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Chapter 1

What's New in the Base SAS Statistical
Procedures

CORR Procedure

The new ID statement specifies one or more additional tip variables to identify observations in
scatter plots and scatter plot matrices.

FREQ Procedure

The FREQ procedure can now produce frequency plots, cumulative frequency plots, deviation plots,
odds ratio plots, and kappa plots by using ODS Graphics. The crosstabulation table now has an ODS
template that you can customize with the TEMPLATE procedure. Equivalence and noninferiority
tests are now available for the binomial proportion and the proportion difference. New confidence
limits for the binomial proportion include Agresti-Coull, Jeffreys, and Wilson (score) confidence
limits. The RISKDIFF option in the EXACT statement provides unconditional exact confidence
limits for the proportion (risk) difference. The EQOR option in the EXACT statement provides
Zelen’s exact test for equal odds ratios.

UNIVARIATE Procedure

The UNIVARIATE procedure now produces graphs that conform to ODS styles, so that creating
consistent output is easier. Also, you now have two alternative methods for producing graphs. With
traditional graphics you can control every detail of a graph through familiar procedure syntax and
GOPTION and SYMBOL statements. With ODS Graphics (experimental for the UNIVARIATE
procedure in SAS 9.2), you can obtain the highest quality output with minimal syntax and full
compatibility with graphics produced by SAS/STAT and SAS/ETS procedures.

The new CDFPLOT statement plots the observed cumulative distribution function (cdf) of a vari-
able and enables you to superimpose a fitted theoretical distribution on the graph. The new PPPLOT
statement creates a probability-probability plot (also referred to as a P-P plot or percent plot), which
compares the empirical cumulative distribution function (ecdf) of a variable with a specified the-



2 4 Chapter 1: What's New in the Base SAS Statistical Procedures

oretical cumulative distribution function. The beta, exponential, gamma, lognormal, normal, and
Weibull distributions are available in both statements.
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Overview: CORR Procedure

The CORR procedure computes Pearson correlation coefficients, three nonparametric measures of
association, and the probabilities associated with these statistics. The correlation statistics include
the following:

Pearson product-moment correlation
e Spearman rank-order correlation

Kendall’s tau-b coefficient

Hoeffding’s measure of dependence, D

Pearson, Spearman, and Kendall partial correlation

Pearson product-moment correlation is a parametric measure of a linear relationship between two
variables. For nonparametric measures of association, Spearman rank-order correlation uses the
ranks of the data values and Kendall’s tau-b uses the number of concordances and discordances
in paired observations. Hoeffding’s measure of dependence is another nonparametric measure of
association that detects more general departures from independence. A partial correlation provides
a measure of the correlation between two variables after controlling the effects of other variables.

With only one set of analysis variables specified, the default correlation analysis includes descriptive
statistics for each analysis variable and Pearson correlation statistics for these variables. You can
also compute Cronbach’s coefficient alpha for estimating reliability.

With two sets of analysis variables specified, the default correlation analysis includes descriptive
statistics for each analysis variable and Pearson correlation statistics between these two sets of
variables.

For a Pearson or Spearman correlation, the Fisher’s z transformation can be used to derive its
confidence limits and a p-value under a specified null hypothesis Hg: p = po. Either a one-sided
or a two-sided alternative is used for these statistics.

You can save the correlation statistics in a SAS data set for use with other statistical and reporting
procedures.

When the relationship between two variables is nonlinear or when outliers are present, the correla-
tion coefficient might incorrectly estimate the strength of the relationship. Plotting the data enables
you to verify the linear relationship and to identify the potential outliers. If the ods graphics on
statement is specified, scatter plots and a scatter plot matrix can be created via the Output Delivery
System (ODS). Confidence and prediction ellipses can also be added to the scatter plot. See the
section “Confidence and Prediction Ellipses” on page 28 for a detailed description of the ellipses.
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Getting Started: CORR Procedure

The following statements create the data set Fitness, which has been altered to contain some missing
values:

* Data on Physical Fitness
| These measurements were made on men involved in a physical
| fitness course at N.C. State University.

| The variables are Age (years), Weight (kg),

| Runtime (time to run 1.5 miles in minutes), and
| Oxygen (oxygen intake, ml per kg body weight per minute)
| Certain values were changed to missing for the analysis.
*

* — — — — — — ¥

data Fitness;

input Age Weight Oxygen RunTime (@@;

datalines;
44 89.47 44.609 11.37 40 75.07 45.313 10.07
44 85.84 54.297 8.65 42 68.15 59.571 8.17
38 89.02 49.874 . 47 77.45 44.811 11.63
40 75.98 45.681 11.95 43 81.19 49.091 10.85
44 81.42 39.442 13.08 38 81.87 60.055 8.63
44 73.03 50.541 10.13 45 87.66 37.388 14.03
45 66.45 44.754 11.12 47 79.15 47.273 10.60
54 83.12 51.855 10.33 49 81.42 49.156 8.95
51 69.63 40.836 10.95 51 77.91 46.672 10.00
48 91.63 46.774 10.25 49 73.37 . 10.08
57 73.37 39.407 12.63 54 79.38 46.080 11.17
52 76.32 45.441 9.63 50 70.87 54.625 8.92
51 67.25 45.118 11.08 54 91.63 39.203 12.88
51 73.71 45.790 10.47 57 59.08 50.545 9.93
49 76.32 . . 48 61.24 47.920 11.50
52 82.78 47.467 10.50

The following statements invoke the CORR procedure and request a correlation analysis:

ods graphics on;

proc corr data=Fitness plots=matrix(histogram);
run;

ods graphics off;

The “Simple Statistics” table in Figure 2.1 displays univariate statistics for the analysis variables.
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Figure 2.1 Univariate Statistics

The CORR Procedure

4 Variables: Age Weight Oxygen RunTime

Simple Statistics

Variable N Mean Std Dev Sum Minimum Maximum
Age 31 47.67742 5.21144 1478 38.00000 57.00000
Weight 31 77.44452 8.32857 2401 59.08000 91.63000
Oxygen 29 47.22721 5.47718 1370 37.38800 60.05500
RunTime 29 10.67414 1.39194 309.55000 8.17000 14.03000

By default, all numeric variables not listed in other statements are used in the analysis. Observations
with nonmissing values for each variable are used to derive the univariate statistics for that variable.

The “Pearson Correlation Coefficients” table in Figure 2.2 displays the Pearson correlation, the p-
value under the null hypothesis of zero correlation, and the number of nonmissing observations for
each pair of variables.

Figure 2.2 Pearson Correlation Coefficients

Pearson Correlation Coefficients
Prob > |r| under HO: Rho=0
Number of Observations
Age Weight Oxygen RunTime
Age 1.00000 -0.23354 -0.31474 0.14478
0.2061 0.0963 0.4536
31 31 29 29
Weight -0.23354 1.00000 -0.15358 0.20072
0.2061 0.4264 0.2965
31 31 29 29
Oxygen -0.31474 -0.15358 1.00000 -0.86843
0.0963 0.4264 <.0001
29 29 29 28
RunTime 0.14478 0.20072 -0.86843 1.00000
0.4536 0.2965 <.0001
29 29 28 29

By default, Pearson correlation statistics are computed from observations with nonmissing values
for each pair of analysis variables. Figure 2.2 displays a correlation of —0.86843 between Runtime
and Oxygen, which is significant with a p-value less than 0.0001. That is, there exists an inverse
linear relationship between these two variables. As Runtime (time to run 1.5 miles in minutes)
increases, Oxygen (oxygen intake, ml per kg body weight per minute) decreases.
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This graphical display is requested by specifying the ods graphics on statement and the PLOTS
option. For more information about the ods graphics statement, see Chapter 21, “Statistical
Graphics Using ODS” (SAS/STAT User’s Guide).

When you use the PLOTS=MATRIX(HISTOGRAM) option, the CORR procedure displays a sym-
metric matrix plot for the analysis variables in Figure 2.3. The histograms for these analysis vari-
ables are also displayed on the diagonal of the matrix plot. This inverse linear relationship between
the two variables, Oxygen and Runtime, is also shown in the plot.

Figure 2.3 Symmetric Matrix Plot
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Syntax: CORR Procedure

The following statements are available in PROC CORR:

PROC CORR < options> ;
BY variables ;
FREQ variable ;
ID variables ;
PARTIAL variables ;
VAR variables ;
WEIGHT variable ;
WITH variables ;

The BY statement specifies groups in which separate correlation analyses are performed.

The FREQ statement specifies the variable that represents the frequency of occurrence for other
values in the observation.

The ID statement specifies one or more additional tip variables to identify observations in scatter
plots and scatter plot matrices.

The PARTIAL statement identifies controlling variables to compute Pearson, Spearman, or Kendall
partial-correlation coefficients.

The VAR statement lists the numeric variables to be analyzed and their order in the correlation
matrix. If you omit the VAR statement, all numeric variables not listed in other statements are used.

The WEIGHT statement identifies the variable whose values weight each observation to compute
Pearson product-moment correlation.

The WITH statement lists the numeric variables with which correlations are to be computed.

The PROC CORR statement is the only required statement for the CORR procedure. The rest of
this section provides detailed syntax information for each of these statements, beginning with the
PROC CORR statement. The remaining statements are presented in alphabetical order.

PROC CORR Statement

PROC CORR < options > ;

Table 2.1 summarizes the options available in the PROC CORR statement.

Table 2.1 Summary of PROC CORR Options

Option Description
Data Sets
DATA= specifies input data set

OUTH= specifies output data set with Hoeffding’s D statistics
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Table 2.1 continued

Option Description

OUTK= specifies output data set with Kendall correlation statistics
OUTP= specifies output data set with Pearson correlation statistics
OUTS= specifies output data set with Spearman correlation statistics
Statistical Analysis

EXCLNPWGT excludes observations with nonpositive weight values from the analysis
FISHER requests correlation statistics using Fisher’s z transformation
HOEFFDING requests Hoeffding’s measure of dependence, D

KENDALL requests Kendall’s tau-b

NOMISS excludes observations with missing analysis values from the analysis
PEARSON requests Pearson product-moment correlation

SPEARMAN requests Spearman rank-order correlation

Pearson Correlation Statistics

ALPHA computes Cronbach’s coefficient alpha

COov computes covariances

CSSCP computes corrected sums of squares and crossproducts

FISHER computes correlation statistics based on Fisher’s z transformation
NOMISS excludes missing values

SINGULAR= specifies singularity criterion

SSCP computes sums of squares and crossproducts

VARDEF= specifies the divisor for variance calculations

ODS Output Graphics

PLOTS=MATRIX displays scatter plot matrix
PLOTS=SCATTER displays scatter plots for pairs of variables

Printed Output

BEST= displays a specified number of ordered correlation coefficients
NOCORR suppresses Pearson correlations

NOPRIN suppresses all printed output

NOPROB suppresses p-values

NOSIMPLE suppresses descriptive statistics

RANK displays ordered correlation coefficients

The following options can be used in the PROC CORR statement. They are listed in alphabetical
order.

ALPHA
calculates and prints Cronbach’s coefficient alpha. PROC CORR computes separate coeffi-
cients using raw and standardized values (scaling the variables to a unit variance of 1). For
each VAR statement variable, PROC CORR computes the correlation between the variable
and the total of the remaining variables. It also computes Cronbach’s coefficient alpha by
using only the remaining variables.
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If a WITH statement is specified, the ALPHA option is invalid. When you specify the ALPHA
option, the Pearson correlations will also be displayed. If you specify the OUTP= option,
the output data set also contains observations with Cronbach’s coefficient alpha. If you use
the PARTIAL statement, PROC CORR calculates Cronbach’s coefficient alpha for partialled
variables. See the section “Partial Correlation” on page 22 for details.

BEST=n
prints the n highest correlation coefficients for each variable, n > 1. Correlations are ordered
from highest to lowest in absolute value. Otherwise, PROC CORR prints correlations in a
rectangular table, using the variable names as row and column labels.

If you specify the HOEFFDING option, PROC CORR displays the D statistics in order from

highest to lowest.

cov
displays the variance and covariance matrix. When you specify the COV option, the Pearson
correlations will also be displayed. If you specify the OUTP= option, the output data set also
contains the covariance matrix with the corresponding _TYPE_ variable value ‘COV.’ If you
use the PARTIAL statement, PROC CORR computes a partial covariance matrix.

CSSCP

displays a table of the corrected sums of squares and crossproducts. When you specify the
CSSCP option, the Pearson correlations will also be displayed. If you specify the OUTP=
option, the output data set also contains a CSSCP matrix with the corresponding _TYPE_
variable value ‘CSSCP.’ If you use a PARTIAL statement, PROC CORR prints both an un-
partial and a partial CSSCP matrix, and the output data set contains a partial CSSCP matrix.

DATA=SAS-data-set
names the SAS data set to be analyzed by PROC CORR. By default, the procedure uses the
most recently created SAS data set.

EXCLNPWGT

EXCLNPWGTS
excludes observations with nonpositive weight values from the analysis. By default, PROC
CORR treats observations with negative weights like those with zero weights and counts them
in the total number of observations.

FISHER < ( fisher-options ) >
requests confidence limits and p-values under a specified null hypothesis, Hy: p = po, for
correlation coefficients by using Fisher’s z transformation. These correlations include the
Pearson correlations and Spearman correlations.

The following fisher-options are available:

ALPHA=«
specifies the level of the confidence limits for the correlation, 100(1 — «)%. The value
of the ALPHA= option must be between 0 and 1, and the default is ALPHA=0.05.

BIASADJ=YES | NO
specifies whether or not the bias adjustment is used in constructing confidence limits.
The BIASADJ=YES option also produces a new correlation estimate that uses the bias
adjustment. By default, BIASADJ=YES.
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RHO0=p,
specifies the value po in the null hypothesis Ho: p = po, where —1 < pg < 1. By
default, RHO0=0.

TYPE=LOWER | UPPER | TWOSIDED
specifies the type of confidence limits. The TYPE=LOWER option requests a lower
confidence limit from the lower alternative Hy:p < pg, the TYPE=UPPER option
requests an upper confidence limit from the upper alternative Hy:p > po, and the
default TYPE=TWOSIDED option requests two-sided confidence limits from the two-
sided alternative Hy: p # po.

HOEFFDING
requests a table of Hoeffding’s D statistics. This D statistic is 30 times larger than the usual
definition and scales the range between —0.5 and 1 so that large positive values indicate
dependence. The HOEFFDING option is invalid if a WEIGHT or PARTIAL statement is
used.

KENDALL
requests a table of Kendall’s tau-b coefficients based on the number of concordant and dis-
cordant pairs of observations. Kendall’s tau-b ranges from —1 to 1.

The KENDALL option is invalid if a WEIGHT statement is used. If you use a PARTIAL
statement, probability values for Kendall’s partial tau-b are not available.

NOCORR
suppresses displaying of Pearson correlations. If you specify the OUTP= option, the data set
type remains CORR. To change the data set type to COV, CSSCP, or SSCP, use the TYPE=
data set option.

NOMISS
excludes observations with missing values from the analysis. Otherwise, PROC CORR
computes correlation statistics by using all of the nonmissing pairs of variables. Using the
NOMISS option is computationally more efficient.

NOPRINT
suppresses all displayed output, which also includes output produced with ODS Graphics.
Use the NOPRINT option if you want to create an output data set only.

NOPROB
suppresses displaying the probabilities associated with each correlation coefficient.

NOSIMPLE
suppresses printing simple descriptive statistics for each variable. However, if you request an
output data set, the output data set still contains simple descriptive statistics for the variables.

OUTH=output-data-set
creates an output data set containing Hoeffding’s D statistics. The contents of the output data
set are similar to those of the OUTP= data set. When you specify the OUTH= option, the
Hoeftding’s D statistics will be displayed.



12 4 Chapter 2: The CORR Procedure

OUTK=oulput-data-set
creates an output data set containing Kendall correlation statistics. The contents of the output
data set are similar to those of the OUTP= data set. When you specify the OUTK= option,
the Kendall correlation statistics will be displayed.

OUTP=ouiput-data-set

OUT=output-data-set
creates an output data set containing Pearson correlation statistics. This data set also includes
means, standard deviations, and the number of observations. The value of the _"TYPE_ vari-
able is ‘CORR. When you specify the OUTP= option, the Pearson correlations will also be
displayed. If you specify the ALPHA option, the output data set also contains six observations
with Cronbach’s coefficient alpha.

OUTS=SAS-data-set
creates an output data set containing Spearman correlation coefficients. The contents of the
output data set are similar to those of the OUTP= data set. When you specify the OUTS=
option, the Spearman correlation coefficients will be displayed.

PEARSON
requests a table of Pearson product-moment correlations. The correlations range from —1 to
1. If you do not specify the HOEFFDING, KENDALL, SPEARMAN, OUTH=, OUTK=,
or OUTS= option, the CORR procedure produces Pearson product-moment correlations by
default. Otherwise, you must specify the PEARSON, ALPHA, COV, CSSCP, SSCP, or OUT=
option for Pearson correlations. Also, if a scatter plot or a scatter plot matrix is requested, the
Pearson correlations will be displayed.

PLOTS <( ONLY ) > < = plot-request >

PLOTS <( ONLY )> <= ( plot-request < ... plot-request > ) >
requests statistical graphics via the Output Delivery System (ODS). To request these graphs,
you must specify the ods graphics on statement in addition to the following options in
the PROC CORR statement. For more information about the ods graphics statement, see
Chapter 21, “Statistical Graphics Using ODS” (SAS/STAT User’s Guide).

The global plot option ONLY suppresses the default plots, and only plots specifically re-
quested are displayed. The plot request options include the following:

ALL
produces all appropriate plots.

MATRIX < ( matrix-options ) >
requests a scatter plot matrix for variables. That is, the procedure displays a symmet-
ric matrix plot with variables in the VAR list if a WITH statement is not specified.
Otherwise, the procedure displays a rectangular matrix plot with the WITH variables
appearing down the side and the VAR variables appearing across the top.

NONE
suppresses all plots.
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SCATTER < ( scatter-options )>
requests scatter plots for pairs of variables. That is, the procedure displays a scatter plot
for each applicable pair of distinct variables from the VAR list if a WITH statement is
not specified. Otherwise, the procedure displays a scatter plot for each applicable pair
of variables, one from the WITH list and the other from the VAR list.

By default, PLOTS=MATRIX, a scatter plot matrix for all variables is displayed. When a
scatter plot or a scatter plot matrix is requested, the Pearson correlations will also be dis-
played.

The available matrix-options are as follows:

HIST | HISTOGRAM
displays histograms of variables in the VAR list in the symmetric matrix plot.

NVAR=ALL | n
specifies the maximum number of variables in the VAR list to be displayed in the matrix
plot, where n > 0. The NVAR=ALL option uses all variables in the VAR list. By
default, NVAR=S5.

NWITH=ALL | n
specifies the maximum number of variables in the WITH list to be displayed in the
matrix plot, where n > 0. The NWITH=ALL option uses all variables in the WITH
list. By default, NWITH=5.

The available scatter-options are as follows:

ALPHA=¢
specifies the o values for the confidence or prediction ellipses to be displayed in the
scatter plots, where 0 < o < 1. For each « value specified, a (1 — «) confidence or
prediction ellipse is created. By default, « = 0.05.

ELLIPSE=PREDICTION | CONFIDENCE | NONE
requests prediction ellipses for new observations (ELLIPSE=PREDICTION),
confidence ellipses for the mean (ELLIPSE=CONFIDENCE), or no ellipses
(ELLIPSE=NONE) to be created in the scatter plots. By default, EL-
LIPSE=PREDICTION.

NOINSET
suppresses the default inset of summary information for the scatter plot. The inset table
contains the number of observations (Observations) and correlation.

NVAR=ALL | n
specifies the maximum number of variables in the VAR list to be displayed in the plots,
where n > 0. The NVAR=ALL option uses all variables in the VAR list. By default,
NVARS=S.

NWITH=ALL | n
specifies the maximum number of variables in the WITH list to be displayed in the
plots, where n > 0. The NWITH=ALL option uses all variables in the WITH list. By
default, NWITH=5.

13
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RANK
displays the ordered correlation coefficients for each variable. Correlations are ordered from
highest to lowest in absolute value. If you specify the HOEFFDING option, the D statistics
are displayed in order from highest to lowest.

SINGULAR=p
specifies the criterion for determining the singularity of a variable if you use a PARTIAL state-
ment. A variable is considered singular if its corresponding diagonal element after Cholesky
decomposition has a value less than p times the original unpartialled value of that variable.
The default value is 1E—8. The range of p is between 0 and 1.

SPEARMAN
requests a table of Spearman correlation coefficients based on the ranks of the variables. The
correlations range from —1 to 1. If you specify a WEIGHT statement, the SPEARMAN
option is invalid.

SSCP
displays a table of the sums of squares and crossproducts. When you specify the SSCP option,
the Pearson correlations will also be displayed. If you specify the OUTP= option, the output
data set contains a SSCP matrix and the corresponding _TYPE_ variable value is ‘SSCP.” If
you use a PARTIAL statement, the unpartial SSCP matrix is displayed, and the output data
set does not contain an SSCP matrix.

VARDEF=DF | N | WDF | WEIGHT | WGT
specifies the variance divisor in the calculation of variances and covariances. The default is
VARDEF=DF.

Table 2.2 displays available values and associated divisors for the VARDEF= option, where
n is the number of nonmissing observations, k is the number of variables specified in the
PARTIAL statement, and w; is the weight associated with the jth nonmissing observation.

Table 2.2 Possible Values for the VARDEF= Option

Value Description Divisor

DF degrees of freedom n—k—1

N number of observations n

WDF sum of weights minus one Z'} w; —k—1
WEIGHT | WGT  sum of weights Z;’ w;

BY Statement

BY variables ;

You can specify a BY statement with PROC CORR to obtain separate analyses on observations in
groups defined by the BY variables. If a BY statement appears, the procedure expects the input data
set to be sorted in order of the BY variables.
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If your input data set is not sorted in ascending order, use one of the following alternatives:

e Sort the data by using the SORT procedure with a similar BY statement.

e Specify the BY statement option NOTSORTED or DESCENDING in the BY statement for
the CORR procedure. The NOTSORTED option does not mean that the data are unsorted but
rather that the data are arranged in groups (according to values of the BY variables) and that
these groups are not necessarily in alphabetical or increasing numeric order.

e Create an index on the BY variables by using the DATASETS procedure.

For more information about the BY statement, see SAS Language Reference: Concepts. For more
information about the DATASETS procedure, see the Base SAS Procedures Guide.

FREQ Statement

FREQ variable ;

The FREQ statement lists a numeric variable whose value represents the frequency of the obser-
vation. If you use the FREQ statement, the procedure assumes that each observation represents n
observations, where 7 is the value of the FREQ variable. If n is not an integer, SAS truncates it. If n
is less than 1 or is missing, the observation is excluded from the analysis. The sum of the frequency
variable represents the total number of observations.

The effects of the FREQ and WEIGHT statements are similar except when calculating degrees of
freedom.

ID Statement

ID variables ;

The ID statement specifies one or more additional tip variables to identify observations in scatter
plots and scatter plot matrix. For each plot, the tip variables include the X-axis variable, the Y-axis
variable, and the variable for observation numbers. The ID statement names additional variables to
identify observations in scatter plots and scatter plot matrices.

PARTIAL Statement

PARTIAL variables ;

The PARTIAL statement lists variables to use in the calculation of partial correlation statistics. Only
the Pearson partial correlation, Spearman partial rank-order correlation, and Kendall’s partial tau-b
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can be computed. When you use the PARTIAL statement, observations with missing values are
excluded.

With a PARTIAL statement, PROC CORR also displays the partial variance and standard deviation
for each analysis variable if the PEARSON option is specified.

VAR Statement

VAR variables ;

The VAR statement lists variables for which to compute correlation coefficients. If the VAR state-
ment is not specified, PROC CORR computes correlations for all numeric variables not listed in
other statements.

WEIGHT Statement

WEIGHT variable ;

The WEIGHT statement lists weights to use in the calculation of Pearson weighted product-moment
correlation. The HOEFFDING, KENDALL, and SPEARMAN options are not valid with the
WEIGHT statement.

The observations with missing weights are excluded from the analysis. By default, for observations
with nonpositive weights, weights are set to zero and the observations are included in the analysis.
You can use the EXCLNPWGT option to exclude observations with negative or zero weights from
the analysis.

WITH Statement

WITH variables ;

The WITH statement lists variables with which correlations of the VAR statement variables are to
be computed. The WITH statement requests correlations of the form r(X;, Y;), where X1, ..., X,
are analysis variables specified in the VAR statement, and Y1, ..., Y}, are variables specified in the
WITH statement. The correlation matrix has a rectangular structure of the form

r(YlaXl) e r(YLXm)

r(Yn,X1) - r(Yn, Xm)
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For example, the statements

proc corr;
var x1 x2;
with yl y2 y3;
run;

produce correlations for the following combinations:

r(Y1,X1) r(Yl,X2)
r(Y2,X1) r(¥Y2,X2)
r(Y3,X1) r(¥Y3,X2)

Details: CORR Procedure

Pearson Product-Moment Correlation

The Pearson product-moment correlation is a parametric measure of association for two variables.
It measures both the strength and the direction of a linear relationship. If one variable X is an
exact linear function of another variable Y, a positive relationship exists if the correlation is 1 and
a negative relationship exists if the correlation is —1. If there is no linear predictability between
the two variables, the correlation is 0. If the two variables are normal with a correlation 0, the two
variables are independent. However, correlation does not imply causality because, in some cases,
an underlying causal relationship might not exist.

The scatter plot matrix in Figure 2.4 displays the relationship between two numeric random vari-
ables in various situations.
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Figure 2.4 Correlations between Two Variables
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The scatter plot matrix shows a positive correlation between variables Y1 and X1, a negative corre-
lation between Y1 and X2, and no clear correlation between Y2 and X1. The plot also shows no clear
linear correlation between Y2 and X2, even though Y2 is dependent on X2.

The formula for the population Pearson product-moment correlation, denoted pyy, is

_ Cov(x.y) _  E((x—E@)(—E®)))
VV@)V(y)  VE(x —Ex))2E(y —E(»))?

Pxy

The sample correlation, such as a Pearson product-moment correlation or weighted product-moment
correlation, estimates the population correlation. The formula for the sample Pearson product-
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moment correlation is
rey = Y (i =X)(yi—y))
Y Vi =02 i —7)?

where x is the sample mean of x and y is the sample mean of y. The formula for a weighted
Pearson product-moment correlation is

_ Zi Wi (X; — Xw) (Vi — Yw)
VY wi(xi — %w)2 Y wi(yi — w)?

where w; is the weight, Xy, is the weighted mean of x, and y,, is the weighted mean of y.

I'xy

Probability Values

Probability values for the Pearson correlation are computed by treating

2
t = (n—2)1/2(1_r2)

as coming from a ¢ distribution with (n — 2) degrees of freedom, where r is the sample correlation.

1/2

Spearman Rank-Order Correlation

Spearman rank-order correlation is a nonparametric measure of association based on the ranks of
the data values. The formula is

0 — > ((Ri —R)(Si = 8))
X R — R Y(8; - §)2

where R; is the rank of x;, S; is the rank of y;, R is the mean of the R; values, and S is the mean
of the S; values.

PROC CORR computes the Spearman correlation by ranking the data and using the ranks in the
Pearson product-moment correlation formula. In case of ties, the averaged ranks are used.

Probability Values

Probability values for the Spearman correlation are computed by treating

as coming from a ¢ distribution with (n — 2) degrees of freedom, where r is the sample Spearman
correlation.
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Kendall’s Tau-b Correlation Coefficient

Kendall’s tau-b is a nonparametric measure of association based on the number of concordances and
discordances in paired observations. Concordance occurs when paired observations vary together,
and discordance occurs when paired observations vary differently. The formula for Kendall’s tau-b
is

> i< (sgn(xi —x;)sgn(yi —y;))
V(To —T1)(To — T2)
where To =n(n—1)/2, Ty = > ; tx(tx —1)/2,and Tp = Y ; u;(u; —1)/2. The t; is the number

of tied x values in the kth group of tied x values, u; is the number of tied y values in the /th group
of tied y values, n is the number of observations, and sgn(z) is defined as

1 ifz>0
sgn(z) =4 0 ifz=0
-1 ifz<0

PROC CORR computes Kendall’s tau-b by ranking the data and using a method similar to Knight
(1966). The data are double sorted by ranking observations according to values of the first variable
and reranking the observations according to values of the second variable. PROC CORR computes
Kendall’s tau-b from the number of interchanges of the first variable and corrects for tied pairs (pairs
of observations with equal values of X or equal values of Y).

Probability Values

Probability values for Kendall’s tau-b are computed by treating
s

VV(s)

as coming from a standard normal distribution where

s =) (sgn(xi —x;)sgn(yi — 7))
i<j
and V(s), the variance of s, is computed as

— VU — Uy V1 )

— Yo
Vis) = 18 + 2n(n — 1) * 9n(n —1)(n —2)

where

vo=nn—1Q2n+5)
v =3 g (e — D21t +5)

vy = Yy ur(up — 1)2u; +5)
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vi = Qg e — 1) Qui(uy — 1))
va = (3 tilte — Dt —2)) QCug(ug — D(uy —2))
The sums are over tied groups of values where #; is the number of tied x values and u; is the number

of tied y values (Noether 1967). The sampling distribution of Kendall’s partial tau-b is unknown;
therefore, the probability values are not available.

Hoeffding Dependence Coefficient

Hoeffding’s measure of dependence, D, is a nonparametric measure of association that detects more
general departures from independence. The statistic approximates a weighted sum over observations
of chi-square statistics for two-by-two classification tables (Hoeffding 1948). Each set of (x, y)
values are cut points for the classification. The formula for Hoeffding’s D is

(n—2)(n—3)D1+ Dy —2(n—2)D3

b= e T D = =3 —3)

where Dy = }:(Qi — )(Qi —2), D2 = };(Ri — D(R; —2)(Si — D(S;i —2), and D3 =
Y i(Ri —2)(S; —2)(Q; — 1). R; is the rank of x;, S; is the rank of y;, and Q; (also called the
bivariate rank) is 1 plus the number of points with both x and y values less than the 7 th point.

A point that is tied on only the x value or y value contributes 1/2 to Q; if the other value is less
than the corresponding value for the i th point.

A point that is tied on both x and y contributes 1/4 to Q;. PROC CORR obtains the Q; values
by first ranking the data. The data are then double sorted by ranking observations according to
values of the first variable and reranking the observations according to values of the second variable.
Hoeffding’s D statistic is computed using the number of interchanges of the first variable. When
no ties occur among data set observations, the D statistic values are between —0.5 and 1, with 1
indicating complete dependence. However, when ties occur, the D statistic might result in a smaller
value. That is, for a pair of variables with identical values, the Hoeffding’s D statistic might be less
than 1. With a large number of ties in a small data set, the D statistic might be less than —0.5. For
more information about Hoeffding’s D, see Hollander and Wolfe (1999).

Probability Values

The probability values for Hoeffding’s D statistic are computed using the asymptotic distribution
computed by Blum, Kiefer, and Rosenblatt (1961). The formula is
(n—1n* xt
=7 py
60 + 72
which comes from the asymptotic distribution. If the sample size is less than 10, refer to the tables
for the distribution of D in Hollander and Wolfe (1999).
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Partial Correlation

A partial correlation measures the strength of a relationship between two variables, while controlling
the effect of other variables. The Pearson partial correlation between two variables, after control-
ling for variables in the PARTIAL statement, is equivalent to the Pearson correlation between the
residuals of the two variables after regression on the controlling variables.

Lety = (y1,¥2,...,Yv) be the set of variables to correlate and z = (z1,z3,...,2zp) be the set
of controlling variables. The population Pearson partial correlation between the ith and the jth
variables of y given z is the correlation between errors (y; — E(y;)) and (y; — E(y;)), where

E(yi) =a; +zB; and E(y;) =«a; +zB;

are the regression models for variables y; and y; given the set of controlling variables z, respec-
tively.

For a given sample of observations, a sample Pearson partial correlation between y; and y; given z
is derived from the residuals y; — y; and y; — y;, where

yi=a;+zpi and J; =a;+zf;
are fitted values from regression models for variables y; and y; given z.

The partial corrected sums of squares and crossproducts (CSSCP) of y given z are the corrected
sums of squares and crossproducts of the residuals y — y. Using these partial corrected sums of
squares and crossproducts, you can calculate the partial covariances and partial correlations.

PROC CORR derives the partial corrected sums of squares and crossproducts matrix by applying
the Cholesky decomposition algorithm to the CSSCP matrix. For Pearson partial correlations, let S
be the partitioned CSSCP matrix between two sets of variables, z and y:

S — |: Szz Szy :|
= /
Szy Syy

PROC CORR calculates Syy », the partial CSSCP matrix of y after controlling for z, by applying
the Cholesky decomposition algorithm sequentially on the rows associated with z, the variables
being partialled out.

After applying the Cholesky decomposition algorithm to each row associated with variables z,
PROC CORR checks all higher-numbered diagonal elements associated with z for singularity. A
variable is considered singular if the value of the corresponding diagonal element is less than ¢
times the original unpartialled corrected sum of squares of that variable. You can specify the singu-
larity criterion ¢ by using the SINGULAR= option. For Pearson partial correlations, a controlling
variable z is considered singular if the R? for predicting this variable from the variables that are
already partialled out exceeds 1 — ¢. When this happens, PROC CORR excludes the variable from
the analysis. Similarly, a variable is considered singular if the R? for predicting this variable from
the controlling variables exceeds 1 — ¢. When this happens, its associated diagonal element and all
higher-numbered elements in this row or column are set to zero.
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After the Cholesky decomposition algorithm is applied to all rows associated with z, the resulting
matrix has the form

T — T;, sz
0 Syy.z

/

where 77 is an upper triangular matrix with 7;,7,; = S;,, T;, T2y = S},

T}, Tzy.

and Syyz == Syy -

If S, is positive definite, then 7z, = T, Z_l S and the partial CSSCP matrix Sy, - is identical to
the matrix derived from the formula

Syy.z = Syy — SéySZISzy

The partial variance-covariance matrix is calculated with the variance divisor (VARDEF= option).
PROC CORR then uses the standard Pearson correlation formula on the partial variance-covariance
matrix to calculate the Pearson partial correlation matrix.

When a correlation matrix is positive definite, the resulting partial correlation between variables x
and y after adjusting for a single variable z is identical to that obtained from the first-order partial
correlation formula

I'xy —TFxzlyz

Ja=rza—-r3)

I'xy.z =

where rxy, rxz, and ry,, are the appropriate correlations.

The formula for higher-order partial correlations is a straightforward extension of the preceding
first-order formula. For example, when the correlation matrix is positive definite, the partial cor-
relation between x and y controlling for both z_1 and z_2 is identical to the second-order partial
correlation formula

I'xy.z1 = Txzp.z17yza.21

rxy.zlzz == 2 2
\/(1 - rxzz.zl)(l - ryzz.zl)

where rxy .z, 'xz,.2,, and ryz, 7, are first-order partial correlations among variables x, y, and z_2
given z_1.

To derive the corresponding Spearman partial rank-order correlations and Kendall partial tau-b cor-
relations, PROC CORR applies the Cholesky decomposition algorithm to the Spearman rank-order
correlation matrix and Kendall’s tau-b correlation matrix and uses the correlation formula. That
is, the Spearman partial correlation is equivalent to the Pearson correlation between the residuals
of the linear regression of the ranks of the two variables on the ranks of the partialled variables.
Thus, if a PARTIAL statement is specified with the CORR=SPEARMAN option, the residuals of
the ranks of the two variables are displayed in the plot. The partial tau-b correlations range from —1
to 1. However, the sampling distribution of this partial tau-b is unknown; therefore, the probability
values are not available.
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Probability Values

Probability values for the Pearson and Spearman partial correlations are computed by treating

(n—k—2)"2r
(1 _ r2)1/2

as coming from a ¢ distribution with (n —k —2) degrees of freedom, where r is the partial correlation
and k is the number of variables being partialled out.

Fisher’s z Transformation

For a sample correlation r that uses a sample from a bivariate normal distribution with correlation
p = 0, the statistic

r2 1/2
tr = (n_2)1/2( )

1—r2

has a Student’s ¢ distribution with (n — 2) degrees of freedom.

With the monotone transformation of the correlation r (Fisher 1921)

1 1
z, = tanh™(r) = 3 log(1+r)
—r

the statistic z has an approximate normal distribution with mean and variance

P

E(zr) =§+m

1
n—3
where ¢ = tanh™!(p).

Vizy) =

For the transformed z,, the approximate variance V(z,) = 1/(n — 3) is independent of the correla-
tion p. Furthermore, even the distribution of z, is not strictly normal, it tends to normality rapidly
as the sample size increases for any values of p (Fisher 1970, pp. 200-201).

For the null hypothesis Ho: p = po, the p-values are computed by treating

Zr — o — _po
S Y

as a normal random variable with mean zero and variance 1/(n —3), where {o = tanh™!(pg) (Fisher

1970, p. 207; Anderson 1984, p. 123).

Note that the bias adjustment, po/(2(n — 1)), is always used when computing p-values under the
null hypothesis Ho: p = pg in the CORR procedure.
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The ALPHA= option in the FISHER option specifies the value « for the confidence level 1 — «,
the RHOO= option specifies the value pg in the hypothesis Hg: p = po, and the BIASADJ= option
specifies whether the bias adjustment is to be used for the confidence limits.

The TYPE= option specifies the type of confidence limits. The TYPE=TWOSIDED option requests
two-sided confidence limits and a p-value under the hypothesis Hg:p = po. For a one-sided
confidence limit, the TYPE=LOWER option requests a lower confidence limit and a p-value under
the hypothesis Hy: p <= pg, and the TYPE=UPPER option requests an upper confidence limit and
a p-value under the hypothesis Hg: p >= po.

Confidence Limits for the Correlation

The confidence limits for the correlation p are derived through the confidence limits for the param-
eter ¢, with or without the bias adjustment.

Without a bias adjustment, confidence limits for { are computed by treating
zr—¢

as having a normal distribution with mean zero and variance 1/(n — 3).

That is, the two-sided confidence limits for  are computed as

1

{1 =zp — Z(1—a/2) m

1
Cu = Zr + Z(1—a/2) _3

where z(j_q/2) is the 100(1 — «/2) percentage point of the standard normal distribution.
With a bias adjustment, confidence limits for { are computed by treating
z, — ¢ — bias(r)
as having a normal distribution with mean zero and variance 1/(n — 3), where the bias adjustment
function (Keeping 1962, p. 308) is

r

biaS(rr) = m

That is, the two-sided confidence limits for { are computed as

1

{1 = zp —bias(r) — z(1—g/2) n_3

. 1
Su = zr —bias(r) + z(1-q/2) 1_3
These computed confidence limits of {; and ¢, are then transformed back to derive the confidence
limits for the correlation p:

exp(2¢;) — 1

r; = tanh({;) = exp(28;) + 1
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exp(28y) — 1

ry = tanh({y,) = W

Note that with a bias adjustment, the CORR procedure also displays the following correlation esti-
mate:

Tqd; = tanh(z, — bias(r))

Applications of Fisher’s z Transformation

Fisher (1970, p. 199) describes the following practical applications of the z transformation:

e testing whether a population correlation is equal to a given value
e testing for equality of two population correlations
e combining correlation estimates from different samples

To test if a population correlation p; from a sample of n; observations with sample correlation
r1 is equal to a given pg, first apply the z transformation to r; and po: z; = tanh™!(r{) and

¢o = tanh ™! (po).
The p-value is then computed by treating

Po

TR

as a normal random variable with mean zero and variance 1/(n; — 3).

Assume that sample correlations r; and r, are computed from two independent samples of 71 and
np observations, respectively. To test whether the two corresponding population correlations, p;
and po, are equal, first apply the z transformation to the two sample correlations: z; = tanh™!(r;)
and zp = tanh™!(ry).

The p-value is derived under the null hypothesis of equal correlation. That is, the difference z; — z,
is distributed as a normal random variable with mean zero and variance 1/(n1 — 3) + 1/(ny — 3).

Assuming further that the two samples are from populations with identical correlation, a combined
correlation estimate can be computed. The weighted average of the corresponding z values is

(n1—3)z1 + (n2 —3)z
ny+n,—=6

7 =

where the weights are inversely proportional to their variances.

Thus, a combined correlation estimate is 7 = tanh(z) and V(z) = 1/(ny+n,—6). See Example 2.4
for further illustrations of these applications.

Note that this approach can be extended to include more than two samples.
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Cronbach’s Coefficient Alpha

Analyzing latent constructs such as job satisfaction, motor ability, sensory recognition, or customer
satisfaction requires instruments to accurately measure the constructs. Interrelated items can be
summed to obtain an overall score for each participant. Cronbach’s coefficient alpha estimates the
reliability of this type of scale by determining the internal consistency of the test or the average
correlation of items within the test (Cronbach 1951).

When a value is recorded, the observed value contains some degree of measurement error. Two
sets of measurements on the same variable for the same individual might not have identical values.
However, repeated measurements for a series of individuals will show some consistency. Reliability
measures internal consistency from one set of measurements to another. The observed value Y is
divided into two components, a true value 7" and a measurement error £. The measurement error is
assumed to be independent of the true value; that is,

Y=T+E Covw(T,E)=0

The reliability coefficient of a measurement test is defined as the squared correlation between the
observed value Y and the true value T'; that is,

Cov(Y.T)*  V(T)*  V(T)
VIY)V(T)  VX)V(T) V()
which is the proportion of the observed variance due to true differences among individuals in the
sample. If Y is the sum of several observed variables measuring the same feature, you can esti-

mate V' (T). Cronbach’s coefficient alpha, based on a lower bound for V(T'), is an estimate of the
reliability coefficient.

r2(Y,T) =

Suppose p variables are used with Y; = T; + E; for j = 1,2,..., p, where Y is the observed
value, 7 is the true value, and E; is the measurement error. The measurement errors (£ ;) are
independent of the true values (7;) and are also independent of each other. Let Yo = ) ;Y be the
total observed score and let Tp = ) j T'; be the total true score. Because

(p—1)Y_V(Tj) = > Cov(Ti, T)
J i#]
a lower bound for V(Ty) is given by
p
——— > Cov(T;. T))
p—1=
i#j

With Cov(Y;,Y;) = Cov(T;,T;) for i # j, a lower bound for the reliability coefficient,
V(To)/ V(Yo), is then given by the Cronbach’s coefficient alpha:

a—( p )Zi;éjCOV(Yi’YJ')_( p ) 1_Z]'V(Yj)
- \p-1 V(Yo) S \p-1 V(Yo)

If the variances of the items vary widely, you can standardize the items to a standard deviation of 1
before computing the coefficient alpha. If the variables are dichotomous (0,1), the coefficient alpha
is equivalent to the Kuder-Richardson 20 (KR-20) reliability measure.
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When the correlation between each pair of variables is 1, the coefficient alpha has a maximum value
of 1. With negative correlations between some variables, the coefficient alpha can have a value less
than zero. The larger the overall alpha coefficient, the more likely that items contribute to a reliable
scale. Nunnally and Bernstein (1994) suggests 0.70 as an acceptable reliability coefficient; smaller
reliability coefficients are seen as inadequate. However, this varies by discipline.

To determine how each item reflects the reliability of the scale, you calculate a coefficient alpha
after deleting each variable independently from the scale. Cronbach’s coefficient alpha from all
variables except the kth variable is given by

o :(p—l) 1_Zi¢kV(Yi)
“T\p-2 VQQizk Yi)

If the reliability coefficient increases after an item is deleted from the scale, you can assume that the
item is not correlated highly with other items in the scale. Conversely, if the reliability coefficient
decreases, you can assume that the item is highly correlated with other items in the scale. Refer
to SAS Communications (1994) for more information about how to interpret Cronbach’s coefficient
alpha.

Listwise deletion of observations with missing values is necessary to correctly calculate Cronbach’s
coefficient alpha. PROC CORR does not automatically use listwise deletion if you specify the
ALPHA option. Therefore, you should use the NOMISS option if the data set contains missing
values. Otherwise, PROC CORR prints a warning message indicating the need to use the NOMISS
option with the ALPHA option.

Confidence and Prediction Ellipses

When the relationship between two variables is nonlinear or when outliers are present, the correla-
tion coefficient might incorrectly estimate the strength of the relationship. Plotting the data enables
you to verify the linear relationship and to identify the potential outliers.

The partial correlation between two variables, after controlling for variables in the PARTIAL state-
ment, is the correlation between the residuals of the linear regression of the two variables on the
partialled variables. Thus, if a PARTIAL statement is also specified, the residuals of the analysis
variables are displayed in the scatter plot matrix and scatter plots.

The CORR procedure optionally provides two types of ellipses for each pair of variables in a scatter
plot. One is a confidence ellipse for the population mean, and the other is a prediction ellipse for a
new observation. Both assume a bivariate normal distribution.

Let Z and S be the sample mean and sample covariance matrix of a random sample of size n
from a bivariate normal distribution with mean g and covariance matrix £. The variable Z —
j is distributed as a bivariate normal variate with mean zero and covariance (1/n)X, and it is
independent of S. Using Hotelling’s 72 statistic, which is defined as

T?> =n(Z-p)S" " Z—-p)
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a 100(1 — @)% confidence ellipse for u is computed from the equation

n _ =
L Z-w)ST N Z—p) = ——Fapa(l—w)
n—1 n—2
where F ,_2(1 — «) is the (1 — «) critical value of an F distribution with degrees of freedom 2

and n — 2.

A prediction ellipse is a region for predicting a new observation in the population. It also approxi-
mates a region containing a specified percentage of the population.

Denote a new observation as the bivariate random variable Z,.,. The variable
Znew - Z = (Znew - IL) - (Z - IL)

is distributed as a bivariate normal variate with mean zero (the zero vector) and covariance (1 +
1/n)X, and it is independent of S. A 100(1 — )% prediction ellipse is then given by the equation

_ 2(n + 1)

n_2 FZ,n—Z(l - Ol)

n _ o=
——(Z—p)S"NZ—p)
n—1
The family of ellipses generated by different critical values of the F distribution has a common
center (the sample mean) and common major and minor axis directions.

The shape of an ellipse depends on the aspect ratio of the plot. The ellipse indicates the correlation
between the two variables if the variables are standardized (by dividing the variables by their re-
spective standard deviations). In this situation, the ratio between the major and minor axis lengths
is

1+ |r|
1—|r|

In particular, if »r = 0, the ratio is 1, which corresponds to a circular confidence contour and
indicates that the variables are uncorrelated. A larger value of the ratio indicates a larger positive or
negative correlation between the variables.

Missing Values

PROC CORR excludes observations with missing values in the WEIGHT and FREQ variables. By
default, PROC CORR uses pairwise deletion when observations contain missing values. PROC
CORR includes all nonmissing pairs of values for each pair of variables in the statistical compu-
tations. Therefore, the correlation statistics might be based on different numbers of observations.

If you specify the NOMISS option, PROC CORR uses listwise deletion when a value of the VAR or
WITH statement variable is missing. PROC CORR excludes all observations with missing values
from the analysis. Therefore, the number of observations for each pair of variables is identical.
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The PARTIAL statement always excludes the observations with missing values by automatically
invoking the NOMISS option. With the NOMISS option, the data are processed more efficiently
because fewer resources are needed. Also, the resulting correlation matrix is nonnegative definite.

In contrast, if the data set contains missing values for the analysis variables and the NOMISS option
is not specified, the resulting correlation matrix might not be nonnegative definite. This leads to
several statistical difficulties if you use the correlations as input to regression or other statistical
procedures.

Output Tables

By default, PROC CORR prints a report that includes descriptive statistics and correlation statistics
for each variable. The descriptive statistics include the number of observations with nonmissing
values, the mean, the standard deviation, the minimum, and the maximum.

If a nonparametric measure of association is requested, the descriptive statistics include the median.
Otherwise, the sample sum is included. If a Pearson partial correlation is requested, the descriptive
statistics also include the partial variance and partial standard deviation.

If variable labels are available, PROC CORR labels the variables. If you specify the CSSCP, SSCP,
or COV option, the appropriate sums of squares and crossproducts and covariance matrix appear
at the top of the correlation report. If the data set contains missing values, PROC CORR prints
additional statistics for each pair of variables. These statistics, calculated from the observations
with nonmissing row and column variable values, might include the following:

e SSCP(CW’;V’), uncorrected sums of squares and crossproducts

e USS(CW?’), uncorrected sums of squares for the row variable

e USS(’V’), uncorrected sums of squares for the column variable

e CSSCP(CW’,V’), corrected sums of squares and crossproducts

o CSS(W’), corrected sums of squares for the row variable

e CSS(’V’), corrected sums of squares for the column variable

e COV(W’’V’), covariance

e VAR(’W’), variance for the row variable

e VAR(’V’), variance for the column variable

e DF(CW’V’), divisor for calculating covariance and variances
For each pair of variables, PROC CORR prints the correlation coefficients, the number of observa-

tions used to calculate the coefficient, and the p-value.

If you specify the ALPHA option, PROC CORR prints Cronbach’s coefficient alpha, the correlation
between the variable and the total of the remaining variables, and Cronbach’s coefficient alpha by
using the remaining variables for the raw variables and the standardized variables.
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Output Data Sets

If you specify the OUTP=, OUTS=, OUTK=, or OUTH= option, PROC CORR creates an output
data set containing statistics for Pearson correlation, Spearman correlation, Kendall’s tau-b, or Ho-
effding’s D, respectively. By default, the output data set is a special data set type (TYPE=CORR)
that many SAS/STAT procedures recognize, including PROC REG and PROC FACTOR. When you
specify the NOCORR option and the COV, CSSCP, or SSCP option, use the TYPE= data set option
to change the data set type to COV, CSSCP, or SSCP.

The output data set includes the following variables:

e BY variables, which identify the BY group when using a BY statement
e _TYPE_ variable, which identifies the type of observation

e _NAME_ variable, which identifies the variable that corresponds to a given row of the corre-
lation matrix

INTERCEPT variable, which identifies variable sums when specifying the SSCP option

VAR variables, which identify the variables listed in the VAR statement

You can use a combination of the _TYPE_ and _NAME_ variables to identify the contents of an
observation. The _NAME _ variable indicates which row of the correlation matrix the observation
corresponds to. The values of the _TYPE_ variable are as follows:

e SSCP, uncorrected sums of squares and crossproducts
e CSSCP, corrected sums of squares and crossproducts
e COV, covariances
¢ MEAN, mean of each variable
e STD, standard deviation of each variable
e N, number of nonmissing observations for each variable
e SUMWGT, sum of the weights for each variable when using a WEIGHT statement
e CORR, correlation statistics for each variable
If you specity the SSCP option, the OUTP= data set includes an additional observation that contains

intercept values. If you specify the ALPHA option, the OUTP= data set also includes observations
with the following _TYPE_ values:

e RAWALPHA, Cronbach’s coefficient alpha for raw variables

e STDALPHA, Cronbach’s coefficient alpha for standardized variables
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o RAWALDEL, Cronbach’s coefficient alpha for raw variables after deleting one variable

e STDALDEL, Cronbach’s coefficient alpha for standardized variables after deleting one vari-
able

o RAWCTDEL, the correlation between a raw variable and the total of the remaining raw vari-
ables

o STDCTDEL, the correlation between a standardized variable and the total of the remaining
standardized variables

If you use a PARTIAL statement, the statistics are calculated after the variables are partialled.
If PROC CORR computes Pearson correlation statistics, MEAN equals zero and STD equals the
partial standard deviation associated with the partial variance for the OUTP=, OUTK=, and OUTS=
data sets. Otherwise, PROC CORR assigns missing values to MEAN and STD.

ODS Table Names

PROC CORR assigns a name to each table it creates. You must use these names to reference tables
when using the Output Delivery System (ODS). These names are listed in Table 2.3 and Table 2.4.
For more information about ODS, see Chapter 20, “Using the Output Delivery System” (SAS/STAT

User’s Guide).

