition are selective and can lead to subtle biases. For 
example, in a study of defect densities, some source modules will have no (known) 
defects and thus a defect density of zero. If these cases are excluded, then state-
ments about correlates of defect density are true only of modules which have 
known defects, not all modules, and thus cannot easily be generalized. Another 
kind of observability problem can occur, not with the units being observed, but with 
the measuring device. For example, if problem resolutions are measured in days, 
then resolutions which are done in ten minutes are not accurately observed, since 
their time must be rounded down to zero or up to one day.

6.5.3. Non-random Sampling

A frequent problem in surveys, this also plagues many other kinds of measure-
ments, including experiments where the selection of experimental units is not 
properly considered. Lack of information about the population, coupled with a bias 
to sample those units which are easy to sample, can result in a measured sample 
which is quite unrepresentative of the population of interest.
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Detecting sampling bias can be difficult, because it typically happens before the 
data are collected. It can sometimes be spotted by the absence of certain kinds of 
data (customers from one region, service times longer than 1 month, etc.), but usu-
ally must be identified by studying the documentation for the data collection proc-
ess or interrogating the people who carry it out. Correcting sampling bias is 
extremely difficult, since the basic problem is the complete lack of representation 
for some part of the population. To the extent that the type and degree of bias is 
known (also a difficult problem) it may be possible to adjust for it, but generally the 
only solution is to make it clear just what subset of the population is described in 
the dataset. A good discussion of detecting and coping with overt and hidden biases 
can be found in Rosenbaum (2002).

As should be clear from the above, problems of data quality are ubiquitous and 
difficult to deal with, particularly because there are only general guidelines for what 
to do, and each case must be handled on its own terms.

7. Summary

This chapter has discussed the role of the measurement process, the need for 
 metrics to be clearly defined, reliable, and valid in order for them to be effective, 
and various statistical techniques and pitfalls in analyzing measurement data. 
Understanding measurement is a crucial part in the development of any branch of 
science (see Hand, 2004); the amount of effort devoted to it in empirical research 
in software engineering reflects the necessity of answering some of the most 
 fundamental questions facing computer science and engineering. Fortunately, we 
can take advantage of the experience and knowledge gained by other disciplines, 
and apply them with advantage in developing effective software measurement.

References

Agresti, A, Analysis of Ordinal Categorical Data. New York: Wiley. 1984.
Agresti, A, An Introduction to Categorical Data Analysis. New York: Wiley. 1998.
Anscombe, F, Graphs in statistical analysis. American Statistician. 27(1):17–21. 1973.
Basili, V, Caldiera, G, and Rombach, D, The goal question metric approach. In: Marciniak, J, ed., 

Encyclopedia of Software Engineering. New York: Wiley. 1994.
Bevington, P, and Robinson, D, Data Reduction and Error Analysis for the Physical Sciences, 2nd 

ed. New York: McGraw-Hill. 1992.
Bowerman, B, and O’Connell, R, Forecasting and Time Series: An Applied Approach, 3rd. ed. 

Belmont, CA: Wadsworth. 1993.
Box, G and Draper, N, Evolutionary Operation: A Statistical Method for Process Improvement. 

New York: Wiley. 1969.
Box, G and Luceño, A, Statistical Control by Monitoring and Feedback Adjustment. New York: 

Wiley. 1997.



6 Statistical Methods and Measurement 183

Briand, L, El Emam, K, and Morasca, S, On the application of measurement theory to software 
engineering. Empirical Software Engineering. 1(1). 1996.

Chayes, F, Ratio Correlation. Chicago: University of Chicago Press. 1971.
Cleveland, W, The Elements of Graphing Data. Summit, NJ: Hobart Press. 1994.
Cliff, N, What is and isn’t measurement. In: Keren, G and Lewis, C, eds., A Handbook For Data 

Analysis in the Behavioral Sciences, Vol. 1: Methodological Issues. Hillsdale, NJ: Erlbaum. 
1992.

Cohen, J, Statistical Power Analysis for the Behavioral Sciences, 2nd ed. Hillside, NJ: Erlbaum. 1988.
Comrey, A and Lee, H, A First Course in Factor Analysis, 2nd ed. Hillsdale, NJ: Erlbaum. 1992.
Crowder, M, and Hand, D, Analysis of Repeated Measures. New York: Chapman and Hall. 1990.
Dobson, A, An Introduction to Generalized Linear Models, 2nd ed. New York: Chapman and 

Hall/CRC. 2001.
Draper, N and Smith, H, Applied Regression Analysis, 2nd ed. New York: Wiley. 1998.
Duncan, A, Quality Control and Industrial Statistics, 5th ed. New York: Irwin. 1986.
El Emam, K, Benlarbi, S, and Goel, N, Comparing case-based reasoning classifiers for predicting 

high risk software components. National Research Council Canada technical report NRC 
43602/ERB-1058. 1999.

Fenton, N and Pfleeger, S, Software Metrics: A Rigorous and Practical Approach, 2nd ed. Boston: 
PWS Publishing. 1997.

Fliess, J, Statistical Methods for Rates and Proportions, 2nd ed. New York: Wiley. 1981.
Ghiselli, E, Campbell, J, and Zedeck, S, Measurement Theory for the Behavioral Sciences. San 

Francisco: Freeman. 1981.
Good, P, Permutation Tests. New York: Springer. 1994.
Goodman, L and Kruskal, W, Measures of Association for Cross Classifications. New York: 

Springer. 1979.
Gottman, J, ed., The Analysis of Change. Hillsdale, NJ: Erlbaum. 1995.
Haccou, P, and Meelis, E, Statistical Analysis of Behavioural Data: An Approach Based on Time-

Structured Models. Oxford: Oxford University Press. 1994.
Hand, D, Construction and Assessment of Classification Rules. New York: Wiley. 1997.
Hand, D, Measurement Theory and Practice: The World through Quantification. Oxford: Oxford 

University Press. 2004.
Hosmer, D and Lemeshow, S, Applied Logistic Regression. New York: Wiley. 1989.
Hosmer, D and Lemeshow, S, Applied Survival Analysis. New York: Wiley. 1999.
Jacobs, R, Smith, P, and Street, A, Measuring Efficiency in Health Care: Analytic Techniques and 

Health Policy. Cambridge: Cambridge University Press. 2006.
Keppel, G, Design and Analysis: A Researcher’s Handbook, 3rd ed. New York: Prentice Hall. 1991.
Kleinbaum, D, Logistic Regression. New York: Springer. 1994.
Kleinbaum, D, Survival Analysis. New York: Springer. 1996.
Krantz, D, Luce, R, Suppes, P, and Tversky, A, Foundations of Measurement. New York: 

Academic. 1971.
Long, J, Regression Models for Categorical and Limited Dependent Variables. Thousand Oaks, 

CA: Sage. 1997.
Maddala, G, Limited-Dependent and Qualitative Variables in Econometrics. Cambridge: 

Cambridge University Press. 1986.
Makridakis, S, Wheelwright, S, and Hyndman, R, Forecasting: Methods and Applications, 3rd ed. 

New York: Wiley. 1998.
Montgomery, D, Introduction to Statistical Quality Control, 3rd ed. New York: Wiley. 1996.
Montgomery, D and Myers, R, Response Surface Methodology: Process and Product Optimization 

Using Designed Experiments, 2nd ed. New York: Wiley. 2002.
Phelps, C, and Huston, A, Estimating diagnostic accuracy using a “fuzzy gold standard”. Medical 

Decision Making 15:44–57. 1995.
Rawlings, J, Pantula, S, and Dickey, D, Applied Regression Analysis, 2nd ed. New York: Springer. 

1998.
Rosenbaum, P, Observational Studies, 2nd ed. New York: Springer. 2002.



184 J. Rosenberg

Rosenberg, J, A methodology for evaluating predictive metrics. In: Zelkowitz, M., ed., Advances 
in Computers, Vol. 23. New York: Academic. 2000.

Shepperd, M and Ince, D, Derivation and Validation of Software Metrics. Oxford: Clarendon 
Press. 1993.

Singer, J and Willett, J, Applied Longitudinal Data Analysis: Modeling Change and Event 
Occurrence. Oxford: Oxford University Press. 2003.

Sprent, P, Applied Non-Parametric Statistical Methods, 2nd ed. New York: Chapman and Hall. 
1993.

Swets, J, Signal Detection Theory and ROC Analysis in Psychology and Diagnostics. Hillsdale, 
NJ: Erlbaum. 1996.

Taylor, J, An Introduction to Error Analysis, 2nd ed. Sausalito, CA: University Science Books. 
1997.

Valenstein, P, Evaluating diagnostic tests with imperfect standards. American Journal of Clinical 
Pathology 93:252–258. 1990.

Velleman, P, Nominal, ordinal, interval, and ratio typologies are misleading. American Statistician. 
47:65–72. 1993.

Wellek, S, Testing Statistical Hypotheses of Equivalence. New York: Chapman and Hall/CRC 
Press. 2002.

Wickens, T, Multiway Contingency Tables Analysis for the Social Sciences. Hillsdale, NJ: 
Erlbaum. 1989.

Zhou, X, Obuchowski, N, and McClish, D, Statistical Methods in Diagnostic Medicine. New 
York: Wiley. 2002.

Zuse, H, Software Complexity: Measures and Methods. New York: Walter de Gruyter. 1990.



Chapter 7
Missing Data in Software Engineering

Audris Mockus

Abstract The collection of valid software engineering data involves substantial 
effort and is not a priority in most software production environments. This often 
leads to missing or otherwise invalid data. This fact tends to be overlooked by most 
software engineering researchers and may lead to a biased analysis. This chapter 
reviews missing data methods and applies them on a software engineering data set 
to illustrate a variety of practical contexts where such techniques are needed and to 
highlight the pitfalls of ignoring the missing data problem.

1. Introduction

The goal of this chapter is to increase the awareness of missing data techniques 
among people performing studies in software engineering. Three primary reasons 
for this presentation are:

1. The “quick-fix” techniques that drop the cases with missing values may yield 
biased or inconclusive results. Such techniques are still widely (and often 
implicitly) used in software engineering

2. Dealing with missing values is no longer a burden for a practitioner, because 
easy to use statistical software is now available on popular platforms

3. Software represents a distinct data source with unique reasons and patterns for 
missing data. For example, software studies tend not to have the luxury of large 
sample sizes requiring analysis methods that use all available data, including 
incomplete cases. Many properties of software can not be measured directly, 
therefore investigators have to get the necessary information from people who 
create and maintain a particular piece of software, leading to frequent and com-
plex patterns of missing data

Section 2 discusses sources of software data. The next section introduces an illustra-
tive example evaluating how a software process influences development time. 
Section 4 presents a general statistical perspective for dealing with missing data with 
an illustrative example. Section 5 discusses non traditional missing data problems 
specific to the field of software engineering. A summary is provided in Sect. 6.
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2. Sources of Software Data

Software engineering data come from several distinct sources. The three primary 
sources are:

● Data collected through experimental, observational, and retrospective studies
● Software metrics or reported project management data including effort, size, and 

project milestone estimates
● Software artifacts including requirements, design, and inspection documents, 

source code and its change history, fault tracking, and testing databases

To narrow the scope of the presentation we did not include data sources produced 
directly by software with little or no human involvement, such as program execu-
tion and performance logs or the output of program analysis tools. Such data 
sources tend to produce tool specific patterns of missing data that are of limited use 
in other domains.

Surveys in an industrial environment are usually small and expensive to con-
duct. The primary reasons are the lack of subjects with required knowledge and the 
minimal availability of expert developers who, it appears, are always working 
toward a likely-to-be-missed deadline. The small sample size limits the applicability 
of deletion techniques that reduce the sample size even further. This may lead to an 
inconclusive analysis, because the sample of complete cases may be too small to 
detect statistically significant trends. If, on the other hand, the sample sizes are 
large and only a small percentage of data are missing, a deletion technique (a tech-
nique that removes missing observations) may work quite well.

The values in survey data may be missing if a survey respondent declines to fill 
the survey, ignores a question, or does not know the answer to some of the 
questions.

Reported data on software metrics often contain the desired measurements on 
quality and productivity. Unfortunately, the reported data are often not comparable 
across distinct projects (Herbsleb and Grinter, 1998). The reasons include numer-
ous social and organizational factors related to intended use and potential misuse 
of metrics, and serious difficulties involved in defining, measuring, and interpreting 
a conceptual measure in different projects.

Reported data need extensive validation to confirm that it reflects the quantities 
an analyst is interested in. Data collection is rarely a priority in software organiza-
tions (Goldenson et al., 1999). The priority of validating collected data is even 
lower, often leading to unreliable and misleading software measures. In addition, 
some software measures are difficult to obtain or have large uncertainty. Examples 
of such measures include function point estimates or size and effort estimates in the 
early stages of a project. Frequently data values are missing because some metrics 
are not collected for the entire period of the study or for a subset of projects.

Software artifacts are large, highly structured, and require substantial effort to 
interpret. Measures derived from software artifacts tend to be more precise and 
consistent over time than measures derived from surveys and reported data. They 
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measure the artifact itself, as opposed to the subjective perception of the artifact 
captured by survey measures. Traditionally, software artifacts are measured 
based on the properties of source code. Such measures include source code com-
plexity (Halstead, 1977; McCabe, 1976), complexity of an object oriented design 
(Chidamber and Kemerer, 1994), or functional size (Albrecht and Gaffney, 
1983). Instead of measuring the source code, it is possible to measure the properties 
of changes to the code. This requires analysis of change history data, see, for example, 
(Mockus, 2007). Artifact data may be missing or difficult to access for older  software 
artifacts because of obsolete storage or backup media. Consequently, software artifacts 
are usually available or missing in their entirety, reducing the need for the tradi-
tional missing data techniques that assume that data are only  partially missing. 
Measuring such artifacts might require substantial effort, especially if they were 
maintained using obsolete tools.

3. Example Data

To illustrate the application of missing data methods we will use a case study of 
process improvement in a software organization (Herbsleb et al., 2000). The study 
involved a medium-size, process-oriented software organization performing 
 contract work. One of the study goals was to determine if the excessive detail of 
software process had increased the development interval. In particular, the study 
investigated the relationship of development interval and project tracking 
measures.

The collected data came from three sources: survey questions, reported project 
metrics, and the source code change history. The development interval was the 
response or dependent variable. We model (predict) it using several project  tracking 
measures described below that are used as independent, predictor, or explanatory 
variables.

3.1. Survey

A total of 68 surveys of 19 individuals evaluating three dimensions of project track-
ing process for 42 projects were collected.

The three dimensions of project tracking were defined by the following 
questions.

1. Were the project’s actual results (e.g., schedule, size, and cost) compared with 
estimates in the software plans?

2. Was corrective action taken when actual results deviated significantly from the 
project’s software plans?

3. Were changes in the project’s plans agreed to by all affected groups and 
individuals?
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Subjects evaluated three dimensions of project tracking with ordinal ratings: (1) – 
“Rarely if ever,” (2) – “Occasionally,” (3) – “About half of the time,” (4) – “Frequently,” 
and (5) – “Almost always.” When the subject did not have enough knowledge of the 
project to answer the question, they entered “don’t know.”

To exemplify missing data techniques we simplify the analysis by treating each 
survey as an independent observation. In our example several individuals evaluated 
most projects and several projects were evaluated by a single individual. Therefore, 
multiple reports on one project (or done by a single person) are not independent. 
Unfortunately, adjusting for that dependence would distract from the presentation 
of missing data techniques.

3.2. Software Change Data

The project interval and size data were obtained from change history databases. The 
project interval was measured in days from the start of the first change until the com-
pletion of the last change. The project size was measured in number of  logical 
changes called Maintenance Requests (MRs).

3.3. Reported Project Data

The reported project data included size, staff months, number of faults, and inter-
val. Unfortunately, reported data were not consistent, therefore it was not used in 
the models. While some projects measured size in function points (FP), other 
projects measured size in lines of code (LOC). The reported function point and 
LOC measures did not correlate well with the amount of code developed (as 
obtained from change history) or with the reported staff months of effort. 
Furthermore, the reported interval did not correlate with the duration of the 
 development phase measured by the time difference between the last and the first 
change. These serious validity problems made the reported data unsuitable for 
 further analysis.

3.4. Missing Values

Change history databases for ten of the surveyed projects were moved off line and 
unavailable for analysis. Because the response variable interval was missing for 
those projects we excluded them from further consideration (other reasons are 
given in the discussion of the types of missing data). An additional six cases were 
dropped because all the project tracking questions were answered “don’t know.” 
That left us with 52 cases (corresponding to 34 projects) for the analysis.
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The list of data quality problems in this example may seem enormous, but in our 
experience such data quality is not unusual in a software study.

We used multiple linear regression [see, for example, (Weisberg, 1985)] to 
model the project development interval. The project size and the three tracking 
measures were independent variables. We included the project size as a predictor 
because it affects the project interval.

Inspection of the variables showed increasing variances (a scatterplot with a 
very large density of points at low values) for the interval and size. A square root 
transformation was sufficient to stabilize the variance of the interval and size and 
led to the following final model:

 Interval Size Tracking Tracking Tracking Err= + + + + +b b b b b0 1 2 1 3 2 4 3 oor. (1)

The following section describes various techniques to fit such models in the 
 presence of missing data.

4. A Statistical Perspective on Missing Data

In statistical analysis the phenomena of interest is commonly represented by a 
rectangular (n × K) matrix Y = (y

ij
) where rows represent a sample of n observa-

tions, cases, or subjects. The columns represent variables measured for each case. 
Each variable may be continuous, such as size and interval, or categorical like file 
or project.

Some cells in such a matrix may be missing. It may happen if a measure is not 
collected, or is not applicable, for example, if a respondent does not answer a ques-
tion on a survey form.

The mechanism by which some cells are not observed is important to select an 
appropriate analysis technique. Denote the response indicator
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, q) be the probability distribution function of R given a statistical 

model specified by parameter q and all the values of Y. The data are missing at 
random (MAR) according to Little and Rubin (1987) if

P R Y Y P R Yobs mis obs( ) ( )| , , = | , ,q q

i.e., the distribution of the response indicator may depend on the observed values 
but may not depend on the values that are missing. The data are missing completely 
at random (MCAR) if a stronger condition holds:

f R Y Y f Robs mis( ) ( )| , , = | .q q
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The MAR assumption allows the probability that a datum is missing to depend on 
the datum itself indirectly through quantities that are observed. For example, in the 
described data, the interviewees might remember less about smaller projects, 
 resulting in higher likelihood that some of the survey’s values are missing. The 
MAR assumption would apply, because the predictor “project size” explains the 
likelihood that the value will be missing. MCAR assumption would not apply, 
because the probability that a value is missing depends on project’s size. However, 
if we do not have a measure of project’s size or simply do not include project’s 
size in our estimation model, then even the MAR assumption is not satisfied. Such 
case is referred to as data not missing at random (NMAR). The NMAR data can be 
made to satisfy the MAR assumption if variables that characterize situations when 
a value is missing are added. Therefore, it is important to add variables that might 
predict the missing value mechanism to the dataset.

Personal income obtained via survey represents a typical example where the 
MAR assumption is not satisfied. It is well known that extreme values of personal 
income are less likely to be reported. Consequently, the MAR assumption is 
 violated, unless the survey can reliably measure variables that are strongly related 
to income. When extreme values are more likely to be missing, the probability that 
a value is missing depends on the value itself and, unless other predictors can fully 
account for that change in the probability of being missing, the MAR assumption 
is no longer satisfied.

It is worth pointing out that it is impossible to test the MAR hypothesis based 
on the dataset itself, since that would require knowing the values for missing obser-
vations. It could be tested by gathering additional information, for example, by 
conducting a repeat survey for the missing cases. However, when the data are 
 missing beyond the control of the investigator one can never be sure whether the 
MAR assumption holds. It is possible to test the MCAR assumption, [see, e.g. 
Little (1988); Kim and Curry (1977)]. However, the MCAR assumption rarely 
needs to be tested, because the MCAR assumption rarely holds in practice and 
because many easy-to-use MAR methods are available.

Situations where even the MAR assumption does not hold may require an 
explicit model for the missing data mechanism. Such methods tend to be problem 
specific and require substantial statistical and domain expertise. A concept related 
to NMAR data (even though it is treated separately in literature) involves censoring 
in longitudinal studies where some outcome may not be known at the time the study 
has ended. For example, in software reliability we want to know the distribution of 
time until a software outage occurs. However, at any particular moment in time 
there may be many software systems that have not experienced an outage. Thus, we 
only know that the time until the first outage is larger than the current system 
 runtime for these systems, but we do not know its value. A common approach to 
deal with censored data is to estimate a survival curve using Kaplan–Meier Estimate 
(Kaplan and Meyer, 1958; Fleming and Harrington, 1984). The survival curve is a 
graph showing the percentage of systems surviving (with no outage) versus system 
runtime. It has been applied to measure software reliability in, for example, 
(Mockus, 2006).
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Little and Hyonggin (2003) discuss ways to handle undesirable NMAR data 
and recommend calculating bounds by using all possible values of missing 
 variables (an approach particularly suitable in case of binary values), conducting 
a sensitivity analysis by considering several models of how the data are missing, 
or conducting a Bayesian analysis with a prior distribution for missing values. In 
most practical situations we recommend attempting to measure variables that 
 capture differences between missing and complete cases in order for the missing-
data mechanism to satisfy the MAR assumption. Methods that can handle MAR 
data can then be applied.

In our example, the “don’t know” answers in survey questions reflect the lack of 
knowledge by the subject and have no obvious relationship to the unobserved value. 
One may argue that even the MCAR assumption might be reasonable in this case. 
On the other hand, the ten cases for projects without change history present a com-
pletely different missing data mechanism. Because the projects are older, they are 
likely to be different from newer projects in the analyzed sample. Data are missing 
because these projects are old (and presumably different) and, therefore, the MAR 
assumption does not apply. Consequently, the conclusions drawn from the analysis 
of the relationship between project tracking and project interval may not apply to 
old projects. We removed these projects from further consideration and narrowed 
conclusions to explicitly exclude them. For simplicity, we also excluded six obser-
vations where all tracking measures are missing. One can argue against such a 
decision, because these observations can still be used to make a more precise 
regression relationship between project size and project interval.

Many statistical packages deal with missing data by simply dropping the cases 
that have at least one value missing. Besides being inefficient (fewer observations 
are used for inference), such a technique may be biased unless the observations are 
MCAR. The MCAR assumption is rarely a reasonable assumption in practice.

Model based techniques where a statistical model is postulated for complete data 
provide transparency of assumptions, but other techniques are often simpler to 
apply in practice. Given that statistical software provides tools to deal with missing 
data using model based techniques (Schafer, 1999; R Development Core Team, 
2005) we would recommend using them instead of the remaining techniques that 
have limited theoretical justification or require unrealistic assumptions. For com-
pleteness, we briefly describe most of traditional techniques as well. The goal of 
traditional techniques is to produce the sample mean or the covariance matrix to be 
used for regression, analysis of variance, or simply to calculate correlations. All 
traditional methods produce correct results under the MCAR assumption.

For more in-depth understanding of the statistical approaches Little and Rubin 
(1987) summarize statistical models for missing data and Schafer (1997) describes 
more recent results. Rubin (1987) investigates sampling survey issues. Little and 
Rubin (1989) and Schafer and Olsen (1998) provide examples with advice for 
practitioners. Roth (1994) provides a broad review of missing data technique 
 application in many fields.

Various missing data techniques have been evaluated in the software engineering 
context of cost estimation. Strike et al., (2001) evaluate listwise deletion, mean 
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imputation, and eight different types of hot-deck imputation and find them to have 
small biases and high precision. This suggests that the simplest technique, listwise 
deletion, is a reasonable choice. However, it did not have the minimal bias and 
highest precision obtained by hot-deck imputation. Myrtveit et al. (2001) evaluate 
listwise deletion, mean imputation, similar response pattern imputation, and full 
information maximum likelihood (FIML) missing data techniques in the context of 
software cost modeling. They found bias for non-MCAR data in all but FIML 
 technique and found that listwise deletion performed comparably to the remaining 
two techniques except in cases where listwise deletion data set was too small to fit 
a meaningful model. k-Nearest Neighbor Imputation is evaluated by simulating 
missing data in Jönsson and Wohlin (2004). Authors’ find the method to be ade-
quate and recommend to use k equal to the square root of the number of complete 
cases. More recently, Twala et al. (2006) compare seven missing data techniques 
using eight datasets and find listwise deletion to be the least efficient and multiple 
imputation to be the most accurate.

In the following sections we consider several broad classes of missing data tech-
niques. Section 4.1 considers methods that remove cases with missing values. Ways 
to fill in missing values are considered in Sect. 4.2. Section 4.3 describes techniques 
that generate multiple complete datasets, each to be analyzed using  traditional 
complete data methods. Results from these analyses are then combined using 
 special rules. We exemplify some of these methods in Sect. 4.4.

4.1. Deletion Techniques

Deletion techniques remove some of the cases in order to compute the mean vector 
and the covariance matrix. Casewise deletion, complete case, or listwise deletion 
method is the simplest technique where all cases missing at least one observation 
are removed. This approach is applicable only when a small fraction of observa-
tions is discarded. If deleted cases do not represent a random sample from the entire 
population, the inference will be biased. Also, fewer cases result in less efficient 
inference.

In our example the complete case method loses 18 cases (around 34% of the 
52 cases that we consider). Table 1 shows output from the multiple regression 
model in (1).

Table 1 Multiple regression for the complete case analysis

Variable Value Std. error t Value Pr(>|t|)

Intercept 3.1060 5.2150 0.5956 0.5561
Sqrt(size) 0.4189 0.1429 2.9315 0.0065
Tracking1 0.9025 0.9885 0.9130 0.3688
Tracking2 0.5363 1.2332 0.4349 0.6669
Tracking3 0.7186 1.1033 0.6513 0.5200
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Multiple regression shows that the project size is an important predictor of the 
interval but none of the process coefficients are significant at the 10% level 
(although a 5% level is more commonly used, we chose to use a 10% level that is 
more suitable for the small sample size of our example and, more importantly, to 
illustrate the differences among missing data methods). It is not too surprising, 
since more than a third of the observations were removed from the analysis.

Pairwise deletion or available case method retains all non missing cases for each 
pair of variables. We need at least three variables for this approach to be different 
from listwise deletion. For example, consider the simplest example where the first 
of three variables are missing in the first case and the remaining cases are complete. 
Then, the sample covariance matrix would use all cases for the submatrix represent-
ing sample covariances of the second and third variables. The entry  representing the 
sample variance of the first variable and sample covariances between the first and 
the remaining variables would use only complete cases. More generally, the sample 
covariance matrix is:
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as defined in (2). Although such method uses more observations, it may lead to a 
covariance matrix that is not positive-definite (positive-definite matrix has positive 
eigenvalues) and unsuitable for further analysis, i.e., multiple regression.

4.2. Imputation Techniques

The substitution or imputation techniques fill (impute) the values that are missing. 
Any standard analysis may then be done on the complete dataset. Many such tech-
niques would typically provide underestimated standard errors.

The simplest substitution technique fills in the average value over available cases 
(mean substitution). This underestimates variances and covariances in MCAR case 
and is likely to introduce bias otherwise. Smaller variances may reduce p-values and, 
therefore, may provide false impressions about the importance of some predictors. 
Table 2 shows results using mean substitution. Table 2 shows that the project size is an 

Table 2 Results for the mean substitution analysis

Variable Value Std. error t Value Pr(>|t|)

Intercept 3.1611 2.8054 1.1268 0.2656
Sqrt(size) 0.3904 0.1134 3.4437 0.0012
Tracking1 −0.0871 0.5903 −0.1475 0.8834
Tracking2 0.8557 0.7339 1.1660 0.2495
Tracking3 1.4568 0.7678 1.8975 0.0639
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important predictor of the interval and that the third dimension of tracking measure 
(level of agreement by all affected parties to the changes in the software commit-
ments) might increase the interval. The coefficient is significant at 10% level.

Regression substitution uses multiple linear regression to impute missing values. 
The regression is done on complete cases. The resulting prediction equation is used 
for each missing case. Regression substitution underestimates the variances less 
than mean substitution. A stochastic variation of regression substitution replaces a 
missing value by the value predicted by regression plus a regression residual from 
a randomly chosen complete case.

Table 3 shows results based on a basic liner regression substitution. For our 
example the results are similar to mean substitution.

Other substitution methods include group mean substitution that calculates 
means over groups of cases known to have homogeneous values within the group. 
A variation of group mean substitution when the group size is one is called hot-deck 
imputation. In hot-deck imputation for each case that has a missing value, a similar 
case is chosen at random. The missing value is then substituted using the value 
obtained from that case. Similarity may be measured using a Euclidean distance 
function for numeric variables that are most correlated with the variable that has a 
missing value.

The following two reasons prevent us from recommending simple deletion and 
imputation methods when a substantial proportion of cases (more than 10%) are 
missing:

1. It is not clear when they do not work
2. They give incorrect precision estimates making them unsuitable for interval 

estimation and hypothesis testing

As the percentage of missing data increases to higher levels, the assumptions and 
techniques have a more significant impact on results. Consequently, it becomes 
very important to use a model based technique with a carefully chosen model.

While there is no consensus among all experts about what techniques should be 
recommended, a fairly detailed set of recommendations is presented in Roth (1994) 
and Little and Hyonggin (2003), where factors such as proportion of missing data 
and the type of missing data (MCAR, MAR, NMAR) are considered. Roth (1994) 
recommends using the simplest techniques, such as pairwise deletion, in the MCAR 
case and model based techniques when the MAR assumption does not hold or when 
the percent of missing data exceeds 15%. Because we doubt the validity of the 

Table 3 Results for the regression substitution analysis

Variable Value Std. error t Value Pr(>|t|)

Intercept 3.5627 3.3068 1.0774 0.2868
Sqrt(Size) 0.3889 0.1242 3.1321 0.0030
Tracking1 0.0339 0.8811 0.0385 0.9695
Tracking2 0.6011 1.0760 0.5586 0.5791
Tracking3 1.5250 0.8518 1.7904 0.0798

ˆ ˆP S± 2
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MCAR assumption in most practical cases we do not recommend using techniques 
that rely on it unless the percent of missing data is small.

4.3. Multiple Imputation

Multiple imputation (MI) is a model based technique where a statistical model is 
postulated for complete data. A multivariate normal model is typically used for 
continuous data and a log-linear model is used for categorical data. In MI each 
missing value is replaced (imputed) by m > 1 plausible values drawn from their 
predictive distribution. Consequently, instead of one data table with missing values 
we get m complete tables. After doing identical analyses on each of the tables the 
results are combined using simple rules to produce the estimates and standard 
errors that reflect uncertainty introduced by the missing data.

The possibility of doing an arbitrary statistical analysis for each complete data 
set and then combining estimates, standard deviations, and p-values allows the 
analyst to use a complete data technique that is the most appropriate for their prob-
lem. In our example we chose to use multiple linear regression.

The attractiveness of the MI technique lies in the ability to use any standard sta-
tistical package on the imputed datasets. Only a few (3–5) imputations are needed 
to produce quite accurate results (Schafer and Olsen, 1998). Software to produce 
the imputed tables is available from several sources, most notably from Schafer 
(1999) and R Development Core Team (2005). We do not describe the technical 
details on how the imputations are performed because it is beyond the scope of this 
presentation and the analyst can use any MI package to perform this step.

After the m MI tables are produced, each table may be analyzed by any statisti-
cal package. To combine the results of m analyses the following rules are used 
(Rubin, 1987). Denote the quantities of interest produced by the analyses as P
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Sometimes the inference is performed on multiple quantities simultaneously, for 
example, if we want to compare two nested multiple regression models, where the 
more general model has one or more extra parameters that are equal to zero in the 
simpler model. The rules for combining MI results in such a case are quite compli-
cated, [see, e.g., Schafer (1997, pp. 112–118)], however, the MI software (Schafer, 
1999) implements required calculations.

4.4. Example

We used the norm package (Schafer, 1999) [also available as packages (Novo, 2002) 
for R system (R Development Core Team, 2005)] for Windows 95/98/NT platform 
to generate five imputations and ran multiple linear regression on each imputed data 
table. The estimates and standard errors from the regression were combined using 
multiple imputation rules. The norm package does not perform multiple regression, 
but it provides the functionality to combine the results from multiple regression 
analyses. We used this feature and the result is presented in Table 4. The coefficients 
are not much different from the regression imputation, although the third tracking 
dimension is now barely significant at the 10% level.

In most practical situations with a medium percentage of missing data there will 
be relatively small difference between the results obtained using different missing 
data methods (except for the complete case method), as happens to be the case in 
our example. However, in many examples (like this one), where the conclusions are 
based on p-values that are close to the chosen significance level, the use of MI is 
essential. In particular, the mean substitution method was significant at 0.07 level, 
but the MI method was not. If we, hypothetically, assume a world where results are 
judged to be significant at 0.07 significance level (instead of our own world, where 
the 0.05 significance level is most common), we would have reached different 
 conclusions using different methods.

The example reiterates the fact that the standard deviation is underestimated in 
imputation methods and, therefore, the significance values are inflated. Although 
this example does not show large biases introduced by non MI methods, in general 

Table 4 Results of multiple imputation analysis

Variable Value Std. error t Value Pr(>|t|)

Intercept 3.75 3.686 1.02 0.31
Sqrt(Size) 0.39 0.126 3.12 0.002
Tracking1 0.01 0.787 0.02 0.985
Tracking2 0.56 1.114 0.51 0.614
Tracking3 1.51 0.917 1.65 0.099
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it may be a serious issue. The example also illustrates the lack of efficiency of the 
complete case method in line with the studies mentioned above.

5. Other Types of Unavailable Data

Software engineering has its own domain-specific types of missing data that are not 
present in the general statistical treatment. Here we briefly present specific cases of 
missing data in software artifacts. The first example deals with missing information 
on software change purpose, and the second example deals with missing informa-
tion on software change effort.

5.1. Determining Change Purpose

Three primary driving forces in the evolution of software are: adaptive changes 
introduce new functionality, corrective changes eliminate faults, and perfective 
changes restructure code in order to improve understanding and simplify future 
changes (Swanson, 1976, An et al., 1987). Models of software evolution must 
take into account the significant differences in purpose and implementation of the 
three types of changes (Graves et al., 2000, Atkins et al., 1999). However, few 
change history databases record such information directly. Even if a record exists, 
it is rarely consistent over time or across organizations. Fortunately, change 
 history databases usually record a short description of the purpose for the change 
at the maintenance request (MR) or lower level. Such description or abstract is 
provided by developers who implement the change.

Work in Mockus and Votta (1997) used textual analysis of MR abstracts to 
impute adaptive, corrective, or perfective labels to the changes. It classified MRs 
as adaptive, corrective, or perfective depending on which key words appear in 
these change abstracts. The classification scheme was able to tag around 85% of 
all MRs.

5.2. Estimating Change Effort

A particularly important quantity related to software is the cost of making changes. 
Therefore, it is of great interest to understand which factors have historically had 
strong effects on this cost, which could be approximated by the amount of time 
developers spend working on the change.

When performing historical studies of cost necessary to make a change, it is 
important to study changes at a fine level (MRs as opposed to releases). Studying 
larger units of change, such as releases, may make it impossible to separate the 
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effects of important factors. For example, software releases typically contain a 
mixture of several types of changes, including new code and bug fixes. Consequently, 
the relative effort for the different types of changes can not be  estimated at the 
release level. Also, larger change units may involve multiple developers and distinct 
parts of the code, making it difficult to estimate developer effects.

Measurements of change effort are not recorded in a typical software production 
environment. Graves and Mockus (1998) describe an iterative imputation algorithm 
that, in effect, divides a developer’s monthly effort across all changes worked on in 
that month. The algorithm uses several measurements on each change including the 
size and type of a change. Both measures are related to the amount of effort 
required to make the change. The effort estimation tools provide valuable cost 
driver data that could be used in planning and in making decisions on how to reduce 
expenses in software development.

6. Summary

It should be noted that the quality of collected data will have more influence on 
the analysis results and the success of a study than a choice of method to deal 
with missing values. In particular, a successful data collection might result in few 
or no missing values.

In many realistic scenarios the data quality is low, and some values are missing. 
In such cases, the first step should be to determine the mechanism by which the data 
are missing and add observations that may explain why the values are missing. This 
would make the MAR assumption more plausible. For MAR (and MCAR) data, 
multiple imputation mitigates the effects of missing values. Other research and our 
case study have shown not only the importance of applying a missing data  technique 
such as imputation, but also the importance of carrying out multiple imputation. In 
our case study we find that different conclusions may be reached depending on the 
particular method chosen to handle missing data. This demonstrates that the selec-
tion of a proper method to handle missing data is not simply a formal exercise, but 
it may, in certain circumstances, affect the outcome of an empirical study.
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Chapter 8
Reporting Experiments in Software Engineering

Andreas Jedlitschka, Marcus Ciolkowski, and Dietmar Pfahl

Abstract
Background: One major problem for integrating study results into a common body 
of knowledge is the heterogeneity of reporting styles: (1) It is difficult to locate 
relevant information and (2) important information is often missing.
Objective: A guideline for reporting results from controlled experiments is 
expected to support a systematic, standardized presentation of empirical research, 
thus improving reporting in order to support readers in (1) finding the information 
they are looking for, (2) understanding how an experiment is conducted, and 
(3) assessing the validity of its results.
Method: The guideline for reporting is based on (1) a survey of the most promi-
nent published proposals for reporting guidelines in software engineering and 
(2) an iterative development incorporating feedback from members of the research 
community.
Result: This chapter presents the unification of a set of guidelines for reporting 
experiments in software engineering.
Limitation: The guideline has not been evaluated broadly yet.
Conclusion: The resulting guideline provides detailed guidance on the expected 
content of the sections and subsections for reporting a specific type of empirical 
study, i.e., experiments (controlled experiments and quasi-experiments).

1. Introduction

In today’s software development organizations, methods and tools are employed 
that frequently lack sufficient evidence regarding their suitability, limits,  qualities, 
costs, and associated risks. In Communications of the ACM, Robert L. Glass 
(2004), taking the standpoint of practitioners, asks for help from research: 
“Here’s a message from software practitioners to software researchers: We (prac-
titioners) need your help. We need some better advice on how and when to use 
methodologies.” Therefore, he asks for:

● A taxonomy of available methodologies, based upon their strengths and 
weaknesses
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● A taxonomy of the spectrum of problem domains, in terms of what practitioners 
need

● A mapping of the first taxonomy to the second (or the second to the first)

Empirical software engineering (ESE) addresses some of these issues partly by 
providing a framework for goal-oriented research. The aim of this research is 
to build an empirically validated body of knowledge and, based on that, 
 comprehensive problem-oriented decision support in the software engineering 
(SE) domain.

However, one major problem for integrating study results into a body of knowl-
edge is the heterogeneity of study reporting (Jedlitschka and Ciolkowski, 2004). It 
is often difficult to find relevant information because the same type of information 
is located in different sections of study reports and important information is also 
often missing (Wohlin et al., 2003; Sjøberg et al., 2005; Dybå et al., 2006; Kampenes 
et al., 2007). For example, in study reports, context information is frequently 
reported differently and without taking into account further generalizability. 
Furthermore, specific information of interest for practitioners is often missing, like 
a discussion of the overall impact of the technology on project or business goals.

One way to avoid this heterogeneity of reporting is to introduce and establish 
reporting guidelines. Specifically, reporting guidelines support a systematic, 
 standardized description of empirical research, thus improving reporting in order to 
support readers in (1) finding the information they are looking for, (2) understand-
ing how an experiment is conducted, and (3) assessing the validity of its results. 
This claim is supported by the CONSORT statement (Altman et al., 2001), a 
research tool in the area of medicine that takes an evidence-based approach to 
improve the quality of reports of randomized trials to facilitate systematic reuse 
(e.g., replication, systematic review, and meta analysis).

As identified by Kitchenham et al. (2002, 2004), reporting guidelines are neces-
sary for all relevant kinds of empirical work, but they must address the needs of 
 different stakeholders (i.e., researchers and practitioners). The specific need for 
standardized reporting of controlled experiments has been mentioned by different 
authors for a long time, e.g., Lott and Rombach (1996), Pickard et al. (1998), Shull 
et al. (2003), Vegas et al. (2003), Wohlin et al. (2003), and Sjøberg et al. (2005). At 
the same time, several more or less comprehensive and demanding reporting guide-
lines have been proposed, e.g., by Singer (1999), Wohlin et al. (2000), Juristo and 
Moreno (2001), and Kitchenham et al. (2002). Even though each of these proposals 
has its merits, none has yet been accepted as a de-facto standard. Moreover, most of 
the existing  guidelines are not explicitly tailored to the specific needs of certain types 
of empirical studies, e.g., controlled experiments a comprehensive classification of 
empirical studies is given by Zelkowitz et al. (2003).

The goal of this chapter is to survey the published proposals for reporting 
 guidelines and to derive a unified and – where necessary – enhanced guideline for 
reporting controlled experiments and quasi-experiments. Nevertheless, many of the 
elements discussed throughout this chapter will also make sense for reporting other 
types of empirical work.
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2. Background

Empirical software engineering research is not the first research domain to 
encounter problems with insufficient reporting. Other disciplines, such as  medicine 
and  psychology, have experienced similar problems and have achieved various 
improvements by standardizing and instantiating reporting guidelines, e.g., for 
randomized controlled trials in biomedical research (Altman et al., 2001; Moher 
et al., 2001), psychology (Harris, 2002), clinical practice guidelines (Shiffman et al., 
2003), and empirical results from psychological research (American Psychological 
Association, 2001).

In the field of SE research, in 1999, Singer (1999) described how to use the 
“American Psychological Association (APA) Styleguide” (2001) for publishing 
experimental results in SE. In 2002, Kitchenham et al. (2002) provided initial 
guidelines on how to perform, report, and collate results of empirical studies in SE 
based on medical guidelines as well as on the personal experience of the authors. 
Shaw (2003) provided a tutorial on how to write scientific papers, including the 
presentation of empirical research as a special case. Additionally, standard text 
books on empirical SE, such as Wohlin et al. (2000) and Juristo and Moreno (2001), 
address the issue of reporting guidelines. Wohlin et al. (2000) suggest an outline for 
reporting the results of empirical work. Juristo and Moreno (2001) provide a list of 
the “most important points to be documented for each phase” in the form of “ques-
tions to be answered by the experimental documentation.”

Jedlitschka et al. presented a first version of a guideline for reporting controlled 
experiments (2005a) during a workshop on empirical software engineering (Jedlitschka, 
2005). Feedback from the workshop participants, as well as from peer reviews, was 
incorporated into a second version of the guideline (2005b). In parallel, the guideline 
was evaluated by means of a perspective-based inspection approach (Kitchenham 
et al., 2006). This evaluation highlighted 42 issues where the guideline would benefit 
from amendment or clarification and eight defects. The feedback from the perspective-
based inspection and discussions with its authors led to a second iteration of the guide-
line, where the amendments were incorporated if we found them appropriate and 
defects were removed (Jedlitschka and Ciolkowski, 2006). Additional feedback from 
individual researchers was also incorporated (Jedlitschka et al., 2007).

Table 1 characterizes the existing proposals for guidelines on reporting empirical 
work in SE. The first row of the table lists the proposals, arranged with regard to their 
publication date. The second row of the table describes the focus of the guidelines. The 
entry “Empirical Research” indicates that the guidelines are not tailored to a specific 
type of empirical research. Otherwise, the specific type is explicitly mentioned, e.g., 
“Controlled Experiment” or “Systematic Review.” The third row describes the phases 
of an experiment covered by the guideline. The entry “All” indicates that the guideline 
covers all phases of a study. The remaining rows list the structuring elements in the 
proposed guidelines and map them to the structure of our proposal (last column). 
Elements of existing proposals occurring twice in a column indicate that these 
 elements can be mapped to two different elements of our new proposal.
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Table 1 Overview on structuring proposals for reporting controlled experiments

  Wohlin et al.  Kitchenham et al. Juristo and Moreno  Kitchenham  Jedlitschka et al. 
 Singer (1999) (2000) (2002) (2001) (2004) (2007)

Type of study Empirical research Empirical research Empirical research Controlled experiment Systematic review Controlled experiment
Phases of study Reporting All All All All Reporting
Structure * * * * Title Title
 * * * * Authorship Authorship
 * * * * Keywords Keywords
 Abstract * * * Executive summary  Structured abstract
      or structured 
      abstract 
 Introduction Introduction * Goal definition Background Introduction
  Problem statement    
  Experiment planning Experimental context   
 Introduction Problem statement Experimental context Goal definition Background Background
 Method Experiment planning Experimental design Design Review questions Experiment planning
     Review methods 
 Procedure Experiment  Conducting the  Experiment execution Included and excluded  Deviations from 
   operation  experiment and   studies  the plan 
    data collection    
 Results Data analysis Analysis Experimental analysis Results Analysis
 Discussion Interpretation  Interpretation  Experimental analysis Discussion Discussion
   of results  of results 
 Discussion Discussion and * Experimental analysis Conclusion Conclusions and future
   conclusion     work
 – – – – Acknowledgments Acknowledgements
     Conflict of interest 
 References References * * References References
 Appendices Appendix * * Appendices Appendices

An asterisk (*) indicates that the authors do not explicitly mention or describe details for this element, but it is assumed that the elements are implicitly 
required.
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We investigated the structures of published reports of controlled experiments in 
empirical software engineering and have concluded that, in general, authors do not 
use a common set of guidelines in determining what information to include in their 
report. In other disciplines, such as medicine and psychology, editors have agreed 
on a common reporting style, not only regarding the layout of the report, but also 
its content. Given that the first publication of a reporting guideline for empirical SE 
research by Singer (1999) was over 7 years ago and little has progressed since that 
time, we conclude that significant effort needs to be invested to make sure that 
guidelines are widely accepted and used. This is what other communities have 
already learned (Altman et al., 2001; Harris, 2002).

Because of this, this chapter provides a description of the most common  elements in 
the various reporting guidelines, giving guidance to readers where we have diverged 
from others suggestions. This guideline should be seen as a means for supporting both 
authors of a report in providing relevant information in the appropriate place and read-
ers of a report in knowing where to look for a certain type of information.

3. Guideline for Reporting Controlled Experiments

In this section, we discuss what information should be presented in reports of 
experiments. It some cases, it may be necessary to adapt the length of a report 
depending on the requirements of the publisher. Therefore, the structure as pre-
sented in this section provides several options. For example, for a conference 
paper (which is usually much shorter than a journal paper) it may be appropriate 
to combine the description of the experiment planning and the deviations from 
the plan as well as the description of the analysis procedure and the analysis, 
whereas for a journal paper, it is generally appropriate to separate the content of 
these sections.

In all reports, however, generally speaking, enough information has to be 
 provided to enable readers to judge the reliability of the experiment. The need for 
detailed provision of information is not specific for SE. It is, for example, also 
pointed out by Harris (2002). We are well aware that due to limitations of pages 
(e.g., for conferences), this is not possible in all cases, but the author should at least 
keep this intention in mind while compiling the report.

As indicated in Table 1, our reporting guideline comprises the following 
 elements: Title, Authorship, Structured Abstract, Keywords, Introduction, 
Background, Experiment Planning, Execution, Analysis, Discussion, Conclusion 
and Future Work, Acknowledgements, References, and Appendices.

Our proposal reflects the requirements of existing standards, such as APA, but 
provides more structuring elements and asks for specific details that are not rele-
vant for many experiments in psychology, like a technology’s impact on the overall 
project budget or time and on the product’s quality. Furthermore, our guideline 
incorporates wording as it is common for experiments in empirical SE to also 
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Table 2 Quick reference

Section Content Scope Priority

3.1 Title <title> + “− A controlled experi-
ment”; Is it informative and does it 
include the major treatments and the 
dependent variables?

