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Chapter 1

What’s New in the Base SAS Statistical
Procedures

CORR Procedure

The new ID statement specifies one or more additional tip variables to identify observations in
scatter plots and scatter plot matrices.

FREQ Procedure

The FREQ procedure can now produce frequency plots, cumulative frequency plots, deviation plots,
odds ratio plots, and kappa plots by using ODS Graphics. The crosstabulation table now has an ODS
template that you can customize with the TEMPLATE procedure. Equivalence and noninferiority
tests are now available for the binomial proportion and the proportion difference. New confidence
limits for the binomial proportion include Agresti-Coull, Jeffreys, and Wilson (score) confidence
limits. The RISKDIFF option in the EXACT statement provides unconditional exact confidence
limits for the proportion (risk) difference. The EQOR option in the EXACT statement provides
Zelen’s exact test for equal odds ratios.

UNIVARIATE Procedure

The UNIVARIATE procedure now produces graphs that conform to ODS styles, so that creating
consistent output is easier. Also, you now have two alternative methods for producing graphs. With
traditional graphics you can control every detail of a graph through familiar procedure syntax and
GOPTION and SYMBOL statements. With ODS Graphics (experimental for the UNIVARIATE
procedure in SAS 9.2), you can obtain the highest quality output with minimal syntax and full
compatibility with graphics produced by SAS/STAT and SAS/ETS procedures.

The new CDFPLOT statement plots the observed cumulative distribution function (cdf) of a vari-
able and enables you to superimpose a fitted theoretical distribution on the graph. The new PPPLOT
statement creates a probability-probability plot (also referred to as a P-P plot or percent plot), which
compares the empirical cumulative distribution function (ecdf) of a variable with a specified the-
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oretical cumulative distribution function. The beta, exponential, gamma, lognormal, normal, and
Weibull distributions are available in both statements.
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Overview: CORR Procedure

The CORR procedure computes Pearson correlation coefficients, three nonparametric measures of
association, and the probabilities associated with these statistics. The correlation statistics include
the following:

� Pearson product-moment correlation

� Spearman rank-order correlation

� Kendall’s tau-b coefficient

� Hoeffding’s measure of dependence, D

� Pearson, Spearman, and Kendall partial correlation

Pearson product-moment correlation is a parametric measure of a linear relationship between two
variables. For nonparametric measures of association, Spearman rank-order correlation uses the
ranks of the data values and Kendall’s tau-b uses the number of concordances and discordances
in paired observations. Hoeffding’s measure of dependence is another nonparametric measure of
association that detects more general departures from independence. A partial correlation provides
a measure of the correlation between two variables after controlling the effects of other variables.

With only one set of analysis variables specified, the default correlation analysis includes descriptive
statistics for each analysis variable and Pearson correlation statistics for these variables. You can
also compute Cronbach’s coefficient alpha for estimating reliability.

With two sets of analysis variables specified, the default correlation analysis includes descriptive
statistics for each analysis variable and Pearson correlation statistics between these two sets of
variables.

For a Pearson or Spearman correlation, the Fisher’s z transformation can be used to derive its
confidence limits and a p-value under a specified null hypothesis H0W � D �0. Either a one-sided
or a two-sided alternative is used for these statistics.

You can save the correlation statistics in a SAS data set for use with other statistical and reporting
procedures.

When the relationship between two variables is nonlinear or when outliers are present, the correla-
tion coefficient might incorrectly estimate the strength of the relationship. Plotting the data enables
you to verify the linear relationship and to identify the potential outliers. If the ods graphics on

statement is specified, scatter plots and a scatter plot matrix can be created via the Output Delivery
System (ODS). Confidence and prediction ellipses can also be added to the scatter plot. See the
section “Confidence and Prediction Ellipses” on page 28 for a detailed description of the ellipses.
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Getting Started: CORR Procedure

The following statements create the data set Fitness, which has been altered to contain some missing
values:

*----------------- Data on Physical Fitness -----------------*
| These measurements were made on men involved in a physical |
| fitness course at N.C. State University. |
| The variables are Age (years), Weight (kg), |
| Runtime (time to run 1.5 miles in minutes), and |
| Oxygen (oxygen intake, ml per kg body weight per minute) |
| Certain values were changed to missing for the analysis. |

*------------------------------------------------------------*;
data Fitness;

input Age Weight Oxygen RunTime @@;
datalines;

44 89.47 44.609 11.37 40 75.07 45.313 10.07
44 85.84 54.297 8.65 42 68.15 59.571 8.17
38 89.02 49.874 . 47 77.45 44.811 11.63
40 75.98 45.681 11.95 43 81.19 49.091 10.85
44 81.42 39.442 13.08 38 81.87 60.055 8.63
44 73.03 50.541 10.13 45 87.66 37.388 14.03
45 66.45 44.754 11.12 47 79.15 47.273 10.60
54 83.12 51.855 10.33 49 81.42 49.156 8.95
51 69.63 40.836 10.95 51 77.91 46.672 10.00
48 91.63 46.774 10.25 49 73.37 . 10.08
57 73.37 39.407 12.63 54 79.38 46.080 11.17
52 76.32 45.441 9.63 50 70.87 54.625 8.92
51 67.25 45.118 11.08 54 91.63 39.203 12.88
51 73.71 45.790 10.47 57 59.08 50.545 9.93
49 76.32 . . 48 61.24 47.920 11.50
52 82.78 47.467 10.50
;

The following statements invoke the CORR procedure and request a correlation analysis:
ods graphics on;
proc corr data=Fitness plots=matrix(histogram);
run;
ods graphics off;

The “Simple Statistics” table in Figure 2.1 displays univariate statistics for the analysis variables.
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Figure 2.1 Univariate Statistics

The CORR Procedure

4 Variables: Age Weight Oxygen RunTime

Simple Statistics

Variable N Mean Std Dev Sum Minimum Maximum

Age 31 47.67742 5.21144 1478 38.00000 57.00000
Weight 31 77.44452 8.32857 2401 59.08000 91.63000
Oxygen 29 47.22721 5.47718 1370 37.38800 60.05500
RunTime 29 10.67414 1.39194 309.55000 8.17000 14.03000

By default, all numeric variables not listed in other statements are used in the analysis. Observations
with nonmissing values for each variable are used to derive the univariate statistics for that variable.

The “Pearson Correlation Coefficients” table in Figure 2.2 displays the Pearson correlation, the p-
value under the null hypothesis of zero correlation, and the number of nonmissing observations for
each pair of variables.

Figure 2.2 Pearson Correlation Coefficients

Pearson Correlation Coefficients
Prob > |r| under H0: Rho=0
Number of Observations

Age Weight Oxygen RunTime

Age 1.00000 -0.23354 -0.31474 0.14478
0.2061 0.0963 0.4536

31 31 29 29

Weight -0.23354 1.00000 -0.15358 0.20072
0.2061 0.4264 0.2965

31 31 29 29

Oxygen -0.31474 -0.15358 1.00000 -0.86843
0.0963 0.4264 <.0001

29 29 29 28

RunTime 0.14478 0.20072 -0.86843 1.00000
0.4536 0.2965 <.0001

29 29 28 29

By default, Pearson correlation statistics are computed from observations with nonmissing values
for each pair of analysis variables. Figure 2.2 displays a correlation of �0.86843 between Runtime
and Oxygen, which is significant with a p-value less than 0.0001. That is, there exists an inverse
linear relationship between these two variables. As Runtime (time to run 1.5 miles in minutes)
increases, Oxygen (oxygen intake, ml per kg body weight per minute) decreases.
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This graphical display is requested by specifying the ods graphics on statement and the PLOTS
option. For more information about the ods graphics statement, see Chapter 21, “Statistical
Graphics Using ODS” (SAS/STAT User’s Guide).

When you use the PLOTS=MATRIX(HISTOGRAM) option, the CORR procedure displays a sym-
metric matrix plot for the analysis variables in Figure 2.3. The histograms for these analysis vari-
ables are also displayed on the diagonal of the matrix plot. This inverse linear relationship between
the two variables, Oxygen and Runtime, is also shown in the plot.

Figure 2.3 Symmetric Matrix Plot
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Syntax: CORR Procedure

The following statements are available in PROC CORR:

PROC CORR < options > ;
BY variables ;
FREQ variable ;
ID variables ;
PARTIAL variables ;
VAR variables ;
WEIGHT variable ;
WITH variables ;

The BY statement specifies groups in which separate correlation analyses are performed.

The FREQ statement specifies the variable that represents the frequency of occurrence for other
values in the observation.

The ID statement specifies one or more additional tip variables to identify observations in scatter
plots and scatter plot matrices.

The PARTIAL statement identifies controlling variables to compute Pearson, Spearman, or Kendall
partial-correlation coefficients.

The VAR statement lists the numeric variables to be analyzed and their order in the correlation
matrix. If you omit the VAR statement, all numeric variables not listed in other statements are used.

The WEIGHT statement identifies the variable whose values weight each observation to compute
Pearson product-moment correlation.

The WITH statement lists the numeric variables with which correlations are to be computed.

The PROC CORR statement is the only required statement for the CORR procedure. The rest of
this section provides detailed syntax information for each of these statements, beginning with the
PROC CORR statement. The remaining statements are presented in alphabetical order.

PROC CORR Statement

PROC CORR < options > ;

Table 2.1 summarizes the options available in the PROC CORR statement.

Table 2.1 Summary of PROC CORR Options

Option Description

Data Sets
DATA= specifies input data set
OUTH= specifies output data set with Hoeffding’s D statistics
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Table 2.1 continued

Option Description

OUTK= specifies output data set with Kendall correlation statistics
OUTP= specifies output data set with Pearson correlation statistics
OUTS= specifies output data set with Spearman correlation statistics

Statistical Analysis
EXCLNPWGT excludes observations with nonpositive weight values from the analysis
FISHER requests correlation statistics using Fisher’s z transformation
HOEFFDING requests Hoeffding’s measure of dependence, D
KENDALL requests Kendall’s tau-b
NOMISS excludes observations with missing analysis values from the analysis
PEARSON requests Pearson product-moment correlation
SPEARMAN requests Spearman rank-order correlation

Pearson Correlation Statistics
ALPHA computes Cronbach’s coefficient alpha
COV computes covariances
CSSCP computes corrected sums of squares and crossproducts
FISHER computes correlation statistics based on Fisher’s z transformation
NOMISS excludes missing values
SINGULAR= specifies singularity criterion
SSCP computes sums of squares and crossproducts
VARDEF= specifies the divisor for variance calculations

ODS Output Graphics
PLOTS=MATRIX displays scatter plot matrix
PLOTS=SCATTER displays scatter plots for pairs of variables

Printed Output
BEST= displays a specified number of ordered correlation coefficients
NOCORR suppresses Pearson correlations
NOPRIN suppresses all printed output
NOPROB suppresses p-values
NOSIMPLE suppresses descriptive statistics
RANK displays ordered correlation coefficients

The following options can be used in the PROC CORR statement. They are listed in alphabetical
order.

ALPHA
calculates and prints Cronbach’s coefficient alpha. PROC CORR computes separate coeffi-
cients using raw and standardized values (scaling the variables to a unit variance of 1). For
each VAR statement variable, PROC CORR computes the correlation between the variable
and the total of the remaining variables. It also computes Cronbach’s coefficient alpha by
using only the remaining variables.



10 F Chapter 2: The CORR Procedure

If a WITH statement is specified, the ALPHA option is invalid. When you specify the ALPHA
option, the Pearson correlations will also be displayed. If you specify the OUTP= option,
the output data set also contains observations with Cronbach’s coefficient alpha. If you use
the PARTIAL statement, PROC CORR calculates Cronbach’s coefficient alpha for partialled
variables. See the section “Partial Correlation” on page 22 for details.

BEST=n
prints the n highest correlation coefficients for each variable, n � 1. Correlations are ordered
from highest to lowest in absolute value. Otherwise, PROC CORR prints correlations in a
rectangular table, using the variable names as row and column labels.

If you specify the HOEFFDING option, PROC CORR displays the D statistics in order from
highest to lowest.

COV
displays the variance and covariance matrix. When you specify the COV option, the Pearson
correlations will also be displayed. If you specify the OUTP= option, the output data set also
contains the covariance matrix with the corresponding _TYPE_ variable value ‘COV.’ If you
use the PARTIAL statement, PROC CORR computes a partial covariance matrix.

CSSCP
displays a table of the corrected sums of squares and crossproducts. When you specify the
CSSCP option, the Pearson correlations will also be displayed. If you specify the OUTP=
option, the output data set also contains a CSSCP matrix with the corresponding _TYPE_
variable value ‘CSSCP.’ If you use a PARTIAL statement, PROC CORR prints both an un-
partial and a partial CSSCP matrix, and the output data set contains a partial CSSCP matrix.

DATA=SAS-data-set
names the SAS data set to be analyzed by PROC CORR. By default, the procedure uses the
most recently created SAS data set.

EXCLNPWGT
EXCLNPWGTS

excludes observations with nonpositive weight values from the analysis. By default, PROC
CORR treats observations with negative weights like those with zero weights and counts them
in the total number of observations.

FISHER < ( fisher-options ) >
requests confidence limits and p-values under a specified null hypothesis, H0W � D �0, for
correlation coefficients by using Fisher’s z transformation. These correlations include the
Pearson correlations and Spearman correlations.

The following fisher-options are available:

ALPHA=˛
specifies the level of the confidence limits for the correlation, 100.1 � ˛/%. The value
of the ALPHA= option must be between 0 and 1, and the default is ALPHA=0.05.

BIASADJ=YES | NO
specifies whether or not the bias adjustment is used in constructing confidence limits.
The BIASADJ=YES option also produces a new correlation estimate that uses the bias
adjustment. By default, BIASADJ=YES.
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RHO0=�0

specifies the value �0 in the null hypothesis H0W � D �0, where �1 < �0 < 1. By
default, RHO0=0.

TYPE=LOWER | UPPER | TWOSIDED
specifies the type of confidence limits. The TYPE=LOWER option requests a lower
confidence limit from the lower alternative H1W � < �0, the TYPE=UPPER option
requests an upper confidence limit from the upper alternative H1W � > �0, and the
default TYPE=TWOSIDED option requests two-sided confidence limits from the two-
sided alternative H1W � ¤ �0.

HOEFFDING
requests a table of Hoeffding’s D statistics. This D statistic is 30 times larger than the usual
definition and scales the range between �0.5 and 1 so that large positive values indicate
dependence. The HOEFFDING option is invalid if a WEIGHT or PARTIAL statement is
used.

KENDALL
requests a table of Kendall’s tau-b coefficients based on the number of concordant and dis-
cordant pairs of observations. Kendall’s tau-b ranges from �1 to 1.

The KENDALL option is invalid if a WEIGHT statement is used. If you use a PARTIAL
statement, probability values for Kendall’s partial tau-b are not available.

NOCORR
suppresses displaying of Pearson correlations. If you specify the OUTP= option, the data set
type remains CORR. To change the data set type to COV, CSSCP, or SSCP, use the TYPE=
data set option.

NOMISS
excludes observations with missing values from the analysis. Otherwise, PROC CORR
computes correlation statistics by using all of the nonmissing pairs of variables. Using the
NOMISS option is computationally more efficient.

NOPRINT
suppresses all displayed output, which also includes output produced with ODS Graphics.
Use the NOPRINT option if you want to create an output data set only.

NOPROB
suppresses displaying the probabilities associated with each correlation coefficient.

NOSIMPLE
suppresses printing simple descriptive statistics for each variable. However, if you request an
output data set, the output data set still contains simple descriptive statistics for the variables.

OUTH=output-data-set
creates an output data set containing Hoeffding’sD statistics. The contents of the output data
set are similar to those of the OUTP= data set. When you specify the OUTH= option, the
Hoeffding’s D statistics will be displayed.
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OUTK=output-data-set
creates an output data set containing Kendall correlation statistics. The contents of the output
data set are similar to those of the OUTP= data set. When you specify the OUTK= option,
the Kendall correlation statistics will be displayed.

OUTP=output-data-set

OUT=output-data-set
creates an output data set containing Pearson correlation statistics. This data set also includes
means, standard deviations, and the number of observations. The value of the _TYPE_ vari-
able is ‘CORR.’ When you specify the OUTP= option, the Pearson correlations will also be
displayed. If you specify the ALPHA option, the output data set also contains six observations
with Cronbach’s coefficient alpha.

OUTS=SAS-data-set
creates an output data set containing Spearman correlation coefficients. The contents of the
output data set are similar to those of the OUTP= data set. When you specify the OUTS=
option, the Spearman correlation coefficients will be displayed.

PEARSON
requests a table of Pearson product-moment correlations. The correlations range from �1 to
1. If you do not specify the HOEFFDING, KENDALL, SPEARMAN, OUTH=, OUTK=,
or OUTS= option, the CORR procedure produces Pearson product-moment correlations by
default. Otherwise, you must specify the PEARSON, ALPHA, COV, CSSCP, SSCP, or OUT=
option for Pearson correlations. Also, if a scatter plot or a scatter plot matrix is requested, the
Pearson correlations will be displayed.

PLOTS < ( ONLY ) > < = plot-request >

PLOTS < ( ONLY ) > < = ( plot-request < . . . plot-request > ) >
requests statistical graphics via the Output Delivery System (ODS). To request these graphs,
you must specify the ods graphics on statement in addition to the following options in
the PROC CORR statement. For more information about the ods graphics statement, see
Chapter 21, “Statistical Graphics Using ODS” (SAS/STAT User’s Guide).

The global plot option ONLY suppresses the default plots, and only plots specifically re-
quested are displayed. The plot request options include the following:

ALL
produces all appropriate plots.

MATRIX < ( matrix-options ) >
requests a scatter plot matrix for variables. That is, the procedure displays a symmet-
ric matrix plot with variables in the VAR list if a WITH statement is not specified.
Otherwise, the procedure displays a rectangular matrix plot with the WITH variables
appearing down the side and the VAR variables appearing across the top.

NONE
suppresses all plots.
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SCATTER < ( scatter-options ) >
requests scatter plots for pairs of variables. That is, the procedure displays a scatter plot
for each applicable pair of distinct variables from the VAR list if a WITH statement is
not specified. Otherwise, the procedure displays a scatter plot for each applicable pair
of variables, one from the WITH list and the other from the VAR list.

By default, PLOTS=MATRIX, a scatter plot matrix for all variables is displayed. When a
scatter plot or a scatter plot matrix is requested, the Pearson correlations will also be dis-
played.

The available matrix-options are as follows:

HIST | HISTOGRAM
displays histograms of variables in the VAR list in the symmetric matrix plot.

NVAR=ALL | n
specifies the maximum number of variables in the VAR list to be displayed in the matrix
plot, where n > 0. The NVAR=ALL option uses all variables in the VAR list. By
default, NVAR=5.

NWITH=ALL | n
specifies the maximum number of variables in the WITH list to be displayed in the
matrix plot, where n > 0. The NWITH=ALL option uses all variables in the WITH
list. By default, NWITH=5.

The available scatter-options are as follows:

ALPHA=˛
specifies the ˛ values for the confidence or prediction ellipses to be displayed in the
scatter plots, where 0 < ˛ < 1. For each ˛ value specified, a (1 � ˛) confidence or
prediction ellipse is created. By default, ˛ D 0:05.

ELLIPSE=PREDICTION | CONFIDENCE | NONE
requests prediction ellipses for new observations (ELLIPSE=PREDICTION),
confidence ellipses for the mean (ELLIPSE=CONFIDENCE), or no ellipses
(ELLIPSE=NONE) to be created in the scatter plots. By default, EL-
LIPSE=PREDICTION.

NOINSET
suppresses the default inset of summary information for the scatter plot. The inset table
contains the number of observations (Observations) and correlation.

NVAR=ALL | n
specifies the maximum number of variables in the VAR list to be displayed in the plots,
where n > 0. The NVAR=ALL option uses all variables in the VAR list. By default,
NVAR=5.

NWITH=ALL | n
specifies the maximum number of variables in the WITH list to be displayed in the
plots, where n > 0. The NWITH=ALL option uses all variables in the WITH list. By
default, NWITH=5.
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RANK
displays the ordered correlation coefficients for each variable. Correlations are ordered from
highest to lowest in absolute value. If you specify the HOEFFDING option, the D statistics
are displayed in order from highest to lowest.

SINGULAR=p
specifies the criterion for determining the singularity of a variable if you use a PARTIAL state-
ment. A variable is considered singular if its corresponding diagonal element after Cholesky
decomposition has a value less than p times the original unpartialled value of that variable.
The default value is 1E�8. The range of � is between 0 and 1.

SPEARMAN
requests a table of Spearman correlation coefficients based on the ranks of the variables. The
correlations range from �1 to 1. If you specify a WEIGHT statement, the SPEARMAN
option is invalid.

SSCP
displays a table of the sums of squares and crossproducts. When you specify the SSCP option,
the Pearson correlations will also be displayed. If you specify the OUTP= option, the output
data set contains a SSCP matrix and the corresponding _TYPE_ variable value is ‘SSCP.’ If
you use a PARTIAL statement, the unpartial SSCP matrix is displayed, and the output data
set does not contain an SSCP matrix.

VARDEF=DF | N | WDF | WEIGHT | WGT
specifies the variance divisor in the calculation of variances and covariances. The default is
VARDEF=DF.

Table 2.2 displays available values and associated divisors for the VARDEF= option, where
n is the number of nonmissing observations, k is the number of variables specified in the
PARTIAL statement, and wj is the weight associated with the j th nonmissing observation.

Table 2.2 Possible Values for the VARDEF= Option

Value Description Divisor

DF degrees of freedom n � k � 1

N number of observations n

WDF sum of weights minus one
Pn

j wj � k � 1

WEIGHT | WGT sum of weights
Pn

j wj

BY Statement

BY variables ;

You can specify a BY statement with PROC CORR to obtain separate analyses on observations in
groups defined by the BY variables. If a BY statement appears, the procedure expects the input data
set to be sorted in order of the BY variables.



FREQ Statement F 15

If your input data set is not sorted in ascending order, use one of the following alternatives:

� Sort the data by using the SORT procedure with a similar BY statement.

� Specify the BY statement option NOTSORTED or DESCENDING in the BY statement for
the CORR procedure. The NOTSORTED option does not mean that the data are unsorted but
rather that the data are arranged in groups (according to values of the BY variables) and that
these groups are not necessarily in alphabetical or increasing numeric order.

� Create an index on the BY variables by using the DATASETS procedure.

For more information about the BY statement, see SAS Language Reference: Concepts. For more
information about the DATASETS procedure, see the Base SAS Procedures Guide.

FREQ Statement

FREQ variable ;

The FREQ statement lists a numeric variable whose value represents the frequency of the obser-
vation. If you use the FREQ statement, the procedure assumes that each observation represents n
observations, where n is the value of the FREQ variable. If n is not an integer, SAS truncates it. If n
is less than 1 or is missing, the observation is excluded from the analysis. The sum of the frequency
variable represents the total number of observations.

The effects of the FREQ and WEIGHT statements are similar except when calculating degrees of
freedom.

ID Statement

ID variables ;

The ID statement specifies one or more additional tip variables to identify observations in scatter
plots and scatter plot matrix. For each plot, the tip variables include the X-axis variable, the Y-axis
variable, and the variable for observation numbers. The ID statement names additional variables to
identify observations in scatter plots and scatter plot matrices.

PARTIAL Statement

PARTIAL variables ;

The PARTIAL statement lists variables to use in the calculation of partial correlation statistics. Only
the Pearson partial correlation, Spearman partial rank-order correlation, and Kendall’s partial tau-b
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can be computed. When you use the PARTIAL statement, observations with missing values are
excluded.

With a PARTIAL statement, PROC CORR also displays the partial variance and standard deviation
for each analysis variable if the PEARSON option is specified.

VAR Statement

VAR variables ;

The VAR statement lists variables for which to compute correlation coefficients. If the VAR state-
ment is not specified, PROC CORR computes correlations for all numeric variables not listed in
other statements.

WEIGHT Statement

WEIGHT variable ;

The WEIGHT statement lists weights to use in the calculation of Pearson weighted product-moment
correlation. The HOEFFDING, KENDALL, and SPEARMAN options are not valid with the
WEIGHT statement.

The observations with missing weights are excluded from the analysis. By default, for observations
with nonpositive weights, weights are set to zero and the observations are included in the analysis.
You can use the EXCLNPWGT option to exclude observations with negative or zero weights from
the analysis.

WITH Statement

WITH variables ;

The WITH statement lists variables with which correlations of the VAR statement variables are to
be computed. The WITH statement requests correlations of the form r.Xi ; Yj /, where X1; : : : ; Xm

are analysis variables specified in the VAR statement, and Y1; : : : ; Yn are variables specified in the
WITH statement. The correlation matrix has a rectangular structure of the form264 r.Y1; X1/ � � � r.Y1; Xm/

:::
: : :

:::

r.Yn; X1/ � � � r.Yn; Xm/

375
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For example, the statements

proc corr;
var x1 x2;
with y1 y2 y3;

run;

produce correlations for the following combinations:

24 r.Y1;X1/ r.Y1;X2/

r.Y 2;X1/ r.Y 2;X2/

r.Y 3;X1/ r.Y 3;X2/

35

Details: CORR Procedure

Pearson Product-Moment Correlation

The Pearson product-moment correlation is a parametric measure of association for two variables.
It measures both the strength and the direction of a linear relationship. If one variable X is an
exact linear function of another variable Y, a positive relationship exists if the correlation is 1 and
a negative relationship exists if the correlation is �1. If there is no linear predictability between
the two variables, the correlation is 0. If the two variables are normal with a correlation 0, the two
variables are independent. However, correlation does not imply causality because, in some cases,
an underlying causal relationship might not exist.

The scatter plot matrix in Figure 2.4 displays the relationship between two numeric random vari-
ables in various situations.
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Figure 2.4 Correlations between Two Variables

The scatter plot matrix shows a positive correlation between variables Y1 and X1, a negative corre-
lation between Y1 and X2, and no clear correlation between Y2 and X1. The plot also shows no clear
linear correlation between Y2 and X2, even though Y2 is dependent on X2.

The formula for the population Pearson product-moment correlation, denoted �xy , is

�xy D
Cov.x; y/p
V.x/V.y/

D
E. .x � E.x//.y � E.y// /p
E.x � E.x//2 E.y � E.y//2

The sample correlation, such as a Pearson product-moment correlation or weighted product-moment
correlation, estimates the population correlation. The formula for the sample Pearson product-



Spearman Rank-Order Correlation F 19

moment correlation is

rxy D

P
i . .xi � Nx/.yi � Ny/ /pP

i .xi � Nx/2
P

i .yi � Ny/2

where Nx is the sample mean of x and Ny is the sample mean of y. The formula for a weighted
Pearson product-moment correlation is

rxy D

P
i wi .xi � Nxw/.yi � Nyw/pP

i wi .xi � Nxw/2
P

i wi .yi � Nyw/2

where wi is the weight, Nxw is the weighted mean of x, and Nyw is the weighted mean of y.

Probability Values

Probability values for the Pearson correlation are computed by treating

t D .n � 2/1=2

�
r2

1 � r2

�1=2

as coming from a t distribution with .n � 2/ degrees of freedom, where r is the sample correlation.

Spearman Rank-Order Correlation

Spearman rank-order correlation is a nonparametric measure of association based on the ranks of
the data values. The formula is

� D

P
i . .Ri � NR/.Si � NS/ /qP
i .Ri � NR/2

P
.Si � NS/2

where Ri is the rank of xi , Si is the rank of yi , NR is the mean of the Ri values, and NS is the mean
of the Si values.

PROC CORR computes the Spearman correlation by ranking the data and using the ranks in the
Pearson product-moment correlation formula. In case of ties, the averaged ranks are used.

Probability Values

Probability values for the Spearman correlation are computed by treating

t D .n � 2/1=2

�
r2

1 � r2

�1=2

as coming from a t distribution with .n � 2/ degrees of freedom, where r is the sample Spearman
correlation.
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Kendall’s Tau-b Correlation Coefficient

Kendall’s tau-b is a nonparametric measure of association based on the number of concordances and
discordances in paired observations. Concordance occurs when paired observations vary together,
and discordance occurs when paired observations vary differently. The formula for Kendall’s tau-b
is

� D

P
i<j .sgn.xi � xj /sgn.yi � yj //p

.T0 � T1/.T0 � T2/

where T0 D n.n�1/=2, T1 D
P

k tk.tk �1/=2, and T2 D
P

l ul.ul �1/=2. The tk is the number
of tied x values in the kth group of tied x values, ul is the number of tied y values in the l th group
of tied y values, n is the number of observations, and sgn.z/ is defined as

sgn.z/ D

8<:
1 if z > 0
0 if z D 0

�1 if z < 0

PROC CORR computes Kendall’s tau-b by ranking the data and using a method similar to Knight
(1966). The data are double sorted by ranking observations according to values of the first variable
and reranking the observations according to values of the second variable. PROC CORR computes
Kendall’s tau-b from the number of interchanges of the first variable and corrects for tied pairs (pairs
of observations with equal values of X or equal values of Y).

Probability Values

Probability values for Kendall’s tau-b are computed by treating

sp
V.s/

as coming from a standard normal distribution where

s D

X
i<j

.sgn.xi � xj /sgn.yi � yj //

and V.s/, the variance of s, is computed as

V.s/ D
v0 � vt � vu

18
C

v1

2n.n � 1/
C

v2

9n.n � 1/.n � 2/

where

v0 D n.n � 1/.2nC 5/

vt D
P

k tk.tk � 1/.2tk C 5/

vu D
P

l ul.ul � 1/.2ul C 5/
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v1 D .
P

k tk.tk � 1// .
P
ui .ul � 1//

v2 D .
P

l ti .tk � 1/.tk � 2// .
P
ul.ul � 1/.ul � 2//

The sums are over tied groups of values where ti is the number of tied x values and ui is the number
of tied y values (Noether 1967). The sampling distribution of Kendall’s partial tau-b is unknown;
therefore, the probability values are not available.

Hoeffding Dependence Coefficient

Hoeffding’s measure of dependence,D, is a nonparametric measure of association that detects more
general departures from independence. The statistic approximates a weighted sum over observations
of chi-square statistics for two-by-two classification tables (Hoeffding 1948). Each set of .x; y/
values are cut points for the classification. The formula for Hoeffding’s D is

D D 30
.n � 2/.n � 3/D1 CD2 � 2.n � 2/D3

n.n � 1/.n � 2/.n � 3/.n � 4/

where D1 D
P

i .Qi � 1/.Qi � 2/, D2 D
P

i .Ri � 1/.Ri � 2/.Si � 1/.Si � 2/, and D3 DP
i .Ri � 2/.Si � 2/.Qi � 1/. Ri is the rank of xi , Si is the rank of yi , and Qi (also called the

bivariate rank) is 1 plus the number of points with both x and y values less than the i th point.

A point that is tied on only the x value or y value contributes 1/2 to Qi if the other value is less
than the corresponding value for the i th point.

A point that is tied on both x and y contributes 1/4 to Qi . PROC CORR obtains the Qi values
by first ranking the data. The data are then double sorted by ranking observations according to
values of the first variable and reranking the observations according to values of the second variable.
Hoeffding’s D statistic is computed using the number of interchanges of the first variable. When
no ties occur among data set observations, the D statistic values are between �0.5 and 1, with 1
indicating complete dependence. However, when ties occur, theD statistic might result in a smaller
value. That is, for a pair of variables with identical values, the Hoeffding’sD statistic might be less
than 1. With a large number of ties in a small data set, the D statistic might be less than �0.5. For
more information about Hoeffding’s D, see Hollander and Wolfe (1999).

Probability Values

The probability values for Hoeffding’s D statistic are computed using the asymptotic distribution
computed by Blum, Kiefer, and Rosenblatt (1961). The formula is

.n � 1/�4

60
D C

�4

72

which comes from the asymptotic distribution. If the sample size is less than 10, refer to the tables
for the distribution of D in Hollander and Wolfe (1999).
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Partial Correlation

A partial correlation measures the strength of a relationship between two variables, while controlling
the effect of other variables. The Pearson partial correlation between two variables, after control-
ling for variables in the PARTIAL statement, is equivalent to the Pearson correlation between the
residuals of the two variables after regression on the controlling variables.

Let y D .y1; y2; : : : ; yv/ be the set of variables to correlate and z D .z1; z2; : : : ; zp/ be the set
of controlling variables. The population Pearson partial correlation between the i th and the j th
variables of y given z is the correlation between errors .yi � E.yi // and .yj � E.yj //, where

E.yi / D ˛i C zˇi and E.yj / D ˛j C zˇj

are the regression models for variables yi and yj given the set of controlling variables z, respec-
tively.

For a given sample of observations, a sample Pearson partial correlation between yi and yj given z
is derived from the residuals yi � Oyi and yj � Oyj , where

Oyi D Ǫ i C z Ǒ
i and Oyj D Ǫj C z Ǒ

j

are fitted values from regression models for variables yi and yj given z.

The partial corrected sums of squares and crossproducts (CSSCP) of y given z are the corrected
sums of squares and crossproducts of the residuals y � Oy. Using these partial corrected sums of
squares and crossproducts, you can calculate the partial covariances and partial correlations.

PROC CORR derives the partial corrected sums of squares and crossproducts matrix by applying
the Cholesky decomposition algorithm to the CSSCP matrix. For Pearson partial correlations, let S
be the partitioned CSSCP matrix between two sets of variables, z and y:

S D

�
Szz Szy

S0
zy Syy

�

PROC CORR calculates Syy:z , the partial CSSCP matrix of y after controlling for z, by applying
the Cholesky decomposition algorithm sequentially on the rows associated with z, the variables
being partialled out.

After applying the Cholesky decomposition algorithm to each row associated with variables z,
PROC CORR checks all higher-numbered diagonal elements associated with z for singularity. A
variable is considered singular if the value of the corresponding diagonal element is less than "
times the original unpartialled corrected sum of squares of that variable. You can specify the singu-
larity criterion " by using the SINGULAR= option. For Pearson partial correlations, a controlling
variable z is considered singular if the R2 for predicting this variable from the variables that are
already partialled out exceeds 1 � ". When this happens, PROC CORR excludes the variable from
the analysis. Similarly, a variable is considered singular if the R2 for predicting this variable from
the controlling variables exceeds 1 � ". When this happens, its associated diagonal element and all
higher-numbered elements in this row or column are set to zero.
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After the Cholesky decomposition algorithm is applied to all rows associated with z, the resulting
matrix has the form

T D

�
Tzz Tzy

0 Syy:z

�

where Tzz is an upper triangular matrix with T 0
zzTzz D S 0

zz , T 0
zzTzy D S 0

zy , and Syy:z D Syy �

T 0
zyTzy .

If Szz is positive definite, then Tzy D T 0
zz

�1
S 0

zy and the partial CSSCP matrix Syy:z is identical to
the matrix derived from the formula

Syy:z D Syy � S 0
zyS

0�1
zz Szy

The partial variance-covariance matrix is calculated with the variance divisor (VARDEF= option).
PROC CORR then uses the standard Pearson correlation formula on the partial variance-covariance
matrix to calculate the Pearson partial correlation matrix.

When a correlation matrix is positive definite, the resulting partial correlation between variables x
and y after adjusting for a single variable z is identical to that obtained from the first-order partial
correlation formula

rxy:z D
rxy � rxzryzq
.1 � r2

xz/.1 � r2
yz/

where rxy , rxz , and ryz are the appropriate correlations.

The formula for higher-order partial correlations is a straightforward extension of the preceding
first-order formula. For example, when the correlation matrix is positive definite, the partial cor-
relation between x and y controlling for both z_1 and z_2 is identical to the second-order partial
correlation formula

rxy:z1z2
D

rxy:z1
� rxz2:z1

ryz2:z1q
.1 � r2

xz2:z1
/.1 � r2

yz2:z1
/

where rxy:z1
, rxz2:z1

, and ryz2:z1
are first-order partial correlations among variables x, y, and z_2

given z_1.

To derive the corresponding Spearman partial rank-order correlations and Kendall partial tau-b cor-
relations, PROC CORR applies the Cholesky decomposition algorithm to the Spearman rank-order
correlation matrix and Kendall’s tau-b correlation matrix and uses the correlation formula. That
is, the Spearman partial correlation is equivalent to the Pearson correlation between the residuals
of the linear regression of the ranks of the two variables on the ranks of the partialled variables.
Thus, if a PARTIAL statement is specified with the CORR=SPEARMAN option, the residuals of
the ranks of the two variables are displayed in the plot. The partial tau-b correlations range from –1
to 1. However, the sampling distribution of this partial tau-b is unknown; therefore, the probability
values are not available.
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Probability Values

Probability values for the Pearson and Spearman partial correlations are computed by treating

.n � k � 2/1=2r

.1 � r2/1=2

as coming from a t distribution with .n�k�2/ degrees of freedom, where r is the partial correlation
and k is the number of variables being partialled out.

Fisher’s z Transformation

For a sample correlation r that uses a sample from a bivariate normal distribution with correlation
� D 0, the statistic

tr D .n � 2/1=2

�
r2

1 � r2

�1=2

has a Student’s t distribution with (n � 2) degrees of freedom.

With the monotone transformation of the correlation r (Fisher 1921)

zr D tanh�1.r/ D
1

2
log

�
1C r

1 � r

�
the statistic z has an approximate normal distribution with mean and variance

E.zr/ D � C
�

2.n � 1/

V .zr/ D
1

n � 3

where � D tanh�1.�/.

For the transformed zr , the approximate variance V.zr/ D 1=.n� 3/ is independent of the correla-
tion �. Furthermore, even the distribution of zr is not strictly normal, it tends to normality rapidly
as the sample size increases for any values of � (Fisher 1970, pp. 200–201).

For the null hypothesis H0W � D �0, the p-values are computed by treating

zr � �0 �
�0

2.n � 1/

as a normal random variable with mean zero and variance 1=.n�3/, where �0 D tanh�1.�0/ (Fisher
1970, p. 207; Anderson 1984, p. 123).

Note that the bias adjustment, �0=.2.n � 1//, is always used when computing p-values under the
null hypothesis H0W � D �0 in the CORR procedure.
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The ALPHA= option in the FISHER option specifies the value ˛ for the confidence level 1 � ˛,
the RHO0= option specifies the value �0 in the hypothesis H0W � D �0, and the BIASADJ= option
specifies whether the bias adjustment is to be used for the confidence limits.

The TYPE= option specifies the type of confidence limits. The TYPE=TWOSIDED option requests
two-sided confidence limits and a p-value under the hypothesis H0W � D �0. For a one-sided
confidence limit, the TYPE=LOWER option requests a lower confidence limit and a p-value under
the hypothesisH0W � <D �0, and the TYPE=UPPER option requests an upper confidence limit and
a p-value under the hypothesis H0W � >D �0.

Confidence Limits for the Correlation

The confidence limits for the correlation � are derived through the confidence limits for the param-
eter �, with or without the bias adjustment.

Without a bias adjustment, confidence limits for � are computed by treating

zr � �

as having a normal distribution with mean zero and variance 1=.n � 3/.

That is, the two-sided confidence limits for � are computed as

�l D zr � z.1�˛=2/

r
1

n � 3

�u D zr C z.1�˛=2/

r
1

n � 3

where z.1�˛=2/ is the 100.1 � ˛=2/ percentage point of the standard normal distribution.

With a bias adjustment, confidence limits for � are computed by treating

zr � � � bias.r/

as having a normal distribution with mean zero and variance 1=.n � 3/, where the bias adjustment
function (Keeping 1962, p. 308) is

bias.rr/ D
r

2.n � 1/

That is, the two-sided confidence limits for � are computed as

�l D zr � bias.r/ � z.1�˛=2/

r
1

n � 3

�u D zr � bias.r/C z.1�˛=2/

r
1

n � 3

These computed confidence limits of �l and �u are then transformed back to derive the confidence
limits for the correlation �:

rl D tanh.�l/ D
exp.2�l/ � 1

exp.2�l/C 1
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ru D tanh.�u/ D
exp.2�u/ � 1

exp.2�u/C 1

Note that with a bias adjustment, the CORR procedure also displays the following correlation esti-
mate:

radj D tanh.zr � bias.r//

Applications of Fisher’s z Transformation

Fisher (1970, p. 199) describes the following practical applications of the z transformation:

� testing whether a population correlation is equal to a given value
� testing for equality of two population correlations
� combining correlation estimates from different samples

To test if a population correlation �1 from a sample of n1 observations with sample correlation
r1 is equal to a given �0, first apply the z transformation to r1 and �0: z1 D tanh�1.r1/ and
�0 D tanh�1.�0/.

The p-value is then computed by treating

z1 � �0 �
�0

2.n1 � 1/

as a normal random variable with mean zero and variance 1=.n1 � 3/.

Assume that sample correlations r1 and r2 are computed from two independent samples of n1 and
n2 observations, respectively. To test whether the two corresponding population correlations, �1

and �2, are equal, first apply the z transformation to the two sample correlations: z1 D tanh�1.r1/

and z2 D tanh�1.r2/.

The p-value is derived under the null hypothesis of equal correlation. That is, the difference z1 �z2

is distributed as a normal random variable with mean zero and variance 1=.n1 � 3/C 1=.n2 � 3/.

Assuming further that the two samples are from populations with identical correlation, a combined
correlation estimate can be computed. The weighted average of the corresponding z values is

Nz D
.n1 � 3/z1 C .n2 � 3/z2

n1 C n2 � 6

where the weights are inversely proportional to their variances.

Thus, a combined correlation estimate is Nr D tanh. Nz/ and V. Nz/ D 1=.n1Cn2�6/. See Example 2.4
for further illustrations of these applications.

Note that this approach can be extended to include more than two samples.
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Cronbach’s Coefficient Alpha

Analyzing latent constructs such as job satisfaction, motor ability, sensory recognition, or customer
satisfaction requires instruments to accurately measure the constructs. Interrelated items can be
summed to obtain an overall score for each participant. Cronbach’s coefficient alpha estimates the
reliability of this type of scale by determining the internal consistency of the test or the average
correlation of items within the test (Cronbach 1951).

When a value is recorded, the observed value contains some degree of measurement error. Two
sets of measurements on the same variable for the same individual might not have identical values.
However, repeated measurements for a series of individuals will show some consistency. Reliability
measures internal consistency from one set of measurements to another. The observed value Y is
divided into two components, a true value T and a measurement error E. The measurement error is
assumed to be independent of the true value; that is,

Y D T CE Cov.T;E/ D 0

The reliability coefficient of a measurement test is defined as the squared correlation between the
observed value Y and the true value T ; that is,

r2.Y; T / D
Cov.Y; T /2

V.Y /V.T /
D

V.T /2

V.Y /V.T /
D

V.T /
V.Y /

which is the proportion of the observed variance due to true differences among individuals in the
sample. If Y is the sum of several observed variables measuring the same feature, you can esti-
mate V.T /. Cronbach’s coefficient alpha, based on a lower bound for V.T /, is an estimate of the
reliability coefficient.

Suppose p variables are used with Yj D Tj C Ej for j D 1; 2; : : : ; p, where Yj is the observed
value, Tj is the true value, and Ej is the measurement error. The measurement errors (Ej ) are
independent of the true values (Tj ) and are also independent of each other. Let Y0 D

P
j Yj be the

total observed score and let T0 D
P

j Tj be the total true score. Because

.p � 1/
X

j

V.Tj / �

X
i¤j

Cov.Ti ; Tj /

a lower bound for V.T0/ is given by
p

p � 1

X
i¤j

Cov.Ti ; Tj /

With Cov.Yi ; Yj / D Cov.Ti ; Tj / for i ¤ j , a lower bound for the reliability coefficient,
V.T0/=V .Y0/, is then given by the Cronbach’s coefficient alpha:

˛ D

�
p

p � 1

� P
i¤j Cov.Yi ; Yj /

V .Y0/
D

�
p

p � 1

� 
1 �

P
j V.Yj /

V .Y0/

!

If the variances of the items vary widely, you can standardize the items to a standard deviation of 1
before computing the coefficient alpha. If the variables are dichotomous (0,1), the coefficient alpha
is equivalent to the Kuder-Richardson 20 (KR-20) reliability measure.
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When the correlation between each pair of variables is 1, the coefficient alpha has a maximum value
of 1. With negative correlations between some variables, the coefficient alpha can have a value less
than zero. The larger the overall alpha coefficient, the more likely that items contribute to a reliable
scale. Nunnally and Bernstein (1994) suggests 0.70 as an acceptable reliability coefficient; smaller
reliability coefficients are seen as inadequate. However, this varies by discipline.

To determine how each item reflects the reliability of the scale, you calculate a coefficient alpha
after deleting each variable independently from the scale. Cronbach’s coefficient alpha from all
variables except the kth variable is given by

˛k D

�
p � 1

p � 2

� 
1 �

P
i¤k V.Yi /

V .
P

i¤k Yi /

!

If the reliability coefficient increases after an item is deleted from the scale, you can assume that the
item is not correlated highly with other items in the scale. Conversely, if the reliability coefficient
decreases, you can assume that the item is highly correlated with other items in the scale. Refer
to SAS Communications (1994) for more information about how to interpret Cronbach’s coefficient
alpha.

Listwise deletion of observations with missing values is necessary to correctly calculate Cronbach’s
coefficient alpha. PROC CORR does not automatically use listwise deletion if you specify the
ALPHA option. Therefore, you should use the NOMISS option if the data set contains missing
values. Otherwise, PROC CORR prints a warning message indicating the need to use the NOMISS
option with the ALPHA option.

Confidence and Prediction Ellipses

When the relationship between two variables is nonlinear or when outliers are present, the correla-
tion coefficient might incorrectly estimate the strength of the relationship. Plotting the data enables
you to verify the linear relationship and to identify the potential outliers.

The partial correlation between two variables, after controlling for variables in the PARTIAL state-
ment, is the correlation between the residuals of the linear regression of the two variables on the
partialled variables. Thus, if a PARTIAL statement is also specified, the residuals of the analysis
variables are displayed in the scatter plot matrix and scatter plots.

The CORR procedure optionally provides two types of ellipses for each pair of variables in a scatter
plot. One is a confidence ellipse for the population mean, and the other is a prediction ellipse for a
new observation. Both assume a bivariate normal distribution.

Let NZ and S be the sample mean and sample covariance matrix of a random sample of size n
from a bivariate normal distribution with mean � and covariance matrix †. The variable NZ �

� is distributed as a bivariate normal variate with mean zero and covariance .1=n/†, and it is
independent of S. Using Hotelling’s T 2 statistic, which is defined as

T 2
D n. NZ � �/0S�1. NZ � �/
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a 100.1 � ˛/% confidence ellipse for � is computed from the equation

n

n � 1
. NZ � �/0S�1. NZ � �/ D

2

n � 2
F2;n�2.1 � ˛/

where F2;n�2.1 � ˛/ is the .1 � ˛/ critical value of an F distribution with degrees of freedom 2

and n � 2.

A prediction ellipse is a region for predicting a new observation in the population. It also approxi-
mates a region containing a specified percentage of the population.

Denote a new observation as the bivariate random variable Znew. The variable

Znew � NZ D .Znew � �/ � . NZ � �/

is distributed as a bivariate normal variate with mean zero (the zero vector) and covariance .1 C

1=n/†, and it is independent of S. A 100.1 � ˛/% prediction ellipse is then given by the equation

n

n � 1
. NZ � �/0S�1. NZ � �/ D

2.nC 1/

n � 2
F2;n�2.1 � ˛/

The family of ellipses generated by different critical values of the F distribution has a common
center (the sample mean) and common major and minor axis directions.

The shape of an ellipse depends on the aspect ratio of the plot. The ellipse indicates the correlation
between the two variables if the variables are standardized (by dividing the variables by their re-
spective standard deviations). In this situation, the ratio between the major and minor axis lengths
is s

1C jr j

1 � jr j

In particular, if r D 0, the ratio is 1, which corresponds to a circular confidence contour and
indicates that the variables are uncorrelated. A larger value of the ratio indicates a larger positive or
negative correlation between the variables.

Missing Values

PROC CORR excludes observations with missing values in the WEIGHT and FREQ variables. By
default, PROC CORR uses pairwise deletion when observations contain missing values. PROC
CORR includes all nonmissing pairs of values for each pair of variables in the statistical compu-
tations. Therefore, the correlation statistics might be based on different numbers of observations.

If you specify the NOMISS option, PROC CORR uses listwise deletion when a value of the VAR or
WITH statement variable is missing. PROC CORR excludes all observations with missing values
from the analysis. Therefore, the number of observations for each pair of variables is identical.
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The PARTIAL statement always excludes the observations with missing values by automatically
invoking the NOMISS option. With the NOMISS option, the data are processed more efficiently
because fewer resources are needed. Also, the resulting correlation matrix is nonnegative definite.

In contrast, if the data set contains missing values for the analysis variables and the NOMISS option
is not specified, the resulting correlation matrix might not be nonnegative definite. This leads to
several statistical difficulties if you use the correlations as input to regression or other statistical
procedures.

Output Tables

By default, PROC CORR prints a report that includes descriptive statistics and correlation statistics
for each variable. The descriptive statistics include the number of observations with nonmissing
values, the mean, the standard deviation, the minimum, and the maximum.

If a nonparametric measure of association is requested, the descriptive statistics include the median.
Otherwise, the sample sum is included. If a Pearson partial correlation is requested, the descriptive
statistics also include the partial variance and partial standard deviation.

If variable labels are available, PROC CORR labels the variables. If you specify the CSSCP, SSCP,
or COV option, the appropriate sums of squares and crossproducts and covariance matrix appear
at the top of the correlation report. If the data set contains missing values, PROC CORR prints
additional statistics for each pair of variables. These statistics, calculated from the observations
with nonmissing row and column variable values, might include the following:

� SSCP(’W’,’V’), uncorrected sums of squares and crossproducts

� USS(’W’), uncorrected sums of squares for the row variable

� USS(’V’), uncorrected sums of squares for the column variable

� CSSCP(’W’,’V’), corrected sums of squares and crossproducts

� CSS(’W’), corrected sums of squares for the row variable

� CSS(’V’), corrected sums of squares for the column variable

� COV(’W’,’V’), covariance

� VAR(’W’), variance for the row variable

� VAR(’V’), variance for the column variable

� DF(’W’,’V’), divisor for calculating covariance and variances

For each pair of variables, PROC CORR prints the correlation coefficients, the number of observa-
tions used to calculate the coefficient, and the p-value.

If you specify the ALPHA option, PROC CORR prints Cronbach’s coefficient alpha, the correlation
between the variable and the total of the remaining variables, and Cronbach’s coefficient alpha by
using the remaining variables for the raw variables and the standardized variables.
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Output Data Sets

If you specify the OUTP=, OUTS=, OUTK=, or OUTH= option, PROC CORR creates an output
data set containing statistics for Pearson correlation, Spearman correlation, Kendall’s tau-b, or Ho-
effding’s D, respectively. By default, the output data set is a special data set type (TYPE=CORR)
that many SAS/STAT procedures recognize, including PROC REG and PROC FACTOR. When you
specify the NOCORR option and the COV, CSSCP, or SSCP option, use the TYPE= data set option
to change the data set type to COV, CSSCP, or SSCP.

The output data set includes the following variables:

� BY variables, which identify the BY group when using a BY statement

� _TYPE_ variable, which identifies the type of observation

� _NAME_ variable, which identifies the variable that corresponds to a given row of the corre-
lation matrix

� INTERCEPT variable, which identifies variable sums when specifying the SSCP option

� VAR variables, which identify the variables listed in the VAR statement

You can use a combination of the _TYPE_ and _NAME_ variables to identify the contents of an
observation. The _NAME_ variable indicates which row of the correlation matrix the observation
corresponds to. The values of the _TYPE_ variable are as follows:

� SSCP, uncorrected sums of squares and crossproducts

� CSSCP, corrected sums of squares and crossproducts

� COV, covariances

� MEAN, mean of each variable

� STD, standard deviation of each variable

� N, number of nonmissing observations for each variable

� SUMWGT, sum of the weights for each variable when using a WEIGHT statement

� CORR, correlation statistics for each variable

If you specify the SSCP option, the OUTP= data set includes an additional observation that contains
intercept values. If you specify the ALPHA option, the OUTP= data set also includes observations
with the following _TYPE_ values:

� RAWALPHA, Cronbach’s coefficient alpha for raw variables

� STDALPHA, Cronbach’s coefficient alpha for standardized variables
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� RAWALDEL, Cronbach’s coefficient alpha for raw variables after deleting one variable

� STDALDEL, Cronbach’s coefficient alpha for standardized variables after deleting one vari-
able

� RAWCTDEL, the correlation between a raw variable and the total of the remaining raw vari-
ables

� STDCTDEL, the correlation between a standardized variable and the total of the remaining
standardized variables

If you use a PARTIAL statement, the statistics are calculated after the variables are partialled.
If PROC CORR computes Pearson correlation statistics, MEAN equals zero and STD equals the
partial standard deviation associated with the partial variance for the OUTP=, OUTK=, and OUTS=
data sets. Otherwise, PROC CORR assigns missing values to MEAN and STD.

ODS Table Names

PROC CORR assigns a name to each table it creates. You must use these names to reference tables
when using the Output Delivery System (ODS). These names are listed in Table 2.3 and Table 2.4.
For more information about ODS, see Chapter 20, “Using the Output Delivery System” (SAS/STAT
User’s Guide).

Table 2.3 ODS Tables Produced by PROC CPRR

ODS Table Name Description Option

Cov Covariances COV
CronbachAlpha Coefficient alpha ALPHA
CronbachAlphaDel Coefficient alpha with deleted variable ALPHA
Csscp Corrected sums of squares and crossproducts CSSCP
FisherPearsonCorr Pearson correlation statistics using FISHER

Fisher’s z transformation
FisherSpearmanCorr Spearman correlation statistics using FISHER SPEARMAN

Fisher’s z transformation
HoeffdingCorr Hoeffding’s D statistics HOEFFDING
KendallCorr Kendall’s tau-b coefficients KENDALL
PearsonCorr Pearson correlations PEARSON
SimpleStats Simple descriptive statistics
SpearmanCorr Spearman correlations SPEARMAN
Sscp Sums of squares and crossproducts SSCP
VarInformation Variable information
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Table 2.4 ODS Tables Produced with the PARTIAL Statement

ODS Table Name Description Option

FisherPearsonPartialCorr Pearson partial correlation statistics FISHER
using Fisher’s z transformation

FisherSpearmanPartialCorr Spearman partial correlation statistics FISHER SPEARMAN
using Fisher’s z transformation

PartialCsscp Partial corrected sums of squares CSSCP
and crossproducts

PartialCov Partial covariances COV
PartialKendallCorr Partial Kendall tau-b coefficients KENDALL
PartialPearsonCorr Partial Pearson correlations
PartialSpearmanCorr Partial Spearman correlations SPEARMAN

ODS Graphics

PROC CORR assigns a name to each graph it creates using ODS. You can use these names to
reference the graphs when using ODS. The names are listed in Table 2.5.

To request these graphs, you must specify the ods graphics on statement in addition to the op-
tions indicated in Table 2.5. For more information about the ods graphics statement, see Chap-
ter 21, “Statistical Graphics Using ODS” (SAS/STAT User’s Guide).

Table 2.5 ODS Graphics Produced by PROC CORR

ODS Graph Name Plot Description Option

ScatterPlot Scatter plot PLOTS=SCATTER
MatrixPlot Scatter plot matrix PLOTS=MATRIX

Examples: CORR Procedure

Example 2.1: Computing Four Measures of Association

This example produces a correlation analysis with descriptive statistics and four measures of asso-
ciation: the Pearson product-moment correlation, the Spearman rank-order correlation, Kendall’s
tau-b coefficients, and Hoeffding’s measure of dependence, D.

The Fitness data set created in the section “Getting Started: CORR Procedure” on page 5 contains
measurements from a study of physical fitness of 31 participants. The following statements request
all four measures of association for the variables Weight, Oxygen, and Runtime:
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ods graphics on;
title ’Measures of Association for a Physical Fitness Study’;
proc corr data=Fitness pearson spearman kendall hoeffding

plots=matrix(histogram);
var Weight Oxygen RunTime;

run;
ods graphics off;

Note that Pearson correlations are computed by default only if all three nonparametric correlations
(SPEARMAN, KENDALL, and HOEFFDING) are not specified. Otherwise, you need to specify
the PEARSON option explicitly to compute Pearson correlations.

The “Simple Statistics” table in Output 2.1.1 displays univariate descriptive statistics for analysis
variables. By default, observations with nonmissing values for each variable are used to derive the
univariate statistics for that variable. When nonparametric measures of association are specified,
the procedure displays the median instead of the sum as an additional descriptive measure.

Output 2.1.1 Simple Statistics

Measures of Association for a Physical Fitness Study

The CORR Procedure

3 Variables: Weight Oxygen RunTime

Simple Statistics

Variable N Mean Std Dev Median Minimum Maximum

Weight 31 77.44452 8.32857 77.45000 59.08000 91.63000
Oxygen 29 47.22721 5.47718 46.67200 37.38800 60.05500
RunTime 29 10.67414 1.39194 10.50000 8.17000 14.03000

The “Pearson Correlation Coefficients” table in Output 2.1.2 displays Pearson correlation statistics
for pairs of analysis variables. The Pearson correlation is a parametric measure of association for
two continuous random variables. When there are missing data, the number of observations used to
calculate the correlation can vary.
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Output 2.1.2 Pearson Correlation Coefficients

Pearson Correlation Coefficients
Prob > |r| under H0: Rho=0
Number of Observations

Weight Oxygen RunTime

Weight 1.00000 -0.15358 0.20072
0.4264 0.2965

31 29 29

Oxygen -0.15358 1.00000 -0.86843
0.4264 <.0001

29 29 28

RunTime 0.20072 -0.86843 1.00000
0.2965 <.0001

29 28 29

The table shows that the Pearson correlation between Runtime and Oxygen is �0.86843, which is
significant with a p-value less than 0.0001. This indicates a strong negative linear relationship
between these two variables. As Runtime increases, Oxygen decreases linearly.

The Spearman rank-order correlation is a nonparametric measure of association based on the ranks
of the data values. The “Spearman Correlation Coefficients” table in Output 2.1.3 displays results
similar to those of the “Pearson Correlation Coefficients” table in Output 2.1.2.

Output 2.1.3 Spearman Correlation Coefficients

Spearman Correlation Coefficients
Prob > |r| under H0: Rho=0
Number of Observations

Weight Oxygen RunTime

Weight 1.00000 -0.06824 0.13749
0.7250 0.4769

31 29 29

Oxygen -0.06824 1.00000 -0.80131
0.7250 <.0001

29 29 28

RunTime 0.13749 -0.80131 1.00000
0.4769 <.0001

29 28 29

Kendall’s tau-b is a nonparametric measure of association based on the number of concordances
and discordances in paired observations. The “Kendall Tau b Correlation Coefficients” table in
Output 2.1.4 displays results similar to those of the “Pearson Correlation Coefficients” table in
Output 2.1.2.
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Output 2.1.4 Kendall’s Tau-b Correlation Coefficients

Kendall Tau b Correlation Coefficients
Prob > |tau| under H0: Tau=0

Number of Observations

Weight Oxygen RunTime

Weight 1.00000 -0.00988 0.06675
0.9402 0.6123

31 29 29

Oxygen -0.00988 1.00000 -0.62434
0.9402 <.0001

29 29 28

RunTime 0.06675 -0.62434 1.00000
0.6123 <.0001

29 28 29

Hoeffding’s measure of dependence,D, is a nonparametric measure of association that detects more
general departures from independence. Without ties in the variables, the values of theD statistic can
vary between �0:5 and 1, with 1 indicating complete dependence. Otherwise, the D statistic can
result in a smaller value. The “Hoeffding Dependence Coefficients” table in Output 2.1.5 displays
Hoeffding dependence coefficients. Since ties occur in the variable Weight, the D statistic for the
Weight variable is less than 1.

Output 2.1.5 Hoeffding’s Dependence Coefficients

Hoeffding Dependence Coefficients
Prob > D under H0: D=0
Number of Observations

Weight Oxygen RunTime

Weight 0.97690 -0.00497 -0.02355
<.0001 0.5101 1.0000

31 29 29

Oxygen -0.00497 1.00000 0.23449
0.5101 <.0001

29 29 28

RunTime -0.02355 0.23449 1.00000
1.0000 <.0001

29 28 29

When you use the PLOTS=MATRIX(HISTOGRAM) option, the CORR procedure displays a sym-
metric matrix plot for the analysis variables listed in the VAR statement (Output 2.1.6).
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Output 2.1.6 Symmetric Scatter Plot Matrix

The strong negative linear relationship between Oxygen and Runtime is evident in Output 2.1.6.

Note that this graphical display is requested by specifying the ods graphics on statement and
the PLOTS option. For more information about the ods graphics statement, see Chapter 21,
“Statistical Graphics Using ODS” (SAS/STAT User’s Guide).
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Example 2.2: Computing Correlations between Two Sets of Variables

The following statements create a data set which contains measurements for four iris parts from
Fisher’s iris data (1936): sepal length, sepal width, petal length, and petal width. Each observation
represents one specimen.

*------------------- Data on Iris Setosa --------------------*
| The data set contains 50 iris specimens from the species |
| Iris Setosa with the following four measurements: |
| SepalLength (sepal length) |
| SepalWidth (sepal width) |
| PetalLength (petal length) |
| PetalWidth (petal width) |
| Certain values were changed to missing for the analysis. |

*------------------------------------------------------------*;
data Setosa;
input SepalLength SepalWidth PetalLength PetalWidth @@;
label sepallength=’Sepal Length in mm.’

sepalwidth=’Sepal Width in mm.’
petallength=’Petal Length in mm.’
petalwidth=’Petal Width in mm.’;

datalines;
50 33 14 02 46 34 14 03 46 36 . 02
51 33 17 05 55 35 13 02 48 31 16 02
52 34 14 02 49 36 14 01 44 32 13 02
50 35 16 06 44 30 13 02 47 32 16 02
48 30 14 03 51 38 16 02 48 34 19 02
50 30 16 02 50 32 12 02 43 30 11 .
58 40 12 02 51 38 19 04 49 30 14 02
51 35 14 02 50 34 16 04 46 32 14 02
57 44 15 04 50 36 14 02 54 34 15 04
52 41 15 . 55 42 14 02 49 31 15 02
54 39 17 04 50 34 15 02 44 29 14 02
47 32 13 02 46 31 15 02 51 34 15 02
50 35 13 03 49 31 15 01 54 37 15 02
54 39 13 04 51 35 14 03 48 34 16 02
48 30 14 01 45 23 13 03 57 38 17 03
51 38 15 03 54 34 17 02 51 37 15 04
52 35 15 02 53 37 15 02
;

The following statements request a correlation analysis between two sets of variables, the sepal
measurements (length and width) and the petal measurements (length and width):

ods graphics on;
title ’Fisher (1936) Iris Setosa Data’;
proc corr data=Setosa sscp cov plots;

var sepallength sepalwidth;
with petallength petalwidth;

run;
ods graphics off;
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The “Simple Statistics” table in Output 2.2.1 displays univariate statistics for variables in the VAR
and WITH statements.

Output 2.2.1 Simple Statistics

Fisher (1936) Iris Setosa Data

The CORR Procedure

2 With Variables: PetalLength PetalWidth
2 Variables: SepalLength SepalWidth

Simple Statistics

Variable N Mean Std Dev Sum

PetalLength 49 14.71429 1.62019 721.00000
PetalWidth 48 2.52083 1.03121 121.00000
SepalLength 50 50.06000 3.52490 2503
SepalWidth 50 34.28000 3.79064 1714

Simple Statistics

Variable Minimum Maximum Label

PetalLength 11.00000 19.00000 Petal Length in mm.
PetalWidth 1.00000 6.00000 Petal Width in mm.
SepalLength 43.00000 58.00000 Sepal Length in mm.
SepalWidth 23.00000 44.00000 Sepal Width in mm.

When the WITH statement is specified together with the VAR statement, the CORR procedure
produces rectangular matrices for statistics such as covariances and correlations. The matrix rows
correspond to the WITH variables (PetalLength and PetalWidth), while the matrix columns corre-
spond to the VAR variables (SepalLength and SepalWidth). The CORR procedure uses the WITH
variable labels to label the matrix rows.

The SSCP option requests a table of the uncorrected sum-of-squares and crossproducts matrix, and
the COV option requests a table of the covariance matrix. The SSCP and COV options also produce
a table of the Pearson correlations.

The sum-of-squares and crossproducts statistics for each pair of variables are computed by us-
ing observations with nonmissing row and column variable values. The “Sums of Squares and
Crossproducts” table in Output 2.2.2 displays the crossproduct, sum of squares for the row variable,
and sum of squares for the column variable for each pair of variables.
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Output 2.2.2 Sums of Squares and Crossproducts

Sums of Squares and Crossproducts
SSCP / Row Var SS / Col Var SS

SepalLength SepalWidth

PetalLength 36214.00000 24756.00000
Petal Length in mm. 10735.00000 10735.00000

123793.0000 58164.0000

PetalWidth 6113.00000 4191.00000
Petal Width in mm. 355.00000 355.00000

121356.0000 56879.0000

The variances are computed by using observations with nonmissing row and column variable values.
The “Variances and Covariances” table in Output 2.2.3 displays the covariance, variance for the
row variable, variance for the column variable, and associated degrees of freedom for each pair of
variables.

Output 2.2.3 Variances and Covariances

Variances and Covariances
Covariance / Row Var Variance / Col Var Variance / DF

SepalLength SepalWidth

PetalLength 1.270833333 1.363095238
Petal Length in mm. 2.625000000 2.625000000

12.33333333 14.60544218
48 48

PetalWidth 0.911347518 1.048315603
Petal Width in mm. 1.063386525 1.063386525

11.80141844 13.62721631
47 47

When there are missing values in the analysis variables, the “Pearson Correlation Coefficients” table
in Output 2.2.4 displays the correlation, the p-value under the null hypothesis of zero correlation,
and the number of observations for each pair of variables. Only the correlation between PetalWidth
and SepalLength and the correlation between PetalWidth and SepalWidth are slightly positive.
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Output 2.2.4 Pearson Correlation Coefficients

Pearson Correlation Coefficients
Prob > |r| under H0: Rho=0
Number of Observations

Sepal Sepal
Length Width

PetalLength 0.22335 0.22014
Petal Length in mm. 0.1229 0.1285

49 49

PetalWidth 0.25726 0.27539
Petal Width in mm. 0.0775 0.0582

48 48

When you specify the ods graphics on statement, the PROC CORR displays a scatter matrix
plot by default. Output 2.2.5 displays a rectangular scatter plot matrix for the two sets of vari-
ables: the VAR variables SepalLength and SepalWidth are listed across the top of the matrix, and the
WITH variables PetalLength and PetalWidth are listed down the side of the matrix. As measured in
Output 2.2.4, the plot for PetalWidth and SepalLength and the plot for PetalWidth and SepalWidth also
show slight positive correlations.
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Output 2.2.5 Rectangular Matrix Plot

Note that this graphical display is requested by specifying the ods graphics on statement and
the PLOTS option. For more information about the ods graphics statement, see Chapter 21,
“Statistical Graphics Using ODS” (SAS/STAT User’s Guide).

Example 2.3: Analysis Using Fisher’s z Transformation

The following statements request Pearson correlation statistics by using Fisher’s z transformation
for the data set Fitness:
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proc corr data=Fitness nosimple fisher;
var weight oxygen runtime;

run;

The NOSIMPLE option suppresses the table of univariate descriptive statistics. By default, PROC
CORR displays the “Pearson Correlation Coefficients” table in Output 2.3.1.

Output 2.3.1 Pearson Correlations

The CORR Procedure

Pearson Correlation Coefficients
Prob > |r| under H0: Rho=0
Number of Observations

Weight Oxygen RunTime

Weight 1.00000 -0.15358 0.20072
0.4264 0.2965

31 29 29

Oxygen -0.15358 1.00000 -0.86843
0.4264 <.0001

29 29 28

RunTime 0.20072 -0.86843 1.00000
0.2965 <.0001

29 28 29

Using the FISHER option, the CORR procedure displays correlation statistics by using Fisher’s z
transformation in Output 2.3.2.

Output 2.3.2 Correlation Statistics Using Fisher’s z Transformation

Pearson Correlation Statistics (Fisher’s z Transformation)

With Sample Bias Correlation
Variable Variable N Correlation Fisher’s z Adjustment Estimate

Weight Oxygen 29 -0.15358 -0.15480 -0.00274 -0.15090
Weight RunTime 29 0.20072 0.20348 0.00358 0.19727
Oxygen RunTime 28 -0.86843 -1.32665 -0.01608 -0.86442

Pearson Correlation Statistics (Fisher’s z Transformation)

With p Value for
Variable Variable 95% Confidence Limits H0:Rho=0

Weight Oxygen -0.490289 0.228229 0.4299
Weight RunTime -0.182422 0.525765 0.2995
Oxygen RunTime -0.935728 -0.725221 <.0001
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The table also displays confidence limits and a p-value for the default null hypothesis H0W � D �0.
See the section “Fisher’s z Transformation” on page 24 for details on Fisher’s z transformation.

The following statements request one-sided hypothesis tests and confidence limits for the correla-
tions using Fisher’s z transformation:

proc corr data=Fitness nosimple nocorr fisher (type=lower);
var weight oxygen runtime;

run;

The NOSIMPLE option suppresses the “Simple Statistics” table, and the NOCORR option sup-
presses the “Pearson Correlation Coefficients” table.

Output 2.3.3 displays correlation statistics by using Fisher’s z transformation.

Output 2.3.3 One-Sided Correlation Analysis Using Fisher’s z Transformation

The CORR Procedure

Pearson Correlation Statistics (Fisher’s z Transformation)

With Sample Bias Correlation
Variable Variable N Correlation Fisher’s z Adjustment Estimate

Weight Oxygen 29 -0.15358 -0.15480 -0.00274 -0.15090
Weight RunTime 29 0.20072 0.20348 0.00358 0.19727
Oxygen RunTime 28 -0.86843 -1.32665 -0.01608 -0.86442

Pearson Correlation Statistics (Fisher’s z Transformation)

With p Value for
Variable Variable Lower 95% CL H0:Rho<=0

Weight Oxygen -0.441943 0.7850
Weight RunTime -0.122077 0.1497
Oxygen RunTime -0.927408 1.0000

The FISHER(TYPE=LOWER) option requests a lower confidence limit and a p-value for the test of
the one-sided hypothesis H0W � � 0 against the alternative hypothesis H1W � > 0. Here Fisher’s z,
the bias adjustment, and the estimate of the correlation are the same as for the two-sided alternative.
However, because TYPE=LOWER is specified, only a lower confidence limit is computed for each
correlation, and one-sided p-values are computed.
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Example 2.4: Applications of Fisher’s z Transformation

This example illustrates some applications of Fisher’s z transformation. For details, see the section
“Fisher’s z Transformation” on page 24.

The following statements simulate independent samples of variables X and Y from a bivariate normal
distribution. The first batch of 150 observations is sampled using a known correlation of 0.3, the
second batch of 150 observations is sampled using a known correlation of 0.25, and the third batch
of 100 observations is sampled using a known correlation of 0.3.

data Sim (drop=i);
do i=1 to 400;

X = rannor(135791);
Batch = 1 + (i>150) + (i>300);
if Batch = 1 then Y = 0.3*X + 0.9*rannor(246791);
if Batch = 2 then Y = 0.25*X + sqrt(.8375)*rannor(246791);
if Batch = 3 then Y = 0.3*X + 0.9*rannor(246791);
output;

end;
run;

This data set will be used to illustrate the following applications of Fisher’s z transformation:

� testing whether a population correlation is equal to a given value
� testing for equality of two population correlations
� combining correlation estimates from different samples

Testing Whether a Population Correlation Is Equal to a Given Value �0

You can use the following statements to test the null hypothesis H0W � D 0:5 against a two-sided
alternative H1W � ¤ 0:5. The test is requested with the option FISHER(RHO0=0.5).

title ’Analysis for Batch 1’;
proc corr data=Sim (where=(Batch=1)) fisher(rho0=.5);

var X Y;
run;

Output 2.4.1 displays the results based on Fisher’s transformation. The null hypothesis is rejected
since the p-value is less than 0:0001.
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Output 2.4.1 Fisher’s Test for H0 W � D �0

Analysis for Batch 1

The CORR Procedure

Pearson Correlation Statistics (Fisher’s z Transformation)

With Sample Bias Correlation
Variable Variable N Correlation Fisher’s z Adjustment Estimate

X Y 150 0.22081 0.22451 0.0007410 0.22011

Pearson Correlation Statistics (Fisher’s z Transformation)

With ------H0:Rho=Rho0-----
Variable Variable 95% Confidence Limits Rho0 p Value

X Y 0.062034 0.367409 0.50000 <.0001

Testing for Equality of Two Population Correlations

You can use the following statements to test for equality of two population correlations, �1 and �2.
Here, the null hypothesis H0W �1 D �2 is tested against the alternative H1W �1 ¤ �2.

ods output FisherPearsonCorr=SimCorr;
title ’Testing Equality of Population Correlations’;
proc corr data=Sim (where=(Batch=1 or Batch=2)) fisher;

var X Y;
by Batch;

run;

The ODS OUTPUT statement saves the “FisherPearsonCorr” table into an output data set in the
CORR procedure. The output data set SimCorr contains Fisher’s z statistics for both batches.

The following statements display (in Figure 2.4.2) the output data set SimCorr:

proc print data=SimCorr;
run;

Output 2.4.2 Fisher’s Correlation Statistics

With
Obs Batch Var Var NObs Corr ZVal BiasAdj

1 1 X Y 150 0.22081 0.22451 0.0007410
2 2 X Y 150 0.33694 0.35064 0.00113

Obs CorrEst Lcl Ucl pValue

1 0.22011 0.062034 0.367409 0.0065
2 0.33594 0.185676 0.470853 <.0001
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The p-value for testingH0 is derived by treating the difference z1 �z2 as a normal random variable
with mean zero and variance 1=.n1 �3/C1=.n2 �3/, where z1 and z2 are Fisher’s z transformation
of the sample correlations r1 and r2, respectively, and where n1 and n2 are the corresponding sample
sizes.

The following statements compute the p-value in Output 2.4.3:

data SimTest (drop=Batch);
merge SimCorr (where=(Batch=1) keep=Nobs ZVal Batch

rename=(Nobs=n1 ZVal=z1))
SimCorr (where=(Batch=2) keep=Nobs ZVal Batch

rename=(Nobs=n2 ZVal=z2));
variance = 1/(n1-3) + 1/(n2-3);
z = (z1 - z2) / sqrt( variance );
pval = probnorm(z);
if (pval > 0.5) then pval = 1 - pval;
pval = 2*pval;

run;

proc print data=SimTest noobs;
run;

Output 2.4.3 Test of Equality of Observed Correlations

n1 z1 n2 z2 variance z pval

150 0.22451 150 0.35064 0.013605 -1.08135 0.27954

In Output 2.4.3, the p-value of 0.2795 does not provide evidence to reject the null hypothesis that
�1 D �2. The sample sizes n1 D 150 and n2 D 150 are not large enough to detect the difference
�1 � �2 D 0:05 at a significance level of ˛ D 0:05.

Combining Correlation Estimates from Different Samples

Assume that sample correlations r1 and r2 are computed from two independent samples of n1 and
n2 observations, respectively. A combined correlation estimate is given by Nr D tanh. Nz/, where Nz is
the weighted average of the z transformations of r1 and r2:

Nz D
.n1 � 3/z1 C .n2 � 3/z2

n1 C n2 � 6

The following statements compute a combined estimate of � by using Batch 1 and Batch 3:

ods output FisherPearsonCorr=SimCorr2;
proc corr data=Sim (where=(Batch=1 or Batch=3)) fisher;

var X Y;
by Batch;

run;



48 F Chapter 2: The CORR Procedure

data SimComb (drop=Batch);
merge SimCorr2 (where=(Batch=1) keep=Nobs ZVal Batch

rename=(Nobs=n1 ZVal=z1))
SimCorr2 (where=(Batch=3) keep=Nobs ZVal Batch

rename=(Nobs=n2 ZVal=z2));
z = ((n1-3)*z1 + (n2-3)*z2) / (n1+n2-6);
corr = tanh(z);
var = 1/(n1+n2-6);
zlcl = z - probit(0.975)*sqrt(var);
zucl = z + probit(0.975)*sqrt(var);
lcl= tanh(zlcl);
ucl= tanh(zucl);
pval= probnorm( z/sqrt(var));
if (pval > .5) then pval= 1 - pval;
pval= 2*pval;

run;

proc print data=SimComb noobs;
var n1 z1 n2 z2 corr lcl ucl pval;

run;

Output 2.4.4 displays the combined estimate of �. The table shows that a correlation estimate from
the combined samples is r D 0:2264. The 95% confidence interval is .0:10453; 0:34156/, using the
variance of the combined estimate. Note that this interval contains the population correlation 0:3.

Output 2.4.4 Combined Correlation Estimate

Obs n1 z1 n2 z2 z corr

1 150 0.22451 100 0.23929 0.23039 0.22640

Obs var zlcl zucl lcl ucl pval

1 .004098361 0.10491 0.35586 0.10453 0.34156 .000319748

Example 2.5: Computing Cronbach’s Coefficient Alpha

The following statements create the data set Fish1 from the Fish data set used in Chapter 82, “The
STEPDISC Procedure” (SAS/STAT User’s Guide). The cubic root of the weight (Weight3) is com-
puted as a one-dimensional measure of the size of a fish.

*------------------- Fish Measurement Data ----------------------*
| The data set contains 35 fish from the species Bream caught in |
| Finland’s lake Laengelmavesi with the following measurements: |
| Weight (in grams) |
| Length3 (length from the nose to the end of its tail, in cm) |
| HtPct (max height, as percentage of Length3) |
| WidthPct (max width, as percentage of Length3) |

*----------------------------------------------------------------*;
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data Fish1 (drop=HtPct WidthPct);
title ’Fish Measurement Data’;
input Weight Length3 HtPct WidthPct @@;
Weight3= Weight**(1/3);
Height=HtPct*Length3/100;
Width=WidthPct*Length3/100;
datalines;

242.0 30.0 38.4 13.4 290.0 31.2 40.0 13.8
340.0 31.1 39.8 15.1 363.0 33.5 38.0 13.3
430.0 34.0 36.6 15.1 450.0 34.7 39.2 14.2
500.0 34.5 41.1 15.3 390.0 35.0 36.2 13.4
450.0 35.1 39.9 13.8 500.0 36.2 39.3 13.7
475.0 36.2 39.4 14.1 500.0 36.2 39.7 13.3
500.0 36.4 37.8 12.0 . 37.3 37.3 13.6
600.0 37.2 40.2 13.9 600.0 37.2 41.5 15.0
700.0 38.3 38.8 13.8 700.0 38.5 38.8 13.5
610.0 38.6 40.5 13.3 650.0 38.7 37.4 14.8
575.0 39.5 38.3 14.1 685.0 39.2 40.8 13.7
620.0 39.7 39.1 13.3 680.0 40.6 38.1 15.1
700.0 40.5 40.1 13.8 725.0 40.9 40.0 14.8
720.0 40.6 40.3 15.0 714.0 41.5 39.8 14.1
850.0 41.6 40.6 14.9 1000.0 42.6 44.5 15.5
920.0 44.1 40.9 14.3 955.0 44.0 41.1 14.3
925.0 45.3 41.4 14.9 975.0 45.9 40.6 14.7
950.0 46.5 37.9 13.7
;

The following statements request a correlation analysis and compute Cronbach’s coefficient alpha
for the variables Weight3, Length3, Height, and Width:

ods graphics on;
title ’Fish Measurement Data’;
proc corr data=fish1 nomiss alpha plots;

var Weight3 Length3 Height Width;
run;

ods graphics off;

The NOMISS option excludes observations with missing values, and the ALPHA option computes
Cronbach’s coefficient alpha for the analysis variables.

The “Simple Statistics” table in Output 2.5.1 displays univariate descriptive statistics for each anal-
ysis variable.

Output 2.5.1 Simple Statistics

Fish Measurement Data

The CORR Procedure

4 Variables: Weight3 Length3 Height Width
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Output 2.5.1 continued

Simple Statistics

Variable N Mean Std Dev Sum Minimum Maximum

Weight3 34 8.44751 0.97574 287.21524 6.23168 10.00000
Length3 34 38.38529 4.21628 1305 30.00000 46.50000
Height 34 15.22057 1.98159 517.49950 11.52000 18.95700
Width 34 5.43805 0.72967 184.89370 4.02000 6.74970

The “Pearson Correlation Coefficients” table in Output 2.5.2 displays Pearson correlation statistics
for pairs of analysis variables. When you specify the NOMISS option, the same set of 34 observa-
tions is used to compute the correlation for each pair of variables.

Output 2.5.2 Pearson Correlation Coefficients

Pearson Correlation Coefficients, N = 34
Prob > |r| under H0: Rho=0

Weight3 Length3 Height Width

Weight3 1.00000 0.96523 0.96261 0.92789
<.0001 <.0001 <.0001

Length3 0.96523 1.00000 0.95492 0.92171
<.0001 <.0001 <.0001

Height 0.96261 0.95492 1.00000 0.92632
<.0001 <.0001 <.0001

Width 0.92789 0.92171 0.92632 1.00000
<.0001 <.0001 <.0001

Since the data set contains only one species of fish, all the variables are highly correlated. Using the
ALPHA option, the CORR procedure computes Cronbach’s coefficient alpha in Output 2.5.3. The
Cronbach’s coefficient alpha is a lower bound for the reliability coefficient for the raw variables and
the standardized variables. Positive correlation is needed for the alpha coefficient because variables
measure a common entity.

Output 2.5.3 Cronbach’s Coefficient Alpha

Cronbach Coefficient Alpha

Variables Alpha
----------------------------
Raw 0.822134
Standardized 0.985145
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Because the variances of some variables vary widely, you should use the standardized score to
estimate reliability. The overall standardized Cronbach’s coefficient alpha of 0.985145 provides an
acceptable lower bound for the reliability coefficient. This is much greater than the suggested value
of 0.70 given by Nunnally and Bernstein (1994).

The standardized alpha coefficient provides information about how each variable reflects the relia-
bility of the scale with standardized variables. If the standardized alpha decreases after removing a
variable from the construct, then this variable is strongly correlated with other variables in the scale.
On the other hand, if the standardized alpha increases after removing a variable from the construct,
then removing this variable from the scale makes the construct more reliable. The “Cronbach Co-
efficient Alpha with Deleted Variables” table in Output 2.5.4 does not show significant increase or
decrease in the standardized alpha coefficients. See the section “Cronbach’s Coefficient Alpha” on
page 27 for more information about Cronbach’s alpha.

Output 2.5.4 Cronbach’s Coefficient Alpha with Deleted Variables

Cronbach Coefficient Alpha with Deleted Variable

Raw Variables Standardized Variables

Deleted Correlation Correlation
Variable with Total Alpha with Total Alpha
------------------------------------------------------------------------
Weight3 0.975379 0.783365 0.973464 0.977103
Length3 0.967602 0.881987 0.967177 0.978783
Height 0.964715 0.655098 0.968079 0.978542
Width 0.934635 0.824069 0.937599 0.986626

Example 2.6: Saving Correlations in an Output Data Set

The following statements compute Pearson correlations:

title ’Correlations for a Fitness and Exercise Study’;
proc corr data=Fitness nomiss outp=CorrOutp;

var weight oxygen runtime;
run;

The NOMISS option excludes observations with missing values of the VAR statement variables
from the analysis—that is, the same set of 28 observations is used to compute the correlation for
each pair of variables. The OUTP= option creates an output data set named CorrOutp that contains
the Pearson correlation statistics.

“Pearson Correlation Coefficients” table in Output 2.6.1 displays the correlation and the p-value
under the null hypothesis of zero correlation.
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Output 2.6.1 Pearson Correlation Coefficients

Correlations for a Fitness and Exercise Study

The CORR Procedure

Pearson Correlation Coefficients, N = 28
Prob > |r| under H0: Rho=0

Weight Oxygen RunTime

Weight 1.00000 -0.18419 0.19505
0.3481 0.3199

Oxygen -0.18419 1.00000 -0.86843
0.3481 <.0001

RunTime 0.19505 -0.86843 1.00000
0.3199 <.0001

The following statements display (in Output 2.6.2) the output data set:

title ’Output Data Set from PROC CORR’;
proc print data=CorrOutp noobs;
run;

Output 2.6.2 OUTP= Data Set with Pearson Correlations

Output Data Set from PROC CORR

_TYPE_ _NAME_ Weight Oxygen RunTime

MEAN 77.2168 47.1327 10.6954
STD 8.4495 5.5535 1.4127
N 28.0000 28.0000 28.0000
CORR Weight 1.0000 -0.1842 0.1950
CORR Oxygen -0.1842 1.0000 -0.8684
CORR RunTime 0.1950 -0.8684 1.0000

The output data set has the default type CORR and can be used as an input data set for regression
or other statistical procedures. For example, the following statements request a regression analysis
using CorrOutp, without reading the original data in the REG procedure:

title ’Input Type CORR Data Set from PROC REG’;
proc reg data=CorrOutp;

model runtime= weight oxygen;
run;

The following statements generate the same results as the preceding statements:
proc reg data=Fitness;

model runtime= weight oxygen;
run;
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Example 2.7: Creating Scatter Plots

The following statements request a correlation analysis and a scatter plot matrix for the variables in
the data set Fish1, which was created in Example 2.5. This data set contains 35 observations, one of
which contains a missing value for the variable Weight3.

ods graphics on;
title ’Fish Measurement Data’;
proc corr data=fish1 nomiss plots=matrix(histogram);

var Height Width Length3 Weight3;
run;

ods graphics off;

The “Simple Statistics” table in Output 2.7.1 displays univariate descriptive statistics for analysis
variables.

Output 2.7.1 Simple Statistics

Fish Measurement Data

The CORR Procedure

4 Variables: Height Width Length3 Weight3

Simple Statistics

Variable N Mean Std Dev Sum Minimum Maximum

Height 34 15.22057 1.98159 517.49950 11.52000 18.95700
Width 34 5.43805 0.72967 184.89370 4.02000 6.74970
Length3 34 38.38529 4.21628 1305 30.00000 46.50000
Weight3 34 8.44751 0.97574 287.21524 6.23168 10.00000

When you specify the NOMISS option, the same set of 34 observations is used to compute the
correlation for each pair of variables. The “Pearson Correlation Coefficients” table in Output 2.7.2
displays Pearson correlation statistics for pairs of analysis variables.
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Output 2.7.2 Pearson Correlation Coefficients

Pearson Correlation Coefficients, N = 34
Prob > |r| under H0: Rho=0

Height Width Length3 Weight3

Height 1.00000 0.92632 0.95492 0.96261
<.0001 <.0001 <.0001

Width 0.92632 1.00000 0.92171 0.92789
<.0001 <.0001 <.0001

Length3 0.95492 0.92171 1.00000 0.96523
<.0001 <.0001 <.0001

Weight3 0.96261 0.92789 0.96523 1.00000
<.0001 <.0001 <.0001

The variables are highly correlated. For example, the correlation between Height and Width is
0.92632.

The PLOTS=MATRIX(HISTOGRAM) option requests a scatter plot matrix for the VAR statement
variables in Output 2.7.3.
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Output 2.7.3 Scatter Plot Matrix

In order to create this display, you must specify the ods graphics on statement in addition to
the PLOTS= option. For more information about the ods graphics statement, see Chapter 21,
“Statistical Graphics Using ODS” (SAS/STAT User’s Guide).

To explore the correlation between Height and Width, the following statements display (in
Output 2.7.4) a scatter plot with prediction ellipses for the two variables:

ods graphics on;
proc corr data=fish1 nomiss

plots=scatter(nvar=2 alpha=.20 .30);
var Height Width Length3 Weight3;

run;
ods graphics off;
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The NOMISS option is specified with the original VAR statement to ensure that the same set of 34
observations is used for this analysis. The PLOTS=SCATTER(NVAR=2) option requests a scatter
plot for the first two variables in the VAR list. The ALPHA=.20 .30 suboption requests 80% and
70% prediction ellipses, respectively.

Output 2.7.4 Scatter Plot with Prediction Ellipses

A prediction ellipse is a region for predicting a new observation from the population, assuming bi-
variate normality. It also approximates a region containing a specified percentage of the population.
The displayed prediction ellipse is centered at the means . Nx; Ny/. For further details, see the section
“Confidence and Prediction Ellipses” on page 28.

Note that the following statements also display (in Output 2.7.5) a scatter plot for Height and Width:

ods graphics on;
proc corr data=fish1

plots=scatter(alpha=.20 .30);
var Height Width;

run;
ods graphics off;
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Output 2.7.5 Scatter Plot with Prediction Ellipses

Output 2.7.5 includes the point .13:9; 5:1/, which was excluded from Output 2.7.4 because the
observation had a missing value for Weight3. The prediction ellipses in Output 2.7.5 also reflect the
inclusion of this observation.

The following statements display (in Output 2.7.6) a scatter plot with confidence ellipses for the
mean:

ods graphics on;
title ’Fish Measurement Data’;
proc corr data=fish1 nomiss

plots=scatter(ellipse=confidence nvar=2 alpha=.05 .01);
var Height Width Length3 Weight3;

run;
ods graphics off;

The NVAR=2 suboption within the PLOTS= option restricts the number of plots created to the
first two variables in the VAR statement, and the ELLIPSE=CONFIDENCE suboption requests
confidence ellipses for the mean. The ALPHA=.05 .01 suboption requests 95% and 99% confidence
ellipses, respectively.
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Output 2.7.6 Scatter Plot with Confidence Ellipses

The confidence ellipse for the mean is centered at the means . Nx; Ny/. For further details, see the
section “Confidence and Prediction Ellipses” on page 28.

Example 2.8: Computing Partial Correlations

A partial correlation measures the strength of the linear relationship between two variables, while
adjusting for the effect of other variables.

The following statements request a partial correlation analysis of variables Height and Width while
adjusting for the variables Length3 and Weight. The latter variables, which are said to be “partialled
out” of the analysis, are specified with the PARTIAL statement.

ods graphics on;
title ’Fish Measurement Data’;
proc corr data=fish1 plots=scatter(alpha=.20 .30);

var Height Width;
partial Length3 Weight3;

run;
ods graphics off;
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Output 2.8.1 displays descriptive statistics for all the variables. The partial variance and partial
standard deviation for the variables in the VAR statement are also displayed.

Output 2.8.1 Descriptive Statistics

Fish Measurement Data

The CORR Procedure

2 Partial Variables: Length3 Weight3
2 Variables: Height Width

Simple Statistics

Variable N Mean Std Dev Sum Minimum Maximum

Length3 34 38.38529 4.21628 1305 30.00000 46.50000
Weight3 34 8.44751 0.97574 287.21524 6.23168 10.00000
Height 34 15.22057 1.98159 517.49950 11.52000 18.95700
Width 34 5.43805 0.72967 184.89370 4.02000 6.74970

Simple Statistics

Partial Partial
Variable Variance Std Dev

Length3
Weight3
Height 0.26607 0.51582
Width 0.07315 0.27047

When you specify a PARTIAL statement, observations with missing values are excluded from the
analysis. Output 2.8.2 displays partial correlations for the variables in the VAR statement.

Output 2.8.2 Pearson Partial Correlation Coefficients

Pearson Partial Correlation Coefficients, N = 34
Prob > |r| under H0: Partial Rho=0

Height Width

Height 1.00000 0.25692
0.1558

Width 0.25692 1.00000
0.1558

The partial correlation between the variables Height and Width is 0.25692, which is much less than
the unpartialled correlation, 0.92632 (in Output 2.8.2). The p-value for the partial correlation is
0.1558.
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The PLOTS=SCATTER option displays (in Output 2.8.3) a scatter plot of the residuals for the
variables Height and Width after controlling for the effect of variables Length3 and Weight. The
ALPHA=.20 .30 suboption requests 80% and 70% prediction ellipses, respectively.

Output 2.8.3 Partial Residual Scatter Plot

In Output 2.8.3, a standard deviation of Height has roughly the same length on the X axis as a
standard deviation of Width on the Y axis. The major axis length is not significantly larger than the
minor axis length, indicating a weak partial correlation between Height and Width.
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Overview: FREQ Procedure

The FREQ procedure produces one-way to n-way frequency and contingency (crosstabulation) ta-
bles. For two-way tables, PROC FREQ computes tests and measures of association. For n-way
tables, PROC FREQ provides stratified analysis by computing statistics across, as well as within,
strata.

For one-way frequency tables, PROC FREQ computes goodness-of-fit tests for equal proportions
or specified null proportions. For one-way tables, PROC FREQ also provides confidence limits and
tests for binomial proportions, including tests for noninferiority and equivalence.

For contingency tables, PROC FREQ can compute various statistics to examine the relationships
between two classification variables. For some pairs of variables, you might want to examine the
existence or strength of any association between the variables. To determine if an association exists,
chi-square tests are computed. To estimate the strength of an association, PROC FREQ computes
measures of association that tend to be close to zero when there is no association and close to the
maximum (or minimum) value when there is perfect association. The statistics for contingency
tables include the following:

� chi-square tests and measures

� measures of association

� risks (binomial proportions) and risk differences for 2 � 2 tables

� odds ratios and relative risks for 2 � 2 tables

� tests for trend

� tests and measures of agreement

� Cochran-Mantel-Haenszel statistics
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PROC FREQ computes asymptotic standard errors, confidence intervals, and tests for measures
of association and measures of agreement. Exact p-values and confidence intervals are available
for many test statistics and measures. PROC FREQ also performs analyses that adjust for any
stratification variables by computing statistics across, as well as within, strata for n-way tables.
These statistics include Cochran-Mantel-Haenszel statistics and measures of agreement.

In choosing measures of association to use in analyzing a two-way table, you should consider the
study design (which indicates whether the row and column variables are dependent or indepen-
dent), the measurement scale of the variables (nominal, ordinal, or interval), the type of association
that each measure is designed to detect, and any assumptions required for valid interpretation of a
measure. You should exercise care in selecting measures that are appropriate for your data.

Similar comments apply to the choice and interpretation of test statistics. For example, the Mantel-
Haenszel chi-square statistic requires an ordinal scale for both variables and is designed to detect a
linear association. The Pearson chi-square, on the other hand, is appropriate for all variables and
can detect any kind of association, but it is less powerful for detecting a linear association because
its power is dispersed over a greater number of degrees of freedom (except for 2 � 2 tables).

For more information about selecting the appropriate statistical analyses, see Agresti (2007) or
Stokes, Davis, and Koch (2000).

Several SAS procedures produce frequency counts; only PROC FREQ computes chi-square tests
for one-way to n-way tables and measures of association and agreement for contingency tables.
Other procedures to consider for counting include the TABULATE and UNIVARIATE procedures.
When you want to produce contingency tables and tests of association for sample survey data, use
PROC SURVEYFREQ. See Chapter 14, “Introduction to Survey Procedures” (SAS/STAT User’s
Guide), for more information. When you want to fit models to categorical data, use a procedure
such as CATMOD, GENMOD, GLIMMIX, LOGISTIC, PROBIT, or SURVEYLOGISTIC. See
Chapter 8, “Introduction to Categorical Data Analysis Procedures” (SAS/STAT User’s Guide), for
more information.

PROC FREQ uses the Output Delivery System (ODS), a SAS subsystem that provides capabilities
for displaying and controlling the output from SAS procedures. ODS enables you to convert any of
the output from PROC FREQ into a SAS data set. See the section “ODS Table Names” on page 182
for more information.

PROC FREQ now uses ODS Graphics to create graphs as part of its output. For general information
about ODS Graphics, see Chapter 21, “Statistical Graphics Using ODS” (SAS/STAT User’s Guide).
For specific information about the statistical graphics available with the FREQ procedure, see the
PLOTS option in the TABLES statement and the section “ODS Graphics” on page 185.
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Getting Started: FREQ Procedure

Frequency Tables and Statistics

The FREQ procedure provides easy access to statistics for testing for association in a crosstabulation
table.

In this example, high school students applied for courses in a summer enrichment program; these
courses included journalism, art history, statistics, graphic arts, and computer programming. The
students accepted were randomly assigned to classes with and without internships in local compa-
nies. Table 3.1 contains counts of the students who enrolled in the summer program by gender and
whether they were assigned an internship slot.

Table 3.1 Summer Enrichment Data

Enrollment
Gender Internship Yes No Total

boys yes 35 29 64
boys no 14 27 41
girls yes 32 10 42
girls no 53 23 76

The SAS data set SummerSchool is created by inputting the summer enrichment data as cell count
data, or providing the frequency count for each combination of variable values. The following
DATA step statements create the SAS data set SummerSchool:

data SummerSchool;
input Gender $ Internship $ Enrollment $ Count @@;
datalines;

boys yes yes 35 boys yes no 29
boys no yes 14 boys no no 27
girls yes yes 32 girls yes no 10
girls no yes 53 girls no no 23
;

The variable Gender takes the values ‘boys’ or ‘girls,’ the variable Internship takes the values ‘yes’
and ‘no,’ and the variable Enrollment takes the values ‘yes’ and ‘no.’ The variable Count contains the
number of students that correspond to each combination of data values. The double at sign (@@)
indicates that more than one observation is included on a single data line. In this DATA step, two
observations are included on each line.

Researchers are interested in whether there is an association between internship status and sum-
mer program enrollment. The Pearson chi-square statistic is an appropriate statistic to assess the
association in the corresponding 2 � 2 table. The following PROC FREQ statements specify this
analysis.
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You specify the table for which you want to compute statistics with the TABLES statement. You
specify the statistics you want to compute with options after a slash (/) in the TABLES statement.

proc freq data=SummerSchool order=data;
tables Internship*Enrollment / chisq;
weight Count;

run;

The ORDER= option controls the order in which variable values are displayed in the rows and
columns of the table. By default, the values are arranged according to the alphanumeric order of
their unformatted values. If you specify ORDER=DATA, the data are displayed in the same order
as they occur in the input data set. Here, because ‘yes’ appears before ‘no’ in the data, ‘yes’ ap-
pears first in any table. Other options for controlling order include ORDER=FORMATTED, which
orders according to the formatted values, and ORDER=FREQUENCY, which orders by descending
frequency count.

In the TABLES statement, Internship*Enrollment specifies a table where the rows are internship status
and the columns are program enrollment. The CHISQ option requests chi-square statistics for
assessing association between these two variables. Because the input data are in cell count form,
the WEIGHT statement is required. The WEIGHT statement names the variable Count, which
provides the frequency of each combination of data values.

Figure 3.1 presents the crosstabulation of Internship and Enrollment. In each cell, the values printed
under the cell count are the table percentage, row percentage, and column percentage, respectively.
For example, in the first cell, 63.21 percent of the students offered courses with internships accepted
them and 36.79 percent did not.

Figure 3.1 Crosstabulation Table

The FREQ Procedure

Table of Internship by Enrollment

Internship Enrollment

Frequency|
Percent |
Row Pct |
Col Pct |yes |no | Total
---------+--------+--------+
yes | 67 | 39 | 106

| 30.04 | 17.49 | 47.53
| 63.21 | 36.79 |
| 50.00 | 43.82 |

---------+--------+--------+
no | 67 | 50 | 117

| 30.04 | 22.42 | 52.47
| 57.26 | 42.74 |
| 50.00 | 56.18 |

---------+--------+--------+
Total 134 89 223

60.09 39.91 100.00
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Figure 3.2 displays the statistics produced by the CHISQ option. The Pearson chi-square statistic is
labeled ‘Chi-Square’ and has a value of 0.8189 with 1 degree of freedom. The associated p-value
is 0.3655, which means that there is no significant evidence of an association between internship
status and program enrollment. The other chi-square statistics have similar values and are asymp-
totically equivalent. The other statistics (phi coefficient, contingency coefficient, and Cramer’s V )
are measures of association derived from the Pearson chi-square. For Fisher’s exact test, the two-
sided p-value is 0.4122, which also shows no association between internship status and program
enrollment.

Figure 3.2 Statistics Produced with the CHISQ Option

Statistic DF Value Prob
------------------------------------------------------
Chi-Square 1 0.8189 0.3655
Likelihood Ratio Chi-Square 1 0.8202 0.3651
Continuity Adj. Chi-Square 1 0.5899 0.4425
Mantel-Haenszel Chi-Square 1 0.8153 0.3666
Phi Coefficient 0.0606
Contingency Coefficient 0.0605
Cramer’s V 0.0606

Fisher’s Exact Test
----------------------------------
Cell (1,1) Frequency (F) 67
Left-sided Pr <= F 0.8513
Right-sided Pr >= F 0.2213

Table Probability (P) 0.0726
Two-sided Pr <= P 0.4122

The analysis, so far, has ignored gender. However, it might be of interest to ask whether program
enrollment is associated with internship status after adjusting for gender. You can address this ques-
tion by doing an analysis of a set of tables (in this case, by analyzing the set consisting of one for
boys and one for girls). The Cochran-Mantel-Haenszel (CMH) statistic is appropriate for this situ-
ation: it addresses whether rows and columns are associated after controlling for the stratification
variable. In this case, you would be stratifying by gender.

The PROC FREQ statements for this analysis are very similar to those for the first analysis, except
that there is a third variable, Gender, in the TABLES statement. When you cross more than two
variables, the two rightmost variables construct the rows and columns of the table, respectively, and
the leftmost variables determine the stratification.

The following PROC FREQ statements also request frequency plots for the crosstabulation tables.
PROC FREQ produces these plots by using ODS Graphics to create graphs as part of the procedure
output. Before requesting graphs, you must enable ODS Graphics with the ODS GRAPHICS ON

statement.
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ods graphics on;
proc freq data=SummerSchool;

tables Gender*Internship*Enrollment /
chisq cmh plots(only)=freqplot;

weight Count;
run;
ods graphics off;

This execution of PROC FREQ first produces two individual crosstabulation tables of Internship by
Enrollment: one for boys and one for girls. Frequency plots and chi-square statistics are produced
for each individual table. Figure 3.3, Figure 3.4, and Figure 3.5 show the results for boys. Note that
the chi-square statistic for boys is significant at the ˛ D 0:05 level of significance. Boys offered a
course with an internship are more likely to enroll than boys who are not.

Figure 3.4 displays the frequency plot of Internship by Enrollment for boys. By default, the frequency
plot is displayed as a bar chart with vertical grouping by the row variable Internship. You can use
PLOTS= options to request a dot plot instead of a bar chart or to change the orientation of the bars
from vertical to horizontal. You can also use PLOTS= options to specify other two-way layouts
such as stacked or horizontal grouping.

Figure 3.6, Figure 3.7, and Figure 3.8 display the crosstabulation table, frequency plot, and chi-
square statistics for girls. You can see that there is no evidence of association between internship
offers and program enrollment for girls.

