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Preface

This book, to our knowledge, is the first presentation, in form of a mono-
graph, about the new approach in strongly correlated electrons systems called
“Dynamical Mean-Field Theory” (DMFT). In nearly two decades, DMFT has
become a universal tool to study strong electron correlations in solids. It was
applied not only to all basic models of systems with partially filled electronic
shells of transition, rare-earth and actinide elements, but also to real materials
such as pure elements and various classes of chemical compounds.

DMFT was derived using only one characteristic of Coulomb interaction
between d- or f-electrons of atoms in solids, that is, its spatial localization,
and so this method can be applied to systems with any ratio value for Coulomb
interaction strength and average kinetic energy defined as band width. DMFT
does not use perturbation theory and hence is a perfect instrument for descrip-
tion of systems where Coulomb interaction strength and average kinetic energy
are of comparable values and so there is no small parameter. The essential
approximation of the method is the supposed local character of Coulomb cor-
relations (electrons movements are correlated only when they are on the same
lattice site). In other words, DMFT neglects spatial correlations but takes into
account dynamical correlations in time variables for electrons on the same site
fully. The influence of correlations on other lattice sites is combined in time
(or energy) dependent mean-field. The method is named after this dynamical
mean-field.

In this book, the DMFT method applications to two basic models, Hub-
bard and periodic Anderson models with computational procedures needed
to calculate spectral function and various electronic properties, such as opti-
cal conductivity, magnetic susceptibility and superconductivity are described
in detail. Various extensions of the method including combining DMFT
with standard ab-initio band structure calculations approaches and DMFT
generalizations to account for inter-site correlations and disorder are also
given.

The growing number of studies using DMFT that appeared in the last few
years and the most important among them are described in the book. The
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authors worked many years on various issues of strongly correlated systems
theory using model approaches as well as ab-initio band structure calculations
and hope that the present book will be useful not only to researchers special-
izing on these problems but also can serve as a handbook for those who want
to specialize in the field.

Yekaterinburg, Russia, Viadimir Anisimov
April 2010 Yuri Tzyumov
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1

Introduction

1.1 Strongly Correlated Materials

In last decades main attention of experimental and theoretical studies for
metallic systems has shifted to the field of transition and rare-earth elements
with partially filled 3d-, 4 f-, and 5 f-electronic shells and based on them chem-
ical compounds. At the beginning of this process in 1960s, the most intriguing
phenomenon in this field was metal-insulator phase transition (MI) observed
for many transition metal oxides with variations in pressure, temperature, or
doping. A decade later a new class of rare-earth compounds was discovered
where charge carriers have effective mass value tens and hundreds time larger
than free electron mass — so called “heavy fermion” (HF') systems. In such sys-
tems a great variety of interesting phenomena were found: phase transitions
between magnetic order and superconductivity, appearance and disappearance
of local magnetic moments, transport properties anomalies.

Such interplay of electric and magnetic properties is typical manifestation
of strong coupling for electronic and magnetic degrees of freedom in many
3d- and 4f-elements compounds. Good example of such coupling are man-
ganites with colossal magneto-resistive effect, where moderate magnetic filed
can drastically change electronic state of the system from insulating to metal-
lic. However, the most significant and totally unexpected was the discovery of
high-temperature superconductivity (high-T,) in transition metal oxides. This
discovery brought researchers attention to synthesis and physical properties
study of new materials and in next 20 years there were found a lot of new
compounds with anomalous properties.

It is clear that physical phenomena richness for these compounds is due
to the presence of partially filled 3d-, 4f-, or 5f-electronic shells with local
magnetic moments preserved in solid. Strong interaction of d, f electrons with
each other and with itinerant electronic states of the material is responsible for
its anomalous properties. Such materials with strong electron—electron inter-
action are called strongly correlated systems (SCS). All the above mentioned
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chemical compounds and many others discussed later belong to SCS (see
e.g.[1]).

Anomalous physical properties of new materials are determined by their
electronic structure. Classical band theory works very well for simple metals
and semiconductors where interelectron interaction is weak but it is unable
to describe SCS. In SCS a strength of Coulomb interaction among electrons
is of the same order as band width for 3d-, 4 f-, or 5f-shells or even larger. In
this case completely new approach is needed that is beyond perturbation the-
ory. In last 40 years starting from pioneering Hubbard works [2, 3] there were
proposed many methods to treat SCS electronic structure problem. Those
methods were based on simple models: Hubbard model, sd-model, and peri-
odic Anderson model. Some of the proposed approaches were successful for
certain SCS classes but they were far from being universal and failed for more
complicated models describing real materials.

It seemed that SCS theory was doomed to be adequate only for certain
limited cases and able to produce not more than semiquantitative results. The
breakthrough was achieved when Metzner and Vollhardt [4] in 1989 proposed
to study strongly interacting electrons systems in large dimensional d space
(or equivalently lattices with large number of nearest neighbors z). It was
shown that in the limit d — oo (or z — o0) equations of motion for electrons
on lattice are significantly simplified and can be exactly solved for any value
of Coulomb interaction strength.

Theory simplification in d — oo limit is because of the fact that in this
case one can neglect spatial fluctuation in the system leaving in considera-
tion only dynamical on-site fluctuations. This discovery led to development of
Dynamical Mean-Field Theory (DMFT) where lattice problem was mapped
to effective impurity problem with correlated electrons feeling time or energy
dependent mean-field (hence the name dynamical mean-field) but the field
dependence on wave vector responsible for spatial correlations is ignored.
Solution of the impurity problem is used to build self-energy for lattice Green
function that in its turn gives new approximation for dynamical mean-field.
So this field is self-consistently determined in DMFT calculation scheme. First
application of this method was done by Georges and Kotliar [5] and Jarrell [6]
for Hubbard model in 1992. There was obtained so called three-peak spectral
structure with central quasiparticle peak on Fermi energy and two broad side
peaks corresponding to lower and upper Hubbard bands (see also [7]). Such
three-peak structure was later found in experimental spectra. Metal-insulator
transition with increasing Coulomb interaction strength U was described in
this picture as spectral weight transferring from quasiparticle band to Hub-
bard bands with disappearance of quasiparticle peak and energy gap creation
for critical U value.

Later DMFT was applied to basic SCS models and results were described
in review [8]. In last years DMFT developments allowed to treat success-
fully not only simple systems but also complicated real compounds [8—
11]. Some extensions of DMFT were proposed to take into account spatial
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correlations. Successes of DMFT were recognized when its founders Georges,
Kotliar, Metzner, and Vollhardt were awarded in 2006 Agilent Technologies
Europhysics Prize [12].

It is necessary to note that long before DMFT development the impor-
tance of taking into account local on-site correlations was recognized. Local
correlations has allowed Hubbard [13,14] to describe splitting of noninteract-
ing band on two “Hubbard” sub-bands due to strong Coulomb interaction.
The next important step was to use representation of partition function as
a functional integral over fluctuating fields that has allowed to Hubbard and
Hasegawa to develop “Single-site Spin Fluctuation” theory (SSF) [13,15-17].

Further progress in this direction was based on using “Coherent Potential
Approximation” (CPA) developed originally to treat disordered alloys elec-
tronic structure. Later, it was shown that CPA is exact in the limit of infinite
dimensions d — oo. Kakehashi and Fulde [18-25] have developed a number
of approaches where CPA calculation scheme was generalized for taking into
account dynamical fluctuations. It was done via introduction of frequency
dependence in coherent potential corresponding to combined action of all
electrons on distinguished lattice site. These approaches resulted in the devel-
opment of “Dynamical CPA” (din.CPA) [19], “many-body CPA” (MB-CPA)
[26], and “projection operator CPA” method (PM-CPA) [22].

As it was shown in [21,27] that MB-CPA and PM-CPA methods are equiv-
alent to DMFT. All of them ignore spatial correlations in SCS but take into
account local on-site dynamical fluctuations. Extension of those approaches to
include spatial correlations was realized in “self-consistent PM-CPA” method
(SCPM) [23,24]. Application of SCPM method to Hubbard model has allowed
to reproduce all main effects of strong correlations near half-filling including
three-peak structure of spectral function that was obtained in DMF'T.

There is an important technical detail worth mentioning. In contrast to
DMF'T based on temperature (Matsubara) Green function formalism, in PM-
CPA method and its extension SCPM retarded Green functions are used. In
the result in those methods one does not need to perform analytical continu-
ation procedure from imaginary frequencies to real energy values as it is the
case in DMFT calculation scheme. That could be a significant advantage of
SCPM method compared to DMFT because such analytical continuation can
be an “ill defined problem”.

Dynamical CPA approaches were developed in parallel to DMFT and the
former could be regarded as a supplemental method to the latter. A detailed
comparison of those two approaches is presented in Kakehashi review [27].
Later we will consider only DMFT method results for SCS theory.
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1.2 Basic Models in Strongly Correlated
Systems Theory

Quantum mechanical study of strongly correlated systems is done by two
approaches: ab-initio electronic structure calculations and model investiga-
tions. In the first case real materials can be described with specifics of their
chemical composition and crystal structure fully taken into account. In model
approaches such specifics are neglected but more rigorous solution of the prob-
lem can be obtained with physical properties dependence on temperature and
applied external fields. Sometimes, it is possible to get analytical descrip-
tion of the results with formulas but in general numerical calculations to find
equations solutions are unavoidable.

For material with partially filled d- or f-shells three basic models are used:
Hubbard model [2], sd-model [28,29], and periodic Anderson model [30]. In
Hubbard model only one group of nondegenerate electrons is considered with
repulsive Coulomb interactions for electrons on the same site. Model Hamil-
tonian describing electrons motion on the lattice and their local Coulomb

interaction is:
H= th CigCjo + Uzﬁnﬁu- (1.2.1)
i

ijo

As electrons are not degenerate then two electrons can meet on the same
site only when their spin directions are opposite to each other. Here ¢;, and é;;
are creation and annihilation operators for electron on site ¢ with spin index o
that can have two values: T and |, ;e = 6;;61'0 is electrons number operator
with spin o on site 7, t;; is hopping matrix element. Usually, it is supposed
that hopping is not zero only for nearest neighbors (number of those is z).
Second term in (1.2.1) describes local Coulomb interaction among electrons
with Coulomb parameter U defined as an energy needed to put two electrons
on the same atomic site (U = E(2) + E(0) —2E(1)). This term was proposed
by Anderson to describe a problem of local magnetic moment on impurity
in metal [30]. Such simplified expression for Coulomb interaction was found
very convenient for magnetism in metals study. Fundamental investigations
performed by Hubbard on the basis of Hamiltonian (1.2.1) gave his name to
the model [31].

In Hamiltonian (1.2.1) there are two parameters: zt and U (¢ is hopping
matrix element value for nearest neighbors ¢;;). For various values of their
ratio two cases can be distinguished: weak coupling when U < zt and strong
coupling when U > zt. First case corresponds to standard itinerant magnetism
model (see for example [32]) whereas second one to strongly correlated systems
where Hubbard model is usually used. In the limit U > zt Hamiltonian (1.2.1)
can be reduced to effective tJ-model Hamiltonian [31]:

H=tY & éjo+ JZ (S7S9). (1.2.2)

ijo



1.2 Basic Models in Strongly Correlated Systems Theory 5

Hamiltonian (1.2.2) describes correlated motion for electrons on the lattice
(correlated means that electrons can hop to the neighboring site only when
there is no other electron on this atom); operator ¢ = ¢ (1 — f,;_,) corre-
spond to creation for correlated electrons, electron number operator 7;, on the
site ¢ with spin ¢ assumes that only one electron can occupy the site. Second
term in (1.2.2) describes exchange interaction among electrons on neighbor-
ing sites. Its parameter value J = 4t2/U is determined by Anderson kinetic
exchange effect [33]. Exchange interaction in (1.2.2) describes the tendency
to antiferromagnetic ordering in the system. Spin operators in (1.2.2) can be
expressed via Fermi operators in a standard way [34]:

= ZC;SUU/CZ‘U/, (123)
oo’

where s is a vector build from Pauli matrices:

1/01 1/0—i 1/10
x - Yy E——
’ 2<1o>’ ’ 2<i0)’ i 2(0—1>' (1.24)

It means that tJ-model Hamiltonian has purely electron nature and does not
include local spin operators as in Heisenberg model.

Let us consider now hybrid models that include two types of electrons.
One of them is sd-exchange model where electrons interact not with each
other but with localized magnetic moments. Those moments are formed by
atoms with partially filled electronic shells called d-electrons while itinerant
electrons are named s-electrons. In reality, sd-model describes rare-earth ele-
ments compounds where 4 f electrons are indeed very well localized. sd-model
Hamiltonian is expressed via Fermi operators for itinerant electrons and local
spin operators:

H= Zt” ¢ Cjo — JZ SiSoo’) c " Cigr (1.2.5)

ijo ioo’

Here J is so called sd-exchange integral defining strength of exchange inter-
action JS;S¢ of local spin S; on site 7 and electron spin S on the same site
that is determined by (1.2.3). sd model Hamiltonian is quadratic for Fermi
operators with off-diagonal exchange terms.

sd-model contains two parameters zt and J. Depending on their ratio value
two cases can be distinguished. For J < zt one has weak coupling and sd-
exchange term can be treated in perturbation theory. In this approximation
many interesting physical results were obtained: itinerant electrons magne-
tization in ferromagnetic metals, electron-band splitting in antiferromagnetic
metal, exchange interaction between local spins via itinerant electrons, Kondo
effect, connection between magnetic and electron properties in rare-earth met-
als, and superconductivity destruction by paramagnetic impurities. In strong
coupling case J > zt the problem can be reduced to effective double-exchange
Hamiltonian [35-37] that describes ferromagnetism in manganites.
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Second hybrid model is Periodic Anderson Model (PAM) that includes two
type of electrons: itinerant (s-electrons) and localized (d-electrons). Coulomb
interactions is taken into account only for localized electrons on the atomic
site. In contrast to sd-model s- and d-electrons are coupled not via exchange
interaction by through hybridization term. In general case Periodic Anderson
Model Hamiltonian is:

H Ztlﬂ zUCJU +Ea Z Nio + U Z nzTnzl + Z ‘/;chadja + ‘/;]d;roclff)
ijo i ijo
(1.2.6)
where ¢, (¢} ) and diy (d ) are Fermi operators for s- and d-electrons, respec-

tively, and n = d+ di» the electron number operators for d-electrons with
spin ¢ on the blte i. In Hamiltonian (1.2.6) g4 is d-electron energy and V;; the
hybridization parameter. This model describes appearance of local magnetic
moments, Kondo insulators, heavy fermions, and intermediate valence effect.

Models defined by Hamiltonians (1.2.1) and (1.2.6) are basis of strongly
correlated systems theory where magnetic and transport properties are stud-
ied. Investigation results for those models help to understand metal-insulator
phase transition, high-Tc superconductivity, heavy fermion effects in rare-
earth and actinides compounds.

1.3 Methods for Models Investigation

We will exclude from our consideration one-dimensional Hubbard model where
exact analytical solutions can be found. Our main interest will be d =3 (some-
times d = 2) systems (d is space dimension) that are directly related to real
materials with strong correlations effects.

Initially, models were investigated by simplest methods such as mean-
filed theory and perturbation theory when small parameter can be found
like U < 2zt for Hubbard and Anderson models or J < 2zt for sd model. In
the cases where there is no small parameter (zt ~ U or zt ~ J) serious
difficulties appear in attempts to obtain analytical solution for the problem.
In such cases sometimes another small parameter could be found such as
number of electrons, 1/N expansion (N is a number of degenerate states), or
1/z expansion (z is nearest neighbors number). The last case in the limit of
d — oo (or z — 00) led to development of DMFT.

There were also approaches developed not based on perturbation theory
for interaction parameter. Among them we mention decoupling method for
double-time Green functions starting from pioneering Hubbard works and
used in various models. Closely related to it is composite operators method
[38] that was successfully applied to strong correlations problem. Rather
apart stands variation Gutzwiller method [39] widely used for study strongly
correlated systems.

Important development was also auxiliary particle approach: slave boson
and auxiliary fermions methods. The idea on the basis of those methods is



1.4 Ab-initio Electronic Structure Calculation Methods 7

to replace general operators (such as Hubbard X-operators) by the product
of Fermi and Bose operators with additional procedure to exclude unphysical
states. Good choice of auxiliary particles can lead to correct low-energy physics
of the model in mean-filed approximation. Unfortunately, there is no universal
recipe to construct such representation and often it is not clear which of the
possible representations is the best one. There are many version of auxiliary
particle methods.

In the physical literature there were proposed and used many different
theoretical approaches to strong correlations problem. Reader can find their
description in reviews [40-43] and monograph [44].

As we will show in this book the most universal method to study basic
models is DMFT that allows to calculate electronic spectra and physical
properties of strongly correlated systems with arbitrary value of interelectron
interaction strength.

1.4 Ab-initio Electronic Structure Calculation Methods

Approach based on basic model study allows to understand electronic states
in strongly correlated systems and to plot phase diagrams as a function of
model parameters. However, in order to use these results for interpretation of
real compounds experimental data one needs to know parameter values char-
acteristic for particular material. For this purpose there are two approaches:
empirical and first principles.

The first of them, empirical, is based on using experimental data to deter-
mine model parameters. Usually that is spectral data (optical, photoemission,
and X-Ray spectra) that can give information about band width. In the case
of strongly correlated systems on the edge of the metal-insulator transition
(or already in Mott insulator state) it is possible to estimate also value for
Coulomb interaction parameter U determined from the energy separation of
the spectral peaks interpreted as Hubbard bands.

More often the approach is used where model parameters (such as Coulomb
interaction parameter U and band width W) are varied to achieve the best
agreement between experimental data for some characteristic (resistivity, sus-
ceptibility, etc.) and the corresponding value calculated in model solution. In
such approach model parameters are considered to be adjustable parameters.

However, the most justified way to determine model parameters is using
results of electronic structure calculations from first principles methods (or
in other words ab-initio methods). The name first principles is used as oppo-
site to empirical approach. First principles methods are not formally exact
ones, because a lot of various approximations were done in their derivation.
The key issue is the fact that in these methods construction only the most
basic (first) Quantum Mechanics principles were used such as many-electron
Schroedinger equation. For atoms and small molecules many-electron meth-
ods could be used where wave function is represented as linear combination of
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Slater determinants. However for solids the most practical approach is Density
Functional Theory (DFT) [45,46] that reduces many-particle problem to one-
electron one. In Sect. 2.1.1 the basics of DF'T are presented and in Sect.2.1.2
the main calculation methods based on DFT are described.

In DFT one solves differential equations for one-electron wave functions
with effective potential that is in its turn determined by the equation solutions.
That results in very effective and practically realized iterative calculation
scheme. However that means explicit neglect of correlation effects (all electrons
feel the same time and energy independent potential). In the result for Mott
insulators (for example transition metal oxides) DFT methods gave wrong
metallic ground state (see Sect. 2.1.3).

There were proposed many corrections to DF'T overcoming this defect and
resulting in correct ground state for Mott insulators (see Sect. 2.1.4). However
those correction were not derived from general enough equations and have
rather restricted area of applicability.

Better perspectives has approach where electronic structure calculation
results by DF'T methods are used to calculate parameters for general Hamil-
tonian and then the problem defined by this Hamiltonian is solved by one
of the methods developed in basic models theory (see Sect.1.2). In Sect. 2.2
we describe how it is possible using Wannier functions formalism to calcu-
late Hamiltonian parameters from eigenfunctions and eigenvalues obtained in
DFT. Using constrain DFT (see Sect.2.2.5) one can calculate also the value
of Coulomb interaction parameter U.

The problem defined by this Hamiltonian can be solved in the simplest
static mean-filed approximation (unrestricted Hartree-Fock). The resulting
calculation scheme is called LDA + U method and is described in Sect. 2.3.
This method was found to be very successful when applied to systems with
long-range spin and orbital order.

However, more general problems of paramagnetic insulator and strongly
correlated metal can be solved only by DMFT method that is described in
details in Chaps. 3-5. Approach based on solving in DMFT the problem
defined by the Hamiltonian with parameters calculated in DFT calculations
is called LDA + DMFT method and is described in Chap. 6.



2

Electronic Structure Calculations
in One-Electron Approximation

2.1 Density Functional Theory and Electronic
Structure Calculations Methods

2.1.1 Density Functional Theory

The fundamental task of condensed matter physics is solution of many-
electron problem that can be done only by using various approximations. At
now there are two main approaches in solid state theory to solve this problem.
One is based on taking into account restricted number of electronic states in
small energy window around Fermi energy when the system is described by
model Hamiltonian with a set of adjustable parameters (see Sect. 1.2).

Second approach is electronic structure calculations from first principles
when the only input parameters are atomic number (nuclear charge) and
number of electrons in the system. Positions of the atoms in the crystal (crys-
tal structure parameters) is another information needed for calculation but
in many cases those parameters can be obtained in first principles calcula-
tions via total energy minimization. The most widely used first principles
methods are based on DFT [45,46] that reduces many-electron problem to
one-electron one.

According to Hohenberg-Kohn theorem [45,46] that is a basis of DFT,
all ground state properties of inhomogeneous interacting electron gas can
be described by minimization of the total energy as a functional of electron
density p(r):

Blp) = Tlpl+ [ anpe)Vesa(6) + [ arpte) [ L>|d LBl (210)

|r—

where T'[p] is kinetic energy, Vext(r) is the external potential acting on elec-
trons (usually that is attractive nuclear potential), third term in (2.1.1)
describes Coulomb interaction energy (Hartree energy) corresponding to
charge distribution p(r) and E.. is so called exchange-correlation energy.
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This term describes decreasing of Coulomb interaction between electrons in
the same spin state due to the Pauli principle (so called exchange interac-
tion that includes also self-interaction correction) and also purely correlation
effects arising from the fact that electrons do not move independently from
each other.

This method would be exact if the term E,. in (2.1.1) could be rigorously
defined. However for that one needs to solve exactly many-electron problem
that is impossible in general case. Hence using approximations for exchange-
correlation energy is unavoidable and they play a key role in DF'T. Hohenberg-
Kohn theorem states that system properties are defined by its charge density
only and hence particular representation of wave functions building this den-
sity is undetermined. For practical applications p(r) can be expressed via
one-electron wave functions ¢;(r):

N
p(r) =3 | 6i(r) . (2.1.2)
i=1

where N is total number of electrons.

To minimize functional (2.1.1) one need to vary it over new variables ¢;(r)
with additional condition that wave functions are normalized. That leads to
the system of Kohn-Sham differential equations (in the following we use atomic
units system with Rydberg as energy unit that results in appearance of factor
of 2 in Coulomb potential expression)

22 p) 4
V2¥|r—ﬁf|”/|r_r/|dr 4 Voe(r)| di(r) = e0i(r). (2.1.3)

Here R is position vector for nucleus with charge Z;; ¢; are Lagrange multipli-
ers having the meaning of one-electron eigenenergies and exchange-correlation
potential V. is a functional derivative of exchange-correlation energy E,.:

- dEzc|p]
Veel®) = 50y

Equations (2.1.3) allow to calculate electronic charge density p(r) and total
energy for ground state of the system.

Lagrange multipliers ¢; are usually interpreted as one-electron energies
(eigenvalues) for the state corresponding to one-electron wave functions ¢;(r).
There is an useful analog of (2.1.4) for ;. Eigenvalue ¢; is derivative of the
total energy is respect to the occupancy of the corresponding one-electron
state n;:

(2.1.4)

€ = aE‘tot

! 87%‘ '

DFT applications are based predominantly on so called Local Density
Approximation (LDA) where exchange-correlation energy is defined as an

(2.1.5)
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integral over space variables r with an expression under integral depending
only on local value of electron density p(r):

Evlpl = [ plo)zac(ole)dr. (2.1.6)

Here €,.(p) is contribution of exchange and correlation effects in total energy
(per one electron) of homogeneous interacting electron gas with density p(r).

For spin-polarized systems one can use Local Spin Density Approximation
(LSDA) [47):

Emc[PT’Pl] = /p(r)Emc(pT(r)7pl(r))dr, (2.1.7)

where e,.(p!(r), p*(r)) is exchange-correlation energy per one electron in
homogeneous spin-polarized electron gas with densities p'(r) and p'(r) for
spin projections “up” and “down”. Exchange-correlation potential (2.1.4) in
this approximation become spin-dependent

o 5EIC[pT7 pl]
op7(r)

LDA approximation can be illustrated by introducing effective exchange-
correlation hole surrounding every electron that produces attractive potential
decreasing repulsive Coulomb interaction potential from all other electrons.
As LDA is based on exchange-correlation energy expression for homogeneous
electron gas it is expected to be justified if electron density variation in space
is slow enough.

There are various approximation for exchange-correlation energy and
potential [46,48]. L(S)DA was used with great success to describe electronic
properties for atoms, molecules and solids (see review [49]) where correlation
effects were not too strong. In 1998 for “DFT development” Walter Kohn and
John Pople were awarded Nobel prise (see Kohn’s Nobel lecture [50].

VO (r) (2.1.8)

2.1.2 Electronic Structure Calculations Methods Based on DFT

Calculation scheme for methods based on DFT consists in self-consistent solu-
tion of Kohn-Sham equations (2.1.3) to obtain a set of one-electron eigenfunc-
tions ¢;(r) and corresponding eigenvalues ¢;. From those eigenfunctions new
electron density p(r) is calculated via (2.1.2). New p(r) is used in its turn to get

Coulomb 2 [ "; g?ldr’ and exchange-correlation V. (2.1.4) potentials. Kohn-
Sham equations are solved iteratively till self-consistency will be achieved with
output electron density p(r) (2.1.2) coinciding with the input value used to
construct potential in (2.1.3).

Kohn-Sham equations (2.1.3) are homogeneous differential equation of
the second order in three-dimensional space. Direct numerical solution for

such problem with three-dimensional mesh would require prohibitively huge
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computational expenses. The source of difficulties is strong spatial inho-

mogeneity of potential in (2.1.3). Near atomic center dominates attractive

Coulomb potential IrzzPizl from positive nuclear charge Z; that diverges at

[r—R;| — 0. That means that space mesh should be very fine at this area with
huge number of mesh points. However in the area between atoms potential
varies much more smoothly and space mesh could be made coarse.

Practically realized calculations schemes for Kohn-Sham equation solution
are based on variational approach. Wave functions ¢;(r) = |¢;) are expressed
as series in complete set of basis functions |py):

i) =D anlen) (2.1.9)

with unknown coefficients af,. Let us write Kohn-Sham equation in the form:

H|i) = &), (2.1.10)

where we introduce one-electron Hamiltonian:
- 27 p(r’)
H=-V?— — 42 [ ———dr ee(T). 2.1.11
M= R Ar=  UARSC R

Let us substitute expansion (2.1.9) into (2.1.10) and multiply it from the left
on basis function {(@,/|. In the result we will get linear algebraic equations
system for coefficients a :

> Hymal, =Y Opnai, (2.1.12)

where Hyrp, = (on|H|g,) is Hamiltonian (2.1.11) matrix element in the |¢,)
function basis and Oy, = (@ns|@n) - overlapping matrix in the same basis.

Then Kohn-Sham differential equations reduce to linear algebraic equa-
tions system (2.1.12) or to general problem of finding eigenvalues and eigen-
vectors of Hamiltonian matrix. Specific realization of the method is defined
by the choice of basis functions set |¢,).

Existing DFT methods could be divided in two major groups. One of them
uses as a basis set atomic-like orbitals centered at atoms and decaying with
increasing a distance from the center while another one uses delocalized plane
waves:

k —g) = elm®)r (2.1.13)

where k is wave vector and g is the reciprocal lattice vector.

Among the first group the most popular is Linearized Muffin-Tin Orbitals
(LMTO) method [51]. In this method basis function is so called Muffin-tin
orbital (MTO) @im(r) = ¢1(|r])Yim () (* is angle variables for vector r). It
has atomic orbital symmetry corresponding to orbital moment value [ and
its projection m. Angular t and radial |r| variables dependence are separated
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with spherical harmonic Y;,, () depending on angle variables ¥ and radial
function ¢;(|r|) depending on distance to atomic nucleus |r|:

Ri(r|, E s,
ou(Jr]) = {Ol|1(r||r|ll> |11:| i s, (2.1.14)

where S is atomic sphere radius (equal to half of interatomic distance in
the crystal). R;(|r|, E) is radial variable dependent part of Kohn-Sham equa-
tion (2.1.10) solution for spherically symmetric potential inside atomic sphere.
Muffin-tin orbital (2.1.14) is exact solution of (2.1.10) inside the atomic sphere
and decaying “tail” |r|='~! outside of the sphere.

Such choice of atomic-like functions does not represent “hard” basis as
it would be for fixed basis function set. On every iteration radial func-
tions R;(|r|, ) are recalculated for new potential and hence basis defined by
(2.1.14) is an optimal one for Kohn-Sham equations (2.1.10). LM TO method
is very efficient because number of functions in the basis needed for satisfac-
tory description of crystal wave function is relatively small (10-15 orbitals per
atom). This is also very convenient for calculation results analysis because it
allows to naturally determine contribution of various atomic states to crystal
wave function (2.1.9). However its accuracy is not enough to describe elec-
tron density changes due to atomic displacements from equilibrium positions
that are needed to calculate lattice properties (ground state crystal structure,
phonon spectra, etc.).

The choice of plane waves |k —g) (2.1.13) as basis set allows with good
accuracy to reproduce fine details of charge density distribution in crystal.
However a price for this advantage is a huge number of terms in expansion
(2.1.9) (=10°) and correspondingly enormous Hamiltonian matrix dimension
in the set of algebraic equations (2.1.12). Direct complete numerical diago-
nalization of matrices dimensions ~10° could be prohibitively expensive in
computer resources. However it is not necessary to seek all ~10° eigenvalues
and eigenfunctions but only few tens of lowest energy solutions corresponding
to the occupied states. That fact significantly reduces the needed computa-
tional expenses making plane wave basis methods practical tool for electronic
structure calculations.

Plane waves basis is a good approximation for wave function in interatomic
area where electronic potential in (2.1.11) varies smoothly. However inside the
atoms, especially approaching nucleus where potential diverges, plane wave
become rather bad choice. In this region atomic-like orbitals would be much
better basis set. There are two way to solve this problem: LAPW method [52]
and pseudopotential method [53]. Later we briefly describe both of them.

The most rigorous of them is Linearized Augmented Plane Waves (LAPW)
method [52]. Basis function here is not simple plane wave (2.1.13) but so called
“augmented plane wave” |k — g)rapw defined by the following expression:

2t bim Ba([x], B)Yim (£) if [r <5,

2.1.15
Celk-e) it e >s 21O

|k - g>LAPW = {
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This function has optimal form for potential distribution in (2.1.11): inside
atomic sphere it is a linear combination of exact solutions of (2.1.10) for
spherically symmetric potential R;(|r|, £)Yin, () and in interatomic area it is
a plane wave e(k—8)r,

Pseudopotential method solves the earlier mentioned problem for plane
waves basis inside atom where potential diverges in a rather ingenious way.
Preserving the basis in a form of simple plane waves (2.1.13) potential in
(2.1.11) is replaced by “pseudopotential” that varies smoothly inside the
atom. Correspondingly eigenfunction obtained in solution of equation with
this “pseudopotential” is called “pseudowave” function. The key issue in this
approximation is requirement to “pseudopotential” construction that for the
distance from atomic center larger than some “cut-off” radius “pseudowave”
function coincides with true wave function and its eigenvalues are the same
as for true potential. As all physical properties of the material are defined by
valence electrons whose wave functions are extended far from the atomic core
area then pseudopotential method is a good approximation.

2.1.3 Breakdown of Local Density Approximation for Strongly
Correlated Systems

In spite of the great success of DFT in application to electronic structure
calculation and ground state properties study for many materials exchange-
correlation energy approximation (2.1.6) based on homogeneous electron gas
theory is not adequate for systems with narrow bands. For such materials
where electrons preserve in significant degree their atomic orbital nature DF'T
can give qualitatively wrong results. Classical example of this failure are Mott
insulators (such as transition metal oxides) [54] with partially filled electronic
d-shells. DFT gave metallic ground state for these materials in contrast to
experiment showing them to be wide gap insulators. The reason for insulator
state appearance in partially filled d-bands is strong Coulomb repulsion [55].
Electron localization happens when kinetic energy gain due to electrons hop-
ping from site to site is smaller than energy loss due to Coulomb repulsion
between two electrons on the site. The system with strong Coulomb interac-
tion can become metallic with doping or band width increase but resulting
metallic state demonstrate anomalous many-electron (correlation) effects that
could not be described in one-electron approach (see [8,56-58]).

In L(S)DA electron moves in mean-field created by all particle in the
system including itself. This “self-interaction” is partially taken care of by
exchange-correlation potential (2.1.4) but not in explicit and complete way like
in Hartree-Fock approximation. In the result of this “residual self-interaction”
effect L(S)DA systematically underestimate energy gap value in insulators
and semiconductors [59,60].

For some materials (for example MnO, CuO, and NiO) LSDA calculations
can result in insulating ground state due to magnetic ordering. However in
this case localization is driven not by Coulomb interaction characterized by
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parameter U but by exchange interaction with Stoner parameter I. In LSDA
total energy is [61]:

EYSDA = ELPAL Y 4+ B, pi (r), py (1)} — EEPA {p(r)}, (2.1.16)

where EMPA is nonmagnetic state energy that is a functional of total electron
density p{(r)} and E,. is exchange-correlation energy that depends on spin-
polarized electron density. In this case one can express exchange splitting of
the potential as a function of magnetization m(r):
SELSDA  §ELSDA
Vi—-V, = - = f(r)m(r). (2.1.17)
opr(r)  dpi(r)

In matrix element form:

(W*IF(r)m(r)[*) ~ —ml, (2.1.18)

where 1)* is Bloch function for d-band and I is Stoner parameter. If insulating
electronic structure in the material is formed by occupied states with spin
direction “up” and empty states with spin direction “down” then energy gap
value in LSDA is determined by Stoner parameter I and not by Coulomb
interaction parameter U as should be in Mott theory.

