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General Introduction

Mathematics is nothing if not
a historical subject par excellence.

— Gian-Carlo Rota, Indiscrete Thoughts, p. 101

In the AMS series What’s Happening in the Mathematical Sciences, issue No. 5
(2002) includes a lively account of recent results in celestial mechanics under
the title “A Celestial Pas des Trois”. Therein the author, Barry Cipra, reiterates
the observation “ . . . the only part of Celestial Mechanics that is completely
understood is the motion of two bodies” [C2, p. 72]. The same survey article
recounts the “choreographies” recently discovered for the three-body problem
— and also for the many-body problem — obtained through a combination of
mathematical analysis and computer simulation. The number of new solution
configurations of various patterns now runs into the millions [C2, p. 70].

In a larger frame, the story of the subject area over three centuries, with
a particular weighting on developments since Poincaré, is engagingly told in
Celestial Encounters by Diacu and Holmes (1996) [D3]. Their survey has a sharp
focus on analytic developments over the latter half of the twentieth century, of
which it gives an excellent account, both technically and historically. In spite of
the intense progress on both fronts, analytical and computer-based simulation,
the three-body problem — and in particular the restricted three-body problem
— both remain far from being “completely understood.” Such a claim would
be possible only when there is a complete, explicit description of all solution
forms.

Intermediate between the (integrable) two-body problem and the noninte-
grable restricted three-body problem sits the problem of a body moving in the
gravitational field of two fixed attracting centers. This problem — the “two-
fixed-center problem” — was shown to be integrable, first by Euler in the years
1760–65 [E2: d,e] and also in the slightly later work (1766–69) of Lagrange [L2:
a,b]. While Euler and Lagrange held each other in the highest mutual regard,
we shall presently observe, in connection with their interest in this problem,
that they express views that are in marked contrast — in fact, quite polarized.
These contrasting attitudes have had their respective adherents in the genera-
tions since their time.

Over almost two and one-half centuries this problem has received attention
that, although occasionally quite intense, has nevertheless been somewhat in-
termittent, with intervals during which no interest is evident. This may, at

© Birkhäuser Boston, a part of Springer Science + Business Media, LLC 2008 
1D. Ó Mathúna, Integrable Systems in Celestial Mechanics, doi: 10.1007/978-0-8176-4595-3_0, 



2 Ch 0 General Introduction

least partly, follow from some lingering discomfort with the artifice of a con-
figuration of two fixed centers of gravitational attraction. However, it has been
observed — and more than once — that in the case of the planar restricted
three-body problem, if one considers the ratio of the mean motion of the pri-
maries to the mean motion of the planetoid, then, in the limit as this ratio
tends to zero, one has the planar problem of two fixed centers. The latter
problem may, therefore, serve as a natural platform, providing a basis of ap-
proach to the restricted three-body problem. However, in the present work
we stop short of that consideration; our aim is confined to the derivation of
explicit representations for the solutions of the integrable problems.

Closely related to the two-fixed-center problem is a problem now identified
with the dynamics of the near-earth satellite. Considering the separation pa-
rameter characterizing the distance between the two attracting centers, if one
replaces the square of this parameter by its negative, one still has an integrable
dynamical problem and a gravitational field that gives an excellent approxima-
tion to the gravitational field of the earth. Because of its specific significance,
and also for the distinct features in the representation of the solution, it merits
the separate treatment given to it here.

Following well-established tradition, we refer to the analysis of the dynam-
ics of the two-body problem as the Kepler problem. The dynamical problem
for the gravitational field of two fixed attracting centers we refer to as the
Euler problem: Euler was the first on record to effect the separation of the
problem, though Euler himself states that the problem had received attention
from many of the “summi ingenii” of his time. The integrable problem associ-
ated with the earth-satellite was first recognized and given its present form by
Vinti, and we refer to it as the Vinti problem.

The integrable problems of celestial mechanics are easily counted, namely,

I the Kepler problem

II the Euler problem

III the Vinti problem

with the latter two being transforms of each other.
We now give a brief historical survey of the evolution of these problems.

Background Survey

I The Kepler Problem

The conic section solutions to the Kepler problem were arrived at by Newton
(Principia, 1687) through purely geometrical methods, making no appeal to
either differential or integral calculus. His procedure is discussed in the paper
by Hauser and Lang [H2], where it is emphasized that “Greek geometry is all
that is required, without any use of vector analysis or calculus.”
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In a communication to Johann Bernoulli in 1710, Jacob Hermann [H3] pro-
posed an analytic approach to the problem, which was quickly followed by
the fuller treatment in Bernoulli’s response [B2]. In both cases the geometrical
configuration and energy considerations are used to establish the first con-
stant of the motion: the subsequent analysis is essentially an exercise in the
integral calculus. While Hermann’s paper is extremely brief, the framework of
the procedure is fully laid out; as he overlooked one constant of integration,
his solution is accordingly deficient. In this paper of Hermann’s, the Newto-
nian law of motion is set down in differential terms — apparently for the first
time [S4]. The response of Johann Bernoulli gives a full and detailed analysis,
and therein Bernoulli points out that, except for supplying the missing con-
stant, his analysis follows the pattern laid out by Hermann ( . . . “pour le reste,
je le fais comme vous”). The analysis was further amplified in the paper by
Varignon [V1].

For comparison with a later discussion of the Euler problem, we here ob-
serve that at a certain point in Bernoulli’s reduction, the separated integral
appears with an integrand that is the reciprocal of the square root of a quartic
from which the linear and constant terms are both absent: this latter feature
permits integration in terms of elementary (trigonometric) functions. Also im-
plicit in Bernoulli’s reduction is the representation of the solution in terms of
an angle — a feature that was given its full explicit form a generation later
in the comprehensive analysis by Euler [E2, a,b,c], where the solution is ex-
pressed in terms of trigonometric functions of the true anomaly — what has
become the standard form. These developments are discussed in the account
by Speiser [S4], previously cited. The transformation of the independent vari-
able from time to the true anomaly is what would later be recognized as a
regularizing transformation.

Subsequent analytic investigations of the Kepler problem would include
both the generalization and extension of the spatial context. The fact that the
closed periodic orbits survive in a space of constant curvature — be it positive
or negative — was first explored by Paul Serret [S1] and later by Appel [A6] and
Liebmann [L5]. These developments are reviewed in the survey by Kozlov and
Harin [K3] and note should also be taken of the later paper of Kozlov [K2].

The Kepler problem in a general n-dimensional Euclidean space has been
investigated by Moser: following the introduction of the regularizing transfor-
mation, he finds that “the energy surface is a smooth manifold on which, for
negative energy, the closed orbits provide a fibration” [M1]. Other procedures
exploring the regularization potentialities have received attention: we refer,
in particular, to the book by Stiefel and Scheiffele [S6], where the focus is on
spinor regularization, and also to the detailed exploration and results recorded
by Souriau [S3].

An alternative perspective may be found in the overview by Albouy in the
Recife Lectures 2002 [A3]: it includes further aspects of the history of this most
unusual problem, which has every possible degeneracy. Lastly, the exhaustive
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treatment of the Kepler problem in all its aspects by Cordani [C4] includes a
comprehensive bibliography.

II The Euler Problem

In the gravitational context, the next “larger” problem, having the Kepler prob-
lem as the degenerate case, is the problem of the motion of a body in the
gravitational field of two fixed attracting centers. This problem collapses on to
the Kepler problem when the separation parameter measuring the distance be-
tween the two attracting centers tends to zero. Cognizance of this requirement
provides the motivation for the approach followed in the present work.

We give the outline of the history of this problem in several stages.

The Eighteenth Century

(i) Euler (1760–67): The work of Euler on this problem is recorded in the series
of papers in the 1760s [E2, d,e], wherein there is a strong plea for attention to
the significance of the problem — the solution of which would provide the ba-
sis for further potential developments in astronomy [E2:e(ii), p. 153]. It would
appear that Euler saw possible applications in the development of lunar the-
ory — and there is explicit mention of “Satelliti Terrae” [E2:e(i), p. 208]. He also
mentions that the problem had attracted the attention of some of the great-
est analysts of his time — “summi ingenii” — without success. In the printed
record, however, Euler has unquestioned priority for this problem.

Having formulated the problem in a Cartesian coordinate framework, Euler,
exhibiting that ingenuity of which he was master, shows by a series of quite
involved transformations that the problem can be put in a separated form.
Each of the separated integrals involves the reciprocal of the square root of a
general quartic expression. The second integration he cannot effect by means
of any of the (then) known functions, but he expresses the hope that some
light may be thrown on the solution by means of approximate evaluations
“per arcus sectionum conicarum” — he recognizes that he has an elliptic inte-
gral. Several of his contributions in the subsequent issues of Novi Commentarii
Petropolitanae are directed at the evaluation of such integrals.

Of the three papers dealing with the dynamical problem of two fixed cen-
ters, the earlier ones [E2:d,e(i)] have their focus on the planar case: having
achieved separation by that remarkable sequence of transformations, Euler
then explores several special cases. In the later paper [E2:e(ii)], which also
aims to include the three-dimensional case, Euler, after effecting the reduc-
tion, then proposes a “methodus succintior” for achieving separation. Using
notation different from that of Euler, we denote the distance of the moving
body from the respective centers by r1 and r2: Euler introduces the derived
coordinates (called r and s respectively by Euler), which we denote by ρ1 and
ρ2, by setting

ρ1 = 1
2(r1 + r2), ρ2 = 1

2(r1 − r2) (0.1a,b)
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in terms of which the separation is promptly effected and the problem is re-
duced to

dρ1√
P1
= dρ2√

P2
(0.2)

where P1 and P2 are general quartic expressions of ρ1 and ρ2, respectively.
The ρ1 − ρ2 coordinate system is of particular significance and plays a cru-

cial role in the subsequent history of the problem. Clearly, the level surfaces
of such a coordinate system are the confocal ellipses and hyperbolae anchored
to the foci at the two fixed centers. It is a curious feature of Euler’s analysis
that these coordinates appear at a relatively late stage in his investigations.

(ii) Lagrange (1766–69, 1788): At about the same time, the problem had at-
tracted the attention of the much younger Lagrange [L2:a,b]. In contrast to
Euler’s plea for the crucial and basic relevance of the problem to the future de-
velopment of astronomy, Lagrange puts in an opening disclaimer regarding its
applicability to any real system and rests the case for attention to the problem
purely on its analytic interest [L2:b(v), p. 390]. However, there is no doubt that
Lagrange’s analysis and reduction are far more elegant and transparent than
that of Euler.

Lagrange, the natural analyst and pioneer of the generalized coordinate
system in the development of analytic mechanics, formulates the three-dimen-
sional problem in terms of the spherical polar coordinate system based at one
of the attracting centers. The system of differential equations resulting there-
from involves the two gravitational forces as well as the distance from the
other center. From appropriate combinations of these equations and the uti-
lization of the relation subsisting between the distances from the two centers
(which we term r1 and r2 as before), the reduction leads to second-order dif-
ferential equation for the radial coordinate r1, involving the respective gravi-
tational forces R1 and R2 and the two distance variables r1 and r2.

Symmetry considerations lead to a second similar differential equation for
r2 involving a corresponding expression wherein the gravitational forces R1

and R2 have been interchanged as also have been r1 and r2. Following a further
reduction of this pair of conjugate equations, Lagrange then introduces the
derived coordinates but without the 1

2 -factor included by Euler. Using notation
different from that of Lagrange, and referring to relations (0.1) above, we set

ρ∗1 = 2ρ1 = r1 + r2, ρ∗2 = 2ρ2 = r1 − r2 (0.3a,b)

and, in terms of the ρ∗1 −ρ∗2 coordinate system, Lagrange effects the separation
of the first integrals in a form identical with that of Euler (except for the 1

2 -
factor already noted).

Next, Lagrange shows that the integrability/separability is unaffected by
the addition of a nongravitational “elastic-type” force (varying linearly with
distance) directed toward the center point between the two attracting masses.
There is then noted the existence of some particular elliptic orbits around
each of the attracting masses — a phenomenon that Lagrange understandably
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records as “very remarkable” [L2, b(v), p. 397]. There follows a discussion of
some “time of traverse” features of particular orbits in relation to some general
results of Lambert [L1].

Lagrange’s derivation is remarkable for its clarity and the general elegance
of its presentation. We record verbatim some of Lagrange’s concluding re-
marks in his treatment of the Euler problem, from the English translation by
Boissonade and Vagliente [L2, b(v), p. 400] of the second edition [L2, b(ii)].

The problem which we just solved was first solved by Euler for the case where
there are only two fixed centers which attract inversely proportional to the
square of the distances and where the body moves in plane containing the
two centers (Mémoires de Berlin for 1760). His solution is specifically remark-
able for the skill he has shown in using various substitutions to reduce the
differential equations to the first order and to integration. These differential
equations could not be solved by known methods because of their complexity.

By giving a different form to these equations, I obtained directly the same
results and I was even able to generalize them to the case where the curve is
not in the same plane and where there is also a force proportional to the dis-
tance and directed toward a fixed center located in the middle of the two other
centers. The reader should refer to the Fourth Volume of the old Mémoires de
Turin, from which the preceding analysis is taken and in which the case is
found where one of the centers is moving toward infinity and the force di-
rected toward this center becomes uniform and acts along parallel lines. It
is surprising that in this case the solution is not greatly simplified. Only the
radicals, which enter in the denominators of the individual equations, contain
only the third degree of these variables rather than the fourth degree, which
also makes their integration dependent on the rectification of conic sections.

This latter modification of the physical problem might even find an application
(the Stark effect), a century after Lagrange had written his last word.

(iii) The Coordinate System: Before we close our survey of the eighteenth cen-
tury, it is appropriate to add a further comment on the coordinate system.

The coordinate system (r1, r2), on which Lagrange based his formulation
and which Euler had eventually recognized as a basis for his “methodus suc-
cinctior” leading to separation, may by its nature be termed the bipolar coor-
dinate system. Both of the derived systems (ρ1, ρ2) and (ρ∗1 , ρ

∗
2 ) are elliptic

coordinate systems: these two systems are identical except for the 1
2 -factor,

and we shall confine our attention to the (ρ1, ρ2) system. We shall refer to this
system as the Euler–Lagrange elliptic coordinate system or more frequently as
the EL elliptic coordinate system.

This coordinate system plays a central role in the subsequent history of the
problem. It is not surprising that this should be so, as this system — or some
simple variant thereof — is necessary to facilitate separation. However, the
accepted centrality of its role in effecting the transition to the first integrals
may also have precluded the possibility of effecting the second integration to
yield a general solution. This is an issue to which we shall return.
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The Nineteenth Century

(i) Lagrange/Legendre: With the appearance of Lagrange’s landmark work Me-
chanique Analytique in 1788, the problem and its analysis received a much
wider exposure. In the subsequent years, Lagrange devoted a good deal of his
time and attention to the revision and expansion of his magnum opus for a
second edition. This was prepared in two volumes — the first issued in 1811
and the second, which contained the work on dynamics, appeared in print a
few weeks after the author’s death in 1815.

Meantime, the problem had attracted the attention of Legendre, who had
independently observed and commented on the existence of elliptic orbits
about each of the primaries — the “very remarkable” phenomenon noted by
Lagrange. These and other observations were recorded by Legendre in his re-
spective treatises on calculus and elliptic functions [L3, (a) and (b)]. A genera-
tion later, these curious orbits would be recognized as particular cases of the
consequences of what became known as Bonnet’s theorem [B3].

(ii) Jacobi: The next milestone in the history of the Euler problem is marked
by the investigations of Jacobi, as recorded in his lecture course at the Univer-
sity of Königsberg. Following the appearance of Hamilton’s “General Method”
in 1834–35 [H1], Jacobi promptly developed the general procedure for the anal-
ysis of dynamical systems through a first-order partial differential equation,
since known as the Hamilton–Jacobi equation and procedure. He demonstrated
the method in his lecture courses. The lectures he delivered at Königsberg in
1842–43 were recorded by C.W. Borchardt and were published, under the edi-
torship of A. Clebsch, over two decades later in 1866 [J1].

In his analysis of the Euler problem, Jacobi takes as his framework the bipo-
lar coordinate system as laid out by Lagrange and formulates the Hamilton–
Jacobi equation for the problem in these coordinates. Then transforming to the
EL coordinate system, he is led to the separated form of the Hamilton–Jacobi
differential equation (lecture 25).

Motivated by the larger context of dynamical systems, extending beyond
the confines of celestial mechanics, Jacobi is led to investigate the separation
issue. In the absence of any general method, he must pursue a partially inverse
procedure — “on finding a remarkable substitution, look for the problems to
which it can be applied.” In the next three lectures (26–28), he introduces and
develops a general system of coordinates, since known as Jacobi’s ellipsoidal
coordinates, and points out their applicability to a number of identified prob-
lems. Specifically, he frames the scheme to investigate the motion of a particle
on a general ellipsoid in Rn.

Having noted the particular form taken by Jacobi’s ellipsoidal coordinates
in two- and three-dimensional Euclidean space, he then returns to the Euler
problem (lecture 29). The planar form of Jacobi’s elliptic coordinates, denoted
by (λ1, λ1), is related to the EL elliptic coordinates (ρ1, ρ2) as follows:

1
2(r1 + r2) = ρ1 =

√
a+ λ1, 1

2(r1 − r2) = ρ2 =
√
a+ λ2 (0.4a,b)
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where a is the length parameter of the Jacobi system. He then demonstrates
the separability of the Hamilton–Jacobi partial differential equation for the
Euler problem in the (slightly more general) Jacobi elliptic coordinate system,
before finally reverting to the EL elliptic coordinate system for the expression
of the first integrals.

(iii) Liouville: Influenced by the ideas of Jacobi, Liouville recognized the rel-
evance of the essential concepts to the utilization of general orthogonal co-
ordinates in the exploration of geodesics on the general triaxial ellipsoid [L6,
a]. In line with that analysis, he investigated the parallel applicability to the
Lagrangian formulation of dynamical systems. The crucial feature was separa-
bility, and it led to his formulation of sufficient conditions for separability of
dynamical systems in general orthogonal coordinates [L6, b].

Liouville noted that most of the known integrable problems met his condi-
tions for separability. In particular, he focused on the applicability to the Euler
problem, including the problem as extended by Lagrange, and cited the use of
Jacobi’s ellipsoidal coordinates. Moreover, in the planar case, he showed that
it admitted the additional modification by permitting the inclusion of an addi-
tional attractive force, normal to the axis defined by the two centers, and pro-
portional to the inverse of the cube of the distance therefrom. He also raises
the question of allowing the two primaries to rotate [L6, a(ii), pp. 440–1].

The attention of Jacobi and especially that of Liouville were crucial in main-
taining interest in the problem, and many of the investigations in the latter
half of the century reflect back to them. Liouville was probably the most influ-
ential mathematician of his time, and we shall see that in the ensuing years,
many of the points of note are linked to his former students and associates —
cf. Lützen [L8].

A curious feature of their work is that neither Jacobi nor Liouville made any
move toward the second integration for a complete solution; we shall return
to this point later.

(iv) J.A. Serret, J.L.F. Bertrand, J.G. Darboux: Also in the 1840s, Lagrange’s
work had attracted the attention of the young Joseph Alfred Serret1 — a stu-
dent of Liouville. In his thesis, presented at the Faculty of Sciences at Paris,
he pointed out that part of Lagrange’s analysis of the Euler problem needed
some clarification and amplification in order to give a rigorous treatment and
a satisfactory derivation of the results: cf. [L2, b(v), note 26, p. 590].

During the same decade, when decisions were being made for a third edi-
tion of Lagrange’s Mécanique Analytique, the one chosen as editor was Joseph
Bertrand — another protegé of Liouville. Bertrand prepared a significantly ex-
panded edition with copious notes on the more recent developments — specifi-
cally, the Hamilton–Jacobi theory as well as the results of Poisson and Liouville.
In the discussion of the Euler problem, Bertrand included the above-mentioned
modifications and clarifications of J.A. Serret. The third edition, in two vol-
umes, was published in Paris in the years 1852–55.

1 Joseph Alfred Serret and Paul Serret, previously cited [S1], were brothers.
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As already noted, the lectures of Jacobi appeared in print in Berlin in 1866.
Later the complete works of Jacobi were prepared under the general editorship
of E. Lettner. These were published in Berlin in 1884; they included a reissue
of the Königsberg lectures with a foreword by K.T. Weierstrass.

Meanwhile, the publication of the complete works of Lagrange was under-
taken by Le Ministère de l’Instruction Publique, with Gauthier-Villars (Paris) as
Imprimeur-Libraire. The project (Oeuvres de Lagrange) comprised 14 volumes
that appeared over the years 1867–92. The general editor was J.A. Serret who,
by the time of his death in 1885, had prepared volumes I–X and seen them
through to publication. Volumes XI and XII constitute the fourth edition of
Mécanique Analytique under the editorship of Jean Gaston Darboux, and these
made their appearance in the anniversary year 1888. The final two volumes,
which deal with the correspondence of Lagrange, were edited by L. Lafaune
and appeared in 1892.

It would seem that these publications may have led to a revival of inter-
est in the works of Liouville. In particular, there appeared the investigations
of Stäckel on separability in 1890 and 1891 [S5] and the subsequent work
of Levi-Civita [L4] in 1904. In Stäckel’s analysis, it is shown that for general
orthogonal coordinates, Liouville’s requirements for separability are both nec-
essary and sufficient, while (independently) Levi-Civita has shown that if the
potential depends on all coordinates, then for the system to be separable these
coordinates must be orthogonal. The term “Liouvillian” has since been applied
to many systems satisfying “Liouville’s conditions” in a variety of forms more
restrictive than that of Liouville’s general formulation [L8, pp. 704–5].

In 1889 appeared the work of Velde [V3], which is a reconsideration of a
form of the generalization of the Euler problem as formulated by Liouville.
More significant is the analysis of Darboux [D1], which appeared in 1901.
Therein it is shown that separability, in the EL elliptic coordinate system,
persists for the Euler problem if there are added two further complex-valued
masses that are conjugates of each other and situated respectively at the imag-
inary foci of the elliptic coordinate system. This extension has relevance to the
Vinti problem to be discussed presently.

For celestial mechanics, the end of the century is marked by the massive
investigations of Poincaré [P3]; however, there is no indication that the Euler
problem held any interest for him.

The Twentieth Century — and Later

(i) Charlier, Hiltebeitel, Plummer : The opening decade of the twentieth cen-
tury brought the two-volume treatise on celestial mechanics by Charlier [C1],
the volumes appearing respectively in 1902 and 1907. The first volume is de-
voted to analysis while the second is concerned with specific problems in as-
tronomy. In volume one, there is a thorough investigation of the Euler prob-
lem — the first such thorough treatment since that given in the lectures of
Jacobi [J1] a half-century earlier.
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It is worth paying particular attention to the layout of Charlier’s first vol-
ume. Following the introduction of Lagrangian mechanics and the separability
theorem of Liouville, Charlier immediately cites the Euler problem in EL elliptic
coordinates as an example for the applicability of the latter theorem of Liou-
ville — all in the first chapter. The second chapter introduces the Hamilton–
Jacobi procedure and, following the determination of the separability criterion
and the citation of Stäckel’s theorem, moves to an investigation of periodic
solutions. The third chapter is devoted entirely to the Euler problem for the
various ranges (negative, zero, and positive) of the energy constant. Here the
analysis is particularly focused on the possible ranges for the zeros of the
relevant quartics appearing in the elliptic integrals. Examples are cited and
samples of typical orbits for specific ranges are illustrated. Not until chapter
four is the two-body (Kepler) problem discussed. This is followed in chapter
five by an analysis of the three-body problem. The later chapters six and seven
deal with perturbation theory.

Thus, in Charlier’s presentation, the Euler problem has priority and takes
center stage, with the Kepler problem taking a secondary role as the degener-
ate case. The significance of this unique feature of Charlier’s approach does
not seem to have drawn much comment.

A few years later in 1911, the paper by Hiltebeitel [H4] includes a detailed
discussion of the Euler problem and its generalizations. Therein may be found
the general formulation where the cases treated by Darboux, Liouville, La-
grange, and Euler can be seen in the context of the general problem, each one
of those mentioned being a particular case of the preceding one. The analysis
follows Charlier in its concentration on the ranges for the roots of the relevant
quartics; again examples are cited and some typical orbits are illustrated.

In Plummer’s treatise [P2] the Euler problem makes a brief but significant
appearance. At the end of his discussion of the restricted three-body problem,
he notes that if in the reduced equations, one sets the mean motion of the
primaries to zero, one obtains the separated form of the Euler problem. It is
convenient to quote his own words:

The other case represents the problem of two centres of attraction fixed in
space, so that n = 0. Then the equations become simply

d2u
dT 2 = (μ − ν)c sinu− c2h sin 2u

d2 v
dT 2 = (μ + ν)c sinhv − c2h sinh 2v.

Here the variables u,v are separated and the equations lead immediately to
a solution in elliptic functions. The comparison of this problem with the sim-
plest case of the problem of three bodies is instructive as to the difficulty of
the latter.

The latter remark is worth bearing in mind for its (however slim) acknowledg-
ment of the significance of the Euler problem.
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The comment that the separated equations “lead immediately to a solution
in elliptic functions” is typical of what is generally said — if anything at all
is said — by the several authors at this point where separation of the first
integrals has been achieved. In the various textbooks issued throughout the
twentieth century, the reader is told that the solution of the Euler problem
is expressible in terms of elliptic functions, without any specification of what
type of elliptic function or any indication of how such a form is to be attained.
As will be noted presently, there is one textbook that at least partially breaks
this pattern in that it identifies the functions as those of Jacobi — but without
any indication of how this is to be done; and that text appears in the twenty-
first century [C3].

(ii) The Quantum Connection — and Some Corrections: Returning to the chro-
nology, in the 1920s the Euler problem received attention from another quar-
ter. Within a decade of the appearance of Bohr’s quantum theory, the molecu-
lar analog of the Euler problem was being explored by two young students. The
quantum problem is that of the hydrogen molecule ion H+2 and the students
were K.F. Niessen [N1, 1923] at Utrecht and W. Pauli [P1, 1922] at Münich. In
Pauli’s work, the EL elliptic coordinates are normalized with the separation
parameter. In both cases, the authors rely on the lectures of Jacobi and on
Charlier’s treatise; the several types of orbit are classified and energy calcula-
tions are made for particular orbits. Their work was noted by Sommerfeld in
the fourth edition of his Atombau und Spectralinien (1924) and also in Born’s
Vorlesungen über Atommechanik (1925), where the discrepancies between en-
ergy calculations and the measured values are noted. Further work was done
by Teller, Burrau, Richardson, and others. We shall not attempt to do justice to
this story; it is ably told in the biography of Pauli by Charles Enz [E1, pp. 63–
70]. Therein it is noted that the H+2 problem is both “the simplest molecular
problem” and also the most complicated problem that the old quantum theory
could handle.

Shortly thereafter, in the USSR it was observed that there were some inac-
curacies in Charlier’s analysis of the Euler problem. This appeared in the 1927
paper of Tallquist [T1] who besides making the appropriate corrections in the
work of Charlier also refined the classification of the orbits. This correction
and refinement was further extended in the following decade in the work of
Badalyan [B1, 1934].

(iii) Prange, Whittaker, Wintner : The general issue of integration procedures
in analytic mechanics was fully surveyed in the comprehensive article pre-
pared by Prange for the Encyclopedia of Mathematical Sciences appearing in
1933 [P4]. Also there appeared the textbooks of Whittaker and Wintner, re-
spectively. The first edition of Whittaker’s treatise appeared in 1904, with later
editions in 1917, 1927, and 1937; a German translation appeared in 1924. His
treatment of the Euler problem is brief: having reduced the problem to the
first integrals, he mentions that “the solution can be expressed in terms of el-
liptic functions” [W2, iv: p. 99]. In the book by Wintner (1947) [W3, pp. 145–7],
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following a formulation in terms of bipolar coordinates, the separation is ef-
fected by transforming to EL elliptic coordinates; some qualitative features of
the motion are mentioned.

(iv) 1950–2000: In the second half of the century, the major analytic advance
was initiated by Kolmogorov [K1, a,b], particularly in his celebrated 1954 ICM
address [K1, (b)], an English translation of which appears in Appendix D of
reference [A1].

In that 1954 address, Kolmogorov set out the structure of his approach in
the context of the classical integrable problems. In citing the Euler problem,
he notes that

the extremely instructive qualitative analysis of the problem on the attraction
by two immovable centers that was made in Charlier’s well-known treatise has
proven to be incomplete and partially erroneous. It has been twice corrected
[by Tallquist and Badalyan].

[A1, Appendix D; p. 269, footnote]

He then goes on to emphasize that

the real significance for Classical Mechanics of the analysis that I have made of
Dynamical Systems on T 2 depends on whether there are sufficiently important
examples of canonical systems with two degrees of freedom that cannot be
integrated by classical methods and in which invariant (with respect to the
transformation St) two-dimensional tori play a significant role.

[A1, Appendix D; p. 270]

The strength of his approach will reveal itself in the nonintegrable case. This
led to the major results of Arnold and Moser and what became known as the
KAM theory, recorded in the book by Abraham and Marsden (1967) [A1]. The
KAM theory is detailed in the textbook of Siegel•Moser (1971) [S2], and also in
that of Arnold, Kozlov, and Neishtadt (1985; 1993; 1997) [A8]. As previously
noted, the KAM theory is also discussed in the survey “Celestial Encounters”
(1996) [D1].

This may be an appropriate point to note that the first English translation
of the Mécanique Analytique of Lagrange appeared in 1996 [L2, b(v)].

Meantime, the previously noted idea of Paul Serret [S1] in generalizing the
context of the Kepler problem to a space of constant curvature was taken up
and applied to the Euler problem by Alekseev (1965) [A4], which led to further
exploration in that area, mainly within the USSR. The recent developments in
this area, together with an account of the work over the intervening years, may
be found in the book devoted to the topic by Vozmischeva (2003) [V5].

The advent of the space age in the 1950s with the consequent new interest
in space dynamics stimulated the quest for specific solutions and led to a
renewal of interest in the Euler problem. There were investigations in two areas
— an examination of specific cases of the Euler problem and an investigation of
the potential use of solutions of the Euler problem as a basis of approximation
for solutions of the restricted three-body problem. In the former, we mention
especially the work of Deprit (1962) [D2]; and in the latter where the solution
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of the Euler problem is to be used as an “intermediate orbit,” we note the work
of Arenstorf and Davidson (1963) [A7]. Considerable further work on these
lines is surveyed in the book by Szebehely (1967) [S8], which is particularly
informative especially in the notes and reference lists at the close of Chapters
3 and 10.

The Euler problem gets mention in the book by Arnold (1974) [A8] and gets
brief coverage in the book by Arnold, Kozlov, and Neishtadt (1985) [A9], where
there is strong emphasis on according due recognition to the achievement of
Jacobi [A9, p. 128].

(v) The Quantum Connection Revisited: Following the appearance of Wave Me-
chanics in the latter half of the 1920s, interest in the classical approach to
the hydrogen ion, as a basis for “semiclassical” quantization, seems to have
waned. After the lapse of one-half century, there appeared the curiously inter-
esting — and somewhat baffling — work of Strand and Reinhardt (1979) [S7].2

Therein the problem is normalized by the separation length (b) and formu-
lated in terms of the EL coordinate system — also normalized by b.3 We shall
presently discuss the limitations inherent in such a formulation. Here we con-
fine ourselves to the results presented in [S7].

The features of the work we wish to note are twofold:

1. the formulation incorporates the introduction of the regularizing transfor-
mation;

2. the solutions are presented in terms of Jacobian elliptic functions.

Following a discussion of the accessible/nonaccessible regions based on an
analysis of the quartics, the solution forms are then presented in terms of
Jacobian elliptic functions with the modulus expressed in terms of the roots
of the quartics. The solution forms for ρ2/b are given in relations (2.17) while
those for ρ1/b are given in relations (2.18).

Relation (2.17a) as it stands is baffling and defies any attempt to see how
it could arise; however, if it is taken that in that equation the symbol dn is a
misprint for what should read sn, then the two relations (2.17a,b) by appropri-
ate rescaling can be brought into conformity with the solution forms for the
case β = 0, presented in the present work, namely, relation (6.9) and (6.13) of
Section 6, Chapter 3.

Relations (2.18) for ρ1/b present other problems. The form (2.18b) given
for the case where two complex roots arise appears simpler than the form
(2.18a) given for the case of four real roots. Complex roots do not arise in
the planar case; in the analysis presented here, it is shown how the general
case can be reduced to the planar case (Chapter 4). If complex roots arise, it
is not clear how they give rise to a solution, simpler in form to that of the
planar case. Accordingly, it is not obvious what is the realm of relevance of the

2 This work has been brought to my attention by Professor A.J. Bracken of the University of
Queensland, which I gratefully acknowledge.

3 The authors use the symbol c for the separation length; for consistency with the notation of
the present work, we use the symbol b.
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solution form (2.18b). We concentrate therefore on the solution form (2.18a)
for the case where all four roots are real. Without giving any indication how
such a solution form could arise, the solution is presented as a quotient of
linear functions of the factor sn2 as a function of the half-argument; if one
notes that

sn2 1
2u =

1− cnu
1+ dnu

then clearly the solution form (2.18a) can be expressed as a quotient of lin-
ear functions of the elliptic functions cn and dn of the full argument. With
the appropriate rescaling of all the quantities involved, this solution could be
brought into conformity with the solution forms given in Chapter 3, e.g., rela-
tion (9.29) of Section 9 or (9A.33) of Section 9A, depending on the identity of
ξ2 and ξ3. However, the form in which the solution (2.18a) in [S7] is expressed
has the negative feature that in the Kepler limit as b tends to zero, two of the
roots tend to infinity as does also the left side ξ = ρ1/b. It is regrettable that
this work has been left in such an unattractive form — at least partly from the
choice of coordinate system and normalization procedure; further comment is
not possible without a clearer indication of how the solution was arrived at.

The authors provide “representative” trajectories for the planar case in
Figs. 7, 8, and 9 of [S7]. These correspond respectively to cases B1, B2, and
A4 of the solution forms presented in Chapter 3 of the present work. The tra-
jectories produced from the results of Chapter 3 for the appropriate values of
the relevant parameters can be compared with those of [S7]. Considering that
an initial point is not specified, the agreement is remarkable (see the figure
below). This would lend credence to the likelihood that the appearance of the
dn factor in relation (2.17a) of [S7] is a misprint.

This paper by Strand and Reinhardt is noted in the book by Gutzwiller
(1990) [G1], where the representative trajectories are reproduced and — per-
haps significantly — the solution forms are not exhibited. It is further re-
marked by Gutzwiller,

The solution of this problem can be rated, with only slight exaggeration, as
the most important in quantum mechanics, because if an energy level with a
negative value E can be found, the chemical bond between two protons by a
single electron has been explained.

It would appear that the interest from the Quantum Connection may match
that from the perspective of Celestial Mechanics.

(vi) 2000–Present: Returning to the classical context, we note the recent
(2004) work by Varvoglis, Vosikis, and Wodner [V2] wherein there is a classifi-
cation of orbits in accordance with a specified scheme. In particular, collision
orbits are identified and a transformation is proposed for the regularization
of close approaches to facilitate (numerical) integration.

Also in this context, we mention the (2004) analytic work by Waalkens,
Dullin, and Richter [W1], which identifies the foliation of phase space for the
Euler problem with arbitrary relative strength of the two centers — corre-
sponding to arbitrary values of the ratio β in the present work. This paper
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Representative trajectories from Strand and Reinhardt [S7], side by side with
corresponding trajectories derived from Chapter 3 of the present work.

M. P. Strand and W. P. Reinhardt:
J. Chem. Phys., Vol 70, No. 8, 15 April 1979
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[W1] as well as the previously cited [S7] both include reference lists to related
work.

Finally we come to the book by Cordani [C4] published in 2001. As would
be expected from the title, the concentration is on the Kepler problem. But
it is noted that the Kepler problem is also integrable in elliptic coordinates,
and at a later stage there is a discussion — though quite brief — of the Euler
problem as an integrable perturbation of the Kepler problem in these elliptic
coordinates. Having arrived at the first integrals, he states,

The point is to find a transformation w → z(w) such that the transformed
integral acquires the Legendre canonical form of an elliptic integral of the
first kind. . . . This last integral is solved invoking the inverse of Jacobi elliptical
functions.

But there is no indication of how this is to be done. The statement implicitly
acknowledges that the elliptic function solution form cannot be extracted from
the integrals expressed in terms of the system of elliptic coordinates used,
which is a form of the EL coordinate system with a normalized separation
constant.

In the subsequent discussion, Cordani mentions that the sought-for trans-
formation would depend on the roots of the quartic. There is then reference to
the computer program EULER, which is used to generate the orbits that are ex-
hibited. There are attractive illustrations of the orbits for the various ranges of
the energy values. For details on the computer program, the reader is referred
to the thesis of Codegoni at Milano (2000) [C3]. On the whole, this discussion
of Cordani is the most interesting for some time.

The problem of transforming the quartic to Legendre canonical form is the
crux of the matter. We shall return to this point later when we come to the aim
and outline of the present work.

III The Vinti Problem

The Vinti problem took its form in the series of papers by J.P. Vinti [V4] in the
years 1959–66. The motivation arose from the necessity to track Earth-orbiting
satellites launched from the space program. Vinti showed that the problem of
the earth satellite could be formulated as a dynamical problem wherein the
potential approximates the geopotential and where the Hamilton–Jacobi equa-
tion is separable. Later it was recognized as a transform of the Euler problem.
Furthermore, in its symmetric form (symmetry with respect to the equatorial
plane), the Vinti problem can be viewed as a particular case of Darboux’s gen-
eralization of the Euler problem [D1] already mentioned. However, there is no
indication in Darboux’s work that he was in any way aware of this potential
application. The priority here belongs to Vinti, who presented approximate
solutions to the problem in terms of infinite series. An alternative form of
solution was given by Izsak (1963) [I1].
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Some years after the appearance of Vinti’s analysis, corresponding results
appeared independently in publications in the USSR starting with the work of
Aksenev, Grebenikov, and Demin (1964) [A2].

In the late 1960s, an alternate solution form for the Vinti problem was pro-
posed by the present author [Ó M1]. With the analog for the Vinti problem of
the true anomaly serving as independent variable, the solution is presented
in terms of Jacobian elliptic functions of that generalized true anomaly. In
the case of two of the coordinates, this representation is exact, while for the
third coordinate, involving an elliptic integral of the third kind, an approxima-
tion procedure (in terms of the oblateness parameter) is necessary; the same
approximate procedure is applied to the “time-angle” relation. At the time, it
was assumed by the author that the idea would be taken up for application to
the Euler problem. That this has not happened is one of the reasons for the
present work.

The Vinti problem has continued to receive attention. We note in particular
the work by Alfriend, Dasenbrock, Pickard, and Deprit (1977) [A5], the paper
by Jezewski (1983) [J2], that of Livesey, Ó hÉighearta, and Vandyck (1994) [L7],
and the doctoral dissertation of Floria [F1] presented at the Universidad de
Valladolid in 1993.

Aim of the Present Work

The present work aims to show that the solutions to the three integrable prob-
lems specified (Kepler, Euler, Vinti) can be put in a form that admits the general
representation of the orbits and where all three share a definite pattern. In
the case of the Kepler problem, this form has been known for almost three
centuries from the work of Hermann, Bernoulli, and Euler. In its standard
form, that solution may be characterized as follows: with the true anomaly
as the independent variable, the solution forms for the three coordinates of
the spherical system are expressed in terms of trigonometric function of the
true anomaly. The solution is completed by the time-angle relation expressing
time in terms of elementary functions of the true anomaly.

Here we propose that with an appropriate generalization of the true anoma-
ly in each of the two problems of Euler and Vinti, and with the proper choice of
the coordinate system, each of the three coordinates can be expressed in terms
of Jacobian elliptic functions of the generalized true anomaly; this solution
form is also complemented by the appropriate generalization of the time-angle
relation, also involving Jacobian elliptic functions.

In the case of two of the coordinates, the representation is exact: the third
coordinate involving an elliptic integral of the third kind requires an approx-
imation procedure, which is clearly suggested by the context; the approxima-
tion procedure also applies to the time-angle relation. In each case, the form
of the solution permits the visual inspection of the manner in which the form
collapses onto that of the Kepler problem in the degenerate case.
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The question naturally arises as to why, in spite of the long history of the
Euler problem, this had not already been done. The answer would appear to
lie in two sources of “blockage” to the pursuit of such a solution form:

1. the normalization generally adopted
2. the coordinate system used.

With regard to the first point, those authors (e.g., Wintner) who normalize the
geometric configuration do so by means of the separation length, thus nor-
malizing the separation to unity. This practice has been established — even
embedded — in the standard analysis and reduction of the restricted three-
body problem. However, this normalization immediately locks the geometric
configuration in a form that precludes the observation of what happens when
the separation vanishes, that is, when the problem collapses to the Kepler
problem. This is not a desirable situation.

In the traditional reduction of the Kepler problem, the normalization is ef-
fected by means of the geometric constants manifested by the semi–latus rec-
tum and semimajor axis and the relation between them expressed through the
eccentricity. These length scales are the geometric reflection of the physical
constants of the motion, namely energy and angular momentum. In the case
of the Euler and Vinti problems, no such geometric interpretation is evident.
But there still are the two physical constants of motion — one again reflect-
ing the energy and the other still having the dimension of angular momentum
(but without the obvious physical interpretation). These constants permit the
definition of the corresponding length scales, facilitating the corresponding
normalization and a reduction that follows the pattern set in the Kepler prob-
lem. This is the route to be followed here.

The second suggested source of blockage — the coordinate system used
— is even more crucial. While it is recognized that the reduction to the first
integrals must be effected through some form of the EL elliptic coordinate
system, it needs also to be recognized that in the case of the vanishing of the
separation factor (thus degenerating to the Kepler case), we shall have

r1 → r , r2 → r so that ρ1 → r , ρ2 → 0 (0.5)

and clearly the coordinate system itself becomes degenerate. This feature im-
mediately precludes the possibility of any solution representation that would
allow inspection of the form taken by the solution in the degenerate case.

Accordingly, we here formulate the Euler and Vinti problems in a coor-
dinate system that we term the spheroidal coordinate system and which is
clearly recognizable as a deformation of the standard spherical coordinate
system. It is then necessary to transform to the EL coordinate system — or,
in this case, a variant thereof — in order to effect the separation of the first
integrals. But once the first integrals have been established, we revert to the
spheroidal system, where the reduction of the second integration to a com-
plete solution can be effected following clearly the pattern set in the Kepler
case. Transforming the reduced (first integral) equations to a form amenable
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to solution in terms of Jacobian elliptic functions (Legendre canonical form)
is then a strictly algebraic problem — though, in the general case, it is quite a
challenging exercise.

We have seen that in the middle of the nineteenth century the Euler prob-
lem had the attention of the two great masters of both analytic mechanics and
elliptic functions, namely Jacobi and Liouville. There is an irony in the fact that
neither of the two pursued the analysis to the second integration to express
the solution in terms of the functions named for the former.

Finally, in order to focus attention on the essential points of the procedure
in the present work, we confine our analysis exclusively to the case of nega-
tive energy, leading to bound orbits. The necessary adjustment for the cases
of zero and positive energy would follow the pattern long established in the
Kepler problem. The present derivation is confined to negative energy.

Outline of the Present Work

The present work takes the following form:

• Following a brief outline of Lagrangian mechanics in Chapter 1, we give in
Chapter 2 an analysis of the Kepler problem along the lines indicated with a
view to having the same reduction procedure applied to the Euler and Vinti
problems.

• Chapter 3, which may be considered the central chapter of the work, gives
a full analysis of the planar Euler problem, yielding an exact solution form in
terms of Jacobian elliptic functions complemented by the “time-angle” rela-
tion. The solution is a clear generalization of the form of the solution in the
Kepler case.

• Chapter 4 deals with the Euler problem in the three-dimensional context. It
is shown that, for two of the coordinates, the solution can by algebraic ma-
nipulation be reduced to the planar case. The formula for the third coordi-
nate (longitude) involving an elliptic integral of the third kind is shown to be
amenable to an approximation procedure.

• In Chapter 5, there is carried out a corresponding analysis and reduction of
the Vinti problem.

• Chapter 6 deals with certain orbits of the Vinti problem that require or merit
special attention.

In summary, once the essential features in the solution procedure for the
Kepler problem have been taken aboard, then, in the spheroidal coordinate
systems, the solutions for the Euler and Vinti problems, after the necessary
digression to achieve separation of the first integrals, can be derived in an
identical manner. These solution forms, expressed in terms of Jacobian ellip-
tic functions, besides exhibiting the orbit form, have the satisfying feature of
exhibiting the Kepler solution in terms of trigonometric functions as the de-
generate case.



1

Lagrangian Mechanics

Lagrange has perhaps done more than any other analyst
to give extent and harmony to such deductive researches,
by showing that the most varied consequences
respecting the motions of systems of bodies may be
derived from one radical formula; the beauty of the
method so suiting the dignity of the results, as to make
of his great work a kind of scientific poem.

— William Rowan Hamilton [H1, (a) p. 247]

1 Lagrangian Systems

We take as the basis of our analysis the Lagrangian formulation of Dynamical
Systems. When the energy of the system is resolved into its kinetic and poten-
tial components with the former denoted by T and the latter by V , then the
Lagrangian function is defined as the difference

L = T − V (1.1)

and the dynamical system is characterized by the minimization of the integral
of the Lagrangian function

δ
∫
L(qi, q̇i, t)dt = 0 (1.2)

where the Lagrangian is a function of the generalized position coordinates qi,
i = 1, . . . , n, and of the corresponding generalized velocity/momentum com-
ponents q̇i, i = 1, . . . , n, as well as of the time t.

In the class of problems with which we shall be concerned, the Lagrangian
does not involve the time explicitly, so that the variational characterization
has the form

δ
∫
L(qi, q̇i)dt = 0 (1.3)

which yields the system of variational equations

d
dt

(
∂L
∂q̇i

)
= ∂L
∂qi

(1.4)

termed the Lagrange equations of the system.
It may be immediately noted that
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dL
dt

=
n∑
i=1

[
∂L
∂qi

q̇i + ∂L
∂q̇i

q̈i
]

(1.5)

and if we use the Lagrange equations (1.4) to substitute for ∂L
∂qi , we find

dL
dt

=
n∑
i=1

[
q̇i

d
dt

(
∂L
∂q̇i

)
+ ∂L
∂q̇i

q̈i
]
=

n∑
i=1

d
dt

[
q̇i
∂L
∂q̇i

]
(1.6)

which, on integration, yields

n∑
i=1

q̇i
∂L
∂q̇i

− L = E (1.7)

where E is the constant of integration. In the case where the potential energy V
is independent of the velocity components, we have

T = T(qi, q̇i), V = V(qi) (1.8)

and there follows that

∂L
∂q̇i

= ∂T
∂q̇i

(1.9)

and equation (1.7) may be written

n∑
i=1

q̇i
∂T
∂q̇i

− (T − V) = E . (1.10)

In all cases under consideration in this work, the kinetic energy T is a homo-
geneous function of degree 2 in the velocity coordinates without cross-terms,
so that

n∑
i=1

q̇i
∂T
∂q̇i

= 2T (1.11)

and hence relation (1.10) reads

T + V = E (1.12)

and the constant of integration E measures the total energy of the system. The
above integral (1.12) is the energy integral.

2 Ignorable Coordinates

The case when a particular coordinate, which we take to be qn, does not appear
explicitly in the Lagrangian is worthy of special attention. In such a case, we
let the Lagrangian be denoted by L∗, and the nth Lagrange equation reads
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d
dt

(
∂L∗

∂q̇n

)
= ∂L∗

∂qn
= 0 (2.1)

so that, with cn denoting the constant of integration, there follows

∂L∗

∂q̇n
= cn . (2.2)

This latter equation can be used to solve for q̇n in terms of the remaining
coordinates, and we may write

q̇n = q̇n(q1, . . . , qn−1, q̇1, . . . , q̇n−1, cn) . (2.3)

We now consider the variation of the Lagrangian, which takes the form

δL∗ =
n−1∑
k=1

∂L∗

∂qk
δqk +

n−1∑
k=1

∂L∗

∂q̇k
δq̇k + ∂L

∗

∂q̇n
δq̇n (2.4)

which can be rearranged as

n−1∑
k=1

∂L∗

∂qk
δqk +

n−1∑
k=1

∂L∗

∂q̇k
δq̇k = δL∗ − ∂L

∗

∂q̇n
δq̇n

= δ
[
L∗ − q̇n ∂L

∗

∂q̇n

]
+ q̇nδ

(
∂L∗

∂q̇n

)
. (2.5)

We may now introduce the solution (2.3) for q̇n into the factor in square
brackets on the right of (2.5) to eliminate q̇n from this expression. The re-
sulting modified Lagrangian is a function of the quantities q1, . . . , qn−1, q̇1, . . . ,
q̇n−1, cn; denoting this modified Lagrangian by L(q1, . . . , qn−1, q̇1, . . . , q̇n−1, cn)
we recall (2.2), and a rearrangement of the right-hand side leads to the replace-
ment of (2.5) by

n−1∑
k=1

∂L∗

∂qk
δqk +

n−1∑
k=1

∂L∗

∂q̇k
δq̇k = δL+ q̇nδcn

=
n−1∑
k=1

[
∂L
∂qk

δqk + ∂L
∂q̇k

δq̇k
]
+ ∂L
∂cn

δcn + q̇nδcn .

(2.6)

As this relation must hold for arbitrary variations, it follows that

∂L
∂qk

= ∂L∗

∂qk
,

∂L
∂q̇k

= ∂L∗

∂q̇k
, k = 1, . . . , n− 1,

∂L
∂cn

= −q̇n . (2.7)

Hence the problem is reduced to a Lagrangian of (n − 1) position and ve-
locity variables, leading to the (n− 1) Lagrange equations

d
dt

(
∂L
∂q̇k

)
= ∂L
∂qk

, k = 1, . . . , (n− 1) (2.8a)
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complemented by the equation for the nth velocity component

q̇n = − ∂L∂cn . (2.8b)

This procedure, outlined above for one ignorable coordinate, can be extended
to any number of such coordinates.

3 Separable Systems

Our focus will be on integrable systems, and the most readily integrable class
includes those characterized as separable. In such cases each of the energy
functions (kinetic and potential) is the sum of distinct components, where ev-
ery component of the potential energy involves but one position coordinate,
and where every component of the kinetic energy involves but one position
coordinate together with the square of the associated velocity coordinate.

Accordingly the separable system may be characterized by the following
forms for the kinetic and potential energies:

T =
n∑
k=1

1
2uk(qk) · q̇2

k, V =
n∑
k=1

vk(qk) (3.1a,b)

where we have used the “barred” notation on the variables later to be trans-
formed. There follows

∂L
∂q̇k

= uk(qk) · q̇k,
∂L
∂qk

= 1
2u

′
k(qk) · q̇2

k − v′k(qk) (3.2a,b)

and hence, from (3.2a),

d
dt

(
∂L
∂q̇k

)
= d

dt
[
uk(qk) · q̇k

] = uk(qk) · q̈k +u′k(qk) · q̇2
k . (3.3)

Combining (3.2b) with (3.3), we have for the Lagrange equations

uk(qk) · q̈k +u′k(qk) · q̇2
k = 1

2u
′
k(qk) · q̇2

k − v′k(qk) (3.4)

or, after a rearrangement,

uk(qk) · q̈k + 1
2u

′
k(qk) · q̇2

k + v′k(qk) = 0 . (3.5)

If we multiply across by q̇k, we have

uk · q̇k · q̈k + 1
2u

′
k(qk) · q̇3

k + v′k(qk) · q̇k = 0 (3.6)

which may be rewritten

d
dt
[1

2uk(qk) · q̇2
k + vk(qk)

] = 0 (3.7)
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which integrates to yield

1
2uk(qk) · q̇2

k + vk(qk) = ck, k = 1, . . . , n (3.8)

where the ck are the constants of integration. If we sum this system of equa-
tions over the indices k = 1, . . . , n, we obtain, recalling (3.1),

T + V =
n∑
k=1

ck (3.9)

so that the constants of integration ck are subject to the constraint

n∑
k=1

ck = E (3.10)

implied by the energy integral (1.12).
Returning to equations (3.8), we may rearrange as follows:

q̇k =
√

2[ck − vk(qk)]
uk(qk)

. (3.11)

This leads to the procedure of integration when we rewrite it in the form

dt =
√

uk(qk)
2[ck − vk(qk)]

dqk . (3.12)

This form of the equation suggests the change of variable

dqk =
√
uk(qk)dqk or q̇k =

√
uk(qk) q̇k (3.13a,b)

and, if we further write

vk(qk) = vk(qk) (3.14)

then (3.12) reads

dt = dqk√
2[ck − vk(qk)] or t =

∫
dqk√

2[ck − vk(qk)] . (3.15a,b)

If the variables qk in relations (3.1) are replaced by the transformed vari-
ables qk, it is evident that we may write

T =
n∑
k=1

1
2 q̇

2
k, V =

n∑
k=1

vk(qk) . (3.16a,b)

Hence, for a separable system, there is no loss of generality in taking the en-
ergy in the forms (3.16) rather than in the forms (3.1).
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4 Liouville Systems

It was observed by Liouville1 that the class of separable systems of the
form (3.1) can be extended by a further generalization.

Having noted that there is no loss of generality in replacing a system of the
form (3.1) by one of the form (3.16), we now consider the system where

T = Q(q1, . . . , qn)
n∑
k=1

1
2 q̇

2
k, V = V(q1, . . . , qn) (4.1a,b)

and the Lagrange equations have the form

d
dt
[
Q(q)q̇k

] = ∂Q
∂qk

n∑
k=1

1
2 q̇

2
k −

∂V
∂qk

, k = 1, . . . , n . (4.2)

If we multiply across by 2Q(q)q̇k, we have

2Qq̇k
d
dt
[
Qq̇k

] = Q( n∑
k=1

q̇2
k

)
∂Q
∂qk

q̇k − 2Qq̇k
∂V
∂qk

(4.3a)

and, using (4.1a), = 2T
∂Q
∂qk

q̇k − 2Qq̇k
∂V
∂qk

(4.3b)

and, applying (1.12), = 2(E − V) ∂Q
∂qk

q̇k − 2Qq̇k
∂V
∂qk

(4.3c)

so that, on rearrangement, we have

d
dt
[
Qq̇k

]2 = 2E ∂Q
∂qk

q̇k − 2q̇k
∂(QV)
∂qk

. (4.4)

It is evident that for the integrability of equation (4.4), it suffices that both
Q and QV be expressible in separated form, namely,

Q(q1, . . . , qn) =
n∑
k=1

Qk(qk), QV =
n∑
k=1

vk(qk) . (4.5)

Then equation (4.4) can be replaced by

d
dt
[
Qq̇k

]2 = 2E dQk
dqk

q̇k − 2
dvk
dqk

q̇k

= 2
d
dt
[EQk − vk] (4.6)

which, on integration, yields

1
2Q

2q̇2
k −EQk + vk = ck, k = 1, . . . , n (4.7)

1 J. Liouville, Journal de Mathématiques, XIV (1849), p. 257. Actually, Liouville’s result is far
more general — see General Introduction and note reference [L8].
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where the ck are the constants of integration.
If we sum equations (4.7) over k = 1, . . . , n, we have

n∑
k=1

ck = Q2
n∑
k=1

1
2 q̇

2
k −EQ+QV

= QT −EQ+QV = Q(T + V −E) = 0 (4.8)

so that the energy integral (1.12) requires that the relation

n∑
k=1

ck = 0

must hold among the constants of the integrals (4.7).
Systems of the type (4.1) where Q and QV can be written in the form (4.5)

we term Liouville systems. When one comes to apply the procedure in specific
cases, the motivation is generally quite clear.
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The Kepler Problem

For the Newtonian 1/r 2 force law, a miracle occurs —
all of the solutions are periodic instead of just quasi-
periodic. To put it another way, the two-dimensional
tori are further decomposed into invariant circles. This
highly degenerate situation seems unbelievable from
the point of view of general theory, yet it is the most
interesting feature of the problem.