Figure 3.3 Crosstabulation Table for Boys

The FREQ Procedure

Table 1 of Internship by Enrollment
Controlling for Gender=boys

Internship Enrollment

Frequency|
Percent |
Row Pct |
Col Pct |no |yes | Total
---------+--------+--------+
no | 27 | 14 | 41

| 25.71 | 13.33 | 39.05
| 65.85 | 34.15 |
| 48.21 | 28.57 |

---------+--------+--------+
yes | 29 | 35 | 64

| 27.62 | 33.33 | 60.95
| 45.31 | 54.69 |
| 51.79 | 71.43 |

---------+--------+--------+
Total 56 49 105

53.33 46.67 100.00
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Figure 3.4 Frequency Plot for Boys

Figure 3.5 Chi-Square Statistics for Boys

Statistic DF Value Prob
------------------------------------------------------
Chi-Square 1 4.2366 0.0396
Likelihood Ratio Chi-Square 1 4.2903 0.0383
Continuity Adj. Chi-Square 1 3.4515 0.0632
Mantel-Haenszel Chi-Square 1 4.1963 0.0405
Phi Coefficient 0.2009
Contingency Coefficient 0.1969
Cramer’s V 0.2009

Fisher’s Exact Test
----------------------------------
Cell (1,1) Frequency (F) 27
Left-sided Pr <= F 0.9885
Right-sided Pr >= F 0.0311

Table Probability (P) 0.0196
Two-sided Pr <= P 0.0467
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Figure 3.6 Crosstabulation Table for Girls

Table 2 of Internship by Enrollment
Controlling for Gender=girls

Internship Enrollment

Frequency|
Percent |
Row Pct |
Col Pct |no |yes | Total
---------+--------+--------+
no | 23 | 53 | 76

| 19.49 | 44.92 | 64.41
| 30.26 | 69.74 |
| 69.70 | 62.35 |

---------+--------+--------+
yes | 10 | 32 | 42

| 8.47 | 27.12 | 35.59
| 23.81 | 76.19 |
| 30.30 | 37.65 |

---------+--------+--------+
Total 33 85 118

27.97 72.03 100.00
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Figure 3.7 Frequency Plot for Girls

Figure 3.8 Chi-Square Statistics for Girls

Statistic DF Value Prob
------------------------------------------------------
Chi-Square 1 0.5593 0.4546
Likelihood Ratio Chi-Square 1 0.5681 0.4510
Continuity Adj. Chi-Square 1 0.2848 0.5936
Mantel-Haenszel Chi-Square 1 0.5545 0.4565
Phi Coefficient 0.0688
Contingency Coefficient 0.0687
Cramer’s V 0.0688

Fisher’s Exact Test
----------------------------------
Cell (1,1) Frequency (F) 23
Left-sided Pr <= F 0.8317
Right-sided Pr >= F 0.2994

Table Probability (P) 0.1311
Two-sided Pr <= P 0.5245
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These individual table results demonstrate the occasional problems with combining information
into one table and not accounting for information in other variables such as Gender. Figure 3.9
contains the CMH results. There are three summary (CMH) statistics; which one you use depends
on whether your rows and/or columns have an order in r � c tables. However, in the case of
2� 2 tables, ordering does not matter and all three statistics take the same value. The CMH statistic
follows the chi-square distribution under the hypothesis of no association, and here, it takes the value
4.0186 with 1 degree of freedom. The associated p-value is 0.0450, which indicates a significant
association at the ˛ D 0:05 level.

Thus, when you adjust for the effect of gender in these data, there is an association between in-
ternship and program enrollment. But, if you ignore gender, no association is found. Note that the
CMH option also produces other statistics, including estimates and confidence limits for relative
risk and odds ratios for 2� 2 tables and the Breslow-Day Test. These results are not displayed here.

Figure 3.9 Test for the Hypothesis of No Association

Cochran-Mantel-Haenszel Statistics (Based on Table Scores)

Statistic Alternative Hypothesis DF Value Prob
---------------------------------------------------------------

1 Nonzero Correlation 1 4.0186 0.0450
2 Row Mean Scores Differ 1 4.0186 0.0450
3 General Association 1 4.0186 0.0450

Agreement Study

Medical researchers are interested in evaluating the efficacy of a new treatment for a skin condition.
Dermatologists from participating clinics were trained to conduct the study and to evaluate the
condition. After the training, two dermatologists examined patients with the skin condition from a
pilot study and rated the same patients. The possible evaluations are terrible, poor, marginal, and
clear. Table 3.2 contains the data.

Table 3.2 Skin Condition Data

Dermatologist 2
Dermatologist 1 Terrible Poor Marginal Clear

Terrible 10 4 1 0
Poor 5 10 12 2
Marginal 2 4 12 5
Clear 0 2 6 13
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The following DATA step statements create the SAS dataset SkinCondition. The dermatologists’
evaluations of the patients are contained in the variables Derm1 and Derm2; the variable Count is the
number of patients given a particular pair of ratings.

data SkinCondition;
input Derm1 $ Derm2 $ Count;
datalines;

terrible terrible 10
terrible poor 4
terrible marginal 1
terrible clear 0
poor terrible 5
poor poor 10
poor marginal 12
poor clear 2
marginal terrible 2
marginal poor 4
marginal marginal 12
marginal clear 5
clear terrible 0
clear poor 2
clear marginal 6
clear clear 13
;

The following PROC FREQ statements request an agreement analysis of the skin condition data.
In order to evaluate the agreement of the diagnoses (a possible contribution to measurement error
in the study), the kappa coefficient is computed. The AGREE option in the TABLES statement
requests the kappa coefficient, together with its standard error and confidence limits. The KAPPA
option in the TEST statement requests a test for the null hypothesis that kappa equals zero, or that
the agreement is purely by chance.

proc freq data=SkinCondition order=data;
tables Derm1*Derm2 / agree noprint;
test kappa;
weight Count;

run;

Figure 3.10 shows the results. The kappa coefficient has the value 0.3449, which indicates slight
agreement between the dermatologists, and the hypothesis test confirms that you can reject the null
hypothesis of no agreement. This conclusion is further supported by the confidence interval of
(0.2030, 0.4868), which suggests that the true kappa is greater than zero. The AGREE option also
produces Bowker’s test for symmetry and the weighted kappa coefficient, but that output is not
shown here.
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Figure 3.10 Agreement Study

The FREQ Procedure

Statistics for Table of Derm1 by Derm2

Simple Kappa Coefficient
--------------------------------
Kappa 0.3449
ASE 0.0724
95% Lower Conf Limit 0.2030
95% Upper Conf Limit 0.4868

Test of H0: Kappa = 0

ASE under H0 0.0612
Z 5.6366
One-sided Pr > Z <.0001
Two-sided Pr > |Z| <.0001

Syntax: FREQ Procedure

The following statements are available in PROC FREQ:

PROC FREQ < options > ;
BY variables ;
EXACT statistic-options < / computation-options > ;
OUTPUT < OUT=SAS-data-set > options ;
TABLES requests < / options > ;
TEST options ;
WEIGHT variable < / option > ;

The PROC FREQ statement is the only required statement for the FREQ procedure. If you specify
the following statements, PROC FREQ produces a one-way frequency table for each variable in the
most recently created data set.

proc freq;
run;

The rest of this section gives detailed syntax information for the BY, EXACT, OUTPUT, TABLES,
TEST, and WEIGHT statements in alphabetical order after the description of the PROC FREQ
statement. Table 3.3 summarizes the basic function of each PROC FREQ statement.
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Table 3.3 Summary of PROC FREQ Statements

Statement Description

BY provides separate analyses for each BY group
EXACT requests exact tests
OUTPUT requests an output data set
TABLES specifies tables and requests analyses
TEST requests tests for measures of association and agreement
WEIGHT identifies a weight variable

PROC FREQ Statement

PROC FREQ < options > ;

The PROC FREQ statement invokes the procedure and optionally identifies the input data set. By
default, the procedure uses the most recently created SAS data set.

Table 3.4 lists the options available in the PROC FREQ statement. Descriptions follow in alphabet-
ical order.

Table 3.4 PROC FREQ Statement Options

Option Description

COMPRESS begins the next one-way table on the current page
DATA= names the input data set
FORMCHAR= specifies the outline and cell divider characters for crosstabulation tables
NLEVELS displays the number of levels for all TABLES variables
NOPRINT suppresses all displayed output
ORDER= specifies the order for reporting variable values
PAGE displays one table per page

You can specify the following options in the PROC FREQ statement.

COMPRESS
begins display of the next one-way frequency table on the same page as the preceding one-
way table if there is enough space to begin the table. By default, the next one-way table
begins on the current page only if the entire table fits on that page. The COMPRESS option
is not valid with the PAGE option.

DATA=SAS-data-set
names the SAS data set to be analyzed by PROC FREQ. If you omit the DATA= option, the
procedure uses the most recently created SAS data set.
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FORMCHAR(1,2,7)=‘formchar-string’
defines the characters to be used for constructing the outlines and dividers for the cells of
crosstabulation table displays. The formchar-string should be three characters long. The
characters are used to draw the vertical separators (1), the horizontal separators (2), and the
vertical-horizontal intersections (7). If you do not specify the FORMCHAR= option, PROC
FREQ uses FORMCHAR(1,2,7)=‘|-+’ by default. Table 3.5 summarizes the formatting char-
acters used by PROC FREQ.

Table 3.5 Formatting Characters Used by PROC FREQ

Position Default Used to Draw

1 | vertical separators
2 - horizontal separators
7 + intersections of vertical and horizontal separators

The FORMCHAR= option can specify 20 different SAS formatting characters used to dis-
play output; however, PROC FREQ uses only the first, second, and seventh formatting charac-
ters. Therefore, the proper specification for PROC FREQ is FORMCHAR(1,2,7)= ‘formchar-
string’.

Specifying all blanks for formchar-string produces crosstabulation tables with no outlines
or dividers—for example, FORMCHAR(1,2,7)=‘ ’. You can use any character in formchar-
string, including hexadecimal characters. If you use hexadecimal characters, you must put an
x after the closing quote. For information about which hexadecimal codes to use for which
characters, see the documentation for your hardware.

See the CALENDAR, PLOT, and TABULATE procedures in the Base SAS Procedures Guide
for more information about form characters.

NLEVELS
displays the “Number of Variable Levels” table, which provides the number of levels for each
variable named in the TABLES statements. See the section “Number of Variable Levels Ta-
ble” on page 174 for details. PROC FREQ determines the variable levels from the formatted
variable values, as described in the section “Grouping with Formats” on page 113.

NOPRINT
suppresses the display of all output. You can use the NOPRINT option when you only want
to create an output data set. See the section “Output Data Sets” on page 171 for information
about the output data sets produced by PROC FREQ. Note that the NOPRINT option tem-
porarily disables the Output Delivery System (ODS). For more information, see Chapter 20,
“Using the Output Delivery System” (SAS/STAT User’s Guide).

NOTE: A NOPRINT option is also available in the TABLES statement. It suppresses display
of the crosstabulation tables but allows display of the requested statistics.
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ORDER=DATA | FORMATTED | FREQ | INTERNAL
specifies the order in which the values of the frequency and crosstabulation table variables
are reported. PROC FREQ interprets the values of the ORDER= option as follows:

DATA orders values according to their order in the input data set

FORMATTED orders values by their formatted values (in ascending order). This order is
dependent on the operating environment.

FREQ orders values by their descending frequency counts

INTERNAL orders values by their unformatted values, which yields the same order
that the SORT procedure does. This order is dependent on the operating
environment.

By default, ORDER=INTERNAL. The ORDER= option does not apply to missing values,
which are always ordered first.

PAGE
displays only one table per page. Otherwise, PROC FREQ displays multiple tables per page
as space permits. The PAGE option is not valid with the COMPRESS option.

BY Statement

BY variables ;

You can specify a BY statement with PROC FREQ to obtain separate analyses on observations in
groups defined by the BY variables. When a BY statement appears, the procedure expects the input
data set to be sorted in order of the BY variables.

If your input data set is not sorted in ascending order, use one of the following alternatives:

� Sort the data by using the SORT procedure with a similar BY statement.

� Specify the BY statement option NOTSORTED or DESCENDING in the BY statement for
the FREQ procedure. The NOTSORTED option does not mean that the data are unsorted but
rather that the data are arranged in groups (according to values of the BY variables) and that
these groups are not necessarily in alphabetical or increasing numeric order.

� Create an index on the BY variables by using the DATASETS procedure.

For more information about the BY statement, see SAS Language Reference: Concepts. For more
information about the DATASETS procedure, see the Base SAS Procedures Guide.
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EXACT Statement

EXACT statistic-options < / computation-options > ;

The EXACT statement requests exact tests or confidence limits for the specified statistics. Option-
ally, PROC FREQ computes Monte Carlo estimates of the exact p-values. The statistic-options
specify the statistics to provide exact tests or confidence limits for. The computation-options spec-
ify options for the computation of exact statistics. See the section “Exact Statistics” on page 166
for details.

CAUTION: PROC FREQ computes exact tests with fast and efficient algorithms that are superior
to direct enumeration. Exact tests are appropriate when a data set is small, sparse, skewed, or
heavily tied. For some large problems, computation of exact tests might require a considerable
amount of time and memory. Consider using asymptotic tests for such problems. Alternatively,
when asymptotic methods might not be sufficient for such large problems, consider using Monte
Carlo estimation of exact p-values. See the section “Computational Resources” on page 168 for
more information.

Statistic-Options

The statistic-options specify the statistics to provide exact tests or confidence limits for.

For one-way tables, exact p-values are available for the binomial proportion tests and the chi-square
goodness-of-fit test. Exact confidence limits are available for the binomial proportion.

For two-way tables, exact p-values are available for the following tests: Pearson chi-square test,
likelihood-ratio chi-square test, Mantel-Haenszel chi-square test, Fisher’s exact test, Jonckheere-
Terpstra test, and Cochran-Armitage test for trend. Exact p-values are also available for tests of the
following statistics: Pearson correlation coefficient, Spearman correlation coefficient, simple kappa
coefficient, and weighted kappa coefficient.

For 2 � 2 tables, PROC FREQ provides exact confidence limits for the odds ratio, exact uncondi-
tional confidence limits for the proportion difference, and McNemar’s exact test. For stratified 2�2

tables, PROC FREQ provides Zelen’s exact test for equal odds ratios, exact confidence limits for
the common odds ratio, and an exact test for the common odds ratio.

Table 3.6 lists the available statistic-options and the exact statistics computed. Most of the option
names are identical to the corresponding option names in the TABLES and OUTPUT statements.
You can request exact computations for groups of statistics by using options that are identical to
the following TABLES statement options: CHISQ, MEASURES, and AGREE. For example, when
you specify the CHISQ option in the EXACT statement, PROC FREQ computes exact p-values
for the Pearson chi-square, likelihood-ratio chi-square, and Mantel-Haenszel chi-square tests. You
can request exact computations for an individual statistic by specifying the corresponding statistic-
option from the list in Table 3.6.
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Table 3.6 EXACT Statement Statistic-Options

Statistic-Option Exact Statistics Computed

AGREE McNemar’s test (for 2 � 2 tables), simple kappa coefficient test,
weighted kappa coefficient test

BINOMIAL binomial proportion tests for one-way tables
CHISQ chi-square goodness-of-fit test for one-way tables;

Pearson chi-square, likelihood-ratio chi-square, and
Mantel-Haenszel chi-square tests for two-way tables

COMOR confidence limits for the common odds ratio and
common odds ratio test (for h � 2 � 2 tables)

EQOR | ZELEN Zelen’s test for equal odds ratios (for h � 2 � 2 tables)
FISHER Fisher’s exact test
JT Jonckheere-Terpstra test
KAPPA test for the simple kappa coefficient
LRCHI likelihood-ratio chi-square test
MCNEM McNemar’s test (for 2 � 2 tables)
MEASURES tests for the Pearson correlation and Spearman correlation,

confidence limits for the odds ratio (for 2 � 2 tables)
MHCHI Mantel-Haenszel chi-square test
OR confidence limits for the odds ratio (for 2 � 2 tables)
PCHI Pearson chi-square test
PCORR test for the Pearson correlation coefficient
RISKDIFF confidence limits for the proportion differences (for 2 � 2 tables)
RISKDIFF1 confidence limits for the column 1 proportion difference
RISKDIFF2 confidence limits for the column 2 proportion difference
SCORR test for the Spearman correlation coefficient
TREND Cochran-Armitage test for trend
WTKAP test for the weighted kappa coefficient

Using TABLES Statement Options with the EXACT Statement

If you use only one TABLES statement, you do not need to specify the same options in both the TA-
BLES and EXACT statements; when you specify an option in the EXACT statement, PROC FREQ
automatically invokes the corresponding TABLES statement option. However, when you use mul-
tiple TABLES statements and want exact computations, you must specify options in the TABLES
statements to request the desired statistics. PROC FREQ then performs exact computations for all
statistics that you also specify in the EXACT statement.

Note that the TABLES statement group option CHISQ includes tests that correspond to the follow-
ing EXACT statement individual statistic-options: LRCHI, MHCHI, and PCHI. The MEASURES
option in the TABLES statement includes statistics that correspond to the following EXACT state-
ment statistic-options: OR, PCORR, and SCORR. The AGREE option in the TABLES statement
produces analyses that correspond to the KAPPA, MCNEM, and WTKAP statistic-options in the
EXACT statement. The CMH option in the TABLES statement produces analyses that correspond
to the COMOR and EQOR (or ZELEN) statistic-options in the EXACT statement.
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Computation-Options

The computation-options specify options for computation of exact statistics. You can specify the
following computation-options in the EXACT statement after a slash (/).

ALPHA=˛
specifies the level of the confidence limits for Monte Carlo p-value estimates. The value
of ˛ must be between 0 and 1, and the default is 0.01. A confidence level of ˛ produces
100.1� ˛/% confidence limits. The default of ALPHA=.01 produces 99% confidence limits
for the Monte Carlo estimates.

The ALPHA= option invokes the MC option.

MAXTIME=value
specifies the maximum clock time (in seconds) that PROC FREQ can use to compute an
exact p-value. If the procedure does not complete the computation within the specified time,
the computation terminates. The value of MAXTIME= must be a positive number. The
MAXTIME= option is valid for Monte Carlo estimation of exact p-values, as well as for
direct exact p-value computation. See the section “Computational Resources” on page 168
for more information.

MC
requests Monte Carlo estimation of exact p-values instead of direct exact p-value computa-
tion. Monte Carlo estimation can be useful for large problems that require a considerable
amount of time and memory for exact computations but for which asymptotic approxima-
tions might not be sufficient. See the section “Monte Carlo Estimation” on page 169 for more
information.

The MC option is available for all EXACT statistic-options except the BINOMIAL option
and the following options that apply only to 2 � 2 or h � 2 � 2 tables: COMOR, EQOR,
MCNEM, RISKDIFF, and OR. PROC FREQ computes only exact tests or confidence limits
for these statistics.

The ALPHA=, N=, and SEED= options also invoke the MC option.

N=n
specifies the number of samples for Monte Carlo estimation. The value of n must be a positive
integer, and the default is 10,000. Larger values of n produce more precise estimates of exact
p-values. Because larger values of n generate more samples, the computation time increases.

The N= option invokes the MC option.

POINT
requests exact point probabilities for the test statistics.

The POINT option is available for all the EXACT statement statistic-options except the OR
and RISKDIFF options, which provide exact confidence limits. The POINT option is not
available with the MC option.
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SEED=number
specifies the initial seed for random number generation for Monte Carlo estimation. The
value of the SEED= option must be an integer. If you do not specify the SEED= option or if
the SEED= value is negative or zero, PROC FREQ uses the time of day from the computer’s
clock to obtain the initial seed.

The SEED= option invokes the MC option.

OUTPUT Statement

OUTPUT < OUT= SAS-data-set > options ;

The OUTPUT statement creates a SAS data set that contains statistics computed by PROC FREQ.
You specify which statistics to store in the output data set with the OUTPUT statement options. The
output data set contains one observation for each two-way table or stratum, and one observation for
summary statistics across all strata. For more information about the contents of the output data set,
see the section “Contents of the OUTPUT Statement Output Data Set” on page 173.

Only one OUTPUT statement is allowed for each execution of PROC FREQ. You must specify
a TABLES statement with the OUTPUT statement. If you use multiple TABLES statements, the
contents of the OUTPUT data set correspond to the last TABLES statement. If you use multiple
table requests in a TABLES statement, the contents of the OUTPUT data set correspond to the last
table request.

Note that you can use the Output Delivery System (ODS) to create a SAS data set from any piece
of PROC FREQ output. For more information, see the section “ODS Table Names” on page 182.

Also note that the output data set created by the OUTPUT statement is not the same as the output
data set created by the OUT= option in the TABLES statement. The OUTPUT statement creates a
data set that contains statistics (such as the Pearson chi-square and its p-value), and the OUT= option
in the TABLES statement creates a data set that contains frequency table counts and percentages.
See the section “Output Data Sets” on page 171 for more information.

You can specify the following options in an OUTPUT statement:

OUT=SAS-data-set
names the output data set. If you omit the OUT= option, the data set is named DATAn, where
n is the smallest integer that makes the name unique.

options
specify the statistics you want in the output data set. Table 3.7 lists the available options,
together with the TABLES statement options needed to produce the statistics. You can output
groups of statistics by using group options identical to those available in the TABLES state-
ment, which include the AGREE, ALL, CHISQ, CMH, and MEASURES options. Or you
can request statistics individually.

When you specify an option in the OUTPUT statement, the output data set contains all statis-
tics from that analysis—the estimate or test statistic plus any associated standard error, con-
fidence limits, p-values, and degrees of freedom. See the section “Contents of the OUTPUT
Statement Output Data Set” on page 173 for details.
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If you want to store a statistic in the output data set, you must also request computation
of that statistic with the appropriate TABLES or EXACT statement option. For example,
you cannot specify the option PCHI (Pearson chi-square) in the OUTPUT statement without
also specifying a TABLES or EXACT statement option to compute the Pearson chi-square
test. The TABLES statement option ALL or CHISQ requests the Pearson chi-square test. If
you have only one TABLES statement, the EXACT statement option CHISQ or PCHI also
requests the Pearson chi-square test. Table 3.7 lists the TABLES statement options required to
produce the OUTPUT data set statistics. Note that the ALL option in the TABLES statement
invokes the CHISQ, MEASURES, and CMH options.

Table 3.7 OUTPUT Statement Options

Option Output Data Set Statistics Required TABLES
Statement Option

AGREE McNemar’s test, Bowker’s test, simple and AGREE
weighted kappas; for multiple strata, overall
simple and weighted kappas, tests for equal
kappas, and Cochran’s Q

AJCHI continuity-adjusted chi-square (2 � 2 tables) CHISQ
ALL CHISQ, MEASURES, and CMH statistics; N ALL
BDCHI Breslow-Day test (h � 2 � 2 tables) CMH, CMH1, or CMH2
BINOMIAL binomial statistics for one-way tables BINOMIAL
CHISQ for one-way tables, goodness-of-fit test; CHISQ

for two-way tables, Pearson, likelihood-ratio,
continuity-adjusted, and Mantel-Haenszel
chi-squares, Fisher’s exact test (2 � 2 tables),
phi and contingency coefficients, Cramer’s V

CMH Cochran-Mantel-Haenszel (CMH) correlation, CMH
row mean scores (ANOVA), and general
association statistics; for 2 � 2 tables, logit and
Mantel-Haenszel adjusted odds ratios and
relative risks, Breslow-Day test

CMH1 CMH output, except row mean scores (ANOVA) CMH or CMH1
and general association statistics

CMH2 CMH output, except general association statistic CMH or CMH2
CMHCOR CMH correlation statistic CMH, CMH1, or CMH2
CMHGA CMH general association statistic CMH
CMHRMS CMH row mean scores (ANOVA) statistic CMH or CMH2
COCHQ Cochran’s Q (h � 2 � 2 tables) AGREE
CONTGY contingency coefficient CHISQ
CRAMV Cramer’s V CHISQ
EQKAP test for equal simple kappas AGREE
EQWKP test for equal weighted kappas AGREE
FISHER Fisher’s exact test CHISQ or FISHER 1

GAMMA gamma MEASURES
JT Jonckheere-Terpstra test JT

1CHISQ computes Fisher’s exact test for 2 � 2 tables. Use the FISHER option to compute Fisher’s exact test for
general rxc tables.
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Table 3.7 continued

Option Output Data Set Statistics Required TABLES
Statement Option

KAPPA simple kappa coefficient AGREE
KENTB Kendall’s tau-b MEASURES
LAMCR lambda asymmetric .C jR/ MEASURES
LAMDAS lambda symmetric MEASURES
LAMRC lambda asymmetric .RjC/ MEASURES
LGOR adjusted logit odds ratio (h � 2 � 2 tables) CMH, CMH1, or CMH2
LGRRC1 adjusted column 1 logit relative risk CMH, CMH1, or CMH2
LGRRC2 adjusted column 2 logit relative risk CMH, CMH1, or CMH2
LRCHI likelihood-ratio chi-square CHISQ
MCNEM McNemar’s test (2 � 2 tables) AGREE
MEASURES gamma, Kendall’s tau-b, Stuart’s tau-c, MEASURES

Somers’ D.C jR/ and D.RjC/, Pearson and
Spearman correlations, lambda asymmetric
.C jR/ and .RjC/, lambda symmetric,
uncertainty coefficients .C jR/ and .RjC/,
symmetric uncertainty coefficient;
odds ratio and relative risks (2 � 2 tables)

MHCHI Mantel-Haenszel chi-square CHISQ
MHOR | COMOR adjusted Mantel-Haenszel odds ratio CMH, CMH1, or CMH2

(h � 2 � 2 tables)
MHRRC1 adjusted column 1 Mantel-Haenszel relative risk CMH, CMH1, or CMH2
MHRRC2 adjusted column 2 Mantel-Haenszel relative risk CMH, CMH1, or CMH2
N number of nonmissing observations
NMISS number of missing observations
OR odds ratio (2 � 2 tables) MEASURES or RELRISK
PCHI chi-square goodness-of-fit test for one-way tables, CHISQ

Pearson chi-square for two-way tables
PCORR Pearson correlation coefficient MEASURES
PHI phi coefficient CHISQ
PLCORR polychoric correlation coefficient PLCORR
RDIF1 column 1 risk difference (row 1 - row 2) RISKDIFF
RDIF2 column 2 risk difference (row 1 - row 2) RISKDIFF
RELRISK odds ratio and relative risks (2 � 2 tables) MEASURES or RELRISK
RISKDIFF risks and risk differences (2 � 2 tables) RISKDIFF
RISKDIFF1 column 1 risks and risk difference RISKDIFF
RISKDIFF2 column 2 risks and risk difference RISKDIFF
RRC1 column 1 relative risk MEASURES or RELRISK
RRC2 column 2 relative risk MEASURES or RELRISK
RSK1 column 1 risk, overall RISKDIFF
RSK11 column 1 risk, for row 1 RISKDIFF
RSK12 column 2 risk, for row 1 RISKDIFF
RSK2 column 2 risk, overall RISKDIFF
RSK21 column 1 risk, for row 2 RISKDIFF
RSK22 column 2 risk, for row 2 RISKDIFF
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Table 3.7 continued

Option Output Data Set Statistics Required TABLES
Statement Option

SCORR Spearman correlation coefficient MEASURES
SMDCR Somers’ D.C jR/ MEASURES
SMDRC Somers’ D.RjC/ MEASURES
STUTC Stuart’s tau-c MEASURES
TREND Cochran-Armitage test for trend TREND
TSYMM Bowker’s test of symmetry AGREE
U symmetric uncertainty coefficient MEASURES
UCR uncertainty coefficient .C jR/ MEASURES
URC uncertainty coefficient .RjC/ MEASURES
WTKAP weighted kappa coefficient AGREE

TABLES Statement

TABLES requests < / options > ;

The TABLES statement requests one-way to n-way frequency and crosstabulation tables and statis-
tics for those tables.

If you omit the TABLES statement, PROC FREQ generates one-way frequency tables for all data
set variables that are not listed in the other statements.

The following argument is required in the TABLES statement.

requests
specify the frequency and crosstabulation tables to produce. A request is composed of one
variable name or several variable names separated by asterisks. To request a one-way fre-
quency table, use a single variable. To request a two-way crosstabulation table, use an asterisk
between two variables. To request a multiway table (an n-way table, where n>2), separate the
desired variables with asterisks. The unique values of these variables form the rows, columns,
and strata of the table. You can include up to 50 variables in a single multiway table request.

For two-way to multiway tables, the values of the last variable form the crosstabulation table
columns, while the values of the next-to-last variable form the rows. Each level (or combi-
nation of levels) of the other variables forms one stratum. PROC FREQ produces a separate
crosstabulation table for each stratum. For example, a specification of A*B*C*D in a TABLES
statement produces k tables, where k is the number of different combinations of values for A
and B. Each table lists the values for C down the side and the values for D across the top.

You can use multiple TABLES statements in the PROC FREQ step. PROC FREQ builds all
the table requests in one pass of the data, so that there is essentially no loss of efficiency.
You can also specify any number of table requests in a single TABLES statement. To specify
multiple table requests quickly, use a grouping syntax by placing parentheses around several
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variables and joining other variables or variable combinations. For example, the statements
shown in Table 3.8 illustrate grouping syntax.

Table 3.8 Grouping Syntax

Request Equivalent to

tables A*(B C); tables A*B A*C;
tables (A B)*(C D); tables A*C B*C A*D B*D;
tables (A B C)*D; tables A*D B*D C*D;
tables A – – C; tables A B C;
tables (A – – C)*D; tables A*D B*D C*D;

The TABLES statement variables are one or more variables from the DATA= input data set.
These variables can be either character or numeric, but the procedure treats them as categor-
ical variables. PROC FREQ uses the formatted values of the TABLES variable to determine
the categorical variable levels. So if you assign a format to a variable with a FORMAT
statement, PROC FREQ formats the values before dividing observations into the levels of a
frequency or crosstabulation table. See the discussion of the FORMAT procedure in the Base
SAS Procedures Guide and the discussions of the FORMAT statement and SAS formats in
SAS Language Reference: Dictionary.

If you use PROC FORMAT to create a user-written format that combines missing and non-
missing values into one category, PROC FREQ treats the entire category of formatted values
as missing. See the discussion in the section “Grouping with Formats” on page 113 for more
information.

The frequency or crosstabulation table lists the values of both character and numeric variables
in ascending order based on internal (unformatted) variable values unless you change the
order with the ORDER= option. To list the values in ascending order by formatted value, use
ORDER=FORMATTED in the PROC FREQ statement.

Without Options

If you request a one-way frequency table for a variable without specifying options, PROC FREQ
produces frequencies, cumulative frequencies, percentages of the total frequency, and cumulative
percentages for each value of the variable. If you request a two-way or an n-way crosstabulation
table without specifying options, PROC FREQ produces crosstabulation tables that include cell
frequencies, cell percentages of the total frequency, cell percentages of row frequencies, and cell
percentages of column frequencies. The procedure excludes observations with missing values from
the table but displays the total frequency of missing observations below each table.

Options

Table 3.9 lists the options available in the TABLES statement. Descriptions follow in alphabetical
order.
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Table 3.9 TABLES Statement Options

Option Description

Control Statistical Analysis
AGREE requests tests and measures of classification agreement
ALL requests tests and measures of association produced by CHISQ,

MEASURES, and CMH
ALPHA= sets the confidence level for confidence limits
BDT requests Tarone’s adjustment for the Breslow-Day test
BINOMIAL requests binomial proportion, confidence limits, and tests

for one-way tables
BINOMIALC requests BINOMIAL statistics with a continuity correction
CHISQ requests chi-square tests and measures based on chi-square
CL requests confidence limits for the MEASURES statistics
CMH requests all Cochran-Mantel-Haenszel statistics
CMH1 requests CMH correlation statistic, adjusted odds ratios,

and adjusted relative risks
CMH2 requests CMH correlation and row mean scores (ANOVA)

statistics, adjusted odds ratios, and adjusted relative risks
CONVERGE= specifies convergence criterion for polychoric correlation
FISHER requests Fisher’s exact test for tables larger than 2 � 2

JT requests Jonckheere-Terpstra test
MAXITER= specifies maximum number of iterations for polychoric correlation
MEASURES requests measures of association
MISSING treats missing values as nonmissing
PLCORR requests polychoric correlation
RELRISK requests relative risk measures for 2 � 2 tables
RISKDIFF requests risks and risk differences for 2 � 2 tables
RISKDIFFC requests RISKDIFF statistics with a continuity correction
SCORES= specifies the type of row and column scores
TESTF= specifies expected frequencies for one-way chi-square test
TESTP= specifies expected proportions for one-way chi-square test
TREND requests Cochran-Armitage test for trend

Control Additional Table Information
CELLCHI2 displays cell contributions to the Pearson chi-square statistic
CUMCOL displays cumulative column percentages
DEVIATION displays deviations of cell frequencies from expected values
EXPECTED displays expected cell frequencies
MISSPRINT displays missing value frequencies
SPARSE includes all possible combinations of variable levels

in LIST and OUT=
TOTPCT displays percentages of total frequency for n-way tables (n > 2)
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Table 3.9 continued

Option Description

Control Displayed Output
CONTENTS= specifies the contents label for crosstabulation tables
CROSSLIST displays crosstabulation tables in ODS column format
FORMAT= formats the frequencies in crosstabulation tables
LIST displays two-way to n-way tables in list format
NOCOL suppresses display of column percentages
NOCUM suppresses display of cumulative frequencies and percentages
NOFREQ suppresses display of frequencies
NOPERCENT suppresses display of percentages
NOPRINT suppresses display of crosstabulation tables but displays statistics
NOROW suppresses display of row percentages
NOSPARSE suppresses zero frequency levels in CROSSLIST, LIST and OUT=
NOWARN suppresses log warning message for the chi-square test
PRINTKWT displays kappa coefficient weights
SCOROUT displays row and column scores

Produce Statistical Graphics
PLOTS= requests plots from ODS Graphics

Create an Output Data Set
OUT= names an output data set to contain frequency counts
OUTCUM includes cumulative frequencies and percentages

in the output data set for one-way tables
OUTEXPECT includes expected frequencies in the output data set
OUTPCT includes row, column, and two-way table percentages

in the output data set

You can specify the following options in a TABLES statement.

AGREE < (WT=FC) >
requests tests and measures of classification agreement for square tables. The AGREE option
provides McNemar’s test for 2 � 2 tables and Bowker’s test of symmetry for square tables
with more than two response categories. The AGREE option also produces the simple kappa
coefficient, the weighted kappa coefficient, their asymptotic standard errors, and their con-
fidence limits. When there are multiple strata, the AGREE option provides overall simple
and weighted kappas as well as tests for equal kappas among strata. When there are multiple
strata and two response categories, PROC FREQ computes Cochran’sQ test. See the section
“Tests and Measures of Agreement” on page 152 for details about these statistics.

If you specify the WT=FC option in parentheses following the AGREE option, PROC FREQ
uses Fleiss-Cohen weights to compute the weighted kappa coefficient. By default, PROC
FREQ uses Cicchetti-Allison weights. See the section “Weighted Kappa Coefficient” on
page 154 for details. You can specify the PRINTKWT option to display the kappa coefficient
weights.
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AGREE statistics are computed only for square tables, where the number of rows equals the
number of columns. If your table is not square due to observations with zero weights, you
can specify the ZEROS option in the WEIGHT statement to include these observations. For
more details, see the section “Tables with Zero Rows and Columns” on page 157.

You can use the TEST statement to request asymptotic tests for the simple and weighted kappa
coefficients. You can request exact p-values for the simple and weighted kappa coefficient
tests, as well as for McNemar’s test, by specifying the corresponding options in the EXACT
statement. See the section “Exact Statistics” on page 166 for more information.

ALL
requests all of the tests and measures that are computed by the CHISQ, MEASURES, and
CMH options. The number of CMH statistics computed can be controlled by the CMH1 and
CMH2 options.

ALPHA=˛
specifies the level of confidence limits. The value of ˛ must be between 0 and 1, and the
default is 0.05. A confidence level of ˛ produces 100.1�˛/% confidence limits. The default
of ALPHA=0.05 produces 95% confidence limits.

ALPHA= applies to confidence limits requested by TABLES statement options. There is a
separate ALPHA= option in the EXACT statement that sets the level of confidence limits for
Monte Carlo estimates of exact p-values, which are requested in the EXACT statement.

BDT
requests Tarone’s adjustment in the Breslow-Day test for homogeneity of odds ratios. (You
must specify the CMH option to compute the Breslow-Day test.) See the section “Breslow-
Day Test for Homogeneity of the Odds Ratios” on page 163 for more information.

BINOMIAL < (binomial-options) >
requests the binomial proportion for one-way tables. When you specify the BINOMIAL
option, PROC FREQ also provides the asymptotic standard error, asymptotic (Wald) and
exact (Clopper-Pearson) confidence limits, and the asymptotic equality test for the binomial
proportion by default.

You can specify binomial-options inside the parentheses following the BINOMIAL option.
The LEVEL= binomial-option identifies the variable level for which to compute the propor-
tion. If you do not specify LEVEL=, PROC FREQ computes the proportion for the first
level that appears in the output. The P= binomial-option specifies the null proportion for the
binomial tests. If you do not specify P=, PROC FREQ uses P=0.5 by default.

You can also specify binomial-options to request confidence limits and tests of noninferi-
ority, superiority, and equivalence for the binomial proportion. Table 3.10 summarizes the
binomial-options.

Available confidence limits for the binomial proportion include Agresti-Coull, exact
(Clopper-Pearson), Jeffreys, Wald, and Wilson (score) confidence limits. You can spec-
ify more than one type of binomial confidence limits in the same analysis. If you do not
specify any confidence limit requests with binomial-options, PROC FREQ computes Wald
asymptotic confidence limits and exact (Clopper-Pearson) confidence limits by default. The
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ALPHA= option determines the confidence level, and the default of ALPHA=0.05 produces
95% confidence limits for the binomial proportion.

To request exact tests for the binomial proportion, specify the BINOMIAL option in the
EXACT statement. PROC FREQ then computes exact p-values for all binomial tests that
you request with binomial-options, which can include tests of noninferiority, superiority, and
equivalence, as well as the test of equality.

See the section “Binomial Proportion” on page 132 for details.

Table 3.10 BINOMIAL Options

Task Binomial-Option

Specify the variable level LEVEL=

Specify the null proportion P=

Request a continuity correction CORRECT

Request confidence limits AGRESTICOULL | AC
ALL
EXACT | CLOPPERPEARSON
JEFFREYS | J
WILSON | W
WALD

Request tests EQUIV | EQUIVALENCE
NONINF | NONINFERIORITY
SUP | SUPERIORITY

Specify the test margin MARGIN=

Specify the test variance VAR=SAMPLE | NULL

You can specify the following binomial-options inside parentheses following the BINOMIAL
option.

AGRESTICOULL | AC
requests Agresti-Coull confidence limits for the binomial proportion. See the section
“Agresti-Coull Confidence Limits” on page 133 for details.

ALL
requests all available types of confidence limits for the binomial proportion. These in-
clude the following: Agresti-Coull, exact (Clopper-Pearson), Jeffreys, Wald, and Wil-
son (score) confidence limits.

CORRECT
includes a continuity correction in the asymptotic Wald confidence limits and tests. The
CORRECT binomial-option has the same effect as the BINOMIALC option.

EQUIV | EQUIVALENCE
requests a test of equivalence for the binomial proportion. See the section “Equivalence
Test” on page 138 for details. You can specify the equivalence test margins, the
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null proportion, and the variance type with the MARGIN=, P=, and VAR= binomial-
options, respectively.

EXACT

CLOPPERPEARSON
requests exact (Clopper-Pearson) confidence limits for the binomial proportion. See the
section “Exact (Clopper-Pearson) Confidence Limits” on page 134 for details. If you
do not request any binomial confidence limits by specifying binomial-options, PROC
FREQ produces Wald and exact (Clopper-Pearson) confidence limits by default.

JEFFREYS | J
requests Jeffreys confidence limits for the binomial proportion. See the section
“Jeffreys Confidence Limits” on page 133 for details.

LEVEL=level-number | ‘level-value’
specifies the variable level for the binomial proportion. By default, PROC FREQ com-
putes the proportion of observations for the first variable level that appears in the output.
To request a different level, use LEVEL=level-number or LEVEL=‘level-value’, where
level-number is the variable level’s number or order in the output, and level-value is
the formatted value of the variable level. The value of level-number must be a positive
integer. You must enclose level-value in single quotes.

MARGIN=value | (lower,upper )
specifies the margin for the noninferiority, superiority, and equivalence tests, which you
request with the NONINF, SUP, and EQUIV binomial-options, respectively. If you do
not specify MARGIN=, PROC FREQ uses a margin of 0.2 by default.

For noninferiority and superiority tests, specify a single value for the MARGIN= op-
tion. The MARGIN= value must be a positive number. You can specify value as a
number between 0 and 1. Or you can specify value in percentage form as a number
between 1 and 100, and PROC FREQ converts that number to a proportion. The pro-
cedure treats the value 1 as 1%.

For noninferiority and superiority tests, the test limits must be between 0 and 1. The
limits are determined by the null proportion value (which you can specify with the
P= binomial-option) and by the margin value. The noninferiority limit equals the null
proportion minus the margin. By default, the null proportion equals 0.5 and the margin
equals 0.2, which gives a noninferiority limit of 0.3. The superiority limit equals the
null proportion plus the margin, which is 0.7 by default.

For an equivalence test, you can specify a single MARGIN= value, or you can specify
both lower and upper values. If you specify a single MARGIN= value, it must be
a positive number, as described previously. If you specify a single MARGIN= value
for an equivalence test, PROC FREQ uses –value as the lower margin and value as the
upper margin for the test. If you specify both lower and upper values for an equivalence
test, you can specify them in proportion form as numbers between –1 or 1. Or you can
specify them in percentage form as numbers between –100 and 100, and PROC FREQ
converts the numbers to proportions. The value of lower must be less than the value of
upper.
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The equivalence limits must be between 0 and 1. The equivalence limits are determined
by the null proportion value (which you can specify with the P= binomial-option) and
by the margin values. The lower equivalence limit equals the null proportion plus the
lower margin. By default, the null proportion equals 0.5 and the lower margin equals
–0.2, which gives a lower equivalence limit of 0.3. The upper equivalence limit equals
the null proportion plus the upper margin, which is 0.7 by default.

See the sections “Noninferiority Test” on page 136 and “Equivalence Test” on page 138
for details.

NONINF | NONINFERIORITY
requests a test of noninferiority for the binomial proportion. See the section
“Noninferiority Test” on page 136 for details. You can specify the noninferiority test
margin, the null proportion, and the variance type with the MARGIN=, P=, and VAR=
binomial-options, respectively.

P=value
specifies the null hypothesis proportion for the binomial tests. If you omit the P=
option, PROC FREQ uses 0.5 as the null proportion. The null proportion value must
be a positive number. You can specify value as a number between 0 and 1. Or you can
specify value in percentage form as a number between 1 and 100, and PROC FREQ
converts that number to a proportion. The procedure treats the value 1 as 1%.

SUP | SUPERIORITY
requests a test of superiority for the binomial proportion. See the section “Superiority
Test” on page 137 for details. You can specify the superiority test margin, the null pro-
portion, and the variance type with the MARGIN=, P=, and VAR= binomial-options,
respectively.

VAR=SAMPLE | NULL
specifies the type of variance estimate to use for the tests of noninferiority, superiority,
and equivalence. The default is VAR=SAMPLE, which estimates the variance from the
sample proportion. VAR=NULL uses the null proportion to compute the variance. See
the sections “Noninferiority Test” on page 136 and “Equivalence Test” on page 138 for
details.

WALD
requests Wald confidence limits for the binomial proportion. See the section “Wald
Confidence Limits” on page 133 for details. If you do not request any binomial con-
fidence limits by specifying binomial-options, PROC FREQ produces Wald and exact
(Clopper-Pearson) confidence limits by default.

WILSON | W

SCORE
requests Wilson confidence limits for the binomial proportion. These are also known
as score confidence limits. See the section “Wilson (Score) Confidence Limits” on
page 134 for details.
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BINOMIALC < (binomial-options) >
requests the BINOMIAL option statistics for one-way tables, and includes a continuity cor-
rection in the asymptotic Wald confidence limits and tests. The BINOMIAL option statistics
include the binomial proportion, its asymptotic standard error, asymptotic (Wald) and exact
(Clopper-Pearson) confidence limits, and the asymptotic equality test for the binomial propor-
tion by default. The binomial-options available with the BINOMIALC option are the same as
those available with BINOMIAL. See the description of the BINOMIAL option for details.

CELLCHI2
displays each crosstabulation table cell’s contribution to the total Pearson chi-square statistic.
The cell contribution is computed as

.frequency � expected/2

expected

where frequency is the table cell frequency or count and expected is the expected cell fre-
quency, which is computed under the null hypothesis that the row and column variables are
independent. See the section “Pearson Chi-Square Test for Two-Way Tables” on page 119 for
details.

The CELLCHI2 option has no effect for one-way tables or for tables that are displayed with
the LIST option.

CHISQ
requests chi-square tests of homogeneity or independence and measures of association based
on the chi-square statistic. The tests include the Pearson chi-square, likelihood-ratio chi-
square, and Mantel-Haenszel chi-square. The measures include the phi coefficient, the con-
tingency coefficient, and Cramer’s V . For 2 � 2 tables, the CHISQ option also provides
Fisher’s exact test and the continuity-adjusted chi-square. See the section “Chi-Square Tests
and Statistics” on page 118 for details.

For one-way tables, the CHISQ option provides a chi-square goodness-of-fit test for equal
proportions. If you specify the null hypothesis proportions with the TESTP= option, PROC
FREQ computes a chi-square goodness-of-fit test for the specified proportions. If you specify
null hypothesis frequencies with the TESTF= option, PROC FREQ computes a chi-square
goodness-of-fit test for the specified frequencies. See the section “Chi-Square Test for One-
Way Tables” on page 119 for more information.

To request Fisher’s exact test for tables larger than 2 � 2, use the FISHER option in the
EXACT statement. Exact tests are also available for other CHISQ statistics, including the
Pearson, likelihood-ratio, and Mantel-Haenszel chi-square, and the chi-square goodness-of-
fit test for one-way tables. You can use the EXACT statement to request these tests. See the
section “Exact Statistics” on page 166 for details.

CL
requests confidence limits for the MEASURES statistics. If you omit the MEASURES option,
the CL option invokes MEASURES. You can set the level of the confidence limits by using
the ALPHA= option. The default of ALPHA=0.5 produces 95% confidence limits. See the
sections “Measures of Association” on page 123 and “Confidence Limits” on page 124 for
more information.
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CMH
requests Cochran-Mantel-Haenszel statistics, which test for association between the row
and column variables after adjusting for the remaining variables in a multiway table. The
Cochran-Mantel-Haenszel statistics include the nonzero correlation statistic, the row mean
scores differ (ANOVA) statistic, and the general association statistic. In addition, for 2 � 2

tables, the CMH option provides the adjusted Mantel-Haenszel and logit estimates of the
odds ratio and relative risks, together with their confidence limits. For stratified 2 � 2 tables,
the CMH option provides the Breslow-Day test for homogeneity of odds ratios. (To request
Tarone’s adjustment for the Breslow-Day test, specify the BDT option.) See the section
“Cochran-Mantel-Haenszel Statistics” on page 157 for details.

You can use the CMH1 or CMH2 option to control the number of CMH statistics that PROC
FREQ computes.

For stratified 2�2 tables, you can request Zelen’s exact test for equal odds ratios by specifying
the EQOR option in the EXACT statement. See the section “Zelen’s Exact Test for Equal
Odds Ratios” on page 163 for details. You can request exact confidence limits for the common
odds ratio by specifying the COMOR option in the EXACT statement. This option also
provides a common odds ratio test. See the section “Exact Confidence Limits for the Common
Odds Ratio” on page 164 for details.

CMH1
requests the Cochran-Mantel-Haenszel correlation statistic. It does not provide the CMH row
mean scores differ (ANOVA) statistic or the general association statistic, which are provided
by the CMH option. For tables larger than 2�2, the CMH1 option requires less memory than
the CMH option, which can require an enormous amount of memory for large tables.

For 2 � 2 tables, the CMH1 option also provides the adjusted Mantel-Haenszel and logit
estimates of the common odds ratio and relative risks and the Breslow-Day test.

CMH2
requests the Cochran-Mantel-Haenszel correlation statistic and the row mean scores
(ANOVA) statistic. It does not provide the CMH general association statistic, which is
provided by the CMH option. For tables larger than 2 � 2, the CMH2 option requires less
memory than the CMH option, which can require an enormous amount of memory for large
tables.

For 2 � 2 tables, the CMH2 option also provides the adjusted Mantel-Haenszel and logit
estimates of the common odds ratio and relative risks and the Breslow-Day test.

CONTENTS=‘string’
specifies the label to use for crosstabulation tables in the contents file, the Results window,
and the trace record. For information about output presentation, see the SAS Output Delivery
System: User’s Guide.

If you omit the CONTENTS= option, the contents label for crosstabulation tables is “Cross-
Tabular Freq Table” by default.

Note that contents labels for all crosstabulation tables that are produced by a single TABLES
statement use the same text. To specify different contents labels for different crosstabulation
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tables, request the tables in separate TABLES statements and use the CONTENTS= option in
each TABLES statement.

To remove the crosstabulation table entry from the contents file, you can specify a null label
with CONTENTS=‘’.

The CONTENTS= option affects only contents labels for crosstabulation tables. It does not
affect contents labels for other PROC FREQ tables.

To specify the contents label for any PROC FREQ table, you can use PROC TEMPLATE
to create a customized table definition. The CONTENTS_LABEL attribute in the DEFINE
TABLE statement of PROC TEMPLATE specifies the contents label for the table. See the
chapter “The TEMPLATE Procedure” in the SAS Output Delivery System: User’s Guide for
more information.

CONVERGE=value
specifies the convergence criterion for computing the polychoric correlation, which you re-
quest with the PLCORR option. The CONVERGE= value must be a positive number. By
default CONVERGE=0.0001. Iterative computation of the polychoric correlation stops when
the convergence measure falls below the value of CONVERGE= or when the number of it-
erations exceeds the value specified in the MAXITER= option, whichever happens first. See
the section “Polychoric Correlation” on page 129 for details.

CROSSLIST
displays crosstabulation tables in ODS column format instead of the default crosstabulation
cell format. In a CROSSLIST table display, the rows correspond to the crosstabulation table
cells, and the columns correspond to descriptive statistics such as Frequency and Percent. The
CROSSLIST table displays the same information as the default crosstabulation table, but uses
an ODS column format instead of the table cell format. See the section “Multiway Tables”
on page 176 for details about the contents of the CROSSLIST table.

You can control the contents of a CROSSLIST table with the same options available for the
default crosstabulation table. These include the NOFREQ, NOPERCENT, NOROW, and
NOCOL options. You can request additional information in a CROSSLIST table with the
CELLCHI2, DEVIATION, EXPECTED, MISSPRINT, and TOTPCT options.

The FORMAT= option and the CUMCOL option have no effect for CROSSLIST tables.
You cannot specify both the LIST option and the CROSSLIST option in the same TABLES
statement.

You can use the NOSPARSE option to suppress display of variable levels with zero frequency
in CROSSLIST tables. By default for CROSSLIST tables, PROC FREQ displays all levels of
the column variable within each level of the row variable, including any column variable lev-
els with zero frequency for that row. And for multiway tables displayed with the CROSSLIST
option, the procedure displays all levels of the row variable for each stratum of the table by
default, including any row variable levels with zero frequency for the stratum.

CUMCOL
displays the cumulative column percentages in the cells of the crosstabulation table. The
CUMCOL option does not apply to crosstabulation tables produced with the LIST or
CROSSLIST option.
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DEVIATION
displays the deviation of the frequency from the expected frequency for each cell of the
crosstabulation table. See the section “Pearson Chi-Square Test for Two-Way Tables” on
page 119 for details. The DEVIATION option does not apply to crosstabulation tables pro-
duced with the LIST option.

EXPECTED
displays the expected cell frequencies under the hypothesis of independence (or homogeneity)
for crosstabulation tables. See the section “Pearson Chi-Square Test for Two-Way Tables” on
page 119 for details. The EXPECTED option does not apply to tables produced with the
LIST option.

FISHER | EXACT
requests Fisher’s exact test for tables that are larger than 2 � 2. (For 2 � 2 tables, the CHISQ
option provides Fisher’s exact test.) This test is also known as the Freeman-Halton test. See
the sections “Fisher’s Exact Test” on page 121 and “Exact Statistics” on page 166 for more
information.

If you omit the CHISQ option in the TABLES statement, the FISHER option invokes CHISQ.
You can also request Fisher’s exact test by specifying the FISHER option in the EXACT
statement.

CAUTION: PROC FREQ computes exact tests with fast and efficient algorithms that are su-
perior to direct enumeration. Exact tests are appropriate when a data set is small, sparse,
skewed, or heavily tied. For some large problems, computation of exact tests might require a
considerable amount of time and memory. Consider using asymptotic tests for such problems.
Alternatively, when asymptotic methods might not be sufficient for such large problems, con-
sider using Monte Carlo estimation of exact p-values. See the section “Computational Re-
sources” on page 168 for more information.

FORMAT=format-name
specifies a format for the following crosstabulation table cell values: frequency, expected
frequency, and deviation. PROC FREQ also uses the specified format to display the row and
column total frequencies and the overall total frequency in crosstabulation tables.

You can specify any standard SAS numeric format or a numeric format defined with the
FORMAT procedure. The format length must not exceed 24. If you omit the FORMAT=
option, by default PROC FREQ uses the BEST6. format to display frequencies less than 1E6,
and the BEST7. format otherwise.

The FORMAT= option applies only to crosstabulation tables displayed in the default format.
It does not apply to crosstabulation tables produced with the LIST or CROSSLIST option.

To change display formats in any FREQ table, you can use PROC TEMPLATE. See the
chapter “The TEMPLATE Procedure” in the SAS Output Delivery System: User’s Guide for
more information.

JT
requests the Jonckheere-Terpstra test. See the section “Jonckheere-Terpstra Test” on page 150
for details.
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LIST
displays two-way to n-way crosstabulation tables in a list format instead of the default
crosstabulation cell format. The LIST option displays the entire multiway table in one table,
instead of displaying a separate two-way table for each stratum. See the section “Multiway
Tables” on page 176 for details.

The LIST option is not available when you also specify statistical options. You must use the
standard crosstabulation table display or the CROSSLIST display when you request statistical
tests or measures.

MAXITER=number
specifies the maximum number of iterations for computing the polychoric correlation, which
you request with the PLCORR option. The value of the MAXITER= option must be a pos-
itive integer. By default MAXITER=20. Iterative computation of the polychoric correlation
stops when the number of iterations exceeds the MAXITER= value or when the convergence
measures falls below the value of the CONVERGE= option, whichever happens first. See the
section “Polychoric Correlation” on page 129 for details.

MEASURES
requests several measures of association and their asymptotic standard errors. The MEA-
SURES option provides the following statistics: gamma, Kendall’s tau-b, Stuart’s tau-c,
Somers’ D.C jR/, Somers’ D.RjC/, the Pearson and Spearman correlation coefficients,
lambda (symmetric and asymmetric), and uncertainty coefficients (symmetric and asymmet-
ric). To request confidence limits for these measures of association, you can specify the CL
option.

For 2 � 2 tables, the MEASURES option also provides the odds ratio, column 1 relative risk,
column 2 relative risk, and the corresponding confidence limits. Alternatively, you can obtain
the odds ratio and relative risks, without the other measures of association, by specifying the
RELRISK option.

See the section “Measures of Association” on page 123 for details.

You can use the TEST statement to request asymptotic tests for the following measures of
association: gamma, Kendall’s tau-b, Stuart’s tau-c, Somers’ D.C jR/, Somers’ D.RjC/,
and the Pearson and Spearman correlation coefficients. You can use the EXACT statement to
request exact tests for the Pearson and Spearman correlation coefficients and exact confidence
limits for the odds ratio. See the section “Exact Statistics” on page 166 for more information.

MISSING
treats missing values as a valid nonmissing level for all TABLES variables. The MISSING
option displays the missing levels in frequency and crosstabulation tables and includes them
in all calculations of percentages, tests, and measures.

By default, if you do not specify the MISSING or MISSPRINT option, an observation is
excluded from a table if it has a missing value for any of the variables in the TABLES request.
When PROC FREQ excludes observations with missing values, it displays the total frequency
of missing observations below the table. See the section “Missing Values” on page 114 for
more information.
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MISSPRINT
displays missing value frequencies in frequency and crosstabulation tables but does not in-
clude the missing value frequencies in any computations of percentages, tests, or measures.

By default, if you do not specify the MISSING or MISSPRINT option, an observation is
excluded from a table if it has a missing value for any of the variables in the TABLES request.
When PROC FREQ excludes observations with missing values, it displays the total frequency
of missing observations below the table. See the section “Missing Values” on page 114 for
more information.

NOCOL
suppresses the display of column percentages in crosstabulation table cells.

NOCUM
suppresses the display of cumulative frequencies and percentages in one-way frequency ta-
bles. The NOCUM option also suppresses the display of cumulative frequencies and percent-
ages in crosstabulation tables in list format, which you request with the LIST option.

NOFREQ
suppresses the display of cell frequencies in crosstabulation tables. The NOFREQ option
also suppresses row total frequencies. This option has no effect for one-way tables or for
crosstabulation tables in list format, which you request with the LIST option.

NOPERCENT
suppresses the display of overall percentages in crosstabulation tables. These percentages
include the cell percentages of the total (two-way) table frequency, as well as the row and
column percentages of the total table frequency. To suppress the display of cell percentages
of row or column totals, use the NOROW or NOCOL option, respectively.

For one-way frequency tables and crosstabulation tables in list format, the NOPERCENT
option suppresses the display of percentages and cumulative percentages.

NOPRINT
suppresses the display of frequency and crosstabulation tables but displays all requested tests
and statistics. To suppress the display of all output, including tests and statistics, use the
NOPRINT option in the PROC FREQ statement.

NOROW
suppresses the display of row percentages in crosstabulation table cells.

NOSPARSE
suppresses the display of cells with a zero frequency count in LIST output and omits them
from the OUT= data set. The NOSPARSE option applies when you specify the ZEROS option
in the WEIGHT statement to include observations with zero weights. By default, the ZEROS
option invokes the SPARSE option, which displays table cells with a zero frequency count in
the LIST output and includes them in the OUT= data set. See the description of the ZEROS
option for more information.

The NOSPARSE option also suppresses the display of variable levels with zero frequency
in CROSSLIST tables. By default for CROSSLIST tables, PROC FREQ displays all levels
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of the column variable within each level of the row variable, including any column variable
levels with zero frequency for that row. For multiway tables displayed with the CROSSLIST
option, the procedure displays all levels of the row variable for each stratum of the table by
default, including any row variable levels with zero frequency for the stratum.

NOWARN
suppresses the log warning message that the asymptotic chi-square test might not be valid.
By default, PROC FREQ displays this log message when you request the CHISQ option and
more than 20 percent of the table cells have expected frequencies less than five.

OUT=SAS-data-set
names an output data set that contains frequency or crosstabulation table counts and percent-
ages. If more than one table request appears in the TABLES statement, the contents of the
OUT= data set correspond to the last table request in the TABLES statement. The OUT=
data set variable COUNT contains the frequencies and the variable PERCENT contains the
percentages. See the section “Output Data Sets” on page 171 for details. You can specify
the following options to include additional information in the OUT= data set: OUTCUM,
OUTEXPECT, and OUTPCT.

OUTCUM
includes cumulative frequencies and cumulative percentages in the OUT= data set for one-
way tables. The variable CUM_FREQ contains the cumulative frequencies, and the vari-
able CUM_PCT contains the cumulative percentages. See the section “Output Data Sets”
on page 171 for details. The OUTCUM option has no effect for two-way or multiway tables.

OUTEXPECT
includes expected cell frequencies in the OUT= data set for crosstabulation tables. The vari-
able EXPECTED contains the expected cell frequencies. See the section “Output Data Sets”
on page 171 for details. The EXPECTED option has no effect for one-way tables.

OUTPCT
includes the following additional variables in the OUT= data set for crosstabulation tables:

PCT_COL percentage of column frequency

PCT_ROW percentage of row frequency

PCT_TABL percentage of stratum (two-way table) frequency, for n-way tables where
n > 2

See the section “Output Data Sets” on page 171 for details. The OUTPCT option has no
effect for one-way tables.

PLCORR
requests the polychoric correlation coefficient. For 2 � 2 tables, this statistic is more com-
monly known as the tetrachoric correlation coefficient, and it is labeled as such in the dis-
played output. See the section “Polychoric Correlation” on page 129 for details. Also see the
descriptions of the CONVERGE= and MAXITER= options, which you can specify to control
the iterative computation of the polychoric correlation coefficient.

If you omit the MEASURES option, the PLCORR option invokes MEASURES.
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PLOTS < ( global-plot-options ) > < = plot-request < ( plot-options ) > >
PLOTS < ( global-plot-options ) > < = ( plot-request < (plot-options) > < . . . plot-request < (plot-options ) > > ) >

requests plots for PROC FREQ to produce by using ODS Graphics. When you specify only
one plot-request, you can omit the parentheses around the request. For example:

plots=all
plots=freqplot
plots=(freqplot oddsratioplot)
plots(only)=(cumfreqplot deviationplot)

For information about ODS Graphics, see Chapter 21, “Statistical Graphics Using ODS”
(SAS/STAT User’s Guide). You must enable ODS Graphics before requesting plots, as shown
in the following statements:

ods graphics on;
proc freq;

tables treatment*response / chisq plots=freqplot;
weight wt;

run;
ods graphics off;

The PLOTS= option has no effect when you specify the NOPRINT option in the PROC FREQ
statement.

If you do not specify the PLOTS= option but have enabled ODS Graphics, then PROC FREQ
produces all plots associated with the analyses you request in the current TABLES statement.

Table 3.11 lists the available plot-requests, together with their plot-options and required TA-
BLES statement options.
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Table 3.11 PLOTS= Options

Plot-Request Plot-Options Required TABLES
Statement Option

CUMFREQPLOT ORIENT= one-way table request
SCALE=
TYPE=

DEVIATIONPLOT NOSTATS CHISQ (one-way table)
ORIENT=
TYPE=

FREQPLOT ORIENT= any table request
SCALE=
TYPE=

FREQPLOT TWOWAY= two-way or multiway table

KAPPAPLOT NPANELPOS= AGREE (h � r � r table)
ORDER=
RANGE=
STATS

ODDSRATIOPLOT LOGBASE= MEASURES or RELRISK
NPANELPOS= (h � 2 � 2 table)
ORDER=
RANGE=
STATS

WTKAPPAPLOT NPANELPOS= AGREE
ORDER= (h � r � r table, r > 2)
RANGE=
STATS

Global-Plot-Options

A global-plot-option applies to all plots for which the option is available, unless it is altered
by a specific plot-option. You can specify the following global-plot-options in parentheses
following the PLOTS option:

NPANELPOS=n
applies to ODDSRATIOPLOT, KAPPAPLOT, and WTKAPPAPLOT. The NPANEL-
POS= plot-option breaks the plot into multiple graphics that have at most jnj odds ra-
tios or kappa statistics per graphic. If n is positive, the number of statistics per graphic
is balanced; but if n is negative, the number of statistics per graphic is not balanced.
By default, n D 0 and all statistics are displayed in a single plot. For example, suppose
you want to display 21 odds ratios. Then NPANELPOS=20 displays two plots, the first
with 11 odds ratios and the second with 10; NPANELPOS=–20 displays 20 odds ratios
in the first plot but only 1 in the second.

ONLY
suppresses the default plots and requests only the plots specified as plot-requests.
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ORDER=ASCENDING | DESCENDING
applies to ODDSRATIOPLOT, KAPPPAPLOT, and WTKAPPAPLOT. The ORDER=
plot-option displays the odds ratios or kappa statistics in sorted order. By default, the
statistics are displayed in the order that the corresponding strata appear in the multiway
table display.

ORIENT=HORIZONTAL | VERTICAL
applies to FREQPLOT, CUMFREQPLOT, and DEVIATIONPLOT. The ORIENT=
plot-option controls the orientation of the plot. ORIENT=HORIZONTAL places the
variable levels on the y-axis and the frequencies or statistic-values on the x-axis. ORI-
ENT=VERTICAL places the variable levels on the x-axis. The default orientation is
ORIENT=VERTICAL for bar charts and ORIENT=HORIZONTAL for dot plots.

RANGE=(< min >< ,max >) | CLIP
applies to ODDSRATIOPLOT, KAPPAPLOT, and WTKAPPAPLOT. The RANGE=
plot-option specifies the range of values to display. If you specify RANGE=CLIP, the
confidence intervals are clipped and the display range is determined by the minimum
and maximum values of the estimates. By default, the display range includes all confi-
dence limits.

SCALE=FREQ | LOG | PERCENT| SQRT
applies to FREQPLOT and CUMFREQPLOT. The SCALE= plot-option specifies
the scale of the frequencies to display. The default is SCALE=FREQ, which
displays unscaled frequencies. SCALE=LOG displays log (base 10) frequencies.
SCALE=PERCENT displays percentages or relative frequencies. SCALE=SQRT dis-
plays square roots of the frequencies, which produces a plot known as a rootogram.

STATS
applies to ODDSRATIOPLOT, KAPPAPLOT, and WTKAPPAPLOT. The STATS plot-
option displays the values of the statistics and their confidence limits on the right side of
the plot. If you do not request the STATS option, the statistic values are not displayed.

TYPE=BARCHART | DOTPLOT
applies to FREQPLOT, CUMFREQPLOT, and DEVIATIONPLOT. The TYPE= plot-
option specifies the plot type. TYPE=BARCHART produces a bar chart, and
TYPE=DOTPLOT produces a dot plot. The default is TYPE=BARCHART.

Plot-Requests

The following plot-requests are available with the PLOTS= option:

ALL
requests all plots associated with the specified analyses. This is the default if you do
not specify the PLOTS(ONLY) option.

CUMFREQPLOT < (plot-options) >
requests a plot of cumulative frequencies for a one-way frequency table. The following
plot-options are available for CUMFREQPLOT: ORIENT=, SCALE=, and TYPE=.
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DEVIATIONPLOT < (plot-options) >
requests a plot of relative deviations from expected frequencies for a one-way table.
The DEVIATIONPLOT is associated with the CHISQ option for a one-way table re-
quest. The following plot-options are available for DEVIATIONPLOT: ORIENT= and
TYPE=.

FREQPLOT < (plot-options) >
requests a frequency plot. Frequency plots are available for frequency and crosstabula-
tion tables. For multiway tables, PROC FREQ provides a two-way frequency plot for
each stratum. The following plot-options are available for FREQPLOT for all tables:
ORIENT=, SCALE=, and TYPE=. For two-way and multiway tables, you can use the
TWOWAY= plot-option to specify the layout of the two-way frequency plot.

KAPPAPLOT < (plot-options) >
requests a plot of kappa statistics and confidence limits for a multiway table. The KAP-
PAPLOT is associated with the AGREE option for multiway square tables. The follow-
ing plot-options are available for KAPPAPLOT: NPANELPOS=, ORDER=, RANGE=,
and STATS.

NONE
suppresses all plots.

ODDSRATIOPLOT < (plot-options) >
requests a plot of odds ratios and confidence limits for a multiway table. The ODD-
SRATIOPLOT is associated with the MEASURES or RELRISK option for multiway
2 � 2 tables. The following plot-options are available for ODDSRATIOPLOT: LOG-
BASE=, NPANELPOS=, ORDER=, RANGE=, and STATS.

WTKAPPAPLOT < (plot-options) >
requests a plot of weighted kappa statistics and confidence limits for a multiway table.
The WTKAPPAPLOT is associated with the AGREE option for multiway square tables
with more than two rows. (For 2 � 2 tables, the simple kappa and weighted kappa
statistics are the same, so weighted kappas are not presented for 2 � 2 tables.) The
following plot-options are available for WTKAPPAPLOT: NPANELPOS=, ORDER=,
RANGE=, and STATS.

Plot-Options

You can specify the following plot-options in parentheses after a plot-request.

LOGBASE=2 | E | 10
applies only to ODDSRATIOPLOT. The LOGBASE= plot-option displays the odds
ratio axis on the specified log scale.

NOSTATS
applies only to DEVIATIONPLOT. The NOSTATS plot-option suppresses the chi-
square p-value that is displayed by default in the deviation plot.
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NPANELPOS=n
applies to ODDSRATIOPLOT, KAPPAPLOT, and WTKAPPAPLOT. The NPANEL-
POS= plot-option breaks the plot into multiple graphics that have at most jnj odds ra-
tios or kappa statistics per graphic. If n is positive, the number of statistics per graphic
is balanced; but if n is negative, the number of statistics per graphic is not balanced.
By default, n D 0 and all statistics are displayed in a single plot. For example, suppose
you want to display 21 odds ratios. Then NPANELPOS=20 displays two plots, the first
with 11 odds ratios and the second with 10; NPANELPOS=–20 displays 20 odds ratios
in the first plot but only 1 in the second.

ORDER=ASCENDING | DESCENDING
applies to ODDSRATIOPLOT, KAPPPAPLOT, and WTKAPPAPLOT. The ORDER=
plot-option displays the odds ratios or kappa statistics in sorted order. By default, the
statistics are displayed in the order that the corresponding strata appear in the multiway
table display.

ORIENT=HORIZONTAL | VERTICAL
applies to FREQPLOT, CUMFREQPLOT, and DEVIATIONPLOT. The ORIENT=
plot-option controls the orientation of the plot. ORIENT=HORIZONTAL places the
variable levels on the y-axis and the frequencies or statistic-values on the x-axis. ORI-
ENT=VERTICAL places the variable levels on the x-axis. The default orientation is
ORIENT=VERTICAL for bar charts and ORIENT=HORIZONTAL for dot plots.

RANGE=(< min >< ,max >) | CLIP
applies to ODDSRATIOPLOT, KAPPAPLOT, and WTKAPPAPLOT. The RANGE=
plot-option specifies the range of values to display. If you specify RANGE=CLIP, the
confidence intervals are clipped and the display range is determined by the minimum
and maximum values of the estimates. By default, the display range includes all confi-
dence limits.

SCALE=FREQ | LOG | PERCENT| SQRT
applies to FREQPLOT and CUMFREQPLOT. The SCALE= option specifies the scale
of the frequencies to display. The default is SCALE=FREQ, which displays unscaled
frequencies. SCALE=LOG displays log (base 10) frequencies. SCALE=PERCENT
displays percentages or relative frequencies. SCALE=SQRT displays square roots of
the frequencies, which produces a plot known as a rootogram.

STATS
applies to ODDSRATIOPLOT, KAPPAPLOT, and WTKAPPAPLOT. The STATS plot-
option displays the values of the statistics and their confidence limits on the right side of
the plot. If you do not request the STATS option, the statistic values are not displayed.

TWOWAY=GROUPVERTICAL | GROUPHORIZONTAL | STACKED
applies to FREQPLOT for two-way and multiway tables. For multiway tables,
PROC FREQ provides a two-way frequency plot for each stratum. The TWOWAY=
plot-option specifies the layout for two-way frequency plots. The default is
TWOWAY=GROUPVERTICAL, which produces a grouped plot with a vertical
common baseline. The plots are grouped by the row variable, which is the first variable
you specify in a two-way table request. TWOWAY=GROUPHORIZONTAL produces
a grouped plot with a horizontal common baseline.
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TWOWAY=STACKED produces stacked frequency plots for two-way tables. In a
stacked bar chart, the bars correspond to the column variable values, and the row fre-
quencies are stacked within each column. For dot plots, the dotted lines correspond to
the columns, and the row frequencies within columns are plotted as data dots on the
same column line.

The TYPE= and ORIENT= plot-options are available for each TWOWAY= layout op-
tion.

TYPE=BARCHART | DOTPLOT
applies to FREQPLOT, CUMFREQPLOT, and DEVIATIONPLOT. The TYPE= plot-
option specifies the plot type. TYPE=BARCHART produces a bar chart, and
TYPE=DOTPLOT produces a dot plot. The default is TYPE=BARCHART.

PRINTKWT
displays the weights that PROC FREQ uses to compute the weighted kappa coefficient. You
must also specify the AGREE option to request the weighted kappa coefficient. You can spec-
ify (WT=FC) with the AGREE option to request Fleiss-Cohen weights. By default, PROC
FREQ uses Cicchetti-Allison weights to compute the weighted kappa coefficient. See the
section “Weighted Kappa Coefficient” on page 154 for details.

RELRISK
requests relative risk measures and their confidence limits for 2 � 2 tables. These measures
include the odds ratio and the column 1 and 2 relative risks. See the section “Odds Ratio and
Relative Risks for 2 x 2 Tables” on page 147 for details.

You can also obtain the RELRISK measures by specifying the MEASURES option, which
produces other measures of association in addition to the relative risks.

You can request exact confidence limits for the odds ratio by specifying the OR option in the
EXACT statement.

RISKDIFF < (riskdiff-options) >
requests risks, or binomial proportions, for 2 � 2 tables. For column 1 and column 2, PROC
FREQ computes the row 1 risk, row 2 risk, total risk, and risk difference (row 1 – row 2), to-
gether with their asymptotic standard errors and asymptotic (Wald) confidence limits. PROC
FREQ also provides exact (Clopper-Pearson) confidence limits for the row 1, row 2, and total
risks. The ALPHA= option determines the confidence level, and the default of ALPHA=0.05
produces 95% confidence limits. See the section “Risks and Risk Differences” on page 139
for details.

You can specify riskdiff-options inside the parentheses following the RISKDIFF option to
request tests of noninferiority, superiority, and equivalence for the risk difference. Available
test methods include Farrington-Manning, Hauck-Anderson, and Newcombe score (Wilson),
in addition to the Wald test. Table 3.12 summarizes the riskdiff-options.

You can request exact unconditional confidence limits for the risk difference by specifying the
RISKDIFF option in the EXACT statement. See the section “Exact Unconditional Confidence
Limits for the Risk Difference” on page 146 for more information.
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Table 3.12 RISKDIFF (Proportion Difference) Options

Task Riskdiff-Option

Specify the column COLUMN=1 | 2
Request a continuity correction CORRECT

Request tests EQUAL
EQUIV | EQUIVALENCE
NONINF | NONINFERIORITY
SUP | SUPERIORITY

Specify the test method METHOD=

Specify the test margin MARGIN=

Specify the test variance VAR=SAMPLE | NULL

You can specify the following riskdiff-options inside parentheses following the RISKDIFF
option.

COLUMN=1 | 2 | BOTH
specifies the table column for which to compute the risk difference tests of noninferior-
ity, superiority, or equivalence, which you request with the NONINF, SUP, and EQUIV
riskdiff-options, respectively. You can specify COLUMN=1, COLUMN=2, or COL-
UMN=BOTH. If you do not specify the COLUMN= option, PROC FREQ computes
the risk difference tests for column 1. The COLUMN= option has no effect on the table
of risk estimates and confidence limits or on the equality test; PROC FREQ computes
these statistics for both column 1 and column 2.

CORRECT
includes a continuity correction in the asymptotic Wald confidence limits and tests. The
CORRECT riskdiff-option also includes a continuity correction in the Newcombe score
confidence limits, which you request with the METHOD=SCORE riskdiff-option.
METHOD=HA and METHOD=FM do not use continuity corrections. The CORRECT
riskdiff-option has the same effect as the RISKDIFFC option.

EQUAL
requests a test of the null hypothesis that the risk difference equals zero. PROC FREQ
provides an asymptotic Wald test of equality. See the section “Equality Test” on
page 142 for details. You can specify the test variance type with the VAR= riskdiff-
option.

EQUIV | EQUIVALENCE
requests a test of equivalence for the risk difference. See the section “Equivalence
Tests” on page 145 for details. You can specify the equivalence test margins with the
MARGIN= riskdiff-option and the test method with the METHOD= riskdiff-option.
PROC FREQ uses METHOD=WALD by default.

MARGIN=value | (lower,upper )
specifies the margin for the noninferiority, superiority, and equivalence tests, which you
request with the NONINF, SUP, and EQUIV riskdiff-options, respectively. If you do
not specify MARGIN=, PROC FREQ uses a margin of 0.2 by default.



TABLES Statement F 107

For noninferiority and superiority tests, specify a single value for the MARGIN=
riskdiff-option. The MARGIN= value must be a positive number. You can specify
value as a number between 0 and 1. Or you can specify value in percentage form as
a number between 1 and 100, and PROC FREQ converts that number to a proportion.
The procedure treats the value 1 as 1%.

For an equivalence test, you can specify a single MARGIN= value, or you can specify
both lower and upper values. If you specify a single MARGIN= value, it must be
a positive number, as described previously. If you specify a single MARGIN= value
for an equivalence test, PROC FREQ uses –value as the lower margin and value as the
upper margin for the test. If you specify both lower and upper values for an equivalence
test, you can specify them in proportion form as numbers between –1 or 1. Or you can
specify them in percentage form as numbers between –100 and 100, and PROC FREQ
converts the numbers to proportions. The value of lower must be less than the value of
upper.

METHOD=method
specifies the method for the noninferiority, superiority, and equivalence tests, which
you request with the NONINF, SUP, and EQUIV riskdiff-options, respectively. The
following methods are available:

FM Farrington-Manning

HA Hauck-Anderson

SCORE | NEWCOMBE | WILSON Newcombe score (Wilson)

WALD Wald

The default is METHOD=WALD. See the section “Noninferiority Test” on page 142
for descriptions of these methods.

For METHOD=SCORE and METHOD=WALD, you can request a continuity correc-
tion with the CORRECT riskdiff-option. For METHOD=WALD, you can specify the
variance type with the VAR= riskdiff-option.

NONINF | NONINFERIORITY
requests a test of noninferiority for the risk difference. See the section “Noninferiority
Test” on page 142 for details. You can specify the test margin with the MARGIN=
riskdiff-option and the test method with the METHOD= riskdiff-option. PROC FREQ
uses METHOD=WALD by default.

SUP | SUPERIORITY
requests a test of superiority for the binomial proportion. See the section “Superiority
Test” on page 145 for details. You can specify the test margin with the MARGIN=
riskdiff-option and the test method with the METHOD= riskdiff-option. PROC FREQ
uses METHOD=WALD by default.

VAR=SAMPLE | NULL
specifies the type of variance estimate to use for the Wald tests of noninferiority, supe-
riority, equivalence, and equality. The default is VAR=SAMPLE, which estimates the
variance from the sample proportions. VAR=NULL uses the null hypothesis values to
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compute the variance. See the sections “Equality Test” on page 142 and “Noninferiority
Test” on page 142 for details.

RISKDIFFC < (riskdiff-options) >
requests the RISKDIFF option statistics for 2 � 2 tables and includes a continuity correction
in the asymptotic Wald confidence limits and tests.

The RISKDIFF option statistics include risks, or binomial proportions, for 2 � 2 tables. For
column 1 and column 2, PROC FREQ computes the row 1 risk, row 2 risk, total risk, and
risk difference (row 1 – row 2), together with their asymptotic standard errors and asymptotic
(Wald) confidence limits. PROC FREQ also provides exact (Clopper-Pearson) confidence
limits for the row 1, row 2, and total risks. See the section “Risks and Risk Differences” on
page 139 for details.

You can request additional tests and statistics for the risk difference by specifying riskdiff-
options in parentheses after RISKDIFFC. The riskdiff-options are the same as those available
with RISKDIFF. See the description of the RISKDIFF option for details.

You can request exact unconditional confidence limits for the risk difference by specifying the
RISKDIFF option in the EXACT statement. See the section “Exact Unconditional Confidence
Limits for the Risk Difference” on page 146 for more information.

SCORES=type
specifies the type of row and column scores that PROC FREQ uses to compute the following
statistics: Mantel-Haenszel chi-square, Pearson correlation, Cochran-Armitage test for trend,
weighted kappa coefficient, and Cochran-Mantel-Haenszel statistics. The value of type can
be one of the following:

� MODRIDIT

� RANK

� RIDIT

� TABLE

See the section “Scores” on page 117 for descriptions of these score types.

If you do not specify the SCORES= option, PROC FREQ uses SCORES=TABLE by default.
For character variables, the row and column TABLE scores are the row and column numbers.
That is, the TABLE score is 1 for row 1, 2 for row 2, and so on. For numeric variables, the row
and column TABLE scores equal the variable values. See the section “Scores” on page 117
for details. Using MODRIDIT, RANK, or RIDIT scores yields nonparametric analyses.

You can use the SCOROUT option to display the row and column scores.

SCOROUT
displays the row and column scores that PROC FREQ uses to compute score-based tests and
statistics. You can specify the score type with the SCORES= option. See the section “Scores”
on page 117 for details.

The scores are computed and displayed only when PROC FREQ computes statistics for two-
way tables. You can use ODS to store the scores in an output data set. See the section “ODS
Table Names” on page 182 for more information.
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SPARSE
reports all possible combinations of the variable values for an n-way table when n > 1, even if
a combination does not occur in the data. The SPARSE option applies only to crosstabulation
tables displayed in LIST format and to the OUT= output data set. If you do not use the LIST
or OUT= option, the SPARSE option has no effect.

When you specify the SPARSE and LIST options, PROC FREQ displays all combinations
of variable values in the table listing, including those with a frequency count of zero. By
default, without the SPARSE option, PROC FREQ does not display zero-frequency levels in
LIST output. When you use the SPARSE and OUT= options, PROC FREQ includes empty
crosstabulation table cells in the output data set. By default, PROC FREQ does not include
zero-frequency table cells in the output data set.

See the section “Missing Values” on page 114 for more information.

TESTF=(values)
specifies the null hypothesis frequencies for a one-way chi-square goodness-of-fit test, which
you request with the CHISQ option. See the section “Chi-Square Test for One-Way Tables”
on page 119 for details.

You can separate the TESTF= values with blanks or commas. The number of values must
equal the number of variable levels in the one-way table. The sum of the values must equal the
total frequency for the one-way table. List the values in the order in which the corresponding
variable levels appear in the output. If you omit the CHISQ option, the TESTF= option
invokes CHISQ.

TESTP=(values)
specifies the null hypothesis proportions for a one-way chi-square goodness-of-fit test, which
you request with the CHISQ option. See the section “Chi-Square Test for One-Way Tables”
on page 119 for details.

You can separate the TESTP= values with blanks or commas. The number of values must
equal the number of variable levels in the one-way table. List the values in the order in which
the corresponding variable levels appear in the output. You can specify values in probability
form as numbers between 0 and 1, where the proportions sum to 1. Or you can specify values
in percentage form as numbers between 0 and 100, where the percentages sum to 100. If you
omit the CHISQ option, the TESTP= option invokes CHISQ.

TOTPCT
displays the percentage of the total multiway table frequency in crosstabulation tables for
n-way tables, where n > 2. By default, PROC FREQ displays the percentage of the indi-
vidual two-way table frequency but does not display the percentage of the total frequency for
multiway crosstabulation tables. See the section “Multiway Tables” on page 176 for more
information.

The percentage of total multiway table frequency is displayed by default when you specify
the LIST option. It is also provided by default in the PERCENT variable in the OUT= output
data set.
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TREND
requests the Cochran-Armitage test for trend. The table must be 2 � C or R � 2 to compute
the trend test. See the section “Cochran-Armitage Test for Trend” on page 149 for details.

TEST Statement

TEST options ;

The TEST statement requests asymptotic tests for measures of association and measures of agree-
ment. You must use a TABLES statement with the TEST statement.

options
specify the statistics for which to provide asymptotic tests. Table 3.13 lists the available statis-
tics, which include measures of association and agreement. The option names are identical to
those in the TABLES and OUTPUT statements. You can request all tests for groups of statis-
tics by using group options MEASURES or AGREE. Or you can request tests individually
by using the options shown in Table 3.13.

For each measure of association or agreement that you specify, PROC FREQ provides an
asymptotic test that the measure equals zero. PROC FREQ displays the asymptotic standard
error under the null hypothesis, the test statistic, and the p-values. Additionally, PROC FREQ
reports the confidence limits for the measure. The ALPHA= option in the TABLES statement
determines the confidence level, which by default equals 0.05 and provides 95% confidence
limits. See the sections “Asymptotic Tests” on page 124 and “Confidence Limits” on page 124
for details. Also see the section “Statistical Computations” on page 117 for information about
individual measures.

You can request exact tests for selected measures of association and agreement by using the
EXACT statement. See the section “Exact Statistics” on page 166 for more information.

If you use only one TABLES statement, you do not need to specify the same options in
both the TABLES and TEST statements; when you specify an option in the TEST statement,
PROC FREQ automatically invokes the corresponding TABLES statement option. However,
when you use the TEST statement with multiple TABLES statements, you must specify op-
tions in the TABLES statements to request the desired statistics. PROC FREQ then provides
asymptotic tests for those statistics that you also specify in the TEST statement.
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Table 3.13 TEST Statement Options

Option Asymptotic Tests Computed Required TABLES
Statement Option

AGREE simple and weighted kappa coefficients AGREE
GAMMA gamma ALL or MEASURES
KAPPA simple kappa coefficient AGREE
KENTB Kendall’s tau-b ALL or MEASURES
MEASURES gamma, Kendall’s tau-b, Stuart’s tau-c, ALL or MEASURES

Somers’ D.C jR/, Somers’ D.RjC/,
Pearson and Spearman correlations

PCORR Pearson correlation coefficient ALL or MEASURES
SCORR Spearman correlation coefficient ALL or MEASURES
SMDCR Somers’ D.C jR/ ALL or MEASURES
SMDRC Somers’ D.RjC/ ALL or MEASURES
STUTC Stuart’s tau-c ALL or MEASURES
WTKAP weighted kappa coefficient AGREE

WEIGHT Statement

WEIGHT variable < / option > ;

The WEIGHT statement names a numeric variable that provides a weight for each observation in
the input data set. The WEIGHT statement is most commonly used to input cell count data. See the
section “Inputting Frequency Counts” on page 112 for more information. If you use a WEIGHT
statement, PROC FREQ assumes that an observation represents n observations, where n is the value
of variable. The value of the WEIGHT variable is not required to be an integer.

If the value of the WEIGHT variable is missing, PROC FREQ does not use that observation in
the analysis. If the value of the WEIGHT variable is zero, PROC FREQ ignores the observation
unless you specify the ZEROS option, which includes observations with zero weights. If you do not
specify a WEIGHT statement, each observation has a default weight of 1. The sum of the WEIGHT
variable values represents the total number of observations.

If any value of the WEIGHT variable is negative, PROC FREQ displays the frequencies computed
from the weighted values but does not compute percentages and statistics. If you create an output
data set by using the OUT= option in the TABLES statement, PROC FREQ assigns missing val-
ues to the PERCENT variable. PROC FREQ also assigns missing values to the variables that the
OUTEXPECT and OUTPCT options provide. If any value of the WEIGHT variable is negative,
you cannot create an output data set by using the OUTPUT statement because statistics are not
computed when there are negative weights.
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You can specify the following option in the WEIGHT statement:

ZEROS
includes observations with zero weight values. By default, PROC FREQ ignores observations
with zero weights.

If you specify the ZEROS option, frequency and and crosstabulation tables display any levels
corresponding to observations with zero weights. Without the ZEROS option, PROC FREQ
does not process observations with zero weights, and so does not display levels that contain
only observations with zero weights.

With the ZEROS option, PROC FREQ includes levels with zero weights in the chi-square
goodness-of-fit test for one-way tables. Also, PROC FREQ includes any levels with zero
weights in binomial computations for one-way tables. This makes it possible to compute
binomial tests and estimates when the specified level contains no observations with positive
weights.

For two-way tables, the ZEROS option enables computation of kappa statistics when there
are levels that contain no observations with positive weight. For more information, see the
section “Tables with Zero Rows and Columns” on page 157.

Note that even with the ZEROS option, PROC FREQ does not compute the CHISQ or
MEASURES statistics for two-way tables when the table has a zero row or zero column
because most of these statistics are undefined in this case.

The ZEROS option invokes the SPARSE option in the TABLES statement, which includes
table cells with a zero frequency count in the LIST output and in the OUT= data set. By
default, without the SPARSE option, PROC FREQ does not include zero frequency cells in
the LIST output or in the OUT= data set. If you specify the ZEROS option in the WEIGHT
statement but do not want the SPARSE option, you can specify the NOSPARSE option in the
TABLES statement.

Details: FREQ Procedure

Inputting Frequency Counts

PROC FREQ can use either raw data or cell count data to produce frequency and crosstabulation
tables. Raw data, also known as case-record data, report the data as one record for each subject
or sample member. Cell count data report the data as a table, listing all possible combinations of
data values along with the frequency counts. This way of presenting data often appears in published
results.
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The following DATA step statements store raw data in a SAS data set:

data Raw;
input Subject $ R C @@;
datalines;

01 1 1 02 1 1 03 1 1 04 1 1 05 1 1
06 1 2 07 1 2 08 1 2 09 2 1 10 2 1
11 2 1 12 2 1 13 2 2 14 2 2 14 2 2
;

You can store the same data as cell counts by using the following DATA step statements:

data CellCounts;
input R C Count @@;
datalines;

1 1 5 1 2 3
2 1 4 2 2 3
;

The variable R contains the values for the rows, and the variable C contains the values for the
columns. The variable Count contains the cell count for each row and column combination.

Both the Raw data set and the CellCounts data set produce identical frequency counts, two-way
tables, and statistics. When using the CellCounts data set, you must include a WEIGHT statement
to specify that the variable Count contains cell counts. For example, the following PROC FREQ
statements create a two-way crosstabulation table by using the CellCounts data set:

proc freq data=CellCounts;
tables R*C;
weight Count;

run;

Grouping with Formats

PROC FREQ groups a variable’s values according to its formatted values. If you assign a format
to a variable with a FORMAT statement, PROC FREQ formats the variable values before dividing
observations into the levels of a frequency or crosstabulation table.

For example, suppose that variable X has the values 1.1, 1.4, 1.7, 2.1, and 2.3. Each of these values
appears as a level in the frequency table. If you decide to round each value to a single digit, include
the following statement in the PROC FREQ step:

format X 1.;

Now the table lists the frequency count for formatted level 1 as two and for formatted level 2 as
three.

PROC FREQ treats formatted character variables in the same way. The formatted values are used
to group the observations into the levels of a frequency table or crosstabulation table. PROC FREQ
uses the entire value of a character format to classify an observation.
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You can also use the FORMAT statement to assign formats that were created with the FORMAT
procedure to the variables. User-written formats determine the number of levels for a variable and
provide labels for a table. If you use the same data with different formats, then you can produce
frequency counts and statistics for different classifications of the variable values.

When you use PROC FORMAT to create a user-written format that combines missing and nonmiss-
ing values into one category, PROC FREQ treats the entire category of formatted values as missing.
For example, a questionnaire codes 1 as yes, 2 as no, and 8 as a no answer. The following PROC
FORMAT statements create a user-written format:

proc format;
value Questfmt 1 =’Yes’

2 =’No’
8,. =’Missing’;

run;

When you use a FORMAT statement to assign Questfmt. to a variable, the variable’s frequency
table no longer includes a frequency count for the response of 8. You must use the MISSING or
MISSPRINT option in the TABLES statement to list the frequency for no answer. The frequency
count for this level includes observations with either a value of 8 or a missing value (.).

The frequency or crosstabulation table lists the values of both character and numeric variables
in ascending order based on internal (unformatted) variable values unless you change the order
with the ORDER= option. To list the values in ascending order by formatted values, use OR-
DER=FORMATTED in the PROC FREQ statement.

For more information about the FORMAT statement, see SAS Language Reference: Concepts.

Missing Values

When the value of the WEIGHT variable is missing, PROC FREQ does not include that observation
in the analysis.

PROC FREQ treats missing BY variable values like any other BY variable value. The missing
values form a separate BY group.

If an observation has a missing value for a variable in a TABLES request, by default PROC FREQ
does not include that observation in the frequency or crosstabulation table. Also by default, PROC
FREQ does not include observations with missing values in the computation of percentages and
statistics. The procedure displays the number of missing observations below each table.

PROC FREQ also reports the number of missing values in output data sets. The TABLES statement
OUT= data set includes an observation that contains the missing value frequency. The NMISS
option in the OUTPUT statement provides an output data set variable that contains the missing
value frequency.
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The following options change the way in which PROC FREQ handles missing values of TABLES
variables:

MISSPRINT displays missing value frequencies in frequency or crosstabulation tables but does
not include them in computations of percentages or statistics.

MISSING treats missing values as a valid nonmissing level for all TABLES variables. Dis-
plays missing levels in frequency and crosstabulation tables and includes them in
computations of percentages and statistics.

This example shows the three ways that PROC FREQ can handle missing values of TABLES vari-
ables. The following DATA step statements create a data set with a missing value for the variable
A.

data one;
input A Freq;
datalines;

1 2
2 2
. 2
;

The following PROC FREQ statements request a one-way frequency table for the variable A. The
first request does not specify a missing value option. The second request specifies the MISSPRINT
option in the TABLES statement. The third request specifies the MISSING option in the TABLES
statement.

proc freq data=one;
tables A;
weight Freq;
title ’Default’;

run;
proc freq data=one;

tables A / missprint;
weight Freq;
title ’MISSPRINT Option’;

run;
proc freq data=one;

tables A / missing;
weight Freq;
title ’MISSING Option’;

run;

Figure 3.11 displays the frequency tables produced by this example. The first table shows PROC
FREQ’s default behavior for handling missing values. The observation with a missing value of the
TABLES variable A is not included in the table, and the frequency of missing values is displayed
below the table. The second table, for which the MISSPRINT option is specified, displays the
missing observation but does not include its frequency when computing the total frequency and
percentages. The third table shows that PROC FREQ treats the missing level as a valid nonmissing
level when the MISSING option is specified. The table displays the missing level, and PROC FREQ
includes this level when computing frequencies and percentages.
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Figure 3.11 Missing Values in Frequency Tables

Default

The FREQ Procedure

Cumulative Cumulative
A Frequency Percent Frequency Percent
------------------------------------------------------
1 2 50.00 2 50.00
2 2 50.00 4 100.00

Frequency Missing = 2

MISSPRINT Option

The FREQ Procedure

Cumulative Cumulative
A Frequency Percent Frequency Percent
------------------------------------------------------
. 2 . . .
1 2 50.00 2 50.00
2 2 50.00 4 100.00

Frequency Missing = 2

MISSING Option

The FREQ Procedure

Cumulative Cumulative
A Frequency Percent Frequency Percent
------------------------------------------------------
. 2 33.33 2 33.33
1 2 33.33 4 66.67
2 2 33.33 6 100.00

When a combination of variable values for a two-way table is missing, PROC FREQ assigns zero
to the frequency count for the table cell. By default, PROC FREQ does not display missing com-
binations in LIST format. Also, PROC FREQ does not include missing combinations in the OUT=
output data set by default. To include missing combinations, you can specify the SPARSE option
with the LIST or OUT= option in the TABLES statement.
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Statistical Computations

Definitions and Notation

A two-way table represents the crosstabulation of row variable X and column variable Y. Let the
table row values or levels be denoted by Xi , i D 1; 2; : : : ; R, and the column values by Yj , j D

1; 2; : : : ; C . Let nij denote the frequency of the table cell in the i th row and j th column and define
the following notation:

ni � D

X
j

nij (row totals)

n�j D

X
i

nij (column totals)

n D

X
i

X
j

nij (overall total)

pij D nij =n (cell percentages)

pi � D ni �=n (row percentages of total)

p�j D n�j =n (column percentages of total)

Ri D score for row i

Cj D score for column j

NR D

X
i

ni �Ri=n (average row score)

NC D

X
j

n�jCj =n (average column score)

Aij D

X
k>i

X
l>j

nkl C

X
k<i

X
l<j

nkl

Dij D

X
k>i

X
l<j

nkl C

X
k<i

X
l>j

nkl

P D

X
i

X
j

nijAij (twice the number of concordances)

Q D

X
i

X
j

nijDij (twice the number of discordances)

Scores

PROC FREQ uses scores of the variable values to compute the Mantel-Haenszel chi-square, Pear-
son correlation, Cochran-Armitage test for trend, weighted kappa coefficient, and Cochran-Mantel-
Haenszel statistics. The SCORES= option in the TABLES statement specifies the score type that
PROC FREQ uses. The available score types are TABLE, RANK, RIDIT, and MODRIDIT scores.
The default score type is TABLE. Using MODRIDIT, RANK, or RIDIT scores yields nonparametric
analyses.
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For numeric variables, table scores are the values of the row and column levels. If the row or column
variable is formatted, then the table score is the internal numeric value corresponding to that level.
If two or more numeric values are classified into the same formatted level, then the internal numeric
value for that level is the smallest of these values. For character variables, table scores are defined
as the row numbers and column numbers (that is, 1 for the first row, 2 for the second row, and so
on).

Rank scores, which you request with the SCORES=RANK option, are defined as

R1i D

X
k<i

nk� C .ni � C 1/=2 i D 1; 2; : : : ; R

C1j D

X
l<j

n�l C .n�j C 1/=2 j D 1; 2; : : : ; C

where R1i is the rank score of row i , and C1j is the rank score of column j . Note that rank scores
yield midranks for tied values.

Ridit scores, which you request with the SCORES=RIDIT option, are defined as rank scores stan-
dardized by the sample size (Bross 1958, Mack and Skillings 1980). Ridit scores are derived from
the rank scores as

R2i D R1i=n i D 1; 2; : : : ; R

C2j D C1j =n j D 1; 2; : : : ; C

Modified ridit scores (SCORES=MODRIDIT) represent the expected values of the order statistics
of the uniform distribution on (0,1) (van Elteren 1960, Lehmann 1975). Modified ridit scores are
derived from rank scores as

R3i D R1i=.nC 1/ i D 1; 2; : : : ; R

C3j D C1j =.nC 1/ j D 1; 2; : : : ; C

Chi-Square Tests and Statistics

The CHISQ option provides chi-square tests of homogeneity or independence and measures of as-
sociation based on the chi-square statistic. When you specify the CHISQ option in the TABLES
statement, PROC FREQ computes the following chi-square tests for each two-way table: the Pear-
son chi-square, likelihood-ratio chi-square, and Mantel-Haenszel chi-square. PROC FREQ provides
the following measures of association based on the Pearson chi-square statistic: the phi coefficient,
contingency coefficient, and Cramer’s V . For 2� 2 tables, the CHISQ option also provides Fisher’s
exact test and the continuity-adjusted chi-square. You can request Fisher’s exact test for general
R � C tables by specifying the FISHER option in the TABLES or EXACT statement.

For one-way frequency tables, the CHISQ option provides a chi-square goodness-of-fit test. The
other chi-square tests and statistics described in this section are computed only for two-way tables.

All of the two-way test statistics described in this section test the null hypothesis of no association
between the row variable and the column variable. When the sample size n is large, these test
statistics have an asymptotic chi-square distribution when the null hypothesis is true. When the
sample size is not large, exact tests might be useful. PROC FREQ provides exact tests for the
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Pearson chi-square, the likelihood-ratio chi-square, and the Mantel-Haenszel chi-square (in addition
to Fisher’s exact test). PROC FREQ also provides an exact chi-square goodness-of-fit test for one-
way tables. You can request these exact tests by specifying the corresponding options in the EXACT
statement. See the section “Exact Statistics” on page 166 for more information.

Note that the Mantel-Haenszel chi-square statistic is appropriate only when both variables lie on
an ordinal scale. The other chi-square tests and statistics in this section are appropriate for either
nominal or ordinal variables. The following sections give the formulas that PROC FREQ uses to
compute the chi-square tests and statistics. See Agresti (2007), Stokes, Davis, and Koch (2000),
and the other references cited for each statistic for more information.

Chi-Square Test for One-Way Tables

For one-way frequency tables, the CHISQ option in the TABLES statement provides a chi-square
goodness-of-fit test. Let C denote the number of classes, or levels, in the one-way table. Let fi

denote the frequency of class i (or the number of observations in class i ) for i D 1; 2; : : : ; C . Then
PROC FREQ computes the one-way chi-square statistic as

QP D

CX
iD1

.fi � ei /
2

ei

where ei is the expected frequency for class i under the null hypothesis.

In the test for equal proportions, which is the default for the CHISQ option, the null hypothesis
specifies equal proportions of the total sample size for each class. Under this null hypothesis, the
expected frequency for each class equals the total sample size divided by the number of classes,

ei D n=C for i D 1; 2; : : : ; C

In the test for specified frequencies, which PROC FREQ computes when you input null hypothesis
frequencies by using the TESTF= option, the expected frequencies are the TESTF= values that you
specify. In the test for specified proportions, which PROC FREQ computes when you input null
hypothesis proportions by using the TESTP= option, the expected frequencies are determined from
the specified TESTP= proportions pi as

ei D pi � n for i D 1; 2; : : : ; C

Under the null hypothesis (of equal proportions, specified frequencies, or specified proportions),
QP has an asymptotic chi-square distribution with C � 1 degrees of freedom.

In addition to the asymptotic test, you can request an exact one-way chi-square test by specifying
the CHISQ option in the EXACT statement. See the section “Exact Statistics” on page 166 for more
information.

Pearson Chi-Square Test for Two-Way Tables

The Pearson chi-square for two-way tables involves the differences between the observed and ex-
pected frequencies, where the expected frequencies are computed under the null hypothesis of in-
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dependence. The Pearson chi-square statistic is computed as

QP D

X
i

X
j

.nij � eij /
2

eij

where nij is the observed frequency in table cell (i; j ) and eij is the expected frequency for table
cell (i; j ). The expected frequency is computed under the null hypothesis that the row and column
variables are independent,

eij D
ni � n�j

n

When the row and column variables are independent, QP has an asymptotic chi-square distribution
with .R�1/.C �1/ degrees of freedom. For large values ofQP, this test rejects the null hypothesis
in favor of the alternative hypothesis of general association.

In addition to the asymptotic test, you can request an exact Pearson chi-square test by specifying
the PCHI or CHISQ option in the EXACT statement. See the section “Exact Statistics” on page 166
for more information.

For 2 � 2 tables, the Pearson chi-square is also appropriate for testing the equality of two binomial
proportions. ForR�2 and 2�C tables, the Pearson chi-square tests the homogeneity of proportions.
See Fienberg (1980) for details.

Likelihood-Ratio Chi-Square Test

The likelihood-ratio chi-square involves the ratios between the observed and expected frequencies.
The likelihood-ratio chi-square statistic is computed as

G2
D 2

X
i

X
j

nij ln
�
nij

eij

�
where nij is the observed frequency in table cell (i; j ) and eij is the expected frequency for table
cell (i; j ).

When the row and column variables are independent, G2 has an asymptotic chi-square distribution
with .R � 1/.C � 1/ degrees of freedom.

In addition to the asymptotic test, you can request an exact likelihood-ratio chi-square test by spec-
ifying the LRCHI or CHISQ option in the EXACT statement. See the section “Exact Statistics” on
page 166 for more information.

Continuity-Adjusted Chi-Square Test

The continuity-adjusted chi-square for 2 � 2 tables is similar to the Pearson chi-square, but it is
adjusted for the continuity of the chi-square distribution. The continuity-adjusted chi-square is
most useful for small sample sizes. The use of the continuity adjustment is somewhat controversial;
this chi-square test is more conservative (and more like Fisher’s exact test) when the sample size
is small. As the sample size increases, the continuity-adjusted chi-square becomes more like the
Pearson chi-square.
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The continuity-adjusted chi-square statistic is computed as

QC D

X
i

X
j

�
max.0; jnij � eij j � 0:5/

�2
eij

Under the null hypothesis of independence, QC has an asymptotic chi-square distribution with
.R � 1/.C � 1/ degrees of freedom.

Mantel-Haenszel Chi-Square Test

The Mantel-Haenszel chi-square statistic tests the alternative hypothesis that there is a linear asso-
ciation between the row variable and the column variable. Both variables must lie on an ordinal
scale. The Mantel-Haenszel chi-square statistic is computed as

QMH D .n � 1/r2

where r2 is the Pearson correlation between the row variable and the column variable. For a de-
scription of the Pearson correlation, see the “Pearson Correlation Coefficient” on page 127. The
Pearson correlation and thus the Mantel-Haenszel chi-square statistic use the scores that you spec-
ify in the SCORES= option in the TABLES statement. See Mantel and Haenszel (1959) and Landis,
Heyman, and Koch (1978) for more information.

Under the null hypothesis of no association, QMH has an asymptotic chi-square distribution with
one degree of freedom.