Table 2.3 ODS Tables Produced by PROC CPRR

ODS Table Name Description Option

Cov Covariances Cov

CronbachAlpha Coefficient alpha ALPHA

CronbachAlphaDel  Coefficient alpha with deleted variable ALPHA

Csscp Corrected sums of squares and crossproducts CSSCP

FisherPearsonCorr Pearson correlation statistics using FISHER
Fisher’s z transformation

FisherSpearmanCorr Spearman correlation statistics using FISHER SPEARMAN
Fisher’s z transformation

HoeftdingCorr Hoeffding’s D statistics HOEFFDING

KendallCorr Kendall’s tau-b coefficients KENDALL

PearsonCorr Pearson correlations PEARSON

SimpleStats Simple descriptive statistics

SpearmanCorr Spearman correlations SPEARMAN

Sscp Sums of squares and crossproducts SSCP

VarInformation

Variable information
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Table 2.4 ODS Tables Produced with the PARTIAL Statement

ODS Table Name Description Option

FisherPearsonPartial Corr Pearson partial correlation statistics FISHER
using Fisher’s z transformation

FisherSpearmanPartialCorr  Spearman partial correlation statistics FISHER SPEARMAN
using Fisher’s z transformation

PartialCsscp Partial corrected sums of squares CSSCP
and crossproducts
PartialCov Partial covariances Cov
PartialKendallCorr Partial Kendall tau-b coefficients KENDALL
PartialPearsonCorr Partial Pearson correlations
PartialSpearmanCorr Partial Spearman correlations SPEARMAN
ODS Graphics

PROC CORR assigns a name to each graph it creates using ODS. You can use these names to
reference the graphs when using ODS. The names are listed in Table 2.5.

To request these graphs, you must specify the ods graphics on statement in addition to the op-
tions indicated in Table 2.5. For more information about the ods graphics statement, see Chap-
ter 21, “Statistical Graphics Using ODS” (SAS/STAT User’s Guide).

Table 2.5 ODS Graphics Produced by PROC CORR

ODS Graph Name Plot Description  Option

ScatterPlot Scatter plot PLOTS=SCATTER
MatrixPlot Scatter plot matrix PLOTS=MATRIX

Examples: CORR Procedure

Example 2.1: Computing Four Measures of Association

This example produces a correlation analysis with descriptive statistics and four measures of asso-
ciation: the Pearson product-moment correlation, the Spearman rank-order correlation, Kendall’s
tau-b coefficients, and Hoeffding’s measure of dependence, D.

The Fitness data set created in the section “Getting Started: CORR Procedure” on page 5 contains
measurements from a study of physical fitness of 31 participants. The following statements request
all four measures of association for the variables Weight, Oxygen, and Runtime:
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ods graphics on;
title ’'Measures of Association for a Physical Fitness Study’;
proc corr data=Fitness pearson spearman kendall hoeffding
plots=matrix (histogram);
var Weight Oxygen RunTime;
run;
ods graphics off;

Note that Pearson correlations are computed by default only if all three nonparametric correlations
(SPEARMAN, KENDALL, and HOEFFDING) are not specified. Otherwise, you need to specify
the PEARSON option explicitly to compute Pearson correlations.

The “Simple Statistics” table in Output 2.1.1 displays univariate descriptive statistics for analysis
variables. By default, observations with nonmissing values for each variable are used to derive the
univariate statistics for that variable. When nonparametric measures of association are specified,
the procedure displays the median instead of the sum as an additional descriptive measure.

Output 2.1.1 Simple Statistics

Measures of Association for a Physical Fitness Study
The CORR Procedure

3 Variables: Weight Oxygen RunTime

Simple Statistics

Variable N Mean Std Dev Median Minimum Maximum
Weight 31 77.44452 8.32857 77.45000 59.08000 91.63000
Oxygen 29 47.22721 5.47718 46.67200 37.38800 60.05500
RunTime 29 10.67414 1.39194 10.50000 8.17000 14.03000

The “Pearson Correlation Coefficients” table in Output 2.1.2 displays Pearson correlation statistics
for pairs of analysis variables. The Pearson correlation is a parametric measure of association for
two continuous random variables. When there are missing data, the number of observations used to
calculate the correlation can vary.
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Output 2.1.2 Pearson Correlation Coefficients

Pearson Correlation Coefficients
Prob > |r| under HO: Rho=0

Number of Observations
Weight Oxygen RunTime
Weight 1.00000 -0.15358 0.20072
0.4264 0.2965
31 29 29
Oxygen -0.15358 1.00000 -0.86843
0.4264 <.0001
29 29 28
RunTime 0.20072 -0.86843 1.00000

0.2965 <.0001
29 28 29

The table shows that the Pearson correlation between Runtime and Oxygen is —0.86843, which is
significant with a p-value less than 0.0001. This indicates a strong negative linear relationship
between these two variables. As Runtime increases, Oxygen decreases linearly.

The Spearman rank-order correlation is a nonparametric measure of association based on the ranks
of the data values. The “Spearman Correlation Coefficients” table in Output 2.1.3 displays results
similar to those of the “Pearson Correlation Coefficients” table in Output 2.1.2.

Output 2.1.3 Spearman Correlation Coefficients

Spearman Correlation Coefficients
Prob > |r| under HO: Rho=0

Number of Observations
Weight Oxygen RunTime
Weight 1.00000 -0.06824 0.13749
0.7250 0.4769
31 29 29
Oxygen -0.06824 1.00000 -0.80131
0.7250 <.0001
29 29 28
RunTime 0.13749 -0.80131 1.00000

0.4769 <.0001
29 28 29

Kendall’s tau-b is a nonparametric measure of association based on the number of concordances
and discordances in paired observations. The “Kendall Tau b Correlation Coefficients” table in
Output 2.1.4 displays results similar to those of the “Pearson Correlation Coefficients” table in
Output 2.1.2.
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Output 2.1.4 Kendall’s Tau-b Correlation Coefficients

Kendall Tau b Correlation Coefficients
Prob > |tau| under HO: Tau=0
Number of Observations
Weight Oxygen RunTime
Weight 1.00000 -0.00988 0.06675
0.9402 0.6123
31 29 29
Oxygen -0.00988 1.00000 -0.62434
0.9402 <.0001
29 29 28
RunTime 0.06675 -0.62434 1.00000
0.6123 <.0001
29 28 29

Hoeffding’s measure of dependence, D, is a nonparametric measure of association that detects more
general departures from independence. Without ties in the variables, the values of the D statistic can
vary between —0.5 and 1, with 1 indicating complete dependence. Otherwise, the D statistic can
result in a smaller value. The “Hoeffding Dependence Coefficients” table in Output 2.1.5 displays
Hoeffding dependence coefficients. Since ties occur in the variable Weight, the D statistic for the
Weight variable is less than 1.

Output 2.1.5 Hoeffding’s Dependence Coefficients

Hoeffding Dependence Coefficients
Prob > D under HO: D=0
Number of Observations
Weight Oxygen RunTime
Weight 0.97690 -0.00497 -0.02355
<.0001 0.5101 1.0000
31 29 29
Oxygen -0.00497 1.00000 0.23449
0.5101 <.0001
29 29 28
RunTime -0.02355 0.23449 1.00000
1.0000 <.0001
29 28 29

When you use the PLOTS=MATRIX(HISTOGRAM) option, the CORR procedure displays a sym-
metric matrix plot for the analysis variables listed in the VAR statement (Output 2.1.6).
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Output 2.1.6 Symmetric Scatter Plot Matrix

Scatter Plot Matrix
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The strong negative linear relationship between Oxygen and Runtime is evident in Output 2.1.6.

Note that this graphical display is requested by specifying the ods graphics on statement and
the PLOTS option. For more information about the ods graphics statement, see Chapter 21,
“Statistical Graphics Using ODS” (SAS/STAT User’s Guide).
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Example 2.2: Computing Correlations between Two Sets of Variables

The following statements create a data set which contains measurements for four iris parts from
Fisher’s iris data (1936): sepal length, sepal width, petal length, and petal width. Each observation

represents one specimen.

Sepallength (sepal length)
(sepal width)
Petallength (petal length)
(petal width)

PetalWidth
Certain values were changed to missing for the analysis.

Data on Iris Setosa
The data set contains 50 iris specimens from the species
Iris Setosa with the following four measurements:

data Setosa;
input Sepallength SepalWidth PetallLength PetalWidth (@@;
label sepallength=’'Sepal Length in mm.’
sepalwidth='Sepal Width in mm.’
petallength='Petal Length in mm.’
petalwidth='Petal Width in mm.’;
datalines;

50
51
52
50
48
50
58
51
57
52
54
47
50
54
48
51
52

The following statements request a correlation analysis between two sets of variables, the sepal
measurements (length and width) and the petal measurements (length and width):

ods graphics on;

33
33
34
35
30
30
40
35
44
41
39
32
35
39
30
38
35

14
17
14
16
14
16
12
14
15
15
17
13
13
13
14
15
15

*
I
I
I
| SepalWidth
|
I
I
*

02
05
02
06
03
02
02
02
04
04
02
03
04
01
03
02

46
55
49
44
51
50
51
50
50
55
50
46
49
51
45
54
53

34
35
36
30
38
32
38
34
36
42
34
31
31
35
23
34
37

14
13
14
13
16
12
19
16
14
14
15
15
15
14
13
17
15

03
02
01
02
02
02
04
04
02
02
02
02
01
03
03
02
02

46
48
44
47
48
43
49
46
54
49
44
51
54
48
57
51

36
31
32
32
34
30
30
32
34
31
29
34
37
34
38
37

16
13
16
19
11
14
14
15
15
14
15
15
16
17
15

02
02
02
02
02
02
02
04
02
02
02
02
02
03
04

title ’'Fisher (1936) Iris Setosa Data’;
proc corr data=Setosa sscp cov plots;
sepallength sepalwidth;
with petallength petalwidth;

var

run;

ods graphics off;

* —— — — — — — %
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The “Simple Statistics” table in Output 2.2.1 displays univariate statistics for variables in the VAR
and WITH statements.

Output 2.2.1 Simple Statistics

Fisher (1936) Iris Setosa Data

The CORR Procedure

2 With Variables: PetallLength PetalWidth
2 Variables: Sepallength SepalWidth

Simple Statistics

Variable N Mean Std Dev Sum
PetalLength 49 14.71429 1.62019 721.00000
PetalWidth 48 2.52083 1.03121 121.00000
SepalLength 50 50.06000 3.52490 2503
SepalWidth 50 34.28000 3.79064 1714

Simple Statistics

Variable Minimum Maximum Label

PetalLength 11.00000 19.00000 Petal Length in mm.
PetalWidth 1.00000 6.00000 Petal Width in mm.
Sepallength 43.00000 58.00000 Sepal Length in mm.
SepalWidth 23.00000 44.00000 Sepal Width in mm.

When the WITH statement is specified together with the VAR statement, the CORR procedure
produces rectangular matrices for statistics such as covariances and correlations. The matrix rows
correspond to the WITH variables (PetalLength and PetalWidth), while the matrix columns corre-
spond to the VAR variables (SepalLength and SepalWidth). The CORR procedure uses the WITH
variable labels to label the matrix rows.

The SSCP option requests a table of the uncorrected sum-of-squares and crossproducts matrix, and
the COV option requests a table of the covariance matrix. The SSCP and COV options also produce
a table of the Pearson correlations.

The sum-of-squares and crossproducts statistics for each pair of variables are computed by us-
ing observations with nonmissing row and column variable values. The “Sums of Squares and
Crossproducts” table in Output 2.2.2 displays the crossproduct, sum of squares for the row variable,
and sum of squares for the column variable for each pair of variables.
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Output 2.2.2 Sums of Squares and Crossproducts

Sums of Squares and Crossproducts
SSCP / Row Var SS / Col Var SS

PetallLength

Petal Length in mm.

PetalWidth

Petal Width in mm.

Sepallength

36214.00000
10735.00000
123793.0000

6113.00000
355.00000
121356.0000

SepalWidth

24756.00000
10735.00000
58164.0000

4191.00000
355.00000
56879.0000

The variances are computed by using observations with nonmissing row and column variable values.
The “Variances and Covariances” table in Output 2.2.3 displays the covariance, variance for the
row variable, variance for the column variable, and associated degrees of freedom for each pair of
variables.

Output 2.2.3 Variances and Covariances

Variances and Covariances

Covariance / Row Var Variance / Col Var Variance / DF

Petallength

Petal Length in mm.

PetalWidth

Petal Width in mm.

Sepallength

1.270833333
2.625000000
12.33333333

48

0.911347518
1.063386525
11.80141844

47

SepalWidth

1.363095238
2.625000000
14.60544218

48

1.048315603
1.063386525
13.62721631

47

When there are missing values in the analysis variables, the “Pearson Correlation Coefficients” table
in Output 2.2.4 displays the correlation, the p-value under the null hypothesis of zero correlation,
and the number of observations for each pair of variables. Only the correlation between PetalWidth
and SepalLength and the correlation between PetalWidth and SepalWidth are slightly positive.
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Output 2.2.4 Pearson Correlation Coefficients

Pearson Correlation Coefficients
Prob > |r| under HO: Rho=0
Number of Observations
Sepal Sepal
Length Width
PetalLength 0.22335 0.22014
Petal Length in mm. 0.1229 0.1285
49 49
PetalWidth 0.25726 0.27539
Petal Width in mm. 0.0775 0.0582
48 48

When you specify the ods graphics on statement, the PROC CORR displays a scatter matrix
plot by default. Output 2.2.5 displays a rectangular scatter plot matrix for the two sets of vari-
ables: the VAR variables SepalLength and SepalWidth are listed across the top of the matrix, and the
WITH variables PetalLength and PetalWidth are listed down the side of the matrix. As measured in
Output 2.2.4, the plot for PetalWidth and SepalLength and the plot for PetalWidth and SepalWidth also
show slight positive correlations.
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Output 2.2.5 Rectangular Matrix Plot

Scatter Plot Matrix
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Note that this graphical display is requested by specifying the ods graphics on statement and
the PLOTS option. For more information about the ods graphics statement, see Chapter 21,
“Statistical Graphics Using ODS” (SAS/STAT User’s Guide).

Example 2.3: Analysis Using Fisher’s z Transformation

The following statements request Pearson correlation statistics by using Fisher’s z transformation
for the data set Fitness:

18

16

14

12
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proc corr data=Fitness nosimple fisher;
var weight oxygen runtime;
run;

The NOSIMPLE option suppresses the table of univariate descriptive statistics. By default, PROC
CORR displays the “Pearson Correlation Coefficients” table in Output 2.3.1.

Output 2.3.1 Pearson Correlations

The CORR Procedure
Pearson Correlation Coefficients
Prob > |r| under HO: Rho=0

Number of Observations
Weight Oxygen RunTime
Weight 1.00000 -0.15358 0.20072
0.4264 0.2965
31 29 29
Oxygen -0.15358 1.00000 -0.86843
0.4264 <.0001
29 29 28
RunTime 0.20072 -0.86843 1.00000

0.2965 <.0001
29 28 29

Using the FISHER option, the CORR procedure displays correlation statistics by using Fisher’s z
transformation in Output 2.3.2.

Output 2.3.2 Correlation Statistics Using Fisher’s z Transformation

Pearson Correlation Statistics (Fisher’s z Transformation)

With Sample Bias Correlation
Variable Variable N Correlation Fisher’s z Adjustment Estimate
Weight Oxygen 29 -0.15358 -0.15480 -0.00274 -0.15090
Weight RunTime 29 0.20072 0.20348 0.00358 0.19727
Oxygen RunTime 28 -0.86843 -1.32665 -0.01608 -0.86442

Pearson Correlation Statistics (Fisher’s z Transformation)

With p Value for
Variable Variable 95% Confidence Limits HO :Rho=0
Weight Oxygen -0.490289 0.228229 0.4299
Weight RunTime -0.182422 0.525765 0.2995

Oxygen RunTime -0.935728 -0.725221 <.0001
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The table also displays confidence limits and a p-value for the default null hypothesis Ho: p = po.
See the section “Fisher’s z Transformation” on page 24 for details on Fisher’s z transformation.

The following statements request one-sided hypothesis tests and confidence limits for the correla-
tions using Fisher’s z transformation:

proc corr data=Fitness nosimple nocorr fisher (type=lower);
var weight oxygen runtime;
run;

The NOSIMPLE option suppresses the “Simple Statistics” table, and the NOCORR option sup-
presses the “Pearson Correlation Coefficients” table.

Output 2.3.3 displays correlation statistics by using Fisher’s z transformation.

Output 2.3.3 One-Sided Correlation Analysis Using Fisher’s z Transformation

The CORR Procedure

Pearson Correlation Statistics (Fisher’s z Transformation)

With Sample Bias Correlation
Variable Variable N Correlation Fisher’s z Adjustment Estimate
Weight Oxygen 29 -0.15358 -0.15480 -0.00274 -0.15090
Weight RunTime 29 0.20072 0.20348 0.00358 0.19727
Oxygen RunTime 28 -0.86843 -1.32665 -0.01608 -0.86442

Pearson Correlation Statistics (Fisher’s z Transformation)

With p Value for
Variable Variable Lower 95% CL HO :Rho<=0
Weight Oxygen -0.441943 0.7850
Weight RunTime -0.122077 0.1497
Oxygen RunTime -0.927408 1.0000

The FISHER(TYPE=LOWER) option requests a lower confidence limit and a p-value for the test of
the one-sided hypothesis Hp: p < 0 against the alternative hypothesis Hj: p > 0. Here Fisher’s z,
the bias adjustment, and the estimate of the correlation are the same as for the two-sided alternative.
However, because TYPE=LOWER is specified, only a lower confidence limit is computed for each
correlation, and one-sided p-values are computed.
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Example 2.4: Applications of Fisher’s z Transformation

This example illustrates some applications of Fisher’s z transformation. For details, see the section
“Fisher’s z Transformation” on page 24.

The following statements simulate independent samples of variables X and Y from a bivariate normal
distribution. The first batch of 150 observations is sampled using a known correlation of 0.3, the
second batch of 150 observations is sampled using a known correlation of 0.25, and the third batch
of 100 observations is sampled using a known correlation of 0.3.

data Sim (drop=i);
do i=1 to 400;
X = rannor(135791);
Batch = 1 + (i>150) + (i>300);

if Batch = 1 then Y = 0.3%xX + 0.9%rannor (246791);
if Batch = 2 then Y = 0.25%X + sqrt(.8375) *rannor (246791);
if Batch = 3 then Y = 0.3*X + 0.9*rannor (246791);
output;
end;
run;

This data set will be used to illustrate the following applications of Fisher’s z transformation:

e testing whether a population correlation is equal to a given value
e testing for equality of two population correlations
e combining correlation estimates from different samples

Testing Whether a Population Correlation Is Equal to a Given Value p,

You can use the following statements to test the null hypothesis Hy: p = 0.5 against a two-sided
alternative Hy: p # 0.5. The test is requested with the option FISHER(RHO0=0.5).

title 'Analysis for Batch 1’;

proc corr data=Sim (where=(Batch=1)) fisher (rho0=.5);
var X Y;

run;

Output 2.4.1 displays the results based on Fisher’s transformation. The null hypothesis is rejected
since the p-value is less than 0.0001.
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Output 2.4.1 Fisher’s Test for Hp : p = po

Analysis for Batch 1
The CORR Procedure

Pearson Correlation Statistics (Fisher’s z Transformation)

With Sample Bias Correlation
Variable Variable N Correlation Fisher’s z Adjustment Estimate
X Y 150 0.22081 0.22451 0.0007410 0.22011

Pearson Correlation Statistics (Fisher’s z Transformation)

with  —————— HO : Rho=Rho0————-
Variable Variable 95% Confidence Limits RhoO p Value
X Y 0.062034 0.367409 0.50000 <.0001

Testing for Equality of Two Population Correlations

You can use the following statements to test for equality of two population correlations, p; and p;.
Here, the null hypothesis Ho: p; = p2 is tested against the alternative Hy: p1 # pa.

ods output FisherPearsonCorr=SimCorr;
title 'Testing Equality of Population Correlations’;
proc corr data=Sim (where=(Batch=1 or Batch=2)) fisher;

var X Y;
by Batch;
run;

The ODS OUTPUT statement saves the “FisherPearsonCorr” table into an output data set in the
CORR procedure. The output data set SimCorr contains Fisher’s z statistics for both batches.

The following statements display (in Figure 2.4.2) the output data set SimCorr:

proc print data=SimCorr;
run;

Output 2.4.2 Fisher’s Correlation Statistics

With
Obs Batch Var Var NObs Corr ZVal BiasAdj
1 1 X Y 150 0.22081 0.22451 0.0007410
2 2 X Y 150 0.33694 0.35064 0.00113
Obs CorrEst Lecl Ucl pValue
1 0.22011 0.062034 0.367409 0.0065
2 0.33594 0.185676 0.470853 <.0001
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The p-value for testing Hy is derived by treating the difference z; —z5 as a normal random variable
with mean zero and variance 1/(n; —3)+1/(n2—3), where z; and z; are Fisher’s z transformation
of the sample correlations rq and r,, respectively, and where 71 and n, are the corresponding sample
sizes.

The following statements compute the p-value in Output 2.4.3:

data SimTest (drop=Batch);
merge SimCorr (where=(Batch=1) keep=Nobs ZVal Batch
rename= (Nobs=nl ZVal=zl))
SimCorr (where=(Batch=2) keep=Nobs ZVal Batch
rename= (Nobs=n2 ZVal=z2));
variance = 1/(nl1-3) + 1/ (n2-3);
z = (zl1 - z2) / sqgrt( variance );
pval = probnorm(z);
if (pval > 0.5) then pval = 1 - pval;
pval = 2xpval;
run;

proc print data=SimTest noobs;
run;

Output 2.4.3 Test of Equality of Observed Correlations

nl zl n2 z2 variance z pval

150 0.22451 150 0.35064 0.013605 -1.08135 0.27954

In Output 2.4.3, the p-value of 0.2795 does not provide evidence to reject the null hypothesis that
p1 = p2. The sample sizes n1 = 150 and n, = 150 are not large enough to detect the difference
p1 — p2 = 0.05 at a significance level of @ = 0.05.

Combining Correlation Estimates from Different Samples

Assume that sample correlations r; and r, are computed from two independent samples of 71 and
n, observations, respectively. A combined correlation estimate is given by 7 = tanh(Z), where Z is
the weighted average of the z transformations of r; and r5:

(ny—3)z1 + (n2 —3)z2
ny+n,—06

Z =

The following statements compute a combined estimate of p by using Batch 1 and Batch 3:

ods output FisherPearsonCorr=SimCorr2;

proc corr data=Sim (where=(Batch=1] or Batch=3)) fisher;
var X Y;
by Batch;

run;
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data SimComb (drop=Batch);
merge SimCorr2 (where=(Batch=1) keep=Nobs ZVal Batch
rename= (Nobs=nl ZVal=zl))
SimCorr2 (where=(Batch=3) keep=Nobs ZVal Batch
rename= (Nobs=n2 ZVal=z2));

z = ((n1-3)*zl + (n2-3)*z2) / (nl+n2-6);

corr = tanh(z);

var = 1/ (nl+n2-6);

zlcl = z - probit (0.975) *xsqrt (var) ;
zucl = z + probit (0.975) *xsqrt (var) ;
lcl= tanh(zlcl);

ucl= tanh(zucl);

pval= probnorm( z/sqrt (var));
if (pval > .5) then pval= 1 - pval;
pval= 2xpval;

run;

proc print data=SimComb noobs;
var nl zl n2 z2 corr lcl ucl pval;
run;

Output 2.4.4 displays the combined estimate of p. The table shows that a correlation estimate from
the combined samples is r = 0.2264. The 95% confidence interval is (0.10453, 0.34156), using the
variance of the combined estimate. Note that this interval contains the population correlation 0.3.

Output 2.4.4 Combined Correlation Estimate

Obs nl z1 n2 z2 z corr
1 150 0.22451 100 0.23929 0.23039 0.22640
Obs var zlcl zucl lcl ucl pval
1 .004098361 0.10491 0.35586 0.10453 0.34156 .000319748

Example 2.5: Computing Cronbach’s Coefficient Alpha

The following statements create the data set Fish1 from the Fish data set used in Chapter 82, “The
STEPDISC Procedure” (SAS/STAT User’s Guide). The cubic root of the weight (Weight3) is com-

puted as a one-dimensional measure of the size of a fish.

Fish Measurement Data

The data set contains 35 fish from the species Bream caught in

Finland’s lake Laengelmavesi with the following measurements:

Weight (in grams)

(length from the nose to the end of its tail,

in cm)

HtPct
WidthPct

(max height,
(max width,

as percentage of Length3)
as percentage of Length3)

*
|
|
I
| Length3
|
I
*

* — — — — — — %
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data Fishl (drop=HtPct WidthPct);
title ’'Fish Measurement Data’;
input Weight Length3 HtPct WidthPct QQ@;
Weight3= Weight*x (1/3);
Height=HtPct*Length3/100;
Width=WidthPct*Length3/100;

datalines;

242.0 30.0 38.4 13.4 290.0 31.2 40.0 13.8
340.0 31.1 39.8 15.1 363.0 33.5 38.0 13.3
430.0 34.0 36.6 15.1 450.0 34.7 39.2 14.2
500.0 34.5 41.1 15.3 390.0 35.0 36.2 13.4
450.0 35.1 39.9 13.8 500.0 36.2 39.3 13.7
475.0 36.2 39.4 14.1 500.0 36.2 39.7 13.3
500.0 36.4 37.8 12.0 . 37.3 37.3 13.6
600.0 37.2 40.2 13.9 600.0 37.2 41.5 15.0
700.0 38.3 38.8 13.8 700.0 38.5 38.8 13.5
610.0 38.6 40.5 13.3 650.0 38.7 37.4 14.8
575.0 39.5 38.3 14.1 685.0 39.2 40.8 13.7
620.0 39.7 39.1 13.3 680.0 40.6 38.1 15.1
700.0 40.5 40.1 13.8 725.0 40.9 40.0 14.8
720.0 40.6 40.3 15.0 714.0 41.5 39.8 14.1
850.0 41.6 40.6 14.9 1000.0 42.6 44.5 15.5
920.0 44.1 40.9 14.3 955.0 44.0 41.1 14.3
925.0 45.3 41.4 14.9 975.0 45.9 40.6 14.7
950.0 46.5 37.9 13.7

The following statements request a correlation analysis and compute Cronbach’s coefficient alpha
for the variables Weight3, Length3, Height, and Width:

ods graphics on;
title ’'Fish Measurement Data’;
proc corr data=fishl nomiss alpha plots;
var Weight3 Length3 Height Width;
run;
ods graphics off;

The NOMISS option excludes observations with missing values, and the ALPHA option computes
Cronbach’s coefficient alpha for the analysis variables.

The “Simple Statistics” table in Output 2.5.1 displays univariate descriptive statistics for each anal-
ysis variable.

Output 2.5.1 Simple Statistics

Fish Measurement Data
The CORR Procedure

4 Variables: Weight3 Length3 Height Width
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Output 2.5.1 continued

Simple Statistics

Variable N Mean Std Dev Sum Minimum Maximum
Weight3 34 8.44751 0.97574 287.21524 6.23168 10.00000
Length3 34 38.38529 4.21628 1305 30.00000 46.50000
Height 34 15.22057 1.98159 517.49950 11.52000 18.95700
Width 34 5.43805 0.72967 184.89370 4.02000 6.74970

The “Pearson Correlation Coefficients” table in Output 2.5.2 displays Pearson correlation statistics
for pairs of analysis variables. When you specify the NOMISS option, the same set of 34 observa-
tions is used to compute the correlation for each pair of variables.

Output 2.5.2 Pearson Correlation Coefficients

Pearson Correlation Coefficients, N = 34
Prob > |r| under HO: Rho=0

Weight3 Length3 Height Width
Weight3 1.00000 0.96523 0.96261 0.92789
<.0001 <.0001 <.0001
Length3 0.96523 1.00000 0.95492 0.92171
<.0001 <.0001 <.0001
Height 0.96261 0.95492 1.00000 0.92632
<.0001 <.0001 <.0001
Width 0.92789 0.92171 0.92632 1.00000

<.0001 <.0001 <.0001

Since the data set contains only one species of fish, all the variables are highly correlated. Using the
ALPHA option, the CORR procedure computes Cronbach’s coefficient alpha in Output 2.5.3. The
Cronbach’s coefficient alpha is a lower bound for the reliability coefficient for the raw variables and
the standardized variables. Positive correlation is needed for the alpha coefficient because variables
measure a common entity.

Output 2.5.3 Cronbach’s Coefficient Alpha

Cronbach Coefficient Alpha

Variables Alpha

Raw 0.822134
Standardized 0.985145
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Because the variances of some variables vary widely, you should use the standardized score to
estimate reliability. The overall standardized Cronbach’s coefficient alpha of 0.985145 provides an
acceptable lower bound for the reliability coefficient. This is much greater than the suggested value
of 0.70 given by Nunnally and Bernstein (1994).

The standardized alpha coefficient provides information about how each variable reflects the relia-
bility of the scale with standardized variables. If the standardized alpha decreases after removing a
variable from the construct, then this variable is strongly correlated with other variables in the scale.
On the other hand, if the standardized alpha increases after removing a variable from the construct,
then removing this variable from the scale makes the construct more reliable. The “Cronbach Co-
efficient Alpha with Deleted Variables” table in Output 2.5.4 does not show significant increase or
decrease in the standardized alpha coefficients. See the section “Cronbach’s Coefficient Alpha” on
page 27 for more information about Cronbach’s alpha.

Output 2.5.4 Cronbach’s Coefficient Alpha with Deleted Variables

Cronbach Coefficient Alpha with Deleted Variable
Raw Variables Standardized Variables

Deleted Correlation Correlation

Variable with Total Alpha with Total Alpha
Weight3 0.975379 0.783365 0.973464 0.977103
Length3 0.967602 0.881987 0.967177 0.978783
Height 0.964715 0.655098 0.968079 0.978542
Width 0.934635 0.824069 0.937599 0.986626

Example 2.6: Saving Correlations in an Output Data Set

The following statements compute Pearson correlations:

title ’'Correlations for a Fitness and Exercise Study’;
proc corr data=Fitness nomiss outp=CorrOutp;

var weight oxygen runtime;
run;

The NOMISS option excludes observations with missing values of the VAR statement variables
from the analysis—that is, the same set of 28 observations is used to compute the correlation for
each pair of variables. The OUTP= option creates an output data set named CorrOutp that contains
the Pearson correlation statistics.

“Pearson Correlation Coefficients” table in Output 2.6.1 displays the correlation and the p-value
under the null hypothesis of zero correlation.
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Output 2.6.1 Pearson Correlation Coefficients

Correlations for a Fitness and Exercise Study

The CORR Procedure

Pearson Correlation Coefficients, N = 28
Prob > |r| under HO: Rho=0

Weight Oxygen RunTime

Weight 1.00000 -0.18419 0.19505

0.3481 0.3199

Oxygen -0.18419 1.00000 -0.86843

0.3481 <.0001

RunTime 0.19505 -0.86843 1.00000
0.3199 <.0001

The following statements display (in Output 2.6.2) the output data set:

title 'Output Data Set from PROC CORR’;
proc print data=CorrOutp noobs;
run;

Output 2.6.2 OUTP= Data Set with Pearson Correlations

Output Data Set from PROC CORR
_TYPE__ _NAME Weight Oxygen RunTime
MEAN 77.2168 47.1327 10.6954
STD 8.4495 5.5535 1.4127
N 28.0000 28.0000 28.0000
CORR Weight 1.0000 -0.1842 0.1950
CORR Oxygen -0.1842 1.0000 -0.8684
CORR RunTime 0.1950 -0.8684 1.0000

The output data set has the default type CORR and can be used as an input data set for regression
or other statistical procedures. For example, the following statements request a regression analysis
using CorrOutp, without reading the original data in the REG procedure:

title 'Input Type CORR Data Set from PROC REG’;

proc reg data=CorrOutp;

model runtime= weight oxygen;
run;

The following statements generate the same results as the preceding statements:

proc reg data=Fitness;
model runtime= weight oxygen;
run;
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Example 2.7: Creating Scatter Plots

The following statements request a correlation analysis and a scatter plot matrix for the variables in
the data set Fish1, which was created in Example 2.5. This data set contains 35 observations, one of
which contains a missing value for the variable Weight3.

ods graphics on;

title ’'Fish Measurement Data’;

proc corr data=fishl nomiss plots=matrix (histogram);

var Height Width Length3 Weight3;
run;
ods graphics off;

The “Simple Statistics” table in Output 2.7.1 displays univariate descriptive statistics for analysis
variables.

Output 2.7.1 Simple Statistics

Fish Measurement Data
The CORR Procedure

4 Variables: Height Width Length3 Weight3

Simple Statistics

Variable N Mean Std Dev Sum Minimum Maximum
Height 34 15.22057 1.98159 517.49950 11.52000 18.95700
Width 34 5.43805 0.72967 184.89370 4.02000 6.74970
Length3 34 38.38529 4.21628 1305 30.00000 46.50000
Weight3 34 8.44751 0.97574 287.21524 6.23168 10.00000

When you specify the NOMISS option, the same set of 34 observations is used to compute the
correlation for each pair of variables. The “Pearson Correlation Coefficients” table in Output 2.7.2
displays Pearson correlation statistics for pairs of analysis variables.
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Output 2.7.2 Pearson Correlation Coefficients

Pearson Correlation Coefficients, N = 34
Prob > |r| under HO: Rho=0

Height Width Length3 Weight3
Height 1.00000 0.92632 0.95492 0.96261
<.0001 <.0001 <.0001
Width 0.92632 1.00000 0.92171 0.92789
<.0001 <.0001 <.0001
Length3 0.95492 0.92171 1.00000 0.96523
<.0001 <.0001 <.0001
Weight3 0.96261 0.92789 0.96523 1.00000

<.0001 <.0001 <.0001

The variables are highly correlated. For example, the correlation between Height and Width is
0.92632.

The PLOTS=MATRIX(HISTOGRAM) option requests a scatter plot matrix for the VAR statement
variables in Output 2.7.3.
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Scatter Plot Matrix
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In order to create this display, you must specify the ods graphics on statement in addition to
the PLOTS= option. For more information about the ods graphics statement, see Chapter 21,
“Statistical Graphics Using ODS” (SAS/STAT User’s Guide).

To explore the correlation between Height and Width, the following statements display (in
Output 2.7.4) a scatter plot with prediction ellipses for the two variables:

ods graphics on;

proc corr data=fishl nomiss
plots=scatter (nvar=2 alpha=.20 .30);
var Height Width Length3 Weight3;

run;
ods graphics off;
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The NOMISS option is specified with the original VAR statement to ensure that the same set of 34
observations is used for this analysis. The PLOTS=SCATTER(NVAR=2) option requests a scatter
plot for the first two variables in the VAR list. The ALPHA=.20 .30 suboption requests 80% and
70% prediction ellipses, respectively.

Output 2.7.4 Scatter Plot with Prediction Ellipses

Scatter Plot

Observations 34
Correlation  0.9263

6.0

5.5

Width

5.0

4.5

12 14 16 18
Height

Prediction Ellipses 80% ——— 70%

A prediction ellipse is a region for predicting a new observation from the population, assuming bi-
variate normality. It also approximates a region containing a specified percentage of the population.
The displayed prediction ellipse is centered at the means (X, y). For further details, see the section
“Confidence and Prediction Ellipses” on page 28.

Note that the following statements also display (in Output 2.7.5) a scatter plot for Height and Width:

ods graphics on;
proc corr data=fishl
plots=scatter (alpha=.20 .30);
var Height Width;
run;
ods graphics off;
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Output 2.7.5 Scatter Plot with Prediction Ellipses

Scatter Plot

Observations 35
Correlation  0.9267

6.0

5.5

Width

5.0

4.5

12 14 16 18
Height

Prediction Ellipses 80% ——— 70%

Output 2.7.5 includes the point (13.9,5.1), which was excluded from Output 2.7.4 because the
observation had a missing value for Weight3. The prediction ellipses in Output 2.7.5 also reflect the
inclusion of this observation.

The following statements display (in Output 2.7.6) a scatter plot with confidence ellipses for the
mean:

ods graphics on;

title 'Fish Measurement Data’;

proc corr data=fishl nomiss

plots=scatter (ellipse=confidence nvar=2 alpha=.05 .01);
var Height Width Length3 Weight3;
run;
ods graphics off;

The NVAR=2 suboption within the PLOTS= option restricts the number of plots created to the
first two variables in the VAR statement, and the ELLIPSE=CONFIDENCE suboption requests
confidence ellipses for the mean. The ALPHA=.05 .01 suboption requests 95% and 99% confidence
ellipses, respectively.
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Output 2.7.6 Scatter Plot with Confidence Ellipses

Scatter Plot
Observations 34 o0
Correlation  0.9263
6.5
o)
@
5 o)
6.0 8
= 55
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<
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50
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4.5 o
o)
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4.0-0
12 14 16 18
Height
Confidence Ellipses — 95% — —— 99%

The confidence ellipse for the mean is centered at the means (X, y). For further details, see the
section “Confidence and Prediction Ellipses” on page 28.

Example 2.8: Computing Partial Correlations

A partial correlation measures the strength of the linear relationship between two variables, while
adjusting for the effect of other variables.

The following statements request a partial correlation analysis of variables Height and Width while
adjusting for the variables Length3 and Weight. The latter variables, which are said to be “partialled
out” of the analysis, are specified with the PARTIAL statement.
ods graphics on;
title 'Fish Measurement Data’;
proc corr data=fishl plots=scatter(alpha=.20 .30);
var Height Width;
partial Length3 Weight3;
run;
ods graphics off;
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Output 2.8.1 displays descriptive statistics for all the variables. The partial variance and partial
standard deviation for the variables in the VAR statement are also displayed.

Output 2.8.1 Descriptive Statistics

Fish Measurement Data

The CORR Procedure

2 Partial Variables: Length3 Weight3
2 Variables: Height Width

Simple Statistics

Variable N Mean Std Dev Sum Minimum Maximum
Length3 34 38.38529 4.21628 1305 30.00000 46.50000
Weight3 34 8.44751 0.97574 287.21524 6.23168 10.00000
Height 34 15.22057 1.98159 517.49950 11.52000 18.95700
Width 34 5.43805 0.72967 184.89370 4.02000 6.74970

Simple Statistics

Partial Partial
Variable Variance Std Dev
Length3
Weight3
Height 0.26607 0.51582
Width 0.07315 0.27047

When you specify a PARTIAL statement, observations with missing values are excluded from the
analysis. Output 2.8.2 displays partial correlations for the variables in the VAR statement.

Output 2.8.2 Pearson Partial Correlation Coefficients

Pearson Partial Correlation Coefficients, N = 34
Prob > |r| under HO: Partial Rho=0

Height Width

Height 1.00000 0.25692

0.1558

Width 0.25692 1.00000
0.1558

The partial correlation between the variables Height and Width is 0.25692, which is much less than
the unpartialled correlation, 0.92632 (in Output 2.8.2). The p-value for the partial correlation is
0.1558.
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The PLOTS=SCATTER option displays (in Output 2.8.3) a scatter plot of the residuals for the
variables Height and Width after controlling for the effect of variables Length3 and Weight. The
ALPHA=.20 .30 suboption requests 80% and 70% prediction ellipses, respectively.

Output 2.8.3 Partial Residual Scatter Plot

Partialled Residual Scatter Plot
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In Output 2.8.3, a standard deviation of Height has roughly the same length on the X axis as a
standard deviation of Width on the Y axis. The major axis length is not significantly larger than the
minor axis length, indicating a weak partial correlation between Height and Width.
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Overview: FREQ Procedure

The FREQ procedure produces one-way to n-way frequency and contingency (crosstabulation) ta-
bles. For two-way tables, PROC FREQ computes tests and measures of association. For n-way
tables, PROC FREQ provides stratified analysis by computing statistics across, as well as within,
strata.

For one-way frequency tables, PROC FREQ computes goodness-of-fit tests for equal proportions
or specified null proportions. For one-way tables, PROC FREQ also provides confidence limits and
tests for binomial proportions, including tests for noninferiority and equivalence.

For contingency tables, PROC FREQ can compute various statistics to examine the relationships
between two classification variables. For some pairs of variables, you might want to examine the
existence or strength of any association between the variables. To determine if an association exists,
chi-square tests are computed. To estimate the strength of an association, PROC FREQ computes
measures of association that tend to be close to zero when there is no association and close to the
maximum (or minimum) value when there is perfect association. The statistics for contingency
tables include the following:

e chi-square tests and measures

e measures of association

e risks (binomial proportions) and risk differences for 2 x 2 tables

e odds ratios and relative risks for 2 x 2 tables

o tests for trend

e tests and measures of agreement

e Cochran-Mantel-Haenszel statistics
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PROC FREQ computes asymptotic standard errors, confidence intervals, and tests for measures
of association and measures of agreement. Exact p-values and confidence intervals are available
for many test statistics and measures. PROC FREQ also performs analyses that adjust for any
stratification variables by computing statistics across, as well as within, strata for n-way tables.
These statistics include Cochran-Mantel-Haenszel statistics and measures of agreement.

In choosing measures of association to use in analyzing a two-way table, you should consider the
study design (which indicates whether the row and column variables are dependent or indepen-
dent), the measurement scale of the variables (nominal, ordinal, or interval), the type of association
that each measure is designed to detect, and any assumptions required for valid interpretation of a
measure. You should exercise care in selecting measures that are appropriate for your data.

Similar comments apply to the choice and interpretation of test statistics. For example, the Mantel-
Haenszel chi-square statistic requires an ordinal scale for both variables and is designed to detect a
linear association. The Pearson chi-square, on the other hand, is appropriate for all variables and
can detect any kind of association, but it is less powerful for detecting a linear association because
its power is dispersed over a greater number of degrees of freedom (except for 2 x 2 tables).

For more information about selecting the appropriate statistical analyses, see Agresti (2007) or
Stokes, Davis, and Koch (2000).

Several SAS procedures produce frequency counts; only PROC FREQ computes chi-square tests
for one-way to n-way tables and measures of association and agreement for contingency tables.
Other procedures to consider for counting include the TABULATE and UNIVARIATE procedures.
When you want to produce contingency tables and tests of association for sample survey data, use
PROC SURVEYFREQ. See Chapter 14, “Introduction to Survey Procedures” (SAS/STAT User’s
Guide), for more information. When you want to fit models to categorical data, use a procedure
such as CATMOD, GENMOD, GLIMMIX, LOGISTIC, PROBIT, or SURVEYLOGISTIC. See
Chapter 8, “Introduction to Categorical Data Analysis Procedures” (SAS/STAT User’s Guide), for
more information.

PROC FREQ uses the Output Delivery System (ODS), a SAS subsystem that provides capabilities
for displaying and controlling the output from SAS procedures. ODS enables you to convert any of
the output from PROC FREQ into a SAS data set. See the section “ODS Table Names” on page 182
for more information.

PROC FREQ now uses ODS Graphics to create graphs as part of its output. For general information
about ODS Graphics, see Chapter 21, “Statistical Graphics Using ODS” (SAS/STAT User’s Guide).
For specific information about the statistical graphics available with the FREQ procedure, see the
PLOTS option in the TABLES statement and the section “ODS Graphics” on page 185.
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Getting Started: FREQ Procedure

Frequency Tables and Statistics

The FREQ procedure provides easy access to statistics for testing for association in a crosstabulation
table.

In this example, high school students applied for courses in a summer enrichment program; these
courses included journalism, art history, statistics, graphic arts, and computer programming. The
students accepted were randomly assigned to classes with and without internships in local compa-
nies. Table 3.1 contains counts of the students who enrolled in the summer program by gender and
whether they were assigned an internship slot.

Table 3.1 Summer Enrichment Data

Enrollment
Gender Internship | Yes No \ Total
boys yes 35 29 64
boys no 14 27 41
girls yes 32 10 42
girls no 53 23 76

The SAS data set SummerSchool is created by inputting the summer enrichment data as cell count
data, or providing the frequency count for each combination of variable values. The following
DATA step statements create the SAS data set SummerSchool:

data SummerSchool;
input Gender $ Internship $ Enrollment $ Count Q@QQ;
datalines;

boys yes yes 35 boys yes no 29

boys no yes 14 boys no no 27

girls yes yes 32 girls yes no 10

girls no yes 53 girls no no 23

r

The variable Gender takes the values ‘boys’ or ‘girls,” the variable Internship takes the values ‘yes’
and ‘no,” and the variable Enroliment takes the values ‘yes’ and ‘no.” The variable Count contains the
number of students that correspond to each combination of data values. The double at sign (@ @)
indicates that more than one observation is included on a single data line. In this DATA step, two
observations are included on each line.

Researchers are interested in whether there is an association between internship status and sum-
mer program enrollment. The Pearson chi-square statistic is an appropriate statistic to assess the
association in the corresponding 2 x 2 table. The following PROC FREQ statements specify this
analysis.
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You specify the table for which you want to compute statistics with the TABLES statement. You
specify the statistics you want to compute with options after a slash (/) in the TABLES statement.

proc freq data=SummerSchool order=data;
tables InternshipxEnrollment / chisgq;
weight Count;

run;

The ORDER= option controls the order in which variable values are displayed in the rows and
columns of the table. By default, the values are arranged according to the alphanumeric order of
their unformatted values. If you specify ORDER=DATA, the data are displayed in the same order
as they occur in the input data set. Here, because ‘yes’ appears before ‘no’ in the data, ‘yes’ ap-
pears first in any table. Other options for controlling order include ORDER=FORMATTED, which
orders according to the formatted values, and ORDER=FREQUENCY, which orders by descending
frequency count.

In the TABLES statement, Internship*Enroliment specifies a table where the rows are internship status
and the columns are program enrollment. The CHISQ option requests chi-square statistics for
assessing association between these two variables. Because the input data are in cell count form,
the WEIGHT statement is required. The WEIGHT statement names the variable Count, which
provides the frequency of each combination of data values.

Figure 3.1 presents the crosstabulation of Internship and Enroliment. In each cell, the values printed
under the cell count are the table percentage, row percentage, and column percentage, respectively.
For example, in the first cell, 63.21 percent of the students offered courses with internships accepted
them and 36.79 percent did not.

Figure 3.1 Crosstabulation Table

The FREQ Procedure
Table of Internship by Enrollment

Internship Enrollment

Frequency|

Percent |

Row Pct |

Col Pct |yes |no | Total

yes | 67 | 39 | 106
| 30.04 | 17.49 | 47.53
| 63.21 | 36.79 |
| 50.00 | 43.82 |

no | 67 | 50 | 117
| 30.04 | 22.42 | 52.47
| 57.26 | 42.74 |
| 50.00 | 56.18 |

Total 134 89 223

60.09 39.91 100.00
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Figure 3.2 displays the statistics produced by the CHISQ option. The Pearson chi-square statistic is
labeled ‘Chi-Square’ and has a value of 0.8189 with 1 degree of freedom. The associated p-value
is 0.3655, which means that there is no significant evidence of an association between internship
status and program enrollment. The other chi-square statistics have similar values and are asymp-
totically equivalent. The other statistics (phi coefficient, contingency coefficient, and Cramer’s V')
are measures of association derived from the Pearson chi-square. For Fisher’s exact test, the two-
sided p-value is 0.4122, which also shows no association between internship status and program
enrollment.

Figure 3.2 Statistics Produced with the CHISQ Option

Statistic DF Value Prob
Chi-Square 1 0.8189 0.3655
Likelihood Ratio Chi-Square 1 0.8202 0.3651
Continuity Adj. Chi-Square 1 0.5899 0.4425
Mantel-Haenszel Chi-Square 1 0.8153 0.3666
Phi Coefficient 0.0606
Contingency Coefficient 0.0605
Cramer’s V 0.0606
Fisher’s Exact Test

Cell (1,1) Frequency (F) 67

Left-sided Pr <= F 0.8513

Right-sided Pr >= F 0.2213

Table Probability (P) 0.0726

Two—sided Pr <= P 0.4122

The analysis, so far, has ignored gender. However, it might be of interest to ask whether program
enrollment is associated with internship status after adjusting for gender. You can address this ques-
tion by doing an analysis of a set of tables (in this case, by analyzing the set consisting of one for
boys and one for girls). The Cochran-Mantel-Haenszel (CMH) statistic is appropriate for this situ-
ation: it addresses whether rows and columns are associated after controlling for the stratification
variable. In this case, you would be stratifying by gender.

The PROC FREQ statements for this analysis are very similar to those for the first analysis, except
that there is a third variable, Gender, in the TABLES statement. When you cross more than two
variables, the two rightmost variables construct the rows and columns of the table, respectively, and
the leftmost variables determine the stratification.

The following PROC FREQ statements also request frequency plots for the crosstabulation tables.
PROC FREQ produces these plots by using ODS Graphics to create graphs as part of the procedure
output. Before requesting graphs, you must enable ODS Graphics with the ODS GRAPHICS ON
statement.
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ods graphics on;
proc freq data=SummerSchool;
tables GenderxInternship*Enrollment /
chisqg cmh plots (only)=freqgplot;
weight Count;
run;
ods graphics off;

This execution of PROC FREQ first produces two individual crosstabulation tables of Internship by
Enroliment: one for boys and one for girls. Frequency plots and chi-square statistics are produced
for each individual table. Figure 3.3, Figure 3.4, and Figure 3.5 show the results for boys. Note that
the chi-square statistic for boys is significant at the « = 0.05 level of significance. Boys offered a
course with an internship are more likely to enroll than boys who are not.

Figure 3.4 displays the frequency plot of Internship by Enroliment for boys. By default, the frequency
plot is displayed as a bar chart with vertical grouping by the row variable Internship. You can use
PLOTS= options to request a dot plot instead of a bar chart or to change the orientation of the bars
from vertical to horizontal. You can also use PLOTS= options to specify other two-way layouts
such as stacked or horizontal grouping.

Figure 3.6, Figure 3.7, and Figure 3.8 display the crosstabulation table, frequency plot, and chi-
square statistics for girls. You can see that there is no evidence of association between internship
offers and program enrollment for girls.

Figure 3.3 Crosstabulation Table for Boys

The FREQ Procedure

Table 1 of Internship by Enrollment
Controlling for Gender=boys

Internship Enrollment

Frequency|

Percent |

Row Pct |

Col Pct |no |yes | Total

no | 27 | 14 | 41
| 25.71 | 13.33 | 39.05
| 65.85 | 34.15 |
| 48.21 | 28.57 |

yes | 29 | 35 | 64
| 27.62 | 33.33 | 60.95
| 45.31 | 54.69 |
| 51.79 | 71.43 |

Total 56 49 105

53.33 46.67 100.00
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Figure 3.4 Frequency Plot for Boys

Frequency

Distribution of Internship by Enroliment
Controlling for Gender=boys

Internship = no

40
30
20
10
0
Internship = yes
40
30
20
10
0
no yes
Enrollment
Figure 3.5 Chi-Square Statistics for Boys
Statistic DF Value Prob
Chi-Square 1 4.2366 0.0396
Likelihood Ratio Chi-Square 1 4.2903 0.0383
Continuity Adj. Chi-Square 1 3.4515 0.0632
Mantel-Haenszel Chi-Square 1 4.1963 0.0405
Phi Coefficient 0.2009
Contingency Coefficient 0.1969
Cramer’s V 0.2009
Fisher’s Exact Test
Cell (1,1) Frequency (F) 27
Left-sided Pr <= F 0.9885
Right-sided Pr >= F 0.0311
Table Probability (P) 0.0196
Two-sided Pr <= P 0.0467




Figure 3.6 Crosstabulation Table for Girls
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Table 2 of Internship by Enrollment
Controlling for Gender=girls

Internship Enrollment
Frequency|
Percent |
Row Pct |
Col Pct |no |yes |
no | 23 | 53 |

| 19.49 | 44.92 |

| 30.26 | 69.74 |

| 69.70 | 62.35 |
yes | 10 | 32 |

| 8.47 | 27.12 |

| 23.81 | 76.19 |

| 30.30 | 37.65 |
Total 33 85

27.97 72.03

Total

76
64.41

42
35.59

118
100.00
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Figure 3.7 Frequency Plot for Girls
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Figure 3.8 Chi-Square Statistics for Girls

Statistic DF Value Prob
Chi-Square 1 0.5593 0.4546
Likelihood Ratio Chi-Square 1 0.5681 0.4510
Continuity Adj. Chi-Square 1 0.2848 0.5936
Mantel-Haenszel Chi-Square 1 0.5545 0.4565
Phi Coefficient 0.0688
Contingency Coefficient 0.0687
Cramer’s V 0.0688
Fisher’s Exact Test

Cell (1,1) Frequency (F) 23

Left-sided Pr <= F 0.8317

Right-sided Pr >= F 0.2994

Table Probability (P) 0.1311

Two—-sided Pr <= P 0.5245
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These individual table results demonstrate the occasional problems with combining information
into one table and not accounting for information in other variables such as Gender. Figure 3.9
contains the CMH results. There are three summary (CMH) statistics; which one you use depends
on whether your rows and/or columns have an order in r X ¢ tables. However, in the case of
2 x 2 tables, ordering does not matter and all three statistics take the same value. The CMH statistic
follows the chi-square distribution under the hypothesis of no association, and here, it takes the value
4.0186 with 1 degree of freedom. The associated p-value is 0.0450, which indicates a significant
association at the ¢ = 0.05 level.