In transition metal compounds Stoner parameter I weakly depends on the
material specifics and is completely defined by intraatomic properties and so
can be identified with Hund exchange interaction parameter J. Its value is
usually =1 eV while Coulomb parameter U is of the order of 10eV. This fact
can explain why energy gap values for insulating solution of LSDA calcula-
tions are strongly underestimated, for example for NiO calculated gap value is
~0.4eV while experimental value is ~4 eV [62]. For cuprates the discrepancy
between LSDA results and experiment could be even qualitative: for LaCusOy
calculations gave nonmagnetic metal as a ground state while experimentally
it is antiferromagnetic insulator [63].

“Residual self-interaction” effect is a reason for LSDA inability to treat
charge ordering effects. Inhomogeneous charge distribution corresponding to
charge ordered state is unstable in LSDA because on the atoms with larger
electron occupation charge density will increases and potential will become
more repulsive with the opposite effect on the atoms with smaller occupation
value. This effect is unphysical because potential for the specific electron state
should not depend on its occupancy. For magnetite Fe30,4 LSDA calculations
results in metallic state without charge ordering [64,65] in contrast to exper-
imental charge ordered insulating ground state and only taking into account
correlation correction in LD A+ U method (see Sect. 2.3) gave correct ground
state [66].

2.1.4 Corrections for Electron—Electron Correlations

Later the most popular corrections to LD A are presented that were proposed
to treat Coulomb interaction effects in real materials.
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The natural correction to exchange-correlation potential in local den-
sity approximation (2.1.7) is to take into account inhomogeneity of electron
gas in atoms and solids. That was done in Generalized Gradient Correction
Approximation (GGA) [67-69] where exchange-correlation energy depends
not only on the local electron density value but also on its local gradient
value EGGA [p1,p1,Vp1,Vp ). GGA method improves ground state proper-
ties obtained in calculations such as total energy, equilibrium crystal struc-
ture, bulk modulus, cohesion energy. However quasiparticle energies forming
one-electron spectra are practically unchanged [70].

For Mott insulators Hartree-Fock method is preferable [71] as it contains
explicit self-interaction correction term that ensures reproducing an energy
gap between occupied and empty states. However a serious problem is absence
of Coulomb interaction screening effects in Hartree-Fock that leads to strong
overestimation of effective Coulomb parameter U in this method (~18 —20eV
in contrast to ~8 + 6eV for screened value [61,72]). As a result energy gap
values obtained in Hartree-Fock calculations are overestimated 2-3 times
comparing with experiment [71].

In Self-Interaction Correction SIC' method [73-75] “residual self-
interaction” present in L DA is explicitly canceled for all occupied states. For
that from LD A functional (2.1.16) contribution is subtracted from charge den-
sity p; = |¢:(r)|? corresponding to electron occupying state i. The resulting
SIC-potential becomes orbital-dependent:

Vi(r) = Vot (1) + Vi [p)(6) + Vel (x) — Varlpil(r) = Vel (1), (2.1.19)

where Veyt, Vg and V.. are external, Coulomb and exchange-correlation
potentials, p; = |¢;(r)|? charge density for state i and p = > p; — total charge
density. In SIC' method repulsive interelectron potential acting on electron
in occupied state is reduced while for empty states remains unchanged. That
results in energy splitting between occupied and empty bands.

This method was applied to transition metal oxides [73] and calculated
values for magnetic moments and energy gaps were found to be in much better
agreement with experimental data that LDA results [76]. However SIC has
the same disadvantage as Hartree-Fock method: effects of Coulomb interaction
screening are not taken into account and effective U value estimated as energy
separation between occupied and empty d-states is strongly overestimated.

Another approach to correlation effects problem is GW method [77,78] (see
also review [79]). In this method one-electron spectrum is modified by self-
energy that is defined by Green function G and screened energy dependent
Coulomb interaction potential W. This approach is based on many-electron
theory with perturbation series preserving first order term in W. Calculation
by GW method gave good results for many real materials including sim-
ple metals, semiconductors and insulators [79-82]. With certain additional
approximations good results were obtained also for Mott insulators such as
NiO [79]. However as this method takes into account only first order term of
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series in W expansion, it cannot describe properly strongly correlated met-
als where it is known that higher order terms are needed. It also requires
significant computer time expenses.

In LD A+ + method [83] three regimes can be treated defined by the ratio
of Coulomb interaction parameter U to band width W: weak correlations
(U/W <« 1), strong correlations (U/W > 1) and intermediate correlations
(U/W ~ 1) with different calculation schemes for each regime. This scheme
was realized for intermediate valence system TmSe, classical Mott insulator
NiO [83] and transition metals Fe and Ni [84-86].

A simple and practically effective comparing with GW and LDA + + is
LDA + U method [61] (see Sect.2.3). In this approach electron states are
divided into localized (d-orbitals) and delocalized (s, p states) subspaces with
d — d Coulomb interaction described by an expression:

U > Moo, (2.1.20)
mo,m’c’
mo#m’o’
where n,,, is occupancy of d-orbital with orbital projection and spin indexes
mo. This method corresponds to static mean-field approximation. LDA 4+ U
method allows to get rid of “self-interaction” as in SIC' method but using
Coulomb parameter U taking into account screening effect in its determination
gives better agreement with experimental data.

Generalized Transition State (GT'S) method was proposed in [87]. In this
method one-electron LDA energies are modified in such a way that they
describe excitation energies calculated via Slater transition state approxima-
tion [88]. Slater has shown that ionization energy can be calculated using
one-electron energies in so called “transition state” with half-integer occu-
pancy value n; = 1/2 equal to average between initial and final state:
A; = E[n; = 1] — E[n; = 0] = ¢;(n; = 1/2). Here E[n;] is total energy of
the system with occupancy n; of orbital 7, and €; is one-electron energy for
corresponding orbital. Excitation energy A;; (energy cost for transition of
electron from orbital ¢ to orbital j) can be calculated as:

Ay =En;=1,n;=0— Eln; =0,n; = 1] = ¢;(1/2) — &(1/2). (2.1.21)

In GTS method Slater approximation is generalized to infinite periodic sys-
tems. It is assumed that excitations in crystal happens from and to localized
states determined by Wannier functions [89]. Auxiliary GTS functional is
defined in the following way [87]:

Ears(p,{ni}] = ELpalp] — % > (1/2-)

i=1

5 O0€;

i

. (2.1.22)

Here €; and n; are energies and occupancies for i-th Wannier function, N is
total number of Wanier functions in consideration. One-electron energies are
calculated as (see (2.1.5)):
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0€;

~ aEGTS _ ~LDA -
. _— €; +(1/2—n7)8_m|ﬁlzl/2

T Ton,
As one can see from (2.1.23) GTS-correction is equal to (1/2 — 7;)0€;/0n;
that decreases energy for occupied Wannier states and increases it for empty
states. The correction value 9¢;/0n; is calculated self-consistently for every
Wannier function. GTS method is analogous to LDA + U method but has
wider area of applicability: it can be used not only for materials with d- and
f-orbitals but also for band insulators and semiconductors.

With this method significant improvement was achieved for agreement of
calculated energy gap and magnetic moment values with experimental data
[87]. In [90] it was shown that GTS functional can be derived from more
general requirement of restoring discontinuous properties of exact Density
Functional.

(2.1.23)

2.2 Determining Problem Hamiltonian from Density
Functional Theory

2.2.1 Problem Definition

Coulomb correlation problem was intensively studied with Hubbard and
Anderson models. There were developed many methods to solve model Hamil-
tonian equations using analytical as well as numerical approaches. In order
to use this rich set of tools for real materials it is necessary to define optimal
Hamiltonian for the system under investigation and determine its parameters.
DFT methods can give all information needed to fulfill this task.

Hilbert space of crystal electronic states can be divided into “weakly corre-
lated” and “strongly correlated” subspaces. In the first of them kinetic energy
ratio to Coulomb interaction energy is large enough for DFT one-electron
equations (and corresponding to them one-electron Hamiltonian) to be a
good approximation. For “strongly correlated” subspace Coulomb interaction
term of Hamiltonian should be written in the full form through creation—
annihilation operators (see Sect.2.2.2) but all other terms could be described
by one-electron DFT equations.

However in this recipe for defining Hamiltonian using DF'T results inter-
electron Coulomb interaction could be counted twice. If we add to one-
electron DFT Hamiltonian Coulomb interaction term in the full form through
creation—annihilation operators then we should subtract Coulomb energy
that was already taken into account in DFT. Coulomb interaction energy in
model Hamiltonians is expressed through occupancies of atomic-like orbitals
while in DFT equations only total charge density distribution enters. That
means that “double counting” problem has no rigorous solution and various
approximations were proposed to treat it (see Sect.2.2.3).

Another important problem is definition of atomic-like orbitals occupied
by interacting electrons. Most justified choice for such orbitals are Wannier
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functions forming complete basis of electronic states Hilbert space but resem-
bling atomic orbitals being centered on atoms and decaying with increasing
the distance from nucleus (see Sect. 2.2.4).

For Wannier functions as orbital basis set one needs to determine parame-
ters for Coulomb U and exchange J interactions between electrons on the
orbitals. This can be done by DFT methods with fixed values of orbital
occupancies (so called “constrain DFT” calculations, see Sect. 2.2.5) .

2.2.2 Coulomb Interaction Hamiltonian

In order to treat Coulomb correlation problem one needs to define Hamiltonian
where Coulomb interaction will be written in the full form through creation—
annihilation operators. d or f electrons of partially filled electron shells occupy
atomic-like orbitals forming orthonormalized basis set |inlmo) (i is atomic site
index, n the principal quantum number, [ and m are orbital moment and its
projection values and o is spin index). Usually, there is only one partially
filled electronic shell ny4ly for atom 4.

In general form Coulomb interaction Hamiltonian can be written in the
following form:

3 1 ’ " "
Heouomb = 5 > > (m, m/ |Vee|m” ,m"")  (2.2.24)

3 —a — ’ " m"r ’
i=iq,l=lg m,m’,m’"" m'"’ o,0

At ~ ~
x Citmo Citm/ o' Citm? o Citm!" o>

where V. is screened Coulomb interaction between electrons in igngly shell.
Matrix elements of operator Vi, can be expressed via complex spherical
harmonics and effective Slater integral parameters F* [91]:

(m, m/|Vee|m” ,m"") = Zak(m,m",m/,m"')Fk, (2.2.25)
k
where k£ =0,2,...,2] and
k

4
ST O mlYigltm) @ [Y i) (2:2.26)
q=—k

ag (m, m//’ m/7 ml/l) _

where Y}, are complex spherical harmonics.

Hamiltonian (2.2.24) assumes possibility of mixing for orbitals with dif-
ferent m values (or in other words possibility for electrons occupy arbitrary
linear combinations of |inlma) orbitals). However in many cases, it is possible
to choose “natural” orbital basis where mixing is forbidden by crystal symme-
try. In this case terms é;gmgéigmfg with m # m/ are absent and Hamiltonian
(2.2.24) can be written as [10]:
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A 1 N . . .
HCoulomb = 5 Z Z {Umm’nilmdnilm’a + (Umm’ _Jmm’)nilmonilm’o}

i=iq,l=lg m,m’ o
1
A+ 4 A+ 4 A+ At 4 4
B 5 Z Z Jmm/{Cilmacilm6Cilm’6Cilm’Ucilmacilm6cilm’acilm’&}'
i=ig4,l=lqg m#m/' o
(2.2.27)
(Nitmo = é,jlmoéilmg is particle number operator for electrons on orbital

linlmao), & =] (1) for o =1 (])). Here we have introduced matrices of direct
Upme and exchange J,,,y Coulomb interaction:

Unmm' = (m,m/ |Vee|m,m), Jom: = (m,m/|[Vee|m/,m).  (2.2.28)

Last two terms in Hamiltonian (2.2.27) describe interactions that cannot
be expressed in density—density form (7imoTitm s and Mipme Ritms o) as in the
first two terms. Third term corresponds to spin flip for electron on m orbital
with simultaneous reverse spin flip on orbital m’ that allows to describe x
and y spin components whereas the fourth term describes pair transition of
two electrons with opposite spin values from one orbital to another. Taking
into account such spin-flip terms can significantly complicate the problem
solution and, usually, they are neglected in calculations. In the result only
density—density terms are left and Hamiltonian has the form:

~ 1 R R . .
HCoulomb = 5 Z Z {Umm’nilmanilm’a' + (Umm’ - Jmm’)nilmo‘nilm’a}-

i=igq,l=lqg m,m’,o
(2.2.29)
Historically, instead of Coulomb matrix (2.2.28) so called Kanamori para-
metrization is used where for the same orbitals (m = m') direct Coulomb
interaction Uy, = U, for different orbitals (m # m') Uy = U’ with U’ =
U — 2J and exchange interaction parameter does not depend on orbital index
Jmms = J. In this approximation Hamiltonian is:

HCoulomb = 5 {[U(Smm’ + U/(]- - 6mm’)]nilmanilm/6
i=iq,l=lg m,m/ o (2230)

+ (U/ - J)'ﬁ/ilmaﬁilm’a}-

2.2.3 Double-Counting Problem for Coulomb Interaction

“Double counting” problem appears because of basically different approaches
for Coulomb interaction energy description in DFT and Hubbard or Ander-
son models. When Coulomb interaction Hamiltonian in general form (2.2.24)
is added to one-electron DFT Hamiltonian then it is necessary to cancel
Coulomb energy that was already taken into account in DFT'. Unfortunately,
it is not possible to realize this cancellation in a rigorous way because Coulomb
interaction energy in DF'T equations is calculated as functional of charge den-
sity distribution while in model approach this energy is expressed as a sum of
pair interactions for electrons on atomic orbitals.
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Full Hamiltonian is defined as:
H = Hypa — Hpe + Hooulomb, (2.2.31)

where ﬁLDA is one-electron Hamiltonian corresponding to Kohn-Sham DFT
equations (2.1.3), Hooulomb the Coulomb interaction Hamiltonian (2.2.27) and
Hpc is a correction term to avoid “double counting” for Coulomb interaction
energy.

To define Hpc one need to express Coulomb interaction energy taken into
account in DF'T in the language of model Hamiltonian Hcoulomp- In DFT this
energy is a functional of electron density that is defined by the total number
of interacting electrons ng4. Hence it is reasonable to assume that Coulomb
interaction energy in DFT is simply a function of ng:

1.
Bprr = 5Und(na - 1), (2.2.32)

where ng is number of electrons in shell ny4ly, U the average value of Coulomb
matrices Upm and (U — Jmme) s the over all orbital pairs mo, m’o’.

To obtain correction to atomic orbital energies €4 in this approximation
one needs to recall that in DFT one-electron eigenvalues are derivatives of
the total energy over corresponding state occupancy nq (see (2.1.5)):

_ OEprT

2.2.
G (2:2.33)

€d

and hence correction to atomic orbital energy epc can be determined as:
- 1
€EpCc = U ng — 5 5 (2.2.34)

and the term in Hamiltonian responsible for “double counting” correction
HDC is:

I/‘\IDC = Z EDCNinlme (2.2.35)

inlmo

(sum in (2.2.35) is only over orbital indices corresponding to interacting
electronic shell igngly).

2.2.4 Wannier Functions as Coulomb Interaction
Hamiltonian Basis

In Hamiltonian (2.2.24) interacting electrons are in quantum states defined by
“atomic orbitals” |inlmao). The simplest choice of free atom orbitals for such
states is a bad approximation because in crystal atomic states are significantly
modified comparing with free atoms. The problem of definition for atomic-like
orbitals in crystal does not have unambiguous rigorous solution but the most
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mathematically justified choice for them are Wannier functions [89]. Those
function form complete basis set of crystal electronic states Hilbert space while
resembling atomic orbitals being centered on atomic sites and exponentially
decaying with increasing the distance from atomic center.

Wannier functions (WF) |[W,T) are defined as Fourier transformed Bloch
functions |¥,x) [89]:

1 .
W) = —= > e ), (2.2.36)
k

where T is translation vector, n the band number, and N is the number of
discrete k points in the first Brillouin zone.

Wannier functions are not unambiguously defined because in multiband
case any orthonormal linear combination of Bloch functions |, k) can be used
in (2.2.36). In general it means that the freedom of choice of Wannier functions

corresponds to freedom of choice of a unitary transformation matrix U,E‘;):

@) — > U o). (2.2.37)

In last years method proposed by Marzari and Vanderbilt [92] is widely
used for Wannier functions construction. They imposed condition of maximum
localization for WF's, resulting in a variational procedure to calculate 5‘:}
As an initial guess to start iterative solution of the variational procedure the
authors of [92] proposed choosing a set of localized trial orbitals and projecting
them onto Bloch functions. It was found that Wannier functions obtained in
this projection are already so well localized that later authors of [93] proposed
to abandon variation procedure and use projected orbitals as a definition of
unitary transformation matrix U,%).

Bloch function are presented as expansion series in some basis functions
with specific form depending on the particular DFT calculation method
(see Sect.2.1.2). Examples are atomic-like “linearized muffin-tin orbitals” of
LMTO method or plane waves |k — g) = e!(*~8)" a5 in pseudopotential and
LAPW methods. Later we present Wannier function formalism for pseudopo-
tential method in plane wave basis with pseudoatomic wave functions ¢,
as localized trial orbitals. Formulas for other methods could be obtained by
replacing matrix elements (¢, |k — g) on integrals between corresponding basis
function and trial orbitals. N

Nonorthogonalized approximation for WF in real space |W,T) and in recip-
rocal space |Wnk> is calculated as projection of atomic orbital on Hilbert sub-
space defined by Bloch functions in energy interval By < ¢,(k) < E3 or in
band number interval N; < v < Na:

W) =" [Wa)e ™, (2.2.38)
k
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Woi) = Y i) Woicldoie) = > 1) (o). (2:2.39)

v=Ni E1<e, (k)< E;

In plane wave basis Bloch functions and pseudoatomic orbital Bloch sums
|pni) = > KT |¢T) are presented as expansion in plane waves:

Vi) = Zcug( )k —g), (2.2.40)

| i) = Z ang (K)k — g), (2.2.41)
where n is combined index jlmo ( 7 is atomic number, Im the orbital moment

and its projection, o is the spin projection).
In plane wave basis nonorthogonalized approximation for WF (2.2.39) is:

N3
|Wnk> = Z |ka><wuk|¢nk>

v=N,
N2
= > 1) Y6 g(K)ang (k) (k — glk —g')
v=N1 g8’
No
= Z |Pyk) chlg Jan.g (k) Z bvn( N¥k)
v=N; v=N;

an o |k g), (2.2.42)

Zc,,g Jang (K),  @ng(k Zbyn Jevg(k).  (2.2.43)

v=N;

In order to produce orthonormal set of WF's one needs to define overlap-
ping matrix:

N3
O (K) = (Wt Worie) = Y 05 (k)b (K), (2.2.44)

V:Nl

then orthonormal WF is:

W) = [Wa)e™T, (2.2.45)
k
where
|Wnk> - Z(Onn’ (k) % Z bu n |u7uk an,g ‘k g>
n’ v=N1
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For practical applications (for example to define kinetic energy term in
Hamiltonian in WF basis or to run constrain DF'T calculations to determine
Coulomb interaction parameter value U (see Sect.2.2.5)) it is necessary to
calculate matrix elements for various operators in WF basis. One-electron
Hamiltonian in reciprocal space representation in WF basis is:

HT\LAT/nF(k) = nk| (Z |¢Vk 51/ Vk|> |ka>
v=N1
N3
= > b (K)bym(K)ew (K), (2.2.47)
v=N1

where ¢, (k) is band v energy.
In real space representation Hamiltonian matrix in WF basis is:

HWF( WT (Z Z |y7yk gy uk> ‘W;I«:l>

k v=N;
N2
=D b Kby (K)ey (k) T =D (2.2.48)
k v=N;

WF
nm

N3
Wnlj = <Wr(z)| <Z Z |y7vk>0(5u<k) _EF)<wuk|> |WT(:L>

k V:Nl

Occupation matrix for in WF basis is:

N3
=3 0 (b (0)6(e, (k) — Ex), (2.2.49)

k V:Nl

where 0 is step function and Er is the Fermi energy.

Transformation from plane waves to Wannier functions basis is defined by
2.2.42-2.2.46 and for matrix elements by (2.2.48) and (2.2.49). One can define
inverse transformation from WZF to plane wave basis. This transformation is
needed for example in constrain DF'T calculations of Coulomb parameter U
(see Sect.2.2.5) where auxiliary potential is used with operator diagonal in
WF representation H,, = §V,0,, . In plane wave basis this operator is:

ﬁconstr Z |Wnk 6V nk|

HEOW () = (k — g\Hconstr< Jk —g')

= ang )0Vt g (k). (2.2.50)
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Equations (2.2.46)—(2.2.50) give practical realization for transforming
Wannier functions representation of Hamiltonian (2.2.24) used for correlation
effects study to plane waves representation that is optimal for DFT electronic
structure calculations. This allows to define calculation scheme for LDA + U
(Sect.2.3) and LDA + DMFT (Sect.6) methods that combine approaches
based on model Hamiltonians (Chap. 3 and 5) with Density Functional Theory
(Sect. 2.1).

As an example of Wannier functions formalism we present results for nickel
oxide NiO [94]. In upper part of Fig.2.1 band structure for NiO calculated
by pseudopotential method [95] is plotted. Three lowest bands from —8eV
to —3eV are formed predominantly by oxygen p-states and upper five bands
by 3d nickel states.

Y

Energy (eV)
L

Fig. 2.1. Upper part: Full set of bands calculated in DFT (solid line) and bands
corresponding to five d-symmetry Wannier functions (points). Energy interval
used for Wannier functions calculations was defined as [—2.5,+1.5] eV relative to
Fermi energy. Lower part: Modulus square of Wannier function corresponding to
dz--orbital [94]
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As it was explained earlier Wannier functions are not unambiguously
defined and in projection procedure for their determination by (2.2.39)
it is necessary to give a set of trial atomic orbitals and a set of Bloch
functions defined by energy interval F; < ¢,(k) < Fy or by bands num-
bers N1 < v < Ns. In order to demonstrate how resulting Wannier function
depends on projection procedure parameters we present results of two calcu-
lations. In a first of them Bloch functions Hilbert space was defined by only
five bands formed predominantly by d states (energy interval [—2.5,4+1.5]eV
relative to Fermi energy) and in the second one all five d-bands and three
p-bands (energy interval [—8.5,+1.5]eV) were included.

Results are presented in Figs. 2.1 and 2.2. Please note that in both cases
d-bands calculated by diagonalization of Hamiltonian matrix in Wannier func-
tion basis (2.2.47) (points) are identical with bands obtained in full DFT
calculations (solid lines). However Wannier functions themselves obtained in
two calculations are significantly different. In lower parts of Figs.2.1 and 2.2
spatial distribution for modulus square of Wannier function corresponding
to d,.-orbital is presented. While in Fig.2.2 WF is nearly pure d-orbital in
Fig. 2.1 one can see significant contribution from neighboring oxygen atoms
p-orbitals.

d-bands Bloch functions are build by antibonding combinations of nickel
d-orbitals and oxygen p-orbitals. Hence Wannier function calculated as wave
vector summation over Bloch functions also contains mixture of d- and p-
orbitals (Fig.2.1). However, if summation in (2.2.39) includes also p bands
that corresponds to bonding combinations of nickel d-orbitals and oxygen p-
orbitals then p bands contributions will be canceled and resulting WF is nearly
pure d-orbital (Fig.2.2). In calculation corresponding to case of Fig.2.2 WF
Hamiltonian (2.2.47) has basis functions of both d and p symmetry and hence
d—p hybridization can be explicitly reproduced. However in the case of Fig. 2.1
there is no explicit p states in the WF basis and d— p hybridization pronounce
itself in the form of Wannier function.

2.2.5 Coulomb Parameter U Value from Constrain
DFT Calculation

The matrix elements values for direct U, and exchange J,,, Coulomb
interaction (2.2.28) can be calculated using the following expressions [91]:

Upmm' = (m, m|[Vee|m, m’)

B /drdr'lwd(lrl)Yzm(f)IQ;\sod(lr'l)Ysz(f’)IQ-

v —r'|

(2.2.51)

Integration over angle variables ¥, # in (2.2.51) for spherical harmonics Yy, (¥)
and over radial variables |r| = r, |r'| = ' for radial wave functions ¢4(r) can
be separated and in the result we have:
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T T |

Energy (eV)

27

Fig. 2.2. Upper part: Full set of bands calculated in DFT (solid line) and bands
corresponding to eight d- and p-symmetry Wannier functions (points). Energy inter-
val used for Wannier functions calculations was defined as [—8.5, +1.5] eV relative
to Fermi energy. Lower part: Modulus square of Wannier function corresponding to

dz--orbital [94]

Unim' = Zaka’ Jmmr = Zbka’
k k

k= 62/ Tzdr[@d(T)]z/ (") dr'lpa ()] 57,
0 0 >
4 u
— ! y '

a = 5 q;k<zm|ykq|1m><lm [Yiegltm')
4 k

by — T Iml Y lim’ 2

k 2k‘+1q:Z—k|<m| i

(r« =r,r~ =7r"if ¥ > r and vice versa).

(2.2.52)
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In expressions (2.2.52) F* are Slater integrals with k& = 0,2, 4 for d states
and k = 0,2,4,6 for f states, pq(r) are radial wave functions for d or f
orbitals, a; and by are Klebsch-Gordan coefficients expressed via integrals
over product of three spherical harmonics:

(Im| Yig|im/) = / AEY i (B)* Yiog (B) Yigw: (£), (2.2.53)

that could be calculated analytically.
Using Klebsch-Gordan coeflicients properties the following relation could
be found between Slater integrals F'* and Coulomb parameters U and .J [91]:

1
U= ——= Y Upm = F°,
a2 U
1
U—J=—— Ui — Jmme) = FO — (F? + F4) /14
21(21+1)"§,< : ) (F"+ F)/14,
1=2: J = (F?+ F*%)/14,
1=3: J = (286F% + 195F* + 250F°)/6,435. (2.2.54)

Slater integrals F'* are usually calculated not by wave functions integration
as in (2.2.52) but by using formulas (2.2.54) from Coulomb parameters U and
J that are obtained in constrain DFT method [96]. The simplest case is inte-
gral F = U. Slater integrals F* for k # 0 are calculated via exchange param-
eter J. For d ions ratio F*/F? is with a good accuracy constant [97] and equal
0.625. For f ions ratios F4/F? and F°/F? could be estimated from hydrogen-
like 4 f radial wave functions as 451/675 and 1,001/2,025, correspondingly [98].
Then

14
l=2: FQZWJ, F4=0.625F2§
6435 451 1001
=3 F’= F'=_—F? F°=_——_F"2
286 + 195:01 4 2001001 7 675" 2025

(2.2.55)

The direct way to calculate Coulomb parameter U value for Wannier
function W, (r) is to compute integral:

U= /drdr’|Wn(r)|2U(r, )W, ()3, (2.2.56)
where screened Coulomb potential U(r,r’) is defined by operator equation:
U=[1-vP] v (2.2.57)

with unscreened Coulomb potential v(r,r’) = 1/(r — r’) and polarization
operator P:
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Oocc unocc 1 1
/ * (N, % /
Pex) =30 3 e () =)
(2.2.58)

However various attempts [99-101] to use (2.2.56-2.2.58) to calculate
Coulomb parameter U gave wide dispersion of resulting values due to uncer-
tainty in choosing screening channels defined by a set of occupied and empty
states in (2.2.58). If transitions anong d-states are included in (2.2.58) (which
is clearly unphysical because localized d-electrons cannot screen each other)
the screening is too effective and resulting U value is strongly underestimated.
Without d — d transitions opposite effect of strong U value overestimation is
observed when transitions to very high energy empty states and low energy
core states are neglected in (2.2.58).

Alternative way to obtain Coulomb parameter U value is constrain DFT
calculations with fixed occupancy values [96,102,103]. In this case screening
and relaxation effects are taken into account not via perturbation theory as
in (2.2.57-2.2.58) but directly in self-consistent solution of Kohn-Sham equa-
tions. If Coulomb interaction energy contribution to DFT as a function of
d electrons number ng obeys (2.2.32) then U can be calculated as a second
derivative of total energy:

0?Eppr
U=——. 2.2.59
g ( )
Using (2.2.33) U can be expressed via first derivative of one-electron energy
€4:
8ed
- =4 2.2.60
g ( )
In order to use (2.2.60) one needs to perform constrain DFT calculations
with various values of fixed orbital occupancies ng. Practically, it is done using
auxiliary potentials in the form of projection operator acting on d-symmetry
Wannier functions |[W,,):

ﬁconstr = Z|Wn>§Vn<Wn| (2261)

[in reciprocal space this equation has form (2.2.50)]. One-electron energies
can be calculated as diagonal elements of Hamiltonian matrix (2.2.48) and
corresponding occupancies as diagonal matrix elements of occupancy matrix
(2.2.49):

eqa = HVF(0), (2.2.62)
WF

ng = nn
and then derivative value deq/0ng (2.2.60) is calculated numerically.

For exchange parameter J one can use expressions similar to (2.2.60—
2.2.62) but replacing one-electron energies €4 on spin polarization energy

€q) — €41 and occupancy ng on local magnetization ngp — nq; [96].
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2.3 Static Mean-Field Approximation:
LDA 4+ U Method

The next step after defining Hamiltonian appropriate for material under inves-
tigation and determining its parameters from DFT methods is to choose an
approach for the problem solution among rich set of tools developed for Hub-
bard and Anderson models. In this book two most popular methods based on
mean field approximation are described. One of them using the simplest static
mean-filed approximation or unrestricted Hartree-Fock is called LDA 4+ U
method proposed by Anisimov, Andersen, and Zaanen in [61] and will be
described in this section. Another one is more sophisticated in use but much
more powerful in its abilities LDA + DMFT method based on Dynamical
mean-field theory that will be described in Chap. 6.

Static mean-filed approximation or unrestricted Hartree-Fock method is
based on decoupling of four-operator term in Coulomb interaction Hamil-
tonian (2.2.24) in such a way that a product of two creation—annihilation
operators is replaced by its average value:

/\J,- ~ A
CilmgcilmlalCilm”ocilm’”n’
Ao At A A+ o4 At A
= _Cilmgcilm“a<Cilm/g/cilm”’o’> - <Cilmgcilm”a>cilm/g/Cilm”’o’
Ao At p At At P
+ Citmo Cilm!" o’ <cilm’g’cilm”0> + <CilmJCz‘lm“/g/>Cilm/U,Cilm//g. (2.3.63)
Expectation value for two Fermi operators with the opposite spins is equal to

zero and hence:
<é:;m/g/éilm”a> = 5aa/nfn,m,,. (2364)

Approximation (2.3.63) leads to one-electron Hamiltonian:

N N L N _ .
Hipatu = Hipa + V3¢ Cume = Hupa + E lilmo) Vo . (ilm'o],
mm/’

(2.3.65)
where one-electron potential V,¢ . is defined by expression:

Ver’ _ Z:{<7n7 m”|Vee|m’, m///>n—amm + (<m’ m//l%e|m/, m///>

{m}
— 1
—(m,m" |Vee|m"" ,m" NG} — U (nd - 5) (2.3.66)

(term —U(ng — 1/2) appears from “double counting” correction term (Hamil-
tonian (2.2.35))). Density (occupancy) matrix n?,, ., = (&, Cim:o ) is calcu-

m! =

lated as:
1 [P
N = —;/ ImGS,, i1 (E)AE, (2.3.67)
where G7,,,, i1, (E) = (ilmo|(E +id — Hipasu)~tilm/c) are matrix elements

of Green function for Hamiltonian (2.3.65).
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LDA + U method equations (2.3.65-2.3.66) can be derived also in varia-
tional way (as it was originally proposed by authors in [61,104]) from LDA+U
functional:

EA (), {n}] = EPAp(w)] + B [{n}] - Bwcl{n}).  (2:3.68)

Here p(r) is electron density, E*PA[p(r)] the standard LDA total energy func-
tional (2.1.1) with exchange-correlation energy in the form of (2.1.7) and term
responsible for Coulomb interaction EV is a functional of orbital occupancy
matrix {n} postulated as:

[{n} Z { m, m' |V:36|m mm>nmm/nm”m“’
{m}7
+ (<m,m//|Vee‘m/7m///> _ <m7m//|%e|m///7m/>)na ’nm”m”’}’
(2.3.69)

where V. is screened Coulomb interaction between electrons in nl shell.
The last term in (2.3.68) corresponds to “double counting” correction (see
(2.2.32)):

Eael{n}] = %Und(nd ~). (2.3.70)

LDA + U method equations (2.3.65-2.3.66) can be derived by variation of
(2.3.68) functional.

Equations (2.3.65-2.3.66) are written in a most general form invariant
with respect to orbital basis transformation. That means that for any unitary
matrix Ay, transition to new orbitals basis set |ilmo) — Y, Apm|ilm’o)
does not change the value of (2.3.69) functional. In majority of real systems
there is a “natural” orbital basis determined by symmetry with forbidden
orbital mixing. In this basis occupancy matrix (2.3.67) becomes diagonal
ng .+ = OmmNme and Coulomb interaction energy can be expressed in the
form (2.2.27). Then one-electron potential matrix (2.3.66) will also become

diagonal V.2 . = Omm’ Vine:

Vino Z Unm'Mm's + Z — I )nm o U <7’ld - %) . (2371)
/#m

Keeping in mind that d-electrons number is a sum over all orbital occu-
pancies ng =), N;,e expression (2.3.71) can be rewritten as:

Vmo’ - Z(Umm/ - nm 5+ Z mm’ mm’ - U)nm o + U <l - nmo’)

m/ m'#m

(2.3.72)

U is defined as an average over Coulomb interaction matrix elements U,,p,/,
(Ui — Jmme) over all possible spin-orbital pairs mo, m’c’:
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07— <me’ Umm’ + Zm,m/;ﬁm(Umm’ - Jmm’))
(2N4(2N4 — 1))

(2.3.73)

(Ng is orbital degeneracy). First two terms in (2.3.72) containing deviations
from the average U,,,,» — U are relatively small and the main contribution is
given by last term U (% — Mo ). For fully occupied or empty orbitals this term
has a simple form:

_ (1 =U/2 if npe=1
om0 (o)~ {0 .
2 +U/2 if npe =0.

That means that main effect of LDA+U correction (2.3.65) to LD A potential
is increasing empty states energy on U/2 and decreasing on the same value
occupied states energy.