In addition to the asymptotic test, you can request an exact Mantel-Haenszel chi-square test by
specifying the MHCHI or CHISQ option in the EXACT statement. See the section “Exact Statistics”
on page 166 for more information.

Fisher’s Exact Test

Fisher’s exact test is another test of association between the row and column variables. This test
assumes that the row and column totals are fixed, and then uses the hypergeometric distribution to
compute probabilities of possible tables conditional on the observed row and column totals. Fisher’s
exact test does not depend on any large-sample distribution assumptions, and so it is appropriate
even for small sample sizes and for sparse tables.

2 � 2 Tables For 2 � 2 tables, PROC FREQ gives the following information for Fisher’s exact
test: table probability, two-sided p-value, left-sided p-value, and right-sided p-value. The table
probability equals the hypergeometric probability of the observed table, and is in fact the value of
the test statistic for Fisher’s exact test.

Where p is the hypergeometric probability of a specific table with the observed row and column
totals, Fisher’s exact p-values are computed by summing probabilities p over defined sets of tables,

PROB D

X
A

p

The two-sided p-value is the sum of all possible table probabilties (conditional on the observed row
and column totals) that are less than or equal to the observed table probability. For the two-sided
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p-value, the setA includes all possible tables with hypergeometric probabilities less than or equal to
the probability of the observed table. A small two-sided p-value supports the alternative hypothesis
of association between the row and column variables.

For 2 � 2 tables, one-sided p-values for Fisher’s exact test are defined in terms of the frequency of
the cell in the first row and first column of the table, the (1,1) cell. Denoting the observed (1,1) cell
frequency by n11, the left-sided p-value for Fisher’s exact test is the probability that the (1,1) cell
frequency is less than or equal to n11. For the left-sided p-value, the setA includes those tables with
a (1,1) cell frequency less than or equal to n11. A small left-sided p-value supports the alternative
hypothesis that the probability of an observation being in the first cell is actually less than expected
under the null hypothesis of independent row and column variables.

Similarly, for a right-sided alternative hypothesis, A is the set of tables where the frequency of the
(1,1) cell is greater than or equal to that in the observed table. A small right-sided p-value supports
the alternative that the probability of the first cell is actually greater than that expected under the
null hypothesis.

Because the (1,1) cell frequency completely determines the 2 � 2 table when the marginal row and
column sums are fixed, these one-sided alternatives can be stated equivalently in terms of other cell
probabilities or ratios of cell probabilities. The left-sided alternative is equivalent to an odds ratio
less than 1, where the odds ratio equals (n11n22=n12n21). Additionally, the left-sided alternative is
equivalent to the column 1 risk for row 1 being less than the column 1 risk for row 2, p1j1 < p1j2.
Similarly, the right-sided alternative is equivalent to the column 1 risk for row 1 being greater than
the column 1 risk for row 2, p1j1 > p1j2. See Agresti (2007) for details.

R � C Tables Fisher’s exact test was extended to general R � C tables by Freeman and Halton
(1951), and this test is also known as the Freeman-Halton test. For R � C tables, the two-sided
p-value definition is the same as for 2 � 2 tables. The set A contains all tables with p less than or
equal to the probability of the observed table. A small p-value supports the alternative hypothesis of
association between the row and column variables. ForR�C tables, Fisher’s exact test is inherently
two-sided. The alternative hypothesis is defined only in terms of general, and not linear, association.
Therefore, Fisher’s exact test does not have right-sided or left-sided p-values for general R � C

tables.

For R � C tables, PROC FREQ computes Fisher’s exact test by using the network algorithm of
Mehta and Patel (1983), which provides a faster and more efficient solution than direct enumeration.
See the section “Exact Statistics” on page 166 for more details.

Phi Coefficient

The phi coefficient is a measure of association derived from the Pearson chi-square. The range
of the phi coefficient is �1 � � � 1 for 2 � 2 tables. For tables larger than 2 � 2, the range is
0 � � � min.

p
R � 1;

p
C � 1/ (Liebetrau 1983). The phi coefficient is computed as

� D .n11n22 � n12n21/ =
p
n1�n2�n�1n�2 for 2 � 2 tables

� D
p
QP=n otherwise

See Fleiss, Levin, and Paik (2003, pp. 98–99) for more information.
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Contingency Coefficient

The contingency coefficient is a measure of association derived from the Pearson chi-square. The
range of the contingency coefficient is 0 � P �

p
.m � 1/=m, where m D min.R; C / (Liebetrau

1983). The contingency coefficient is computed as

P D
p
QP = .QP C n/

See Kendall and Stuart (1979, pp. 587–588) for more information.

Cramer’s V

Cramer’s V is a measure of association derived from the Pearson chi-square. It is designed so that
the attainable upper bound is always 1. The range of Cramer’s V is �1 � V � 1 for 2 � 2 tables;
for tables larger than 2 � 2, the range is 0 � V � 1. Cramer’s V is computed as

V D � for 2 � 2tables

V D

s
QP=n

min.R � 1; C � 1/
otherwise

See Kendall and Stuart (1979, p. 588) for more information.

Measures of Association

When you specify the MEASURES option in the TABLES statement, PROC FREQ computes sev-
eral statistics that describe the association between the row and column variables of the contingency
table. The following are measures of ordinal association that consider whether the column variable
Y tends to increase as the row variable X increases: gamma, Kendall’s tau-b, Stuart’s tau-c, and
Somers’ D. These measures are appropriate for ordinal variables, and they classify pairs of obser-
vations as concordant or discordant. A pair is concordant if the observation with the larger value of
X also has the larger value of Y. A pair is discordant if the observation with the larger value of X has
the smaller value of Y. See Agresti (2007) and the other references cited for the individual measures
of association.

The Pearson correlation coefficient and the Spearman rank correlation coefficient are also appro-
priate for ordinal variables. The Pearson correlation describes the strength of the linear association
between the row and column variables, and it is computed by using the row and column scores spec-
ified by the SCORES= option in the TABLES statement. The Spearman correlation is computed
with rank scores. The polychoric correlation (requested by the PLCORR option) also requires ordi-
nal variables and assumes that the variables have an underlying bivariate normal distribution. The
following measures of association do not require ordinal variables and are appropriate for nominal
variables: lambda asymmetric, lambda symmetric, and the uncertainty coefficients.

PROC FREQ computes estimates of the measures according to the formulas given in the following
sections. For each measure, PROC FREQ computes an asymptotic standard error (ASE), which is
the square root of the asymptotic variance denoted by var in the following sections.
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Confidence Limits

If you specify the CL option in the TABLES statement, PROC FREQ computes asymptotic con-
fidence limits for all MEASURES statistics. The confidence coefficient is determined according
to the value of the ALPHA= option, which, by default, equals 0.05 and produces 95% confidence
limits.

The confidence limits are computed as

est ˙ . z˛=2 � ASE /

where est is the estimate of the measure, z˛=2 is the 100.1 � ˛=2/th percentile of the standard
normal distribution, and ASE is the asymptotic standard error of the estimate.

Asymptotic Tests

For each measure that you specify in the TEST statement, PROC FREQ computes an asymptotic test
of the null hypothesis that the measure equals zero. Asymptotic tests are available for the follow-
ing measures of association: gamma, Kendall’s tau-b, Stuart’s tau-c, Somers’ D.RjC/, Somers’
D.C jR/, the Pearson correlation coefficient, and the Spearman rank correlation coefficient. To
compute an asymptotic test, PROC FREQ uses a standardized test statistic z, which has an asymp-
totic standard normal distribution under the null hypothesis. The test statistic is computed as

z D est =
p

var0.est/

where est is the estimate of the measure and var0.est/ is the variance of the estimate under the
null hypothesis. Formulas for var0.est/ for the individual measures of association are given in the
following sections.

Note that the ratio of est to
p

var0.est/ is the same for the following measures: gamma, Kendall’s
tau-b, Stuart’s tau-c, Somers’ D.RjC/, and Somers’ D.C jR/. Therefore, the tests for these mea-
sures are identical. For example, the p-values for the test ofH0W gamma D 0 equal the p-values for
the test of H0W tau-b D 0.

PROC FREQ computes one-sided and two-sided p-values for each of these tests. When the test
statistic z is greater than its null hypothesis expected value of zero, PROC FREQ displays the right-
sided p-value, which is the probability of a larger value of the statistic occurring under the null
hypothesis. A small right-sided p-value supports the alternative hypothesis that the true value of
the measure is greater than zero. When the test statistic is less than or equal to zero, PROC FREQ
displays the left-sided p-value, which is the probability of a smaller value of the statistic occurring
under the null hypothesis. A small left-sided p-value supports the alternative hypothesis that the
true value of the measure is less than zero. The one-sided p-value P1 can be expressed as

P1 D

(
Prob.Z > z/ if z > 0

Prob.Z < z/ if z � 0

where Z has a standard normal distribution. The two-sided p-value P2 is computed as

P2 D Prob.jZj > jzj/
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Exact Tests

Exact tests are available for two measures of association: the Pearson correlation coefficient and the
Spearman rank correlation coefficient. If you specify the PCORR option in the EXACT statement,
PROC FREQ computes the exact test of the hypothesis that the Pearson correlation equals zero.
If you specify the SCORR option in the EXACT statement, PROC FREQ computes the exact test
of the hypothesis that the Spearman correlation equals zero. See the section “Exact Statistics” on
page 166 for more information.

Gamma

The gamma (�) statistic is based only on the number of concordant and discordant pairs of observa-
tions. It ignores tied pairs (that is, pairs of observations that have equal values of X or equal values
of Y ). Gamma is appropriate only when both variables lie on an ordinal scale. The range of gamma
is �1 � � � 1. If the row and column variables are independent, then gamma tends to be close to
zero. Gamma is estimated by

G D .P �Q/ = .P CQ/

and the asymptotic variance is

var.G/ D
16

.P CQ/4

X
i

X
j

nij .QAij � PDij /
2

For 2 � 2 tables, gamma is equivalent to Yule’s Q. See Goodman and Kruskal (1979) and Agresti
(2002) for more information.

The variance under the null hypothesis that gamma equals zero is computed as

var0.G/ D
4

.P CQ/2

0@X
i

X
j

nij .Aij �Dij /
2

� .P �Q/2=n

1A
See Brown and Benedetti (1977) for details.

Kendall’s Tau-b

Kendall’s tau-b (�b) is similar to gamma except that tau-b uses a correction for ties. Tau-b is
appropriate only when both variables lie on an ordinal scale. The range of tau-b is �1 � �b � 1.
Kendall’s tau-b is estimated by

tb D .P �Q/ =
p
wrwc

and the asymptotic variance is

var.tb/ D
1

w4

0@X
i

X
j

nij .2wdij C tbvij /
2

� n3t2b .wr C wc/
2

1A
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where

w D
p
wrwc

wr D n2
�

X
i

n2
i �

wc D n2
�

X
j

n2
�j

dij D Aij �Dij

vij D ni �wc C n�jwr

See Kendall (1955) for more information.

The variance under the null hypothesis that tau-b equals zero is computed as

var0.tb/ D
4

wrwc

0@X
i

X
j

nij .Aij �Dij /
2

� .P �Q/2=n

1A
See Brown and Benedetti (1977) for details.

Stuart’s Tau-c

Stuart’s tau-c (�c) makes an adjustment for table size in addition to a correction for ties. Tau-c is
appropriate only when both variables lie on an ordinal scale. The range of tau-c is �1 � �c � 1.
Stuart’s tau-c is estimated by

tc D m.P �Q/ = n2.m � 1/

and the asymptotic variance is

var.tc/ D
4m2

.m � 1/2n4

0@X
i

X
j

nijd
2
ij � .P �Q/2=n

1A
where m D min.R; C / and dij D Aij � Dij . The variance under the null hypothesis that tau-c
equals zero is the same as the asymptotic variance var ,

var0.tc/ D var.tc/

See Brown and Benedetti (1977) for details.

Somers’ D

Somers’ D.C jR/ and Somers’ D.RjC/ are asymmetric modifications of tau-b. C jR indicates that
the row variable X is regarded as the independent variable and the column variable Y is regarded
as dependent. Similarly, RjC indicates that the column variable Y is regarded as the independent
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variable and the row variable X is regarded as dependent. Somers’ D differs from tau-b in that it
uses a correction only for pairs that are tied on the independent variable. Somers’ D is appropriate
only when both variables lie on an ordinal scale. The range of Somers’D is �1 � D � 1. Somers’
D.C jR/ is computed as

D.C jR/ D .P �Q/ = wr

and its asymptotic variance is

var.D.C jR// D
4

w4
r

X
i

X
j

nij

�
wrdij � .P �Q/.n � ni �/

�2
where dij D Aij �Dij and

wr D n2
�

X
i

n2
i �

See Somers (1962), Goodman and Kruskal (1979), and Liebetrau (1983) for more information.

The variance under the null hypothesis that D.C jR/ equals zero is computed as

var0.D.C jR// D
4

w2
r

0@X
i

X
j

nij .Aij �Dij /
2

� .P �Q/2=n

1A
See Brown and Benedetti (1977) for details.

Formulas for Somers’ D.RjC/ are obtained by interchanging the indices.

Pearson Correlation Coefficient

The Pearson correlation coefficient (�) is computed by using the scores specified in the SCORES=
option. This measure is appropriate only when both variables lie on an ordinal scale. The range of
the Pearson correlation is �1 � � � 1. The Pearson correlation coefficient is estimated by

r D v=w D ssrc=
p
ssrssc

and its asymptotic variance is

var.r/ D
1

w4

X
i

X
j

nij

�
w.Ri � NR/.Cj � NC/ �

bij v

2w

�2

where Ri and Cj are the row and column scores and

ssr D

X
i

X
j

nij .Ri � NR/2

ssc D

X
i

X
j

nij .Cj � NC/2

ssrc D

X
i

X
j

nij .Ri � NR/.Cj � NC/
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bij D .Ri � NR/2ssc C .Cj � NC/2ssr

v D ssrc

w D
p
ssrssc

See Snedecor and Cochran (1989) for more information.

The SCORES= option in the TABLES statement determines the type of row and column scores
used to compute the Pearson correlation (and other score-based statistics). The default is
SCORES=TABLE. See the section “Scores” on page 117 for details about the available score types
and how they are computed.

The variance under the null hypothesis that the correlation equals zero is computed as

var0.r/ D

0@X
i

X
j

nij .Ri � NR/2.Cj � NC/2 � ss2
rc=n

1A = ssrssc

Note that this expression for the variance is derived for multinomial sampling in a contingency
table framework, and it differs from the form obtained under the assumption that both variables are
continuous and normally distributed. See Brown and Benedetti (1977) for details.

PROC FREQ also provides an exact test for the Pearson correlation coefficient. You can request this
test by specifying the PCORR option in the EXACT statement. See the section “Exact Statistics”
on page 166 for more information.

Spearman Rank Correlation Coefficient

The Spearman correlation coefficient (�s) is computed by using rank scores, which are defined in
the section “Scores” on page 117. This measure is appropriate only when both variables lie on an
ordinal scale. The range of the Spearman correlation is �1 � �s � 1. The Spearman correlation
coefficient is estimated by

rs D v = w

and its asymptotic variance is

var.rs/ D
1

n2w4

X
i

X
j

nij .zij � Nz/2

where R1i and C1j are the row and column rank scores and

v D

X
i

X
j

nijR.i/C.j /

w D
1

12

p
FG

F D n3
�

X
i

n3
i �

G D n3
�

X
j

n3
�j
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R.i/ D R1i � n=2

C.j / D C1j � n=2

Nz D
1

n

X
i

X
j

nij zij

zij D wvij � vwij

vij D n

 
R.i/C.j / C

1

2

X
l

nilC.l/ C
1

2

X
k

nkjR.k/ C

X
l

X
k>i

nklC.l/ C

X
k

X
l>j

nklR.k/

1A
wij D

�n

96w

�
Fn2

�j CGn2
i �

�
See Snedecor and Cochran (1989) for more information.

The variance under the null hypothesis that the correlation equals zero is computed as

var0.rs/ D
1

n2w2

X
i

X
j

nij .vij � Nv/2

where

Nv D

X
i

X
j

nij vij =n

Note that the asymptotic variance is derived for multinomial sampling in a contingency table frame-
work, and it differs from the form obtained under the assumption that both variables are continuous
and normally distributed. See Brown and Benedetti (1977) for details.

PROC FREQ also provides an exact test for the Spearman correlation coefficient. You can request
this test by specifying the SCORR option in the EXACT statement. See the section “Exact Statis-
tics” on page 166 for more information.

Polychoric Correlation

When you specify the PLCORR option in the TABLES statement, PROC FREQ computes the
polychoric correlation. This measure of association is based on the assumption that the ordered,
categorical variables of the frequency table have an underlying bivariate normal distribution. For
2 � 2 tables, the polychoric correlation is also known as the tetrachoric correlation. See Drasgow
(1986) for an overview of polychoric correlation. The polychoric correlation coefficient is the
maximum likelihood estimate of the product-moment correlation between the normal variables,
estimating thresholds from the observed table frequencies. The range of the polychoric correlation
is from –1 to 1. Olsson (1979) gives the likelihood equations and an asymptotic covariance matrix
for the estimates.
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To estimate the polychoric correlation, PROC FREQ iteratively solves the likelihood equations by
a Newton-Raphson algorithm that uses the Pearson correlation coefficient as the initial approxima-
tion. Iteration stops when the convergence measure falls below the convergence criterion or when
the maximum number of iterations is reached, whichever occurs first. The CONVERGE= option
sets the convergence criterion, and the default value is 0.0001. The MAXITER= option sets the
maximum number of iterations, and the default value is 20.

Lambda (Asymmetric)

Asymmetric lambda, �.C jR/, is interpreted as the probable improvement in predicting the col-
umn variable Y given knowledge of the row variable X. The range of asymmetric lambda is
0 � �.C jR/ � 1. Asymmetric lambda (C jR) is computed as

�.C jR/ D

P
i ri � r

n � r

and its asymptotic variance is

var.�.C jR// D
n �

P
i ri

.n � r/3

 X
i

ri C r � 2
X

i

.ri j li D l/

!

where

ri D max
j
.nij /

r D max
j
.n�j /

cj D max
i
.nij /

c D max
i
.ni �/

The values of li and l are determined as follows. Denote by li the unique value of j such that ri D

nij , and let l be the unique value of j such that r D n�j . Because of the uniqueness assumptions,
ties in the frequencies or in the marginal totals must be broken in an arbitrary but consistent manner.
In case of ties, l is defined as the smallest value of j such that r D n�j .

For those columns containing a cell .i; j / for which nij D ri D cj , csj records the row in which
cj is assumed to occur. Initially csj is set equal to –1 for all j . Beginning with i D 1, if there is
at least one value j such that nij D ri D cj , and if csj D �1, then li is defined to be the smallest
such value of j , and csj is set equal to i . Otherwise, if nil D ri , then li is defined to be equal to l .
If neither condition is true, then li is taken to be the smallest value of j such that nij D ri .

The formulas for lambda asymmetric .RjC/ can be obtained by interchanging the indices.

See Goodman and Kruskal (1979) for more information.
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Lambda (Symmetric)

The nondirectional lambda is the average of the two asymmetric lambdas, �.C jR/ and �.RjC/. Its
range is 0 � � � 1. Lambda symmetric is computed as

� D

P
i ri C

P
j cj � r � c

2n � r � c
D
w � v

w

and its asymptotic variance is computed as

var.�/ D
1

w4

�
wvy � 2w2

�
n �

X
i

X
j

.nij j j D li ; i D kj /
�

� 2v2.n � nkl/
�

where

ri D max
j
.nij /

r D max
j
.n�j /

cj D max
i
.nij /

c D max
i
.ni �/

w D 2n � r � c

v D 2n �

X
i

ri �

X
j

cj

x D

X
i

.ri j li D l/ C

X
j

.cj j kj D k/ C rk C cl

y D 8n � w � v � 2x

The definitions of li and l are given in the previous section. The values kj and k are defined in a
similar way for lambda asymmetric (RjC ).

See Goodman and Kruskal (1979) for more information.

Uncertainty Coefficients (Asymmetric)

The uncertainty coefficient U.C jR/measures the proportion of uncertainty (entropy) in the column
variable Y that is explained by the row variable X. Its range is 0 � U.C jR/ � 1. The uncertainty
coefficient is computed as

U.C jR/ D .H.X/CH.Y / �H.XY // = H.Y / D v=w

and its asymptotic variance is

var.U.C jR// D
1

n2w4

X
i

X
j

nij

�
H.Y / ln

�
nij

ni �

�
C .H.X/ �H.XY // ln

�n�j

n

��2
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where

v D H.X/CH.Y / �H.XY /

w D H.Y /

H.X/ D �

X
i

�ni �

n

�
ln
�ni �

n

�
H.Y / D �

X
j

�n�j

n

�
ln
�n�j

n

�

H.XY / D �

X
i

X
j

�nij

n

�
ln
�nij

n

�

The formulas for the uncertainty coefficient U.RjC/ can be obtained by interchanging the indices.

See Theil (1972, pp. 115–120) and Goodman and Kruskal (1979) for more information.

Uncertainty Coefficient (Symmetric)

The uncertainty coefficient U is the symmetric version of the two asymmetric uncertainty coeffi-
cients. Its range is 0 � U � 1. The uncertainty coefficient is computed as

U D 2 .H.X/CH.Y / �H.XY // = .H.X/CH.Y //

and its asymptotic variance is

var.U / D 4
X

i

X
j

nij

�
H.XY / ln

�
ni �n�j

n2

�
� .H.X/CH.Y // ln

�nij

n

��2

n2 .H.X/CH.Y //4

where H.X/, H.Y /, and H.XY / are defined in the previous section. See Goodman and Kruskal
(1979) for more information.

Binomial Proportion

If you specify the BINOMIAL option in the TABLES statement, PROC FREQ computes the bi-
nomial proportion for one-way tables. By default, this is the proportion of observations in the first
variable level that appears in the output. (You can use the LEVEL= option to specify a different
level for the proportion.) The binomial proportion is computed as

Op D n1 = n

where n1 is the frequency of the first (or designated) level and n is the total frequency of the one-way
table. The standard error of the binomial proportion is computed as

se. Op/ D
p

Op .1 � Op/ = n
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Confidence Limits

By default, PROC FREQ provides asymptotic and exact (Clopper-Pearson) confidence limits for
the binomial proportion. If you do not specify any confidence limit requests with binomial-options,
PROC FREQ computes the standard Wald asymptotic confidence limits. You can also request
Agresti-Coull, Jeffreys, and Wilson (score) confidence limits for the binomial proportion. See
Brown, Cai, and DasGupta (2001), Agresti and Coull (1998), and Newcombe (1998) for details
about these binomial confidence limits, including comparisons of their performance.

Wald Confidence Limits The standard Wald asymptotic confidence limits are based on the nor-
mal approximation to the binomial distribution. PROC FREQ computes the Wald confidence limits
for the binomial proportion as

Op ˙ . z˛=2 � se. Op/ /

where z˛=2 is the 100.1 � ˛=2/th percentile of the standard normal distribution. The confidence
level ˛ is determined by the ALPHA= option, which, by default, equals 0.05 and produces 95%
confidence limits.

If you specify the CORRECT binomial-option or the BINOMIALC option, PROC FREQ includes a
continuity correction of 1=2n in the Wald asymptotic confidence limits. The purpose of this correc-
tion is to adjust for the difference between the normal approximation and the binomial distribution,
which is a discrete distribution. See Fleiss, Levin, and Paik (2003) for more information. With the
continuity correction, the asymptotic confidence limits for the binomial proportion are computed as

Op ˙ . z˛=2 � se. Op/ C .1=2n/ /

Agresti-Coull Confidence Limits If you specify the AGRESTICOULL binomial-option, PROC
FREQ computes Agresti-Coull confidence limits for the binomial proportion as

Qp ˙ . z˛=2 �
p

Qp .1 � Qp/ = Qn /

where

Qn1 D n1 C .z˛=2/=2

Qn D nC z2
˛=2

Qp D Qn1 = Qn

The Agresti-Coull confidence interval has the same basic form as the standard Wald interval but
uses Qp in place of Op. For ˛ = 0.05, the value of z˛=2 is close to 2, and this interval is the “add 2
successes and 2 failures” adjusted Wald interval in Agresti and Coull (1998).

Jeffreys Confidence Limits If you specify the JEFFREYS binomial-option, PROC FREQ com-
putes the Jeffreys confidence limits for the binomial proportion as�

ˇ.˛=2; n1 C 1=2; n � n1 C 1=2/; ˇ.1 � ˛=2; n1 C 1=2; n � n1 C 1=2/
�
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where ˇ.˛; b; c/ is the ˛th percentile of the beta distribution with shape parameters b and c. The
lower confidence limit is set to 0 when n1 D 0, and the upper confidence limit is set to 1 when
n1 D n. This is an equal-tailed interval based on the noninformative Jeffreys prior for a binomial
proportion. See Brown, Cai, and DasGupta (2001) for details. See Berger (1985) for information
about using beta priors for inference on the binomial proportion.

Wilson (Score) Confidence Limits If you specify the WILSON binomial-option, PROC FREQ
computes Wilson confidence limits for the binomial proportion. These are also known as score
confidence limits and are attributed to Wilson (1927). The confidence limits are based on inverting
the normal test that uses the null proportion in the variance (the score test). Wilson confidence limits
are the roots of

jp � Opj D z˛=2

p
p.1 � p/=n

and are computed as

�
Op C z2

˛=2=2n
�

˙

 
z˛=2

r�
Op.1 � Op/C z2

˛=2

�
=4n =

�
1C z2

˛=2=n
�!

The Wilson interval has been shown to have better performance than the Wald interval and the exact
(Clopper-Pearson) interval. See Agresti and Coull (1998), Brown, Cai, and DasGupta (2001), and
Newcombe (1998) for more information.

Exact (Clopper-Pearson) Confidence Limits The exact or Clopper-Pearson confidence limits
for the binomial proportion are constructed by inverting the equal-tailed test based on the binomial
distribution. This method is attributed to Clopper and Pearson (1934). The exact confidence limits
pL and pU satisfy the following equations, for n1 D 1; 2; : : : n � 1:

nX
xDn1

 
n

x

!
p x

L .1 � pL/
n�x

D ˛=2

n1X
xD0

 
n

x

!
p x

U .1 � pU/
n�x

D ˛=2

The lower confidence limit equals 0 when n1 D 0, and the upper confidence limit equals 1 when
n1 D n.

PROC FREQ computes the exact (Clopper-Pearson) confidence limits by using the F distribution
as

pL D

�
1C

n � n1 C 1

n1 F.1 � ˛=2; 2n1; 2.n � n1 C 1/ /

��1

pU D

�
1C

n � n1

.n1 C 1/ F. ˛=2; 2.n1 C 1/; 2.n � n1/ /

��1



Statistical Computations F 135

where F.˛; b; c/ is the ˛th percentile of the F distribution with b and c degrees of freedom. See
Leemis and Trivedi (1996) for a derivation of this expression. Also see Collett (1991) for more
information about exact binomial confidence limits.

Because this is a discrete problem, the confidence coefficient (or coverage probability) of the exact
(Clopper-Pearson) interval is not exactly (1�˛) but is at least (1�˛). Thus, this confidence interval
is conservative. Unless the sample size is large, the actual coverage probability can be much larger
than the target value. See Agresti and Coull (1998), Brown, Cai, and DasGupta (2001), and Leemis
and Trivedi (1996) for more information about the performance of these confidence limits.

Tests

The BINOMIAL option provides an asymptotic equality test for the binomial proportion by default.
You can also specify binomial-options to request tests of noninferiority, superiority, and equivalence
for the binomial proportion. If you specify the BINOMIAL option in the EXACT statement, PROC
FREQ also computes exact p-values for the tests that you request with the binomial-options.

Equality Test PROC FREQ computes an asymptotic test of the hypothesis that the binomial pro-
portion equals p0, where you can specify the value of p0 with the P= binomial-option. If you do
not specify a null value with P=, PROC FREQ uses p0 D 0:5 by default. The binomial test statistic
is computed as

z D . Op � p0/=se

By default, the standard error is based on the null hypothesis proportion as

se D
p
p0.1 � p0/=n

If you specify the VAR=SAMPLE binomial-option, the standard error is computed from the sample
proportion as

se D
p

Op.1 � Op/=n

If you specify the CORRECT binomial-option or the BINOMIALC option, PROC FREQ includes
a continuity correction in the asymptotic test statistic, towards adjusting for the difference between
the normal approximation and the discrete binomial distribution. See Fleiss, Levin, and Paik (2003)
for details. The continuity correction of .1=2n/ is subtracted from the numerator of the test statistic
if . Op � p0/ is positive; otherwise, the continuity correction is added to the numerator.

PROC FREQ computes one-sided and two-sided p-values for this test. When the test statistic z is
greater than zero (its expected value under the null hypothesis), PROC FREQ computes the right-
sided p-value, which is the probability of a larger value of the statistic occurring under the null
hypothesis. A small right-sided p-value supports the alternative hypothesis that the true value of
the proportion is greater than p0. When the test statistic is less than or equal to zero, PROC FREQ
computes the left-sided p-value, which is the probability of a smaller value of the statistic occurring
under the null hypothesis. A small left-sided p-value supports the alternative hypothesis that the
true value of the proportion is less than p0. The one-sided p-value P1 can be expressed as

P1 D

(
Prob.Z > z/ if z > 0

Prob.Z < z/ if z � 0
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where Z has a standard normal distribution. The two-sided p-value is computed as P2 D 2 � P1.

If you specify the BINOMIAL option in the EXACT statement, PROC FREQ also computes an
exact test of the null hypothesis H0Wp D p0. To compute the exact test, PROC FREQ uses the
binomial probability function,

Prob.X D x j p0/ D

 
n

x

!
p x

0 .1 � p0/
.n�x/ for x D 0; 1; 2; : : : ; n

where the variable X has a binomial distribution with parameters n and p0. To compute the left-
sided p-value, Prob.X � n1/, PROC FREQ sums the binomial probabilities over x from zero to n1.
To compute the right-sided p-value, Prob.X � n1/, PROC FREQ sums the binomial probabilities
over x from n1 to n. The exact one-sided p-value is the minimum of the left-sided and right-sided
p-values,

P1 D min . Prob.X � n1 j p0/; Prob.X � n1 j p0/ /

and the exact two-sided p-value is computed as P2 D 2 � P1.

Noninferiority Test If you specify the NONINF binomial-option, PROC FREQ provides a non-
inferiority test for the binomial proportion. The null hypothesis for the noninferiority test is

H0Wp � p0 � �ı

versus the alternative

HaWp � p0 > �ı

where ı is the noninferiority margin and p0 is the null proportion. Rejection of the null hypothesis
indicates that the binomial proportion is not inferior to the null value. See Chow, Shao, and Wang
(2003) for more information.

You can specify the value of ı with the MARGIN= binomial-option, and you can specify p0 with
the P= binomial-option. By default, ı D 0:2 and p0 D 0:5.

PROC FREQ provides an asymptotic Wald test for noninferiority. The test statistic is computed as

z D . Op � p�
0 / = se

where p�
0 is the noninferiority limit,

p�
0 D p0 � ı

By default, the standard error is computed from the sample proportion as

se D
p

Op.1 � Op/=n

If you specify the VAR=NULL binomial-option, the standard error is based on the noninferiority
limit (determined by the null proportion and the margin) as

se D

q
p�

0 .1 � p�
0 /=n
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If you specify the CORRECT binomial-option or the BINOMIALC option, PROC FREQ includes
a continuity correction in the asymptotic test statistic z. The continuity correction of .1=2n/ is
subtracted from the numerator of the test statistic if . Op � p�

0 / is positive; otherwise, the continuity
correction is added to the numerator.

The p-value for the noninferiority test is

Pz D Prob.Z > z/

where Z has a standard normal distribution.

As part of the noninferiority analysis, PROC FREQ provides asymptotic Wald confidence limits for
the binomial proportion. These confidence limits are computed as described in the section “Wald
Confidence Limits” on page 133 but use the same standard error (VAR=NULL or VAR=SAMPLE)
as the noninferiority test statistic z. The confidence coefficient is 100.1�2˛/% (Schuirmann 1999).
By default, if you do not specify the ALPHA= option, the noninferiority confidence limits are 90%
confidence limits. You can compare the confidence limits to the noninferiority limit, p�

0 D p0 � ı.

If you specify the BINOMIAL option in the EXACT statement, PROC FREQ provides an exact
noninferiority test for the binomial proportion. The exact p-value is computed by using the binomial
probability function with parameters p�

0 and n,

Px D

kDnX
kDn1

 
n

k

!
.p�

0 /
k .1 � p�

0 /
.n�k/

See Chow, Shao, Wang (2003, p. 116) for details. If you request exact binomial statistics, PROC
FREQ also includes exact (Clopper-Pearson) confidence limits for the binomial proportion in the
equivalence analysis display. See the section “Exact (Clopper-Pearson) Confidence Limits” on
page 134 for details.

Superiority Test If you specify the SUP binomial-option, PROC FREQ provides a superiority
test for the binomial proportion. The null hypothesis for the superiority test is

H0Wp � p0 � ı

versus the alternative

HaWp � p0 > ı

where ı is the superiority margin and p0 is the null proportion. Rejection of the null hypothesis
indicates that the binomial proportion is superior to the null value. You can specify the value of ı
with the MARGIN= binomial-option, and you can specify the value of p0 with the P= binomial-
option. By default, ı D 0:2 and p0 D 0:5.

The superiority analysis is identical to the noninferiority analysis but uses a positive value of the
margin ı in the null hypothesis. The superiority limit equals p0 C ı. The superiority computations
follow those in the section “Noninferiority Test” on page 136 but replace –ı with ı. See Chow,
Shao, and Wang (2003) for more information.
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Equivalence Test If you specify the EQUIV binomial-option, PROC FREQ provides an equiva-
lence test for the binomial proportion. The null hypothesis for the equivalence test is

H0Wp � p0 � ıL or p � p0 � ıU

versus the alternative

HaW ıL < p � p0 < ıU

where ıL is the lower margin, ıU is the upper margin, and p0 is the null proportion. Rejection of
the null hypothesis indicates that the binomial proportion is equivalent to the null value. See Chow,
Shao, and Wang (2003) for more information.

You can specify the value of the margins ıL and ıU with the MARGIN= binomial-option. If you
do not specify MARGIN=, PROC FREQ uses lower and upper margins of –0.2 and 0.2 by default.
If you specify a single margin value ı, PROC FREQ uses lower and upper margins of –ı and ı. You
can specify the null proportion p0 with the P= binomial-option. By default, p0 D 0:5.

PROC FREQ computes two one-sided tests (TOST) for equivalence analysis (Schuirmann 1987).
The TOST approach includes a right-sided test for the lower margin and a left-sided test for the
upper margin. The overall p-value is taken to be the larger of the two p-values from the lower and
upper tests.

For the lower margin, the asymptotic Wald test statistic is computed as

zL D . Op � p�
L / = se

where the lower equivalence limit is

p�
L D p0 C ıL

By default, the standard error is computed from the sample proportion as

se D
p

Op.1 � Op/=n

If you specify the VAR=NULL binomial-option, the standard error is based on the lower equiva-
lence limit (determined by the null proportion and the lower margin) as

se D

q
p�

L .1 � p�
L /=n

If you specify the CORRECT binomial-option or the BINOMIALC option, PROC FREQ includes
a continuity correction in the asymptotic test statistic zL. The continuity correction of .1=2n/ is
subtracted from the numerator of the test statistic . Op � p�

L / if the numerator is positive; otherwise,
the continuity correction is added to the numerator.

The p-value for the lower margin test is

Pz;L D Prob.Z > zL/

The asymptotic test for the upper margin is computed similarly. The Wald test statistic is

zU D . Op � p�
U/ = se
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where the upper equivalence limit is

p�
U D p0 C ıU

By default, the standard error is computed from the sample proportion. If you specify the
VAR=NULL binomial-option, the standard error is based on the upper equivalence limit as

se D

q
p�

U.1 � p�
U/=n

If you specify the CORRECT binomial-option or the BINOMIALC option, PROC FREQ includes
a continuity correction of .1=2n/ in the asymptotic test statistic zU .

The p-value for the upper margin test is

Pz;U D Prob.Z < zU/

Based on the two one-sided tests (TOST), the overall p-value for the test of equivalence equals the
larger p-value from the lower and upper margin tests, which can be expressed as

Pz D max.Pz;L ; Pz;U/

As part of the equivalence analysis, PROC FREQ provides asymptotic Wald confidence limits for
the binomial proportion. These confidence limits are computed as described in the section “Wald
Confidence Limits” on page 133, but use the same standard error (VAR=NULL or VAR=SAMPLE)
as the equivalence test statistics and have a confidence coefficient of 100.1 � 2˛/% (Schuirmann
1999). By default, if you do not specify the ALPHA= option, the equivalence confidence limits
are 90% limits. If you specify VAR=NULL, separate standard errors are computed for the lower
and upper margin tests, each based on the null proportion and the corresponding (lower or upper)
margin. The confidence limits are computed by using the maximum of these two standard errors.
You can compare the confidence limits to the equivalence limits, .p0 C ıL; p0 C ıU/.

If you specify the BINOMIAL option in the EXACT statement, PROC FREQ also provides an
exact equivalence test by using two one-sided exact tests (TOST). The procedure computes lower
and upper margin exact tests by using the binomial probability function as described in the section
“Noninferiority Test” on page 136. The overall exact p-value for the equivalence test is taken to
be the larger p-value from the lower and upper margin exact tests. If you request exact statistics,
PROC FREQ also includes exact (Clopper-Pearson) confidence limits in the equivalence analysis
display. The confidence coefficient is 100.1 � 2˛/% (Schuirmann 1999). See the section “Exact
(Clopper-Pearson) Confidence Limits” on page 134 for details.

Risks and Risk Differences

The RISKDIFF option in the TABLES statement provides estimates of risks (or binomial propor-
tions) and risk differences for 2 � 2 tables. This analysis might be appropriate when comparing
the proportion of some characteristic for two groups, where row 1 and row 2 correspond to the
two groups, and the columns correspond to two possible characteristics or outcomes. For exam-
ple, the row variable might be a treatment or dose, and the column variable might be the response.
See Collett (1991), Fleiss, Levin, and Paik (2003), and Stokes, Davis, and Koch (2000) for more
information.



140 F Chapter 3: The FREQ Procedure

Let the frequencies of the 2 � 2 table be represented as follows.

Column 1 Column 2 Total
Row 1 n11 n12 n1�

Row 2 n21 n22 n2�

Total n�1 n�2 n

For column 1 and column 2, PROC FREQ provides estimates of the row 1 risk (or proportion), the
row 2 risk, the overall risk and the risk difference. The risk difference is defined as the row 1 risk
minus the row 2 risk. The risks are binomial proportions of their rows (row 1, row 2, or overall),
and the computation of their standard errors and confidence limits follow the binomial proportion
computations, which are described in the section “Binomial Proportion” on page 132.

The column 1 risk for row 1 is the proportion of row 1 observations classified in column 1,

p1 D n11 = n1�

This estimates the conditional probability of the column 1 response, given the first level of the row
variable.

The column 1 risk for row 2 is the proportion of row 2 observations classified in column 1,

p2 D n21 = n2�

and the overall column 1 risk is the proportion of all observations classified in column 1,

p D n�1 = n

The column 1 risk difference compares the risks for the two rows, and it is computed as the column
1 risk for row 1 minus the column 1 risk for row 2,

d D p1 � p2

The risks and risk difference are defined similarly for column 2.

The standard error of the column 1 risk for row i is computed as

se.pi / D
p
pi .1 � pi / = n1�

The standard error of the overall column 1 risk is computed as

se.p/ D
p
p .1 � p/ = n

If the two rows represent independent binomial samples, the standard error for the column 1 risk
difference is computed as

se.d/ D
p
var.p1/C var.p2/

The standard errors are computed in a similar manner for the column 2 risks and risk difference.
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Confidence Limits

By default, the RISKDIFF option provides standard Wald asymptotic confidence limits for the risks
(row 1, row 2, and overall) and the risk difference. The risks are equivalent to binomial propor-
tions of their corresponding rows, and the computations follow the methods in the section “Wald
Confidence Limits” on page 133.

The standard Wald asymptotic confidence limits are based on the normal approximation to the
binomial distribution. PROC FREQ computes the Wald confidence limits for the risks and risk
differences as

est ˙ . z˛=2 � se.est/ /

where est is the estimate, z˛=2 is the 100.1� ˛=2/th percentile of the standard normal distribution,
and se.est/ is the standard error of the estimate. The confidence level ˛ is determined from the
value of the ALPHA= option, which, by default, equals 0.05 and produces 95% confidence limits.

If you specify the CORRECT riskdiff-option or the RISKDIFFC option, PROC FREQ includes
continuity corrections in the Wald asymptotic confidence limits for the risks and risk differences.
The purpose of a continuity correction is to adjust for the difference between the normal approxi-
mation and the binomial distribution, which is discrete. See Fleiss, Levin, and Paik (2003) for more
information. With the continuity correction, the asymptotic confidence limits are computed as

est ˙ . z˛=2 � se.est/C cc /

where cc is the continuity correction. For the row 1 risk, cc D .1=2n1�/; for the row 2 risk, cc D

.1=2n2�/; for the overall risk, cc D .1=2n/; and for the risk difference, cc D ..1=n1� C 1=n2�/=2/.
The column 1 and column 2 risks use the same continuity corrections.

PROC FREQ also computes exact (Clopper-Pearson) confidence limits for the column 1, column
2, and overall risks. These confidence limits are constructed by inverting the equal-tailed test based
on the binomial distribution. PROC FREQ uses the F distribution to compute the Clopper-Pearson
confidence limits. See the section “Exact (Clopper-Pearson) Confidence Limits” on page 134 for
details.

PROC FREQ does not provide exact confidence limits for the risk difference by default. If you
specify the RISKDIFF option in the EXACT statement, PROC FREQ provides exact unconditional
confidence limits for the risk difference, which are described in the section “Exact Unconditional
Confidence Limits for the Risk Difference” on page 146. Note that the conditional exact approach,
which is the basis for other exact tests provided by PROC FREQ such as Fisher’s exact test, does not
apply to the risk difference due to nuisance parameters. See Agresti (1992) for more information.

Tests

You can specify riskdiff-options to request tests of the risk (or proportion) difference. You can
request tests of equality, noninferiority, superiority, and equivalence for the risk difference. The
test of equality is a standard Wald asymptotic test, available with or without a continuity correc-
tion. For noninferiority, superiority, and equivalence tests of the risk difference, the following test
methods are provided: Wald (with and without continuity correction), Hauck-Anderson, Farrington-
Manning, and Newcombe score (with and without continuity correction). You can specify the test
method with the METHOD= riskdiff-option. By default, PROC FREQ uses METHOD=WALD.
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Equality Test If you specify the EQUAL riskdiff-option, PROC FREQ computes a test of equal-
ity, or a test of the null hypothesis that the risk difference equals zero. For the column 1 (or 2)
risk difference, this test can be expressed as H0W d D 0 versus the alternative HaW d ¤ 0, where
d D p1 � p2 denotes the column 1 (or 2) risk difference. PROC FREQ computes a standard Wald
asymptotic test, and the test statistic is

z D Od=se. Od/

By default, the standard error is computed from the sample proportions as

se. Od/ D
p

Op1.1 � Op1/=n1� C Op2.1 � Op2/=n2�

If you specify the VAR=NULL riskdiff-option, the standard error is based on the null hypothesis
that the row 1 and row 2 risks are equal,

se. Od/ D
p

Op.1 � Op/ � .1=n1� C 1=n2�/

where Op D n�1=n estimates the overall column 1 risk.

If you specify the CORRECT riskdiff-option or the RISKDIFFC option, PROC FREQ includes a
continuity correction in the asymptotic test statistic. If Od > 0, the continuity correction is subtracted
from Od in the numerator of the test statistic; otherwise, the continuity correction is added to the
numerator. The value of the continuity correction is .1=n1� C 1=n2�/=2.

PROC FREQ computes one-sided and two-sided p-values for this test. When the test statistic z is
greater than 0, PROC FREQ displays the right-sided p-value, which is the probability of a larger
value occurring under the null hypothesis. The one-sided p-value can be expressed as

P1 D

(
Prob.Z > z/ if z > 0

Prob.Z < z/ if z � 0

where Z has a standard normal distribution. The two-sided p-value is computed as P2 D 2 � P1.

Noninferiority Test If you specify the NONINF riskdiff-option, PROC FREQ provides a nonin-
feriority test for the risk difference, or the difference between two proportions. The null hypothesis
for the noninferiority test is

H0Wp1 � p2 � �ı

versus the alternative

HaWp1 � p2 > �ı

where ı is the noninferiority margin. Rejection of the null hypothesis indicates that the row 1 risk
is not inferior to the row 2 risk. See Chow, Shao, and Wang (2003) for more information.

You can specify the value of ı with the MARGIN= riskdiff-option. By default, ı D 0:2. You
can specify the test method with the METHOD= riskdiff-option. The following methods are avail-
able for the risk difference noninferiority analysis: Wald (with and without continuity correction),
Hauck-Anderson, Farrington-Manning, and Newcombe score (with and without continuity correc-
tion). The Wald, Hauck-Anderson, and Farrington-Manning methods provide tests and correspond-
ing test-based confidence limits; the Newcombe score method provides only confidence limits. If
you do not specify METHOD=, PROC FREQ uses the Wald test by default.
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The confidence coefficient for the test-based confidence limits is 100.1�2˛/% (Schuirmann 1999).
By default, if you do not specify the ALPHA= option, these are 90% confidence limits. You can
compare the confidence limits to the noninferiority limit, –ı.

The following sections describe the noninferiority analysis methods for the risk difference.

Wald Test
If you specify the METHOD=WALD riskdiff-option, PROC FREQ provides an asymptotic Wald
test of noninferiority for the risk difference. This is also the default method. The Wald test statistic
is computed as

z D . Od C ı/ = se. Od/

where ( Od D Op1 � Op2) estimates the risk difference and ı is the noninferiority margin.

By default, the standard error for the Wald test is computed from the sample proportions as

se. Od/ D
p

Op1.1 � Op1/=n1� C Op2.1 � Op2/=n2�

If you specify the VAR=NULL riskdiff-option, the standard error is based on the null hypothesis
that the risk difference equals –ı (Dunnett and Gent 1977). The standard error is computed as

se. Od/ D
p

Qp.1 � Qp/=n2� C . Qp � ı/.1 � Qp C ı/=n1�

where

Qp D .n11 C n21 C ın1�/=n

If you specify the CORRECT riskdiff-option or the RISKDIFFC option, a continuity correction is
included in the test statistic. The continuity correction is subtracted from the numerator of the test
statistic if the numerator is greater than zero; otherwise, the continuity correction is added to the
numerator. The value of the continuity correction is .1=n1� C 1=n2�/=2.

The p-value for the Wald noninferiority test is Pz D Prob.Z > z/, where Z has a standard normal
distribution.

Hauck-Anderson Test
If you specify the METHOD=HA riskdiff-option, PROC FREQ provides the Hauck-Anderson test
for noninferiority. The Hauck-Anderson test statistic is computed as

z D . Od C ı ˙ cc/ = s. Od/

where Od D Op1 � Op2 and the standard error is computed from the sample proportions as

se. Od/ D
p

Op1.1 � Op1/=.n1� � 1/ C Op2.1 � Op2/=.n2� � 1/

The Hauck-Anderson continuity correction cc is computed as

cc D 1 =
�
2 min.n1�; n2�/

�
The p-value for the Hauck-Anderson noninferiority test is Pz D Prob.Z > z/, where Z has a
standard normal distribution. See Hauck and Anderson (1986) and Schuirmann (1999) for more
information.
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Farrington-Manning Test
If you specify the METHOD=FM riskdiff-option, PROC FREQ provides the Farrington-Manning
test of noninferiority for the risk difference. The Farrington-Manning test statistic is computed as

z D . Od C ı/ = se. Od/

where Od D Op1 � Op2 and

se. Od/ D
p

Qp1.1 � Qp1/=n1� C Qp2.1 � Qp2/=n2�

where Qp1 and Qp2 are the maximum likelihood estimators of p1 and p2 under the null hypothesis
that the risk difference equals –ı. The p-value for the Farrington-Manning noninferiority test is then
Pz D Prob.Z > z/, where Z has a standard normal distribution.

From Farrington and Manning (1990), the solution to the maximum likelihood equation is

Qp1 D 2u cos.w/ � b=3a and Qp2 D Qp1 C ı

where

w D .� C cos�1.v=u3//=3

v D b3=.3a/3 � bc=6a2
C d=2a

u D sign.v/
q
b2=.3a/2 � c=3a

a D 1C �

b D � .1C � C Op1 C � Op2 � ı.� C 2//

c D ı2
� ı.2 Op1 C � C 1/C Op1 C � Op2

d D Op1ı.1 � ı/

� D n2�=n1�

Newcombe Score Confidence Limits
If you specify the METHOD=SCORE riskdiff-option, PROC FREQ provides the Newcombe hybrid
score (or Wilson) confidence limits for the risk difference. The confidence coefficient for the confi-
dence limits is 100.1 � 2˛/% (Schuirmann 1999). By default, if you do not specify the ALPHA=
option, these are 90% confidence limits. You can compare the confidence limits to the noninferiority
limit, –ı.

The Newcombe score confidence limits for the risk difference are constructed from the Wilson
score confidence limits for each of the two individual proportions. The confidence limits for the
individual proportions are used in the standard error terms of the Wald confidence limits for the
proportion difference. See Newcombe (1998) and Barker et al. (2001) for more information.

Wilson score confidence limits for p1 and p2 are the roots of

jpi � Opi j D z˛

p
pi .1 � pi /=ni �

for i D 1; 2. The confidence limits are computed as

�
Opi C z2

˛=2ni �

�
˙

�
z˛

q�
Opi .1 � Opi /C z2

˛

�
=4ni � =

�
1C z2

˛=ni �

��
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See the section “Wilson (Score) Confidence Limits” on page 134 for details.

Denote the lower and upper Wilson score confidence limits for p1 as L1 and U1, and denote the
lower and upper confidence limits for p2 as L2 and U2. The Newcombe score confidence limits for
the proportion difference (d D p1 � p2) are computed as

dL D . Op1 � Op2/ � z˛

p
L1.1 � L1/=n1� C U2.1 � U2/=n2�

dU D . Op1 � Op2/ C z˛

p
U1.1 � U1/=n1� C L2.1 � L2/=n2�

If you specify the CORRECT riskdiff-option, PROC FREQ provides continuity-corrected New-
combe score confidence limits. By including a continuity correction of 1=2ni �, the Wilson score
confidence limits for the individual proportions are the roots of

jpi � Opi j � 1=2ni � D z˛

p
pi .1 � pi /=ni �

These confidence limits for the individual proportions are then used in the standard error terms of
the Wald confidence limits for the proportion difference to compute dL and dU .

Superiority Test If you specify the SUP riskdiff-option, PROC FREQ provides a superiority test
for the risk difference. The null hypothesis is

H0W W p1 � p2 � ı

versus the alternative

HaWp1 � p2 > ı

where ı is the superiority margin. Rejection of the null hypothesis indicates that the row 1 pro-
portion is superior to the row 2 proportion. You can specify the value of ı with the MARGIN=
riskdiff-option. By default, ı D 0:2.

The superiority analysis is identical to the noninferiority analysis but uses a positive value of
the margin ı in the null hypothesis. The superiority computations follow those in the section
“Noninferiority Test” on page 142 by replacing –ı by ı. See Chow, Shao, and Wang (2003) for
more information.

Equivalence Tests If you specify the EQUIV riskdiff-option, PROC FREQ provides an equiva-
lence test for the risk difference, or the difference between two proportions. The null hypothesis for
the equivalence test is

H0Wp1 � p2 � �ıL or p1 � p2 � ıU

versus the alternative

HaW ıL < p1 � p2 < ıU

where ıL is the lower margin and ıU is the upper margin. Rejection of the null hypothesis indicates
that the two binomial proportions are equivalent. See Chow, Shao, and Wang (2003) for more
information.



146 F Chapter 3: The FREQ Procedure

You can specify the value of the margins ıL and ıU with the MARGIN= riskdiff-option. If you
do not specify MARGIN=, PROC FREQ uses lower and upper margins of –0.2 and 0.2 by default.
If you specify a single margin value ı, PROC FREQ uses lower and upper margins of –ı and ı.
You can specify the test method with the METHOD= riskdiff-option. The following methods are
available for the risk difference equivalence analysis: Wald (with and without continuity correc-
tion), Hauck-Anderson, Farrington-Manning, and Newcombe’s score (with and without continuity
correction). The Wald, Hauck-Anderson, and Farrington-Manning methods provide tests and cor-
responding test-based confidence limits; the Newcombe score method provides only confidence
limits. If you do not specify METHOD=, PROC FREQ uses the Wald test by default.

PROC FREQ computes two one-sided tests (TOST) for equivalence analysis (Schuirmann 1987).
The TOST approach includes a right-sided test for the lower margin ıL and a left-sided test for the
upper margin ıU . The overall p-value is taken to be the larger of the two p-values from the lower
and upper tests.

The section “Noninferiority Test” on page 142 gives details about the Wald, Hauck-Anderson,
Farrington-Manning and Newcombe score methods for the risk difference. The lower margin equiv-
alence test statistic takes the same form as the noninferiority test statistic but uses the lower margin
value ıL in place of –ı. The upper margin equivalence test statistic take the same form as the
noninferiority test statistic but uses the upper margin value ıU in place of –ı.

The test-based confidence limits for the risk difference are computed according to the equiv-
alence test method that you select. If you specify METHOD=WALD with VAR=NULL, or
METHOD=FM, separate standard errors are computed for the lower and upper margin tests. In
this case, the test-based confidence limits are computed by using the maximum of these two stan-
dard errors. The confidence limits have a confidence coefficient of 100.1 � 2˛/% (Schuirmann
1999). By default, if you do not specify the ALPHA= option, these are 90% confidence limits. You
can compare the confidence limits to the equivalence limits, .ıL; ıU/.

Exact Unconditional Confidence Limits for the Risk Difference

If you specify the RISKDIFF option in the EXACT statement, PROC FREQ provides exact uncon-
ditional confidence limits for the risk difference. Unconditional computations differ from the exact
conditional approach that PROC FREQ uses for other exact statistics such as Fisher’s exact test.
(See the section “Exact Statistics” on page 166 for more information.) Exact conditional inference
does not apply to the risk difference due to nuisance parameters. See Agresti (1992) for details. The
unconditional approach eliminates nuisance parameters by maximizing the p-value over all possible
values of the nuisance parameters (Santner and Snell 1980).

Denote the proportion difference by d D p1 � p2. For a 2 � 2 table with row totals n1 and n2, the
joint probability function can be expressed in terms of the table cell frequencies and the parameters
d and p2,

f .n11; n21In1; n2; d; p2/ D

 
n1

n11

!
.dCp2/

n
11.1�d �p2/

n1�n11 �

 
n2

n21

!
p

n21

2 .1�p2/
n2�n21

When constructing confidence limits for the proportion difference, the parameter of interest is d
and p2 is a nuisance parameter.
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Denote the observed value of the proportion difference by d0 D Op1 � Op2. The 100.1 � ˛=2/%
confidence limits for d are computed as

dL D sup .d� W PU .d�/ > ˛=2/

dU D inf .d� W PL.d�/ > ˛=2/

where

PU .d�/ D sup
p2

� X
A;D.a/�d0

f .n11; n21In1; n2; d�; p2/
�

PL.d�/ D sup
p2

� X
A;D.a/�d0

f .n11; n21In1; n2; d�; p2/
�

The set A includes all 2 � 2 tables with row sums equal to n1 and n2, and D.a/ denotes the
value of the proportion difference (p1 �p2) for table a in A. To compute PU .d�/, the sum includes
probabilities of those tables for which (D.a/ � d0), where d0 is the observed value of the proportion
difference. For a fixed value of d�, PU .d�/ is taken to be the maximum sum over all possible values
of p2. See Santner and Snell (1980) and Agresti and Min (2001) for details.

This method of eliminating the nuisance parameter is considered to be a conservative approach
(Agresti and Min 2001). Additionally, the confidence limits are conservative for small samples
because this is a discrete problem; the confidence coefficient is not exactly (1 � ˛) but is at least
(1 � ˛). See Agresti (1992) for more information.

Odds Ratio and Relative Risks for 2 x 2 Tables

Odds Ratio (Case-Control Studies)

The odds ratio is a useful measure of association for a variety of study designs. For a retrospective
design called a case-control study, the odds ratio can be used to estimate the relative risk when the
probability of positive response is small (Agresti 2002). In a case-control study, two independent
samples are identified based on a binary (yes-no) response variable, and the conditional distribution
of a binary explanatory variable is examined, within fixed levels of the response variable. See
Stokes, Davis, and Koch (2000) and Agresti (2007).

The odds of a positive response (column 1) in row 1 is n11=n12. Similarly, the odds of a positive
response in row 2 is n21=n22. The odds ratio is formed as the ratio of the row 1 odds to the row 2
odds. The odds ratio for a 2 � 2 table is defined as

OR D
n11=n12

n21=n22
D
n11 n22

n12 n21

The odds ratio can be any nonnegative number. When the row and column variables are indepen-
dent, the true value of the odds ratio equals 1. An odds ratio greater than 1 indicates that the odds of
a positive response are higher in row 1 than in row 2. Values less than 1 indicate the odds of positive
response are higher in row 2. The strength of association increases with the deviation from 1.
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The transformation G D .OR � 1/=.OR C 1/ transforms the odds ratio to the range .�1; 1/ with
G D 0 when OR D 1; G D �1 when OR D 0; and G approaches 1 as OR approaches infinity. G
is the gamma statistic, which PROC FREQ computes when you specify the MEASURES option.

The asymptotic 100.1 � ˛/% confidence limits for the odds ratio are�
OR � exp.�z

p
v/; OR � exp.z

p
v/
�

where

v D var.lnOR/ D
1

n11
C

1

n12
C

1

n21
C

1

n22

and z is the 100.1 � ˛=2/th percentile of the standard normal distribution. If any of the four cell
frequencies are zero, the estimates are not computed.

When you specify the OR option in the EXACT statement, PROC FREQ computes exact confidence
limits for the odds ratio. Because this is a discrete problem, the confidence coefficient for the exact
confidence interval is not exactly (1 � ˛) but is at least (1 � ˛). Thus, these confidence limits are
conservative. See Agresti (1992) for more information.

PROC FREQ computes exact confidence limits for the odds ratio by using an algorithm based
on Thomas (1971). See also Gart (1971). The following two equations are solved iteratively to
determine the lower and upper confidence limits, �1 and �2:

n�1X
iDn11

 
n1�

i

! 
n2�

n�1 � i

!
�i

1 =

n�1X
iD0

 
n1�

i

! 
n2�

n�1 � i

!
�i

1 D ˛=2

n11X
iD0

 
n1�

i

! 
n2�

n�1 � i

!
�i

2 =

n�1X
iD0

 
n1�

i

! 
n2�

n�1 � i

!
�i

2 D ˛=2

When the odds ratio equals zero, which occurs when either n11 D 0 or n22 D 0, PROC FREQ
sets the lower exact confidence limit to zero and determines the upper limit with level ˛. Similarly,
when the odds ratio equals infinity, which occurs when either n12 D 0 or n21 D 0, PROC FREQ
sets the upper exact confidence limit to infinity and determines the lower limit with level ˛.

Relative Risks (Cohort Studies)

These measures of relative risk are useful in cohort (prospective) study designs, where two samples
are identified based on the presence or absence of an explanatory factor. The two samples are
observed in future time for the binary (yes-no) response variable under study. Relative risk measures
are also useful in cross-sectional studies, where two variables are observed simultaneously. See
Stokes, Davis, and Koch (2000) and Agresti (2007) for more information.

The column 1 relative risk is the ratio of the column 1 risk for row 1 to row 2. The column 1 risk
for row 1 is the proportion of the row 1 observations classified in column 1,

p1j1 D n11 = n1�

Similarly, the column 1 risk for row 2 is

p1j2 D n21 = n2�
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The column 1 relative risk is then computed as

RR1 D p1j1 = p1j2

A relative risk greater than 1 indicates that the probability of positive response is greater in row 1
than in row 2. Similarly, a relative risk less than 1 indicates that the probability of positive response
is less in row 1 than in row 2. The strength of association increases with the deviation from 1.

Asymptotic 100.1 � ˛/% confidence limits for the column 1 relative risk are computed as�
RR1 � exp.�z

p
v/; RR1 � exp.z

p
v/
�

where

v D var.lnRR1/ D
�
.1 � p1j1/=n11

�
C
�
.1 � p1j2/=n21

�
and z is the 100.1 � ˛=2/th percentile of the standard normal distribution. If either n11 or n21 is
zero, the estimates are not computed.

PROC FREQ computes the column 2 relative risks in the same way.

Cochran-Armitage Test for Trend

The TREND option in the TABLES statement provides the Cochran-Armitage test for trend, which
tests for trend in binomial proportions across levels of a single factor or covariate. This test is
appropriate for a two-way table where one variable has two levels and the other variable is ordinal.
The two-level variable represents the response, and the other variable represents an explanatory
variable with ordered levels. When the two-way has two columns and R rows, PROC FREQ tests
for trend across the R levels of the row variable, and the binomial proportion is computed as the
proportion of observations in the first column. When the table has two rows and C columns, PROC
FREQ tests for trend across the C levels of the column variable, and the binomial proportion is
computed as the proportion of observations in the first row.

The trend test is based on the regression coefficient for the weighted linear regression of the binomial
proportions on the scores of the explanatory variable levels. See Margolin (1988) and Agresti (2002)
for details. If the table has two columns and R rows, the trend test statistic is computed as

T D

RX
iD1

ni1.Ri � NR/ =

q
p�1 .1 � p�1/ s2

where Ri is the score of row i , NR is the average row score, and

s2
D

RX
iD1

ni �.Ri � NR/2

The SCORES= option in the TABLES statement determines the type of row scores used in com-
puting the trend test (and other score-based statistics). The default is SCORES=TABLE. See the
section “Scores” on page 117 for details. For character variables, the table scores for the row vari-
able are the row numbers (for example, 1 for the first row, 2 for the second row, and so on). For
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numeric variables, the table score for each row is the numeric value of the row level. When you
perform the trend test, the explanatory variable might be numeric (for example, dose of a test sub-
stance), and the variable values might be appropriate scores. If the explanatory variable has ordinal
levels that are not numeric, you can assign meaningful scores to the variable levels. Sometimes
equidistant scores, such as the table scores for a character variable, might be appropriate. For more
information on choosing scores for the trend test, see Margolin (1988).

The null hypothesis for the Cochran-Armitage test is no trend, which means that the binomial
proportion pi1 D ni1=ni � is the same for all levels of the explanatory variable. Under the null
hypothesis, the trend statistic has an asymptotic standard normal distribution.

PROC FREQ computes one-sided and two-sided p-values for the trend test. When the test statistic
is greater than its null hypothesis expected value of zero, PROC FREQ displays the right-sided p-
value, which is the probability of a larger value of the statistic occurring under the null hypothesis.
A small right-sided p-value supports the alternative hypothesis of increasing trend in proportions
from row 1 to row R. When the test statistic is less than or equal to zero, PROC FREQ displays the
left-sided p-value. A small left-sided p-value supports the alternative of decreasing trend.

The one-sided p-value for the trend test is computed as

P1 D

(
Prob.Z > T / if T > 0

Prob.Z < T / if T � 0

where Z has a standard normal distribution. The two-sided p-value is computed as

P2 D Prob.jZj > jT j/

PROC FREQ also provides exact p-values for the Cochran-Armitage trend test. You can request
the exact test by specifying the TREND option in the EXACT statement. See the section “Exact
Statistics” on page 166 for more information.

Jonckheere-Terpstra Test

The JT option in the TABLES statement provides the Jonckheere-Terpstra test, which is a nonpara-
metric test for ordered differences among classes. It tests the null hypothesis that the distribution
of the response variable does not differ among classes. It is designed to detect alternatives of or-
dered class differences, which can be expressed as �1 � �2 � � � � � �R (or �1 � �2 � � � � � �R),
with at least one of the inequalities being strict, where �i denotes the effect of class i . For such
ordered alternatives, the Jonckheere-Terpstra test can be preferable to tests of more general class
difference alternatives, such as the Kruskal–Wallis test (produced by the WILCOXON option in the
NPAR1WAY procedure). See Pirie (1983) and Hollander and Wolfe (1999) for more information
about the Jonckheere-Terpstra test.

The Jonckheere-Terpstra test is appropriate for a two-way table in which an ordinal column variable
represents the response. The row variable, which can be nominal or ordinal, represents the classifi-
cation variable. The levels of the row variable should be ordered according to the ordering you want
the test to detect. The order of variable levels is determined by the ORDER= option in the PROC
FREQ statement. The default is ORDER=INTERNAL, which orders by unformatted values. If you



Statistical Computations F 151

specify ORDER=DATA, PROC FREQ orders values according to their order in the input data set.
For more information about how to order variable levels, see the ORDER= option.

The Jonckheere-Terpstra test statistic is computed by first forming R.R � 1/=2 Mann-Whitney
counts Mi;i 0 , where i < i 0, for pairs of rows in the contingency table,

Mi;i 0 D f number of times Xi;j < Xi 0;j 0 ; j D 1; : : : ; ni:I j 0
D 1; : : : ; ni 0: g

C
1
2

f number of times Xi;j D Xi 0;j 0 ; j D 1; : : : ; ni:I j 0
D 1; : : : ; ni 0: g

where Xi;j is response j in row i . The Jonckheere-Terpstra test statistic is computed as

J D

X
1�i<

X
i 0�R

Mi;i 0

This test rejects the null hypothesis of no difference among classes for large values of J . Asymptotic
p-values for the Jonckheere-Terpstra test are obtained by using the normal approximation for the
distribution of the standardized test statistic. The standardized test statistic is computed as

J �
D .J � E0.J // =

p
var0.J /

where E0.J / and var0.J / are the expected value and variance of the test statistic under the null
hypothesis,

E0.J / D

 
n2

�

X
i

n2
i �

!
=4

var0.J / D A=72C B= .36n.n � 1/.n � 2//C C= .8n.n � 1//

where

A D n.n � 1/.2nC 5/ �

X
i

ni �.ni � � 1/.2ni � C 5/ �

X
j

n�j .n�j � 1/.2n�j C 5/

B D

 X
i

ni �.ni � � 1/.ni � � 2/

!0@X
j

n�j .n�j � 1/.n�j � 2/

1A
C D

 X
i

ni �.ni � � 1/

!0@X
j

n�j .n�j � 1/

1A
PROC FREQ computes one-sided and two-sided p-values for the Jonckheere-Terpstra test. When
the standardized test statistic is greater than its null hypothesis expected value of zero, PROC FREQ
displays the right-sided p-value, which is the probability of a larger value of the statistic occurring
under the null hypothesis. A small right-sided p-value supports the alternative hypothesis of increas-
ing order from row 1 to row R. When the standardized test statistic is less than or equal to zero,
PROC FREQ displays the left-sided p-value. A small left-sided p-value supports the alternative of
decreasing order from row 1 to row R.
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The one-sided p-value for the Jonckheere-Terpstra test, P1, is computed as

P1 D

(
Prob.Z > J �/ if J � > 0

Prob.Z < J �/ if J � � 0

where Z has a standard normal distribution. The two-sided p-value, P2, is computed as

P2 D Prob.jZj > jJ �
j/

PROC FREQ also provides exact p-values for the Jonckheere-Terpstra test. You can request the
exact test by specifying the JT option in the EXACT statement. See the section “Exact Statistics”
on page 166 for more information.

Tests and Measures of Agreement

When you specify the AGREE option in the TABLES statement, PROC FREQ computes tests and
measures of agreement for square tables (that is, for tables where the number of rows equals the
number of columns). For two-way tables, these tests and measures include McNemar’s test for
2 � 2 tables, Bowker’s test of symmetry, the simple kappa coefficient, and the weighted kappa
coefficient. For multiple strata (n-way tables, where n > 2), PROC FREQ also computes the
overall simple kappa coefficient and the overall weighted kappa coefficient, as well as tests for
equal kappas (simple and weighted) among strata. Cochran’s Q is computed for multiway tables
when each variable has two levels, that is, for h � 2 � 2 tables.

PROC FREQ computes the kappa coefficients (simple and weighted), their asymptotic standard er-
rors, and their confidence limits when you specify the AGREE option in the TABLES statement. If
you also specify the KAPPA option in the TEST statement, then PROC FREQ computes the asymp-
totic test of the hypothesis that simple kappa equals zero. Similarly, if you specify the WTKAP
option in the TEST statement, PROC FREQ computes the asymptotic test for weighted kappa.

In addition to the asymptotic tests described in this section, PROC FREQ provides exact p-values
for McNemar’s test, the simple kappa coefficient test, and the weighted kappa coefficient test. You
can request these exact tests by specifying the corresponding options in the EXACT statement. See
the section “Exact Statistics” on page 166 for more information.

The following sections provide the formulas that PROC FREQ uses to compute the AGREE statis-
tics. For information about the use and interpretation of these statistics, see Agresti (2002), Agresti
(2007), Fleiss, Levin, and Paik (2003), and the other references cited for each statistic.

McNemar’s Test

PROC FREQ computes McNemar’s test for 2 � 2 tables when you specify the AGREE option.
McNemar’s test is appropriate when you are analyzing data from matched pairs of subjects with a
dichotomous (yes-no) response. It tests the null hypothesis of marginal homogeneity, or p1� D p�1.
McNemar’s test is computed as

QM D .n12 � n21/
2 = .n12 C n21/
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Under the null hypothesis, QM has an asymptotic chi-square distribution with one degree of free-
dom. See McNemar (1947), as well as the general references cited in the preceding section. In
addition to the asymptotic test, PROC FREQ also computes the exact p-value for McNemar’s test
when you specify the MCNEM option in the EXACT statement.

Bowker’s Test of Symmetry

For Bowker’s test of symmetry, the null hypothesis is that the cell proportions are symmetric, or
that pij D pj i for all pairs of table cells. For 2 � 2 tables, Bowker’s test is identical to McNemar’s
test, and so PROC FREQ provides Bowker’s test for square tables larger than 2 � 2.

Bowker’s test of symmetry is computed as

QB D

XX
i<j

.nij � nj i /
2 = .nij C nj i /

For large samples, QB has an asymptotic chi-square distribution with R.R � 1/=2 degrees of free-
dom under the null hypothesis of symmetry. See Bowker (1948) for details.

Simple Kappa Coefficient

The simple kappa coefficient, introduced by Cohen (1960), is a measure of interrater agreement.
PROC FREQ computes the simple kappa coefficient as

O� D .Po � Pe/ = .1 � Pe/

where Po D
P

i pi i and Pe D
P

i pi:p:i . If the two response variables are viewed as two inde-
pendent ratings of the n subjects, the kappa coefficient equals +1 when there is complete agreement
of the raters. When the observed agreement exceeds chance agreement, kappa is positive, with its
magnitude reflecting the strength of agreement. Although this is unusual in practice, kappa is neg-
ative when the observed agreement is less than chance agreement. The minimum value of kappa is
between �1 and 0, depending on the marginal proportions.

The asymptotic variance of the simple kappa coefficient is computed as

var. O�/ D .AC B � C/ = .1 � Pe/
2 n

where

A D

X
i

pi i .1 � .pi � C p�i /.1 � O�//2

B D .1 � O�/2
XX

i¤j

pij .p�i C pj �/
2

C D . O� � Pe.1 � O�/ /2

See Fleiss, Cohen, and Everitt (1969) for details.
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PROC FREQ computes confidence limits for the simple kappa coefficient as

O� ˙
�
z˛=2 �

p
var. O�/

�
where z˛=2 is the 100.1 � ˛=2/th percentile of the standard normal distribution. The value of ˛ is
determined by the value of the ALPHA= option, which, by default, equals 0.05 and produces 95%
confidence limits.

To compute an asymptotic test for the kappa coefficient, PROC FREQ uses the standardized test
statistic O��, which has an asymptotic standard normal distribution under the null hypothesis that
kappa equals zero. The standardized test statistic is computed as

O��
D O� =

p
var0. O�/

where var0. O�/ is the variance of the kappa coefficient under the null hypothesis,

var0. O�/ D

 
Pe C P 2

e �

X
i

pi �p�i .pi � C p�i /

!
= .1 � Pe/

2 n

See Fleiss, Levin, and Paik (2003) for details.

PROC FREQ also provides an exact test for the simple kappa coefficient. You can request the exact
test by specifying the KAPPA or AGREE option in the EXACT statement. See the section “Exact
Statistics” on page 166 for more information.

Weighted Kappa Coefficient

The weighted kappa coefficient is a generalization of the simple kappa coefficient that uses weights
to quantify the relative difference between categories. For 2 � 2 tables, the weighted kappa coef-
ficient equals the simple kappa coefficient. PROC FREQ displays the weighted kappa coefficient
only for tables larger than 2�2. PROC FREQ computes the kappa weights from the column scores,
by using either Cicchetti-Allison weights or Fleiss-Cohen weights, both of which are described in
the following section. The weights wij are constructed so that 0 � wij < 1 for all i 6D j , wi i D 1

for all i , and wij D wj i . The weighted kappa coefficient is computed as

O�w D
�
Po.w/ � Pe.w/

�
=
�
1 � Pe.w/

�
where

Po.w/ D

X
i

X
j

wijpij

Pe.w/ D

X
i

X
j

wijpi �p�j
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The asymptotic variance of the weighted kappa coefficient is

var. O�w/ D

0@X
i

X
j

pij

�
wij � .wi � C w�j /.1 � O�w/

�2
�
�
O�w � Pe.w/.1 � O�w/

�21A = .1�Pe.w//
2 n

where

wi � D

X
j

p�jwij

w�j D

X
i

pi �wij

See Fleiss, Cohen, and Everitt (1969) for details.

PROC FREQ computes confidence limits for the weighted kappa coefficient as

O�w ˙
�
z˛=2 �

p
var. O�w/

�
where z˛=2 is the 100.1 � ˛=2/th percentile of the standard normal distribution. The value of ˛ is
determined by the value of the ALPHA= option, which, by default, equals 0.05 and produces 95%
confidence limits.

To compute an asymptotic test for the weighted kappa coefficient, PROC FREQ uses the standard-
ized test statistic O��

w , which has an asymptotic standard normal distribution under the null hypothesis
that weighted kappa equals zero. The standardized test statistic is computed as

O��
w D O�w =

p
var0. O�w/

where var0. O�w/ is the variance of the weighted kappa coefficient under the null hypothesis,

var0. O�w/ D

0@X
i

X
j

pi �p�j

�
wij � .wi � C w�j /

�2
� P 2

e.w/

1A = .1 � Pe.w//
2 n

See Fleiss, Levin, and Paik (2003) for details.

PROC FREQ also provides an exact test for the weighted kappa coefficient. You can request the
exact test by specifying the WTKAPPA or AGREE option in the EXACT statement. See the section
“Exact Statistics” on page 166 for more information.

Weights PROC FREQ computes kappa coefficient weights by using the column scores and one
of the two available weight types. The column scores are determined by the SCORES= option in
the TABLES statement. The two available types of kappa weights are Cicchetti-Allison and Fleiss-
Cohen weights. By default, PROC FREQ uses Cicchetti-Allison weights. If you specify (WT=FC)
with the AGREE option, then PROC FREQ uses Fleiss-Cohen weights to compute the weighted
kappa coefficient.

PROC FREQ computes Cicchetti-Allison kappa coefficient weights as

wij D 1 �
jCi � Cj j

CC � C1
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where Ci is the score for column i and C is the number of categories or columns. See Cicchetti and
Allison (1971) for details.

The SCORES= option in the TABLES statement determines the type of column scores used to
compute the kappa weights (and other score-based statistics). The default is SCORES=TABLE.
See the section “Scores” on page 117 for details. For numeric variables, table scores are the values
of the variable levels. You can assign numeric values to the levels in a way that reflects their level
of similarity. For example, suppose you have four levels and order them according to similarity. If
you assign them values of 0, 2, 4, and 10, the Cicchetti-Allison kappa weights take the following
values: w12 = 0.8, w13 = 0.6, w14 = 0, w23 = 0.8, w24 = 0.2, and w34 = 0.4. Note that when there
are only two categories (that is, C = 2), the weighted kappa coefficient is identical to the simple
kappa coefficient.

If you specify (WT=FC) with the AGREE option in the TABLES statement, PROC FREQ computes
Fleiss-Cohen kappa coefficient weights as

wij D 1 �
.Ci � Cj /

2

.CC � C1/2

See Fleiss and Cohen (1973) for details.

For the preceding example, the Fleiss-Cohen kappa weights are: w12 = 0.96, w13 = 0.84, w14 = 0,
w23 = 0.96, w24 = 0.36, and w34 = 0.64.

Overall Kappa Coefficient

When there are multiple strata, PROC FREQ combines the stratum-level estimates of kappa into
an overall estimate of the supposed common value of kappa. Assume there are q strata, indexed
by h D 1; 2; : : : ; q, and let var. O�h/ denote the variance of O�h. The estimate of the overall kappa
coefficient is computed as

O�T D

qX
hD1

O�h

var. O�h/
=

qX
hD1

1

var. O�h/

See Fleiss, Levin, and Paik (2003) for details.

PROC FREQ computes an estimate of the overall weighted kappa in the same way.

Tests for Equal Kappa Coefficients

When there are multiple strata, the following chi-square statistic tests whether the stratum-level
values of kappa are equal:

QK D

qX
hD1

. O�h � O�T/
2 = var. O�h/

Under the null hypothesis of equal kappas for the q strata, QK has an asymptotic chi-square dis-
tribution with q � 1 degrees of freedom. See Fleiss, Levin, and Paik (2003) for more information.
PROC FREQ computes a test for equal weighted kappa coefficients in the same way.
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Cochran’s Q Test

Cochran’s Q is computed for multiway tables when each variable has two levels, that is, for
2 � 2 � � � � 2 tables. Cochran’s Q statistic is used to test the homogeneity of the one-dimensional
margins. Let m denote the number of variables and N denote the total number of subjects.
Cochran’s Q statistic is computed as

QC D m.m � 1/

0@ mX
j D1

T 2
j � T 2

1A =

 
mT �

NX
kD1

S2
k

!
where Tj is the number of positive responses for variable j , T is the total number of positive
responses over all variables, and Sk is the number of positive responses for subject k. Under
the null hypothesis, Cochran’s Q has an asymptotic chi-square distribution with m � 1 degrees
of freedom. See Cochran (1950) for details. When there are only two binary response variables
(m D 2), Cochran’s Q simplifies to McNemar’s test. When there are more than two response
categories, you can test for marginal homogeneity by using the repeated measures capabilities of
the CATMOD procedure.

Tables with Zero Rows and Columns

The AGREE statistics are defined only for square tables, where the number of rows equals the
number of columns. If the table is not square, PROC FREQ does not compute AGREE statistics.
In the kappa statistic framework, where two independent raters assign ratings to each of n subjects,
suppose one of the raters does not use all possible r rating levels. If the corresponding table has
r rows but only r � 1 columns, then the table is not square and PROC FREQ does not compute
AGREE statistics. To create a square table in this situation, use the ZEROS option in the WEIGHT
statement, which requests that PROC FREQ include observations with zero weights in the analysis.
Include zero-weight observations in the input data set to represent any rating levels that are not used
by a rater, so that the input data set has at least one observation for each possible rater and rating
combination. The analysis then includes all rating levels, even when all levels are not actually
assigned by both raters. The resulting table (of rater 1 by rater 2) is a square table, and AGREE
statistics can be computed.

For more information, see the description of the ZEROS option. By default, PROC FREQ does
not process observations that have zero weights, because these observations do not contribute to the
total frequency count, and because any resulting zero-weight row or column causes many of the
tests and measures of association to be undefined. However, kappa statistics are defined for tables
with a zero-weight row or column, and the ZEROS option makes it possible to input zero-weight
observations and construct the tables needed to compute kappas.

Cochran-Mantel-Haenszel Statistics

The CMH option in the TABLES statement gives a stratified statistical analysis of the relationship
between the row and column variables after controlling for the strata variables in a multiway table.
For example, for the table request A*B*C*D, the CMH option provides an analysis of the relation-
ship between C and D, after controlling for A and B. The stratified analysis provides a way to adjust
for the possible confounding effects of A and B without being forced to estimate parameters for
them.



158 F Chapter 3: The FREQ Procedure

The CMH analysis produces Cochran-Mantel-Haenszel statistics, which include the correlation
statistic, the ANOVA (row mean scores) statistic, and the general association statistic. For 2 � 2

tables, the CMH option also provides Mantel-Haenszel and logit estimates of the common odds
ratio and the common relative risks, as well as the Breslow-Day test for homogeneity of the odds
ratios.

Exact statistics are also available for stratified 2 � 2 tables. If you specify the EQOR option in the
EXACT statement, PROC FREQ provides Zelen’s exact test for equal odds ratios. If you specify
the COMOR option in the EXACT statement, PROC FREQ provides exact confidence limits for the
common odds ratio and an exact test that the common odds ratio equals one.

Let the number of strata be denoted by q, indexing the strata by h D 1; 2; : : : ; q. Each stratum
contains a contingency table with X representing the row variable and Y representing the column
variable. For table h, denote the cell frequency in row i and column j by nhij , with corresponding
row and column marginal totals denoted by nhi: and nh:j , and the overall stratum total by nh.

Because the formulas for the Cochran-Mantel-Haenszel statistics are more easily defined in terms
of matrices, the following notation is used. Vectors are presumed to be column vectors unless they
are transposed .0/.

n0
hi

D .nhi1; nhi2; : : : ; nhiC / .1 � C/

n0
h

D .n0
h1
;n0

h2
; : : : ;n0

hR
/ .1 �RC/

phi � D nhi � = nh .1 � 1/

ph�j D nh�j = nh .1 � 1/

P0
h��

D .ph1�; ph2�; : : : ; phR�/ .1 �R/

P0
h��

D .ph�1; ph�2; : : : ; ph�C / .1 � C/

Assume that the strata are independent and that the marginal totals of each stratum are fixed. The
null hypothesis, H0, is that there is no association between X and Y in any of the strata. The
corresponding model is the multiple hypergeometric; this implies that, under H0, the expected
value and covariance matrix of the frequencies are, respectively,

mh D EŒnh j H0� D nh.Ph�� ˝ Ph��/

varŒnh j H0� D c
�
.DPh�� � Ph��P0

h��
/˝ .DPh�� � Ph��P0

h��
/
�

where

c D n2
h = .nh � 1/

and where ˝ denotes Kronecker product multiplication and Da is a diagonal matrix with the ele-
ments of a on the main diagonal.

The generalized CMH statistic (Landis, Heyman, and Koch 1978) is defined as

QCMH D G0VG
�1G
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where

G D

X
h

Bh.nh � mh/

VG D

X
h

Bh .Var.nh j H0//B0
h

and where

Bh D Ch ˝ Rh

is a matrix of fixed constants based on column scores Ch and row scores Rh. When the null
hypothesis is true, the CMH statistic has an asymptotic chi-square distribution with degrees of
freedom equal to the rank of Bh. If VG is found to be singular, PROC FREQ prints a message and
sets the value of the CMH statistic to missing.

PROC FREQ computes three CMH statistics by using this formula for the generalized CMH statis-
tic, with different row and column score definitions for each statistic. The CMH statistics that PROC
FREQ computes are the correlation statistic, the ANOVA (row mean scores) statistic, and the gen-
eral association statistic. These statistics test the null hypothesis of no association against different
alternative hypotheses. The following sections describe the computation of these CMH statistics.

CAUTION: The CMH statistics have low power for detecting an association in which the patterns
of association for some of the strata are in the opposite direction of the patterns displayed by other
strata. Thus, a nonsignificant CMH statistic suggests either that there is no association or that no
pattern of association has enough strength or consistency to dominate any other pattern.

Correlation Statistic

The correlation statistic, popularized by Mantel and Haenszel (1959) and Mantel (1963), has one
degree of freedom and is known as the Mantel-Haenszel statistic.

The alternative hypothesis for the correlation statistic is that there is a linear association between X
and Y in at least one stratum. If either X or Y does not lie on an ordinal (or interval) scale, then this
statistic is not meaningful.

To compute the correlation statistic, PROC FREQ uses the formula for the generalized CMH statis-
tic with the row and column scores determined by the SCORES= option in the TABLES statement.
See the section “Scores” on page 117 for more information about the available score types. The
matrix of row scores Rh has dimension 1 � R, and the matrix of column scores Ch has dimension
1 � C .

When there is only one stratum, this CMH statistic reduces to .n�1/r2, where r is the Pearson cor-
relation coefficient betweenX and Y . When nonparametric (RANK or RIDIT) scores are specified,
the statistic reduces to .n � 1/r2

s , where rs is the Spearman rank correlation coefficient between
X and Y. When there is more than one stratum, this CMH statistic becomes a stratum-adjusted
correlation statistic.



160 F Chapter 3: The FREQ Procedure

ANOVA (Row Mean Scores) Statistic

The ANOVA statistic can be used only when the column variable Y lies on an ordinal (or inter-
val) scale so that the mean score of Y is meaningful. For the ANOVA statistic, the mean score is
computed for each row of the table, and the alternative hypothesis is that, for at least one stratum,
the mean scores of the R rows are unequal. In other words, the statistic is sensitive to location
differences among the R distributions of Y.

The matrix of column scores Ch has dimension 1�C , and the column scores are determined by the
SCORES= option.

The matrix of row scores Rh has dimension .R � 1/ �R and is created internally by PROC FREQ
as

Rh D ŒIR�1;�JR�1�

where IR�1 is an identity matrix of rank R � 1 and JR�1 is an .R � 1/ � 1 vector of ones. This
matrix has the effect of forming R � 1 independent contrasts of the R mean scores.

When there is only one stratum, this CMH statistic is essentially an analysis of variance (ANOVA)
statistic in the sense that it is a function of the variance ratio F statistic that would be obtained from
a one-way ANOVA on the dependent variable Y. If nonparametric scores are specified in this case,
then the ANOVA statistic is a Kruskal-Wallis test.

If there is more than one stratum, then this CMH statistic corresponds to a stratum-adjusted ANOVA
or Kruskal-Wallis test. In the special case where there is one subject per row and one subject per
column in the contingency table of each stratum, this CMH statistic is identical to Friedman’s chi-
square. See Example 3.9 for an illustration.

General Association Statistic

The alternative hypothesis for the general association statistic is that, for at least one stratum, there
is some kind of association between X and Y. This statistic is always interpretable because it does
not require an ordinal scale for either X or Y.

For the general association statistic, the matrix Rh is the same as the one used for the ANOVA
statistic. The matrix Ch is defined similarly as

Ch D ŒIC �1;�JC �1�

PROC FREQ generates both score matrices internally. When there is only one stratum, then the
general association CMH statistic reduces to QP .n � 1/=n, where QP is the Pearson chi-square
statistic. When there is more than one stratum, then the CMH statistic becomes a stratum-adjusted
Pearson chi-square statistic. Note that a similar adjustment can be made by summing the Pearson
chi-squares across the strata. However, the latter statistic requires a large sample size in each stratum
to support the resulting chi-square distribution with q.R�1/.C �1/ degrees of freedom. The CMH
statistic requires only a large overall sample size because it has only .R � 1/.C � 1/ degrees of
freedom.

See Cochran (1954); Mantel and Haenszel (1959); Mantel (1963); Birch (1965); and Landis, Hey-
man, and Koch (1978).
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Adjusted Odds Ratio and Relative Risk Estimates

The CMH option provides adjusted odds ratio and relative risk estimates for stratified 2 � 2 tables.
For each of these measures, PROC FREQ computes a Mantel-Haenszel estimate and a logit esti-
mate. These estimates apply to n-way table requests in the TABLES statement, when the row and
column variables both have two levels.

For example, for the table request A*B*C*D, if the row and column variables C and D both have two
levels, PROC FREQ provides odds ratio and relative risk estimates, adjusting for the confounding
variables A and B.

The choice of an appropriate measure depends on the study design. For case-control (retrospective)
studies, the odds ratio is appropriate. For cohort (prospective) or cross-sectional studies, the relative
risk is appropriate. See the section “Odds Ratio and Relative Risks for 2 x 2 Tables” on page 147
for more information on these measures.

Throughout this section, z denotes the 100.1�˛=2/th percentile of the standard normal distribution.

Odds Ratio, Case-Control Studies PROC FREQ provides Mantel-Haenszel and logit estimates
for the common odds ratio for stratified 2 � 2 tables.

The Mantel-Haenszel estimate of the common odds ratio is computed as

ORMH D

 X
h

nh11 nh22=nh

!
=

 X
h

nh12 nh21=nh

!
It is always computed unless the denominator is zero. See Mantel and Haenszel (1959) and Agresti
(2002) for details.

To compute confidence limits for the common odds ratio, PROC FREQ uses the Greenland and
Robins (1985) variance estimate for ln.ORMH/. The 100.1�˛=2/ confidence limits for the common
odds ratio are�

ORMH � exp.�z O�/; ORMH � exp.z O�/
�

where

O�2
D cvar. ln.ORMH/ /

D

P
h.nh11 C nh22/.nh11 nh22/=n

2
h

2
�P

h nh11 nh22=nh

�2
C

P
hŒ.nh11 C nh22/.nh12 nh21/C .nh12 C nh21/.nh11 nh22/�=n

2
h

2
�P

h nh11 nh22=nh

� �P
h nh12 nh21=nh

�
C

P
h.nh12 C nh21/.nh12 nh21/=n

2
h

2
�P

h nh12 nh21=nh

�2
Note that the Mantel-Haenszel odds ratio estimator is less sensitive to small nh than the logit esti-
mator.
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The adjusted logit estimate of the common odds ratio (Woolf 1955) is computed as

ORL D exp

 X
h

wh ln.ORh/ =
X

h

wh

!

and the corresponding 100.1 � ˛/% confidence limits are0@ ORL � exp

0@�z=

sX
h

wh

1A ; ORL � exp

0@z=sX
h

wh

1A 1A
where ORh is the odds ratio for stratum h, and

wh D 1=var.ln.ORh//

If any table cell frequency in a stratum h is zero, PROC FREQ adds 0:5 to each cell of the stratum
before computing ORh and wh (Haldane 1955) for the logit estimate. The procedure prints a
warning when this occurs.

Relative Risks, Cohort Studies PROC FREQ provides Mantel-Haenszel and logit estimates of
the common relative risks for stratified 2 � 2 tables.

The Mantel-Haenszel estimate of the common relative risk for column 1 is computed as

RRMH D

 X
h

nh11 nh2� = nh

!
=

 X
h

nh21 nh1� = nh

!

It is always computed unless the denominator is zero. See Mantel and Haenszel (1959) and Agresti
(2002) for more information.

To compute confidence limits for the common relative risk, PROC FREQ uses the Greenland and
Robins (1985) variance estimate for log.RRMH/. The 100.1 � ˛=2/ confidence limits for the com-
mon relative risk are�

RRMH � exp.�z O�/; RRMH � exp.z O�/
�

where

O�2
D cvar. ln.RRMH/ / D

P
h.nh1� nh2� nh�1 � nh11 nh21 nh/=n

2
h�P

h nh11 nh2�=nh

� �P
h nh21 nh1�=nh

�
The adjusted logit estimate of the common relative risk for column 1 is computed as

RRL D exp

 X
h

wh ln.RRh/ =
X

wh

!

and the corresponding 100.1 � ˛/% confidence limits are0@ RRL � exp

0@�z =

sX
h

wh

1A ; RRL � exp

0@z =sX
h

wh

1A 1A
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where RRh is the column 1 relative risk estimate for stratum h and

wh D 1 = var.ln.RRh//

If nh11 or nh21 is zero, then PROC FREQ adds 0:5 to each cell of the stratum before computingRRh

and wh for the logit estimate. The procedure prints a warning when this occurs. See Kleinbaum,
Kupper, and Morgenstern (1982, Sections 17.4 and 17.5) for details.

Breslow-Day Test for Homogeneity of the Odds Ratios

When you specify the CMH option, PROC FREQ computes the Breslow-Day test for stratified
2 � 2 tables. It tests the null hypothesis that the odds ratios for the q strata are equal. When the
null hypothesis is true, the statistic has approximately a chi-square distribution with q � 1 degrees
of freedom. See Breslow and Day (1980) and Agresti (2007) for more information.

The Breslow-Day statistic is computed as

QBD D

X
h

.nh11 � E.nh11 j ORMH//
2 = var.nh11 j ORMH/

where E and var denote expected value and variance, respectively. The summation does not include
any table with a zero row or column. If ORMH equals zero or if it is undefined, then PROC FREQ
does not compute the statistic and prints a warning message.

For the Breslow-Day test to be valid, the sample size should be relatively large in each stratum, and
at least 80% of the expected cell counts should be greater than 5. Note that this is a stricter sample
size requirement than the requirement for the Cochran-Mantel-Haenszel test for q � 2� 2 tables, in
that each stratum sample size (not just the overall sample size) must be relatively large. Even when
the Breslow-Day test is valid, it might not be very powerful against certain alternatives, as discussed
in Breslow and Day (1980).

If you specify the BDT option, PROC FREQ computes the Breslow-Day test with Tarone’s adjust-
ment, which subtracts an adjustment factor from QBD to make the resulting statistic asymptotically
chi-square. The Breslow-Day-Tarone statistic is computed as

QBDT D QBD �

 X
h

.nh11 � E.nh11 j ORMH//

!2

=
X

h

var.nh11 j ORMH/

See Tarone (1985), Jones et al. (1989), and Breslow (1996) for more information.

Zelen’s Exact Test for Equal Odds Ratios

If you specify the EQOR option in the EXACT statement, PROC FREQ computes Zelen’s exact
test for equal odds ratios for stratified 2 � 2 tables. Zelen’s test is an exact counterpart to the
Breslow-Day asymptotic test for equal odds ratios. The reference set for Zelen’s test includes all
possible q � 2 � 2 tables with the same row, column, and stratum totals as the observed multiway
table and with the same sum of cell .1; 1/ frequencies as the observed table. The test statistic is the
probability of the observed q � 2 � 2 table conditional on the fixed margins, which is a product of
hypergeometric probabilities.
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The p-value for Zelen’s test is the sum of all table probabilities that are less than or equal to the ob-
served table probability, where the sum is computed over all tables in the reference set determined
by the fixed margins and the observed sum of cell .1; 1/ frequencies. This test is similar to Fisher’s
exact test for two-way tables. See Zelen (1971), Hirji (2006), and Agresti (1992) for more informa-
tion. PROC FREQ computes Zelen’s exact test by using the polynomial multiplication algorithm of
Hirji et al. (1996).

Exact Confidence Limits for the Common Odds Ratio

If you specify the COMOR option in the EXACT statement, PROC FREQ computes exact confi-
dence limits for the common odds ratio for stratified 2 � 2 tables. This computation assumes that
the odds ratio is constant over all the 2 � 2 tables. Exact confidence limits are constructed from the
distribution of S D

P
h nh11, conditional on the marginal totals of the 2 � 2 tables.

Because this is a discrete problem, the confidence coefficient for these exact confidence limits is not
exactly (1 � ˛) but is at least (1 � ˛). Thus, these confidence limits are conservative. See Agresti
(1992) for more information.

PROC FREQ computes exact confidence limits for the common odds ratio by using an algorithm
based on Vollset, Hirji, and Elashoff (1991). See also Mehta, Patel, and Gray (1985).

Conditional on the marginal totals of 2� 2 table h, let the random variable Sh denote the frequency
of table cell .1; 1/. Given the row totals nh1� and nh2� and column totals nh�1 and nh�2, the lower
and upper bounds for Sh are lh and uh,

lh D max . 0; nh1� � nh�2 /

uh D min . nh1�; nh�1 /

Let Csh
denote the hypergeometric coefficient,

Csh
D

 
nh�1

sh

! 
nh�2

nh1� � sh

!

and let � denote the common odds ratio. Then the conditional distribution of Sh is

P. Sh D sh j n1�; n�1; n�2 / D Csh
� sh =

x D uhX
x D lh

Cx �
x

Summing over all the 2 � 2 tables, S D
P

h Sh, and the lower and upper bounds of S are l and u,

l D

X
h

lh and u D

X
h

uh

The conditional distribution of the sum S is

P. S D s j nh1�; nh�1; nh�2I h D 1; : : : ; q / D Cs �
s =

x D uX
x D l

Cx �
x
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where

Cs D

X
s1C::::Csq D s

 Y
h

Csh

!

Let s0 denote the observed sum of cell (1,1) frequencies over the q tables. The following two
equations are solved iteratively for lower and upper confidence limits for the common odds ratio,
�1 and �2:

x D uX
x D s0

Cx �
x

1 =

x D uX
x D l

Cx �
x

1 D ˛=2

x D s0X
x D l

Cx �
x

2 =

x D uX
x D l

Cx �
x

2 D ˛=2

When the observed sum s0 equals the lower bound l , PROC FREQ sets the lower confidence limit
to zero and determines the upper limit with level ˛. Similarly, when the observed sum s0 equals the
upper bound u, PROC FREQ sets the upper confidence limit to infinity and determines the lower
limit with level ˛.

When you specify the COMOR option in the EXACT statement, PROC FREQ also computes the
exact test that the common odds ratio equals one. Setting � D 1, the conditional distribution of the
sum S under the null hypothesis becomes

P0. S D s j nh1�; nh�1; nh�2I h D 1; : : : ; q / D Cs =

x D uX
x D l

Cx

The point probability for this exact test is the probability of the observed sum s0 under the null
hypothesis, conditional on the marginals of the stratified 2�2 tables, and is denoted by P0.s0/. The
expected value of S under the null hypothesis is

E0.S/ D

x D uX
x D l

x Cx =

x D uX
x D l

Cx

The one-sided exact p-value is computed from the conditional distribution as P0.S >D s0/ or
P0.S � s0/, depending on whether the observed sum s0 is greater or less than E0.S/,

P1 D P0. S >D s0 / D

x D uX
x D s0

Cx =

x D uX
x D l

Cx if s0 > E0.S/

P1 D P0. S <D s0 / D

x D s0X
x D l

Cx =

x D uX
x D l

Cx if s0 � E0.S/
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PROC FREQ computes two-sided p-values for this test according to three different definitions. A
two-sided p-value is computed as twice the one-sided p-value, setting the result equal to one if it
exceeds one,

P a
2 D 2 � P1

Additionally, a two-sided p-value is computed as the sum of all probabilities less than or equal to
the point probability of the observed sum s0, summing over all possible values of s, l � s � u,

P b
2 D

X
l�s�uWP0.s/�P0.s0/

P0.s/

Also, a two-sided p-value is computed as the sum of the one-sided p-value and the corresponding
area in the opposite tail of the distribution, equidistant from the expected value,

P c
2 D P0 . jS � E0.S/j � js0 � E0.S/j /

Exact Statistics

Exact statistics can be useful in situations where the asymptotic assumptions are not met, and so the
asymptotic p-values are not close approximations for the true p-values. Standard asymptotic meth-
ods involve the assumption that the test statistic follows a particular distribution when the sample
size is sufficiently large. When the sample size is not large, asymptotic results might not be valid,
with the asymptotic p-values differing perhaps substantially from the exact p-values. Asymptotic
results might also be unreliable when the distribution of the data is sparse, skewed, or heavily tied.
See Agresti (2007) and Bishop, Fienberg, and Holland (1975) for more information. Exact com-
putations are based on the statistical theory of exact conditional inference for contingency tables,
reviewed by Agresti (1992).

In addition to computation of exact p-values, PROC FREQ provides the option of estimating exact
p-values by Monte Carlo simulation. This can be useful for problems that are so large that exact
computations require a great amount of time and memory, but for which asymptotic approximations
might not be sufficient.

Exact statistics are available for many PROC FREQ tests. For one-way tables, PROC FREQ pro-
vides exact p-values for the binomial proportion tests and the chi-square goodness-of-fit test. Exact
confidence limits are available for the binomial proportion. For two-way tables, PROC FREQ pro-
vides exact p-values for the following tests: Pearson chi-square test, likelihood-ratio chi-square
test, Mantel-Haenszel chi-square test, Fisher’s exact test, Jonckheere-Terpstra test, and Cochran-
Armitage test for trend. PROC FREQ also computes exact p-values for tests of the following statis-
tics: Pearson correlation coefficient, Spearman correlation coefficient, simple kappa coefficient, and
weighted kappa coefficient. For 2 � 2 tables, PROC FREQ provides exact confidence limits for the
odds ratio, exact unconditional confidence limits for the proportion difference, and McNemar’s ex-
act test. For stratified 2 � 2 tables, PROC FREQ provides Zelen’s exact test for equal odds ratios,
exact confidence limits for the common odds ratio, and an exact test for the common odds ratio.

The following sections summarize the exact computational algorithms, define the exact p-values
that PROC FREQ computes, discuss the computational resource requirements, and describe the
Monte Carlo estimation option.
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Computational Algorithms

PROC FREQ computes exact p-values for general R � C tables by using the network algorithm
developed by Mehta and Patel (1983). This algorithm provides a substantial advantage over direct
enumeration, which can be very time-consuming and feasible only for small problems. See Agresti
(1992) for a review of algorithms for computation of exact p-values, and see Mehta, Patel, and
Tsiatis (1984) and Mehta, Patel, and Senchaudhuri (1991) for information about the performance
of the network algorithm.

The reference set for a given contingency table is the set of all contingency tables with the observed
marginal row and column sums. Corresponding to this reference set, the network algorithm forms
a directed acyclic network consisting of nodes in a number of stages. A path through the network
corresponds to a distinct table in the reference set. The distances between nodes are defined so that
the total distance of a path through the network is the corresponding value of the test statistic. At
each node, the algorithm computes the shortest and longest path distances for all the paths that pass
through that node. For statistics that can be expressed as a linear combination of cell frequencies
multiplied by increasing row and column scores, PROC FREQ computes shortest and longest path
distances by using the algorithm of Agresti, Mehta, and Patel (1990). For statistics of other forms,
PROC FREQ computes an upper bound for the longest path and a lower bound for the shortest path
by following the approach of Valz and Thompson (1994).

The longest and shortest path distances or bounds for a node are compared to the value of the test
statistic to determine whether all paths through the node contribute to the p-value, none of the paths
through the node contribute to the p-value, or neither of these situations occurs. If all paths through
the node contribute, the p-value is incremented accordingly, and these paths are eliminated from
further analysis. If no paths contribute, these paths are eliminated from the analysis. Otherwise,
the algorithm continues, still processing this node and the associated paths. The algorithm finishes
when all nodes have been accounted for.

In applying the network algorithm, PROC FREQ uses full numerical precision to represent all
statistics, row and column scores, and other quantities involved in the computations. Although it is
possible to use rounding to improve the speed and memory requirements of the algorithm, PROC
FREQ does not do this because it can result in reduced accuracy of the p-values.

For one-way tables, PROC FREQ computes the exact chi-square goodness-of-fit test by the method
of Radlow and Alf (1975). PROC FREQ generates all possible one-way tables with the observed
total sample size and number of categories. For each possible table, PROC FREQ compares its
chi-square value with the value for the observed table. If the table’s chi-square value is greater than
or equal to the observed chi-square, PROC FREQ increments the exact p-value by the probability
of that table, which is calculated under the null hypothesis by using the multinomial frequency
distribution. By default, the null hypothesis states that all categories have equal proportions. If
you specify null hypothesis proportions or frequencies by using the TESTP= or TESTF= option in
the TABLES statement, then PROC FREQ calculates the exact chi-square test based on that null
hypothesis.