Required

3.2 Authorship Does it include contact information, 
i.e., a valid email?

Required

3.3 Structured 
abstract

Background Why is this research important? Required

Objective What is the question addressed with 
this research?

Required

Methods What is the statistical context and 
methods applied?

Required

Results What are the main findings? Practical 
implications?

Required

Limitations What are the weaknesses of this 
research?

Conclusions What is the conclusion? Required
3.4 Keywords Areas of research the treatments, 

dependent variables, and study type
Might be required 

by the publisher
3.5 Introduction Problem 

 statement
What is the problem? Where does it 

occur? Who has observed it? 
Why is it important to be solved?

Required

Research 
objective

What is the research question to be 
answered by this study? E.g., by 
using the GQM goal template: 
Analyze <Object(s) of study> for 
the purpose of <purpose> with 
respect to their <Quality Focus> the 
point of view of the <Perspective> 
in the context of <context>

Required

Context What information is necessary to 
understand whether the research 
relates to a  specific situation (envi-
ronment)?

Required

3.6 Background Technology 
under inves-
tigation

What is necessary for a reader to know 
about the technology to reproduce 
its application?

Required if not 
published else-
where

Alternative 
technolo-
gies

How does this research relate to alter-
native technologies? What is the 
control treatment?

Required

Related studies How this research relates to existing 
research (studies)? What were the 
results from these studies?

If available

Relevance to 
practice

How does it relate to state of the prac-
tice?

If available

3.7 Experiment 
planning

Goals Formalization of goals, refine the 
important constructs (e.g., the qual-
ity focus) 
of the experiment’s goal

Required

(continued)
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Experimental 
units

From which population will the 
sample be drawn? How will the 
groups be formed (assignment to 
treatments)? Any kind of rand-
omization and blinding has to be 
described

Required

Experimental 
material

Which objects are selected and why? Required

Tasks Which tasks have to be performed by 
the subjects?

Required

Hypotheses, 
parameters, 
and vari-
ables

What are the constructs and their 
operationalization? They have to be 
traceable derived from the research 
question respectively the goal of the 
experiment

Required (for an 
explorative 
studies there 
might be no 
hypothesis 
defined)

Design What type of experimental design has 
been chosen?

Required

Procedure How will the experiment (i.e. data 
collection) be performed? What 
instruments, materials, tools 
will be used and how?

Could be integrated 
with execution

Analysis proce-
dure

How will the data be analyzed? Could be integrated 
with analysis

3.8 Execution Preparation What has been done to prepare the 
execution of the experiment (i.e., 
schedule, training)

Deviations Describe any deviations from the 
plan, e.g., how was the data 
collection actually performed?

3.9 Analysis Descriptive 
statistics

What are the results from descriptive 
statistics?

Required

Data set prepa-
ration

What was done to prepare the data set, 
why, and how?

Hypothesis 
testing

How was the data evaluated and was 
the analysis model validated?

3.10 Discussion Evaluation of 
results and 
implications

Explain the results and the relation 
of the results to earlier research, 
especially those mentioned in the 
Background section

Threats to 
validity

How is validity of the experimental 
results assured? How was the data 
actually validated?

Required

Table 2 (continued)

Section Content Scope Priority

(continued)
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Threats that might have an impact on 
the validity of the results as such 
(threats 
to internal validity, e.g., confound-
ing variables, bias), and, further-
more, on the extent to which the 
hypothesis captures the objectives 
and the generalizability of the find-
ings (threats to external validity, 
e.g., participants, materials) have to 
be discussed

Inferences Inferences drawn from the data to 
more general conditions

Required

Lessons 
learned

Which experience was collected 
during the course of the 
experiment

Nice to have

3.11 Conclusions 
and future 
work

Summary The purpose of this section is to 
provide a concise summary 
of the research and its results as 
presented in the former sections

Required

Impact Description of impacts with regard to 
cost, schedule, and quality, 
circumstances under which the 
approach presumably will not 
yield the expected benefit

Future work What other experiments could be run 
to further investigate the results 
yielded or evolve the Body of 
Knowledge

3.12 Acknowled-
gements

Sponsors, participants, and 
contributors who do not fulfil the 
requirements for authorship 
should be mentioned

If appropriate

3.13 References All cited literature has to be 
presented in the format 
requested by the publisher

Absolutely required

3.14 Appendices Experimental materials, raw data, and 
detailed analyses, which might be 
helpful for others to build upon the 
reported work should be provided

Might be made 
available trough 
technical 
reports or web 
site

Table 2 (continued)

Section Content Scope Priority

 support the reading of already published reports. The structuring elements are 
 discussed in detail in the following subsections. Table 2 shows each element, along 
with the section it is detailed in, and its particular sub-elements.
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3.1. Title

The title of the report has to be informative, because the title (together with the 
abstract) “alerts potential readers to the existence of an article of interest” (Harris, 
2002). To attract readers from industry, it is important to use commonly used 
 industry terms. Harris (2002) suggests avoiding phrases like “A Study of” or “An 
Experimental Investigation of.” This might be true for psychology, but for ESE, 
where we do not have explicit journals for experiments, we propose adding “– a 
controlled experiment” (– a replicated controlled experiment, – a quasi-experi-
ment) if there are no limitations with regard to the title length. This helps the 
reader to  easily identify controlled experiments. Furthermore, if possible, it addi-
tionally aides the reader if the dependent variables and treatments can be speci-
fied in the title.

In fact, where the title length is limited, we believe it is more important to 
include treatments and the dependent variables than “a controlled experiment.” 
As an example of a succinct meaningful title, consider the following: The title 
of a publication describing a controlled experiment to investigate technique X 
compared to technique Y (the treatments) regarding the maintainability of a 
product (dependent variable) could be “Comparing the Impact of Technique 
X and Technique Y on Product’s Maintainability – A Controlled Experiment.” 
From the perspective of a reader, both from research as well as from indus-
try, this title would allow for easily identifying the main aspects of the 
publication.

3.2. Authorship

All individuals making a significant contribution should be in the author list or at 
least acknowledged (c.f. Sect. 3.12).

Most report styles require contact details. If not, provide at least the e-mail 
address of the responsible author. As authors might change their job, it is  sometimes 
more appropriate to provide the contact information of the more stable author – for 
example a professor as opposed to a graduate student (Kitchenham, 2004), or, “to 
be on the safe side,” provide contact information for all authors.

3.3. Structured Abstract

The need for a self-contained abstract is beyond any question. It is an important 
source of information for any reader, as it briefly summarizes the main points of the 
study and, moreover, is often the only part of a publication that is freely accessible 
(Kitchenham, 2004). Abstracts should summarize the broad research questions. 
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Additionally, for a single experiment, regardless of the format of the abstract, 
authors should ensure that all relevant interventions or conditions (i.e., independent 
variables) and dependent variables are mentioned. When more than one experiment 
is reported in a paper, this may be infeasible, and instead authors will need to 
describe their experiments in more general terms.

The exact format of the abstract needs more discussion. For example, Shaw 
(2003) found that there is a common structure for the clearest abstracts consisting 
of the following elements: (a) the current state of the art, identifying a particular 
problem, (b) the contribution to improving the situation, (c) the specific result and 
the main idea behind it, and (d) how the result is demonstrated or defended. For 
reporting experiments in psychology, Harris (2002) suggests that an abstract should 
describe the following aspects: (1) the problem under investigation, (2) the partici-
pants, (3) the empirical method, (4) the findings, and (5) the conclusions.

A large number of journals in medicine and psychology have imposed a special 
form of the abstract, the structured abstract (Hayward et al., 1993; Bayley and 
Eldredge, 2003), on authors to improve the clarity of abstracts. The most common 
elements of structured abstracts are Background or Context, Objective or Aim, 
Method, Results, and Conclusion.

Inspired by the lessons learned from medicine, we propose using a structured 
abstract consisting of the elements listed below:

Background: Give a brief explanation of the motivation for conducting the 
study. Example: “Software developers have a plethora of development technol-
ogies from which to choose, but often little guidance for making the decision” 
(Shull et al., 2003).

Objective: Describe the aim of the study, including the object under examination, 
the focus, and the perspective. Example: “We examined <technique1> vs. 
<technique2> with regard to fault detection rates from the viewpoint of a quality 
engineer.”

Method: Describe which research method was used to examine the object (e.g., 
experimental design, number and kind of participants, selection criteria, data 
 collection and analysis procedures). Example: “We conducted a controlled experi-
ment using a 2 × 2 factorial design with 24 randomly assigned undergraduate 
 students participating. The data were collected with the help of questionnaires and 
analyzed using ANOVA.”

Results: Describe the main findings. Example: “<technique1> was significantly 
more effective than <technique2> at an alpha level of 0.05.”

Limitations: Describe the major limitations of the research, if any. Example: 
“Generalization of results is limited since the analyzed technique was applied only 
to specify systems smaller than 10,000 lines of code.”

Conclusion: Describe the impact of the results. Example: “The result reinforced 
existing evidence regarding the superiority of <technique1> over <technique2>.”

Furthermore, to address practitioners’ information needs, cost, benefits, risks, 
and transitions should also be described.



8 Reporting Experiments in Software Engineering 211

Our recommendation to include the element Limitations in a structured abstract 
follows a suggestion made in The Editors of Annals of Internal Medicine (2004), 
since every piece of evidence has its limitations. This additional information helps 
readers judge the transferability of the results to their context. It also prevents 
uncritical acceptance by the reader.

It is important to use only a few sentences for each structuring element of the 
abstract. Hartley (2003) found that the number of words increases by about 30% if 
structured abstracts are used. But he claims that these “extra costs” pay back 
because, with the additional information given in the abstract, a wider readership 
might be encouraged and citation rates improve as do ( journal) impact factors. 
Several researchers who compared the use of structured abstracts to traditional ones 
found advantages for structured abstracts, but no real disadvantages (Hartley, 2004; 
Kitchenham, 2004).

From this discussion, we conclude that experimenters should certainly use 
structured abstracts, but even if the abstract is written as text (without structuring 
elements), it should still include all of the aforementioned elements. Where pub-
lishers limit the length of the abstract by number of words or number of lines, we 
suggest prioritizing the traditional elements: background (one sentence), objective, 
method, results, and conclusion, but recommend sticking with the structure.

As a final note, to attract readers from industry, authors should use terms that are 
commonly used in industry in describing their research.

3.4. Keywords

Except for Kitchenham (2004) and Jedlitschka et al. (2007), existing guidelines do 
not explicitly address keywords. Furthermore, keywords are not necessarily 
requested by all publications. Nevertheless, if provided (and if free of any pre-
defined characterization, like ACM), keywords should describe the areas of 
research, the treatments, dependent variables, and study type. The list of keywords 
should complement the title, as it was described earlier, especially in cases where 
it was not possible to include all pertinent information in the title. As with the title, 
keywords help readers to identify relevant publications. This is especially important 
because publishers use keywords for categorisation, and they are visible even in 
cases where full access to the publication is restricted. Finally, keywords should not 
be idiosyncratic, but should instead reflect common terms used in the field.

3.5. Introduction

The purpose of the introduction is to set the scope of the work and give potential 
readers good reasons for reading the remainder of the publication (motivation). 
The introduction needs to place the research into a wider context before introducing 
the specific problem. As can be seen from Table 1, there are several variations with 
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regard to the content of the introduction. In most cases, the introduction starts 
with a broad description of the research area (Wohlin et al., 2000). With the excep-
tion of Wohlin et al. (2000), who recommend a distinct section to describe the 
problem under study, all of the guidelines include the description of the problem 
in the introduction. Further, Wohlin et al. (2000) and Kitchenham et al. (2002) 
 suggest the introduction include an explicit description of the context of the study 
(i.e., the environment in which it is run).

Thus, based on the various guidelines, as a minimum the introduction should 
include a description of the Problem Statement, the Research Objectives, and the 
Context of the research.

The problem statement supports readers in comparing their problems with the 
problem investigated in the reported experiment, thereby judging the relevance of 
the research to their questions. In general, the problem statement should provide 
answers to the following questions: What is the problem? Where does it occur? 
Who has observed it? Why is it important to be solved? In addition, any underlying 
theory, causal model, or logical model should be specified.

The description of the problem statement should lead directly to the description 
of the research objective. The research objective starts with a brief description of 
the solution idea and the (expected) benefits of the solution.

Example adopted from (Ciolkowski et al. 1997): Recently, it was reported by […] that 
defects in a software artefact increase cycle time and development costs. One possible 
solution would be to start defect detection as early in the development cycle as possible, 
for example by inspecting requirements documents. The benefit would be that the defects 
from the requirements phase will not be incorporated in the later phases, which will result 
in reduced cycle times and development costs.

The description of the research objective (or, as Wohlin et al. (2000) call it, the 
“Definition of the Experiment”), should be as coherent as possible. One way to 
achieve this is to use the goal template of the Goal/Question/Metric (GQM) method 
formulated by Basili et al. (2001). This template includes several elements to be 
filled in as shown below, with an example underneath.
Analyze <…> for the purpose of <…> with respect to their <…> from the point of 
view of the <…> in the context of <…>.

The following example is adapted from Ciolkowski et al. (1997):

Analyze perspective-based reading and ad hoc reading techniques
For the purpose of evaluation
With respect to their effectiveness
From the viewpoint of potential users
In the context of the software engineering class at the University

For further examples of the use of the goal definition template to describe the 
research objective, see Wohlin et al. (2000).

The description of the context is essential for practitioners as well as for 
researchers. Practitioners need context information to see if the technique/ process/
tool under study would be applicable in their own organization. Researchers need 
context information to understand the limits of the study (e.g., whether the results 
are generalizable), to replicate results, and to aggregate results or perform meta-
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analyses. To describe the context of the research, the CONSORT Statement 
(Altman et al., 2001; Moher et al., 2001) suggests that the setting and locations of 
a study are described. In software engineering this could include information 
about application type (e.g., real-time system), application domain, (e.g., telecom-
munications), type of company (e.g., small or medium sized), experience of the 
participants (e.g., professionals with on average 5 years of related practical 
 experience), time constraints (e.g., critical milestones, delivery date), process (e.g., 
spiral model), tools (e.g., used for capturing requirements), size of project 
(e.g., 500 person months). Furthermore, it is valuable to know whether there are 
specific requirements with regard to the environment in which the technique, tool, 
or method was applied.

A more formal description of context from a researcher’s viewpoint comprises 
context factors that might affect the generality and utility of the conclusions. These 
are generally detailed when describing the experimental design.

The introduction generally ends with an outline for the remainder of the paper.

3.6. Background

Researchers as well as practitioners need an understanding of the landscape of 
the reported research, including alternative approaches and relationships 
between  different experiments (Jedlitschka and Ciolkowski, 2004b). Most 
guidelines require appropriate citation, as described, for example, in the APA 
style guide (2001).

In contrast to Singer (1999), who includes background information in the 
Introduction, Wohlin et al. (2000), Juristo and Moreno (2001), Kitchenham et al. 
(2002), Jedlitschka and Pfahl (2005a, b), and Jedlitschka et al. (2007) suggest 
 presenting background information in a unique section.

At a minimum, the background should present: a description of the Technology 
(or tool, method)1 under Investigation, a description of Alternative Solutions, i.e., 
other reports that address the same problem or are comparable from a technology 
view point, a Description of Related Studies, i.e., empirical studies that have inves-
tigated the same or similar treatments, and, if appropriate, levels of Relevance to 
Practice, i.e., how successfully the technique has been applied in industry. In the 
following, we provide more details on each of these elements.

Because readers need to understand at some level what is being investigated 
before they can understand how it relates to other work, the background will 
 frequently begin with a brief description of the treatment and control variables of 
the experiment. The detail of the description depends on the availability of earlier 
publications and the length of the report. Moreover, for readers who have no 
 specific background in the area, a more general reference, e.g., to a textbook, might 
be helpful.

1 For ease of reading, we use technology as an umbrella term for technology, method, and tool.
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The description of alternative solutions/approaches helps to frame the work 
within a larger research context. This description should not simply be a list of 
related research (Shaw, 2003), but rather an objective description of the main find-
ings relevant to the work currently being reported. Alternative solutions should be 
reported whether they are supportive of or contradictory to the current research 
approach. Especially in the case of an experiment that compares different 
approaches, it is crucial to objectively describe the alternative approaches. Note that 
a comparison of the results of related work and the current results should be done 
in the discussion section after the results have been presented (c.f. Sect. 3.10).

In the description of related studies, existing evidence (if available), in the form 
of earlier studies and, especially, experiments, should be described. As with alterna-
tive solutions, the relation of the current research to other studies (existing  evidence) 
helps readers understand where this work fits into a larger research context. 
Moreover, it supports the reuse of this study for replication or systematic review, 
providing a sound basis for research and improving its value. If the reported study 
is a replication, the parental study and its findings also have to be described.

In terms of relevance to practice, if applicable, if one of the treatments (technologies) 
has previously been applied to real software projects or under realistic  circumstances, a 
short summary of the findings and related references should be provided.

3.7. Experiment Planning

This section, sometimes referred to as experimental design or protocol, describes 
the plan or protocol that is used to perform the experiment and analyze the results. 
It is important because, as Singer stated, this section is the “recipe for the 
 experiment” (Singer, 1999). Therefore, it should provide all information that is 
necessary to replicate the study and integrate it into the ESE body of knowledge. In 
addition, this section allows readers to evaluate the internal validity of the study, 
which is an important selection criterion for systematic review or meta-analysis 
(Kitchenham, 2004; Kitchenham et al., 2002).

According to several guidelines (e.g., Harris, 2002), the experiment planning 
section should describe the Goals, Participants, Experimental Material, Tasks, 
Hypotheses, Parameters, and Variables, Experiment Design, Procedure for con-
ducting the study, as well as the Analysis Procedure. Using this order allows for 
successive refinement of the details of the study. In some cases, however, a different 
order might be appropriate.

The level of detail regarding the various elements depends on the kind of publi-
cation, respecting the required length of the report. Therefore, authors should 
 prioritise the information according to what is most relevant for the particular 
 audience. Alternatively, authors may consider combining several sections into one. 
For instance, it might be appropriate to integrate the description of the procedure 
with the description of the execution, or to integrate the description of the analysis 
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procedure with that of the analysis. Furthermore, it might be possible to put all 
 relevant material into an appendix or longer technical report. If this is not possible, 
archiving the information on a website may be an alternative. To address concerns 
that arise in sharing protocols, including raw data and material, Basili et al. (2007) 
propose an initial licensing model.

3.7.1. Goal(s)

Often the original research objective as described in the introduction is not concrete 
enough. The purpose of this paragraph is, therefore, to define in more concrete 
terms the main manipulations of the experiment. For example, the GQM template 
provided in the introduction could be refined into something like:

Example adapted from Ciolkowski et al. (1997):

Goal 1: Analyze perspective-based reading and ad hoc reading techniques
For the purpose of understanding their effectiveness
With respect to the defect detection rate of individual developers

Goal 2: Analyze perspective-based reading perspectives
For the purpose of understanding their effectiveness
With respect to detecting different defect classes

The refinement of the main research question should be described and motivated to 
allow for traceability down to the hypotheses, which will be described in later in 
this chapter.

3.7.2. Participants

The participants (often referred to as subjects or, if not humans, experimental units) 
need to be described in detail. Furthermore, the sampling strategy and the resulting 
samples need to be described, including the number of participants (per condition), 
the kind of participants (e.g., computer science students), and the populations from 
which they were drawn. All measures for randomization have to be reported here, 
especially the random allocation of participants to treatments. Where a statistical 
power calculation has been used, assumptions, estimates, and calculations have to 
be provided.

All participant characteristics that might have an effect on the results or restrict 
the sample in some way should also be described in this section. This may include 
experience with the techniques to be applied or mean/range of experience in years, 
or educational level. For instance, if a certain level of experience is required, the 
sample might be drawn from fourth-term computer science students (as opposed to 
first-term students).

A description of the motivation for the participants to participate is mandatory. 
For instance, it should be stated whether the participants were paid and if so, how 
much, or whether they earned educational credits for taking part in the experiment. 
Additionally, the answers to the following questions are of interest (Wohlin et al., 
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2000): What was the commitment of the participants? How was consent obtained? 
How was confidentiality assured? How was participation motivated (induced)?

3.7.3. Experimental Materials

In this section, all experimental materials and equipment should be described. For 
instance, if the study involves a questionnaire, questions should be described, as 
should any other characterizations of the questionnaire, e.g., it had five sections 
focusing on specific topics, with the topics named. As another example, in an 
experiment looking at different reading techniques, the document used for the 
application of the reading technique should be described in terms of its length, 
complexity, seeded faults (number, type, interactions), etc. As with the participant 
section, all characteristics that might have an impact on the results should be 
 mentioned here as formally as possible. However, in case of conference papers, it 
is often not possible to present all the materials in detail, so we suggest providing 
more detail either in the appendix of an associated technical report, or using a 
website.

Note that in this section, the materials should not be presented verbatim, but 
rather described with as much detail as necessary for the readers to understand what 
materials the participants interacted with during the experiment.

3.7.4. Tasks

Here, the tasks performed by the participants should be described in enough detail 
so that a replication of the experiment is possible without consultation of the 
authors. Redundancies with regard to the description of the technology in the 
 background section (c.f., Sect. 3.6) should be avoided. If the description requires 
too much space, the information should be made available in a technical report or 
as a web resource. When space is a consideration, the task description could be 
integrated with the description of the procedure. However, separating the two 
descriptions makes it easier for readers to understand how the hypotheses, parameters, 
and variables were derived.

3.7.5. Hypotheses, Parameters, and Variables

In this section, hypotheses, parameters, and variables should be described. This 
description should be linked to the research objective already reported in the 
introduction.

For each goal stated in the research objective, the null hypotheses, denoted H
0ij

, 
and their corresponding alternative hypotheses, denoted H

1ij
, need to be reported, 

where i corresponds to the goal identifier, and j is a counter for cases where more 
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than one hypothesis is formulated per goal. The description of both null and 
 alternative hypotheses should be as formal as possible. The main hypotheses should 
be explicitly separated from ancillary hypotheses and exploratory analyses. In the 
case of ancillary hypotheses, a hierarchical system is appropriate. Hypotheses need 
to state the treatments and the control conditions.

Continuing the example for Goal1 from Sect. 3.7.1 (adapted from Ciolkowski 
et al. (1997) ):

The goal of the experiment is to determine:
Q1: Which reading technique produces a higher mean defect detection rate?
One of the possible hypotheses is:
H

011
: Individuals applying a perspective-based reading (PBR) technique detect more 

defects than individuals using ad hoc reading.

In the example hypothesis H
011

, the treatment is perspective-based reading and the 
control condition is ad hoc reading. A further formalization of H

011
 and the alterna-

tive hypothesis H
111

 could be written in the following form (where MDDR stands 
for mean defect detection rate):

H MDDR PBR MDDR ad hoc011 = ( ) ( )>

H MDDR PBR MDDR ad hoc111 = ≤( ) ( )

It is important to differentiate between experimental hypotheses and the specific 
tests being performed; the tests have to be described in the analysis procedure 
section.

In addition to the hypotheses, there are two types of variables that need to be 
described in this section: the dependent variable(s) (aka. response variables) and 
the independent variable(s) (aka. predictor variables). As with the hypotheses, 
dependent variables need be defined and justified in terms of their relevance to the 
goals listed in the Research Objectives. Dependent variables are the variables that 
are measured to ascertain whether the independent variable had an effect on the 
outcome. Likewise, independent variables are variables that are frequently 
 manipulated in the experiment and may influence the dependent variable(s). 
Independent variables can include treatments, materials, and some context factors. 
In this section, only independent variables that are manipulated or controlled 
through the experimental design (i.e., causal variables) are described. For each 
independent variable, its corresponding levels (aka. alternatives, treatments) have 
to be specified in operational form. In the example given above, the dependent 
variable is the MDDR. The independent variable is the type of reading technique, 
which has two levels, PBR and ad hoc.

With respect to reporting, authors need to describe their metrics clearly. In 
 particular, if a standardized set of metrics is available, authors have to explain 
which of them are used. If existing metrics are tailored, the need for the tailoring 
and the tailored metric have to be explicated. Based on Wohlin et al. (2000), Juristo 
and Moreno (2001), and Kitchenham et al. (2001), Table 3 gives a schema for the 
description of variables and related metrics.
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Table 3 Schema for the description of variables

Name of the 
variable

Type of the 
variable 
(independent, 
dependent, 
moderating)

Abbreviation Class 
(product, 
process, 
resource, 
method)

Entity 
(instance of 
the class)

Type of 
attribute (inter-
nal, external)

Scale type 
(nominal, 
ordinal …)

Unit Range or, 
for nominal 
and restricted 
ordinal scales, 
the definition 
of each scale 
point

Counting rule 
in the context of 
the entity

Type of reading 
technique

independent RT Method Reading 
Technique

N.A. nominal N.A. PBR; ad hoc N.A.

Mean defect 
detection rate

dependent MDDR Process Inspection 
process

Internal: effi-
ciency; 
external: 
quality

ratio Number of 
defects 
per hour

>= 0 Number of 
agreed upon 
defects after 
review meet-
ing / total 
effort for 
inspection 
process in 
hours
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For subjective metrics, a statistic for inter-rater agreements should be presented, 
such as the kappa statistics or the intra-class correlation coefficient for continuous 
metrics (Kitchenham et al., 2002).

3.7.6. Experiment Design

In the Experiment Design subsection, the specific design has to be described. 
Elements in this section that need to be described include whether the experiment 
was a within – or between-subjects design, or a mixed factors design, with a 
description of each of the levels of the independent variable. Juristo and Moreno 
(2001) give a comprehensive description of designs for experiments. Moreover, 
authors should describe how participants were assigned to levels of the treatments 
(Kitchenham et al., 2002).

If, for example, an experiment examined the effect of PBR versus ad hoc 
reading techniques on short and long times spent looking for defects on MDDR, 
with different sets of subjects using the techniques, it would be reported as a 2 
(reading technique) × 2 (time period) between-subjects design with reading 
technique having two levels: PBR and ad hoc, and time also having two levels 
(15 min and 30 min).

In addition to this formalization of the design, if any kind of blinding (e.g., 
blind allocation) has been used, the details need to be provided; this applies to the 
execution (e.g., blind marking) and the analysis (e.g., blind analysis). If the 
experiment is a replication, the adjustments and their rationales need to be dis-
cussed. If applicable, training provided to the participants has to be described. 
Any kind of threat mitigation should also be addressed, i.e., what measures were 
used to manage treats to validity. For example, a typical strategy to reduce learning 
effects is to have subjects exposed to the various levels of a treatment in a random 
or ordered fashion.

3.7.7. Procedure

The procedure section should describe precisely what happened to the participants 
from the moment they arrived to the moment they left (Harris, 2002). This includes a 
description of any training provided (e.g., the participants received a 2-h lecture 
 introducing perspective-based reading). The procedure section should also include a 
description of the setting (i.e., where the experiment occurred), and the schedule for 
the experiment. Furthermore, details of the data collection method have to be 
described, including when the data was collected, by whom, and with what kind of 
support (e.g., tool). This is in accordance with Kitchenham et al. (2002), who state 
that the data collection process describes the “who,” the “when,” and the “how” of 
any data collection activity. Any type of transformation of the data (e.g., marking 
“true” defects in defect lists) and training provided for such should also be described 
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here. If there are limitations with regard to the numbers of pages, the description of 
the procedure can be integrated with the analysis section.

3.7.8. Analysis Procedure

The statistical tests undertaken depend on the experimental design; therefore, the 
experimental plan is finalized with a description of the analysis procedure detailing 
which methods were used to test the hypotheses in analysing the data. If different 
hypotheses are investigated, information for each hypothesis needs to be provided 
separately. If any additional influences are expected, their analysis also needs to be 
described, e.g., see Ciolkowski et al. (1997). If there are page limitations, the analy-
sis procedure can be combined with the analysis section.

3.8. Deviations from the Plan

In an ideal situation, the experiment was conducted exactly as it was planned. Then 
the description in the procedure section (c.f., Sect. 3.7.7) is both, the representation 
and the instantiation of the plan. In that case, this section is not needed. However, 
deviations regarding the original plan are often experienced. Because this might 
have an impact on both the validity of the results and the replicability of the study, 
it is necessary to describe those deviations by describing the original plan when 
deviations occurred. This includes all differences between the instantiated  procedure 
and the plan, for instance, regarding instrumentation and the collection process. 
Deviations can occur regarding participation (who actually participated), schedule 
(e.g., the time participants were given for the tasks), or data collection. In addition, 
information about subjects who do not complete the study should be presented, for 
example, five subjects did not attend the final session; as recommended by 
Kitchenham et al. (2002). If possible, reasons for the non-completion should be 
given; that information is worthwhile when replicating the study.

In the case of a limited number of pages, this description can be integrated with 
the procedure section (c.f. Sect. 3.7.7). In addition, a general statement confirming 
the process conformance could be given in the description of the analysis.

3.9. Analysis

According to Singer (1999), the Analysis section summarizes the data collected and 
its treatment. In this section, the results should be described devoid of any interpre-
tation. When there are limited pages, authors might tend to add some interpretation 
to the analysis section. However, according to existing guidelines, especially from 
other disciplines, interpretation and results belong to clearly distinct sections. If it 
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is necessary to include interpretation in the analysis section, we strongly favour 
establishing a clear distinction between the two (e.g., by using textual measures or 
subsections).

If multiple goals were investigated, separate analysis subsections and an overall 
(summarizing) analysis are required. Since the analysis procedures are already 
described in the design section, the purpose of this section is to describe the 
 application of the analysis methods to the data collected. The Analysis section 
 generally contains three types of information: Descriptive Statistics, Data Set 
Preparation, and Hypothesis Testing. When appropriate, a sensitivity analysis 
should be reported in the hypothesis testing section.

Presenting the data by using appropriate descriptive statistics, including 
number of observations, measures for central tendency, and dispersion, gives the 
reader an  overview of the data. Mean, median, and mode are example measures 
for central  tendency. Standard deviation, variance, and range, as well as interval 
of variation and frequency are example measures for dispersion. To facilitate 
meta-analysis, it is highly recommended [e.g., by Kitchenham et al. (2002)] to 
provide raw data in the appendices or to describe where the data can be acquired, 
e.g., from a website.

Additional processing (or preparation) of the data set may be required. Such 
preparations should be discussed here. This includes, if appropriate, data transfor-
mation, outlier identification and their potential removal, and handling of missing 
values, as well as the discussion of dropouts (i.e., data from participants who were 
not present for all experimental sessions). Chap. 7 details methods for dealing with 
missing values.

For hypothesis testing, special emphasis should be placed on how the data was 
evaluated (e.g., by an ANOVA) and how the analysis model was validated. The 
violations of the statistical assumptions underlying the analysis method (e.g., 
 normality, independence, and residuals) should also be described. The values of the 
resulting statistics also need to be reported. Harris outlines what has to be reported 
for different kinds of statistical tests (Harris, 2002). Singer (1999) recommends that 
“inferential statistics are reported with the value of the test (effect size), the proba-
bility level, the degrees of freedom, the direction of effect,” and the power of the 
test. To this list, we add the alpha value and the confidence interval where appropriate 
(Dybå et al., 2006; Kampenes et al., 2007).

3.10. Discussion

The purpose of the discussion section is to interpret the findings presented in the 
 previous section. This includes an overview of the results, threats to validity, 
 generalization (where are the results applicable?), as well as the (potential) impact on 
cost, time, and quality. Harris (2002) suggests starting this section with a description 
of what has been found and how well the data fit the predictions. Related to this, 
authors should discuss whether the hypotheses were confirmed or not. The discussion 
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section should include information about each of the following three elements: 
Evaluation of Results and Implications, Threats to Validity, and Inferences.

3.10.1. Evaluation of Results and Implications

The purpose of the evaluation of results and implications is to explain the results. 
All findings, including any unexpected results, should be described in this subsec-
tion. Moreover, if the null hypothesis was not rejected, authors may include reasons 
for why they believe this is the case. Several authors point out that it is important 
to distinguish between statistical significance and practical importance (Kitchenham 
et al., 2002) or meaningfulness (Harris, 2002). The results should also be related to 
both theory and practice.

Although it is still very rare for SE experiments to develop theory, the implica-
tions of the findings should be related to the larger theory being developed, and how 
they further explicate or illuminate that theory (see Chap. 12 for more information 
about theory). The results should be discussed in the light of the objectives stated 
in the introduction and also related to the previous work described in the back-
ground section. These two together should help to build a broader theoretical foun-
dation for the work.

With respect to practice, the results should be related to current and potential 
practice, outlining how practice can be improved by applying the results. If the null 
hypothesis was not rejected, it is not possible to give an interpretation in any direc-
tion; in particular, it does not mean that the null hypothesis is true, only that not 
enough evidence exists to reject it. In some cases, the value of the effect is so small 
that there may actually be no relevant application to current practice. This has to be 
explicated as well.

In writing the discussion, it is important to (1) clearly state the results of the analy-
sis separately from any inferences or conclusions based on those results (Kitchenham 
et al., 2002), (2) to ensure that the conclusions follow from the results (Kitchenham 
et al., 2002), and (3) that conjectures be made with caution and kept brief, leaving 
out fanciful speculation (Harris, 2002).

3.10.2. Threats to Validity

All threats that might have an impact on the validity of the results need to be 
 discussed. This includes at least (1) threats to construct validity, (2) threats to 
internal validity, (3) threats to external validity, and if applicable, and (4) 
threats to conclusion validity. A more comprehensive classification of threats to 
validity is given in Wohlin et al. (2000). Each of these four types of threats to 
validity is defined below, and needs to be covered in a research paper. Ignoring 
the threats can lead to the wrong conclusions regarding the validity of the 
results. For example, a practitioner might assume that the results would apply 
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to his situation where the external validity could indicate problems regarding 
generalizability.

Construct validity. Construct validity refers to the degree to which the operation-
alization of the measures in a study actually represents the constructs in the real 
world. For instance, in measuring readability, a researcher may look at the time 
required to read source code. The construct validity of this measure is the extent 
to which the readability of source code is actually related to the time required to 
read it. There are a number of threats to construct validity outlined in Wohlin 
et al. (2000).

Internal validity. Internal validity refers to the extent to which the treatment or 
independent variable(s) were actually responsible for the effects seen to the 
dependent variable. Unknown factors may have had an influence on the results 
and therefore put limitations on the internal validity of the study. Note that it is 
possible to have internal validity in a study and not have construct validity. For 
instance, it could be true that the manipulations in the study did actually affect 
the outcome, and yet the manipulations did not map/represent the desired entity 
in the real world.

External validity. External validity refers to the degree to which the findings of 
the study can be generalized to other participant populations or settings. External 
validity can often be a problem for controlled experiments in artificial environ-
ments where the same conditions may not hold in the real world. Wohlin et al. 
describe three types of threats to internal validity dealing with people, place, 
and/or time.

Conclusion validity. Conclusion validity refers to whether the conclusions 
reached in a study are correct. For controlled experiments, conclusion validity is 
directly related to the application of statistical tests to the data. If the statistical 
tests are not applied correctly, this is a threat to the conclusion validity. Thus, 
examples of threats to conclusion validity involve anything that causes a Type I 
or Type II error.

To facilitate reading, subsections might be appropriate for each threat that has to 
be discussed. Following the arguments presented by Kitchenham et al. (2002), it is 
not enough to mention that a threat exists; the implications of the threat with respect 
to the findings also need to be discussed.

Other threats than those listed above may also need to be discussed, such as 
personal vested interests or ethical issues regarding the selection of participants 
(in particular, experimenter-subject dependencies).

3.10.3. Inferences

In this section, the findings can be generalized, within the scope of validity, to 
broader research questions or settings. This should be done carefully, based on the 
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findings, by incorporating the limitations. All claims need to be supported by the 
results. For technologies not currently in use, scale-up issues should be discussed.

3.11. Conclusions and Future Work

The final section of the report should describe, based on the results and discussion, 
the following elements: Summary, Impact, and Future Work.

The conclusion section begins with a concise summary of the research and its 
results as presented in the former sections. Unique to the domain of software 
 engineering – in order to enable readers to get the most important findings with 
regard to the practical impact in one place – in the conclusion we emphasize a 
description, where possible, of the impact on cost, time, and quality, and a summary 
of the limitations. Note that these conclusions can only be drawn if they were 
directly investigated in the experiment.

Impact on Cost: What effort was necessary to introduce and perform the  technique 
(e.g., what are the costs of detecting a defect of a certain type with this technique? 
Is there any impact on the cost of other steps of the development process, positive or 
negative ones (e.g., reduced cost for rework)?)

Impact on Time: Is there any positive or negative impact on the time of the proposed 
solution/technology/technique on other steps of the development process?

Impact on Quality: Is there any impact on the quality of the proposed solution/ 
technology/technique on the quality of other steps of the development process?

Besides the description of the impact, where possible and appropriate, a discus-
sion of the approach’s level of maturity, when the investments will pay back, and 
consequences arising from the implementation will help readers to assess the 
 technology. (Although in most cases artificial, we assume a rough estimate is better 
than no information.)

If applicable, limitations of the approach with regard to its practical implementa-
tion should also be described, i.e., circumstances under which the approach 
 presumably will not yield the expected benefits or should not be employed. 
Furthermore, any risks or side-effects associated with the implementation or appli-
cation of the approach should also be mentioned.

Finally, an outlook to future work should be given. It should describe what other 
research (i.e., experiments) could be carried out to further investigate the results 
yielded or evolve the body of knowledge and theoretical constructs.

3.12. Acknowledgements

In this section, sponsors, participants, and (research) contributors who do not fulfil 
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3.13. References

In this section, all cited literature has to be presented in the format requested by the 
publisher.

3.14. Appendices

In this section, material, raw data, and detailed analyses that might be helpful for 
others to build upon the reported work should be provided (i.e., meta-analysis).

If the raw data is not reported, the authors should specify where and under which 
conditions the material and the raw data could be made available to other research-
ers (i.e., technical report, web resource). Here a license model, such as the one 
 proposed by Basili et al. (2007) can be used to ensure to all parties that their contri-
bution is acknowledged and the material is only used for the defined purposes. The 
licensor can, for example, require that any publication based on the delivered data 
has to be sent to him.

4. Conclusion

In this chapter, we have motivated the importance of reporting standards for matur-
ing empirical software engineering research. The contribution of this chapter is a 
guideline for guiding researchers while reporting experiments in software engineer-
ing. The presented guideline unifies and extends the most prominent existing guide-
lines published by various authors (cf. Table 1). In addition to providing a uniform 
structure of a reporting template, the guideline provides detailed guidance on which 
information should be provided in the various sections of a report. This guideline 
was developed for a specific type of empirical study, i.e., controlled experiments 
and quasi-experiments. Nevertheless, many aspects discussed throughout this chap-
ter have to be reported in other empirical study reports, like case studies.

Thus, this chapter provides researchers with a means for structured and compre-
hensive documentation of empirical studies, especially experiments. In some cases, 
due to page limitations (e.g., conference paper), it might not be possible to provide 
all the proposed information. Although each paper should stand for itself, we have 
discussed possible shortcuts by integrating certain sections. Furthermore, authors 
should make use of technical reports or web resources to provide additional infor-
mation, including material, raw data, and detailed analysis.

During our work on guidelines, we learned that issues are related not only to 
structure and comprehensiveness, but also to the information needs of stakeholders. 
In this chapter, we presented, from our perspective, a quite comprehensive model, 
addressing several stakeholders. To especially attract decision makers in industry, 
we envisage tailoring this guideline for different audiences (e.g., by providing a 
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guideline for reporting results from empirical research to practitioners). Researchers 
doing replications or performing a systematic review certainly have different 
 information needs than practitioners looking for candidate techniques for solving 
their problems. Researchers need more technical information regarding the study as 
such, whereas practitioners require information regarding the potential of the 
 technique to actually solve their problems; that is, information on development 
costs, product quality, and development schedule.

An important issue related to the dissemination task is to ensure that the guide-
lines are used in research practice. One possibility to enforce the usage of reporting 
guidelines could be that program committees of SE workshops and conferences as 
well as editorial boards of SE journals make the application of a standard reporting 
scheme mandatory.

To facilitate the adoption of the guidelines, it would help to stress the benefits 
that accrue to researchers who apply them. For example, one benefit could be 
 simpler integration of individual results into a common body of knowledge. We 
also assume that, generally, the SE publication process will become more efficient, 
since crucial information will be found by reviewers (and other researchers) in the 
same place every time.

Thus, we would like to conclude this chapter with a call for adherence to guide-
lines. Whenever reporting results of any kind of empirical studies, it is wise to think 
about who shall read the publication for what purposes. This way, the report will 
deliver the information needed for different stakeholder groups and audiences. The 
guidelines will assist writers to emphasize the right information and the empirical 
software engineering community to mature.
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Chapter 9
A Practical Guide to Ethical Research 
Involving Humans1

Norman G. Vinson and Janice Singer

Abstract The popularity of empirical methods in software engineering research is 
on the rise. Surveys, experiments, metrics, case studies, and field studies are exam-
ples of empirical methods used to investigate both software engineering processes 
and products. The increased application of such methods has also brought about 
an increase in discussions about adapting these methods to the particularities of 
software engineering. In contrast, the ethical issues raised by empirical methods 
have received little attention in the software engineering literature. In this chapter, 
we introduce four ethics principles of primary importance for conducting ethical 
research. We additionally discuss and provide examples of applying these princi-
ples in the context of ethics review.

1. Introduction

How should an empirical researcher approach subjects?

How should data be collected and stored?

How can a researcher reduce subjects’ unease about being observed?2

Should a company’s name be mentioned in the acknowledgements of a paper?

Each of these real-life issues has an ethical dimension. As such, ethics play a role 
in the proper management of a research project (Mirvis and Seashore, 1982) which, 
in turn, affects the project’s success. Accordingly, it is important that empirical 

1 Based on Singer, J.A. & Vinson, N.G. (2002). Ethical issues in empirical studies of software 
engineering, IEEE Transactions on Software Engineering 28(12), 1171–1180.
2 Several recent publications (e.g. National Health and Medical Research Council et al., 2007 ) suggest 
that it is more appropriate to refer to the people under study as research participants rather than research 
subjects. However others (e.g. Canadian Institutes of Health Research et al., 2005 ) note that the term 
“participant” is ambiguous, as it can refer to virtually anyone involved in the research project. To avoid 
any such ambiguity we will use the term “subject” to refer to those people who are being studied.
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researchers understand research ethics and their application. In this chapter, we will 
introduce the major ethical concepts relating to Empirical Software Engineering 
(ESE) research with human subjects and provide a practical guide to the ethics 
review process3.

Because empirical research is relatively new to software engineering, discussion 
of the ethical issues raised by ESE is still in its early stages (Harrison, 1998; Jeffrey 
and Votta, 1999; Singer and Vinson, 2001, 2002). Therefore, we will rely on 
 information from other fields to support our discussion. Nonetheless, our examples 
will focus on situations ESE researchers are likely to face.

It is insufficient to simply expect scientists to behave ethically (Beecher, 
1966a; McNeill, 1993). In an attempt to minimize unethical behaviour, govern-
ments and scientific communities have developed codes of research ethics 
(McNeill, 1993). By providing a standard of behaviour for researchers to follow, 
and by helping them reason about ethical issues in specific situations, it is hoped 
that these codes of  ethics will reduce the incidence of unethical behaviour 
(Anderson et al., 1993; Frankel, 1989; Gotterbarn et al., 1999; McNeill, 1993). 
However, it is ultimately up to  individual researchers to ensure research practices 
are ethical. In this regard,  experience has shown that to behave ethically, people 
must understand the ethical principles underlying codes of ethics and spend 
the time and effort required to  intelligently apply them to their own circumstances 
(Anderson et al., 1993; Canadian Institutes of Health Research et al., 2005). 
To quote the preamble of the ACM/IEEE-CS SE Code of Ethics and Professional 
Practice, “the Code is not a simple ethical algorithm that generates ethical 
 decisions” (Gotterbarn et al., 1999, p. 104).

Unfortunately, the ESE community has yet to develop its own code of research 
ethics (Harrison, 1998; Jeffrey and Votta, 1999; Singer and Vinson, 2002) 
Researchers must therefore try to apply codes from related disciplines to ESE 
 studies. For ESE research practices similar to those of other disciplines, this does 
not pose a problem. In this vein, codes from the social sciences and computing 
 sciences are especially relevant. However, for research practices more common or 
even unique to ESE, such as the use of source code as data (see El-Emam, 2001; 
Vinson and Singer, 2001), the existing codes are of little value. In these cases, ESE 
researchers will have to reason from ethical principles to determine an ethical 
course of action. To support such reasoning, we provide a detailed explanation of 
the main principles of ethical research in the first section of this chapter. We also 
describe some common problems in applying these principles to ESE projects and 
present solutions to those problems.

3 Scientific research raises a host of ethical issues such as the assignment of authorship, the 
 relationship between graduate students and their advisors, and scientific fraud. These issues apply 
broadly to most research disciplines (Committee on Science, 1992, 1993, 1995). Computer 
 science and software engineering research raises additional issues (Wright, 2006). In this chapter, 
we will ignore broad issues to instead focus on the ethical issues raised by the researcher/subject 
relationship in ESE; issues such as those highlighted above.
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This chapter also includes a discussion of the role of Ethics Review Boards (ERBs) 
and research ethics regulations. In the USA, Canada, and Australia most ESE projects 
receiving government funding and involving human subjects must be reviewed by an 
ERB to ensure that the project complies with the relevant ethical guidelines (Australian 
Research Council (ARC), 2007; Canadian Institutes of Health Research et al., 2005; 
National Health and Medical Research Council et al., 2007; Penslar, 1993). However, 
because the regulations and guidelines still retain characteristics of their original focus 
on biomedical research (Canadian Association of University Teachers (CAUT), 1997; 
Lane, 2006; Sieber, 2001b), it can  sometimes be difficult to determine whether and 
how they apply to ESE (El-Emam, 2001; Lethbridge, 2001; Sieber, 2001a, 2001b; 
Vinson and Singer, 2001; Vinson and Singer, 2004).

In general, Europe’s regulations focus on biomedical research. However, the 
Research Council of Norway expects institutions to ensure that the necessary 
 ethical precautions are taken (H.H. Simonsen, Senior Adviser, National Research 
Council of Norway, personal communication (e-mail), July 20, 2006). Similarly in 
the UK, the Engineering and Physical Sciences Research Council (EPSRC) holds 
the institution responsible for ensuring that research ethics standards are followed 
(Engineering and Physical Sciences Research Council (EPSRC), 2007, p. 31), but 
it does not appear that ESE research need be reviewed by an ERB or comply with 
a specific set of research ethics guidelines.

Europe does however have personal information privacy laws, as do Canada and 
Australia (Patrick, 2006). These laws conform in large part to the Organisation for 
Economic Co-operation and Development (OECD) Guidelines on the Protection of 
Privacy and Transborder Flows of Personal Data (Organisation for Economic 
Development and Co-operation (OECD), 1980; Patrick, 2006). While specific 
implementations will differ from country to country, they will rest on the principles 
we describe below. Moreover, researchers should note that it is not within the 
 mandate of ERBs to ensure compliance to privacy laws.

In reading this chapter it is important to keep in mind the important distinction 
between principles and regulations: research practices are rendered ethical  primarily 
by the application of ethics principles. Principles, if they are abstract enough, can be 
applied to any relevant situation. In contrast, existing regulations are not well suited 
to all research situations that raise ethical issues (Sieber, 2001a, b; Singer and Vinson, 
2002). Consequently, simply complying with regulations can nonetheless result in 
violations of the principles of ethical research (Beecher, 1966a; McNeill, 1993). The 
distinction between rules and principles is particularly important for ESE researchers 
since some of their research practices are not covered by existing regulations (Sieber, 
2001a; Singer and Vinson, 2002). In order to conduct research ethically, ESE 
researchers must not simply rely on complying with the rules but must be able to 
apply ethical principles to their particular circumstances (Gotterbarn et al., 1999).