Expression (2.3.74) demonstrates that LDA + U method leads to splitting
of empty and occupied states energies that were degenerate in LD A on average
Coulomb interaction U. In the result partially filled d-band that in standard
LDA calculation would give metallic state in LDA + U method could result
in insulator. This effect will be illustrated later for compounds NiO, CaCuOs,
and CoO.

Eigenvalues €, and eigenfunctions 1,k obtained in LDA + U method
could be used to calculate exchange interaction parameters J;; for Heisenberg
model:

H= ZJ” (S5S%), (2.3.75)

where S¢ are electron spin operators (1.2.3).

Equations for J;; were derived by Lichtenstein et al. in [104, 105] using
analitic second derivative of total energy as a function of magnetic moment
rotation angles ¢;, ¢; on lattice sites i, j:

JZJ = Z I’;L.‘flmlxiim/m”m”’lyjn”m”’u (2376)
{m}

Potentials I’ are expressed via spin-dependent LDA + U potentials (2.3.66)
for i-th atom in crystal unit cell:
i Vll

mm/’ me/ - Ymm/

(2.3.77)

and static susceptibility x* is expressed via eigenfunctions ¢,x, and eigen-
values €,ko:

Nnk| — Mn’k g% "

ij o nk]| n'kT | ilm jlm ilm’ Jlm'

Xmm/m! m" = ¢nkT ¢nkT wn’kl n'k| °
Kknmn' €Enk] — €n’k]

(nnk, is occupation of nk | state).



2.4 LDA + U Method Applications 33

Hamiltonian (2.3.65) contains orbital-dependent potential (2.3.66) in the
form of projecting wave functions on orbitals |ilmo) that allows to realize
LDA + U calculation scheme in the frame of any DFT calculation methods
for example LMTO [51].

While LDA + U approach overcomes some major deficiencies of LD A such
as metallic solution for Mott insulators it is still one-electron method because
it is based on static mean-filed approximation. It completely fails for strongly
correlated metals where electrons reveal simultaneously localized and itin-
erant properties. It cannot also describe paramagnetic insulator because in
LDA+U equations nontrivial results can be obtained only when orbitals occu-
pancies n,,, are essentially different for different orbitals that corresponds to
long-range spin and orbital order. However for magnetically ordered insula-
tors LDA + U gave significant qualitative improvement for calculation results
agreement with experimental data comparing with standard DFT methods.
In the next section we describe LDA + U results for various physical effects
and real materials.

2.4 LDA + U Method Applications

2.4.1 Mott Insulators: NiO, CoO, and CaCuO,

Late transition metal oxides NiO, CoO, and CaCuQOs are antiferromagnetic
insulators with energy gap value about few eV. However, DF'T methods give
electronic and magnetic structure with strongly underestimated energy gap
and magnetic moment values or even qualitatively wrong metallic ground
state.

Nickel and cobalt monoxides have cubic crystal structure of NaCl type
where transition metal atom is surrounded by six oxygen atoms forming per-
fect octahedron. d-level is split by cubic crystal field on lower energy states
transforming according to triply degenerate irreducible representation to4
(zy,xz,yz orbitals) and higher energy states corresponding to doubly degen-
erate representation e, (322 —r2, z2 — y? orbitals). Transition metal ions have
2+ valence in these compounds that gives configurations d® for NiO and d”
for CoO.

For NiO and CoO LSDA calculations gave spin-polarized antiferromag-
netic ground state [62]. However while experimentally these compounds are
wide gap insulators calculated band structure for NiO (see Fig. 2.3, left side)
shows very small energy gap value (0.4 eV comparing with experimental value
4.0eV) while for CoO LSDA results in metal with Fermi level inside partially
filled d band (see Fig. 2.3, right side).

The source of this discrepancy is the fact that in DFT the same one-
electron potential (2.1.4) acts on occupied and empty orbitals. In the result
partially filled o, band with spin projection “down” for CoO is metallic. In
LSDA spin-polarization leads to one-electron potential dependence on spin
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Fig. 2.3. Partial 3d densities of states (dashed line corresponds to ta, states and
solid line to ey orbitals) obtained in LSDA calculations for NiO (left side) and CoO
(right side) [62]

direction (2.1.8). For NiO half-filled e, shell is split by spin polarization and
small energy gap appears in the LSDA spectra.

Using LDA + U correction drastically changes calculations result [61] (see
Figs.2.4 and 2.5). Orbitally dependent potential (2.3.66) gives splitting for
empty and occupied d-states approximately on average Coulomb interaction
parameter U (2.3.74). Empty e, | states are shifted up in energy while occu-
pied states energies go down and for NiO large energy gap appears =~4eV.
In CoO d-electrons number is less than in NiO on 1 electron and in addition
to energy shift of e, states as in NiO partially filled ¢o4 | states are split on
empty a4 —1 | states with increased energy and occupied to4 —2 | states with
energy shifted down. In the result instead of metallic LSDA solution (Fig. 2.3,
right side) LDA + U gives wide gap insulator for CoO (Fig. 2.5).

CaCuOs has tetragonal crystal structure with CuQOs layers and calcium
ions in between. Copper atom is surrounded by four oxygen atoms forming
square. Copper valence in this compound is equal +2 that gives configuration
d? with one hole in d-shell. From five Cu d-orbitals the highest energy because
of the crystal filed splitting has 22 — 2 orbital with lobes directed to oxygen
ions. In Fig.2.6 total and partial densities of states are presented obtained
from LDA calculation [106]. All bands are occupied except half-filled band
formed by Cu 22 — y? orbital.

In contrast to nickel and cobalt oxides in CaCuOy LSDA method did
not result in stable spin-polarized solution and the calculated ground state
is nonmagnetic metal instead of experimentally observed antiferromagnetic
insulator. The reason for this discrepancy is large width of 22 — y? band
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Fig. 2.4. Full and partial densities of states from LDA+ U calculation for NiO [61]

(=4 eV) comparing with intraatomic exchange interaction parameter J ~ 1eV
driving spin-polarization. LDA + U method applied to this material led to
significant increase of energy splitting between occupied 22 — 32 1 and empty
w2 —9? | states that is determined by large Coulomb parameter U = 8 (2.3.74)
instead of small exchange parameter J ~ 1eV. In the result spin-polarized
solution becomes stable and LDA + U calculation gives antiferromagnetic
wide-gap insulator as a ground state (see Fig.2.7).

2.4.2 Charge Ordering: Fez04

Magnetite Fe3O4 crystallizes in spinel structure (Fig. 2.8, left side) with iron
ions in two different crystallographic positions. A position has tetrahedral
coordination of four oxygen ions and is occupied by iron ions with valence +3
(configuration d®). Iron ions in position B (whose number is two times larger
than number of atoms in A position) are surrounded by six oxygen ions
forming octahedron and they formally have noninteger valence +2.5 that cor-
responds to mixture of d° and d° configurations with equal weights. Spin order-
ing is ferrimagnetic with antiparallel spin directions for iron ions in positions
A and B.

With lowering temperature below 120 K transition happens with increas-
ing of resistivity on two orders of magnitude and lowering crystal structure
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symmetry from cubic to monoclinic. Verwey proposed [107,108] that this tran-
sition is caused by charge ordering of iron ions with valence +2 and +3 in
sublattice B (see Fig. 2.8, right side).

LSDA calculation [66] (see Fig. 2.9, left side) gave metallic electronic struc-
ture with Fermi level crossing partially filled band formed by spin-down ¢34-
states of iron ions in crystallographic positions B. Charge ordered state was
found to be unstable in LSDA and ground state is homogeneous in charge
distribution with equivalent electronic state for iron ions in B positions. For
those ions spin-up d states are completely filled and additional 0.5 electrons
per B atom are in spin-down tg4-states.

The source of charge ordered state instability is residual “self-interaction”
error in LSDA (see Sect.2.1.3). Charge ordering corresponds to increase of
d-shell occupancy for one of B type iron atoms in unit cell (B1) on dng
and decrease on the same value occupancy for the second iron atom (B2).
Redistribution of electronic density between Bl and B2 leads to changes of
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LSDA one-electron potentials and corresponding eigenvalues. In the result
d-orbital energy ¢; for atom Bl increases on gﬁ;énd and ¢4 for atom B2
decreases on the same value. In self-consistency iterations this potential change
leads to reverse flow of charge density from B1 atoms to B2 atoms and dng
will decreases till charge homogeneity is restored. This effect is unphysical
because energy of some orbital should not depend on its occupancy and is a
result of residual “self-interaction” error in LSDA.

In LDA + U method main part of potential correction V,,, (2.3.71) is
U(3 — o) (2.3.74). With occupancy decrease on dng for one of spin-down
tog orbitals on B1 iron atom LDA+ U potential correction V,, will increases
on Uéng with opposite effect on B2 atoms. Average Coulomb interaction
parameter U is determined in constrain DFT calculations (2.2.60) as deriva-
tive g—Z and the change of LDA + U potential correction V,,, =~ —Udng is
equal in absolute value but opposite in sign for the change of LSDA potential
g—ff;énd. This means that LDA + U potential correction cancels the change of
LSDA potential and thus removes residual “self-interaction” error present in
LSDA.

Figure 2.9 (right side) presents the densities of states obtained in LDA+U
calculation for Fe3Oy [66]. LDA + U potential correction (2.3.71) results in
insulator solution with a small energy gap. Bty, | band that was partially
filled in LSDA solution is split on occupied B2ty | and empty Bltag | sub-
bands with a gap between them. This result shows that LDA + U method
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developed for treating Coulomb correlation effects can also serve to cure
“self-interaction” error of LSDA and so makes possible stable charge ordered
solution.

Real charge ordering pattern is much more complicated than simple picture
proposed by Verwey (Fig.2.8 right). LDA + U calculation [109] with exper-
imentally observed low-temperature monoclinic crystal structure for FezOy
gave charge and orbital ordering shown in Fig. 2.10.

2.4.3 Orbital Ordering: KCuFg

Compound KCuF3 has perovskite crystal structure (Fig. 2.11, left side). Cop-
per atoms are surrounded by six oxygen ions forming octahedron. Copper
in KCuF3 has valence +2 that corresponds to configuration d° with fully
occupied ta, shell and one hole in e, states. Cu™? is Jahn-Teller ion because
partially filled e, shell is unstable to Jahn-Teller distortion lowering crystal
symmetry with splitting of partially filled energy level on occupied and empty
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Fig. 2.8. Magnetite FesOu crystal structure (left side with large spheres corre-
sponding to iron ions and small ones to oxygen ions) and charge ordering scheme
for electrons on iron ions in octahedral positions proposed by Verwey [107,108] (right
stde with only iron ions in octahedral positions shown, shaded spheres correspond
to Fe™ and open ones to Fe™?)
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Fig. 2.9. Densities of states obtained in calculations for magnetite Fe3O4 by LSDA
method (left side) and by LDA 4+ U method (right side) [66]

states. Such distortion is indeed observed in KCuF3 where CuFg octahedra
are elongated in direction perpendicular to ¢ axis (see Fig.2.11, right side)
with long Cu—F bond alternatively directed along x and y axes. Such distor-
tion increases energy for orbital with lobes directed along short Cu—F bonds
(in this case that are y, z for the first case and z, z for the second case). Then
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Fig. 2.10. Charge and orbital ordering from LDA + U calculation for FezO4 in
monoclinic crystal structure corresponding to low-temperature phase [109] (small
spheres correspond to oxygen ions forming octahedra with iron ions in the center)

Fig. 2.11. Perovskite crystal structure for KCuFs3 (left side) and distorted
octahedron CuFg (right side)

the only hole on copper d shell will be occupied by orbitals 32 — 22 and 22 — 22

as is shown in Fig.2.12 (left side).

In Jahn-Teller theory the cause of the effect is electron—lattice interaction.
However Kugel and Khomskii [110,111] proposed different explanation. They
have shown that orbital ordering for electrons (or holes) in degenerate partially
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Fig. 2.12. Orbital ordering scheme in KCuF3 [110,111] (left side) and spin density
distribution from LDA + U calculation [104] (right side)

filled states can be obtained taking into account only electronic degrees of
freedom as for example in degenerate Hubbard model (4.2.71). LDA + U cal-
culations [104] for KCuFs5 in crystal structure without Jahn-Teller distortion
(in perovskite crystal structure with equal Cu-F bond lengths along x and y
axes) indeed gave solution with orbital order in agreement with experimentally
observed (Fig.2.12, right side).

It is interesting to note that in LSDA calculation total energy has mini-
mum for undistorted perovskite crystal structure and only with orbital depen-
dent LDA + U potential Jahn-Teller distortion for CuFg octahedra can be
reproduced in calculations (Fig. 2.13).

2.4.4 Orbital and Charge Ordering: Prg.5Cag.s MnQO3

Manganite PrMnOg also belongs to Jahn-Teller systems. Its crystal structure
(Fig. 2.14 left) is based on perovskite with MnOg octahedra rotated and tilted
from ideal directions. Manganese has valence +3 in this compound with con-
figuration d*. High-spin state d* ion in octahedral crystal field corresponds
to three electrons in t24 T states and one electron in partially filled e shell.
LDA+U calculations [112] for crystal structure where MnOg octahedra were
undistorted gave solution with orbital ordering for e, shown at Fig. 2.14 (right
side). This ordering pattern agrees well with experimentally observed Jahn-
Teller distortion of MnOg octahedra with long Mn—O bonds alternatively
directed along axes perpendicular to each other.

In Prgp5Cag5MnO3 compound obtained by replacing in PrMnOgs half of
three-valence praseodymium on two-valence calcium, manganese valence is
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Fig. 2.13. Total energy dependence on octahedron CuFg distortion in perovskite
crystal structure for KCuF3 from LDA + U and LSDA calculations [104]

Fig. 2.14. PrMnOs crystal structure (left side, large spheres are Pr ions, medium
size spheres — oxygen ions forming octahedra with manganese ions (small spheres) in
the center) and angle dependence for occupied eq orbitals from LDA+U calculations
(right side) [112]

formally +2.5 and one electron in e4 shell is now for two Mn ions. That
leads to experimentally observed very complicated spin, charge, and orbital
ordering (see Fig.2.15, left side). LDA + U calculations for this compound
[112] resulted in successful reproducing of this ordering (see Fig.2.15, right
side). It is interesting to note that total number of d-electrons on two types of
manganese ions with formal configurations d* and d? is nearly equal (difference
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Fig. 2.15. Spin,orbital and charge ordering scheme for Mn3d electrons in
Pro.5Cag.sMnOs from neutron diffraction data analysis [113] (left side) and angle
dependence for occupied ey orbitals from LDA 4 U calculations (right side) [112]

is <0.1). In other words ordering in Prg5CagsMnOs3 is better described as
having orbital nature than a charge one.

2.4.5 Spin Ordering: CaV,,O2p41

Compounds series CaV,,02,41 have attracted attention due to unusual mag-
netic properties with so called “spin gap” effect. Long-range magnetic ordering
is not observed till the lowest temperatures but neutron diffraction experi-
ments show a gap in spin excitation spectrum. In other words there is a final
energy needed to move a system from magnetic ground state to excited one.
On the curve for magnetic susceptibility temperature dependence (Fig.2.18)
this effect reveals itself in small susceptibility value at low temperatures with
fast increase at higher 7.

Crystal structure for these compounds is formed by layers of VO5 pyra-
mids (Fig.2.16) with calcium ions in between. Vanadium valence is +4 with
configuration d'. Crystal field splitting for d states is very strong in this crys-
tal structure and orbital degeneracy is completely lifted. One electron in d
shell occupies zy orbital as it is shown in Fig. 2.16.

The layers are formed by connecting VO5 pyramids via vertex and edges in
various combinations for compounds CaV50s5, CaV3O7, and CaV4Og. That
gives various types of V-V bonds with different exchange coupling parameters
Jij (2.3.75) between magnetic moments on vanadium ions (see Fig.2.17).

LDA+ U calculations [114] gave eigenvalues and eigenfunctions that were
used to determine exchange coupling parameters J;; via equations (2.3.76).
The results are presented on Table 2.1. As one can see the values of J;; could
differ for various V=V bonds and compounds by an order of magnitude and
even have a different sign. Unexpected was strong difference (in =6 times)
of parameter J2 for compounds CaV305 and MgV,05 that have the same
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Fig. 2.16. CaV307 crystal structure and angle dependence for occupied vanadium
d-orbital from LDA + U calculation [114] (dark spheres are oxygen ions forming
pyramids with vanadium ions in the center)
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Fig. 2.17. Crystal structure and various exchange couplings between magnetic
moments on vanadium ions for CaV20s MgV20s5 (left), CaV3O7 (center) CaVaOg
(right) [114]. Small spheres are oxygen ions, dark and light spheres corresponds to
vanadium ions position above and below the plane

]

Table 2.1. Calculated values for parameters of interatomic exchange couplings (in
Kelvin units) [114]. Minus sign means ferromagnetic interaction

CanOs MgVQOs CaV307 CaV409

J1 —28 60 46 62
J2 608 92 —14 89
J3 122 144 75 148
J4 20 19 18 91
J5 5

type of crystal structure but with slightly different values of tilting angle for
pyramids axes with respect to layer plane.

Exchange coupling parameters J;; obtained in LDA + U calculations were
used in [114] to calculate magnetic susceptibility temperature dependence by
Quantum Monte Carlo method for Heisenberg model (2.3.75). Comparison of
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Fig. 2.18. Comparison between experimental and calculated temperature depen-
dence of magnetic susceptibility for CaV,,O2,+1. Calculations were done by Quan-
tum Monte Carlo method for Heisenberg model with exchange coupling parameters
from LDA + U calculations [114]

calculations results with experimental curves is presented in Fig. 2.18. A good
agreement between theoretical and experimental curves could be seen espe-
cially for CaV505 where experimentally was found a large “spin gap” value

~500 K.
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Hubbard Model in Dynamical Mean-Field
Theory

3.1 Reducing Lattice Model to Effective Single
Impurity Anderson Model

3.1.1 Electronic Green Function

Let us consider standard Hubbard model for nondegenerate electrons. Model
Hamiltonian in second quantization representation is:

H=> tijcheie+ > Uiy, (3.1.1)

ijo i

where ¢} (¢;,) are creation (annihilation) operators for electron on site i with
spin o =T, |; Mo = éjgéw the number of electrons operator in state io, t;; is
the matrix element for electron hopping from site j to site i, U is Coulomb
interaction energy for two electrons on the same site.

Fermi operators é;’; and ¢, satisfy anticommutation relations:
Cioy Choy] o = Siii00ors [CioyCitor], =0 (3.1.2)
Cios Ciygy + ii/0cats |Cio Citar + . -1

Let us introduce one-particle Green function (GF) in a standard form (see
Appendix B):

gg(ilTl,igTQ) = 7<T-réilg(7'1)éj;g(7'2)>, (313)
where (...) means statistical averaging

B Tr(e_ﬁH .
C Tr(ePH)

(. , (3.1.4)

and ¢ (7), ¢is(7) are operators in Heisenberg representation:

eh(r) = e et e ™ oy (r) = eTHepe (3.1.5)
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with thermodynamic “time” 7 in the interval 0 <7 < g8 =1/T (T is temper-
ature and Bolzman constant k is set to 1). Symbol T in GF definition (3.1.3)
is time 7 ordering operator.

Using Fourier transformation with respect to variables 7 — 7 and i1 — i2
GF (3.1.3) can be presented in the following form (later we skip spin index o
assuming paramagnetic phase):

g(k,iw,) = (iwn + pu — e — T(k,iw,)) 7, (3.1.6)

where w, = (2n+ 1)7T, n =0,+1,+2,... are odd Matsubara frequencies,

d
ex = 2t Z coskg (3.1.7)
a=1

is noninteracting electron energy for hypercubic lattice with space dimen-
sion d in nearest neighbors approximation for hopping matrix elements, p is
chemical potential and X'(k, iw,,) is self-energy corresponding to interelectron
Coulomb interaction. To determine X'(k,iw,) as series in U expansion there
was developed diagrammatic technique [115] that should be valid for U < W
where W is noninteracting electrons band.

For strongly correlated systems where U > W standard perturbation the-
ory [115] is not valid and one should use Dynamical Mean-Field Theory
(DMFT) based on Metzner and Vollhardt [4] discovery that for large space
dimension (d — o) electron self-energy does not depend on momentum (wave
vector) k but only on frequency iws,:

2k, iwy) = X(iwy,). (3.1.8)

k-independence of self-energy in real space representation means that only
local matrix elements X;; (iw,) with i = j are nonzero and all nonlocal terms
with ¢ # j vanish. That allows to reduce the problem of electron on the lattice
in Hubbard model to single impurity Anderson model [30] that can be solved
much easier by various numerical methods. This “mapping” of lattice problem
to single impurity one is an essence of DMFT method.

To show that we start with single-site GF obtained by summation of (3.1.6)
over wave vector k:

gii(iwn) = Gliwy,) = Z(zwn + 1 — e — X(iwn)) 7, (3.1.9)
k

where we use (3.1.8) and the fact that for homogeneous systems diagonal in
site indexes matrix element g;; does not depend on site index. The DMFT
mapping idea is to identify single-site GF (3.1.9) with GF of some effec-
tive single impurity model having the same on-site Coulomb interaction as in
Hubbard model. Hybridization of the site orbitals with the rest of the crys-
tal in effective single impurity model is described by effective hybridization
function A(iw,) or effective noninteracting bath Green function Go(iwy):
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Go(iwn) = (iwn + p — Aiw,)) ™t (3.1.10)
Let us denote GF' and self-energy for this impurity model as Gimp(iwy,)
and Xiy,p (iwy, ). The mapping means:
G(iwpn) = Gimp(iwn), (3.1.11)
Y(iwn) = Zimp (iwn).

The effective noninteracting bath Green function Go(iw,) can be obtained
from Dyson equation:

G (iwn) = Gy (iwn) = Simp (iwn)- (3.1.12)

Dyson equation is used twice in DMFT. At first when self-energy X'(iw,)
and lattice GF (3.1.9) are known the bath Green function Gy (iwy,) is calculated

Go *(iwn) = G~ (iwp) + X (iwn). (3.1.13)

Then impurity model defined by this bath GF is solved by taking into account
all local Coulomb correlation with resulting impurity GF Gimp(iwy). Using
new Gimp(iwy) new approximation for self-energy can be defined:

Simp (iwn) = Gy *(iwn) — Gy (i) (3.1.14)

New self-energy is used to determine new lattice GF":

Gliwn) = Y (iwn + p — €1 — Simp (iwn)) . (3.1.15)
k

Equations (3.1.9)—(3.1.15) can be regarded as equation system for unknown
functions Go(iw,) and Ximp(iw,). The system is solved iteratively till self-
consistency will be achieved assuming that we know how to solve single-
impurity Anderson model with bath GF Gy(iw,). Later we show how one
can calculate Green function of single-impurity Anderson model.

3.1.2 Single Impurity Anderson Model
Anderson model Hamiltonian is:
0= tyehen+> [V;é;;do +Vidte, (3.1.16)
1jo 0

+€d2didg +U'flT7A‘Ll,
o

where N4y = cfj‘cfg is operator for number of localized electrons on impu-
rity site.

The model describes localized on impurity center d-electrons embedded
in noninteracting electrons system (called s-electrons). Coulomb interaction
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between d-electrons is described by term U7 and there is also hybridization
between d and s electrons determined by parameter V;.

To study the model (3.1.16) let us introduce localized electrons Green
function:

Gia(7 = ) = = (Trdo (1) (7). (3.117)
As we will see later it is coupled via hybridization with another GF"

goa(T —7') =~ <Trég(7)d}+ (T’)>. (3.1.18)
Both GF (and two other GF's g7, and g7,) have the same structure:

gralr — 1) = — <T7f1(7)f;(7')>, (3.1.19)
where fl and fg are Fermi operators.

In order to derive equations of motion for these GF's we use definition of
time-ordered product with #-function:

P B b
blr—7)= {0 it m< 7. (3.1.20)
We have:
gia(r —=7') = —0(r — 7') <f1 (T)f;(r’)> (3.1.21)

+0(r =) (ff () f2(7) -

If we differentiate both sides of this equation with respect to time 7 and
take into account that: 26(7 — 7/) = (7 — 7'), then we will get equation

gema(r =) = =0(r =) { AW () (3.1.22)
0

w0 =) (B )5 hi)) = 6udlr = 1),
which we rewrite in a form:

- %912(7 —7')+ <Tfﬁf1(7) A;(r’)> =6128(T — 7). (3.1.23)

Derivative of operator fl(T) can be obtained from Heisenberg equation

%flm - [H fl(T)] . (3.1.24)
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For operators ¢, (1) and d, (1) these equations have a following form:

0 - o R oA

Edg(T) = €qds + E Vitio + Unsds, (3.1.25)
0 . R R
EC,‘U (7‘) = E tijCja + Vid,.

ijo
Substituting these expressions in (3.1.23) we obtain GF equations for g7, and
9sd:
0 " Y
5 €d+ 1) Gqq — Z Vigia,i
+ U (Toia(r)ds (1) (7)) = 8(7 = 7,
o . . .
T opdsdi Ztijgsd,j — Vigqa = 0., (3.1.26)
jo

In these derivation we have taken into account that total number of electrons
is fixed via replacing in (3.1.24) H — H — uN where N is total electrons
number operator and p is chemical potential.

Coulomb term in (3.1.26) for GF' g7, can be written formally as:

U <Tma(f)dg(7)cij (T’)> - / dr 59, (r — 1)gGy(r — ), (3.1.27)

where X9,(7 — 1) is called self-energy for GF' ¢7;. Then after Fourier trans-
formation in variable (7 — 77)

gqa(r = 7) =Ty e g3 (i), (3.1.28)
and also for all other functions in (3.1.26) we have:

(iwn — €a + p)gga(ivn) Z Vigla i(iwn) — Xg4(iwn)ggq(iwn) = 1,
(iwn + 11)g2q ; (iwn) Ztmgsd (iwn) = Viggq(iwn) = 0. (3.1.29)

Equations system (3.1.29) can be solved with Fourier transformation in
site variables and resulting GF is (we skip in the following spin index o):

-1

Gaaliwn) = — g+ — Z F— + ; —X%.Gw,)| , (3.1.30)

gsd(k» iwn) = - V(k)

Wy — €k + 1

gaa(iwn). (3.1.31)

Two last terms in the denominator in expression (3.1.30) are contributions to
self-energy for GF' gq4(iwy,) from hybridization and Coulomb interaction. Let
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us define hybridization function A(iw,) as:

Aliwy) =Y _WVaE (3.1.32)

- Wy — €k + [

and introduce noninteracting GF Gy (defined as GF (3.1.30) with Coulomb
interaction switched off):

Go(iwn) = (iwn + 1 — €4 — Aliw,)) L. (3.1.33)

In GF for d-electrons hybridization is fully taken into account but Coulomb
interaction part of self-energy X7,(iw,) is not explicitly determined and its
calculation is a main difficulty in solving Anderson impurity model.

It is convenient to use path integral representation of GF. In Appendix A
such representation is described for electronic GF' with very general electron—
electron interaction form. For Hubbard model with Hamiltonian (3.1.1) the
GF in path integral form is:

J DDl e {e o (r)et, ()}

D TP (3.1.34)

g7 (i171,9272) = —

where

ZZ/df/dT 7)Go (i1, i'7") tepq (7)) (3.1.35)

o 4

+ZU/dT’niT(7)nil(T)

is an action. In contrast to notations 3; and §;, for Grassmann variables used
in Appendix A later we will use for Grassmann variables the same symbols
as for Fermi operators but without cap above.

Let us use now general formulas (3.1.34) and (3.1.35) to calculate GF
for single impurity Anderson model. In this model Coulomb interaction is
taken into account only for d-electrons whereas s-electrons are considered
to be noninteracting and kinetic energy term together with hybridization
term have quadratic form in operators ¢;, and d,. In order to apply gen-
eral expression (3.1.34) to one-band Hubbard model transformation of vari-

ables ¢;; — {cw,d } should be performed where index ¢ marks all lattice

sites except the central one with localized d-electrons. As Coulomb interac-
tion in (3.1.35) is present only for d-electrons then integration over Grassmann
variables can be done and in the result GF for d-electrons is expressed via
integral:

- Dd*) D [d] e 514" {d, (r)dF (
g% (i171,4272) = —f [ ]f'D[ []cl+]D[d] eis[ds,Z]) (72)} (3.1.36)
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with action
S [d*,d] = —Z/dr/dr’d;’;(T)gg(T — 7)o (1)

+U/dTnT(7')nl(T). (3.1.37)

Here Gy (7 — 7') is noninteracting d-electrons GF where hybridization is taken
into account given by expression (3.1.33).

Formula (3.1.36) with (3.1.37) gives exact expression for d-electrons GF
in Anderson model. It is the starting point for GF calculation in Quantum
Monte Carlo method (QMC).

3.1.3 Basic DMFT Equations

QMC method allows to calculate d-electrons GF for Anderson model with
parameters U, V (k) or U, A(iwy,). In DMFT method Anderson model solu-
tion is an auxiliary problem for Hubbard model where hybridization function
Aliwy,) is determined from self-consistency equations (3.1.9)—(3.1.15). Let us
rewrite those equations in the following form:

1
) n) — . 3 — Uim ) n)s A
G (iwn) zk: F AT —T Gimp (iwn,) (3.1.38)

Gy Hiwn) = Gi (iwn) + X(iwy). (3.1.39)

These equations allow to determine two unknown functions X (iw,) and
Go(iwn), if GF for single impurity Anderson model Gimp(iwy,) was calculated
by one of the numerical methods, for example QMC. The equations solution
is found by self-consistency iterations. On every iteration the following steps
are performed:

1. An input value for self-energy X(iw,) is set (it could be zero in the
beginning for example) and lattice GF G(iw,,) is calculated with (3.1.38).

2. Using Dyson equation (3.1.39) bath GF Gy(iwy,) is calculated.

3. Single impurity Anderson model with this Gy (iwy,) is solved and interacting
impurity GF Gimp(iwy,) is found.

4. From Dyson equation (3.1.39) new approximation for self-energy X'(iw,) =
Gy 1(iwn) — Gi_mlp (iwy) is obtained that is used to calculate new lattice GF
in (3.1.38) that closes self-consistency iteration loop. Iterations continue till
input values of self-energy X (iw,,) for step 1 will become equal to output
values from step 4 with some given accuracy.
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Those steps define DMF'T calculation scheme for Hubbard model. Electron
GF is defined by expression (3.1.6) and local GF (diagonal matrix element is
site representation) by expression (3.1.9). Instead of noninteracting spectrum
€x in (3.1.38) one can use corresponding density of states pg(e) to calculate
lattice GF' using integral over energy variable:

. . c po(€)
G (iwp) —/d Far——TE (3.1.40)

where

pole) = Z d(e — ex)- (3.1.41)
K

As resulting GF' is defined on Matsubara frequencies one needs to per-
form analytical continuation from discrete imaginary energies to real energy.
Transformation iw, — w + id gives retarded GF":

G(iwn, — w+1id) = G(w) = ReG(w) + i{ImG(w), (3.1.42)

Imaginary part of this local GF defines density of states with Coulomb
interaction taken into account:

plw) = f%ImG(w). (3.1.43)

Analytical continuation procedure is described in the next section.

As it was mentioned earlier the basis of DMFT is an observation that in a
space of large dimensions d (or a lattice with large number of nearest neighbors
z) self-energy for electronic GF does not depend on wave vector and is local
in-site representation:

Xij = 0i5 2. (3.1.44)

When we use locality condition (3.1.44) for system with final space dimen-
sion (d = 2,3) that means neglect of intersite (spatial) correlations. How-
ever realistic final space dimension is fully taken into account as one can see
from (3.1.38) or (3.1.40). It is interesting to note that DMFT equations have
two exact limits: U — 0 and U — oo. For final value of Coulomb interaction
parameter U DMFT method is in approximation with an error determined
by the strength of neglected intersite correlations.

However local dynamical on-site correlations are fully taken into account
with frequency dependent functions Gy(iwy,) and X' (iw,,). Noninteracting bath
GF Go(iwy,) (or corresponding hybridization function A(iw,) in (3.1.33)) in
effective single impurity model can be interpreted as a mean field that takes
into account fluctuations on all other lattice sites. This mean-filed is dynamic
because A(iw,,) depends on frequency iw, (or “time” 7). Conceptual problems
of DMFT and its relations to mean-field approach in statistical physics are
discussed in detail by Georges, Kotliar, Krauth, and Rozenberg review [8].

As it was discussed earlier DMFT is exact in limit d — co. That means
that spatial correlation neglected in DMFT could be taken into account as
perturbation in 1/d parameter. Various realizations for such correction are
described later.



3.1 Reducing Lattice Model to Effective Single Impurity Anderson Model 55
3.1.4 DMFT Equations for Bethe Lattice

Let us consider a special case of semielliptical density of states in noninter-
acting spectrum:
1

rE) =515
This model density of states corresponds to Bethe lattice in the limit of infinite
number of nearest neighbors z — oo [8]. DMFT equations are significantly
simplified in this case while physical picture described by their solution is still
very general and does not essentially depends on the noninteracting density
of states specific form.

Let us rewrite interacting GF (3.1.40) in the following form:

Gloc(C /d (3.1.46)
zwn —¢’

412 — €2, le| < 2t. (3.1.45)

where
Cliwn) = iwn + 1 — X (iwp,). (3.1.47)

Integral (3.1.46) is known as Hilbert transformation for function pg(e).
One can define inverse Hilbert transformation for ¢ as a function of Gec. Let
us note it as ¢ = R[G]. With density of states defined by (3.1.45) integration
in (3.1.46) can be done analytically and the resulting GF is [8]:

Groc(C) = 21? (C ECAASE 4t2), (3.1.48)

where s = sgn[Im(]. This equation can be solved for variable ¢ as a function
of Gloc:
Cliwn) = R[G] = Gy L(iwn) + t2Gloc (iwn). (3.1.49)

loc

Using this equation together with Dyson equation relating self-energy X'(iwy,)
and effective bath GF Gy with local GF Gjoc:

Z(iwn) = Gy H(iwn) — Grot(iwn), (3.1.50)
we obtain a simple equation between Gy and Gioc(iwp,):
GoH(iwn) = dwn + 1 — t2Gloc(iwn). (3.1.51)

Thus in this special case DMFT equations system (3.1.9)—(3.1.15) reduces to
a single equation (3.1.51) that is very convenient for qualitative analysis of
DMFT [8].