Other exact computations are described in sections about the individual statistics. See the section
“Binomial Proportion” on page 132 for details about how PROC FREQ computes exact confidence
limits and tests for the binomial proportion. See the section “Odds Ratio and Relative Risks for 2
x 2 Tables” on page 147 for information about computation of exact confidence limits for the odds
ratio for 2 � 2 tables. Also, see the sections “Exact Unconditional Confidence Limits for the Risk
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Difference” on page 146, “Exact Confidence Limits for the Common Odds Ratio” on page 164, and
“Zelen’s Exact Test for Equal Odds Ratios” on page 163.

Definition of p-Values

For several tests in PROC FREQ, the test statistic is nonnegative, and large values of the test statistic
indicate a departure from the null hypothesis. Such nondirectional tests include the Pearson chi-
square, the likelihood-ratio chi-square, the Mantel-Haenszel chi-square, Fisher’s exact test for tables
larger than 2 � 2, McNemar’s test, and the one-way chi-square goodness-of-fit test. The exact p-
value for a nondirectional test is the sum of probabilities for those tables having a test statistic
greater than or equal to the value of the observed test statistic.

There are other tests where it might be appropriate to test against either a one-sided or a two-sided
alternative hypothesis. For example, when you test the null hypothesis that the true parameter value
equals 0 (T D 0), the alternative of interest might be one-sided (T � 0, or T � 0) or two-sided
(T ¤ 0). Such tests include the Pearson correlation coefficient, Spearman correlation coefficient,
Jonckheere-Terpstra test, Cochran-Armitage test for trend, simple kappa coefficient, and weighted
kappa coefficient. For these tests, PROC FREQ displays the right-sided p-value when the observed
value of the test statistic is greater than its expected value. The right-sided p-value is the sum of
probabilities for those tables for which the test statistic is greater than or equal to the observed test
statistic. Otherwise, when the observed test statistic is less than or equal to the expected value,
PROC FREQ displays the left-sided p-value. The left-sided p-value is the sum of probabilities for
those tables for which the test statistic is less than or equal to the one observed. The one-sided
p-value P1 can be expressed as

P1 D

(
Prob. Test Statistic � t / if t > E0.T /

Prob. Test Statistic � t / if t � E0.T /

where t is the observed value of the test statistic and E0.T / is the expected value of the test statistic
under the null hypothesis. PROC FREQ computes the two-sided p-value as the sum of the one-sided
p-value and the corresponding area in the opposite tail of the distribution of the statistic, equidistant
from the expected value. The two-sided p-value P2 can be expressed as

P2 D Prob . jTest Statistic � E0.T /j � jt � E0.T /j/

If you specify the POINT option in the EXACT statement, PROC FREQ also displays exact point
probabilities for the test statistics. The exact point probability is the exact probability that the test
statistic equals the observed value.

Computational Resources

PROC FREQ uses relatively fast and efficient algorithms for exact computations. These recently
developed algorithms, together with improvements in computer power, now make it feasible to per-
form exact computations for data sets where previously only asymptotic methods could be applied.
Nevertheless, there are still large problems that might require a prohibitive amount of time and
memory for exact computations, depending on the speed and memory available on your computer.
For large problems, consider whether exact methods are really needed or whether asymptotic meth-
ods might give results quite close to the exact results, while requiring much less computer time and
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memory. When asymptotic methods might not be sufficient for such large problems, consider using
Monte Carlo estimation of exact p-values, as described in the section “Monte Carlo Estimation” on
page 169.

A formula does not exist that can predict in advance how much time and memory are needed to
compute an exact p-value for a certain problem. The time and memory required depend on several
factors, including which test is being performed, the total sample size, the number of rows and
columns, and the specific arrangement of the observations into table cells. Generally, larger prob-
lems (in terms of total sample size, number of rows, and number of columns) tend to require more
time and memory. Additionally, for a fixed total sample size, time and memory requirements tend
to increase as the number of rows and columns increases, because this corresponds to an increase
in the number of tables in the reference set. Also for a fixed sample size, time and memory require-
ments increase as the marginal row and column totals become more homogeneous. See Agresti,
Mehta, and Patel (1990) and Gail and Mantel (1977) for more information.

At any time while PROC FREQ is computing exact p-values, you can terminate the computations by
pressing the system interrupt key sequence (see the SAS Companion for your system) and choosing
to stop computations. After you terminate exact computations, PROC FREQ completes all other
remaining tasks. The procedure produces the requested output and reports missing values for any
exact p-values that were not computed by the time of termination.

You can also use the MAXTIME= option in the EXACT statement to limit the amount of time
PROC FREQ uses for exact computations. You specify a MAXTIME= value that is the maximum
amount of clock time (in seconds) that PROC FREQ can use to compute an exact p-value. If PROC
FREQ does not finish computing an exact p-value within that time, it terminates the computation
and completes all other remaining tasks.

Monte Carlo Estimation

If you specify the option MC in the EXACT statement, PROC FREQ computes Monte Carlo esti-
mates of the exact p-values instead of directly computing the exact p-values. Monte Carlo estimation
can be useful for large problems that require a great amount of time and memory for exact computa-
tions but for which asymptotic approximations might not be sufficient. To describe the precision of
each Monte Carlo estimate, PROC FREQ provides the asymptotic standard error and 100.1 � ˛/%
confidence limits. The confidence level ˛ is determined by the ALPHA= option in the EXACT
statement, which, by default, equals 0.01 and produces 99% confidence limits. The N=n option in
the EXACT statement specifies the number of samples that PROC FREQ uses for Monte Carlo esti-
mation; the default is 10000 samples. You can specify a larger value for n to improve the precision
of the Monte Carlo estimates. Because larger values of n generate more samples, the computation
time increases. Alternatively, you can specify a smaller value of n to reduce the computation time.

To compute a Monte Carlo estimate of an exact p-value, PROC FREQ generates a random sam-
ple of tables with the same total sample size, row totals, and column totals as the observed table.
PROC FREQ uses the algorithm of Agresti, Wackerly, and Boyett (1979), which generates tables in
proportion to their hypergeometric probabilities conditional on the marginal frequencies. For each
sample table, PROC FREQ computes the value of the test statistic and compares it to the value for
the observed table. When estimating a right-sided p-value, PROC FREQ counts all sample tables
for which the test statistic is greater than or equal to the observed test statistic. Then the p-value
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estimate equals the number of these tables divided by the total number of tables sampled.

OPMC D M = N

M D number of samples with .Test Statistic � t /

N D total number of samples

t D observed Test Statistic

PROC FREQ computes left-sided and two-sided p-value estimates in a similar manner. For left-
sided p-values, PROC FREQ evaluates whether the test statistic for each sampled table is less than
or equal to the observed test statistic. For two-sided p-values, PROC FREQ examines the sample
test statistics according to the expression for P2 given in the section “Definition of p-Values” on
page 168.

The variable M is a binomially distributed variable with N trials and success probability p. It
follows that the asymptotic standard error of the Monte Carlo estimate is

se. OPMC/ D

q
OPMC .1 � OPMC/ = .N � 1/

PROC FREQ constructs asymptotic confidence limits for the p-values according to

OPMC ˙

�
z˛=2 � se. OPMC/

�
where z˛=2 is the 100.1 � ˛=2/th percentile of the standard normal distribution and the confidence
level ˛ is determined by the ALPHA= option in the EXACT statement.

When the Monte Carlo estimate OPMC equals 0, PROC FREQ computes the confidence limits for the
p-value as

. 0; 1 � ˛.1=N / /

When the Monte Carlo estimate OPMC equals 1, PROC FREQ computes the confidence limits as

. ˛.1=N /; 1 /

Computational Resources

For each variable in a table request, PROC FREQ stores all of the levels in memory. If all variables
are numeric and not formatted, this requires about 84 bytes for each variable level. When there
are character variables or formatted numeric variables, the memory that is required depends on the
formatted variable lengths, with longer formatted lengths requiring more memory. The number of
levels for each variable is limited only by the largest integer that your operating environment can
store.
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For any single crosstabulation table requested, PROC FREQ builds the entire table in memory,
regardless of whether the table has zero cell counts. Thus, if the numeric variables A, B, and C each
have 10 levels, PROC FREQ requires 2520 bytes to store the variable levels for the table request
A*B*C, as follows:

3 variables * 10 levels/variable * 84 bytes/level

In addition, PROC FREQ requires 8000 bytes to store the table cell frequencies

1000 cells * 8 bytes/cell

even though there might be only 10 observations.

When the variables have many levels or when there are many multiway tables, your computer
might not have enough memory to construct the tables. If PROC FREQ runs out of memory while
constructing tables, it stops collecting levels for the variable with the most levels and returns the
memory that is used by that variable. The procedure then builds the tables that do not contain the
disabled variables.

If there is not enough memory for your table request and if increasing the available memory is
impractical, you can reduce the number of multiway tables or variable levels. If you are not using
the CMH or AGREE option in the TABLES statement to compute statistics across strata, reduce
the number of multiway tables by using PROC SORT to sort the data set by one or more of the
variables or by using the DATA step to create an index for the variables. Then remove the sorted or
indexed variables from the TABLES statement and include a BY statement that uses these variables.
You can also reduce memory requirements by using a FORMAT statement in the PROC FREQ step
to reduce the number of levels. Additionally, reducing the formatted variable lengths reduces the
amount of memory that is needed to store the variable levels. For more information about using
formats, see the section “Grouping with Formats” on page 113.

Output Data Sets

PROC FREQ produces two types of output data sets that you can use with other statistical and
reporting procedures. You can request these data sets as follows:

� Specify the OUT= option in a TABLES statement. This creates an output data set that con-
tains frequency or crosstabulation table counts and percentages

� Specify an OUTPUT statement. This creates an output data set that contains statistics.

PROC FREQ does not display the output data sets. Use PROC PRINT, PROC REPORT, or any
other SAS reporting tool to display an output data set.

In addition to these two output data sets, you can create a SAS data set from any piece of PROC
FREQ output by using the Output Delivery System. See the section “ODS Table Names” on
page 182 for more information.
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Contents of the TABLES Statement Output Data Set

The OUT= option in the TABLES statement creates an output data set that contains one observation
for each combination of variable values (or table cell) in the last table request. By default, each
observation contains the frequency and percentage for the table cell. When the input data set con-
tains missing values, the output data set also contains an observation with the frequency of missing
values. The output data set includes the following variables:

� BY variables

� table request variables, such as A, B, C, and D in the table request A*B*C*D

� COUNT, which contains the table cell frequency

� PERCENT, which contains the table cell percentage

If you specify the OUTEXPECT option in the TABLES statement for a two-way or multiway table,
the output data set also includes expected frequencies. If you specify the OUTPCT option for a
two-way or multiway table, the output data set also includes row, column, and table percentages.
The additional variables are as follows:

� EXPECTED, which contains the expected frequency

� PCT_TABL, which contains the percentage of two-way table frequency, for n-way tables where
n > 2

� PCT_ROW, which contains the percentage of row frequency

� PCT_COL, which contains the percentage of column frequency

If you specify the OUTCUM option in the TABLES statement for a one-way table, the output data
set also includes cumulative frequencies and cumulative percentages. The additional variables are
as follows:

� CUM_FREQ, which contains the cumulative frequency

� CUM_PCT, which contains the cumulative percentage

The OUTCUM option has no effect for two-way or multiway tables.

The following PROC FREQ statements create an output data set of frequencies and percentages:

proc freq;
tables A A*B / out=D;

run;

The output data set D contains frequencies and percentages for the table of A by B, which is the
last table request listed in the TABLES statement. If A has two levels (1 and 2), B has three levels
(1,2, and 3), and no table cell count is zero or missing, then the output data set D includes six
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observations, one for each combination of A and B levels. The first observation corresponds to A=1
and B=1; the second observation corresponds to A=1 and B=2; and so on. The data set includes
the variables COUNT and PERCENT. The value of COUNT is the number of observations with the
given combination of A and B levels. The value of PERCENT is the percentage of the total number
of observations with that A and B combination.

When PROC FREQ combines different variable values into the same formatted level, the output
data set contains the smallest internal value for the formatted level. For example, suppose a variable
X has the values 1.1., 1.4, 1.7, 2.1, and 2.3. When you submit the statement

format X 1.;

in a PROC FREQ step, the formatted levels listed in the frequency table for X are 1 and 2. If you
create an output data set with the frequency counts, the internal values of the levels of X are 1.1 and
1.7. To report the internal values of X when you display the output data set, use a format of 3.1 for
X.

Contents of the OUTPUT Statement Output Data Set

The OUTPUT statement creates a SAS data set that contains the statistics that PROC FREQ com-
putes for the last table request. You specify which statistics to store in the output data set. There
is an observation with the specified statistics for each stratum or two-way table. If PROC FREQ
computes summary statistics for a stratified table, the output data set also contains a summary ob-
servation with those statistics.

The OUTPUT data set can include the following variables.

� BY variables

� variables that identify the stratum, such as A and B in the table request A*B*C*D

� variables that contain the specified statistics

The output data set also includes variables with the p-values and degrees of freedom, asymptotic
standard error (ASE), or confidence limits when PROC FREQ computes these values for a specified
statistic.

The variable names for the specified statistics in the output data set are the names of the options en-
closed in underscores. PROC FREQ forms variable names for the corresponding p-values, degrees
of freedom, or confidence limits by combining the name of the option with the appropriate prefix
from the following list:

DF_ degrees of freedom
E_ asymptotic standard error (ASE)
L_ lower confidence limit
U_ upper confidence limit
E0_ ASE under the null hypothesis
Z_ standardized value
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P_ p-value
P2_ two-sided p-value
PL_ left-sided p-value
PR_ right-sided p-value
XP_ exact p-value
XP2_ exact two-sided p-value
XPL_ exact left-sided p-value
XPR_ exact right-sided p-value
XPT_ exact point probability
XL_ exact lower confidence limit
XU_ exact upper confidence limit

For example, variable names created for the Pearson chi-square, its degrees of freedom, and its
p-values are _PCHI_, DF_PCHI, and P_PCHI, respectively.

If the length of the prefix plus the statistic option exceeds eight characters, PROC FREQ truncates
the option so that the name of the new variable is eight characters long.

Displayed Output

Number of Variable Levels Table

If you specify the NLEVELS option in the PROC FREQ statement, PROC FREQ displays the
“Number of Variable Levels” table. This table provides the number of levels for all variables named
in the TABLES statements. PROC FREQ determines the variable levels from the formatted variable
values. See “Grouping with Formats” on page 113 for details. The “Number of Variable Levels”
table contains the following information:

� Variable name

� Levels, which is the total number of levels of the variable

� Number of Nonmissing Levels, if there are missing levels for any of the variables

� Number of Missing Levels, if there are missing levels for any of the variables

One-Way Frequency Tables

PROC FREQ displays one-way frequency tables for all one-way table requests in the TABLES
statements, unless you specify the NOPRINT option in the PROC statement or the NOPRINT option
in the TABLES statement. For a one-way table showing the frequency distribution of a single
variable, PROC FREQ displays the name of the variable and its values. For each variable value or
level, PROC FREQ displays the following information:

� Frequency count, which is the number of observations in the level

� Test Frequency count, if you specify the CHISQ and TESTF= options to request a chi-square
goodness-of-fit test for specified frequencies
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� Percent, which is the percentage of the total number of observations. (The NOPERCENT
option suppresses this information.)

� Test Percent, if you specify the CHISQ and TESTP= options to request a chi-square goodness-
of-fit test for specified percents. (The NOPERCENT option suppresses this information.)

� Cumulative Frequency count, which is the sum of the frequency counts for that level and all
other levels listed above it in the table. The last cumulative frequency is the total number of
nonmissing observations. (The NOCUM option suppresses this information.)

� Cumulative Percent, which is the percentage of the total number of observations in that level
and in all other levels listed above it in the table. (The NOCUM or the NOPERCENT option
suppresses this information.)

The one-way table also displays the Frequency Missing, which is the number of observations with
missing values.

Statistics for One-Way Frequency Tables

For one-way tables, two statistical options are available in the TABLES statement. The CHISQ
option provides a chi-square goodness-of-fit test, and the BINOMIAL option provides binomial
proportion statistics and tests. PROC FREQ displays the following information, unless you specify
the NOPRINT option in the PROC statement:

� If you specify the CHISQ option for a one-way table, PROC FREQ provides a chi-square
goodness-of-fit test, displaying the Chi-Square statistic, the degrees of freedom (DF), and the
probability value (Pr > ChiSq). If you specify the CHISQ option in the EXACT statement,
PROC FREQ also displays the exact probability value for this test. If you specify the POINT
option with the CHISQ option in the EXACT statement, PROC FREQ displays the exact
point probability for the test statistic.

� If you specify the BINOMIAL option for a one-way table, PROC FREQ displays the estimate
of the binomial Proportion, which is the proportion of observations in the first class listed
in the one-way table. PROC FREQ also displays the asymptotic standard error (ASE) and
the asymptotic (Wald) and exact (Clopper-Pearson) confidence limits by default. For the
binomial proportion test, PROC FREQ displays the asymptotic standard error under the null
hypothesis (ASE Under H0), the standardized test statistic (Z), and the one-sided and two-
sided probability values.

If you specify the BINOMIAL option in the EXACT statement, PROC FREQ also displays
the exact one-sided and two-sided probability values for this test. If you specify the POINT
option with the BINOMIAL option in the EXACT statement, PROC FREQ displays the exact
point probability for the test.

� If you request additional binomial confidence limits by specifying binomial-options, PROC
FREQ provides a table that displays the lower and upper confidence limits for each type that
you request. In addition to the Wald and exact (Clopper-Pearson) confidence limits, you
can request Agresti-Coull, Jeffreys, and Wilson (score) confidence limits for the binomial
proportion.
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� If you request a binomial noninferiority or superiority test by specifying the NONINF or SUP
binomial-option, PROC FREQ displays the following information: the binomial Proportion,
the test ASE (under H0 or Sample), the test statistic Z, the probability value, the noninferiority
or superiority limit, and the test confidence limits. If you specify the BINOMIAL option in
the EXACT statement, PROC FREQ also provides the exact probability value for the test,
and exact test confidence limits.

� If you request a binomial equivalence test by specifying the EQUIV binomial-option, PROC
FREQ displays the binomial Proportion and the test ASE (under H0 or Sample). PROC
FREQ displays two one-sided tests (TOST) for equivalence, which include test statistics (Z)
and probability values for the Lower and Upper tests, together with the Overall probability
value. PROC FREQ also displays the equivalence limits and the test-based confidence limits.
If you specify the BINOMIAL option in the EXACT statement, PROC FREQ provides exact
probability values for the TOST and exact test-based confidence limits.

Multiway Tables

PROC FREQ displays all multiway table requests in the TABLES statements, unless you specify
the NOPRINT option in the PROC statement or the NOPRINT option in the TABLES statement.

For two-way to multiway crosstabulation tables, the values of the last variable in the table request
form the table columns. The values of the next-to-last variable form the rows. Each level (or
combination of levels) of the other variables forms one stratum.

There are three ways to display multiway tables in PROC FREQ. By default, PROC FREQ dis-
plays multiway tables as separate two-way crosstabulation tables for each stratum of the multiway
table. Also by default, PROC FREQ displays these two-way crosstabulation tables in table cell
format. Alternatively, if you specify the CROSSLIST option, PROC FREQ displays the two-way
crosstabulation tables in ODS column format. If you specify the LIST option, PROC FREQ dis-
plays multiway tables in list format, which presents the entire multiway crosstabulation in a single
table.

Crosstabulation Tables

By default, PROC FREQ displays two-way crosstabulation tables in table cell format. The row
variable values are listed down the side of the table, the column variable values are listed across the
top of the table, and each row and column variable level combination forms a table cell.

Each cell of a crosstabulation table can contain the following information:

� Frequency, which is the number of observations in the table cell. (The NOFREQ option
suppresses this information.)

� Expected frequency under the hypothesis of independence, if you specify the EXPECTED
option

� Deviation of the cell frequency from the expected value, if you specify the DEVIATION
option
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� Cell Chi-Square, which is the cell’s contribution to the total chi-square statistic, if you specify
the CELLCHI2 option

� Tot Pct, which is the cell’s percentage of the total multiway table frequency, for n-way tables
when n > 2, if you specify the TOTPCT option

� Percent, which is the cell’s percentage of the total (two-way table) frequency. (The
NOPERCENT option suppresses this information.)

� Row Pct, or the row percentage, which is the cell’s percentage of the total frequency for its
row. (The NOROW option suppresses this information.)

� Col Pct, or column percentage, which is the cell’s percentage of the total frequency for its
column. (The NOCOL option suppresses this information.)

� Cumulative Col%, or cumulative column percentage, if you specify the CUMCOL option

The table also displays the Frequency Missing, which is the number of observations with missing
values.

CROSSLIST Tables

If you specify the CROSSLIST option, PROC FREQ displays two-way crosstabulation tables in
ODS column format. The CROSSLIST column format is different from the default crosstabulation
table cell format, but the CROSSLIST table provides the same information (frequencies, percent-
ages, and other statistics) as the default crosstabulation table.

In the CROSSLIST table format, the rows of the display correspond to the crosstabulation table
cells, and the columns of the display correspond to descriptive statistics such as frequencies and
percentages. Each table cell is identified by the values of its TABLES row and column variable
levels, with all column variable levels listed within each row variable level. The CROSSLIST table
also provides row totals, column totals, and overall table totals.

For a crosstabulation table in CROSSLIST format, PROC FREQ displays the following information:

� the row variable name and values

� the column variable name and values

� Frequency, which is the number of observations in the table cell. (The NOFREQ option
suppresses this information.)

� Expected cell frequency under the hypothesis of independence, if you specify the
EXPECTED option

� Deviation of the cell frequency from the expected value, if you specify the DEVIATION
option

� Cell Chi-Square, which is the cell’s contribution to the total chi-square statistic, if you specify
the CELLCHI2 option
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� Total Percent, which is the cell’s percentage of the total multiway table frequency, for n-way
tables when n > 2, if you specify the TOTPCT option

� Percent, which is the cell’s percentage of the total (two-way table) frequency. (The
NOPERCENT option suppresses this information.)

� Row Percent, which is the cell’s percentage of the total frequency for its row. (The NOROW
option suppresses this information.)

� Column Percent, the cell’s percentage of the total frequency for its column. (The NOCOL
option suppresses this information.)

The table also displays the Frequency Missing, which is the number of observations with missing
values.

LIST Tables

If you specify the LIST option in the TABLES statement, PROC FREQ displays multiway tables
in a list format rather than as crosstabulation tables. The LIST option displays the entire multiway
table in one table, instead of displaying a separate two-way table for each stratum. The LIST option
is not available when you also request statistical options. Unlike the default crosstabulation output,
the LIST output does not display row percentages, column percentages, and optional information
such as expected frequencies and cell chi-squares.

For a multiway table in list format, PROC FREQ displays the following information:

� the variable names and values

� Frequency, which is the number of observations in the level (with the indicated variable val-
ues)

� Percent, which is the level’s percentage of the total number of observations. (The
NOPERCENT option suppresses this information.)

� Cumulative Frequency, which is the accumulated frequency of the level and all other levels
listed above it in the table. The last cumulative frequency in the table is the total number of
nonmissing observations. (The NOCUM option suppresses this information.)

� Cumulative Percent, which is the accumulated percentage of the level and all other levels
listed above it in the table. (The NOCUM or the NOPERCENT option suppresses this infor-
mation.)

The table also displays the Frequency Missing, which is the number of observations with missing
values.
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Statistics for Multiway Tables

PROC FREQ computes statistical tests and measures for crosstabulation tables, depending on which
statements and options you specify. You can suppress the display of all these results by specifying
the NOPRINT option in the PROC statement. With any of the following information, PROC FREQ
also displays the Sample Size and the Frequency Missing.

� If you specify the SCOROUT option, PROC FREQ displays the Row Scores and Column
Scores that it uses for statistical computations. The Row Scores table displays the row variable
values and the Score corresponding to each value. The Column Scores table displays the
column variable values and the corresponding Scores. PROC FREQ also identifies the score
type used to compute the row and column scores. You can specify the score type with the
SCORES= option in the TABLES statement.

� If you specify the CHISQ option, PROC FREQ displays the following statistics for each
two-way table: Pearson Chi-Square, Likelihood-Ratio Chi-Square, Continuity-Adjusted Chi-
Square (for 2 � 2 tables), Mantel-Haenszel Chi-Square, the Phi Coefficient, the Contingency
Coefficient, and Cramer’s V . For each test statistic, PROC FREQ also displays the degrees
of freedom (DF) and the probability value (Prob).

� If you specify the CHISQ option for 2 � 2 tables, PROC FREQ also displays Fisher’s exact
test. The test output includes the cell (1,1) frequency (F), the exact left-sided and right-sided
probability values, the table probability (P), and the exact two-sided probability value.

� If you specify the FISHER option in the TABLES statement (or, equivalently, the FISHER
option in the EXACT statement), PROC FREQ displays Fisher’s exact test for tables larger
than 2 � 2. The test output includes the table probability (P) and the probability value. In
addition, PROC FREQ displays the CHISQ output listed earlier, even if you do not also
specify the CHISQ option.

� If you specify the PCHI, LRCHI, or MHCHI option in the EXACT statement, PROC
FREQ also displays the corresponding exact test: Pearson Chi-Square, Likelihood-Ratio Chi-
Square, or Mantel-Haenszel Chi-Square, respectively. The test output includes the test statis-
tic, the degrees of freedom (DF), and the asymptotic and exact probability values. If you also
specify the POINT option in the EXACT statement, PROC FREQ displays the point probabil-
ity for each exact test requested. If you specify the CHISQ option in the EXACT statement,
PROC FREQ displays exact probability values for all three of these chi-square tests.

� If you specify the MEASURES option, PROC FREQ displays the following statistics and
their asymptotic standard errors (ASE) for each two-way table: Gamma, Kendall’s Tau-b, Stu-
art’s Tau-c, Somers’D.C jR/, Somers’D.RjC/, Pearson Correlation, Spearman Correlation,
Lambda Asymmetric .C jR/, Lambda Asymmetric .RjC/, Lambda Symmetric, Uncertainty
Coefficient .C jR/, Uncertainty Coefficient .RjC/, and Uncertainty Coefficient Symmetric.
If you specify the CL option, PROC FREQ also displays confidence limits for these measures.

� If you specify the PLCORR option, PROC FREQ displays the tetrachoric correlation for 2�2

tables or the polychoric correlation for larger tables. In addition, PROC FREQ displays the
MEASURES output listed earlier, even if you do not also specify the MEASURES option.
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� If you specify the option GAMMA, KENTB, STUTC, SMDCR, SMDRC, PCORR, or
SCORR in the TEST statement, PROC FREQ displays asymptotic tests for Gamma, Kendall’s
Tau-b, Stuart’s Tau-c, Somers’ D.C jR/, Somers’ D.RjC/, the Pearson Correlation, or the
Spearman Correlation, respectively. If you specify the MEASURES option in the TEST state-
ment, PROC FREQ displays all these asymptotic tests. The test output includes the statistic,
its asymptotic standard error (ASE), Confidence Limits, the ASE under the null hypothesis
H0, the standardized test statistic (Z), and the one-sided and two-sided probability values.

� If you specify the PCORR or SCORR option in the EXACT statement, PROC FREQ dis-
plays asymptotic and exact tests for the Pearson Correlation or the Spearman Correlation,
respectively. The test output includes the correlation, its asymptotic standard error (ASE),
Confidence Limits, the ASE under the null hypothesis H0, the standardized test statistic (Z),
and the asymptotic and exact one-sided and two-sided probability values. If you also specify
the POINT option in the EXACT statement, PROC FREQ displays the point probability for
each exact test requested.

� If you specify the RISKDIFF option for 2 � 2 tables, PROC FREQ displays the Column 1
and Column 2 Risk Estimates. For each column, PROC FREQ displays the Row 1 Risk, Row
2 Risk, Total Risk, and Risk Difference, together with their asymptotic standard errors (ASE)
and Asymptotic Confidence Limits. PROC FREQ also displays Exact Confidence Limits for
the Row 1 Risk, Row 2 Risk, and Total Risk. If you specify the RISKDIFF option in the
EXACT statement, PROC FREQ provides unconditional Exact Confidence Limits for the
Risk Difference.

� If you request a noninferiority or superiority test for the proportion difference by specifying
the NONINF or SUP riskdiff-option, and if you specify METHOD=HA (Hauck-Anderson),
METHOD=FM (Farrington-Manning), or METHOD=WALD (Wald), PROC FREQ displays
the following information: the Proportion Difference, the test ASE (H0, Sample, Sample H-
A, or FM, depending on the method you specify), the test statistic Z, the probability value,
the Noninferiority or Superiority Limit, and the test-based Confidence Limits. If you specify
METHOD=SCORE (Newcombe score), PROC FREQ displays the Proportion Difference,
the Noninferiority or Superiority Limit, and the score Confidence Limits.

� If you request an equivalence test for the proportion difference by specifying the EQUIV
riskdiff-option, and if you specify METHOD=HA (Hauck-Anderson), METHOD=FM
(Farrington-Manning), or METHOD=WALD (Wald), PROC FREQ displays the following in-
formation: the Proportion Difference and the test ASE (H0, Sample, Sample H-A, or FM, de-
pending on the method you specify). PROC FREQ displays a two one-sided test (TOST) for
equivalence, which includes test statistics (Z) and probability values for the Lower and Upper
tests, together with the Overall probability value. PROC FREQ also displays the Equivalence
Limits and the test-based Confidence Limits. If you specify METHOD=SCORE (Newcombe
score), PROC FREQ displays the Proportion Difference, the Equivalence Limits, and the
score Confidence Limits.

� If you request an equality test for the proportion difference by specifying the EQUAL riskdiff-
option, PROC FREQ displays the following information: the Proportion Difference and the
test ASE (H0 or Sample), the test statistic Z, the One-Sided probability value (Pr > Z or Pr <
Z), and the Two-Sided probability value, Pr > |Z|.
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� If you specify the MEASURES option or the RELRISK option for 2� 2 tables, PROC FREQ
displays Estimates of the Relative Risk for Case-Control and Cohort studies, together with
their Confidence Limits. These measures are also known as the Odds Ratio and the Column
1 and 2 Relative Risks. If you specify the OR option in the EXACT statement, PROC FREQ
also displays Exact Confidence Limits for the Odds Ratio.

� If you specify the TREND option, PROC FREQ displays the Cochran-Armitage Trend Test
for tables that are 2 � C or R � 2. For this test, PROC FREQ gives the Statistic (Z) and
the one-sided and two-sided probability values. If you specify the TREND option in the
EXACT statement, PROC FREQ also displays the exact one-sided and two-sided probability
values for this test. If you specify the POINT option with the TREND option in the EXACT
statement, PROC FREQ displays the exact point probability for the test statistic.

� If you specify the JT option, PROC FREQ displays the Jonckheere-Terpstra Test, showing the
Statistic (JT), the standardized test statistic (Z), and the one-sided and two-sided probability
values. If you specify the JT option in the EXACT statement, PROC FREQ also displays
the exact one-sided and two-sided probability values for this test. If you specify the POINT
option with the JT option in the EXACT statement, PROC FREQ displays the exact point
probability for the test statistic.

� If you specify the AGREE option and the PRINTKWT option, PROC FREQ displays the
Kappa Coefficient Weights for square tables greater than 2 � 2.

� If you specify the AGREE option, for two-way tables PROC FREQ displays McNemar’s
Test and the Simple Kappa Coefficient for 2 � 2 tables. For square tables larger than 2 � 2,
PROC FREQ displays Bowker’s Test of Symmetry, the Simple Kappa Coefficient, and the
Weighted Kappa Coefficient. For McNemar’s Test and Bowker’s Test of Symmetry, PROC
FREQ displays the Statistic (S), the degrees of freedom (DF), and the probability value (Pr >
S). If you specify the MCNEM option in the EXACT statement, PROC FREQ also displays
the exact probability value for McNemar’s test. If you specify the POINT option with the
MCNEM option in the EXACT statement, PROC FREQ displays the exact point probability
for the test statistic. For the simple and weighted kappa coefficients, PROC FREQ displays
the kappa values, asymptotic standard errors (ASE), and Confidence Limits.

� If you specify the KAPPA or WTKAP option in the TEST statement, PROC FREQ displays
asymptotic tests for the simple kappa coefficient or the weighted kappa coefficient, respec-
tively. If you specify the AGREE option in the TEST statement, PROC FREQ displays both
these asymptotic tests. The test output includes the kappa coefficient, its asymptotic standard
error (ASE), Confidence Limits, the ASE under the null hypothesis H0, the standardized test
statistic (Z), and the one-sided and two-sided probability values.

� If you specify the KAPPA or WTKAP option in the EXACT statement, PROC FREQ dis-
plays asymptotic and exact tests for the simple kappa coefficient or the weighted kappa co-
efficient, respectively. The test output includes the kappa coefficient, its asymptotic standard
error (ASE), Confidence Limits, the ASE under the null hypothesis H0, the standardized test
statistic (Z), and the asymptotic and exact one-sided and two-sided probability values. If you
specify the POINT option in the EXACT statement, PROC FREQ displays the point proba-
bility for each exact test requested.

� If you specify the MC option in the EXACT statement, PROC FREQ displays Monte Carlo
estimates for all exact p-values requested by statistic-options in the EXACT statement. The
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Monte Carlo output includes the p-value Estimate, its Confidence Limits, the Number of
Samples used to compute the Monte Carlo estimate, and the Initial Seed for random number
generation.

� If you specify the AGREE option, for multiple strata PROC FREQ displays Overall Simple
and Weighted Kappa Coefficients, with their asymptotic standard errors (ASE) and Confi-
dence Limits. PROC FREQ also displays Tests for Equal Kappa Coefficients, giving the Chi-
Squares, degrees of freedom (DF), and probability values (Pr > ChiSq) for the Simple Kappa
and Weighted Kappa. For multiple strata of 2�2 tables, PROC FREQ displays Cochran’sQ,
giving the Statistic (Q), the degrees of freedom (DF), and the probability value (Pr > Q).

� If you specify the CMH option, PROC FREQ displays Cochran-Mantel-Haenszel Statistics
for the following three alternative hypotheses: Nonzero Correlation, Row Mean Scores Dif-
fer (ANOVA Statistic), and General Association. For each of these statistics, PROC FREQ
gives the degrees of freedom (DF) and the probability value (Prob). For 2 � 2 tables, PROC
FREQ also displays Estimates of the Common Relative Risk for Case-Control and Cohort
studies, together with their confidence limits. These include both Mantel-Haenszel and Logit
stratum-adjusted estimates of the common Odds Ratio, Column 1 Relative Risk, and Column
2 Relative Risk. Also for 2 � 2 tables, PROC FREQ displays the Breslow-Day Test for Ho-
mogeneity of the Odds Ratios. For this test, PROC FREQ gives the Chi-Square, the degrees
of freedom (DF), and the probability value (Pr > ChiSq).

� If you specify the CMH option in the TABLES statement and also specify the COMOR
option in the EXACT statement, PROC FREQ displays exact confidence limits for the Com-
mon Odds Ratio for multiple strata of 2 � 2 tables. PROC FREQ also displays the Ex-
act Test of H0: Common Odds Ratio = 1. The test output includes the Cell (1,1) Sum (S),
Mean of S Under H0, One-sided Pr <= S, and Point Pr = S. PROC FREQ also provides exact
two-sided probability values for the test, computed according to the following three methods:
2 * One-sided, Sum of probabilities <= Point probability, and Pr >= |S - Mean|.

� If you specify the CMH option in the TABLES statement and also specify the EQOR option
in the EXACT statement, PROC FREQ computes Zelen’s exact test for equal odds ratios for
h � 2 � 2 tables. PROC FREQ displays Zelen’s test along with the asymptotic Breslow-Day
test produced by the CMH option. PROC FREQ displays the test statistic, Zelen’s Exact Test
(P), and the probability value, Exact Pr <= P.

ODS Table Names

PROC FREQ assigns a name to each table it creates. You can use these names to reference the
table when you use the Output Delivery System (ODS) to select tables and create output data sets.
For more information about ODS, see Chapter 20, “Using the Output Delivery System” (SAS/STAT
User’s Guide).

Table 3.14 lists the ODS table names together with their descriptions and the options required
to produce the tables. Note that the ALL option in the TABLES statement invokes the CHISQ,
MEASURES, and CMH options.
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Table 3.14 ODS Tables Produced by PROC FREQ

ODS Table Name Description Statement Option

BinomialCLs Binomial confidence limits TABLES BINOMIAL(AC | J | W)
BinomialEquiv Binomial equivalence analysis TABLES BINOMIAL(EQUIV)
BinomialEquivLimits Binomial equivalence limits TABLES BINOMIAL(EQUIV)
BinomialEquivTest Binomial equivalence test TABLES BINOMIAL(EQUIV)
BinomialNoninf Binomial noninferiority test TABLES BINOMIAL(NONINF)
BinomialProp Binomial proportion TABLES BINOMIAL (one-way tables)
BinomialPropTest Binomial proportion test TABLES BINOMIAL (one-way tables)
BinomialSup Binomial superiority test TABLES BINOMIAL(SUP)
BreslowDayTest Breslow-Day test TABLES CMH (h � 2 � 2 tables)
CMH Cochran-Mantel-Haenszel

statistics
TABLES CMH

ChiSq Chi-square tests TABLES CHISQ
CochransQ Cochran’s Q TABLES AGREE (h � 2 � 2 tables)
ColScores Column scores TABLES SCOROUT
CommonOddsRatioCL Exact confidence limits

for the common odds ratio
EXACT COMOR (h � 2 � 2 tables)

CommonOddsRatioTest Common odds ratio exact test EXACT COMOR (h � 2 � 2 tables)
CommonRelRisks Common relative risks TABLES CMH (h � 2 � 2 tables)
CrossList Crosstabulation table TABLES CROSSLIST

in column format (n-way table request, n > 1)
CrossTabFreqs Crosstabulation table TABLES (n-way table request, n > 1)
EqualKappaTest Test for equal simple kappas TABLES AGREE (h � 2 � 2 tables)
EqualKappaTests Tests for equal kappas TABLES AGREE

(h � r � r tables, r > 2)
EqualOddsRatios Tests for equal odds ratios EXACT EQOR (h � 2 � 2 tables)
FishersExact Fisher’s exact test EXACT FISHER

or TABLES FISHER or EXACT
or TABLES CHISQ (2 � 2 tables)

FishersExactMC Monte Carlo estimates
for Fisher’s exact test

EXACT FISHER / MC

Gamma Gamma TEST GAMMA
GammaTest Gamma test TEST GAMMA
JTTest Jonckheere-Terpstra test TABLES JT
JTTestMC Monte Carlo estimates for

Jonckheere-Terpstra exact test
EXACT JT / MC

KappaStatistics Kappa statistics TABLES AGREE
(r � r tables, r > 2,
no TEST or EXACT)

KappaWeights Kappa weights TABLES AGREE and PRINTKWT
List List format multiway table TABLES LIST
LRChiSq Likelihood-ratio chi-square

exact test
EXACT LRCHI

LRChiSqMC Monte Carlo exact test for
likelihood-ratio chi-square

EXACT LRCHI / MC
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Table 3.14 continued

ODS Table Name Description Statement Option

McNemarsTest McNemar’s test TABLES AGREE (2 � 2 tables)
Measures Measures of association TABLES MEASURES
MHChiSq Mantel-Haenszel chi-square

exact test
EXACT MHCHI

MHChiSqMC Monte Carlo exact test for
Mantel-Haenszel chi-square

EXACT MHCHI / MC

NLevels Number of variable levels PROC NLEVELS
OddsRatioCL Exact confidence limits

for the odds ratio
EXACT OR (2 � 2 tables)

OneWayChiSq One-way chi-square test TABLES CHISQ (one-way tables)
OneWayChiSqMC Monte Carlo exact test for EXACT CHISQ / MC

one-way chi-square (one-way tables)
OneWayFreqs One-way frequencies PROC (with no TABLES stmt)

or TABLES (one-way table request)
OverallKappa Overall simple kappa TABLES AGREE (h � 2 � 2 tables)
OverallKappas Overall kappa coefficients TABLES AGREE

(h � r � r tables, r > 2)
PdiffEquiv Equivalence analysis TABLES RISKDIFF(EQUIV)

for the proportion difference (2 � 2 tables)
PdiffEquivLimits Equivalence limits TABLES RISKDIFF(EQUIV)

for the proportion difference (2 � 2 tables)
PdiffEquivTest Equivalence test TABLES RISKDIFF(EQUIV)

for the proportion difference (2 � 2 tables)
PdiffNoninf Noninferiority test TABLES RISKDIFF(NONINF)

for the proportion difference (2 � 2 tables)
PdiffSup Superiority test TABLES RISKDIFF(SUP)

for the proportion difference (2 � 2 tables)
PdiffTest Proportion difference test TABLES RISKDIFF(EQUAL)

(2 � 2 tables)
PearsonChiSq Pearson chi-square exact test EXACT PCHI
PearsonChiSqMC Monte Carlo exact test for

Pearson chi-square
EXACT PCHI / MC

PearsonCorr Pearson correlation TEST PCORR
or EXACT PCORR

PearsonCorrMC Monte Carlo exact test for
Pearson correlation

EXACT PCORR / MC

PearsonCorrTest Pearson correlation test TEST PCORR
or EXACT PCORR

RelativeRisks Relative risk estimates TABLES RELRISK or MEASURES
(2 � 2 tables)

RiskDiffCol1 Column 1 risk estimates TABLES RISKDIFF (2 � 2 tables)
RiskDiffCol2 Column 2 risk estimates TABLES RISKDIFF (2 � 2 tables)
RowScores Row scores TABLES SCOROUT
SimpleKappa Simple kappa coefficient TEST KAPPA

or EXACT KAPPA
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Table 3.14 continued

ODS Table Name Description Statement Option

SimpleKappaMC Monte Carlo exact test for
simple kappa

EXACT KAPPA / MC

SimpleKappaTest Simple kappa test TEST KAPPA
or EXACT KAPPA

SomersDCR Somers’ D.C jR/ TEST SMDCR
SomersDCRTest Somers’ D.C jR/ test TEST SMDCR
SomersDRC Somers’ D.RjC/ TEST SMDRC
SomersDRCTest Somers’ D.RjC/ test TEST SMDRC
SpearmanCorr Spearman correlation TEST SCORR

or EXACT SCORR
SpearmanCorrMC Monte Carlo exact test for

Spearman correlation
EXACT SCORR / MC

SpearmanCorrTest Spearman correlation test TEST SCORR
or EXACT SCORR

SymmetryTest Test of symmetry TABLES AGREE
TauB Kendall’s tau-b TEST KENTB
TauBTest Kendall’s tau-b test TEST KENTB
TauC Stuart’s tau-c TEST STUTC
TauCTest Stuart’s tau-c test TEST STUTC
TrendTest Cochran-Armitage trend test TABLES TREND
TrendTestMC Monte Carlo exact test

for trend
EXACT TREND / MC

WeightedKappa Weighted kappa TEST WTKAP
or EXACT WTKAP

WeightedKappaMC Monte Carlo exact test for
weighted kappa

EXACT WTKAP / MC

WeightedKappaTest Weighted kappa test TEST WTKAP
or EXACT WTKAP

� The ALL option in the TABLES statement invokes CHISQ, MEASURES, and CMH.

ODS Graphics

PROC FREQ assigns a name to each graph it creates with ODS Graphics. You can use these names
to reference the graphs. Table 3.15 lists the names of the graphs that PROC FREQ generates, along
with the corresponding analysis options.

To request graphics with PROC FREQ, you must first enable ODS Graphics by specifying the ODS
GRAPHICS ON statement. See Chapter 21, “Statistical Graphics Using ODS” (SAS/STAT User’s
Guide), for more information. When you have enabled ODS Graphics, you can request specific
plots with the PLOTS= option in the TABLES statement. If you do not specify the PLOTS= option
but have enabled ODS Graphics, then PROC FREQ produces all plots associated with the analyses
you request.
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Table 3.15 ODS Graphics Produced by PROC FREQ

ODS Graph Name Plot Description TABLES Statement Option

CumFreqPlot Cumulative frequency plot One-way table request
DeviationPlot Deviation plot CHISQ and a one-way table request
FreqPlot Frequency plot Any table request
KappaPlot Kappa plot AGREE (h � r � r table)
ORPlot Odds ratio plot MEASURES or RELRISK (h � 2 � 2 table)
WtKappaPlot Weighted kappa plot AGREE (h � r � r table, r > 2)

Examples: FREQ Procedure

Example 3.1: Output Data Set of Frequencies

The eye and hair color of children from two different regions of Europe are recorded in the data set
Color. Instead of recording one observation per child, the data are recorded as cell counts, where
the variable Count contains the number of children exhibiting each of the 15 eye and hair color
combinations. The data set does not include missing combinations.

The following DATA step statements create the SAS data set Color:

data Color;
input Region Eyes $ Hair $ Count @@;

label Eyes =’Eye Color’
Hair =’Hair Color’
Region=’Geographic Region’;

datalines;
1 blue fair 23 1 blue red 7 1 blue medium 24
1 blue dark 11 1 green fair 19 1 green red 7
1 green medium 18 1 green dark 14 1 brown fair 34
1 brown red 5 1 brown medium 41 1 brown dark 40
1 brown black 3 2 blue fair 46 2 blue red 21
2 blue medium 44 2 blue dark 40 2 blue black 6
2 green fair 50 2 green red 31 2 green medium 37
2 green dark 23 2 brown fair 56 2 brown red 42
2 brown medium 53 2 brown dark 54 2 brown black 13
;

The following PROC FREQ statements read the Color data set and create an output data set that
contains the frequencies, percentages, and expected cell frequencies of the two-way table of Eyes
by Hair. The TABLES statement requests three tables: a frequency table for Eyes, a frequency table
for Hair, and a crosstabulation table for Eyes by Hair. The OUT= option creates the FreqCount data
set, which contains the crosstabulation table frequencies. The OUTEXPECT option outputs the
expected table cell frequencies to FreqCount, and the SPARSE option includes zero cell frequen-
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cies in the output data set. The WEIGHT statement specifies that the variable Count contains the
observation weights. These statements create Output 3.1.1 through Output 3.1.3.

proc freq data=Color;
tables Eyes Hair Eyes*Hair / out=FreqCount outexpect sparse;
weight Count;
title ’Eye and Hair Color of European Children’;

run;

proc print data=FreqCount noobs;
title2 ’Output Data Set from PROC FREQ’;

run;

Output 3.1.1 displays the two frequency tables produced by PROC FREQ: one showing the distri-
bution of eye color, and one showing the distribution of hair color. By default, PROC FREQ lists
the variables values in alphabetical order. The ‘Eyes*Hair’ specification produces a crosstabulation
table, shown in Output 3.1.2, with eye color defining the table rows and hair color defining the table
columns. A zero cell frequency for green eyes and black hair indicates that this eye and hair color
combination does not occur in the data.

The output data set FreqCount (Output 3.1.3) contains frequency counts and percentages for the last
table requested in the TABLES statement, Eyes by Hair. Because the SPARSE option is specified,
the data set includes the observation with a zero frequency. The variable Expected contains the
expected frequencies, as requested by the OUTEXPECT option.

Output 3.1.1 Frequency Tables

Eye and Hair Color of European Children

The FREQ Procedure

Eye Color

Cumulative Cumulative
Eyes Frequency Percent Frequency Percent
----------------------------------------------------------
blue 222 29.13 222 29.13
brown 341 44.75 563 73.88
green 199 26.12 762 100.00

Hair Color

Cumulative Cumulative
Hair Frequency Percent Frequency Percent
-----------------------------------------------------------
black 22 2.89 22 2.89
dark 182 23.88 204 26.77
fair 228 29.92 432 56.69
medium 217 28.48 649 85.17
red 113 14.83 762 100.00
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Output 3.1.2 Crosstabulation Table

Table of Eyes by Hair

Eyes(Eye Color) Hair(Hair Color)

Frequency|
Percent |
Row Pct |
Col Pct |black |dark |fair |medium |red | Total
---------+--------+--------+--------+--------+--------+
blue | 6 | 51 | 69 | 68 | 28 | 222

| 0.79 | 6.69 | 9.06 | 8.92 | 3.67 | 29.13
| 2.70 | 22.97 | 31.08 | 30.63 | 12.61 |
| 27.27 | 28.02 | 30.26 | 31.34 | 24.78 |

---------+--------+--------+--------+--------+--------+
brown | 16 | 94 | 90 | 94 | 47 | 341

| 2.10 | 12.34 | 11.81 | 12.34 | 6.17 | 44.75
| 4.69 | 27.57 | 26.39 | 27.57 | 13.78 |
| 72.73 | 51.65 | 39.47 | 43.32 | 41.59 |

---------+--------+--------+--------+--------+--------+
green | 0 | 37 | 69 | 55 | 38 | 199

| 0.00 | 4.86 | 9.06 | 7.22 | 4.99 | 26.12
| 0.00 | 18.59 | 34.67 | 27.64 | 19.10 |
| 0.00 | 20.33 | 30.26 | 25.35 | 33.63 |

---------+--------+--------+--------+--------+--------+
Total 22 182 228 217 113 762

2.89 23.88 29.92 28.48 14.83 100.00

Output 3.1.3 Output Data Set of Frequencies

Eye and Hair Color of European Children
Output Data Set from PROC FREQ

Eyes Hair COUNT EXPECTED PERCENT

blue black 6 6.409 0.7874
blue dark 51 53.024 6.6929
blue fair 69 66.425 9.0551
blue medium 68 63.220 8.9239
blue red 28 32.921 3.6745
brown black 16 9.845 2.0997
brown dark 94 81.446 12.3360
brown fair 90 102.031 11.8110
brown medium 94 97.109 12.3360
brown red 47 50.568 6.1680
green black 0 5.745 0.0000
green dark 37 47.530 4.8556
green fair 69 59.543 9.0551
green medium 55 56.671 7.2178
green red 38 29.510 4.9869
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Example 3.2: Frequency Dot Plots

This example produces frequency dot plots for the children’s eye and hair color data from
Example 3.1.

PROC FREQ produces plots by using ODS Graphics to create graphs as part of the procedure
output. Frequency plots are available for any frequency or crosstabulation table request. You can
display frequency plots as bar charts or dot plots. You can use plot-options to specify the orientation
(vertical or horizontal), scale, and layout of the plots.

The following PROC FREQ statements request frequency tables and dot plots. The first TABLES
statement requests a one-way frequency table of Hair and a crosstabulation table of Eyes by Hair. The
PLOTS= option requests frequency plots for the tables, and the TYPE=DOT plot-option specifies
dot plots. By default, frequency plots are produced as bar charts.

The second TABLES statement requests a crosstabulation table of Region by Hair and a frequency
dot plot for this table. The SCALE=PERCENT plot-option plots percentages instead of frequency
counts. SCALE=LOG and SCALE=SQRT plot-options are also available to plot log frequencies
and square roots of frequencies, respectively.

The ORDER=FREQ option in the PROC FREQ statement orders the variable levels by frequency.
This order applies to the frequency and crosstabulation table displays and also to the corresponding
frequency plots.

Before requesting plots, you must enable ODS Graphics with the ODS GRAPHICS ON statement.

ods graphics on;
proc freq data=Color order=freq;

tables Hair Eyes*Hair / plots=freqplot(type=dot);
tables Region*Hair / plots=freqplot(type=dot scale=percent);
weight Count;
title ’Eye and Hair Color of European Children’;

run;
ods graphics off;

Output 3.2.1, Output 3.2.2, and Output 3.2.3 display the dot plots produced by PROC FREQ. By
default, the orientation of dot plots is horizontal, which places the variable levels on the y-axis.
You can specify the ORIENT=VERTICAL plot-option to request a vertical orientation. For two-
way plots, you can use the TWOWAY= plot-option to specify the plot layout. The default layout
(shown in Output 3.2.2 and Output 3.2.3) is GROUPVERTICAL. Two-way layouts STACKED and
GROUPHORIZONTAL are also available.
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Output 3.2.1 One-Way Frequency Dot Plot
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Output 3.2.2 Two-Way Frequency Dot Plot
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Output 3.2.3 Two-Way Percent Dot Plot

Example 3.3: Chi-Square Goodness-of-Fit Tests

This example examines whether the children’s hair color (from Example 3.1) has a specified multi-
nomial distribution for the two geographical regions. The hypothesized distribution of hair color is
30% fair, 12% red, 30% medium, 25% dark, and 3% black.

In order to test the hypothesis for each region, the data are first sorted by Region. Then the FREQ
procedure uses a BY statement to produce a separate table for each BY group (Region). The option
ORDER=DATA orders the variable values (hair color) in the frequency table by their order in the
input data set. The TABLES statement requests a frequency table for hair color, and the option
NOCUM suppresses the display of the cumulative frequencies and percentages.

The CHISQ option requests a chi-square goodness-of-fit test for the frequency table of Hair. The
TESTP= option specifies the hypothesized (or test) percentages for the chi-square test; the number
of percentages listed equals the number of table levels, and the percentages sum to 100%. The
TESTP= percentages are listed in the same order as the corresponding variable levels appear in
frequency table.
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The PLOTS= option requests a deviation plot, which is associated with the CHISQ option and
displays the relative deviations from the test frequencies. The TYPE=DOT plot-option requests a
dot plot instead of the default type, which is a bar chart. The ONLY plot-option requests that PROC
FREQ produce only the deviation plot. By default, PROC FREQ produces all plots associated
with the requested analyses. A frequency plot is associated with a one-way table request but is
not produced in this example because ONLY is specified with the DEVIATIONPLOT request. Note
that ODS Graphics must be enabled before requesting plots. These statements produce Output 3.3.1
through Output 3.3.4.

proc sort data=Color;
by Region;

run;

ods graphics on;
proc freq data=Color order=data;

tables Hair / nocum chisq testp=(30 12 30 25 3)
plots(only)=deviationplot(type=dot);

weight Count;
by Region;
title ’Hair Color of European Children’;

run;
ods graphics off;

Output 3.3.1 Frequency Table and Chi-Square Test for Region 1

Hair Color of European Children

----------------------------- Geographic Region=1 ------------------------------

The FREQ Procedure

Hair Color

Test
Hair Frequency Percent Percent
-------------------------------------------
fair 76 30.89 30.00
red 19 7.72 12.00
medium 83 33.74 30.00
dark 65 26.42 25.00
black 3 1.22 3.00

----------------------------- Geographic Region=1 ------------------------------

Chi-Square Test
for Specified Proportions
-------------------------
Chi-Square 7.7602
DF 4
Pr > ChiSq 0.1008
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Output 3.3.1 shows the frequency table and chi-square test for Region 1. The frequency table lists
the variable values (hair color) in the order in which they appear in the data set. The “Test Percent”
column lists the hypothesized percentages for the chi-square test. Always check that you have
ordered the TESTP= percentages to correctly match the order of the variable levels.

Output 3.3.2 shows the deviation plot for Region 1, which displays the relative deviations from
the hypothesized values. The relative deviation for a level is the difference between the observed
and hypothesized (test) percentage divided by the test percentage. You can suppress the chi-square
p-value that is displayed by default in the deviation plot by specifying the NOSTATS plot-option.

Output 3.3.2 Deviation Plot for Region 1
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Output 3.3.3 and Output 3.3.4 show the results for Region 2. PROC FREQ computes a chi-square
statistic for each region. The chi-square statistic is significant at the 0.05 level for Region 2
(p=0.0003) but not for Region 1. This indicates a significant departure from the hypothesized
percentages in Region 2.

Output 3.3.3 Frequency Table and Chi-Square Test for Region 2

Hair Color of European Children

----------------------------- Geographic Region=2 ------------------------------

The FREQ Procedure

Hair Color

Test
Hair Frequency Percent Percent
-------------------------------------------
fair 152 29.46 30.00
red 94 18.22 12.00
medium 134 25.97 30.00
dark 117 22.67 25.00
black 19 3.68 3.00

----------------------------- Geographic Region=2 ------------------------------

Chi-Square Test
for Specified Proportions
-------------------------
Chi-Square 21.3824
DF 4
Pr > ChiSq 0.0003
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Output 3.3.4 Deviation Plot for Region 2

Example 3.4: Binomial Proportions

In this example, PROC FREQ computes binomial proportions, confidence limits, and tests. The
example uses the eye and hair color data from Example 3.1. By default, PROC FREQ computes the
binomial proportion as the proportion of observations in the first level of the one-way table. You
can designate a different level by using the LEVEL= binomial-option.

The following PROC FREQ statements compute the proportion of children with brown eyes (from
the data set in Example 3.1) and test the null hypothesis that the population proportion equals 50%.
These statements also compute an equivalence for the proportion of children with fair hair.

The first TABLES statement requests a one-way frequency table for the variable Eyes. The BINO-
MIAL option requests the binomial proportion, confidence limits, and test. PROC FREQ computes
the proportion with Eyes = ‘brown’, which is the first level displayed in the table. The AC, WIL-
SON, and EXACT binomial-options request the following confidence limits types: Agresti-Coull,
Wilson (score), and exact (Clopper-Pearson). By default, PROC FREQ provides Wald and ex-
act (Clopper-Pearson) confidence limits for the binomial proportion. The BINOMIAL option also
produces an asymptotic Wald test that the proportion equals 0.5. You can specify a different test
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proportion with the P= binomial-option. The ALPHA=0.1 option specifies that ˛ D 10%, which
produces 90% confidence limits.

The second TABLES statement requests a one-way frequency table for the variable Hair. The BINO-
MIAL option requests the proportion for the first level, Hair = ‘fair’. The EQUIV binomial-option
requests an equivalence test for the binomial proportion. The P=.28 option specifies 0.28 as the null
hypothesis proportion, and the MARGIN=.1 option specifies 0.1 as the equivalence test margin.

proc freq data=Color order=freq;
tables Eyes / binomial(ac wilson exact) alpha=.1;
tables Hair / binomial(equiv p=.28 margin=.1);
weight Count;
title ’Hair and Eye Color of European Children’;

run;

Output 3.4.1 displays the results for eye color, and Output 3.4.2 displays the results for hair color.

Output 3.4.1 Binomial Proportion for Eye Color

Hair and Eye Color of European Children

The FREQ Procedure

Eye Color

Cumulative Cumulative
Eyes Frequency Percent Frequency Percent
----------------------------------------------------------
brown 341 44.75 341 44.75
blue 222 29.13 563 73.88
green 199 26.12 762 100.00

Binomial Proportion
for Eyes = brown

----------------------
Proportion 0.4475
ASE 0.0180

Type 90% Confidence Limits

Wilson 0.4181 0.4773
Agresti-Coull 0.4181 0.4773
Clopper-Pearson (Exact) 0.4174 0.4779

Test of H0: Proportion = 0.5

ASE under H0 0.0181
Z -2.8981
One-sided Pr < Z 0.0019
Two-sided Pr > |Z| 0.0038
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The frequency table in Output 3.4.1 displays the values of Eyes in order of descending frequency
count. PROC FREQ computes the proportion of children in the first level displayed in the fre-
quency table, Eyes = ‘brown’. Output 3.4.1 displays the binomial proportion confidence limits and
test. The confidence limits are 90% confidence limits. If you do not specify the ALPHA= option,
PROC FREQ computes 95% confidence limits by default. Because the value of Z is less than zero,
PROC FREQ displays the a left-sided p-value (0.0019). This small p-value supports the alternative
hypothesis that the true value of the proportion of children with brown eyes is less than 50%.

Output 3.4.2 displays the equivalence test results produced by the second TABLES statement. The
null hypothesis proportion is 0.28 and the equivalence margins are –0.1 and 0.1, which yield equiv-
alence limits of 0.18 and 0.38. PROC FREQ provides two one-sided tests (TOST) for equivalence.
The small p-value indicates rejection of the null hypothesis in favor of the alternative that the pro-
portion is equivalent to the null value.

Output 3.4.2 Binomial Proportion for Hair Color

Hair Color

Cumulative Cumulative
Hair Frequency Percent Frequency Percent
-----------------------------------------------------------
fair 228 29.92 228 29.92
medium 217 28.48 445 58.40
dark 182 23.88 627 82.28
red 113 14.83 740 97.11
black 22 2.89 762 100.00

Equivalence Analysis

H0: P - p0 <= Lower Margin or >= Upper Margin
Ha: Lower Margin < P - p0 < Upper Margin

p0 = 0.28 Lower Margin = -0.1 Upper Margin = 0.1

Proportion ASE (Sample)

0.2992 0.0166

Two One-Sided Tests (TOST)

Test Z P-Value

Lower Margin 7.1865 Pr > Z <.0001
Upper Margin -4.8701 Pr < Z <.0001
Overall <.0001

Equivalence Limits 90% Confidence Limits

0.1800 0.3800 0.2719 0.3265
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Example 3.5: Analysis of a 2x2 Contingency Table

This example computes chi-square tests and Fisher’s exact test to compare the probability of coro-
nary heart disease for two types of diet. It also estimates the relative risks and computes exact
confidence limits for the odds ratio.

The data set FatComp contains hypothetical data for a case-control study of high fat diet and the risk
of coronary heart disease. The data are recorded as cell counts, where the variable Count contains
the frequencies for each exposure and response combination. The data set is sorted in descending
order by the variables Exposure and Response, so that the first cell of the 2 � 2 table contains the
frequency of positive exposure and positive response. The FORMAT procedure creates formats to
identify the type of exposure and response with character values.

proc format;
value ExpFmt 1=’High Cholesterol Diet’

0=’Low Cholesterol Diet’;
value RspFmt 1=’Yes’

0=’No’;
run;

data FatComp;
input Exposure Response Count;
label Response=’Heart Disease’;
datalines;

0 0 6
0 1 2
1 0 4
1 1 11
;

proc sort data=FatComp;
by descending Exposure descending Response;

run;

In the following PROC FREQ statements, ORDER=DATA option orders the contingency table val-
ues by their order in the input data set. The TABLES statement requests a two-way table of Exposure
by Response. The CHISQ option produces several chi-square tests, while the RELRISK option pro-
duces relative risk measures. The EXACT statement requests the exact Pearson chi-square test and
exact confidence limits for the odds ratio.

proc freq data=FatComp order=data;
format Exposure ExpFmt. Response RspFmt.;
tables Exposure*Response / chisq relrisk;
exact pchi or;
weight Count;
title ’Case-Control Study of High Fat/Cholesterol Diet’;

run;
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The contingency table in Output 3.5.1 displays the variable values so that the first table cell con-
tains the frequency for the first cell in the data set (the frequency of positive exposure and positive
response).

Output 3.5.1 Contingency Table

Case-Control Study of High Fat/Cholesterol Diet

The FREQ Procedure

Table of Exposure by Response

Exposure Response(Heart Disease)

Frequency |
Percent |
Row Pct |
Col Pct |Yes |No | Total
-----------------+--------+--------+
High Cholesterol | 11 | 4 | 15
Diet | 47.83 | 17.39 | 65.22

| 73.33 | 26.67 |
| 84.62 | 40.00 |

-----------------+--------+--------+
Low Cholesterol | 2 | 6 | 8
Diet | 8.70 | 26.09 | 34.78

| 25.00 | 75.00 |
| 15.38 | 60.00 |

-----------------+--------+--------+
Total 13 10 23

56.52 43.48 100.00

Output 3.5.2 displays the chi-square statistics. Because the expected counts in some of the table
cells are small, PROC FREQ gives a warning that the asymptotic chi-square tests might not be
appropriate. In this case, the exact tests are appropriate. The alternative hypothesis for this analysis
states that coronary heart disease is more likely to be associated with a high fat diet, so a one-sided
test is desired. Fisher’s exact right-sided test analyzes whether the probability of heart disease in the
high fat group exceeds the probability of heart disease in the low fat group; because this p-value is
small, the alternative hypothesis is supported.

The odds ratio, displayed in Output 3.5.3, provides an estimate of the relative risk when an event is
rare. This estimate indicates that the odds of heart disease is 8.25 times higher in the high fat diet
group; however, the wide confidence limits indicate that this estimate has low precision.
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Output 3.5.2 Chi-Square Statistics

Statistic DF Value Prob
------------------------------------------------------
Chi-Square 1 4.9597 0.0259
Likelihood Ratio Chi-Square 1 5.0975 0.0240
Continuity Adj. Chi-Square 1 3.1879 0.0742
Mantel-Haenszel Chi-Square 1 4.7441 0.0294
Phi Coefficient 0.4644
Contingency Coefficient 0.4212
Cramer’s V 0.4644

WARNING: 50% of the cells have expected counts less than 5.
(Asymptotic) Chi-Square may not be a valid test.

Pearson Chi-Square Test
----------------------------------
Chi-Square 4.9597
DF 1
Asymptotic Pr > ChiSq 0.0259
Exact Pr >= ChiSq 0.0393

Fisher’s Exact Test
----------------------------------
Cell (1,1) Frequency (F) 11
Left-sided Pr <= F 0.9967
Right-sided Pr >= F 0.0367

Table Probability (P) 0.0334
Two-sided Pr <= P 0.0393

Output 3.5.3 Relative Risk

Estimates of the Relative Risk (Row1/Row2)

Type of Study Value 95% Confidence Limits
-----------------------------------------------------------------
Case-Control (Odds Ratio) 8.2500 1.1535 59.0029
Cohort (Col1 Risk) 2.9333 0.8502 10.1204
Cohort (Col2 Risk) 0.3556 0.1403 0.9009

Odds Ratio (Case-Control Study)
-----------------------------------
Odds Ratio 8.2500

Asymptotic Conf Limits
95% Lower Conf Limit 1.1535
95% Upper Conf Limit 59.0029

Exact Conf Limits
95% Lower Conf Limit 0.8677
95% Upper Conf Limit 105.5488
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Example 3.6: Output Data Set of Chi-Square Statistics

This example uses the Color data from Example 3.1 to output the Pearson chi-square and the
likelihood-ratio chi-square statistics to a SAS data set. The following PROC FREQ statements
create a two-way table of eye color versus hair color.

proc freq data=Color order=data;
tables Eyes*Hair / expected cellchi2 norow nocol chisq;
output out=ChiSqData n nmiss pchi lrchi;
weight Count;
title ’Chi-Square Tests for 3 by 5 Table of Eye and Hair Color’;

run;

proc print data=ChiSqData noobs;
title1 ’Chi-Square Statistics for Eye and Hair Color’;
title2 ’Output Data Set from the FREQ Procedure’;

run;

The EXPECTED option displays expected cell frequencies in the crosstabulation table, and the
CELLCHI2 option displays the cell contribution to the overall chi-square. The NOROW and NO-
COL options suppress the display of row and column percents in the crosstabulation table. The
CHISQ option produces chi-square tests.

The OUTPUT statement creates the ChiSqData output data set and specifies the statistics to include.
The N option requests the number of nonmissing observations, the NMISS option stores the number
of missing observations, and the PCHI and LRCHI options request Pearson and likelihood-ratio chi-
square statistics, respectively, together with their degrees of freedom and p-values.

The preceding statements produce Output 3.6.1 and Output 3.6.2. The contingency table in
Output 3.6.1 displays eye and hair color in the order in which they appear in the Color data set.
The Pearson chi-square statistic in Output 3.6.2 provides evidence of an association between eye
and hair color (p=0.0073). The cell chi-square values show that most of the association is due to
more green-eyed children with fair or red hair and fewer with dark or black hair. The opposite
occurs with the brown-eyed children.

Output 3.6.3 displays the output data set created by the OUTPUT statement. It includes one obser-
vation that contains the sample size, the number of missing values, and the chi-square statistics and
corresponding degrees of freedom and p-values as in Output 3.6.2.
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Output 3.6.1 Contingency Table

Chi-Square Tests for 3 by 5 Table of Eye and Hair Color

The FREQ Procedure

Table of Eyes by Hair

Eyes(Eye Color) Hair(Hair Color)

Frequency |
Expected |
Cell Chi-Square|
Percent |fair |red |medium |dark |black | Total
---------------+--------+--------+--------+--------+--------+
blue | 69 | 28 | 68 | 51 | 6 | 222

| 66.425 | 32.921 | 63.22 | 53.024 | 6.4094 |
| 0.0998 | 0.7357 | 0.3613 | 0.0772 | 0.0262 |
| 9.06 | 3.67 | 8.92 | 6.69 | 0.79 | 29.13

---------------+--------+--------+--------+--------+--------+
green | 69 | 38 | 55 | 37 | 0 | 199

| 59.543 | 29.51 | 56.671 | 47.53 | 5.7454 |
| 1.5019 | 2.4422 | 0.0492 | 2.3329 | 5.7454 |
| 9.06 | 4.99 | 7.22 | 4.86 | 0.00 | 26.12

---------------+--------+--------+--------+--------+--------+
brown | 90 | 47 | 94 | 94 | 16 | 341

| 102.03 | 50.568 | 97.109 | 81.446 | 9.8451 |
| 1.4187 | 0.2518 | 0.0995 | 1.935 | 3.8478 |
| 11.81 | 6.17 | 12.34 | 12.34 | 2.10 | 44.75

---------------+--------+--------+--------+--------+--------+
Total 228 113 217 182 22 762

29.92 14.83 28.48 23.88 2.89 100.00

Output 3.6.2 Chi-Square Statistics

Statistic DF Value Prob
------------------------------------------------------
Chi-Square 8 20.9248 0.0073
Likelihood Ratio Chi-Square 8 25.9733 0.0011
Mantel-Haenszel Chi-Square 1 3.7838 0.0518
Phi Coefficient 0.1657
Contingency Coefficient 0.1635
Cramer’s V 0.1172

Output 3.6.3 Output Data Set

Chi-Square Statistics for Eye and Hair Color
Output Data Set from the FREQ Procedure

N NMISS _PCHI_ DF_PCHI P_PCHI _LRCHI_ DF_LRCHI P_LRCHI

762 0 20.9248 8 .007349898 25.9733 8 .001061424
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Example 3.7: Cochran-Mantel-Haenszel Statistics

The data set Migraine contains hypothetical data for a clinical trial of migraine treatment. Subjects
of both genders receive either a new drug therapy or a placebo. Their response to treatment is coded
as ‘Better’ or ‘Same’. The data are recorded as cell counts, and the number of subjects for each
treatment and response combination is recorded in the variable Count.

data Migraine;
input Gender $ Treatment $ Response $ Count @@;
datalines;

female Active Better 16 female Active Same 11
female Placebo Better 5 female Placebo Same 20
male Active Better 12 male Active Same 16
male Placebo Better 7 male Placebo Same 19
;

The following PROC FREQ statements create a multiway table stratified by Gender, where Treatment
forms the rows and Response forms the columns. The CMH option produces the Cochran-Mantel-
Haenszel statistics. For this stratified 2 � 2 table, estimates of the common relative risk and the
Breslow-Day test for homogeneity of the odds ratios are also displayed. The NOPRINT option
suppresses the display of the contingency tables. These statements produce Output 3.7.1 through
Output 3.7.3.

proc freq data=Migraine;
tables Gender*Treatment*Response / cmh;
weight Count;
title ’Clinical Trial for Treatment of Migraine Headaches’;

run;

Output 3.7.1 Cochran-Mantel-Haenszel Statistics

Clinical Trial for Treatment of Migraine Headaches

The FREQ Procedure

Summary Statistics for Treatment by Response
Controlling for Gender

Cochran-Mantel-Haenszel Statistics (Based on Table Scores)

Statistic Alternative Hypothesis DF Value Prob
---------------------------------------------------------------

1 Nonzero Correlation 1 8.3052 0.0040
2 Row Mean Scores Differ 1 8.3052 0.0040
3 General Association 1 8.3052 0.0040

For a stratified 2� 2 table, the three CMH statistics displayed in Output 3.7.1 test the same hypoth-
esis. The significant p-value (0.004) indicates that the association between treatment and response
remains strong after adjusting for gender.
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The CMH option also produces a table of relative risks, as shown in Output 3.7.2. Because this is a
prospective study, the relative risk estimate assesses the effectiveness of the new drug; the “Cohort
(Col1 Risk)” values are the appropriate estimates for the first column (the risk of improvement).
The probability of migraine improvement with the new drug is just over two times the probability
of improvement with the placebo.

The large p-value for the Breslow-Day test (0.2218) in Output 3.7.3 indicates no significant gender
difference in the odds ratios.

Output 3.7.2 CMH Option: Relative Risks

Estimates of the Common Relative Risk (Row1/Row2)

Type of Study Method Value 95% Confidence Limits
-------------------------------------------------------------------------
Case-Control Mantel-Haenszel 3.3132 1.4456 7.5934
(Odds Ratio) Logit 3.2941 1.4182 7.6515

Cohort Mantel-Haenszel 2.1636 1.2336 3.7948
(Col1 Risk) Logit 2.1059 1.1951 3.7108

Cohort Mantel-Haenszel 0.6420 0.4705 0.8761
(Col2 Risk) Logit 0.6613 0.4852 0.9013

Output 3.7.3 CMH Option: Breslow-Day Test

Breslow-Day Test for
Homogeneity of the Odds Ratios
------------------------------
Chi-Square 1.4929
DF 1
Pr > ChiSq 0.2218

Example 3.8: Cochran-Armitage Trend Test

The data set Pain contains hypothetical data for a clinical trial of a drug therapy to control pain. The
clinical trial investigates whether adverse responses increase with larger drug doses. Subjects re-
ceive either a placebo or one of four drug doses. An adverse response is recorded as Adverse=‘Yes’;
otherwise, it is recorded as Adverse=‘No’. The number of subjects for each drug dose and response
combination is contained in the variable Count.

data pain;
input Dose Adverse $ Count @@;
datalines;

0 No 26 0 Yes 6
1 No 26 1 Yes 7
2 No 23 2 Yes 9
3 No 18 3 Yes 14
4 No 9 4 Yes 23
;
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The following PROC FREQ statements provide a trend analysis. The TABLES statement requests
a table of Adverse by Dose. The MEASURES option produces measures of association, and the CL
option produces confidence limits for these measures. The TREND option tests for a trend across
the ordinal values of the variable Dose with the Cochran-Armitage test. The EXACT statement
produces exact p-values for this test, and the MAXTIME= option terminates the exact computations
if they do not complete within 60 seconds. The TEST statement computes an asymptotic test for
Somers’ D.RjC/.

The PLOTS= option requests a frequency plot for the table of Adverse by Dose. By default, PROC
FREQ provides a bar chart for the frequency plot. The TWOWAY=STACKED option requests a
stacked layout, where the bars correspond to the column variable (Dose) values, and the row variable
(Adverse) frequencies are stacked within each bar.

ods graphics on;
proc freq data=Pain;

tables Adverse*Dose / trend measures cl
plots=freqplot(twoway=stacked);

test smdrc;
exact trend / maxtime=60;
weight Count;
title ’Clinical Trial for Treatment of Pain’;

run;
ods graphics off;

Output 3.8.1 through Output 3.8.4 display the results of the analysis. The “Col Pct” values in
Output 3.8.1 show the expected increasing trend in the proportion of adverse effects with the in-
creasing dosage (from 18.75% to 71.88%). The corresponding frequency bar chart (Output 3.8.2)
also shows this increasing trend.

Output 3.8.1 Contingency Table

Clinical Trial for Treatment of Pain

The FREQ Procedure

Table of Adverse by Dose

Adverse Dose

Frequency|
Percent |
Row Pct |
Col Pct | 0| 1| 2| 3| 4| Total
---------+--------+--------+--------+--------+--------+
No | 26 | 26 | 23 | 18 | 9 | 102

| 16.15 | 16.15 | 14.29 | 11.18 | 5.59 | 63.35
| 25.49 | 25.49 | 22.55 | 17.65 | 8.82 |
| 81.25 | 78.79 | 71.88 | 56.25 | 28.13 |

---------+--------+--------+--------+--------+--------+
Yes | 6 | 7 | 9 | 14 | 23 | 59

| 3.73 | 4.35 | 5.59 | 8.70 | 14.29 | 36.65
| 10.17 | 11.86 | 15.25 | 23.73 | 38.98 |
| 18.75 | 21.21 | 28.13 | 43.75 | 71.88 |

---------+--------+--------+--------+--------+--------+
Total 32 33 32 32 32 161

19.88 20.50 19.88 19.88 19.88 100.00
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Output 3.8.2 Stacked Bar Chart of Frequencies

Output 3.8.3 displays the measures of association produced by the MEASURES option. Somers’
D.RjC/ measures the association treating the row variable (Adverse) as the response and the col-
umn variable (Dose) as a predictor. Because the asymptotic 95% confidence limits do not contain
zero, this indicates a strong positive association. Similarly, the Pearson and Spearman correlation
coefficients show evidence of a strong positive association, as hypothesized.

The Cochran-Armitage test (Output 3.8.4) supports the trend hypothesis. The small left-sided p-
values for the Cochran-Armitage test indicate that the probability of the Row 1 level (Adverse=‘No’)
decreases as Dose increases or, equivalently, that the probability of the Row 2 level (Adverse=‘Yes’)
increases as Dose increases. The two-sided p-value tests against either an increasing or decreasing
alternative. This is an appropriate hypothesis when you want to determine whether the drug has
progressive effects on the probability of adverse effects but the direction is unknown.



208 F Chapter 3: The FREQ Procedure

Output 3.8.3 Measures of Association

95%
Statistic Value ASE Confidence Limits
----------------------------------------------------------------------------
Gamma 0.5313 0.0935 0.3480 0.7146
Kendall’s Tau-b 0.3373 0.0642 0.2114 0.4631
Stuart’s Tau-c 0.4111 0.0798 0.2547 0.5675

Somers’ D C|R 0.4427 0.0837 0.2786 0.6068
Somers’ D R|C 0.2569 0.0499 0.1592 0.3547

Pearson Correlation 0.3776 0.0714 0.2378 0.5175
Spearman Correlation 0.3771 0.0718 0.2363 0.5178

Lambda Asymmetric C|R 0.1250 0.0662 0.0000 0.2547
Lambda Asymmetric R|C 0.2373 0.0837 0.0732 0.4014
Lambda Symmetric 0.1604 0.0621 0.0388 0.2821

Uncertainty Coefficient C|R 0.0515 0.0191 0.0140 0.0890
Uncertainty Coefficient R|C 0.1261 0.0467 0.0346 0.2175
Uncertainty Coefficient Symmetric 0.0731 0.0271 0.0199 0.1262

Somers’ D R|C
--------------------------------
Somers’ D R|C 0.2569
ASE 0.0499
95% Lower Conf Limit 0.1592
95% Upper Conf Limit 0.3547

Test of H0: Somers’ D R|C = 0

ASE under H0 0.0499
Z 5.1511
One-sided Pr > Z <.0001
Two-sided Pr > |Z| <.0001

Output 3.8.4 Trend Test

Cochran-Armitage Trend Test
-------------------------------
Statistic (Z) -4.7918

Asymptotic Test
One-sided Pr < Z <.0001
Two-sided Pr > |Z| <.0001

Exact Test
One-sided Pr <= Z 7.237E-07
Two-sided Pr >= |Z| 1.324E-06
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Example 3.9: Friedman’s Chi-Square Test

Friedman’s test is a nonparametric test for treatment differences in a randomized complete block
design. Each block of the design might be a subject or a homogeneous group of subjects. If blocks
are groups of subjects, the number of subjects in each block must equal the number of treatments.
Treatments are randomly assigned to subjects within each block. If there is one subject per block,
then the subjects are repeatedly measured once under each treatment. The order of treatments is
randomized for each subject.

In this setting, Friedman’s test is identical to the ANOVA (row means scores) CMH statistic when
the analysis uses rank scores (SCORES=RANK). The three-way table uses subject (or subject
group) as the stratifying variable, treatment as the row variable, and response as the column vari-
able. PROC FREQ handles ties by assigning midranks to tied response values. If there are multiple
subjects per treatment in each block, the ANOVA CMH statistic is a generalization of Friedman’s
test.

The data set Hypnosis contains data from a study investigating whether hypnosis has the same effect
on skin potential (measured in millivolts) for four emotions (Lehmann 1975, p. 264). Eight subjects
are asked to display fear, joy, sadness, and calmness under hypnosis. The data are recorded as one
observation per subject for each emotion.

data Hypnosis;
length Emotion $ 10;
input Subject Emotion $ SkinResponse @@;
datalines;

1 fear 23.1 1 joy 22.7 1 sadness 22.5 1 calmness 22.6
2 fear 57.6 2 joy 53.2 2 sadness 53.7 2 calmness 53.1
3 fear 10.5 3 joy 9.7 3 sadness 10.8 3 calmness 8.3
4 fear 23.6 4 joy 19.6 4 sadness 21.1 4 calmness 21.6
5 fear 11.9 5 joy 13.8 5 sadness 13.7 5 calmness 13.3
6 fear 54.6 6 joy 47.1 6 sadness 39.2 6 calmness 37.0
7 fear 21.0 7 joy 13.6 7 sadness 13.7 7 calmness 14.8
8 fear 20.3 8 joy 23.6 8 sadness 16.3 8 calmness 14.8
;

In the following PROC FREQ statements, the TABLES statement creates a three-way table stratified
by Subject and a two-way table; the variables Emotion and SkinResponse form the rows and columns
of each table. The CMH2 option produces the first two Cochran-Mantel-Haenszel statistics, the
option SCORES=RANK specifies that rank scores are used to compute these statistics, and the
NOPRINT option suppresses the contingency tables. These statements produce Output 3.9.1 and
Output 3.9.2.

proc freq data=Hypnosis;
tables Subject*Emotion*SkinResponse /

cmh2 scores=rank noprint;
run;
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proc freq data=Hypnosis;
tables Emotion*SkinResponse /

cmh2 scores=rank noprint;
run;

Because the CMH statistics in Output 3.9.1 are based on rank scores, the Row Mean Scores Differ
statistic is identical to Friedman’s chi-square (Q D 6:45). The p-value of 0.0917 indicates that
differences in skin potential response for different emotions are significant at the 10% level but not
at the 5% level.

When you do not stratify by subject, the Row Mean Scores Differ CMH statistic is identical to a
Kruskal-Wallis test and is not significant (p=0.9038 in Output 3.9.2). Thus, adjusting for subject is
critical to reducing the background variation due to subject differences.

Output 3.9.1 CMH Statistics: Stratifying by Subject

Clinical Trial for Treatment of Pain

The FREQ Procedure

Summary Statistics for Emotion by SkinResponse
Controlling for Subject

Cochran-Mantel-Haenszel Statistics (Based on Rank Scores)

Statistic Alternative Hypothesis DF Value Prob
---------------------------------------------------------------

1 Nonzero Correlation 1 0.2400 0.6242
2 Row Mean Scores Differ 3 6.4500 0.0917

Output 3.9.2 CMH Statistics: No Stratification

Clinical Trial for Treatment of Pain

The FREQ Procedure

Summary Statistics for Emotion by SkinResponse

Cochran-Mantel-Haenszel Statistics (Based on Rank Scores)

Statistic Alternative Hypothesis DF Value Prob
---------------------------------------------------------------

1 Nonzero Correlation 1 0.0001 0.9933
2 Row Mean Scores Differ 3 0.5678 0.9038
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Example 3.10: Cochran’s Q Test

When a binary response is measured several times or under different conditions, Cochran’s Q tests
that the marginal probability of a positive response is unchanged across the times or conditions.
When there are more than two response categories, you can use the CATMOD procedure to fit a
repeated-measures model.

The data set Drugs contains data for a study of three drugs to treat a chronic disease (Agresti 2002).
Forty-six subjects receive drugs A, B, and C. The response to each drug is either favorable (‘F’) or
unfavorable (‘U’).

proc format;
value $ResponseFmt ’F’=’Favorable’

’U’=’Unfavorable’;
run;

data drugs;
input Drug_A $ Drug_B $ Drug_C $ Count @@;
datalines;

F F F 6 U F F 2
F F U 16 U F U 4
F U F 2 U U F 6
F U U 4 U U U 6
;

The following statements create one-way frequency tables of the responses to each drug. The
AGREE option produces Cochran’s Q and other measures of agreement for the three-way table.
These statements produce Output 3.10.1 through Output 3.10.5.

proc freq data=Drugs;
tables Drug_A Drug_B Drug_C / nocum;
tables Drug_A*Drug_B*Drug_C / agree noprint;
format Drug_A Drug_B Drug_C $ResponseFmt.;
weight Count;
title ’Study of Three Drug Treatments for a Chronic Disease’;

run;

The one-way frequency tables in Output 3.10.1 provide the marginal response for each drug. For
drugs A and B, 61% of the subjects reported a favorable response while 35% of the subjects reported
a favorable response to drug C. Output 3.10.2 and Output 3.10.3 display measures of agreement for
the ‘Favorable’ and ‘Unfavorable’ levels of drug A, respectively. McNemar’s test shows a strong
discordance between drugs B and C when the response to drug A is favorable.
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Output 3.10.1 One-Way Frequency Tables

Study of Three Drug Treatments for a Chronic Disease

The FREQ Procedure

Drug_A Frequency Percent
------------------------------------
Favorable 28 60.87
Unfavorable 18 39.13

Drug_B Frequency Percent
------------------------------------
Favorable 28 60.87
Unfavorable 18 39.13

Drug_C Frequency Percent
------------------------------------
Favorable 16 34.78
Unfavorable 30 65.22

Output 3.10.2 Measures of Agreement for Drug A Favorable

McNemar’s Test
------------------------
Statistic (S) 10.8889
DF 1
Pr > S 0.0010

Simple Kappa Coefficient
--------------------------------
Kappa -0.0328
ASE 0.1167
95% Lower Conf Limit -0.2615
95% Upper Conf Limit 0.1960

Output 3.10.3 Measures of Agreement for Drug A Unfavorable

McNemar’s Test
-----------------------
Statistic (S) 0.4000
DF 1
Pr > S 0.5271

Simple Kappa Coefficient
--------------------------------
Kappa -0.1538
ASE 0.2230
95% Lower Conf Limit -0.5909
95% Upper Conf Limit 0.2832
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Output 3.10.4 displays the overall kappa coefficient. The small negative value of kappa indicates
no agreement between drug B response and drug C response.

Cochran’s Q is statistically significant (p=0.0144 in Output 3.10.5), which leads to rejection of the
hypothesis that the probability of favorable response is the same for the three drugs.

Output 3.10.4 Overall Measures of Agreement

Overall Kappa Coefficient
--------------------------------
Kappa -0.0588
ASE 0.1034
95% Lower Conf Limit -0.2615
95% Upper Conf Limit 0.1439

Test for Equal Kappa
Coefficients

--------------------
Chi-Square 0.2314
DF 1
Pr > ChiSq 0.6305

Output 3.10.5 Cochran’s Q Test

Cochran’s Q, for Drug_A
by Drug_B by Drug_C

-----------------------
Statistic (Q) 8.4706
DF 2
Pr > Q 0.0145
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Overview: UNIVARIATE Procedure

The UNIVARIATE procedure provides the following:

� descriptive statistics based on moments (including skewness and kurtosis), quantiles or per-
centiles (such as the median), frequency tables, and extreme values

� histograms that optionally can be fitted with probability density curves for various distribu-
tions and with kernel density estimates

� cumulative distribution function plots (cdf plots). Optionally, these can be superimposed with
probability distribution curves for various distributions.

� quantile-quantile plots (Q-Q plots), probability plots, and probability-probability plots (P-P
plots). These plots facilitate the comparison of a data distribution with various theoretical
distributions.

� goodness-of-fit tests for a variety of distributions including the normal

� the ability to inset summary statistics on plots

� the ability to analyze data sets with a frequency variable

� the ability to create output data sets containing summary statistics, histogram intervals, and
parameters of fitted curves

You can use the PROC UNIVARIATE statement, together with the VAR statement, to compute
summary statistics. See the section “Getting Started: UNIVARIATE Procedure” on page 222 for
introductory examples. In addition, you can use the following statements to request plots:
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� the CDFPLOT statement for creating cdf plots

� the HISTOGRAM statement for creating histograms

� the PPPLOT statement for creating P-P plots

� the PROBPLOT statement for creating probability plots

� the QQPLOT statement for creating Q-Q plots

� the CLASS statement together with any of these plot statements for creating comparative
plots

� the INSET statement with any of the plot statements for enhancing the plot with an inset table
of summary statistics

The UNIVARIATE procedure produces two kinds of graphical output:

� traditional graphics, which are produced by default

� ODS Statistical Graphics output (supported on an experimental basis for SAS 9.2), which is
produced when you specify the ODS GRAPHICS statement prior to your procedure state-
ments statements.

See the section “Creating High-Resolution Graphics” on page 337 for more information about pro-
ducing traditional graphics and ODS Graphics output.

Getting Started: UNIVARIATE Procedure

The following examples demonstrate how you can use the UNIVARIATE procedure to analyze the
distributions of variables through the use of descriptive statistical measures and graphical displays,
such as histograms.

Capabilities of PROC UNIVARIATE

The UNIVARIATE procedure provides a variety of descriptive measures, graphical displays, and
statistical methods, which you can use to summarize, visualize, analyze, and model the statisti-
cal distributions of numeric variables. These tools are appropriate for a broad range of tasks and
applications:

� Exploring the distributions of the variables in a data set is an important preliminary step in
data analysis, data warehousing, and data mining. With the UNIVARIATE procedure you can
use tables and graphical displays, such as histograms and nonparametric density estimates,
to find key features of distributions, identify outliers and extreme observations, determine the
need for data transformations, and compare distributions.
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� Modeling the distributions of data and validating distributional assumptions are basic steps in
statistical analysis. You can use the UNIVARIATE procedure to fit parametric distributions
(beta, exponential, gamma, lognormal, normal, Johnson SB , Johnson SU , and Weibull) and to
compute probabilities and percentiles from these models. You can assess goodness of fit with
hypothesis tests and with graphical displays such as probability plots and quantile-quantile
plots. You can also use the UNIVARIATE procedure to validate distributional assumptions
for other types of statistical analysis. When standard assumptions are not met, you can use
the UNIVARIATE procedure to perform nonparametric tests and compute robust estimates of
location and scale.

� Summarizing the distribution of the data is often helpful for creating effective statistical re-
ports and presentations. You can use the UNIVARIATE procedure to create tables of sum-
mary measures, such as means and percentiles, together with graphical displays, such as
histograms and comparative histograms, which facilitate the interpretation of the report.

The following examples illustrate a few of the tasks that you can carry out with the UNIVARIATE
procedure.

Summarizing a Data Distribution

Figure 4.1 shows a table of basic summary measures and a table of extreme observations for the
loan-to-value ratios of 5,840 home mortgages. The ratios are saved as values of the variable LoanTo-
ValueRatio in a data set named HomeLoans. The following statements request a univariate analysis:

ods select BasicMeasures ExtremeObs;
proc univariate data=HomeLoans;

var LoanToValueRatio;
run;

The ODS SELECT statement restricts the default output to the tables for basic statistical measures
and extreme observations.

Figure 4.1 Basic Measures and Extreme Observations

The UNIVARIATE Procedure
Variable: LoanToValueRatio (Loan to Value Ratio)

Basic Statistical Measures

Location Variability

Mean 0.292512 Std Deviation 0.16476
Median 0.248050 Variance 0.02715
Mode 0.250000 Range 1.24780

Interquartile Range 0.16419
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Figure 4.1 continued

Extreme Observations

-------Lowest------ -----Highest-----

Value Obs Value Obs

0.0651786 1 1.13976 5776
0.0690157 3 1.14209 5791
0.0699755 59 1.14286 5801
0.0702412 84 1.17090 5799
0.0704787 4 1.31298 5811

The tables in Figure 4.1 show, in particular, that the average ratio is 0.2925 and the minimum and
maximum ratios are 0.06518 and 1.1398, respectively.

Exploring a Data Distribution

Figure 4.2 shows a histogram of the loan-to-value ratios. The histogram reveals features of the ratio
distribution, such as its skewness and the peak at 0.175, which are not evident from the tables in the
previous example. The following statements create the histogram:

title ’Home Loan Analysis’;
proc univariate data=HomeLoans noprint;

histogram LoanToValueRatio;
inset n = ’Number of Homes’ / position=ne;

run;

By default, PROC UNIVARIATE produces traditional graphics output, and the basic appearance
of the histogram is determined by the prevailing ODS style. The NOPRINT option suppresses the
display of summary statistics. The INSET statement inserts the total number of analyzed home
loans in the upper right (northeast) corner of the plot.
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Figure 4.2 Histogram for Loan-to-Value Ratio

The data set HomeLoans contains a variable named LoanType that classifies the loans into two types:
Gold and Platinum. It is useful to compare the distributions of LoanToValueRatio for the two types.
The following statements request quantiles for each distribution and a comparative histogram, which
are shown in Figure 4.3 and Figure 4.4.

title ’Comparison of Loan Types’;
options nogstyle;
ods select Quantiles MyHist;
proc univariate data=HomeLoans;

var LoanToValueRatio;
class LoanType;
histogram LoanToValueRatio / kernel(color=red)

cfill=ltgray
name=’MyHist’;

inset n=’Number of Homes’ median=’Median Ratio’ (5.3) / position=ne;
label LoanType = ’Type of Loan’;

run;
options gstyle;
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The ODS SELECT statement restricts the default output to the tables of quantiles and the graph
produced by the HISTOGRAM statement, which is identified by the value specified by the NAME=
option. The CLASS statement specifies LoanType as a classification variable for the quantile com-
putations and comparative histogram. The KERNEL option adds a smooth nonparametric estimate
of the ratio density to each histogram. The INSET statement specifies summary statistics to be
displayed directly in the graph.

The NOGSTYLE system option specifies that the ODS style not influence the appearance of the
histogram. Instead, the CFILL= option determines the color of the histogram bars and the COLOR=
option specifies the color of the kernel density curve.

Figure 4.3 Quantiles for Loan-to-Value Ratio

Comparison of Loan Types

The UNIVARIATE Procedure
Variable: LoanToValueRatio (Loan to Value Ratio)

LoanType = Gold

Quantiles (Definition 5)

Quantile Estimate

100% Max 1.0617647
99% 0.8974576
95% 0.6385908
90% 0.4471369
75% Q3 0.2985099
50% Median 0.2217033
25% Q1 0.1734568
10% 0.1411130
5% 0.1213079
1% 0.0942167
0% Min 0.0651786

Comparison of Loan Types

The UNIVARIATE Procedure
Variable: LoanToValueRatio (Loan to Value Ratio)

LoanType = Platinum

Quantiles (Definition 5)

Quantile Estimate

100% Max 1.312981
99% 1.050000
95% 0.691803
90% 0.549273
75% Q3 0.430160
50% Median 0.366168
25% Q1 0.314452
10% 0.273670
5% 0.253124
1% 0.231114
0% Min 0.215504
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The output in Figure 4.3 shows that the median ratio for Platinum loans (0.366) is greater than
the median ratio for Gold loans (0.222). The comparative histogram in Figure 4.4 enables you to
compare the two distributions more easily. It shows that the ratio distributions are similar except for
a shift of about 0.14.

Figure 4.4 Comparative Histogram for Loan-to-Value Ratio

A sample program for this example, univar1.sas, is available in the SAS Sample Library for Base
SAS software.

Modeling a Data Distribution

In addition to summarizing a data distribution as in the preceding example, you can use PROC
UNIVARIATE to statistically model a distribution based on a random sample of data. The following
statements create a data set named Aircraft that contains the measurements of a position deviation
for a sample of 30 aircraft components.
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data Aircraft;
input Deviation @@;
label Deviation = ’Position Deviation’;
datalines;

-.00653 0.00141 -.00702 -.00734 -.00649 -.00601
-.00631 -.00148 -.00731 -.00764 -.00275 -.00497
-.00741 -.00673 -.00573 -.00629 -.00671 -.00246
-.00222 -.00807 -.00621 -.00785 -.00544 -.00511
-.00138 -.00609 0.00038 -.00758 -.00731 -.00455
;
run;

An initial question in the analysis is whether the measurement distribution is normal. The following
statements request a table of moments, the tests for normality, and a normal probability plot, which
are shown in Figure 4.5 and Figure 4.6:

title ’Position Deviation Analysis’;
ods graphics on;
ods select Moments TestsForNormality ProbPlot;
proc univariate data=Aircraft normaltest;

var Deviation;
probplot Deviation / normal (mu=est sigma=est)

square;
label Deviation = ’Position Deviation’;
inset mean std / format=6.4;

run;
ods graphics off;

The ODS GRAPHICS statement causes the procedure to produce ODS Graphics output rather than
traditional graphics. (See the section “Alternatives for Producing Graphics” on page 337 for infor-
mation about traditional graphics and ODS Graphics.) The INSET statement displays the sample
mean and standard deviation on the probability plot.

Figure 4.5 Moments and Tests for Normality

Position Deviation Analysis

The UNIVARIATE Procedure
Variable: Deviation (Position Deviation)

Moments

N 30 Sum Weights 30
Mean -0.0053067 Sum Observations -0.1592
Std Deviation 0.00254362 Variance 6.47002E-6
Skewness 1.2562507 Kurtosis 0.69790426
Uncorrected SS 0.00103245 Corrected SS 0.00018763
Coeff Variation -47.932613 Std Error Mean 0.0004644
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Figure 4.5 continued

Tests for Normality

Test --Statistic--- -----p Value------

Shapiro-Wilk W 0.845364 Pr < W 0.0005
Kolmogorov-Smirnov D 0.208921 Pr > D <0.0100
Cramer-von Mises W-Sq 0.329274 Pr > W-Sq <0.0050
Anderson-Darling A-Sq 1.784881 Pr > A-Sq <0.0050

All four goodness-of-fit tests in Figure 4.5 reject the hypothesis that the measurements are normally
distributed.

Figure 4.6 shows a normal probability plot for the measurements. A linear pattern of points fol-
lowing the diagonal reference line would indicate that the measurements are normally distributed.
Instead, the curved point pattern suggests that a skewed distribution, such as the lognormal, is more
appropriate than the normal distribution.

A lognormal distribution for Deviation is fitted in Example 4.26.

A sample program for this example, univar2.sas, is available in the SAS Sample Library for Base
SAS software.
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Figure 4.6 Normal Probability Plot
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Syntax: UNIVARIATE Procedure

PROC UNIVARIATE < options > ;
BY variables ;
CDFPLOT < variables > < / options > ;
CLASS variable-1 < (v-options) > < variable-2 < (v-options) > > < / KEYLEVEL= value1 | (

value1 value2 ) > ;
FREQ variable ;
HISTOGRAM < variables > < / options > ;
ID variables ;
INSET keyword-list < / options > ;
OUTPUT < OUT=SAS-data-set > < keyword1=names . . . keywordk=names > < percentile-

options > ;
PPPLOT < variables > < / options > ;
PROBPLOT < variables > < / options > ;
QQPLOT < variables > < / options > ;
VAR variables ;
WEIGHT variable ;

The PROC UNIVARIATE statement invokes the procedure. The VAR statement specifies the nu-
meric variables to be analyzed, and it is required if the OUTPUT statement is used to save summary
statistics in an output data set. If you do not use the VAR statement, all numeric variables in the
data set are analyzed. The plot statements CDFPLOT, HISTOGRAM, PPPLOT, PROBPLOT, and
QQPLOT create graphical displays, and the INSET statement enhances these displays by adding a
table of summary statistics directly on the graph. You can specify one or more of each of the plot
statements, the INSET statement, and the OUTPUT statement. If you use a VAR statement, the
variables listed in a plot statement must be a subset of the variables listed in the VAR statement.

You can use a CLASS statement to specify one or two variables that group the data into classification
levels. The analysis is carried out for each combination of levels. You can use the CLASS statement
with plot statements to create comparative displays, in which each cell contains a plot for one
combination of classification levels.

You can specify a BY statement to obtain separate analyses for each BY group. The FREQ state-
ment specifies a variable whose values provide the frequency for each observation. The WEIGHT
statement specifies a variable whose values are used to weight certain statistics. The ID statement
specifies one or more variables to identify the extreme observations.

PROC UNIVARIATE Statement

PROC UNIVARIATE < options > ;

The PROC UNIVARIATE statement is required to invoke the UNIVARIATE procedure. You can
use the PROC UNIVARIATE statement by itself to request a variety of statistics for summarizing
the data distribution of each analysis variable:
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� sample moments

� basic measures of location and variability

� confidence intervals for the mean, standard deviation, and variance

� tests for location

� tests for normality

� trimmed and Winsorized means

� robust estimates of scale

� quantiles and related confidence intervals

� extreme observations and extreme values

� frequency counts for observations

� missing values

In addition, you can use options in the PROC UNIVARIATE statement to do the following:

� specify the input data set to be analyzed

� specify a graphics catalog for saving traditional graphics output

� specify rounding units for variable values

� specify the definition used to calculate percentiles

� specify the divisor used to calculate variances and standard deviations

� request that plots be produced on line printers and define special printing characters used for
features

� suppress tables

� save statistics in an output data set

The following are the options that can be used with the PROC UNIVARIATE statement:

ALL
requests all statistics and tables that the FREQ, MODES, NEXTRVAL=5, PLOT, and CIBA-
SIC options generate. If the analysis variables are not weighted, this option also requests the
statistics and tables generated by the CIPCTLDF, CIPCTLNORMAL, LOCCOUNT, NOR-
MAL, ROBUSTSCALE, TRIMMED=.25, and WINSORIZED=.25 options. PROC UNI-
VARIATE also uses any values that you specify for ALPHA=, MU0=, NEXTRVAL=, CIBA-
SIC, CIPCTLDF, CIPCTLNORMAL, TRIMMED=, or WINSORIZED= to produce the out-
put.
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ALPHA=˛
specifies the level of significance ˛ for 100.1 � ˛/% confidence intervals. The value ˛ must
be between 0 and 1; the default value is 0.05, which results in 95% confidence intervals.

Note that specialized ALPHA= options are available for a number of confidence interval
options. For example, you can specify CIBASIC(ALPHA=0.10) to request a table of basic
confidence limits at the 90% level. The default value of these options is the value of the
ALPHA= option in the PROC statement.

ANNOTATE=SAS-data-set

ANNO=SAS-data-set
specifies an input data set that contains annotate variables as described in SAS/GRAPH Soft-
ware: Reference. You can use this data set to add features to your traditional graphics. PROC
UNIVARIATE adds the features in this data set to every graph that is produced in the pro-
cedure. PROC UNIVARIATE does not use the ANNOTATE= data set unless you create a
traditional graph with a plot statement. The option does not apply to ODS Graphics output.
Use the ANNOTATE= option in the plot statement if you want to add a feature to a specific
graph produced by that statement.

CIBASIC < (< TYPE=keyword > < ALPHA=˛ >) >
requests confidence limits for the mean, standard deviation, and variance based on the as-
sumption that the data are normally distributed. If you use the CIBASIC option, you must use
the default value of VARDEF=, which is DF.

TYPE=keyword
specifies the type of confidence limit, where keyword is LOWER, UPPER, or
TWOSIDED. The default value is TWOSIDED.

ALPHA=˛
specifies the level of significance ˛ for 100.1 � ˛/% confidence intervals. The value
˛ must be between 0 and 1; the default value is 0.05, which results in 95% confidence
intervals. The default value is the value of ALPHA= given in the PROC statement.

CIPCTLDF < (< TYPE=keyword > < ALPHA=˛ >) >

CIQUANTDF < (< TYPE=keyword > < ALPHA=˛ >) >
requests confidence limits for quantiles based on a method that is distribution-free. In other
words, no specific parametric distribution such as the normal is assumed for the data. PROC
UNIVARIATE uses order statistics (ranks) to compute the confidence limits as described by
Hahn and Meeker (1991). This option does not apply if you use a WEIGHT statement.

TYPE=keyword
specifies the type of confidence limit, where keyword is LOWER, UPPER, SYMMET-
RIC, or ASYMMETRIC. The default value is SYMMETRIC.