Thus, when you adjust for the effect of gender in these data, there is an association between in-
ternship and program enrollment. But, if you ignore gender, no association is found. Note that the
CMH option also produces other statistics, including estimates and confidence limits for relative
risk and odds ratios for 2 x 2 tables and the Breslow-Day Test. These results are not displayed here.

Figure 3.9 Test for the Hypothesis of No Association

Cochran-Mantel-Haenszel Statistics (Based on Table Scores)
Statistic Alternative Hypothesis DF Value Prob
1 Nonzero Correlation 1 4.0186 0.0450
2 Row Mean Scores Differ 1 4.0186 0.0450
3 General Association 1 4.0186 0.0450
Agreement Study

Medical researchers are interested in evaluating the efficacy of a new treatment for a skin condition.
Dermatologists from participating clinics were trained to conduct the study and to evaluate the
condition. After the training, two dermatologists examined patients with the skin condition from a
pilot study and rated the same patients. The possible evaluations are terrible, poor, marginal, and
clear. Table 3.2 contains the data.

Table 3.2 Skin Condition Data

Dermatologist 2
Dermatologist 1 | Terrible Poor Marginal Clear

Terrible 10 4 1 0
Poor 5 10 12 2
Marginal 2 4 12 5
Clear 0 2 6 13
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The following DATA step statements create the SAS dataset SkinCondition. The dermatologists’
evaluations of the patients are contained in the variables Derm1 and Derm2; the variable Count is the
number of patients given a particular pair of ratings.

data SkinCondition;
input Derml $ Derm2 $ Count;
datalines;
terrible terrible 10
terrible poor 4
terrible marginal 1
terrible clear 0
poor terrible 5
poor poor 10
poor marginal 12
poor clear 2
marginal terrible 2
marginal poor 4
marginal marginal 12
marginal clear 5
clear terrible 0
clear poor 2
clear marginal 6
clear clear 13

’

The following PROC FREQ statements request an agreement analysis of the skin condition data.
In order to evaluate the agreement of the diagnoses (a possible contribution to measurement error
in the study), the kappa coefficient is computed. The AGREE option in the TABLES statement
requests the kappa coefficient, together with its standard error and confidence limits. The KAPPA
option in the TEST statement requests a test for the null hypothesis that kappa equals zero, or that
the agreement is purely by chance.

proc freq data=SkinCondition order=data;
tables Dermlx*Derm2 / agree noprint;
test kappa;
weight Count;

run;

Figure 3.10 shows the results. The kappa coefficient has the value 0.3449, which indicates slight
agreement between the dermatologists, and the hypothesis test confirms that you can reject the null
hypothesis of no agreement. This conclusion is further supported by the confidence interval of
(0.2030, 0.4868), which suggests that the true kappa is greater than zero. The AGREE option also
produces Bowker’s test for symmetry and the weighted kappa coefficient, but that output is not
shown here.
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Figure 3.10 Agreement Study

The FREQ Procedure
Statistics for Table of Derml by Derm2

Simple Kappa Coefficient

Kappa 0.3449
ASE 0.0724
95% Lower Conf Limit 0.2030
95% Upper Conf Limit 0.4868
Test of HO: Kappa = 0
ASE under HO 0.0612
4 5.6366
One-sided Pr > 2Z <.0001
Two—-sided Pr > |Z| <.0001

Syntax: FREQ Procedure

The following statements are available in PROC FREQ:

PROC FREQ < options> ;
BY variables ;
EXACT statistic-options </ computation-options > ;
OUTPUT < OUT=SAS-data-set> options ;
TABLES requests </ options> ;
TEST options ;
WEIGHT variable </ option> ;

The PROC FREQ statement is the only required statement for the FREQ procedure. If you specify
the following statements, PROC FREQ produces a one-way frequency table for each variable in the
most recently created data set.

proc freq;
run;

The rest of this section gives detailed syntax information for the BY, EXACT, OUTPUT, TABLES,
TEST, and WEIGHT statements in alphabetical order after the description of the PROC FREQ
statement. Table 3.3 summarizes the basic function of each PROC FREQ statement.
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Table 3.3 Summary of PROC FREQ Statements

Statement Description

BY provides separate analyses for each BY group

EXACT requests exact tests

OUTPUT  requests an output data set

TABLES specifies tables and requests analyses

TEST requests tests for measures of association and agreement
WEIGHT  identifies a weight variable

PROC FREQ Statement

PROC FREQ < options> ;

The PROC FREQ statement invokes the procedure and optionally identifies the input data set. By
default, the procedure uses the most recently created SAS data set.

Table 3.4 lists the options available in the PROC FREQ statement. Descriptions follow in alphabet-
ical order.

Table 3.4 PROC FREQ Statement Options

Option Description

COMPRESS begins the next one-way table on the current page

DATA= names the input data set

FORMCHAR= specifies the outline and cell divider characters for crosstabulation tables
NLEVELS displays the number of levels for all TABLES variables

NOPRINT suppresses all displayed output

ORDER= specifies the order for reporting variable values

PAGE displays one table per page

You can specify the following options in the PROC FREQ statement.

COMPRESS
begins display of the next one-way frequency table on the same page as the preceding one-
way table if there is enough space to begin the table. By default, the next one-way table
begins on the current page only if the entire table fits on that page. The COMPRESS option
is not valid with the PAGE option.

DATA=SAS-data-set
names the SAS data set to be analyzed by PROC FREQ. If you omit the DATA= option, the
procedure uses the most recently created SAS data set.
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FORMCHAR(1,2,7)="formchar-string’
defines the characters to be used for constructing the outlines and dividers for the cells of
crosstabulation table displays. The formchar-string should be three characters long. The
characters are used to draw the vertical separators (1), the horizontal separators (2), and the
vertical-horizontal intersections (7). If you do not specify the FORMCHAR= option, PROC
FREQ uses FORMCHAR(1,2,7)=‘-+" by default. Table 3.5 summarizes the formatting char-
acters used by PROC FREQ.

Table 3.5 Formatting Characters Used by PROC FREQ

Position Default Used to Draw

1 I vertical separators
2 - horizontal separators
7 + intersections of vertical and horizontal separators

The FORMCHAR= option can specify 20 different SAS formatting characters used to dis-
play output; however, PROC FREQ uses only the first, second, and seventh formatting charac-
ters. Therefore, the proper specification for PROC FREQ is FORMCHAR(1,2,7)= ‘formchar-
string’.

Specifying all blanks for formchar-string produces crosstabulation tables with no outlines
or dividers—for example, FORMCHAR(1,2,7)="". You can use any character in formchar-
string, including hexadecimal characters. If you use hexadecimal characters, you must put an
x after the closing quote. For information about which hexadecimal codes to use for which
characters, see the documentation for your hardware.

See the CALENDAR, PLOT, and TABULATE procedures in the Base SAS Procedures Guide
for more information about form characters.

NLEVELS
displays the “Number of Variable Levels” table, which provides the number of levels for each
variable named in the TABLES statements. See the section “Number of Variable Levels Ta-
ble” on page 174 for details. PROC FREQ determines the variable levels from the formatted
variable values, as described in the section “Grouping with Formats” on page 113.

NOPRINT
suppresses the display of all output. You can use the NOPRINT option when you only want
to create an output data set. See the section “Output Data Sets” on page 171 for information
about the output data sets produced by PROC FREQ. Note that the NOPRINT option tem-
porarily disables the Output Delivery System (ODS). For more information, see Chapter 20,
“Using the Output Delivery System” (SAS/STAT User’s Guide).

NOTE: A NOPRINT option is also available in the TABLES statement. It suppresses display
of the crosstabulation tables but allows display of the requested statistics.
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ORDER=DATA | FORMATTED | FREQ | INTERNAL
specifies the order in which the values of the frequency and crosstabulation table variables
are reported. PROC FREQ interprets the values of the ORDER= option as follows:

DATA orders values according to their order in the input data set

FORMATTED  orders values by their formatted values (in ascending order). This order is
dependent on the operating environment.

FREQ orders values by their descending frequency counts

INTERNAL orders values by their unformatted values, which yields the same order
that the SORT procedure does. This order is dependent on the operating
environment.

By default, ORDER=INTERNAL. The ORDER= option does not apply to missing values,
which are always ordered first.

PAGE
displays only one table per page. Otherwise, PROC FREQ displays multiple tables per page
as space permits. The PAGE option is not valid with the COMPRESS option.
BY Statement

BY variables ;

You can specify a BY statement with PROC FREQ to obtain separate analyses on observations in
groups defined by the BY variables. When a BY statement appears, the procedure expects the input
data set to be sorted in order of the BY variables.

If your input data set is not sorted in ascending order, use one of the following alternatives:

e Sort the data by using the SORT procedure with a similar BY statement.

o Specify the BY statement option NOTSORTED or DESCENDING in the BY statement for
the FREQ procedure. The NOTSORTED option does not mean that the data are unsorted but
rather that the data are arranged in groups (according to values of the BY variables) and that
these groups are not necessarily in alphabetical or increasing numeric order.

e Create an index on the BY variables by using the DATASETS procedure.

For more information about the BY statement, see SAS Language Reference: Concepts. For more
information about the DATASETS procedure, see the Base SAS Procedures Guide.
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EXACT Statement

EXACT statistic-options </ computation-options > ;

The EXACT statement requests exact tests or confidence limits for the specified statistics. Option-
ally, PROC FREQ computes Monte Carlo estimates of the exact p-values. The statistic-options
specify the statistics to provide exact tests or confidence limits for. The computation-options spec-
ify options for the computation of exact statistics. See the section “Exact Statistics” on page 166
for details.

CAUTION: PROC FREQ computes exact tests with fast and efficient algorithms that are superior
to direct enumeration. Exact tests are appropriate when a data set is small, sparse, skewed, or
heavily tied. For some large problems, computation of exact tests might require a considerable
amount of time and memory. Consider using asymptotic tests for such problems. Alternatively,
when asymptotic methods might not be sufficient for such large problems, consider using Monte
Carlo estimation of exact p-values. See the section “Computational Resources” on page 168 for
more information.

Statistic-Options

The statistic-options specify the statistics to provide exact tests or confidence limits for.

For one-way tables, exact p-values are available for the binomial proportion tests and the chi-square
goodness-of-fit test. Exact confidence limits are available for the binomial proportion.

For two-way tables, exact p-values are available for the following tests: Pearson chi-square test,
likelihood-ratio chi-square test, Mantel-Haenszel chi-square test, Fisher’s exact test, Jonckheere-
Terpstra test, and Cochran-Armitage test for trend. Exact p-values are also available for tests of the
following statistics: Pearson correlation coefficient, Spearman correlation coefficient, simple kappa
coefficient, and weighted kappa coefficient.

For 2 x 2 tables, PROC FREQ provides exact confidence limits for the odds ratio, exact uncondi-
tional confidence limits for the proportion difference, and McNemar’s exact test. For stratified 2 x 2
tables, PROC FREQ provides Zelen’s exact test for equal odds ratios, exact confidence limits for
the common odds ratio, and an exact test for the common odds ratio.

Table 3.6 lists the available statistic-options and the exact statistics computed. Most of the option
names are identical to the corresponding option names in the TABLES and OUTPUT statements.
You can request exact computations for groups of statistics by using options that are identical to
the following TABLES statement options: CHISQ, MEASURES, and AGREE. For example, when
you specify the CHISQ option in the EXACT statement, PROC FREQ computes exact p-values
for the Pearson chi-square, likelihood-ratio chi-square, and Mantel-Haenszel chi-square tests. You
can request exact computations for an individual statistic by specifying the corresponding statistic-
option from the list in Table 3.6.
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Table 3.6 EXACT Statement Statistic-Options

Statistic-Option

Exact Statistics Computed

AGREE McNemar’s test (for 2 x 2 tables), simple kappa coefficient test,
weighted kappa coefficient test

BINOMIAL binomial proportion tests for one-way tables

CHISQ chi-square goodness-of-fit test for one-way tables;
Pearson chi-square, likelihood-ratio chi-square, and
Mantel-Haenszel chi-square tests for two-way tables

COMOR confidence limits for the common odds ratio and
common odds ratio test (for 4 x 2 x 2 tables)

EQOR | ZELEN Zelen’s test for equal odds ratios (for i x 2 x 2 tables)

FISHER Fisher’s exact test

JT Jonckheere-Terpstra test

KAPPA test for the simple kappa coefficient

LRCHI likelihood-ratio chi-square test

MCNEM McNemar’s test (for 2 x 2 tables)

MEASURES tests for the Pearson correlation and Spearman correlation,
confidence limits for the odds ratio (for 2 x 2 tables)

MHCHI Mantel-Haenszel chi-square test

OR confidence limits for the odds ratio (for 2 x 2 tables)

PCHI Pearson chi-square test

PCORR test for the Pearson correlation coefficient

RISKDIFF confidence limits for the proportion differences (for 2 x 2 tables)

RISKDIFF1 confidence limits for the column 1 proportion difference

RISKDIFF2 confidence limits for the column 2 proportion difference

SCORR test for the Spearman correlation coefficient

TREND Cochran-Armitage test for trend

WTKAP test for the weighted kappa coefficient

Using TABLES Statement Options with the EXACT Statement

If you use only one TABLES statement, you do not need to specify the same options in both the TA-
BLES and EXACT statements; when you specify an option in the EXACT statement, PROC FREQ
automatically invokes the corresponding TABLES statement option. However, when you use mul-
tiple TABLES statements and want exact computations, you must specify options in the TABLES
statements to request the desired statistics. PROC FREQ then performs exact computations for all
statistics that you also specify in the EXACT statement.

Note that the TABLES statement group option CHISQ includes tests that correspond to the follow-
ing EXACT statement individual statistic-options: LRCHI, MHCHI, and PCHI. The MEASURES
option in the TABLES statement includes statistics that correspond to the following EXACT state-
ment statistic-options: OR, PCORR, and SCORR. The AGREE option in the TABLES statement
produces analyses that correspond to the KAPPA, MCNEM, and WTKAP statistic-options in the
EXACT statement. The CMH option in the TABLES statement produces analyses that correspond
to the COMOR and EQOR (or ZELEN) statistic-options in the EXACT statement.
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Computation-Options

The computation-options specify options for computation of exact statistics. You can specify the
following computation-options in the EXACT statement after a slash (/).

ALPHA=c
specifies the level of the confidence limits for Monte Carlo p-value estimates. The value
of o must be between 0 and 1, and the default is 0.01. A confidence level of o produces
100(1 — )% confidence limits. The default of ALPHA=.01 produces 99% confidence limits
for the Monte Carlo estimates.

The ALPHA= option invokes the MC option.

MAXTIME=value
specifies the maximum clock time (in seconds) that PROC FREQ can use to compute an
exact p-value. If the procedure does not complete the computation within the specified time,
the computation terminates. The value of MAXTIME= must be a positive number. The
MAXTIME= option is valid for Monte Carlo estimation of exact p-values, as well as for
direct exact p-value computation. See the section “Computational Resources” on page 168
for more information.

MC
requests Monte Carlo estimation of exact p-values instead of direct exact p-value computa-
tion. Monte Carlo estimation can be useful for large problems that require a considerable
amount of time and memory for exact computations but for which asymptotic approxima-
tions might not be sufficient. See the section “Monte Carlo Estimation” on page 169 for more
information.

The MC option is available for all EXACT statistic-options except the BINOMIAL option
and the following options that apply only to 2 x 2 or & x 2 x 2 tables: COMOR, EQOR,
MCNEM, RISKDIFF, and OR. PROC FREQ computes only exact tests or confidence limits
for these statistics.

The ALPHA=, N=, and SEED= options also invoke the MC option.

N=n
specifies the number of samples for Monte Carlo estimation. The value of » must be a positive
integer, and the default is 10,000. Larger values of n produce more precise estimates of exact
p-values. Because larger values of n generate more samples, the computation time increases.

The N= option invokes the MC option.

POINT
requests exact point probabilities for the test statistics.

The POINT option is available for all the EXACT statement statistic-options except the OR
and RISKDIFF options, which provide exact confidence limits. The POINT option is not
available with the MC option.



82 4 Chapter 3: The FREQ Procedure

SEED=number
specifies the initial seed for random number generation for Monte Carlo estimation. The
value of the SEED= option must be an integer. If you do not specify the SEED= option or if
the SEED= value is negative or zero, PROC FREQ uses the time of day from the computer’s
clock to obtain the initial seed.

The SEED= option invokes the MC option.

OUTPUT Statement

OUTPUT < OUT= SAS-data-set> options ;

The OUTPUT statement creates a SAS data set that contains statistics computed by PROC FREQ.
You specify which statistics to store in the output data set with the OUTPUT statement options. The
output data set contains one observation for each two-way table or stratum, and one observation for
summary statistics across all strata. For more information about the contents of the output data set,
see the section “Contents of the OUTPUT Statement Output Data Set” on page 173.

Only one OUTPUT statement is allowed for each execution of PROC FREQ. You must specify
a TABLES statement with the OUTPUT statement. If you use multiple TABLES statements, the
contents of the OUTPUT data set correspond to the last TABLES statement. If you use multiple
table requests in a TABLES statement, the contents of the OUTPUT data set correspond to the last
table request.

Note that you can use the Output Delivery System (ODS) to create a SAS data set from any piece
of PROC FREQ output. For more information, see the section “ODS Table Names” on page 182.

Also note that the output data set created by the OUTPUT statement is not the same as the output
data set created by the OUT= option in the TABLES statement. The OUTPUT statement creates a
data set that contains statistics (such as the Pearson chi-square and its p-value), and the OUT= option
in the TABLES statement creates a data set that contains frequency table counts and percentages.
See the section “Output Data Sets” on page 171 for more information.

You can specify the following options in an OUTPUT statement:

OUT=SAS-data-set
names the output data set. If you omit the OUT= option, the data set is named DATAn, where
n is the smallest integer that makes the name unique.

options
specify the statistics you want in the output data set. Table 3.7 lists the available options,
together with the TABLES statement options needed to produce the statistics. You can output
groups of statistics by using group options identical to those available in the TABLES state-
ment, which include the AGREE, ALL, CHISQ, CMH, and MEASURES options. Or you
can request statistics individually.

When you specify an option in the OUTPUT statement, the output data set contains all statis-
tics from that analysis—the estimate or test statistic plus any associated standard error, con-
fidence limits, p-values, and degrees of freedom. See the section “Contents of the OUTPUT
Statement Output Data Set” on page 173 for details.
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If you want to store a statistic in the output data set, you must also request computation
of that statistic with the appropriate TABLES or EXACT statement option. For example,
you cannot specify the option PCHI (Pearson chi-square) in the OUTPUT statement without
also specifying a TABLES or EXACT statement option to compute the Pearson chi-square
test. The TABLES statement option ALL or CHISQ requests the Pearson chi-square test. If
you have only one TABLES statement, the EXACT statement option CHISQ or PCHI also
requests the Pearson chi-square test. Table 3.7 lists the TABLES statement options required to
produce the OUTPUT data set statistics. Note that the ALL option in the TABLES statement
invokes the CHISQ, MEASURES, and CMH options.

Table 3.7 OUTPUT Statement Options

Option Output Data Set Statistics Required TABLES
Statement Option
AGREE McNemar’s test, Bowker’s test, simple and AGREE

weighted kappas; for multiple strata, overall
simple and weighted kappas, tests for equal
kappas, and Cochran’s Q

AJCHI continuity-adjusted chi-square (2 x 2 tables) CHISQ

ALL CHISQ, MEASURES, and CMH statistics; N ALL

BDCHI Breslow-Day test (7 x 2 x 2 tables) CMH, CMH]1, or CMH2
BINOMIAL binomial statistics for one-way tables BINOMIAL

CHISQ for one-way tables, goodness-of-fit test; CHISQ

for two-way tables, Pearson, likelihood-ratio,
continuity-adjusted, and Mantel-Haenszel
chi-squares, Fisher’s exact test (2 x 2 tables),
phi and contingency coefficients, Cramer’s V'

CMH Cochran-Mantel-Haenszel (CMH) correlation, CMH
row mean scores (ANOVA), and general
association statistics; for 2 x 2 tables, logit and
Mantel-Haenszel adjusted odds ratios and
relative risks, Breslow-Day test

CMH1 CMH output, except row mean scores (ANOVA) CMH or CMHI1

and general association statistics
CMH2 CMH output, except general association statistic CMH or CMH2
CMHCOR CMH correlation statistic CMH, CMH1, or CMH2
CMHGA CMH general association statistic CMH
CMHRMS CMH row mean scores (ANOVA) statistic CMH or CMH2
COCHQ Cochran’s Q (h x 2 x 2 tables) AGREE
CONTGY contingency coefficient CHISQ
CRAMV Cramer’s V CHISQ
EQKAP test for equal simple kappas AGREE
EQWKP test for equal weighted kappas AGREE
FISHER Fisher’s exact test CHISQ or FISHER !
GAMMA gamma MEASURES
JT Jonckheere-Terpstra test JT

ICHISQ computes Fisher’s exact test for 2 x 2 tables. Use the FISHER option to compute Fisher’s exact test for
general rxc tables.
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Table 3.7 continued

Option Output Data Set Statistics Required TABLES
Statement Option

KAPPA simple kappa coefficient AGREE
KENTB Kendall’s tau-b MEASURES
LAMCR lambda asymmetric (C|R) MEASURES
LAMDAS lambda symmetric MEASURES
LAMRC lambda asymmetric (R|C) MEASURES
LGOR adjusted logit odds ratio (& x 2 x 2 tables) CMH, CMH]1, or CMH2
LGRRC1 adjusted column 1 logit relative risk CMH, CMH1, or CMH2
LGRRC2 adjusted column 2 logit relative risk CMH, CMH]1, or CMH2
LRCHI likelihood-ratio chi-square CHISQ
MCNEM McNemar’s test (2 x 2 tables) AGREE
MEASURES gamma, Kendall’s tau-b, Stuart’s tau-c, MEASURES

Somers” D(C|R) and D(R|C), Pearson and

Spearman correlations, lambda asymmetric

(C|R) and (R|C), lambda symmetric,

uncertainty coefficients (C|R) and (R|C),

symmetric uncertainty coefficient;

odds ratio and relative risks (2 x 2 tables)
MHCHI Mantel-Haenszel chi-square CHISQ

MHOR [ COMOR

MHRRC1
MHRRC2
N

NMISS
OR

PCHI

PCORR
PHI
PLCORR
RDIF1
RDIF2
RELRISK
RISKDIFF
RISKDIFF1
RISKDIFF2
RRC1
RRC2
RSK1
RSK11
RSK12
RSK2
RSK21
RSK22

adjusted Mantel-Haenszel odds ratio

(h x 2 x 2 tables)

adjusted column 1 Mantel-Haenszel relative risk
adjusted column 2 Mantel-Haenszel relative risk
number of nonmissing observations

number of missing observations

odds ratio (2 x 2 tables)

chi-square goodness-of-fit test for one-way tables,
Pearson chi-square for two-way tables

Pearson correlation coefficient

phi coefficient

polychoric correlation coefficient

column 1 risk difference (row 1 - row 2)

column 2 risk difference (row 1 - row 2)

odds ratio and relative risks (2 x 2 tables)

risks and risk differences (2 x 2 tables)

column 1 risks and risk difference

column 2 risks and risk difference

column 1 relative risk

column 2 relative risk

column 1 risk, overall

column 1 risk, for row 1

column 2 risk, for row 1

column 2 risk, overall

column 1 risk, for row 2

column 2 risk, for row 2

CMH, CMH]1, or CMH2

CMH, CMH1, or CMH2
CMH, CMH]1, or CMH2

MEASURES or RELRISK
CHISQ

MEASURES
CHISQ

PLCORR

RISKDIFF

RISKDIFF

MEASURES or RELRISK
RISKDIFF

RISKDIFF

RISKDIFF

MEASURES or RELRISK
MEASURES or RELRISK
RISKDIFF

RISKDIFF

RISKDIFF

RISKDIFF

RISKDIFF

RISKDIFF
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Option Output Data Set Statistics Required TABLES
Statement Option

SCORR Spearman correlation coefficient MEASURES
SMDCR Somers’ D(C|R) MEASURES
SMDRC Somers’ D(R|C) MEASURES
STUTC Stuart’s tau-c MEASURES
TREND Cochran-Armitage test for trend TREND

TSYMM Bowker’s test of symmetry AGREE

U symmetric uncertainty coefficient MEASURES
UCR uncertainty coefficient (C|R) MEASURES
URC uncertainty coefficient (R|C) MEASURES
WTKAP weighted kappa coefficient AGREE

TABLES Statement

TABLES requests </ options> ;

The TABLES statement requests one-way to n-way frequency and crosstabulation tables and statis-

tics for those tables.

If you omit the TABLES statement, PROC FREQ generates one-way frequency tables for all data
set variables that are not listed in the other statements.

The following argument is required in the TABLES statement.

requests

specify the frequency and crosstabulation tables to produce. A request is composed of one
variable name or several variable names separated by asterisks. To request a one-way fre-
quency table, use a single variable. To request a two-way crosstabulation table, use an asterisk
between two variables. To request a multiway table (an n-way table, where n>2), separate the
desired variables with asterisks. The unique values of these variables form the rows, columns,
and strata of the table. You can include up to 50 variables in a single multiway table request.

For two-way to multiway tables, the values of the last variable form the crosstabulation table
columns, while the values of the next-to-last variable form the rows. Each level (or combi-
nation of levels) of the other variables forms one stratum. PROC FREQ produces a separate
crosstabulation table for each stratum. For example, a specification of A*B*C*D in a TABLES
statement produces k tables, where k is the number of different combinations of values for A
and B. Each table lists the values for C down the side and the values for D across the top.

You can use multiple TABLES statements in the PROC FREQ step. PROC FREQ builds all
the table requests in one pass of the data, so that there is essentially no loss of efficiency.
You can also specify any number of table requests in a single TABLES statement. To specify
multiple table requests quickly, use a grouping syntax by placing parentheses around several
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variables and joining other variables or variable combinations. For example, the statements
shown in Table 3.8 illustrate grouping syntax.

Table 3.8 Grouping Syntax

Request Equivalent to

tables A*(B C); tables A*B  A*C;

tables (A B)*(C D); tables A*C B*C A*D B*D;
tables (A B C)*D; tables A*D B*D C*D;

tables A —— C; tablesA B C;

tables (A —— C)*D; tables A*D B*D C*D;

The TABLES statement variables are one or more variables from the DATA= input data set.
These variables can be either character or numeric, but the procedure treats them as categor-
ical variables. PROC FREQ uses the formatted values of the TABLES variable to determine
the categorical variable levels. So if you assign a format to a variable with a FORMAT
statement, PROC FREQ formats the values before dividing observations into the levels of a
frequency or crosstabulation table. See the discussion of the FORMAT procedure in the Base
SAS Procedures Guide and the discussions of the FORMAT statement and SAS formats in
SAS Language Reference: Dictionary.

If you use PROC FORMAT to create a user-written format that combines missing and non-
missing values into one category, PROC FREQ treats the entire category of formatted values
as missing. See the discussion in the section “Grouping with Formats” on page 113 for more
information.

The frequency or crosstabulation table lists the values of both character and numeric variables
in ascending order based on internal (unformatted) variable values unless you change the
order with the ORDER= option. To list the values in ascending order by formatted value, use
ORDER=FORMATTED in the PROC FREQ statement.

Without Options

If you request a one-way frequency table for a variable without specifying options, PROC FREQ
produces frequencies, cumulative frequencies, percentages of the total frequency, and cumulative
percentages for each value of the variable. If you request a two-way or an n-way crosstabulation
table without specifying options, PROC FREQ produces crosstabulation tables that include cell
frequencies, cell percentages of the total frequency, cell percentages of row frequencies, and cell
percentages of column frequencies. The procedure excludes observations with missing values from
the table but displays the total frequency of missing observations below each table.

Options

Table 3.9 lists the options available in the TABLES statement. Descriptions follow in alphabetical
order.
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Table 3.9 TABLES Statement Options

Option

Description

Control Statistical Analysis

AGREE
ALL

ALPHA=
BDT
BINOMIAL

BINOMIALC
CHISQ

CL

CMH

CMHI

CMH2

CONVERGE=
FISHER

JT
MAXITER=
MEASURES
MISSING
PLCORR
RELRISK
RISKDIFF
RISKDIFFC
SCORES=
TESTF=
TESTP=
TREND

requests tests and measures of classification agreement
requests tests and measures of association produced by CHISQ,
MEASURES, and CMH

sets the confidence level for confidence limits

requests Tarone’s adjustment for the Breslow-Day test
requests binomial proportion, confidence limits, and tests
for one-way tables

requests BINOMIAL statistics with a continuity correction
requests chi-square tests and measures based on chi-square
requests confidence limits for the MEASURES statistics
requests all Cochran-Mantel-Haenszel statistics

requests CMH correlation statistic, adjusted odds ratios,
and adjusted relative risks

requests CMH correlation and row mean scores (ANOVA)
statistics, adjusted odds ratios, and adjusted relative risks
specifies convergence criterion for polychoric correlation
requests Fisher’s exact test for tables larger than 2 x 2
requests Jonckheere-Terpstra test

specifies maximum number of iterations for polychoric correlation
requests measures of association

treats missing values as nonmissing

requests polychoric correlation

requests relative risk measures for 2 x 2 tables

requests risks and risk differences for 2 x 2 tables

requests RISKDIFF statistics with a continuity correction
specifies the type of row and column scores

specifies expected frequencies for one-way chi-square test
specifies expected proportions for one-way chi-square test
requests Cochran-Armitage test for trend

Control Additional Table Information

CELLCHI2
CUMCOL
DEVIATION
EXPECTED
MISSPRINT
SPARSE

TOTPCT

displays cell contributions to the Pearson chi-square statistic
displays cumulative column percentages

displays deviations of cell frequencies from expected values
displays expected cell frequencies

displays missing value frequencies

includes all possible combinations of variable levels

in LIST and OUT=

displays percentages of total frequency for n-way tables (n > 2)




88 4 Chapter 3: The FREQ Procedure

Table 3.9 continued

Option Description

Control Displayed Output

CONTENTS= specifies the contents label for crosstabulation tables
CROSSLIST displays crosstabulation tables in ODS column format
FORMAT= formats the frequencies in crosstabulation tables

LIST displays two-way to n-way tables in list format

NOCOL suppresses display of column percentages

NOCUM suppresses display of cumulative frequencies and percentages
NOFREQ suppresses display of frequencies

NOPERCENT suppresses display of percentages

NOPRINT suppresses display of crosstabulation tables but displays statistics
NOROW suppresses display of row percentages

NOSPARSE suppresses zero frequency levels in CROSSLIST, LIST and OUT=
NOWARN suppresses log warning message for the chi-square test
PRINTKWT displays kappa coefficient weights

SCOROUT displays row and column scores

Produce Statistical Graphics

PLOTS= requests plots from ODS Graphics

Create an Output Data Set

OUT= names an output data set to contain frequency counts
OUTCUM includes cumulative frequencies and percentages

in the output data set for one-way tables
OUTEXPECT includes expected frequencies in the output data set
OUTPCT includes row, column, and two-way table percentages
in the output data set

You can specify the following options in a TABLES statement.

AGREE < (WT=FC) >

requests tests and measures of classification agreement for square tables. The AGREE option
provides McNemar’s test for 2 x 2 tables and Bowker’s test of symmetry for square tables
with more than two response categories. The AGREE option also produces the simple kappa
coefficient, the weighted kappa coefficient, their asymptotic standard errors, and their con-
fidence limits. When there are multiple strata, the AGREE option provides overall simple
and weighted kappas as well as tests for equal kappas among strata. When there are multiple
strata and two response categories, PROC FREQ computes Cochran’s Q test. See the section
“Tests and Measures of Agreement” on page 152 for details about these statistics.

If you specify the WT=FC option in parentheses following the AGREE option, PROC FREQ
uses Fleiss-Cohen weights to compute the weighted kappa coefficient. By default, PROC
FREQ uses Cicchetti-Allison weights. See the section “Weighted Kappa Coefficient” on
page 154 for details. You can specify the PRINTKWT option to display the kappa coefficient
weights.
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AGREE statistics are computed only for square tables, where the number of rows equals the
number of columns. If your table is not square due to observations with zero weights, you
can specify the ZEROS option in the WEIGHT statement to include these observations. For
more details, see the section “Tables with Zero Rows and Columns” on page 157.

You can use the TEST statement to request asymptotic tests for the simple and weighted kappa
coefficients. You can request exact p-values for the simple and weighted kappa coefficient
tests, as well as for McNemar’s test, by specifying the corresponding options in the EXACT
statement. See the section “Exact Statistics” on page 166 for more information.

ALL
requests all of the tests and measures that are computed by the CHISQ, MEASURES, and
CMH options. The number of CMH statistics computed can be controlled by the CMH1 and
CMH?2 options.

ALPHA=¢
specifies the level of confidence limits. The value of & must be between 0 and 1, and the
default is 0.05. A confidence level of « produces 100(1 — )% confidence limits. The default
of ALPHA=0.05 produces 95% confidence limits.

ALPHA-= applies to confidence limits requested by TABLES statement options. There is a
separate ALPHA= option in the EXACT statement that sets the level of confidence limits for
Monte Carlo estimates of exact p-values, which are requested in the EXACT statement.

BDT
requests Tarone’s adjustment in the Breslow-Day test for homogeneity of odds ratios. (You
must specify the CMH option to compute the Breslow-Day test.) See the section “Breslow-
Day Test for Homogeneity of the Odds Ratios” on page 163 for more information.

BINOMIAL < (binomial-options) >
requests the binomial proportion for one-way tables. When you specify the BINOMIAL
option, PROC FREQ also provides the asymptotic standard error, asymptotic (Wald) and
exact (Clopper-Pearson) confidence limits, and the asymptotic equality test for the binomial
proportion by default.

You can specify binomial-options inside the parentheses following the BINOMIAL option.
The LEVEL= binomial-option identifies the variable level for which to compute the propor-
tion. If you do not specify LEVEL=, PROC FREQ computes the proportion for the first
level that appears in the output. The P= binomial-option specifies the null proportion for the
binomial tests. If you do not specify P=, PROC FREQ uses P=0.5 by default.

You can also specify binomial-options to request confidence limits and tests of noninferi-
ority, superiority, and equivalence for the binomial proportion. Table 3.10 summarizes the
binomial-options.

Available confidence limits for the binomial proportion include Agresti-Coull, exact
(Clopper-Pearson), Jeffreys, Wald, and Wilson (score) confidence limits. You can spec-
ify more than one type of binomial confidence limits in the same analysis. If you do not
specify any confidence limit requests with binomial-options, PROC FREQ computes Wald
asymptotic confidence limits and exact (Clopper-Pearson) confidence limits by default. The
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ALPHA-= option determines the confidence level, and the default of ALPHA=0.05 produces
95% confidence limits for the binomial proportion.

To request exact tests for the binomial proportion, specify the BINOMIAL option in the
EXACT statement. PROC FREQ then computes exact p-values for all binomial tests that
you request with binomial-options, which can include tests of noninferiority, superiority, and
equivalence, as well as the test of equality.

See the section “Binomial Proportion” on page 132 for details.

Table 3.10 BINOMIAL Options

Task Binomial-Option

Specify the variable level LEVEL=

Specify the null proportion P=

Request a continuity correction CORRECT

Request confidence limits AGRESTICOULL | AC
ALL
EXACT | CLOPPERPEARSON
JEFFREYS I J
WILSON | W
WALD

Request tests EQUIV | EQUIVALENCE

NONINF | NONINFERIORITY
SUP | SUPERIORITY

Specify the test margin MARGIN=
Specify the test variance VAR=SAMPLE | NULL

You can specify the following binomial-options inside parentheses following the BINOMIAL
option.

AGRESTICOULL | AC
requests Agresti-Coull confidence limits for the binomial proportion. See the section
“Agresti-Coull Confidence Limits” on page 133 for details.

ALL
requests all available types of confidence limits for the binomial proportion. These in-
clude the following: Agresti-Coull, exact (Clopper-Pearson), Jeffreys, Wald, and Wil-
son (score) confidence limits.

CORRECT

includes a continuity correction in the asymptotic Wald confidence limits and tests. The
CORRECT binomial-option has the same effect as the BINOMIALC option.

EQUIV | EQUIVALENCE
requests a test of equivalence for the binomial proportion. See the section “Equivalence
Test” on page 138 for details. You can specify the equivalence test margins, the
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null proportion, and the variance type with the MARGIN=, P=, and VAR= binomial-
options, respectively.

EXACT

CLOPPERPEARSON
requests exact (Clopper-Pearson) confidence limits for the binomial proportion. See the
section “Exact (Clopper-Pearson) Confidence Limits” on page 134 for details. If you
do not request any binomial confidence limits by specifying binomial-options, PROC
FREQ produces Wald and exact (Clopper-Pearson) confidence limits by default.

JEFFREYS | J
requests Jeffreys confidence limits for the binomial proportion. See the section
“Jeffreys Confidence Limits” on page 133 for details.

LEVEL=/evel-number | ‘level-value’
specifies the variable level for the binomial proportion. By default, PROC FREQ com-
putes the proportion of observations for the first variable level that appears in the output.
To request a different level, use LEVEL=level-number or LEVEL="level-value’, where
level-number is the variable level’s number or order in the output, and level-value is
the formatted value of the variable level. The value of level-number must be a positive
integer. You must enclose level-value in single quotes.

MARGIN=value | (lower,upper)
specifies the margin for the noninferiority, superiority, and equivalence tests, which you
request with the NONINF, SUP, and EQUIV binomial-options, respectively. If you do
not specify MARGIN=, PROC FREQ uses a margin of 0.2 by default.

For noninferiority and superiority tests, specify a single value for the MARGIN= op-
tion. The MARGIN= value must be a positive number. You can specify value as a
number between 0 and 1. Or you can specify value in percentage form as a number
between 1 and 100, and PROC FREQ converts that number to a proportion. The pro-
cedure treats the value 1 as 1%.

For noninferiority and superiority tests, the test limits must be between 0 and 1. The
limits are determined by the null proportion value (which you can specify with the
P= binomial-option) and by the margin value. The noninferiority limit equals the null
proportion minus the margin. By default, the null proportion equals 0.5 and the margin
equals 0.2, which gives a noninferiority limit of 0.3. The superiority limit equals the
null proportion plus the margin, which is 0.7 by default.

For an equivalence test, you can specify a single MARGIN= value, or you can specify
both lower and upper values. If you specify a single MARGIN= value, it must be
a positive number, as described previously. If you specify a single MARGIN= value
for an equivalence test, PROC FREQ uses —value as the lower margin and value as the
upper margin for the test. If you specify both lower and upper values for an equivalence
test, you can specify them in proportion form as numbers between —1 or 1. Or you can
specify them in percentage form as numbers between —100 and 100, and PROC FREQ
converts the numbers to proportions. The value of lower must be less than the value of

upper.
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The equivalence limits must be between 0 and 1. The equivalence limits are determined
by the null proportion value (which you can specify with the P= binomial-option) and
by the margin values. The lower equivalence limit equals the null proportion plus the
lower margin. By default, the null proportion equals 0.5 and the lower margin equals
—0.2, which gives a lower equivalence limit of 0.3. The upper equivalence limit equals
the null proportion plus the upper margin, which is 0.7 by default.

See the sections “Noninferiority Test” on page 136 and “Equivalence Test” on page 138
for details.

NONINF | NONINFERIORITY

P=value

requests a test of noninferiority for the binomial proportion. See the section
“Noninferiority Test” on page 136 for details. You can specify the noninferiority test
margin, the null proportion, and the variance type with the MARGIN=, P=, and VAR=
binomial-options, respectively.

specifies the null hypothesis proportion for the binomial tests. If you omit the P=
option, PROC FREQ uses 0.5 as the null proportion. The null proportion value must
be a positive number. You can specify value as a number between 0 and 1. Or you can
specify value in percentage form as a number between 1 and 100, and PROC FREQ
converts that number to a proportion. The procedure treats the value 1 as 1%.

SUP | SUPERIORITY

requests a test of superiority for the binomial proportion. See the section “Superiority
Test” on page 137 for details. You can specify the superiority test margin, the null pro-
portion, and the variance type with the MARGIN=, P=, and VAR= binomial-options,
respectively.

VAR=SAMPLE | NULL

WALD

specifies the type of variance estimate to use for the tests of noninferiority, superiority,
and equivalence. The default is VAR=SAMPLE, which estimates the variance from the
sample proportion. VAR=NULL uses the null proportion to compute the variance. See
the sections “Noninferiority Test” on page 136 and “Equivalence Test” on page 138 for
details.

requests Wald confidence limits for the binomial proportion. See the section “Wald
Confidence Limits” on page 133 for details. If you do not request any binomial con-
fidence limits by specifying binomial-options, PROC FREQ produces Wald and exact
(Clopper-Pearson) confidence limits by default.

WILSON | W

SCORE

requests Wilson confidence limits for the binomial proportion. These are also known
as score confidence limits. See the section “Wilson (Score) Confidence Limits” on
page 134 for details.
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BINOMIALC < (binomial-options) >
requests the BINOMIAL option statistics for one-way tables, and includes a continuity cor-
rection in the asymptotic Wald confidence limits and tests. The BINOMIAL option statistics
include the binomial proportion, its asymptotic standard error, asymptotic (Wald) and exact
(Clopper-Pearson) confidence limits, and the asymptotic equality test for the binomial propor-
tion by default. The binomial-options available with the BINOMIALC option are the same as
those available with BINOMIAL. See the description of the BINOMIAL option for details.

CELLCHI2
displays each crosstabulation table cell’s contribution to the total Pearson chi-square statistic.
The cell contribution is computed as

(frequency — expected)?

expected

where frequency is the table cell frequency or count and expected is the expected cell fre-
quency, which is computed under the null hypothesis that the row and column variables are
independent. See the section “Pearson Chi-Square Test for Two-Way Tables” on page 119 for
details.

The CELLCHI2 option has no effect for one-way tables or for tables that are displayed with
the LIST option.

CHISQ
requests chi-square tests of homogeneity or independence and measures of association based
on the chi-square statistic. The tests include the Pearson chi-square, likelihood-ratio chi-
square, and Mantel-Haenszel chi-square. The measures include the phi coefficient, the con-
tingency coefficient, and Cramer’s V. For 2 x 2 tables, the CHISQ option also provides
Fisher’s exact test and the continuity-adjusted chi-square. See the section “Chi-Square Tests
and Statistics” on page 118 for details.

For one-way tables, the CHISQ option provides a chi-square goodness-of-fit test for equal
proportions. If you specify the null hypothesis proportions with the TESTP= option, PROC
FREQ computes a chi-square goodness-of-fit test for the specified proportions. If you specify
null hypothesis frequencies with the TESTF= option, PROC FREQ computes a chi-square
goodness-of-fit test for the specified frequencies. See the section “Chi-Square Test for One-
Way Tables” on page 119 for more information.

To request Fisher’s exact test for tables larger than 2 x 2, use the FISHER option in the
EXACT statement. Exact tests are also available for other CHISQ statistics, including the
Pearson, likelihood-ratio, and Mantel-Haenszel chi-square, and the chi-square goodness-of-
fit test for one-way tables. You can use the EXACT statement to request these tests. See the
section “Exact Statistics” on page 166 for details.

CL
requests confidence limits for the MEASURES statistics. If you omit the MEASURES option,
the CL option invokes MEASURES. You can set the level of the confidence limits by using
the ALPHA= option. The default of ALPHA=0.5 produces 95% confidence limits. See the
sections “Measures of Association” on page 123 and “Confidence Limits” on page 124 for
more information.
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CMH

CMH1

CMH2

requests Cochran-Mantel-Haenszel statistics, which test for association between the row
and column variables after adjusting for the remaining variables in a multiway table. The
Cochran-Mantel-Haenszel statistics include the nonzero correlation statistic, the row mean
scores differ (ANOVA) statistic, and the general association statistic. In addition, for 2 x 2
tables, the CMH option provides the adjusted Mantel-Haenszel and logit estimates of the
odds ratio and relative risks, together with their confidence limits. For stratified 2 x 2 tables,
the CMH option provides the Breslow-Day test for homogeneity of odds ratios. (To request
Tarone’s adjustment for the Breslow-Day test, specify the BDT option.) See the section
“Cochran-Mantel-Haenszel Statistics” on page 157 for details.

You can use the CMH1 or CMH?2 option to control the number of CMH statistics that PROC
FREQ computes.

For stratified 2 x2 tables, you can request Zelen’s exact test for equal odds ratios by specifying
the EQOR option in the EXACT statement. See the section ‘“Zelen’s Exact Test for Equal
Odds Ratios” on page 163 for details. You can request exact confidence limits for the common
odds ratio by specifying the COMOR option in the EXACT statement. This option also
provides a common odds ratio test. See the section “Exact Confidence Limits for the Common
Odds Ratio” on page 164 for details.

requests the Cochran-Mantel-Haenszel correlation statistic. It does not provide the CMH row
mean scores differ (ANOVA) statistic or the general association statistic, which are provided
by the CMH option. For tables larger than 2 x 2, the CMH1 option requires less memory than
the CMH option, which can require an enormous amount of memory for large tables.

For 2 x 2 tables, the CMH1 option also provides the adjusted Mantel-Haenszel and logit
estimates of the common odds ratio and relative risks and the Breslow-Day test.

requests the Cochran-Mantel-Haenszel correlation statistic and the row mean scores
(ANOVA) statistic. It does not provide the CMH general association statistic, which is
provided by the CMH option. For tables larger than 2 x 2, the CMH2 option requires less
memory than the CMH option, which can require an enormous amount of memory for large
tables.

For 2 x 2 tables, the CMH2 option also provides the adjusted Mantel-Haenszel and logit
estimates of the common odds ratio and relative risks and the Breslow-Day test.

CONTENTS="string’

specifies the label to use for crosstabulation tables in the contents file, the Results window,
and the trace record. For information about output presentation, see the SAS Output Delivery
System: User’s Guide.

If you omit the CONTENTS= option, the contents label for crosstabulation tables is “Cross-
Tabular Freq Table” by default.

Note that contents labels for all crosstabulation tables that are produced by a single TABLES
statement use the same text. To specify different contents labels for different crosstabulation
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tables, request the tables in separate TABLES statements and use the CONTENTS= option in
each TABLES statement.

To remove the crosstabulation table entry from the contents file, you can specify a null label
with CONTENTS="".

The CONTENTS= option affects only contents labels for crosstabulation tables. It does not
affect contents labels for other PROC FREQ tables.

To specify the contents label for any PROC FREQ table, you can use PROC TEMPLATE
to create a customized table definition. The CONTENTS_LABEL attribute in the DEFINE
TABLE statement of PROC TEMPLATE specifies the contents label for the table. See the
chapter “The TEMPLATE Procedure” in the SAS Output Delivery System: User’s Guide for
more information.

CONVERGE=value
specifies the convergence criterion for computing the polychoric correlation, which you re-
quest with the PLCORR option. The CONVERGE= value must be a positive number. By
default CONVERGE=0.0001. Iterative computation of the polychoric correlation stops when
the convergence measure falls below the value of CONVERGE= or when the number of it-
erations exceeds the value specified in the MAXITER= option, whichever happens first. See
the section “Polychoric Correlation” on page 129 for details.

CROSSLIST
displays crosstabulation tables in ODS column format instead of the default crosstabulation
cell format. In a CROSSLIST table display, the rows correspond to the crosstabulation table
cells, and the columns correspond to descriptive statistics such as Frequency and Percent. The
CROSSLIST table displays the same information as the default crosstabulation table, but uses
an ODS column format instead of the table cell format. See the section “Multiway Tables”
on page 176 for details about the contents of the CROSSLIST table.

You can control the contents of a CROSSLIST table with the same options available for the
default crosstabulation table. These include the NOFREQ, NOPERCENT, NOROW, and
NOCOL options. You can request additional information in a CROSSLIST table with the
CELLCHI2, DEVIATION, EXPECTED, MISSPRINT, and TOTPCT options.

The FORMAT= option and the CUMCOL option have no effect for CROSSLIST tables.
You cannot specify both the LIST option and the CROSSLIST option in the same TABLES
statement.

You can use the NOSPARSE option to suppress display of variable levels with zero frequency
in CROSSLIST tables. By default for CROSSLIST tables, PROC FREQ displays all levels of
the column variable within each level of the row variable, including any column variable lev-
els with zero frequency for that row. And for multiway tables displayed with the CROSSLIST
option, the procedure displays all levels of the row variable for each stratum of the table by
default, including any row variable levels with zero frequency for the stratum.

CUMCOL
displays the cumulative column percentages in the cells of the crosstabulation table. The
CUMCOL option does not apply to crosstabulation tables produced with the LIST or
CROSSLIST option.
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DEVIATION

displays the deviation of the frequency from the expected frequency for each cell of the
crosstabulation table. See the section “Pearson Chi-Square Test for Two-Way Tables” on
page 119 for details. The DEVIATION option does not apply to crosstabulation tables pro-
duced with the LIST option.

EXPECTED

displays the expected cell frequencies under the hypothesis of independence (or homogeneity)
for crosstabulation tables. See the section “Pearson Chi-Square Test for Two-Way Tables” on
page 119 for details. The EXPECTED option does not apply to tables produced with the
LIST option.

FISHER | EXACT

requests Fisher’s exact test for tables that are larger than 2 x 2. (For 2 x 2 tables, the CHISQ
option provides Fisher’s exact test.) This test is also known as the Freeman-Halton test. See
the sections “Fisher’s Exact Test” on page 121 and “Exact Statistics” on page 166 for more
information.

If you omit the CHISQ option in the TABLES statement, the FISHER option invokes CHISQ.
You can also request Fisher’s exact test by specifying the FISHER option in the EXACT
statement.

CAuTION: PROC FREQ computes exact tests with fast and efficient algorithms that are su-
perior to direct enumeration. Exact tests are appropriate when a data set is small, sparse,
skewed, or heavily tied. For some large problems, computation of exact tests might require a
considerable amount of time and memory. Consider using asymptotic tests for such problems.
Alternatively, when asymptotic methods might not be sufficient for such large problems, con-
sider using Monte Carlo estimation of exact p-values. See the section “Computational Re-
sources” on page 168 for more information.

FORMAT=format-name

JT

specifies a format for the following crosstabulation table cell values: frequency, expected
frequency, and deviation. PROC FREQ also uses the specified format to display the row and
column total frequencies and the overall total frequency in crosstabulation tables.

You can specify any standard SAS numeric format or a numeric format defined with the
FORMAT procedure. The format length must not exceed 24. If you omit the FORMAT=
option, by default PROC FREQ uses the BEST6. format to display frequencies less than 1E6,
and the BEST7. format otherwise.

The FORMAT= option applies only to crosstabulation tables displayed in the default format.
It does not apply to crosstabulation tables produced with the LIST or CROSSLIST option.

To change display formats in any FREQ table, you can use PROC TEMPLATE. See the
chapter “The TEMPLATE Procedure” in the SAS Output Delivery System: User’s Guide for
more information.

requests the Jonckheere-Terpstra test. See the section “Jonckheere-Terpstra Test” on page 150
for details.
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LIST
displays two-way to n-way crosstabulation tables in a list format instead of the default
crosstabulation cell format. The LIST option displays the entire multiway table in one table,
instead of displaying a separate two-way table for each stratum. See the section “Multiway
Tables” on page 176 for details.

The LIST option is not available when you also specify statistical options. You must use the
standard crosstabulation table display or the CROSSLIST display when you request statistical
tests or measures.

MAXITER=number
specifies the maximum number of iterations for computing the polychoric correlation, which
you request with the PLCORR option. The value of the MAXITER= option must be a pos-
itive integer. By default MAXITER=20. Iterative computation of the polychoric correlation
stops when the number of iterations exceeds the MAXITER= value or when the convergence
measures falls below the value of the CONVERGE= option, whichever happens first. See the
section “Polychoric Correlation” on page 129 for details.

