) | ‘M
AN

R | & " "
e ;
- F 4 #

N

Guide to Advanced
Empirical Software
Engineering

@ Springer

Guide to Advanced Empirical
Software Engineering

Forrest Shull « Janice Singer « Dag |.K. S§gberg
Editors

Guide to Advanced
Empirical Software
Engineering

@ Springer

Forrest Shull Janice Singer

Fraunhofer Center for Empirica NRC Ingtitute for Information Technology
Software Engineering National Research Council

College Park Ottawa

Maryland Canada

USA

Dag | .K. Sjgberg

Simula Research Laboratory
Lysaker

Norway

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library

Library of Congress Control Number: 2007934531

ISBN-13: 978-1-84800-043-8 e-|SBN-13: 978-1-84800-044-5
Printed on acid-free paper

© Springer-Verlag London Limited 2008

Apart from any fair dealing for the purposes of research or private study, or criticism or review,
as permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced,
stored or transmitted, in any form or by any means, with the prior permission in writing of the publishers,
or inthe case of reprographic reproduction in accordance with theterms of licencesissued by the Copyright
Licensing Agency. Enquiries concerning reproduction outside those terms should be sent to the
publishers.

The use of registered names, trademarks, etc., in this publication does not imply, even in the absence of
a specific statement, that such names are exempt from the relevant laws and regulations and therefore
free for general use.

The publisher makes no representation, express or implied, with regard to the accuracy of theinformation
contained in this book and cannot accept any legal responsibility or liability for any errors or omissions
that may be made.

987654321

Springer Sciencet+Business Media
springer.com

Contents

CONtrIDULOrS. . ot Vii

INtroductiont 1

Section |

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Section 11

Chapter 6

Chapter 7

Research Methods and Techniques

Softwar e Engineering Data Collection
for Field Studiesc 9
Janice Singer, Susan E. Sim, and Timothy C. Lethbridge

QualitativeMethods. o i 35
Carolyn B. Seaman

Personal Opinion SUrVeyS . ..o, 63
Barbara A. Kitchenham and Shari L. Pfleeger

The Focus Group Method as an Empirical
Tool in Software Engineering ..., 93
Jyrki Kontio, Johanna Bragge, and Laura Lehtola

Simulation Methods 117
Mark Muller and Dietmar Pfahl

Practical Foundations

Statistical Methodsand Measurement 155
Jarrett Rosenberg

Missing Data in Software Engineering. 185
Audris Mockus

Vi Contents

Chapter 8 Reporting Experimentsin Software Engineering......... 201
Andreas Jedlitschka, Marcus Ciolkowski,
and Dietmar Pfahl

Chapter 9 A Practical Guide to Ethical Research
InvolvingHumans., 229
Norman G. Vinson and Janice Singer

Chapter 10 The Management of University—l ndustry
Collaborations Involving Empirical Studies
of Software Engineering., 257
Timothy C. Lethbridge, Steve Lyon, and Peter Perry

Section III Knowledge Creation

Chapter 11 Selecting Empirical Methods for Software
EngineeringResearch. o 285
Steve Easterbrook, Janice Singer, Margaret-Anne Storey,
and Daniela Damian

Chapter 12 Building Theoriesin Software Engineering............. 312
Dag | .K. Sjgberg, Tore Dybd, Bente C.D. Anda,
and Jo E. Hannay

Chapter 13 Building Theoriesfrom Multiple Evidence Sources. 337
Forrest Shull and Raimund L. Feldmann

Chapter 14 Replication’s Rolein Software Engineering 365
A. Brooks, M. Roper, M. Wood, J. Daly, and J. Miller

Contributors

Bente C. D. Anda

Simula Research Laboratory, Department of Software Engineering
Lysaker, Norway, NO-1325

and

Department of Informatics, University of Oslo

Oslo, Norway, NO-0316

bentea@simula.no

Johanna Bragge

Helsinki School of Economics and Business Administration
Helsinki, Finland FIN-00101

johanna.bragge@hse.fi

Andy Brooks

University of Akureyri
Akureyri, Iceland IS 600
andy@unak.is

Marcus Ciolkowski

Software Engineering: Processes and M easurement Research Group (AGSE)
University of Kaiserslautern PO Box 3049

67653 Kaiserslautern

Germany

and

Fraunhofer Institute for Experimental Software Engineering, Fraunhofer-Platz 1
67663 Kaiserslautern

Germany

Marcus.Ciol kowski @i ese.fraunhofer.de

John Daly

Formerly of the Department of Computer Science, University of Strathclyde
26 Richmond Street,

Glasgow, Scotland G1 1XH

vii

viii Contributors

Daniela Damian

Dept. of Computer Science, University of Victoria
Victoria, British Columbia, Canada V8W 3P6
DanielaD@cs.uvic.ca

Tore Dyba

Simula Research Laboratory, Department of Software Engineering
Lysaker, Norway, NO-1325

and

SINTEF ICT

Trondheim, Norway, NO-7465

tore.dyba@sintef.no

Steve Easterbrook

Department of Computer Science, University of Toronto
Toronto, Ontario, Canada M5S 2E4
sme@cs.toronto.edu

Raimund L. Feldmann
Fraunhofer Center Maryland
College Park, MD 20742, USA
rfeldmann@fc-md.umd.edu

Jo E. Hannay

Simula Research Laboratory, Department of Software Engineering
Lysaker, Norway, NO-1325

and

Department of Informatics, University of Oslo

Oslo, Norway, NO-0316

johannay @simula.no

Andreas Jedlitschka

Fraunhofer Institute for Experimental Software Engineering, Fraunhofer-Platz 1
67663 Kaiserdautern

Germany

Andreas.Jedlitschka@iese.fraunhofer.de

Barbara A. Kitchenham

Keele University, School of Computing and Mathematics
Keele, Staffordshire, United Kingdom
b.a.kitchenham@cs.keele.ac.uk

Jyrki Kontio

Software Business Laboratory, Helsinki University of Technology
Helsinki, Finland FIN-02015 TKK

jyrki.kontio@tkk.fi

Contributors

Laura Lehtola

Software Business and Engineering Institute, Helsinki University of Technology
Helsinki, Finland FIN-02015 HUT

laura.lehtol a@tkk fi

Timothy C. Lethbridge

Schooal of Information Technology and Engineering, University of Ottawa
Ottawa, Ontario, Canada K1N 6N5

tcl @site.uottawa.ca

Steve Lyon

Mitel Networks

350 Legget Drive

PO. Box 13089

Ottawa, Ontario, Canada K2K 2W7
Steve Lyon@mitel.com

James Miller

Department of Electrical and Computer Engineering, University of Alberta
Edmonton, Alberta, Canada T6G 2E1

jm@ece.ualberta.ca

Audris Mockus

Software Technology Research Department, Avaya L abs Research
Basking Ridge, NJ 07920, USA

audris@research.avayal abs.com

Mark Mller

Robert BOSCH GmbH

Corporate Sector Research and Advance Engineering

Dept. CR/AEC - Corporate Systems Engineering Process Group
Postfach 300240, 70442 Stuttgart, Germany
mark.mueller2@de.bosch.com

Peter Perry

Mitel Networks

350 Legget Drive

P.O. Box 13089

Ottawa, Ontario, Canada K2K 2W7
Peter_Perry@mitel.com

Dietmar Pfahl

Schulich School of Engineering, University of Calgary, Electrical and
Computer Engineering Department

Calgary, Alberta, Canada T2N 1N4

dpfahl@ucalgary.ca

X Contributors

Shari Lawrence Pfleeger
Rand Corporation
Arlington, VA 22202, USA
shari_pfleeger@rand.org

Jarrett Rosenberg

Sun Microsystems

Palo Alto, CA 94303, USA
Jarrett. Rosenberg@ACM.ORG

Marc Roper

Department of Computer and Information Sciences, University of Strathclyde
Glasgow, Scotland G1 1XH

Marc.Roper@cis.strath.ac.uk

Carolyn Seaman

University of Maryland Baltimore County, Department of Information Systems
Baltimore, MD 21250, USA

cseaman@umbc.edu

Forrest Shull

Fraunhofer Center Maryland
College Park, MD 20742, USA
fshull @fc-md.umd.edu

Susan Elliott Sim

Department of Informatics, Donald Bren School of Information and Computer
Sciences, University of California, Irvine

Irving, CA 92967-3440, USA

ses@ics.uci.edu

Janice Singer

National Research Council Canada, Institute for Information Technology
Ottawa, Ontario, Canada K1A OR6

janice.singer@nrc-cnre.ge.ca

Dag |. K. Sjgherg

Simula Research Laboratory, Department of Software Engineering
Lysaker, Norway, NO-1325

and

Department of Informatics, University of Oslo

Oslo, Norway, NO-0316

dagg @simula.no

Margaret-Anne Storey

Dept. of Computer Science, University of Victoria
Victoria, British Columbia, Canada VV8W 3P6
mstorey @csr.uvic.ca

Contributors

Norman G. Vinson

National Research Council Canada, Institute for Information Technology
Ottawa, Ontario, Canada K1A OR6

Norman.Vinson@nrc-cnrc.gc.ca

Murray Wood

Department of Computer and Information Sciences, University of Strathclyde
Glasgow, Scotland, G1 1XH

Murray.Wood@cis.strath.ac.uk

Xi

| ntroduction

Empirical studies have become an important part of software engineering research
and practice. Ten years ago, it was rare to see a conference or journal article about
a software development tool or process that had empirical data to back up the
claims. Today, in contrast, it is becoming more and more common that software
engineering conferences and journals are not only publishing, but eliciting, articles
that describe a study or evaluation. Moreover, a very successful conference
(International Symposium on Empirical Software Engineering and Measurement),
journal (Empirical Software Engineering), and organization (International Software
Engineering Research Network) have al evolved in the last 10 years that focus
solely on this area. As a further illustration of the growth of empirical software
engineering, asearch in the articles of 10 software engineering journals showed that
the proportion of articles that used the term “empirical software engineering” dou-
bled from about 6% in 1997 to about 12% in 2006.

While empirical software engineering has seen such substantial growth, thereis
not yet areference book that describes advanced techniques for running studies and
their application. This book aims to fill that gap. The chapters are written by some
of the top international empirical software engineering researchers and focus on the
practical knowledge necessary for conducting, reporting, and using empirical
methods in software engineering. The book is intended to serve as a standard
reference.

The goals of this book are:

e To provide guidance on designing, conducting, analysing, interpreting, and
reporting empirical studies, taking into account the common difficulties and
challenges encountered in the field.

e To provide information across a range of techniques, methods, and quantitative
and qualitative issues, and in so doing provide atoolkit that is applicable across
the diversity of software development contexts.

o To present material that is adapted from work in other disciplines such as statis-
tics, medicine, psychology, and education, into a software engineering context.

We did not include introductory topics on how to design and run studies in
empirical software engineering, as this information has been covered adequately

1

F. Shull et al. (eds.), Guide to Advanced Empirical Software Engineering.
© Springer 2008

2 Introduction

in several other books and papers. To address these goals, the chapters in this book
are grouped according to three primary themes:

“Research Methods and Techniques’ presents discussions on the proper use of various
strategies for collecting and analyzing data, and the uses for which those strategies
are most appropriate. Our aim in this section is to present ideas about strategies that
are less often used in our field, which perhaps may provide some ideas about less
conventional but still rigorous and useful ways of collecting data. We also aim to
provide detailed information on topics such as surveys that in our experience often
contain methodological errors.

“Practical Foundations’ provides a discussion of several basic issues that a
researcher hasto get right before a study becomes meaningful. This section discusses
important, globa issues that need to be considered from the very beginning of
research planning. Chapters here discuss topics that are almost always going to be
important, regardless of the specific choices that are made about running the study.
Our aim in this section is to arm researchers with the information necessary to avoid
fundamental risks. For example, an entire study may be inappropriate if a researcher
doesn’t understand enough about metrics and statistics to collect the right measures;
aresearcher may not get the chance to run the study he/she wantsiif there is no good
way to cooperate with industry; or the results may be jeopardized if incomplete data
is collected by the study and the researcher don’t respond appropriately.

Finally, “Knowledge Creation” looks beyond the challenge of running an appro-
priate study to provide insight on what is becoming one of the most important
challenges in empirical software engineering today—using a set of disparate studies
(al of which may employ different designs and metrics) to provide useful decision
support on a question of interest. The conversion of discrete scientific resultsinto a
broadly useful “body of knowledge” on a topic is a difficult process, with many
opportunities for introducing bias if done incorrectly. Refining and employing
appropriate techniques in addressing this problem is one of the most important
challenges for ensuring the relevance of empirical software engineering and show-
ing its practical impact.

While wefeel that all of these topics are of interest to many workersin thisfield,
we do wish to direct the attention of certain readers to certain parts of the book.
There are four target audiences for this book:

1. Practising software engineering researchers, whether they reside in academia or
in industrial research labs.

Of primary interest to such readers may be the section on “Knowledge
Creation,” since building knowledge from multiple sources of data, suitable
for providing higher level answers to problems, continues to be of more
importance to the empirical software engineering community as a whole. At
the same time, our methods for abstracting such knowledge are not yet well
codified, and the chapters in this section raise awareness as well as inform
researchers about the methods currently being employed.

Researchers may be primarily either quantitatively or qualitatively
inclined. Both types will find issues of direct relevance to the typical prob-

Introduction 3

lems that they encounter in the “Research Methods and Tools’ section. That
section is designed to provide a mix of relevant and interesting content of
both types, as we feel strongly that the quantitative-qualitative distinction is
an arhitrary one, and interesting and relevant conclusions will always need to
combine a mix of both types of data. Overall, the methodological material
will inform readers about advanced and defensible techniques that they can
usein their research.

One last topic of specia interest may be that of reporting guidelines in
“Practical Foundations,” which can provide readers with guidelines that they
can use for reporting their results, either internally within their organisations
or in the scientific literature.

2. Practising software engineers whose work involves data analysis. This category
includes, for example, quality assurance personnel.

As budgets are sgueezed, there is more pressure to provide stronger evidence
and more convincing business cases to implement new technologies or make
process changes, and even to justify decisions already made. Therefore, any
knowledge that the engineers can use to help them achieve this goal is wel-
comed. The “Research Methods and Tools” section is of relevance to this
target group. Insofar as readers may be expected to address real problems of
practical interest, we have tried to make available a set of techniques that may
be able to help them. As no two project environments and constraints are
exactly alike, having as wide a variety of methods to apply will be beneficial.
Moreover, the chapters in “Practical Foundations” that deal with the science
of measurement and how to deal with common problems, such as missing
data, may also be of help.

For example, one may consider using data collected about a new technol-
ogy to estimate its effect on a larger process (simulation), understanding
whether there are hidden costs of such changes by understanding more than
just the dollar figure involved (qualitative methods), eval uating the impact of
process changes within the organisation (through surveys of technical staff),
customer surveys (survey design and focus groups), and performing appropri-
ate analysis of factors affecting the incidence of operational defects when
there are missing values in the defect databases (dealing with missing values).
In particular, organisations following the improvement path stipulated by
contemporary maturity/capability models are primary targets since these
models emphasize measurement and quantitative control at higher levels of
maturity/capability.

Other topics that may be of particular relevance for individualsin industry
performing empirical studies can be found in “Practical Foundations.” For
example, given that quality assurance personnel usualy rely on the co-operation
of the development and maintenance engineers, ethical behaviour will ensure
that none of the engineers are alienated. Furthermore, there may be legal
ramifications for unethical behaviour, particularly in countries with strong
labour laws (e.g., North European countries). The management of co-operation

4 Introduction

with universities will be relevant for those involved in joint industry-university
research projects. Since a successful collaboration depends on both parties,
the industrial side would also contribute to this success if they are aware of
these guidelines.

3. Graduate students in software engineering. The book could serve as atext for a
graduate level course on empirical methods, and/or as reference material for
students embarking on a research project.

All of the material in the book will be of direct relevance to graduate students.
Specifically, such readers may find valuable the coverage of the different
types of studies that can be performed in order to make a decision on which
approaches to follow during their research projects (“ Research Methods and
Tools”). Even more importantly, topics under “Practical Foundations” will
help novice researchers recognize some of the background requirements in
running successful studies, contribute towards ensuring that their research is
well reported, and mitigate against the tendency of over-interpreting the
results of individua studies.

The section on “Knowledge Creation” will help students understand the
body of knowledge that may exist on their research topic and the importance
of relating their work to existing theories that have been built up in the area.

4. Reviewers of empirical research.

The overview of empirica methods with their strengths and weaknesses
(“Research Methods and Tools’), especialy the discussion of appropriate
issues that can be tackled with the various methods, should help reviewers
make a better judgement of the quality of an empirical study.

The section on “Knowledge Creation” is especially important to review-
ers. First, it aims to inform such readers about, and increase the acceptance
of, replication. Replication is critical for any discipline to progress, and
reviewers are essentially the gatekeepers. The chapter on reporting guidelines
would assist reviewers in ensuring that sufficient detail is reported in pub-
lished manuscripts.

Perhaps the most relevant chapter under “Practical Foundations’ for
reviewers is the one concerned with ethics. Reviewers have to judge whether
appropriate ethical behaviour was followed in published manuscripts. Again,
being the gatekeepers for a discipline, they can encourage or discourage cer-
tain behaviours.

When we first set out to put this book together, we were motivated by what we
as researchers felt was missing, a handy reference guide on some of the techniques
we are called upon to apply as part of our work or to review in others’ work. Little
did we understand at the time the kind of process we were embarking upon in trying
to fill that gap. We wish to thank all of the chapter authors for their high-quality
work and for helping to move this project along. We especially wish to thank all of

Introduction 5

the external reviewers (listed below) for contributing their effort to improve the
quality of the materials found here. We certainly hope that readers will find this, as
we intended, a useful and practical reference for their own work.

Forrest Shull
Janice Singer
Dag Sjaberg

External Reviewers

David Budgen
Reidar Conradi
Yvonne Dittrich
Tore Dyba
Tracy Hall
Natalia Juristo
James Miller
Helen Sharp
Susan Sim
Bhekisipho Twala
Paul Wernick
Bernard Wong
Murray Wood

Section |
Research M ethods and Techniques

Chapter 1
Software Engineering Data Collection
for Field Studies

Janice Singer, Susan E. Sim, and Timothy C. Lethbridge

Abstract. Software engineering is an intensely people-oriented activity, yet little
is known about how software engineers perform their work. In order to improve
software engineering tools and practice, it is therefore essential to conduct field
studies, i.e., to study real practitioners as they solve real problems. To aid this goal,
we describe aseries of data collection techniques for such studies, organized around
a taxonomy based on the degree to which interaction with software engineers is
necessary. For each technique, we provide examples from the literature, an analysis
of some of its advantages and disadvantages, and a discussion of special reporting
requirements. We also talk briefly about recording options and data analysis.

1. Introduction

Software engineering involves real people working in real environments. People
create software, people maintain software, people evolve software. Accordingly
to understand software engineering, one should study software engineers as they
work — typically by doing field studies. In this chapter, we introduce a set of data
collection techniques suitable for performing such studies that can be used indi-
vidually or in combination to understand different aspects of real world environ-
ments. These data collection techniques can be used with a wide variety of
methods under a wide variety of theoretical and philosophical traditions (see
Easterbrook et al., Chap. 11).

To better showcase the qualities of the various techniques, we have created a tax-
onomy based on the degree to which interaction with software engineersis required.
The next section details the taxonomy. In Sect. 3, each technique is described in
detail. We talk briefly in Sect. 4 about recording options for the data and present a
brief overview of data analysis. We conclude the chapter with a discussion of how
these techniques can be used in the most appropriate fashion.

1Based on Lethbridge, T., Sim, S., & Singer, J. (2005). Studying software engineers: data collection
techniques for software field studies, Empirical Software Engineering 10(3), 311-341.

9

F. Shull et al. (eds.), Guide to Advanced Empirical Software Engineering.
© Springer 2008

10 J. Singer et al.

2. Field Study Data Collection Taxonomy

Table 1. presents a summary of the data collection techniques; the second column
shows the kinds of questions each can answer; the third column indicates the
amount of data generated by the technique, and the fourth column shows other
areas in software engineering where the technique is applied. Each technique is
categorized according to how much contact is required between the researchers and
the participants®. Direct techniques require the researcher to have direct involvement
with the participant population. Indirect techniques require the researcher to have
only indirect access to the participants' viadirect access to their work environment.
Finally, independent techniques require researchers to access only work artifacts,
such as source code or documentation. Selecting an appropriate technique will be
influenced by the questions asked and the amount of resources available to conduct
the study. Generally, direct techniques require more resources, both to collect the
data and to analyse it. Direct techniques are, however, the only techniques that
allow researchers to explore the thoughts and feelings of the software engineers.

3. Survey of Data Collection Techniques

In this section, we describe the data collection techniques listed in Table 1. We use
the taxonomy to organize the presentation of the techniques, beginning with direct
techniques, moving on to indirect techniques, and concluding with independent
techniques. Each of the techniquesis described in the same way. First the technique
is described. Then its advantages and disadvantages are identified. Next, one or
more examples of its use in software engineering research are given. Finally, some
guidance is given regarding special considerations when reporting the technique
(for more information on reporting in general, see Jedlitschka et a., Chap. 8).

3.1. Direct Techniques

The first five techniques listed in Table 1 are what we call inquisitive techniques
(brainstorming, focus groups, interviews, questionnaires, conceptual modeling),
while the remaining ones are primarily observational. Each type is appropriate for
gathering different types of information from software engineers.

2We recognize that there is some debate about whether to properly characterize people who
participate in research as subjects or participants. In this chapter, we have chosen to use the word
participant because in field studies, there is frequently a greater degree of collaboration between
those being studied and those doing the research.

1 Software Engineering Data Collection for Field Studies

11

Table 1 Questions asked by software engineering researchers (column 2) that can be answered

by field study techniques
Used by researchers Also used
when their godl is Volume by software
Technique to understand: of data engineers for
Direct techniques
Brainstorming Ideas and general Small Requirements
and focus background about gathering, project
groups the process and product, planning
genera opinions
(also useful to enhance
participant rapport)
Interviews and Generd information Small Reguirements
questionnaires (including opinions) to large and evauation
about process, product,
personal knowledge etc.
Conceptua Mental models of Small Regquirements
modeling product or process
Work diaries Time spent or frequency of certain Medium Time sheets
tasks (rough approximation,
over days or weeks)
Think-aloud Mental models, goals, Medium Ul evaluation
Sessions rationale and patterns to large
of activities
Shadowing and Time spent or frequency of tasks Small Advanced
observation (intermittent over relatively approaches to
short periods), patterns of use case or task
activities, some goals and analysis
rationale
Participant Deep understanding, goals and Medium
observation rationale for actions, time to large
(joining the spent or frequency over
team) along period
Indirect techniques
Instrumenting Software usage over along Large Software
systems period, for many participants usage analysis
Fly on the wall Time spent intermittently in one Medium
location, patterns of activities
(particularly collaboration)
Independent techniques
Analysis of work Long-term patterns relating to Large Metrics
databases software evolution, faults etc. gathering
Analysis of Details of tool usage Large
tool use logs
Documentation Design and documentation Medium Reverse
analysis practices, genera engineering
understanding
Static and dynamic ~ Design and programming Large Program
analysis practices, general comprehension,
understanding metrics, testing,

€tc.

12 J. Singer et al.

Inquisitive techniques allow the experimenter to obtain a general understanding
of the software engineering process. Such techniques are probably the only way to
gauge how enjoyable or motivating certain tools are to use or certain activities to
perform. However, they are often subjective, and additionally do not allow for
accurate time measurements.

Observational techniquesprovideareal-timeportrayal of the studied phenomena.
However, it is more difficult to analyze the data, both because it is dense and
because it requires considerable knowledge to interpret correctly. Observational
techniques can be used at randomly chosen times or when a software engineer is
engaged in a specific type of activity (such as whenever she is using a debugger).
Observational techniques always run the risk of changing the process simply by
observing it; the Hawthorne (Draper, 2004; Robbins, 1994) effect was first identi-
fied when a group of researchersfound that output was not related to environmental
conditions as expected, but rather to whether or not workers were being observed.
Careful consideration of this effect is therefore warranted in implementing the
research and explaining its purpose and protocol to the research participants.

3.1.1. Brainstorming and Focus Groups

In brainstorming, severa people get together and focus on a particular issue. The
idea is to ensure that discussion is not limited to “good” ideas or ideas that make
immediate sense, but rather to uncover as many ideas as possible. Brainstorming
works best with a moderator because the moderator can motivate the group and
keep it focused. Additionally, brainstorming works best when there is a simple
“trigger question” to be answered and everybody is given the chance to contribute
their opinions. A good seminal reference for this process, called Nominal Group
Technique, is the work of Delbecq et al. (1975). Trigger questions, such as, “What
are the main tasks that you perform?’ or “What features would you like to see in
software engineering tools?” can result in extensive lists of valuable ideas that can
then be analysed in more detail.

Focus Groups are similar to brainstorming. However, focus groups occur when
groups of people are brought together to focus on a particular issue (not just generate
ideas). They also involve moderators to focus the group discussion and make sure
that everyone has an opportunity to participate. For more information on how to
conduct focus groups, see Kontio et a., Chap. 4.

Advantages. Brainstorming and focus groups are excellent data collection tech-
nigques to use when one is new to a domain and seeking ideas for further explora-
tion. They are also very useful for collecting information (for instance about the
usefulness of a particular tool) from large groups of people at once. They are good
at rapidly identifying what is important to the participant population. Two impor-
tant side benefits of brainstorming and focus groups are that they can introduce the
researchers and participants to each other and additionally give the participants
more of a sense of being involved in the research process. Conducting research in
field environments is often stressful to the research participants; they are more

1 Software Engineering Data Collection for Field Studies 13

likely to be willing participants if they feel comfortable with the researchers and
feel they are partners in research that focuses on issues that they consider to be
important.

Disadvantages. Unless the moderator is very well trained, brainstorming and focus
groups can become too unfocused. Although the nominal group technique helps
people to express their ideas, people can still be shy in a group and not say what
they redlly think. Just because a participant population raises particular issues, this
does not mean the issues are really relevant to their daily work. It is often difficult
to schedule a brainstorming session or focus group with the busy schedules of soft-
ware engineers.

Examples: Bellotti and Bly (1996) used brainstorming during an initial meeting with
a product design group. The brainstorming meeting was held to identify problems
and possible solutions as seen by the team. This meeting gave the researchers an ini-
tial understanding of the team’s work and additionally |et the researchers know how
existing technology was either supporting or inhibiting the work. A nice side effect
of the meeting was that it gave the researchers an entry point for communication
about the design process with their colleagues in the design department at Apple.

Hall and her colleagues have published a number of papers based on a large
study involving focus groups to understand software process improvement (see for
example, Baddoo and Hall, 2002; Rainer and Hall, 2003). In their studies, 39 focus
groups wereimplemented in 13 companies. The groups were comprised of between
four and six participants. The companies were chosen based on certain characteris-
tics, but overall were representative of the industry. Each session lasted 90min.
There were three types of groups: senior managers, project managers, and develop-
ers. The focus groups were moderated and tackled very specific questions aimed at
understanding several factors leading to success and failure for software process
improvement.

Storey et al. (2007) conducted a focus group with a number of users of a tool

they developed. The focus group enabled the users to communi cate with each other,
and additionally allowed for greater time efficiency when collecting the data than
interviews would have allowed.
Reporting guidelines: The reporting of brainstorming and focus groups is similar.
For both, the number of participants seen, and the context in which they were seen
should be reported. Where appropriate the role and expertise of the moderator
should be described. If specific questions were used, they should be detailed.
Additionally, the time spent on brainstorming or the focus group should be reported.
Finally, the type of data recording used should be described (e.g., video, audio,
notes, etc.).

3.1.2. Interviews
Interviews involve at least one researcher talking to at least one respondent.

Interviews can be conducted in two ways. In a structured interview, a fixed list of
carefully worded questions forms the basis of the interview. Usually, the questions

14 J. Singer et al.

are asked exactly as written, and no deviations occur. The data from structured
interviews isusually analysed using statistical analyses. In a semi-structured inter-
view, the interview generally follows more of aconversational flow. New questions
may be devised as new information is learned. Typically, some open-ended
questions that allow for greater interaction are asked. Furthermore, in some
semi-structured interviews, the interview will be structured around a framework of
potential topics as opposed to any specific questions. The data from semi-structured
interviews is usually analysed using qualitative analysis methods (see Seaman,
Chap. 2).

Advantages. Structured interviews are an efficient means of collecting the same
data from a large number of respondents. Semi-structured interviews tend to be
much more highly interactive. Researchers can clarify questions for respondents
and probe unexpected responses. Interviewers can also build rapport with a
respondent to improve the quality of responses.

Disadvantages:. Interviews are time and cost inefficient. Contact with the respond-
ent needs to be scheduled and at least one person, usually the researcher, needs to
attend the meeting (whether in person, by phone, videoconference, or over the
web). If the data from interviews consists of audio- or videotapes, this needs to be
transcribed and/or coded; careful note-taking may, however, often be an adequate
substitute for audio or video recording. Finally, participants’ reports of events may
not mirror reality. For instance, in one of our interview studies, devel opers reported
that they spent a substantial amount of time reading documentation, but we did not
observe this to be true.

Examples: Interviews have been used in many studies because they fit well with
many types of methods and philosophical traditions. We have used interviews in
longitudinal studies as an aid in understanding how newcomers adapt to a develop-
ment team and software system (Sim and Holt, 1998). We interviewed newcomers
once every three weeks over a number of months to track their progress as mainte-
nance team members. Since this was an exploratory study, the interviews were
semi-structured with open-ended questions.

Curtis et al. (1988) used interviews to study the design process used on 19
different projects at various organizations. They interviewed personnel from three
different levels of the participating projects, systems engineers, senior software
designers and project managers. The researchers conducted 97 interviews, which
resulted in over 3000 pages of transcripts of the audio recordings. They found
three key problems common to the design processes: communication and coordi-
nation breakdowns, fluctuating and conflicting product requirements, and the
tendency for application domain knowledge to be located in individuals across
the company. They characterized the problems at each level of a model they
subsequently defined.

Damian et al. (2004) used interviews of experienced personnel and senior man-
agement to examine how changes in the requirements engineering process affected
software development practice. Because there was limited historical data on the pre-
vious reguirements process, the interviews were key to provide information on how
the changes were affecting the current practice. In addition to the initial interviews,

1 Software Engineering Data Collection for Field Studies 15

follow-up interviews were conducted after aquestionnaire to el ucidate the responses.
Overall, Damian et a. found the improved requirements process was useful to the
product development team in that it resulted in better documentation of require-
ments, understanding of the market need, and understanding of requirements.
Reporting guidelines; When reporting data from interviews, it is necessary to detail
the number and type of interviewees seen, approximately how long the interviews
took, the type of interview (semi-structured or structured), the way the interview is
recorded, and how the participants were selected. Additionally, if possible, provide
acopy of the questions in the report or an appendix.

3.1.3. Questionnaires

Questionnaires are sets of questions administered in awritten format. These are the
most common field technique because they can be administered quickly and easily.
However, very careful attention needs to be paid to the wording of the questions,
the layout of the forms, and the ordering of the questions in order to ensure valid
results. Pfleeger and Kitchenham have published a six part series on principles of
survey research starting with Pfleeger and Kitchenham (2001) (see also Chap. 3).
This series gives detailed information about how to design and implement question-
naires. Punter et al. (2003) further provide information on conducting web-based
surveys in software engineering research.

Advantages. Questionnaires are time and cost effective. Researchers do not need to
schedule sessions with the software engineers to administer them. They can be
filled out when a software engineer has time between tasks, for example, waiting
for information or during compilation. Paper form-based questionnaires can be
transported to the respondent for little more than the cost of postage. Web-based
guestionnaires cost even less since the paper forms are eliminated and the data are
received in electronic form. Questionnaires can also easily collect datafrom alarge
number of respondents in geographically diverse locations.

Disadvantages: Since there is no interviewer, ambiguous and poorly-worded ques-
tions are problematic. Even though it is relatively easy for software engineers to fill
out questionnaires, they till must do so on their own and may not find thetime. Thus,
response rates can be relatively low which adversely affects the representativeness of
the sample. We have found a consistent response rate of 5% to software engineering
surveys. If the objective of the questionnaire is to gather data for rigorous statistical
analysisin order to refute anull hypothesis, then response rates much higher than this
will be needed. However, if the objective is to understand trends, then low response
rates may be fine. The homogeneity of the population, and the sampling technique
used also affect the extent to which one can generalize the results of surveys. In addi-
tion to the above, responses tend to be more terse than with interviews. Finaly, as
with questionnaires, developers' responses to questions may not mirror reality.
Examples: Lethbridge (2000) used questionnaires that were partly web-based and
partly paper-based to learn what knowledge software engineers apply in their daily
work, and how this relates to what they were taught in their formal education.

16 J. Singer et al.

Respondents were asked four questions about each of along list of topics. Several
guestionnaires were piloted, but nonetheless a couple of the topics® were interpreted
in different ways by different respondents. Despite this, useful conclusions about
how software engineers should be trained were drawn from the study.

livari (1996) used a paper-based questionnaire to test nine hypotheses about
factors affecting CASE tool adoption in 52 organizations in Finland. The author
contacted organizations that had purchased CASE tools and surveyed key informa-
tion systems personnel about the use of the tool. Companies and individuals were
more likely to use CA SE tools when adoption was voluntary, the tool was perceived
to be superior to its predecessor(s) and there was management support.
Reporting guidelines: When reporting data from questionnaires, it is necessary to
detail how the population was sampled (i.e., who the questionnaires were sent to,
or how respondents were chosen) and the response rate for the questionnaire, if
appropriate. Any piloting and subsequent modification of the questionnaire should
be explained. Additionally, if possible, provide a copy of the questionsin the report
or an appendix.

3.1.4. Conceptual Modeling

During conceptual modeling, participants create a model of some aspect of their
work —the intent is to bring to light their mental models. In its simplest form, par-
ticipants draw a diagram of some aspect of their work. For instance, software engi-
neers may be asked to draw a data flow diagram, a control flow diagram or a
package diagram showing the important architectural clusters of their system. As
an orthogonal usage, software engineers may be asked to draw a physical map of
their environment, pointing out who they talk to and how often.
Advantages. Conceptual models provide an accurate portrayal of the user’s concep-
tion of his or her mental model of the system. Such models are easy to collect and
require only low-tech aids (pen and paper).
Disadvantages. The results of conceptual modeling are frequently hard to interpret,
especidly if the researcher does not have domain knowledge about the system.
Some software engineers are reluctant to draw, and the quality and level of details
in diagrams can vary significantly.
Examples: In one of our studies, we collected system maps from all members of the
researched group. Additionally, aswe followed two newcomers to a system, we had
them update their original system maps on a weekly basis. We gave them a photo-
copy of the previous week’s map, and asked them to either update it or draw a new
one. The newcomers almost exclusively updated the last week’s map.

In our group study, our instructions to the study participants were to “ draw their
understanding of the system.” These instructions turned out to be too vague. Some

3For example, we intended ‘formal languages' to be the mathematical study of the principles of
artificial languages in genera, yet apparently some respondents thought we were referring to
learning how to program.

1 Software Engineering Data Collection for Field Studies 17

participants drew data flow diagrams, some drew architectural clusters, otherslisted
the important data structures and variables, etc. Not surprisingly, the manager of the
group subsequently noted that the system illustrations reflected the current
problems on which the various software engineers were working.

We learned from this exercise that for conceptual modeling to be useful, it is
important to specify to the greatest extent possible the type of diagram required. It
is next to impossible to compare diagrams from different members of a group if
they are not drawing the same type of diagram. Of course, this limitsresearchersin
the sense that they will not be getting unbiased representations of a system.
Specifying that data-flow diagrams are required means that software engineers
must then think of their system in terms of data-flow.

In another project (Sayyad-Shirabad et al., 1997), we wanted to discover the

concepts and terminology that software engineers use to describe a software
system. We extracted a set of candidate technical terms (anything that was not a
common English word) from source code comments and documentation. Then we
designed a simple program that allowed software engineers to manipulate the con-
cepts, putting them into groups and organizing them into hierarchies. We presented
the combined results to the software engineers and then iteratively worked with
them to refine a conceptual hierarchy. Although there were hundreds of conceptsin
the complex system, we learned that the amount of work required to organize the
concepts in this manner was not large.
Reporting guidelines: The most important thing to report for conceptual modelsis
the exact instructions given to the participants and a precise description of the tools
that they had available to them to model. The way the data is recorded should also
be outlined.

3.1.5. Work Diaries

Work diaries require respondents to record various events that occur during the day.
It may involve filling out a form at the end of the day, recording specific activities
as they occur, or noting whatever the current task is at a pre-selected time. These
diaries may be kept on paper or in a computer. Paper forms are adequate for record-
ing information at the end of the day. A computer application can be used to prompt
users for input at random times. A special form of the work diary is time shests.
Many software engineers (particularly consultants) are required to maintain and
update quite detailed time sheets recording how many hours are spent per day per
activity category. These time sheets can be a valuable source of data.

If you are considering utilizing prompted work diaries, Karahasanovic et al.
(2007) provide a comprehensive comparison of this technique to think-aloud
protocol analysis (detailed below), evaluating its costs, impacts on problem solving,
and benefits.

Advantages. Work diaries can provide better self-reports of events because they
record activities on an ongoing basis rather than in retrospect (as in interviews and
guestionnaires). Random sampling of eventsgivesresearchersaway of understanding

18 J. Singer et al.

how software engineers spend their day without undertaking a great deal of
observation or shadowing.

Disadvantages. Work diaries till rely on self-reports; in particular, those that
require participants to recall events may have significant problems with accuracy.
Another problem with work diaries is that they may interfere with respondents as
they work. For instance, if software engineers have to record each time they go and
consult a colleague, they may consult less often. They may also forget or neglect to
record some events and may not record at the expected level of detail.

Examples: Wu et a. (2003) were interested in collaboration at a large software
company. In addition to observations and interviews, they asked software engineers
to record their communication patterns for a period of 1 day. The researchers were
interested in both the interaction between the team members, and the typical
communication patterns of developers. They found that developers communicate
frequently and extensively, and use many different types of communication
modalities, switching between them as appropriate, and that communication
patterns vary widely amongst developers. As a slight variation, at the end of each
day, lzquierdo et al. (2007) asked developers to complete a communication diary
that detailed who they talked to and the purpose for the communication. These were
used as the basis to create social networks for the group.

As another example, Jergensen (1995) randomly selected software maintainers
and asked them to complete a form to describe their next task. These reports were
used to profile the frequency distribution of maintenance tasks. Thirty-three
hypotheses were tested and a number of them were supported. For example, pro-
grammer productivity (lines of code per unit time) is predicted by the size of the
task, type of the change, but it is not predicted by maintainer experience, applica-
tion age, nor application size.

As a dlight modification of the work diary, Shull et al. (2000) asked students to
submit weekly progress reports on their work. The progress reports included an
estimate of the number of hours spent on the project, and a list of functional
requirements begun and completed. Because the progress reports had no effect on
the students’ grades, however, Shull et al. found that many teams opted to submit
them only sporadically or not at all.

In an interesting application the use of time sheets as data, Anda et al. (2005)

describe a project where Simula Research Laboratory acted as both clients and
researchersin an IT project, where the actual contract was given to four different
companies, which allowed for a comparative case study. Although the applica-
bility of this model in empirical software engineering is limited (because of
the large amount of resources required), the paper nonetheless highlights how
this data can potentially be used in a study (when collected from accessible
sources).
Reporting guidelines: When reporting work diaries, the precise task given to the
software engineers (e.g., to record their communi cation patterns) must be described,
as well as how it was accomplished (e.g., reported to experimenter, recorded peri-
odically throughout the day, etc). Additionaly, the tools made available to do so
should be detailed.

1 Software Engineering Data Collection for Field Studies 19
3.1.6. Think-Aloud Protocols

In think-aloud protocol analysis (Ericcson and Simon, 1984), researchers ask
participants to think out loud while performing a task. The task can occur naturally
at work or be predetermined by the researcher. As software engineers sometimes for-
get to verbalize, experimenters may occasionally remind them to continue thinking
out loud. Other than these occasiona reminders, researchers do not interfere in the
problem solving process. Think-aloud sessions generally last no more than 2 hours.

Think-aloud protocol analysisis most often used for determining or validating a
cognitive model as software engineers do some programming task. For a good
review of thisliterature, see von Mayrhauser and Vans (1995). Additionaly, if you
are considering utilizing this technique, Karahasanovic et a. (2007) provide a com-
prehensive comparison of this technique to a form of work diaries, evaluating its
costs, impacts on problem solving, and benefits.

Advantages. Asking people to think aoud is relatively easy to implement.
Additionally, it is possible to implement think-aloud protocol analysis with manual
record keeping eliminating the need for transcription. Thistechnique gives aunique
view of the problem solving process and additionally gives access to mental model.
It is an established technique.

Disadvantages. Think-aloud protocol analysis was developed for use in situations
where a researcher could map out the entire problem space. It's not clear how this
technique trandates to other domains whereiit isimpossible to map out the problem
space apriori. However, Chi (1997) has defined a technique called Verba Analysis
that does address this problem. In either case, even using manual record keeping, it
is difficult and time-consuming to analyze think-aloud data.

Examples: von Mayrhauser and Vans (1993) asked software developers to think
aloud as they performed a maintenance task which necessitated program compre-
hension. Both software engineers involved in the experiment chose debugging
sessions. The think-aloud protocols were coded to determine if participants were
adhering to the “Integrated meta-model” of program comprehension these researchers
have defined. They found evidence for usage of this model, and were therefore
able to use the model to suggest tool requirements for software maintenance
environments.

As another example of think-aloud protocol analysis, Seaman et al. (2003) were
interested in evaluating a user interface for a prototype management system. They
asked several subjects to choose from a set of designated problems and then solve
the problem using the system. The subjects were asked to verbalize their thoughts
and motivations while working through the problems. The researchers were able to
identify positive and negative aspects of the user interface and use this information
in their evolution of the system.

Hungerford et al. (2004) adopted an information-processing framework in using
protocol analysis to understand the use of software diagrams. The framework
assumes that human cogpnitive processes are represented by the contents of short-
term memory that are then available to be verbalized during atask. The verbal pro-
tocols were coded using a pre-established coding scheme. Intercoder reliability

20 J. Singer et al.

scores were used to ensure consistency of codings across raters and internal validity
of the coding scheme. Hungerford et al. found individua differences in search
strategies and defect detection rates across developers. They used their findings to
suggest possible training and detection strategies for developers looking for
defects.

Reporting guidelines: When reporting think-aloud protocol analysis, it isimportant
to provide an extremely precise characterization of the task the participant was
asked to undertake, including any tools at the participant’s disposal. The time taken
to complete the task and any materials provided to the participant are also
important to describe. Finally, the precise way in which the analysis occurs needs
to be closely detailed, especialy if it is based on information processing theory or
a specific cognitive model.

3.1.7. Shadowing/Observation

In shadowing, the experimenter follows the participant around and records their activi-
ties. Shadowing can occur for an unlimited time period, as long as there is a willing
participant. Closely related to shadowing, observation occurs when the experimenter
observes software engineers engaged in their work, or specific experiment-related
tasks, such as meetings or programming. The difference between shadowing and
observation is that the researcher shadows one software engineer at atime, but can
observe many at one time.
Advantages. Shadowing and observation are easy to implement, give fast results,
and require no special equipment.
Disadvantages. For shadowing, it is often difficult to see what a software engineer
isdoing, especially when they are using keyboard shortcuts to issue commands and
working quickly. However, for the general picture, e.g., knowing they are now
debugging, shadowing does work well. Observers need to have afairly good under-
standing of the environment to interpret the software engineer’s behavior. This can
sometimes be offset by predefining a set of categories or looked-for behaviors. Of
course, again, this limits the type of data that will be collected.
Examples. We have implemented shadowing in our work in two ways (1997). First,
one experimenter took paper-and-pencil notes to indicate what the participant was
doing and for approximately how long. This information gave us a good general
picture of the work habits of the software engineers. We also used synchronized
shadowing where two experimenters used two laptop computers to record the soft-
ware engineer’s actions. One was responsible for ascertaining the participants’ high
level goals, while the other was responsible for recording their low-level actions.
We used pre-defined categories (Microsoft Word macros) to make recording easier.
Wau et al. (2003) also used pre-defined categories to shadow software engineers.
Perry et a. (1994) also shadowed software engineers as they went about their
work. They recorded continuous real-time non-verbal behavior in small spiral note-
books. Additionally, at timed intervals they asked the software engineers “What are
you doing now?’ At the end of each day, they converted the notebook observations

1 Software Engineering Data Collection for Field Studies 21

to computer files. The direct observations contributed to Perry et al.’s understanding
of the software process. In particular, shadowing was good for observing informal
communication in the group setting. Similarly, Ko et a. (2007) also shadowed
software engineers. They asked the participants to think of the researchers as a new
hire to which they should explain what they were doing. From this data, they were
able to categorize the met and unmet information needs of software engineers.

As an example of observation, Teasley et a. (2002), were interested in whether

co-locating team members affects development of software. In addition to inter-
views and questionnaires, they observed teams, conference calls, problem solving,
and photographed various artifacts. The researchers found that satisfaction and
productivity increased for co-located teams.
Reporting guidelines: In reporting shadowing, the precise form of shadowing and/
or observation needs to be detailed, including whether any verbal instructions were
given to the participant to think out loud. Additionally, the way the information is
recorded must be detailed as well as the length of the session, and any other special
instructions given to the participants. It is also helpful to provide context informa-
tion, such as what activities the shadowed and/or observed participants were
engaged in, and whether this was typical or not.

3.1.8. Participant-Observer (Joining the Team)

Usually done as part of an ethnography, in the Participant-Observer technique, the
researcher essentially becomes part of the team and participates in key activities.
Participating in the software development process provides the researcher with a
high level of familiarity with the team members and the tasks they perform. As a
result, software engineers are comfortable with the researcher’s presence and tend
not to notice being observed.
Advantages. Respondents are more likely to be comfortable with a team member
and to act naturally during observation. Researchers also develop a deeper under-
standing of software engineering tasks after performing them in the context of a
software engineering group.
Disadvantages. Joining a team is very time consuming. It takes a significant
amount of time to establish true team membership. Also, aresearcher who becomes
too involved may lose perspective on the phenomenon being observed.
Examples: Participant-Observer was one of the techniques used by Seaman and
Basili (1998) in their studies of how communication and organization factors affect
the quality of software inspections. One of the authors (Seaman) was integrated into
anewly formed devel opment team. Over seventeen months, Seaman participated in
twenty-three inspection meetings. From her participation, Seaman and Basili devel-
oped a series of hypotheses on how factors such as familiarity, organizational dis-
tance, and physical distance are related to how much time is spent on discussion
and tasks.

Porter et a. (1997) also used the participant-observer technique. One of the
researchers, a doctoral student, joined the development team under study as a

22 J. Singer et al.

means of tracking an experiment’s progress, capturing and validating data, and
observing inspections. Here, the field study technique was used in the service of
more traditional experimental methods.

More recently, Izquierdo et al. (2007) joined a team over a period of 4 months

to understand how they processed information and became aware of changes.
I zquierdo did not participate in any development, but rather used the opportunity of
closeness to support data collection and a greater comprehension of the team
dynamics.
Reporting guidelines: Using the participant-observer technique, it is important to
report the role of the participant-observer in the team — whether they are actualy
involved in any of the meaningful team activities or not. It is aso important to
characterize how they interact with the team, and what access they have to team
material. Additionally, the length of time of the interaction needs to be reported.
Finally, a characterization of how data was collected, coded, and analysed must be
provided.

3.2. Indirect Techniques

Indirect techniques require the researcher to have access to the software engi-
neer’s environment as they are working. However, the techniques do not require
direct contact between the participant and researcher. Instead data collection is
initiated, then the software engineers go about their normal work as the data is
automatically gathered. As aresult, these techniques require very little or no time
from the software engineers and are appropriate for longitudinal studies.

3.2.1. Instrumenting Systems

This technique requires “instrumentation” to be built into the software tools used
by the software engineer. This instrumentation is used to record information auto-
matically about the usage of the tools. Instrumentation can be used to monitor how
frequently atool or feature is used, patterns of access to files and directories, and
even the timing underlying different activities. This techniqueis also called system
monitoring.

In some cases, instrumentation merely records the commands issued by users.
More advanced forms of instrumentation record both the input and output in great
detail so that the researcher can effectively play back the session. Others have pro-
posed building a new set of tools with embedded instruments to further constrain
the work environment (Buckley and Cahill, 1997). Related to this, Johnson and his
group have developed Hackystat, an open-source server-based system for monitor-
ing actions. Developersinstall sensors on their machines that then relay information
to a centralized server (see www.csdl.ics.hawaii.edu/Research/hackystat for more
information).

1 Software Engineering Data Collection for Field Studies 23

Advantages. System monitoring requires no time commitment from software
engineers. Since, people tend to be very poor judges of factors such as relative fre-
guency and duration of the various activities they perform, this technique can be
used to provide such information accurately.

Disadvantages: It is difficult to analyze data from instrumented systems meaning-
fully; that is, it isdifficult to determine software engineers' thoughts and goals from
aseries of tool invocations. This problem is particularly relevant when the working
environment is not well understood or constrained. For example, software engi-
neers often customize their environments by adding scripts and macros (e.g., in
emacs). One way of dealing with this disadvantage is to play back the eventsto a
software engineer and ask them to comment. Although in many jurisdictions,
employers have the right to monitor employees, there are ethical concerns if
researchers become involved in monitoring software engineers without their
knowledge.

Examples. Budgen and Thomson (2003) used a logging element when assessing
how useful aparticular CASE tool was. The logger element recorded datawhenever
an event occurred. Events were predetermined before. Textual data was not
recorded. The researchers found that recording events only was a shortcoming of
their design. It would have been more appropriate to collect information about the
context of the particular event.

Asanother example, Walenstein (2003) used VNC (Virtual Network Computing)
to collect verbatim screen protocol s (continuous screen captures) of software devel-
opers engaged in software development activities. Walenstein also collected verbal
protocols and used a theory-based approach to analyse the data.

More recently, Storey et a. (2007) logged developers' use of their TagSEA tool.

The logs were stored on the client machine. The software engineers downloaded
them to a server at specified intervals. The logs enabled Storey et al. (2007) to
understand how the tool was being used, and nicely complemented other data
sources such as interviews and a focus group. Similar to this study, Zou and
Godfrey (2007) used a logger to determine which artifacts software maintainers
were just viewing, and which were actually changed.
Reporting guidelines: The precise nature of the logging needsto be reported, including
any specid instrumentation installed on the software engineer’s machines. This should
include a description of what exactly islogged, with what frequency. Any special con-
siderations with respect to data processing and analysis should also be detailed.

3.2.2. Fly on the Wall (Participants Recording their Own Work)

“Fly on the Wall” is a hybrid technique. It allows the researcher to be an observer
of an activity without being present. Participants are asked to video- or audiotape
themselves when they are engaged in some predefined activity.

Advantages. The fly-on-the-wall technique requires very little time from the partic-
ipants and is very unobtrusive. Although there may be some discomfort in the
beginning, it fades quickly.

24 J. Singer et al.

Disadvantages. The participants may forget to turn on the recording equipment at
the appropriate time and as a result the record may be incomplete or missing. The
camera is fixed, so the context of what is recorded may be hard to understand.
There is a high cost to analyzing the resulting data.

Examples: Berlin (1993) asked mentors and apprentices at a software organization
to audiotape their meetings in order to study how expertise is passed on. She later
analyzed these recordings for patterns in conversations. She found that discussions
were highly interactive in nature, using techniques such as confirmation and re-
statement to verify messages. Mentors not only explain features of the system; they
also provide design rationale.

Walz et a. (1993) had software engineers videotape team meetings during the
design phase of a development project. Researchers did not participate in the meet-
ings and these tapes served as the primary data for the study. The goal of the study
was to understand how teamwork, goals, and design evolved over a period of four
months. Initially the team focused on gathering knowledge about the application
domain, then on the requirements for the application, and finally on design
approaches. The researchers also found that the team failed to keep track of much
of the key information; as aresult they re-visited issues that had been settled at ear-
lier meetings.

Robillard et al. (1998) studied interaction patterns among software engineersin
technical review meetings. The software engineers merely had to turn on a video-
tape recorder whenever they were conducting a meeting. The researchers analyzed
transcripts of the sessions and modeled the types of interactions that took place
during the meetings. Their analysisled to recommendations for waysin which such
meetings can be improved
Reporting guidelines: The precise nature of the recording needs to be reported,
along with any special instructions given to the participants. Additionally, any
problems with the recording need to be reported, such as devel opers forgetting to
record a meeting. Context information will also help to clarify the application of
the technique, such as where the recording occurred, what the typical tasks were,
who was involved, who was responsible for the recording, etc. Additionally,
any methods used to transform, transcribe, and analyse the data need to be
specified.

3.3. Independent Techniques

Independent techniques attempt to uncover information about how software engi-
neerswork by looking at their output and by-products. Examples of their output are
source code, documentation, and reports. By-products are created in the process of
doing work, for example work requests, change logs and output from configuration
management and build tools. These repositories, or archives, can serve as the pri-
mary information source. Sometimes researchers recruit software engineers to
assist in the interpretation or validation of the data.

1 Software Engineering Data Collection for Field Studies 25
3.3.1. Analysisof Electronic Databases of Work Performed

In most large software engineering organizations, the work performed by developers
is carefully managed using issue tracker, problem reporting, change request and
configuration management systems. These systems require software engineers to
input data, such as a description of a problem encountered, or a comment when
checking in a source code module. The copious records generated for such systems
are arich source of information for software engineering researchers. Besides the
examples provided bel ow, see the proceedings from the International Workshops on
Mining Software Repositories.

Advantages. A large amount of datais often readily available. The datais stable and
is not influenced by the presence of researchers.

Disadvantages: There may be little control over the quantity and quality of informa-
tion manually entered about the work performed. For example, we found that descrip-
tivefields are often not filled in, or arefilled in different ways by different developers.
It is aso difficult to gather additional information about a record, especidly if it is
very old or the software engineer who worked on it is no longer available.

Examples. Work records can be used in anumber of ways. Pfleeger and Hatton (1997)
analyzed reports of faultsin an air traffic control system to evaluate the effect of adding
formal methods to the development process. Each module in the software system was
designed using one of three formal methods or an informal method. Although the code
designed using formal methods tended to have fewer faults, the results were not com-
pelling even when combined with other data from a code audit and unit testing.

Researchers at NASA (1998) studied data from various projectsin their studies
of how to effectively use COTS (commercia off-the-shelf software) in software
engineering. They developed an extensive report recommending how to improve
processes that use COTS.

Mockus et a. (2002) used data from email archives (amongst a number of different
data sources) to understand processes in open source development. Because the
developers rarely, if ever, meet face-to-face, the developer email list contains arich
record of the software development process. Mockus et al. wrote Perl scripts to
extract information from the email archives. This information was very vauable in
helping to clarify how development in open source differs from traditional methods.
Reporting guidelines: The exact nature of the collected data needs to be specified,
along with any special considerations, such as whether any datais missing, or unin-
terpretable for some reason. Additionally, any special processing of the data needs
to be reported, such asif only a certain proportion is chosen to be analysed.

3.3.2. Analysisof Tool Logs

Many software systems used by software engineers generate logs of some form or
another. For example, automatic building tools often leave records, as source code
control systems. Some organi zations build sophisticated logging into awide spectrum
of tools so they can better understand the support needs of the software engineers.

26 J. Singer et al.

Such tool logs can be analyzed in the same way tools that have been deliberately
instrumented by the researchers — the distinction is merely that for thisindependent
technique, the researchers don’t have control over the kind of information collected.
This technique is also similar to analysis of databases of work performed, except
that the latter includes data manually entered by software engineers.

The analysis of tool logs has become a very popular area of research within
software engineering. Besides the examples provided below, see the proceedings
from the International Workshops on Mining Software Repositories.

Advantages. The data is already in electronic form, making it easier to code and
analyze. The behaviour being logged is part of software engineers normal work
routine.

Disadvantage: Companies tend to use different tools in different ways, so it is dif-
ficult to gather data consistently when using this technique with multiple
organizations.

Examples: Wolf and Rosenblum (1993) analyzed the log files generated by build
tools. They developed tools to automatically extract information from relevant
events from these files. This datawasinput into arelational database along with the
information gathered from other sources.

In one of our studies (Singer et al., 1997) we looked at logs of tool usage col-
lected by atools group to determine which tools software engineers throughout the
company (as opposed to just the group we were studying) were using the most. We
found that search and Unix tools were used particularly often.

Herbsleb and Mockus (2003) used data generated by a change management
system to better understand how communication occurs in globally distributed
software development. They used several modeling techniques to understand the
relationship between the modification request interval and other variablesincluding
the number of people involved, the size of the change, and the distributed nature of
the groups working on the change. Herbsleb and Mockus also used survey data to
elucidate and confirm the findings from the analysis of the tool logs. In general they
found that distributed work introduces delay. They propose some mechanisms that
they believe influence this delay, primarily that distributed work involves more
people, making the change requests longer to compl ete.

Reporting guidelines: As with instrumentation, the exact nature of what is being
collected needs to specified, along with any special concerns, such as missing data.
Additionaly, if the datais processed in any way, it needs to be explained.

3.3.3. Documentation Analysis

This technique focuses on the documentation generated by software engineers,
including comments in the program code, as well as separate documents describing
asoftware system. Data collected from these sources can also be used in re-engineering
efforts, such as subsystem identification. Other sources of documentation that can
be analyzed include local newsgroups, group e-mail lists, memos, and documents
that define the development process.

1 Software Engineering Data Collection for Field Studies 27

Advantages: Documents written about the system often contain conceptual
information and present a glimpse of at least one person’s understanding of the
software system. They can also serve as an introduction to the software and the
team. Comments in the program code tend to provide low-level information on
algorithms and data. Using the source code as the source of data allows for an up-
to-date portrayal of the software system.

Disadvantages: Studying the documentation can betime consuming and it requires some
knowledge of the source. Written material and source comments may be inaccurate.
Examples: The ACM SIGDOC conferences contain many studies of documentation.
Reporting guidelines: The documentation needs to be described as well as any
processing on it.

3.3.4. Static and Dynamic Analysis of a System

In this technique, one analyzes the code (static analysis) or traces generated by
running the code (dynamic analysis) to learn about the design, and indirectly about
how software engineers think and work. One might compare the programming or
architectural styles of several software engineers by analyzing their use of various
constructs, or the values of various complexity metrics.

Advantages. The source code is usually readily available and contains a very large
amount of information ready to be mined.

Disadvantages. To extract useful information from source code requires parsers
and other analysis tools; we have found such technology is not always mature —
although parsers used in compilers are of high quality, the parsers needed for certain
kinds of analysis can be quite different, for example they typically need to analyze
the code without it being pre-processed. We have developed some techniques for
dealing with thissurprisingly difficult task (Somé and L ethbridge, 1998). Analyzing
old legacy systems created by multiple programmers over many years can make it
hard to tease apart the various independent variables (programmers, activities etc.)
that give rise to different styles, metrics etc.

Examples: Keller et al. (1999) use static analysis techniques involving template-
matching to uncover design patterns in source code — they point out, “... that it is
these patterns of thought that are at the root of many of the key elements of large-
scale software systems, and that, in order to comprehend these systems, we need to
recover and understand the patterns on which they were built.”

Williams et al. (2000) were interested in the value added by pair programming

over individual programming. As one of the measures in their experiment, they
looked at the number of test cases passed by pairs versus individual programmers.
They found that the pairs generated higher quality code as evidence by a signifi-
cantly higher number of test cases passed.
Reporting guidelines: The documents (e.g. source code) that provide the basis for
the analysis should be carefully described. The nature of the processing on the data
also needs to be detailed. Additionally, any specia processing considerations
should be described.

28 J. Singer et al.

4. Applying the Techniques

In the previous section, we described a number of diverse techniques for gathering
information in a field study. The utility of data collection techniques becomes
apparent when they can help us to understand a particular phenomenon. In this
section, we outline how to record and analyze the data.

4.1. Record-Keeping Options

Direct techniques generally involve one of the following three data capture methods:
videotape, audiotape, or manual record keeping. These methods can be categorized
as belonging to several related continua. First, they can be distinguished with respect
to the completeness of the data record captured. Videotape captures the most complete
record, while manual record keeping captures the least complete record. Second,
they can be categorized according to the degree of interference they invoke in
the work environment. Videotaping invokes the greatest amount of interference,
while manual recording keeping invokes the least amount of interference. Finally,
these methods can be distinguished with respect to the time involved in using the
captured data. Again, videotape is the most time-intensive data to use and interpret,
while manual record keeping is the least time-intensive data to use and interpret.

The advantage of videotape is that it captures details that would otherwise be
lost, such as gestures, gaze direction, etc.* However, with respect to video record-
ing, it is important to consider the video camera’s frame of reference. Videotape
can record only where avideo camerais aimed. Moving the video camera a bit to
the right or a bit to the left may cause a difference in the recorded output and sub-
sequently in the interpretation of the data. Related to videotaping, there are a
number of software programs that allow screen capture and playback of the
recorded interactions. To be used with videotape, the video and the screen capture
must be synchronized in some way.

Audiotape allows for afairly complete record in the case of interviews, however
details of the physical environment and interaction with it will be lost. Audiotape
does allow, however, for the capture of tone. If a participant is excited while talking
about a new tool, this will be captured on the audio record.

Manual record keeping is the most data sparse method and hence captures the
least complete data record, however manual record keeping is aso the quickest,
easiest, and least expensive method to implement. Manual record keeping works
best when awell-trained researcher identifies certain behaviors, thoughts, or concepts
during the data collection process. Related to manual record keeping, Wu et al.
(2003) developed a data collection technique utilizing a PDA. On the PDA, they

41t is often felt that videotaping will influence the participants actions. However, while videotap-
ing appears to do so initialy, the novelty wears off quickly (Jordan and Henderson, 1995).

1 Software Engineering Data Collection for Field Studies 29

had predetermined categories of responses that were coded each time a particular
behaviour was observed. The data were easily transported to a database on a PC for
further analysis.

All three data capture methods have advantages or disadvantages. The decision of
which to use depends on many variables, including privacy at work, the participant’s
degree of comfort with any of the three measures, the amount of time available for
data collection and interpretation, the type of question asked and how well it can be
formalized, etc. It isimportant to note that data capture methods will affect the infor-
mation gained and theinformation that it is possible to gain. But again, these methods
are not mutually exclusive. They can be used in conjunction with each other.

4.2. Coding and Analyzing the Data

Field study techniques produce enormous amounts of data—a problem referred to asan
“attractive nuisance’ (Miles, 1979). The purpose of this dataisto provide insight into
the phenomenon being studied. To meet this goal, the body of data must be reduced to
a comprehensible format. Traditionaly, thisis done through a process of coding. That
is, using the goals of the research as a guide, a scheme is developed to categorize the
data. These schemes can be quite high level. For instance, a researcher may be inter-
ested in noting al goas stated by a software engineer during debugging. On the other
hand the schemes can be quite specific. A researcher may be interested in noting how
many times grep was executed in a half-hour programming session. Once coded, the
datais usudly coded by another researcher to ensure the vaidity of the rating scheme.
Thisis called inter-coder or inter-rater reliability. There are a number of statistics that
can be reported that assess this, the most common is Kendall's tau.