— Richard Moeckel, Bull. AMS., 41:1 (2003), pp. 121–2.
Review of Classical and Celestial Mechanics, the Recife
Lectures, Cabral and Diacu (eds.), Princeton University
Press, 2002.

A necessary preliminary to a full understanding of the Kepler problem is a full
familiarity with the geometric and analytic features of the conics — particu-
larly those of the ellipse.

1 Features of the Ellipse: Geometry and Analysis

Placing the origin at the center C , with X- and Y -coordinate axes coinciding
respectively with the major and minor axes of the ellipse, then in terms of
these Cartesian coordinates, the equation of the ellipse reads

X2

a2
+ Y

2

b2
= 1 (1.1)

where a and b measure the semimajor and semiminor axes, respectively. The
equation can be characterized parametrically in the form
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X = a cosE, Y = b sinE . (1.2)

The line PQ normal to the major axis through an arbitrary point P(X,Y)meets
the circumscribed circle at P0(X, Y0). With E denoting the angle subtended at
the center C between CP0 and CQ, the interpretation of (1.2) is clear, and
furthermore we see that

CQ = a cosE, P0Q = a sinE, PQ = b sinE . (1.3)

For the radius vector CP = R from the center to the arbitrary point P(X,Y) of
the ellipse, we have

R2 = X2 + Y 2 = a2 − (a2 − b2) sin2 E . (1.4)

The eccentricity e of the ellipse may be defined by

b2 = a2(1− e2) (1.5)

so that for (1.4), we may write

R2 = a2[1− e2 sin2 E] (1.6a)

or

R = a[1− e2 sin2 E]1/2 (1.6b)

as the equation for the ellipse in terms of the “eccentric angle” E.
For the corresponding equation in terms of center-based polar coordi-

nates (R, θ), we note

X = R cosθ, Y = R sinθ (1.7)

and equation (1.1) becomes

R2
[
b2

a2
cos2 θ + sin2 θ

]
= b2 (1.8)

which, on the introduction of (1.5) yields

R2[1− e2 cos2 θ] = a2(1− e2) (1.9a)

R = a
√

1− e2

[1− e2 cos2 θ]1/2
(1.9b)

as the required equation.
The point F(ae,0) is a focus of the ellipse. Moving the origin to the focus

through the translation

x = X − ae, y = Y (1.10)

the Cartesian equation (1.1) becomes
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(x + ae)2
a2

+ y
2

b2
= 1 . (1.11)

Substituting from (1.5) into (1.11) and rearranging yields

x2 +y2 = [a(1− e2)− ex]2 . (1.12)

We now introduce polar coordinates (r , f ) centered at the focus so that

x = r cosf , y = r sinf (1.13)

and relation (1.12) may be written

r = a(1− e2)− er cosf = e
[
a(1− e2)

e
− r cosf

]
. (1.14)

If we consider the line x = a(1 − e2)/e (parallel to the y-axis), which we call
the directrix, then the factor in square brackets on the right of (1.14) measures
the distance from an arbitrary point on the ellipse to the directrix. Hence equa-
tion (1.14) merely states that for an arbitrary point on the curve, the ratio of
the distance from the focus to the distance from the directrix is given by the
eccentricity e. This, in fact, can be taken as the general definition of a conic,
which for e < 1 is an ellipse, whereas for e > 1 it is a hyperbola. Returning to
(1.14), we note that it can be put in the neater — and possibly more recogniz-
able — form

r = a(1− e2)
1+ e cosf

(1.15)

which, with e < 1, we take as the standard equation for the ellipse.
For the corresponding relation in terms of the “eccentric angle” E,

r 2 = x2 +y2 = (X − ae)2 + Y 2

= X2 + Y 2 − 2aeX + a2e2

= R2 − 2a2e cosE + a2e2 .

(1.16)

Introducing R from (1.6) into (1.16) yields

r 2 = a2[1− e2 sin2 E − 2e cosE + e2] = a2[1− e cosE]2 (1.17)

so that

r = a[1− e cosE] (1.18)

as the sought-for relation.
For the ellipse, therefore, we note the following:

1. Equation (1.6) relates the center-based radius vector R at the point P to the
angle-parameter E, being the angle subtended at the center between the
major axis and the radius to the point where the normal to the major axis
through P meets the circumscribed circle.
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2. Equation (1.9) gives the equation of the ellipse in terms of the center-based
polar coordinates (R, θ).

3. Equation (1.15) gives the equation of the ellipse in terms of the focus-based
polar coordinates (r , f ).

4. Equation (1.18) relates the radial coordinate r of the focus-based system
(r , f ) of item 3 above to the angle parameter E referred to in item 1 above.
The attractive simplicity of (1.18) must be balanced against its mixed na-
ture, involving coordinate systems of different origins.

A straightforward exercise yields the relation between the angles E and f .
Since

x = r cosf = r
[

2 cos2 f
2
− 1

]
= r

[
1− 2 sin2 f

2

]
(1.19)

we have

(1) 2r cos2 f
2
= r + x = r +X − ae = a(1− e cosE)+ a cosE − ae

= a(1− e)[1+ cosE] = 2a(1− e) cos2 E
2

(1.20)

and hence

r cos2 f
2
= a(1− e) cos2 E

2
. (1.21)

(2) 2r sin2 f
2
= r − x = r −X + ae = a(1− e cosE)− a cosE + ae

= a(1+ e)[1− cosE] = 2a(1+ e) sin2 E
2

and hence

r sin2 f
2
= a(1+ e) sin2 E

2
. (1.22)

Dividing (1.22) by (1.21) yields

tan2 f
2
= 1+ e

1− e tan2 E
2
, tan2 E

2
= 1− e

1+ e tan2 f
2

. (1.23a,b)

This latter relation can now be used to derive the equation for R in terms of f ,
but its algebraic complexity limits its utility.

Returning to the standard equation (1.15), we see that (with prime denoting
differentiation with respect to f )

r ′ = dr
df

= ae(1− e2) sinf
(1+ e cosf)2

. (1.24)

Hence r ′ = 0 for f = 0,±π, . . . ,±nπ . It can be easily checked that f = 0
is a minimum point for r (as also are f = ±2nπ ) while f = π (as well as
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f = ±(2n + 1)π ) is the maximum point for r . The point f = 0, at which
r = a(1−e), we shall call the pericenter ; the point f = π , at which r = a(1+e),
we shall call the apocenter.

At the extremity of the semiminor axis, we have

x = −ae, y = b = a
√

1− e2 (1.25)

from which it follows that, at that extremity,

r = a, cosf = −e (1.26)

and hence we have that [a, arccos e] are the focus-based polar coordinates of
the extremity of the positive semiminor axis.

2 The Two-Body Problem

We consider the motion of two bodies moving under the influence of their
mutual attraction. Denoting the masses of the two bodies by m1 and m2, with
position vectors r1 and r2, referred to the origin at 0, we write

r = r2 − r1 . (2.1)

In accordance with the inverse square law governing the gravitational attrac-
tion of m1 and m2, the equations of motion for m1 and m2 are given respec-
tively by

m1r̈1 = Gm1m2

r 2
er = Gm1m2

r 3
r, and hence r̈1 = Gm2

r 3
r (2.2a)

m2r̈2 = −Gm1m2

r 2
er = −Gm1m2

r 3
r, and hence r̈2 = −Gm1

r 3
r (2.2b)

where we have used the “dot” to denote differentiation with respect to time t,
and where the unit vector er is defined by r = |r|er = rer . Subtracting (2.2a)
from (2.2b), we have

r̈2 − r̈1 = r̈ = −G(m1 +m2)
r 3

r (2.3)

and as the equation is unaltered by the replacement of r by −r, or by the
interchange of m1 and m2, equation (2.3) describes the motion of either body
relative to the other. Moreover, equation (2.3) shows that the problem has been
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reduced to that of the motion of a particle of unit mass in the gravitational field
of a body of mass m, situated at the origin, where

m =m1 +m2 (2.4)

and if we set

μ = G(m1 +m2) = Gm (2.5)

then equation (2.3) reads

r̈ = − μ
r 3

r = − μ
r 2

er (2.6)

which is the standard form.
In the case of planetary motion, one may think of m1 as the Sun and m2 as

the planet. In that case, we may write

m =m1 +m2 =m1

(
1+ m2

m1

)
(2.7)

and (2.6) describes the motion of the planet in the heliocentric coordinate
system. We may also note that the dominance of the mass of the Sun would
permit the approximation

m ≈m1, μ ≈ Gm1 (2.8)

when such an approximation is appropriate.
At this point, we introduce the gravitational potential. At an arbitrary

point P in the gravitational fields of a mass m at Q, the function U defined
by

U = Gm
|PQ| =

Gm
r

= μ
r

(2.9)

is the potential per unit mass: it has the feature that the force defined by the
gradient of this function U is in fact the Newtonian gravitational force acting
on a particle of unit mass, namely

F = ∇U = −Gm
r 2

er = −Gmr 3
r = − μ

r 3
r (2.10)

so that, for the equation of motion of a particle P of unit mass, we have

r̈ = −Gm
r 3

r = − μ
r 3

r (2.11)

identical with (2.6).
In case of several masses mi, i = 1, . . . , n, situated respectively at Qi, i =

1, . . . , n, the potential function per unit mass at P is given by

U =
n∑
i=1

Gmi

|PQi| (2.12)

to which we shall have occasion to refer later.
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In the next section when we encounter the conservation of energy, we shall
see that the potential energy V per unit mass for a particle in the gravitational
field of a mass m is given by

V = −Gm
r

= −μ
r
= −U (2.13)

so that the potential function is the negative of the potential energy.
The problem defined by the differential equations (2.6) with μ given by (2.5)

is known as the Kepler problem.

3 The Kepler Problem: Vectorial Treatment

In the class of problems in Celestial Mechanics, the Kepler problem is distin-
guished by several features: it has every possible “degeneracy” — the “frequen-
cies” associated with all three coordinates coincide so that all bound orbits are
periodic (except for collision orbits); but more relevant at this point is the fact
that the motion is always planar. This means that it admits a vectorial treat-
ment to which other problems are not amenable.

In terms of a (heliocentric) spherical coordinate system (r , θ,ϕ) with unit
base vectors er , eθ , and eϕ, it follows from

r = rer (3.1)

that the velocity vector v is given by

v = ṙ = ṙer + r θ̇eθ + r sinθ · ϕ̇eϕ (3.2)

where again the dot denotes differentiation with respect to time; there follows

r · ṙ = r ṙ (3.3a)

v2 = v · v = ṙ · ṙ = ṙ 2 + r 2θ̇2 + r 2 sin2 θϕ̇2 . (3.3b)

We note that the fundamental equation (2.6) admits an immediate first in-
tegral — which we shall recognize as the energy integral. Taking the scalar
product of (2.6) with the velocity vector ṙ, we find

ṙ · r̈ = − μ
r 3

r · ṙ = − μ
2r 3

d
dt
(r · r) = − μ

2r 3

d
dt
(r 2) = − μ

r 2
ṙ (3.4)

and so

1
2

d
dt
(̇r · ṙ) = d

dt

(
μ
r

)
(3.5)

or

d
dt

[
1
2v

2 − μ
r

]
= 0 . (3.6)
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Letting E denote the constant of integration, we therefore have the energy
integral in the form

1
2v

2 − μ
r
= E . (3.7)

For a particle of unit mass, the first term is clearly the kinetic energy and the
second term is the potential energy; accordingly, if we use T to denote the
kinetic and V the potential energy, then

T = 1
2v

2, V = −μ
r
, T + V = E (3.8a,b,c)

and the definition of V is consistent with (2.13).
Rewriting (3.7) in the form

1
2v

2 = E + μ
r

(3.9)

and noting that the left-hand side is always positive, then if E is negative,
relation (3.9) sets the lower limit on μ/r : if we exhibit the case of negative
energy by writing

E = −α2 (3.10)

and define a length scale a by setting

a = μ
2α2

(3.11)

then we have that

μ
r
−α2 ≥ 0 implying

μ
r
≥ α2 (3.12)

and hence

r ≤ μ
α2

= 2a (3.13)

giving the corresponding upper limit on r : negative energy implies bound or-
bits, and these shall be the main focus of our attention.

Returning to relations (3.1) and (3.2) we form the angular momentum vector
C by taking the cross product of r and v, to find

C = r× v = r× ṙ = −r2 sinθϕ̇eθ + r 2θ̇eϕ (3.14)

and we further note that

dC
dt

= d
dt
(r× ṙ) = ṙ× ṙ+ r× r̈ = 0− r× μ

r 3
r = 0 . (3.15)

Hence in the central gravitational field, the angular momentum vector C is
constant. At this point, we observe that
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d
dt
(er ) = d

dt

(
r
r

)
= r ṙ− ṙr

r 2
= r 2ṙ− r ṙr

r 3

= (r · r)̇r− (r · ṙ)r
r 3

= r× (̇r× r)
r 3

= −r× C
r 3

= C× r
r 3

. (3.16)

When C = 0, the above relation implies that, in that case, the unit vector er is
constant — hence the motion is rectilinear along the radius vector toward the
origin, leading to collision. When C ≠ 0, it follows from (3.14) that

r · C = r · (r× ṙ) = 0 (3.17)

so that r remains normal to the fixed vector C; hence the motion takes place
in the plane defined by the fixed (constant) vector C.

It further follows from (3.14) that

C2 = C · C = (r× ṙ) · (r× ṙ) = r 4 sin2 θϕ̇2 + r 4θ̇2

= r 2[r 2θ̇2 + r 2 sin2 θϕ̇2] = r 2[v2 − ṙ 2] (3.18)

and we have a second integral, this one involving the magnitude of the angular
momentum vector C, namely

r 2[v2 − ṙ 2] = C2 . (3.19)

Moreover, rewriting the latter as an expression for v2, and recalling the energy
integral (3.7), we have

1
2v

2 = 1
2

[
C2

r 2
+ ṙ 2

]
= E + μ

r
(3.20)

giving the relation between the constants C and E.
Returning to (3.16) and again applying the gravitational equation (2.6) and

also noting that Ċ = 0, we find

d
dt
(er ) = C× r

r 3
= −C× r̈

μ
= −1

μ
d
dt
(C× ṙ) = 1

μ
d
dt
(v× C) . (3.21)

If we let e denote the arbitrary constant vector introduced by the integration
of this latter vector differential equation, we have

μ(er + e) = v× C = ṙ× (r× ṙ) = (̇r · ṙ)r− (r · ṙ)̇r = v2r− r ṙ ṙ . (3.22)

Again, we note in passing that if C = 0, then e = −er , so that e is the unit
vector along the radius vector toward the origin. For C �= 0, we take the scalar
product with C across (3.22), and noting that C is normal to both r and ṙ, we
find

e · C = 0 (3.23)

which implies that the vector e lies in the plane of the motion.
Taking the scalar product with r across (3.22) gives
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μ(r + e · r) = v2r 2 − r 2ṙ 2 = r 2(v2 − ṙ 2) = C2 (3.24)

wherein we have introduced (3.18); we now rewrite (3.24) in the form

e · er = C2

μr
− 1 . (3.25)

If, in the plane of the motion, we let the vector e, whose magnitude we denote
by e, define a base axis and if we let f denote the angle in this plane between
this base vector and the radius vector r, then (r , f ) constitute a polar coordi-
nate basis in the plane of the motion, and equation (3.25) can be written in the
form

r[1+ e cosf] = C2

μ
. (3.26)

For e = 0, the motion is circular. For e �= 0, we rewrite (3.26) [in accord with
(1.14)] as

r = e
[
C2

eμ
− r cosf

]
(3.27)

which [referring to equation (1.14) and the subsequent paragraph] defines a
conic with a directrix at a distance C2/μe from the origin and with eccentric-
ity e. And for e < 1, this conic is an ellipse, and the vector e is the vector based
at the focus (origin) directed at the pericenter and with magnitude e.

The vector e is known as the Runge–Lenz vector and also the eccentric axis
vector.

There is one more exercise to be performed on relation (3.22). We recall
that since C is normal to v, there follows that

|v× C| = vC, (v× C)2 = v2C2 . (3.28)

Accordingly, if we square both sides of (3.22), then on reversing the order we
find

v2C2 = μ2(e+ er )2 = μ2[1+ e2 + 2e · er ]

= μ2
[

1+ e2 + 2
(
C2

μr
− 1

)]
= μ2(e2 − 1)+ 2μ

C2

r
(3.29)

in which we have introduced (3.25) and rearranged. Hence

μ2(1− e2) = −2C2
[

1
2v

2 − μ
r

]
= −2C2E (3.30)

from which it is immediately evident that

e � 1 corresponds to E � 0 (3.31)

i.e., negative/positive energy corresponds to elliptic/hyperbolic orbits — as
anticipated earlier.
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Restricting our attention to bound orbits (negative energy), we introduce
(3.10) and (3.11) into (3.30), to obtain

1− e2 = 2C2

μ2
α2 = C2

μ

/
μ

2α2
= C2

μ
· 1
a

(3.32)

and hence

C2

μ
= a(1− e2) = p (3.33)

where we introduce the symbol p to denote the semi–latus rectum — the value
of r at f = π/2. In terms of these length parameters, equation (3.26) reads

r = p
1+ e cosf

= a(1− e2)
1+ e cosf

(3.34)

as an alternate form for the equation of the orbit, and we write

b = a
√

1− e2 (3.35)

as the length parameter of the semiminor axis.
The polar coordinates (r , f ) in the orbit plane together with the axis normal

to the plane constitute a cylindrical polar coordinate system. With base unit
vectors er and ef in the orbit plane together with the axial unit vector ek, we
may write

r = rer (3.36a)

v = ṙ = ṙer + r ḟef (3.36b)

and, for the angular momentum, we have

C = r× v = r 2ḟek . (3.37)

It follows that, for the magnitude of the angular momentum, we have

r 2ḟ = C = √μp = √μa(1− e2) = √μa
√

1− e2 (3.38)

wherein we have introduced (3.33). If we let τ denote the time for a complete
orbit and if we also introduce the mean motion n, measuring the frequency,
by the relation

n = 2π
τ

(3.39)

and note that the area traced out in one orbit is πab, we have that the mean
areal velocity over an orbit is given by

πab
τ

= πab · n
2π

= 1
2nab = 1

2na
2
√

1− e2 . (3.40)
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However, the areal velocity is, in fact, given by one-half the angular momentum
of (3.38). Identifying the quantity in (3.38) with twice the quantity in (3.40)
gives, after cancellation of the common

√
1− e2 factor,

na2 = √μa (3.41)

and hence the important relation

n2a3 = μ = Gm = G(m1 +m2) (3.42)

whence we have substituted for μ from (2.5).
We are now in a position to make some observations:

1. The motion takes place in a plane defined by the angular momentum vec-
tor, and for negative energy the orbit is the ellipse (3.34); this is Kepler’s
First Law.

2. The constancy of the angular momentum (3.38) implies a constant mean
areal velocity; this is Kepler’s Second Law.

3. If the approximation (2.8) were to be introduced into (3.42), we would have
n2a3 = Gm, a constant for all planets; this is Kepler’s Third Law, more
usually stated as the square of the orbit period is proportional to the cube
of the semimajor axis.

Recalling equation (3.20) for the case of negative energy so that E = −α2,
we rearrange to obtain

r 2ṙ 2 = −[2α2r 2 − 2μr + C2]
= −2α2

[
r 2 − μr

α2
+ C2

2α2

]
. (3.43)

The singularity at r = 0 in this differential equation can be regularized by
means of a regularizing transformation whereby a new independent variable E
is introduced through the defining relation

dE
dt

=
√

2α2

r
so that r

d
dt

=
√

2α2 d
dE

(3.44)

and, on the introduction of (3.44) and some rearrangement, equation (3.43)
becomes (

dr
dE

)2

= −
[
r 2 − μ

α2
r + C

2

μ
· μ

2α2

]
= −[r 2 − 2ar + a2(1− e2)

]
= −[(a− r)2 − a2e2] (3.45)

where we have introduced (3.11) and (3.33). By means of the substitution
a− r = aeZ , this immediately integrates, and we find

r = a[1− e cosE] (3.46)
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satisfying the condition that E = 0 when r = a(1−e). Recalling relation (1.18),
it is evident that E can be identified with the eccentric angle introduced in (1.2).

It remains to determine the relation between the angle E and the time t.
From the defining relation (3.44), we have

√
2α2 dt

dE
= r = a[1− e cosE] (3.47)

so that, on integration √
2α2(t − t0) = a[E − e sinE] (3.48)

satisfying the requirement that E = 0 when t = t0. From (3.41), we note that

n2a2 = μ
a
= 2α2 (3.49)

and hence

M = n(t − t0) = E − e sinE, (3.50)

known as Kepler’s equation. The eccentric angle E defined by (3.44) is, in Celes-
tial Mechanics, called the eccentric anomaly, and the quantity M = n(t − t0) is
called the mean anomaly. The angle f , introduced in equation (3.26), is called
the true anomaly. We postpone to the next section the full treatment of the
true anomaly.

The vectorial treatment gives a full account of the Kepler orbit in its plane.
The fuller picture of the motion in space, including the orientation of the orbit
plane, is more clearly seen in the Lagrangian analysis, which is the subject of
the next section.

4 The Kepler Problem: Lagrangian Analysis

In terms of spherical coordinates (r , θ,ϕ) (of the heliocentric system), the
three Cartesian coordinates can be expressed as

x = r sinθ cosϕ (4.1a)

y = r sinθ sinϕ (4.1b)

z = r cosθ (4.1c)

from which it can readily be deduced that the metric coefficients gij are given
by

g11 = 1, g22 = r 2, g33 = r 2 sin2 θ, gij = 0, i ≠ j . (4.2)

Then for the kinetic and potential energies per unit mass, we have, respec-
tively,
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T = 1
2v

2 = 1
2

[
ṙ 2 + r 2θ̇2 + r 2 sin2 θϕ̇2], V = −μ

r
(4.3)

and the Hamiltonian, reflecting the total energy, is

H = T + V = 1
2

[
ṙ 2 + r 2θ̇2 + r 2 sin2 θ · ϕ̇2]− μ

r
(4.4)

while, for the Lagrangian, we have

L = T − V = 1
2

[
ṙ 2 + r 2θ̇2 + r 2 sin2 θϕ̇2]+ μ

r
. (4.5)

From the latter there follows the system of Lagrangian equations, which
takes the form

d
dt
[ṙ ] = r θ̇2 + r sin2 θ · ϕ̇2 − μ

r 2
(4.6a)

d
dt
[r 2θ̇] = r 2 sinθ cosθ · ϕ̇2 (4.6b)

d
dt
[r 2 sin2 θ · ϕ̇] = 0 . (4.6c)

As the coordinate ϕ does not appear explicitly in the Lagrangian (4.5), it is
an ignorable coordinate, and the procedure outlined in Chapter 1 may be fol-
lowed; or we may proceed directly.

From (4.6c) there follows an immediate integration yielding

r 2 sin2 θ · ϕ̇ = C3, or ϕ̇ = C3

r 2 sin2 θ
(4.7a,b)

where C3 is the constant of integration and represents the polar component of
angular momentum. The introduction of (4.7) into (4.6a,b) yields, respectively

d
dt
[ṙ ] = r θ̇2 − μ

r 2
+ C2

3

r 3 sin2 θ
(4.8a)

d
dt
[r 2θ̇] = C2

3
cosθ

r 2 sin3 θ
. (4.8b)

Considering (4.8b), we multiply across by r 2θ̇ to obtain

r 2θ̇
d
dt
[r 2θ̇] = C2

3
cosθ · θ̇

sin3 θ
(4.9)

which may be rearranged as

d
dt
[r 2θ̇]2 = −C2

3
d
dt

[
1

sin2 θ

]
(4.10)

or alternatively

d
dt

[
(r 2θ̇)2 + C2

3

sin2 θ

]
= 0 . (4.11)
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This implies that the expression in square brackets is constant; however, if we
substitute for C3 in terms of ϕ̇ from (4.7a), the expression becomes

r 2[r 2θ̇2 + r 2 sin2 θϕ̇2] = r 2(v2 − ṙ 2) (4.12)

and if we recall (3.18), we see that this constant is the square of the angular
momentum, namely C2. Accordingly, the integral of (4.11) may be written

r 4θ̇2 + C2
3

sin2 θ
= C2 (4.13)

or alternatively

r θ̇2 = 1
r 3

[
C2 − C2

3

sin2 θ

]
(4.14)

as the form appropriate for the reduction of (4.8a), which we effect prior to
the integration of (4.13).

If we substitute for r θ̇2 from (4.14) and for ϕ̇ from (4.7b) into equation
(4.8a), we see that the terms with C2

3 cancel and we have

d
dt
[ṙ ] = C2

r 3
− μ
r 2
= d

dr

[
μ
r
− 1

2
C2

r 2

]
. (4.15)

If we multiply across by ṙ , we obtain

d
dt
[1

2 ṙ
2] = d

dt

[
μ
r
− 1

2
C2

r 2

]
(4.16)

or on rearrangement

d
dt

[
1
2 ṙ

2 − μ
r
+ 1

2
C2

r 2

]
= 0 (4.17)

and so the expression in square brackets must be constant. Again, recall-
ing (3.19) we see that the expression

1
2 ṙ

2 − μ
r
+ 1

2
C2

r 2
= 1

2 ṙ
2 − μ

r
+ 1

2(v
2 − ṙ 2) = 1

2v
2 − μ

r
(4.18)

is in fact the energy integral, whose constant has already been designated as
E (3.7) and for negative energy has been identified by −α2 (3.10). Accordingly,
the integrated relation reads

1
2 ṙ

2 − μ
r
+ 1

2
C2

r 2
= −α2 (4.19)

or alternatively

r 2ṙ 2 = −2α2
[
r 2 − μ

α2
r + C2

2α2

]
(4.20)
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identical with the previously derived (3.43). The subsequent analysis leading
to the solution (3.46)

r = a[1− e cosE] (4.21)

follows an identical pattern.
In item 4 below relation (1.18), we have noted a shortcoming of this sim-

ple form of the equation of the ellipse: for the dynamic problem a second
shortcoming is now coming into view. If one were to apply the transformation
(3.44) to equation (4.13) for θ̇, we would still have a coupled equation, and if
one were to substitute for r from (4.21), one has a differential equation that is
not readily integrable.

In fact, an inspection of equation (4.13) suggests the form of the alternative
regularizing transformation that will effect the uncoupling of equations (4.13)
and (4.17), whose uncoupled form admits a ready integration in the case of
each equation.

The singularity in the differential equation (4.13) can be regularized by
means of the [regularizing] transformation

df
dt

= C
r 2
, C

d
df

= r 2 d
dt

(4.22a,b)

and with f as the new independent variable, and with prime denoting differ-
entiation with respect to f , equation (4.13) becomes

C2θ′2 + C2
3

sin2 θ
= C2 . (4.23)

If we now introduce a new parameter ν , representing the inclination of the
orbit plane, and defined by

ν = C3

C
(4.24)

then equation (4.23) may be written

sin2 θ · θ′2 = (1− ν2)− cos2 θ (4.25)

which, as we shall see, admits a straightforward integration.
Returning to equation (4.20), we multiply by a further r 2-factor to obtain

r 4ṙ 2 = −r 2[2α2r 2 − 2μr + C2] . (4.26)

If we utilize the transformation (4.22) to introduce the new independent vari-
able f , then after dividing across by C2 we have

r ′2 = −r 2
[

1− 2μ
C2
r + 2α2

C2

]
(4.27a)

= −r 2
[

1− 2
p
r + 1

ap
r 2
]

(4.27b)
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where we have introduced the length scales from (3.11) and (3.33) into (4.27a)
to obtain (4.27b).

The integration of (4.27b) is facilitated by the introduction of an auxiliary
dependent variable u, defined by

u = 1
r
, r = 1

u
, r ′ = − 1

u2
u′ (4.28)

and, after a little manipulation, equation (4.27b) becomes

u′2 = −
[(
u− 1

p

)2

+ 1
ap

− 1
p2

]
=
[
e2

p2
−
(
u− 1

p

)2]
. (4.29)

By setting

u− 1
p
= e
p
w (4.30)

the differential equation for w reads

w′2 = 1−w2 (4.31)

with solution

w = cos(f +ω0) (4.32)

where ω0 is the constant of integration. It follows from (4.30) that

u = 1
p
[
1+ e cos(f +ω0)

]
(4.33)

and hence, noting (4.28), we have

r = p
1+ e cos(f +ω0)

. (4.34a)

Except for the factor ω0, this is identical with (1.15) for the ellipse, so the
variable f has the obvious angular interpretation; moreover, if the angle is
measured from the pericenter so that

f = 0 corresponds to r = a(1− e) (4.34b)

then clearly ω0 = 0 and we have

r = p
1+ e cosf

(4.35)

as the solution for r , identical with (1.15).
Returning to equation (4.25), we note that the integration can be facilitated

by setting

cosθ =
√

1− ν2S (4.36)
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so that equation (4.25) becomes

S′2 = 1− S2 (4.37)

with solution

S = sin(f +ω) (4.38)

where ω is the constant of integration. The point where the orbit crosses the
z-plane is called the node and the line joining it to the focus is called the nodal
line. The crossing of the z-plane corresponds to θ = π/2, and so noting (4.36)
and (4.38), this must correspond to f = −ω; hence ω measures the angle in
the orbit plane subtended at the focus between the major axis and the nodal
line. And we may write

cosθ =
√

1− ν2 sin(f +ω) (4.39)

as the complete solution for the θ-coordinate.
It remains to integrate equation (4.7) for the third coordinate ϕ. Writ-

ing (4.7) in the form

r 2ϕ̇ = C3

sin2 θ
(4.40)

we introduce the regularizing transformation (4.22) replacing t as the inde-
pendent variable by f . We then have

Cϕ′ = C3

sin2 θ
(4.41)

and if we divide across by C and note the defining relation (4.24) for ν , we
obtain

ϕ′ = ν
sin2 θ

= ν
1− cos2 θ

. (4.42)

If we introduce cosθ in terms of f from (4.39), we obtain

ϕ′ = ν
1− (1− ν2) sin2(f +ω)

= ν
cos2(f +ω)+ ν2 sin2(f +ω) =

ν sec2(f +ω)
1+ ν2 tan2(f +ω) . (4.43)

The integration of equation (4.43) is facilitated by the substitution

tanΦ = ν tan(f +ω) (4.44)

from which we have

sec2 Φ · Φ′ = ν sec2(f +ω), sec2 Φ = 1+ ν2 tan2(f +ω) (4.45a,b)

and from (4.43) there follows
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ϕ′ = Φ′ implying Φ =ϕ +ϕ0 (4.45c)

where ϕ0 is the constant of integration. Hence (4.44) implies that

tan(ϕ +ϕ0) = ν tan(f +ω) . (4.46)

We have already noted that at the nodal crossing, f = −ω; if we now let Ω
denote the longitude at this nodal line, then from (4.46) there follows

tan(Ω+ϕ0) = 0, implying ϕ0 = −Ω (4.47)

and hence, from (4.46), we have

tan(ϕ −Ω) = ν tan(f +ω) (4.48)

as the solution for the third coordinate ϕ.
The completion of the solution requires the determination of the time-angle

relation connecting the time with the true anomaly f . For this we introduce the
expression (4.35) into the inverted form of the defining relation (4.22a), and if
we substitute for C from (3.33), we find

dt
df

= r 2

C
= 1√μa√1− e2

a2(1− e2)2

(1+ e cosf)2
. (4.49)

If we recall from (3.41) that
√μa = na2, it follows that

n
dt
df

= (1− e2)3/2

(1+ e cosf)2
. (4.50)

For the integration of this expression we first note that

d
df

[
e sinf

1+ e cosf

]
= (1+ e cosf)e cosf + e2 sin2 f

(1+ e cosf)2
= e2 + e cosf
(1+ e cosf)2

= (1+ e cosf)− (1− e2)
(1+ e cosf)2

= 1
1+ e cosf

− (1− e2)
(1+ e cosf)2

(4.51)

and hence, on multiplying by
√

1− e2 and rearranging, we have

(1− e2)3/2

(1+ e cosf)2
=

√
1− e2

1+ e cosf
− d

df

[
e
√

1− e2 sinf
1+ e cosf

]
. (4.52)

For the integration of the first term on the right we note that if we set

tanχ =
√

1− e2 sinf
e+ cosf

(4.53)

there follows
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sec2 χ = (1+ e cosf)2

(e+ cosf)2
, cosχ = e+ cosf

1+ e cosf
, (4.54a,b)

sinχ =
√

1− e2 sinf
1+ e cosf

. (4.54c)

Taking the derivative of (4.53), we find

sec2 χ · χ′ = (1+ e cosf)2

(e+ cosf)2
χ′

=
√

1− e2(e+ cosf) cosf +√1− e2 sin2 f
(e+ cosf)2

=
√

1− e2 (1+ e cosf)
(e+ cosf)2

(4.55)

which, with (4.54a), yields

χ′ =
√

1− e2

1+ e cosf
(4.56)

and hence, noting (4.53), we have∫ √
1− e2

1+ e cosf
df = χ = arctan

[√
1− e2 sinf
e+ cosf

]
. (4.57)

Accordingly, the integration of (4.50) is accomplished by combining (4.52) and
(4.57) to yield

M = n(t − t0) = arctan
[√

1− e2 sinf
e+ cosf

]
− e

√
1− e2 sinf

1+ e cosf
(4.58)

where t0, reflecting the constant introduced by the integration, is the time of
the pericenter passage, i.e., t = t0 corresponds to f = 0.
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The Euler Problem I — Planar Case

. . . exerceamus, certa spe freti, inde quicquam luminis ad
tenebras illas dissipandas esse affulsorum.

— L. Euler [E2, e(i) p. 211]
[. . .hence, encouraged by a definite hope, let us deploy
such light as may be cast to the dispelling of these
obscurities.]

1 The Gravitational Field of Two Fixed Centers: Planar Case

Formulation: In the x-z plane, we consider the motion of a mass point P in
the gravitational field induced by two fixed masses m+ and m− situated re-
spectively at symmetrically placed points on the z-axis, z = +b and z = −b.

The potential function per unit mass at the arbitrary point P is given by

U = G
(m+
r+

+ m−
r−

)
(1.1)

where G is the gravitational constant.
In terms of planar polar coordinates (r , θ), where the angle θ is measured

with the positive z-axis as baseline, the application of the cosine law renders
for the distances r+ and r−

r 2+ = r 2 + b2 − 2br cosθ (1.2a)

r2− = r 2 + b2 + 2br cosθ. (1.2b)

If we introduce planar prolate spheroidal coordinates (R,σ) based on the dis-
tance parameter b, then, in terms of the Cartesian coordinates (x, z) and also
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of the plane polars (r , θ), we have the defining relations1

r sinθ = x = ±
√
R2 − b2 sinσ, r cosθ = z = R cosσ (1.3a,b)

with the implication that

r2 = x2 + z2 = R2 − b2 sin2 σ . (1.3c)

Then, in terms of the planar spheroidal coordinates (R,σ), relations (1.2) for
r+ and r− take the form

r 2+ = r 2 + b2 − 2br cosθ

= R2 + b2 cos2 σ − 2bR cosσ = (R − b cosσ)2 (1.4a)

r 2− = r 2 + b2 + 2br cosθ

= R2 + b2 cos2 σ + 2bR cosσ = (R + b cosσ)2 (1.4b)

so that, for the potential function per unit mass (1.1), we have

U = G
[
m+
r+

+ m−
r−

]
= G

[
m+

R − b cosσ
+ m−
R + b cosσ

]

= G
[
R(m+ +m−)+ b(m+ −m−) cosσ

R2 − b2 cos2 σ

]

= G(m+ +m−)

⎡⎣R + b(m+−m−
m++m−

)
cosσ

R2 − b2 cos2 σ

⎤⎦ . (1.5)

Accordingly, we introduce the dimensionless parameter β, measuring the
asymmetry between the attracting masses, defined by the relation

β = m+ −m−
m+ +m−

(1.6a)

and if we write

μ = G(m1 +m2) (1.6b)

then formula (1.5) for the potential function per unit mass takes the compact
form

U = μ R + βb cosσ
R2 − b2 cos2 σ

. (1.7)

Hence the potential energy per unit mass V for the mass point P in this gravi-
tational field is given by

1 In the planar case, a crucial distinction has to be noted between the spherical and spheroidal
coordinate systems. In the former θ has the range −π ≤ θ ≤ π , whereas in the latter σ is
confined to the range 0 ≤ σ ≤ π , necessitating the inclusion of the ± sign option on the right
of (1.3a). This becomes of critical importance when utilizing the solution forms to obtain
computer-generated graphical orbits.
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V = −μ R + βb cosσ
R2 − b2 cos2 σ

(1.8)

in accord with relation (2.13) of Chapter 2.
For the coordinate system defined by (1.3), we have

∂x
∂R

= ± R√
R2 − b2

sinσ,
∂z
∂R

= cosσ (1.9a,b)

∂x
∂σ

= ±
√
R2 − b2 cosσ,

∂z
∂σ

= −R sinσ (1.9c,d)

so that the metric coefficients are given by

g11 = R2 − b2 cos2 σ
R2 − b2

, g12 = 0, g22 = R2 − b2 cos2 σ . (1.10a,b,c)

It follows that the kinetic energy per unit mass, T , is given by

T = 1
2
R2 − b2 cos2 σ

R2 − b2
Ṙ2 + 1

2(R
2 − b2 cos2 σ)σ̇ 2 (1.11)

and the total energy per unit mass H for the mass point P is given by

H = T + V

= 1
2
R2 − b2 cos2 σ

R2 − b2
Ṙ2 + 1

2(R
2 − b2 cos2 σ)σ̇ 2 − μ R + βb cosσ

R2 − b2 cos2 σ
. (1.12)

The associated Lagrangian L is given by

L = T − V

= 1
2
R2 − b2 cos2 σ

R2 − b2
Ṙ2 + 1

2(R
2 − b2 cos2 σ)σ̇ 2 + μ R + βb cosσ

R2 − b2 cos2 σ
(1.13)

from which we derive the equations of motion. If we were to introduce an
arbitrary mass m for the mass point, then this factor would clearly cancel in
the Lagrange equations and so will be ignored.

In order to see that the Lagrange equations are integrable, it is necessary
first to transform the Lagrangian into one of Liouville form, which is the topic
of the next section.

2 The Lagrangian in Liouville Form: The Energy Integral

In order to transform the Lagrangian into one of Liouville form, we introduce
the auxiliary variable ξ, defined by

R = b coshξ (2.1a)

so that

Ṙ = b sinhξ · ξ̇, R2 − b2 = b2 sinh2 ξ . (2.1b,c)



52 Ch 3 The Euler Problem I — Planar Case

Then the expressions (1.11) and (1.8) for the kinetic and potential energies
become, respectively

T = b2(cosh2 ξ − cos2 σ)
[1

2 ξ̇
2 + 1

2 σ̇
2], V = −μ b coshξ+βb cosσ

b2 cosh2 ξ−b2 cos2 σ
(2.2a,b)

and the Lagrangian becomes

L = b2(cosh2 ξ − cos2 σ)
[1

2 ξ̇
2 + 1

2 σ̇
2]+ μ b coshξ+βb cosσ

b2 cosh2 ξ−b2 cos2 σ
(2.3)

which is of the type recognized as integrable by Liouville. In the standard no-
tation for such systems, already noted in Chapter 1, we write

Q1(ξ) = b2 cosh2 ξ, Q2(σ) = −b2 cos2 σ, Q = Q1 +Q2 (2.4a,b,c)

V1(ξ) = −μb coshξ, V2(σ) = −μβb cosσ (2.5a,b)

so that expressions (2.2), for the energies, take the form

T = Q[1
2 ξ̇

2 + 1
2 σ̇

2], V = V1 + V2

Q
(2.6a,b)

and the Lagrangian (2.3) may be written

L = Q[1
2 ξ̇

2 + 1
2 σ̇

2]− V1 + V2

Q
(2.7)

now in the standard Liouville form.
From the Lagrange equations for this system,

d
dt

(∂L
∂ξ̇

)
= ∂L
∂ξ
,

d
dt

( ∂L
∂σ̇

)
= ∂L
∂σ

(2.8a,b)

we follow the standard procedure for the derivation of the energy integral. We
multiply (2.8a) by ξ̇ and (2.8b) by σ̇ , and add to obtain

ξ̇
d
dt

(∂L
∂ξ̇

)
+ σ̇ d

dt

( ∂L
∂σ̇

)
= ξ̇ ∂L

∂ξ
+ σ̇ ∂L

∂σ
(2.9)

from which there follows

d
dt

[
ξ̇
∂L
∂ξ̇
+ σ̇ ∂L

∂σ̇

]
= ξ̇ ∂L

∂ξ
+ ξ̈ ∂L

∂ξ̇
+ σ̇ ∂L

∂σ
+ σ̈ ∂L

∂σ̇
= dL

dt
(2.10)

which on integration yields

ξ̇
∂L
∂ξ̇
+ σ̇ ∂L

∂σ̇
− L = E (2.11)

— the energy integral in which E is the constant of integration.
When the Lagrangian has the form (2.7), we see that in this case
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ξ̇
∂L
∂ξ̇
+ σ̇ ∂L

∂σ̇
= ξ̇ ∂T

∂ξ̇
+ σ̇ ∂T

∂σ̇
= 2T (2.12)

wherein we have noted the expression (2.6a) for T and the simplification re-
sulting therefrom. When we introduce (2.12) into (2.11), we see that the energy
integral may be written as

E = 2T − L = 2T − (T − V) = T + V (2.13)

showing that the constant E clearly measures the total energy (per unit mass)
for the dynamical system.

We shall refer to the ξ-σ system as the Liouville coordinates.

3 The First Integrals in Liouville Coordinates

Returning to the Lagrange equations (2.8), we introduce the explicit form of
the Lagrangian from (2.7), and the equations take the explicit form

d
dt
(Qξ̇) = dQ1

dξ
(1

2 ξ̇
2 + 1

2 σ̇
2)− ∂V

∂ξ
,

d
dt
(Qσ̇) = dQ2

dσ
(1

2 ξ̇
2 + 1

2 σ̇
2)− ∂V

∂σ
,

(3.1a,b)

We start by dealing with equation (3.1a). We multiply across by Qξ̇ and utilize
(2.6a) to obtain

Qξ̇
d
dt
(Qξ̇) = ξ̇dQ1

dξ
T − ξ̇Q∂V

∂ξ
= ξ̇

[
T

dQ1

dξ
−Q∂V

∂ξ

]
. (3.2)

If we now use (2.13) to substitute for T in the square brackets on the right of
(3.2), we have

1
2

d
dt
[Qξ̇]2 = ξ̇

[
(E − V)dQ1

dξ
−Q∂V

∂ξ

]

= ξ̇
[
E dQ1

dξ
− ∂
∂ξ
(QV)

]
= ξ̇

[
E dQ1

dξ
− dV1

dξ

]
(3.3)

where we have noted relations (2.4) and (2.6). A slight rearrangement puts (3.3)
in the form

d
dt

[
1
2(Qξ̇)

2 −EQ1 + V1

]
= 0 (3.4)

which integrates to yield

1
2(Qξ̇)

2 −EQ1 + V1 = C1 (3.5)

where C1 is the constant of integration.
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We next take the second equation (3.1b) and, after multiplying across by
Qσ̇ , proceed in an identical manner to effect its integration; as the integrated
equation for σ̇ , we obtain

1
2(Qσ̇)

2 −EQ2 + V2 = C2 (3.6)

where C2 is the constant of integration.
The addition of equations (3.5) and (3.6) shows that

C1 + C2 = Q2
[

1
2 ξ̇

2 + 1
2 σ̇

2
]
−E(Q1 +Q2)+ V1 + V2

= QT −EQ+QV = Q(T + V −E) = 0 (3.7)

in which we have noted relations (2.4), (2.5), and (2.6). On noting relation (2.13),
we see that the requirement

C1 + C2 = 0 (3.8)

follows as a direct consequence of the energy integral.
Equations (3.5) and (3.6) together with the energy integral (2.13) are the

first integrals of the system. From (3.8), it is clear that the constants are not
independent; we shall see presently that two of them are independent. Having
derived the integrals through the medium of the Liouville procedure, in terms
of the Liouville coordinates ξ, σ , it is no longer convenient to retain them in
this form. Accordingly, we next consider these integrals in terms of the original
spheroidal coordinates R,σ .

4 The First Integrals in Spheroidal Coordinates

Recalling the defining relations (2.1) for the Liouville coordinate ξ, we see from
relations (2.4) and (2.5) that, in terms of the spheroidal coordinates (R,σ), we
have

Q1 = R2, Q2 = −b2 cos2 σ, Q = Q1 +Q2 = R2 − b2 cos2 σ (4.1a,b,c)

V1 = −μR, V2 = −μβb cosσ, QV = V1 + V2 = −μ(R + βb cosσ) (4.2a,b,c)

and furthermore, from relations (2.1), there follows

ξ̇ = Ṙ
b sinhξ

= Ṙ√
b2 cosh2 ξ − b2

= Ṙ√
R2 − b2

(4.3)

and hence we have

Qξ̇ = Ṙ√
R2 − b2

(R2 − b2 cos2 σ) (4.4a)

Qσ̇ = (R2 − b2 cos2 σ)σ̇ . (4.4b)
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Accordingly, in spheroidal coordinates, the equations for the first integrals
(3.5) and (3.6) take the form

1
2
(R2 − b2 cos2 σ)2

R2 − b2
Ṙ2 = ER2 + μR + C1 (4.5a)

1
2(R

2 − b2 cos2 σ)2σ̇ 2 = −Eb2 cos2 σ + μβb cosσ + C2 (4.5b)

with the restriction (3.8) that C1 + C2 = 0.
An inspection of (4.5b) in the limit as b → 0 indicates that in that range

the constant C2 is positive, which immediately implies that C1 is negative.
Moreover, as we are primarily concerned with bound orbits, we focus on the
case of negative energy and so we set

E = −α2, C1 = −1
2C

2, C2 = 1
2C

2 (4.6a,b,c)

and again observing (4.5b), we see that C has the dimension of angular mo-
mentum. In terms of these constants, the equations for the first integrals (4.5)
now read

1
2
(R2 − b2 cos2 σ)2

R2 − b2
Ṙ2 = −α2R2 + μR − 1

2C
2 (4.7a)

1
2(R

2 − b2 cos2 σ)2σ̇ 2 = α2b2 cos2 σ + μβb cosσ + 1
2C

2. (4.7b)

In effecting the reduction of these equations, we shall follow the signposts set
down in the case of the Kepler problem in Chapter 2.

— � —

In the subsequent analysis, we begin by focusing on the class of orbits
that retain their validity in the Kepler limit. The following three sections are
preparatory to the derivation of the solution forms. In Section 5 we define the
length scales associated with the physical constants, and having introduced
the regularizing transformation, we specify the dimensionless parameters as
they naturally arise, leading to a normalized form of the differential equations.
In Section 6, we discuss some special cases including the case β = 0, where the
attracting primaries have identical mass — the case having particular relevance
to the Quantum Connection. A complete analysis of the representative quar-
tic is performed in Section 7 whereby we effect the reduction of the typical
differential equation to Legendre canonical form.

With the establishment of the solution forms for orbits that retain their va-
lidity in the Kepler limit as developed in Sections 8 and 9, it becomes evident
that their validity is confined to a definite range of the separation parameter.
The solution forms valid in the supplementary range of the separation pa-
rameter are derived respectively in Sections 8A and 9A; as this latter range is
defined by a lower limit to the separation parameter, the Kepler limit is not
relevant — except in the singular case when C = 0, discussed later.
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Following a limited analysis of the time-angle relation in Section 10, we re-
turn to a consideration of the set of orbits characterized by a choice of the an-
gular momentum constant alternative to (4.6); the associated orbits that have
no analog in the Kepler case are discussed in Sections 11 and 12.

5 Reduction of the Equations: The Regularizing Variable

First, in dealing with the R-equation, we rewrite equation (4.7a) in the form

(R2 − b2 cos2 σ)2Ṙ2 = −C2(R2 − b2)
[
1− 2

μ
C2
R + 2

α2

C2
R2
]
. (5.1)

If we introduce the length scales a and p, by setting

a = μ
2α2

, p = C2

μ
, and hence ap = C2

2α2
(5.2a,b,c)

then the above equation (5.1) becomes

(R2 − b2 cos2 σ)2

C2
Ṙ2 = −(R2 − b2)

[
1− 2

p
R + 1

ap
R2
]
. (5.3)

Next, turning to the σ -equation, we rewrite (4.7b) in the form

(R2 − b2 cos2 σ)2σ̇ 2 = C2
[
1+ 2

μ
C2
βb cosσ + 2

α2

C2
b2 cos2 σ

]
(5.4)

so that, when written in terms of the length parameters (5.2),

(R2 − b2 cos2 σ)2

C2
σ̇ 2 = 1+ 2β

b
p

cosσ + b2

ap
cos2 σ (5.5)

we have the equation for σ , corresponding to equation (5.3) for R.
The form of the regularizing variable is suggested quite clearly in the

above. We introduce the new independent variable f (corresponding to the
true anomaly in the Kepler case) by the defining relation

df
dt

= Λ
R2 − b2 cos2 σ

(5.6)

where Λ is a parameter, having the dimension of angular momentum, and will
be defined presently. It follows that

R2 − b2 cos2 σΛ d
dt

= d
df

(5.7)

so that with prime denoting differentiation with respect to f , the equations
for the first integrals (5.3) and (5.5) become
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Λ2

C2
R′2 = −(R2 − b2)

[
1− 2

p
R + 1

ap
R2
]

(5.8a)

Λ2

C2
σ ′2 = 1+ 2β

b
p

cosσ + b2

ap
cos2 σ. (5.8b)

The next step is the introduction of a new dependent variable u into equa-
tion (5.8a) by setting

u = 1
R
, so that u′ = −R

′

R2
, R′ = −u

′

u2
(5.9a,b,c)

and in terms of u, equation (5.8a) becomes

Λ2

C2
u′2 = −(1− b2u2)

[
u2 − 2

p
u+ 1

ap

]

= −(1− b2u2)
[(
u− 1

p

)2 − 1
p2

(
1− p

a

)]
. (5.10)

Still following the pattern set in the Kepler problem, we introduce a parame-
ter e corresponding to the eccentricity in the Kepler case, by writing

p = a(1− e2),
p
a
= 1− e2 (5.11a,b)

and equation (5.10) then reads

Λ2

C2
u′2 = (1− b2u2)

[
e2

p2
−
(
u− 1

p

)2]
. (5.12)

This suggests a substitution

u− 1
p
= e
p
v, u = 1

p
(1+ ev), u′ = e

p
v′ (5.13a,b,c)

the introduction of which into (5.12) yields the differential equation for v ,
which, when we interchange the order of the factors on the right, takes the
form

Λ2

C2
v′2 = (1− v2)

[
1− b

2

p2
(1+ ev)2

]
. (5.14)

We now introduce the dimensionless parameter η, measuring the ratio of the
separation factor b to the orbit-characteristic length p, namely

η2 = b2

p2
= b2

a2(1− e2)2
= b2

a2
· 1
�2

(5.15)

wherein we have written

� = 1− e2 (5.16)
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and equation (5.14) takes the form

Λ2

C2
v′2 = (1− v2)

[
1− η2(1+ ev)2] (5.17a)

= (1− v2)
[
(1− η2)− 2η2ev − η2e2v2]. (5.17b)

Turning to the equation for the second integral (5.8b), it is immediately
evident that if we multiply across by sin2 σ and set

S = cosσ (5.18)

then, in terms of S, equation (5.8b) becomes

Λ2

C2
S′2 = (1− S2)

[
1+ 2ηβS + η2�S2] (5.19)

where we have introduced the parameters from (5.11), (5.15), and (5.16).
It remains to analyze and solve the reduced equations (5.17) and (5.19). At

this point, we note that both equations fit the pattern of the generic equation

Λ2

C2
y ′2 = (1−y2)

[
(1− d2)+ 2sy + qy2]. (5.20)

Before proceeding to an analysis of (5.20), we first consider some particular
cases and the insight gained therefrom.

6 Some Particular Cases

In order to get a sense of the direction in which one should go from here, it
is worthwhile to pause and observe the shape things take in some particular
cases.

— � —

As a first example, we observe from (5.13) that in the particular case when e =
0, the solution implies a constant value for u and hence also for R. Explicitly,

e = 0 implies p = a, u = 1
p
, u′ = 0, R = p. (6.1)

If we note the implication of this by the introduction of R = p into the defining
equations of the coordinate system (1.3), we have

x =
√
p2 − b2 sinσ, z = p cosσ (6.2)

and hence, noting (5.15),

x2

p2 − b2
+ z2

p2
= 1, or

x2

p2(1− η2)
+ z2

p2
= 1 (6.3a,b)
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gives the equation of the orbit in terms of the x-z Cartesian coordinate system.
Clearly, the case e = 0 in this system corresponds to an orbit in the shape of
a conic section of eccentricity η. When η = 0, we retrieve the circular orbit of
the Kepler problem as the trivial case.

When η2 > 1, equation (6.3b) should be written

z2

p2
− x2

p2(η2 − 1)
= 1 (6.4)

but as the reality of the coordinate system (6.2) is violated, there is no real
orbit for this parameter range.

When η2 = 1, the conic degenerates to x = 0, i.e., to the z-axis: here the
motion is along the axis joining the two attracting masses, and we have a
collision orbit. Clearly, the case η2 = 1 requires special treatment and belongs
with collision analysis.

When η2 < 1, equation (6.3b) is the equation of a closed elliptic orbit of
eccentricity η, with semimajor axis p.

— � —

In the second example, we shall observe the simplification effected in equation
(5.19) in the particular case when the two attracting centers have equal mass.
Recalling the defining relation (1.6a), this case is characterized by

β = 0 (6.5)

and equation (5.19) simplifies to

Λ2

C2
S′2 = (1− S2)

[
1+ η2(1− e2)S2]. (6.6)

This equation admits solutions in terms of the Jacobian elliptic functions, but
it is necessary to consider separately the cases e2 � 1. The case e = 1 again
reduces to the equation for the Kepler case because of the coincidence that the
multiplying factor η2(1− e2) vanishes for both η = 0 and e = 1.