MEASURES
requests several measures of association and their asymptotic standard errors. The MEA-
SURES option provides the following statistics: gamma, Kendall’s tau-b, Stuart’s tau-c,
Somers’ D(C|R), Somers’ D(R|C), the Pearson and Spearman correlation coefficients,
lambda (symmetric and asymmetric), and uncertainty coefficients (symmetric and asymmet-
ric). To request confidence limits for these measures of association, you can specify the CL
option.

For 2 x 2 tables, the MEASURES option also provides the odds ratio, column 1 relative risk,
column 2 relative risk, and the corresponding confidence limits. Alternatively, you can obtain
the odds ratio and relative risks, without the other measures of association, by specifying the
RELRISK option.

See the section “Measures of Association” on page 123 for details.

You can use the TEST statement to request asymptotic tests for the following measures of
association: gamma, Kendall’s tau-b, Stuart’s tau-c, Somers’ D(C|R), Somers’ D(R|C),
and the Pearson and Spearman correlation coefficients. You can use the EXACT statement to
request exact tests for the Pearson and Spearman correlation coefficients and exact confidence
limits for the odds ratio. See the section “Exact Statistics” on page 166 for more information.

MISSING
treats missing values as a valid nonmissing level for all TABLES variables. The MISSING
option displays the missing levels in frequency and crosstabulation tables and includes them
in all calculations of percentages, tests, and measures.

By default, if you do not specify the MISSING or MISSPRINT option, an observation is
excluded from a table if it has a missing value for any of the variables in the TABLES request.
When PROC FREQ excludes observations with missing values, it displays the total frequency
of missing observations below the table. See the section “Missing Values” on page 114 for
more information.
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MISSPRINT
displays missing value frequencies in frequency and crosstabulation tables but does not in-
clude the missing value frequencies in any computations of percentages, tests, or measures.

By default, if you do not specify the MISSING or MISSPRINT option, an observation is
excluded from a table if it has a missing value for any of the variables in the TABLES request.
When PROC FREQ excludes observations with missing values, it displays the total frequency
of missing observations below the table. See the section “Missing Values” on page 114 for
more information.

NOCOL
suppresses the display of column percentages in crosstabulation table cells.

NOCUM
suppresses the display of cumulative frequencies and percentages in one-way frequency ta-
bles. The NOCUM option also suppresses the display of cumulative frequencies and percent-
ages in crosstabulation tables in list format, which you request with the LIST option.

NOFREQ
suppresses the display of cell frequencies in crosstabulation tables. The NOFREQ option
also suppresses row total frequencies. This option has no effect for one-way tables or for
crosstabulation tables in list format, which you request with the LIST option.

NOPERCENT
suppresses the display of overall percentages in crosstabulation tables. These percentages
include the cell percentages of the total (two-way) table frequency, as well as the row and
column percentages of the total table frequency. To suppress the display of cell percentages
of row or column totals, use the NOROW or NOCOL option, respectively.

For one-way frequency tables and crosstabulation tables in list format, the NOPERCENT
option suppresses the display of percentages and cumulative percentages.

NOPRINT
suppresses the display of frequency and crosstabulation tables but displays all requested tests
and statistics. To suppress the display of all output, including tests and statistics, use the
NOPRINT option in the PROC FREQ statement.

NOROW
suppresses the display of row percentages in crosstabulation table cells.

NOSPARSE
suppresses the display of cells with a zero frequency count in LIST output and omits them
from the OUT= data set. The NOSPARSE option applies when you specify the ZEROS option
in the WEIGHT statement to include observations with zero weights. By default, the ZEROS
option invokes the SPARSE option, which displays table cells with a zero frequency count in
the LIST output and includes them in the OUT= data set. See the description of the ZEROS
option for more information.

The NOSPARSE option also suppresses the display of variable levels with zero frequency
in CROSSLIST tables. By default for CROSSLIST tables, PROC FREQ displays all levels
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of the column variable within each level of the row variable, including any column variable
levels with zero frequency for that row. For multiway tables displayed with the CROSSLIST
option, the procedure displays all levels of the row variable for each stratum of the table by
default, including any row variable levels with zero frequency for the stratum.

NOWARN
suppresses the log warning message that the asymptotic chi-square test might not be valid.
By default, PROC FREQ displays this log message when you request the CHISQ option and
more than 20 percent of the table cells have expected frequencies less than five.

OUT=SAS-data-set

names an output data set that contains frequency or crosstabulation table counts and percent-
ages. If more than one table request appears in the TABLES statement, the contents of the
OUT= data set correspond to the last table request in the TABLES statement. The OUT=
data set variable COUNT contains the frequencies and the variable PERCENT contains the
percentages. See the section “Output Data Sets” on page 171 for details. You can specify
the following options to include additional information in the OUT= data set: OUTCUM,
OUTEXPECT, and OUTPCT.

OUTCUM
includes cumulative frequencies and cumulative percentages in the OUT= data set for one-
way tables. The variable CUM_FREQ contains the cumulative frequencies, and the vari-
able CUM_PCT contains the cumulative percentages. See the section “Output Data Sets”
on page 171 for details. The OUTCUM option has no effect for two-way or multiway tables.

OUTEXPECT
includes expected cell frequencies in the OUT= data set for crosstabulation tables. The vari-
able EXPECTED contains the expected cell frequencies. See the section “Output Data Sets”
on page 171 for details. The EXPECTED option has no effect for one-way tables.

OUTPCT
includes the following additional variables in the OUT= data set for crosstabulation tables:

PCT_COL percentage of column frequency

PCT_ROW percentage of row frequency

PCT_TABL percentage of stratum (two-way table) frequency, for n-way tables where
n>?2

See the section “Output Data Sets” on page 171 for details. The OUTPCT option has no
effect for one-way tables.

PLCORR
requests the polychoric correlation coefficient. For 2 x 2 tables, this statistic is more com-
monly known as the tetrachoric correlation coefficient, and it is labeled as such in the dis-
played output. See the section “Polychoric Correlation” on page 129 for details. Also see the
descriptions of the CONVERGE= and MAXITER= options, which you can specify to control
the iterative computation of the polychoric correlation coefficient.

If you omit the MEASURES option, the PLCORR option invokes MEASURES.
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PLOTS < ( global-plot-options ) > < = plot-request < ( plot-options) > >
PLOTS < ( global-plot-options ) > < = ( plot-request < (plot-options) > <...plot-request < (plot-options ) >>)>

requests plots for PROC FREQ to produce by using ODS Graphics. When you specify only
one plot-request, you can omit the parentheses around the request. For example:

plots=all

plots=freqgplot

plots=(fregplot oddsratioplot)

plots (only)=(cumfregplot deviationplot)

For information about ODS Graphics, see Chapter 21, “Statistical Graphics Using ODS”
(SAS/STAT User’s Guide). You must enable ODS Graphics before requesting plots, as shown
in the following statements:

ods graphics on;

proc freq;
tables treatmentxresponse / chisq plots=freqplot;
weight wt;

run;

ods graphics off;

The PLOTS= option has no effect when you specify the NOPRINT option in the PROC FREQ
statement.

If you do not specify the PLOTS= option but have enabled ODS Graphics, then PROC FREQ
produces all plots associated with the analyses you request in the current TABLES statement.

Table 3.11 lists the available plot-requests, together with their plot-options and required TA-
BLES statement options.
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Plot-Request

Plot-Options

Required TABLES
Statement Option

CUMFREQPLOT

DEVIATIONPLOT

FREQPLOT

FREQPLOT
KAPPAPLOT

ODDSRATIOPLOT

WTKAPPAPLOT

ORIENT=
SCALE=
TYPE=

NOSTATS
ORIENT=
TYPE=

ORIENT=
SCALE=
TYPE=

TWOWAY=

NPANELPOS=
ORDER=
RANGE=
STATS

LOGBASE=
NPANELPOS=
ORDER=
RANGE=
STATS

NPANELPOS=
ORDER=
RANGE=
STATS

one-way table request

CHISQ (one-way table)

any table request

two-way or multiway table
AGREE (h x r X r table)

MEASURES or RELRISK
(h x 2 x 2 table)

(h xr xrtable, r > 2)

Global-Plot-Options

A global-plot-option applies to all plots for which the option is available, unless it is altered
by a specific plot-option. You can specify the following global-plot-options in parentheses

following the PLOTS option:

NPANELPOS=n

applies to ODDSRATIOPLOT, KAPPAPLOT, and WTKAPPAPLOT. The NPANEL-
POS= plot-option breaks the plot into multiple graphics that have at most || odds ra-
tios or kappa statistics per graphic. If n is positive, the number of statistics per graphic
is balanced; but if n is negative, the number of statistics per graphic is not balanced.
By default, » = 0 and all statistics are displayed in a single plot. For example, suppose
you want to display 21 odds ratios. Then NPANELPOS=20 displays two plots, the first
with 11 odds ratios and the second with 10; NPANELPOS=-20 displays 20 odds ratios
in the first plot but only 1 in the second.

ONLY

suppresses the default plots and requests only the plots specified as plot-requests.
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ORDER=ASCENDING | DESCENDING

applies to ODDSRATIOPLOT, KAPPPAPLOT, and WTKAPPAPLOT. The ORDER=
plot-option displays the odds ratios or kappa statistics in sorted order. By default, the
statistics are displayed in the order that the corresponding strata appear in the multiway
table display.

ORIENT=HORIZONTAL | VERTICAL

applies to FREQPLOT, CUMFREQPLOT, and DEVIATIONPLOT. The ORIENT=
plot-option controls the orientation of the plot. ORIENT=HORIZONTAL places the
variable levels on the y-axis and the frequencies or statistic-values on the x-axis. ORI-
ENT=VERTICAL places the variable levels on the x-axis. The default orientation is
ORIENT=VERTICAL for bar charts and ORIENT=HORIZONTAL for dot plots.

RANGE=(< min><,max>) | CLIP

applies to ODDSRATIOPLOT, KAPPAPLOT, and WTKAPPAPLOT. The RANGE=
plot-option specifies the range of values to display. If you specify RANGE=CLIP, the
confidence intervals are clipped and the display range is determined by the minimum
and maximum values of the estimates. By default, the display range includes all confi-
dence limits.

SCALE=FREQ | LOG | PERCENT| SQRT

STATS

applies to FREQPLOT and CUMFREQPLOT. The SCALE= plot-option specifies
the scale of the frequencies to display. The default is SCALE=FREQ, which
displays unscaled frequencies. SCALE=LOG displays log (base 10) frequencies.
SCALE=PERCENT displays percentages or relative frequencies. SCALE=SQRT dis-
plays square roots of the frequencies, which produces a plot known as a rootogram.

applies to ODDSRATIOPLOT, KAPPAPLOT, and WTKAPPAPLOT. The STATS plot-
option displays the values of the statistics and their confidence limits on the right side of
the plot. If you do not request the STATS option, the statistic values are not displayed.

TYPE=BARCHART | DOTPLOT

applies to FREQPLOT, CUMFREQPLOT, and DEVIATIONPLOT. The TYPE= plot-
option specifies the plot type. TYPE=BARCHART produces a bar chart, and
TYPE=DOTPLOT produces a dot plot. The default is TYPE=BARCHART.

Plot-Requests

The following plot-requests are available with the PLOTS= option:

ALL

requests all plots associated with the specified analyses. This is the default if you do
not specify the PLOTS(ONLY) option.

CUMFREQPLOT < (plot-options) >

requests a plot of cumulative frequencies for a one-way frequency table. The following
plot-options are available for CUMFREQPLOT: ORIENT=, SCALE=, and TYPE=.
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DEVIATIONPLOT < (plot-options) >
requests a plot of relative deviations from expected frequencies for a one-way table.
The DEVIATIONPLOT is associated with the CHISQ option for a one-way table re-
quest. The following plot-options are available for DEVIATIONPLOT: ORIENT= and
TYPE=.

FREQPLOT < (plot-options) >
requests a frequency plot. Frequency plots are available for frequency and crosstabula-
tion tables. For multiway tables, PROC FREQ provides a two-way frequency plot for
each stratum. The following plot-options are available for FREQPLOT for all tables:
ORIENT=, SCALE=, and TYPE=. For two-way and multiway tables, you can use the
TWOWAY = plot-option to specify the layout of the two-way frequency plot.

KAPPAPLOT < (plot-options) >
requests a plot of kappa statistics and confidence limits for a multiway table. The KAP-
PAPLOT is associated with the AGREE option for multiway square tables. The follow-
ing plot-options are available for KAPPAPLOT: NPANELPOS=, ORDER=, RANGE-=,
and STATS.

NONE
suppresses all plots.

ODDSRATIOPLOT < (plot-options) >
requests a plot of odds ratios and confidence limits for a multiway table. The ODD-
SRATIOPLOT is associated with the MEASURES or RELRISK option for multiway
2 x 2 tables. The following plot-options are available for ODDSRATIOPLOT: LOG-
BASE=, NPANELPOS=, ORDER=, RANGE-=, and STATS.

WTKAPPAPLOT < (plot-options) >
requests a plot of weighted kappa statistics and confidence limits for a multiway table.
The WTKAPPAPLOT is associated with the AGREE option for multiway square tables
with more than two rows. (For 2 x 2 tables, the simple kappa and weighted kappa
statistics are the same, so weighted kappas are not presented for 2 x 2 tables.) The
following plot-options are available for WTKAPPAPLOT: NPANELPOS=, ORDER=,
RANGE-=, and STATS.

Plot-Options

You can specify the following plot-options in parentheses after a plot-request.

LOGBASE=2 | E | 10
applies only to ODDSRATIOPLOT. The LOGBASE= plot-option displays the odds
ratio axis on the specified log scale.

NOSTATS
applies only to DEVIATIONPLOT. The NOSTATS plot-option suppresses the chi-
square p-value that is displayed by default in the deviation plot.
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NPANELPOS=n

applies to ODDSRATIOPLOT, KAPPAPLOT, and WTKAPPAPLOT. The NPANEL-
POS= plot-option breaks the plot into multiple graphics that have at most |r| odds ra-
tios or kappa statistics per graphic. If n is positive, the number of statistics per graphic
is balanced; but if # is negative, the number of statistics per graphic is not balanced.
By default, n = 0 and all statistics are displayed in a single plot. For example, suppose
you want to display 21 odds ratios. Then NPANELPOS=20 displays two plots, the first
with 11 odds ratios and the second with 10; NPANELPOS=-20 displays 20 odds ratios
in the first plot but only 1 in the second.

ORDER=ASCENDING | DESCENDING

applies to ODDSRATIOPLOT, KAPPPAPLOT, and WTKAPPAPLOT. The ORDER=
plot-option displays the odds ratios or kappa statistics in sorted order. By default, the
statistics are displayed in the order that the corresponding strata appear in the multiway
table display.

ORIENT=HORIZONTAL | VERTICAL

applies to FREQPLOT, CUMFREQPLOT, and DEVIATIONPLOT. The ORIENT=
plot-option controls the orientation of the plot. ORIENT=HORIZONTAL places the
variable levels on the y-axis and the frequencies or statistic-values on the x-axis. ORI-
ENT=VERTICAL places the variable levels on the x-axis. The default orientation is
ORIENT=VERTICAL for bar charts and ORIENT=HORIZONTAL for dot plots.

RANGE=(< min><,max>) | CLIP

applies to ODDSRATIOPLOT, KAPPAPLOT, and WTKAPPAPLOT. The RANGE=
plot-option specifies the range of values to display. If you specify RANGE=CLIP, the
confidence intervals are clipped and the display range is determined by the minimum
and maximum values of the estimates. By default, the display range includes all confi-
dence limits.

SCALE=FREQ | LOG | PERCENT| SQRT

STATS

applies to FREQPLOT and CUMFREQPLOT. The SCALE= option specifies the scale
of the frequencies to display. The default is SCALE=FREQ, which displays unscaled
frequencies. SCALE=LOG displays log (base 10) frequencies. SCALE=PERCENT
displays percentages or relative frequencies. SCALE=SQRT displays square roots of
the frequencies, which produces a plot known as a rootogram.

applies to ODDSRATIOPLOT, KAPPAPLOT, and WTKAPPAPLOT. The STATS plot-
option displays the values of the statistics and their confidence limits on the right side of
the plot. If you do not request the STATS option, the statistic values are not displayed.

TWOWAY=GROUPVERTICAL | GROUPHORIZONTAL | STACKED

applies to FREQPLOT for two-way and multiway tables. For multiway tables,
PROC FREQ provides a two-way frequency plot for each stratum. The TWOWAY=
plot-option specifies the layout for two-way frequency plots. The default is
TWOWAY=GROUPVERTICAL, which produces a grouped plot with a vertical
common baseline. The plots are grouped by the row variable, which is the first variable
you specify in a two-way table request. TWOWAY=GROUPHORIZONTAL produces
a grouped plot with a horizontal common baseline.
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TWOWAY=STACKED produces stacked frequency plots for two-way tables. In a
stacked bar chart, the bars correspond to the column variable values, and the row fre-
quencies are stacked within each column. For dot plots, the dotted lines correspond to
the columns, and the row frequencies within columns are plotted as data dots on the
same column line.

The TYPE= and ORIENT= plot-options are available for each TWOWAY= layout op-
tion.

TYPE=BARCHART | DOTPLOT
applies to FREQPLOT, CUMFREQPLOT, and DEVIATIONPLOT. The TYPE= plot-
option specifies the plot type. TYPE=BARCHART produces a bar chart, and
TYPE=DOTPLOT produces a dot plot. The default is TYPE=BARCHART.

PRINTKWT
displays the weights that PROC FREQ uses to compute the weighted kappa coefficient. You
must also specify the AGREE option to request the weighted kappa coefficient. You can spec-
ify (WT=FC) with the AGREE option to request Fleiss-Cohen weights. By default, PROC
FREQ uses Cicchetti-Allison weights to compute the weighted kappa coefficient. See the
section “Weighted Kappa Coefficient” on page 154 for details.

RELRISK
requests relative risk measures and their confidence limits for 2 x 2 tables. These measures
include the odds ratio and the column 1 and 2 relative risks. See the section “Odds Ratio and
Relative Risks for 2 x 2 Tables” on page 147 for details.

You can also obtain the RELRISK measures by specifying the MEASURES option, which
produces other measures of association in addition to the relative risks.

You can request exact confidence limits for the odds ratio by specifying the OR option in the
EXACT statement.

RISKDIFF < (riskdiff-options) >

requests risks, or binomial proportions, for 2 x 2 tables. For column 1 and column 2, PROC
FREQ computes the row 1 risk, row 2 risk, total risk, and risk difference (row 1 — row 2), to-
gether with their asymptotic standard errors and asymptotic (Wald) confidence limits. PROC
FREQ also provides exact (Clopper-Pearson) confidence limits for the row 1, row 2, and total
risks. The ALPHA= option determines the confidence level, and the default of ALPHA=0.05
produces 95% confidence limits. See the section “Risks and Risk Differences” on page 139
for details.

You can specify riskdiff-options inside the parentheses following the RISKDIFF option to
request tests of noninferiority, superiority, and equivalence for the risk difference. Available
test methods include Farrington-Manning, Hauck-Anderson, and Newcombe score (Wilson),
in addition to the Wald test. Table 3.12 summarizes the riskdiff-options.

You can request exact unconditional confidence limits for the risk difference by specifying the
RISKDIFF option in the EXACT statement. See the section “Exact Unconditional Confidence
Limits for the Risk Difference” on page 146 for more information.
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Table 3.12 RISKDIFF (Proportion Difference) Options

Task Riskdiff-Option
Specify the column COLUMN-=1 1|2
Request a continuity correction CORRECT
Request tests EQUAL

EQUIV | EQUIVALENCE
NONINF | NONINFERIORITY
SUP | SUPERIORITY

Specify the test method METHOD=
Specify the test margin MARGIN=
Specify the test variance VAR=SAMPLE | NULL

You can specify the following riskdiff-options inside parentheses following the RISKDIFF
option.

COLUMN=1 | 2 | BOTH

specifies the table column for which to compute the risk difference tests of noninferior-
ity, superiority, or equivalence, which you request with the NONINF, SUP, and EQUIV
riskdiff-options, respectively. You can specify COLUMN=1, COLUMN=2, or COL-
UMN=BOTH. If you do not specify the COLUMN= option, PROC FREQ computes
the risk difference tests for column 1. The COLUMN= option has no effect on the table
of risk estimates and confidence limits or on the equality test; PROC FREQ computes
these statistics for both column 1 and column 2.

CORRECT
includes a continuity correction in the asymptotic Wald confidence limits and tests. The
CORRECT riskdiff-option also includes a continuity correction in the Newcombe score
confidence limits, which you request with the METHOD=SCORE riskdiff-option.
METHOD=HA and METHOD=FM do not use continuity corrections. The CORRECT
riskdiff-option has the same effect as the RISKDIFFC option.

EQUAL
requests a test of the null hypothesis that the risk difference equals zero. PROC FREQ
provides an asymptotic Wald test of equality. See the section “Equality Test” on
page 142 for details. You can specify the test variance type with the VAR= riskdiff-
option.

EQUIV | EQUIVALENCE
requests a test of equivalence for the risk difference. See the section “Equivalence
Tests” on page 145 for details. You can specify the equivalence test margins with the
MARGIN-= riskdiff-option and the test method with the METHOD= riskdiff-option.
PROC FREQ uses METHOD=WALD by default.

MARGIN=value | (lower,upper)
specifies the margin for the noninferiority, superiority, and equivalence tests, which you
request with the NONINF, SUP, and EQUIV riskdiff-options, respectively. If you do
not specify MARGIN=, PROC FREQ uses a margin of 0.2 by default.
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For noninferiority and superiority tests, specify a single value for the MARGIN=
riskdiff-option. The MARGIN= value must be a positive number. You can specify
value as a number between 0 and 1. Or you can specify value in percentage form as
a number between 1 and 100, and PROC FREQ converts that number to a proportion.
The procedure treats the value 1 as 1%.

For an equivalence test, you can specify a single MARGIN= value, or you can specify
both lower and upper values. If you specify a single MARGIN= value, it must be
a positive number, as described previously. If you specify a single MARGIN= value
for an equivalence test, PROC FREQ uses —value as the lower margin and value as the
upper margin for the test. If you specify both lower and upper values for an equivalence
test, you can specify them in proportion form as numbers between —1 or 1. Or you can
specify them in percentage form as numbers between —100 and 100, and PROC FREQ
converts the numbers to proportions. The value of lower must be less than the value of

upper.

METHOD=method
specifies the method for the noninferiority, superiority, and equivalence tests, which
you request with the NONINF, SUP, and EQUIV riskdiff-options, respectively. The
following methods are available:

FM Farrington-Manning

HA Hauck-Anderson

SCORE | NEWCOMBE | WILSON Newcombe score (Wilson)
WALD Wald

The default is METHOD=WALD. See the section “Noninferiority Test” on page 142
for descriptions of these methods.

For METHOD=SCORE and METHOD=WALD, you can request a continuity correc-
tion with the CORRECT riskdift-option. For METHOD=WALD, you can specify the
variance type with the VAR= riskdiff-option.

NONINF | NONINFERIORITY
requests a test of noninferiority for the risk difference. See the section “Noninferiority
Test” on page 142 for details. You can specify the test margin with the MARGIN=
riskdiff-option and the test method with the METHOD= riskdiff-option. PROC FREQ
uses METHOD=WALD by default.

SUP | SUPERIORITY
requests a test of superiority for the binomial proportion. See the section “Superiority
Test” on page 145 for details. You can specify the test margin with the MARGIN=
riskdiff-option and the test method with the METHOD= riskdiff-option. PROC FREQ
uses METHOD=WALD by default.

VAR=SAMPLE | NULL
specifies the type of variance estimate to use for the Wald tests of noninferiority, supe-
riority, equivalence, and equality. The default is VAR=SAMPLE, which estimates the
variance from the sample proportions. VAR=NULL uses the null hypothesis values to
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compute the variance. See the sections “Equality Test” on page 142 and “Noninferiority
Test” on page 142 for details.

RISKDIFFC < (riskdiff-options) >
requests the RISKDIFF option statistics for 2 x 2 tables and includes a continuity correction
in the asymptotic Wald confidence limits and tests.

The RISKDIFF option statistics include risks, or binomial proportions, for 2 x 2 tables. For
column 1 and column 2, PROC FREQ computes the row 1 risk, row 2 risk, total risk, and
risk difference (row 1 —row 2), together with their asymptotic standard errors and asymptotic
(Wald) confidence limits. PROC FREQ also provides exact (Clopper-Pearson) confidence
limits for the row 1, row 2, and total risks. See the section “Risks and Risk Differences” on
page 139 for details.

You can request additional tests and statistics for the risk difference by specifying riskdiff-
options in parentheses after RISKDIFFC. The riskdiff-options are the same as those available
with RISKDIFF. See the description of the RISKDIFF option for details.

You can request exact unconditional confidence limits for the risk difference by specifying the
RISKDIFF option in the EXACT statement. See the section “Exact Unconditional Confidence
Limits for the Risk Difference” on page 146 for more information.

SCORES=1ype
specifies the type of row and column scores that PROC FREQ uses to compute the following
statistics: Mantel-Haenszel chi-square, Pearson correlation, Cochran-Armitage test for trend,
weighted kappa coefficient, and Cochran-Mantel-Haenszel statistics. The value of type can
be one of the following:

e MODRIDIT
o RANK

e RIDIT

e TABLE

See the section “Scores” on page 117 for descriptions of these score types.

If you do not specify the SCORES= option, PROC FREQ uses SCORES=TABLE by default.
For character variables, the row and column TABLE scores are the row and column numbers.
That is, the TABLE score is 1 for row 1, 2 for row 2, and so on. For numeric variables, the row
and column TABLE scores equal the variable values. See the section “Scores” on page 117
for details. Using MODRIDIT, RANK, or RIDIT scores yields nonparametric analyses.

You can use the SCOROUT option to display the row and column scores.

SCOROUT
displays the row and column scores that PROC FREQ uses to compute score-based tests and
statistics. You can specify the score type with the SCORES= option. See the section “Scores”
on page 117 for details.

The scores are computed and displayed only when PROC FREQ computes statistics for two-
way tables. You can use ODS to store the scores in an output data set. See the section “ODS
Table Names” on page 182 for more information.
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SPARSE
reports all possible combinations of the variable values for an n-way table whenn > 1, even if
a combination does not occur in the data. The SPARSE option applies only to crosstabulation
tables displayed in LIST format and to the OUT= output data set. If you do not use the LIST
or OUT= option, the SPARSE option has no effect.

When you specify the SPARSE and LIST options, PROC FREQ displays all combinations
of variable values in the table listing, including those with a frequency count of zero. By
default, without the SPARSE option, PROC FREQ does not display zero-frequency levels in
LIST output. When you use the SPARSE and OUT= options, PROC FREQ includes empty
crosstabulation table cells in the output data set. By default, PROC FREQ does not include
zero-frequency table cells in the output data set.

See the section “Missing Values” on page 114 for more information.

TESTF=(values)
specifies the null hypothesis frequencies for a one-way chi-square goodness-of-fit test, which
you request with the CHISQ option. See the section “Chi-Square Test for One-Way Tables”
on page 119 for details.

You can separate the TESTF= values with blanks or commas. The number of values must
equal the number of variable levels in the one-way table. The sum of the values must equal the
total frequency for the one-way table. List the values in the order in which the corresponding
variable levels appear in the output. If you omit the CHISQ option, the TESTF= option
invokes CHISQ.

TESTP=(values)
specifies the null hypothesis proportions for a one-way chi-square goodness-of-fit test, which
you request with the CHISQ option. See the section “Chi-Square Test for One-Way Tables”
on page 119 for details.

You can separate the TESTP= values with blanks or commas. The number of values must
equal the number of variable levels in the one-way table. List the values in the order in which
the corresponding variable levels appear in the output. You can specify values in probability
form as numbers between 0 and 1, where the proportions sum to 1. Or you can specify values
in percentage form as numbers between 0 and 100, where the percentages sum to 100. If you
omit the CHISQ option, the TESTP= option invokes CHISQ.

TOTPCT
displays the percentage of the total multiway table frequency in crosstabulation tables for
n-way tables, where n > 2. By default, PROC FREQ displays the percentage of the indi-
vidual two-way table frequency but does not display the percentage of the total frequency for
multiway crosstabulation tables. See the section “Multiway Tables” on page 176 for more
information.

The percentage of total multiway table frequency is displayed by default when you specify
the LIST option. It is also provided by default in the PERCENT variable in the OUT= output
data set.
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TREND

requests the Cochran-Armitage test for trend. The table must be 2 x C or R x 2 to compute
the trend test. See the section “Cochran-Armitage Test for Trend” on page 149 for details.

TEST Statement

TEST options ;

The TEST statement requests asymptotic tests for measures of association and measures of agree-

ment.

options

You must use a TABLES statement with the TEST statement.

specify the statistics for which to provide asymptotic tests. Table 3.13 lists the available statis-
tics, which include measures of association and agreement. The option names are identical to
those in the TABLES and OUTPUT statements. You can request all tests for groups of statis-
tics by using group options MEASURES or AGREE. Or you can request tests individually
by using the options shown in Table 3.13.

For each measure of association or agreement that you specify, PROC FREQ provides an
asymptotic test that the measure equals zero. PROC FREQ displays the asymptotic standard
error under the null hypothesis, the test statistic, and the p-values. Additionally, PROC FREQ
reports the confidence limits for the measure. The ALPHA= option in the TABLES statement
determines the confidence level, which by default equals 0.05 and provides 95% confidence
limits. See the sections “Asymptotic Tests” on page 124 and “Confidence Limits” on page 124
for details. Also see the section “Statistical Computations” on page 117 for information about
individual measures.

You can request exact tests for selected measures of association and agreement by using the
EXACT statement. See the section “Exact Statistics” on page 166 for more information.

If you use only one TABLES statement, you do not need to specify the same options in
both the TABLES and TEST statements; when you specify an option in the TEST statement,
PROC FREQ automatically invokes the corresponding TABLES statement option. However,
when you use the TEST statement with multiple TABLES statements, you must specify op-
tions in the TABLES statements to request the desired statistics. PROC FREQ then provides
asymptotic tests for those statistics that you also specify in the TEST statement.
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Table 3.13 TEST Statement Options

Option Asymptotic Tests Computed Required TABLES
Statement Option

AGREE simple and weighted kappa coefficients AGREE

GAMMA gamma ALL or MEASURES

KAPPA simple kappa coefficient AGREE

KENTB Kendall’s tau-b ALL or MEASURES

MEASURES gamma, Kendall’s tau-b, Stuart’s tau-c, ALL or MEASURES

Somers’ D(C|R), Somers’ D(R|C),
Pearson and Spearman correlations

PCORR Pearson correlation coefficient ALL or MEASURES
SCORR Spearman correlation coefficient ALL or MEASURES
SMDCR Somers’ D(C|R) ALL or MEASURES
SMDRC Somers’ D(R|C) ALL or MEASURES
STUTC Stuart’s tau-c ALL or MEASURES
WTKAP weighted kappa coefficient AGREE

WEIGHT Statement

WEIGHT variable </ option> ;

The WEIGHT statement names a numeric variable that provides a weight for each observation in
the input data set. The WEIGHT statement is most commonly used to input cell count data. See the
section “Inputting Frequency Counts” on page 112 for more information. If you use a WEIGHT
statement, PROC FREQ assumes that an observation represents n observations, where n is the value
of variable. The value of the WEIGHT variable is not required to be an integer.

If the value of the WEIGHT variable is missing, PROC FREQ does not use that observation in
the analysis. If the value of the WEIGHT variable is zero, PROC FREQ ignores the observation
unless you specify the ZEROS option, which includes observations with zero weights. If you do not
specify a WEIGHT statement, each observation has a default weight of 1. The sum of the WEIGHT
variable values represents the total number of observations.

If any value of the WEIGHT variable is negative, PROC FREQ displays the frequencies computed
from the weighted values but does not compute percentages and statistics. If you create an output
data set by using the OUT= option in the TABLES statement, PROC FREQ assigns missing val-
ues to the PERCENT variable. PROC FREQ also assigns missing values to the variables that the
OUTEXPECT and OUTPCT options provide. If any value of the WEIGHT variable is negative,
you cannot create an output data set by using the OUTPUT statement because statistics are not
computed when there are negative weights.
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You can specify the following option in the WEIGHT statement:

ZEROS
includes observations with zero weight values. By default, PROC FREQ ignores observations
with zero weights.

If you specify the ZEROS option, frequency and and crosstabulation tables display any levels
corresponding to observations with zero weights. Without the ZEROS option, PROC FREQ
does not process observations with zero weights, and so does not display levels that contain
only observations with zero weights.

With the ZEROS option, PROC FREQ includes levels with zero weights in the chi-square
goodness-of-fit test for one-way tables. Also, PROC FREQ includes any levels with zero
weights in binomial computations for one-way tables. This makes it possible to compute
binomial tests and estimates when the specified level contains no observations with positive
weights.

For two-way tables, the ZEROS option enables computation of kappa statistics when there
are levels that contain no observations with positive weight. For more information, see the
section “Tables with Zero Rows and Columns” on page 157.

Note that even with the ZEROS option, PROC FREQ does not compute the CHISQ or
MEASURES statistics for two-way tables when the table has a zero row or zero column
because most of these statistics are undefined in this case.

The ZEROS option invokes the SPARSE option in the TABLES statement, which includes
table cells with a zero frequency count in the LIST output and in the OUT= data set. By
default, without the SPARSE option, PROC FREQ does not include zero frequency cells in
the LIST output or in the OUT= data set. If you specify the ZEROS option in the WEIGHT
statement but do not want the SPARSE option, you can specify the NOSPARSE option in the
TABLES statement.

Details: FREQ Procedure

Inputting Frequency Counts

PROC FREQ can use either raw data or cell count data to produce frequency and crosstabulation
tables. Raw data, also known as case-record data, report the data as one record for each subject
or sample member. Cell count data report the data as a table, listing all possible combinations of
data values along with the frequency counts. This way of presenting data often appears in published
results.
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The following DATA step statements store raw data in a SAS data set:

data Raw;
input Subject $ R C QQ@;
datalines;

0111 0211 0311 0411 0511
06 12 0712 0812 0921 1021
22 14 2 2

1121 1221 13 2 2 14

r

You can store the same data as cell counts by using the following DATA step statements:

data CellCounts;
input R C Count @Q;
datalines;

115 123

21 4 2 2 3

4

The variable R contains the values for the rows, and the variable C contains the values for the
columns. The variable Count contains the cell count for each row and column combination.

Both the Raw data set and the CellCounts data set produce identical frequency counts, two-way
tables, and statistics. When using the CellCounts data set, you must include a WEIGHT statement
to specify that the variable Count contains cell counts. For example, the following PROC FREQ
statements create a two-way crosstabulation table by using the CellCounts data set:

proc freq data=CellCounts;
tables RxC;
weight Count;

run;

Grouping with Formats

PROC FREQ groups a variable’s values according to its formatted values. If you assign a format
to a variable with a FORMAT statement, PROC FREQ formats the variable values before dividing
observations into the levels of a frequency or crosstabulation table.

For example, suppose that variable X has the values 1.1, 1.4, 1.7, 2.1, and 2.3. Each of these values
appears as a level in the frequency table. If you decide to round each value to a single digit, include
the following statement in the PROC FREQ step:

format X 1.;

Now the table lists the frequency count for formatted level 1 as two and for formatted level 2 as
three.

PROC FREQ treats formatted character variables in the same way. The formatted values are used
to group the observations into the levels of a frequency table or crosstabulation table. PROC FREQ
uses the entire value of a character format to classify an observation.
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You can also use the FORMAT statement to assign formats that were created with the FORMAT
procedure to the variables. User-written formats determine the number of levels for a variable and
provide labels for a table. If you use the same data with different formats, then you can produce
frequency counts and statistics for different classifications of the variable values.

When you use PROC FORMAT to create a user-written format that combines missing and nonmiss-
ing values into one category, PROC FREQ treats the entire category of formatted values as missing.
For example, a questionnaire codes 1 as yes, 2 as no, and 8 as a no answer. The following PROC
FORMAT statements create a user-written format:

proc format;

value Questfmt 1 ='Yes’
2 ='No’
8,. ='Missing’;
run;

When you use a FORMAT statement to assign Questfmt. to a variable, the variable’s frequency
table no longer includes a frequency count for the response of 8. You must use the MISSING or
MISSPRINT option in the TABLES statement to list the frequency for no answer. The frequency
count for this level includes observations with either a value of 8 or a missing value (.).

The frequency or crosstabulation table lists the values of both character and numeric variables
in ascending order based on internal (unformatted) variable values unless you change the order
with the ORDER= option. To list the values in ascending order by formatted values, use OR-
DER=FORMATTED in the PROC FREQ statement.

For more information about the FORMAT statement, see SAS Language Reference: Concepts.

Missing Values

When the value of the WEIGHT variable is missing, PROC FREQ does not include that observation
in the analysis.

PROC FREQ treats missing BY variable values like any other BY variable value. The missing
values form a separate BY group.

If an observation has a missing value for a variable in a TABLES request, by default PROC FREQ
does not include that observation in the frequency or crosstabulation table. Also by default, PROC
FREQ does not include observations with missing values in the computation of percentages and
statistics. The procedure displays the number of missing observations below each table.

PROC FREQ also reports the number of missing values in output data sets. The TABLES statement
OUT= data set includes an observation that contains the missing value frequency. The NMISS
option in the OUTPUT statement provides an output data set variable that contains the missing
value frequency.
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The following options change the way in which PROC FREQ handles missing values of TABLES
variables:

MISSPRINT displays missing value frequencies in frequency or crosstabulation tables but does
not include them in computations of percentages or statistics.

MISSING treats missing values as a valid nonmissing level for all TABLES variables. Dis-
plays missing levels in frequency and crosstabulation tables and includes them in
computations of percentages and statistics.

This example shows the three ways that PROC FREQ can handle missing values of TABLES vari-
ables. The following DATA step statements create a data set with a missing value for the variable
A.
data one;
input A Freq;
datalines;

N
NDNDN

14

The following PROC FREQ statements request a one-way frequency table for the variable A. The
first request does not specify a missing value option. The second request specifies the MISSPRINT
option in the TABLES statement. The third request specifies the MISSING option in the TABLES
statement.
proc freq data=one;
tables A4;
weight Freq;
title ’'Default’;
run;
proc freq data=one;
tables A / missprint;
weight Freq;
title 'MISSPRINT Option’;
run;
proc freq data=one;
tables A / missing;
weight Freq;
title 'MISSING Option’;
run;

Figure 3.11 displays the frequency tables produced by this example. The first table shows PROC
FREQ’s default behavior for handling missing values. The observation with a missing value of the
TABLES variable A is not included in the table, and the frequency of missing values is displayed
below the table. The second table, for which the MISSPRINT option is specified, displays the
missing observation but does not include its frequency when computing the total frequency and
percentages. The third table shows that PROC FREQ treats the missing level as a valid nonmissing
level when the MISSING option is specified. The table displays the missing level, and PROC FREQ
includes this level when computing frequencies and percentages.
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Figure 3.11 Missing Values in Frequency Tables

Default

The FREQ Procedure

Cumulative Cumulative
A Frequency Percent Frequency Percent
1 2 50.00 2 50.00
2 2 50.00 4 100.00

Frequency Missing = 2

MISSPRINT Option

The FREQ Procedure

Cumulative Cumulative
A Frequency Percent Frequency Percent
. 2 . . .
1 2 50.00 2 50.00
2 2 50.00 4 100.00
Frequency Missing = 2
MISSING Option
The FREQ Procedure
Cumulative Cumulative
A Frequency Percent Frequency Percent
. 2 33.33 2 33.33
1 2 33.33 4 66.67
2 2 33.33 6 100.00

When a combination of variable values for a two-way table is missing, PROC FREQ assigns zero
to the frequency count for the table cell. By default, PROC FREQ does not display missing com-
binations in LIST format. Also, PROC FREQ does not include missing combinations in the OUT=
output data set by default. To include missing combinations, you can specify the SPARSE option
with the LIST or OUT= option in the TABLES statement.
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Statistical Computations
Definitions and Notation

A two-way table represents the crosstabulation of row variable X and column variable Y. Let the
table row values or levels be denoted by X;,i = 1,2,..., R, and the column values by Y;, j =
1,2,...,C. Letn;; denote the frequency of the table cell in the i th row and j th column and define
the following notation:

nj. = Z nij (row totals)
J

n.j = Z nij (column totals)
i
n= Z Z n;j (overall total)
i
pij = nij/n (cell percentages)
pi- =ni./n (row percentages of total)
p.j=n.j/n (column percentages of total)

R; = score for row i

C; = score for column j

R= Z n;.Rj/n (average row score)

1

C = Z n.;Cj/n (average column score)

Aij =" g+ Y. Y nw

k>i I>j k<i I<j
Djj = Z Z”kl +Z anl
k>i I<j k<i I>j

P = Z Z nijAij (twice the number of concordances)
i

0= Z Z nijDj; (twice the number of discordances)
i

Scores

PROC FREQ uses scores of the variable values to compute the Mantel-Haenszel chi-square, Pear-
son correlation, Cochran-Armitage test for trend, weighted kappa coefficient, and Cochran-Mantel-
Haenszel statistics. The SCORES= option in the TABLES statement specifies the score type that
PROC FREQ uses. The available score types are TABLE, RANK, RIDIT, and MODRIDIT scores.
The default score type is TABLE. Using MODRIDIT, RANK, or RIDIT scores yields nonparametric
analyses.
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For numeric variables, table scores are the values of the row and column levels. If the row or column
variable is formatted, then the table score is the internal numeric value corresponding to that level.
If two or more numeric values are classified into the same formatted level, then the internal numeric
value for that level is the smallest of these values. For character variables, table scores are defined
as the row numbers and column numbers (that is, 1 for the first row, 2 for the second row, and so
on).

Rank scores, which you request with the SCORES=RANK option, are defined as

Rli:an~+(ni'+l)/2 i=12,...,R
k<i
I<j

where R1; is the rank score of row i, and C1; is the rank score of column ;. Note that rank scores
yield midranks for tied values.

Ridit scores, which you request with the SCORES=RIDIT option, are defined as rank scores stan-
dardized by the sample size (Bross 1958, Mack and Skillings 1980). Ridit scores are derived from
the rank scores as

R2 =Rl;/n  i=12,..R
C2;=Cl;j/n j=12,...C

Modified ridit scores (SCORES=MODRIDIT) represent the expected values of the order statistics
of the uniform distribution on (0,1) (van Elteren 1960, Lehmann 1975). Modified ridit scores are
derived from rank scores as

R3; =Rl;/(n+1) i=12,...,R
C3;=Cl;/(n+1) j=112,...,C

Chi-Square Tests and Statistics

The CHISQ option provides chi-square tests of homogeneity or independence and measures of as-
sociation based on the chi-square statistic. When you specify the CHISQ option in the TABLES
statement, PROC FREQ computes the following chi-square tests for each two-way table: the Pear-
son chi-square, likelihood-ratio chi-square, and Mantel-Haenszel chi-square. PROC FREQ provides
the following measures of association based on the Pearson chi-square statistic: the phi coefficient,
contingency coefficient, and Cramer’s V. For 2 x 2 tables, the CHISQ option also provides Fisher’s
exact test and the continuity-adjusted chi-square. You can request Fisher’s exact test for general
R x C tables by specifying the FISHER option in the TABLES or EXACT statement.

For one-way frequency tables, the CHISQ option provides a chi-square goodness-of-fit test. The
other chi-square tests and statistics described in this section are computed only for two-way tables.

All of the two-way test statistics described in this section test the null hypothesis of no association
between the row variable and the column variable. When the sample size n is large, these test
statistics have an asymptotic chi-square distribution when the null hypothesis is true. When the
sample size is not large, exact tests might be useful. PROC FREQ provides exact tests for the
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Pearson chi-square, the likelihood-ratio chi-square, and the Mantel-Haenszel chi-square (in addition
to Fisher’s exact test). PROC FREQ also provides an exact chi-square goodness-of-fit test for one-
way tables. You can request these exact tests by specifying the corresponding options in the EXACT
statement. See the section “Exact Statistics” on page 166 for more information.

Note that the Mantel-Haenszel chi-square statistic is appropriate only when both variables lie on
an ordinal scale. The other chi-square tests and statistics in this section are appropriate for either
nominal or ordinal variables. The following sections give the formulas that PROC FREQ uses to
compute the chi-square tests and statistics. See Agresti (2007), Stokes, Davis, and Koch (2000),
and the other references cited for each statistic for more information.

Chi-Square Test for One-Way Tables

For one-way frequency tables, the CHISQ option in the TABLES statement provides a chi-square
goodness-of-fit test. Let C denote the number of classes, or levels, in the one-way table. Let f;
denote the frequency of class i (or the number of observations in class i) fori = 1,2,...,C. Then
PROC FREQ computes the one-way chi-square statistic as

C (r_ 2
szz(fz eiel)

i=1
where ¢; is the expected frequency for class i under the null hypothesis.
In the test for equal proportions, which is the default for the CHISQ option, the null hypothesis

specifies equal proportions of the total sample size for each class. Under this null hypothesis, the
expected frequency for each class equals the total sample size divided by the number of classes,

ei =n/C for i=1,2,...,C

In the test for specified frequencies, which PROC FREQ computes when you input null hypothesis
frequencies by using the TESTF= option, the expected frequencies are the TESTF= values that you
specify. In the test for specified proportions, which PROC FREQ computes when you input null
hypothesis proportions by using the TESTP= option, the expected frequencies are determined from
the specified TESTP= proportions p; as

e, =pixn for i=12,...,C

Under the null hypothesis (of equal proportions, specified frequencies, or specified proportions),
QO p has an asymptotic chi-square distribution with C — 1 degrees of freedom.

In addition to the asymptotic test, you can request an exact one-way chi-square test by specifying
the CHISQ option in the EXACT statement. See the section “Exact Statistics” on page 166 for more
information.

Pearson Chi-Square Test for Two-Way Tables

The Pearson chi-square for two-way tables involves the differences between the observed and ex-
pected frequencies, where the expected frequencies are computed under the null hypothesis of in-
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dependence. The Pearson chi-square statistic is computed as
_ (nij — eij)?
0r=2.2 .~
i €ij

where n;; is the observed frequency in table cell (i, j) and e;; is the expected frequency for table
cell (i, j). The expected frequency is computed under the null hypothesis that the row and column
variables are independent,

When the row and column variables are independent, Q p has an asymptotic chi-square distribution
with (R—1)(C —1) degrees of freedom. For large values of Q p, this test rejects the null hypothesis
in favor of the alternative hypothesis of general association.

In addition to the asymptotic test, you can request an exact Pearson chi-square test by specifying
the PCHI or CHISQ option in the EXACT statement. See the section “Exact Statistics” on page 166
for more information.

For 2 x 2 tables, the Pearson chi-square is also appropriate for testing the equality of two binomial
proportions. For Rx2 and 2x C tables, the Pearson chi-square tests the homogeneity of proportions.
See Fienberg (1980) for details.

Likelihood-Ratio Chi-Square Test

The likelihood-ratio chi-square involves the ratios between the observed and expected frequencies.
The likelihood-ratio chi-square statistic is computed as

G? = 22211,-]- In (ni)
i

el‘j

where n;; is the observed frequency in table cell (i, j) and ¢;; is the expected frequency for table
cell (i, j).

When the row and column variables are independent, G2 has an asymptotic chi-square distribution
with (R — 1)(C — 1) degrees of freedom.

In addition to the asymptotic test, you can request an exact likelihood-ratio chi-square test by spec-
ifying the LRCHI or CHISQ option in the EXACT statement. See the section “Exact Statistics” on
page 166 for more information.

Continuity-Adjusted Chi-Square Test

The continuity-adjusted chi-square for 2 x 2 tables is similar to the Pearson chi-square, but it is
adjusted for the continuity of the chi-square distribution. The continuity-adjusted chi-square is
most useful for small sample sizes. The use of the continuity adjustment is somewhat controversial;
this chi-square test is more conservative (and more like Fisher’s exact test) when the sample size
is small. As the sample size increases, the continuity-adjusted chi-square becomes more like the
Pearson chi-square.



Statistical Computations 4 121

The continuity-adjusted chi-square statistic is computed as

—el-j| —0.5) )2

0, |n;;
chzz(max( |nje
i

1

Under the null hypothesis of independence, Q¢ has an asymptotic chi-square distribution with
(R — 1)(C — 1) degrees of freedom.

Mantel-Haenszel Chi-Square Test

The Mantel-Haenszel chi-square statistic tests the alternative hypothesis that there is a linear asso-
ciation between the row variable and the column variable. Both variables must lie on an ordinal
scale. The Mantel-Haenszel chi-square statistic is computed as

Omur = (n— 1)72

where 2 is the Pearson correlation between the row variable and the column variable. For a de-
scription of the Pearson correlation, see the “Pearson Correlation Coefficient” on page 127. The
Pearson correlation and thus the Mantel-Haenszel chi-square statistic use the scores that you spec-
ify in the SCORES= option in the TABLES statement. See Mantel and Haenszel (1959) and Landis,
Heyman, and Koch (1978) for more information.

Under the null hypothesis of no association, Qg has an asymptotic chi-square distribution with
one degree of freedom.

In addition to the asymptotic test, you can request an exact Mantel-Haenszel chi-square test by
specifying the MHCHI or CHISQ option in the EXACT statement. See the section “Exact Statistics”
on page 166 for more information.

Fisher’s Exact Test

Fisher’s exact test is another test of association between the row and column variables. This test
assumes that the row and column totals are fixed, and then uses the hypergeometric distribution to
compute probabilities of possible tables conditional on the observed row and column totals. Fisher’s
exact test does not depend on any large-sample distribution assumptions, and so it is appropriate
even for small sample sizes and for sparse tables.

2 x 2 Tables For 2 x 2 tables, PROC FREQ gives the following information for Fisher’s exact
test: table probability, two-sided p-value, left-sided p-value, and right-sided p-value. The table
probability equals the hypergeometric probability of the observed table, and is in fact the value of
the test statistic for Fisher’s exact test.

Where p is the hypergeometric probability of a specific table with the observed row and column
totals, Fisher’s exact p-values are computed by summing probabilities p over defined sets of tables,

PROB =) p
A

The two-sided p-value is the sum of all possible table probabilties (conditional on the observed row
and column totals) that are less than or equal to the observed table probability. For the two-sided
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p-value, the set A includes all possible tables with hypergeometric probabilities less than or equal to
the probability of the observed table. A small two-sided p-value supports the alternative hypothesis
of association between the row and column variables.

For 2 x 2 tables, one-sided p-values for Fisher’s exact test are defined in terms of the frequency of
the cell in the first row and first column of the table, the (1,1) cell. Denoting the observed (1,1) cell
frequency by n11, the left-sided p-value for Fisher’s exact test is the probability that the (1,1) cell
frequency is less than or equal to n11. For the left-sided p-value, the set A includes those tables with
a (1,1) cell frequency less than or equal to n11. A small left-sided p-value supports the alternative
hypothesis that the probability of an observation being in the first cell is actually less than expected
under the null hypothesis of independent row and column variables.

Similarly, for a right-sided alternative hypothesis, A is the set of tables where the frequency of the
(1,1) cell is greater than or equal to that in the observed table. A small right-sided p-value supports
the alternative that the probability of the first cell is actually greater than that expected under the
null hypothesis.

Because the (1,1) cell frequency completely determines the 2 x 2 table when the marginal row and
column sums are fixed, these one-sided alternatives can be stated equivalently in terms of other cell
probabilities or ratios of cell probabilities. The left-sided alternative is equivalent to an odds ratio
less than 1, where the odds ratio equals (n11722/n127121). Additionally, the left-sided alternative is
equivalent to the column 1 risk for row 1 being less than the column 1 risk for row 2, pyj1 < pqja.
Similarly, the right-sided alternative is equivalent to the column 1 risk for row 1 being greater than
the column 1 risk for row 2, py; > pyj2. See Agresti (2007) for details.

R x C Tables Fisher’s exact test was extended to general R x C tables by Freeman and Halton
(1951), and this test is also known as the Freeman-Halton test. For R x C tables, the two-sided
p-value definition is the same as for 2 x 2 tables. The set A contains all tables with p less than or
equal to the probability of the observed table. A small p-value supports the alternative hypothesis of
association between the row and column variables. For R x C tables, Fisher’s exact test is inherently
two-sided. The alternative hypothesis is defined only in terms of general, and not linear, association.
Therefore, Fisher’s exact test does not have right-sided or left-sided p-values for general R x C
tables.