Accordingly, our goals in this chapter are to introduce the topic of research 
 ethics, aid researchers with the ethics review process, and foster ethical decision-
making in the context of ESE research. In service of these goals we will first focus 
on ethical principles and then present sample ERB documents. Knowledge of both 
these components is vital to planning and conducting research projects.
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2. Ethical Principles

Singer and Vinson (2002) reviewed codes of ethics from government funding 
 bodies, and biomedical, social science, and computing science professional organi-
zations to determine common principles relevant to ESE research practices. They 
discovered four such common principles: informed consent, scientific value, 
 confidentiality, and beneficence. The principle of informed consent stipulates that 
potential subjects should be informed of all relevant facts about a study before mak-
ing an explicit, free and well-considered decision about whether to participate. The 
study should also have some scientific value in order to call upon human subjects 
to expose themselves to even minimal risks. Researchers must also undertake every 
effort to maintain the confidentiality of data and sensitive information. Finally, 
beneficence results from a weighing of the risks, harms, and benefits of the 
 proposed research. Beneficence must be positive in order to proceed.

Note that all of these principles apply whether researchers are observing the sub-
jects’ behaviour directly (as in job shadowing (see Singer et al., Chap. 1)), or indirectly 
(as when collecting command logs), or whether the subjects are simply providing code 
to be examined. These principles also apply whether the subjects are students, employ-
ees, volunteers, or organizations (e.g. companies). Each of these principles is reviewed 
below, and the implications for ESE researchers are discussed.

2.1. Informed Consent

The principle of full informed consent on the part of research subjects to participate 
in a study follows from the more abstract principle of respecting an individual’s 
autonomy (Fleuhr-Lobban, 1994). In essence, before the research begins, potential 
subjects have the right to choose whether they will participate in the project. Ethicists 
do not agree on the necessary components of full informed consent, but it is clear 
that it must contain at least some of the following elements: disclosure, comprehen-
sion and competence, voluntariness, and the actual consent or decision (Faden and 
Beauchamp, 1986). Below we provide an abstract description of each of these 
 elements and then we focus more closely on consent in the context of ESE.

Disclosure refers to the information that the researcher must provide to the sub-
jects for them to make an informed decision about whether to participate in the 
research. This information usually includes, but is not limited to: the purpose of 
the research, the research procedure, the risks to the subjects, the anticipated  benefits 
to the subjects and the world at large, alternatives to participation (typically for 
 students in a subject pool), the treatment of confidential information, the  voluntary 
nature of participation, and a statement offering to answer the subjects’ questions 
(Sieber, 1992). As well, the disclosure should describe the type of data that will be 
collected and the uses it will be put to (Patrick, 2006). The intent is to provide 
potential subjects with all the information necessary to understand how the research 
will affect them (Faden and Beauchamp, 1986). The need for comprehension 
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 compels the researcher to present the information in a manner that the subjects can 
understand, e.g. eschewing technical jargon that is outside the subjects’  repertoire. 
Competence refers to the subjects’ ability to make a rational informed decision to 
participate in the research. This element is intended to protect vulnerable subjects 
who may not understand the nature of the research or the risks, such as children or 
the mentally disabled. Finally, voluntariness specifies that informed consent must 
be obtained under conditions free of coercion and undue influence, and that the 
consent must be intentional. The subjects’ right to terminate their  participation at 
any time is also a component of voluntariness. Typically, the  decision to participate 
must represent an active authorization on the part of the  subject, as opposed to a 
tacit acceptance or mere formality (Faden and Beauchamp, 1986). In regard to the 
specific elements of informed consent – disclosure, comprehension and compe-
tence, voluntariness, and the actual consent or decision – ESE researchers are not 
likely to have trouble with comprehension and competence.

For field research in companies, it will almost always be necessary to obtain 
consent from the company first, whether one is interviewing employees or simply 
obtaining metrics on source code (ACM Executive Council, 1993). The wise 
researcher will also try to convince the relevant managers to support the project.

When an individual can be identified from the data, consent is usually required, 
regardless of the way in which the data are collected (Patrick, 2006). Indeed, the 
ACM code (ACM Executive Council, 1993) explicitly forbids access to an  individual’s 
electronic data and communications, such as e-mail, without the  individual’s prior 
consent. In contrast, when there is no information in the raw data that could allow a 
particular individual to be identified, informed consent of individuals will usually not 
be required (Canadian Institutes of Health Research et al., 2005; Penslar, 1993). For 
example, measurements of network traffic do not include data identifying individuals, 
therefore, the informed consent of employees using the network would not be 
required even though the employees are the source of some of the data.

Obtaining signed informed consent forms in participant observation field 
research will often pose a problem (Fleuhr-Lobban, 1994; University of Toronto 
Social Sciences and Humanities Research Ethics Board (SSH REB), 2005). When 
using participant observation methods, the researcher becomes a member of the 
community that is the object of study (Singer et al., Chap. 1; University of Toronto 
Social Sciences and Humanities Research Ethics Board (SSH REB), 2005). In these 
contexts, consent is an ongoing process. For example, as the research evolves, the 
participants’ (subjects and researchers) roles will change and unforeseen risks may 
arise (Fleuhr-Lobban, 1994; Mirvis and Seashore, 1982; University of Toronto 
Social Sciences and Humanities Research Ethics Board (SSH REB), 2005). Given 
the changing participant roles and the evolution of the research, it 
is practically impossible to even prepare a consent form as described in the ethics 
 regulations (see 45CFR§464; Canadian Institutes of Health Research et al., 2005). 

4 Listed in the references section as: Public Welfare, Protection of Human Subjects, Code of 
Federal Regulations, Title 45, Pt. 46 (45CFR§46), (2005), http://www.hhs.gov/ohrp/humansubjects/ 
guidance/45cfr46.htm
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At the outset of the study, the subjects should receive as much disclosure about the 
study as possible, perhaps through a general announcement. Subjects should also 
be made aware that their behaviour might be recorded. In addition, given the evolv-
ing nature of the research, the researcher should maintain an ongoing dialog with the 
subjects, apprising them of relevant changes that can affect their consent (American 
Anthropological Association, 2004; Fleuhr-Lobban, 1994; University of Toronto 
Social Sciences and Humanities Research Ethics Board (SSH REB), 2005).

A distinction can be drawn between consent and assent, the latter being more 
passive, more similar to acquiescence. When giving consent, the subject is required 
to sign an informed consent document. In contrast, assent is limited to a verbal or 
tacit agreement to participate. For telephone interviews or surveys, assent (in 
 contrast to consent) is usually acceptable (Fowler, 1993), as long as the study poses 
no real risk to the subjects and there is no collection of information that could be 
used to identify the subjects. To give assent, subjects still need all the necessary 
information to make an informed decision about whether to participate in the 
research. They simply do not have to sign a form (Fowler, 1993). In a participant 
observation context, the researcher’s primary subjects may sign a consent form at 
the study’s outset, and then maintain their participation through assent as the study 
evolves. For other participants whose interaction with the researcher is limited, 
assent may be sufficient (University of Toronto Social Sciences and Humanities 
Research Ethics Board (SSH REB), 2005).

Many codes of ethics (e.g., Canadian Institutes of Health Research et al., 2005) 
set full disclosure as the standard for an acceptable informed consent. Full  disclosure 
is defined in contrast to deception, where the true intent and methods of the study 
are not revealed to the subjects. For example, a social science researcher might 
be interested in how women and men interact in small spaces. To examine this, 
the  scientist sets up an experiment in which subjects are told that they will process 
some paperwork with a partner. They are led to believe that the partner, like them, is 
a subject. However, in reality, the partner is part of the experimenter’s team and 
is only pretending to be a subject. The partner’s role is to engage the subject in 
 particular ways. The effects of those different engagement techniques on the 
subjects’ behaviour are the true focus of the experiment. To avoid biasing the subjects’ 
responses, the subjects are told nothing of this, and therein lay the deceit.

Rather than full disclosure or deception, many ESE studies employ some form 
of partial disclosure. Partial disclosure refers to providing the subjects with a less 
than complete account of the study’s goal or hypotheses. If the subjects knew 
the hypotheses in detail, they could well modify their behaviour as a function of 
this knowledge, thus invalidating their data (Sieber, 1992; Worchel and Cooper, 
1979). For example, consider an ESE experiment on source code searching. The 
experimenters could partially disclose the goal of the study by simply telling  subjects 
that their patterns of file access and use will be recorded and examined. The 
 experimenters mask the true goal of the study by formulating it in a more  general, 
abstract, and vague manner. After the subjects have completed the  experiment, they 
are  provided with more detailed explanations of the experiment’s goals and hypoth-
eses. Since the subjects’ data have already been collected, these  explanations will 
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not affect the data’s validity. This is the least objectionable form of partial disclosure, 
since it does not affect the subjects’ assessments of the risks of participation; full 
disclosure is provided at the conclusion of the experiment (Smith and Richardson, 
1983); and no outright deception is involved.

It is unlikely that research in software engineering will involve any great form 
of deception. Nonetheless, Sieber (1992) gives excellent guidance, and Smith and 
Richardson (1983) discuss the crucial role of debriefing in deception experiments.

Perhaps the most important aspect of disclosure is the risks of participation. 
Many of the risks to subjects in ESE studies result from breaches of confidential-
ity. When employees serve as subjects, research reports can provide enough 
information for managers (or other employees) to identify the data of individuals. 
This can adversely affect the subjects’ careers if, for example, it is found that they 
did not follow company procedures. Companies can also suffer if sensitive 
 information is disclosed (see Sect. 2.2 Beneficence for other examples). It is 
therefore important to inform the subjects of the limits of confidentiality and the 
risks resulting from breaches of confidentiality as part of the disclosure process. 
Note that it is also advisable to minimize these risks by employing the techniques 
presented below in the section on confidentiality.

An additional difficulty in ESE is that the limited autonomy of many potential 
subjects raises questions about voluntariness. Namely, employees of a company 
that has approved a workplace research project and students in the researcher’s 
class may fear a reprisal for not participating or may anticipate a reward for 
 participating. For instance, an employee may fear upsetting his manager who 
 supports the project, and a student may wish to curry her professor’s favour. These 
expectations, even if they are false, taint the consent-giving process (Penslar, 1993). 
Of course, employees are only vulnerable if their employer has approved (or 
 disapproved) of the research project. Research taking place outside the workplace 
context does not raise the possibility of employer coercion, even if it calls upon 
knowledge of software engineering.

Several measures can be taken to reduce the perception of coercion. First, in the 
case of field studies, researchers should emphasize to the potential subjects, and 
their managers if applicable, the importance of voluntariness and confidentiality 
of both participation and data. Second, researchers should establish explicit  procedures 
to protect confidentiality (see Sect. 2.3). If managers and professors do not know who 
is participating, they can neither punish non-participants nor reward subjects. 
Consequently, their influence over potential subjects is significantly diminished.

However, it is easy to conceive of cases in which the research project would be 
carried out regardless of whether individual SEs consented or not (Vinson and 
Singer, 2004). This is because, as employees of a company, SEs can be directed by 
their managers to perform certain activities. In short, SEs are not fully autonomous 
in the context of their employment. Unfortunately, respect of the individual’s 
autonomy is the cornerstone of research ethics guidelines and regulations (Fleuhr-
Lobban, 1994). Thus in some cases, ESE field studies can conflict fundamentally 
with research ethics guidelines and regulations in regard to the subject’s autonomy 
(Vinson and Singer, 2004).
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For example a company may want metrics for several modules of code. Since 
the code belongs to the company, it has a legal right to obtain code metrics, regard-
less of whether the SEs or development group managers consent to it. In such a 
case, should a metrics researcher be required to obtain the consent of the individual 
SEs and their managers before working on the project?

For studies involving students, researchers should avoid recruiting students in 
the classroom setting and should avoid trying to recruit their own students. For 
example, an upcoming study could be announced in every class, and interested 
 students would place their names on a list held in a secretary’s office. This reduces 
the possibility and the perception of intimidation. Researchers should also ensure 
that the study has no impact on the students’ grades. This not only reduces the 
 possibility of coercion, it also minimizes the risk of harming subjects through their 
grades (refer to Sect. 2.2). Finally, students should also be given the opportunity of 
withholding their data.

In sum, ESE researchers must obtain informed consent from their subjects, 
whether these are individuals or organizations. However, it is unclear whether 
 consent must be obtained from programmers when the research project is limited 
to examining source code they do not own. Disclosure is a required component of 
the consent process since it allows potential subjects to assess the desirability 
of participation. However, if the risks are clearly stated, partial disclosure that 
 simply masks the precise hypotheses being tested should be acceptable. Perhaps the 
most serious difficulty for ESE researchers is the requirement of voluntariness. 
Voluntariness is threatened by the potential for coercion (real or merely perceived) 
of the employees and students. To limit the effects of coercion, researchers can 
implement procedures to protect confidentiality and minimize the harm that would 
result from breaches of confidentially. Techniques to minimize harm and protect 
confidentiality are discussed in the following sections.

2.2. Beneficence

The degree of beneficence results from a weighted combination of risks, harms, and 
benefits to the subjects and society from participation in a study (McNeill, 1993). 
Researchers are required to maximize beneficence, particularly for research subjects. 
In ESE, benefits tend to arise from the research topic (e.g. better training software), 
whereas potential harm tends to arise from the research methods (e.g. having some 
students use the training software instead of coming to class). Consequently, once the 
research question has been chosen, researchers can usually maximize beneficence by 
adopting methods that minimize the risk of harm to the subjects.

The principle of beneficence applies not only to the individual subject, but also 
to groups of subjects, like particular ethnic or socio-economic groups (Canadian 
Institutes of Health Research et al., 2005), and/or organizations, like companies. 
Moreover, in the context of minimizing harm, the definition of “harm” is not 
 limited to physical harm. Instead, it is very broadly construed, and contains such 
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diverse elements as stress, the loss of dignity, self-esteem, or personal autonomy, 
the disruption of day-to-day activities, tedium, and of course financial harm 
(National Health and Medical Research Council et al., 2007; Sieber, 2001b).

In ESE, the greatest risk for harm often comes from breaches of confidentiality. 
Imagine, for instance, that a metrics project allows a company to rank its programmers 
by injected fault rate. An employee’s ranking could then affect future promotions. ESE 
research can also harm organizations through financial loss resulting from the disclo-
sure of sensitive information. For example, a researcher may  evaluate source code 
from several companies and name the companies in an  appendix to a published article. 
Negative evaluations could lead prospective clients to choose competing products. 
Accordingly, procedures that maintain confidentiality reduce the risks of harm. Such 
procedures are discussed below in the section on confidentiality.

Social science research methods used in ESE studies also have a potential for 
harm. For example, job shadowing, wherein a researcher closely observes a 
 subject at work, can cause some people a great deal of stress. The risk of such 
harm can be minimized by respecting and emphasizing the informed consent 
provisions discussed earlier. In particular, when a subject shows discomfort, the 
researcher can ask if anything can be done to alleviate the discomfort and may 
remind the subject that she can withdraw from the study without penalty. 
Interview and observation sessions should be scheduled in consultation with the 
subjects to avoid times of high stress, such as immediately before a software 
release. Schrier (1992) details several other techniques to reduce the stress that 
can arise from being observed.

In the context of ESE, researchers may take on the role of software engineers. 
The activities performed in this applied context can also harm the subjects, raising 
ethical issues (Lethbridge, 2001). For example, consider a project on source code 
re-engineering and automated translation. This will have a substantial impact on the 
software engineers who maintain the code, especially if they do not know the new 
code’s language. At the very least it will increase their stress, and at worse it will 
place their employment at risk. Procedures can be implemented to minimize the 
impact of the source changes on the software engineers. For example, researchers 
can arrange for the software engineers to receive training in the new code’s lan-
guage. Researchers who introduce or modify technology should also avoid any 
action that might damage the subject’s property. To continue our example of code 
translation, it is the researchers’ responsibility to ensure that the translated code 
functions correctly even though, in practice, testing and debugging will often be 
carried out jointly by the researchers and the industrial partners. Similar issues arise 
when introducing new software tools or modifying interfaces (Lethbridge, 2001). 
When researchers take on the role of information technology provider, as illustrated 
here, they can find guidance in the ACM and IEEE-CS/ACM SE codes of ethics. It 
is not clear how and even whether research ethics regulations apply in these kinds 
of contexts (Lethbridge, 2001; Sieber, 2001a). However, it is clear that the ethical 
issues that can arise often fall outside the scope of research ethics. Mirvis and 
Seashore (1982) extensively discuss such ethical issues from the perspective of the 
various roles a researcher may adopt in an applied field research project.
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Beneficence can lead to an ethical quandary when studying an organization 
and/or its members, or a company and its employees. In these cases, the reduction 
of harm to individuals may be at odds with the reduction of harm to the organization. 
For instance, if researchers uncover problematic processes in a company, whose 
harm should they attempt to minimize? To minimize harm to the company, the 
researchers should inform management of problems that could harm the company 
through increased costs and reduced product quality. However this could result in 
dismissals, thus harming individuals (Becker-Kornstaedt, 2001).

In the case of student subjects, classroom studies have the potential of harming 
subjects’ learning and grades. For example, a classroom study comparing different 
software development environments, each used by a different group of students for 
class assignments, may influence the students’ grades. In contrast, a 1-h laboratory 
study involving bug fixing should have no impact on grades. Consequently, a 
 laboratory study is more acceptable from an ethical perspective than a classroom 
study. If methodological considerations force the researcher to use the classroom 
setting, several measures can be taken to improve its ethical acceptability. To reduce 
the effect of the manipulated factor (e.g. type of programming environment) on 
grades, each group of students could in turn be exposed to each level of factor. Over 
the course of the semester, each student would have his grade affected by all levels 
of the factor, rather than just one. Another possibility is to normalize the grades 
across student groups.

To summarize, in many cases, risks of harm can be minimized by protecting 
confidentiality. However researchers should use the least harmful yet still methodo-
logically valid procedure. Here, codes of ethics can provide some guidance, but 
approaching the problem analytically and creatively will likely prove more useful.

2.3. Confidentiality

The principle of confidentiality refers to the subjects’ right to expect that any 
 information they share with researchers will remain confidential. In general, 
researchers should also conceal and protect subjects’ identities, whether they are 
individuals or organizations such as departments in a company or companies 
 themselves. Moreover, even information that is not directly related to the research 
project should be considered private and kept confidential.

Confidentiality has three components: data privacy, data anonymity, and ano-
nymity of participation. Data privacy refers to the limitations imposed on access to 
the data collected from the subjects. To maintain data privacy, the data should be 
securely stored, with password protection and/or under lock and key. Access should 
be limited to a small number of people, all of whom would normally be part of the 
research team (Patrick, 2006).

Data anonymity is preserved when an examination of the data cannot reveal the 
identity of the subjects. There are several means to preserve the anonymity of 
the data. First, if at all possible, researchers should not collect any personal or 
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organizational information that could lead to the identification of the subjects 
(ACM Executive Council, 1993; Patrick, 2006). Such information is typically 
referred to as personally identifiable information, identifiable private information 
(45CFR§46.102(f)4) or identifiers. Avoiding the collection of personally identifia-
ble information reduces the possibility of breaches of confidentiality, and may even 
allow researchers to avoid the requirement to obtain informed consent. For exam-
ple, subject numbers can be used instead of subject names. (However, if the names 
were needed for a follow-up, a key linking the names to the numbers would be 
securely stored apart from the data, preserving some degree of data anonymity.) 
Note that personal characteristics other than names could also serve as identifiers. 
For example, someone who knows the subjects could use programming experience 
to associate some of the data to some of the subjects. Another way to anonymize 
data is to report only aggregated data (such as cross-subject averages, medians, 
standard deviations, etc.) instead of individual data points. Unfortunately, ESE 
studies are often conducted with only a small number of subjects so that it may be 
impossible to anonymize the data by simply aggregating data across subjects. In 
this case, it is important to disclose the limits of confidentiality to subjects before 
they decide to participate in the research.

Anonymity of participation is accomplished by hiding the identity of the subjects 
from their colleagues, managers, professors, competitors, clients, and the public. 
Protecting the subjects’ identities from managers and professors is particularly 
 important since they can have the greatest impact on the subjects’ careers. Competitors 
and clients have the greatest impact on companies and organizations, so researchers 
should be particularly sensitive to concealing the names and identifying characteris-
tics of companies participating in research.

Recruitment should take place through some means that protects the subjects’ 
identities. For example, e-mail and sign up sheets that are only accessible to the 
researchers offer some identity protection. Additionally, sampling from a large pool 
of potential participants can protect the subjects’ identities. Therefore if an 
employee or student is not participating in the research, the manager or professor 
does not know whether the employee or student declined to participate or simply 
was not asked to participate (assuming, of course, that neither the professor nor the 
manager is an experimenter).

For data collection, it is best to see subjects in a private area. However, this 
 cannot always be accomplished, as with observational studies in open office 
( cubicle) settings. Anonymity could still be maintained through remote observation 
(e.g. command logs) or observation at a time when confidentiality will not be 
breached, such as early in the morning, or when a manager has a meeting. If neither 
of these solutions is feasible, the potential subjects must be informed of the limits 
of confidentiality before agreeing to participate.

Names of subjects or organizations should not be reported, even in the acknowl-
edgements section. Protecting the subjects’ identities in the body of a paper makes 
little sense if identifying information is provided in the acknowledgements. Where 
an identifier is necessary for clarity, authors should use misleading pseudonyms. 
One should also avoid reporting identifying characteristics of companies under 
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study. This is not always possible, particularly with case studies. If identifying 
characteristics will have to be reported, the executives providing consent should be 
informed of the resulting limits of confidentiality. Moreover, executives sometimes 
request that their company by identified. In such a case, researchers should inform 
them of the potential risks, and proceed with what makes the most sense.

The importance of confidentiality should be emphasized to all of those involved 
in the study, whether they are researchers, research assistants, subjects, managers 
or professors. Breaches in confidentiality lead to breakdowns in trust between 
researchers and subject populations. This loss of trust can leave a researcher 
 without access to a subject population. It is therefore paramount to protect the 
 confidentiality of subjects and their data, and to inform subjects of any limits to 
confidentiality.

2.4. Scientific Value

Scientific value has two components: the validity of the study, and the importance 
of the research topic (McNeill, 1993; National Health and Medical Research 
Council et al., 2007). First, if the study is not methodologically valid, its results will 
not faithfully reflect reality. Consequently, the study will provide no benefit. A study 
without benefit should not be undertaken (Freedman, 1987; McNeill, 1993).

In many of the codes of ethics promulgated by professions, the issue of 
 competence is the counterpart to the issue of scientific validity (e.g. American 
Psychological Association, 2002). In the context of ESE, competence refers to an 
understanding of the standard research and statistical methodologies. ESE research-
ers should therefore be familiar with the appropriate and relevant methodologies or 
consult with other professionals who possess the necessary competence.

Because ESE is a relatively new approach, if not a new field, there is still a 
great deal of activity in the development of new methodologies, particularly in 
regard to metrics. Methodological development poses a problem for evaluating 
scientific value. Since it is difficult to assess a new methodology’s validity, 
 precisely because it is new, it is difficult to assess the scientific value of the 
 development of that methodology. One way to validate a new methodology is by 
using it to replicate well-established results. ESE researchers wishing to develop 
and use a new methodology should consider validating this methodology through 
replication as soon as possible.

The previous sections of this chapter reviewed four ethical principles paramount 
to conducting ethical research in ESE. Researchers should be familiar with these 
principles and know how to apply them to their research projects. It is not sufficient 
to simply follow a set of regulations. Each decision regarding ethics should be 
made in consideration of the underlying principles.

The next section of the chapter introduces project review by summarizing the 
history of the regulation of research by governments, and defining some common 
terms associated with ethics review.
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3. Project Review

Several governments have mandated that an independent ERB review proposed 
research involving human subjects to ensure compliance with ethical guidelines. 
Canada, Australia, and increasingly the UK, are following the lead established by 
the United States (45CFR§464; Canadian Institutes of Health Research et al., 
2005; Economic and Social Research Council (ESRC), undated; McNeill, 1993; 
National Health and Medical Research Council et al., 2007). In this section, we 
describe project review and its associated documents primarily from the US 
 perspective since it has the most established process. This section, especially the 
example documents, provides a very concrete (though limited) illustration of how 
to apply the ethics principles discussed above. Accordingly, the information 
 presented here is useful for all researchers, including those in Europe who do not 
yet face project review.

In the United States, regulations requiring ethics review were put into place fol-
lowing the Jewish Chronic Disease Hospital case (McNeill, 1993). This case 
involved hospital researchers who injected live cancer cells into patients without 
their consent. Because the study was partially funded by the US federal govern-
ment, the scandal spurred the government to require ethics review of federally 
funded research. Subsequent ethical transgressions eventually led to the creation of 
the Common Rule (45CFR§464), the US federal regulation governing the ethics of 
research projects involving humans (McNeill, 1993). By 1991, the Common Rule 
had been adopted by several federal agencies, among them the National Science 
Foundation, the Department of Education, the Department of Defence, and NASA, 
which are the government agencies most likely to fund software engineering 
research. This means that all research funded by these agencies is bound by the 
Common Rule regulations (Sieber, 2001b).

The Common Rule requires that all research involving human subjects be 
reviewed by an Institutional Review Board (IRB) (Penslar, 1993) (which we refer 
to as an Ethics Review Board (ERB), as the specific terms for ERBs differ from 
country to country). The ERB is an administrative body whose mandate is to 
 protect the rights of research subjects. Generally, each university or government 
agency has its own ERB to review all human subjects research projects conducted 
by members of the ERB’s institution. Companies whose research is funded by the 
federal government may also have an ERB or contract the services of private ERBs 
(Heath, 1998; Penslar, 1993). In the US and Canada, the ERB has the authority to 
approve, reject, propose modifications to, or terminate any proposed or ongoing 
research involving human subjects under its jurisdiction (Penslar, 1993; 
45CFR§46.1134; Canadian Institutes of Health Research et al., 2005). In Australia, 
it is the institution that has the responsibility to ensure compliance with the national 
ethics statement (National Health and Medical Research Council et al., 2007).

Only projects constituting research that involves human subjects are subject to 
ERB review. It is the ERB’s responsibility to determine whether the proposed project 
constitutes research and whether it involves human subjects. Research is defined in 
the Common Rule as “a systematic investigation, including research, development, 
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testing and evaluation, designed to develop or contribute to generalizable knowledge” 
(45CFR§46.102(d)4). The key phrase here is “generalizable knowledge”.  Generalisable 
knowledge is not considered to result from quality assurance or performance reviews 
undertaken within a specific context. For  example, the evaluation of a professor’s 
performance through the use of student questionnaires would not be considered 
research because it does not contribute to generalisable knowledge in that the 
 knowledge applies only to that professor. On the other hand, collecting student 
 questionnaires to determine the characteristics of excellent professors constitutes 
research because generalisable knowledge is produced in that the resulting “excellent 
professor” profile can be compared to the profile of any other professor.

Some forms of human subjects research are typically exempt from ERB review. 
The two most important exemptions for ESE research are surveys and the 
 development of educational tests and materials. For a project to be exempted from 
review, the data must not contain any information that can lead to the identification 
of individual subjects. Additionally, reporting the data must not place the subjects 
at risk for loss of employment, liability, financial loss or other risks to the subjects’ 
good standing in the community (Penslar, 1993). In general, then, when conducting 
surveys or collecting evaluative education data, it is best to refrain from collecting 
any information that could lead to the identification of an individual’s data (Patrick, 
2006). Researchers should note that there is some confusion over what constitutes 
research and that some regulations are unclear on the matter (Canadian Institutes of 
Health Research et al., 2005; Lethbridge, 2001; Sieber, 2001a). Consequently, we 
recommend that researchers consult with their ERB when in doubt about whether 
their work constitutes research, and whether it is subject to review.

Besides determining whether a proposal involves research, the ERB must also 
determine whether it involves human subjects. The Common Rule specifies that, to 
involve human subjects, the research must involve the collection of identifiable 
 private information or data from living individuals by interacting with them or 
manipulating their environment. “Identifiable private information” refers to 
 information that is normally not observed, recorded, or made public and can be used 
to identify the subject who is the source of this information (45CFR§46.102(f)4). For 
example, someone’s opinion about the utility of design reviews is typically  considered 
private information. In contrast, an opinion about design reviews that is published in 
an article is considered to be in the public domain, and consequently, does not 
 constitute private information. US and Canadian regulations explicitly exclude the 
collection of public domain data from the definition of human subjects research 
(45CFR§46.101(b)(4)4; Canadian Institutes of Health Research et al., 2005).

This definition of human subjects research leads to an interesting problem for 
software engineering research. In particular, when source code is used as a data 
source and individual programmers’ identities can be used as a variable in the anal-
ysis, it is not clear whether the research comes under the purview of the ERB 
(El-Emam, 2001; Vinson and Singer, 2001). It could be argued that when the 
 programmers identified themselves as authors of a certain piece of source code, 
they had a reasonable expectation that this information would not be made public. 
Of course, this would probably differ for open-source projects or information 
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 collected from internet sources. Nonetheless, it is not entirely clear whether such a 
project must be reviewed. Again, when in doubt, consult the local ERB.

In summary, projects that receive Canadian, Australian or US federal funding 
and involve research with human subjects are required, in most cases, to be 
reviewed by an ERB to ensure that it meets the relevant ethical standards. If inves-
tigators are unsure about whether their research must undergo review, they should 
consult their local ERB. Avoiding ethics review when regulations specify that it is 
necessary can result in loss of funding, not only for the researchers involved but 
also for their institution as a whole. Therefore, ethics review and approval protects 
not only research subjects, but the researchers as well. Finally, whether a project is 
subject to review or not, it is prudent to adhere to the standards of ethical research. 
These standards help researchers avoid the type of conflicts that can jeopardize 
access to the subject population and the validity of the results.

3.1. Planning for Ethics Review

Planning for ethics review should be integral to the human subjects research 
 process. Though approval times vary across institutions, it can take a considerable 
amount of time for a project to be approved, particularly if it contains controversial 
elements. For example, one local field study Singer conducted with employees as 
subjects took over 4 months to be approved. Proper planning can reduce approval 
time by increasing the odds that the proposal will be approved at the first review 
meeting. Part of this planning should include talking to colleagues who have 
already had a proposal approved, as they can provide much information about 
appropriate forms and the ERB review process.

To aid researchers in this endeavour, in the following sections, we describe the 
review process and provide examples of documents generally required by ERBs to 
review research proposals. We also relate the forms’ contents to the ethics princi-
ples discussed earlier.

3.2. Review Process

Most institutions have their own ERB with its own procedures. However, the 
 process typically begins with the researcher submitting documents describing 
the proposed project to the ERB. (Note that potential subjects cannot even be 
approached before the ERB has approved the project.) The ERB chair will then 
determine whether the project involves more than minimal risk. Minimal risk 
research is generally defined as research involving the same degree of risk that 
people normally encounter in their daily lives (Penslar, 1993). Moreover, to be 
judged of minimal risk, research must not involve vulnerable subject populations, 
such as students or employees of a sponsoring or collaborating company. Employees 
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and students are considered vulnerable due to the potential for coercion or undue influ-
ence from employers or professors (Penslar, 1993). Projects that involve more than 
minimal risk are generally reviewed by the full board at periodic board meetings. 
In contrast, minimal risk projects are often given expedited review, wherein only a 
few board members need review the project. Moreover, since expedited review does 
not require a board meeting, it is usually faster than full (board) review.

Some ERBs will also require a scientific review to ensure the project has 
 sufficient scientific value. The requirement for scientific review can depend on the 
project’s level of risk.

Departments in which minimal risk human subjects research is a frequent 
occurrence sometimes have the authority to review and approve projects directly 
rather than submitting them to the institutional ERB. However, this is unlikely to 
be the case in computer science or software engineering departments, where few, 
if any, departmental ERBs exist. Moreover, in Canada, regulations forbid such 
departmental review boards, except for undergraduate research projects in the 
context of a specific course (Article 1.4a, Canadian Institutes of Health Research 
et al., 2005).

Projects are not always approved at first consideration. Moreover, when an ERB 
requires changes or amendments to the original proposal, the changes or  amendments 
must usually also be reviewed by the ERB before approval can be granted. However, 
this latter review may be expedited. The number and magnitude of changes required, 
and therefore the time to final approval, will depend on the researchers’ experience 
with the ethics review process, and on the ERB’s experience with ESE research. 
To help researchers proceed more efficiently through the review process, below we 
discuss the types of documents usually submitted when seeking ethics approval and 
relate their contents to the foregoing material.

4. Documents Needed for Review

In the course of preparing documents for a review, it is often helpful to have a set 
of example documents as a guide, as we provide here. However, it is important to 
remember that the specific set of documents required will vary from one ERB 
to another. Consequently, the most important part of preparing for a review is to 
 consult the local ERB, or other department members who have been through the 
ERB process. We have found that the requirements and filing procedures are often 
available on the web.

As we cannot specify what individual institutions will require, this section 
will present generic examples of the type of documents usually required. Our 
web search showed that most institutions require that a proposal contain a cover 
letter, a project description, a consent form, and a scientific review (see also 
Sieber, 1992).

Each of the required documents is detailed below. Where appropriate, the  elements 
of the document are related to the four ethical principles described earlier.
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4.1. Cover Letter

The cover letter introduces the project to the ERB. It usually includes the principal 
investigators’ names and contact information. It should be clear who will carry out 
the research and who will be responsible for its supervision and conduct. It is 
 usually sufficient to provide information about the principal investigators only; the 
rest of the team need not be profiled. Also included in the cover letter is a note 
indicating whether the proposal relates to a new project, a changed project, or an 
annual review of an on-going project. If the project is a changed project or an 
annual review, the cover letter should also include the project ID, which is usually 
assigned at the time of initial approval.

The cover letter can include information about the qualifications of the researcher. 
This is especially useful for a first proposal submitted to the ERB. Including a 
 curriculum vita as an appendix can serve the same purpose. Finally, the cover letter 
should include any additional information that the researchers believe will help the 
reviewers assess the proposal, such as experience with the same subject population, 
eagerness of the industrial site in maintaining subjects’ rights, etc.

4.2. Project Description

The project description usually has several specific subheadings. The ERB will 
often ask researchers to respond to a set of standard questions referring to specific 
aspects of the research, such as whether deception will be used, or whether subjects 
will be drawn from a vulnerable population. Depending on the answers, researchers 
may have to provide additional explanations. The answers will also often determine 
whether the project is deemed of minimal risk, and so can undergo expedited 
review (refer to Sect. 3.2).

Figure 1 shows an example of a project description that describes some 
 observational research we conducted at an industrial site. Because the study used 
employees as subjects (a vulnerable population), it was not deemed minimal risk, 
and was therefore reviewed by the full board. The ERB was particularly interested 
in recruitment and confidentiality issues.

4.2.1. Project Overview

The primary purpose of the project overview is to satisfy the ERB that the research 
being embarked upon addresses an important question. It usually begins with a 
short description of the project and its goals, including a short literature review. The 
project overview also usually includes a description of the study’s design, including 
the specific procedures, tests, interviews and interview schedules, and samples of 
any questionnaires that will be used. Not everyone on the ERB will have expertise 
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STUDIES OF SOFTWARE DEVELOPER WORK PRACTICES
Project Description

Project Overview

In the past, software engineering tools have been designed based on the intuitions of designers 
and not the real needs of software engineers. The goal of this research is therefore to improve 
software engineering tools by gathering tool requirements from the software engineering com-
munity. Following, Lethbridge and Singer (1998), we will be studying the work practices of 
software engineers as they go about their daily work. Software engineers will be observed for 
one hour on one day. Portable computers and paper and pencil will be used to collect data. 
Additionally subjects will be asked to think out-loud while they perform their tasks. This think 
out-loud data will be tape-recorded. All subjects will be informed of their rights as subjects 
before participating. We will be under a non-disclosure agreement with the company pertain-
ing to the results of the study.

Subjects

Ten software engineers involved in the development of a large scale software engineering 
project will be selected as subjects for this experiment.

Confidentiality and data storage

Because the data involves audiotapes where subjects may identify themselves or colleagues, 
the data cannot be cleared of identifying features. To ensure security, all tapes, transcripts of 
tapes, and computer logs will be stored in a locked filing cabinet in a locked office at the uni-
versity. The only people who will have access to the data are the principal investigators and 
graduate students working with the team. All graduate students will be required to sign an 
agreement to not disclose information to anyone outside of the research team. When publish-
ing results, all identifying information will be stripped from the data before it is published. If 
it is possible for identification to occur, subjects will be shown the paper and asked to give 
informed consent to the data usage before the paper is published.

Recruitment Procedures

Senior company management have identified the groups for us to contact. Recruitment will 
occur via email to each group member. If a group member replies, a researcher will contact 
the group member by phone to give more details of the research. If the group member is still 
interested, an observation date will be set, at which time the group member will be given the 
subject information sheet and the consent form. If the member agrees, the observation will 
commence immediately. One week from the initial message, a reminder message will be sent 
to all group members who did not respond to the initial message. 
Regarding data collection, the researchers will ensure the confidentiality of the research sub-
jects in two ways. First, the managers will not be told who participated in the research. Second, 
the researchers will randomly sample from those subjects who have indicated a willingness to 
participate. In this way, the managers will not know whether subjects were simply not chosen 
to participate or whether they chose not to participate.

Subjects will not be compensated for participating in this research.

(continued)
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Benefits, Harms and Inconveniences

There is no direct benefit to the subject for participating in this research. There is a benefit to 
the software engineering community in the form of improved requirements for tool design to 
support maintainers. There are no harms to participating in this research. Subjects may feel 
slightly intimidated at the beginning of observation sessions, but in previous research this has 
abated quickly. 

There is no deception involved in this research

Fig. 1 An example of a project description form. See Sect. 4.2 for greater detail

in software engineering, so the overview and procedures should be written for a 
layperson.

In general, the project overview allows the ERB to determine the project’s 
 scientific importance (although not validity), which in turn helps the ERB estimate 
scientific value and beneficence. If an ERB finds no scientific value to a project, it 
is conceivable that the proposal will be rejected. Consequently it is important that 
researchers fully motivate their research. Note that our example project overview 
was kept short to save space.

4.2.2. Subjects

The subjects section should contain a description of the subject population. If more 
than one type of subject is involved (e.g., chemistry students vs. computer science 
students), all types should be adequately described. In this section, researchers 
should include any information that helps the ERB understand why this particular 
subject group is being sought, e.g. computer science students are familiar with a 
particular language that relates to the study hypothesis.

The subjects section should also subtly convey the subject group’s familiarity 
with the types of risks that will arise from participation in the experiment. 
The  following example illustrates how ethical concerns can change as a function, 
not of methods, but of subject group. Consider an experiment in which subjects 
experience a simulated airplane crash. If the subjects are test pilots, we can be 
sure that they will have the knowledge and experience required to make a reasona-
ble  decision about participation. If the subjects are undergraduates, we have to be 
sure that the risks of participation are clearly disclosed. If the subjects are senior 
 citizens, the risks of injury may be too great for the study to go forward. A descrip-
tion of the subject groups’ familiarity with the risks will therefore help the ERB in 
its evaluation.

Similarly, the subjects’ context in regard to coercion or undue influence could be 
described. One concern in research is that people could agree to participate  simply 
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because they perceive the researcher as a trusted authority who should be obeyed 
(Kelman, 1972). This risk is even greater in medical research when a  doctor adopts 
the role of experimenter (Beecher, 1966b; Canadian Institutes of Health Research 
et al., 2005; National Health and Medical Research Council et al., 2007). An ERB 
once raised a similar objection to the author (Singer) recruiting SEs in person. The 
ERB was concerned that the SEs would be intimidated by Singer’s (as the board 
 perceived it) higher social status, and so would feel pressure to volunteer. The ERB 
felt the SEs would be less intimated (and therefore less pressured) if the request took 
place through e-mail. While this concern is  unwarranted when it comes to North 
American SEs, it is a legitimate concern in general (Kelman, 1972). Cultural 
 differences could also have an impact, such that social status  differences could affect 
the recruitment of SEs for studies taking place outside North America. Moreover, 
other social variables, such as age or gender, could also have an impact. Consequently, 
a short explanation of the role played by social  differences between SEs and 
 researchers in recruitment should help the ERB with its assessment of the proposal.

Of course, the real problem for voluntariness in ESE is not social status but 
the subject’s position in the organizational hierarchy, which can lead to undue 
influence, if not coercion (Kelman, 1972) (refer to our section on informed 
 consent). The subject’s position in the organization should be described here. Any 
mitigations of the undue influence should be described in the relevant project 
description sections (e.g. Recruitment Procedures).

Finally, ERBs are often concerned that neither the burden nor benefits of 
research are disproportionally felt by a particular social group (Canadian Institutes 
of Health Research et al., 2005; National Health and Medical Research Council 
et al., 2007; Penslar, 1993). In ESE, this concern is most likely to manifest itself in 
the scrutiny of any inclusion or exclusion criteria proposed by the researcher. For 
example, researchers may want to exclude experienced SEs from their study. Any 
such criteria will have to be justified.

4.2.3. Confidentiality and Data Storage

In this section, measures to secure the data should be described. The ERB will 
want to ensure that data are protected from theft, interception, unauthorized read-
ing and copying. To maintain security, data is often stored in a locked facility that 
can only be accessed by members of the research team. Some additional means 
of protecting data are described above in the section on confidentiality.

Since studies with vulnerable subject populations (employees and students) are 
common in ESE, this section might also include a description of the measures taken 
to protect the subjects’ identities.

4.2.4. Recruitment Procedures

Since our example subjects are employees in an industrial setting (with the prior 
consent of their managers), there is a possibility of coercion in the recruitment 
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process. Thus, we included a separate section in our project proposal detailing 
how we would recruit subjects while minimizing the possibility of coercion. An  
example e-mail message for potential subjects is included so an ERB can ensure 
that the language is neutral and does not in any way coerce the employees to par-
ticipate in the study (e.g. by mentioning that their manager thought the informa-
tion gained would be highly valuable to the company).

There are three important aspects to our recruitment procedures. First, 
 recruitment is conducted via e-mail rather than in person. Second, the recruitment 
e-mail message emphasizes that participation is voluntary and that no harm can 
come from a refusal to participate. Finally, the e-mail message is sent to a larger 
pool of potential volunteers than is necessary given the experimental design to help 
ensure the anonymity of subjects.

ERBs will want to know whether subjects are being compensated for partici-
pation. The ERB wants to ensure that compensation is not so great that it will 
induce subjects to take risks that they would not normally take. This is easy to 
understand in the context of a medical study. For example, giving homeless 
 subjects an excessive monetary reward for participating in risky medical research 
would be deemed highly unethical, because it would be seen as a form of implicit 
coercion. In software engineering studies, it is unclear what an appropriate 
 compensatory scheme would be. Researchers intending to provide compensation 
to subjects should provide the ERB with adequate information to understand the 
compensatory scheme (e.g., software engineers will be paid in line with their 
 salary on an hourly basis).

The ERB will also sometimes require a delay between the time the subject is 
given information about the study and the time at which the subject actually con-
sents to participate. This is important in medical studies where the ERB needs to 
make sure that the subjects fully consider the risks of participation, but it can also 
be required in lower risk studies.

The ERB will also want to ensure that appropriate recruitment measures have 
been taken to ensure the study’s validity.

It is advisable to provide more, rather than less, detail about how subjects will 
be approached and recruited. Recruitment is at the heart of some very delicate ethi-
cal matters (such as confidentiality and voluntariness of informed consent), and 
therefore the ERB will be quite serious in ensuring that recruitment is conducted 
appropriately.

4.2.5. Benefits, Harms, and Inconveniences

The degree of acceptable research risk depends on several factors, as mentioned in 
our section on beneficence. Consequently, the judgment of what constitutes an 
acceptable risk can vary dramatically depending on the context of the research and 
the risks to which subjects from a particular group are typically exposed. For exam-
ple, because of their situation, terminal cancer patients can incur more risk as part 
of research into a treatment for their cancer than would be acceptable, say, for 
healthy children. Consequently, when writing a proposal for ethics review, it is 
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advisable to clearly present the risks and benefits subjects will incur through the 
proposed research. However, we do not recommend that researchers try to antici-
pate ERB objections by listing a series of potential risks that will not arise out of 
the proposed research. This exposes researchers to being required to provide addi-
tional information on each of the measures put in place to eliminate those risks. 
It is important to recall that beneficence involves considering the relationship 
between risks and benefits for the subjects and society. Consequently, it is important 
to also clearly specify any benefit that may accrue from the research.

4.2.6. Deception

It would be unusual for an ESE study to employ outright deception. The section on 
deception will therefore typically state that no deception will be employed. It is 
important to remember that partial disclosure is not deception. Partial disclosure 
and deception are discussed earlier in the section on informed consent.

4.3. Informed Consent

In order to give fully informed consent, subjects must be given all the information 
needed to decide whether to participate in the research. In our proposal, we used 
two forms (see Fig. 2). The first is a subject information sheet providing subjects 
with an understanding of the research process and their potential involvement. The 
second form is the actual consent form.

Generally, researchers will bring two copies of the informed consent form to the 
subject. The subject will keep one copy for his reference, and return a signed copy 
for the researchers’ records.

In participant/observation or ethnographic studies, where the researcher assumes 
the role of an SE, it is impractical (if not impossible) to obtain written consent from 
 everyone the researcher encounters. Regulations offer some flexibility in the 
informed consent process (American Anthropological Association, 2004; Canadian 
Institutes of Health Research et al., 2005; Penslar, 1993) but ERBs have been 
 reluctant to avail themselves of this flexibility (American Anthropological 
Association, 2004; Fleuhr-Lobban, 1994). Our suggestion to researchers is to 
attempt to ensure that every subject who is at risk of harm provide written consent, 
and to emphasize this to the IRB.

4.3.1. Subject Information Sheet

Though some ERBs do not require it, we have found it helpful to group all the important 
information on one sheet. The subject information sheet contains the information neces-
sary for the subjects to decide whether to participate in the research. It should also inform 
subjects of some of their basic rights, such as the right to withdraw  without penalty.
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STUDIES OF SOFTWARE DEVELOPER WORK PRACTICES
SUBJECT INFORMATION SHEET

Traditionally, tools for software maintenance engineers are designed without knowing 
much about the specific circumstances under which software  maintenance  engineers 
work. Our research aims to correct this oversight by  studying software maintenance engi-
neers as they go about their daily work. We want to know not only where you spend your 
time, but also how you go about solving problems, what sources of information you con-
sult, how you interact with the software and hardware, and what you find the most enjoy-
able and the most difficult aspects of your work.

Participants for this project will be selected via their place of employment. As part of the 
CSER initiative, certain corporations have agreed to allow us access to their employees. 
Your employer has specified your group as a  possible source of participants in our 
research. The research will occur in your place of employment.
If you consent to participate in our research, we will observe you as you go about your work 
in one 1 hour sessions. You simply do what you would normally do, and we use a computer 
or paper and pencil to record your actions. Occasionally, we ask for clarification on a certain 
procedure, but in general try to be silent observers. 

Participation in this research project is voluntary. Participants can withdraw their consent to 
participate and discontinue participation at any time without any consequences. Your 
employer will not know whether or not you have participated, or whether or not you have 
withdrawn participation. All collected data is strictly confidential, it will not be made availa-
ble to anyone (including your employer) except as aggregate data. In the case that you may 
be identified in any reports, the researchers will ensure that you consent to the publication. 
Collected data will only be used by members of this research project as analysis vehicles for 
understanding the work practices of software maintenance engineers. The data will not be 
used for any other purpose. All participants can review their own data at any time.