Case A: e2 > 1

For this case, we may set

Λ2 = C2, k2
01 = η2(e2 − 1) (6.7)

and equation (6.6) takes the form

S′2 = (1− S2)
[
1− k2

01S
2] (6.8)

with solution given by

S = sn[f +ω : k01] (6.9)

where sn is the Jacobian elliptic function of modulus k01 and ω is the con-
stant of integration; this implies that f = −ω corresponds to the orbit’s first
crossing of the x-axis, namely, z = 0, at which cosσ = 0, and hence S = 0.
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Case B: e2 < 1

In this case, η2(1− e2) is positive, and equation (6.6) is not quite in amenable
form. We rewrite (6.6) as follows:

Λ2

C2
S′2 = (1− S2)

[
1+ η2(1− e2)− η2(1− e2)[1− S2]

]
= [1+ η2(1− e2)

]
(1− S2)

[
1− η2(1− e2)

1+ η2(1− e2)
(1− S2)

]
(6.10)

which is now amenable to solution in terms of the Jacobian elliptic functions.
In this case, we proceed by setting

Λ2 = C2[1+ η2(1− e2)], k2
02 =

η2(1− e2)
1+ η2(1− e2)

(6.11a,b)

and equation (6.10) becomes

S′2 = (1− S2)
[
1− k2

02(1− S2)
]
. (6.12)

The solution to equation (6.12) is the Jacobian elliptic function cn of modu-
lus k02, and for the general form we may write

S = cn[f + f0 : k02] (6.13)

where f0 is the constant of integration. We shall see presently that we mea-
sure f from a “pericenter” appropriately defined when we come to a full anal-
ysis of the equation for R; here, following the precedent of the Kepler case, we
let −ω denote the value of f at the point of the first crossing of the x-axis,
that is,

z = 0, cosσ = 0, S = 0, correspond to f = −ω (6.14)

and hence

0 = cn[f0 −ω : k02] (6.15)

which is satisfied by taking

f0 −ω = −K02, f0 =ω−K02 (6.16)

where K02 is the quarterperiod of the Jacobian elliptic function of modulus k02;
hence the solution (6.13) may be written

S = cn[f +ω−K02 : k02] (6.17)

which, on applying a standard relation for the function cn, may be rewritten

S = k′02
sn[f +ω : k02]
dn[f +ω : k02]

(6.18)

where k′02 is the modulus complementary to k02, determined by

k2
02 + k′202 = 1. (6.19)

When η = 0, then k02 = 0, k′02 = 1, dn = 1, and we retrieve the solution form
for the Kepler case.
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As a third example deserving special notice, we consider the instances
where either

R′ = 0 or σ ′ = 0. (6.20a,b)

The situation (6.20a), apart from the singular case R = b, corresponds to the
pair of bounding ellipses

R = a(1− e), R = a(1+ e) (6.21a,b)

and we note that the inner ellipse (6.21a) disappears when

b > a(1− e) = p
1+ e , or alternatively η >

1
1+ e . (6.22a,b)

The situation (6.20b), apart from the singular cases S = ±1, corresponds to
the bounding hyperbolae

S = −β±
√
e2 + β2 − 1

η(1− e2)
. (6.23)

For the reality of the hyperbolae, the two conditions

e2 + β2 ≥ 1, η(1− e2) > β−
√
e2 + β2 − 1 (6.24a,b)

must be satisfied. Requirement (6.24b) has to be further subdivided:

(i) β−
√
e2 + β2 − 1 < η(1− e2) < β+

√
e2 + β2 − 1 (6.25a)

implying the one-boundary hyperbola

S = −β−
√
e2 + β2 − 1

η(1− e2)
. (6.25b)

(ii) η(1− e2) > β+
√
e2 + β2 − 1 > β−

√
e2 + β2 − 1 (6.26a)

implying the two-boundary hyperbolae

S = −β−
√
e2 + β2 − 1

η(1− e2)
, S = −β+

√
e2 + β2 − 1

η(1− e2)
. (6.26b)

The combination of the outer ellipse with either of the bounding hyperbolae
constitute a limit set with critical points at the points of intersection of the
ellipse with either hyperbola.
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7 Analysis of the Generic Equation

Returning to the generic equation (5.20), we note that the quartic on the right
of that equation is the product of two quadratic factors, from one of which the
linear term is absent. The aim of this section is to produce a transformation
that reduces the quartic to a product of two quadratic factors, from both of
which the linear term will be absent. We proceed as follows.

Taking the first of the two factors on the right of (5.20), we write

1−y2 = J2[(1− δy)2 − (y − δ)2] = J2(1− δ2)(1−y2) (7.1ab)

from which there immediately follows

J2(1− δ2) = 1. (7.2)

Turning to the second factor, we set

(1− d2)+ 2sy + qy2 = J2[A(1− δy)2 + B(y − δ)2] (7.3a)

= J2[(A+ Bδ2)− 2δ(A+ B)y + (Aδ2 + B)y2]. (7.3b)

The latter equation leads to the three requirements

J2(A+ Bδ2) = 1− d2 (a)

J2δ(A+ B) = −s (b)

J2(Aδ2 + B) = q. (c)

Adding (c) to (a) yields

J2(1+ δ2)(A+ B) = (1− d2)+ q (d)

while subtracting (c) from (a) yields

J2(1− δ2)(A− B) = (1− d2)− q

and noting (7.2), the latter becomes

A− B = (1− d2)− q. (e)

If we multiply (b) by 2, and add the result to (d), we find

J2(1+ δ)2(A+ B) = (1− d2)− 2s + q (f)

while subtracting the same result from (d) yields

J2(1− δ)2(A+ B) = (1− d2)+ 2s + q. (g)
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Dividing (g) by (f) and denoting the quotient by ρ2, we have

ρ2 =
(

1− δ
1+ δ

)2

= (1− d2)+ 2s + q
(1− d2)− 2s + q . (h)

Hence if we set

ρ =
√
(1− d2)+ 2s + q
(1− d2)− 2s + q (i)

we have

1− δ
1+ δ = ±ρ (j)

with solution

δ = 1− ρ
1+ ρ (k)

as the second option arising from replacing ρ by −ρ is excluded by the re-
quirement that ρ → 1 implies δ→ 0. Accordingly we have

1− δ2 = 4ρ
(1+ ρ)2 , J2 = (1+ ρ)2

4ρ
. (l)

It follows from (h) that

1− ρ2 = − 4s
(1− d2)− 2s + q (m)

and from combining (h) with (i), the latter multiplied by 2, we have

(1+ ρ)2 = 1+ ρ2 + 2ρ = 2[(1− d2)+ q]
[(1− d2)− 2s + q] + 2

√
(1− d2)+ 2s + q
(1− d2)− 2s + q

= 2

⎡⎣[(1− d2)+ q]+
√
[(1− d2)− 2s + q][(1− d2)+ 2s + q]
[(1− d2)− 2s + q] .

⎤⎦ (n)

Next, we may write

[(1− d2)− 2s + q][(1− d2)+ 2s + q] = [(1− d2)+ q]2 − 4s2 (o)

= [(1− d2)+ q]2
[

1− 4s2

[(1− d2)+ q]2
]

in accordance with which we set

(1− 2h)2 =
[

1− 4s2

[(1− d2)+ q]2
]

(p)
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which implies

h = 1
2

[
1−

√
1− 4s2

[(1− d2)+ q]2
]
, (7.4a)

1− h = 1
2

[
1+

√
1− 4s2

[(1− d2)+ q]2
]

(7.4b)

and further, that

[(1− d2)− 2s + q][(1− d2)+ 2s + q] = [(1− d2)+ q]2[(1− 2h]2

and hence√
[(1− d2)− 2s + q][(1− d2)+ 2s + q] = [(1− d2)+ q][(1− 2h]. (q)

Recalling now relation (n), we see that, in terms of h, (n) can be rewritten as

(1+ ρ)2 = 2

[
[(1− d2)+ q]+ [(1− d2)+ q][1− 2h]

[(1− d2)− 2s + q]

]

= 4(1− h)[(1− d2)+ q]
[(1− d2)− 2s + q] . (r)

Returning to relation (k), we utilize both relations (m) and (r), and there
follows that

δ = 1− ρ
1+ ρ =

1− ρ2

(1+ ρ)2 = −
s

[(1− d2)+ q][1− h]. (7.5)

From (f), if we introduce J2 from (7.2), we find

[(1− d2)− 2s + q] = (1+ δ)2
1− δ2

(A+ B) = 1+ δ
1− δ(A+ B) =

A+ B
ρ

so that, on the introduction of ρ from (i), we see that

A+ B = ρ[(1− d2)− 2s + q] =
√
[(1− d2)− 2s + q][(1− d2)+ 2s + q]

into which we introduce relation (q) to obtain

A+ B = [(1− d2)+ q][1− 2h]. (7.6)

From (e), we recall that

A− B = [(1− d2)− q] (7.7)

and so, for A and B we have, respectively,

A = (1− d2)(1− h)− hq (7.8a)

B = −h(1− d2)+ q(1− h). (7.8b)
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With h determined in terms of d, s, and q from (7.4a), then δ is determined
in terms of these quantities from (7.5), and both A and B are determined from
(7.8). With J2 determined from (7.2), all quantities necessary for the decompo-
sition (7.3a) are fully determined algebraically.

By the introduction of (7.1a) and (7.3a) into the model equation (5.20), we
have

Λ2

C2
y ′2 = J4[(1− δy)2 − (y − δ)2][A(1− δy)2 + B(y − δ)2] (7.9a)

= J4(1− δy)4
⎡⎣1−

(
y − δ
1− δy

)2
⎤⎦⎡⎣A+ B ( y − δ

1− δy

)2
⎤⎦ (7.9b)

or, alternatively,

Λ2

C2

[
y ′

J2(1− δy)2
]2

=
⎡⎣1−

(
y − δ
1− δy

)2
⎤⎦⎡⎣A+ B ( y − δ

1− δy

)2
⎤⎦ . (7.10)

We may now write

Y = y − δ
1− δy , so that y = Y + δ

1+ δY (7.11a,b)

and hence

Y ′2 = (1− δy)y ′ + δy ′(y − δ)
(1− δy)2 = (1− δ2)y ′

(1− δy)2 = y ′

J2(1− δy)2 (7.12)

and, in terms of Y , equation (7.10) becomes

Λ2

C2
Y ′2 = (1− Y 2)[A+ BY 2] (7.13)

which is the desired form. The treatment of equation (7.13) will be determined
by a closer scrutiny of A and B.

We next return to deal individually with the equations for the first integrals
(5.17) and (5.19). It is convenient to consider first the latter equation (5.19) for
S = cosσ , for which we have already noted the form of the solution (6.18) for
the particular case of β = 0.

8 The Equation for S = cosσ : Specification of Λ
Equation (5.19) for S has the form (5.20) of the generic equation with the fol-
lowing identification of the parameters:

d2 = 0, s = ηβ, q = η2(1− e2). (8.1)

Using the subscript S to identify the algebraic quantities in this case, we have
from (7.4)
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hS = 1
2

[
1−

√
1− 4η2β2

[1+ η2(1− e2)]2

]
, (8.2a)

1− 2hS =
√

1− 4η2β2

[1+ η2(1− e2)]2
, (8.2b)

1− hS = 1
2

[
1+

√
1− 4η2β2

[1+ η2(1− e2)]2

]
. (8.2c)

From (7.5), there follows that for the δ-quantity we have

δS = − 2ηβ

[1+ η2(1− e2)]
[

1+
√

1− 4η2β2

[1+η2(1−e2)]2

]
= − 2ηβ

[1+ η2(1− e2)]+
√
[1+ η2(1− e2)]2 − 4η2β2

. (8.3)

From (7.6) and (7.7) we have, respectively,

AS + BS = [1+ η2(1− e2)]

√
1− 4η2β2

[1+ η2(1− e2)]2

=
√
[1+ η2(1− e2)]2 − 4η2β2 (8.4a)

AS − BS = 1− η2(1− e2) (8.4b)

yielding

AS = 1
2[1− η2(1− e2)]+ 1

2

√
[1+ η2(1− e2)]2 − 4η2β2 (8.5a)

BS = −1
2[1− η2(1− e2)]+ 1

2

√
[1+ η2(1− e2)]2 − 4η2β2. (8.5b)

If we now set

ζ = S − δS
1− δSS , S = ζ + δS

1+ δSζ (8.6a,b)

then, in accordance with the procedure leading to (7.13), we have the equation
for ζ in the form

Λ2

C2
ζ′2 = (1− ζ2)[AS + BSζ2] (8.7)

which, for BS negative, is in a form amenable to integration.
If we consider the quantity within the radical sign in (8.4a), we see that

[1+ η2(1− e2)]2 − 4η2β2 � [1+ η2(1− e2)]2 − 4η2(1− e2) as β2 � 1− e2

(8.8)

and hence
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[1+ η2(1− e2)]2 − 4η2β2 � [1− η2(1− e2)]2 as β2 + e2 � 1. (8.9)

It follows that√
[1+ η2(1− e2)]2 − 4η2β2 � [1− η2(1− e2)] as β2 + e2 � 1 (8.10)

and hence, from (8.5b), we have that

BS � 0 as β2 + e2 � 1. (8.11)

We shall consider the two cases separately.

Case A: e2 + β2 ≥ 1

In this case, where BS is negative, we set

Λ2 = C2AS = 1
2C

2
[
[1− η2(1− e2)]+

√
[1+ η2(1− e2)]2 − 4η2β2

]
= Λ2

1

(8.12a)

k2
S1 = −

BS
AS

= [1− η2(1− e2)]−
√
[1+ η2(1− e2)]2 − 4η2β2

[1− η2(1− e2)]+
√
[1+ η2(1− e2)]2 − 4η2β2

(8.12b)

where (8.12a) is the defining relation for Λ2
1. Then equation (8.7) takes the form

ζ′2 = (1− ζ2)[1− k2
S1ζ

2]. (8.13)

In terms of the Jacobian elliptic function sn of modulus kS1, the solution to
equation (8.13) is given by

ζ = sn[f + fS0 : kS1] (8.14)

where fS0 is the constant of integration. From (8.6b) it follows that for S we
have

S = sn[f + fS0 : kS1]+ δS
1+ δS sn[f + fS0 : kS1]

. (8.15)

If we let −ω denote the value of f at which the orbit makes its first crossing
of the x-axis, then

z = 0, S = 0, for f = −ω (8.16)

and from (8.15) at f = −ω, we have

sn[fS0 −ω : kS1]+ δS = 0. (8.17)

With fS0 determined from (8.17), we have the complete solution in (8.15).
We may note from (8.3) that when β = 0, δS = 0, and the condition (8.16)

is satisfied by taking fS0 = ω, whereby we retrieve the solution (6.9) for that
case.
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Case B: e2 + β2 ≤ 1

In this case where BS is positive, we make (8.7) amenable to integration by
writing it in the form

Λ2

C2
ζ′2 = (1− ζ2)[AS + BS − BS(1− ζ2)]

= (AS + BS)(1− ζ2)
[

1− BS
AS + BS (1− ζ

2)
]
. (8.18)

Here, we define the parameters Λ and kS2 by setting

Λ2 = C2(AS + BS) = C2
√
[1+ η2(1− e2)]2 − 4η2β2 = Λ2

2 (8.19a)

k2
S2 =

BS
AS + BS =

1
2 − 1

2
1− η2(1− e2)√

[1+ η2(1− e2)]2 − 4η2β2
(8.19b)

where (8.19a) is the defining relation for Λ2
2, and where we have introduced

(8.4a) and (8.5b). In terms of these parameters, equation (8.18) reads

ζ′2 = (1− ζ2)[1− k2
S2(1− ζ2)]. (8.20)

With an eye backward to the solution (6.17) for the particular case β = 0,
we may write the solution to (8.20) in the form

ζ = cn[f + fS0 −KS2 : kS2] (8.21)

where KS2 is the quarterperiod of the Jacobian elliptic function of modulus kS2

and fS0 is the arbitrary constant introduced by the integration.
Recalling relation (8.6b) for S expressed in terms of ζ, we see that the

solution for S has the form

S = cn[f + fS0 −KS2 : kS2]+ δS
1+ δS cn[f + fS0 −KS2 : kS2]

. (8.22)

For the Jacobian elliptic functions, we note the relation

cn[f + fS0 −KS2 : kS2] = k′S2
sn[f + fS0 : kS2]
dn[f + fS0 : kS2]

(8.23)

where k′S2 is the complementary modulus, defined by

k′2S2 = 1− k2
S2. (8.24)

When (8.23) is introduced into (8.22), we have for S

S = k′S2 sn[f + fS0 : kS2]+ δS dn[f + fS0 : kS2]
dn[f + fS0 : kS2]+ δSk′S2 sn[f + fS0 : kS2]

. (8.25)

If we impose the condition that f takes the value −ω at the point where the
orbit first crosses the x-axis, then
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z = 0, S = 0, when f = −ω (8.26)

and we see that the condition is satisfied if we set

k′S2 sn[fS0 −ω : kS2]+ δS dn[fS0 −ω : kS2] = 0. (8.27)

Accordingly, in this case the solution is given by (8.25) with fS0 determined
from (8.27).

From (8.3), we observe that when β = 0, δS = 0, and in that case condition
(8.27) is satisfied by taking fS0 =ω, and we retrieve the solution (6.18) for that
case.

Summary Remarks on the S-equation and the Range of β

1. When β = 0, the configuration is symmetric, and the two cases are respec-
tively identical with the ranges e2 � 1 for the parameter e.

2. For β ≠ 0, as β increases from 0 to 1, the range of Case A expands to
e2 ≥ 1− β2, while the range of Case B shrinks to e2 ≤ 1− β2.

3. In the limit of β→ 1 (as the lighter mass-center shrinks to zero), the range
of Case A becomes the entire range e2 ≥ 0, while the range of Case B
disappears.

Finally to summarize the solution forms, we introduce the variable fS by
setting

fS = f + fS0 (8.28)

and the solutions are respectively

Case A: e2 + β2 ≥ 1:

From (8.15) and (8.17)

S = cosσ = sn[fS : kS1]+ δS
1+ δS sn[fS : kS]

(8.29a)

with fS0 determined from

sn[fS0 −ω : kS1]+ δS = 0. (8.29b)

Case B: e2 + β2 ≤ 1:

From (8.25) and (8.27)

S = cosσ = k′S2 sn[fS : kS2]+ δS dn[fS : kS2]
dn[fS : kS2]+ δSk′S2 sn[fS : kS2]

(8.30a)

with fS0 determined from
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k′S2 sn[fS0 −ω : kS2]+ δS dn[fS0 −ω : kS2] = 0. (8.30b)

— � —

At this point we note that reality for the quantities in (8.3), (8.5), and (8.12)
is ensured if

[1+ η2(1− e2)]2 ≥ 4η2β2 (8.31a)

or alternatively

1+ η2(1− e2) ≥ 2ηβ. (8.31b)

It is convenient to introduce the parameter λ, defined as

λ = b
a
= η(1− e2) (8.32)

so that, in terms of λ, requirement (8.31) reads

λ2 − 2λβ+ (1− e2) ≥ 0. (8.33)

The expression in λ, on the left of (8.33), has zeros

λ1 = β−
√
e2 + β2 − 1, λ2 = β+

√
e2 + β2 − 1 (8.34a,b)

leading us again to consider the two cases separately:

Case A: e2 + β2 ≥ 1:

In this case, condition (8.33) is satisfied outside the interval between the zeros,
that is, for

(i) λ ≤ λ1 and (ii) λ ≥ λ2.

When we come to analyze the system for λ ≥ λ1 in Subsection 8A, it will be
evident that the entire range λ ≥ λ1 must be treated separately. Accordingly,
the interval

0 ≤ λ ≤ λ1 = β−
√
e2 + β2 − 1 (8.35)

defines the primary λ-range in which the solution form (8.15) is valid for
e2 + β2 ≥ 1.

Case B: e2 + β2 ≤ 1:

Here both zeros of (8.33) are complex, and the expression on the left of (8.33)
is nonnegative for all real positive λ, so that the solution form (8.25) is valid
over the entire λ-range, λ ≥ 0 when e2 + β2 ≤ 1.

We now return to consider Case A in detail.
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Case A: e2 + β2 ≥ 1:

Rewriting the S-equation (5.19) in terms of λ, we have

(1− e2)
Λ2

C2
S′2 = (1− S2)

[
λ2S2 + 2βλS + (1− e2)

]
(8.36a)

= (1− S)(1+ S)[λS + (β− γ)][λS + (β+ γ)] (8.36b)

where, for convenience, we have introduced the notation

γ =
√
e2 + β2 − 1. (8.37)

When we arrange the zeros of the quartic on the right of (8.36) in ascending
order, we see that in the primary range (8.35), they form the sequence shown:

0 ≤ λ ≤ β− γ :
{
−β+ γ

λ
,−β− γ

λ
,−1,1

}
. (8.38a:b)

We now recall that in effecting the reduction to the solution form (8.15), we
began by dealing with the quartic as a product of two quadratic factors, re-
spectively formed from the linear factors by combining the “upper” pair and
the “lower” pair as indicated by the ordering of the zeros. Moreover, in this pri-
mary range (where 0 ≤ λ ≤ β−γ), equation (8.36) balances for the full S-range,
−1 ≤ S ≤ 1, so that the solution extends through the full range of S(−1,1).

When we move into the supplementary λ-range, λ ≥ β−γ, we first consider
the range

β− γ ≤ λ ≤ β+ γ (8.39)

and observe that the relative position of the second and third zeros in (8.38)
is now reversed. This requires a restructuring of the quadratics in accordance
with their formation from the linear factors by combining the “upper” and
“lower” pairs as indicated by the sequence of zeros. The ordering now has the
form

β− γ ≤ λ ≤ β+ γ :
{
−β+ γ

λ
,−1,−β− γ

λ
,1
}
. (8.40a:b)

In this λ-range, the solutions are restricted by the requirement

−1 ≤ −β− γ
λ

≤ S ≤ 1
(
≤ β+ γ

λ

)
. (8.41)

Here there is a zone about the second (lighter) primary mass from which orbits
are excluded. This zone is bounded by the hyperbola branch

S = −β− γ
λ

(8.42)

to the inside of which the orbits have no access. Outside the hyperbola, the or-
bits may perform some vigorous oscillations close to the bounding hyperbola
as the particle is subjected to the twin forces of attraction and exclusion.
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Moving further into the λ-range, when λ exceeds β+γ, the relative position
of the first and second zeros in (8.40) is reversed; the ordering now has the
form

λ ≥ β+ γ :
{
−1,−β+ γ

λ
,−β− γ

λ
,1
}

(8.43a:b)

and clearly the formation of the quadratic factors from the linear factors (as
indicated by the “upper” and “lower” pairs of zeros) is unaffected. Here there
are two distinct orbit regions depending on the signs of the factors

S + β+ γ
λ

, S + β− γ
λ

(8.44)

(i) when both factors are negative, we have the orbit region

−1 ≤ S ≤ −β+ γ
λ

(8.45a)

(ii) when both factors are positive, we have the orbit region

−β− γ
λ

≤ S ≤ 1 (8.45b)

(iii) when the factors have different signs, we have the

S-Exclusion Zone:
(
−β− γ

λ
,−β+ γ

λ

)
. (8.45c)

Hence, when the λ-factor exceeds β+γ, a second bounding hyperbola appears
defining a second boundary to the exclusion zone and introducing the second
satellite system around the second (lighter) primary. We may refer to the two
bounding hyperbola curves as the upper and lower boundaries of the exclusion
zone, thereby defining a bipolar system of satellite orbits.

In the particular case when e = 1, the upper bounding hyperbola coin-
cides with the x-axis, and the satellites of the first (heavier) primary are now
confined to the upper half-plane. This case requires special attention and is
analyzed in Section 12.

When the parameter e exceeds unity, the upper bounding hyperbola moves
into the “upper” half-plane so that the bipolar system of satellite orbits be-
comes fully “polarized”. This range also requires special attention and is fully
analyzed in Section 11.

— � —

The next step is to establish the solution form valid in the supplementary
range

λ ≥ β− γ (8.46)

with the zeros ordered according to (8.40) or (8.43). This is the subject of
Subsection 8A.
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8A. Solution Form for the Supplementary Range: (λ ≥ β− γ)

Rewriting the differential equation (8.36) in accord with the ordering (8.40) or
(8.43), we have

(1− e2)
λ2

Λ2

C2
S′2 = −(S − 1)

[
S + β− γ

λ

]
(S + 1)

[
S + β+ γ

λ

]
= −

[
S2 −

(
1− β− γ

λ

)
S − β− γ

λ

]
·
[
S2 +

(
1+ β+ γ

λ

)
S + β+ γ

λ

]
. (8A.1)

Considering the first quadratic factor on the right of (8A.1),

S2 −
(
1− β− γ

λ

)
S − β− γ

λ
=
[
S − 1

2

(
1− β− γ

λ

)]2 − 1
4

(
1+ β− γ

λ

)2
(8A.2)

which suggests that we set

S − 1
2

(
1− β− γ

λ

)
= 1

2

(
1+ β− γ

λ

)
ζ, S = 1

2

(
1+ β− γ

λ

)
ζ + 1

2

(
1− β− γ

λ

)
(8A.3a,b)

and the first quadratic factor (8A.2) expressed in terms of ζ becomes

1
4

(
1+ β− γ

λ

)2
(ζ2 − 1). (8A.4)

With S given by (8A.3b), we have

S2 = 1
4

(
1+ β− γ

λ

)2
ζ2 + 1

2

[
1−

(β− γ
λ

)2]
ζ + 1

4

[
1− β− γ

λ

]2
(8A.5a)(

1+ β+ γ
λ

)
S + β+ γ

λ
= 1

2

[
1+ 2

β
λ
+ β

2 − γ2

λ2

]
ζ + 1

2

[
1+ 2

β
λ
+ 4

γ
λ
− β

2 − γ2

λ2

]
(8A.5b)

and, on combining the quantities in (8A.5), we find that the second factor on
the right of (8A.1), when expressed in terms of ζ, reads

1
4

(
1+ β− γ

λ

)2
ζ2+

(
1+ γ

λ

)(
1+ β− γ

λ

)
ζ+ 1

4

(
3− β− γ

λ

)(
1+ β+ 3γ

λ

)
. (8A.6)

We introduce (8A.4) and (8A.6) into the right side of (8A.1), and if we also use
(8A.3b) to substitute for S′ on the left side, then, after multiplying across by
4λ2, we obtain the differential equation for ζ in the form

4(1− e2)
Λ2

C2
ζ′2 =

(1− ζ2)
[
[3λ− (β− γ)][λ+ β+ 3γ]+ 4(λ+ γ)(λ+ β− γ)ζ

+ (λ+ β− γ)2ζ2
]
. (8A.7)
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Comparing now the right side of (8A.7) with the right side of (5.20) shows
that here we have

1− d2=[3λ− (β− γ)][λ+ β+ 3γ], s=2(λ+ γ)[λ+ β− γ], q=(λ+ β− γ)2
(8A.8a,b,c)

from which there follows that

1− d2 + q = 4
[
(λ+ γ)2 + β(λ− γ)], 1− d2 − q = 2

[
(λ+ γ)2 + 4λγ − β2].

(8A.8d,e)

From relations (8A.8b,d) we have

2s
1− d2 + q =

(λ+ γ)(λ+ β− γ)
(λ+ γ)2 + β(λ− γ) (8A.9)

which (cf. relations above (7.4)) leads to

(1− 2h)2 = 1− 4s2

(1− d2 + q)2 = 1− (λ+ γ)2(λ+ β− γ)2
[(λ+ γ)2 + β(λ− γ)]2

= [(λ+ γ)2 + β(λ− γ)]2 − (λ+ γ)2(λ+ β− γ)2
[(λ+ γ)2 + β(λ− γ)]2 (8A.10)

The numerator is the difference between two squares and, when we expand
and recombine, we find for the the numerator

4λγ(λ+ β+ γ)[λ− (β− γ)] = 4λγ[(λ+ γ)2 − β2]. (8A.11)

It follows from (8A.10) that

1− 2h = 2
√
λγ[(λ+ γ)2 − β2]

(λ+ γ)2 + β(λ− γ) (8A.12)

and hence

h = 1
2 −

√
λγ[(λ+ γ)2 − β2]
(λ+ γ)2 + β(λ− γ) (8A.13a)

1− h = 1
2 +

√
λγ[(λ+ γ)2 − β2]
(λ+ γ)2 + β(λ− γ). (8A.13b)

Introducing relations (8A.9) and (8A.13b) into (7.5), we obtain for δ,

δ∗S = −
(λ+ γ)(λ+ β− γ)

(λ+ γ)2 + β(λ− γ)+ 2
√
λγ[(λ+ γ)2 − β2]

(8A.14)

and similarly from (7.6) and (7.7), we obtain

A∗S + B∗S = 8
√
λγ[(λ+ γ)2 − β2] (8A.15a)

A∗S − B∗S = 2
[
(λ+ γ)2 + 4λγ − β2] (8A.15b)
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and hence

A∗S = 4
√
λγ[(λ+ γ)2 − β2]+ [(λ+ γ)2 + 4λγ − β2]

=
[√
(λ+ γ)2 − β2 + 2

√
λγ
]2 ≥ 0 (8A.16a)

B∗S = 4
√
λγ[(λ+ γ)2 − β2]− [(λ+ γ)2 + 4λγ − β2]

= −
[√
(λ+ γ)2 − β2 − 2

√
λγ
]2 ≤ 0. (8A.16b)

For the reality of the quantities in (8A.14) to (8A.16), it suffices that

(λ+ γ) ≥ β or λ ≥ β− γ (8A.17)

which is the definition of the entire supplementary λ-range (8.46).
When we introduce the transformations

Y = ζ − δ∗S
1− δ∗S ζ

, ζ = Y + δ∗S
1+ δ∗S Y

(8A.18a,b)

then, in terms of Y , equation (8A.7) becomes

4(1− e2)
Λ2

C2
Y ′2 = (1− Y 2)

[
A∗S + B∗S Y 2

]
. (8A.19)

If we divide across by A∗S , the equation reads

4(1− e2)
Λ2

C2A∗S
Y ′2 = (1− Y 2)

[
1− k2

S0Y
2
]

(8A.20)

where we have written

k2
S0 = −

B∗S
A∗S

=
[2
√
λγ −

√
(λ+ γ)2 − β2

2
√
λγ +

√
(λ+ γ)2 − β2

]2

≤ 1 (8A.21)

and we take kS0 to be the absolute value of the quantity exhibited within the
square brackets on the right side of (8A.21). Hence if we make the identifica-
tion

Λ2 = C2A∗S
4(1− e2)

= 1
4

C2

(1− e2)

[
2
√
λγ +

√
(λ+ γ)2 − β2

]2 = Λ2
0 (8A.22)

then equation (8A.20) takes the standard form

Y ′2 = (1− Y 2)
[
1− k2

S0Y
2
]

(8A.23)

with solution in the form

Y = sn[f + fS0 : kS0] (8A.24)

where again fS0 represents the constant of integration. From (8A.18b), we
therefore have
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ζ = sn[f + fS0 : kS0]+ δ∗S
1+ δ∗S sn[f + fS0 : kS0]

(8A.25)

and from (8A.3b), we have as solution for S = cosσ ,

S = 1
2λ

×[
(1+δ∗S )λ+(1− δ∗S )(β− γ)

]
sn[f+fS0 : kS0]+

[
(1+δ∗S )λ− (1− δ∗S )(β− γ)

]
1+δ∗S sn[f+fS0 : kS0]

(8A.26)

with the constant of integration to be determined from the crossing of one or
the other of the axes.

The solution form (8A.26) is valid in the range λ > β − γ; there is one
point in the range that merits attention. The modulus kS0 as given by (8A.21)
vanishes at

λ = (β+ γ) (8A.27)

and it can be easily checked that the factor within the square brackets on the
right of (8A.21) is positive for λ < β+γ and negative for λ > β+γ and vanishes
for λ = β+ γ. Accordingly, when we write

kS0 = ±
2
√
λγ −

√
(λ+ γ)2 − β2

2
√
λγ +

√
(λ+ γ)2 − β2

≤ 1 (8A.28)

it is with the understanding that, in using the formula, we take

(i) the positive sign when β− γ < λ < β+ γ (8A.29a)

(ii) the negative sign when λ > β+ γ (8A.29b)

when inserting kS0 into the solution form (8A.26).

8B. Recapitulation of Solution Forms for the S-equation

For the S-equation, there are three distinct ranges.

Case A: e2 + β2 ≥ 1:

Range AS1: 0 ≤ λ ≤ β− γ, then with

(i) δ = δS determined from (8.3)

(ii) k = kS1 determined from (8.12b)

(iii) Λ = Λ1 determined from (8.12a)

the solution form is given by (8.15).

Range AS2: λ ≥ β− γ, then with
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(i) δ = δ∗S determined from (8A.14)

(ii) k = kS0 determined from (8A.21) or (8A.28/29)

(iii) Λ = Λ0 determined from (8A.22)

the solution form is given by (8A.26).

Case B: e2 + β2 ≤ 1:

Range BS: λ ≥ 0, then with

(i) δ = δS determined from (8.3)

(ii) k = kS2 determined from (8.19b)

(iii) Λ = Λ2 determined from (8.19a)

the solution form is given by (8.25).

In Range AS2, there is a transition at λ = β + γ, where kS0 = 0, and the sign
change indicated in (8A.28) occurs.

9 The Equation for R

Equation (5.17) for v has the form (5.20) of the generic equation with the
following identification of the parameters:

d2 = η2, s = −η2e, q = −η2e2. (9.1)

We use the subscript v to identify the algebraic quantities in this case, and
from the introduction of (9.1) into (7.4), we have

hv = 1
2

[
1−

√
1− 4η4e2

[1− η2(1+ e2)]2

]
, (9.2a)

1− 2hv =
√

1− 4η4e2

[1− η2(1+ e2)]2
, (9.2b)

1− hv = 1
2

[
1+

√
1− 4η4e2

[1− η2(1+ e2)]2

]
. (9.2c)

From (7.5), there follows for the δ-quantity

δv = 2η2e

[1− η2(1+ e2)]
[

1+
√

1− 4η4e2

[1−η2(1+e2)]2

]
= 2η2e

[1− η2(1+ e2)]+
√
[1− η2(1+ e2)]2 − 4η4e2

(9.3)

and from (7.6) and (7.7) we have, respectively,
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Av + Bv = [1− η2(1+ e2)]

√
1− 4η4e2

[1− η2(1+ e2)]2

=
√
[1− η2(1+ e2)]2 − 4η4e2

=
√
[1− η2(1− e2)]2 − 4η2e2 (9.4a)

Av − Bv = 1− η2(1− e2) (9.4b)

and so, for Av and Bv individually, we have, respectively,

Av = 1
2[1− η2(1− e2)]+ 1

2

√
[1− η2(1− e2)]2 − 4η2e2 (9.5a)

Bv = −1
2[1− η2(1− e2)]+ 1

2

√
[1− η2(1− e2)]2 − 4η2e2 (9.5b)

and we note that Av is always positive while Bv is always negative (or zero).
With δv as given by (9.3), we introduce the auxiliary variable w by setting

w = v − δv
1− δvv , v = w + δv

1+ δvw (9.6a,b)

and the differential equation for w, corresponding to (7.13), takes the form

Λ2

C2
w′2 = (1−w2)[Av + Bvw2] (9.7a)

or, alternatively,

Λ2

C2Av
w′2 = (1−w2)[1+ Bv

Av
w2]. (9.7b)

From Section 3.8, we now recall that for

Case A: e2 + β2 ≥ 1: we have defined Λ2 by (8.12a), which we have denoted byΛ2
1, while for

Case B: e2 + β2 ≤ 1: we have defined Λ2 by (8.19a), which we have denoted byΛ2
2.

From (8.12a) we see that

e2 + β2 ≥ 1:
Λ2

1

C2Av
= [1− η2(1− e2)]+

√
[1+ η2(1− e2)]2 − 4η2β2

[1− η2(1− e2)]+
√
[1− η2(1− e2)]2 − 4η2e2

= 1

j2
v1

(9.8a)

which is the defining relation for jv1; similarly, from (8.19a) we have that

e2 + β2 ≤ 1:
Λ2

2

C2Av
= 2

√
[1+ η2(1− e2)]2 − 4η2β2

[1− η2(1− e2)]+
√
[1− η2(1− e2)]2 − 4η2e2

= 1

j2
v2

(9.8b)
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which is the defining relation for jv2; we also set

k2
v = −

Bv
Av

= [1− η2(1− e2)]−
√
[1− η2(1− e2)]2 − 4η2e2

[1− η2(1− e2)]+
√
[1− η2(1− e2)]2 − 4η2e2

(9.9)

and if we use the symbol jv to cover both cases in (9.8), namely, we set

jv = jv1 when e2 + β2 ≥ 1 (9.10a)

jv = jv2 when e2 + β2 ≤ 1, (9.10b)

then equation (9.7b) may be written

1

j2
v
w′2 = (1−w2)[1− k2

vw2]. (9.11)

If we write

fv = jvf (9.12)

then equation (9.11) may be written( dw
dfv

)2 = (1−w2)[1− k2
vw2]. (9.13)

The solution to equation (9.13) has the form

w = sn[fv + fv0 : kv] (9.14)

where fv0 is the constant of integration. From (9.6), we therefore have

v = sn[fv + fv0 : kv]+ δv
1+ δv sn[fv + fv0 : kv]

(9.15)

and it follows that

v′ = j2
v(1− δ2

v)
cn[fv + fv0 : kv] · dn[fv + fv0 : kv][

1+ δv sn[fv + fv0 : kv]
]2 . (9.16)

Hence, if we impose the condition

f = 0 (fv = 0) implies v′ = 0 (9.17)

then the condition is satisfied, provided

cn[fv0 : kv] = 0. (9.18)

We now recall that if Kv is the quarterperiod of the Jacobian elliptic function,
then

cn[fv ±Kv : kv] = ∓k′v
sn[fv : kv]
dn[fv : kv]

(9.19)
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where k′v is the complementary modulus, given by

k′2v = 1− k2
v. (9.20)

Setting fv = 0 in relation (9.19) yields

cn[±Kv : kv] = ∓k′v sn[0 : kv] = 0 (9.21)

so that condition (9.18) is satisfied if we take

fv0 = Kv (9.22)

and the solution (9.14) for w assumes the form

w = sn[fv +Kv : kv] = cn[fv : kv]
dn[fv : kv]

(9.23)

and the solution form (9.15) for v becomes

v = cn[fv : kv]+ δv dn[fv : kv]
dn[fv : kv]+ δv cn[fv : kv]

(9.24)

which is the sought-for form of the solution.
With this form for v , and recalling (5.13), we have the following form for u,

wherein we note the identification of fv with jvf from (9.12)

u = 1
p
(1+ ev) = 1

p

[
(1+ eδv)dn[fv : kv]+ (e+ δv) cn[fv : kv]

dn[fv : kv]+ δv cn[fv : kv]

]
(9.25)

and recalling (5.9), we have the solution form for R:

R = p · dn[fv : kv]+ δv cn[fv : kv]
(1+ eδv)dn[fv : kv]+ (e+ δv) cn[fv : kv]

. (9.26)

This may be put in an alternative form if we introduce the alternate set of
parameters

p∗ = p
1+ eδv , e∗ = e+ δv

1+ eδv (9.27a,b)

so that

e = e∗ − δv
1− e∗δv , p = 1− δ2

v
1− e∗δv p∗ (9.28a,b)

and the solution (9.26) may be written

R = p∗dn[fv : kv]+ δv cn[fv : kv]
dn[fv : kv]+ e∗ cn[fv : kv]

(9.29)

which takes the familiar Kepler form when η → 0 so that δv → 0, kv → 0, and
jv → 1.
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Recalling formula (9.3) for δv , we set

d0 = 2

[1− η2(1+ e2)]+
√
[1− η2(1+ e2)]2 − 4η4e2

(9.30)

so that (9.3) can be written

δv = η2d0e. (9.31)

Introducing this form for δv into (9.27b), we have

e∗ = e · 1+ η2d0

1+ η2d0e2
or

e
e∗
= 1+ η2d0e2

1+ η2d0
(9.32a,b)

and if we set

d = d0
e
e∗
= 2

[1− η2(1+ e2)]+
√
[1− η2(1+ e2)]2 − 4η4e2

· 1+ η2d0e2

1+ η2d0

(9.33)

we see that for δv , we can write

δv = η2de∗ (9.34)

which is the expression aligned with the solution form (9.29).
From (9.9), since the right-hand side vanishes for η2 = 0 as well as for

e2 = 0, we may write

k2
v = η2e2g2

0 (9.35)

as the defining relation for g0. By binomial expansion, it can be shown that for
η2 < 1/(1− e2),

k2
v = η2e2[1+ 2η2 + η4(2+ e2)+ · · · ]

so that

g2
0 = 1+ 2η2 + η4(2+ e2)+ · · · .

If we set

g2 =
(
e
e∗

)2

g2
0 =

(
1+ η2d0e2

1+ η2d0

)2

g2
0 (9.36)

then we have

k2
v = η2g2e2∗ (9.37)

as the expression to match relation (9.34) for δv .
Although the form (9.29) for the solution has a neater appearance than

does the form (9.26), we find it more convenient to use the latter form (9.26)
when deriving the time-angle relation in Section 10.
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In the above treatment of the R-equation, we note that real values for the
quantities (9.3) to (9.5) are ensured if

1− η2(1− e2) ≥ 2eη. (9.38)

Expressed in terms of λ, as defined in (8.33), the requirement (9.38) becomes

λ2 + 2eλ− (1− e2) ≤ 0 (9.39)

so that the solution form (9.26) is valid in the λ-range

0 ≤ λ ≤ 1− e. (9.40)

Recalling equation (5.8a), we multiply across by a2(1 − e2) and introduce p
from (5.11a); when we resolve the second quadratic factor on the right into its
linear components, the R-equation takes the form

a2(1− e2)
Λ2

C2
R′2 = −(R2 − b2)

[
R − a(1− e)][R − a(1+ e)]. (9.41)

For this equation (9.41) to balance, R is constrained within the limits

a(1− e) ≤ R ≤ a(1+ e) (9.42)

showing that orbits are confined to the annular region defined by the two
bounding ellipses R = a(1− e) and R = a(1+ e).

Recalling that R2 ≥ b2 throughout the system, we see that when the param-
eter λ moves into the supplementary range

1− e ≤ λ ≤ 1+ e (9.43)

the inner bounding ellipse R = a(1− e) disappears and the only constraint on
the orbits is the outer ellipse, namely

R = a(1+ e). (9.44)

For the λ-range (9.43), the orbits can fill the full elliptical range bounded by
(9.44).

It remains to establish the solution form valid in the λ-range (9.43) supple-
menting the λ-range (9.40). The treatment for this supplementary range is the
subject of Subsection 9A.

9A. Solution Form for the Supplementary Range, λ ≥ 1− e
If we resolve the first quadratic factor on the right of (9.41) into its linear
components, we have

a2(1− e2)
Λ2

C2
R′2 = −(R + b)(R − b)[R − a(1− e)][R − a(1+ e)]. (9A.1)
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We observe that in the λ-range (9.40), the positive root represented in the third
factor is greater than the positive root represented in the second factor. In the
supplementary range

λ ≥ 1− e (9A.2)

the relative position of these two roots is reversed. This “interleaving of zeros”
requires a restructuring of the quadratic factors in the analysis.

In the range (9A.2), we effect this restructuring by combining the “upper”
pair, namely, the second and fourth factors into one quadratic expression, and
form the second quadratic expression from the “lower” pair, namely the first
and third factors. Accordingly, we rewrite equation (9A.1) in the form

a2(1− e2)
Λ2

C2
R′2 = (9A.3)

− [R2 − [a(1+ e)+ b]R + ab(1+ e)][R2 − [a(1− e)− b]R − ab(1− e)].
If we scale the R-variable with the characteristic length-scale a, by setting

R = aP (9A.4)

then, expressed in terms of P and λ, equation (9A.3) becomes

(1− e2)
Λ2

C2
P ′2=−[P2−[1+ λ+ e]P+λ(1+e)][P2−[1−(λ+ e)]P−λ(1−e)].

(9A.5)

Considering the first quadratic factor on the right of (9A.5), we note that

P2 − [1+ λ+ e]P + λ(1+ e) = [P − 1
2(1+ λ+ e)

]2 − 1
4

[
1− (λ− e)]2 (9A.6)

which suggests that we set

P − 1
2[1+ λ+ e] = 1

2[1− (λ− e)]Q, P = 1
2[1− (λ− e)]Q+ 1

2[1+ λ+ e]
(9A.7a,b)

whereby the first quadratic factor (9A.6) may be written in terms of Q in the
form

1
4

[
1− (λ− e)]2(Q2 − 1). (9A.8)

In the second quadratic factor on the right of (9A.5), when we introduce P from
(9A.7b), then, expressed in terms of Q, the expression becomes

1
4

[
[1− (λ− e)]Q+ 1

2[1+ λ+ e]
]2

− 1
2[1− (λ+ e)]

[
[1− (λ− e)]Q+ [1+ λ+ e]

]
− λ(1− e) (9A.9)

which, on expansion and rearrangement, reduces to the form
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1
4[1− (λ− e)]2Q2 + (λ+ e)[1− (λ− e)]Q+ 1

4[3λ+ e+ 1][λ+ 3e− 1].
(9A.10)

Accordingly, we rewrite the differential equation (9A.5) in terms of Q by
introducing (9A.8) and (9A.10) into the right-hand side and using (9A.7b) to
substitute for P ′ on the left; we find

4(1− e2)
Λ2

C2
Q′2 = (9A.11)

(1−Q2)
[
(3λ+ e+ 1)(λ+ 3e− 1)+ 4(λ+ e)[1−(λ− e)]Q+[1− (λ− e)]2Q2

]
.

On comparing the right side of (9A.11) with that of the generic equation (5.20),
we see that here we have

1−d2 = [3λ+e+1][λ+3e−1], s = 2(λ+e)[1−(λ−e)], q = [1−(λ−e)]2
(9A.12a,b,c)

from which there follows that

1− d2 + q = 4[(λ+ e)2 − (λ− e)], 2s
1− d2 + q =

(λ+ e)[1− (λ− e)]
[(λ+ e)2 − (λ− e)]

(9A.13a,b)

and hence

1− 4s2

[1− d2 + q]2 =
4λe[(λ+ e)2 − 1]
[(λ+ e)2 − (λ− e)]2 . (9A.14)

Recalling relations (7.4), we have

h = 1
2

[
1− 2

√
λe
√
(λ+ e)2 − 1

[(λ+ e)2 − (λ− e)]
]
, 1− h = 1

2

[
1+ 2

√
λe
√
(λ+ e)2 − 1

[(λ+ e)2 − (λ− e)]
]
.

(9A.15a,b)

For these latter quantities to remain real, it suffices — as well as being neces-
sary — that

λ ≥ 1− e (9A.16)

confirming validity in the range (9A.2).
From (7.5) we see that in this range, we have for δ

δR = − (λ+ e)[1− (λ− e)]
(λ+ e)2 − (λ− e)+ 2

√
λe
√
(λ+ e)2 − 1

. (9A.17)

Moreover, if we note from (9A.15) that

1− 2h = 2
√
λe
√
(λ+ e)2 − 1

(λ+ e)2 − (λ− e) (9A.18)

then from (7.6) and (7.7), we have
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AR + BR = 8
√
λe
√
(λ+ e)2 − 1 (9A.19a)

AR − BR = 2[(λ+ e)2 + 4λe− 1] (9A.19b)

from which there follows that

AR =
[√
(λ+ e)2 − 1+ 2

√
λe
]2

(9A.20a)

BR = −
[√
(λ+ e)2 − 1− 2

√
λe
]2

(9A.20b)

and we note that AR is always positive while BR is always negative (or zero).
Recalling the transformations (7.9) to (7.13), we see that if we set

Y = Q− δR
1− δRQ, Q = Y + δR

1+ δRY (9A.21a,b)

and apply these transformations to (9A.11), we obtain the differential equation
for Y ,

4(1− e2)
Λ2

C2
Y ′2 = (1− Y 2)[AR + BRY 2] (9A.22)

or, on dividing across by AR,

4(1− e2)
Λ2

ARC2
Y ′2 = (1− Y 2)[1− k2

RY
2] (9A.23)

where we have written

k2
R = −

BR
AR

=
[

2
√
λe− √(λ+ e)2 − 1

2
√
λe+ √(λ+ e)2 − 1

]2

≤ 1. (9A.24)

When we set

1

j2
R
= 4(1− e2)

Λ2

ARC2
, fR = jRf (9A.25a,b)

then equation (9A.23) reads(
dY
dfR

)2

= (1− Y 2)[1− k2
RY

2] (9A.26)

— in the standard form.
We now record the form taken by the factor jR (9A.25a) over the parameter

range (9.43) for λ:

AR2: Case A, e2 + β2 ≥ 1, 1− e ≤ λ ≤ β− γ:

Here Λ = Λ1 (8.12a) which we now express in terms of λ; with AR given by
(9A.20a), we find

1

j2
R
= 1

j2
R1
= 2

(1− e2 − λ2)+
√
(1− e2 + λ2)2 − 4λ2β2

[2
√
λe+ √(λ+ e)2 − 1]2

. (9A.27a)
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AR3: Case A, e2 + β2 ≥ 1, β− γ ≤ λ ≤ 1+ e:

Here Λ = Λ0 (8A.22), and with AR from (9A.20a), we obtain

1

j2
R
= 1

j2
R0
=
[2
√
λγ +

√
(λ+ γ)2 − β2

2
√
λe+ √(λ+ e)2 − 1

]2

. (9A.27b)

BR2: Case B, e2 + β2 ≤ 1, 1− e ≤ λ ≤ 1+ e:

Here Λ = Λ2 (8.19a), which we now express in terms of λ; with AR from
(9A.20a), we have

1

j2
R
= 1

j2
R2
= 4

√
[1− e2 + λ2]2 − 4λ2β2

[2
√
λe+ √(λ+ e)2 − 1]2

. (9A.27c)

The differential equation (9A.26) has the solution form

Y = sn[fR + fR0 : kR] (9A.28)

where fR0 is the constant of integration. If we choose fR to be measured from
“perihelion”, then by reasoning identical with that leading from (9.14) to (9.24),
we see that we may take

fR0 = KR (9A.29)

where KR is the quarterperiod of the Jacobian elliptic functions of modulus
kR; we then have

Y = sn[fR +KR : kR] = cn[fR : kR]
dn[fR : kR]

(9A.30)

and hence, from (9A.21b)

Q = cn[fR : kR]+ δR dn[fR : kR]
dn[fR : kR]+ δR cn[fR : kR]

. (9A.31)

When we introduce this expression forQ into (9A.7b) and recall relation (9A.4),
we obtain

R
a
= 1

2[1− (λ− e)]
cn[fR : kR]+ δR dn[fR : kR]
dn[fR : kR]+ δR cn[fR : kR]

+ 1
2(1+ λ+ e) (9A.32)

or, alternatively,

R
a
= 1

2

[
(1+λ+e)+[1−(λ−e)]δR

]
dn[fR : kR]+

[
[1−(λ−e)]+[1+λ+e]δR

]
cn[fR : kR]

dn[fR : kR]+δR cn[fR : kR]
(9A.33)

completing the solution form for the supplementary range.
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9B. Recapitulation of the Solution Forms for the R-equation

It should be noted at the outset that in the parameter range where e ≤ 1, it is
a simple exercise to show that

1− e ≤ β− γ ≤ β+ γ ≤ 1+ e.
For the R-equation there are five distinct ranges — three in Case A and two in
Case B.

Case A: e2 + β2 ≥ 1:

Range AR1: 0 ≤ λ ≤ 1− e, with

(i) δv determined from (9.3)

(ii) kv determined from (9.9)

(iii) jv = jv1 determined from (9.8a), and with fv = jv1f ,
the solution form is given by (9.26).

Range AR2: 1− e ≤ λ ≤ β− γ, with

(i) δR determined from (9A.17)

(ii) kR determined from (9A.24)

(iii) jR = jR1 determined from (9A.27a), and with fR = jR1f ,
the solution form is given by (9A.33).

Range AR3: β− γ ≤ λ ≤ 1+ e, with

(i) δR determined from (9A.17)

(ii) kR determined from (9A.24)

(iii) jR = jR0 determined from (9A.27b), and with fR = jR0f ,
the solution form is given by (9A.33).

Case B: e2 + β2 ≤ 1:

Range BR1: 0 ≤ λ ≤ 1− e, with

(i) δv determined from (9.3)

(ii) kv determined from (9.9)

(iii) jv = jv2 determined from (9.8b), and with fv = jv2f ,
the solution form is given by (9.26).

Range BR2: 1− e ≤ λ ≤ 1+ e, with

(i) δR determined from (9A.17)

(ii) kR determined from (9A.24)

(iii) jR = jR2 determined from (9A.27c), and with fR = jR2f ,
the solution form is given by (9A.33).
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In Section 10 following, we outline the procedure for the derivation of the
“time-angle” relation, namely the derivation of an explicit expression relating
the “true anomaly” f to the original time variable t. Therein the procedure is
illustrated for the solution forms valid in the primary range

λ ≤ 1− e

namely, the solution forms (8.29), (8.30), and (9.26); it is outlined solely for
this parameter range. The derivation using the solution forms in the other
orbit ranges follows a similar pattern.

Thereafter will follow the analysis and solution forms appropriate for the
complementary range (e ≥ 1, Section 11) and for the singular case (e = 1,
Section 12). This will complete the analysis for the planar case.

10 The Time-Angle Relation

Recalling relations (8.12a) and (8.19a) respectively defining Λ2
1 and Λ2

2, we set

Case A: j2
S1 = 1

2

[
[1− η2(1− e2)]+

√
[1+ η2(1− e2)]2 − 4η2β2

]
(10.1a)

Case B: j2
S2 =

√
[1+ η2(1− e2)]2 − 4η2β2 (10.1b)

and we have

Case A: e2 + β2 ≥ 1 : Λ2 = j2
S1C

2 = Λ2
1 (10.2a)

Case B: e2 + β2 ≤ 1 : Λ2 = j2
S2C

2 = Λ2
2 (10.2b)

and we write

Λ2 = j2
SC

2 (10.3)

to cover both cases. Then, recalling relations (5.2b) and (5.11), we have

Λ2 = j2
SC

2 = j2
Sμ ·

C2

μ
= j2

Sμp = j2
Sμa(1− e2). (10.4)

Following the headline set in relation (3.41) of Chapter 2 for the Kepler prob-
lem, we define the factor n, corresponding to the mean motion in the Kepler
case, by setting

n2a3 = μ (10.5)

so that

Λ2 = j2
Sn

2a4(1− e2), Λ = jSna2
√

1− e2 (10.6a,b)
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and hence

Λ
p2

= jS na
2
√

1− e2

a2(1− e2)2
= jSn · 1

(1− e2)3/2
(10.7)

— a relation to be used below.
Recalling the defining relation (5.6) for the variable f , and noting (5.15), we

have

Λ dt
df

= R2 − b2 cos2 σ = p2

[(
R
p

)2

− η2 cos2 σ
]

(10.8)

and dividing across by p2, we introduce (10.7) above, and after a rearrange-
ment, we have

jSn
dt
df

= (1− e2)3/2
[(
R
p

)2

− η2 cos2 σ
]

(10.9)

which, on integration, yields

jSn(t − t0) = (1− e2)3/2
∫ f

0

[(
R
p

)2

− η2 cos2 σ
]

df (10.10)

where t0 is the constant of integration, and we note that t = t0 corresponds to
f = 0, so that t0 represents the time of “pericenter” passage.

Recalling from (9.26) that (R/p) is expressed in terms of fv = jvf and
from (8.29) and (8.30) that cosσ is expressed in terms of fS = f + fS0, it
is convenient to multiply (10.10) across by jv ; if we also define the “mean
anomaly” M by setting

M= jvjSn(t − t0) (10.11)

then we may replace (10.10) by

M=M0 − η2jv(1− e2)3/2M1 (10.12)

where

M0 = (1− e2)3/2
∫

0

(
R
p

)2

dfv, M1 =
∫

cos2 σ dfS . (10.13a,b)

If we introduce (R/p) from (9.26), we have

M0 = (1− e2)3/2
∫[

dn[fv : kv]+ δv cn[fv : kv]
(1+ eδv)dn[fv : kv]+ (e+ δv) cn[fv : kv]

]2

dfv (10.14)

and the introduction of the solution forms (8.29) and (8.30) into M1 yields
respectively for the two cases

M1 =
∫ [

sn[fS : kS]+ δS
1+ δS sn[fS : kS]

]2

dfS, for e2 + β2 ≥ 1, (10.15a)

M1 =
∫ [k′S sn[fS : kS]+ δS dn[fS : kS]

dn[fS : kS]+ δSk′S sn[fS : kS]

]2

dfS, for e2 + β2 ≤ 1. (10.15b)
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In view of the fact that the derivation of relation (4.58) of Chapter 2 in the
Kepler case is a nontrivial exercise, the complexity of the above relations, while
perhaps daunting, should not surprise us.

In terms of the parameter η, the factor M1 is a “correction” term to the
“dominant” factorM0. We shall show how the dominant component inM0 can
be separated out and indicate how a procedure for successive approximations
may be pursued. This is done in Subsection 10A following.