3.1.5 Methods for Solution of Single Impurity Anderson Model

In DMFT method electron on a lattice problem is reduced to equivalent single
impurity problem solution. In a case of nondegenerate Hubbard model that
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is Single Impurity Anderson Model (SIAM). This model is throughly investi-
gated by various methods and its physics is well understood. When SIAM is
considered as a step in DMFT calculation scheme the main issue is efficiency
and accuracy of the method used for SIAM solution. In this subsection we
will list main methods used to solve SIAM and the most important of them
will be presented in the next sections and chapters.

Quantum Monte Carlo Method

The main idea of QMC is to write Anderson model electronic GF' as an inte-
gral over fluctuating fields. For that thermodynamic time interval 0 < 7 < f3
is divided on L segments. This discretization allows to approximate infinite
dimensions path integral by finite dimensions integral. There are several ver-
sions of QMC method and the most widely used is Hirsh-Fye method (see
Sect. 3.2.1) using discrete Hubbard—Stratonovich transformation for lineariza-
tion of Coulomb interaction term Unqfi). In the result interacting electrons
problem is converted to the problem of noninteracting particles moving in
fluctuating in time field defined by a set of pseudo-Ising spins for every of L
segments in 7 interval. A GF is determined as a sum over all possible pseudo-
Ising spins configurations. This approximation will be exact if a number of
discrete segments L — co. As the number of configurations is 2* and grows
exponentially with L a direct summation over all configurations is not possi-
ble and is replaced by stochastic Markov process for Monte Carlo method of
many dimensional integral evaluation.

Hirsh-Fye version of QMC gives practically realized and computer resources
effective calculation scheme to solve SIAM problem. However it can be used
only for high-enough temperature values. With decreasing temperature a
length of thermodynamic time interval 0 < 7 < 8 = 1/T increases together
with a number of segments L. That results in exponential increase in compu-
tation expenses that make low-temperature area practically unaccessible for
this method.

There are other versions of QMC algorithm. One of them is so called
Projective QMC method (PQMC) (see Sect.3.2.4). In this method a limit
of parameter § = 1/T — oo(T — 0) is taken analytically that allows to
investigate ground state of the system.

The most promising now is Continuous Time Quantum Monte Carlo
(CT — QMC) method (see Sect.3.2.5). In this method GF is used in the
form of functional integral with expansion series over Coulomb interaction
parameter U or over hybridization parameter V. The last case is the most
efficient one. Local Coulomb interaction U together with intrasite exchange
J are included in zero-th order and the method works for arbitrary strong
interaction. Instead of regular discretization of thermodynamic time interval
0 <7 < B aset of segments {7;, 7; } with stochastic choice of 7;, 7; is used that
continuously fill the interval (hence the name of the method). An absence of
the fixed set of L segments allows to treat the problem for arbitrary large G
value and so to investigate low-temperatures region.
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In CT — QMC GF is expressed as infinite series over hybridization V
with all possible diagrams contributions. For a certain k-th order term a sum
over all diagrams is calculated as k x k determinant containing GF's for time
segments G(r; — 7). Markov process corresponds to adding one segment thus
increasing order k — k+1 or removing a segment (kK — k—1). It is interesting
that the process converges for any value of parameters U and V' and resulting
GF is calculated from general series expansion without any approximations.

All the above mentioned versions of QMC method are described later in
Sect. 3.2.

Numerical Renormalization Group

Numerical renormalization group (NRG) method was developed by Willson
[116] and is actively used in DMFT study of strongly correlated systems.
The method is based on nonlinear (logarithmic) discretization of real energy e
dependence for hybridization function A(e) in such a way that energy mesh is
very dense near the Fermi level but becomes coarse far from it. This discrete
model is mapped on a semi-infinite chain form for a set of noninteracting
electron states with impurity coupling only to a single fermionic degree of

freedom éarg, with a hybridization V:

H=> tn(tlytniro+ &t 106n0) (3.1.52)

o,n=0

+ 30 Vg do + Vi dbios| + ey dbdy + Uy,

One starts with the solution of the isolated impurity, i.e., with the knowl-
edge of all eigenstates, eigenenergies, and matrix elements. The first step of
the renormalization-group transformation is to add the first conduction elec-
tron site, set up the Hamiltonian matrices for the enlarged Hilbert space, and
obtain the new eigenstates, eigenenergies, and matrix elements by diagonal-
izing these matrices. This procedure is then iterated. An obvious problem
occurs only after a few steps of the iteration. The Hilbert space grows as 4V
(with N the size of the cluster), which makes it impossible to keep all the
states in the calculation. Wilson, therefore, devised a very simple truncation
procedure in which only those states with the lowest energies (typically a few
hundred) are kept.

In the result the fine details of the quasiparticle peak near the the
Fermi level are well described while preserving Hubbard bands in the pic-
ture too. NRG method is widely used in DMFT studies especially when
low-temperature properties are important [117]. Unfortunately, this method
works satisfactorily only for nondegenerate localized states. For degenerate
case Hilbert space involved in calculations grows exponentially and NRG
becomes unpractical for degeneracy larger than 2. In a chapter 5 we will
describe applications of NRG method.
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FEzact Diagonalization Method

Exact diagonalization method (ED) is similar to NRG because in both cases
continuous energy dependence hybridization function A(e) is replaced by a
set of discrete energy states. The difference is that logarithmic energy mesh
and semi-infinite chain representation are not used. In the result finite size
Hamiltonian problem is solved by ezact diagonalization. In contrast to NRG
method it is not possible to describe fine details of quasiparticle peak near
the Fermi level but integral properties of the solution could be sometimes
satisfactorily described. The disadvantage of the method is small number of
discrete states in hybridization function approximation that can be practically
treated. The ED method description could be found in [8,118,119].

Iterative Perturbation Theory

Iterative Perturbation Theory (IPT) method formally can be used only for
weakly correlated systems where U < W/2 because it is based on perturbation
theory in Coulomb interaction parameter U. However, it was found that IPT
is valid for much broader parameters range. For Anderson model second-order
perturbation in U term for self-energy has a form [7,120]:

(r) = =U*Gg(7), (3.1.53)

where Gy(7) is effective impurity bath GF (3.1.39) after Fourier transformation
(3.1.28). Using spectral representation (3.1.46) for Gy expression (3.1.53) can
give self-energy as a function of real energy w:

U2/ dsl/ dgg/ des po(e1)po(e2)poles)
UJ+€1*€2*53—177

+U2/ dsl/ deQ/ dey LUEDP(E)PO(ES) gy 5y

w+EL —E2 —€3— 1IN

where 7 is small imaginary part. In this integral po(w) = —1ImGo(w).
For special case of half filling expression (3.1.54) has correct atomic limit
wW/U — 0:

Go(w) = 1/w, (3.1.55)

1 1 1 1
G(w):§<w+U/2+W—U/2> T w—2w)’
E(M)ZM-

w
For weak coupling limit U — 0 expression (3.1.53) is correct because it is a per-

turbation theory in U/W. With two correct limits (3.1.53) can be regarded as
interpolation formula with reasonable results for intermediate values of U/W.
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For deviations from half filing an extension of IPT was proposed [121,122].
It becomes exact in various limits: (a) the atomic limit, (b) in an expansion
in powers of U up to second order in U, (c) at very high frequencies, and (d)
at zero frequency. It was shown that generalized IPT can give good results
for various range of model parameters [121]. It is very efficient in computer
time expenses method without stochastic errors unavoidable in QMC with
low-temperature region easily accessible. However, IPT is not reliable enough
because it was not rigorously derived but proposed as a simple interpolation
formula.

Another method based on perturbation theory is Noncrossing Approxima-
tion (NCA) [123] where atomic limit is used with first terms in perturbation
expansion in hybridization. Closely related to NCA is Self-consistent Born
Approximation (SCBA) method [124]. We can mention also the method for
solving STAM problem based on decoupling of equations of motion [125,126].

The existence of many different approaches to SIAM as a crucial step
in DMFT calculation scheme shows that there is no universal solution to
this problem. Every of the earlier mentioned methods (so called “impurity
solvers”) has its advantages and shortcomings. Later, we will discuss the most
popular of them.

3.2 Quantum Monte Carlo Method as Single
Impurity Anderson Model Solver

3.2.1 Hirsch—Fye Algorithm

Partition function Z representation in a form of functional integral over
Grassmann variables (see Appendix A) is a convenient starting point to
develop Quantum Monte Carlo method for models where electron—electron
interaction is local such as Hubbard and Anderson models. Coulomb interac-
tion in those models is described by a term:

Hint = UnTnl. (3.2.56)

Product nyn; can be rewritten as a sum of quadratic and linear terms:
1 5 1
nin =—§(m—nl) —|—§(m+ni). (3.2.57)

Hubbard—Stratonovich method allows to replace quadratic term in
Hamiltonian for partition function calculation on linear term via integral
over auxiliary variable. Hirsch proposed [127] discrete analog of Hubbard—
Stratonovich method based on identity:

e (m—n))? _ % 3 eretmmm), (3.2.58)
s==1
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where parameter ) is defined by equation
cosh \ = e?. (3.2.59)

The sum over s = +1 in expression (3.2.58) is a discrete analog of auxiliary
variable integration in original Hubbard—Stratonovich method.

Using identity (3.2.58) it is possible to present partition function Z for
Hamiltonian Hy + Hine as a sum over set of discrete variables {s;} where [
is time segment index (interval 0 < 7 < 8 = 1/T is divided on L segments).
Numerical calculation of this sum is an essence of Hirsch-Fye QMC algo-
rithm [128, 129]. Such representation of Z is closely connected with func-
tional integral over Grassmann variables described in Appendix A and below
we give derivation of basic formulas of Hirsch-Fye QMC method (see also
[8,10,130,131]). Analogous to (A.23) partition function Z is:

L
7 = Tre P = Ty [J e Hot ), (3.2.60)
=1

where AT = /L is a length of time segment and operator terms of product
in right side (3.2.60) correspond to I-th segment 7, = {A7. Assuming that Ar
is small (that means L is sufficiently large) (3.2.60) can be approximated as:

L
Z =Tr[Jem 2 Hoe a7, (3.2.61)
=1

[here so called Trotter decomposition e~ 47 (Ho+H1) —ATHo o= ATHL wag used
with an error of this approximation of the order of (A7)2[Ho, Hy| as it was
shown in Appendix A (see (A.7))].

Factor e=27H1 can be transformed in a sum according to Hirsch identity

(3.2.58) and then (3.2.61) is:

~ e

1
Z=3r Yo Zenses (3.2.62)
817...,3L=j:1
where
Zsy,sr, = H Tr{e ATHoeV 7 (s1)q=ATHo gV (s2) . o= ATHo gV (s2)]
o=1]
(3.2.63)

In the last expression V7(s;) is diagonal matrix in lattice site space of the size
N x N with element e*** for impurity site and 1 for all other sites:

e781 A

0 0
V) o 10 ---
0 01
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Matrix trace in (3.2.63) is a product of exponents for every time interval
71 = A7 and can be calculated as in Appendix A. That gives result expressed
via functional integral over Grassmann variables:

Doy = / DD dexp{—(AT)2 S e (m)gs 7 ., (s )es (70},
i o
(3.2.64)

1 is a matrix with elements

B(s)) = e 4mheV7(51), (3.2.65)

where g~

where h and V7(s;) are themselves matrix in lattice site index space. Matrix
h defines noninteracting Hamiltonian Hy:

.HO = ch;hijcw. (3266)

1j0

In time variables 7;, 7 indexes L x L matrix g~ (7, 7) has a form:

I . 0 By
g | B 0 (3.2.67)
0 s —B(SLfl) 1

Matrix elements structure corresponds to expression for Fermi system
partition function derived in Appendix A (A.52). Appearance of the ele-
ment B(sy) in the end of first line (3.2.67) with the opposite sign is due
to antiperiodicity of Grassmann variables (A.56).

Please note that matrix g~! has size NLx NL and every element in (3.2.67)
is a matrix size N x N in lattice site space including diagonal matrix elements
of (3.2.67) equal to 1.

Grassmann variables integration of Gauss integral (3.2.64) gives (compare
with (A.61)):

Zgy sy = detg;{_“__7  detg; 17, (3.2.68)

s 81,--sSL "

Then final expression for partition function is:

1 —1o —1o
Z = 2_L Z [detgsl%...,sL 'detgsll,...,sL]' (3269)
81,--43SL
Matrix g defined as inverse to matrix (3.2.67) corresponds to fermionic
GF in fluctuating field of quasi-Ising spins s1, . .., sz. Analogous to expression
(3.2.63) for Z,, . s, this GF is:
1 +
Govronsn (71,71) = ——Tr{[=cig (m)c; ()]
S$1,--+38L
H 0~ ATHo V7 (s1) = ATHo (V7 (s2) .. .e—ATHoeV”/(sL)}’
o'=11

(3.2.70)
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To prove that one should calculate matrix trace for two conditions 7, > 7/
and 7; < 71 that gives matrix equation (3.2.67). Detailed derivation can be
found in [130].

Electronic GF defined by standard expression

G (m, 1) = —(Tréio (T)e (1)), (3.2.71)

is obtained by summation of fermionic GF' gs, ... s, (71, 77) over all Ising spin
configuration:

Zsl,...,sL ZSlA,m,SLg.gh...,sL (Tla Tl/)

)
ZSI;~~~75L Zslv---vsL

(lattice site indexes are omitted). Taking into account expression (3.2.68) for
Zs,,....s;, finally we have:

G (m, ) =

(3.2.72)

-1 -1
Go(Tth/) _ Zsl,...,sL [detgsl7.T.~,SL ’ detgs1,.l..7sL]gg1,...7SL (TlVTl/) ) (3273)

> [detgs,' s, - detgs !t s, ]
81,...,8L

Noninteracting GF' can be obtained from (3.2.73) with all spins s1,..., s,
set to zero. In Hirsch-Hubbard—Stratonovich identity (3.2.58) s = 0 is equiv-
alent to U = 0 case.

So due to discrete Hirsch-Hubbard—Stratonovich transformation we replace
the problem of single impurity Anderson model with Coulomb interaction
between on-site electrons to the noninteracting electrons problem in the field
of time 7, = A7 dependent Ising spins. The price for this is summation over
all Tsing spins configurations. For L — oo expressions (3.2.69) and (3.2.73)
for partition function are exact but in practical calculations the accuracy is
determined by final L value and the completeness of summation over Ising
spins configurations.

Inversion of g~! matrix of large size for every set sy,..., sz, of Ising spins
is a very expensive in computer resources task. Hirsch and Fye proposed very
effective procedure where g matrix is calculated once for a certain si,...,sy,
set and then g is recalculated for a set where only one Ising spin component is
changed. Two GF's for the sets differing only by one “spin flip” are connected
by a simple equation which we will derive now.

Let us define diagonal matrix

eVl 0 0
B 0 e V(2 e
e v == 0 0 e*V(S3) . (3274)

e_V(SL)
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and write a product of two matrices

e—V(sl) 0 0
_e—ATh o—V(s2) 0 cen
g,le,v _ 0 _e—ATh =V(s3) .. . (3.2.75)

7efA‘rh efl/(sL)
Let us introduce also auxiliary matrix § = e"g. Using relation §j = (¢!
e~V)~1 and matrix form (3.2.75) one can see that two matrices §(V) and
(V') for two sets V(s1),...,V(sy) and V(s}),...,V (s} ) noted as V and V'
are connected with each other by the following relation

gV =g (V) eV —e V. (3.2.76)
From this immediately follows expression for fermionic GF":
gd=g+@-1E""V -1y, (3.2.77)

(we have simplified notations g = g(V'),¢’ = g(V’)). That is the most impor-
tant for Hirsch-Fye algorithm relation allowing to calculate GF for a set V'
if it is known for a set V:

g=Alg, A=14+(1—-g)" "V —1). (3.2.78)
In a special case of a single-spin flip when V' and V’ differ only for one
spin p with s, = —s, matrix A has a s form [10,130]:
cAyy 0 -
cAgy O -
0 ... Ay, 0 -
A— PP (3.2.79)
...... 0
0... Ar,---01
In this case
detA = Ay =1+ (1 —gpp)a, a= (A7) 1), (3.2.80)

It is easy to prove that (A),;' = 0 for k # [ and from (3.2.78) one can find
explicit expression for matrix elements ¢’ resulting from spin flip s, = —s,:

Gyty = Ghls + (91:p = O1,p)9pls- (3.2.81)

L+a(l - gyp)
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Corresponding expression for determinants of matrices g’ and g:

det(g")™'  detg
detg=!  detg’

= dettA. (3.2.82)

Hirsch—Fye algorithm starts from calculation of GF' ¢ for some initial spin
configuration s; (from noninteracting GF' go = G using (3.2.78) with V = 0)
and then step by step recalculating it for spin configurations differing from
the previous one by a single-spin flip s, = —s,, via (3.2.78). Summation of
these GF with corresponding statistical weights (3.2.69) and (3.2.73) gives
partition function and fermionic Green function.

Matrix g=1 (3.2.67) has size N L x N L but its inversion reduces to inversion
of L x L size matrix because we need only one element of matrix g in site
space corresponding to impurity site. Let us denote this element as G(7). In
this way we define a function G(1) = goo(r; — 71/), where 7 = 7, — 71/ is a
segment of time interval —3 < 7, — 7 < 3. Then relations (3.2.74)—(3.2.81)
can be rewritten by replacing ¢ — G with V(s;) = Aos; (previously V(s;)
contained a site index factor d;00;0 that for our case i = j = 0 is equal to 1).

In practical QMC calculations L value should be chosen large enough so
that discretization interval (“time slice”) Ar = /L was sufficiently small
(usually L ~ 102). Such size matrix inversion is not a serious problem for
modern computers but the total number of all possible spin configurations
{s1} = s1,..., sz, for which one should calculate G(7) is equal to 2& (~ 2190 ~
103%). Such huge number of configurations cannot be evaluated exactly and
some approximated evaluation procedure is needed here.

The same problem appears in many-dimensional integrals calculation that
can be solved by statistical Monte Carlo method. In this method an expression
under integral should be presented as a product of two functions F'(x) and
P(x) with a condition that one of them (P(x)) is positive definite. Then
the integral could be interpreted as an average value of F'(x) with statistical

weight P(x):
> F(x:)P(x;
/dxF(x)P(x) =(F)~ =5y z( szg)

(it is supposed that [dxP(x)=1). The sum in (3.2.83) is calculated by
stochastic Monte Carlo sampling. Stochastically, generated points in many-
dimensional space x; are accepted to be included in summation with proba-
bility proportional to P(x;) and (F) = 3" F(x;)/N;. The efficient algorithm
of points generation is so called Markov process where point x;; is obtained
from the point x; by small stochastic deviation in many-dimensional space
and is accepted with probability proportional to P(x;). In such a way Markov
chain of points always runs in an area of space where statistical weight P(x)
has largest value.

In Hirsch-Fye algorithm analog of integral (3.2.83) is expression (3.2.72).
In a Monte Carlo simulation, Ising spin configurations are generated with a
probability proportional to [detg;'T - detg; 't | ] and the physical Greens

(3.2.83)
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function (3.2.72) is then given as an average of g7, . (7, 7r/) with this mea-
sure. The Markov process is realized by going from configuration s to config-
uration s’ by a single spin flip s, = —s, for all p. Probability of acceptance
Pys)— s} for new configuration {s'} obtained from {s} is calculated according
to Metropolis formula using determinant ratio from (3.2.82):

1 i detl@) oy
_ detg—1 ’
P{S}_'{S/} — {dzt(tg/)ll in Other case. (3284)
etg—

Markov chain is given by every accepted configuration:
{s} = {s} ="} = {s"} =

and summation in (3.2.72) is done only for those accepted configurations.
Practically, instead of summation with weights Z, s, an averaging of
9er. e (11, 7r) over all accepted configuration is performed because proba-
AAAA s.- It is important to note that
this algorithm is a very efficient one. Calculation expenses needed to estimate
probability of acceptance (3.2.84) are defined by evaluation of determinant
ratio from (3.2.82) calculated by a simple formula (3.2.80) that does not scales
with a number of time slices L. GF for accepted configuration is updated
using (3.2.81) that scales as L? instead of L? as it would be for completely
new configuration where formula (3.2.78) should be used.

Calculation scheme is the following. Random number generator gives ini-
tial configuration {s;}. Then for every I = 1,..., L spin flip is attempted that
is accepted or not with probability (3.2.84). This consequence of attempted
spin flips is called a “sweep.” After every sweep new configuration is obtained
that is considered as a starting point for the next sweep. A number of sweeps
is usually ~ 10° that is practically manageable comparing with total config-
uration number (for L = 100 it is 21 ~ 103°). However, the pay for this is
stochastic error appearing in QMC' calculations.

QMC method to solve single impurity Anderson model requires an input
noninteracting bath GF in imaginary time domain go = Go(7) and results
in interacting impurity GF' also as a function of time Gimp(7). DMFT cal-
culation scheme (Sect.3.1.3) assumes that both GFs are frequency depen-
dent because bath GF Gy(iwy,) is calculated in Dyson equation (3.1.39) and
from the same Dyson equation new approximation for self-energy X (iw,) =
Qo_l(iwn)fGi_mlp(iwn) is obtained for lattice GF G(iwy,) calculation in (3.1.38).

That means that Fourier transformation from frequency to time domain
for GF should be done in DMFT calculation scheme before QMC' step

G(r) = TZe’i“’“G(iwn), (3.2.85)

and inverse one from time to frequency after QMC

B
G(iwn):/o e“rTG(T). (3.2.86)
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3.2.2 Maximum Entropy Method for Spectral
Function Calculation

Hirsch-Fye calculation procedure results in Matsubara GF G(r) for discrete
imaginary time points 7; — 7;7. Next necessary step is to calculate density of
states on real energies A(w) that is expressed via retarded GF GT(w):

Aw) = —%ImGR(w), (3.2.87)
where . o
GP(w) = / L) (3.2.88)
is Fourier transformation of G'(t). Retarded GF is defined by expression
GR(t) = —if(t){[cjo (1), ¢y (0)]4) (3.2.89)

(we consider homogeneous paramagnetic phase where GF does not depend
on spin and site indexes).

Dynamical mean-field theory described in previous section uses Matsubara
GF defined by:

G(r) = _<T'réja (T)é;ra(()» (3.2.90)
Spectral representation for this function is given [115] by the equation:
. o A(Ww')
Gliwn) = [ do'———>=, 3.2.91
(ieon) [mwiwn_w, (3.2.91)

that connects Matsubara and retarded GF's. In (3.2.91) G(iw,) is Fourier
component of function G(7) in thermodynamic time 7 space with periodic-

ity (: 5
G(mn):/ dre™“rTG(T). (3.2.92)
0

Inverse Fourier transformation is

Gr) = % 3 e Giw). (3.2.93)

Substituting here expression (3.2.91) for G(iw,) and integrating over 7 we

arrive to the following equation’:

00 e~ TwW

that connects spectral density with Matsubara GF as a function of thermo-
dynamic time 7.

! In QMC literature definition of G(7) without minus sign in (3.2.90) is used and
hence in (3.2.94) there is no minus sign.
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Spectral representation for retarded GF is [115]:
w—w +id’

Glw) = /OO do'—A) 5o, (3.2.95)

— 00

Comparing expressions (3.2.91) and (3.2.95) we can see that retarded GF
can be obtained from Matsubara GF by analytical continuation from discrete
imaginary frequencies to real axis iw, — w + i0. Equation (3.2.94) can serve
as a tool for such analytical continuation that gives integral equation with a
kernel:

—Tw

e

K(T,w):*m.

(3.2.96)

The kernel decays exponentially with w increase and hence G(7) deter-
mined by (3.2.94) is weakly sensitive to spectral function A(w) features on
large frequencies |w| > 1/5. As G(7) from QMC is determined with stochastic
error and in relatively small number of time points L that makes A(w) calcula-
tion using (3.2.94) not well defined problem. For this task Maximum Entropy
(MazEnt) method was developed [132-134] that is described in details in
reviews by Jarrell and Gubernatis [135] and by Jarrel [136]. Later we will
follow this review.

As A(w) is fermionic system spectral function the following two relations
are valid:

A(w) >0, /00 dwA(w) < oo, (3.2.97)

and A(w) (normalized to 1) can be interpreted as some probability distribution
function. Then solution of (3.2.94) with statistical set of many calculated in
QMC G(r) values can be considered as the most probable A(w) function.
Criteria for choosing such A(w) is determined in MaxzEnt method.

The method is based on Bayesian Statistics. If we have two events a and b,
then according to Bayes theorem, the joint probability of these two events is

Pr[a, b] = Pr[a|b]Pr[b] = Pr[b|a]Pr[a], (3.2.98)

where Prla] is event a probability, Pr[a|b] is the conditional probability of a
given b. The probabilities are normalized so that

Prla] = / dbPr{a, b, (3.2.99)

/daPr[a|b] =1, /daPr[a] =1 (3.2.100)

Let event a be values of G(7) obtained in QMC and b the A(w) values.
The determination of the spectrum is an ill-posed problem, since an infinite

number of solutions exists which are consistent with the QMC data and asso-
ciated error bars. MaxEnt selects from these solutions the most probable
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one. According to Bayes theorem (3.2.98) given the data G, the conditional
probability of the spectrum A, P[A|G], is given by

Pr[G|A]Pr[A]

Pr[A|G] = e

(3.2.101)

Here Pr[G|A] is the likelihood function which represents the conditional prob-
ability of the data G with given A, Pr[A] is the prior probability which con-
tains prior information about A and P[G] is called the evidence and can be
considered a normalization constant.

We should maximize conditional probability P[A|G] and for that need
to maximize Pr[G|A] and Pr[A]. For prior probability Pr[A] we use its
representation in terms of information entropy:

Pr[A] = e*¥, (3.2.102)

with a real positive constant a and the entropy function .S defined by

S = /dw {A(w) —m(w) — A(w) In M}, (3.2.103)

m(w)

m(w) is a function called “default model,” The specific form of the entropy
function is a result of some general and reasonable assumption imposed on
the spectrum, like subset independence, coordinate invariance, system inde-
pendence, and scaling. By defining the entropy relative to a default model,
the prior probability is also used to incorporate prior knowledge about the
spectrum, such as the high-frequency behavior and certain sum-rules. In the
absence of data the resultant spectrum will be identical to the model.

The main focus of MaxEnt method is the calculation of the likelihood
function, P[G|A]. The central limit theorem says that for some random vari-
able x, if each of its measurements is completely independent of the others,
then probability distribution is always Gaussian:

_ L e
P(x) = g , (3.2.104)
where ¢ is dispersion.

In our case in QMC calculations we have G(7) obtained in GF averaging
Gsv,....s (T1,77) (see (3.2.73)) over large number of “accepted” Ising spin con-
figurations {s;} (GF calculation for every “accepted” configuration is called
“measurement” so that G(7) is an average over all “measurements”). If we
will divide whole set of these configurations on N, subsets called bins and
make averaging separately in every bin, then we will get a set of {G}} where [
is an imaginary time 7 index and ¢ is bin index. For every i value Gf has an
error AG} defined as a deviation of G} from average over all configurations
value Gj. AG! values are “random” and are assumed to be independent so
their distribution function should be according (3.2.104)) with the following
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expressions for x? and o2:

L1 N N
Xi:ﬁ(E;G;_GO = 5(G -G, (3.2.105)
1 Noo o

o= Na(Na—1) > (G- G)*. (3.2.106)

i=1
In QMC procedure G} values obtained in various bins are not completely

independent and distribution P(G) can deviate from the normal one. If
random data are correlated then instead of (3.2.105)) for x? we have [136]:

X3 =Y (G = GHIC N (Gr — G}), (3.2.107)
i
where
1 Na o .
Cpy=——— G — GGy — Gy 3.2.108
W= NN =) ;( 1= GG i) ( )

is covariation matrix.

In this case C' matrix should be diagonalized by unitary transformation
C — U~1CU with vector G = {G}} transforming to vector G’ = U~'G. In
the result quadratic form (3.2.105) will become normal:

G -G
=Y (1, (3.2.109)

g
1 l

where o; are eigenvalues of C' matrix. Then analytical continuation problem
reduces to solution of integral equation (3.2.94) with G'(7) in the left side
instead of G(7).

There is another procedure for normalizing distribution of {G}} values. If
distribution P(G;) for QMC results deviates significantly from Gauss function
then additional averaging of G! over several bins can be performed. This is
done by defining more coarse mesh in bins space 1,2, ..., Ny combining bin in
blocks with n;, bins and to average G} for all data in the block. The instead of
Gf set we will have a set G;’, whereb = 1,2, ..., Ny is block index for N, blocks.
This procedure is called rebinning and usually allows to suppress correlations
and make distribution function for G} closer to Gauss distribution.

So we assume for likelihood function Pr[G|A] Gauss distribution of G
values:

Pr[G|A] ~ e X /2, (3.2.110)

Combining representations (3.2.110) and (3.2.102) in (3.2.101) we obtain
expression for conditional probability of the spectrum A, P[A|G]:

Pr{AG] ~ @41, Q,[A] = aS[A] - %XQ[A], (3.2.111)



70 3 Hubbard Model in Dynamical Mean-Field Theory

Entropy S is a functional (3.2.103) of function A(w). x? is expressed via
discrete function G(7). Main equation (3.2.94) connects it with A(w) and
right side of (3.2.111) becomes explicit functional of A(w) and depends on
parameter «. Maximization of this functional is done by solution of equations:

0QalA] _  0Qa[A] _
TR (3.2.112)

These equations define the most probable function A(w) corresponding to
calculated in QMC set {G}}. We do not present explicit equations for (3.2.112)
maximization. In reviews [135,136] various calculations schemes are described.

MaxEnt method is illustrated later for the case of periodic Anderson
model with parameters U = 2, V = 0.6, and 8 = 20 (in ¢ units) [136]. Time
interval 0 < 7 < 3 discretization was done for slices number L from 40 to
160 for various 3 values. In Fig.3.1 G(7) values from QMC calculations are
presented as a function of “measurement” number.

From these 1,000 “measurement” values one can see that G(7) is a ran-
dom variable fluctuating around some average value. Fluctuation distribution
asymmetry (see Fig. 3.2) shows deviation from Gauss distribution.

This deviation from Gauss distribution indicates correlations among
various QMC “measurements.” The correlations can be suppressed after

0.20
& 015 |
i?‘ 0.10 M l
E o Ml bl i
0‘00
200 400 600 800 1000
QMC step

Fig. 3.1. Symmetric PAM f-electron local Green’s function G(7) (1 = 3/2) plotted
as a function of the QMC step for U =2, V = 0.6, and 3 = 20 [136]
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Fig. 3.2. Distribution of the data shown in Fig. 3.1. The solid line is a Gaussian fit
[136]
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“rebinning” where separate measurements were combined in bins with aver-
aging in every bin. The result of such rebinning is presented in Fig. 3.3. One
can see that fluctuation distribution become more Gaussian and that means
more probable values for G(7) function.

In Fig.3.4 the average values for G(7) function are compared with the
result of single “measurement.” It is interesting to note that if the result from
a single measurement at a certain point differs from the essentially exact result
obtained by averaging over many bins, then the results at adjacent points also
deviate from the exact results.

As we note earlier further approaching to Gauss distribution for G(7) fluc-
tuations can be done by covariance matrix diagonalization (3.2.108) that sup-
press correlations among various time values. Both rebinning and covariance
matrix diagonalization should be performed till G(7) fluctuations distribution
will become as close to Gaussian as possible.

After preparing the G(7) values one should run analytic continuation on
MaxEnt procedure. It is important to show how calculated spectral function
A(w) depends on the choice of default model m(w). These dependence are
shown in Fig. 3.5.

One can see that for every choice of m(w) results for A(w) are practically
the same. However, the best result is obtained for m(w) from perturbation

theory and the worst one for m(w) = const. It means that the choice of
200 T ] T ] T ] T
o i 1\ i
T
£ 100 |- .
©
0 . . | . .
0.02 0.03 0.04 0.05

Fig. 3.3. Distribution of the data shown in Fig. 3.1 after rebinning. The data was
processed by packing it sequentially into bins of 30 measurements each [136]

08 T T T T T T
—_ 0.6 : —— average over all bins ]
N 0.4 b o——oresults from one measurement

Fig. 3.4. G(7) from one measurement compared to G(7) obtained from the average
over 800 bins of data, each containing 1,520 measurements [136]
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Fig. 3.5. The f-electron density of states A(w) generated using (a) a perturbation
theory, (b) a Gaussian, and (c) a flat default model. These models are shown as
insets to each graph. The data points indicate the integrated spectral weight within
10 nonoverlapping regions of width indicated by the horizontal error bar. The vertical
error bar indicates the uncertainty of the integrated weight within each region [136]

default model is not so important and MaxFEnt method is reliable tool for
analytical continuation procedure.

3.2.3 QMC for Single Impurity Anderson Model with Orbital
Degrees of Freedom

Hirsch—Fye algorithm can be easily generalized to the case with several orbitals
on impurity site [130]. Let us write model Hamiltonian as:

N . 1 A
H = Zeqoca'qcoq + § Z Unoqn()q/ (32113)
q qa#q’
+ Z [Vopé(—)irqépq + VipCpqCoq) + Z €pCpgCra-
p>0,q p>0,q9

Here ¢ is electronic state index for impurity site including orbital moment
projection m and spin o.

As an example, we will consider the doubly degenerate case where ¢ index
have values 1,2,3,4. Coulomb interaction term can be transformed with
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identity:
1 . 1 1
5 Z Unoqn()q/ = [ning — 5(%1 —+ 77,2) + [ning — §(n1 =+ TL3)
a#q

1 1
+ [mm - 5(711 + n4)] + [nzn:s — 5(712 + ns)]

1 1
+ [neng — 5(”2 +n4)| + |ngna — 5(“3 + ny4)

3
—|-§(’I’L1 + no +n3+n4).