All participants have the right to obtain any publicly available documents that are pub-
lished about this research. All data collected is stored in a locked office at the National 
Research Council or the University of Ottawa.

STUDIES OF SOFTWARE DEVELOPER WORK PRACTICES
INFORMED CONSENT

Research Contact: Ethics Contact:
Dr. Sam Jones Dr. Ellen Good, Ethics Ombudsman
Some University Some University
(800) 555-1212 (888) 555-1212
sam.jones@someuni.edu ellen.good@someuni.edu

I hereby give my consent to participate in the research proposal, Study of Software Maintenance 
Engineers. I have been given a copy of the Subject Information Sheet. I have read this sheet and 
understand what it says. I understand that this project involves research. I understand the proce-
dures that will be used. 

I understand that my consent can be withdrawn at any time without any consequences. 

I understand that I can view the data pertaining to me. I understand that all  collected data is 
strictly confidential and will not be seen by anyone except members of the research team, or 
as aggregate data. I understand that all data is kept in locked offices at the NRC or University 
of Ottawa. 

(continued)
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I understand that this research will be used to better understand the work  practices of software 
maintenance engineers and this in turn will lead to better tool design. I understand that beyond 
this, there is no personal benefit to me for participating in this research. I also understand that 
there is no harm to me for participating in this research. There may be minor inconveniences as 
the researchers set up their equipment. I understand that I will not receive any  payment for my 
participation in this research.

I understand that I may request additional information about this research at any time, but as 
of now, all of my questions have been answered.

Name (Printed) Signature  Date

Fig. 2 An example of an informed consent form (including the subject information sheet). See 
Sects. 4.2 and 4.3 for further detail.

It begins with a brief statement of the background, purpose, and goals of the 
research. The sheet should be comprehensible to the potential subjects. Jargon 
should be avoided, but if technical terms will help explain the research, and the 
potential subjects will understand the terms, then it is appropriate to use them.

The subject information sheet contains other pertinent information including 
how the subjects were chosen; whether their employer has given them permission 
to participate; the location of the research; and finally what is expected of them and 
how long the their tasks will take. In observational studies, there is no experiment 
per se, so subjects are generally told to engage in their normal behaviour but to be 
aware that they might be observed.

The next section informs the subjects that their participation is voluntary and that 
they may withdraw consent at any time without any consequences. All informed 
consent forms will require such a statement to support the voluntariness of the 
informed consent. The next several statements address confidentiality. Generally 
these statements describe the confidentiality provisions as well as the limits on con-
fidentiality, if any. In our example, we assure the subjects that their employer will 
not know whether they participated and will not have the opportunity to look at an 
individual’s data. The  subjects are also told that another informed consent will be 
sought if it turns out that the reports could lead to the identification of individual 
subjects. The subject information sheet assures subjects that they can look at their 
data at any time. In some cases, subjects are informed that their data will be 
destroyed at their asking.

The subject information sheet ends by telling subjects that they have the right to 
published reports of the research. Additionally, it tells subjects where the data will 
be stored.

Note that the subject information sheet is written from the perspective of the 
researcher providing explanations to the potential subject, whereas the informed 
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consent form is written from the perspective of the subject. That is, the statements 
in the informed consent form begin with “I” and are not simply informational.

4.3.2. Consent Form

Research Project Title. The informed consent form must always include the title of 
the research project as it appears in the documents submitted to the ethics board, so 
the subjects can correctly refer to the research should they wish to contact someone 
about their participation, e.g., to complain about their experience.

Contact Information. The informed consent form should also always provide a 
research contact and an ethics contact. The research contact is the person the 
 subjects would contact if they have any questions about the research, including 
obtaining results or papers, scheduling sessions, etc. The ethics contact is usually 
someone in the researcher’s organization who acts as an ethics ombudsman. This 
is the person whom subjects should contact to voice any concerns about the way 
they were treated during the research project, such as feeling coerced into partici-
pating. It is the responsibility of the ethics contact’s office to take complaints, 
investigate them, and decide upon actions where warranted.

Consent and Comprehension. In this section, the subjects are actually giving their 
consent to participate in the research project. This section also addresses the 
 subjects’ comprehension of the proposed research. The subjects are basically 
 stating that they understand what is required of them, and that they understand that 
they will be participating in a research project.

Withdrawal. This section states that the subjects’ signatures attest to their under-
standing that they can withdraw from the research project without penalty. All 
informed  consent forms will require such a statement. This feature reinforces the 
voluntariness of the consent.

Confidentiality. Here the provisions of confidentiality regarding the research 
project and the data are reiterated.

Risks and Benefits. Here the subjects are asked to consent to the risks and benefits 
incurred from participating as a subject. Note that the form states that the subjects 
do not give up any legal rights by signing it.

Clarification. This statement regards the subjects’ understanding that they can 
request additional information at any time. It also ensures that all the subjects’ 
questions have been answered. Remember that in order to give fully informed 
 consent, the subjects must completely understand their role in the research project. 
This statement just ensures that they have been given the opportunity to do so.

Signature. Finally, in all informed consent forms, the subjects are required to sign 
and date the form appropriately. The experimenter is often also required to sign. 
Subjects are then given a copy of the subject information sheet and the informed 
consent form. In some cases, verbal assent is sufficient. For instance, with surveys 
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or questionnaires, the assent implied by filling out and returning the document may 
be considered sufficient evidence of consent by the ERB.

5. Conclusion

In this chapter we have presented four ethical principles that form the core of 
 several research ethics guidelines and codes: informed consent, beneficence, confi-
dentiality, and scientific value. How can one ensure that ethics plays a role in a 
research project? First, and foremost, researchers must educate themselves about 
ethics, just as they would about methodology or data analysis. This includes educat-
ing graduate and undergraduate students about the primary tenets behind ethical 
research. Ideally, this education should include practical as well as classroom expe-
rience. Researchers can also share their experiences with others so that the com-
munity as a whole develops its competency in this area.

Researchers also need to plan for ethics in their research, as one cannot always 
quickly solve problems as they occur. For instance, in conducting a classroom 
study, researchers need to have a plan for those students who do not wish to partici-
pate. Building likely scenarios can help researchers to understand specific issues 
and have solutions in place to address them.

Finally, researchers need to consult others who can help them to plan and imple-
ment ethical research. For instance, ERBs have a great deal of expertise on ethics 
and research. Researchers can use this important resource early in the planning 
stages to address potential problems. This has the added advantage of educating 
local ERBs on topics of importance to ESE researchers.

Ethical research does not happen by chance. Individual researchers must be 
committed to making their research ethical. By addressing some of the issues 
 surrounding ethics in ESE research, we hope to have given ESE researchers the 
understanding they need to reason ethically about their own work.
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Chapter 10
The Management of University–Industry 
Collaborations Involving Empirical Studies 
of Software Engineering

Timothy C. Lethbridge, Steve Lyon, and Peter Perry

Abstract In this chapter we will discuss some of the pragmatic considerations that 
we believe university researchers and companies should consider when establishing 
collaborative software engineering research projects; in particular, those involving 
empirical studies of software engineers. The chapter is illustrated using as a case 
study a research collaboration in which the authors are involved. We enumerate 
the costs, benefits, risks and risk-reducing factors that can have an impact on all 
the parties involved in the collaboration (the company, the faculty members and the 
graduate student researchers). Understanding this information is needed to help 
justify the research in the first place, and to manage it effectively. We then discuss 
many of the activities that will be needed to plan and manage the project, including 
such issues as attracting students, handling intellectual property, obtaining ethical 
approval and interacting with participants. The main objective of the chapter is to 
provoke some thoughts in the minds of those planning empirical research projects 
in software engineering.

1. Introduction

Most software engineering tools and techniques are aimed at reducing cost, speed-
ing development and/or increasing software quality – all in the context of the 
pervasive complexity and rapid change one finds in industrial software projects. 
Researchers must conduct empirical studies in industrial settings in order to properly 
understand the complexities of commercial software products and processes, and to 
evaluate new ideas. This paper presents lessons we have learned through a univer-
sity-industry research collaboration in which the authors participated. The objective 
of the paper is to help guide others who are considering embarking on similar 
endeavors.

Empirical studies in companies can take many forms; the discussion in this paper 
does not presuppose one form in particular. Studies will most often investigate software 
engineering processes, but may also assess the usefulness of various technologies 
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that software engineers use or develop. Some empirical studies, e.g. learning how 
much of a typical project’s duration or effort is devoted to a certain activity, could 
stand on their own: Their conclusions would be used for general decision-making. 
Other empirical studies might enable the researchers to form hypotheses about, or 
validate, their own research ideas. Examples of the latter include novel testing tech-
niques or programming languages.

Empirical studies can use a variety of techniques ranging from questionnaire-
based surveys, structured interviews and observation sessions to controlled 
experiments (Lethbridge et al., 2005; Sjøberg et al., 2005). Almost all these tech-
niques involve people as research participants. Traditionally students have 
performed this role, but as emphasized above, it is often essential to use industrial 
employees in order to obtain accurate and relevant answers to many research 
questions.

Researchers in empirical studies can take on the role of the indifferent outsider, 
observing and measuring what goes on in the company. Or they can take on a more 
participatory role, seeking to improve the industrial environment by conducting 
action research (Potts, 2003; Baskerville and Wood-Harper, 1996; Checkland, 
1991; Dittrich, 2002).

Conducting empirical studies in software companies is not easy. In this chapter 
we will focus on how to plan and manage such projects; we will look at how to 
justify such projects, find participants and staff, deal with the competing inter-
ests of the researchers and company managers, as well as various other issues. 
Additional challenges, discussed elsewhere in this book, arise from the need to 
conduct good science. The latter challenges include establishing adequate 
experimental controls, choosing appropriate metrics, and properly analyzing the 
resulting data.

Software engineering researchers are normally not trained in management. As 
more of them recognize the imperative to conduct empirical studies in industry, we 
expect increasing interest in learning from the experiences of others. In this chapter 
we present a set of issues that researchers need to consider, illustrated by the case 
study of a research project in which the authors collaborated.

The authors represent both industry and academia and have each conducted 
research with several different partners. The academic author has also worked in 
industry. The issues raised in this chapter are therefore derived from a variety of 
experiences.

There is some existing literature about industry-university collaboration. 
Conradi et al. (2003) discuss experiences in Norway in which several small and 
medium enterprises (SMEs) and several universities jointly worked on process 
improvement research. Some of the lessons-learned they present are similar to the 
ones we present here, although our experiences relate more to individual per-
formance improvement rather than company process improvement. Beckman 
et al. (1997) and Mead et al. (1999) provide some suggestions about another type 
of industry-university collaboration – working together to design and deliver 
educational programs. Arisholm et al. (1999) provide a series of small case stud-
ies about industrial collaborations, each with their own lessons learned. Finally, 
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Rombach and Achatz (2007) summarize a variety of issues regarding research 
collaborations.

In the next section we give a brief overview of the research project that will 
serve as the case study. We then enumerate the benefits of university-industry 
research projects and the factors that can lower risks. Following this we discuss 
the costs and the risks themselves. We conclude by presenting a set of considera-
tions that industrial and university researchers should consider as they plan their 
projects.

2. An Example Research Project: 
The Mitel – University of Ottawa CSER Collaboration

We will illustrate this chapter with examples from our own experiences as 
University of Ottawa researchers and Mitel managers conducting collaborative 
research. These results are personal reflections gathered from brainstorming our-
selves about what worked, and how we could have conducted our research 
better.

Mitel is a medium-sized telecommunications company, best known for its PBX 
hardware and software. As with all telecommunications software, the Mitel systems 
are very large.

In 1995 the Mitel managers (the second and third authors of this paper) 
approached University of Ottawa researchers with a general research problem: How 
to reduce the cost of maintenance of a large software system. As is normally the 
case when starting such projects, we had particular ideas we wished to test. We 
believed that one of the biggest difficulties faced by the engineers was an inability 
to visualize the system’s design, due to its complexity and the sheer magnitude of 
its code and documentation. In earlier research, the first author had developed a 
knowledge base management system (KBMS) (Lethbridge, 1994) and believed that 
if we modeled the Mitel system using this KBMS we would be able to help Mitel 
engineers to understand their system better. Such a KBMS model was expected to 
be especially helpful in enabling new design staff members to learn the Mitel 
system, and become productive more quickly.

Since we wanted to apply good scientific method, we decided that an important 
part of the research would be to study software engineers and their product (Singer 
and Lethbridge, 1998). The objective of this was to better capture the nature of the 
problem that the KBMS was supposed to solve, and to develop hypotheses that we 
would later seek to confirm. Before long, we noticed several patterns in the work 
of the engineers. In particular, they were spending a large amount of effort searching 
code, and they were having significant difficulty manipulating and organizing 
the results of their searches. They were thus finding it hard to effectively use this 
information. As a result we changed our research direction considerably and 
focused on designing a tool to solve these immediate and pressing problems. 
Investigating the KBMS ideas dropped to a lower priority.
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In 1996, Mitel joined the Consortium for Software Engineering Research 
(CSER, www.cser.ca,), and the research project grew to encompass studies of various 
features that might be appropriate in a software exploration environment. The tool 
that we developed, TkSee (Lethbridge and Anquetil, 1997), saw continuous volun-
tary use by Mitel engineers from the date it was introduced (1996) until several 
years after the project concluded in 2002. It also served as a test environment for 
several aspects of the research. In the rest of this chapter, we will refer to this work 
as the Mitel-CSER project.

Research on the Mitel-CSER project used many approaches: To gather data 
from software engineers we measured their use of tools, interviewed them, asked 
them to draw pictures describing their views of the architecture of some soft-
ware, and shadowed them. We developed a new shadowing technique called 
Synchronized Shadowing, and a new approach to analyzing the large amount of 
data that results – representing work patterns using use-case maps (www.use
casemaps.org). We have conducted usability studies (Herrera, 1999) to ensure 
our tool is usable. We believe that if the tool has poor usability, this would nega-
tively impact user acceptance, hence we would not be able to tell if its core 
functionality was useful or not. We also developed techniques for analyzing 
Mitel software (Somé and Lethbridge, 1998) that are used to build the databases 
that TkSee uses.

The research involved the academics immersing themselves in the industrial 
environment – not to the extent of actually working on Mitel products, but 
rather through being on the premises and actively trying to solve problems 
faced by the developers. We therefore followed the research paradigm sug-
gested by Potts (2003), in which one ‘intertwines research and industry 
intervention’.

Both the academics and the company benefited from the research. Mitel was 
pleased with the impact of the tool, and the academics were able to produce many 
publications, (e.g. Anquetil and Lethbridge, 2003; Anquetil and Lethbridge, 1999; 
Sayyad Shirabad et al., 2003; Lethbridge and Singer, 2001; Liu and Lethbridge, 
2002; Somé and Lethbridge, 1998).

However, there have also been several difficulties that turned the research into a 
good case study. Most notably, it has not been easy to motivate graduate students 
and others on the research team to embrace techniques that involve studying work 
practices and software usability. It has also not been easy to strike a balance 
between conducting well-designed and focused research on the one hand, and solving 
difficult-to-characterize industrial problems on the other hand. We sometimes 
spent excessive effort developing software of sufficient quality so that it can be 
actually used by the engineers – necessary so we can determine if our ideas are 
valid. We similarly had difficulty attracting a large enough population of users to 
scientifically validate our ideas, although several Mitel users have used TkSee 
extensively.

The Mitel-CSER research project is considered successful despite these difficulties. 
We hope our accumulated lessons-learned as presented in this chapter will be 
of value to others who embark on similar research.
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3. The Benefits of University-Industry Software 
Engineering Empirical Studies

In this section and the next we will enumerate the positive and negative sides of 
empirical software engineering research projects involving companies and univer-
sity research groups. Before starting any such project we believe it is important to 
attempt to quantify these factors. The information may be used to help ‘sell’ 
research projects to either the company or the researchers, to plan such projects and 
to manage risk.

In what follows we separately enumerate the benefits to the company, to faculty 
members and to students involved in the research. These are summarized in Table 1 
While many of these benefits might be self-evident, the parties may not necessarily 

Table 1 Benefits of industry–company research collaborations

  Typical amount
  of benefit (impact *
Category of benefit Benefit type probability of occurrence)

To the company
Direct benefits • New or improved  Medium

  technology or product
 • Data and knowledge useful  High
  for decision making
 • Patents Low
Indirect benefits • Potential employees for  Medium

  company
 • Ideas and expertise  High
  of researchers
 • Public relations Medium
Factors lowering risk  • Graduate students are often  Medium

of research  top achievers
 • Researchers have a personal  Medium
  stake in success
 • Low cost compared to  High
  in-house research
 • Government matching funds  High
  and tax incentives
To researchers  
Direct benefits • Funding High
 • Interesting and challenging  High
  problems and data
 • Test-bed for ideas High
Indirect benefits • Exposure to the ‘real world’:  High

  Provides valid and relevant
  knowledge, consulting
  and networking.

To the public
Indirect benefits • Advancement of state-of-the  High
  art and state-of-the-practice
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think of all of them. We believe that systematically analyzing these factors, quantitatively 
if possible, should be done more frequently when research projects are planned. 
Knowing the potential benefits we can, a) balance them with the costs to decide 
whether the project (or an aspect of it) is worth doing and attract adequate funding, 
and b) make sure we actively work to realize the benefits.

3.1. Potential Benefits to the Company

Benefits to the company fall into three categories: Direct benefits, indirect benefits 
and risk-reducing factors. The direct benefits are what immediately spring to mind, 
and result from success of the research. However the indirect benefits might be of 
considerable value too. The risk-lowering factors are considered as a separate cate-
gory of ‘positive’ factors that make it worthwhile doing the research in conjunction 
with universities as opposed to in-house.

3.1.1. Direct benefits 

The most obvious direct benefit to the company is new or improved technology 
(processes, techniques and tools) and products. Empirical software engineering 
research does not itself normally directly create such improvements, but provides 
data and knowledge useful for making management or design decisions.

For example, in the Mitel-CSER project our studies of software engineers gave 
us design ideas and led to changes in research focus. Similarly, our studies of usa-
bility told us what tool improvements were necessary. We used data from an empiri-
cal study to develop the TkSee tool, which in turn reduced the elapsed time some 
new employees took to learn about Mitel software. In fact the training time for 
designers new to the product was typically halved, and this provided the most read-
ily quantifiable benefit of the project. It is important to note that this kind of benefit 
requires management of technology transfer, an issue discussed by Zelkowitz 
(1995) and Pfleeger (1999).

Technology transfer involves taking an idea from laboratory prototype to per-
manent use of a mature product within a company or industry as a whole. One of 
the issues often faced is establishing the appropriate intellectual property frame-
work to do this – for us, this was not a challenge because we had a well-written 
collaborative research agreement from the start, which anticipated close interac-
tion with the company and had clauses clearly describing IP rights. We did, how-
ever find three practical technology transfer issues challenging: Firstly we needed 
to make our research software usable enough so that it could be used in daily 
practice; in other words we had to approach ‘product quality’. We were able to 
achieve this by following rigorous usability engineering techniques, such as usa-
bility studies. The second challenge was integrating TkSee with the corporate 
tools and data infrastructure. Our database needed regular builds, and our server 
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needed to be maintained. We were able to train a Mitel staff person to do this, 
however, from time to time that person was unavailable, causing some down time. 
The third challenge was spreading the use of the tool from one focused team to the 
wider organization or industry as a whole. Although we attempted to do this, we 
never had any ‘takers’ beyond the original team. We were not able to make the 
extra investment of time and effort to broaden the technology transfer. We had 
quite a lot of requests from outside Mitel to obtain TkSee, but we found it hard to 
service these requests, since setting up the tool required a lot of time-consuming 
configuration.

Another possible direct benefit of empirical studies is intellectual property: Such 
studies might uncover data that could provide competitive advantage or a patentable 
invention.

3.1.2. Indirect benefits

In today’s employment environment, where people with appropriate skills are often 
hard to find, an important indirect benefit of research collaborations is the exposure 
to the company of potential highly-skilled employees. Graduate students can learn a 
considerable amount about the company during their research and develop a desire 
to work there. It is important, however, for companies to actively recruit such stu-
dents (as they approach the completion of their degree) in order to realize this ben-
efit – in the Mitel-CSER project we learned this lesson only after the first few 
years.

A related indirect benefit to the company is exposure to academic researchers 
who can provide expertise and fresh ideas; this can be achieved through formal 
presentations or informal discussions. Faculty members will also absorb corporate 
know-how and the corporate needs for future stills; they will thus be in a better 
position to educate future employees.

A final indirect benefit is the public relations value resulting from the joint pub-
lication of research results.

3.1.3. Risk-lowering factors

Research can be conducted using in-house employees instead of university research-
ers. In many cases, however, the specialized expertise is not available, and both the 
uncertainty of the outcome, and the cost of the research are too high for the industrial 
agenda. There are several benefits from using university researchers: Graduate stu-
dents tend to be talented individuals with the latest knowledge. They have a personal 
stake in the project’s success and direct power over its success due to their need to 
complete a thesis – their main reward, graduation, does not come until success is 
achieved. Graduate students are also paid relatively little, seeing their work as an 
investment in themselves. Added to this is the benefit of the guidance of experienced 
faculty members.
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Faculty members are also personally motivated to succeed in the research due to 
their need to publish papers, although this can be a double-edged sword as we will 
discuss later. Furthermore a faculty member’s time may be at least partly ‘free’ to 
the company.

Finally, government matching funds that cover part of the cost to the universities 
and tax incentives for industrial research all reduce the risk to the company.

The lists of direct and indirect benefits are similar to the benefits of industrial 
collaboration reported by Conradi et al. (2003). Conradi et al. also discuss benefits 
to individual participants, but don’t discuss the risk-lowering factors.

3.2. Potential Benefits to the Faculty Members, Graduate 
Students, and the Public

Significant benefits also accrue to faculty members and graduate students. Both 
categories of academic researchers directly benefit from significant amounts of 
funding for their work, interesting intellectual problems and data to work with, and a 
test-bed for their ideas. Indirect benefits include exposure to the ‘real world’; the 
knowledge researchers acquire is likely to help the researchers improve other aspects 
of their research as well as their teaching. Opportunities for networking and consulting 
will also likely arise: Faculty members might find potential graduate students or other 
collaborators in the companies, while students might receive job offers.

Finally, as mentioned at the beginning of the chapter, there is one important 
public benefit to empirical studies in industry: They are necessary to properly 
understand the complexities of software engineering, and thus advance the state-of-
the-practice, resulting in better and cheaper software-intensive products and 
services in most parts of our society.

4. The Drawbacks of University-Industry Software Engineering 
Empirical Studies

In this section, we present the drawbacks of university–company collaborations for 
empirical software engineering research. These factors should be balanced against 
the benefits discussed in the last section. Awareness of these factors can also 
suggest ways to manage and reduce them. Table 2 provides a summary.

We divide the sets of drawbacks into those that primarily affect the companies, those 
that affect the faculty members and graduate students, and those that affect the success 
of the project as a whole (impacting everybody who is interested in the results).

We also divide the drawbacks into costs and risks. Costs are factors that can be 
estimated directly, while risks are uncertainty factors for which one can estimate 
their probability of occurrence and their impact on costs and benefits if they occur.
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Note that some projects are initiated by researchers while others are initiated by 
companies who have an active need to solve to a problem. Some risks are consider-
ably higher in the latter case.

Table 2 Drawbacks of industry–company research collaborations

  Typical amount of drawback
Category of drawback Drawback type (impact * probability of occurrence)

To the company  
Costs • Cash funding Varies from none to medium
 • Consumption of  Varies, normally medium
  employee time
 • Office space and  Normally low
  equipment
Risk factors • Different definitions  Medium if the company has defined

  of success (bottom  the problem; otherwise low
  line for industry vs.
  scientific results and
  publication for
  researchers)

 • Unknown consumption  Low to medium
  of employee time
 • Inappropriate release  Normally low for empirical studies
  of intellectual property
To researchers  
Costs • Constrained research  High if the company has defined
  freedom  the problem; otherwise low
 • Excess consumption of time Moderate to high, depending on
   experience of researchers and 
   research design
Risk factor • Company-initiated  Varies from low to high depending

  cancellation  on corporate priorities and
   rapport between researchers and
   the company

To the project as  
a whole

Risk factors • Different perceptions of  High if the company has defined to
  the problem  the problem for researchers
   solve; otherwise low

 • Failure to staff the project  Medium
  with sufficient numbers of 
  skilled researchers
 • Unknown skill level of  Varies from low to high depending
  researchers, including their   on experience of researchers
  ability to estimate the 
 required effort
 • Failure to find or keep  Varies from low to high; depending
  adequate numbers   on effort needed, management
  of participants  support, and other factors
 • Inconclusive or non- Low, but higher when the objective
  useful results  is to validate a hypothesis
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4.1. Potential Drawbacks to the Company

The costs to the company of participation in research projects with universities include 
direct cash funding of the research, consumption of employee and management time 
as well as office space, equipment and other supplies devoted to the research. For 
empirical studies, the time of research participants may be the greatest cost.

The following are risk factors that add uncertainty to the costs and benefits; 
these are listed starting with the most significant. Note that we enumerate risks to 
success of the project as a whole later in this section.

4.1.1. Different definitions of success

Unless a project is very small and the company is purely expecting indirect benefits 
(see Sect. 3), then the company will expect some concrete result that will ultimately 
impact their bottom line. Researchers, on the other hand usually have completely 
different motivations for participating, the main one being publishing results. This 
cultural conflict is explored in more detail by Zelkowitz et al. (1998).

This fundamental difference of interest can lead, in the worst case, to researchers 
not paying any attention to the needs of the company. Normally, with well-
intentioned researchers, the impact is more subtle: The researchers might be 
stressed about their thesis deadlines, paper deadlines or other academic requirements 
and give priority to them. Or the researchers might deviate from a project plan that 
interests the company because they find interesting side-problems that will more 
readily result in publishable results.

This difference of interest is probably the biggest risk factor to companies, and 
thus must be carefully managed. In the Mitel-CSER project, this risk factor had a 
major impact – many graduate students wanted to direct their theses to topics that 
related to, but were not directly central to, the original project plan. The faculty 
member directing the project was also in the process of achieving tenure and so 
spent considerable time writing papers – sometimes leaving the project plan to lan-
guish at a lower priority for long periods.

4.1.2. Unknown consumption of employee time

In some empirical projects, such as those involving completing surveys, this is not 
a high risk. However for observational studies or those that involve open-ended 
investigation the risk is higher.

4.1.3. Difficulty controlling release of intellectual property

Companies tend to worry that publication of research results might cause them to 
lose competitive advantage. Some also have concerns about source code or design 
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information getting into the hands of competitors. If these issues are discussed during 
project planning (see Sect. 5), these risks can be minimized.

4.2. Potential Drawbacks to Faculty Members 
and Graduate Students

There are two clear costs to the academic researchers of collaborating with 
industry.

The first cost occurs when there are constraints placed on the freedom of 
researchers to follow their interests. Software engineering is a very rich domain 
with many potential problems and much data to be gathered. This richness, how-
ever, means that some problems will be considerably more interesting and easy to 
publish about than others. When working on an industrially-sponsored project, the 
researcher has a responsibility to the company and cannot readily sidetrack to pursue 
ideas that might prove more publishable.

The second cost to the researchers is the substantial amount of human resources 
that empirical studies take. Planning and managing an industrial research project 
can take far more time than many types of work that can be done on campus and 
with groups of students as participants.

A risk factor with big potential consequences to the researchers is that the com-
pany will undergo some form of reorganization or reprioritization, and cancel the 
research in progress. The academic author has experienced this several times. In 
fact, subsequent to the time when this paper was initially written, the Mitel-CSER 
project itself was cancelled, just after an agreement had been reached to continue it. 
The reason was simply a high-level decision from the corporate executives to cut 
all possible costs, including all external research.

A contingency plan for such situations is to work with two or three different 
companies on the same research problem, however this can be excessively time 
consuming and may not be possible if the companies are competitors. In case of 
project cancellation, all may not be lost. The data gathered so far can be reported 
as preliminary results, and can serve as a point of departure for a new study, or it 
can be combined with data in a later study. A sliver lining from a cancellation is 
that the researchers then are freer to work with other companies, where they may 
gain fresh perspectives. Indeed, we were able to replicate some of our work in IBM, 
who we later worked with, lending increased confidence to our conclusions.

4.3. Risks to the Research as a Whole

The following risk factors are typical of empirical studies at present. They can 
impact the ability to obtain useful results, or even to complete the project, and 
therefore affect both parties (although they only affect the company if it is sponsoring 
the project because it has a problem to solve).
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4.3.1 Different perceptions of the problem

Academics without much experience in industry may have very different notions 
about what software engineering involves and what are the real problems. On the 
other hand, industry managers tend to vary widely in the software engineering knowl-
edge they possess. This can lead to difficulty communicating, and misunderstandings 
about the problem that is to be tackled. This issue is very much related to classic dif-
ficulties in requirements analysis where, due to inadequate communication and pre-
conceived ideas, customers have one perception of the problem and software 
engineers another.

4.3.2 Failure to staff project with sufficient numbers of skilled researchers

Empirical research has not customarily been widely performed in the software 
engineering community, and for some people lacks a certain ‘respect’ or is considered to 
be ‘soft’. The Mitel-CSER project has certainly suffered from this phenomenon; we 
have on occasion tried to convince graduate students to become interested in such 
studies and have found that they don’t see it as ‘real’ engineering. Empirical studies 
of usability, as performed by human factors experts, are seen to be part of an 
entirely different culture. For these reasons, it is hard for the project leaders to 
attract researchers (graduate students, postdoctoral researchers and faculty) who 
have expertise and interest. Hopefully this book will make a difference.

In addition to having questionable interestingness or respect, empirical projects also 
often generate profuse volumes of data, which is very time-consuming to analyze. This 
acts as a deterrent to software engineering researchers who are used to solving engineer-
ing problems. In the Mitel-CSER project, we attempted to use administrative assistants 
to transcribe tapes in interviews, however this failed because the interviews used so 
much technical jargon that the transcribers could not adequately understand them.

4.3.3 Unknown skill level of researchers

Even if staff can be found, conducting empirical studies is a skill in which not many 
software engineering researchers have been trained – something this book hopes 
to alleviate. Therefore the students, and even faculty, may well be on a learning curve 
and may make mistakes. Of particular importance is the ability of the researchers to 
estimate how much time empirical studies will take; our own lack of experience 
meant that this we severely underestimated when we developed our project plan.

4.3.4 Failure to find or keep adequate numbers of participants

It is common for researchers to get a low response rate to surveys; we conducted 
one mail-out survey as part of our research and obtained only a 2% response rate. 
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Within companies, it may be possible to interest participants in observational or 
interview-oriented studies, but it may be very hard to get enough people to use a 
specific piece of software as part of their work, or to follow a certain methodology. 
In addition, participants may leave the team or company, or withdraw from the 
study for personal reasons. In the Mitel-CSER project, we have suffered from all of 
these difficulties to a considerable extent, although we have been lucky to have a 
large enough pool from which to draw new participants.

4.3.5 Inconclusive or non-useful results

No research is guaranteed success, otherwise it wouldn’t be research. However in 
software engineering there tends to be a perception that any engineering problem 
can be solved given enough work. Questions subjected to empirical studies, how-
ever, are often not answered by ingenuity, but rather by analysis of data. There 
might not be enough data for statistical significance, or there might be too many 
extraneous variables or methodological errors detected that the results are not 
meaningful. See Trochim (2007) for excellent coverage of threats to validity. 
Another point to consider is that an otherwise successful study needs to be well-
cited, and ‘find its place’ in the scientific literature if it is to be truly useful. A 
study will be more likely to have impact if it uses similar measurement scales and 
methods as other studies of a similar type. Williams et al. (2005) discuss this in 
more details.

For companies, an answer to a research question might not require 95% confi-
dence. They may be able to base a decision on a 70% probability of something 
occurring. Also a company may be satisfied with empirical studies that are simply 
seeking to gather observations and trends. Success criteria therefore need to be 
separately defined for both parties in a research collaboration.

In the Mitel-CSER project, neither of our two main empirical studies involved 
controlled experiments. In one (Herrera, 1999) we explored techniques for conducting 
usability studies, and in the other (Singer and Lethbridge, 1998) we gathered data 
in order to generate work patterns. Both studies had largely qualitative out-
comes, generating tools or tools improvements, and lessons that could be used in 
subsequent research. A key sign of success for the company was that the tools we 
developed were useful to them. The key indicator of success for the researchers was 
that we were able to publish a significant number of papers.

5. Planning Empirical Studies Projects

In this section we discuss the set of issues that need to be discussed and made part 
of the project plan as a company-industry empirical research project is established. 
These include: Justifying the project in the first place, issues that must be agreed 
between the parties, obtaining ethics approval, staffing the project, working with 
participants, and analyzing the data.
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A checklist of the activities that should be performed during project planning is 
presented in Table 3. 

5.1. If the Company is Considering Initiating Research: 
Should it Use University Researchers or Corporate Employees?

As discussed in Sects. 3 and 4, there are many benefits that companies can obtain 
by involving university researchers, but there are also various risks. If the company 
is initiating the research, it must first decide whether to instead use its own employees 
for the research. A university research team will normally involve one or more fac-
ulty members and at least the same number of graduate students; since the faculty 
members’ time is split divided among several tasks (teaching, administration and 
other research), the bulk of the research is often performed by graduate students, 
under the direction of the faculty members.

The main benefits to using university researchers are that they are a valuable pool 
of talent, and cost less than in-house employees. University researchers often also have 
very specific knowledge and research skills that cannot be found inside the companies. 
The cost of this talent might be so low compared to the potential benefits that very little 
further analysis is needed. In many countries, graduate students are paid significantly 
less than company employees. Faculty members might be paid consulting fees for 

Table 3 Checklist of activities that should be part of the planning and management process of 
industry–university collaborations involving empirical studies

Activity Involves or decided by

• Decision: To use university researchers or in-house  Company
employees (refer to Tables 1 and 2 for
decision-making information)

• Attracting companies Researchers
• Decision: Level and type of commitment (finances, Negotiated

resources, timetable, deliverables)
• Decision: How on-going management and risk  Negotiated

management will be handled?
• Decision: What is the research focus, what are the goals  Negotiated, but may be

and what are the research questions? largely determined by
 either party

• Decision: What participants will be available and when? Negotiated
• Decision: What information must be confidential? Negotiated
• Decision: How will publication of results be handled? Negotiated
• Decision: Who owns intellectual property? Negotiated
• Obtain ethics approval Researchers
• Find researcher team members and train them Researchers
• Plan the details of work with participants Researchers
• Plan for data analysis Researchers
• Evaluate the risks and manage changes Both parties
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some of the research, but they tend to spend much additional time on the research that 
is just part of their normal university duties, paid by the university.

On the other hand if the research is of the type where the company absolutely 
must have a rapid answer to a question, then there is a high risk in involving graduate 
students who are prone to take their time completing courses and might want to 
focus their thesis on another topic. Furthermore, an advantage of using corporate 
employees is that they tend to have a greater knowledge of the company’s products, 
needs and environment.

In summary, there is no single answer to whether it is better to perform research 
in-house or involve university researchers: the decision depends on the type of 
research to be done. In-house employees can work full time and may focus better 
on the problem, but are normally much more expensive and may lack specific 
expertise in the area of the research.

5.2. If the University is Considering Initiating: 
How does it Make Contacts with Companies?

The biggest practical problem in studying work practices is obtaining a good sample 
of participants. If a university researcher is initiating the project, it might be possible 
in some cases to conduct a study using participants who are solicited individually (for 
example they might be asked to fill out a questionnaire on the web on their own time). 
However, it is usually necessary to work with teams within a company. Hence, 
participation needs to be obtained from the management of one or more companies.

Finding suitable organizations is the first hurdle. While many researchers or 
their institutions may have a few companies that are their perennial ‘contacts’ in 
industry, empirical researchers should give thought to involving companies of several 
different types to avoid introducing bias. The companies most likely to be willing 
to participate are those already involved in research – particularly medium to large 
companies whose primary business is software or computer products. Much harder 
to penetrate are companies in other industries that develop specialized software or 
in-house software, for example, banking and health care. In the past, we have expe-
rienced considerable frustration finding suitable managers to contact. Our only 
advice is that unbiased research often requires considerable effort of this type. We 
were lucky with the Mitel-University of Ottawa collaboration since both parties 
sought out each other.

When the university researchers are the ones seeking the contacts, two levels of 
management must be convinced to participate: Higher management must agree to 
the involvement of the company as a whole, while first-level managers must agree 
to the involvement of their teams. In both cases, obtaining and maintaining commit-
ment can be hard. Management will naturally be concerned about the costs of the 
research, particularly in terms of time. Researchers have to effectively, but realisti-
cally, show that there are benefits to the company, which can balance the costs. The 
costs and benefits presented in Sects. 3 and 4 can be used to make a case.
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It is easier to make a case to a company when establishing a long-term relationship. 
We have found companies are more open to empirical studies when other members 
of the research team are tackling the company’s engineering problems (perhaps 
using data from the empirical studies).

5.3. Key Success Factors: Mutual Understanding 
in a Co-operative Relationship

Empirical studies of software engineering involve people studying people. 
The fundamental requirement for a successful research project relationship is that 
the two parties, the company based software engineers, and the academic research-
ers get to know and trust each other. A strong positive social relationship of mutual 
respect and trust must be established and maintained between the company based 
manager and the principal researcher. As usual in social matters it really helps if 
people like each other. This relationship takes time to establish and it may take 
many meetings spread out over several weeks to develop mutual understanding of 
the research problem and opportunities for solutions. As Conradi et al. (2003) say, 
it is important that the researchers have a, ‘humble attitude … towards the situation 
of the practitioners’.

This dialogue must culminate in a research plan that is mutually acceptable to both 
parties. Since longer-range research work will always play second fiddle to the 
immediate product development needs of the company, it is vital that the company 
manager be personally fully committed to supporting and carrying through the project. He 
or she must see the value and want to carry it forward in order to accept the hindrance 
to his day-to-day work. At the same time, expectations must be carefully managed. 
Overly enthusiastic research promises or commitments of company time can lead 
to fractured relations and harm the project. The project should have a time frame 
that anticipates research results corresponding to the normal steps in progress of a 
thesis.

It is also vital that each party understands and respects the agenda and impera-
tives of the other. This understanding should develop as the dialogue between the 
two project leaders goes on.

5.4. Issues that Must Be Agreed Between the Company 
and the Researchers

Once a company has established its willingness to participate, it is important to 
reach agreement on a number of issues. The formality of the agreements will vary 
with the size and duration of the research. A very large project requires more 
detailed negotiations than a small one, particularly if financial support is involved. 
A company will be interested in the project, but be more willing to participate if its 



10 The Management of University–Industry Collaborations 273

managers were given a presentation about empirical software engineering and the 
proposed methods. In such cases, the researcher should treat educating the organiza-
tion as part of the negotiation process, so they can proceed as partners in the 
endeavor.

The following are areas where we believe agreements should be established to 
help ensure the project’s success. In the Mitel-CSER project, some of these items 
were included in a written agreement, but most were just tacit agreements that 
evolved over time. If we were starting again, we would probably prefer to write 
down more details, although there is always the danger that developing a more 
detailed formal agreement (which might have to be approved by lawyers) would 
cause inflexibility and possibly lengthy delays, thus potentially causing more harm 
than good.

5.4.1 Level and type of commitment to the project 

The first point of mutual agreement should be the level and type of commitment of 
both parties to the project. Questions to answer are: What is the project’s expected 
duration? How much support (e.g. space, time, equipment) is expected from the 
company? What kind of results or specific deliverables, if any, are expected from the 
researchers? Agreement on these issues often forms the basis for agreement on other 
issues below.

For our project, Mitel has provided financing since its inception, with 
NSERC (a Canadian Government funding agency) subsequently matching both 
cash and in-kind contributions. Mitel also provides office space and equipment, 
although the distance to the company and lack of direct-enough public transporta-
tion has meant that graduate students have usually preferred to work on campus. 
The faculty member has on average spent one morning a week at the company, 
although at the peak of the research he tended to spent several consecutive days 
there. Over 80% of the faculty member’s research time has been spent analyzing 
data and writing up the results, an activity not performed at the company site. We 
have found it important to communicate with the company frequently during these 
latter activities to ensure that long absences are not interpreted as delays in the 
research.

In the first year of the project, we established a very ambitious timetable for the 
research, which later proved to be unrealistic. Project plans developed in subse-
quent years were somewhat more accurate, but we still had an unrealistic schedule. 
This was because we did not sufficiently allow for the fact that it might be hard to 
find appropriate graduate students, that they are delayed by courses, comprehensive 
exams, and other activities, and that they receive and often accept tempting job 
offers and therefore drop to part-time status. The main problem with finding graduate 
students is that most entering graduate students want to create new software, not 
perform empirical studies. The delays from courses and exams arise because the 
graduate students feel they have to give 100% of their time to these activities to 
maximize their marks. We overcame these problems to some extent by hiring 
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people as research associates – such people have a stronger contractual obligation 
than graduate students who are merely ‘supported’ in their studies. Unfortunately 
market conditions make hiring skilled research associates difficult.

The only real deliverables that Mitel expects are features periodically added to 
the tool, and regular reports about progress. However our plans were always rather 
ambiguous regarding the level of quality expected, and we rarely met our target dates 
(the whole software industry, of course, tends to have this problem). One problem 
we faced was students and research associates implementing just enough software 
to test their ideas, but not making the quality of the software high enough so that 
Mitel could use it on a regular basis after their studies were complete. As discussed 
earlier, the core TkSee tool was made highly usable, but add-on features created for 
specific student studies were often never used seriously by Mitel employees.

5.4.2 The decision-making and management process 

Since empirical research projects, especially long-duration ones, rarely proceed as 
initially planned, there need to be agreements about how changes to plans will be 
made. We believe that an active-risk management approach is needed: At the initial 
stages, the risks (see Sect. 4) need to be identified and their magnitude estimated. 
When researchers and company managers meet on a semi-regular basis, both 
progress and the risk profile should be informally reviewed and changes to the 
plans agreed.

Risk management was something with which the university researchers had little 
experience at the start of the Mitel-CSER project. As the project progressed and 
deviated from the original plans (albeit in parallel with significant success), we did 
not do a good job of ensuring that both parties clearly understood the reasons for 
the deviations. University researchers may well be able to learn from the manage-
rial expertise of the company in this regard, just as the company can learn from the 
technological expertise of the researchers.

At one point we went too far in the opposite direction by regularly updating a 
detailed project plan. That turned out to be far too time-consuming with not enough 
benefit. We now believe the kind of regular management needed should involve 
update and discussion of a very brief progress chart, and a short list of successes, 
problems and risks.

5.4.3 Access to participants

Both sides need to agree on how many employees will participate in the study and 
how much time is required from each employee. Sometimes an organization will 
find it difficult to provide the personnel required by the ideal research design and 
some compromise may be necessary.

In our project, Mitel agreed to a certain number of employee-hours per year to 
be devoted to our project, but we did not accurately monitor this, and likely used 
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somewhat less time than budgeted. A key point for Mitel was that before the 
researchers initiated meetings with employees, they would check with management 
to see who was busy with ‘critical’ or ‘deadline’ work, and avoid these employees 
until they had more time.

5.4.4 Confidentiality of data

Some data needs to be kept confidential for corporate reasons; for example a com-
pany may not allow highly sensitive information such as source code or defect logs 
to be taken off-site. Data about individuals needs to be kept confidential for ethical 
reasons – we will discuss this further below. Data that are not confidential for either 
of the above reasons can serve as the basis for discussions of the next point, publi-
cation of results.

We had to negotiate with Mitel regarding the confidentiality of certain data that 
revealed aspects of their software’s design that needed to be kept a trade secret. We 
were not able to take Mitel’s source code out of company premises: This proved 
useful in some ways because it encouraged grad students to spend time at the company. 
However it was also quite inconvenient at times.

5.4.5 Publication of results 

It is difficult to predict which results will be sufficiently interesting to publish, partic-
ularly before data collection has begun. Understandably, companies are reluctant to 
give blanket approval to disclosure of information. One solution is to set some ground 
rules at the beginning, and deal with publications on a case-by-case basis. Although 
this approach adds a step to the process of writing a paper, it has the benefit of provid-
ing researcher with an opportunity to verify their observations and conclusions.

On our case, our papers are reviewed for publication by the company at the same 
time that peer review occurs. Officially, Mitel could have asked to approve them 
before initial submission, however we established a good working relationship so 
that we did not need to be so rigid: Mitel told us the kinds of things they didn’t want 
made public and we wrote in a style that accounted for Mitel’s desires. At the same 
time Mitel recognized that academics often have very short lead-times to submit 
papers. They never rejected any papers, although they requested a few changes.

Another decision to be made is whether or not to identify the organization in the 
publication. A company may want its contributions acknowledged, or it may not 
want to be associated with ‘negative’ findings. Also, it may not be possible to 
publish the identity of the company without compromising the anonymity of the 
participants. This question can be dealt with in using the same approach described 
above for results. Realizing that anyone could find out from various sources that 
funded our research, we realized it would have been pointless to not mention 
Mitel’s name. In some paper, the company employees also took a personal stake by 
becoming authors.
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5.4.6 Other intellectual property issues 

In addition to publication of results and protecting trade secrets, the two parties 
need to agree on what will happen if a patentable invention should arise from the 
research. Achieving agreement in this area can be very time consuming. The degree 
of sensitivity on the part of the company will depend on whether research results 
could provide functionality central to their products. In the case of the Mitel 
project, the benefits accrue to design efficiency. For these to be most valuable they 
need to be incorporated in commercially available tools and so Mitel has little con-
cern about patents in this case. On the other hand another member of CSER is a 
software tools company and it has a much greater interest.

The formal CSER agreement acknowledges inventions as belonging to the inven-
tors. Members have a free license to use any tools and techniques that arise 
from the research within their individual businesses. If they wish to sell products 
incorporating any CSER inventions then they must separately negotiate a license 
with the inventor.

A final comment regarding the co-operation of companies: One should keep in mind 
the possibility of a long-term relationship with the company. After going through the 
effort of establishing a relationship it will likely be useful to extend it either by performing 
a series of different studies, each building on the previous, or by performing longitudinal 
studies where software engineers are followed over many years.

5.5. Obtaining Approval of the Research Ethics Board

It is now considered essential in most countries that any research project involving 
human subjects should be scrutinized by a Research Ethics Board (REB) before the 
project gets underway. This is something that social scientists and medical researchers 
now take for granted, but which is not widely known in engineering. Even projects 
involving simple questionnaires need to be evaluated.

Research ethics are the subject of Chap. 12 of this book. There are many issues 
which are particularly important to industrial empirical studies, such as ensuring 
that management doesn’t influence the freedom of participants to not participate or 
to withdraw, and doesn’t see the raw data. Rather than presenting details about the 
ethical issues themselves here, we will briefly list some points relevant to the 
management of the ethics approval process.

The most important management issues for the empirical software engineering 
researcher to do are:

● Become familiar with the REB process at their institution.
● Plan the project with sufficient care that no ethical guidelines are violated. This 

means writing a proposal document in considerable detail so as to be convincing 
to the REB – something that might be more time-consuming than anticipated. 
The most important parts of such a document are the research protocol itself and 
the informed consent form that must be signed by all participants.
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● Plan the project with sufficient time to allow the REB to make its decision, with 
allowances for possible required changes and resubmission. REBs very often 
nit-pick about details of proposals.

● Do not start any studies involving people until approval is received.

Long-term projects where the research is opportunistic in the sense that individ-
ual studies are planned on an on-going basis, may have to repeat this approval 
process.