The quantityM1 is the integral of the quotient of two second-order polyno-
mials of elliptic functions: when the elliptic functions are expressed as Fourier
series, then the integrand is expressible as the quotient of Fourier expansions.

— � —

10A. The Analysis of M0

In dealing with the integral (10.14) for M0, we note that the elliptic functions
appearing under the integral sign all have argument fv as given by (9.12) with
jv given by (9.8) and have modulus kv as given by (9.9); accordingly, the ar-
gument and modulus shall not be exhibited in this subsection. We start by
considering the derivative

d
dfv

[
e sn

(1+ eδv)dn+(e+ δv) cn

]

= [(1+ eδv)dn+(e+ δv) cn]e cn dn+e sn[(1+ eδv)k2
v sn cn+(e+ δv) sn dn]

[(1+ eδv)dn+(e+ δv) cn]2.
(10A.1)

The numerator in the quotient on the right-hand side of (10A.1) may be rear-
ranged as

e(e+ δv)dn(sn2+ cn2)+ e(1+ eδv) cn(dn2+k2
v sn2)

= e(e+ δv)dn+e(1+ eδv) cn

= (e2 + eδv)dn+(e+ e2δv) cn

= (1+ eδv)dn−(1− e2)dn+(e+ δv) cn−δv(1− e2) cn

= (1+ eδv)dn+(e+ δv) cn−(1− e2)[dn+δv cn] (10A.2)

so that the quotient on the right-hand side of (10A.1) may be written

1
(1+ eδv)dn+(e+ δv) cn

− (1− e2)[dn+δv cn]
[(1+ eδv)dn+(e+ δv) cn]2

. (10A.3)

We insert (10A.3) into (10A.1) and multiply across by the factor
√

1− e2·
[dn+δv cn]; then, on performing a transposition, it follows from (10.14) that
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dM0

dfv
= (1− e2)3/2[dn+δv cn]2

[(1+ eδv)dn+(e+ δv) cn]2

= (dn+δv cn)
[ √

1− e2

(1+ eδv)dn+(e+ δv) cn

− d
dfv

(
e
√

1− e2 sn
(1+ eδv)dn+(e+ δv) cn

)]
. (10A.4)

In order to deal with the first term within the square brackets on the right of
(10A.4), we first set, as the defining relation for e,

1− e2 = (1− k2
v)
[
(1+ eδv)2 − (e+ δv)2

] = k′2v [(1+ eδv)2 − (e+ δv)2]
= k′2v (1− δ2

v)(1− e2) = (1− k2
v)(1− δ2

v)(1− e2) (10A.5)

in terms of which we introduce the function χ, defined by

tanχ =
√

1− e2 sn
(e+ δv)dn+(1+ eδv) cn

. (10A.6)

There follows that

tan2 χ = (1− e2) sn2

[(e+ δv)dn+(1+ eδv) cn]2
(10A.7)

and hence, applying sec2 = 1+ tan2, we have

sec2 χ= (e+ δv)
2 dn2+(1+ eδv) cn2+(1− e2) sn2+2(e+ δv)(1+ eδv)dn cn

[(e+ δv)dn+(1+ eδv)2 cn]2
.

(10A.8)

If we introduce the defining relation (10A.5) for 1 − e2 into the numerator of
the quotient on the right-hand side of (10A.8), then, for that numerator, we
have

(e+ δv)2[dn2−(1− k2
v) sn2]

+ (1+ eδv)2[cn2+(1− k2
v) sn2]+ 2(e+ δv)(1+ eδv)dn cn

= (e+ δv)2 cn2+(1+ eδv)2 dn2+2(e+ δv)(1+ eδv)dn cn

= [(1+ eδv)dn+(e+ δv) cn]2 (10A.9)

so that relation (10A.8) for sec2 χ may be written

sec2 χ= [(1+ eδv)dn+(e+ δv) cn]2

[(e+ δv)dn+(1+ eδv) cn]2
. (10A.10)

Moreover, if we take the derivative across the defining relation (10A.6), we find
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sec2 χ
dχ
dfv

=
√

1− e2 ×[
cn dn[(e+ δv)dn+(1+ eδv) cn]+ sn[(e+ δv)k2

v sn cn+(1+ eδv) sn dn]
[(e+ δv)dn+(1+ eδv) cn]2

]

=
√

1− e2 · [(e+ δv) cn[dn2+k2
v sn2]+ (1+ eδv)dn[sn2+ cn2]

[(e+ δv)dn+(1+ eδv) cn]2

=
√

1− e2 · (1+ eδv)dn+(e+ δv) cn
[(e+ δv)dn+(1+ eδv) cn]2

. (10A.11)

Combining (10A.10) with (10A.11), we obtain

dχ
dfv

=
√

1− e2

[(1+ eδv)dn+(e+ δv) cn]
(10A.12)

or, written in full, recalling (10A.6),

d
dfv

[
arctan

√
1− e2 sn

(e+ δv)dn+(1+ eδv) cn

]
=

√
1− e2

[(1+ eδv)dn+(e+ δv) cn]
.

(10A.13)

We now introduce (10A.13) into (10A.4) to obtain

dM0

dfv
= (dn+δv cn)

d
dfv

⎧⎨⎩
√

1− e2

1− e2 · arctan
[ √

1− e2 sn
(e+ δv)dn+(1+ eδv) cn

]

− e
√

1− e2 sn
(1+ eδv)dn+(e+ δv) cn

⎫⎬⎭. (10A.14)

The difficulty in completing the integration arises from the multiplying factor
(dn+δv cn); it will prove convenient to define the quantity M00 by setting

M00 = (10A.15)√
1− e2

1− e2 · arctan
[ √

1− e2 sn
(e+ δv)dn+(1+ eδv) cn

]
− e

√
1− e2 sn

(1+ eδv)dn+(e+ δv) cn

so that (10A.14) may be rewritten as

dM0

dfv
= (dn+δv cn)

dM00

dfv

= d
dfv

[
(dn+δv cn)M00

]−M00
d

dfv
(dn+δv cn) (10A.16a)

= d
dfv

[
(dn+δv cn)M00

]+M00[k2
v sn cn+δv sn dn] (10A.16b)

and, recalling relations (9.31) and (9.35), we see that (10A.16) may be written
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dM0

dfv
= d

dfv

[
(dn+δv cn)M00

]+ η2eM00(d0 dn+eg2
0 cn) sn . (10A.17)

We refer to the first term as the principal component, and in terms of the
parameter η the second term is a correction term. The principal term is known
explicitly in (10A.15); the correction term is the product of the known function
M00 (10A.15) with a second-order polynomial of the elliptic functions. Setting

M01 =
∫
M00(d0 dn+eg2

0 cn) sn dfv (10A.18)

then we may write the integral of (10A.17) as

M0 = (dn+δv cn)M00 + η2eM01. (10A.19)

— � —

Main Section 10 Continues

Following the analysis ofM0 in Subsection 10A, we now return to the main sec-
tion and introduce relation (10A.19) into formula (10.12) for the mean anomaly
M to obtain

M= (dn+δv cn)M00 + η2eM01 − η2jv(1− e2)3/2M1 (10.16)

and with M00 given by (10A.15), M01 given by (10A.18), and M1 given by
(10.15), we have the reduced form of the time-angle relation.

On inspection of the first term, and noting form (10A.15) for M00, we see
that we have the appropriate generalization of relation (4.58) of Chapter 2 for
the Kepler case.

— � — � —

The procedure for successive approximations has merely been indicated
here. In Chapter 5 we shall deal with the problem of the Earth satellite where a
second-order approximation in terms of the relevant parameter is both appro-
priate and adequate; therein the approximation procedure is fully developed
to that level of accuracy.

11 The Complementary Range

The foregoing analysis has been focused on the derivation of solution forms
that follow from the choice of constants (4.6). We now proceed to the analysis
for the range where the alternative choice of constants is admitted, namely
where

E = −α2, C1 = 1
2C

2, C2 = −1
2C

2 (11.1a,b,c)
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yielding a complementary range of orbits that, however, have no analog in the
Kepler case.

In terms of the above constants, equations (4.5) for the first integrals now
assume the form

1
2
(R2 − b2 cos2 σ)2

R2 − b2
Ṙ2 = −α2R2 + μR + 1

2C
2 (11.2a)

1
2(R

2 − b2 cos2 σ)2σ̇ 2 = α2b2 cos2 σ + μβb cosσ − 1
2C

2 (11.2b)

and we may immediately note that the latter equation (11.2b) cannot balance
for b = 0, and further that this equation indicates that there is a neighborhood
of σ = π/2 that is excluded from the orbit range; thus, since the orbits cannot
cross the x-axis, they are confined to the upper or lower half plane as satellite
orbits about one or the other of the two “primaries”.

In effecting the reduction of equations (11.2), we follow the pattern already
established in Sections 4–9, with appropriate modifications in the choices of
parameters. When we rewrite equation (11.2a) in the form

(R2 − b2 cos2 σ)2Ṙ2 = C2(R2 − b2)
[
1+ 2

μ
C2
R − 2

α2

C2
R2
]

(11.3)

and, as in the previous analysis, we introduce the length scales a and p, by
setting

a = μ
2α2

, p = C2

μ
, and hence ap = C2

2α2
(11.4a,b,c)

then equation (11.3) may be written

(R2 − b2 cos2 σ)2

C2
Ṙ2 = (R2 − b2)

[
1+ 2

p
R − 1

ap
R2
]

(11.5a)

and the corresponding form of the σ -equation (11.2b) reads

(R2 − b2 cos2 σ)2

C2
σ̇ 2 = −

[
1− 2β

b
p

cosσ − b2

ap
cos2 σ

]
. (11.5b)

Introducing the regularizing variable f , defined by

df
dt

= Λ
R2 − b2 cos2 σ

(11.6)

the pair of equations (11.5) take the form

Λ2

C2
R′2 = (R2 − b2)

[
1+ 2

p
R − 1

ap
R2
]

(11.7a)

Λ2

C2
σ ′2 = −

[
1− 2β

b
p

cosσ − b2

ap
cos2 σ

]
(11.7b)
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where again the prime symbol is used to denote differentiation with respect to
f , and the parameter Λ is to be chosen presently.

In the R-equation (11.7a), we note that for the second factor on the right,
we may write

1+ 2
p
R − 1

ap
R2 =

(
1+ R

p

)2 − 1
p2

(
1+ p

a

)
R2 (11.8)

which suggests that, in this range, the appropriate parameterization takes the
form

p = a(e2 − 1) so that 1+ p
a
= e2 ≥ 1 (11.9a,b)

and we may write

1+ 2
R
p
− R2

ap
= 1+ 2

R
p
− (e2 − 1)

R2

p2

= − 1
a2(e2 − 1)

[
R2 − 2aR − a2(e2 − 1)

]
= − 1

a2(e2 − 1)
[
R + a(e− 1)

][
R − a(e+ 1)

]
. (11.10)

Hence, on factoring the right side of (11.7a), we transpose and rearrange to
obtain

a2(e2 − 1)
Λ
C2
R′2 = −(R − b)[R − a(e+ 1)](R + b)[R + a(e− 1)] (11.11a)

= −
[
R2 − [a(e+ 1)+ b]R + ab(e+ 1)

]
·
[
R2 + [a(e− 1)+ b]R + ab(e− 1)

]
(11.11b)

where we structured the quadratic factors in accord with the “upper” and
“lower” pairs of zeros. We also rewrite the σ -equation (11.7b) in the form

(e2 − 1)
Λ
C2
σ ′2 = λ2 cos2 σ + 2βλ cosσ − (e2 − 1) (11.12a)

= [λ cosσ − (γ − β)][λ cosσ + (γ + β)] (11.12b)

where, having multiplied across by (e2 − 1), we apply relations (11.9a) and,
consistent with previous notation, we have set

λ = b
a
, γ =

√
β2 + e2 − 1 ≥ β, for e ≥ 1. (11.13a,b)

Some observations immediately follow from equations (11.11) and (11.12):

(1) For equations (11.11) to balance, we must have

b ≤ R ≤ a(e+ 1) so that λ ≤ e+ 1 (11.14a,b)

and the orbits are confined by the outer bounding ellipse, R = a(e + 1) with
no inner boundary.
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(2) For (11.12) to balance, cosσ must be excluded from the range
(−γ+βλ , γ−βλ

)
.

Hence cosσ is confined to the regions

(a) cosσ positive;
γ − β
λ

≤ cosσ ≤ 1 (11.15a)

(b) cosσ negative; − 1 ≤ cosσ ≤ −
(γ + β

λ

)
(11.15b)

which, taken together with (11.14), means that the orbits are satellite orbits
about one or the other of the primaries. We further note that, for e > 1,

e− 1 ≤ γ − β ≤ γ + β ≤ e+ 1 (11.16)

which can be easily checked.
If we now replace the variable σ by its cosine and scale the variable R with

the length-scale a by setting

S = cosσ, R = aP ; (11.17a,b)

then, expressed in terms of S and λ, equation (11.12) becomes

(e2 − 1)
Λ2

C2
S′2 = (1− S2)

[
λ2S2 + 2βλS − (e2 − 1)

]
= (1− S)[λS − (γ − β)](1+ S)[λS + (γ + β)] (11.18)

and correspondingly equation (11.11) becomes

(e2 − 1)
Λ2

C2
P ′2 =

−
[
P2 − [1+ (λ+ e)]P + λ(e+ 1)

][
P2 − [1− (λ+ e)]P + λ(e− 1)

]
. (11.19)

A comparison of the right side of (11.18) with the right side of (8A.1) shows
that these expressions are formally identical; similarly, the right side of (11.19)
is formally identical with the right side of (9A.5). In fact, the only difference
lies in the left sides where the coefficients have the factor e2 − 1 rather than
(1 − e2) appearing previously. Hence the reduction and solution of the above
equations has been effected in Subsections 8A and 9A.

Accordingly for equation (11.18), we have δS as given by (8A.14), namely,

δS = − (λ+ γ)(λ+ β− γ)
(λ+ γ)2 + β(λ− γ)+ 2

√
λγ[(λ+ γ)2 − β2]

(11.20)

and with kS , as given by (8A.21),

k
2
S =

[2
√
λγ −

√
(λ+ γ)2 − β2

2
√
λγ +

√
(λ+ γ)2 − β2

]2

(11.21)

equation (11.18) reduces to
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4(e2 − 1)
Λ2

C2AS
Y ′2 = (1− Y 2)

[
1− k2

SY 2
]

(11.22)

where AS is as in (8A.16a). Hence, when we make the identification

Λ2 = 1
4
C2

e2 − 1

[
2
√
λγ +

√
(λ+ γ)2 − β2

]2
(11.23)

equation (11.22) takes the standard form with the solution

Y = sn
[
f + fS : kS

]
(11.24)

where fS represents the constant of integration. Then the solution for S takes
the form

S =
1

2λ

[
(1+δS)λ−(1− δS)(γ − β)

]
sn[f+fS : kS]+

[
(1+δS)λ+ (1− δS)(γ − β)

]
1+δS sn[f+fS : kS]

(11.25)

with the constant fS to be determined. We note that the solution form (11.25)
is formally identical with (8A.26) of Subsection 8A.

Turning to the P -equation (11.19) and referring to Subsection 9A, we have
from (9A.17) that

δR = − (λ+ e)(1− λ+ e)
(λ+ e)2 − (λ− e)+ 2

√
λe
√
(λ+ e)2 − 1

(11.26)

and from (9A.24) the formula for kR, namely,

k
2
R =

[
2
√
λe− √(λ+ e)2 − 1

2
√
λe+ √(λ+ e)2 − 1

]2

(11.27)

whereby, in terms of the transformed variable Y , the differential equation is
reduced to the present analog of (9A.23),

4(e2 − 1)
Λ2

ARC2
Y ′2 = (1− Y 2)[1− k2

RY
2] (11.28)

with AR given by (9A.20a). With Λ given by (11.23) and AR from (9A.20a), we
set

1

j
2
R

= 4(e2 − 1)
Λ2

ARC2
=
[2
√
λγ +

√
(λ+ γ)2 − β2

2
√
λe+ √(λ+ e)2 − 1

]2

(11.29a)

fR = jRf (11.29b)

and the differential equation (11.28) reduces to(
dY
dfR

)2

= (1− Y 2)[1− k2
RY 2] (11.30)
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— the standard form — with solution

Y = sn[fR + fR0 : kR]. (11.31)

Hence, following the pattern leading from (9A.28) to (9A.33), we obtain

R
a
= 1

2

[
(1+λ+e)+[1−(λ−e)]δR

]
dn[fR : kR]+

[
[1−(λ−e)]+[1+λ+e]δR

]
cn[fR : kR]

dn[fR : kR]+δR cn[fR : kR]
(11.32)

completing the solution for the complementary range.
We note that the solution form (11.32) is formally identical with the

form (9A.33) of Subsection 9A. This, together with the observations follow-
ing (11.25) above, means that the solutions for the complementary range are
already contained in Subsections 8A and 9A.

12 The Singular Case: C = 0

The class of orbits, wherein the angular momentum constant vanishes, re-
quires a separate treatment, and specifically a modification of the constant
appearing in the definition of the “true anomaly”. In this case, we have

C1 = C2 = 0, and, as before E = −α2 (12.1a,b,c)

and the pair of equations (4.5) take the form

(R2 − b2 cos2 σ)2

R2 − b2
Ṙ2 = −2α2R2 + 2μR = −2α2(R2 − 2aR) (12.2a)

(R2 − b2 cos2 σ)2σ̇ 2 = 2α2b2 cos2 σ + 2μβb cosσ

= 2α2[b2 cos2 σ + 2βab cosσ] (12.2b)

where we have multiplied across by 2 and, as before, introduced the length-
scale a, and further we introduce the parameter λ, by setting

a = μ
2α2

, λ = b
a
. (12.3a,b)

We introduce the regularizing variable f by setting

df
dt

= Λα
R2 − b2 cos2 σ

(12.4)

in which the parameter Λα is to be specified presently. With f as the indepen-
dent variable and again with the prime symbol denoting differentiation with
respect to f , the pair of differential equations (12.2) take the form

Λ2
αR′2 = −2α2(R2 − b2)(R2 − 2aR) (12.5a)

Λ2
ασ ′2 = 2α2ab[λ cos2 σ + 2β cosσ]. (12.5b)
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When we scale the variable R with the characteristic length-scale a and replace
the variable σ by its cosine, setting

R = aP, S = cosσ (12.6a,b)

then the pair of equations (12.5) become

Λ2
α

2α2a2
P ′2 = −(P2 − λ2)(P2 − 2P) (12.7a)

Λ2
α

2α2a2
S′2 = (1− S2)(λ2S2 + 2βλS) (12.7b)

when expressed in terms of P and S.
Considering first the S-equation, we order the linear factors into “upper”

and “lower” pairs and recombine to obtain

Λ2
α

2α2a2
S′2 = −S(S − 1)(S + 1)[λ2S + 2βλ]

= −(S2 − S)[λ2S2 + (λ2 + 2βλ)S + 2βλ]. (12.8)

For the first quadratic on the right of (12.8), we note that

S2 − S = (S − 1
2)

2 − 1
4 (12.9)

which suggests that we set

S − 1
2 = 1

2ζ, S = 1
2(ζ + 1) (12.10a,b)

and for the first quadratic factor, we have

S2 − S = 1
4(ζ

2 − 1). (12.11)

For the second factor on the right of (12.8), we have from (12.10b) that

S2 = 1
4(ζ + 1)2 = 1

4ζ
2 + 1

2ζ + 1
4 (12.12a)

(λ2 + 2βλ)S + 2βλ = (1
2λ

2 + βλ)(ζ + 1)+ 2βλ

= (1
2λ

2 + βλ)ζ + (1
2λ

2 + 3βλ
)

(12.12b)

and hence

λ2S2 + (λ2 + 2βλ)S + 2βλ = 1
4λ

2ζ2 + (λ2 + βλ)ζ + (3
4λ

2 + 3βλ). (12.13)

Accordingly, if we substitute for S in terms of ζ in equation (12.8), we obtain
as equation for ζ,

2Λ2
α

α2a2
ζ′2 = (1− ζ2)

[
3λ(λ+ 4β)+ 4λ(λ+ β)ζ + λ2ζ2]. (12.14)

Comparison of (12.14) with the generic equation (5.20) indicates that in this
case, we have
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1− d2 = 3λ(λ+ 4β), 2s = 4λ(λ+ β), q = λ2 (12.15a,b,c)

from which we have

1− d2 + q = 4λ(λ+ 3β), 1− d2 − q = 2λ(λ+ 6β) (12.16a,b)

so that

2s
1− d2 + q =

λ+ β
λ+ 3β

≤ 1 (12.17)

and it follows that

1− 4s2

(1− d2 + q)2 =
4β(λ+ 2β)
(λ+ 3β)2

,

√
1− 4s2

(1− d2 + q)2 =
2
√
β
√
λ+ 2β

λ+ 3β
.

(12.18a,b)

From (7.4), in this case we have

hsα = 1
2

[
1− 2

√
β
√
λ+ 2β

λ+ 3β

]
= 1

2
[
√
λ+ 2β− √β]2
λ+ 3β

≤ 1
2 (12.19a)

1− hsα = 1
2

[
1+ 2

√
β
√
λ+ 2β

λ+ 3β

]
= 1

2
[
√
λ+ 2β+ √β]2
λ+ 3β

≥ 1
2 (12.19b)

and from (7.5) we have

δsα = − λ+ β
[
√
λ+ 2β+ √β]2 (12.20)

and further, from (7.8)

Asα = λ
[√
λ+ 2β+ 2

√
β
]2

(12.21a)

Bsα = −λ
[√
λ+ 2β− 2

√
β
]2
. (12.21b)

Accordingly if we set

Y = ζ − δsα
1− δsαζ , ζ = Y + δsα

1+ δsαY (12.22a,b)

then equation (12.14) for ζ is transformed to the equation for Y ,

2Λ2
α

α2a2
Y ′2 = (1− Y 2)

[
Asα + BsαY 2]. (12.23)

When we divide across by Asα and introduce the explicit forms from (12.21),
we obtain

2Λ2
α

α2a2λ
1

[
√
λ+ 2β+ 2

√
β]2

Y ′2 = (1− Y 2)
[

1−
(√
λ+ 2β− 2

√
β√

λ+ 2β+ 2
√
β

)2

Y 2
]
. (12.24)

When we make the identification
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Λ2
α = 1

2α
2a2λ

[√
λ+ 2β+ 2

√
β
]2

(12.25)

and set

k2
sα =

[√
λ+ 2β− 2

√
β√

λ+ 2β+ 2
√
β

]2

≤ 1 (12.26)

then equation (12.24) reduces to the standard form

Y ′2 = (1− Y 2)(1− k2
sαY 2) (12.27)

with the solution

Y = sn[f + fs0 : ksα] (12.28)

where fs0 is the constant of integration. From (12.22b) therefore, we have for ζ

ζ = sn[f + fs0 : ksα]+ δsα
1+ δsα sn[f + fs0 : ksα]

(12.29)

and hence, from (12.10b) we have the solution for S in the form

S = cosσ = 1
2(1+ δsα)

1+ sn[f + fs0 : ksα]
1+ δsα sn[f + fs0 : ksα]

. (12.30)

If the angle of “perihelion” is represented by ω, so that

f = −ω implies cosσ = 0, (12.31)

then the condition

sn[ω+ fs0 : ksα]+ 1 = 0 (12.32)

is to be applied for the determination of f0.

— � —

Subsection 12A: The Degenerate Case

We observe that when β = 0, then from (12.20)

δsα = −1 (12A.1)

and the transformation (12.22) becomes degenerate. The above analysis is
therefore valid for β ≠ 0. The case

β = 0 (12A.2)

requires the separate treatment of this subsection.
When β = 0, equation (12.7b) reads
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Λ2
α

2α2a2
S′2 = λ2S2(1− S2) (12A.3)

and consistent with (12.25), we make the identification

Λ2
α = 1

2α
2a2λ2 (12A.4)

and the normalized form of equation (12A.3) takes the form

1
4S

′2 = S2(1− S2) (12A.5)

with the solution in the form

cosσ = S = sech[2(f +ω)] (12A.6)

where the constant ω is to be identified with the angle between the line of
“perihelion” and the z-axis.

— � —

Main Section 12 Continues

Turning now to equation (12.7a) for P , we resolve the right side into its lin-
ear components, which we regroup into “upper” and “lower” pairs of factors;
based on this recombination into quadratic factors, we obtain

Λ2
α

2α2a2
P ′2 = −(P − λ)(P − 2)P(P + λ) (12.33a)

= −[P2 − (λ+ 2)P + 2λ][P2 + λP]. (12.33b)

Considering the first quadratic factor on the right, we set

P2 − (λ+ 2)P + 2λ = [P − (1+ 1
2λ)

]2 − (1+ 1
2λ
)2 + 2λ

= [P − (1+ 1
2λ)

]2 − (1− 1
2λ
)2 (12.34)

leading to the transformation

P − (1+ 1
2λ
) = (1− 1

2λ
)
Q, P = (1− 1

2λ
)
Q+ (1+ 1

2λ
)

(12.35a,b)

and the first quadratic factor (12.34) becomes(
1− 1

2λ
)2(Q2 − 1). (12.36)

In the second quadratic factor, we note that

P2 = (1− 1
2λ
)2Q2 + 2

(
1− 1

4λ
2)Q+ (1+ 1

2λ
)2 (12.37)

and hence

P2 + λP = (1− 1
2λ
)2Q2 + (2+ λ− λ2)Q+ (1+ 2λ+ 3

4λ
2). (12.38)
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Introducing (12.36) and (12.38) into the right side of (12.33b) and using
(12.35b) to substitute for P ′ on the left side, we obtain as an equation for Q,

Λ2
α

2α2a2
Q′2=(1−Q2)

[(
1+ 2λ+ 3

4λ
2)+(2+ λ− λ2)Q+ (1− 1

2λ
)2Q2

]
. (12.39)

Comparison with the generic equation (5.20) shows that here we have

1− d2 = 1+ 2λ+ 3
4λ

2, 2s = 2+ λ− λ2, q = 1− λ+ 1
4λ

2 (12.40a,b,c)

and hence

1− d2 + q = 2+ λ+ λ2, 1− d2 − q = 3λ+ 1
2λ

2 (12.41a,b)

so that

2s
1− d2 + q =

2+ λ− λ2

2+ λ+ λ2
≤ 1 (12.42)

from which there follows that

1− 4s2

(1+ d2 + q)2 =
4λ2(2+ λ)
(2+ λ+ λ2)2

,

√
1− 4s2

(1− d2 + q)2 =
2λ
√

2+ λ
2+ λ+ λ2

.

(12.43a,b)

From (7.4), we therefore have

hRα = 1
2

[
1− 2λ

√
2+ λ

2+ λ+ λ2

]
= 1

2
(
√

2+ λ− λ)2
2+ λ+ λ2

≤ 1
2 (12.44a)

1− hRα = 1
2

[
1+ 2λ

√
2+ λ

2+ λ+ λ2

]
= 1

2
(
√

2+ λ+ λ)2
2+ λ+ λ2

≥ 1
2 (12.44b)

and, from (7.5), we find that

δRα = − 2+ λ− λ2

(
√

2+ λ+ λ)2 = −
(1+ λ)(2− λ)
(
√

2+ λ+ λ)2 . (12.45)

Relations (7.8) for A and B yield

ARα = 1− d2 − h(1− d2 + q) = 1+ 2λ+ 3
4λ

2 − 1
2(
√

2+ λ− λ)2

= 1
4

[
λ2 + 6λ+ 4λ

√
2+ λ] = 1

4λ
[√

2+ λ+ 2
]2 (12.46a)

BRα = q − h(1− d2 + q) = 1− λ+ 1
4λ

2 − 1
2(
√

2+ λ− λ)2

= −1
4

[
λ2 + 6λ− 4λ

√
2+ λ] = −1

4λ
[√

2+ λ− 2
]2. (12.46b)

Hence, when we set

Y = Q− δRα
1− δRαQ, Q = Y + δRα

1+ δRαY (12.47a,b)

equation (12.39) for Q is transformed into the following differential equation
for Y :
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Λ2
α

2α2a2
Y ′2 = (1− Y 2)[ARα + BRαY 2]. (12.48)

We next divide across by ARα and introduce Λ2
α from (12.25); we also introduce

ARα and BRα from (12.46) and thereby obtain[√
λ+ 2β+ 2

√
β√

λ+ 2+ 2

]2

Y ′2 = (1− Y 2)
[

1−
[√

2+ λ− 2√
2+ λ+ 2

]2

Y 2
]
. (12.49)

When we set

jRα =
√
λ+ 2+ 2√

λ+ 2β+ 2
√
β
, k2

Rα =
[√

2+ λ− 2√
λ+ 2+ 2

]2

(12.50a,b)

and

fα = jRαf (12.50c)

then equation (12.48) assumes the standard form(
dY
dfα

)2

= (1− Y 2)(1− k2
RαY

2) (12.51)

with the solution

Y = sn[fα + fR0 : kRα] (12.52)

where fR0 is the constant of integration.
From (12.47b) there follows that for Q we have

Q = sn[fα + fR0 : kRα]+ δRα
1+ δRα sn[fα + fR0 : kRα]

(12.53)

and from (12.35b), and recalling (12.6a), we find

R
a
= P =[
(1− 1

2λ)+ (1+ 1
2λ)δRα

]
sn[fα + fR0 : kRα]+

[
(1+ 1

2λ)+ (1− 1
2λ)δRα

]
1+ δRα sn[fR + fR0 : kRα]

(12.54)

Again, following the procedure of Section 9, the analysis leading from (9.15)
to (9.24) can be repeated to show that the condition that fα be measured from
“perihelion” can be satisfied by taking

fR0 = KRα (12.55)

where KRα is the quarterperiod of the Jacobian elliptic functions of modulus
kRα. By repeated application of the relation

sn[fα +KRα : kRα] = cn[fα : kRα]
dn[fα : kRα]

(12.56)
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the solution form (12.54) can be recast as

R
a
=
[
(1+ 1

2λ)+ (1− 1
2λ)δRα

]
dn[fα : kRα]+

[
(1− 1

2λ)+ (1+ 1
2λ)δRα

]
cn[fα : kRα]

dn[fα : kRα]+ δRα cn[fα : kRα]
(12.57)

yielding the ultimate solution for R in the case e = 1.
For the case β = 0, it suffices to note that in this case, relation (12.50a)

takes the form

jRα = 1√
λ
(
√
λ+ 2+ 2) (12.58)

and the subsequent reduction remains the same.
Two further observations are worth making:

1. When we note relations (5.2) and (5.11) and consider the limit, for e → 1,
of the identification formula for e ≤ 1 as given by (8A.22), we find it consistent
with (12.25).

2. Similarly, when we note relations (11.4) and (11.9) and consider the limit
for e → 1 of the identification formula for e > 1 as given by (11.23), again we
find it consistent with (12.25).

Accordingly, as long as due care is exercised, the results of Section 12 may be
arrived at by taking limits of the results of Subsections 8A and 9A, or alterna-
tively of taking the limits of the results of Section 11.

13 Summary of the Orbit Solutions

In Sections 11 and 12, respectively, we have noted that the solution forms for
the complementary range (e > 1) and for the singular case (e = 1) are already
included in the solution forms exhibited in Subsections 8A and 9A where the
focus had been on a range of e < 1. Hence in the solution forms presented
in Sections 8–8A and 9–9A, we have respectively the complete set of solution
forms for the S- and R-equations covering the entire range of e ≥ 0.

Accordingly, by appropriate combination of these S- and R-solution forms,
we may now record the orbit solutions over the entire λ-range and note the
main characteristic features of the orbits in each of the several range-segments
of the separation parameter (λ). These range-segments are defined by the align-
ment and overlap of the λ-ranges specifying the ranges of validity for the sev-
eral solution forms presented in Sections 8–8A and 9–9A. These solution forms
together with their associated ranges of validity are listed in Subsections 8B
and 9B, respectively.

The orbit solutions are formed from the combination of the S-solution form
from Subsection 8B with the appropriate R-solution form from Subsection 9B
for each of the appropriate λ-range segments. We shall list separately the or-
bits for Case A and Case B; there are four separate λ-segments to be considered
in Case A, with two in Case B, making for six distinct orbit types in all.
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Case A: e2 + β2 ≥ 1:

1. A1 Orbit: AS1⊕AR1 valid when 0 ≤ λ ≤ 1− e.
The orbits are restricted by the bounding inner and outer ellipses, with the

inner ellipse defining an exclusion zone surrounding both primaries. The orbit
loops, encircling both primaries, brushing off the inner and outer ellipses.

When e ≥ 1, this orbit range disappears. In particular, when β = 0, which
in this case implies that e ≥ 1, this orbit range disappears.

2. A2 Orbit: AS1⊕AR2 valid when 1− e ≤ λ ≤ β− γ.

The bounding inner ellipse has disappeared. The orbit brushes off the outer
bounding ellipse and loops around the primaries individually in a figure-of-
eight pattern.

When e ≥ 1, this orbit range disappears and as in A1, this happens in
particular when β = 0.

3. A3 Orbit: AS2⊕AR3

(i) if e ≤ 1, valid when β− γ ≤ λ ≤ β+ γ;
(ii) if e ≥ 1, valid when γ − β ≤ λ ≤ β+ γ (A3∗).

In this λ-range, a zone of exclusion appears about the minor primary; the
zone is bounded by a hyperbola branch. The orbit, a satellite orbit of the major
primary, brushes off the outer bounding ellipse and executes vigorous passes
close to the bounding hyperbola.

When e > 1, the range of validity changes to the range A3∗ indicated above.
In particular, when β = 0, so that necessarily e ≥ 1, the range of validity
shrinks to the single value λ = √

e2 − 1, which is covered by the range A4
following. Accordingly, when β = 0, this orbit range also disappears.

4. A4 Orbit: AS2⊕AR3 valid when β+ γ ≤ λ ≤ 1+ e.
This combination is identical to A3 above. However, the orbit characteris-

tics have now changed significantly. When the parameter λmoved through the
transition point β+γ, a second bounding hyperbola appears around the minor
primary, and the zone of exclusion now lies between the two hyperbolae. This
second hyperbola in turn introduces a second satellite orbit system around
the minor primary.

When e = 1, the upper hyperbola coincides with the x-axis, in accord with
the separate analysis of Section 12.

When e > 1, the upper hyperbola moves into the upper half-plane, and two
systems of satellite orbits are now fully polarized (Section 11).

When β = 0, then necessarily e ≥ 1, and the range of validity becomes√
e2 − 1 ≤ λ ≤ 1+ e.
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Case B: e2 + β2 ≤ 1:

5. B1 Orbit: BS ⊕ BR1 valid when 0 ≤ λ ≤ 1− e.
The orbits are restricted by the bounding inner and outer ellipses, with the

inner ellipse defining an exclusion zone surrounding both primaries. The orbit
loops encircling both primaries brush off the inner and outer ellipses.

6. B2 Orbit: BS ⊕ BR2 valid when 1− e ≤ λ ≤ 1+ e.
The inner bounding ellipse has disappeared, and the orbit brushing off the

outer ellipse loops around each primary individually in a figure-of-eight pat-
tern.

— � —

We now record the orbit solution forms for each of the above six ranges. In
this, all factors, including those from Sections 8 and 9, are expressed in terms
of λ.

Case A: e2 + β2 ≥ 1:

A1: valid for 0 ≤ λ ≤ 1− e.

Λ2 = Λ2
1 = 1

2
C2

1− e2

[
[1− e2 − λ2]+

√
[1− e2 + λ2)]2 − 4λ2β2

]
(8.12a)

δ = δS = − 2λβ

[1− e2 + λ2]+
√
[1− e2 + λ2]2 − 4λ2β2

(8.3)

kS = kS1 =

√√√√√[1− e2 − λ2]−
√
[1− e2 + λ2]2 − 4λ2β2

[1− e2 − λ2]+
√
[1− e2 + λ2]2 − 4λ2β2

(8.12b)

S = sn[f + fS0 : kS1]+ δS
1+ δS sn[f + fS0 : kS1]

(8.15)

δ = δv = 2λ2e
[(1− λ2)− e2(2+ λ2)+ e4]+ √[(1− λ2)− e2(2+ λ2)+ e4]2 − 4λ4e2

(9.3)

k = kv =
√√√√[1− e2 − λ2]− √[1− e2 − λ2]2 − 4λ2e2

[1− e2 − λ2]+ √[1− e2 − λ2]2 − 4λ2e2
(9.9)

jv = jv1 =
√√√√√ (1− e2 − λ2)+ √[(1− e2 − λ2)2 − 4λ2e2]

(1− e2 − λ2)+
√
[(1− e2 + λ2)2 − 4λ2β2]

(9.8a)

fv = jv1f

R
a
= (1− e2)

[
dn[fv : kv]+ δv cn[fv : kv]

]
(1+ eδv)dn[fv : kv]+ (e+ δv) cn[fv : kv]

(9.26)
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Case A: e2 + β2 ≥ 1:

A2: valid for (1− e) ≤ λ ≤ β− γ.

Λ2 = Λ2
1 = 1

2
C2

1− e2

[
[1− e2 − λ2]+

√
[1− e2 + λ2)]2 − 4λ2β2

]
(8.12a)

δ = δS = − 2λβ

[1− e2 + λ2]+
√
[1− e2 + λ2]2 − 4λ2β2

(8.3)

kS = kS1 =

√√√√√[1− e2 − λ2]−
√
[1− e2 + λ2]2 − 4λ2β2

[1− e2 − λ2]+
√
[1− e2 + λ2]2 − 4λ2β2

(8.12b)

S = cosσ = sn[f + fS0 : kS1]+ δS
1+ δS sn[f + fS0 : kS1]

(8.15)

δ = δR = − (λ+ e)[1− (λ− e)]
(λ+ e)2 − (λ− e)+ 2

√
λe
√
(λ+ e)2 − 1

(9A.17)

k = kR = 2
√
λe− √(λ+ e)2 − 1

2
√
λe+ √(λ+ e)2 − 1

(9A.24)

jR = jR1 = 1√
2

2
√
λe+ √(λ+ e)2 − 1√

[1− e2 − λ2]+
√
[1− e2 + λ2]2 − 4λ2β2

(9A.27a)

fR = jR1f

R
a
=

1
2

[
[1+λ+e]+[1−(λ−e)]δR

]
dn[fR : kR]+

[
[1−(λ−e)]+[1+λ+e]δR

]
cn[fR : kR]

dn[fR : kR]+ δR cn[fR : kR]
(9A.33)

Case A: e2 + β2 ≥ 1:

A3: (β− γ) ≤ λ ≤ β+ γ;
A4: (β+ γ) ≤ λ ≤ 1+ e;

Λ2 = Λ2
0 = 1

4
C2

1− e2

[
2
√
λγ +

√
(λ+ γ)2 − β2

]
(8A.22)



Sec 13 Summary of the Orbit Solutions 109

δ = δ∗S = −
(λ+ γ)(λ+ β− γ)

(λ+ γ)2 + β(λ− γ)+ 2
√
λγ[(λ+ γ)2 − β2]

(8A.14)

kS = kS0 = ±
2
√
λγ −

√
(λ+ γ)2 − β2

2
√
λγ +

√
(λ+ γ)2 − β2

(8A.28)

cosσ = S =
1

2λ

[
(1+δ∗S )λ+(1−δ∗S )(β−γ)

]
sn[f+fS0 : kS0]+

[
(1+δ∗S )λ−(1−δ∗S )(β−γ)

]
1+δ∗S sn[f+fS0 : kS0]

(8A.26)

δ = δR = − (λ+ e)[1− (λ− e)]
(λ+ e)2 − (λ− e)+ 2

√
λe
√
(λ+ e)2 − 1

(9A.17)

k = kR = (±)2
√
λe− √(λ+ e)2 − 1

2
√
λe+ √(λ+ e)2 − 1

(9A.24)

jR = jR0 = 2
√
λe+ √(λ+ e)2 − 1

2
√
λγ +

√
(λ+ γ)2 − β2

(9A.27b)

fR = jR0f

R
a
= 1

2

[
[1+λ+e]+[1−(λ−e)]δR

]
dn[fR : kR]+

[
[1−(λ−e)]+[1+λ+e]δR

]
cn[fR : kR]

dn[fR : kR]+ δR cn[fR : kR]
(9A.33)

Case B: e2 + β2 ≤ 1:

B1: valid for 0 ≤ λ ≤ 1− e.

Λ2 = Λ2
2 =

C2

1− e2

√
[1− e2 + λ2]2 − 4λ2β2 (8.19a)

δ = δS = − 2λβ

[1− e2 + λ2]+
√
[1− e2 + λ2]2 − 4λ2β2

(8.3)

k = kS2 =
√√√√1

2 − 1
2

1− e2 − λ2√
[1− e2 + λ2]2 − 4λ2β2

(8.19b)

cosσ = S =
√

1− k2
S2 sn[f + fS0 : kS2]+ δS dn[f + fS0 : kS2]

dn[f + fS0 : kS2]+ δS
√

1− k2
S2 sn[f + fS0 : kS2]

(8.25)
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δ = δv =
2λ2e

[(1− λ2)− e2(2+ λ2)+ e4]+ √[(1− λ2)− e2(2+ λ2)+ e4]2 − 4λ4e2
(9.3)

k = kv =
√√√√[1− e2 − λ2]− √[1− e2 − λ2]2 − 4λ2e2

[1− e2 − λ2]+ √[1− e2 − λ2]2 − 4λ2e2
(9.9)

j = jv2 =
√√√√√[1− e2 − λ2]+ √[1− e2 − λ2]2 − 4λ2e2

2
√
[1− e2 + λ2]2 − 4λ2β2

(9.8b)

fv = jv2f

R
a
= (1− e2)

[
dn[fv : kv]+ δv cn[fv : kv]

]
(1+ eδv)dn[fv : kv]+ (e+ δv) cn[fv : kv]

(9.26)

Case B: e2 + β2 ≤ 1:

B2: valid for 1− e ≤ λ ≤ 1+ e.

Λ2 = Λ2
2 =

C2

1− e2

√
[1− e2 + λ2]2 − 4λ2β2 (8.19a)

δ = δS = − 2λβ

[1− e2 + λ2]+
√
[1− e2 + λ2]2 − 4λ2β2

(8.3)

k = kS2 =
√√√√1

2 − 1
2

1− e2 − λ2√
[1− e2 + λ2]2 − 4λ2β2

(8.19b)

cosσ = S =
√

1− k2
S2 sn[f + fS0 : kS2]+ δS dn[f + fS0 : kS2]

dn[f + fS0 : kS2]+ δS
√

1− k2
S2 sn[f + fS0 : kS2]

(8.25)

δ = δR = − (λ+ e)[1− (λ− e)]
(λ+ e)2 − (λ− e)+ 2

√
λe
√
(λ+ e)2 − 1

(9A.17)

k = kR = 2
√
λe− √(λ+ e)2 − 1

2
√
λe+ √(λ+ e)2 − 1

(9A.24)

jR = jR2 = 1
2

2
√
λe+ √(λ+ e)2 − 1[

[1− e2 + λ2]2 − 4λ2β2
]1/4 (9A.27c)
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fR = jR2f

R
a
=

1
2

[
[1+λ+e]+[1−(λ−e)]δR

]
dn[fR : kR]+

[
[1−(λ−e)]+[1+λ+e]δR

]
cn[fR : kR]

dn[fR : kR]+ δR cn[fR : kR]
(9A.33)

Finally, we make some observations regarding the ranges for the separation
parameter λ in relation to a particular range of e and β.

We have already noted that in Case A (e2+β2 ≥ 1), if we have β = 0, so that
e ≥ 1, then the three orbit ranges A1, A2, and A3 disappear. However, when
β ≠ 0, no matter how small, then in Case A there is immediately admitted an
associated e-range with e ≤ 1, namely√

1− β2 ≤ e ≤ 1

whereby the above three orbit ranges, namely A1, A2, and A3, reappear. With
β small, the orbit ranges will be extremely narrow intervals for the separation
parameter λ. Accordingly, for the e-parameter, there is an interval of extreme
sensitivity

e∗ ≤
√

1− β2 ≤ 1+ e∗.
Therein, as e traverses the parameter range and the separation parameter has
its intervals specified accordingly, one can envision all six orbit ranges coming
into play successively over a rather narrow overall range of the separation
parameter λ.

It should be borne in mind that it would never be easy to guarantee that
β = 0 exactly. Hence, these transitions in orbit types over a small but signifi-
cant range of the parameter e could be of considerable interest.
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The Euler Problem II — Three-dimensional Case

Cum autem semper cujusquam problematis quod a sum-
mis ingeniis frustra est tentatum, solutio maximi est
momenti, tam vero haec questio ad eam Analyceos
partem pertinet, ex qua sola nunc quidem omnia Astro-
nomiae incrementa sunt expectanda.

— L. Euler [E2, e(ii)]

[Just as the solution of any problem, that has been
tackled in vain by the highest intellects, is always
of the greatest importance, so indeed this problem
belongs to that branch of Analysis from which alone
all developments in Astronomy are now, in fact, to be
expected.]

1 The Gravitational Field of Two Fixed Centers: General Case

Referred to the Cartesian x-y-z triad, we consider the mass-point P in the
gravitational field induced by the two fixed masses m− and m+ situated at the
symmetrically placed points on the z-axis, namely at z = −b and z = +b,

respectively. The potential function per unit mass at the arbitrary point P is
again given by

U = G
[
m−
r−

+ m+
r+

]
(1.1)

where G is the gravitational constant.

© Birkhäuser Boston, a part of Springer Science + Business Media, LLC 2008 
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In terms of the spherical polar coordinates (r , θ,ϕ) where the angle θ is
measured from the z-axis as baseline, and ϕ is measured from the x-axis as
baseline, the application of the cosine law renders for the distances r− and r+,
respectively,

r 2− = r 2 + b2 + 2br cosθ (1.2a)

r 2+ = r 2 + b2 − 2br cosθ . (1.2b)

If we now introduce spheroidal coordinates (R,σ ,ϕ) based on the length pa-
rameter b, then in terms of the Cartesian coordinates x-y-z and of the spher-
ical polar coordinates (r , θ,ϕ), we have

r sinθ cosϕ = x =
√
R2 − b2 sinσ cosϕ (1.3a)

r sinθ sinϕ = y =
√
R2 − b2 sinσ sinϕ (1.3b)

r cosθ = z = R cosσ (1.3c)

and

r2 = x2 +y2 + z2 = R2 − b2 sin2 σ . (1.4)

In terms of the spheroidal coordinates (R,σ ,ϕ), relations (1.2) for r− and r+
take the form

r 2− = r 2 + b2 + 2br cosθ

= R2 + b2 cos2 σ + 2bR cosσ = [R + b cosσ]2 (1.5a)

r 2+ = r 2 + b2 − 2br cosθ

= R2 + b2 cos2 σ − 2bR cosσ = [R − b cosσ]2 (1.5b)

so that, as in the planar case (cf. Chapter 3), for the potential function we have

U = G
[

m−
R + b cosσ

+ m+
R − b cosσ

]
= G(m+ +m−)

[
R + βb cosσ
R2 − b2 cos2 σ

]
(1.6)

where again β is defined by

β = m+ −m−
m+ +m−

(1.7)

and measures the asymmetry between the attracting masses. As before we set

μ = G(m+ +m−) (1.8)

and we may write

U = μ R + βb cosσ
R2 − b2 cos2 σ

. (1.9)

Hence for a mass-point in this gravitational field, the potential energy per unit
mass is given by
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V∗ = −μ R + βb cosσ
R2 − b2 cos2 σ

. (1.10)

For the coordinate system defined in (1.3), there follows

∂x
∂R

= R√
R2 − b2

sinσ cosϕ,
∂y
∂R

= R√
R2 − b2

sinσ sinϕ,
∂z
∂R

= cosσ

∂x
∂σ

=
√
R2 − b2 cosσ cosϕ,

∂y
∂σ

=
√
R2 − b2 cosσ sinϕ,

∂z
∂σ

= −R sinσ

∂x
∂ϕ

= −
√
R2 − b2 sinσ sinϕ,

∂y
∂ϕ

=
√
R2 − b2 sinσ cosϕ,

∂z
∂ϕ

= 0

so that the metric coefficients for the spheroidal coordinate system are given
by

g11 = R2 − b2 cos2 σ
R2 − b2

, g12 = 0, g13 = 0 (1.11a)

g21 = 0, g22 = R2 − b2 cos2 σ, g23 = 0 (1.11b)

g31 = 0, g32 = 0, g33 = (R2 − b2) sin2 σ . (1.11c)

Hence, the kinetic energy per unit mass is given by

T∗= 1
2
R2 − b2 cos2 σ

R2 − b2
Ṙ2+ 1

2(R
2 − b2 cos2 σ)σ̇ 2+ 1

2(R
2 − b2) sin2 σ · ϕ̇2 (1.12)

and for the total energy per unit mass, we have

H = T∗ + V∗

= 1
2
R2 − b2 cos2 σ

R2 − b2
Ṙ2 + 1

2(R
2 − b2 cos2 σ)σ̇ 2 + 1

2(R
2 − b2) sin2 σ · ϕ̇2

− μ R + βb cosσ
R2 − b2 cos2 σ

(1.13)

and the associated Lagrangian is given by

L∗ = T∗ − V∗

= 1
2
R2 − b2 cos2 σ

R2 − b2
Ṙ2 + 1

2(R
2 − b2 cos2 σ)σ̇ 2 + 1

2(R
2 − b2) sin2 σ · ϕ̇2

+ μ R + βb cosσ
R2 − b2 cos2 σ

, (1.14)

from which the equations of motion are derived.

2 The Ignorable Coordinate: Liouville’s Form and the
Energy Integral

Since the coordinate variable ϕ does not appear explicitly in the Lagrangian,
we can immediately utilize the fact that it is an ignorable coordinate and the
consequences therefrom. The third Lagrangian equation reads
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d
dt
[(R2 − b2) sin2 σ · ϕ̇] = 0, (2.1)

which immediately yields the integral

(R2 − b2) sin2 σ · ϕ̇ = C3 (2.2)

where C3 is the constant of integration. From (1.4) and (1.3c), we see that

(R2 − b2) sin2 σ · ϕ̇ = [R2 − b2 sin2 σ − R2 cos2 σ]ϕ̇

= [r 2 − r 2 cos2 θ]ϕ̇ = r 2 sin2 θ · ϕ̇ (2.3)

from which it is evident that C3 is the polar component of the angular momen-
tum.

We now follow the standard procedure for dealing with the simplification
following from the presence of the ignorable coordinate: we form the modified
Lagrangian L, by setting

L = L∗ − ϕ̇∂L
∗

∂ϕ̇
= L∗ − (R2 − b2) sin2 σ · ϕ̇2 = L∗ − C2

3

(R2 − b2) sin2 σ
(2.4)

in which we have substituted for ϕ̇ from (2.2). By introducing L∗ from (1.14)
and again substituting for ϕ̇ from (2.2), we write the modified Lagrangian (2.4)
explicitly

L = 1
2
R2 − b2 cos2 σ

R2 − b2
Ṙ2 + 1

2(R
2 − b2 cos2 σ)σ̇ 2

+ μ R + βb cosσ
R2 − b2 cos2 σ

− 1
2

C2
3

(R2 − b2) sin2 σ
(2.5)

and the modified form of the kinetic and potential energies are, respectively,

T = 1
2
R2 − b2 cos2 σ

R2 − b2
Ṙ2 + 1

2(R
2 − b2 cos2 σ)σ̇ 2 (2.6)

V = −μ R + βb cosσ
R2 − b2 cos2 σ

+ 1
2

C2
3

(R2 − b2) sin2 σ
(2.7a)

= − 1
R2 − b2 cos2 σ

[
μ(R + βb cosσ)− 1

2C
2
3

( 1

sin2 σ
+ b2

R2 − b2

)]
. (2.7b)

If we introduce this latter modification into the modified Lagrangian (2.5), we
have

L = 1
2
R2 − b2 cos2 σ

R2 − b2
Ṙ2 + 1

2(R
2 − b2 cos2 σ)σ̇ 2

+ 1
R2 − b2 cos2 σ

[
μ(R + βb cosσ)− 1

2C
2
3

( 1

sin2 σ
+ b2

R2 − b2

)]
, (2.8)

which is the required form.
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The next step is the transformation of this modified Lagrangian into one of
Liouville type through the introduction of the auxiliary variable ξ defined by

R = b coshξ, Ṙ = b sinhξ · ξ̇, R2 − b2 = b2 sinhs ξ, (2.9a,b,c)

so that the form (2.8) is replaced by

L = b2(cosh2 ξ − cos2 σ)[1
2 ξ̇

2 + 1
2 σ̇

2] (2.10)

+ 1

b2(cosh2 ξ − cos2 σ)

[
μb(coshξ + β cosσ)− 1

2C
2
3

( 1

sin2 σ
+ 1

sinh2 ξ

)]
.

It will be convenient for subsequent manipulations to set

Q1(ξ) = b2 cosh2 ξ, Q2(σ) = −b2 cos2 σ, Q = Q1 +Q2 (2.11a,b,c)

V1(ξ) = −
[
μb coshξ − 1

2C
2
3

1

sinh2 ξ

]
, V2 = −

[
μβb cosσ − 1

2C
2
3

1

sin2 σ

]
(2.12a,b)

and so with

QV = V1 + V2, T = Q[1
2 ξ̇

2 + 1
2 σ̇

2] (2.13a,b)

the Lagrangian (2.10) may be written

L = Q[1
2 ξ̇

2 + 1
2 σ̇

2]− V = Q[1
2 ξ̇

2 + 1
2 σ̇

2]− 1
Q
[V1 + V2] (2.14)

which is now in the standard Liouville form.
The derivation of the energy integral from the Lagrange equations

d
dt

(∂L
∂ξ̇

)
= ∂L
∂ξ
,

d
dt

( ∂L
∂σ̇

)
= ∂L
∂σ

(2.15a,b)

will follow the standard procedure already outlined in Chapter 3, Section 2, to
which one can refer for the details omitted here. We multiply (2.15a) by ξ̇ and
(2.15b) by σ̇ and add; after some rearrangement this yields

d
dt

[
ξ̇
∂L
∂ξ̇
+ σ̇ ∂L

∂σ̇

]
= dL

dt
(2.16)

which yields the integral

ξ̇
∂L
∂ξ̇
+ σ̇ ∂L

∂σ̇
= L+E (2.17)

where E is the constant of integration. When the Lagrangian has the form
(2.14), then, noting (2.13b), the left-hand side of (2.17) can clearly be replaced
by 2T , and so we have

T + V = E (2.18)

showing that the constant E represents the total energy of the system.
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3 The First Integrals in Liouville Coordinates

If we introduce the explicit form (2.14) into the Lagrange equations (2.15), we
have

d
dt
(Qξ̇) = dQ1

dξ
(1

2 ξ̇
2 + 1

2 σ̇
2)− ∂V

∂ξ
,

d
dt
(Qσ̇) = dQ2

dσ
(1

2 ξ̇
2 + 1

2 σ̇
2)− ∂V

∂σ
,

(3.1a,b)

the integration of which will follow the pattern set in Chapter 3, Section 3.
Recapitulating, we multiply (3.1a) by Qξ̇, and noting relation (2.13a), we

obtain

Qξ̇
d
dt
(Qξ̇) = ξ̇

[
T

dQ1

dξ
−Q∂V

∂ξ

]
= ξ̇

[
E dQ

dξ
− ∂(QV)

∂ξ

]
= ξ̇

[
E dQ1

dξ
− dV1

dξ

]
= d

dt
[EQ1 − V1

]
, (3.2)

which yields the ξ-first integral

1
2(Qξ̇)

2 −EQ1 + V1 = C1 (3.3)

where C1 is the constant of integration. Similarly, by multiplying (3.1b) by Qσ̇
and proceeding in like manner, we obtain the σ -first integral

1
2(Qσ̇)

2 −EQ2 + V2 = C2. (3.4)

The addition of (3.3) and (3.4) yields

Q2[1
2 ξ̇

2 + 1
2 σ̇

2]−E(Q1 +Q2)+ V1 + V2 = C1 + C2 (3.5)

or alternatively, on recalling (2.13) and (2.11c), we have the compact form

Q[T + V −E] = C1 + C2, (3.6)

which from (2.18) clearly implies the relation

C1 + C2 = 0 (3.7)

between the constants of the first integrals.
Equations (3.3), (3.4) together with the energy integral (2.18) are the first in-

tegrals of the modified Lagrangian (2.14). However, as the three integrals when
combined imply relation (3.7), the three integrals are not independent. The
third independent integral for the dynamical system is the polar component
of angular momentum (2.2).