For R x C tables, PROC FREQ computes Fisher’s exact test by using the network algorithm of
Mehta and Patel (1983), which provides a faster and more efficient solution than direct enumeration.
See the section “Exact Statistics” on page 166 for more details.

Phi Coefficient

The phi coefficient is a measure of association derived from the Pearson chi-square. The range
of the phi coefficient is —1 < ¢ < 1 for 2 x 2 tables. For tables larger than 2 x 2, the range is
0 <¢ <min(~/ R —1,+C — 1) (Liebetrau 1983). The phi coefficient is computed as

¢ = (n11n22 — n12n21) /q/nl.l’lz.n.ll’l.z for 2 x 2 tables
¢ = +/Op/n otherwise

See Fleiss, Levin, and Paik (2003, pp. 98-99) for more information.
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Contingency Coefficient

The contingency coefficient is a measure of association derived from the Pearson chi-square. The
range of the contingency coefficientis 0 < P < /(m — 1)/m, where m = min(R, C) (Liebetrau
1983). The contingency coefficient is computed as

P =+yQ0p/(Qpr+n)

See Kendall and Stuart (1979, pp. 587-588) for more information.

Cramer’s V

Cramer’s V is a measure of association derived from the Pearson chi-square. It is designed so that
the attainable upper bound is always 1. The range of Cramer’s V is —1 < V < 1 for 2 x 2 tables;
for tables larger than 2 x 2, the range is 0 < V' < 1. Cramer’s V' is computed as

V =¢ for2 x 2tables

_ Op/n .
= - otherwise
min(R—1,C — 1)

See Kendall and Stuart (1979, p. 588) for more information.

Measures of Association

When you specify the MEASURES option in the TABLES statement, PROC FREQ computes sev-
eral statistics that describe the association between the row and column variables of the contingency
table. The following are measures of ordinal association that consider whether the column variable
Y tends to increase as the row variable X increases: gamma, Kendall’s tau-b, Stuart’s tau-c, and
Somers’ D. These measures are appropriate for ordinal variables, and they classify pairs of obser-
vations as concordant or discordant. A pair is concordant if the observation with the larger value of
X also has the larger value of Y. A pair is discordant if the observation with the larger value of X has
the smaller value of Y. See Agresti (2007) and the other references cited for the individual measures
of association.

The Pearson correlation coefficient and the Spearman rank correlation coefficient are also appro-
priate for ordinal variables. The Pearson correlation describes the strength of the linear association
between the row and column variables, and it is computed by using the row and column scores spec-
ified by the SCORES= option in the TABLES statement. The Spearman correlation is computed
with rank scores. The polychoric correlation (requested by the PLCORR option) also requires ordi-
nal variables and assumes that the variables have an underlying bivariate normal distribution. The
following measures of association do not require ordinal variables and are appropriate for nominal
variables: lambda asymmetric, lambda symmetric, and the uncertainty coefficients.

PROC FREQ computes estimates of the measures according to the formulas given in the following
sections. For each measure, PROC FREQ computes an asymptotic standard error (ASE), which is
the square root of the asymptotic variance denoted by var in the following sections.
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Confidence Limits

If you specify the CL option in the TABLES statement, PROC FREQ computes asymptotic con-
fidence limits for all MEASURES statistics. The confidence coefficient is determined according
to the value of the ALPHA= option, which, by default, equals 0.05 and produces 95% confidence
limits.

The confidence limits are computed as
est £ (zy/o XASE)

where est is the estimate of the measure, zy/, is the 100(1 — «/2)th percentile of the standard
normal distribution, and ASE is the asymptotic standard error of the estimate.

Asymptotic Tests

For each measure that you specify in the TEST statement, PROC FREQ computes an asymptotic test
of the null hypothesis that the measure equals zero. Asymptotic tests are available for the follow-
ing measures of association: gamma, Kendall’s tau-b, Stuart’s tau-c, Somers’ D(R|C), Somers’
D(C|R), the Pearson correlation coefficient, and the Spearman rank correlation coefficient. To
compute an asymptotic test, PROC FREQ uses a standardized test statistic z, which has an asymp-
totic standard normal distribution under the null hypothesis. The test statistic is computed as

z = est | +/varg(est)

where est is the estimate of the measure and varg(est) is the variance of the estimate under the
null hypothesis. Formulas for varg(est) for the individual measures of association are given in the
following sections.

Note that the ratio of est to /varg(est) is the same for the following measures: gamma, Kendall’s
tau-b, Stuart’s tau-c, Somers’ D(R|C), and Somers’ D(C|R). Therefore, the tests for these mea-
sures are identical. For example, the p-values for the test of Hy: gamma = 0 equal the p-values for
the test of Hy:tau-b = 0.

PROC FREQ computes one-sided and two-sided p-values for each of these tests. When the test
statistic z is greater than its null hypothesis expected value of zero, PROC FREQ displays the right-
sided p-value, which is the probability of a larger value of the statistic occurring under the null
hypothesis. A small right-sided p-value supports the alternative hypothesis that the true value of
the measure is greater than zero. When the test statistic is less than or equal to zero, PROC FREQ
displays the left-sided p-value, which is the probability of a smaller value of the statistic occurring
under the null hypothesis. A small left-sided p-value supports the alternative hypothesis that the
true value of the measure is less than zero. The one-sided p-value P; can be expressed as

__JProb(Z >z) if z>0
b Prob(Z <z) if z <0

where Z has a standard normal distribution. The two-sided p-value P, is computed as

Py = Prob(|Z]| > |z|)
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Exact Tests

Exact tests are available for two measures of association: the Pearson correlation coefficient and the
Spearman rank correlation coefficient. If you specify the PCORR option in the EXACT statement,
PROC FREQ computes the exact test of the hypothesis that the Pearson correlation equals zero.
If you specify the SCORR option in the EXACT statement, PROC FREQ computes the exact test
of the hypothesis that the Spearman correlation equals zero. See the section “Exact Statistics” on
page 166 for more information.

Gamma

The gamma (I") statistic is based only on the number of concordant and discordant pairs of observa-
tions. It ignores tied pairs (that is, pairs of observations that have equal values of X or equal values
of Y'). Gamma is appropriate only when both variables lie on an ordinal scale. The range of gamma
is —1 < T < 1. If the row and column variables are independent, then gamma tends to be close to
zero. Gamma is estimated by

G=(FP-0)/(P+0)

and the asymptotic variance is
Var(G) = —— 233 (0 Ay — PDyy)
(P n Q)4 i - J J J

For 2 x 2 tables, gamma is equivalent to Yule’s . See Goodman and Kruskal (1979) and Agresti
(2002) for more information.

The variance under the null hypothesis that gamma equals zero is computed as

4

varg (G) = m

D> nij(Aij — Dij)* — (P — Q)?/n
i
See Brown and Benedetti (1977) for details.

Kendall’s Tau-b

Kendall’s tau-b (1) is similar to gamma except that tau-b uses a correction for ties. Tau-b is
appropriate only when both variables lie on an ordinal scale. The range of tau-b is —1 < 75, < 1.
Kendall’s tau-b is estimated by

th = (P—0)/ Jwrwe

and the asymptotic variance is

1
var(tp) = s E E nij Qwd;; + tbv,'j)2 —n3t§(wr + wc)2
i J
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where
w == A/ WrWe
2 2

Wy = n — an

i
o ey

J
dij = Aij = Dij
UU = I’ll wC + n JU}r

See Kendall (1955) for more information.

The variance under the null hypothesis that tau-b equals zero is computed as

varg(tp) = 4 ZZ”ij(Aij - Dij)2 — (P — Q)z/”
J

wr wc i

See Brown and Benedetti (1977) for details.

Stuart’s Tau-c

Stuart’s tau-c (z.) makes an adjustment for table size in addition to a correction for ties. Tau-c is
appropriate only when both variables lie on an ordinal scale. The range of tau-c is -1 < 7, < 1.
Stuart’s tau-c is estimated by

te =m(P — Q) /n*(m—1)

and the asymptotic variance is

(m —1)Zn4

4m2 2 2
var(fe) = —————— Zznijdij —(P-0)/n
J

i

where m = min(R, C) and d;; = A;; — D;j. The variance under the null hypothesis that tau-c
equals zero is the same as the asymptotic variance var,

varg(t.) = var(t.)

See Brown and Benedetti (1977) for details.

Somers’ D

Somers’ D(C|R) and Somers’ D(R|C) are asymmetric modifications of tau-b. C|R indicates that
the row variable X is regarded as the independent variable and the column variable Y is regarded
as dependent. Similarly, R|C indicates that the column variable Y is regarded as the independent
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variable and the row variable X is regarded as dependent. Somers’ D differs from tau-b in that it
uses a correction only for pairs that are tied on the independent variable. Somers’ D is appropriate
only when both variables lie on an ordinal scale. The range of Somers’ D is —1 < D < 1. Somers’
D(C|R) is computed as

D(CIR) = (P - Q) / wr
and its asymptotic variance is

4
var(D(CIR) = —3 3 3 mj (wrdij = (P = Q)(n —ny))*
r i j

where d;; = A;; — D;; and
wr = I’l2 — anz_
i

See Somers (1962), Goodman and Kruskal (1979), and Liebetrau (1983) for more information.

The variance under the null hypothesis that D(C | R) equals zero is computed as

varg(D(CIR)) = —= [ 32 nyj (A = Diy)? = (P — 0)2/n
i

w2
See Brown and Benedetti (1977) for details.

Formulas for Somers’ D(R|C) are obtained by interchanging the indices.

Pearson Correlation Coefficient

The Pearson correlation coefficient (p) is computed by using the scores specified in the SCORES=
option. This measure is appropriate only when both variables lie on an ordinal scale. The range of
the Pearson correlation is —1 < p < 1. The Pearson correlation coefficient is estimated by

F=0/W = 8Src//SSrSSc

and its asymptotic variance is
1 - - bijv 2
var(r) = — Z Zni,- w(Ri = R)(C; = C) = =
i

where R; and C; are the row and column scores and

ssp = ZZ”ij(Ri—R)z
i

sSe = ZZnij(Cj—C_)z
i

ssre =YY nij(Ri = R)(C; = C)

L
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bij = (Ri— R)ZSSC +(Cj — C_’)zssr
v = SSrc

w == A/SSrSSe

See Snedecor and Cochran (1989) for more information.

The SCORES= option in the TABLES statement determines the type of row and column scores
used to compute the Pearson correlation (and other score-based statistics). The default is
SCORES=TABLE. See the section “Scores” on page 117 for details about the available score types
and how they are computed.

The variance under the null hypothesis that the correlation equals zero is computed as

varg(r) = ZZ”ij(Ri —~R*(Cj —C)* —ss2./n | / sspsse
i

Note that this expression for the variance is derived for multinomial sampling in a contingency
table framework, and it differs from the form obtained under the assumption that both variables are
continuous and normally distributed. See Brown and Benedetti (1977) for details.

PROC FREQ also provides an exact test for the Pearson correlation coefficient. You can request this
test by specifying the PCORR option in the EXACT statement. See the section “Exact Statistics”
on page 166 for more information.

Spearman Rank Correlation Coefficient

The Spearman correlation coefficient (pg) is computed by using rank scores, which are defined in
the section “Scores” on page 117. This measure is appropriate only when both variables lie on an
ordinal scale. The range of the Spearman correlation is —1 < pg < 1. The Spearman correlation
coefficient is estimated by

rs=v/w
and its asymptotic variance is

1 -
Val‘(rs) = 2wt E E n,-j(z,-j —2)2
Lo

where R1; and C1; are the row and column rank scores and

v o= Y > niRGC()
j

1

1
w = —~VFG
12

F = n3—an-3,

i

G = n3—Zn,3j

J
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R({) = Rl;—n/2

C(j) = Clj—nj2
_ 1
% 3

i

Zij = WV —VWwjj

vij = n (R(i)C(j) + %Z”ilc(l) + %anjR(kH
1 k

D3 ) + Y- nuR(k)

I k>i k 1>

—n

See Snedecor and Cochran (1989) for more information.

The variance under the null hypothesis that the correlation equals zero is computed as
1 _
i
where
v = ZZnijvij/n
i J

Note that the asymptotic variance is derived for multinomial sampling in a contingency table frame-
work, and it differs from the form obtained under the assumption that both variables are continuous
and normally distributed. See Brown and Benedetti (1977) for details.

PROC FREQ also provides an exact test for the Spearman correlation coefficient. You can request
this test by specifying the SCORR option in the EXACT statement. See the section “Exact Statis-
tics” on page 166 for more information.

Polychoric Correlation

When you specify the PLCORR option in the TABLES statement, PROC FREQ computes the
polychoric correlation. This measure of association is based on the assumption that the ordered,
categorical variables of the frequency table have an underlying bivariate normal distribution. For
2 x 2 tables, the polychoric correlation is also known as the tetrachoric correlation. See Drasgow
(1986) for an overview of polychoric correlation. The polychoric correlation coefficient is the
maximum likelihood estimate of the product-moment correlation between the normal variables,
estimating thresholds from the observed table frequencies. The range of the polychoric correlation
is from —1 to 1. Olsson (1979) gives the likelihood equations and an asymptotic covariance matrix
for the estimates.
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To estimate the polychoric correlation, PROC FREQ iteratively solves the likelihood equations by
a Newton-Raphson algorithm that uses the Pearson correlation coefficient as the initial approxima-
tion. Iteration stops when the convergence measure falls below the convergence criterion or when
the maximum number of iterations is reached, whichever occurs first. The CONVERGE= option
sets the convergence criterion, and the default value is 0.0001. The MAXITER= option sets the
maximum number of iterations, and the default value is 20.

Lambda (Asymmetric)

Asymmetric lambda, A(C|R), is interpreted as the probable improvement in predicting the col-
umn variable Y given knowledge of the row variable X. The range of asymmetric lambda is
0 < A(C|R) < 1. Asymmetric lambda (C |R) is computed as

A(C|R) = —Z’;’_";’

and its asymptotic variance is

var(A(C|R)) = % (Z rr =2 (|l = 1))

where

ri = max(n,-j)
J

r = max(n.;)
J

¢ = max(n;;)
1

¢ = max(n;.)
1

The values of /; and / are determined as follows. Denote by /; the unique value of j such that r; =
nij, and let [ be the unique value of j such that r = n.;. Because of the uniqueness assumptions,
ties in the frequencies or in the marginal totals must be broken in an arbitrary but consistent manner.
In case of ties, / is defined as the smallest value of j such that r = n.;.

For those columns containing a cell (i, j) for which n;; = r; = ¢, ¢s; records the row in which
c;j is assumed to occur. Initially cs; is set equal to —1 for all j. Beginning with i = 1, if there is
at least one value j such thatn;; = r; = c;, and if cs; = —1, then /; is defined to be the smallest
such value of j, and cs; is set equal to i. Otherwise, if n;; = r;, then /; is defined to be equal to /.
If neither condition is true, then /; is taken to be the smallest value of j such that n;; = r;.

The formulas for lambda asymmetric (R|C) can be obtained by interchanging the indices.

See Goodman and Kruskal (1979) for more information.
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Lambda (Symmetric)

The nondirectional lambda is the average of the two asymmetric lambdas, A(C |R) and A(R|C). Its
range is 0 < A < 1. Lambda symmetric is computed as
dilit)jcj—r—c _w-—u

A,: =
2n—r —c¢ w

and its asymptotic variance is computed as

var(A) = ! (wvy 2w ZZ(nU |j=1li,i=k; )) 2v%(n —nkl))

i

where
ri = max(n;;)
r = max(n.;)
c; = miax(nlj)
c = miax(n, )
w = 2n—r—c

X o= Y illi=D+ D (cjlkj =k + e + ¢
i J

y = 8n—w—v—2x

The definitions of /; and [ are given in the previous section. The values k; and k are defined in a
similar way for lambda asymmetric (R|C).

See Goodman and Kruskal (1979) for more information.

Uncertainty Coefficients (Asymmetric)

The uncertainty coefficient U(C | R) measures the proportion of uncertainty (entropy) in the column
variable Y that is explained by the row variable X. Its range is 0 < U(C|R) < 1. The uncertainty
coefficient is computed as

UCIR)=(HX)+ HY)—HXY)) /HY)=v/w
and its asymptotic variance is

2

var(U(CIR) = -3 4ZZ”U H(Y)In ( ”)+<H(X)—H(XY))1n (52)
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where

v = H(X)+ H®Y)—-H(XY)

w = H()

= () (%)
N
) =SS F (4)n(%)

The formulas for the uncertainty coefficient U(R|C) can be obtained by interchanging the indices.

See Theil (1972, pp. 115-120) and Goodman and Kruskal (1979) for more information.

Uncertainty Coefficient (Symmetric)

The uncertainty coefficient U is the symmetric version of the two asymmetric uncertainty coeffi-
cients. Its range is 0 < U < 1. The uncertainty coefficient is computed as

U=2HX)+HY)-H(XY)) /(HX)+ H(Y))

and its asymptotic variance is

2
n (H(Xy) In (%) —(H(X)+ H(Y))In (%))
var(U) = 4; 2,: n? (H(X) + H(Y))*

where H(X), H(Y), and H(XY) are defined in the previous section. See Goodman and Kruskal
(1979) for more information.

Binomial Proportion

If you specify the BINOMIAL option in the TABLES statement, PROC FREQ computes the bi-
nomial proportion for one-way tables. By default, this is the proportion of observations in the first
variable level that appears in the output. (You can use the LEVEL= option to specify a different
level for the proportion.) The binomial proportion is computed as

p=ni/n

where n1 is the frequency of the first (or designated) level and 7 is the total frequency of the one-way
table. The standard error of the binomial proportion is computed as

se(p) =vp(d—=p)/n
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Confidence Limits

By default, PROC FREQ provides asymptotic and exact (Clopper-Pearson) confidence limits for
the binomial proportion. If you do not specify any confidence limit requests with binomial-options,
PROC FREQ computes the standard Wald asymptotic confidence limits. You can also request
Agresti-Coull, Jeffreys, and Wilson (score) confidence limits for the binomial proportion. See
Brown, Cai, and DasGupta (2001), Agresti and Coull (1998), and Newcombe (1998) for details
about these binomial confidence limits, including comparisons of their performance.

Wald Confidence Limits The standard Wald asymptotic confidence limits are based on the nor-
mal approximation to the binomial distribution. PROC FREQ computes the Wald confidence limits
for the binomial proportion as

b £ (zg72 xse(p))

where z, /5 is the 100(1 — «/2)th percentile of the standard normal distribution. The confidence
level « is determined by the ALPHA= option, which, by default, equals 0.05 and produces 95%
confidence limits.

If you specify the CORRECT binomial-option or the BINOMIALC option, PROC FREQ includes a
continuity correction of 1/2n in the Wald asymptotic confidence limits. The purpose of this correc-
tion is to adjust for the difference between the normal approximation and the binomial distribution,
which is a discrete distribution. See Fleiss, Levin, and Paik (2003) for more information. With the
continuity correction, the asymptotic confidence limits for the binomial proportion are computed as

p £ (zaj2 xse(p) + (1/2n))

Agresti-Coull Confidence Limits If you specify the AGRESTICOULL binomial-option, PROC
FREQ computes Agresti-Coull confidence limits for the binomial proportion as

P £ (zop2xvp(=p)/n)

where
i ny + (zg/2)/2
p = ny/n

The Agresti-Coull confidence interval has the same basic form as the standard Wald interval but
uses p in place of p. For a = 0.05, the value of z,/5 is close to 2, and this interval is the “add 2
successes and 2 failures” adjusted Wald interval in Agresti and Coull (1998).

Jeffreys Confidence Limits If you specify the JEFFREYS binomial-option, PROC FREQ com-
putes the Jeffreys confidence limits for the binomial proportion as

(B/2, ny+1/2, n—ny1 +1/2), Bl —a/2, n1+1/2, n—ny +1/2))
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where B(w, b, ¢) is the ath percentile of the beta distribution with shape parameters » and c¢. The
lower confidence limit is set to 0 when n; = 0, and the upper confidence limit is set to 1 when
n1 = n. This is an equal-tailed interval based on the noninformative Jeffreys prior for a binomial
proportion. See Brown, Cai, and DasGupta (2001) for details. See Berger (1985) for information
about using beta priors for inference on the binomial proportion.

Wilson (Score) Confidence Limits If you specify the WILSON binomial-option, PROC FREQ
computes Wilson confidence limits for the binomial proportion. These are also known as score
confidence limits and are attributed to Wilson (1927). The confidence limits are based on inverting
the normal test that uses the null proportion in the variance (the score test). Wilson confidence limits
are the roots of

|p— Pl = za/2v/ (1 —p)/n

and are computed as

(ﬁ + 22/2/211) 4 (Za/2\/(ﬁ(1 —p)+ 23/2) /4n / (1 + 22/2/1’1))

The Wilson interval has been shown to have better performance than the Wald interval and the exact
(Clopper-Pearson) interval. See Agresti and Coull (1998), Brown, Cai, and DasGupta (2001), and
Newcombe (1998) for more information.

Exact (Clopper-Pearson) Confidence Limits The exact or Clopper-Pearson confidence limits
for the binomial proportion are constructed by inverting the equal-tailed test based on the binomial
distribution. This method is attributed to Clopper and Pearson (1934). The exact confidence limits
pr and py satisfy the following equations, forn; = 1,2,...n — 1:

a/2

3 (Z)p;‘(l —p) "
> (Z)m}“(l —p)"F = /2

x=0
The lower confidence limit equals 0 when n7 = 0, and the upper confidence limit equals 1 when
nip =n.

PROC FREQ computes the exact (Clopper-Pearson) confidence limits by using the F distribution
as

_ . n—ny+1 -1
pr= ny F(1—a/2, 2ny, 2(n—n1 + 1))

.
pu = (1+ o )
(n1+1) F(a/2, 2(ny + 1), 2(n —ny))
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where F(a, b, ¢) is the ath percentile of the F distribution with b and ¢ degrees of freedom. See
Leemis and Trivedi (1996) for a derivation of this expression. Also see Collett (1991) for more
information about exact binomial confidence limits.

Because this is a discrete problem, the confidence coefficient (or coverage probability) of the exact
(Clopper-Pearson) interval is not exactly (1 —«) but is at least (1 —«). Thus, this confidence interval
is conservative. Unless the sample size is large, the actual coverage probability can be much larger
than the target value. See Agresti and Coull (1998), Brown, Cai, and DasGupta (2001), and Leemis
and Trivedi (1996) for more information about the performance of these confidence limits.

Tests

The BINOMIAL option provides an asymptotic equality test for the binomial proportion by default.
You can also specify binomial-options to request tests of noninferiority, superiority, and equivalence
for the binomial proportion. If you specify the BINOMIAL option in the EXACT statement, PROC
FREQ also computes exact p-values for the tests that you request with the binomial-options.

Equality Test PROC FREQ computes an asymptotic test of the hypothesis that the binomial pro-
portion equals pg, where you can specify the value of pg with the P= binomial-option. If you do
not specify a null value with P=, PROC FREQ uses po = 0.5 by default. The binomial test statistic
is computed as

z=(p— po)/se

By default, the standard error is based on the null hypothesis proportion as

se = +/po(l — po)/n

If you specify the VAR=SAMPLE binomial-option, the standard error is computed from the sample
proportion as

se =/ p(l—p)/n

If you specify the CORRECT binomial-option or the BINOMIALC option, PROC FREQ includes
a continuity correction in the asymptotic test statistic, towards adjusting for the difference between
the normal approximation and the discrete binomial distribution. See Fleiss, Levin, and Paik (2003)
for details. The continuity correction of (1/2n) is subtracted from the numerator of the test statistic
if (p — po) is positive; otherwise, the continuity correction is added to the numerator.

PROC FREQ computes one-sided and two-sided p-values for this test. When the test statistic z is
greater than zero (its expected value under the null hypothesis), PROC FREQ computes the right-
sided p-value, which is the probability of a larger value of the statistic occurring under the null
hypothesis. A small right-sided p-value supports the alternative hypothesis that the true value of
the proportion is greater than pg. When the test statistic is less than or equal to zero, PROC FREQ
computes the left-sided p-value, which is the probability of a smaller value of the statistic occurring
under the null hypothesis. A small left-sided p-value supports the alternative hypothesis that the
true value of the proportion is less than pg. The one-sided p-value P; can be expressed as

__JProb(Z >z) if z>0
T ) Prob(Z <z) if z<0
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where Z has a standard normal distribution. The two-sided p-value is computed as P, = 2 x Pjy.

If you specify the BINOMIAL option in the EXACT statement, PROC FREQ also computes an
exact test of the null hypothesis Hy: p = po. To compute the exact test, PROC FREQ uses the
binomial probability function,

Prob(X = x | po) = (n)pox (1—po) "™  for x=0,1,2,....n
X
where the variable X has a binomial distribution with parameters n and pg. To compute the left-
sided p-value, Prob(X < n;), PROC FREQ sums the binomial probabilities over x from zeroto n;.
To compute the right-sided p-value, Prob(X > n1), PROC FREQ sums the binomial probabilities

over x from n to n. The exact one-sided p-value is the minimum of the left-sided and right-sided
p-values,

Py = min (Prob(X < np | po), Prob(X > ni | po))

and the exact two-sided p-value is computed as P, = 2 x P;.

Noninferiority Test If you specify the NONINF binomial-option, PROC FREQ provides a non-
inferiority test for the binomial proportion. The null hypothesis for the noninferiority test is

Ho:p —po < —§
versus the alternative
Hy:p—po>—96

where § is the noninferiority margin and py is the null proportion. Rejection of the null hypothesis
indicates that the binomial proportion is not inferior to the null value. See Chow, Shao, and Wang
(2003) for more information.

You can specify the value of § with the MARGIN= binomial-option, and you can specify po with
the P= binomial-option. By default, § = 0.2 and py = 0.5.

PROC FREQ provides an asymptotic Wald test for noninferiority. The test statistic is computed as
z=(p—pg)/ se

where pg is the noninferiority limit,
po =po—3

By default, the standard error is computed from the sample proportion as
se =/ p(l—p)/n

If you specify the VAR=NULL binomial-option, the standard error is based on the noninferiority
limit (determined by the null proportion and the margin) as

se =/ po(1 = pg)/n
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If you specify the CORRECT binomial-option or the BINOMIALC option, PROC FREQ includes
a continuity correction in the asymptotic test statistic z. The continuity correction of (1/2n) is
subtracted from the numerator of the test statistic if (p — pg) is positive; otherwise, the continuity
correction is added to the numerator.

The p-value for the noninferiority test is
P, =Prob(Z > z)
where Z has a standard normal distribution.

As part of the noninferiority analysis, PROC FREQ provides asymptotic Wald confidence limits for
the binomial proportion. These confidence limits are computed as described in the section “Wald
Confidence Limits” on page 133 but use the same standard error (VAR=NULL or VAR=SAMPLE)
as the noninferiority test statistic z. The confidence coefficient is 100(1 —2a)% (Schuirmann 1999).
By default, if you do not specify the ALPHA= option, the noninferiority confidence limits are 90%
confidence limits. You can compare the confidence limits to the noninferiority limit, py = po — 6.

If you specify the BINOMIAL option in the EXACT statement, PROC FREQ provides an exact
noninferiority test for the binomial proportion. The exact p-value is computed by using the binomial
probability function with parameters pg and 7,

k=n
n * * -
Pe= )" (k)(l’o)k(l—l’o)(n ©
k=n,

See Chow, Shao, Wang (2003, p. 116) for details. If you request exact binomial statistics, PROC
FREQ also includes exact (Clopper-Pearson) confidence limits for the binomial proportion in the
equivalence analysis display. See the section “Exact (Clopper-Pearson) Confidence Limits” on
page 134 for details.

Superiority Test If you specify the SUP binomial-option, PROC FREQ provides a superiority
test for the binomial proportion. The null hypothesis for the superiority test is

Ho:p—po <$§
versus the alternative
Hy:p—po>38

where § is the superiority margin and pg is the null proportion. Rejection of the null hypothesis
indicates that the binomial proportion is superior to the null value. You can specify the value of §
with the MARGIN= binomial-option, and you can specify the value of pg with the P= binomial-
option. By default, § = 0.2 and po = 0.5.

The superiority analysis is identical to the noninferiority analysis but uses a positive value of the
margin § in the null hypothesis. The superiority limit equals pg + 8. The superiority computations
follow those in the section “Noninferiority Test” on page 136 but replace —§ with §. See Chow,
Shao, and Wang (2003) for more information.
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Equivalence Test If you specify the EQUIV binomial-option, PROC FREQ provides an equiva-
lence test for the binomial proportion. The null hypothesis for the equivalence test is

Ho:p—po<dr or p—po=>dy
versus the alternative
Hg:ép < p—po <du

where &y, is the lower margin, §y is the upper margin, and pg is the null proportion. Rejection of
the null hypothesis indicates that the binomial proportion is equivalent to the null value. See Chow,
Shao, and Wang (2003) for more information.

You can specify the value of the margins 87 and §y with the MARGIN= binomial-option. If you
do not specify MARGIN=, PROC FREQ uses lower and upper margins of —0.2 and 0.2 by default.
If you specify a single margin value §, PROC FREQ uses lower and upper margins of —§ and §. You
can specify the null proportion po with the P= binomial-option. By default, pg = 0.5.

PROC FREQ computes two one-sided tests (TOST) for equivalence analysis (Schuirmann 1987).
The TOST approach includes a right-sided test for the lower margin and a left-sided test for the
upper margin. The overall p-value is taken to be the larger of the two p-values from the lower and
upper tests.

For the lower margin, the asymptotic Wald test statistic is computed as
z=(p—pr)/se

where the lower equivalence limit is
PL =Po+6L

By default, the standard error is computed from the sample proportion as
se = p(l—p)/n

If you specify the VAR=NULL binomial-option, the standard error is based on the lower equiva-
lence limit (determined by the null proportion and the lower margin) as

se = \[p;(L—p)/n

If you specify the CORRECT binomial-option or the BINOMIALC option, PROC FREQ includes
a continuity correction in the asymptotic test statistic z;. The continuity correction of (1/2n) is
subtracted from the numerator of the test statistic (p — p;) if the numerator is positive; otherwise,
the continuity correction is added to the numerator.

The p-value for the lower margin test is

P, =Prob(Z > z;)

The asymptotic test for the upper margin is computed similarly. The Wald test statistic is

2y = (p—py) / se
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where the upper equivalence limit is

Py = po+duy

By default, the standard error is computed from the sample proportion. If you specify the
VAR=NULL binomial-option, the standard error is based on the upper equivalence limit as

se = /py(1—pp)/n

If you specify the CORRECT binomial-option or the BINOMIALC option, PROC FREQ includes
a continuity correction of (1/2n) in the asymptotic test statistic zy.

The p-value for the upper margin test is

P,y =Prob(Z < zy)

Based on the two one-sided tests (TOST), the overall p-value for the test of equivalence equals the
larger p-value from the lower and upper margin tests, which can be expressed as

P, = maX(PZ,L s PZ,U)

As part of the equivalence analysis, PROC FREQ provides asymptotic Wald confidence limits for
the binomial proportion. These confidence limits are computed as described in the section “Wald
Confidence Limits” on page 133, but use the same standard error (VAR=NULL or VAR=SAMPLE)
as the equivalence test statistics and have a confidence coefficient of 100(1 — 2«)% (Schuirmann
1999). By default, if you do not specify the ALPHA= option, the equivalence confidence limits
are 90% limits. If you specify VAR=NULL, separate standard errors are computed for the lower
and upper margin tests, each based on the null proportion and the corresponding (lower or upper)
margin. The confidence limits are computed by using the maximum of these two standard errors.
You can compare the confidence limits to the equivalence limits, (pg + 81, po + Su)-

If you specify the BINOMIAL option in the EXACT statement, PROC FREQ also provides an
exact equivalence test by using two one-sided exact tests (TOST). The procedure computes lower
and upper margin exact tests by using the binomial probability function as described in the section
“Noninferiority Test” on page 136. The overall exact p-value for the equivalence test is taken to
be the larger p-value from the lower and upper margin exact tests. If you request exact statistics,
PROC FREQ also includes exact (Clopper-Pearson) confidence limits in the equivalence analysis
display. The confidence coefficient is 100(1 — 2c)% (Schuirmann 1999). See the section “Exact
(Clopper-Pearson) Confidence Limits” on page 134 for details.

Risks and Risk Differences

The RISKDIFF option in the TABLES statement provides estimates of risks (or binomial propor-
tions) and risk differences for 2 x 2 tables. This analysis might be appropriate when comparing
the proportion of some characteristic for two groups, where row 1 and row 2 correspond to the
two groups, and the columns correspond to two possible characteristics or outcomes. For exam-
ple, the row variable might be a treatment or dose, and the column variable might be the response.
See Collett (1991), Fleiss, Levin, and Paik (2003), and Stokes, Davis, and Koch (2000) for more
information.
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Let the frequencies of the 2 x 2 table be represented as follows.

Column 1 Column 2 | Total
Row 1 ni niz ni.
Row 2 nai nao nop.
Total n. n.o n

For column 1 and column 2, PROC FREQ provides estimates of the row 1 risk (or proportion), the
row 2 risk, the overall risk and the risk difference. The risk difference is defined as the row 1 risk
minus the row 2 risk. The risks are binomial proportions of their rows (row 1, row 2, or overall),
and the computation of their standard errors and confidence limits follow the binomial proportion
computations, which are described in the section “Binomial Proportion” on page 132.

The column 1 risk for row 1 is the proportion of row 1 observations classified in column 1,
p1=nn/ni.

This estimates the conditional probability of the column 1 response, given the first level of the row
variable.

The column 1 risk for row 2 is the proportion of row 2 observations classified in column 1,
p2 = nay / na.

and the overall column 1 risk is the proportion of all observations classified in column 1,
p=ni/n

The column 1 risk difference compares the risks for the two rows, and it is computed as the column
1 risk for row 1 minus the column 1 risk for row 2,

d=pi—p2
The risks and risk difference are defined similarly for column 2.

The standard error of the column 1 risk for row i is computed as

se(pi) = v/pi 1 —pi) [ n1.
The standard error of the overall column 1 risk is computed as

se(p)=+p(—=p)/n

If the two rows represent independent binomial samples, the standard error for the column 1 risk
difference is computed as

se(d) = v/var(p1) + var(pa)

The standard errors are computed in a similar manner for the column 2 risks and risk difference.
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Confidence Limits

By default, the RISKDIFF option provides standard Wald asymptotic confidence limits for the risks
(row 1, row 2, and overall) and the risk difference. The risks are equivalent to binomial propor-
tions of their corresponding rows, and the computations follow the methods in the section “Wald
Confidence Limits” on page 133.

The standard Wald asymptotic confidence limits are based on the normal approximation to the
binomial distribution. PROC FREQ computes the Wald confidence limits for the risks and risk
differences as

est £ (zq/p X se(est))

where est is the estimate, zy /5 is the 100(1 — & /2)th percentile of the standard normal distribution,
and se(est) is the standard error of the estimate. The confidence level « is determined from the
value of the ALPHA= option, which, by default, equals 0.05 and produces 95% confidence limits.

If you specify the CORRECT riskdiff-option or the RISKDIFFC option, PROC FREQ includes
continuity corrections in the Wald asymptotic confidence limits for the risks and risk differences.
The purpose of a continuity correction is to adjust for the difference between the normal approxi-
mation and the binomial distribution, which is discrete. See Fleiss, Levin, and Paik (2003) for more
information. With the continuity correction, the asymptotic confidence limits are computed as

est + (zq/p X se(est) +cc)

where cc is the continuity correction. For the row 1 risk, cc = (1/2n1.); for the row 2 risk, cc =
(1/2n5.); for the overall risk, cc = (1/2n); and for the risk difference, cc = ((1/n1. + 1/n5.)/2).
The column 1 and column 2 risks use the same continuity corrections.

PROC FREQ also computes exact (Clopper-Pearson) confidence limits for the column 1, column
2, and overall risks. These confidence limits are constructed by inverting the equal-tailed test based
on the binomial distribution. PROC FREQ uses the F' distribution to compute the Clopper-Pearson
confidence limits. See the section “Exact (Clopper-Pearson) Confidence Limits” on page 134 for
details.

PROC FREQ does not provide exact confidence limits for the risk difference by default. If you
specify the RISKDIFF option in the EXACT statement, PROC FREQ provides exact unconditional
confidence limits for the risk difference, which are described in the section “Exact Unconditional
Confidence Limits for the Risk Difference” on page 146. Note that the conditional exact approach,
which is the basis for other exact tests provided by PROC FREQ such as Fisher’s exact test, does not
apply to the risk difference due to nuisance parameters. See Agresti (1992) for more information.

Tests

You can specify riskdiff-options to request tests of the risk (or proportion) difference. You can
request tests of equality, noninferiority, superiority, and equivalence for the risk difference. The
test of equality is a standard Wald asymptotic test, available with or without a continuity correc-
tion. For noninferiority, superiority, and equivalence tests of the risk difference, the following test
methods are provided: Wald (with and without continuity correction), Hauck-Anderson, Farrington-
Manning, and Newcombe score (with and without continuity correction). You can specify the test
method with the METHOD-= riskdiff-option. By default, PROC FREQ uses METHOD=WALD.
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Equality Test If you specify the EQUAL riskdiff-option, PROC FREQ computes a test of equal-
ity, or a test of the null hypothesis that the risk difference equals zero. For the column 1 (or 2)
risk difference, this test can be expressed as Hy:d = 0 versus the alternative H,:d # 0, where
d = p1 — p» denotes the column 1 (or 2) risk difference. PROC FREQ computes a standard Wald
asymptotic test, and the test statistic is

z=d / se(c? )
By default, the standard error is computed from the sample proportions as
se(d) = v/p1(1 = p)/n1. + p2(1 = p2)/n2.

If you specify the VAR=NULL riskdiff-option, the standard error is based on the null hypothesis
that the row 1 and row 2 risks are equal,

se(d) = v/p(1 — p) x (1/n1. + 1/n2.)

where p = n.1/n estimates the overall column 1 risk.

If you specify the CORRECT riskdiff-option or the RISKDIFFC option, PROC FREQ includes a
continuity correction in the asymptotic test statistic. If d > 0, the continuity correction is subtracted
from d in the numerator of the test statistic; otherwise, the continuity correction is added to the
numerator. The value of the continuity correction is (1/n1. + 1/n3.)/2.

PROC FREQ computes one-sided and two-sided p-values for this test. When the test statistic z is
greater than 0, PROC FREQ displays the right-sided p-value, which is the probability of a larger
value occurring under the null hypothesis. The one-sided p-value can be expressed as

__JProb(Z >z) if z>0
b Prob(Z <z) if z <0

where Z has a standard normal distribution. The two-sided p-value is computed as P, = 2 x Pj.

Noninferiority Test If you specify the NONINF riskdiff-option, PROC FREQ provides a nonin-
feriority test for the risk difference, or the difference between two proportions. The null hypothesis
for the noninferiority test is

Ho:p1— pp <=6
versus the alternative
Hg:pr—p2>—4

where § is the noninferiority margin. Rejection of the null hypothesis indicates that the row 1 risk
is not inferior to the row 2 risk. See Chow, Shao, and Wang (2003) for more information.

You can specify the value of § with the MARGIN= riskdiff-option. By default, § = 0.2. You
can specify the test method with the METHOD-= riskdiff-option. The following methods are avail-
able for the risk difference noninferiority analysis: Wald (with and without continuity correction),
Hauck-Anderson, Farrington-Manning, and Newcombe score (with and without continuity correc-
tion). The Wald, Hauck-Anderson, and Farrington-Manning methods provide tests and correspond-
ing test-based confidence limits; the Newcombe score method provides only confidence limits. If
you do not specify METHOD=, PROC FREQ uses the Wald test by default.
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The confidence coefficient for the test-based confidence limits is 100(1 —2«)% (Schuirmann 1999).
By default, if you do not specify the ALPHA= option, these are 90% confidence limits. You can
compare the confidence limits to the noninferiority limit, —.

The following sections describe the noninferiority analysis methods for the risk difference.

Wald Test

If you specify the METHOD=WALD riskdiff-option, PROC FREQ provides an asymptotic Wald
test of noninferiority for the risk difference. This is also the default method. The Wald test statistic
is computed as

z=(d +8) /se(d)

where (c? = p1 — p») estimates the risk difference and § is the noninferiority margin.

By default, the standard error for the Wald test is computed from the sample proportions as
se(d) = V/p1(1 = p)/n1. + pa(l = p2)/na.

If you specify the VAR=NULL riskdiff-option, the standard error is based on the null hypothesis
that the risk difference equals —§ (Dunnett and Gent 1977). The standard error is computed as

se(d) = V(1 — p)/nz + (p—08)(1—p +8)/n1.

where

p = (ni1 +n2 +dn1.)/n

If you specify the CORRECT riskdiff-option or the RISKDIFFC option, a continuity correction is
included in the test statistic. The continuity correction is subtracted from the numerator of the test
statistic if the numerator is greater than zero; otherwise, the continuity correction is added to the
numerator. The value of the continuity correction is (1/ny. + 1/n3.)/2.

The p-value for the Wald noninferiority test is P, = Prob(Z > z), where Z has a standard normal
distribution.

Hauck-Anderson Test
If you specify the METHOD=HA riskdiff-option, PROC FREQ provides the Hauck-Anderson test
for noninferiority. The Hauck-Anderson test statistic is computed as

z=(d+8 + cc)/s(d)
where d = P1 — p2 and the standard error is computed from the sample proportions as
se(d) = v/p1(1= p)/ (1. = 1) + pa(1 = p2)/(n2. = 1)

The Hauck-Anderson continuity correction cc is computed as

cce=1/ (2 min(71., n2.))

The p-value for the Hauck-Anderson noninferiority test is P, = Prob(Z > z), where Z has a
standard normal distribution. See Hauck and Anderson (1986) and Schuirmann (1999) for more
information.
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Farrington-Manning Test
If you specify the METHOD=FM riskdiff-option, PROC FREQ provides the Farrington-Manning
test of noninferiority for the risk difference. The Farrington-Manning test statistic is computed as

z=(d +38)/se(d)
where d = p1— p2 and

se(d) = vp1(1— p1)/n1. + p2(1— p2)/na.

where p; and p, are the maximum likelihood estimators of p; and p, under the null hypothesis
that the risk difference equals —§. The p-value for the Farrington-Manning noninferiority test is then
P, = Prob(Z > z), where Z has a standard normal distribution.

From Farrington and Manning (1990), the solution to the maximum likelihood equation is

p1 =2ucos(w)—b/3a and pp = py +§

where
w = (7 +cos tw/u)/3
v = b3/(3a)® —bc/6a® + d/2a
u = sign(v) \/172/(361)2 —c¢/3a
a = 1+96
b = —(A+60+p1+0pr—68(60+2)
¢ = §=8Qp1+0+1)+p1+0p
d = pi16(1—=9§)
6 = I’lz./nl.

Newcombe Score Confidence Limits

If you specify the METHOD=SCORE riskdiff-option, PROC FREQ provides the Newcombe hybrid
score (or Wilson) confidence limits for the risk difference. The confidence coefficient for the confi-
dence limits is 100(1 — 2«)% (Schuirmann 1999). By default, if you do not specify the ALPHA=
option, these are 90% confidence limits. You can compare the confidence limits to the noninferiority
limit, —6.

The Newcombe score confidence limits for the risk difference are constructed from the Wilson
score confidence limits for each of the two individual proportions. The confidence limits for the
individual proportions are used in the standard error terms of the Wald confidence limits for the
proportion difference. See Newcombe (1998) and Barker et al. (2001) for more information.

Wilson score confidence limits for p; and p, are the roots of

|pi — pil = zav/ Pi(1 — pi)/ni.

fori = 1,2. The confidence limits are computed as

(pi + 25/2111-.) + (Za \/(ﬁi(l — pi)+z2)/4ni. /| (1 + Zg/n,-.))
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See the section “Wilson (Score) Confidence Limits” on page 134 for details.

Denote the lower and upper Wilson score confidence limits for p; as L; and Uy, and denote the
lower and upper confidence limits for p, as L, and U,. The Newcombe score confidence limits for
the proportion difference (d = p; — p2) are computed as

dp = (p1— p2) — zavV/L1(1 = L1)/n1. + Us(1 —Uz)/na.

dy = (p1— P2) + zavVU1(1 =Ur)/n1. + Lao(1— Ly)/na.

If you specify the CORRECT riskdiff-option, PROC FREQ provides continuity-corrected New-
combe score confidence limits. By including a continuity correction of 1/2#;., the Wilson score
confidence limits for the individual proportions are the roots of

|pi = il = 1/2ni. = za/pi(1 = p) /i

These confidence limits for the individual proportions are then used in the standard error terms of
the Wald confidence limits for the proportion difference to compute d;, and dy .

Superiority Test If you specify the SUP riskdiff-option, PROC FREQ provides a superiority test
for the risk difference. The null hypothesis is

Ho::p1—p2<$§
versus the alternative
Hg:pr—p2>36

where § is the superiority margin. Rejection of the null hypothesis indicates that the row 1 pro-
portion is superior to the row 2 proportion. You can specify the value of § with the MARGIN=
riskdiff-option. By default, § = 0.2.

The superiority analysis is identical to the noninferiority analysis but uses a positive value of
the margin ¢ in the null hypothesis. The superiority computations follow those in the section
“Noninferiority Test” on page 142 by replacing —6 by §. See Chow, Shao, and Wang (2003) for
more information.

Equivalence Tests If you specify the EQUIV riskdiff-option, PROC FREQ provides an equiva-
lence test for the risk difference, or the difference between two proportions. The null hypothesis for
the equivalence test is

Ho:p1—p2<—8, or p1—p>2=>dy
versus the alternative
HQZSL < p1—p2< 8U

where §; is the lower margin and §y is the upper margin. Rejection of the null hypothesis indicates
that the two binomial proportions are equivalent. See Chow, Shao, and Wang (2003) for more
information.
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You can specify the value of the margins §7 and §yy with the MARGIN= riskdiff-option. If you
do not specify MARGIN=, PROC FREQ uses lower and upper margins of —0.2 and 0.2 by default.
If you specify a single margin value §, PROC FREQ uses lower and upper margins of —§ and §.
You can specify the test method with the METHOD-= riskdiff-option. The following methods are
available for the risk difference equivalence analysis: Wald (with and without continuity correc-
tion), Hauck-Anderson, Farrington-Manning, and Newcombe’s score (with and without continuity
correction). The Wald, Hauck-Anderson, and Farrington-Manning methods provide tests and cor-
responding test-based confidence limits; the Newcombe score method provides only confidence
limits. If you do not specifty METHOD=, PROC FREQ uses the Wald test by default.

PROC FREQ computes two one-sided tests (TOST) for equivalence analysis (Schuirmann 1987).
The TOST approach includes a right-sided test for the lower margin §; and a left-sided test for the
upper margin 8. The overall p-value is taken to be the larger of the two p-values from the lower
and upper tests.

The section “Noninferiority Test” on page 142 gives details about the Wald, Hauck-Anderson,
Farrington-Manning and Newcombe score methods for the risk difference. The lower margin equiv-
alence test statistic takes the same form as the noninferiority test statistic but uses the lower margin
value §;, in place of —3. The upper margin equivalence test statistic take the same form as the
noninferiority test statistic but uses the upper margin value §y in place of —4.

The test-based confidence limits for the risk difference are computed according to the equiv-
alence test method that you select. If you specify METHOD=WALD with VAR=NULL, or
METHOD=FM, separate standard errors are computed for the lower and upper margin tests. In
this case, the test-based confidence limits are computed by using the maximum of these two stan-
dard errors. The confidence limits have a confidence coefficient of 100(1 — 2)% (Schuirmann
1999). By default, if you do not specify the ALPHA= option, these are 90% confidence limits. You
can compare the confidence limits to the equivalence limits, (6, §y).

Exact Unconditional Confidence Limits for the Risk Difference

If you specify the RISKDIFF option in the EXACT statement, PROC FREQ provides exact uncon-
ditional confidence limits for the risk difference. Unconditional computations differ from the exact
conditional approach that PROC FREQ uses for other exact statistics such as Fisher’s exact test.
(See the section “Exact Statistics” on page 166 for more information.) Exact conditional inference
does not apply to the risk difference due to nuisance parameters. See Agresti (1992) for details. The
unconditional approach eliminates nuisance parameters by maximizing the p-value over all possible
values of the nuisance parameters (Santner and Snell 1980).

Denote the proportion difference by d = p; — p». For a 2 x 2 table with row totals 7 and n5, the
joint probability function can be expressed in terms of the table cell frequencies and the parameters
d and p;,

n _ n
Sf(nir,n215n1,n2,d, p2) = (n ! )(d+p2)’f1(l—d—p2)"1 P % (n 2
11

)1)321 (1= pa)"27!
21

When constructing confidence limits for the proportion difference, the parameter of interest is d
and p, is a nuisance parameter.
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Denote the observed value of the proportion difference by dg = p; — p2. The 100(1 — «/2)%
confidence limits for d are computed as

dr, = sup (d«: Py(ds) > a/2)
dU = inf (d* . PL(d*) > O{/Z)

where

Py(ds) = sup( Y. f(ni.naiing,na,ds, pa))
P2 4.p@zdo

Pr(dy) = sup( Z S, narsny,na, dy, p2) )
P2 4p@=do

The set A includes all 2 x 2 tables with row sums equal to n; and n,, and D(a) denotes the
value of the proportion difference (p; — p) for table a in A. To compute Py (d«), the sum includes
probabilities of those tables for which (D(a) > do), where d| is the observed value of the proportion
difference. For a fixed value of dx, Py (dx) is taken to be the maximum sum over all possible values
of p,. See Santner and Snell (1980) and Agresti and Min (2001) for details.

This method of eliminating the nuisance parameter is considered to be a conservative approach
(Agresti and Min 2001). Additionally, the confidence limits are conservative for small samples
because this is a discrete problem; the confidence coefficient is not exactly (1 — «) but is at least
(1 — a). See Agresti (1992) for more information.

Odds Ratio and Relative Risks for 2 x 2 Tables

Odds Ratio (Case-Control Studies)

The odds ratio is a useful measure of association for a variety of study designs. For a retrospective
design called a case-control study, the odds ratio can be used to estimate the relative risk when the
probability of positive response is small (Agresti 2002). In a case-control study, two independent
samples are identified based on a binary (yes-no) response variable, and the conditional distribution
of a binary explanatory variable is examined, within fixed levels of the response variable. See
Stokes, Davis, and Koch (2000) and Agresti (2007).

The odds of a positive response (column 1) in row 11is nyy/n1,. Similarly, the odds of a positive
response in row 2 is 121 /n25. The odds ratio is formed as the ratio of the row 1 odds to the row 2
odds. The odds ratio for a 2 x 2 table is defined as

_ ni/niz _ ni11n22

OR
’121/”22 ni2 n21

The odds ratio can be any nonnegative number. When the row and column variables are indepen-
dent, the true value of the odds ratio equals 1. An odds ratio greater than 1 indicates that the odds of
a positive response are higher in row 1 than in row 2. Values less than 1 indicate the odds of positive
response are higher in row 2. The strength of association increases with the deviation from 1.
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The transformation G = (OR — 1)/(OR + 1) transforms the odds ratio to the range (—1, 1) with
G = 0when OR = 1; G = —1 when OR = 0; and G approaches 1 as OR approaches infinity. G
is the gamma statistic, which PROC FREQ computes when you specify the MEASURES option.

The asymptotic 100(1 — )% confidence limits for the odds ratio are
( OR x exp(—z+/v), OR x exp(z+/v) )

where

1 1 1 1
v=var(nOR) = — 4+ — + — + —
nir  ni2 n21 N22
and z is the 100(1 — o/2)th percentile of the standard normal distribution. If any of the four cell
frequencies are zero, the estimates are not computed.

When you specify the OR option in the EXACT statement, PROC FREQ computes exact confidence
limits for the odds ratio. Because this is a discrete problem, the confidence coefficient for the exact
confidence interval is not exactly (1 — «) but is at least (1 — «). Thus, these confidence limits are
conservative. See Agresti (1992) for more information.

PROC FREQ computes exact confidence limits for the odds ratio by using an algorithm based
on Thomas (1971). See also Gart (1971). The following two equations are solved iteratively to
determine the lower and upper confidence limits, ¢ and ¢,:

n. ni. nj. ; n. ni. 1y i B
lgi(f )(”'1"')¢1 / §<i)<n.1—i)¢l - o
nii ni. ns. ; n. ni. 1. i -
;0( )(n.l_i)%/ ;( )(n.l_l.)% = /2

When the odds ratio equals zero, which occurs when either n;; = 0 or np, = 0, PROC FREQ
sets the lower exact confidence limit to zero and determines the upper limit with level «. Similarly,
when the odds ratio equals infinity, which occurs when either n1, = 0 or np; = 0, PROC FREQ
sets the upper exact confidence limit to infinity and determines the lower limit with level «.