In the early days of the Mitel-CSER project we conducted the work without 
REB approval out of ignorance, and because there was no formal mechanism for 
such approval within engineering. That was later rectified; at the same time Canadian 
research ethics guidelines have been strengthened and harmonized.

5.6. Staffing the Project and Training Researchers

Company-industry empirical research projects will normally involve graduate stu-
dents and perhaps postdoctoral fellows. As mentioned in Sect. 4, an important 
difficulty such projects will face is attracting interested researchers.

One technique that may work is involving researchers from the social sciences 
as collaborators. Many anthropologists and psychologists have developed an inter-
est in, and expertise in, software engineering processes. Such people would not be 
able to solve engineering problems, and may have a weaker understanding of what 
they are observing than engineers, but they should know more than the average 
engineer about human behaviour, work practices, study methodologies and ethics. 
The work of course is not lessened, but graduate students in these disciplines might 
be more motivated to perform the detailed data analysis gathered from human 
subjects involved in empirical studies.

In the Mitel-CSER project we have been fortunate to work with Janice Singer, a 
scientist at the National Research Council who has a Ph.D. in psychology and has 
also worked in software development. Our research group has also involved graduate 
students in psychology from time to time.

It is essential for the entire research team to practice and refine the research 
methodology before taking it on the road, otherwise many mistakes will be made 
and data will be lost. Researchers unfamiliar with the techniques discussed in this 
book will be surprised about how many difficulties can arise. For example the 
wording of questions must be thoroughly tested to remove ambiguities. Also the 
process of setting up cameras, recording, transcribing, and coding should be well 
rehearsed.

In addition to understanding empirical study techniques, researchers should 
normally spend considerable time in learning about their company. An under-
standing of corporate culture needs to be established so researchers can effectively 
interact with the participants and correctly interpret data. The researchers need a 
basic understanding of key aspects of the participant’s work, such as the problem 
domain, the business context for the application, and the tools and process they are 
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using. Some of this knowledge can be gained during the study itself, but we have 
found it more effective to have a learning phase in advance of the study.

5.7. Working with Corporate Employees and Managers

After establishing a research relationship with the company, obtaining ethics 
approval and training the research staff, the next step is to establish relationships 
with individual participants. Whether potential participants are willing to partici-
pate depends on several factors:

● The type of research: Being watched is of more concern to most people than, for 
example filling out a survey. Also, long-term or time-consuming research might 
attract fewer participants.

5.7.1 Whether the participants perceive management to be supportive

We have found it essential that management be enthusiastic about the research and 
make this clear to their employees. Enthusiasm assures employees that they are not at 
risk of being penalized for not getting their ‘regular’ job done while taking time out to 
participate in the research. Since our research continued for a long period of time, and 
many employees came and went during this period, management periodically arranged 
meetings with the employees at which the researchers presented a status report and 
sought input. However, for ethical reasons, managers should make it clear that participa-
tion is completely optional and they are not ordering people to participate.

A technique that we find useful is to use two consent forms. One is signed by the 
manager, consenting to the participation of his or her staff and assuring them that there 
will not be any management interference or impact whether or not they participate. 
A copy of this is given to the participants along with their own consent form.

Whether the participant perceives some benefit to participation: Some partici-
pants will enjoy taking time away from their daily work; others may be interested 
in the research for its own sake or because they feel they may gain something from 
the results. In our research we always tried to make it clear to employees that we 
were trying to develop tools that would be helpful to them. It was a concern when 
our work took longer than expected that some participants might feel let down.

The personality and beliefs of the participants: We have found some employees 
are more willing to participate than others. In fact, we have had situations where 
participants actively dissuade us by saying that the work they are doing would not 
be interesting enough for us to study. Leaving out such people might bias the 
research, so we tried to encourage the employees to participate while continuing to 
assure them it was optional.

Empirical research in companies can be mentally intense for researcher and partici-
pant. In order to get the most out of the work, the pace should not be rushed. Plenty 
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of flexibility should be built into the day’s schedule and no more than two sessions 
should be held in any day.

It is also important to understand that software engineers follow a development 
cycle. This means that they are doing different activities at different times. Finding 
what software engineers do during design and coding does not necessarily reflect 
what they do during bug-fixing or requirements gathering. Therefore, data collec-
tion has to focus on one aspect of the development cycle, or must extend over sev-
eral time points to get an overall view of software engineering work.

Another consideration is software engineers’ time constraints. Researchers need 
to find, to the greatest extent possible, data collection methods that do not affect the 
software engineers’ productivity. Unfortunately, it is not always possible to gather 
key information unobtrusively. When a time commitment is required from software 
engineers, researchers need to make sure that they get the largest possible return for 
that time.

5.8. Maintaining the Relationship

Maintaining an industrial research relationship takes continued work. Some of the 
tactics we suggest are the following:

● Ensure all researchers (both faculty and students) have a regular presence in the 
company premises, whether or not they are actively conducting studies. The 
mere fact of being there, working on papers, theses, etc. shows a commitment. 
Participating in company meetings social events can also help to solidify the 
relationship.

● Report regularly on research progress, perhaps once every month. Even if 
not much has happened (as is often the case when academics are in the midst 
of teaching courses, and working on other matters), at least find something 
to say.

● Offer to give presentations on various topics. These could include updating 
employees on the status of the research, or giving a lecture on some topic that 
might simply be interesting to the company. The company will therefore reap 
value-added in terms of expertise that they can use to further justify continuing 
the relationship.

5.9. Planning for Data Analysis

Data analysis is probably the most time-consuming phase of most empirical studies. 
We will not discuss techniques here, since that is the topic of other chapters. 
However, we wish to point out that it should, where possible, be carefully planned 
at the project’s start.



6. Concluding Remarks

In this chapter we have discussed many of the issues we have faced when managing 
university-industry empirical studies of software engineering. Our goal in present-
ing this information is to present the lessons we have learned, and hence to provide 
guidance for others undertaking similar studies for the first time. The issues dis-
cussed, such as the benefits and drawbacks to be considered, establishing contact 
with organizations and participants, staffing, and obtaining ethical approval, can be 
made to work more smoothly through effective planning. We also strongly believe 
in on-going evaluation and change management of the project as it progresses, 
particularly considering the risk factors we identified.
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Chapter 11
Selecting Empirical Methods 
for Software Engineering Research

Steve Easterbrook, Janice Singer, Margaret-Anne Storey, 
and Daniela Damian

Abstract Selecting a research method for empirical software engineering research 
is problematic because the benefits and challenges to using each method are not yet 
well catalogued. Therefore, this chapter describes a number of empirical methods 
available. It examines the goals of each and analyzes the types of questions each 
best addresses. Theoretical stances behind the methods, practical considerations 
in the application of the methods and data collection are also briefly reviewed. 
Taken together, this information provides a suitable basis for both understand-
ing and selecting from the variety of methods applicable to empirical software 
engineering.

1. Introduction

Despite widespread interest in empirical software engineering, there is little guid-
ance on which research methods are suitable to which research problems, and how 
to choose amongst them. Many researchers select inappropriate methods because 
they do not understand the goals underlying a method or possess little knowledge 
about alternatives. As a first step in helping researchers select an appropriate 
method, this chapter discusses key questions to consider in selecting a method, 
from philosophical considerations about the nature of knowledge to practical con-
siderations in the application of the method. We characterize key empirical methods 
applicable to empirical software engineering, and explain the strengths and weaknesses 
of each.

Software engineering is a multi-disciplinary field, crossing many social and 
technological boundaries. To understand how software engineers construct and 
maintain complex, evolving software systems, we need to investigate not just the 
tools and processes they use, but also the social and cognitive processes surround-
ing them. This requires the study of human activities. We need to understand how 
individual software engineers develop software, as well as how teams and organizations 
coordinate their efforts.
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Because of the importance of human activities in software development, many 
of the research methods that are appropriate to software engineering are drawn 
from disciplines that study human behaviour, both at the individual level (e.g. psy-
chology) and at the team and organizational levels (e.g. sociology).These methods 
all have known flaws, and each can only provide limited, qualified evidence about 
the phenomena being studied. However, each method is flawed differently 
(McGrath, 1995) and viable research strategies use multiple methods, chosen in 
such a way that the weaknesses of each method are addressed by use of comple-
mentary methods (Creswell, 2002).

Describing in detail the wide variety of possible empirical methods and how to 
apply them is beyond the scope of the chapter. Instead, we identify and compare 
five classes of research method that we believe are most relevant to software 
engineering:

● Controlled Experiments (including Quasi-Experiments)
● Case Studies (both exploratory and confirmatory)
● Survey Research
● Ethnographies
● Action Research

We describe the tradeoffs involved in choosing between these methods, but do not 
provide a recipe for building research strategies, as we doubt that such recipes exist. 
The selection of methods for a given research project depends on many local con-
tingencies, including available resources, access to subjects, opportunity to control 
the variables of interest, and, of course, the skills of the researcher.

To illustrate the steps involved in deciding which method or methods to use, we 
present two guiding examples. Two fictional software engineering researchers, Joe and 
Jane, will explore how the various research methods can be applied to their work:

● Jane is a new PhD student interested in the effectiveness of a novel fisheye-view 
file navigator. Her research is motivated by the fact that navigation is a primary 
activity of software developers requiring a lot of scrolling and many clicks to 
find files. “Fisheye-views” use a distortion technique that, if applied correctly, 
display information in a compact format that could potentially reduce the 
amount of scrolling required. Jane’s intuition is that the fisheye-view file navi-
gator is more efficient for file navigation, but critics argue that the more compact 
information is difficult to read and that developers will not adopt it over the tra-
ditional file navigator. Her research goal, therefore, is to find evidence that sup-
ports or refutes her intuition that fisheye-view file navigators are more efficient 
than traditional file navigators for navigation.

● Joe is a researcher in an industrial lab. His current interests are in understanding 
how developers in industry use (or not) UML diagrams during software design. 
This is because, as a student, his professors recommended UML diagrams be used 
during software design, but his recent exposure to industrial practices indicates 
that UML is rarely used. His research goal is to explore how widely UML 
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diagrams are used in industry, and more specifically how these diagrams are 
used as collaborative shared artefacts during design.

Throughout the remainder of the chapter, we explore how Jane and Joe develop 
research strategies for their projects. We begin with an analysis of the type of 
research question(s) they are asking, and the issue of what constitutes valid answers 
to them. To address the latter question, we tour the main philosophical stances that 
underpin empirical research. We then describe the five classes of research method, 
and introduce criteria for distinguishing between them. Along the way, we explore 
how Jane and Joe might use each method as part of their research strategies. We 
end the chapter with a look at the practical considerations that affect their 
choices.

2. What kind of Research Question are You Asking?

One of the first steps in choosing an appropriate research method is to clarify the 
research question. While Jane and Joe have identified the problems they wish to 
work on, neither has pinned down a precise question. In each case, they could focus 
on a number of different research questions, each of which leads to a different 
direction in developing research strategies. The classification of research questions 
we use in this section is adapted from Meltzoff (1998).

Often, the most obvious question is not the best choice for a starting point. 
Jane’s first attempt to formulate her research question is “Is a fisheye-view file 
navigator more efficient than the traditional view for file navigation?”, while Joe 
asks “how widely are UML diagrams used as collaborative shared artifacts during 
design?”. Both questions are vague, because they make assumptions about the 
phenomena to be studied, and kinds of situation in which these phenomena occur. 
For example, Jane’s question only makes sense if we already know that some 
people (who?) need to do file navigation (whatever that is?), under some circum-
stances (which are?), and that efficiency (measured how?) is a relevant goal for 
these people (how would we know that?). Joe’s question presupposes that we know 
what a “collaborative shared artifact” is, and can reliably identify one, and even 
reliably say which things are UML diagrams. Defining the precise meaning of 
terms is a crucial part of empirical research, and is closely tied with the idea 
of developing (or selecting) an appropriate theory.

In the early stages of a research program, we usually need to ask exploratory 
questions, as we attempt to understand the phenomena, and identify useful 
distinctions that clarify our understanding. Suitable research methods for explor-
atory questions tend to be those that offer rich, qualitative data, which help us to 
build tentative theories. Unless they are building on existing work that already 
offers clear definitions, both Jane and Joe need to formulate exploratory ques-
tions, such as:
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● Existence questions of the form, “Does X exist?” Jane might need to ask, “Is 
file navigation something that (certain types of programmers) actually do?” 
and, “Is efficiency actually a problem in file navigation?” Joe might need to ask, 
“Do collaborative shared artifacts actually exist?”

● Description and Classification questions such as, “What is X like?”, “What 
are its properties?”, “How can it be categorized?”, “How can we measure it?”, 
“What is its purpose?”, “What are its components?”, “How do the components 
relate to one another?”, and “What are all the types of X?” Jane might ask, “How 
can we measure efficiency for file navigation?” and Joe might ask, “What are 
all the types of collaborative shared artifacts?”

● Descriptive-Comparative questions of the form, “How does X differ from Y?” 
investigate similarities and differences between two or more phenomena. Jane might 
ask, “How do fisheye views differ from conventional views?” and Joe might ask, 
“How do UML diagrams differ from other representations of design information?”

The answers to these questions result in a clearer understanding of the phenomena, 
including more precise definitions of the theoretical terms, evidence that we can 
measure them, and evidence that the measures are valid. In exploring these ques-
tions, Jane and Joe will refine their ideas about the nature of the phenomena they 
are studying. It is possible that there are already good answers to these questions in 
the published literature. Jane and Joe must still ask these questions. But a literature 
survey, instead of an empirical study, may answer them.

Once we have a clearer understanding of the phenomena, we may need to ask 
base-rate questions about the normal patterns of occurrence of the phenomena. If 
we fail to ask base-rate questions, then we have no basis for saying whether a par-
ticular situation is normal or unusual. Example base-rate questions include:

● Frequency and distribution questions such as, “How often does X occur?” 
and, “What is an average amount of X?” Often, these questions can be answered 
in terms of a standard distribution of a characteristic within a well-defined popu-
lation. Joe’s original question appears to be a frequency question, but there are 
many ways for him to formulate it more precisely. For example, he might ask, 
“How many distinct UML diagrams are created in software development 
projects in large software companies?” and he might discover the results follow 
some standard statistical distribution.

● Descriptive-Process questions of the form, “How does X normally work?”, 
“What is the process by which X happens?”, “In what sequence do the events of 
X occur?”, “What are the steps X goes through as it evolves?”, “How does X 
achieve its purpose?”. For example, Jane might ask, “How do programmers 
navigate files using existing tools?”

Often, we are interested in the relationship between two different phenomena, and 
specifically whether occurrence of one is related to occurrence of the other. Hence 
we need to formulate some:

● Relationship questions such as, “Are X and Y related?” and, “Do occurrences 
of X correlate with the occurrences of Y?” For example, Jane might ask, “Does 
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efficiency in file navigation correlate with the programmer’s familiarity with the 
programming environment?” Joe might ask, “Do managers’ claims about how 
often they use UML correlate with the actual use of UML?”

Once we have established that a relationship exists between two phenomena, it is 
natural to try to explain why the relationship holds by attempting to identify a cause 
and effect. It is a common mistake to confuse correlation with causality. In general 
it is much harder to demonstrate causality than to show that two variables are cor-
related. If high values of X correlate with high values of Y, it may be because X 
causes Y, or because Y causes X. But it is also possible that X and Y share some 
common cause and neither causes the other. Or perhaps they co-evolve in complex 
ways so that there is no clear cause-and-effect. Causality questions include:

● Causality questions of the form, “Does X cause Y?” and “Does X prevent Y?” 
Plus the more general forms: “What causes Y?”, “What are all the factors that 
cause Y?”, “What effect does X have on Y?” In software engineering we often 
ask whether using a particular tool or technique causes an improvement in qual-
ity, speed, and so on. Jane’s initial question appears to be of this type: “Do 
fisheye-views cause an improvement in efficiency for file navigation?”

● Causality-Comparative questions investigate relationships between different 
causes: “Does X cause more Y than does Z?” or, “Is X better at preventing Y 
than is Z?” Unless Jane has good base-rate data for existing file navigation tools, 
Jane’s causality question would be better formulated as “Do fisheye-views cause 
programmers to be more efficient at file navigation than conventional views?”

● Causality-Comparative Interaction questions investigate how context affects 
a cause–effect relationship: “Does X or Z cause more Y under one condition 
but not others?” If Jane’s initial studies reveal a factor (e.g., distractions) that 
affects causality, she might ask “Do fisheye-views cause programmers to be 
more efficient at file navigation than conventional views when programmers 
are distracted, but not otherwise?”

The classes of research question above are all knowledge questions focused on the 
way the world is. Empirical research in software engineering addresses these types 
of questions. In contrast, most non-empirical research in software engineering 
focuses on a very different type of question concerned with designing better ways 
to do software engineering (Simon, 1996):

● Design questions of the form, “What’s an effective way to achieve X?” or, 
“What strategies help to achieve X?” For example, Joe’s research might lead 
him to ask, “What is an effective way for teams to represent design knowledge 
to improve coordination?”

These types of question are necessary when the goal is to design better procedures 
and tools for carrying out some activity or to design suitable social or regulatory 
policies. Such questions presuppose that the associated knowledge questions have 
already been addressed so that we have enough information about the nature of the 
design problem to be solved. In practice, a long term software engineering research 
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program involves a mix of design questions and knowledge questions as the 
researchers investigate specific problems, how best to solve them, and which solu-
tions work best (Wieringa and Heerkens, 2006).

3. What will You Accept as an Empirical Truth?

Having specified the research question(s), it is worth considering what to accept as 
valid answers. Different people make different assumptions about scientific truth. 
Take, for example, Jane’s causal question: “Do fisheye-views cause an improvement 
in efficiency for file navigation?” Jane’s PhD advisor insists that the only trustworthy 
evidence to answer this question comes from experiments conducted under controlled 
laboratory conditions, pointing out that the only conclusive way to prove that 
A causes B is to manipulate A in a controlled setting, and measure the effect on B. 
However, another member of Jane’s thesis committee is an experienced software 
practitioner and he claims that laboratory experiments are useless, as they ignore the 
messy complexity of real software projects. He points out that judgments about 
“improvements” to file navigation are subjective, and contextual factors such as dis-
tractions have a major impact. He suggests that Jane should conduct her research in 
the field, investigating what developers actually do on real projects

The different advice Jane receives reflects major differences in opinion over the 
nature of truth, and how we arrive at it through scientific investigation. The con-
flicting advice arises from the different philosophical stances adopted by members 
of Jane’s committee. To understand the different stances, it helps to know that phi-
losophers make a distinction between epistemology (the nature of human knowl-
edge, and how we obtain it) and ontology (the nature of the world irrespective of 
our attempts to understand it). This separation helps us discuss what we accept as 
scientific knowledge separately from debates about the content of that knowledge 
(Chalmers, 1999).

Plato originally defined knowledge as justified true belief. In other words, to 
know something, you must believe it to be true, and have a clear justification for 
believing it to be true. However, epistemologists have argued for centuries about 
what form that justification should take. Empiricists argue that all knowledge is 
derived from our experiences and observations of the world, while rationalists 
argue that some part of our knowledge is innate, hence not derived from experi-
ence. Constructivists argue that we cannot separate knowledge from the language 
we use to express it – because the meanings of words are constructed by social 
convention, so is our knowledge.

In this chapter we characterize four dominant philosophical stances (Creswell, 
2002). The stance you adopt affects which methods you believe lead to acceptable 
evidence in response to your research question(s). Being explicit about your stance 
also helps when talking and writing about research. You might not be able to con-
vince other people to change their stance, but you will be able to argue cogently for 
why you chose the methods you did.
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● Positivitism states that all knowledge must be based on logical inference from 
a set of basic observable facts. Positivists are reductionist, in that they study 
things by breaking them into simpler components. This corresponds to their 
belief that scientific knowledge is built up incrementally from verifiable obser-
vations, and inferences based on them. Positivism has been much attacked over 
the past century due to doubts about the reliability of our observations of the 
world, and the complication that scientific “fact” built up in this manner some-
times turns out to be wrong. While positivism still dominates the natural sci-
ences, most positivists today might more accurately be described as 
post-positivists, in that they tend to accept the idea (due to Popper) that it is more 
productive to refute theories than to prove them, and we increase our confidence 
in a theory each time we fail to refute it, without necessarily ever proving it to 
be true. Positivists prefer methods that start with precise theories from which 
verifiable hypotheses can be extracted, and tested in isolation. Hence, positivism 
is most closely associated with the controlled experiment; however, survey 
research and case studies are also frequently conducted with a positivist stance. 
Note that a belief in reductionism is needed to accept laboratory experiments as 
valid in software engineering – you have to convince yourself that the phenom-
enon you are interested in can be studied in isolation from its context.

● Constructivism, also known as interpretivism (Klein and Myers, 1999), rejects 
the idea that scientific knowledge can be separated from its human context. In 
particular, the meanings of terms used in scientific theories are socially con-
structed, so interpretations of what a theory means are just as important in judg-
ing its truth as the empirical observations on which it is based. Constructivists 
concentrate less on verifying theories, and more on understanding how different 
people make sense of the world, and how they assign meaning to actions. 
Theories may emerge from this process, but they are always tied to the context 
being studied. For example, an anthropologist studying the culture of a software 
design team might seek to find out how different members of the team think 
about and use the tools they have available, and build local theories that explain 
why this particular team uses tools in the way that they do. This stance is often 
adopted in the social sciences, where positivist/reductionist approaches have 
little to say about the richness of social interactions. Constructivists prefer 
methods that collect rich qualitative data about human activities, from which 
local theories might emerge. Constructivism is most closely associated with 
ethnographies, although constructivists often use exploratory case studies and 
survey research too.

● Critical Theory judges scientific knowledge by its ability to free people from 
restrictive systems of thought (Calhoun, 1995). Critical theorists argue that 
research is a political act, because knowledge empowers different groups within 
society, or entrenches existing power structures. Critical theorists therefore 
choose what research to undertake based on whom it helps. They prefer partici-
patory approaches in which the groups they are trying to help are engaged in the 
research, including helping to set its goals. Critical theorists therefore tend to 
take emancipatory or advocacy roles. In sociology, critical theory is most 
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closely associated with Marxist and feminist studies, along with research that 
seeks to improve the status of various minority groups. In software engineering, 
it includes research that actively seeks to challenge existing perceptions about 
software practice, most notably the open source movement, and, arguably, the 
process improvement community and the agile community. Critical theorists 
often use case studies to draw attention to things that need changing. However 
it is action research that most closely reflects the philosophy of critical 
theorists.

● Pragmatism acknowledges that all knowledge is approximate and incomplete, 
and its value depends on the methods by which it was obtained (Menand, 1997). 
For pragmatists, knowledge is judged by how useful it is for solving practical 
problems. Put simply, truth is whatever works at the time. This stance therefore 
entails a degree of relativism: what is useful for one person to believe might not 
be useful for another; therefore truth is relative to the observer. To overcome the 
obvious criticisms, many pragmatists emphasize the importance of consensus – 
truth is uncovered in the process of rational discourse, and is judged by the par-
ticipants as whatever has the better arguments. Pragmatism is less dogmatic than 
the other three stances described above, as pragmatists tend to think the researcher 
should be free to use whatever research methods shed light on the research 
problem. In essence, pragmatism adopts an engineering approach to research – it 
values practical knowledge over abstract knowledge, and uses whatever methods 
are appropriate to obtain it. Pragmatists use any available methods, and strongly 
prefer mixed methods research, where several methods are used to shed light on 
the issue under study.

Although there are examples of research from each of these stances in the software 
engineering literature, the underlying philosophies are never mentioned. We 
believe this has contributed to confusion around the selection of empirical methods 
and appropriate evaluation of empirical research. In particular, it is impossible to 
avoid some commitment to a particular stance, as you cannot conduct research, and 
certainly cannot judge its results, without some criteria for judging what constitutes 
valid knowledge.

4. The Role of Theory Building

A distinguishing feature of scientific study is the development of theories that 
explain how and why certain phenomena occur, and allow predictions to be made. 
Theories are therefore the building blocks of scientific knowledge. The different 
philosophical stances differ in their ideas about the role of theory (Gregor, 2006). 
To the positivist, science is the process of verifying theories by testing hypotheses 
derived from them. To the constructivist, science is the process of seeking local 
theories that emerge from (and explain) the data. To the critical theorist, theories 
are assertions of knowledge (and therefore power), to be critiqued in terms of how 
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they shape that power. To the pragmatist, theories are the products of a consensual 
process among a community of researchers, to be judged for their practical utility.

A scientific theory identifies and defines a set of phenomena, and makes asser-
tions about the nature of those phenomena and the relationships between them. 
A good theory precisely defines the theoretical terms, so that a community of 
scientists can observe and measure them. A good theory also explains why certain 
relationships occur. Positivists expect their theories to have strong predictive 
power, and so look for generalized models of cause-and-effect as the basis for 
theories. In contrast, constructivists expect theories to strengthen their under-
standing of complex situations, and so tend make more use of categorizations and 
analogies. Theories are also judged for aesthetic value. Often there is more than 
one theory that explains empirical observations, so the theories that are simpler, 
or more elegant are preferred (LittleJohn and Foss, 2004).

As an example, Joe might develop a theory around the use of UML diagrams as 
a stylized form of external memory. According to his theory, UML diagrams are 
used to summarize the results of meetings and discussions, to remind participants 
of a shared understanding that they have already developed. Joe’s theory must pre-
cisely define the meaning of terms such as “diagram,” “participants,” “discus-
sions,” in order to identify them in any studies performed. Joe’s theory should also 
explain why people choose to use UML in some circumstances but not others, and 
why they include certain things in their diagrams and exclude others. And finally, 
it should be able to predict qualities of the diagrams that a software team might 
produce based on certain factors.

It is important to understand that in any empirical study, theories have a strong 
impact on how things are observed and interpreted. The theory becomes a “lens” 
through which the world is observed. This happens whether or not theories are 
explicitly acknowledged, because real-world phenomena are simply too rich and 
complex to study without a huge amount of filtering. In quantitative research 
methods, the theoretical lens is used explicitly to decide which variables to isolate 
and measure, and which to ignore or exclude. In qualitative methods, the theoretical 
lens is often applied after data is collected, to focus the process of labeling and 
categorizing (“coding”) the data.

Few scientists give thought to how theories are created. A notable exception is 
Grounded Theory, a technique for developing theory iteratively from qualitative 
data (Glaser and Strauss, 1967). In grounded theory, initial analysis of the data 
begins without any preconceived categories. As interesting patterns emerge, the 
researcher repeatedly compares these with existing data, and collects more data to 
support or refute the emerging theory. Despite its close association with the con-
structivist stance, Grounded Theory probably approximates how most scientists end 
up developing theories. The difference is that Grounded Theory makes the process 
explicit and systematic.

Theories also play a role in connecting research to the relevant literature. By 
defining the key terms, the results of empirical studies can be compared. 
Furthermore, theories support the process of empirical induction because an indi-
vidual study can never offer conclusive results. Each study adds more evidence for 
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or against the propositions of the theory. Without the theory, we have no way of 
making sense of the accumulation of empirical results.

Software Engineering researchers have traditionally been very poor at making 
theories explicit (Jørgensen and Sjøberg, 2004). Many of the empirical studies 
conducted over the past few decades fail to relate the collected data to an underly-
ing theory. The net result is that results are hard to interpret, and studies cannot be 
compared.

5. Selecting Methods

A method is a set of organizing principles around which empirical data is collected 
and analyzed. A variety of methods can be applied to any research problem, and it is 
often necessary to use a combination of methods to fully understand the problem. The 
choice of methods depends upon the theoretical stance of the researcher(s), access to 
resources (e.g., students or professionals as subjects/participants) and how closely the 
method aligns with the question(s) that have been posed. Research Design is the proc-
ess of selecting a method for a particular research problem, tapping into its strengths, 
while mitigating its weaknesses. The validity of the results depends on how well the 
research design compensates for the weaknesses of the methods.

Below we describe in more detail the methods most likely to be applied in soft-
ware engineering contexts. Because these methods are adapted from a number of 
different fields, there is no consistent terminology to describe them and even a lack 
of consensus on how to distinguish these methods from one another. We have cho-
sen terms that should be familiar to software engineers and offer definitions and 
distinctions that capture the spirit of the methods.

5.1. Controlled Experiments

A controlled experiment is an investigation of a testable hypothesis where one or 
more independent variables are manipulated to measure their effect on one or more 
dependent variables. Controlled experiments allow us to determine in precise terms 
how the variables are related and, specifically, whether a cause–effect relationship 
exists between them. Each combination of values of the independent variables is a 
treatment. The simplest experiments have just two treatments representing two 
levels of a single independent variable (e.g. using a tool vs. not using a tool). More 
complex experimental designs arise when there are more than two levels or more 
than one independent variable is used. Most software engineering experiments 
require human subjects to perform some task. We measure the effect of the treat-
ments on the subjects.

A precondition for conducting an experiment is a clear hypothesis. The hypothesis 
(and the theory from which it is drawn) guide all steps of the experimental design, 
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including deciding which variables to include in the study and how to measure them. 
For example, Jane might decide to run an experiment to test the hypothesis that fish-
eye views cause more efficient file navigation than traditional file tree explorer 
views. This hypothesis is drawn from a theory that explains the effect. The theory is 
that fisheye views correspond well to the way that people see and navigate in the 
world, by offering more detail of a specific area of focus, together with a less detailed 
overview of the peripheral regions, and a smooth way of moving the focus of atten-
tion. The theory suggests that less time spent scrolling and fewer clicks should reduce 
navigation time. This suggests the treatments should be the type of file explorer view 
used: fisheye view versus the traditional scrolled view, and the dependent variable 
should be the length of time to navigate to a file.

The theory also helps to decide who the subjects are, and what the tasks should 
be. To ensure the results of the experiment are valid, the subjects should be drawn 
from a well-defined population – the idea is to demonstrate that the hypothesis 
applies to the whole population by testing it on a representative sample. For her 
experiment, Jane recruits computer science grad students as subject programmers, 
and screens them to select subjects with lots of programming experience. In SE, it 
is common to recruit students as subjects. This makes it easier to recruit a large 
group of subjects, but reduces external validity – an analytical argument is needed 
for why results on students might still apply to software developers in industry.

Control is important – variables other than the chosen independent variables 
must not be allowed to affect the experiment. In Jane’s case, differences in skill 
levels of her subjects may affect the experiment, so she might first divide her sub-
jects into groups (or blocks) according to their skill level, and randomly assign 
subjects from each block to the two treatments, for a “between subjects design.” An 
alternative is to use a “within subjects design,” in which each subject uses all treat-
ments; however this might introduce learning effects from one treatment to the 
next, so this needs to be accounted for in the design. Jane needs to decide which 
confounding factor is more important to control.

The experimental method is closely tied to the positivist stance. This is because 
experiments are essentially reductionist – they reduce complexity by allowing only 
a few variables of interest to vary in a controlled manner, while controlling all other 
variables. If critical variables are ignored or controlled, the experimental results 
might not generalize to real world settings. For example, in choosing to focus on 
efficiency as a dependent measure, Jane ignores other possible measures, such as 
awareness of the file structure that may result from other navigation techniques. 
The reduction can also mask critical interaction effects, such as the interaction 
between expertise and preferred navigation environment. For these reasons, if 
Jane’s experiment confirms her hypothesis, it means she has evidence that fish-eye 
views are more efficient (as she defines efficiency), but it doesn’t necessarily mean 
that fisheye views are better suited to navigation!

The fact that experiments are theory-driven is both a strength and a weakness. 
It is a strength because basing analysis on hypotheses derived from theories reduces 
problems of “fishing for results”: some correlations occur by chance, and if we look 
for long enough we’ll find them. On the other hand, being theory-driven forces us 
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to decide in advance which variables to ignore, and they might turn out to be 
 important outside the laboratory setting.

Variants on experiments are possible and can be used in circumstances where a 
true experiment is not possible. For example, in quasi-experiments the subjects are 
not assigned randomly to the treatments. Quasi-experiments may be used, for 
example, when, for ethical reasons, subjects must be allowed to choose their treat-
ment. Quasi-experiments are also used in the field. For example if an experiment is 
performed in a company, there may be constraints on which employees can work 
on which tasks. In time-series experiments, the effect of a treatment is measured in 
discrete time steps over a period of time. These variations are less powerful than 
true experiments, and require more careful interpretation.

5.2. Case Studies

There is much confusion in the SE literature over what constitutes a case study. The 
term is often used to mean a worked example. As an empirical method, a case study 
is something very different. Yin (2002) introduces the case study as “an empirical 
inquiry that investigates a contemporary phenomenon within its real-life context, 
especially when the boundaries between phenomenon and context are not clearly 
evident.” Case studies offer in-depth understanding of how and why certain phe-
nomena occur, and can reveal the mechanisms by which cause–effect relationships 
occur Flyvbjerg (2006). Exploratory case studies are used as initial investigations 
of some phenomena to derive new hypotheses and build theories, and confirmatory 
case studies are used to test existing theories. The latter are especially important for 
refuting theories: a detailed case study of a real situation in which a theory fails 
may be more convincing than “failed” experiments in the lab. The detailed insights 
obtained from confirmatory case studies can also be useful for choosing between 
rival theories.

A precondition for conducting a case study is a clear research question con-
cerned with how or why certain phenomena occur. This is used to derive a study 
proposition that states precisely what the study is intended to show, and to guide 
the selection of cases and the types of data to collect. As an example, imagine that 
Jane is upset as her tool is not adopted by developers after her experiment. She 
noticed in the post-experiment interviews that subjects frequently mentioned using 
additional advanced features for navigation that do not involve the file explorer (the 
only navigation tool available in the experiment). Hence, she poses the research 
question “How do developers use navigation tool support for large systems under 
development?”, and decides to focus on a specific proposition suggested by the 
post-experiment interviews that “expert developers use many different strategies 
for navigation, and move between them very rapidly.” This leads her to choose a 
local company with several very experienced developers as her case, and to focus 
on observational rather than interview data, to find out what the developers actually 
do at a fine grain of detail.
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The selection of cases is a crucial step in case study research. Case study 
research uses purposive sampling rather than random sampling. The aim is to select 
cases that are most relevant to the study proposition. Sometimes a single case is 
sufficient. This might be because it is a critical case for testing a well-formulated 
theory: if the theory holds for this case, it is likely to be true for many others. Or it 
might be an extreme or unique case that is expected to yield interesting insights 
about what happens under extreme conditions, such as a crisis. Sometimes it is suf-
ficient to identify a typical case to gain more insight into common situations. 
However, a multiple case design usually offers greater validity. The different cases 
are best thought of as replications, rather than members of a sample. For confirma-
tory case studies, these can be chosen as literal replications, where each case 
is expected to show the same results, or as theoretical replications, where cases are 
expected to show contrasting results for predictable reasons. An example of 
the latter would be if Jane’s theory predicted that experienced developers do file 
navigation differently from novices. A multiple case study could include both 
experts and novices, to confirm that the theory adequately explains both.

A variety of different data sources are typically used in case study research. 
Qualitative data, including interviews and observation, play a central role, as these 
offer rich insights into the case. Data collection is always performed with respect 
to a well-defined unit of analysis. In software engineering, the unit of analysis 
might be a company, a project, a team, an individual developer, a particular episode 
or event, a specific work product, etc. Choosing an appropriate unit of analysis is 
important, to ensure the study focuses on the intended phenomena. In Jane’s case, 
she chooses the individual developer as her unit of analysis, allowing her to focus 
on personal style of different developers. Other choices would lead the case study 
in different directions. For example, choosing a project as the unit of analysis 
would allow her to identify whether project teams develop shared navigational 
styles, but would offer less insights into individual styles. Note that Jane’s case (a 
company) has multiple embedded units of analysis (the developers). In some stud-
ies, the case is the same as the unit of analysis.

Case study research is most appropriate for cases where the reductionism of 
controlled experiments is inappropriate. This includes situations where the context 
is expected to play a role in the phenomena (for example if the stresses of a real 
project affect developers’ behaviour), or where effects are expected to be wide 
ranging, or take a long time (e.g. weeks, months, years) to appear.

The major weakness of case studies is that the data collection and analysis is 
more open to interpretation and researcher bias. For this reason, an explicit frame-
work is needed for selecting cases and collecting data. Although an individual case 
study often reveals deep insights, the validity of the results depends on a broader 
framework of empirical induction. For example, in confirmatory case studies, evi-
dence builds when subsequent case studies also support the theory and/or fail to 
support rival theories.

Case studies can be applied within all four philosophical stances, although different 
stances affect the way in which cases are selected and the data analysis is performed. 
For example, confirmatory case studies draw on the positivist perspective of 
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theory-driven research, but positivists also use exploratory case studies to develop 
new theories [see Kitchenham et al. (1995), for an brief tutorial of software engi-
neering case study research using a primarily positivist perspective]. Constructivists 
use exploratory case studies to investigate the differences of culture and perspective 
in various settings. Critical theorists use both types of case study to draw attention 
to situations that are regarded as problematic, selecting cases that are politically 
important, or for which the participants themselves can be most expected to benefit. 
The criteria for assessing the validity of a case study depends on which philosophi-
cal stance is taken.

5.3. Survey Research

Survey research is used to identify the characteristics of a broad population of 
individuals. It is most closely associated with the use of questionnaires for data 
collection. However, survey research can also be conducted by using structured 
interviews, or data logging techniques. The defining characteristic of survey 
research is the selection of a representative sample from a well-defined population, 
and the data analysis techniques used to generalize from that sample to the popula-
tion, usually to answer base-rate questions.

A precondition for conducting survey research is a clear research question that 
asks about the nature of a particular target population. Because it is usually infeasible 
(and unnecessary) to poll every member of that population, survey research first 
identifies a representative subset as the sample, and determines how to reach that 
subset for data collection. Identifying the unit of analysis is important for determining 
an appropriate sampling technique. For example, if the research question is about 
software companies, then sampling over individual developers may give a biased 
sample, with some companies being over-represented because several developers 
from the same company were included. Furthermore, simple random sampling of 
the population might also be inadequate. For example, if our unit of analysis is 
individual developers, a random sampling might end up with most or all of 
respondents working at a single, dominant company. In such a case, stratified 
sampling techniques would be used, to identify subgroups within the population, so 
that we can sample within each subgroup.

As an example, recall that Joe wished to understand more about how UML is 
used in industrial settings, and how UML supports collaborative design. He con-
ducts a survey of software companies across the country to ask them whether they 
use UML, and if so how. He decides to use individual developers as his unit of 
analysis, so that he can focus on how different developers perceive the utility of 
UML. He posts his survey to a number of carefully selected developer email lists, 
and has a response rate of 10%. The results from the survey are interesting. He 
discovers that only about 20% of the respondents use UML, and that the diagrams 
are rarely used in shared settings. He also learns that class diagrams are the 
most frequently used diagram, with sequence diagrams a close second.
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Joe could choose from a number of different designs for his study. For exam-
ple, if he just wishes to establish how widely UML is used, then he would use a 
cross-sectional design to obtain a snapshot of participants’ current activities. In 
contrast, a case-control design asks each participant about several related issues in 
order to establish whether a correlation exists between them, across the popula-
tion. Joe might use this design if he wishes to explore whether there is a relation-
ship between, say, how long developers have used UML and how much they use 
it for information sharing. A cohort study tracks changes over time for a group of 
participants. Joe might use such a design, for example, to determine whether use 
of UML changes over the life of development project, perhaps with “projects” as 
his unit of analysis.

A major challenge in survey research is to control for sampling bias. Sampling 
bias causes problems in generalizing the survey results, because the respondents to 
the survey may not be representative of the target population. Low response rates 
increase the risk of bias. For example, if the 10% who responded to Joe’s survey 
were the least busy of his targeted developers, it may be that the survey missed the 
most skilled, or most senior developers. Or perhaps only people who are frustrated 
with UML answered his survey. In general, it is hard to obtain high response rates 
unless significant inducements can be offered for participation, although it is some-
times possible to contact non-respondents to assess whether a systematic response 
bias has occurred.

An even harder challenge is to ensure that the questions are designed in a way 
that yields useful and valid data. It can be hard to phrase the questions such that all 
participants understand them in the same way, especially if the target population is 
diverse. Also, it is possible that what people say they do in response to survey ques-
tions bears no relationship to what they actually do, because they are unable to 
introspect reliably on their work practices.

It is instructive to compare survey research with other empirical methods. In 
Joe’s case, the survey research design is concerned with establishing what is true 
of developers in general. If instead he wishes to gain deeper insights into 
how developers actually use UML, or why they don’t, he might be better off 
conducting a case study. This would sacrifice claims of representativeness 
(because case studies do not use representative sampling) in return for deeper 
insights into what happens in a small number of selected cases. On the other 
hand, if he’s more interested in how UML changes how developers share infor-
mation, he might design an experiment or quasi-experiment to test for a causal 
relationship.

Survey research falls almost exclusively into the positivist tradition. The desire 
to characterize an entire population via sampling techniques requires a belief in 
reductionism, and a concern with generalizable theories. If Joe is more interested 
in understanding the culture of information sharing within development teams, he 
might instead adopt a constructivist stance, and use ethnography or action 
research.

Kitchenham and Pfleeger (Chap. 3) provide more detailed information on 
conducting surveys.
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5.4. Ethnographies

Ethnography is a form of research focusing on the sociology of meaning 
through field observation. The goal is to study a community of people to under-
stand how the members of that community make sense of their social interac-
tions (Robinson et al., 2007). For software engineering, ethnography can help 
to understand how technical communities build a culture of practices and com-
munication strategies that enables them to perform technical work collabora-
tively. An ethnography might focus on a broad technical community (e.g. java 
programmers in general), or a small, closely knit community (e.g. a single 
development team).

One notable feature of ethnography is that it avoids imposing any pre-existing 
theories, but instead focuses on how the members of the community themselves 
make sense of their social and cultural setting. The researcher explicitly considers 
his/her own pre-conceptions and how they influence understanding of the studied 
community. For example, the researcher might focus on phrases used by the com-
munity that seem strange to him, to discover how community members use lan-
guage to create categories that are meaningful to them. The result of an ethnographic 
study is usually a rich description of the community being studied that helps to 
build a detailed picture of that community’s culture.

The preconditions for an ethnographic study include a research question that 
focuses on the cultural practices of a particular community, and access to members 
of that community. Because of the focus on “member’s own categories,” the precise 
boundaries of the community to be studied might not be known in advance, and 
indeed the very notion of membership, and the idea of becoming a member, may be 
important things to investigate. Using chain sampling, informants within the com-
munity are asked to identify representative members of the community, who identify 
other members of the community, and so on.

As an example, consider the results of the survey that Joe conducted in the previ-
ous section. One conclusion from his study is that people don’t seem to use UML 
in the way Joe expected. An ethnography would allow Joe to understand more 
about how developers use and share UML. He identifies a development team that 
allows him to observe design meetings for several weeks. He supplements his notes 
on what he observes with a series of individual and group interviews to further 
explore how well UML tools match the team’s design practices, and why some 
groups in the company do not use UML.

A special form of ethnography is participant observation, where the researcher 
becomes a member of the community being studied for a period of time. Here, the 
researcher is not trying to understand the community via the observations of an 
outsider, but rather through the privileged view that comes from membership. For 
this to work, the researcher must be accepted by the community as one of them, 
which may require a much longer duration for the study than “just a few weeks.” In 
software engineering research, becoming a member might only be possible if the 
researcher has the right technical background.
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Ethnographic research takes an explicit constructivist stance. Underlying ethno-
graphic research is the idea that members of a community construct their social and 
cultural practices on the fly, and their perceptions of those structures also define 
them. Because of that stance, ethnographic researchers don’t seek to prove hypoth-
eses and theories, but rather create local theories to improve understanding. This 
philosophical stance distinguishes ethnography from case studies, surveys and field 
experiments.

The biggest challenge in ethnographic research is to perform detailed observa-
tion, data collection and analysis while avoiding preconceptions. The researcher 
needs a high degree of training in observational and qualitative data analysis tech-
niques. Sociologists have evolved a collection of techniques for recording observa-
tions correctly and for systematic data analysis, as well as for iterative research in 
which clarifications are sought as new information becomes available. Ethnographic 
studies in software engineering are valuable for discovering what really goes on in 
particular (technical) communities, and for revealing subtle but important aspects 
of work practices.

5.5. Action Research

In Action Research, the researchers attempt to solve a real-world problem while 
simultaneously studying the experience of solving the problem (Davison et al., 
2004). While most empirical research methods attempt to observe the world as it 
currently exists, action researchers aim to intervene in the studied situations for the 
explicit purpose of improving the situation. Action research has been pioneered in 
fields such as education, where major changes in educational strategies cannot be 
studied without implementing them, and where implementation implies a long 
term commitment, because the effects may take years to emerge. It has also been 
adopted in information science, where organizational change can sometimes 
require a long time to have an impact. However, even in these fields, action 
research is a relatively new idea, and there is widespread discussion about appro-
priate methodology, and even debate on the validity of action research as an 
empirical method.

A precondition for action research is to have a problem owner willing to col-
laborate to both identify a problem, and engage in an effort to solve it. In action 
research, the problem owners become collaborators in the research. In some 
cases, the researcher and the problem owner may be the same person. Two key 
criteria for judging the quality of action research are whether the original problem 
is authentic (i.e. whether it is a real and important problem that needs solving), 
and whether there are authentic knowledge outcomes for the participants. It is 
additionally important for the researcher to engage in a process of critical reflec-
tion upon his past, current and planned actions to identify how they actually 
helped (or not) to solve the problem. Action research is also characterized by a 
commitment to effect real change, and an iterative approach to problem solving.
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For example, in the process of studying the use of UML, imagine that Joe’s 
colleagues discussed with him their difficulty in integrating software components 
and predicting the effects of such integration. Joe sees this as an opportunity to work 
with them to try out ideas from model-driven development (MDD), and to study 
firsthand how UML changes the way that developers collaborate. Joe initiates a 
project to work with his colleagues to introduce MDD and to record the experi-
ences. Joe and the development team use a series of data collection techniques, 
including periodic interviews, questionnaires, and focus groups, to ensure that they 
establish a process of critical reflection over the life of the project. They use the 
data collected to develop local theories that explain the experiences of the problem-
owners, which, with other research, can be generalized for other people interested 
in adopting MDD. As new information becomes available, they update these theo-
ries to reflect the current understanding of the situation.

Action research is most closely associated with critical theory. In an action 
research project, it is normally taken as self-evident that the problem needs to be 
solved, and that the adopted solution is desirable: knowledge gained from the 
research empowers particular individuals or groups, and facilitate a wider change. 
With this philosophical stance, there is effectively a “moral imperative” to inter-
vene to solve the problem. Therefore, no attempt is made to establish a control 
group: the moral imperative implies that it would be unethical to withhold the 
intervention from some groups. Instead, the emphasis is on identifying useful les-
sons that help others who wish to pursue a similar change agenda. However, action 
research can be linked to other philosophical stances by divorcing it from its eman-
cipatory roots, and focusing instead on practical problem solving. Positivists would 
add a concern with careful comparison of the “before” and “after” situations, while 
constructivists would focus on participants’ perceptions of the change process. The 
key characteristic that differentiates action research from longitudinal case studies 
and ethnographies is that the researcher is also an agent of change.

The biggest challenge for action research is its immaturity as an empirical 
method. Although frameworks for evaluating action research have been proposed 
(e.g. Lau, 1999), they tend to be vague or subjective, leading to accusations that 
action research is ad hoc. Furthermore, organizational change is often inseparable 
from organizational politics, and there is a danger that the research fails to address 
this adequately, either by underestimating the importance of the political agendas 
of the participants, or by overstating the “moral case” for implementing a change. 
Researcher bias can be reduced through critical reflection, and by validating the 
lessons learned through replication. Finally, action research may be expensive, 
given the organizational commitment needed.