Having derived the first integrals by means of the Liouville procedure, fa-
cilitated by the introduction of the auxiliary “Liouville” variable ξ, the latter
has now served its purpose and will be dispensed with. Substituting for ξ, we
revert to the original R-σ spheroidal coordinate system.
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4 The First Integrals in Spheroidal Coordinates

Recalling the defining relations (2.9), it follows from (2.11) and (2.12) that, in
terms of the spheroidal coordinates R,σ , we have

Q1(R) = R2, Q2(σ) = −b2 cos2 σ, Q = R2 − b2 cos2 σ (4.1a,b,c)

V1(R) = −
[
μR − 1

2

C2
3b2

R2 − b2

]
, V2(σ) = −

[
μβb cosσ − 1

2

C2
3

sin2 σ

]
(4.2a,b)

and furthermore, from (2.9b), we have

ξ̇ = Ṙ
b sinhξ

= Ṙ√
R2 − b2

(4.3)

and hence

Qξ̇ = (R2 − b2 cos2 σ)√
R2 − b2

Ṙ, Qσ̇ = (R2 − b2 cos2 σ)σ̇ . (4.4a,b)

Accordingly, in terms of the spheroidal coordinates (R,σ), the equations for
the first integrals (3.3) and (3.4) read

1
2
(R2 − b2 cos2 σ)2

R2 − b2
Ṙ2 = ER2 +

[
μR − 1

2

C2
3b2

R2 − b2

]
+ C1 (4.5a)

1
2(R

2 − b2 cos2 σ)2σ̇ 2 = −Eb2 cos2 σ +
[
μβb cosσ − 1

2

C2
3

sin2 σ

]
+ C2 (4.5b)

with the restriction (3.7) that C1 + C2 = 0.
An inspection of (4.5b) in the limit as b → 0 indicates that in that range, C2

must be positive, which immediately implies that C1 is negative. Moreover, we
shall keep the focus of our attention mainly on bound orbits, corresponding
in this range with negative energy. Accordingly, we set

E = −α2, C1 = −1
2C

2, C2 = 1
2C

2 (4.6)

and observing (4.5b) we note that C has the dimension of angular momentum.
In terms of these constants, equations (4.5) take the form

1
2
(R2 − b2 cos2 σ)2

R2 − b2
Ṙ2 = −α2R2 +

[
μR − 1

2

b2C2
3

R2 − b2

]
− 1

2C
2 (4.7a)

1
2(R

2 − b2 cos2 σ)2σ̇ 2 = α2b2 cos2 σ +
[
μβb cosσ − 1

2

C2
3

sin2 σ

]
+ 1

2C
2. (4.7b)

In pursuing the reduction and analysis of these equations, we shall follow the
pattern set out in the planar case of Chapter 3, Section 5.

We note that if we set σ = 1
2π in (4.7b), we have

1
2C

2 − 1
2C

2
3 = 1

2R
2σ̇ 2 ≥ 0 (4.8)

so that
C2

3 ≤ C2 (4.9)

with equality holding only for the equatorial orbit when σ̇ = 0; relation (4.9)
will be noted below.
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In this chapter, the analysis is performed only for the range corresponding
to Sections 8 and 9 of Chapter 3; the extension of the analysis to the supple-
mentary and complementary ranges corresponding to Sections 8A, 9A, 11, and
12 of Chapter 3, follows the established pattern.

5 Reduction of Equations: The Regularization

First, we consider the R-equation and rewrite equation (4.7a) in the form

(R2 − b2 cos2 σ)2Ṙ2 = −C2(R2 − b2)
[
1− 2μ

C2
R + 2α2

C2
R2 + b2

R2 − b2

C2
3

C2

]
. (5.1)

Again we introduce length scales a and p, together with a dimensionless pa-
rameter ν — the latter corresponding to the inclination in the Kepler case: we
set

a = μ
2α2

, p = C2

μ

(
so that ap = C2

2α2

)
, ν = C3

C
(5.2)

and from (4.9) we note that ν2 ≤ 1. In terms of these quantities, equation (5.1)
reads

(R2 − b2 cos2 σ)2

C2
Ṙ2 = −(R2 − b2)

[
1− 2

p
R + 1

ap
R2
]
− b2ν2. (5.3)

Next, for the σ -equation we rewrite (4.7b) in the form

(R2 − b2 cos2 σ)2

C2
σ̇ 2 = 1+ 2μ

C2
βb cosσ + 2α2

C2
b2 cos2 σ − C

2
3

C2

1

sin2 σ

= 1+ 2β
b
p

cosσ + b2

ap
cos2 σ − ν2

sin2 σ
(5.4)

and, as in the planar case, the form of the regularizing transformation is indi-
cated by the multiplying factor on the left-hand side of (5.3) and (5.4).

We introduce the new independent variable f by the defining equation

df
dt

= Λ
R2 − b2 cos2 σ

(5.5)

where Λ is a parameter with the dimension of angular momentum to be de-
fined presently; it follows that

R2 − b2 cos2 σΛ d
dt

= d
df

(5.6)

so that, with prime denoting differentiation with respect to f , the equations
for the first integrals (5.3) and (5.4) become, respectively,
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Λ2

C2
R′2 = −(R2 − b2)

[
1− 2

p
R + 1

ap
R2
]
− b2ν2 (5.7)

Λ2

C2
σ ′2 = 1+ 2β

b
p

cosσ + b2

ap
cos2 σ − ν2

sin2 σ
. (5.8)

If, in the latter equation, we multiply across by sin2 σ and set

S = cosσ, so that S′ = − sinσ · σ ′, (5.9)

then equation (5.8) becomes

Λ2

C2
S′2 = (1− S2)

[
1+ 2β

b
p
S + b2

ap
S2
]
− ν2, (5.10)

which is the required form.
Equations (5.7) and (5.10) put into clear focus the significant complication

arising in the three-dimensional case as distinct from the planar case, namely
the factor with ν2 appearing in each equation. Although it does not intro-
duce any analytical difficulty, it presents a crucial algebraic complication: the
decomposition of the quartic on the right-hand side into a product of two
quadratic factors — obvious in the planar case when ν = 0 — is no longer
obvious in the general case and, in fact, is quite tedious to put into effect.

In order to see that the difficulties arising in both equations run parallel to
each other, we first reduce both equations to dimensionless form.

6 Normalization of the Quartics

We introduce dimensionless parameters

η = b
p
,
p
a
= 1− e2 = �, λ = b

a
= b
p
p
a
= η�, b2

ap
= η2� (6.1a,b,c,d)

in terms of which equation (5.10) becomes

Λ2

C2
S′2 = (1− S2)

[
1+ 2βηS + η2�S2

]
− ν2. (6.2)

This form of the equation has the visual advantage that we observe imme-
diately how in the case of η = 0, the problem collapses to the Kepler case
S′2 = (1 − ν2) − S2 with solution S = √

1− ν2 sin(f + ω). However, in the
general case, in order to effect the algebraic normalization, it becomes neces-
sary to forego this visual feature, and it becomes convenient to introduce the
auxiliary parameters β∗ and λ, by setting

β∗ = β
η�

= β
λ
, λ = 1

η2�
= �
λ2

. (6.3a,b)

If we now divide across equation (6.2) by the factor η2�, we obtain the follow-
ing form of the equation:
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λ
Λ2

C2
S′2 = (1− S2)

[
S2 + 2β∗S + λ

]
− λν2, (6.4)

which on expansion reads

λ
Λ2

C2
S′2 = −

[
S4 + 2β∗S3 − (1− λ)S2 − 2β∗S − λ(1− ν2)

]
(6.5)

in which the quartic on the right exhibits the three independent parameters
β∗, λ, and ν , in terms of which the reduction of this quartic is to be effected.

Turning next to the R-equation (5.7), we first scale the R-factor by setting

R = aY (6.6)

so that the new dependent variable Y is dimensionless. In terms of Y , equation
(5.7) becomes

Λ2

C2
Y ′2 = −(Y 2 − η2�2)

[
1− 2

�
Y + 1

�
Y 2
]
− η2�2ν2 (6.7a)

= −(Y
2 − η2�2)
�

[
Y 2 − 2Y + �]− η2�2ν2, (6.7b)

or alternatively,

�
Λ2

C2
Y ′2 = −(Y 2 − η2�2)[Y 2 − 2Y + �]− η2�3ν2. (6.8)

If we now note that

λ2 = η2�2 = b2

p2
· p

2

a2
= b2

a2
, and hence η2�3 = �λ2, (6.9a,b)

then equation (6.8) takes the form

�
Λ2

C2
Y ′2 = −(Y 2 − λ2)[Y 2 − 2Y + �]− �λ2ν2 (6.10a)

= −[Y 4 − 2Y 3 + (� − λ2)Y 2 + 2λ2Y − �λ2(1− ν2)
]

(6.10b)

in which the quartic on the right exhibits the dependence on the three inde-
pendent parameters �, λ2, and ν .

The next step toward a solution would be the resolution of the quartics
on the right of the above equations (6.5) and (6.10) into the product of two
quadratic factors; from thence the succeeding step would be to introduce
the transformation that would change such a product into a product of two
quadratic factors, from one of which the linear term would be absent. This
sequence presents the same difficulty in both cases, and the algebra becomes
quite tedious.

In the case of the R-equation, there is no escape from the difficulty in the
sense that the only possible simplification would remove the difficulty — and
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the generality — entirely. However, in the case of the S-equation, a consid-
erable simplification is effected in the particular (symmetric) case where we
take

β = 0 (6.11)

and the equation becomes relatively tractable, while at the same time including
all the analytic features. We shall explore this case in detail in the next section.

Before concluding this section, we set down a slightly generalized form of
the quartic appearing in (6.10); namely, we consider

Y 4 − 2dY 3 +n(� − λ2)Y 2 + 2gY − �λ2(1− ν2) (6.12)

where we have introduced the the new parameters d, n, and g, respectively,
into the second, third, and fourth terms. We may note:

Case I: If we take d = 1, n = 1, g = λ2, then the quartic (6.12) becomes
identical with that appearing in (6.10).

Case II: If we take d = g = −β∗, n = −1, set � = 1, and replace λ2 by λ, then
the quartic (6.12) becomes identical with that appearing in (6.5).

Accordingly, the quartic (6.12) may be used as the generic model to cover both
separated equations as they appear in (6.5) and (6.10).

Following our treatment of the σ -equation for the case β = 0 in the next
section, we shall then return to a full consideration of the R-equation repre-
sented by (6.10). As the corresponding treatment for the σ -equation in its full
generality would follow the same pattern as that for the R-equation, we shall
not pursue that reduction here.

7 The σ -equation in the Case β = 0

In dealing with the σ -equation for the case β = 0, we may start either from
(6.2) or (6.5); if we start from the latter, we have when β = 0 implying β∗ = 0,

1
η2�

Λ2

C2
S′2 = −

[
S4 − (1− λ)S2 − λ(1− ν2)

]
= −

[
S4 + (1− η

2�)
η2�

S2 − (1− ν
2)

η2�

]
. (7.1)

Considering the form in square brackets as a quadratic in S2, we may perform
the factorization: the notation is facilitated if we set

2m0 = 1+
√

1+ 4η2�(1− ν2)
(1− η2�)2

(7.2)

and the equation may be written in the form

1
η2�

Λ2

C2
S′2 = −

[
S2 − 1− ν2

(1− η2�)m0

][
S2 + (1− η

2�)
η2�

m0

]
. (7.3)
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This suggests that we set

S =
√

1− ν2

(1− η2�)m0
ζ, (7.4)

which if substituted into equation (7.3) renders that equation in the form

Λ2

C2
ζ′2 = (1− η2�)m0(1− ζ2)

[
1+ η2�(1− ν2)

(1− η2�)2m2
0
ζ2
]
. (7.5)

The equation is now in a form that permits clarification with regard to the
form of the solution.

Case A: When � is negative, that is, when e2 > 1, then we can write

Λ2 = C2(1− η2�)m0, k2
0 = −

η2�(1− ν2)
(1− η2�)2m2

0
(7.6)

and equation (7.5) becomes

ζ′2 = (1− ζ2)[1− k2
0ζ

2] (7.7)

with the solution ζ = sn[f +ω : k0], which gives S in the form

S =
√

1− ν2

(1− η2�)m0
sn[f +ω : k0] (7.8)

where −ω is the value of f at the first equatorial crossing.

Case B: When � is positive, i.e., when e2 < 1, then we rearrange (7.5) to write

Λ2

C2
ζ′2 = (1− η2�)m0(1− ζ2)

[
1+ η2�(1− ν2)

(1− η2�)2m2
0
− η2�(1− ν2)
(1− η2�)2m2

0
(1− ζ2)

]
= (1− η2�)m0

[
1+ η2�(1− ν2)

(1− η2�)2m2
0

]
× (1− ζ2)

[
1− η2�(1− ν2)

(1− η2�)2m2
0 + η2�(1− ν2)

(1− ζ2)
]

. (7.9)

Hence we can choose the parameters as follows:

Λ2 = C2(1− η2�)m0

[
1+ η2�(1− ν2)

(1− η2�)2m2
0

]
(7.10a)

k2
0 =

η2�(1− ν2)
(1− η2�)2m2

0 + η2�(1− ν2)
(7.10b)

so that equation (7.9) is replaced by

ζ′2 = (1− ζ2)[1− k2
0(1− ζ2)] (7.11)

with solution
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ζ = cn[f + f0 : k0] (7.12)

where f0 is the constant introduced by the integration. If we let −ω denote
the value of f at the first crossing of the x-y plane

ζ = 0, S = 0, z = 0, cosσ = 0, σ = π/2, at f = −ω (7.13)

which is satisfied if we take

f0 −ω = −K0 (7.14)

where K0 is the quarterperiod of the Jacobian elliptic function cn[f : k0]
of modulus k0. Hence the general solution (7.12) may be written

ζ = cn[f +ω−K0 : k0]

= k′0
sn[f +ω : k0]
dn[f +ω : k0]

(7.15)

where k′0 is the complementary modulus determined by

k2
0 + k′20 = 1. (7.16)

The solution for S = cosσ is obtained as

S =
√

1− ν2

(1− η2�)m0
k′0

sn[f +ω : k0]
dn[f +ω : k0]

(7.17)

where we have introduced (7.15) into (7.4).

8 The R-equation

Recalling the reduced form of the R-equation (6.10b), namely

�
Λ2

C2
Y ′2 = −[Y 4 − 2Y 3 + (� − λ2)Y 2 + 2λ2Y − �λ2(1− ν2)

] = −f(Y), (8.1)

we now address the decomposition of the quartic within the square brackets.

8A. The Decomposition of the Quartic

We start with a transformation that eliminates the cubic term from the quartic.
Setting

Y = X + 1
2 (8A.1)

then, we find that

g(X) = f(Y) = X4 + (� − λ2 − 3
2)X

2

+ (� + λ2 − 1)X + 1
4[� + 3λ2 − 3

4 − 4�λ2(1− ν2)] . (8A.2)



126 Ch 4 The Euler Problem II — Three-dimensional Case

Following the procedure of Descartes, we now effect the standard decomposi-
tion

g(X) = [X2 +UX + V][X2 −UX +W]
= X4 + [V +W −U2]X2 +U(W − V)X + VW (8A.3)

which implies

4VW = � + 3λ2 − 3
4 − 4�λ2(1− ν2) (i)

V +W −U2 = � − λ2 − 3
2 �⇒ V +W = U2 + (� − λ2 − 3

2) (ii)

U(V −W) = 1− � − λ2. (iii)

From (iii) there follows

(V −W)2 = (1− � − λ2)2

U2
(8A.4)

which together with (i) implies for (V +W)2

(V +W)2 = (1− � − λ2)2

U2
+ [� + 3λ2 − 3

4 − 4�λ2(1− ν2)] . (8A.5)

Moreover from (ii), we have

(V +W)2 = [U2 + (� − λ2 − 3
2)]

2 . (8A.6)

Identifying (8A.5) with (8A.6) and setting Z = U2, we have as the equation for Z

Z[Z + (� − λ2 − 3
2)]

2 − (1− � − λ2)2 = [� + 3λ2 − 3
4 − 4�λ2(1− ν2)]Z

which can be rearranged as

Z3 + 2Z2(� − λ2 − 3
2)− (1− � − λ2)2

= [� + 3λ2 − 3
4 − 4�λ2(1− ν2)− (� − λ2 − 3

2)
2]Z

= −3Z[1− 4
3� + 1

3(� − λ2)2 + 4
3�λ

2(1− ν2)] (8A.7)

so that the equation for Z reads

Z3 − 3Z2[1− 2
3(� − λ2)]

+ 3Z[1− 4
3� + 1

3(� − λ2)+ 4
3�λ

2(1− ν2)]− [1− � − λ2]2 = 0 . (8A.8)

As an exercise-check we note that when ν = 0, then Z = 1 is a root of this
equation; in that case

U = 1, V = 1
4 − λ2, W = � − 3

4 (8A.8a)

and the factorization is

g(X) = [X2 +X + ( 1
4 − λ2)][X2 −X + (� − 3

4 )] (8A.8b)

and in terms of Y

f(Y) = (Y 2 − λ2)(Y 2 − 2Y + �) (8A.8c)

and we retrieve the result from the planar case.
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The next step in dealing with equation (8A.8) is the elimination of the
quadratic term. For this it is convenient to write

A = 1− 2
3(� − λ2), B = 1− 4

3� + 1
3(� − λ2)2 + 4

3�λ
2(1− ν2),

C = 1− � − λ2, (8A.9a,b,c)

so that we are dealing with the equation

Z3 − 3AZ2 + 3BZ − C2 = 0 . (8A.10)

In this equation, we set

Z = Z0 +A (8A.11)

and, in terms of Z0, the above equation becomes

Z3
0 + 3(B −A2)Z0 + 3AB − 2A3 − C2 = 0 . (8A.12)

If the substitutions from (8A.9) are inserted, we obtain for the coefficient of Z0

3(B −A2) = −[1
3(� − λ2)2 + 4λ2(1− �)+ 4�λ2ν2] (8A.13a)

and in computing the constant term, we note that

3B − 2A2 = 1− 4
3� − 8

3λ
2 + 1

9(� − λ2)2 + 4�λ2(1− ν2)

A(3B − 2A2) = 1− 2� − 2λ2 + �2 + 2
3λ

2� − 5
3λ

4 − 2
27(� − λ2)3

+ 4�λ2(1− ν2)[1− 2
3(� − λ2)]

and hence

3AB − 2A3 − C2

= −
[

2
27(� − λ2)3 − 8

3λ
2(� − λ2)(1− �)+ 4�λ2ν2[1− 2

3(� − λ2)]
]

. (8A.13b)

It will prove convenient to arrange relations (8A.13) in a somewhat different
format, namely,

3(B −A2) = −1
3(� − λ2)2

[
1+ 12λ2[1− �(1− ν2)]

(� − λ2)2
]

(8A.14a)

3AB − 2A3 − C2 = − 2
27(� − λ2)3

[
1− 36λ2[1− �(1− ν2)]

(� − λ2)2
+ 54λ2 �ν2

(� − λ2)3
]

= − 2
27(� − λ2)3

[
1− 36λ2[1− �(1− ν2)]

(� − λ2)2
[
1− 3

2
�ν2

(� − λ2)[1− �(1− ν2)]

]]
.

(8A.14b)

This suggests that we set
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λ∗ = 12λ2[1− �(1− ν2)]
(� − λ2)2

, s = 1− 3
2

�ν2

(� − λ2)[1− �(1− ν2)]
(8A.15a,b)

in terms of which we can write

3(B −A2) = −1
3(� − λ2)2[1+ λ∗] (8A.16a)

3AB − 2A3 − C2 = − 2
27(� − λ2)3[1− 3λ∗s] (8A.16b)

and equation (8A.12) for Z0 may be written

Z3
0 − 1

3(� − λ2)2(1+ λ∗)Z0 − 2
27(� − λ2)3(1− 3λ∗s) = 0 . (8A.17)

We note from (8A.9a) and (8A.11) that in the particular case of ν = 0 (so that
s = 1), the root Z = 1 of (8A.8) would in that case correspond to the root
Z0 = 2

3(� − λ2) of (8A.17) with s = 1. Accordingly, equation (8A.17) can be
normalized by setting

Z0 = 1
3(� − λ2)Z∗ (8A.18a)

and in terms of Z∗, equation (8A.17) becomes

Z3∗ − 3(1+ λ∗)Z∗ − 2(1− 3λ∗s) = 0 (8A.18b)

and we note that when ν = 0, then s = 1 and in that case the sought-for root
is Z∗ = 2. For compactness, we introduce the notation

A∗ = 1+ λ∗, B∗ = 1− 3λ∗s (8A.19a,b)

and the cubic to be solved (8A.18) takes the form

Z3∗ − 3A∗Z∗ − 2B∗ = 0 (8A.20)

for the solution of which we now follow the standard procedure.
We take Z∗ in the form

Z∗ = X∗ +W∗ (8A.21)

and (8A.20) becomes

X3∗ +W 3∗ + 3(X∗ +W∗)(X∗W∗ −A∗)− 2B∗ = 0 . (8A.22)

By taking

X∗W∗ = A∗, W∗ = A∗
X∗

(8A.23a,b)

equation (8A.22) reads

X3∗ +
A3∗
X3∗

− 2B∗ = 0 (8A.24)
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or, alternatively,

(X3∗)2 − 2B∗(X3∗)+A3∗ = 0 . (8A.25)

Solving this equation as a quadratic in X3∗, we have the solution in the form

X3∗ = B∗ ±
√
B2∗ −A3∗ = B∗ ± i

√
A3∗ − B2∗ (8A.26a)

from which it immediately follows that

W 3∗ =
A∗
X∗

= A∗

B∗ ± i
√
A3∗ − B2∗

= B∗ ∓ i
√
A3∗ − B2∗ . (8A.26b)

By substituting from (8A.19), a straightforward calculation shows that

A3∗ − B2∗ = λ∗[λ2∗ + 3λ∗(1− 3s2)+ 3(1+ 2s)]

and hence we may write

X∗ =
[
(1− 3λ∗s)+ i

√
λ∗
[
λ2∗ + 3λ∗(1− 3s2)+ 3(1+ 2s)

]1/2
]1/3

(8A.27a)

W∗ =
[
(1− 3λ∗s)− i

√
λ∗
[
λ2∗ + 3λ∗(1− 3s2)+ 3(1+ 2s)

]1/2
]1/3

(8A.27b)

and hence, noting (8A.21), we have

Z∗ =
[
(1− 3λ∗s)+ i

√
λ∗
[
λ2∗ + 3λ∗(1− 3s2)+ 3(1+ 2s)

]1/2
]1/3

+
[
(1− 3λ∗s)− i

√
λ∗
[
λ2∗ + 3λ∗(1− 3s2)+ 3(1+ 2s)

]1/2
]1/3

, (8A.28)

a purely real quantity; moreover, as it is an even function of
√
λ∗, it is strictly

a function of λ∗.
Having determined Z∗, we have thereby determined Z0 (from (8A.18a)), and

hence also we have determined Z from (8A.11); having determined Z , we know
U , and thereby also V andW . Accordingly, we have effected the decomposition
(8A.3) in the form

g(X) = [X2 +UX + V][X2 −UX +W] . (8A.29)

We can now by a further transformation reduce the above product (8A.29)
to a product of two quadratic factors, from one of which the linear term will
be absent: this can be achieved by setting

X = Y∗ − 1
2U (8A.30a)

so that, recalling from (8A.1) that X = Y − 1/2, we have

X + 1
2 = Y = Y∗ + 1

2(1−U) . (8A.30b)

We introduce (8A.30a) into (8A.29) and denote the resulting function of Y∗ by
f∗(Y∗); accordingly, we have

f(Y) = g(X) = f∗(Y∗) =
[
Y 2∗ − (1

4U
2 − V)][Y 2∗ − 2UY∗ + (3

4U
2 +W)]

(8A.31)

which is the decomposition that we sought.
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We now return to the main target, namely the reduction of the R-equation.
In terms of Y∗, the dimensionless form of the R-equation (8.1) may be written

�
Λ2

C2
Y ′2∗ = −[Y 2∗ − (1

4U
2 − V)][Y 2∗ − 2UY∗ + (3

4U
2 +W)] . (8.2)

We now recall from (6.6) that

R = aY = a[Y∗ + 1
2(1−U)] (8.3)

where we have also noted (8A.30b). We now define R∗ by setting

R∗ = aY∗ = R − 1
2(1−U)a (8.4)

so that if we multiply across equation (8.2) by a2, we have, when written in
terms of R∗,

�
Λ2

C2
R′2∗ = −

[
R2∗ − (1

4U − V)a2
][R2∗
a2

− 2U
R∗
a
+ (3

4U
2 +W)

]
(8.5)

or alternatively,

�
3
4U2 +W

Λ2

C2
R′2∗ = −

[
R2∗ −(1

4U− V)a2
][

1− 2U
3
4U2 +W

R∗
a
+ 1

3
4U2 +W

(R∗
a

)2]
.

(8.6)

Here, as an exercise-check, we recall from (8A.8) that

ν = 0 implies U → 1, V → 1
4 − λ2, W → � − 3

4 (8.7a)

which implies 1
4U − V → λ2, 3

4U
2 +W → � (8.7b)

and we retrieve the relation (5.8a) of Chapter 3, a form already familiar from
the planar case.

Consistent with this guideline, and recalling relations (6.9), we set

Λ2∗ =
�

3
4U2 +W Λ2, p∗ =

3
4U

2 +W
U�

p =
3
4U

2 +W
U

a (8.8a,b)

a∗ = Ua, so that a∗p∗ =
3
4U

2 +W
�

ap = (3
4U

2 +W)a2 (8.8c,d)

b2∗ =
1
4U − V
λ2

b2 = (1
4U − V

)
a2 . (8.8e)

wherein we have utilized relation (6.9a). In terms of the parameters and length
scales defined in (8.8), equation (8.6) assumes the form
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Λ2∗
C2
R′2∗ = −(R2∗ − b2∗)

[
1− 2

p∗
R∗ + 1

a∗p∗
R2∗
]

(8.9)

which is in the form recognizable from (5.8a) of Chapter 3, for the planar case.
We may now introduce dimensionless parameters analogous to those of

(6.1), by setting

η∗ = b∗
p∗
,
p∗
a∗

= �∗ = 1− e2∗,
b∗
a∗

= b∗
p∗

p∗
a∗

= η∗�∗, b2∗
a∗p∗

= η2∗�∗ (8.10)

and, furthermore, analogous to (6.9) we may set

λ∗2∗ = η2∗�2∗ =
b2∗
p2∗

p2∗
a2∗

= b2∗
a2∗
, which implies η2∗�3∗ = �∗λ∗2∗ . (8.11)

The set of relations (8.10) and (8.11) provide the quantities in terms of which
the subsequent analysis of equation (8.9) is to be framed.

Referring again to equation (5.8a) of Chapter 3, we see that equation (8.9) is
identical in form with equation (5.8a) for the planar case; hence the procedure
followed in arriving at the solution for the planar case is equally applicable
here.

We have reduced the R-equation in the three-dimensional problem to a
form identical with that arising in the planar case. All the modifications have
gone into transforming the coefficients, parameters, and length scales, while
the analytic problem remains unchanged, so that the subsequent analysis
would follow an identical path. In fact, recalling the solution (9.25) of Chap-
ter 3, we see that, for the relevant parameter range, we may write

R∗
p∗

= dn[j∗v f : k∗v]+ δ∗v cn[j∗v f : k∗v]
(1+ e∗δ∗v)dn[j∗v f : k∗v]+ (e∗ + δ∗v) cn[j∗v f : k∗v]

(8.12)

as the form of the solution, where the starred factors are to be determined in
a manner identical with that outlined for the corresponding quantities in the
planar case. Further, we note that if we define the factor u∗ by setting

u∗ = 1
R∗

(8.13)

then we have the alternate form

p∗u∗ = (1+ e∗δ∗v)dn[j∗v f : k∗v]+ (e∗ + δ∗v) cn[j∗f : k∗v]
dn[j∗v f : k∗v]+ δ∗v cn[j∗v f : k∗v]

, (8.14)

which may prove convenient in certain situations.
Finally, we come to the appropriate expression for R: from (8.4) there fol-

lows that

R
p
= R∗
p
+ 1

2
1−U
�

= p∗
p
R∗
p∗

+ 1
2

1−U
�

(8.15a)

and if we note (8.8b), this implies
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R
p
=

3
4U

2 +W
U�

R∗
p∗

+ 1
2

1−U
�

=
3
4U

2 +W
U�

[
R∗
p∗

+ 1
2
U(1−U)
3
4U2 +W

]
. (8.15b)

Accordingly we set

j∗R =
3
4U

2 +W
U�

, q = 1
2
U(1−U)
3
4U2 +W (8.16a,b)

and recalling (8A.8a), we note that

ν → 0 implies j∗R → 1, q → 0 . (8.16c)

Relations (8.15) may thereby be written

R
p
= j∗R

[R∗
p∗

+ q
]

(8.17)

and if we substitute from (8.12), then, omitting for the moment the explicit
display of the argument j∗v f and modulus k∗v , we have

R
p
= j∗R

[
dn+δ∗v cn

(1+ e∗δ∗v)dn+(e∗ + δ∗v) cn
+ q

]

= j∗R
[1+ q(1+ e∗δ∗v)]dn+[δ∗v + q(e∗ + δ∗v)] cn

(1+ e∗δ∗v)dn+(e∗ + δ∗v) cn

= j∗R
[1+ q(1+ e∗δ∗v)]

1+ e∗δ∗v
dn+δ∗v+q(e∗+δ∗v )1+q(1+e∗δ∗v ) cn

dn+ e∗+δ∗v
1+e∗δ∗v cn

. (8.18)

This suggests that we set

jR = j∗R
1+ q(1+ e∗δ∗v)

1+ e∗δ∗v =
(
q + 1

1+ e∗δ∗v
)
j∗R (8.19a)

δ = δ∗v + q(e∗ + δ∗v)
1+ q(1+ e∗δ∗v) , e = e∗ + δ∗v

1+ e∗δ∗v (8.19b,c)

so that (8.18) may now be written

R
p
= jR · dn[j∗v f : k∗v]+ δ cn[j∗v f : k∗v]

dn[j∗v f : k∗v]+ e cn[j∗v f : k∗v]
, (8.20)

a solution for R that is identical in form with the solution (8.12) for R∗.
A similar procedure is applicable to the σ -equation, but as already indi-

cated, that will not be pursued here in its generality, apart from that already
analyzed in Section 7 for the case β = 0, when the two attracting masses are
identical.

It would appear that this class of problems provides ideal candidates for
the ready application of symbolic programming; not the first time in history
that Celestial Mechanics has provided the perfect challenge for contemporary
computational techniques.
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We are now at a point where it is appropriate to make some overall obser-
vations:

1. The reduction of the R-equation to the form (8.9) has been followed by the
derivation of the solution form (8.20). This solution form is valid in the pa-
rameter range corresponding to Section 9 of Chapter 3. The extension to the
supplementary range corresponding to Section 9A of Chapter 3 is straightfor-
ward.

2. The analysis leading from the special σ -equation (7.1) to the solution form
(7.17) can be extended to the general σ -equation (6.5) for both parameter
ranges corresponding to Sections 8 and 8A of Chapter 3.

3. The further extension to the complementary parameter ranges correspond-
ing to Sections 11and 12 of Chapter 3 is straightforward.

None of the above extensions will be detailed here.
The integration of the ϕ-equation, as outlined in Section 9 following, will

be executed solely for the primary parameter range, using the solution forms
as given earlier, namely for R as given (8.20) and for σ as given by (7.17).
The integration for the other parameter ranges follows an identical procedure
using the solution forms for R and σ appropriately derived.

9 The Integration of the Third (Longitude) Coordinate

The integration of the longitude coordinate requires the use of the solution
forms for both the R- and the σ -coordinates. We confine our attention to the
case β = 0, but again this is not a necessary restriction. The integration gives
rise to certain terms, evidently “dominant” as explained presently as well as to
correction terms involving elliptic integrals of both the second and third kinds.
We shall see how the dominant terms may be identified and also see how
to establish an approximation scheme for the correction terms that may be
carried to any specified degree of accuracy in terms of a physically identifiable
parameter.

From relation (2.2) we have

ϕ̇ = C3

(R2 − b2) sin2 σ
(9.1)

and if we introduce the regularizing variable f as the independent variable by
means of (5.5), then with prime denoting differentiation with respect to f (as
before), equation (9.1) becomes

ϕ′ = C3Λ R2 − b2 cos2 σ
(R2 − b2) sin2 σ

= C3Λ
[ 1

sin2 σ
+ b2

R2 − b2

]
. (9.2)

For the determination of the parameters for this equation, we start by recalling

the formulae for the modulus k0, and for its complement k′0 =
√

1− k2
0, that
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arise in the solution form (7.17) for the σ -coordinate. From (7.10b), we recall
that

k2
0 =

η2�(1− ν2)
(1− η2�)2m2

0 + η2�(1− ν2)
, k′20 = (1− η2�)2m2

0

(1− η2�)2m2
0 + η2�(1− ν2)

(9.3a,b)

while (7.10a) implies that

Λ2 = C2(1− η2�)m0

[(1− η2�)2m2
0 + η2�(1− ν2)

(1− η2�)2m2
0

]
= C2 (1− η2�)m0

k′20
. (9.3c)

Noting the definition of ν in (5.2), we introduce the related quantity Nk by
setting

N2
k =

C2
3Λ2
= C2

3

C2

k′20
(1− η2�)m0

= k′20 ν2

(1− η2�)m0
= (1− η2�)m0

(1− η2�)2m2
0 + η2�(1− ν2)

· ν2 (9.4)

whereby equation (9.2) reads

ϕ′ = Nk
[ 1

sin2 σ
+ b2

R2 − b2

]
= Nk

[ 1

sin2 σ
+ η2(R

p
)2 − η2

]
(9.5)

where we have rearranged the second term through the introduction of the
parameter η2 in accordance with (6.1a).

For the solution form (7.17) for cosσ , we introduce a second parameter N′k,
also associated with the inclination parameter ν , by setting

1−N′2k = (1− ν2)2k′20
(1− η2�)m0

= (1− η2�)m0

(1− η2�)2m2
0 + η2�(1− ν2)

(1− ν2) (9.6)

and we note that

1+ (N2
k −N′2k ) = N2

k + (1−N′2k )

= k′20
(1− η2�)m0

= (1− η2�)m0

(1− η2�)2m2
0 + η2�(1− ν2)

. (9.7)

Utilizing (9.6), we may write (7.17) in the form

S = cosσ =
√

1−N′2k
sn[f +ω : k0]
dn[f +ω : k0]

(9.8)

from which there follows

sin2 σ = 1− cos2 σ = 1− (1−N′2k )
sn2[f +ω : k0]
dn2[f +ω : k0]

= cn2[f +ω : k0]+ (N′2k − k2
0) sn2[f +ω : k0]

dn2[f +ω : k0]
(9.9)
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which suggests yet another inclination parameter N, defined by

N2 = N′2k − k2
0 = k′20 − (1−N′2k ) = k′20

[
1− 1− ν2

(1− η2�)m0

]
(9.10a)

= k′20
(1− η2�)m0 − (1− ν2)

(1− η2�)m0
= (1− η2�)2m2

0 − (1− η2�)m0(1− ν2)
(1− η2�)2m2

0 + η2�(1− ν2)
(9.10b)

so that

1−N2 = (1− η2�)m0 + η2�
(1− η2�)2m2

0 + η2�(1− ν2)
(1− ν2)

= m0 + η2�(1−m0)
(1− η2�)2m2

0 + η2�(1− ν2)
(1− ν2) . (9.11)

At this point, we observe that

k2
0

1−N2
= η2�
m0 + η2�(1−m0)

(9.12)

wherein we note that the common factor (1− ν2) has cancelled out: the above
factor (9.12) appears frequently in the subsequent analysis, and here we recog-
nize that the (1− ν2)-cancellation means that there does not arise any “small
divisor” issue near ν = 1 from this factor. In fact, we may set

�0 = �
m0 + η2�(1−m0)

, so that
k2

0

1−N2
= η2�0 = η2

0 (9.13a,b)

where the latter (9.13b) is to be taken as the defining relation for η2
0, a param-

eter to be used in the sequel. Finally, taking the reciprocal of (9.9) and noting
(9.10a), we have

1

sin2 σ
= dn2[f +ω : k0]

cn2[f +ω : k0]+N2 sn2[f +ω : k0]

= nc2[f +ω : k0]dn2[f +ω : k0]
1+N2 sc2[f +ω : k0]

(9.14)

which is the form to be substituted in the first term of (9.5).
For the second term in (9.5), we introduce the solution form (8.20) for (R/p)

and find

η2

(R/p)2 − η2
= (9.15)

η2
(

dn[j∗v f : k∗v]+ e cn[j∗v f : k∗v]
)2

j2
R
(

dn[j∗v f : k∗v]+ δ cn[j∗v f : k∗v]
)2 − η2

(
dn[j∗v f : k∗v]+ e cn[j∗v f : k∗v]

)2 .

At this point, we should recall that η2 is the parameter in terms of which the
moduli k0 and kv are scaled. All the Jacobian elliptic functions may ultimately
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be expressed as Fourier series with coefficients and scale-factors expressed
as (rapidly convergent) power series in the relevant modulus — ultimately as
power series in η2. With this in view, we set

ϕ2 = (9.16)∫ f
−ω

(
dn[j∗v f : k∗v]+ e cn[j∗v f : k∗v]

)2 d( j∗v f)(
dn[j∗v f : k∗v]+ δ cn[j∗v f : k∗v]

)2 − η2

j2
R

(
dn[j∗v f : k∗v]+ e cn[j∗v f : k∗v]

)2

so that

η2

(R/p)2 − η2
= η2 1

j2
Rj
∗
v
ϕ′

2 . (9.17)

The contribution from the second term in (9.5) as exhibited in (9.15)–(9.17) has
the multiplying factor η2(1/j2

Rj∗v ) and so is a correction term in the sense that
it vanishes in the limit η2 → 0. By means of the Fourier series representation
of the Jacobian elliptic functions, the approximation can be executed to any
specified degree of accuracy in η2. Thus, although ϕ2 as given by (9.16) is an
elliptic integral of the third kind — which generally poses a computational
challenge — in this case, an approximation scheme to any desired degree of
accuracy in η2 is a straightforward matter. For the first term in (9.5), we shall
see that the procedure is not as straightforward — though still manageable.

Now by introducing (9.14) and (9.17), with ϕ2 given by (9.16), into (9.5) we
have

ϕ′ = Nk
[

nc2[f +ω : k0]dn2[f +ω : k0]
1+N2 sc2[f +ω : k0]

+ η2 1

j2
Rj
∗
v
ϕ′

2

]
(9.18a)

= jNk
[
N nc2[f +ω : k0]dn2[f +ω : k0]

1+N2 sc2[f +ω : k0]
+ η2N

1

j2
Rj
∗
v
ϕ′

2

]
(9.18b)

= jNk
[
ϕ′

1 + η2N
1

jRj∗v
ϕ′

2

]
(9.18c)

where for ϕ1 we have

ϕ′
1 =

N nc2[f +ω : k0]dn2[f +ω : k0]
1+N2 sc2[f +ω : k0]

(9.19)

and the new parameter jNk is defined by

j2
Nk =

N2
k

N2
= k′20 ν2

(1− η2�)m0
· (1− η2�)m0

k′20
[
(1− η2�)m0 − (1− ν2)

]
= ν2

(1− η2�)m0 − (1− ν2)
(9.20)

where we have utilized (9.4) for N2
k and (9.10) for N2; from equation (7.2) we

note that
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(i) ν ≠ 0, η→ 0,m0 → 1 implies j2
Nk →

ν2

ν2
= 1, (9.21a)

(ii) η ≠ 0, ν → 0 implies j2
Nk → 0, (9.21b)

the former corresponding to the Kepler case (Chapter 2) and the latter cor-
responding to the planar case of two fixed centers (Chapter 3) wherein the
ϕ-coordinate does not appear.

— � —

9A. The Integration of ϕ′
1

For the integration of ϕ′
1, we first note that all elliptic functions appearing on

the right of (9.19) have argument f +ω and modulus k0; accordingly it is not
necessary that these entities be exhibited explicitly in this subsection. If we set

ϕ′
10 =

N nc2[f +ω : k0]
1+N2 sc2[f +ω : k0]

(9A.1)

then relation (9.19) implies

ϕ′
1 =

N nc2 dn2

1+N2 sc2
= N nc2

1+N2 sc2
(1− k2

0 sn2) = (1− k2
0 sn2)ϕ′

10 . (9A.2)

We further observe that

sn2ϕ′
10 =

N sc2

1+N2 sc2
= N

1−N2

( nc2

1+N2 sc2
− 1

)
= 1

1−N2
(ϕ′

10 −N) (9A.3)

whereby the product sn2ϕ′
10 is expressed as a linear function of ϕ′

10 — a
relation to be used both here and repeatedly in the subsequent analysis. Using
(9A.3) and recalling (9.13b), we have from (9A.2) that

ϕ′
1 =ϕ′

10 −
k2

0

1−N2
(ϕ′

10 −N) =ϕ′
10 − η2

0(ϕ
′
10 −N) (9A.4a)

= (1− η2
0)ϕ

′
10 + η2

0N . (9A.4b)

For the integration of ϕ′
10, we set

ϕ′
0 =

N nc2 dn
1+N2 sc2

(9A.5)

which we recognize as an integrable entity and to which we return presently.
From (9A.1) we see that

ϕ′
10 =ϕ′

0 + (1− dn)ϕ′
10 =ϕ′

0 +
1− dn2

1+ dn
ϕ′

10 =ϕ′
0 +

k2
0 sn2

1+ dn
ϕ′

10 (9A.6a)

=ϕ′
0 +

k2
0

1−N2

(ϕ′
10 −N)

1+ dn
=ϕ′

0 + η2
0
(ϕ′

10 −N)
1+ dn

(9A.6b)
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where in the latter form (9A.6b) we have applied (9A.3). When we note that

1
1+ dn

= 1
2

[
1+ 1− dn

1+ dn

]
= 1

2

[
1+ 1− dn2

(1+ dn)2
]
= 1

2

[
1+ k2

0 sn2

(1+ dn)2
]

(9A.7)

we see that we can push the reciprocal factor 1/(1+ dn) into the next-higher-
order term in k2

0 at the expense of increasing its power-index. The introduction
of (9A.7) into (9A.6b) gives

ϕ′
10 =ϕ′

0 + 1
2η

2
0(ϕ

′
10 −N)

[
1+ k2

0 sn2

(1+ dn)2
]

=ϕ′
0 + 1

2η
2
0(ϕ

′
10 −N)+ 1

2η
2
0
k2

0 sn2ϕ′
10

(1+ dn)2
− 1

2η
2
0
k2

0N sn2

(1+ dn)2
(9A.8)

to which we apply (9A.3) and obtain

ϕ′
10 =ϕ′

0 + 1
2η

2
0(ϕ

′
10 −N)+ 1

2η
4
0
(ϕ′

10 −N)
(1+ dn)2

− 1
2η

2
0k

2
0
N sn2

(1+ dn)2

=ϕ′
0 + (ϕ′

10 −N)
[

1
2η

2
0 + 1

2

η4
0

(1+ dn)2
]
− 1

2η
2
0k

2
0
N sn2

(1+ dn)2
. (9A.9)

Here it is appropriate to pause and note the emerging pattern: in (9A.6), we
have the expression for ϕ′

10 as a first-order expression in η2
0 or k2

0, with the
η2

0-term having denominator (1 + dn); in (9A.9), we have the expression for
ϕ′

10 as a second-order expression in η2
0 with the η4

0-terms having denominator
(1+ dn)2. If we iterate once more, we should first note that

1
(1+ dn)2

= 1
4

[
1+ 2k2

0
sn2

(1+ dn)2
+ k4

0
sn4

(1+ dn)4
]
, (9A.10)

the introduction of which renders for (9A.9)

ϕ′
10 =ϕ′

0 + 1
2η

2
0(ϕ

′
10 −N)+ 1

8η
4
0(ϕ

′
10 −N)

[
1+ 2k2

0 sn2

(1+ dn)2
+ k4

0 sn4

(1+ dn)4

]

− 1
8η

2
0k

2
0N sn2

[
1+ 2k2

0 sn2

(1+ dn)2
+ k4

0 sn4

(1+ dn)4

]

=ϕ′
0 + 1

2η
2
0(ϕ

′
10 −N)+ 1

8η
4
0(ϕ

′
10 −N)+ 1

4η
4
0k

2
0

sn2ϕ′
10

(1+ dn)2

+ 1
8η

4
0k

4
0

sn4ϕ′
10

(1+ dn)4
− 1

8η
4
0N
[

2k2
0 sn2

(1+ dn)2
+ k4

0
sn4

(1+ dn)4

]

− 1
8η

2
0k

2
0N sn2

[
1+ 2k2

0 sn2

(1+ dn)2
+ k4

0 sn4

(1+ dn)4

]
. (9A.11)

Again applying (9A.3) repeatedly to the terms with sn2ϕ′
10 we have, after sys-

tematic regrouping,
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ϕ′
10 =ϕ′

0 + 1
2η

2
0(ϕ

′
10 −N)+ 1

8η
4
0(ϕ

′
10 −N)

+ 1
4η

6
0
(ϕ′

10 −N)
(1+ dn)2

+ 1
8η

6
0k

2
0

sn2(ϕ′
10 −N)

(1+ dn)4

− 1
8η

2
0k

2
0N sn2

[
1+ 2η2

0

(1+ dn)2
+ 2k2

0 sn2

(1+ dn)2
+ η2

0k
2
0 sn2

(1+ dn)4
+ k4

0 sn4

(1+ dn)4

]
=ϕ′

0 + 1
2η

2
0(ϕ

′
10 −N)+ 1

8η
4
0(ϕ

′
10 −N)+ 1

4η
6
0
(ϕ′

10 −N)
(1+ dn)2

+ 1
8η

8
0
(ϕ′

10 −N)
(1+ dn)4

− 1
8η

2
0k

2
0N sn2

[(
1+ 2η2

0

(1+ dn)2
+ η4

0

(1+ dn)4
)

+ 2k2
0 sn2

(1+ dn)2
[
1+ 1

2

η2
0

(1+ dn)2
]
+ k4

0 sn4

(1+ dn)4

]
. (9A.12)

The procedure can be continued indefinitely to any specified degree of accu-
racy in terms of powers of the parameters η2

0 or k2
0, and it becomes evident

that the coefficients decrease more rapidly than the powers of 1/2. At this
point, we perform a slight regrouping of (9A.12) as follows:

ϕ′
10 =ϕ′

0 + (ϕ′
10 −N)

[
1
2η

2
0 + 1

8η
4
0 + 1

4

η6
0

(1+ dn)2
+ 1

8

η8
0

(1+ dn)4

]

− 1
8η

2
0k

2
0N sn2

[(
1+ 2η2

0

(1+ dn)2
+ η4

0

(1+ dn)4
)

+ 2k2
0 sn2

(1+ dn)2
[
1+ 1

2

η2
0

(1+ dn)2
]
+ k4

0 sn4

(1+ dn)4

]
, (9A.13)

which will be the basis of the subsequent treatment.
In the context of the approximation scheme, we now illustrate the proce-

dure in the case where accuracy to order η6 (or η6
0) is appropriate, so that we

neglect terms of order η8
0 and higher. Then in the first bracket in (9A.13), we

omit the last term (with η8
0), and in the term with η6

0 it is consistent with this
level of accuracy to replace 1/(1+ dn)2 by 1/4. In the second bracket, in view
of the multiplying factor of order η4, it is consistent with this level of accuracy
to ignore terms of order η4, namely, those terms with η4

0, k4
0, and η2

0k
2
0, while

in terms with η2
0 and k2

0, we may again replace 1/(1+dn)2 by 1/4. Accordingly,
for an approximation to order η6, we may replace (9A.13) by

ϕ′
10 =ϕ′

0+(ϕ′
10−N)

[
1
2η

2
0 + 1

8η
4
0 + 1

16η
6
0

]
− 1

8η
2
0k

2
0N sn2

[
(1+ 1

2η
2
0)+ 1

2k
2
0 sn2

]
.

(9A.14)

If we set

j10 = 1+ 1
4η

2
0 + 1

8η
4
0 (9A.15a)

so that

1
2η

2
0 + 1

8η
4
0 + 1

16η
6
0 = 1

2η
2
0j10 (9A.15b)
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then (9A.14) may be written

ϕ′
10 =ϕ′

0 + 1
2η

2
0j10(ϕ′

10 −N)− 1
8η

2
0k

2
0N sn2

[
(1+ 1

2η
2
0)+ 1

2k
2
0 sn2

]
. (9A.16)

If we regroup to bring all terms with ϕ′
10 to the left-hand side, we have

(1− 1
2η

2
0j10)ϕ′

10 =ϕ′
0 − 1

2η
2
0j10N

− 1
8η

2
0k

2
0N sn2

[
(1+ 1

2η
2
0)+ 1

2k
2
0 sn2

]
. (9A.17)

Recalling (9A.4), we utilize it to express ϕ′
10 in terms of ϕ′

1, from which it
follows that

1− 1
2η

2
0j10

1− η2
0

ϕ′
1 =

(
1− 1

2η
2
0j10

)
ϕ′

10 + η2
0

(1− 1
2η

2
0j10)

1− η2
0

N, (9A.18a)

which on the introduction of (9A.17) is rendered

=ϕ′
0 − η2

0N
(

1
2j10 −

1− 1
2η

2
0j10

1− η2
0

)
− 1

8η
2
0k

2
0N sn2

[
(1+ 1

2η
2
0)+ 1

2k
2
0 sn2

]

=ϕ′
0 +

1− 1
2j10

1− η2
0
η2

0N − 1
8η

2
0k

2
0N sn2

[
(1+ 1

2η
2
0)+ 1

2k
2
0 sn2

]
. (9A.18b)

Hence dividing (9A.18) across by the multiplier of ϕ′
1, we have

ϕ′
1 =

1− η2
0

1− 1
2η

2
0j10

ϕ′
0 +

1− 1
2j10

1− 1
2η

2
0j10

η2
0N − 1

8

(1+ 1
2η

2
0)(1− η2

0)
1− 1

2η
2
0j10

η2
0k

2
0N sn2

− 1
16

1− η2
0

1− 1
2η

2
0j10

η2
0k

4
0N sn4 . (9A.19)

It is therefore convenient to set

j∗10 =
1− η2

0

1− 1
2η

2
0j10

, jN1 =
1− 1

2j10

1− 1
2η

2
0j10

, j∗S2
= (1+ 1

2η
2
0)(1− η2

0)
1− 1

2η
2
0j10

,

(9A.20a,b,c)

so that (9A.19) may be written

ϕ′
1 = j∗10ϕ

′
0 + jN1η

2
0N − 1

8j
∗
S2
η2

0k
2
0N sn2− 1

16j
∗
10η

2
0k

4
0N sn4, (9A.21)

which is the form to be introduced into relation (9.18c) for ϕ′.

— � —

Returning now to the main section, we divide across (9.18c) by the factor
jNk to obtain (bearing in mind the defining relation (9.16) for ϕ2)

1
jNk

ϕ′ =ϕ′
1 +

1

j2
Rj
∗
v
η2Nϕ′

2 (9.22)
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into which we introduce relation (9A.21) for ϕ′
1 and find, recalling (9.13b),

1
jNk

ϕ′ = j∗10ϕ
′
0 + jN1η

2
0N
(

1+ 1

jN1j
2
Rj
∗
v �0

ϕ′
2

)
− 1

8j
∗
S2
η2

0k
2
0N sn2− 1

16j
∗
10η

2
0k

4
0N sn4 . (9.23)

After dividing across by j∗10, then a transposition of terms and a rearrangement
yields

ϕ′
0 =

1
jNkj

∗
10
ϕ′ − η2

0N
jN1

j∗10

(
1+ 1

jN1j
2
Rj
∗
v �0

ϕ′
2

)

+ 1
8η

2
0k

2
0N
j∗S2

j∗10
sn2+ 1

16η
2
0k

4
0N sn4 (9.24a)

= 1
jNkj

∗
10

⎧⎨⎩ϕ′ − η2
0NjN1jNk

(
1+ 1

jN1j
2
Rj
∗
v �0

ϕ′
2

)

+ 1
8η

2
0k

2
0NjNkj

∗
S2

sn2+ 1
16η

2
0k

4
0NjNkj

∗
10 sn4

⎫⎬⎭ . (9.24b)

It is now convenient to set

jϕ = 1
jNkj

∗
10
, jN = jN1jNk, jϕ2 =

1

jN1j
2
Rj
∗
v �0

(9.25a,b,c)

jS2 = jNkj∗S2
, jS4 = jNkj∗10 (=

1
jϕ
) (9.25c,d)

so that (9.24b) reads

ϕ′
0 = jϕ

{
ϕ′ − η2

0NjN(1+ jϕ2ϕ
′
2)+ 1

8η
2
0k

2
0NjS2 sn2+ 1

16η
2
0k

4
0NjS4 sn4

}
. (9.26)

If we write

Ω2 =
∫ f
−ω

sn2[f +ω : k0]df , Ω4 =
∫ f
−ω

sn4[f +ω : k0]df (9.27)

then relation (9.26) may be written

ϕ′
0 = jϕ

d
df

{
(ϕ −Ω0)− η2

0NjN[(f +ω)+ jϕ2ϕ2]

+ 1
8η

2
0k

2
0NjS2Ω2 + 1

16η
2
0k

4
0NjS4Ω4

}
(9.28)

where Ω0 is the (anticipated) constant of integration and represents the angle
of the first nodal crossing, i.e., at f = −ω. We now define the function Ω by
setting

Ω = Ω0 + η2
0NjN[(f +ω)+ jϕ2ϕ2]

− 1
8η

2
0k

2
0NjS2Ω2 − 1

16η
2
0k

2
0NjS4Ω4 (9.29)
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and relation (9.28) may be written

ϕ′
0 = jϕ

d
df

(ϕ −Ω) . (9.30)

Referring to the defining relation (9A.5) for ϕ0, it is a straightforward exercise
to see that the integration of (9A.5) yields

ϕ0 = arctan
[
N sc[f +ω : k0]

]
(9.31)

so that the integration of (9.30) yields

arctan
[
N sc[f +ω : k0]

] = jϕ(ϕ −Ω) (9.32)

or alternatively,

tan jϕ(ϕ −Ω) = N sc[f +ω : k0],

which is the result in the form we seek, where it is immediately evident that it
is the sought-for generalization of the corresponding result (4.48) of Chapter 2
for the Kepler problem.

10 The Time-Angle Relation

The time-angle relation follows from the integration of relation (5.5) in the
form

Λ dt
df

= R2 − b2 cos2 σ (10.1)

wherein the solution forms for R and σ in terms of f are to be introduced.
However, we have already seen that these solution forms are formally iden-
tical to those derived in Chapter 3 for the planar case. Accordingly, with the
appropriate (algebraic) modification in the relevant constants, the integration
of (10.1) will follow that already outlined in Section 10 of Chapter 3 for the
planar case and so will not be repeated here.