Every one of six terms in square brackets can be written in the form of
(3.2.57) and then Hirsch formula (3.2.58) is applied. In partition function
for Hamiltonian (3.2.113) Coulomb term will generate a factor:

P 1
e—AT% 2 gzqt Ulogiggr — = Z exp )\{81(”1 — n2) + 52(n1 — n3)

26
S1yeeey S6
+ s3(n1—na) + sa(na—n3) + ss(ne—na) + s¢(ng—na)}
1 R
=% 2. X k=t Kozt Ask frvft (3.2.114)
S81,-++356

here X is defined by
2cosh A = e 47V,

analogous to (3.2.59) and fi, is a rectangular matrix

1 -1 0 0
1 0 -1 0
1 0 0 -1
=l 1 -1 ol (3.2.115)
0o 1 0 -1
0o 0 1 -1

The generalization for degenerate case is done by using Hirsch formula for
every index pair g¢’ with the same Hirsch-Fye algorithm as in nondegenerate
Anderson model described earlier with matrices size increased from L x L to
N¢L x NyL, where Ny is a number of different orbital pairs (in our exam-
ple Ny = 6). More detailed description of multiorbital QMC is presented in
Sect. 4.2.5.

3.2.4 Projective Quantum Monte Carlo Method

Hirsch-Fye algorithm is practical only for high enough temperatures T
because time discretization parameter A7 = /L should be small because of
Trotter decomposition error [see (3.2.61)] and hence number of time slices L
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is large for large 8 = 1/T. Low temperatures are unaccessible in this method
because computational expenses grow exponentially with L. In the same
time the most interesting physics for strongly correlated systems is observed
at low temperatures, for example superconductivity, magnetic ordering, and
anomalies of transport properties.

To study low temperature and ground-state properties Numerical renor-
malization group (NRG) method developed by Willson [116] is often used
(see Sect.3.1.5). For nondegenerate Anderson model NRG is very effective
but computational expenses grow exponentially with increasing of interact-
ing orbitals number M so it practically works only for M < 2. However for
realistic materials M > 2 and NRG cannot be used.

Recently, Projective Quantum Monte Carlo method (PQMC') was devel-
oped [137-139] that is based on Hirsch—Fye algorithm but allows to treat
low-temperature and ground state properties. This method uses idea of wave
function projection on ground-state proposed by the authors of [140] to study
Hubbard model.

The basic idea of PQMC' is to take some trial wave function ¥, and project
it on ground state wave function ¥gg using the limit:

—0/2) )y
Wes) = lim & (3.2.116)
T (e )

where H is the system Hamiltonian. The right side of (3.2.116) is nonzero
only if in |¥y) expansion there is a component corresponding to |Pgg). After
applying operator e~ (?/2H to function |¥) in the limit of # — oo only the
term e’(‘)/g)HWGS) = e*(9/2)E0|WGS> with minimal energy FEy will survive
that proves validity of (3.2.116).

Ground state average value for any operator O can be written as:

(W |670/2f10“670/2ﬁ|kp0>
(Wole0H |wy)

(0) = (¥as|OlPas) = lim . (3.2.117)

The same average value can be expressed in another way introducing a second
limit in variable § (inverse temperature):

Tr{e—ﬁﬁoe—a/zﬁée—eﬂﬁ}

(O) = lim lim —— , (3.2.118)
6—o00 —00 Tr{e_BHOQ_eH}
due to relation o R
ﬁlim Tr{e PH0 0} = e~ PP (wy|O|Wy). (3.2.119)

In the last two equations Hy is an auxiliary Hamiltonian with ground state
function |Wy) and its energy Ep.
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The idea of (3.2.118) is to represent ground state average as a trace of

operator with a factor e #Ho that has a form of statistical operator for ficti-
tious inverse temperature (5. Using identity (3.2.118) expression for electronic
GF can be derived:
GY(1,7') = —(Tréio (T)E, (71))
Te{e~PHoe0/20 ¢, (1), (r)e~0/21}

= lim lim ~ - . (3.2.120)
60— 00 3—00 Tr{efﬁH0e79H}

A natural choice for the trial wave function |¥) is the ground state of
a noninteracting Anderson impurity model (U = 0 in Hamiltonian (3.1.16)).
Hamiltonian Hy can be identified with noninteraction impurity Hamiltonian
with corresponding Green function equal to bath Green function Go. An
expression in denominator of (3.2.120) Tr{e #Hoe=%H} can be compared with
partition function representation in Hirsch—Fye algorithm (3.2.60)—(3.2.63)
Z = Tre PH = T1r]_[lL:1 e~ AT(Ho+H1) Tf we will divide interval [0,6] on L
time slices and the interval [0, 3] on another L’ slices then Hirsch-Fye analog
will be

A . L+L’ . L . N
Te{e Poe 07y = T e aHome[earfoti), (3.2.121)
I=L+1 =1

Then Hirsch-Hubbard-Stratonovich transformation (3.2.58) will be necessary
only for the first L time slices corresponding to the interval [0, 6] and for time
slices m; with L < I < L + L’ (corresponding to the interval [0, 0 + f]) Ising
spins s; could be set to zero.

The limit 8 — oo can now be taken analytically, leaving a problem on the
imaginary time interval [0, 0] discretized into L = /At steps. As was shown
by Feldbacher et al. [137], one then arrives at the same algorithm as the
Hirsch—Fye finite-temperature algorithm. The only difference is that instead
of the finite temperature noninteracting GF' Gy a zero-temperature G, enters
defined for finite values of imaginary time —6 < 7 < 6.

For practical realization of PQMC method standard Hirsch—Fye algorithm
is used with final fictitious inverse temperature 6. Formally, real inverse tem-
perature is infinite but Ising spins s; are used only for time slices for interval
[0,0] and are assumed to be zero for time values from [, co] interval. In
QMC formalism time is considered to be homogeneous so that calculated GF
G(;,7j) depends only on time difference and if 7; € [0,6] then the result-
ing GF will be obtained for 7 € [—6,6]. To minimize “border” effects QMC
measurements are performed only for time values 7; € [0, 51], where 51 < 6.

To close DMFT self-consistency loop one need to calculate frequency
dependent G(iw,) from G(7). Usually it is done by Fourier transforma-
tion (3.2.86). However in PQMC algorithm G(7) is determined only for
T € [, £1] and full integration over 7 in (3.2.86) is not possible. Feldbacher
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et al. [137] proposed to use for that Maximum Entropy method MaxEnt (see
Sect. 3.2.2). This method can give spectral function A(w) using as an input
G(7) and it is not necessary for G(7) to be determined for every 7 € [0, g].
A(w) can be calculated by MaxEnt using G(7) with 7 € [—f1, £1]. Know-
ing spectral function A(w) G(iw,) can be calculated for all iw,, values using
Hilbert transformation (3.2.92).

3.2.5 Continuous-Time QMC

While Hirsch-Fye algorithm is very popular it has one essential drawback:
time discretization. The thermodynamic time interval 0 < 7 < [ is divided
on L time slices and for every At discrete Hirsch-Hubbard-Stratonovich trans-
formation (3.2.58) is applied allowing to linearize Coulomb interaction con-
tribution to partition function Z (3.2.60)—(3.2.63). Typical number of time
slices L =~ 0.5U 3 that become very large with temperature lowering. As num-
ber of possible configuration of Ising spins s; is 2%, the variational space grows
exponentially with L.

Recently new QMC method for single impurity Anderson model was
developed that does not use time discretization and hence it was called
“Continuous-Time QMC” — CT — QMC. Originally, it was used for bosonic
fields [141] and later was applied to fermionic fields [142,143]. In the last case
the formalism starts from standard perturbation theory expansion. There are
two versions of CT — QM C'": with expansion series in Coulomb interaction U
[142] and another one where as a perturbation hybridization V' is assumed
[143]. Later we will describe hybridization expansion version of CT — QM C
developed in [130, 144-146].

Single impurity Anderson model Hamiltonian is:

ro_ At 4 A A At o4
H = g €0CyyCoo + Utlgrho) + g €pCpoCpo
o po

+ > [Vopllotpo + Vippotas] » (3.2.122)
po

where 0 is impurity site and index p corresponds to electronic states on
other lattice site. Partition function is expressed via functional integral over
Grassmann variables co, and ¢y, (we denote them by the same symbols as
Fermi operators in (3.2.122)):

7= /D[cg]D[co]D[c;]D[cp]e*Sa*AS, (3.2.123)
with atomic action:

B
s.= [ ar [Z G50 (7) (3 = e+ € ) cun(r) + U (P )ean (1) (7)o m} ,
(3.2.124)
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and action for hybridization of atomic states with the rest of the system
(reservoir):

B
as= [CarS [ (5 -0+ ) el
+Vopei (T)epo (7) + Voo (T)cos (7)] (3.2.125)

In expression for AS it is possible to integrate out reservoir variables ¢, .
Then AS is:

B B
4= /0 dT/O d XU: o (T)A(T = 7')eoq (77), (3.2.126)

where A(r — 7’) is hybridization function. Its Fourier transformation to
Matsubara frequences is:

. VopVop
p

Now partition function can be written as integral over impurity center
Grassmann variables only:

/D [clexp{—S. —/ dT/ dr' Y el (1) Aaar (T = 7' )car (7)),

ao’
(3.2.128)
(we will use later the combined index (0o = «); in general nondegenerate
model case index « can be spin-orbital index mo or even local cluster variable).
Let us present exponent in (3.2.128) as an expansion series in hybridization

Z = /D[cﬂp[c]e*Sa zk: % /Oﬁ f[ldn /Oﬁ f[dT;

(3.2.129)
k

k
S Tiear(wed, Gl [T Aaa (7 = 7).

{o}{ar} i=1 i=1

Every k-th order contribution to Z is a product of two factors. The first
one is an average over impurity degrees of freedom and corresponding pairs
of Grassmann variables and the second one is a product of hybridization
functions. Full product of those factors is integrated over all time variables.

Sq has quadratic form in Fermi operators and hence expression (3.2.129)
contains Gaussian integrals in Grassmann variables. These integrals generate
Feinman diagrams with fermionic GF'S gao/ (7—7") and hybridization functions

Apor (T = 7).
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Expression (3.2.129) can be presented in following form:

1 /8 o 5 8
Z:ZG;E/O dTl/O dTl.../O di/O dry, Z

’ ’
a1l apa)

(T{cay (T])ed, (1), - - g (Th)ed, (Th) ioe (3.2.130)
Apyor (11— 71) Aayay (T2 —75) ... o
1
o det N
Aoy (T — 71) A%%(T;c —17)
Here we introduce partition function of free atom
Zy = /D[c+]D[c]e_S“, (3.2.131)
and average value of some operator O over impurity states
(Ohoe = / Dl [Dlde 50, (3.2.132)

Equation (3.2.130) was obtained from (3.2.129) by summing k! terms
with possible permutation of 71, 79, ..., 7 variables. Taking into account sign
change with commutation of ¢, and ¢ operators in (T'{...})1oc One can see
that the sum of k! products of k functions Aye (7 — 7’) is a determinant
written in (3.2.130).

Expression (3.2.130) for partition function of single impurity Anderson
model is a basis of CT—QM C method. Let us rewrite (3.2.130) in the following

form:
i B B , B B , Z
7 = / dﬁ/ dTl.../ di/ dry,
k=00 0 0 0 (3.2.133)

/ /
alal,...,akak

/ /
Pala’l,...,aka; (7—17-1; s aTka)v

Function Ppq} a3 ({7},{7'}) can be considered (if it has positive value) as
a probability for time distribution {7}, {7’} in k-th order term in Z. Many-
dimensional integral (3.2.133) over time variables can be calculated by stochas-
tic Monte Carlo sampling (3.2.83). CT — QM C calculation scheme consists
of the following steps:

e For some k-th order term k stochastic values of time 7q,...,7% and the
same number of 7{,..., 7}, times from the interval {0, 3} are generated.
Probability function Pa,a;.... aya (T1 T1,. .., TkT},) is calculated.

By adding or removing one of 7 values in a set {7}, {7’} a new time set
is obtained that corresponds to (k + 1)-th or (k — 1)-th order term and
corresponding change of probability functions is calculated.
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e Comparing new probability function values with an old one new time
configuration is accepted or not.

e Summation is performed over all accepted time configurations giving
partition function Z.

GF in CT — QMC calculation scheme is defined in a standard way via
T-ordered product of Fermi operators ¢p, and 63'01

G(r—7') = —(Téos(1)ed, (7)), (3.2.134)

This GF is expressed as a functional integral over Grassmann variables
that gives analog of expression (3.2.133) for partition function Z:

) B 12 B B . B B ,
G(iwp) = E}E)/O d7'1/0 dTl.../O di/O dry, (3.2.135)
P({r} A7 NG (iwn; {7}, {7'}),

(we omit « index assuming that electronic GF on impurity site depends only
on spin index o). Contribution to GF is defined by the matrix M that is
inverse to matrix A:

Al —1) Al —13) ...
M:A_l — e e e e , (3.2.136)
A(ry, — 1) o Al — 1)

so that GF is:

Gliwn; {7} {7'}) Ze‘“’"”M ({7}, {7'})e T, (3.2.137)

Please note that expressions (3.2.133) and (3.2.135) for partition function
and GF have the same structure as expressions (3.2.69) and (3.2.73) in Hirsch—
Fye algorithm. In the last case GF is calculated in a stochastic Ising spin
field and the result is obtained by summation over all spin configurations.
In CT — QMC summation is performed over stochastic time distributions
{rh A7},

Stochastic Monte Carlo process gives time set {7}, {7’} for contribution
to k-th order term. For this time set probability function P({7},{7'}) and
GF G(iwn;{7},{7'}) are calculated. On the next step time set is changed by
adding new pair of times (by this going to (k + 1)-th order term) or removing
a pair of times for going to (k — 1)-th order. This adding or removing time
pair corresponds to adding or removing a row and column in a matrix M !
(3.2.136).

As in Hirsch-Fye algorithm new contribution to GF G(iwy;{7},{7'}) can
be calculated from the previous one by “update” procedure. If a new column
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i and row i’ are added to matrix M ~! then new and old contributions to GF
are connected by the following relation [143,144]:

k k
new p iwnTj —i nT’.,
G :GOId—B §‘ elnTiL; }:e “nTi Ry | (3.2.138)

L; and R are defined as

L= (Li,....Li_1,—1,..., L),
R=(Ry,...,Ri_1,—1,...,Rp),

where
= S M A ), R= 3 A )M
J
and p is equal to

1 . o
G = GM Ay —— [ D e M | | Y Myye T | (3.2.139)

To estimate every-step probability in Monte Carlo process one need to cal-
culate ratio for matrix M determinants. If matrix M has initially dimensions
(n —1) x (n — 1) and one column and one row were added to matrix M ~—*

then det M )
e
_— 3.2.140
det Mpew P ( )
If k-th column and row were removed from matrix M ! then determinant

ratio is:
det M

det Myew

Formulas (3.2.138)—(3.2.141) define Monte Carlo process allowing deter-
mining to accept new time configuration or not and to calculate new contri-
bution to GF for accepted configuration.

CT — QMC method has advantages comparing with Hirsch-Fye method
because it can be used for lower temperatures where Hirsch—Fye algorithm
fails. CT — QMC version with series expansion in Coulomb interaction U
[142] allows to work with general four-operator form of Coulomb interaction
Hamiltonian (2.2.24).

In CT—QMC formalism contribution from all orders of expansion series in
hybridization are summed. It is interesting to note that this series summation

= My (3.2.141)



3.2 Quantum Monte Carlo Method as Single Impurity Anderson Model Solver 81

0.1 T T - - - - - -
Uh=0 ——
0.09 Ut=3 —>—
| Ut=4 —x—
0.08 Ui=5 —8—
0.07 | —
0.06 | ]
3 L
= 0.05 ]
0.04 0.5pU
Rubtsov
0.03} ]
0.02} a3
2 3 4 5
0.01 Ut
O Lem e 3
0 50 60 70 80 90

order k

Fig. 3.6. Probability P(k) for k-order contributions in CT' — QM C calculations for
Hubbard model as a function of Coulomb interaction parameter U [143]
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Fig. 3.7. Probability P(k) for k-order contributions in CT — QMC' calculations for
Hubbard model as a function of doping value ¢ [144]

converges for any hybridization values. This convergence is demonstrated in
Figs. 3.6 and 3.7 where probability P (k) of k-th order contributions is plotted.

In both cases presented in Figs.3.6 and 3.7 results show rather narrow
probability distributions for various order contributions with center positions
depending on model parameter values (U for Fig. 3.6 and ¢ for Fig. 3.7). With
U increase actual k are shifted for lower values (as it is expected for hybridiza-
tion expansion series) while with deviation from half-filling higher orders are
needed.
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3.3 Hubbard Model Spectral Function in DMFT
Approximation

3.3.1 Three Peak Spectral Structure for Half-Filling

It was shown in the Sect. 3.1 how DMFT maps a problem of electron on a lat-
tice to effective single impurity problem and in this way dramatically reduces
needed computational expenses. Lattice information is in the right side of
(3.1.38) where it is possible to go from wave vector k integration to integra-
tion over energy variable e of the noninteracting density of states (3.1.40). In
this way one always treats finite dimensions (d = 3, 2) lattice problem and the
d — oo limit reveal itself only in using local self-energy independent of wave
vector k. Comparison of DMF'T results with exact numerical lattice calcula-
tions shows that d = 3 and even d = 2 are “large” enough for DMFT to be
a good approximation. It is important to note that DMFT does not assumes
any small parameter in the problem Hamiltonian. Formally the only small
parameter is 1/d.

Georges, Kotliar, Krauth, and Jarrell [5,6,147] were the first to apply gen-
eral DMFT idea to Hubbard model with Hamiltonian (3.1.1). They have
shown that the problem of electrons moving on the lattice with strong
Coulomb interelectron interaction can be reduced to the problem of impu-
rity center embedded in noninteracting electrons system that creates effective
dynamical mean field acting on impurity electrons, i.e., to well known Ander-
son impurity model. The basis of DMFT equations is calculation of effective
parameters for this auxiliary impurity model. The widely used method to
solve single impurity problem is @QMC but other nonperturbative approaches
such as Numerical Renormalization Group method are often used too (see
Sect. 3.1.5).

The main effect of using DMFT for Hubbard model with Hamiltonian
(3.1.1) can be illustrated in Fig. 3.8 where local spectral function

Alw) =Y Ak, w) (3.3.142)
k

obtained in DMF'T calculations is presented.

This figure is used in all DMFT reviews because it is a classical illus-
tration of electronic structure evolution for strongly correlated systems. With
Coulomb interaction parameter U increase the system goes from weakly corre-
lated to strongly correlated regime so that for half-filled case metal-insulator
transition happens at large U values. For intermediate U values three-peak
structure is observed with central quasiparticle peak and two broad side max-
imums. These maximums corresponds to two Hubbard bands obtained more
than 40 year ago by Hubbard [2, 3] using heuristic approach for electronic
Green function decoupling. They describe noncoherent electron states with
electron removal from single occupied atomic level (lower Hubbard band) or
second electron addition to atom (upper Hubbard band).



3.3 Hubbard Model Spectral Function in DMFT Approximation 83

—-ImG
N
[

[

<

o)

I

n

[6,]
| 1

0
1 /_,\j\ﬂj\/\m\zs |
= UD=4 .
4 2 0 2 4

Fig. 3.8. Local spectral function for half-filled (n = 1) Hubbard model for various
values of Coulomb interaction parameter U obtained in DMFT calculations. D the
half-width of noninteracting band [7]

The Hubbard bands origin can be understood from Hamiltonian (3.1.1).
Kinetic energy term becomes diagonal in momentum representation whereas
Coulomb interaction term is diagonal in atomic site representation. In the
result for weak interaction case U <« W momentum representation is more
appropriate and spectral function is slightly modified noninteracting density
of states. From other side for U > W case atomic site representation better
describes the system and spectral function is close to free atom solution:

1 1/2 1/2
A(w) = —=Im (w+U/2+m+w_U/2+m>. (3.3.143)

with two peaks at £U/2.

In the intermediate U ~ W case spectral function should have features
typical for both limits and hence three peak structure appears in Fig. 3.8.

Single particle spectrum for Hubbard model is characterized by two energy
scales. One is quasiparticle band width €} and another one is energy separation
between noncoherent Hubbard bands ~ U. Low-energy scale e*JZ is determined
by expression €; = ZD where Z is quasiparticle weight and D is half-width of
noninteracting band that is equal to Fermi energy for half filling. For strongly
correlated systems Z <1 and hence €} is much smaller than D. Integral
intensity for high-energy Hubbard bands corresponding to noncoherent states
is determined by a factor 1 —Z. As we will show later such three peak structure
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Fig. 3.9. Spectral function evolution with U increase for Hubbard model at tem-
perature T = 0.0276W (W is a width of noninteracting band). On the inset the
dependence of quasiparticle peak height on U value is presented [117]

of spectral function is very general for strongly correlated systems and is
experimentally observed in real material spectra.

The quasiparticle peak in Fig.3.8 can be identified with Abrikosov-Suhl
resonance that was at first predicted for Kondo effect problem appearing in
a metal with paramagnetic impurities. Another name is Kondo peak that has
its origin due to multiple scattering of conduction electrons near Fermi level
on impurity with spin flips. In Hubbard model there is no explicit localized
spins but there are local spin fluctuations and scattering of electrons on these
fluctuations gives a resonance on the Fermi surface.

In Fig. 3.9 spectral function for Hubbard model is presented obtained in
DMFT calculations with impurity problem solved by Numerical renormaliza-
tion group method [117]. Again for intermediate U values three-peak structure
is realized.

In Fig. 3.10 real and imaginary parts of self-energy X'(w) are shown calcu-
lated for the same U values and the same temperature as for Fig.3.9. With
U increase imaginary part X'(w) for small w is deformed in such a way that a
dip appears instead of the parabolic behavior typical for Fermi liquid regime.
The dip depth is enhanced for larger U values. Such behavior of ImX(w)
corresponds to transition from three peak structure of spectral function to
two-peak structure as shown in Fig. 3.9. To quasiparticle peak disappearance
corresponds slope sign change for ReX(w) function at w = 0. Self-energy pat-
tern presented in Fig.3.10 is typical for half-filled Hubbard model. Please
note that imaginary part of X'(w) is even function of energy while real part is
odd function as it is required by DMF'T equations for particle-hole symmetric
case. Also analytical properties for retarded Green function requires condition
ImXY(w) < 0 that is satisfied in Fig. 3.10.
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Fig. 3.10. Imaginary part (a) and real part (b) of self-energy ¥ (w) for the same
temperature (1" = 0.0276W/) and the same U values as in Fig. 3.9 [117]

As QMC method is unpractical for low temperatures special interest
deserve calculations for Hubbard model spectral function at 7= 0 by NRG
method. In work [148] such calculations were performed for two lattices: Bethe
and hypercubic in a limit d — oco. For those lattices noninteracting density of
states is given by formulas:

1
p(e) Vd—e, —2<e<2, (3.3.144)

T or

and

1
ple) = 2—e€2/2, (3.3.145)
s

correspondingly. In the last case spectral function decays infinitely for large
frequencies and it is convenient to introduce effective band width W =4

\/ [ dep(e)e? that is equal W = 4, that is the same value as for Bethe lat-

tice. That allows to compare DMFT results for both lattices. The results are
presented in Figs.3.11 and 3.12.

In Fig.3.11 calculation results for quasiparticle weight Z are presented
that is defined by expression:

1

Z = . (3.3.146)

Ow )|"J:0

One can see that a particular form of noninteracting density of states has
negligible influence on interacting spectral function in the limit of Z — 0.
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Fig. 3.11. U-dependence of quasiparticle weight Z calculated by NRG for Bethe
lattice and hypercubic lattice (a) and also comparison of the results for Bethe lattice
calculated by various methods (b) [148]
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Fig. 3.12. Spectral functions comparison for Bethe and hypercubic lattices for
various U values [148]

Near critical values of Coulomb parameter U, spectrum evolves from three-
peak to two-peak structure with gradual spectral weight transfer from quasi-
particle peak to Hubbard bands till complete disappearance of the central
peak. The general scenario for spectral function evolution is the same for high
temperatures used in QMC' calculations and for T'= 0 in NRG calculations.
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Fig. 3.13. Temperature dependence of quasiparticle peak height (a) as a function
of U [117]
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Fig. 3.14. Quasiparticle peak height at 7' = 0.0103W and hysteresis for increasing
and decreasing of U [117]

3.3.2 Metal-Insulator Phase Transition

Let us look again in Fig. 3.9 with DMFT results for finite temperature. One
can see that quasiparticle peak strengths drops sharply with U increase but
does not becomes zero at some critical point but the curve has a tail decaying
for large U. The corresponding temperature dependence is shown in Fig. 3.13.

Hysteresis found at increasing and decreasing of U value signals the first-
order phase transition (Fig.3.14). Critical values U.; and U.y where metallic
and insulating phases become unstable are starting points for the boundary
curves crossing at critical temperature T, where phase transition becomes of
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Fig. 3.15. Schematic phase diagram for Hubbard model at half filling

the second order. For T' < T, one has first-order phase transition while for
T > T, there is no phase transition between metallic and insulating phases
but only a gradual crossover (Fig.3.15).

Coexistence of two metastable phases — metallic and insulating — was con-
firmed also in another Hubbard model study using Projective QMC method
[137] as impurity solver in DMFT. In this work projective parameter was cho-
sen to be § = 20,30,40 (see (3.2.118) in Sect.3.2.4) and energy was in the
units where noninteracting band width W = 4. Calculation were performed
for Bethe lattice with fixed imaginary time slice value A = 0.2, number of
QMC sweeps was equal to 10° .

It was found that in the interval 5.0 = U,y < U < Uy = 6.0 DMFT equa-
tions have two solutions corresponding to metallic and insulating phases. In
Fig. 3.16 calculated values of probability for double occupancy D as a function
of Coulomb parameter U is shown.

D = (Ayiy). (3.3.147)

Shaded part on the plane (D, U) corresponds to two phases coexistence area.
With accuracy 0.1-0.2 coexistence interval U,y < U < U,y agrees with the
results of NRG calculations [117,148] where it was found that U.; = 4.78,
U = 5.88.

All this results confirm that DMFT equations allow to describe metal—
insulator transition for half-filled Hubbard model with Coulomb interaction
parameter U variation and this phase transition is of the first order.

Temperature dependence of resistivity in metallic phase of Hubbard model
near metal-insulator phase transition is shown in Fig.3.17. This result was
obtained in DMFT equations solution where effective Anderson impurity
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Fig. 3.16. Probability for double occupancy D as a function of Coulomb parameter
U obtained in DMFT calculation using PQMC method [137]

20 o06f
04}
P((D)0 ]
30 TN ' ]
F N ) 4
pDC(T) \\\_
20 g

0 0.05 0.1 0.15 0.2 0.25
T

Fig. 3.17. Metallic phase resistivity near metal-insulator transition (U =2.4W) as
a function of U from DMFT calculations for Hubbard model [149]. T values are in
the units of nearest neighbors hopping ¢. In the inset spectral function is shown for
three points on the curve p(T)

problem was solved by Iterative Perturbation Theory (IPT), an approximate
method that was often used in earlier DMFT applications (see Sect.3.1.5).
At low temperatures p o< T2. For T < e} resistivity is described by the

expression:
p o< pm(T/€})%, pu =~ ha/e’. (3.3.148)

where py is Mott limit of p corresponding to mean free path of electron
value of the order of interatomic distance a. Sharp p increase for T o €}
corresponds to bad (fover “incoherent”) metal where quasiparticle peak is
strongly suppressed.
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3.4 Hubbard Model with Deviation from Half-Filling

3.4.1 Quasiparticle Peak Evolution

The study of electronic spectra structure for Hubbard model with noninte-
ger occupancy is directly related to experimental data for materials obtained
from stoichiometric compounds by doping with nonisovalency elements. Of
the special interest is spectral function evolution for Hubbard model close
to metal-insulator transition at occupancy values deviating from half-filing:
0=1-—n#0.

Let us consider Hubbard model for U > U, where with n = 1 Fermi level
is in the energy gap A, between Hubbard bands. What happens with small
doping of the hole § > 0 or electron § < 0 type? Chemical potential should
experience a jump u(§ = 07) — u(6 = 07) going from hole to electron doping
and important problem is a value of this jump: is it equal to A, or smaller?
This problem was investigated in earlier DMFT works [118, 121, 123, 150]
using various impurity solvers: QMC [123], exact diagonalization [118] and
generalized IPT method [121,150]. Systematic investigation of this problem
was done in [121].

In Fig.3.18 we present one of IPT method results for hole doping at
T = 0. One can see that at small doping resonance peak on the Fermi level
appears that is well separated from the Hubbard band edge. With doping value
increase spectral weight is transfered from both Hubbard bands to developing
quasiparticle band with gradual merging of it with lower Hubbard band. At
large doping values there is only quasiparticle band with a shoulder at former
lower Hubbard band position and weak intensity upper Hubbard band. So for
small doping quasiparticle states (so called “midgap states”) appears inside
the gap of the insulating case at n = 1. This result is very general and was
confirmed in [121] by exact diagonalization for small clusters.

In Fig. 3.18 one can see that with doping value increase the originally insu-
lating system becomes more and more metallic with standard Fermi liquid
regime. At small § quasiparticle peak is very narrow with large effective elec-
tron mass. With § increase spectral weigh is transfered from Hubbard bands
to quasiparticle band but Hubbard bands positions are unchanged with energy
separation between them ~ U.

In [121] phase diagram on the plane p — U was produced (Fig. 3.19). Near
metal-insulator transition at n = 1 there is an interval U.; < U < U.o where
DMFT equations have two solutions: metallic one with final density of states
value at w = 0 and insulating one with zero value. It is important to know
how the boundaries of this coexistence area change with doping 9.

3.4.2 Phase Diagram for T' =0

DMFT results at T' = 0 calculated with exact diagonalization and IPT meth-
ods for impurity solvers are presented in Fig.3.19. By black color is marked
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Fig. 3.18. Spectral function evolution for various doping values for U = 3 (in the
units of half-width D of semielliptical band) [121]

the coexistence area for metallic M and insulating I solutions of DMFT equa-
tions. Boundaries for this area are obtained from position of the top of lower
Hubbard band for I-phase and from the position of quasiparticle peak at very
small doping for M-phase. Comparison of energies for both solutions shows
that in whole coexistence area metallic phase has lower energy than insulating
one [121].

In Fig. 3.20 a similar phase diagram on the plane (u, U) for T = 0 calcu-
lated by DMFT(DMRG) method is presented [152]. DM RG method for effec-
tive impurity problem has certain advantages comparing with NRG method
that is aimed on spectra reproducing for small frequency values in quasipar-
ticle peak area. In contrast to this DM RG can reproduce also noncoherent
Hubbard bands too. This method was tested earlier for half-filled Hubbard
model [153]. It was found also to be very effective for one-dimensional strongly
correlated systems [154, 155].

Figure 3.20 shows that metallic phase exists for p > p.1(U) and insulating
one for p < pe2(U). Between pe1(U) and pe2(U) both phases coexist. This
diagram agrees with obtained earlier in [121,150]. One should note that both
phases were supposed to be in paramagnetic state. It is known that in Hubbard
model insulating ground state is antiferromagnetic so those diagrams should
be correspondingly modified.
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DMRG results agree with recent Hubbard model calculations by SFA
method [156] (Fig.3.21). The calculations were performed for semielliptical
noninteracting density of states corresponding to Bethe lattice in d = co limit.

At T = 0 and half-filling when p = U/2 the system is insulating at U > U.s
where Ues ~ 5.84t7 (compare with Fig.3.15). At deviation from half-filling
chemical potential jumps from p = p_, to uk, when number of electrons n
approaches 1 from below or from above. Hence at p_, < p < u; the system
is insulating, for p,; < p < p, and pf; < p < ply metallic and insulating
phases coexist and outside of this intervals metallic phase is stable. Appear-
ance of metallic phase at u = ucig is due to “midgap states” development
and disappearance of insulating phase at p = /Lfl happens because chemical
potential p approaches energy gap boundaries.

At final temperature phase separation area appears close to n =1
(Fig.3.22). This area extends significantly with 7 increase if next-nearest
neighbors hoppings are taken into account. This hoppings lead to frustration
and break electron-hole symmetry resulting in phase diagram asymmetric rel-
ative to n = 1 point that is typical for real strongly correlated material based
on d-elements compounds.

DMFT is approximate theory when applied to real systems with a final
space dimension however this method has significant advantages in describing
strongly correlated materials comparing with other approaches. Its equations
have two exact limits: at U = 0 (free electrons limit) and ¢ = 0 (atomic limit).
For final U values it can be considered as an interpolation approach tak-
ing into account both itinerant and localized character of electronic states in
strongly correlated systems. Important fact is that all sum rules and analytical
properties for electronic Green functions are satisfied in DMFT. The most sig-
nificant result of DMFT is half-filled Hubbard model spectral evolution with
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U variation from insulating state with an energy gap between Hubbard bands
to metallic state with quasiparticle peak on Fermi level. In earlier theories
those two regimes were described by completely different approaches: decou-
pling of Green functions (so called Hubbard III approximation) for insulator
and Gutzwiller method for quasiparticle states. DMFT can describe both
regimes in the same formalism and reproduces gradual transition between
them. Neglect of spatial correlations in DMFT seems to be not very high
price for such ability. Moreover there are few versions of taking into account
spatial correlations in DMFT and we will discuss them later.

3.4.3 Spin-Polarized Case

In this section we will consider spin-polarized state in Hubbard model. Such
state can appear with external magnetic field or due to spontaneous mag-
netization leading to ferromagnetism or antiferromagnetism. In DMFT spin-
polarized state is described by equations for spin dependent Green functions
and self-energy:

1
iwn + i+ oh — X, (iw,) — e’
1
iwn + p+ oh — Xy (iwy) — ex

Go(k, iwy) = (3.4.149)

GE(iwi) = Y (3.4.150)

k

Local Green function G'°¢(iwy,) is identified with effective Anderson impu-

rity GF":
1

907;1 (iwn) — Yo (iwn) ’
where noninteracting auxiliary impurity model GF Gy, (iw,,) is expressed via
spin dependent hybridization function A, (iwy,):

(3.4.151)

G2 (iwy,) =

Goo (iwn) = iwn + p + oh — Ag(iwy), (3.4.152)
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with effective action defined by expression:

B B
Set = Satom + / dT/ dr’ Z C: (T)Acr (T - TI)CU (7-/)7
0 0 -

where Seg is action for impurity variables only with Coulomb interaction taken

(3.4.153)

into account. Equations (3.4.149)—(3.4.153) are the same as original DMFT
equations described in Sect. 3.1 but with explicit spin direction dependence.
Using these equations the role of magnetic field for strongly correlated elec-
trons was investigated in [158] with impurity problem solved by NRG. Later
we will describe results showing magnetic field influence on electronic density
of states and effective electron mass. In Fig.3.23 calculated spectral func-

tion in magnetic field is presented for both spin directions. For all cases sharp
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Fig. 3.23. Deunsity of states for spin T (upper panel) and spin | (lower panel) in
Hubbard model for U = 6t and n = 0.95 at various magnetic field h values. All
energies are in the units of ¢ [158]
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Fig. 3.24. Effective electron mass for both spin projections as a function of magnetic
filed h for the same parameters as for Fig. 3.23 [158]. At the inset polarization as a
function of the field is shown

quasiparticle peak and two Hubbard bands are observed. Magnetic field redis-
tribute electronic states increasing occupancy for electrons with spin along
the field and decreasing it for opposite spin direction. Spectral density lost
in lower Hubbard band are transfered to upper Hubbard band. With field
strength increase a tendency to full spin-polarization is developing but central
quasiparticle peak does not disappear while its width is decreasing.