Audio and videotape records are usually transcribed before categorization,
although transcription is often not necessary. Transcription requires significant cost
and effort, and may not be justified for small, informal studies. Having made the
decision to transcribe, obtaining an accurate transcription is challenging. A trained
transcriber can take up to 6 hours to transcribe a single hour of tape (even longer
when gestures, etc. must be incorporated into the transcription). An untrained tran-
scriber (especialy in technica domains) can do such a poor job that it takes
researchersjust aslong to correct the transcript. While transcribing hasits problems,
online coding of audio or videotape can aso be quite time inefficient as it can take
several passes to produce an accurate categorization. Additionaly, if a question sur-
faces later, it will be necessary to listen to the tapes again, requiring more time.

Once the data has been categorized, it can be subjected to a quantitative or quali-
tative analysis. Quantitative analyzes can be used to provide summary information
about the data, such as, on average, how often grep is used in debugging sessions.
Quantitative analyzes can also determine whether particular hypotheses are
supported by the data, such as whether high-level goals are stated more frequently
in development than in maintenance.

When choosing a statistical analysis method, it is important to know whether
your datais consi stent with assumptions made by the method. Traditional, inferential

30 J. Singer et al.

statistical analyzes are only applicable in well-constrained situations. The type of
data collected in field studies often requires nonparametric statistics. Nonparametric
statistics are often called “distribution-freg” in that they do not have the same
requirementsregarding the model ed di stributi on asparametric statistics. Additionally,
there are many nonparametric tests based on simple rankings, as opposed to strict
numerical values. Finally, many nonparametric tests can be used with small samples.
For more information about nonparametric statistics, Seigel and Castellan (1988)
provide agood overview. Briand et a. (1996) discuss the disadvantages of nonpara-
metric statistics versus parametric statistics in software engineering; they point out
that a certain amount of violation of the assumptions of parametric statisticsis legiti-
mate, but that nonparametric statistics should be used when there are extreme viola-
tions of those assumptions, as there may well be in field studies.

Qualitative analyzes do not rely on quantitative measures to describe the data.
Rather, they provide a general characterization based on the researchers' coding
schemes. Again, the different types of qualitative analysis are too complex to detail
in this paper. See Miles and Huberman (1994) for a very good overview.

Both quantitative and qualitative analysis can be supported by software tools. The
most popular tools for quantitative analysis are SAS and SPSS. A number of differ-
ent tools exist for helping with qualitative analysis, including NVivo, Altagti, and
Noldus observer. Some of these tools also help with analysis of video recordings.

In summary, the way the datais coded will affect its interpretation and the possible
courses for its evaluation. Therefore it is important to ensure that coding schemes
reflect the research goals. They should tie in to particular research questions.
Additionally, coding schemes should be devised with the analysis techniquesin mind.
Again, different schemes will lend themselves to different evaluative mechanisms.
However, one way to overcome the limitations of any one technique is to look at the
data using severa different techniques (such as combining a quditative and quantita-
tive analyzes). A triangulation approach (Jick, 1979) will allow for a more accurate
picture of the studied phenomena. Bratthall and Jergensen (2002) give a very nice
example of using multiple methods for data triangulation. Their exampleisframed in
asoftware engineering context examining software evol ution and devel opment. In fact,
many of the examples cited earlier, use multiple methods to triangulate their results.

As afina note, with any type of analysis technique, it is generally useful to go
back to the original participant population to discuss the findings. Participants can
tell researchers whether they believe an accurate portrayal of their situation has
been achieved. This, in turn, can let researchers know whether they used appropriate
coding scheme and analysis techniques.

5. Conclusions

In this chapter we have discussed issues that software engineering researchers need
to consider when studying practitionersin the field. Field studies are one of several
complementary approaches to software engineering research and are based on a
recognition that software engineering is fundamentally a human activity: Field

1 Software Engineering Data Collection for Field Studies 31

studies are particularly useful when one is gathering basic information to develop
theories or understand practices.

The material presented in this chapter will be useful to both producers and
consumers of software engineering research. Our goal is to give researchers a per-
spective on how they might effectively collect datain the field —we believe that more
studies like this are needed. As well, the reporting guidelines presented here will
help others evaluate published field studies: for example, readers of a field study
may ask whether appropriate data gathering or analysis techniques were used.

In this chapter, we divided the set of field study techniques into three main cate-
gories. Direct techniques such as interviewing, brainstorming, and shadowing place
the researcher in direct contact with participants. Indirect techniques allow
researchers to observe work without needing to communicate directly with partici-
pants. Independent techniques involve retrospective study of work artifacts such as
source code, problem logs, or documentation. Each technique has advantages and
disadvantages that we described in Sect. 2.

In addition to deciding which techniques to use, the researcher must also deter-
mine the level of detail of the data to be gathered. For most direct techniques one
must typically choose among, in increasing order of information volume and hence
difficulty of analysis: manual notes, audio-taping and videotaping. In all three
cases, a key difficulty is encoding the data so that it can be analyzed.

Regardless of the approach to gathering and analyzing data, field studies also
raise many logistical concerns that should be dealt with in the initial plan. For
example: How does one approach and establish relationships with companies and
employeesin order to obtain a suitable sample of participants? Will the research be
considered ethical, considering that it involves human participants? And finally,
will it be possible to find research staff who are competent and interested, given that
most of the techniques described in this paper are labor intensive but not yet part of
mainstream software engineering research?

Finally, astechnology and knowledge evolve, new data collection techniques emerge
—eg., using web camerasto collect work diaries. A good placeto learn more about these
new techniquesishy following the human computer interaction and psychology methods
literature. As well, reading papers in empirica software engineering will highlight cur-
rent accepted techniquesin the field, and how they may be used in practice.

In conclusion, field studies provide empirical studies researchers with a unique
perspective on software engineering. As such, we hope that others will pursue this
approach. The techniques described in this paper are well worth considering to bet-
ter understand how software engineering occurs, thereby aiding in the devel opment
of methods and theories for improving software production.

References

Anda, B., Benestad, H., and Hove, S. 2005. A multiple-case study of effort estimation based on
use case points. In ISESE 2005 (Fourth International Symposium on Empirical Software
Engineering). IEEE Computer Society, Noosa, Australia, November 17-18, pp. 407-416.

32 J. Singer et al.

Baddoo, N. and Hall, T. 2002. Motivators of software process improvement: an analysis of
practitioners’ views. Journal of Systems and Software, 62, 85-96.

Bellotti, V. and Bly, S. 1996. Walking Away from the Desktop Computer: Distributed Collaboration
and Mobility in a Product Design Team. Conference on Computer Supported Cooperative
Work, Cambridge, MA, pp. 209-219.

Berlin, L.M. 1993. Beyond Program Understanding: A Look at Programming Expertise in
Industry. Empirical Studies of Programmers, Fifth Workshop, Palo Alto, pp. 6-25.

Briand, L., El Emam, K. and Morasca, S. 1996. On the application of measurement theory in soft-
ware engineering. Empirical Software Engineering, 1, 61-88.

Bratthal, L. and Jargensen, M. 2002. Can you trust a single data source exploratory software
engineering case study? Empirical Software Engineering: An International Journal, 7(1),
9-26.

Budgen, D. and Thomson, M. 2003. CASE tool evaluation: experiences from an empirical study.
Journal of Systems and Software, 67, 55-75.

Buckley, J. and Cahill, T. 1997. Measuring Comprehension Behaviour Through System
Monitoring. International Workshop on Empirical Studies of Software Maintenance, Bari,
Italy, 109-113.

Chi, M. 1997. Quantifying qualitative analyzes of verbal data: a practical guide. The Journal of
the Learning Sciences, 6(3), 271-315.

Curtis, B., Krasner, H., and Iscoe, N. 1988. A field study of the software design process for large
systems. Communications of the ACM, 31(11), 1268-1287.

Damian, D., Zowghi, D., Vaidyanathasamy, L., and Pal, Y. 2004. An industrial case study of imme-
diate benefits of requirements engineering process improvement at the Australian Center for
Unisys Software. Empirical Software Engineering: An International Journal, 9(1-2), 45-75.

Delbecqg, A.L., Van de Ven, A.H., and Gustafson, D.H. 1975. Group Techniques for Program
Planning. Scott, Foresman & Co, Glenview, IL.

Draper, S. 2004. The Hawthorne Effect. http://www.psy.gla.ac.uk/ steve/hawth.html

Ericcson, K. and Simon, H. 1984. Protocol Analysis. Verbal Reports as Data. The MIT Press,
Cambridge, MA.

Herbsleb, J. and Mockus, A. 2003. An empirical study of speed and communication in globally
distributed software development. |[EEE Transactions of Software Engineering, 29(6),
481-494.

Hungerford, B., Hevner, A., and Coallins, R. 2004. Reviewing software diagrams. a cognitive
study. |EEE Transactions of Software Engineering, 30(2), 82—96.

livari, J. 1996. Why are CASE tools not used? Communications of the ACM, 39(10), 94-103.

Izquierdo, L., Damian, D., Singer, J, and Kwan, |. (2007). Awareness in the Wild: Why
Communication Breakdowns Occur. ICGSE 2007, Germany.

Jick, T. 1979. Mixing qualitative and quantitative methods: triangulation in action. Administrative
Science Quarterly, 24(4), 602—611.

Jordan, B. and Henderson, A. 1995. Interaction analysis: foundations and practice. The Journal of
the Learning Sciences, 4(1), 39-103.

Jorgensen, M. 1995. An empirical study of software maintenance tasks. Software Maintenance:
Research and Practice, 7, 27-48.

Karahasanovic, A., Hinkel, U., Sjgberg D., and Thomas, R. (2007). Comparing of Feedback
Collection and Think-Aloud Methods in Program Comprehension Studies. Accepted for publi-
cation in Journal of Behaviour & Information Technology, 2007.

Keller, R., Schauer, R. Robitaille, S., and Page, P. 1999. Pattern-based Reverse Engineering of
Design Components. Proceedings, International Conference on Software Engineering, Los
Angeles, CA, pp. 226-235.

Ko, A.J, DeLine, R., and Venolia, G. (2007). Information needs in collocated software develop-
ment teams. International Conference on Software Engineering (ICSE), May 20-26,
344-353.

Lethbridge, T.C. 2000. Priorities for the education and training of software engineers. Journal of
Systems and Software, 53(1), 53-71.

1 Software Engineering Data Collection for Field Studies 33

Miles, M.B. 1979. Qualitative data as an attractive nuisance: the problem of analysis.
Administrative Science Quarterly, 24(4), 590-601.

Miles, M.B. and Huberman, A.M. 1994. Qualitative Data Analysis. An Expanded Sourcebook,
Second Edition. Sage Publications, Thousand Oaks, CA.

Mockus, A., Fielding, R.T., and Herbsleb, J.D. 2002. Two case studies of open source software
development: Apache and Mozillaa. ACM Transactions on Software Engineering and
Methodology, 11(3), 209-246.

NASA, SEL COTS Sudy Phase 1 Initial Characterization Sudy Report, SEL-98-001, August
1998. http://sel .gsfc.nasa.gov/website/documents/online-doc.htm.

Perry, D.E., Staudenmayer, N., and Votta, L. 1994. People, organizations, and process improve-
ment. |EEE Software, 11, 37-45.

Pfleeger, SL. and Hatton, L. 1997. Investigating the influence of formal methods. Computer, 30, 33-43.

Pfleeger, S. and Kitchenham, B. 2001. Principles of survey research Part 1: turning lemons into
lemonade. Software Engineering Notes, 26(6), 16-18.

Porter, A.A., Siy, H.P, Toman, C.A., and Votta, L.G. 1997. An experiment to assess the cost-ben-
efits of code inspections in large scale software development. IEEE Transactions on Software
Engineering, 23(6), 329-346.

Punter, T., Ciolkowski, M., Freimut, B., and John, |. 2003. Conducting On-Line Surveys in
Software Engineering. Proceedings on the International Symposium on Empirical Software
Engineering’ 03, pp. 80-88.

Rainer, A. and Hall, T. 2003. A quantitative and qualitative analysis of factors affecting software
processes. Journal of Systems and Software, 66, 7-21.

Robbins, SP. 1994. Essentials of Organizational Behavior, Fourth edition. Prentice Hall,
Englewood Cliffs, NJ.

Robillard, PN., d' Astous, P, Détienne, D., and Visser, W. 1998. Measuring Cognitive Activities
in Software Engineering. Proceedings on the 20th International Conference on Software
Engineering, Japan, pp. 292-300.

Sayyad-Shirabad, J., Lethbridge, T.C., and Lyon, S. 1997. A Little Knowledge Can Go a Long
Way Towards Program Understanding. Proceedings of 5th International Workshop on Program
Comprehension, |EEE, Dearborn, MI, pp. 111-117.

Seigel, S. and Castellan, N.J. 1988. Nonparametric Statistics for the Behavioral Sciences, Second
Edition. McGraw-Hill, New York.

Seaman, C.B. and Basili, V.R. 1998. Communication and organization: an empirical study of dis-
cussion in inspection meetings. |EEE Transactions on Software Engineering, 24(7), 559-572.

Seaman, C., Mendonca, M., Basili, V., and Kim, Y. 2003. User interface evaluation and empiri-
cally-based evolution of a prototype experience management tool. |IEEE Transactions on
Software Engineering, 29, 838-850.

Shull, F, Lanubile, F,, and Basili, V. 2000. Investigating reading techniques for object-oriented
framework learning. |EEE Transactions on Software Engineering, 26, 1101-1118.

Sim S.E. and Holt, R.C. 1998. The Ramp-Up Problem in Software Projects. A Case Study of How
Software Immigrants Naturalize. Proceedings on the 20th International Conference on
Software Engineering, Kyoto, Japan, April, pp. 361-370.

Singer, J., Lethbridge, T., Vinson, N., and Anquetil, N. 1997. An Examination of Software
Engineering Work Practices. Proceedings of CASCON, IBM Toronto, October, pp. 209-223.

Somé, S.S. and Lethbridge T.C. 1998. Parsing Minimizing when Extracting Information from
Code in the Presence of Conditional Compilation. Proceedings of the 6th IEEE International
Workshop on Program Comprehension, Italy, June, pp. 118-125.

Storey, M.-A., Cheng, L., Singer, J., Muller, M., Ryall, J., and Myers, D. (2007). Turning Tagsinto
Waypoints for Code Navigation. ICSM, Paris, France.

Teadey, S., Covi, L., Krishnan, M., and Olson, J. 2002. Rapid software devel opment through team
collocation. IEEE Transactions on Software Engineering, 28, 671-683.

von Mayrhauser, A. and Vans, A.M. 1993. From Program Comprehension To Tool Requirements
for an Industrial Environment. Proceedings of the 2nd Workshop on Program Comprehension,
Capri, Italy, pp. 78-86.

34 J. Singer et al.

von Mayrhauser, A. and Vans, A.M. 1995. Program understanding: models and experiments. In
M.C. Yovita and M.V. Zelkowitz (eds.), Advances in Computers, Vol. 40, Academic Press,
New York, pp. 1-38.

Walz, D.B., Elam, J.J., and Curtis, B. 1993. Inside a software design team: knowledge acquisition,
sharing, and integration. Communications of the ACM, 36(10), 62—77.

Walenstein, A. 2003. Observing and Measuring Cognitive Support: Steps Toward Systematic Tool
Evaluation and Engineering. Proceedings of the 11th IEEE Workshop on Program
Comprehension.

Williams, L., Kessler, R.R., Cunningham, W., and Jeffries, R. 2000. Strengthening the case for
pair-programming. |EEE Software, July/Aug, 19-25.

Wolf, A. and Rosenblum, D. 1993. A Study in Software Process Data Capture and Analysis.
Proceedings of the 2nd International Conference on Software Process, February, pp.
115-124.

Wu, J., Graham, T., and Smith, P. 2003. A Study of Collaboration in Software Design. Proceedings
of the International Symposium on Empirical Software Engineering’ 03.

Zou, L. and Godfrey, M. 2007. An Industrial Case Study of Program Artifacts Viewed During
Maintenance Tasks. Proceedings of the 2006 Working Conference on Reverse Engineering
(WCRE-06), 23-28 October, Benevento, Italy.

Chapter 2
Qualitative Methods!

Carolyn B. Seaman

Abstract Software engineering involves a blend of non-technical aswell as technical
issues that often have to be taken into account in the design of empirical studies. In
particular, the behavior of people is an integral part of software development and
maintenance. This aspect of our subject presents complexities and challenges for the
empirical researcher. In many other disciplines, qualitative research methods have
been developed and are commonly used to handle the complexity of issues involving
people performing tasks in their workplace. This chapter presents several qudlitative
methods for data collection and analysis and describes them in terms of how they
might be incorporated into empirical studies of software engineering, in particular how
they might be combined with quantitative methods. To illustrate this use of qualitative
methods, examples from real software engineering studies are used throughout.

1. Introduction

The study of software engineering has always been complex and difficult. The
complexity arises from technical issues, from the awkward intersection of
machine and human capabilities, and from the central role of the people perform-
ing software engineering tasks. The first two aspects provide more than enough
complex problems to keep empirical software engineering researchers busy. But
the last factor, the people themselves, introduces aspects that are especially diffi-
cult to capture. However, studies attempting to capture human behavior as it
relates to software engineering are increasing and, not surprisingly, are increas-
ingly employing qualitative methods (e.g. Lethbridge et al., 2005; Lutters and
Seaman, 2007; Orlikowski, 1993; Parra et al., 1997; Rainer et al., 2003; Seaman
and Basili, 1998; Singer, 1998; Sharp and Robinson, 2004).

Historically, qualitative research methods grew out of the interpretivist tradition
in social science research. Interpretivism, in turn, arose as a reaction to positivism,

' Based on “Qualitative Methods in Empirical Studies of Software Engineering” by Carolyn
B. Seaman, which appeared in |EEE Transactions on Software Engineering, 25(4):557-572, July/
August 1999. © 1999 |EEE.

35

F. Shull et al. (eds.), Guide to Advanced Empirical Software Engineering.
© Springer 2008

36 C.B. Seaman

which was and continuesto bethe prevailing (if implicit) philosophical underpinning
of research in the natural and physical sciences, including computer science and
software engineering. The positivist researcher views objective truth as possible, i.e.
that there exists some absolute truth about the issues of relevance, even if that truth
iselusive, and that the role of research isto come ever closer to it. Interpretivism, on
the other hand, posits that al truth is socially constructed, meaning that human
beings create their own truth about the issues of relevance to them, and these socially
constructed truths are valid and valuable. Qualitative methods, then, were required
to capture and describe these socially constructed realities. See Creswell (1998) for
afuller explanation of positivism, interpretivism, other related philosophical frame-
works, and the role of qualitative research methods in them. For many social science
researchers, qualitative methods are reserved exclusively for use by interpretivist
researchers, and are not to be mixed with quantitative methods or positivist points of
view. However, in recent decades, researchers in information systems, human—
computer interaction, and software engineering have begun using qualitative meth-
ods, even though the predominant, implicit philosophical stance of these research
areas remains positivist (Orlikowski and Baroudi, 1991). Thus, the perspective of
this chapter isthat qualitative methods are appropriate for (even implicitly) positivist
research in software engineering, and aresearcher does not have to subscribe whole-
heartedly to the interpretivist world view in order to apply them.

Quialitative data are data represented as text and pictures, not numbers (Gilgun,
1992). Qualitativeresearch methodsweredesigned, mostly by educational researchers
and other socia scientists (Taylor and Bogdan, 1984), to study the complexities of
humans (e.g. motivation, communication, understanding). In software engineering,
the blend of technical and human aspects lends itself to combining qualitative and
quantitative methods, in order to take advantage of the strengths of both.

The principal advantage of using qualitative methods is that they force the
researcher to delve into the complexity of the problem rather than abstract it away.
Thus the results are richer and more informative. They help to answer questions
that involve variables that are difficult to quantify (particularly human characteris-
tics such as motivation, perception, and experience). They are also used to answer
the “why” to questions already addressed by quantitative research. There are draw-
backs, however. Qualitative analysisis generally more labor-intensive and exhaust-
ing than quantitative analysis. Qualitative results often are considered “softer,” or
“fuzzier” than quantitative results, especialy in technical communities like ours.
They are more difficult to summarize or simplify. But then, so are the problems we
study in software engineering.

Methods are described here in terms of how they could be used in a study that
mixes qualitative and quantitative methods, as they often are in studies of software
engineering. The focus of this chapter is rather narrow, in that it concentrates on
only afew techniques, and only afew of the possible research designs that are well
suited to common software engineering research topics. See Judd et al. (1991),
Lincoln and Guba (1985), Miles and Huberman (1994) and Taylor and Bogdan
(1984) for descriptions of other qualitative methods.

The presentation of this chapter divides qualitative methods into those for
collecting data and those for analysing data. Examples of several methods are given

2 Qualitative Methods 37

for each, and the methods can be combined with each other, as well as with
quantitative methods. Throughout this chapter, examples will be drawn from
several software engineering studies, including (von Mayrhauser and Vans 1996;
Guindon et a., 1987; Lethbridge et al., 2005; Perry et al. 1994; L utters and Seaman,
2007; Singer, 1998; Orlikowski 1993). More detailed examples will also be used
from studies described in Parraet al. (1997) and Seaman and Basili (1998) because
they represent the author’s experience (both positive and negative).

2. Data Collection M ethods

Two data collection methods, direct observation and interviewing, are presented in
this section. These are useful ways of collecting firsthand information about soft-
ware development efforts. Historical qualitative information can also be gained by
examining documentation. Techniques for analysing archival documents are dis-
cussed in Taylor and Bogdan (1984). Another useful technique is focus groups,
which are treated extensively in the chapter by Kontio et al. (2007, this volume).

2.1. Participant Observation

Participant observation, as defined in Taylor and Bogdan (1984), refersto “research
that involves social interaction between the researcher and informants in the milieu
of the latter, during which data are systematically and unobtrusively collected.” The
idea is to capture firsthand behaviors and interactions that might not be noticed
otherwise.

Definitions of participant observation differ as to whether it implies that the
observer is engaged in the activity being observed (e.g. Barley, 1990), or only that
the observer is visibly present and is collecting data with the knowledge of those
being observed. To avoid this confusion in terminology, the term direct observation
ismore usefully used when the researcher is not actively involved in the work being
observed.

Although a great deal of information can be gathered through observation, the
parts of the software devel opment process that can actually be observed are limited.
Much of software development work takes place inside aperson’s head. Such activ-
ity is difficult to observe, athough there are some techniques for doing so. For
example, it is sometimes possible to capture some of the thought processes of indi-
vidual developers by logging their keystrokes and mouse movements as they work
on acomputer (Shneiderman, 1998). This technique is sometimes used in usability
studies, where the subjects are software users, but it has not been widely employed
in studies of software devel opers.

Think aloud observation (Hackos and Redish, 1998) requires the subject to verbal-
ize his or her thought process so that the observer can understand the mental
process going on. Such protocols are limited by the comfort level of the subject and

38 C.B. Seaman

their ability to articulate their thoughts. A good software engineering example of
this technique is the work of von Mayrhauser and Vans (1996), in which software
maintainers were asked to verbalize their thought processes while working on
understanding source code. The data was collected by audio- and video-taping the
sessions. Another example of a software engineering study based on thinking aloud
observations is Guindon, Krasner, and Curtis's study of software designers
(Guindon et a., 1987).

A variation on think aloud observation is synchronized shadowing, described in
Lethbridge et al. (2005). With synchronized shadowing, two observers watch a sub-
ject perform some task while the subject is thinking aloud. Both observers record
their notes on laptops whose clocks have been previously synchronized to the second.
The two observers record different types of information. For example, one might
concentrate on the subject’s actions (keystrokes, commands, mouse clicks) while the
other concentrates on the subject’s goals and motivations (as evidenced by the sub-
ject thinking aloud). Both observers timestamp individual observations (using a
macro in the word processor) so that the notes can later be synchronized. The end
result is a detailed set of field notes that relates actions to goals.

Software developers revea their thought processes most naturally when com-
municating with other software developers, so this communication offers the best
opportunity for a researcher to observe the development process. One method is for
the researcher to observe a software developer continuously, thus recording every
communication that takes place with colleagues, either planned or unplanned. A good
example of a study based on this type of observation is Perry et a. (1994). A less
time-consuming approach is to observe meetings of various types. These could
include inspection meetings, design meetings, status meetings, etc. By observing
meetings, a researcher can gather data on the types of topics discussed, the termi-
nology used, the technical information that was exchanged, and the dynamics of
how different project members speak to each other.

There are anumber of issues of which an observer must be aware. Many of these
are presented here, based in part on the literature (in particular Taylor and Bogdan,
1984) and partly on the particular experience of this researcher with studies of
software engineering.

The observer must take measures to ensure that those being observed are not
constantly thinking about being observed. Thisis to help ensure that the observed
behavior is“normal,” i.e. that it is what usually happens in the environment being
observed, and is not affected by the presence of the observer. For example, observ-
ers should strive for “fly on the wall” unobtrusiveness. Ideally, all those being
observed should know beforehand that the observer will be observing and why.
This advance notice avoids having to do alot of explaining during the observation,
which will only remind the subjects that they are being observed. The observer,
although visible, should not be disruptive in any way, in particular avoiding making
noise or movement that is distracting. The observer should aways look for signs
that their presence makes any of the participants nervous or self-conscious, which
again may affect their behavior. Any such signs should be recorded in the notes that
the observer takes, and will be considered in the analysis later.

2 Qualitative Methods 39

The observer’'s notes should not be visible to any of those being observed. In
fact, the notes should be kept confidential throughout the study. This gives the
researcher complete freedom to write down any impressions, opinions, or thoughts
without the fear that they may be read by someone who will misinterpret them.

The data gathered during an observation is ultimately recorded in the form of
field notes. These notes are begun during the actual observation, during which the
observer writes what is necessary to fill in the details later. Then, as soon after
the observation as possible, the notes are augmented with as many details as the
observer can remember. The information contained in the field notes should
include the place, time, and participants in the observation, the discussions that
took place, any events that took place during the observation, and the tone and
mood of the interactions. The notes can a so contain observer’'s comments, marked
“OC” in the text of the notes, which record the observer's impressions of some
aspect of the activity observed, which may not correspond directly to anything that
was actually said or that occurred. For example, impressions about the setting of
the observation (e.g. quality of the light, temperature, noise level), the demeanor of
the people observed (e.g. if someone appeared to be agitated, ill, or tired), or the
internal state of the observer (e.g. if the observer is agitated, ill, or tired, or has
some strong emotional reaction to what is being observed) could al be recorded in
observer's comments. The level of detail in the notes depends on the objectives of
the researcher. The most detailed are verbatim transcripts of everything said and
done, plus detailed descriptions of the setting and participants. Writing such
detailed notes is extremely time-consuming. Often what are needed are summaries
of the discussions and/or some details that are specific to the aims of the study. The
more exploratory and open-ended the study, the more detailed the field notes should
be, simply because in such a study anything could turn out to be relevant. In any
study, the observer should begin with very detailed notes at least for the first few
observations, until it is absolutely clear what the objectives of the study are and
exactly what information is relevant.

In many studies, there are very specific pieces of information that are expected
to be collected during an observation. This is often true in studies that combine
qualitative and quantitative methods, in which qualitative information from an
observation will later be coded into quantitative variables, e.g. the length of ameet-
ing in minutes, the number of people present, etc. When thisis the case, forms will
be designed ahead of time that the observer will fill in during the course of the
observation. Thiswill ensure that specific details will be recorded. These forms are
used in addition to, not instead of, field notes.

An example of a study based largely on observation data is Seaman and Basili
(1998), a study of code inspection meetings (hereafter referred to as the Inspection
Study). Most of the data for this study was collected during direct observation of
23 inspections of C++ classes. The objective of the study was to investigate the
relationship between the amount of effort developers spend in technical communi-
cation (e.g. the amount of time spent discussing variousissuesin inspection meetings)
and the organizationa relationships between them (e.g. how much a group of
inspection participants have worked together in the past). Information about

40 C.B. Seaman

organizational relationships was collected during interviews with inspection
participants, described in Sect. 2.2. Information about communication effort was
collected during the observations of code inspections.

Figure 1 shows a form that was filled out by the observer for each observed
meeting in the Inspection Study. The administrative information (classes inspected,
date, time, names of participants), the responsibilities of each inspector (which
products each was responsible for inspecting), each preparation time, and who was
present were all recorded on the data form either before or during the observed
inspection. The amount and complexity of the code inspected was addressed during
interviews later.

Another form filled out during observations was atime log, an example of which
is shown in Fig. 2. For each discussion that took place during the meeting, the
observer recorded the time (to the closest minute) it started, the initials of the par-
ticipants in that discussion, a code corresponding to the type of discussion, and
some notes indicating the topic of discussion, the tone of the discussion, and any
other relevant information. The arrows in some of the lists of participants’ initials
indicate that a comment or question was made by one participant, specifically tar-
geted to another participant. In the margins of the time log, the observer aso
recorded other relevant information about the participants, the setting of the meeting,
and other activities taking place. The number of minutes spent in each discussion
category was calculated from the time logs after the meeting.

Extensive field notes were also written immediately after each meeting observed
in the Inspection Study. These notes contained broader descriptions of observations
noted on the inspection data forms. Below is a sanitized excerpt from these field
notes:

[Inspectorl] raised a bunch of defects al together, all concerning checking for
certain error conditions (unset dependencies, negative time, and null pointers).

[Inspector2] raised adefect which was atypo in acomment. She seemed slightly
sheepish about raising it, but she did nevertheless.

OC: [Inspector2] seemed more harsh on [Author] than | had ever seen her on any
of the [subcontractor] authors. My impression of her is that she would never raise
atypo as a defect with anyone else. Does she have something against [government
agency] folks?

[Inspector2] raised a defect concerning the wrong name of a constant.

[Inspector3] raised a defect having to do with the previous single dependency
issue. In particular, dereferencing would have to be done differently, although there
were several ways to fix it. [Inspector3] recommended using the dot instead of the
arrow.

In order to evaluate the validity and consistency of data collected during obser-
vations, rater agreement exercises (Judd et al., 1991) are often conducted. The
basic idea is to ensure not only that the data being recorded are accurate, but also
that the observer is not recording datain a form that is understandable only to him
or her. During three of the inspection meetings observed in the Inspection Study
(about 15%), a second observer was present to record data. The same second
observer was used all three times. All three were among the first half of meetings
observed, i.e. they occurred fairly early in the study. Thiswas intentional, in order

2 Qudlitative Methods 41
Inspection Data Form
Class(es) inspected: Inspection date: Time:
Author:
Moderator:
Reviewers:
Name Responsibility Preparation time Present

D

G/D

G/IQ

M

Amount of code inspected:
Complexity of Classes:

Discussion codes:

Defects

Reviewer raises a question or concern and it is determined that it is a
defect which the author must fix; time recorded may include discussion of
the solution

Questions
Reviewer asks a question, but it is not determined to be a defect.
Classgen defect

Reviewer raises a defect caused by classgen; author must fix it, but it is
recognized as a problem to eventually be solved by classgen

Unresolved issues

Discussion of an issue which cannot be resolved; someone else not at the
meeting must be consulted (put name of person to be consulted in () beside
the code); this includes unresolved classgen issues. It also includes issues
which the author has to investigate more before resolving.

Global defects

Discussion of global issues, e.g. standard practices, checking for null pointers,
which results in a defect being logged (does not include classgen defects)

Global questions
Same as above, but not defect is logged
Process issues

General discussion and questions about the inspection process itself,
including how to fill out forms, the order to consider material in, etc., but not
the actual excecution of these tasks.

Administrative issues

Includes recording prep time, arranging rework, announcing which prod-
ucts are being inspected, silence while people look through their printouts,
filling out forms.

Miscellaneous discussion

Time logged (in minutes)
D—Q——C——U GI/D G/D P A M

Fig. 1 Form used to collect data during observation of inspection meetings

42

%@5‘4\\\{ ported toont - sevells + T het
X"LS& hod. @ bos\Cme

C.B. Seaman

- 29 closses peded n b weeks
M RS s a mogx\;war\e[ondlve's opng b 3& worse.
_alected 20 mamutes \ohe becoasse o NWC\&

Class(es) inspected: ANLS TuZ . Evii Date: 315/ Time: 20 Page | of &

&;“‘:\?’2 'I;img Participants Code Notes
’%ﬁ;ﬂ %0 =1 A geic storid ; K having prekens fudng right Qles
@»;Q\"Q_L o dhange o awll
5:‘21“’ 3 AP 2RV G/D -ackuodly several swediCleret sunll ddects
A ' Gont chaaqe nocs, woit o TEY
By AR s omy Q
fe L
T B s AP >
My‘“\é& Couks
(%
7 SES /D _
2 ool Rerough besk plan” -sowd FYIS
> o aned bt 4o B et e
& y";& 3b My Q - other sbyle - dowk take Lime aow | ot
" " g g S
2% MR oM & “om. Me__:_éﬂ‘_t.._d_m_{ysg_“és_@y__ ’;@%\i
{# . BB Glenome L
4o __#Bee M Q
R m A— w”"ﬂ & ca%eaofy
RERN & nudl mstead of O - hadl troudkly
et it
oL da SMRY AN .
& [[A Ciquet
4 \Ly‘L A Dﬁ?ﬁﬁ s thmmeffbm bv*"g B
S\ 44 swaee wy D
\69’3/& i Swiles to above “
Q&N X s ods me te ay BIG QuESTION™ —aM
PP . (P ®%U 7
PSS RE cokcteng ervor that will aever ¢
A M > X a tet more ¢ ey
Aot LT smaRe M L) o yatacsd & oo nd e ek
" -Alscussion. vastars 32
\&"‘(% _ My ackdem Fem Lor f_&c(\ywbo
> o ok le ook
o Sy whwy 1S cerbam errcrienemtedby
Tt gn ewmem Q classqen”
Clawri€reakion
S5 RAAM gm Q
l ParameterEror ~ hondbe differeatly
sk SMARY. ML I feorn the woy clossqen does

Lot de e %reuwuﬂ(boyng ko fmd rt%“; ploce M prinbouk - small print s o factor

Fig. 2 Timelog used to document discussions during inspection meetings

to get the greatest advantage from improvements made to data collection proce-
dures as a result of the exercise.

Before the observations in which she participated, the second observer was
instructed by the principal observer in the forms used for data collection, the codes
used to categorize discussions, the procedure used to time discussions, and some
background on the development project and developers. A total of 42 discussions
were recorded during the three doubly-observed meetings. Out of those, both
observers agreed on the coding for 26, or 62%. Although, to our knowledge, there
is no standard acceptable threshold for this agreement percentage, we had hoped to

2 Qualitative Methods 43

obtain a higher value. However, the two observers were later able to come to an
agreement on coding for all discussions on which they initially disagreed. The
observers generally agreed on the length of each discussion.

Many of the coding discrepancies were due to the second observer’s lack of
familiarity with the project and the developers. Others arose from the second
observer’slack of experience with the instrument (the form and coding categories),
and the subjectivity of the categories. The coding scheme was actually modified
slightly due to the problems the second observer had. It should be noted that some
of the discrepancies over coding (3 out of 26 discrepancies) were eventually
resolved in the second observer’s favor. That is, the principal observer had made an
error. Another troubling result of this exercise was the number of discussions (five)
that one observer had completely missed, but had been recorded by the other. Both
the principal and second observers missed discussions. This would imply that a
single observer will usually miss some interaction.

The results of arater agreement exercise, ideally, should confirm that the data
collection techniques being used are robust. However, as in the Inspection Study,
the exercise often reveals the limitations of the study. This is valuable, however,
as many of the limitations revealed in the study design can be overcome if they
are discovered early enough. Even if they are not surmountable, they can be
reported along with the results and can inform the design of future studies. For
example, in the Inspection Study, the results of the rater agreement exercise
indicated that the data collected during observations would have been more
accurate if more observers had been used for all observations, or if the meetings
had been recorded. These procedural changes would have either required
prohibitive amounts of effort, or stretched the goodwill of the study’s subjects
beyond its limits. However, these should be taken into consideration in the design
of future studies.

Recording of observations, either with audio or video, is another issue to be
considered when planning a study involving observation. The main advantage of
electronically recording observations is in ensuring accuracy of the data. Usually,
the field notes are written after the observation while listening to or watching the
recording. In this way, the notes are much less likely to introduce inaccuracies due
to the observer’'s faulty memory or even bias.

2.2. Interviewing

Another commonly used technique for collecting qualitative data is the interview.
Interviews are conducted with a variety of objectives. Often they are used to collect
historical data from the memories of interviewees (Lutters and Seaman, 2007), to
collect opinions or impressions about something, or to help identify the terminol-
ogy used in aparticular setting. In software engineering, they are often used to elicit
software processes (Parra et a., 1997). They are sometimes used in combination
with observationsto clarify things that happened or were said during an observation,

44 C.B. Seaman

to elicit impressions of the meeting or other event that was observed, or to collect
information on relevant events that were not observed.

Interviews come in severa types. In Lincoln and Guba (1985), a structured
interview is described as one in which “the questions are in the hands of the inter-
viewer and the response rests with the interviewee,” as opposed to an unstructured
interview in which the interviewee is the source of both questions and answers. In
an unstructured interview, the object isto elicit as much information as possible on
abroadly defined topic. Theinterviewer does not know the form of thisinformation
ahead of time, so the questions asked must be as open-ended as possible. In the
extreme, the interviewer doesn’'t even ask questions, but just mentions the topic to
be discussed and allows the interviewee to expound.

In a structured interview, on the other hand, the interviewer has very specific
objectives for the type of information sought in the interview, so the questions can
be fairly specific. The more structured an interview, the more likely it is to be
focused on quantitative, rather than qualitative data. The extreme of a structured
interview is one in which no qualitative information is gained at all, i.e. al
responses can be quantified (e.g. yesno, high/medium/low, etc.). If the study is
qualitative, however, the interview must be flexible enough to alow unforeseen
types of information to be recorded. A purely unstructured interview is often too
costly to be used extensively. Therefore, many studies employ semi-structured
interviews. These interviews include a mixture of open-ended and specific ques-
tions, designed to dlicit not only the information foreseen, but also unexpected
types of information. A good example of a software engineering study based on
semi-structured interviews is that conducted by Singer (1998), in which software
maintainers were asked about their practices. Some of the more structured questions
from this study include:

e How many years have you been programming?
o What languages have you had extensive experience programming in?
e How long have you worked on this project?

More open-ended questions included:

¢ When you get a maintenance request, how do you go about fulfilling it?
e What do you see as the biggest problem in maintaining programmes?

Again, asin the previous section on observation, the advice given here about inter-
viewing is based in part on the literature [in particular Taylor and Bogdan (1984)]
and partly on the experience and reflection of this author.

Theinterviewer should begin each interview with a short explanation of the research
being conducted. Just how much information the interviewer should give about the
study should be carefully considered. Interviewees may belesslikely to fully participate
if they do not understand the goals of the study or agree that they are worthy. However,
if interviewees are told too much about it, they may filter their responses, leaving out
information that they think the interviewer is not interested in.

Another judgement that the interviewer must often make is when to cut off the
interviewee when the conversation has wandered too far. On one hand, interview

2 Qudlitative Methods 45

time is usually valuable and shouldn’t be wasted. However, in a qualitative study,
all datais potentially useful and the usefulness of a particular piece of data often is
not known until long after it is collected. Of course, interviewees should never be
cut off abruptly or rudely. Steering them back to the subject at hand must be done
gently. In generd, it is better to err on the side of letting the interviewee ramble.
Often the ramblings make more sense in hindsight. The opposite problem, of
course, is that of an interviewee who says the barest minimum. One strategy is to
ask questions that cannot possibly be answered with a“yes’ or a“no.” Another is
to feign ignorance, i.e. to ask for details that are already well known to the inter-
viewer. This may get the interviewee talking, as well as help dispel any perception
they might have of the interviewer as an “expert.” It is also important to make it
clear that there are no “right” answers. Software developers sometimes mistakenly
believe that anyone coming to interview them is really there to evaluate them.

Like observational data, interview data are ultimately recorded in field notes,
which are governed by the same guidelines as described in the previous section.
Also, as described earlier, forms can be used and filled out by the interviewer in
order to facilitate the gathering of specific pieces of information. Ancther tool that
isvery useful during an interview is an interview guide (Taylor and Bogdan, 1984).
An interview guide is not as formal as a data form, but it helps the interviewer to
organize the interview. It serves a purpose similar to a script. It usually consists of
alist of questions, possibly with some notes about the direction in which to steer
the interview under different circumstances. In a structured interview, the questions
arefairly straightforward, and they might be arranged in an “if-then” structure that
leads the interviewer along one of several paths depending on the answers to previ-
ous questions. In an unstructured interview, there might not be an interview guide,
or it may simply be a short list of topics to be touched on. Interview guides are
purely for the use of the interviewer; they are never shown to the interviewee.

The interviewer may make some notes on the guide to help him or her remem-
ber how to steer the interview, but the guide should not be used for taking notes
of the interview. In general, it is difficult for an interviewer to take notes and con-
duct the interview at the same time, unless the interviewer is very skilled. It is
useful, if the interviewee consents, to audiotape the interview. The tape can then
be used to aid the writing of the field notes later. Recording has the added advan-
tage that the interviewer can hear him/herself on the tape and assess his or her
interviewing skills. Another way to facilitate the taking of notesisto use a scribe.
A scribe is present at the interview only to take notes and does not normally par-
ticipate in any other way. Using a scribe takes the note-writing responsibilities
from the interviewer completely, which can be an advantage for the researcher.
However, verbatim notes are not possible this way, and the scribe does not always
share the interviewer’s ideas about what isimportant to record. The use of a scribe
is also often prohibitively expensive or intimidating to the interviewee.

Another study that we will use as a detailed example is Parra et a. (1997), a
study of Commercial-Off-The-Shelf (COTYS) integration (hereafter referred to as
the COTS Study). The objective of the study was to document the process that
NASA software project teams were following to produce software systems largely

46 C.B. Seaman

congtructed from COTS components. Thistype of system development, or “integration,”
was fairly new in the NASA group studied at that time. Consequently, there was no
documented process for it and it was suspected that anumber of different processes
were being followed. The COTS Study team was tasked with building a process
model general enough to apply to al of the different ways that COTS integration
was being done. The model would then be used as a baseline to design process
measures, to plan improvements to the process, and to make recommendations for
process support. Interviews with developers on projects that involved a large
amount of COTS integration provided the bulk of the data used to build the process
model. Scribes, as described above, were used to record these interviews. Many
interviewees were interviewed multiple times, at increasing levels of detail. These
interviews were semi-structured because each interview started with a specific set
of questions, the answers to which were the objective of the interview. However,
many of these questions were open-ended and were intended for (and successful in)
soliciting other information not foreseen by the interviewer. For example, one ques-
tion on the COTS Study interview guide was:

What are the disadvantages of [COTS integration] in comparison with tradi-
tional development?

The study team had expected that answersto this question would describe techni-
cal difficulties such as incompatible file formats, interface problems, or low COTS
product quality. However, much of the data gathered through this question had to do
with the administrative difficulties of COTS integration, e.g. procurement, finding
information on current licences, negotiating maintenance agreements, etc. As a
result, a magjor portion of the study’s recommendations to NASA had to do with
more administrative support of various kinds for COTS integration projects.

Semi-structured interviews were also used in the Inspection Study (Seaman and
Basili, 1998). After each inspection meeting, an interview guide was constructed to
include the information missing from the data form for that inspection, as well as
several questions that were asked of al interviewees. The questions asked also var-
ied somewhat depending on the role that the interviewee played in the inspection.
An example of such aform is shown in Fig. 3. Most interviews in this study were
audio taped in their entirety. Extensive field notes were written immediately after
each interview. The tapes were used during the writing of field notes, but they were
not transcribed verbatim.

3. Data Analysis Methods

Collection of qualitative datais often avery satisfying experience for the researcher.
Although it is often more labor-intensive, it is also more enjoyable to collect than
guantitative data. It isinteresting and engaging and it often gives the researcher the
sense that they are closer to reality than when dealing with quantitative abstrac-
tions. The analysis of qualitative data, on the other hand, is not always as pleasant.
Although the discovery of new knowledge is always motivating, the mechanics of

2 Qualitative Methods

47

Interview Guide

Logistical info: record name, office#, date, time

Organization:

How long have you worked on [project]? At [company]?
Have you work with any of the [project] members before on other projects?
Who on the [project] team do you interact with most?

To whom do you report?

To whom are you responsible for your progress on [project]?

Inspection process:

Who chose the inspectors?

How long did it take?

Why were those ones chosen in particular?

Which inspectors inspected what?

Who took care of scheduling?

Was it done via email or face-to-face?

How much time did it take?

What steps were involved in putting together the inspection package?
How much time did that take?

How are [project] inspections different from inspections in other [company]
projects you've been on?

How was this inspection different from other [project] inspections you've been
involved with?

Reviewed material:

How much was inspected?

How is that measure?

Were the inspected classes more or less complex then average?

Fig. 3 Aninterview guide used in the Inspection Study

48 C.B. Seaman

qualitative analysis are sometimes boring, often tedious, and always more
time-consuming than expected. It is tempting to take shortcuts in the analysis
process, but rigorous analysis is necessary for the integrity of the research, and
results in more insightful, useful, and valid conclusions.

Asin quantitative studies, data analysis should be planned up front, before data
collection begins. However, the difference is that qualitative researchers collect and
analyse data nearly in parallel, or at least aternate between the two. Qualitative
analysis begins as soon as some significant amount of data has been collected.
Preliminary analysis results also can modify subsequent data collection.

In the next two sections, we present several analysis techniques, roughly divided
into two categories, although the line between them is not well delineated. The first
set of methods (Sect. 3.1) is used to generate hypotheses that fit the data (or are
“grounded” in the data), normally used in exploratory, or grounded theory studies
(Glaser and Strauss, 1967). Section 3.2 describes some methods used to build up
the “weight of evidence” necessary to confirm hypotheses in confirmatory studies.
Following, in Sect. 3.3, we discuss the use of visualization of qualitative data,
which is useful in conjunction with any analysis approach, and for presenting
results. Finally, Sect. 3.4 presents some basic techniques for transforming qualita-
tive data for subsequent quantitative analysis. The methods presented in these sections
represent only asmall sample of the methods, techniques, and approaches available
for analysing qualitative data. Yin (1994) and Miles and Huberman (1994) are
excellent sources for other data analysis approaches.

3.1. Generation of Theory

Theory generation methods are generally used to extract from a set of field notes a
statement or proposition that is supported in multiple ways by the data. The state-
ment or proposition is first constructed from some passage in the notes, and then
refined, modified, and elaborated upon as other related passages are found and
incorporated. The end result is a statement or proposition that insightfully and
richly describes a phenomenon. Often these propositions are used as hypotheses to
be tested in afuture study or in some later stage of the same study. These methods
are often referred to as grounded theory methods because the theories, or proposi-
tions, are “grounded” in the data (Glaser and Strauss, 1967). Two grounded theory
techniques, the constant comparison method and cross-case analysis, are briefly
described below. See Seaman (1999) for a fuller description of these techniques as
applied to software engineering studies.

3.1.1. Constant Comparison Method

There are anumber of methods for conducting and analysing single case studies. An
excellent reference for this type of research design is Yin (1994). Here, we will

2 Qualitative Methods 49

explore a classic theory generation method, the constant comparison method. This
method was originally presented by Glaser and Strauss (1967), but has been more
clearly and practically explained by others since (e.g. Miles and Huberman, 1994).

The process begins with open coding of the field notes, which involves attaching
codes, or labels, to pieces of text that are relevant to a particular theme or idea of
interest in the study. Codes can be either preformed or postformed. When the objec-
tives of the study are clear ahead of time, a set of preformed codes [a “start list”
(Miles and Huberman, 1994)] can be constructed before data collection begins and
then used to code the data. Postformed codes (codes created during the coding
process) are used when the study objectives are very open and unfocused. In either
case, the set of codes often develops a structure, with subcodes and categories
emerging as the analysis proceeds. Coding a section of notes involves reading
through it once, then going back and assigning codes to “chunks’ of text (which
vary widely in size) and then reading through it again to make sure that the codes
are being used consistently. Not everything in the notes needs to be assigned a code,
and differently coded chunks often overlap. In the section of coded notes from the
Inspection Study, below, the codes T, CG, and S correspond to passages about test-
ing, the core group, and functional specifications, respectively. The numbers simply
number the passages chronologically within each code.

(T4) These classes had already been extensively tested, and this was cited as the
reason that very few defects were found. [Moderator] said: “must have done some
really exhaustive testing on this class’

(CG18) [Inspector?] said very little in the inspection, despite the fact that twice
[Moderator] asked him specifically if he had any questions or issues. Once he said
that he had had a whole bunch of questions, but he had already talked to [Author]
and resolved them all.

OC: Find out how much time was spent when [Author] and [Inspector2] met.

(4) Several discussions had to do with the fact that the specs had not been updated.
[Author] had worked from a set of updated specs that she had gotten from her
officemate (who is not on the [project] team, as far as | know). | think these were
updated [previous project] specs. The [project] specs did not reflect the updates.
[Team lead] was given an action item to work with [Spec guru] to make sure that
the specs were updated.

Then passages of text are grouped into patterns according to the codes and sub-
codes they’ve been assigned. These groupings are examined for underlying themes
and explanations of phenomena in the next step of the process, called axia coding.
Axial coding can be thought of as the process of reassembling the data that was bro-
ken up into parts (chunks) in open coding. One way to do thisisto search for a par-
ticular code, moving to each passage assigned that code and reading it in context. It
is not recommended to cut and paste similarly coded passages into one long passage
so that they can be read together. The context of each passage isimportant and must
be included in consideration of each group of passages. Thisis where the intensive,
or “constant” comparison comes in. The coded data is reviewed and re-reviewed in
order to identify relationships among categories and codes. The focusis on unifying
explanations of underlying phenomenon, in particular the how’s and why’s.

50 C.B. Seaman

The next step, selective coding or “sense making,” culminates in the writing of
afield memo that articulates a proposition (a preliminary hypothesis to be consid-
ered) or an observation synthesized from the coded data. Because qualitative data
collection and analysis occur concurrently, the feasibility of the new proposition is
then checked in the next round of data collection. Field memos can take a number
of forms, from a bulleted list of related themes, to a reminder to go back to check
aparticular idea later, to several pages outlining a more complex proposition. Field
memos also provide away to capture possibly incomplete thoughts before they get
lost in the next interesting idea. More detailed memos can also show how strong or
weak the support for a particular proposition is thus far. According to Miles and
Huberman, field memos are “one of the most useful and powerful sense-making
tools at hand.” (Miles and Huberman, 1994, p. 72)

Ideally, after every round of coding and analysis, there is more data collection to
be done, which provides an opportunity to check any propositions that have been
formed. This can happen in several ways. In particular, intermediate propositions
can be checked by focusing the next round of data collection in an effort to collect
data that might support or refute the proposition. In this way, opportunities may
arise for refining the proposition Also, if the proposition holds in different situa-
tions, then further evidence is gathered to support its representativeness. This
approach may offend the sensibilities of researchers who are accustomed to per-
forming quantitative analyses that rely on random sampling to help ensure repre-
sentativeness. The qualitative researcher, on the other hand, typically uses methods
to ensure representativeness later in the study by choosing cases accordingly during
the course of the study. This is sometimes called theoretical sampling, which we
will not discuss in detail here, but the reader is referred to Miles and Huberman
(1994) for a good explanation of its use and justification.

3.1.2. Cross-Case Analysis

In many software engineering studies, the data can be divided into “cases,” which
in quantitative studies might be referred to as “data points’ or “trials” When this
is possible, cross-case analysis is appropriate. For example, in the Inspection
Study, all data were collected from the same development project, so they could
be viewed as a single case study. Some of the analysis was done with this perspec-
tive (e.g. the analysis described in the previous section). However, some cross-case
analysis was also performed by treating each inspection as a “ case.”

Eisenhardt (1989) suggests several useful strategies for cross-case anaysis, all
based on the goal of looking at the data in many different ways. For example, the
cases can be partitioned into two groups based on some attribute (e.g. number of
people involved, type of product, etc.), and then examined to see what similarities
hold within each group, and what differences exist between the two groups.
Another strategy is to compare pairs of cases to determine variations and similari-
ties. A third strategy presented by Eisenhardt is to divide the data based on data
source (e.g. interviews, observations, etc.).

2 Qudlitative Methods 51

In the Inspection Study (Seaman and Basili, 1998), we used a comparison
method that progressed as follows. The field notes corresponding to the first two
inspections observed were reviewed and a list of short descriptors (e.g. aggressive
author; discussion dominated by one inspector; really long meeting, etc.) was com-
piled for each inspection. Then these two lists were compared to determine the
similarities and differences. The next step was to list, in the form of propositions,
conclusions one would draw if these two inspections were the only two in the data
set (e.g. redly long meetings are generaly dominated by one inspector). Each
proposition had associated with it alist of inspections that supported it (beginning
with the first two inspections compared). Then the third inspection was examined,
a list of its descriptors was compiled, and it was determined whether this third
inspection supported or refuted any of the propositions formulated from the first
two. If a proposition was supported, then this third inspection was added to its list
of supporting evidence. If it contradicted a proposition then either the proposition
was modified (e.g. really long meetings are generally dominated by one inspector
when the other inspectors are inexperienced) or the inspection was noted asrefuting
that proposition. Any additional propositions suggested by the third inspection
were added to the list. This process was repeated with each subsegquent inspection.
The end result was alist of propositions (most very rich in detail), each with a set
of supporting and refuting evidence.

A different approach to cross-case analysis was used in the COTS Study (Parra
et al., 1997). Each development project that was studied was treated as a separate
case. The objective of the analysis was to document the COTS integration process
by building an abstraction, or model, of the process that was flexible enough to
accommodate all of the different variations that existed in the different projects.
This model-building exercise was carried out iteratively by a team of researchers.
The first step was to group all of the field notes by development project. Then, for
each project, the notes were used to build a preliminary process model for that
project’s COT S integration process. These preliminary models were built by differ-
ent researchers. Then the study team came together to study the models, identify
similarities and differences, and resolve discrepancies in terminology. From this,
one single model was built that encompassed the models for the different projects.
This aggregate model went through numerous cycles of review and modification by
different members of the study team. Finally, an extensive member checking process
(see Sect. 3.2) was conducted through individual interviews with project members,
alarge group interview with anumber of project personnel, and some email reviews
of the model. The resulting model can be found in Parra et a. (1997).

Cross-case analysis was al so used in the Orlikowski study of CASE tool adoption
(Orlikowski, 1993). Data from the first case was collected and coded, then the sec-
ond case’s data was collected and an attempt was made to use the same set of codes
to analyseit. Of course, some codes were inappropriate or inadequate and so new or
modified codes resulted. These were then taken back to the first case, whose data
was re-sorted and re-analysed to incorporate the new concepts. This type of back-
and-forth analysis [sometimes referred to as “ controlled opportunism” (Eisenhardt,
1989)] is aunique and valuable property of grounded theory research.

52 C.B. Seaman

3.2. Confirmation of Theory

Most qualitative data analysis methods are aimed at generating theory, as described
in the previous section, but there are anumber of methods and approachesto strength-
ening, or “confirming” a proposition after it has been generated from the data. The
goal isto build up the “weight of evidence” in support of a particular proposition, not
to proveit. The emphasisis on addressing various threats to the validity of the propo-
sition. Although quantitative hypothesis testing methods seem more conclusive than
the methods we will present in this section, they really do not provide any stronger
evidence of a proposition’s truth. A hypothesis cannot be proven, it can only be sup-
ported or refuted, and this is true using either quantitative or qualitative evidence, or
both. Qualitative methods have the added advantage of providing more explanatory
information, and help in refining a proposition to better fit the data.

Negative case analysis (Judd et al., 1991) is a very important qualitative tool for
helping to confirm hypotheses. Judd et al. even go so far as to say that “negative
case analysisiswhat the field-worker usesin place of statistical analysis” Theidea
isincorporated into each of the analysis methods described in Sect. 3.1. When per-
formed rigorously, the process involves an exhaustive search for evidence that
might logically contradict a generated proposition, revision of the proposition to
cover the negative evidence, re-checking the new proposition against existing and
newly collected data, and then continuing the search for contradictory evidence.
The search for contradictory evidence can include purposely selecting new cases
for study that increase representativeness, as explained earlier, as well as seeking
new sources and types of data to help triangulate the findings.

Triangulation (Jick, 1979) is another important tool for confirming the validity of
conclusions. The concept is not limited to qualitative studies. The basic ideaisto
gather different types of evidence to support a proposition. The evidence might
come from different sources, be collected using different methods, be analysed
using different methods, have different forms (interviews, observations, docu-
ments, etc.), or come from a different study altogether. This last point means that
triangulation also includes what we normally call replication. It also includes
the combining of quantitative and qualitative methods. A classic combination is
the statistical testing of a hypothesis that has been generated qualitatively. In the
Inspection Study (Seaman and Basili, 1998), triangulation occurred at the data
source level. Certain types of data (e.g. size and complexity of the code inspected,
the roles of different participants, etc.) were gathered multiple times, from obser-
vations, from interviews, and from the inspection data forms that each inspection
moderator filled out.

Anomalies in the data (including outliers, extreme cases, and surprises) are treated
very differently in qualitative research than in quantitative research. In quantitative
analysis, there are statistical methods for identifying and eliminating outliers from
the analysis. Extreme cases can be effectively ignored in statistical testsif they are
outweighed by more average cases. But in qualitative analysis, these anomalies
play an important role in explaining, shaping, and even supporting a proposition.

2 Qualitative Methods 53

As Miles and Huberman (1994) explain, “the outlier isyour friend.” The Inspection
Study has agood outlier example. There were few cases in the study that illustrated
what happens when the group of inspection participants is organizationally distant
(i.e. include members from disparate parts of the organization). However, one case
could easily be identified as an outlier in terms of both its long duration and the
high number of defects reported in the meeting. This case also involved a set of
organizationally distant inspection participants. The unusual values for meeting
length and number of defects could not be explained by any of the other variables
that had been determined to affect these factors. Thus, we could hypothesize that
organizational distance had an effect on length and number of defects. In addition,
the case provided a lot of explanatory data on why that effect existed.

Replication, as with quantitative studies, is a powerful but expensive tool for con-
firming findings. Replication in the qualitative arena, however, has a dightly looser
meaning than in quantitative research. While a quantitative study, to be caled a
replication of another study, is expected to employ to some degree the same instru-
ments, measures, and procedures as the original study [see the discussion by Andy
Brooks et a. (2007), this volume], a qualitative replication must only preserve the
conditions set forth in the theory being tested. That is, if the proposition to be tested
is something like

Gilb-type inspections of C++ code involving two inspectors and a moderator
will take longer but reveal more defects if the inspection participants have not
worked together before

then the replicating study must be of Gilb-type inspections of C++ code involv-
ing two inspectors and a moderator, some of which have participants who have
worked together before and some who have participants who have not worked
together before. Data do not necessarily have to be collected or analysed in the
same way that they were in the original study.

One last method for helping to confirm findings, which is particularly well suited
to most studies of software engineering, is getting feedback on the findings from the
subjects who provided the data in the first place. This strategy is sometimes called
member checking (Lincoln and Guba, 1985). Presenting findings to subjects, either
formally or informally, has the added benefits of making subjects feel part of the
process, helping them to understand how the results were derived, and gaining their
support for final conclusions. This is especialy important when the results of the
study may change the way the subjects will be expected to do their jobs. Thisis usu-
aly what we, as empirica software engineering researchers, hope will happen.
Researchers in our area often have a marketing role as well, trying to promote the
importance and usefulness of empirical study in software engineering. Member
checking helps to accomplish this at the grass roots. Miles and Huberman (1994)
give severa guidelines on how and when to best present intermediate findings to
subjects, including taking care that the results presented are couched in local termi-
nology, explaining the findings from the raw data up, and taking into account a
subject’s possible personal reaction to afinding (e.g. if it isthreatening or critical).

Member checking was used extensively in the Inspection Study. An entire round
of scheduled interviews was devoted to this exercise, and it yielded a great deal of

54 C.B. Seaman

insight. For example, afinding emerged that indicated that, as the project progressed,
inspection participants were spending less and less time discussing unresolved issues
in inspection meetings, i.e. issuesthat eventually had to be referred to someone not at
the meseting. One subject, when presented with this finding, explained that this was
because devel opers were getting better at recognizing issues and problems that were
best referred to others, and were less likely now than at the beginning of the project
to waste time trying to resolve any issues they were not equipped to resolve. Thiswas
an important insight, and in particular one that had not occurred to the researcher.

One of the most important ways to help confirm aqualitatively generated propo-
sition is to ensure the validity of the methods used to generate it. In previous sec-
tions, we have briefly addressed some of the validity concernsin qualitative studies.
One is representativeness, which has to do with the people and events chosen to be
interviewed or observed. In Sect. 3.1, there is a discussion of how, after initial
propositions are generated, cases for further study can be specifically chosen to
increase or ensure representativeness. Another validity concern is the possibility of
researcher effects on the study. Miles and Huberman warn of two types of researcher
effects and present some techniques for countering them. The first is that the pres-
ence of the researcher may affect the behavior of the subjects. Thistype of effect is
discussed earlier in Sect. 2.1. The second is that the researchers may lose their
objectivity by becoming too close to the setting being observed. A quote from one
researcher (Whyte, 1984) illustrates the second type of bias: “1 began as a nonpar-
ticipating observer and ended up as a nonobserving participant.” In studies of soft-
ware engineering, it is unlikely that the researcher will be permitted to become
involved technically in the work being studied, unless that was part of the study
plan from the beginning, but it is possible for the researcher to become part of the
political and organizational context of the project without realizing it.

In summary, many qualitative methods for confirming theory are also employed
during theory generation. That is, as propositions are being generated, they are
immediately subjected to some testing before they are even reported as findings.
The ideais to build up a “weight of evidence” that supports the hypothesis, where
the evidence is as diverse as possible. Thisis not so different from the aim of quan-
titative research, in which a hypothesisis never “proven,” but evidence, in the form
of statistically significant results from different settings and different researchers, is
built up to support it. It could be said that some qualitative methods used to test
propositions are actually stronger than statistical tests because they do not allow any
contradictory evidence. Any data that contradict the proposition are used to modify
it so that the resulting proposition fits all the data. Ideally, any proposition, no matter
how generated, is best supported by both qualitative and quantitative evidence.

3.3. Data Modelling and Visualization

In theory, qualitative data can take a number of forms, including pictures and
images. However, in practice, most raw qualitative dataisin the form of text. While

2 Qudlitative Methods 55

text has the advantage of being able to fully capture the richness and complexity of
the phenomena being studied, it also has some drawbacks. First, text islinear in the
sense that only one passage can be read at atime, so concepts that are non-linear or
spatia can be difficult, cognitively, to capture by reading. Second, text is often
more voluminous than is necessary to express a concept. “A picture is worth a
thousand words’ is sometimes very, very true. Finally, it can be difficult to visually
identify what parts of atextual dataset might be related to other parts without some
visua clues.