It could be argued that a great deal of software engineering research is actually 
action research in disguise. Certainly, many key ideas in software engineering were 
originally developed by trying them out on real development projects, and reporting on 
the experiences. In this vein, Dittrich (2002) describes cooperative systems develop-
ment as a form of action research ideally suited to empirical software engineering. By 
adopting the framework of action research more explicitly, it is likely that the design 
and evaluation of such research can be made more rigorous. Action research is also 
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an appealing framework for mixing research with professional activities, especially 
for practitioners interested in reflecting on their experiences and passing on their 
learning outcomes for the benefit of others.

5.6. Mixed-Methods Approaches

Throughout this chapter we have seen how Joe and Jane could have used different 
methods as they learned more about their research topics. While Jane began with 
the design of an experiment to test the efficiency of file navigation with the fisheye 
view, she went on to perform a case study to explore some of the unexpected find-
ings from the experiment. This approach can be characterized as mixed methods 
research – a more complex research strategy that emerged in the recognition that 
all methods have limitations, and the weaknesses of one method can be compen-
sated for by the strengths of other methods (Creswell, 2002).

Mixed method research employs data collection and analysis techniques associ-
ated with both quantitative and qualitative data. The “mixing” might be within one 
study, by using multiple data collection techniques, or among several studies. Key 
decisions involve the strategy for data collection, and the sequence in which dif-
ferent methods are employed. While mixed method research is a powerful 
approach to inquiry, the researcher is challenged with the need for extensive data 
collection, the time-intensive nature of analyzing multiple sources of data, as well 
as the requirement to be familiar with both quantitative and qualitative forms of 
research.

We include here the description of three most familiar strategies described by 
Creswell (2002):
The Sequential explanatory strategy is characterized by the collection and analysis 
of quantitative data followed by the collection and analysis of qualitative data. The 
purpose of this strategy is typically to use qualitative results to assist in explaining 
and interpreting the findings of a quantitative study. It is particularly useful when 
unexpected results arise from the quantitative phase. Jane’s example above follows 
this strategy. When her experimental data indicated that developers switch rapidly 
between navigation strategies, she decided to perform a case study for a more 
in-depth exploration of a few developers and their navigation behavior. Damian 
et al. (2000) provides another example of this approach.

The Sequential exploratory strategy is characterized by the collection and analysis 
of qualitative data followed by the collection and analysis of quantitative data. Its 
purpose is to use quantitative data and results to assist in the interpretation of qualita-
tive findings. This strategy is also useful for testing elements of an emerging theory 
resulting from a qualitative study. For example, as a result of Joe’s ethnographic 
study of collaborative design, he formulates some hypotheses about how UML 
affects the quality of the source code in shared design tasks. To explore this further, 
he uses a sequential exploratory approach to explore the impact of shared UML dia-
grams on code quality. He plans and conducts a survey of many different software 
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development projects, in which he measures the extent to which they use UML 
for collaboration, and the number of code defects that can be attributed to com-
munication problems. For a published example of this strategy, see Damian and 
Chisan (2006).

The Concurrent triangulation strategy is probably the most familiar and widely 
used among the mixed-method approaches. This strategy uses different methods 
concurrently, in an attempt to confirm, cross-validate or corroborate findings. 
Triangulation is motivated by the fact that often “what people say” could be 
different than “what people do,” and thus collecting data from multiple sources 
helps improve validity. For example, Joe might incorporate additional data 
collection techniques into his ethnographic study on the use of UML. He could 
collect quantitative data from surveys of similar developers to compare against 
the results of his ethnography. By collecting both types of data simultaneously, 
rather than sequentially, each analysis can be adapted to explore emerging results 
from the other. The challenge in this approach is that it may be difficult for the 
researcher to compare the results of two analyses or to resolve contradictions that 
arise in the results. In such cases a further source of evidence, or a follow up 
study might be necessary. For a published example of this strategy, see Bratthall 
and Jørgensen (2002).

Mixed methods research can be conducted within any of the philosophical 
stances. For example, a positivist might combine experiments with confirmatory 
case studies; a constructivist might mix ethnographies with surveys. However, both 
positivism and constructivism may limit the ability to mix the methods. While 
positivists strongly prefer quantitative evidence, and constructivists strongly prefer 
qualitative evidence, mixed methods research emphasizes the use of evidence 
from both quantitative and qualitative data. Therefore, mixed methods research is 
more often associated with a pragmatist stance, where the emphasis is on using 
those methods that most effectively address the research problem.

6. Data Collection Techniques

Once the research method has been selected, the researcher must decide which data 
collection techniques are the most suitable for gathering data based on the study’s 
unit of analysis. Multiple techniques can be used to gather data from different per-
spectives, as there are advantages and limitations to each technique. Indeed, using 
multiple techniques allows the researcher to triangulate even within a single 
method. If different kinds of data support the same conclusions, it strengthens the 
study. Singer et al. (Chap. 1) provide an overview of various potential data collec-
tion techniques.

Selecting suitable techniques requires careful consideration of the research 
design as well as the pragmatics of the research setting. It is important to note the 
advantages and disadvantages of the different techniques from the perspectives of 
the experimenter, the participants, the generalizability and reliability of the results. 
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A careful blend of techniques can help to offset potential bias and leads to a more 
comprehensive understanding of the research topic (Varkevisser et al., 2003). New 
researchers should ensure they are familiar with the techniques they select, and that 
they are aware of the potential pitfalls they may face. For example, it is always 
advisable to pilot-test the data collection instrument, and to pilot-test not just the 
collection aspect of the instrument, but also the analysis procedure. Many problems 
do not arise until some data is analyzed and it is often possible to detect such prob-
lems with even a small data set. How to analyze the data collected is a topic beyond 
the scope of this chapter. Wohlin et al. (2000) provide a summary of quantitative 
analysis techniques for software engineering, and Seaman (Chap. 2) provides an 
excellent guide to coding etc for qualitative research.

In the end, Jane chose to use a post-study questionnaire that collected both 
quantitative and qualitative data (open-ended responses). During the study, she 
observed and videotaped the users and their interactions with the computer so that 
she could time how long it took to complete the navigation tasks she set for them. 
She also instrumented the IDE they were using to count number of scrollbar selec-
tion events and number of mouse clicks. These numbers can be used with the 
start/end times indicated on the annotated videotapes of the users. Interviews and 
focus groups are used at the end of her field study to gather more ideas on how 
navigation features could be improved in the IDE and why the fisheye view is or 
is not used by some developers. Joe used questionnaires at different stages in his 
research. He also conducted interviews and collected observations as a participant 
in the observed group.

7. Empirical Validity

For empirical work to be acceptable as a contribution to scientific knowledge, the 
researcher needs to convince readers that the conclusions drawn from an empirical 
study are valid. Not surprisingly, the criteria by which researchers judge validity 
depend on their philosophical stance.

For positivists, research is normally theory-driven. The key steps include deriving 
study propositions from the theory, designing the study to address the propositions, 
and then drawing more general conclusions from the results. Each of these steps 
must be shown to be sound. Accordingly, positivists usually identify four criteria 
for validity:

● Construct validity focuses on whether the theoretical constructs are interpreted 
and measured correctly. For example, if Jane designs an experiment to test her 
claims about the efficiency of fish eye views, will she interpret “efficiency” in 
the same way that other researchers have, and does she have an appropriate 
means for measuring it? Problems with construct validity occur when the 
measured variables don’t correspond to the intended meanings of the theoretical 
terms.
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● Internal validity focuses on the study design, and particularly whether the results 
really do follow from the data. Typical mistakes include the failure to handle 
confounding variables properly, and misuse of statistical analysis.

● External validity focuses on whether claims for the generality of the results are 
justified. Often, this depends on the nature of the sampling used in a study. For 
example, if Jane’s experiment is conducted with students as her subjects, it 
might be hard to convince people that the results would apply to practitioners in 
general.

● Reliability focuses on whether the study yields the same results if other research-
ers replicate it. Problems occur if the researcher introduces bias, perhaps because 
the tool being evaluated is one that the researcher herself has a stake in.

These criteria are useful for evaluating all positivist studies, including controlled 
experiments, most case studies and survey research. In reporting positivist empirical 
studies, it is important to include a section on threats to validity, in which potential 
weaknesses in the study design as well as attempts to mitigate these threats 
are discussed in terms of these four criteria. This is important because all study 
designs have flaws. By acknowledging them explicitly, the researchers show that 
they are aware of the flaws and have taken reasonable steps to minimize their 
effects.

In the constructivist stance, assessing validity is more complex. Many researchers 
who adopt this stance believe that the whole concept of validity is too positivist, 
and does not accurately reflect the nature of qualitative research. That is, as the 
constructivist stance assumes that reality is “multiple and constructed,” then 
repeatability is simply not possible (Sandelowski, 1993). Assessment of validity 
requires a level of objectivity that is not possible. Attempts to develop frameworks 
to evaluate the contribution of constructivist research have met with mixed reac-
tions. For example, Lincoln and Guba (1985) proposed to analyze trustworthiness 
of research results in terms of credibility, transferability, dependability, and con-
firmability. Morse et al. (2002) criticise this as being too concerned with post hoc 
evaluation, and argue instead for strategies to establish validity during the research 
process. Creswell (2002) identifies eight strategies for improving validity of con-
structivist research, which are well suited to ethnographies and exploratory case 
studies in software engineering:

1. Triangulation: use different sources of data to confirm results and build a coher-
ent picture.

2. Member checking: go back to research participants to ensure that the interpreta-
tions of the data make sense from their perspective.

3. Rich, thick descriptions: where possible, use detailed descriptions to convey the 
setting and findings of the research.

4. Clarify bias: be honest with respect to the biases brought by the researchers to 
the study, and use this self-reflection when reporting findings.

5. Report discrepant information: when reporting findings, report not only those 
results which confirm the emerging theory, but also those which appear to 
present different perspectives on the findings.
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6. Prolonged contact with participants: Make sure that exposure to the subject 
population is long enough to ensure a reasonable understanding of the issues and 
phenomenon under study.

7. Peer debriefing: Before reporting findings, locate a peer debriefer who can ask 
questions about the study and the assumptions present in the reporting of it, so 
that the final account is as valid as possible.

8. External auditor: The same as peer debriefing, except instead of using a person 
known to the researcher, find an external auditor to review the research proce-
dure and findings.

Dittrich et al. (2007) define a similar set of criteria specifically concerned with 
validity of qualitative research for empirical software engineering.

For critical theorists, assessment of research quality must also take into account 
the utility of the knowledge gained. Researchers adopting the critical stance often 
seek to bring about a change by redressing a perceived injustice, or challenging 
existing perspectives. Repeatability is not usually relevant, because the problems 
tackled are context sensitive. The practical outcome is at least as important as the 
knowledge gained, and any assessment of validity must balance these. However, 
there is little consensus yet on how best to do this. Lau (1999) offers one of the few 
attempts to establish some criteria, specifically for action research. His criteria 
include that the problem tackled should be authentic, the intended change should 
be appropriate and adequate, the participants should be authentic, and the research-
ers should have an appropriate level of access to the organization, along with a 
planned exit point. Most importantly, there should be clear knowledge outcomes 
for the participants.

8. Practical Considerations

In addition to the question of how well the methods fit a given type of research 
question and philosophical stance, the choice of methods also depends on prac-
tical considerations. Often these practical considerations force the researcher to 
change the original research design in terms of the choice of method, data 
collection and analysis procedures. It is important to document the original 
planned research protocol, and all subsequent deviations to it, to allow other 
researchers to understand the study design, interpret the research results, and 
replicate the study.

Most of the practical challenges relate to time, budget and personnel resources, 
and access to data. Rather than describe the challenges for each method individu-
ally, we summarize the challenges related to groups of methods, according to the 
type of data they deal with:

Methods that are primarily qualitative include ethnography, case study, and action 
research. These methods rely on fieldwork, using techniques such as participant 
observation and interviews. Key challenges include preparing good questions for 
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structured or semi-structured interviews, and finding the time and resources needed 
to collect and analyze potentially large sets of data. The researcher needs a thor-
ough training in how to observe and record social behaviour. Access to the field 
situation may require prolonged time in establishing a relationship with the subject 
organization such that specific project data is made available. For ethnography, the 
researcher needs to find a community where she is accepted as a member, which 
might not be possible unless she has appropriate technical experience. For action 
research, the researcher needs to balance the need to involve the organization in 
helping to set appropriate goals for the research with the need to remain objective, 
such that the research does not become merely consulting.

Methods that are primarily quantitative include controlled experiments and survey 
research. These methods require more significant time in the planning of the 
research than strictly qualitative methods. To achieve external validity for both 
experiments and surveys, the researcher needs the time and budget to (1) define, 
recruit and (if possible) randomly select a sample population that is representative 
of the target population, (2) design and pilot the questions such that all respondents 
are presented with questions that they interpret and understand in exactly the same 
way (therefore careful attention to detail in phrasing the questions is needed), and 
(3) define statistical tests ahead of time, in order to interpret the collected data. The 
goal here is to plan ahead, for smooth analysis and interpretation of results.

All research conducted in industrial settings brings a number of challenges. It 
can be very hard to gather data to find out what practitioners actually do, or what 
needs to be improved in the organization, rather than what practitioners say they do 
or think require improvement. Data quality can also be an issue (see Chaps. 1 and 
7 for more on this issue). In return for access to the organization, the researcher 
usually has to give up some control. For example, it is hard to observe and docu-
ment findings without interfering with the observed situation, especially when the 
industrial partners want to know in advance what the expected outcomes are. It is 
often difficult to know if changes are made through involvement in the research or 
would have occurred anyway (c.f., the Hawthorne effect). Finally, obtaining per-
mission to publish the results can be a challenge. Delays in publication are likely if 
the organization has concerns about inclusion of confidential data or insights in the 
research. Singer and Vinson (2002) and Vinson and Singer (2004) discuss the 
unique ethical challenges involved in research in industrial settings.

9. Conclusions

We have presented an overview of the choices involved in selecting appropriate 
empirical methods for software engineering research. Our aim in this chapter was 
not provide a thorough description of each method, but rather to cover the issues 
that a researcher must face when deciding how to address a given research problem. 
Further study, and possibly some specialized training may be necessary before a 
researcher can apply a chosen method.
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We have described the key elements of empirical research design: A clear 
research question provides a focus to your study. An explicit philosophical stance 
helps you understand your research goals, and select an appropriate research 
method. A research method helps you design a study, and decide what kinds of data 
to collect and how to collect it. A theory helps you explain the data and relate it to 
the research question and to previous studies in the literature. An appropriate set of 
criteria for assessing validity helps improve the study design, and clarify the nature 
of the conclusions.

We have not addressed a number of related topics, including replication and 
meta-analysis. As the number of empirical studies in software engineering 
increases, these become more important. In particular, it is only through empirical 
induction that we come to trust the results of empirical research – i.e. the results 
need to hold up across many different studies to be considered reliable. Meta-
analysis is the process of systematically comparing the results of multiple studies, 
taking into account differences in the design and context of each individual study. 
In current software engineering research, meta-analysis is hard to accomplish 
because of huge variability in the style and quality of the published reports of 
empirical work.

A key message throughout the chapter is that empirical research never produces 
certain knowledge. Each of the methods we have available for empirical investiga-
tions help to elucidate the phenomena being studied, but each also has significant 
flaws. Awareness of the limitations of each method should allow you to design a 
study that minimizes the weaknesses. Furthermore, the flaws can be overcome by 
mixing methods, and/or by conducting replications (see Brooks et al., Chap. 14, for 
more information on replication).

We believe that clearer distinctions between research methods are necessary to 
facilitate better study designs and clearer criteria for evaluating empirical research. 
The definitions and distinctions we offer in this chapter are by no means widely 
agreed upon, neither in the empirical software engineering community, nor in 
related disciplines. For example, we have avoided the usual distinction between 
qualitative and quantitative methods, as we believe the distinctions between meth-
ods are more subtle than simply the type of data collected. Instead, we have empha-
sized differences in philosophical stance, and in criteria used for designing studies 
for each type of method. We hope that this chapter provides a first step towards a 
consensus on empirical methodology in software engineering.
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Chapter 12
Building Theories in Software Engineering

Dag I.K. Sjøberg, Tore Dybå, Bente C.D. Anda, and Jo E. Hannay

Abstract In mature sciences, building theories is the principal method of acquir-
ing and accumulating knowledge that may be used in a wide range of settings. In 
software engineering, there is relatively little focus on theories. In particular, there is 
little use and development of empirically-based theories. We propose, and illustrate 
with examples, an initial framework for describing software engineering theories, 
and give advice on how to start proposing, testing, modifying and using theories to 
support both research and practise in software engineering.

1. Introduction

When should theorizing begin? “Theorizing should begin as soon as possible” What is the 
bulk of data necessary to begin theorizing? When is it neither too early nor too late to 
begin? Nobody can tell. It all depends on the novelty of the field and on the existence of 
theoretically-bent scientists prepared to take the risk of advancing theories that may not 
account for the data or that may succumb at the first onslaught from fresh information 
gathered in order to test the theories: this takes moral courage, particularly in an era 
dominated by the criterion of success, which is best secured by not attacking big problems. 
Two things, though, seem certain: namely, that premature theorizing is likely to be wrong 
– but not sterile – and that a long deferred beginning of theorizing is worse than any 
number of failures, because (1) it encourages the blind accumulation of information that 
may turn out to be mostly useless, and (2) a large bulk of information may render the begin-
ning of theorizing next to impossible. (Bunge, 1967, p. 384).

In mature sciences, building theories is the way to gain and cumulate general 
knowledge. Some effort has been made to propose and test theories based on 
empirical evidence in software engineering (SE) (Hannay et al., 2007), but the use 
and building of empirically-based theories1 in SE is still in its infancy.

1 In this chapter, we focus on empirically-based theories; that is, theories that are built or modified 
on the basis of empirical research. Hence, in the reminder of this chapter, we use “theory” as short 
for “empirically-based theory” unless otherwise explicitly stated.

312

F. Shull et al. (eds.), Guide to Advanced Empirical Software Engineering.
© Springer 2008



12 Building Theories in Software Engineering 313

There are many arguments in favour of using theories. They offer common 
conceptual frameworks that allow the organization and structuring of facts and 
knowledge in a concise and precise manner, thus facilitating the communication 
of ideas and knowledge. Theory is the means through which one may generalize 
analytically (Shadish et al., 2002; Yin, 2003), thus enabling generalization from 
situations in which statistical generalization is not desirable or possible, such as 
from case studies (Yin, 2003), across populations (Lucas, 2003), and indeed, 
from experiments in the social and behavioural sciences (Shadish et al., 2002), 
with which experiments in empirical SE often share essential features.

Our position is that theories should be useful; we are not interested in theories 
purely as an academic exercise. As such, we adhere to the view of the philosophical 
school of pragmatism, “both specific beliefs and methods of inquiry in general 
should be judged primarily by their consequences, by their usefulness in achieving 
human goals” (Godfrey-Smith, 2001). Since SE is an applied discipline, SE theo-
ries should, at least ultimately, be useful to the software industry. Since each SE 
setting is unique, the theories would need local adaptations to be directly useful in 
concrete cases. Figure 1 illustrates that both research communities and industry 
may benefit from using SE theories.

Arguments in favour of theory have been voiced in the SE community by 
other researchers as well (Basili, 1996; Endres and Rombach, 2003; Herbsleb 
and Mockus, 2003; Kitchenham et al., 2002; Land et al., 2003; Sauer et al., 
2000; Tichy, 1998; Jørgensen and Sjøberg, 2004). However, there has been little 
focus on what the nature of SE theories should be like, and how they should be 
described and built. Hence, in this chapter, we suggest that the description of a 
theory should be divided into four parts: the constructs (what are the basic ele-
ments), propositions (how do the constructs interact), explanations (why are the 
propositions as specified) and scope (what is the universe of discourse in which 
the theory is applicable). Moreover, we propose a diagrammatic notation for 

Fig. 1 Usefulness of theory for research and industry
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describing the constructs, relationships and scope of a SE theory. In particular, 
each construct should belong to, or be derived from, one of the four archetype 
classes Actor, Technology, Activity and Software System. We believe that this 
structure for describing SE theories will support both researchers who propose 
theories and potential users of such theories.

The remainder of this chapter is organized as follows. Section 2 discusses catego-
ries of theories, elements of a theory and how theories may be formed and evaluated. 
Section 3 presents the framework for describing SE theories. Section 4 illustrates 
steps in theory building. Section 5 evaluates the example theory according to the 
criteria given in Sect. 2. Section 6 summarizes and describes topics for future work.

2. What Theories Are

The question of what constitutes a theory is a source of continuing discussion. 
Answers to this question depend on philosophical issues, practical issues, and not 
least, the field of study – indeed, the purpose of this chapter is to outline sugges-
tions as to what theories for SE should be like.

There is no universally agreed upon definition of the concept of an empiri-
cally-based theory, nor is there any uniform terminology for describing theories. 
What is agreed is that it is difficult to provide necessary and sufficient conditions 
that delineate the concept of theory. Nevertheless, it is still possible to get a grasp 
on what a theory is. In sciences that are relevant to empirical SE, such as information 
systems, management, and social and behavioral sciences, discussions concerning 
theory tend to revolve around the following issues: (1) what a theory does, (2) 
what the elements of a theory are, (3) how theories are formed, and (4) how 
theories are evaluated. In the following, we summarize some of the answers to 
these questions.

2.1. What a Theory Does

The focus of this chapter is on theories that relate to observable phenomena, and 
that are built and modified based on empirical research. According to several 
accounts, this implies that a theory should offer explanations of why certain 
phenomena occur in the sense of predicting them. Moreover, the predictions should 
be testable, so as to render the theory refutable.

This familiar description of what a theory should do is hypothetico-deductive in 
nature, and would seem particularly suitable for empirical research. However, there 
are also other relevant modes of empirically-based theory. In the discipline of infor-
mation systems, Gregor (2006) has classified theories into five types according to 
what they do.
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  I.   Analysis. Theories of this type include descriptions and conceptualizations of 
“what is.” Also included are taxonomies, classifications and ontologies in the 
sense of Gruber (1993). The lack of explicit explanation and prediction dis-
qualifies this category as theory for many scholars (Bacharach, 1989; Sutton 
and Staw, 1995; Nagel, 1979).

 II.   Explanation. Theories of this type explicitly explain. What constitutes an 
explanation is a nontrivial issue. However, a common view is that an explana-
tion answers to a question of why something is – or happens (rather than what 
happens) (Van Fraassen, 1980; Sandborg, 1998). Current views insist that 
explanations include notions of causality and asymmetry (if A explains B, then 
B should not also be a viable explanation of A) (Salmon, 1989).

III.  Prediction. These theories are geared towards predicting what will happen, 
without explaining why. Examples are mathematical and probabilistic models 
of social and natural sciences.

IV.   Explanation and prediction. Theories of this type combine the traits of II and 
III, and correspond to what many consider a “standard” conception of empiri-
cally-based theories.

 V.   Design and action. These theories describe “how to do” things, that is, they are 
prescriptive. Design science (Simon, 1996; Hevner et al., 2004; Hevner and 
March, 2003; March and Smith, 1995) is influential here. Although there is 
usually an implicit prediction that following the design principles will be ben-
eficial, it is a matter of opinion as to whether this category describes theories 
(March and Smith, 1995).

These five types illustrate some of the diversity of what may be considered as 
theories. Our focus is very much on theories that explain phenomena. Thus, 
Types II and IV are those of primary interest. However, in practice, the explana-
tory function of a theory depends also on how the theory interacts with other theories 
and the current level of knowledge. For example, many view physical theories as 
belonging to Type III: Hawking states “that a physical theory is just a mathematical 
model and that it is meaningless to ask whether it corresponds to reality. All that 
one can ask is that its predictions should be in agreement with observation” 
(Hawking and Penrose, 1996, pp. 3–4), a sentiment also expressed by Feynman 
(1985). However, although they “merely” describe and predict what happens on 
the quantum level, these theories can thereby also be said to explain phenomena 
on the macro level (for example, why light refracts off oil films). Also, theories of 
Type I, that merely describe, may well provide explanations for other theories 
or phenomena. For example, the text comprehension model of Van Dijk and 
Kintsch (1983) describes how mental models of increasing complexity form during 
text comprehension. There are no explicit explanations or predictions, but in 
conjunction to program comprehension, the model provides an explanation as to 
why experts and novices follow different strategies when understanding code 
(Burkhardt et al., 2002). Generally, what constitutes an explanation is very much 
a pragmatic question.
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2.2. What the Elements of Theory are

It seems to be broadly accepted that constructs and relationships between con-
structs constitute the basic building blocks of theories, and that it is important to 
delineate a theory’s area of application by specifying scope conditions. Inspired by 
Dubin (1978), Whetten (1989) describes these elements as building blocks of the-
ory in the following manner.

– What are the entities in terms of which a theory offers description, explanation, 
prediction or prescription? These are the constructs of a theory. Examples are 
“quarks” (quantum physics), “group process” (social science), “cognitive load” 
(cognitive psychology) and “programming skill” (SE). According to some episte-
mological positions (e.g., logical positivism), constructs must represent directly 
observable entities; while others (scientific realism) allow representations of hith-
erto unobserved entities (“gravity,” “quarks,” “feelings”) that are postulated to 
exist; while still others (anti-realism, instrumentalism, pragmatism) see constructs 
only as useful instruments to provide descriptions, explanations, etc. In SE, the 
constructs would typically relate to people, organization, technology, activities 
and software system.

– How are the constructs related? Relationships between constructs make up a 
theory’s propositions, and describe how the constructs interact. Constructs and 
their relationships are the basic constituents of all five types of theory above. 
Describing how things are related may give rise to predictions (Type III and 
Type IV theories).

– Why do the relationships hold? Answers to this question are what give the theory 
explanatory power (Type II and Type IV theories). Parts of this may already be 
provided in the propositions established above. Explanatory power may also 
arise from a theory’s interaction in a research context.

– Where, When, and for Whom does the theory apply? Scope conditions are 
statements that define the circumstances in which the theory’s propositions 
are supposed to be applicable (Cohen, 1989).

2.3. How Theories are Formed

The ways in which theories are built, and from what, say much about what theories are. 
Theories in SE may enter the stage in three ways to explain SE phenomena:

1. Theories from other disciplines may be used as they are.
2. Theories from other disciplines may be adapted to SE before use.
3. Theories may be generated from scratch in SE.

Modes (1) and (2) reflect that SE is a multidisciplinary discipline. Examples of the 
first mode are the use of theories from cognitive psychology to explain phenomena 
in program comprehension (Burkhardt et al., 2002; Abdel-Hamid et al., 1993; 
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Ramanujan et al., 2000), and theories from social and behavioural sciences to 
explain group interaction in requirements negotiation and inspection meetings 
(Land et al., 2003). Examples of the second mode can be found in (Sauer et al., 
2000; Land et al., 2003; Herbsleb and Mockus, 2003), while the case described in 
Sects. 3–5 is an example of the third mode.

This chapter focuses on the concept of “SE theory,” that is, theories with con-
structs and relationships defined from SE entities (Sect. 3). A SE theory thus arises 
through modes (2) and (3). The latter mode, generating theories from scratch, raises 
certain methodological issues as to how to build theories, and as a result, what theo-
ries are. In the following, we summarize some of these issues.

Referencing (Merton, 1968; Yin, 1984), Carroll and Swatman (2000) give three 
levels of sophistication or complexity of theories (for information systems):

Level 1. Minor working relationships that are concrete and based directly on 
observations

Level 2. Theories of the middle range that involve some abstraction but are still 
closely linked to observations

Level 3. All-embracing theories that seek to explain social behaviour. (“Social 
behavior” in (Carroll and Swatman, 2000) is here replaced with “SE.”)

These levels set milestones in theory generation, but they may also represent full 
theories, depending on the rationale of the generation process one adheres to and 
the purpose of one’s theory (Sect. 2.1). The development of SE theories from 
scratch (3) is in early stages, and immediate efforts will probably focus primarily 
on Levels 1 and 2. The case presented later produces a theory on Level 1.

The formation of theories is a process of continuous refinement and develop-
ment involving inferences both from practise to theory as well as from theory to 
practise. Essential elements of this process are conceptual development, operation-
alization, confirmation or disconfirmation, and application, see Fig. 2.

Inductive methods sample singular observations in an enumerative fashion, in 
order to generate laws (covering laws) and empirical generalizations (“grounded 
theory” according to Glaser and Strauss (1967) ). The inductive approach admits 
Levels 1 and 2 as de facto theories.

Other approaches view Levels 1 and 2 merely as intermediary steps towards, 
respectively, Levels 2 and 3. For example, the abductive approach to theory generation 
(Peirce, 1958; Haig, 2005) uses induction only as a first step to define phenomena 
(relatively stable, recurrent, general features) from observations, and then goes on 
to generate explanatory theories that explain these phenomena. Abductive inference 
(Peirce, 1958) introduces a creative aspect to theory generation, in that it transcends 
observation and is no longer strictly bound by facts (data). Instead, explanations 
rely on semantic models, i.e., simplified approximations of reality or useful concep-
tualizations (Franck, 2002; Rosenberg, 2001; Ruse, 1995). Examples are the ideal 
gas model and the rational choice model in economics that continue to be useful for 
educational purposes, even though empirical evidence disconfirms the literal 
interpretation of these models; and various models of the human brain as an infor-
mation processing unit for explaining human cognition. This independence of 
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direct correspondences with reality is favored by aspects in the epistemological 
directions of anti-realism, instrumentalism and pragmatism. Such models typically 
constitute Type II and Type IV theories on Level 3. Methods such as induction and 
abduction are essentials in the conceptual development of theories built from 
scratch, see Fig. 2.

Deductive methods derive testable hypotheses from a theory and check these for 
empirical support.

2.4. How Theories are Evaluated

The evaluation of theories involves both logical and empirical standards (Cohen, 
1989). However, in order to be able to evaluate the goodness of a theory, we must 
first establish the criteria by which it is to be evaluated. Several such criteria are 
described in the literature (Bunge, 1967; Cohen, 1989; Dubin, 1978). Which criteria 
one adheres to depends on the type of theory one is attempting to generate, as well 
as on the framework of generation one is adhering to. For the purpose of evaluating 
empirically-based theories in SE, we believe that the criteria shown in Table 1 are 
most relevant.

The hypothetico-deductive framework sees the criterion of falsifiability (Popper, 
1959), as the demarcation criterion between science and non-science. It assumes 

Fig. 2 Theory development consists of inductive and abductive aspects and deductive aspects, 
and may be initiated from both the practical or from the theoretical realm. Central to forming 
theory is conceptual development, that is, the conception of pertinent constructs and relationships 
through inductive and abductive processes. In order for the theory to be confirmed or discon-
firmed in a deductive process, the conceptual elements must be operationalized into observable 
entities and measurable units on the one hand; and on the other hand, they must be applicable in 
real situations in practical disciplines. (The figure is adapted from (Lynham 2002)).
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the presence of a falsifiable theory, which gives rise to hypotheses that are tested 
by observation. Although this framework as such has been overtaken by other 
frameworks (Ruse, 1995), the principle of testability remains fundamental for 
empirically-based theories. There are no commonly agreed set of criteria for evalu-
ating testability, but we will emphasize the criteria as follows: (1) The constructs 
and propositions of a theory should be clear and precise such that they are under-
standable, internally consistent and free from ambiguities. (2) It must be possible 
to deduce hypotheses from the theory’s propositions, so that the theory may be 
confirmed or disconfirmed. (3) The theory’s scope conditions must be explicitly 
and clearly specified, so that the domain or situations in which the theory should be 
(dis-)confirmed and applied is clear.

Note that in social and behavioral sciences, with which empirical SE shares 
many methodological issues, deeming a theory as false based on its predictions, is 
rarely feasible (Lindblom, 1987; Weick, 1989). If a prediction is not supported by 
empirical evidence, alternative theories or refinements of existing theories are 
sought, rather than theory rejection; or a new phenomenon is defined, which in turn 
starts the theory generation process for that phenomenon. Moreover, several theo-
ries may provide descriptions, explanations, etc. for a given phenomenon; all of 
which may be empirically adequate in the sense of not having been disconfirmed 
(Rosenberg, 2001; Haig, 2005). One must therefore have criteria that give infer-
ences to best descriptions, explanations, predictions, etc. Therefore, in addition to 
testability, other theory appraisal criteria are equally important.

Related to testability is the degree to which a theory is supported by empirical 
evidence. Such evidence is also important in choosing among alternative descrip-
tions, explanations, predictions, etc. Empirical support requires that the theory is 
tested in empirical research. Pursuing empirical evidence has the added advantage 
of treating both confirming and disconfirming evidence as informative. Furthermore, 
pursuing such evidence clearly points in the direction of designing a series of studies 
that complement one another (Basili et al., 1999).

Table 1 Criteria for evaluating theories

Testability The degree to which a theory is constructed such that empirical 
refutation is possible

Empirical support The degree to which a theory is supported by empirical studies that 
confirm its validity

Explanatory power The degree to which a theory accounts for and predicts all known 
observations within its scope, is simple in that it has few ad hoc 
assumption, and relates to that which is already well understood

Parsimony The degree to which a theory is economically constructed with a mini-
mum of concepts and propositions

Generality The breadth of the scope of a theory and the degree to which the theory 
is independent of specific settings

Utility The degree to which a theory supports the relevant areas of the software 
industry
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Explanatory power can be viewed as a theory’s ability to provide explanations of 
why something happens. Two criteria are (Thagard, 1992): (1) Analogy, that is, the 
degree to which a theory is supported by analogy to well-established theories. 
Explanatory power is seen as increased if a theory’s constructs and relationships are 
formulated in terms of what is familiar and understood. (2) Explanatory breadth, that 
is, the degree to which a theory accounts for and predicts all known observations 
within its scope. Some explanations apply to particular events, while others apply to 
general phenomena or regularities. Nevertheless, if theory B can be deduced from 
theory A, then theory A has more explanatory breadth than theory B (Cohen, 1989). 
A theory of high explanatory breadth would include all relevant constructs and 
relationships, and account for all known data in the field to which it applies. Thus, the 
broader the scope of a theory (i.e., the range of phenomena encompassed by 
the theory), the greater the explanatory breadth of its propositions.

Parsimony is the extent to which unnecessary constructs and propositions are 
excluded. It is defined in (Bacharach, 1989) as the ratio of propositions to testable 
hypotheses; the more hypotheses a proposition accounts for, the better. Thus parsi-
mony interacts with explanatory (and predictive) power. There is a delicate balance 
with explanatory breadth, i.e., should some factors be deleted because they add little 
additional value to our understanding? Or as Whetten (1989, p. 490) formulated it: 
“Sensitivity to the competing virtues of parsimony and comprehensiveness is the 
hallmark of a good theorist.”

Generality pertains to the extent to which a theory has a wide scope and how 
setting-independent the theory is. A major purpose of generalizing is to increase the 
explanatory breadth of a theory (Cohen, 1989). However, there is a trade-off here: 
Higher generality means broader applicability, but may demand more effort in 
operationalizing constructs and relationships to a given situation; while lesser gen-
erality might make a theory immediately applicable, but may compromise its 
explanatory power by abandoning explanation in terms of basic underlying mecha-
nisms. Nevertheless, sensitivity to context is especially important for empirically-
based theories: “Observations are embedded and must be understood within a context. 
Therefore, authors of inductively generated theories have a particular responsibility 
for discussing limits of generalizability” (Whetten, 1989, p. 492).

Finally, and of particular importance in an applied field, such as SE, is the utility 
of a theory, which refers to the degree to which the propositions of the theory can 
be used as input to decision-making, understanding and prediction in a given indus-
trial setting (cf. Fig. 1). A good theory would thus be able to reduce the complexity 
of the empirical world, or in the words of Kurt Lewin (1945): “There is nothing so 
practical as a good theory.” The utility aspect is far from new; about a century ago, 
this was also the focus of the pragmatists John Dewey (1899–1924) and William 
James (1907): “An idea agrees with reality, and is therefore true, if and only if it is 
successfully employed in human action in pursuit of human goals and interests, that 
is, if it leads to the resolution of a problematic situation in Dewey’s terms.”2

2 The Internet Encyclopedia of Philosophy, http://www.iep.utm.edu/d/dewey.htm
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3. Framework for Describing SE Theories

An SE theory is supposed to explain or predict phenomena occurring in SE. The 
typical SE situation is that an actor applies technologies to perform certain activi-
ties on an (existing or planned) software system. These high-level concepts or 
“archetype classes” with examples of sub-concepts or subclasses are listed in Table 2. 
One may also envisage collections of (component) classes for each of the (sub) 
classes. For example, component classes of a software system may be requirement 
specifications, design models, source and executable code, test documents, various 
kinds of documentation, etc.

In addition, appropriate characteristics of the classes, and their relative effect, 
should also be identified and measured. For example, the usefulness of a technology 
for a given activity may depend on characteristics of the software engineers, such 
as their experience, education, mental ability, personality, motivation, and knowl-
edge of a software system, including its application domain and technological 
environment. Note that contexts or environments are supposed to be part of the 
descriptions of the respective archetype classes.

Hence, we propose that the constructs of an SE theory should typically be asso-
ciated with these archetype classes themselves, any subclass specialised from them, 
possibly successively, or any class that is a component of the archetype classes or 
subclasses. The constructs could also be any of the attributes of those classes. An 
SE theory may be defined as a theory that includes at least one construct that is SE 
specific. For example, if the theory only relates to Actor, then the actor must be a 
software engineer or an SE team, SE project, etc.

The challenge of selecting or defining appropriate subclasses or component 
classes that represent constructs of a theory illustrates the need for commonly 
accepted taxonomies in SE. If the constructs of SE theories do not follow from 
well-defined and well-understood categories of phenomena, then new theories will 
frequently require new constructs, and as a consequence theories become difficult 
to understand and to relate to each other. Hence, development of taxonomies is 
needed to support theory building.

In the social and behavioural sciences, several scholars argue that theories 
should be general in the sense of being independent of time and place (Markovsky, 
1994; Wagner, 1994; Cohen, 1989). SE theories, being more applied, and at the 

Table 2 Framework for SE theories

Archetype class Subclasses

Actor Individual, team, project, organisation or industry
Technology Process model, method, technique, tool or language
Activity Plan, create, modify or analyze (a software system); see Sjøberg et al. (2005)
Software system Software systems may be classified along many dimensions, such as size, 

complexity, application domain, business/scientific/student project or 
administrative/embedded/real time, etc.
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current stage of development, would seem to be somewhat dependent of both time 
and place. The fact that reality changes also in the SE world means that the validity 
or usefulness of an SE theory may be temporary. This, in turn, might indicate that 
time should be a factor of an SE theory, for example, change in education, and thus 
skill, of software engineers may change the validity of a theory. However, we 
would recommend not including time as part of the theory, but rather attempt to 
identify the underlying factors that may change over time. In the example of skill 
above, one should indicate in either the propositions or scope that the theory applies 
for a certain skill level.

Similarly, place is not interesting in SE per se. Place may be a placeholder for 
cultural, organisational and technological context factors that may affect a theory. 
However, we would also in this case urge scholars to be explicit on the underlying 
factors that, we believe, would be associated with one of the four archetype 
classes.

The constructs, propositions and their explanations, and the scope of a SE theory 
should be explicitly and clearly presented. We will illustrate how these four parts 
may be used in a simple example theory. This example is meant to illustrate the main 
initiating steps of building an SE theory from scratch (Mode (3) at Level 1, Sect. 
2.3). Table 3 shows the constructs, the propositions, two examples of explanations, 
and the scope of an initial theory of the effect of using a development method based 
on UML (Booch et al., 1999) (in contrast to not using a thorough and systematic 
method covering all the phases from requirements analysis to testing). The back-
ground and steps in the development of the theory will be described in Sect. 4. For 
space considerations, only explanations E4 and E5, corresponding to, respectively, 
propositions P4 and P5 are shown in Table 3. The archetype classes associated with 
the respective constructs are shown in Fig. 3.

We also propose a notation (partly based on UML) to illustrate theories graphi-
cally. Figure 3 shows the relationships among the constructs of the UML-based 
development theory, including what affects what, using this notation. The notation 
has the following informal semantics:

A construct is represented as a class or an attribute of a class. A class is drawn 
as a box, and its name is written in the top of the box, e.g., “Distributed project” in 
Fig. 3). A class may be a subclass (using the UML generalization arrow) or a com-
ponent class (drawn as a box within another box, e.g., “Team” is a component of 
“Distributed project”). Typically, if the construct is a particular value of a variable, 
then the construct is modelled as a subclass or component-class, e.g., the value 
“Distributed project” of the variable “Actor.” On the other hand, if focus is on the 
variation of values, then the construct is a variable that is modeled as an attribute, 
e.g., “Costs.” An attribute is written as a text in the lower part of a class box (below 
a horizontal bar).

A relationship is modelled as an arrow; an arrow from A to B means that A 
affects B, where A is a class or an attribute, and B is an attribute. In a relationship, 
B may also be a relationship itself, represented by an arrow. A is then called a mod-
erator, e.g., “Training” in Fig. 3. This means that A affects the direction and/or 
strength of the effect of the relationship B (Baron and Kenny, 1986). The relationships 
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are specified further into propositions of the theory, as indicated in Fig. 3; the 
propositions P6–P8 are examples of moderators.

The scope of the theory is also illustrated in the diagram. Scope conditions are 
typically modelled as subclasses or component classes. Figure 3 shows that our 

Table 3 Constructs, propositions, example explanations and scope of the theory of UML-based 
development

Constructs

C1 UML-based development method
C2 Costs (total number of person hours in the project)
C3 Communication (ease of discussing solutions within development teams and in reviews)
C4 Design (perceived structural properties of the code)
C5 Documentation (the documentation of the system for the purpose of passing reviews as 

well as for expected future maintainability)
C6 Testability (more efficient development of test cases and better quality, i.e., better coverage)
C7 Training (training in the UML-based method before the start of the project)
C8 Coordination (of requirements and teams)
C9 Legacy code (code that has not been reverse engineered to UML-models)

Propositions

P1 The use of a UML-based development method increases costs
P2 The use of a UML-based development method positively affects communication
P3 The use of a UML-based development method positively affects design

P4 The use of a UML-based development method positively affects documentation
P5 The use of a UML-based development method positively affects testability
P6 The positive effects of UML-based development are reduced if training is not sufficient 

and adapted
P7 The positive effects of UML-based development are reduced if there is insufficient coordi-

nation of modelling activities among distributed teams working on the same project
P8 The positive effects of UML-based development are reduced if the activity includes 

modification of legacy code

Explanations

E4 The documentation is
 – More complete
 – More consistent due to traceability among models and between models and code
 – More readable, and makes it easier to find specific information, due to a common 

format
 – More understandable for non-technical people
 – May be viewed from different perspectives due to different types of diagram

E5 Test cases based on UML models
 – Are easier to develop
 – Can be developed earlier
 – Are more complete
 – Have a more a unified format
Moreover, traceability from requirements to code and test cases makes it is easier to 

identify which test cases must be run after an update

Scope
The theory is supposed to be applicable for distributed projects creating and modifying 

large, embedded, safety-critical subsystems, based on legacy code or new code
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example theory is constrained to “Distributed projects,” “Create, modify” activi-
ties, and “large, embedded, safety critical subsystems” of a software system. This 
means, for example, that “Plan” and “Analyse” (two other subclasses of the arche-
type class “Activity”) are outside the scope of this theory. In this example, all the 
archetype classes are included, but, generally, if any of the archetype classes are not 
included, then it is assumed that the theory is so general that it is independent of 
those classes. Note that one purpose of defining the four archetype classes is that 
we claim that any scholar who propose a SE theory should at least consider whether 
all of them should be included and specifed. For example, a theory of group per-
formance in software development technical review (Sauer et al., 2000) was per-
ceived by Land et al. (2003) to be too general for a SE context, and was thus 
specialised to also include, for example, dependencies to various components of a 
software system, such as requirements documents, designs, codes, test cases/plans 
and user manuals.

Fig. 3 A theory for the effect of UML-based development
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4. Steps in Building SE Theories

The theory-building process in an applied discipline such as SE is a continuous and 
iterative process of proposing, testing, and modifying theories. We do not always 
have to start from scratch when proposing a new theory; we can often start the 
process by adapting and modifying existing theories either from within SE or from 
related disciplines. However, in many cases, there are no established theories, 
neither in SE nor in the related disciplines, that are relevant for answering important 
SE research questions. In these cases, we may attempt to build theories by conducting, 
for example, case studies and experiments. We may also establish theories by 
reviewing and synthesizing related research in SE or by reviewing and synthesizing 
relevant research in related disciplines. Section 4.1 describes five steps in the build-
ing of theories. Section 4.2 illustrates each step by an example from an exploratory 
case study of UML-based development. Note that in practice these steps will often 
be carried out iteratively and partly in parallel.

4.1. Five Steps in Theory Building

4.1.1. Step 1: Defining the Constructs of the Theory

The first step of the theory-building process involves identifying and defining the 
constructs of the theory. In the context of this first step, there are five ways in which 
we might seek to make a theoretical contribution (Weber, 2003):

● Defining new constructs as the basis for building a new theory about some phe-
nomena. These constructs might encompass phenomena that have not been the 
focus of prior theories. Alternatively, they might conceive phenomena that have 
been the focus of prior theories, but in a different way. As a result, we need to 
build a new theory of the phenomena that reflects this conception.

● Introducing new constructs into an existing theory to better account for the phe-
nomena that are the focus of the theory.

● Deleting constructs from an existing theory to provide a more parsimonious 
account of the phenomena that are the focus of the theory.

● Adding and deleting constructs from an existing theory to provide a different, and 
hopefully better, account of the phenomena that are the focus of the theory.

● Defining the constructs of an existing theory more precisely or conceptualizing 
them in somewhat different ways.

4.1.2. Step 2: Defining the Propositions of the Theory

The second step of the theory-building process consists of specifying the proposi-
tions of the theory. In the context of this second step, there are four ways in which 
we might seek to make a theoretical contribution (Weber, 2003):



326 D.I.K. Sjøberg et al.

● Defining new propositions among existing or new constructs in a theory to 
better account for the phenomena that are the focus of the theory.

● Deleting propositions among the constructs of an existing theory to provide a 
more parsimonious account of the phenomena that are the focus of the 
theory.

● Adding and deleting propositions among the constructs of an existing theory to 
provide a different, and hopefully better, account of the phenomena that are the 
focus of the theory.

● Define the propositions in an existing theory more precisely or conceptualize 
them in somewhat different ways, for example, by specifying the functional 
form of a proposition previously conceived as a simple association between two 
constructs.

4.1.3. Step 3: Providing Explanations to Justify the Theory

The third step of the theory-building process, providing explanations – the “why” 
– of the theory, is probably the most challenging. The core issue of this step is to 
provide explicit assumptions and logical justifications for the constructs and propo-
sitions of the theory. In the context of this third step, there are five ways in which 
we might seek to make a theoretical contribution:

● Explicitly stating the assumptions of the conceptual underpinnings of the con-
structs and propositions of the theory.

● Challenging or extending existing knowledge of the constructs and propositions 
of the theory.

● Borrowing perspectives from other disciplines to explain the constructs and 
propositions of the theory.

● Providing logical justifications based on interpretations of an empirical study.
● Providing logical justifications based on interpretations of a synthesis of all prior 

empirical evidence within the scope of the theory. Such synthesis, which possi-
bly includes replicated studies, might also expand the scope of a theory:

Methodological authorities generally regard replication, or what is also referred to as 
“repeating a study,” to be a crucial aspect of the scientific method. … Heavily differenti-
ated replication leads to extensions of the scope of the result and hence its subsequent 
practical applicability, that is, to other firms, other industries, different types of executives, 
other years, or whatever. … Varying the conditions between different replications not only 
extends the scope of the generalization and determines its limits, but also tells us about 
some of the factors that do, or do not, affect the result causally.