Using (3.3.146) one can calculate central peak intensity Z, for both spin
projections and estimate quasiparticle effective mass m:

my =2, ", (3.4.154)

as a function of magnetic field that is shown in Fig. 3.24. For both spin projec-
tions effective mass decreases with field increase and m| > m4. As one can see
in Fig. 3.24 inset for field values h > 0.2 magnetization is close to saturation
because such very high field value corresponds to 0.2¢ that is an order of 1 eV.
In [158] there were also investigated longitudinal and transverse susceptibil-
ities and comparison was done with earlier polarized DMFT problem study.
Those works were stimulated by experimental studies for “heavy fermion”
materials where the influence of magnetic field on carriers effective mass was
measured.

Let us consider now spontaneous magnetization (ferromagnetism). In
DMFT this problem was studied intensively (see [159]) and we will discuss
results of the most recent study [159]. In this work the case U — oo near half
filling was considered where according to Nagaoka theorem [160] saturated
ferromagnetism should be realized. DMFT equations (3.4.149)-(3.4.153) were
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value n = 0.85 for Hubbard model at U = oo [159]. Calculations were performed
for T = 0.01¢. In the insets noninteracting densities of states for two-dimensional
Hubbard model used in calculations are shown

used here and effective Anderson impurity problem was solved by CT —QMC
method that allowed to treat very low temperatures (7" = 0.001t). It was
found that next-nearest neighbors hoppings ¢’ should be taken into account
in this case in addition to nearest neighbors hoppings ¢. In Fig. 3.25 calcula-
tion results are presented for positive and negative '/t values in comparison
with ¢ = 0 case. In all cases quasiparticle peak on the Fermi level is present
with lower Hubbard bands. Upper Hubbard band is absent because of U — oo
condition.

One can see that for ¢/ = 0 there is nonsaturated ferromagnetism while
for negative t'/t ferromagnetism is nearly saturated. However for positive '/t
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DMFT(CT — QMC) calculations [159]

ferromagnetism is absent. So asymmetric DOS for '/t # 0 case strongly
influence ferromagnetism formation.

In Fig.3.26 phase diagram on (7,n) plane is shown. Calculations were
performed for two-dimensional Hubbard model where according to Mermine-
Ashcroft theorem there is no long-range order for final temperatures so the
boundary between paramagnetic PM and ferromagnetic FM phases is a
crossover to the phase with large ferromagnetic correlations length. For three-
dimensional model this boundary would become real phase transition line.

3.5 Antiferromagnetism

3.5.1 DMFT Equations with Antiferromagnetic
Order Parameter

In Sect.3.1 DMFT equations were formulated for Hubbard model assuming
the absence of long-range order. In this section we describe DMFT exten-
sions to the cases with antiferromagnetic AFM order, superconducting order
SC' (Sect. 3.6), or both AFM and SC simultaneously. There are two ways to
define the boundary between paramagnetic and magnetically ordered phases.
The first one is to calculate paramagnetic susceptibility x(q,T") and from its
divergence at some reciprocal space point q = Q to determine system insta-
bility to Spin Density Wave (SDW) formation with Q vector. Another way
is to break paramagnetic symmetry by introducing order parameter and to
investigate system stability with respect to this order parameter. Practically,
it is done by looking for DMFT equations solutions with broken symmetry.
We will consider bellow the last way that is described in review [8] for AFM
and SC phases in DMFT.

In this section AFM order parameter problem is described following Bauer
and Heuston [158]. Let us consider bipartite crystal lattice with two sub-
lattices A and B, so that for the sites of sublattice A nearest neighbors
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belong to sublattice B and vice versa. Alternated staggered magnetic field

h; is defined as:
h € A
m={" '€ (3.5.155)
—h, i€ B.

Hubbard model Hamiltonian with alternated field is:

H =7 tij(€hi,88j0 + EhjsCaio) + ) Ulaitiiail
ijo 1%
= (Hothigtaio + -0l CBio), (3.5.156)
i
Here summation is over sublattice sites i, j, o, = p+och where p is chemical
potential and £oh is magnetic energy for electron with spin o.
Hamiltonian (3.5.155) assumes matrix form of equations and Green func-

: : : P P ; .
tions. Let us introduce spinor ¢ = (¢}, Chk,) and matrix GF:

GOk, 7 — ') = —(Tylro (1), (7)) = (GAA GAB) (3.5.157)
G4 GBB
Equations of motion could be derived for four GF components in a standard

way. After Fourier transformation over 7 — 7’ variables matrix equations for
GF are:

iwn+MU_EAU(k7 uun) €k GZA GZB _ 10
€k iwnt+p—o—XBo(k, iwn) 4GB/ \01)

(3.5.158)

Here we have introduced self-energy X, (k,iw,) that is diagonal in spin
indexes.

Matrix equation (3.5.158) is easily solved. Let us write solution for matrix
element G ,=G°:

) 1 L (k,iw,)  —ex
G°(k = BAT T ) 3.5.159
(k; iwn) €k, iwn)Eq (k, iwy) — €2 < —ac &q(kiwy) )7 ( )
where €2 (k, iwy,) = iwn + pio — oo (K, iwy, ). According to basic DMFT idea we
ignore self-energy dependence on wave vector k. Bipartite lattice symmetry
means that X4, (iwy,) = Xp_o(iwy) = X, (iwy,) and hence:

Eq(iwn) = &5 (iwn) = &7 (iwy,). (3.5.160)

So lattice GF depends on one function X, (iw,) (or £7 (iwy)).
Let us introduce local GF by summation (3.5.158) over wave vector k. For
integral matrix element ), G9 4 (k,iw,) = GY . (iw,) expression is:

f 'Lwn / 0(6)
VE 7w, )€ (iwy,) \/ 90w, )9 (iwy) — €

Ghoc(iwn) = . (3.5.161)



100 3 Hubbard Model in Dynamical Mean-Field Theory

where summation over k is replaced by integration over € with noninteracting
density of states po(€).

It is assumed in DMFT that local GF GY, (iwy) and self-energy X (iwy,)
are identical with corresponding values for effective impurity model that is in
this particular case Anderson model in magnetic field with Hamiltonian:

Hsiam = Z kol Cko + Z {Vkoéioda + Vodttke | (3.5.162)
ko ko

+ Z ed[,cijcfg + Uiy,
ag

where €4, = €q — oh, €xe = €x — Th.
One-electron GF for this model is:

o 1
g (1) = e A (i) = 57 (i) (3.5.163)
where
o |Vvk<7|2
k

is hybridization function depending on spin o.

According to general DMFT idea we introduce noninteracting impurity
GF with spin dependence G§ (iwy,). Self-consistency conditions for lattice and
effective impurity models are defined by two equations:

Gonpiwn) = Gl (iwn), (3.5.165)
(G (iwn)) ™t = (G (iwn)) ™ + X (iwp). (3.5.166)

These equations define two functions: X7 (iw,) and G§ (iw,,). Using (3.5.163)
and (3.5.166) we can derive relation between G§ and A“:

A7 (iwy) = iwn + e — (GG (iwn)) ™t (3.5.167)

With this relation DMFT equations (3.5.165) and (3.5.166) could be consid-
ered as equations system for two variables A7 (iw,,) X7 (iws,).

Impurity model can be solved by QMC, NRG, or some other method.
Using NRG one works with retarded GF obtained by analitical continuation
iw — w+ 19 and in this case one solves the equations for two variables A% (w)
and Y7 (w). For some starting A%(w) value self-energy X7 (w) is calculated
from impurity model solution, then new Gy, .(w) is found and using (3.5.166)
and (3.5.167) new value for A?(w) is calculated. Iterations continue till sta-
ble solution is found. For AFM case one should start from small alternated
magnetic field h value and then to switch off magnetic field in self-consistency
iterations to reproduce spontaneous magnetization.
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3.5.2 NRG Method Results for AFM Phase

Detailed DMFT investigation of AFM phase was done in [158] using effective
impurity model solution by NRG method. Calculation were performed for
Gaussian noninteracting density of states corresponding to hypercubic lattice
in d = oo limit. Band width value was W = 4 assuming normalized hopping
t*=1.

In Fig. 3.27 calculated spectral functions for spins T and | are shown. One
can see that with decreasing magnetic field h value the curves are converging
to h = 0 values. Spectral function are different for spins T and | because
spontaneous magnetization on site A ma4:

1

ma =5 (nar = nay), (3.5.168)

was found in calculations that does not disappear at h = 0.
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Fig. 3.27. Spectral function for electrons with spins 7 and | on the sublattice A for
various values of applied alternating magnetic field h and parameter values U = 3
and 6 = 0.05 [158]
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Fig. 3.28. Spectral function for electrons with spins T and | for U = 6 and n = 0.9
(solid lines) and free quasiparticles at U = 0 and § = 0.1 (dashed lines) [158]

With increasing U value quasiparticle peak at Fermi level becomes more
pronounced (Fig.3.28). On this figure the curves for free quasiparticles in
alternated magnetic field corresponding to spontaneous magnetization are
shown by dashed lines. Comparing two curves one can separate the influence of
magnetic field and Coulomb interaction on the spectra. The alternated mag-
netic field results in energy bands splitting and opening a gap while Coulomb
interaction results in Hubbard bands formation similar to paramagnetic case.

Quasiparticle spectrum is defined by lattice GF (3.5.159). Let us calculate
matrix element of this GF for A-sublattice site. Using (3.5.160) we have:

§7(w)
7 (w)E7 (w) — e

ZA (ka w) -

(3.5.169)
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Fermi surface is defined by equation

e = £7(0)677(0). (3.5.170)

According to Luttinger theorem the volume inside Fermi surface is the same
for interacting and noninteracting particles. As self-energy X7(w) does not
depend on wave vector k Fermi surface does not change with interaction and
(3.5.170) can be rewritten:

(e = Z1(0)) (e — 1(0)) = peg. (3.5.171)

where 19 is noninteracting particles chemical potential u3 = EIQ(F determined

by the particles number condition
o
n= 2/ po(w)dw. (3.5.172)

In order to obtain dispersion for quasipaticles near Fermi level let us
expand in (3.5.169) function £7(w) in series over w:

€ (w) = w1 — X (0)) + po — ¥5(0) = Z; (w + fioo), (3.5.173)

where [0, = Zs (11 — X5(0)), Z;1 =1 — X7(0). Then poles condition for GF
(3.5.169)
E(W)E (W) —ex =0 (3.5.174)

defines quasiparticle spectrum (dispersion law)

Ef = —ji+ /& + (Ap)? (3.5.175)

where

S = VT Do A= (ot — o), = g0y + o), (35176)
here [ is quasiparticles chemical potential.

Deriving (3.5.174) we have neglected ImX(w) that defines quasiparticles
decay because it should be small near the Fermi energy (ImX(w) = 0 exactly
on Fermi level). Using dispersion (3.5.175) one can calculate quasiparticle
effective mass by differentiating E]f over €. From derivatives ratio dEf /dek
for interacting and noninteracting particles on Fermi level we obtain effective

mass ratio: .

m" 1 ||
m /Z1Z \[horfio)

In contrast to paramagnetic case effective mass is defined not only renormal-
ization parameter Z but also by renormalized chemical potentials fig, .

In Fig. 3.29 dispersion curves are, presented, calculated from peaks posi-
tions in ey as a function of e (solid lines) together with noninteracting particle

(3.5.177)
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Fig. 3.30. Quasiparticles effective mass as a function of effective exchange

parameter ¢?/U for § = 0.075 [158]

curves (X(w) = 0) in alternated magnetic field corresponding to spontaneous
magnetization (dashed lines). Second dashed line conside with lower spectrum
branch. In [158] quasiparticle peak width was calculated and was shown that
its value is small near ex = 0 but strongly increases with |ei| increase.
Comparing solid and dashed lines slopes in Fig.3.29 one can see that
effective mass m*/m increase with U. That is also follows from Fig. 3.30 where
m*/m is presented as a function of effective exchange parameter t2/U. With
doping value increase m*/m decreases for fixed U. Authors of [158] have found
that Luttinger theorem for total particle number is obeyed with calculations
accuracy. Boundary line on the plane (U, §) separating antiferromagnetic and
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Fig. 3.31. Schematic phase diagram at 7' = 0 calculated by DMFT(NRG) in [161].
Energy unit is t*. At y-coordinate U/(1 + U) is shown to present whole interval
0<U<o0

paramagnetic phases calculated for 0 < U < 1.5W and doping 0 < § < 0.2
agrees with earlier results of [161].

In Fig. 3.31 phase diagram is presented for magnetic ordering in Hubbard
model with Gaussian noninteracting density of states corresponding to hyper-
cubic lattice in d = oo limit obtained in [161] by DMFT — NRG calculations
for T' = 0. For small but final doping antiferromagnetic state preserves till
U < 4. Sublattice magnetization in this case falls with § in the same way as
for mean-field theory and vanishes for § = 0.06 at U = 1 and § = 0.16 for
U=3.

For U > 4 system has a tendency to magnetic instability but it is not
clear to what particular type of magnetic ordering. Ferromagnetic state does
not appear yet but for this intermediate U values noncommensurate magnetic
structures and phase separation can happen.

For very large values U > 25 ferromagnetic ordering appears for doping
0 < 0 < 0.3. For fixed U magnetization shows a tendency to saturation for
small § however with indetermined critical occupation value. In ferromagnetic
phase an essential redistribution for spectral function with spins 1 and | is
observed and ferromagnetic ordering does not means simple bands shift as in
mean-filed Stoner theory.

DMFT(NRG) results gave only qualitative pattern of magnetic phase dia-
gram for Hubbard model. There are still many unanswered questions: the
character of phase transition between AFM and F'M phases, magnetic state
for intermediate values U ~ W, where on the plane (U, §) there are areas with
phase separation and so on.
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3.6 Superconductivity in Two-Dimensional
Hubbard Model

3.6.1 DMFT Equations for Superconducting State

Discovery of high-temperature superconductivity in cuprates inspired many
works investigating possibility of superconducting state in two-dimensional
Hubbard model with pairing mechanism due to Coulomb interaction. As it was
established in the experiment (see reviews [42,162,163]) superconducting state
in cuprates has order parameter with d-symmetry (later denoted as d — SC
state). Superconductivity in cuprates appears close to antiferromagnetic state
and even partially overlaps with it. Typical phase diagram for hole doped
cuprates is shown in the inset (b) in Fig. 3.32.

At weak Coulomb interaction (U <« W) calculations by functional renorm-
group method showed that two-dimensional Hubbard model has instabilities
toward AFM and d — SC states but this method cannot describe competi-
tion of those states and the possibility of mixed state at T' = 0. Coexistence
possibility for AFM and d— SC phases at deviation from half filling was inves-
tigated by various methods [164-166] for strong and intermediate Coulomb
interaction (U = W). Those investigations will be discussed later and now we
will describe in details DMFT scheme for d = 2 Hubbard model taking into
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Fig. 3.32. Square lattice with four atom cluster. Denoted by a circle cluster is
used as a local object (supersite) for model solution by DMFT(QMC) method [167].
Arrows show spin directions in AFM state, A is d — SC order parameter. Sites
numeration 0, 1, 2, 3 shown in left-upper corner is used in a text. In the inset (b) a
typical phase diagram for cuprates is shown and in inset (c¢) doping dependence for
magnetic and superconducting order parameters
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account AFM and d — SC order parameters developed by Lichtenstein and
Katsnelson [167].

In Fig.3.32 in a circle is shown 2 x 2 plaquet (cluster) with four atoms
that was chosen as a local object in the DMFT scheme. In standard DMFT
such an object is a single impurity site. It is natural to introduce superspinor
cz' = {cjl;} where a« = 0,1, 2,3 (spin indexes are not shown). If spin degrees
of freedom are taken into account then such spinor has eight components
corresponding to electron creation operators on cluster sites.

Electronic GF for Hubbard model in matrix form is

Gk, iwn) = (iwn + p — h(k,iw,)) ™, (3.6.178)

where h(k,iw,) is hopping matrix for electrons on the lattice. In nearest-
neighbors approximation this matrix is

Yo t.KF 0 t,K)

| Ky X0 tyKS 0
h(k,iwy,) = 0 K; S K| (3.6.179)

K, 0 K7 Yo

where

K:t

) = 14+ eikm(y)a’ (36180)

a is lattice constant. In cluster DMFT in addition to on-site self-energy X
intersite components X, and Y, are introduced. They do not depend on wave
vector k but only on frequency. Then self-energy is a matrix corresponding to
plaquet cluster:

2o X, 0 Xy
2r Y02y 0

0 Xy 2o X7 |’
o0 X X

X (iwy) = (3.6.181)

With respect to spin variables every element of this matrix and also
(3.6.179) matrix is itself a matrix of 2 x 2 size. Off-diagonal self-energy
elements will result in renormalization of effective hopping matrix (3.6.179):

bty =t+ Xy, ty =t + X, (3.6.182)

In cluster DMFT or in Dynamical Cluster Approximation (DCA) [168]
matrix “bath” GF G is introduced that describes effective interaction of
cluster with a lattice:

G (iwn) = G iwy,) + X(iwy). (3.6.183)

Here local matrix GF is used obtained by lattice GF summation over wave
vector:

Gapliwn) = Gap(k,iwy). (3.6.184)
k
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Equations (3.6.183) and (3.6.184) are cluster generalization of standard
DMFT equations defined in Sect. 3.1. These matrix equations allow to study
Hubbard model with AFM and d — SC order parameters because those
parameters can be calculated from cluster atomic states (see Fig. 3.32).

We use generalized Nambu technique [169,170] and introduce superspinor:
O = (cf e e ciy) (3.6.185)

and electronic GF on spinors ¥; and ¥;':
Gij(1,7') = —(T:0(r)T (7). (3.6.186)

Let us separate normal and anomalous parts of GF. After Fourier trans-
formation in site indexes one can write:

Gk, 7,7) = ( Pfi(z‘kii?) _ggljkT ’TT,/,)T)>, (3.6.187)
where
Gk, 7,7') = —(Trex(T)ef (7)) (3.6.188)

F(ka T, 7-/) = 7<TTCk(T)Ck(T/)>

are matrices in spin and “orbital” space (by “orbitals” here we call cluster
sites indexes). Then Green functions G and F' are 8 X 8 matrices. By summing
expression (3.6.187) over k we define local GF:

Olrr’) = ( zgi((TTTQ) _lg(T;j";) ) (3.6.189)

Let us define now order parameters (OP). Antiferromagnetic OP is
an average (cj}cj 1) and superconducting OP is A;; = (¢;;¢j7). For singlet
d-symmetry OP nonzero elements are:

A= A()l = —Alg = Agg = —Ago. (36190)

Hence matrix (3.6.189) of general GF' can be reduced to 2 x 2 matrix:

cirr) = (F107) 870, (3.6.191

and after Fourier transformation over 7 — 7/ variables

Gliwy,) = (gl(éi’;)) FG(EZZJ)TL) ) . (3.6.192)

Let us formulate DMFT equations for superconducting phase. Generaliza-
tion of matrix equation (3.6.183) for normal phase is super-matrix equation
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including anomalous self-energy part .S (iwy,):

51 ) — O i) — 2i(iwn)  S(iwn)
G (iwn) — G~ (iwn) (S(M) _EI(M)), (3.6.193)

where ¥, (iwy,) is defined by (3.6.181) matrix for one spin o. Generalization
of (3.6.178) for lattice GF' is matrix equation

A1 - [ w4+ — h(k,iwy) Sk, iwn)
Gk, dwon) = ( Slkyiwn)  dwn it B (ki) )0 56199

where S(k,iw,) is anomalous self-energy of lattice GF é(k, iwy,) analogous
to matrix equation (3.6.179).

As in standard DMFT lattice problem is mapped on numerical solution of
a problem for cluster embedded in superconducting “bath.” It can be solved
by one of the methods developed for single impurity model described earlier.

Please note that cluster is embedded in effective “bath” defined by “non-
interacting” electrons that should feel the order parameter. For our case with
AFM and d-SC OP that is defined by two terms in “single-impurity” model
Hamiltonian:

Hy = MY (=1)*(nat — nay), (3.6.195)
Ha=AY Caplearesy +cficly), (3.6.196)
af

where (43 = 1 when sites o and 3 are nearest neighbors in direction z and
Cap = —1 when they are in direction y (see Fig.3.32). M and A defined in
expressions (3.6.195) and (3.6.196) are antiferromagnetic and superconducting
order parameters.

3.6.2 Coexistence Problem for Superconducting
and Antiferromagnetic Order Parameters

Lichtenstein and Katsnelson [167] calculated matrix GF using Hirsch-Fye
QMC algorithm for impurity cluster embedded in the lattice with nonin-
teracting electrons feeling superconducting fluctuations field. Imaginary time
interval 0 < 7 < 3 was discretized on L = 64 time slices for T = 1/8 = 190K.
They obtained DMFT equations solutions with AFM or d — SC order
parameters. Phase diagram was calculated on the plane order parameter —
deviation from half-filling ¢, i.e., the curves M(§) and A(S) where M is sub-
lattice magnetization and A — superconducting gap value. There is an interval
of § where these curves overlap and so there is a possibility for both order
parameters to coexist. Superconducting gap value A can serve as an estima-
tion for superconducting transition temperature 7. and magnetization M —
for Neel temperature T and so calculated phase digram with curves M (0)
and A(0) resembles experimental phase diagram with overlapping T (4) and
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Fig. 3.33. AFM and d— SC order parameters for two-dimensional Hubbard model
for various values of Coulomb parameter U/t = 4,8, 12, 16 calculated by DMFT(ED)
method at T'= 0 [166]. d — SC order parameter values are enhanced 10 times

T.(6) curves. However direct comparison of the calculation results with exper-
imental phase diagram for cuprates is not justified because QMC' calculation
temperature T = 190K is too large and to lower T is impossible because
of “sign problem.” To clarify coexistence problem for two phases there are
needed calculations at T' = 0.

Capone and Kotliar [166] have used the cluster Exact Diagonalization ED
method and have solved DMFT equations for Hubbard model with two order
parameters at 7' = 0. Their results are presented in Fig. 3.33.

A half-filling (§ = 0) sublattice magnetization increases with U/t increase
while with doping magnetization is suppressed and vanishes for § ~ 0.14—0.16
practically independent of U/t.

Superconducting OP A for small U/t = 4 decays with doping analogous
with M. However situation changes drastically for large U/t where metal—
insulator transition can happen even without magnetic ordering. For large
U/t values A vanishes when the system is close to metal-insulator transition
at 0 —0. With ¢ increase A shows a maximum. At U/t = 8,12, 16 A(J) curve
has bell-shaped form and resembles experimental curve for cuprates.

In Fig.3.33 pure OP are shown where in the system there is either A FM
or d — SC state. In [166] there were also obtained DMFT equations solutions
with both OP and conditions for their coexistence were clarified. Stability of
mixed AFM + d — SC state essentially depends on Coulomb interaction U/t
value with small U/t favorable for coexistence. For U/t = 4 mixed solutions
were obtained and mixed phase energy where d — SC dominates is lower than
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for pure d — SC state. In the same time admixture of superconducting order
parameter to AFM state is very small.

This analysis shows that for U/t = 12,16 pure phases have lower energy
than mixed states and in overlapping area AFM and d — SC states are com-
peting and do not mix. Phase transition between them for small § should be
of the first order with phase separation. For small U/t < 8 two OP can coexist
and system gradually evolves with § from AFM to d — SC state.

3.7 Transport Properties and Susceptibility

3.7.1 Optical Conductivity

In d = oo limit description is simplified not only for one-particle excitations
(because self-energy of electronic GF does not depends on wave vector) but
also for transport properties and dynamical susceptibilities. This simplifica-
tion is because of the fact that two-particle vertexes are local functions in this
limit [5,171,172]. Following [5] we will give derivation for optical conductivity
and magnetic susceptibility with local vertex.

Conductivity tensor o, is defined via susceptibility (retarded GF') of the
type current—current according to [123]:

1 1 - .
Oap(w) = NRe {a < Jalis >>w+i5} = Redap(w + 19). (3.7.197)
General definition of retarded GF < ...|... >, 15 is given in Appendix B.

Current operator can be written as:

=) Vi (3.7.198)

where 7ix , is particle number operator and vy is Fermi velocity that for
Hubbard model is vy = Vix (tx is Fourier component of hopping matrix
element ¢;;). We are using unit system where e = i = 1.
For simplicity let us consider hypercubic lattice with dimension d where
second rank tensor is diagonal and expression for it is:
d&(z)*iiz<< ol ja > (3.7.199)
- N ZZ — .70( Ja A b

Here we have introduced complex frequency z. Then using expression (3.7.198)
for current we express conductivity via GF “density—density”:

da(z sz kgk; zo;vk Uy, < Mo [N > (3.7.200)
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Fig. 3.34. Diagrammatic expansion for conductivity. Two first terms are shown.
Lines with arrows correspond to electronic GF G(k,iwn), points — vi and I" —
irreducible vertex part [123]

This expression has diagrammatic expansion shown in Fig. 3.34. Four-point
I' is irreducible vertex part in particle-hole channel (with antiparallel Green
lines) that cannot be cut over one Green line. Dots in right side means mul-
tiple repetition of vertex part in this channel. In d = co limit vertex part
I'(iwy, iwm, iv) does not depend on wave vectors but only on frequencies. Due
to frequency preservation law I" depends not on four but only three frequencies
and iv is external frequency that defines conductivity o(iv).

Hence a fragment in second graph:

> vicGo (K, iwn)Go (K, iwy, + iv) (3.7.201)

k,o,wn,

is equal to zero because GF G(k,w,,) depends only on k only via even function
ek and function vy is odd. So in the limit d = co conductivity is defined by a
simple loop and then

11

>N 0 Gk, iwn)Go (K, iwy + i) (3.7.202)

k,o,w, «

1 o0
7D / AeR(2) G (2, ieon) Gl (2 ieom + 1),

where

R(e) = % zk: S sinhad(e — e, (3.7.203)

here we have used nearest neighbors approximation for hopping matrix
element %;;.

Expression (3.7.203) is calculated using representation for function
0(e —ex) as an integral over exponent and then integrals over k, can be
expressed via Bessel functions of various orders and sum over a« = 1,2,...,00

results in [123]:

R(e) = ;—iAo(s) (3.7.204)

where Ay(e) = —1ImGy(e) is noninteracting density of states.
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Sum over frequencies wy, in expression (3.7.203) can be calculated in
spectral representation for electronic GF (see Appendix B):

, Ale, w')
Gle,iwn) = /dw’m, (3.7.205)
where A(e,w) = —LImGo (e, w) is spectral function for interacting lattice GF.

Using spectral representation (3.7.205) for both GF's in formula (3.7.203) and
summing over frequencies w,, we arrive to expression

do(iv) = %/dedw'dw"Ao(z-:)A(&w’)A(s,w")%. (3.7.206)

Now one should perform analytical continuation iv — w + ¢d and after
separating real part we arrive to final formula for optical conductivity [123]:

do(w) = o0 / dedu’ Ao (2) Ae, ) A(e, o' +w) L) = i (WH@) (57.907)

here f(w) is Fermi function obtained in frequencies w, summation and

me2at? N
2 V

o = (3.7.208)
is parameter appearing after restoring e and 7 constants; V' is a system volume.
So in order to calculate optical conductivity one needs to get lattice GF (or
equivalently to find self-energy X'(w)) and to perform integration in (3.7.207).

Calculation for optical conductivity and other transport properties for
Hubbard model in DMFT(QMC) were done originally in [123,173,174]. We
will describe below main physical results of these investigations. In Figs. 3.35
and 3.36 optical conductivity frequency dependence is shown calculated for
various temperatures at fixed doping ¢ = 0.068 (Fig.3.35) and for various
dopings at fixed temperature § = 43.2 (Fig.3.36). Analysis of these results
was done in review [8].
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Fig. 3.35. Optical conductivity at U = 4, 6 = 0.068, and various temperatures [174]
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Fig. 3.36. Optical conductivity at U = 4, 8 = 43.2, and various dopings [174]

One can clearly see three different frequency regions. At small w there is a
narrow peak due to electrons excitations by electromagnetic field inside quasi-
particle band. In the limit 7' = 0 this peak is §-function and corresponds to
Drude peak for metallic systems. In intermediate frequencies there is a broad
peak determined by electrons transitions from lower Hubbard band to unoc-
cupied quasiparticle states with a width of the order of quasiparticle band.
For high frequencies one can observe broad peak due to electrons transition
between Hubbard bands and its position is of the order of U.

This picture agrees well with three-peak structure of spectral function
A(w) for Hubbard model near half filling (Fig.3.37). For small doping on
the edge of lower Hubbard band narrow quasiparticle peak appears whose
intensity increases with lowering temperature. That is correlated with Drude
peak enhancement with T" decreasing (Fig. 3.35). This correspondence of spec-
tral functions o(w) and A(w) is due to the expression (3.7.207) where optical
conductivity is presented as a convolution of spectral functions.

In Fig. 3.35 and 3.36 optical conductivity is presented for Hubbard model
with deviation from half filling. With § increase Drude peak contribu-
tion increases because the system becomes more metallic. With tempera-
ture increase Drude peak intensity is suppressed similar to half-filled case
(Fig. 3.38).

3.7.2 Magnetic Susceptibility

Magnetic susceptibility formula is also simplified in d — oo limit. To derive it
one should use general expression for two-particle GF":

ﬂ . .
X (q,iwy) = /0 dreln " l9Ri(T'52(7) 55 (0)) (3.7.209)
J

that defines spin susceptibility tensor via analytical continuation iw, — w-+1id.
Here spin operator SjQ is expressed via Fermi operators in a standard form:

e 1 A a A
Sj = 520;0000,0]-0/, (37210)
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Fig. 3.37. Spectral density for Hubbard model calculated by DMFT(QMC) method
for U = 4 (in ¢ units): (a) at § = 43.2 and various dopings; (b) at 6 = 0.188 and
various temperatures [174]
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Fig. 3.38. Optical conductivity for Hubbard model at half-filing for U = 3 and
various temperatures calculated by DMFT(QMC) method [123]
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For 5% spin component this expression is
z 1 At A
Si=5 > sen(o)é, o (3.7.211)

Let us derive expression for longitudinal susceptibility x** (for transverse
susceptibility derivation is analogous). In particle-hole channel graphic expan-
sion for x*? has the same structure as in Fig.3.34. In analytical form it is
expressed as series:

X(@iv) = = > G(k,iw,)G(k + q, iwy + iv)

k,wn

+ Z Z sgn(o)G(k, iw,)G(k + q, iw, + iy)Fﬁﬁ,/q(iwn, 1Win V)
k,wno k/,wmo!
G(K ,iwm)G(K' + q,iwy, + iv)sgn(o’) + - - - .
(3.7.212)

Spin indexes of electronic GF's are omitted because we consider paramagnetic
case. Later spin indexes for vertex part are also omitted.

In d — oo limit as it was said earlier vertex part does not depend on
wave vectors and so expansion (3.7.212) can be reduced to equation for three
frequencies dependent function y that is defined by:

X(@iv) = Y Xqliwn, iwm, iv).

Wn, ,Wm

From series (3.7.212) for x(q,iv) one can obtain series for xq and reduce
it to the following equation

Xa(iwn, iwm, iv) = X2 (iwn, iV)6pm (3.7.213)
T | I
+Xq (iWn, ZV)B Z I (iwn,, twy, i) X q (1w, iwm, V),
wi
where
~0 /- N . . .
Xq(iwn,iv) = — Z G(k,iw,)Gk + q,iw, + iv) (3.7.214)
Kk

is a loop of two Green lines without summation over intermediate frequency.
Let us write equation (3.7.214) in matrix form

Xa = Xe + Xl Xa; (3.7.215)
or equivalent form
Xq =) "I (3.7.216)

Now equation for Y4 is ready for analysis.
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In d — oo limit for hypercubic lattice )Zg depends on q via

d
X(q) ==Y cosqa, (3.7.217)
a=1

IS

that can be proved by presenting expression (3.7.214) in a form

xg(iwn,iwm,il/) = —[ d€1p0(51)[ d52P0(52)(< _A;)((?fz)_ £9)
(3.7.218)

where
Aq(e1,82) = Z d(ex — €1)0(ektq — €2)- (3.7.219)
k
Expression (3.7.218) can be checked by substituting in it Aq(e1,€2) and using
condition [ depg(e) = 1. Here ¢, = iwp, + p — X(iwy,).
Sum over wave vectors in expression (3.7.219) is computed using d-function
representation as an integral of exponent and gives

1 p{_€%+€§—281€2X(q)
(a)

A =
ale1,€2) 21t /1 — X2 2t*(1 = X?(q))

} . (3.7.220)

where one can see that )Zg depends on q only via X(q).

These properties of X3 allow to solve basic equation (3.7.215) for xq. Please
note that X (q) strongly depends in d — oo limit on the type of vector q. If q
is a general type (“generic”) point in Brillouin zone then X (q) = 0 because
in a sum (3.7.217) contributions with opposite sign will cancel each other. For
such a vector

) 1 ) .
x(q; iwn) = N ZX(qa iwn) = Xioc(iwn), (3.7.221)
a

i.e., susceptibility with this q coincide with local susceptibility (diagonal
matrix element in site representation).