For al these reasons, visual modelling is often used in qualitative analysis for
several purposes. Diagrams of different types are often used as a mechanism for
presenting and explaining findings. In writing up qualitative work, using a diagram
can often save a lot of space when a concept is more succinctly summarized
graphically than textually. But diagrams also serve as a useful mechanism for the
analysis task itself. Graphical representations of data often help the researcher to
organize concepts and to reveal relationships and patterns that are obscured by
volumes of textual data. This is similar and analogous to the use of graphs and
charts when presenting quantitative results and data. Although there are numerous
types of diagrams that can be useful in various ways in qualitative analysis, we
will discuss two: matrices and maps (Dey, 1993) [called “networks” in Miles and
Huberman (1994)].

Matrices are especially useful when the data comes from a series of distinct
cases (i.e. sites, interviewees, episodes, etc.). In such a study, the researcher creates
amatrix in which the rows are cases and the columns are variables of interest. For
example, suppose a study has been conducted consisting of interviews with manag-
ersof avariety of software development projects. One useful technique to check the
representativeness of the data is to create a matrix of characterization information
on the cases from which data has been collected. The columns of the matrix would
include such characteristics as project size, application domain, experience of the
development team, etc. Filling in the cells of such a matrix for each case studied is
a useful exercise and gives the reader feedback on what background information is
missing, and what types of projects are missing from the sample.

Augmenting such a matrix with more columns representing emerging constructs
(i.e. codes or categories) is also a useful analysis technique. For example, suppose
in the previous example that many of the interviewees talked about development
team meetings, and this topic emerged as an important issue in the study. In the
(very simplified) matrix excerpt shown in Fig. 4 (from a fictitious study), we see
that thefirst few columns contain characterizing information on the cases, while the
last column contains passages that have been coded under “meetings.” Organizing
the data in this way clearly shows that the implications of development meetings
are very different for small projects than for medium projects. This insight might
not have been evident if the data analysis had relied solely on coding the textual
data. It's usually advisable to use an electronic spreadsheet to create analysis matri-
ces in order to take advantage of searching and sorting capabilities.

Maps, or basic shapes-and-lines diagrams, are also useful for sorting out con-
cepts and relationships during qualitative analysis (Dey, 1993). Such maps are

56 C.B. Seaman

Case | Project | Application Experience of | Meetings
Size Domain Developers

“We spend way too much time
1 huge banquing mixed in meetings”

“We try to touch base with the
2 small banquing whole team as often as we can”

“The daily briefings are really
useful, although some people
3 small aerospace low say it interrupts their ‘real’ work”

“We would all be so much
more productive if we could
4 large high somehow get rid of meetings”

“People don't like to come to
meetings, but | guess most of
5 medium | communications | high them are useful”

Fig. 4 An example matrix

particularly effective at expressing complex concepts in much less space than one
isableto do with text alone. The format and symbolsused in maps are limited only
by imagination; there are no rules governing them. There are, however, a few
guidelines that help make maps meaningful to the reader and useful to the
researcher. First, maps quickly lose their effectivenessif they become too compli-
cated. If it takes more space to explain how to read and interpret the map than it
would have to textually explain the concept depicted in the map, then the map is
not useful. While shapes and lines can be uninspiring, their simplicity makes them
ideal as atool to illuminate complex concepts. On the other hand, the researcher
must take care to clearly and consistently define the meanings of both the shapes
and lines (and any other symbols used in the map). Because these symbols are so
simple, they can aso be used in multiple ways, and it is tempting to use them in
multiple ways in the same diagram. So one must define, for a particular map,
whether the lines connecting shapes (i.e. concepts) signify causal relationships
(e.0. the presence of one concept causes the presence of the other), or temporal
relationships (e.g. one concept precedes another), or contextual relationships (e.g.
the two concepts tend to occur in similar contexts), etc.

Despite the need for simplicity, it is possible to include more than simple shapes
and linesin amap. Of course, different shapes can be used to denote different types
of concepts (e.g. aggregate concepts) (Dey, 1993). The thickness of a line can
denote the strength of a relationship, or the weight of evidence supporting it.
Colours and patterns can also be used to convey different meanings. Textual
annotations, within reason, are also usually needed to label elements on a map.

Miles and Huberman (1994) devote much of their book on analysis to the devel -
opment of different types of diagrams, and a very large number of examples and
variations are explained there. Many of them are similar in appearance and concept

2 Qudlitative Methods 57

Fig. 5 A causal network
showing hypothesized
causal relationships

| Preparation Effort

Complexity

Inspection
Efficiency

Work Product

| Number of Inspectors |

to diagramming techniques used in software development (e.g. control flow
diagrams, statecharts, process models, class diagrams). These are especially
appealing for software engineering studies because they are already familiar to our
community.

While maps can be used for a variety of analysis tasks, one specific use is par-
ticularly handy when the qualitative work is exploratory, and intended to lay the
groundwork for further empirical work. A good map of concepts and relationships
can serve as a research plan for follow-up studies by defining the concepts (i.e.
shapes) that need to be developed in further exploratory studies, and the hypotheses
(i.e. relationships represented as lines) upon which further confirmatory work can
be based. One version of this type of map is the causal network (Miles and
Huberman, 1994), a simple example of which is shown in Fig. 5, which identifies
factors affecting the efficiency of a software inspection. Such a map can be anno-
tated to show the hypothesized (or tested) strength of the relationships and refer-
ences to supporting evidence (e.g. identifiers for informants or coded segments).

Creating visual models of qualitative data, and the findings resulting from that
data, is a very useful tool for qualitative researchers. Modelling is useful in two
ways: during analysisto sort out ideas and relationships; and during presentation as
a way to convey findings to the reader. Modelling can be seen as a form of data
reduction because diagrams simply take up less space, and are more quickly
scanned and digested, than text. They also depict insights arising from the data that
are difficult to express succinctly in words.

3.4. Quantification of Qualitative Data

In many studies, it is appropriate to allow the analysisto iterate between quantitative
and qualitative approaches. There are several ways to quantify some parts of a body
of qualitative data. Such quantification is usualy preceded by some preliminary

58 C.B. Seaman

qualitative analysis in order to make sense of the main categories in the data. It is
often also followed by further qualitative analysis to make sense of the quantitative
findings, which then leads to further quantitative analysis or re-anaysis, and so on.

The most straightforward way to quantify qualitative data is simply to extract
quantifiable pieces of information from the text. This is often also called coding,
but must be distinguished from the types of coding related to the grounded theory
approach, discussed in Sect. 3.1.

To understand the data transformation that takes place during this type of
coding, we need to address a common misconception about the difference between
guantitative and qualitative data. Qualitative datais often assumed to be subjective,
but that is not necessarily the case. On the other hand, quantitative data is often
assumed to be objective, but neither is that necessarily the case. In fact, the objec-
tivity or subjectivity of datais orthogonal to whether it is qualitative or quantitative.
The process of coding transforms qualitative data into quantitative data, but it does
not affect its subjectivity or objectivity. For example, consider the following text,
which constitutes a fragment of qualitative data:

Tom, Shirley, and Fred were the only participants in the meeting.

Now consider the following quantitative data, which was generated by coding
the above qualitative data:

num_participants = 3

Thefact that the information is objective was not changed by the coding process.
Note also that the process of coding has resulted in some lost information (the
names of the participants). This is frequently the case, as qualitative information
often carries more content than is easily quantified. Consider another example:

[Respondent] said that this particular C++ class was really very easy to under-
stand, and not very complex at all, especialy compared to other classes in the
system.

And the resulting coded quantitative data:

complexity = low

Again, the process of coding this subjective data did not make it more objective,
although the quantitative form may appear less subjective.

When coding is performed on a set of qualitative data, the measurement scale of
the resulting quantitative data is determined by the nature of the dataitself, and is
not restricted by the fact that it was derived from qualitative data. For example, in
the “num_participants’” example, above, the quantitative variable turned out to be
on an absolute scale. But in the “complexity” example, the variable is ordinal.

Coding resultsin more reliably accurate quantitative data when it isrestricted to
straightforward, objective information, as in the first example above. However, itis
often desirable to quantify subjective information as well in order to perform sta-
tistical analysis. This must be done with care in order to minimize the amount of
information lost in the transformation and to ensure the accuracy of the resulting
guantitative data as much as possible. Often subjects use different words to describe
the same phenomenon, and the same words to describe different phenomena. In
describing a subjective concept (e.g. the complexity of a C++ class), a subject may

2 Qualitative Methods 59

use straightforward words (e.g. low, medium, high), that mask underlying ambiguities.
For example, if asubject saysthat aparticular class has“low complexity,” does that
mean that it was easy to read and understand, or easy to write, or unlikely to contain
defects, or just small? This is why, as mentioned earlier, preliminary qualitative
analysis of the data to be coded isimportant in order to sort out the use of language
and the nuances of the concept being described.

Another situation that complicates coding is when something is rated differ-
ently by different subjects. There were eight inspections in the Inspection Study
in which the complexity of the inspected material was rated differently by differ-
ent participantsin the inspection. In all but one of these cases, the ratings differed
by only onelevel (e.g. “average” and “high,” or “high” and “very high,” etc.). One
way to resolve such discrepancies is to decide that one subject (or data source) is
more reliable than another. Miles and Huberman (1994) discuss a number of fac-
tors that affect the reliability of one data source as compared with another, and
the process of weighting data with respect to its source. In the Inspection Study,
it was decided that an inspector was a more reliable judge of the complexity of
the code than the author, since we were interested in how complexity might affect
the inspection of that code. This assumption was used to resolve most of the
discrepancies.

Another approach to quantification of qualitative data is content analysis
(Hoalsti, 1969). Content analysis, originally developed for the analysis of human
communication in the social sciences, is defined in various ways, but for our pur-
poses can be described as an analysis method based on counting the frequency of
occurrence of some meaningful lexical phenomenon in a textual data set. This
technique is applicable when the textual data can be divided into cases along
some criteria (e.g. different sites or respondents). In any particular application of
content analysis, counting rules must be defined that make sense given the nature
of the data and the research goals. Thisiswhy preliminary qualitative analysisis
necessary, to determine the “nature of the data” Counting rules can take several
forms, e.g.:

o Counting the occurrence of particular keywords in each case and then correlat-
ing (statistically or more informally) the counts with other attributes of the
cases

e Counting the number of cases in which certain keywords occur and then com-
paring the counts of different keywords, or comparing the set of cases containing
the keyword to those that do not

o Counting the occurrence of one keyword in proximity to a second keyword, and
then comparing that count to the number of occurrences of the first keyword
without the second keyword

There are numerous other variations on this theme. Note that the first example
above only yields meaningful resultsif one can assume that the frequency of use of
a particular word or phrase somehow indicates its importance, or the strength of
opinion about it or some other relevant characteristic. Thisis often not areasonable
assumption because it depends too much on the speaking and writing style of the

60 C.B. Seaman

sources of the case data. A good example of the use of content analysisis Hall and
Rainer’'swork (with others), in particular (Rainer et al., 2003) and (Rainer and Hall,
2003). Holsti (1969) provides a good reference on content analysis as used in the
social sciences.

4. Conclusions

Thefocus of this chapter has been to provide guidance on using qualitative research
methods, particularly in studiesin which they are combined with quantitative meth-
ods, in empirical studies of software engineering. Nearly any software engineering
issue is best investigated using a combination of qualitative and quantitative meth-
ods. Some of the more common mixed method research designs include the
following:

o Qualitative data can be used to illuminate the statistical results employed to test
a hypothesis. This allows the researcher to go beyond the statistics to help
explain the causal relationships revealed by the quantitative results.

o When differences between subjects are an important part of the study design,
guantitative measures of individual performance can be augmented with qualita-
tiveinterview data that helps explain differencesin performance, aswell as may
identify other relevant differences that were not measured.

¢ Instudying a new process or technique, qualitative data from an early observa-
tion study of groups using the technique can be used to identify relevant varia-
bles to be measured in a subsequent experiment to evaluate the performance of
the process or technique.

e Initial qualitative data, from interviews or document analysis, can serve as a
starting point for a case study by both setting the context for the researchers as
well asidentifying important issues and variables for the study.

Finally, it should be noted that there are software packages on the market that
facilitate coding and other types of qualitative analysis [see Miles and Huberman
(1994), appendix, for an overview of qualitative analysis software]. Space does not
permit a full discussion of software tools, but one commonly used application is
NVivo™ from QSR International .2 NVivo aids the researcher in organizing, coding,
and grouping textual data, in defining and maintaining links between different
pieces of data, and in developing visual models of the data and of findings.
Empiricists in software engineering often complain about the lack of opportuni-
ties to study software development and maintenance in real settings. This really
implies that we must exploit to the fullest every opportunity we do have, by collect-
ing and analysing as much data of as many different types as possible. Qualitative
data is richer than quantitative data, so using qualitative methods increases the

2 http://www.qgsrinternational .com/

2 Qualitative Methods 61

amount of information contained in the data collected. It also increases the diversity
of the data and thus increases confidence in the results through triangulation,
multiple analyses, and greater interpretive ability.

References

Barley SR (1990) The Alignment of Technology and Structure through Roles and Networks.
Administrative Science Quarterly 35:61-103.

Brooks A, Roper M, Wood M, Daly J, Miller J(2007) Replication’s Rolein Software Engineering,
this volume.

Creswell JW (1998) Qualitative Inquiry and Research Design: Choosing Among Five Traditions.
Sage Publications, Thousand Oaks.

Dey | (1993) Qualitative Analysis: A User-Friendly Guide. Routledge, New York.

Eisenhardt KM (1989) Building Theories from Case Study Research. Academy of Management
Review 14:532-550.

Gilgun JF (1992) Definitions, Methodologies, and Methods in Qualitative Family Research, in
Qualitative Methods in Family Research. Sage Publications, Thousand Oaks.

Glaser BG, Strauss AL (1967) The Discovery of Grounded Theory: Strategies for Qualitative
Research. Aldine Publishing Company, Somerset, NJ, USA.

Guindon R, Krasner H, Curtis B (1987) Breakdowns and Processes During the Early Activities of
Software Design by Professionals, in Empirical Sudies of Programmers, second workshop,
Gary Olsen, Sylvia Sheppard, and Elliot Soloway, eds., 65-82, Ablex Publishing, Greenwich,
CT, USA.

Hackos JT, Redish JD (1998) User and Task Analysis for Interface Design. Wiley, New York.

Holsti OR (1969) Content Analysis for the Social Sciences and Humanities. Addison-Wesley,
Menlo Park.

Jick T (1979) Mixing Qualitativeand QuantitativeM ethods: Triangulationin Action. Administrative
Science Quarterly 24(4):602-611.

Judd CM, Smith ER, Kidder LH (1991) Research Methods in Social Relations, sixth edition.
Harcourt Brace Jovanovich, Fort Worth.

Kontio J, Bragge J, Lehtola L (2007) The Focus Group Method as an Empirical Tool in Software
Engineering, this volume.

Lethbridge T, Sim SE, Singer J (2005) Studying Software Engineers. Data Collection Techniques
for Software Field Studies. Empirica Software Engineering: An International Journa
10(3):311-341.

Lincoln Y'S, Guba EG (1985) Naturalistic Inquiry. Sage Publishing, Thousand Oaks.

Lutters WG, Seaman CB (2007) The Vaue of War Stories in Debunking the Myths of
Documentation in Software Maintenance. Information and Software Technology 49(6):
576-587.

Miles MB, Huberman AM (1994) Qualitative Data Analysis: An Expanded Sourcebook, second
edition. Sage Publishing, Thousand Oaks.

Orlikowski WJ (1993) CASE Tools as Organizational Change: Investigating Incremental and
Radical Changesin Systems Development. MIS Quarterly 17(3):309-340.

Orlikowski WJ, Baroudi JJ (1991) Studying Information Technology in Organizations: Research
Approaches and Assumptions. Information Systems Research 2(1):1-28.

Parra A, Seaman C, Basili V, Kraft S, Condon S, Burke S, Yakimovich D (1997) The Package-
Based Development Process in the Flight Dynamics Division. Proceedings of the Twenty-
second Software Engineering Workshop, NASA/Goddard Space Flight Center Software
Engineering Laboratory (SEL), Greenbelt, MD, USA.

62 C.B. Seaman

Perry DE, Staudenmayer NA, Votta LG (1994) People, Organizations, and Process | mprovement.
|EEE Software 11(July): 36-45.

Rainer A, Hall T (2003) A Quantitative and Qualitative Analysis of Factors Affecting Software
Processes. Journal of Systems and Software 66:7-21.

Rainer A, Hall T, Baddoo N (2003) Persuading Developers to ‘Buy Into’ Software Process
Improvement: Local Opinion and Empirical Evidence. Proceedings of the International
Symposium on Empirical Software Engineering (ISESE), |IEEE, Los Alamitos, CA, USA.

Seaman CB (1999) Qualitative Methods in Empirical Studies of Software Engineering. |EEE
Transactions on Software Engineering 25(4):557-572.

Seaman CB, Basili VR (1998) Communication and Organization: An Empirical Study of
Discussion in Inspection Meetings. |EEE Transactions on Software Engineering
24(7):559-572.

Sharp H, Robinson H (2004) An Ethnographic Study of XP Practice. Empirical Software
Engineering 9:353-375.

Shneiderman B (1998) Designing the User Interface: Strategies for Effective Human-Computer
Interaction, third edition. Addison-Wesley, Reading, MA, USA.

Singer J (1998) Practices of Software Maintenance. Proceedings of the International Conference
on Software Maintenance, |EEE Computer Society Press, Los Alamitos, CA, pp. 139-145.

Taylor SJ, Bogdan R (1984) Introduction to Qualitative Research Methods. Wiley, New York.

von Mayrhauser A, Vans AM (1996) I dentification of Dynamic Comprehension Processes During
Large Scale Maintenance. | EEE Transactions on Software Engineering 22(6):424-437.

Whyte WF (1984) Learning from the Field: A Guide from Experience. Sage Publications, Beverly
Hills.

Yin RK (1994) Case Study Research: Design and Methods. Sage Publications, Newbury Park,
CA, USA.

Chapter 3
Per sonal Opinion Surveys

Barbara A. Kitchenham and Shari L. Pfleeger

Abstract Although surveys are an extremely common research method, survey-
based research is not an easy option. In this chapter, we use examples of three
software engineering surveysto illustrate the advantages and pitfalls of using surveys.
We discuss the six most important stages in survey-based research: setting the sur-
vey’'s objectives, selecting the most appropriate survey design; constructing the
survey instrument (concentrating on self-administered questionnaires); assessing the
reliability and validity of the survey instrument; administering the instrument; and,
finally, analysing the collected data. This chapter provides only an introduction to
survey-based research; readers should consult the referenced literature for more
detailed advice.

1. Introduction

Surveys are probably the most commonly used research method worldwide. Survey
work is visible because we are often asked to participate in surveys in our private
capacity, as electors, consumers, or service users. This widespread use of surveys
may give the impression that survey-based research is straightforward, an easy
option for researchers to gather important information about products, context,
processes, workers and more. However, in our experience thisis not the case. In this
chapter, we will use actual survey examples to illustrate the attractions and pitfalls
of the survey technique.

The three surveys we will use as our examples will be discussed in the next sec-
tion. After that we will define what we mean by a survey. Then we will discuss the
main activities that need to be considered when you undertake a survey:

Setting the objectives

Survey design

Developing the survey instrument (i.e. the questionnaire)
Evaluating the survey instrument

Obtaining valid data

Anaysing the data

63

F. Shull et al. (eds.), Guide to Advanced Empirical Software Engineering.
© Springer 2008

64 B.A. Kitchenham and S.L. Pfleeger

2. Example Surveys

In this section we describe three software engineering surveys that will be used as
examples throughout this chapter.

2.1. Technology Evaluation Survey

Recently we were involved in far from successful survey. A few years ago,
Zelkowitz et al. (1998) surveyed practitioners to determine their confidence in dif-
ferent types of empirical evaluations asthe basis for technology adoption decisions.
Their findings indicated that the evidence produced by the research community to
support technology adoption is not the kind of evidence being sought by practition-
ers. To build on Zelkowitz et al.’ swork, agroup of researchers, including ourselves,
wanted to do afollow-up survey of managers, to find out what kinds of evaluations
they make of proposed technologies, and what kinds of evidence they rely on for
their technology decisions.

We had noticed that many newsletters often include reader survey forms, some
of whose questions and answers could provide useful insight into managers deci-
sion-making processes. We approached the publisher of Applied Software
Development; he was eager to cooperate with the research community, and he
agreed to insert a one-page survey in the newsletter and gather the responses. As a
result, we took the following steps:

1. We designed a survey form and asked several of colleagues to critique it. The
survey asked respondents to examine a list of technologies and tell us if the
technology had been evaluated and if it had been used. If it had been evaluated,
the respondents were asked to distinguish between a “soft” evaluation, such asa
survey or feature analysis, and a “hard” evaluation, such as formal experiment
or case study.

2. We “tested” the resulting survey form on a colleague at Lucent Technologies.
We asked him to fill out the survey form and give feedback on the clarity of the
questions and responses, and on the time it took him to complete the form.
Based on his very positive reaction to the questionnaire, we submitted a slightly
revised survey to the newsletter publisher.

3. The publisher then revised the survey, subject to our approval, so that it would
fit on one page of his newsletter. The questionnaire was formatted as a table with
four questions for each of 23 different software technologies (see Table 1).

4. The survey form was included in all copies of a summer 1999 issue of Applied
Software Devel opment.

Of the several thousand possible recipients of Applied Software Development, only
171 responded by sending their survey form back; thus, the response rate was low,
which is typical in this type of survey. The staff at Applied Software Development

3 Personal Opinion Surveys 65

Table 1 Format of technology survey questionnaire

Technology/ Did your Soft Evaluation ~ Hard Evaluation Are you now
technique company techniques: techniques: using the
evaluate this read case feature techniquein
technology? studies, comparisons, some
articles, performance production
talking with benchmark, work or most
peers, lessons or other more production
learned, or quantitative work?
other more evidence?
anecdotal
evidence?
Specific software Yes/No Yes/No Yes/No Some/Most/None
technology

transferred the data from the survey sheets to a spreadsheet. However, when the
results of the survey were analyzed, it appeared that we had made errors in survey
design, construction, administration and analysis that rendered any results incon-
clusive at best.

2.2. Software Education Survey

Lethbridge (1998, 2000) conducted surveys to help him understand those areas
where practitioners feel they need more or better education. The goal of the surveys
was to provide information to educational institutions and companies as they plan
curriculaand training programs. A secondary goal involved providing data that will
assist educators and practitioners in evaluating existing and proposed curricula.

Lethbridge and his team recruited participants for the surveys in two ways. by
approaching companies directly and asking them to participate, and by advertising
for participants on the Web. To determine the effects of formal education,
Lethbridge presented the respondents with alist of topics related to computer sci-
ence, mathematics and business. For each topic, the respondent was asked “How
much did you learn about thisin your formal education?’ The choices for answers
ranged on a six-point ordinal scale from “learned nothing” to “learned in depth.”
Other questions included

e What is your current knowledge about this considering what you have learned
on the job as well as forgotten?

e How useful has this specific material been to you in your career?

o How useful would it be (or have been) to learn more about this (e.g. additional
courses)? (This question appeared in the first version of the survey.)

e How much influence has learning the material had on your thinking (i.e. your
approach to problems and your general maturity), whether or not you have
directly used the details of the material? Please consider influence on both your

66 B.A. Kitchenham and S.L. Pfleeger

career and other aspects of you life. (This question appeared in the second version
of the survey.)

2.3. Software Risk Management Survey

Ropponen and Lyytinen (2000) described an examination of risk management
practices. They administered a survey addressing two overall questions:

e What are the components of software development risk?
e What risk management practices and environmental contingencies help to
address these components?

To find out the answers, the researchers mailed a questionnaire to each of a pre-
selected sample of members of the Finnish Information Processing Association
whose job title was “manager” or equivalent. They sent the questionnaire to at most
two managers in the same company.

Ropponen and Lyytinen asked twenty questions about risk by presenting sce-
narios and asking the respondents to rate their occurrence with a five-point ordinal
scale, ranging from “hardly ever” to “amost always.” For example, the scenarios
included:

Your project is cancelled before completing it
and
Subcontracted tasks in the project are performed as expected.

The researchers posed additional questions relating to organizational character-
istics, such as the organization’s size, industry, type of systems developed, and
contractual arrangement. They also sought technology characteristics, such as
the newness of the technology, the complexity and novelty of technological
solutions, and the process technologies used. Finally, they asked questions
about the respondents themselves. their experience with different sizes of
projects, their education, their experience with project management, and the
software used.

3. What isa Survey?

To begin, let usreview exactly what a survey is. A survey is not just the instrument
(the questionnaire or checklist) for gathering information. It is a comprehensive
research method for collecting information to describe, compare or explain knowl-
edge, attitudes and behavior (Fink, 1995). Fowler (2002) defines a quantitative
survey in the following way:

e The purpose of asurvey isto produce statistics, that is, quantitative or numerical
descriptions of some aspects of the study population.

3 Personal Opinion Surveys 67

e The main way of collecting information is by asking questions; their answers
constitute the data to be analysed.

o Generally information is to be collected from only a fraction of the population,
that is a sample, rather than from every member of the population.

In this chapter we will concentrate on surveys of this type where data is collected
by means of a questionnaire completed by the subject. This excludes surveys that
use a semi-structured interview schedule administered by the researcher. We will
also exclude surveys using mainly open-ended questions, surveys based on observ-
ing participant behaviour and data mining exercises. Thus, we restrict ourselves to
surveys that collect quantitative but subjective data (concerning individual’s opin-
ions, attitudes and preferences) and objective data such as demographic information
for example a subject’s age and educational level.

4. Setting Objectives

The first step in any survey research (or any research, for that matter!) is setting
objectives otherwise referred to as problem definition. Each objective is smply a
statement of the survey’s expected outcomes or a question that the survey is
intended to answer. For instance, a survey may hope to identify the most useful
features of a front-end development tool, or the most common training needs for
new hires.

There are three common type of objective:

o To evauate the rate or frequency of some characterigtic that occursin a population,
for example, we might be interested in the frequency of failing projects (Standish
Group, 2003).

o To assessthe severity of some characteristic or condition that occursin a popul a-
tion, for example, we might be interested in the average overrun of software
projects (Mol gkken-@stvold et a., 2004).

o To identify factors that influence a characteristic or condition, for example, we
might be interested in factors that predispose a process improvement activity
towards failure or towards success Dyba (2005).

The first two types of survey objective are descriptive: they describe some condition
or factor found in a population in terms of its frequency and impact. The second
type of survey looks at the relationship existing among factors and conditions
within a population.

As the objectives are defined in more detail, you should be able to specify:

The hypotheses to be tested

What alterative explanations are to be investigated or excluded

What scope of survey project is appropriate to address the objectives
What resources are necessary to achieve the objectives

68 B.A. Kitchenham and S.L. Pfleeger

At thisstageit isimportant to decide whether asurvey is an appropriate research method
to address the stated objectives. You need to be able to answer questions of the type:

e |sit clear what population can answer the survey questions reliably?

¢ |sthere amethod of obtaining a representative sample of that population?

o Does the project have sufficient the resources to collect a sample large enough
to answer the study questions?

o Isit clear what variables need to be measured?

o Isit clear how to measure the variables?

If you cannot answer all these questions positively, you need to consider whether a
survey is an appropriate means to address your research objectives.

5. Survey Design

Two common types of survey design are:

e Cross sectional: In this type of study, participants are asked for information at
one fixed point in time. For example, we may poll al the members of a software
development organization at 10 am on a particular Monday, to find out what
activitiesthey are working on that morning. Thisinformation gives us a snapshot
of what is going on in the organization.

e Longitudinal: This type of study is forward-looking, providing information
about changes in a specific population over time. There are two main variants of
longitudinal designs, you can survey the same people at each time period or you
can survey different people.

Recall the three survey examples we introduced in Sect. 2. The Lethbridge survey
asked respondents about their levels of training and education (see Lethbridge,
1998, 2000). The Ropponen and Lyytinen (2000) study requested information
about risk management practices from Finnish software projects. The Pfleeger-
Kitchenham study sought to determine what kinds of evidence were used to support
technology adoption decisions. All three surveyswere all cross-sectional studies, in
which participants were asked about their past experiences at a particular fixed
point intime. It is not simply coincidence that all our examples are of thistype; in
our experience, most surveys in software engineering have this kind of design.

There are other more complex forms of survey design, for example designs that
compare different populations, or designs that aim to assess the impact of a change.
For information on such designs see, for example, Shaddish et al. 2002).

The other issue to decide is the way in which the survey will be administered.
Options include:

o Self-administered questionnaires (usually postal but increasingly Internet).
o Telephone surveys.
e One-to-one interviews.

3 Personal Opinion Surveys 69

The questions that can be addressed are influenced by this factor. In addition, strategies
for obtaining reliable data such as question ordering and wording differ according
to the administration method. Fowler provides a detailed examination of the pros
and cons of different administration methods (Fowler, 2002). In this chapter we con-
centrate primarily on self-administered questionnaires.

6. Developing a Survey Instrument

In this section, we turn to how to develop a survey instrument. Survey instruments,
which are usually questionnaires, are developed using the following steps:

e Search the relevant literature.
¢ Construct an instrument.

o Evauate the instrument.

¢ Document the instrument.

We discuss instrument construction in this section and instrument validation and
documentation in Sect. 7, using the three surveys described in Sect. 2 to illustrate
good and bad practice.

6.1. Searching the Literature

As with any good investigative study, we must begin our work by looking through
the literature. We need such searches to:

o ldentify what other studies have been done on the topic.

o Determine how the previous studies’ researchers collected their data. In particular,
we want to find out what questionnaires or other data collection mechanisms
were used.

There are many reasons for knowing what has come before. First, we do not want
unknowingly to duplicate someone else’s research. Second, we want to learn from
and improve upon previous studies. For example, if previous studies have devel-
oped relevant validated instruments or questions that we can adopt, it makes our
own survey easier to administer and validate. Similarly, if other researchers had
problems with response rates, we will be aware of the need to adopt measures to
address this problem. Finally, other studies may give us ideas about variables and
issues we need to consider in designing our own studies.

6.2. Creating or Re-Using an | nstrument

In software engineering, we often start from scratch, building models of a problem
and designing survey instruments specifically for the problem at hand. However, in
other disciplines, it israre to develop a new survey instrument. Researchers usually

70 B.A. Kitchenham and S.L. Pfleeger

rely on using existing instruments, perhaps tailored slightly to accommodate
variations on a common theme. This reliance on standard instrumentation has two
important advantages.

1. The existing instruments have already been assessed for validity and reliability.
2. By using common instruments, it is easy to compare new results with the results
of other studies.

When researchers in other disciplines cannot use an existing instrument, they are
often able to amend existing instruments. An instrument might be amended if:

e |tistoo long to be used in entirety.

o A different population is being studied from the one for which the original
instrument was designed.

o It needs to be trandated.

e The data collection method is different in some way from the original instru-
ment’s data collection.

However, we must take care when considering amending an instrument. Our
changes may introduce complications that make the research more difficult. For
example:

o |f the original instrument is copyrighted, we may need permission to change it.
e We must repeat pilot testing of the instrument.
e The new instrument must be assessed for validity and reliability.

Unfortunately, because most survey instruments in software engineering research
are developed from scratch, we introduce many practical problems. In particular,
software engineering research instruments are seldom properly validated.

6.3. Creating a New Questionnaire

A survey asksthe respondents to answer questions for areason, so the starting point
in designing the survey instrument should always be the survey’s purpose and
objectives. However, simply converting a list of objectives into a set of questions
seldom leads to a successful survey instrument. The type of question and wording
of the questions and answers need to be carefully designed.

6.3.1. Question Types

When formulating questions for a survey instrument, you can express them in one
of two ways: open or closed. A question is open when the respondents are asked to
frame their own reply. Conversely, a question is closed when the respondents are
asked to select an answer from alist of predefined choices.

3 Personal Opinion Surveys 71

There are advantages and disadvantages to each type of question. Open questions
avoid imposing any restrictions on the respondent. However, there are many different
way's respondents may choose to answer a question. Moreover, no matter how care-
fully we word the question, open questions may leave room for misinterpretation
and provision of an irrelevant or confusing answer. Thus, open questions can be
difficult to code and analyze.

6.3.2. Designing Questions

Once we have an idea of what we want to ask, we must give some thought to how
we want to pose the questions. Questions need to be precise, unambiguous and
understandable to respondents. In order to achieve that we need to ensure that:

e Thelanguage used is appropriate for the intended respondents and any possibly
ambiguous terms are fully defined.

e We use standard grammar, punctuation and spelling.

e Each question expresses one and only one concept so we need to keep questions
short but complete and avoid double-barrelled questions.

¢ Questions do not included vague or ambiguous qualifiers.

e Colloquialisms and jargon are avoided.

e We use negative as well as positive questions but avoid simply negating a
guestion or using a double negative.

o We avoid asking question about events that occurred along timein the past.

e We avoid asking sensitive questions that respondents may not be willing to
answer in a self-administered questionnaire.

It is also important to make sure that respondents have sufficient knowledge to
answer the questions. It can be extremely frustrating to be asked questions you are
not in a position to answer. For example, of the three surveys described in Sect. 2,
two of the surveys (Lethbridge’s survey and the Finnish survey) asked respondents
about their personal experiences. In contrast, the survey of technology adoption
asked respondents to answer questions such as

Did your company evaluate this technology? Yes/No

Are you now using the technique in some production work or most production work?
Yes/No

In this case, we were asking people to answer questions on behalf of their company.
The questions may have caused difficulties for respondents working in large com-
panies or respondents who had worked for the company only for arelatively short
period of time.

To see how wording can affect results, consider the two Lethbridge surveys.
Each was on the same topic, but he changed the wording of hislast question. In the
first survey Lethbridge, 1998, question 4 was:

How useful would it be (or have been) to learn more about this (e.g. additional courses)?

72 B.A. Kitchenham and S.L. Pfleeger

In his second survey (Lethbridge, 2000), question 4 was:

How much influence has learning the material had on your thinking (i.e. your approach to
problems and your general maturity), whether or not you have directly used the details of
the material? Please consider influence on both your career and other aspects of your life.

The first version of the question is considerably better than the second version,
because the second version is more complex and thus more difficult to interpret and
understand. In particular, the second version appears to be two-edged (referring
both to approach to problems and to general maturity) and rather imprecise (since
it may not be clear what “general maturity” really means). However, further reflec-
tion indicates that even the first version of the question is ambiguous. Is the
respondent supposed to answer in terms of whether (s)he would have benefited
from more courses at university, or in terms of whether (s)he would benefit from
industrial courses at the present time?

The survey of technologies posed questions about evaluation procedures in
terms of how the respondent’s company performed its evaluation studies. In partic-
ular, it asked questions about soft and hard evaluation techniques by defining them
at the top of two of the columns:

Soft evaluation techniques: Read case studies, articles, talking with peers, lessons learned

or other more anecdotal evidence? Yes/No

Hard evaluation techniques: feature comparison, performance benchmark, or other more
quantitative evidence? YesNo

These questions include jargon terms related to evaluation that may not be well
understood by the potential respondents. Similarly, the researchers used jargon when
defining the technology types aswell: CASE tools, Rapid Application Development,
4GLs, and more. Were the questions to be redesigned, they should spell out each
technology and include a glossary to describe each one. Such information ensures
that the respondents have a common understanding of the terminology.

6.3.3. Designing Answersto Questions

Answers are usually of one of four types:

1. Numerical vaues (e.g. Age)

2. Response categories (e.g. Job type)
3. Yes/No answers

4. Ordinal scales.

Numerical values are usualy straightforward but other types of answer may cause
difficulties.

Response categories require all respondents to choose from a set of possible
categories. They should be:

o Exhaustive but not too long
e Mutualy exclusive

3 Personal Opinion Surveys 73

o Allow for multiple selectionsif required
¢ Include an “Other” category if the categories are not known to be exhaustive

Yes/No answers are particularly problematic. They suffer from acquiescence bias
(Krosnick, 1990) aswell as problemswith lack of reliability (because people do not
give the same answer on different occasions), imprecision (because the restrict
measurement to only two levels) and many characteristics are broad in scope and
not easily expressed as a single question (Spector 1992). Consider the question in
the technology evaluation survey:

Are you now using the technique in some production work or most production work?

In this case our question about technology use doesn’t suit atwo point Yes/No scale
very well. The question needs an ordinal scale answer.

Generally it is better to use an ordinal scale for attitudes and preferences. There
are three types of scale:

1. Agreement scales e.g. a response choice of the form: Strongly Disagree,
Disagree, Neither Agree nor Disagree, Agree, Strongly Agree.

2. Frequency scales e.g. a response choice of the form: Never, Rarely, Seldom,
Sometimes, Occasionally, Most of the time.

3 Evaluation scales e.g. aresponse choice of the form: Terrible, Inferior, Passable,
Good, Excellent.

Like response categories, ordina scales need to be exhaustive but not too long.
Researchers usually restrict them to seven points. In addition, Krosnick recom-
mended points on a scale be labeled with words (to assist reliability and validity)
but not numbered (because numbers can be interpreted in unanticipated ways by
respondents) (Krosnick, 1990).

However, understanding (and hence reliability) may also be increased if we
define each point on a scale. For example, Lethbridge gives some indication of the
detail needed to define an ordinal scale in his survey. Each of his four main
questions hasits own associated ordinal scale with responses defined in the context
of the question. For instance, the question “How much did you learn about this at
university or college” had the following scale:

Score Definition

Learned nothing at all

Became vaguely familiar

Learned the basics

Became functional (moderate working knowledge)

Learned alot

Learned in depth, became expert (learned almost everything)

o g WN PR

Although the intermediate points on the scale are alittle vague, the end points are
clear and unambiguous. Lethbridge's scale conforms to the normal standard of

74 B.A. Kitchenham and S.L. Pfleeger

using between 5 and 7 choices along an ordinal scale. Lethbridge’'s scaleis aso a
reasonably balanced one. A scale is balanced when the two endpoints mean the
opposite of one another and the intervals between the scale points appear to be
about equal. Creating equal distances between the scale points is called anchoring
the instrument. It is difficult to create an anchored scale and even more difficult to
validate that a scale is properly anchored.

A final issue that applies to ordinal scale categories is whether to include a
“Don’'t know” category. There is some disagreement in the social science commu-
nity about this issue. Some researchers feel that such choices allow respondents to
avoid answering a question. However, it may be counter-productive to force people
to answer questions they don’t want to, or to force them to make a choice about
which they feel ambivalent. The usual approach isto consider whether the respond-
ents have been selected because they are in aposition to answer the question. If that
isthe case a“Don’'t Know” category is usualy not permitted.

6.3.4. Measuring Complex Concepts

Spector points out some concepts are difficult to map to single self-standing ques-
tions (Spector 1992). This may result in one (or both) of two type of unreliability

1. If people answer in different ways at different time
2. If people make mistakes in their responses.

He proposes measures based on summated rating scales to address this problem.
A summated rating scale is a set of two or more items (i.e. questions) that address
a specific topic or aspect of interest. Having multiple items improves reliability by
reducing the chance of respondents making an error in their response and increases
the precision with which a concept is measured.

6.4. Questionnaire Format

For self-administered questionnaires, it is important to consider both the format
of the questionnaire and the questionnaire instructions. For formatting printed
questionnaires, use the following checklist (much of which applies to Web-based
guestionnaires, too):

o Leave a space for the respondents to comment on the questionnaire.

o Use space between questions.

o Use vertical format, spaces, boxes, arrows, etc. to maximize the clarity of ques-
tions. However, do not overwhelm the respondent with “clever” formatting
techniques (particularly for Web Questionnaires).

e Consider the use of simple grids.

o Consider the use of a booklet format.

3 Personal Opinion Surveys 75

Have a good contrast between print and paper.

Stick to afont size of 10-12.

Use afont that is easy to read.

Avoid italics.

Use bolding, underlining or capitals judiciously and consistently for emphasis
and instructions.

e Do not split instructions, questions and associated responses between pages.

The order in which questions are placed is aso be important. Bourque and Fielder
(1995) recommend questions be asked in a logical order, starting with easy ques-
tions first. However, although most questionnaires include demographic questions
(that is, questions that describe the respondent) at the front of the questionnaire,
Bourque and Fielder suggest putting them at the end instead. They point out that
demographic details may be off-putting at the start of the questionnaire and so may
discourage respondents.

The questionnaire must be accompanied by various administrative information
including:

¢ An explanation of the purpose of the study.

e A description of who is sponsoring the study (and perhaps why).

o A cover letter using letterhead paper, dated to be consistent with the mail shot,
providing a contact name and phone number. Personalize the salutation if
possible.

¢ An explanation of how the respondents were chosen and why.

e An explanation of how to return the questionnaire.

o A redistic estimate of the time required to compl ete the questionnaire. Note that
an unrealistic estimate will be counter-productive.

6.5. Response Rates and Motivation

It is often very difficult to motivate people to answer an unsolicited survey. Survey
researchers can use inducements such as small monetary rewards or gifts, but these
are not usually very successful. In general, people will be more motivated to pro-
vide complete and accurate responses if they can see that the results of the study
are likely to be useful to them. For this reason, we should be sure that the survey
instrument is accompanied by several key pieces of information supplied to
participants:

Wheat the purpose of the study is.

Why it should be of relevance to them.

Why each individual’s participation is important.
How and why each participant was chosen.

How confidentiality will be preserved.

76 B.A. Kitchenham and S.L. Pfleeger

Lethbridge (1998) attempted to motivate response with the following statement:

The questionnaire is designed to discover what aspects of your educational background
have been useful to you in your career. The results of the survey will be used to help
improve curricula. All the information you provide will be kept confidential. In particular
we have no intention of judging you as a person—we are merely interested in learning about
the relevance of certain topics to your work.

By contrast, the technology adoption survey attempted to motivate response with
the statement:

Dear Executive, We are sponsoring a study for the University of X, and Professors Y and
Z. 1t is only through our cooperative efforts with the academic community that we bring
our commercia experiences to the classroom. Thank you for your help.

It fairly clear that Lethbridge's statement is likely to be more motivating although
neither is compelling.

6.6. Questionnaire Length

Although we all know that we should strive for the shortest questionnaire that will
answer our research questions, there is always atemptation to add afew extraques-
tions “while we are going to all the trouble of organising a survey”. Thisis usually
a mistake. You should use pre-tests (see Sect. 7) to assess how long it takes to
answer your questionnaire and whether the length (in time and number of ques-
tions) will de-motivate respondents.

If you have too many questions, you may need to remove some. Questions can
usualy be grouped together into topics, where each topic addresses a specific
objective. One way to prune questions is to identify a topic that is addressed by
many questions, and then remove some of the less vital ones. Another way is to
remove some groups of questions. Keep in mind, though, that such pruning some-
times means reducing the objectives that the questionnaire addresses. In other
words, you must maintain a balance between what you want to accomplish and
what the respondents are willing to tell you. Validity and reliability assessments
undertaken during pre-tests can help you decide which questions can be omitted
with least impact on your survey objectives.

One way to reduce the time taken to complete a survey is to have standardized
response formats. For example, in attitude surveys, responses are usually standard-
ized to an ordinal scale of the form:

Strongly Agree, Agree, Disagree, Strongly Disagree.

If al responses are standardized, respondents know their choices for each ques-
tion and do not have to take time to read the choices carefully, question by question.
Thus, respondents can usually answer more standard-format questions in a given
time than non-standard ones.

3 Personal Opinion Surveys 77

6.7. Researcher Bias

An important consideration throughout questionnaire construction is the impact
of our own bias. We often have some idea of what we are seeking, and the way
we build the survey instrument can inadvertently reveal our biases. For example,
if we create a new tool and distribute it free to a variety of users, we may decide
to send out a follow-up questionnaire to see if the users find the tool helpful. If
we do not take great care in the way we design our survey, we may word our
guestions in away that is sure to confirm our desired result. For instance, we can
influence replies by:

e Theway aquestion is asked.

e The number of questions asked.

e Therange and type of response categories.
e Theinstructions to respondents.

To avoid bias, we need to:

e Develop neutral questions. In other words, take care to use wording that does not
influence the way the respondent thinks about the problem.

e Ask enough questions to adequately cover the topic.

e Pay attention to the order of questions (so that the answer to one does not influ-
ence the response to the next).

e Provide exhaustive, unbiased and mutually exclusive response categories.

e Write clear, unbiased instructions.

We need to consider the impact of our own prejudices throughout questionnaire
construction. However, we also need to evaluate our questionnaire more formally,
using methods discussed in Sect. 7.

7. Survey Instrument Evaluation

We often think that once we have defined the questions for our survey, we can
administer it and gather the resulting data. But we tend to forget that creating a set
of questionsis only the start of instrument construction. Once we have created the
instrument, it is essential that we evaluate it (Litwin, 1995). Evaluation is often
called pre-testing, and it has several different goals:

e To check that the questions are understandabl e.

e To assess the likely response rate and the effectiveness of the follow-up
procedures.

e To evaluate the reliability and validity of the instrument.

e To ensure that our data analysis techniques match our expected responses.

The two most common ways to organize an evaluation are focus groups and pilot
studies. Focus groups are mediated discussion groups. We assemble a group of

78 B.A. Kitchenham and S.L. Pfleeger

people representing either those who will use the results of the survey or those who
will be asked to complete the survey (or perhaps a mixture of the two groups). The
group members are asked to fill in the questionnaire and to identify any potential
problems. Thus, focus groups are expected to help identify missing or unnecessary
guestions, and ambiguous questions or instructions. As we will see below, focus
groups also contribute to the evaluation of instrument validity.

Pilot studies of surveys are performed using the same procedures as the survey, but
the survey instrument is administered to a smaller sample. Pilot studies are intended
to identify any problems with the questionnaire itself, as well as with the response
rate and follow-up procedures. They may also contribute to reliability assessment.

The most important goal of pre-testing is to assess the reliability and validity of
the instrument. Reliability is concerned with how well we can reproduce the survey
data, as well as the extent of measurement error. That is, asurvey isreliable if we
get the same kinds and distribution of answers when we administer the survey to
two similar groups of respondents. By contrast, validity is concerned with how well
the instrument measures what it is supposed to measure. The varioustypes of valid-
ity and reliability are described bel ow.

Instrument evaluation is extremely important and can absorb a large amount of
time and effort. Straub presents a demonstration exercise for instrument validation
in MIS that included a Pretest, Technical Validation and Pilot Project (Straub,
1989). The Pretest involved 37 participants, the Technical Validation involved 44
people using a paper and pencil instrument and an equal number of people being
interviewed; finally the Pilot test analysed 170 questionnaires. All this took place
before the questionnaire was administered to the target population.

7.1. Types of Reliability

In software, we tend to think of reliability in terms of lack of failure; software is
reliable if it runs for a very long time without failing. But survey reliability has a
very different meaning. The basic idea is that a survey is reliable if we administer
it many times and get roughly the same distribution of results each time.
Test-Retest (Intra-observer) Reliability is based on the idea that if the same person
responds to a survey twice, we would like to get the same answers each time. We
can evaluate this kind of reliability by asking the same respondents to complete the
survey questions at different times. If the correlation between the first set of
answers and the second is greater than 0.7, we can assume that test-retest reliability
is good. However, test-retest will not work well if:

o Variables naturally change over time.

e Answering the questionnaire may change the respondents’ attitudes and hence
their answers.

¢ Respondents remember what they said previously, so they answer the same way
in an effort to be consistent (even if new information in the intervening time
makes a second, different answer more correct).

3 Personal Opinion Surveys 79

Alternate form reliability is based on rewording or re-ordering questions in
different versions of the questionnaire. This reduces the practice effect and
recall problems associated with a simple test-retest reliability study. However,
alternative formreliability hasits own problems. Rewording is difficult because
it is important to ensure that the meaning of the questions is not changed and
that the questions are not made more difficult to understand. For example,
changing questions into a negative format is usually inappropriate because
negatively framed questions are more difficult to understand than positively
framed questions. In addition, re-ordering results can be problematic, because
some responses may be affected by previous questions.

Inter-observer (inter-rater) reliability is used to assess the reliability of
non-administered surveys that involve a trained person completing a survey
instrument based on their own observations. In this case, we need to check
whether or not different observers give similar answers when they assess the
same situation. Clearly inter-rater reliability cannot be used for self-administered
surveys that measure personal behaviors or attitudes. It is used where there is a
subjective component in the measurement of an external variable, such as with
process or tool evaluation. There are standard statistical techniques available to
measure how well two or more evaluators agree. To obtain more information
about inter-rater reliability, you should review papers by El Emam and his
colleagues who were responsible for assessing 1SO/IEC 15504 Software Process
Capability Scale, also known as SPICE (see for example EI Emam et al., 1996,
1998).

Two reliability measures are particularly important for summated rating scales:
the Cronbach apha coefficient (Cronbach, 1951) and the Item-remainder coeffi-
cient. These measures assess the internal consistency of a set of items (questions)
that are intended to measure a single concept. The item-remainder coefficient isthe
correlation between the answer for one item and sum of the answers of the other
items. Itemswith the highest item-remainder are important to the consistency of the
scale. The Cronbach aphais calculated as

2 2
a= K N STTLS 223)
k-1 S

Where S? is the total variance of the sum of al the items for a specific construct
and §? is the variance of an individual item and k is the number of items.

If variables are independent the variance of their sum is equal to the sum of each
individual variance. If variables are not independent the variance of their sum is
inflated by the covariance among the variables. Thusif the Cronbach aphais small
we would assume that the variables were independent and did not together contribute
to the measurement of a single construct. If the Cronbach alpha is large
(conventionally >0.7), we assume that the items are highly inter-correlated and
together measure a single construct.

80 B.A. Kitchenham and S.L. Pfleeger

7.2. Types of Validity

As noted above, we also want to make sure that our survey instrument is measuring
what we want it to measure. This called survey validity. Four types of validity are
discussed below.

Face validity isacursory review of items by untrained judges. It hardly counts as a
measure of validity at all, because it is so subjective and ill-defined.

Content validity is a subjective assessment of how appropriate the instrument seems
to agroup of reviewers (i.e. afocus group) with knowledge of the subject matter.
It typically involves a systematic review of the survey’s contents to ensure that it
includes everything it should and nothing that it shouldn’t. The focus group should
include subject domain experts as well as members of the target population.

There is no content validity statistic. Thus, it is not a scientific measure of a
survey instrument’s validity. Nonetheless, it provides a good foundation on which
to base a rigorous assessment of validity. Furthermore if we are developing a new
survey instrument in a topic area that has not previously been researched, it is the
only form of preliminary validation available.

Criterion validity is the ability of a measurement instrument to distinguish
respondents belonging to different groups. This requires a theoretical framework
to determine which groups an instrument is intended to distinguish. Criterion
validity issimilar to concurrent validity and predictive validity. Concurrent validity
is based on confirming that an instrument is highly correlated to an already
validated measure or instrument that it is meant to be related to. Predictive validity
is based on confirming that the instruments predicts a future measure or outcome
that it isintended to predict.

Construct validity concerns how well an instrument measures the construct it is
designed to measure. This form of validity is very important for validating sum-
mated measurement scales (Spector 1992). Convergent construct validity assesses
the extent to which different questions which are intended to measure the same
concept give similar results. Divergent construct validity assesses the extent to
which concepts do not correlate with similar but distinct concepts. Like criterion
validity, divergent and convergent construct validity can be assessed by correlating
a new instrument with an already validated instrument. Dyba (2000) presents a
software engineering example of the validation process for a software survey using
summated measurement scales.

7.3. Validity and Reliability in Software Engineering Surveys

Generally, software engineering surveys are weak in the area of validity and relia-
bility. For example, for many years, in the extensive literature relating to the CMM,
there was only one reference to areliability coefficient (the Cronbach’s alpha) and
that concerned the 1987 version of the Maturity Questionnaire (Humphrey, 1991).

3 Personal Opinion Surveys 81

Of the three surveys we discussed in Sect. 1.2, only the Finnish Survey
(Ropponen and Lyytinen, 2000) made a concerted effort to undertake reliability and
validity studies. The technology adoption survey used face validity only. Lethbridge
discusses the basis for his questions, but his discussion of validity is based only on
a post-hoc assessment of possible responder bias (L ethbridge, 1998, 2000). In con-
trast, the Finnish researchers used a panel of experts to judge the content validity
of the questions. They also attempted to assessthe internal reliability of their instru-
ment. Unfortunately, they did not perform an independent pilot study. They ana-
lyzed their survey responses using principal components to identify strategies for
managing risks. They then derived Cronbach alpha statistics (Cronbach, 1951)
from the same responses. They found high values and concluded that their survey
instrument had good reliability. However, Cronbach al pha values were bound to be
high, because they measure the structure already detected by the principal compo-
nent analysis.

7.4. Survey Documentation

After the instrument is finalized, Bourque and Fielder (1995) recommend starting
to document the survey. If the survey is self-administered, you should consider
writing an initial descriptive document, called a questionnaire specification. It
should include:

e The objective(s) of the study.

e A description the rationale for each question.

e The rationale for any questions adopted or adapted from other sources, with
appropriate citations.

e A description of the evaluation process.

Furthermore, once the questionnaire is administered, the documentation should be
updated to record information about:

¢ Who the respondents were.

e How it was administered.

o How the follow-up procedure was conducted.

e How completed questionnaires were processed.

One of the major reasons for preparing documentation during the survey is that
surveys can take a long time. It may be many months between first distributing a
guestionnaire and when we are able to analyze results. It takes time for respondents
to reply and for the researchers to undertake all necessary follow-up procedures.
This time lag means that it is easy to forget the details of instrument creation and
administration, especialy if documentation is left to the end of the study. In general,
it is good research practice to keep an experimental diary or log book for any type
of empirical studies.

82 B.A. Kitchenham and S.L. Pfleeger

When questionnaires are administered by interview, specifications are referred
to asinterviewer specifications and can be used to train interviewers as well as for
reference in the field.

Once all possible responses have been received and al follow-up actions have
been completed, we are in a position to analyze the survey data. This is discussed
in the following sections. However before tackling analysis we look at the problem
of obtaining a data set that is suitable for statistical analysis.

8. Obtaining Valid Data

When we administer a survey, it is not usually cost-effective (and sometimes not
even possible) to survey the entire population. Instead, we survey a subset of the
population, called a sample, in the hope that the responses of the smaller group
represent what would have been the responses of the entire group. When choosing
the sample to survey, we must keep in mind three aspects of survey design: avoid-
ance of bias, appropriateness, and cost-effectiveness. That is, we want to select a
samplethat is truly representative of the larger population, is appropriate to involve
in our survey, and is not prohibitively expensive to query. If we take these sample
characteristics into account, we are more likely to get precise and reliable
findings.

In this section, we describe how to obtain a valid survey sample from a target
population. We discuss why a proper approach to sampling is necessary and how to
obtain a valid sasmple. We also identify some of the sampling problems that affect
software engineering surveys.

The main point to understand isthat avaid sampleisnot smply the set of responses
we get when we administer a questionnaire. A set of responsesis only avalid sample,
in gtatistical terms, if has been obtained by a random sampling process.

8.1. Samples and Populations

To obtain a sample, you must begin by defining a target population. The target
population is the group or the individuals to whom the survey applies. In other
words, you seek those groups or individuals who are in a position to answer the
guestions and to whom the results of the survey apply. Ideally, a target population
should be represented as afinite list of all its members called a sampling frame. For
example, when pollsters survey members of the public about their voting prefer-
ences, they use the electoral list as their sampling frame.

A valid sample is a representative subset of the target population. The critical
word in our definition of a sampleisthe word “representative.” If we do not have a
representative sample, we cannot claim that our results generalize to the target

3 Personal Opinion Surveys 83

population. If our results do not generalize, they have little more value than a
personal anecdote. Thus, amajor concern when we sample a population isto ensure
that our sample is representative.

Before we discuss how to obtain avalid sample, let us consider our three survey
examples. In Lethbridge's case, he had no defined target population. He might have
meant his target population to be every working software developer in the world,
but thisis simply another way of saying the population was undefined. Furthermore,
he had no concept of sampling even his notional population. He merely obtained a
set of responses from the group of people motivated to respond. Thus, Lethbridge's
target population was vague and his sampling method non-existent. So although he
described the demographic properties of his respondents (age, highest education
qualification, nationality etc.), no generalization of hisresultsis possible.

With respect to the Pfleeger-Kitchenham survey, we noted previously that we
were probably targeting the wrong population because we were asking individuals
to answer questions on behalf of their companies. However, even if our target popu-
lation was all readers of Applied Software Development, we did not have any
sampling method, so our responses could not be said to constitute a valid sample.

In contrast, in the Finnish survey, Ropponen and Lyytinen had alist of all mem-
bers of the Finnish Information Processing Association whose title was manager.
Thus, they had a defined sampling frame. Then, they sent their question-
naires to a pre-selected subset of the target population. If their subset was obtained
by avalid sampling method (surprisingly, no sampling method is reported in their
article), their subset constituted a valid sample. As we will see later, this situation
is not sufficient to claim that the actual responses were a valid sample, but it is
a good starting point.

8.2. Obtaining a Valid Sample

We begin by understanding the target population. We cannot sample a population
if we cannot specify what that population is. Our initial assessment of the target
population should arise from the survey objectives, not from asense of who is avail-
ableto answer our questions. The more precisely the objectives are stated, the easier
it will be to define the target population. The specific target population may itself
be a subset of a larger population. It may be specified by the use of inclusion or
exclusion criteria.

It is often instructive to consider the target population and sampling procedure
from the viewpoint of data analysis. We can do this during questionnaire design but
we should also re-assess the situation after any pretests or pilot tests of the survey
instrument. At this point we will have some actual responses, so we can try out our
analysis procedures. We need to consider whether the analyses will lead to any
meaningful conclusions, in particular:

o Will the analysis results address the study objectives?
e Can the target population answer our research questions?

84 B.A. Kitchenham and S.L. Pfleeger

Considering the first question, Lethbridge's objectives were to provide information
to educational institutions and companies as they plan curricula and training pro-
grams. This goal raises obvious questions. which educational institutions and
which companies? Lethbridge's target population was poorly defined but can be
characterized as any practising software engineer. Thus, we must ask ourselves
whether replies from software engineers who would have attended different educa-
tion institutions, worked in different companies or had different roles and responsi-
bilities would indicate clearly how curricula and training courses could be
improved. At the very least, general conclusions may be difficult. The results would
need to be interpreted by people responsible for curricula or training courses in the
light of their specific situation.

The next question concerns the target population. Will the target population
provide useful answers? Lethbridge did not apply any inclusion or exclusion crite-
ria to his respondents. Thus, the respondents may include people who graduated a
very long time ago or graduated in non-computer science-related disciplines and
migrated to software engineering. It seems unlikely that such respondents could
offer useful information about current computer science- related curricula or train-
ing programs.

Consider now the survey of technology adoption practices. We have aready
pointed that the Pfleeger-Kitchenham target popul ation was the set of organizations
(or organizational decision-makers) making decisions about technology adoption.
However, our sample population solicits information from individuals. Thus, our
sampling unit (i.e. an individual) did not match their experimental unit (i.e. an
organization). This mismatch between the population sampled and the true target
population isacommon problem in many surveys, not just in software engineering.
If the problem is not spotted, it can result in spurious positive results, since the
number of responses may be unfairly inflated by having many responses from
organizations instead of one per organization. Furthermore if there are a dispropor-
tionate number of responses from one company or one type of company, results will
also be biased.

The general target population of the Finnish survey of project risk was Finnish
IT project managers. The actual sampling frame was specified as members of
Finnish Information Processing Association whose job title was “manager” or
equivalent. People were asked about their personal experiences as project manag-
ers. In general, it would seem that the sample adequately represents the target popu-
lation, and the target population should be in a position to answer the survey’s
questions.

The only weaknessis that the Finnish survey did not have any experience-related
exclusion criteria. For instance, respondents were asked questions about how fre-
quently they faced different types of project problems. It may be that respondents
with very limited management experience cannot give very reliable answersto such
guestions. Ropponen and Lyytinen did consider experience (in terms of the number
of projects managed) in their analysis of the how well different risks were managed.
However, they did not consider the effect of lack of experience on theinitial analy-
sis of risk factors.

3 Personal Opinion Surveys 85

8.3. Sampling Methods

Once we are confident that our target population is appropriate, we must use a
rigorous sampling method. If we want to make strong inferences to the target popu-
lation, we need a probabilistic sampling method. We describe below a variety of
sampling methods, both probabilistic and non-probabilistic.

8.3.1. Probabilistic Sampling Methods

A probabilistic sample is one in which every member of atarget population has a
known, non-zero probability of being included in the sample. The aim of aprobabilistic
sample is to eliminate subjectivity and obtain a sample that is both unbiased and
representative of the target population. It isimportant to remember that we cannot
make any statistical inferences from our data unless we have a probabilistic
sample.

A simple random sampleis one in which every member of the target population has
the same probability of being included in the sample. There are a variety of ways
of selecting a random sample from a population list. One way is to use a random
number generator to assign arandom number to each member of the target popula-
tion, order the members on the list according to the random number and choose the
first n members on the list, where n is the required sample size.

A stratified random sample is obtained by dividing the target population into
subgroups called strata. Each stratum is sampled separately. Strata are used when
we expect different sections of the target population to respond differently to our
questions, or when we expect different sections of the target population to be of
different sizes. For example, we may stratify a target population on the basis of
sex, because men and women often respond differently to questionnaires. The
number of members selected from each stratum is usually proportional to the size
of the stratum. In a software engineering survey, we often have far fewer women
than men in our target population, so we may want to sample within strata to
ensure we have an appropriate number of responses from women. Stratified random
samples are useful for non-homogeneous populations, but they are more compli-
cated to analyze than simple random samples.

Systematic sampling involves selecting every nth member of the sampling frame. If the
list israndom, then selecting every nth member is another method of obtaining asimple
random sample. However, if the list is not random, this procedure can introduce bias.
Non-random order would include aphabetical order or date of birth order.

8.3.2. Cluster-Based Sampling

Cluster—based sampling is the term given to surveying individuals that belong to
defined groups. For example, we may want to survey all members of a family
group, or al patients at specific hospitals. Randomization procedures are based on

86 B.A. Kitchenham and S.L. Pfleeger

the cluster, not the individual. We would expect members of each cluster to give
more similar answers than we would expect from members of different clusters.
That is, answers are expected to be correlated within a cluster. There are well-
defined methods for analyzing cluster data, but the analysis is more complex than
that of a simple random sample (for example, see Levy and Lemeshow, 1999).

8.3.3. Non-Probabilistic Sampling M ethods

Non-probability samples are created when respondents are chosen because the are
easily accessible or the researchers have some justification for believing that they
are representative of the population. This type of sample runs the risk of being
biased (that is, not being representative of the target population), so it is dangerous
to draw any strong inferences from them. Certainly it is not possible to draw any
statistical inferences from such samples.

Nevertheless, there are three reasons for using non-probability samples:

o Thetarget population is hard to identify. For example, if we want to survey soft-
ware hackers, they may be difficult to find.

o The target population is very specific and of limited availability. For example if
we want to survey senior executives in companies employing more than 5000
software engineers, it may not be possible to rely on arandom sample. We may
be forced to survey only those executives who are willing to participate.

e Thesampleisapilot study, not the final survey, and anon-random group isread-
ily available. For example, participants in atraining program might be surveyed
to investigate whether aformal trial of the training program is worthwhile.

Three methods of non-probabilistic sampling are discussed bel ow.