Relative Risks (Cohort Studies)

These measures of relative risk are useful in cohort (prospective) study designs, where two samples
are identified based on the presence or absence of an explanatory factor. The two samples are
observed in future time for the binary (yes-no) response variable under study. Relative risk measures
are also useful in cross-sectional studies, where two variables are observed simultaneously. See
Stokes, Davis, and Koch (2000) and Agresti (2007) for more information.

The column 1 relative risk is the ratio of the column 1 risk for row 1 to row 2. The column 1 risk
for row 1 is the proportion of the row 1 observations classified in column 1,

P11 = N1 / ni.
Similarly, the column 1 risk for row 2 is

P12 = n21 / na.
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The column 1 relative risk is then computed as

RRy = pij1/ P12

A relative risk greater than 1 indicates that the probability of positive response is greater in row 1
than in row 2. Similarly, a relative risk less than 1 indicates that the probability of positive response
is less in row 1 than in row 2. The strength of association increases with the deviation from 1.

Asymptotic 100(1 — «)% confidence limits for the column 1 relative risk are computed as

( RRy x exp(—z+/v), RR; x exp(z/v) )

where

v =var(In RRy) = ((1 - p1|1)/n11) + ((1 - P1|2)/”21)

and z is the 100(1 — «/2)th percentile of the standard normal distribution. If either n1; or nj; is
zero, the estimates are not computed.

PROC FREQ computes the column 2 relative risks in the same way.

Cochran-Armitage Test for Trend

The TREND option in the TABLES statement provides the Cochran-Armitage test for trend, which
tests for trend in binomial proportions across levels of a single factor or covariate. This test is
appropriate for a two-way table where one variable has two levels and the other variable is ordinal.
The two-level variable represents the response, and the other variable represents an explanatory
variable with ordered levels. When the two-way has two columns and R rows, PROC FREQ tests
for trend across the R levels of the row variable, and the binomial proportion is computed as the
proportion of observations in the first column. When the table has two rows and C columns, PROC
FREQ tests for trend across the C levels of the column variable, and the binomial proportion is
computed as the proportion of observations in the first row.

The trend test is based on the regression coefficient for the weighted linear regression of the binomial
proportions on the scores of the explanatory variable levels. See Margolin (1988) and Agresti (2002)
for details. If the table has two columns and R rows, the trend test statistic is computed as

R
T = Znil(Ri —R)/\/p1(1—pq)s2

i=1

where R; is the score of row i, R is the average row score, and

R
52 = Zni-(Ri — R)?

i=1

The SCORES= option in the TABLES statement determines the type of row scores used in com-
puting the trend test (and other score-based statistics). The default is SCORES=TABLE. See the
section “Scores” on page 117 for details. For character variables, the table scores for the row vari-
able are the row numbers (for example, 1 for the first row, 2 for the second row, and so on). For
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numeric variables, the table score for each row is the numeric value of the row level. When you
perform the trend test, the explanatory variable might be numeric (for example, dose of a test sub-
stance), and the variable values might be appropriate scores. If the explanatory variable has ordinal
levels that are not numeric, you can assign meaningful scores to the variable levels. Sometimes
equidistant scores, such as the table scores for a character variable, might be appropriate. For more
information on choosing scores for the trend test, see Margolin (1988).

The null hypothesis for the Cochran-Armitage test is no trend, which means that the binomial
proportion p;; = nji/n;. is the same for all levels of the explanatory variable. Under the null
hypothesis, the trend statistic has an asymptotic standard normal distribution.

PROC FREQ computes one-sided and two-sided p-values for the trend test. When the test statistic
is greater than its null hypothesis expected value of zero, PROC FREQ displays the right-sided p-
value, which is the probability of a larger value of the statistic occurring under the null hypothesis.
A small right-sided p-value supports the alternative hypothesis of increasing trend in proportions
from row 1 to row R. When the test statistic is less than or equal to zero, PROC FREQ displays the
left-sided p-value. A small left-sided p-value supports the alternative of decreasing trend.

The one-sided p-value for the trend test is computed as

_{Prob(z > T) if T>0
"7 )Prob(Z <T) if T <0

where Z has a standard normal distribution. The two-sided p-value is computed as

P, =Prob(|Z] > |T|)

PROC FREQ also provides exact p-values for the Cochran-Armitage trend test. You can request
the exact test by specifying the TREND option in the EXACT statement. See the section “Exact
Statistics” on page 166 for more information.

Jonckheere-Terpstra Test

The JT option in the TABLES statement provides the Jonckheere-Terpstra test, which is a nonpara-
metric test for ordered differences among classes. It tests the null hypothesis that the distribution
of the response variable does not differ among classes. It is designed to detect alternatives of or-
dered class differences, which can be expressed as 11 < 10 < :-- < tgp(or7y > 7 > -+ > TR),
with at least one of the inequalities being strict, where 7; denotes the effect of class i. For such
ordered alternatives, the Jonckheere-Terpstra test can be preferable to tests of more general class
difference alternatives, such as the Kruskal-Wallis test (produced by the WILCOXON option in the
NPARIWAY procedure). See Pirie (1983) and Hollander and Wolfe (1999) for more information
about the Jonckheere-Terpstra test.

The Jonckheere-Terpstra test is appropriate for a two-way table in which an ordinal column variable
represents the response. The row variable, which can be nominal or ordinal, represents the classifi-
cation variable. The levels of the row variable should be ordered according to the ordering you want
the test to detect. The order of variable levels is determined by the ORDER= option in the PROC
FREQ statement. The default is ORDER=INTERNAL, which orders by unformatted values. If you
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specify ORDER=DATA, PROC FREQ orders values according to their order in the input data set.
For more information about how to order variable levels, see the ORDER= option.

The Jonckheere-Terpstra test statistic is computed by first forming R(R — 1)/2 Mann-Whitney

counts M; ;-, where i < i’, for pairs of rows in the contingency table,

M;; = { number of times X; ; < X;r j», j=1,...,n;; ji=1,...,ni}

—i—% { numberof times X; ; = X/ v, j=1,...,n;; jl=1,...,np}

where X; ; is response j in row i. The Jonckheere-Terpstra test statistic is computed as

T= Y Y M

1<i<i’<R

This test rejects the null hypothesis of no difference among classes for large values of J. Asymptotic
p-values for the Jonckheere-Terpstra test are obtained by using the normal approximation for the
distribution of the standardized test statistic. The standardized test statistic is computed as

J* = (J —Eo(J)) / Vvare(J)

where Eg(J) and varg(J) are the expected value and variance of the test statistic under the null
hypothesis,

Eo(J) = (n2 —an-z,) /4

varg(J) = A/72+ B/ (36n(n — 1)(n —2)) + C/ (8n(n — 1))

where

A=n(n—1DQn+5 =Y ni(n.—)Q2ni.+5 = njm;—1)@2n; +5)
i J

B = (Zni.(n,-. — 1)(n,-.—2)) D g —Dn, —2)
i J

C = (Zn,-.(n,-. - 1)) Y njng =1
i j

PROC FREQ computes one-sided and two-sided p-values for the Jonckheere-Terpstra test. When
the standardized test statistic is greater than its null hypothesis expected value of zero, PROC FREQ
displays the right-sided p-value, which is the probability of a larger value of the statistic occurring
under the null hypothesis. A small right-sided p-value supports the alternative hypothesis of increas-
ing order from row 1 to row R. When the standardized test statistic is less than or equal to zero,
PROC FREQ displays the left-sided p-value. A small left-sided p-value supports the alternative of
decreasing order from row 1 to row R.
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The one-sided p-value for the Jonckheere-Terpstra test, Py, is computed as

_ {Prob(z > J*) if J*>0
" ) Prob(Z < J*) if J* <0

where Z has a standard normal distribution. The two-sided p-value, P, is computed as

P, = Prob(|Z| > |J*])

PROC FREQ also provides exact p-values for the Jonckheere-Terpstra test. You can request the
exact test by specifying the JT option in the EXACT statement. See the section “Exact Statistics”
on page 166 for more information.

Tests and Measures of Agreement

When you specify the AGREE option in the TABLES statement, PROC FREQ computes tests and
measures of agreement for square tables (that is, for tables where the number of rows equals the
number of columns). For two-way tables, these tests and measures include McNemar’s test for
2 x 2 tables, Bowker’s test of symmetry, the simple kappa coefficient, and the weighted kappa
coefficient. For multiple strata (n-way tables, where n > 2), PROC FREQ also computes the
overall simple kappa coefficient and the overall weighted kappa coefficient, as well as tests for
equal kappas (simple and weighted) among strata. Cochran’s Q is computed for multiway tables
when each variable has two levels, that is, for 2 x 2 x 2 tables.

PROC FREQ computes the kappa coefficients (simple and weighted), their asymptotic standard er-
rors, and their confidence limits when you specify the AGREE option in the TABLES statement. If
you also specify the KAPPA option in the TEST statement, then PROC FREQ computes the asymp-
totic test of the hypothesis that simple kappa equals zero. Similarly, if you specify the WTKAP
option in the TEST statement, PROC FREQ computes the asymptotic test for weighted kappa.

In addition to the asymptotic tests described in this section, PROC FREQ provides exact p-values
for McNemar’s test, the simple kappa coefficient test, and the weighted kappa coefficient test. You
can request these exact tests by specifying the corresponding options in the EXACT statement. See
the section “Exact Statistics” on page 166 for more information.

The following sections provide the formulas that PROC FREQ uses to compute the AGREE statis-
tics. For information about the use and interpretation of these statistics, see Agresti (2002), Agresti
(2007), Fleiss, Levin, and Paik (2003), and the other references cited for each statistic.

McNemar’s Test

PROC FREQ computes McNemar’s test for 2 x 2 tables when you specify the AGREE option.
McNemar'’s test is appropriate when you are analyzing data from matched pairs of subjects with a
dichotomous (yes-no) response. It tests the null hypothesis of marginal homogeneity, or p;. = p.1.
McNemar'’s test is computed as

Om = (n12 —n21)?* / (n12 + na1)
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Under the null hypothesis, O, has an asymptotic chi-square distribution with one degree of free-
dom. See McNemar (1947), as well as the general references cited in the preceding section. In
addition to the asymptotic test, PROC FREQ also computes the exact p-value for McNemar’s test
when you specify the MCNEM option in the EXACT statement.

Bowker’s Test of Symmetry

For Bowker’s test of symmetry, the null hypothesis is that the cell proportions are symmetric, or
that p;; = pj; for all pairs of table cells. For 2 x 2 tables, Bowker’s test is identical to McNemar’s
test, and so PROC FREQ provides Bowker’s test for square tables larger than 2 x 2.

Bowker’s test of symmetry is computed as
Op = ZZ (nij = nji)* / (nij +nji)
i<j

For large samples, O has an asymptotic chi-square distribution with R(R — 1)/2 degrees of free-
dom under the null hypothesis of symmetry. See Bowker (1948) for details.

Simple Kappa Coefficient

The simple kappa coefficient, introduced by Cohen (1960), is a measure of interrater agreement.
PROC FREQ computes the simple kappa coefficient as

K= (Po—Pe) /| (1= Pe)

where P, = Zi pii and P, = Zi pi.p.i- 1f the two response variables are viewed as two inde-
pendent ratings of the n subjects, the kappa coefficient equals +1 when there is complete agreement
of the raters. When the observed agreement exceeds chance agreement, kappa is positive, with its
magnitude reflecting the strength of agreement. Although this is unusual in practice, kappa is neg-
ative when the observed agreement is less than chance agreement. The minimum value of kappa is
between —1 and 0, depending on the marginal proportions.

The asymptotic variance of the simple kappa coefficient is computed as

varR) = (A+ B—C) /(1= P.)*n

where
A = ) pi (1= (pi+ p)(1=i)?
B = (1-#)? Z#Z pij(pi + pj)?
LFJj
C = (k—P(1-#))

See Fleiss, Cohen, and Everitt (1969) for details.



154 4 Chapter 3: The FREQ Procedure

PROC FREQ computes confidence limits for the simple kappa coefficient as

k£ (zg2 x var(k))

where z,/ is the 100(1 — cr/2)th percentile of the standard normal distribution. The value of « is
determined by the value of the ALPHA= option, which, by default, equals 0.05 and produces 95%
confidence limits.

To compute an asymptotic test for the kappa coefficient, PROC FREQ uses the standardized test
statistic €*, which has an asymptotic standard normal distribution under the null hypothesis that
kappa equals zero. The standardized test statistic is computed as

R* =k [ y/varg(K)

where varg (k) is the variance of the kappa coefficient under the null hypothesis,

varo(k) = (Pe + P2 =Y pipipi+ P-i)) / (1= Pe)?n

l
See Fleiss, Levin, and Paik (2003) for details.

PROC FREQ also provides an exact test for the simple kappa coefficient. You can request the exact
test by specifying the KAPPA or AGREE option in the EXACT statement. See the section “Exact
Statistics” on page 166 for more information.

Weighted Kappa Coefficient

The weighted kappa coefficient is a generalization of the simple kappa coefficient that uses weights
to quantify the relative difference between categories. For 2 x 2 tables, the weighted kappa coef-
ficient equals the simple kappa coefficient. PROC FREQ displays the weighted kappa coefficient
only for tables larger than 2 x 2. PROC FREQ computes the kappa weights from the column scores,
by using either Cicchetti-Allison weights or Fleiss-Cohen weights, both of which are described in
the following section. The weights w;; are constructed so that 0 < w;; < 1 foralli # j, w;; =1
for all i, and w;; = w;;. The weighted kappa coefficient is computed as

/%w = (Po(w) - Pe(w)) / (1 - Pe(w))

where

Po(w) = Zzwijpij
J

i

Pe(w) = Z Z Wij pi-P-j
J

i
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The asymptotic variance of the weighted kappa coefficient is

var(kw) = [ Y3 pij (wij — @i+ B.)(1 = kw))” = (Rw — Pequy(1 = &w))” | / (1=Pequ)?n
i J

where

w;. = Zp.jwij
J

w.; = Zpi.wij
i

See Fleiss, Cohen, and Everitt (1969) for details.

PROC FREQ computes confidence limits for the weighted kappa coefficient as

kw £ (zg/2 x V/var(ky) )

where 245 is the 100(1 — a/2)th percentile of the standard normal distribution. The value of « is
determined by the value of the ALPHA= option, which, by default, equals 0.05 and produces 95%
confidence limits.

To compute an asymptotic test for the weighted kappa coefficient, PROC FREQ uses the standard-
ized test statistic k;,, which has an asymptotic standard normal distribution under the null hypothesis
that weighted kappa equals zero. The standardized test statistic is computed as

Rl =k / v/varo(w)

where varg(Ky, ) is the variance of the weighted kappa coefficient under the null hypothesis,

. — L — 2
varg(Ky) = Z Zpi.p.j (wij — (Wi +w.j))" — Pez(w) /(11— Pe(w))2 n
iJ

See Fleiss, Levin, and Paik (2003) for details.

PROC FREQ also provides an exact test for the weighted kappa coefficient. You can request the
exact test by specifying the WTKAPPA or AGREE option in the EXACT statement. See the section
“Exact Statistics” on page 166 for more information.

Weights PROC FREQ computes kappa coefficient weights by using the column scores and one
of the two available weight types. The column scores are determined by the SCORES= option in
the TABLES statement. The two available types of kappa weights are Cicchetti-Allison and Fleiss-
Cohen weights. By default, PROC FREQ uses Cicchetti-Allison weights. If you specify (WT=FC)
with the AGREE option, then PROC FREQ uses Fleiss-Cohen weights to compute the weighted
kappa coefficient.

PROC FREQ computes Cicchetti-Allison kappa coefficient weights as

|ICi — Cj|

wi; =1 —
Y Ce —C
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where C; is the score for column i and C is the number of categories or columns. See Cicchetti and
Allison (1971) for details.

The SCORES= option in the TABLES statement determines the type of column scores used to
compute the kappa weights (and other score-based statistics). The default is SCORES=TABLE.
See the section “Scores” on page 117 for details. For numeric variables, table scores are the values
of the variable levels. You can assign numeric values to the levels in a way that reflects their level
of similarity. For example, suppose you have four levels and order them according to similarity. If
you assign them values of 0, 2, 4, and 10, the Cicchetti-Allison kappa weights take the following
values: w1z = 0.8, w1z = 0.6, w14 =0, waz = 0.8, wyg = 0.2, and ws4 = 0.4. Note that when there
are only two categories (that is, C = 2), the weighted kappa coefficient is identical to the simple
kappa coefficient.

If you specity (WT=FC) with the AGREE option in the TABLES statement, PROC FREQ computes
Fleiss-Cohen kappa coefficient weights as

(Ci —C))?

=1
i (Cc — C1)2

See Fleiss and Cohen (1973) for details.

For the preceding example, the Fleiss-Cohen kappa weights are: wi; = 0.96, w1z = 0.84, w4 =0,
wo3 = 0.96, Wo4 = 0.36, and w34 = 0.64.

Overall Kappa Coefficient

When there are multiple strata, PROC FREQ combines the stratum-level estimates of kappa into
an overall estimate of the supposed common value of kappa. Assume there are ¢ strata, indexed
by h = 1,2,...,q, and let var(ky,) denote the variance of kj. The estimate of the overall kappa
coefficient is computed as

a 1

q A
A Kp
Kkt = = —
! hzl var(ky,) / hzl var(ky,)

See Fleiss, Levin, and Paik (2003) for details.

PROC FREQ computes an estimate of the overall weighted kappa in the same way.

Tests for Equal Kappa Coefficients

When there are multiple strata, the following chi-square statistic tests whether the stratum-level
values of kappa are equal:

q
Qk = Y (kn —kr)? / var(Ry)

h=1

Under the null hypothesis of equal kappas for the g strata, Qg has an asymptotic chi-square dis-
tribution with ¢ — 1 degrees of freedom. See Fleiss, Levin, and Paik (2003) for more information.
PROC FREQ computes a test for equal weighted kappa coefficients in the same way.
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Cochran’s Q Test

Cochran’s Q is computed for multiway tables when each variable has two levels, that is, for
2 x2---x 2 tables. Cochran’s Q statistic is used to test the homogeneity of the one-dimensional
margins. Let m denote the number of variables and N denote the total number of subjects.
Cochran’s Q statistic is computed as

m N
Qc=mm—1)|> T} -T> /(mT—ZS,z)
j=1 k=1

where T'; is the number of positive responses for variable j, T is the total number of positive
responses over all variables, and S is the number of positive responses for subject k. Under
the null hypothesis, Cochran’s Q has an asymptotic chi-square distribution with m — 1 degrees
of freedom. See Cochran (1950) for details. When there are only two binary response variables
(m = 2), Cochran’s Q simplifies to McNemar’s test. When there are more than two response
categories, you can test for marginal homogeneity by using the repeated measures capabilities of
the CATMOD procedure.

Tables with Zero Rows and Columns

The AGREE statistics are defined only for square tables, where the number of rows equals the
number of columns. If the table is not square, PROC FREQ does not compute AGREE statistics.
In the kappa statistic framework, where two independent raters assign ratings to each of n subjects,
suppose one of the raters does not use all possible r rating levels. If the corresponding table has
r rows but only r — 1 columns, then the table is not square and PROC FREQ does not compute
AGREE statistics. To create a square table in this situation, use the ZEROS option in the WEIGHT
statement, which requests that PROC FREQ include observations with zero weights in the analysis.
Include zero-weight observations in the input data set to represent any rating levels that are not used
by a rater, so that the input data set has at least one observation for each possible rater and rating
combination. The analysis then includes all rating levels, even when all levels are not actually
assigned by both raters. The resulting table (of rater 1 by rater 2) is a square table, and AGREE
statistics can be computed.

For more information, see the description of the ZEROS option. By default, PROC FREQ does
not process observations that have zero weights, because these observations do not contribute to the
total frequency count, and because any resulting zero-weight row or column causes many of the
tests and measures of association to be undefined. However, kappa statistics are defined for tables
with a zero-weight row or column, and the ZEROS option makes it possible to input zero-weight
observations and construct the tables needed to compute kappas.

Cochran-Mantel-Haenszel Statistics

The CMH option in the TABLES statement gives a stratified statistical analysis of the relationship
between the row and column variables after controlling for the strata variables in a multiway table.
For example, for the table request A*B*C*D, the CMH option provides an analysis of the relation-
ship between C and D, after controlling for A and B. The stratified analysis provides a way to adjust
for the possible confounding effects of A and B without being forced to estimate parameters for
them.
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The CMH analysis produces Cochran-Mantel-Haenszel statistics, which include the correlation
statistic, the ANOVA (row mean scores) statistic, and the general association statistic. For 2 x 2
tables, the CMH option also provides Mantel-Haenszel and logit estimates of the common odds
ratio and the common relative risks, as well as the Breslow-Day test for homogeneity of the odds
ratios.

Exact statistics are also available for stratified 2 x 2 tables. If you specify the EQOR option in the
EXACT statement, PROC FREQ provides Zelen’s exact test for equal odds ratios. If you specify
the COMOR option in the EXACT statement, PROC FREQ provides exact confidence limits for the
common odds ratio and an exact test that the common odds ratio equals one.

Let the number of strata be denoted by ¢, indexing the strata by 4 = 1,2,...,q. Each stratum
contains a contingency table with X representing the row variable and Y representing the column
variable. For table /, denote the cell frequency in row i and column j by ny;;, with corresponding
row and column marginal totals denoted by ny; and nj, ;, and the overall stratum total by ny,.

Because the formulas for the Cochran-Mantel-Haenszel statistics are more easily defined in terms
of matrices, the following notation is used. Vectors are presumed to be column vectors unless they
are transposed ().

n,, = (pi1,Mhiz,---npic)  (1xC)
n, = (n, m,, .0, (1x RC)
Phi- = Npi. [ np (1x1)
Phj = np.j/np (1x1)
P,.. = (Ph1sPh2s---> PhR) (1xR)
P, = (Ph1Phas--pc)  (1xC)

Assume that the strata are independent and that the marginal totals of each stratum are fixed. The
null hypothesis, Hyp, is that there is no association between X and Y in any of the strata. The
corresponding model is the multiple hypergeometric; this implies that, under Hy, the expected
value and covariance matrix of the frequencies are, respectively,

my, = E[ny, | Ho|] = np(Pp.« ® Ppy.)

var[ny, | Hol = ¢ ( Dpps — PrsP)) ® Dpps. — Ppa P, )
where

c = ni / (np—1)

and where ® denotes Kronecker product multiplication and D, is a diagonal matrix with the ele-
ments of a on the main diagonal.

The generalized CMH statistic (Landis, Heyman, and Koch 1978) is defined as

Qcun = G'Vg™'G
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where

G = > By, —my)
2

Ve = ) By (Var(n, | Ho)Bj,
h

and where
B, =C, ®Ry,

is a matrix of fixed constants based on column scores Cj and row scores Rj,. When the null
hypothesis is true, the CMH statistic has an asymptotic chi-square distribution with degrees of
freedom equal to the rank of Bj,. If V¢ is found to be singular, PROC FREQ prints a message and
sets the value of the CMH statistic to missing.

PROC FREQ computes three CMH statistics by using this formula for the generalized CMH statis-
tic, with different row and column score definitions for each statistic. The CMH statistics that PROC
FREQ computes are the correlation statistic, the ANOVA (row mean scores) statistic, and the gen-
eral association statistic. These statistics test the null hypothesis of no association against different
alternative hypotheses. The following sections describe the computation of these CMH statistics.

CAUTION: The CMH statistics have low power for detecting an association in which the patterns
of association for some of the strata are in the opposite direction of the patterns displayed by other
strata. Thus, a nonsignificant CMH statistic suggests either that there is no association or that no
pattern of association has enough strength or consistency to dominate any other pattern.

Correlation Statistic

The correlation statistic, popularized by Mantel and Haenszel (1959) and Mantel (1963), has one
degree of freedom and is known as the Mantel-Haenszel statistic.

The alternative hypothesis for the correlation statistic is that there is a linear association between X
and Y in at least one stratum. If either X or Y does not lie on an ordinal (or interval) scale, then this
statistic is not meaningful.

To compute the correlation statistic, PROC FREQ uses the formula for the generalized CMH statis-
tic with the row and column scores determined by the SCORES= option in the TABLES statement.
See the section “Scores” on page 117 for more information about the available score types. The
matrix of row scores Ry has dimension 1 x R, and the matrix of column scores Cy has dimension
1xC.

When there is only one stratum, this CMH statistic reduces to (n — 1)r2, where r is the Pearson cor-
relation coefficient between X and Y. When nonparametric (RANK or RIDIT) scores are specified,
the statistic reduces to (n — 1)r2, where rs is the Spearman rank correlation coefficient between
X and Y. When there is more than one stratum, this CMH statistic becomes a stratum-adjusted
correlation statistic.
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ANOVA (Row Mean Scores) Statistic

The ANOVA statistic can be used only when the column variable Y lies on an ordinal (or inter-
val) scale so that the mean score of Y is meaningful. For the ANOVA statistic, the mean score is
computed for each row of the table, and the alternative hypothesis is that, for at least one stratum,
the mean scores of the R rows are unequal. In other words, the statistic is sensitive to location
differences among the R distributions of Y.

The matrix of column scores Cj, has dimension 1 x C, and the column scores are determined by the
SCORES-= option.

The matrix of row scores Ry has dimension (R — 1) x R and is created internally by PROC FREQ
as

Ry, = [Ip—1, —Jr-1]

where Ig_; is an identity matrix of rank R — 1 and Jg—_; is an (R — 1) x 1 vector of ones. This
matrix has the effect of forming R — 1 independent contrasts of the R mean scores.

When there is only one stratum, this CMH statistic is essentially an analysis of variance (ANOVA)
statistic in the sense that it is a function of the variance ratio F' statistic that would be obtained from
a one-way ANOVA on the dependent variable Y. If nonparametric scores are specified in this case,
then the ANOVA statistic is a Kruskal-Wallis test.

If there is more than one stratum, then this CMH statistic corresponds to a stratum-adjusted ANOVA
or Kruskal-Wallis test. In the special case where there is one subject per row and one subject per
column in the contingency table of each stratum, this CMH statistic is identical to Friedman’s chi-
square. See Example 3.9 for an illustration.

General Association Statistic

The alternative hypothesis for the general association statistic is that, for at least one stratum, there
is some kind of association between X and Y. This statistic is always interpretable because it does
not require an ordinal scale for either X or Y.

For the general association statistic, the matrix Ry is the same as the one used for the ANOVA
statistic. The matrix Cy, is defined similarly as

Cp =[c-1.-Jc-1]

PROC FREQ generates both score matrices internally. When there is only one stratum, then the
general association CMH statistic reduces to Q p(n — 1)/n, where Q p is the Pearson chi-square
statistic. When there is more than one stratum, then the CMH statistic becomes a stratum-adjusted
Pearson chi-square statistic. Note that a similar adjustment can be made by summing the Pearson
chi-squares across the strata. However, the latter statistic requires a large sample size in each stratum
to support the resulting chi-square distribution with g(R —1)(C — 1) degrees of freedom. The CMH
statistic requires only a large overall sample size because it has only (R — 1)(C — 1) degrees of
freedom.

See Cochran (1954); Mantel and Haenszel (1959); Mantel (1963); Birch (1965); and Landis, Hey-
man, and Koch (1978).
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Adjusted Odds Ratio and Relative Risk Estimates

The CMH option provides adjusted odds ratio and relative risk estimates for stratified 2 x 2 tables.
For each of these measures, PROC FREQ computes a Mantel-Haenszel estimate and a logit esti-
mate. These estimates apply to n-way table requests in the TABLES statement, when the row and
column variables both have two levels.

For example, for the table request A*B*C*D, if the row and column variables C and D both have two
levels, PROC FREQ provides odds ratio and relative risk estimates, adjusting for the confounding
variables A and B.

The choice of an appropriate measure depends on the study design. For case-control (retrospective)
studies, the odds ratio is appropriate. For cohort (prospective) or cross-sectional studies, the relative
risk is appropriate. See the section “Odds Ratio and Relative Risks for 2 x 2 Tables” on page 147
for more information on these measures.

Throughout this section, z denotes the 100(1—c//2)th percentile of the standard normal distribution.

Odds Ratio, Case-Control Studies PROC FREQ provides Mantel-Haenszel and logit estimates
for the common odds ratio for stratified 2 x 2 tables.

The Mantel-Haenszel estimate of the common odds ratio is computed as

ORyp = (Z Nhi1 nhzz/nh) / (Z Nh12 nh21/nh)
h

h

It is always computed unless the denominator is zero. See Mantel and Haenszel (1959) and Agresti
(2002) for details.

To compute confidence limits for the common odds ratio, PROC FREQ uses the Greenland and
Robins (1985) variance estimate for In(OR ). The 100(1—a/2) confidence limits for the common
odds ratio are

( ORyp x exp(—z6), ORyp x exp(z6) )

where

6> = var(In(ORyn))

S on(pt + np22)(pny np22)/nj,

2 (Zh nhi1 nhzz/”h)2

Yonlmpin +np22)(pr2 np21) + Mpiz + np2) (Mpn ”hzz)]/”i
2 (Zh np11 ”hzz/nh) (Zh nNp12 ”h21/nh)

2 on(h12 + np21) (a2 nhzl)/”ﬁ
2
2 (Zh Np12 ”hzl/nh)

Note that the Mantel-Haenszel odds ratio estimator is less sensitive to small nj, than the logit esti-
mator.
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The adjusted logit estimate of the common odds ratio (Woolf 1955) is computed as

OR;y = exp (Z wy In(ORy) / Z wh)
h h

and the corresponding 100(1 — )% confidence limits are

OR; xexp | —z/ /th , ORp xexp|z/ /th
h h

where OR}, is the odds ratio for stratum 4, and
wy = 1/var(In(ORy,))
If any table cell frequency in a stratum # is zero, PROC FREQ adds 0.5 to each cell of the stratum

before computing ORj, and wy, (Haldane 1955) for the logit estimate. The procedure prints a
warning when this occurs.

Relative Risks, Cohort Studies PROC FREQ provides Mantel-Haenszel and logit estimates of
the common relative risks for stratified 2 x 2 tables.

The Mantel-Haenszel estimate of the common relative risk for column 1 is computed as

RRyn = (Z nhi1 Mo / nh) / (Z nh21 Npt. / ”h)
h h

It is always computed unless the denominator is zero. See Mantel and Haenszel (1959) and Agresti
(2002) for more information.

To compute confidence limits for the common relative risk, PROC FREQ uses the Greenland and
Robins (1985) variance estimate for log(R Rysy). The 100(1 — «¢/2) confidence limits for the com-
mon relative risk are

( RRyp x exp(—z6), RRyp x exp(z6) )
where

> n (a1 Mo Ny — N1y N2y )/ 05,

(X h nnit nwa-/nn) (g ni21 npr-/np)

6% = vai(In(RRyp) ) =

The adjusted logit estimate of the common relative risk for column 1 is computed as

RR; = exp (Z wy In(RRy) / Z wh)
h

and the corresponding 100(1 — )% confidence limits are

RR; xexp|—z/ lth , RR; xexp|z/ Ith
h h
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where R Ry, is the column 1 relative risk estimate for stratum % and
wp =1/ var(In(RRy))

If npy1 or nyyq is zero, then PROC FREQ adds 0.5 to each cell of the stratum before computing R Ry,
and wy, for the logit estimate. The procedure prints a warning when this occurs. See Kleinbaum,
Kupper, and Morgenstern (1982, Sections 17.4 and 17.5) for details.

Breslow-Day Test for Homogeneity of the Odds Ratios

When you specify the CMH option, PROC FREQ computes the Breslow-Day test for stratified
2 x 2 tables. It tests the null hypothesis that the odds ratios for the g strata are equal. When the
null hypothesis is true, the statistic has approximately a chi-square distribution with ¢ — 1 degrees
of freedom. See Breslow and Day (1980) and Agresti (2007) for more information.

The Breslow-Day statistic is computed as

Opp = Z(nhll —E(py | ORym))? / var(npy | ORyn)
h

where E and var denote expected value and variance, respectively. The summation does not include
any table with a zero row or column. If ORyy equals zero or if it is undefined, then PROC FREQ
does not compute the statistic and prints a warning message.

For the Breslow-Day test to be valid, the sample size should be relatively large in each stratum, and
at least 80% of the expected cell counts should be greater than 5. Note that this is a stricter sample
size requirement than the requirement for the Cochran-Mantel-Haenszel test for g x 2 x 2 tables, in
that each stratum sample size (not just the overall sample size) must be relatively large. Even when
the Breslow-Day test is valid, it might not be very powerful against certain alternatives, as discussed
in Breslow and Day (1980).

If you specify the BDT option, PROC FREQ computes the Breslow-Day test with Tarone’s adjust-
ment, which subtracts an adjustment factor from Q pp to make the resulting statistic asymptotically
chi-square. The Breslow-Day-Tarone statistic is computed as

2
Qspr = OBp — (Z (np11 —E(npn | ORMH))) / ZVaf(”hll | ORyn)
h h

See Tarone (1985), Jones et al. (1989), and Breslow (1996) for more information.

Zelen’s Exact Test for Equal Odds Ratios

If you specify the EQOR option in the EXACT statement, PROC FREQ computes Zelen’s exact
test for equal odds ratios for stratified 2 x 2 tables. Zelen’s test is an exact counterpart to the
Breslow-Day asymptotic test for equal odds ratios. The reference set for Zelen’s test includes all
possible g x 2 x 2 tables with the same row, column, and stratum totals as the observed multiway
table and with the same sum of cell (1, 1) frequencies as the observed table. The test statistic is the
probability of the observed g x 2 x 2 table conditional on the fixed margins, which is a product of
hypergeometric probabilities.
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The p-value for Zelen’s test is the sum of all table probabilities that are less than or equal to the ob-
served table probability, where the sum is computed over all tables in the reference set determined
by the fixed margins and the observed sum of cell (1, 1) frequencies. This test is similar to Fisher’s
exact test for two-way tables. See Zelen (1971), Hirji (2006), and Agresti (1992) for more informa-
tion. PROC FREQ computes Zelen’s exact test by using the polynomial multiplication algorithm of
Hirji et al. (1996).

Exact Confidence Limits for the Common Odds Ratio

If you specify the COMOR option in the EXACT statement, PROC FREQ computes exact confi-
dence limits for the common odds ratio for stratified 2 x 2 tables. This computation assumes that
the odds ratio is constant over all the 2 x 2 tables. Exact confidence limits are constructed from the
distribution of S = ), nj11, conditional on the marginal totals of the 2 x 2 tables.

Because this is a discrete problem, the confidence coefficient for these exact confidence limits is not
exactly (1 — «) but is at least (1 — o). Thus, these confidence limits are conservative. See Agresti
(1992) for more information.

PROC FREQ computes exact confidence limits for the common odds ratio by using an algorithm
based on Vollset, Hirji, and Elashoff (1991). See also Mehta, Patel, and Gray (1985).

Conditional on the marginal totals of 2 x 2 table /4, let the random variable S} denote the frequency
of table cell (1, 1). Given the row totals nj;. and ny,. and column totals nj.; and ny.», the lower
and upper bounds for Sy, are [, and uy,

lp, = max (0, np. —npy)

up = min(np., Npy)

Let C;, denote the hypergeometric coefficient,

C. — npa %)
o =
h Sh np1. —Sp

and let ¢ denote the common odds ratio. Then the conditional distribution of S}, is

X =uy
P(Sp=sp|ni.nina)=Cy ¢/ S Crg”
x =1

Summing over all the 2 x 2 tables, S = ), S}, and the lower and upper bounds of S are / and u,
I = Z l, and wu= Z up
h h

The conditional distribution of the sum S is

X =U

P(S =s|np. npi.npo: h=1,....9)=Cs¢p*/ Y Cx¢*

x =1
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oo % (1)

S1t....tsqg =5

Let so denote the observed sum of cell (1,1) frequencies over the g tables. The following two
equations are solved iteratively for lower and upper confidence limits for the common odds ratio,
¢1 and ¢:

X =u X =u

DG/ D Cedft = )2
X =80 x =1
X = S0 X =u

Yo Cxdt) Y, Cgt = a2
x =1 x =1

When the observed sum s¢ equals the lower bound /, PROC FREQ sets the lower confidence limit
to zero and determines the upper limit with level «. Similarly, when the observed sum sg equals the
upper bound u, PROC FREQ sets the upper confidence limit to infinity and determines the lower
limit with level «.

When you specify the COMOR option in the EXACT statement, PROC FREQ also computes the
exact test that the common odds ratio equals one. Setting ¢ = 1, the conditional distribution of the
sum S under the null hypothesis becomes

X =Uu
Po(S =s|npp. . npas h=1,....)=Cs/ Y Cx
x=1

The point probability for this exact test is the probability of the observed sum so under the null
hypothesis, conditional on the marginals of the stratified 2 x 2 tables, and is denoted by Py(so). The
expected value of S under the null hypothesis is

X =U X =U

Eo(§)= Y xCi/ Y Cx

x =1 x=1

The one-sided exact p-value is computed from the conditional distribution as Py(S >= sg) or
Po(S < s59), depending on whether the observed sum sy is greater or less than E¢(S),

xX=u xX=u

P1 = P()(S>:S0): Z Cx/ ZCX if S0>E0(S)
X =50 x =1
X =80 xX=u

Pi = Py(S<=s0)= ) Cx/ ) Cx if so=Eo(S)

x =1 x=1
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PROC FREQ computes two-sided p-values for this test according to three different definitions. A
two-sided p-value is computed as twice the one-sided p-value, setting the result equal to one if it
exceeds one,

P =2x P

Additionally, a two-sided p-value is computed as the sum of all probabilities less than or equal to
the point probability of the observed sum s, summing over all possible values of s, [ <s < u,

Pl = Z Po(s)

I<s<u:Py(s)<Po(so)

Also, a two-sided p-value is computed as the sum of the one-sided p-value and the corresponding
area in the opposite tail of the distribution, equidistant from the expected value,

Py = Py (IS —Eo(S)| = Iso—Eo(S)])

Exact Statistics

Exact statistics can be useful in situations where the asymptotic assumptions are not met, and so the
asymptotic p-values are not close approximations for the true p-values. Standard asymptotic meth-
ods involve the assumption that the test statistic follows a particular distribution when the sample
size is sufficiently large. When the sample size is not large, asymptotic results might not be valid,
with the asymptotic p-values differing perhaps substantially from the exact p-values. Asymptotic
results might also be unreliable when the distribution of the data is sparse, skewed, or heavily tied.
See Agresti (2007) and Bishop, Fienberg, and Holland (1975) for more information. Exact com-
putations are based on the statistical theory of exact conditional inference for contingency tables,
reviewed by Agresti (1992).

In addition to computation of exact p-values, PROC FREQ provides the option of estimating exact
p-values by Monte Carlo simulation. This can be useful for problems that are so large that exact
computations require a great amount of time and memory, but for which asymptotic approximations
might not be sufficient.

Exact statistics are available for many PROC FREQ tests. For one-way tables, PROC FREQ pro-
vides exact p-values for the binomial proportion tests and the chi-square goodness-of-fit test. Exact
confidence limits are available for the binomial proportion. For two-way tables, PROC FREQ pro-
vides exact p-values for the following tests: Pearson chi-square test, likelihood-ratio chi-square
test, Mantel-Haenszel chi-square test, Fisher’s exact test, Jonckheere-Terpstra test, and Cochran-
Armitage test for trend. PROC FREQ also computes exact p-values for tests of the following statis-
tics: Pearson correlation coefficient, Spearman correlation coefficient, simple kappa coefficient, and
weighted kappa coefficient. For 2 x 2 tables, PROC FREQ provides exact confidence limits for the
odds ratio, exact unconditional confidence limits for the proportion difference, and McNemar’s ex-
act test. For stratified 2 x 2 tables, PROC FREQ provides Zelen’s exact test for equal odds ratios,
exact confidence limits for the common odds ratio, and an exact test for the common odds ratio.

The following sections summarize the exact computational algorithms, define the exact p-values
that PROC FREQ computes, discuss the computational resource requirements, and describe the
Monte Carlo estimation option.
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Computational Algorithms

PROC FREQ computes exact p-values for general R x C tables by using the network algorithm
developed by Mehta and Patel (1983). This algorithm provides a substantial advantage over direct
enumeration, which can be very time-consuming and feasible only for small problems. See Agresti
(1992) for a review of algorithms for computation of exact p-values, and see Mehta, Patel, and
Tsiatis (1984) and Mehta, Patel, and Senchaudhuri (1991) for information about the performance
of the network algorithm.

The reference set for a given contingency table is the set of all contingency tables with the observed
marginal row and column sums. Corresponding to this reference set, the network algorithm forms
a directed acyclic network consisting of nodes in a number of stages. A path through the network
corresponds to a distinct table in the reference set. The distances between nodes are defined so that
the total distance of a path through the network is the corresponding value of the test statistic. At
each node, the algorithm computes the shortest and longest path distances for all the paths that pass
through that node. For statistics that can be expressed as a linear combination of cell frequencies
multiplied by increasing row and column scores, PROC FREQ computes shortest and longest path
distances by using the algorithm of Agresti, Mehta, and Patel (1990). For statistics of other forms,
PROC FREQ computes an upper bound for the longest path and a lower bound for the shortest path
by following the approach of Valz and Thompson (1994).

The longest and shortest path distances or bounds for a node are compared to the value of the test
statistic to determine whether all paths through the node contribute to the p-value, none of the paths
through the node contribute to the p-value, or neither of these situations occurs. If all paths through
the node contribute, the p-value is incremented accordingly, and these paths are eliminated from
further analysis. If no paths contribute, these paths are eliminated from the analysis. Otherwise,
the algorithm continues, still processing this node and the associated paths. The algorithm finishes
when all nodes have been accounted for.

In applying the network algorithm, PROC FREQ uses full numerical precision to represent all
statistics, row and column scores, and other quantities involved in the computations. Although it is
possible to use rounding to improve the speed and memory requirements of the algorithm, PROC
FREQ does not do this because it can result in reduced accuracy of the p-values.

For one-way tables, PROC FREQ computes the exact chi-square goodness-of-fit test by the method
of Radlow and Alf (1975). PROC FREQ generates all possible one-way tables with the observed
total sample size and number of categories. For each possible table, PROC FREQ compares its
chi-square value with the value for the observed table. If the table’s chi-square value is greater than
or equal to the observed chi-square, PROC FREQ increments the exact p-value by the probability
of that table, which is calculated under the null hypothesis by using the multinomial frequency
distribution. By default, the null hypothesis states that all categories have equal proportions. If
you specify null hypothesis proportions or frequencies by using the TESTP= or TESTF= option in
the TABLES statement, then PROC FREQ calculates the exact chi-square test based on that null
hypothesis.

Other exact computations are described in sections about the individual statistics. See the section
“Binomial Proportion” on page 132 for details about how PROC FREQ computes exact confidence
limits and tests for the binomial proportion. See the section “Odds Ratio and Relative Risks for 2
x 2 Tables” on page 147 for information about computation of exact confidence limits for the odds
ratio for 2 x 2 tables. Also, see the sections “Exact Unconditional Confidence Limits for the Risk
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Difference” on page 146, “Exact Confidence Limits for the Common Odds Ratio” on page 164, and
“Zelen’s Exact Test for Equal Odds Ratios” on page 163.

Definition of p-Values

For several tests in PROC FREQ), the test statistic is nonnegative, and large values of the test statistic
indicate a departure from the null hypothesis. Such nondirectional tests include the Pearson chi-
square, the likelihood-ratio chi-square, the Mantel-Haenszel chi-square, Fisher’s exact test for tables
larger than 2 x 2, McNemar’s test, and the one-way chi-square goodness-of-fit test. The exact p-
value for a nondirectional test is the sum of probabilities for those tables having a test statistic
greater than or equal to the value of the observed test statistic.

There are other tests where it might be appropriate to test against either a one-sided or a two-sided
alternative hypothesis. For example, when you test the null hypothesis that the true parameter value
equals O (T = 0), the alternative of interest might be one-sided (7" < 0, or 7" > 0) or two-sided
(T # 0). Such tests include the Pearson correlation coefficient, Spearman correlation coefficient,
Jonckheere-Terpstra test, Cochran-Armitage test for trend, simple kappa coefficient, and weighted
kappa coefficient. For these tests, PROC FREQ displays the right-sided p-value when the observed
value of the test statistic is greater than its expected value. The right-sided p-value is the sum of
probabilities for those tables for which the test statistic is greater than or equal to the observed test
statistic. Otherwise, when the observed test statistic is less than or equal to the expected value,
PROC FREQ displays the left-sided p-value. The left-sided p-value is the sum of probabilities for
those tables for which the test statistic is less than or equal to the one observed. The one-sided
p-value Pq can be expressed as

) Prob( Test Statistic > 1) if ¢ > Eo(T)
"7 ) Prob( Test Statistic < 7 ) if ¢ < Eo(T)

where ¢ is the observed value of the test statistic and Eo(7") is the expected value of the test statistic
under the null hypothesis. PROC FREQ computes the two-sided p-value as the sum of the one-sided
p-value and the corresponding area in the opposite tail of the distribution of the statistic, equidistant
from the expected value. The two-sided p-value P, can be expressed as

P> = Prob ( |Test Statistic — Eo(7T")| > |t — Eo(T)|)

If you specify the POINT option in the EXACT statement, PROC FREQ also displays exact point
probabilities for the test statistics. The exact point probability is the exact probability that the test
statistic equals the observed value.

Computational Resources

PROC FREQ uses relatively fast and efficient algorithms for exact computations. These recently
developed algorithms, together with improvements in computer power, now make it feasible to per-
form exact computations for data sets where previously only asymptotic methods could be applied.
Nevertheless, there are still large problems that might require a prohibitive amount of time and
memory for exact computations, depending on the speed and memory available on your computer.
For large problems, consider whether exact methods are really needed or whether asymptotic meth-
ods might give results quite close to the exact results, while requiring much less computer time and
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memory. When asymptotic methods might not be sufficient for such large problems, consider using
Monte Carlo estimation of exact p-values, as described in the section “Monte Carlo Estimation” on
page 169.

A formula does not exist that can predict in advance how much time and memory are needed to
compute an exact p-value for a certain problem. The time and memory required depend on several
factors, including which test is being performed, the total sample size, the number of rows and
columns, and the specific arrangement of the observations into table cells. Generally, larger prob-
lems (in terms of total sample size, number of rows, and number of columns) tend to require more
time and memory. Additionally, for a fixed total sample size, time and memory requirements tend
to increase as the number of rows and columns increases, because this corresponds to an increase
in the number of tables in the reference set. Also for a fixed sample size, time and memory require-
ments increase as the marginal row and column totals become more homogeneous. See Agresti,
Mehta, and Patel (1990) and Gail and Mantel (1977) for more information.

At any time while PROC FREQ is computing exact p-values, you can terminate the computations by
pressing the system interrupt key sequence (see the SAS Companion for your system) and choosing
to stop computations. After you terminate exact computations, PROC FREQ completes all other
remaining tasks. The procedure produces the requested output and reports missing values for any
exact p-values that were not computed by the time of termination.

You can also use the MAXTIME= option in the EXACT statement to limit the amount of time
PROC FREQ uses for exact computations. You specify a MAXTIME= value that is the maximum
amount of clock time (in seconds) that PROC FREQ can use to compute an exact p-value. If PROC
FREQ does not finish computing an exact p-value within that time, it terminates the computation
and completes all other remaining tasks.

Monte Carlo Estimation

If you specify the option MC in the EXACT statement, PROC FREQ computes Monte Carlo esti-
mates of the exact p-values instead of directly computing the exact p-values. Monte Carlo estimation
can be useful for large problems that require a great amount of time and memory for exact computa-
tions but for which asymptotic approximations might not be sufficient. To describe the precision of
each Monte Carlo estimate, PROC FREQ provides the asymptotic standard error and 100(1 — )%
confidence limits. The confidence level « is determined by the ALPHA= option in the EXACT
statement, which, by default, equals 0.01 and produces 99% confidence limits. The N=n option in
the EXACT statement specifies the number of samples that PROC FREQ uses for Monte Carlo esti-
mation; the default is 10000 samples. You can specify a larger value for n to improve the precision
of the Monte Carlo estimates. Because larger values of n generate more samples, the computation
time increases. Alternatively, you can specify a smaller value of n to reduce the computation time.

To compute a Monte Carlo estimate of an exact p-value, PROC FREQ generates a random sam-
ple of tables with the same total sample size, row totals, and column totals as the observed table.
PROC FREQ uses the algorithm of Agresti, Wackerly, and Boyett (1979), which generates tables in
proportion to their hypergeometric probabilities conditional on the marginal frequencies. For each
sample table, PROC FREQ computes the value of the test statistic and compares it to the value for
the observed table. When estimating a right-sided p-value, PROC FREQ counts all sample tables
for which the test statistic is greater than or equal to the observed test statistic. Then the p-value
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estimate equals the number of these tables divided by the total number of tables sampled.

Pyuc = M /N

M = number of samples with (Test Statistic > ¢)
N = total number of samples
t = observed Test Statistic

PROC FREQ computes left-sided and two-sided p-value estimates in a similar manner. For left-
sided p-values, PROC FREQ evaluates whether the test statistic for each sampled table is less than
or equal to the observed test statistic. For two-sided p-values, PROC FREQ examines the sample
test statistics according to the expression for P given in the section “Definition of p-Values” on
page 168.

The variable M is a binomially distributed variable with N trials and success probability p. It
follows that the asymptotic standard error of the Monte Carlo estimate is

se(Pyc) = Puc (1= Puc) | (N = 1)
PROC FREQ constructs asymptotic confidence limits for the p-values according to

Pyc + (Z(x/Z X Se(ﬁMc))

where z,5 is the 100(1 — e/2)th percentile of the standard normal distribution and the confidence
level « is determined by the ALPHA= option in the EXACT statement.

When the Monte Carlo estimate Py equals 0, PROC FREQ computes the confidence limits for the
p-value as

(0, 1—a/M))

When the Monte Carlo estimate ﬁMC equals 1, PROC FREQ computes the confidence limits as

(e, 1)

Computational Resources

For each variable in a table request, PROC FREQ stores all of the levels in memory. If all variables
are numeric and not formatted, this requires about 84 bytes for each variable level. When there
are character variables or formatted numeric variables, the memory that is required depends on the
formatted variable lengths, with longer formatted lengths requiring more memory. The number of
levels for each variable is limited only by the largest integer that your operating environment can
store.
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For any single crosstabulation table requested, PROC FREQ builds the entire table in memory,
regardless of whether the table has zero cell counts. Thus, if the numeric variables A, B, and C each
have 10 levels, PROC FREQ requires 2520 bytes to store the variable levels for the table request
A*B*C, as follows:

3 variables * 10 levels/variable * 84 bytes/level

In addition, PROC FREQ requires 8000 bytes to store the table cell frequencies

1000 cells * 8 bytes/cell

even though there might be only 10 observations.

When the variables have many levels or when there are many multiway tables, your computer
might not have enough memory to construct the tables. If PROC FREQ runs out of memory while
constructing tables, it stops collecting levels for the variable with the most levels and returns the
memory that is used by that variable. The procedure then builds the tables that do not contain the
disabled variables.

If there is not enough memory for your table request and if increasing the available memory is
impractical, you can reduce the number of multiway tables or variable levels. If you are not using
the CMH or AGREE option in the TABLES statement to compute statistics across strata, reduce
the number of multiway tables by using PROC SORT to sort the data set by one or more of the
variables or by using the DATA step to create an index for the variables. Then remove the sorted or
indexed variables from the TABLES statement and include a BY statement that uses these variables.
You can also reduce memory requirements by using a FORMAT statement in the PROC FREQ step
to reduce the number of levels. Additionally, reducing the formatted variable lengths reduces the
amount of memory that is needed to store the variable levels. For more information about using
formats, see the section “Grouping with Formats” on page 113.

Output Data Sets

PROC FREQ produces two types of output data sets that you can use with other statistical and
reporting procedures. You can request these data sets as follows:

e Specify the OUT= option in a TABLES statement. This creates an output data set that con-
tains frequency or crosstabulation table counts and percentages

e Specify an OUTPUT statement. This creates an output data set that contains statistics.