5

The Earth Satellite — General Analysis

If you do it right, then it should be easy;
if you do it wrong, then it can be hard.

— Mathematics teacher

1 The Geopotential and the Density Distribution

The standard representation of the gravitational potential function of a planet
is given, in terms of a planet-centered spherical coordinate system, in the form

UG = μ
r

[
1−

∞∑
n=1

Jn
(r0

r

)n
Pn(cosθ)

−
∞∑
n=1

n∑
m=1

Jnm
(r0

r

)n
Pmn (cosθ) cos(ϕ −αmn)

]
, (1.1)

where r0 denotes the mean radius of the planet, the quantities Jn, Jnm are the
planetary potential coefficients, and the quantities αmn are further constants
to be determined. The term with unity in the above expansion is clearly the
Kepler term, and the higher coefficients may be inferred from satellite tracking.
Not surprisingly, the potential coefficients for the earth are more thoroughly
“mapped” than are those for the other planets. If the origin is set at the center
of mass, then the term with J1 vanishes.

In the case of the earth, which in this context is referred to as the geoid,
the coefficients in the expansion (1.1) are called the geopotential coefficients
and those of low order have been determined to an accuracy that carries a fair
level of confidence. It was early established that for the geoid, the term with J2

is clearly the most significant, dominating in its effects all other coefficients by
at least an order of magnitude. If in this case we restrict our attention to that
part of the geopotential (1.1) that is both rotationally symmetric (independent
of ϕ) and also symmetric with respect to the equatorial plane (accounted by
the Jn terms with even index n = 2k), then that expression includes both
the Kepler term and the residually dominant J2-term. Denoting this symmetric
part of the geopotential by UGS , then the residual UG − UGS is a perturbation
requiring separate treatment.

Explicitly for the symmetric geoid, we have
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UGS = μ
r

[
1−

∞∑
k=1

J2k

(r0

r

)2k
P2k(cosθ)

]
(1.2)

and for the lower-order coefficients, it is known that

J2 = O(10−3), J4 = −(1.4)J2
2 , J2k = O(10−6), k ≥ 3 . (1.3a,b,c)

The form of the representation raises the question of a correspondence be-
tween the respective zonal harmonics and the density distribution within the
geoid whereby the potential is induced. It is therefore worth exploring what is
the mass distribution within a hypothetical geoid that gives rise to a geopo-
tential function of the form (1.2).

One could pose the more general question as to what mass-distribution
would induce a geopotential function of the form UG of (1.1). However, while
the restriction is not necessary to the procedure, it is more simply illustrated
for the restricted potential UGS .

Referred to a spherical coordinate system with origin at the center O of the
sphere, we let P(r , θ,ϕ) denote an arbitrary exterior point and Q(r ′, θ′,ϕ′)
an arbitrary interior point at which is posited the mass-element dm. Denoting
the position vectors of P and Q by r and r′, respectively, we let χ denote the
angle between r and r′. If we let τ denote the mass-density at an arbitrary

interior point, then for the mass-element dm, we have

dm = τr ′2 sinθ′ dr ′ dθ′ dϕ′ . (1.4)

Moreover, with a gravitational constant γ, the potential at P , due to the mass-
element dm at Q, is given by

dUQ = γ dm
|r − r ′| = γ

dm
[r 2 + r ′2 − 2rr ′ cosχ]1/2

(1.5a,b)

where, in deriving (1.5b), we have applied the cosine law to the triangle OPQ.
Taking the factor r 2 outside the bracket, we have

dUQ = γdm
r

1[
1+ ( r ′r )2 − 2

( r ′
r
)

cosχ
]1/2 (1.6)
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and in the reciprocal of the square bracket, we recognize the generating func-
tion of the Legendre polynomials; hence

dUQ = γdm
r

∞∑
n=0

(r ′
r

)n
Pn(cosχ) = γ

∞∑
n=0

r ′n

rn+1
Pn(cosχ)dm. (1.7)

If we take the dot product of r with r ′, both directly and in component
form, then from the identification of the two forms there follows

cosχ = cosθ cosθ′ + sinθ sinθ′ cos(ϕ −ϕ′), (1.8)

which enables us to apply the addition theorem for Legendre polynomials,
namely

Pn(cosχ) = Pn(cosθ)Pn(cosθ′)

+ 2
n∑

m=1

(n−m)!
(n+m)!P

m
n (cosθ)Pmn (cosθ′) cosm(ϕ −ϕ′). (1.9)

Introducing (1.9) into (1.7) and substituting for dm from (1.4), we find

dUQ = γ
⎧⎨⎩

∞∑
n=0

1
rn+1

[
r ′nPn(cosθ)Pn(cosθ′)τr ′2 sinθ′ dr ′ dθ′ dϕ′ ]

+ 2
∞∑
n=1

1
rn+1

[
r ′n

n∑
m=1

(n−m)!
(n+m)!P

m
n (cosθ)Pmn (cosθ′)

× cosm(ϕ −ϕ′)τr ′2 sinθ′ dr ′ dθ′ dϕ′
]⎫⎬⎭. (1.10)

To determine the potential at P due to the inhomogeneous sphere, it is
necessary to perform the integration

U =
∫

dUQ (1.11)

where the integration is taken through the solid sphere, namely r ′ ranges from
0 to r0, θ′ from 0 toπ , andϕ′ from 0 to 2π . If τ is taken to be rotationally sym-
metric (i.e., independent of ϕ′), then the ϕ′-dimension in the first summation
integrates to 2π while in the second summation the ϕ′-dimension integrates
to 0. On completing the ϕ′-integration, we therefore have

U = 2πγ
∞∑
n=0

Pn(cosθ)
rn+1

∫ r0

0

∫ π
0
r ′n+2Pn(cosθ′) sinθ′τ dr ′ dθ′ (1.12)

where we have interchanged the order of the integration and summation op-
erations.

If we now further take it that τ does not depend on the radial coordinate
r ′, then the r ′-integration in (1.12) is immediate and we have



146 Ch 5 The Earth Satellite — General Analysis

U = 2πγr 2
0

∞∑
n=0

(r0

r

)n+1 · Pn(cosθ)
(n+ 3)

·
∫ π

0
τPn(cosθ′) sinθ′ dθ′ . (1.13)

While this assumption is consistent with the dominant terms in the geopoten-
tial, it is not presumed that this assumption is the only possibility or that it
actually reflects physical reality.

The dependence of τ on θ′ can be represented in the form

τ = τ0

[
1+

∞∑
�=1

τ�P�(cosθ′)
]

(1.14)

wherein τ0 reflects the (constant) mean density and the τ�, � ≥ 1, are the
dimensionless measures of the higher moments. From the orthogonality of
Legendre polynomials, there follows that∫ π

0
τPn(cosθ′) sinθ′ dθ′ = τ0

∫ π
0
Pn(cosθ′)

[
1+

∞∑
�=1

τ�P�(cosθ′)
]

sinθ′ dθ′

= 2τ0 for n = 0

= 2τ0

( τn
2n+ 1

)
for n ≥ 1.

⎫⎬⎭ (1.15)

By inserting (1.15) into (1.13) we have

U = 2πγr 2
0

[
r0

r
2
3τ0 + 2τ0

∞∑
n=1

(r0

r

)n+1 τn
(2n+ 1)(n+ 3)

Pn(cosθ)
]

= 4
3πr

3
0τ0

γ
r

[
1+

∞∑
n=1

(r0

r

)n 3τn
(2n+ 1)(n+ 3)

Pn(cosθ)
]
. (1.16)

We may now refer to the associated sphere of radius r0 and constant den-
sity τ0 as the mean sphere, and if we denote its mass by μ0, we may introduce
a normalized gravitational constant μ; explicitly we set

μ0 = 4
3πr

3
0τ0, μ = γμ0, (1.17a,b)

whereby (1.16) may be written

U = μ
r

[
1+

∞∑
n=1

(r0

r

)n 3τn
(2n+ 1)(n+ 3)

Pn(cosθ)
]
. (1.18)

From (1.18), it is clear that the τn can be chosen to fit an arbitrary axisymmetric
potential; accordingly, if we impose the further requirement that the potential
be symmetric with respect to the equatorial plane, then all coefficients of odd
index must vanish, and we have

τ2k+1 = 0, k ≥ 1 (1.19)

and equation (1.18) takes the symmetric form
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US = μ
r

[
1+

∞∑
n=1

3τ2n

(4n+ 1)(2n+ 3)

(r0

r

)2n
P2n(cosθ)

]
. (1.20)

Comparing (1.20) with (1.2), we see that US can be identified with UGS if we
take

τ2n = −(4n+ 1)(2n+ 3)
J2n

3
(1.21)

and all odd coefficients as zero as given in (1.19).
In (1.14), with the coefficients given by (1.19) and (1.21), we have produced

a density distribution for the hypothetical geoid that gives rise to a potential
function that matches the symmetric part UGS of the geopotential function. It
suggests a procedure that by successive refinement may lead to an approxi-
mation for the density distribution in the geoid (Earth) that, except for layers
of sharp discontinuity, should give some insight into the actual distribution.
The above procedure assumes continuity — in fact, presumes analyticity in the
coordinate variables — for the density distribution.

2 The Vinti Potential

By an elegant device involving an excursion into complex parameters and the
use of the generating functions for Legendre polynomials, Vinti arrived at a
compact form for a potential function that incorporates the dominant ele-
ments in the geopotential function and for which the associated dynamical
problem is integrable.

The framework for Vinti’s approach is the oblate spheroidal coordinate
system defined by

r sinθ cosϕ = x =
√
R2 + b2 sinσ cosϕ (2.1a)

r sinθ sinϕ = y =
√
R2 + b2 sinσ sinϕ (2.1b)

r cosθ = z = R cosσ (2.1c)

so that

r2 = x2 +y2 + z2 = R2 + b2 sin2 σ . (2.2)

There follows that

r 2 − 2ibr cosθ − b2 = R2 − b2 cos2 σ − 2ibR cosσ

= [R − ib cosσ]2 (2.3a)

r 2 + 2ibr cosθ − b2 = R2 − b2 cos2 σ + 2ibR cosσ

= [R + ib cosσ]2, (2.3b)

the latter relations to be utilized below.
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Considering next the generating function for Legendre polynomials

[1− 2zh+ h2]−1/2 =
∞∑
n=0

hnPn(z) (2.4)

we set

h2 = −κ2 (2.5)

so that

h = iκ, h = −iκ (2.6a,b)

and we now consider separately the two cases. From the case of positive sign

[1− 2iκz − κ2]−1/2 =
∞∑
n=0

(iκ)nPn(z)

=
∞∑
k=0

(iκ)2kP2k(z)+ iκ
∞∑
k=0

(iκ)2kP2k+1(z)

=
∞∑
k=0

(−κ2)kP2k(z)+ iκ
∞∑
k=0

(−κ2)kP2k+1(z) (2.7a)

and from the case of negative sign,

[1+ 2iκz − κ2]−1/2 =
∞∑
n=0

(−iκ)nPn(z)

=
∞∑
k=0

(iκ)2kP2k(z)− iκ
∞∑
k=0

(iκ)2kP2k+1(z)

=
∞∑
k=0

(−κ2)kP2k(z)− iκ
∞∑
k=0

(−κ2)kP2k+1(z) . (2.7b)

Introducing the arbitrary complex constant A0, we form the real combination

A0[1− 2iκz − κ2]−1/2 +A0[1+ 2iκz − κ2]−1/2

= (A0 +A0)
∞∑
k=0

(−κ2)kP2k(z)+ iκ(A0 −A0)
∞∑
k=0

(−κ2)kP2k+1(z)

= 2A
[ ∞∑
k=0

(−κ2)kP2k(z)− κβ
∞∑
k=0

(−κ2)kP2k+1(z)
]

(2.8)

where we have written

2A = A0 +A0(real), 2iβA = A0 −A0(pure imaginary). (2.9a,b)

If we now set
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κ = b
r
, z = cosθ (2.10)

and reverse the order in equation (2.8), we have

2A
[ ∞∑
k=0

(
− b

2

r 2

)k
P2k(cosθ)− β b

r

∞∑
k=0

(
− b

2

r 2

)k
P2k+1(cosθ)

]

= A0

[
1− 2i

b
r

cosθ − b
2

r 2

]−1/2 +A0

[
1+ 2i

b
r

cosθ − b
2

r 2

]−1/2

= r
{
A0

[
r 2 − 2ibr cosθ − b2

]−1/2 +A0

[
r 2 + 2ibr cosθ − b2

]−1/2
}
. (2.11)

We now introduce relations (2.3) that express the factors within square brack-
ets as perfect squares, and find

2A
[ ∞∑
k=0

(
− b

2

r 2

)k
P2k(cosθ)− β b

r

∞∑
k=0

(
− b

2

r 2

)k
P2k+1(cosθ)

]

= r
[ A0

R − ib cosσ
+ A0

R + ib cosσ

]
= 2Ar

R − βb cosσ
R2 + b2 cos2 σ

. (2.12)

Dividing by the factor 2Ar and multiplying by the gravitation factor μ yields

μ
r

[ ∞∑
k=0

(
− b

2

r 2

)k
P2k(cosθ)− β b

r

∞∑
k=0

(
− b

2

r 2

)k
P2k+1(cosθ)

]

= μ R − βb cosσ
R2 + b2 cos2 σ

. (2.13)

The entity in (2.13) is the Vinti potential function in its general form, con-
taining two free constants b and β. Recognizing that the associated dynamical
problem is integrable, Vinti observed that the significance of the potential lay
in the fact that the parameter b can be chosen so that the potential matches
the geopotential both in the zeroth (Kepler) and in the second (residually dom-
inant) zonal harmonic with coefficient J2 and that β could be chosen to fit the
first zonal harmonic with coefficient J1 in the case where the origin does not
coincide with the center of mass. Furthermore, he showed that when the ori-
gin coincides with the center of mass, an additional adjustment allows β to be
chosen so that the potential matches the geopotential up to the third zonal
harmonic.

It was soon recognized that the Vinti potential with the associated dynam-
ical problem together constitute the natural conjugate of the corresponding
situation in the case of the problem of two fixed centers treated in Chapter 4.
Referring to that, we see that the transformation relations (2.1) could be ob-
tained by replacing b2 by −b2 in relations (1.3) of Chapter 4; furthermore, if in
formula (1.9) of Chapter 4 we make the following replacements,

b2 → −b2, b → ib, β→ iβ (2.14)
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we obtain the Vinti potential (2.13) above.
However, the Vinti problem merits attention in its own right, and the dis-

tinct form assumed by the solution in terms of Jacobian elliptic functions as
well as the distinct procedure for arriving at that solution justifies an indepen-
dent analysis.

We shall confine our attention to the case where β = 0, although as before
this restriction is not necessary for the effectiveness of the procedure. Setting
β = 0 in (2.13), we have for the equatorially (latitudinally) symmetric Vinti
potential function

μR
R2 + b2 cos2 σ

= μ
r

∞∑
k=0

(−)k
(b2

r 2

)k
P2k(cosθ)

= μ
r

[
1−

∞∑
k=1

(−)k+1
(b2

r 2
0

)k(r 2
0

r 2

)k
P2k(cosθ)

]
. (2.15)

Comparing with (1.2), we see that (2.15) matches (1.2) up to the second zonal
harmonic if we choose b so that

b2

r 2
0
= J2 (2.16)

whereby the coefficient of the fourth zonal harmonic becomes (i.e., for k = 2)

(−)3
(b2

r 2
0

)2 = −(b2

r 2
0

)2 = −J2
2 (2.17)

which, at least from an order of magnitude consideration, is in harmony with
the known value (1.3b) though it undervalues it by a ratio of 5 : 7; all higher
coefficients in the Vinti potential are of order (J2)k, and so for k ≥ 3 these
are much smaller than the known values. From the viewpoint of application
to Earth-satellite orbits, therefore, it is redundant to seek accuracy finer than
(J2)2 or (b2/r 2

0 )2 in any approximation scheme applied to the entities to be
calculated.

3 The Vinti Dynamical Problem: The Ignorable Coordinate and
the Energy Integral

Associated with the coordinate system (2.1), we have the metric coefficients

g11 = R2 + b2 cos2 σ
R2 + b2

, g22 = R2 + b2 cos2 σ, (3.1a,b)

g33 = (R2 + b2) sin2 σ, gij = 0, i ≠ j (3.1c,d)

so that, for the kinetic energy, we have

T∗ = 1
2
R2 + b2 cos2 σ

R2 + b2
Ṙ2 + 1

2(R
2 + b2 cos2 σ)σ̇ 2 + 1

2(R
2 + b2) sin2 σ · ϕ̇2.

(3.2)
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Moreover, with the potential function (2.15), we have for the potential energy
(per unit mass)

V∗ = − μR
R2 + b2 cos2 σ

(3.3)

from which, for the Lagrangian L∗ = T∗ − V∗, there follows

L∗ = 1
2
R2 + b2 cos2 σ

R2 + b2
Ṙ2 + 1

2(R
2 + b2 cos2 σ)σ̇ 2 + 1

2(R
2 + b2) sin2 σ · ϕ̇2

+ μR
R2 + b2 cos2 σ

(3.4)

wherein again ϕ is clearly an ignorable coordinate. The third Lagrange equa-
tion reads

ḋ
dt
[
(R2 + b2) sin2 σ · ϕ̇] = 0 (3.5)

which immediately yields the ϕ-first integral

(R2 + b2) sin2 σ · ϕ̇ = C3 (3.6)

where C3 is the constant of integration. From (2.2) and (2.1c), we have that

(R2 + b2) sin2 σ = R2 − R2 cos2 σ + b2 sin2 σ

= r 2 − r 2 cos2 θ = r 2 sin2 θ (3.7)

so that

C3 = (R2 + b2) sin2 σ · ϕ̇ = r 2 sin2 θ · ϕ̇ (3.8)

and again in this case, we see that C3 measures the polar component of angular
momentum.

Following the standard procedure for dealing with the ignorable coordinate,
we form the modified Lagrangian by setting

L = L∗ − ϕ̇∂L
∗

∂ϕ̇
= L∗ − (R2 + b2) sin2 σ · ϕ̇2

= 1
2
R2 + b2 cos2 σ

R2 + b2
Ṙ2 + 1

2(R
2 + b2 cos2 σ)σ̇ 2

− 1
2(R

2 + b2) sin2 σ · ϕ̇2 + μR
R2 + b2 cos2 σ

(3.9)

wherein we substitute for ϕ̇ from (3.6) to obtain

L = 1
2
R2 + b2 cos2 σ

R2 + b2
Ṙ2 + 1

2(R
2 + b2 cos2 σ)σ̇ 2

+ μR
R2 + b2 cos2 σ

− 1
2C

2
3

1

(R2 + b2) sin2 σ
(3.10)
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so that in the modified Lagrangian involving only the R- and σ -coordinates,
the modified kinetic and potential energies are, respectively,

T = 1
2
R2 + b2 cos2 σ

R2 + b2
Ṙ2 + 1

2(R
2 + b2 cos2 σ)σ̇ 2 (3.11a)

V = − μR
R2 + b2 cos2 σ

+ 1
2C

2
3

1

(R2 + b2) sin2 σ
. (3.11b)

To put the modified Lagrangian into a form of Liouville type, we first write
(3.10) in the form

L = (R2 + b2 cos2 σ)
[

1
2

Ṙ2

R2 + b2
+ 1

2 σ̇
2
]

+ 1
R2 + b2 cos2 σ

[
μR − 1

2C
2
3

( 1

sin2 σ
− b2

R2 + b2

)]
. (3.12)

Next we introduce the variable ξ by the transformation

R = b sinhξ; so that Ṙ = b coshξ · ξ̇, R2 + b2 = b2 cosh2 ξ (3.13a;b,c)

and, in terms of the Liouville coordinates ξ and σ , the modified Lagrangian
becomes

L = b2(sinh2 ξ + cos2 σ)
[

1
2 ξ̇

2 + 1
2 σ̇

2
]

+ 1

b2(sinh2 ξ + cos2 σ)

[
μb sinhξ − 1

2C
2
3

( 1

sin2 σ
− 1

cosh2 ξ

)]
= b2(sinh2 ξ + cos2 σ)

[
1
2 ξ̇

2 + 1
2 σ̇

2
]

+ 1

b2(sinh2 ξ + cos2 σ)

[
μb sinhξ + 1

2C
2
3

1

cosh2 ξ
− 1

2C
2
3

1

sin2 σ

]
. (3.14)

It is now clear that it is convenient to set

Q1(ξ) = b2 sinh2 ξ, Q2(σ) = b2 cos2 σ, Q = Q1 +Q2 (3.15a,b,c)

V1(ξ) = −
(
μb sinhξ + 1

2C
2
3

1

cosh2 ξ

)
, V2(σ) = 1

2C
2
3

1

sin2 σ
(3.16a,b)

and the expressions for the modified kinetic and potential energies become

T = Q(1
2 ξ̇

2 + 1
2 σ̇

2), V = 1
Q
(V1 + V2) (3.17a,b)

and the modified Lagrangian reads

L = Q(1
2 ξ̇

2 + 1
2 σ̇

2)− V (3.18a)

= Q(1
2 ξ̇

2 + 1
2 σ̇

2)− 1
Q
(V1 + V2) (3.18b)

now clearly recognizable in its Liouville form.
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The resulting Lagrangian equations are

d
dt

(∂L
∂ξ̇

)
= ∂L
∂ξ
,

d
dt

( ∂L
∂σ̇

)
= ∂L
∂σ

(3.19a,b)

from which we derive the energy integral in the manner detailed in Section 2
of Chapter 3. Multiplying the first equation in (3.19) by ξ̇, the second by σ̇ ,
then on addition, we find

ξ̇
d
dt

(∂L
∂ξ̇

)
+ σ̇ d

dt

( ∂L
∂σ̇

)
= ξ̇ ∂L

∂ξ
+ σ̇ ∂L

∂σ
(3.20a)

which, on rearrangement, becomes

d
dt

[
ξ̇
∂L
∂ξ̇
+ σ̇ ∂L

∂σ̇

]
= ξ̇ ∂L

∂ξ
+ σ̇ ∂L

∂σ
+ ξ̈ ∂L

∂ξ̇
+ σ̈ ∂L

∂σ̇
= dL

dt
(3.20b)

immediately yielding the integral

ξ̇
∂L
∂ξ̇
+ σ̇ ∂L

∂σ̇
− L = E (constant) (3.21)

— the energy integral in its general form with E as the constant of integration.
When we note that the Lagrangian has the explicit form (3.18), and with the
modified kinetic and potential energies given by (3.17), there follows

ξ̇
∂L
∂ξ̇
+ σ̇ ∂L

∂σ̇
= ξ̇ ∂T

∂ξ̇
+ σ̇ ∂T

∂σ̇
= 2T (3.22)

which, when introduced in (3.21), yields

T + V = E (3.23)

— the more familiar form of the energy integral. When the explicit forms of
(3.11) for T and V are introduced into (3.23), we have

1
2
R2 + b2 cos2 σ

R2 + b2
Ṙ2 + 1

2(R
2 + b2 cos2 σ)σ̇ 2

+ 1
2C

2
3

1

(R2 + b2) sin2 σ
− μR
R2 + b2 cos2 σ

= E (3.24)

for the explicit form of the energy integral in terms of the R-σ spheroidal
coordinates.

In summarizing this section, we note that in (3.6) and (3.24), we have two
first integrals for the Vinti problem with constants C3 and E representing re-
spectively the polar component of angular momentum and the energy.

4 The Integration of the Lagrangian Equations

It remains to effect the integration of the two remaining Lagrangian equations
(3.19). If we introduce the form (3.18a) for L into (3.19), we have
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d
dt
[Qξ̇] = dQ1

dξ
[1

2 ξ̇
2 + 1

2 σ̇
2]− ∂V

∂ξ
(4.1a)

d
dt
[Qσ̇] = dQ2

dσ
[1

2 ξ̇
2 + 1

2 σ̇
2]− ∂V

∂σ
(4.1b)

the integration of which follows the pattern detailed in Section 3 of Chapter 3.
Following that procedure, we multiply (4.1a) by Qξ̇, and on utilizing (3.17) and
(3.23), we obtain

Qξ̇
d
dt
[Qξ̇] = ξ̇

[
T

dQ1

dξ
−Q∂V

∂ξ

]
= ξ̇

[
E dQ1

dξ
− ∂
∂ξ
(QV)

]
= ξ̇

[
E dQ1

dξ
− dV1

dξ

]
= d

dt
[EQ1 − V1] (4.2)

yielding the first integral associated with the ξ-coordinate in the form

1
2[Qξ̇]

2 −EQ1 + V1 = C1 (4.3)

where C1 is the constant of integration. An application of the identical proce-
dure to (4.1b) with a multiplying factor Qσ̇ yields the first integral associated
with the σ -coordinate in the form

1
2[Qσ̇]

2 −EQ2 + V2 = C2 (4.4)

where C2 is the constant of integration. As we already have C3 and E as two in-
dependent constants, the two new constants C1 and C2 cannot be independent;
the addition of (4.3) and (4.4) yields

Q2[1
2 ξ̇

2 + 1
2 σ̇

2]−E(Q1 +Q2)+ (V1 + V2) = C1 + C2 (4.5)

or alternatively, on noting (3.17)

Q[T + V −E] = C1 + C2 (4.6)

which with the energy equation (3.23) implies

C1 + C2 = 0 (4.7)

indicating the interdependence of the constants.
We next turn to express the integrated relations (4.3) and (4.4) in terms

of the original spheroidal R-σ coordinates. Recalling the defining relations
(3.13a), it follows from (3.15) and (3.16) that in terms of the spheroidal coor-
dinates, we have

Q1(R) = R2, Q2(σ) = b2 cos2 σ, Q = R2 + b2 cos2 σ (4.8a,b,c)

V1(R) = −
[
μR + 1

2C
2
3

b2

R2 + b2

]
, V2(σ) = 1

2C
2
3

1

sin2 σ
. (4.9a,b)

From (3.13b), we further note that
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ξ̇ = Ṙ
b coshξ

= Ṙ√
R2 + b2

(4.10)

so that

Qξ̇ = R2 + b2 cos2 σ√
R2 + b2

Ṙ, Qσ̇ = (R2 + b2 cos2 σ)σ̇ . (4.11a,b)

Accordingly, in terms of spheroidal R-σ coordinates, equations (4.3) and (4.4)
become, respectively,

1
2
(R2 + b2 cos2 σ)2

R2 + b2
Ṙ2 = ER2 +

[
μR + 1

2C
2
3

b2

R2 + b2

]
+ C1 (4.12a)

1
2(R

2 + b2 cos2 σ)2σ̇ 2 = Eb2 cos2 σ − 1
2C

2
3

1

sin2 σ
+ C2 (4.12b)

with the restriction (4.7) that C1 + C2 = 0.
An inspection of equation (4.12b) in the Kepler limit when b → 0 shows

that in that range, C2 must be positive, which immediately implies that C1 is
negative. Moreover, if we focus our attention on bound orbits corresponding
to negative energy, we may set

E = −α2, C1 = −1
2C

2, C2 = 1
2C

2 (4.13a,b,c)

and again from an inspection of (4.12b), it is clear that C has the dimension of
angular momentum.

In terms of the constants introduced in (4.13), equations (4.12) take the
form

1
2
(R2 + b2 cos2 σ)2

R2 + b2
Ṙ2 = −α2R2 +

[
μR + 1

2C
2
3

b2

R2 + b2

]
− 1

2C
2 (4.14a)

1
2(R

2 + b2 cos2 σ)2σ̇ 2 = −α2b2 cos2 σ − 1
2C

2
3

1

sin2 σ
+ 1

2C
2. (4.14b)

In the reduction of these equations, we shall follow the pattern set out in
Chapter 3 for the planar case of two fixed centers.

5 Reduction of the Equations; Regularization; Normalization

In considering the R-equation, we start by rewriting (4.14a) in the form

(R2 + b2 cos2 σ)2Ṙ2 = −C2(R2 + b2)
[
1− 2

μ
C2
R + 2α2

C2
R2 − C

2
3

C2

b2

R2 + b2

]
. (5.1)

We now introduce the standard length scales a and p0, and the dimensionless
parameter ν corresponding to the inclination in the Kepler case, by setting

a = μ
2α2

, p0 = C2

μ
; so that ap0 = C2

2α2
: ν = C3

C
(5.2a,b;c:d)
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in terms of which (5.1) reads

(R2 + b2 cos2 σ)2

C2
Ṙ2 = −(R2 + b2)

[
1− 2

p0
R + 1

ap0
R2
]
+ b2ν2. (5.3)

Likewise, in terms of the parameters (5.2), we may write the σ -equation (4.14b)
in the form

(R2 + b2 cos2 σ)2

C2
σ̇ 2 = 1− 2

α2

C2
b2 cos2 σ − C

2
3

C2

1

sin2 σ

= 1− b2

ap0
cos2 σ − ν2

sin2 σ
. (5.4)

Again the form of the regularizing transformation is indicated by the multi-
plying factor on the left side of (5.3) and (5.4).

We introduce the new independent variable f defined by the relation

df
dt

= Λ
R2 + b2 cos2 σ

(5.5)

where the parameter Λ, having the dimension of angular momentum, is to be
defined presently as a multiple of C . From (5.5), it follows that

R2 + b2 cos2 σΛ d
dt

= d
df

(5.6)

and with prime denoting differentiation with respect to f , the equations for
the first integrals (5.3) and (5.4) may be written

Λ2

C2
R′2 = −(R2 + b2)

[
1− 2

p0
R + 1

ap0
R2
]
+ b2ν2 (5.7)

Λ2

C2
σ ′2 = 1− b2

ap0
cos2 σ − ν2

sin2 σ

= 1

sin2 σ

[
(1− cos2 σ)

[
1− b2

ap0
cos2 σ

]
− ν2

]
. (5.8)

At this point, it is appropriate to take note that in the case where ν = 0,
corresponding to C3 = 0, we have the case of polar orbits, and the solution in
terms of Jacobian elliptic functions in that case is immediate as the resolution
of the quartics into quadratic factors is self-evident.

We now introduce dimensionless parameters defined by the relations

η = b
p0
, � = 1− e2

0 =
p0

a
(5.9a,b)

so that

η� = b
p0

p0

a
= b
a
, η2� = b2

ap0
. (5.10a,b)
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In terms of these, the σ -equation (5.8) takes the form

Λ2

C2
sin2 σ · σ ′2 = (1− cos2 σ)[1− η2� cos2 σ]− ν2. (5.11)

For the R-equation, we further introduce the dimensionless variable Y , defined
by

R = aY (5.12)

in terms of which the R-equation (5.7) takes the dimensionless form

�
Λ2

C2
Y ′2 = −(Y 2 + η2�2)[Y 2 − 2Y + �]+ η2�3ν2. (5.13)

In this latter equation, it is convenient to introduce a further parameter λ2,
defined by

λ2 = η2�2 (5.14)

and equation (5.13) may be written

�
Λ2

C2
Y ′2 = −(Y 2 + λ2)[Y 2 − 2Y + �]+ λ2�ν2

= [Y 4 − 2Y 3 + (� + λ2)Y 2 − 2λ2Y + λ2�(1− ν2).
]

(5.15)

Equations (5.11) and (5.15) must now be dealt with individually — starting with
the σ -equation (5.11).

6 The σ -Equation: Definition of Λ
If, in equation (5.11) for the σ -coordinate, we set

S = cosσ so that S′ = − sinσ · σ ′, (6.1)

then, in terms of S, equation (5.11) takes the form

Λ2

C2
S′2 = (1− S2)(1− η2�S2)− ν2

= (1− ν2)− (1+ η2�)S2 + η2�S4 (6.2)

or, alternatively,

1
η2�

Λ2

C2
S′2 = 1− ν2

η2�
− 1+ η2�

η2�
S2 + S4. (6.3)

If we consider the expression

y2 − 1+ η2�
η2�

y + 1− ν2

η2�
(6.4)
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the pair of roots is given by

y+ = 1
2

1+ η2�
η2�

[
1+

√
1− 4η2�

(1+ η2�)2
(1− ν2)

]

y− = 1
2

1+ η2�
η2�

[
1−

√
1− 4η2�

(1+ η2�)2
(1− ν2)

]
. (6.5)

It is therefore convenient to set

2m = 1+
√

1− 4η2�
(1+ η2�)2

(1− ν2) = 2+O(η2) (6.6)

and a straightforward calculation shows that

1
2m

= (1+ η2�)2

4η2�(1− ν2)

[
1−

√
1− 4η2�

(1+ η2�)2
(1− ν2)

]
(6.7)

and hence

1−
√

1− 4η2�
(1+ η2�)2

(1− ν2) = 4η2�
(1+ η2�)2

(1− ν2)
1

2m
. (6.8)

Accordingly, the roots of the expression (6.4) are given in terms of m by

y+ = 1+ η2�
η2�

m, y− = 1
1+ η2�

1− ν2

m
. (6.9)

In light of this resolution, it follows that the S-equation (6.3) may be written

1
η2�

Λ2

C2
S′2 =

(1+ η2�
η2�

m− S2
)[ 1− ν2

(1+ η2�)m
− S2

]
. (6.10)

If we now introduce the substitution

S =
√

1− ν2

(1+ η2�)m
ζ (6.11)

then, when written as an equation for ζ, and reversing the order of the factors,
equation (6.10) becomes

1
η2�

Λ2

C2
ζ′2 = (1− ζ2)

[1+ η2�
η2�

m− 1− ν2

(1+ η2�)m
ζ2
]

= 1+ η2�
η2�

m(1− ζ2)
[
1− η2�

(1+ η2�)2
1− ν2

m2
ζ2
]

(6.12)

and hence

Λ2

C2
ζ′2 = (1+ η2�)m(1− ζ2)

[
1− η2�

(1+ η2�)2
1− ν2

m2
ζ2
]
. (6.13)

This equation clearly suggests the form for Λ. We define Λ by the relation
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Λ2 = (1+ η2�)mC2 (6.14)

and we further set

k2
2 =

η2�
(1+ η2�)2

· 1− ν2

m2
(6.15)

and equation (6.13) then reads

ζ′2 = (1− ζ2)(1− k2
2ζ

2) (6.16)

for which we have the solution

ζ = sn[f +ω : k2] (6.17)

where ω is the constant of integration. Clearly

f +ω = 0 implies ζ = 0 (6.18)

so that, recognizing that the equatorial crossing is indicated by

cosσ = 0, S = 0, ζ = 0 (6.19)

we see that −ω is to be interpreted as the value of f at the first equatorial
crossing. If we further set

1−N2 = 1− ν2

(1+ η2�)m
(6.20)

then combining (6.1), (6.11), and (6.17), we have

cosσ =
√

1−N2 sn[f +ω : k2] (6.21)

as the solution for the σ -coordinate. We note that when η = 0, k2 = 0, the
above solution collapses as the familiar form of the solution for the Kepler
problem.

7 The R-Equation

Returning to the dimensionless form of the R-equation (5.15), namely

�
Λ2

C2
Y ′2 = −[Y 4 − 2Y 3 + (� + λ2)Y 2 − 2λ2Y + �λ2(1− ν2)

] = −f(y) (7.1)

we may compare this with equation (8.1) of Chapter 4, and as already indi-
cated, the above equation could be obtained by replacing λ2 by −λ2 (or equiva-
lently, as λ2 = η2�2, by replacing η2 by −η2) in the corresponding equation of
Chapter 4. Accordingly, we may take the results of Subsection 8A of Chapter 4
and, replacing λ2 by −λ2, apply the relations, mutatis mutandis, therefrom: we
include these relations here in Subsection 7A.
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7A. The Decomposition of the Quartic (7.1)

The transformation that eliminates the cubic term from the quartic on the
right of (7.1), namely

Y = X + 1
2 (7A.1)

results in

f(Y) = g(x) =
X4 + (� + λ2 − 3

2

)
X2 + (� − λ2 − 1)X + 1

4

[
� − 3λ2 − 3

4 + 4�λ2(1− ν2)
]
. (7A.2)

Following the procedure of Descartes for the decomposition, we set

g(X) = [X2 +UX + V][X2 −UX +W] (7A.3)

which implies

V −W = 1− � + λ2

U
(7A.4a)

V +W = U2 + (� + λ2 − 3
2

)
(7A.4b)

and with

Z = U2 (7A.5)

the resulting equation for Z reads

Z3 − 3
[
1− 2

3(� + λ2)
]
Z2

+ 3
[
1− 4

3� + 1
3(� + λ2)2 − 4

3�λ
2(1− ν2)

]
Z − [1− � + λ2]2 = 0. (7A.6)

It is convenient to set

A = 1− 2
3(� + λ2), B = 1− 4

3� + 1
3(1+ λ2)2 − 4

3�λ
2(1− ν2),

C = 1− � + λ2, (7A.7a,b,c)

so that (7A.6) may be written

Z3 − 3AZ2 + 3BZ − C2 = 0. (7A.8)

The elimination of the quadratic term is effected by setting

Z = Z0 +A (7A.9)

and in terms of Z0, equation (7A.8) becomes

Z3
0 + 3(B −A2)Z0 + (3AB − 2A3 − C2) = 0 (7A.10)

where the coefficients are given as follows:
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3(B −A2) = −1
3(� + λ2)2

[
1− 12λ2 [1− �(1− ν2)]

(� + λ2)2
]

(7A.11a)

3AB − 2A3 − C2 = − 2
27(� + λ2)3

[
1+ 36λ2 [1− �(1− ν2)]

(� + λ2)2

×
[
1− 3

2
�ν2

(� + λ2)[1− �(1− ν2)]

]]
.

(7A.11b)

If for equations (7A.11) we introduce the notation

λ∗ = 12λ2 [1− �(1− ν2)]
(� + λ2)2

= 12η2 [1− �(1− ν2)]
(1+ η2�)2

(7A.12a)

s = 1− 3
2

�ν2

(� + λ2)[1− �(1− ν2)]
= 1− 3

2
ν2

(1+ η2�)[1− �(1− ν2)]
(7A.12b)

wherein we have noted relation (5.14) expressing λ2 = η2�2, then equation
(7A.10) may be written

Z3
0 − 1

3(� + λ2)2(1− λ∗)Z0 − 2
27(� + λ2)3[1+ 3λ∗s] = 0. (7A.13)

To normalize the expression in (7A.13), we set

Z0 = 1
3(� + λ2)Z∗ (7A.14)

and, in terms of Z∗, the above equation (7A.13) becomes

Z3∗ − 3(1− λ∗)Z∗ − 2[1+ 3λ∗s] = 0 (7A.15)

which could have been obtained from equation (8A.18) of Chapter 4 by replac-
ing λ∗ with −λ∗ therein.

Accordingly, from an inspection of (8A.28) of Chapter 4, we may write the
solution of equation (7A.15) in the form

Z∗ =
[
(1+ 3λ∗s)−

√
λ∗[λ2∗ − 3λ∗(1− 3s2)+ 3(1+ 2s)]

1
2

] 1
3

+
[
(1+ 3λ∗s)+

√
λ∗[λ2∗ − 3λ∗(1− 3s2)+ 3(1+ 2s)]

1
2

] 1
3

(7A.16)

and we note that the root is given as an even function of
√
λ∗ and hence is

strictly a function of λ∗ and hence of η2.

7B. The Approximate Formulae

For application to the case of the Earth satellite, an approximation valid to
second order in η2 is adequate — and, in fact, sufficient. The determination of
such an approximation at this stage is a straightforward exercise in binomial
expansion. We introduce the factor D by setting
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D(1+ 3λ∗s) =
√
λ∗[3(1+ 2s)− 3λ∗(1− 3s2)+ λ2∗]

1
2 = O(η) (7B.1)

so that, in terms of D, the solution form (7A.16) may be written

Z∗ = (1+ 3λ∗s)
1
3 [(1−D) 1

3 + (1+D) 1
3 ] (7B.2)

and we further note from (7B.1) that

D2(1+ 3λ∗s)2 = λ∗[3(1+ 2s)− 3λ∗(1− 3s2)+ λ2∗] = O(η2). (7B.3)

By direct expansion, we see that

(1+ 3λ∗s)−2 = 1− 6λ∗s +O(η4) (7B.4)

so that

D2 = 3λ∗[(1+ 2s)− λ∗(1+ 3s)2]+O(η6) (7B.5a)

and

D4 = 9λ2∗(1+ 2s)2 +O(η6). (7B.5b)

Direct expansions also reveal that

(1+D) 1
3 = 1+ 1

3D − 1
9D

2 + 5
81D

3 − 10
243D

4 + 22
729D

5 +O(η6) (7B.6a)

(1−D) 1
3 = 1− 1

3D − 1
9D

2 − 5
81D

3 − 10
243D

4 − 22
729D

5 +O(η6) (7B.6b)

from which there follows

(1−D) 1
3 + (1+D) 1

3 = 2
[
1− 1

9D
2 − 10

243D
4 +O(η6)

]
(7B.7)

into which we introduce D2 and D4 from (7B.5) to obtain (except for terms of
O(η6))

(1−D) 1
3 + (1+D) 1

3 = 2
[
1− 1

3λ∗(1+ 2s)− 1
27λ

2∗(1− 14s − 41s2)
]
. (7B.8)

A further direct expansion shows that

(1+ 3λ∗s)
1
3 = 1+ λ∗s − λ2∗s2 +O(η6) (7B.9)

so that inserting (7B.8) and (7B.9) into (7B.2), we obtain for Z∗

Z∗ = 2
[
1− 1

3λ∗(1− s)− 1
27λ

2∗(1− 5s + 4s2)
]
+O(η6) (7B.10)

or, alternatively, except for terms of O(η6),

Z∗
2
= 1− 1

3λ∗(1− s)
[
1+ 1

9λ∗(1− 4s)
]

(7B.11)

and again we note that when ν = 0, s = 1 and Z∗ = 2.
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Into relation (7A.9) we now introduce A from (7A.7a) and Z0 from (7A.14)
and rearrange to obtain

Z = 1− 2
3(� + λ2)

[
1− 1

2Z∗
]

(7B.12)

into which we now introduce Z∗ from (7B.11) to obtain

Z = 1− 2
9(� + λ2)λ∗(1− s)

[
1+ 1

9λ∗(1− 4s)
]
. (7B.13)

This expression can be put in more compact form if we first note from (7A.12)
that

1
9λ∗(1− s) = 2

λ2�ν2

(� + λ2)3
= 2

η2ν2

(1+ η2�)3
(7B.14a,b)

where we have also noted (5.14). Accordingly, expression (7B.13) may be writ-
ten

Z = 1− 4λ2�ν2

(� + λ2)2
[
1+ 1

9λ∗(1− 4s)
]

= 1− 4η2�ν2

(1+ η2�)2
[
1+ 1

9λ∗(1− 4s)
]
. (7B.15)

Next we introduce the factor h∗ by the defining algebraic relation

1+ η2h∗ = 1
(1+ η2�)2

[
1+ 1

9λ∗(1− 4s)
]

(7B.16)

and a straighforward calculation following the introduction of (7A.12) shows
that, to second order in η2, we may write

1+ η2h∗ = 1− 2η2(2− �)(1− 2ν2)+ η4�[(16− 13�)− 8ν2(5− 2�)]
(7B.17a)

or, to first order in η2

h∗ = −2(2− �)(1− 2ν2)+ η2�[(16− 13�)− 8ν2(5− 2�)]. (7B.17b)

With h∗ thus specified, we may replace the expression (7B.15) for Z by

Z = 1− 4η2�ν2(1+ η2h∗) (7B.18)

Recalling from (7A.5) that Z = U2, we derive the following expressions (to
second order in η2):

U = 1− 2η2�ν2(1+ η2h∗)− 2η4�2ν4

= 1− 2η2�ν2 − 2η4�ν2(h∗ + �ν2) (7B.19a)

U−1 = 1+ 2η2�ν2[1+ η2(h∗ + �ν2)]+ 4η4�2ν4

= 1+ 2η2�ν2 + 2η4�ν2(h∗ + 3�ν2) (7B.19b)

(1− � + λ2)U−1 = (1− �)+ η2�[� + 2ν2(1− �)]
+ 2η4�ν2[�2 + (1− �)(h∗ + 3�ν2)]. (7B.19c)
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Again recalling that U2 = Z , it follows from combining (7A.4b) with (7B.18)
that

V +W = −1
2 + � + η2�2 − 4η2�ν2(1+ η2h∗) (7B.20a)

while from (7A.4a) and (7B.19c) we have

V −W = (1− �)+ η2�[� + 2ν2(1− �)]
+ 2η4�ν2[�2 + (1− �)(h∗ + 3�ν2)]. (7B.20b)

Relations (7B.20) render for V and W , respectively,

V = 1
4 + η2�[� − ν2(1+ �)]
+ η4�ν2[�2 − (1+ �)h∗ + 3�ν2(1− �)] (7B.21a)

W = −3
4 + � − η2�ν2(3− �)
− η4�ν2[�2 + (3− �)h∗ + 3�ν2(1− �)]. (7B.21b)

When, in the factored quartic (7A.3), we revert to the Y -variable by setting
X = Y − 1

2 , then for f(Y) we have

f(Y) =[
Y 2 − (1−U)Y + (1

4 − 1
2U + V)

][
Y 2 − (1+U)Y + (1

4 + 1
2U +W)

]
. (7B.22)

For the elements in this factorization, we note from (7B.19a) that

1−U = 2η2�ν2 + 2η4�ν2(h∗ + �ν2)

= 2η2�ν2[1+ η2(h∗ + �ν2)
]

(7B.23a)

1+U = 2
[
1− η2�ν2 − η4�ν2(h∗ + �ν2)

]
= 2

[
1− η2�ν2[1+ η2(h∗ + �ν2)]

]
(7B.23b)

and further from combining (7B.19a) with (7B.21), we find

1
4 − 1

2U + V = η2�2
[
1− ν2[(1+ η2h∗)− η2[� + ν2(4− 3�)]

]]
(7B.24a)

1
4 + 1

2U +W = �
[
1− η2ν2[(4− �)(1+ η2h∗)

+ η2�[� + ν2(4− 3�)]
]]
. (7B.24b)

Relations (7B.23) and (7B.24) suggest that we introduce the factors

h0 = 1+ η2(h∗ + �ν2)

= 1−η2[2(2− �)−ν2(8− 3�)]+η4�[(16−13�)− 8ν2(5−2�)] (7B.25a)

h1 = 1+ η2h∗ − η2[� + ν2(4− 3�)]

= 1− η2[(4− �)(1− ν2)]+ η4�[(16− 13�)− 8ν2(5− 2�)] (7B.25b)

h2 = (4− �)(1+ η2h∗)+ η2�[� + ν2(4− 3�)] = 4(1+ η2h∗)− �h1

= (4− �)[1+ η2�(1− ν2)+ η4�[(16− 13�)− 8ν2(5− 2�)]
]

− 8η2(2− �)(1− 2ν2) (7B.25c)
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and we may note here the three auxiliary factors

h0 + h1 = 2(1+ η2h∗)− η2[� + 4ν2(1− �)]+O(η4) (7B.26a)

1− ν2h1 = (1− ν2)[1+ η2ν2(4− �)]+O(η4) (7B.26b)

h2 − �h0 = 4(1+ η2h∗)− �(h0 + h1)

= (4− 2�)+O(η2) = 2(2− �)+O(η2) (7B.26c)

which arise later.
We may write the approximate formulae for the coefficients appearing in

the quadratic factors on the right of (7B.22) by means of the quantities h0, h1,
and h2 as follows:

1−U = 2η2ν2�h0, 1+U = 2(1− η2ν2�h0) (7B.27a,b)
1
4 − 1

2U + V = η2�(1− ν2h1), 1
4 + 1

2U +W = �(1− η2ν2h2) (7B.27c,d)

which completes the derivation of the approximate formulae.

— � —

If we now return to the dimensionless form of the R-equation, namely (7.1),
and introduce the factorization (7B.22) with coefficients given by (7B.27), we
have

�
Λ2

C2
Y ′2 = −[Y 2 − 2η2ν2�h0Y + η2�2(1− ν2h1)]

· [Y 2 − 2(1− η2ν2�h0)Y + �(1− η2ν2h2)] (7.2)

and we note that in the case of a polar orbit when ν = 0, we retrieve a factor-
ization readily recognizable from (5.13) when we set ν = 0 therein.

If we now revert to the dependent variable R = aY , and interchanging
the order of the factors in (7.2), we recall from (5.9b) that � = p0/a, then a
rearrangement yields the equation (7.2) in terms of R as follows:

�
Λ2

C2
R′2 = −�(1− η2ν2h2)

[
1− 2

1− η2ν2�h0

1− η2ν2h2

R
p0
+ 1

1− η2ν2h2

R2

ap0

]
·
[
R2 − 2η2ν2h0p0R + η2(1− ν2h1)p2

0

]
(7.3)

or, alternatively,

Λ2

C2

1
1− η2ν2h2

R′2 = −
[
1− 2

1− η2ν2�h0

1− η2ν2h2

R
p0
+ 1

1− η2ν2h2

R2

ap0

]
·
[
R2 − 2η2ν2h0p0R + η2(1− ν2h1)p2

0

]
. (7.4)

We next introduce the new dependent variable u, by setting

u = 1
R
, R = 1

u
, R′ = −u

′

u2
(7.5a,b,c)
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so that in terms of u, the above equation reads

Λ2

C2

1
1− η2ν2h2

u′2 = −
[
u2 − 2

1− η2ν2�h0

1− η2ν2h2

u
p0
+ 1

1− η2ν2h2

1
ap0

]
·
[
1− 2η2ν2h0p0u+ η2(1− ν2h1)p2

0u
2
]

= −
{[
u− 1− η2ν2�h0

1− η2ν2h2

1
p0

]2 − 1

p2
0

[1− η2ν2�h0

1− η2ν2h2

]2[
1− �(1− η2ν2h2)

(1− η2ν2�h0)2
]}

·
[
1− 2η2ν2h0p0u+ η2(1− ν2h1)p2

0u
2
]
. (7.6)

We now introduce the modified parameters (recalling (5.9b))

p∗ = p0
1− η2ν2h2

1− η2ν2�h0
, 1− e2∗ =

�(1− η2ν2h2)
(1− η2ν2�h0)2

= 1− η2ν2h2

(1− η2ν2�h0)2
(1− e2

0)

(7.7a,b)

so that the above equation takes the form

Λ2

C2

1
1− η2ν2h2

u′2

= −
[(
u− 1

p∗

)2 − e2∗
p2∗

][
1− 2η2ν2h0p0u+ η2(1− ν2h1)p2

0u
2
]
. (7.8)

Accordingly, we set

u− 1
p∗

= e∗w
p∗

, u = 1
p∗
(1+ e∗w), u′ = e∗

p∗
w′ (7.9a,b,c)

and, in terms of w, equation (7.8) becomes

Λ2

C2

1
1− η2ν2h2

w′2 =

(1−w2)
[
1− 2η2ν2h0

p0

p∗
(1+ e∗w)+ η2(1− ν2h1)

p2
0

p2∗
(1+ e∗w)2

]
. (7.10)

In the square bracket on the right of (7.10), we now introduce p0/p∗ from
(7.7a). For this purpose, it suffices to take the formula merely to first order in
η2 so that we take

p0

p∗
= 1− η2ν2�h0

1− η2ν2h2
= 1+ η2ν2(h2 − �h0),(p0

p∗

)2 = 1+ 2η2ν2(h2 − �h0). (7.11)

If we then rearrange the expression within the square brackets of (7.10) as a
polynomial in e∗w, we have for that expression

1+ η2[(1− ν2h1)[1+ 2η2ν2(h2 − �h0)]− 2ν2h0[1+ η2ν2(h2 − �h0)]
]

+ 2η2[(1− ν2h1)[1+ 2η2ν2(h2 − �h0)]− ν2h0[1+ η2ν2(h2 − �h0)]
]
e∗w

+ η2(1− ν2h1)[1+ 2η2ν2(h2 − �h0)]
]
e2∗w2 (7.12a)
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and at this point it is appropriate to recall relations (7B.26) where we have
recorded (1−ν2h1) to first order in η2 and (h2−�h0) to zeroth order in η2. If
we introduce the formulae (7B.26), then the above expression takes the form

1+ η2
[
(1− ν2)[1+ η2ν2(12− 5�)]− 2ν2[1− η2[2(2− �)− ν2(12− 5�)]

]]
+ 2η2

[
(1− ν2)[1+ η2ν2(12− 5�)]− ν2[1− η2[2(2− �)− ν2(12− 5�)]

]]
e∗w

+ η2(1− ν2)[1+ η2ν2(12− 5�)]e2∗w2 (7.12b)

and we observe that the constant term and the coefficient of the quadratic
term are both positive in the range of interest, while the linear term has a
coefficient that assumes both positive and negative values in the range 0 ≤
ν ≤ 1. Accordingly, we introduce the notation

j2
w = 1+ η2

[
(1− ν2)[1+ η2ν2(12− 5�)]

− 2ν2[1− η2[2(2− �)− ν2(12− 5�)]
]]

(7.13a)

h = 1

j2
w

[
(1− ν2)[1+ η2ν2(12− 5�)]

− ν2[1− η2[2(2− �)− ν2(12− 5�)]
]]

(7.13b)

q2 = 1

j2
w

[
(1− ν2)[1+ η2ν2(12− 5�)]

]
(7.13c)

and, in particular, we note that when ν = 0, h is positive, while at ν = 1, h is
negative for small values of η.

With this notation equation (7.10) may now be written

Λ2

C2

1
1− η2ν2h2

1

j2
w
w′2 = (1−w2)

[
1+ 2η2he∗w + η2q2e2∗w2

]
. (7.14)

In order to complete the setting of the differential equation for a straightfor-
ward solution, we now make the final adjustments to the quadratic factors on
the right of equation (7.14). We first write

1−w2 = J2[(1− δw)2 − (w − δ)2] = J2(1− δ2)(1−w2) (7.15)

so that we immediately have

J2(1− δ2) = 1. (7.16)

A similar decomposition of the second quadratic requires that

1+ 2η2he∗w + η2q2e2∗w2 = J2[A(1− δw)2 + B(w − δ)2] (7.17)

which implies the three relations

J2(A+ Bδ2) = 1, J2δ(A+ B) = −η2he∗, J2(Aδ2 + B) = η2e2∗q2.
(7.18a,b,c)



168 Ch 5 The Earth Satellite — General Analysis

These may be combined, and in conjunction with (7.16) they yield

A− B = 1− η2e2∗q2,
1+ δ2

1− δ2
(A+ B) = 1+ η2e2∗q2,

δ
1− δ2

(A+ B) = −η2e∗h.