However X(q) can have values —1 < X <1 for special q points. For
example for q =0 or q = Q = (&7, &, ..., %) its values are:

X(0)=1; X(Q)=-1. (3.7.222)
For “generic” point q equation (3.7.216) can be rewritten as:
I'= (Xioe) " = Xige- (3.7.223)

Substituting this expression for irreducible vertex part in general equation
(3.7.216) it can be rewritten in a form:

Xa' = Xioe + (X071 = (W) (3.7.224)

In the right side of this equation are variables defined by single-impurity
model only. Indeed to calculate )Zg one need to know only self-energy whereas
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Xioe and XU . can be expressed via single-impurity action Seg. For spin
susceptibility x?* there is an explicit expression:

17 , : .
Xloc (1wn, 1w, V) = Z/ dridrdrsdrge@n (T T2) glwm (1a=Ts) g1 (Ta=72)
0

Y (1) ()7 TEE (11)e0 (72)éd (7)o (Ta)) o

oo’

(3.7.225)

where symbol (...)s., means averaging with effective single-impurity action
Sef. Local correlator (...)s., can be calculated numerically using exact
diagonalization or QMC methods.

In Hirsch-Fye algorithm action Seg is linearized via discrete Hirsch-
Hubbard—Stratonovich transformation and average value of T-product of
Fermi operators can be expressed via pair average through Wick theorem
and hence

(Tek (11)é0 (12)E5 (73)¢0 (T4)) Suse

= ggl...sL (TQ, Tl)ggl/...sL (7-477-3) - 600'-9?1“‘8L (TQ’ 7-3)g<s71/msL (7477-1)

(3.7.226)

By line above we define averaging over Ising pseudospins appearing in time
interval 0 < 7 < 3 discretization as it was described in Sect. 3.2.

It was left only to show how x§ is calculated. From formula (3.7.218)
taking into account that for “generic” point q )Zg = )Z?OC one can obtain using
(3.7.218) and (3.7.219):

Xo(iwn, iv) = =DI¢(iwn)] D¢ (iwy + )], (3.7.227)

where we have used Hilbert transformation for noninteracting density of
states:
Bie) = [ ae?E) (3.7.228)
(—e¢
For vector q = 0 using (3.7.218) we have

D¢ (iwn)] = DI¢(iwn + iv)]
Cliwn +iv) — C(iwy)

Xo = o(iwn, iv) = — (3.7.229)

Let us discuss magnetic susceptibility investigation results in Hubbard
model obtained by DMFT — QMC method in [6,174,175]. In pioneering work
of Jarrell [6] magnetic susceptibility for antiferromagnetic wave vector Q was
calculated in paramagnetic phase (Fig. 3.39).

With temperature lowering to Tny = 0.0866 (in band width units) sus-
ceptibility diverges that corresponds to antiferromagnetic state formation. In
the inset the same data are shown in logarithmic scale and from them crit-
ical index v can be found for susceptibility xarpm & |T — Tn|” with value
v=-—0.99+0.05.
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Fig. 3.39. Antiferromagnetic susceptibility of Hubbard model for n = 1 calculated
by DMFT(QMC) method at U = 1.5 (in the band width units). In the inset the
same data are shown in logarithmic scale [6]
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Fig. 3.40. (a) Neel temperature and (b) average quadratic value of local moment
©? in Hubbard model for n = 1 and T = T as a function of U [6]

Analogous calculation results with different U values are presented in
Fig. 3.40. Neel temperature as a function of U has a maximum near U ~ 3.
Such T (U) dependence agrees with earlier predictions obtained by various
methods. For example for large U > W Ty oc W2/U. In Fig. 3.40b U depen-
dence is shown for average value of the square of electron magnetic moment on
the atomic site u? =< (ny) —n; >)? that gives a measure of local magnetic
moment. With U increase p2 varies from 0.5 at U = 0 till 1 for U > W. That
means that local magnetic moment value increases with U increase saturating
for strongly correlated case. One can see that Ty (U) curve maximum is in
the area where p? approaches saturation.
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Fig. 3.41. Local static susceptibility x:; in equivalent Anderson model as a function
of temperature for various doping values. In the inset: uniform static susceptibility
Xx(T) is calculated by DMFT(QMC) method [175]

In Fig.3.41 result from earlier susceptibility investigation [175] is pre-
sented. Here inverse local static susceptibility is shown as a function of temper-
ature for various doping values near half-filling. One can see scaling behavior
of (Toxsi)~! as a function of T'/Ty where Ty is defined as in Anderson model
via x4 (T = 0) = 1/Tp. In the inset static antiferromagnetic susceptibility
x(T) as a function of temperature is shown. This function does not show this
scaling behavior. A difference between local and uniform susceptibilities is
discussed in details in review [8].
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DMFT Extensions

4.1 t — J Model as a Hubbard Model Limit

4.1.1 Hamiltonian and Green Function

One of the fundamental models in strongly correlated system theories is tJ
model defined by the Hamiltonian

1
H = Ztijézo.éjg + 5 Z J”SZS] (4.1.1)

ijo ij

Here é;rg(éw) are creation (annihilation) operators for correlated electrons on
site 1. Correlated electrons means that a particle can be created on site ¢ only
if there is no already another electron on this site. This requirement is satisfied
in definition of E;rg and ¢;, operator via standard Fermi operators é;fg and Cio:

5;[(7 = éjo(l - ﬁi?)a 61'(7 = éia(l - ﬁi?), (412)

where Ay = & _é5.

Such requirement is valid when there is very strong Coulomb repulsion
and so tJ model can be considered as a Hubbard model limit at U — oo.

When Hubbard model Hamiltonian is projected on the space where two
electrons presence on the same site is forbidden effective exchange interaction
appears between nearest neighbors with exchange integral J ~ % < W [33].
It is also assumed that the system is close to half filling (doping 6 = 1—n < 1).
Local on-site spin operator is expressed via 530 and ¢;, operators with standard
relation:

1
Si=3 Z &l O oo, (4.1.3)

It is generally accepted that tJ model for two-dimensional lattice is a basic
model for high-T. materials and was very popular in last two decades. For
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tJ model investigation various approaches were proposed among them non-
perturbative ones (see e.g., review [41]). It is interesting to apply DMFT for
Hamiltonian (4.1.1). In contrast to Hubbard model where Coulomb inter-
action is local in ¢J model Hamiltonian exchange term is nonlocal so one
should use extended DMFT (EDMFT). One of the possible extensions is
two-atoms local center similar to two sublattice antiferromagnetic state in
Hubbard model (Sect.3.5). Another approach [176, 177] uses single-atomic
center embedded in effective medium and interacting not only with fermionic
degrees of freedom as in standard DMFT but also with bosonic variables imi-
tating interaction of local spins on neighboring sites. In this approach one
should consider simultaneously electronic and spin GF's. Let us write their
definition in wave vectors representation:

B
Go (iwn) = — / drelnT <TrékU(T)CLa(O)>
0

[iwn + pt — ex — S (iwn)] ™, (4.1.4)

and

B8
X2 (i) / dre ™7 (T,S% (1)S2(0))
0

-1

= [Jq + MG (i2,)] (4.1.5)

Here iw, and if2,, are Fermi and Bose frequencies.

In the following, we will investigate ¢J model at the temperature values
higher than ordering temperatures for any order parameter and so magnetic
susceptibility tensor Xgﬁ is diagonal with x¢, @ = z,y, 2 components. Relation
(4.1.5) needs to be clarified. Using diagrammatic technique for spin operators
[178] fundamental equation for spin GF was derived that can be written in
the following form (Larkin equation [178]):

X&(i02) = S&(i20) + Z2(E20) Tqx & (i20). (4.1.6)

Y4 (i82,) is called irreducible (in exchange interaction Jq) part of spin GF'. In
general case (4.1.6) is a matrix one. If all its parts are scalars as it is in our
case then its solution is:

Xq (i) = [Jq + m] - . (4.1.7)

Comparing expressions (4.1.5) and (4.1.7) one can get the relation Mg =
m that proves spin GF' representation in the form (4.1.5). Mg (if2,)
plays for spin GF the same role as irreducible part Xy, (iwy,) for electronic
GF. Our goal is to write equations for Yy, (iwn) and Mg (if2,) in DMFT
style, i.e., in d = oo limit. Later we will follow work [176].
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4.1.2 DMFT Equations Derivation

Let us assume that both Y, (iw,) and Mg (if2,) do not depend on wave
vector (we will omit spin and vector indexes assuming paramagnetic phase in
hypercubic lattice) and then

Px(iwn) = X(iwn); Mq(iwn) = M (iwy). (4.1.8)

Let us define local GF's
Goc(iwn) ZGk iwn ), (4.1.9)
Xloc (142) ZG i2) (4.1.10)

and identify them with single-site electronlc and spin GF's determining them
as usual with effective action Seg.

It is convenient to work not with ¢J model Hamiltonian (4.1.1) but with
more general Hamiltonian

Hy = Ztl] ¢ioCio + UznzTnzl + - ZJ S,S; (4.1.11)

ijo

that is expressed not via “correlated” operators é;fg and ¢;, but through usual

Fermi operators. If in the end of calculations with Hamiltonian Hy use a limit
U — oo then the result will correspond to tJ model.
To Hamiltonian (4.1.11) corresponds an action for lattice model (4.1.11):

5= /dT{ >l [<— - H) 0ij — tij} ¢jo(7)

ijo
+§ijijsi( +2Uan )N (T )} (4.1.12)

The action can be divided in three contribution: single-site part Sy

So = / dr lzc% ( M) cOU(T)+Un0T(T)nOl(T)1, (4.1.13)

AS part originating from interaction of site 0 with the rest of the system

/ dT[z ~tiocl, (r)eoq (r) — torchy (7)cio ()

_|_

N | =

B
(Jio + JOi)Si(T)So(T)] = /dTAE(T), (4.1.14)
0
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and action for whole lattice except 0 site S(© that is equal to the expression
(4.1.12) where site 0 is excluded from all sums over 4 and j.

Let us write now expression for partition function Z as a functional integral
over Grassmann variables and expend it in powers of AS:

Z = / DIef,1Dlcos] / 1 piel,1Dleile

i#0

B
—So—S©O—_[drAL(r)
0

B
= / D[ng]p[cog]e—soz<°>{1 - / (AL(r)© ar (4.1.15)

+%/ﬁdn /dT2 (T AL(T)AL(m)) O + - }
0

Various order terms analysis in parameter 1/d shows [177] that all terms
higher than second order in AL vanishes in d = oo limit. Second order term
vanishes also because in paramagnetic phase < S;(7) > = 0. The terms with
correlation function < c¢; (11)S(72) >(®) vanish too and the rest of terms can
be put in the exponent and the final result for effective on-site action is:

j

B B
(0)
S = So—//dTldTQ{CgU(Tl)Z<T‘,-Cig(7'1)(3;0(7'2)> oo (T2)
0 0

1
So(Tl)E Z Ji()JOj <TTSZ‘(7'1)SJ‘(T2)>(O) So(Tg)}. (4116)
ij
In this expression symbol < ... >(®) means averaging over S contribution
to whole action, i.e., integration over Grassmann variables for all lattice site

except distinguished 0 site.
Expression (4.1.16) can be rewritten in a shortened form as:

B
Set = /UnoT(T)nol(T)
0

»

B
*/dﬁ/dTQC(T)U(ﬁ)le(ﬁ — T2)Coo (T2) (4.1.17)
0

(=)

N —

B B
/dT1 /dTQSo(Tl)Xal(Tl — 12)So(72),
0 0

where two function are introduced Go(71 — 72) and (71 — T2) representing
dynamical fields acting on distinguished site from the rest of the lattice. Let
us write their explicit form in Fourier representation:



4.1 t — J Model as a Hubbard Model Limit 125

Gy Hiwn) = iwn + 1 — D _ tioto; G\ (iwn), (4.1.18)
j
Xo (i62) = Y Tiodogx\y (if2n). (4.1.19)

ij

Dynamical fields depend on electronic GZ(»?) and spin Xz('?) GF's for the lattice
with the site 0 cut off. They can be expressed via full lattice GF's [177]:

G\ = Gy; — GGl Goj. (4.1.20)

)

0 —
Xz(‘j) = Xij — Xi0Xgo X0j- (4.1.21)

Using general relations (4.1.4) and (4.1.5) it is possible to find lattice GF's for
paramagnetic phase in approximation (4.1.8):

1
W) = = - , 4.1.22
Ci(iwn) iwn + 1 — ex — X (iwy) ( )
(i02,) = ! (4.1.23)
Xaltoon) = g M (i2,) -

Let us substitute expressions (4.1.22) and (4.1.23) in (4.1.21) and then

obtained result for GE?) and XE?) in expressions (4.1.18) and (4.1.19). That
gives two equations connecting dynamical fields with self-energy parts of
electronic and spin GF's and local GF's

Gol=Y+Gg, (4.1.24)
Xo =M -k (4.1.25)

These equations together with (4.1.9) and (4.1.10) constitute self-contained
equations system for EDM F'T', keeping in mind that Gloc = Gimp and Xioc =
Ximp Whereas single-impurity GF's Gimp and Ximp should be calculated using
an action (4.1.17). This EDMFT calculation scheme is not convenient
because a limit U — oo should be taken to arrive to tJ model. For practical
calculations the equations should be reformulated.

The ideology of this method and EDM FT equations derivation for the
system with intersite interaction was developed earlier by Smith and Si [179]
using diagrammatic perturbation theory. Practical realization for tJ model
was developed in [176,177].

4.1.3 Reformulation of DMFT Equations

The aim is to choose Hamiltonian for distinguished site 0 (where electrons
interact with each other via Coulomb force U) embedded in a medium cre-
ated by free fermions and bosons on the lattice in such a way so that this
Hamiltonian results in action (4.1.17). In contrast to standard DMFT scheme
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here bosonic degrees of freedom should be taken into account. This problem
has many solutions and one of them was proposed in [177]:

Hinp = Y Bty + V'Y (o0 + o) = 3 w00
ko ko o

+ UTLOTTLOI + quflgl:lq + IZ SO (flq + flT_q) . (4126)
q q

Here the first line corresponds to standard DMFT scheme for site 0 embed-
ded in fermion medium and the second one describes bosonic medium. It
corresponds to magnetic field acting on site 0 electronic spin. Quantities izg,
« = x,y, z are Bose operators with general commutation relations

[ﬁg, ﬁfl,] = SaqrOas- (4.1.27)

Dispersion relations Ey and wq for fermions and bosons and coupling constants
V and I should be chosen so that effective single-impurity model Hiy,, was
equivalent to original lattice ¢J model with Hamiltonian (4.1.1).

To model (4.1.26) corresponds an action

S =25

+ /ﬁdrz [CLU(T) (f% + Ek) Cko (T) + VcLU(T)cog (1) + Vb (T)exo (T)}
5 ko

' i a7 32 [4(7) (37 + ) Ba(r) + Thalr)S0(7) + IS0(r ()]

’ (4.1.28)

Here clTw, ko are Grassmann variables and hg®, hq are complex quantities
corresponding to Bose-fields (see Appendix A). In expression for partition
function

Z = / Dled,1Dlcoo] [ [ Dlel, 1 Dlewo] [ | DIRGIDIRGle ™ (4.1.29)
ko qo

integral over Bose-fields and fermionic medium can be easily calculated and
remaining integral over Grassmann variables for electrons on site 0 defines an
effective action:

Z= / HD[CBJ]D[COU]e_Se“[CSU’CO“], (4.1.30)
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where
2 71 - 7’2
Sef = So — //dﬁdTg ZCOU T1) ZV oo (T2)
B
//dTldTQSO T1 212 T So(Tg) (4131)
7 +wa

00

This action is equivalent to (4.1.17) with condition that
Go'(n —m)= ( J ) T —To) + ZW (4.1.32)
or 5+ Ek

Xo ' (r1 — ) ZIQ< T +5(7;TQ)>. (4.1.33)

& twa 3 —wa

In Fourier representation this relations have the form:

Gy Hiwn) = iwn + 1 — V2Ge(iwn), (4.1.34)
Xo (i$2) = —I*Gp(if2). (4.1.35)
where )
Geliwn) = 2}; R (4.1.36)
Gn(if) =) (ZQQ)QL"_Q% (4.1.37)
q

One can see that (4.1.34) has standard DMFT form keeping in mind that
the term V2G.(iwy) corresponds to hybridization function A(iw,). Equation
(4.1.35) is a new one in DMFT and defines dynamical mean-field acting on
electronic spin and formed by the lattice spins. In d = oo fermionic and bosonic
fields are separated.

Let us write in conclusion self-consistency equations for lattice and single-
impurity models:

Giolliwy) = iwy + p — X(iwn) — VZGe(iwy), (4.1.38)

loc
Xion(i920) = M(i82,) + I* Gy (i$2,) (4.1.39)

that follow from Dyson equations for electron GF' and Larkin equation for
spin GF.
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4.1.4 Numerical Calculation Results

Authors of [177] have used modified EDMFT (4.1.38) and (4.1.39) where
Y(iwy) and M (i§2,) were calculated using perturbation theory in a spirit
of NCA. We will present below main results of numerical calculations for
electronic and spin spectral functions.

In Fig. 4.1 spectral function A(w) = —1Gloc(w) is shown for various doping
0 values and fixed temperature T" = 0.6¢. This temperature is high enough to
be above any magnetic ordering for high-T, cuprates. On the band edge near
chemical potential quasiparticle peak appears whose intensity grows fast with
d increase in the interval between 0.01 and 0.24. This peak has the same Kondo
nature as in Anderson model. Its width increases with exchange interaction
~ J. So with doping the system becomes more metallic. In the inset in Fig. 4.1
the pseudo-gap value as a function of doping is shown.

Spin fluctuation spectrum is illustrated in Figs.4.2-4.4. Their dynamical
susceptibilities are shown: local xioc(w), wave vector dependent xq(w) and
also spin fluctuation self-energy M (w), with real and imaginary parts.

Local susceptibility (Fig. 4.2) is shown for various values of exchange param-

eter t/J. One can see that its linear part (the quantity XE’C) for small ¢/J has
a sharp maximum that with increasing ¢/J becomes a broad peak with width
Aw = J without any trace of pseudo-gap T*. From other side imaginary part
of spin fluctuation self-energy M’ /w (Fig. 4.3 has clear pseudo-gap character
for w < J.

Pseudo-gap reveals itself in susceptibility xq(w) (Fig.4.4) for wave vector

direction q = (g, ¢). For small q X—‘} has pseudo-gap that is gradually filled
with approaching q to antiferromagnetic vector Q = (w,7) where XTQ has
maximum and real part a dip for w < J.

Fig. 4.1. tJ-model spectral function in EDM F'T for various doping values 6 = 1—n
and fixed J = 0.3t, T = 0.06¢. [177] In the inset characteristic temperature for
pseudogap opening T™ as a function of doping is shown
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Fig. 4.2. Local dynamical susceptibility for various J/t at fixed doping § = 0.01
and temperature T' = 0.09¢ [177]
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Fig. 4.3. Spin self-energy M (w) at various J/t and §, T values the same as in
Fig. 4.1 [177]
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Fig. 4.4. Spin susceptibility xq(w) along wave vector q (0,0) — (7, w) at various J/t
and parameters ¢ = 0.01, T'= 0.1¢ [177]
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Statical part xq(0) varies on two orders of magnitude with q changing
from 0 to Q. Such behavior reflects large correlation length ¢ existence that
defines static spin susceptibility near vector Q:

o0 = 2 1
WO Tesa-ar

Here z = 4 and a length is measured in lattice constants a.

Let us recall the above described EDM F'T calculation scheme for ¢J model
was derived for two conditions: T' > T, and § < 1 where T; is ordering tem-
perature. These conditions correspond to degenerate incoherent state that is
described by small holes concentration in antiferromagnetic matrix (see review
[41] and references there). With ¢ increasing and T lowering system will come
to coherent state regime of Fermi liquid.

In work [177] there were also calculated many other thermodynamic and
transport properties of the model that qualitatively are close to observed in
high-T. cuprates.

(4.1.40)

4.2 DMFT Extensions for Nonlocal Coulomb
and Exchange Interaction Case

4.2.1 Hamiltonian and Green Function for Extended Model

Described earlier tJ model is not the only one where nonlocal interactions are
present and DMFT scheme needs to be extended by introducing interaction
of impurity site with bosonic degrees of freedom for medium. Examples are
U-V model where Coulomb interaction V between electrons on neighboring
sites is included [180] and a model treating electrons interaction with lattice
vibrations via introducing bosonic field [181,182]. The most general model
including local and nonlocal Coulomb interactions was developed by Sun and
Kotliar [183] in the frame of EDM FT and will be described later.
Let us introduce general Hamiltonian in the form [183]:

3
H=> tijcltjo = > hicSia
a=0

ijo i

3
N . .
+U E n”nil—i_i E E SiaVia,j3Si8- (4.2.41)
i ij o.B=0

Here operator Sio = el ra

ioToor Cior contains Pauli matrices 7 for oo = 1, 2,3 and

unity matrix for a = 0. So zero component S;y is simply particles number

and other components Sio are spin operators. Analogously h;y is chemical
potential and h;, (o = 1,2,3) is external magnetic field.

The Hamiltonian (4.2.41) corresponds to Hubbard model with addition of

intersite Coulomb interaction and in the following we will assume that matrix
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elements t;; and Vi, jg are nonzero only for nearest neighbors. It is assumed
also that fields hg, hg # 0 while h; = hy = 0. In this case second term in H
defines spin dependent chemical potential i, = hyg + oh;3 and this term can

be written as — > oMo
i
It is convenient to separate Hartree term in Hamiltonian (4.2.41) and write

H in a form:

H = th CivCio — Zﬁgfﬁw

1jo
+UZ Rat iRy += ZZ Sio : ViajpSip.  (4.2.42)
iy a,p

Here we introduce symbol : O := O— < O >, where < O > is an average of
operator O over statistical ensemble. In the following we will assume that any
operator O means a difference between O and its average value so that the
second line in (4.2.42) describes fluctuations and Hartree terms are present in
the first line in a term

pon = i Z%o,]o ) + (7)) vag ft) — (i) . (4.2.43)
J(F#i) 7(#£17)

Let us express partition function Z as a functional integral over Grassmann
variables and use Hubbard—Stratonovich transformation in order to linearize
last (nonlinear) Hamiltonian term. Then

Z = /D[CIUO—)»ci0(7)§¢ia(7)]e_s, (4244)

where action S has a form

5= /dT{ Z Cio ( - :uu7> Cioc + Z tl] za CJU )

ijo
1 2 -
+U2an nll + 9 Z Z q)ia(T)[V]i_al,jﬁ@jﬁ(T)
ij a,B=0

- Z ;o (7)Sia ()} (4.2.45)
i a=0

Here @;,(7) are complex quantities conjugated to S;o(7) that appear in
Hubbard-Stratonovich integral identity. In expression (4.2.44) integration is
assumed over Grassmann variables [cja (7)] and [¢io(7)] and also over complex
field [®;q (7)].

In [183] a new quantity was introduced

Via,ip = Aaplij = Via,js, (4.2.46)
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where I;; is nonzero if sites ¢ and j are nearest neighbors. Quantities A\ng are
necessary to ensure interaction matrix to be positive definite. In [183] it was
shown that physical properties do not depend on A\,g choice.

In order to use representation (4.2.44) the following GF' should be defined:

Giojor (T = 7') = —(Tréio (1)él, (7)), (4.2.47)
Xiajp (T = 7') = =(TrSia(1)S5(7")), (4.2.48)
Dia,jp(r = 1') = —(T;Pia(T)j5(1")), (4.2.49)

corresponding to electrons, charge-spin density, and auxiliary bosons (“pho-
nons”).
For density—density GF Larkin equation in Fourier representation is:

X (K, iwn) = Vi + T (K, iwy); (4.2.50)

Here all quantities are matrices size 4 x 4 in indexes o, = 0,1,2,3. This
equation is similar in structure with equation (4.1.7) for spin GF in tJ model.

Self-energy part IT(k,iw,) for density—density GF is the same as for
phonon GF. Dyson equation gives relation for /T and D~! [183]:

I(k,iw,) = Vit — D7 (k, iwy), (4.2.51)

here also all quantities are 4 x 4 matrices. For GF's x and D Matsubara fre-
quencies are even in contrast to odd frequencies for electron GF'.

General representation (4.2.44) together with (4.2.45) is a starting point
for extended DMFT (EDM FT') scheme construction. For that as in Hubbard
model one should integrate over all lattice sites except the distinguished impu-
rity site. There are two possible ways of extending DMFT. One of them
assumes homogeneous state so that integration over all sites except impu-
rity one results in effective impurity model. Electrons on impurity site inter-
act with fermionic and bosonic degrees of freedom of effective medium where
impurity is embedded in. Another way is to assume long-range order in a sys-
tem, for example, antiferromagnetism with two sublattices. In the last case
two impurity sites belonging to two sublattices can be defined and after inte-
gration over all other lattice site one arrives to effective cluster (two atom)
model with 2 x 2 matrices. Sun and Kotliar in [183] considered both those
cases and bellow we will describe their results.

4.2.2 EDMFT for Homogeneous System

After integration over Grassmann variables in functional integral (4.2.44) for
all lattice site except impurity one we obtain effective model with electron
and boson degrees of freedom:
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B

Seft = /dT/dT ZCOU (1 — 7)coo (77)

0

a,=0

B 3
1 _
—§/d7'/d7/ Z éoa(T)Daﬁl(T—T’)gﬁog(T—T’)
0 0
B

+U/dTnQT )nOl /dTZi)Oa SOa (4252)

0 0

Gy 1 and D;é have a meaning of dynamical mean-field acting on site 0 from
the rest of the lattice. Those quantities can be connected with local GF's for
electrons and bosons:

Gy (iwn) = Z [iwn — ek + &t — X (iwn)] - (4.2.53)
k
Mo (i) = 3 [Vie+ 1T (i) - (4.2.54)
k
DY (iw) ==Y [V;l n H(iwn)} - (4.2.55)
k

In deriving relations (4.2.53)—(4.2.55) we assumed a main DMFT approxima-
tion: electronic and bosonic self-energy parts (X, and IT) do not depend on
wave vector k.

Using Dyson equation for electron and boson GF's one can write expres-
sions for X, and II via local GF's (due to self-consistency conditions they
coincide with effective impurity model GFs):

Zo(iwn) = G, M (iwn) — G (iwn), (4.2.56)
I, (iwy) = D (iwy) — Dyl (iwy). (4.2.57)

EDMFT calculation scheme is the same as for standard DMFT: for start-
ing values of functions G, !(iw,) and D~1(iw,) electron and phonon impu-
rity GF's are calculated using actlon (4.2.52). Those functions are identified
with local GFs Gyl (iwy) and Dy} (iwy). Self-energies X, (iw,) and 7 (iwy)
are calculated using equations (4. 2 53) (4.2.55). Then from Dyson equations
(4.2.56)—(4.2.57) new values for G, 1(iw,) and D~ (iw,) are found and self-
consistency loop is repeated till input values will be equal to output ones with
a given accuracy.

In contrast to Hubbard model with local Coulomb interaction that is
reduced in DMFT to effective Anderson impurity model when nonlocal inter-
actions are included in the Hamiltonian-effective single impurity model is in
dynamical field that is formed by effective medium with fermionic and bosonic
degrees of freedom.
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Fig. 4.5. Phase diagram for three-dimensional U-Vmodel at 8 = 5.0. Symbols show
numerical results. Lines separate phases: Fermi liquid (FL), Mott insulator (MI) and
exciton insulator (BI)

As an example, we will consider three-dimensional Hubbard model with
Coulomb interaction on neighboring sites included (so called U — V' model):

H =Y tijel ejo +UY iy
ijo i
+V Z (’IA%T + ﬁil)(ﬁﬂ + ﬁjl)' (4.2.58)

<ij>
Intersite interaction Fourier component is:
Vi = V(cosky + cosky + cosk,). (4.2.59)

This problem was solved by @QMC method with generalized Hirsch-Fye
algorithm. Semielliptical density of states was used with a width equal to v/2.
Imaginary time interval 5 = 5.0 was divided on 20 slices with A7 = 1/4 value.
The calculation results are presented in Fig.4.5 in a form of phase diagram
on the plane (U, V) [183]. There are three phases: Fermi liquid (F'L), Mott
insulator (M), and exciton insulator (BT). Phase transition line was found by
approaching to instability in EDM FT iterations with decreasing of V. Line
between F'L and M I phases is a crossover. It was defined from parameters U
and V values where ImG,, (iwy) = —0.5. This method allows to treat a model
with exchange interactions.

4.2.3 EDMFT for the System with Two Sublattices

Let us consider a system with two interpenetrating sublattices that is described
by the Hamiltonian (4.2.58). For the state with a long-range order let us
rewrite (4.2.58) as a sum over sites for sublattices A and B:
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H=t Z éLiU@B]‘a — Z UxioNxio + UZﬁXiTﬁXil

<Ai,Bj>o Xi,o Xi
+ Z (Past + 1ai))Vai,gj (NBj1 + NBjy)- (4.2.60)
<Ai,Bj>

We assumed that nearest neighbors belong to different sublattices. Indexes i
and j run over one sublattice only. Indexes X = A, B denote sublattices.
Chemical potential is homogeneous inside sublattice:

oy X=A
[iXio = {Z;f P (4.2.61)

Using Hubbard—Stratonovich transformation in expression (4.2.44) for Z
one can write an action as:

/dT{ > ek () CXW( ) — pSnxio (7)

Xio

+i Z quw(T)CBja(T) +U Z NxitNXi|

<A1’Bj>o Xi
+35 Z(pXZ Wiy ;@v;(T) Z(PXZ )(nxit () + nxiy (7)) }-
XZY]

(4.2.62)

Here 1
Hﬁ?a = HUXo — §U - ZV<Xi,Xj><[nXiT(T) + "le(T)D
J

is effective chemical potential for sublattice obtained by separating Hartree
terms in original Hamiltonian.

In going from lattice model to effective local model we should use as a local
object not one site but a cluster (A4, B) containing two neighboring atoms A
and B. Performing in (4.2.44) integration with action (4.2.62) over all lattice
sites except cluster sites gives an effective action

B
Seff — /d /d’T Z e (DG Y (1 — Teyo (7))
0

0 XYo

l\DI»—\

St —x T —x

dr [ dr’ Z@X XY (1 — by (1)
/

B
+U dTZ”XT”Xl — /dTZ@X(T)[nXT +nxl], (4.2.63)
X

0 X
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where two new functions were introduced [G;!]*XY and [D~!XY having a
meaning of fermionic and bosonic mean-fields that should be calculated using
standard self-consistency conditions.

Let us define now G'F corresponding to action S°ff:

GXY (i, i'7') = (Tréxio (T)el 1, (7)), (4.2.64)
XY (ir, i) = (T [vxa (1) + fuxay (7)) [fyarg (77) + vy (7)] ), (4.2.65)
DXY (ir,i'7') = (Trdxi(T)Py o (1')). (4.2.66)

Here X and Y can have values A and B so GF's are matrices of 2 X 2 size in
sublattices index. Equations for them in symbolic matrix form coincide with
equations (4.2.53)—(4.2.55). In explicit form these equations are:

GijoéA (iwn) GﬁaéB (iwn) _ Z twn + tac —€k
GO'BA(iwn) GoBB —€k iwy + UBe

loc loc (iwn) k

AA (oo AB (o, -1
_<Ea( ) 25 )ﬂ o (42.67)

YBA(jw,) XBB(jw,)

ngf(iwn) DI‘?)cB(iwn)>
[3pt] = —
( o>

Dﬁ?(iwn) Dl]g(]?(iwn)

<X11?>1c4 (iwn) ngcB (iwn

Xﬁ? (iwn) Xﬁf (iwn

)2l )

AA(; AB(; B
()] oao

In equations (4.2.68) and (4.2.69) parameter A is used that was defined earlier.
We emphasize again that observable properties do not depend on A [183].

Combining two last equations one can obtain relation for local density—
density GF and phonon GF":

Xioe Xioe \ (A4 ITABY (10
BA BB | — \ITBA BB/ \01

Xloc Xloc
AA 7AB\ (D4 DAB
+ (HBA HBB> 1 1 ; (4.2.70)
Ll Dt DB

all quantities depend on one argument iwy,.
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Self-consistency equations (4.2.67)—(4.2.69) together with the expressions
for three GFs GXY (1 —1'), x*¥ (1 — 1), and DXY (7 — 7’) calculated with an
action S°f (4.2.63) create a closed equations system to determine XX (iwy,),
XY (iwy), GXY (iwy), and DXY (iw,). These equations can be easily general-
ized if a local cluster includes an arbitrary number of atoms. QMC method
can be also generalized for effective cluster problem [183].

4.2.4 DMFT with Orbital Degeneracy

Going from models to real materials one should take into account orbital
degeneracy of transition metal ions in the crystal. First of all full electrons
state space must be separated in itinerant electrons subspace where Coulomb
interaction is small enough to be treated in static mean-field approximation
and localized electrons subspace with strong Coulomb interaction that should
be treated in DMFT. Let us write full system Hamiltonian as:

1 / N .
H=H° + 5 Z Z U%in/nz’lmonilm’o’

i=iq,l=lgmo,m’c’

1 ' R
_5 Z Z Jmm,Cilmacihn/ﬁc’ilm/(rcilm&

i=ig,l=lgmm’c

— > Acqiiimo. (4.2.71)

i=id,l=ld mao

here H° is Hamiltonian for electrons on the lattice without Coulomb interac-
tion between them.

Three last terms describe local interaction for second subspace orbitals
(site and orbital indexes for those orbitals are iq and I4). Coulomb interaction
parameters Ugg;ﬂ in general depend on specific orbitals m, m’ and o, o’.
However, the following approximation is often used:

UL =U, Jypw =J, U0, =U—2J = Jbpor (m#m'). (4.2.72)

The last term in (4.2.71) corresponds to the the shift of one-electron potential
for interacting orbitals.
HP° has a quadratic form in Fermi operators:

0 ~
H" = E E (Sitmjtrms Eitm Nitmo (4.2.73)
ilm,jl'!m’ o
;
+tilm,jl’m/cilmgcjl’m/0'7 ) .