Convenience sampling involves obtaining responses from those people who are
available and willing to take part. The main problem with this approach is that the
people who are willing to participate may differ in important ways from those who
are not willing. For example, people who have complaints are more likely to provide
feedback than those who are satisfied with a product or service We often see this
kind of sampling in software engineering surveys.

Snowball sampling involves asking people who have participated in a survey to
nominate other people they believe would be willing to take part. Sampling contin-
ues until the required number of responses is obtained. This technique is often
used when the population is difficult for the researchers to identify. For example,
we might expect software hackers to be known to one another, so if we found one
to take part in our survey, we could ask him/her to identify other possible
participants.

Quota sampling is the non-probabilistic version of stratified random sampling. The
target population is spit into appropriate strata based on know subgroups (e.g. sex,
educational achievement, company size etc.). Each stratum is sampled (using con-
venience or snowball techniques) so that number of respondents in each subgroup
is proportional to the proportion in the popul ation.

3 Personal Opinion Surveys 87

8.4. Sample Size

A major issue of concern when sampling is determining the appropriate sample
size. There are two reasons why sample size is important. First, an inadequate
sample size may lead to results that are not significant statistically. In other words,
if the sample size is not big enough, we cannot come to a reasonable conclusion,
and we cannot generalize to the target population. Second, inadequate sampling of
clusters or strata disables our ability to compare and contrast different subsets of
the population.

However, Fowler points out that there is no simple equation that can tell you
exactly how large your sample ought to be (Fowler, 2002). In particular, he rejects
sample size strategies based on a proportion of the population, typical sizes found
in other studies, or statistical methods based on expected error levels. His suggestion
isto consider your analysis plan and ensure that you have adequate sample sizes of
the smallest important subgroups in your population.

8.5. Response Rates

It is not enough to decide how many people to survey. We must also take steps to
be sure that enough people return the survey to yield meaningful results. Thus,
any reliable survey should measure and report its response rate, that is, the pro-
portion of participants who responded compared to the number who were
approached.

The validity of survey results is severely compromised if there is a significant
level of non-response. If we have alarge amount of non-response but we can under-
stand why and can still be sure that our pool of respondentsis representative of the
larger population, we can proceed with our analysis. But if thereislarge non-response
and we have no ideawhy people have not responded, we have no way of being sure
that our sample truly represents the target population. It is even worse to have no
idea what the response rate is. For example, we had 171 responses to our survey,
but we did not know exactly how many people subscribed to Applied Software
Devel opment, so we could not cal culate responserate. Similarly, because L ethbridge
solicited responses from companies via the Web, the size of the target population
was unknown; therefore, he could not calculate the response rate. Thus, in both
these cases the cost savings obtained by avoiding a direct mailing may have com-
promised the validity of the surveys.

It is not obvious what a sort of response rate we should expect. Baruch (1999)
reviewed 175 1S surveys and found a median response rate was 60%, but it may be
that conditions are different in SE than in IS. Currently, we have relatively few sur-
veysin SE and many of those do not publish response rates.

There are severa strategies that can be used to improve response rates. Some
were discussed in Sect. 6.5, others include:

88 B.A. Kitchenham and S.L. Pfleeger

o |f weexpect aninitia low response rate, we can plan for over-sampling. That is,
when we identify the sample size we require, we then sample more than the
minimum required to allow for the expected non-response.

¢ We should have follow-up plans to send reminders to participants.

e We should approach individuals personally, if necessary. One-to-one approaches
are particularly important if we want to assess the reason for non-response. For
example, the researchersin Finland phoned a random sample of people who did
not reply to their survey to ask them why they did not respond. This activity
allowed them to confirm that non-response was not likely to have a systematic
bias on their results.

¢ |t may be possible to perform statistical adjustments to correct for non-response.

However, recent research has suggested that achieving higher response rates do not
necessarily mean more accurate results (Krosnick, 1990). If we have used probabil -
ity sampling, low response rates may not imply lower representativeness.

9. Analysing Survey Data

In this section, we assume that you have designed and administered your survey,
and now you are ready to analyze the data you have collected. If you have designed
your survey properly, you should have already identified the main analysis proce-
dures. Furthermore, if you have undertaken any pre-tests or pilot studies, you
should have already tested the analysis procedures.

We discuss some general issues involved in analyzing survey data. However, we
cannot describe in detail how to analyze all types of survey data, so we concentrate
on discussing some of the most common analysis issues.

9.1. Data Validation

Before undertaking any detailed analysis, responses should be vetted for consist-
ency and completeness. It is important to have a policy for handling inconsistent
and or incomplete questionnaires. If we find that most respondents answered all
questions, we may decide to reject incomplete questionnaires. However, we must
investigate the characteristics of rejected questionnaires in the same way that we
investigate non-response to ensure that we do not introduce any systematic bias.
Alternatively, we may find that most respondents have omitted a few specific ques-
tions. In this case, it is more appropriate to remove those questions from the
analysis.

Sometimes we can use dl the questionnaires, even if some areincomplete. In this
case we will have different sample sizes for each question we analyze and we must
remember to report that actual sample size for each sample statistic. This approach is

3 Personal Opinion Surveys 89

suitable for analyses such as calculating sample statistics or comparing mean values,
but not for correlation or regression studies. Whenever analysis involves two or more
questions you need an agreed procedure for handling missing values.

In some cases, it is possible to use statistical techniques to “impute” the values
of missing data (Little and Rubin, 1987). However, such techniques are usually
inappropriate when the amount of missing data is excessive and/or the values are
categorical rather than numerical.

It is important to reduce the chance of incomplete questionnaires when we
design and test our instruments. A very strong justification for pilot surveysis that
misleading questions and/or poor instructions may be detected before the main sur-
vey takes place.

The questionnaire related to the technology adoption survey (shown in Appendix 1)
suffered badly in terms of incomplete answers. A review of the instructions to
respondents made it clear why this had happened. The instructions said:

If you are not sure or don’t know an answer just leave the line blank; otherwise it isimpor-
tant to answer YES or NO to the first section of every Technique/Technology section.

With these instructions, perhapsit is not surprising that most of the questionnaires
had missing values. However, replies were not just incomplete; they were also
inconsistent. For example, some respondents left blank question 1 (Did your com-
pany evaluate this technology?) while replying YES to question 2, about the type
of evaluation undertaken. Thus, blanks did not just mean “Don’'t know”; sometimes
they also meant YES. Ambiguities of this sort make data analysis extremely diffi-
cult and the results dubious.

9.2. Partitioning the Responses

We often need to partition our responses into more homogeneous sub-groups before
analysis. Partitioning is usually done on the basis of demographic information. We
may want to compare the responses obtained from different subgroups or simply
report the results for different subgroup separately. In some cases, partitioning can
be used to alleviate some initial design errors. Partitioning the responses is related
to data validation since it may lead to some replies being omitted from the
analysis.

For example, we noted that Lethbridge did not exclude graduates from non-1T
related subjects from his population nor did he exclude people who graduated many
years previously. However, he knew a considerable amount about his respondents,
because he obtained demographic information from them. In his first paper, he
reported that 50% of the respondents had degrees in computer science or software
engineering, 30% had degrees in computer engineering or electrical engineering,
and 20% had degrees in other disciplines. He also noted that the average time since
the first degree was awarded was 11.7 years and 9.6 years since the last degree.
Thus, he was in a position to partition the replies and concentrate his analysis on
recent IT graduates. However, since he did not partition his data, his results are
extremely difficult to interpret.

90 B.A. Kitchenham and S.L. Pfleeger

9.3. Analyzing Ordinal and Nominal Data

Analyzing numerical data is relatively straightforward. However, there are addi-
tional problemsif your datais ordinal or nominal.

A large number of surveys ask people to respond to questions on an ordinal
scale, such afive-point agreement scale. The Finnish survey and Lethbridge’s sur-
vey both requested answers of this sort. It iscommon practice to convert the ordinal
scale to its numerical equivalent (e.g. the numbers 1-5) and to analyze the data as
if they were simple numerical data. There are occasions when this approach isrea-
sonable, but it violates the mathematical rules for analyzing ordinal data. Using a
conversion from ordinal to numerical entails a risk that subsequent analysis will
give misleading results.

In general, if our data are single peaked and approximately Normal, our risks of
misanalysis are low if we convert to numerical values. However, we should also
consider whether such a conversion is necessary. There are three approaches that
can be used if we want to avoid scale violations:

1. We can use the properties of the multinomial distribution to estimate the propor-
tion of the population in each category and then determine the standard error of
the estimate. For example, Moses uses a Bayesian probability model of the
multinomial distribution to assess the consistency of subjective ratings of ordinal
scale cohesion measures (Moses, 2000).

2. We may be ableto convert an ordinal scaleto adichotomous variable. For exam-
ple, if we are interested in comparing whether the proportion who agree or
strongly agreeis greater in one group than another, we can re-code our responses
into a dichotomous variable (for example, we can code “strongly agree” or
“agree” as 1 and all other responses as 0) and use the properties of the binomial
distribution. This technique is also useful if we want to assess the impact of
other variables on an ordinal scale variable. If we can convert to a dichotomous
scale, we can use logistic regression.

3. We can use Spearman’s rank correlation or Kendall’s tau (Siegel and Castellan,
1998) to measure association among ordinal scale variables.

There are two occasions where there is no real aternative to scale violations:

1. If we want to assess the reliability of our survey instrument using Cronbach’s
alpha statistic (Cronbach, 1951)..

2. If we want to add together ordinal scale measures of related variables to give
overall scores for a concept.

The second case is not amajor problem since the central limit theory confirms that
the sum of anumber of random variables will be approximately Normal even if the
individual variables are not themselves Normal.

However, we believe it isimportant to understand the scale type of our data and
analyze it appropriately. Thus, we do not agree with Lethbridge’s request for
respondents to interpolate between his scale points as they saw fit (e.g. to give a
reply of 3.4 if they wanted to).

3 Personal Opinion Surveys 91

10. Conclusions

This chapter has discussed the issues involved in undertaking survey-based research,
in particular surveys based on self-administered questionnaires. The main message of
this chapter is that, in spite of its ubiquity, survey-based research is not a simple
research method. It requires time and effort to understand the basic methodology as
well astime and effort to create, validate and administer a survey instrument.

We have only scratched the surface of survey methodology in this chapter. We
hope this chapter provides a useful starting point but we strongly advise that you
consult the text books and research referenced in this chapter before undertaking a
survey for the first time.

References

Bourque, L. and Fielder, E. How to Conduct Self-administered and Mail Surveys, Sage
Publications, Thousand Oaks, CA, 1995.

Baruch, Y. Response rate in academic studies — a comparative anaysis. Human Relations, 52(4),
1999, pp. 412-438.

Cronbach, L.J. Coefficient alpha and internal structure of tests. Psychometrika, 16(3), 1951,
pp. 297-334.

Dyb3, T. An empirical investigation of the key factors for success in software process improve-
ment. |EEE Transactions on Software Engineering, 31(5), 2005, pp. 410-424.

Dyba, T. Aninstrument for measuring the key factors of successin software process improvement.
Empirical Software Engineering, 5(4), 2000, pp. 357-390.

El Emam, K., Goldenson, D., Briand, L., and Marshall, P. Interrater Agreement in SPICE Based
Assessments. Proceedings 4th International Software Metrics Conference, |EEE Computer
Society Press, 1996, pp. 149-156.

El Emam, K., Simon, J-M., Rousseau, S., and Jacquet. E. Cost Implications of Interrater
Agreement for Software Process Assignments. Proceedings 5th International Software
Metrics Conference, |EEE Computer Society Press, 1998, pp. 38-51.

Fowler, F.J. Jr. Survey Research Methods, Third Edition, Sage Publications, Thousand Oaks, CA,
2002.

Fink, A. The Survey Handbook, Sage Publications, Thousand Oaks, CA, 1995.

Humphrey, W. and Curtis, B. Comments on ‘acritical look’, |IEEE Software, 8:4, July, 1991,
pp. 42-46.

Krosnick, JA. Survey research. Annual Review of Psychology, 50, 1990, pp. 537-567.

Lethbridge, T. A Survey of the Relevance of Computer Science and Software Engineering Education.
Proceedings of the 11th International Conference on Software Engineering Education, |IEEE
Computer Society Press, 1998.

Levy, PS. and Lemeshow, S. Sampling of Populations. Methods and Applications, Third Edition,
Wiley Seriesin Probability and Statistics, Wiley, New York, 1999.

Lethbridge, T. What knowledge is important to a software professional. IEEE Computer, 33(5),
2000, pp. 44-50.

Little, R.J.A. and Rubin, D.B. Satistical Analysis with Missing Data, Wiley, New York, 1987.

Litwin, M. How to Measure Survey Reliability and Validity, Sage Publications, Thousand Oaks,
CA, 1995.

Moses, J. Bayesian probability distributions for assessing measurement of subjective software
attributes. Information and Software Technology, 42(8), 2000, pp. 533-546.

92 B.A. Kitchenham and S.L. Pfleeger

Molgkken-@stvold, K., Jergensen, M., Tanilkan, S.S., Gallis, H., Lien, A. and Hove, S. A Survey
on Software Estimation in the Norwegian Industry. Proceedings 10th International Symposium
on Software metrics. Metrics 2004, |EEE Computer Society, 2004, pp. 208-219.

Ropponen, J. and Lyytinen, K. Components of software development risk: how to address them.
A project manager survey. |EEE Transactions on Software Engineering, 26(2), 2000, pp.
98-112.

Shaddish, W.R., Cook, T.D., and Campbell, D.T. Experimental and Quasi-Experimental Designs
for Generalized Causal Inference, Houghton Mifflin Company, New York, 2002.

Siegel, S. and Castellan, N.J. Nonparametric Statistics for the Behavioral Sciences, Second
Edition, McGraw-Hill Book Company, New York, 1998.

Spector, PE. Summated Rating Scale Construction. An Introduction, Sage Publications, Thousand
Oaks, CA, 1992.

Standish Group. Chaos Chronicles, Version 3.0, West Yarmouth, MA, 2003.

Straub, D.W. Vaidating instruments in MIS research. MIS Quarterly, 13 (2), 1989, pp. 147-169.

Zelkowitz, M.V., Dolores, R.W., and Binkley, D. Understanding the culture clash in software
engineering technology transfer. University of Maryland technical report, 2 June 1998.

Chapter 4

The Focus Group Method
asan Empirical Tool

in Software Engineering!

Jyrki Kontio, Johanna Bragge, and Laura L ehtola

Abstract This chapter presents the focus group method and discusses its use for
empirical research in the software engineering context. The background, process and
main characteristics of the method are presented, as well as guidelines for its use.
Moreover, the traditional as well computer-mediated focus group variations are com-
pared to each other. The chapter concludes in with a discussion of the applicability of
the method for software engineering research. In summary, the focus group method is
a cost-effective and quick empirical research approach for obtaining qualitative insights
and feedback from practitioners. It can be used in several phases and types of research.
However, a major limitation of the method is that it is useful only in studying concepts
that can be understood by knowledgeable participants in a limited time. We also empha-
size the importance of empirical rigor when the method is used in scholarly work.

1. Introduction

The software engineering community has begun to emphasize empirical research
methods to improve the validity and generalizability of research results (Basili et al.,
1986; Tichy, 1998; Wohlin et al., 2003; Zelkowitz and Wallace, 1998). The community
has also recognized the need to improve the amount and quality of empirical research
inthe field (Buhrer, 2007; Kitchenham et al., 2004; Tichy etal., 1995). Experimentation,
in particular, has received much attention in software engineering literature (Juristo
and Moreno, 2001; Wohlin et al., 1999) and the community has clearly matured in its
use of empirical methods, as evidenced by an increasing number of empirical research
papers, textbooks, and emergence of conferences focusing on empirical research.
Increased attention in empirical methods has also interested software engineer-
ing researchers in having a broader range of empirical methods in their arsenal so
that appropriate methods can be selected and used for each research problem.
Similar conclusions have been drawn in related fields of information systems
(Benbasat, 1996; Galliers, 1991) and business studies (Ghauri et al., 1995).

!Based on Kontio, J., Lehtola, L., and Bragge, J. (2004). Using the focus group method in software
engineering: obtaining practitioner and user experiences, International Symposium on Empirical
Software Engineering, pp. 271-280, Redondo Beach, CA.

93

F. Shull et al. (eds.), Guide to Advanced Empirical Software Engineering.
© Springer 2008

94 J. Kontio et al.

This chapter presents a specific qualitative research method, the focus group
method. We supplement current research by providing guidelines for the method’s use
in software engineering research. This chapter is largely based on our earlier paper
(Kontio et al., 2004), with extensions to the guidelines on the use of the method, and
on the comparison of traditional and three computer-mediated focus group variations.

2. The Focus Group Method

This section gives an overview of the focus group method in general, whereas the
next section presents experiences from the software engineering context.

2.1. Background and Definition

Focus groups emerged as a research method in the 1950s in the social sciences. The
open-ended interview format was extended to group discussion (Templeton, 1994),
hence becoming the focus group method. Morgan defines focus groups as a
“research technique that collects data through group interaction on a topic deter-
mined by the researcher” (Morgan, 1996). Focus groups are thus carefully planned
discussions, designed to obtain personal perceptions of the group members on a
defined area of research interest. There are typically between 3 and 12 participants
and the discussion is guided and facilitated by a moderator-researcher, who follows
a predefined questioning structure so that the discussion stays focused. Members
are selected based on their individual characteristics as related to the session topic
(so-called purposive sampling). The group setting enables the participants to build
on the responses and ideas of other participants, which increases the richness of the
information gained (Langford and McDonaugh, 2003).

Focus group sessions produce mainly qualitative information about the objects
of study. The benefits of focus groups are that they produce candid, sometimes
insightful information, and the method is fairly inexpensive and fast to perform
(Widdows et al., 1991). However, the method shares the weaknesses of many other
qualitative methods. Results may be biased by group dynamics and sample sizes are
often small. Therefore, it may be difficult to generalize the results (Judd et al.,
1991). Poorly conducted focus group sessions may, therefore, be particularly prone
to producing unreliable results.

Currently, the method is widely used, e.g., in sociological studies, market
research, product planning, political campaigning, defining business services, and
in system usability studies (Baker, 1991; Edmunds, 1991; Morgan, 1997; Neter and
Waksberg, 1964; Stewart and Shamdasani, 1990; Rubin, 1994; Widdows et al., 1991).
Focus groups can be used either as a stand-alone research method or in combination
with other research methods, e.g. with individual interviews or quantitative surveys
(Morgan, 1996).

4 The Focus Group Method as an Empirical Tool in Software Engineering 95

There are several textbooks and detailed guidelines available on how to plan
and run focus groups (Anon., 1997; Feig, 1989; Krueger and Casey, 2000; Nielsen,
1997; Templeton, 1994; Langford and McDonaugh, 2003), making the method
that is relatively easy to adopt and use consistently. McQuarrie (1994, 2001), for
instance, offers extremely useful focus group book reviews which can direct the
reader, a researcher, an industry practitioner, or moderator, to an appropriate
approach.

2.2. Stepsin Focus Group Research

Based on several sources (Anon., 1997; Edmunds, 1991; Krueger and Casey, 2000;
Morgan, 1996; 1997), we have summarized the main steps of focus group research
as follows.

2.2.1. Planning the Research

Defining the research problem. The focus group method is best suited to obtaining
initial feedback on new concepts, developing questionnaires, generating ideas,
collecting or prioritizing potential problems, obtaining feedback on how models or
concepts are presented or documented, and discovering underlying motivations
(Edmunds, 1991). According to Morgan (1996), among others, survey researchers
have increased their use of focus groups to provide valuable data on how the
respondents themselves talk about the topic of subsequent surveys, as the questions
posed in surveys are inherently limited.

The method is not suitable for all situations. Focus groups can seldom be used
to test hypotheses as samples are too small and group dynamics create an uncon-
trollable variable. In verbally conducted settings it is not easy to obtain subjective
quantitative assessments, as opinion leaders or group behaviour may influence the
results. It may be also hard to explore political or otherwise sensitive issues as peo-
ple may not reveal their true opinions in a public setting. Also, it is difficult to study
complex issues that are difficult to grasp in a short session, as people have limited
mental capacity to grasp complexity and interact simultaneously. Finally, there is
the issue of team dynamics and interaction wherein team members may be reluctant
to reveal their true subjective preferences. Such limitations might arise in defining
prices or cost preferences, for example (Edmunds, 1991).

Typically focus groups are not the only research method used in a study.
Morgan’s (1997) content analysis of abstracts revealed that a majority of the pub-
lished research articles using focus groups combined them with other research
methods. The most frequent pairings were with either in-depth, individual
interviews or subsequent surveys (Morgan, 1997). When focus groups are used in
combination with other research methods, they can serve either as a primary

96 J. Kontio et al.

research method or as the secondary method in the study (Morgan, 1996). The role
of focus groups in the research process should be carefully defined in the planning
phase of research.

In some cases, it might be a good idea to use focus groups instead of other similar
research methods. For example, Fern’s (1982) results suggest that two 8-person
focus groups produce as many ideas as ten individual interviews. Thus, in case it is
more cost-efficient to arrange two group sessions instead of ten individual meet-
ings, focus groups are worth considering.

2.2.2. Designing focus groups

Typically focus group research should consist of 4-6 focus groups (Morgan, 1997).
The size of an individual focus group can vary from 3 to 12, but more typically
there are between 4 and 8 participants. Smaller groups seem to be more appropriate
with emotionally charged topics that generate high levels of participant involve-
ment, while larger groups work better with more neutral topics that generate lower
levels of involvement (Morgan, 1992).

Selecting participants. The value of the method is that it is very sensitive to the
experience and insight of participants. Thus, recruiting representative, insightful
and motivated participants is critical to the success of the focus group study.
Depending on the research question, participants may not have much experience in
the topic of the focus group — or they may be seasoned experts who can rely on their
years of experience when interacting in the group. However, when discussing novel
and innovative concepts or products to be launched, participants seldom have much
expertise on the topic.

Segmentation refers to strategies that consciously vary the composition of
groups. The most obvious kinds of segmentation captures something about the
research topic itself (Morgan, 1997). For example, if age differences are of interest,
it might be a good idea to separate groups based on the participants’ age.

Morgan (1997) argues that segmentation offers two basic advantages. These are:

1. Building comparative dimension into the entire research project.
2. Facilitating discussions by making the participants more similar to each other.

In practice, it is generally recommended that some over-recruiting take place as last
minute cancellations usually happen. It may also be useful to use pre-session ques-
tionnaires so that session time is used most effectively for discussions.

2.2.3. Conducting the focus group sessions
Basic sequence. An individual focus group event usually lasts 2-3h and has a pre-

defined schedule and structure. The number of issues to be covered needs to be
limited so that sufficient time can be allocated for the participants to comprehend

4 The Focus Group Method as an Empirical Tool in Software Engineering 97

the issue and have meaningful discussion and interaction. Limited time also places
a constraint on the complexity of the issues selected.

The focus group session needs to be carefully managed for time while still
making sure that all main contributions can be made during the allocated time. The
moderator should thus be determined and have adequate skills in guiding group
dynamics. The session needs to be initiated by an introduction where the goals and
ground rules of the session are explained to participants. Each of the topics is usu-
ally presented one after another.

The discussion and interaction in a focus group session can take many forms. It
can be a structured discussion, where the moderator acts as a chair; it can involve
brainstorming techniques, such as affinity grouping or teamwork methods; polling
and voting using preference votes or the Delphi method (Adler and Ziglio, 1996);
comparison games; or even role plays (Edmunds, 1991). Some researchers are very
strict in defining what constitutes a genuine, interactive focus group discussion,
while others are more inclusive in this [see discussion in Morgan (1996)]. For
example Langford and McDonaugh (2003) are proponents of the more liberal view,
and they present 38 different tools and techniques that can be used to supplement a
traditional focus group discussion.

Data capturing. There are several alternatives for data capture during a session.
There can be additional observers taking notes during the session. Audio, video or
keyboard recording can be used, and artifacts used during the session can be cap-
tured if the session involves techniques producing such artifacts. It may also be
useful to arrange a debriefing session with some of the participants immediately
after the session so that fresh observations and interpretations from the session are
captured as fully as possible. It is obvious that relying on moderator notes will not
be sufficient because being a moderator is a full-time job in a focus group session.
It can even interrupt the discussion if the moderator starts making notes (Langford
and McDonaugh, 2003).

The role of the moderator. The role of the moderator is critical in a focus group
session. The moderator should facilitate discussion but not allow his or her own
opinions to influence the discussion. His or her main task is to listen and probe
deeper when necessary, requiring the moderator to be able to grasp substantial dis-
cussions quickly. It is often necessary to paraphrase participant points to ensure that
the contribution was correctly understood.

2.2.4. Analyzing the data and reporting the results

The data analysis and reporting of focus group studies can use the methods used
in qualitative data analysis (Bogdan and Biklen, 1982; Miles and Huberman, 1984;
Patton, 1990; Taylor and Bogdan, 1984; Myers, 2004). Quantitative data, if gath-
ered, can be analyzed using descriptive statistics and other standard quantitative
methods.

98 J. Kontio et al.

3. Experiencesin the Software Engineering Context

We collected experiences from three focus group studies we have conducted
(Kontio, 2001; Lehtola et al., 2004; Sunikka, 2004). We provide here only short
summaries of the studies, as detailed reports on each of them are available else-
where [see broader account also in Kontio et al. (2004)].

The objective of the first study (Kontio, 2001) was to provide insights into why
and how organizations seek to improve their risk management (RM) practices, what
they intend to achieve with better RM, and what impediments preventing more
effective RM approaches from being used. Furthermore, we also wanted to obtain
feedback on specific characteristics of a RM method called Riskit (Kontio, 1997)
and the corresponding software tool (“eRiskit”). The study included three focus
groups having 12 participants altogether from several organizations.

The objective of the second study (Lehtola et al., 2004) was to clarify the practi-
cal challenges in requirements prioritization. We wanted to find out how and in
which phases of development work companies prioritize requirements, and who
performs the prioritization. We also clarified which factors have an effect on priori-
ties, and from which sources practitioners gather information on which they base
their priority decisions. In this study, one focus group with four participants from
two organizations was conducted.

Regarding the third study (Sunikka, 2004), the aim was to collect user opinions
about the usability of a university’s website. This information was used mainly in
planning the actual usability testing to follow, but the focus group results also
offered additional insights. The usability study as a whole consisted of several
phases: focus group discussion, web survey questionnaire, usability tests, and
heuristic evaluations. The focus group was computer-mediated, and it had nine
participants invited from the personnel of the case university one of the main end-
user groups of the website under study.

We reviewed experiences from each study and constructed a mind map of the
experiences and lessons learned. These mind maps were compared and discussed
between authors, and the synthesized lessons learned are reported in the following
sections. In addition, we collected original focus group participants’ feedback in
informal discussions or in feedback surveys.

We did not track the effort spent during the studies but estimated it afterwards
using the Delphi method (Adler and Ziglio, 1996). These estimates are presented in
Table 1 by the main tasks.

3.1. Suitability

Our studies showed that the focus group method is suitable for gathering experi-
ence: all of the studies resulted in relevant and usable findings that were used to

4 The Focus Group Method as an Empirical Tool in Software Engineering 99

Table 1 Estimated effort in the studies (person hours)

Risk study Usability
Task (3 groups) RE study study
Research problem formulation 15 5 3
Planning and preparation 25 10 10
(including rehearsing)
Selecting and recruiting 8 3 2
the participants
Conducting the sessions 9 3 2
Transcribing the data 11 6 0"
Analysis 15 6 10
Total 83 33 27

“Reports of computer-mediated discussion were generated automatically

guide or complement the research projects in which the focus group studies were
conducted. We believe that the types of issues that can be addressed by focus
groups include, among others, the following:

o ldentifying relevant research questions

o Obtaining practitioner feedback on research questions

¢ Recognizing past experience that can be studied in more detail by other methods
o |Initial evaluation of potential solutions, based on practitioner or user feedback
o Collecting “lessons learned” recommendations

o ldentifying potential root causes of phenomena

Such issues can be relevant in all the main phases of a research life cycle. We illus-
trate this here using the general research phases defined by Glass (1995) and
extended by Kontio (2001). This research life cycle is divided into the informa-
tional, propositional, analytical, evaluative, and technology transfer phases. It
should be noted that not every phase is found in each research study, and the last
phase especially is typical only in constructive or design research.

In the informational phase the focus group method can be used to collect char-
acterizing information about current practices, experiences, or problems. In the
propositional phase the initial constructs, i.e., models, theories or prototypes, can
be subjected to practitioner and user opinions to provide early feedback. In the
analytical phase user feedback can be used to evaluate the operationalization of
constructs or to test their initial feasibility. In the evaluative phase focus groups can
be used to refine research questions, provide some of the empirical feedback, and
support the interpretation of empirical data.

Finally, in the technology transfer phase the focus group can help researchers
to package their contributions into a form that is more easily deployable by users.
In addition, a focus group session can also act as a “sales session” for research
results. We have included examples of potential research questions in Table 2 that
are relevant in this research framework.

100 J. Kontio et al.

Table 2 Research question examples for the focus group method in different research phases

Phase of research Description of the phase Suitable issues for focus groups

Informational phase Observing the current state- — What are most urgent or
of-art and practice to relevant research questions?
identify problems and — What kind of problems are
potential solutions common in industry?

— Why are some problems
relevant or urgent?

— What practices currently
exist in industry?

Propositional phase Constructs are formulated, — What are possible solutions
models are built, theories or hypotheses?
proposed or formulated — What similar experiences

exist in industry (has someone
already tried or tested it?)?

— Are the assumptions made
realistic from practitioner
and user perspectives?

Analytical phase Operationalization of the — Is the model understandable?
constructs or models and — How can it be deployed into
their analytical evaluation practice?
and improvement — What are the potential

problems in using or under-
standing the model?
— Are there any omissions
or gaps in the model?
Evaluative phase Testing and evaluating the — Is there any data available,
constructs or models can data be obtained?
— Is the empirical study design
sound and practical?
— What does the data mean?

Technology transfer phase Transferring constructs, — Is the model packaged well
models and/or new for operational use?
knowledge into practice — What are the potential

challenges in selling or
using it?

— How it could be
packaged better?

McQuarrie and Mcintyre (1986) offer guidelines on how to utilize focus groups
in the evaluation of new product concepts developed by technologically driven
companies. They distinguish six stages through which the discussions could evolve.
These stages are comparable to the actual adoption and diffusion processes regard-
ing new products (orientation, exposure, evaluation, pricing, extensions, product
modification). Nambisan and Wilemon (2000) and Nambisan (2003), among oth-
ers, have recently discussed how software development and IS in general could

4 The Focus Group Method as an Empirical Tool in Software Engineering 101

benefit from the research done in the field of new product development (NPD), and
vice versa. Thus, the framework provided by McQuarrie and Mclintyre could well
adapt to software NPD processes as well, especially to those software products that
are targeted to normal consumers (e.g., software embedded in mobile phones).

3.2. Strengths

Discovery of new insights. The interactive nature of the group setting and participants’
different backgrounds seem to encourage and prompt participants to react to points
during discussion, reflecting and building on each other’s experiences. This may lead
to discovery of issues that researchers might not have been able to plan in advance, as
happened in our risk management and requirements prioritization studies.

Aided recall. On several occasions in the example studies, the points made by
participants resulted in other participants confirming similar, almost similar and oppo-
site incidents or events. These insights might have been hidden in personal interviews.
Cost-€fficiency. For the researchers the focus group method is a cost-efficient way
of obtaining practitioner and user experience as several participants can be “inter-
viewed” at the same time. In addition, many current research projects are conducted
with industrial companies and access to practitioners is limited due to their business
responsibilities. Practitioners find the method cost-effective as well.

Depth of interview. Focus group discussions allow in-depth exploration of the
reasons why the participants think the way they do. For instance, questionnaire
results usually reveal only what people think, not why.

Business benefits to participants. The practitioners in our studies gave positive
feedback for having participated in the interactions during the session and found them
valuable even before receiving any reports or summaries. In informal feedback
sessions they indicated two main reasons that provided immediate benefits to them:

e Benchmarking. The participants in our studies indicated that the sessions already
provided valuable information to them during the sessions. This seems to have
resulted from two factors. First, the discussions resulted in benchmarking expe-
riences and practices between the members of participating organizations.
Second, they seemed to value other participants’ experiences and insights. This
seemed to be a substantial advantage to participants.

o Networking. The focus group event seems to increase networking contacts and
incentives to increase cooperation between participants.

3.3. Weaknesses

Group dynamics. As the focus group discussion within a topic often takes place
without a predefined format, it is possible that the group dynamics or communi-
cation styles influence the level of activity. In addition, compared to a personal

102 J. Kontio et al.

interview, it is not as easy for the moderator to have control over the flow and
style of the discussion. This weakness can be compensated for by using struc-
tured discussion techniques or by the moderator balancing the discussion and
activating the less active participants.

Social acceptability. In group situations, social acceptability can influence the
points made during discussion. For example, it is possible that a participant can
volunteer incorrect information and disagreement may take place. Such situations
may be perceived as embarrassing by some participants, resulting in selective
contributions and volunteering of information. This weakness can be mitigated
by laying out appropriate ground rules at the beginning and by the moderator
taking an active role in conducting the discussion in those situations.

Hidden agendas. Some participants may have hidden agendas in the session,
e.g., due to business relationships between them, a motivation to appear in
a favorable light because of the potential publication of the results, or their
company’s internal politics. Such hidden agendas may bias the results of the
session. This can be mitigated by selecting participants into sessions such that
business relationships are not present, by emphasizing the importance of open
information, and by guaranteeing or agreeing to the anonymity or confidential-
ity of results.

Secrecy. Some relevant information may be withheld because of proprietary or busi-
ness reasons. This can be avoided by the same procedures as mentioned above.
Limited comprehension. The time available for discussions in a focus group session
is limited and communication happens mostly only verbally during the discussion.
This means that complex issues or points are not necessarily understood by all
participants — nor by the researchers. However, if the participants are all experts in
their area, the discussion may be surprisingly complex and deep for an outsider.
Nevertheless, there is an obvious limit to how complex an issue can be discussed.
This potential weakness can be mitigated by selecting participants of equal expertise
in the session, by providing more thorough briefings to participants, by providing
advance reading material to participants, and by partitioning complex issues in to
more “digestible” pieces.

4. Computer-Mediated Focus Groups

This section describes and evaluates the application of computer-support in the
conduct of focus groups. In particular, the emphasis here is on face-to-face focus
groups mediated by Group Support Systems (GSS) technology (Nunamaker et al.,
1991). The benefits and drawbacks of GSS-mediated face-to-face focus groups are
compared to traditional focus groups, and also to online (distributed) focus groups
that have recently gained popularity with increased use of the Internet. Figure 1
illustrates the framework of our analysis (cells with patterned background are
analysed). Examples of software engineering research applications are also men-
tioned in this section.

4 The Focus Group Method as an Empirical Tool in Software Engineering 103
c
.g Yy | GSS-Mediated | Synchronous | Asynchronous
o E FTF Focus Online Focus Online Focus
TS S Groups Groups Groups
EZ
5 S
5 g Phone-
Q N | Traditional FTF
£ o | Focus Groups Conference N/A
8 Focus Groups
Same Place Different Place Different Place
Same Time Same Time Different Time

Distance of focus group participants

Fig. 1 Framework of the focus group analysis

As early as in the late 1980s, Management Information Systems researchers
developed so-called Group Support Systems (also called Electronic Meeting
Systems), to alleviate the common process problems caused by task-oriented group
work, such as brainstorming (Nunamaker et al., 1991). These process problems
result from, for example, the need to wait for one’s own turn to speak, or the domi-
nance of one or a few participants. The strengths of computer-mediated GSS-
sessions are built on:

Simultaneous and anonymous contribution via computers
Structured agenda

Real-time voting and multi-criteria analysis possibilities
Group memory during and after the sessions

Complete records of the electronic discussions

gD

GSS technology is conventionally employed in a same-time same-place mode,
where the interaction between the participants is for the most part conducted via
personal computers. The majority of the meeting time may be used in deliberating
why participants think the way they do, and what to do about it. This is due to the
fact that finding out what people are thinking can be conducted in a few minutes
due to the parallel input mode — even with large groups of more than 15 partici-
pants. Field research results on GSS show savings up to 50% of individual work
hours and 90% of project time when compared to regular meetings and group work
(Fjermestad and Hiltz, 2000).

Extensive research on GSS usage exists, see for example the laboratory, case and
field research reviews (Fjermestad and Hiltz, 1999, 2000), or a recent study profil-
ing 2,000 GSS research articles (Bragge et al., 2007b). Despite the vast amount of
research studies on GSS, only a few of them have touched explicitly how the appli-
cation of GSS may benefit the conduct of focus group studies (Clapper and Massey,
1996; Easton et al., 2003; Klein et al., 2007; Kontio et al., 2004; Massey and

104 J. Kontio et al.

Wallace, 1991; Parent et al., 2000). However, as Reid and Reid (2005) state, “the
resemblance of focus groups to brainstorming groups is no accident — focus groups
are popular precisely because they generate a ‘flow of input and interaction related
to the topics that the group is centred around’” [citation from (Edmunds, 1999)].
Furthermore, Langford and McDonaugh (2003) view focus groups as a method that
encompasses many tools, and not just a plain group interviewing technique [see
discussion also in Morgan (1996)]. Thus, even if not explicitly mentioned, numer-
ous GSS-mediated brainstorming studies centred on a particular topic may be
regarded as focus groups, especially if their conduct otherwise follows the steps of
the focus group method.

There exists a few commercial GSS software systems on the market today.
GroupSystems is the most well known. Others are Facilitate.Pro, WeblQ,
MeetingWorks and Grouputer (Austin et al., 2006). Some of these tools provide
templates for the conduct of focus groups, which normally follow a structured
interview approach [see e.g. (Morgan, 1996)] with predefined questions. However,
utilizing the versatile features of the GSS technology it is also possible to use
different brainstorming rules, scenario-based discussions, cognitive maps and a
variety of other techniques (Langford and McDonaugh, 2003; Morgan, 1996) in
a focus group.

Many of the applications in GSS studies concern software engineering or informa-
tion systems development (see e.g. Boehm et al., 2001; Bragge et al., 2005b; Chen
and Nunamaker, 1991; De Vreede et al., 2005; Elfvengren et al., 2004; Gruenbacher
et al., 2003; Halling et al., 2001; Liou and Chen, 1993; Rodgers et al., 2004; Van
Genuchten et al., 1997, 2001; Vitharana and Ramamurthy, 2003). This may be
partially due to the fact that IT professionals are naturally attracted to using various
ICT tools to support their work. Processes have been developed especially for
requirements engineering (needs assessment, requirements elicitation or require-
ments negotiation), code inspections and usability studies.

The participants in software engineering related studies may involve people
designing and developing a system, people interested in the system’s use (e.g.,
end-users or customers), people having a financial interest, or people responsible
for system introduction and maintenance (Gruenbacher et al., 2003). User-centric
approaches, which are currently growing in popularity, come closest to focus
group studies. End-users are often nowadays widely geographically dispersed,
and not within traditional organizational boundaries (Bragge et al., 2005b;
Tuunanen and Rossi, 2004). Their inclusion in the software engineering process
calls for novel approaches.

The above-mentioned user-centric development, along with the commercializa-
tion of the Internet, has brought yet another variation of focus groups to the
researcher’s toolkit: online (or virtual) focus groups. Several authors provide case
descriptions or useful practical advice to researchers conducting online focus group
studies (Fraunhofer, 2002; Hansen and Hansen, 2006; Klein et al., 2007; Montoya-
Weiss et al., 1998; Newby et al., 2003; O’Connor and Madge, 2003; Oringderff,
2004; Reid and Reid, 2005; Sweet, 2001; Ten Pow, 2003; Turney and Pocknee,
2004; Wellner, 2003; Zinchiak, 2001).

4 The Focus Group Method as an Empirical Tool in Software Engineering 105

The online focus groups can either be conducted in the form of synchronous inter-
active groups, or in the form of asynchronous discussion boards. The information
systems that may be utilized in online focus groups encompass web-based versions
of GSS software, commercial focus group platforms, discussion groups, listservs,
chatrooms, bulletin boards, mailing lists, instant messaging systems and so forth.
Although these online forms provide many advantages over traditionally conducted
focus groups (e.g., anonymity, larger group size, savings in travelling and venue
costs), they also have distinct drawbacks, too. For example, the task of the moderator
can be much more demanding in online than in face-to-face settings. This is due to
the lower richness of the media used (Daft and Lengel, 1986). Media richness is
determined by a medium’s ability to provide immediate feedback, utilize multiple
cues and channels, and enable language variety (Montoya-Weiss et al., 1998).

5. Comparing the Benefits and Drawbacks of Different
Focus Group Variations

The literature offers several studies that thoroughly discuss a single type of focus group
or compare selected variations with each other (Clapper and Massey, 1996; Easton
et al., 2003; Hansen and Hansen, 2006; Klein et al., 2007; Massey and Wallace,
1991; Montoya-Weiss et al., 1998; Morgan, 1996; Newby et al., 2003; Parent
et al., 2000; Reid and Reid, 2005; O’Connor and Madge, 2003; Oringderff, 2004;
Sweet, 2001; Ten Pow, 2003; Turney and Pocknee, 2004; Wellner, 2003; Zinchiak,
2001). Based on this literature and also on our own experiences of conducting all main
types of focus groups (e.g., Bragge et al., 20053, ¢, 2007a), we have gathered compara-
tive information on traditional, GSS-mediated face-to-face, as well as online focus
groups (synchronous and asynchronous). The results of these comparisons are
presented in Tables 3-5. Moreover, we will discuss the comparison data with respect
to four issues: people, technology, process and costs. We have not cited the above
reference sources in the tables or in the discussion to keep them more concise.

5.1. Traditional focus groups

Regarding people issues, the moderator’s task in traditional focus groups is easier
than with computer-mediated groups (that are lower in media richness, especially in
different-place settings), although the moderator must possess excellent social skills.
The participants may feel more satisfied with a familiar verbal and more social proc-
ess, and they do not have to possess typing skills (e.g., elderly people). However, the
participants can be recruited from a limited geographical distance, and they may be
shy about talking, especially about sensitive or controversial issues.

The media-rich interaction in the verbal process is high, and it can result in the
deepest insights. The process usually stays focused without any external distractions,
and if they happen, the facilitator can respond immediately. However, group

106 J. Kontio et al.

thinking, domineering, communication apprehension, getting off-the-track, and
social rank related issues are common problems.

Concerning technology, the audio or even video recording of the session is quite
usual and routine. The latter is needed in case it is important to know afterwards
who said what. In traditional settings, it is possible to present handheld prototypes
or models. The travelling, venue, and transcribing costs are high. Traditional
focus groups can accommodate the lowest number of participants due to “serial”
communication mode, thus more groups with relatively homogeneous participants
are needed (see Table 3 for a summary).

Table 3 Benefits and drawbacks of traditional focus groups

Benefits

Drawbacks

+ Richer media, researchers may observe
nonverbal communication,
such as body language, facial
expressions, tones of voice etc.

+ Moderator’s task is easier than with
computer-mediated communications
(especially those in different-
place settings)

+ Participants may feel more satisfied
with a verbal/social process
(especially older people)

+ The process usually stays focused
without any external distractions
(and if they happen, the facilitator
can respond immediately)

+ FTF discussion is a familiar form of
communication to the participants

+ Participants don’t have to have typing
skills (e.g. children, old people)

+ Possibility to utilize 3D-models, proto-

types, highly confidential material etc.

+ Smaller probability for technical
problems (audio and video recording
technologies needed in FTF sessions

are more mature than computer-mediated

communication technologies)

- High travelling costs (participants
and moderators)

- High rental costs venue

- High transcribing costs and long
delay in reporting

- Limited time to speak per person
(e.g. with ten participants 6 min/
person in 1h)

- Possible dominance of some persons

- Group thinking (pressure to conform) and
communication apprehension (e.g. with
sensitive issues) may occur

— Comments and ideas evaluated
based on the presenter, not the idea itself

— Max. 12 participants per group

— The more people, the more process losses
due to the “serial communication” mode

— The discussion might easily get off track;
thus the moderator must be determined and
knowledgeable about how to guide
the group dynamics

- Moderator must have excellent social skills

- Requires homogeneity between
participants, and thus often several groups

- Need for videotaping if vital to know who
said what

4 The Focus Group Method as an Empirical Tool in Software Engineering 107

5.2. GSS-mediated face-to-face focus groups

Concerning people issues, the moderator must be an expert in the GSS technology,
but his or her task is easier than in different-place settings due to the possibility
of giving verbal instructions and seeing the participants’ reactions. The moderator
must be mentally prepared for back-up plans due to technology breakdowns,
although they are rare. The participants can be recruited from a limited geographi-
cal distance as in traditional groups, but the groups can accommodate a larger
number and more heterogeneous participants due to the parallel communication
mode. The participants must possess fluent typing skills and they should be willing
to use computers. However, no other technology usage skills than simple e-mail
applications are needed.

The process must be planned carefully in advance, but several advantages accrue
from the anonymous computer-mediated mode: domineering and group thinking
are alleviated, confidential and honest sharing of opinions is encouraged, also
negative or controversial feedback is easy to give, there are no social-rank related
problems due to the equal process, and comments are easily retrievable from the
written “group memory” also during the session. However, free-riding and flaming
may appear due to anonymity, and the first comments might be overtly influential
(anchoring effect). It is possible to include quick electronic polls or surveys in the
sessions, and discuss the results immediately. Due to the pre-planned and structured
process, it is easy to repeat the same agenda for several focus groups.

There is a need for dedicated room facilities with GSS technology (computers
for all participants, special group software, and a common white screen, at the
minimum). The equipment may however be rented from a service provider. The
costs are high due to travelling and the need for technology and GSS expertise, but
these costs are partially or even completely compensated for as there are no tran-
scribing costs, and more participants can be included in groups at the same time.
Accurate reports are immediately available with all computer-mediated communi-
cation (see Table 4 for a summary).

5.3. Online (distributed) focus groups

Many of the benefits and drawbacks of GSS-mediated face-to-face focus groups
apply to online focus groups, too. Thus, we will mainly concentrate here on issues
that are specific to different-place settings. Regarding people, the moderator must
be an expert in the chosen technology platform, and her task is quite challenging in
synchronous settings in case no additional audio or video conferencing systems are
used in parallel. “Techies” might be inclined to conduct online groups although
they may lack important qualifications needed for guiding group dynamics. The
moderator should be able to handle technology problems, which are quite possible
as the participants use their own computers with a variety of internet browsers.
There are no limits to the geographical participation, although in synchronous

108

J. Kontio et al.

Table 4 Benefits and drawbacks of GSS-mediated, face-to-face focus groups

Benefits

Drawbacks

+ Possibility to contribute simultaneously:

— The medium is less rich (lack of body

efficiency increased, everybody’s
answers collected for memory

+ Supports larger groups (e.g. 15-25)
and more heterogeneous groups

+ Possibility for anonymous contributions:
encourages confidential and honest
sharing of opinions. The comments can
however be tagged to enable identification
of the same person’s comments

+ Group thinking (social conformity) as well
as domineering are alleviated

+ Participants feel more comfortable giving
negative or controversial feedback

+ Ideas are not evaluated based on
the presenter

+ The process usually stays focused without
any external distractions (and if they happen,
the facilitator can respond immediately)

+ Possibility to include quick electronic
surveys and polls, also discuss results
and pinpoint disagreements

+ Transcription expenses are eliminated,
the transcripts are complete and
immediately available

+ Structured agenda aids in keeping
time and replicating several
groups with different participants

+ Moderator may give instructions verbally

language, facial expressions etc.),
text may be misunderstood

- High travelling costs (participants
and moderators)

- High rental costs of venue
with GSS

- Moderator must have expertise on
GSS technology
- Not everybody is willing to use computers

— A backup plan needed in case of
technology breakdown

- Fluent typing skills are needed; varying
typing speeds may have
unfavourable effects on the process

- Anonymity might induce free-riding
or flaming (less discretion and tact)

- Not suitable if capturing body
language is vital

- Possibility for an anchoring effect (first
comment may be overtly influential)

settings separate groups are needed when time zone differences are too large. The
number of participants in asynchronous settings can be larger than in same-time
settings, and the participants do not need as fluent typing skills. There is no need to
dress-up, and people who are normally hard to recruit can participate more flexibly
in their own homes or offices and even at the time that is the most suitable for them.
Youth, especially, is very accustomed to communicating via the Internet.

The process needs to be even more carefully planned and administered than in
face-to-face situations, and instructions need to be extremely clear and simple.
The process advantages of the anonymous communication mode are practically
the same as mentioned in the GSS section above. Clients may easily view the
group discussion without participants being aware of their presence. However,
the process is more exposed to external distractions, e.g. from family members or
colleagues. Also, faster typists and those with faster Internet connections may
have more influence on the discussion.

There is a no need for dedicated facilities, and in the simplest form, online focus
groups can be conducted using freely available discussion board or similar
technology. With synchronous settings, it is necessary for the participants to test

4 The Focus Group Method as an Empirical Tool in Software Engineering 109

their connection to the dedicated forum in good time before the session starts. The
costsare relatively low as there are neither travelling nor transcribing costs involved
(see Table 5 for a summary).

Many market researchers recommend that topics related to web-based
systems, information technology or the Internet are especially suitable for the

Table 5 Benefits and drawbacks of online focus groups (S or A in parenthesis if specific for
synchronous or asynchronous)

Benefits Drawbacks
+ No geographical limits for participation — The medium is less rich (lack of body

(except that separate groups may be
needed for different time zones in S),
also rural areas reached

+ No travelling costs

+ Possibility to contribute simultaneously:
efficiency increased, everybody’s

language, facial expressions etc.),
text may be misunderstood

- Not everybody is willing to use computers
- Basic (A) or fluent (S) typing skills are

needed for both participants and

the moderator

— Moderator must have expertise on
the technology

- Need for an Internet connection

answers collected for memory
+ Also suitable for heterogeneous groups

+ Possibility for anonymous contributions:
encourages confidential and honest
sharing of opinions. The comments can
however be tagged to enable identification
of the same person’s comments

+ Group thinking (social conformity) as
well as domineering are alleviated

+ Participants also feel more comfortable
giving negative or controversial feedback

+ ldeas are not evaluated based on
the presenter

+ Supports large groups of 25-40
participants (A)

- Online information security risks involved

- Participants should pre-test the forum
to eliminate technical difficulties (S)
- Max. ten participants/group for effective
management of online group dynamics (S)
— Faster typers and those with faster Internet
connections may have too much
influence (S)
- More difficult to verify participant identity
- Moderators need to know how
to assure that all participants
are contributing
— Larger probability for outside distractions (S)

+ Transcription expenses are eliminated
+ Transcripts are complete and immediately
available

+ Convenient as there is no need to dress up,
and participation is possible from home,
office etc.

+ Possibility to contribute at a time that
suits best (A)

- Youth audience requires that the moderator
knows their “chat” vocabulary and
use of emoticons etc.

+ Possibility to come back and continue — Anonymity might induce free-riding or
discussion (A) flaming (less discretion and tact)

+ Reaches groups that are hard to recruit - Not suitable if capturing body language
otherwise (e.g. parents, business is vital
professionals with limited time)

+ Incentive costs are smaller for participants - Not suitable if there is a need to show
prototypes or 3D-models, or products need

to be handheld

(continued)

110 J. Kontio et al.

Table5 (continued)

Benefits Drawbacks

+ Youth is already more accustomed to - Not suitable if client material is highly
computer-mediated-communication than confidential
verbal discussions

+ Suitable for studying technology- — Show rates are lower than in FTF ses-
related topics sions, as participation requires a high level

of motivation and interest. More over-
recruitment is thus needed

+ Clients may view the group without - Developing rapport and gaining the trust
participants being aware of their presence of the participants is demanding

+ Provides social equalization and - Physically demanding to type and
egalitarian data collection read for 60-90 min virtually (S)

method as socio-economic
status, ethnicity, nationality or
gender may be unknown
- “Techies” may attempt to conduct groups,
although they might lack important
moderator qualifications
- Bulletin boards may be too exhaustive
too read, and participants may just answer
their own opinions (A)
- Bulletin boards may generate an enormous
amount of text that requires extra reading
and analysis time (A)
- “Pair friendships” may develop (participants
engage in their own dialogue and
alienate the rest)

online environment. Thus, software engineering researchers should consider
online focus group studies, too. Sweet (2001) concludes that the future prom-
ises many advancements for online groups including sophisticated visual aids,
real-time video and sound, accurate voice recognition, and videoconferencing.
We expect that the recent developments in IP-based multi-party video and audio
conferencing tools will bring online practice forward in the next 5 years. Many
end-users are already more familiar than business people with the utilization of
web-cameras, Skype and Messenger conversations and conferences.

5.4. Summary of focus group comparisons

Researchers utilizing focus groups should weigh the benefits and drawbacks of
these four main variations presented in Tables 3-5, and come to a conclusion as to
which variation is best for their particular study. As Sweet (2001), Montoya-Weiss
et al. (1998) and Zinchiak (2001) state, online (or other computer-mediated) focus
groups are not going to replace traditional focus groups — merely the research arena
is expanding as new tools are added to the pool of research techniques.

4 The Focus Group Method as an Empirical Tool in Software Engineering 111

6. Discussion

The focus group method is, by its very nature, prone to problems associated with
qualitative data. As the developers of models and theories may also act as the
researchers responsible for the focus group session, there is an obvious danger of
researcher bias influencing the results, either during the planning, during the
sessions themselves, or during the analysis. However, e.g. Langford and McDonaugh
(2003) mention that it is usually better to use a moderator who is an expert in the
subject matter and not in professional facilitation. Thus, we recommend that
disciplined, objective and rigorous instrumentation and data analysis methods are
used in focus group studies and that all findings be based on traceable data.

We found the affinity grouping method to be a useful and effective tool in
obtaining inputs from practitioners and users. While we do recognize the limita-
tions posed by the short time available for discussions, we believe that it is also
possible to address more complex issues with focus groups. Compared to consumer
studies, the software engineering field contains some well-defined methods and
standards that are used fairly consistently across the industry, such as the UML,
CMMI, and FPA. Thus, it is possible to select a group of experts who are familiar
with a given, complex technology and use the focus group session to elicit these
experts’ insights.

It is also possible to use brainstorming, scenario-based discussion, cognitive
maps and a variety of other methods in a focus group. Langford and McDonaugh
(2003) discuss these and 35 other tools and techniques that can be utilized especially
regarding ergonomics and human factors design, but also regarding information
systems. They posit a view of focus groups as a method that encompasses many
tools, and not just a simple group interviewing technique. We also recommend the
use of other stimulating techniques that fit the characteristics of the situation.

As our effort data indicates (see Table 1), the actual sessions constitute only a
small share of total effort. Yet, these sessions provide more data and are perceived
as value-adding sessions to participants as well. Thus, we recommend that more
than one session be held when possible.

The role of the moderator is central in focus group sessions and is a particularly
challenging task in the software engineering domain, due to the complexity of the tech-
nology and issues involved. The moderator should have experience or be trained in
non-intrusive, neutral facilitation techniques and be cautious about his or her own bias
in the session. A practice session should be mandatory for all focus group studies.

We wanted to include the electronic focus group comparison in this chapter as
we believe that the computer-mediated technology is naturally prone to studies
in the field of software engineering, as well as in IS studies in general. It is easier
to get software users and developers to employ the technology than for example
carpenters or other craftsmen. Moreover, the future users of software are more
and more used to communicating via electronic media.

Our studies indicate that focus groups can provide valuable, complementary
empirical data quickly at low cost. However, there are potential sources for

112 J. Kontio et al.

unwanted bias. The method should be used properly and the sessions should be
planned and executed well and with appropriate rigor.

Due to its apparent ease of use and low cost, some researchers may be tempted to
use focus groups without proper planning and instrumentation. Such studies are likely
to contain biases and ignore much of the experience available. Therefore we recom-
mend that researchers take a closer look at the extensive variety of books on focus
group research, e.g., by starting with the valuable book reviews by McQuarrie (1994,
2001). Langford and McDonaugh (2003) is also a valuable source to start with.

We hope that the empirical researchers in the research community and in indus-
try learn to use the method with appropriate rigor. As the method is not frequently
used in the software engineering domain, we hope that the community develops
sound practices for applying the method so that it could establish itself as a reliable
research method in the field.

We ourselves plan to continue using the method in our future studies and in
addition we aim to develop repeatable focus group processes in the spirit of the
newly established field of collaboration engineering (Briggs et al., 2003).

References

Anon., Focus Group Kit, Vol. 1-6, Sage Publications, Thousand Oaks, CA, 1997.

Adler, M., Ziglio, E., Gazing into the Oracle: The Delphi Method and Its Application to Social
Policy and Public Health, Jessica Kingsley Pub, 1996.

Austin, T., Drakos, N., Mann, J., Web Conferencing Amplifies Dysfunctional Meeting Practices.
Gartner Research Report Nr. G00138101, Gartner Inc., 2006.

Baker, S.L., Improving Business Services through the Use of Focus Groups, Reference Quarterly,
30(Spring):377-385, 1991.

Basili, V.R., Selby, R.W., Hutchens, D.H., Experimentation in Software Engineering, |EEE
Transactions on Software Engineering, 12(7):758-773, 1986.

Benbasat, 1., Rethinking Diversity in Information Systems Research, Information Systems
Research, 7(4):389-399, 1996.

Boehm, B., Gruenbacher, P., Briggs, R.O., Developing Groupware for Requirements Negotiation:
Lessons Learned, |[EEE Software, 18(3):46-55, 2001.

Bogdan, R.C., Biklen, S.K., Qualitative Research for Education: An Introduction to Theory and
Methods, Allyn and Bacon Inc., Boston, MA, 1982.

Bragge, J., den Hengst, M., Tuunanen, T., Virtanen, V., A Repeatable Collaboration Process for
Developing a Road Map for Mobile Marketing. In Proceedings of the 11th Americas
Conference on Information Systems AMCIS, 2005a.

Bragge, J., Marttiin, P., Tuunanen, T., Developing Innovative IS Services Together with Wide
Audience End-Users, In Proceedings of the 38th Annual Hawaii International Conference on
System Sciences, Los Alamitos, CA, pp. 1-10, 2005b.

Bragge, J., Merisalo-Rantanen, H., Hallikainen, P., Gathering Innovative End-User Feedback for
Continuous Development of Information Systems: A Repeatable and Transferable E-Collaboration
Process, |EEE Transactions on Professional Communication, 48(1):55-67, 2005c.

Bragge, J., Merisalo-Rantanen, H., Nurmi, A., Tanner, L., A Repeatable E-Collaboration Process
Based on ThinkLets for Multi-Organization Strategy Development, Group Decision and
Negotiation, 16(4):363-379, 2007a.

Bragge, J., Relander, S., Sunikka, A., Mannonen, P., Enriching Literature Reviews with Computer-
Assisted Research Mining. Case: Profiling Group Support Systems Research. In Proceedings

4 The Focus Group Method as an Empirical Tool in Software Engineering 113

of the 40th Annual Hawaii International Conference on System Sciences (HICSS’07), IEEE,
Los Alamitos, CA, pp. 1-10, 2007b.

Briggs, R.O., De Vreede, G.J., Nunamaker, J.F., Collaboration Engineering with ThinkLets to
Pursue Sustained Success with Group Support Systems, Journal of Management |nformation
Systems, 19(4):31-64, 2003.

Buhrer, H.K., Software Development: What It is, What It should be, and How to get There, ACM
S GSOFT Software Engineering Notes, 28(2):1-4, 2007.

Chen, M., Nunamaker, J.F., The Architecture and Design of a Collaborative Environment for
Systems Definition, Data-Base, 22(1-2):22-29, 1991.

Clapper, D.L., Massey, A.P., Electronic Focus Groups: A Framework for Exploration, Information
and Management, 30(1):43-50, 1996.

Daft, R., Lengel, R., Organizational Information Requirements, Media Richness, and Structural
Design, Management Science, 32(5):554-570, 1986.

De Vreede, G.J.,, Fruhling, A., Chakrapani, A., A Repeatable Collaboration Process for Usability
Testing, In Proceedings of the 38th Annual Hawaii International Conference on System
Sciences, Los Alamitos, CA, pp. 1-10, 2005.

Easton, G., Easton, A., Belch, M., An Experimental Investigation of Electronic Focus Groups,
Information and Management, 40:717-727, 2003.

Edmunds, H., The Focus Group Research Handbook, NTC Business Books, Lincolnwood, IL,
1991.

Edmunds, H., The Focus Group Research Handbook, NTC Business Books and American
Marketing Association, Lincolnwood, IL, 1999.

Elfvengren, K., Karkkainen, H., Torkkeli, M., Tuominen, M., A GDSS Based Approach for the
Assessment of Customer Needs in Industrial Markets, International Journal of Production
Economics, 89(3):272-292, 2004.

Feig, B., How to Run a Focus Group, American Demographics, 11(December):36-37, 1989.

Fern, E.F., The Use of Focus Groups for Idea Generation: The Effects of Group Size,
Acquaintanceship, and Moderator on Response Quantity and Quality, Journal of Marketing
Research, 19(1):1-13, 1982.

Fjermestad, J., Hiltz, S.R., An Assessment of Group Support Systems Experimental Research:
Methodology and Results, Journal of Management Information Systems, 15(3):7-150, 1999.

Fjermestad, J., Hiltz, S.R., Group Support Systems: A Descriptive Evaluation of Case and Field
Studies, Journal of Management Information Systems, 17(3):112-157, 2000.

Fraunhofer USA Inc., Summary of the Third eWorkshop on Agile Methods, Center for
Experimental Software Engineering, http://fc-md.umd.edu/projects/Agile/3rd-eWorkshop/
summary3rdeWorksh.htm, 2002.

Galliers, R.D., Choosing Appropriate Information Systems Research Approaches: A Revised
Taxonomy, in: Information Systems Research: Contemporary Approaches and Emerging
Traditions, H.-E. Nissen, H.K. Klein and R. Hirschheim, eds. Elsevier Science Publishers,
Amsterdam, pp. 327-345, 1991.

Ghauri, P., Grgnhaug, K., Kristianslund, 1., Research Methods in Business Sudies, Prentice-Hall,
Englewood Cliffs, NJ, 1995.

Glass, R.A., A Structure-Based Critique of Contemporary Computing Research, Journal of
Systems and Software, 28(1):3-7, 1995.

Gruenbacher, P., Halling, M., Biffl, S., Kitapci, H., Boehm, B.W., Repeatable Quality Assurance
Techniques for Requirements Negotiation, In Proceedings of the 36th Annual Hawaii
International Conference on System Sciences, Los Alamitos, CA, pp. 1-9, 2003.

Halling, M., Gruenbacher, P., Biffl, S., Tailoring a COTS Group Support System for Software
Requirements Inspection, In Proceedings of the 16th Annual International Conference on
Automated Software Engineering, IEEE, Los Alamitos, CA 201-208, 2001.

Hansen, K., Hansen, R.S., Using an Asynchronous Discussion Board for Online Focus Groups:
A Protocol and Lessons Learned, In Proceedings of the College Teaching and Learning
Conference, Clute Institute for Academic Research, Littleton, Colorado 1-8, 2006.

114 J. Kontio et al.

Judd, C.M., Smith, E.R., Kidder, L.H., Research Methods in Social Relations, Harcourt Brace
Jovanovich College Publishers, New York, 1991.