(Lindsay and Ehrenberg, 1993)

4.1.4. Step 4: Determining the Scope of the Theory

The fourth step of the theory-building process is concerned with determining the 
scope of the theory, which is especially important for empirically-based SE theories. 
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In the context of this fourth step, there are two ways in which we might seek to 
make a theoretical contribution (Weber, 2003):

● Specifying more precisely the values of a construct for which the theory will 
hold, or conversely, specifying more precisely the values of a construct for 
which the theory will not hold.

● Specifying more precisely the combinations of values of the constructs for 
which the theory will hold, or conversely, specifying more precisely the combi-
nations of values of the constructs for which the theory will not hold.

4.1.5. Step 5: Testing the Theory Through Empirical Research

The last step of the theory-building process involves examination of the validity of 
the theory’s predictions through empirical studies. In the context of this last step, 
different types of empirical studies might be applied, which entails different 
method-specific sub-steps as well as method-specific strengths and limitations in 
the theory-building process. For example, the following separates case studies from 
experiments with respect to theory building:

● In case studies, new insights typically evolve based on the data, while in experi-
ments, previous knowledge must often be applied to explain results.

● In case studies, hypotheses are examined for each case study unit, while in 
experiments they are examined for an aggregate of the units using statistical 
hypothesis building/testing.

● Theories derived from case studies tend to become less general than those 
derived from experiments.

● Theories derived from case studies typically have more focus on explanations 
than those derived from experiments.

In testing a theory, the following general steps must, nevertheless, be considered:

● Choosing an appropriate research setting and sample. The sample does generally 
not only include the actors, but also the sample of technologies, activities (tasks) 
and systems.

● Operationalizing theoretical constructs into empirical variables.
● Operationalizing theoretical propositions into empirically testable hypotheses.

For the purpose of describing the extent to which a theory has been validated, we 
introduce the two terms scope of interest and scope of validity of a theory (Fig. 4). 
“Scope of interest of a theory” is what we have simply denoted “scope of theory” 
above. In contrast, a theory’s scope of validity refers to that part of the scope of 
interest in which the theory has actually been validated. The scope of validity of a 
theory is the accumulated scopes of validity of the results of the studies that have 
tested the theory, or the studies from which the theory has been generated. Figure 4 
shows that three studies have been conducted, and the area made up by the three 
scopes of validity of the three studies corresponds to the scope of validity 
of the theory (so far). The ultimate goal is that the scope of validity becomes equal 
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to the scope of interest. The first consideration to make in testing a theory is to 
make sure that the study fits the theory’s scope of interest. Otherwise, the results 
would be irrelevant to that theory. Moreover, in a given study, typically only a part 
of the scope of interest can be tested. If that part has not been tested before, and is 
supported by the study, then the current scope of validity has been extended. 
However, note that empirical support or inconsistencies between theoretical propo-
sitions and empirical observations do not necessarily imply that the theory is validated 
or disconfirmed, respectively. Judgements regarding the validity of the theory 
require that the study is well conducted, and not encumbered with, for example,

● Invalid operationalization of theoretical constructs and propositions
● Inappropriate research design
● Inaccuracy in data collection and data analysis
● Misinterpretation of empirical findings

4.2. Example of Generating Theory from an Exploratory Case 
Study: An Initial Theory for UML-Based Development in Large 
Projects

The example theory presented in Sect. 3 was derived from an exploratory case 
study that was conducted in the global company ABB (Anda et al., 2006; Anda and 
Hansen 2006). The purpose of the case study was to investigate the use of a UML-
based method, and in particular to identify benefits and challenges, as well as their 
causes, of applying such a development method in a large, distributed development 
project. The goal of the project was to develop a new safety-critical process-control 
system based on several existing systems. The development took place at four sites 
in three countries. The total workforce comprised approximately 230 people, and 
approximately 100 of them were involved in using the UML-based method. This 
was the first project in ABB with large-scale use of UML. The company consequently 

Fig. 4 Scope of interest versus scope of validity
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wanted to find out whether the UML-based development method improved the 
quality of the development process and the resulting software product compared 
with earlier projects that had not used UML.

Data was collected through individual interviews, questionnaires and project 
documents.

4.2.1. Step 1: Defining the Constructs

In this case study, as is frequently the situation in case studies, much of the data 
collected was in the form of texts, for example, transcripts of interviews and project 
documents. These texts were subject to qualitative analysis based on the principles 
of “grounded theory” (Strauss and Corbin, 1998), which is an established technique 
for distilling concepts from textual data. Central concepts are candidate constructs 
for a theory. Hence, the constructs of a theory derived from one or more case studies 
in this way are well grounded in the data of the case(s).

The interviews of the case study were analyzed using the grounded-theory principles 
of open, axial and selective coding. In open coding, categories of phenomena are 
identified; in axial coding, categories are related to each other; and in selective coding, 
the central categories that are candidates for constructs are identified. The following 
characteristics of the actors (project, teams and individuals), activities and software 
system, with corresponding definitions for use in this context, were identified and 
evolved into the constructs given in Table 3.

4.2.2. Step 2: Defining the Propositions

After identifying the constructs, the next step in text analysis, according to 
“grounded theory,” is to analyze emerging relationships between the constructs. In 
the ABB case study, relationships were identified from the interviews, for example, 
relationships were identified between the use of the UML-based development 
method and several positive aspects of the project documentation such as more 
documentation, better structured documentation. The identified relationships were 
checked against each case, that is, against each interview. Relationships that had 
clear support from the data were candidates for being included in the propositions 
of the theory. Furthermore, the relationships were validated using questionnaires 
(although not all relationships could be validated in this way) and compared with 
literature on UML-based development. Finally, the relationships that were sup-
ported by all the data, and that included the candidate constructs identified in Step 1, 
were aggregated in to the propositions described in Table 3.

Ideally, we would have liked the relationships expressed in the propositions to 
be more quantitative, in accordance with the view of Dubin (1978, p. 170): “the 
proposition predicts the specific values that one unit will have in relation to the 
values of another.” Hence, the propositions listed in Table 3 may be regarded as 
initial propositions. Follow-up studies may help quantify the propositions to some 
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extent, but it seems unrealistic in the near future to provide quantitative propositions 
in SE. At least, another of magnitude of more empirical studies would then be 
needed (Sjøberg et al., 2007).

4.2.3. Step 3: Providing Explanations

Explanations for each proposition were identified in the same way as were the 
propositions. The difference between a proposition and an explanation is that the 
former is a relationship among constructs, and the latter is a relationship among 
constructs and other categories, which are not central enough to become constructs 
(see explanation of “grounded theory”-terminology given under step (1) ). This step 
is typically more elaborate in theories derived from case studies than in theories 
derived from experiments, because qualitative data, which typically are better at 
explaining phenomena, are more frequently collected. For two of the propositions, 
the corresponding explanations were shown in Table 3.

4.2.4. Step 4: Determining the Scope

Since this theory is derived from “grounded theory,” the scope of validity of the 
study would form the starting point for the scope of the theory, which would generally 
be too narrow to be interesting for a theory. Nevertheless, defining the initial scope 
is not trivial; the number of potential scope conditions of a case study is large, and 
there is little guidance in the SE literature regarding how the scope of a case study 
should be documented, Kitchenham et al. (2002) state: “Be sure to specify as much 
of the industrial context as possible. In particular, clearly define the entities, attributes 
and measures that are capturing the contextual information.”

In practice, judgment must be exercised in the description of scope conditions 
and the level of detail of their description. Below we will describe what we consider 
to be the relevant conditions for the scope of validity of the theory (which is the 
same as the scope of this case study since the theory is only based on one study so 
far, see Fig. 3). We will then describe what we think should be the scope of the 
theory. The scope of validity is too narrow as a scope of a theory, because it would 
make the theory applicable to very few software projects. This theory is at Level 1 
(Sect. 2.3), which indicates a scope of interest relatively similar to the scope of 
validity of the study, but based on the study and on other work on UML-based 
development, we propose a wider scope of the theory.

Technology

– Scope of validity: In the UML-based development method applied in the study, 
use case diagrams, sequence diagrams and class diagrams were compulsory, 
while the use of other UML diagrams was at the discretion of the individual 
teams.

– Scope of interest: UML-based development methods
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Actor

– Scope of validity: The project was distributed with development at four sites in 
three countries. Some of the teams were also distributed with team members 
working at different sites. The teams were medium-sized (typically 8–10 people 
in each team), the team members mostly had good knowledge of the application 
domain, their educational background was typically at the level of an MSc, and 
most were newcomers to the use of UML at the start of the project, but became 
quite proficient in UML during the project due to it’s size.

– Scope of interest: Projects with distributed teams

Software system

– Scope of validity: The system to be developed was large (approximately 1,000 
requirements and 3–4 mill. lines of code), which was divided into approximately 
ten large subsystems. The software was embedded, C and C++ were used as 
programming languages, the system was safety-critical and the development 
followed the requirements of the safety standard IEC61508. Some parts of the 
system were developed from scratch while others were based on legacy code of 
existing systems.

– Scope of interest: Large, embedded, safety-critical system, possibly based on 
legacy code.

Activity

Both scope of validity and scope of interest are “create” and “modify.”

4.2.5. Step 5: Testing the Theory

This example theory has not yet been tested.

5. Evaluating the Example Theory

This section evaluates the initial theory for UML-based development in large 
projects described in Sect. 3 according to the criteria presented in Sect. 2.

Testability

The constructs and propositions of the theory are understandable, internally 
consistent and free from ambiguities, at least from the point of view of developers 
and practitioners familiar with the topic of the theory. Hypotheses can be derived 
from the propositions, the scope conditions are clearly defined, although some of 
the constructs, such as “large” and “distributed,” assume the existence of taxono-
mies of software systems in order to be precisely defined. The theory can be 
empirically tested in case studies or surveys of development projects that fall 
within the scope of the theory. Most material for such testing, in the form of inter-
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view guides and analysis procedures are available for use, see (Anda et al., 2006). 
Such empirical testing would consist in testing whether the propositions of the 
theory are supported in other projects. The scope condition indicating “large 
subsystems” means that it is difficult, that is, would be very costly, to test this 
theory in experiments. We consider the testability of this theory as moderate.

Empirical support

There are few other empirical studies on benefits and challenges of UML-
based development. Three empirical studies on UML-based development have a 
similar or wider scope than the scope of our theory (Baker et al., 2005; Petit, 
2004; Dobing and Parsons, 2006). These studies all have a slightly different focus 
than the study on which our theory is based, but they support different proposi-
tions of our theory; (Petit, 2004) supports P2 on communications, (Dobing and 
Parsons, 2006) supports P4 on documentation, and (Baker et al., 2005) supports 
P5 on testing. Furthermore, two studies on UML-based development have differ-
ent scope conditions; Arisholm et al. (2006) report a controlled experiment with 
students performing maintenance activities. The results support P3 on design. 
MacDonald et al. (2005) report a student project that supports P2 on communica-
tion and P8 on legacy development. If more empirical studies are conducted on 
UML-based development, it may be possible to extend the scope of our theory 
and in that case those two studies may also be included as part of the empirical 
support for the theory. Since the example theory is supported or partly supported 
by all comparable empirical studies on UML-based development, we consider the 
empirical support for this theory to be moderate.

Explanatory power

Many factors influence the results of software creation and modification 
activities. Hence, we expect that SE theories will seldom have high explanatory 
power. This theory is at Level 1 (see Sect. 2) and accounts for some, but far 
from all aspects of software creation and modification with the use of UML-
based development. We consider the explanatory power of the theory as low.

Parsimony

A theory derived from one case and with the use of “grounded theory” will 
typically be quite complex, with many constructs and propositions, but we have 
attempted to use a minimum of constructs and propositions in this theory. We 
consider the parsimony of the theory as moderate.

Generality

The scope of this theory is narrow, something which is typical for theories at 
Level 1 theories. We consider the generality of the theory as low.

Utility

This theory can be used in the decision making in projects for which it is 
relevant with little adaptation. We consider the utility of the theory as high.
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6. Summary and Future Work

The motivation for the work reported in this chapter is that without a stronger focus 
on theory building in the empirical SE community, we will probably continue to 
produce many isolated, exploratory studies, which will limit our ability to aggre-
gate knowledge. Even a weak theory may frequently be better than no theory.

We have described a framework that we believe will benefit the process of pro-
posing, testing and modifying and describing SE theories. We illustrated the frame-
work with an example of how to build theories systematically from an exploratory 
case study using the technique of “grounded theory.” Future work will include 
describing how to build theories from experiments and from systematic reviews of 
the SE literature.

The framework suggested above is not intended as “silver bullets” to build and 
document theories; theory development requires significant reflection and skill 
regarding study design and argumentation. Hence, there is a need for more system-
atic teaching of research methods and theory building as part of SE education.

During our work with a survey to identify and describe theories used in SE 
experiments (Hannay et al., 2007), we experienced that there is no simple way of 
identifying empirically-based theories that are used or built in SE. There are web 
sites for collecting and documenting theories in psychology3 and information systems4. 
In the same manner, Simula Research Laboratory has begun building a site for 
empirically-based SE theories, see se-theory.simula.no. We believe that this will 
make it easier for scholars to find relevant theories for their research and that this 
will stimulate the community to collaborate on building new theories and on 
improving existing theories.
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Chapter 13
Building Theories from Multiple 
Evidence Sources

Forrest Shull and Raimund L. Feldmann

Abstract As emphasized in other chapters of this book, useful results in empirical 
software engineering require a variety of data to be collected through different studies 
– focusing on a single context or single metric rarely tells a useful story. But, in 
each study, the requirements of the local context are liable to impose different con-
straints on study design, the metrics to be collected, and other factors. Thus, even 
when all the studies focus on the same phenomenon (say, software quality), such 
studies can validly collect a number of different measures that are not at all com-
patible (say, number of defects required to be fixed during development, number 
of problem reports received from the customer, total amount of effort that needed 
to be spent on rework). Can anything be done to build a useful body of knowledge 
from these disparate pieces?

This chapter addresses strategies that have been applied to date to draw conclu-
sions from across such varied but valid data sets. Key approaches are compared 
and the data to which they are best suited are identified. Our analysis together with 
associated lessons learned provide decision support for readers interested in choos-
ing and using such approaches to build up useful theories.

1. Introduction

Research in software engineering is often concerned with the development of new 
techniques, methods, or tools for software development. It has long been recog-
nized that the weaknesses and benefits of such technologies can be identified by 
conducting empirical studies (Basili et al, 1986, 1999). Empirical information is 
necessary for researchers to refine the technologies, as well as for practitioners to 
understand when such technologies are likely to be useful. Empirical evidence can 
never prove that a technology will be useful under specific conditions, but such 
evidence helps build theories to that effect. The more evidence that can be accumu-
lated, and the greater the extent to which the evidence is internally consistent, the 
more confidence can be had in the theories they support.
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The chapter by Sjøberg et al. (Sjøberg, 2007a) in this book discusses the diffi-
culty of providing a precise definition of what a “theory” is. However, to avoid 
misconceptions, we adopt their convention of focusing on empirically-based theo-
ries, which are built on the basis of empirical research to offer explanations of why 
certain phenomena occur. We also adopt their criteria in saying that a good theory 
is constructed in such a way as to be testable; is supported by evidence, perhaps in 
the form of empirical studies; has explanatory power; contains the minimum 
number of concepts and prepositions; is independent of specific settings; and has 
relevance to the software industry. In accordance with Zelkowitz, we define empiri-
cal studies as a general form of research strategy that relies on analysis of the 
results of application in some context (Zelkowitz, 2001). Empirical studies include 
for example controlled experiments, case studies, and archival analyses.

Although a theory represents a proposed model of reality, these need not be formal 
models. An example of a theory that aims to support decision-making by practitioners 
might be, “When process conformance is good, software formal inspections will find 
and remove between 60% and 90% of the extant defects in an artifact, under typical 
conditions in many environments.” Theories may also build implicit models by 
hypothesizing relationships between variables, such as “When applied by very small 
teams, the cost to apply software formal inspections may be prohibitive.”

A single empirical study is a first step towards constructing theories related to 
the effectiveness of a technique, method, or tool. However, such single studies usu-
ally have a low power. The findings become more reliable (and we have greater 
confidence in the theories they support) if studies are replicated (i.e., are repeated 
or conducted in different settings). Similar findings in replications increase the 
confidence in the results. Multiple authors (e.g., Basili, 1999; Miller, 2000; 
Kitchenham et al, 2004) point out that it is necessary to accumulate the material of 
many studies to abstract robust and useful theories.

Based on our experiences, we define a “useful” theory as one which satisfies these 
criteria: (1) There must be traceability to the supporting data, such that a level of 
confidence is enabled. To have high confidence, there must be a rigorous way of 
showing which sources of evidence support a theory. (2) The theory must be abstract 
enough to be useful (i.e., it cannot hold only under certain unusual or unrealistic con-
ditions, but it has to be relevant for some subset of software development projects).

Building theories is difficult, mainly because solid theories need to be supported 
by a significant body of evidence. But evidence is generated from many different 
environments, for many different reasons, and there are no universal standards for 
how to measure aspects of software development. For example, a researcher might 
want to theorize that a particular practice helps improve software quality. 
Supporting or extending this theory becomes difficult when some of the evidence 
on which it is based measures software quality in terms of customer satisfaction, 
some in terms of number of defects found after delivery, and some using the 
number of defects removed from work artifacts.

A number of techniques have been applied to accumulate bodies of knowledge 
and support theories based on them. The techniques range from informal, subjec-
tive, and unrigorous to formal, objective, and rigorous. In this chapter, we describe 



13 Building Theories from Multiple Evidence Sources 339

three such techniques and summarize the process for applying them. Since research 
techniques, just like development techniques, work well in some contexts and for 
some goals but not for all, we also assess all of the techniques along a standard set 
of dimensions to help understand the problems and conditions for which each is 
most appropriate.

2. Theory Building

After the more general introduction to the problem in the last section, we now take 
a closer look at the different tasks that need to be accomplished in order to build a 
useful body of knowledge. First, we will introduce a general process description of 
how theories can be built using available quantitative and qualitative evidence 
(Subsection 2.1). Based on these general process steps we will compare and con-
trast various existing approaches in the following sections. Second, we will identify 
and discuss a set of quality attributes for a body of knowledge (Subsection 2.2). 
This set of attributes will allow us to better classify the existing approaches.

2.1. A Process Model for Building Theories

Several approaches exist for how to build a body of knowledge out of discrete 
pieces of evidence. These approaches vary in specific details, such as the type of 
evidence considered for the evaluation, or in the way of handling different evi-
dence pieces. However, all approaches need to integrate some essential process 
steps to be repeatable and systematic: (1) Define the topic, (2) identify search 
parameters, (3) find evidence, (4) analyze evidence, and (5) integrate evidence. 
Fig.1 displays how these steps are connected and emphasizes the iterative nature 
of the process.

For describing the process steps, and the basic activities associated with them, 
we will use the following schema:
Step number/name: Clearly identifies the process step.
Input: Lists products and preconditions needed to execute the process step.
Actions: Describes the basic activities performed in this process step.
Output: Identifies the products generated by the process and post conditions.
Comments: Provides a practical example of what needs to be done in this step or 

lists typical issues.

2.1.1. Define Topic

Before we can start collecting any evidence for a theory, the topic of the theory we 
want to describe needs to be defined. In this first step one has to clearly identify the 
object(s) that will be described by the theory. Ideally, this description not only 
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identifies the topic(s) but also provides the basic definitions for key terms and con-
cepts. Quality attributes, i.e., specific aspects of the object we are interested in, 
need to be included in this definition process, too. Examples for such quality 
attributes could be the effectiveness of the object regarding cost or time 
reduction.

This process step can be triggered for several reasons. Typical examples are the 
need for decision support on a given topic, or the interest of a researcher to identify 
missing studies in a certain field. As a result of this step we create a Theory Topic 
Definition Document (TTDD), which will be the input and basic reference for the 
following process steps.

For formulating the goal in a more formal manner one might consider a specific 
template or other structured approaches. The Goal Question Metric (GQM) approach 
(Basili, 1994b; van Solingen and Berghout, 1999), for instance, provides a specific 
goal template for describing measurement goals. We have found the GQM goal tem-
plate, as depicted in Fig.2 useful for helping to specify fairly straightforward theories, 
since it helps make explicit the object that is being theorized about as well as the 
properties of interest. Templates that are more comprehensive, for instance, have been 
proposed in Sjøberg (2007b).

Note that some researchers in the social sciences recommend mapping studies, 
prior to performing systematic review, in order to identify patterns in the research 
literature and identify areas suitable for systematic literature review or meta analy-
sis or where more primary studies are needed (Petticrew and Roberts, 2006). This 
activity, however, may be most relevant under certain conditions or study topics.

Define
topic 

Identify
search 

parameters 

Find
evidence 

Analyze
evidence

Integrate
evidence 

– accepted forms of 
   evidence

– sources to include

– conduct literature
   surveys, polls, and
   interviews  

– filter results

– extract content
– standardize &
   document 

– handle
   discrepancies 

– abstract
   conclusion 

Fig. 1 Basic process steps for building a theory based on multiple pieces of evidence
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In conclusion, the first process step is summarized by using our schema in 
Table 1.

2.1.2. Identify Search Parameters

Using the concrete topic definition in the TTDD, the next process step in building 
a theory focuses on the search parameters for finding evidence. The evidence will 
be the basis for our body of knowledge. Hence, it is crucial to (a) clearly identify 
acceptable forms of evidence, and (b) describe how we will proceed to find the 
evidence.

By determining the forms of acceptable evidence it is indirectly determined how 
rigorous the overall process of building the body of knowledge will be. If, for 
instance, only the most significant and best documented empirical results will be 
considered, a highly rigorous process is most likely. The overall rigor becomes 
more relaxed if, for instance, qualitative evidence such as lessons learned is 
included.

Possible forms of evidence include: A rigorous empirical study with a compari-
son of the object under study to other existing practices, a controlled experiment in 
a research environment, an industrial case study, literature surveys, a qualitative 
statement of lessons learned, a poll, or even a single person’s opinion captured in a 
white paper or interview. A good overview and classification of possible empirical 
evidence can be found in (Zelkowitz and Wallace, 1998).

Along with the types of accepted evidence goes the definition of accepted (i.e., 
trusted) sources for such evidence. Such sources can range from books and archival 

Analyze the [object]  
for the purpose of [purpose]  
with respect to
from the perspective of
in the context of

[quality aspect] 
[view point] 

[context] 

Fig. 2 GQM goal template according to Basili et al

Table 1 Overview of process step 1

Step number and name ❶ Define topic

Input This process step can be started at any time; no specific input 
documents are required

Actions Clearly describe the theory to be developed; provide basic defi-
nitions and include quality attributes

Output Theory Topic Definition Document (TTDD)
Comments Definitions may not be necessary if the relevant terms are com-

monly known
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journals, where each piece of evidence is peer reviewed, to purely electronic 
sources on the Internet, which may include promotional material of technology 
vendors or companies.

Last but not least, we have to identify the possible search process we will use to 
find the evidence. This is in part connected to the list of accepted sources. For 
instance, evidence in journals can be found by searching specific internet cata-
logues of such journals (e.g., IEEE Computer Society Digital Library1 or The ACM 
Digital Library2) or by a classical library search. A search for evidence on the 
Internet offers even more possibilities: Which search engines are going to be used? 
What keywords will be entered? How are the results filtered? In any case, it is nec-
essary to document the intended (and later applied) search process and routines so 
it becomes obvious and repeatable for others.

As outcome products of our second process step, we generate a List of Accepted 
Forms of Evidence (LAFE), a List of Accepted (i.e., trusted) Sources for the 
Evidence (LASE), and a Search Process Definition (SPD). All of these results can 
consist of separate documents, or can even be included in a single document. They 
even might be added to the TTDD. However, for our generic process we assume 
that each document will be handled separately.

We summarize the second process step by using our schema, in Table 2.

2.1.3. Find Evidence

While the first two process steps have been more concerned with the theoretical 
foundation of the theory building, this third process step marks the start of the 
practical work. The pieces of evidence for our body of knowledge are retrieved. 
Therefore, the search is executed as documented in the Search Process 
Definition (SPD).

Table 2 Overview of process step 2

Step number and name ❷ Identify search parameters

Input Process ❶ needs to be terminated; complete Theory Topic 
Definition Document (TTDD)

Actions Identify and list the accepted forms of (empirical) evidence. 
Provide an initial list of acceptable sources for the evidence. 
Describe the search process that will be applied

Output List of Accepted Forms of Evidence (LAFE); List of Accepted 
Sources of Evidence (LASE); Search Process Definition (SPD)

Comments Typically, this process step is executed in an iterative way. As 
soon as some of the produced documents exist, they may be 
evaluated and fine-tuned in the following process steps

1 On-line at http://www.computer.org/portal/site/csdl/index.jsp
2 On-line at http://portal.acm.org
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This process step could include such activities as performing a literature survey, 
conducting specific polls, or holding interviews with practitioners and experts. 
All of the retrieved evidence should be documented in a Collection of Retrieved 
Evidence for Theory (CRET). This step is summarized in Table 3. 

2.1.4. Analyze Evidence

In this process step the potential evidence pieces in the CRET will be analyzed. 
Therefore, one first has to take a look at the CRET and define the process for the 
analysis. The process for analyzing the evidence has not necessarily been defined 
before (e.g., in step 2) because it may be dependant on the evidence itself (e.g., its 
quantity, quality, completeness, etc.). One also may have to further filter the CRET 
and prepare the single evidence pieces for the analysis. As part of the analysis 
activities the content of each evidence piece is extracted and prepared for the inclu-
sion into the body of knowledge. This extraction is based on the defined quality 
attributes of the TTDD. Specific analysis methods will be discussed in the later 
sections of this chapter.

As results of this process step one creates a Documentation of Chosen Analysis 
Process (DCAP) and the Analyzed Evidence for Theory (AET). See Table 4 for a 
summary of these actions and output.

2.1.5. Integrate Evidence

In this last step of the general process for building theories, summarized in Table 5, 
the actual body of knowledge is described and documented. This includes the clear 
identification and representation of all found and accepted pieces of evidence, the 
handling of possible discrepancies in these different evidence pieces, as well as an 
abstraction from the single evidence pieces. As a result of this final process step we 
create a Structured Body of Knowledge (SBK).

To create the SBK several activities have to be performed. First of all the basis 
for the SBK needs to be documented. This may be simply done by referring to the 
AET or by integrating the AET evidence pieces into a specific data structure or 

Table 3 Overview of process step 3

Step number and name ❸ Find evidence

Input Process step ❷ must have been started; initial versions of LAFE 
and LASE exist, and SPD has been created

Actions Execute SPD; conduct literature surveys, polls, and/or interviews
Output Collection of Retrieved Evidence for Theory (CRET)
Comments For documentation purposes, the CET should include all of the 

retrieved evidence pieces that match the LAFE and LASE cri-
teria. A filtering of these results will be conducted in the next 
process step ❹
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knowledge management system. Ideally, all evidence pieces have similar tenden-
cies or the same findings regarding the quality attributes under study. In this case it 
is relatively easy to integrate all pieces of evidence into an abstraction. The abstrac-
tion is a transparent conclusion that summarizes the findings of all evidence pieces 
regarding the theory and the quality attributes under evaluation. This abstraction 
allows users to get a quick overview of the body of knowledge without having to 
take a look at all evidence pieces. Specific methods for accomplishing this combi-
nation and extraction of evidence will be discussed later in this chapter.

Regardless of which integration method is chosen, one important goal is that 
contradictory findings in the AET are clearly reflected in the final output. For 
instance, the results of the process so far may show that for seven out of nine pieces 
of evidence there are clear results that a technology reduces costs. But in the two 
other pieces of evidence it is reported that there has been no cost reduction or, even 
worse, that the cost has been increased. This inconsistency needs to be reflected 
somehow in the abstraction of the body of knowledge.

In analyzing these inconsistencies, it is important to note whether the evi-
dence suggests that certain factors might be responsible for the different results. 

Table 4 Overview of process step 4

Step number and name ❹ Analyze evidence

Input This process step can be started as soon as the first pieces of evi-
dence are added to the CRET. TTDD is used as a basis

Actions Define suitable process for analyzing the CRET
Filter and prepare results from CRET according to process
Extract content from evidence based on defined process

Output Documentation of Chosen Analysis Process (DCAP)
Analyzed Evidence for Theory (AET)

Comments In the general process for building theories we include the DCAP 
in the analysis step. However, specific process may choose to 
perform this considerations already as part of the earlier process 
steps (e.g., step ❶ or ❷)

Table 5 Overview of process step 5

Step number and name ❺ Integrate evidence

Input This process step can be started as soon as the DCAP is existent 
and the first pieces of evidence are available in the AET 
documentation

Actions Standardize and make evidence available to users
Identify and handle discrepancies in the evidence set
Create an abstraction that integrates all evidence pieces into a 

transparent summary
Output Structured Body of Knowledge (SBK)
Comments If not enough evidence is available for this process step, it might 

be considered to redefine the search parameters (step ❷) or 
repeat the search step ❸
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For example, if the seven pieces of evidence, which support the idea that the tech-
nology reduces costs all come from large projects, and the contradictory evidence 
comes from small projects, then it is possible to hypothesize that project size influ-
ences the effectiveness of the technology. It is important to note that influencing 
factors may be attributes of the studies as well as attributes of the project; for exam-
ple, analysts might notice that beneficial effects are seen only in the studies of one 
researcher and are missing in independent replications.

2.2. Quality Attributes for Classifying Theories

Before we take a detailed look at how different approaches instantiate the general 
process steps, we introduce some quality attributes that apply to theory building 
approaches. These quality attributes can be used to:

1. Characterize the specific aspects of a given theory building approach
2. Classify and compare the different theory building approaches so as to select the 

most suitable

Based on our experiences with decision support and technology transfer, we choose 
the following eight quality attributes as most relevant to robust and useful theories: 
(1) Applicability for qualitative data, (2) applicability for quantitative data, (3) scal-
ability, (4) objectivity, (5) fairness, (6) ease of use, (7) openness, and (8) cost.

Since we are only intending to give tendencies on how these quality attributes 
are met by different approaches to theory building, we will rate each approach for 
each attribute as either: +, ±, or −. In this scheme a + indicates that the given 
approach can produce output that is rated well for this attribute, while a − definitely 
indicates that the approach is not well suited for users to whom this attribute is 
important. A ± is used in the case where no clear tendencies can be identified.

2.2.1. Applicability for Quantitative Data

This attribute indicates whether or not an approach makes use of quantitative data 
such as numeric measures of cost, quality, or schedule impact. Approaches that 
explicitly do not include such information will be indicated by a −, while others 
which explicitly include them will be indicated by a +.

2.2.2. Applicability for Qualitative Data

This attribute indicates whether or not an approach makes use of qualitative data 
such as lessons learned, whitepapers, or expert statements and interviews. Some 
approaches explicitly do not include such information (which will be indicated by 
a −) while others explicitly include them (indicated by a +).
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2.2.3. Scalability

This attribute addresses the question of how easy or hard it is likely to be to find 
evidence that matches the constraints of the theory-building approach. That is, 
given the current state of the software engineering literature, does the approach 
scale up in that it can use a large set of publications as evidence, or is it limited to 
only a small subset? Obviously this will depend on the particular theory and the 
desired rigor of the analysis; however, this criterion attempts to give a (subjective) 
rating of, on balance, how many evidence sources in the software engineering 
domain will be found that are suitable inputs. A – indicates the approach is defined 
in such a way that suitable evidence sources will be difficult to find, while a + indi-
cates the approach is designed to be more inclusive.

2.2.4. Objectivity

This attribute expresses how objective the approach is in handling the evidence. It 
describes the extent to which subjective influences of the person(s) executing the 
process are excluded. The more objective a process, the more deterministic its 
output becomes. Hence, this attribute indirectly captures the extent to which the 
process is repeatable. A + indicates the absence of subjective influences, while a − 
indicates the potential presence of such influences. A ± is used in the case where 
no determination can be made.

2.2.5. Fairness

This attribute describes the lack of bias in an approach. While objectivity describes 
whether repeatable conclusions will be drawn from a given set of evidence, fairness 
describes whether an approach will collect an appropriate set of evidence on which 
to base conclusions. Approaches with no bias will be marked with a + while a − 
indicates that the approach has the potential to include some bias.

2.2.6. Ease of Use

This attribute describes how easily the results can be accessed from a user’s per-
spective. Are results clearly understandable by everyone, or does one need specific 
knowledge, for example about a domain, to interpret them? We rate outcomes that 
require no additional knowledge with a + while others which require highly special-
ized knowledge are rated with −.

2.2.7. Openness

This attribute describes how open the process steps are for the user. Can interested 
outside parties understand how the results were created? Are intermediate results 
available so that various process steps can be re-applied by outsiders and the results 
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checked? Approaches which are explicitly open for users are rated with a + while 
a − indicates approaches that operate as more of a black-box (end users are guaran-
teed only to see the inputs and outputs).

2.2.8. Cost

This is the last but definitely not the least important attribute in our list. “Cost” 
expresses the level of time and effort investment necessary to get results. Regardless 
of the benefits that can be achieved, some approaches may require substantial work 
to produce and document the results. In such cases we clearly flag them with a − 
while approaches with a + have exactly the opposite meaning, namely they are rela-
tively cheap to apply.

3. Approaches to Theory-Building

Given the multiplicity of evidence types in the software engineering literature, it 
should not be surprising that multiple approaches have been applied to make sense 
of this information. It is important to note that the software engineering literature 
should be viewed as being stronger, not weaker, because it incorporates such a wide 
variety of types of evidence, ranging from a single expert’s opinion, to aggregated 
opinions of multiple experts, to anecdotal case studies, to rigorously measured data 
from across dozens or hundreds of projects. However, this very disparity makes it 
hard to aggregate well-supported theories and marshal the supporting evidence in a 
way that is commonly accepted.

In this section, we introduce several approaches that have been proposed to rig-
orously and repeatably abstract well-formed theories from such data sets. Each is 
mapped to the general process described in the last section so as to facilitate 
comparison.

3.1. Systematic Literature Review

The approach to theory- and knowledge-building which has garnered the most 
attention recently is the systematic review. The systematic review can be defined 
as “a means of identifying, evaluating and interpreting all available research rele-
vant to a particular research question, or topic area, or phenomenon of interest” 
(Kitchenham, 2004). It is in short a way to summarize across multiple studies on a 
given topic what conclusions can be drawn. Note the emphasis on completeness in 
the above definition (“…all available research…”), which is a major goal of the 
technique. By taking a highly procedural approach to defining the problem of study 
and searching the available literature, the technique aims to avoid the danger of 
selection bias, in which only a subset of studies are canvassed (which just might 
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happen to be the subset that corresponds to a particular point of view). Systematic 
review was a key method proposed to support the goal of evidence-based software 
engineering, as articulated by Kitchenham et al. (2004).

The application of systematic review to software engineering was inspired by its 
success in the medical field, a domain in which researchers must also abstract 
actionable theories and conclusions from among many studies of the same 
phenomenon.
Procedure. The procedure for the systematic review is described in detail in a tech-
nical report compiled by Kitchenham (2004). The major activities, as mapped to 
our generic process description, are described below, and have been summarized 
from that source unless otherwise noted. Kitchenham does note that the process is 
likely to be highly iterative, with many transitions backwards and forwards among 
the following activities. An important part of this procedure is to document the 
planned activities for conducting the systematic review as a protocol, to facilitate 
the review of the plan and ensure that decisions are made so as to support a review 
that is as repeatable and rigorous as possible.

● Define topic. The guidelines state that the process should start from a well-
defined question, in which the population, intervention, contrast, outcome, and 
context of interest have been made explicit. Kitchenham suggests starting in 
natural language but converting to a structured question as the ideas become 
refined.

● Identify search parameters. Next in the process, researchers must define a 
repeatable strategy for searching the literature. Doing so requires setting clear 
criteria for the following issues (among others):

❍  Which sources will be searched
❍ How sources will be filtered
❍ How quality of sources will be assessed
❍  What information will be extracted from sources
❍  How missing information will be handled

● Find evidence. Assuming the search criteria and range of permissible sources 
have been defined in detail as above, finding evidence is then the process of 
exhaustively searching all sources for any paper that matches the criteria. 
Having the search specified in such detail helps ensure that the search process is 
repeatable, that is, that multiple users conducting a search according to the same 
criteria would find exactly the same sources.

● Analyze evidence. Analyzing the publications found in the search consists of 
first filtering out unsuitable publications and then extracting the information 
needed from those remaining.

❍ During this round of filtering, only primary studies should be selected for 
inclusion in the systematic review. That is, researchers should analyze only 
reports of studies that directly examined the research question. Analysis or 
synthesis of studies performed by other researchers are not to be included 
in the study in combination with primary sources. (Such surveys should 
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themselves be used as pointers to important primary sources or to compare 
against the final outcome of the systematic review.) An important question is 
whether certain types of studies or evidence should be excluded from consid-
eration at this point. However, Kitchenham notes that due to the number of 
studies currently published in software engineering, researchers on most top-
ics will not be able to be so selective: “In software engineering, we will usu-
ally accept all levels of evidence. The only threshold that might be viable 
would be to exclude level 5 evidence [expert opinion] when there are a rea-
sonable number of primary studies at a greater level…” (Kitchenham, 2004). 
Still, the quality of each study included in the analysis must be assessed so 
that this can be considered when the results from each study are compared 
and contrasted during the integration phase.

❍ From each study that remains after the filtering is performed, the required 
data for the analysis must be extracted. The guidelines suggest that a tem-
plate should be defined for each systematic review conducted and applied to 
each publication, so that complete information is extracted from each and 
organized consistently.

● Integrate evidence. Having defined in earlier phases concrete guidelines for 
what type of evidence will be included in the systematic review, the guidelines 
for how the evidence is to be integrated are not as specific. This is likely because 
the methods which are feasible for each systematic review will depend largely 
on how much and what type of evidence has been utilized, and on the specific 
research question under study. Kitchenham does note that conclusions in soft-
ware engineering will need to be drawn from many different types of studies, 
but guidelines for combining different types of studies are not given. Although 
qualitative measures are allowed, it is recommended to convert each to a quan-
titative measure if at all possible. One way of reporting such results is via a for-
est plot, which is feasible if all studies measure the same treatment variable in 
the same units (or using different measures that can be converted to the same 
units).

Although not mentioned explicitly in our generic process, the systematic review 
guidelines do contain an addition activity for documenting the review. The justifi-
cation for having this listed as a separate step is that the systematic review cannot 
be considered complete until it has been validated; the authors suggest that such 
validation is likely to happen via peer review. In the event that the report is pub-
lished as a technical report or some other non-peer reviewed document, it should 
be made available via the web and a peer review organized for this purpose.

3.1.1. Lessons Learned in Application to Software Engineering

In the software engineering domain, this approach has been applied to a number of 
different analyses, which are increasing in number each year. After a relatively few 
applications published in 2004 and 2005, there has been a large increase in 2006 of 
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the number of systematic reviews, especially in Master’s theses and other student 
work. Some key examples in which systematic review was applied to test a research 
hypothesis include:

● Jørgensen (2004) conducted a systematic review of studies of estimating soft-
ware development effort. He found, first, that estimation based on expert judg-
ment was the most often-used approach. The systematic review found 15 
different studies comparing expert estimates to estimates produced using more 
formal models. The results about which estimation approach produced more 
accurate estimates are inconclusive: five studies found expert judgment more 
effective; five found formal estimation models more effective; and five found no 
difference. However, Jørgensen was able to formulate a number of guidelines 
for improving expert estimation, which are each supported by at least some of 
the studies surveyed.

● Jørgensen and Moløkken-Østvold (2006) used a systematic review to test an 
assessment of the prevalence of software cost overruns done by the Standish 
Group. They investigated whether they could find evidence to support one of the 
often-cited claims of the 1994 “CHAOS” report, namely that “challenged” soft-
ware engineering projects reported on average 189% cost overruns. This sys-
tematic review found three other surveys of software project costs. The 
comparison could not be definitive, since the Standish Group did not publish 
their source data or methodology. However, the researchers found that the con-
clusions of the Standish Group report were markedly different from the other 
studies surveyed, raising questions about the report’s methodology and 
conclusions.

● Kitchenham et al. (2006) undertook a systematic review to investigate the condi-
tions under which organizations could get accurate cost estimates from cross-
company estimation models, specifically, the conditions under which those 
cross-company models were more accurate than within-company models. Seven 
papers were found that represented primary studies on this topic. The results 
were inconclusive: four found cross-company models were significantly worse 
than within-company models, while the remainder found that both types of 
models were equally effective.

Mendes (2005) applied systematic review for a slightly different goal: to assess the 
level of rigor of papers being published in the field of web engineering. In this case, 
it was not a single research hypothesis that was being explored; rather, Mendes was 
assessing the percentage of papers in the field that could be included in a systematic 
review of any hypothesis in this area, according to criteria for rigor that she set. 173 
papers were reviewed and only 5% were deemed sufficiently rigorous, which 
emphasizes that this approach ensures rigor by being quite restrictive about the 
quality of papers accepted as input.

Some authors explicitly comment on the difficulty of applying the approach 
given the state of the software engineering literature. Jørgensen (2004), for exam-
ple, mentions that few if any of the studies he identified met the criteria of reporting 
the statistical significance of their results, defining the population sampled, or using 
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random sampling. For these reasons, it appears to be difficult to define the quality 
criteria too rigorously, in case the number of studies that can be included become 
too small to produce interesting results.

Because of the costly nature of applying this approach, some researchers have 
done some tailoring of the approach in application. For example, even though a best 
practice is to minimize bias by using two researchers to do the analysis, some 
researchers who are applying the method feel it is practical to use only one.

3.1.2. Assessment

Systematic review does cover a range of sources from different environments. To 
describe the conditions for which this analysis approach may best be suited, we 
examine it in reference to our quality criteria:

● Applicability for quantitative data: +
● The literature contains several examples of research questions addressed by sys-

tematic review of quantitative evidence sources.

● Applicability for qualitative data: −
● At the moment, this approach seems less well suited for evidence sources that 

contain qualitative data. Although methods for qualitative synthesis do exist 
(e.g., Noblitt and Hare, 1988), none of the applications of systematic review that 
we could find in the software engineering literature used qualitative data as a 
substantial source of information. Moreover, the guidelines in this field 
(Kitchenham, 2004) seem written with quantitative data in mind. It is likely that 
this will need to be explored further in future applications.

● Scalability: −
● An assessment of this attribute would depend on how a given application defines 

the quality and filtering criteria. However, we can say that applications to date 
have typically used fairly restrictive criteria. The lessons learned cited above do 
show that several authors have commented that a fairly small percentage of 
publications were suitable for inclusion in the systematic reviews that they ran.

● Objectivity: +
● The procedure is very well specified. Although key filtering criteria are allowed 

to be user-defined for each application, and so could theoretically be defined so 
as to impair the objectivity of the study, this would presumably be caught during 
the peer review of the study process and results.

● Fairness: +
● Fairness is typically high, since the search criteria are to be represented as search 

queries and repeated in several repositories. The researcher must take all docu-
ments matching the query; he or she is not allowed to pick and choose 
arbitrarily.

● Ease of use: +/−
● The procedure and results would be easily accessible to researchers, but the 

amount of detail in the report would not be user friendly for supporting decisions 
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by practitioners. This can be mitigated by applying additional effort aimed at 
creating multiple reports for different audiences, particularly by abstracting 
actionable guidelines for practitioners from the research (see for example 
Koyani et al., 2003).

● Openness: +
● The amount of detail that is required to be documented and included in the final 

report of results makes this a very open process. In fact, peer review of each step 
of the process is called for to ensure quality and rigor in the results.

● Cost: −
● Researchers have pointed out that systematic review is effort-intensive and 

hence high cost: “Systematic reviews require considerably more effort than tra-
ditional reviews” (Kitchenham, 2004). Part of this cost is due to the fact that this 
approach requires extensive and lengthy documentation. It is moreover not well 
suited for application by a single researcher, since a “best practice” is to use at 
least two researchers to minimize biases. Although we could find no comprehen-
sive estimate of costs for performing systematic reviews, anecdotally we did 
hear from researchers who expressed some concern about their expensive nature 
in comparison to the benefits received. One researcher questioned the wisdom 
of adopting such techniques from the medical field, which has a research budget 
many times that of the budget for software engineering.

3.2. Meta-analysis

Meta-analysis is a method for combining data from different datasets collected 
during different studies, in order to statistically test a hypothesis. By using data 
from multiple datasets, the meta-analysis allows the investigation of whether the 
effect under study is robust across multiple contexts. By combining datasets across 
studies, meta-analysis provides for the statistical test a larger number of data which 
improves the chances of detecting smaller effect sizes than any test of a single 
dataset in isolation.

Meta-analysis should be seen as a special case of systematic review, rather than 
a distinct approach. It follows the same general process of systematically collect-
ing, analyzing, and integrating evidence, but specifies certain techniques that are 
appropriate when the evidence is expressed in comparable, quantitative metrics.

Both meta-analysis and systematic review have a long history of use in other 
disciplines. Its applicability to software engineering has been studied relatively 
recently, as a way of getting greater benefit from the fairly few and expensive stud-
ies that are run on software engineering phenomena.
Procedure. The procedure for conducting meta-analysis in software engineering 
has been specified in previous publications. The information below has been sum-
marized from Miller (Miller, 2000) unless otherwise noted. For purposes of com-
parison, we discuss the meta-analytic procedure for quantitative data using the 
same broad steps as we used for the more general systematic review approach. 
However, since this type of meta-analysis is concerned with a statistical test of 
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quantitative data, many of the phases can be described in more detail, and require 
more constraints, than does the general systematic review process.3 We map these 
activities to our generic knowledge-building process as follows:

● Define topic. The research topic investigated by a meta-analysis should be 
expressed in the form of a relationship between two variables. Although this is 
a matter of debate, the conservative approach is that the meta-analysis should be 
done between two variables only. Separate analyses should be run if there are 
more than two variables of interest.

● Identify search parameters. Although no specific guidelines are given on how to 
run the search, a number of important constraints govern which sources can be 
used in the meta-analysis:

❍ Meta-analysis requires some knowledge about the individual data sets that it 
analyzes. Hence, only studies can be used which report the appropriate infor-
mation regarding the results. If the raw data is not available, then the process 
requires from each source at least the mean, variance (or standard deviation), 
number of subjects, and details about the normality of the data. When non-
significant results are reported an estimate of the statistical power of the 
experiment should be included.

❍ Independence of the studies is important. Selecting studies among which 
some dependencies exist can weaken or invalidate the results.

❍ Miller notes that “[c]urrently no work exists, which attempts to validate the 
use of meta-analysis for non-experimental results,” and therefore recom-
mends that researchers in software engineering not use evidential data from 
sources other than experiments in meta-analysis at this time. (The reasoning 
is that the randomization which takes place in experimental studies elimi-
nates bias and confounding factors within the experimental results.) Thus it 
may be more appropriate, and is certainly safer, to analyze the results from 
different types of studies separately and then examine whether they tell a 
consistent story.

● Find evidence. This activity should take the form of an exhaustive literature 
search aimed at finding all empirical evaluations which describe relationships 
between the two variables of interest.