PROC FREQ does not display the output data sets. Use PROC PRINT, PROC REPORT, or any
other SAS reporting tool to display an output data set.

In addition to these two output data sets, you can create a SAS data set from any piece of PROC
FREQ output by using the Output Delivery System. See the section “ODS Table Names” on
page 182 for more information.



172 4 Chapter 3: The FREQ Procedure

Contents of the TABLES Statement Output Data Set

The OUT= option in the TABLES statement creates an output data set that contains one observation
for each combination of variable values (or table cell) in the last table request. By default, each
observation contains the frequency and percentage for the table cell. When the input data set con-
tains missing values, the output data set also contains an observation with the frequency of missing
values. The output data set includes the following variables:

e BY variables

e table request variables, such as A, B, C, and D in the table request A*B*C*D

e COUNT, which contains the table cell frequency

e PERCENT, which contains the table cell percentage
If you specify the OUTEXPECT option in the TABLES statement for a two-way or multiway table,
the output data set also includes expected frequencies. If you specify the OUTPCT option for a
two-way or multiway table, the output data set also includes row, column, and table percentages.
The additional variables are as follows:

e EXPECTED, which contains the expected frequency

e PCT_TABL, which contains the percentage of two-way table frequency, for n-way tables where
n>?2

e PCT_ROW, which contains the percentage of row frequency

e PCT_COL, which contains the percentage of column frequency
If you specify the OUTCUM option in the TABLES statement for a one-way table, the output data
set also includes cumulative frequencies and cumulative percentages. The additional variables are
as follows:

e CUM_FREQ, which contains the cumulative frequency

e CUM_PCT, which contains the cumulative percentage

The OUTCUM option has no effect for two-way or multiway tables.

The following PROC FREQ statements create an output data set of frequencies and percentages:

proc freq;
tables A AxB / out=D;
run;

The output data set D contains frequencies and percentages for the table of A by B, which is the
last table request listed in the TABLES statement. If A has two levels (1 and 2), B has three levels
(1,2, and 3), and no table cell count is zero or missing, then the output data set D includes six
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observations, one for each combination of A and B levels. The first observation corresponds to A=1
and B=1; the second observation corresponds to A=1 and B=2; and so on. The data set includes
the variables COUNT and PERCENT. The value of COUNT is the number of observations with the
given combination of A and B levels. The value of PERCENT is the percentage of the total number
of observations with that A and B combination.

When PROC FREQ combines different variable values into the same formatted level, the output
data set contains the smallest internal value for the formatted level. For example, suppose a variable
X has the values 1.1., 1.4, 1.7, 2.1, and 2.3. When you submit the statement

format X 1.;

in a PROC FREQ step, the formatted levels listed in the frequency table for X are 1 and 2. If you
create an output data set with the frequency counts, the internal values of the levels of X are 1.1 and
1.7. To report the internal values of X when you display the output data set, use a format of 3.1 for
X.

Contents of the OUTPUT Statement Output Data Set

The OUTPUT statement creates a SAS data set that contains the statistics that PROC FREQ com-
putes for the last table request. You specify which statistics to store in the output data set. There
is an observation with the specified statistics for each stratum or two-way table. If PROC FREQ
computes summary statistics for a stratified table, the output data set also contains a summary ob-
servation with those statistics.

The OUTPUT data set can include the following variables.

e BY variables
e variables that identify the stratum, such as A and B in the table request A*B*C*D

e variables that contain the specified statistics

The output data set also includes variables with the p-values and degrees of freedom, asymptotic
standard error (ASE), or confidence limits when PROC FREQ computes these values for a specified
statistic.

The variable names for the specified statistics in the output data set are the names of the options en-
closed in underscores. PROC FREQ forms variable names for the corresponding p-values, degrees
of freedom, or confidence limits by combining the name of the option with the appropriate prefix
from the following list:

DF_ degrees of freedom

E_ asymptotic standard error (ASE)
L lower confidence limit

u_ upper confidence limit

EO_ ASE under the null hypothesis

Z standardized value
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P_ p-value

P2_ two-sided p-value

PL_ left-sided p-value

PR_ right-sided p-value

XP_ exact p-value

XP2_ exact two-sided p-value
XPL_ exact left-sided p-value
XPR_ exact right-sided p-value
XPT_ exact point probability

XL exact lower confidence limit
XU_ exact upper confidence limit

For example, variable names created for the Pearson chi-square, its degrees of freedom, and its
p-values are _PCHI_, DF_PCHI, and P_PCHI, respectively.

If the length of the prefix plus the statistic option exceeds eight characters, PROC FREQ truncates
the option so that the name of the new variable is eight characters long.

Displayed Output
Number of Variable Levels Table

If you specify the NLEVELS option in the PROC FREQ statement, PROC FREQ displays the
“Number of Variable Levels” table. This table provides the number of levels for all variables named
in the TABLES statements. PROC FREQ determines the variable levels from the formatted variable
values. See “Grouping with Formats” on page 113 for details. The “Number of Variable Levels”
table contains the following information:

Variable name

Levels, which is the total number of levels of the variable

Number of Nonmissing Levels, if there are missing levels for any of the variables

e Number of Missing Levels, if there are missing levels for any of the variables

One-Way Frequency Tables

PROC FREQ displays one-way frequency tables for all one-way table requests in the TABLES
statements, unless you specify the NOPRINT option in the PROC statement or the NOPRINT option
in the TABLES statement. For a one-way table showing the frequency distribution of a single
variable, PROC FREQ displays the name of the variable and its values. For each variable value or
level, PROC FREQ displays the following information:

e Frequency count, which is the number of observations in the level

e Test Frequency count, if you specify the CHISQ and TESTF= options to request a chi-square
goodness-of-fit test for specified frequencies
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e Percent, which is the percentage of the total number of observations. (The NOPERCENT
option suppresses this information.)

e Test Percent, if you specify the CHISQ and TESTP= options to request a chi-square goodness-
of-fit test for specified percents. (The NOPERCENT option suppresses this information.)

e Cumulative Frequency count, which is the sum of the frequency counts for that level and all
other levels listed above it in the table. The last cumulative frequency is the total number of
nonmissing observations. (The NOCUM option suppresses this information.)

e Cumulative Percent, which is the percentage of the total number of observations in that level
and in all other levels listed above it in the table. (The NOCUM or the NOPERCENT option
suppresses this information.)

The one-way table also displays the Frequency Missing, which is the number of observations with
missing values.

Statistics for One-Way Frequency Tables

For one-way tables, two statistical options are available in the TABLES statement. The CHISQ
option provides a chi-square goodness-of-fit test, and the BINOMIAL option provides binomial
proportion statistics and tests. PROC FREQ displays the following information, unless you specify
the NOPRINT option in the PROC statement:

e If you specify the CHISQ option for a one-way table, PROC FREQ provides a chi-square
goodness-of-fit test, displaying the Chi-Square statistic, the degrees of freedom (DF), and the
probability value (Pr > ChiSq). If you specify the CHISQ option in the EXACT statement,
PROC FREQ also displays the exact probability value for this test. If you specify the POINT
option with the CHISQ option in the EXACT statement, PROC FREQ displays the exact
point probability for the test statistic.

o If you specify the BINOMIAL option for a one-way table, PROC FREQ displays the estimate
of the binomial Proportion, which is the proportion of observations in the first class listed
in the one-way table. PROC FREQ also displays the asymptotic standard error (ASE) and
the asymptotic (Wald) and exact (Clopper-Pearson) confidence limits by default. For the
binomial proportion test, PROC FREQ displays the asymptotic standard error under the null
hypothesis (ASE Under HO), the standardized test statistic (Z), and the one-sided and two-
sided probability values.

If you specify the BINOMIAL option in the EXACT statement, PROC FREQ also displays
the exact one-sided and two-sided probability values for this test. If you specify the POINT
option with the BINOMIAL option in the EXACT statement, PROC FREQ displays the exact
point probability for the test.

e If you request additional binomial confidence limits by specifying binomial-options, PROC
FREQ provides a table that displays the lower and upper confidence limits for each type that
you request. In addition to the Wald and exact (Clopper-Pearson) confidence limits, you
can request Agresti-Coull, Jeffreys, and Wilson (score) confidence limits for the binomial
proportion.
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o If you request a binomial noninferiority or superiority test by specifying the NONINF or SUP
binomial-option, PROC FREQ displays the following information: the binomial Proportion,
the test ASE (under HO or Sample), the test statistic Z, the probability value, the noninferiority
or superiority limit, and the test confidence limits. If you specify the BINOMIAL option in
the EXACT statement, PROC FREQ also provides the exact probability value for the test,
and exact test confidence limits.

o If you request a binomial equivalence test by specifying the EQUIV binomial-option, PROC
FREQ displays the binomial Proportion and the test ASE (under HO or Sample). PROC
FREQ displays two one-sided tests (TOST) for equivalence, which include test statistics (Z2)
and probability values for the Lower and Upper tests, together with the Overall probability
value. PROC FREQ also displays the equivalence limits and the test-based confidence limits.
If you specify the BINOMIAL option in the EXACT statement, PROC FREQ provides exact
probability values for the TOST and exact test-based confidence limits.

Multiway Tables

PROC FREQ displays all multiway table requests in the TABLES statements, unless you specify
the NOPRINT option in the PROC statement or the NOPRINT option in the TABLES statement.

For two-way to multiway crosstabulation tables, the values of the last variable in the table request
form the table columns. The values of the next-to-last variable form the rows. Each level (or
combination of levels) of the other variables forms one stratum.

There are three ways to display multiway tables in PROC FREQ. By default, PROC FREQ dis-
plays multiway tables as separate two-way crosstabulation tables for each stratum of the multiway
table. Also by default, PROC FREQ displays these two-way crosstabulation tables in table cell
format. Alternatively, if you specify the CROSSLIST option, PROC FREQ displays the two-way
crosstabulation tables in ODS column format. If you specify the LIST option, PROC FREQ dis-
plays multiway tables in list format, which presents the entire multiway crosstabulation in a single
table.

Crosstabulation Tables

By default, PROC FREQ displays two-way crosstabulation tables in table cell format. The row
variable values are listed down the side of the table, the column variable values are listed across the
top of the table, and each row and column variable level combination forms a table cell.

Each cell of a crosstabulation table can contain the following information:
e Frequency, which is the number of observations in the table cell. (The NOFREQ option
suppresses this information.)

e Expected frequency under the hypothesis of independence, if you specify the EXPECTED
option

e Deviation of the cell frequency from the expected value, if you specify the DEVIATION
option
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e Cell Chi-Square, which is the cell’s contribution to the total chi-square statistic, if you specify
the CELLCHI?2 option

e Tot Pct, which is the cell’s percentage of the total multiway table frequency, for n-way tables
when n > 2, if you specify the TOTPCT option

e Percent, which is the cell’s percentage of the total (two-way table) frequency. (The
NOPERCENT option suppresses this information.)

e Row Pct, or the row percentage, which is the cell’s percentage of the total frequency for its
row. (The NOROW option suppresses this information.)

e Col Pct, or column percentage, which is the cell’s percentage of the total frequency for its
column. (The NOCOL option suppresses this information.)

e Cumulative Col%, or cumulative column percentage, if you specify the CUMCOL option

The table also displays the Frequency Missing, which is the number of observations with missing
values.

CROSSLIST Tables

If you specify the CROSSLIST option, PROC FREQ displays two-way crosstabulation tables in
ODS column format. The CROSSLIST column format is different from the default crosstabulation
table cell format, but the CROSSLIST table provides the same information (frequencies, percent-
ages, and other statistics) as the default crosstabulation table.

In the CROSSLIST table format, the rows of the display correspond to the crosstabulation table
cells, and the columns of the display correspond to descriptive statistics such as frequencies and
percentages. Each table cell is identified by the values of its TABLES row and column variable
levels, with all column variable levels listed within each row variable level. The CROSSLIST table
also provides row totals, column totals, and overall table totals.

For a crosstabulation table in CROSSLIST format, PROC FREQ displays the following information:

e the row variable name and values
e the column variable name and values

e Frequency, which is the number of observations in the table cell. (The NOFREQ option
suppresses this information.)

e Expected cell frequency under the hypothesis of independence, if you specify the
EXPECTED option

e Deviation of the cell frequency from the expected value, if you specify the DEVIATION
option

e Cell Chi-Square, which is the cell’s contribution to the total chi-square statistic, if you specify
the CELLCHI2 option
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e Total Percent, which is the cell’s percentage of the total multiway table frequency, for n-way
tables when n > 2, if you specify the TOTPCT option

e Percent, which is the cell’s percentage of the total (two-way table) frequency. (The
NOPERCENT option suppresses this information.)

e Row Percent, which is the cell’s percentage of the total frequency for its row. (The NOROW
option suppresses this information.)

e Column Percent, the cell’s percentage of the total frequency for its column. (The NOCOL
option suppresses this information.)

The table also displays the Frequency Missing, which is the number of observations with missing
values.

LIST Tables

If you specify the LIST option in the TABLES statement, PROC FREQ displays multiway tables
in a list format rather than as crosstabulation tables. The LIST option displays the entire multiway
table in one table, instead of displaying a separate two-way table for each stratum. The LIST option
is not available when you also request statistical options. Unlike the default crosstabulation output,
the LIST output does not display row percentages, column percentages, and optional information
such as expected frequencies and cell chi-squares.

For a multiway table in list format, PROC FREQ displays the following information:

e the variable names and values

e Frequency, which is the number of observations in the level (with the indicated variable val-
ues)

e Percent, which is the level’s percentage of the total number of observations. (The
NOPERCENT option suppresses this information.)

e Cumulative Frequency, which is the accumulated frequency of the level and all other levels
listed above it in the table. The last cumulative frequency in the table is the total number of
nonmissing observations. (The NOCUM option suppresses this information.)

e Cumulative Percent, which is the accumulated percentage of the level and all other levels
listed above it in the table. (The NOCUM or the NOPERCENT option suppresses this infor-
mation.)

The table also displays the Frequency Missing, which is the number of observations with missing
values.
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Statistics for Multiway Tables

PROC FREQ computes statistical tests and measures for crosstabulation tables, depending on which
statements and options you specify. You can suppress the display of all these results by specifying
the NOPRINT option in the PROC statement. With any of the following information, PROC FREQ
also displays the Sample Size and the Frequency Missing.

e If you specify the SCOROUT option, PROC FREQ displays the Row Scores and Column
Scores that it uses for statistical computations. The Row Scores table displays the row variable
values and the Score corresponding to each value. The Column Scores table displays the
column variable values and the corresponding Scores. PROC FREQ also identifies the score
type used to compute the row and column scores. You can specify the score type with the
SCORES= option in the TABLES statement.

e If you specify the CHISQ option, PROC FREQ displays the following statistics for each
two-way table: Pearson Chi-Square, Likelihood-Ratio Chi-Square, Continuity-Adjusted Chi-
Square (for 2 x 2 tables), Mantel-Haenszel Chi-Square, the Phi Coefficient, the Contingency
Coefficient, and Cramer’s V. For each test statistic, PROC FREQ also displays the degrees
of freedom (DF) and the probability value (Prob).

o If you specify the CHISQ option for 2 x 2 tables, PROC FREQ also displays Fisher’s exact
test. The test output includes the cell (1,1) frequency (F), the exact left-sided and right-sided
probability values, the table probability (P), and the exact two-sided probability value.

e If you specify the FISHER option in the TABLES statement (or, equivalently, the FISHER
option in the EXACT statement), PROC FREQ displays Fisher’s exact test for tables larger
than 2 x 2. The test output includes the table probability (P) and the probability value. In
addition, PROC FREQ displays the CHISQ output listed earlier, even if you do not also
specify the CHISQ option.

e If you specify the PCHI, LRCHI, or MHCHI option in the EXACT statement, PROC
FREQ also displays the corresponding exact test: Pearson Chi-Square, Likelihood-Ratio Chi-
Square, or Mantel-Haenszel Chi-Square, respectively. The test output includes the test statis-
tic, the degrees of freedom (DF), and the asymptotic and exact probability values. If you also
specify the POINT option in the EXACT statement, PROC FREQ displays the point probabil-
ity for each exact test requested. If you specify the CHISQ option in the EXACT statement,
PROC FREQ displays exact probability values for all three of these chi-square tests.

e If you specify the MEASURES option, PROC FREQ displays the following statistics and
their asymptotic standard errors (ASE) for each two-way table: Gamma, Kendall’s Tau-b, Stu-
art’s Tau-c, Somers’ D(C|R), Somers’ D(R|C), Pearson Correlation, Spearman Correlation,
Lambda Asymmetric (C|R), Lambda Asymmetric (R|C), Lambda Symmetric, Uncertainty
Coefficient (C|R), Uncertainty Coefficient (R|C), and Uncertainty Coefficient Symmetric.
If you specify the CL option, PROC FREQ also displays confidence limits for these measures.

o If you specify the PLCORR option, PROC FREQ displays the tetrachoric correlation for 2 x 2
tables or the polychoric correlation for larger tables. In addition, PROC FREQ displays the
MEASURES output listed earlier, even if you do not also specify the MEASURES option.



180 4 Chapter 3: The FREQ Procedure

o If you specify the option GAMMA, KENTB, STUTC, SMDCR, SMDRC, PCORR, or
SCORR in the TEST statement, PROC FREQ displays asymptotic tests for Gamma, Kendall’s
Tau-b, Stuart’s Tau-c, Somers’ D(C|R), Somers’ D(R|C), the Pearson Correlation, or the
Spearman Correlation, respectively. If you specify the MEASURES option in the TEST state-
ment, PROC FREQ displays all these asymptotic tests. The test output includes the statistic,
its asymptotic standard error (ASE), Confidence Limits, the ASE under the null hypothesis
HO, the standardized test statistic (Z), and the one-sided and two-sided probability values.

o If you specify the PCORR or SCORR option in the EXACT statement, PROC FREQ dis-
plays asymptotic and exact tests for the Pearson Correlation or the Spearman Correlation,
respectively. The test output includes the correlation, its asymptotic standard error (ASE),
Confidence Limits, the ASE under the null hypothesis HO, the standardized test statistic (Z),
and the asymptotic and exact one-sided and two-sided probability values. If you also specify
the POINT option in the EXACT statement, PROC FREQ displays the point probability for
each exact test requested.

o If you specify the RISKDIFF option for 2 x 2 tables, PROC FREQ displays the Column 1
and Column 2 Risk Estimates. For each column, PROC FREQ displays the Row 1 Risk, Row
2 Risk, Total Risk, and Risk Difference, together with their asymptotic standard errors (ASE)
and Asymptotic Confidence Limits. PROC FREQ also displays Exact Confidence Limits for
the Row 1 Risk, Row 2 Risk, and Total Risk. If you specify the RISKDIFF option in the
EXACT statement, PROC FREQ provides unconditional Exact Confidence Limits for the
Risk Difference.

o If you request a noninferiority or superiority test for the proportion difference by specifying
the NONINF or SUP riskdiff-option, and if you specify METHOD=HA (Hauck-Anderson),
METHOD=FM (Farrington-Manning), or METHOD=WALD (Wald), PROC FREQ displays
the following information: the Proportion Difference, the test ASE (HO, Sample, Sample H-
A, or FM, depending on the method you specify), the test statistic Z, the probability value,
the Noninferiority or Superiority Limit, and the test-based Confidence Limits. If you specify
METHOD=SCORE (Newcombe score), PROC FREQ displays the Proportion Difference,
the Noninferiority or Superiority Limit, and the score Confidence Limits.

e If you request an equivalence test for the proportion difference by specifying the EQUIV
riskdiff-option, and if you specify METHOD=HA (Hauck-Anderson), METHOD=FM
(Farrington-Manning), or METHOD=WALD (Wald), PROC FREQ displays the following in-
formation: the Proportion Difference and the test ASE (HO, Sample, Sample H-A, or FM, de-
pending on the method you specify). PROC FREQ displays a two one-sided test (TOST) for
equivalence, which includes test statistics (Z) and probability values for the Lower and Upper
tests, together with the Overall probability value. PROC FREQ also displays the Equivalence
Limits and the test-based Confidence Limits. If you specify METHOD=SCORE (Newcombe
score), PROC FREQ displays the Proportion Difference, the Equivalence Limits, and the
score Confidence Limits.

o If you request an equality test for the proportion difference by specifying the EQUAL riskdift-
option, PROC FREQ displays the following information: the Proportion Difference and the
test ASE (HO or Sample), the test statistic Z, the One-Sided probability value (Pr > Z or Pr <
Z), and the Two-Sided probability value, Pr > |ZI.
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If you specify the MEASURES option or the RELRISK option for 2 x 2 tables, PROC FREQ
displays Estimates of the Relative Risk for Case-Control and Cohort studies, together with
their Confidence Limits. These measures are also known as the Odds Ratio and the Column
1 and 2 Relative Risks. If you specify the OR option in the EXACT statement, PROC FREQ
also displays Exact Confidence Limits for the Odds Ratio.

If you specify the TREND option, PROC FREQ displays the Cochran-Armitage Trend Test
for tables that are 2 x C or R x 2. For this test, PROC FREQ gives the Statistic (Z) and
the one-sided and two-sided probability values. If you specify the TREND option in the
EXACT statement, PROC FREQ also displays the exact one-sided and two-sided probability
values for this test. If you specify the POINT option with the TREND option in the EXACT
statement, PROC FREQ displays the exact point probability for the test statistic.

If you specify the JT option, PROC FREQ displays the Jonckheere-Terpstra Test, showing the
Statistic (JT), the standardized test statistic (Z), and the one-sided and two-sided probability
values. If you specify the JT option in the EXACT statement, PROC FREQ also displays
the exact one-sided and two-sided probability values for this test. If you specify the POINT
option with the JT option in the EXACT statement, PROC FREQ displays the exact point
probability for the test statistic.

If you specify the AGREE option and the PRINTKWT option, PROC FREQ displays the
Kappa Coefficient Weights for square tables greater than 2 x 2.

If you specify the AGREE option, for two-way tables PROC FREQ displays McNemar’s
Test and the Simple Kappa Coefficient for 2 x 2 tables. For square tables larger than 2 x 2,
PROC FREQ displays Bowker’s Test of Symmetry, the Simple Kappa Coefficient, and the
Weighted Kappa Coefficient. For McNemar’s Test and Bowker’s Test of Symmetry, PROC
FREQ displays the Statistic (S), the degrees of freedom (DF), and the probability value (Pr >
S). If you specify the MCNEM option in the EXACT statement, PROC FREQ also displays
the exact probability value for McNemar’s test. If you specify the POINT option with the
MCNEM option in the EXACT statement, PROC FREQ displays the exact point probability
for the test statistic. For the simple and weighted kappa coefficients, PROC FREQ displays
the kappa values, asymptotic standard errors (ASE), and Confidence Limits.

If you specify the KAPPA or WTKAP option in the TEST statement, PROC FREQ displays
asymptotic tests for the simple kappa coefficient or the weighted kappa coefficient, respec-
tively. If you specify the AGREE option in the TEST statement, PROC FREQ displays both
these asymptotic tests. The test output includes the kappa coefficient, its asymptotic standard
error (ASE), Confidence Limits, the ASE under the null hypothesis HO, the standardized test
statistic (Z), and the one-sided and two-sided probability values.

If you specify the KAPPA or WTKAP option in the EXACT statement, PROC FREQ dis-
plays asymptotic and exact tests for the simple kappa coefficient or the weighted kappa co-
efficient, respectively. The test output includes the kappa coefficient, its asymptotic standard
error (ASE), Confidence Limits, the ASE under the null hypothesis HO, the standardized test
statistic (Z), and the asymptotic and exact one-sided and two-sided probability values. If you
specify the POINT option in the EXACT statement, PROC FREQ displays the point proba-
bility for each exact test requested.

If you specify the MC option in the EXACT statement, PROC FREQ displays Monte Carlo
estimates for all exact p-values requested by statistic-options in the EXACT statement. The
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Monte Carlo output includes the p-value Estimate, its Confidence Limits, the Number of
Samples used to compute the Monte Carlo estimate, and the Initial Seed for random number
generation.

e If you specify the AGREE option, for multiple strata PROC FREQ displays Overall Simple
and Weighted Kappa Coefficients, with their asymptotic standard errors (ASE) and Confi-
dence Limits. PROC FREQ also displays Tests for Equal Kappa Coefficients, giving the Chi-
Squares, degrees of freedom (DF), and probability values (Pr > ChiSq) for the Simple Kappa
and Weighted Kappa. For multiple strata of 2 x 2 tables, PROC FREQ displays Cochran’s Q,
giving the Statistic (Q), the degrees of freedom (DF), and the probability value (Pr > Q).

e If you specify the CMH option, PROC FREQ displays Cochran-Mantel-Haenszel Statistics
for the following three alternative hypotheses: Nonzero Correlation, Row Mean Scores Dif-
fer (ANOVA Statistic), and General Association. For each of these statistics, PROC FREQ
gives the degrees of freedom (DF) and the probability value (Prob). For 2 x 2 tables, PROC
FREQ also displays Estimates of the Common Relative Risk for Case-Control and Cohort
studies, together with their confidence limits. These include both Mantel-Haenszel and Logit
stratum-adjusted estimates of the common Odds Ratio, Column 1 Relative Risk, and Column
2 Relative Risk. Also for 2 x 2 tables, PROC FREQ displays the Breslow-Day Test for Ho-
mogeneity of the Odds Ratios. For this test, PROC FREQ gives the Chi-Square, the degrees
of freedom (DF), and the probability value (Pr > ChiSq).

e If you specify the CMH option in the TABLES statement and also specify the COMOR
option in the EXACT statement, PROC FREQ displays exact confidence limits for the Com-
mon Odds Ratio for multiple strata of 2 x 2 tables. PROC FREQ also displays the Ex-
act Test of HO: Common Odds Ratio = 1. The test output includes the Cell (1,1) Sum (S),
Mean of S Under HO, One-sided Pr <= S, and Point Pr = S. PROC FREQ also provides exact
two-sided probability values for the test, computed according to the following three methods:
2 * One-sided, Sum of probabilities <= Point probability, and Pr >= IS - Meanl.

o If you specify the CMH option in the TABLES statement and also specify the EQOR option
in the EXACT statement, PROC FREQ computes Zelen’s exact test for equal odds ratios for
h x 2 x 2 tables. PROC FREQ displays Zelen’s test along with the asymptotic Breslow-Day
test produced by the CMH option. PROC FREQ displays the test statistic, Zelen’s Exact Test
(P), and the probability value, Exact Pr <=P.

ODS Table Names

PROC FREQ assigns a name to each table it creates. You can use these names to reference the
table when you use the Output Delivery System (ODS) to select tables and create output data sets.
For more information about ODS, see Chapter 20, “Using the Output Delivery System” (SAS/STAT
User’s Guide).

Table 3.14 lists the ODS table names together with their descriptions and the options required
to produce the tables. Note that the ALL option in the TABLES statement invokes the CHISQ,
MEASURES, and CMH options.
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ODS Table Name Description Statement Option
BinomialCLs Binomial confidence limits TABLES BINOMIAL(AC | J I W)
BinomialEquiv Binomial equivalence analysis TABLES BINOMIAL(EQUIV)
BinomialEquivLimits Binomial equivalence limits TABLES BINOMIAL(EQUIV)
BinomialEquivTest Binomial equivalence test TABLES BINOMIAL(EQUIV)
BinomialNoninf Binomial noninferiority test TABLES BINOMIAL(NONINF)
BinomialProp Binomial proportion TABLES BINOMIAL (one-way tables)
BinomialPropTest Binomial proportion test TABLES BINOMIAL (one-way tables)
BinomialSup Binomial superiority test TABLES BINOMIAL(SUP)
BreslowDayTest Breslow-Day test TABLES CMH (h x 2 x 2 tables)
CMH Cochran-Mantel-Haenszel TABLES CMH
statistics
ChiSq Chi-square tests TABLES CHISQ
CochransQ Cochran’s Q TABLES AGREE (h x 2 x 2 tables)
ColScores Column scores TABLES SCOROUT
CommonOddsRatioCL.  Exact confidence limits EXACT COMOR (h x 2 x 2 tables)
for the common odds ratio
CommonOddsRatioTest Common odds ratio exact test EXACT COMOR (h x 2 x 2 tables)
CommonRelRisks Common relative risks TABLES CMH (h x 2 x 2 tables)
CrossList Crosstabulation table TABLES CROSSLIST
in column format (n-way table request, n > 1)
CrossTabFreqs Crosstabulation table TABLES (n-way table request, n > 1)
EqualKappaTest Test for equal simple kappas TABLES AGREE (h x 2 x 2 tables)
EqualKappaTests Tests for equal kappas TABLES AGREE
(h xr x r tables, r > 2)
EqualOddsRatios Tests for equal odds ratios EXACT EQOR (4 x 2 x 2 tables)
FishersExact Fisher’s exact test EXACT FISHER
or TABLES FISHER or EXACT
or TABLES CHISQ (2 x 2 tables)
FishersExactMC Monte Carlo estimates EXACT FISHER / MC
for Fisher’s exact test
Gamma Gamma TEST GAMMA
GammaTest Gamma test TEST GAMMA
JTTest Jonckheere-Terpstra test TABLES JT
JTTestMC Monte Carlo estimates for EXACT JT/MC
Jonckheere-Terpstra exact test
KappaStatistics Kappa statistics TABLES AGREE
(r x r tables, r > 2,
no TEST or EXACT)
KappaWeights Kappa weights TABLES AGREE and PRINTKWT
List List format multiway table TABLES LIST
LRChiSq Likelihood-ratio chi-square EXACT LRCHI
exact test
LRChiSgMC Monte Carlo exact test for EXACT LRCHI/MC

likelihood-ratio chi-square
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ODS Table Name Description Statement Option
McNemarsTest McNemar’s test TABLES AGREE (2 x 2 tables)
Measures Measures of association TABLES MEASURES
MHChiSq Mantel-Haenszel chi-square EXACT MHCHI
exact test
MHChiSgMC Monte Carlo exact test for EXACT MHCHI / MC
Mantel-Haenszel chi-square
NLevels Number of variable levels PROC NLEVELS
OddsRatioCL Exact confidence limits EXACT OR (2 x 2 tables)
for the odds ratio
OneWayChiSq One-way chi-square test TABLES CHISQ (one-way tables)
OneWayChiSqMC Monte Carlo exact test for EXACT CHISQ /MC
one-way chi-square (one-way tables)
OneWayFreqs One-way frequencies PROC (with no TABLES stmt)
or TABLES (one-way table request)
OverallKappa Overall simple kappa TABLES AGREE (h x 2 x 2 tables)
OverallKappas Overall kappa coefficients TABLES AGREE
(h x r x r tables, r > 2)
PdiffEquiv Equivalence analysis TABLES RISKDIFF(EQUIV)
for the proportion difference (2 x 2 tables)
PdiffEquivLimits Equivalence limits TABLES RISKDIFF(EQUIV)
for the proportion difference (2 x 2 tables)
PdiffEquivTest Equivalence test TABLES RISKDIFF(EQUIV)
for the proportion difference (2 x 2 tables)
PdiffNoninf Noninferiority test TABLES RISKDIFF(NONINF)
for the proportion difference (2 x 2 tables)
PdiffSup Superiority test TABLES RISKDIFF(SUP)
for the proportion difference (2 x 2 tables)
PdiffTest Proportion difference test TABLES RISKDIFF(EQUAL)
(2 x 2 tables)
PearsonChiSq Pearson chi-square exact test EXACT PCHI
PearsonChiSqMC Monte Carlo exact test for EXACT PCHI/MC
Pearson chi-square
PearsonCorr Pearson correlation TEST PCORR
or EXACT PCORR
PearsonCorrMC Monte Carlo exact test for EXACT PCORR /MC
Pearson correlation
PearsonCorrTest Pearson correlation test TEST PCORR
or EXACT PCORR
RelativeRisks Relative risk estimates TABLES RELRISK or MEASURES
(2 x 2 tables)
RiskDiffColl Column 1 risk estimates TABLES RISKDIFF (2 x 2 tables)
RiskDiffCol2 Column 2 risk estimates TABLES RISKDIFF (2 x 2 tables)
RowScores Row scores TABLES SCOROUT
SimpleKappa Simple kappa coefficient TEST KAPPA
or EXACT KAPPA
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ODS Table Name Description Statement Option
SimpleKappaMC Monte Carlo exact test for EXACT KAPPA / MC
simple kappa
SimpleKappaTest Simple kappa test TEST KAPPA
or EXACT KAPPA
SomersDCR Somers’ D(C|R) TEST SMDCR
SomersDCRTest Somers’ D(C|R) test TEST SMDCR
SomersDRC Somers” D(R|C) TEST SMDRC
SomersDRCTest Somers’ D(R|C) test TEST SMDRC
SpearmanCorr Spearman correlation TEST SCORR
or EXACT SCORR
SpearmanCorrMC Monte Carlo exact test for EXACT SCORR /MC
Spearman correlation
SpearmanCorrTest Spearman correlation test TEST SCORR
or EXACT SCORR
SymmetryTest Test of symmetry TABLES AGREE
TauB Kendall’s tau-b TEST KENTB
TauBTest Kendall’s tau-b test TEST KENTB
TauC Stuart’s tau-c TEST STUTC
TauCTest Stuart’s tau-c test TEST STUTC
TrendTest Cochran-Armitage trend test TABLES TREND
TrendTestMC Monte Carlo exact test EXACT TREND / MC
for trend
WeightedKappa Weighted kappa TEST WTKAP
or EXACT WTKAP
WeightedKappaMC Monte Carlo exact test for EXACT WTKAP / MC
weighted kappa
WeightedKappaTest Weighted kappa test TEST WTKAP
or EXACT WTKAP

* The ALL option in the TABLES statement invokes CHISQ, MEASURES, and CMH.

ODS Graphics

PROC FREQ assigns a name to each graph it creates with ODS Graphics. You can use these names
to reference the graphs. Table 3.15 lists the names of the graphs that PROC FREQ generates, along
with the corresponding analysis options.

To request graphics with PROC FREQ, you must first enable ODS Graphics by specifying the ops
GRAPHICS ON statement. See Chapter 21, “Statistical Graphics Using ODS” (SAS/STAT User’s
Guide), for more information. When you have enabled ODS Graphics, you can request specific
plots with the PLOTS= option in the TABLES statement. If you do not specify the PLOTS= option
but have enabled ODS Graphics, then PROC FREQ produces all plots associated with the analyses
you request.
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Table 3.15 ODS Graphics Produced by PROC FREQ

ODS Graph Name Plot Description TABLES Statement Option

CumFreqPlot Cumulative frequency plot One-way table request

DeviationPlot Deviation plot CHISQ and a one-way table request
FreqPlot Frequency plot Any table request

KappaPlot Kappa plot AGREE (h x r x r table)

ORPIot Odds ratio plot MEASURES or RELRISK (& x 2 x 2 table)
WtKappaPlot Weighted kappa plot AGREE (h x r x r table, r > 2)

Examples: FREQ Procedure

Example 3.1: Output Data Set of Frequencies

The eye and hair color of children from two different regions of Europe are recorded in the data set
Color. Instead of recording one observation per child, the data are recorded as cell counts, where
the variable Count contains the number of children exhibiting each of the 15 eye and hair color
combinations. The data set does not include missing combinations.

The following DATA step statements create the SAS data set Color:

data Color;
input Region Eyes $ Hair $ Count QQ@;
label Eyes ='Eye Color’

Hair ='Hair Color’
Region='Geographic Region’;
datalines;

1 blue fair 23 1 blue red 7 1 blue medium 24
1 blue dark 11 1 green fair 19 1 green red 7
1l green medium 18 1 green dark 14 1 brown fair 34
1 brown red 5 1 brown medium 41 1 brown dark 40
1 brown black 3 2 blue fair 46 2 blue red 21
2 blue medium 44 2 blue dark 40 2 blue black 6
2 green fair 50 2 green red 31 2 green medium 37
2 green dark 23 2 brown fair 56 2 brown red 42
2 brown medium 53 2 brown dark 54 2 brown black 13

~.

The following PROC FREQ statements read the Color data set and create an output data set that
contains the frequencies, percentages, and expected cell frequencies of the two-way table of Eyes
by Hair. The TABLES statement requests three tables: a frequency table for Eyes, a frequency table
for Hair, and a crosstabulation table for Eyes by Hair. The OUT= option creates the FreqCount data
set, which contains the crosstabulation table frequencies. The OUTEXPECT option outputs the
expected table cell frequencies to FreqCount, and the SPARSE option includes zero cell frequen-
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cies in the output data set. The WEIGHT statement specifies that the variable Count contains the
observation weights. These statements create Output 3.1.1 through Output 3.1.3.

proc freq data=Color;
tables Eyes Hair Eyes*Hair / out=FreqCount outexpect sparse;
weight Count;
title "Eye and Hair Color of European Children’;

run;

proc print data=FreqCount noobs;
title2 ’'Output Data Set from PROC FREQ’;
run;

Output 3.1.1 displays the two frequency tables produced by PROC FREQ: one showing the distri-
bution of eye color, and one showing the distribution of hair color. By default, PROC FREQ lists
the variables values in alphabetical order. The ‘Eyes*Hair’ specification produces a crosstabulation
table, shown in Output 3.1.2, with eye color defining the table rows and hair color defining the table
columns. A zero cell frequency for green eyes and black hair indicates that this eye and hair color
combination does not occur in the data.

The output data set FreqCount (Output 3.1.3) contains frequency counts and percentages for the last
table requested in the TABLES statement, Eyes by Hair. Because the SPARSE option is specified,
the data set includes the observation with a zero frequency. The variable Expected contains the
expected frequencies, as requested by the OUTEXPECT option.

Output 3.1.1 Frequency Tables

Eye and Hair Color of European Children
The FREQ Procedure
Eye Color
Cumulative Cumulative
Eyes Frequency Percent Frequency Percent
blue 222 29.13 222 29.13
brown 341 44.75 563 73.88
green 199 26.12 762 100.00
Hair Color
Cumulative Cumulative
Hair Frequency Percent Frequency Percent
black 22 2.89 22 2.89
dark 182 23.88 204 26.77
fair 228 29.92 432 56.69
medium 217 28.48 649 85.17
red 113 14.83 762 100.00
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Output 3.1.2 Crosstabulation Table

Table of Eyes by Hair
Eyes (Eye Color) Hair (Hair Color)
Frequency |
Percent |
Row Pct |
Col Pct |black |dark | fair |medium |red | Total
blue | 6 | 51 | 69 | 68 | 28 | 222
| 0.79 | 6.69 | 9.06 | 8.92 | 3.67 | 29.13
| 2.70 | 22.97 | 31.08 | 30.63 | 12.61 |
| 27.27 | 28.02 | 30.26 | 31.34 | 24.78 |
brown | 16 | 94 | 90 | 94 | 47 | 341
| 2.10 | 12.34 | 11.81 | 12.34 | 6.17 | 44.75
| 4.69 | 27.57 | 26.39 | 27.57 | 13.78 |
| 72.73 | 51.65 | 39.47 | 43.32 | 41.59 |
green | 0 | 37 | 69 | 55 | 38 | 199
| 0.00 | 4.86 | 9.06 | 7.22 | 4.99 | 26.12
| 0.00 | 18.59 | 34.67 | 27.64 | 19.10 |
| 0.00 | 20.33 | 30.26 | 25.35 | 33.63 |
Total 22 182 228 217 113 762
2.89 23.88 29.92 28.48 14.83 100.00
Output 3.1.3 Output Data Set of Frequencies
Eye and Hair Color of European Children
Output Data Set from PROC FREQ
Eyes Hair COUNT EXPECTED PERCENT
blue black 6 6.409 0.7874
blue dark 51 53.024 6.6929
blue fair 69 66.425 9.0551
blue medium 68 63.220 8.9239
blue red 28 32.921 3.6745
brown black 16 9.845 2.0997
brown dark 94 81.446 12.3360
brown fair 920 102.031 11.8110
brown medium 94 97.109 12.3360
brown red 47 50.568 6.1680
green black 0 5.745 0.0000
green dark 37 47.530 4.8556
green fair 69 59.543 9.0551
green medium 55 56.671 7.2178
green red 38 29.510 4.9869




Example 3.2: Frequency Dot Plots 4 189

Example 3.2: Frequency Dot Plots

This example produces frequency dot plots for the children’s eye and hair color data from
Example 3.1.

PROC FREQ produces plots by using ODS Graphics to create graphs as part of the procedure
output. Frequency plots are available for any frequency or crosstabulation table request. You can
display frequency plots as bar charts or dot plots. You can use plot-options to specify the orientation
(vertical or horizontal), scale, and layout of the plots.

The following PROC FREQ statements request frequency tables and dot plots. The first TABLES
statement requests a one-way frequency table of Hair and a crosstabulation table of Eyes by Hair. The
PLOTS= option requests frequency plots for the tables, and the TYPE=DOT plot-option specifies
dot plots. By default, frequency plots are produced as bar charts.

The second TABLES statement requests a crosstabulation table of Region by Hair and a frequency
dot plot for this table. The SCALE=PERCENT plot-option plots percentages instead of frequency
counts. SCALE=LOG and SCALE=SQRT plot-options are also available to plot log frequencies
and square roots of frequencies, respectively.

The ORDER=FREQ option in the PROC FREQ statement orders the variable levels by frequency.
This order applies to the frequency and crosstabulation table displays and also to the corresponding
frequency plots.

Before requesting plots, you must enable ODS Graphics with the ODS GRAPHICS ON statement.

ods graphics on;
proc freq data=Color order=fregq;
tables Hair Eyes*Hair / plots=freqgplot (type=dot) ;
tables RegionxHair / plots=freqgplot (type=dot scale=percent);
weight Count;
title 'Eye and Hair Color of European Children’;
run;
ods graphics off;

Output 3.2.1, Output 3.2.2, and Output 3.2.3 display the dot plots produced by PROC FREQ. By
default, the orientation of dot plots is horizontal, which places the variable levels on the y-axis.
You can specify the ORIENT=VERTICAL plot-option to request a vertical orientation. For two-
way plots, you can use the TWOWAY= plot-option to specify the plot layout. The default layout
(shown in Output 3.2.2 and Output 3.2.3) is GROUPVERTICAL. Two-way layouts STACKED and
GROUPHORIZONTAL are also available.



190 4 Chapter 3: The FREQ Procedure

Output 3.2.1 One-Way Frequency Dot Plot
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Output 3.2.2 Two-Way Frequency Dot Plot
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Output 3.2.3 Two-Way Percent Dot Plot
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Example 3.3: Chi-Square Goodness-of-Fit Tests

This example examines whether the children’s hair color (from Example 3.1) has a specified multi-
nomial distribution for the two geographical regions. The hypothesized distribution of hair color is
30% fair, 12% red, 30% medium, 25% dark, and 3% black.

In order to test the hypothesis for each region, the data are first sorted by Region. Then the FREQ
procedure uses a BY statement to produce a separate table for each BY group (Region). The option
ORDER=DATA orders the variable values (hair color) in the frequency table by their order in the
input data set. The TABLES statement requests a frequency table for hair color, and the option
NOCUM suppresses the display of the cumulative frequencies and percentages.

The CHISQ option requests a chi-square goodness-of-fit test for the frequency table of Hair. The
TESTP= option specifies the hypothesized (or test) percentages for the chi-square test; the number
of percentages listed equals the number of table levels, and the percentages sum to 100%. The
TESTP= percentages are listed in the same order as the corresponding variable levels appear in
frequency table.
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The PLOTS= option requests a deviation plot, which is associated with the CHISQ option and
displays the relative deviations from the test frequencies. The TYPE=DOT plot-option requests a
dot plot instead of the default type, which is a bar chart. The ONLY plot-option requests that PROC
FREQ produce only the deviation plot. By default, PROC FREQ produces all plots associated
with the requested analyses. A frequency plot is associated with a one-way table request but is
not produced in this example because ONLY is specified with the DEVIATIONPLOT request. Note
that ODS Graphics must be enabled before requesting plots. These statements produce Output 3.3.1

through Output 3.3.4.

proc sort data=Color;
by Region;
run;

ods graphics on;

proc freq data=Color order=data;
tables Hair / nocum chisq testp=(30 12 30 25 3)
plots (only)=deviationplot (type=dot) ;

weight Count;
by Region;

title 'Hair Color of European Children’;

run;
ods graphics off;

Output 3.3.1 Frequency Table and Chi-Square Test for Region 1

Hair Color of European Children

Geographic Region=1

The FREQ Procedure

Hair Color

Test
Hair Frequency Percent Percent
fair 76 30.89 30.00
red 19 7.72 12.00
medium 83 33.74 30.00
dark 65 26.42 25.00
black 3 1.22 3.00

Geographic Region=1

Chi-Square Test
for Specified Proportions

Chi-Square 7.7602
DF 4
Pr > ChiSg 0.1008
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Output 3.3.1 shows the frequency table and chi-square test for Region 1. The frequency table lists
the variable values (hair color) in the order in which they appear in the data set. The “Test Percent”
column lists the hypothesized percentages for the chi-square test. Always check that you have
ordered the TESTP= percentages to correctly match the order of the variable levels.

Output 3.3.2 shows the deviation plot for Region 1, which displays the relative deviations from
the hypothesized values. The relative deviation for a level is the difference between the observed
and hypothesized (test) percentage divided by the test percentage. You can suppress the chi-square
p-value that is displayed by default in the deviation plot by specifying the NOSTATS plot-option.

Output 3.3.2 Deviation Plot for Region 1
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Output 3.3.3 and Output 3.3.4 show the results for Region 2. PROC FREQ computes a chi-square
statistic for each region. The chi-square statistic is significant at the 0.05 level for Region 2
(p=0.0003) but not for Region 1. This indicates a significant departure from the hypothesized
percentages in Region 2.

Output 3.3.3 Frequency Table and Chi-Square Test for Region 2

Hair Color of European Children

Geographic Region=2

The FREQ Procedure

Hair Color

Test
Hair Frequency Percent Percent
fair 152 29.46 30.00
red 94 18.22 12.00
medium 134 25.97 30.00
dark 117 22.67 25.00
black 19 3.68 3.00

Geographic Region=2

Chi-Square Test
for Specified Proportions

Chi-Square 21.3824
DF 4
Pr > ChiSq 0.0003
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Output 3.3.4 Deviation Plot for Region 2
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Example 3.4: Binomial Proportions

In this example, PROC FREQ computes binomial proportions, confidence limits, and tests. The
example uses the eye and hair color data from Example 3.1. By default, PROC FREQ computes the
binomial proportion as the proportion of observations in the first level of the one-way table. You
can designate a different level by using the LEVEL= binomial-option.

The following PROC FREQ statements compute the proportion of children with brown eyes (from
the data set in Example 3.1) and test the null hypothesis that the population proportion equals 50%.
These statements also compute an equivalence for the proportion of children with fair hair.

The first TABLES statement requests a one-way frequency table for the variable Eyes. The BINO-
MIAL option requests the binomial proportion, confidence limits, and test. PROC FREQ computes
the proportion with Eyes = ‘brown’, which is the first level displayed in the table. The AC, WIL-
SON, and EXACT binomial-options request the following confidence limits types: Agresti-Coull,
Wilson (score), and exact (Clopper-Pearson). By default, PROC FREQ provides Wald and ex-
act (Clopper-Pearson) confidence limits for the binomial proportion. The BINOMIAL option also
produces an asymptotic Wald test that the proportion equals 0.5. You can specify a different test
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proportion with the P= binomial-option. The ALPHA=0.1 option specifies that « = 10%, which
produces 90% confidence limits.

The second TABLES statement requests a one-way frequency table for the variable Hair. The BINO-
MIAL option requests the proportion for the first level, Hair = ‘fair’. The EQUIV binomial-option
requests an equivalence test for the binomial proportion. The P=.28 option specifies 0.28 as the null
hypothesis proportion, and the MARGIN=.1 option specifies 0.1 as the equivalence test margin.

proc freq data=Color order=freq;
tables Eyes / binomial (ac wilson exact) alpha=.1;
tables Hair / binomial (equiv p=.28 margin=.1);
weight Count;
title 'Hair and Eye Color of European Children’;
run;

Output 3.4.1 displays the results for eye color, and Output 3.4.2 displays the results for hair color.

Output 3.4.1 Binomial Proportion for Eye Color

Hair and Eye Color of European Children

The FREQ Procedure

Eye Color
Cumulative Cumulative
Eyes Frequency Percent Frequency Percent
brown 341 44.75 341 44.75
blue 222 29.13 563 73.88
green 199 26.12 762 100.00

Binomial Proportion
for Eyes = brown

Proportion 0.4475
ASE 0.0180
Type 90% Confidence Limits
Wilson 0.4181 0.4773
Agresti-Coull 0.4181 0.4773
Clopper-Pearson (Exact) 0.4174 0.4779
Test of HO: Proportion = 0.5
ASE under HO 0.0181
4 -2.8981
One-sided Pr < 2 0.0019

Two-sided Pr > |Z| 0.0038
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The frequency table in Output 3.4.1 displays the values of Eyes in order of descending frequency
count. PROC FREQ computes the proportion of children in the first level displayed in the fre-
quency table, Eyes = ‘brown’. Output 3.4.1 displays the binomial proportion confidence limits and
test. The confidence limits are 90% confidence limits. If you do not specify the ALPHA= option,
PROC FREQ computes 95% confidence limits by default. Because the value of Z is less than zero,
PROC FREQ displays the a left-sided p-value (0.0019). This small p-value supports the alternative
hypothesis that the true value of the proportion of children with brown eyes is less than 50%.

Output 3.4.2 displays the equivalence test results produced by the second TABLES statement. The
null hypothesis proportion is 0.28 and the equivalence margins are —0.1 and 0.1, which yield equiv-
alence limits of 0.18 and 0.38. PROC FREQ provides two one-sided tests (TOST) for equivalence.
The small p-value indicates rejection of the null hypothesis in favor of the alternative that the pro-
portion is equivalent to the null value.

Output 3.4.2 Binomial Proportion for Hair Color

Hair Color
Cumulative Cumulative
Hair Frequency Percent Frequency Percent
fair 228 29.92 228 29.92
medium 217 28.48 445 58.40
dark 182 23.88 627 82.28
red 113 14.83 740 97.11
black 22 2.89 762 100.00
Equivalence Analysis
HO: P - p0 <= Lower Margin or >= Upper Margin
Ha: Lower Margin < P - p0 < Upper Margin
p0 = 0.28 Lower Margin = -0.1 Upper Margin = 0.1
Proportion ASE (Sample)
0.2992 0.0166
Two One-Sided Tests (TOST)
Test Z P-Value
Lower Margin 7.1865 Pr > Z <.0001
Upper Margin -4.8701 Pr < Z <.0001
Overall <.0001
Equivalence Limits 90% Confidence Limits
0.1800 0.3800 0.2719 0.3265
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Example 3.5: Analysis of a 2x2 Contingency Table

This example computes chi-square tests and Fisher’s exact test to compare the probability of coro-
nary heart disease for two types of diet. It also estimates the relative risks and computes exact
confidence limits for the odds ratio.

The data set FatComp contains hypothetical data for a case-control study of high fat diet and the risk
of coronary heart disease. The data are recorded as cell counts, where the variable Count contains
the frequencies for each exposure and response combination. The data set is sorted in descending
order by the variables Exposure and Response, so that the first cell of the 2 x 2 table contains the
frequency of positive exposure and positive response. The FORMAT procedure creates formats to
identify the type of exposure and response with character values.
proc format;
value ExpFmt 1='High Cholesterol Diet’
0="Low Cholesterol Diet’;
value RspFmt 1='Yes’
0="No’;
run;
data FatComp;
input Exposure Response Count;
label Response=’'Heart Disease’;
datalines;

r O R O
=N oy

. B KHOO
'—l
'—l

4
proc sort data=FatComp;

by descending Exposure descending Response;
run;

In the following PROC FREQ statements, ORDER=DATA option orders the contingency table val-
ues by their order in the input data set. The TABLES statement requests a two-way table of Exposure
by Response. The CHISQ option produces several chi-square tests, while the RELRISK option pro-
duces relative risk measures. The EXACT statement requests the exact Pearson chi-square test and
exact confidence limits for the odds ratio.
proc freq data=FatComp order=data;
format Exposure ExpFmt. Response RspFmt.;
tables ExposurexResponse / chisq relrisk;
exact pchi or;
weight Count;
title ’'Case-Control Study of High Fat/Cholesterol Diet’;
run;
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The contingency table in Output 3.5.1 displays the variable values so that the first table cell con-
tains the frequency for the first cell in the data set (the frequency of positive exposure and positive
response).