Juristo, N., Moreno, A.M., Basics of Software Engineering Experimentation, Kluwer Academic
Publishers, Boston, MA, 2001.

Kitchenham, B., Dyba, T., Jorgensen, M., Evidence-Based Software Engineering. In Proceedings
of 26th International Conference on Software Engineering, IEEE, Los Alamitos, CA, pp.
273-281, 2004.

Klein, E.E., Tellefsen, T., Herskovitz, P.J., The Use of Group Support Systems in Focus Groups:
Information Technology Meets Qualitative Research, Computers in Human Behavior,
23(5):2113-2132, 2007.

Kontio, J., The Riskit Method for Software Risk Management, version 1.00. (College Park, MD,
University of Maryland, 1997) CS-TR-3782/UMIACS-TR-97-38, Computer Science Technical
Reports.

Kontio, J., Software Engineering Risk Management: A Method, Improvement Framework, and
Empirical Evaluation. Doctoral dissertation. (2001), Helsinki University of Technology, pub-
lisher: Center of Excellence, ISBN: 952-5136-22-1.

Kontio, J., Bragge, J., Lehtola, L., Using the Focus Group Method in Software Engineering:
Obtaining Practitioner and User Experiences. In Proceedings of the International Symposium on
Empirical Software Engineering (ISESE), ACM-IEEE, Los Alamitos, CA pp. 271-280, 2004.

Krueger, R.A., Casey, M.A., Focus Groups. A Practical Guide for Applied Research, Sage
Publications, Thousand Oaks, CA, 2000.

Langford, J., McDonaugh, D., Focus Groups. Supporting Effective Product Development, Taylor
and Francis, London, 2003.

Lehtola, L., Kauppinen, M., Kujala, S., Requirements-Prioritization-Challenges-in-Practice. In
Fifth International Conference on Product Focused Software Process Improvement, 2004.
Liou, Y.I., Chen, M., Using Group Support Systems and Joint Application Development for
Requirements Specification, Journal of Management Information Systems, 10(3):25-41,

1993.

Massey, A.P., Wallace, W.A., Focus Groups as a Knowledge Elicitation Technique, IEEE
Transactions on Knowledge and Data Engineering, 3(2):193-200, 1991.

McQuarrie, E.F., New Books in Review: The Handbook for Focus Group Research & Successful Focus
Groups: Advancing the State of the Art, Journal of Marketing Research, 31:377-380, 1994.

McQuarrie, E.F., New Books in Review: The Mirrored Window: Focus Groups from a Moderator’s
Point of View & Advanced Focus Group Research, Journal of Marketing Research,
38(November):515-516, 2001.

McQuarrie, E.F., Mcintyre, S.H., Focus Groups and the Development of New Products by
Technologically Driven Companies: Some Guidelines, Journal of Product Innovation
Management, 1:40-47, 1986.

Miles, M.B., Huberman, A.M., Qualitative Data Analysis: A Sourcebook of New Methods, Sage
Publications, Thousand Oaks, CA, 1984.

Montoya-Weiss, M.M., Massey, A.P., Clapper, D.L., On-line Focus Groups: Conceptual Issues
and a Research Tool, European Journal of Marketing, 32(7/8):713-723, 1998.

Morgan, D.L., Designing Focus Group Research, in: Tools for Primary Care Research. \olume 2:
Research Methods for Primary Care, M. Stewart, F. Tudiver, M.J. Bass, E.V. Dunn and P.G.
Norton, eds. Sage Publications, Thousand Oaks, CA, 1992.

Morgan, D.L., Focus Groups, Annual Review of Sociology, 22(August):129-152, 1996.

Morgan, D.L., Focus Groups as Qualitative Research, Sage Publications, Thousand Oaks, CA,
1997.

Myers, M., Qualitative Research in Information Systems, http://www.qual.auckland.ac.nz/, 2004.

Nambisan, S., Information Systems as a Reference Discipline for New Product Development, MIS
Quarterly, 27(1):1-18, 2003.

Nambisan, S., Wilemon, D., Software Development and New Product Development: Potentials for
Cross-Domain Knowledge Sharing, |IEEE Transactions on Engineering Management,
47(2):211-220, 2000.

4 The Focus Group Method as an Empirical Tool in Software Engineering 115

Neter, J., Waksberg, J., A Study of Response Errors in Expenditure Data from Household
Interviews, Journal of the American Statistical Association, 59:18-55, 1964.

Newby, R., Soutar, G., Watson, J., Comparing Traditional Focus Groups with a Group Support
Systems (GSS) Approach for Use in SME Research, International Small Business Journal,
21(4):421-433, 2003.

Nielsen, J., The Use and Misuse of Focus Groups, |EEE Software, 14(January):94-95, 1997.

Nunamaker, J.F., Dennis, A.R., Valacich, J.S., Vogel, D.R., George, J.F., Electronic Meeting
Systems to Support Group Work, Communications of the ACM, 34(7):40-61, 1991.

O’Connor, H., Madge, C., “Focus Groups in Cyberspace”: Using the Internet for Qualitative
Research, Qualitative Market Research, 6(2):133-143, 2003.

Oringderff, J., “My Way’: Piloting and Online Focus Group, International Journal of Qualitative
Methods, 3(3):1-10, 2004.

Parent, M., Gallupe, R.B., Salisbury, W.D., Handelman, J.M., Knowledge Creation in Focus
Groups: Can Group Technologies Help?, Information and Management, 38(1):47-58, 2000.

Patton, M.Q., Qualitative Evaluation and Research Methods, Sage Publications, Thousand Oaks,
CA, 1990.

Reid, D.J., Reid, F.J.M., Online Focus Groups. An In-Depth Comparison of Computer-Mediated
and Conventional Focus Group Discussions, International Journal of Market Research,
47(2):131-162, 2005.

Rodgers, T.L., Dean, D.L., Nunamaker, J.F., Increasing Inspection Efficiency through Group
Support Systems, In Proceedings of the 37th Annual Hawaii International Conference on
System Sciences, Los Alamitos, CA, pp. 1-10, 2004.

Rubin, J., Handbook of Usability Testing: How to Plan, Design, and Conduct Effective Tests,
Wiley, New York, 1994.

Stewart, D.W., Shamdasani, P.N., Focus Groups: Theory and Practice, Sage Publications,
Thousand Oaks, CA, 1990.

Sunikka, A., Usability evaluation of the Helsinki School of Economics Website. Master’s thesis,
Helsinki School of Economics, 2004.

Sweet, C., Designing and Conducting Virtual Focus Groups, Qualitative Market Research,
4(3):130-135, 2001.

Taylor, S.J., Bogdan, R., Introduction to Qualitative Research Methods, Wiley, New York, 1984.

Templeton, J.F., The Focus Group: A Strategic Guide to Organizing, Conducting and Analyzing
the Focus Group Interview, McGraw-Hill Professional Publishing, New York, 1994.

Ten-Pow, J., Fundamentals for Those Considering Online Focus Groups, On Survey Research
Intelligence, http://www.onsurvey.ca/supplemental/onfocus.pdf, 2003.

Tichy, W.F., Should Computer Scientists Experiment More?, IEEE Computer, 31(5):32-40,
1998.

Tichy, W.F., Lukowicz, P., Prechelt, L., Heinz, E.A., Experimental Evaluation in Computer
Science: A Quantitative Study, Journal of Systems and Software, 28(1):9-18, 1995.

Turney, L., Pocknee, C., Virtual focus groups: New technologies, new opportunities, new learning
environments, Proceedings of the 21st ASCILITE Conference, University of Wollongong,
New South Wales, Australia, pp. 905-912.

Tuunanen, T., Rossi, M., Engineering a Method for Wide Audience Requirements Elicitatation
and Integrating It to Software Development, In Proceedings of the 37th Annual Hawaii
International Conference on System Sciences, Los Alamitos, CA, 2004.

Van Genuchten, M., Cornelissen, W., Van Dijk, C., Supporting Inspections with an Electronic
Meeting System, Journal of Management Information Systems, 14(3):165-178, 1997.

Van Genuchten, M., Van Dijk, C., Scholten, H., Using Group Support Systems for Software
Inspections, |EEE Software, 18(3):60-65, 2001.

Vitharana, P., Ramamurthy, K., Computer-Mediated Group Support, Anonymity, and the Software
Inspection Process: An Empirical Investigation, IEEE Transactions on Software Management,
29(2):167-180, 2003.

Wellner, A.S., The New Science of Focus Groups, American Demographics, March 1 29-33,
2003.

116 J. Kontio et al.

Widdows, R., Hensler, T.A., Wyncott, M.H., The Focus Group Interview: A Method for Assessing
User’s Evaluation of Library Service, College and Research Libraries, 52(July):352-359,
1991.

Wohlin, C., Runeson, P., Host, M., Ohlsson, M.C., Experimentation in Software Engineering: An
Introduction, Kluwer Academic Publishers, Boston, MA, 1999.

Wohlin, C., Host, M., Henningsson, K., Empirical Research Methods in Software Engineering,
Lecture Notes in Computer Science, Vol. 2765 7-23, 2003.

Zelkowitz, M.V., Wallace, D.R., Experimental Models for Validating Technology, | EEE Computer,
31(5):23-31, 1998.

Zinchiak, M., Online Focus Group FAQs, Quirk’s Marketing Research Review, http://www.quirks.
com/articles/a2001/20010712.aspx?searchID=2619905, July/August 2001.

Chapter 5
Simulation M ethods

Mark Miiller and Dietmar Pfahl

Abstract This chapter aims to raise awareness about the usefulness and impor-
tance of simulation in support of software engineering. Simulation is applied in
many critical engineering areas and enables one to address issues before they
become problems. Simulation — in particular process simulation — is a state of the
art technology to analyze process behaviour, risks and complex systems with their
inherent uncertainties. Simulation provides insights into the designs of develop-
ment processes and projects before significant time and cost has been invested,
and can be of great benefit in support of training. The systematic combination of
simulation methods with empirical research has the potential for becoming a pow-
erful tool in applied software engineering research. The creation of virtual software
engineering laboratories helps to allocate available resources of both industry and
academia more effectively.

1. Simulation in the Context of Software Engineering

This chapter aims to raise awareness about the usefulness and importance of simu-
lation in support of software engineering. Simulation is a standard technology in
many engineering disciplines and has been successfully applied in manufacturing,
economics, biology, and social science. Why can simulation enhance traditional
software engineering, too? Simulation models are means to analyze the behaviour
of complex processes. In the software process literature, according to our under-
standing, there is a general agreement that people who understand the static process
(i.e., process activities, artefacts, resources, roles, and their relationships), and have
data, still have difficulties to anticipate the actual process behaviour. This is due to
the inherent (dynamic) complexity of software development processes. Software
processes can contain iterations, such as rework loops associated with correction of
defects. This can lead to delays which may range from minutes to years. As a con-
sequence it is almost impossible for human (mental) analysis to predict the
outcome.

Traditionally, process analysis in software engineering research uses static
process descriptions like flow charts. This approach does not shed much light on

117

F. Shull et al. (eds.), Guide to Advanced Empirical Software Engineering.
© Springer 2008

118 M. Muller and D. Pfahl

the behaviour of a process over time. Therefore, the usual way to analyze process
behaviour is to perform the actual process in a case study and observe the results.
This is a very costly way to perform process analysis, because it involves the
active participation of engineers. Furthermore, results from a particular case
study cannot necessarily be generalized to other contexts. Another way of
analyzing processes is to simulate them. Simulation models help to clarify
assumptions — often referred to as mental models, on how a process works. They
visualize and quantify the implicit mental models about the causes that govern
the observed process behaviour and thus support understanding, analysis, predic-
tion, and decision-support.

Simulation models are like virtual laboratories where hypotheses about
observed problems can be tested, and corrective policies can be experimented
with before they are implemented in the real system. Experience from applica-
tions in other fields than software engineering indicates that significant benefits
can be drawn from introducing the use of simulation for management decision
support. Furthermore, systematic experimentation with simulation models and
the integration of simulation-based experiments with empirical research (i.e.,
case studies and controlled experiments) can support the building of a software
development theory (Rus et al., 2002). Simulation-based virtual software
engineering laboratories (Minch etal., 2003, 2005) can help focus experimentation
in both industry and academia for this purpose, while saving effort by avoiding
experiments in real-world settings that have little chances of generating signifi-
cant new knowledge.

In practice, process simulation models are frequently used to support project
planning and estimation. In a competitive world, accurate predictions of cost, quality
and schedule provide a significant advantage. For example, if cost estimates are too
high, bids are lost, if too low, organizations find themselves in a difficult financial
situation. In this context, simulation is a risk management method. It offers not only
estimates of cost, but also estimates of cost uncertainty. Simulation also allows for
detailed analysis of process costs (Activity Based Costing).

Simulation is effective only if both the model, and the data used to drive the
model, accurately reflect the real world. If quantitative output is expected, a simula-
tion can only be executed if it is supplied with quantitative expert estimates or
measurement data. Simulation may use industry data or results of quantitative
experiments. In order to limit data collection effort, the simulation modeller has to
focus on key variables, such as the percentage of design documents which pass or
fail review. Thus, as a side effect, simulation modelling supports the focusing of
measurement programs on relevant factors of an engineering process.

This chapter is structured as follows: Section 2 explains how simulation models
are developed. Section 3 summarizes the variety of application areas and provides
references to relevant publications. Sections 4 and 5 describe the simulation tech-
niques and tools used in software engineering. Section 6 provides a simulation
reference model which helps to design process simulation models. Section 7 covers
practical aspects of simulation modelling. Finally, the chapter concludes with an
outlook for trends in future simulation modelling research.

5. Simulation Methods 119

2. The Process of Simulation Modelling in Software
Engineering

This chapter provides an overview of the design and implementation of simulation
models. Additional information about process simulation paradigms and general
introductions can also be found in (Banks et al., 2000; Cellier, 1991; Law and
Kelton, 1999). Detailed descriptions of process simulation modelling methods
specialized to instances of the event-driven and continuous simulation modelling
paradigms can be found in (Rus et al., 2003) and (Pfahl and Ruhe, 2002), respectively.

Any process simulation modelling process consists of at least five steps
(cf. Fig. 1):

1. Formulation of the Problem Statement (modelling goal)

2. Specification of the Reference Behaviour (based on observation or
hypothetical)

3. Identification of Model Concepts (physical processes, information flows, deci-
sion rules)

4. Implementation of Executable Model (formal, executable representation)

5. Model Experimentation

The starting point of any simulation modelling project is the identification and
explicit formulation of a problem statement. The problem statement defines the
modelling goal and helps to focus the modelling activities. In particular, it determines

Virtual World Real World

1
1
1
|
1

Problem i
1

Interpretation, Statement Refinement (with
Evalua_tion, S 4 focus on dynamic
Analysis aspects)
——— Validation Ref
imulation eference
. Results [~~~ =~ 7 > Behavior |[¥-..,
Experimentation Abstraction
T » Executable | _ Model
-
Model Formalization Concepts
Verification S 4
............................... "~ Verification

Fig. 1 lterative process of simulation modelling

120 M. Muller and D. Pfahl

the model purpose and scope. For software process simulation models, Kellner
et al. (1999) propose the following categories for model purpose and scope:

1. Purpose:
(a) strategic management
(b) planning, control and operational management
(c) process improvement and technology adoption
(d) understanding
(e) training and learning
2. Scope:
(a) a portion of the life cycle (e.g. design phase, code inspection, some or all of
testing, requirements management)
(b) a development project (e.g. single product development life cycle)
(c) multiple, concurrent projects (e.g., across a department or division)
(d) long-term product evolution (e.g. multiple, successive releases of a single
product)
(e) long-term organization (e.g., strategic organizational considerations spanning
successive releases of multiple products over a substantial time period)

In order to make the problem statement suitable for simulation-based problem-
solving, it is helpful to specify the reference behaviour. Reference behaviour
captures the dynamic (i.e., time-dependent) variation of key attributes of real-world
entities. The reference behaviour can be both observed problematic behaviour (e.g.,
of quality, effort, or cost), which are to be analyzed and improved, and/or a desired
behaviour that is to be achieved. The importance of the reference behaviour for the
modelling process is twofold. Firstly, it helps identify important model (output)
parameters and thus further focuses the subsequent modelling steps. Secondly, it is
a crucial input to model validation because it allows for comparing simulation
results with observed (or desired) behaviour.
The next step is the definition of model concepts, which entail:

. Existing process, quality, and resource models
. Implicit or explicit decision rules

. Typical observed behaviour patterns

. Organizational information flows

. Policies

O~ N -

Typically, model concepts can be in the form of quantitative or qualitative models,
which are abstractions of behaviours observed in reality. They capture implicit and
tacit expert knowledge and are formalized as rules. Usually, in this step, domain
experts play a crucial role not only because they often have knowledge that cannot be
found in documents or data bases alone, but also because they can help distinguish
relevant real-world information from what is irrelevant for the problem under study.

After the definition of model concepts the model is implemented in the simulation
tool. Consistent with the modelling technique and tool chosen, all the information,
knowledge and experience represented by the model concepts has to be transformed
into a computer executable language. The result is an executable model. Technical

5. Simulation Methods 121

simulation modelling expertise is crucial in the transformation of model concepts into
the formal model representation which eventually will be executed on a computer.

The last step is model calibration and experimentation with the executable
model, producing simulation results. Simulation experiments are performed to
understand the system’s behaviour. Experimentation goes hand in hand with model
calibration. Model calibration refers to the adjustment of simulation model param-
eters until the model output corresponds to real word data. Model calibration can
be done based on expert estimates or through parameter fitting based on historic
data. The calibration step is important in order to ensure that the model accurately
reflects real-world behaviour and is required to build confidence in simulation
results. After a model is calibrated, simulation experiments are performed to
understand observed behaviour, to evaluate planning alternatives, or to explore
improvement opportunities. At this stage, iteration is likely in model execution and
modification as variables and model structures are changed and the simulation
model results are compared against each other. Thus, experimentation not only
provides simulation results, but also validates the simulation model. Guidance on
how to design simulation experiments in general can be found in (Banks et al.,
2000) and (Law and Kelton, 1999), and specifically for software processes in
(Wakeland et al., 2003).

Like software development projects, simulation modelling involves verification
and validation activities. In short, verification can be seen as an activity that ensures
that the model fits its intended purpose, while validation can be seen as the activity
that ensures that the model appropriately reflects the real-world behaviour.
Verification and validation are continuing activities throughout the modelling and
simulation life cycle. They help

1. To produce simulation models that represent system behaviour closely enough
to be used as a substitute for the actual system when conducting experiments

2. To increase the credibility of simulation models to a level that makes them
acceptable for managers and other decision makers

Verification activities check the internal correctness or appropriateness of a simula-
tion model, i.e. they ensure that the model was constructed in the right way. In
particular, verification checks whether the transformation steps defined by the sim-
ulation modelling process have been conducted correctly. For example, verification
ensures that the identified model concepts have properly been implemented in the
executable model. For verification activities, expert knowledge on the simulation
modelling technique is a major requirement. To some extent, verification is sup-
ported by simulation modelling tools. For example, the consistency of units in
model equations can be automatically checked by a tool.

Validation activities check the external correctness or appropriateness of a simula-
tion model, i.e. they try to find out whether the right model (with regards to its
purpose or application) was constructed. In particular, validation checks whether the
model represents the structural and behavioural properties of the real system correctly
(appropriately). For example, simulation results can be used to check the robustness
or sensitivity of model behaviour for extreme values of input data. Even though

122 M. Mller and D. Pfahl

validation can be partly supported by simulation modelling tools, expert knowledge
about the real world system is needed to interpret the range of results obtained.

The simulation literature offers several proposals for verification and validation
of simulation models (Balci, 2003; Banks et al., 2000; Barlas, 1989; Forrester and
Senge, 1980; Law and Kelton, 1999; Sargent, 2003). For example, Balci (2003)
proposes more than 30 different verification and validation techniques, classified
into informal, static, dynamic, and formal. However, full verification and validation
of simulation models whilst desirable, are often practically impossible due to cost
and time restrictions (Pidd, 2004). Typically, only a subset of the available tech-
niques and methods for model verification and validation are used.

3. Applications of Simulation in Software Engineering

Simulation models have been applied in many technical fields and are increasingly
used for problems in business management and software engineering management.
This section summarizes applications of simulation and some of the benefits that
can be obtained.

Abdel-Hamid and Madnick (1991) were among the first to apply simulation
modelling in software project management. They focused on project cost estima-
tion and the effects of project planning on product quality and project performance.
During the last decade many new process simulation applications in software engi-
neering have been published, focusing on other specific topics within software
project and process management [e.g., Christie (1999a); Kellner et al. (1999);
Waeselynck and Pfahl (1994)]. Table 1 lists some significant publications in vari-
ous application areas.

4. Simulation Techniques

The way in which a simulation model works depends on the modelling technique
chosen. Generally, four important distinctions between types of simulation tech-
niques can be made.

4.1. Deterministic Versus Stochastic Simulation

Simulation models that contain probabilistic components are called stochastic,®
those that do not are termed deterministic. In the case of a deterministic simulation
model, for a fixed set of input parameter values the resulting output parameter values

! The word “stochastic” is used here in a very broad sense of its meaning, i.e., referring to any type
of source of randomness, including, for example, mutation or cross-over generation in genetic
algorithms.

5. Simulation Methods

123

Table 1 Simulation applications in software engineering

Application area in software engineering ~ Selected publications

Project management
Risk management

Product and requirements engineering

Process engineering

Strategic planning

Quality assurance and management

Software maintenance and evolution

Global software development
Software acquisition management and
COTS

Lee and Miller (2004), Lin et al. (1997), Padberg
(2006), Pfahl and Lebsanft (2000)

Houston et al. (2001), Neu et al. (2002), Pfahl (2005)

Christie and Staley (2000), Ferreira et al. (2003),
Host et al. (2001), Lerch et al. (1997), Pfahl et al.
(2006), Stallinger and Griinbacher (2001)

Bandinelli et al. (1995), Birkhdlzer et al. (2004),
Christie (1999b), Kuppuswami et al. (2003),
Misic et al. (2004), Powell et al. (1999), Raffo
et al. (1999), Tvedt and Collofello (1995)

Andersson et al. (2002), Pfahl et al. (2006),
Williford and Chang (1999)

Aranda et al. (1993), Briand and Pfahl (2000),
Briand et al. (2004), Madachy (1996), Mdiller
(2007), Raffo and Kellner (2000), Raffo et al.
(2004), Rus (2002), Rus et al. (1999)

Cartwright and Shepperd (1999), Smith et al.
(2005), Wernick and Hall (2004)

Roehling et al. (2000), Setamanit et al. (2006)

Choi and Scacchi (2001), Haberlein (2003),
Haberlein and Gantner (2002), Ruiz et al. (2004),

Scacchi and Boehm (1998)

Chen et al. (2005)

Dantas et al. (2004), Drappa and Ludewig (1999),
Madachy and Tarbet (2000), Oh Navarro and van
der Hoek (2004), Pfahl et al. (2001)

Product-lines
Training and education

will always be the same for simulation runs. In the case of a stochastic simulation
model, the output parameter values may vary depending on stochastic variation of
the values of input parameters or intermediate (internal) model variables. Since the
variation of input and intermediate variables is generated by random sampling from
given statistical distributions, it is important to repeat stochastic simulation runs for
a sufficient number of times in order to be able to observe the statistical distribution
of output parameter values. This number depends on limitations to computing
power and how much confidence in simulation results is required.

4.2. Static Versus Dynamic Simulation

Static simulation models capture the variation of model parameters at one single
point in time, while dynamic simulation models capture the behaviour of model
parameters over a specified period of time.

Static simulation in software engineering is often used as a reference to stochastic
Monte Carlo simulation which does not investigate behaviour over time. Related
examples can be found in (Briand and Pfahl, 2000; Houston, 2003; McCabe, 2003).

124 M. Muller and D. Pfahl

4.3. Continuous Versus Event-Driven Simulation

Dynamic simulation models can be either continuous or event-driven. The difference
between continuous and event-driven simulation models is the way in which the
internal state of the model is calculated.

Continuous simulation models update the values of the model variables repre-
senting the model state at equidistant time steps based on a fixed set of well-defined
model equations. Essentially, the model equations in continuous simulation models
establish a set of time-dependent linear differential equations of first or higher
order. Since such mathematical systems usually cannot be solved analytically, the
differential equations are transformed into difference equations and solved via
numerical integration. The most popular representative of continuous simulation is
System Dynamics (SD) (Coyle, 1996). SD was originally invented by Jay Forrester
in the late 1950s (Forrester, 1961) and has its roots in cybernetics and servomecha-
nisms (Richardson, 1991). Since the end of the 1980s, when Abdel-Hamid and
Madnick published the first SD model for software project management support,
more than 100 other SD models in the application domain of software engineering
have been published (Pfahl et al., 2006). Thus, SD can be considered the most
frequently used dynamic simulation technique in this domain.

Event-driven simulation models update the values of the model variables as new
events occur. There exist several types of event-driven simulation techniques. The
most frequently used is discrete-event (DE) simulation. DE simulation models are
typically represented by a network of activities (sometimes called stations) and
items that flow through this network. The set of activities and items represent the
model’s state. The model’s state changes at the occurrence of new events, triggered
by combinations of items’ attribute values and activities” processing rules. Events
are typically generated when an item moves from one activity to another. As this
can happen at any point in time, the time between changes in the model state can
vary in DE simulations. There exist several other — but less popular — types of
event-driven simulation, namely Petri-net based simulation (Bandinelli et al., 1995;
Fernstrém, 1993; Gruhn and Saalmann, 1992; Mizuno et al., 1997), rule-based
simulation (Drappa et al., 1995; Mi and Scacchi, 1990), state-based simulation
(Humphrey and Kellner, 1989; Kellner and Hansen, 1989), or agent-based simula-
tion (Huang and Madey, 2005; Madey et al., 2002).

4.4. Quantitative Versus Qualitative Simulation

Quantitative simulation requires that the values of model parameters are specified
as real or integer numbers. Hence, a major prerequisite of quantitative simulation is
either the availability of empirical data of sufficient quality and quantity or the
availability of experts that are willing to make quantitative estimates of model
parameters. Often, the quantitative modelling approach is costly and time-consuming
and might not be appropriate for simulations that aim at delivering simple trend

5. Simulation Methods 125

analyses. Qualitative simulation is a useful approach if the goal is to understand
general behaviour patterns of dynamic systems, or when conclusions must be
drawn from insufficient data.

QUAF (Qualitative Analysis of Causal Feedback) is a qualitative simulation
technique for continuous process systems (Rose and Kramer, 1991). The method
requires no numerical information beyond the signs and relative values of certain
groups of model parameters. QSIM (Qualitative SIMulation) is another well-
established qualitative technique for continuous simulation (Kuipers, 1986).
Instead of quantifying the parameters of the differential equations underlying the
continuous simulation model, it is only required to specify the polarity (i.e., posi-
tive or negative) of model functions, indicating whether they represent an increase
or decrease of a quantity over time.

In the case of event-driven simulation, for example, Petri-net based and rule-
based simulation can be conducted purely qualitatively, if events (e.g., the activation
of transitions in Petri-nets, or the execution of a rule in rule-based systems) are
triggered exclusively based on the evaluation of non-quantitative conditions.

4.5. Hybrid Simulation

Dynamic simulation models that combine continuous with event-driven or deter-
ministic with stochastic elements are called hybrid simulation models. One benefit
of hybrid approaches is the possibility to combine the advantages of stochastic,
continuous and event-driven models. In the case of hybrid models that combine
continuous and event-driven simulation, however, the drawback is increased model
complexity. An example of a hybrid simulation model that combines continuous
with event-driven simulation can be found in (Martin and Raffo, 2001).

5. Simulation Tools

Today, many software tools are available to support the various simulation
techniques described above. Compared to the first tools available in the 1960s,
1970s, and 1980s, most of today’s more popular tools have a user-friendly interface
and are inexpensive, making them practical to use for a large variety of decision
making situations. Today, most tools

1. Allow for rapid model development through using, for example
(a) Drag and drop of iconic building blocks
(b) Graphical element linking
(c) Syntactic constraints on how elements are linked

2. Are very reliable

. Require little training

4. Are easy to understand

w

126 M. Muller and D. Pfahl

Because of these features, simulation tools allow modellers to develop large detailed
models rapidly. Modern tools have followed the evolution of software languages
and software development environments. Now they focus on model design and a
proper visualization rather than on programming the simulation logic.

The simulation tools in today’s market place are robust and reasonably inexpen-
sive. Most tools cost in the range of $1,000-10,000, and free versions are available
for experimentation and evaluation. They run on standard PC hardware, and are
therefore affordable even for small organizations with tight budgets.

The number of simulation tools is large, in particular if one counts the ever-growing
number of simulation environment research prototypes developed at universities all
over the world. In principle, a simulation model based on any of the above
mentioned simulation techniques can also be implemented in an ordinary program-
ming languages (e.g., Java®), or by using general purpose simulation languages
(e.g., MATLAB®). However, several commercial simulation tools use the most
important simulation techniques and are suited to support software engineering
problems. Table 2 characterizes three popular examples of simulation tools
supporting SD, DE, and Monte Carlo simulation, respectively.

The choice of a simulation tool environment depends on several factors. Since
the prices are comparatively low, the most important factor is the appropriateness
of the simulation technique that is supported. In a professional simulation environment,
in conjunction to the simulation modelling tool, other tools are often used.
Professional simulation studies typically involve information systems or data bases
which store the input, calibration, and output data, a statistical distribution fitter to
analyze the calibration data, and an optimizer. High-end tools such as the more
expensive versions of VENSIM® and EXTEND® already include the distribution
fitters and optimizers.

Table2 Examples of commercial simulation tools used in software engineering

Tool name Main focus Characterization Interesting features
VENSIM® Support of SD Dynamic, Optimization function, calibration
(\Vensim, simulation continuous, support, graphical modelling
2006) deterministic and language (using standard SD
stochastic, symbols), animation, can
quantitative emulate event-driven simulation

to some extend by introducing
if-then-else-conditions

EXTEND® Support of DE Dynamic, Optimization support, graphical
(Extend, and SD event-driven modelling language, strong
2006) simulation and continuous, modularization capability;

deterministic and statistical fitting (StatFit®),
stochastic, library source code available
quantitative

@RISK® Monte Carlo Static, deterministic, Can easily be integrated with
(@Risk, simulation stochastic, standard spreadsheet tools (i.e.,
2007) quantitative Microsoft’s EXCEL®), provides

functionality for distribution
fitting (BestFit®)

5. Simulation Methods 127

Next follows a brief introduction into the SD modelling tool VENSIM®, which
will be used in the presentation of a process simulation example in Sect. 6 below.

5.1. Essentials of System Dynamics Models

SD models are represented by a set of difference equations, which is resolved by
numerical integration. Model variables, which represent the model state are called
levels and have the following form:

Level (t+dt) = Level(t) + Integral [Rate_in(t) — Rate_out(t)] dt (1)

The value of a level at a certain point in time? depends on its value at the
previous discrete point in time plus the integral of the inflows minus the
outflows. The initialization of the level happens at the start time of a simula-
tion. In the world of difference equations this would correspond to the starting
conditions. In the example given by (1) there is only one inflow, represented by
the rate variable Rate_in(t) and one outflow, represented by Rate out(t). Level
variables can be considered as containers or reservoirs that accumulate some
tangible (e.g., a pile of papers) or intangible (e.g., number of defects in a
documents or motivation level of developers) entities, represented by some
countable attribute.

In the physical world, the quantities of the accumulated commodities in a
reservoir can be regulated through inflow and outflow pipes, each pipe having
a valve. In SD models rate variables play the role of valves. Like levels, rates
are represented by equations. Rates can depend on levels, e.g., if information
feedback concerning the quantity in a level affects the rate of flow elsewhere in
the model, on constants, or on auxiliary variables, which are used as abbrevia-
tions for intermediate calculations to break up more complex computations.
(2) gives an example of a rate variable that represents the development rate
(inflow) of adesign document (level variable DesignDocSize). If DesignDocSize(t)
is less than the estimated expected size of the design document (constant
TargetSize), then the daily amount of design documentation added to
DesignDocSize equals the product of the number of active designers (Workforce
allocated at time t) and the average productivity per person (constant AveragePr
oductivityPerPerson). If the design document is complete, i.e., DesignDocSize >
TargetSize, then there is nothing to do and the rate variable DesignDevelopment
Rate equals 0. Thus no more is added to DesignDocSize unless or until some
other activity in the model reduces DesignDocSize or increases TargetSize.

2 “dt” denotes a time step from one discrete point in time to the next.

128 M. Miiller and D. Pfahl

DesignDevelopmentRate (t) =

IF THEN ELSE
(DesignDocSize (t) < TargetSize,)
Workforce(t)*AverageProductivityPerPerson, 0)

5.2. A System Dynamics Tool: VENSIM®

The VENSIM tool offers a development workbench supporting both textual and
graphical model representations. The symbols that are used for the basis model vari-
ables and constants follow a de-facto-standard for SD modelling. Level variables are
represented as boxes, while rates are represented as valves on pipes (double lines)
connected with these boxes. Constants and auxiliary variables are simply represented
by their names. Flows of information are represented by single-line arrows.

Figure 2 shows a screen shot of the VENSIM® modelling workbench with a
loaded view (sub-model) of a SD model representing the design phase of a software
development project. The flow through the pipes attached to level variables (e.g.,
design to do size and design doc size in Fig. 3) is regulated by rate variables,
represented by valve symbols (e.g., development activity in Fig. 3). Auxiliary

BFE & Lm® K5 [CurcatDesign @t P &R
Bm ABCE TTA C& ;#c(l_)z a
of -
@ ;
S Mm“|m
8 ° o e
& A \
2 e ey "“mnbw}:dw
& Y | g
A g s | e
&~ derign 9 devilop . Arnlipant " \ /
=4
Pl | e =
design dev iust ,l - .
time !
weng oy
=y uning wnphfien
e
Troe Wrado | 7] 8] 9] «| Vessbles | Fuunchors | More |
(I iy g i ChassaVanstin | [in]
amd 310 1] 2| 307 [menmee
Sugplementany 0| €| | 7] |devniodevekn
Help L2 vt aciiy
Uiz | [P |
e
mert
Gioupr [Desgnaer w|Range [| | GoTa Poev| Mest| | Hie| Sel | New
Encer | =]
o] Chack Sprtae | (Chack Madel | [| Cancel_Jf

Mistin o - m [eoan o] Vo DESIGHeved

Fig. 2 VENSIM workbench with activated equation editor

5. Simulation Methods 129

| ¥ B @ Cumenthiesion [4FeY RS SR

B SRR ROt _______
A EEIEY T e il e IS =
=@ B0 Gragh for desian doc OIX]| =PEHB Toble | =
% = Thme {Day) 2 3 4 5
dti@’l doc size “design doc smze” Runs Cumrent Deagn
200 "i T l[dengn doc nee 10.16 20 16 w 40.56
f

Iy |1l
ARR AT
o Y

0 20 40 &0 80 100
Tine: (Diay)

desgn doe sive | Curvent-DengF P

HEUEY 792

=B design doc slze: CaurQ]x
CurwtDweign ———

dneign doc szs
0o t “
T
15 ra -+ g
wo |/ \ vam I."r ol
’: 7 7 L.’ T Samgn doe v rtatie
m:nmmnmq ww-m%
» - amuumﬁmm\
21— R peedusioity ds ige e arming hmpier ~
" 18 B s
wreiage deaign dev rate design doc s
venficalinn activity
e - (esign doo dev status) ~_
4 = (brmg doe sz)
15 || I. design doc ver flahus — e
%q . L FAnASMT S WATLES S8 pign var rals
Tiss Dig) =
o A T

Fig. 3 VENSIM workbench with activated analysis and output tools

variables and constants are represented simply by their names. Values of level, rate,
or auxiliary variables are calculated by evaluating functions of the form y = f (x,,
..., X)), where x,, ..., X_are other variables and constants. The variables and con-
stants involved in such a function are illustrated by a connecting arc (or pipe).

The definition of a function is done through a text-based equation editor. The
equation editor window automatically pops up if the details of an equation have not
yet been fully defined and the workbench button [y = x?] is pressed (see Fig. 2).
The equation editor not only provides an input window for specifying the exact
function but also provides fields for specifying the variable unit and an explanatory
comment. The equation editor automatically performs simple syntax and consist-
ency checks. There exists also an equivalent textual representation of the entire
model (not shown in Fig. 2). The textual representation of model equations has the
advantage that string insertion, deletion, and renaming can easily be performed for
the complete model.

The list of buttons directly above the graphical modelling panel offers special-
ized functionality for adding, deleting, removing, renaming, hiding, and showing of
model variables. The column of buttons on the left hand side of the modelling panel
provides specialized functionality for model analysis and simulation output presen-
tation in the form of graphs or tables (cf. Fig. 3). For example, the window in the
lower right corner of the screen shot presented in Fig. 3 shows two levels of causal
dependencies between variables. Values shown in parentheses indicate feedback
loops. From the open window within the modelling panel one sees that:;

130 M. Muller and D. Pfahl

design doc size = f (development activity, verification activity) 3)
while

development activity = f (design doc dev status, design learning status,
design to do size, productivity design learning amplifier, 4)
randomized average design dev rate)

Graphs showing the reverse dependencies, i.e., variable or constant uses, can also
be automatically generated (not shown in Fig. 3). Other windows in Fig. 3 show the
output of one simulation run (here: Current-Design) in the form of tables and
graphs (lower and upper windows in the left half of the graphical modelling panel),
as well as information about the model structure.

6. A Reference Simulation Model for Software
Development Processes

This section shows a simulation model example and introduces the concept of a
simulation reference process. The model is implemented as a stochastic SD model
using the VENSIM® tool. Based on the example, a comparison between SD simula-
tion and DE simulation will be made, and the advantages and disadvantages of each
technique discussed.

6.1. A Generic Software Development Process

The following example presents a generic — in the sense of re-usable and adaptable —
implementation of a standard process typically occurring in any constructive
software development phase.

The left-hand side of Fig. 4 shows a typical development and verification work-
flow of any type of software-related artefacts. The work-flow presentation uses the
following symbols: boxes (for artefacts), ovals (for activities), hexagons (for
resources), and arcs (representing uses, produces, and consumes relationships). An
artefact may be, for example, a requirements, design, test, or code document. The
actual artefact to be developed and verified is positioned in the centre of the work-
flow. Before the development of this artefact can start, some input information must
be available. For example, a design documents needs to know which requirements
have been specified in a previous project stage. The development activity trans-
forms an available artefact input into a new or modified artefact, e.g., a set of
requirements into a design document. This artefact is then checked in a verification
activity. The result of the verification activity, e.g., an inspection, is a list of defects
in the newly created or modified artefact, which in turn is the basis for rework of

5. Simulation Methods 131

Artefact
Input . design to do > 0 and
time > des doc ver status <> active

design
development
start time
complete

consumes

non-exist

Resources

Development , consumes

(Workforce, ~ Dssssunss Activi
" ctivity
Tools, Time)
designtodo =0
produces
Artefact
(created/reworked) des doc > 0 and _
des doc dev status <> active
des doc dev status =
consumes
repeat
Resources uses Verification
EPNOII'ka)I_IfCEV) Activity des doc =0 and
ools, Time] = -
design faults per FP pending > ges_docf - I(: and ep ding >
produces design doc quality threshold esign faults per Fb pending
design doc quality threshold
L per FP
per FP
Artifact complete

Defect Log

Fig. 4 Generic artefact development/verification process

the artefact. The rework loop is indicated in Fig. 4 by the consumes-relationship
between the artefact defect log and the development activity. No distinction is
made between initial work and rework performed on previous output. Activities use
resources, e.g., personnel (implying some cost), tools (also incurring some cost,
and supporting certain techniques), techniques (implying a need to quantify
productivity), and time.

For larger simulation models, covering more than one stage of the software devel-
opment process, instances of the generic work-flow shown in Fig. 4 can be combined
sequentially by connecting work-flows that create predecessor artefacts with work-
flows that create successor artefacts, and concurrently to represent work-flows
conducted in parallel that produce separate instances of artefacts of the same type.

The right-hand side of Fig. 4 shows the control of the work-flow, expressed in
terms of states that the artefact can assume in relation to its development (upper
diagram) and verification activities (lower diagram), and the transitions between
states, including the conditions for activating a transition. For example, a develop-
ment activity related to the artefact “requirements” can either have not yet been
started (“non-exist”), be active (“active”), or it can be completed (“complete”). The
transition from “non-exist” into “active” is triggered as soon as the elapsed time t
is greater than the defined starting time of the related development activity.
A transition from “active” to “complete” is triggered, if all of the artefact inputs have
been used up in producing the output document (e.g., a design or code document).
If rework needs to be done in order to correct defects detected during verification,
then a transition from “complete” back to “active” is triggered. The state-transition
diagram associated with the verification activity is similar to that of the development
activity. The only difference is its fourth state, “repeat.” This state signals that a
repetition of the verification activity is needed after rework of the defects found in

132 M. Muller and D. Pfahl

the previous verification round has been completed. The decision as to whether the
verification step must be repeated depends on the number of defects found per size
unit of the artefact. For example, if requirements size is measured in Function
Points (FPs), then a threshold value can be defined in terms of defects per FP. If the
number of detected defects per FP is larger then the defined threshold value, then
verification has to be repeated, otherwise the document is considered (finally) com-
plete after rework.

6.2. Conceptualization of the Generic Software
Development Process

While the work-flow on the left-hand side of Fig. 4 is static, the control-flow
presented on the right-hand side contains some behavioural information. Both static
and behavioural information contained in the generic software development (and
verification) process are the basis for the creation of a related simulation model, e.
g., using the System Dynamics (SD). As will be shown below, the process shown
in Fig. 4 is actually a re-usable pattern that captures the most important aspects of
the work-flow, including activities and artefacts, as well as resources that will be
used. It also captures some behavioural aspects by specifying the possible states of
an activity (or the resulting artefact) and the feasible state transitions. However, for
the development of an SD simulation model more information is needed. First,
measurement data are needed for model calibration. Second, additional information
about managerial decision rules and control policies are needed in order to under-
stand the causal relationships that govern the process behaviour.

Table 3 lists attributes that often characterize the entities of the generic artefact
development/verification process (second column), and gives typical examples
(third column). The transformation of these attributes into SD model parameters
follows a regular pattern (cf. fourth column). The attribute “efficiency” of the entity
“activity” always maps to a rate variable. Attributes of artefacts and resources
usually map to level variables. However, there are situations where an attribute
value of an artefact or resource is considered constant. In particular, this is the case
when — for the purpose of the modelling task — it is of no interest to model the
variation of an attribute value. An example is the number of designers involved in
a design task which may be controlled by processes outside the scope of the activi-
ties to be modelled, e.g. senior management policy. The fifth column of Table 3
indicates how the values of model parameters are determined. Level and rate
variables are calculated by their defining functions. Constants are either defined by
the model user (INPUT) or, in the case that they are used to calibrate the model,
based on expert estimates (EST) or derived from available empirical data (EMP).
Calibration constants are either deterministic (e.g., by taking the mean) or stochastic
(e.g., by triangulation of expert estimates or by statistically fitting the distribution
of empirical data).

5. Simulation Methods

133

Table 3 Mapping of generic process attributes to SD model parameters

Process description

System dynamics

Parameter
Entity Attribute Example type Quantification
Artefact Size Design/specification Level CALC (from flow rates)
document: Constant INPUT or EST or EMP
— Function points (FP)
— Pages
Code document: Level CALC (from flow rates)
— Lines of code (LOC) Constant INPUT or EST or EMP
Test plan: Level CALC (from flow rates)
— Number of test cases ~ Constant INPUT or EST or EMP
Quality Spec./design/code/test Level CALC (from flow rates)
plan: Constant INPUT or EST or EMP
— Defects injected,
detected,
corrected
State Spec./design/code/test Level CALC (flow rates emu-
plan: late state-transition
— State values logic)
Activity Spec./design/code/test Rate CALC (based on attribute
Efficiency plan: values of used
— Development (and Resources)
rework) volume per
time unit
— Verification (and
validation) volume
per time unit
— Defect injection,
detection, correction
(— rework) per time
unit
Resource Size Workforce: Level CALC (from flow rates)
— Number of architects, Constant INPUT or EST or EMP
designers, program-
mers, testers, etc.
Quality Workforce: Level CALC (from flow rates)
— Training Constant INPUT or EST or EMP
— Experience
Productivity =~ Development, verifica- Constant INPUT or EST or EMP

tion, or validation
technique:

— Number of pages,
FP, LOC, test cases
developed, inspected,
or tested per person
and time unit

(continued)

134 M. Muller and D. Pfahl

Table 3 (continued)

Process description System dynamics
Parameter
Entity Attribute Example type Quantification
Effectiveness Development, verifica- Constant INPUT or EST or EMP
tion, or validation
technique:

— Number of defects
injected per
document size unit

— Number of defects
detected per
document size unit

Cost Workforce: Level CALC (from flow rates)
— Variable cost (e.g., Constant INPUT or EST or EMP
hourly rate)
Development, Level CALC (from flow rates)
verification, Constant INPUT or EST or EMP

or validation tools:
— Fixed costs (e.g.,
purchase price)
— Variable costs (e.g.,
leasing cost, storage
cost, energy cost)

CALC calculated by simulation tool; INPUT input by model user; EST estimated by experts
(modelled either deterministic or stochastic); EMP derived from empirical data (modelled either
deterministic or stochastic)

Figure 5 shows the network of individual cause-effect relationships (so-called
base mechanisms) of a SD model of the generic process. The most creative — and
difficult — part during simulation model creation is the identification of cause-effect
relationships that essentially generate the dynamic behaviour of the system, i.e., the
variation of level variables over time. The control flows represented by the state-
transition diagrams in Fig. 4 are not sufficient to explain the model behaviour,
because they do not specify how relations between model variables change in
response to value changes of the entities’ attributes. One possible network of base
mechanisms that (qualitatively) provides exactly this information is shown in Fig. 5.
A base mechanism is represented as a directed graph connecting two nodes (model
parameters), e.g., A — (+) B or A — (=) B. The arc that connects the nodes A and B
can have a positive or a negative polarity, represented by “+” or “~" respectively. A
positive polarity implies that B increases (or decreases), if A increases (or decreases).
A negative polarity implies that B increases, if A decreases and vice versa. Using this
encoding, the causal diagram in Fig. 5 can be read as follows:

1. If the workforce (e.g., the number of designers) is increased, then both develop-
ment (or rework) and verification rate increase.

5. Simulation Methods 135

Workforce
/—_ (Headcount)
. yrre
+
Development Verification
+ (and Rework) (and Re-Verification)
Rate Rate
Development + PrOJect +
(and Rework) Duration \Artefact
Productivity Size

(per person)

Defect
_ Rework Threshold
Learning Cydi‘ (per size unit

Defect Artefact - Defect
Injection Maturity = Detection

(per size un|t) (per size unit)

Artefact Quality 4—-”/

Fig. 5 Base mechanisms and causal network

8.
9.
10.

. If development and verification rates increase, then project duration decreases

(because the artefact is developed faster).

If the artefact size is increased, then project duration increases (because a
larger artifact has to be developed at a given rate).

If the defect threshold is increased (i.e., more defects per size unit have to be
found before a re-verification is triggered), then possibly fewer rework cycles
(incl. re-verification) have to be performed.

If fewer rework cycles (incl. re-verification) are performed, then project dura-
tion decreases.

. If more re-work cycles are performed, then there is more learning and increased

product maturity.

If there is more learning, then development productivity increases and defect
injection (per size unit) decreases.

If defect injection (per size unit) decreases, then artefact quality increases.

If artefact maturity increases, then defect detection (per size unit) decreases.
If defect detection (per size unit) decreases, then artefact quality decreases.

Figure 5 contains three underlined nodes (workforce, artefact size, and defect
threshold). These nodes represent either calibration or input parameters of the
simulation model. The parameter “Defect Threshold” specifies the number of
defects needed to trigger a rework cycle. It determines whether a verification step
needs to be repeated (cf. in Fig. 4 the state-transition diagram associated with arte-
fact verification). The importance of the parameter “Defect Threshold” resides in
the fact that it not only plays a crucial role in the decision to repeat the verification

136 M. Muller and D. Pfahl

step, but also because it triggers workforce learning and product maturation.
A repetition of the verification (and, as a consequence, the rework) step has multi-
ple effects. First of all, it increases project duration. On the other hand, it speeds up
the development (more precisely: rework) rate due to learning. Similarly, due to
learning, it reduces the defect injection (per size unit) during rework. Finally, it also
decreases the defect detection rate during the subsequent verification step due to
product maturation, because most of the defects have already been detected, and
there are only a few defects still contained in the artefact which are harder to detect.
The last two effects mentioned have a damping effect on the number of rework (and
re-verification) cycles, since they both make it more probable that the number of
defects detected during re-verification are below the value of model parameter
“Defect Threshold.” This is an example of negative feedback.

It should be pointed out that the causal network in Fig. 5 is only a subset of the
base mechanisms that typically drive the behaviour of a software project. For exam-
ple, normally one would expect an influence on development rate from defect
detection (per size unit). This, and possibly other base mechanisms, have been
omitted to keep the example simple and compact. For the same reason, base mecha-
nisms related to project effort consumption have been omitted.

6.3. Implementation of the Generic Process Using a System
Dynamics Tool

With the help of the causal network — in addition to the information already
contained in Table 3 — the full set of simulation model parameters are determined,
and their type and role (from the perspective of the model user) can be defined. In
the following, an example SD simulation model implementation for the generic
code document development/verification process is presented.

Table 4 lists the complete set of model variables (second column), together with
their type (third column) and usage (fourth column). Column one helps to trace
back model parameters to the generic process map (cf. Fig. 4 with “artefact”
replaced by “code document™). Using the mapping scheme presented in Table 3,
the following mappings apply:

1. Size, quality, and state attributes of artefacts (Artefact Input, Artefact, Artefact
Defect Log Size) are mapped to level variables

2. Efficiency attributes of activities (Development Activity and Verification
Activity) are mapped to rate variables

3. Size, quality, productivity, and effectiveness attributes of resources (for
Development and Verification) are mapped to level variables or constants

The list of attributes in Table 4 is very detailed. For example, the quality attribute
information related to the code document distinguishes between the number of
defects injected, the number of defects detected, the number of defects undetected
(equals the difference between injected and detected defects), the number of defects

5. Simulation Methods 137
Table 4 Mapping of static process representation to SD model variables
Process map element SD model parameter Type Usage
Artefact input [Size] code to do size Level Output
initialization code dev start time Constant Input(E)
initialization average code sizein KLOC Constant Input(E)
initialization code to develop Rate Internal
Artefact [Size] code doc size Level Output
Artefact [State Devel.] code doc dev status Level Internal
Artefact [State Verif.] code doc ver status Level Internal
initialization code doc quality limit per KLOC Constant Input(P)
Artefact [Quality 1] code faults generated Level Output
Artefact [Quality 2] code faults detectedl (in one verification Level Output
round)
re-initialization detected code faults flush Rate Internal
Artefact [Quality 3] code faults pending Level Output
Artefact [Quality 4] code faults correctedl (in one rework Level Output
round)
re-initialization corrected code faults flush Rate Internal
Artefact [Quality 5] code faults undetected Level Output
Artefact Defect Log [Size 1] code faults detected (total) Level Output
Artefact Defect Log [Size 2] code faults corrected (total) Level Output
Devel. Activity [Effic. 1] development activity Rate Internal
calibration productivity code learning amplifier Constant Input (C)
Devel. Activity [Effic. 2] code fault generation Rate Internal
calibration quality code learning amplifier Constant Input (C)
Devel. Activity [Effic. 3] code fault correction Rate Internal
Verif. Activity [Effic. 1] verification activity (= code to rework) ~ Rate Internal
Verif. Activity [Effic. 2] code fault detection Rate Internal
Artefact State Trans. (Dev.) cdd status change Rate Internal
Artefact State Trans. (Ver.) cdv status change Rate Internal
Resources (Devel.) [Size] Workforce Constant Input (E)
Resources (Devel.) [Qual.] code learning status Level Output
Resources (Devel.) [Prod. 1] average code dev rate per person and day Constant Input (C)
Resources (Devel.) [Prod. 2] average code fault injection per KLOC Constant Input (C)
Resources (\erif.) [Size] Workforce Constant Input (E)
Resources (\erif.) [Prod.] average code ver rate per person and day Constant Input (C)
Resources (\Verif.) [Effect.] code ver effectiveness Constant Input (C)
Res. State Trans. (Qual.) cl status change Rate Internal

Devel. development; Effic. efficiency; Prod. productivity; Qual. quality; Res. resources; Trans.

transition; Verif. verification; C calibration; E exploration; P policy

corrected, and the number of defects pending (equals the difference between
detected and not yet corrected defects). Additional distinctions could be made, e.g.,
between different defect types or severity classes. For the sake of the simplicity of
the presentation, these additional distinctions have not been included in the example

presented here.

138 M. Muller and D. Pfahl

Model parameters that are of purely technical nature are printed in italics. For
example, in order to set up a simulation run, certain initializations have to be made,
or for the realistic calculation of model attributes, coefficients in the related model
equations have to be calibrated.

Typically, level variables play the role of output parameters, since they represent
the state of the modelled system. Constants play the role of input parameters.
Depending on their purpose, three types of input parameters can be distinguished:
policy (P), exploration (E), and calibration parameters (C).

Policy parameters like, for example, the variable code doc quality limit per KLOC
represent process specific threshold values which are evaluated in managerial deci-
sion rules. In the example, the threshold for the number of detected defects per KLOC
in a verification step determines whether a re-verification has to be performed.

Calibration parameters like, for example, the variable productivity code learning
amplifier help to quantify the effects imposed by one or more model variables on
another model variable realistic.

Finally, exploration parameters like the variables average code size in KLOC
or wor kforce represent those model parameters whose effect on the overall behav-
iour of the system is subject to analysis. In the example, the process completion
(i.e., the time when code development is complete) as well as code quality in terms
of the density of undetected defects after verification (code faults undetected/
average code size in KLOC) are model outputs that depend on other model varia-
bles including the size of the artefact to be developed (average code sizein KLOC)
and available resources (workforce).

Figures 7-9 show the graphical representations (views) of the complete SD
model implementation for the code development and verification process:

1. Figure 6 captures the workflow in terms of size

2. Figure 7 captures the code development and verification states as well as the
workforce learning state

3. Figure 8 captures the workflow (or defect co-flow) in terms of quality

average code ver rate
per person and day

code to rework Dt verification activity

randomized average
code ver rate

- - |codeto do <z
i, £y - size =
code to develop development
activity <code doc
<TIME STEP> ver status>
<code learning
code dev start atus>
time randomized average <code doc
average code - code dev rate dev status>
szein KLOC productivity code

learning amplifier

average code dev rate
per person and day workforce

Fig. 6 Implementation of code development and verification work flow (view 1)

5. Simulation Methods 139

<code faults
pending>

v

<code to do

sze>
coae

<code dev & 1<T|me> . learning
code dev star cl status change status
<average code size code doc time>
E—
in KLOC> quality flag
a
cdv status change <da/e|o_pment

code doc quality activity>
limit per KLOC <average code size

<code doc size> in KLOC>

Fig. 7 Implementation of state attributes (view 2)

average code fault
generation rate

<codeto do <gode doc size>
size>
<verification

activity>

randomized avergge <development <code learning
code fault generation activity> status>
rate

code fault <coge[doc
generation ver status>
quality oode/
learning amplifier]
< __|code fault: 3 code faultd 2 >
o undaectedv code fault detected 1 detected code
> detection faults flush

code ver effectiveness

- _ oodef_ault‘ » code fault] =z e
= 7 |_pending | code aun‘/l_lloorrected ®orrected code

—p-correction faults flush
<development <code doc size> <code doc
activity> <codeto do dev status>

sze>

Fig. 8 Implementation of defect injection, detection, and correction co-flow (view 3)

The level variables, represented by boxes, are calculated with the help of inflow
and outflow rates as defined by (1) introduced in Sect. 4. For example, level varia-
ble code doc size increases as a result of development activity and decreases as a
result of verification activity (because verified code needs to undergo rework). The
rate variables are calculated similarly to (2) introduced in Sect. 4.

In Fig. 6, the inflow rate code to develop initializes the level code to do size,
which otherwise would be equal to zero, and thus no development or verification
work has to be performed. At simulation time code dev start time, the value of
average code size in KLOC flows into code to do size. In the example implementa-
tion, code dev start time and average code size in KLOC are model inputs. These
two model parameters also define an interface to predecessor development and
verification processes. For example, if a predecessor process produces a design

140 M. Muller and D. Pfahl

document, then the completion time and the size of this document can be used to
calculate code dev start time and average code size in KLOC.

Figure 7 shows the part of the model which calculates the states related to code
document development and verification as well as resource quality (learning). For
example, using the encoding 0, 1, and 2, for the states “non-exist,” “active,” and
“complete,” respectively, the rate variable cdd status change is calculated as shown
in (5) below.

cdd status change =

IF THEN ELSE

(code doc dev status=0 /* state = “non-exist”
:AND:Time >= code dev start time,

1, [* transition “non-exist” — “active”

IF THEN ELSE

(code doc dev status=1 /* state = “active” 5)
:AND:code to do size <=0,

1, [* transition “active” — “complete”

IF THEN ELSE

(code doc dev status =2 /* state = “complete”

:AND:code to do size > 0:AND:code doc ver status <> 1,
-1, [* transition “complete” — “active”
0))) /* do nothing

The first transition, from “non-exist” to “active,” executes as soon as development
has started, i.e., as soon as the simulation time is greater or equal to the defined
development start time. The second transition, from “active” to “complete,” exe-
cutes as soon as there is no code waiting for implementation any more. The third
transition, from “complete” back to “active,” executes as soon as there is some code
waiting for development and code verification is no longer active.

Figure 8 shows the defect co-flow, i.e., the injection (generation), detection, and
correction of code faults. Fault generation and correction occur in parallel with
code development and rework, while fault detection occurs in parallel with code
verification (and re-verification). For example, the rate variable code fault genera-
tion is directly correlated with the rate variable development activity. The actual
calculation of code fault generation is shown in (6) below.

code fault generation = development activity*
randomized average code fault injection per KLOC* (6)
(/MAX(1, code learning status”quality code learning amplifier))

From (6) it can be seen that there is only defect injection when development activity

> 0. The actual number of faults generated per time step depends on the number of
KLOC developed per time step and the randomized average code fault injection

5. Simulation Methods 141

per KLOC, which — in this example — is calculated by multiplying the average code
fault injection per KLOC with a random number sampled from the triangular
distribution triang(0.9, 1, 1.1,), where 1 represents the most probable value, and 0.9
and 1.1 the minimal and maximal values, respectively. The last factor in (6) models
the learning effect. As soon as code learning status adjusted for the learning ampli-
fier becomes greater than 1, the learning factor is less than 1 and thus the number
of injected code faults decreases.

At the start of a simulation run, all model constants are initialized with a
default value which can be modified by the user. Figure 9 shows a graphical user
interface to the model, built using a Vensim utility, in the form of an input panel
with slide bars, default initialization, and admissible value range. For example,
variable code ver effectivenessis to be initialized with 0.75 (representing a defect
detection effectiveness of the code verification technique of 75%), and maximum
and minimum values of 0 and 1.

As soon as the simulation has started, the values of all model variables are cal-
culated by Vensim® at each time step, which represents, for example, one work day.
When the simulation run is complete the calculated values can be displayed either
in tabular form or as graphs showing the time line on the x-axis and the variable
value on the y-axis. Figures 10 and 11 below show example output graphs of the
example model.

The upper part of Fig. 10 shows the simulation output for the level variables
code to do size and code doc size. At simulation start (Time = 0), the amount of
code work to do, in this case 200 KLOC, flows instantaneously into code to do size.
This then decreases at a constant rate, caused by the development activity which
transforms code to do size into code doc size (cf. Fig. 6). Consequently, the value
of code doc size is exactly complementary to the value of code to do size, the sum
of both always adding up to 200 KLOC. The lower part of Fig. 10 shows the behav-
iour of the state variables controlling the behaviour of code development, code
verification, and learning, respectively. For example, one can see that code doc dev
statusequals 1 (“active”) while code is developed. As soon as there is nothing more

= - =
0 1,000 0 100
average code sizein KLOC workforce

e — =

code doc quality limit per KLOC average code dev rate per person and day

i

e —_—] —

0 10 0 5
average code fault injection per KLOC average code ver rate per person and day
0 1 |o 2 5 o [1 5
code ver effectiveness quality code learning amplifier productivity code learning amplifier

Fig. 9 Simulation input panel

142

M. Muller and D. Pfahl

code to do size

code doc size

Time (Day)

code doc size : Current-Code

200 200
100 100
0 0
0O 10 20 30 40 50 60 70 80 90 100 0O 10 20 30 40 50 60 70 80 90 100

KLOC

code doc size : Current-Code

Time (Day)
KLOC

code doc dev status

code doc ver status

code learning status

fRARaN I ST R i

0

0

0

0O 15 30 45 60 75 90
Time (Day)

code doc dev status : Current-Code ——

0 15 30 45 60 75 90
Time (Day)

code doc ver status : Current-Code ——

0 15 30 45 60 75 90
Time (Day)

code learning status : Current-Code —

Fig. 10 Simulation output related to model views 1 and 2

code faults undetected code faults detected
400 600
200 300
0 0
0O 10 20 30 40 50 60 70 80 90 100 0O 10 20 30 40 50 60 70 80 90 100
Time (Day) Time (Day)
code faults undetected : Current-Code ——————— Defect code faults detected : Current-Code —————— Defect
code faults pending code faults corrected
400 600
200 300
0 /\ 0
0O 10 20 30 40 50 60 70 80 90 100 0O 10 20 30 40 50 60 70 80 90 100
Time (Day) Time (Day)
code faults pending : Current-Code Defect code faults corrected : Current-Code ———————— Defect

Fig. 11 Simulation output related to model view 3

to develop, i.e., codeto do size = 0, it switches to 2 (“complete”). At that moment,
code doc ver status switches from 0 (“non-exist”) to 1 (“active”). After some time
during which verification is done, depending on how many defects are found, code
doc ver status switches either to 2 (“repeat”) or 3 (“complete”). In Fig. 10, one can
see that after the first verification round it is signalled that a second verification
round needs to be performed (“repeat™).

Figure 11 shows a selection of diagrams related to code fault generation, detec-
tion, and correction. The model variable code faults undetected represents the
difference between the numbers of injected and detected faults, while code faults

5. Simulation Methods 143

pending represents the difference between detected and corrected code faults. One
can see that fault detection occurs when verification is active, and fault correction
occurs when development (rework) is active.

6.4. Extension and Reuse of the Reference Simulation Model

The SD model developed in the previous section can be extended and reused in
several ways. For example, as mentioned earlier, it is possible to make the model
more realistic by adding a causal relationship between the number of errors
detected and the fraction (size) of the artefact to be reworked.