ALPHA=˛
specifies the level of significance ˛ for 100.1 � ˛/% confidence intervals. The value
˛ must be between 0 and 1; the default value is 0.05, which results in 95% confidence
intervals. The default value is the value of ALPHA= given in the PROC statement.
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CIPCTLNORMAL < (< TYPE=keyword > < ALPHA=˛ >) >

CIQUANTNORMAL < (< TYPE=keyword > < ALPHA=˛ >) >
requests confidence limits for quantiles based on the assumption that the data are normally
distributed. The computational method is described in Section 4.4.1 of Hahn and Meeker
(1991) and uses the noncentral t distribution as given by Odeh and Owen (1980). This option
does not apply if you use a WEIGHT statement

TYPE=keyword
specifies the type of confidence limit, where keyword is LOWER, UPPER, or
TWOSIDED. The default is TWOSIDED.

ALPHA=˛
specifies the level of significance ˛ for 100.1 � ˛/% confidence intervals. The value
˛ must be between 0 and 1; the default value is 0.05, which results in 95% confidence
intervals. The default value is the value of ALPHA= given in the PROC statement.

DATA=SAS-data-set
specifies the input SAS data set to be analyzed. If the DATA= option is omitted, the procedure
uses the most recently created SAS data set.

EXCLNPWGT

EXCLNPWGTS
excludes observations with nonpositive weight values (zero or negative) from the analysis.
By default, PROC UNIVARIATE counts observations with negative or zero weights in the
total number of observations. This option applies only when you use a WEIGHT statement.

FREQ
requests a frequency table that consists of the variable values, frequencies, cell percentages,
and cumulative percentages.

If you specify the WEIGHT statement, PROC UNIVARIATE includes the weighted count in
the table and uses this value to compute the percentages.

GOUT=graphics-catalog
specifies the SAS catalog that PROC UNIVARIATE uses to save traditional graphics output.
If you omit the libref in the name of the graphics-catalog, PROC UNIVARIATE looks for the
catalog in the temporary library called WORK and creates the catalog if it does not exist. The
option does not apply to ODS Graphics output.

IDOUT
includes ID variables in the output data set created by an OUTPUT statement. The value of
an ID variable in the output data set is its first value from the input data set or BY group. By
default, ID variables are not included in OUTPUT statement data sets.

LOCCOUNT
requests a table that shows the number of observations greater than, not equal to, and less
than the value of MU0=. PROC UNIVARIATE uses these values to construct the sign test
and the signed rank test. This option does not apply if you use a WEIGHT statement.
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MODES|MODE
requests a table of all possible modes. By default, when the data contain multiple modes,
PROC UNIVARIATE displays the lowest mode in the table of basic statistical measures.
When all the values are unique, PROC UNIVARIATE does not produce a table of modes.

MU0=values

LOCATION=values
specifies the value of the mean or location parameter (�0) in the null hypothesis for tests of
location summarized in the table labeled “Tests for Location: Mu0=value.” If you specify
one value, PROC UNIVARIATE tests the same null hypothesis for all analysis variables. If
you specify multiple values, a VAR statement is required, and PROC UNIVARIATE tests a
different null hypothesis for each analysis variable, matching variables and location values by
their order in the two lists. The default value is 0.

The following statement tests the hypothesis �0 D 0 for the first variable and the hypothesis
�0 D 0:5 for the second variable.

proc univariate mu0=0 0.5;

NEXTROBS=n
specifies the number of extreme observations that PROC UNIVARIATE lists in the table of
extreme observations. The table lists the n lowest observations and the n highest observations.
The default value is 5. You can specify NEXTROBS=0 to suppress the table of extreme
observations.

NEXTRVAL=n
specifies the number of extreme values that PROC UNIVARIATE lists in the table of extreme
values. The table lists the n lowest unique values and the n highest unique values. By default,
n D 0 and no table is displayed.

NOBYPLOT
suppresses side-by-side line printer box plots that are created by default when you use the BY
statement and either the ALL option or the PLOT option in the PROC statement.

NOPRINT
suppresses all the tables of descriptive statistics that the PROC UNIVARIATE statement cre-
ates. NOPRINT does not suppress the tables that the HISTOGRAM statement creates. You
can use the NOPRINT option in the HISTOGRAM statement to suppress the creation of its
tables. Use NOPRINT when you want to create an OUT= or OUTTABLE= output data set
only.

NORMAL

NORMALTEST
requests tests for normality that include a series of goodness-of-fit tests based on the empirical
distribution function. The table provides test statistics and p-values for the Shapiro-Wilk test
(provided the sample size is less than or equal to 2000), the Kolmogorov-Smirnov test, the
Anderson-Darling test, and the Cramér-von Mises test. This option does not apply if you use
a WEIGHT statement.
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NOTABCONTENTS
suppresses the table of contents entries for tables of summary statistics produced by the PROC
UNIVARIATE statement.

NOVARCONTENTS
suppresses grouping entries associated with analysis variables in the table of contents. By
default, the table of contents lists results associated with an analysis variable in a group with
the variable name.

OUTTABLE=SAS-data-set
creates an output data set that contains univariate statistics arranged in tabular form, with
one observation per analysis variable. See the section “OUTTABLE= Output Data Set” on
page 372 for details.

PCTLDEF=value

DEF=value
specifies the definition that PROC UNIVARIATE uses to calculate quantiles. The default
value is 5. Values can be 1, 2, 3, 4, or 5. You cannot use PCTLDEF= when you compute
weighted quantiles. See the section “Calculating Percentiles” on page 326 for details on
quantile definitions.

PLOTS | PLOT
produces a stem-and-leaf plot (or a horizontal bar chart), a box plot, and a normal probability
plot in line printer output. If you use a BY statement, side-by-side box plots that are labeled
“Schematic Plots” appear after the univariate analysis for the last BY group.

PLOTSIZE=n
specifies the approximate number of rows used in line-printer plots requested with the PLOTS
option. If n is larger than the value of the SAS system option PAGESIZE=, PROC UNIVARI-
ATE uses the value of PAGESIZE=. If n is less than 8, PROC UNIVARIATE uses eight rows
to draw the plots.

ROBUSTSCALE
produces a table with robust estimates of scale. The statistics include the interquartile range,
Gini’s mean difference, the median absolute deviation about the median (MAD), and two
statistics proposed by Rousseeuw and Croux (1993), Qn, and Sn. See the section “Robust
Estimates of Scale” on page 333 for details. This option does not apply if you use a WEIGHT
statement.

ROUND=units
specifies the units to use to round the analysis variables prior to computing statistics. If you
specify one unit, PROC UNIVARIATE uses this unit to round all analysis variables. If you
specify multiple units, a VAR statement is required, and each unit rounds the values of the
corresponding analysis variable. If ROUND=0, no rounding occurs. The ROUND= option
reduces the number of unique variable values, thereby reducing memory requirements for the
procedure. For example, to make the rounding unit 1 for the first analysis variable and 0.5 for
the second analysis variable, submit the statement
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proc univariate round=1 0.5;
var Yieldstrength tenstren;

run;

When a variable value is midway between the two nearest rounded points, the value is rounded
to the nearest even multiple of the roundoff value. For example, with a roundoff value of 1,
the variable values of �2.5, �2.2, and �1.5 are rounded to �2; the values of �0.5, 0.2, and
0.5 are rounded to 0; and the values of 0.6, 1.2, and 1.4 are rounded to 1.

SUMMARYCONTENTS=‘string’
specifies the table of contents entry used for grouping the summary statistics produced by the
PROC UNIVARIATE statement. You can specify SUMMARYCONTENTS=‘’ to suppress
the grouping entry.

TRIMMED=values < (< TYPE=keyword > < ALPHA=˛ >) >

TRIM=values < (< TYPE=keyword > < ALPHA=˛ >) >
requests a table of trimmed means, where value specifies the number or the proportion of
observations that PROC UNIVARIATE trims. If the value is the number n of trimmed obser-
vations, n must be between 0 and half the number of nonmissing observations. If value is a
proportion p between 0 and ½, the number of observations that PROC UNIVARIATE trims
is the smallest integer that is greater than or equal to np, where n is the number of observa-
tions. To include confidence limits for the mean and the Student’s t test in the table, you must
use the default value of VARDEF=, which is DF. For details concerning the computation of
trimmed means, see the section “Trimmed Means” on page 333. The TRIMMED= option
does not apply if you use a WEIGHT statement.

TYPE=keyword
specifies the type of confidence limit for the mean, where keyword is LOWER, UPPER,
or TWOSIDED. The default value is TWOSIDED.

ALPHA=˛
specifies the level of significance ˛ for 100.1 � ˛/% confidence intervals. The value
˛ must be between 0 and 1; the default value is 0.05, which results in 95% confidence
intervals.

VARDEF=divisor
specifies the divisor to use in the calculation of variances and standard deviation. By default,
VARDEF=DF. Table 4.1 shows the possible values for divisor and associated divisors.

Table 4.1 Possible Values for VARDEF=

Value Divisor Formula for Divisor

DF degrees of freedom n � 1

N number of observations n

WDF sum of weights minus one .†iwi / � 1

WEIGHT | WGT sum of weights †iwi
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The procedure computes the variance as CSS
divisor where CSS is the corrected sums of squares

and equals
Pn

iD1.xi � Nx/2. When you weight the analysis variables, CSS D
Pn

iD1.wixi �

Nxw/
2 where Nxw is the weighted mean.

The default value is DF. To compute the standard error of the mean, confidence limits, and
Student’s t test, use the default value of VARDEF=.

When you use the WEIGHT statement and VARDEF=DF, the variance is an estimate of s2

where the variance of the i th observation is var.xi / D
s2

wi
and wi is the weight for the i th

observation. This yields an estimate of the variance of an observation with unit weight.

When you use the WEIGHT statement and VARDEF=WGT, the computed variance is asymp-
totically (for large n) an estimate of s2

Nw
where Nw is the average weight. This yields an asymp-

totic estimate of the variance of an observation with average weight.

WINSORIZED=values < (< TYPE=keyword > < ALPHA=˛ >) >

WINSOR=values < (< TYPE=keyword > < ALPHA=˛ >) >
requests of a table of Winsorized means, where value is the number or the proportion of ob-
servations that PROC UNIVARIATE uses to compute the Winsorized mean. If the value is
the number n of Winsorized observations, n must be between 0 and half the number of non-
missing observations. If value is a proportion p between 0 and ½, the number of observations
that PROC UNIVARIATE uses is equal to the smallest integer that is greater than or equal to
np, where n is the number of observations. To include confidence limits for the mean and the
Student t test in the table, you must use the default value of VARDEF=, which is DF. For de-
tails concerning the computation of Winsorized means, see the section “Winsorized Means”
on page 332. The WINSORIZED= option does not apply if you use a WEIGHT statement.

TYPE=keyword
specifies the type of confidence limit for the mean, where keyword is LOWER, UPPER,
or TWOSIDED. The default is TWOSIDED.

ALPHA=˛
specifies the level of significance ˛ for 100.1 � ˛/% confidence intervals. The value
˛ must be between 0 and 1; the default value is 0.05, which results in 95% confidence
intervals.

BY Statement

BY variables ;

You can specify a BY statement with PROC UNIVARIATE to obtain separate analyses for each
BY group. The BY statement specifies the variables that the procedure uses to form BY groups.
You can specify more than one variable. If you do not use the NOTSORTED option in the BY
statement, the observations in the data set must either be sorted by all the variables that you specify
or be indexed appropriately.
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DESCENDING
specifies that the data set is sorted in descending order by the variable that immediately fol-
lows the word DESCENDING in the BY statement.

NOTSORTED
specifies that observations are not necessarily sorted in alphabetic or numeric order. The data
are grouped in another way—for example, chronological order.

The requirement for ordering or indexing observations according to the values of BY variables
is suspended for BY-group processing when you use the NOTSORTED option. In fact, the
procedure does not use an index if you specify NOTSORTED. The procedure defines a BY
group as a set of contiguous observations that have the same values for all BY variables. If
observations with the same values for the BY variables are not contiguous, the procedure
treats each contiguous set as a separate BY group.

CDFPLOT Statement

CDFPLOT < variables > < / options > ;

The CDFPLOT statement plots the observed cumulative distribution function (cdf) of a variable,
defined as

FN .x/ D percent of nonmissing values � x

D
number of values � x

N
� 100%

where N is the number of nonmissing observations. The cdf is an increasing step function that has
a vertical jump of 1

N
at each value of x equal to an observed value. The cdf is also referred to as the

empirical cumulative distribution function (ecdf).

You can use any number of CDFPLOT statements in the UNIVARIATE procedure. The components
of the CDFPLOT statement are as follows.

variables
specify variables for which to create cdf plots. If you specify a VAR statement, the vari-
ables must also be listed in the VAR statement. Otherwise, the variables can be any numeric
variables in the input data set. If you do not specify a list of variables, then by default the
procedure creates a cdf plot for each variable listed in the VAR statement, or for each numeric
variable in the DATA= data set if you do not specify a VAR statement.

For example, suppose a data set named Steel contains exactly three numeric variables: Length,
Width, and Height. The following statements create a cdf plot for each of the three variables:

proc univariate data=Steel;
cdfplot;

run;

The following statements create a cdf plot for Length and a cdf plot for Width:
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proc univariate data=Steel;
var Length Width;
cdfplot;

run;

The following statements create a cdf plot for Width:

proc univariate data=Steel;
var Length Width;
cdfplot Width;

run;

options
specify the theoretical distribution for the plot or add features to the plot. If you specify
more than one variable, the options apply equally to each variable. Specify all options after
the slash (/) in the CDFPLOT statement. You can specify only one option that names a
distribution in each CDFPLOT statement, but you can specify any number of other options.
The distributions available are the beta, exponential, gamma, lognormal, normal, and three-
parameter Weibull. By default, the procedure produces a plot for the normal distribution.

Table 4.2 through Table 4.10 list the CDFPLOT options by function. For complete descrip-
tions, see the sections “Dictionary of Options” on page 244 and “Dictionary of Common
Options” on page 315. Options can be any of the following:

� primary options

� secondary options

� general options

Distribution Options

Table 4.2 lists primary options for requesting a theoretical distribution.
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Table 4.2 Primary Options for Theoretical Distributions

Option Description

BETA(beta-options) plots two-parameter beta distribution
function, parameters � and � as-
sumed known

EXPONENTIAL(exponential-options) plots one-parameter exponential dis-
tribution function, parameter � as-
sumed known

GAMMA(gamma-options) plots two-parameter gamma distribu-
tion function, parameter � assumed
known

LOGNORMAL(lognormal-options) plots two-parameter lognormal dis-
tribution function, parameter � as-
sumed known

NORMAL(normal-options) plots normal distribution function
WEIBULL(Weibull-options) plots two-parameter Weibull distribu-

tion function, parameter � assumed
known

Table 4.3 through Table 4.9 list secondary options that specify distribution parameters and control
the display of a theoretical distribution function. Specify these options in parentheses after the
distribution keyword. For example, you can request a normal probability plot with a distribution
reference line by specifying the NORMAL option as follows:

proc univariate;
cdfplot / normal(mu=10 sigma=0.5 color=red);

run;

The COLOR= option specifies the color for the curve, and the normal-options MU= and SIGMA=
specify the parameters � D 10 and � D 0:5 for the distribution function. If you do not specify
these parameters, maximum likelihood estimates are computed.

Table 4.3 Secondary Options Used with All Distributions

Option Description

COLOR= specifies color of theoretical distribution function
L= specifies line type of theoretical distribution function
W= specifies width of theoretical distribution function
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Table 4.4 Secondary Beta-Options

Option Description

ALPHA= specifies first shape parameter ˛ for beta distribution function
BETA= specifies second shape parameter ˇ for beta distribution function
SIGMA= specifies scale parameter � for beta distribution function
THETA= specifies lower threshold parameter � for beta distribution function

Table 4.5 Secondary Exponential-Options

Option Description

SIGMA= specifies scale parameter � for exponential distribution function
THETA= specifies threshold parameter � for exponential distribution function

Table 4.6 Secondary Gamma-Options

Option Description

ALPHA= specifies shape parameter ˛ for gamma distribution function
ALPHADELTA= specifies change in successive estimates of ˛ at which the Newton-

Raphson approximation of Ǫ terminates
ALPHAINITIAL= specifies initial value for ˛ in the Newton-Raphson approximation of Ǫ

MAXITER= specifies maximum number of iterations in the Newton-Raphson ap-
proximation of Ǫ

SIGMA= specifies scale parameter � for gamma distribution function
THETA= specifies threshold parameter � for gamma distribution function

Table 4.7 Secondary Lognormal-Options

Option Description

SIGMA= specifies shape parameter � for lognormal distribution function
THETA= specifies threshold parameter � for lognormal distribution function
ZETA= specifies scale parameter � for lognormal distribution function

Table 4.8 Secondary Normal-Options

Option Description

MU= specifies mean � for normal distribution function
SIGMA= specifies standard deviation � for normal distribution function
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Table 4.9 Secondary Weibull-Options

Option Description

C= specifies shape parameter c for Weibull distribution function
CDELTA= specifies change in successive estimates of c at which the Newton-

Raphson approximation of Oc terminates
CINITIAL= specifies initial value for c in the Newton-Raphson approximation of Oc

MAXITER= specifies maximum number of iterations in the Newton-Raphson ap-
proximation of Oc

SIGMA= specifies scale parameter � for Weibull distribution function
THETA= specifies threshold parameter � for Weibull distribution function

General Options

Table 4.10 summarizes general options for enhancing cdf plots.

Table 4.10 General Graphics Options

Option Description

ANNOKEY applies annotation requested in ANNOTATE= data set to key cell only
ANNOTATE= specifies annotate data set
CAXIS= specifies color for axis
CFRAME= specifies color for frame
CFRAMESIDE= specifies color for filling row label frames
CFRAMETOP= specifies color for filling column label frames
CHREF= specifies color for HREF= lines
CONTENTS= specifies table of contents entry for cdf plot grouping
CPROP= specifies color for proportion of frequency bar
CTEXT= specifies color for text
CTEXTSIDE= specifies color for row labels
CTEXTTOP= specifies color for column labels
CVREF= specifies color for VREF= lines
DESCRIPTION= specifies description for graphics catalog member
FONT= specifies text font
HAXIS= specifies AXIS statement for horizontal axis
HEIGHT= specifies height of text used outside framed areas
HMINOR= specifies number of horizontal axis minor tick marks
HREF= specifies reference lines perpendicular to the horizontal axis
HREFLABELS= specifies labels for HREF= lines
HREFLABPOS= specifies position for HREF= line labels
INFONT= specifies software font for text inside framed areas
INHEIGHT= specifies height of text inside framed areas
INTERTILE= specifies distance between tiles in comparative plot
LHREF= specifies line style for HREF= lines
LVREF= specifies line style for VREF= lines
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Table 4.10 continued

Option Description

NAME= specifies name for plot in graphics catalog
NCOLS= specifies number of columns in comparative plot
NOECDF suppresses plot of empirical (observed) distribution function
NOFRAME suppresses frame around plotting area
NOHLABEL suppresses label for horizontal axis
NOVLABEL suppresses label for vertical axis
NOVTICK suppresses tick marks and tick mark labels for vertical axis
NROWS= specifies number of rows in comparative plot
OVERLAY overlays plots for different class levels (ODS Graphics only)
TURNVLABELS turns and vertically strings out characters in labels for vertical axis
VAXIS= specifies AXIS statement for vertical axis
VAXISLABEL= specifies label for vertical axis
VMINOR= specifies number of vertical axis minor tick marks
VREF= specifies reference lines perpendicular to the vertical axis
VREFLABELS= specifies labels for VREF= lines
VREFLABPOS= specifies position for VREF= line labels
VSCALE= specifies scale for vertical axis
WAXIS= specifies line thickness for axes and frame

Dictionary of Options

The following entries provide detailed descriptions of the options specific to the CDFPLOT state-
ment. See the section “Dictionary of Common Options” on page 315 for detailed descriptions of
options common to all plot statements.

ALPHA=value
specifies the shape parameter ˛ for distribution functions requested with the BETA and
GAMMA options. Enclose the ALPHA= option in parentheses after the BETA or GAMMA
keywords. If you do not specify a value for ˛, the procedure calculates a maximum likelihood
estimate. For examples, see the entries for the BETA and GAMMA options.

BETA< (beta-options ) >
displays a fitted beta distribution function on the cdf plot. The equation of the fitted cdf is

F.x/ D

8<:
0 for x � �

Ix��
�
.˛; ˇ/ for � < x < � C �

1 for x � � C �

where Iy.˛; ˇ/ is the incomplete beta function and

� D lower threshold parameter (lower endpoint)

� D scale parameter .� > 0/

˛ D shape parameter .˛ > 0/

ˇ D shape parameter .ˇ > 0/
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The beta distribution is bounded below by the parameter � and above by the value �C� . You
can specify � and � by using the THETA= and SIGMA= beta-options, as illustrated in the
following statements, which fit a beta distribution bounded between 50 and 75. The default
values for � and � are 0 and 1, respectively.

proc univariate;
cdfplot / beta(theta=50 sigma=25);

run;

The beta distribution has two shape parameters: ˛ and ˇ. If these parameters are known, you
can specify their values with the ALPHA= and BETA= beta-options. If you do not specify
values for ˛ and ˇ, the procedure calculates maximum likelihood estimates.

The BETA option can appear only once in a CDFPLOT statement. Table 4.3 and Table 4.4
list options you can specify with the BETA distribution option.

BETA=value

B=value
specifies the second shape parameter ˇ for beta distribution functions requested by the BETA
option. Enclose the BETA= option in parentheses after the BETA keyword. If you do not
specify a value for ˇ, the procedure calculates a maximum likelihood estimate. For examples,
see the preceding entry for the BETA option.

C=value
specifies the shape parameter c for Weibull distribution functions requested with the
WEIBULL option. Enclose the C= option in parentheses after the WEIBULL keyword. If
you do not specify a value for c, the procedure calculates a maximum likelihood estimate.
You can specify the SHAPE= option as an alias for the C= option.

EXPONENTIAL< (exponential-options ) >

EXP< (exponential-options ) >
displays a fitted exponential distribution function on the cdf plot. The equation of the fitted
cdf is

F.x/ D

(
0 for x � �

1 � exp
�
�

x��
�

�
for x > �

where

� D threshold parameter

� D scale parameter .� > 0/

The parameter � must be less than or equal to the minimum data value. You can specify �
with the THETA= exponential-option. The default value for � is 0. You can specify � with
the SIGMA= exponential-option. By default, a maximum likelihood estimate is computed for
� . For example, the following statements fit an exponential distribution with � D 10 and a
maximum likelihood estimate for � :

proc univariate;
cdfplot / exponential(theta=10 l=2 color=green);

run;
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The exponential curve is green and has a line type of 2.

The EXPONENTIAL option can appear only once in a CDFPLOT statement. Table 4.3 and
Table 4.5 list the options you can specify with the EXPONENTIAL option.

GAMMA< (gamma-options) >
displays a fitted gamma distribution function on the cdf plot. The equation of the fitted cdf is

F.x/ D

(
0 for x � �

1
�.˛/�

R x
�

�
t��

�

�˛�1
exp

�
�

t��
�

�
dt for x > �

where

� D threshold parameter

� D scale parameter .� > 0/

˛ D shape parameter .˛ > 0/

The parameter � for the gamma distribution must be less than the minimum data value. You
can specify � with the THETA= gamma-option. The default value for � is 0. In addition,
the gamma distribution has a shape parameter ˛ and a scale parameter � . You can specify
these parameters with the ALPHA= and SIGMA= gamma-options. By default, maximum
likelihood estimates are computed for ˛ and � . For example, the following statements fit a
gamma distribution function with � D 4 and maximum likelihood estimates for ˛ and � :

proc univariate;
cdfplot / gamma(theta=4);

run;

Note that the maximum likelihood estimate of ˛ is calculated iteratively using the Newton-
Raphson approximation. The gamma-options ALPHADELTA=, ALPHAINITIAL=, and
MAXITER= control the approximation.

The GAMMA option can appear only once in a CDFPLOT statement. Table 4.3 and Table 4.6
list the options you can specify with the GAMMA option.

LOGNORMAL< (lognormal-options) >
displays a fitted lognormal distribution function on the cdf plot. The equation of the fitted cdf
is

F.x/ D

(
0 for x � �

ˆ
�

log.x��/��
�

�
for x > �

where ˆ.�/ is the standard normal cumulative distribution function and

� D threshold parameter

� D scale parameter

� D shape parameter .� > 0/
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The parameter � for the lognormal distribution must be less than the minimum data value. You
can specify � with the THETA= lognormal-option. The default value for � is 0. In addition,
the lognormal distribution has a shape parameter � and a scale parameter �. You can specify
these parameters with the SIGMA= and ZETA= lognormal-options. By default, maximum
likelihood estimates are computed for � and �. For example, the following statements fit a
lognormal distribution function with � D 10 and maximum likelihood estimates for � and �:

proc univariate;
cdfplot / lognormal(theta = 10);

run;

The LOGNORMAL option can appear only once in a CDFPLOT statement. Table 4.3 and
Table 4.7 list options that you can specify with the LOGNORMAL option.

MU=value
specifies the parameter � for normal distribution functions requested with the NORMAL
option. Enclose the MU= option in parentheses after the NORMAL keyword. The default
value is the sample mean.

NOECDF
suppresses the observed distribution function (the empirical cumulative distribution function)
of the variable, which is drawn by default. This option enables you to create theoretical cdf
plots without displaying the data distribution. The NOECDF option can be used only with a
theoretical distribution (such as the NORMAL option).

NORMAL< (normal-options) >
displays a fitted normal distribution function on the cdf plot. The equation of the fitted cdf is

F.x/ D ˆ
�x��

�

�
for �1 < x < 1

where ˆ.�/ is the standard normal cumulative distribution function and

� D mean

� D standard deviation .� > 0/

You can specify known values for � and � with the MU= and SIGMA= normal-options, as
shown in the following statements:

proc univariate;
cdfplot / normal(mu=14 sigma=.05);

run;

By default, the sample mean and sample standard deviation are calculated for � and � . The
NORMAL option can appear only once in a CDFPLOT statement. Table 4.3 and Table 4.8
list options that you can specify with the NORMAL option.

SIGMA=value | EST
specifies the parameter � for distribution functions requested by the BETA, EXPONENTIAL,
GAMMA, LOGNORMAL, NORMAL, and WEIBULL options. Enclose the SIGMA= op-
tion in parentheses after the distribution keyword. The following table summarizes the use of
the SIGMA= option:
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Distribution Option SIGMA= Specifies Default Value Alias
BETA scale parameter � 1 SCALE=
EXPONENTIAL scale parameter � maximum likelihood estimate SCALE=
GAMMA scale parameter � maximum likelihood estimate SCALE=
LOGNORMAL shape parameter � maximum likelihood estimate SHAPE=
NORMAL scale parameter � standard deviation
WEIBULL scale parameter � maximum likelihood estimate SCALE=

THETA=value | EST

THRESHOLD=value | EST
specifies the lower threshold parameter � for theoretical cumulative distribution functions
requested with the BETA, EXPONENTIAL, GAMMA, LOGNORMAL, and WEIBULL op-
tions. Enclose the THETA= option in parentheses after the distribution keyword. The default
value is 0.

VSCALE=PERCENT | PROPORTION
specifies the scale of the vertical axis. The value PERCENT scales the data in units of percent
of observations per data unit. The value PROPORTION scales the data in units of proportion
of observations per data unit. The default is PERCENT.

WEIBULL< (Weibull-options) >
displays a fitted Weibull distribution function on the cdf plot. The equation of the fitted cdf is

F.x/ D

(
0 for x � �

1 � exp
�
�

�
x��

�

�c�
for x > �

where

� D threshold parameter

� D scale parameter .� > 0/

c D shape parameter .c > 0/

The parameter � must be less than the minimum data value. You can specify � with the
THETA= Weibull-option. The default value for � is 0. In addition, the Weibull distribution
has a shape parameter c and a scale parameter � . You can specify these parameters with the
SIGMA= and C= Weibull-options. By default, maximum likelihood estimates are computed
for c and � . For example, the following statements fit a Weibull distribution function with
� D 15 and maximum likelihood estimates for � and c:

proc univariate;
cdfplot / weibull(theta=15);

run;

Note that the maximum likelihood estimate of c is calculated iteratively using the Newton-
Raphson approximation. The Weibull-options CDELTA=, CINITIAL=, and MAXITER=
control the approximation.

The WEIBULL option can appear only once in a CDFPLOT statement. Table 4.3 and
Table 4.9 list options that you can specify with the WEIBULL option.
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ZETA=value
specifies a value for the scale parameter � for a lognormal distribution function requested
with the LOGNORMAL option. Enclose the ZETA= option in parentheses after the LOG-
NORMAL keyword. If you do not specify a value for �, a maximum likelihood estimate is
computed. You can specify the SCALE= option as an alias for the ZETA= option.

CLASS Statement

CLASS variable-1 < (v-options) > < variable-2 < (v-options) > > < / KEYLEVEL= value1 | (
value1 value2 ) > ;

The CLASS statement specifies one or two variables used to group the data into classification levels.
Variables in a CLASS statement are referred to as CLASS variables. CLASS variables can be
numeric or character. Class variables can have floating point values, but they typically have a
few discrete values that define levels of the variable. You do not have to sort the data by CLASS
variables. PROC UNIVARIATE uses the formatted values of the CLASS variables to determine the
classification levels.

You can specify the following v-options enclosed in parentheses after the CLASS variable:

MISSING
specifies that missing values for the CLASS variable are to be treated as valid classification
levels. Special missing values that represent numeric values (‘.A’ through ‘.Z’ and ‘._’) are
each considered as a separate value. If you omit MISSING, PROC UNIVARIATE excludes
the observations with a missing CLASS variable value from the analysis. Enclose this option
in parentheses after the CLASS variable.

ORDER=DATA | FORMATTED | FREQ | INTERNAL
specifies the display order for the CLASS variable values. The default value is INTERNAL.
You can specify the following values with the ORDER=option:

DATA orders values according to their order in the input data set. When you use
a plot statement, PROC UNIVARIATE displays the rows (columns) of the
comparative plot from top to bottom (left to right) in the order that the
CLASS variable values first appear in the input data set.

FORMATTED orders values by their ascending formatted values. This order might de-
pend on your operating environment. When you use a plot statement,
PROC UNIVARIATE displays the rows (columns) of the comparative plot
from top to bottom (left to right) in increasing order of the formatted
CLASS variable values. For example, suppose a numeric CLASS vari-
able DAY (with values 1, 2, and 3) has a user-defined format that assigns
Wednesday to the value 1, Thursday to the value 2, and Friday to the value
3. The rows of the comparative plot will appear in alphabetical order (Fri-
day, Thursday, Wednesday) from top to bottom.

If there are two or more distinct internal values with the same format-
ted value, then PROC UNIVARIATE determines the order by the internal
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value that occurs first in the input data set. For numeric variables without
an explicit format, the levels are ordered by their internal values.

FREQ orders values by descending frequency count so that levels with the most
observations are listed first. If two or more values have the same frequency
count, PROC UNIVARIATE uses the formatted values to determine the
order.

When you use a plot statement, PROC UNIVARIATE displays the rows
(columns) of the comparative plot from top to bottom (left to right) in
order of decreasing frequency count for the CLASS variable values.

INTERNAL orders values by their unformatted values, which yields the same order as
PROC SORT. This order may depend on your operating environment.

When you use a plot statement, PROC UNIVARIATE displays the rows
(columns) of the comparative plot from top to bottom (left to right) in in-
creasing order of the internal (unformatted) values of the CLASS variable.
The first CLASS variable is used to label the rows of the comparative plots
(top to bottom). The second CLASS variable is used to label the columns
of the comparative plots (left to right). For example, suppose a numeric
CLASS variable DAY (with values 1, 2, and 3) has a user-defined format
that assigns Wednesday to the value 1, Thursday to the value 2, and Friday
to the value 3. The rows of the comparative plot will appear in day-of-the-
week order (Wednesday, Thursday, Friday) from top to bottom.

You can specify the following option after the slash (/) in the CLASS statement.

KEYLEVEL=value | ( value1 value2 )
specifies the key cells in comparative plots. For each plot, PROC UNIVARIATE first deter-
mines the horizontal axis scaling for the key cell, and then extends the axis using the estab-
lished tick interval to accommodate the data ranges for the remaining cells, if necessary. Thus,
the choice of the key cell determines the uniform horizontal axis that PROC UNIVARIATE
uses for all cells.

If you specify only one CLASS variable and use a plot statement, KEYLEVEL=value iden-
tifies the key cell as the level for which the CLASS variable is equal to value. By default,
PROC UNIVARIATE sorts the levels in the order determined by the ORDER= option, and
the key cell is the first occurrence of a level in this order. The cells display in order from top
to bottom or left to right. Consequently, the key cell appears at the top (or left). When you
specify a different key cell with the KEYLEVEL= option, this cell appears at the top (or left).

If you specify two CLASS variables, use KEYLEVEL= (value1 value2) to identify the key
cell as the level for which CLASS variable n is equal to valuen. By default, PROC UNI-
VARIATE sorts the levels of the first CLASS variable in the order that is determined by its
ORDER= option. Then, within each of these levels, it sorts the levels of the second CLASS
variable in the order that is determined by its ORDER= option. The default key cell is the first
occurrence of a combination of levels for the two variables in this order. The cells display
in the order of the first CLASS variable from top to bottom and in the order of the second
CLASS variable from left to right. Consequently, the default key cell appears at the upper left
corner. When you specify a different key cell with the KEYLEVEL= option, this cell appears
at the upper left corner.
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The length of the KEYLEVEL= value cannot exceed 16 characters and you must specify a
formatted value.

The KEYLEVEL= option has no effect unless you specify a plot statement.

NOKEYMOVE
specifies that the location of the key cell in a comparative plot be unchanged by the CLASS
statement KEYLEVEL= option. By default, the key cell is positioned as the first cell in a
comparative plot.

The NOKEYMOVE option has no effect unless you specify a plot statement.

FREQ Statement

FREQ variable ;

The FREQ statement specifies a numeric variable whose value represents the frequency of the ob-
servation. If you use the FREQ statement, the procedure assumes that each observation represents
n observations, where n is the value of variable. If the variable is not an integer, the SAS System
truncates it. If the variable is less than 1 or is missing, the procedure excludes that observation from
the analysis. See Example 4.6.

NOTE: The FREQ statement affects the degrees of freedom, but the WEIGHT statement does not.

HISTOGRAM Statement

HISTOGRAM < variables > < / options > ;

The HISTOGRAM statement creates histograms and optionally superimposes estimated parametric
and nonparametric probability density curves. You cannot use the WEIGHT statement with the
HISTOGRAM statement. You can use any number of HISTOGRAM statements after a PROC
UNIVARIATE statement. The components of the HISTOGRAM statement are follows.

variables
are the variables for which histograms are to be created. If you specify a VAR statement,
the variables must also be listed in the VAR statement. Otherwise, the variables can be any
numeric variables in the input data set. If you do not specify variables in a VAR statement
or in the HISTOGRAM statement, then by default, a histogram is created for each numeric
variable in the DATA= data set. If you use a VAR statement and do not specify any variables
in the HISTOGRAM statement, then by default, a histogram is created for each variable listed
in the VAR statement.

For example, suppose a data set named Steel contains exactly two numeric variables named
Length and Width. The following statements create two histograms, one for Length and one for
Width:



252 F Chapter 4: The UNIVARIATE Procedure

proc univariate data=Steel;
histogram;

run;

Likewise, the following statements create histograms for Length and Width:

proc univariate data=Steel;
var Length Width;
histogram;

run;

The following statements create a histogram for Length only:

proc univariate data=Steel;
var Length Width;
histogram Length;

run;

options
add features to the histogram. Specify all options after the slash (/) in the HISTOGRAM
statement. Options can be one of the following:

� primary options for fitted parametric distributions and kernel density estimates

� secondary options for fitted parametric distributions and kernel density estimates

� general options for graphics and output data sets

For example, in the following statements, the NORMAL option displays a fitted normal curve
on the histogram, the MIDPOINTS= option specifies midpoints for the histogram, and the
CTEXT= option specifies the color of the text:

proc univariate data=Steel;
histogram Length / normal

midpoints = 5.6 5.8 6.0 6.2 6.4
ctext = blue;

run;

Table 4.11 through Table 4.23 list the HISTOGRAM options by function. For complete de-
scriptions, see the sections “Dictionary of Options” on page 259 and “Dictionary of Common
Options” on page 315.

Parametric Density Estimation Options

Table 4.11 lists primary options that display parametric density estimates on the histogram. You can
specify each primary option once in a given HISTOGRAM statement, and each primary option can
display multiple curves from its family on the histogram.
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Table 4.11 Primary Options for Parametric Fitted Distributions

Option Description

BETA(beta-options) fits beta distribution with threshold
parameter � , scale parameter � , and
shape parameters ˛ and ˇ

EXPONENTIAL(exponential-options) fits exponential distribution with
threshold parameter � and scale pa-
rameter �

GAMMA(gamma-options) fits gamma distribution with thresh-
old parameter � , scale parameter � ,
and shape parameter ˛

LOGNORMAL(lognormal-options) fits lognormal distribution with
threshold parameter � , scale pa-
rameter �, and shape parameter
�

NORMAL(normal-options) fits normal distribution with mean �
and standard deviation �

SB(SB -options) fits Johnson SB distribution with
threshold parameter � , scale param-
eter � , and shape parameters ı and 


SU(SU -options) fits Johnson SU distribution with
threshold parameter � , scale param-
eter � , and shape parameters ı and 


WEIBULL(Weibull-options) fits Weibull distribution with thresh-
old parameter � , scale parameter � ,
and shape parameter c

Table 4.12 through Table 4.20 list secondary options that specify parameters for fitted parametric
distributions and that control the display of fitted curves. Specify these secondary options in paren-
theses after the primary distribution option. For example, you can fit a normal curve by specifying
the NORMAL option as follows:

proc univariate;
histogram / normal(color=red mu=10 sigma=0.5);

run;

The COLOR= normal-option draws the curve in red, and the MU= and SIGMA= normal-options
specify the parameters � D 10 and � D 0:5 for the curve. Note that the sample mean and sample
standard deviation are used to estimate � and � , respectively, when the MU= and SIGMA= normal-
options are not specified.

You can specify lists of values for secondary options to display more than one fitted curve from
the same distribution family on a histogram. Option values are matched by list position. You can
specify the value EST in a list of distribution parameter values to use an estimate of the parameter.

For example, the following code displays two normal curves on a histogram:
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proc univariate;
histogram / normal(color=(red blue) mu=10 est sigma=0.5 est);

run;

The first curve is red, with � D 10 and � D 0:5. The second curve is blue, with � equal to the
sample mean and � equal to the sample standard deviation.

See the section “Formulas for Fitted Continuous Distributions” on page 346 for detailed information
about the families of parametric distributions that you can fit with the HISTOGRAM statement.

Table 4.12 Secondary Options Used with All Parametric Distribution Options

Option Description

COLOR= specifies colors of density curves
CONTENTS= specifies table of contents entry for density curve grouping
FILL fills area under density curve
L= specifies line types of density curves
MIDPERCENTS prints table of midpoints of histogram intervals
NOPRINT suppresses tables summarizing curves
PERCENTS= lists percents for which quantiles calculated from data and quantiles

estimated from curves are tabulated
W= specifies widths of density curves

Table 4.13 Secondary Beta-Options

Option Description

ALPHA= specifies first shape parameter ˛ for beta curve
BETA= specifies second shape parameter ˇ for beta curve
SIGMA= specifies scale parameter � for beta curve
THETA= specifies lower threshold parameter � for beta curve

Table 4.14 Secondary Exponential-Options

Option Description

SIGMA= specifies scale parameter � for exponential curve
THETA= specifies threshold parameter � for exponential curve
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Table 4.15 Secondary Gamma-Options

Option Description

ALPHA= specifies shape parameter ˛ for gamma curve
ALPHADELTA= specifies change in successive estimates of ˛ at which the Newton-

Raphson approximation of Ǫ terminates
ALPHAINITIAL= specifies initial value for ˛ in the Newton-Raphson approximation of Ǫ

MAXITER= specifies maximum number of iterations in the Newton-Raphson ap-
proximation of Ǫ

SIGMA= specifies scale parameter � for gamma curve
THETA= specifies threshold parameter � for gamma curve

Table 4.16 Secondary Lognormal-Options

Option Description

SIGMA= specifies shape parameter � for lognormal curve
THETA= specifies threshold parameter � for lognormal curve
ZETA= specifies scale parameter � for lognormal curve

Table 4.17 Secondary Normal-Options

Option Description

MU= specifies mean � for normal curve
SIGMA= specifies standard deviation � for normal curve

Table 4.18 Secondary Johnson SB -Options

Option Description

DELTA= specifies first shape parameter ı for Johnson SB curve
FITINTERVAL= specifies z-value for method of percentiles
FITMETHOD= specifies method of parameter estimation
FITTOLERANCE= specifies tolerance for method of percentiles
GAMMA= specifies second shape parameter 
 for Johnson SB curve
SIGMA= specifies scale parameter � for Johnson SB curve
THETA= specifies lower threshold parameter � for Johnson SB curve
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Table 4.19 Secondary Johnson SU -Options

Option Description

DELTA= specifies first shape parameter ı for Johnson SU curve
FITINTERVAL= specifies z-value for method of percentiles
FITMETHOD= specifies method of parameter estimation
FITTOLERANCE= specifies tolerance for method of percentiles
GAMMA= specifies second shape parameter 
 for Johnson SU curve
SIGMA= specifies scale parameter � for Johnson SU curve
THETA= specifies lower threshold parameter � for Johnson SU curve

Table 4.20 Secondary Weibull-Options

Option Description

C= specifies shape parameter c for Weibull curve
CDELTA= specifies change in successive estimates of c at which the Newton-

Raphson approximation of Oc terminates
CINITIAL= specifies initial value for c in the Newton-Raphson approximation of Oc

MAXITER= specifies maximum number of iterations in the Newton-Raphson ap-
proximation of Oc

SIGMA= specifies scale parameter � for Weibull curve
THETA= specifies threshold parameter � for Weibull curve

Nonparametric Density Estimation Options

Use the option KERNEL(kernel-options) to compute kernel density estimates. Specify the fol-
lowing secondary options in parentheses after the KERNEL option to control features of density
estimates requested with the KERNEL option.

Table 4.21 Kernel-Options

Option Description

C= specifies standardized bandwidth parameter c
COLOR= specifies color of the kernel density curve
FILL fills area under kernel density curve
K= specifies type of kernel function
L= specifies line type used for kernel density curve
LOWER= specifies lower bound for kernel density curve
UPPER= specifies upper bound for kernel density curve
W= specifies line width for kernel density curve
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General Options

Table 4.22 summarizes options for enhancing histograms, and Table 4.23 summarizes options for
requesting output data sets.

Table 4.22 General Graphics Options

Option Description

ANNOKEY applies annotation requested in ANNOTATE= data set to key cell only
ANNOTATE= specifies annotate data set
BARLABEL= produces labels above histogram bars
BARWIDTH= specifies width for the bars
CAXIS= specifies color for axis
CBARLINE= specifies color for outlines of histogram bars
CFILL= specifies color for filling under curve
CFRAME= specifies color for frame
CFRAMESIDE= specifies color for filling frame for row labels
CFRAMETOP= specifies color for filling frame for column labels
CGRID= specifies color for grid lines
CHREF= specifies color for HREF= lines
CLIPREF draws reference lines behind histogram bars
CONTENTS= specifies table of contents entry for histogram grouping
CPROP= specifies color for proportion of frequency bar
CTEXT= specifies color for text
CTEXTSIDE= specifies color for row labels of comparative histograms
CTEXTTOP= specifies color for column labels of comparative histograms
CVREF= specifies color for VREF= lines
DESCRIPTION= specifies description for plot in graphics catalog
ENDPOINTS= lists endpoints for histogram intervals
FONT= specifies software font for text
FORCEHIST forces creation of histogram
FRONTREF draws reference lines in front of histogram bars
GRID creates a grid
HANGING constructs hanging histogram
HAXIS= specifies AXIS statement for horizontal axis
HEIGHT= specifies height of text used outside framed areas
HMINOR= specifies number of horizontal minor tick marks
HOFFSET= specifies offset for horizontal axis
HREF= specifies reference lines perpendicular to the horizontal axis
HREFLABELS= specifies labels for HREF= lines
HREFLABPOS= specifies vertical position of labels for HREF= lines
INFONT= specifies software font for text inside framed areas
INHEIGHT= specifies height of text inside framed areas
INTERBAR= specifies space between histogram bars
INTERTILE= specifies distance between tiles
LGRID= specifies a line type for grid lines
LHREF= specifies line style for HREF= lines
LVREF= specifies line style for VREF= lines
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Table 4.22 continued

Option Description

MAXNBIN= specifies maximum number of bins to display
MAXSIGMAS= limits the number of bins that display to within a specified number of

standard deviations above and below mean of data in key cell
MIDPOINTS= specifies midpoints for histogram intervals
NAME= specifies name for plot in graphics catalog
NCOLS= specifies number of columns in comparative histogram
NENDPOINTS= specifies number of histogram interval endpoints
NMIDPOINTS= specifies number of histogram interval midpoints
NOBARS suppresses histogram bars
NOFRAME suppresses frame around plotting area
NOHLABEL suppresses label for horizontal axis
NOPLOT suppresses plot
NOTABCONTENTS suppresses table of contents entries for tables produced by HIS-

TOGRAM statement
NOVLABEL suppresses label for vertical axis
NOVTICK suppresses tick marks and tick mark labels for vertical axis
NROWS= specifies number of rows in comparative histogram
PFILL= specifies pattern for filling under curve
RTINCLUDE includes right endpoint in interval
TURNVLABELS turns and vertically strings out characters in labels for vertical axis
VAXIS= specifies AXIS statement or values for vertical axis
VAXISLABEL= specifies label for vertical axis
VMINOR= specifies number of vertical minor tick marks
VOFFSET= specifies length of offset at upper end of vertical axis
VREF= specifies reference lines perpendicular to the vertical axis
VREFLABELS= specifies labels for VREF= lines
VREFLABPOS= specifies horizontal position of labels for VREF= lines
VSCALE= specifies scale for vertical axis
WAXIS= specifies line thickness for axes and frame
WBARLINE= specifies line thickness for bar outlines
WGRID= specifies line thickness for grid

Table 4.23 Options for Requesting Output Data Sets

Option Description

MIDPERCENTS creates table of histogram intervals
OUTHISTOGRAM= specifies information about histogram intervals
OUTKERNEL= creates a data set containing kernel density estimates
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Dictionary of Options

The following entries provide detailed descriptions of options in the HISTOGRAM statement. See
the section “Dictionary of Common Options” on page 315 for detailed descriptions of options com-
mon to all plot statements.

ALPHA=value-list
specifies the shape parameter ˛ for fitted curves requested with the BETA and GAMMA
options. Enclose the ALPHA= option in parentheses after the BETA or GAMMA options.
By default, or if you specify the value EST, the procedure calculates a maximum likelihood
estimate for ˛. You can specify A= as an alias for ALPHA= if you use it as a beta-option.
You can specify SHAPE= as an alias for ALPHA= if you use it as a gamma-option.

BARLABEL=COUNT | PERCENT | PROPORTION
displays labels above the histogram bars. If you specify BARLABEL=COUNT, the label
shows the number of observations associated with a given bar. If you specify BARLA-
BEL=PERCENT, the label shows the percentage of observations represented by that bar. If
you specify BARLABEL=PROPORTION, the label displays the proportion of observations
associated with the bar.

BARWIDTH=value
specifies the width of the histogram bars in percentage screen units. If both the BARWIDTH=
and INTERBAR= options are specified, the INTERBAR= option takes precedence.

BETA < (beta-options) >
displays fitted beta density curves on the histogram. The BETA option can occur only once in
a HISTOGRAM statement, but it can request any number of beta curves. The beta distribution
is bounded below by the parameter � and above by the value � C � . Use the THETA= and
SIGMA= beta-options to specify these parameters. By default, THETA=0 and SIGMA=1.
You can specify THETA=EST and SIGMA=EST to request maximum likelihood estimates
for � and � .

The beta distribution has two shape parameters: ˛ and ˇ. If these parameters are known,
you can specify their values with the ALPHA= and BETA= beta-options. By default, the
procedure computes maximum likelihood estimates for ˛ and ˇ. NOTE: Three- and four-
parameter maximum likelihood estimation may not always converge.

Table 4.12 and Table 4.13 list secondary options you can specify with the BETA option. See
the section “Beta Distribution” on page 346 for details and Example 4.21 for an example that
uses the BETA option.

BETA=value-list

B=value-list
specifies the second shape parameter ˇ for beta density curves requested with the BETA
option. Enclose the BETA= option in parentheses after the BETA option. By default, or if
you specify the value EST, the procedure calculates a maximum likelihood estimate for ˇ.

C=value-list
specifies the shape parameter c for Weibull density curves requested with the WEIBULL
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option. Enclose the C= Weibull-option in parentheses after the WEIBULL option. By default,
or if you specify the value EST, the procedure calculates a maximum likelihood estimate for
c. You can specify the SHAPE= Weibull-option as an alias for the C= Weibull-option.

C=value-list
specifies the standardized bandwidth parameter c for kernel density estimates requested with
the KERNEL option. Enclose the C= kernel-option in parentheses after the KERNEL option.
You can specify a list of values to request multiple estimates. You can specify the value MISE
to produce the estimate with a bandwidth that minimizes the approximate mean integrated
square error (MISE), or SJPI to select the bandwidth by using the Sheather-Jones plug-in
method.

You can also use the C= kernel-option with the K= kernel-option (which specifies the kernel
function) to compute multiple estimates. If you specify more kernel functions than band-
widths, the last bandwidth in the list is repeated for the remaining estimates. Similarly, if you
specify more bandwidths than kernel functions, the last kernel function is repeated for the re-
maining estimates. If you do not specify the C= kernel-option, the bandwidth that minimizes
the approximate MISE is used for all the estimates.

See the section “Kernel Density Estimates” on page 358 for more information about kernel
density estimates.

CBARLINE=color
specifies the color for the outline of the histogram bars when producing traditional graphics.
The option does not apply to ODS Graphics output.

CFILL=color
specifies the color to fill the bars of the histogram (or the area under a fitted density curve if
you also specify the FILL option) when producing traditional graphics. See the entries for the
FILL and PFILL= options for additional details. Refer to SAS/GRAPH Software: Reference
for a list of colors. The option does not apply to ODS Graphics output.

CGRID=color
specifies the color for grid lines when a grid displays on the histogram in traditional graphics.
This option also produces a grid if the GRID= option is not specified.

CLIPREF
draws reference lines requested with the HREF= and VREF= options behind the histogram
bars. When the GSTYLE system option is in effect for traditional graphics, reference lines
are drawn in front of the bars by default.

CONTENTS=
specifies the table of contents grouping entry for tables associated with a density curve. En-
close the CONTENTS= option in parentheses after the distribution option. You can specify
CONTENTS=‘’ to suppress the grouping entry.

DELTA=value-list
specifies the first shape parameter ı for Johnson SB and Johnson SU distribution functions
requested with the SB and SU options. Enclose the DELTA= option in parentheses after the
SB or SU option. If you do not specify a value for ı, or if you specify the value EST, the
procedure calculates an estimate.
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ENDPOINTS < =values | KEY | UNIFORM >
uses histogram bin endpoints as the tick mark values for the horizontal axis and determines
how to compute the bin width of the histogram bars. The values specify both the left and
right endpoint of each histogram interval. The width of the histogram bars is the difference
between consecutive endpoints. The procedure uses the same values for all variables.

The range of endpoints must cover the range of the data. For example, if you specify

endpoints=2 to 10 by 2

then all of the observations must fall in the intervals [2,4) [4,6) [6,8) [8,10]. You also must
use evenly spaced endpoints which you list in increasing order.

KEY determines the endpoints for the data in the key cell. The initial number
of endpoints is based on the number of observations in the key cell by
using the method of Terrell and Scott (1985). The procedure extends the
endpoint list for the key cell in either direction as necessary until it spans
the data in the remaining cells.

UNIFORM determines the endpoints by using all the observations as if there were no
cells. In other words, the number of endpoints is based on the total sample
size by using the method of Terrell and Scott (1985).

Neither KEY nor UNIFORM apply unless you use the CLASS statement.

If you omit ENDPOINTS, the procedure uses the histogram midpoints as horizontal axis
tick values. If you specify ENDPOINTS, the procedure computes the endpoints by using
an algorithm (Terrell and Scott 1985) that is primarily applicable to continuous data that are
approximately normally distributed.

If you specify both MIDPOINTS= and ENDPOINTS, the procedure issues a warning mes-
sage and uses the endpoints.

If you specify RTINCLUDE, the procedure includes the right endpoint of each histogram
interval in that interval instead of including the left endpoint.

If you use a CLASS statement and specify ENDPOINTS, the procedure uses END-
POINTS=KEY as the default. However if the key cell is empty, then the procedure uses
ENDPOINTS=UNIFORM.

EXPONENTIAL < (exponential-options) >

EXP < (exponential-options) >
displays fitted exponential density curves on the histogram. The EXPONENTIAL option
can occur only once in a HISTOGRAM statement, but it can request any number of ex-
ponential curves. The parameter � must be less than or equal to the minimum data value.
Use the THETA= exponential-option to specify � . By default, THETA=0. You can spec-
ify THETA=EST to request the maximum likelihood estimate for � . Use the SIGMA=
exponential-option to specify � . By default, the procedure computes a maximum likelihood
estimate for � . Table 4.12 and Table 4.14 list options you can specify with the EXPONEN-
TIAL option. See the section “Exponential Distribution” on page 348 for details.
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FILL
fills areas under the fitted density curve or the kernel density estimate with colors and patterns.
The FILL option can occur with only one fitted curve. Enclose the FILL option in parentheses
after a density curve option or the KERNEL option. The CFILL= and PFILL= options specify
the color and pattern for the area under the curve when producing traditional graphics. For a
list of available colors and patterns, see SAS/GRAPH Software: Reference.

FORCEHIST
forces the creation of a histogram if there is only one unique observation. By default, a
histogram is not created if the standard deviation of the data is zero.

FRONTREF
draws reference lines requested with the HREF= and VREF= options in front of the histogram
bars. When the NOGSTYLE system option is in effect for traditional graphics, reference lines
are drawn behind the histogram bars by default, and they can be obscured by filled bars.

GAMMA < (gamma-options) >
displays fitted gamma density curves on the histogram. The GAMMA option can occur only
once in a HISTOGRAM statement, but it can request any number of gamma curves. The
parameter � must be less than the minimum data value. Use the THETA= gamma-option to
specify � . By default, THETA=0. You can specify THETA=EST to request the maximum
likelihood estimate for � . Use the ALPHA= and the SIGMA= gamma-options to specify the
shape parameter ˛ and the scale parameter � . By default, PROC UNIVARIATE computes
maximum likelihood estimates for ˛ and � . The procedure calculates the maximum likeli-
hood estimate of ˛ iteratively by using the Newton-Raphson approximation. Table 4.12 and
Table 4.15 list options you can specify with the GAMMA option. See the section “Gamma
Distribution” on page 348 for details, and see Example 4.22 for an example that uses the
GAMMA option.

GAMMA=value-list
specifies the second shape parameter 
 for Johnson SB and Johnson SU distribution functions
requested with the SB and SU options. Enclose the GAMMA= option in parentheses after
the SB or SU option. If you do not specify a value for 
 , or if you specify the value EST, the
procedure calculates an estimate.

GRID
displays a grid on the histogram. Grid lines are horizontal lines that are positioned at major
tick marks on the vertical axis.

HANGING

HANG
requests a hanging histogram, as illustrated in Figure 4.7.
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Figure 4.7 Hanging Histogram

You can use the HANGING option only when exactly one fitted density curve is requested.
A hanging histogram aligns the tops of the histogram bars (displayed as lines) with the fitted
curve. The lines are positioned at the midpoints of the histogram bins. A hanging histogram
is a goodness-of-fit diagnostic in the sense that the closer the lines are to the horizontal axis,
the better the fit. Hanging histograms are discussed by Tukey (1977), Wainer (1974), and
Velleman and Hoaglin (1981).

HOFFSET=value
specifies the offset, in percentage screen units, at both ends of the horizontal axis. You can
use HOFFSET=0 to eliminate the default offset.

INTERBAR=value
specifies the space between histogram bars in percentage screen units. If both the INTER-
BAR= and BARWIDTH= options are specified, the INTERBAR= option takes precedence.

K=NORMAL | QUADRATIC | TRIANGULAR
specifies the kernel function (normal, quadratic, or triangular) used to compute a kernel den-
sity estimate. You can specify a list of values to request multiple estimates. You must en-
close this option in parentheses after the KERNEL option. You can also use the K= kernel-
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option with the C= kernel-option, which specifies standardized bandwidths. If you specify
more kernel functions than bandwidths, the procedure repeats the last bandwidth in the list
for the remaining estimates. Similarly, if you specify more bandwidths than kernel func-
tions, the procedure repeats the last kernel function for the remaining estimates. By default,
K=NORMAL.

KERNEL< (kernel-options) >
superimposes kernel density estimates on the histogram. By default, the procedure uses the
AMISE method to compute kernel density estimates. To request multiple kernel density
estimates on the same histogram, specify a list of values for the C= kernel-option or K=
kernel-option. Table 4.21 lists options you can specify with the KERNEL option. See the
section “Kernel Density Estimates” on page 358 for more information about kernel density
estimates, and see Example 4.23.

LGRID=linetype
specifies the line type for the grid when a grid displays on the histogram. This option also
creates a grid if the GRID option is not specified.

LOGNORMAL< (lognormal-options) >
displays fitted lognormal density curves on the histogram. The LOGNORMAL option can
occur only once in a HISTOGRAM statement, but it can request any number of lognormal
curves. The parameter � must be less than the minimum data value. Use the THETA=
lognormal-option to specify � . By default, THETA=0. You can specify THETA=EST to
request the maximum likelihood estimate for � . Use the SIGMA= and ZETA= lognormal-
options to specify � and �. By default, the procedure computes maximum likelihood esti-
mates for � and �. Table 4.12 and Table 4.16 list options you can specify with the LOG-
NORMAL option. See the section “Lognormal Distribution” on page 349 for details, and see
Example 4.22 and Example 4.24 for examples using the LOGNORMAL option.

LOWER=value-list
specifies lower bounds for kernel density estimates requested with the KERNEL option. En-
close the LOWER= option in parentheses after the KERNEL option. If you specify more
kernel estimates than lower bounds, the last lower bound is repeated for the remaining esti-
mates. The default is a missing value, indicating no lower bounds for fitted kernel density
curves.

MAXNBIN=n
limits the number of bins displayed in the comparative histogram. This option is useful when
the scales or ranges of the data distributions differ greatly from cell to cell. By default, the
bin size and midpoints are determined for the key cell, and then the midpoint list is extended
to accommodate the data ranges for the remaining cells. However, if the cell scales differ
considerably, the resulting number of bins can be so great that each cell histogram is scaled
into a narrow region. By using MAXNBIN= to limit the number of bins, you can narrow the
window about the data distribution in the key cell. This option is not available unless you
specify the CLASS statement. The MAXNBIN= option is an alternative to the MAXSIG-
MAS= option.

MAXSIGMAS=value
limits the number of bins displayed in the comparative histogram to a range of value standard
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deviations (of the data in the key cell) above and below the mean of the data in the key cell.
This option is useful when the scales or ranges of the data distributions differ greatly from cell
to cell. By default, the bin size and midpoints are determined for the key cell, and then the
midpoint list is extended to accommodate the data ranges for the remaining cells. However,
if the cell scales differ considerably, the resulting number of bins can be so great that each
cell histogram is scaled into a narrow region. By using MAXSIGMAS= to limit the number
of bins, you can narrow the window that surrounds the data distribution in the key cell. This
option is not available unless you specify the CLASS statement.

MIDPERCENTS
requests a table listing the midpoints and percentage of observations in each histogram in-
terval. If you specify MIDPERCENTS in parentheses after a density estimate option, the
procedure displays a table that lists the midpoints, the observed percentage of observations,
and the estimated percentage of the population in each interval (estimated from the fitted
distribution). See Example 4.18.

MIDPOINTS=values | KEY | UNIFORM
specifies how to determine the midpoints for the histogram intervals, where values deter-
mines the width of the histogram bars as the difference between consecutive midpoints. The
procedure uses the same values for all variables.

The range of midpoints, extended at each end by half of the bar width, must cover the range
of the data. For example, if you specify

midpoints=2 to 10 by 0.5

then all of the observations should fall between 1.75 and 10.25. You must use evenly spaced
midpoints listed in increasing order.

KEY determines the midpoints for the data in the key cell. The initial number
of midpoints is based on the number of observations in the key cell that
use the method of Terrell and Scott (1985). The procedure extends the
midpoint list for the key cell in either direction as necessary until it spans
the data in the remaining cells.

UNIFORM determines the midpoints by using all the observations as if there were no
cells. In other words, the number of midpoints is based on the total sample
size by using the method of Terrell and Scott (1985).

Neither KEY nor UNIFORM apply unless you use the CLASS statement. By default, if
you use a CLASS statement, MIDPOINTS=KEY; however, if the key cell is empty then
MIDPOINTS=UNIFORM. Otherwise, the procedure computes the midpoints by using an
algorithm (Terrell and Scott 1985) that is primarily applicable to continuous data that are
approximately normally distributed.

MU=value-list
specifies the parameter � for normal density curves requested with the NORMAL option.
Enclose the MU= option in parentheses after the NORMAL option. By default, or if you
specify the value EST, the procedure uses the sample mean for �.
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NENDPOINTS=n
uses histogram interval endpoints as the tick mark values for the horizontal axis and deter-
mines the number of bins.

NMIDPOINTS=n
specifies the number of histogram intervals.

NOBARS
suppresses drawing of histogram bars, which is useful for viewing fitted curves only.

NOPLOT
NOCHART

suppresses the creation of a plot. Use this option when you only want to tabulate summary
statistics for a fitted density or create an OUTHISTOGRAM= data set.

NOPRINT
suppresses tables summarizing the fitted curve. Enclose the NOPRINT option in parentheses
following the distribution option.

NORMAL< (normal-options) >
displays fitted normal density curves on the histogram. The NORMAL option can occur only
once in a HISTOGRAM statement, but it can request any number of normal curves. Use
the MU= and SIGMA= normal-options to specify � and � . By default, the procedure uses
the sample mean and sample standard deviation for � and � . Table 4.12 and Table 4.17 list
options you can specify with the NORMAL option. See the section “Normal Distribution” on
page 350 for details, and see Example 4.19 for an example that uses the NORMAL option.

NOTABCONTENTS
suppresses the table of contents entries for tables produced by the HISTOGRAM statement.

OUTHISTOGRAM=SAS-data-set

OUTHIST=SAS-data-set
creates a SAS data set that contains information about histogram intervals. Specifically, the
data set contains the midpoints of the histogram intervals (or the lower endpoints of the inter-
vals if you specify the ENDPOINTS option), the observed percentage of observations in each
interval, and the estimated percentage of observations in each interval (estimated from each
of the specified fitted curves).

PERCENTS=values

PERCENT=values
specifies a list of percents for which quantiles calculated from the data and quantiles estimated
from the fitted curve are tabulated. The percents must be between 0 and 100. Enclose the
PERCENTS= option in parentheses after the curve option. The default percents are 1, 5, 10,
25, 50, 75, 90, 95, and 99.

PFILL=pattern
specifies a pattern used to fill the bars of the histograms (or the areas under a fitted curve if
you also specify the FILL option) when producing traditional graphics. See the entries for the
CFILL= and FILL options for additional details. Refer to SAS/GRAPH Software: Reference
for a list of pattern values. The option does not apply to ODS Graphics output.
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RTINCLUDE
includes the right endpoint of each histogram interval in that interval. By default, the left
endpoint is included in the histogram interval.

SB< (SB -options) >
displays fitted Johnson SB density curves on the histogram. The SB option can occur only
once in a HISTOGRAM statement, but it can request any number of Johnson SB curves. Use
the THETA= and SIGMA= normal-options to specify � and � . By default, the procedure
computes maximum likelihood estimates of � and � . Table 4.12 and Table 4.18 list options
you can specify with the SB option. See the section “Johnson SB Distribution” on page 351
for details.

SIGMA=value-list
specifies the parameter � for the fitted density curve when you request the BETA, EXPO-
NENTIAL, GAMMA, LOGNORMAL, NORMAL, SB, SU, or WEIBULL options.

See Table 4.24 for a summary of how to use the SIGMA= option. You must enclose this
option in parentheses after the density curve option. You can specify the value EST to request
a maximum likelihood estimate for � .

Table 4.24 Uses of the SIGMA= Option

Distribution Keyword SIGMA= Specifies Default Value Alias

BETA scale parameter � 1 SCALE=
EXPONENTIAL scale parameter � maximum likelihood estimate SCALE=
GAMMA scale parameter � maximum likelihood estimate SCALE=
LOGNORMAL shape parameter � maximum likelihood estimate SHAPE=
NORMAL scale parameter � standard deviation
SB scale parameter � 1 SCALE=
SU scale parameter � percentile-based estimate
WEIBULL scale parameter � maximum likelihood estimate SCALE=

SU< (SU -options) >
displays fitted Johnson SU density curves on the histogram. The SU option can occur only
once in a HISTOGRAM statement, but it can request any number of Johnson SU curves. Use
the THETA= and SIGMA= normal-options to specify � and � . By default, the procedure
computes maximum likelihood estimates of � and � . Table 4.12 and Table 4.19 list options
you can specify with the SU option. See the section “Johnson SU Distribution” on page 352
for details.

THETA=value-list

THRESHOLD= value-list
specifies the lower threshold parameter � for curves requested with the BETA, EXPONEN-
TIAL, GAMMA, LOGNORMAL, SB, SU, and WEIBULL options. Enclose the THETA=
option in parentheses after the curve option. By default, THETA=0. If you specify the value
EST, an estimate is computed for � .
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UPPER=value-list
specifies upper bounds for kernel density estimates requested with the KERNEL option. En-
close the UPPER= option in parentheses after the KERNEL option. If you specify more
kernel estimates than upper bounds, the last upper bound is repeated for the remaining esti-
mates. The default is a missing value, indicating no upper bounds for fitted kernel density
curves.

VOFFSET=value
specifies the offset, in percentage screen units, at the upper end of the vertical axis.

VSCALE=COUNT | PERCENT | PROPORTION
specifies the scale of the vertical axis for a histogram. The value COUNT requests the data
be scaled in units of the number of observations per data unit. The value PERCENT requests
the data be scaled in units of percent of observations per data unit. The value PROPORTION
requests the data be scaled in units of proportion of observations per data unit. The default is
PERCENT.

WBARLINE=n
specifies the width of bar outlines when producing traditional graphics. The option does not
apply to ODS Graphics output.

WEIBULL< (Weibull-options) >
displays fitted Weibull density curves on the histogram. The WEIBULL option can occur
only once in a HISTOGRAM statement, but it can request any number of Weibull curves.
The parameter � must be less than the minimum data value. Use the THETA= Weibull-option
to specify � . By default, THETA=0. You can specify THETA=EST to request the maximum
likelihood estimate for � . Use the C= and SIGMA= Weibull-options to specify the shape
parameter c and the scale parameter � . By default, the procedure computes the maximum
likelihood estimates for c and � . Table 4.12 and Table 4.20 list options you can specify with
the WEIBULL option. See the section “Weibull Distribution” on page 353 for details, and
see Example 4.22 for an example that uses the WEIBULL option.

PROC UNIVARIATE calculates the maximum likelihood estimate of a iteratively by us-
ing the Newton-Raphson approximation. See also the C=, SIGMA=, and THETA= Weibull-
options.

WGRID=n
specifies the line thickness for the grid when producing traditional graphics. The option does
not apply to ODS Graphics output.

ZETA= value-list
specifies a value for the scale parameter � for lognormal density curves requested with the
LOGNORMAL option. Enclose the ZETA= lognormal-option in parentheses after the LOG-
NORMAL option. By default, or if you specify the value EST, the procedure calculates a
maximum likelihood estimate for �. You can specify the SCALE= option as an alias for the
ZETA= option.
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ID Statement

ID variables ;

The ID statement specifies one or more variables to include in the table of extreme observations. The
corresponding values of the ID variables appear beside the n largest and n smallest observations,
where n is the value of NEXTROBS= option. See Example 4.3.

You can also include ID variables in the output data set created by an OUTPUT statement by spec-
ifying the IDOUT option in the PROC UNIVARIATE statement.

INSET Statement

INSET keywords < / options > ;

An INSET statement places a box or table of summary statistics, called an inset, directly in a graph
created with a CDFPLOT, HISTOGRAM, PPPLOT, PROBPLOT, or QQPLOT statement. The
INSET statement must follow the plot statement that creates the plot that you want to augment. The
inset appears in all the graphs that the preceding plot statement produces.

You can use multiple INSET statements after a plot statement to add more than one inset to a plot.
See Example 4.17.

In an INSET statement, you specify one or more keywords that identify the information to display
in the inset. The information is displayed in the order that you request the keywords. Keywords can
be any of the following:

� statistical keywords

� primary keywords

� secondary keywords

The available statistical keywords are listed in Table 4.25 through Table 4.29.
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Table 4.25 Descriptive Statistic Keywords

Keyword Description

CSS corrected sum of squares
CV coefficient of variation
KURTOSIS kurtosis
MAX largest value
MEAN sample mean
MIN smallest value
MODE most frequent value
N sample size
NEXCL number of observations excluded by MAXNBIN= or

MAXSIGMAS= option
NMISS number of missing values
NOBS number of observations
RANGE range
SKEWNESS skewness
STD standard deviation
STDMEAN standard error of the mean
SUM sum of the observations
SUMWGT sum of the weights
USS uncorrected sum of squares
VAR variance

Table 4.26 Percentile Statistic Keywords

Keyword Description

P1 1st percentile
P5 5th percentile
P10 10th percentile
Q1 lower quartile (25th percentile)
MEDIAN median (50th percentile)
Q3 upper quartile (75th percentile)
P90 90th percentile
P95 95th percentile
P99 99th percentile
QRANGE interquartile range (Q3 - Q1)
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Table 4.27 Robust Statistics Keywords

Keyword Description

GINI Gini’s mean difference
MAD median absolute difference about the median
QN Qn, alternative to MAD
SN Sn, alternative to MAD
STD_GINI Gini’s standard deviation
STD_MAD MAD standard deviation
STD_QN Qn standard deviation
STD_QRANGE interquartile range standard deviation
STD_SN Sn standard deviation

Table 4.28 Hypothesis Testing Keywords

Keyword Description

MSIGN sign statistic
NORMALTEST test statistic for normality
PNORMAL probability value for the test of normality
SIGNRANK signed rank statistic
PROBM probability of greater absolute value for the sign statistic
PROBN probability value for the test of normality
PROBS probability value for the signed rank test
PROBT probability value for the Student’s t test
T statistics for Student’s t test

Table 4.29 Keyword for Reading Input Data Set

Keyword Description

DATA= (label, value) pairs from input data set

To create a completely customized inset, use a DATA= data set.

DATA=SAS-data-set
requests that PROC UNIVARIATE display customized statistics from a SAS data set in the
inset table. The data set must contain two variables:

_LABEL_ a character variable whose values provide labels for inset entries

_VALUE_ a variable that is either character or numeric and whose values provide
values for inset entries

The label and value from each observation in the data set occupy one line in the inset. The
position of the DATA= keyword in the keyword list determines the position of its lines in the
inset.
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A primary keyword enables you to specify secondary keywords in parentheses immediately af-
ter the primary keyword. Primary keywords are BETA, EXPONENTIAL, GAMMA, KERNEL,
KERNELn, LOGNORMAL, NORMAL, SB, SU, WEIBULL, and WEIBULL2. If you specify a
primary keyword but omit a secondary keyword, the inset displays a colored line and the distribu-
tion name as a key for the density curve.

By default, PROC UNIVARIATE identifies inset statistics with appropriate labels and prints nu-
meric values with appropriate formats. To customize the label, specify the keyword followed by an
equal sign (=) and the desired label in quotes. To customize the format, specify a numeric format in
parentheses after the keyword. Labels can have up to 24 characters. If you specify both a label and
a format for a statistic, the label must appear before the format. For example,

inset n=’Sample Size’ std=’Std Dev’ (5.2);

requests customized labels for two statistics and displays the standard deviation with a field width
of 5 and two decimal places.

Table 4.30 and Table 4.31 list primary keywords.

Table 4.30 Parametric Density Primary Keywords

Keyword Distribution Plot Statement Availability

BETA beta all plot statements
EXPONENTIAL exponential all plot statements
GAMMA gamma all plot statements
LOGNORMAL lognormal all plot statements
NORMAL normal all plot statements
SB Johnson SB HISTOGRAM
SU Johnson SU HISTOGRAM
WEIBULL Weibull(3-parameter) all plot statements
WEIBULL2 Weibull(2-parameter) PROBPLOT and QQPLOT

Table 4.31 Kernel Density Estimate Primary Keywords

Keyword Description

KERNEL displays statistics for all kernel estimates
KERNELn displays statistics for only the nth kernel density estimate

n D 1; 2; 3; 4; or 5

Table 4.32 through Table 4.41 list the secondary keywords available with primary keywords in
Table 4.30 and Table 4.31.
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Table 4.32 Secondary Keywords Available with the BETA Keyword

Secondary Keyword Alias Description

ALPHA SHAPE1 first shape parameter ˛
BETA SHAPE2 second shape parameter ˇ
MEAN mean of the fitted distribution
SIGMA SCALE scale parameter �
STD standard deviation of the fitted distribution
THETA THRESHOLD lower threshold parameter �

Table 4.33 Secondary Keywords Available with the EXPONENTIAL Keyword

Secondary Keyword Alias Description

MEAN mean of the fitted distribution
SIGMA SCALE scale parameter �
STD standard deviation of the fitted distribution
THETA THRESHOLD threshold parameter �

Table 4.34 Secondary Keywords Available with the GAMMA Keyword

Secondary Keyword Alias Description

ALPHA SHAPE shape parameter ˛
MEAN mean of the fitted distribution
SIGMA SCALE scale parameter �
STD standard deviation of the fitted distribution
THETA THRESHOLD threshold parameter �

Table 4.35 Secondary Keywords Available with the LOGNORMAL Keyword

Secondary Keyword Alias Description

MEAN mean of the fitted distribution
SIGMA SHAPE shape parameter �
STD standard deviation of the fitted distribution
THETA THRESHOLD threshold parameter �
ZETA SCALE scale parameter �

Table 4.36 Secondary Keywords Available with the NORMAL Keyword

Secondary Keyword Alias Description

MU MEAN mean parameter �
SIGMA STD scale parameter �



274 F Chapter 4: The UNIVARIATE Procedure

Table 4.37 Secondary Keywords Available with the SB and SU Keywords

Secondary Keyword Alias Description

DELTA SHAPE1 first shape parameter ı
GAMMA SHAPE2 second shape parameter 

MEAN mean of the fitted distribution
SIGMA SCALE scale parameter �
STD standard deviation of the fitted distribution
THETA THRESHOLD lower threshold parameter �

Table 4.38 Secondary Keywords Available with the WEIBULL

Secondary Keyword Alias Description

C SHAPE shape parameter c
MEAN mean of the fitted distribution
SIGMA SCALE scale parameter �
STD standard deviation of the fitted distribution
THETA THRESHOLD threshold parameter �

Table 4.39 Secondary Keywords Available with the WEIBULL2 Keyword

Secondary Keyword Alias Description

C SHAPE shape parameter c
MEAN mean of the fitted distribution
SIGMA SCALE scale parameter �
STD standard deviation of the fitted distribution
THETA THRESHOLD known lower threshold �0

Table 4.40 Secondary Keywords Available with the KERNEL Keyword

Secondary Keyword Description

AMISE approximate mean integrated square error (MISE) for the kernel den-
sity

BANDWIDTH bandwidth � for the density estimate
BWIDTH alias for BANDWIDTH
C standardized bandwidth c for the density estimate:

c D
�
Q
n

1
5 where n D sample size, � D bandwidth, and

Q D interquartile range
TYPE kernel type: normal, quadratic, or triangular
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Table 4.41 Goodness-of-Fit Statistics for Fitted Curves

Secondary Keyword Description

AD Anderson-Darling EDF test statistic
ADPVAL Anderson-Darling EDF test p-value
CVM Cramér-von Mises EDF test statistic
CVMPVAL Cramér-von Mises EDF test p-value
KSD Kolmogorov-Smirnov EDF test statistic
KSDPVAL Kolmogorov-Smirnov EDF test p-value

The inset statistics listed in Table 4.30 through Table 4.41 are not available unless you request a plot
statement and options that calculate these statistics. For example, consider the following statements:

proc univariate data=score;
histogram final / normal;
inset mean std normal(ad adpval);

run;

The MEAN and STD keywords display the sample mean and standard deviation of final. The
NORMAL keyword with the secondary keywords AD and ADPVAL display the Anderson-Darling
goodness-of-fit test statistic and p-value. The statistics that are specified with the NORMAL key-
word are available only because the NORMAL option is requested in the HISTOGRAM statement.

The KERNEL or KERNELn keyword is available only if you request a kernel density estimate
in a HISTOGRAM statement. The WEIBULL2 keyword is available only if you request a two-
parameter Weibull distribution in the PROBPLOT or QQPLOT statement.

If you specify multiple kernel density estimates, you can request inset statistics for all the estimates
with the KERNEL keyword. Alternatively, you can display inset statistics for individual curves with
the KERNELn keyword, where n is the curve number between 1 and 5.

Summary of Options

Table 4.42 lists INSET statement options, which are specified after the slash (/) in the INSET state-
ment. For complete descriptions, see the section “Dictionary of Options” on page 276.

Table 4.42 INSET Options

Option Description

CFILL=color | BLANK specifies color of inset background
CFILLH=color specifies color of header background
CFRAME=color specifies color of frame
CHEADER=color specifies color of header text
CSHADOW=color specifies color of drop shadow
CTEXT=color specifies color of inset text
DATA specifies data units for POSITION=.x; y/ coordinates
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Table 4.42 continued

Option Description

FONT=font specifies font of text
FORMAT=format specifies format of values in inset
HEADER=‘string’ specifies header text
HEIGHT=value specifies height of inset text
NOFRAME suppresses frame around inset
POSITION=position specifies position of inset
REFPOINT=BR | BL | TR | TL specifies reference point of inset positioned with

POSITION=.x; y/ coordinates

Dictionary of Options

The following entries provide detailed descriptions of options for the INSET statement.

CFILL=color | BLANK
specifies the color of the background for traditional graphics. If you omit the CFILLH=
option the header background is included. By default, the background is empty, which causes
items that overlap the inset (such as curves or histogram bars) to show through the inset.

If you specify a value for CFILL= option, then overlapping items no longer show through
the inset. Use CFILL=BLANK to leave the background uncolored and to prevent items from
showing through the inset.

CFILLH=color
specifies the color of the header background for traditional graphics. The default value is the
CFILL= color.

CFRAME=color
specifies the color of the frame for traditional graphics. The default value is the same color
as the axis of the plot.

CHEADER=color
specifies the color of the header text for traditional graphics. The default value is the CTEXT=
color.

CSHADOW=color
specifies the color of the drop shadow for traditional graphics. By default, if a CSHADOW=
option is not specified, a drop shadow is not displayed.

CTEXT=color
specifies the color of the text for traditional graphics. The default value is the same color as
the other text on the plot.

DATA
specifies that data coordinates are to be used in positioning the inset with the POSITION= op-
tion. The DATA option is available only when you specify POSITION=(x,y). You must place
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DATA immediately after the coordinates (x,y). NOTE: Positioning insets with coordinates is
not supported for ODS Graphics output.

FONT=font
specifies the font of the text for traditional graphics. By default, if you locate the inset in the
interior of the plot, then the font is SIMPLEX. If you locate the inset in the exterior of the
plot, then the font is the same as the other text on the plot.

FORMAT=format
specifies a format for all the values in the inset. If you specify a format for a particular statistic,
then this format overrides FORMAT= format. For more information about SAS formats, see
SAS Language Reference: Dictionary

HEADER=string
specifies the header text. The string cannot exceed 40 characters. By default, no header line
appears in the inset. If all the keywords that you list in the INSET statement are secondary
keywords that correspond to a fitted curve on a histogram, PROC UNIVARIATE displays a
default header that indicates the distribution and identifies the curve.

HEIGHT=value
specifies the height of the text for traditional graphics.

NOFRAME
suppresses the frame drawn around the text.

POSITION=position

POS=position
determines the position of the inset. The position is a compass point keyword, a margin
keyword, or a pair of coordinates (x,y). You can specify coordinates in axis percent units or
axis data units. The default value is NW, which positions the inset in the upper left (northwest)
corner of the display. See the section “Positioning Insets” on page 342.

NOTE: Positioning insets with coordinates is not supported for ODS Graphics output.

REFPOINT=BR | BL | TR | TL
specifies the reference point for an inset that PROC UNIVARIATE positions by a pair of
coordinates with the POSITION= option. The REFPOINT= option specifies which corner of
the inset frame that you want to position at coordinates (x,y). The keywords are BL, BR, TL,
and TR, which correspond to bottom left, bottom right, top left, and top right. The default
value is BL. You must use REFPOINT= with POSITION=(x,y) coordinates. The option does
not apply to ODS Graphics output.
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OUTPUT Statement

OUTPUT < OUT=SAS-data-set < keyword1=names . . . keywordk=names > < percentile-
options > > ;

The OUTPUT statement saves statistics and BY variables in an output data set. When you use a BY
statement, each observation in the OUT= data set corresponds to one of the BY groups. Otherwise,
the OUT= data set contains only one observation.

You can use any number of OUTPUT statements in the UNIVARIATE procedure. Each OUTPUT
statement creates a new data set containing the statistics specified in that statement. You must use the
VAR statement with the OUTPUT statement. The OUTPUT statement must contain a specification
of the form keyword=names or the PCTLPTS= and PCTLPRE= specifications. See Example 4.7
and Example 4.8.

OUT=SAS-data-set
identifies the output data set. If SAS-data-set does not exist, PROC UNIVARIATE creates it.
If you omit OUT=, the data set is named DATAn, where n is the smallest integer that makes
the name unique.

keyword=names
specifies the statistics to include in the output data set and gives names to the new variables
that contain the statistics. Specify a keyword for each desired statistic, followed by an equal
sign, followed by the names of the variables to contain the statistic. In the output data set,
the first variable listed after a keyword in the OUTPUT statement contains the statistic for
the first variable listed in the VAR statement, the second variable contains the statistic for the
second variable in the VAR statement, and so on. If the list of names following the equal
sign is shorter than the list of variables in the VAR statement, the procedure uses the names
in the order in which the variables are listed in the VAR statement. The available keywords
are listed in the following tables:
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Table 4.43 Descriptive Statistic Keywords

Keyword Description

CSS corrected sum of squares
CV coefficient of variation
KURTOSIS kurtosis
MAX largest value
MEAN sample mean
MIN smallest value
MODE most frequent value
N sample size
NMISS number of missing values
NOBS number of observations
RANGE range
SKEWNESS skewness
STD standard deviation
STDMEAN standard error of the mean
SUM sum of the observations
SUMWGT sum of the weights
USS uncorrected sum of squares
VAR variance

Table 4.44 Quantile Statistic Keywords

Keyword Description

P1 1st percentile
P5 5th percentile
P10 10th percentile
Q1 lower quartile (25th percentile)
MEDIAN median (50th percentile)
Q3 upper quartile (75th percentile)
P90 90th percentile
P95 95th percentile
P99 99th percentile
QRANGE interquartile range (Q3 - Q1)
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Table 4.45 Robust Statistics Keywords

Keyword Description

GINI Gini’s mean difference
MAD median absolute difference about the median
QN Qn, alternative to MAD
SN Sn, alternative to MAD
STD_GINI Gini’s standard deviation
STD_MAD MAD standard deviation
STD_QN Qn standard deviation
STD_QRANGE interquartile range standard deviation
STD_SN Sn standard deviation

Table 4.46 Hypothesis Testing Keywords

Keyword Description

MSIGN sign statistic
NORMALTEST test statistic for normality
SIGNRANK signed rank statistic
PROBM probability of a greater absolute value for the sign statistic
PROBN probability value for the test of normality
PROBS probability value for the signed rank test
PROBT probability value for the Student’s t test
T statistic for the Student’s t test

The UNIVARIATE procedure automatically computes the 1st, 5th, 10th, 25th, 50th, 75th,
90th, 95th, and 99th percentiles for the data. These can be saved in an output data set by
using keyword=names specifications. For additional percentiles, you can use the following
percentile-options.

PCTLPTS=percentiles
specifies one or more percentiles that are not automatically computed by the UNIVARIATE
procedure. The PCTLPRE= and PCTLPTS= options must be used together. You can specify
percentiles with an expression of the form start TO stop BY increment where start is a
starting number, stop is an ending number, and increment is a number to increment by. The
PCTLPTS= option generates additional percentiles and outputs them to a data set. These
additional percentiles are not printed.

To compute the 50th, 95th, 97.5th, and 100th percentiles, submit the statement

output pctlpre=P_ pctlpts=50,95 to 100 by 2.5;

PROC UNIVARIATE computes the requested percentiles based on the method that you spec-
ify with the PCTLDEF= option in the PROC UNIVARIATE statement. You must use PCTL-
PRE=, and optionally PCTLNAME=, to specify variable names for the percentiles. For ex-
ample, the following statements create an output data set named Pctls that contains the 20th
and 40th percentiles of the analysis variables PreTest and PostTest:
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proc univariate data=Score;
var PreTest PostTest;
output out=Pctls pctlpts=20 40 pctlpre=PreTest_ PostTest_

pctlname=P20 P40;
run;

PROC UNIVARIATE saves the 20th and 40th percentiles for PreTest and PostTest in the vari-
ables PreTest_P20, PostTest_P20, PreTest_P40, and PostTest_P40.

PCTLPRE=prefixes
specifies one or more prefixes to create the variable names for the variables that contain the
PCTLPTS= percentiles. To save the same percentiles for more than one analysis variable,
specify a list of prefixes. The order of the prefixes corresponds to the order of the analy-
sis variables in the VAR statement. The PCTLPRE= and PCTLPTS= options must be used
together.

The procedure generates new variable names by using the prefix and the percentile values. If
the specified percentile is an integer, the variable name is simply the prefix followed by the
value. If the specified value is not an integer, an underscore replaces the decimal point in
the variable name, and decimal values are truncated to one decimal place. For example, the
following statements create the variables pwid20, pwid33_3, pwid66_6, and pwid80 for the 20th,
33.33rd, 66.67th, and 80th percentiles of Width, respectively:

proc univariate noprint;
var Width;
output pctlpts=20 33.33 66.67 80 pctlpre=pwid;

run;

If you request percentiles for more than one variable, you should list prefixes in the same order
in which the variables appear in the VAR statement. If combining the prefix and percentile
value results in a name longer than 32 characters, the prefix is truncated so that the variable
name is 32 characters.

PCTLNAME=suffixes
specifies one or more suffixes to create the names for the variables that contain the PCTLPTS=
percentiles. PROC UNIVARIATE creates a variable name by combining the PCTLPRE=
value and suffix name. Because the suffix names are associated with the percentiles that are
requested, list the suffix names in the same order as the PCTLPTS= percentiles. If you specify
n suffixes with the PCTLNAME= option andm percentile values with the PCTLPTS= option
where m > n, the suffixes are used to name the first n percentiles and the default names are
used for the remaining m � n percentiles. For example, consider the following statements:

proc univariate;
var Length Width Height;
output pctlpts = 20 40

pctlpre = pl pw ph
pctlname = twenty;

run;

The value twenty in the PCTLNAME= option is used for only the first percentile in the
PCTLPTS= list. This suffix is appended to the values in the PCTLPRE= option to generate
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the new variable names pltwenty, pwtwenty, and phtwenty, which contain the 20th percentiles
for Length, Width, and Height, respectively. Because a second PCTLNAME= suffix is not
specified, variable names for the 40th percentiles for Length, Width, and Height are generated
using the prefixes and percentile values. Thus, the output data set contains the variables
pltwenty, pl40, pwtwenty, pw40, phtwenty, and ph40.

You must specify PCTLPRE= to supply prefix names for the variables that contain the
PCTLPTS= percentiles.

If the number of PCTLNAME= values is fewer than the number of percentiles or if you omit
PCTLNAME=, PROC UNIVARIATE uses the percentile as the suffix to create the name of
the variable that contains the percentile. For an integer percentile, PROC UNIVARIATE uses
the percentile. Otherwise, PROC UNIVARIATE truncates decimal values of percentiles to
two decimal places and replaces the decimal point with an underscore.

If either the prefix and suffix name combination or the prefix and percentile name combina-
tion is longer than 32 characters, PROC UNIVARIATE truncates the prefix name so that the
variable name is 32 characters.

PPPLOT Statement

PPPLOT < variables > < / options > ;

The PPPLOT statement creates a probability-probability plot (also referred to as a P-P plot or per-
cent plot), which compares the empirical cumulative distribution function (ecdf) of a variable with
a specified theoretical cumulative distribution function such as the normal. If the two distributions
match, the points on the plot form a linear pattern that passes through the origin and has unit slope.
Thus, you can use a P-P plot to determine how well a theoretical distribution models a set of mea-
surements.

You can specify one of the following theoretical distributions with the PPPLOT statement:

� beta

� exponential

� gamma

� lognormal

� normal

� Weibull

NOTE: Probability-probability plots should not be confused with probability plots, which com-
pare a set of ordered measurements with percentiles from a specified distribution. You can create
probability plots with the PROBPLOT statement.

You can use any number of PPPLOT statements in the UNIVARIATE procedure. The components
of the PPPLOT statement are as follows.
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variables
are the process variables for which P-P plots are created. If you specify a VAR statement,
the variables must also be listed in the VAR statement. Otherwise, the variables can be any
numeric variables in the input data set. If you do not specify a list of variables, then by
default, the procedure creates a P-P plot for each variable listed in the VAR statement or
for each numeric variable in the input data set if you do not specify a VAR statement. For
example, if data set measures contains two numeric variables, length and width, the following
two PPPLOT statements each produce a P-P plot for each of those variables:

proc univariate data=measures;
var length width;
ppplot;

run;

proc univariate data=measures;
ppplot length width;

run;

options
specify the theoretical distribution for the plot or add features to the plot. If you specify more
than one variable, the options apply equally to each variable. Specify all options after the
slash (/) in the PPPLOT statement. You can specify only one option that names a distribution,
but you can specify any number of other options. By default, the procedure produces a P-P
plot based on the normal distribution.

In the following example, the NORMAL, MU=, and SIGMA= options request a P-P plot
based on the normal distribution with mean 10 and standard deviation 0.3. The SQUARE
option displays the plot in a square frame, and the CTEXT= option specifies the text color.

proc univariate data=measures;
ppplot length width / normal(mu=10 sigma=0.3)

square
ctext=blue;

run;

Table 4.47 through Table 4.55 list the PPPLOT options by function. For complete descrip-
tions, see the sections “Dictionary of Options” on page 287 and “Dictionary of Common
Options” on page 315. Options can be any of the following:

� primary options

� secondary options

� general options

Distribution Options

Table 4.47 summarizes the options for requesting a specific theoretical distribution.
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Table 4.47 Options for Specifying the Theoretical Distribution

Option Description

BETA(beta-options) specifies beta P-P plot
EXPONENTIAL(exponential-options) specifies exponential P-P plot
GAMMA(gamma-options) specifies gamma P-P plot
LOGNORMAL(lognormal-options) specifies lognormal P-P plot
NORMAL(normal-options) specifies normal P-P plot
WEIBULL(Weibull-options) specifies Weibull P-P plot

Table 4.48 through Table 4.54 summarize options that specify distribution parameters and control
the display of the diagonal distribution reference line. Specify these options in parentheses after the
distribution option. For example, the following statements use the NORMAL option to request a
normal P-P plot:

proc univariate data=measures;
ppplot length / normal(mu=10 sigma=0.3 color=red);

run;

The MU= and SIGMA= normal-options specify � and � for the normal distribution, and the
COLOR= normal-option specifies the color for the line.

Table 4.48 Distribution Reference Line Options

Option Description

COLOR= specifies color of distribution reference line
L= specifies line type of distribution reference line
NOLINE suppresses the distribution reference line
W= specifies width of distribution reference line

Table 4.49 Secondary Beta-Options

Option Description

ALPHA= specifies shape parameter ˛
BETA= specifies shape parameter ˇ
SIGMA= specifies scale parameter �
THETA= specifies lower threshold parameter �

Table 4.50 Secondary Exponential-Options

Option Description

SIGMA= specifies scale parameter �
THETA= specifies threshold parameter �
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Table 4.51 Secondary Gamma-Options

Option Description

ALPHA= specifies shape parameter ˛
ALPHADELTA= specifies change in successive estimates of ˛ at which the Newton-

Raphson approximation of Ǫ terminates
ALPHAINITIAL= specifies initial value for ˛ in the Newton-Raphson approximation of Ǫ

MAXITER= specifies maximum number of iterations in the Newton-Raphson ap-
proximation of Ǫ

SIGMA= specifies scale parameter �
THETA= specifies threshold parameter �

Table 4.52 Secondary Lognormal-Options

Option Description

SIGMA= specifies shape parameter �
THETA= specifies threshold parameter �
ZETA= specifies scale parameter �

Table 4.53 Secondary Normal-Options

Option Description

MU= specifies mean �
SIGMA= specifies standard deviation �

Table 4.54 Secondary Weibull-Options

Option Description

C= specifies shape parameter c
CDELTA= specifies change in successive estimates of c at which the Newton-

Raphson approximation of Oc terminates
CINITIAL= specifies initial value for c in the Newton-Raphson approximation of Oc

MAXITER= specifies maximum number of iterations in the Newton-Raphson ap-
proximation of Oc

SIGMA= specifies scale parameter �
THETA= specifies threshold parameter �

General Options

Table 4.55 lists options that control the appearance of the plots. For complete descriptions, see the
sections “Dictionary of Options” on page 287 and “Dictionary of Common Options” on page 315.
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Table 4.55 General Graphics Options

Option Description

ANNOKEY applies annotation requested in ANNOTATE= data set to key cell only
ANNOTATE= provides an annotate data set
CAXIS= specifies color for axis
CFRAME= specifies color for frame
CFRAMESIDE= specifies color for filling row label frames
CFRAMETOP= specifies color for filling column label frames
CHREF= specifies color for HREF= lines
CONTENTS= specifies table of contents entry for P-P plot grouping
CPROP= specifies color for proportion of frequency bar
CTEXT= specifies color for text
CTEXTSIDE= specifies color for row labels
CTEXTTOP= specifies color for column labels
CVREF= specifies color for VREF= lines
DESCRIPTION= specifies description for plot in graphics catalog
FONT= specifies software font for text
HAXIS= specifies AXIS statement for horizontal axis
HEIGHT= specifies height of text used outside framed areas
HMINOR= specifies number of minor tick marks on horizontal axis
HREF= specifies reference lines perpendicular to the horizontal axis
HREFLABELS= specifies line labels for HREF= lines
HREFLABPOS= specifies position for HREF= line labels
INFONT= specifies software font for text inside framed areas
INHEIGHT= specifies height of text inside framed areas
INTERTILE= specifies distance between tiles in comparative plot
LHREF= specifies line type for HREF= lines
LVREF= specifies line type for VREF= lines
NAME= specifies name for plot in graphics catalog
NCOLS= specifies number of columns in comparative plot
NOFRAME suppresses frame around plotting area
NOHLABEL suppresses label for horizontal axis
NOVLABEL suppresses label for vertical axis
NOVTICK suppresses tick marks and tick mark labels for vertical axis
NROWS= specifies number of rows in comparative plot
OVERLAY overlays plots for different class levels (ODS Graphics only)
SQUARE displays P-P plot in square format
TURNVLABELS turns and vertically strings out characters in labels for vertical axis
VAXIS= specifies AXIS statement for vertical axis
VAXISLABEL= specifies label for vertical axis
VMINOR= specifies number of minor tick marks on vertical axis
VREF= specifies reference lines perpendicular to the vertical axis
VREFLABELS= specifies line labels for VREF= lines
VREFLABPOS= specifies position for VREF= line labels
WAXIS= specifies line thickness for axes and frame
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Dictionary of Options

The following entries provide detailed descriptions of options for the PPPLOT statement. See the
section “Dictionary of Common Options” on page 315 for detailed descriptions of options common
to all plot statements.

ALPHA=value
specifies the shape parameter ˛ .˛ > 0/ for P-P plots requested with the BETA and GAMMA
options. For examples, see the entries for the BETA and GAMMA options.

BETA< (beta-options) >
creates a beta P-P plot. To create the plot, the n nonmissing observations are ordered from
smallest to largest:

x.1/ � x.2/ � � � � � x.n/

The y-coordinate of the i th point is the empirical cdf value i
n

. The x-coordinate is the theo-
retical beta cdf value

B˛ˇ

�
x.i/ � �

�

�
D

Z x.i/

�

.t � �/˛�1.� C � � t /ˇ�1

B.˛; ˇ/� .˛Cˇ�1/
dt

where B˛ˇ .�/ is the normalized incomplete beta function, B.˛; ˇ/ D
�.˛/�.ˇ/
�.˛Cˇ/

, and

� D lower threshold parameter

� D scale parameter .� > 0/

˛ D first shape parameter .˛ > 0/

ˇ D second shape parameter .ˇ > 0/

You can specify ˛, ˇ, � , and � with the ALPHA=, BETA=, SIGMA=, and THETA= beta-
options, as illustrated in the following example:

proc univariate data=measures;
ppplot width / beta(theta=1 sigma=2 alpha=3 beta=4);

run;

If you do not specify values for these parameters, then by default, � D 0, � D 1, and
maximum likelihood estimates are calculated for ˛ and ˇ.

IMPORTANT: If the default unit interval (0,1) does not adequately describe the range of
your data, then you should specify THETA=� and SIGMA=� so that your data fall in the
interval .�; � C �/.

If the data are beta distributed with parameters ˛, ˇ, � , and � , then the points on the plot
for ALPHA=˛, BETA=ˇ, SIGMA=� , and THETA=� tend to fall on or near the diagonal
line y D x, which is displayed by default. Agreement between the diagonal line and the
point pattern is evidence that the specified beta distribution is a good fit. You can specify
the SCALE= option as an alias for the SIGMA= option and the THRESHOLD= option as an
alias for the THETA= option.
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BETA=value
specifies the shape parameter ˇ .ˇ > 0/ for P-P plots requested with the BETA distribution
option. See the preceding entry for the BETA distribution option for an example.

C=value
specifies the shape parameter c .c > 0/ for P-P plots requested with the WEIBULL option.
See the entry for the WEIBULL option for examples.

EXPONENTIAL< (exponential-options) >

EXP< (exponential-options) >
creates an exponential P-P plot. To create the plot, the n nonmissing observations are ordered
from smallest to largest:

x.1/ � x.2/ � � � � � x.n/

The y-coordinate of the i th point is the empirical cdf value i
n

. The x-coordinate is the theo-
retical exponential cdf value

F.x.i// D 1 � exp
�

�
x.i/ � �

�

�
where

� D threshold parameter

� D scale parameter .� > 0/

You can specify � and � with the SIGMA= and THETA= exponential-options, as illustrated
in the following example:

proc univariate data=measures;
ppplot width / exponential(theta=1 sigma=2);

run;

If you do not specify values for these parameters, then by default, � D 0 and a maximum
likelihood estimate is calculated for � .

IMPORTANT: Your data must be greater than or equal to the lower threshold � . If the default
� D 0 is not an adequate lower bound for your data, specify � with the THETA= option.

If the data are exponentially distributed with parameters � and � , the points on the plot for
SIGMA=� and THETA=� tend to fall on or near the diagonal line y D x, which is displayed
by default. Agreement between the diagonal line and the point pattern is evidence that the
specified exponential distribution is a good fit. You can specify the SCALE= option as an
alias for the SIGMA= option and the THRESHOLD= option as an alias for the THETA=
option.

GAMMA< (gamma-options) >
creates a gamma P-P plot. To create the plot, the n nonmissing observations are ordered from
smallest to largest:

x.1/ � x.2/ � � � � � x.n/
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The y-coordinate of the i th point is the empirical cdf value i
n

. The x-coordinate is the theo-
retical gamma cdf value

G˛

�
x.i/ � �

�

�
D

Z x.i/

�

1

��.˛/

�
t � �

�

�˛�1

exp
�

�
t � �

�

�
dt

where G˛.�/ is the normalized incomplete gamma function and

� D threshold parameter

� D scale parameter .� > 0/

˛ D shape parameter .˛ > 0/

You can specify ˛, � , and � with the ALPHA=, SIGMA=, and THETA= gamma-options, as
illustrated in the following example:

proc univariate data=measures;
ppplot width / gamma(alpha=1 sigma=2 theta=3);

run;

If you do not specify values for these parameters, then by default, � D 0 and maximum
likelihood estimates are calculated for ˛ and � .

IMPORTANT: Your data must be greater than or equal to the lower threshold � . If the default
� D 0 is not an adequate lower bound for your data, specify � with the THETA= option.

If the data are gamma distributed with parameters ˛, � , and � , the points on the plot for
ALPHA=˛, SIGMA=� , and THETA=� tend to fall on or near the diagonal line y D x,
which is displayed by default. Agreement between the diagonal line and the point pattern is
evidence that the specified gamma distribution is a good fit. You can specify the SHAPE=
option as an alias for the ALPHA= option, the SCALE= option as an alias for the SIGMA=
option, and the THRESHOLD= option as an alias for the THETA= option.

LOGNORMAL< (lognormal-options) >

LNORM< (lognormal-options) >
creates a lognormal P-P plot. To create the plot, the n nonmissing observations are ordered
from smallest to largest:

x.1/ � x.2/ � � � � � x.n/

The y-coordinate of the i th point is the empirical cdf value i
n

. The x-coordinate is the theo-
retical lognormal cdf value

ˆ

�
log.x.i/ � �/ � �

�

�
where ˆ.�/ is the cumulative standard normal distribution function and

� D threshold parameter

� D scale parameter
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� D shape parameter .� > 0/

You can specify � , �, and � with the THETA=, ZETA=, and SIGMA= lognormal-options, as
illustrated in the following example:

proc univariate data=measures;
ppplot width / lognormal(theta=1 zeta=2);

run;

If you do not specify values for these parameters, then by default, � D 0 and maximum
likelihood estimates are calculated for � and �.

IMPORTANT: Your data must be greater than the lower threshold � . If the default � D 0 is
not an adequate lower bound for your data, specify � with the THETA= option.

If the data are lognormally distributed with parameters � , � , and �, the points on the plot for
SIGMA=� , THETA=� , and ZETA=� tend to fall on or near the diagonal line y D x, which is
displayed by default. Agreement between the diagonal line and the point pattern is evidence
that the specified lognormal distribution is a good fit. You can specify the SHAPE= option as
an alias for the SIGMA=option, the SCALE= option as an alias for the ZETA= option, and
the THRESHOLD= option as an alias for the THETA= option.

MU=value
specifies the mean � for a normal P-P plot requested with the NORMAL option. By default,
the sample mean is used for �. See Example 4.36.

NOLINE
suppresses the diagonal reference line.