Output 3.5.1 Contingency Table

Case-Control Study of High Fat/Cholesterol Diet
The FREQ Procedure

Table of Exposure by Response

Exposure Response (Heart Disease)
Frequency |
Percent |
Row Pct |
Col Pct | Yes |No | Total
High Cholesterol | 11 | 4 | 15
Diet | 47.83 | 17.39 | 65.22
| 73.33 | 26.67 |
| 84.62 | 40.00 |
Low Cholesterol | 2 | 6 | 8
Diet | 8.70 | 26.09 | 34.78
| 25.00 | 75.00 |
| 15.38 | 60.00 |
Total 13 10 23

56.52 43.48 100.00

Output 3.5.2 displays the chi-square statistics. Because the expected counts in some of the table
cells are small, PROC FREQ gives a warning that the asymptotic chi-square tests might not be
appropriate. In this case, the exact tests are appropriate. The alternative hypothesis for this analysis
states that coronary heart disease is more likely to be associated with a high fat diet, so a one-sided
test is desired. Fisher’s exact right-sided test analyzes whether the probability of heart disease in the
high fat group exceeds the probability of heart disease in the low fat group; because this p-value is
small, the alternative hypothesis is supported.

The odds ratio, displayed in Output 3.5.3, provides an estimate of the relative risk when an event is
rare. This estimate indicates that the odds of heart disease is 8.25 times higher in the high fat diet
group; however, the wide confidence limits indicate that this estimate has low precision.
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Output 3.5.2 Chi-Square Statistics

Statistic DF Value Prob
Chi-Square 1 4.9597 0.0259
Likelihood Ratio Chi-Square 1 5.0975 0.0240
Continuity Adj. Chi-Square 1 3.1879 0.0742
Mantel-Haenszel Chi-Square 1 4.7441 0.0294
Phi Coefficient 0.4644
Contingency Coefficient 0.4212
Cramer’'s V 0.4644

WARNING: 50% of the cells have expected counts less than 5.
(Asymptotic) Chi-Square may not be a valid test.

Pearson Chi-Square Test

Chi-Square 4.9597
DF 1
Asymptotic Pr > ChiSqg 0.0259
Exact Pr >= ChiSq 0.0393

Fisher’s Exact Test

Cell (1,1) Frequency (F) 11
Left-sided Pr <= F 0.9967
Right-sided Pr >= F 0.0367
Table Probability (P) 0.0334
Two-sided Pr <= P 0.0393

Output 3.5.3 Relative Risk

Estimates of the Relative Risk (Rowl/Row2)

Type of Study Value 95% Confidence Limits
Case-Control (Odds Ratio) 8.2500 1.1535 59.0029
Cohort (Coll Risk) 2.9333 0.8502 10.1204
Cohort (Col2 Risk) 0.3556 0.1403 0.9009

Odds Ratio (Case-Control Study)

Odds Ratio 8.2500

Asymptotic Conf Limits
95% Lower Conf Limit 1.1535
95% Upper Conf Limit 59.0029

Exact Conf Limits
95% Lower Conf Limit 0.8677
95% Upper Conf Limit 105.5488
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Example 3.6: Output Data Set of Chi-Square Statistics

This example uses the Color data from Example 3.1 to output the Pearson chi-square and the
likelihood-ratio chi-square statistics to a SAS data set. The following PROC FREQ statements
create a two-way table of eye color versus hair color.

proc freq data=Color order=data;

tables EyesxHair / expected cellchi2 norow nocol chisgqg;

output out=ChiSgData n nmiss pchi lrchi;

weight Count;

title 'Chi-Square Tests for 3 by 5 Table of Eye and Hair Color’;
run;

proc print data=ChiSgData noobs;
titlel 'Chi-Square Statistics for Eye and Hair Color’;
title2 ’'Output Data Set from the FREQ Procedure’;

run;

The EXPECTED option displays expected cell frequencies in the crosstabulation table, and the
CELLCHI2 option displays the cell contribution to the overall chi-square. The NOROW and NO-
COL options suppress the display of row and column percents in the crosstabulation table. The
CHISQ option produces chi-square tests.

The OUTPUT statement creates the ChiSqData output data set and specifies the statistics to include.
The N option requests the number of nonmissing observations, the NMISS option stores the number
of missing observations, and the PCHI and LRCHI options request Pearson and likelihood-ratio chi-
square statistics, respectively, together with their degrees of freedom and p-values.

The preceding statements produce Output 3.6.1 and Output 3.6.2. The contingency table in
Output 3.6.1 displays eye and hair color in the order in which they appear in the Color data set.
The Pearson chi-square statistic in Output 3.6.2 provides evidence of an association between eye
and hair color (p=0.0073). The cell chi-square values show that most of the association is due to
more green-eyed children with fair or red hair and fewer with dark or black hair. The opposite
occurs with the brown-eyed children.

Output 3.6.3 displays the output data set created by the OUTPUT statement. It includes one obser-
vation that contains the sample size, the number of missing values, and the chi-square statistics and
corresponding degrees of freedom and p-values as in Output 3.6.2.
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Output 3.6.1 Contingency Table

Chi-Square Tests for 3 by 5 Table of Eye and Hair Color
The FREQ Procedure
Table of Eyes by Hair
Eyes (Eye Color) Hair (Hair Color)
Frequency |
Expected |
Cell Chi-Square|
Percent | fair | red |medium |dark |black | Total
blue | 69 | 28 | 68 | 51 | 6 | 222
| 66.425 | 32.921 | 63.22 | 53.024 | 6.4094 |
| 0.0998 | 0.7357 | 0.3613 | 0.0772 | 0.0262 |
| 9.06 | 3.67 | 8.92 | 6.69 | 0.79 | 29.13
green | 69 | 38 | 55 | 37 | 0 | 199
| 59.543 | 29.51 | 56.671 | 47.53 | 5.7454 |
| 1.5019 | 2.4422 | 0.0492 | 2.3329 | 5.7454 |
| 9.06 | 4.99 | 7.22 | 4.86 | 0.00 | 26.12
brown | 920 | 47 | 94 | 94 | 16 | 341
| 102.03 | 50.568 | 97.109 | 81.446 | 9.8451 |
| 1.4187 | 0.2518 | 0.0995 | 1.935 | 3.8478 |
| 11.81 | 6.17 | 12.34 | 12.34 | 2.10 | 44.75
Total 228 113 217 182 22 762
29.92 14.83 28.48 23.88 2.89 100.00
Output 3.6.2 Chi-Square Statistics
Statistic DF Value Prob
Chi-Square 8 20.9248 0.0073
Likelihood Ratio Chi-Square 8 25.9733 0.0011
Mantel-Haenszel Chi-Square 1 3.7838 0.0518
Phi Coefficient 0.1657
Contingency Coefficient 0.1635
Cramer’s V 0.1172
Output 3.6.3 Output Data Set
Chi-Square Statistics for Eye and Hair Color
Output Data Set from the FREQ Procedure
N NMISS _PCHI_ DF_PCHI P_PCHI _LRCHI_ DF_LRCHI P_LRCHI

762 0 20.9248 8 .007349898 25.9733 8 .001061424
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Example 3.7: Cochran-Mantel-Haenszel Statistics

The data set Migraine contains hypothetical data for a clinical trial of migraine treatment. Subjects
of both genders receive either a new drug therapy or a placebo. Their response to treatment is coded
as ‘Better’ or ‘Same’. The data are recorded as cell counts, and the number of subjects for each
treatment and response combination is recorded in the variable Count.
data Migraine;
input Gender $ Treatment $ Response $ Count @Q;
datalines;
female Active Better 16 female Active Same 11
female Placebo Better 5 female Placebo Same 20
male Active Better 12 male Active Same 16
male Placebo Better 7 male Placebo Same 19

4

The following PROC FREQ statements create a multiway table stratified by Gender, where Treatment
forms the rows and Response forms the columns. The CMH option produces the Cochran-Mantel-
Haenszel statistics. For this stratified 2 x 2 table, estimates of the common relative risk and the
Breslow-Day test for homogeneity of the odds ratios are also displayed. The NOPRINT option
suppresses the display of the contingency tables. These statements produce Output 3.7.1 through
Output 3.7.3.

proc freq data=Migraine;

tables Gender*TreatmentxResponse / cmh;

weight Count;

title 'Clinical Trial for Treatment of Migraine Headaches’;
run;

Output 3.7.1 Cochran-Mantel-Haenszel Statistics

Clinical Trial for Treatment of Migraine Headaches

The FREQ Procedure

Summary Statistics for Treatment by Response
Controlling for Gender

Cochran-Mantel-Haenszel Statistics (Based on Table Scores)

Statistic Alternative Hypothesis DF Value Prob
1 Nonzero Correlation 1 8.3052 0.0040
2 Row Mean Scores Differ 1 8.3052 0.0040
3 General Association 1 8.3052 0.0040

For a stratified 2 x 2 table, the three CMH statistics displayed in Output 3.7.1 test the same hypoth-
esis. The significant p-value (0.004) indicates that the association between treatment and response
remains strong after adjusting for gender.
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The CMH option also produces a table of relative risks, as shown in Output 3.7.2. Because this is a
prospective study, the relative risk estimate assesses the effectiveness of the new drug; the “Cohort
(Coll Risk)” values are the appropriate estimates for the first column (the risk of improvement).
The probability of migraine improvement with the new drug is just over two times the probability
of improvement with the placebo.

The large p-value for the Breslow-Day test (0.2218) in Output 3.7.3 indicates no significant gender
difference in the odds ratios.

Output 3.7.2 CMH Option: Relative Risks

Estimates of the Common Relative Risk (Rowl/Row2)
Type of Study Method Value 95% Confidence Limits
Case—-Control Mantel-Haenszel 3.3132 1.4456 7.5934
(O0dds Ratio) Logit 3.2941 1.4182 7.6515
Cohort Mantel-Haenszel 2.1636 1.2336 3.7948
(Coll Risk) Logit 2.1059 1.1951 3.7108
Cohort Mantel-Haenszel 0.6420 0.4705 0.8761
(Col2 Risk) Logit 0.6613 0.4852 0.9013

Output 3.7.3 CMH Option: Breslow-Day Test

Breslow-Day Test for
Homogeneity of the Odds Ratios

Chi-Square 1.4929
DF 1
Pr > Chisqg 0.2218

Example 3.8: Cochran-Armitage Trend Test

The data set Pain contains hypothetical data for a clinical trial of a drug therapy to control pain. The
clinical trial investigates whether adverse responses increase with larger drug doses. Subjects re-
ceive either a placebo or one of four drug doses. An adverse response is recorded as Adverse=‘Yes’;
otherwise, it is recorded as Adverse=‘No’. The number of subjects for each drug dose and response
combination is contained in the variable Count.
data pain;
input Dose Adverse $ Count Q@QQ@;

datalines;
0 No 26 0 Yes 6
1 No 26 1 Yes 7
2 No 23 2 Yes 9
3 No 18 3 Yes 14
4 No 9 4 Yes 23
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The following PROC FREQ statements provide a trend analysis. The TABLES statement requests
a table of Adverse by Dose. The MEASURES option produces measures of association, and the CL
option produces confidence limits for these measures. The TREND option tests for a trend across
the ordinal values of the variable Dose with the Cochran-Armitage test. The EXACT statement
produces exact p-values for this test, and the MAXTIME= option terminates the exact computations
if they do not complete within 60 seconds. The TEST statement computes an asymptotic test for

Somers’ D(R|C).

The PLOTS= option requests a frequency plot for the table of Adverse by Dose. By default, PROC
FREQ provides a bar chart for the frequency plot. The TWOWAY=STACKED option requests a
stacked layout, where the bars correspond to the column variable (Dose) values, and the row variable

(Adverse) frequencies are stacked within each bar.

ods graphics on;

proc freq data=Pain;
tables Adversex*Dose / trend measures cl
plots=freqgplot (twoway=stacked) ;

test smdrc;

exact trend / maxtime=60;

weight Count;

title ’'Clinical Trial for Treatment of Pain’;

run;
ods graphics off;

Output 3.8.1 through Output 3.8.4 display the results of the analysis. The “Col Pct” values in
Output 3.8.1 show the expected increasing trend in the proportion of adverse effects with the in-
creasing dosage (from 18.75% to 71.88%). The corresponding frequency bar chart (Output 3.8.2)

also shows this increasing trend.

Output 3.8.1 Contingency Table

Clinical Trial for Treatment of Pain
The FREQ Procedure
Table of Adverse by Dose
Adverse Dose
Frequency|
Percent |
Row Pct |
Col Pct | 0] 1] 2] 3] |
No | 26 | 26 | 23 | 18 | 9 |
| 16.15 | 16.15 | 14.29 | 11.18 | 5.59 |
| 25.49 | 25.49 | 22.55 | 17.65 | 8.82 |
| 81.25 | 78.79 | 71.88 | 56.25 | 28.13 |
Yes | 6 | 7 | 9 | 14 | 23 |
| 3.73 | 4.35 | 5.59 | 8.70 | 14.29 |
| 10.17 | 11.86 | 15.25 | 23.73 | 38.98 |
| 18.75 | 21.21 | 28.13 | 43.75 | 71.88 |
Total 32 33 32 32 32
19.88 20.50 19.88 19.88 19.88

Total

102
63.35

59
36.65

161
100.00
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Output 3.8.2 Stacked Bar Chart of Frequencies

Distribution of Adverse by Dose
40 -
30 -
>
[&]
g
S 20—
(on
o
(TR
10 -
O —
I I I I I
0 1 2 3 4
Dose
'Adverse [ No I Yes

Output 3.8.3 displays the measures of association produced by the MEASURES option. Somers’
D(R|C) measures the association treating the row variable (Adverse) as the response and the col-
umn variable (Dose) as a predictor. Because the asymptotic 95% confidence limits do not contain
zero, this indicates a strong positive association. Similarly, the Pearson and Spearman correlation
coefficients show evidence of a strong positive association, as hypothesized.

The Cochran-Armitage test (Output 3.8.4) supports the trend hypothesis. The small left-sided p-
values for the Cochran-Armitage test indicate that the probability of the Row 1 level (Adverse=‘No’)
decreases as Dose increases or, equivalently, that the probability of the Row 2 level (Adverse=‘Yes’)
increases as Dose increases. The two-sided p-value tests against either an increasing or decreasing
alternative. This is an appropriate hypothesis when you want to determine whether the drug has
progressive effects on the probability of adverse effects but the direction is unknown.
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Output 3.8.3 Measures of Association

Somers’ D R|C

Somers’ D R|C 0.2569
ASE 0.0499
95% Lower Conf Limit 0.1592
95% Upper Conf Limit 0.3547

Test of HO: Somers’ D R|C = 0

ASE under HO 0.0499
Z 5.1511
One-sided Pr > 2 <.0001
Two—-sided Pr > |Z]| <.0001

95%
Statistic Value ASE Confidence Limits
Gamma 0.5313 0.0935 0.3480 0.7146
Kendall’s Tau-b 0.3373 0.0642 0.2114 0.4631
Stuart’s Tau-c 0.4111 0.0798 0.2547 0.5675
Somers’ D C|R 0.4427 0.0837 0.2786 0.6068
Somers’ D R|C 0.2569 0.0499 0.1592 0.3547
Pearson Correlation 0.3776 0.0714 0.2378 0.5175
Spearman Correlation 0.3771 0.0718 0.2363 0.5178
Lambda Asymmetric C|R 0.1250 0.0662 0.0000 0.2547
Lambda Asymmetric R|C 0.2373 0.0837 0.0732 0.4014
Lambda Symmetric 0.1604 0.0621 0.0388 0.2821
Uncertainty Coefficient C|R 0.0515 0.0191 0.0140 0.0890
Uncertainty Coefficient R|C 0.1261 0.0467 0.0346 0.2175
Uncertainty Coefficient Symmetric 0.0731 0.0271 0.0199 0.1262

Output 3.8.4 Trend Test

Cochran—-Armitage Trend Test

Statistic (2) -4.7918
Asymptotic Test

One-sided Pr < Z <.0001
Two-sided Pr > |Z| <.0001
Exact Test

One-sided Pr <= 2Z 7.237E-07
Two-sided Pr >= |Z]| 1.324E-06
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Example 3.9: Friedman’s Chi-Square Test

Friedman’s test is a nonparametric test for treatment differences in a randomized complete block
design. Each block of the design might be a subject or a homogeneous group of subjects. If blocks
are groups of subjects, the number of subjects in each block must equal the number of treatments.
Treatments are randomly assigned to subjects within each block. If there is one subject per block,
then the subjects are repeatedly measured once under each treatment. The order of treatments is
randomized for each subject.

In this setting, Friedman’s test is identical to the ANOVA (row means scores) CMH statistic when
the analysis uses rank scores (SCORES=RANK). The three-way table uses subject (or subject
group) as the stratifying variable, treatment as the row variable, and response as the column vari-
able. PROC FREQ handles ties by assigning midranks to tied response values. If there are multiple
subjects per treatment in each block, the ANOVA CMH statistic is a generalization of Friedman’s
test.

The data set Hypnosis contains data from a study investigating whether hypnosis has the same effect
on skin potential (measured in millivolts) for four emotions (Lehmann 1975, p. 264). Eight subjects
are asked to display fear, joy, sadness, and calmness under hypnosis. The data are recorded as one
observation per subject for each emotion.

data Hypnosis;
length Emotion $ 10;
input Subject Emotion $ SkinResponse Q@@;

datalines;
1 fear 23.1 1 joy 22.7 1 sadness 22.5 1 calmness 22.6
2 fear 57.6 2 joy 53.2 2 sadness 53.7 2 calmness 53.1
3 fear 10.5 3 joy 9.7 3 sadness 10.8 3 calmness 8.3
4 fear 23.6 4 joy 19.6 4 sadness 21.1 4 calmness 21.6
5 fear 11.9 5 joy 13.8 5 sadness 13.7 5 calmness 13.3
6 fear 54.6 6 joy 47.1 6 sadness 39.2 6 calmness 37.0
7 fear 21.0 7 joy 13.6 7 sadness 13.7 7 calmness 14.8
8 fear 20.3 8 joy 23.6 8 sadness 16.3 8 calmness 14.8

~.

In the following PROC FREQ statements, the TABLES statement creates a three-way table stratified
by Subject and a two-way table; the variables Emotion and SkinResponse form the rows and columns
of each table. The CMH2 option produces the first two Cochran-Mantel-Haenszel statistics, the
option SCORES=RANK specifies that rank scores are used to compute these statistics, and the
NOPRINT option suppresses the contingency tables. These statements produce Output 3.9.1 and
Output 3.9.2.

proc freq data=Hypnosis;
tables Subject*EmotionxSkinResponse /
cmh2 scores=rank noprint;
run;
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proc freq data=Hypnosis;
tables Emotion*SkinResponse /
cmh2 scores=rank noprint;
run;

Because the CMH statistics in Output 3.9.1 are based on rank scores, the Row Mean Scores Differ

statistic is identical to Friedman’s chi-square (Q = 6.45). The p-value of 0.0917 indicates that
differences in skin potential response for different emotions are significant at the 10% level but not
at the 5% level.

When you do not stratify by subject, the Row Mean Scores Differ CMH statistic is identical to a

Kruskal-Wallis test and is not significant (»=0.9038 in Output 3.9.2). Thus, adjusting for subject is

critical to reducing the background variation due to subject differences.

Output 3.9.1 CMH Statistics: Stratifying by Subject

Clinical Trial for Treatment of Pain
The FREQ Procedure

Summary Statistics for Emotion by SkinResponse
Controlling for Subject

Cochran-Mantel-Haenszel Statistics (Based on Rank Scores)

Statistic Alternative Hypothesis DF Value Prob
1 Nonzero Correlation 1 0.2400 0.6242
2 Row Mean Scores Differ 3 6.4500 0.0917

Output 3.9.2 CMH Statistics: No Stratification

Clinical Trial for Treatment of Pain

The FREQ Procedure

Summary Statistics for Emotion by SkinResponse

Cochran-Mantel-Haenszel Statistics (Based on Rank Scores)

Statistic Alternative Hypothesis DF Value Prob

1 Nonzero Correlation 1 0.0001 0.9933
2 Row Mean Scores Differ 3 0.5678 0.9038
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Example 3.10: Cochran’s Q Test

When a binary response is measured several times or under different conditions, Cochran’s Q tests
that the marginal probability of a positive response is unchanged across the times or conditions.
When there are more than two response categories, you can use the CATMOD procedure to fit a
repeated-measures model.

The data set Drugs contains data for a study of three drugs to treat a chronic disease (Agresti 2002).
Forty-six subjects receive drugs A, B, and C. The response to each drug is either favorable (‘F’) or
unfavorable (‘U’).

proc format;
value $ResponseFmt ’'F’=’'Favorable’
'U’="Unfavorable’;

run;

data drugs;
input Drug A $ Drug_ B $ Drug C $ Count QQ;
datalines;

FFF 6 UFF 2

FF U116 UFU 4

FUF 2 UUF 6

FUU 4 UuUuU 6

’

The following statements create one-way frequency tables of the responses to each drug. The
AGREE option produces Cochran’s Q and other measures of agreement for the three-way table.
These statements produce Output 3.10.1 through Output 3.10.5.

proc freq data=Drugs;

tables Drug_A Drug B Drug C / nocum;

tables Drug_AxDrug_BxDrug_C / agree noprint;

format Drug A Drug B Drug C $ResponseFmt.;

weight Count;

title ’'Study of Three Drug Treatments for a Chronic Disease’;
run;

The one-way frequency tables in Output 3.10.1 provide the marginal response for each drug. For
drugs A and B, 61% of the subjects reported a favorable response while 35% of the subjects reported
a favorable response to drug C. Output 3.10.2 and Output 3.10.3 display measures of agreement for
the ‘Favorable’ and ‘Unfavorable’ levels of drug A, respectively. McNemar’s test shows a strong
discordance between drugs B and C when the response to drug A is favorable.
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Output 3.10.1 One-Way Frequency Tables

Study of Three Drug Treatments for a Chronic Disease
The FREQ Procedure
Drug A Frequency Percent
Favorable 28 60.87
Unfavorable 18 39.13
Drug_B Frequency Percent
Favorable 28 60.87
Unfavorable 18 39.13
Drug C Frequency Percent
Favorable 16 34.78
Unfavorable 30 65.22

Output 3.10.2 Measures of Agreement for Drug A Favorable

McNemar’s Test

Statistic (S) 10.8889
DF 1
Pr > S 0.0010

Simple Kappa Coefficient

Kappa -0.0328
ASE 0.1167
95% Lower Conf Limit -0.2615
95% Upper Conf Limit 0.1960

Output 3.10.3 Measures of Agreement for Drug A Unfavorable

McNemar’s Test

Statistic (S) 0.4000
DF 1
Pr > S 0.5271

Simple Kappa Coefficient

Kappa -0.1538
ASE 0.2230
95% Lower Conf Limit -0.5909

95% Upper Conf Limit 0.2832




References 4 213

Output 3.10.4 displays the overall kappa coefficient. The small negative value of kappa indicates
no agreement between drug B response and drug C response.

Cochran’s Q is statistically significant (»p=0.0144 in Output 3.10.5), which leads to rejection of the
hypothesis that the probability of favorable response is the same for the three drugs.

Output 3.10.4 Overall Measures of Agreement

Overall Kappa Coefficient

Kappa -0.0588
ASE 0.1034
95% Lower Conf Limit -0.2615
95% Upper Conf Limit 0.1439

Test for Equal Kappa
Coefficients

Chi-Square 0.2314
DF 1
Pr > ChiSsqg 0.6305

Output 3.10.5 Cochran’s Q Test

Cochran’s Q, for Drug_ A
by Drug B by Drug C

Statistic (Q) 8.4706
DF 2
Pr > Q 0.0145
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Overview: UNIVARIATE Procedure
The UNIVARIATE procedure provides the following:
e descriptive statistics based on moments (including skewness and kurtosis), quantiles or per-

centiles (such as the median), frequency tables, and extreme values

e histograms that optionally can be fitted with probability density curves for various distribu-
tions and with kernel density estimates

e cumulative distribution function plots (cdf plots). Optionally, these can be superimposed with
probability distribution curves for various distributions.

e quantile-quantile plots (Q-Q plots), probability plots, and probability-probability plots (P-P
plots). These plots facilitate the comparison of a data distribution with various theoretical
distributions.

e goodness-of-fit tests for a variety of distributions including the normal

e the ability to inset summary statistics on plots

e the ability to analyze data sets with a frequency variable

o the ability to create output data sets containing summary statistics, histogram intervals, and

parameters of fitted curves

You can use the PROC UNIVARIATE statement, together with the VAR statement, to compute
summary statistics. See the section “Getting Started: UNIVARIATE Procedure” on page 222 for
introductory examples. In addition, you can use the following statements to request plots:
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o the CDFPLOT statement for creating cdf plots

o the HISTOGRAM statement for creating histograms

o the PPPLOT statement for creating P-P plots

o the PROBPLOT statement for creating probability plots
o the QQPLOT statement for creating Q-Q plots

o the CLASS statement together with any of these plot statements for creating comparative
plots

o the INSET statement with any of the plot statements for enhancing the plot with an inset table

of summary statistics

The UNIVARIATE procedure produces two kinds of graphical output:

e traditional graphics, which are produced by default

e ODS Statistical Graphics output (supported on an experimental basis for SAS 9.2), which is
produced when you specify the ODS GRAPHICS statement prior to your procedure state-
ments statements.

See the section “Creating High-Resolution Graphics” on page 337 for more information about pro-
ducing traditional graphics and ODS Graphics output.

Getting Started: UNIVARIATE Procedure

The following examples demonstrate how you can use the UNIVARIATE procedure to analyze the
distributions of variables through the use of descriptive statistical measures and graphical displays,
such as histograms.

Capabilities of PROC UNIVARIATE

The UNIVARIATE procedure provides a variety of descriptive measures, graphical displays, and
statistical methods, which you can use to summarize, visualize, analyze, and model the statisti-
cal distributions of numeric variables. These tools are appropriate for a broad range of tasks and
applications:

e Exploring the distributions of the variables in a data set is an important preliminary step in
data analysis, data warehousing, and data mining. With the UNIVARIATE procedure you can
use tables and graphical displays, such as histograms and nonparametric density estimates,
to find key features of distributions, identify outliers and extreme observations, determine the
need for data transformations, and compare distributions.
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e Modeling the distributions of data and validating distributional assumptions are basic steps in
statistical analysis. You can use the UNIVARIATE procedure to fit parametric distributions
(beta, exponential, gamma, lognormal, normal, Johnson S g, Johnson S;, and Weibull) and to
compute probabilities and percentiles from these models. You can assess goodness of fit with
hypothesis tests and with graphical displays such as probability plots and quantile-quantile
plots. You can also use the UNIVARIATE procedure to validate distributional assumptions
for other types of statistical analysis. When standard assumptions are not met, you can use
the UNIVARIATE procedure to perform nonparametric tests and compute robust estimates of
location and scale.

e Summarizing the distribution of the data is often helpful for creating effective statistical re-
ports and presentations. You can use the UNIVARIATE procedure to create tables of sum-
mary measures, such as means and percentiles, together with graphical displays, such as
histograms and comparative histograms, which facilitate the interpretation of the report.

The following examples illustrate a few of the tasks that you can carry out with the UNIVARIATE
procedure.

Summarizing a Data Distribution

Figure 4.1 shows a table of basic summary measures and a table of extreme observations for the
loan-to-value ratios of 5,840 home mortgages. The ratios are saved as values of the variable LoanTo-
ValueRatio in a data set named HomeLoans. The following statements request a univariate analysis:
ods select BasicMeasures ExtremeObs;
proc univariate data=Homeloans;

var LoanToValueRatio;
run;

The ODS SELECT statement restricts the default output to the tables for basic statistical measures
and extreme observations.

Figure 4.1 Basic Measures and Extreme Observations

The UNIVARIATE Procedure
Variable: LoanToValueRatio (Loan to Value Ratio)

Basic Statistical Measures

Location Variability
Mean 0.292512 Std Deviation 0.16476
Median 0.248050 Variance 0.02715
Mode 0.250000 Range 1.24780

Interquartile Range 0.16419
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Figure 4.1 continued

Extreme Observations

Lowest————— = ————- Highest————-
Value Obs Value Obs
0.0651786 1 1.13976 5776
0.0690157 3 1.14209 5791
0.0699755 59 1.14286 5801
0.0702412 84 1.17090 5799
0.0704787 4 1.31298 5811

The tables in Figure 4.1 show, in particular, that the average ratio is 0.2925 and the minimum and
maximum ratios are 0.06518 and 1.1398, respectively.

Exploring a Data Distribution

Figure 4.2 shows a histogram of the loan-to-value ratios. The histogram reveals features of the ratio
distribution, such as its skewness and the peak at 0.175, which are not evident from the tables in the
previous example. The following statements create the histogram:
title 'Home Loan Analysis’;
proc univariate data=HomeLoans noprint;
histogram LoanToValueRatio;
inset n = 'Number of Homes’ / position=ne;
run;

By default, PROC UNIVARIATE produces traditional graphics output, and the basic appearance
of the histogram is determined by the prevailing ODS style. The NOPRINT option suppresses the
display of summary statistics. The INSET statement inserts the total number of analyzed home
loans in the upper right (northeast) corner of the plot.



Exploring a Data Distribution 4 225

Figure 4.2 Histogram for Loan-to-Value Ratio
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The data set HomeLoans contains a variable named LoanType that classifies the loans into two types:
Gold and Platinum. It is useful to compare the distributions of LoanToValueRatio for the two types.
The following statements request quantiles for each distribution and a comparative histogram, which

are shown in Figure 4.3 and Figure 4.4.

title 'Comparison of Loan Types’;
options nogstyle;
ods select Quantiles MyHist;
proc univariate data=Homeloans;
var LoanToValueRatio;
class LoanType;
histogram LoanToValueRatio / kernel (color=red)
cfill=1ltgray
name='MyHist’;
median='Median Ratio’
"Type of Loan’;

inset n=’'Number of Homes’
label LoanType
run;
options gstyle;

(5.3) / position=ne;
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The ODS SELECT statement restricts the default output to the tables of quantiles and the graph
produced by the HISTOGRAM statement, which is identified by the value specified by the NAME=
option. The CLASS statement specifies LoanType as a classification variable for the quantile com-
putations and comparative histogram. The KERNEL option adds a smooth nonparametric estimate
of the ratio density to each histogram. The INSET statement specifies summary statistics to be

displayed directly in the graph.

The NOGSTYLE system option specifies that the ODS style not influence the appearance of the
histogram. Instead, the CFILL= option determines the color of the histogram bars and the COLOR=
option specifies the color of the kernel density curve.

Figure 4.3 Quantiles for Loan-to-Value Ratio

Quantile
100% Max
99%

95%

90%

75% Q3
50% Median
25% Q1
10%

5%

1%

0% Min

Comparison of Loan Types

The UNIVARIATE Procedure

Variable: LoanToValueRatio (Loan to
LoanType Gold
Quantiles (Definition 5)
Quantile Estimate
100% Max 1.0617647
99% 0.8974576
95% 0.6385908
90% 0.4471369
75% Q3 0.2985099
50% Median 0.2217033
25% Q1 0.1734568
10% 0.1411130
5% 0.1213079
1% 0.0942167
0% Min 0.0651786
Comparison of Loan Types
The UNIVARIATE Procedure
Variable: LoanToValueRatio (Loan to
LoanType Platinum

Quantiles (Definition 5)

Estimate

.312981
.050000
.691803
.549273
.430160
.366168
.314452
.273670
.253124
.231114
.215504
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The output in Figure 4.3 shows that the median ratio for Platinum loans (0.366) is greater than
the median ratio for Gold loans (0.222). The comparative histogram in Figure 4.4 enables you to
compare the two distributions more easily. It shows that the ratio distributions are similar except for
a shift of about 0.14.

Figure 4.4 Comparative Histogram for Loan-to-Value Ratio
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A sample program for this example, univarl.sas, is available in the SAS Sample Library for Base
SAS software.

Modeling a Data Distribution

In addition to summarizing a data distribution as in the preceding example, you can use PROC
UNIVARIATE to statistically model a distribution based on a random sample of data. The following
statements create a data set named Aircraft that contains the measurements of a position deviation
for a sample of 30 aircraft components.
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data Aircraft;

input Deviation @Q@;

label Deviation = ’'Position Deviation’;

datalines;
-.00653 0.00141 -.00702 -.00734 -.00649 -.00601
-.00631 -.00148 -.00731 -.00764 -.00275 -.00497
-.00741 -.00673 -.00573 -.00629 -.00671 —-.00246
-.00222 -.00807 -.00621 -.00785 —-.00544 -.00511
-.00138 -.00609 0.00038 —-.00758 —-.00731 -.00455

run;

An initial question in the analysis is whether the measurement distribution is normal. The following
statements request a table of moments, the tests for normality, and a normal probability plot, which
are shown in Figure 4.5 and Figure 4.6:

title 'Position Deviation Analysis’;
ods graphics on;
ods select Moments TestsForNormality ProbPlot;
proc univariate data=Aircraft normaltest;
var Deviation;
probplot Deviation / normal (mu=est sigma=est)
square;
label Deviation = ’'Position Deviation’;
inset mean std / format=6.4;
run;
ods graphics off;

The ODS GRAPHICS statement causes the procedure to produce ODS Graphics output rather than
traditional graphics. (See the section “Alternatives for Producing Graphics™ on page 337 for infor-
mation about traditional graphics and ODS Graphics.) The INSET statement displays the sample
mean and standard deviation on the probability plot.

Figure 4.5 Moments and Tests for Normality

Position Deviation Analysis

The UNIVARIATE Procedure
Variable: Deviation (Position Deviation)

Moments
N 30 Sum Weights 30
Mean -0.0053067 Sum Observations -0.1592
Std Deviation 0.00254362 Variance 6.47002E-6
Skewness 1.2562507 Kurtosis 0.69790426
Uncorrected SS 0.00103245 Corrected SS 0.00018763

Coeff Variation —-47.932613 Std Error Mean 0.0004644
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Figure 4.5 continued

Tests for Normality

Test —--Statistic—-—- p Value

Shapiro-Wilk W 0.845364 Pr < W 0.0005
Kolmogorov-Smirnov D 0.208921 Pr > D <0.0100
Cramer-von Mises W-Sqg 0.329274 Pr > W-Sq <0.0050
Anderson-Darling A-Sq 1.784881 Pr > A-Sq <0.0050

All four goodness-of-fit tests in Figure 4.5 reject the hypothesis that the measurements are normally
distributed.

Figure 4.6 shows a normal probability plot for the measurements. A linear pattern of points fol-
lowing the diagonal reference line would indicate that the measurements are normally distributed.
Instead, the curved point pattern suggests that a skewed distribution, such as the lognormal, is more
appropriate than the normal distribution.

A lognormal distribution for Deviation is fitted in Example 4.26.

A sample program for this example, univar2.sas, is available in the SAS Sample Library for Base
SAS software.
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Figure 4.6 Normal Probability Plot
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Syntax: UNIVARIATE Procedure

PROC UNIVARIATE < options> ;
BY variables ;
CDFPLOT < variables> < / options> ;
CLASS variable-1 < (v-options)> < variable-2 < (v-options)>> </ KEYLEVEL= valuel | (
valuel value2 )> ;
FREQ variable ;
HISTOGRAM < variables > < / options> ;
ID variables ;
INSET keyword-list </ options> ;
OUTPUT < OUT=SAS-data-set> < keyword1=names ... keywordk=names > < percentile-
options > ;
PPPLOT < variables > < / options> ;
PROBPLOT < variables > < / options > ;
QQPLOT < variables> < / options > ;
VAR variables ;
WEIGHT variable ;

The PROC UNIVARIATE statement invokes the procedure. The VAR statement specifies the nu-
meric variables to be analyzed, and it is required if the OUTPUT statement is used to save summary
statistics in an output data set. If you do not use the VAR statement, all numeric variables in the
data set are analyzed. The plot statements CDFPLOT, HISTOGRAM, PPPLOT, PROBPLOT, and
QQPLOT create graphical displays, and the INSET statement enhances these displays by adding a
table of summary statistics directly on the graph. You can specify one or more of each of the plot
statements, the INSET statement, and the OUTPUT statement. If you use a VAR statement, the
variables listed in a plot statement must be a subset of the variables listed in the VAR statement.

You can use a CLASS statement to specify one or two variables that group the data into classification
levels. The analysis is carried out for each combination of levels. You can use the CLASS statement
with plot statements to create comparative displays, in which each cell contains a plot for one
combination of classification levels.

You can specify a BY statement to obtain separate analyses for each BY group. The FREQ state-
ment specifies a variable whose values provide the frequency for each observation. The WEIGHT
statement specifies a variable whose values are used to weight certain statistics. The ID statement
specifies one or more variables to identify the extreme observations.

PROC UNIVARIATE Statement

PROC UNIVARIATE < options> ;

The PROC UNIVARIATE statement is required to invoke the UNIVARIATE procedure. You can
use the PROC UNIVARIATE statement by itself to request a variety of statistics for summarizing
the data distribution of each analysis variable:
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sample moments

basic measures of location and variability

confidence intervals for the mean, standard deviation, and variance
tests for location

tests for normality

trimmed and Winsorized means

robust estimates of scale

quantiles and related confidence intervals

extreme observations and extreme values

frequency counts for observations

missing values

In addition, you can use options in the PROC UNIVARIATE statement to do the following:

specify the input data set to be analyzed

specify a graphics catalog for saving traditional graphics output
specify rounding units for variable values

specify the definition used to calculate percentiles

specify the divisor used to calculate variances and standard deviations

request that plots be produced on line printers and define special printing characters used for
features

suppress tables

save statistics in an output data set

The following are the options that can be used with the PROC UNIVARIATE statement:

ALL

requests all statistics and tables that the FREQ, MODES, NEXTRVAL=5, PLOT, and CIBA-
SIC options generate. If the analysis variables are not weighted, this option also requests the
statistics and tables generated by the CIPCTLDF, CIPCTLNORMAL, LOCCOUNT, NOR-
MAL, ROBUSTSCALE, TRIMMED=.25, and WINSORIZED=.25 options. PROC UNI-
VARIATE also uses any values that you specify for ALPHA=, MUO=, NEXTRVAL=, CIBA-
SIC, CIPCTLDEF, CIPCTLNORMAL, TRIMMED-=, or WINSORIZED= to produce the out-
put.
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ALPHA=c
specifies the level of significance o for 100(1 — )% confidence intervals. The value o must
be between 0 and 1; the default value is 0.05, which results in 95% confidence intervals.

Note that specialized ALPHA= options are available for a number of confidence interval
options. For example, you can specify CIBASIC(ALPHA=0.10) to request a table of basic
confidence limits at the 90% level. The default value of these options is the value of the
ALPHA-= option in the PROC statement.

ANNOTATE=SAS-data-set

ANNO=S5AS-data-set

specifies an input data set that contains annotate variables as described in SAS/GRAPH Soft-
ware: Reference. You can use this data set to add features to your traditional graphics. PROC
UNIVARIATE adds the features in this data set to every graph that is produced in the pro-
cedure. PROC UNIVARIATE does not use the ANNOTATE= data set unless you create a
traditional graph with a plot statement. The option does not apply to ODS Graphics output.
Use the ANNOTATE-= option in the plot statement if you want to add a feature to a specific
graph produced by that statement.

CIBASIC < (< TYPE=keyword > < ALPHA=« >) >
requests confidence limits for the mean, standard deviation, and variance based on the as-
sumption that the data are normally distributed. If you use the CIBASIC option, you must use
the default value of VARDEF=, which is DF.

TYPE=keyword
specifies the type of confidence limit, where keyword is LOWER, UPPER, or
TWOSIDED. The default value is TWOSIDED.

ALPHA=«
specifies the level of significance o for 100(1 — )% confidence intervals. The value
o must be between O and 1; the default value is 0.05, which results in 95% confidence
intervals. The default value is the value of ALPHA= given in the PROC statement.

CIPCTLDF < (< TYPE=keyword > < ALPHA=x >) >

CIQUANTDF < (< TYPE=keyword > < ALPHA=q >) >
requests confidence limits for quantiles based on a method that is distribution-free. In other
words, no specific parametric distribution such as the normal is assumed for the data. PROC
UNIVARIATE uses order statistics (ranks) to compute the confidence limits as described by
Hahn and Meeker (1991). This option does not apply if you use a WEIGHT statement.

TYPE=keyword
specifies the type of confidence limit, where keyword is LOWER, UPPER, SYMMET-
RIC, or ASYMMETRIC. The default value is SYMMETRIC.

ALPHA=«
specifies the level of significance o for 100(1 — )% confidence intervals. The value
o must be between 0 and 1; the default value is 0.05, which results in 95% confidence
intervals. The default value is the value of ALPHA= given in the PROC statement.
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CIPCTLNORMAL < (< TYPE=keyword > < ALPHA=x >) >
CIQUANTNORMAL < (< TYPE=keyword > < ALPHA=q >) >

requests confidence limits for quantiles based on the assumption that the data are normally
distributed. The computational method is described in Section 4.4.1 of Hahn and Meeker
(1991) and uses the noncentral ¢ distribution as given by Odeh and Owen (1980). This option
does not apply if you use a WEIGHT statement

TYPE=keyword

specifies the type of confidence limit, where keyword is LOWER, UPPER, or
TWOSIDED. The default is TWOSIDED.

ALPHA=«

specifies the level of significance « for 100(1 — «)% confidence intervals. The value
o must be between 0 and 1; the default value is 0.05, which results in 95% confidence
intervals. The default value is the value of ALPHA= given in the PROC statement.

DATA=SAS-data-set

specifies the input SAS data set to be analyzed. If the DATA= option is omitted, the procedure
uses the most recently created SAS data set.

EXCLNPWGT
EXCLNPWGTS

FREQ

excludes observations with nonpositive weight values (zero or negative) from the analysis.
By default, PROC UNIVARIATE counts observations with negative or zero weights in the
total number of observations. This option applies only when you use a WEIGHT statement.

requests a frequency table that consists of the variable values, frequencies, cell percentages,
and cumulative percentages.

If you specify the WEIGHT statement, PROC UNIVARIATE includes the weighted count in
the table and uses this value to compute the percentages.

GOUT=graphics-catalog

IDOUT

specifies the SAS catalog that PROC UNIVARIATE uses to save traditional graphics output.
If you omit the libref in the name of the graphics-catalog, PROC UNIVARIATE looks for the
catalog in the temporary library called WORK and creates the catalog if it does not exist. The
option does not apply to ODS Graphics output.

includes ID variables in the output data set created by an OUTPUT statement. The value of
an ID variable in the output data set is its first value from the input data set or BY group. By
default, ID variables are not included in OUTPUT statement data sets.

LOCCOUNT

requests a table that shows the number of observations greater than, not equal to, and less
than the value of MUO=. PROC UNIVARIATE uses these values to construct the sign test
and the signed rank test. This option does not apply if you use a WEIGHT statement.
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MODES|MODE
requests a table of all possible modes. By default, when the data contain multiple modes,
PROC UNIVARIATE displays the lowest mode in the table of basic statistical measures.
When all the values are unique, PROC UNIVARIATE does not produce a table of modes.

MUO=values

LOCATION=values
specifies the value of the mean or location parameter (ig) in the null hypothesis for tests of
location summarized in the table labeled “Tests for Location: MuO=value.” If you specify
one value, PROC UNIVARIATE tests the same null hypothesis for all analysis variables. If
you specify multiple values, a VAR statement is required, and PROC UNIVARIATE tests a
different null hypothesis for each analysis variable, matching variables and location values by
their order in the two lists. The default value is 0.

The following statement tests the hypothesis o = O for the first variable and the hypothesis
o = 0.5 for the second variable.

proc univariate mu0=0 0.5;

NEXTROBS=n
specifies the number of extreme observations that PROC UNIVARIATE lists in the table of
extreme observations. The table lists the n lowest observations and the n highest observations.
The default value is 5. You can specify NEXTROBS=0 to suppress the table of extreme
observations.

NEXTRVAL=n
specifies the number of extreme values that PROC UNIVARIATE lists in the table of extreme
values. The table lists the n lowest unique values and the n highest unique values. By default,
n = 0 and no table is displayed.

NOBYPLOT
suppresses side-by-side line printer box plots that are created by default when you use the BY
statement and either the ALL option or the PLOT option in the PROC statement.

NOPRINT
suppresses all the tables of descriptive statistics that the PROC UNIVARIATE statement cre-
ates. NOPRINT does not suppress the tables that the HISTOGRAM statement creates. You
can use the NOPRINT option in the HISTOGRAM statement to suppress the creation of its
tables. Use NOPRINT when you want to create an OUT= or OUTTABLE= output data set
only.

NORMAL

NORMALTEST
requests tests for normality that include a series of goodness-of-fit tests based on the empirical
distribution function. The table provides test statistics and p-values for the Shapiro-Wilk test
(provided the sample size is less than or equal to 2000), the Kolmogorov-Smirnov test, the
Anderson-Darling test, and the Cramér-von Mises test. This option does not apply if you use
a WEIGHT statement.
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NOTABCONTENTS
suppresses the table of contents entries for tables of summary statistics produced by the PROC
UNIVARIATE statement.

NOVARCONTENTS
suppresses grouping entries associated with analysis variables in the table of contents. By
default, the table of contents lists results associated with an analysis variable in a group with
the variable name.

OUTTABLE=SAS-data-set
creates an output data set that contains univariate statistics arranged in tabular form, with
one observation per analysis variable. See the section “OUTTABLE= Output Data Set” on
page 372 for details.

PCTLDEF=value

DEF=value
specifies the definition that PROC UNIVARIATE uses to calculate quantiles. The default
value is 5. Values can be 1, 2, 3, 4, or 5. You cannot use PCTLDEF= when you compute
weighted quantiles. See the section “Calculating Percentiles” on page 326 for details on
quantile definitions.

PLOTS | PLOT
produces a stem-and-leaf plot (or a horizontal bar chart), a box plot, and a normal probability
plot in line printer output. If you use a BY statement, side-by-side box plots that are labeled
“Schematic Plots” appear after the univariate analysis for the last BY group.

PLOTSIZE=n
specifies the approximate number of rows used in line-printer plots requested with the PLOTS
option. If n is larger than the value of the SAS system option PAGESIZE=, PROC UNIVARI-
ATE uses the value of PAGESIZE=. If n is less than 8, PROC UNIVARIATE uses eight rows
to draw the plots.

ROBUSTSCALE
produces a table with robust estimates of scale. The statistics include the interquartile range,
Gini’s mean difference, the median absolute deviation about the median (MAD), and two
statistics proposed by Rousseeuw and Croux (1993), Q,, and S,. See the section “Robust
Estimates of Scale” on page 333 for details. This option does not apply if you use a WEIGHT
statement.

ROUND=units

specifies the units to use to round the analysis variables prior to computing statistics. If you
specify one unit, PROC UNIVARIATE uses this unit to round all analysis variables. If you
specify multiple units, a VAR statement is required, and each unit rounds the values of the
corresponding analysis variable. If ROUND=0, no rounding occurs. The ROUND= option
reduces the number of unique variable values, thereby reducing memory requirements for the
procedure. For example, to make the rounding unit 1 for the first analysis variable and 0.5 for
the second analysis variable, submit the statement
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proc univariate round=1 0.5;
var Yieldstrength tenstren;
run;

When a variable value is midway between the two nearest rounded points, the value is rounded
to the nearest even multiple of the roundoff value. For example, with a roundoff value of 1,
the variable values of —2.5, —2.2, and —1.5 are rounded to —2; the values of —0.5, 0.2, and
0.5 are rounded to 0; and the values of 0.6, 1.2, and 1.4 are rounded to 1.

SUMMARYCONTENTS=string’
specifies the table of contents entry used for grouping the summary statistics produced by the
PROC UNIVARIATE statement. You can specify SUMMARYCONTENTS="" to suppress
the grouping entry.

TRIMMED-=values < (< TYPE=keyword > < ALPHA=x >) >

TRIM=values < (< TYPE=keyword > < ALPHA=« >) >

requests a table of trimmed means, where value specifies the number or the proportion of
observations that PROC UNIVARIATE trims. If the value is the number n of trimmed obser-
vations, n must be between 0 and half the number of nonmissing observations. If value is a
proportion p between 0 and Y2, the number of observations that PROC UNIVARIATE trims
is the smallest integer that is greater than or equal to np, where n is the number of observa-
tions. To include confidence limits for the mean and the Student’s ¢ test in the table, you must
use the default value of VARDEF=, which is DF. For details concerning the computation of
trimmed means, see the section “Trimmed Means” on page 333. The TRIMMED= option
does not apply if you use a WEIGHT statement.

TYPE=keyword
specifies the type of confidence limit for the mean, where keyword is LOWER, UPPER,
or TWOSIDED. The default value is TWOSIDED.

ALPHA=«
specifies the level of significance o for 100(1 — «)% confidence intervals. The value
o must be between 0 and 1; the default value is 0.05, which results in 95% confidence
intervals.

VARDEF=divisor

specifies the divisor to use in the calculation of variances and standard deviation. By default,
VARDEF=DF. Table 4.1 shows the possible values for divisor and associated divisors.

Table 4.1 Possible Values for VARDEF=

Value Divisor Formula for Divisor
DF degrees of freedom n—1

N number of observations n

WDF sum of weights minus one (Z;w;) — 1

WEIGHT | WGT sum of weights X w;
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The procedure computes the variance as gvfsgr where CS'S is the corrected sums of squares

and equals Y 7_, (x; — ¥)2. When you weight the analysis variables, CSS = > (w;x; —
)?w)2 where Xy, is the weighted mean.

The default value is DF. To compute the standard error of the mean, confidence limits, and
Student’s ¢ test, use the default value of VARDEF-=.

When you use the WEIGHT statement and VARDEF=DF, the variance is an estimate of s>

where the variance of the ith observation is var(x;) = i}— and w; is the weight for the ith
L

observation. This yields an estimate of the variance of an observation with unit weight.

When you use the WEIGHT statement and VARDEF=WGT, the computed variance is asymp-

. . 2 . . .
totically (for large 1) an estimate of ‘= where w is the average weight. This yields an asymp-
totic estimate of the variance of an observation with average weight.

WINSORIZED=values < (< TYPE=keyword > < ALPHA=« >) >

WINSOR=values < (< TYPE=keyword > < ALPHA=¢ >) >

requests of a table of Winsorized means, where value is the number or the proportion of ob-
servations that PROC UNIVARIATE uses to compute the Winsorized mean. If the value is
the number n of Winsorized observations, » must be between O and half the number of non-
missing observations. If value is a proportion p between 0 and V2, the number of observations
that PROC UNIVARIATE uses is equal to the smallest integer that is greater than or equal to
np, where n is the number of observations. To include confidence limits for the mean and the
Student ¢ test in the table, you must use the default value of VARDEF=, which is DF. For de-
tails concerning the computation of Winsorized means, see the section “Winsorized Means”
on page 332. The WINSORIZED-= option does not apply if you use a WEIGHT statement.

TYPE=keyword
specifies the type of confidence limit for the mean, where keyword is LOWER, UPPER,
or TWOSIDED. The default is TWOSIDED.

ALPHA=¢
specifies the level of significance « for 100(1 — )% confidence intervals. The value
o must be between 0 and 1; the default value is 0.05, which results in 95% confidence
intervals.

BY Statement

BY variables ;

You can specify a BY statement with PROC UNIVARIATE to obtain separate analyses for each
BY group. The BY statement specifies the variables that the procedure uses to form BY groups.
You can specify more than one variable. If you do not use the NOTSORTED option in the BY
statement, the observations in the data set must either be sorted by all the variables that you specify
or be indexed appropriately.
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DESCENDING
specifies that the data set is sorted in descending order by the variable that immediately fol-
lows the word DESCENDING in the BY statement.

NOTSORTED
specifies that observations are not necessarily sorted in alphabetic or numeric order. The data
are grouped in another way—for example, chronological order.

The requirement for ordering or indexing observations according to the values of BY variables
is suspended for BY-group processing when you use the NOTSORTED option. In fact, the
procedure does not use an index if you specify NOTSORTED. The procedure defines a BY
group as a set of contiguous observations that have the same values for all BY variables. If
observations with the same values for the BY variables are not contiguous, the procedure
treats each contiguous set as a separate BY group