● Analyze evidence. As some authors have noted, there is a first pass that is neces-
sary over the collected set of sources “to reconcile the primary experiments – 
i.e., define a common framework with which to compare different studies. This 
involves defining common terms, hypotheses, and metrics, and characterizing 
key differences” (Perry et al., 2000). In a second pass, the data must be examined 
more deeply for:

❍ Errors in the individual data sets that could be corrected

3 We recognize that procedures have been described for meta-analysis of qualitative data, e.g., 
Paterson et al., 2001, but as we are aware of no instances where they were applied in software 
engineering research we keep this section focused on quantitative applications.
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❍ Quality of the studies, in order to assign a weighting to each. In order to avoid 
bias, Miller notes that the recommended practice is to organize an independ-
ent panel of experts

● Integrate evidence. Having compiled and created a common framework for 
the individual data sets, integrating the evidence is done by means of run-
ning the proper calculation over the data values obtained. This will provide 
a quantitative, statistically valid answer to the question of whether there is a 
significant relationship between the two variables of interest. One important 
note for the analysis is that Miller recommends that meta-analysis not be 
employed to resolve differences among conflicting results. Meta-analysis 
was designed to combine results from similar experiments, not to deal with 
heterogeneous data sets.

3.2.1. Lessons Learned in Application to Software Engineering

In the software engineering domain, this approach has been applied in relatively 
few cases. Certainly one of the most relevant of these is the study by Miller (2000), 
in which meta-analysis was applied to abstract conclusions across defect detection 
experiments (i.e., experiments that ask the question: “Which (if any) defect detec-
tion technique is most effective at finding faults?”). This was an important test of 
meta-analysis in the software engineering domain, as defect detection techniques 
are among the most often-studied software engineering phenomena. Hence, if suf-
ficient data could not be obtained on this topic, it would be difficult to understand 
how meta-analysis could be suitable for many other topics in software 
engineering.

However, the results from Miller’s study were inconclusive. On a review of the 
literature, only five independent studies could be found which had investigated 
similar enough hypotheses and used similar enough measures to be compared. 
Upon analysis of the data the results of those studies were so divergent that meta-
analysis was not deemed to be applicable. A possible reason for this is that the 
effectiveness of defect detection techniques is highly dependent upon the types of 
defects in the artifact being examined; the studies included in Miller’s analysis did 
not describe the defect type information in sufficient detail that a mapping could 
be made to transform the results onto a common taxonomy. Thus, it could not be 
assessed whether those studies applied the techniques to defect profiles that were 
at all comparable.

A related use of this technique in software engineering was the attempt by Hayes 
to abstract results across five studies of inspection techniques, where four of the 
studies were either partial or full replications of the first (Hayes, 1999). In this case, 
the study designs were all very similar, which should have facilitated the ability to 
draw a common conclusion from this body of information. However, Hayes was 
forced to conclude that the effect sizes were significantly different across the stud-
ies and hence that a meta-analysis was not an appropriate method for reasoning 
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about the underlying phenomenon. Hayes is able only to speculate about some 
causes for this – for example, that the studies were run in different cultural contexts 
and by subjects with different levels of experience – but it is worth noting that these 
resulting hypotheses may be of as much practical interest to the research commu-
nity as a successful meta-analysis would have been.

A final application of meta-analysis in the software domain that is especially 
worthy of note was a study conducted by Galin and Avrahami (2005). These 
authors attempted to address the question of whether software quality assurance 
programs work by conducting a meta-analysis of studies examining the effects of 
the Capability Maturity Model (CMM) for software. The authors point out that 
CMM has been one of the most widely-deployed software process improvement 
methods for an extended number of years, and so would be among the most likely 
approaches for which sufficient data would exist. For the same reason, this analysis 
was also a good test of the suitability of meta-analysis for software engineering 
research. In this case, the results were more positive: 22 studies were found that 
examined the effects of the CMM on software process improvement and, of these, 
19 contained sufficiently detailed quantitative information to be suitable for analy-
sis. The analysis did find substantial productivity gains when organizations 
achieved the initial improvement levels of the CMM (although data was missing 
that addressed higher levels of achievement).

In the end, the lesson learned about applying meta-analysis to software engineer-
ing seems to be that: “…the heterogeneity of current empirical results is a major limi-
tation in our ability to apply meta-analytic procedures” (Miller, 2000). Because of the 
large amounts of variation from so many different context variables, which exists in 
any set of software engineering experiments, we may be unable to generate statisti-
cally definitive answers for many phenomena other than those with the largest effect 
sizes (e.g., organizations going from an undisciplined development process to achiev-
ing initial levels of the CMM). This is true even in cases which seem to lend them-
selves to cross-study analysis, for example, topics for which there is a rich body of 
studies, some of which may even be replications of one another. For many other top-
ics of interest which do not have such a rich set of studies, which tend to be the ones 
of most interest to researchers and practitioners, it is still an open question whether 
the studies undertaken so far are additive and can be combined via meta-analysis to 
contribute to an eventual body of knowledge.

3.2.2. Assessment

● Applicability for quantitative data: +
● When sufficient studies with quantitative results can be found, meta-analysis is 

the most rigorous way of combining those results.
● Applicability for qualitative data: −
● Meta-analysis commonly relies on statistical tests that are not suited for qualita-

tive data. Methods for applying meta-analysis to qualitative analysis have been 
described but not yet applied in the field of software engineering.
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● Scalability: +/−
● As with any technique, the number of suitable studies that could be found would 

depend on how the researcher defines the eligibility criteria. As an example, 
Miller’s case study (Miller, 2000) starts with a relatively loose criteria (that all 
studies measure the same effect) but notes that it could be tightened, for example 
by stipulating that only a particular type of study design be used, or that small 
studies be either dropped from the analysis or given less weight. However, given 
the relative scarcity of software engineering data, the looser criteria is probably 
suitable for the field now. Although the study by Galin and Avrahami was able 
to use 19 out of 22 sources found, the more typical experience in software engi-
neering studies at the moment seems to be that a sufficient number of studies is 
more difficult to find.

● Objectivity: +
● The objectivity of the approach should be seen as quite high: the procedure and 

statistical methods are very well specified. Different meta-analyses applied to 
the same datasets will always produce the same answer.

● Fairness: +/−
● Since no specific guidelines are given for how researchers should conduct the 

literature search to find evidence sources, the process will be as fair and unbi-
ased as the researcher’s search approach.

● Ease of use: −
● The outputs of this approach are aimed more at researchers than at practitioners. 

Training in statistical methods is necessary in order to apply the technique and 
interpret the results correctly.

● Openness: +/−
● There are no special requirements of the technique with respect to openness. It 

is to be expected that any serious meta-analysis would be subjected to peer 
review on its way to publication, and hence should theoretically allow reviewers 
to replicate the same analysis if desired.

● Cost: +/−
● There are no special constraints on cost. There are no special documentation 

requirements.

3.3. An Experience Portal-Centered Approach

Scientists at the Fraunhofer Center – Maryland developed an approach for accumu-
lating and analyzing disparate evidence sources in 2002, to help the U.S. Department 
of Defense provide information for a central best practices clearinghouse about 
software acquisition and development. In contrast to the previous approaches dis-
cussed, there is no single comprehensive reference, although details of the approach 
have been published (Shull and Turner, 2005; Feldmann et al., 2006). The general 
method which was instantiated in the clearinghouse extends previous knowledge-
building approaches used in the Experience Factory method (Basili et al, 1994a) 
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and is known as EMPEROR (Experience Management Portal using Empirical 
Results as Organizational Resources).

An important way in which EMPEROR differs from the Experience Factory as 
well as from systematic reviews and meta-analysis is that it is designed to be exe-
cuted via a community rather than a single research team. EMPEROR provides a 
mechanism for users in the field to submit their experiences with a given technol-
ogy and for such experiences to be reflected in the summarized knowledge. Thus, 
it aims at abstracting conclusions at a different level than the previously mentioned 
methods.

This approach was primarily designed for decision support but is also useful for 
theory generation.
Procedure. The basic procedure for building knowledge through the EMPEROR 
approach was defined in several papers (Shull and Turner, 2005; Feldmann et al., 
2006) and is summarized below. An important distinction from the previous 
approaches in this chapter is that EMPEROR imposes lower barriers to including 
information in the analysis, in order to be more inclusive of experiential informa-
tion from participants. Less-than-rigorous information may therefore be entered as 
part of the knowledge base although it is labeled as such, and the summarized 
analysis is checked later to make sure that such information has not been overly 
relied on in forming conclusions.

● Define topic. As with other approaches, EMPEROR requires that the topic of 
knowledge gathering first be defined. Although this topic definition might be in 
the form of a hypothesis, it may also be simply a particular practice or technique 
about which the available evidence should be summarized. In general, topics 
investigated with this approach are of the form: What is the expected outcome 
of using a particular practice in a certain environment?

● Identify search parameters. Also similar to other approaches, EMPEROR con-
tains a step in which the person applying the process must make explicit which 
types of evidence will be acceptable to the search and in which venues to look 
for that evidence. EMPEROR however is less restrictive and allows less rigor-
ous types of evidence to be included (e.g., interviews, experience reports, white 
papers) both to get a more inclusive survey of the state of the practice and 
because for many questions sufficient amounts of highly rigorous studies are 
simply not to be found. This view of the software engineering literature is sup-
ported by many of the example applications of meta-analysis and systematic 
review discussed in previous sections.

● Find evidence. The search for the evidence is conducted given the constraints 
decided upon. When the published literature is found to be significantly lacking, 
researchers are advised to consider conducting interviews with representative 
practitioners in order to create additional workable knowledge. For each evi-
dence source, a template is filled out; the information entered in such a template 
is expected to be largely textual. Where quantitative evidence is found it should 
be recorded taking special care to record the unit of measure along with the val-
ues. It is not expected that all evidence on the same topic will be recorded in the 
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same measures or in measures that can be translated one to the other. This phase 
of the procedure may go on for an extended period of time. Evidence may be 
allowed to accumulate opportunistically, with new templates being filled out as 
new evidence becomes available. The evidence found so far is made available 
for interested parties, e.g., at a website that can be updated as new evidence is 
found.

● Analyze evidence. As each evidence template is completed, it is assigned a 
measure of trustability based upon objective descriptions of how rigorously the 
practice under investigation was applied, the results were measured, and how 
results were reported. An example trustability scale (Feldmann et al., 2006) 
ranks each evidence source on a scale of 1 (signifying anecdotal evidence from 
a single source) to 20 (sustained and measured evidence that has undergone peer 
review).

● Integrate evidence. When sufficient evidence has been collected, a textual sum-
mary is constructed that describes the body of evidence that has been found. The 
summary is authored by a subject matter expert, that is, someone with sufficient 
knowledge of the topic area so as to be able to describe the important informa-
tion from the knowledge accumulated. Before being published, the summary is 
reviewed by an objective, outside panel consisting of representatives from 
industry, government, and academia. This panel reviews the summary from the 
point of view of accuracy and objectivity (especially whether all of the conclu-
sions can be traced back to a statement in the evidence templates) and repre-
sentativeness (whether the evidence profiles that were used represent 
environments of interest and whether the evidence sources used do not represent 
a biased subset of users).

3.3.1. Lessons Learned in Application to Software Engineering

In the software engineering domain, this approach has been applied so far only in 
the context of the US Department of Defense’s Best Practices Clearinghouse 
(Dangle et al., 2005). This single project contains analyses of several different 
practices, however, and hence several different example applications of the tech-
nique. These applications range from topics for which experiential data of all kinds 
is very easy to find (e.g., the costs and benefits of software inspections or spiral 
development) to topics for which the available data is much more scarce (e.g., the 
costs and benefits of a process variant known as performance-based earned value 
management).

As the project repository is currently in an initial phase, the approach will 
shortly undergo a more thorough evaluation as the project resources are opened up 
to the user community. Lessons learned will be analyzed and reported on in the near 
future. Among the most important aspects to be tested in this effort, however, is the 
question of whether an active community can be built around such a repository and 
whether it will work to contribute to and refine the evidence collection and hence 
the summarized information that can be built atop it.
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3.3.2. Assessment

It is important to note again that the EMPEROR approach proceeds in a very dif-
ferent manner than the other ones discussed in this chapter. Analyses in this 
approach are always open to review by the user community, so as to elicit informa-
tion that may have been missed in the initial review and to allow users to get the 
benefits of information before the entire review has been completed. Also, rather 
than take a restrictive approach and allow only the highest-quality evidence to be 
included in the analysis, EMPEROR will allow less-rigorous types of evidence 
(e.g., interviews, experiential anecdotes) as long as such evidence is always labeled 
with an appropriate caveat. Our discussions with our user advisory group has indi-
cated that users are happy to get what guidance is available, as long as they know 
the appropriate level of confidence to place in it. Given the dearth of highly-rigor-
ous studies that exists on many topics, there seems to be a need for workable 
interim solutions that can give some guidance.

● Applicability for quantitative data: +
● The process makes no special distinction between qualitative and quantitative 

data; it is equally well suited to both.
● Applicability for qualitative data: +
● Because the final summary of abstracted information is text-based, it is very 

well suited to incorporating qualitative data.
● Scalability: +
● The process has been designed to be as inclusive as possible. Any incoming 

evidence has only to pass a sanity check by a subject matter expert. However, 
each admitted evidence source is always tagged with an objective indicator of 
its quality.

● Objectivity: −
● The EMPEROR approach is more susceptible to subjectivity than the other 

approaches. However, it contains safeguards that do try to guard against such 
problems. For example, because the barriers to entry are low, evidence may be 
submitted that is anecdotal and subjective. However, this evidence would be 
tagged as of lower quality and should be marked as of less importance when the 
summary is created. As another example, the summary itself is a textual sum-
mary that needs to combine many disparate sources of evidence and many dif-
ferent measures of a practice’s effectiveness. To guard against this, the process 
requires that the summary is always created by an expert in the topic under study 
and furthermore, that it be reviewed and accepted (or not) by an outside panel 
of experts representing different points of view.

● Fairness: −
● Similarly to objectivity, the approach is susceptible to bias but contains internal 

safeguards that attempt to mitigate this. For one example, there are no defined, 
repeatable search criteria for finding evidence sources. However, by stipulating 
that the in-process results are always visible to users, the approach allows users 
who do not see their own experiences represented in the repository to submit 
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new evidence that includes their own point of view, helping to correct any bias. 
As a second example, the textual summary may include bias if the included evi-
dence sources exhibit bias. However, the objective outside panel of experts that 
reviews completed summaries is charged with assessing this. It may also be 
worth noting that, unlike the other two approaches discussed in this chapter, 
EMPEROR may suffer less from publication bias (i.e., the threat that negative 
results on a particular topic, or results that do not match the conventional wis-
dom, are less likely to be written up or accepted as part of the published litera-
ture). EMPEROR avoids this by allowing the submission of less rigorous 
unpublished experiential data (e.g., via interviews) that attempt to paint a more 
accurate picture of the state of the practice.

● Ease of use: +
 A unique point of the EMPEROR approach is that final vetting of summaries 

and results is done by representatives who look not only at the accuracy of 
results but also of the usefulness for the targeted users.

● Openness: +
● All in-process evidence and summary information are provided, with traceabil-

ity links from one to another. Even the scoring models are made explicit, so that 
users looking to understand why an evidence source received a particular trusta-
bility rating can see the underlying scoring model. This openness has advantages 
that go beyond allowing peer review of the summaries that are produced. The 
open nature of the EMPEROR approach, as reflected by the requirement to 
publish in-process reviews, helps to identify areas where more evidence is most 
important to find. For example, practices for which there is a large degree of 
anecdotal information are ones which could benefit from a more rigorous study 
to either confirm or deny the conventional wisdom. The process can also work 
in the other direction: Practices for which there are a large number of rigorous 
academic studies but no experiential information from industrial contexts may 
be good candidates for early adopters in commercial environments to try out.

● Cost: +/−
● Another unique aspect is that the EMPEROR approach requires the publication 

of all materials and results to date, even though the process is ongoing. Thus, 
end users of the information need not wait until the entire process has been 
completed to get some benefit. Building up the evidence sets and the resulting 
summaries can be a costly process, but the entire cost is not required to be paid 
before any benefit is seen by users of the information.

4. Discussion and Conclusions

For a direct comparison of the approaches, we summarize the evaluations for each 
of the approaches along our eight quality attributes in Table 6. 

The table helps to detect some interesting commonalities and differences among 
the techniques:
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● Basing theories on quantitative data seems to be the “standard” approach to 
building up theories from across multiple studies, as all of the approaches are 
designed to abstract theories from quantitative results. However, as has been 
noted in many of the previous sections, sufficient quantitative data cannot 
always be found for many topics of interest. For this reason, the additional qual-
ity attributes are especially helpful in making decisions about the applicability 
of approaches for different issues.

● If the majority of experiential information on a topic is expected to be in the 
form of qualitative data (or quantitative data collected using different incompat-
ible measures), the portal-centered approach is an appropriate choice for com-
bining the evidence sources to abstract a general theory. However, the price to 
be paid for this ability is a reduction in the rigor (objectivity and fairness) of the 
resulting conclusions. Although the portal-centered approach includes different 
levels of quality checking that attempt to remove subjectivity and bias, there is 
more risk in using this approach than there is for the other approaches, which 
remove unrigorous evidence by definition.

● Similarly, there is a tradeoff to be had between the inclusiveness of the tech-
nique (scalability) and the rigor of the results (fairness and objectivity). The 
portal-centered approach allows researchers to include less than rigorous evi-
dence sources in the analysis, although the confidence in each is marked with a 
trustability score. However, again this introduces more risk than approaches 
which will only accept the most rigorous evidence sources as input. The final 
decision should of course be based on how much evidence is expected to be 
available to support interesting and relevant theories on the topic of interest – 
and the rigor of that decision should be understood and labeled.

● The ease of use attribute helps to highlight a major difference between the por-
tal-centered approach and the other two approaches: The portal-centered 
approach focuses on providing decision support to practitioners (i.e., providing 
useful information at the expense of complete rigor), while systematic review 

Table 6 Approaches and quality attributes

Quality 
attributes 
⇒

Applicability 
to 
quantitative 
data

Applicability 
to 
qualitative 
data Scalability Objectivity Fairness

Ease 
of 
use Openness Cost

⇓ Approach 
Systematic 

review
+ − − + + +/− + −

Meta-
analysis

+ − +/− + +/− − +/− +/−

Portal-
centered 
approach

+ + + − − + + +/−
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and meta-analysis are focused on providing highly rigorous results (while trad-
ing away ease of understandability to practitioners). A related issue is that the 
portal-centered approach intends to provide information that can support a given 
decision, not provide a definitive answer to a research question.

● All of the approaches are “open” in that they provide some transparency of the 
process to interested parties. Both, the systematic review and the portal-centered 
approach have this as an explicit goal for providing high-quality information.

● All of the approaches are costly; none are cheap to apply. Systematic review 
may have the most overhead in this regard, as has been commented by multiple 
researchers who attempted to apply the process guidelines with full rigor. The 
portal-centered approach is unique in defining useful in-process deliverables 
that can be published to provide value to users before the final analysis is 
completed.

As indicated by this comparison, there is no single approach that is capable of meet-
ing all of the quality attributes. A major theme that comes through in the analysis 
is that full rigor is in tension with the ability to include all types of empirical infor-
mation and provide easy-to-understand conclusions aimed at practitioners. A key 
challenge for the future may lie in managing these tradeoffs better, that is, in find-
ing new approaches that combine aspects of the approaches discussed in this paper, 
to yield positive ratings along more of the quality attributes.

Ongoing research is attempting to address exactly this issue, for example by 
providing relatively easy-to-use approaches for converting qualitative data into the 
quantitative data that is usable by meta-analysis and systematic review (Port et al., 
2006), or by providing easy-to-use approaches for combining different studies that 
retain more rigor (Mohagheghi and Conradi, 2006). As this work is fairly new and 
has not yet been applied in many contexts, it is an open question of how successful 
it will be in marrying rigor with a less costly, more practical approach. However, 
such exploration is necessary if we as a field are to aim for truly robust approaches 
to theory building that can best leverage the multiplicity of kinds and types of exist-
ing empirical evidence.
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Chapter 14
Replication’s Role in Software Engineering

A. Brooks, M. Roper, M. Wood, J. Daly, and J. Miller

Abstract We provide motivation for researchers to replicate experiments in 
 software engineering. The ideology of replication is discussed. We address the 
question: Is an experiment worth repeating? The current lack of replication studies 
is highlighted. We make clear that exact replication is unattainable and we draw 
on our first experience of performing an external replication. To categorise various 
kinds of replication, we propose a simple extension to Basili et al.’s framework for 
experimentation in software engineering. We present guidance as to the level of 
reported detail required to enable others perform a replication. Our conclusion is 
that there is only one route for empirical software engineering to follow: to make 
available laboratory packages of experimental materials to facilitate internal and 
external replications, especially the latter, which have greater confirming power.

1. Introduction

Experimental design is difficult and the experimental process can be error prone. 
As a consequence, all experimental results should be reproducible by an external 
agency. By other researchers successfully repeating an experiment, confidence is 
built in the procedure and the result. Without the confirming power of external 
replications, a result should be at best regarded as of limited importance and at 
worst with suspicion and mistrust.

We distinguish two main forms of replication: internal and external. Internal 
replication is undertaken by the original experimenters (or teams that contain mem-
bers of the original experimental team): they repeat their own experiment. External 
replication is undertaken by independent researchers and is a critical verification step. 
We are not concerned here with replication as it applies to an individual experimental 
design.

The section that immediately follows provides motivation for researchers to 
replicate experiments in software engineering. There then follows sections on 
the theory of replication and replication in practice. As subsections of the latter, 
we discuss criteria for deciding whether an experiment is worth repeating, the 
 frequency of replication studies, the unattainability of an exact replication, and 
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our first experience of performing an external replication. In the section that 
then  follows, to categorise various kinds of replication, we present a simple 
extension to Basili et al.’s (1986) framework for experimentation in software 
engineering. The penultimate section presents guidance as to the level of 
reported detail required to enable others perform a replication. In the final 
 section, we conclude that there is only one route for empirical software 
 engineering to follow: to make available  laboratory packages of experimental 
materials to facilitate internal and external replications, especially the latter, 
which have greater confirming power.

2. Replication: The Motivation

No one doubts the need for software engineers to work from principles and guide-
lines in which the professional community has high confidence, all the more so if 
the application is safety critical. High levels of confidence are only attained when 
independent researchers successfully replicate an experiment. Without the confirm-
ing power of external replication, many principles and guidelines in software 
 engineering should be treated with caution.

Much is to be gained, therefore, by critical examination of previous experiments, 
by identifying experiments that are worthy of replication, and by replicating these 
experiments externally.

Huxley (1965) has noted,

And in science, as in common life, our confidence in a law is in exact proportion to the 
absence of variation in the result of our experimental verifications.

So the greater the number of experimental verifications the better, at least until 
such time as additional verifications carry no further power of confirmation. 
Moreover, given the human component and the rich variety of software and hard-
ware technologies, it surely is beholden on the community to perform many, many, 
such verifications. Only under exceptional circumstances should one-shot studies 
involving subjects be relied upon. For example, when the following criteria are all 
met: (1) a large number of subjects were used, (2) the effect present is so large, the 
use of statistical tests to convince the reader that an effect exists are unnecessary, 
and (3) peer review has not found any criticism with the work. Even then of course 
the effect cannot be extrapolated to just any context. Thus, we strongly agree with 
Curtis (1980) when he says,

…results are far more impressive when they emerge from a program of research rather than 
from one-shot studies.

Much is said and written about quality control in software development 
(e.g. Card (1990) ). It is ironic, to say the least, that the quality control mechanism 
of replication, especially external replication, is so little practiced amongst those 
doing the science behind the engineering. There is an additional irony: because of 
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the current state of software development practice, N-version programming has 
been suggested as a fault recovery mechanism (see, for example Kelly et al. 
(1991) ). We know so little about doing it right, we end up replicating system 
 functionality across several programs.

Concerning a particular flawed study in psychology which was accepted as 
being valid for a long time, Broad and Wade (1986) wrote,

Why did nobody helping to raise generations of undergraduates…replicate the study?

Such a question could equally as well be addressed to many educators of 
 software engineering students regarding numerous studies whose results are com-
municated often quite uncritically to students. We should all be motivated to carry 
out replications or at least give support to those who do.

3. Replication: The Ideology

Subjecting theory to experimental test is a crucial scientific activity. Popper (1968), 
however, explains that researchers must be sure of their results before reporting 
them, stating,

We do not take even our own observations quite seriously, or accept them as scientific 
observation, until we have repeated and tested them.

Coupled with this advice, modern scientific ideology now also demands that 
experimental results are replicable by an external agency. For example, as Lewis 
et al. (1991) rightly claim,

The use of precise, repeatable experiments is the hallmark of a mature scientific or engi-
neering discipline.

Furthermore, Goldstein and Goldstein (1978) take this one step further, stating,

We now take for granted that any observation, any determination of a ‘fact’, even if made 
by a reputable and competent scientist, might be doubted. It may be necessary to repeat an 
observation to confirm or reject it. Science is thus limited to what we might call ‘public’ 
facts. Anybody must be able to check them; experimental observations must be 
repeatable.

Not only must the researcher make his work repeatable, however, some even 
regard it as being beholden on the scientific community to execute replications just 
to verify the experimental results, as we ourselves do. For example, Huxley (1965) 
has stated,

In scientific inquiry it becomes a matter of duty to expose a supposed law to every possible 
kind of verification…

Broad and Wade (1986), in their description of the scientific ideology, consider 
replication to be the third check in verifying scientific claims, the first two being 
the peer review system that awards research grants and the journal refereeing that 
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takes place prior to publication. They also describe the ideal of reporting experiments 
as follows,

A scientist who claims a new discovery must do so in such a way that others can verify the 
claim. Thus in describing an experiment a researcher will list the type of equipment used 
and the procedure followed, much like a chef’s recipe. The more important the new 
 discovery, the sooner researchers will try to replicate it in their own laboratories.

Replication is also concerned with the way the original hypothesis is expressed. 
As Smith (1983) has stated,

Replication does two things: first, it tests the linguistic formulation of the hypothesis; 
 second, it tests the sufficiency of the explicit conditions for the occurrence of the 
phenomena.

For example, an original hypothesis may be linguistically expressed to almost 
encourage conclusions to be expressed with the wrong meaning. Henry and 
Humphrey (1990) state their hypothesis as follows: “the hypothesis of this study is 
that systems designed and implemented in an object-oriented manner are easier to 
maintain than those designed and implemented using structured techniques.” In 
order to test this, their subjects were asked to make modifications to an object-oriented 
system and a functionally equivalent procedure-oriented system. After their data 
analysis, Henry and Humphrey concluded that the “experiment supports the 
hypothesis that subjects produce more maintainable code with an object-oriented 
language than with a procedure-oriented language,” which turns around the meaning 
of the original hypothesis: the idea was not for subjects to produce code to be tested 
for maintainability, but rather to test the maintainability of two different  systems by 
having subjects perform maintenance tasks on them.

Another important example is that criteria for subject participation in a software 
engineering experiment may be insufficiently specific and, as a result, the replica-
tion yields different results due to variability unaccounted for between the 
subjects.

4. Replication: In Practice

4.1. Determining Worthy Experiments

Even if an empirical study was found to be replicable in terms of the availability of 
experimental artifacts, there can be, and usually are, several other reasons why one 
should first be wary of devoting the resources necessary to performing a replication 
study. The background may not be properly researched and the empirical study may 
be addressing the wrong issue. Inappropriate methods may be used; for example, 
when people are involved, very strictly controlled laboratory experiments may be 
less useful than more qualitative or ethnographic forms of experimentation. Errors 
of commission or omission may be made or experimental variables may be incorrectly 
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classified. For example, Scanlan (1989) criticises Shneiderman et al. (1977) for not 
making use of time as a measurable dependent variable (the subjects were all given 
as much time as they required) and claims as a result that “any significant differ-
ence may have been washed out.” From his experimental result, however, 
Shneiderman et al. called into question the utility of detailed flowcharts, stating 
“we conjecture that detailed flowcharts are merely a redundant presentation of the 
information contained in the programming language statements.” The experimental 
flaw identified by Scanlan can be classified as an error of omission, and one which, 
according to Scanlan, has seen “the decline of flowcharts as a way to represent 
algorithms.” Scanlan then went on to design a new experiment to test the same 
hypothesis using time as a dependent measure and claimed “my experiment shows 
that significantly less time is required to comprehend algorithms represented as 
flowcharts.”

Missing details may prevent the reader from forming their own view of the worth 
of the data, for example, error estimates may not be provided for some or all of the 
critical measures or raw data may be crudely summarised when it could have been 
presented in full. Statistical procedures may be misapplied. Alternative interpreta-
tions may not be presented: when people are involved it is more than likely that more 
than one interpretation can be placed on the data. We agree with Collins (1985) who 
regards an experiment to have been incompetently performed if some alternative 
explanation for the data has been overlooked. For example, in a comparative study 
of C and C++ development times involving only four subjects, Moreau and 
Dominick (1990) concluded that there was a significant difference in favour of C++. 
One of the four subjects, however, took very much longer on the third C++ task. The 
experimenters simply attributed this to a debugging difficulty, i.e. they appeared not 
to have checked that use of C++ itself was the real cause of the problem. Failure to 
discuss alternative interpretations of data can prevent a reviewer performing a mean-
ingful meta-analysis of the research area. (Brooks and Vezza (1989) is an example 
of a paper providing the reader with alternative interpretations.)

Should the report of an experiment pass a detailed critical reading of its design, 
execution, analysis and interpretation, then it can be deemed worthy enough to 
replicate.

4.2. Frequency of Replication Studies

In schools, colleges, and universities, replication studies are performed daily. But 
such studies are usually scaled-down versions of an original experiment, are 
performed by students in the act of learning, and have no confirming power. As 
Collins (1985) notes,

As more becomes known about an area however, the confirmatory power of similar-looking 
experiments becomes less. This is why the experiments performed every day in schools and 
universities as part of the scientific training of students have no confirming power; in no 
way are they tests of the results they are supposed to reveal.



370 A. Brooks et al.

Those employed in research rarely perform replication studies. Again, as Collins 
(1985) notes,

For the vast majority of science, replicability is an axiom rather than a matter of practice.

Broad and Wade (1986) also draw attention to the lack of replication work by 
stating,

How much erroneous…science might be turned up if replication were regularly practiced, 
if self-policing were a more than imaginary mechanism?

Broad and Wade (1986) reckon that the Simpson–Traction replication is,

…probably one of the very few occasions in the history of science in which the philoso-
pher’s ideal of replicability has been attained.

In 1961, Simpson had Traction watched while Traction unsuccessfully tried to 
repeat a biochemistry experiment concerned with protein synthesis.

Of course, since Broad and Wade’s remark was made, there has been the saga of cold 
fusion. Many laboratories around the world tried to repeat the cold fusion experiment 
by Pons and Fleischmann – see Close (1990) or Amato (1993). Ordinarily, no scientist 
would have dreamt of trying to replicate a poorly reported experiment. The lure of 
cheap, relatively pollution free energy in abundance, was an exceptional motivation.

Historically the frequency of external replication work in software engineering 
research has been low. For example, no mention of external replication studies were 
made in Sharpe et al.’s (1991) investigation of the characteristics of empirical 
software maintenance studies between 1980 and 1989, nor in Roper’s (1992) 
selected annotated bibliography of software testing.

More recently, even with the advent of a specialist journal such as the Empirical 
Software Engineering journal, the frequency of external replication work remains 
low, with fewer than 15 publications specifically addressing replication since the 
inception of the journal in 1996. A systematic survey of controlled experiments in 
software engineering between 1993 and 2002 by Sjoberg et al. (2005) found only 
twenty studies claiming to be replications of which only nine were external replications. 
Interestingly, six of these nine external replications are said to have failed to 
confirm the results of the original experiment.

This relative lack of output is likely because of the effort and resources needed 
to conduct an experiment, the lack of availability of laboratory packages of experi-
mental materials, and last, but perhaps not least, the lack of glamour associated with 
replicating the work of others.

4.3. The Unattainability of Exact Replication

Care must be taken, however, to clarify what is meant by replication. The Universe 
is forever changing. Human observers and subjects are unique (Brooks (1980) and 
Curtis (1980) report on empirically discovered programming ability differences 
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ranging from 4–1 to 25–1). There is no end to the number of measurements that can 
be made to describe the experimental setting. The art of experimental science is in 
making neither errors of commission or omission. Accuracy of observations can 
always be improved upon until such time as the Uncertainty Principle becomes 
important. Strictly speaking, it is more correct to talk of partial replication and the 
goal of performing as near exact replication as possible. Exact replication is 
unattainable.

According to Broad and Wade, exact replication is an impractical undertaking 
because the recipe of methods is incompletely reported, because to do so is very 
resource intensive, and because credit in science is won by performing original 
work. They do, however, draw attention to the important activity of improving upon 
experiments. They state,

Scientists repeat the experiments of their rivals and colleagues, by and large, as ambitious 
cooks repeat recipes - for the purpose of improving them. All will be adaptations or 
improvements or extensions. It is in this recipe-improvement process, of course, that an 
experiment is corroborated.

With respect to poor statistical power levels caused by too few subjects, Baroudi 
and Orlikowski (1989) qualify this and note,

Where a study fails to reject a null hypothesis due to low power, conclusions about the 
phenomenon are not possible. Replications of the study, with greater power, may resolve 
the indeterminacy.

Statistical power is the probability that a particular experiment will detect an 
effect between the control group (e.g. no use of inheritance) and the treatment 
group (e.g. use of inheritance). Calculations of statistical power probabilities 
depend on how many subjects take part, the size of any effect, and the p-value used 
in statistical tests (often 0.05). If the effect size is not large, and too few subjects 
are used, statistical power may be much less than 0.8 (a typical recommended 
level). The effect may go undetected. A replication with twice the number of sub-
jects may boost the power level beyond 0.8 so that there is now a good chance of 
detecting the effect – at least eight out of ten experiments will detect the effect. In 
pioneering experimental work, it can be difficult knowing what effect size to 
expect, and it becomes the duty of the investigator to use as many subjects as is 
practically possible.

4.4. An Example: Our Replication of Korson’s Experiment

Korson (1986) and Korson and Vaishnavi (1986) designed a series of four experi-
ments each testing some aspect of maintenance. The experiment which was of 
greatest interest to us (Experiment 1) was designed to test if a modular program 
used to implement information hiding, which localizes changes required by a modi-
fication, is faster to modify than a non-modular but otherwise equivalent version of 
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the same program. The non-modular (or monolithic) program was created by 
replacing every procedure and function call in the modular version with the body 
of that procedure or function. Programmers were asked to make functionally 
equivalent changes to an inventory, point of sale program – either the modular version 
(approximately 1,000 lines long) or the monolithic version (approximately 1,400 
lines long). Both programs were written in Turbo Pascal. The changes required 
could be classified as perfective maintenance as defined by Lientz and Swanson 
(1980) i.e. changes made to enhance performance, cost effectiveness, efficiency, 
and maintainability of a program. Korson reckoned that the time taken to make the 
perfective maintenance changes would be significantly faster for the modular 
version. This is exactly what he found. On average, subjects working with a 
modular program took 19.3 min to make the required changes as opposed to the 
85.9 min taken by subjects working with a monolithic version of the program. With 
a factor of 4 between the timings, and with the details provided in Korson’s thesis, 
we were confident that we could successfully externally replicate Korson’s first 
experiment.

Our external replication (Daly et al., 1994b), however, shocked us. On average, 
our subjects working with the modular program took 48 min to make the required 
changes as opposed to the 59.1 min taken with the monolithic version of the pro-
gram. The factor between the timings was 1.3 rather than 4 and the difference was 
not found to be statistically significant.

To determine possible reasons for our failure to verify Korson’s results, we 
resorted to an inductive analysis. A database of all our experimental findings was 
built and data-mining performed.

A suggested relationship was found between the total times taken for the experiment 
and a pretest that was part of subjects’ initial orientation. All nine of the monolithic 
subjects appeared in the top twelve places when ranked by pretest timings. We had 
unwittingly assigned more able subjects to the monolithic program and less able 
subjects to the modular program. Subject assignment had simply been at random, 
whereas in retrospect it should have also been based on an ability measure such as 
that given by the pretest timings. The ability effect interpretation is the béte noir of 
performance studies with subjects and researchers must be vigilant regarding the 
lack of homogeneity of subjects across experimental conditions.

Our inductive analysis also revealed quite different approaches taken to program 
understanding by our subjects. Some subjects were observed tracing flows of 
execution to develop a deep understanding. We had evidence that the four slowest 
modular subjects all tried to understand the code more than was strictly necessary 
to satisfy the maintenance request. Others worked very pragmatically and focused 
simply on the editing actions that were required. We call this pragmatic  maintenance. 
Our two fastest finishers with the monolithic program explained in a debriefing 
questionnaire that they had no real understanding of the code.

Our inductive analysis revealed at least two good reasons as to why we did not 
verify Korson’s results and taught us many valuable lessons about conducting 
experimental research with human subjects. We were motivated to develop 
an experiment that would be easily replicable, and which would show once and for 
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all that modular code is superior to monolithic code, but it was clear to us that it 
was more important to understand the nature of pragmatic maintenance. How do 
software maintainers in industry go about their work? Is pragmatic maintenance a 
good or bad thing?

5. A Simple Extension to Basili et al.’s Framework

As stated earlier, we are not concerned here with replication as it applies to an indi-
vidual experimental design.

What we mean by internal replication is when researchers repeat their own 
experiments. For example, Korson (1986) and Korson and Vaishnavi (1986) 
claimed to have succeeded in providing internal replicability and stated,

…the study has demonstrated that a carefully designed empirical study using programmers 
can lead to replicable, unambiguous conclusions.

Internal replications involving an evolutionary series of experiments have some 
confirmatory power. In many areas of science, internal replications, carried out 
either by design, or as part of a program of research, or because the sensitivity of 
the results required improving, are relatively commonplace.

By external replication we mean published experiments carried out by 
researchers who are independent of those who originally carried out the empirical 
work. Greater confirmatory power inevitably comes with external replications.

Exact replication is unattainable, so it is important to consider and categorise the 
differences.

First, researchers must consider the experimental method. Should a similar or 
alternative method be used? A basic finding replicated over several different methods 
carries greater weight. As Brewer and Hunter (1989) have stated,

The employment of multiple research methods adds to the strength of the evidence.

Does a keystroke analysis of a software engineering task yield the same 
conclusions as observing users’ performance on the task? Are the conclusions the 
same as those obtained from a questionnaire survey of users who have performed 
the task?

As a first step, the existing method could be improved. For example, the replica-
tion might add a debriefing session with subjects after the formal experiment is over 
if no such debriefings too place during the original experiment. Such debriefings 
can provide many useful insights into the processes involved. This type of improve-
ment does not compromise the integrity of the replication.

Second, researchers must consider the task. Should a similar or alternative task 
be used? A basic finding replicated over several different tasks carries greater 
weight. As Curtis (1980) has stated,

When a basic finding…can be replicated over several different tasks…it becomes more 
convincing.
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Does a complex refactoring task yield the same conclusions as a simple refactoring 
task?

Or should the task be improved by, for example, making it more realistic? For 
example, rather than refactor a small program of a few hundred lines, refactor 
widely used open source software of many tens of thousands of lines of code.

Third, researchers must consider the subjects. For example, should a similar or 
alternative group of subjects be used? A basic finding replicated over several different 
categories of subjects carries greater weight. Does working with undergraduates 
produce the same conclusions as working with postgraduates? Are the conclusions 
the same as those obtained working with professional software engineers?

Or should the group of subjects be improved by, for example, by using more 
subjects or more stringent criteria for participation?

A comprehensive framework for experimentation in software engineering was 
established by Basili et al. (1986). The four main phases of the framework are: 
definition, planning, operation, and interpretation.

In the definition phase, a study is characterized by six elements: motivation, 
object, purpose, perspective, domain, and scope. For example: A motivation might 
be to understand the benefits of inheritance. The object might be the maintenance 
process. The purpose might be to evaluate. The perspective might be that of the 
software maintainer. The domain might be the individual programmer working on 
a program. The scope might be several programmers working on several programs, 
which captures the notion of internal replication within an individual experimental 
design.

In the planning phase, a study is characterised by design, criteria, and measure-
ment. For example: A 2 × 3 factorial design might be used if we have several 
observations from two types of programmers (inexperienced and experienced) 
across three types of programs (no existing inheritance, inheritance of depth three 
used, inheritance of depth five used). Criteria might be the cost of implementing a 
maintenance request. Measurement might be the time taken to fulfill the request, as 
well as programmers’ views on the ease or difficulty of making the code changes.

In the operation phase, a study is characterised by three elements: preparation, 
execution, and analysis. For example: In preparation, a pilot study might be 
performed to check that implementing the maintenance request does not take an 
excessive amount of time. In execution, start and end times might be recorded and 
programmers’ views taken in debriefing sessions. In analysis, a 2 × 3 analysis of 
variance might be applied and statistical results compared with programmers’ views.

In the interpretation phase, a study is characterised by three elements: interpreta-
tion context, extrapolation, and impact. For example: The context might include the 
results of other published work on the maintenance of object-oriented programs. 
Extrapolation might suggest that the results from the laboratory study are generalizable 
to industry settings because professional programmers were employed in the study. 
Impact might involve applying the results in an industrial context. Basili et al. also 
point to another possible impact: that of replicating the experiment. They, however, 
do not explicitly distinguish between replication by the original experimenters 
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(internal replication) and replication by independent researchers (external replication). 
We propose their framework should be extended to distinguish between internal 
and external replication and its various forms where method, task, and subjects can 
each be either similar, alternative, or improved. So, for example: Under impact in 
the interpretation phase, the original experimenters might declare their intention to 
(internally) replicate the experiment with an alternative group of subjects or they 
might declare that the experiment needs now to be externally replicated. Under 
motivation in the definition phase, independent researchers might declare a motiva-
tion to verify findings by externally replicating a study but with an improved 
method.

We believe it unnecessary at this stage to work with more detailed categoriza-
tions of replication. We note that Sjoberg et al. (2005) chose to categorise replica-
tions simply as close or differentiated. By close replications they mean that as far 
as possible the known conditions of the original experiment are retained. By differ-
entiated replications they mean variations are present in key aspects of the experi-
mental conditions such as the kind of subjects used.

Of course, if too many alternatives are used, or if the scale of any recipe-improving 
is too substantial, it becomes debatable whether the study counts as a replication. 
Initially, the power of confirmation will be high with external replication studies but 
there will come a point when a result is so well established that the replication 
ceases to have research value and the experiment should be moved from the 
research laboratory into the teaching laboratory.

Across the vector of (method, task, and subjects), we categorize our 
Korson (Daly et al., 1994b) replication as an example of (improved, similar, 
similar). The method is categorized as improved because we debriefed our 
subjects.

6. Reporting for Replications

Once an experiment has been performed, analyzed and the time comes for writing 
the findings, the researcher must provide as much detail surrounding the empirical 
work as possible in order to allow others to replicate. Jedlitschka and Pfahl (2005) 
have reviewed reporting guidelines for controlled experiments in software 
engineering, as is described elsewhere in this book, and present a proposal for a 
standard. As a minimum, their guidelines on the reporting of experimental design, 
analysis, and interpretation should be followed.

Unfortunately, numerous empirical studies in the software engineering literature 
are lacking in that the experimental methods are poorly reported so that it is impos-
sible to perform an external replication study. For example, instructions and task 
materials given to subjects may not be given in full, or may otherwise be unobtainable. 
Various authors in the past have criticised poor reporting, for example Basili et al. 
(1986) and MacDonell (1991).
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In our Korson replication (Daly et al., 1994a), we found problems with several 
details which prevented the fullest possible analysis and interpretation of both 
Korson’s results and ours. Reporting inadequacies with the Korson experiment 
were:

1. The experimenter employed monitors to time his subjects, and sort out problems 
which might arise with hardware failure and the like. It was not reported, how-
ever, whether these monitors controlled when a subject was ready to move from 
one experimental phase to the next, or simply just noted each phase time. Such 
information would have prevented speculation about monitor variability across 
the two studies.

2. Subject selection criteria was subjective in that almost any computer science 
student who had completed a practical Pascal programming course could have 
met it. For example, one criterion was “an amount of programming experience.” 
This should have been more objective by stating the minimum experience 
required, for example at least 2 years programming experience at college level. 
This may have reduced subject variability.

3. Expert times for testing the program were not published. There were three sepa-
rate ways to test the program, one way taking much longer than the other two. 
A comparison of results is required in order to explain variability that might have 
arisen.

4. Pretest results were not published. This would have made important reading as 
all subjects performed the same task; this would have allowed a direct compari-
son with our subjects’ times, and hence a direct comparison of the ability of our 
subjects to the original subjects. When timings such as these are collected they 
should always be published.

5. It was not made clear what was verbally communicated to the subjects prior to 
the experiment: was additional information given to them, were any points in the 
instructions highlighted, or was nothing said?

Of these reporting inadequacies, only the one regarding subjection selection is 
explicitly addressed by the guidelines proposed in Jedlitschka and Pfahl (2005). 
This illustrates the difficulties in conveying all necessary information required for 
external replication.

The original researcher, Korson, however, went much further than many 
researchers in reporting experimental details, and he must be commended for that. 
In his thesis he published his code for the experiments (both the pretest and the 
experimental code), and the instructions for both the pretest and experiment. 
He published individual subject timings rather than just averages, along with the 
statistical tests and their results. So, the original researcher has presented the 
major issues surrounding his experiment, but has unfortunately omitted details 
preventing the fullest possible interpretation of his work and the external 
replication.

We believe it is impractical to convey all the information necessary for external 
replication in a journal or conference paper. Experimental artifacts under considera-
tion such as designs, code, instructions, questionnaires, and the raw data, would 
typically add too many pages as appendices. Such information is best conveyed 
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over the internet as a downloadable laboratory package along with any underlying 
technical report or thesis. With a laboratory package in place, original researchers 
can more easily conduct internal replications, independent researchers more easily 
conduct external replications, and meta-analysts more easily combine raw data. 
Work by Basili et al. (1999) is exemplary in this regard, with the availability of lab-
oratory packages (http://www.cs.umd.edu/projects/SoftEng/ESEG/downloads.
html) stimulating a small family of internal and external replications and a conse-
quent improved understanding of perspective-based reading. Without a laboratory 
package in some form, an experiment is unlikely ever to be verified through internal 
or external replication. Given the scale of effort and resources required to conduct 
an experiment, not to facilitate reuse of the experimental artifacts, by providing a 
laboratory package, seems folly.

We agree with Basili et al. (1999) that somewhere in the laboratory package, 
validity threats should be detailed so that these may be addressed in future replication 
attempts. There is no advantage in performing a close replication – similar, similar, 
similar – of an experiment where a serious validity threat is present. Making an 
improvement to address a serious threat will yield a better experiment and results.

We also recommend that any laboratory package should report even seemingly 
minor details, for example, verbal instructions made at the beginning of an experi-
ment, to enable others perform an external replication. There may be times, however, 
when the only way reporting inadequacies are actually discovered is by replicating 
an experiment and analysing the results.

7. Conclusions

Basili et al. (1986) established a comprehensive experimental framework for soft-
ware engineering in which replication is recognised in the scope of an individual 
experiment and as an impact on future work. We have proposed a simple extension 
to this framework to explicitly recognise internal and external replication and its 
various forms: similar, alternative, improved, across method, task, and subjects. This 
extension applies to the motivation and impact subsections of the framework.

Routinely we are told Tool X or Technique Y is a panacea to many of software 
engineering’s problems, but where is the accompanying empirical evidence that can 
stand scrutiny, that has been verified by an independent research team? We con-
clude that there exists only one route for empirical software engineering to follow: 
to make available laboratory packages of experimental materials to facilitate inter-
nal and external replications, especially the latter, which have greater confirming 
power. The work of the replicator should be seen as glamorous not gruesome. By 
verifying results, so experiments can be subsequently crafted which software engi-
neering students can repeat as laboratory exercises. If results are not verified, we 
need not be too despondent. As with our replication of Korson’s experiment, it is 
very likely that the real issue requiring investigation comes to the fore. And those 
involved in conducting the replication will have improved their investigation skills 
enormously.
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