NORMAL< (normal-options ) >

NORM< (normal-options ) >
creates a normal P-P plot. By default, if you do not specify a distribution option, the procedure
displays a normal P-P plot. To create the plot, the n nonmissing observations are ordered from
smallest to largest:

x.1/ � x.2/ � � � � � x.n/

The y-coordinate of the i th point is the empirical cdf value i
n

. The x-coordinate is the theo-
retical normal cdf value

ˆ
�x.i/ � �

�

�
D

Z x.i/

�1

1

�
p
2�

exp
�

�
.t � �/2

2�2

�
dt

where ˆ.�/ is the cumulative standard normal distribution function and

� D location parameter or mean

� D scale parameter or standard deviation .� > 0/

You can specify � and � with the MU= and SIGMA= normal-options, as illustrated in the
following example:
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proc univariate data=measures;
ppplot width / normal(mu=1 sigma=2);

run;

By default, the sample mean and sample standard deviation are used for � and � .

If the data are normally distributed with parameters � and � , the points on the plot for MU=�
and SIGMA=� tend to fall on or near the diagonal line y D x, which is displayed by default.
Agreement between the diagonal line and the point pattern is evidence that the specified
normal distribution is a good fit. See Example 4.36.

SIGMA=value
specifies the parameter � , where � > 0. When used with the BETA, EXPONENTIAL,
GAMMA, NORMAL, and WEIBULL options, the SIGMA= option specifies the scale pa-
rameter. When used with the LOGNORMAL option, the SIGMA= option specifies the shape
parameter. See Example 4.36.

SQUARE
displays the P-P plot in a square frame. The default is a rectangular frame. See Example 4.36.

THETA=value

THRESHOLD=value
specifies the lower threshold parameter � for plots requested with the BETA, EXPONEN-
TIAL, GAMMA, LOGNORMAL, and WEIBULL options.

WEIBULL< (Weibull-options) >

WEIB< (Weibull-options) >
creates a Weibull P-P plot. To create the plot, the n nonmissing observations are ordered from
smallest to largest:

x.1/ � x.2/ � � � � � x.n/

The y-coordinate of the i th point is the empirical cdf value i
n

. The x-coordinate is the theo-
retical Weibull cdf value

F.x.i// D 1 � exp
�

�

�
x.i/ � �

�

�c�
where

� D threshold parameter

� D scale parameter .� > 0/

c D shape parameter .c > 0/

You can specify c, � , and � with the C=, SIGMA=, and THETA= Weibull-options, as illus-
trated in the following example:

proc univariate data=measures;
ppplot width / weibull(theta=1 sigma=2);

run;
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If you do not specify values for these parameters, then by default � D 0 and maximum
likelihood estimates are calculated for � and c.

IMPORTANT: Your data must be greater than or equal to the lower threshold � . If the default
� D 0 is not an adequate lower bound for your data, you should specify � with the THETA=
option.

If the data are Weibull distributed with parameters c, � , and � , the points on the plot for
C=c, SIGMA=� , and THETA=� tend to fall on or near the diagonal line y D x, which is
displayed by default. Agreement between the diagonal line and the point pattern is evidence
that the specified Weibull distribution is a good fit. You can specify the SHAPE= option as
an alias for the C= option, the SCALE= option as an alias for the SIGMA= option, and the
THRESHOLD= option as an alias for the THETA= option.

ZETA=value
specifies a value for the scale parameter � for lognormal P-P plots requested with the LOG-
NORMAL option.

PROBPLOT Statement

PROBPLOT < variables > < / options > ;

The PROBPLOT statement creates a probability plot, which compares ordered variable values with
the percentiles of a specified theoretical distribution. If the data distribution matches the theoretical
distribution, the points on the plot form a linear pattern. Consequently, you can use a probability
plot to determine how well a theoretical distribution models a set of measurements.

Probability plots are similar to Q-Q plots, which you can create with the QQPLOT statement. Prob-
ability plots are preferable for graphical estimation of percentiles, whereas Q-Q plots are preferable
for graphical estimation of distribution parameters.

You can use any number of PROBPLOT statements in the UNIVARIATE procedure. The compo-
nents of the PROBPLOT statement are as follows.

variables
are the variables for which probability plots are created. If you specify a VAR statement,
the variables must also be listed in the VAR statement. Otherwise, the variables can be any
numeric variables in the input data set. If you do not specify a list of variables, then by default
the procedure creates a probability plot for each variable listed in the VAR statement, or for
each numeric variable in the DATA= data set if you do not specify a VAR statement. For
example, each of the following PROBPLOT statements produces two probability plots, one
for Length and one for Width:

proc univariate data=Measures;
var Length Width;
probplot;

proc univariate data=Measures;
probplot Length Width;

run;
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options
specify the theoretical distribution for the plot or add features to the plot. If you specify more
than one variable, the options apply equally to each variable. Specify all options after the
slash (/) in the PROBPLOT statement. You can specify only one option that names a distri-
bution in each PROBPLOT statement, but you can specify any number of other options. The
distributions available are the beta, exponential, gamma, lognormal, normal, two-parameter
Weibull, and three-parameter Weibull. By default, the procedure produces a plot for the nor-
mal distribution.

In the following example, the NORMAL option requests a normal probability plot for each
variable, while the MU= and SIGMA= normal-options request a distribution reference line
corresponding to the normal distribution with � D 10 and � D 0:3. The SQUARE option
displays the plot in a square frame, and the CTEXT= option specifies the text color.

proc univariate data=Measures;
probplot Length1 Length2 / normal(mu=10 sigma=0.3)

square ctext=blue;
run;

Table 4.56 through Table 4.65 list the PROBPLOT options by function. For complete de-
scriptions, see the sections “Dictionary of Options” on page 298 and “Dictionary of Common
Options” on page 315. Options can be any of the following:

� primary options

� secondary options

� general options

Distribution Options

Table 4.56 lists options for requesting a theoretical distribution.
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Table 4.56 Primary Options for Theoretical Distributions

Option Description

BETA(beta-options) specifies beta probability plot for
shape parameters ˛ and ˇ speci-
fied with mandatory ALPHA= and
BETA= beta-options

EXPONENTIAL(exponential-options) specifies exponential probability plot
GAMMA(gamma-options) specifies gamma probability plot for

shape parameter ˛ specified with
mandatory ALPHA= gamma-option

LOGNORMAL(lognormal-options) specifies lognormal probability plot
for shape parameter � specified
with mandatory SIGMA= lognormal-
option

NORMAL(normal-options) specifies normal probability plot
WEIBULL(Weibull-options) specifies three-parameter Weibull

probability plot for shape parameter
c specified with mandatory C=
Weibull-option

WEIBULL2(Weibull2-options) specifies two-parameter Weibull
probability plot

Table 4.57 through Table 4.64 list secondary options that specify distribution parameters and con-
trol the display of a distribution reference line. Specify these options in parentheses after the dis-
tribution keyword. For example, you can request a normal probability plot with a distribution
reference line by specifying the NORMAL option as follows:

proc univariate;
probplot Length / normal(mu=10 sigma=0.3 color=red);

run;

The MU= and SIGMA= normal-options display a distribution reference line that corresponds to
the normal distribution with mean �0 D 10 and standard deviation �0 D 0:3, and the COLOR=
normal-option specifies the color for the line.

Table 4.57 Secondary Reference Line Options Used with All Distributions

Option Description

COLOR= specifies color of distribution reference line
L= specifies line type of distribution reference line
W= specifies width of distribution reference line
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Table 4.58 Secondary Beta-Options

Option Description

ALPHA= specifies mandatory shape parameter ˛
BETA= specifies mandatory shape parameter ˇ
SIGMA= specifies �0 for distribution reference line
THETA= specifies �0 for distribution reference line

Table 4.59 Secondary Exponential-Options

Option Description

SIGMA= specifies �0 for distribution reference line
THETA= specifies �0 for distribution reference line

Table 4.60 Secondary Gamma-Options

Option Description

ALPHA= specifies mandatory shape parameter ˛
ALPHADELTA= specifies change in successive estimates of ˛ at which the Newton-

Raphson approximation of Ǫ terminates
ALPHAINITIAL= specifies initial value for ˛ in the Newton-Raphson approximation of Ǫ

MAXITER= specifies maximum number of iterations in the Newton-Raphson ap-
proximation of Ǫ

SIGMA= specifies �0 for distribution reference line
THETA= specifies �0 for distribution reference line

Table 4.61 Secondary Lognormal-Options

Option Description

SIGMA= specifies mandatory shape parameter �
SLOPE= specifies slope of distribution reference line
THETA= specifies �0 for distribution reference line
ZETA= specifies �0 for distribution reference line (slope is exp.�0/)

Table 4.62 Secondary Normal-Options

Option Description

MU= specifies �0 for distribution reference line
SIGMA= specifies �0 for distribution reference line
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Table 4.63 Secondary Weibull-Options

Option Description

C= specifies mandatory shape parameter c
CDELTA= specifies change in successive estimates of c at which the Newton-

Raphson approximation of Oc terminates
CINITIAL= specifies initial value for c in the Newton-Raphson approximation of Oc

MAXITER= specifies maximum number of iterations in the Newton-Raphson ap-
proximation of Oc

SIGMA= specifies �0 for distribution reference line
THETA= specifies �0 for distribution reference line

Table 4.64 Secondary Weibull2-Options

Option Description

C= specifies c0 for distribution reference line (slope is 1=c0)
CDELTA= specifies change in successive estimates of c at which the Newton-

Raphson approximation of Oc terminates
CINITIAL= specifies initial value for c in the Newton-Raphson approximation of Oc

MAXITER= specifies maximum number of iterations in the Newton-Raphson ap-
proximation of Oc

SIGMA= specifies �0 for distribution reference line (intercept is log.�0/)
SLOPE= specifies slope of distribution reference line
THETA= specifies known lower threshold �0

General Graphics Options

Table 4.65 summarizes the general options for enhancing probability plots.

Table 4.65 General Graphics Options

Option Description

ANNOKEY applies annotation requested in ANNOTATE= data set to key cell only
ANNOTATE= specifies annotate data set
CAXIS= specifies color for axis
CFRAME= specifies color for frame
CFRAMESIDE= specifies color for filling frame for row labels
CFRAMETOP= specifies color for filling frame for column labels
CGRID= specifies color for grid lines
CHREF= specifies color for HREF= lines
CONTENTS= specifies table of contents entry for probability plot grouping
CPROP= specifies color for proportion of frequency bar
CTEXT= specifies color for text
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Table 4.65 (continued)

Option Description

CTEXTSIDE= specifies color for row labels
CTEXTTOP= specifies color for column labels
CVREF= specifies color for VREF= lines
DESCRIPTION= specifies description for plot in graphics catalog
FONT= specifies software font for text
GRID creates a grid
HAXIS= specifies AXIS statement for horizontal axis
HEIGHT= specifies height of text used outside framed areas
HMINOR= specifies number of horizontal minor tick marks
HREF= specifies reference lines perpendicular to the horizontal axis
HREFLABELS= specifies labels for HREF= lines
HREFLABPOS= specifies position for HREF= line labels
INFONT= specifies software font for text inside framed areas
INHEIGHT= specifies height of text inside framed areas
INTERTILE= specifies distance between tiles
LGRID= specifies a line type for grid lines
LHREF= specifies line style for HREF= lines
LVREF= specifies line style for VREF= lines
NADJ= adjusts sample size when computing percentiles
NAME= specifies name for plot in graphics catalog
NCOLS= specifies number of columns in comparative probability plot
NOFRAME suppresses frame around plotting area
NOHLABEL suppresses label for horizontal axis
NOVLABEL suppresses label for vertical axis
NOVTICK suppresses tick marks and tick mark labels for vertical axis
NROWS= specifies number of rows in comparative probability plot
OVERLAY overlays plots for different class levels (ODS Graphics only)
PCTLMINOR requests minor tick marks for percentile axis
PCTLORDER= specifies tick mark labels for percentile axis
RANKADJ= adjusts ranks when computing percentiles
ROTATE switches horizontal and vertical axes
SQUARE displays plot in square format
TURNVLABELS turns and vertically strings out characters in labels for vertical axis
VAXIS= specifies AXIS statement for vertical axis
VAXISLABEL= specifies label for vertical axis
VMINOR= specifies number of vertical minor tick marks
VREF= specifies reference lines perpendicular to the vertical axis
VREFLABELS= specifies labels for VREF= lines
VREFLABPOS= specifies horizontal position of labels for VREF= lines
WAXIS= specifies line thickness for axes and frame
WGRID= specifies line thickness for grid
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Dictionary of Options

The following entries provide detailed descriptions of options in the PROBPLOT statement. See the
section “Dictionary of Common Options” on page 315 for detailed descriptions of options common
to all plot statements.

ALPHA=value-list | EST
specifies the mandatory shape parameter ˛ for probability plots requested with the BETA and
GAMMA options. Enclose the ALPHA= option in parentheses after the BETA or GAMMA
options. If you specify ALPHA=EST, a maximum likelihood estimate is computed for ˛.

BETA(ALPHA=value | EST BETA=value | EST < beta-options >)
creates a beta probability plot for each combination of the required shape parameters ˛ and
ˇ specified by the required ALPHA= and BETA= beta-options. If you specify ALPHA=EST
and BETA=EST, the procedure creates a plot based on maximum likelihood estimates for ˛
and ˇ. You can specify the SCALE= beta-option as an alias for the SIGMA= beta-option
and the THRESHOLD= beta-option as an alias for the THETA= beta-option. To create a
plot that is based on maximum likelihood estimates for ˛ and ˇ, specify ALPHA=EST and
BETA=EST.

To obtain graphical estimates of ˛ and ˇ, specify lists of values in the ALPHA= and BETA=
beta-options, and select the combination of ˛ and ˇ that most nearly linearizes the point
pattern. To assess the point pattern, you can add a diagonal distribution reference line cor-
responding to lower threshold parameter �0 and scale parameter �0 with the THETA= and
SIGMA= beta-options. Alternatively, you can add a line that corresponds to estimated values
of �0 and �0 with the beta-options THETA=EST and SIGMA=EST. Agreement between the
reference line and the point pattern indicates that the beta distribution with parameters ˛, ˇ,
�0, and �0 is a good fit.

BETA=value-list | EST

B=value-list | EST
specifies the mandatory shape parameter ˇ for probability plots requested with the BETA
option. Enclose the BETA= option in parentheses after the BETA option. If you specify
BETA=EST, a maximum likelihood estimate is computed for ˇ.

C=value-list | EST
specifies the shape parameter c for probability plots requested with the WEIBULL and
WEIBULL2 options. Enclose this option in parentheses after the WEIBULL or WEIBULL2
option. C= is a required Weibull-option in the WEIBULL option; in this situation, it accepts a
list of values, or if you specify C=EST, a maximum likelihood estimate is computed for c. You
can optionally specify C=value or C=EST as a Weibull2-option with the WEIBULL2 option
to request a distribution reference line; in this situation, you must also specify Weibull2-option
SIGMA=value or SIGMA=EST.

CGRID=color
specifies the color for grid lines when a grid displays on the plot. This option also produces a
grid.
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EXPONENTIAL< (exponential-options) >

EXP< (exponential-options) >
creates an exponential probability plot. To assess the point pattern, add a diagonal distribu-
tion reference line corresponding to �0 and �0 with the THETA= and SIGMA= exponential-
options. Alternatively, you can add a line corresponding to estimated values of the thresh-
old parameter �0 and the scale parameter � with the exponential-options THETA=EST and
SIGMA=EST. Agreement between the reference line and the point pattern indicates that the
exponential distribution with parameters �0 and �0 is a good fit. You can specify the SCALE=
exponential-option as an alias for the SIGMA= exponential-option and the THRESHOLD=
exponential-option as an alias for the THETA= exponential-option.

GAMMA(ALPHA=value | EST < gamma-options >)
creates a gamma probability plot for each value of the shape parameter ˛ given by the manda-
tory ALPHA= gamma-option. If you specify ALPHA=EST, the procedure creates a plot
based on a maximum likelihood estimate for ˛. To obtain a graphical estimate of ˛, specify a
list of values for the ALPHA= gamma-option and select the value that most nearly linearizes
the point pattern. To assess the point pattern, add a diagonal distribution reference line cor-
responding to �0 and �0 with the THETA= and SIGMA= gamma-options. Alternatively, you
can add a line corresponding to estimated values of the threshold parameter �0 and the scale
parameter � with the gamma-options THETA=EST and SIGMA=EST. Agreement between
the reference line and the point pattern indicates that the gamma distribution with parameters
˛, �0, and �0 is a good fit. You can specify the SCALE= gamma-option as an alias for the
SIGMA= gamma-option and the THRESHOLD= gamma-option as an alias for the THETA=
gamma-option.

GRID
displays a grid. Grid lines are reference lines that are perpendicular to the percentile axis at
major tick marks.

LGRID=linetype
specifies the line type for the grid requested by the GRID= option. By default, LGRID=1,
which produces a solid line.

LOGNORMAL(SIGMA=value | EST < lognormal-options >)

LNORM(SIGMA=value | EST < lognormal-options >)
creates a lognormal probability plot for each value of the shape parameter � given by the
mandatory SIGMA= lognormal-option. If you specify SIGMA=EST, the procedure creates
a plot based on a maximum likelihood estimate for � . To obtain a graphical estimate of � ,
specify a list of values for the SIGMA= lognormal-option and select the value that most nearly
linearizes the point pattern. To assess the point pattern, add a diagonal distribution reference
line corresponding to �0 and �0 with the THETA= and ZETA= lognormal-options. Alterna-
tively, you can add a line corresponding to estimated values of the threshold parameter �0 and
the scale parameter �0 with the lognormal-options THETA=EST and ZETA=EST. Agreement
between the reference line and the point pattern indicates that the lognormal distribution with
parameters � , �0, and �0 is a good fit. You can specify the THRESHOLD= lognormal-option
as an alias for the THETA= lognormal-option and the SCALE= lognormal-option as an alias
for the ZETA= lognormal-option. See Example 4.26.
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MU=value | EST
specifies the mean �0 for a normal probability plot requested with the NORMAL option. En-
close the MU= normal-option in parentheses after the NORMAL option. The MU= normal-
option must be specified with the SIGMA= normal-option, and they request a distribution
reference line. You can specify MU=EST to request a distribution reference line with �0

equal to the sample mean.

NADJ=value
specifies the adjustment value added to the sample size in the calculation of theoretical per-
centiles. By default, NADJ=1

4
. Refer to Chambers et al. (1983).

NORMAL< (normal-options) >
creates a normal probability plot. This is the default if you omit a distribution option. To
assess the point pattern, you can add a diagonal distribution reference line corresponding
to �0 and �0 with the MU= and SIGMA= normal-options. Alternatively, you can add a
line corresponding to estimated values of �0 and �0 with the normal-options MU=EST and
SIGMA=EST; the estimates of the mean �0 and the standard deviation �0 are the sample
mean and sample standard deviation. Agreement between the reference line and the point
pattern indicates that the normal distribution with parameters �0 and �0 is a good fit.

PCTLMINOR
requests minor tick marks for the percentile axis. The HMINOR option overrides the minor
tick marks requested by the PCTLMINOR option.

PCTLORDER=values
specifies the tick marks that are labeled on the theoretical percentile axis. Because the values
are percentiles, the labels must be between 0 and 100, exclusive. The values must be listed in
increasing order and must cover the plotted percentile range. Otherwise, the default values of
1, 5, 10, 25, 50, 75, 90, 95, and 99 are used.

RANKADJ=value
specifies the adjustment value added to the ranks in the calculation of theoretical percentiles.
By default, RANKADJ=�

3
8

, as recommended by Blom (1958). Refer to Chambers et al.
(1983) for additional information.

ROTATE
switches the horizontal and vertical axes so that the theoretical percentiles are plotted verti-
cally while the data are plotted horizontally. Regardless of whether the plot has been rotated,
horizontal axis options (such as HAXIS=) still refer to the horizontal axis, and vertical axis
options (such as VAXIS=) still refer to the vertical axis. All other options that depend on axis
placement adjust to the rotated axes.

SIGMA=value-list | EST
specifies the parameter � , where � > 0. Alternatively, you can specify SIGMA=EST to
request a maximum likelihood estimate for �0. The interpretation and use of the SIGMA=
option depend on the distribution option with which it is used. See Table 4.66 for a summary
of how to use the SIGMA= option. You must enclose this option in parentheses after the
distribution option.
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Table 4.66 Uses of the SIGMA= Option

Distribution Option Use of the SIGMA= Option

BETA
EXPONENTIAL
GAMMA
WEIBULL

THETA=�0 and SIGMA=�0 request a distribution reference
line corresponding to �0 and �0.

LOGNORMAL SIGMA=�1 : : : �n requests n probability plots with shape pa-
rameters �1 : : : �n. The SIGMA= option must be specified.

NORMAL MU=�0 and SIGMA=�0 request a distribution reference line
corresponding to�0 and �0. SIGMA=EST requests a line with
�0 equal to the sample standard deviation.

WEIBULL2 SIGMA=�0 and C=c0 request a distribution reference line cor-
responding to �0 and c0.

SLOPE=value | EST
specifies the slope for a distribution reference line requested with the LOGNORMAL and
WEIBULL2 options. Enclose the SLOPE= option in parentheses after the distribution option.
When you use the SLOPE= lognormal-option with the LOGNORMAL option, you must also
specify a threshold parameter value �0 with the THETA= lognormal-option to request the
line. The SLOPE= lognormal-option is an alternative to the ZETA= lognormal-option for
specifying �0, because the slope is equal to exp.�0/.

When you use the SLOPE= Weibull2-option with the WEIBULL2 option, you must also spec-
ify a scale parameter value �0 with the SIGMA= Weibull2-option to request the line. The
SLOPE= Weibull2-option is an alternative to the C= Weibull2-option for specifying c0, be-
cause the slope is equal to 1

c0
.

For example, the first and second PROBPLOT statements produce the same probability plots
and the third and fourth PROBPLOT statements produce the same probability plots:

proc univariate data=Measures;
probplot Width / lognormal(sigma=2 theta=0 zeta=0);
probplot Width / lognormal(sigma=2 theta=0 slope=1);
probplot Width / weibull2(sigma=2 theta=0 c=.25);
probplot Width / weibull2(sigma=2 theta=0 slope=4);

run;

SQUARE
displays the probability plot in a square frame. By default, the plot is in a rectangular frame.

THETA=value | EST

THRESHOLD=value | EST
specifies the lower threshold parameter � for plots requested with the BETA, EXPO-
NENTIAL, GAMMA, LOGNORMAL, WEIBULL, and WEIBULL2 options. Enclose the
THETA= option in parentheses after a distribution option. When used with the WEIBULL2
option, the THETA= option specifies the known lower threshold �0, for which the default
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is 0. When used with the other distribution options, the THETA= option specifies �0 for a
distribution reference line; alternatively in this situation, you can specify THETA=EST to
request a maximum likelihood estimate for �0. To request the line, you must also specify a
scale parameter.

WEIBULL(C=value | EST < Weibull-options >)

WEIB(C=value | EST < Weibull-options >)
creates a three-parameter Weibull probability plot for each value of the required shape pa-
rameter c specified by the mandatory C= Weibull-option. To create a plot that is based on a
maximum likelihood estimate for c, specify C=EST. To obtain a graphical estimate of c, spec-
ify a list of values in the C= Weibull-option and select the value that most nearly linearizes
the point pattern. To assess the point pattern, add a diagonal distribution reference line cor-
responding to �0 and �0 with the THETA= and SIGMA= Weibull-options. Alternatively,
you can add a line corresponding to estimated values of �0 and �0 with the Weibull-options
THETA=EST and SIGMA=EST. Agreement between the reference line and the point pat-
tern indicates that the Weibull distribution with parameters c, �0, and �0 is a good fit. You
can specify the SCALE= Weibull-option as an alias for the SIGMA= Weibull-option and the
THRESHOLD= Weibull-option as an alias for the THETA= Weibull-option.

WEIBULL2< (Weibull2-options) >

W2< (Weibull2-options) >
creates a two-parameter Weibull probability plot. You should use the WEIBULL2 option
when your data have a known lower threshold �0, which is 0 by default. To specify the
threshold value �0, use the THETA= Weibull2-option. By default, THETA=0. An advantage
of the two-parameter Weibull plot over the three-parameter Weibull plot is that the parameters
c and � can be estimated from the slope and intercept of the point pattern. A disadvantage
is that the two-parameter Weibull distribution applies only in situations where the threshold
parameter is known. To obtain a graphical estimate of �0, specify a list of values for the
THETA= Weibull2-option and select the value that most nearly linearizes the point pattern.
To assess the point pattern, add a diagonal distribution reference line corresponding to �0

and c0 with the SIGMA= and C= Weibull2-options. Alternatively, you can add a distribu-
tion reference line corresponding to estimated values of �0 and c0 with the Weibull2-options
SIGMA=EST and C=EST. Agreement between the reference line and the point pattern in-
dicates that the Weibull distribution with parameters c0, �0, and �0 is a good fit. You can
specify the SCALE= Weibull2-option as an alias for the SIGMA= Weibull2-option and the
SHAPE= Weibull2-option as an alias for the C= Weibull2-option.

WGRID=n
specifies the line thickness for the grid when producing traditional graphics. The option does
not apply to ODS Graphics output.

ZETA=value | EST
specifies a value for the scale parameter � for the lognormal probability plots requested with
the LOGNORMAL option. Enclose the ZETA= lognormal-option in parentheses after the
LOGNORMAL option. To request a distribution reference line with intercept �0 and slope
exp.�0/, specify the THETA=�0 and ZETA=�0.
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QQPLOT Statement

QQPLOT < variables > < / options > ;

The QQPLOT statement creates quantile-quantile plots (Q-Q plots) and compares ordered variable
values with quantiles of a specified theoretical distribution. If the data distribution matches the
theoretical distribution, the points on the plot form a linear pattern. Thus, you can use a Q-Q plot to
determine how well a theoretical distribution models a set of measurements.

Q-Q plots are similar to probability plots, which you can create with the PROBPLOT statement.
Q-Q plots are preferable for graphical estimation of distribution parameters, whereas probability
plots are preferable for graphical estimation of percentiles.

You can use any number of QQPLOT statements in the UNIVARIATE procedure. The components
of the QQPLOT statement are as follows.

variables
are the variables for which Q-Q plots are created. If you specify a VAR statement, the vari-
ables must also be listed in the VAR statement. Otherwise, the variables can be any numeric
variables in the input data set. If you do not specify a list of variables, then by default the pro-
cedure creates a Q-Q plot for each variable listed in the VAR statement, or for each numeric
variable in the DATA= data set if you do not specify a VAR statement. For example, each of
the following QQPLOT statements produces two Q-Q plots, one for Length and one for Width:

proc univariate data=Measures;
var Length Width;
qqplot;

proc univariate data=Measures;
qqplot Length Width;

run;

options
specify the theoretical distribution for the plot or add features to the plot. If you specify more
than one variable, the options apply equally to each variable. Specify all options after the
slash (/) in the QQPLOT statement. You can specify only one option that names the distri-
bution in each QQPLOT statement, but you can specify any number of other options. The
distributions available are the beta, exponential, gamma, lognormal, normal, two-parameter
Weibull, and three-parameter Weibull. By default, the procedure produces a plot for the nor-
mal distribution.

In the following example, the NORMAL option requests a normal Q-Q plot for each variable.
The MU= and SIGMA= normal-options request a distribution reference line with intercept
10 and slope 0.3 for each plot, corresponding to a normal distribution with mean � D 10 and
standard deviation � D 0:3. The SQUARE option displays the plot in a square frame, and the
CTEXT= option specifies the text color.
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proc univariate data=measures;
qqplot length1 length2 / normal(mu=10 sigma=0.3)

square ctext=blue;
run;

Table 4.67 through Table 4.76 list the QQPLOT options by function. For complete descrip-
tions, see the sections “Dictionary of Options” on page 308 and “Dictionary of Common
Options” on page 315.

Options can be any of the following:

� primary options

� secondary options

� general options

Distribution Options

Table 4.67 lists primary options for requesting a theoretical distribution. See the section
“Distributions for Probability and Q-Q Plots” on page 362 for detailed descriptions of these dis-
tributions.

Table 4.67 Primary Options for Theoretical Distributions

Option Description

BETA(beta-options) specifies beta Q-Q plot for shape
parameters ˛ and ˇ specified with
mandatory ALPHA= and BETA=
beta-options

EXPONENTIAL(exponential-options) specifies exponential Q-Q plot
GAMMA(gamma-options) specifies gamma Q-Q plot for shape

parameter ˛ specified with manda-
tory ALPHA= gamma-option

LOGNORMAL(lognormal-options) specifies lognormal Q-Q plot for
shape parameter � specified with
mandatory SIGMA= lognormal-
option

NORMAL(normal-options) specifies normal Q-Q plot
WEIBULL(Weibull-options) specifies three-parameter Weibull Q-

Q plot for shape parameter c spec-
ified with mandatory C= Weibull-
option

WEIBULL2(Weibull2-options) specifies two-parameter Weibull Q-Q
plot

Table 4.68 through Table 4.75 list secondary options that specify distribution parameters and con-
trol the display of a distribution reference line. Specify these options in parentheses after the distri-
bution keyword. For example, you can request a normal Q-Q plot with a distribution reference line
by specifying the NORMAL option as follows:
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proc univariate;
qqplot Length / normal(mu=10 sigma=0.3 color=red);

run;

The MU= and SIGMA= normal-options display a distribution reference line that corresponds to
the normal distribution with mean �0 D 10 and standard deviation �0 D 0:3, and the COLOR=
normal-option specifies the color for the line.

Table 4.68 Secondary Reference Line Options Used with All Distributions

Option Description

COLOR= specifies color of distribution reference line
L= specifies line type of distribution reference line
W= specifies width of distribution reference line

Table 4.69 Secondary Beta-Options

Option Description

ALPHA= specifies mandatory shape parameter ˛
BETA= specifies mandatory shape parameter ˇ
SIGMA= specifies �0 for distribution reference line
THETA= specifies �0 for distribution reference line

Table 4.70 Secondary Exponential-Options

Option Description

SIGMA= specifies �0 for distribution reference line
THETA= specifies �0 for distribution reference line

Table 4.71 Secondary Gamma-Options

Option Description

ALPHA= specifies mandatory shape parameter ˛
ALPHADELTA= specifies change in successive estimates of ˛ at which the Newton-

Raphson approximation of Ǫ terminates
ALPHAINITIAL= specifies initial value for ˛ in the Newton-Raphson approximation of Ǫ

MAXITER= specifies maximum number of iterations in the Newton-Raphson ap-
proximation of Ǫ

SIGMA= specifies �0 for distribution reference line
THETA= specifies �0 for distribution reference line
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Table 4.72 Secondary Lognormal-Options

Option Description

SIGMA= specifies mandatory shape parameter �
SLOPE= specifies slope of distribution reference line
THETA= specifies �0 for distribution reference line
ZETA= specifies �0 for distribution reference line (slope is exp.�0/)

Table 4.73 Secondary Normal-Options

Option Description

MU= specifies �0 for distribution reference line
SIGMA= specifies �0 for distribution reference line

Table 4.74 Secondary Weibull-Options

Option Description

C= specifies mandatory shape parameter c
SIGMA= specifies �0 for distribution reference line
THETA= specifies �0 for distribution reference line

Table 4.75 Secondary Weibull2-Options

Option Description

C= specifies c0 for distribution reference line (slope is 1=c0)
SIGMA= specifies �0 for distribution reference line (intercept is log.�0/)
SLOPE= specifies slope of distribution reference line
THETA= specifies known lower threshold �0

General Options

Table 4.76 summarizes general options for enhancing Q-Q plots.

Table 4.76 General Graphics Options

Option Description

ANNOKEY applies annotation requested in ANNOTATE= data set to key cell only
ANNOTATE= specifies annotate data set
CAXIS= specifies color for axis
CFRAME= specifies color for frame
CFRAMESIDE= specifies color for filling frame for row labels



QQPLOT Statement F 307

Table 4.76 (continued)

Option Description

CFRAMETOP= specifies color for filling frame for column labels
CGRID= specifies color for grid lines
CHREF= specifies color for HREF= lines
CONTENTS= specifies table of contents entry for Q-Q plot grouping
CTEXT= specifies color for text
CVREF= specifies color for VREF= lines
DESCRIPTION= specifies description for plot in graphics catalog
FONT= specifies software font for text
GRID creates a grid
HEIGHT= specifies height of text used outside framed areas
HMINOR= specifies number of horizontal minor tick marks
HREF= specifies reference lines perpendicular to the horizontal axis
HREFLABELS= specifies labels for HREF= lines
HREFLABPOS= specifies vertical position of labels for HREF= lines
INFONT= specifies software font for text inside framed areas
INHEIGHT= specifies height of text inside framed areas
INTERTILE= specifies distance between tiles
LGRID= specifies a line type for grid lines
LHREF= specifies line style for HREF= lines
LVREF= specifies line style for VREF= lines
NADJ= adjusts sample size when computing percentiles
NAME= specifies name for plot in graphics catalog
NCOLS= specifies number of columns in comparative Q-Q plot
NOFRAME suppresses frame around plotting area
NOHLABEL suppresses label for horizontal axis
NOVLABEL suppresses label for vertical axis
NOVTICK suppresses tick marks and tick mark labels for vertical axis
NROWS= specifies number of rows in comparative Q-Q plot
PCTLAXIS displays a nonlinear percentile axis
PCTLMINOR requests minor tick marks for percentile axis
PCTLSCALE replaces theoretical quantiles with percentiles
RANKADJ= adjusts ranks when computing percentiles
ROTATE switches horizontal and vertical axes
SQUARE displays plot in square format
VAXIS= specifies AXIS statement for vertical axis
VAXISLABEL= specifies label for vertical axis
VMINOR= specifies number of vertical minor tick marks
VREF= specifies reference lines perpendicular to the vertical axis
VREFLABELS= specifies labels for VREF= lines
VREFLABPOS= specifies horizontal position of labels for VREF= lines
WAXIS= specifies line thickness for axes and frame
WGRID= specifies line thickness for grid
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Dictionary of Options

The following entries provide detailed descriptions of options in the QQPLOT statement. See the
section “Dictionary of Common Options” on page 315 for detailed descriptions of options common
to all plot statements.

ALPHA=value-list | EST
specifies the mandatory shape parameter ˛ for quantile plots requested with the BETA and
GAMMA options. Enclose the ALPHA= option in parentheses after the BETA or GAMMA
options. If you specify ALPHA=EST, a maximum likelihood estimate is computed for ˛.

BETA(ALPHA=value | EST BETA=value | EST < beta-options >)
creates a beta quantile plot for each combination of the required shape parameters ˛ and ˇ
specified by the required ALPHA= and BETA= beta-options. If you specify ALPHA=EST
and BETA=EST, the procedure creates a plot based on maximum likelihood estimates for ˛
and ˇ. You can specify the SCALE= beta-option as an alias for the SIGMA= beta-option
and the THRESHOLD= beta-option as an alias for the THETA= beta-option. To create a
plot that is based on maximum likelihood estimates for ˛ and ˇ, specify ALPHA=EST and
BETA=EST. See the section “Beta Distribution” on page 363 for details.

To obtain graphical estimates of ˛ and ˇ, specify lists of values in the ALPHA= and BETA=
beta-options and select the combination of ˛ and ˇ that most nearly linearizes the point
pattern. To assess the point pattern, you can add a diagonal distribution reference line cor-
responding to lower threshold parameter �0 and scale parameter �0 with the THETA= and
SIGMA= beta-options. Alternatively, you can add a line that corresponds to estimated values
of �0 and �0 with the beta-options THETA=EST and SIGMA=EST. Agreement between the
reference line and the point pattern indicates that the beta distribution with parameters ˛, ˇ,
�0, and �0 is a good fit.

BETA=value-list | EST

B=value | EST
specifies the mandatory shape parameter ˇ for quantile plots requested with the BETA option.
Enclose the BETA= option in parentheses after the BETA option. If you specify BETA=EST,
a maximum likelihood estimate is computed for ˇ.

C=value-list | EST
specifies the shape parameter c for quantile plots requested with the WEIBULL and
WEIBULL2 options. Enclose this option in parentheses after the WEIBULL or WEIBULL2
option. C= is a required Weibull-option in the WEIBULL option; in this situation, it accepts a
list of values, or if you specify C=EST, a maximum likelihood estimate is computed for c. You
can optionally specify C=value or C=EST as a Weibull2-option with the WEIBULL2 option
to request a distribution reference line; in this situation, you must also specify Weibull2-option
SIGMA=value or SIGMA=EST.

CGRID=color
specifies the color for grid lines when a grid displays on the plot. This option also produces a
grid.
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EXPONENTIAL< (exponential-options) >
EXP< (exponential-options) >

creates an exponential quantile plot. To assess the point pattern, add a diagonal distribu-
tion reference line corresponding to �0 and �0 with the THETA= and SIGMA= exponential-
options. Alternatively, you can add a line corresponding to estimated values of the thresh-
old parameter �0 and the scale parameter � with the exponential-options THETA=EST
and SIGMA=EST. Agreement between the reference line and the point pattern indicates
that the exponential distribution with parameters �0 and �0 is a good fit. You can spec-
ify the SCALE= exponential-option as an alias for the SIGMA= exponential-option and the
THRESHOLD= exponential-option as an alias for the THETA= exponential-option. See the
section “Exponential Distribution” on page 363 for details.

GAMMA(ALPHA=value | EST < gamma-options >)
creates a gamma quantile plot for each value of the shape parameter ˛ given by the mandatory
ALPHA= gamma-option. If you specify ALPHA=EST, the procedure creates a plot based on
a maximum likelihood estimate for ˛. To obtain a graphical estimate of ˛, specify a list of
values for the ALPHA= gamma-option and select the value that most nearly linearizes the
point pattern. To assess the point pattern, add a diagonal distribution reference line corre-
sponding to �0 and �0 with the THETA= and SIGMA= gamma-options. Alternatively, you
can add a line corresponding to estimated values of the threshold parameter �0 and the scale
parameter � with the gamma-options THETA=EST and SIGMA=EST. Agreement between
the reference line and the point pattern indicates that the gamma distribution with parameters
˛, �0, and �0 is a good fit. You can specify the SCALE= gamma-option as an alias for the
SIGMA= gamma-option and the THRESHOLD= gamma-option as an alias for the THETA=
gamma-option. See the section “Gamma Distribution” on page 363 for details.

GRID
displays a grid of horizontal lines positioned at major tick marks on the vertical axis.

LGRID=linetype
specifies the line type for the grid requested by the GRID option. By default, LGRID=1,
which produces a solid line. The LGRID= option also produces a grid.

LOGNORMAL(SIGMA=value | EST < lognormal-options >)
LNORM(SIGMA=value | EST < lognormal-options >)

creates a lognormal quantile plot for each value of the shape parameter � given by the manda-
tory SIGMA= lognormal-option. If you specify SIGMA=EST, the procedure creates a plot
based on a maximum likelihood estimate for � . To obtain a graphical estimate of � , spec-
ify a list of values for the SIGMA= lognormal-option and select the value that most nearly
linearizes the point pattern. To assess the point pattern, add a diagonal distribution reference
line corresponding to �0 and �0 with the THETA= and ZETA= lognormal-options. Alterna-
tively, you can add a line corresponding to estimated values of the threshold parameter �0 and
the scale parameter �0 with the lognormal-options THETA=EST and ZETA=EST. Agreement
between the reference line and the point pattern indicates that the lognormal distribution with
parameters � , �0, and �0 is a good fit. You can specify the THRESHOLD= lognormal-option
as an alias for the THETA= lognormal-option and the SCALE= lognormal-option as an alias
for the ZETA= lognormal-option. See the section “Lognormal Distribution” on page 364 for
details, and see Example 4.31 through Example 4.33 for examples that use the LOGNOR-
MAL option.
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MU=value | EST
specifies the mean �0 for a normal quantile plot requested with the NORMAL option. En-
close the MU= normal-option in parentheses after the NORMAL option. The MU= normal-
option must be specified with the SIGMA= normal-option, and they request a distribution
reference line. You can specify MU=EST to request a distribution reference line with �0

equal to the sample mean.

NADJ=value
specifies the adjustment value added to the sample size in the calculation of theoretical per-
centiles. By default, NADJ=1

4
. Refer to Chambers et al. (1983) for additional information.

NORMAL< (normal-options) >
creates a normal quantile plot. This is the default if you omit a distribution option. To assess
the point pattern, you can add a diagonal distribution reference line corresponding to �0 and
�0 with the MU= and SIGMA= normal-options. Alternatively, you can add a line correspond-
ing to estimated values of �0 and �0 with the normal-options MU=EST and SIGMA=EST;
the estimates of the mean �0 and the standard deviation �0 are the sample mean and sample
standard deviation. Agreement between the reference line and the point pattern indicates that
the normal distribution with parameters �0 and �0 is a good fit. See the section “Normal
Distribution” on page 364 for details, and see Example 4.28 and Example 4.30 for examples
that use the NORMAL option.

PCTLAXIS< (axis-options) >
adds a nonlinear percentile axis along the frame of the Q-Q plot opposite the theoretical
quantile axis. The added axis is identical to the axis for probability plots produced with the
PROBPLOT statement. When using the PCTLAXIS option, you must specify HREF= values
in quantile units, and you cannot use the NOFRAME option. You can specify the following
axis-options:

Table 4.77 PCTLAXIS Axis Options

Option Description

CGRID= specifies color for grid lines
GRID draws grid lines at major percentiles
LABEL=‘string’ specifies label for percentile axis
LGRID=linetype specifies line type for grid
WGRID=n specifies line thickness for grid

PCTLMINOR
requests minor tick marks for the percentile axis when you specify PCTLAXIS. The HMI-
NOR option overrides the PCTLMINOR option.

PCTLSCALE
requests scale labels for the theoretical quantile axis in percentile units, resulting in a nonlin-
ear axis scale. Tick marks are drawn uniformly across the axis based on the quantile scale. In
all other respects, the plot remains the same, and you must specify HREF= values in quantile
units. For a true nonlinear axis, use the PCTLAXIS option or use the PROBPLOT statement.
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RANKADJ=value
specifies the adjustment value added to the ranks in the calculation of theoretical percentiles.
By default, RANKADJ=�

3
8

, as recommended by Blom (1958). Refer to Chambers et al.
(1983) for additional information.

ROTATE
switches the horizontal and vertical axes so that the theoretical quantiles are plotted vertically
while the data are plotted horizontally. Regardless of whether the plot has been rotated,
horizontal axis options (such as HAXIS=) still refer to the horizontal axis, and vertical axis
options (such as VAXIS=) still refer to the vertical axis. All other options that depend on axis
placement adjust to the rotated axes.

SIGMA=value | EST
specifies the parameter � , where � > 0. Alternatively, you can specify SIGMA=EST to
request a maximum likelihood estimate for �0. The interpretation and use of the SIGMA=
option depend on the distribution option with which it is used, as summarized in Table 4.78.
Enclose this option in parentheses after the distribution option.

Table 4.78 Uses of the SIGMA= Option

Distribution Option Use of the SIGMA= Option

BETA
EXPONENTIAL
GAMMA
WEIBULL

THETA=�0 and SIGMA=�0 request a distribution reference
line corresponding to �0 and �0.

LOGNORMAL SIGMA=�1 : : : �n requests n quantile plots with shape param-
eters �1 : : : �n. The SIGMA= option must be specified.

NORMAL MU=�0 and SIGMA=�0 request a distribution reference line
corresponding to�0 and �0. SIGMA=EST requests a line with
�0 equal to the sample standard deviation.

WEIBULL2 SIGMA=�0 and C=c0 request a distribution reference line cor-
responding to �0 and c0.

SLOPE=value | EST
specifies the slope for a distribution reference line requested with the LOGNORMAL and
WEIBULL2 options. Enclose the SLOPE= option in parentheses after the distribution option.
When you use the SLOPE= lognormal-option with the LOGNORMAL option, you must also
specify a threshold parameter value �0 with the THETA= lognormal-option to request the
line. The SLOPE= lognormal-option is an alternative to the ZETA= lognormal-option for
specifying �0, because the slope is equal to exp.�0/.

When you use the SLOPE= Weibull2-option with the WEIBULL2 option, you must also spec-
ify a scale parameter value �0 with the SIGMA= Weibull2-option to request the line. The
SLOPE= Weibull2-option is an alternative to the C= Weibull2-option for specifying c0, be-
cause the slope is equal to 1

c0
.
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For example, the first and second QQPLOT statements produce the same quantile plots and
the third and fourth QQPLOT statements produce the same quantile plots:

proc univariate data=Measures;
qqplot Width / lognormal(sigma=2 theta=0 zeta=0);
qqplot Width / lognormal(sigma=2 theta=0 slope=1);
qqplot Width / weibull2(sigma=2 theta=0 c=.25);
qqplot Width / weibull2(sigma=2 theta=0 slope=4);

SQUARE
displays the quantile plot in a square frame. By default, the frame is rectangular.

THETA=value | EST

THRESHOLD=value | EST
specifies the lower threshold parameter � for plots requested with the BETA, EXPO-
NENTIAL, GAMMA, LOGNORMAL, WEIBULL, and WEIBULL2 options. Enclose the
THETA= option in parentheses after a distribution option. When used with the WEIBULL2
option, the THETA= option specifies the known lower threshold �0, for which the default
is 0. When used with the other distribution options, the THETA= option specifies �0 for a
distribution reference line; alternatively in this situation, you can specify THETA=EST to
request a maximum likelihood estimate for �0. To request the line, you must also specify a
scale parameter.

WEIBULL(C=value | EST < Weibull-options >)

WEIB(C=value | EST < Weibull-options >)
creates a three-parameter Weibull quantile plot for each value of the required shape parameter
c specified by the mandatory C= Weibull-option. To create a plot that is based on a maximum
likelihood estimate for c, specify C=EST. To obtain a graphical estimate of c, specify a list
of values in the C= Weibull-option and select the value that most nearly linearizes the point
pattern. To assess the point pattern, add a diagonal distribution reference line corresponding
to �0 and �0 with the THETA= and SIGMA= Weibull-options. Alternatively, you can add a
line corresponding to estimated values of �0 and �0 with the Weibull-options THETA=EST
and SIGMA=EST. Agreement between the reference line and the point pattern indicates that
the Weibull distribution with parameters c, �0, and �0 is a good fit. You can specify the
SCALE= Weibull-option as an alias for the SIGMA= Weibull-option and the THRESHOLD=
Weibull-option as an alias for the THETA= Weibull-option. See Example 4.34.

WEIBULL2< (Weibull2-options) >

W2< (Weibull2-options) >
creates a two-parameter Weibull quantile plot. You should use the WEIBULL2 option when
your data have a known lower threshold �0, which is 0 by default. To specify the threshold
value �0, use the THETA= Weibull2-option. By default, THETA=0. An advantage of the
two-parameter Weibull plot over the three-parameter Weibull plot is that the parameters c
and � can be estimated from the slope and intercept of the point pattern. A disadvantage
is that the two-parameter Weibull distribution applies only in situations where the threshold
parameter is known. To obtain a graphical estimate of �0, specify a list of values for the
THETA= Weibull2-option and select the value that most nearly linearizes the point pattern.
To assess the point pattern, add a diagonal distribution reference line corresponding to �0
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and c0 with the SIGMA= and C= Weibull2-options. Alternatively, you can add a distribu-
tion reference line corresponding to estimated values of �0 and c0 with the Weibull2-options
SIGMA=EST and C=EST. Agreement between the reference line and the point pattern in-
dicates that the Weibull distribution with parameters c0, �0, and �0 is a good fit. You can
specify the SCALE= Weibull2-option as an alias for the SIGMA= Weibull2-option and the
SHAPE= Weibull2-option as an alias for the C= Weibull2-option. See Example 4.34.

WGRID=n
specifies the line thickness for the grid when producing traditional graphics. The option does
not apply to ODS Graphics output.

ZETA=value | EST
specifies a value for the scale parameter � for the lognormal quantile plots requested with
the LOGNORMAL option. Enclose the ZETA= lognormal-option in parentheses after the
LOGNORMAL option. To request a distribution reference line with intercept �0 and slope
exp.�0/, specify the THETA=�0 and ZETA=�0.

VAR Statement

VAR variables ;

The VAR statement specifies the analysis variables and their order in the results. By default, if you
omit the VAR statement, PROC UNIVARIATE analyzes all numeric variables that are not listed in
the other statements.

Using the Output Statement with the VAR Statement

You must provide a VAR statement when you use an OUTPUT statement. To store the same statistic
for several analysis variables in the OUT= data set, you specify a list of names in the OUTPUT
statement. PROC UNIVARIATE makes a one-to-one correspondence between the order of the
analysis variables in the VAR statement and the list of names that follow a statistic keyword.

WEIGHT Statement

WEIGHT variable ;

The WEIGHT statement specifies numeric weights for analysis variables in the statistical calcu-
lations. The UNIVARIATE procedure uses the values wi of the WEIGHT variable to modify the
computation of a number of summary statistics by assuming that the variance of the i th value xi

of the analysis variable is equal to �2=wi , where � is an unknown parameter. The values of the
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WEIGHT variable do not have to be integers and are typically positive. By default, observations
with nonpositive or missing values of the WEIGHT variable are handled as follows:1

� If the value is zero, the observation is counted in the total number of observations.

� If the value is negative, it is converted to zero, and the observation is counted in the total
number of observations.

� If the value is missing, the observation is excluded from the analysis.

To exclude observations that contain negative and zero weights from the analysis, use EX-
CLNPWGT. Note that most SAS/STAT procedures, such as PROC GLM, exclude negative and
zero weights by default. The weight variable does not change how the procedure determines the
range, mode, extreme values, extreme observations, or number of missing values. When you spec-
ify a WEIGHT statement, the procedure also computes a weighted standard error and a weighted
version of Student’s t test. The Student’s t test is the only test of location that PROC UNIVARIATE
computes when you weight the analysis variables.

When you specify a WEIGHT variable, the procedure uses its values, wi , to compute weighted
versions of the statistics2 provided in the Moments table. For example, the procedure computes a
weighted mean xw and a weighted variance s2

w as

xw D

P
i wixiP

i wi

and

s2
w D

1

d

X
i

wi .xi � xw/
2

where xi is the i th variable value. The divisor d is controlled by the VARDEF= option in the PROC
UNIVARIATE statement.

The WEIGHT statement does not affect the determination of the mode, extreme values, extreme
observations, or the number of missing values of the analysis variables. However, the weights
wi are used to compute weighted percentiles.3 The WEIGHT variable has no effect on graphical
displays produced with the plot statements.

The CIPCTLDF, CIPCTLNORMAL, LOCCOUNT, NORMAL, ROBUSTSCALE, TRIMMED=,
and WINSORIZED= options are not available with the WEIGHT statement.

To compute weighted skewness or kurtosis, use VARDEF=DF or VARDEF=N in the PROC state-
ment.

You cannot specify the HISTOGRAM, PROBPLOT, or QQPLOT statements with the WEIGHT
statement.

When you use the WEIGHT statement, consider which value of the VARDEF= option is appropri-
ate. See VARDEF= and the calculation of weighted statistics for more information.

1In SAS 6.12 and earlier releases, observations were used in the analysis if and only if the WEIGHT variable value
was greater than zero.

2In SAS 6.12 and earlier releases, weighted skewness and kurtosis were not computed.
3In SAS 6.12 and earlier releases, the weights did not affect the computation of percentiles and the procedure did not

exclude the observations with missing weights from the count of observations.
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Dictionary of Common Options

The following entries provide detailed descriptions of options that are common to all the plot state-
ments: CDFPLOT, HISTOGRAM, PPPLOT, PROBPLOT, and QQPLOT.

ALPHADELTA=value
specifies the change in successive estimates of Ǫ at which iteration terminates in the Newton-
Raphson approximation of the maximum likelihood estimate of ˛ for gamma distributions
requested with the GAMMA option. Enclose the ALPHADELTA= option in parentheses
after the GAMMA keyword. Iteration continues until the change in ˛ is less than the value
specified or the number of iterations exceeds the value of the MAXITER= option. The default
value is 0.00001.

ALPHAINITIAL=value
specifies the initial value for Ǫ in the Newton-Raphson approximation of the maximum likeli-
hood estimate of ˛ for gamma distributions requested with the GAMMA option. Enclose the
ALPHAINITIAL= option in parentheses after the GAMMA keyword. The default value is
Thom’s approximation of the estimate of ˛ (refer to Johnson, Kotz, and Balakrishnan (1995).

ANNOKEY
applies the annotation requested with the ANNOTATE= option only to the key cell of a com-
parative plot. By default, the procedure applies annotation to all of the cells. This option is
not available unless you use the CLASS statement. You can use the KEYLEVEL= option in
the CLASS statement to specify the key cell.

ANNOTATE=SAS-data-set

ANNO=SAS-data-set
specifies an input data set that contains annotate variables as described in SAS/GRAPH Soft-
ware: Reference. The ANNOTATE= data set you specify in the plot statement is used for
all plots created by the statement. You can also specify an ANNOTATE= data set in the
PROC UNIVARIATE statement to enhance all plots created by the procedure (see the section
“ANNOTATE= Data Sets” on page 368).

CAXIS=color

CAXES=color

CA=color
specifies the color for the axes and tick marks. This option overrides any COLOR= specifi-
cations in an AXIS statement.

CDELTA=value
specifies the change in successive estimates of c at which iterations terminate in the Newton-
Raphson approximation of the maximum likelihood estimate of c for Weibull distributions
requested by the WEIBULL option. Enclose the CDELTA= option in parentheses after the
WEIBULL keyword. Iteration continues until the change in c between consecutive steps
is less than the value specified or until the number of iterations exceeds the value of the
MAXITER= option. The default value is 0.00001.
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CFRAME=color
specifies the color for the area that is enclosed by the axes and frame. The area is not filled
by default.

CFRAMESIDE=color
specifies the color to fill the frame area for the row labels that display along the left side of
a comparative plot. This color also fills the frame area for the label of the corresponding
CLASS variable (if you associate a label with the variable). By default, these areas are not
filled. This option is not available unless you use the CLASS statement.

CFRAMETOP=color
specifies the color to fill the frame area for the column labels that display across the top of
a comparative plot. This color also fills the frame area for the label of the corresponding
CLASS variable (if you associate a label with the variable). By default, these areas are not
filled. This option is not available unless you use the CLASS statement.

CHREF=color

CH=color
specifies the color for horizontal axis reference lines requested by the HREF= option.

CINITIAL=value
specifies the initial value for Oc in the Newton-Raphson approximation of the maximum like-
lihood estimate of c for Weibull distributions requested with the WEIBULL or WEIBULL2
option. The default value is 1.8 (see Johnson, Kotz, and Balakrishnan (1995).

COLOR=color

COLOR=color-list
specifies the color of the curve or reference line associated with a distribution or kernel den-
sity estimate. Enclose the COLOR= option in parentheses after a distribution option or the
KERNEL option. In a HISTOGRAM statement, you can specify a list of colors in parentheses
for multiple density curves.

CONTENTS=‘string’
specifies the table of contents grouping entry for output produced by the plot statement. You
can specify CONTENTS=‘’ to suppress the grouping entry.

CPROP=color | EMPTY

CPROP
specifies the color for a horizontal bar whose length (relative to the width of the tile) indicates
the proportion of the total frequency that is represented by the corresponding cell in a com-
parative plot. By default, no proportion bars are displayed. This option is not available unless
you use the CLASS statement. You can specify the keyword EMPTY to display empty bars.
See Example 4.20.

For ODS Graphics and traditional graphics with the GSTYLE system option in effect, you
can specify CPROP with no argument to produce proportion bars using an appropriate color
from the ODS style.
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CTEXT=color

CT=color
specifies the color for tick mark values and axis labels. The default is the color specified for
the CTEXT= option in the GOPTIONS statement.

CTEXTSIDE=color
specifies the color for the row labels that display along the left side of a comparative plot. By
default, the color specified by the CTEXT= option is used. If you omit the CTEXT= option,
the color specified in the GOPTIONS statement is used. This option is not available unless
you use the CLASS statement. You can specify the CFRAMESIDE= option to change the
background color for the row labels.

CTEXTTOP=color
specifies the color for the column labels that display along the left side of a comparative plot.
By default, the color specified by the CTEXT= option is used. If you omit the CTEXT=
option, the color specified in the GOPTIONS statement is used. This option is not available
unless you specify the CLASS statement. You can use the CFRAMETOP= option to change
the background color for the column labels.

CVREF=color

CV=color
specifies the color for lines requested with the VREF= option.

DESCRIPTION=‘string’
DES=‘string’

specifies a description, up to 256 characters long, that appears in the PROC GREPLAY master
menu for a traditional graphics chart. The default value is the analysis variable name.

FITINTERVAL=value
specifies the value of z for the method of percentiles when this method is used to fit a Johnson
SB or Johnson SU distribution. The FITINTERVAL= option is specified in parentheses after
the SB or SU option. The default of z is 0.524.

FITMETHOD=PERCENTILE | MLE | MOMENTS
specifies the method used to estimate the parameters of a Johnson SB or Johnson SU distri-
bution. The FITMETHOD= option is specified in parentheses after the SB or SU option. By
default, the method of percentiles is used.

FITTOLERANCE=value
specifies the tolerance value for the ratio criterion when the method of percentiles is used to
fit a Johnson SB or Johnson SU distribution. The FITTOLERANCE= option is specified in
parentheses after the SB or SU option. The default value is 0.01.

FONT=font
specifies a software font for reference line and axis labels. You can also specify fonts for
axis labels in an AXIS statement. The FONT= font takes precedence over the FTEXT= font
specified in the GOPTIONS statement.

HAXIS=value
specifies the name of an AXIS statement describing the horizontal axis.
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HEIGHT=value
specifies the height, in percentage screen units, of text for axis labels, tick mark labels, and
legends. This option takes precedence over the HTEXT= option in the GOPTIONS statement.

HMINOR=n

HM=n
specifies the number of minor tick marks between each major tick mark on the horizontal
axis. Minor tick marks are not labeled. By default, HMINOR=0.

HREF=values
draws reference lines that are perpendicular to the horizontal axis at the values that you spec-
ify. Also see the CHREF= and LHREF= options.

HREFLABELS=‘label1’ . . . ‘labeln’

HREFLABEL=‘label1’ . . . ‘labeln’

HREFLAB=‘label1’ . . . ‘labeln’
specifies labels for the lines requested by the HREF= option. The number of labels must
equal the number of lines. Enclose each label in quotes. Labels can have up to 16 characters.

HREFLABPOS=n
specifies the vertical position of HREFLABELS= labels, as described in the following table.

n Position

1 along top of plot
2 staggered from top to bottom of plot
3 along bottom of plot
4 staggered from bottom to top of plot

By default, HREFLABPOS=1. NOTE: HREFLABPOS=2 and HREFLABPOS=4 are not
supported for ODS Graphics output.

INFONT=font
specifies a software font to use for text inside the framed areas of the plot. The INFONT=
option takes precedence over the FTEXT= option in the GOPTIONS statement. For a list of
fonts, see SAS/GRAPH Software: Reference.

INHEIGHT=value
specifies the height, in percentage screen units, of text used inside the framed areas of the
histogram. By default, the height specified by the HEIGHT= option is used. If you do not
specify the HEIGHT= option, the height specified with the HTEXT= option in the GOP-
TIONS statement is used.

INTERTILE=value
specifies the distance in horizontal percentage screen units between the framed areas, called
tiles, of a comparative plot. By default, INTERTILE=0.75 percentage screen units. This
option is not available unless you use the CLASS statement. You can specify INTERTILE=0
to create contiguous tiles.
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L=linetype

L=linetype-list
specifies the line type of the curve or reference line associated with a distribution or ker-
nel density estimate. Enclose the L= option in parentheses after the distribution option or
the KERNEL option. In a HISTOGRAM statement, you can specify a list of line types in
parentheses for multiple density curves.

LHREF=linetype

LH=linetype
specifies the line type for the reference lines that you request with the HREF= option. By
default, LHREF=2, which produces a dashed line.

LVREF=linetype

LV=linetype
specifies the line type for lines requested with the VREF= option. By default, LVREF=2,
which produces a dashed line.

MAXITER=n
specifies the maximum number of iterations in the Newton-Raphson approximation of the
maximum likelihood estimate of ˛ for gamma distributions requested with the GAMMA
option and c for Weibull distributions requested with the WEIBULL and WEIBULL2 op-
tions. Enclose the MAXITER= option in parentheses after the GAMMA, WEIBULL, or
WEIBULL2 keywords. The default value of n is 20.

NAME=‘string’
specifies a name for the plot, up to eight characters long, that appears in the PROC GREPLAY
master menu for a traditional graphics chart. The default value is ‘UNIVAR’.

NCOLS=n

NCOL=n
specifies the number of columns per panel in a comparative plot. This option is not available
unless you use the CLASS statement. By default, NCOLS=1 if you specify only one CLASS
variable, and NCOLS=2 if you specify two CLASS variables. If you specify two CLASS
variables, you can use the NCOLS= option with the NROWS= option.

NOFRAME
suppresses the frame around the subplot area.

NOHLABEL
suppresses the label for the horizontal axis. You can use this option to reduce clutter.

NOVLABEL
suppresses the label for the vertical axis. You can use this option to reduce clutter.

NOVTICK
suppresses the tick marks and tick mark labels for the vertical axis. This option also sup-
presses the label for the vertical axis.
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NROWS=n

NROW=n
specifies the number of rows per panel in a comparative plot. This option is not available
unless you use the CLASS statement. By default, NROWS=2. If you specify two CLASS
variables, you can use the NCOLS= option with the NROWS= option.

OVERLAY
specifies that plots associated with different levels of a CLASS variable be overlaid onto a
single plot, rather than displayed as separate cells in a comparative plot. If you specify the
OVERLAY option with one CLASS variable, the output associated with each level of the
CLASS variable is overlaid on a single plot. If you specify the OVERLAY option with two
CLASS variables, a comparative plot based on the first CLASS variable’s levels is produced.
Each cell in this comparative plot contains overlaid output associated with the levels of the
second CLASS variable.

The OVERLAY option applies only to ODS Graphics output and it is not available in the
HISTOGRAM statement.

SCALE=value
is an alias for the SIGMA= option for distributions requested by the BETA, EXPONEN-
TIAL, GAMMA, SB, SU, WEIBULL, and WEIBULL2 options and for the ZETA= option
for distributions requested by the LOGNORMAL option.

SHAPE=value
is an alias for the ALPHA= option for distributions requested by the GAMMA option, for
the SIGMA= option for distributions requested by the LOGNORMAL option, and for the C=
option for distributions requested by the WEIBULL and WEIBULL2 options.

TURNVLABELS

TURNVLABEL
turns the characters in the vertical axis labels so that they display vertically. This happens by
default when you use a hardware font.

VAXIS=name

VAXIS=value-list
specifies the name of an AXIS statement describing the vertical axis. In a HISTOGRAM
statement, you can alternatively specify a value-list for the vertical axis.

VAXISLABEL=‘label ’
specifies a label for the vertical axis. Labels can have up to 40 characters.

VMINOR=n

VM=n
specifies the number of minor tick marks between each major tick mark on the vertical axis.
Minor tick marks are not labeled. The default is zero.

VREF=value-list
draws reference lines perpendicular to the vertical axis at the values specified. Also see the
CVREF= and LVREF= options.
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VREFLABELS=‘label1’. . . ‘labeln’

VREFLABEL=‘label1’. . . ‘labeln’

VREFLAB=‘label1’. . . ‘labeln’
specifies labels for the lines requested by the VREF= option. The number of labels must
equal the number of lines. Enclose each label in quotes. Labels can have up to 16 characters.

VREFLABPOS=n
specifies the horizontal position of VREFLABELS= labels. If you specify VREFLABPOS=1,
the labels are positioned at the left of the plot. If you specify VREFLABPOS=2, the labels
are positioned at the right of the plot. By default, VREFLABPOS=1.

W=value

W=value-list
specifies the width in pixels of the curve or reference line associated with a distribution or
kernel density estimate. Enclose the W= option in parentheses after the distribution option
or the KERNEL option. In a HISTOGRAM statement, you can specify a list of widths in
parentheses for multiple density curves.

WAXIS=n
specifies the line thickness, in pixels, for the axes and frame.

Details: UNIVARIATE Procedure

Missing Values

PROC UNIVARIATE excludes missing values for an analysis variable before calculating statistics.
Each analysis variable is treated individually; a missing value for an observation in one variable does
not affect the calculations for other variables. The statements handle missing values as follows:

� If a BY or an ID variable value is missing, PROC UNIVARIATE treats it like any other BY
or ID variable value. The missing values form a separate BY group.

� If the FREQ variable value is missing or nonpositive, PROC UNIVARIATE excludes the
observation from the analysis.

� If the WEIGHT variable value is missing, PROC UNIVARIATE excludes the observation
from the analysis.

PROC UNIVARIATE tabulates the number of missing values and reports this information in the
ODS table named “Missing Values.” See the section “ODS Table Names” on page 374. Before the
number of missing values is tabulated, PROC UNIVARIATE excludes observations when either of
the following conditions exist:
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� you use the FREQ statement and the frequencies are nonpositive

� you use the WEIGHT statement and the weights are missing or nonpositive (you must specify
the EXCLNPWGT option)

Rounding

When you specify ROUND=u, PROC UNIVARIATE rounds a variable by using the rounding unit
to divide the number line into intervals with midpoints of the form ui , where u is the nonnegative
rounding unit and i is an integer. The interval width is u. Any variable value that falls in an interval
is rounded to the midpoint of that interval. A variable value that is midway between two midpoints,
and is therefore on the boundary of two intervals, rounds to the even midpoint. Even midpoints
occur when i is an even integer .0;˙2;˙4; : : :/.

When ROUND=1 and the analysis variable values are between �2.5 and 2.5, the intervals are as
follows:

Table 4.79 Intervals for Rounding When ROUND=1

i Interval Midpoint Left endpt rounds to Right endpt rounds to

�2 [�2.5, �1.5] �2 �2 �2
�1 [�1.5, �0.5] �1 �2 0

0 [�0.5, 0.5] 0 0 0
1 [0.5, 1.5] 1 0 2
2 [1.5, 2.5] 2 2 2

When ROUND=0.5 and the analysis variable values are between �1.25 and 1.25, the intervals are
as follows:

Table 4.80 Intervals for Rounding When ROUND=0.5

i Interval Midpoint Left endpt rounds to Right endpt rounds to

�2 [�1.25, �0.75] �1.0 �1 �1
�1 [�0.75, �0.25] �0.5 �1 0

0 [�0.25, 0.25] 0.0 0 0
1 [0.25, 0.75] 0.5 0 1
2 [0.75, 1.25] 1.0 1 1

As the rounding unit increases, the interval width also increases. This reduces the number of unique
values and decreases the amount of memory that PROC UNIVARIATE needs.
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Descriptive Statistics

This section provides computational details for the descriptive statistics that are computed with
the PROC UNIVARIATE statement. These statistics can also be saved in the OUT= data set by
specifying the keywords listed in Table 4.43 in the OUTPUT statement.

Standard algorithms (Fisher 1973) are used to compute the moment statistics. The computational
methods used by the UNIVARIATE procedure are consistent with those used by other SAS proce-
dures for calculating descriptive statistics.

The following sections give specific details on a number of statistics calculated by the UNIVARI-
ATE procedure.

Mean

The sample mean is calculated as

Nxw D

Pn
iD1wixiPn

iD1wi

where n is the number of nonmissing values for a variable, xi is the i th value of the variable, and
wi is the weight associated with the i th value of the variable. If there is no WEIGHT variable, the
formula reduces to

Nx D
1

n

nX
iD1

xi

Sum

The sum is calculated as
Pn

iD1wixi , where n is the number of nonmissing values for a variable, xi

is the i th value of the variable, and wi is the weight associated with the i th value of the variable. If
there is no WEIGHT variable, the formula reduces to

Pn
iD1 xi .

Sum of the Weights

The sum of the weights is calculated as
Pn

iD1wi , where n is the number of nonmissing values for
a variable and wi is the weight associated with the i th value of the variable. If there is no WEIGHT
variable, the sum of the weights is n.

Variance

The variance is calculated as

1

d

nX
iD1

wi .xi � Nxw/
2
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where n is the number of nonmissing values for a variable, xi is the i th value of the variable, Nxw

is the weighted mean, wi is the weight associated with the i th value of the variable, and d is the
divisor controlled by the VARDEF= option in the PROC UNIVARIATE statement:

d D

8̂̂<̂
:̂

n � 1 if VARDEF=DF (default)
n if VARDEF=N

.
P

i wi / � 1 if VARDEF=WDFP
i wi if VARDEF=WEIGHT | WGT

If there is no WEIGHT variable, the formula reduces to

1

d

nX
iD1

.xi � Nx/2

Standard Deviation

The standard deviation is calculated as

sw D

vuut 1

d

nX
iD1

wi .xi � Nxw/2

where n is the number of nonmissing values for a variable, xi is the i th value of the variable, Nxw

is the weighted mean, wi is the weight associated with the i th value of the variable, and d is the
divisor controlled by the VARDEF= option in the PROC UNIVARIATE statement. If there is no
WEIGHT variable, the formula reduces to

s D

vuut 1

d

nX
iD1

.xi � Nx/2

Skewness

The sample skewness, which measures the tendency of the deviations to be larger in one direction
than in the other, is calculated as follows depending on the VARDEF= option:
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Table 4.81 Formulas for Skewness

VARDEF Formula

DF (default)
n

.n � 1/.n � 2/

nX
iD1

w
3=2
i

�
xi � Nxw

sw

�3

N
1

n

nX
iD1

w
3=2
i

�
xi � Nxw

sw

�3

WDF missing

WEIGHT | WGT missing

where n is the number of nonmissing values for a variable, xi is the i th value of the variable, Nxw

is the sample average, s is the sample standard deviation, and wi is the weight associated with the
i th value of the variable. If VARDEF=DF, then n must be greater than 2. If there is no WEIGHT
variable, then wi D 1 for all i D 1; : : : ; n.

The sample skewness can be positive or negative; it measures the asymmetry of the data distribution

and estimates the theoretical skewness
p
ˇ1 D �3�

� 3
2

2 , where �2 and �3 are the second and third
central moments. Observations that are normally distributed should have a skewness near zero.

Kurtosis

The sample kurtosis, which measures the heaviness of tails, is calculated as follows depending on
the VARDEF= option:

Table 4.82 Formulas for Kurtosis

VARDEF Formula

DF (default)
n.nC 1/

.n � 1/.n � 2/.n � 3/

nX
iD1

w2
i

�
xi � Nxw

sw

�4

�
3.n � 1/2

.n � 2/.n � 3/

N
1

n

nX
iD1

w2
i

�
xi � Nxw

sw

�4

� 3

WDF missing

WEIGHT | WGT missing
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where n is the number of nonmissing values for a variable, xi is the i th value of the variable, Nxw is
the sample average, sw is the sample standard deviation, and wi is the weight associated with the
i th value of the variable. If VARDEF=DF, then n must be greater than 3. If there is no WEIGHT
variable, then wi D 1 for all i D 1; : : : ; n.

The sample kurtosis measures the heaviness of the tails of the data distribution. It estimates the
adjusted theoretical kurtosis denoted as ˇ2 � 3, where ˇ2 D

�4

�2
2 , and �4 is the fourth central

moment. Observations that are normally distributed should have a kurtosis near zero.

Coefficient of Variation (CV)

The coefficient of variation is calculated as

CV D
100 � sw

Nxw

Calculating the Mode

The mode is the value that occurs most often in the data. PROC UNIVARIATE counts repetitions
of the values of the analysis variables or, if you specify the ROUND= option, the rounded values. If
a tie occurs for the most frequent value, the procedure reports the lowest mode in the table labeled
“Basic Statistical Measures” in the statistical output. To list all possible modes, use the MODES
option in the PROC UNIVARIATE statement. When no repetitions occur in the data (as with truly
continuous data), the procedure does not report the mode. The WEIGHT statement has no effect on
the mode. See Example 4.2.

Calculating Percentiles

The UNIVARIATE procedure automatically computes the 1st, 5th, 10th, 25th, 50th, 75th, 90th,
95th, and 99th percentiles (quantiles), as well as the minimum and maximum of each analysis vari-
able. To compute percentiles other than these default percentiles, use the PCTLPTS= and PCTL-
PRE= options in the OUTPUT statement.

You can specify one of five definitions for computing the percentiles with the PCTLDEF= option.
Let n be the number of nonmissing values for a variable, and let x1; x2; : : : ; xn represent the ordered
values of the variable. Let the t th percentile be y, set p D

t
100

, and let

np D j C g when PCTLDEF=1, 2, 3, or 5
.nC 1/p D j C g when PCTLDEF=4

where j is the integer part of np, and g is the fractional part of np. Then the PCTLDEF= option
defines the t th percentile, y, as described in the Table 4.83.
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Table 4.83 Percentile Definitions

PCTLDEF Description Formula

1 weighted average at xnp y D .1 � g/xj C gxj C1

where x0 is taken to be x1

2 observation numbered
closest to np

y D xj if g < 1
2

y D xj if g D
1
2

and j is even
y D xj C1 if g D

1
2

and j is odd
y D xj C1 if g > 1

2

3 empirical distribution function
y D xj if g D 0

y D xj C1 if g > 0

4 weighted average aimed y D .1 � g/xj C gxj C1

at x.nC1/p where xnC1 is taken to be xn

5 empirical distribution function
with averaging

y D
1
2
.xj C xj C1/ if g D 0

y D xj C1 if g > 0

Weighted Percentiles

When you use a WEIGHT statement, the percentiles are computed differently. The 100pth weighted
percentile y is computed from the empirical distribution function with averaging:

y D

8̂<̂
:

x1 if w1 > pW
1
2
.xi C xiC1/ if

Pi
j D1wj D pW

xiC1 if
Pi

j D1wj < pW <
PiC1

j D1wj

where wi is the weight associated with xi and W D
Pn

iD1wi is the sum of the weights.

Note that the PCTLDEF= option is not applicable when a WEIGHT statement is used. However,
in this case, if all the weights are identical, the weighted percentiles are the same as the percentiles
that would be computed without a WEIGHT statement and with PCTLDEF=5.

Confidence Limits for Percentiles

You can use the CIPCTLNORMAL option to request confidence limits for percentiles, assuming
the data are normally distributed. These limits are described in Section 4.4.1 of Hahn and Meeker
(1991). When 0 < p < 1

2
, the two-sided 100.1 � ˛/% confidence limits for the 100pth percentile

are

lower limit D NX � g0.˛
2

I 1 � p; n/s

upper limit D NX � g0.1 �
˛
2

Ip; n/s



328 F Chapter 4: The UNIVARIATE Procedure

where n is the sample size. When 1
2

� p < 1, the two-sided 100.1� ˛/% confidence limits for the
100pth percentile are

lower limit D NX C g0.˛
2

I 1 � p; n/s

upper limit D NX C g0.1 �
˛
2

Ip; n/s

One-sided 100.1 � ˛/% confidence bounds are computed by replacing ˛
2

by ˛ in the appropriate
preceding equation. The factor g0.
; p; n/ is related to the noncentral t distribution and is described
in Owen and Hua (1977) and Odeh and Owen (1980). See Example 4.10.

You can use the CIPCTLDF option to request distribution-free confidence limits for percentiles.
In particular, it is not necessary to assume that the data are normally distributed. These limits are
described in Section 5.2 of Hahn and Meeker (1991). The two-sided 100.1�˛/% confidence limits
for the 100pth percentile are

lower limit D X.l/

upper limit D X.u/

where X.j / is the j th order statistic when the data values are arranged in increasing order:

X.1/ � X.2/ � : : : � X.n/

The lower rank l and upper rank u are integers that are symmetric (or nearly symmetric) around
Œnp� C 1, where Œnp� is the integer part of np and n is the sample size. Furthermore, l and u
are chosen so that X.l/ and X.u/ are as close to XŒnC1�p as possible while satisfying the coverage
probability requirement,

Q.u � 1In; p/ �Q.l � 1In; p/ � 1 � ˛

where Q.kIn; p/ is the cumulative binomial probability,

Q.kIn; p/ D

kX
iD0

�
n

i

�
pi .1 � p/n�i

In some cases, the coverage requirement cannot be met, particularly when n is small and p is near 0
or 1. To relax the requirement of symmetry, you can specify CIPCTLDF(TYPE = ASYMMETRIC).
This option requests symmetric limits when the coverage requirement can be met, and asymmetric
limits otherwise.

If you specify CIPCTLDF(TYPE = LOWER), a one-sided 100.1� ˛/% lower confidence bound is
computed as X.l/, where l is the largest integer that satisfies the inequality

1 �Q.l � 1In; p/ � 1 � ˛

with 0 < l � n. Likewise, if you specify CIPCTLDF(TYPE = UPPER), a one-sided 100.1 �

˛/% lower confidence bound is computed as X.u/, where u is the largest integer that satisfies the
inequality

Q.u � 1In; p/ � 1 � ˛ where 0 < u � n

Note that confidence limits for percentiles are not computed when a WEIGHT statement is specified.
See Example 4.10.
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Tests for Location

PROC UNIVARIATE provides three tests for location: Student’s t test, the sign test, and the
Wilcoxon signed rank test. All three tests produce a test statistic for the null hypothesis that the
mean or median is equal to a given value �0 against the two-sided alternative that the mean or
median is not equal to �0. By default, PROC UNIVARIATE sets the value of �0 to zero. You can
use the MU0= option in the PROC UNIVARIATE statement to specify the value of �0. Student’s
t test is appropriate when the data are from an approximately normal population; otherwise, use
nonparametric tests such as the sign test or the signed rank test. For large sample situations, the t
test is asymptotically equivalent to a z test. If you use the WEIGHT statement, PROC UNIVARI-
ATE computes only one weighted test for location, the t test. You must use the default value for the
VARDEF= option in the PROC statement (VARDEF=DF). See Example 4.12.

You can also use these tests to compare means or medians of paired data. Data are said to be
paired when subjects or units are matched in pairs according to one or more variables, such as
pairs of subjects with the same age and gender. Paired data also occur when each subject or unit
is measured at two times or under two conditions. To compare the means or medians of the two
times, create an analysis variable that is the difference between the two measures. The test that the
mean or the median difference of the variables equals zero is equivalent to the test that the means
or medians of the two original variables are equal. Note that you can also carry out these tests by
using the PAIRED statement in the TTEST procedure; see Chapter 92, “The TTEST Procedure”
(SAS/STAT User’s Guide). Also see Example 4.13.

Student’s t Test

PROC UNIVARIATE calculates the t statistic as

t D
Nx � �0

s=
p
n

where Nx is the sample mean, n is the number of nonmissing values for a variable, and s is the
sample standard deviation. The null hypothesis is that the population mean equals �0. When the
data values are approximately normally distributed, the probability under the null hypothesis of a
t statistic that is as extreme, or more extreme, than the observed value (the p-value) is obtained
from the t distribution with n � 1 degrees of freedom. For large n, the t statistic is asymptotically
equivalent to a z test. When you use the WEIGHT statement and the default value of VARDEF=,
which is DF, the t statistic is calculated as

tw D
Nxw � �0

sw=

qPn
iD1wi

where Nxw is the weighted mean, sw is the weighted standard deviation, and wi is the weight for
i th observation. The tw statistic is treated as having a Student’s t distribution with n � 1 degrees
of freedom. If you specify the EXCLNPWGT option in the PROC statement, n is the number of
nonmissing observations when the value of the WEIGHT variable is positive. By default, n is the
number of nonmissing observations for the WEIGHT variable.
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Sign Test

PROC UNIVARIATE calculates the sign test statistic as

M D .nC
� n�/=2

where nC is the number of values that are greater than �0, and n� is the number of values that
are less than �0. Values equal to �0 are discarded. Under the null hypothesis that the population
median is equal to �0, the p-value for the observed statistic Mobs is

Pr.jMobsj � jM j/ D 0:5.nt �1/

min.nC;n�/X
j D0

�
nt

i

�

where nt D nC C n� is the number of xi values not equal to �0.

NOTE: If nC and n� are equal, the p-value is equal to one.

Wilcoxon Signed Rank Test

The signed rank statistic S is computed as

S D

X
i Wjxi ��0j>0

rC
i �

nt .nt C 1/

4

where rC
i is the rank of jxi � �0j after discarding values of xi D �0, and nt is the number of xi

values not equal to �0. Average ranks are used for tied values.

If nt � 20, the significance of S is computed from the exact distribution of S , where the distribution
is a convolution of scaled binomial distributions. When nt > 20, the significance of S is computed
by treating

S

s
nt � 1

ntV � S2

as a Student’s t variate with nt � 1 degrees of freedom. V is computed as

V D
1

24
nt .nt C 1/.2nt C 1/ �

1

48

X
ti .ti C 1/.ti � 1/

where the sum is over groups tied in absolute value and where ti is the number of values in the i th
group (Iman 1974; Conover 1999). The null hypothesis tested is that the mean (or median) is �0,
assuming that the distribution is symmetric. Refer to Lehmann (1998).
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Confidence Limits for Parameters of the Normal Distribution

The two-sided 100.1 � ˛/% confidence interval for the mean has upper and lower limits

Nx ˙ t1� ˛
2

In�1

s
p
n

where s2 D
1

n�1

P
.xi � Nx/2 and t1� ˛

2
In�1 is the .1 �

˛
2
/ percentile of the t distribution with

n � 1 degrees of freedom. The one-sided upper 100.1 � ˛/% confidence limit is computed as Nx C
sp
n
t1�˛In�1 and the one-sided lower 100.1�˛/% confidence limit is computed as Nx�

sp
n
t1�˛In�1.

See Example 4.9.

The two-sided 100.1 � ˛/% confidence interval for the standard deviation has lower and upper
limits,

s
r

n�1

�2

1� ˛
2

In�1

and s
r

n�1

�2
˛
2

In�1

respectively, where �2
1� ˛

2
In�1

and �2
˛
2

In�1
are the .1 �

˛
2
/ and ˛

2
percentiles of the chi-square

distribution with n � 1 degrees of freedom. A one-sided 100.1 � ˛/% confidence limit has lower
and upper limits,

s

r
n�1

�2
1�˛In�1

and s

r
n�1

�2
˛In�1

respectively. The 100.1�˛/% confidence interval for the variance has upper and lower limits equal
to the squares of the corresponding upper and lower limits for the standard deviation. When you
use the WEIGHT statement and specify VARDEF=DF in the PROC statement, the 100.1 � ˛/%
confidence interval for the weighted mean is

Nxw ˙ t1� ˛
2

swqPn
iD1wi

where Nxw is the weighted mean, sw is the weighted standard deviation, wi is the weight for i th
observation, and t1� ˛

2
is the .1�

˛
2
/ percentile for the t distribution with n� 1 degrees of freedom.

Robust Estimators

A statistical method is robust if it is insensitive to moderate or even large departures from the
assumptions that justify the method. PROC UNIVARIATE provides several methods for robust
estimation of location and scale. See Example 4.11.
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Winsorized Means

The Winsorized mean is a robust estimator of the location that is relatively insensitive to outliers.
The k-times Winsorized mean is calculated as

Nxwk D
1

n

0@.k C 1/x.kC1/ C

n�k�1X
iDkC2

x.i/ C .k C 1/x.n�k/

1A
where n is the number of observations and x.i/ is the i th order statistic when the observations are
arranged in increasing order:

x.1/ � x.2/ � : : : � x.n/

The Winsorized mean is computed as the ordinary mean after the k smallest observations are re-
placed by the .k C 1/st smallest observation and the k largest observations are replaced by the
.k C 1/st largest observation.

For data from a symmetric distribution, the Winsorized mean is an unbiased estimate of the popula-
tion mean. However, the Winsorized mean does not have a normal distribution even if the data are
from a normal population.

The Winsorized sum of squared deviations is defined as

s2
wk D .k C 1/.x.kC1/ � Nxwk/

2
C

n�k�1X
iDkC2

.x.i/ � Nxwk/
2

C .k C 1/.x.n�k/ � Nxwk/
2

The Winsorized t statistic is given by

twk D
Nxwk � �0

SE. Nxwk/

where �0 denotes the location under the null hypothesis and the standard error of the Winsorized
mean is

SE. Nxwk/ D
n � 1

n � 2k � 1
�

swkp
n.n � 1/

When the data are from a symmetric distribution, the distribution of twk is approximated by a
Student’s t distribution with n � 2k � 1 degrees of freedom (Tukey and McLaughlin 1963; Dixon
and Tukey 1968).

The Winsorized 100.1 �
˛
2
/% confidence interval for the location parameter has upper and lower

limits

Nxwk ˙ t1� ˛
2

In�2k�1SE. Nxwk/

where t1� ˛
2

In�2k�1 is the .1 �
˛
2
/100th percentile of the Student’s t distribution with n � 2k � 1

degrees of freedom.



Robust Estimators F 333

Trimmed Means

Like the Winsorized mean, the trimmed mean is a robust estimator of the location that is relatively
insensitive to outliers. The k-times trimmed mean is calculated as

Nxtk D
1

n � 2k

n�kX
iDkC1

x.i/

where n is the number of observations and x.i/ is the i th order statistic when the observations are
arranged in increasing order:

x.1/ � x.2/ � : : : � x.n/

The trimmed mean is computed after the k smallest and k largest observations are deleted from the
sample. In other words, the observations are trimmed at each end.

For a symmetric distribution, the symmetrically trimmed mean is an unbiased estimate of the pop-
ulation mean. However, the trimmed mean does not have a normal distribution even if the data are
from a normal population.

A robust estimate of the variance of the trimmed mean ttk can be based on the Winsorized sum
of squared deviations s2

wk
, which is defined in the section “Winsorized Means” on page 332; see

Tukey and McLaughlin (1963). This can be used to compute a trimmed t test which is based on the
test statistic

ttk D
. Nxtk � �0/

SE. Nxtk/

where the standard error of the trimmed mean is

SE. Nxtk/ D
swkp

.n � 2k/.n � 2k � 1/

When the data are from a symmetric distribution, the distribution of ttk is approximated by a Stu-
dent’s t distribution with n � 2k � 1 degrees of freedom (Tukey and McLaughlin 1963; Dixon and
Tukey 1968).

The “trimmed” 100.1 � ˛/% confidence interval for the location parameter has upper and lower
limits

Nxtk ˙ t1� ˛
2

In�2k�1SE. Nxtk/

where t1� ˛
2

In�2k�1 is the .1 �
˛
2
/100th percentile of the Student’s t distribution with n � 2k � 1

degrees of freedom.

Robust Estimates of Scale

The sample standard deviation, which is the most commonly used estimator of scale, is sensitive
to outliers. Robust scale estimators, on the other hand, remain bounded when a single data value
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is replaced by an arbitrarily large or small value. The UNIVARIATE procedure computes several
robust measures of scale, including the interquartile range, Gini’s mean difference G, the median
absolute deviation about the median (MAD), Qn, and Sn. In addition, the procedure computes
estimates of the normal standard deviation � derived from each of these measures.

The interquartile range (IQR) is simply the difference between the upper and lower quartiles. For a
normal population, � can be estimated as IQR/1.34898.

Gini’s mean difference is computed as

G D
1�
n

2

�X
i<j

jxi � xj j

For a normal population, the expected value of G is 2�=
p
� . Thus G

p
�=2 is a robust estimator

of � when the data are from a normal sample. For the normal distribution, this estimator has high
efficiency relative to the usual sample standard deviation, and it is also less sensitive to the presence
of outliers.

A very robust scale estimator is the MAD, the median absolute deviation from the median (Hampel
1974), which is computed as

MAD D medi .jxi � medj .xj /j/

where the inner median, medj .xj /, is the median of the n observations, and the outer median (taken
over i ) is the median of the n absolute values of the deviations about the inner median. For a normal
population, 1:4826 � MAD is an estimator of � .

The MAD has low efficiency for normal distributions, and it may not always be appropriate for
symmetric distributions. Rousseeuw and Croux (1993) proposed two statistics as alternatives to the
MAD. The first is

Sn D 1:1926 � medi .medj .jxi � xj j//

where the outer median (taken over i ) is the median of the n medians of jxi � xj j, j D 1; 2; : : : ; n.
To reduce small-sample bias, csnSn is used to estimate � , where csn is a correction factor; see
Croux and Rousseeuw (1992).

The second statistic proposed by Rousseeuw and Croux (1993) is

Qn D 2:2219fjxi � xj jI i < j g.k/

where

k D

� �
n
2

�
C 1

2

�

In other words, Qn is 2.2219 times the kth order statistic of the
�
n

2

�
distances between the data

points. The bias-corrected statistic cqnQn is used to estimate � , where cqn is a correction factor;
see Croux and Rousseeuw (1992).
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Creating Line Printer Plots

The PLOTS option in the PROC UNIVARIATE statement provides up to four diagnostic line printer
plots to examine the data distribution. These plots are the stem-and-leaf plot or horizontal bar chart,
the box plot, the normal probability plot, and the side-by-side box plots. If you specify the WEIGHT
statement, PROC UNIVARIATE provides a weighted histogram, a weighted box plot based on the
weighted quantiles, and a weighted normal probability plot.

Note that these plots are a legacy feature of the UNIVARIATE procedure in earlier versions of SAS.
They predate the addition of the CDFPLOT, HISTOGRAM, PPPLOT, PROBPLOT, and QQPLOT
statements, which provide high-resolution graphics displays. Also note that line printer plots re-
quested with the PLOTS option are mainly intended for use with the ODS LISTING destination.
See Example 4.5.

Stem-and-Leaf Plot

The first plot in the output is either a stem-and-leaf plot (Tukey 1977) or a horizontal bar chart. If
any single interval contains more than 49 observations, the horizontal bar chart appears. Otherwise,
the stem-and-leaf plot appears. The stem-and-leaf plot is like a horizontal bar chart in that both plots
provide a method to visualize the overall distribution of the data. The stem-and-leaf plot provides
more detail because each point in the plot represents an individual data value.

To change the number of stems that the plot displays, use PLOTSIZE= to increase or decrease the
number of rows. Instructions that appear below the plot explain how to determine the values of
the variable. If no instructions appear, you multiply Stem.Leaf by 1 to determine the values of the
variable. For example, if the stem value is 10 and the leaf value is 1, then the variable value is
approximately 10.1. For the stem-and-leaf plot, the procedure rounds a variable value to the nearest
leaf. If the variable value is exactly halfway between two leaves, the value rounds to the nearest leaf
with an even integer value. For example, a variable value of 3.15 has a stem value of 3 and a leaf
value of 2.

Box Plot

The box plot, also known as a schematic box plot, appears beside the stem-and-leaf plot. Both
plots use the same vertical scale. The box plot provides a visual summary of the data and identifies
outliers. The bottom and top edges of the box correspond to the sample 25th (Q1) and 75th (Q3)
percentiles. The box length is one interquartile range (Q3 – Q1). The center horizontal line with
asterisk endpoints corresponds to the sample median. The central plus sign (+) corresponds to the
sample mean. If the mean and median are equal, the plus sign falls on the line inside the box. The
vertical lines that project out from the box, called whiskers, extend as far as the data extend, up
to a distance of 1.5 interquartile ranges. Values farther away are potential outliers. The procedure
identifies the extreme values with a zero or an asterisk (*). If zero appears, the value is between 1.5
and 3 interquartile ranges from the top or bottom edge of the box. If an asterisk appears, the value
is more extreme.
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NOTE: To produce box plots that use high-resolution graphics, use the BOXPLOT procedure in
SAS/STAT software. See Chapter 24, “The BOXPLOT Procedure” (SAS/STAT User’s Guide).

Normal Probability Plot

The normal probability plot plots the empirical quantiles against the quantiles of a standard normal
distribution. Asterisks (*) indicate the data values. The plus signs (+) provide a straight reference
line that is drawn by using the sample mean and standard deviation. If the data are from a normal
distribution, the asterisks tend to fall along the reference line. The vertical coordinate is the data
value, and the horizontal coordinate is ˆ�1.vi / where

vi D
ri � 3

8

nC 1
4

ˆ�1.�/ D inverse of the standard normal distribution function
ri D rank of the i th data value when ordered from smallest to largest
n D number of nonmissing observations

For a weighted normal probability plot, the i th ordered observation is plotted againstˆ�1.vi /where

vi D
.1� 3

8i
/
Pi

j D1 w.j /

.1C 1
4n

/
Pn

iD1 wi

w.j / D weight associated with the j th ordered observation

When each observation has an identical weight, wj D w, the formula for vi reduces to the expres-
sion for vi in the unweighted normal probability plot:

vi D
i �

3
8

nC
1
4

When the value of VARDEF= is WDF or WEIGHT, a reference line with intercept O� and slope O� is
added to the plot. When the value of VARDEF= is DF or N, the slope is

Osigma
p

Nw
where Nw D

Pn
iD1 wi

n

is the average weight.

When each observation has an identical weight and the value of VARDEF= is DF, N, or WEIGHT,
the reference line reduces to the usual reference line with intercept Omu and slope O� in the un-
weighted normal probability plot.

If the data are normally distributed with mean � and standard deviation � , and each observation has
an identical weight w, then the points on the plot should lie approximately on a straight line. The
intercept for this line is �. The slope is � when VARDEF= is WDF or WEIGHT, and the slope is

�p
w

when VARDEF= is DF or N.

NOTE: To produce high-resolution probability plots, use the PROBPLOT statement in PROC UNI-
VARIATE; see the section “PROBPLOT Statement” on page 292.

Side-by-Side Box Plots

When you use a BY statement with the PLOT option, PROC UNIVARIATE produces side-by-side
box plots, one for each BY group. The box plots (also known as schematic plots) use a common
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scale that enables you to compare the data distribution across BY groups. This plot appears after
the univariate analyses of all BY groups. Use the NOBYPLOT option to suppress this plot.

NOTE: To produce high-resolution side-by-side box plots, use the BOXPLOT procedure in
SAS/STAT software. See Chapter 24, “The BOXPLOT Procedure” (SAS/STAT User’s Guide).

Creating High-Resolution Graphics

If your site licenses SAS/GRAPH software, you can use the CDFPLOT, HISTOGRAM, PPPLOT,
PROBPLOT, and QQPLOT statements to create high-resolution graphs.

The CDFPLOT statement plots the observed cumulative distribution function of a variable. You can
optionally superimpose a fitted theoretical distribution on the plot.

The HISTOGRAM statement creates histograms that enable you to examine the data distribution.
You can optionally fit families of density curves and superimpose kernel density estimates on the
histograms. For additional information about the fitted distributions and kernel density estimates,
see the sections “Formulas for Fitted Continuous Distributions” on page 346 and “Kernel Density
Estimates” on page 358.

The PPPLOT statement creates a probability-probability (P-P) plot, which compares the empirical
cumulative distribution function (ecdf) of a variable with a specified theoretical cumulative distri-
bution function. You can use a P-P plot to determine how well a theoretical distribution models a
set of measurements.

The PROBPLOT statement creates a probability plot, which compares ordered values of a variable
with percentiles of a specified theoretical distribution. Probability plots are useful for graphical
estimation of percentiles.

The QQPLOT statement creates a quantile-quantile plot, which compares ordered values of a vari-
able with quantiles of a specified theoretical distribution. Q-Q plots are useful for graphical estima-
tion of distribution parameters.

NOTE: You can use the CLASS statement with any of these plot statements to produce comparative
versions of the plots.

Alternatives for Producing Graphics

The UNIVARIATE procedure supports two kinds of graphical output:

� traditional graphics

� ODS Statistical Graphics output, supported on an experimental basis for SAS 9.2

PROC UNIVARIATE produces traditional graphics by default. These graphs are saved in graphics
catalogs. Their appearance is controlled by the SAS/GRAPH GOPTIONS, AXIS, and SYMBOL
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statements (as described in SAS/GRAPH Software: Reference) and numerous specialized plot state-
ment options.

ODS Statistical Graphics (or ODS Graphics for short) is an extension to the Output Delivery Sys-
tem (ODS) that is invoked when you use the ODS GRAPHICS statement prior to your procedure
statements. An ODS graph is produced in ODS output (not a graphics catalog), and the details of
its appearance and layout are controlled by ODS styles and templates rather than by SAS/GRAPH
statements and procedure options. See Chapter 21, “Statistical Graphics Using ODS” (SAS/STAT
User’s Guide), for a thorough discussion of ODS Graphics.

Prior to SAS 9.2, the plots produced by PROC UNIVARIATE were extremely basic by default. Pro-
ducing attractive graphical output required the careful selection of colors, fonts, and other elements,
which were specified via SAS/GRAPH statements and plot statement options. Beginning with SAS
9.2, the default appearance of traditional graphs is governed by the prevailing ODS style, which
automatically produces attractive, consistent output. The SAS/GRAPH statements and procedure
options for controlling graph appearance continue to be honored for traditional graphics. You can
specify the NOGSTYLE system option to prevent the ODS style from affecting the appearance of
traditional graphs. This enables existing PROC UNIVARIATE programs to produce customized
graphs that appear as they did under previous SAS releases.

The appearance of ODS Graphics output is also controlled by the ODS style, but it is not affected
by SAS/GRAPH statements or plot statement options that govern traditional graphics, For example,
the CAXIS= option used to specify the color of graph axes in traditional graphics is ignored when
producing ODS Graphics output. NOTE: Some features available with traditional graphics are not
supported in ODS Graphics by the UNIVARIATE procedure for SAS 9.2.

The traditional graphics system enables you to control every detail of a graph through convenient
procedure syntax. ODS Graphics provides the highest quality output with minimal syntax and full
compatibility with graphics produced by SAS/STAT and SAS/ETS procedures.

The following code produces a histogram with a fitted lognormal distribution of the LoanToValueR-
atio data introduced in the section “Summarizing a Data Distribution” on page 223:

options nogstyle;
proc univariate data=HomeLoans noprint;

histogram LoanToValueRatio / lognormal;
inset lognormal(theta sigma zeta) / position=ne;

run;

The NOGSTYLE system option keeps the ODS style from influencing the output, and no
SAS/GRAPH statements or procedure options affecting the appearance of the plot are specified.
Figure 4.8 shows the resulting histogram, which is essentially identical to the default output pro-
duced under releases prior to SAS 9.2.
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Figure 4.8 Traditional Graph with NOGSTYLE

Figure 4.9 shows the result of executing the same code with the GSTYLE system option turned on
(the default). Note the influence of the ODS style on the histogram’s appearance. For example, the
quality of the text is improved and histogram bars are filled by default.
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Figure 4.9 Traditional Graph with GSTYLE

Figure 4.10 shows the same histogram produced using ODS Graphics. The histogram’s appearance
is governed by the same style elements as in Figure 4.9, but the plots are not identical. Note, for
example, the title incorporated in the ODS Graphics output and the smoother appearance of the
fitted curve.
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Figure 4.10 ODS Graphics Output

Using the CLASS Statement to Create Comparative Plots

When you use the CLASS statement with the CDFPLOT, HISTOGRAM, PPPLOT, PROBPLOT,
or QQPLOT statements, PROC UNIVARIATE creates comparative versions of the plots. You can
use these plot statements with the CLASS statement to create one-way and two-way comparative
plots. When you use one CLASS variable, PROC UNIVARIATE displays an array of component
plots (stacked or side-by-side), one for each level of the classification variable. When you use
two CLASS variables, PROC UNIVARIATE displays a matrix of component plots, one for each
combination of levels of the classification variables. The observations in a given level are referred
to collectively as a cell.

When you create a one-way comparative plot, the observations in the input data set are sorted by
the method specified in the ORDER= option. PROC UNIVARIATE creates a separate plot for the
analysis variable values in each level and arranges these component plots in an array to form the
comparative plot with uniform horizontal and vertical axes. See Example 4.15.

When you create a two-way comparative plot, the observations in the input data set are cross-
classified according to the values (levels) of these variables. PROC UNIVARIATE creates a sepa-
rate plot for the analysis variable values in each cell of the cross-classification and arranges these
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component plots in a matrix to form the comparative plot with uniform horizontal and vertical axes.
The levels of the first CLASS variable are the labels for the rows of the matrix, and the levels of the
second CLASS variable are the labels for the columns of the matrix. See Example 4.16.

PROC UNIVARIATE determines the layout of a two-way comparative plot by using the order for
the first CLASS variable to obtain the order of the rows from top to bottom. Then it applies the
order for the second CLASS variable to the observations that correspond to the first row to obtain
the order of the columns from left to right. If any columns remain unordered (that is, the categories
are unbalanced), PROC UNIVARIATE applies the order for the second CLASS variable to the
observations in the second row, and so on, until all the columns have been ordered.

If you associate a label with a CLASS variable, PROC UNIVARIATE displays the variable label in
the comparative plot and this label is parallel to the column (or row) labels.

Use the MISSING option to treat missing values as valid levels.

To reduce the number of classification levels, use a FORMAT statement to combine variable values.

Positioning Insets

Positioning an Inset Using Compass Point Values

To position an inset by using a compass point position, specify the value N, NE, E, SE, S, SW, W, or
NW with the POSITION= option. The default position of the inset is NW. The following statements
produce a histogram to show the position of the inset for the eight compass points:

data Score;
input Student $ PreTest PostTest @@;
label ScoreChange = ’Change in Test Scores’;
ScoreChange = PostTest - PreTest;

datalines;
Capalleti 94 91 Dubose 51 65
Engles 95 97 Grant 63 75
Krupski 80 75 Lundsford 92 55
Mcbane 75 78 Mullen 89 82
Nguyen 79 76 Patel 71 77
Si 75 70 Tanaka 87 73
;
run;

title ’Test Scores for a College Course’;
proc univariate data=Score noprint;

histogram PreTest / midpoints = 45 to 95 by 10;
inset n / cfill=blank

header=’Position = NW’ pos=nw;
inset mean / cfill=blank

header=’Position = N ’ pos=n ;
inset sum / cfill=blank

header=’Position = NE’ pos=ne;
inset max / cfill=blank

header=’Position = E ’ pos=e ;
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inset min / cfill=blank
header=’Position = SE’ pos=se;

inset nobs / cfill=blank
header=’Position = S ’ pos=s ;

inset range / cfill=blank
header=’Position = SW’ pos=sw;

inset mode / cfill=blank
header=’Position = W ’ pos=w ;

label PreTest = ’Pretest Score’;
run;

Figure 4.11 Compass Positions for Inset

Positioning Insets in the Margins

To position an inset in one of the four margins that surround the plot area, specify the value LM,
RM, TM, or BM with the POSITION= option. Margin positions are recommended if you list a large
number of statistics in the INSET statement. If you attempt to display a lengthy inset in the interior
of the plot, the inset is likely to collide with the data display.
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Positioning an Inset Using Coordinates

To position an inset with coordinates, use POSITION=(x,y). You specify the coordinates in axis data
units or in axis percentage units (the default). NOTE: You cannot position an inset with coordinates
when producing ODS Graphics output.

If you specify the DATA option immediately following the coordinates, PROC UNIVARIATE po-
sitions the inset by using axis data units. For example, the following statements place the bottom
left corner of the inset at 45 on the horizontal axis and 10 on the vertical axis:

title ’Test Scores for a College Course’;
proc univariate data=Score noprint;

histogram PreTest / midpoints = 45 to 95 by 10;
inset n / header = ’Position=(45,10)’

position = (45,10) data;
run;

Figure 4.12 Coordinate Position for Inset

By default, the specified coordinates determine the position of the bottom left corner of the inset.
To change this reference point, use the REFPOINT= option (see below).
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If you omit the DATA option, PROC UNIVARIATE positions the inset by using axis percentage
units. The coordinates in axis percentage units must be between 0 and 100. The coordinates of the
bottom left corner of the display are (0,0), while the upper right corner is (100, 100). For example,
the following statements create a histogram and use coordinates in axis percentage units to position
the two insets:

title ’Test Scores for a College Course’;
proc univariate data=Score noprint;

histogram PreTest / midpoints = 45 to 95 by 10;
inset min / position = (5,25)

header = ’Position=(5,25)’
refpoint = tl;

inset max / position = (95,95)
header = ’Position=(95,95)’
refpoint = tr;

run;

The REFPOINT= option determines which corner of the inset to place at the coordinates that are
specified with the POSITION= option. The first inset uses REFPOINT=TL, so that the top left
corner of the inset is positioned 5% of the way across the horizontal axis and 25% of the way up
the vertical axis. The second inset uses REFPOINT=TR, so that the top right corner of the inset is
positioned 95% of the way across the horizontal axis and 95% of the way up the vertical axis.
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Figure 4.13 Reference Point for Inset

A sample program for these examples, univar3.sas, is available in the SAS Sample Library for Base
SAS software.