(7.19a,b,c)

Dividing equation (7.19c) by equation (7.19b) yields the equation for δ, namely

δ
1+ δ2

= − η2e∗h
1+ η2e2∗q2

, (7.20)

which may be solved as a quadratic in δ. However, for the approximation ap-
propriate for the present problem, we may proceed as follows. Noting that
δ = O(η2), we see that, to second order in η2, we have

δ = − η2e∗h
1+ η2e2∗q2

(1+ η4e2∗h2)

= −η2e∗h[1− η2e2∗q2 + η4e2∗(e2∗q4 + h2)] (7.21)

and hence

δ2 = η4e2∗h2[1− 2η2e2∗q2 + η4e2∗(3e2∗q4 + 2h2)] (7.22)

so that, to third order in η2, we have

1− δ2

1+ δ2
= 1− η4e2∗h2(1− 2η2e2∗q2)

1+ η4e2∗h2(1− 2η2e2∗q2)
= 1− 2η4e2∗h2(1− 2η2e2∗q2). (7.23)

From (7.19b) there follows that, to third order in η2,

A+ B = (1+ η2e2∗q2)[1− 2η4e2∗h2(1− 2η2e2∗q2)]

= 1+ η2e2∗q2 − 2η4e2∗h2 + 2η6e4∗q2h2 (7.24)

— the reason for going to third order in η2 will be evident in the calculation
of the B-factor: the combination of (7.19a) with (7.24) yields for the respective
factors

A = 1− η4e2∗h2, B = η2e2∗[q2 − η2h2 + η4e2∗q2h2], (7.25a,b)

both valid to second order in η2.
The introduction of (7.15) and (7.17) into equation (7.14) yields

Λ2

C2(1− η2ν2h2)
1

j2
w
w′2 =

J4[(1− δw)2 − (w − δ)2][A(1− δw)2 + B(w − δ)2] (7.26)

which, when we divide across by J4(1− δw)4, becomes
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Λ2

C2(1− η2ν2h2)
1

j2
w

[ w′

J2(1− δw)2
]2 =
[
1−

( w − δ
1− δw

)2][
A+ B

( w − δ
1− δw

)2]
. (7.27)

This latter form leads to the final transformation

v = w − δ
1− δw , w = v + δ

1+ δv (7.28a,b)

and differentiation of (7.28a) yields

v′ = (1− δ2)w′

(1− δw)2 = w′

J2(1− δw)2 (7.28c)

so that equation (7.27) becomes in terms of v

Λ2

C2(1− η2ν2h2)
1

j2
w
v′2 = (1− v2)(A+ Bv2) (7.29a)

= (1− v2)[(A+ B)− B(1− v2)]

= (A+ B)(1− v2)
[
1− B

A+ B (1− v
2)
]
. (7.29b)

(**) The procedure for dealing with equation (7.29) will depend on the
sign of B. Referring to formula (7.25b) for B, and recalling relations
(7.13) expressing the parameters q, h, and jw in terms of ν , it is clear
that, except for a narrow band near the equator (ν = 1) where 1− ν2 =
O(η2), B is clearly positive. Dealing with orbits in the narrow equatorial
band we defer to Chapter 6, where we focus on some special orbits. For
the remainder of this chapter, we confine our attention to the range of
orbits where

1− ν2 > O(η2) so that q2 − η2h2 + η4e2∗q2h2 ≥ 0 (***)

ensuring that B is positive.

Consistent with this exclusion of the orbits in the equatorial band, we refer
to equation (7.29b) and divide across by A+ B, to obtain

Λ2

C2(1− η2ν2h2)
1

j2
w

1
(A+ B)v

′2 = (1− v2)[1− k2
1(1− v2)] (7.30)

wherein we have written, to second order in η2

k2
1 =

B
A+ B = η

2e2∗
q2 − η2h2 + η4e2∗q2h2

1+ η2e2∗q2 − 2η4e2∗h2
. (7.31)

If we recall the definition of Λ2 from (6.14), we see that when we substitute for
(A+ B) from (7.24), the coefficient of v′2 in (7.30) may be written
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1

j2
1
= (1+ η2�)m
(1− η2ν2h2)[1+ η2e2∗(q2 − 2η2h2)]

1

j2
w

(7.32)

in which m is given by (6.6) and j2
w by (7.13a). Equation (7.30) for v now takes

the form [ dv
d( j1f)

]2 = 1

j2
1
v′2 = (1− v2)[1− k2

1(1− v2)] (7.33)

with solution

v = cn[j1(f +ω1) : k1] (7.34)

where ω1 is the constant of integration. If we define “perigee” as the point at
which v′ = 0 and choose the origin of the angle variable f at “perigee”, then
clearly

ω1 = 0 (7.35)

and the solution (7.34) reads

v = cn[j1f : k1] (7.36)

to be used below.
By combining (7.5b), (7.9b), and (7.28b), we obtain for the R-coordinate

R = 1
u
= p∗

1+ e∗w = p∗(1+ δv)
(1+ δe∗)+ (e∗ + δ)v (7.37)

which, on the introduction of the solution form (7.3b) for v , renders the solu-
tion for R in the form

R = p∗ 1+ δ cn[j1f : k1]
(1+ δe∗)+ (e∗ + δ) cn[j1f : k1]

. (7.38)

We may now make a further adjustment to the parameters to put the solution
in a somewhat neater form: we set

p = p∗
1+ δe∗ , e = e∗ + δ

1+ δe∗ (7.39a,b)

so that

e∗ = e− δ
1− δe (7.40)

and the solution (7.38) takes the final form

R = p1+ δ cn[j1f : k1]
1+ e cn[j1f : k1]

(7.41)

which takes the familiar Kepler form in the limit as η2 → 0, δ → 0, k1 → 0,
j1 → 1. We also note that for the reciprocal auxiliary variable u, we have
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pu = 1+ e cn[j1f : k1]
1+ δ cn[j1f : k1]

(7.42)

which will have repeated use in later sections.
We now revisit relations (7.21) and (7.31) for the parameters δ and k1. In

regard to (7.21), if we set

d0 = h[1− η2e2∗q2 + η4e2∗(e2∗q4 + h2)] (7.43)

then (7.21) takes the form

δ = −η2e∗d0. (7.44)

Introducing this form for δ into (7.39b), we have

e = e∗ − η2d0e∗
1− η2d0e2∗

= e∗ 1− η2d0

1− η2d0e2∗
(7.45a)

and hence, substituting for d0 from (7.43), we have, to second order in η2

e∗
e
= 1− η2d0e2∗

1− η2d0
= 1+ η2d0(1+ η2d0)(1− e2∗)

= 1+ η2h[1+ η2(h− q2e2∗)](1− e2∗). (7.45b)

If we write

d = e∗
e
d0 =

h
[
1+ η2h[1+ η2(h− q2e2∗)](1− e2∗)

][
1− η2e2∗q2 + η4e2∗(q2e4∗ + h2)

]
(7.46)

then we may recast (7.44) in the form

δ = −η2ed (7.47)

which will be the form used in later sections.
Further, on squaring (7.45b), then, to second order in η2 we have(e∗

e

)2 = 1+ 2η2h(1− e2∗)+ η4h(1− e2∗)[h(3− e2∗)− 2q2e2∗]. (7.48)

Referring now to formula (7.31) for k2
1, with (e∗e ) as given by (7.48) above, we

set

g2 =
(e∗
e

)2 · q2 − η2h2 + η4e2∗q2h2

1+ η2e2∗q2 − 2η4e2∗h2
(7.49)

so that formula (7.31) for k2
1 may be written

k2
1 = η2e2g2 (7.50)

which will be the form used in later sections.
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8 The Integration of the ϕ-Coordinate

From relation (3.6), we have the differential equation for ϕ in the form

ϕ̇ = C3

(R2 + b2) sin2 σ
(8.1)

and if we introduce the regularizing variable f , defined in (5.5) and (5.6) as the
independent variable, we have

ϕ′ = C3Λ R2 + b2 cos2 σ
(R2 + b2) sin2 σ

= C3Λ
[ 1

sin2 σ
− b2

R2 + b2

]
. (8.2)

When expressed in terms of the variable u = 1/R, equation (8.2) becomes

ϕ′ = C3Λ
[ 1

sin2 σ
− b2u2

1+ b2u2

]
= C3Λ

[ 1

sin2 σ
− b

2

p2

(pu)2

1+ ( bp )2(pu)2

]
. (8.3)

From (7.11a), taken together with (7B.25), we obtain, up to the terms of or-
der η2

p0

p∗
= 1+ η2ν2(h2 − �h0) = 1+ η2ν2(4− 2�)

= 1+ 2η2ν2(1+ e2
0) = 1+ 2η2ν2(1+ e2) (8.4a)

wherein we have noted from (7.7b) and (7.39b) that

e0 = e∗ +O(η2) = e+O(η2). (8.4b)

Furthermore, from (7.39a), we have, up to terms of η2,

p∗
p
= 1+ δe∗ = 1+ δe = 1− η2e2(1− 2ν2) (8.5a)

wherein we have noted from (7.21) and (7.13) that, except for terms of order η4,

δ = −η2e∗h = −η2e(1− 2ν2). (8.5b)

Combining (8.4a) with (8.5a), we have (as defining relation for jp), and again
up to terms of order η2,

jp = p0

p
= [1+ 2η2ν2(1+ e2)

][
1− η2e2(1− 2ν2)

]
= 1+ η2[2ν2 + e2(4ν2 − 1)

]
. (8.6)

On squaring, we have, up to terms of order η2,

j2
p =

(p0

p

)2 = 1+ 2η2[2ν2 + e2(4ν2 − 1)
]

(8.7a)

and it follows that
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b2

p2
=
( b
p0

)2(p0

p

)2 = η2j2
p (8.7b)

and we may write (8.3) in the form

ϕ′ = C3Λ
[ 1

sin2 σ
− η2j2

p
(pu)2

1+ η2j2
p(pu)2

]
(8.8)

and hence, up to terms of order η4,

ϕ′ = C3Λ
[ 1

sin2 σ
− η2j2

p(pu)2[1− η2(pu)2]
]
. (8.9)

It will prove convenient for the integration to have the factor N, as defined
by (6.20), multiplying the factor 1/ sin2 σ on the right side. Accordingly, we
rewrite (8.9) in the alternate form

Λ
C3
Nϕ′ = N

sin2 σ
− η2j2

pN(pu)2[1− η2(pu)2] (8.10)

and introducing Λ from (6.14), and N from (6.20), we see that

Λ2

C2
3
N2 = (1+ η2�)m

C2

C2
3

[
1− 1− ν2

(1+ η2�)m

]
= (1+ η2�)m− (1− ν2)

ν2
= ν2 + (1+ η2�)m− 1

ν2
= 1+O(η2). (8.11)

Hence, if we set

jN = [ν2 + (1+ η2�)m− 1]1/2

ν
(8.12a)

then using (6.6) we can show that

jN = 1+ 1
2η

2�[1+ 1
4η

2�(3− 4ν2)]; (8.12b)

and equation (8.10) may be written

jNϕ′ = N
sin2 σ

− η2j2
pN(pu)2[1− η2(pu)2]. (8.13)

Setting

ϕ′
1 =

N
sin2 σ

, ϕ′
2 = (pu)2 − η2(pu)4 (8.14a,b)

we have, in terms of ϕ1 and ϕ2

jNϕ′ =ϕ′
1 − η2j2

pNϕ
′
2 (8.15)

the components of which will be integrated separately: ϕ1 is to be calculated
to order η4 whereas for ϕ2 accuracy to order η2 will suffice. We deal with ϕ2

in Subsection 8A and with ϕ1 in Subsection 8B.
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8A. Determination of ϕ2

From the solution form (7.42), there follows that up to terms of order η2, we
may write

pu = [1+ e cn[j1f : k1]
][
[1− δ cn[j1f : k1]

]
= 1+ (e− δ) cn[j1f : k1]− eδ cn2[j1f : k1] (8A.1)

and as these are the only elliptic functions that appear, in the remainder of
this subsection we shall no longer exhibit the argument j1f or the modulus k1

except where necessary. If we now recall the approximate formula (8.5b) for δ,
we see that (8A.1) may be rewritten

pu = 1+ e[1+ η2(1− 2ν2)] cn+η2e2(1− 2ν2) cn2 . (8A.2)

There follows, from squaring relation (8A.2) and retaining terms up to order
η2, that we have

(pu)2 = 1+ 2e[1+ η2(1− 2ν2)] cn

+ e2[1+ 4η2(1− 2ν2)] cn2+2η2e3(1− 2ν2) cn3 (8A.3)

and by squaring relation (8A.3), we obtain the formula for (pu)4, which it
suffices to calculate to zeroth order in η2. Accordingly, we may write

(pu)4 = (1+ 2e cn + e2 cn2)2

= 1+ 4e cn + 6e2 cn2 + 4e3 cn3 + e4 cn4 . (8A.4)

We now combine (8A.3) and (8A.4) in accordance with (8.14b) to obtain

ϕ′
2 = (pu)2 − η2(pu)4

= (1− η2)+ 2[1− η2(1+ 2ν2)]e cn + [1− 2η2(1+ 4ν2)]e2 cn2

− 2η2(1+ 2ν2)e3 cn3 − η2e4 cn4 . (8A.5)

At this point, it is covenient to record a number of approximate relations
for the Jacobian elliptic functions. With modulus k and with the argument
indicated by the (arbitrary) variable F , then

dn = 1− 1
2k

2 sn2 +O(k4), 1− dn = 1
2k

2 sn2 +O(k4), (8A.6a,b)

1+ dn = 2[1− 1
4k

2 sn2]+O(k4), (8A.6c)

1
1+ dn

= 1
2[1+ 1

4k
2 sn2]+O(k4) = 1

2[dn+3
4k

2 sn2]+O(k4). (8A.6d)

For the Fourier series approximations, we first note the series for the quarter-
period K, given in terms of the modulus k, by the relation

π
2K

= 1− 1
4k

2 − 5
64k

4 +O(k6) (8A.7)
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in terms of which is defined the modified variable G related to the fundamental
variable F ; to second order in k2, this relation is expressed as

G = π
2K
F = [1− 1

4k
2 − 5

64k
4]F. (8A.8)

In terms of this variable G, the Fourier series approximations take the form

snF = sinG +O(k2), cnF = cosG +O(k2), dnF = 1+O(k2) (8A.9a,b,c)

and we also note the double-angle formula for cn2

cn2 F = dn 2F + cn 2F
1+ dn 2F

= 1
2

[
dn 2F + 3

4k
2 sn2 2F

]
[dn 2F + cn 2F]+O(k4) (8A.10)

where, in the latter we have utilized relation (8A.6d), valid to the first order in
k2; and we recall from (7.31) that k2

1 = O(η2).
We are now in a position to deal with the terms on the right of relation

(8A.5) for ϕ′
2. We first write

F1 = j1f , G1 = π
2K1

F1 =
[
1− 1

4k
2
1 − 5

64k
4
1 +O(η6)

]
F1. (8A.11a,b)

If we note relations (7.31), (7.13), (7.49), and (7B.25), we see that, except for
terms of order η4,

k2
1 = η2e2g2 = η2e2(1− ν2) (8A.12)

and hence, if we apply (8A.6b), it follows that, up to terms of the first order in
η2, we have

cnF1 = cnF1 dnF1 + (1− dnF1) cnF1 = cnF1 dnF1 + 1
2k

2
1 sn2 F1 cnF1

= cnF1 dnF1 + 1
2η

2e2(1− ν2) sin2G1 cosG1 (8A.13)

for the term with cn in (8A.5). For the term with cn2, we note from (8A.10) that
(omitting terms of O(η4)),

cn2 F1 = dn 2F1 + cn 2F1

1+ dn 2F1
= 1

2

[
dn 2F1 + 3

4k
2
1 sn2 2F1

]
[dn 2F1 + cn 2F1]

= 1
2

[
dn2 2F1 + cn 2F1 dn 2F1 + 3

4k
2
1 sn2 2F1(dn 2F1 + cn 2F1)

]
= 1

2

[
1+ cn 2F1 dn 2F1 − k2

1 sn2 2F1
(
1− 3

4[dn 2F1 + cn 2F1]
)]

= 1
2

[
1+ cn 2F1 dn 2F1 − k2

1 sn2 2F1
(
1− 3

4[1+ cos 2G1]
)]

= 1
2

[
1+ cn 2F1 dn 2F1 − 1

8k
2
1(1− cos 4G1)+ 3

4k
2
1 sin2 2G1 cos 2G1

]
= 1

2

[(
1− 1

8k
2
1

)+ cn 2F1 dn 2F1 + 1
8k

2
1 cos 4G1 + 3

4k
2
1 sin2 2G1 cos 2G1

]
= 1

2

[(
1− 1

8η
2e2(1− ν2)

)+ cn 2F1 dn 2F1

+ 1
8η

2e2(1− ν2)[cos 4G1 + 6 sin2 2G1 cos 2G1]
]
. (8A.14)
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For the terms with cn3 and cn4 in (8A.5), we note that except for terms of
order η2

cn3 F1 = cos3G1 = 1
4[3 cosG1 + cos 3G1] (8A.15a)

cn4 F1 = cos4G1 = 1
8[3+ 4 cos 2G1 + cos 4G1]. (8A.15b)

It remains to insert relations (8A.13)–(8A.15) into (8A.5).
We may list the terms consecutively, omitting terms of order η4, and apart

from the leading term, we have as follows:

2[1− η2(1+ 2ν2)]e cnF1 = 2e[1− η2(1+ 2ν2)] cnF1 dnF1

+ η2e3(1− ν2) sin2G1 cosG1 (8A.16a)

[1− 2η2(1+ 4ν2)]e2 cn2 F1 = 1
2e

2[1− 2η2(1+ 4ν2)− 1
8η

2e2(1− ν2)
]

+ 1
2e

2[1− 2η2(1+ 4ν2)] cn 2F1 dn 2F1

+ 1
16η

2e4(1−ν2)[cos 4G1+6 sin2 2G1 cos 2G1] (8A.16b)

2η2(1+ 2ν2)e3 cn3 F1 + η2e4 cn4 F1

= η2e3
[

1
2(1+ 2ν2)[3 cosG1 + cos 3G1]

+ 1
8e[3+ 4 cos 2G1 + cos 4G1]

]
. (8A.16c)

By the appropriate combination of the factors (8A.16) in (8A.5) we obtain, after
some rearrangement,

ϕ′
2 =

[(
1+ 1

2e
2)− η2[1+ e2(1+ 4ν2)+ 1

16e
4(7− e2)]

]
+ 2e[1− η2(1+ 2ν2)] cnF1 dnF1 + η2e3(1− ν2) sin2G1 cosG1

+ 1
2e

2[1− 2η2(1+ 4ν2)] cn 2F1 dn 2F1 + 3
8η

2e4 sin2 2G1 cos 2G1

− η2e3
[

1
2(1+ 2ν2)[3 cosG1 + cos 3G1]

+ 1
2e
[

cos 2G1 + 1
8(1+ ν2) cos 4G1

]]
. (8A.17)

If we recall (8A.11), we have that dF1 /df = j1 and dG1 /dF1 = 1 + O(η2),
and hence, up to terms of order η2, we have

ϕ′
2 = j1

dϕ2

dF1
= d

dF1

{[(
1+ 1

2e
2)− η2[1+ e2(1+ 4ν2)+ 1

16e
4(7− ν2)]

]
F1

+ 2e[1− η2(1+ 2ν2)] snF1 + 1
3η

2e3(1− ν2) sin3G1

+ 1
4e

2[1− 2η2(1+ 4ν2)] sn 2F1 + 1
16η

2e4(1− ν2) sin3 2G1

− η2e3
[

1
2(1+ 2ν2)[3 sinG1 + 1

3 sin 3G1]

+ 1
4e
[

sin 2G1 + 1
16(1+ ν2) sin 4G1

]]}
. (8A.18)

If we utilize the relation

sin3G1 = 1
4(3 sinG1 − sin 3G1) (8A.19)
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and rearrange, then the execution of the integration of (8A.18) yields (apart
from an additive constant)

j1ϕ2 =
[(

1+ 1
2e

2)− η2[1+ e2(1+ 4ν2)+ 1
16e

4(7− ν2)]
]
F1

+ 2e[1− η2(1+ 2ν2)] snF1 + 1
4e

2[1− 2η2(1+ 4ν2)] sn 2F1

− 1
4η

2e3[(5+ 13ν2) sinG1 + (1+ ν2) sin 3G1
]

− 1
64η

2e4
[
(13+ 3ν2) sin 2G1

+ (1+ ν2) sin 4G1 + (1− ν2) sin 6G1

]
(8A.20)

giving the formula for ϕ2 if we divide across by j1. In order to determine j1 to
the necessary accuracy, we first note from (6.6) that, except for terms of order
η4, we may write

m = 1− η2�(1− ν2), (1+ η2�)m = 1+ η2�ν2,
1

(1+ η2�)m
= 1− η2�ν2. (8A.21a,b,c)

From (7B.25), neglecting terms of order η2, we have

h0 = 1, h1 = 1, h2 = 4− � = 3+ e2 (8A.22a,b,c)

where in the latter, we have noted from (7.7b) and (7.39b) that to zeroth order
in η2 we may take

e∗ = e, � = 1− e2∗ = 1− e2. (8A.22d,e)

Introducing (8A.22) into relations (7.13) we have, to first order in η2, that

j2
w = 1+ η2(1− 3ν2) (8A.23a)

and from (7.49) and (7.13) we have, to zeroth order in η2, that

g2 = 1− ν2, h = 1− 2ν2. (8A.23b,c)

If we now utilize the approximate formulae (8A.22) and (8A.23) in relation
(7.32), then on expansion and rearrangement, we obtain for j2

1 the formula
valid to first order in η2,

j2
1 = 1+ η2[(1+ e2)− ν2(7+ e2)] (8A.24a)

and hence, also to first order in η2,

j1 = 1+ 1
2η

2[(1+ e2)− ν2(7+ e2)] (8A.24b)

1
j1
= 1− 1

2η
2[(1+ e2)− ν2(7+ e2)]. (8A.24c)

Then if we divide across by j1 in relation (8.20), and utilizing (8A.24c) we
rearrange, then up to first order in η2 we have (again apart from the additive
constant)
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ϕ2 =
[
(1+ 1

2e
2)− η2[1+ e2(1+ 4ν2)+ 1

16e
4(7− ν2)

]]
(f +ω)

+ 2e
[
1− 1

2η
2(3+ e2)(1− ν2)

]
snF1

+ 1
4e

2[1− 1
2η

2[(5+ e2)+ ν2(9− e2)]
]

sn 2F1

− 1
4η

2e3[(5+ 13ν2) sinG1 + (1+ ν2) sin 3G1
]

− 1
64η

2e4
[
(13+ 3ν2) sin 2G1

+ (1+ ν2) sin 4G1 + (1− ν2) sin 6G1

]
. (8A.25)

It will prove convenient to have the notation

a0 = (1+ 1
2e

2)− η2[1+ e2(1+ 4ν2)+ 1
16e

4(7− ν2)
]

(8A.26a)

a1 = 2e
[
1− 1

2η
2(3+ e2)(1− ν2)

]
(8A.26b)

a2 = 1
4e

2[1− 1
2η

2[(5+ e2)+ ν2(9− e2)]
]

(8A.26c)

and

b1 = 1
4e

3(5+ 13ν2), b2 = 1
64η

2e4(13+ 3ν2), (8A.27a,b)

b3 = 1
4e

3(1+ ν2), b4 = 1
64e

4(1+ ν2), (8A.27c,d)

b5 = 0, b6 = 1
64e

4(1− ν2) (8A.27e,f)

so that relation (8A.25) can be written in the form

ϕ2 = a0(f +ω)+
2∑
n=1

an snnF1 − η2
6∑
n=1

bn sinnG1 (8A.28)

which will be referred to later as the form for ϕ2.

8B. Determination of ϕ1

Turning to equation (8.14a) for ϕ1, we introduce the solution form (6.21) as
follows:

ϕ′
1 =

N
sin2 σ

= N
1− cos2 σ

= N
1− (1−N2) sn2[f +ω : k2]

= N
cn2[f +ω : k2]+N2 sn2[f +ω : k2]

= N nc2[f +ω : k2]
1+N2 sc2[f +ω : k2]

(8B.1)

and as the elliptic functions in this equation for ϕ′
1, all have argument f +ω

and modulus k2, these shall not be exhibited in this subsection except at the
end of the analysis. We now set

ϕ′
0 =

N nc2 dn
1+N2 sc2

(8B.2)

which is immediately integrable as
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ϕ0 = arctan
[
N sc[f +ω : k2]

]
(8B.3)

and we may write (8B.1) as

ϕ′
1 =ϕ′

0 + (1− dn)ϕ′
1 =ϕ′

0 +
1− dn2

1+ dn
ϕ′

1 =ϕ′
0 +

k2
2 sn2

1+ dn
ϕ′

1 (8B.4)

and if we apply formula (8A.6d) to the latter, we have

ϕ′
1 =ϕ′

0 + 1
2k

2
2 sn2 [1+ 1

4k
2
2 sn2 ]ϕ′

1 (8B.5)

valid to order k4
2.

By combining relations (6.15) and (6.20), we see that

k2
2

1−N2
= η2�
(1+ η2�)2m2

(1− ν2)
(1+ η2�)m

1− ν2
= η2�
(1+ η2�)m

= η2�0 (8B.6a)

where we define the quantity �0 by the relation

�0 = �
(1+ η2�)m

(8B.6b)

and we note in particular the cancellation of the (1 − ν2) factor. From (8B.1)
we now observe that

ϕ′
1 sn2 = N sc2

1+N2 sc2
= N

1−N2

[ nc2

1+N2 sc2
− 1

]
= 1

1−N2
(ϕ′

1 −N) (8B.7)

and furthermore

ϕ′
1 sn4 = sn2 1

1−N2
(ϕ′

1 −N) =
1

1−N2
[ϕ′

1 sn2−N sn2]

= 1
1−N2

[ 1
1−N2

(ϕ′
1 −N)−N sn2

]
= 1
(1−N2)2

(ϕ′
1 −N)−

N
1−N2

sn2 . (8B.8)

Noting relation (8B.5), we combine (8B.7) with (8B.8) in the form

[1
2k

2
2 sn2+1

8k
4
2 sn4 ]ϕ′

1 =
1
2η

2�0(ϕ′
1 −N)+ 1

8(η
2�0)2(ϕ′

1 −N)− 1
8(η

2�0)2N(1−N2) sn2 (8B.9)

where we have repeatedly applied relation (8B.6a). We now rearrange relation
(8B.5) and introduce (8B.9) to obtain

ϕ′
0 =

[
1− 1

2η
2�0(1+ 1

4η
2�0)

]
ϕ′

1

+ 1
2η

2�0(1+ 1
4η

2�0)N + 1
8(η

2�0)2N(1−N2) sn2 . (8B.10)

It is consistent with an approximation to order η4 to take, in the last term of
(8B.10),
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sn2[f +ω : k2] = sin2G2 = 1
2[1− cos 2G2] (8B.11a)

where

G2 = π
2K2

(f +ω) = [1− 1
4k

2
2 − 5

64k
4
2

]
(f +ω) (8B.11b)

so that we can replace (8B.10) by

ϕ′
0 =

[
1− 1

2η
2�0(1+ 1

4η
2�0)

]
ϕ′

1

+ 1
2η

2�0N
[
1+ 1

8η
2�0(3−N2)

]− 1
16(η

2�0)2N(1−N2) cos 2G2. (8B.12)

We may write the above relation (8B.12) in terms of the more basic parameters
� and e by proceeding as follows. If we introduce (8A.21c) into both (8B.6) and
(6.20), we find, up to first order in η2,

�0 = �(1− η2�ν2), 1−N2 = (1− ν2)(1− η2�ν2) (8B.13a,b)

and hence

N2 = ν2[1+ η2�(1− ν2)]. (8B.13c)

There follows that, up to first order in η2,

�0
(
1+ 1

4η
2�0
) = �[1+ 1

4η
2�(1− 4ν2)

]
(8B.14a)

�0
[
1+ 1

8η
2�0(3−N2)

] = �[1+ 3
8η

2�(1− 3ν2)
]
. (8B.14b)

It is therefore consistent with an approximation to second order in η2 to re-
place (8B.12) by

ϕ′
0 =

[
1− 1

2η
2�[1+ 1

4η
2�(1− 4ν2)]

]
ϕ′

1

+ 1
2η

2�N
[
1+ 3

8η
2�(1− 3ν2)

]− 1
16η

4N�2(1− ν2) cos 2G2. (8B.15)

If we set

j0 = 1− 1
2η

2�
[
1+ 1

4η
2�(1− 4ν2)

]
(8B.16a)

β0 = 1
2�
[
1+ 3

8η
2�(1− 3ν2)

]
, β2 = 1

32�
2(1− ν2) (8B.16b,c)

then we may rewrite (8B.15) as

ϕ′
0 = j0ϕ′

1 + η2Nβ0 − 2η4Nβ2 cos 2G2. (8B.17)

On performing the integration of (8B.17), we transpose terms to obtain, apart
from an additive constant,

j0ϕ1 =ϕ0 − η2Nβ0(f +ω)+ η4Nβ2 sin 2G2 (8B.18)

completing the integration for ϕ1.
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— � —

Returning to equation (8.15) then, apart from an additive constant, we have
the integrated form

jNϕ =ϕ1 − η2Nj2
pϕ2. (8.16)

Noting relation (8B.18), we see that it is convenient to multiply across (8.16) by
the factor j0 to obtain

j0jNϕ = j0ϕ1 − η2Nj0j2
pϕ2. (8.17)

Taking j2
p from (8.7a) and j0 from (8B.16a), it follows immediately that to first

order in η2, we have for the relation defining ju (noting � = 1− e2
0 = 1− e2∗ +

O(η2) = 1− e2 +O(η2)),

ju = j0j2
p = 1− 1

2η
2[1+ 3e2 − 8ν2(1+ 2e2)]. (8.18)

Moreover, from combining (8.12b) with (8B.16a), then for the defining relation
for j3 (to second order in η2), we have

j3 = j0jN =
[
1− 1

2η
2�[1+ 1

4η
2�(1− 4ν2)]

][
1+ 1

2η
2�[1+ 1

4η
2�(3− 4ν2)]

]
= 1+O(η6). (8.19)

With ju as given by (8.18) and j3 given by (8.19), we can replace (8.17) by

ϕ(= j3ϕ) = j0ϕ1 − η2Njuϕ2 (8.20)

where we still keep the additive constant in reserve.
We now introduce j0ϕ1 from (8B.18) and ϕ2 from (8A.28) into (8.20) to

obtain

ϕ =ϕ0 − η2Nβ0(f +ω)+ η4Nβ2 sin 2G2

− η2Nju
[
a0(f +ω)+

2∑
n=1

an snnF1 − η2
6∑
n=1

bn sinnG1

]

=ϕ0 − η2N(β0 + jua0)(f +ω)− η2Nju
2∑
n=1

an snnF1

+ η4N
[
ju

6∑
n=1

bn sinnG1 + β2 sin 2G2

]
. (8.21)

We now introduce the additive constant in a “distributed” manner and, recall-
ing relations (8A.11) and (8B.11b), we replace (8.21) by

(j3)(ϕ −Ω0) =ϕ0 − η2N(β0 + jua0)(f +ω)

− η2Nju
2∑
n=1

an
(
sn[nj1f : k1]+ sn[nj1ω : k1]

)

+ η4N
[
ju

6∑
n=1

bn
(

sin
nπ
2K1

j1f + sin
nπ
2K1

j1ω
)
+ β2 sin

π
K2
(f +ω)

]
(8.22)
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and recalling the solution form (8B.3) for ϕ0, we see that f = −ω corresponds
to ϕ = Ω0 — the line of the first modal crossing. We may now define the angleΩ by setting

Ω = Ω0 − η2N(β0 + jua0)(f +ω)

− η2Nju
2∑
n=1

an
(
sn[nj1f : k1]+ sn[nj1ω : k1]

)

+ η4N
[
ju

6∑
n=1

bn
(

sin
nπ
2K1

j1f + sin
nπ
2K1

j1ω
)
+ β2 sin

π
K2
(f +ω)

]
. (8.23)

Then when we introduce ϕ0 from (8B.3), we see that (8.23) can be replaced by

tan(ϕ −Ω) = N sc[f +ω : k2] (8.24)

which is clearly the appropriate generalization of the formula for longitude in
the Kepler case.

9 The Time-Angle Relation

From the defining relation (5.5), we have

Λ dt
df

= R2 + b2 cos2 σ = p2
[(R
p

)2 + b
2

p2
cos2 σ

]
(9.1a)

so that

Λ
p2

dt
df

=
(R
p

)2 + b
2

p2
cos2 σ. (9.1b)

We recall from (6.14) that

Λ2 = (1+ η2�)mC2 = (1+ η2�)mμ
C2

μ
= (1+ η2�)mμp0 (9.2)

where in the latter we have introduced p0 from (5.2b). Introducing the factor
n, corresponding to the mean motion in the Kepler case, through the defining
relation

μ = n2a3 (9.3)

which, together with relation (5.9b) for p0, when introduced into (9.2) yields

Λ2 = (1+ η2�)mn2a4(1− e2
0) (9.4)

so that
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Λ = √(1+ η2�)mna2
√

1− e2
0 (9.5)

and hence, again noting (5.9b),

Λ
p2

=
√
(1+ η2�)m

p2
0

p2
·n · 1

(1− e2
0)3/2

=
√
(1+ η2�)m

(p0

p∗

)2(p∗
p

)2[ 1− e2

1− e2∗
· 1− e2∗

1− e2
0

]3/2 n
(1− e2)3/2

. (9.6)

By combining relations (7.7a and b), we see that

(p0

p∗

)2[1− e2∗
1− e2

0

]3/2 = (1− η2ν2�h0)2

(1− η2ν2h2)2
· (1− η

2ν2h2)3/2

(1− η2ν2�h0)3

= 1
(1− η2ν2h2)1/2(1− η2ν2�h0)

(9.7a)

and a corresponding combination, of relations (7.39a and b) with relation
(7.40), yields(p∗

p

)2( 1− e2

1− e2∗

)3/2 = (1− δ2)2

(1− δe)2 ·
(1− δe)3
(1− δ2)3/2

= (1− δ2)1/2(1− δe) (9.7b)

and hence(p0

p∗

)2(p∗
p

)2[ 1− e2

1− e2∗
· 1− e2∗

1− e2
0

]3/2 = (1− δ2)1/2(1− δe)
(1− η2ν2h2)1/2(1− η2ν2�h0)

. (9.8)

Accordingly, if we set

jT =
√
(1+ η2�)m

(1− δ2)1/2

(1− η2ν2h2)1/2
· 1− δe

1− η2ν2�h0
(9.9)

then relation (9.6) can be written as

Λ
p2

= jT n
(1− e2)3/2

. (9.10)

If we further set (again noting (7.7a) and (7.39))

p0

p∗
p∗
p
= 1− η2ν2�h0

1− η2ν2h2
· 1− δ2

1− δe = jν (9.11)

then the introduction of (9.10) and (9.11) into the differential equation (9.1b)
yields (on recalling (5.9a))

jTn
dt
df

= (1− e2)3/2
[(R
p

)2 + η2j2
ν cos2 σ

]
(9.12)

which, on integration, takes the form

jTn(t − t0) = (1− e2)3/2
∫ f

0

[(R
p

)2 + η2j2
ν cos2 σ

]
df (9.13)
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where t0 is the constant of integration. Since t = t0 corresponds to f = 0, t0 is
the time of the first “pericenter” passage.

From (7.41), recalling that (R/p) is expressed in terms of f1 = j1f and from
(6.21) that cosσ is expressed in terms of (f +ω), it will prove convenient to
multiply across (9.13) by j1. If we then define the mean anomaly M and the
auxiliary factor jN by setting

M = j1jTn(t − t0), jN = j1j2
ν (9.14a,b)

then the integrated relation (9.13) takes the form

M = (1− e2)3/2
∫ (R
p

)2
df1+η2jN(1− e2)3/2

∫
cos2 σ df . (9.15)

It will be necessary to deal with the two terms separately. Accordingly, we set

M0 = (1− e2)3/2
∫ (R
p

)2
df1, M11 =

∫
cos2 σ df (9.16a,b)

so that (9.15) reads

M = M0 + η2jN(1− e2)3/2M11. (9.17)

We now evaluate the two components individually: M0 is to be evaluated to
second order in η2, while M11 is to be evaluated to first order.

Evaluation of M0

If we introduce the solution form (7.41) for (R/p) into the defining relation
(9.16a) for M0, we have

M0 = (1− e2)3/2
∫ [1+ δ cn[f1 : k1]

1+ e cn[f1 : k1]

]2
df1 = (1− e2)3/2I0 (9.18)

and we note that all elliptic functions appearing in (9.18) have argument f1

and modulus k1; accordingly, these will not be exhibited in this subsection
except where it becomes necessary. Noting relation (7.47) for δ, it can readily
be checked that[1+ δ cn

1+ e cn

]2 = (1+ η2d)2

(1+ e cn)2
− 2η2d(1+ η2d)

1+ e cn
+ η4d2. (9.19)

Moreover, a straightforward differentiation shows that

d
df1

[ e sn
1+ e cn

]
=
[ 1

1+ e cn
− 1− e2

(1+ e cn)2
]

dn (9.20)

from which there follows

1− e2

(1+ e cn)2
= 1

1+ e cn
− 1

dn
d

df1

[ e sn
1+ e cn

]
. (9.21)
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If we substitute for 1/(1 + e cn)2 from (9.21) into (9.19), we can rearrange: on
setting

j4 = 1+ 2η2de2 − η4d2(1− 2e2) (9.22a)

j5 = (1+ η2d)2 = 1+ 2η2d+ η4d2 (9.22b)

we find that[1+ δ cn
1+ e cn

]2 = 1
1− e2

[
j4

1
1+ e cn

− j5
1

dn
d

df1

( e sn
1+ e cn

)]
+ η4 d2 (9.23)

so that the evaluation of the integral in (9.18) is reduced to the evaluation of
the two integrals

I1 =
∫

df1

1+ e cn
, I2 =

∫
1

dn
d

df1

[ e sn
1+ e cn

]
df1 . (9.24a,b)

For the evaluation of I1, we note that

I1 =
∫

dn
1+ e cn

df1+
∫
(1− dn)df1

1+ e cn

=
∫

dn
1+ e cn

df1+
∫
k2

1 sn2

1+ e cn
1

1+ dn
df1 = I11 + k2

1I12 (9.25)

where the definitions of I11 and I12 are self-evident. It can readily be verified
that

I11 =
∫

dn
1+ e cn

df1 = 1√
1− e2

arctan

√
1− e2 sn
e+ cn

(9.26a)

and we record for I12

I12 =
∫

sn2

1+ e cn
1

1+ dn
df1 (9.26b)

which remains to be evaluated. Turning to relation (9.24b) for I2, we integrate
by parts to obtain

I2 = 1
dn

e sn
1+ e cn

−
∫

e sn
1+ e cn

k2
1 sn cn

dn2 df1 = I22 − k2
1I21 (9.27)

with

I22 = 1
dn

e sn
1+ e cn

, I21 =
∫
e sn2 cn
1+ e cn

1

dn2 df1. (9.28a,b)

Recapitulating, for the integral I0 indicated in (9.18) we have, on noting (9.23),
(9.25), and (9.27),

I0 = 1
1− e2

[j4I1 − j5I2]+ η4d2f1

= 1
1− e2

[
j4I11 − j5I22 + k2

1[(1+ 2η2de2)I12 + (1+ 2η2d)I21]
]
+ η4d2f1

= 1
1− e2

[
j4I11−j5I22+k2

1[(1+2η2d)(I12+I21)]

−2η2d(1− e2)I12

]
+η4d2f1 (9.29)
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where, in the factor multiplying k2
1, we have utilized the fact that it is con-

sistent with an approximation to second order in η2 to neglect terms with η4

from j4 and j5 as these appear in that factor. The approximation requires that
(I12 + I21) be evaluated to first order in η2, whereas, for the last term with I12,
an evaluation to zeroth order in η2 suffices.

Combining (9.26b) and (9.28b), we see that

I12 + I21 =
∫ [ sn2

1+ e cn
1

1+ dn
+ e sn2 cn

1+ e cn
1

dn2

]
df1

=
∫

sn2

1+ e cn

[ 1
1+ dn

+ e cn

dn2

]
df1

=
∫

sn2

1+ e cn

[ 1
1+ dn

− 1

dn2 +
1+ e cn

dn2

]
df1

=
∫

sn2

1+ e cn

[ 1
1+ dn

− 1

dn2

]
df1 +

∫
sn2

dn2 df1

=
∫

sn2

dn2 df1 +
∫

1
e2

[
1− e cn− 1− e2

1+ e cn

][ 1
1+ dn

− 1

dn2

]
df1. (9.30)

Next, we note the following relations:

1

dn2 = dn+k2
1

sn2

dn2

[
1+ dn2

1+ dn

]
= dn+3

2k
2
1 sn2+O(k4

1) (9.31a)

and, alternatively

1

dn2 = 1+ k2
1

sn2

dn2 = 1+ k2
1 sn2+O(k4

1); (9.31b)

also

1
1+ dn

= 1
2

[
dn+k2

1 sn2 2+ dn
(1+ dn)2

]
= 1

2

[
dn+3

4k
2
1 sn2]+O(k4

1) (9.32a)

and, alternatively,

1
1+ dn

= 1
2

[
1+ k2

1
sn2

(1+ dn)2
]
= 1

2

[
1+ 1

4k
2
1 sn2]+O(k4

1). (9.32b)

By combining the forms (9.31a) with (9.32a) and also the form (9.31b) with
(9.32b), we obtain the two forms for the difference within the second bracket
in (9.30). Reversing the order in the difference and neglecting terms of order
k4

1, we have the alternate forms

1

dn2 −
1

1+ dn
= 1

2

[
dn+9

4k
2
1 sn2] (9.33a)

= 1
2

[
1+ 7

4k
2
1 sn2]. (9.33b)

These relations (9.31) to (9.33) are now to be introduced judiciously into the
integrals in (9.30). In the first integral in (9.30), we use the form (9.31b) for
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1/dn2; in the second integral, with the term unity in the first bracket, we use
the form (9.33b) for the multiplying difference; and with the second and third
terms in that first bracket, we use the form (9.33a) for the multiplying differ-
ence. Then the integral (9.30) may be written

I12 + I21 =
∫
(sn2+k2

1 sn4)df1 − 1
2e2

∫ [
1+ 7

4k
2
1 sn2]df1

+ 1
2e2

∫ [ 1− e2

1+ e cn
+ e cn

][
dn+9

4k
2
1 sn2

]
df1. (9.34)

If we introduce k2
1 from (7.50) into the above, and recall the defining relation

(9.26a) for I11, then on rearrangement, we see that we may rewrite (9.34) as

I12 + I21 =
(
1− 7

8η
2g2)

∫
sn2 df1 + η2g2e2

∫
sn4 df1 − 1

2e2

∫
df1 + 1− e2

2e2
I11

+ 1
2e

∫
cn dn df1 + 9

8η
2g2e

∫
sn2 cn df1 + 9

8η
2g2(1− e2)

∫
sn2

1+ e cn
df1

= 1− e2

2e2
I11 + 1

2e
sn− 1

2e2
f1 +

(
1− 7

8η
2g2)∫sn2 df1 + η2g2e2

∫
sn4 df1

+ 9
8η

2g2e
∫
sn2 cn df1 + 9

8η
2g2(1− e2)

∫
sn2

1+ e cn
df1. (9.35)

We further observe from (9.26b), when taken together with (9.32b), we obtain
the zeroth order approximation for I12 in the form

I12 = 1
2

∫
sn2

1+ e cn
df1 (9.36)

from which we have omitted all terms of order η2.
We are now in a position to form the combination constituting the factor

multiplying k2
1 within the square bracket in (9.29). Neglecting terms of order

η4, on utilizing (9.35) and (9.36) we have, on regrouping,

(1+ 2η2d)(I12 + I21)− 2η2d(1− e2)I12 =

(1+ 2η2d)
[1− e2

2e2
I11 + 1

2e
sn− 1

2e2
f1

]
+ [1+ η2(2d− 7

8g
2)] ∫ sn2 df1 + η2g2e2

∫
sn4 df1

+ 9
8η

2g2e
∫

sn2 cn df1 − η2(1− e2)
(
d− 9

8g
2) ∫ sn2

1+ e cn
df1. (9.37)

It remains to evaluate
∫

sn2 df1 to first order in η2 and the remaining integrals
to zeroth order in η2.

For the evaluation of
∫

sn2 df1 to first order in η2, we start from the double
argument relation

sn2[f1 : k1] = 1− cn[2f1 : k1]
1+ dn[2f1 : k1]

(9.38)
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and hence∫
sn2[f1 : k1]df1 =

∫
df1

1+ dn[2f1 : k1]
−
∫

cn[2f1 : k1]df1

1+ dn[2f1 : k1]
. (9.39)

In reducing the integrals on the right side, we use the analog for the double
angle of relations (9.32). In the first integral we apply the analog of (9.32b),
while in the second integral we apply the analog of (9.32a); we find∫

sn2[f1 : k1]df1 = 1
2

∫ (
1+ 1

4k
2
1 sn2[2f1 : k1]

)
df1

− 1
2

∫
cn[2f1 : k1]

(
dn[2f1 : k1]+ 3

4k
2
1 sn2[2f1 : k1]

)
df1

= 1
2f1+ 1

8k
2
1

∫
sn2[2f1 : k1]− 1

4 sn[2f1 : k1]− 3
8k

2
1

∫
cn[2f1 : k1] sn2[2f1 : k1]df1

= 1
2f1 − 1

4 sn[2f1 : k1]+ 1
8k

2
1

∫ [
sin2 2G1 − 3 sin2 2G1 cos 2G1

]
dG1 (9.40a)

where, in accordance with the level of approximation, G1 is given by (8A.11),

G1 = π
2K1

f1 =
[
1− 1

4k
2
1 − 5

64k
4
1

]
f1 (9.40b)

and it is consistent with the order of approximation to replace df1 by dG1 in
the latter integral. Noting that

sin2 2G1 = 1− cos 4G1

2
(9.41)

we can execute the integration and regroup to obtain∫
sn2[f1 : k1]df1 =

1
2

(
1+ 1

8k
2
1

)
f1 − 1

4 sn[2f1 : k1]− 1
16k

2
1

[sin 4G1

4
+ sin3 2G1

]
(9.42)

and noting that

sin3 2G1 = 1
4[3 sin 2G1 − sin 6G1] (9.43)

we finally have∫
sn2[f1 : k1]df1 =
1
2

(
1+ 1

8k
2
1

)
f1 − 1

4 sn[2f1 : k1]− 1
64k

2
1

[
3 sin 2G1 + sin 4G1 − sin 6G1

]
(9.44)

valid to the first order in η2.
For the three remaining integrals in (9.37), to be calculated to zeroth order

in η2, we have
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sn4[f1 : k1]df1 =

∫
sin4G1 df1 =

∫ [3
8 − 1

2 cos 2G1 + 1
8 cos 4G1

]
df1

= 3
8f1 − 1

2

∫
cos 2G1 dG1 + 1

8

∫
cos 4G1 dG1

= 3
8f1 − 1

4 sin 2G1 + 1
32 sin 4G1 (9.45a)

∫
sn2[f1 : k1] cn[f1 : k1]df1 =

∫
sin2G1 cosG1 dG1

= 1
3 sin3G1 = 1

4 sinG1 − 1
12 sin 3G1 (9.45b)

∫
sn2[f1 : k1]df1

1+ e cn[f1 : k1]
= 1
e2

∫ [
1− e cn[f1 : k1]− 1− e2

1+ e cn[f1 : k1]

]
df1

= 1
e2
f1 − 1

e

∫
cosG1 dG1 − 1− e2

e2
I11

= 1
e2
f1 − 1

e
sinG1 − 1− e2

e2
I11. (9.45c)

If we introduce relations (9.44)–(9.45) into (9.37) and regroup the terms, then,
after considerable rearrangement, we obtain

(1+ 2η2d)(I12 + I21)− 2η2d(1− e2)I12

= 1− e2

2e2
I11
[
(1+ 2η2d)+ 2η2(1− e2)

(
d− 9

8g
2)]

+ 1+ 2η2d
2e

sn[f1 : k1]− 1
4

[
1+ η2(2d− 7

8g
2)] sn[2f1 : k1]

− 1− e2

2e2
f1
[
1+η2(4d− 9

4g
2+ 7

8g
2e2)]− 1

64η
2g2e2[19 sin 2G1−sin 4G1−sin 6G1]

+ η2 1
e

[[
d(1− e2)− 9

32g
2(4− 5e2)

]
sinG1 − 3

32g
2e2 sin 3G1

]
. (9.46)

If we multiply across by k2
1 = η2g2e2 (7.50), then for the correction term within

the square bracket in (9.29), we have, on a slight rearrangement,

k2
1

[
(1+ 2η2d)(I12 + I21)− 2η2d(1− e2)I12

]
= 1

2η
2g2(1− e2)

[
(1+ 2η2d)+ 2η2(1− e2)

(
d− 9

8g
2)]I11

+ 1
2η

2g2e(1+ 2η2d) sn[f1 : k1]− 1
4η

2g2e2[1+ η2(2d− 7
8g

2)] sn[2f1 : k1]

− 1
2η

2g2(1− e2)
[
1+ η2(4d− 9

4g
2 + 7

8g
2e2)]f1

− 1
64η

4g4e4[19 sin 2G1 − sin 4G1 − sin 6G1]

+ η4g2e
[
d(1− e2)− 9

32g
2(4− 5e2)

]
sinG1 − 3

32η
4g4e3 sin 3G1. (9.47)
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The above can be put in more compact form if we set

q1 = 1
2g

2e(1+ 2η2d), q2 = −1
4g

2e2[1+ η2(2d− 7
8g

2) (9.48a,b)

m1 = −g2e
[
d(1− e2)− 9

32g
2(4− 5e2)

]
, m2 = 19

64g
4e4 (9.49a,b)

m3 = 3
32g

4e3, m4 = − 1
64g

4e4, m5 = 0, m6 = − 1
64g

4e4 (9.49c,d,e,f)

j6 = 1+ 2η2d+ 2η2(1− e2)(d− 9
8g

2)

= 1+ 2η2[d+ (1− e2)(d− 9
8g

2)
]

(9.50)

in terms of which (9.47) may be written

k2
1

[
(1+ 2η2d)(I12 + I21)− 2η2d(1− e2)I12

]
= 1

2η
2g2(1− e2)j6I11 − 1

2η
2g2(1− e2)

[
1+ η2(4d− 9

4g
2 + 7

8g
2e2)]f1

+ η2
2∑
n=1

qn sn[nf1 : k1]− η4
6∑
n=1

mn sinnG1. (9.51)

Observing how the above factor appears in (9.29), we divide across by (1− e2)
and add the factor η4d2f1 to the result, to obtain

k2
1

1− e2

[
(1+ 2η2d)(I12 + I21)− 2η2d(1− e2)I12

]
+ η4d2f1

= 1
2η

2g2j6I11 − 1
2η

2
[
g2 − η2[2d2 − g2(4d− 9

4g
2 + 7

8g
2e2)]]f1

+ 1
1− e2

[
η2

2∑
n=1

qn sn[nf1 : k1]− η4
6∑
n=1

mn sinnG1

]
. (9.52)

For the coefficient in the secular term, we introduce the notation

g2
m = g2 − η2[2d2 − g2(4d− 9

4g
2 + 7

8g
2e2)

]
(9.53)

whereby (9.52) may be written

k2
1

1− e2

[
(1+ 2η2d)(I11 + I22)− 2η2d(1− e2)I12

]
+ η4d2f1

= 1
2η

2j6g2I11 − 1
2η

2g2
mf1

+ 1
1− e2

η2
[ 2∑
n=1

qn sn[nf1 : k1]− η2
6∑
n=1

mn sinnG1

]
. (9.54)

It follows from (9.29) that
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I0 = 1
1− e2

[j4I11 − j5I22]+ 1
2η

2j6g2I11 − 1
2η

2g2
mf1

+ 1
1− e2

η2
[ 2∑
n=1

qn sn[nf1 : k1]− η2
6∑
n=1

mn sinnG1

]

= 1
1− e2

[
[j4 + 1

2η
2j6g2(1− e2)]I11 − j5I22

]− 1
2η

2g2
mf1

+ 1
1− e2

η2
[ 2∑
n=1

qn sn[nf1 : k1]− η2
6∑
n=1

mn sinnG1

]
(9.55)

and hence, from (9.18), we have

M0 =
√

1− e2
[
[j4 + 1

2η
2j6g2(1− e2)]I11 − j5I22

]
− 1

2η
2g2

m(1− e2)3/2f1

+ η2
√

1− e2

[ 2∑
n=1

qn sn[nf1 : k1]− η2
6∑
n=1

mn sinnG1

]
. (9.56)

If we introduce I11 from (9.26a) and I22 from (9.28a), we obtain

M0 = [j4 + 1
2η

2j6g2(1− e2)] arctan

√
1− e2 sn[f1 : k1]
e+ cn[f1 : k1]

− j5e
√

1− e2 1
dn[f1 : k1]

sn[f1 : k1]
1+ e cn[f1 : k1]

− 1
2η

2g2
m(1− e2)3/2f1

− η2
√

1− e2

[ 2∑
n=1

qn sn[nf1 : k1]− η2
6∑
n=1

mn sinnG1

]
(9.57)

as the final form for M0.

Evaluation of M11

For the evaluation of M11, which it suffices to carry out to first order in η2, we
introduce the solution form (6.21) for cosσ into the defining relation (9.16b)
for M11. Setting F2 = f +ω, we have

M11 =
∫
(1−N2) sn2[F2 : k2]dF2 = (1−N2)

∫
sn2[F2 : k2]dF2. (9.58)

In the above integral, the elliptic function has modulus k2 — as will all elliptic
functions appearing in this subsection. Accordingly, the modulus k2 will be
exhibited only as it becomes necessary. In effecting the integration, we follow
the procedure that led from (9.39) to (9.44). From the double-angle formula,
we have

sn2 F2 = 1− cn 2F2

1+ dn 2F2
= 1

1+ dn 2F2
− cn 2F2

1+ dn 2F2
. (9.59)

In the first factor we apply relation (9.32b), and in the second factor we apply
relation (9.32a). To first order in η2, we find
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sn2 F2 = 1
2

[
1+ 1

4k
2
2 sn2 2F2

]− 1
2 cn 2F2

[
dn 2F2 + 3

4k
2
2 sn2 2F2

]
= 1

2[1− cn 2F2 dn 2F2]+ 1
8k

2
2[sn2 2F2 − 3 sn2 2F2 cn 2F2]

= 1
2[1− cn 2F2 dn 2F2]+ 1

8k
2
2[sin2 2G2 − 3 sin2 2G2 cos 2G2] (9.60)

where the relation of G2 to F2 is given by (8A.11), namely

G2 = π
2K2

F2 =
[
1− 1

4k
2
2 − 5

64k
4
2

]
F2. (9.61)

Noting that sin2 2G2 = 1
2(1− cos 4G2), we can rewrite (9.60) in the form

sn2 F2 = 1
2

(
1+ 1

8k
2
2

)− 1
2 cn 2F2 dn 2F2 − 1

16k
2
2

[
cos 4G2 + d

dF2
(sin3 2G2)

]
= 1

2

(
1+ 1

8k
2
2

)− 1
4

d
dF2

(sn 2F2)− 1
64k

2
2

d
dF2

[sin 4G2 + 4 sin3 2G2]

= 1
2

(
1+ 1

8k
2
2

)
− d

dF2

[
1
4 sn 2F2 + 1

64k
2
2[3 sin 2G2 + sin 4G2 − sin 6G2]

]
(9.62)

and hence, on integration, apart from an additive constant, we have∫
sn2 F2 dF2 =

1
2

(
1+ 1

8k
2
2

)
F2 − 1

4 sn[2F2 : k2]− 1
64k

2
2[3 sin 2G2 + sin 4G2 − sin 6G2]. (9.63)

The additive constant is to be chosen so that the integral vanishes for f = 0.
If we let

γ2 =
[
1− 1

4k
2
2 − 5

64k
4
2

]
ω (9.64)

and set

M1 =
∫ f

0
sn2[f +ω : k2]df (9.65)

= 1
2

(
1+ 1

8k
2
2

)
f − 1

4

[
sn[2(f +ω) : k2]− sn[2ω : k2]

]
− 1

64k
2
2

[
3(sin 2G2 − sin 2γ2)+ (sin 4G2 − sin 4γ2)− (sin 6G2 − sin 6γ2)

]
then, from (9.58)

M11 = (1−N2)M1. (9.66)

— � —

With M0 given by (9.57) and M1 given by (9.65), then for the mean anomaly
M defined by relation (9.17), we have

M = M0 + η2jN(1− e2)3/2(1−N2)M1, (9.67)

completing the formula for the time-angle relation to order η4.



6

The Earth Satellite — Some Special Orbits

What makes the “critical inclination” so critical?