The more interesting aspect of reusability is illustrated by Fig. 12. The figure
shows the V-model software development process on the right hand side.
Simulation models representing the Design and Coding phases are presented as
boxes. For example, the Boxes labelled views 1C to 3C represent the SD model
views presented in Figs. 7-9. In Figs. 7-9, the code documents developed and veri-
fied in the coding phase are represented by one single level variable. There is no
differentiation between code sub-systems or modules. To facilitate a more detailed
representation of reality, i.e., explicit modelling of individual subsystems (or even
modules), the SD tool VENSIM® offers the possibility of “subscripting,” i.e., the
possibility of replacing a monolithic entity by an array of entities of the same type.
A subscript works like the index of an array. With the help of this mechanism,
potentially all variables used in the model views 1C to 3C can be duplicated. For
example, if five code sub-systems shall be modelled, they would be represented by
level variables code doc size [1] to code doc size [5], or, if 100 code modules are
to be modelled, the index of code doc size would run from 1 to 100, each index
representing the levels and rates associated with each module.

I Real-World Processes |

\ : /

Requirements <« p System Test

\ /

; Design 4—— Integration Test
il
Subscripting ™.
\ Code <€ Unit Test
V-Model:
(] Development,
. Verification (Inspection),
N Validation (Test)
Subscripting ™.,

Fig. 12 Reuse-based construction of a simulation model representing a V-Model process

144 M. Muller and D. Pfahl

Finally, it is possible to represent the design and requirements specification
phases of the V-Model process by simply duplicating the code related views 1C to
3C. This can be done by copying a complete view and replacing the sub-strings
“code” by strings “design” in all variable names. Of course, the resulting Views 1D
to 3D (and 1R to 3R) have to be re-calibrated based on suitable data or expert
estimates. The connection between subsequent views requires only a few informa-
tion links between variables, e.g., between model variables design doc size (which
plays in the design phase the role that code doc size plays in the coding phase) and
average code size in KLOC. These connections can be considered similar to “glue
code” used to connect reusable software components.

Figure 13 shows several simulation output diagrams for a code development and
verification process in which five sub-systems are developed concurrently. The size
of each subsystem varies between 35 and 45KLOC, accumulating to a total of
200 KLOC. One can see the individual traces for each subsystem. The development
of one subsystem starts at Time = 0 (begin of coding phase), the others are more or
less delayed due to variation in completion of required design documents. Similar
graphs are generated for the design and requirements specification phases.

Figure 14 shows for each variable displayed in Fig. 13 the aggregated values of
the individual code sub-systems. If compared to the monolithic simulation (i.e.,
without subscripting) presented in Figs. 11 and 12, one can see that the overall
behaviour is similar but that some temporal displacement occurs due to late start of
coding of some of the subsystems.

With some additional minor modifications, it is possible to model five sub-
systems in the design phase and, say, 100 modules in the coding phase. This
enhancement requires a mapping of sub-system subscripts (used in the design
views 1D to 3D) to module subscripts (used in the code views 1C to 3C). With this
modification, the quality views for design (3D) and coding (3C) generate the simu-
lation results shown in Fig. 15 (simulation time T = 0 at start of design phase). The
Design phase lasts from simulation time T = 1 until T = 140 days, while the Coding
phase starts at time T = 96 and ends at time T = 174 days. For each phase, the simu-
lated values of injected, detected, pending, and undetected faults are shown.

6.5. Comparison Between System Dynamics and Discrete-Event
Simulation

The simulation application example outlined in Sects. 6.2 and 6.3 demonstrated
how SD captures complex software process behaviour with a small set of core
modelling constructs (i.e., level and rate variables, and constants). This is possible
by creation of generic model patterns that are reusable in several ways, either by
replicating model variables via subscripting, or by duplicating complete sub-
models (i.e., model views) by simple text replacement (e.g., replacing the string
“code” by the string “design”).

code to do

0 15 30 45 60 75 90
Time (Day)
code to do[sl] : Current-CodeSub KLOC
code to do[s2] : Current-CodeSub -~ KLOC
code to do[s3] : Current-CodeSub KLOC

- KLOC
KLOC

code to do[s4] : Current-CodeSub —
code to do[s5] : Current-CodeSub

code doc

60

30

A

Time (Day)

code doc[sl] :
code doc[s2] :
code doc[s3] :
code doc[4] :
code doc[s5] :

Current-CodeSub
Current-CodeSub —
Current-CodeSub
Current-CodeSub
Current-CodeSub

0 15 30 45 60 75 90

code faults detected

200

100

0

0 15 30 45 60 75 90
Time (Day)

Current-CodeSub

Current-CodeSub-
Current-CodeSub
Current-CodeSub
Current-CodeSub

code faults detected([sl] :
code faults detected[s2] :
code faults detected[s3] :
code faults detected[s4] :
code faults detected[s5] :

Defects

Defects

Defects

code faults undetected

100
50
0
0 20 40 60 80 100
Time (Day)
code faults undetected[sl] : Current-CodeSub Defects
code faults undetected[s2] : Current-CodeSub Defects
code faults undetected[s3] : Current-CodeSub Defects
code faults undetected[s4] : Current-CodeSub Defects
code faults undetected[s5] : Current-CodeSub Defects

code faults pending

80

0 20 40 60 80
Time (Day)

code faults pending[sl] : Current-CodeSub
code faults pending[s2] : Current-CodeSub---
code faults pending[s3] : Current-CodeSub
code faults pending[s4] : Current-CodeSub
code faults pending[s5] : Current-CodeSub =

100

Defects

Defects
Defects
Defects
Defects

code faults corrected

200
100
0
0 20 40 60 80 100
Time (Day)
code faults corrected[sl] : Current-CodeSub Defects
code faults corrected[s2] : Current-CodeSub.... Defects
code faults corrected[s3] : Current-CodeSub Defects
code faults corrected[s4] : Current-CodeSub Defects
code faults corrected[s5] : Current-CodeSub -~ Defects

Fig. 13 Simulation outputs for concurrently coding five sub-systems

SPOUIBIAl UONERINWIS °G

14)

146 M. Muller and D. Pfahl

KLOC Code Development View (1C) Defects Code Quality View (3C)
20 code doc\ 600 code faults detected\
150 450 code faults corrected
code faults
100
%0 » undetected
50 150 J/ code faults,
0 code to do 7| o pending

0 10 20 30 40 50 60 70 8 90 100 O 10 20 30 40 50 60 70 80 90 100
Time (Day) Time (Day)

Fig. 14 Aggregated simulation outputs for concurrent coding of five sub-systems

Defects
800 |l Design 140
600 |. . 542
|njected\
detected 428
400
— corrected
200 114
0 A
800
96 Coding 174 654
injected ~
600 522
detected
400 corrected '_~":
i |_-undetected
200 132
0 —pending

0 30 60 90 120 150 180 210 240 270 300
Time (Day)

Fig. 15 Aggregated simulation outputs for concurrent sub-system design and module coding

Event-driven simulation techniques take a complementary perspective when
modelling the generic artefact development and verification process introduced in
Sect. 6.1. For example, instead of modelling the artefact as one monolithic
document, e.g., of size 200KLOC in the case of the code document, event-driven
simulation models individual code units as single items which are routed through a
sequence of processing stations, e.g., a station for development and a station for
verification. These items have several attributes, e.g., size, state, number of defects
(injected, detected, corrected), etc. The list of attributes can be extended or refined,
e.g., by introducing attributes to distinguish defect types and severity classes. The
attribute information determines, for example, the processing time in the develop-
ment and verification stations, and the routing of an item after leaving a station.

5. Simulation Methods 147

What distinguishes DE simulation from SD simulation is the degree of
model detail, the model representation, and the logic underlying the computa-
tion of model states. DE simulation modelling is very flexible and easily
adaptable when it becomes necessary to add or change attributes of entities.
Moreover, in DE simulation it is possible to model the behaviour of distinct
real-world entities (e.g., artefacts, resources) of the same type individually,
while SD typically models the average behaviour of a large number of entities
of the same type. The possibility of subscripting mitigates this limitation of SD
only to some extent.

One disadvantage of DE simulation comes as a downside of its ability to
capture many details. DE simulation tools like, for example EXTEND®, offer a
large number of different modelling constructs, often specifically tailored to
manufacturing processes. Although these blocks are reusable in several contexts,
more training is needed for the modeller to become familiar with the variety of
options and they have to be adapted to capture software development processes.
While DE simulation is capable to model production processes in greater detail,
SD simulation models can capture not only the “mechanical” aspects of software
development processes (which mainly consist of writing and checking different
types of documents), but also the cause-effect mechanisms underlying the process
behaviour. This includes the flow of information, which is important in software
engineering, in contrast to material flows. Typically, information about these
cause-effect relationships are part of the (mostly implicit) mental models of
managers or decision makers, and contain intangible concepts like learning
(cf. variable code learning state in the example above), motivation, stress, com-
munication, decision policies, etc.

7. Practical Aspects

As a cautionary note it is well to remember that simulation has limitations and is
not a “silver bullet.” The predictive power of simulation strongly depends on the
degree of model validity. While many scientific and engineering fields base their
models on established physical laws, organizational models contain human aspects
and intangible processes. This leads to two problems: It is difficult to gather data
from human actors and it is very costly and sometimes not feasible to reproduce
simulated scenarios in reality for the purpose of model validation.

Simulation is a simplification of the real world, and is thus inherently an approx-
imation. As indicated in (Robertson, 1997) it is impossible to prove a priori the
correctness of a simulation model that aims at generating previously unobserved
and potentially unexpected behaviour. Thus, model verification and validation must
be concerned with creating enough confidence in a model for its results to be
accepted. This is done by trying to prove that the model is incorrect. The more tests
that are performed in which it cannot be proved that the model is incorrect, the
more increases confidence in the model.

148 M. Muller and D. Pfahl

Finally, one should not forget that simulation is neither a means in itself (it needs
to be followed by action) nor does it generate new ideas. It is still the software
manager’s and simulation modeler’s task to be creative in generating new scenarios
for simulation, and in applying the simulation results to improve real-world
processes. Simulation does not automatically produce new facts such as knowledge-
based expert systems do (e.g., through inference).

8. The Future of Simulation in Software Engineering

The application of simulation techniques, in particular process simulation tech-
niques, offers several interesting perspectives for improving management and
learning in software organizations.

Business simulator-type environments (micro-worlds) can confront managers
with realistic situations that they may encounter in practice. Simulation allows the
rapid exploration of micro-worlds, without the risks associated with real-world
interventions and provides visual feedback of the effects of managers’ decisions
through animation. Simulation increases the effectiveness of the learning process,
because trainees quickly gain hands-on experience. The potential of simulation
models for the training of managers in other domains than software engineering has
long been recognized (Lane, 1995). Simulation-based learning environments also
have the potential to play an important role in software management training and
education of software engineers, in particular if they are offered as web-based
(possibly distributed multi-user) applications.

Analyzing a completed project is a common means for organizations to learn
from past experience, and to improve their software development process (Birk et
al., 2002). Process simulation can facilitate post-mortem analysis. Models facilitate
the replaying of past projects, diagnose management errors that arose, and investi-
gate policies that would have supplied better results. To avoid having a software
organization reproduce — and amplify — its past errors, it is possible to identify
optimal values for measures of past project performance by simulation, and record
these values for future estimation, instead of using actual project outcomes that
reflect inefficient policies (Abdel-Hamid, 1993).

To further increase the usage (and usability) of simulation techniques in soft-
ware engineering, the time and effort needed for model building must further be
reduced. One step in this direction is to provide adaptable software process simula-
tion frameworks. Similar to the process simulation reference model described
above, these frameworks can be used like a construction kit with reusable model
components. Supporting tools and methodological guidance must accompany
reuse-based simulation modelling. Furthermore, simulation tools should be con-
nected to popular project planning and tracking tools to decrease the effort of model
parameterization and to increase their acceptance by software practitioners. As
more and more companies improve their development process maturity, it is also
expected that process simulation will gain more attention in industry.

5. Simulation Methods 149

References

Abdel-Hamid TK (1993) Adapting, Correcting and Perfecting Software Estimates: a Maintenance
Metaphor. IEEE Computer 20-29.

Abdel-Hamid TK, Madnick SE (1991) Software Projects Dynamics — an Integrated Approach,
Prentice-Hall, Englewood Cliffs, NJ.

Andersson C, Karlsson L, Nedstam J, Host M, Nilsson BI (2002) Understanding Software Processes
through System Dynamics Simulation: A Case Study, In: Proceedings of 9th |EEE International
Conference and Workshop on the Engineering of Computer-Based Systems, pp 41-48.

Aranda RR, Fiddaman T, Oliva R (1993) Quality Microworlds: Modeling the Impact of Quality
Initiatives Over the Software Product Life Cycle. American Programmer 52—61.

Balci O (2003) Verification, Validation, and Certification of Modelling and Simulation
Applications. In: Proceedings of the 2003 Winter Smulation Conference, pp 150-158.

Bandinelli S, Fuggetta A, Lavazza L, Loi M, Picco GP (1995) Modeling and Improving an
Industrial Software Process. IEEE Transactions on Software Engineering 21(5): 440-453.

Banks J, Carson JS, Nelson BL (2000) Discrete-Event System Simulation, 3rd edn, MOUS Test
Preparation Guides Series, Prentice-Hall, New York.

Barlas Y (1989) Multiple Tests for Validation of System Dynamics Type of Simulation Models.
European Journal of Operational Research 42: 59-87.

Birk A, Dingsgyr T, Stalhane T (2002) Postmortem: Never Leave a Project without It. IEEE
Software 19(3): 43-45.

Birkhdlzer T, Dantas L, Dickmann C, Vaupel J (2004) Interactive Simulation of Software
Producing Organization’s Operations based on Concepts of CMMI and Balanced Scorecards.
In: Proceedings 5th International Workshop on Software Process Smulation Modeling
(ProSm), Edinburgh, Scotland, pp 123-132.

Briand LC, Pfahl D (2000) Using Simulation for Assessing the Real Impact of Test-Coverage on
Defect-Coverage. IEEE Transactions on Reliability 49(1): 60-70.

Briand LC, Labiche Y, Wang Y (2004) Using Simulation to Empirically Investigate Test
Coverage Criteria Based on Statechart. In: Proceedings of International Conference on
Software Engineering (ICSE), pp 86-95.

Cartwright M, Shepperd M (1999) On Building Dynamic Models of Maintenance Behavior. In:
Kusters R, Cowderoy A, Heemstra F, van Veenendaal E. (eds.) Project Control for Software
Quality, Shaker Publishing, Maastricht.

Cellier FE (1991) Continuous System Modeling, Springer Press, New York.

Chen Y, Gannod GC, Collofello JS (2005) A Software Product Line Process Simulator. In:
Proceedings of 6th International Workshop on Software Process Smulation and Modeling
(ProSm), pp 102-109.

Choi SJ, Scacchi W (2001) Modeling and Simulating Software Acquisition Process Architectures.
Journal of Systems and Software 59(3): 343-354.

Christie AM (1999a) Simulation: An Enabling Technology in Software Engineering. CROSSTALK
— The Journal of Defense Software Engineering 12(4): 25-30.

Christie AM (1999b) Simulation in Support of CMM-Based Process Improvement. Journal of
Systems and Software 46(2/3): 107-112.

Christie AM, Staley MJ (2000) Organizational and Social Simulation of a Requirements
Development Process. Software Process Improvement and Practice 5: 103-110.

Coyle RG (1996) System Dynamics Modelling — A Practical Approach, Chapman & Hall, London.

Dantas A, de Oliveira Barros M, Lima Werner CM (2004) A Simulation-Based Game for Project
Management Experiential Learning. In: Proceedings of 16th International Conference on
Software Engineering & Knowledge Engineering (SEKE), pp 19-24.

Drappa A, Ludewig J (1999) Quantitative Modeling for the Interactive Simulation of Software
Projects. Journal of Systems and Software 46(2/3): 113-122.

Drappa A, Deininger M, Ludewig J (1995) Modeling and Simulation of Software Projects. In:
Proceedings of 20th Annual Software Engineering Workshop, Greenbelt, MD, USA, pp 269-275.

150 M. Muller and D. Pfahl

Extend (2006) http://www.imaginethatinc.com/ (accessed on March 22, 2006).

Fernstrom C (1993) PROCESS WEAVER: Adding Process Support to UNIX. In: Proceedings of
2nd International Conference on the Software Process (ICSP), pp 12-26.

Ferreira S, Collofello J, Shunk D, Mackulak G, Wolfe P (2003) Utilization of Process Modeling
and Simulation in Understanding the Effects of Requirements Volatility in Software
Development. In: Proceedings 4th Software Process Smulation Modeling Workshop
(ProSm), Portland, USA.

Forrester JW (1961) Industrial Dynamics. Productivity Press, Cambridge.

Forrester JW, Senge P (1980) Tests for Building Confidence in System Dynamics Models. In:
Forrester JW et al. (eds.) System Dynamics, North-Holland, New York.

Gruhn V, Saalmann A (1992) Software Process Validation Based on FUNSOFT Nets. In Proceedings
of 2nd European Workshop on Software Process Technology (EWSPT), pp 223-226.

Héberlein T (2003) A Framework for System Dynamic Models of Software Acquisition Projects. In:
Proceedings 4th Software Process Smulation Modeling Workshop (ProSm), Portland, USA.
Haberlein T, Gantner T (2002) Process-Oriented Interactive Simulation of Software Acquisition
Projects. In: Proceedings of First EurAsian Conference on Information and Communication

Technology (EurAsia-ICT), LNCS 2510, Shiraz, Iran, pp 806-815.

Hést M, Regnell B, Dag J, Nedstam J, Nyberg C (2001) Exploring Bootlenecks in Market-Driven
Requirements Management Processes with Discrete Event Simulation. Journal of Systems and
Software 59(3): 323-332.

Houston DX (2003) A Case Study in Software Enhancements as Six Sigma Process Improvements:
Simulating Productivity Savings. In: Proceedings of 4th Software Process Smulation
Modeling Workshop (ProSm), Portland, USA.

Houston DX, Mackulak GT, Collofello JS (2001) Stochastic Simulation of Risk Factor Potential Effects
for Software Development Risk Management. Journal of Systems and Software 59(3): 247-257.
Huang Y, Madey GR (2005) Autonomic Web-Based Simulation. In: Proceedings of Annual

Smulation Symposium 2005, pp 160-167.

Humphrey WS, Kellner MI (1989) Software Process Modeling: Principles of Entity Process
Models. In: Proceedings of 11th International Conference on Software Engineering (ICSE),
Pittsburg, PA, USA, pp 331-342.

Kellner MI, Hansen GA (1989) Software Process Modeling: A Case Study. In: Proceedings of
22nd Annual Hawaii International Conference on System Sciences, Vol. || — Software Track,
pp 175-188.

Kellner MI, Madachy RJ, Raffo DM (1999) Software Process Simulation Modeling: Why? What?
How?. Journal of Systems and Software 46(2/3): 91-105.

Kuipers B (1986) Qualitative Simulation. Artificial Intelligence 29(3): 289-338.

Kuppuswami S, Vivekanandan K, Rodrigues P (2003) A System Dynamics Simulation Model to
Find the Effects of XP on Cost of Change Curve. In: Proceedings of 4th International
Conference on Extreme Programming and Agile Processes in Software Engineering (XP),
LNCS 2675, pp 54-62.

Lane DC (1995) On a Resurgence of Management Simulation Games. Journal of the Operational
Research Society 46: 604-625.

Law A, Kelton WD (1999) Simulation Modeling and Analysis, 3rd edn, McGraw-Hill, New York.

Lee B, Miller J (2004) Multi-Project Management in Software Engineering Using Simulation
Modeling. Software Quality Journal 12: 59-82.

Lerch FJ, Ballou DJ, Harter DE (1997) Using Simulation-Based Experiments for Software
Requirements Engineering. Annals of Software Engineering 3: 345-366.

Lin CY, Abdel-Hamid TK, Sherif J (1997) Software-Engineering Process Simulation Model
(SEPS). Journal of Systems and Software 38(3): 263-277.

Madachy RJ (1996) System Dynamics Modeling of an Inspection-Based Process. In: Proceedings
18th International Conference on Software Engineering (ICSE), Berlin, Germany, IEEE
Computer Society Press, pp 376-386.

Madachy RJ, Tarbet D (2000) Case Studies in Software Process Modeling with System Dynamics.
Software Process Improvement and Practice 5: 133-146.

5. Simulation Methods 151

Madey G, Freeh V, Tynan R (2002) Agent-Based Modeling of Open Source using Swarm. In:
Proceedings of Americas Conference on Information Systems (AMCIS), Dallas, TX, USA, pp
1472-1475.

Martin R, Raffo D (2001) Application of a Hybrid Process Simulation Model to a Software
Development Project. The Journal of Systems and Software 59: 237-246.

McCabe B (2003) Monte Carlo Simulation for Schedule Risks. In: Proceedings of the 2003 Winter
Smulation Conference, pp 1561-1565.

Mi P, Scacchi W (1990) A Knowledge-Based Environment for Modeling and Simulating Software
Engineering Processes. IEEE Trans. Knowledge Data Engineering 2(3): 283-294.

Misic VB, Gevaert H, Rennie M (2004) Extreme Dynamics: Towards a System Dynamics
Model of the Extreme Programming Software Development Process. In: Proceedings 5th
International Workshop on Software Process Smulation Modeling (ProSim), Edinburgh,
Scotland, pp 237-242.

Mizuno O, Kusumoto S, Kikuno Y, Takagi Y, Sakamoto K (1997) Estimating the Number of
Faults Using Simulator Based on Generalized Stochastic Petri-Net Model, In: Proceedings of
the Asian Test Symposium (ATS), pp 269-274.

Miller M (2007) Analyzing Software Quality Assurance Strategies through Simulation,
Fraunhofer IRB, Stuttgart, pp 262.

Miinch J, Rombach HD, Rus | (2003) Creating an Advanced Software Engineering Laboratory by
Combining Empirical Studies with Process Simulation. In: Proceedings 4th Process Smulation
Modeling Workshop (ProSm), Portland, USA.

Miinch J, Pfahl D, Rus | (2005) Virtual Software Engineering Laboratories in Support of Trade-off
Analyses. Software Quality Journal 13(4): 407-428.

Neu H, Hanne T, Minch J, Nickel S, Wirsen A (2002) Simulation-Based Risk Reduction for
Planning Inspections. In: Oivo M, Komi-Sirvio S (eds.) Proceedings 4th International
Conference on Product Focused Software Process Improvement (PROFES), LNCS 2559,
Springer Press, Berlin, pp 78-93.

Oh Navarro E, van der Hoek A (2004) SIMSE: An Interactive Simulation Game for Software
Engineering Education. In: Proceedings 7th IASTED International Conference on Computers
and Advanced Technology in Education (CATE), pp 12-17.

Padberg F (2006) A Study on Optimal Scheduling for Software Projects. Software Process
Improvement and Practice 11(1): 77-91.

Pfahl D (2005) ProSim/RA — Software Process Simulation in Support of Risk Assessment. In:
Biffl S, Aurum A, Boehm B, Erdogmus H, Griinbacher P (eds.) Value-based Software
Engineering, Springer Press, Berlin, pp 263-286.

Pfahl D, Lebsanft K (2000) Knowledge Acquisition and Process Guidance for Building System
Dynamics Simulation Models: An Experience Report from Software Industry. International
Journal of Software Engineering and Knowledge Engineering 10(4): 487-510.

Pfahl D, Ruhe G (2002) IMMoS — A Methodology for Integrated Measurement, Modeling, and
Simulation. Software Process Improvement and Practice 7: 189-210.

Pfahl D, Klemm M, Ruhe G (2001) A CBT Module with Integrated Simulation Component for
Software Project Management Education and Training. Journal of Systems and Software
59(3): 283-298.

Pfahl D, Ruhe G, Lebsanft K, Stupperich M (2006) Software Process Simulation with System
Dynamics — A Tool for Learning and Decision Support. In: Acufia ST, Sanchez-Segura Ml
(eds.) New Trends in Software Process Modelling, Series on Software Engineering and
Knowledge Engineering, Vol. 18, World Scientific, Singapore, pp 57-90.

Pidd M (2004) Computer Simulation in Management Science, 5th edn, Wiley, New York, pp 328.

Powell A, Mander K, Brown D (1999) Strategies for Lifecycle Concurrency and lIteration: A
System Dynamics Approach. Journal of Systems and Software 46(2/3): 151-162.

Raffo DM, Kellner MI (2000) Analyzing the Unit Test Process Using Software Process Simulation
Models: A Case Study. In: Proceedings 3rd Software Process Smulation Modeling Workshop
(ProSm), London, UK.

Raffo DM, Vandeville JV, Martin RH (1999) Software Process Simulation to Achieve Higher
CMM Levels. Journal of Systems and Software 46(2/3): 163-172.

152 M. Muller and D. Pfahl

Raffo DM, Nayak U, Setamanit S, Sullivan P, Wakeland W (2004) Using Software Process Simulation
to Assess the Impact of IV&V Activities. In: Proceedings 5th International Wérkshop on Software
Process Smulation Modeling (ProSm), Edinburgh, Scotland, pp 197-205.

Richardson GP (1991) Feedback Thought in Social Science and Systems Theory, University of
Pennsylvania Press, Philadelphia, PA, USA.

Robertson S (1997) Simulation Model Verification and Validation: Increase the Users’
Confidence. In: Proceedings of the 1997 Winter Smulation Conference, pp 53-59.

Roehling ST, Collofello JS, Hermann BG, Smith-Daniels DE (2000) System Dynamics Modeling
Applied to Software Outsourcing Decision Support. Software Process Improvement and
Practice 5: 169-182.

Rose P, Kramer M (1991) Qualitative Analysis of Causal Feedback. In: Proceedings of 9th
National Conference on Artificial Intelligence (AAAI), pp 817-823.

Ruiz M, Ramos I, Toro M (2004) Using Dynamic Modeling and Simulation to Improve the COTS
Software Process. In: Proceedings 5th International Conference on Product Focused Software
Process Improvement (PROFES), Kyoto, Japan, pp 568-581.

Rus | (2002) Combining Process Simulation and Orthogonal Defect Classification for Improving
Software Dependability. In: Proceedings 13th International Symposium on Software Reliability
Engineering (1SSRE), Annapolis.

Rus I, Collofello C, Lakey P (1999) Software Process Simulation for Reliability Management.
Journal of Systems and Software 46(2/3): 173-182.

Rus I, Biffl S, Hallig M (2002) Systematically Combining Process Simulation and Empirical Data
in Support of Decision Analysis in Software Development. In: Proceedings of the 14th
International Conference on Software Engineering and Knowledge Engineering (SEKE),
Ischia, Italy, pp 827-833.

Rus I, Neu H, Minch J (2003) A Systematic Methodology for Developing Discrete Event
Simulation Models of Software Development Processes. In: Proceedings 4th International
Workshop on Software Process Smulation and Modeling (ProSm), Portland, Oregon, USA.

@Risk (2007) @Risk Simulation Software: http://www.palisade-europe.com/ (accessed on June
26, 2007).

Sargent R (2003) Verification and Validation of Simulation Models. In: Proceedings of 2003
Winter Smulation Conference, pp 37-48.

Scacchi W, Boehm B (1998) Virtual Systems Acquisition: Approach and Transitions, Acquisition
Review Quarterly 5(2): 185-216.

Setamanit S, Wakeland W, Raffo DM (2006) Exploring the Impact of Task Allocation Strategies
for Global Software Development Using Simulation. In: Wang Q, Pfahl D, Raffo DM,
Wernick P (eds.) Software Process Change — SPW/ProSim 2006, Shanghai, China, May 2006,
Proceedings (LNCS 3966), Springer, Berlin, Heidelberg, pp 274-285.

Smith N, Capiluppi A, Ramil JF (2005) A Study of Open Source Software Evolution Data Using
Qualitative Simulation. Software Process: Improvement and Practice 10(3): 287-300.

Stallinger F, Griinbacher P (2001) System Dynamics Modeling and Simulation of Collaborative
Requirements Engineering. Journal of Systems and Software 59: 311-321.

Tvedt JD, Collofello JS (1995) Evaluating the Effectiveness of Process Improvements on
Development Cycle Time via System Dynamics Modeling. In: Proceedings Computer Science
and Application Conference (COMPSAC), pp 318-325.

Vensim (2006) http://www.vensim.com/ (accessed on March 22, 2006).

Waeselynck H, Pfahl D (1994) System Dynamics Applied to the Modeling of Software Projects.
Software Concepts and Tools 15(4): 162-176.

Wakeland W, Martin RH, Raffo D (2003) Using Design of Experiments, Sensitivity Analysis, and
Hybrid Simulation to Evaluate Changes to a Software Development Process: A Case Study.
In: Proceedings of 4th Process Smulation Modelling Workshop (ProSm), Portland, USA.

Wernick P, Hall T (2004) A Policy Investigation Model for Long-Term Software Evolution
Processes. In: Proceedings of 5th International Workshop on Software Process Smulation
Modeling (ProSim), Edinburgh, Scotland, pp 149-158.

Williford J, Chang A (1999) Modeling the FedEx IT Division: A System Dynamics Approach to
Strategic IT Planning. Journal of Systems and Software 46(2/3): 203-211.

Section 11
Practical Foundations

Chapter 6
Statistical M ethods and M easurement

Jarrett Rosenberg

Abstract Useful ways of measuring software engineering phenomena have to
address two challenges: defining realistic and valid metrics that can feasibly be col-
lected under the constraints and time pressures of real-world software development
contexts, and determining valid and accurate ways of analysing the resulting data
to guide decisions. Too often, the difficulties of addressing the first challenge mean
that the second is given little attention. The purpose of this chapter is to present dif-
ferent techniques for the definition and analysis of metrics such as product quality
data. Specifically, statistical issues in the definition and application of metrics are
presented with reference to software engineering examples.

1. Introduction

Measurement is ubiquitous in software engineering, whether for management,
quality assurance, or research purposes. Effectively creating and using measure-
ments is critical to success in these areas, yet there is much confusion and
misunderstanding about the best way in which to define, collect, and utilize them.
This chapter discusses the purpose of measurement and statistical analysis in
software engineering research and development, and the problems researchers and
practitioners face in using these methods effectively; rather than a “how-to,” it is a
“when-to.” Section 2 discusses some fundamental issues in measurement and the
context of measurement. A number of the issues in this section are discussed in
the ISO/IEC 15939 standard, Information Technology — Software Measurement
Process. Section 3 discusses two basic aspects of creating effective measures: metric
definition and metric evaluation. Sections 4 and 5 covers methods for description,
comparison, and prediction for simultaneous and successive measurements,
respectively, whether categorical or numeric. Section 6 returns to the context of
measurement in discussing the important topic of data quality.

155

F. Shull et al. (eds.), Guide to Advanced Empirical Software Engineering.
© Springer 2008

156 J. Rosenberg

2. Statistics and M easurement

Measurement is the process of assigning labels (typically numbers) to an attribute of an
object or action in such a way that the characteristics of the attribute are mirrored in the
characteristics of the labels. The assignment process and the resulting numbers are
called a measurement scale or metric. The reverse process is an interpretive one, and
thus if the measurement scale is inappropriate, then the corresponding interpretations of
its values will be incorrect. In using the terms “measurement” and “metric”, it is usually
clear from context whether the process or numerical result is being referred to.

The name “statistics” reflects the origin of the field in the collection of
demographic and economic information important to the government of the modern
nation state. Such measures as the size of the population, the birth rate, and the
annual crop yield became important inputs to decision making. The term descriptive
statistics applies to such measures, whether simple or complex, that describe some
variable quantity of interest. Over the past century and a half, the field of inferential
statistics has been developed to allow conclusions to be drawn from the comparison
of the observed values of descriptive statistics to other real or hypothesized values.
These inferential methods require some assumptions in order to work, and much of
statistical theory is devoted to making those assumptions as flexible as possible in
order to fit real-world situations.

2.1. Statistical Analysis and the Measurement Process

Statistical analysis necessarily assumes some measurement process that provides
valid and precise measurements of some process of interest, as shown in Fig. 1.
The results of the statistical analysis are themselves the prerequisite to a decision-

The Decision Process

RN

The Statistical Process

N A A A

The Measurement Process

1)

The Process Being Studied

Fig. 1 The roles of the measurement and statistical processes

6 Statistical Methods and Measurement 157

making process which in turn affects the process of interest, the measurements
made on it, and the analyses done on those measurements. It is often the case that
too little thought is given to the multi-level nature of this situation: measurements
are made because it is possible to do so, statistical analyses are done in a formulaic
way, and decisions are made with little data or analysis. In the area of software
metrics, Basili et al. (1994) created the “Goal/Question/Metric” framework, which
emphasizes that every metric collected must be defined so as to answer some
specific question, and every question posed must be relevant to some decision-
making goal. This ensures that the entire process depicted in Fig. 1 remains aligned
with the overall goal: studying a process in order to make various decisions about
it (whether research conclusions or process improvements).

The reason for dwelling on such a banal topic is precisely because it is so often
taken for granted; problems with any of these processes or the relations between them
become easily lost in the assumption that the overall scheme of things is functioning
correctly. Yet if the statistical process is not functioning properly (e.g., incorrect
analyses are being performed) decisions will be made on the basis of incorrect analysis
and bad outcomes may be misattributed to the decision-making process rather than
its statistical inputs. Similarly, it is typically assumed that the measurement process is
functioning correctly and that the data it provides are accurate and valid enough to
make a statistical analysis worth doing. As Fig. 1 shows, there is no point to a statistical
analysis if the data going into it come from a measurement process which is malfunc-
tioning. This involves not only the nature of the measurements involved (discussed in
Sect. 3), but also the quality of data obtained.

2.2. The Context of Measurement

While the context of measurement is typically taken for granted and not examined, it
nevertheless has a serious impact on the nature and quality of the measurements.
First, the meaning of measurements will vary depending on whether they derive
from observation or experiment. If the former, questions of potential bias arise due to
various sampling difficulties discussed below. Experiments, on the other hand, while
potentially giving precise measurements under controlled conditions, may suffer
from a lack of generalizability if they are not carefully designed and interpreted.
Second, it is often the case that the available measurements are not immediately
connected with the phenomena of interest: the measures may be what are termed
“leading” or “lagging” indicators. The former are highly desirable for forecasting,
but the latter are more common; both cases are problematic in steering an organiza-
tion, because the cause and effect are so separated in time. For example, “number
of customer-reported software defects” might seem to be a good metric for
evaluating the performance of a software development organization, but it is usually
the case that today’s customer complaint stems from a defect introduced months or
years ago, perhaps by a different set of developers. Similarly, customer satisfaction
is typically measured and goaled on an annual or quarterly basis, but it lags a

158 J. Rosenberg

company’s products and services typically by several years. Leading/lagging
measures are thus difficult to use in managing day-to-day operations.

Third, while measurements are presumably for a purpose, they can often take on
a life of their own, produced because someone once decreed they should be pro-
duced, but with no-one paying much attention to them because the rationale has
been lost, or is no longer meaningful. Worse, the measurement process can have
side-effects, where the numbers are “massaged” or the work process altered in
order to produce the “right” results.

Finally, good measurements are actionable; they can be used to do something.
Measurements made for measurement’s sake are worse than useless: they divert
resources from the real problems. A single global measure of customer satisfaction
or product quality may alert management to a problem, but it gives no indication of
what to do. Over time, an organization or researcher will sharpen the questions
asked and the corresponding metrics used; this process forms the most important
context for measurement and analysis.

3. Creating Effective Metrics

Deciding on an appropriate measure or set of measures is neither as easy as it first
appears nor as difficult as it later seems. To be effective, a metric must be clearly
defined, have appropriate mathematical properties, and be demonstrably reasonable
(i.e., precise, reliable, and valid). Above all, however, a metric must be well-
motivated. To be well-motivated, a metric must provide at least a partial answer to
a specific question, a question which itself is aimed at some particular research or
management goal. For example, how one chooses to measure the time to repair a
defect depends on the kind of question being asked, which could range from
“What is the expected amount of time for a specific class of defects to go from the
initial Reported state to the Repaired state?” to “What percent of all customer-
reported defects are in the Repaired state within two days of being first reported?”
It is usually the case that a single metric is not sufficient to adequately answer even
an apparently simple question; this increases the need to make sure that metrics
and questions are closely connected.

3.1. Defining a Metric

Metrics can be either simple or compound in definition. Simple metrics include counts
(e.g., number of units shipped this year), dimensional measures (e.g., this year’s
support costs, in dollars), categories (e.g., problem types), and rankings (e.g., problem
severity). Compound metrics are defined in terms of two or more metrics, typically
combined by some simple arithmetic operation such as division (e.g., defects per
thousand lines of code). The number and type of metrics combined and the method

6 Statistical Methods and Measurement 159

used to combine them affects how easily understood the compound metric will be.
This leads to ratios (e.g., defects per thousand units), rates (time-based ratios such as
number of problem reports per month), proportions or percentages (e.g., proportion of
customers responding “very satisfied” to a survey question), linear algebraic
combinations (e.g., mean repair cost — the sum of all repair costs divided by the total
number of repairs), and indices (dimensionless measures typically based on a sum and
then standardized to some baseline value). Whereas simple metrics are always defined
in terms of some measurement unit, compound metrics such as percentages and some
linear combinations and indices can be dimensionless.

The definition of a metric affects its behavior (i.e., the likelihood of its taking on
various values), its possible interpretations, and the kinds of analyses which are
suitable for it. This argues for the use of simpler, more easily understood metrics
rather than the creative development of new, compound ones with poorly understood
behavior. Indices in particular raise serious questions of interpretation and compari-
son, and are best used for showing long-term trends. The range of values a metric can
have does not always follow a bell-shaped Normal curve; for example, durations such
as repair times almost always have a highly skewed distribution whose tail values pull
the mean far from the median. Investigation of the distribution of a metric’s values is
one of the first tasks that must be undertaken in a statistical analysis. Furthermore, the
range of values a measure can take on can be affected by internal or external limitations;
these are referred to as truncation or limitation, and censoring.

Truncation or limitation refers to situations where a measure never takes on a
particular value or range of values. For example, repair time in theory can never
have a value of zero (if it does, the measurement scale is too coarse). Or one may
have results from a survey question which asks for some count, with an “n or more”
response as the highest value; this means that the upper part of the measure is
truncated artificially. These situations can sometimes be problematic, and special
statistical methods have been developed to handle them (see Long, 1997; Maddala,
1986). A much more difficult case is that of censoring, which occurs with duration
data. If the measure of interest is the time until an event happens (e.g., the time until
a defect is repaired), then there necessarily will be cases where the event has not yet
happened at the time of measurement. These observations are called “censored”
because even though we believe the event will eventually occur and a duration will
be defined, we do not know how long that duration will be (only that it has some
current lower bound). This problem is often not recognized, and when it is, the typical
response is to ignore the missing values. This unfortunately causes the subsequent
analysis to be biased. Proper analysis of duration data is an extensive sub-area of
statistics usually termed “survival analysis” (because of its use in medical research);
its methods are essential for analyzing duration data correctly. See Hosmer and
Lemeshow (1999) or Kleinbaum (1996) for a good introduction.

Classical measurement theory (Krantz et al., 1971; Ghiselli et al., 1981) defines
four basic types of measurement scale, depending on what kinds of mathematical
manipulations make sense for the scale’s values. (Additional types have been pro-
posed, but they are typically special cases for mathematical completeness.) The
four are

160 J. Rosenberg

Nominal. The scale values are unordered categories, and no mathematical manipu-
lation makes sense.

Ordinal. The scale values are ordered, but the intervals between the values are not
necessarily of the same size, so only order-preserving manipulations such as
ranking make sense.

Interval. The scale values are ordered and have equal intervals, but there is no zero
point, so only sums and differences make sense.

Ratio. The scale values are ordered and have equal intervals with a zero point, so
any mathematical manipulation makes sense.

These scale types determine which kinds of analyses are appropriate for a measurement’s
values. For example, coding nominal categories as numbers (as with serial numbers, say)
does not mean that calculating their mean makes any sense. Similarly, measuring the
mean of subjective rating scale values (such as defect severity) is not likely to produce
meaningful results, since the rating scale’s steps are probably not equal in size.

It is important to realize that the definition, interpretation, and resulting analy-
ses of a metric are not necessarily fixed in advance. Given the complexities shown
in Fig. 1, the actual characteristics of a metric are often not entirely clear until after
considerable analysis has been done with it. For example, the values on an osten-
sibly ordinal scale may behave as if they were coming from an underlying ratio
scale (as has been shown for many psychometric measures, see CIliff, 1992). It is
commonly the case that serial numbers are assigned in a chronologically ordered
manner, so that they can be treated as an ordinal, rather than nominal, scale.
Velleman (1993) reports the case where branch store number correlated inversely
with sales volume, as older stores (with smaller store numbers) had greater sales.

There has been much discussion in the software metrics literature about the
implications of measurement theory for software metrics (Zuse, 1990; Shepperd
and Ince, 1993; Fenton and Pfleeger, 1997). Much of this discussion has been
misguided, as Briand et al. (1996) show. Measurement theory was developed by
scientists to aid their empirical research; putting the mathematical theory first and
the empirical research after is exactly backwards. The prescriptions of measure-
ment theory apply only after we have understood what sort of scale we are working
with, and that is often not the case until we have worked with it extensively.

In practical terms, then, one should initially make conservative assumptions
about a scale’s type, based on similar scales, and only “promote” it to a higher type
when there is good reason to do so. Above all, however, one should avoid uncriti-
cally applying measurement theory or any other methodology in doing research.

3.2. Evaluating a Metric’s Effectiveness

A measure can have impeccable mathematical credentials and still be totally
useless. It order for it to be effective, a measure needs an adequate amount of preci-
sion, reliability, and validity. One also has to consider its relationships to other

6 Statistical Methods and Measurement 161

measures, as sometimes misleading results can occur when two related measures
are treated as if they were independent.

There are two different concepts sharing the term “measurement precision.” One
concept is that of the size of a metric’s smallest unit (sometimes called its “least
count™). Put another way, it is the number of significant digits that can be reported for it.
For example, measuring someone’s height to the nearest millimeter is absurd, since
the typical error in obtaining the measurement would be at least as large. Similarly,
measuring someone’s height to the nearest meter would be too crude to be of much
value. A common mistake is to forget that the precision of any derived measure,
including descriptive statistics such as the mean, can not be any greater than that of
the original measures, and is almost always less. Thus reporting the average height
of a group of people as 178.537 cm implies that the raw measurements were made at
the accuracy of 10um; this is unlikely. Such a result is better reported as simply
179cm. The arithmetic combination of measures propagates and magnifies the error
inherent in the original values. Thus the sum of two measures has less precision than
either alone, and their ratio even less (see Taylor, 1997; Bevington and Robinson,
1992); this should be borne in mind when creating a compound metric.

The other concept of precision is the inverse of variability: the measurements
must be consistent across repeated observations in the same circumstances. This
property is termed reliability in measurement theory. Reliability is usually easy to
achieve with physical measurements, but is a major problem in measures with even
a small behavioral or subjective component. Rating scales are notorious in this
respect, and any research using them needs to report the test-retest reliability of the
measures used. Reliability is typically quantified by Cronbach’s coefficient alpha,
which can be viewed as essentially a correlation among repeated measurements;
see Ghiselli et al. (1981) for details.

A precise and reliable measure may still be useless for the simple reason that
it lacks validity, that is, it does not in fact measure what it claims to measure.
Validity is a multifaceted concept; while it is conventional to talk about different
types of validity, they are all aspects of one underlying concept. (Note that the
concepts of internal and external validity apply to experiments rather than
measurements.)

Content validity is the degree to which the metric reflects the domain it is
intended to measure. For example, one would not expect a measure of program
complexity to be based on whether the program’s identifiers were written in English
or French, since that distinction seems unrelated to the domain of programming
languages.

Criterion validity is the degree to which a metric reflects the measured object’s
relationship to some criterion. For example, a complexity metric should assign high
values to programs which are known to be highly complex. This idea is sometimes
termed discrimination validity, i.e., the metric should assign high and low values to
objects with high or low degrees of the property in question. In this sense it may be
thought of as a kind of “predictive validity.”

Construct validity is the degree to which a metric actually measures the conceptual
entity of interest. A classical example is the Intelligence Quotient, which attempts

162 J. Rosenberg

to measure the complex and elusive concept of intelligence by a combination of
measures of problem-solving ability. Establishing construct validity can be quite
difficult, and is usually done by using a variety of convergent means leading to a
preponderance of evidence that the metric most likely is measuring the concept. The
simpler and more direct the concept, the easier it is to establish construct validity;
we have yet to see a generally agreed-upon metric for program complexity, for
example, while number of non-commentary source statements is generally accepted
as at least one valid metric for program size.

Finally, a metric’s effectiveness can vary depending on its context of use, in
particular, how it is used in combination with other metrics. There are three pitfalls
here. The first is that one can create several ostensibly different metrics, each of
which is precise, reliable, and valid, but which all measure the same construct.
This becomes a problem when the user of the metrics doesn’t realize that they are
redundant. Such redundancy can be extremely useful, since a combination of such
metrics is usually more accurate that any one of them alone, but if they are assumed
to be measuring independent constructs and are entered into a multivariate statisti-
cal analysis, disaster will result, since the measures will be highly correlated rather
than independent. Therefore one of the first tasks to perform in using a set of
metrics is to ascertain if they are measures of the same or different constructs. This
is usually done with a factor analysis or principal component analysis (see Comrey
and Lee, 1992).

The second pitfall is that if two metrics’ definitions contain some component in
common, then simple arithmetic will cause their values to not be independent of
each other. For example, comparing a pretest score and a difference score (posttest
minus pretest) will yield a biased rather than an adjusted result because the differ-
ence score contains the pretest score as a term. Another example is the comparison
of a ratio with either its numerator or denominator (say, defect density and code
size). Such comparisons may be useful, but they cannot be made with the usual null
hypothesis of no relationship (see Sect. 4.2), because they are related arithmetically.
This problem in the context of measures defined by ratios is discussed by Chayes
(1971), who gives formulas for calculating what the a priori correlation will be
between such metrics.

The third pitfall is failing to realize that some metrics are not of primary
interest themselves, but are necessary covariates used for adjusting the values of
other metrics. Such measures are known as exposure factors since the greater
their value, the greater the likelihood of a high value on another measure. For
example, in demographics and epidemiology population size is an exposure
factor, since the larger the population, the larger the number of criminals, art
museums, disease cases, and good Italian restaurants. Similarly, the larger a
source module, the larger the value of any of a number of other metrics such as
number of defects, complexity, etc., simply because there will be more opportu-
nity for them to be observed. Exposure variables are used in a multivariate analy-
sis such as Analysis of Covariance (ANCOVA) or multiple regression to adjust
for (“partial out”) the effect of the exposure and show the true effect of the
remaining factors.

6 Statistical Methods and Measurement 163

3.3. Statistical Analyses

Having defined appropriate metrics and ensured that data is properly collected, the
focus shifts to the question of how to appropriately analyze the data obtained. There
are three principal statistical tasks involved: description, comparison, and predic-
tion. It is useful to discuss separately the analyses appropriate to dynamic or
temporal data, i.e., data which have time as a fundamental aspect, from static data,
which do not; however, all statistical analyses have some aspects in common.

The prerequisite for any data analysis is data cleaning: the auditing of the data for
complete and accurate values. This step typically takes at least as much time, if not
more, than the application of the statistical techniques themselves. Often data quality
problems prevent many of the intended statistical analyses from being carried out, or
create so much uncertainty about the validity of their results as to render them useless.
It is usually possible to gather some information from even poor quality data, but an
initial investment in data quality pays for itself in the ability to do more — and more
useful — analyses later. We will return to this issue in Sect. 6.

Statistical analyses are all based on models of the underlying data-generating
process, these models can be simple or complex, and can make more or fewer
assumptions. Parametric models assume specific functional forms such as the
Normal distribution for univariate data, or a linear regression equation for multi-
variate data. The parameters of these functional forms are estimated from the data
and used in producing descriptive statistics such as the standard error of the mean,
or inferential statistics such as the t-statistic used to test for a difference between
two means. Because they make stronger assumptions, parametric models can be
more useful — if the assumptions are true. If they are not true, biased or even wildly
inaccurate results are possible. Non-parametric models make few assumptions
(typically that the data are unimodal and roughly symmetrical in distribution) and
thus can be used in almost any situation. They are also more likely to be accurate
at very small sample sizes than parametric methods. The price for this generality is
that they are not as efficient as parametric tests when the assumptions for the latter
are in fact true, and they are usually not available for multivariate situations.

In the same way that a phenomenon typically cannot be captured by a single
metric, a statistical analysis typically cannot be done by conducting one test alone.
A good data analyst looks at the data from a variety of different perspectives, with
a variety of different methods. From this a picture gradually emerges of what is
going on. A word of caution, however: the conventional p-value of 0.05 represents
a “false positive” or spurious result rate of 1 in 20. This means that the more statisti-
cal tests that are performed, the more likely it is that some of them will be falsely
significant (a phenomenon sometimes called “capitalization on chance”). Large
correlation matrices are a good example of the phenomenon; to see why, compute
the 20 x 20 correlation matrix among 20 samples of 100 uniform random numbers:
of the 190 unique correlations, how many are statistically significant at the 0.05
level? It is thus seriously misleading to do dozens of tests and then report a result
with a p-value of 0.05. The usual way of correcting for doing such a large number

164 J. Rosenberg

of tests is to lower the p-value to a more stringent level such as 0.01 or even 0.001.
The most common way of reducing the false positive rate among multiple tests is
called the Bonferroni procedure; it and several improvements on it such as the
Scheffé and Tukey methods are described in Keppel (1991). Often preferable to
multiple univariate tests is a single multivariate analysis.

4. Analyzing Static M easurement Data

4.1. Description

The first step in any statistical analysis is data description, and the first step of data
description is to simply look at the data. Figure 2 shows the histograms for two
different samples with the same mean and standard deviation; without looking at
these histograms, one would think from their descriptive statistics that both samples
were from the same population. Looking at the distribution of values for a metric
allows one to check for most frequent values (modes), outliers, and overall symmetry
of the distribution. If a distribution is skewed by a few extreme values (large or
small), many widely used statistics become misleading or invalid. For example, the
mean and standard deviation are much more sensitive to extreme values than
the median or percentiles, and so the mean of a skewed distribution will be far from
the median and therefore a somewhat misleading measure of central tendency. Thus
looking at the data allows us to determine which descriptive statistics are most
appropriate.

As pointed out above, descriptive statistics such as point estimates are subject to
error; it is important to quantify this error so that the precision of the point estimate can
be determined. The standard error of an estimate is a common way of representing

Fig. 2 Two very different samples with the same mean and standard deviation

6 Statistical Methods and Measurement 165

the precision of an estimate; the range of values two standard errors on either side of
the estimate delimit the 95% confidence interval for that estimate, i.e., the interval
within which the true value of the parameter being estimated will fall 95% of the time.
A wide confidence interval indicates that the estimate is not very precise, thus
knowing the precision is useful for gauging an estimate’s value in decision making.
The standard error increases as the sample size decreases, and the resulting impreci-
sion in estimates is what makes very small samples so problematic.

4.1.1. Measures of Central Tendency

The main feature of interest in a sample of non-temporal data is its “center of
mass”. For a roughly symmetric distribution, this will be essentially the same value
as its mode (most frequent value) and its median (50th percentile or midpoint).
The arithmetic mean is the most commonly used measure of central tendency
because of its intuitive definition and mathematical usefulness, but it is seriously
affected by extreme values and so is not a good choice for skewed data. The median
by definition always lies at the point where half the data are above it and half below,
and thus is always an informative measure (indeed, a simple check for skewness in
the data is to see how far the mean is from the median). The reason the median is
not used more often is that it is more complicated to calculate and much more
complicated to devise statistical methods for. When dealing with rates, the geometric
mean (the nth root of the product of the n data values) more accurately reflects the
average of the observed values.

4.1.2. Measures of Dispersion

Since two entirely different distributions can have the same mean, it is imperative to
also include some measure of the data’s dispersion in any description of it. The range
of the values (the difference between the highest and lowest values) is of little use
since it conveys little about the distribution of values in between. The natural measure
for distributions characterized by the arithmetic mean is the variance, the sum of
the squared deviations about the mean, scaled by the sample size. Since the variance
is in squared units, the usual measure reported is its square root, the standard deviation,
which is in the same measurement units as the mean. Analogues to the standard
deviation when the median rather than the mean is used are the values of the first and
third quartiles (i.e., the 25th and 75th percentiles) or the semi-interquartile range,
which is half the difference between the first and third quartiles. These give a measure
of the dispersion that is relatively insensitive to extreme values, just like the median.
Another useful measure of dispersion is the coefficient of variation (CV), which is
simply the standard deviation divided by the mean. This gives some indication of how
spread out the values are, adjusted for their overall magnitude. In this sense, the
coefficient of variation is a dimensionless statistic which allows direct comparison of
the dispersion of samples with different underlying measures (for example, one could

166 J. Rosenberg

compare the CV for cyclomatic complexity with the CV for module length, even
though they are measured in totally different units).

4.1.3. Measures of Association

The most common measure of association between two measures is the correlation
coefficient, which is a standardized way of describing the amount by which they
covary. The correlation coefficient, r, is the square root of the amount of shared
covariation between the two measures; thus while r? is an easily interpreted ratio
measure (an r2 of 0.4 is half that of an r? of 0.8), correlation coefficients are non-
linear: anr of 0.4 is not half that of an r of 0.8, but only one-quarter as large. Because
they are adjusted for the amount of variation present in the variables being correlated,
correlation coefficients among different sets of measures can be compared. However, cor-
relation coefficients are sensitive to the range of variation present in each variable; in
particular, large differences in the two ranges of variation place an a priori limit on
the size of r. Thus, special forms of correlation coefficient have been developed for
the cases like that of a binary and a continuous variable.

4.1.4. Categorical Data

Categorical data come in two basic kinds: binomial data, where there are only two
categories, and multinomial data, where there are more than two. Description of
categorical data is typically done by means of the proportion or percentage of the
total each category comprises. While pie charts are a common graphical representa-
tion, histograms or polar charts (also called Kiviat diagrams or star plots) are more
accurately read (Cleveland, 1994). It is important to not report proportions or
percentages of small samples to a greater degree of precision than the data warrant:
11 out of 63 cases is not 17.46%, because the smallest percentage that can be
observed in a sample of 63 (i.e., one individual) constitutes more than one percent
of the sample.

There are a variety of measures of association between two categorical variables
(as long as the categories can be considered ordered), see Goodman and Kruskal
(1979); all of them can be thought of as special instances of correlation.

4.1.5. Ordinal Data

Ordinal data present special challenges since they contain more information than
simple categories, but ostensibly not enough to justify more sophisticated statisti-
cal techniques, or even the calculation of the mean and standard deviation.
Analysis of ordinal data therefore typically reduces it to the nominal level, or
promotes it to the interval or ratio ones. Both of these approaches can frequently
be justified on pragmatic grounds.

6 Statistical Methods and Measurement 167

A prototypical example of ordinal data is the subjective rating scale. The sim-
plest description of such data is simply its distribution, which is done the same way
as for multinomial categorical data. Since the number of scale values is limited,
simply listing the percentage of cases for each value is more useful than the range
or standard deviation. Since such data are often skewed (see Fig. 3 for an example
from a satisfaction rating scale), the median is a better measure of central tendency
than the mean. Since most responses pile up at one end, this has the effect of
making the mean of the scale values most sensitive to changes in values at the other,
skewed end (in the case of Fig. 3, at the low-satisfaction end). Thus in Fig. 3 the
mean of the satisfaction ratings is paradoxically more sensitive to measuring
changes in dissatisfaction than satisfaction.

Correlation of ordinal values is typically done with non-parametric measures
such as the Spearman correlation coefficient, Kendall’s tau, or the kappa statistic
used for inter-rater reliability. Interpretation of such statistics is harder than correla-
tion coefficients because of the lack of equal intervals or ratios in ordinal values;
a tau or kappa value of 0.8 is not strictly twice as good as one of 0.4.

4.2. Comparison

Data are rarely collected simply for description; comparison to a real or ideal value
is one of the main aims of statistical analysis.

The basic paradigm of statistical comparison is to create a model (the null
hypothesis) of what we would observe if only chance variation were at play.
In the case of comparing two samples, the null hypothesis is that the two samples

Frequency

T
Low 1 .)) 10 High
Satisfaction Rating

Fig. 3 An example of skewness in ordinal data (from a rating scale)

168 J. Rosenberg

come from the same underlying population, and thus will have descriptive statis-
tics (e.g., the mean) that differ only by an amount that would be expected
by chance, i.e., whose expected difference is zero. If the observed difference is
very unlikely to occur just by chance, then we conclude (with some small risk of
being wrong) that the two samples are not from the same population, but rather
two different ones with different characteristics.

The basic method of statistical comparison is to compare the difference in the
average values for two groups with the amount of dispersion in the groups’ values.
That is, we would judge a difference of 10 units to be more significant if the two
groups’ values ranged from 30 to 40 than if they ranged from 300 to 400. In the
latter case we would easily expect a 10-unit difference to appear in two successive
samples drawn from exactly the same population.

Statistical tests of comparison are decisions about whether an observed differ-
ence is a real one, and as such, they are subject to two kinds of error:

Type | error (symbolized by o) — incorrectly rejecting the null hypothesis, and
deciding that a difference is real when it is not,

Type Il error (symbolized by) — incorrectly not rejecting the null hypothesis, and
deciding that a difference is not real when it is.

The probabilities determined for these two types of error affect how a result is to
be interpreted. The value for alpha is traditionally set at 0.05; the value for beta
is typically not even considered; this is a mistake, because the value of (1 -)
determines the power of a statistical test, i.e., the probability that it will be able
to correctly detect a difference when one is present. The major determinant
of statistical power is the size of the sample being analyzed; consequently, an
effective use of statistical tests requires determining — before the data are
collected — the sample size necessary to provide sufficient power to answer
the statistical question being asked. A good introduction to these power analysis/
sample size procedures is given in Cohen (1988).

Because of this issue of statistical power, it is a mistake to assume that, if the
null hypothesis is not rejected, then it must be accepted, since the sample size
may be too small to have detected the true difference. Demonstrating statistical
equivalence (that two samples do, in fact, come from the same population) must
be done by special methods that often require even more power than testing for
a difference. See Wellek (2002) for an introduction to equivalence testing.

The classic test for comparing two samples is the venerable t-test; its
generalization to simultaneous comparison of more than two samples is the
(one-way) analysis of variance (ANOVA), with its F-test. Both of these
are parametric tests based on asymptotic approximations to Normal distribu-
tions. While the two-sample t-test is remarkably resistant to violations of its
assumptions (e.g., skewed data), the analysis of variance is not as robust. In
general, for small samples or skewed data non-parametric tests are much
preferred; most univariate parametric tests have non-parametric analogues
(here, the Wilcoxon/Mann-Whitney test and the Kruskal-Wallis test). A good
reference is Sprent (1993).

6 Statistical Methods and Measurement 169

Occasionally, one may wish to compare an observed mean against a hypothesized
value rather than another group mean; this can be done by means of a one-sample
t-test or equivalently, if the sample is large (>30), by a Z-test.

4.2.1. Categorical Data

Comparison of categorical data between two or more samples is typically done by
a chi-squared test on an n x mtable where the rows are the samples and the columns
are the categories (see Agresti, 1998; Wickens, 1989). For tables with small cell
values (where the standard chi-squared tests are inaccurate), special computation-
ally intensive tests can be used instead (see Good, 1994). Frequently the description
and comparison of interest in categorical data is simply a test of whether the
proportion of some outcome of interest is the same in two samples; this can be done
by a simple binomial test (see Fliess, 1981).

4.2.2. Ordinal Data

Comparison of ordinal data between two or more groups can be done by the same sort of
n x mtable methods described above for categorical data (and some ordinal extensions
have been developed; see Agresti, 1984). Equally useful are rank-based techniques such
as the Wilcoxon/Mann-Whitney and Kruskal-Wallis tests mentioned above.

A common comparative analysis performed on rating scale data is to look for
improvements in ratings by comparing the means of two samples taken at different
points in time, such as repeated surveys with different respondent samples. Even if
calculating the mean for such a scale were reasonable (and it is for some ordinal
scales whose behavior appears similar to ratio scales), the mean is sensitive to those
few values at the skewed end which are of least interest. Thus any change in the mean
at best only indirectly reflects the phenomenon of interest. Using the median does not
have this problem, but suffers from the fact that the scale has few values and thus the
median is likely to be the same from one sample to the next. There are two ways to
compare such samples of rating scale data; both reduce the data to categorical data.
The first method is to compare the entire distribution of responses across both sam-
ples in a 2 x n table. The second method is to focus just on the category of greatest
interest (say, the highest one or two), and compare the proportion of responses in that
category in the two samples. While this method loses more information than the first,
it focuses on the main area of interest and is easier to report and interpret.

4.3. Prediction

Frequently, measurements are made in order to predict the value of other measure-
ments of interest. Such predictions do not have to be temporal ones; the notion of
correlation is at bottom a predictive one: knowing the value of one measurement on

170 J. Rosenberg

a unit, increases one’s knowledge of the possible value of other measurements on it.
The prototype of such prediction is regression. Originally limited to linear prediction
equations and least-squares fitting methods, regression methodology has been
extended over the course of the past century to cover an impressive variety of situa-
tions and methodologies using the framework of generalized linear models. Good
references are Draper and Smith (1998), Rawlings et al. (1998), and Dobson (2001).

The essential method of regression is to fit an equation to pairs of measurements
(X, Y) on a sample in such a way as to minimize the error in predicting one of the
measures (Y) from the other (X). The simplest such case is where the regression
equation is limited to a linear form;

Y =a+ bX+ error

and the total error measure is the sum of squared differences between the pre-
dicted and actual observations. The regression coefficient b then reflects the
effect on Y of a 1-unit change in X. This notion of regression can then be generalized
to prediction of a Y measure by a set of X measures; this is multiple or multi-
variate regression.

Even an elementary discussion of the method and application of regression is
beyond the scope of this chapter (see Rosenberg, 2000 for one oriented toward
software metrics), but a number of pitfalls should be mentioned.

First, most regression methods are parametric in nature and thus are sensi-
tive to violations of their assumptions. Even in doing a simple univariate
regression, one should always look at the data first. Figure 4 shows a cautionary
example from Anscombe (1973); all four datasets have exactly the same
regression line.

Second, regression models by definition fit an equation to all and only the data
presented to them. In particular, while it is possible to substitute into the regres-
sion equation an X value outside the range of those used to originally fit the
regression, there is no guarantee that the resulting predicted Y value will be
appropriate. In effect, the procedure assumes that the relevant range of X values
is present in the sample, and new X values will be within that range. This problem
with out of range prediction complicates the use of regression methods for tem-
poral predictions where the X value is time, and thus new observations are by
definition out of range. For predicting temporal data, other methods must be used
(as described in Sect. 5.3).

Third, regression equations have an estimation error attached to them just like
any statistical estimate. Plotting the confidence bands around a regression line gives
a good indication of how useful the equation really is.

Fourth, multivariate regression assumes that the multiple predictor measures are
independent, i.e., uncorrelated with each other, otherwise the results will be incor-
rect. Since multiple measures are often correlated, it is critical to look at the pattern
of correlations among the predictor variables before doing a multivariate regres-
sion. If even a moderate amount of correlation is present, something must be done
about it, such as dropping or combining predictors.