Formulas for Fitted Continuous Distributions

The following sections provide information about the families of parametric distributions that you
can fit with the HISTOGRAM statement. Properties of these distributions are discussed by Johnson,
Kotz, and Balakrishnan (1994, 1995).

Beta Distribution

The fitted density function is

p.x/ D

(
hv .x��/˛�1.�C��x/ˇ�1

B.˛;ˇ/�.˛Cˇ�1/ for � < x < � C �

0 for x � � or x � � C �
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where B.˛; ˇ/ D
�.˛/�.ˇ/
�.˛Cˇ/

and

� D lower threshold parameter (lower endpoint parameter)
� D scale parameter .� > 0/
˛ D shape parameter .˛ > 0/
ˇ D shape parameter .ˇ > 0/
h D width of histogram interval
v D vertical scaling factor

and

v D

8<:
n the sample size, for VSCALE=COUNT
100 for VSCALE=PERCENT
1 for VSCALE=PROPPORTION

NOTE: This notation is consistent with that of other distributions that you can fit with the HIS-
TOGRAM statement. However, many texts, including Johnson, Kotz, and Balakrishnan (1995),
write the beta density function as

p.x/ D

(
.x�a/p�1.b�x/q�1

B.p;q/.b�a/pCq�1 for a < x < b
0 for x � a or x � b

The two parameterizations are related as follows:

� D b � a

� D a

˛ D p

ˇ D q

The range of the beta distribution is bounded below by a threshold parameter � D a and above by
� C � D b. If you specify a fitted beta curve by using the BETA option, � must be less than the
minimum data value and �C� must be greater than the maximum data value. You can specify � and
� with the THETA= and SIGMA= beta-options in parentheses after the keyword BETA. By default,
� D 1 and � D 0. If you specify THETA=EST and SIGMA=EST, maximum likelihood estimates
are computed for � and � . However, three- and four-parameter maximum likelihood estimation
does not always converge.

In addition, you can specify ˛ and ˇ with the ALPHA= and BETA= beta-options, respectively. By
default, the procedure calculates maximum likelihood estimates for ˛ and ˇ. For example, to fit a
beta density curve to a set of data bounded below by 32 and above by 212 with maximum likelihood
estimates for ˛ and ˇ, use the following statement:

histogram Length / beta(theta=32 sigma=180);

The beta distributions are also referred to as Pearson Type I or II distributions. These include the
power function distribution (ˇ D 1), the arc sine distribution (˛ D ˇ D

1
2

), and the generalized arc
sine distributions (˛ C ˇ D 1, ˇ ¤

1
2

).

You can use the DATA step function BETAINV to compute beta quantiles and the DATA step
function PROBBETA to compute beta probabilities.
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Exponential Distribution

The fitted density function is

p.x/ D

�
hv
�

exp.�.x��
�
// for x � �

0 for x < �

where

� D threshold parameter
� D scale parameter .� > 0/
h D width of histogram interval
v D vertical scaling factor

and

v D

8<:
n the sample size, for VSCALE=COUNT
100 for VSCALE=PERCENT
1 for VSCALE=PROPPORTION

The threshold parameter � must be less than or equal to the minimum data value. You can specify
� with the THRESHOLD= exponential-option. By default, � D 0. If you specify THETA=EST, a
maximum likelihood estimate is computed for � . In addition, you can specify � with the SCALE=
exponential-option. By default, the procedure calculates a maximum likelihood estimate for � . Note
that some authors define the scale parameter as 1

�
.

The exponential distribution is a special case of both the gamma distribution (with ˛ D 1) and
the Weibull distribution (with c D 1). A related distribution is the extreme value distribution. If
Y D exp.�X/ has an exponential distribution, then X has an extreme value distribution.

Gamma Distribution

The fitted density function is

p.x/ D

(
hv

�.˛/�
.x��

�
/˛�1 exp.�.x��

�
// for x > �

0 for x � �

where

� D threshold parameter
� D scale parameter .� > 0/
˛ D shape parameter .˛ > 0/
h D width of histogram interval
v D vertical scaling factor

and

v D

8<:
n the sample size, for VSCALE=COUNT
100 for VSCALE=PERCENT
1 for VSCALE=PROPPORTION
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The threshold parameter � must be less than the minimum data value. You can specify � with
the THRESHOLD= gamma-option. By default, � D 0. If you specify THETA=EST, a maximum
likelihood estimate is computed for � . In addition, you can specify � and ˛ with the SCALE= and
ALPHA= gamma-options. By default, the procedure calculates maximum likelihood estimates for
� and ˛.

The gamma distributions are also referred to as Pearson Type III distributions, and they include
the chi-square, exponential, and Erlang distributions. The probability density function for the chi-
square distribution is

p.x/ D

(
1

2�. �
2

/

�
x
2

��
2

�1 exp.�x
2
/ for x > 0

0 for x � 0

Notice that this is a gamma distribution with ˛ D
�
2

, � D 2, and � D 0. The exponential distribution
is a gamma distribution with ˛ D 1, and the Erlang distribution is a gamma distribution with ˛ being
a positive integer. A related distribution is the Rayleigh distribution. If R D

max.X1;:::;Xn/
min.X1;:::;Xn/

where
the Xi ’s are independent �2

� variables, then logR is distributed with a �� distribution having a
probability density function of

p.x/ D

( h
2

�
2

�1�.�
2
/
i�1

x��1 exp.�x2

2
/ for x > 0

0 for x � 0

If � D 2, the preceding distribution is referred to as the Rayleigh distribution.

You can use the DATA step function GAMINV to compute gamma quantiles and the DATA step
function PROBGAM to compute gamma probabilities.

Lognormal Distribution

The fitted density function is

p.x/ D

(
hv

�
p

2�.x��/
exp

�
�

.log.x��/��/2

2�2

�
for x > �

0 for x � �

where

� D threshold parameter
� D scale parameter .�1 < � < 1/

� D shape parameter .� > 0/
h D width of histogram interval
v D vertical scaling factor
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and

v D

8<:
n the sample size, for VSCALE=COUNT
100 for VSCALE=PERCENT
1 for VSCALE=PROPPORTION

The threshold parameter � must be less than the minimum data value. You can specify � with the
THRESHOLD= lognormal-option. By default, � D 0. If you specify THETA=EST, a maximum
likelihood estimate is computed for � . You can specify � and � with the SCALE= and SHAPE=
lognormal-options, respectively. By default, the procedure calculates maximum likelihood esti-
mates for these parameters.

NOTE: The lognormal distribution is also referred to as the SL distribution in the Johnson system
of distributions.

NOTE: This book uses � to denote the shape parameter of the lognormal distribution, whereas
� is used to denote the scale parameter of the beta, exponential, gamma, normal, and Weibull
distributions. The use of � to denote the lognormal shape parameter is based on the fact that
1
�
.log.X � �/� �/ has a standard normal distribution if X is lognormally distributed. Based on this

relationship, you can use the DATA step function PROBIT to compute lognormal quantiles and the
DATA step function PROBNORM to compute probabilities.

Normal Distribution

The fitted density function is

p.x/ D
hv

�
p

2�
exp

�
�

1
2
.x��

�
/2
�

for �1 < x < 1

where

� D mean
� D standard deviation .� > 0/
h D width of histogram interval
v D vertical scaling factor

and

v D

8<:
n the sample size, for VSCALE=COUNT
100 for VSCALE=PERCENT
1 for VSCALE=PROPPORTION

You can specify � and � with the MU= and SIGMA= normal-options, respectively. By default, the
procedure estimates � with the sample mean and � with the sample standard deviation.

You can use the DATA step function PROBIT to compute normal quantiles and the DATA step
function PROBNORM to compute probabilities.

NOTE: The normal distribution is also referred to as the SN distribution in the Johnson system of
distributions.
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Johnson SB Distribution

The fitted density function is

p.x/ D

8̂̂̂<̂
ˆ̂:

ıhv

�
p

2�

h�
x��

�

� �
1 �

x��
�

�i�1
�

exp
�
�

1
2

�

 C ı log. x��

�C��x
/
�2
�

for � < x < � C �

0 for x � � or x � � C �

where

� D threshold parameter .�1 < � < 1/

� D scale parameter .� > 0/
ı D shape parameter .ı > 0/

 D shape parameter .�1 < 
 < 1/

h D width of histogram interval
v D vertical scaling factor

and

v D

8<:
n the sample size, for VSCALE=COUNT
100 for VSCALE=PERCENT
1 for VSCALE=PROPPORTION

The SB distribution is bounded below by the parameter � and above by the value � C � . The
parameter � must be less than the minimum data value. You can specify � with the THETA= SB -
option, or you can request that � be estimated with the THETA = EST SB -option. The default value
for � is zero. The sum � C � must be greater than the maximum data value. The default value for
� is one. You can specify � with the SIGMA= SB -option, or you can request that � be estimated
with the SIGMA = EST SB -option.

By default, the method of percentiles given by Slifker and Shapiro (1980) is used to estimate the
parameters. This method is based on four data percentiles, denoted by x�3z , x�z , xz , and x3z ,
which correspond to the four equally spaced percentiles of a standard normal distribution, denoted
by �3z, �z, z, and 3z, under the transformation

z D 
 C ı log
�

x � �

� C � � x

�
The default value of z is 0.524. The results of the fit are dependent on the choice of z, and you can
specify other values with the FITINTERVAL= option (specified in parentheses after the SB option).
If you use the method of percentiles, you should select a value of z that corresponds to percentiles
which are critical to your application.

The following values are computed from the data percentiles:

m D x3z � xz

n D x�z � x�3z

p D xz � x�z
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It was demonstrated by Slifker and Shapiro (1980) that
mn
p2 > 1 for any SU distribution
mn
p2 < 1 for any SB distribution
mn
p2 D 1 for any SL (lognormal) distribution

A tolerance interval around one is used to discriminate among the three families with this ratio
criterion. You can specify the tolerance with the FITTOLERANCE= option (specified in paren-
theses after the SB option). The default tolerance is 0.01. Assuming that the criterion satisfies the
inequality

mn

p2
< 1 � tolerance

the parameters of the SB distribution are computed using the explicit formulas derived by Slifker
and Shapiro (1980).

If you specify FITMETHOD = MOMENTS (in parentheses after the SB option), the method of
moments is used to estimate the parameters. If you specify FITMETHOD = MLE (in parentheses
after the SB option), the method of maximum likelihood is used to estimate the parameters. Note
that maximum likelihood estimates may not always exist. Refer to Bowman and Shenton (1983) for
discussion of methods for fitting Johnson distributions.

Johnson SU Distribution

The fitted density function is

p.x/ D

8̂̂̂<̂
ˆ̂:

ıhv

�
p

2�

1p
1C..x��/=�/2

�

exp
�
�

1
2

�

 C ı sinh�1

�
x��

�

��2
�

for x > �

0 for x � �

where

� D location parameter .�1 < � < 1/

� D scale parameter .� > 0/
ı D shape parameter .ı > 0/

 D shape parameter .�1 < 
 < 1/

h D width of histogram interval
v D vertical scaling factor

and

v D

8<:
n the sample size, for VSCALE=COUNT
100 for VSCALE=PERCENT
1 for VSCALE=PROPPORTION

You can specify the parameters with the THETA=, SIGMA=, DELTA=, and GAMMA= SU -
options, which are enclosed in parentheses after the SU option. If you do not specify these pa-
rameters, they are estimated.
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By default, the method of percentiles given by Slifker and Shapiro (1980) is used to estimate the
parameters. This method is based on four data percentiles, denoted by x�3z , x�z , xz , and x3z ,
which correspond to the four equally spaced percentiles of a standard normal distribution, denoted
by �3z, �z, z, and 3z, under the transformation

z D 
 C ı sinh�1

�
x � �

�

�
The default value of z is 0.524. The results of the fit are dependent on the choice of z, and you can
specify other values with the FITINTERVAL= option (specified in parentheses after the SB option).
If you use the method of percentiles, you should select a value of z that corresponds to percentiles
that are critical to your application. You can specify the value of z with the FITINTERVAL= option
(specified in parentheses after the SU option).

The following values are computed from the data percentiles:

m D x3z � xz

n D x�z � x�3z

p D xz � x�z

It was demonstrated by Slifker and Shapiro (1980) that

mn
p2 > 1 for any SU distribution
mn
p2 < 1 for any SB distribution
mn
p2 D 1 for any SL (lognormal) distribution

A tolerance interval around one is used to discriminate among the three families with this ratio
criterion. You can specify the tolerance with the FITTOLERANCE= option (specified in parenthe-
ses after the SU option). The default tolerance is 0.01. Assuming that the criterion satisfies the
inequality

mn

p2
> 1C tolerance

the parameters of the SU distribution are computed using the explicit formulas derived by Slifker
and Shapiro (1980).

If you specify FITMETHOD = MOMENTS (in parentheses after the SU option), the method of
moments is used to estimate the parameters. If you specify FITMETHOD = MLE (in parentheses
after the SU option), the method of maximum likelihood is used to estimate the parameters. Note
that maximum likelihood estimates do not always exist. Refer to Bowman and Shenton (1983) for
discussion of methods for fitting Johnson distributions.

Weibull Distribution

The fitted density function is

p.x/ D

�
hv c

�
.x��

�
/c�1 exp.�.x��

�
/c/ for x > �

0 for x � �

where
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� D threshold parameter
� D scale parameter .� > 0/
c D shape parameter .c > 0/
h D width of histogram interval
v D vertical scaling factor

and

v D

8<:
n the sample size, for VSCALE=COUNT
100 for VSCALE=PERCENT
1 for VSCALE=PROPPORTION

The threshold parameter � must be less than the minimum data value. You can specify � with
the THRESHOLD= Weibull-option. By default, � D 0. If you specify THETA=EST, a maximum
likelihood estimate is computed for � . You can specify � and c with the SCALE= and SHAPE=
Weibull-options, respectively. By default, the procedure calculates maximum likelihood estimates
for � and c.

The exponential distribution is a special case of the Weibull distribution where c D 1.

Goodness-of-Fit Tests

When you specify the NORMAL option in the PROC UNIVARIATE statement or you request a
fitted parametric distribution in the HISTOGRAM statement, the procedure computes goodness-of-
fit tests for the null hypothesis that the values of the analysis variable are a random sample from the
specified theoretical distribution. See Example 4.22.

When you specify the NORMAL option, these tests, which are summarized in the output table
labeled “Tests for Normality,” include the following:

� Shapiro-Wilk test

� Kolmogorov-Smirnov test

� Anderson-Darling test

� Cramér-von Mises test

The Kolmogorov-Smirnov D statistic, the Anderson-Darling statistic, and the Cramér-von Mises
statistic are based on the empirical distribution function (EDF). However, some EDF tests are not
supported when certain combinations of the parameters of a specified distribution are estimated. See
Table 4.84 for a list of the EDF tests available. You determine whether to reject the null hypothesis
by examining the p-value that is associated with a goodness-of-fit statistic. When the p-value is
less than the predetermined critical value (˛), you reject the null hypothesis and conclude that the
data did not come from the specified distribution.
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If you want to test the normality assumptions for analysis of variance methods, beware of using
a statistical test for normality alone. A test’s ability to reject the null hypothesis (known as the
power of the test) increases with the sample size. As the sample size becomes larger, increasingly
smaller departures from normality can be detected. Because small deviations from normality do not
severely affect the validity of analysis of variance tests, it is important to examine other statistics
and plots to make a final assessment of normality. The skewness and kurtosis measures and the plots
that are provided by the PLOTS option, the HISTOGRAM statement, the PROBPLOT statement,
and the QQPLOT statement can be very helpful. For small sample sizes, power is low for detecting
larger departures from normality that may be important. To increase the test’s ability to detect such
deviations, you may want to declare significance at higher levels, such as 0.15 or 0.20, rather than
the often-used 0.05 level. Again, consulting plots and additional statistics can help you assess the
severity of the deviations from normality.

Shapiro-Wilk Statistic

If the sample size is less than or equal to 2000 and you specify the NORMAL option, PROC UNI-
VARIATE computes the Shapiro-Wilk statistic,W (also denoted asWn to emphasize its dependence
on the sample size n). TheW statistic is the ratio of the best estimator of the variance (based on the
square of a linear combination of the order statistics) to the usual corrected sum of squares estimator
of the variance (Shapiro and Wilk 1965). When n is greater than three, the coefficients to compute
the linear combination of the order statistics are approximated by the method of Royston (1992).
The statistic W is always greater than zero and less than or equal to one .0 < W � 1/.

Small values of W lead to the rejection of the null hypothesis of normality. The distribution of
W is highly skewed. Seemingly large values of W (such as 0.90) may be considered small and
lead you to reject the null hypothesis. The method for computing the p-value (the probability
of obtaining a W statistic less than or equal to the observed value) depends on n. For n D 3,
the probability distribution of W is known and is used to determine the p-value. For n > 4, a
normalizing transformation is computed:

Zn D

�
.� log.
 � log.1 �Wn// � �/=� if 4 � n � 11

.log.1 �Wn/ � �/=� if 12 � n � 2000

The values of � , 
 , and � are functions of n obtained from simulation results. Large values of
Zn indicate departure from normality, and because the statistic Zn has an approximately standard
normal distribution, this distribution is used to determine the p-values for n > 4.

EDF Goodness-of-Fit Tests

When you fit a parametric distribution, PROC UNIVARIATE provides a series of goodness-of-
fit tests based on the empirical distribution function (EDF). The EDF tests offer advantages over
traditional chi-square goodness-of-fit test, including improved power and invariance with respect to
the histogram midpoints. For a thorough discussion, refer to D’Agostino and Stephens (1986).
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The empirical distribution function is defined for a set of n independent observations X1; : : : ; Xn

with a common distribution function F.x/. Denote the observations ordered from smallest to largest
as X.1/; : : : ; X.n/. The empirical distribution function, Fn.x/, is defined as

Fn.x/ D 0; x < X.1/

Fn.x/ D
i
n
; X.i/ � x < X.iC1/ i D 1; : : : ; n � 1

Fn.x/ D 1; X.n/ � x

Note that Fn.x/ is a step function that takes a step of height 1
n

at each observation. This function
estimates the distribution function F.x/. At any value x, Fn.x/ is the proportion of observations
less than or equal to x, while F.x/ is the probability of an observation less than or equal to x. EDF
statistics measure the discrepancy between Fn.x/ and F.x/.

The computational formulas for the EDF statistics make use of the probability integral transforma-
tion U D F.X/. If F.X/ is the distribution function of X , the random variable U is uniformly
distributed between 0 and 1.

Given n observations X.1/; : : : ; X.n/, the values U.i/ D F.X.i// are computed by applying the
transformation, as discussed in the next three sections.

PROC UNIVARIATE provides three EDF tests:

� Kolmogorov-Smirnov

� Anderson-Darling

� Cramér-von Mises

The following sections provide formal definitions of these EDF statistics.

Kolmogorov D Statistic

The Kolmogorov-Smirnov statistic (D) is defined as

D D supxjFn.x/ � F.x/j

The Kolmogorov-Smirnov statistic belongs to the supremum class of EDF statistics. This class of
statistics is based on the largest vertical difference between F.x/ and Fn.x/.

The Kolmogorov-Smirnov statistic is computed as the maximum of DC and D�, where DC is the
largest vertical distance between the EDF and the distribution function when the EDF is greater
than the distribution function, and D� is the largest vertical distance when the EDF is less than the
distribution function.

DC D maxi

�
i
n

� U.i/

�
D� D maxi

�
U.i/ �

i�1
n

�
D D max

�
DC;D�

�
PROC UNIVARIATE uses a modified Kolmogorov D statistic to test the data against a normal
distribution with mean and variance equal to the sample mean and variance.
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Anderson-Darling Statistic

The Anderson-Darling statistic and the Cramér-von Mises statistic belong to the quadratic class of
EDF statistics. This class of statistics is based on the squared difference .Fn.x/�F.x//

2. Quadratic
statistics have the following general form:

Q D n

Z C1

�1

.Fn.x/ � F.x//2 .x/dF.x/

The function  .x/ weights the squared difference .Fn.x/ � F.x//2.

The Anderson-Darling statistic (A2) is defined as

A2
D n

Z C1

�1

.Fn.x/ � F.x//2 ŒF .x/ .1 � F.x//��1 dF.x/

Here the weight function is  .x/ D ŒF .x/ .1 � F.x//��1.

The Anderson-Darling statistic is computed as

A2
D �n �

1

n

nX
iD1

�
.2i � 1/ logU.i/ C .2nC 1 � 2i/ log.1 � U.i//

�

Cramér-von Mises Statistic

The Cramér-von Mises statistic (W 2) is defined as

W 2
D n

Z C1

�1

.Fn.x/ � F.x//2dF.x/

Here the weight function is  .x/ D 1.

The Cramér-von Mises statistic is computed as

W 2
D

nX
iD1

�
U.i/ �

2i � 1

2n

�2

C
1

12n

Probability Values of EDF Tests

Once the EDF test statistics are computed, PROC UNIVARIATE computes the associated probabil-
ity values (p-values). The UNIVARIATE procedure uses internal tables of probability levels similar
to those given by D’Agostino and Stephens (1986). If the value is between two probability levels,
then linear interpolation is used to estimate the probability value.

The probability value depends upon the parameters that are known and the parameters that are
estimated for the distribution. Table 4.84 summarizes different combinations fitted for which EDF
tests are available.
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Table 4.84 Availability of EDF Tests

Distribution Parameters Tests Available
Threshold Scale Shape

beta � known � known ˛; ˇ known all
� known � known ˛; ˇ < 5 unknown all

exponential � known, � known all
� known � unknown all
� unknown � known all
� unknown � unknown all

gamma � known � known ˛ known all
� known � unknown ˛ known all
� known � known ˛ unknown all
� known � unknown ˛ unknown all
� unknown � known ˛ > 1 known all
� unknown � unknown ˛ > 1 known all
� unknown � known ˛ > 1 unknown all
� unknown � unknown ˛ > 1 unknown all

lognormal � known � known � known all
� known � known � unknown A2 and W 2

� known � unknown � known A2 and W 2

� known � unknown � unknown all
� unknown � known � < 3 known all
� unknown � known � < 3 unknown all
� unknown � unknown � < 3 known all
� unknown � unknown � < 3 unknown all

normal � known � known all
� known � unknown A2 and W 2

� unknown � known A2 and W 2

� unknown � unknown all
Weibull � known � known c known all

� known � unknown c known A2 and W 2

� known � known c unknown A2 and W 2

� known � unknown c unknown A2 and W 2

� unknown � known c > 2 known all
� unknown � unknown c > 2 known all
� unknown � known c > 2 unknown all
� unknown � unknown c > 2 unknown all

Kernel Density Estimates

You can use the KERNEL option to superimpose kernel density estimates on histograms. Smooth-
ing the data distribution with a kernel density estimate can be more effective than using a histogram
to identify features that might be obscured by the choice of histogram bins or sampling variation.
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A kernel density estimate can also be more effective than a parametric curve fit when the process
distribution is multi-modal. See Example 4.23.

The general form of the kernel density estimator is

Of�.x/ D
hv

n�

nX
iD1

K0

�x � xi

�

�
where

K0.�/ is the kernel function
� is the bandwidth
n is the sample size
xi is the i th observation
v D vertical scaling factor

and

v D

8<:
n for VSCALE=COUNT
100 for VSCALE=PERCENT
1 for VSCALE=PROPPORTION

The KERNEL option provides three kernel functions (K0): normal, quadratic, and triangular. You
can specify the function with the K= kernel-option in parentheses after the KERNEL option. Values
for the K= option are NORMAL, QUADRATIC, and TRIANGULAR (with aliases of N, Q, and T,
respectively). By default, a normal kernel is used. The formulas for the kernel functions are

Normal K0.t/ D
1p
2�

exp.�1
2
t2/ for � 1 < t < 1

Quadratic K0.t/ D
3
4
.1 � t2/ for jt j � 1

Triangular K0.t/ D 1 � jt j for jt j � 1

The value of �, referred to as the bandwidth parameter, determines the degree of smoothness in the
estimated density function. You specify � indirectly by specifying a standardized bandwidth c with
the C= kernel-option. If Q is the interquartile range and n is the sample size, then c is related to �
by the formula

� D cQn� 1
5

For a specific kernel function, the discrepancy between the density estimator Of�.x/ and the true
density f .x/ is measured by the mean integrated square error (MISE):

MISE.�/ D

Z
x

fE. Of�.x// � f .x/g2dx C

Z
x

var. Of�.x//dx

The MISE is the sum of the integrated squared bias and the variance. An approximate mean inte-
grated square error (AMISE) is:

AMISE.�/ D
1

4
�4

�Z
t

t2K.t/dt

�2 Z
x

�
f 00.x/

�2
dx C

1

n�

Z
t

K.t/2dt
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A bandwidth that minimizes AMISE can be derived by treating f .x/ as the normal density that has
parameters � and � estimated by the sample mean and standard deviation. If you do not specify
a bandwidth parameter or if you specify C=MISE, the bandwidth that minimizes AMISE is used.
The value of AMISE can be used to compare different density estimates. You can also specify
C=SJPI to select the bandwidth by using a plug-in formula of Sheather and Jones (Jones, Marron,
and Sheather 1996). For each estimate, the bandwidth parameter c, the kernel function type, and
the value of AMISE are reported in the SAS log.

The general kernel density estimates assume that the domain of the density to estimate can take on
all values on a real line. However, sometimes the domain of a density is an interval bounded on one
or both sides. For example, if a variable Y is a measurement of only positive values, then the kernel
density curve should be bounded so that is zero for negative Y values. You can use the LOWER=
and UPPER= kernel-options to specify the bounds.

The UNIVARIATE procedure uses a reflection technique to create the bounded kernel density curve,
as described in Silverman (1986, pp. 30-31). It adds the reflections of the kernel density that are
outside the boundary to the bounded kernel estimates. The general form of the bounded kernel
density estimator is computed by replacing K0

�
x�xi

�

�
in the original equation with�

K0

�x � xi

�

�
CK0

�
.x � xl/C .xi � xl/

�

�
CK0

�
.xu � x/C .xu � xi /

�

��
where xl is the lower bound and xu is the upper bound.

Without a lower bound, xl D �1 and K0

�
.x�xl /C.xi �xl /

�

�
D 0. Similarly, without an upper

bound, xu D 1 and K0

�
.xu�x/C.xu�xi /

�

�
D 0.

When C=MISE is used with a bounded kernel density, the UNIVARIATE procedure uses a band-
width that minimizes the AMISE for its corresponding unbounded kernel.

Construction of Quantile-Quantile and Probability Plots

Figure 4.14 illustrates how a Q-Q plot is constructed for a specified theoretical distribution. First,
the n nonmissing values of the variable are ordered from smallest to largest:

x.1/ � x.2/ � � � � � x.n/

Then the i th ordered value x.i/ is plotted as a point whose y-coordinate is x.i/ and whose x-

coordinate is F�1
�

i�0:375
nC0:25

�
, where F.�/ is the specified distribution with zero location parameter

and unit scale parameter.

You can modify the adjustment constants �0.375 and 0.25 with the RANKADJ= and NADJ= op-
tions. This default combination is recommended by Blom (1958). For additional information, see
Chambers et al. (1983). Because x.i/ is a quantile of the empirical cumulative distribution function
(ecdf), a Q-Q plot compares quantiles of the ecdf with quantiles of a theoretical distribution. Prob-
ability plots (see the section “PROBPLOT Statement” on page 292) are constructed the same way,
except that the x-axis is scaled nonlinearly in percentiles.
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Figure 4.14 Construction of a Q-Q Plot

Interpretation of Quantile-Quantile and Probability Plots

The following properties of Q-Q plots and probability plots make them useful diagnostics of how
well a specified theoretical distribution fits a set of measurements:

� If the quantiles of the theoretical and data distributions agree, the plotted points fall on or near
the line y D x.

� If the theoretical and data distributions differ only in their location or scale, the points on the
plot fall on or near the line y D ax C b. The slope a and intercept b are visual estimates of
the scale and location parameters of the theoretical distribution.

Q-Q plots are more convenient than probability plots for graphical estimation of the location and
scale parameters because the x-axis of a Q-Q plot is scaled linearly. On the other hand, probability
plots are more convenient for estimating percentiles or probabilities.

There are many reasons why the point pattern in a Q-Q plot may not be linear. Chambers et al.
(1983) and Fowlkes (1987) discuss the interpretations of commonly encountered departures from
linearity, and these are summarized in Table 4.85.

In some applications, a nonlinear pattern may be more revealing than a linear pattern. However,
Chambers et al. (1983) note that departures from linearity can also be due to chance variation.
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Table 4.85 Quantile-Quantile Plot Diagnostics

Description of Point Pattern Possible Interpretation

all but a few points fall on a line outliers in the data
left end of pattern is below the line;
right end of pattern is above the line

long tails at both ends of the data distri-
bution

left end of pattern is above the line;
right end of pattern is below the line

short tails at both ends of the data distri-
bution

curved pattern with slope increasing
from left to right

data distribution is skewed to the right

curved pattern with slope decreasing
from left to right

data distribution is skewed to the left

staircase pattern (plateaus and gaps) data have been rounded or are discrete

When the pattern is linear, you can use Q-Q plots to estimate shape, location, and scale parameters
and to estimate percentiles. See Example 4.26 through Example 4.34.

Distributions for Probability and Q-Q Plots

You can use the PROBPLOT and QQPLOT statements to request probability and Q-Q plots that are
based on the theoretical distributions summarized in Table 4.86.

Table 4.86 Distributions and Parameters

Parameters
Distribution Density Function p.x/ Range Location Scale Shape

beta .x��/˛�1.�C��x/ˇ�1

B.˛;ˇ/�.˛Cˇ�1/ � < x < � C � � � ˛, ˇ

exponential 1
�

exp
�
�

x��
�

�
x � � � �

gamma 1
��.˛/

�
x��

�

�˛�1
exp

�
�

x��
�

�
x > � � � ˛

lognormal 1

�
p

2�.x��/
exp

�
�

.log.x��/��/2

2�2

�
x > � � � �

(3-parameter)

normal 1

�
p

2�
exp

�
�

.x��/2

2�2

�
all x � �

Weibull c
�

�
x��

�

�c�1
exp

�
�

�
x��

�

�c�
x > � � � c

(3-parameter)

Weibull c
�

�
x��0

�

�c�1
exp

�
�

�
x��0

�

�c�
x > �0 �0 � c

(2-parameter) (known)

You can request these distributions with the BETA, EXPONENTIAL, GAMMA, LOGNORMAL,
NORMAL, WEIBULL, and WEIBULL2 options, respectively. If you do not specify a distribution
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option, a normal probability plot or a normal Q-Q plot is created.

The following sections provide details for constructing Q-Q plots that are based on these distribu-
tions. Probability plots are constructed similarly except that the horizontal axis is scaled in per-
centile units.

Beta Distribution

To create the plot, the observations are ordered from smallest to largest, and the i th ordered ob-
servation is plotted against the quantile B�1

˛ˇ

�
i�0:375
nC0:25

�
, where B�1

˛ˇ
.�/ is the inverse normalized

incomplete beta function, n is the number of nonmissing observations, and ˛ and ˇ are the shape
parameters of the beta distribution. In a probability plot, the horizontal axis is scaled in percentile
units.

The pattern on the plot for ALPHA=˛ and BETA=ˇ tends to be linear with intercept � and slope �
if the data are beta distributed with the specific density function

p.x/ D

(
.x��/˛�1.�C��x/ˇ�1

B.˛;ˇ/�.˛Cˇ�1/ for � < x < � C �

0 for x � � or x � � C �

where B.˛; ˇ/ D
�.˛/�.ˇ/
�.˛Cˇ/

and

� D lower threshold parameter
� D scale parameter .� > 0/
˛ D first shape parameter .˛ > 0/
ˇ D second shape parameter .ˇ > 0/

Exponential Distribution

To create the plot, the observations are ordered from smallest to largest, and the i th ordered ob-
servation is plotted against the quantile � log

�
1 �

i�0:375
nC0:25

�
, where n is the number of nonmissing

observations. In a probability plot, the horizontal axis is scaled in percentile units.

The pattern on the plot tends to be linear with intercept � and slope � if the data are exponentially
distributed with the specific density function

p.x/ D

(
1
�

exp
�
�

x��
�

�
for x � �

0 for x < �

where � is a threshold parameter, and � is a positive scale parameter.

Gamma Distribution

To create the plot, the observations are ordered from smallest to largest, and the i th ordered ob-
servation is plotted against the quantile G�1

˛

�
i�0:375
nC0:25

�
, where G�1

˛ .�/ is the inverse normalized
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incomplete gamma function, n is the number of nonmissing observations, and ˛ is the shape pa-
rameter of the gamma distribution. In a probability plot, the horizontal axis is scaled in percentile
units.

The pattern on the plot for ALPHA=˛ tends to be linear with intercept � and slope � if the data are
gamma distributed with the specific density function

p.x/ D

(
1

��.˛/

�
x��

�

�˛�1
exp

�
�

x��
�

�
for x > �

0 for x � �

where

� D threshold parameter
� D scale parameter .� > 0/
˛ D shape parameter .˛ > 0/

Lognormal Distribution

To create the plot, the observations are ordered from smallest to largest, and the i th ordered obser-
vation is plotted against the quantile exp

�
�ˆ�1

�
i�0:375
nC0:25

��
, whereˆ�1.�/ is the inverse cumulative

standard normal distribution, n is the number of nonmissing observations, and � is the shape param-
eter of the lognormal distribution. In a probability plot, the horizontal axis is scaled in percentile
units.

The pattern on the plot for SIGMA=� tends to be linear with intercept � and slope exp.�/ if the
data are lognormally distributed with the specific density function

p.x/ D

(
1

�
p

2�.x��/
exp

�
�

.log.x��/��/2

2�2

�
for x > �

0 for x � �

where

� D threshold parameter
� D scale parameter
� D shape parameter .� > 0/

See Example 4.26 and Example 4.33.

Normal Distribution

To create the plot, the observations are ordered from smallest to largest, and the i th ordered observa-
tion is plotted against the quantile ˆ�1

�
i�0:375
nC0:25

�
, where ˆ�1.�/ is the inverse cumulative standard

normal distribution and n is the number of nonmissing observations. In a probability plot, the
horizontal axis is scaled in percentile units.
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The point pattern on the plot tends to be linear with intercept � and slope � if the data are normally
distributed with the specific density function

p.x/ D
1

�
p

2�
exp

�
�

.x��/2

2�2

�
for all x

where � is the mean and � is the standard deviation (� > 0).

Three-Parameter Weibull Distribution

To create the plot, the observations are ordered from smallest to largest, and the i th ordered obser-

vation is plotted against the quantile
�
� log

�
1 �

i�0:375
nC0:25

�� 1
c

, where n is the number of nonmissing
observations, and c is the Weibull distribution shape parameter. In a probability plot, the horizontal
axis is scaled in percentile units.

The pattern on the plot for C=c tends to be linear with intercept � and slope � if the data are Weibull
distributed with the specific density function

p.x/ D

(
c
�

�
x��

�

�c�1
exp

�
�

�
x��

�

�c�
for x > �

0 for x � �

where

� D threshold parameter
� D scale parameter .� > 0/
c D shape parameter .c > 0/

See Example 4.34.

Two-Parameter Weibull Distribution

To create the plot, the observations are ordered from smallest to largest, and the log of the
shifted i th ordered observation x.i/, denoted by log.x.i/ � �0/, is plotted against the quantile

log
�
� log

�
1 �

i�0:375
nC0:25

��
, where n is the number of nonmissing observations. In a probability

plot, the horizontal axis is scaled in percentile units.

Unlike the three-parameter Weibull quantile, the preceding expression is free of distribution param-
eters. Consequently, the C= shape parameter is not mandatory with the WEIBULL2 distribution
option.

The pattern on the plot for THETA=�0 tends to be linear with intercept log.�/ and slope 1
c

if the
data are Weibull distributed with the specific density function

p.x/ D

(
c
�

�
x��0

�

�c�1
exp

�
�

�
x��0

�

�c�
for x > �0

0 for x � �0

where
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�0 D known lower threshold
� D scale parameter .� > 0/
c D shape parameter .c > 0/

See Example 4.34.

Estimating Shape Parameters Using Q-Q Plots

Some of the distribution options in the PROBPLOT or QQPLOT statements require you to specify
one or two shape parameters in parentheses after the distribution keyword. These are summarized
in Table 4.87.

You can visually estimate the value of a shape parameter by specifying a list of values for the shape
parameter option. A separate plot is produced for each value, and you can then select the value of the
shape parameter that produces the most nearly linear point pattern. Alternatively, you can request
that the plot be created using an estimated shape parameter. See the entries for the distribution
options in the section “Dictionary of Options” on page 298 (for the PROBPLOT statement) and in
the section “Dictionary of Options” on page 308 (for the QQPLOT statement).

NOTE: For Q-Q plots created with the WEIBULL2 option, you can estimate the shape parameter c
from a linear pattern by using the fact that the slope of the pattern is 1

c
.

Table 4.87 Shape Parameter Options

Distribution Keyword Mandatory Shape Parameter Option Range

BETA ALPHA=˛, BETA=ˇ ˛ > 0, ˇ > 0
EXPONENTIAL none

GAMMA ALPHA=˛ ˛ > 0

LOGNORMAL SIGMA=� � > 0

NORMAL none
WEIBULL C=c c > 0

WEIBULL2 none

Estimating Location and Scale Parameters Using Q-Q Plots

If you specify location and scale parameters for a distribution in a PROBPLOT or QQPLOT state-
ment (or if you request estimates for these parameters), a diagonal distribution reference line is
displayed on the plot. (An exception is the two-parameter Weibull distribution, for which a line is
displayed when you specify or estimate the scale and shape parameters.) Agreement between this
line and the point pattern indicates that the distribution with these parameters is a good fit.

When the point pattern on a Q-Q plot is linear, its intercept and slope provide estimates of the
location and scale parameters. (An exception to this rule is the two-parameter Weibull distribution,
for which the intercept and slope are related to the scale and shape parameters.)
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Table 4.88 shows how the specified parameters determine the intercept and slope of the line. The
intercept and slope are based on the quantile scale for the horizontal axis, which is used in Q-Q
plots.

Table 4.88 Intercept and Slope of Distribution Reference Line

Parameters Linear Pattern
Distribution Location Scale Shape Intercept Slope

Beta � � ˛ , ˇ � �

Exponential � � � �

Gamma � � ˛ � �

Lognormal � � � � exp.�/
Normal � � � �

Weibull (3-parameter) � � c � �

Weibull (2-parameter) �0 (known) � c log.�/ 1
c

For instance, specifying MU=3 and SIGMA=2 with the NORMAL option requests a line with
intercept 3 and slope 2. Specifying SIGMA=1 and C=2 with the WEIBULL2 option requests a
line with intercept log.1/ D 0 and slope 1

2
. On a probability plot with the LOGNORMAL and

WEIBULL2 options, you can specify the slope directly with the SLOPE= option. That is, for
the LOGNORMAL option, specifying THETA= �0 and SLOPE=exp.�0/ displays the same line as
specifying THETA= �0 and ZETA= �0. For the WEIBULL2 option, specifying SIGMA= �0 and
SLOPE= 1

c0
displays the same line as specifying SIGMA= �0 and C= c0.

Estimating Percentiles Using Q-Q Plots

There are two ways to estimate percentiles from a Q-Q plot:

� Specify the PCTLAXIS option, which adds a percentile axis opposite the theoretical quantile
axis. The scale for the percentile axis ranges between 0 and 100 with tick marks at percentile
values such as 1, 5, 10, 25, 50, 75, 90, 95, and 99.

� Specify the PCTLSCALE option, which relabels the horizontal axis tick marks with their
percentile equivalents but does not alter their spacing. For example, on a normal Q-Q plot,
the tick mark labeled “0” is relabeled as “50” because the 50th percentile corresponds to the
zero quantile.

You can also estimate percentiles by using probability plots created with the PROBPLOT statement.
See Example 4.32.
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Input Data Sets

DATA= Data Set

The DATA= data set provides the set of variables that are analyzed. The UNIVARIATE procedure
must have a DATA= data set. If you do not specify one with the DATA= option in the PROC
UNIVARIATE statement, the procedure uses the last data set created.

ANNOTATE= Data Sets

You can add features to plots by specifying ANNOTATE= data sets either in the PROC UNIVARI-
ATE statement or in individual plot statements.

Information contained in an ANNOTATE= data set specified in the PROC UNIVARIATE statement
is used for all plots produced in a given PROC step; this is a “global” ANNOTATE= data set. By
using this global data set, you can keep information common to all high-resolution plots in one data
set.

Information contained in the ANNOTATE= data set specified in a plot statement is used only for
plots produced by that statement; this is a “local” ANNOTATE= data set. By using this data set, you
can add statement-specific features to plots. For example, you can add different features to plots
produced by the HISTOGRAM and QQPLOT statements by specifying an ANNOTATE= data set
in each plot statement.

You can specify an ANNOTATE= data set in the PROC UNIVARIATE statement and in plot state-
ments. This enables you to add some features to all plots and also add statement-specific features
to plots. See Example 4.25.

OUT= Output Data Set in the OUTPUT Statement

PROC UNIVARIATE creates an OUT= data set for each OUTPUT statement. This data set contains
an observation for each combination of levels of the variables in the BY statement, or a single
observation if you do not specify a BY statement. Thus the number of observations in the new data
set corresponds to the number of groups for which statistics are calculated. Without a BY statement,
the procedure computes statistics and percentiles by using all the observations in the input data set.
With a BY statement, the procedure computes statistics and percentiles by using the observations
within each BY group.

The variables in the OUT= data set are as follows:

� BY statement variables. The values of these variables match the values in the corresponding
BY group in the DATA= data set and indicate which BY group each observation summarizes.
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� variables created by selecting statistics in the OUTPUT statement. The statistics are com-
puted using all the nonmissing data, or they are computed for each BY group if you use a BY
statement.

� variables created by requesting new percentiles with the PCTLPTS= option. The names of
these new variables depend on the values of the PCTLPRE= and PCTLNAME= options.

If the output data set contains a percentile variable or a quartile variable, the percentile definition
assigned with the PCTLDEF= option in the PROC UNIVARIATE statement is recorded in the
output data set label. See Example 4.8.

The following table lists variables available in the OUT= data set.

Table 4.89 Variables Available in the OUT= Data Set

Variable Name Description

Descriptive Statistics
CSS sum of squares corrected for the mean
CV percent coefficient of variation
KURTOSIS measurement of the heaviness of tails
MAX largest (maximum) value
MEAN arithmetic mean
MIN smallest (minimum) value
MODE most frequent value (if not unique, the smallest mode)
N number of observations on which calculations are based
NMISS number of missing observations
NOBS total number of observations
RANGE difference between the maximum and minimum values
SKEWNESS measurement of the tendency of the deviations to be larger in one di-

rection than in the other
STD standard deviation
STDMEAN standard error of the mean
SUM sum
SUMWGT sum of the weights
USS uncorrected sum of squares
VAR variance
Quantile Statistics
MEDIAN | P50 middle value (50th percentile)
P1 1st percentile
P5 5th percentile
P10 10th percentile
P90 90th percentile
P95 95th percentile
P99 99th percentile
Q1 | P25 lower quartile (25th percentile)
Q3 | P75 upper quartile (75th percentile)
QRANGE difference between the upper and lower quartiles (also known as the

inner quartile range)
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Table 4.89 (continued)

Variable Name Description

Robust Statistics
GINI Gini’s mean difference
MAD median absolute difference
QN 2nd variation of median absolute difference
SN 1st variation of median absolute difference
STD_GINI standard deviation for Gini’s mean difference
STD_MAD standard deviation for median absolute difference
STD_QN standard deviation for the second variation of the median absolute dif-

ference
STD_QRANGE estimate of the standard deviation, based on interquartile range
STD_SN standard deviation for the first variation of the median absolute differ-

ence
Hypothesis Test Statistics
MSIGN sign statistic
NORMAL test statistic for normality. If the sample size is less than or equal to

2000, this is the Shapiro-Wilk W statistic. Otherwise, it is the Kol-
mogorov D statistic.

PROBM probability of a greater absolute value for the sign statistic
PROBN probability that the data came from a normal distribution
PROBS probability of a greater absolute value for the signed rank statistic
PROBT two-tailed p-value for Student’s t statistic with n � 1 degrees of free-

dom
SIGNRANK signed rank statistic
T Student’s t statistic to test the null hypothesis that the population mean

is equal to �0

OUTHISTOGRAM= Output Data Set

You can create an OUTHISTOGRAM= data set with the HISTOGRAM statement. This data set
contains information about histogram intervals. Because you can specify multiple HISTOGRAM
statements with the UNIVARIATE procedure, you can create multiple OUTHISTOGRAM= data
sets.

An OUTHISTOGRAM= data set contains a group of observations for each variable in the HIS-
TOGRAM statement. The group contains an observation for each interval of the histogram, begin-
ning with the leftmost interval that contains a value of the variable and ending with the rightmost
interval that contains a value of the variable. These intervals do not necessarily coincide with the
intervals displayed in the histogram because the histogram might be padded with empty intervals at
either end. If you superimpose one or more fitted curves on the histogram, the OUTHISTOGRAM=
data set contains multiple groups of observations for each variable (one group for each curve). If
you use a BY statement, the OUTHISTOGRAM= data set contains groups of observations for each
BY group. ID variables are not saved in an OUTHISTOGRAM= data set.
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By default, an OUTHISTOGRAM= data set contains the _MIDPT_ variable, whose values identify
histogram intervals by their midpoints. When the ENDPOINTS= or NENDPOINTS option is spec-
ified, intervals are identified by endpoint values instead. If the RTINCLUDE option is specified,
the _MAXPT_ variable contains upper endpoint values. Otherwise, the _MINPT_ variable contains
lower endpoint values. See Example 4.18.

Table 4.90 Variables in the OUTHISTOGRAM= Data Set

Variable Description

_CURVE_ name of fitted distribution (if requested in HISTOGRAM state-
ment)

_EXPPCT_ estimated percent of population in histogram interval determined
from optional fitted distribution

_MAXPT_ upper endpoint of histogram interval
_MIDPT_ midpoint of histogram interval
_MINPT_ lower endpoint of histogram interval
_OBSPCT_ percent of variable values in histogram interval
_VAR_ variable name

OUTKERNEL= Output Data Set

You can create an OUTKERNEL= data set with the HISTOGRAM statement. This data set contains
information about histogram intervals. Because you can specify multiple HISTOGRAM statements
with the UNIVARIATE procedure, you can create multiple OUTKERNEL= data sets.

An OUTKERNEL= data set contains a group of observations for each kernel density estimate re-
quested with the HISTOGRAM statement. These observations span a range of analysis variable
values recorded in the _VALUE_ variable. The procedure determines the increment between values,
and therefore the number of observations in the group. The variable _DENSITY_ contains the kernel
density calculated for the corresponding analysis variable value.

When a density curve is overlaid on a histogram, the curve is scaled so that the area under the
curve equals the total area of the histogram bars. The scaled density values are saved in the variable
_COUNT_, _PERCENT_, or _PROPORTION_, depending on the histogram’s vertical axis scale, de-
termined by the VSCALE= option. Only one of these variables appears in a given OUTKERNEL=
data set.

Table 4.91 lists the variables in an OUTKERNEL= data set.
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Table 4.91 Variables in the OUTKERNEL= Data Set

Variable Description

_C_ standardized bandwidth parameter
_COUNT_ kernel density scaled for VSCALE=COUNT
_DENSITY_ kernel density
_PERCENT_ kernel density scaled for VSCALE=PERCENT (default)
_PROPORTION_ kernel density scaled for VSCALE=PROPORTION
_TYPE_ kernel function
_VALUE_ variable value at which kernel function is calculated
_VAR_ variable name

OUTTABLE= Output Data Set

The OUTTABLE= data set saves univariate statistics in a data set that contains one observation per
analysis variable. The following variables are saved:

Table 4.92 Variables in the OUTTABLE= Data Set

Variable Description

_KURT_ kurtosis
_MAX_ maximum
_MEAN_ mean
_MEDIAN_ median
_MIN_ minimum
_MODE_ mode
_NMISS_ number of missing observations
_N_ number of nonmissing observations
_P1_ 1st percentile
_P5_ 5th percentile
_P10_ 10th percentile
_P90_ 90th percentile
_P95_ 95th percentile
_P99_ 99th percentile
_Q1_ 25th percentile (lower quartile)
_Q3_ 75th percentile (upper quartile)
_QRANGE_ interquartile range (upper quartile minus lower quartile)
_RANGE_ range
_SGNRNK_ centered sign rank
_SKEW_ skewness
_STD_ standard deviation
_SUMWGT_ sum of the weights
_SUM_ sum
_VARI_ variance
_VAR_ variable name
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The OUTTABLE= data set and the OUT= data set (see the section “OUT= Output Data Set in
the OUTPUT Statement” on page 368) contain essentially the same information. However, the
structure of the OUTTABLE= data set may be more appropriate when you are computing summary
statistics for more than one analysis variable in the same invocation of the UNIVARIATE procedure.
Each observation in the OUTTABLE= data set corresponds to a different analysis variable, and the
variables in the data set correspond to summary statistics and indices.

For example, suppose you have 10 analysis variables (P1-P10). The following statements create an
OUTTABLE= data set named Table, which contains summary statistics for each of these variables:

data Analysis;
input A1-A10;
datalines;

72 223 332 138 110 145 23 293 353 458
97 54 61 196 275 171 117 72 81 141
56 170 140 400 371 72 60 20 484 138

124 6 332 493 214 43 125 55 372 30
152 236 222 76 187 126 192 334 109 546

5 260 194 277 176 96 109 184 240 261
161 253 153 300 37 156 282 293 451 299
128 121 254 297 363 132 209 257 429 295
116 152 331 27 442 103 80 393 383 94
43 178 278 159 25 180 253 333 51 225
34 128 182 415 524 112 13 186 145 131

142 236 234 255 211 80 281 135 179 11
108 215 335 66 254 196 190 363 226 379
62 232 219 474 31 139 15 56 429 298

177 218 275 171 457 146 163 18 155 129
0 235 83 239 398 99 226 389 498 18

147 199 324 258 504 2 218 295 422 287
39 161 156 198 214 58 238 19 231 548

120 42 372 420 232 112 157 79 197 166
178 83 238 492 463 68 46 386 45 81
161 267 372 296 501 96 11 288 330 74
14 2 52 81 169 63 194 161 173 54
22 181 92 272 417 94 188 180 367 342
55 248 214 422 133 193 144 318 271 479
56 83 169 30 379 5 296 320 396 597

;
run;

proc univariate data=Analysis outtable=Table noprint;
var A1-A10;

run;

The following statements create the table shown in Figure 4.15, which contains the mean, standard
deviation, and so on, for each analysis variable:

proc print data=Table label noobs;
var _VAR_ _MIN_ _MEAN_ _MAX_ _STD_;
label _VAR_=’Analysis’;

run;
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Figure 4.15 Tabulating Results for Multiple Process Variables

Test Scores for a College Course

Standard
Analysis Minimum Mean Maximum Deviation

A1 0 90.76 178 57.024
A2 2 167.32 267 81.628
A3 52 224.56 372 96.525
A4 27 258.08 493 145.218
A5 25 283.48 524 157.033
A6 2 107.48 196 52.437
A7 11 153.20 296 90.031
A8 18 217.08 393 130.031
A9 45 280.68 498 140.943
A10 11 243.24 597 178.799

Tables for Summary Statistics

By default, PROC UNIVARIATE produces ODS tables of moments, basic statistical measures,
tests for location, quantiles, and extreme observations. You must specify options in the PROC
UNIVARIATE statement to request other statistics and tables. The CIBASIC option produces a table
that displays confidence limits for the mean, standard deviation, and variance. The CIPCTLDF and
CIPCTLNORMAL options request tables of confidence limits for the quantiles. The LOCCOUNT
option requests a table that shows the number of values greater than, not equal to, and less than the
value of MU0=. The FREQ option requests a table of frequencies counts. The NEXTRVAL= option
requests a table of extreme values. The NORMAL option requests a table with tests for normality.

The TRIMMED=, WINSORIZED=, and ROBUSTSCALE options request tables with robust es-
timators. The table of trimmed or Winsorized means includes the percentage and the number of
observations that are trimmed or Winsorized at each end, the mean and standard error, confidence
limits, and the Student’s t test. The table with robust measures of scale includes interquartile range,
Gini’s mean difference G, MAD, Qn, and Sn, with their corresponding estimates of � .

See the section “ODS Table Names” on page 374 for the names of ODS tables created by PROC
UNIVARIATE.

ODS Table Names

PROC UNIVARIATE assigns a name to each table that it creates. You can use these names to
reference the table when you use the Output Delivery System (ODS) to select tables and create
output data sets.
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Table 4.93 ODS Tables Produced with the PROC UNIVARIATE Statement

ODS Table Name Description Option

BasicIntervals confidence intervals for mean,
standard deviation, variance

CIBASIC

BasicMeasures measures of location and vari-
ability

default

ExtremeObs extreme observations default
ExtremeValues extreme values NEXTRVAL=
Frequencies frequencies FREQ
LocationCounts counts used for sign test and

signed rank test
LOCCOUNT

MissingValues missing values default, if missing values
exist

Modes modes MODES
Moments sample moments default
Plots line printer plots PLOTS
Quantiles quantiles default
RobustScale robust measures of scale ROBUSTSCALE
SSPlots line printer side-by-side box

plots
PLOTS (with BY state-
ment)

TestsForLocation tests for location default
TestsForNormality tests for normality NORMALTEST
TrimmedMeans trimmed means TRIMMED=
WinsorizedMeans Winsorized means WINSORIZED=

Table 4.94 ODS Tables Produced with the HISTOGRAM Statement

ODS Table Name Description Option

Bins histogram bins MIDPERCENTS sec-
ondary option

FitQuantiles quantiles of fitted distribution any distribution option
GoodnessOfFit goodness-of-fit tests for fitted

distribution
any distribution option

HistogramBins histogram bins MIDPERCENTS option
ParameterEstimates parameter estimates for fitted

distribution
any distribution option

ODS Tables for Fitted Distributions

If you request a fitted parametric distribution with a HISTOGRAM statement, PROC UNIVARIATE
creates a summary that is organized into the ODS tables described in this section.
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Parameters

The ParameterEstimates table lists the estimated (or specified) parameters for the fitted curve as
well as the estimated mean and estimated standard deviation. See “Formulas for Fitted Continuous
Distributions” on page 346.

EDF Goodness-of-Fit Tests

When you fit a parametric distribution, the HISTOGRAM statement provides a series of goodness-
of-fit tests based on the empirical distribution function (EDF). See “EDF Goodness-of-Fit Tests” on
page 355. These are displayed in the GoodnessOfFit table.

Histogram Intervals

The Bins table is included in the summary only if you specify the MIDPERCENTS option in paren-
theses after the distribution option. This table lists the midpoints for the histogram bins along with
the observed and estimated percentages of the observations that lie in each bin. The estimated
percentages are based on the fitted distribution.

If you specify the MIDPERCENTS option without requesting a fitted distribution, the Histogram-
Bins table is included in the summary. This table lists the interval midpoints with the observed
percent of observations that lie in the interval. See the entry for the MIDPERCENTS option on
page 265.

Quantiles

The FitQuantiles table lists observed and estimated quantiles. You can use the PERCENTS= option
to specify the list of quantiles in this table. See the entry for the PERCENTS= option on page 266.
By default, the table lists observed and estimated quantiles for the 1, 5, 10, 25, 50, 75, 90, 95, and
99 percent of a fitted parametric distribution.

ODS Graphics (Experimental)

The UNIVARIATE procedure supports ODS Graphics on an experimental basis in SAS 9.2. To use
ODS Graphics, you must specify the ODS GRAPHICS statement prior to the PROC UNIVARIATE
statement. For more information about ODS Graphics, see Chapter 21, “Statistical Graphics Using
ODS” (SAS/STAT User’s Guide).

PROC UNIVARIATE assigns a name to each graph it creates by using ODS Graphics. You can use
these names to reference the graphs when you use ODS. The names are listed in Table 4.95.
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Table 4.95 ODS Graphics Produced by PROC UNIVARIATE

ODS Graph Name Plot Description Statement

CDFPlot cdf plot CDFPLOT
Histogram histogram HISTOGRAM
PPPlot P-P plot PPPLOT
ProbPlot probability plot PROBPLOT
QQPlot Q-Q plot QQPLOT

Computational Resources

Because the UNIVARIATE procedure computes quantile statistics, it requires additional memory to
store a copy of the data in memory. By default, the MEANS, SUMMARY, and TABULATE proce-
dures require less memory because they do not automatically compute quantiles. These procedures
also provide an option to use a new fixed-memory quantiles estimation method that is usually less
memory-intensive.

In the UNIVARIATE procedure, the only factor that limits the number of variables that you can
analyze is the computer resources that are available. The amount of temporary storage and CPU
time required depends on the statements and the options that you specify. To calculate the computer
resources the procedure needs, let

N be the number of observations in the data set
V be the number of variables in the VAR statement
Ui be the number of unique values for the i th variable

Then the minimum memory requirement in bytes to process all variables is M D 24
P

i Ui . If M
bytes are not available, PROC UNIVARIATE must process the data multiple times to compute all
the statistics. This reduces the minimum memory requirement to M D 24max.Ui /.

Using the ROUND= option reduces the number of unique values .Ui /, thereby reducing memory
requirements. The ROBUSTSCALE option requires 40Ui bytes of temporary storage.

Several factors affect the CPU time:

� The time to create V tree structures to internally store the observations is proportional to
NV log.N /.

� The time to compute moments and quantiles for the i th variable is proportional to Ui .

� The time to compute the NORMAL option test statistics is proportional to N .

� The time to compute the ROBUSTSCALE option test statistics is proportional to Ui log.Ui /.

� The time to compute the exact significance level of the sign rank statistic can increase when
the number of nonzero values is less than or equal to 20.
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Each of these factors has a different constant of proportionality. For additional information about
optimizing CPU performance and memory usage, see the SAS documentation for your operating
environment.

Examples: UNIVARIATE Procedure

Example 4.1: Computing Descriptive Statistics for Multiple Variables

This example computes univariate statistics for two variables. The following statements create the
data set BPressure, which contains the systolic (Systolic) and diastolic (Diastolic) blood pressure
readings for 22 patients:

data BPressure;
length PatientID $2;
input PatientID $ Systolic Diastolic @@;
datalines;

CK 120 50 SS 96 60 FR 100 70
CP 120 75 BL 140 90 ES 120 70
CP 165 110 JI 110 40 MC 119 66
FC 125 76 RW 133 60 KD 108 54
DS 110 50 JW 130 80 BH 120 65
JW 134 80 SB 118 76 NS 122 78
GS 122 70 AB 122 78 EC 112 62
HH 122 82
;
run;

The following statements produce descriptive statistics and quantiles for the variables Systolic and
Diastolic:

title ’Systolic and Diastolic Blood Pressure’;
ods select BasicMeasures Quantiles;
proc univariate data=BPressure;

var Systolic Diastolic;
run;

The ODS SELECT statement restricts the output, which is shown in Output 4.1.1, to the “BasicMea-
sures” and “Quantiles” tables; see the section “ODS Table Names” on page 374. You use the PROC
UNIVARIATE statement to request univariate statistics for the variables listed in the VAR state-
ment, which specifies the analysis variables and their order in the output. Formulas for computing
the statistics in the “BasicMeasures” table are provided in the section “Descriptive Statistics” on
page 323. The quantiles are calculated using Definition 5, which is the default definition; see the
section “Calculating Percentiles” on page 326.
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A sample program for this example, uniex01.sas, is available in the SAS Sample Library for Base
SAS software.

Output 4.1.1 Display Basic Measures and Quantiles

Systolic and Diastolic Blood Pressure

The UNIVARIATE Procedure
Variable: Systolic

Basic Statistical Measures

Location Variability

Mean 121.2727 Std Deviation 14.28346
Median 120.0000 Variance 204.01732
Mode 120.0000 Range 69.00000

Interquartile Range 13.00000

NOTE: The mode displayed is the smallest of 2 modes with a count of 4.

Quantiles (Definition 5)

Quantile Estimate

100% Max 165
99% 165
95% 140
90% 134
75% Q3 125
50% Median 120
25% Q1 112
10% 108
5% 100
1% 96
0% Min 96

Systolic and Diastolic Blood Pressure

The UNIVARIATE Procedure
Variable: Diastolic

Basic Statistical Measures

Location Variability

Mean 70.09091 Std Deviation 15.16547
Median 70.00000 Variance 229.99134
Mode 70.00000 Range 70.00000

Interquartile Range 18.00000
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Output 4.1.1 continued

Quantiles (Definition 5)

Quantile Estimate

100% Max 110
99% 110
95% 90
90% 82
75% Q3 78
50% Median 70
25% Q1 60
10% 50
5% 50
1% 40
0% Min 40

Example 4.2: Calculating Modes

An instructor is interested in calculating all the modes of the scores on a recent exam. The following
statements create a data set named Exam, which contains the exam scores in the variable Score:

data Exam;
label Score = ’Exam Score’;
input Score @@;
datalines;

81 97 78 99 77 81 84 86 86 97
85 86 94 76 75 42 91 90 88 86
97 97 89 69 72 82 83 81 80 81
;
run;

The following statements use the MODES option to request a table of all possible modes:

title ’Table of Modes for Exam Scores’;
ods select Modes;
proc univariate data=Exam modes;

var Score;
run;

The ODS SELECT statement restricts the output to the “Modes” table; see the section “ODS Table
Names” on page 374.
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Output 4.2.1 Table of Modes Display

Table of Modes for Exam Scores

The UNIVARIATE Procedure
Variable: Score (Exam Score)

Modes

Mode Count

81 4
86 4
97 4

By default, when the MODES option is used and there is more than one mode, the lowest mode is
displayed in the “BasicMeasures” table. The following statements illustrate the default behavior:

title ’Default Output’;
ods select BasicMeasures;
proc univariate data=Exam;

var Score;
run;

Output 4.2.2 Default Output (Without MODES Option)

Default Output

The UNIVARIATE Procedure
Variable: Score (Exam Score)

Basic Statistical Measures

Location Variability

Mean 83.66667 Std Deviation 11.08069
Median 84.50000 Variance 122.78161
Mode 81.00000 Range 57.00000

Interquartile Range 10.00000

NOTE: The mode displayed is the smallest of 3 modes with a count of 4.

The default output displays a mode of 81 and includes a note regarding the number of modes;
the modes 86 and 97 are not displayed. The ODS SELECT statement restricts the output to the
“BasicMeasures” table; see the section “ODS Table Names” on page 374.

A sample program for this example, uniex02.sas, is available in the SAS Sample Library for Base
SAS software.
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Example 4.3: Identifying Extreme Observations and Extreme Values

This example, which uses the data set BPressure introduced in Example 4.1, illustrates how to
produce a table of the extreme observations and a table of the extreme values in a data set. The
following statements generate the “Extreme Observations” tables for Systolic and Diastolic, which
enable you to identify the extreme observations for each variable:

title ’Extreme Blood Pressure Observations’;
ods select ExtremeObs;
proc univariate data=BPressure;

var Systolic Diastolic;
id PatientID;

run;

The ODS SELECT statement restricts the output to the “ExtremeObs” table; see the section “ODS
Table Names” on page 374. The ID statement requests that the extreme observations are to be
identified using the value of PatientID as well as the observation number. By default, the five lowest
and five highest observations are displayed. You can use the NEXTROBS= option to request a
different number of extreme observations.

Output 4.3.1 shows that the patient identified as ‘CP’ (Observation 7) has the highest values for
both Systolic and Diastolic. To visualize extreme observations, you can create histograms; see
Example 4.14.

Output 4.3.1 Blood Pressure Extreme Observations

Extreme Blood Pressure Observations

The UNIVARIATE Procedure
Variable: Systolic

Extreme Observations

---------Lowest--------- ---------Highest--------

Patient Patient
Value ID Obs Value ID Obs

96 SS 2 130 JW 14
100 FR 3 133 RW 11
108 KD 12 134 JW 16
110 DS 13 140 BL 5
110 JI 8 165 CP 7
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Output 4.3.1 continued

Extreme Blood Pressure Observations

The UNIVARIATE Procedure
Variable: Diastolic

Extreme Observations

---------Lowest--------- ---------Highest--------

Patient Patient
Value ID Obs Value ID Obs

40 JI 8 80 JW 14
50 DS 13 80 JW 16
50 CK 1 82 HH 22
54 KD 12 90 BL 5
60 RW 11 110 CP 7

The following statements generate the “Extreme Values” tables for Systolic and Diastolic, which
tabulate the tails of the distributions:

title ’Extreme Blood Pressure Values’;
ods select ExtremeValues;
proc univariate data=BPressure nextrval=5;

var Systolic Diastolic;
run;

The ODS SELECT statement restricts the output to the “ExtremeValues” table; see the section
“ODS Table Names” on page 374. The NEXTRVAL= option specifies the number of extreme
values at each end of the distribution to be shown in the tables in Output 4.3.2.

Output 4.3.2 shows that the values 78 and 80 occurred twice for Diastolic and the maximum of
Diastolic is 110. Note that Output 4.3.1 displays the value of 80 twice for Diastolic because there are
two observations with that value. In Output 4.3.2, the value 80 is only displayed once.

Output 4.3.2 Blood Pressure Extreme Values

Extreme Blood Pressure Values

The UNIVARIATE Procedure
Variable: Systolic

Extreme Values

---------Lowest-------- --------Highest--------

Order Value Freq Order Value Freq

1 96 1 11 130 1
2 100 1 12 133 1
3 108 1 13 134 1
4 110 2 14 140 1
5 112 1 15 165 1
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Output 4.3.2 continued

Extreme Blood Pressure Values

The UNIVARIATE Procedure
Variable: Diastolic

Extreme Values

---------Lowest-------- --------Highest--------

Order Value Freq Order Value Freq

1 40 1 11 78 2
2 50 2 12 80 2
3 54 1 13 82 1
4 60 2 14 90 1
5 62 1 15 110 1

A sample program for this example, uniex01.sas, is available in the SAS Sample Library for Base
SAS software.

Example 4.4: Creating a Frequency Table

An instructor is interested in creating a frequency table of score changes between a pair of tests
given in one of his college courses. The data set Score contains test scores for his students who
took a pretest and a posttest on the same material. The variable ScoreChange contains the difference
between the two test scores. The following statements create the data set:

data Score;
input Student $ PreTest PostTest @@;
label ScoreChange = ’Change in Test Scores’;
ScoreChange = PostTest - PreTest;
datalines;

Capalleti 94 91 Dubose 51 65
Engles 95 97 Grant 63 75
Krupski 80 75 Lundsford 92 55
Mcbane 75 78 Mullen 89 82
Nguyen 79 76 Patel 71 77
Si 75 70 Tanaka 87 73
;
run;

The following statements produce a frequency table for the variable ScoreChange:

title ’Analysis of Score Changes’;
ods select Frequencies;
proc univariate data=Score freq;

var ScoreChange;
run;
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The ODS SELECT statement restricts the output to the “Frequencies” table; see the section “ODS
Table Names” on page 374. The FREQ option on the PROC UNIVARIATE statement requests the
table of frequencies shown in Output 4.4.1.

Output 4.4.1 Table of Frequencies

Analysis of Score Changes

The UNIVARIATE Procedure
Variable: ScoreChange (Change in Test Scores)

Frequency Counts

Percents Percents Percents
Value Count Cell Cum Value Count Cell Cum Value Count Cell Cum

-37 1 8.3 8.3 -3 2 16.7 58.3 6 1 8.3 83.3
-14 1 8.3 16.7 2 1 8.3 66.7 12 1 8.3 91.7
-7 1 8.3 25.0 3 1 8.3 75.0 14 1 8.3 100.0
-5 2 16.7 41.7

From Output 4.4.1, the instructor sees that only score changes of �3 and �5 occurred more than
once.

A sample program for this example, uniex03.sas, is available in the SAS Sample Library for Base
SAS software.

Example 4.5: Creating Plots for Line Printer Output

The PLOT option in the PROC UNIVARIATE statement requests several basic plots for display in
line printer output. For more information about plots created by the PLOT option, see the section
“Creating Line Printer Plots” on page 335. This example illustrates the use of the PLOT option as
well as BY processing in PROC UNIVARIATE.

A researcher is analyzing a data set consisting of air pollution data from three different measurement
sites. The data set AirPoll, created by the following statements, contains the variables Site and Ozone,
which are the site number and ozone level, respectively.

data AirPoll (keep = Site Ozone);
label Site = ’Site Number’

Ozone = ’Ozone level (in ppb)’;
do i = 1 to 3;

input Site @@;
do j = 1 to 15;

input Ozone @@;
output;

end;
end;
datalines;

102 4 6 3 4 7 8 2 3 4 1 3 8 9 5 6
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134 5 3 6 2 1 2 4 3 2 4 6 4 6 3 1
137 8 9 7 8 6 7 6 7 9 8 9 8 7 8 5
;
run;

The following statements produce stem-and-leaf plots, box plots, and normal probability plots for
each site in the AirPoll data set:

ods select Plots SSPlots;
proc univariate data=AirPoll plot;

by Site;
var Ozone;

run;

The PLOT option produces a stem-and-leaf plot, a box plot, and a normal probability plot for the
Ozone variable at each site. Because the BY statement is used, a side-by-side box plot is also created
to compare the ozone levels across sites. Note that AirPoll is sorted by Site; in general, the data set
should be sorted by the BY variable by using the SORT procedure. The ODS SELECT statement
restricts the output to the “Plots” and “SSPlots” tables; see the section “ODS Table Names” on
page 374. Optionally, you can specify the PLOTSIZE=n option to control the approximate number
of rows (between 8 and the page size) that the plots occupy.

Output 4.5.1 through Output 4.5.3 show the plots produced for each BY group. Output 4.5.4 shows
the side-by-side box plot for comparing Ozone values across sites.
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Output 4.5.1 Ozone Plots for BY Group Site = 102

Analysis of Score Changes

------------------------------- Site Number=102 --------------------------------

The UNIVARIATE Procedure
Variable: Ozone (Ozone level (in ppb))

Stem Leaf # Boxplot
9 0 1 |
8 00 2 |
7 0 1 +-----+
6 00 2 | |
5 0 1 | |
4 000 3 *--+--*
3 000 3 +-----+
2 0 1 |
1 0 1 |
----+----+----+----+

Normal Probability Plot
9.5+ *++++

| * * ++++
| * +++++
| * *+++

5.5+ +*++
| **+*
| * *+*+
| *++++

1.5+ *++++
+----+----+----+----+----+----+----+----+----+----+

-2 -1 0 +1 +2
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Output 4.5.2 Ozone Plots for BY Group Site = 134

Analysis of Score Changes

------------------------------- Site Number=134 --------------------------------

The UNIVARIATE Procedure
Variable: Ozone (Ozone level (in ppb))

Stem Leaf # Boxplot
6 000 3 |
5 0 1 +-----+
4 000 3 | |
3 000 3 *--+--*
2 000 3 +-----+
1 00 2 |
----+----+----+----+

Normal Probability Plot
6.5+ * * ++*+++

| * ++++++
| **+*+++
| **+*+++
| *+*+*++

1.5+ * ++*+++
+----+----+----+----+----+----+----+----+----+----+

-2 -1 0 +1 +2
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Output 4.5.3 Ozone Plots for BY Group Site = 137

Analysis of Score Changes

------------------------------- Site Number=137 --------------------------------

The UNIVARIATE Procedure
Variable: Ozone (Ozone level (in ppb))

Stem Leaf # Boxplot
9 000 3 |
8 00000 5 +-----+
7 0000 4 +--+--+
6 00 2 |
5 0 1 0
----+----+----+----+

Normal Probability Plot
9.5+ * *++++*++++

| * ** *+*+++++
7.5+ * * **++++++

| *++*+++++
5.5+ +++*++++

+----+----+----+----+----+----+----+----+----+----+
-2 -1 0 +1 +2
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Output 4.5.4 Ozone Side-by-Side Boxplot for All BY Groups

Analysis of Score Changes

The UNIVARIATE Procedure
Variable: Ozone (Ozone level (in ppb))

Schematic Plots

|
10 +

|
| | |
| | |

8 + | *-----*
| | | + |
| +-----+ +-----+
| | | |

6 + | | | |
| | | |
| | + | +-----+ 0
| | | | |

4 + *-----* | |
| | | | + |
| +-----+ *-----*
| | | |

2 + | +-----+
| | |
| | |
|

0 +
------------+-----------+-----------+-----------

Analysis of Score Changes

The UNIVARIATE Procedure
Variable: Ozone (Ozone level (in ppb))

Schematic Plots

Site 102 134 137

Note that you can use the PROBPLOT statement with the NORMAL option to produce high-
resolution normal probability plots; see the section “Modeling a Data Distribution” on page 227.

Note that you can use the BOXPLOT procedure to produce box plots that use high-resolution graph-
ics. See Chapter 24, “The BOXPLOT Procedure” (SAS/STAT User’s Guide).

A sample program for this example, uniex04.sas, is available in the SAS Sample Library for Base
SAS software.
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Example 4.6: Analyzing a Data Set With a FREQ Variable

This example illustrates how to use PROC UNIVARIATE to analyze a data set with a variable that
contains the frequency of each observation. The data set Speeding contains data on the number of
cars pulled over for speeding on a stretch of highway with a 65 mile per hour speed limit. Speed
is the speed at which the cars were traveling, and Number is the number of cars at each speed. The
following statements create the data set:

data Speeding;
label Speed = ’Speed (in miles per hour)’;
do Speed = 66 to 85;

input Number @@;
output;

end;
datalines;

2 3 2 1 3 6 8 9 10 13
12 14 6 2 0 0 1 1 0 1
;
run;

The following statements create a table of moments for the variable Speed:

title ’Analysis of Speeding Data’;
ods select Moments;
proc univariate data=Speeding;

freq Number;
var Speed;

run;

The ODS SELECT statement restricts the output, which is shown in Output 4.6.1, to the “Moments”
table; see the section “ODS Table Names” on page 374. The FREQ statement specifies that the value
of the variable Number represents the frequency of each observation.

For the formulas used to compute these moments, see the section “Descriptive Statistics” on
page 323. A sample program for this example, uniex05.sas, is available in the SAS Sample Li-
brary for Base SAS software.
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Output 4.6.1 Table of Moments

Analysis of Speeding Data

The UNIVARIATE Procedure
Variable: Speed (Speed (in miles per hour))

Freq: Number

Moments

N 94 Sum Weights 94
Mean 74.3404255 Sum Observations 6988
Std Deviation 3.44403237 Variance 11.861359
Skewness -0.1275543 Kurtosis 0.92002287
Uncorrected SS 520594 Corrected SS 1103.10638
Coeff Variation 4.63278538 Std Error Mean 0.35522482

Example 4.7: Saving Summary Statistics in an OUT= Output Data Set

This example illustrates how to save summary statistics in an output data set. The following state-
ments create a data set named Belts, which contains the breaking strengths (Strength) and widths
(Width) of a sample of 50 automotive seat belts:

data Belts;
label Strength = ’Breaking Strength (lb/in)’

Width = ’Width in Inches’;
input Strength Width @@;
datalines;

1243.51 3.036 1221.95 2.995 1131.67 2.983 1129.70 3.019
1198.08 3.106 1273.31 2.947 1250.24 3.018 1225.47 2.980
1126.78 2.965 1174.62 3.033 1250.79 2.941 1216.75 3.037
1285.30 2.893 1214.14 3.035 1270.24 2.957 1249.55 2.958
1166.02 3.067 1278.85 3.037 1280.74 2.984 1201.96 3.002
1101.73 2.961 1165.79 3.075 1186.19 3.058 1124.46 2.929
1213.62 2.984 1213.93 3.029 1289.59 2.956 1208.27 3.029
1247.48 3.027 1284.34 3.073 1209.09 3.004 1146.78 3.061
1224.03 2.915 1200.43 2.974 1183.42 3.033 1195.66 2.995
1258.31 2.958 1136.05 3.022 1177.44 3.090 1246.13 3.022
1183.67 3.045 1206.50 3.024 1195.69 3.005 1223.49 2.971
1147.47 2.944 1171.76 3.005 1207.28 3.065 1131.33 2.984
1215.92 3.003 1202.17 3.058
;
run;
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The following statements produce two output data sets containing summary statistics:

proc univariate data=Belts noprint;
var Strength Width;
output out=Means mean=StrengthMean WidthMean;
output out=StrengthStats mean=StrengthMean std=StrengthSD

min=StrengthMin max=StrengthMax;
run;

When you specify an OUTPUT statement, you must also specify a VAR statement. You can use
multiple OUTPUT statements with a single procedure statement. Each OUTPUT statement creates
a new data set with the name specified by the OUT= option. In this example, two data sets, Means
and StrengthStats, are created. See Output 4.7.1 for a listing of Means and Output 4.7.2 for a listing
of StrengthStats.

Output 4.7.1 Listing of Output Data Set Means

Analysis of Speeding Data

Strength Width
Obs Mean Mean

1 1205.75 3.00584

Output 4.7.2 Listing of Output Data Set StrengthStats

Analysis of Speeding Data

Strength Strength Strength Strength
Obs Mean SD Max Min

1 1205.75 48.3290 1289.59 1101.73

Summary statistics are saved in an output data set by specifying keyword=names after the OUT=
option. In the preceding statements, the first OUTPUT statement specifies the keyword MEAN
followed by the names StrengthMean and WidthMean. The second OUTPUT statement specifies the
keywords MEAN, STD, MAX, and MIN, for which the names StrengthMean, StrengthSD, Strength-
Max, and StrengthMin are given.

The keyword specifies the statistic to be saved in the output data set, and the names determine the
names for the new variables. The first name listed after a keyword contains that statistic for the first
variable listed in the VAR statement; the second name contains that statistic for the second variable
in the VAR statement, and so on.

The data set Means contains the mean of Strength in a variable named StrengthMean and the mean
of Width in a variable named WidthMean. The data set StrengthStats contains the mean, standard de-
viation, maximum value, and minimum value of Strength in the variables StrengthMean, StrengthSD,
StrengthMax, and StrengthMin, respectively.
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See the section “OUT= Output Data Set in the OUTPUT Statement” on page 368 for more infor-
mation about OUT= output data sets.

A sample program for this example, uniex06.sas, is available in the SAS Sample Library for Base
SAS software.

Example 4.8: Saving Percentiles in an Output Data Set

This example, which uses the Belts data set from the previous example, illustrates how to save
percentiles in an output data set. The UNIVARIATE procedure automatically computes the 1st, 5th,
10th, 25th, 75th, 90th, 95th, and 99th percentiles for each variable. You can save these percentiles in
an output data set by specifying the appropriate keywords. For example, the following statements
create an output data set named PctlStrength, which contains the 5th and 95th percentiles of the
variable Strength:

proc univariate data=Belts noprint;
var Strength Width;
output out=PctlStrength p5=p5str p95=p95str;

run;

The output data set PctlStrength is listed in Output 4.8.1.

Output 4.8.1 Listing of Output Data Set PctlStrength

Analysis of Speeding Data

Obs p95str p5str

1 1284.34 1126.78

You can use the PCTLPTS=, PCTLPRE=, and PCTLNAME= options to save percentiles not auto-
matically computed by the UNIVARIATE procedure. For example, the following statements create
an output data set named Pctls, which contains the 20th and 40th percentiles of the variables Strength
and Width:

proc univariate data=Belts noprint;
var Strength Width;
output out=Pctls pctlpts = 20 40

pctlpre = Strength Width
pctlname = pct20 pct40;

run;

The PCTLPTS= option specifies the percentiles to compute (in this case, the 20th and 40th per-
centiles). The PCTLPRE= and PCTLNAME= options build the names for the variables containing
the percentiles. The PCTLPRE= option gives prefixes for the new variables, and the PCTLNAME=
option gives a suffix to add to the prefix. When you use the PCTLPTS= specification, you must also
use the PCTLPRE= specification.



Example 4.9: Computing Confidence Limits for the Mean, Standard Deviation, and Variance F 395

The OUTPUT statement saves the 20th and 40th percentiles of Strength and Width in the variables
Strengthpct20, Widthpct20, Strengthpct40, and Weightpct40. The output data set Pctls is listed in
Output 4.8.2.

Output 4.8.2 Listing of Output Data Set Pctls

Analysis of Speeding Data

Obs Strengthpct20 Strengthpct40 Widthpct20 Widthpct40

1 1165.91 1199.26 2.9595 2.995

A sample program for this example, uniex06.sas, is available in the SAS Sample Library for Base
SAS software.

Example 4.9: Computing Confidence Limits for the Mean, Standard
Deviation, and Variance

This example illustrates how to compute confidence limits for the mean, standard deviation, and
variance of a population. A researcher is studying the heights of a certain population of adult
females. She has collected a random sample of heights of 75 females, which are saved in the data
set Heights:

data Heights;
label Height = ’Height (in)’;
input Height @@;
datalines;

64.1 60.9 64.1 64.7 66.7 65.0 63.7 67.4 64.9 63.7
64.0 67.5 62.8 63.9 65.9 62.3 64.1 60.6 68.6 68.6
63.7 63.0 64.7 68.2 66.7 62.8 64.0 64.1 62.1 62.9
62.7 60.9 61.6 64.6 65.7 66.6 66.7 66.0 68.5 64.4
60.5 63.0 60.0 61.6 64.3 60.2 63.5 64.7 66.0 65.1
63.6 62.0 63.6 65.8 66.0 65.4 63.5 66.3 66.2 67.5
65.8 63.1 65.8 64.4 64.0 64.9 65.7 61.0 64.1 65.5
68.6 66.6 65.7 65.1 70.0
;
run;

The following statements produce confidence limits for the mean, standard deviation, and variance
of the population of heights:

title ’Analysis of Female Heights’;
ods select BasicIntervals;
proc univariate data=Heights cibasic;

var Height;
run;
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The CIBASIC option requests confidence limits for the mean, standard deviation, and variance.
For example, Output 4.9.1 shows that the 95% confidence interval for the population mean is
.64:06; 65:07/. The ODS SELECT statement restricts the output to the “BasicIntervals” table; see
the section “ODS Table Names” on page 374.

The confidence limits in Output 4.9.1 assume that the heights are normally distributed, so you should
check this assumption before using these confidence limits. See the section “Shapiro-Wilk Statistic”
on page 355 for information about the Shapiro-Wilk test for normality in PROC UNIVARIATE. See
Example 4.19 for an example that uses the test for normality.

Output 4.9.1 Default 95% Confidence Limits

Analysis of Female Heights

The UNIVARIATE Procedure
Variable: Height (Height (in))

Basic Confidence Limits Assuming Normality

Parameter Estimate 95% Confidence Limits

Mean 64.56667 64.06302 65.07031
Std Deviation 2.18900 1.88608 2.60874
Variance 4.79171 3.55731 6.80552

By default, the confidence limits produced by the CIBASIC option produce 95% confidence inter-
vals. You can request different level confidence limits by using the ALPHA= option in parentheses
after the CIBASIC option. The following statements produce 90% confidence limits:

title ’Analysis of Female Heights’;
ods select BasicIntervals;
proc univariate data=Heights cibasic(alpha=.1);

var Height;
run;

The 90% confidence limits are displayed in Output 4.9.2.

Output 4.9.2 90% Confidence Limits

Analysis of Female Heights

The UNIVARIATE Procedure
Variable: Height (Height (in))

Basic Confidence Limits Assuming Normality

Parameter Estimate 90% Confidence Limits

Mean 64.56667 64.14564 64.98770
Std Deviation 2.18900 1.93114 2.53474
Variance 4.79171 3.72929 6.42492
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For the formulas used to compute these limits, see the section “Confidence Limits for Parameters
of the Normal Distribution” on page 331.

A sample program for this example, uniex07.sas, is available in the SAS Sample Library for Base
SAS software.

Example 4.10: Computing Confidence Limits for Quantiles and
Percentiles

This example, which is a continuation of Example 4.9, illustrates how to compute confidence limits
for quantiles and percentiles. A second researcher is more interested in summarizing the heights
with quantiles than the mean and standard deviation. He is also interested in computing 90% confi-
dence intervals for the quantiles. The following statements produce estimated quantiles and confi-
dence limits for the population quantiles:

title ’Analysis of Female Heights’;
ods select Quantiles;
proc univariate data=Heights ciquantnormal(alpha=.1);

var Height;
run;

The ODS SELECT statement restricts the output to the “Quantiles” table; see the section “ODS
Table Names” on page 374. The CIQUANTNORMAL option produces confidence limits for the
quantiles. As noted in Output 4.10.1, these limits assume that the data are normally distributed.
You should check this assumption before using these confidence limits. See the section “Shapiro-
Wilk Statistic” on page 355 for information about the Shapiro-Wilk test for normality in PROC
UNIVARIATE; see Example 4.19 for an example that uses the test for normality.

Output 4.10.1 Normal-Based Quantile Confidence Limits

Analysis of Female Heights

The UNIVARIATE Procedure
Variable: Height (Height (in))

Quantiles (Definition 5)

90% Confidence Limits
Quantile Estimate Assuming Normality

100% Max 70.0
99% 70.0 68.94553 70.58228
95% 68.6 67.59184 68.89311
90% 67.5 66.85981 68.00273
75% Q3 66.0 65.60757 66.54262
50% Median 64.4 64.14564 64.98770
25% Q1 63.1 62.59071 63.52576
10% 61.6 61.13060 62.27352
5% 60.6 60.24022 61.54149
1% 60.0 58.55106 60.18781
0% Min 60.0
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It is also possible to use PROC UNIVARIATE to compute confidence limits for quantiles without
assuming normality. The following statements use the CIQUANTDF option to request distribution-
free confidence limits for the quantiles of the population of heights:

title ’Analysis of Female Heights’;
ods select Quantiles;
proc univariate data=Heights ciquantdf(alpha=.1);

var Height;
run;

The distribution-free confidence limits are shown in Output 4.10.2.

Output 4.10.2 Distribution-Free Quantile Confidence Limits

Analysis of Female Heights

The UNIVARIATE Procedure
Variable: Height (Height (in))

Quantiles (Definition 5)

Quantile Estimate

100% Max 70.0
99% 70.0
95% 68.6
90% 67.5
75% Q3 66.0
50% Median 64.4
25% Q1 63.1
10% 61.6
5% 60.6
1% 60.0
0% Min 60.0

Quantiles (Definition 5)

90% Confidence Limits -------Order Statistics-------
Quantile Distribution Free LCL Rank UCL Rank Coverage

100% Max
99% 68.6 70.0 73 75 48.97
95% 67.5 70.0 68 75 94.50
90% 66.6 68.6 63 72 91.53
75% Q3 65.7 66.6 50 63 91.77
50% Median 64.1 65.1 31 46 91.54
25% Q1 62.7 63.7 13 26 91.77
10% 60.6 62.7 4 13 91.53
5% 60.0 61.6 1 8 94.50
1% 60.0 60.5 1 3 48.97
0% Min

The table in Output 4.10.2 includes the ranks from which the confidence limits are computed. For
more information about how these confidence limits are calculated, see the section “Confidence
Limits for Percentiles” on page 327. Note that confidence limits for quantiles are not produced
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when the WEIGHT statement is used.

A sample program for this example, uniex07.sas, is available in the SAS Sample Library for Base
SAS software.

Example 4.11: Computing Robust Estimates

This example illustrates how you can use the UNIVARIATE procedure to compute robust estimates
of location and scale. The following statements compute these estimates for the variable Systolic in
the data set BPressure, which was introduced in Example 4.1:

title ’Robust Estimates for Blood Pressure Data’;
ods select TrimmedMeans WinsorizedMeans RobustScale;
proc univariate data=BPressure trimmed=1 .1

winsorized=.1 robustscale;
var Systolic;

run;

The ODS SELECT statement restricts the output to the “TrimmedMeans,” “WinsorizedMeans,”
and “RobustScale” tables; see the section “ODS Table Names” on page 374. The TRIMMED=
option computes two trimmed means, the first after removing one observation and the second after
removing 10% of the observations. If the value of TRIMMED= is greater than or equal to one, it is
interpreted as the number of observations to be trimmed. The WINSORIZED= option computes a
Winsorized mean that replaces three observations from the tails with the next closest observations.
(Three observations are replaced because np D .22/.:1/ D 2:2, and three is the smallest integer
greater than 2.2.) The trimmed and Winsorized means for Systolic are displayed in Output 4.11.1.

Output 4.11.1 Computation of Trimmed and Winsorized Means

Robust Estimates for Blood Pressure Data

The UNIVARIATE Procedure
Variable: Systolic

Trimmed Means

Percent Number Std Error
Trimmed Trimmed Trimmed Trimmed 95% Confidence
in Tail in Tail Mean Mean Limits DF

4.55 1 120.3500 2.573536 114.9635 125.7365 19
13.64 3 120.3125 2.395387 115.2069 125.4181 15

Trimmed Means

Percent
Trimmed t for H0:
in Tail Mu0=0.00 Pr > |t|

4.55 46.76446 <.0001
13.64 50.22675 <.0001
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Output 4.11.1 continued

Winsorized Means

Percent Number Std Error
Winsorized Winsorized Winsorized Winsorized 95% Confidence

in Tail in Tail Mean Mean Limits DF

13.64 3 120.6364 2.417065 115.4845 125.7882 15

Winsorized Means

Percent
Winsorized t for H0:

in Tail Mu0=0.00 Pr > |t|

13.64 49.91027 <.0001

Output 4.11.1 shows the trimmed mean for Systolic is 120.35 after one observation has been
trimmed, and 120.31 after 3 observations are trimmed. The Winsorized mean for Systolic is 120.64.
For details on trimmed and Winsorized means, see the section “Robust Estimators” on page 331.
The trimmed means can be compared with the means shown in Output 4.1.1 (from Example 4.1),
which displays the mean for Systolic as 121.273.

The ROBUSTSCALE option requests a table, displayed in Output 4.11.2, which includes the in-
terquartile range, Gini’s mean difference, the median absolute deviation about the median, Qn, and
Sn.

Output 4.11.2 shows the robust estimates of scale for Systolic. For instance, the interquartile range is
13. The estimates of � range from 9.54 to 13.32. See the section “Robust Estimators” on page 331.

A sample program for this example, uniex01.sas, is available in the SAS Sample Library for Base
SAS software.

Output 4.11.2 Computation of Robust Estimates of Scale

Robust Measures of Scale

Estimate
Measure Value of Sigma

Interquartile Range 13.00000 9.63691
Gini’s Mean Difference 15.03030 13.32026
MAD 6.50000 9.63690
Sn 9.54080 9.54080
Qn 13.33140 11.36786
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Example 4.12: Testing for Location

This example, which is a continuation of Example 4.9, illustrates how to carry out three tests for
location: the Student’s t test, the sign test, and the Wilcoxon signed rank test. These tests are
discussed in the section “Tests for Location” on page 329.

The following statements demonstrate the tests for location by using the Heights data set introduced
in Example 4.9. Because the data consists of adult female heights, the researchers are not interested
in testing whether the mean of the population is equal to zero inches, which is the default �0

value. Instead, they are interested in testing whether the mean is equal to 66 inches. The following
statements test the null hypothesis H0W�0 D 66:

title ’Analysis of Female Height Data’;
ods select TestsForLocation LocationCounts;
proc univariate data=Heights mu0=66 loccount;

var Height;
run;

The ODS SELECT statement restricts the output to the “TestsForLocation” and “LocationCounts”
tables; see the section “ODS Table Names” on page 374. The MU0= option specifies the null
hypothesis value of �0 for the tests for location; by default, �0 D 0. The LOCCOUNT option
produces the table of the number of observations greater than, not equal to, and less than 66 inches.

Output 4.12.1 contains the results of the tests for location. All three tests are highly significant,
causing the researchers to reject the hypothesis that the mean is 66 inches.

A sample program for this example, uniex07.sas, is available in the SAS Sample Library for Base
SAS software.

Output 4.12.1 Tests for Location with MU0=66 and LOCCOUNT

Analysis of Female Height Data

The UNIVARIATE Procedure
Variable: Height (Height (in))

Tests for Location: Mu0=66

Test -Statistic- -----p Value------

Student’s t t -5.67065 Pr > |t| <.0001
Sign M -20 Pr >= |M| <.0001
Signed Rank S -849 Pr >= |S| <.0001

Location Counts: Mu0=66.00

Count Value

Num Obs > Mu0 16
Num Obs ^= Mu0 72
Num Obs < Mu0 56
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Example 4.13: Performing a Sign Test Using Paired Data

This example demonstrates a sign test for paired data, which is a specific application of the tests for
location discussed in Example 4.12.

The instructor from Example 4.4 is now interested in performing a sign test for the pairs of test
scores in his college course. The following statements request basic statistical measures and tests
for location:

title ’Test Scores for a College Course’;
ods select BasicMeasures TestsForLocation;
proc univariate data=Score;

var ScoreChange;
run;

The ODS SELECT statement restricts the output to the “BasicMeasures” and “TestsForLocation”
tables; see the section “ODS Table Names” on page 374. The instructor is not willing to assume that
the ScoreChange variable is normal or even symmetric, so he decides to examine the sign test. The
large p-value (0.7744) of the sign test provides insufficient evidence of a difference in test score
medians.

Output 4.13.1 Sign Test for ScoreChange

Test Scores for a College Course

The UNIVARIATE Procedure
Variable: ScoreChange (Change in Test Scores)

Basic Statistical Measures

Location Variability

Mean -3.08333 Std Deviation 13.33797
Median -3.00000 Variance 177.90152
Mode -5.00000 Range 51.00000

Interquartile Range 10.50000

NOTE: The mode displayed is the smallest of 2 modes with a count of 2.

Tests for Location: Mu0=0

Test -Statistic- -----p Value------

Student’s t t -0.80079 Pr > |t| 0.4402
Sign M -1 Pr >= |M| 0.7744
Signed Rank S -8.5 Pr >= |S| 0.5278

A sample program for this example, uniex03.sas, is available in the SAS Sample Library for Base
SAS software.
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Example 4.14: Creating a Histogram

This example illustrates how to create a histogram. A semiconductor manufacturer produces printed
circuit boards that are sampled to determine the thickness of their copper plating. The following
statements create a data set named Trans, which contains the plating thicknesses (Thick) of 100
boards:

data Trans;
input Thick @@;
label Thick = ’Plating Thickness (mils)’;
datalines;

3.468 3.428 3.509 3.516 3.461 3.492 3.478 3.556 3.482 3.512
3.490 3.467 3.498 3.519 3.504 3.469 3.497 3.495 3.518 3.523
3.458 3.478 3.443 3.500 3.449 3.525 3.461 3.489 3.514 3.470
3.561 3.506 3.444 3.479 3.524 3.531 3.501 3.495 3.443 3.458
3.481 3.497 3.461 3.513 3.528 3.496 3.533 3.450 3.516 3.476
3.512 3.550 3.441 3.541 3.569 3.531 3.468 3.564 3.522 3.520
3.505 3.523 3.475 3.470 3.457 3.536 3.528 3.477 3.536 3.491
3.510 3.461 3.431 3.502 3.491 3.506 3.439 3.513 3.496 3.539
3.469 3.481 3.515 3.535 3.460 3.575 3.488 3.515 3.484 3.482
3.517 3.483 3.467 3.467 3.502 3.471 3.516 3.474 3.500 3.466
;
run;

The following statements create the histogram shown in Output 4.14.1.

title ’Analysis of Plating Thickness’;
proc univariate data=Trans noprint;

histogram Thick;
run;

The NOPRINT option in the PROC UNIVARIATE statement suppresses tables of summary statis-
tics for the variable Thick that would be displayed by default. A histogram is created for each
variable listed in the HISTOGRAM statement.
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Output 4.14.1 Histogram for Plating Thickness

A sample program for this example, uniex08.sas, is available in the SAS Sample Library for Base
SAS software.
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Example 4.15: Creating a One-Way Comparative Histogram

This example illustrates how to create a comparative histogram. The effective channel length (in
microns) is measured for 1225 field effect transistors. The channel lengths (Length) are stored in a
data set named Channel, which is partially listed in Output 4.15.1:

Output 4.15.1 Partial Listing of Data Set Channel

The Data Set Channel

Lot Length

Lot 1 0.91
. .

Lot 1 1.17
Lot 2 1.47
. .

Lot 2 1.39
Lot 3 2.04
. .

Lot 3 1.91

The following statements request a histogram of Length ignoring the lot source:

title ’Histogram of Length Ignoring Lot Source’;
proc univariate data=Channel noprint;

histogram Length;
run;

The resulting histogram is shown in Output 4.15.2.
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Output 4.15.2 Histogram for Length Ignoring Lot Source

To investigate whether the peaks (modes) in Output 4.15.2 are related to the lot source, you can
create a comparative histogram by using Lot as a classification variable. The following statements
create the histogram shown in Output 4.15.3:

title ’Comparative Analysis of Lot Source’;
proc univariate data=Channel noprint;

class Lot;
histogram Length / nrows = 3;

run;

The CLASS statement requests comparisons for each level (distinct value) of the classification
variable Lot. The HISTOGRAM statement requests a comparative histogram for the variable Length.
The NROWS= option specifies the number of rows per panel in the comparative histogram. By
default, comparative histograms are displayed in two rows per panel.
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Output 4.15.3 Comparison by Lot Source

Output 4.15.3 reveals that the distributions of Length are similarly distributed except for shifts in
mean.

A sample program for this example, uniex09.sas, is available in the SAS Sample Library for Base
SAS software.

Example 4.16: Creating a Two-Way Comparative Histogram

This example illustrates how to create a two-way comparative histogram. Two suppliers (A and
B) provide disk drives for a computer manufacturer. The manufacturer measures the disk drive
opening width to determine whether there has been a change in variability from 2002 to 2003 for
each supplier.
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The following statements save the measurements in a data set named Disk. There are two classifi-
cation variables, Supplier and Year, and a user-defined format is associated with Year.

proc format ;
value mytime 1 = ’2002’ 2 = ’2003’;

data Disk;
input @1 Supplier $10. Year Width;
label Width = ’Opening Width (inches)’;
format Year mytime.;

datalines;
Supplier A 1 1.8932

. . .
Supplier B 1 1.8986
Supplier A 2 1.8978

. . .
Supplier B 2 1.8997
;

The following statements create the comparative histogram in Output 4.16.1:
title ’Results of Supplier Training Program’;
proc univariate data=Disk noprint;

class Supplier Year / keylevel = (’Supplier A’ ’2003’);
histogram Width / intertile = 1.0

vaxis = 0 10 20 30
ncols = 2
nrows = 2;

run;

The KEYLEVEL= option specifies the key cell as the cell for which Supplier is equal to ‘SUPPLIER
A’ and Year is equal to ‘2003.’ This cell determines the binning for the other cells, and the columns
are arranged so that this cell is displayed in the upper left corner. Without the KEYLEVEL= option,
the default key cell would be the cell for which Supplier is equal to ‘SUPPLIER A’ and Year is equal
to ‘2002’; the column labeled ‘2002’ would be displayed to the left of the column labeled ‘2003.’

The VAXIS= option specifies the tick mark labels for the vertical axis. The NROWS=2 and
NCOLS=2 options specify a 2 � 2 arrangement for the tiles. Output 4.16.1 provides evidence
that both suppliers have reduced variability from 2002 to 2003.



Example 4.17: Adding Insets with Descriptive Statistics F 409

Output 4.16.1 Two-Way Comparative Histogram

A sample program for this example, uniex10.sas, is available in the SAS Sample Library for Base
SAS software.

Example 4.17: Adding Insets with Descriptive Statistics

This example illustrates how to add insets with descriptive statistics to a comparative histogram;
see Output 4.17.1. Three similar machines are used to attach a part to an assembly. One hundred
assemblies are sampled from the output of each machine, and a part position is measured in mil-
limeters. The following statements create the data set Machines, which contains the measurements
in a variable named Position:
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data Machines;
input Position @@;
label Position = ’Position in Millimeters’;
if (_n_ <= 100) then Machine = ’Machine 1’;
else if (_n_ <= 200) then Machine = ’Machine 2’;
else Machine = ’Machine 3’;
datalines;

-0.17 -0.19 -0.24 -0.24 -0.12 0.07 -0.61 0.22 1.91 -0.08
-0.59 0.05 -0.38 0.82 -0.14 0.32 0.12 -0.02 0.26 0.19

... more lines ...

0.79 0.66 0.22 0.71 0.53 0.57 0.90 0.48 1.17 1.03
;
run;

The following statements create the comparative histogram in Output 4.17.1:

title ’Machine Comparison Study’;
proc univariate data=Machines noprint;

class Machine;
histogram Position / nrows = 3

intertile = 1
midpoints = -1.2 to 2.2 by 0.1
vaxis = 0 to 16 by 4;

inset mean std="Std Dev" / pos = ne format = 6.3;
run;

The INSET statement requests insets that contain the sample mean and standard deviation for each
machine in the corresponding tile. The MIDPOINTS= option specifies the midpoints of the his-
togram bins.
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Output 4.17.1 Comparative Histograms

Output 4.17.1 shows that the average position for Machines 2 and 3 are similar and that the spread
for Machine 1 is much larger than for Machines 2 and 3.

A sample program for this example, uniex11.sas, is available in the SAS Sample Library for Base
SAS software.
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Example 4.18: Binning a Histogram

This example, which is a continuation of Example 4.14, demonstrates various methods for binning
a histogram. This example also illustrates how to save bin percentages in an OUTHISTOGRAM=
data set.

The manufacturer from Example 4.14 now wants to enhance the histogram by using the END-
POINTS= option to change the endpoints of the bins. The following statements create a histogram
with bins that have end points 3.425 and 3.6 and width 0.025:

title ’Enhancing a Histogram’;
ods select HistogramBins MyHist;
proc univariate data=Trans;

histogram Thick / midpercents name=’MyHist’
endpoints = 3.425 to 3.6 by .025;

run;

The ODS SELECT statement restricts the output to the “HistogramBins” table and the “MyHist”
histogram; see the section “ODS Table Names” on page 374. The ENDPOINTS= option specifies
the endpoints for the histogram bins. By default, if the ENDPOINTS= option is not specified, the
automatic binning algorithm computes values for the midpoints of the bins. The MIDPERCENTS
option requests a table of the midpoints of each histogram bin and the percent of the observa-
tions that fall in each bin. This table is displayed in Output 4.18.1; the histogram is displayed in
Output 4.18.2. The NAME= option specifies a name for the histogram that can be used in the ODS
SELECT statement.

Output 4.18.1 Table of Bin Percentages Requested with MIDPERCENTS Option

Enhancing a Histogram

The UNIVARIATE Procedure

Histogram Bins for Thick

Bin
Minimum Observed
Point Percent

3.425 8.000
3.450 21.000
3.475 25.000
3.500 29.000
3.525 11.000
3.550 5.000
3.575 1.000
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Output 4.18.2 Histogram with ENDPOINTS= Option

The MIDPOINTS= option is an alternative to the ENDPOINTS= option for specifying histogram
bins. The following statements create a histogram, shown in Output 4.18.3, which is similar to the
one in Output 4.18.2:

title ’Enhancing a Histogram’;
proc univariate data=Trans noprint;

histogram Thick / midpoints = 3.4375 to 3.5875 by .025
rtinclude
outhistogram = OutMdpts;

run;

Output 4.18.3 differs from Output 4.18.2 in two ways:

� The MIDPOINTS= option specifies the bins for the histogram by specifying the midpoints
of the bins instead of specifying the endpoints. Note that the histogram displays midpoints
instead of endpoints.