— Mathematics student

In this chapter, we discuss some particular orbits for the Earth satellite. Specif-
ically, we investigate equatorial orbits, polar orbits, and orbits near the so-
called “critical” inclination.

1 Orbits in the Near Equatorial Band

Prior to investigating the equatorial orbit, it is necessary to return to equation
(7.29) of Chapter 5 and to develop the procedure for the reduction of that
equation when the parameter B is negative, i.e., when

B = η2e2∗[q2 − η2h2 + η4e2∗q2h2] ≤ 0 (1.1a)

where we have recalled (7.25b) of Chapter 5. Referring to the defining relations
for h and q in (7.13) of Chapter 5, it is clear that the range (1.1a) includes the
equatorial orbit, and we note that

B → −η4e2∗h2 (1.1b)

when q → 0 as ν → 1.
Taking (7.29) of Chapter 5 as the starting point, if we divide across by A,

then the equation reads

Λ2

C2(1− η2ν2h2)
1

j2
w

1
A
v′2 = (1− v2)[1− k2

1v
2] (1.2)

where in this case we have set

k2
1 = −

B
A
= −η2e2∗

q2 − η2h2 + η4e2∗q2h2

1− η4e2∗h2
(1.3)

which is clearly positive in the range defined by (1.1a) and is the analog, for
the case of B negative, of relation (7.31) of Chapter 5, which applies to the case
of B positive. We recall the definition of Λ2 from (6.14) of Chapter 5, and when
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we substitute for A from (7.25a) of Chapter 5, we see that the coefficient of v′2

in relation (1.2) may be written

1

j2
1
= (1+ η2�)m
(1− η2ν2h2)(1− η4e2∗h2)

1

j2
w

(1.4)

in which m is given by (6.6) and j2
w is given by (7.13a), both from Chapter 5.

Having defined k1 in (1.3) and j1 in (1.4), then, with the auxiliary variable
f1 defined by

f1 = j1f , (1.5)

equation (1.2) takes the form

( dv
df 1

)2 = 1

j2
1
v′2 = (1− v2)(1− k2

1v
2) (1.6)

whose solution is given by

v = sn[f1 + f0 : k1] = sn[j1f + f0 : k1] (1.7)

in which f0 is the arbitrary constant introduced by the integration. There fol-
lows that

v′ = j1 cn[f1 + f0 : k1]dn[f1 + f0 : k1] (1.8a)

v′′ = −j2
1 sn[f1 + f0 : k1]

[
dn2[f1 + f0 : k1]+ k2

1 cn2[f1 + f0 : k1]
]
. (1.8b)

With K1 denoting the quarterperiod of the Jacobian elliptic function of modu-
lus k1, we see that if we take

f0 = K1 (1.9)

and denoting the complementary modulus by k′1 =
√

1− k2
1, we have

v′ = j1 cn[f1 +K1 : k1]dn[f1 +K1 : k1]

= −j1k′1
sn[f1 : k1]
dn[f1 : k1]

k′1
dn[f1 : k1]

. (1.10)

It is clear that at f1 = 0, then v′ = 0 and v′′ < 0, so that, with f0 chosen in
accordance with (1.9), the point f = 0 is a maximum point for v . From (7.28c)
of Chapter 5, this implies that f = 0 is a maximum point for w; from (7.9c) of
Chapter 5, it follows that f = 0 is a maximum point for u; and finally, from
(7.5c) of Chapter 5, it follows that f = 0 is a minimum point for R.

Accordingly, the condition that the “angle” f be measured from “perigee”,
defined as the first point at which R reaches a minimum point, is satisfied by
taking f0 in accordance with (1.9). Returning to the solution form (1.7) with f0

given by (1.9), we have
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v = sn[f1 +K1 : k1] = cn[f1 : k1]
dn[f1 : k1]

= cn[j1f : k1]
dn[j1f : k1]

. (1.11a,b,c)

From (7.28b) of Chapter 5, there follows that

w = cn[j1f : k1]+ δdn[j1f : k1]
dn[j1f : k1]+ δ cn[j1f : k1]

(1.12)

and, hence, recalling (7.9b) of Chapter 5, we have

u = 1
p∗

(1+ δe∗)dn[j1f : k1]+ (e∗ + δ) cn[j1f : k1]
dn[j1f : k1]+ δ cn[j1f : k1]

. (1.13)

Recalling (7.5b) of Chapter 5, we see that on taking the reciprocal of (1.13),
there follows

R = p∗ dn[j1f : k1]+ δ cn[j1f : k1]
(1+ δe∗)dn[j1f : k1]+ (e∗ + δ) cn[j1f : k1]

. (1.14)

This suggests the form for the final parameters. Recalling that p∗ and e∗ are
given respectively by (7.7a,b) of Chapter 5, we set

p = p∗
1+ δe∗ , e = e∗ + δ

1+ δe∗ (1.15a,b)

whereby the solution (1.14) reads

R = pdn[j1f : k1]+ δ cn[j1f : k1]
dn[j1f : k1]+ e cn[j1f : k1]

(1.16)

while (1.13) may be replaced by

pu = dn[j1f : k1]+ e cn[j1f : k1]
dn[j1f : k1]+ δ cn[j1f : k1]

. (1.17)

For the present case where B is negative, the solution forms (1.16) and (1.17)
above respectively replace the solution forms (7.41) and (7.42) of Chapter 5,
there derived for the case where B is positive.

The subsequent discussion of the parameters follows the same pattern as
that following (7.42) of Chapter 5, except that now k1 is given by (1.3) above,
whereas in the former case it was given by (7.31) of Chapter 5. (Also j1 is
given by (1.4) instead of (7.32) of Chapter 5; however, j1 does not appear in
the subsequent discussion.) Accordingly, as in (7.46) of Chapter 5, we have

d = h[1+ η2h[1+ η2(h− q2e2∗)](1− e2∗)
][

1− η2q2e2∗ + η4e2∗(q4e2∗ + h2)
]

(1.18a)

and again

δ = −η2ed. (1.18b)

However, in place of (7.49) of Chapter 5, we now have
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g2 = −
(e∗
e

)2 q2 − η2h2 + η4e2∗q2h2

1− η4e2∗h2
(1.19a)

with

k2
1 = η2e2g2 (1.19b)

as in the former case. Relations (1.18) and (1.19) are the forms to be used with
any utilization of the solution forms (1.16) and (1.17).

In noting the distinct forms (1.16) and (1.17) above, for the case of B neg-
ative and in distinguishing them from the forms (7.41–2) of Chapter 5 for B
positive, we recognize that the use of these solution forms in the integration
of the ϕ-coordinate and in the derivation of the time-angle relation will re-
quire appropriate modification of the analysis performed in Sections 8 and 9
of Chapter 5. However, a retrospect shows that the solution (1.16) is formally
identical with the solution (9.29) of Chapter 3. Hence the problem of two fixed
centers provides the more aligned model for this component of the subse-
quent analysis. In the derivation of the time-angle relation, the substitution
for R will follow that given in the analysis of M0 in Section 10 of Chapter 3. In
the integration of the ϕ-coordinate, the substitution for R will follow that laid
out in the integration of ϕ2 in Section 9 of Chapter 4.

The equatorial orbit when ν = 1 and hence from (7.13c) of Chapter 5 when
q = 0 is clearly in the range where B from (1.1a) is negative. Hence for that case,
the above analysis is applicable in dealing with the R-equation. The equatorial
orbit is the focus of the next section.

2 The Equatorial Orbit

In dealing with the equatorial orbit when

ν = 1 (2.1)

we start by considering the equation for S = cosσ by referring to Section 6 of
Chapter 5. Setting ν = 1 in equation (6.2) therein, we have

Λ2

C2
S′2 = −(1+ η2�)S2 + η2�S4

= −S2[1+ η2�(1− S2)] (2.2)

which admits as the only real solution

S = 0, S′ = 0 (2.3)

or in terms of σ , the expected result

cosσ = 0, σ = π/2. (2.4a,b)

From (6.6) and (6.15) of Chapter 5, we see that when ν = 1, we have

m = 1, k2 = 0 (2.5a,b)
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and we also note that

Λ2 = C2(1+ η2�), N = 1 (2.6a,b)

which respectively follow from (6.14) and (6.20) of Chapter 5.
Turning next to the R-equation, we first refer to Section 7 of Chapter 5.

Setting ν = 1 in relation (7B.17b) therein, we have

h∗ = 2(2− �)− 3η2�(8− �) (2.7)

while from (7B.25) when ν = 1, we have

h0 = 1+ η2(4− �)− 3η4�(8− �) (2.8a)

h1 = 1− 3η4�(8− �) (2.8b)

h2 = (4− �)+ 8η2(2− �)− 3η4�(8− �)(4− �). (2.8c)

With these values for h0, h1, and h2 and with ν = 1, relations (7.7) of Chapter 5
for p∗ and e∗ take the form

p∗ = p0
1− η2h2

1− η2�h0
, 1− e2∗ =

1− η2h2

(1− η2�h0)2
(1− e2

0). (2.9a,b)

Further, setting ν = 1 in relations (7.13) of Chapter 5, we find for the equa-
torial orbit

j2
w = 1− 2η2[1+ η2(8− 3�)] (2.10a)

h = − 1

j2
w
[1+ η2(8− 3�)] (2.10b)

q = 0 (2.10c)

and from relation (7.21) of Chapter 5, we have to second order in η2,

δ = −η2e∗h[1+ η4e2∗]. (2.11)

Noting relation (1.1) of the present chapter, we see that when ν = 1 and hence
q = 0, relation (1.3) for k2

1, to second order in η2, takes the form

k2
1 =

η4e2∗h2

1− η4e2∗
. (2.12)

Similarly, when we consider relation (1.4) of the present chapter, with ν = 1,
and recall from (2.5a) above that for the equatorial orbitm = 1, then, to second
order in η2, we have

1

j2
1
= 1+ η2�
(1− η2h2)(1− η4e2∗)

1

j2
w
. (2.13)

In relations (2.11)–(2.13), we note that h2 as well as h0 and h1 are given by
(2.8), e∗ is related to e0 through (2.9b), and jw and h are given by (2.10).
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When we introduce ν = 1 together with its corollary q = 0 into relations
(1.18) of the present chapter, we obtain the forms taken by d and δ for the
equatorial orbit, which to second order in η2 may be written

d = h[1+ η2h(1+ η2)(1− e2∗)
]
[1+ η4e2∗] (2.14a)

δ = −η2ed (2.14b)

with e given in terms of e∗ by

e = e∗ + δ
1+ δe∗ . (2.14c)

Similarly, with relations (1.19) when we introduce ν = 1, q = 0 we see that, to
second order in η2

g2 = η2
(e∗
e

)2 h2

1− η4e2∗
(2.15a)

with

k2
1 = η2e2g2 (2.15b)

wherein h is given by (2.10b) above.
For the equatorial orbit, the solution for the R-equation is given by the form

(1.16) wherein p and e are obtained from combining (1.15) with (2.9), δ is given
by (2.14), j1 is given by (2.13), and k1 is given by (2.15), each of which assumes
a form simpler than in the general case.

It is further to be noted that for the equatorial orbit, there is a significant
simplification in the integration both of the equation for the ϕ-coordinate and
of the time-angle relation. Referring to Section 8 of Chapter 5, we see that as
N = 1 and σ = π/2, it follows from (8.14a) of Chapter 5 that, in this case,

ϕ′
1 = 1 (2.16a)

and hence, apart from an additive constant,

ϕ1 = f . (2.16b)

And noting that now (pu) is given by (1.17) above, the integration of (8.14b)
of Chapter 5 will follow the pattern outlined in Section 9 of Chapter 4.

For the time-angle relation, it is clear from (9.16b) of Chapter 5 that

M11 = 0 (2.17)

and the problem is reduced to the determination of M0 from (9.16a) of Chap-
ter 5, which will follow the pattern outlined in Section 10 of Chapter 3, noting
that here pu is given by (1.17) above.

Finally, we observe that as in this case cosσ = 0, there is only one in-
dependent frequency associated with the equatorial orbit, namely that of the
Jacobian elliptic function of modulus k1 as given by (2.15) having the quantity
K1 as its associated quarterperiod.
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3 The Polar Orbit

In the case of polar orbits, the polar component of the angular momentum
vanishes so that

C3 = 0, ν = 0. (3.1a,b)

If, in equations (5.7) and (5.8) of Chapter 5, we set ν = 0, then the equations
for R and σ take the form

Λ2

C2
R′2 = −(R2 + b2)

[
1− 2

R
p0
+ R2

ap0

]
(3.2a)

Λ2

C2
sin2 σσ ′2 = (1− cos2 σ)

[
1− b2

ap0
cos2 σ

]
. (3.2b)

When we introduce the notation of (5.9) and (5.10) of Chapter 5 and set S =
cosσ , we have the alternate forms

Λ2

C2

R′2

p2
0
= −

[( R
p0

)2 + η2
][

1− 2
R
p0
+ (1− e2

0)
( R
p2

0

)2]
(3.3a)

Λ2

C2
S′2 = (1− S2)[1− η2�S2]. (3.3b)

On setting

Λ = C, k2
2 = η2� = η2(1− e2

0), k2 = η
√

1− e2
0 (3.4a,b,c)

there follows that

S = cosσ = sn[f +ω : k2] (3.5)

as the solution for the σ -equation (3.3b).
Turning to the R-equation (3.3a) and setting Λ = C in accord with (3.4a),

then on factoring the second quadratic on the right, we have(R′
p0

)2 = −
[( R
p0

)2 + η2
][

1− (1+ e0)
R
p0

][
1− (1− e0)

R
p0

]
. (3.6)

If we denote the zeros of the second quadratic by R1 and R2 respectively, so
that

R1 = p0

1+ e0
, R2 = p0

1− e0
, R1 ≤ R2 (3.7a,b,c)

we see that the range of the orbits is restricted to the elliptic annulus bounded
on the “inside” by the ellipse R = R1 and on the “outside” by the ellipse R = R2.
In the limit when η → 0, these boundaries coincide with the bounding circles
p0/(1+ e0) and p0/(1− e0) of the Kepler problem.

We next note the values assumed by the relevant parameters when ν = 0.
Recalling the defining relations (5.14) of Chapter 5
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λ2 = η2�2 = η2(1− e2
0)

2 (3.8)

we see from (7A.12) of Chapter 5 that, when ν = 0

λ∗ = 12λ2 1− �
(� + λ2)2

= 12η2 1− �
(1+ η2�)2

, s = 1 (3.9a,b)

and equation (7A.15) of Chapter 5 becomes

Z3∗ − 3(1− λ∗)Z∗ − 2(1+ 3λ∗) = 0 (3.10a)

or, in its factored form,

(Z∗ − 2)
[
Z∗ + (1− i

√
3λ∗)

][
Z∗ + (1+ i

√
3λ∗)

]
(3.10b)

and clearly the root

Z∗ = 2 (3.11)

corresponds to the root determined by (7A.16) of Chapter 5.
For the approximate formulae derived in Section 7B of Chapter 5, we note

that corresponding to relation (7B.1) we have, when ν = 0, s = 1,

D(1+ 3λ∗) =
√
λ∗(9+ 6λ∗ + λ2∗)

1
2 =

√
λ∗(λ∗ + 3) = O(η) (3.12)

and relation (7B.10) of Chapter 5 is now replaced by (3.11) above. It follows
that relations (7B.12) and (7B.19) of Chapter 5 are respectively replaced in the
present case (ν = 0) by

Z = 1 (3.13)

and

U = 1, U−1 = 1, (1− � + λ2)U−1 = 1− � + λ2. (3.14a,b,c)

It further follows that relations (7B.21) of Chapter 5 now have the form

V = 1
4 + λ2 = 1

4 + η2�2, W = −3
4 + � (3.15a,b)

and the factorization (7B.22) of Chapter 5 for f(Y) here takes the form

f(Y) = [Y 2 + η2�2][Y 2 − 2Y + �] (3.16)

consistent with (3.3a) above.
Setting s = 1 in the defining relation (7B.16) of Chapter 5, we find for the

present case (ν = 0),

1+ η2h∗ = 1
(1+ η2�)2

(1− 1
3λ∗) (3.17)

from which there follows
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h∗ = −2(2− �)+ η2�(16− 13�) (3.18a)

= −2(1+ e2
0)+ η2�(3+ 13e2

0) (3.18b)

which could be obtained directly by setting ν = 0 in relation (7B.17b).
For the present case ν = 0, we further have

h0 = 1+ η2h∗ = 1− 2η2(2− �)+ η4�(16− 13�) (3.19a)

h1 = 1+ η2(h∗ − �) = 1− η2(4− �)+ η4�(16− 13�) (3.19b)

h2 = 4(1+ η2h∗)− �h1

= (4− �)[1+ η2� + η4�(16− 13�)
]− 8η2(2− �)

= (4− �)− η2[�2 − 12� + 16]+ η4�(4− �)(16− 13�) (3.19c)

corresponding to relations (7B.25) of Chapter 5.
Returning now to equation (3.3a) and setting Λ = C in accord with (3.4a),

the R-equation reads

R′2 = −[R2 + η2p2
0]
[
1− 2

R
p0
+ (1− e2

0)
( R
p0

)2]
. (3.20)

When we introduce the variable u by setting

u = 1
R
, u′ = − 1

R2
R′; R = 1

u
, R′ = − 1

u2
u′ (3.21a,b;c,d)

then in terms of u, equation (3.20) becomes

u′2 � −
(
u2 − 2

p0
u+ 1

ap0

)
(1+ η2p2

0u
2)

= −
[(
u− 1

p0

)2 − 1

p2
0
(1− �)

]
[1+ η2p2

0u
2]

= −
[(
u− 1

p0

)2 − e2
0

p2
0

]
[1+ η2p2

0u
2]. (3.22)

Relations (7.7) of Chapter 5 show that in this case when ν = 0

p∗ = p0, e∗ = e0 (3.23a,b)

and we may set

u− 1
p0

= e0

p0
w, u = 1

p0
(1+ e0w) (3.24a,b)

so that, when expressed in terms ofw, the above differential equation becomes

w′2 = (1−w2)[1+ η2(1+ e0w)2]

= (1+ η2)(1−w2)
[
1+ 2η2

1+ η2
e0w + η2

1+ η2
e2

0w
2
]
. (3.25)
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In the decomposition of the quadratic factors, we have

1−w2 = J2[(1− δw)2 − (w − δ)2] = J2(1− δ2)(1−w2) (3.26a)

and

1+ 2η2

1+ η2
e0w + η2

1+ η2
e2

0w
2 = J2[A(1− δw)2 + B(w − δ)2]

= J2[(A+ Bδ2)− 2(A+ B)δw + (Aδ2 + B)w2] (3.26b)

from which there follows respectively

J2(1− δ2) = 1 (3.27)

J2(A+ Bδ2) = 1, J2(A+ B)δ = − η2

1+ η2
e0, J2(Aδ2 + B) = η2

1+ η2
e2

0.

(3.28a,b,c)

Forming the difference (3.28a)− (3.28c), we find

A− B = J2(1− δ2)(A− B) = 1− η2

1+ η2
e2

0 (3.29a)

while from the sum (3.28a)+ (3.28c), we have

1+ δ2

1− δ2
(A+ B) = J2(1+ δ2)(A+ B) = 1+ η2

1+ η2
e2

0 (3.29b)

and from (3.28b) we have

δ
1− δ2

(A+ B) = − η2e0

1+ η2
. (3.29c)

Dividing (3.29c) by (3.29b) yields

δ
1+ δ2

= − η2e0

1+ η2(1+ e2
0)
= −η2e1 (3.30a)

where we have written

e1 = e0

1+ η2(1+ e2
0)
. (3.30b)

From (3.30a), we have as equation for δ

1+ 1
η2e1

δ+ δ2 = 0 (3.31a)

with solutions

δ = − 1
2η2e1

[
1∓

√
1− (2η2e1)2

]
. (3.31b)
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When we discard the + sign within the square bracket as irrelevant since it is
meaningless in the limit as η→ 0, we have

δ = − 1
2η2e1

[
1−

√
1− (2η2e1)2

]
= −η2e1[1+ η4e2

1 +O(η8)] (3.32)

and hence to second order in η2 we have, on recalling (3.30b),

δ = −η2e0
[
1− η2(1+ e2

0)+ η4(1+ 3e2
0 + e4

0)
] = −η2e0d0 (3.33a)

wherein we have written

d0 = 1− η2(1+ e2
0)+ η4(1+ 3e2

0 + e4
0). (3.33b)

From (3.31a), we immediately have

1+ δ2 = − 1
η2e1

δ = [1+ η2(1+ e2
0)]d0. (3.34)

We now recall from (3.29) above that

A+ B = 1− δ2

1+ δ2

[
1+ η2

1+ η2
e2

0

]
(3.35a)

A− B = 1− η2

1+ η2
e2

0 (3.35b)

from which, by addition and subtraction, we obtain

A = 1
1+ δ2

[
1− η2

1+ η2
e2

0δ
2
]

(3.36a)

B = 1
1+ δ2

[ η2e2
0

1+ η2
− δ2

]
= η2e2

0

1+ δ2

[ 1
1+ η2

− η2d2
0

]
(3.36b)

so that, to second order in η2, we may write

A = 1
1+ δ2

= 1

[1+ η2(1+ e2
0)]d0

(3.37a)

B = η2e2
0

1+ δ2
· 1− η2(1+ η2)d2

0

1+ η2
= η2e2

0d
2
1 (3.37b)

where we have written

d2
1 =

1− η2(1+ η2)d2
0

(1+ η2)(1+ δ2)
. (3.37c)

Finally, we note from (3.35a) that, to second order in η2, we may write

A+ B = (1− δ2)[1+ η2(1+ e2
0)]

(1+ δ2)(1+ η2)
= (1− 2η4e2

0d
2
0)

1+ η2(1+ e2
0)

1+ η2
(3.38)

and hence, noting (3.37b),



204 Ch 6 The Earth Satellite — Some Special Orbits

B
A+ B = η

2e2
0

d2
1(1+ η2)

[1− 2η4e2
0d

2
0][1+ η2(1+ e2

0)]
= η2e2

0d
2
2 (3.39a)

where we have written

d2
2 =

(1+ η2)d2
1

[1− 2η4e2
0d

2
0][1+ η2(1+ e2

0)]
. (3.39b)

With the above values for the parameters, we introduce the decompositions
(3.26) into the differential equation (3.25) so that we have

w′2

1+ η2
= J4[(1− δw)2 − (w − δ)2][A(1− δw)2 + B(w − δ)2] (3.40)

which when we divide across by J4(1− δw)4 becomes

1
1+ η2

[ w′

J2(1− δw)
]2 =

[
1−

( w − δ
1− δw

)2][
A+ B

( w − δ
1− δw

)2]
(3.41)

and when we introduce the transformation

v = w − δ
1− δw , v′ = w′

J2(1− δw)2 (3.42a,b)

takes the form

1
1+ η2

v′2 = (1− v2)(A+ Bv2)

= (1− v2)[(A+ B)− B(1− v2)] (3.43)

and hence

1
(1+ η2)(A+ B)v

′2 = (1− v2)
[
1− B

A+ B (1− v
2)
]
. (3.44)

Accordingly, we write

j2
1 = (1+ η2)(A+ B) = (1− δ2)

1+ δ2
[1+ η2(1+ e2

0)]

= (1− 2η4e2
0d

2
0)[1+ η2(1+ e2

0)] (3.45a)

and

k2
1 =

B
A+ B = η

2e2
0d

2
2 (3.45b)

and, noting (3.39a), the differential equation (3.44) reads

( dv
df1

)2 = (1− v2)[1− k2
1(1− v2)] (3.46)

with solution
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v = cn[j1f : k1]. (3.47)

There follows that

w = cn[j1f : k1]+ δ
1+ δ cn[j1f : k1]

(3.48a)

u = 1
p0

(1+ e0δ)+ (e0 + δ) cn[j1f : k1]
1+ δ cn[j1f : k1]

. (3.48b)

When we set

p = p0

1+ e0δ
, e = e0 + δ

1+ e0δ
(3.49a,b)

then (3.48b) takes the form

u = 1
p

1+ e cn[j1f : k1]
1+ δ cn[j1f : k1]

(3.50)

and for R we have the solution

R = p1+ δ cn[j1f : k1]
1+ e cn[j1f : k1]

. (3.51)

In the derivation of the time-angle relation, there is a corresponding sim-
plification in the parametric relations, but the analysis remains as outlined in
Section 9 of Chapter 5.

4 The “Critical” Inclination

When perturbation theories are applied to the differential equations of Celes-
tial Mechanics, then in the integration of expressions in which there is inter-
action between the associated basic frequencies, there may arise the problem
of the “small divisor”. From the manner in which it arises, the feature is fre-
quently compared to the dynamic phenomenon of resonance. The comparison
may not always be fruitful as dynamic resonance generally reflects physical
reality, whereas the “small divisor” may be a consequence of the particular
expansion scheme adopted.

In Celestial Mechanics, a resonance may result from the interaction of the
frequencies of the motions of the respective body-masses. However, the prob-
lem of the “small divisor” may arise from the interaction of the frequencies
of the respective coordinates of the motion of an individual particle. We shall
indicate in the present case how this may follow from the attempt to force the
solution into a representation not natural to its integrated form.

In the case of the Earth satellite when the perturbation is applied, the prob-
lem of the “small divisor” arises in the vicinity of the so-called “critical” incli-
nation determined — to a first approximation — as ν2 = 1/5. It is natural to
ask what light may be shed on this issue by the present integrated solution to
the problem in its separated form.
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At this point, it should be noted that perturbation theories are (generally)
formulated as differential equations for the variation of the (slowly varying)
instantaneous Kepler elements. We shall explore how the present integrated
solution is transformed as we track it through the attempt to fit it into confor-
mity with the instantaneous Kepler elements in a spherical coordinate system.
We shall focus on this question as it is manifested in the solution for the σ -
coordinate of the spheroidal coordinate system.

We recall the solution form (6.21) of Chapter 5 for the σ -coordinate in the
spheroidal system, namely,

cosσ =
√

1−N2 sn[f +ω : k2] (4.1a)

in which the regularizing independent variable f is given by relation (5.5) of
Chapter 5, namely,

df
dt

= Λ
R2 + b2 cos2 σ

. (4.1b)

In terms of the slowly varying instantaneous Kepler elements νk, ωk, the cor-
responding relations in the spherical coordinate system would have the form

cosθ =
√

1− ν2
k sin[fk +ωk] (4.2a)

in which the regularizing independent variable fk is defined for the instanta-
neous Kepler orbit in the form

dfk
dt

= λk
r 2
. (4.2b)

The form of relations (4.2) are a reflection of setting η = 0 in (4.1). The pertur-
bation is now to be explored through the variation of the Kepler elements ωk
and νk.

To facilitate comparison, it is appropriate to reset the solution form (4.1) in
terms of the spherical coordinate system by recalling relations (2.1c) and (2.2)
of Chapter 5; there follows that

cosθ = R
r

cosσ = R√
R2 + b2 sin2 σ

cosσ

and with p given by (7.39a) combined with (7.7a), both of Chapter 5, then,
writing η = b/p, we have

cosθ =̇ 1√
1+ b2

p2 (pu)2(1− cos2 σ)
cosσ

which, on the introduction of cosσ from (6.21) and pu from (7.42), both of
Chapter 5, becomes
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cosθ = √
1−N2 sn[f +ω : k2]√

1+ η2
[

1+e cn[j1f : k1]
1−η2ed cn[j1f : k1]

]2[
cn2[f +ω : k2]+N2 sn2[f +ω : k2]

] . (4.3)

From the identification of representation (4.2a) with (4.3), there follow the re-
spective identifications of the amplitudes and of the normalized oscillation.
From the identification of the amplitudes, we have

νk =√√√√√1− 1−N2

1+ η2
[

1+e cn[j1f : k1]
1−η2de cn[j1f : k1]

]2[
cn2[f +ω : k2]+N2 sn2[f +ω : k2]

] (4.4)

and from the identification of the normalized oscillation, we have

sin(fk +ωk) = sn[f +ω : k2] = sin am[f +ω : k2] (4.5)

which for the angle element ωk implies

ωk = am[f +ω : k2]− fk. (4.6)

The final step would be the determination of f in terms of fk and the intro-
duction of that representation into relations (4.4) and (4.6); in the sequel, we
confine our attention to the latter — namely, to the relation (4.6) for ωk.

It is first necessary to determine fk in terms of f . This is done by combining
relation (4.1b) with relation (4.2b) to obtain

dfk
df

= λkΛ · R
2 + b2 cos2 σ

r 2
= λkΛ · R

2 + b2 cos2 σ
R2 + b2 sin2 σ

= λkΛ · 1+ η2(pu)2 cos2 σ
1+ η2(pu)2(1− cos2 σ)

(4.7)

which to first order in η2 (or η2) may be written

dfk
df

= λkΛ [1− η2(pu)2(1− 2 cos2 σ)+O(η4)
]
. (4.8)

In the above expression, it is evident that the two frequencies, associated with
the solution forms for the respective coordinates, will interact. Hence, in the
integration there arises the possibility of the “small divisor”, which can arise
when the two frequencies coincide, i.e., near a periodic solution.

The question then becomes one of determining what values of the param-
eters lead to the coincidence of the frequencies of the two coordinates R and
σ — or in the solution forms for (pu) and cosσ . The quarterperiod for cosσ
is clearly K2 while that for (pu) is K1/j1. Hence, the question becomes one of
determining when the expression
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j1K2 −K1 (4.9)

vanishes. We shall carry out the calculations to first order in η2.
From relation (6.6) of Chapter 5, there follows that, to first order in η2

(1+ η2�)m = 1+ η2�ν2 (4.10a)

1
(1+ η2�)m

= 1− η2�ν2 (4.10b)

1
(1+ η2�)2m2

= 1− 2η2�ν2 (4.10c)

and hence, recalling relation (6.15) of Chapter 5, we have

k2
2 = η2�(1− ν2) (4.11)

to first order in η2.
Next we note that from relation (7.13a) of Chapter 5, we find, to first order

in η2, that

j2
w = 1+ η2(1− 3ν2),

1

j2
w
= 1− η2(1− 3ν2) (4.12a,b)

and from combining (7.13b) with (7.13c), both of Chapter 5, there follows that

q2 − η2h2 = 1

j2
w

[
(1− ν2)[1+ η2ν2(12− 5�)]− η

2(1− 2ν2)2

j2
w

]
.

Consistent with neglecting terms of order η4, we may, in the last term within
the large square bracket, take j2

w ≈ 1; on regrouping, we find

q2 − η2h2 = 1

j2
w

[
(1− ν2)− η2[1− ν2(16− 5�)+ ν4(16− 5�)]

]
.

We now introduce 1/j2
w from (4.12b) and expand the product; on neglecting

terms of order η4 a rearrangement yields

q2 − η2h2 = (1− ν2)− η2[2− 5ν2(4− �)+ ν4(19− 5�)]. (4.13)

We further note from (7.7b) of Chapter 5 that it is consistent with neglecting
terms of order η4 to take η2e2∗ = η2(1−�) so that recalling relation (7.13c) for
q2, we may set

1

1+ η2e2∗q2
= 1− η2(1− �)q2 = 1− η2(1− �)(1− ν2) (4.14)

and hence, on combining (4.13) with (4.14), we have

q2 − η2h2

1+ η2e2∗q2
= (1− ν2)− η2[(3− �)− ν2(22− 7�)+ 2ν4(10− 3�)]. (4.15)



Sec 4 The “Critical” Inclination 209

If we now recall the defining relation (7.31) of Chapter 5 for k2
1, then from

(4.15) above we see that, to first order in η2, we may write

k2
1 = η2(1− �)(1− ν2). (4.16)

It remains to determine j1 to the same order of accuracy. In the defining
relation (7.32) of Chapter 5, we introduce h2 from (7B.25c) and q2 from (7.13c),
both from Chapter 5: on neglecting terms of order η4 [so that we may take
η2e2∗ = η2(1− �)], we obtain

1

j2
1
= (1+ η2�)m
[1− η2ν2(4− �)][1+ η2(1− �)(1− ν2)]

· 1

j2
w

= (1+ η2�)m
j2
w

· [1− η2[(1− �)− ν2(5− 2�)]
]
.

When we introduce (1+ η2�)m from (4.10a) and 1/j2
w from (4.12b), we have

1

j2
1
= (1+ η2�ν2)[1− η2(1− 3ν2)]

[
1− η2[(1− �)− ν2(5− 2�)]

]
= 1− η2[2(1− 4ν2)− �(1− ν2)

]
. (4.17)

There follows that, to first order in η2,

j2
1 = 1+ η2[2(1− 4ν2)− �(1− ν2)

]
(4.18)

j1 = 1+ η2[(1− 4ν2)− 1
2�(1− ν2)

]
. (4.19)

We now recall that, to first order in terms of the modulus k, the quarter-
period K of the Jacobian elliptic function is given by

K = π
2

[
1+ 1

4k
2] (4.20)

so that for K2 we have

K2 = π
2

[
1+ 1

4k
2
2

] = π
2

[
1+ 1

4η
2�(1− ν2)

]
(4.21)

wherein we have introduced k2 from (4.11). Hence, combining (4.19) with
(4.21), we find

j1K2 = π
2

[
1+ 1

4η
2�(1− ν2)

][
1+ η2[(1− 4ν2)− 1

2�(1− ν2)]
]

which to first order in η2 may be replaced by

j1K2 = π
2

[
1+ η2[(1− 4ν2)− 1

4�(1− ν2)]
]
. (4.22)

For the quarterperiod K1, we find, on the introduction of k1 from (4.16) into
(4.20),
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K1 = π
2

[
1+ 1

4η
2(1− �)(1− ν2)

]
= π

2

[
1+ η2[1

4(1− ν2)− 1
4�(1− ν2)

]]
. (4.23)

The subtraction of (4.23) from (4.22) yields

j1K2 −K1 = π
2

[
η2[3

4 − 15
4 ν

2]] = 3π
8
η2(1− 5ν2) (4.24)

indicating how the “small divisor” problem arises for perturbation series in
the vicinity of the “critical” inclination defined by ν2 = 1/5.

We already have the solution in the spheroidal coordinate system, given
in its integrated form. It would appear that the “small divisor” problem arises
from an attempt to force this solution into conformity with the solution for the
instantaneous elements in a spherical coordinate system that is the framework
of perturbation theory.



Appendix: Calculation and Exhibition of Orbits;
The Time-Angle Relation

by Vincent G. Hart 1 and Seán Murray 2

Raffiniert ist der Herr Gött, aber boshaft ist er nicht.

[God may be subtle, but he is not malicious.]

— Albert Einstein

Preliminary Remarks

In this Appendix are presented graphs of some orbits based on the analytic
results derived in this book — primarily in Chapter 3 but some also from
Chapters 5 and 6. We also add some results of integrations for the time-angle
relation defined in Section 10 of Chapter 3. Prior to a detailed description of
the orbits, it is useful to consider the possibilities in approaching the solution
of the S- and R-equations as the parameters are varied.

First, consider the S-equation of equation (5.19) in Chapter 3. Recalling that
� = 1− e2, the decomposition of the right side is straightforward as the zeros
are clearly shown by the pairs

∓1, −β∓ γ
λ

(1.1a)

where

λ = η� = b/a, γ = (β2 + e2 − 1)1/2. (1.1b)

From observing the second pair of zeros, we see that if

β2 + e2

⎧⎪⎪⎨⎪⎪⎩
≥ 1 there are 4 real zeros

= 1 there are 3 real zeros (one a double-zero)

≤ 1 there are 2 real and 2 complex zeros.

By drawing the nominal graphs of S′2 versus S, it becomes evident that for the
entire λ-range and with β ≤ 1, the solution for S must be constrained by

1 Mathematics, School of Physical Sciences, The University of Queensland, St. Lucia, 4072,
Queensland, Australia

2 School of Theoretical Physics, Dublin Institute for Advanced Studies, 10, Burlington Road,
Dublin 4, Ireland
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−1 ≤ S0 ≤ S ≤ 1 (1.2)

implying that the real angle σ lies in the range 0 ≤ σ ≤ σ ≤ π .
The situation is different in the case of the R-equation as represented by

equation (5.8a) of Chapter 3. When divided across by p2, the differential equa-
tion for R/p has a right side with zeros (with η = b/p, p/a = �)

−η, η, 1/(1+ e) = R1/p, 1/(1− e) = R2/p,

and all four zeros are real. Here the graph of (R′/p)2 versus R/p shows two
cases to be considered:

(i) 0 ≤ η ≤ 1/(1+ e) = R1/p or 0 ≤ λ ≤ 1− e = R1/a
(ii) R1/p = 1/(1+e) ≤ η ≤ 1/(1−e) = R2/p or R1/a = 1−e ≤ λ ≤ 1+e = R2/a.

On scaling with a rather than p, it is clear from the nominal graph case (i), a
region of real values of R/a occurs in the interval (1 − e,1 + e), whereas in
case (ii), real values of R/a occur in the interval (λ,1+ e). These intervals are
of primary interest in this study. In the text, the ascending order of the zeros
is noted, and the zeros are grouped into a lower pair and an upper pair. Thus
with the a scaling

(i) the lower pair is (−λ,λ) and the upper pair is (1− e,1+ e)
(ii) the lower pair is (−λ,1− e) and the upper pair is (λ,1+ e).

To ensure real solutions, it is crucial that the quartic be decomposed ap-
propriately into the two quadratic factors. For example, in Subsection 9A of
Chapter 3, the range λ ≥ 1 − e or η ≥ 1/(1 + e) case (ii) above is applicable,
where we also require λ ≤ 1+e or η ≤ 1/(1−e). Here the process beginning at
equation (9A.7), where the reduction begins with the upper pair of zeros λ and
1+ e, yields the real solutions. Beginning with a pair of zeros not in the upper
or lower classes, for example −λ and λ in this case, would lead to a quartic
and solutions with undesirable real or complex values. With this preference in
mind, a similar process can be followed in the arrangement of the S-equation
to yield a solution valid in the range of interest |S| ≤ 1.

An alternative procedure for the reduction of a quartic as a product of
quadratic factors each of which is a sum of squares is outlined in Whittaker
and Watson’s Modern Analysis [Ww, Section 22.71]. That procedure admits two
types of solution for the typical equation such as the S- and R-equation. Which
type is to be rejected can only be determined by inspection as leading to values
of R/b < 1, or S > 1. As mentioned, the method followed in the present work
enables one to select the correct procedure at the outset.

The orbits described are drawn mainly from the solutions found in Chap-
ter 3, which provides orbits for the planar Euler problem. Calculations have
also been made for the Earth satellite problems discussed in the later chapters.
It should be emphasized that all examples presume negative energy, which
generally leads to bound orbits. In the numerical work, the extensive Maple
suite of Jacobian elliptic functions was of the greatest assistance.
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1 Orbits in Chapter 3

In Chapter 3, the plane Cartesian coordinates for points on the orbit are de-
rived from the spheroidal coordinates by the relations

x/a = [(R/a)2 − λ2]1/2 sinσ, z/a = (R/a) cosσ (1.3)

and we note that R = constant yields ellipses, whereas σ = constant yields
hyperbolae. Note also that while σ need vary only between 0 and π to identify
all points on a hyperbola, we need both positive and negative values of x/a.
The latter are obtained by realizing that these coordinates in (1.3) are derived
from the three-dimensional forms in (1.3), Chapter 4, and negative and positive
values of x/a follow by allowing ϕ to vary in the range (−π,π). Change of
sign of x/a is allowed for in the Maple program codes used to generate the
orbits.

In Chapter 3, six classes of orbits are identified — as summarized in Sec-
tion 13. We note that 0 ≤ β ≤ 1, and γ is given in (1.1b). If e < 1, and γ is real,
γ < β.

When e2 + β2 ≥ 1,

A1 : 0 < λ < 1− e, A2 : 1− e < λ < β− γ
A3 : β− γ < λ < β+ γ, A4 : β+ γ < λ < 1+ e.

When e2 + β2 ≤ 1,

B1 : 0 < λ < 1− e, B2 : 1− e < λ < 1+ e.

If e > 1, γ is real, γ > β, we have in place of A3:

A3∗ : γ − β < λ < γ + β.

When β = 0, the classes A1 and A2 disappear, and A3 becomes A3∗.
We show representative orbits of the above types in Figures 1–12. The axes

are understood to show x/a and z/a. Note that in all graphs, the mass points
lie at z/a = ±λ. If β = 0, the masses are equal, and if β > 0, the larger mass
is uppermost. Some general remarks can be made as β increases from zero.

A1: For small β we observe that the orbits can be perceived as close to a set of
rotating ellipses that tighten up as β increases. Figure 2 is near the upper limit
β = 1, and the orbit is almost circular.

A2: Orbits are wide loops, looping in a figure-of-eight fashion between and
around the two mass centers.

A3: Orbits are wide loops encircling the heavier mass and bounded by the limit
set consisting of the bounding ellipse and the bounding hyperbola associated
with the lighter mass.



214 Appendix: Calculation and Exhibition of Orbits

A4: The orbits appear as satellites of either one of the masses and are confined
by the bounding ellipse and both bounding hyperbolae. The distinct pattern
between e < 1 and e > 1 is indicated in the illustrated Figures 5 and 6.

B1: For small β and small e < 1, overlapping near-circles appears typical; as e
increases, a system of rotating near-ellipses appears.

B2: Orbits looping between and around each of the attracting centers in a
figure-of-eight fashion are the norm.

As representative figures for Chapter 3 orbits, the following 12 sets of pa-
rameters in the Table of Orbital Parameters serve to illustrate the above re-
marks. Whereas 50 points sufficed for most of the orbits plotted, we used 110
points in Figure 2 to illustrate close overlapping of a near-circular orbit.

Table of Orbital Parameters

Class β e λ Figure Comment
A1 0.75 0.7 0.2 1
A1 0.9753 0.3 0.182 2 Earth–Moon mass ratio 80 : 1
A2 0.9753 0.5 0.51 3 ”
A3 0.9753 0.3 0.819 4 ”
A4 0.75 0.7 1.2 5
A4 0.75 1.4 2.2 6
B1 0 0.5 0.4 7 Equal masses,

cf. Strand & Reinhardt, Fig. 7
B1 0.3 0.3 0.2 8
B1 0.5 0.8 0.1 9
B2 0 0.5 0.75 10 Equal masses
B2 0.5 0.8 1.0 11
B2 0.8 0.5 1.0 12

It is interesting to note that Strand and Reinhardt [S7] obtained orbits
shown in their Figures 7, 8, and 9 that are typical of our basic classes A4, B1,
and B2. Since they considered only equal mass points (β = 0), our orbit classes
A1, A2, and A3 were not accessible to them. Their Figure 7 is reproduced in
our Figure 7.

2 Orbits in Chapters 5 and 6

For a plane satellite orbit as described in Chapter 6, we take parameters [Chap-
ter 5, (5.9a,b)]

� = 0.9, η2 = 4× 10−5, ν = 0 .

Here � = 1− e2
0. Since the moduli of the elliptic functions involved in the solu-

tion are sufficiently small, we may substitute circular functions, and equations
(3.5), (3.51) of Chapter 6 become
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S = cosσ = sin(f +ω),

R/p0 = 1.000004
(

1+ δ cos(j1f)
1+ e cos(j1f)

)
,

where

δ = −1.2649× 10−5, e = 0.3162 16382, j1 = 1.000022.

Here the coordinates for the orbit are [Chapter 5, (2.1)]

x/p0 =
[
(R/p0)2 + η2]1/2 sinσ cosϕ,

y/p0 =
[
(R/p0)2 + η2]1/2 sinσ sinϕ,

z/p0 = (R/p0) cosσ,

where p0 = p(1+ e0δ).
Since the orbit is plane, we may set y = 0, and both positive and negative

values of x follow by allowingϕ to vary around a full circle. An almost circular
plane orbit is found as shown in Figure 13.

Chapter 5 concerns general satellite orbits. We calculated one for parame-
ters

� = 0.9, η2 = 4× 10−5, ν = 0.5,

and found that the orbit is almost identical with that shown in Figure 13 but
in a plane inclined at 30◦ to the Oz axis. The latter feature follows from the
S-equation:,

sinf = (1−N2)−1/2 cosσ,

with (1−N2)−1/2 = 1.1547 05735 in this case. It follows that σ is restricted to
the interval (30◦, 150◦).

3 The Time-Angle Relation

(a) Chapter 3, Section 10

We substitute results for S and R into the integrals in (10.13a,b), and the
Curtis–Clenshaw numerical integration process in Maple gives the dimension-
less time M as in equation (10.12). The limits to the integrals are 0 to fv for
(R/p)2, and 0 to fs for S2, with fv = jvfs .

For β = 79/81, e = 0.3, λ = 0.182, we find jv = 0.9989 41015, and the
results are shown in Figure 14. Here σ = π/2− fs . For one complete orbit, we
find M = 6.1508.

(b) Chapter 6

For a plane polar satellite orbit, the relevant equations are (9.14a) and (9.15)
of Chapter 5, and the results appear in Figure 15 for parameters

� = 0.9, η2 = 4× 10−5, ν = 0.

Here σ = π/2− f . For one complete orbit M = 6.2833.
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4 Orbits Derived from Given Initial Conditions in Chapter 3

We recollect that in order to plot an orbit, we need numerical values of the
parameters β, λ, and e and of the arbitrary constants fS0 in S (see for example
(8.25)), and fv0 in R (9.22). We assume that the total energy E (1.12) is negative
and that fv0 is always chosen as K(kR) so that the R curve is symmetric about
the Oz axis.

In the following we show that, given initial values of coordinates and veloc-
ity components at a point x0/a, z0/a and one of ẋ0/α, ż0/α (or the direction
of the orbit initially, that is, ẋ0/ż0), together with the parameters β (< 1) and
λ (> 0), a number of orbits can be calculated by use of the energy equation.

There are two special simpler cases,

(1) the orbit starts on the x-axis in a direction orthogonal to that axis, and
(2) the orbit starts on the z-axis in a direction orthogonal to that axis.
(3) The general case is that where the orbit starts at an arbitrary point (x0, z0)

off the axes, in an arbitrary direction.

The simpler cases are readily described.

(1) We assume here that z0 = 0, ẋ0 = 0, and x0/a is given. Then σ0 = π/2,
so that by (1.3a) we find that

x0/a =
[
(R0/a)2 − λ2]1/2 (IC.1)

and R0/a can be calculated.
Next the energy equation (1.12) is written in the form

E = −α2 = 1
2

(
ẋ2

0 + ż2
0

)− μ/R0 (IC.2)

at the initial position. But by (5.2a) μ = 2aα2, so that division by α2 yields

1
2

(
(ẋ0/α)2 + (ż0/α)2

) = 2a/R0 − 1 (IC.3)

and use of the initial conditions gives ż0/α. Then by (4.7b), noting that in this
case (1.3b) implies ż0 = −R0σ̇0, we find

C2 = R4
0σ̇

2
0 = R2

0ż
2
0. (IC.4)

Finally, by (5.2b), we calculate

p/a = C2/(aμ) = 1
2(R0/a)2(ż0/α)2. (IC.5)

Now there are two possibilities: either e < 1 and p/a = 1 − e2 by (5.11b),
or e > 1 and p/a = e2 − 1 by (11.9a). But in each case e is determined, and
knowing both β and λ, a variety of orbits can be plotted corresponding to
different choices of the constant fs0. Also, since β is not required at the outset,
a further arbitrariness is admitted.

As an example we assume parameters β = 79/81, λ = 0.182, and initial
values
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z0 = 0, x0/a = −0.6791, ẋ0 = 0.

Then we find R0/a = 0.7030, (ż0/α)2 = 3.6896, and p/a = 0.9118. This gives
either e = 0.2970 or e = 1.383.

If we use the first value of e together with the chosen values of β and λ, an
orbit very similar to a previously found almost-circular orbit with e = 0.3 is
obtained (with fs0 = 0; see Figure 2).

However, the larger value of e cannot be used with the chosen values of β
and λ, since when e > 1, we must also take λ > γ − β, and this last number is
0.3998 in this case [see (11.13b), Chapter 3].

(2) We next assume that x0 = 0, ż0 = 0, and z0/a is assigned. Then σ0 = 0,
and by (1.3b) R0/a = z0/a. Here the energy equation (1.12) is

E = −α2 = 1
2(ẋ

2
0 + ż2

0)− μ(R0 + bβ)/(R2
0 − b2), (IC.6)

which yields

ẋ2
0/α

2 = 4
R0/a+ βλ
(R0/a)2 − λ2

− 2. (IC.7)

By differentiating (1.3a), we note that

ẋ0 = (R2
0 − b2)1/2σ̇0 (IC.8)

and (4.7b) then gives

C2 = (R2
0 − b2)ẋ2

0 − 2b2α2 − 2bμβ . (IC.9)

Using (IC.7), we then find that

p/a = C2/(aμ) = 1
2

[
(R0/a)2 − λ2)

]
(ẋ0/α)2 − λ2 − 2βλ . (IC.10)

Again the two possible values of e are found.
In an example we assume

β = 79/81, λ = 0.182

and initial values
x0 = 0, ż0 = 0, z0/a = 0.7 .

Then R0/a = 0.7, (ẋ0/α)2 = 5.6827, and we find that p/a = 0.9100. This
yields either e = 0.3 or e = 1.382. The first value of e with the above parame-
ters and fs0 = 0 gives a previously plotted almost-circular orbit (Figure 2). The
larger value of e is disallowed with the above λ — as in the previous example.

Note that by contrast with the previous case (1), we must specify β at the
outset in case (2).
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(3) The general case comprises given values of x0/a and z0/a, both non-
zero, also given is that one of ẋ0/α, ż0/α is nonzero, or the ratio ẋ0/ż0 is
known.

In this case, R0 and σ0 must be found from knowledge of the coordinates.
Equations (1.3) can be used to eliminate σ0. We find after division by a

(x0/a)2

(R0/a)2 − λ2
+ (z0/a)2

(R0/a)2
= 1 . (IC.11)

This yields a quadratic equation for (R0/a)2 with solution

(R0/a)2 = (λ2/2)
[
1+ Z ± ((1+ Z)2 − 4(z0/a)2

/
λ2)1/2

]
, (IC.12)

where

Z = ((x0/a)2 + (z0/a)2
) /
λ2 . (IC.13)

A similar result follows by eliminating R0 from (1.3):

cos2σ0 = 1
2

[
1+ Z ± ((1+ Z)2 − 4(z0/a)2

/
λ2)1/2

]
. (IC.14)

We take the positive sign before the radical for R0 and the negative sign for σ0.
Next we differentiate with respect to time in equations (1.3a,b):

ẋ0 = (R0Ṙ0 sinσ0)
/
(R2

0 − b2)1/2 + (R2
0 − b2)1/2 cosσ0σ̇0

ż0 = Ṙ0 cosσ0 − R0 sinσ0σ̇0 . (IC.15)

These equations can be solved for σ̇0 and Ṙ0, and the latter solution yields

Ṙ0/α = (ẋ0/α)
[
R0(R2

0 − b2)1/2
/
(R2

0 − b2 cosσ0)
]

sinσ0

+ (ż0/α)
[
(R2

0 − b2)
/
(R2

0 − b2 cos2 σ0)
]

cosσ0 (IC.16)

The energy equation (1.12) now reads

(ẋ0/α)2+(ż0/α)2 = 4
[
(R0/a)+βλ cosσ0

] /(
(R0/a)2− λ2 cos2 σ0

)− 2 (IC.17)

and knowing one of the velocity components, or their ratio, enables us to find
the other component.

The last equation needed is (4.7a), which reads, after division by a2α2,

p/a = C2/(2a2α2) = −(R0/a)2 + 2(R0/a)

− 1
2(Ṙ0/α)2

[
(R0/a)2 − λ2 cos2 σ0

] / [
(R0/a)2 − λ2] . (IC.18)

Then, since we know Ṙ0/α from (IC.16), the parameter e can be found. Again
β must be prescribed from the outset in case (3).

In the following example we take

β = 79/81, λ = 0.728
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and initial values
x0/a = −0.2548, z0/a = 0.67522 .

At this point, we also suppose that ẋ0 = ż0, or that the orbit is equally inclined
to the axes at the outset.

Then the above work shows that R0/a = 0.8432, cosσ0 = 0.8008. Since
x0/a is negative, we take sinσ0 = −0.5989. Then the energy equation gives
ẋ0/α = ż0/α = 2.5707, and (Ṙ0/α)2 = 0.2346. We find e = 0.337, or e =
1.373. The first value with the values of β and λ above together with fs0 = 0
yields an orbit somewhat different to one previously obtained with e = 0.3.
Using instead the second value of e, we obtain a Type A3 orbit that is tightly
constrained in the upper left quadrant in a series of overlapping near-ellipses.
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Fig. 13. Satellite polar orbit from Chapter 6. Parameters: � = 0.9, η2 = 0.00004, ν = 0.
The smallest circle represents the earth, and the inner and outer ellipses are almost-
circles centered on the origin. Here X = x/p0 and Z = z/p0.
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Fig. 14. Time-angle relation for a Chapter 3 orbit with β = 79/81, e = 0.3, λ = 0.182.
The “time” M is defined by equation (10.12). Here σ = π/2 − fs . For one complete
orbit, M = 6.1508.

Fig. 15. Time-angle relation for a Chapter 6 plane polar satellite orbit with � = 0.9,
η2 = 0.00004, ν = 0. The “time” M is defined by equations (9.14a) and (9.15) of
Chapter 5. Here σ = π/2− f . For one complete orbit, M = 6.2833.



References

[A1] Abraham, R. and Marsden, J.E.: Foundations of Mechanics, Benjamin, New York
(1st ed. 1967, 2nd ed. 1978)

[A2] Aksenev, E.P., Grebenikov, E.A., and Demin, V.C.: Soviet Astronomy, 16 (1964),
pp. 164–74.

[A3] Albouy, A.: “Lectures on the Two-Body Problem”, in Classical and Celestial Me-
chanics: The Recife Lectures, H. Cabral and F. Diacu, eds. Princeton University
Press, Princeton, NJ (2002), pp. 63–116.

[A4] Alekseev, V.M.: The Generalized Spatial Problem of Two Fixed Centers: The Clas-
sification of Motions. Bulletin of Theoretical Astronomy, X:4 (1965), pp. 241–72.

[A5] Alfriend, K.T., Dasenbrock, R., Pickard, H., and Deprit, A.: The Extended Phase
Space Formulation of the Vinti Problem. Celestial Mechanics, 16 (Dec. 1977),
pp. 441–58.

[A6] Appel, P.E.: Sur les lois de forces centrales faisent décrire à leur point-d’appli-
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masses égales. Bull. Soc. Math. Belgique, 14 (1962); (a) pp. 12–45; (b) p. 46.
[D3] Diacu, F. and Holmes, P.: Celestial Encounters: The Origins of Chaos and Stability,

Princeton University Press, Princeton, NJ (1996).
[E1] Enz, C.: No Time to Be Brief (A Scientific Biography of Wolfgang Pauli), Oxford

University Press (2002).
[E2] Euler, L: (a) Mechanica, Tomus 1, St. Petersburg (1736) (Opera Omnia, Ser. 2,

Vol. 1). (b) Theoria Motuum Planetarum et Cometarum (1744). (Opera Omnia,
Ser. 2, Vol. 3). (c) Découverte d’un nouveau principe de mécanique (1750, 1752).
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spelling Méchanique Analitique]. (ii) 2nd Edition, Paris (1811–15). (iii) 3rd Edition,
G. Bertrand, Paris (1852–55). (iv) 4th Edition, G. Darboux, Paris (1888). (v) English
translation of 2nd Edition by A. Boissonade and V. Vagliente, Kluwer Academic
Publishers, Boston (1997).

[L3] Legendre, A.-M.: (a) Exercises de calcul intégral sur divers ordres de transcen-
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équations différentielles du mouvement d’un nombre quelconque de points
matériels. (i) Connaissance des Temps pour 1850 (1847), pp. 1–40. (ii) Journal
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