6 Statistical Methods and Measurement 171

154 154

0 i i 0
0 20 0 20

15 4 154

o
00 °
8

04, i i i i 04, i i i i
0 20 0 20

Fig. 4 Anscombe’s example of four different data sets with exactly the same best-fitting
regression line

4.3.1. Categorical Data

A frequent question of interest is how a binomial or other categorical variable can
be predicted from another one, or from one or more ordinal or continuous variables
(see EI Emam et al., 1999 for an example in the area of software metrics). Such a
prediction is sometimes called termed a classification task, especially if there are
more than two categories; see Hand (1997) for a general discussion. The case of
predicting a dichotomous outcome is termed a diagnostic prediction from its
prototypical example in biostatistics: predicting whether or not a person has a
disease based on one or more test outcomes. The accuracy in such a diagnostic
situation can be characterized by a 2 x 2 table, as shown in Table 1, where the
predictor variable(s) are constrained to make a binomial prediction which is then
compared to the “true” value.?

Table 1. The structure of a prototypical diagnostic prediction

Reality
Prediction Negative Positive
Negative True negative (A) False negative (B)
Positive False positive (C) True positive (D)

LA known true value in such situations is called a gold standard; much work has been done on the
problem of assessing predictive accuracy in the absence of such a standard (see, for example,
Valenstein, 1990; Phelps and Huston, 1995).

172 J. Rosenberg

Predictive accuracy in this context can be measured either as positive predictive
accuracy (D/[C+D]), negative predictive accuracy (A/[A+B]), or both together
(A+D/[A+B+C+D]). Two other relevant measures are sensitivity, the probability of
correctly predicting a positive case, (D/[D+B]), and specificity, the probability
of correctly predicting a negative case, (A/[A+C]).

There is an extensive literature on binomial prediction; much of it has been
influenced by the theory of signal detection, which highlights a critical feature of
such predictive situations: the prediction is based not only on the amount of infor-
mation present, but also on some decision criterion or cutoff point on the predictor
variable where the predicted outcome changes from one binomial value to the other.
The choice of where to put the decision criterion inescapably involves a tradeoff
between sensitivity and specificity. A consequence of this is that two prediction
schemes can share the same data and informational component and yet have very
different predictive accuracies if they use different decision criteria. Another way
of putting this is that the values in any diagnostic 2 x 2 table are determined by both
the data and a decision criterion. The merit of signal detection theory is that it
provides an explicit framework for quantifying the effect of different decision
criteria, as revealed in the ROC curve for a given predictive model, which plots the
true-positive rate (sensitivity) and false-positive rate (1 — specificity) of the model
for different values of the decision criterion (see Fig. 5). The ROC curve provides
two useful pieces of information. First, the area under the curve above the diagonal
line is a direct measure of the predictive accuracy of the model (the diagonal line
indicates 50% accuracy or chance performance; a curve hugging the upper left

Sensitivity

0.0

0.0 0.5 1.0
1 - Specificity

Fig. 5. An example receiver operating characteristic (ROC) curve

6 Statistical Methods and Measurement 173

corner would indicate 100% accuracy). Second, one can graphically compare the
relative accuracy of two models by their ROC curves: if the two curves do not
intersect, then one model always dominates the other; if they do intersect, then one
model will be more accurate for some values of the predictor variables. A good
introduction to signal detection theory is Swets (1996). Zhou et al. (2002) provide
a thorough guide to its application.

Regression methodology has been adapted for predicting binomial outcomes;
the result is called logistic regression because the predictions have to be scaled by
the logistic transformation so that they range between 0 and 1 (see Kleinbaum,
1994; Hosmer and Lemeshow, 1989). Coefficients in logistic regression have a
somewhat different interpretation than in ordinary regression, due to the different
context. The results of a logistic regression are often also expressed in terms of
ROC curves.

4.3.2. Ordinal Data

Prediction of ordinal values is rarely done except by assuming that the values
reflect an underlying interval or ratio scale, in which case standard regression
methods are used.

5. Analyzing Dynamic M easurement Data

One of the most frequent uses of metrics is to track some attribute over time, either
to detect or forecast changes in it, or to verify that the value is unchanging apart from
unavoidable random variation. Such time series data, as they are called, have as their
essential characteristic the presence of temporal structure. The chief structural
patterns are trend, a long-term change in value, typically monotonic but sometimes
cyclic in an aperiodic manner, or both; and seasonal change, a cycle of change with
a fixed period, as with changes over the course of the seasons in a year. While the
usual goal is to identify these temporal components, sometimes the goal is to demon-
strate that no such components are present; such a time series is said to be stationary.
It should be noted that analyses of time series data require at least three seasonal
cycles worth of data, since estimating the seasonal component require more than one
season’s worth of data. Having less data seriously restricts the kinds of analyses that
can be done, and usually arises in situations more accurately termed longitudinal or
repeated measures analysis, where the goal is to examine relatively large-scale
permanent changes such as physical growth or skill-acquisition. See Singer and
Willet (2003) and Crowder and Hand (1990) for examples.

In addition to the methods described below, there are a great many other types
of dynamic data analysis, such as survival analysis (mentioned briefly above), and
state space models. See Gottman (1995) and Haccou and Meelis (1994) for
examples.

174 J. Rosenberg

5.1. Description

As with any analysis, the first step is to look at the data. Figure 6 shows a typical dataset
containing a long-term increasing trend, with an additional seasonal component (every
12 months). The top panel shows the observed data, while the lower two panels display
the underlying trend and seasonal components, respectively. Methods for such time-
series decomposition are discussed in Bowerman and O’Connell (1993).

There are a number of ways such data can be used. The first way is simply to
describe the history of some process. Rather than summarizing the history by a
histogram or descriptive statistics such as the mean or standard deviation (which
would miss entirely the temporal aspect of the data), the time chart and its decom-
position into trend and seasonal components is the main focus.

Most discussions of time series analysis make the assumption that the observa-
tions are made with little or no error, otherwise the variation in the measurements
themselves could obscure the temporal patterns. This means that this sort of analysis
is best used on continuous measures (or counts) made with high reliability and
precision, rather than ordinal measures such as ratings.

It is always important to verify that the temporal measurements in a time series
are in fact equivalent. For example, fluctuations in the number of defects reported
for each month in a 1-year period might seem to warrant some concern about qual-
ity variation, but in that respect they may be illusory. Months may seem equal, but
they vary in length by up to 10%, and when the number of actual working days is

0 50 100 150 200
Weeks

Fig. 6 Time series decomposition chart for data in Fig. 6

6 Statistical Methods and Measurement 175

taken into account, they can vary by 25% or more. The same data adjusted for the
number of work days may show little variation at all. This is not to say that the first
approach is “false,” merely that it can be seriously misleading if the variation in
temporal units is not made clear. Even if the defect submission rateis constant from
month the month, the actual number of defects submitted will vary; the first piece
of information may be comforting for the quality manager, but the second piece is
more valuable to the support manager.

5.2. Comparison

Often the question of interest is: “Is the latest observation evidence of a change
in trend?” Such a question is difficult to answer on the basis of a single observation.
Often, however, that observation is actually a summary of a number of observa-
tions, for example, the mean of some set of measurements. In that case one can use
the same sort of statistical methods used with static data to compare the latest sam-
ple with the previous one. Typically, however, the sample sizes involved are too
small to detect the small level of change involved. A more common method of looking
for a change in trend is to compare the latest observation with the value predicted
for it by a forecast.

5.3. Prediction

Another major use of time series data is forecasting: predicting one or more future
observations based on the data at hand. The larger the amount of data at hand, the
better the forecasting that can be done. Even with few data, however, there are some
simple techniques that can be used. The simplest forecast technique is the so-called
naive predictor, which assumes that the future value will be the same as the present
value. This actually can be a useful first approximation in many cases, for example,
tomorrow’s temperature is likely to be similar to today’s. Other naive predictors can
be defined; for example, if there is a small amount of data beyond one seasonal
cycle (say 15 months, January of one year to March of the following year) one can
take the average difference between the observations made on the same part of the
cycle (January to March for both years) and use that as an increment for forecasting
the rest of second cycle based on corresponding values from the first.

Such naive predictors can be useful for first approximations, and can also serve
as concrete points of departure for discussions about possible alternative forecasts.
Perhaps most importantly, they can be used as baselines for evaluating the predic-
tive accuracy of more sophisticated forecasting techniques.

There are a variety of ways of quantifying the accuracy of forecasts, all of them
based on some measure of the difference between forecast and actual values. Chief
among these are (here “error” and “deviation” mean the same thing):

176 J. Rosenberg

Mean absolute deviation (MAD) the average absolute difference between observed
and forecasted values (this penalizes errors in direct proportion to their size, and
regardless of direction);

Mean squared error (MSE) the average squared difference between observed and
forecasted values (this penalizes errors as the square of their size, also regardless
of direction);

Mean percentage error (MPE) the average proportional difference between forecast
and actual values (i.e., (actual — forecast/actual), expressed as a percentage;
Mean absolute percentage error (MAPE) the average absolute proportional differ-

ence, expressed as a percentage.

There are many more possible accuracy measures, each with its advantages and
disadvantages; some may not be applicable with some kinds of data (for example,
MPE and MAPE do not make sense when the data are not measured on a ratio scale
with a zero point). Which to use depends on the purpose of the forecast, and which
kinds of errors are considered worse than others (see Makridakis, 1998).2

Assessing the overall accuracy of a forecast is more complicated than in the case
of static predictions with regression. A common technique is to set a desired standard
of absolute or relative accuracy beforehand, and then compare the accuracy of various
forecasting methods with that of a naive predictor. Often the choice of forecasting
methods comes down to a trade-off between accuracy and difficulty of computation.

An additional issue to consider in forecasting is whether a forecast metric is a
leading, lagging, or coinciding indicator, that is, whether changes in the metric
occur before, after, or at the same time as changes in some other metric of interest.
Leading indicators are highly desirable, but few metrics have that property. The
issue is important because a metric cannot be effectively used for process control
purposes unless its temporal connection with the process is understood.

5.4. Process Control

The other major use of dynamic, temporally oriented data is in determining that
there is not change over time. This is the area of statistical process control.

A process is performing effectively if its behavior only changes under conscious
direction; left alone it should remain stable, and measurements made on it should
remain the same apart from the inevitable and unimportant random variation. In the
1920°s Walter Shewhart at Western Electric devised a statistical method for quanti-
fying and monitoring the stability of a process, the control chart, examples of
which are shown in Fig. 7.

As can be seen, the control chart looks very much like a trend chart, except that
it is based on a defined control level or expected value of the measurements (the

2 These accuracy measures can also be used in assessing the fit of models to static data, of course,
but in the latter case there are more useful global goodness-of-fit measures such as R? which are
used instead. Such measures are not available for forecasting dynamic data.

6 Statistical Methods and Measurement 177

Time Time

Fig. 7 Control charts showing (a) A process which is in control, (b) A process which is not in
control

solid line), as well as control limits (the dashed lines), which define the range of
values that are expected to be observed if the process is operating stably at the
control level (and thus differences in observed measurements are due simply to
random variation). There are different types of control chart, depending on the kind
of measurement being tracked, such as continuous measures, counts, or proportions.
Multivariate control charts track several measurements jointly. The overall principle
is the same in each case: a baseline control level is established by a series of
measurements of the process, and control limits are defined in terms of the observed
variability of the process (and possibly also the desired variability). One then plots
measurements of the process taken at regular intervals and looks either for measure-
ments lying outside the control limits (and thus indicating that the process is
operating outside of its normal range, presumably because of some interfering
factor), or for patterns in the measurements which suggest that the observed variability
is not random, but is due to some factor or factors affecting the process.

Figure 7a illustrates a process that is under statistical control; Fig. 7b shows one that
is out of control and Fig. 8a shows one that, while apparently under control (being inside
the control limits), shows patterns in the measurements that deserve investigation.

In the decades since they were first developed, there have been many different
variations developed to handle the variety of process control situations that arise. One
of the most useful variants is the cumulative sum or cusum chart, which is more
sensitive at detecting changes in the level of process measurements. Cusum charts
work by accumulating the deviations from the baseline expected value of the process;
if the variation is truly random, the variations in one direction counterbalance those
in the opposite direction and the cumulative sum remains close to zero. If, on the other
hand, variations in the process are biased even slightly in one direction or the
other, then the cumulative sum will advance towards the upper or lower control limit.
This accumulation of small biases allows the trend to be detected earlier than would
be the case with a standard control chart. Figure 8 shows both a standard chart and a
cusum chart for a process that is drifting slowly out of control.

The theory and practice of control charts is highly developed and remains a
central part of quality engineering. Good references are Montgomery (1996) and
Duncan (1986). More recently, Box and Lucefio (1997) have elaborated the
relationship between statistical process control and engineering control theory.

178 J. Rosenberg

Time Time

Fig. 8 A Process drifting slowly out of control as shown in (a) A standard control chart, (b) A
cusum chart

There are also statistical methods for the optimization of process metrics, such as
Evolutionary Operation (Box and Draper, 1969), response surface methodology
(Montgomery and Myers, 2002), and data envelopment analysis/stochastic frontier
analysis (Jacobs et al., 2006).

6. Data Quality

At this point, it is appropriate to return to the context of measurement and the depend-
ence of statistical analysis on the quality of the underlying data collection process.

Data quality is a critical problem in industrial management, yet one often only
vaguely recognized by decision makers who consume the ultimate endproducts of those
data. This problem has come to light with the development of data warehouses, as ware-
house developers discover that bad data can turn a data warehouse into a data garbage
dump. The first step, then, in using measurements is ensuring that those measurements
are of sufficient validity and accuracy to enable conclusions to be drawn from them.

The sources of data quality problems are manifold (apart from the question of
bad metrics, dealt with in Sect. 3). Chief among them are

e Organizational problems
e Lack of precise definitions
e Lack of data validation

e Missing data

e Sampling bias

6.1. Organizational Problems

It is common for metrics to be defined and collected by people other than those to
whom the metrics apply; this a recipe for trouble. The problem is exacerbated when
a process is evaluated by management on the basis of metrics that the people carry-
ing out the process find irrelevant or misguided; the inevitable result is distortion of

6 Statistical Methods and Measurement 179

the work process to produce acceptable numbers, rather than valid or meaningful
ones. For a metrics program to be successful, all parts of the organization involved
need to be in agreement on the meaningfulness of the metrics and their role in the
organization’s effective functioning.

6.2. Lack of Precise Definitions

Many problems are caused by lack of a precise definition for a measurement. For
example, measuring defects in software for whatever purpose, be it research or quality
management, requires a clear definition of what constitutes a defect. This definition
may reasonably vary depending on the question being asked (and the goal that question
is answering), but whatever the purpose, the definition must address such issues as

o Are feature enhancement requests defects?
o Are usability problems defects?
o Are internally reported problems defects?

Similarly, measuring the time it takes to repair a defect requires addressing such
issues as

e When does the clock start?

o Does it start at different times for internally vs. externally reported defects?

e When does the clock stop?

o What time is recorded if the repair of the defect turns out not to be a repair after all?

If these issues are not addressed at the time the metric is defined, then they will
have to be addressed by those collecting the data if and when they arise. Not
surprisingly, when that happens the results may not be as intended. The problem of
vague definition is exacerbated when the measurements must be collected by
different groups or individuals who often have, or develop over time, different
interpretations of the definition. Such different definitions may go unnoticed for
long periods of time until some situation brings it out.

Detecting the lack of precise definitions is done most directly by looking for
explicit written documentation of what the definition of each of the measures is.
In the frequent case where such information is lacking, it becomes necessary to
interrogate those responsible for collecting, processing, and analyzing the data
to find out what they have been assuming the measures’ definitions to be; their
answers will often be conflicting.

6.3. Lack of Data Validation

A precise definition for a metric is no guarantee that the values recorded for it make
sense. It is very common to find observations with dubious or outright impossible
values, due directly or indirectly to data-entry problems. These range from typing

180 J. Rosenberg

errors to miscalibrated measuring devices to lack of understanding of the metric’s
definition. The presence of bad values is usually easy to detect if one takes the
trouble to look; frequently, as long as the measurement process produces values that
seem “reasonable” no-one bhothers to audit the process to verify that the measure-
ments are correct. For example, consider measurements of resolution times for
customer problems that are derived from recording the dates and times when the
service ticket is officially opened and closed. If there is no validation done to ensure
that the closing time is chronologically later than the opening time, the derived
resolution metric might take on zero or even negative values (perhaps from subtrac-
tion of a constant amount from all tickets; this would only become negative in ones
with small values). Even if this occurs in only a small percentage of cases, it can
seriously bias the estimates of resolution time. Simply dropping anomalous cases
when they are found is not a solution until investigation has shown that such cases
occur at random rather than for some systematic reason. Any particular case of bad
data may have many potential causes which must be investigated; an occasional
data entry error might be ignored, but a systematic distortion of entries cannot be.

Validation of data is the essential tedious first step of any data analysis. It can
be made much easier and faster if the data are validated as they are collected.
There are two difficulties which frequently prevent that from happening. First,
those collecting the data are often not the ones who will use it for analysis, and thus
have little understanding or interest in making sure that the data are correct. This is
not due to maliciousness; it is simply due to different motivation. To take the above
example, the people working the service desk have as their main goal the rapid
processing of as many service tickets as possible; data validation interferes with
this, with little or no visible benefit. Solving this problem requires educating man-
agement as well as the workers.

Second, even if validation is intended, it may be impossible to do in real time
without degrading process performance. The general solution here is to arrange
some way to do it “off line” rather than in real time, for example, validating new
database entries overnight.

Detecting problems of data validation is done by performing extensive assertion-
and consistency-checking of the dataset. For example, if the dataset contains measures
of duration, they should be checked to make sure that each value is greater than zero.
Often it is important to ensure that the value of one measure is logically compatible
with that of some other measure. For example, a problem resolution of “replaced
circuit board” is not consistent with a trouble report classified as “software problem.”

6.4. Missing Data

Itis rare to find a large dataset without missing values on at least some of its meas-
urements, and care must be taken that missing-value codes (e.g., “99”) are not mis-
takenly interpreted as genuine data values. (A particularly insidious case of this occurs
with spreadsheets, which treat missing data as actually having the value “0.”) This

6 Statistical Methods and Measurement 181

raises the possibility that an analysis using only the available data may be subject
to an unknown amount of error. The issues are therefore how much data can be
missing without affecting the quality of the measurements, and what if anything can
be done to remedy the situation. There is a large body of literature on this subject,
which is discussed in the chapter by Audris Mockus in this volume.

6.5. Sampling Bias

The problems just discussed are easy to observe and understand. More subtle but just
as serious is the problem of sampling bias. A precisely defined, thoroughly validated,
complete dataset can still be useless if the measurement process only measures a par-
ticular subset of the population of interest. This can be for a number of reasons:

6.5.1. Self-selection

It may be that only some units in the population put themselves in the position of
being measured. This is a typical problem in surveys, since typically there is little
compulsion to respond, and so only those individuals who choose to be measured
provide data. Similarly, only those customers with problems are observed by the
customer service department.

6.5.2. Observability

Some measurements by definition are selective and can lead to subtle biases. For
example, in a study of defect densities, some source modules will have no (known)
defects and thus a defect density of zero. If these cases are excluded, then state-
ments about correlates of defect density are true only of modules which have
known defects, not all modules, and thus cannot easily be generalized. Another
kind of observability problem can occur, not with the units being observed, but with
the measuring device. For example, if problem resolutions are measured in days,
then resolutions which are done in ten minutes are not accurately observed, since
their time must be rounded down to zero or up to one day.

6.5.3. Non-random Sampling

A frequent problem in surveys, this also plagues many other kinds of measure-
ments, including experiments where the selection of experimental units is not
properly considered. Lack of information about the population, coupled with a bias
to sample those units which are easy to sample, can result in a measured sample
which is quite unrepresentative of the population of interest.

182 J. Rosenberg

Detecting sampling bias can be difficult, because it typically happens before the
data are collected. It can sometimes be spotted by the absence of certain kinds of
data (customers from one region, service times longer than 1 month, etc.), but usu-
ally must be identified by studying the documentation for the data collection proc-
ess or interrogating the people who carry it out. Correcting sampling bias is
extremely difficult, since the basic problem is the complete lack of representation
for some part of the population. To the extent that the type and degree of bias is
known (also a difficult problem) it may be possible to adjust for it, but generally the
only solution is to make it clear just what subset of the population is described in
the dataset. A good discussion of detecting and coping with overt and hidden biases
can be found in Rosenbaum (2002).

As should be clear from the above, problems of data quality are ubiquitous and
difficult to deal with, particularly because there are only general guidelines for what
to do, and each case must be handled on its own terms.

7. Summary

This chapter has discussed the role of the measurement process, the need for
metrics to be clearly defined, reliable, and valid in order for them to be effective,
and various statistical techniques and pitfalls in analyzing measurement data.
Understanding measurement is a crucial part in the development of any branch of
science (see Hand, 2004); the amount of effort devoted to it in empirical research
in software engineering reflects the necessity of answering some of the most
fundamental questions facing computer science and engineering. Fortunately, we
can take advantage of the experience and knowledge gained by other disciplines,
and apply them with advantage in developing effective software measurement.

References

Agresti, A, Analysis of Ordinal Categorical Data. New York: Wiley. 1984,

Agresti, A, An Introduction to Categorical Data Analysis. New York: Wiley. 1998.

Anscombe, F, Graphs in statistical analysis. American Statistician. 27(1):17-21. 1973.

Basili, V, Caldiera, G, and Rombach, D, The goal question metric approach. In: Marciniak, J, ed.,
Encyclopedia of Software Engineering. New York: Wiley. 1994,

Bevington, P, and Robinson, D, Data Reduction and Error Analysisfor the Physical Sciences, 2nd
ed. New York: McGraw-Hill. 1992.

Bowerman, B, and O’Connell, R, Forecasting and Time Series: An Applied Approach, 3rd. ed.
Belmont, CA: Wadsworth. 1993.

Box, G and Draper, N, Evolutionary Operation: A Satistical Method for Process | mprovement.
New York: Wiley. 1969.

Box, G and Lucefio, A, Satistical Control by Monitoring and Feedback Adjustment. New York:
Wiley. 1997.

6 Statistical Methods and Measurement 183

Briand, L, EI Emam, K, and Morasca, S, On the application of measurement theory to software
engineering. Empirical Software Engineering. 1(1). 1996.

Chayes, F, Ratio Correlation. Chicago: University of Chicago Press. 1971.

Cleveland, W, The Elements of Graphing Data. Summit, NJ: Hobart Press. 1994,

Cliff, N, What is and isn’t measurement. In: Keren, G and Lewis, C, eds., A Handbook For Data
Analysis in the Behavioral Sciences, Vol. 1: Methodological Issues. Hillsdale, NJ: Erlbaum.
1992.

Cohen, J, Satistical Power Analysis for the Behavioral Sciences, 2nd ed. Hillside, NJ: Erlbaum. 1988.

Comrey, A and Lee, H, A First Coursein Factor Analysis, 2nd ed. Hillsdale, NJ: Erlbaum. 1992.

Crowder, M, and Hand, D, Analysis of Repeated Measures. New York: Chapman and Hall. 1990.

Dobson, A, An Introduction to Generalized Linear Models, 2nd ed. New York: Chapman and
Hall/CRC. 2001.

Draper, N and Smith, H, Applied Regression Analysis, 2nd ed. New York: Wiley. 1998.

Duncan, A, Quality Control and Industrial Statistics, 5th ed. New York: Irwin. 1986.

El Emam, K, Benlarbi, S, and Goel, N, Comparing case-based reasoning classifiers for predicting
high risk software components. National Research Council Canada technical report NRC
43602/ERB-1058. 1999.

Fenton, N and Pfleeger, S, Software Metrics: A Rigorous and Practical Approach, 2nd ed. Boston:
PWS Publishing. 1997.

Fliess, J, Statistical Methods for Rates and Proportions, 2nd ed. New York: Wiley. 1981.

Ghiselli, E, Campbell, J, and Zedeck, S, Measurement Theory for the Behavioral Sciences. San
Francisco: Freeman. 1981.

Good, P, Permutation Tests. New York: Springer. 1994,

Goodman, L and Kruskal, W, Measures of Association for Cross Classifications. New York:
Springer. 1979.

Gottman, J, ed., The Analysis of Change. Hillsdale, NJ: Erlbaum. 1995.

Haccou, P, and Meelis, E, Satistical Analysis of Behavioural Data: An Approach Based on Time-
Structured Models. Oxford: Oxford University Press. 1994,

Hand, D, Construction and Assessment of Classification Rules. New York: Wiley. 1997.

Hand, D, Measurement Theory and Practice: The World through Quantification. Oxford: Oxford
University Press. 2004.

Hosmer, D and Lemeshow, S, Applied Logistic Regression. New York: Wiley. 1989.

Hosmer, D and Lemeshow, S, Applied Survival Analysis. New York: Wiley. 1999.

Jacobs, R, Smith, P, and Street, A, Measuring Efficiency in Health Care: Analytic Techniques and
Health Policy. Cambridge: Cambridge University Press. 2006.

Keppel, G, Design and Analysis: A Researcher’s Handbook, 3rd ed. New York: Prentice Hall. 1991.

Kleinbaum, D, Logistic Regression. New York: Springer. 1994.

Kleinbaum, D, Survival Analysis. New York: Springer. 1996.

Krantz, D, Luce, R, Suppes, P, and Tversky, A, Foundations of Measurement. New York:
Academic. 1971.

Long, J, Regression Models for Categorical and Limited Dependent Variables. Thousand Oaks,
CA: Sage. 1997.

Maddala, G, Limited-Dependent and Qualitative Variables in Econometrics. Cambridge:
Cambridge University Press. 1986.

Makridakis, S, Wheelwright, S, and Hyndman, R, Forecasting: Methods and Applications, 3rd ed.
New York: Wiley. 1998.

Montgomery, D, Introduction to Statistical Quality Control, 3rd ed. New York: Wiley. 1996.

Montgomery, D and Myers, R, Response Surface Methodology: Process and Product Optimization
Using Designed Experiments, 2nd ed. New York: Wiley. 2002.

Phelps, C, and Huston, A, Estimating diagnostic accuracy using a “fuzzy gold standard”. Medical
Decision Making 15:44-57. 1995.

Rawlings, J, Pantula, S, and Dickey, D, Applied Regression Analysis, 2nd ed. New York: Springer.
1998.

Rosenbaum, P, Observational Sudies, 2nd ed. New York: Springer. 2002.

184 J. Rosenberg

Rosenberg, J, A methodology for evaluating predictive metrics. In: Zelkowitz, M., ed., Advances
in Computers, Vol. 23. New York: Academic. 2000.

Shepperd, M and Ince, D, Derivation and Validation of Software Metrics. Oxford: Clarendon
Press. 1993.

Singer, J and Willett, J, Applied Longitudinal Data Analysis. Modeling Change and Event
Occurrence. Oxford: Oxford University Press. 2003.

Sprent, P, Applied Non-Parametric Satistical Methods, 2nd ed. New York: Chapman and Hall.
1993.

Swets, J, Sgnal Detection Theory and ROC Analysis in Psychology and Diagnostics. Hillsdale,
NJ: Erlbaum. 1996.

Taylor, J, An Introduction to Error Analysis, 2nd ed. Sausalito, CA: University Science Books.
1997.

Valenstein, P, Evaluating diagnostic tests with imperfect standards. American Journal of Clinical
Pathology 93:252-258. 1990.

Velleman, P, Nominal, ordinal, interval, and ratio typologies are misleading. American Statistician.
47:65-72. 1993.

Wellek, S, Testing Statistical Hypotheses of Equivalence. New York: Chapman and Hall/CRC
Press. 2002.

Wickens, T, Multiway Contingency Tables Analysis for the Social Sciences. Hillsdale, NJ:
Erlbaum. 1989.

Zhou, X, Obuchowski, N, and McClish, D, Satistical Methods in Diagnostic Medicine. New
York: Wiley. 2002.

Zuse, H, Software Complexity: Measures and Methods. New York: Walter de Gruyter. 1990.

Chapter 7
Missing Data in Software Engineering

Audris Mockus

Abstract The collection of valid software engineering data involves substantial
effort and is not a priority in most software production environments. This often
leads to missing or otherwise invalid data. This fact tends to be overlooked by most
software engineering researchers and may lead to a biased analysis. This chapter
reviews missing data methods and applies them on a software engineering data set
to illustrate a variety of practical contexts where such techniques are needed and to
highlight the pitfalls of ignoring the missing data problem.

1. Introduction

The goal of this chapter is to increase the awareness of missing data techniques
among people performing studies in software engineering. Three primary reasons
for this presentation are:

1. The “quick-fix” techniques that drop the cases with missing values may yield
biased or inconclusive results. Such techniques are still widely (and often
implicitly) used in software engineering

2. Dealing with missing values is no longer a burden for a practitioner, because
easy to use statistical software is now available on popular platforms

3. Software represents a distinct data source with unique reasons and patterns for
missing data. For example, software studies tend not to have the luxury of large
sample sizes requiring analysis methods that use all available data, including
incomplete cases. Many properties of software can not be measured directly,
therefore investigators have to get the necessary information from people who
create and maintain a particular piece of software, leading to frequent and com-
plex patterns of missing data

Section 2 discusses sources of software data. The next section introduces an illustra-
tive example evaluating how a software process influences development time.
Section 4 presents a general statistical perspective for dealing with missing data with
an illustrative example. Section 5 discusses non traditional missing data problems
specific to the field of software engineering. A summary is provided in Sect. 6.

185

F. Shull et al. (eds.), Guide to Advanced Empirical Software Engineering.
© Springer 2008

186 A. Mockus

2. Sources of Software Data

Software engineering data come from several distinct sources. The three primary
sources are:

o Data collected through experimental, observational, and retrospective studies

e Software metrics or reported project management data including effort, size, and
project milestone estimates

e Software artifacts including requirements, design, and inspection documents,
source code and its change history, fault tracking, and testing databases

To narrow the scope of the presentation we did not include data sources produced
directly by software with little or no human involvement, such as program execu-
tion and performance logs or the output of program analysis tools. Such data
sources tend to produce tool specific patterns of missing data that are of limited use
in other domains.

Surveys in an industrial environment are usually small and expensive to con-
duct. The primary reasons are the lack of subjects with required knowledge and the
minimal availability of expert developers who, it appears, are always working
toward a likely-to-be-missed deadline. The small sample size limits the applicability
of deletion techniques that reduce the sample size even further. This may lead to an
inconclusive analysis, because the sample of complete cases may be too small to
detect statistically significant trends. If, on the other hand, the sample sizes are
large and only a small percentage of data are missing, a deletion technique (a tech-
nique that removes missing observations) may work quite well.

The values in survey data may be missing if a survey respondent declines to fill
the survey, ignores a question, or does not know the answer to some of the
questions.

Reported data on software metrics often contain the desired measurements on
quality and productivity. Unfortunately, the reported data are often not comparable
across distinct projects (Herbsleb and Grinter, 1998). The reasons include numer-
ous social and organizational factors related to intended use and potential misuse
of metrics, and serious difficulties involved in defining, measuring, and interpreting
a conceptual measure in different projects.

Reported data need extensive validation to confirm that it reflects the quantities
an analyst is interested in. Data collection is rarely a priority in software organiza-
tions (Goldenson et al., 1999). The priority of validating collected data is even
lower, often leading to unreliable and misleading software measures. In addition,
some software measures are difficult to obtain or have large uncertainty. Examples
of such measures include function point estimates or size and effort estimates in the
early stages of a project. Frequently data values are missing because some metrics
are not collected for the entire period of the study or for a subset of projects.

Software artifacts are large, highly structured, and require substantial effort to
interpret. Measures derived from software artifacts tend to be more precise and
consistent over time than measures derived from surveys and reported data. They

7 Missing Data in Software Engineering 187

measure the artifact itself, as opposed to the subjective perception of the artifact
captured by survey measures. Traditionally, software artifacts are measured
based on the properties of source code. Such measures include source code com-
plexity (Halstead, 1977; McCabe, 1976), complexity of an object oriented design
(Chidamber and Kemerer, 1994), or functional size (Albrecht and Gaffney,
1983). Instead of measuring the source code, it is possible to measure the properties
of changes to the code. This requires analysis of change history data, see, for example,
(Mockus, 2007). Artifact data may be missing or difficult to access for older software
artifacts because of obsolete storage or backup media. Consequently, software artifacts
are usually available or missing in their entirety, reducing the need for the tradi-
tional missing data techniques that assume that data are only partially missing.
Measuring such artifacts might require substantial effort, especially if they were
maintained using obsolete tools.

3. Example Data

To illustrate the application of missing data methods we will use a case study of
process improvement in a software organization (Herbsleb et al., 2000). The study
involved a medium-size, process-oriented software organization performing
contract work. One of the study goals was to determine if the excessive detail of
software process had increased the development interval. In particular, the study
investigated the relationship of development interval and project tracking
measures.

The collected data came from three sources: survey questions, reported project
metrics, and the source code change history. The development interval was the
response or dependent variable. We model (predict) it using several project tracking
measures described below that are used as independent, predictor, or explanatory
variables.

3.1. Survey

A total of 68 surveys of 19 individuals evaluating three dimensions of project track-
ing process for 42 projects were collected.

The three dimensions of project tracking were defined by the following
questions.

1. Were the project’s actual results (e.g., schedule, size, and cost) compared with
estimates in the software plans?

2. Was corrective action taken when actual results deviated significantly from the
project’s software plans?

3. Were changes in the project’s plans agreed to by all affected groups and
individuals?

188 A. Mockus

Subjects evaluated three dimensions of project tracking with ordinal ratings: (1) —
“Rarely if ever,” (2) — “Occasionally,” (3) — “About half of the time,” (4) — “Frequently,”
and (5) — “Almost always.” When the subject did not have enough knowledge of the
project to answer the question, they entered “don’t know.”

To exemplify missing data techniques we simplify the analysis by treating each
survey as an independent observation. In our example several individuals evaluated
most projects and several projects were evaluated by a single individual. Therefore,
multiple reports on one project (or done by a single person) are not independent.
Unfortunately, adjusting for that dependence would distract from the presentation
of missing data techniques.

3.2. Software Change Data

The project interval and size data were obtained from change history databases. The
project interval was measured in days from the start of the first change until the com-
pletion of the last change. The project size was measured in number of logical
changes called Maintenance Requests (MRs).

3.3. Reported Project Data

The reported project data included size, staff months, number of faults, and inter-
val. Unfortunately, reported data were not consistent, therefore it was not used in
the models. While some projects measured size in function points (FP), other
projects measured size in lines of code (LOC). The reported function point and
LOC measures did not correlate well with the amount of code developed (as
obtained from change history) or with the reported staff months of effort.
Furthermore, the reported interval did not correlate with the duration of the
development phase measured by the time difference between the last and the first
change. These serious validity problems made the reported data unsuitable for
further analysis.

3.4. Missing Values

Change history databases for ten of the surveyed projects were moved off line and
unavailable for analysis. Because the response variable interval was missing for
those projects we excluded them from further consideration (other reasons are
given in the discussion of the types of missing data). An additional six cases were
dropped because all the project tracking questions were answered “don’t know.”
That left us with 52 cases (corresponding to 34 projects) for the analysis.

7 Missing Data in Software Engineering 189

The list of data quality problems in this example may seem enormous, but in our
experience such data quality is not unusual in a software study.

We used multiple linear regression [see, for example, (Weisberg, 1985)] to
model the project development interval. The project size and the three tracking
measures were independent variables. We included the project size as a predictor
because it affects the project interval.

Inspection of the variables showed increasing variances (a scatterplot with a
very large density of points at low values) for the interval and size. A square root
transformation was sufficient to stabilize the variance of the interval and size and
led to the following final model:

Vinterval = b, + b v/Size +b, Tracking, + b, Tracking, + b, Tracking, + Error. (1)

The following section describes various techniques to fit such models in the
presence of missing data.

4. A Statistical Perspective on Missing Data

In statistical analysis the phenomena of interest is commonly represented by a
rectangular (n x K) matrix Y = (yij) where rows represent a sample of n observa-
tions, cases, or subjects. The columns represent variables measured for each case.
Each variable may be continuous, such as size and interval, or categorical like file
or project.

Some cells in such a matrix may be missing. It may happen if a measure is not
collected, or is not applicable, for example, if a respondent does not answer a ques-
tion on a survey form.

The mechanism by which some cells are not observed is important to select an
appropriate analysis technique. Denote the response indicator

Ly observed,
|0, y, missing.

O]

Ri

Denote all the values of the observations that are missing Y, as and the restas Y, .
Let P(RIY,, Y, 6) be the probability distribution function of R given a statistical
model specified by parameter 6 and all the values of Y. The data are missing at

random (MAR) according to Little and Rubin (1987) if
P(R | Yobs’Ymis’e) = P(R | ngsye)’

i.e., the distribution of the response indicator may depend on the observed values
but may not depend on the values that are missing. The data are missing completely
at random (MCAR) if a stronger condition holds:

F(R| Yy, Yois» 0) = T(R] 0).

190 A. Mockus

The MAR assumption allows the probability that a datum is missing to depend on
the datum itself indirectly through quantities that are observed. For example, in the
described data, the interviewees might remember less about smaller projects,
resulting in higher likelihood that some of the survey’s values are missing. The
MAR assumption would apply, because the predictor “project size” explains the
likelihood that the value will be missing. MCAR assumption would not apply,
because the probability that a value is missing depends on project’s size. However,
if we do not have a measure of project’s size or simply do not include project’s
size in our estimation model, then even the MAR assumption is not satisfied. Such
case is referred to as data not missing at random (NMAR). The NMAR data can be
made to satisfy the MAR assumption if variables that characterize situations when
a value is missing are added. Therefore, it is important to add variables that might
predict the missing value mechanism to the dataset.

Personal income obtained via survey represents a typical example where the
MAR assumption is not satisfied. It is well known that extreme values of personal
income are less likely to be reported. Consequently, the MAR assumption is
violated, unless the survey can reliably measure variables that are strongly related
to income. When extreme values are more likely to be missing, the probability that
a value is missing depends on the value itself and, unless other predictors can fully
account for that change in the probability of being missing, the MAR assumption
is no longer satisfied.

It is worth pointing out that it is impossible to test the MAR hypothesis based
on the dataset itself, since that would require knowing the values for missing obser-
vations. It could be tested by gathering additional information, for example, by
conducting a repeat survey for the missing cases. However, when the data are
missing beyond the control of the investigator one can never be sure whether the
MAR assumption holds. It is possible to test the MCAR assumption, [see, e.g.
Little (1988); Kim and Curry (1977)]. However, the MCAR assumption rarely
needs to be tested, because the MCAR assumption rarely holds in practice and
because many easy-to-use MAR methods are available.

Situations where even the MAR assumption does not hold may require an
explicit model for the missing data mechanism. Such methods tend to be problem
specific and require substantial statistical and domain expertise. A concept related
to NMAR data (even though it is treated separately in literature) involves censoring
in longitudinal studies where some outcome may not be known at the time the study
has ended. For example, in software reliability we want to know the distribution of
time until a software outage occurs. However, at any particular moment in time
there may be many software systems that have not experienced an outage. Thus, we
only know that the time until the first outage is larger than the current system
runtime for these systems, but we do not know its value. A common approach to
deal with censored data is to estimate a survival curve using Kaplan—Meier Estimate
(Kaplan and Meyer, 1958; Fleming and Harrington, 1984). The survival curve is a
graph showing the percentage of systems surviving (with no outage) versus system
runtime. It has been applied to measure software reliability in, for example,
(Mockus, 2006).

7 Missing Data in Software Engineering 191

Little and Hyonggin (2003) discuss ways to handle undesirable NMAR data
and recommend calculating bounds by using all possible values of missing
variables (an approach particularly suitable in case of binary values), conducting
a sensitivity analysis by considering several models of how the data are missing,
or conducting a Bayesian analysis with a prior distribution for missing values. In
most practical situations we recommend attempting to measure variables that
capture differences between missing and complete cases in order for the missing-
data mechanism to satisfy the MAR assumption. Methods that can handle MAR
data can then be applied.

In our example, the “don’t know™ answers in survey questions reflect the lack of
knowledge by the subject and have no obvious relationship to the unobserved value.
One may argue that even the MCAR assumption might be reasonable in this case.
On the other hand, the ten cases for projects without change history present a com-
pletely different missing data mechanism. Because the projects are older, they are
likely to be different from newer projects in the analyzed sample. Data are missing
because these projects are old (and presumably different) and, therefore, the MAR
assumption does not apply. Consequently, the conclusions drawn from the analysis
of the relationship between project tracking and project interval may not apply to
old projects. We removed these projects from further consideration and narrowed
conclusions to explicitly exclude them. For simplicity, we also excluded six obser-
vations where all tracking measures are missing. One can argue against such a
decision, because these observations can still be used to make a more precise
regression relationship between project size and project interval.

Many statistical packages deal with missing data by simply dropping the cases
that have at least one value missing. Besides being inefficient (fewer observations
are used for inference), such a technique may be biased unless the observations are
MCAR. The MCAR assumption is rarely a reasonable assumption in practice.

Model based techniques where a statistical model is postulated for complete data
provide transparency of assumptions, but other techniques are often simpler to
apply in practice. Given that statistical software provides tools to deal with missing
data using model based techniques (Schafer, 1999; R Development Core Team,
2005) we would recommend using them instead of the remaining techniques that
have limited theoretical justification or require unrealistic assumptions. For com-
pleteness, we briefly describe most of traditional techniques as well. The goal of
traditional techniques is to produce the sample mean or the covariance matrix to be
used for regression, analysis of variance, or simply to calculate correlations. All
traditional methods produce correct results under the MCAR assumption.

For more in-depth understanding of the statistical approaches Little and Rubin
(1987) summarize statistical models for missing data and Schafer (1997) describes
more recent results. Rubin (1987) investigates sampling survey issues. Little and
Rubin (1989) and Schafer and Olsen (1998) provide examples with advice for
practitioners. Roth (1994) provides a broad review of missing data technique
application in many fields.

Various missing data techniques have been evaluated in the software engineering
context of cost estimation. Strike et al., (2001) evaluate listwise deletion, mean

192 A. Mockus

imputation, and eight different types of hot-deck imputation and find them to have
small biases and high precision. This suggests that the simplest technique, listwise
deletion, is a reasonable choice. However, it did not have the minimal bias and
highest precision obtained by hot-deck imputation. Myrtveit et al. (2001) evaluate
listwise deletion, mean imputation, similar response pattern imputation, and full
information maximum likelihood (FIML) missing data techniques in the context of
software cost modeling. They found bias for non-MCAR data in all but FIML
technique and found that listwise deletion performed comparably to the remaining
two techniques except in cases where listwise deletion data set was too small to fit
a meaningful model. k-Nearest Neighbor Imputation is evaluated by simulating
missing data in Jénsson and Wohlin (2004). Authors’ find the method to be ade-
quate and recommend to use k equal to the square root of the number of complete
cases. More recently, Twala et al. (2006) compare seven missing data techniques
using eight datasets and find listwise deletion to be the least efficient and multiple
imputation to be the most accurate.

In the following sections we consider several broad classes of missing data tech-
niques. Section 4.1 considers methods that remove cases with missing values. Ways
to fill in missing values are considered in Sect. 4.2. Section 4.3 describes techniques
that generate multiple complete datasets, each to be analyzed using traditional
complete data methods. Results from these analyses are then combined using
special rules. We exemplify some of these methods in Sect. 4.4.

4.1. Deletion Techniques

Deletion techniques remove some of the cases in order to compute the mean vector
and the covariance matrix. Casewise deletion, complete case, or listwise deletion
method is the simplest technique where all cases missing at least one observation
are removed. This approach is applicable only when a small fraction of observa-
tions is discarded. If deleted cases do not represent a random sample from the entire
population, the inference will be biased. Also, fewer cases result in less efficient
inference.

In our example the complete case method loses 18 cases (around 34% of the
52 cases that we consider). Table 1 shows output from the multiple regression
model in (1).

Table1 Multiple regression for the complete case analysis

Variable Value Std. error t Value Pr(>|t))
Intercept 3.1060 5.2150 0.5956 0.5561
Sqrt(size) 0.4189 0.1429 2.9315 0.0065
Trackingl 0.9025 0.9885 0.9130 0.3688
Tracking2 0.5363 1.2332 0.4349 0.6669

Tracking3 0.7186 1.1033 0.6513 0.5200

7 Missing Data in Software Engineering 193

Multiple regression shows that the project size is an important predictor of the
interval but none of the process coefficients are significant at the 10% level
(although a 5% level is more commonly used, we chose to use a 10% level that is
more suitable for the small sample size of our example and, more importantly, to
illustrate the differences among missing data methods). It is not too surprising,
since more than a third of the observations were removed from the analysis.

Pairwise deletion or available case method retains all non missing cases for each
pair of variables. We need at least three variables for this approach to be different
from listwise deletion. For example, consider the simplest example where the first
of three variables are missing in the first case and the remaining cases are complete.
Then, the sample covariance matrix would use all cases for the submatrix represent-
ing sample covariances of the second and third variables. The entry representing the
sample variance of the first variable and sample covariances between the first and
the remaining variables would use only complete cases. More generally, the sample
covariance matrix is:

S = ij RkRj (yj _yik)(yk _ykj)
: Zi Rij -1

>

where ij - Zi R; Rkyii/Zi RiR« and RU. and R, are indicators of missing values
as defined in (2). Although such method uses more observations, it may lead to a
covariance matrix that is not positive-definite (positive-definite matrix has positive
eigenvalues) and unsuitable for further analysis, i.e., multiple regression.

4.2. Imputation Techniques

The substitution or imputation techniques fill (impute) the values that are missing.
Any standard analysis may then be done on the complete dataset. Many such tech-
niques would typically provide underestimated standard errors.

The simplest substitution technique fills in the average value over available cases
(mean substitution). This underestimates variances and covariances in MCAR case
and is likely to introduce bias otherwise. Smaller variances may reduce p-values and,
therefore, may provide false impressions about the importance of some predictors.
Table 2 shows results using mean substitution. Table 2 shows that the project size is an

Table 2 Results for the mean substitution analysis

Variable Value Std. error t Value Pr(>|t))
Intercept 3.1611 2.8054 1.1268 0.2656
Sqrt(size) 0.3904 0.1134 3.4437 0.0012
Trackingl -0.0871 0.5903 -0.1475 0.8834
Tracking2 0.8557 0.7339 1.1660 0.2495

Tracking3 1.4568 0.7678 1.8975 0.0639

194 A. Mockus

important predictor of the interval and that the third dimension of tracking measure
(level of agreement by all affected parties to the changes in the software commit-
ments) might increase the interval. The coefficient is significant at 10% level.

Regression substitution uses multiple linear regression to impute missing values.
The regression is done on complete cases. The resulting prediction equation is used
for each missing case. Regression substitution underestimates the variances less
than mean substitution. A stochastic variation of regression substitution replaces a
missing value by the value predicted by regression plus a regression residual from
a randomly chosen complete case.

Table 3 shows results based on a basic liner regression substitution. For our
example the results are similar to mean substitution.

Other substitution methods include group mean substitution that calculates
means over groups of cases known to have homogeneous values within the group.
A variation of group mean substitution when the group size is one is called hot-deck
imputation. In hot-deck imputation for each case that has a missing value, a similar
case is chosen at random. The missing value is then substituted using the value
obtained from that case. Similarity may be measured using a Euclidean distance
function for numeric variables that are most correlated with the variable that has a
missing value.

The following two reasons prevent us from recommending simple deletion and
imputation methods when a substantial proportion of cases (more than 10%) are
missing:

1. Itis not clear when they do not work
2. They give incorrect precision estimates making them unsuitable for interval
estimation and hypothesis testing

As the percentage of missing data increases to higher levels, the assumptions and
techniques have a more significant impact on results. Consequently, it becomes
very important to use a model based technique with a carefully chosen model.
While there is no consensus among all experts about what techniques should be
recommended, a fairly detailed set of recommendations is presented in Roth (1994)
and Little and Hyonggin (2003), where factors such as proportion of missing data
and the type of missing data (MCAR, MAR, NMAR) are considered. Roth (1994)
recommends using the simplest techniques, such as pairwise deletion, in the MCAR
case and model based techniques when the MAR assumption does not hold or when
the percent of missing data exceeds 15%. Because we doubt the validity of the

Table 3 Results for the regression substitution analysis

Variable Value Std. error t Value Pr(>|t))

Intercept 3.5627 3.3068 1.0774 0.2868

Sqrt(Size) 0.3889 0.1242 3.1321 0.0030

Trackingl 0.0339 0.8811 0.0385 0.9695 A &
+

Tracking2 0.6011 1.0760 0.5586 0.5791 P_2\/§

Tracking3 1.5250 0.8518 1.7904 0.0798

7 Missing Data in Software Engineering 195

MCAR assumption in most practical cases we do not recommend using techniques
that rely on it unless the percent of missing data is small.

4.3. Multiple Imputation

Multiple imputation (MI) is a model based technique where a statistical model is
postulated for complete data. A multivariate normal model is typically used for
continuous data and a log-linear model is used for categorical data. In MI each
missing value is replaced (imputed) by m > 1 plausible values drawn from their
predictive distribution. Consequently, instead of one data table with missing values
we get ™ complete tables. After doing identical analyses on each of the tables the
results are combined using simple rules to produce the estimates and standard
errors that reflect uncertainty introduced by the missing data.

The possibility of doing an arbitrary statistical analysis for each complete data
set and then combining estimates, standard deviations, and p-values allows the
analyst to use a complete data technique that is the most appropriate for their prob-
lem. In our example we chose to use multiple linear regression.

The attractiveness of the Ml technique lies in the ability to use any standard sta-
tistical package on the imputed datasets. Only a few (3-5) imputations are needed
to produce quite accurate results (Schafer and Olsen, 1998). Software to produce
the imputed tables is available from several sources, most notably from Schafer
(1999) and R Development Core Team (2005). We do not describe the technical
details on how the imputations are performed because it is beyond the scope of this
presentation and the analyst can use any MI package to perform this step.

After the m Ml tables are produced, each table may be analyzed by any statisti-
cal package. To combine the results of m analyses the following rules are used
(Rubin, 1987). Denote the quantities of interest produced by the analysesas P,,..., P
and their estimated variances as S,,...,S .

m

m

 The overall estimate for P is an average value of P,’s: P= zi P/m

+ The overall estimate for SisS=)' S/m+=4:>" (P—PR)

A rough confidence interval for P is P+ 2\/§. This inference is based on a t distri-
bution and is derived under the assumption that complete data have an infinite
number of degrees of freedom. A refinement of the rules for small datasets is
presented in Barnard and Rubin (1999). There P has a t distribution with variance
§ and degrees of freedom given by a fairly involved formula:

3
—+ = '
vV Vv

where v=(m-1)/y*, v=nL(1-y), n represents degrees of freedom for com-
plete data, and

196 A. Mockus

B 1
V= Km-DY. § N k.
(MDY, (P-RY’

Sometimes the inference is performed on multiple quantities simultaneously, for
example, if we want to compare two nested multiple regression models, where the
more general model has one or more extra parameters that are equal to zero in the
simpler model. The rules for combining MI results in such a case are quite compli-
cated, [see, e.g., Schafer (1997, pp. 112-118)], however, the MI software (Schafer,
1999) implements required calculations.

4.4. Example

We used the norm package (Schafer, 1999) [also available as packages (Novo, 2002)
for R system (R Development Core Team, 2005)] for Windows 95/98/NT platform
to generate five imputations and ran multiple linear regression on each imputed data
table. The estimates and standard errors from the regression were combined using
multiple imputation rules. The norm package does not perform multiple regression,
but it provides the functionality to combine the results from multiple regression
analyses. We used this feature and the result is presented in Table 4. The coefficients
are not much different from the regression imputation, although the third tracking
dimension is now barely significant at the 10% level.

In most practical situations with a medium percentage of missing data there will
be relatively small difference between the results obtained using different missing
data methods (except for the complete case method), as happens to be the case in
our example. However, in many examples (like this one), where the conclusions are
based on p-values that are close to the chosen significance level, the use of Ml is
essential. In particular, the mean substitution method was significant at 0.07 level,
but the MI method was not. If we, hypothetically, assume a world where results are
judged to be significant at 0.07 significance level (instead of our own world, where
the 0.05 significance level is most common), we would have reached different
conclusions using different methods.

The example reiterates the fact that the standard deviation is underestimated in
imputation methods and, therefore, the significance values are inflated. Although
this example does not show large biases introduced by non MI methods, in general

Table 4 Results of multiple imputation analysis

Variable Value Std. error t Value Pr(>t])
Intercept 3.75 3.686 1.02 0.31
Sqrt(Size) 0.39 0.126 3.12 0.002
Trackingl 0.01 0.787 0.02 0.985
Tracking2 0.56 1.114 0.51 0.614

Tracking3 1.51 0.917 1.65 0.099

7 Missing Data in Software Engineering 197

it may be a serious issue. The example also illustrates the lack of efficiency of the
complete case method in line with the studies mentioned above.

5. Other Types of Unavailable Data

Software engineering has its own domain-specific types of missing data that are not
present in the general statistical treatment. Here we briefly present specific cases of
missing data in software artifacts. The first example deals with missing information
on software change purpose, and the second example deals with missing informa-
tion on software change effort.

5.1. Determining Change Purpose

Three primary driving forces in the evolution of software are: adaptive changes
introduce new functionality, corrective changes eliminate faults, and perfective
changes restructure code in order to improve understanding and simplify future
changes (Swanson, 1976, An et al., 1987). Models of software evolution must
take into account the significant differences in purpose and implementation of the
three types of changes (Graves et al., 2000, Atkins et al., 1999). However, few
change history databases record such information directly. Even if a record exists,
it is rarely consistent over time or across organizations. Fortunately, change
history databases usually record a short description of the purpose for the change
at the maintenance request (MR) or lower level. Such description or abstract is
provided by developers who implement the change.

Work in Mockus and Votta (1997) used textual analysis of MR abstracts to
impute adaptive, corrective, or perfective labels to the changes. It classified MRs
as adaptive, corrective, or perfective depending on which key words appear in
these change abstracts. The classification scheme was able to tag around 85% of
all MRs.

5.2. Estimating Change Effort

A particularly important quantity related to software is the cost of making changes.
Therefore, it is of great interest to understand which factors have historically had
strong effects on this cost, which could be approximated by the amount of time
developers spend working on the change.

When performing historical studies of cost necessary to make a change, it is
important to study changes at a fine level (MRs as opposed to releases). Studying
larger units of change, such as releases, may make it impossible to separate the

198 A. Mockus

effects of important factors. For example, software releases typically contain a
mixture of several types of changes, including new code and bug fixes. Consequently,
the relative effort for the different types of changes can not be estimated at the
release level. Also, larger change units may involve multiple developers and distinct
parts of the code, making it difficult to estimate developer effects.

Measurements of change effort are not recorded in a typical software production
environment. Graves and Mockus (1998) describe an iterative imputation algorithm
that, in effect, divides a developer’s monthly effort across all changes worked on in
that month. The algorithm uses several measurements on each change including the
size and type of a change. Both measures are related to the amount of effort
required to make the change. The effort estimation tools provide valuable cost
driver data that could be used in planning and in making decisions on how to reduce
expenses in software development.

6. Summary

It should be noted that the quality of collected data will have more influence on
the analysis results and the success of a study than a choice of method to deal
with missing values. In particular, a successful data collection might result in few
or no missing values.

In many realistic scenarios the data quality is low, and some values are missing.
In such cases, the first step should be to determine the mechanism by which the data
are missing and add observations that may explain why the values are missing. This
would make the MAR assumption more plausible. For MAR (and MCAR) data,
multiple imputation mitigates the effects of missing values. Other research and our
case study have shown not only the importance of applying a missing data technique
such as imputation, but also the importance of carrying out multiple imputation. In
our case study we find that different conclusions may be reached depending on the
particular method chosen to handle missing data. This demonstrates that the selec-
tion of a proper method to handle missing data is not simply a formal exercise, but
it may, in certain circumstances, affect the outcome of an empirical study.

References

Albrecht, A. J. & Gaffney Jr., J. E. (1983), Software function, source lines of code, and develop-
ment effort prediction: a software science validation, IEEE Transactions on Software
Engineering 9(6), 639-648.

An, K. H., Gustafson, D. A. & Melton, A. C. (1987), A model for software maintenance, in
Proceedings of the Conference in Software Maintenance, Austin, Texas, pp. 57-62.

Atkins, D., Ball, T., Graves, T. & Mockus, A. (1999), Using version control data to evaluate the
effectiveness of software tools, in 1999 International Conference on Software Engineering,
ACM Press, Rio de Janeiro, Brazil, pp. 324-333.

7 Missing Data in Software Engineering 199

Barnard, J. & Rubin, D. B. (1999), Small sample degrees of freedom with multiple imputation,
Biometrika 86(4), 948-955.

Chidamber, S. R. & Kemerer, C. F. (1994), A metrics suite for object oriented design, |EEE
Trans. Software Eng. 20(6), 476-493.

Fleming, T. H. & Harrington, D. (1984), Nonparametric estimation of the survival distribution in
censored data, Communications in Satistics — Theory and Methods 20 13, 2469-2486.

Goldenson, D. R., Gopal, A. & Mukhopadhyay, T. (1999), Determinants of success in software
measurement programs, in Sixth International Symposium on Software Metrics, IEEE
Computer Society Press, Los Alamitos, CA, pp. 10-21.

Graves, T. L. & Mockus, A. (1998), Inferring change effort from configuration management
databases, in Metrics 98: Fifth International Symposium on Software Metrics, Bethesda, MD,
pp. 267-273.

Graves, T. L., Karr, A. F., Marron, J. S. & Siy, H. P. (2000), Predicting fault incidence using soft-
ware change history, |EEE Transactions on Software Engineering, 26(7), 653-661.

Halstead, M. H. (1977), Elements of Software Science, Elsevier North-Holland, New York.

Herbsleb, J. D. & Grinter, R. (1998), Conceptual simplicity meets organizational complexity:
Case study of a corporate metrics program, in 20th International Conference on Software
Engineering, IEEE Computer Society Press, Los Alamitos, CA, pp. 271-280.

Herbsleb, J. D., Krishnan, M., Mockus, A., Siy, H. P. & Tucker, G. T. (2000), Lessons from Ten
Years of Software Factory Experience, Technical Report, Bell Laboratories.

Jonsson, P. & Wohlin, C. (2004), An evaluation of k-nearest neighbour imputation using likert
data, in Proceedings of the 10th International Symposium on Software Metrics, pp. 108-118.

Kaplan, E. & Meyer, P. (1958), Non-parametric estimation from incomplete observations, Journal
of the American Statistical Association, 457-481.

Kim, J. & Curry, J. (1977), The treatment of missing data in multivariate analysis, Social Methods
and Research 6, 215-240.

Little, R. J. A. (1988), A test of missing completely at random for multivariate data with missing
values, Journal of the American Satistical Association 83(404), 1198-1202.

Little, R. & Hyonggin, A. (2003), Robust likelihood-based analysis of multivariate data with miss-
ing values, Technical Report Working Paper 5, The University of Michigan Department of
Biostatistics Working Paper Series. http://www.bepress.com/umichbiostat/paper5

Little, R. J. A. & Rubin, D. B. (1987), Satistical Analysis with Missing Data, Wiley Series in
Probability and Mathematical Statistics, Wiley, New York.

Little, R. J. A. & Rubin, D. B. (1989), The analysis of social science data with missing values,
Sociological Methods and Research 18(2), 292-326.

McCabe, T. (1976), A complexity measure, |IEEE Transactions on Software Engineering 2(4),
308-320.

Mockus, A. (2006), Empirical estimates of software availability of deployed systems, in 2006
International Symposium on Empirical Software Engineering, ACM Press, Rio de Janeiro,
Brazil, pp. 222-231.

Mockus, A. (2007), Software support tools and experimental work, in V. Basili et al., eds,
Empirical Software Engineering Issues: LNCS 4336, Springer, pp. 91-99.

Mockus, A. & Votta, L. G. (1997), Identifying reasons for software changes using historic data-
bases, Technical Report BL0113590-980410-04, Bell Laboratories.

Muyrtveit, 1., Stensrud, E. & Olsson, U. (2001), Analyzing data sets with missing data: an empirical
evaluation of imputation methods and likelihood-based methods’ IEEE Transactions on
Software Engineering 27(11), 1999-1013.

Novo, A. (2002), Analysis of multivariate normal datasets with missing values, Ported to R by
Alvaro A. Novo. Original by J.L. Schafer.

R Development Core Team (2005), R: A Language and Environment for Statistical Computing, R
Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0. http://www.R-
project.org

Roth, P. L. (1994), Missing data: a conceptual review for applied psychologist, Personnel
Psychology 47, 537-560.

200 A. Mockus

Rubin, D. B. (1987), Multiple Imputation for Nonresponse in Surveys, Wiley, New York.

Schafer, J. L. (1997), Analysis of Incomplete Data, Monograph on Statistics and Applied
Probability, Chapman & Hall, London.

Schafer, J. S. (1999), Software for multiple imputation. http://www.stat.psu.edu/<jls/misoftwa.html

Schafer, J. L. & Olsen, M. K. (1998), Multiple imputation for multivariate missing data problems,
Multivariate Behavioural Research 33(4), 545-571.

Strike, K., Emam, K. E. & Madhavji, N. (2001), Software cost estimation with incomplete data,
| EEE Transactions on Software Engineering 27(10), 890-908.

Swanson, E. B. (1976), The dimensions of maintenance, in Proceedings of the 2nd Conference on
Software Engineering, San Francisco, pp. 492-497.

Twala, B., Cartwright, M. & Shepperd, M. (2006), Ensemble of missing data techniques to
improve software prediction accuracy, in ICSE’' 06, ACM, Shanghai, China, pp. 909-912.

Weisberg, S. (1985), Applied Linear Regression, 2nd Edition, Wiley, New York, USA.

Chapter 8
Reporting Experimentsin Software Engineering

Andreas Jedlitschka, M arcus Ciolkowski, and Dietmar Pfahl

Abstract

Background: One major problem for integrating study results into a common body
of knowledge is the heterogeneity of reporting styles: (1) It is difficult to locate
relevant information and (2) important information is often missing.

Objective: A guideline for reporting results from controlled experiments is
expected to support a systematic, standardized presentation of empirical research,
thus improving reporting in order to support readers in (1) finding the information
they are looking for, (2) understanding how an experiment is conducted, and
(3) assessing the validity of its results.

Method: The guideline for reporting is based on (1) a survey of the most promi-
nent published proposals for reporting guidelines in software engineering and
(2) an iterative development incorporating feedback from members of the research
community.

Result: This chapter presents the unification of a set of guidelines for reporting
experiments in software engineering.

Limitation: The guideline has not been evaluated broadly yet.

Conclusion: The resulting guideline provides detailed guidance on the expected
content of the sections and subsections for reporting a specific type of empirical
study, i.e., experiments (controlled experiments and quasi-experiments).

1. Introduction

In today’s software development organizations, methods and tools are employed
that frequently lack sufficient evidence regarding their suitability, limits, qualities,
costs, and associated risks. In Communications of the ACM, Robert L. Glass
(2004), taking the standpoint of practitioners, asks for help from research:
“Here’s a message from software practitioners to software researchers: We (prac-
titioners) need your help. We need some better advice on how and when to use
methodologies.” Therefore, he asks for:

e A taxonomy of available methodologies, based upon their strengths and
weaknesses

201

F. Shull et al. (eds.), Guide to Advanced Empirical Software Engineering.
© Springer 2008

202 A. Jedlitschka et al.

o A taxonomy of the spectrum of problem domains, in terms of what practitioners
need
o A mapping of the first taxonomy to the second (or the second to the first)

Empirical software engineering (ESE) addresses some of these issues partly by
providing a framework for goal-oriented research. The aim of this research is
to build an empirically validated body of knowledge and, based on that,
comprehensive problem-oriented decision support in the software engineering
(SE) domain.