� The RTINCLUDE option requests that the right endpoint of each bin be included in the his-
togram interval instead of the default, which is to include the left endpoint in the interval.
This changes the histogram slightly from Output 4.18.2. Six observations have a thickness
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equal to an endpoint of an interval. For instance, there is one observation with a thickness of
3.45 mils. In Output 4.18.3, this observation is included in the bin from 3.425 to 3.45.

Output 4.18.3 Histogram with MIDPOINTS= and RTINCLUDE Options

The OUTHISTOGRAM= option produces an output data set named OutMdpts, displayed in
Output 4.18.4. This data set provides information about the bins of the histogram. For more in-
formation, see the section “OUTHISTOGRAM= Output Data Set” on page 370.

Output 4.18.4 The OUTHISTOGRAM= Data Set OutMdpts

Enhancing a Histogram

Obs _VAR_ _MIDPT_ _OBSPCT_ _COUNT_

1 Thick 3.4375 9 9
2 Thick 3.4625 21 21
3 Thick 3.4875 26 26
4 Thick 3.5125 28 28
5 Thick 3.5375 11 11
6 Thick 3.5625 5 5
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A sample program for this example, uniex08.sas, is available in the SAS Sample Library for Base
SAS software.

Example 4.19: Adding a Normal Curve to a Histogram

This example is a continuation of Example 4.14. The following statements fit a normal distribution
to the thickness measurements in the Trans data set and superimpose the fitted density curve on the
histogram:

title ’Analysis of Plating Thickness’;
ods select ParameterEstimates GoodnessOfFit FitQuantiles Bins MyPlot;
proc univariate data=Trans;

histogram Thick / normal(percents=20 40 60 80 midpercents)
name=’MyPlot’;

inset n normal(ksdpval) / pos = ne format = 6.3;
run;

The ODS SELECT statement restricts the output to the “ParameterEstimates,” “GoodnessOfFit,”
“FitQuantiles,” and “Bins” tables; see the section “ODS Table Names” on page 374. The NORMAL
option specifies that the normal curve be displayed on the histogram shown in Output 4.19.2. It also
requests a summary of the fitted distribution, which is shown in Output 4.19.1. This summary
includes goodness-of-fit tests, parameter estimates, and quantiles of the fitted distribution. (If you
specify the NORMALTEST option in the PROC UNIVARIATE statement, the Shapiro-Wilk test
for normality is included in the tables of statistical output.)

Two secondary options are specified in parentheses after the NORMAL primary option. The PER-
CENTS= option specifies quantiles, which are to be displayed in the “FitQuantiles” table. The
MIDPERCENTS option requests a table that lists the midpoints, the observed percentage of obser-
vations, and the estimated percentage of the population in each interval (estimated from the fitted
normal distribution). See Table 4.12 and Table 4.17 for the secondary options that can be specified
with after the NORMAL primary option.

Output 4.19.1 Summary of Fitted Normal Distribution

Analysis of Plating Thickness

The UNIVARIATE Procedure
Fitted Normal Distribution for Thick

Parameters for Normal Distribution

Parameter Symbol Estimate

Mean Mu 3.49533
Std Dev Sigma 0.032117
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Output 4.19.1 continued

Goodness-of-Fit Tests for Normal Distribution

Test ----Statistic----- ------p Value------

Kolmogorov-Smirnov D 0.05563823 Pr > D >0.150
Cramer-von Mises W-Sq 0.04307548 Pr > W-Sq >0.250
Anderson-Darling A-Sq 0.27840748 Pr > A-Sq >0.250

Histogram Bin Percents for Normal Distribution

Bin -------Percent------
Midpoint Observed Estimated

3.43 3.000 3.296
3.45 9.000 9.319
3.47 23.000 18.091
3.49 19.000 24.124
3.51 24.000 22.099
3.53 15.000 13.907
3.55 3.000 6.011
3.57 4.000 1.784

Quantiles for Normal Distribution

------Quantile------
Percent Observed Estimated

20.0 3.46700 3.46830
40.0 3.48350 3.48719
60.0 3.50450 3.50347
80.0 3.52250 3.52236
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Output 4.19.2 Histogram Superimposed with Normal Curve

The histogram of the variable Thick with a superimposed normal curve is shown in Output 4.19.2.

The estimated parameters for the normal curve ( Omu D 3:50 and O� D 0:03) are shown in
Output 4.19.1. By default, the parameters are estimated unless you specify values with the MU= and
SIGMA= secondary options after the NORMAL primary option. The results of three goodness-of-
fit tests based on the empirical distribution function (EDF) are displayed in Output 4.19.1. Because
the p-values are all greater than 0.15, the hypothesis of normality is not rejected.

A sample program for this example, uniex08.sas, is available in the SAS Sample Library for Base
SAS software.

Example 4.20: Adding Fitted Normal Curves to a Comparative
Histogram

This example is a continuation of Example 4.15, which introduced the data set Channel on page 405.
In Output 4.15.3, it appears that the channel lengths in each lot are normally distributed. The
following statements use the NORMAL option to fit a normal distribution for each lot:
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title ’Comparative Analysis of Lot Source’;
proc univariate data=Channel noprint;

class Lot;
histogram Length / nrows = 3

intertile = 1
cprop
normal(noprint);

inset n = "N" / pos = nw;
run;

The NOPRINT option in the PROC UNIVARIATE statement suppresses the tables of statistical out-
put produced by default; the NOPRINT option in parentheses after the NORMAL option suppresses
the tables of statistical output related to the fit of the normal distribution. The normal parameters
are estimated from the data for each lot, and the curves are superimposed on each component his-
togram. The INTERTILE= option specifies the space between the framed areas, which are referred
to as tiles. The CPROP= option requests the shaded bars above each tile, which represent the relative
frequencies of observations in each lot. The comparative histogram is displayed in Output 4.20.1.

A sample program for this example, uniex09.sas, is available in the SAS Sample Library for Base
SAS software.

Output 4.20.1 Fitting Normal Curves to a Comparative Histogram
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Example 4.21: Fitting a Beta Curve

You can use a beta distribution to model the distribution of a variable that is known to vary between
lower and upper bounds. In this example, a manufacturing company uses a robotic arm to attach
hinges on metal sheets. The attachment point should be offset 10.1 mm from the left edge of the
sheet. The actual offset varies between 10.0 and 10.5 mm due to variation in the arm. The following
statements save the offsets for 50 attachment points as the values of the variable Length in the data
set Robots:

data Robots;
input Length @@;
label Length = ’Attachment Point Offset (in mm)’;
datalines;

10.147 10.070 10.032 10.042 10.102
10.034 10.143 10.278 10.114 10.127
10.122 10.018 10.271 10.293 10.136
10.240 10.205 10.186 10.186 10.080
10.158 10.114 10.018 10.201 10.065
10.061 10.133 10.153 10.201 10.109
10.122 10.139 10.090 10.136 10.066
10.074 10.175 10.052 10.059 10.077
10.211 10.122 10.031 10.322 10.187
10.094 10.067 10.094 10.051 10.174
;
run;

The following statements create a histogram with a fitted beta density curve, shown in Output 4.21.1:

title ’Fitted Beta Distribution of Offsets’;
ods select ParameterEstimates FitQuantiles MyHist;
proc univariate data=Robots;

histogram Length /
beta(theta=10 scale=0.5 color=red fill)
href = 10
hreflabel = ’Lower Bound’
lhref = 2
vaxis = axis1
name = ’MyHist’;

axis1 label=(a=90 r=0);
inset n = ’Sample Size’

beta / pos=ne cfill=blank;
run;

The ODS SELECT statement restricts the output to the “ParameterEstimates” and “FitQuantiles”
tables; see the section “ODS Table Names” on page 374. The BETA primary option requests a
fitted beta distribution. The THETA= secondary option specifies the lower threshold. The SCALE=
secondary option specifies the range between the lower threshold and the upper threshold. Note that
the default THETA= and SCALE= values are zero and one, respectively.
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Output 4.21.1 Superimposing a Histogram with a Fitted Beta Curve

The FILL secondary option specifies that the area under the curve is to be filled with the CFILL=
color. (If FILL were omitted, the CFILL= color would be used to fill the histogram bars instead.)

The HREF= option draws a reference line at the lower bound, and the HREFLABEL= option adds
the label Lower Bound. The LHREF= option specifies a dashed line type for the reference line. The
INSET statement adds an inset with the sample size positioned in the northeast corner of the plot.

In addition to displaying the beta curve, the BETA option requests a summary of the curve fit. This
summary, which includes parameters for the curve and the observed and estimated quantiles, is
shown in Output 4.21.2.

A sample program for this example, uniex12.sas, is available in the SAS Sample Library for Base
SAS software.
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Output 4.21.2 Summary of Fitted Beta Distribution

Fitted Beta Distribution of Offsets

The UNIVARIATE Procedure
Fitted Beta Distribution for Length

Parameters for Beta Distribution

Parameter Symbol Estimate

Threshold Theta 10
Scale Sigma 0.5
Shape Alpha 2.06832
Shape Beta 6.022479
Mean 10.12782
Std Dev 0.072339

Quantiles for Beta Distribution

------Quantile------
Percent Observed Estimated

1.0 10.0180 10.0124
5.0 10.0310 10.0285

10.0 10.0380 10.0416
25.0 10.0670 10.0718
50.0 10.1220 10.1174
75.0 10.1750 10.1735
90.0 10.2255 10.2292
95.0 10.2780 10.2630
99.0 10.3220 10.3237

Example 4.22: Fitting Lognormal, Weibull, and Gamma Curves

To determine an appropriate model for a data distribution, you should consider curves from several
distribution families. As shown in this example, you can use the HISTOGRAM statement to fit
more than one distribution and display the density curves on a histogram. The gap between two
plates is measured (in cm) for each of 50 welded assemblies selected at random from the output
of a welding process. The following statements save the measurements (Gap) in a data set named
Plates:

data Plates;
label Gap = ’Plate Gap in cm’;
input Gap @@;
datalines;

0.746 0.357 0.376 0.327 0.485 1.741 0.241 0.777 0.768 0.409
0.252 0.512 0.534 1.656 0.742 0.378 0.714 1.121 0.597 0.231
0.541 0.805 0.682 0.418 0.506 0.501 0.247 0.922 0.880 0.344
0.519 1.302 0.275 0.601 0.388 0.450 0.845 0.319 0.486 0.529
1.547 0.690 0.676 0.314 0.736 0.643 0.483 0.352 0.636 1.080
;
run;
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The following statements fit three distributions (lognormal, Weibull, and gamma) and display their
density curves on a single histogram:

title ’Distribution of Plate Gaps’;
ods select ParameterEstimates GoodnessOfFit FitQuantiles MyHist;
proc univariate data=Plates;

var Gap;
histogram / midpoints=0.2 to 1.8 by 0.2

lognormal
weibull
gamma
vaxis = axis1
name = ’MyHist’;

inset n mean(5.3) std=’Std Dev’(5.3) skewness(5.3)
/ pos = ne header = ’Summary Statistics’;

axis1 label=(a=90 r=0);
run;

The ODS SELECT statement restricts the output to the “ParameterEstimates,” “GoodnessOfFit,”
and “FitQuantiles” tables; see the section “ODS Table Names” on page 374. The LOGNORMAL,
WEIBULL, and GAMMA primary options request superimposed fitted curves on the histogram in
Output 4.22.1. Note that a threshold parameter � D 0 is assumed for each curve. In applications
where the threshold is not zero, you can specify � with the THETA= secondary option.

The LOGNORMAL, WEIBULL, and GAMMA options also produce the summaries for the fitted
distributions shown in Output 4.22.2 through Output 4.22.4.

Output 4.22.2 provides three EDF goodness-of-fit tests for the lognormal distribution: the
Anderson-Darling, the Cramér-von Mises, and the Kolmogorov-Smirnov tests. At the ˛ D 0:10

significance level, all tests support the conclusion that the two-parameter lognormal distribution
with scale parameter O� D �0:58 and shape parameter O� D 0:50 provides a good model for the
distribution of plate gaps.
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Output 4.22.1 Superimposing a Histogram with Fitted Curves

Output 4.22.2 Summary of Fitted Lognormal Distribution

Distribution of Plate Gaps

The UNIVARIATE Procedure
Fitted Lognormal Distribution for Gap

Parameters for Lognormal Distribution

Parameter Symbol Estimate

Threshold Theta 0
Scale Zeta -0.58375
Shape Sigma 0.499546
Mean 0.631932
Std Dev 0.336436
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Output 4.22.2 continued

Goodness-of-Fit Tests for Lognormal Distribution

Test ----Statistic----- ------p Value------

Kolmogorov-Smirnov D 0.06441431 Pr > D >0.150
Cramer-von Mises W-Sq 0.02823022 Pr > W-Sq >0.500
Anderson-Darling A-Sq 0.24308402 Pr > A-Sq >0.500

Quantiles for Lognormal Distribution

------Quantile------
Percent Observed Estimated

1.0 0.23100 0.17449
5.0 0.24700 0.24526

10.0 0.29450 0.29407
25.0 0.37800 0.39825
50.0 0.53150 0.55780
75.0 0.74600 0.78129
90.0 1.10050 1.05807
95.0 1.54700 1.26862
99.0 1.74100 1.78313

Output 4.22.3 Summary of Fitted Weibull Distribution

Distribution of Plate Gaps

The UNIVARIATE Procedure
Fitted Weibull Distribution for Gap

Parameters for Weibull Distribution

Parameter Symbol Estimate

Threshold Theta 0
Scale Sigma 0.719208
Shape C 1.961159
Mean 0.637641
Std Dev 0.339248

Goodness-of-Fit Tests for Weibull Distribution

Test ----Statistic----- ------p Value------

Cramer-von Mises W-Sq 0.15937281 Pr > W-Sq 0.016
Anderson-Darling A-Sq 1.15693542 Pr > A-Sq <0.010
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Output 4.22.3 continued

Quantiles for Weibull Distribution

------Quantile------
Percent Observed Estimated

1.0 0.23100 0.06889
5.0 0.24700 0.15817
10.0 0.29450 0.22831
25.0 0.37800 0.38102
50.0 0.53150 0.59661
75.0 0.74600 0.84955
90.0 1.10050 1.10040
95.0 1.54700 1.25842
99.0 1.74100 1.56691

Output 4.22.3 provides two EDF goodness-of-fit tests for the Weibull distribution: the Anderson-
Darling and the Cramér-von Mises tests. The p-values for the EDF tests are all less than 0.10,
indicating that the data do not support a Weibull model.

Output 4.22.4 Summary of Fitted Gamma Distribution

Distribution of Plate Gaps

The UNIVARIATE Procedure
Fitted Gamma Distribution for Gap

Parameters for Gamma Distribution

Parameter Symbol Estimate

Threshold Theta 0
Scale Sigma 0.155198
Shape Alpha 4.082646
Mean 0.63362
Std Dev 0.313587

Goodness-of-Fit Tests for Gamma Distribution

Test ----Statistic----- ------p Value------

Kolmogorov-Smirnov D 0.09695325 Pr > D >0.250
Cramer-von Mises W-Sq 0.07398467 Pr > W-Sq >0.250
Anderson-Darling A-Sq 0.58106613 Pr > A-Sq 0.137
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Output 4.22.4 continued

Quantiles for Gamma Distribution

------Quantile------
Percent Observed Estimated

1.0 0.23100 0.13326
5.0 0.24700 0.21951

10.0 0.29450 0.27938
25.0 0.37800 0.40404
50.0 0.53150 0.58271
75.0 0.74600 0.80804
90.0 1.10050 1.05392
95.0 1.54700 1.22160
99.0 1.74100 1.57939

Output 4.22.4 provides three EDF goodness-of-fit tests for the gamma distribution: the Anderson-
Darling, the Cramér-von Mises, and the Kolmogorov-Smirnov tests. At the ˛ D 0:10 significance
level, all tests support the conclusion that the gamma distribution with scale parameter � D 0:16

and shape parameter ˛ D 4:08 provides a good model for the distribution of plate gaps.

Based on this analysis, the fitted lognormal distribution and the fitted gamma distribution are both
good models for the distribution of plate gaps.

A sample program for this example, uniex13.sas, is available in the SAS Sample Library for Base
SAS software.

Example 4.23: Computing Kernel Density Estimates

This example illustrates the use of kernel density estimates to visualize a nonnormal data distribu-
tion. This example uses the data set Channel, which is introduced in Example 4.15.

When you compute kernel density estimates, you should try several choices for the bandwidth
parameter c because this determines the smoothness and closeness of the fit. You can specify a list
of up to five C= values with the KERNEL option to request multiple density estimates, as shown in
the following statements:

title ’FET Channel Length Analysis’;
proc univariate data=Channel noprint;

histogram Length / kernel(c = 0.25 0.50 0.75 1.00
l = 1 20 2 34
noprint);

run;

The L= secondary option specifies distinct line types for the curves (the L= values are paired with
the C= values in the order listed). Output 4.23.1 demonstrates the effect of c. In general, larger
values of c yield smoother density estimates, and smaller values yield estimates that more closely
fit the data distribution.
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Output 4.23.1 Multiple Kernel Density Estimates

Output 4.23.1 reveals strong trimodality in the data, which is displayed with comparative histograms
in Example 4.15.

A sample program for this example, uniex09.sas, is available in the SAS Sample Library for Base
SAS software.

Example 4.24: Fitting a Three-Parameter Lognormal Curve

If you request a lognormal fit with the LOGNORMAL primary option, a two-parameter lognormal
distribution is assumed. This means that the shape parameter � and the scale parameter � are
unknown (unless specified) and that the threshold � is known (it is either specified with the THETA=
option or assumed to be zero).

If it is necessary to estimate � in addition to � and � , the distribution is referred to as a three-
parameter lognormal distribution. This example shows how you can request a three-parameter
lognormal distribution.



428 F Chapter 4: The UNIVARIATE Procedure

A manufacturing process produces a plastic laminate whose strength must exceed a minimum of
25 pounds per square inch (psi). Samples are tested, and a lognormal distribution is observed for
the strengths. It is important to estimate � to determine whether the process meets the strength
requirement. The following statements save the strengths for 49 samples in the data set Plastic:

data Plastic;
label Strength = ’Strength in psi’;
input Strength @@;
datalines;

30.26 31.23 71.96 47.39 33.93 76.15 42.21
81.37 78.48 72.65 61.63 34.90 24.83 68.93
43.27 41.76 57.24 23.80 34.03 33.38 21.87
31.29 32.48 51.54 44.06 42.66 47.98 33.73
25.80 29.95 60.89 55.33 39.44 34.50 73.51
43.41 54.67 99.43 50.76 48.81 31.86 33.88
35.57 60.41 54.92 35.66 59.30 41.96 45.32
;
run;

The following statements use the LOGNORMAL primary option in the HISTOGRAM statement to
display the fitted three-parameter lognormal curve shown in Output 4.24.1:

title ’Three-Parameter Lognormal Fit’;
proc univariate data=Plastic noprint;

histogram Strength / lognormal(fill theta = est noprint);
inset lognormal / format=6.2 pos=ne;

run;

The NOPRINT option suppresses the tables of statistical output produced by default. Specifying
THETA=EST requests a local maximum likelihood estimate (LMLE) for � , as described by Cohen
(1951). This estimate is then used to compute maximum likelihood estimates for � and �.

NOTE: You can also specify THETA=EST with the WEIBULL primary option to fit a three-
parameter Weibull distribution.

A sample program for this example, uniex14.sas, is available in the SAS Sample Library for Base
SAS software.
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Output 4.24.1 Three-Parameter Lognormal Fit

Example 4.25: Annotating a Folded Normal Curve

This example shows how to display a fitted curve that is not supported by the HISTOGRAM state-
ment. The offset of an attachment point is measured (in mm) for a number of manufactured as-
semblies, and the measurements (Offset) are saved in a data set named Assembly. The following
statements create the data set Assembly:

data Assembly;
label Offset = ’Offset (in mm)’;
input Offset @@;
datalines;

11.11 13.07 11.42 3.92 11.08 5.40 11.22 14.69 6.27 9.76
9.18 5.07 3.51 16.65 14.10 9.69 16.61 5.67 2.89 8.13
9.97 3.28 13.03 13.78 3.13 9.53 4.58 7.94 13.51 11.43

11.98 3.90 7.67 4.32 12.69 6.17 11.48 2.82 20.42 1.01
3.18 6.02 6.63 1.72 2.42 11.32 16.49 1.22 9.13 3.34
1.29 1.70 0.65 2.62 2.04 11.08 18.85 11.94 8.34 2.07
0.31 8.91 13.62 14.94 4.83 16.84 7.09 3.37 0.49 15.19
5.16 4.14 1.92 12.70 1.97 2.10 9.38 3.18 4.18 7.22



430 F Chapter 4: The UNIVARIATE Procedure

15.84 10.85 2.35 1.93 9.19 1.39 11.40 12.20 16.07 9.23
0.05 2.15 1.95 4.39 0.48 10.16 4.81 8.28 5.68 22.81
0.23 0.38 12.71 0.06 10.11 18.38 5.53 9.36 9.32 3.63
12.93 10.39 2.05 15.49 8.12 9.52 7.77 10.70 6.37 1.91
8.60 22.22 1.74 5.84 12.90 13.06 5.08 2.09 6.41 1.40
15.60 2.36 3.97 6.17 0.62 8.56 9.36 10.19 7.16 2.37
12.91 0.95 0.89 3.82 7.86 5.33 12.92 2.64 7.92 14.06
;
run;

It is decided to fit a folded normal distribution to the offset measurements. A variable X has a
folded normal distribution if X D jY j, where Y is distributed as N.�; �/. The fitted density is
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where x � 0.

You can use SAS/IML to compute preliminary estimates of � and � based on a method of moments
given by Elandt (1961). These estimates are computed by solving equation (19) Elandt (1961),
which is given by
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Then the estimates of � and � are given by
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Begin by using PROC MEANS to compute the first and second moments and by using the following
DATA step to compute the constant A:

proc means data = Assembly noprint;
var Offset;
output out=stat mean=m1 var=var n=n min = min;

run;

* Compute constant A from equation (19) of \citet{elan_r:61};
data stat;

keep m2 a min;
set stat;
a = (m1*m1);
m2 = ((n-1)/n)*var + a;
a = a/m2;

run;
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Next, use the SAS/IML subroutine NLPDD to solve equation (19) by minimizing .f .�/�A/2, and
compute Omu0 and O�0:

proc iml;
use stat;
read all var {m2} into m2;
read all var {a} into a;
read all var {min} into min;

* f(t) is the function in equation (19) of \citet{elan_r:61};
start f(t) global(a);

y = .39894*exp(-0.5*t*t);
y = (2*y-(t*(1-2*probnorm(t))))**2/(1+t*t);
y = (y-a)**2;
return(y);

finish;

* Minimize (f(t)-A)**2 and estimate mu and sigma;
if ( min < 0 ) then do;

print "Warning: Observations are not all nonnegative.";
print " The folded normal is inappropriate.";
stop;
end;

if ( a < 0.637 ) then do;
print "Warning: the folded normal may be inappropriate";
end;

opt = { 0 0 };
con = { 1e-6 };
x0 = { 2.0 };
tc = { . . . . . 1e-8 . . . . . . .};
call nlpdd(rc,etheta0,"f",x0,opt,con,tc);
esig0 = sqrt(m2/(1+etheta0*etheta0));
emu0 = etheta0*esig0;

create prelim var {emu0 esig0 etheta0};
append;
close prelim;

* Define the log likelihood of the folded normal;
start g(p) global(x);

y = 0.0;
do i = 1 to nrow(x);

z = exp( (-0.5/p[2])*(x[i]-p[1])*(x[i]-p[1]) );
z = z + exp( (-0.5/p[2])*(x[i]+p[1])*(x[i]+p[1]) );
y = y + log(z);

end;
y = y - nrow(x)*log( sqrt( p[2] ) );
return(y);

finish;

* Maximize the log likelihood with subroutine NLPDD;
use assembly;
read all var {offset} into x;
esig0sq = esig0*esig0;
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x0 = emu0||esig0sq;
opt = { 1 0 };
con = { . 0.0, . . };
call nlpdd(rc,xr,"g",x0,opt,con);
emu = xr[1];
esig = sqrt(xr[2]);
etheta = emu/esig;
create parmest var{emu esig etheta};
append;
close parmest;

quit;

The preliminary estimates are saved in the data set Prelim, as shown in Output 4.25.1.

Output 4.25.1 Preliminary Estimates of �, � , and �

Three-Parameter Lognormal Fit

Obs EMU0 ESIG0 ETHETA0

1 6.51735 6.54953 0.99509

Now, using Omu0 and O�0 as initial estimates, call the NLPDD subroutine to maximize the log likeli-
hood, l.�; �/, of the folded normal distribution, where, up to a constant,
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nX
iD1

log
�

exp
�

�
.xi � �/2

2�2

�
C exp

�
�
.xi C �/2

2�2

��
* Define the log likelihood of the folded normal;
start g(p) global(x);

y = 0.0;
do i = 1 to nrow(x);

z = exp( (-0.5/p[2])*(x[i]-p[1])*(x[i]-p[1]) );
z = z + exp( (-0.5/p[2])*(x[i]+p[1])*(x[i]+p[1]) );
y = y + log(z);

end;
y = y - nrow(x)*log( sqrt( p[2] ) );
return(y);

finish;

* Maximize the log likelihood with subroutine NLPDD;
use assembly;
read all var {offset} into x;
esig0sq = esig0*esig0;
x0 = emu0||esig0sq;
opt = { 1 0 };
con = { . 0.0, . . };
call nlpdd(rc,xr,"g",x0,opt,con);
emu = xr[1];
esig = sqrt(xr[2]);
etheta = emu/esig;
create parmest var{emu esig etheta};
append;
close parmest;
quit;
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The data set ParmEst contains the maximum likelihood estimates Omu and O� (as well as Omu= O� ), as
shown in Output 4.25.2.

Output 4.25.2 Final Estimates of �, � , and �

Three-Parameter Lognormal Fit

Obs EMU ESIG ETHETA

1 6.66761 6.39650 1.04239

To annotate the curve on a histogram, begin by computing the width and endpoints of the histogram
intervals. The following statements save these values in a data set called OutCalc. Note that a plot
is not produced at this point.

proc univariate data = Assembly noprint;
histogram Offset / outhistogram = out normal(noprint) noplot;

run;

data OutCalc (drop = _MIDPT_);
set out (keep = _MIDPT_) end = eof;
retain _MIDPT1_ _WIDTH_;
if _N_ = 1 then _MIDPT1_ = _MIDPT_;
if eof then do;

_MIDPTN_ = _MIDPT_;
_WIDTH_ = (_MIDPTN_ - _MIDPT1_) / (_N_ - 1);
output;

end;
run;

Output 4.25.3 provides a listing of the data set OutCalc. The width of the histogram bars is saved
as the value of the variable _WIDTH_; the midpoints of the first and last histogram bars are saved as
the values of the variables _MIDPT1_ and _MIDPTN_.

Output 4.25.3 The Data Set OutCalc

Three-Parameter Lognormal Fit

Obs _MIDPT1_ _WIDTH_ _MIDPTN_

1 1.5 3 22.5
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The following statements create an annotate data set named Anno, which contains the coordinates
of the fitted curve:

data Anno;
merge ParmEst OutCalc;
length function color $ 8;
function = ’point’;
color = ’black’;
size = 2;
xsys = ’2’;
ysys = ’2’;
when = ’a’;
constant = 39.894*_width_;;
left = _midpt1_ - .5*_width_;
right = _midptn_ + .5*_width_;
inc = (right-left)/100;
do x = left to right by inc;

z1 = (x-emu)/esig;
z2 = (x+emu)/esig;
y = (constant/esig)*(exp(-0.5*z1*z1)+exp(-0.5*z2*z2));
output;
function = ’draw’;

end;
run;

The following statements read the ANNOTATE= data set and display the histogram and fitted curve:
title ’Folded Normal Distribution’;
proc univariate data=assembly noprint;

histogram Offset / annotate = anno;
run;

Output 4.25.4 displays the histogram and fitted curve.
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Output 4.25.4 Histogram with Annotated Folded Normal Curve

A sample program for this example, uniex15.sas, is available in the SAS Sample Library for Base
SAS software.

Example 4.26: Creating Lognormal Probability Plots

This example is a continuation of the example explored in the section “Modeling a Data Distribu-
tion” on page 227.

In the normal probability plot shown in Output 4.6, the nonlinearity of the point pattern indicates a
departure from normality in the distribution of Deviation. Because the point pattern is curved with
slope increasing from left to right, a theoretical distribution that is skewed to the right, such as
a lognormal distribution, should provide a better fit than the normal distribution. See the section
“Interpretation of Quantile-Quantile and Probability Plots” on page 361.

You can explore the possibility of a lognormal fit with a lognormal probability plot. When you
request such a plot, you must specify the shape parameter � for the lognormal distribution. This
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value must be positive, and typical values of � range from 0.1 to 1.0. You can specify values for �
with the SIGMA= secondary option in the LOGNORMAL primary option, or you can specify that
� is to be estimated from the data.

The following statements illustrate the first approach by creating a series of three lognormal prob-
ability plots for the variable Deviation introduced in the section “Modeling a Data Distribution” on
page 227:

symbol v=plus height=3.5pct;
title ’Lognormal Probability Plot for Position Deviations’;
proc univariate data=Aircraft noprint;

probplot Deviation /
lognormal(theta=est zeta=est sigma=0.7 0.9 1.1)
href = 95
lhref = 1
square;

run;

The LOGNORMAL primary option requests plots based on the lognormal family of distributions,
and the SIGMA= secondary option requests plots for � equal to 0.7, 0.9, and 1.1. These plots are
displayed in Output 4.26.1, Output 4.26.2, and Output 4.26.3, respectively. Alternatively, you can
specify � to be estimated using the sample standard deviation by using the option SIGMA=EST.

The SQUARE option displays the probability plot in a square format, the HREF= option requests a
reference line at the 95th percentile, and the LHREF= option specifies the line type for the reference
line.
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Output 4.26.1 Probability Plot Based on Lognormal Distribution with � =0.7
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Output 4.26.2 Probability Plot Based on Lognormal Distribution with � =0.9
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Output 4.26.3 Probability Plot Based on Lognormal Distribution with � =1.1

The value � D 0:9 in Output 4.26.2 most nearly linearizes the point pattern. The 95th percentile of
the position deviation distribution seen in Output 4.26.2 is approximately 0.001, because this is the
value corresponding to the intersection of the point pattern with the reference line.

NOTE: After the � that produces the most linear fit is found, you can then estimate the threshold
parameter � and the scale parameter �. See Example 4.31.

The following statements illustrate how you can create a lognormal probability plot for Deviation by
using a local maximum likelihood estimate for � .

symbol v=plus height=3.5pct;
title ’Lognormal Probability Plot for Position Deviations’;
proc univariate data=Aircraft noprint;

probplot Deviation / lognormal(theta=est zeta=est sigma=est)
href = 95
square;

run;

The plot is displayed in Output 4.26.4. Note that the maximum likelihood estimate of � (in this
case, 0.882) does not necessarily produce the most linear point pattern.
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Output 4.26.4 Probability Plot Based on Lognormal Distribution with Estimated �

A sample program for this example, uniex16.sas, is available in the SAS Sample Library for Base
SAS software.

Example 4.27: Creating a Histogram to Display Lognormal Fit

This example uses the data set Aircraft from Example 4.26 to illustrate how to display a lognormal
fit with a histogram. To determine whether the lognormal distribution is an appropriate model for
a distribution, you should consider the graphical fit as well as conduct goodness-of-fit tests. The
following statements fit a lognormal distribution and display the density curve on a histogram:

title ’Distribution of Position Deviations’;
ods select Lognormal.ParameterEstimates Lognormal.GoodnessOfFit MyPlot;
proc univariate data=Aircraft;

var Deviation;
histogram / lognormal(w=3 theta=est)

vaxis = axis1
name = ’MyPlot’;

inset n mean (5.3) std=’Std Dev’ (5.3) skewness (5.3) /
pos = ne header = ’Summary Statistics’;

axis1 label=(a=90 r=0);
run;
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The ODS SELECT statement restricts the output to the “ParameterEstimates” and “GoodnessOfFit”
tables; see the section “ODS Table Names” on page 374. The LOGNORMAL primary option
superimposes a fitted curve on the histogram in Output 4.27.1. The W= option specifies the line
width for the curve. The INSET statement specifies that the mean, standard deviation, and skewness
be displayed in an inset in the northeast corner of the plot. Note that the default value of the
threshold parameter � is zero. In applications where the threshold is not zero, you can specify
� with the THETA= option. The variable Deviation includes values that are less than the default
threshold; therefore, the option THETA= EST is used.

Output 4.27.1 Normal Probability Plot Created with Graphics Device

Output 4.27.2 provides three EDF goodness-of-fit tests for the lognormal distribution: the
Anderson-Darling, the Cramér-von Mises, and the Kolmogorov-Smirnov tests. The null hypoth-
esis for the three tests is that a lognormal distribution holds for the sample data.
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Output 4.27.2 Summary of Fitted Lognormal Distribution

Distribution of Position Deviations

The UNIVARIATE Procedure
Fitted Lognormal Distribution for Deviation

Parameters for Lognormal Distribution

Parameter Symbol Estimate

Threshold Theta -0.00834
Scale Zeta -6.14382
Shape Sigma 0.882225
Mean -0.00517
Std Dev 0.003438

Goodness-of-Fit Tests for Lognormal Distribution

Test ----Statistic----- ------p Value------

Kolmogorov-Smirnov D 0.09419634 Pr > D >0.500
Cramer-von Mises W-Sq 0.02919815 Pr > W-Sq >0.500
Anderson-Darling A-Sq 0.21606642 Pr > A-Sq >0.500

The p-values for all three tests are greater than 0.5, so the null hypothesis is not rejected. The
tests support the conclusion that the two-parameter lognormal distribution with scale parameter
O� D �6:14 and shape parameter O� D 0:88 provides a good model for the distribution of position
deviations. For further discussion of goodness-of-fit interpretation, see the section “Goodness-of-Fit
Tests” on page 354.

A sample program for this example, uniex16.sas, is available in the SAS Sample Library for Base
SAS software.

Example 4.28: Creating a Normal Quantile Plot

This example illustrates how to create a normal quantile plot. An engineer is analyzing the distribu-
tion of distances between holes cut in steel sheets. The following statements save measurements of
the distance between two holes cut into 50 steel sheets as values of the variable Distance in the data
set Sheets:

data Sheets;
input Distance @@;
label Distance = ’Hole Distance (cm)’;
datalines;

9.80 10.20 10.27 9.70 9.76
10.11 10.24 10.20 10.24 9.63
9.99 9.78 10.10 10.21 10.00
9.96 9.79 10.08 9.79 10.06
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10.10 9.95 9.84 10.11 9.93
10.56 10.47 9.42 10.44 10.16
10.11 10.36 9.94 9.77 9.36
9.89 9.62 10.05 9.72 9.82
9.99 10.16 10.58 10.70 9.54

10.31 10.07 10.33 9.98 10.15
;
run;

The engineer decides to check whether the distribution of distances is normal. The following state-
ments create a Q-Q plot for Distance, shown in Output 4.28.1:

symbol v=plus;
title ’Normal Quantile-Quantile Plot for Hole Distance’;
proc univariate data=Sheets noprint;

qqplot Distance;
run;

The plot compares the ordered values of Distance with quantiles of the normal distribution. The
linearity of the point pattern indicates that the measurements are normally distributed. Note that a
normal Q-Q plot is created by default.

Output 4.28.1 Normal Quantile-Quantile Plot for Distance
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A sample program for this example, uniex17.sas, is available in the SAS Sample Library for Base
SAS software.

Example 4.29: Adding a Distribution Reference Line

This example, which is a continuation of Example 4.28, illustrates how to add a reference line to
a normal Q-Q plot, which represents the normal distribution with mean �0 and standard deviation
�0. The following statements reproduce the Q-Q plot in Output 4.28.1 and add the reference line:

symbol v=plus;
title ’Normal Quantile-Quantile Plot for Hole Distance’;
proc univariate data=Sheets noprint;

qqplot Distance / normal(mu=est sigma=est color=red l=2)
square;

run;

The plot is displayed in Output 4.29.1.

Specifying MU=EST and SIGMA=EST with the NORMAL primary option requests the reference
line for which �0 and �0 are estimated by the sample mean and standard deviation. Alternatively,
you can specify numeric values for �0 and �0 with the MU= and SIGMA= secondary options. The
COLOR= and L= options specify the color and type of the line, and the SQUARE option displays
the plot in a square format. The NOPRINT options in the PROC UNIVARIATE statement and after
the NORMAL option suppress all the tables of statistical output produced by default.
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Output 4.29.1 Adding a Distribution Reference Line to a Q-Q Plot

The data clearly follow the line, which indicates that the distribution of the distances is normal.

A sample program for this example, uniex17.sas, is available in the SAS Sample Library for Base
SAS software.

Example 4.30: Interpreting a Normal Quantile Plot

This example illustrates how to interpret a normal quantile plot when the data are from a non-
normal distribution. The following statements create the data set Measures, which contains the
measurements of the diameters of 50 steel rods in the variable Diameter:
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data Measures;
input Diameter @@;
label Diameter = ’Diameter (mm)’;
datalines;

5.501 5.251 5.404 5.366 5.445 5.576 5.607
5.200 5.977 5.177 5.332 5.399 5.661 5.512
5.252 5.404 5.739 5.525 5.160 5.410 5.823
5.376 5.202 5.470 5.410 5.394 5.146 5.244
5.309 5.480 5.388 5.399 5.360 5.368 5.394
5.248 5.409 5.304 6.239 5.781 5.247 5.907
5.208 5.143 5.304 5.603 5.164 5.209 5.475
5.223
;
run;

The following statements request the normal Q-Q plot in Output 4.30.1:

symbol v=plus;
title ’Normal Q-Q Plot for Diameters’;
proc univariate data=Measures noprint;

qqplot Diameter / normal
square
vaxis=axis1;

axis1 label=(a=90 r=0);
run;

The nonlinearity of the points in Output 4.30.1 indicates a departure from normality. Because the
point pattern is curved with slope increasing from left to right, a theoretical distribution that is
skewed to the right, such as a lognormal distribution, should provide a better fit than the normal dis-
tribution. The mild curvature suggests that you should examine the data with a series of lognormal
Q-Q plots for small values of the shape parameter � , as illustrated in Example 4.31. For details on
interpreting a Q-Q plot, see the section “Interpretation of Quantile-Quantile and Probability Plots”
on page 361.
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Output 4.30.1 Normal Quantile-Quantile Plot of Nonnormal Data

A sample program for this example, uniex18.sas, is available in the SAS Sample Library for Base
SAS software.

Example 4.31: Estimating Three Parameters from Lognormal Quantile
Plots

This example, which is a continuation of Example 4.30, demonstrates techniques for estimating the
shape, location, and scale parameters, and the theoretical percentiles for a three-parameter lognor-
mal distribution.

The three-parameter lognormal distribution depends on a threshold parameter � , a scale parameter
�, and a shape parameter � . You can estimate � from a series of lognormal Q-Q plots which
use the SIGMA= secondary option to specify different values of � ; the estimate of � is the value
that linearizes the point pattern. You can then estimate the threshold and scale parameters from
the intercept and slope of the point pattern. The following statements create the series of plots in
Output 4.31.1, Output 4.31.2, and Output 4.31.3 for � values of 0.2, 0.5, and 0.8, respectively:
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symbol v=plus;
title ’Lognormal Q-Q Plot for Diameters’;
proc univariate data=Measures noprint;

qqplot Diameter / lognormal(sigma=0.2 0.5 0.8)
square;

run;

NOTE: You must specify a value for the shape parameter � for a lognormal Q-Q plot with the
SIGMA= option or its alias, the SHAPE= option.

Output 4.31.1 Lognormal Quantile-Quantile Plot (� =0.2)
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Output 4.31.2 Lognormal Quantile-Quantile Plot (� =0.5)
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Output 4.31.3 Lognormal Quantile-Quantile Plot (� =0.8)

The plot in Output 4.31.2 displays the most linear point pattern, indicating that the lognormal dis-
tribution with � D 0:5 provides a reasonable fit for the data distribution.

Data with this particular lognormal distribution have the following density function:

p.x/ D

( p
2

p
�.x��/

exp
�
�2.log.x � �/ � �/2

�
for x > �

0 for x � �

The points in the plot fall on or near the line with intercept � and slope exp.�/. Based on
Output 4.31.2, � � 5 and exp.�/ �

1:2
3

D 0:4, giving � � log.0:4/ � �0:92.

You can also request a reference line by using the SIGMA=, THETA=, and ZETA= options together.
The following statements produce the lognormal Q-Q plot in Output 4.31.4:
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symbol v=plus;
title ’Lognormal Q-Q Plot for Diameters’;
proc univariate data=Measures noprint;

qqplot Diameter / lognormal(theta=5 zeta=est sigma=est
color=black l=2)

square;
run;

Output 4.31.1 through Output 4.31.3 show that the threshold parameter � is not equal to zero. Spec-
ifying THETA=5 overrides the default value of zero. The SIGMA=EST and ZETA=EST secondary
options request estimates for � and exp � that use the sample mean and standard deviation.

Output 4.31.4 Lognormal Quantile-Quantile Plot (� =est, � =est, � =5)

From the plot in Output 4.31.2, � can be estimated as 0.51, which is consistent with the estimate of
0.5 derived from the plot in Output 4.31.2. Example 4.32 illustrates how to estimate percentiles by
using lognormal Q-Q plots.

A sample program for this example, uniex18.sas, is available in the SAS Sample Library for Base
SAS software.
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Example 4.32: Estimating Percentiles from Lognormal Quantile Plots

This example, which is a continuation of Example 4.31, shows how to use a Q-Q plot to estimate
percentiles such as the 95th percentile of the lognormal distribution. A probability plot can also be
used for this purpose, as illustrated in Example 4.26.

The point pattern in Output 4.31.4 has a slope of approximately 0.39 and an intercept of 5. The
following statements reproduce this plot, adding a lognormal reference line with this slope and
intercept:

symbol v=plus;
title ’Lognormal Q-Q Plot for Diameters’;
proc univariate data=Measures noprint;

qqplot Diameter / lognormal(sigma=0.5 theta=5 slope=0.39)
pctlaxis(grid)
vref = 5.8 5.9 6.0
square;

run;

The result is shown in Output 4.32.1:

Output 4.32.1 Lognormal Q-Q Plot Identifying Percentiles
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The PCTLAXIS option labels the major percentiles, and the GRID option draws percentile axis
reference lines. The 95th percentile is 5.9, because the intersection of the distribution reference line
and the 95th reference line occurs at this value on the vertical axis.

Alternatively, you can compute this percentile from the estimated lognormal parameters. The ˛th
percentile of the lognormal distribution is

P˛ D exp.�ˆ�1.˛/C �/C �

where ˆ�1.�/ is the inverse cumulative standard normal distribution. Consequently,

OP0:95 D exp
�

1
2
ˆ�1.0:95/C log.0:39/

�
C 5 D 5:89

A sample program for this example, uniex18.sas, is available in the SAS Sample Library for Base
SAS software.

Example 4.33: Estimating Parameters from Lognormal Quantile Plots

This example, which is a continuation of Example 4.31, demonstrates techniques for estimating the
shape, location, and scale parameters, and the theoretical percentiles for a two-parameter lognormal
distribution.

If the threshold parameter is known, you can construct a two-parameter lognormal Q-Q plot by
subtracting the threshold from the data values and making a normal Q-Q plot of the log-transformed
differences, as illustrated in the following statements:

data ModifiedMeasures;
set Measures;
LogDiameter = log(Diameter-5);
label LogDiameter = ’log(Diameter-5)’;

run;

symbol v=plus;
title ’Two-Parameter Lognormal Q-Q Plot for Diameters’;
proc univariate data=ModifiedMeasures noprint;

qqplot LogDiameter / normal(mu=est sigma=est)
square
vaxis=axis1;

inset n mean (5.3) std (5.3)
/ pos = nw header = ’Summary Statistics’;

axis1 label=(a=90 r=0);
run;
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Output 4.33.1 Two-Parameter Lognormal Q-Q Plot for Diameters

Because the point pattern in Output 4.33.1 is linear, you can estimate the lognormal parameters �
and � as the normal plot estimates of � and � , which are �0.99 and 0.51. These values correspond
to the previous estimates of �0.92 for � and 0.5 for � from Example 4.31. A sample program for
this example, uniex18.sas, is available in the SAS Sample Library for Base SAS software.

Example 4.34: Comparing Weibull Quantile Plots

This example compares the use of three-parameter and two-parameter Weibull Q-Q plots for the
failure times in months for 48 integrated circuits. The times are assumed to follow a Weibull distri-
bution. The following statements save the failure times as the values of the variable Time in the data
set Failures:
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data Failures;
input Time @@;
label Time = ’Time in Months’;
datalines;

29.42 32.14 30.58 27.50 26.08 29.06 25.10 31.34
29.14 33.96 30.64 27.32 29.86 26.28 29.68 33.76
29.32 30.82 27.26 27.92 30.92 24.64 32.90 35.46
30.28 28.36 25.86 31.36 25.26 36.32 28.58 28.88
26.72 27.42 29.02 27.54 31.60 33.46 26.78 27.82
29.18 27.94 27.66 26.42 31.00 26.64 31.44 32.52
;
run;

If no assumption is made about the parameters of this distribution, you can use the WEIBULL
option to request a three-parameter Weibull plot. As in the previous example, you can visually
estimate the shape parameter c by requesting plots for different values of c and choosing the value
of c that linearizes the point pattern. Alternatively, you can request a maximum likelihood estimate
for c, as illustrated in the following statements:

symbol v=plus;
title ’Three-Parameter Weibull Q-Q Plot for Failure Times’;
proc univariate data=Failures noprint;

qqplot Time / weibull(c=est theta=est sigma=est)
square
href=0.5 1 1.5 2
vref=25 27.5 30 32.5 35
lhref=4 lvref=4;

run;

NOTE: When using the WEIBULL option, you must either specify a list of values for the Weibull
shape parameter c with the C= option or specify C=EST.

Output 4.34.1 displays the plot for the estimated value Oc D 1:99. The reference line corresponds
to the estimated values for the threshold and scale parameters of O� D 24:19 and O�0 D 5:83,
respectively.
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Output 4.34.1 Three-Parameter Weibull Q-Q Plot

Now, suppose it is known that the circuit lifetime is at least 24 months. The following statements
use the known threshold value �0 D 24 to produce the two-parameter Weibull Q-Q plot shown in
Output 4.31.4:

symbol v=plus;
title ’Two-Parameter Weibull Q-Q Plot for Failure Times’;
proc univariate data=Failures noprint;

qqplot Time / weibull(theta=24 c=est sigma=est)
square
vref= 25 to 35 by 2.5
href= 0.5 to 2.0 by 0.5
lhref=4 lvref=4;

run;

The reference line is based on maximum likelihood estimates Oc D 2:08 and O� D 6:05.
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Output 4.34.2 Two-Parameter Weibull Q-Q Plot for �0 D 24

A sample program for this example, uniex19.sas, is available in the SAS Sample Library for Base
SAS software.

Example 4.35: Creating a Cumulative Distribution Plot

A company that produces fiber-optic cord is interested in the breaking strength of the cord. The
following statements create a data set named Cord, which contains 50 breaking strengths measured
in pounds per square inch (psi):

data Cord;
label Strength="Breaking Strength (psi)";
input Strength @@;

datalines;
6.94 6.97 7.11 6.95 7.12 6.70 7.13 7.34 6.90 6.83
7.06 6.89 7.28 6.93 7.05 7.00 7.04 7.21 7.08 7.01
7.05 7.11 7.03 6.98 7.04 7.08 6.87 6.81 7.11 6.74
6.95 7.05 6.98 6.94 7.06 7.12 7.19 7.12 7.01 6.84
6.91 6.89 7.23 6.98 6.93 6.83 6.99 7.00 6.97 7.01
;
run;
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You can use the CDFPLOT statement to fit any of six theoretical distributions (beta, exponential,
gamma, lognormal, normal, and Weibull) and superimpose them on the cdf plot. The following
statements use the NORMAL option to display a fitted normal distribution function on a cdf plot of
breaking strengths:

title ’Cumulative Distribution Function of Breaking Strength’;
ods graphics on;
proc univariate data=Cord noprint;

cdf Strength / normal;
inset normal(mu sigma);

run;

The NORMAL option requests the fitted curve. The INSET statement requests an inset containing
the parameters of the fitted curve, which are the sample mean and standard deviation. For more
information about the INSET statement, see “INSET Statement” on page 269. The resulting plot is
shown in Output 4.35.1.

Output 4.35.1 Cumulative Distribution Function

The plot shows a symmetric distribution with observations concentrated 6.9 and 7.1. The agreement
between the empirical and the normal distribution functions in Output 4.35.1 is evidence that the
normal distribution is an appropriate model for the distribution of breaking strengths.



Example 4.36: Creating a P-P Plot F 459

Example 4.36: Creating a P-P Plot

The distances between two holes cut into 50 steel sheets are measured and saved as values of the
variable Distance in the following data set:

data Sheets;
input Distance @@;
label Distance=’Hole Distance in cm’;
datalines;

9.80 10.20 10.27 9.70 9.76
10.11 10.24 10.20 10.24 9.63
9.99 9.78 10.10 10.21 10.00
9.96 9.79 10.08 9.79 10.06

10.10 9.95 9.84 10.11 9.93
10.56 10.47 9.42 10.44 10.16
10.11 10.36 9.94 9.77 9.36
9.89 9.62 10.05 9.72 9.82
9.99 10.16 10.58 10.70 9.54

10.31 10.07 10.33 9.98 10.15
;
run;

It is decided to check whether the distances are normally distributed. The following statements
create a P-P plot, shown in Output 4.36.1, which is based on the normal distribution with mean
� D 10 and standard deviation � D 0:3:

title ’Normal Probability-Probability Plot for Hole Distance’;
ods graphics on;
proc univariate data=Sheets noprint;

ppplot Distance / normal(mu=10 sigma=0.3)
square;

run;

The NORMAL option in the PPPLOT statement requests a P-P plot based on the normal cumulative
distribution function, and the MU= and SIGMA= normal-options specify � and � . Note that a P-
P plot is always based on a completely specified distribution—in other words, a distribution with
specific parameters. In this example, if you did not specify the MU= and SIGMA= normal-options,
the sample mean and sample standard deviation would be used for � and � .
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Output 4.36.1 Normal P-P Plot with Diagonal Reference Line

The linearity of the pattern in Output 4.36.1 is evidence that the measurements are normally dis-
tributed with mean 10 and standard deviation 0.3. The SQUARE option displays the plot in a square
format.
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bars, suppressing, 266
beta curve, superimposed, 259
binning, 412
color, options, 260, 315–317
comparative, 264, 319, 320, 405, 407, 417
creating, 403
endpoints of intervals, 267
exponential curve, superimposed, 261
extreme observations, 382
filling area under density curve, 261
gamma curve, superimposed, 262
hanging, 262
insets, 409
intervals, 266, 376
Johnson SB curve, superimposed, 267
Johnson SU curve, superimposed, 267
kernel density estimation, options, 260, 263,

264, 268
kernel density estimation, superimposed,

358, 426
line type, 319
lognormal curve, superimposed, 264
lognormal distribution, 440
midpoints, 265
multiple distributions, example, 421
normal curve, superimposed, 266
normal distribution, 265
options summarized by function, 254
output data sets, 370, 371
parameters for fitted density curves, 259,

265, 267, 268
plots, suppressing, 266
quantiles, 376
reference lines, options, 262, 316–321
saving histogram intervals, 266
tables of statistical output, 375
tables of statistical output, suppressing, 266
three-parameter lognormal distribution,

superimposed, 427
three-parameter Weibull distribution,

superimposed, 428
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tick marks on horizontal axis, 318
tiles for comparative plots, 318
Weibull curve, superimposed, 268

Hoeffding’s measure of dependence, 4, 21
calculating and printing, 9
example, 33
output data set with, 9
probability values, 21

hypothesis tests
exact (FREQ), 79

insets, 269, 409
appearance, 277
appearance, color, 276
positioning, 276, 277, 342
positioning in margins, 343
positioning with compass point, 342
positioning with coordinates, 344
statistics associated with distributions,

272–274
insets for descriptive statistics, see insets
interquartile range, 333

Johnson SB distribution, 351
estimation of parameters, 267
fitting, 267, 351
formulas for, 351

Johnson SU distribution, 352
estimation of parameters, 267
fitting, 267, 352
formulas for, 352

Jonckheere-Terpstra test, 150

kappa coefficient, 153, 154
tests, 156
weights, 155

Kendall correlation statistics, 9
Kendall’s partial tau-b, 4, 15
Kendall’s tau-b, 4, 20
probability values, 20

Kendall’s tau-b statistic, 123, 125
kernel density estimation, 358, 426

adding density curve to histogram, 264
bandwidth parameter, specifying, 260
kernel function, specifying type of, 263
line type for density curve, 319
lower bound, specifying, 264
upper bound, specifying, 268

kernel function, see kernel density estimation
key cell for comparative plots, 250
Kolmogorov D statistic, 356
Kolmogorov-Smirnov test, 235

lambda asymmetric, 123, 130
lambda symmetric, 123, 131

likelihood-ratio chi-square test, 118
likelihood-ratio test

chi-square (FREQ), 120
line printer plots, 335

box plots, 335, 336
normal probability plots, 336
stem-and-leaf plots, 335

listwise deletion, 29
location estimates

robust, 237, 238
location parameters, 366

probability plots, estimation with, 366
quantile plots, estimation with, 366

location, tests for
UNIVARIATE procedure, 401

lognormal distribution, 349, 364
cdf plots, 246
deviation from theoretical distribution, 355
EDF goodness-of-fit test, 355
estimation of parameters, 264
fitting, 264, 349
formulas for, 349
histograms, 427, 440
P-P plots, 289, 290
probability plots, 299, 364, 435
quantile plots, 309, 364, 453

Mantel-Haenszel chi-square test, 118, 121
McNemar’s test, 152
measures of agreement, 152
measures of association, 33

nonparametric, 4
measures of location

means, 323
modes, 326, 380
trimmed means, 333
Winsorized means, 332

median absolute deviation (MAD), 333
Mehta and Patel, network algorithm, 167
missing values

UNIVARIATE procedure, 321
mode calculation, 326
modified ridit scores, 118
Monte Carlo estimation

FREQ procedure, 79, 81, 169

network algorithm, 167
Newton-Raphson approximation

gamma shape parameter, 315
Weibull shape parameter, 315

nonparametric density estimation, see kernel
density estimation

nonparametric measures of association, 4
normal distribution, 350, 364



Subject Index F 467

cdf plots, 247
cdf plots, example, 457
deviation from theoretical distribution, 355
EDF goodness-of-fit test, 355
estimation of parameters, 266
fitting, 266, 350
formulas for, 350
histograms, 265
P-P plots, 290
probability plots, 293, 300, 364
quantile plots, 310, 364, 442

normal probability plots, see probability plots
line printer, 236, 336

odds ratio
adjusted, 161
Breslow-Day test, 163
case-control studies, 147, 161
logit estimate, 161
Mantel-Haenszel estimate, 161

ODS (Output Delivery System)
CORR procedure and, 32
UNIVARIATE procedure table names, 374

ODS graph names
CORR procedure, 33
FREQ procedure, 185

output data sets
saving correlations in, 51

overall kappa coefficient, 152, 156

P-P plots, 282
beta distribution, 287
distribution options, 283, 285
distribution reference line, 284, 460
exponential distribution, 288
gamma distribution, 288, 289
lognormal distribution, 289, 290
normal distribution, 290
options summarized by function, 285, 286
plot layout, 285
Weibull distribution, 291

paired data, 329, 402
pairwise deletion, 29
parameters for fitted density curves, 259, 265,

267, 268
partial correlations, 22

probability values, 24
Pearson chi-square test, 118, 119
Pearson correlation coefficient, 123, 127
Pearson correlation statistics, 4

example, 33
in output data set, 9
Pearson partial correlation, 4, 15

Pearson product-moment correlation, 4, 9,
17, 33

Pearson weighted product-moment
correlation, 4, 16

probability values, 19
suppressing, 9

percent plots, see See P-P plots
percentiles

axes, quantile plots, 310, 367
calculating, 326
confidence limits for, 327, 397
defining, 236, 326
empirical distribution function, 326
options, 280, 281
probability plots and, 292
quantile plots and, 303
saving to an output data set, 394
visual estimates, probability plots, 367
visual estimates, quantile plots, 367
weighted, 327
weighted average, 326

phi coefficient, 118, 122
plot statements, UNIVARIATE procedure, 221
plots

box plots, 235, 236, 335, 336
comparative, 249, 250, 341
comparative histograms, 264, 319, 320, 405,

407, 417
line printer plots, 335
normal probability plots, 236, 336
probability plots, 292, 362
quantile plots, 303, 362
size of, 236
stem-and-leaf, 236, 335
suppressing, 266

polychoric correlation coefficient, 99, 123, 129
prediction ellipse, 28
probability plots, 292

appearance, 298–300
beta distribution, 298, 363
distribution reference lines, 301
distributions for, 362
exponential distribution, 299, 363
gamma distribution, 299, 363
location parameters, estimation of, 366
lognormal distribution, 299, 364, 435, 440
normal distribution, 293, 300, 364
options summarized by function, 294
overview, 292
parameters for distributions, 294, 298–302
percentile axis, 300
percentiles, estimates of, 367
reference lines, 299
reference lines, options, 299
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scale parameters, estimation of, 366
shape parameters, 366
three-parameter Weibull distribution, 365
threshold parameter, 301
threshold parameters, estimation of, 366
two-parameter Weibull distribution, 365
Weibull distribution, 302

prospective study, 204

Q-Q plots, see quantile plots
Qn, 333
quantile plots, 303

appearance, 309, 312
axes, percentile scale, 310, 367
beta distribution, 308, 363
creating, 360
diagnostics, 361
distribution reference lines, 311, 444
distributions for, 362
exponential distribution, 309, 363
gamma distribution, 309, 363
interpreting, 361
legends, suppressing (UNIVARIATE), 444
location parameters, estimation of, 366
lognormal distribution, 309, 364, 447, 453
lognormal distribution, percentiles, 452
nonnormal data, 445
normal distribution, 310, 364, 442
options summarized by function, 305
overview, 303
parameters for distributions, 305, 308, 309,

311–313
percentiles, estimates of, 367
reference lines, 309, 310
reference lines, options, 309
scale parameters, estimation of, 366
shape parameters, 366
three-parameter Weibull distribution, 365
threshold parameter, 312
threshold parameters, estimation of, 366
two-parameter Weibull distribution, 365
Weibull distribution, 312, 454

quantile-quantile plots, see quantile plots
quantiles

defining, 326
empirical distribution function, 326
histograms and, 376
weighted average, 326

rank scores, 118
relative risk, 161

cohort studies, 148
logit estimate, 162
Mantel-Haenszel estimate, 162

reliability estimation, 4
ridit scores, 118
risks and risk differences, 139
robust estimates, 236–238
robust estimators, 331, 399

Gini’s mean difference, 333
interquartile range, 333
median absolute deviation (MAD), 333
Qn, 333
Sn, 333
trimmed means, 333
Winsorized means, 332

robust measures of scale, 333
rounding, 236, 322

UNIVARIATE procedure, 322
row mean scores statistic, 160

saving correlations
example, 51

scale estimates
robust, 236

scale parameters, 366
probability plots, 366
quantile plots, 366

shape parameters, 366
Shapiro-Wilk statistic, 355
Shapiro-Wilk test, 235
sign test, 329, 330

paired data and, 402
signed rank statistic, computing, 330
simple kappa coefficient, 152, 153
singularity of variables, 9
smoothing data distribution, see kernel density

estimation
Sn, 333
Somers’ D statistics, 123, 126
Spearman correlation statistics, 9

probability values, 19
Spearman partial correlation, 4, 15
Spearman rank-order correlation, 4, 19, 33

Spearman rank correlation coefficient, 123, 128
standard deviation, 9

specifying, 247
stem-and-leaf plots, 236, 335
stratified analysis

FREQ procedure, 64, 85
stratified table

example, 204
Stuart’s tau-c statistic, 123, 126
Student’s t test, 329
summary statistics

insets of, 269
saving, 236, 372

sums of squares and crossproducts, 9
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t test
Student’s, 329

table scores, 118
tables

frequency and crosstabulation (FREQ), 64,
85

multiway, 176, 178, 179
one-way frequency, 174, 175
one-way, tests, 118, 119
two-way, tests, 118, 119

Tarone’s adjustment
Breslow-Day test, 163

tests for location, 329, 401
paired data, 329, 402
sign test, 330
Student’s t test, 329
Wilcoxon signed rank test, 330

tetrachoric correlation coefficient, 99, 129
theoretical distributions, 362
three-parameter Weibull distribution, 365

probability plots, 365
quantile plots, 365

threshold parameter
probability plots, 301
quantile plots, 312

threshold parameters
probability plots, 366
quantile plots, 366

tiles for comparative plots
histograms, 318

trend test, 149, 205
trimmed means, 237, 333
two-parameter Weibull distribution, 365

probability plots, 365
quantile plots, 365

uncertainty coefficients, 123, 131, 132
univariate analysis

for multiple variables, 378
UNIVARIATE procedure

calculating modes, 380
classification levels, 249
comparative plots, 249, 250, 341
computational resources, 377
concepts, 321
confidence limits, 233, 331, 395
descriptive statistics, 323, 378
examples, 378
extreme observations, 269, 382
extreme values, 382
fitted continuous distributions, 346
frequency variables, 391
goodness-of-fit tests, 354
high-resolution graphics, 337

histograms, 375, 382
insets for descriptive statistics, 269
keywords for insets, 269
keywords for output data sets, 278
line printer plots, 335, 385
missing values, 249, 321
mode calculation, 326
normal probability plots, 336
ODS graph names, 376
ODS table names, 374
output data sets, 278, 368, 392
overview, 222
percentiles, 292, 303, 326
percentiles, confidence limits, 233, 234, 397
plot statements, 221
probability plots, 292, 362
quantile plots, 303, 362
quantiles, confidence limits, 233, 234
results, 374
robust estimates, 399
robust estimators, 331
robust location estimates, 237, 238
robust scale estimates, 236
rounding, 322
sign test, 330, 402
specifying analysis variables, 313
task tables, 303
testing for location, 401
tests for location, 329
weight variables, 313

UNIVARIATE procedure, OUTPUT statement
output data set, 368

variances, 9

Weibull distribution, 353
cdf plots, 248
deviation from theoretical distribution, 355
EDF goodness-of-fit test, 355
estimation of parameters, 268
fitting, 268, 353
formulas for, 353
histograms, 428
P-P plots, 291
probability plots, 302
quantile plots, 312, 454
three-parameter, 365
two-parameter, 365

weight values, 234
weighted kappa coefficient, 152, 154
weighted percentiles, 327
Wilcoxon signed rank test, 329, 330
Winsorized means, 238, 332

Yule’s Q statistic, 125
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zeros, structural and random
FREQ procedure, 157
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AGREE option
EXACT statement (FREQ), 80
OUTPUT statement (FREQ), 83
TABLES statement (FREQ), 88
TEST statement (FREQ), 111

AJCHI option
OUTPUT statement (FREQ), 83

ALL option
OUTPUT statement (FREQ), 83
PLOTS option (CORR), 12
PROC UNIVARIATE statement, 232
TABLES statement (FREQ), 89

ALPHA option
PROC CORR statement, 9

ALPHA= option
EXACT statement (FREQ), 81
HISTOGRAM statement (UNIVARIATE),

259, 347
PLOTS=SCATTER option (CORR), 13
PROBPLOT statement (UNIVARIATE), 298
PROC UNIVARIATE statement, 233
QQPLOT statement (UNIVARIATE), 308
TABLES statement (FREQ), 89

ALPHADELTA= option
plot statements (UNIVARIATE), 315

ALPHAINITIAL= option
plot statements (UNIVARIATE), 315

ANNOKEY option
plot statements (UNIVARIATE), 315

ANNOTATE= option
HISTOGRAM statement (UNIVARIATE),

429
plot statements (UNIVARIATE), 315
PROC UNIVARIATE statement, 233, 368

BARLABEL= option
HISTOGRAM statement (UNIVARIATE),

259
BARWIDTH= option

HISTOGRAM statement (UNIVARIATE),
259

BDCHI option
OUTPUT statement (FREQ), 83

BDT option
TABLES statement (FREQ), 89

BEST= option
PROC CORR statement, 10

BETA option

HISTOGRAM statement (UNIVARIATE),
259, 346, 419

PROBPLOT statement (UNIVARIATE),
298, 363

QQPLOT statement (UNIVARIATE), 308,
363

BETA= option
HISTOGRAM statement (UNIVARIATE),

259, 347
PROBPLOT statement (UNIVARIATE), 298
QQPLOT statement (UNIVARIATE), 308

BINOMIAL option
EXACT statement (FREQ), 80
OUTPUT statement (FREQ), 83
TABLES statement (FREQ), 89

BINOMIALC option
TABLES statement (FREQ), 93

BY statement
CORR procedure, 14
FREQ procedure, 78
UNIVARIATE procedure, 238

C= option
HISTOGRAM statement (UNIVARIATE),

259, 260, 358, 359, 426
PROBPLOT statement (UNIVARIATE), 298
QQPLOT statement (UNIVARIATE), 308,

454
CAXIS= option

plot statements (UNIVARIATE), 315
CBARLINE= option

HISTOGRAM statement (UNIVARIATE),
260

CDFPLOT statement
examples, 457
options summarized by function, 241
UNIVARIATE procedure, 239

CELLCHI2 option
TABLES statement (FREQ), 93

CFILL= option
HISTOGRAM statement (UNIVARIATE),

260
INSET statement (UNIVARIATE), 276

CFILLH= option
INSET statement (UNIVARIATE), 276

CFRAME= option
INSET statement (UNIVARIATE), 276
plot statements (UNIVARIATE), 315
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CFRAMESIDE= option
plot statements (UNIVARIATE), 316

CFRAMETOP= option
plot statements (UNIVARIATE), 316

CGRID= option
HISTOGRAM statement (UNIVARIATE),

260
PROBPLOT statement (UNIVARIATE), 298
QQPLOT statement (UNIVARIATE), 308

CHEADER= option
INSET statement (UNIVARIATE), 276

CHISQ option
EXACT statement (FREQ), 80, 199
OUTPUT statement (FREQ), 83
TABLES statement (FREQ), 93, 119, 199

CHREF= option
plot statements (UNIVARIATE), 316

CIBASIC option
PROC UNIVARIATE statement, 233, 395

CIPCTLDF option
PROC UNIVARIATE statement, 233

CIPCTLNORMAL option
PROC UNIVARIATE statement, 234

CIQUANTDF option
PROC UNIVARIATE statement, 397

CIQUANTNORMAL option
PROC UNIVARIATE statement, 234, 397

CL option
TABLES statement (FREQ), 93

CLASS statement
UNIVARIATE procedure, 249

CLIPREF option
HISTOGRAM statement (UNIVARIATE),

260
CMH option

OUTPUT statement (FREQ), 83
TABLES statement (FREQ), 94

CMH1 option
OUTPUT statement (FREQ), 83
TABLES statement (FREQ), 94

CMH2 option
OUTPUT statement (FREQ), 83
TABLES statement (FREQ), 94

CMHCOR option
OUTPUT statement (FREQ), 83

CMHGA option
OUTPUT statement (FREQ), 83

CMHRMS option
OUTPUT statement (FREQ), 83

COCHQ option
OUTPUT statement (FREQ), 83

COMOR option
EXACT statement (FREQ), 80

COMPRESS option

PROC FREQ statement, 76
CONTENTS= option

HISTOGRAM statement (UNIVARIATE),
260

plot statements (UNIVARIATE), 316
TABLES statement (FREQ), 94

CONTGY option
OUTPUT statement (FREQ), 83

CONVERGE= option
TABLES statement (FREQ), 95

CORR procedure
syntax, 8

CORR procedure, BY statement, 14
CORR procedure, FREQ statement, 15
CORR procedure, ID statement, 15
CORR procedure, PARTIAL statement, 15
CORR procedure, PLOTS option

ALL option, 12
HISTOGRAM option, 13
MATRIX option, 12
NONE option, 12
NVAR= option, 13
NWITH= option, 13
ONLY option, 12
SCATTER option, 13

CORR procedure, PLOTS=SCATTER option
ALPHA=, 13
ELLIPSE=, 13
NOINSET, 13

CORR procedure, PROC CORR statement, 8
ALPHA option, 9
BEST= option, 10
COV option, 10
CSSCP option, 10
DATA= option, 10
EXCLNPWGT option, 10
FISHER option, 10
HOEFFDING option, 11
KENDALL option, 11
NOCORR option, 11
NOMISS option, 11
NOPRINT option, 11
NOPROB option, 11
NOSIMPLE option, 11
OUT= option, 12
OUTH= option, 11
OUTK= option, 11
OUTP= option, 12
OUTS= option, 12
PEARSON option, 12
RANK option, 14
SINGULAR= option, 14
SPEARMAN option, 14
SSCP option, 14
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VARDEF= option, 14
CORR procedure, VAR statement, 16
CORR procedure, WEIGHT statement, 16
CORR procedure, WITH statement, 16
COV option

PROC CORR statement, 10
CPROP= option

HISTOGRAM statement (UNIVARIATE),
417

plot statements (UNIVARIATE), 316
CRAMV option

OUTPUT statement (FREQ), 83
CROSSLIST option

TABLES statement (FREQ), 95
CSHADOW= option

INSET statement (UNIVARIATE), 276
CSSCP option

PROC CORR statement, 10
CTEXT= option

INSET statement (UNIVARIATE), 276
plot statements (UNIVARIATE), 317

CTEXTSIDE= option
plot statements (UNIVARIATE), 317

CTEXTTOP= option
plot statements (UNIVARIATE), 317

CUMCOL option
TABLES statement (FREQ), 95

CVREF= option
plot statements (UNIVARIATE), 317

DATA option
INSET statement (UNIVARIATE), 276

DATA= option
INSET statement (UNIVARIATE), 271
PROC CORR statement, 10
PROC FREQ statement, 76
PROC UNIVARIATE statement, 234, 368

DESCENDING option
BY statement (UNIVARIATE), 239

DESCRIPTION= option
plot statements (UNIVARIATE), 317

DEVIATION option
TABLES statement (FREQ), 96

ELLIPSE= option
PLOTS=SCATTER option (CORR), 13

ENDPOINTS= option
HISTOGRAM statement (UNIVARIATE),

260, 412
EQKAP option

OUTPUT statement (FREQ), 83
EQWKP option

OUTPUT statement (FREQ), 83
EXACT option

OUTPUT statement (FREQ), 83
EXACT statement

FREQ procedure, 79
EXCLNPWGT option

PROC CORR statement, 10
PROC UNIVARIATE statement, 234

EXPECTED option
TABLES statement (FREQ), 96

EXPONENTIAL option
HISTOGRAM statement (UNIVARIATE),

261, 348
PROBPLOT statement (UNIVARIATE),

299, 363
QQPLOT statement (UNIVARIATE), 309,

363

FILL option
HISTOGRAM statement (UNIVARIATE),

261
FISHER option

EXACT statement (FREQ), 80
OUTPUT statement (FREQ), 83
PROC CORR statement, 10
TABLES statement (FREQ), 96

FITINTERVAL= option
plot statements (UNIVARIATE), 317

FITMETHOD= option
plot statements (UNIVARIATE), 317

FITTOLERANCE= option
plot statements (UNIVARIATE), 317

FONT= option
INSET statement (UNIVARIATE), 277
plot statements (UNIVARIATE), 317

FORCEHIST option
HISTOGRAM statement (UNIVARIATE),

262
FORMAT= option

INSET statement (UNIVARIATE), 277
TABLES statement (FREQ), 96

FORMCHAR= option
PROC FREQ statement, 77

FREQ option
PROC UNIVARIATE statement, 234, 384

FREQ procedure
syntax, 75

FREQ procedure, BY statement, 78
FREQ procedure, EXACT statement, 79

AGREE option, 80
ALPHA= option, 81
BINOMIAL option, 80
CHISQ option, 80, 199
COMOR option, 80
FISHER option, 80
JT option, 80
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KAPPA option, 80
LRCHI option, 80
MAXTIME= option, 81
MC option, 81
MCNEM option, 80
MEASURES option, 80
MHCHI option, 80
N= option, 81
OR option, 80, 199
PCHI option, 80
PCORR option, 80
POINT option, 81
SCORR option, 80
SEED= option, 82
TREND option, 80, 206
WTKAP option, 80

FREQ procedure, OUTPUT statement, 82
AGREE option, 83
AJCHI option, 83
ALL option, 83
BDCHI option, 83
BINOMIAL option, 83
CHISQ option, 83
CMH option, 83
CMH1 option, 83
CMH2 option, 83
CMHCOR option, 83
CMHGA option, 83
CMHRMS option, 83
COCHQ option, 83
CONTGY option, 83
CRAMV option, 83
EQKAP option, 83
EQWKP option, 83
EXACT option, 83
FISHER option, 83
GAMMA option, 83
JT option, 83
KAPPA option, 84
KENTB option, 84
LAMCR option, 84
LAMDAS option, 84
LAMRC option, 84
LGOR option, 84
LGRRC1 option, 84
LGRRC2 option, 84
LRCHI option, 84, 202
MCNEM option, 84
MEASURES option, 84
MHCHI option, 84
MHOR option, 84
MHRRC1 option, 84
MHRRC2 option, 84
N option, 84

NMISS option, 84
OR option, 84
OUT= option, 82
PCHI option, 84, 202
PCORR option, 84
PHI option, 84
PLCORR option, 84
RDIF1 option, 84
RDIF2 option, 84
RELRISK option, 84
RISKDIFF option, 84
RISKDIFF1 option, 84
RISKDIFF2 option, 84
RRC1 option, 84
RRC2 option, 84
RSK1 option, 84
RSK11 option, 84
RSK12 option, 84
RSK2 option, 84
RSK21 option, 84
RSK22 option, 84
SCORR option, 85
SMDCR option, 85
SMDRC option, 85
STUTC option, 85
TREND option, 85
TSYMM option, 85
U option, 85
UCR option, 85
URC option, 85
WTKAP option, 85

FREQ procedure, PROC FREQ statement, 76
COMPRESS option, 76
DATA= option, 76
FORMCHAR= option, 77
NLEVELS option, 77
NOPRINT option, 77
ORDER= option, 78
PAGE option, 78

FREQ procedure, TABLES statement, 85
ALL option, 89
ALPHA= option, 89
BDT option, 89
BINOMIAL option, 89
BINOMIALC option, 93
CELLCHI2 option, 93
CHISQ option, 93, 119, 199
CL option, 93
CMH option, 94
CMH1 option, 94
CMH2 option, 94
CONTENTS= option, 94
CONVERGE= option, 95
CROSSLIST option, 95
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CUMCOL option, 95
DEVIATION option, 96
EXPECTED option, 96
FISHER option, 96
FORMAT= option, 96
JT option, 96
LIST option, 97
MAXITER= option, 97
MEASURES option, 97
MISSING option, 97
MISSPRINT option, 98
NOCOL option, 98
NOCUM option, 98
NOFREQ option, 98
NOPERCENT option, 98
NOPRINT option, 98
NOROW option, 98
NOSPARSE option, 98
NOWARN option, 99
option, 88
OUT= option, 99
OUTCUM option, 99
OUTEXPECT option, 99, 187
OUTPCT option, 99
PLCORR option, 99
PLOTS= option, 100
PRINTKWT option, 105
RELRISK option, 105, 199
RISKDIFF option, 105
RISKDIFFC option, 108
SCORES= option, 108, 209
SCOROUT option, 108
SPARSE option, 109, 187
TESTF= option, 109, 119
TESTP= option, 109, 119, 193
TOTPCT option, 109
TREND option, 110, 206

FREQ procedure, TEST statement, 110
AGREE option, 111
GAMMA option, 111
KAPPA option, 111
KENTB option, 111
MEASURES option, 111
PCORR option, 111
SCORR option, 111
SMDCR option, 111, 206
SMDRC option, 111
STUTC option, 111
WTKAP option, 111

FREQ procedure, WEIGHT statement, 111
ZEROS option, 112

FREQ statement
CORR procedure, 15
UNIVARIATE procedure, 251

FRONTREF option
HISTOGRAM statement (UNIVARIATE),

262

GAMMA option
HISTOGRAM statement (UNIVARIATE),

262, 348, 351, 352, 421
OUTPUT statement (FREQ), 83
PROBPLOT statement (UNIVARIATE),

299, 363
QQPLOT statement (UNIVARIATE), 309,

363
TEST statement (FREQ), 111

GOUT= option
PROC UNIVARIATE statement, 234

GRID option
HISTOGRAM statement (UNIVARIATE),

262
PROBPLOT statement (UNIVARIATE), 299
QQPLOT statement (UNIVARIATE), 309,

310, 452

HAXIS= option
plot statements (UNIVARIATE), 317

HEADER= option
INSET statement (UNIVARIATE), 277

HEIGHT= option
INSET statement (UNIVARIATE), 277
plot statements (UNIVARIATE), 317

HISTOGRAM
PLOTS option (CORR), 13

HISTOGRAM statement
UNIVARIATE procedure, 251

HMINOR= option
plot statements (UNIVARIATE), 318

HOEFFDING option
PROC CORR statement, 11

HOFFSET= option
HISTOGRAM statement (UNIVARIATE),

263
HREF= option

plot statements (UNIVARIATE), 318
HREFLABELS= option

plot statements (UNIVARIATE), 318
HREFLABPOS= option

plot statements (UNIVARIATE), 318

ID statement
CORR procedure, 15
UNIVARIATE procedure, 269

IDOUT option
PROC UNIVARIATE statement, 234

INFONT= option
plot statements (UNIVARIATE), 318

INHEIGHT= option



476 F Syntax Index

plot statements (UNIVARIATE), 318
INSET statement

UNIVARIATE procedure, 269
INTERBAR= option

HISTOGRAM statement (UNIVARIATE),
263

INTERTILE= option
HISTOGRAM statement (UNIVARIATE),

417
plot statements (UNIVARIATE), 318

JT option
EXACT statement (FREQ), 80
OUTPUT statement (FREQ), 83
TABLES statement (FREQ), 96

K= option
HISTOGRAM statement (UNIVARIATE),

263, 358, 359
KAPPA option

EXACT statement (FREQ), 80
OUTPUT statement (FREQ), 84
TEST statement (FREQ), 111

KENDALL option
PROC CORR statement, 11

KENTB option
OUTPUT statement (FREQ), 84
TEST statement (FREQ), 111

KERNEL option
HISTOGRAM statement (UNIVARIATE),

264, 358, 359, 426
KEYLEVEL= option

CLASS statement (UNIVARIATE), 250
PROC UNIVARIATE statement, 407

L= option
plot statements (UNIVARIATE), 319

LABEL= option
QQPLOT statement (UNIVARIATE), 310

LAMCR option
OUTPUT statement (FREQ), 84

LAMDAS option
OUTPUT statement (FREQ), 84

LAMRC option
OUTPUT statement (FREQ), 84

LGOR option
OUTPUT statement (FREQ), 84

LGRID= option
HISTOGRAM statement (UNIVARIATE),

264
PROBPLOT statement (UNIVARIATE), 299
QQPLOT statement (UNIVARIATE), 309,

310
LGRRC1 option

OUTPUT statement (FREQ), 84

LGRRC2 option
OUTPUT statement (FREQ), 84

LHREF= option
plot statements (UNIVARIATE), 319

LIST option
TABLES statement (FREQ), 97

LOCCOUNT option
PROC UNIVARIATE statement, 234, 401

LOGNORMAL option
HISTOGRAM statement (UNIVARIATE),

264, 349, 421, 427, 440
PROBPLOT statement (UNIVARIATE),

299, 364, 435
QQPLOT statement (UNIVARIATE), 309,

364
LOWER= option

HISTOGRAM statement (UNIVARIATE),
264

LRCHI option
EXACT statement (FREQ), 80
OUTPUT statement (FREQ), 84, 202

LVREF= option
plot statements (UNIVARIATE), 319

MATRIX option
PLOTS option (CORR), 12

MAXITER= option
plot statements (UNIVARIATE), 319
TABLES statement (FREQ), 97

MAXNBIN= option
HISTOGRAM statement (UNIVARIATE),

264
MAXSIGMAS= option

HISTOGRAM statement (UNIVARIATE),
264

MAXTIME= option
EXACT statement (FREQ), 81

MC option
EXACT statement (FREQ), 81

MCNEM option
EXACT statement (FREQ), 80
OUTPUT statement (FREQ), 84

MEASURES option
EXACT statement (FREQ), 80
OUTPUT statement (FREQ), 84
TABLES statement (FREQ), 97
TEST statement (FREQ), 111

MHCHI option
EXACT statement (FREQ), 80
OUTPUT statement (FREQ), 84

MHOR option
OUTPUT statement (FREQ), 84

MHRRC1 option
OUTPUT statement (FREQ), 84
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MHRRC2 option
OUTPUT statement (FREQ), 84

MIDPERCENTS option
HISTOGRAM statement (UNIVARIATE),

265, 415
MIDPOINTS= option

HISTOGRAM statement (UNIVARIATE),
265, 409, 412

MISSING option
CLASS statement (UNIVARIATE), 249
TABLES statement (FREQ), 97

MISSPRINT option
TABLES statement (FREQ), 98

MODES option
PROC UNIVARIATE statement, 234, 380

MU0= option
PROC UNIVARIATE statement, 235

MU= option
HISTOGRAM statement (UNIVARIATE),

265, 415
PROBPLOT statement (UNIVARIATE), 299
QQPLOT statement (UNIVARIATE), 309,

444

N option
OUTPUT statement (FREQ), 84

N= option
EXACT statement (FREQ), 81

NADJ= option
PROBPLOT statement (UNIVARIATE), 300
QQPLOT statement (UNIVARIATE), 310,

360
NAME= option

plot statements (UNIVARIATE), 319
NCOLS= option

plot statements (UNIVARIATE), 319
NENDPOINTS= option

HISTOGRAM statement (UNIVARIATE),
265

NEXTROBS= option
PROC UNIVARIATE statement, 235, 382

NEXTRVAL= option
PROC UNIVARIATE statement, 235, 382

NLEVELS option
PROC FREQ statement, 77

NMIDPOINTS= option
HISTOGRAM statement (UNIVARIATE),

266
NMISS option

OUTPUT statement (FREQ), 84
NOBARS option

HISTOGRAM statement (UNIVARIATE),
266

NOBYPLOT option

PROC UNIVARIATE statement, 235
NOCOL option

TABLES statement (FREQ), 98
NOCORR option

PROC CORR statement, 11
NOCUM option

TABLES statement (FREQ), 98
NOFRAME option

INSET statement (UNIVARIATE), 277
plot statements (UNIVARIATE), 319

NOFREQ option
TABLES statement (FREQ), 98

NOHLABEL option
plot statements (UNIVARIATE), 319

NOINSET option
PLOTS=SCATTER option (CORR), 13

NOKEYMOVE option
CLASS statement (UNIVARIATE), 251

NOMISS option
PROC CORR statement, 11

NONE option
PLOTS option (CORR), 12

NOPERCENT option
TABLES statement (FREQ), 98

NOPLOT option
HISTOGRAM statement (UNIVARIATE),

266
NOPRINT option

HISTOGRAM statement (UNIVARIATE),
266

PROC CORR statement, 11
PROC FREQ statement, 77
PROC UNIVARIATE statement, 235
TABLES statement (FREQ), 98

NOPROB option
PROC CORR statement, 11

NORMAL option
HISTOGRAM statement (UNIVARIATE),

266, 350, 415
PROBPLOT statement (UNIVARIATE),

300, 364
PROC UNIVARIATE statement, 235
QQPLOT statement (UNIVARIATE), 310,

364
NORMALTEST option

PROC UNIVARIATE statement, 235
NOROW option

TABLES statement (FREQ), 98
NOSIMPLE option

PROC CORR statement, 11
NOSPARSE option

TABLES statement (FREQ), 98
NOTABCONTENTS option
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HISTOGRAM statement (UNIVARIATE),
266

PROC UNIVARIATE statement, 235
NOTSORTED option

BY statement (UNIVARIATE), 239
NOVARCONTENTS option

PROC UNIVARIATE statement, 235
NOVLABEL option

plot statements (UNIVARIATE), 319
NOVTICK option

plot statements (UNIVARIATE), 319
NOWARN option

TABLES statement (FREQ), 99
NROWS= option

HISTOGRAM statement (UNIVARIATE),
405

plot statements (UNIVARIATE), 320
NVAR= option

PLOTS option (CORR), 13
NWITH= option

PLOTS option (CORR), 13

ONLY option
PLOTS option (CORR), 12

OR option
EXACT statement (FREQ), 80, 199
OUTPUT statement (FREQ), 84

ORDER= option
CLASS statement (UNIVARIATE), 249
PROC FREQ statement, 78

OUT= option
OUTPUT statement (FREQ), 82
OUTPUT statement (UNIVARIATE), 278
PROC CORR statement, 12
TABLES statement (FREQ), 99

OUTCUM option
TABLES statement (FREQ), 99

OUTEXPECT option
TABLES statement (FREQ), 99, 187

OUTH= option
PROC CORR statement, 11

OUTHISTOGRAM= option
HISTOGRAM statement (UNIVARIATE),

266, 370, 412
OUTK= option

PROC CORR statement, 11
OUTKERNEL= option

HISTOGRAM statement (UNIVARIATE),
371

OUTP= option
PROC CORR statement, 12

OUTPCT option
TABLES statement (FREQ), 99

OUTPUT statement

FREQ procedure, 82
UNIVARIATE procedure, 278, 313

OUTS= option
PROC CORR statement, 12

OUTTABLE= option
PROC UNIVARIATE statement, 236, 372

OVERLAY option
plot statements (UNIVARIATE), 320

PAGE option
PROC FREQ statement, 78

PARTIAL statement
CORR procedure, 15

PCHI option
EXACT statement (FREQ), 80
OUTPUT statement (FREQ), 84, 202

PCORR option
EXACT statement (FREQ), 80
OUTPUT statement (FREQ), 84
TEST statement (FREQ), 111

PCTLAXIS option
QQPLOT statement (UNIVARIATE), 310,

367, 452
PCTLDEF= option

PROC UNIVARIATE statement, 236, 326
PCTLMINOR option

PROBPLOT statement (UNIVARIATE), 300
QQPLOT statement (UNIVARIATE), 310

PCTLNAME= option
OUTPUT statement (UNIVARIATE), 281

PCTLORDER= option
PROBPLOT statement (UNIVARIATE), 300

PCTLPRE= option
OUTPUT statement (UNIVARIATE), 281

PCTLPTS= option
OUTPUT statement (UNIVARIATE), 280

PCTLSCALE option
QQPLOT statement (UNIVARIATE), 310,

367
PEARSON option

PROC CORR statement, 12
PERCENTS= option

HISTOGRAM statement (UNIVARIATE),
266

PFILL= option
HISTOGRAM statement (UNIVARIATE),

266
PHI option

OUTPUT statement (FREQ), 84
PLCORR option

OUTPUT statement (FREQ), 84
TABLES statement (FREQ), 99

PLOT option
PROC UNIVARIATE statement, 385
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plot statements
UNIVARIATE procedure, 315

PLOTS option
PROC UNIVARIATE statement, 236

PLOTS= option
TABLES statement (FREQ), 100

PLOTSIZE= option
PROC UNIVARIATE statement, 236

POINT option
EXACT statement (FREQ), 81

POSITION= option
INSET statement (UNIVARIATE), 277

PPPLOT statement
options dictionary, 287
options summarized by function, 285, 286
UNIVARIATE procedure, 282

PRINTKWT option
TABLES statement (FREQ), 105

PROBPLOT statement
UNIVARIATE procedure, 292

PROC CORR statement, 8, see CORR procedure
CORR procedure, 8

PROC FREQ statement, see FREQ procedure
PROC UNIVARIATE statement, 231, see

UNIVARIATE procedure

QQPLOT statement
UNIVARIATE procedure, 303

RANK option
PROC CORR statement, 14

RANKADJ= option
PROBPLOT statement (UNIVARIATE), 300
QQPLOT statement (UNIVARIATE), 310,

360
RDIF1 option

OUTPUT statement (FREQ), 84
RDIF2 option

OUTPUT statement (FREQ), 84
REFPOINT= option

INSET statement (UNIVARIATE), 277
RELRISK option

OUTPUT statement (FREQ), 84
TABLES statement (FREQ), 105, 199

RISKDIFF option
OUTPUT statement (FREQ), 84
TABLES statement (FREQ), 105

RISKDIFF1 option
OUTPUT statement (FREQ), 84

RISKDIFF2 option
OUTPUT statement (FREQ), 84

RISKDIFFC option
TABLES statement (FREQ), 108

ROBUSTSCALE option

PROC UNIVARIATE statement, 236, 399
ROTATE option

PROBPLOT statement (UNIVARIATE), 300
QQPLOT statement (UNIVARIATE), 311

ROUND= option
PROC UNIVARIATE statement, 236

RRC1 option
OUTPUT statement (FREQ), 84

RRC2 option
OUTPUT statement (FREQ), 84

RSK1 option
OUTPUT statement (FREQ), 84

RSK11 option
OUTPUT statement (FREQ), 84

RSK12 option
OUTPUT statement (FREQ), 84

RSK2 option
OUTPUT statement (FREQ), 84

RSK21 option
OUTPUT statement (FREQ), 84

RSK22 option
OUTPUT statement (FREQ), 84

RTINCLUDE option
HISTOGRAM statement (UNIVARIATE),

266, 412

SB option
HISTOGRAM statement (UNIVARIATE),

267
SCALE= option

HISTOGRAM statement (UNIVARIATE),
348, 349, 419

SCATTER option
PLOTS option (CORR), 13

SCORES= option
TABLES statement (FREQ), 108, 209

SCOROUT option
TABLES statement (FREQ), 108

SCORR option
EXACT statement (FREQ), 80
OUTPUT statement (FREQ), 85
TEST statement (FREQ), 111

SEED= option
EXACT statement (FREQ), 82

SIGMA= option
HISTOGRAM statement (UNIVARIATE),

267, 347, 415
PROBPLOT statement (UNIVARIATE),

300, 435
QQPLOT statement (UNIVARIATE), 311,

444, 447
SINGULAR= option

PROC CORR statement, 14
SLOPE= option
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PROBPLOT statement (UNIVARIATE), 301
QQPLOT statement (UNIVARIATE), 311

SMDCR option
OUTPUT statement (FREQ), 85
TEST statement (FREQ), 111, 206

SMDRC option
OUTPUT statement (FREQ), 85
TEST statement (FREQ), 111

SPARSE option
TABLES statement (FREQ), 109, 187

SPEARMAN option
PROC CORR statement, 14

SQUARE option
PROBPLOT statement (UNIVARIATE),

301, 435
QQPLOT statement, 444
QQPLOT statement (UNIVARIATE), 312

SSCP option
PROC CORR statement, 14

STUTC option
OUTPUT statement (FREQ), 85
TEST statement (FREQ), 111

SU option
HISTOGRAM statement (UNIVARIATE),

267
SUMMARYCONTENTS= option

PROC UNIVARIATE statement, 237

TABLES statement
FREQ procedure, 85

TEST statement
FREQ procedure, 110

TESTF= option
TABLES statement (FREQ), 109, 119

TESTP= option
TABLES statement (FREQ), 109, 119, 193

THETA= option
HISTOGRAM statement (UNIVARIATE),

267, 347, 419, 427, 440
PROBPLOT statement (UNIVARIATE), 301
QQPLOT statement (UNIVARIATE), 312

THRESHOLD= option
HISTOGRAM statement (UNIVARIATE),

267, 349
PROBPLOT statement (UNIVARIATE), 301
QQPLOT statement (UNIVARIATE), 312

TOTPCT option
TABLES statement (FREQ), 109

TREND option
EXACT statement (FREQ), 80, 206
OUTPUT statement (FREQ), 85
TABLES statement (FREQ), 110, 206

TRIMMED= option
PROC UNIVARIATE statement, 237, 399

TSYMM option
OUTPUT statement (FREQ), 85

TURNVLABELS option
plot statements (UNIVARIATE), 320

U option
OUTPUT statement (FREQ), 85

UCR option
OUTPUT statement (FREQ), 85

UNIVARIATE procedure
syntax, 230

UNIVARIATE procedure, BY statement, 238
DESCENDING option, 239
NOTSORTED option, 239

UNIVARIATE procedure, CDFPLOT statement,
239

ALPHA= beta-option, 244
ALPHA= gamma-option, 244
BETA beta-option, 244
BETA= option, 245
C= option, 245
DELTA= option, 260
EXPONENTIAL option, 245
GAMMA option, 246
GAMMA= option, 262
LOGNORMAL option, 246
MU= option, 247
NOECDF option, 247
NORMAL option, 247
SIGMA= option, 247
THETA= option, 248
THRESHOLD= option, 248
VSCALE= option, 248
WEIBULL Weibull-option, 248
ZETA= option, 249

UNIVARIATE procedure, CLASS statement, 249
KEYLEVEL= option, 250
MISSING option, 249
NOKEYMOVE option, 251
ORDER= option, 249

UNIVARIATE procedure, FREQ statement, 251
UNIVARIATE procedure, HISTOGRAM

statement, 251
ALPHA= option, 259, 347
ANNOTATE= option, 429
BARLABEL= option, 259
BARWIDTH= option, 259
BETA option, 259, 346, 419
BETA= option, 259, 347
C= option, 259, 260, 358, 359, 426
CBARLINE= option, 260
CFILL= option, 260
CGRID= option, 260
CLIPREF option, 260
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CONTENTS= option, 260
CPROP= option, 417
ENDPOINTS= option, 260, 412
EXPONENTIAL option, 261, 348
FILL option, 261
FORCEHIST option, 262
FRONTREF option, 262
GAMMA option, 262, 348, 421
GRID option, 262
HANGING option, 262
HOFFSET= option, 263
INTERBAR= option, 263
INTERTILE= option, 417
K= option, 263, 358, 359
KERNEL option, 264, 358, 359, 426
LGRID= option, 264
LOGNORMAL option, 264, 349, 421, 427,

440
LOWER= option, 264
MAXNBIN= option, 264
MAXSIGMAS= option, 264
MIDPERCENTS option, 265, 415
MIDPOINTS= option, 265, 409, 412
MU= option, 265, 415
NENDPOINTS= option, 265
NMIDPOINTS= option, 266
NOBARS option, 266
NOPLOT option, 266
NOPRINT option, 266
NORMAL option, 266, 350, 415
NOTABCONTENTS option, 266
NROWS= option, 405
OUTHISTOGRAM= option, 266, 370, 412
OUTKERNEL= option, 371
PERCENTS= option, 266
PFILL= option, 266
RTINCLUDE option, 266, 412
SB option, 267, 351
SCALE= option, 348, 349, 419
SIGMA= option, 267, 347, 415
SU option, 267, 352
THETA= option, 267, 347, 419, 427, 440
THRESHOLD= option, 267, 349
UPPER= option, 267
VOFFSET= option, 268
VSCALE= option, 268
WBARLINE= option, 268
WEIBULL option, 268, 353, 421
WGRID= option, 268
ZETA= option, 268

UNIVARIATE procedure, ID statement, 269
UNIVARIATE procedure, INSET statement, 269

CFILL= option, 276
CFILLH= option, 276

CFRAME= option, 276
CHEADER= option, 276
CSHADOW= option, 276
CTEXT= option, 276
DATA option, 276
DATA= option, 271
FONT= option, 277
FORMAT= option, 277
HEADER= option, 277
HEIGHT= option, 277
NOFRAME option, 277
POSITION= option, 277
REFPOINT= option, 277

UNIVARIATE procedure, OUTPUT statement,
278, 313

OUT= option, 278
PCTLNAME= option, 281
PCTLPRE= option, 281
PCTLPTS= option, 280

UNIVARIATE procedure, plot statements, 315
ALPHADELTA= gamma-option, 315
ALPHAINITIAL= gamma-option, 315
ANNOKEY option, 315
ANNOTATE= option, 315
CAXIS= option, 315
CDELTA= option, 315
CFRAME= option, 315
CFRAMESIDE= option, 316
CFRAMETOP= option, 316
CHREF= option, 316
CINITIAL= option, 316
COLOR= option, 316
CONTENTS= option, 316
CPROP= option, 316
CTEXT= option, 317
CTEXTSIDE= option, 317
CTEXTTOP= option, 317
CVREF= option, 317
DESCRIPTION= option, 317
FITINTERVAL= option, 317
FITMETHOD= option, 317
FITTOLERANCE= option, 317
FONT= option, 317
HAXIS= option, 317
HEIGHT= option, 317
HMINOR= option, 318
HREF= option, 318
HREFLABELS= option, 318
HREFLABPOS= option, 318
INFONT= option, 318
INHEIGHT= option, 318
INTERTILE= option, 318
L= option, 319
LHREF= option, 319
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LVREF= option, 319
MAXITER= option, 319
NAME= option, 319
NCOLS= option, 319
NOFRAME option, 319
NOHLABEL option, 319
NOVLABEL option, 319
NOVTICK option, 319
NROWS= option, 320
OVERLAY option, 320
SCALE= option, 320
SHAPE= option, 320
TURNVLABELS option, 320
VAXIS= option, 320
VAXISLABEL= option, 320
VMINOR= option, 320
VREF= option, 320
VREFLABELS= option, 321
VREFLABPOS= option, 321
W= option, 321
WAXIS= option, 321

UNIVARIATE procedure, PPPLOT statement,
282

ALPHA= option, 287, 289
BETA option, 284, 287
BETA= option, 288
C= option, 288, 292
EXPONENTIAL option, 284, 288
GAMMA option, 285, 288
LOGNORMAL option, 285, 289
MU= option, 284, 290, 291
NOLINE option, 290
NORMAL option, 285, 290
SCALE= option, 289, 290
SHAPE= option, 289, 290
SIGMA= option, 284, 289–292
SQUARE option, 291, 460
THETA= option, 289–292
THRESHOLD= option, 289–291
WEIBULL option, 285, 291
ZETA= option, 290, 292

UNIVARIATE procedure, PROBPLOT
statement, 292

ALPHA= option, 298
BETA option, 298, 363
BETA= option, 298
C= option, 298
CGRID= option, 298
EXPONENTIAL option, 299, 363
GAMMA option, 299, 363
GRID option, 299
LGRID= option, 299
LOGNORMAL option, 299, 364, 435
MU= option, 299

NADJ= option, 300
NORMAL option, 300, 364
PCTLMINOR option, 300
PCTORDER= option, 300
RANKADJ= option, 300
ROTATE option, 300
SIGMA= option, 300, 435
SLOPE= option, 301
SQUARE option, 301, 435
THETA= option, 301
THRESHOLD= option, 301
WEIBULL option, 302, 365
WEIBULL2 option, 365
WEIBULL2 statement, 302
WGRID= option, 302
ZETA= option, 302

UNIVARIATE procedure, PROC UNIVARIATE
statement, 231

ALL option, 232
ALPHA= option, 233
ANNOTATE= option, 233, 368
CIBASIC option, 233, 395
CIPCTLDF option, 233
CIPCTLNORMAL option, 234
CIQUANTDF option, 397
CIQUANTNORMAL option, 234, 397
DATA= option, 234, 368
EXCLNPWGT option, 234
FREQ option, 234, 384
GOUT= option, 234
IDOUT option, 234
KEYLEVEL= option, 407
LOCCOUNT option, 234, 401
MODES option, 234, 380
MU0= option, 235
NEXTROBS= option, 235, 382
NEXTRVAL= option, 235, 382
NOBYPLOT option, 235
NOPRINT option, 235
NORMAL option, 235
NORMALTEST option, 235
NOTABCONTENTS option, 235
NOVARCONTENTS option, 235
OUTTABLE= option, 236, 372
PCTLDEF= option, 236, 326
PLOT option, 385
PLOTS option, 236
PLOTSIZE= option, 236
ROBUSTSCALE option, 236, 399
ROUND= option, 236
SUMMARYCONTENTS= option, 237
TRIMMED= option, 237, 399
VARDEF= option, 237
WINSORIZED= option, 238, 399
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UNIVARIATE procedure, QQPLOT statement,
303

ALPHA= option, 308
BETA option, 308, 363
BETA= option, 308
C= option, 308, 454
CGRID= option, 308
EXPONENTIAL option, 309, 363
GAMMA option, 309, 363
GRID option, 309, 310, 452
LABEL= option, 310
LGRID= option, 309, 310
LOGNORMAL option, 309, 364
MU= option, 309, 444
NADJ= option, 310, 360
NORMAL option, 310, 364
PCTLAXIS option, 310, 367, 452
PCTLMINOR option, 310
PCTLSCALE option, 310, 367
RANKADJ= option, 310, 360
ROTATE option, 311
SIGMA= option, 311, 444, 447
SLOPE= option, 311
SQUARE option, 312, 444
THETA= option, 312
THRESHOLD= option, 312
WEIBULL option, 312, 365, 454
WEIBULL2 option, 365
WEIBULL2 statement, 312
WGRID= option, 313
ZETA= option, 313, 447

UNIVARIATE procedure, VAR statement, 313
UNIVARIATE procedure, WEIGHT statement,

313
UPPER= option

HISTOGRAM statement (UNIVARIATE),
267

URC option
OUTPUT statement (FREQ), 85

VAR statement
CORR procedure, 16
UNIVARIATE procedure, 313

VARDEF= option
PROC CORR statement, 14
PROC UNIVARIATE statement, 237

VAXISLABEL= option
plot statements (UNIVARIATE), 320

VMINOR= option
plot statements (UNIVARIATE), 320

VOFFSET= option
HISTOGRAM statement (UNIVARIATE),

268
VREF= option

plot statements (UNIVARIATE), 320
VREFLABELS= option

plot statements (UNIVARIATE), 321
VREFLABPOS= option

plot statements (UNIVARIATE), 321
VSCALE= option

HISTOGRAM statement (UNIVARIATE),
268

W= option
plot statements (UNIVARIATE), 321

WAXIS= option
plot statements (UNIVARIATE), 321

WBARLINE= option
HISTOGRAM statement (UNIVARIATE),

268
WEIBULL option

HISTOGRAM statement (UNIVARIATE),
268, 353, 421

PROBPLOT statement (UNIVARIATE),
302, 365

QQPLOT statement (UNIVARIATE), 312,
365, 454

WEIBULL2 option
PROBPLOT statement (UNIVARIATE),

302, 365
QQPLOT statement (UNIVARIATE), 312,

365
WEIGHT statement

CORR procedure, 16
FREQ procedure, 111
UNIVARIATE procedure, 313

WGRID= option
HISTOGRAM statement (UNIVARIATE),

268
PROBPLOT statement (UNIVARIATE), 302
QQPLOT statement (UNIVARIATE), 313

WINSORIZED= option
PROC UNIVARIATE statement, 238, 399

WITH statement
CORR procedure, 16

WTKAP option
EXACT statement (FREQ), 80
OUTPUT statement (FREQ), 85
TEST statement (FREQ), 111

ZEROS option
WEIGHT statement (FREQ), 112

ZETA= option
HISTOGRAM statement (UNIVARIATE),

268
PROBPLOT statement (UNIVARIATE), 302
QQPLOT statement (UNIVARIATE), 313,

447
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