However, one major problem for integrating study results into a body of knowl-
edge is the heterogeneity of study reporting (Jedlitschka and Ciolkowski, 2004). It
is often difficult to find relevant information because the same type of information
is located in different sections of study reports and important information is also
often missing (Wohlin et al., 2003; Sjgberg et al., 2005; Dyba et al., 2006; Kampenes
et al., 2007). For example, in study reports, context information is frequently
reported differently and without taking into account further generalizability.
Furthermore, specific information of interest for practitioners is often missing, like
a discussion of the overall impact of the technology on project or business goals.

One way to avoid this heterogeneity of reporting is to introduce and establish
reporting guidelines. Specifically, reporting guidelines support a systematic,
standardized description of empirical research, thus improving reporting in order to
support readers in (1) finding the information they are looking for, (2) understand-
ing how an experiment is conducted, and (3) assessing the validity of its results.
This claim is supported by the CONSORT statement (Altman et al., 2001), a
research tool in the area of medicine that takes an evidence-based approach to
improve the quality of reports of randomized trials to facilitate systematic reuse
(e.g., replication, systematic review, and meta analysis).

As identified by Kitchenham et al. (2002, 2004), reporting guidelines are neces-
sary for all relevant kinds of empirical work, but they must address the needs of
different stakeholders (i.e., researchers and practitioners). The specific need for
standardized reporting of controlled experiments has been mentioned by different
authors for a long time, e.g., Lott and Rombach (1996), Pickard et al. (1998), Shull
et al. (2003), Vegas et al. (2003), Wohlin et al. (2003), and Sjgberg et al. (2005). At
the same time, several more or less comprehensive and demanding reporting guide-
lines have been proposed, e.g., by Singer (1999), Wohlin et al. (2000), Juristo and
Moreno (2001), and Kitchenham et al. (2002). Even though each of these proposals
has its merits, none has yet been accepted as a de-facto standard. Moreover, most of
the existing guidelines are not explicitly tailored to the specific needs of certain types
of empirical studies, e.g., controlled experiments a comprehensive classification of
empirical studies is given by Zelkowitz et al. (2003).

The goal of this chapter is to survey the published proposals for reporting
guidelines and to derive a unified and — where necessary — enhanced guideline for
reporting controlled experiments and quasi-experiments. Nevertheless, many of the
elements discussed throughout this chapter will also make sense for reporting other
types of empirical work.

8 Reporting Experiments in Software Engineering 203

2. Background

Empirical software engineering research is not the first research domain to
encounter problems with insufficient reporting. Other disciplines, such as medicine
and psychology, have experienced similar problems and have achieved various
improvements by standardizing and instantiating reporting guidelines, e.g., for
randomized controlled trials in biomedical research (Altman et al., 2001; Moher
et al., 2001), psychology (Harris, 2002), clinical practice guidelines (Shiffman et al.,
2003), and empirical results from psychological research (American Psychological
Association, 2001).

In the field of SE research, in 1999, Singer (1999) described how to use the
“American Psychological Association (APA) Styleguide” (2001) for publishing
experimental results in SE. In 2002, Kitchenham et al. (2002) provided initial
guidelines on how to perform, report, and collate results of empirical studies in SE
based on medical guidelines as well as on the personal experience of the authors.
Shaw (2003) provided a tutorial on how to write scientific papers, including the
presentation of empirical research as a special case. Additionally, standard text
books on empirical SE, such as Wohlin et al. (2000) and Juristo and Moreno (2001),
address the issue of reporting guidelines. Wohlin et al. (2000) suggest an outline for
reporting the results of empirical work. Juristo and Moreno (2001) provide a list of
the “most important points to be documented for each phase” in the form of “ques-
tions to be answered by the experimental documentation.”

Jedlitschka et al. presented a first version of a guideline for reporting controlled
experiments (2005a) during a workshop on empirical software engineering (Jedlitschka,
2005). Feedback from the workshop participants, as well as from peer reviews, was
incorporated into a second version of the guideline (2005b). In parallel, the guideline
was evaluated by means of a perspective-based inspection approach (Kitchenham
et al., 2006). This evaluation highlighted 42 issues where the guideline would benefit
from amendment or clarification and eight defects. The feedback from the perspective-
based inspection and discussions with its authors led to a second iteration of the guide-
line, where the amendments were incorporated if we found them appropriate and
defects were removed (Jedlitschka and Ciolkowski, 2006). Additional feedback from
individual researchers was also incorporated (Jedlitschka et al., 2007).

Table 1 characterizes the existing proposals for guidelines on reporting empirical
work in SE. The first row of the table lists the proposals, arranged with regard to their
publication date. The second row of the table describes the focus of the guidelines. The
entry “Empirical Research” indicates that the guidelines are not tailored to a specific
type of empirical research. Otherwise, the specific type is explicitly mentioned, e.g.,
“Controlled Experiment” or “Systematic Review.” The third row describes the phases
of an experiment covered by the guideline. The entry “All” indicates that the guideline
covers all phases of a study. The remaining rows list the structuring elements in the
proposed guidelines and map them to the structure of our proposal (last column).
Elements of existing proposals occurring twice in a column indicate that these
elements can be mapped to two different elements of our new proposal.

Table 1 Overview on structuring proposals for reporting controlled experiments

Wohlin et al. Kitchenham et al. Juristo and Moreno Kitchenham Jedlitschka et al.

Singer (1999) (2000) (2002) (2001) (2004) (2007)
Type of study Empirical research Empirical research Empirical research Controlled experiment Systematic review Controlled experiment
Phases of study Reporting All All All All Reporting
Structure * * * * Title Title

* * * * Authorship Authorship

* * * * Keywords Keywords

Abstract * * * Executive summary Structured abstract

Introduction
Introduction
Method

Procedure

Results
Discussion

Discussion

References
Appendices

Introduction
Problem statement
Experiment planning
Problem statement
Experiment planning

Experiment
operation

Data analysis

Interpretation
of results

Discussion and
conclusion

References
Appendix

Experimental context
Experimental context
Experimental design

Conducting the
experiment and
data collection

Analysis

Interpretation
of results

*

*

Goal definition
Goal definition
Design

Experiment execution

Experimental analysis
Experimental analysis

Experimental analysis

*

*

or structured
abstract

Background

Background

Review questions

Review methods

Included and excluded
studies

Results
Discussion

Conclusion

Acknowledgments
Conflict of interest
References
Appendices

Introduction

Background
Experiment planning

Deviations from
the plan

Analysis
Discussion

Conclusions and future
work

Acknowledgements

References
Appendices

An asterisk (*) indicates that the authors do not explicitly mention or describe details for this element, but it is assumed that the elements are implicitly

required.

4

‘e 18 BYYISHIP3L 'V

8 Reporting Experiments in Software Engineering 205

We investigated the structures of published reports of controlled experiments in
empirical software engineering and have concluded that, in general, authors do not
use a common set of guidelines in determining what information to include in their
report. In other disciplines, such as medicine and psychology, editors have agreed
on a common reporting style, not only regarding the layout of the report, but also
its content. Given that the first publication of a reporting guideline for empirical SE
research by Singer (1999) was over 7 years ago and little has progressed since that
time, we conclude that significant effort needs to be invested to make sure that
guidelines are widely accepted and used. This is what other communities have
already learned (Altman et al., 2001; Harris, 2002).

Because of this, this chapter provides a description of the most common elements in
the various reporting guidelines, giving guidance to readers where we have diverged
from others suggestions. This guideline should be seen as a means for supporting both
authors of a report in providing relevant information in the appropriate place and read-
ers of a report in knowing where to look for a certain type of information.

3. Guideline for Reporting Controlled Experiments

In this section, we discuss what information should be presented in reports of
experiments. It some cases, it may be necessary to adapt the length of a report
depending on the requirements of the publisher. Therefore, the structure as pre-
sented in this section provides several options. For example, for a conference
paper (which is usually much shorter than a journal paper) it may be appropriate
to combine the description of the experiment planning and the deviations from
the plan as well as the description of the analysis procedure and the analysis,
whereas for a journal paper, it is generally appropriate to separate the content of
these sections.

In all reports, however, generally speaking, enough information has to be
provided to enable readers to judge the reliability of the experiment. The need for
detailed provision of information is not specific for SE. It is, for example, also
pointed out by Harris (2002). We are well aware that due to limitations of pages
(e.g., for conferences), this is not possible in all cases, but the author should at least
keep this intention in mind while compiling the report.

As indicated in Table 1, our reporting guideline comprises the following
elements: Title, Authorship, Structured Abstract, Keywords, Introduction,
Background, Experiment Planning, Execution, Analysis, Discussion, Conclusion
and Future Work, Acknowledgements, References, and Appendices.

Our proposal reflects the requirements of existing standards, such as APA, but
provides more structuring elements and asks for specific details that are not rele-
vant for many experiments in psychology, like a technology’s impact on the overall
project budget or time and on the product’s quality. Furthermore, our guideline
incorporates wording as it is common for experiments in empirical SE to also

206

Table2 Quick reference

A. Jedlitschka et al.

Section Content Scope Priority
3.1 Title <title> + “~ A controlled experi- Required
ment”; Is it informative and does it
include the major treatments and the
dependent variables?

3.2 Authorship Does it include contact information, Required

i.e., a valid email?
3.3 Structured Background Why is this research important? Required
abstract

Objective What is the question addressed with Required
this research?

Methods What is the statistical context and Required
methods applied?

Results What are the main findings? Practical ~ Required
implications?

Limitations What are the weaknesses of this
research?

Conclusions ~ What is the conclusion? Required

3.4 Keywords Avreas of research the treatments, Might be required

dependent variables, and study type by the publisher

3.5 Introduction Problem What is the problem? Where does it Required
statement occur? Who has observed it?

Why is it important to be solved?
Research What is the research question to be Required
objective answered by this study? E.g., by
using the GQM goal template:
Analyze <Object(s) of study> for
the purpose of <purpose> with
respect to their <Quality Focus> the
point of view of the <Perspective>
in the context of <context>
Context What information is necessary to Required
understand whether the research
relates to a specific situation (envi-
ronment)?

3.6 Background Technology What is necessary for a reader to know Required if not
under inves- about the technology to reproduce published else-
tigation its application? where

Alternative How does this research relate to alter- Required
technolo- native technologies? What is the
gies control treatment?
Related studies How this research relates to existing If available
research (studies)? What were the
results from these studies?
Relevance to How does it relate to state of the prac- If available
practice tice?
3.7 Experiment Goals Formalization of goals, refine the Required

planning

important constructs (e.g., the qual-

ity focus)

of the experiment’s goal

(continued)

8 Reporting Experiments in Software Engineering

Table2 (continued)

207

Section Content

Scope

Priority

Experimental

Experimental
Tasks

Hypotheses,

Design

Procedure

Analysis proce-

3.8 Execution

Deviations

3.9 Analysis

Data set prepa-
Hypothesis

3.10 Discussion Evaluation of

Threats to

Preparation

Descriptive

From which population will the
sample be drawn? How will the
groups be formed (assignment to
treatments)? Any kind of rand-
omization and blinding has to be
described

Which objects are selected and why?

Which tasks have to be performed by
the subjects?

What are the constructs and their
operationalization? They have to be
traceable derived from the research
question respectively the goal of the
experiment

What type of experimental design has
been chosen?

How will the experiment (i.e. data
collection) be performed? What
instruments, materials, tools
will be used and how?

How will the data be analyzed?

What has been done to prepare the
execution of the experiment (i.e.,
schedule, training)

Describe any deviations from the
plan, e.g., how was the data
collection actually performed?

What are the results from descriptive
statistics?

What was done to prepare the data set,
why, and how?

How was the data evaluated and was
the analysis model validated?

Explain the results and the relation
of the results to earlier research,
especially those mentioned in the
Background section

How is validity of the experimental
results assured? How was the data
actually validated?

Required

Required
Required

Required (for an
explorative
studies there
might be no
hypothesis
defined)

Required

Could be integrated

with execution

Could be integrated
with analysis

Required

Required

(continued)

208

Table2 (continued)

A. Jedlitschka et al.

Section Content

Scope Priority

Inferences

Lessons
learned

3.11 Conclusions Summary
and future

work
Impact
Future work
3.12 Acknowled-
gements

3.13 References

3.14 Appendices

Threats that might have an impact on
the validity of the results as such
(threats
to internal validity, e.g., confound-
ing variables, bias), and, further-
more, on the extent to which the
hypothesis captures the objectives
and the generalizability of the find-
ings (threats to external validity,
e.g., participants, materials) have to
be discussed

Inferences drawn from the data to
more general conditions

Which experience was collected
during the course of the
experiment

The purpose of this section is to
provide a concise summary
of the research and its results as
presented in the former sections

Description of impacts with regard to
cost, schedule, and quality,
circumstances under which the
approach presumably will not
yield the expected benefit

What other experiments could be run
to further investigate the results
yielded or evolve the Body of
Knowledge

Sponsors, participants, and
contributors who do not fulfil the
requirements for authorship
should be mentioned

All cited literature has to be
presented in the format
requested by the publisher

Experimental materials, raw data, and
detailed analyses, which might be

Required

Nice to have

Required

If appropriate

Absolutely required

Might be made
available trough

helpful for others to build upon the technical
reported work should be provided reports or web
site

support the reading of already published reports. The structuring elements are
discussed in detail in the following subsections. Table 2 shows each element, along
with the section it is detailed in, and its particular sub-elements.

8 Reporting Experiments in Software Engineering 209

3.1. Title

The title of the report has to be informative, because the title (together with the
abstract) “alerts potential readers to the existence of an article of interest” (Harris,
2002). To attract readers from industry, it is important to use commonly used
industry terms. Harris (2002) suggests avoiding phrases like “A Study of” or “An
Experimental Investigation of.” This might be true for psychology, but for ESE,
where we do not have explicit journals for experiments, we propose adding “— a
controlled experiment” (- a replicated controlled experiment, — a quasi-experi-
ment) if there are no limitations with regard to the title length. This helps the
reader to easily identify controlled experiments. Furthermore, if possible, it addi-
tionally aides the reader if the dependent variables and treatments can be speci-
fied in the title.

In fact, where the title length is limited, we believe it is more important to
include treatments and the dependent variables than “a controlled experiment.”
As an example of a succinct meaningful title, consider the following: The title
of a publication describing a controlled experiment to investigate technique X
compared to technique Y (the treatments) regarding the maintainability of a
product (dependent variable) could be “Comparing the Impact of Technique
X and Technique Y on Product’s Maintainability — A Controlled Experiment.”
From the perspective of a reader, both from research as well as from indus-
try, this title would allow for easily identifying the main aspects of the
publication.

3.2. Authorship

All individuals making a significant contribution should be in the author list or at
least acknowledged (c.f. Sect. 3.12).

Most report styles require contact details. If not, provide at least the e-mail
address of the responsible author. As authors might change their job, it is sometimes
more appropriate to provide the contact information of the more stable author — for
example a professor as opposed to a graduate student (Kitchenham, 2004), or, “to
be on the safe side,” provide contact information for all authors.

3.3. Structured Abstract

The need for a self-contained abstract is beyond any question. It is an important
source of information for any reader, as it briefly summarizes the main points of the
study and, moreover, is often the only part of a publication that is freely accessible
(Kitchenham, 2004). Abstracts should summarize the broad research questions.

210 A. Jedlitschka et al.

Additionally, for a single experiment, regardless of the format of the abstract,
authors should ensure that all relevant interventions or conditions (i.e., independent
variables) and dependent variables are mentioned. When more than one experiment
is reported in a paper, this may be infeasible, and instead authors will need to
describe their experiments in more general terms.

The exact format of the abstract needs more discussion. For example, Shaw
(2003) found that there is a common structure for the clearest abstracts consisting
of the following elements: (a) the current state of the art, identifying a particular
problem, (b) the contribution to improving the situation, (c) the specific result and
the main idea behind it, and (d) how the result is demonstrated or defended. For
reporting experiments in psychology, Harris (2002) suggests that an abstract should
describe the following aspects: (1) the problem under investigation, (2) the partici-
pants, (3) the empirical method, (4) the findings, and (5) the conclusions.

A large number of journals in medicine and psychology have imposed a special
form of the abstract, the structured abstract (Hayward et al., 1993; Bayley and
Eldredge, 2003), on authors to improve the clarity of abstracts. The most common
elements of structured abstracts are Background or Context, Objective or Aim,
Method, Results, and Conclusion.

Inspired by the lessons learned from medicine, we propose using a structured
abstract consisting of the elements listed below:

Background: Give a brief explanation of the motivation for conducting the
study. Example: “Software developers have a plethora of development technol-
ogies from which to choose, but often little guidance for making the decision”
(Shull et al., 2003).

Objective: Describe the aim of the study, including the object under examination,
the focus, and the perspective. Example: “We examined <techniquel> vs.
<technique2>with regard to fault detection rates from the viewpoint of a quality
engineer.”

Method: Describe which research method was used to examine the object (e.g.,
experimental design, number and kind of participants, selection criteria, data
collection and analysis procedures). Example: “We conducted a controlled experi-
ment using a 2x2 factorial design with 24 randomly assigned undergraduate
students participating. The data were collected with the help of questionnaires and
analyzed using ANOVA.”

Results: Describe the main findings. Example: “<techniquel> was significantly
more effective than <technique2> at an alpha level of 0.05.”

Limitations: Describe the major limitations of the research, if any. Example:
“Generalization of results is limited since the analyzed technique was applied only
to specify systems smaller than 10,000 lines of code.”

Conclusion: Describe the impact of the results. Example: “The result reinforced
existing evidence regarding the superiority of <techniquel> over <technique2>.”

Furthermore, to address practitioners’ information needs, cost, benefits, risks,
and transitions should also be described.

8 Reporting Experiments in Software Engineering 211

Our recommendation to include the element Limitations in a structured abstract
follows a suggestion made in The Editors of Annals of Internal Medicine (2004),
since every piece of evidence has its limitations. This additional information helps
readers judge the transferability of the results to their context. It also prevents
uncritical acceptance by the reader.

It is important to use only a few sentences for each structuring element of the
abstract. Hartley (2003) found that the number of words increases by about 30% if
structured abstracts are used. But he claims that these “extra costs” pay back
because, with the additional information given in the abstract, a wider readership
might be encouraged and citation rates improve as do (journal) impact factors.
Several researchers who compared the use of structured abstracts to traditional ones
found advantages for structured abstracts, but no real disadvantages (Hartley, 2004;
Kitchenham, 2004).

From this discussion, we conclude that experimenters should certainly use
structured abstracts, but even if the abstract is written as text (without structuring
elements), it should still include all of the aforementioned elements. Where pub-
lishers limit the length of the abstract by number of words or number of lines, we
suggest prioritizing the traditional elements: background (one sentence), objective,
method, results, and conclusion, but recommend sticking with the structure.

As a final note, to attract readers from industry, authors should use terms that are
commonly used in industry in describing their research.

3.4. Keywords

Except for Kitchenham (2004) and Jedlitschka et al. (2007), existing guidelines do
not explicitly address keywords. Furthermore, keywords are not necessarily
requested by all publications. Nevertheless, if provided (and if free of any pre-
defined characterization, like ACM), keywords should describe the areas of
research, the treatments, dependent variables, and study type. The list of keywords
should complement the title, as it was described earlier, especially in cases where
it was not possible to include all pertinent information in the title. As with the title,
keywords help readers to identify relevant publications. This is especially important
because publishers use keywords for categorisation, and they are visible even in
cases where full access to the publication is restricted. Finally, keywords should not
be idiosyncratic, but should instead reflect common terms used in the field.

3.5. Introduction

The purpose of the introduction is to set the scope of the work and give potential
readers good reasons for reading the remainder of the publication (motivation).
The introduction needs to place the research into a wider context before introducing
the specific problem. As can be seen from Table 1, there are several variations with

212 A. Jedlitschka et al.

regard to the content of the introduction. In most cases, the introduction starts
with a broad description of the research area (Wohlin et al., 2000). With the excep-
tion of Wohlin et al. (2000), who recommend a distinct section to describe the
problem under study, all of the guidelines include the description of the problem
in the introduction. Further, Wohlin et al. (2000) and Kitchenham et al. (2002)
suggest the introduction include an explicit description of the context of the study
(i.e., the environment in which it is run).

Thus, based on the various guidelines, as a minimum the introduction should
include a description of the Problem Satement, the Research Objectives, and the
Context of the research.

The problem statement supports readers in comparing their problems with the
problem investigated in the reported experiment, thereby judging the relevance of
the research to their questions. In general, the problem statement should provide
answers to the following questions: What is the problem? Where does it occur?
Who has observed it? Why is it important to be solved? In addition, any underlying
theory, causal model, or logical model should be specified.

The description of the problem statement should lead directly to the description
of the research objective. The research objective starts with a brief description of
the solution idea and the (expected) benefits of the solution.

Example adopted from (Ciolkowski et al. 1997): Recently, it was reported by [...] that
defects in a software artefact increase cycle time and development costs. One possible
solution would be to start defect detection as early in the development cycle as possible,
for example by inspecting requirements documents. The benefit would be that the defects
from the requirements phase will not be incorporated in the later phases, which will result
in reduced cycle times and development costs.

The description of the research objective (or, as Wohlin et al. (2000) call it, the
“Definition of the Experiment”), should be as coherent as possible. One way to
achieve this is to use the goal template of the Goal/Question/Metric (GQM) method
formulated by Basili et al. (2001). This template includes several elements to be
filled in as shown below, with an example underneath.

Analyze <...> for the purpose of <...> with respect to their <...> from the point of
view of the <...> in the context of <...>.

The following example is adapted from Ciolkowski et al. (1997):

Analyze perspective-based reading and ad hoc reading techniques
For the purpose of evaluation

With respect to their effectiveness

From the viewpoint of potential users

In the context of the software engineering class at the University

For further examples of the use of the goal definition template to describe the
research objective, see Wohlin et al. (2000).

The description of the context is essential for practitioners as well as for
researchers. Practitioners need context information to see if the technique/process/
tool under study would be applicable in their own organization. Researchers need
context information to understand the limits of the study (e.g., whether the results
are generalizable), to replicate results, and to aggregate results or perform meta-

8 Reporting Experiments in Software Engineering 213

analyses. To describe the context of the research, the CONSORT Statement
(Altman et al., 2001; Moher et al., 2001) suggests that the setting and locations of
a study are described. In software engineering this could include information
about application type (e.g., real-time system), application domain, (e.g., telecom-
munications), type of company (e.g., small or medium sized), experience of the
participants (e.g., professionals with on average 5 years of related practical
experience), time constraints (e.g., critical milestones, delivery date), process (e.g.,
spiral model), tools (e.g., used for capturing requirements), size of project
(e.g., 500 person months). Furthermore, it is valuable to know whether there are
specific requirements with regard to the environment in which the technique, tool,
or method was applied.

A more formal description of context from a researcher’s viewpoint comprises
context factors that might affect the generality and utility of the conclusions. These
are generally detailed when describing the experimental design.

The introduction generally ends with an outline for the remainder of the paper.

3.6. Background

Researchers as well as practitioners need an understanding of the landscape of
the reported research, including alternative approaches and relationships
between different experiments (Jedlitschka and Ciolkowski, 2004b). Most
guidelines require appropriate citation, as described, for example, in the APA
style guide (2001).

In contrast to Singer (1999), who includes background information in the
Introduction, Wohlin et al. (2000), Juristo and Moreno (2001), Kitchenham et al.
(2002), Jedlitschka and Pfahl (2005a, b), and Jedlitschka et al. (2007) suggest
presenting background information in a unique section.

At a minimum, the background should present: a description of the Technology
(or tool, method)! under Investigation, a description of Alternative Solutions, i.e.,
other reports that address the same problem or are comparable from a technology
view point, a Description of Related Sudies, i.e., empirical studies that have inves-
tigated the same or similar treatments, and, if appropriate, levels of Relevance to
Practice, i.e., how successfully the technique has been applied in industry. In the
following, we provide more details on each of these elements.

Because readers need to understand at some level what is being investigated
before they can understand how it relates to other work, the background will
frequently begin with a brief description of the treatment and control variables of
the experiment. The detail of the description depends on the availability of earlier
publications and the length of the report. Moreover, for readers who have no
specific background in the area, a more general reference, e.g., to a textbook, might
be helpful.

LFor ease of reading, we use technology as an umbrella term for technology, method, and tool.

214 A. Jedlitschka et al.

The description of alternative solutions/approaches helps to frame the work
within a larger research context. This description should not simply be a list of
related research (Shaw, 2003), but rather an objective description of the main find-
ings relevant to the work currently being reported. Alternative solutions should be
reported whether they are supportive of or contradictory to the current research
approach. Especially in the case of an experiment that compares different
approaches, it is crucial to objectively describe the alternative approaches. Note that
a comparison of the results of related work and the current results should be done
in the discussion section after the results have been presented (c.f. Sect. 3.10).

In the description of related studies, existing evidence (if available), in the form
of earlier studies and, especially, experiments, should be described. As with alterna-
tive solutions, the relation of the current research to other studies (existing evidence)
helps readers understand where this work fits into a larger research context.
Moreover, it supports the reuse of this study for replication or systematic review,
providing a sound basis for research and improving its value. If the reported study
is a replication, the parental study and its findings also have to be described.

In terms of relevance to practice, if applicable, if one of the treatments (technologies)
has previously been applied to real software projects or under realistic circumstances, a
short summary of the findings and related references should be provided.

3.7. Experiment Planning

This section, sometimes referred to as experimental design or protocol, describes
the plan or protocol that is used to perform the experiment and analyze the results.
It is important because, as Singer stated, this section is the “recipe for the
experiment” (Singer, 1999). Therefore, it should provide all information that is
necessary to replicate the study and integrate it into the ESE body of knowledge. In
addition, this section allows readers to evaluate the internal validity of the study,
which is an important selection criterion for systematic review or meta-analysis
(Kitchenham, 2004; Kitchenham et al., 2002).

According to several guidelines (e.g., Harris, 2002), the experiment planning
section should describe the Goals, Participants, Experimental Material, Tasks,
Hypotheses, Parameters, and Variables, Experiment Design, Procedure for con-
ducting the study, as well as the Analysis Procedure. Using this order allows for
successive refinement of the details of the study. In some cases, however, a different
order might be appropriate.

The level of detail regarding the various elements depends on the kind of publi-
cation, respecting the required length of the report. Therefore, authors should
prioritise the information according to what is most relevant for the particular
audience. Alternatively, authors may consider combining several sections into one.
For instance, it might be appropriate to integrate the description of the procedure
with the description of the execution, or to integrate the description of the analysis

8 Reporting Experiments in Software Engineering 215

procedure with that of the analysis. Furthermore, it might be possible to put all
relevant material into an appendix or longer technical report. If this is not possible,
archiving the information on a website may be an alternative. To address concerns
that arise in sharing protocols, including raw data and material, Basili et al. (2007)
propose an initial licensing model.

3.7.1. Goal(s)

Often the original research objective as described in the introduction is not concrete
enough. The purpose of this paragraph is, therefore, to define in more concrete
terms the main manipulations of the experiment. For example, the GQM template
provided in the introduction could be refined into something like:

Example adapted from Ciolkowski et al. (1997):

Goal 1: Analyze perspective-based reading and ad hoc reading techniques
For the purpose of understanding their effectiveness
With respect to the defect detection rate of individual developers

Goal 2: Analyze perspective-based reading perspectives
For the purpose of understanding their effectiveness
With respect to detecting different defect classes

The refinement of the main research question should be described and motivated to
allow for traceability down to the hypotheses, which will be described in later in
this chapter.

3.7.2. Participants

The participants (often referred to as subjects or, if not humans, experimental units)
need to be described in detail. Furthermore, the sampling strategy and the resulting
samples need to be described, including the number of participants (per condition),
the kind of participants (e.g., computer science students), and the populations from
which they were drawn. All measures for randomization have to be reported here,
especially the random allocation of participants to treatments. Where a statistical
power calculation has been used, assumptions, estimates, and calculations have to
be provided.

All participant characteristics that might have an effect on the results or restrict
the sample in some way should also be described in this section. This may include
experience with the techniques to be applied or mean/range of experience in years,
or educational level. For instance, if a certain level of experience is required, the
sample might be drawn from fourth-term computer science students (as opposed to
first-term students).

A description of the motivation for the participants to participate is mandatory.
For instance, it should be stated whether the participants were paid and if so, how
much, or whether they earned educational credits for taking part in the experiment.
Additionally, the answers to the following questions are of interest (Wohlin et al.,

216 A. Jedlitschka et al.

2000): What was the commitment of the participants? How was consent obtained?
How was confidentiality assured? How was participation motivated (induced)?

3.7.3. Experimental Materials

In this section, all experimental materials and equipment should be described. For
instance, if the study involves a questionnaire, questions should be described, as
should any other characterizations of the questionnaire, e.g., it had five sections
focusing on specific topics, with the topics named. As another example, in an
experiment looking at different reading techniques, the document used for the
application of the reading technique should be described in terms of its length,
complexity, seeded faults (number, type, interactions), etc. As with the participant
section, all characteristics that might have an impact on the results should be
mentioned here as formally as possible. However, in case of conference papers, it
is often not possible to present all the materials in detail, so we suggest providing
more detail either in the appendix of an associated technical report, or using a
website.

Note that in this section, the materials should not be presented verbatim, but
rather described with as much detail as necessary for the readers to understand what
materials the participants interacted with during the experiment.

3.7.4. Tasks

Here, the tasks performed by the participants should be described in enough detail
so that a replication of the experiment is possible without consultation of the
authors. Redundancies with regard to the description of the technology in the
background section (c.f., Sect. 3.6) should be avoided. If the description requires
too much space, the information should be made available in a technical report or
as a web resource. When space is a consideration, the task description could be
integrated with the description of the procedure. However, separating the two
descriptions makes it easier for readers to understand how the hypotheses, parameters,
and variables were derived.

3.7.5. Hypotheses, Parameters, and Variables

In this section, hypotheses, parameters, and variables should be described. This
description should be linked to the research objective already reported in the
introduction.

For each goal stated in the research objective, the null hypotheses, denoted H,
and their corresponding alternative hypotheses, denoted H,,, need to be reported,
where i corresponds to the goal identifier, and j is a counter for cases where more

8 Reporting Experiments in Software Engineering 217

than one hypothesis is formulated per goal. The description of both null and
alternative hypotheses should be as formal as possible. The main hypotheses should
be explicitly separated from ancillary hypotheses and exploratory analyses. In the
case of ancillary hypotheses, a hierarchical system is appropriate. Hypotheses need
to state the treatments and the control conditions.

Continuing the example for Goall from Sect. 3.7.1 (adapted from Ciolkowski
et al. (1997)):

The goal of the experiment is to determine:
Q1: Which reading technique produces a higher mean defect detection rate?
One of the possible hypotheses is:

H,,,: Individuals applying a perspective-based reading (PBR) technique detect more

defects than individuals using ad hoc reading.
In the example hypothesis H,,, the treatment is perspective-based reading and the
control condition is ad hoc reading. A further formalization of H , and the alterna-
tive hypothesis H,,, could be written in the following form (where MDDR stands

for mean defect detection rate):

H,,, = MDDR(PBR) > MDDR(ad hoc)
H,,, = MDDR(PBR) < MDDR(ad hoc)

It is important to differentiate between experimental hypotheses and the specific
tests being performed; the tests have to be described in the analysis procedure
section.

In addition to the hypotheses, there are two types of variables that need to be
described in this section: the dependent variable(s) (aka. response variables) and
the independent variable(s) (aka. predictor variables). As with the hypotheses,
dependent variables need be defined and justified in terms of their relevance to the
goals listed in the Research Objectives. Dependent variables are the variables that
are measured to ascertain whether the independent variable had an effect on the
outcome. Likewise, independent variables are variables that are frequently
manipulated in the experiment and may influence the dependent variable(s).
Independent variables can include treatments, materials, and some context factors.
In this section, only independent variables that are manipulated or controlled
through the experimental design (i.e., causal variables) are described. For each
independent variable, its corresponding levels (aka. alternatives, treatments) have
to be specified in operational form. In the example given above, the dependent
variable is the MDDR. The independent variable is the type of reading technique,
which has two levels, PBR and ad hoc.

With respect to reporting, authors need to describe their metrics clearly. In
particular, if a standardized set of metrics is available, authors have to explain
which of them are used. If existing metrics are tailored, the need for the tailoring
and the tailored metric have to be explicated. Based on Wohlin et al. (2000), Juristo
and Moreno (2001), and Kitchenham et al. (2001), Table 3 gives a schema for the
description of variables and related metrics.

Table 3 Schema for the description of variables

Name of the Type of the Abbreviation
variable variable

(independent,

dependent,

moderating)

Type of reading independent RT
technique

Mean defect dependent MDDR
detection rate

Class
(product,
process,
resource,
method)

Method

Process

Entity
(instance of
the class)

Reading
Technique

Inspection
process

Type of
attribute (inter-
nal, external)

N.A.

Internal: effi-
ciency;
external:
quality

Scale type
(nominal,
ordinal ...)

nominal

ratio

Unit

N.A.

Number of
defects
per hour

Range or,

for nominal
and restricted
ordinal scales,
the definition
of each scale
point

PBR; ad hoc

>=0

Counting rule
in the context of
the entity

N.A.

Number of
agreed upon
defects after
review meet-
ing / total
effort for
inspection
process in
hours

8T¢

‘e 18 BYYISHIP3L 'V

8 Reporting Experiments in Software Engineering 219

For subjective metrics, a statistic for inter-rater agreements should be presented,
such as the kappa statistics or the intra-class correlation coefficient for continuous
metrics (Kitchenham et al., 2002).

3.7.6. Experiment Design

In the Experiment Design subsection, the specific design has to be described.
Elements in this section that need to be described include whether the experiment
was a within — or between-subjects design, or a mixed factors design, with a
description of each of the levels of the independent variable. Juristo and Moreno
(2001) give a comprehensive description of designs for experiments. Moreover,
authors should describe how participants were assigned to levels of the treatments
(Kitchenham et al., 2002).

If, for example, an experiment examined the effect of PBR versus ad hoc
reading techniques on short and long times spent looking for defects on MDDR,
with different sets of subjects using the techniques, it would be reported as a 2
(reading technique) x 2 (time period) between-subjects design with reading
technique having two levels: PBR and ad hoc, and time also having two levels
(15min and 30 min).

In addition to this formalization of the design, if any kind of blinding (e.g.,
blind allocation) has been used, the details need to be provided; this applies to the
execution (e.g., blind marking) and the analysis (e.g., blind analysis). If the
experiment is a replication, the adjustments and their rationales need to be dis-
cussed. If applicable, training provided to the participants has to be described.
Any kind of threat mitigation should also be addressed, i.e., what measures were
used to manage treats to validity. For example, a typical strategy to reduce learning
effects is to have subjects exposed to the various levels of a treatment in a random
or ordered fashion.

3.7.7. Procedure

The procedure section should describe precisely what happened to the participants
from the moment they arrived to the moment they left (Harris, 2002). This includes a
description of any training provided (e.g., the participants received a 2-h lecture
introducing perspective-based reading). The procedure section should also include a
description of the setting (i.e., where the experiment occurred), and the schedule for
the experiment. Furthermore, details of the data collection method have to be
described, including when the data was collected, by whom, and with what kind of
support (e.g., tool). This is in accordance with Kitchenham et al. (2002), who state
that the data collection process describes the “who,” the “when,” and the “how” of
any data collection activity. Any type of transformation of the data (e.g., marking
“true” defects in defect lists) and training provided for such should also be described

220 A. Jedlitschka et al.

here. If there are limitations with regard to the numbers of pages, the description of
the procedure can be integrated with the analysis section.

3.7.8. Analysis Procedure

The statistical tests undertaken depend on the experimental design; therefore, the
experimental plan is finalized with a description of the analysis procedure detailing
which methods were used to test the hypotheses in analysing the data. If different
hypotheses are investigated, information for each hypothesis needs to be provided
separately. If any additional influences are expected, their analysis also needs to be
described, e.g., see Ciolkowski et al. (1997). If there are page limitations, the analy-
sis procedure can be combined with the analysis section.

3.8. Deviations from the Plan

In an ideal situation, the experiment was conducted exactly as it was planned. Then
the description in the procedure section (c.f., Sect. 3.7.7) is both, the representation
and the instantiation of the plan. In that case, this section is not needed. However,
deviations regarding the original plan are often experienced. Because this might
have an impact on both the validity of the results and the replicability of the study,
it is necessary to describe those deviations by describing the original plan when
deviations occurred. This includes all differences between the instantiated procedure
and the plan, for instance, regarding instrumentation and the collection process.
Deviations can occur regarding participation (who actually participated), schedule
(e.g., the time participants were given for the tasks), or data collection. In addition,
information about subjects who do not complete the study should be presented, for
example, five subjects did not attend the final session; as recommended by
Kitchenham et al. (2002). If possible, reasons for the non-completion should be
given; that information is worthwhile when replicating the study.

In the case of a limited number of pages, this description can be integrated with
the procedure section (c.f. Sect. 3.7.7). In addition, a general statement confirming
the process conformance could be given in the description of the analysis.

3.9. Analysis

According to Singer (1999), the Analysis section summarizes the data collected and
its treatment. In this section, the results should be described devoid of any interpre-
tation. When there are limited pages, authors might tend to add some interpretation
to the analysis section. However, according to existing guidelines, especially from
other disciplines, interpretation and results belong to clearly distinct sections. If it

8 Reporting Experiments in Software Engineering 221

is necessary to include interpretation in the analysis section, we strongly favour
establishing a clear distinction between the two (e.g., by using textual measures or
subsections).

If multiple goals were investigated, separate analysis subsections and an overall
(summarizing) analysis are required. Since the analysis procedures are already
described in the design section, the purpose of this section is to describe the
application of the analysis methods to the data collected. The Analysis section
generally contains three types of information: Descriptive Satistics, Data Set
Preparation, and Hypothesis Testing. When appropriate, a sensitivity analysis
should be reported in the hypothesis testing section.

Presenting the data by using appropriate descriptive statistics, including
number of observations, measures for central tendency, and dispersion, gives the
reader an overview of the data. Mean, median, and mode are example measures
for central tendency. Standard deviation, variance, and range, as well as interval
of variation and frequency are example measures for dispersion. To facilitate
meta-analysis, it is highly recommended [e.g., by Kitchenham et al. (2002)] to
provide raw data in the appendices or to describe where the data can be acquired,
e.g., from a website.

Additional processing (or preparation) of the data set may be required. Such
preparations should be discussed here. This includes, if appropriate, data transfor-
mation, outlier identification and their potential removal, and handling of missing
values, as well as the discussion of dropouts (i.e., data from participants who were
not present for all experimental sessions). Chap. 7 details methods for dealing with
missing values.

For hypothesis testing, special emphasis should be placed on how the data was
evaluated (e.g., by an ANOVA) and how the analysis model was validated. The
violations of the statistical assumptions underlying the analysis method (e.g.,
normality, independence, and residuals) should also be described. The values of the
resulting statistics also need to be reported. Harris outlines what has to be reported
for different kinds of statistical tests (Harris, 2002). Singer (1999) recommends that
“inferential statistics are reported with the value of the test (effect size), the proba-
bility level, the degrees of freedom, the direction of effect,” and the power of the
test. To this list, we add the alpha value and the confidence interval where appropriate
(Dyba et al., 2006; Kampenes et al., 2007).

3.10. Discussion

The purpose of the discussion section is to interpret the findings presented in the
previous section. This includes an overview of the results, threats to validity,
generalization (where are the results applicable?), as well as the (potential) impact on
cost, time, and quality. Harris (2002) suggests starting this section with a description
of what has been found and how well the data fit the predictions. Related to this,
authors should discuss whether the hypotheses were confirmed or not. The discussion

222 A. Jedlitschka et al.

section should include information about each of the following three elements:
Evaluation of Results and Implications, Threatsto Validity, and Inferences.

3.10.1. Evaluation of Results and Implications

The purpose of the evaluation of results and implications is to explain the results.
All findings, including any unexpected results, should be described in this subsec-
tion. Moreover, if the null hypothesis was not rejected, authors may include reasons
for why they believe this is the case. Several authors point out that it is important
to distinguish between statistical significance and practical importance (Kitchenham
et al., 2002) or meaningfulness (Harris, 2002). The results should also be related to
both theory and practice.

Although it is still very rare for SE experiments to develop theory, the implica-
tions of the findings should be related to the larger theory being developed, and how
they further explicate or illuminate that theory (see Chap. 12 for more information
about theory). The results should be discussed in the light of the objectives stated
in the introduction and also related to the previous work described in the back-
ground section. These two together should help to build a broader theoretical foun-
dation for the work.

With respect to practice, the results should be related to current and potential
practice, outlining how practice can be improved by applying the results. If the null
hypothesis was not rejected, it is not possible to give an interpretation in any direc-
tion; in particular, it does not mean that the null hypothesis is true, only that not
enough evidence exists to reject it. In some cases, the value of the effect is so small
that there may actually be no relevant application to current practice. This has to be
explicated as well.

In writing the discussion, it is important to (1) clearly state the results of the analy-
sis separately from any inferences or conclusions based on those results (Kitchenham
etal., 2002), (2) to ensure that the conclusions follow from the results (Kitchenham
et al., 2002), and (3) that conjectures be made with caution and kept brief, leaving
out fanciful speculation (Harris, 2002).

3.10.2. Threatsto Validity

All threats that might have an impact on the validity of the results need to be
discussed. This includes at least (1) threats to construct validity, (2) threats to
internal validity, (3) threats to external validity, and if applicable, and (4)
threats to conclusion validity. A more comprehensive classification of threats to
validity is given in Wohlin et al. (2000). Each of these four types of threats to
validity is defined below, and needs to be covered in a research paper. Ignoring
the threats can lead to the wrong conclusions regarding the validity of the
results. For example, a practitioner might assume that the results would apply

8 Reporting Experiments in Software Engineering 223

to his situation where the external validity could indicate problems regarding
generalizability.

Construct validity. Construct validity refers to the degree to which the operation-
alization of the measures in a study actually represents the constructs in the real
world. For instance, in measuring readability, a researcher may look at the time
required to read source code. The construct validity of this measure is the extent
to which the readability of source code is actually related to the time required to
read it. There are a number of threats to construct validity outlined in Wohlin
et al. (2000).

Internal validity. Internal validity refers to the extent to which the treatment or
independent variable(s) were actually responsible for the effects seen to the
dependent variable. Unknown factors may have had an influence on the results
and therefore put limitations on the internal validity of the study. Note that it is
possible to have internal validity in a study and not have construct validity. For
instance, it could be true that the manipulations in the study did actually affect
the outcome, and yet the manipulations did not map/represent the desired entity
in the real world.

External validity. External validity refers to the degree to which the findings of
the study can be generalized to other participant populations or settings. External
validity can often be a problem for controlled experiments in artificial environ-
ments where the same conditions may not hold in the real world. Wohlin et al.
describe three types of threats to internal validity dealing with people, place,
and/or time.

Conclusion validity. Conclusion validity refers to whether the conclusions
reached in a study are correct. For controlled experiments, conclusion validity is
directly related to the application of statistical tests to the data. If the statistical
tests are not applied correctly, this is a threat to the conclusion validity. Thus,
examples of threats to conclusion validity involve anything that causes a Type |
or Type Il error.

To facilitate reading, subsections might be appropriate for each threat that has to
be discussed. Following the arguments presented by Kitchenham et al. (2002), it is
not enough to mention that a threat exists; the implications of the threat with respect
to the findings also need to be discussed.

Other threats than those listed above may also need to be discussed, such as
personal vested interests or ethical issues regarding the selection of participants
(in particular, experimenter-subject dependencies).

3.10.3. Inferences

In this section, the findings can be generalized, within the scope of validity, to
broader research questions or settings. This should be done carefully, based on the

224 A. Jedlitschka et al.

findings, by incorporating the limitations. All claims need to be supported by the
results. For technologies not currently in use, scale-up issues should be discussed.

3.11. Conclusions and Future Work

The final section of the report should describe, based on the results and discussion,
the following elements: Summary, Impact, and Future Work.

The conclusion section begins with a concise summary of the research and its
results as presented in the former sections. Unique to the domain of software
engineering — in order to enable readers to get the most important findings with
regard to the practical impact in one place — in the conclusion we emphasize a
description, where possible, of the impact on cost, time, and quality, and a summary
of the limitations. Note that these conclusions can only be drawn if they were
directly investigated in the experiment.

Impact on Cost: What effort was necessary to introduce and perform the technique
(e.g., what are the costs of detecting a defect of a certain type with this technique?
Is there any impact on the cost of other steps of the development process, positive or
negative ones (e.g., reduced cost for rework)?)

Impact on Time: Is there any positive or negative impact on the time of the proposed
solution/technology/technique on other steps of the development process?

Impact on Quality: Is there any impact on the quality of the proposed solution/
technology/technique on the quality of other steps of the development process?

Besides the description of the impact, where possible and appropriate, a discus-
sion of the approach’s level of maturity, when the investments will pay back, and
consequences arising from the implementation will help readers to assess the
technology. (Although in most cases artificial, we assume a rough estimate is better
than no information.)

If applicable, limitations of the approach with regard to its practical implementa-
tion should also be described, i.e., circumstances under which the approach
presumably will not yield the expected benefits or should not be employed.
Furthermore, any risks or side-effects associated with the implementation or appli-
cation of the approach should also be mentioned.

Finally, an outlook to future work should be given. It should describe what other
research (i.e., experiments) could be carried out to further investigate the results
yielded or evolve the body of knowledge and theoretical constructs.

3.12. Acknowledgements

In this section, sponsors, participants, and (research) contributors who do not fulfil
the requirements for authorship should be mentioned.

8 Reporting Experiments in Software Engineering 225

3.13. References

In this section, all cited literature has to be presented in the format requested by the
publisher.

3.14. Appendices

In this section, material, raw data, and detailed analyses that might be helpful for
others to build upon the reported work should be provided (i.e., meta-analysis).

If the raw data is not reported, the authors should specify where and under which
conditions the material and the raw data could be made available to other research-
ers (i.e., technical report, web resource). Here a license model, such as the one
proposed by Basili et al. (2007) can be used to ensure to all parties that their contri-
bution is acknowledged and the material is only used for the defined purposes. The
licensor can, for example, require that any publication based on the delivered data
has to be sent to him.

4. Conclusion

In this chapter, we have motivated the importance of reporting standards for matur-
ing empirical software engineering research. The contribution of this chapter is a
guideline for guiding researchers while reporting experiments in software engineer-
ing. The presented guideline unifies and extends the most prominent existing guide-
lines published by various authors (cf. Table 1). In addition to providing a uniform
structure of a reporting template, the guideline provides detailed guidance on which
information should be provided in the various sections of a report. This guideline
was developed for a specific type of empirical study, i.e., controlled experiments
and quasi-experiments. Nevertheless, many aspects discussed throughout this chap-
ter have to be reported in other empirical study reports, like case studies.

Thus, this chapter provides researchers with a means for structured and compre-
hensive documentation of empirical studies, especially experiments. In some cases,
due to page limitations (e.g., conference paper), it might not be possible to provide
all the proposed information. Although each paper should stand for itself, we have
discussed possible shortcuts by integrating certain sections. Furthermore, authors
should make use of technical reports or web resources to provide additional infor-
mation, including material, raw data, and detailed analysis.

During our work on guidelines, we learned that issues are related not only to
structure and comprehensiveness, but also to the information needs of stakeholders.
In this chapter, we presented, from our perspective, a quite comprehensive model,
addressing several stakeholders. To especially attract decision makers in industry,
we envisage tailoring this guideline for different audiences (e.g., by providing a

226 A. Jedlitschka et al.

guideline for reporting results from empirical research to practitioners). Researchers
doing replications or performing a systematic review certainly have different
information needs than practitioners looking for candidate techniques for solving
their problems. Researchers need more technical information regarding the study as
such, whereas practitioners require information regarding the potential of the
technique to actually solve their problems; that is, information on development
costs, product quality, and development schedule.

An important issue related to the dissemination task is to ensure that the guide-
lines are used in research practice. One possibility to enforce the usage of reporting
guidelines could be that program committees of SE workshops and conferences as
well as editorial boards of SE journals make the application of a standard reporting
scheme mandatory.

To facilitate the adoption of the guidelines, it would help to stress the benefits
that accrue to researchers who apply them. For example, one benefit could be
simpler integration of individual results into a common body of knowledge. We
also assume that, generally, the SE publication process will become more efficient,
since crucial information will be found by reviewers (and other researchers) in the
same place every time.

Thus, we would like to conclude this chapter with a call for adherence to guide-
lines. Whenever reporting results of any kind of empirical studies, it is wise to think
about who shall read the publication for what purposes. This way, the report will
deliver the information needed for different stakeholder groups and audiences. The
guidelines will assist writers to emphasize the right information and the empirical
software engineering community to mature.

Acknowledgements While preparing the guidelines, we got valuable feedback from many
people. Only the names of some of them can be listed here. We thank Janice Singer for her
feedback and support, while finalizing this chapter, the unknown reviewers of the preliminary
version of this chapter, Claes Wohlin, who gave valuable insights and comments on an earlier
version of the guidelines, Barbara Kitchenham and her team at NICTA for their valuable feedback
from the perspective-based reading of an earlier version, which helped to improve the guidelines,
and many others from the International Software Engineering Research Network (ISERN) for
fruitful discussions. Furthermore, we are grateful to Sonnhild Namingha from Fraunhofer IESE
for reviewing a previous version of this chapter.

References

Altman, D.G., Schulz, K.F., Moher, D., Egger, M., Davidoff, F., Elbourne, D., Ggtzsche, P.C.,
Lang, T. for the CONSORT Group (2001). The Revised CONSORT Statement for Reporting
Randomized Trials, Explanation and Elaboration. Annals of Internal Medicine, Vol. 134,
No. 8, pp. 663-694.

American Psychological Association (2001). Publication Manual of the American Psychological
Association, 5th edn, American Psychological Association, Washington, DC.

Basili, V.R., Caldiera, G., Rombach, H.D. (2001). Goal Question Metric Paradigm, in
Marciniak, J.J. (Ed.), Encyclopedia of Software Engineering, Vol. 1, Wiley, New York,
pp. 528-532.

8 Reporting Experiments in Software Engineering 227

Basili, V.R., Zelkowitz, M., Sjgberg, D.1.K., Johnson, P., Cowling, T. (2007). Protocols in the use
of Empirical Software Engineering Artifacts. Journal of Empirical Software Engineering,
12(1), pp. 107-119.

Bayley, L., Eldredge, J. (2003). The Structured Abstract, An Essential Tool for Researchers, In
Hypothesis. The Journal of the Research Section of the Medical Library Association, Vol. 17,
No. 1, 4 pp.

Ciolkowski, M., Differding, C., Laitenberger, O., Miinch, J. (1997). Empirical Investigation of
Perspective-based Reading, A Replicated Experiment, Fraunhofer Institute for Experimental
Software Engineering, Germany, ISERN-97-13.

Dyba, T., Kampenes, B.V., Sjgberg, D.I.K. (2006). A Systematic Review of Statistical Power in
Software Engineering Experiments, A Survey of Controlled Experiments in Software
Engineering. Information and Software Technology, Vol. 48, pp. 745-755.

Glass, R.L. (2004). Matching Methodology to Problem Domain. Communications of the ACM,
\ol. 47, No. 5, pp. 19-21.

Harris, P. (2002). Designing and Reporting Experiments in Psychology, 2nd edn, Open University
Press, Buckingham.

Hartley, J. (2003). Improving the Clarity of Journal Abstracts in Psychology, The Case for
Structure. Science Communication, Vol. 24, No. 3, pp. 366-379.

Hartley, J. (2004). Current Findings from Research on Structured Abstracts. Journal of the
Medical Library Association, Vol. 92, No. 3, pp. 368-371.

Hayward, R.S.A., Wilson, M.C., Tunis, S.R., Bass, E.B., Rubin, H.R., Haynes, R.B. (1993). More
Informative Abstracts of Articles Describing Clinical Practice Guidelines. Annals of Internal
Medicine Vol. 118, No. 9, pp. 731-737.

Jedlitschka, A. (2005). Minutes from Third International Workshop on Empirical Software
Engineering “Guidelines for Empirical Work in Software Engineering”. IESE-Report 052.05/E,
Oulu.

Jedlitschka, A., Ciolkowski, M. (2004). Towards Evidence in Software Engineering, In
Proceedings of ACM/IEEE International Symposium on Software Engineering 2004
(ISESE2004). Redondo Beach, California, pp. 261-270.

Jedlitschka, A., Pfahl, D. (2005a). Reporting Guidelines for Controlled Experiments in Software
Engineering. IESE-Report IESE-035.5/E.

Jedlitschka, A., Pfahl, D. (2005b). Reporting Guidelines for Controlled Experiments in Software
Engineering, In Proceedings of ACM/IEEE International Symposium on Software Engineering
2005 (ISESE2005). Noosa Heads, Australia, pp. 95-104.

Jedlitschka, A., Ciolkowski, M. (2006). Reporting Guidelines for Controlled Experiments in
Software Engineering, Fraunhofer Institute for Experimental Software Engineering, Germany,
ISERN-06-1.

Jedlitschka, A., Ciolkowski, M. Pfahl, D. (2007). Reporting Guidelines for Controlled Experiments
in Software Engineering, Fraunhofer Institute for Experimental Software Engineering,
Germany, ISERN-07-1.

Juristo, N., Moreno, A. (2001). Basics of Software Engineering Experimentation, Kluwer
Academic Publishers, Boston, MA.

Kampenes, B.V., Dyba, T., Hannay, J., Sjeberg, D.I.K. (2007). A Systematic Review of Effect Size
in Software Engineering Experiments. Information and Software Technology, Vol. 49,
No. 11-12, pp. 1073-1086.

Kitchenham, B. (2004). Procedures for Performing Systematic Reviews, Keele University
Joint Technical Report TR/SE-0401, ISSN,1353-7776 and National ICT Australia Ltd.
NICTA Technical Report 0400011T.1.

Kitchenham, B., Al-Khilidar, H., Ali Babar, M., Berry, M., Cox, C., Keung, J., Kurniawati, F.,
Staples, M., Zhang, H., Zhu, L. (2006). Evaluating Guidelines for Empirical Software Engineering
Studies, In Proceedings of ACM/IEEE International Symposium on Software Engineering 2006
(ISESE2006).

Kitchenham, B., Dyba, T., Jargensen, M. (2004). Evidence-Based Software Engineering, In
Proceedings of 26th International Conference on Software Engineering (ICSE’04), pp. 273-281.

228 A. Jedlitschka et al.

Kitchenham, B.A., Hughes, R.T., Linkman, S.G. (2001). Modeling Software Measurement, IEEE
Transactions on Software Engineering, Vol. 27, No. 9, pp. 788-804.

Kitchenham, B.A., Pfleeger, S.L., Pickard, L.M., Jones, P.W., Hoaglin, D.C., EI Emam, K.,
Rosenberg, J. (2002). Preliminary Guidelines for Empirical Research in Software Engineering,
IEEE Transactions on Software Engineering, Vol. 28, No. 8, pp. 721-734.

Lott, C.M., Rombach, H.D. (1996). Repeatable Software Engineering Experiments for Comparing
Defect — Detection Techniques, Empirical Software Engineering Journal, Vol. 3.1,
pp. 241-277.

Moher, D., Schulz, K.F., Altman, D. for the CONSORT Group (2001). The CONSORT Statement,
Revised Recommendations for Improving the Quality of Reports of Parallel-Group Randomized
Trials, Journal of the American Medical Association (JAMA) Vol. 285, No. 15, pp.
1987-1991.

Pickard, L.M., Kitchenham, B.A., Jones, P.W. (1998). Combining Empirical Results in Software
Engineering, Information and Software Technology, Vol. 40, No. 14, pp. 811-821.

Shaw, M. (2003). Writing Good Software Engineering Research Papers — Minitutorial, In
Proceedings of the 25th International Conference on Software Engineering (ICSE’03). IEEE
Computer Society, Portland, Oregon, pp. 726—-736.

Shiffman, R.N., Shekelle, P., Overhage, J.M., Slutsky, J., Grimshaw, J., Deshpande, A.M. (2003).
Standardized Reporting of Clinical Practice Guidelines, A Proposal from the Conference on
Guideline Standardization, Annals of Internal Medicine, Vol. 139, No. 6, pp. 493-498.

Shull, F., Carver, J., Travassos, G.H., Maldonado, J.C., Conradi, R., Basili, V.R. (2003). Replicated
Studies, Building a Body of Knowledge about Software Reading Techniques, In Juristo, N.,
Moreno, A. (Eds.), Lecture Notes on Empirical Software Engineering, World Scientific
Publishing, River Edge, NJ, USA, pp. 39-84.

Singer, J. (1999). Using the APA Style Guidelines to Report Experimental Results, In Proceedings
of Workshop on Empirical Studies in Software Maintenance, pp. 71-75. (dec.bmth.ac.uk/
ESERG/WESS99/singer.ps)

Sjegberg, D.I.K., Hannay, J., Hansen, O., Kampenes, B.V., Karahasanovic, A., Liborg, N.-K,,
Rekdal, A. (2005). A Survey of Controlled Experiments in Software Engineering. Transactions
on Software Engineering, Vol. 31, No. 9, pp. 733-753.

The Editors of Annals of Internal Medicine (2004). Addressing the Limitations of Structured
Abstracts (Editorial). Annals of Internal Medicine, Vol. 140, No. 6, pp. 480-481.

Vegas, S., Juristo, N., Basili, V. (2003). A Process for Identifying Relevant Information for a
Repository, A Case Study for Testing Techniques. In Aurum, A., Jeffery, R.,Wohlin, C.,
Handzic, M. (Eds.). Managing Software Engineering Knowledge, Springer-Verlag, Berlin,
pp. 199-230.

Wohlin, C., Petersson, H., Aurum, A. (2003). Combining Data from Reading Experiments in
Software Inspections, In Juristo, N., Moreno, A. (Eds.), Lecture Notes on Empirical Software
Engineering, World Scientific Publishing, River Edge, NJ, USA, pp. 85-132.

Wohlin, C., Runeson, P., Host, M., Ohlsson, M.C., Regnell, B., Wesslén, A. (2000). Experimentation
in Software Engineering — An Introduction, Kluwer Academic Publishers, Boston, MA.

Zelkowitz, M.V., Wallace, D.R., Binkley, D.W. (2003). Experimental Validation of New Software
Technology. In Juristo, N., Moreno, A. (Eds.), Lecture Notes on Empirical Software Engineering,
World Scientific Publishing, River Edge, NJ, USA, pp. 229-263.

Chapter 9
A Practical Guideto Ethical Research
| nvolving Humans'

Norman G. Vinson and Janice Singer

Abstract The popularity of empirical methods in software engineering research is
on therise. Surveys, experiments, metrics, case studies, and field studies are exam-
ples of empirical methods used to investigate both software engineering processes
and products. The increased application of such methods has also brought about
an increase in discussions about adapting these methods to the particularities of
software engineering. In contrast, the ethical issues raised by empirical methods
have received little attention in the software engineering literature. In this chapter,
we introduce four ethics principles of primary importance for conducting ethical
research. We additionally discuss and provide examples of applying these princi-
plesin the context of ethics review.

1. Introduction

How should an empirical researcher approach subjects?
How should data be collected and stored?
How can a researcher reduce subjects’ unease about being observed??

Should a company’s name be mentioned in the acknowledgements of a paper?

Each of these real-life issues has an ethical dimension. As such, ethics play arole
in the proper management of aresearch project (Mirvisand Seashore, 1982) which,
in turn, affects the project’s success. Accordingly, it is important that empirical

1Based on Singer, JA. & Vinson, N.G. (2002). Ethical issues in empirical studies of software
engineering, | EEE Transactions on Software Engineering 28(12), 1171-1180.

2Severa recent publications (e.g. National Health and Medical Research Council et ., 2007) suggest
that it ismore appropriate to refer to the people under study as research participants rather than research
subjects. However others (e.g. Canadian Ingtitutes of Health Research et al., 2005) note that the term
“participant” isambiguous, asit can refer to virtualy anyoneinvolved in the research project. To avoid
any such ambiguity we will use the term “subject” to refer to those people who are being studied.

229

F. Shull et a. (eds.), Guide to Advanced Empirical Software Engineering.
© Springer 2008

230 N.G. Vinson and J. Singer

researchers understand research ethics and their application. In this chapter, we will
introduce the major ethical concepts relating to Empirical Software Engineering
(ESE) research with human subjects and provide a practical guide to the ethics
review process’.

Because empirical research isrelatively new to software engineering, discussion
of the ethical issuesraised by ESE istill inits early stages (Harrison, 1998; Jeffrey
and Votta, 1999; Singer and Vinson, 2001, 2002). Therefore, we will rely on
information from other fields to support our discussion. Nonetheless, our examples
will focus on situations ESE researchers are likely to face.

It is insufficient to simply expect scientists to behave ethically (Beecher,
1966a; McNeill, 1993). In an attempt to minimize unethical behaviour, govern-
ments and scientific communities have developed codes of research ethics
(McNeill, 1993). By providing a standard of behaviour for researchers to follow,
and by helping them reason about ethical issues in specific situations, it is hoped
that these codes of ethics will reduce the incidence of unethical behaviour
(Anderson et al., 1993; Frankel, 1989; Gotterbarn et al., 1999; McNeill, 1993).
However, it is ultimately up to individual researchers to ensure research practices
are ethical. In this regard, experience has shown that to behave ethically, people
must understand the ethical principles underlying codes of ethics and spend
the time and effort required to intelligently apply them to their own circumstances
(Anderson et al., 1993; Canadian Institutes of Health Research et al., 2005).
To quote the preamble of the ACM/IEEE-CS SE Code of Ethics and Professional
Practice, “the Code is not a simple ethical algorithm that generates ethical
decisions” (Gotterbarn et al., 1999, p. 104).

Unfortunately, the ESE community has yet to develop its own code of research
ethics (Harrison, 1998; Jeffrey and Votta, 1999; Singer and Vinson, 2002)
Researchers must therefore try to apply codes from related disciplines to ESE
studies. For ESE research practices similar to those of other disciplines, this does
not pose a problem. In this vein, codes from the social sciences and computing
sciences are especially relevant. However, for research practices more common or
even unique to ESE, such as the use of source code as data (see EI-Emam, 2001
Vinson and Singer, 2001), the existing codes are of little value. In these cases, ESE
researchers will have to reason from ethical principles to determine an ethical
course of action. To support such reasoning, we provide a detailed explanation of
the main principles of ethical research in the first section of this chapter. We also
describe some common problems in applying these principles to ESE projects and
present solutions to those problems.

3Scientific research raises a host of ethical issues such as the assignment of authorship, the
relationship between graduate students and their advisors, and scientific fraud. These issues apply
broadly to most research disciplines (Committee on Science, 1992, 1993, 1995). Computer
science and software engineering research raises additional issues (Wright, 2006). In this chapter,
we will ignore broad issues to instead focus on the ethical