Later we apply to Hamiltonian (4.2.71) Dynamical Mean-Field Theory
described in Chap.3 for simple one-band Hubbard model. Green function
now has more general form:

Iomg e QT T = ~(Tigime (1)t (7)) (4.2.74)
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Here i is crystal cell number, ¢ is atom in a cell number, [ and m are orbital
moment and its projection. Fourier transformation of local GF' in variables
j—j =1 gives:

gglm,q’l"rn’ (]7 ]7 iwn) = Gglm,q’l’m’ (iwn)
o

— Z ([iwni +pl — HO(K) - EA(iwn)} _1> (4.2.75)
K

qlm,q’'U'm/’

In derivation of the above formula it was taken into account that in d — oo
limit self-energy does not depend on wave vector but only on frequency. In
expression (4.2.75) 1 symbol means unit matrix in orbital space n = {glm}
and ¥ (iwy) is a matrix with elements X,,,,. Nonzero elements of this matrix
form a block with n = {gqlgm} corresponding to interacting orbitals only.

Omitting indexes ¢q and l; GF will have a form G, (iw,). Then
simplified form of expression (4.2.75) is:

(e

G (iwn) = > ([wni +pl — HOk) — 2@%)] 1) . (4.2.76)

k mm/’

Basic DMFT idea is to identify local GF with effective single impurity
model GF'. Analogous to relation (3.1.34) this impurity GF' can be written
as a functional integral over Grassmann variables:

Gima(r1 = 72) = = [ DIIDIEemia (m)ch(r)}e 5, (a27)
Z= / D[c!|D[c]e~ 5], (4.2.78)
where

Slet, ¢ = — za:/dT/dT/CIno(T) (90_1(7 — T’));m,cm/a(r’)

1 / ’
1 oo - f
+2 E mm,/chnw(T)ch(T)cm,U, (T)emror () (4.2.79)

mo,m’o’

,% Z/ Jrmm/ /dTCInU (T)Cm5 (T)C;[n’g('r)cm’&(7'>

mom/’

is effective action.

Here Go(7—7') is noninteracting single impurity model GF having a mean-
ing of dynamical mean-field acting on impurity orbitals from the rest of the
lattice. It is expressed via hybridization function A(iwy) using equation (see
(3.1.33)):

(G5 '(iwn)), ., = (iwn + )1 — Apyper (iwn), (4.2.80)

where GF and hybridization function are matrices. Green function Gy is
determined by Dyson equation:
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-1

Go=(G'-X) (4.2.81)
DMFT calculation scheme for self-consistent solution of equations (4.2.76),
(4.2.77) and (4.2.81) was described in Sect. 3.1.5. In this method the problem
of electronic spectra for lattice is reduced to solution of effective Anderson
impurity problem. This problem can be solved by one of the methods described
in Chap. 3, for example by Quantum Monte Carlo method.

4.2.5 QMC Impurity Solver for the Problem with Orbital
Degeneracy

In order to generalize Hirsch-Fye method formulas to multiorbital case one
should (see Sect.3.2) go from functional integral to integral over discretized
imaginary time 0 < 7 < 8 = 1/T. Dividing it on L time slices of the size
At = (/L integral (4.2.79) is approximated by a sum:

L
S[CT7 C] = —(AT)2 Z Z C:[nglggfl(ﬂ - 7-l’)c'mal’

mo [,lI'=1

L-1
1 ’ /
+§AT Z use. Z cjmlcmglc;,a,lcmra/l. (4.2.82)
mom'o’ =0

We omitted exchange term in action because it has more complicated form
than direct Coulomb term.

The integral term in (4.2.82) is linearized using discrete Hubbard—Stratono-
vich transformation (see Sect. (3.2)). For multiorbital case instead of formulas
((3.2.58) and (3.2.59)) we have:

At ’ 2
exp { TU&%, (ch iCmot — €t onCmiont) } (4.2.83)
1 ’ ’
=5 > e { AN SE (Choremot = chignemon) },
O’O’l
Simmr=%£1

’ . .
where parameter A\J? , is found from equation

, AU,
coshAjy.. = exp <%>, (4.2.84)

corresponding to equation (3.2.59).
In the result instead of formulas (3.2.69) and (3.2.73) we have now:

Z = 2% SO Y [fdetargs, (4.2.85)

! 4! 11 511 1 5!
m'o',m'o o'l o — mo
l ) St =41



140 4 DMFT Extensions

G, = Z2LZ Z S [EH ™, HdetM"S (4.2.86)

1ot
m'o’ m e So // ,= =41
Im'"m

MZS = (AT (GOt + 25 ]e 0 41— e (4.2.87)
Matrix elements :\Zf

mll’ - _6”' Z )‘mgm mm’ lmm’ (4288)

are linear combination of Ising variables Slmm, and summation over them is
performed in expressions (4.2.85) and (4.2.86) for partition function and GF.
Quantities £77 , are defined via ¢ function:

1, x>0
O(x) = {_1 <0’ (4.2.89)

m’ =

oo’ 20[0" — 0 + 650 (m' —m) — 1]. (4.2.90)

Going from quantities 07 in Hubbard model expressions to formulas (4.2.85)-
(4.2.88) we have used relations (B.17) and (B.18). It is easy to see that formu-
las (4.2.85)—(4.2.88) can be reduced to corresponding expressions in Sect. 3.2
by omitting indexes m,m’ that corresponds to a single correlated orbital.

Practical realization of Hirsch-Fye algorithm for the system with degener-
ate orbitals is the same as for nondegenerate Hubbard model. The essential
difference is a number of Ising spins S[‘le’;l,. If previously spin components
S; number was L, then now it is equal to M (2M — 1)L where M is number
of orbitals on impurity site (m,m’ = 1,2,..., M). Correspondingly, a total
number of spin configuration in a sum (4.2.85)(4.2.88) is huge: 2M(ZM-1L
A number of configuration is growing exponentially with M and so for d-
and f-orbitals where M is 5 and 7 calculations could become very expensive.
However modern computers can treat such problems but the price for that
is relatively high-temperature values where computations are possible: it is
difficult to go significantly below room temperature.

4.2.6 Exchange Interactions in QMC

We have omitted earlier the exchange terms in Hamiltonian (4.2.71) for degen-
erate orbital case. There is also so called pair hopping term. Let us consider
now both those contributions to Hamiltonian H = Hy + Hq + Hs where

=J Z ( zmTsz 1 Cim | Cim/1 + CZmchmlclm lczm’T) (4.2.91)
m;«ém

Hy is kinetic energy term and H; is Coulomb interaction.
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In Hirsch-Fye method Coulomb term is linearized via Hubbard—Stratono-
vich transformation (4.2.83). However, Hs term cannot be linearized in this
way. Authors of [138] have proposed another transformation for double-
degenerate case m = 1, 2:

o—ATHy _ % $ MU (N END+BN N, (4.2.92)
v==+1

where variables A\, a and b are defined by equations
1
A=3 In(e*/47 4+ \/ed7AT — 1), (4.2.93)

a = —In coshA, b= In cosh(JAT), (4.2.94)

and f,, N, are Hermitian operators:

fo = CIUCQO- + C;_-;Cla; (4.2.95)

Na = N1s + N2o — 2N15N24

All operators in equation (4.2.92) correspond to the same time value 7
however index [ was omitted.

The transformation (4.2.92) partially linearizes interaction Hs but still
leaves unchanged nonlinear term N1 N|. However because of projective prop-
erties of the operator N2 = N, the term e®~7¥! can be connected to the
corresponding Coulomb term and linearized by standard Hirsch-Hubbard-
Stratonovich transformation. In the result we have Hirsch-Fye algorithm but
with summation over two sets of Ising spins {S;} and {v;}. In this case “sign
problem” appears, i.e., quantities detMgLS can have negative values. However
analysis in [138] have shown that probability of negative terms is relatively
small and their influence is suppressed by overwhelming majority of positive
determinants. So this QMC algorithm can give physically reasonable results
for models in wide parameters range. Earlier approaches to this problem were
discussed in [138,184-186].

4.2.7 Continuous-Time QMC for Two-Orbital Model

An important generalization of nondegenerate Hubbard model investigated

in Chap. 3 is two-orbitals on-site model with exchange interaction and pair

hopping terms. The effective single impurity model Hamiltonian has three

terms: H = H\o. + H; + Hy where Hj,. describes all on-site interactions, Hy

describes electrons hopping on the lattice and Hy is the sd-hybridization.
Let us choose local term in the following form [145]

Hloc = Z UNae + Z UnaTnal + Z U/nlanQE + Z(U, - J)nlonmr

—J(d} | dby daydry + diydb dydyy + K.C). (4.2.96)
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Here index a = 1,2 denotes orbitals, n,, = dfmdw is d-electrons number
operator for a orbital. Coulomb interaction parameters U, U’ and exchange
parameter .J are connected via relation U’ = U — 2.J.

Hopping operator is written in nearest neighbors approximation:

Ht :tl Z leo.cjlg'_‘_tQ Z CIQJCJ'QU (4297)
<ij>o <ij>o
with different matrix elements for different orbitals. We will assume that 5 =
2t;. That gives two bands: narrow (o = 1) and broad (a = 2). Hybridization
term Hy has a standard form.

It is interesting to investigate Mott phase transition in this model. Is it
possible, for example, that “Orbital Selective Mott Transition” [187] is realized
when narrow band states correspond to insulator while broad band is still
metallic? This probelm was investigated in many works [138, 145, 184-186,
188-191] but no unambiguous answer was found.

Using Exact Diagonalization method for impurity problem authors of [188]
have found that narrow band becomes insulating for smaller U values that a
broad band. For semielliptical density of states with to/¢t; = 2 critical values
are Uf/t; ~ 5.4 and U$/t; ~ 7. From other side earlier works using QMC
gave simultaneous metal-insulator transition [190]. However, QMC method
has “sign problem” for exchange and pair hopping terms and [190] results were
reconsidered in other works. Arita and Held [138] using new discrete Hubbard—
Stratonovich transformation [184] in projective @MC method have found
possibility of “Orbital Selective Mott Transition” in two-orbital model and
calculated by them critical value Uf agrees with [188] results. However pro-
jective @QMC method does not allow to perform calculation for large enough
US values.

All these difficulties can be overcome by using Continuous Time QMC
method (see Sect. 3.2.5). Werner and Millis [145] have used CT — QMC for
two-orbital paramagnetic model with Hamiltonian (4.2.96) for half-filled band
and relation % = 2 for hopping elements. For local Hamiltonian (4.2.96) there
are 16 eigenstates and so one has to treat 16 x 16 size matrices but U and J
values can be arbitrary. Hybridization Hy expansion QMC method does not
have “sign problem” so this method results are reliable.

In Fig. 4.6 calculated GF G(7) is presented for parameters St; = 50, J =
U/4 and U/t; = 4, 6, 8. Chemical potential corresponds to half filling. From
Fig. 4.6 follows that at U/t; = 4 both band (narrow and broad) are metallic
whereas for U/t; = 8 they are insulating. Phase transition should happen
for intermediate U/t; value. For one of the intermediate values U/t; = 6
in Fig.4.6 calculated values of G(7) for both bands are shown. One can see
that broad band is still metallic while a narrow one is insulating. So in this
calculations “Orbital Selective Mott Transition” was found with an energy
gap in only one of the bands.

Earlier, it was suggested [187] that insulating orbital can play a role of
local magnetic moment that is connected with metallic orbital via exchange
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Fig. 4.6. Green function for two-orbital model calculated for semielliptical density
of states and n = 1 for Coulomb interaction parameters values U/t; equal to (a)
U/ti = 4 and 8; (b) U/t1 = 6. Dots show for comparison GF for noninteracting
system at St = 50 8t = 100 [145]

interaction J (usually it is Hund exchange interaction of ferromagnetic sign
J > 0). That means that two-orbital model with J > 0 is equivalent to fer-
romagnetic Kondo-Hubbard lattice. In work [145] spin correlation function
(5:(0)S.(7)) was calculated for two-orbital model at U/t; = 6 and also for
ferromagnetic Kondo lattice. Dependence of (S.(0)S.(7)) on 7 for ferromag-
netic Kondo lattice is very close to narrow band of two-orbital model results
that confirms equivalence of those two models.

These calculations confirm high efficiency of CT — QM C method that is
free from “sign problem” and has no restrictions on U and J parameter values.
As it will be discussed in Sect. 5.3 Werner and Millis [145] have investigated
by this method Kondo lattice with exchange interaction of ferromagnetic and
antiferromagnetic sign.
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4.3 Taking into Account Spatial Fluctuations

4.3.1 Heuristic Approach to DMFT Extension
for Spatial Fluctuations

High efficiency of DMFT is defined by its basic approximation: self-energy
depends only on frequency but not on wave vector. In real space that means
that self-energy matrix is diagonal in site indexes or in other words spatial
correlations are neglected. That is a severe approximation because spatial
fluctuations reveal itself in many physical phenomena. Examples are spin sus-
ceptibility behavior near phase transition in antiferromagnetic state, Fermi
surface features in strongly correlated systems, and appearance of pseudogap
state leading to Fermi surface destruction for specific areas. As DMFT corre-
sponds to d = oo limit spatial fluctuations description requires corrections of
the order of é. There are many approaches to this problem. We start from the
simplest one where no é theory analysis is performed but spatial fluctuations
are explicitly introduced in DMFT equations. This scheme is an heuristic
development for magnetic susceptibility calculations in the frame of DMFT
described in Sect. 3.6. Kusunose [192] proposed to use Bethe-Solpeter equation
for particle-hole channel where two-particle GF (dashed square in Fig.4.7)
allows to derive equations for charge and spin susceptibilities. The quantity
I" (open square) is uncutable in particle-hole lines vertex part. Two-particle
G F's are correlators for charge and spin densities

pe=cler+eley, po=clep —éley. (4.3.98)

and depend on three 4-momenta. Let us denote them as x.(k,k’;q) and
Xs(k,k';q). To four-momenta k and k' correspond fermionic frequencies w,
and w,s while to 4-momentum ¢ the bosonic frequency &,,.

To graphic Bethe-Solpeter equation (Fig.4.7) correspond two analytic
equations, one for charge and another for spin GF:

Xe(k, k" q) = xo(k, q {m/ D Lok, K q)xe (K, K )} (4.3.99)
k//
xs(k, k' q) = xo(k, q) [5%/ + ) Lk K q)xs (K K q)] : (4.3.100)
k//
Here
k+q k’+q k+q k+q k’+q k’+q
N MmO
k k’ k k K Kk

Fig. 4.7. Bethe-Solpeter equation for particle-hole channel



4.3 Taking into Account Spatial Fluctuations 145

xo(k;q) = —G(k)G(k + q) (4.3.101)

is two-particle zero-order GF. Paramagnetic phase is assumed so spin indexes
are omitted. Standard susceptibilities can be obtained by summation of two-
particles GF's over fermionic 4-momenta:

= XalkK;q), a=cs (4.3.102)
kk’

Single particle electronic GF' obeys to Dyson equation
G HE) = iwn + i — ex — Z(k), (4.3.103)

where Y(k) is self-energy where Hartree part is subtracted and included in
renormalized chemical potential i =y — U%, where n =", G (k)e0" .
Self-energy X'(k) is expressed via charge and longitudinal spin GF's:

Z > ([Telk, K" @) xe (K K5 )

q k/k//
+ Is(k, K" q)xs (K K5 )| Gk + q). (4.3.104)

In order to solve (4.3.99) and (4.3.100) two approximations are proposed.
At first irreducible vertexes I'. and Iy are calculated in local approximation in
agreement with basic idea of DMF'T with frequency dependence only including
bosonic frequency &,,. We assume that

Iy(k, K5 q) = Ty(em). (4.3.105)
Then (4.3.99) and (4.3.100) can be formally solved in the following way:
Xe '(q) = x0 ' (@) + Te(em), (4.3.106)

Xs (@) = xo ' () = Tis(em)- (4.3.107)

In the result four-momentum dependence is included only via quantity xo(g).
Approximation (4.3.105) allows to present expression for self-energy
(4.3.104) in the following form:

X(k) = X(wn) + %Z [Fc(sm)Axc(q) + Fs(sm)Axs(q)]G(k +q), (4.3.108)

where Axa(¢) = Xa(q) — Xa(wn) describes nonlocal contribution. X (w,,) gives
a local contribution nondependent on wave vector q:

= —TZ c(Em)Xe(Em) + Ts(em)xs(Em)] Groc(wn + €m), (4.3.109)

Em

here Gioc(wn) = >, G(k) is local GF.
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Second approximation is to replace quantities X(w,) and xo(em,) for
Doc(wn) and xo0,10c(em) calculated in standard DMFT scheme. Then from
equations (4.3.99) and (4.3.100) we have equations for irreducible vertexes
analogous to (4.3.106) and (4.3.107):

1 1
I(em) = - , (4.3.110)
Xe,loc(em) XO,loc(Em)
1 1
—Is(em) = — . 4.3.111
( ) Xs,loc(gm) XO,loc(Sm) ( )
Here local irreducible susceptibility is given by

Xotoc(Em) = =T _ Groc(wn)Gloc(wn + m)- (4.3.112)

Wn,

With these expression for irreducible vertexes formula (4.3.108) describes self-
energy with spatial charge and spin correlations taken into account. Local
vertexes and susceptibilities should be calculated in DMF'T.

In [192] as an impurity solver Iterative Perturbation Theory (IPT) (see
Sect. 3.1.5) was used. Two-dimensional Hubbard model was investigated with
2048 Matsubara frequencies used in DMFT equations solution. Analytical
continuation from imaginary to real energies was done with Pade approxi-
mants.

In Fig. 4.8 calculated imaginary part of dynamical susceptibility at wave
vector Q = (m, ) is shown. Low-energy peak increases sharply with temper-
ature approaching Neel point. In Fig.4.9 phase diagram is presented on the

_T=0.25

10 B @ T
o
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E
)
<
Q.
><U)
E ST |
T=0.3
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T=0.4
T=0.6
i
/
0 Il
0 1 2

Fig. 4.8. Spectral intensity of spin susceptibility in two-dimensional Hubbard model
for n = 1 and wave vector Q = (m,7) at U = 8 and various temperatures. In the
inset local spin susceptibility is shown [192]
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Fig. 4.9. Phase diagram of two-dimensional Hubbard model for n = 1 on the plane
(T,U) calculated with spatial spin fluctuation taken into account [192]
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Fig. 4.10. Density of states A(w) for U = 8 calculated in standard DMFT and with
spatial correlations taken into account [192]

plane (T, U). Neel temperature was determined from condition y;1(Q, 0) ~ 0.
Dependence of Ty on U is typical to other calculations with maximum Ty close
to exchange parameter J ~ t2 /U value. The curves T, and T, defines bound-
aries for metallic and insulating phases in metal-insulator neighborhood. In
Fig. 4.9 coherence temperature 7., is shown defined as temperature of cen-
tral peak in DMFT spectral function A(w) appearance. The curve Tn(U)
lies below the corresponding curve obtained in DMFT calculations without
spatial correlations taken into account.

Spatial fluctuations produce interesting changes in spectral properties. In
Fig. 4.10 spectral function A(w) is shown calculated in standard DMFT and
with spatial correlations taken into account for two temperatures: T' = 0.245



148 4 DMFT Extensions

slightly above Ty = 0.241 and 7' = 0.6 that is much larger than Ty and where
spin fluctuations are much weaker than near transition temperature. One can
see that at high temperature taking into account spatial correlations does not
change spectral function significantly while near Ty spectral functions with
and without spatial correlations are very different. The central peak is strongly
suppressed due to spatial correlations and at w = 0 pseudogap appears. Spec-
tral weight is transfered from quasiparticle peak to Hubbard bands. Pseudogap
appears not uniformly on the Fermi surface. Spectral function A(k,w) calcu-
lations show that pseudogap is most pronounced near Brillouin zone points
(m,0) while in the direction on (7, 7) quasiparticle peaks are preserved. Fermi
surface has a form of “arcs”. It is preserved in a sector with direction on
(m,m) and destroyed in directions on (m,0) and (0, 7). This pseudogap effect
was found in earlier works that we referenced earlier.

Spectral function A(k,w) calculation were performed on discrete wave vec-
tor mesh in first Brillouin zone size 64 x 64 for 2,048 Matsubara frequencies.
Calculation were not self-consistent with respect to spatial correlations so self-
energy did not feel effect of pseudogap appearance. In the calculations self-
energy X(k) = X (w,) + XYk(wy) consists of two contributions: purely local
Y(wp) from DMFT and Xy (w,) corresponding to spatial spin fluctuations. In
fully self-consistent solution interference between both contributions should
appear but its role is still unclear.

4.3.2 Dynamical Vertex Approximation

More consistent approach to the problem based on standard diagrammatic
technique was proposed by Toschi, Katanin, and Held [193]. Self-energy X
can be expressed via vertex part I" (see Fig.4.11):

D) =Ug =120 Y LG + a0 + )G, )Gk +q v +w).

kv qw
(4.3.113)
a Ky b k' c kil
E A E k"+q,6| - |K',c E
kT keqT kT kT kg kT kT k+al kgt kT

Fig. 4.11. Graphic representation of self-energy X' for electrons in Hubbard model.
Solid line with arrows denote GF G (k,v), dots correspond to Coulomb potential U.
(a) Exact representation for X' via complete vertex part, (b) and (c) describe con-
tribution to X due to two particle-hole channels in ladder approximation. Dashed
rectangles denote irreducible vertex part
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(we have preserved notations used in [193]). This expression is exact if I" is a
complete vertex part. Taking into account only ladder diagrams shown in Figs.
4.11b and ¢ expression (4.3.113) will be an approximate one and correspond
to charge and spin fluctuations taken into account. Dashed rectangles are
irreducible vertexes in particle-hole channel.

Vertex I' in (4.3.113) can be presented as a sum of vertexes in spin (s) and
charge (c) channels depending only on wave vectors difference:

1 :
(e — ey (4.3.114)

9 s,loc c,loc

’ 1 ’ ’ + ! _
Lot = 5(Tq  + TLG) + THSY ™ -
Here first two terms describe longitudinal and transverse fluctuations (para-
magnons) and the last term is needed to avoid local terms double-counting.

The quantities in the right part of (4.3.114) can be expressed via irre-
ducible parts I'*”\“ in the following way:

s(c),ir
v’ w vv'w \— v’ -1
s(c)a [(Fs(c),ir) 1— Xo (qa w)dl/l/’] y (43115)
where ,
Xo (@w) = =TY Gk V)G(k+q,V/ +w). (4.3.116)
k

Expression (4.3.115) is solution of equations (4.3.99) and (4.3.100) for spin
and charge two-particle GF.

Equation (4.3.115) is derived in ladder approximation for particle-hole
channel where only one irreducible vertex I'." ;“’” is taken into account. The

second approximation is the fact that electron GF is calculated in DMFT:
Gk,v) = [iv — e+ p1— DiocW)] (4.3.117)

Substituting (4.3.114) in (4.3.113) we obtain expression for self-energy:

11 / / /
Dk, v) = SUn +5TU 3 X6 (@) (BIYG"Y = Iq*

v'wq

FIVNE — TGk + Qv+ w). (4.3.118)

This expression comes to DMFT self-energy if nonlocal terms will be replaced
by local ones. Expression (4.3.118) with (4.3.115) differs from SCBA approxi-
mation by replacing Coulomb parameter U with dynamical local vertexes and
so the authors of [193] called it Dynamical Vertex Approximation (DI'A).
Diagrammatic analysis in 1/d parameter shows [193] that this approxima-
tion correctly describes all corrections to DMFT in the first order in 1/d.
Approximations proposed in [192,193] are equivalent to each other but in
[193] equations are written in more general form using parquet equations.
For practical calculations one needs to compute four-point local vertex

FS”(’;;“’W for single impurity Anderson model:
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B
Xﬁ)yc’wcrcr' — T2 / dTldTQdT3efi'r1uei'rz(u+w)efirg(u'+w)
0

[(Trel, (71)éin (72)él, (73) i (0))
— (T &} (7)1 (2) W Trel L (73)2i0:(0))],

where v and v/ are fermionic and w bosonic frequencies. Charge and spin
susceptibilities for Anderson model are expressed via symmetrized vertexes
combinations (4.3.119):
X0 = X1 £ x0T (4.3.119)
Local vertexes calculation is a most computer time consuming part. It is done
using the formula (4.3.119) where two-particle and one-electron GF's are writ-
ten in Lemann representation and Hamiltonian eigenvalues are computed in
Exact Diagonalization (ED) method. Calculations for Anderson model were
done for lowest Npa.x = 20 Matsubara frequencies and then analytical con-
tinuation by Pade approximants was performed. Wave vectors summation in
(4.3.118) was done using Ny = 96 points in Brillouin zone.
DI'A calculations results are shown in comparison with DMFT results
in Fig.4.12 for three values of Coulomb parameter U = D;1.5D and 2D in
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Fig. 4.12. Real and imaginary part of self-energy and density of states for Hubbard
model calculated in DMFT and DI'A [193] for k = (7/2,7/2,7/2) and U = D
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metal-insulator transition neighborhood. For these U values four-point ver-
tex part Fs”(‘c’;‘,‘;r depends strongly on frequencies and near antiferromagnetic
ordering for small frequencies singularity can appear. This singularity leads
to suppression of spectral density on Fermi surface comparing with DMFT
results. So dynamical fluctuations reconstruct electronic spectra in strongly
correlated systems. Local spin fluctuations enhance nonlocal fluctuations lead-
ing to electron scattering and dumping that essentially modify spectral func-
tions. One of such systematic changes is pseudogap appearance that will be
discussed in the next section.

4.3.3 Pseudogap

One of the most spectacular effects of spatial correlations is pseudogap for-
mation. Pseudogap state appears in two-dimensional Hubbard model near
half-filling and is experimentally observed in cuprates. On cuprates phase
diagram (Fig.4.13) dashed line marks pseudogap state in normal metallic
phase for underdoped materials. 7% line is not phase transition line but
only crossover corresponding to gradual transition between high-temperature
phase for T" > T* with normal Fermi liquid properties and low-temperature
T < T* area where anomalies are observed in electronic properties. Pseudo-
gap effect means suppression of the density of states on Fermi level. It reveals
itself in decreasing of linear coefficient -y of electronic specific heat and Pauli
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x

Fig. 4.13. Schematic phase diagram for cuprates. Dashed line T* marks the
pseudogap existence area at T < T
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susceptibility xo in crossing 7 line and especially in experiments in tunneling
spectroscopy and angle-resolved photoemission spectroscopy (ARPES).

ARPES allows to measure directly quasiparticle spectral density near
Fermi surface and reconstruct Fermi surface itself. It was found that in all
cuprate materials the same phenomenon is observed: Fermi surface destruc-
tion in directions (0,k,) and (0, k;) while in diagonal Brillouin zone direc-
tions (kg, ky) Fermi surface is preserved. In this directions ARPES intensity
drops sharply when wave vector crosses Fermi surface. In directions (0, k)
and (0, k;) evolution of A(k,w) is gradual and for fixed wave vector k spec-
tral function has two-peak structure with a depression on the “former” Fermi
surface that would exist without pseudogap effect. Detailed discussion of this
phenomenon one can find in Sadovskii reviews [194,195]. Reviews of ARPES
results are presented in [196] for Lag_,Sr,CuOy4 and in [197] for Bi2212. So
in cuprates Fermi surface has “arcs” form with well pronounced Fermi surface
parts only on the arcs near diagonal directions in Brillouin zone.

It was suggested earlier that pseudogap state in cuprates appears due to
electron scattering on spin fluctuations when the system is close to antifer-
romagnetic ordering. Dynamical magnetic susceptibility for two-dimensional
square lattice near half filling can be represented by the following phenomeno-
logical expression [198]

52
“ T e(q- QP - iwjws

Here Q = (7, ) is antiferromagnetic wave vector, ¢ is spin fluctuations corre-
lation length and ws is their characteristic frequency. Expression (4.3.120) is
valid only in the neighborhood of vector Q where spin fluctuations are strong
and their dumping is weak. Electrons scatter on those fluctuations and this
scattering can lead to pseudogap state formation. To describe this effect one
needs to go beyond first order of perturbation theory.

For one-dimensional case Sadovskii [199] has summed perturbation the-
ory series for self-energy of electron interacting with static spin fluctuation
and obtained recurrent equation to calculate series sum. This method can be
extended for two-dimensional lattice if static susceptibility is approximated
by factorization:

Xs(q, w) (4.3.120)

52
1+ &82(de — Qu)?][1 + € (ay — Qy)?] .
Then infinite series summation for self-energy X(k,iw) comes to solution of
recurrent equation

Xs(q,0) = i (4.3.121)

A%S(n)
w4 p— X(iw) — en(k) + invpse — Xpi1(k, iwy,)

2k, iw) = . (4.3.122)

where A characterizes energy scale of spin fluctuations, s = €71 is inverse
correlation length, en(k) = e(k + Q) and v, = |v gl + |vf, gl for even n.
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Fermi velocities vfi and vy are defined as dispersion law (k) gradient. S(n)

is some factor that in the case of commensurate vector Q is S(n) = n. Elec-

tron self-energy determined by scattering on spin fluctuations is X, (k, iw) for
n=1:

=1k, iw) = Xy (iw). (4.3.123)

In expression (4.3.122) X'(iw) is local self-energy in DMFT approximation

determined by local Coulomb interaction without long-range spin fluctuations
taken into account. Then total self-energy is sum of two contributions:

2 (k, iw) = X(iw) + D (iw), (4.3.124)

where the first one is purely local and can be calculated in DMFT scheme and
the second one is defined by equations (4.3.122), (4.3.123). This calculation
scheme was named by the authors DMFT + Y.

Electronic GF now can be written as

1

k,iw) = . 4.3.12
Gl i) = o 0 = D) = T(w) (4.3.125)
Let us introduce local GF
1
oc ] = . - ; y 4.3.12
Groc (i) Z iw+ p—e(k) — X(iw) — Xy(iw) (4.3.126)

k

and define noninteracting GF' for single impurity model in standard relation

Gy Hiw) = X(iw) + Gk (iw). (4.3.127)
As usual G(iw) defines an action for equivalent Anderson model that can be
solved by QMC or NRG methods. Calculation scheme in DMFT + Yy is the
same as in standard DMFT: for a given Y (iw) from recurrent equations
(4.3.122) Yy (iw) is calculated and then Gioc(iw). Relation (4.3.127) defines
“Weiss field” Gy (iwy,). From Go Y(iw,) GF for Anderson impurity model is
found and identified with Gioc(iwy,). That gives new value of X'(iw) and the
whole procedure is iteratively repeated till self-consistency is achieved.

This procedure is semiphenomenological one because one should use
parameters A and € determining strength and spatial extension of spin fluctu-
ations. Both parameters should be in general calculated from local Coulomb
parameter U that is a single model Hamiltonian parameter. The quantity A
can be derived from the model Hamiltonian solution [200]:

0 < MMy | >1

A2=U
n2 3

< S? >, (4.3.128)
It is defined by average value for double occupancy probability and average
square value of spin on the site. Unfortunately, correlation length cannot be
calculated analytically.
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Parameters A and £ in expression (4.3.122) are better to be considered as
phenomenological constants and then DMFT+ Xy scheme allows to investigate
electronic state of the system as a function of spin correlation strength and
correlation length. DMFT 4 X method was realized in [201-204] for Hubbard
model near half filling to describe pseudogap state in cuprates.

In Fig. 4.14 spectral function A(k,w) is shown along symmetric lines in
Brillouin zone of square lattice. Energies are measured from Fermi level. One
can see sharp peaks in spectral functions corresponding to quasiparticle states.
However in I' — X direction two-peak structure appears with a depression
exactly on the Fermi level. That fact tells about Fermi surface destruction
near (m,0) and (0,7) points while in direction (0,0) — (7, 7) quasiparticle
states are well preserved in good agreement with experimental observations
for cuprates.

Fermi surface destruction is illustrated in Fig. 4.15 where contour maps
for spectral function are presented in k space at w = 0 that corresponds to
Fermi surface. Solid lines correspond to solution of equation

w—ek)+ p—ReX(w) — ReXk(w) =0, (4.3.129)

defining real parts of poles for electron GF' G(k,w) (4.3.125). One can see
that with A increase Fermi surface destruction happens near (m,0) and (0, )
points.
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Fig. 4.14. Spectral function A(k,w) for Hubbard model at parameters values:
U=4t,n=08, A=2t T =0.0088t, £ ! = 0.1a along symmetric lines in Brillouin
zone 1'(0,0) — X (7,0) — M (7, w) — I'(0,0), calculated by DM FT + Xy method
[201]. Left panel is for ¢/t = 0.4, the right one for t'/t =0
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Fig. 4.15. Fermi surface calculated by DM FT (N RG)+ Xx method [202] for U = 4¢,
n = 0.8, £ = 10a and various A values. Dashed line corresponds to noninteracting
Fermi surface (without spin fluctuation). Solid lines correspond to (4.3.129) solution

In [203] a theory for optical conductivity in DMFT + Xy scheme was
developed and real part of o(w) was calculated for few parameters sets to
investigate spin fluctuations strength influence. Results are shown in Fig. 4.16.
One can see that for nonzero A on the curve Reo(w) in metallic phase a dip
appears in low frequency region that gradually disappears with temperature
increase. For large frequencies in addition to Drude peak broad maximum
appears corresponding to electrons excitations in upper Hubbard band. In
insulating phase U > 4t Drude peak disappears and conductivity at w = 0
decays fast with correlation length ¢ decrease. Such Reo(w) behavior agrees
with the pattern observed experimentally in cuprates.

DMFT + X} method is not systematic expansion in 1/d parameter but is
heuristic approach. Nevertheless, it has a certain attraction because allows to
study spin fluctuations influence on electronic spectra.

Results described earlier and illustrated in Figs. 4.14-4.16 agree with
the results obtained in different techniques [205-212]. One of them is called
Dynamical Cluster Approximation (DCA) [205-207] and is described in details
in review [205]. To take into account short-range fluctuations single impurity
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Fig. 4.16. Pseudogap state effect in optical conductivity for U = 4t, t = 0.25 and
two temperature values. Dashed lines are for A = 0 and solid lines for A = t and
&/a =10 [203]

problem is replaced on local cluster containing few atoms. Such approach was
already described earlier (see Sect.3.6) when we discussed superconductivity
with d-symmetry order parameter. There as a cluster plaquet of four atoms
was chosen. Cluster size can be increased but that need very significant com-
puter resources. In [205-207] a scheme was developed where two clusters were
considered. Small cluster is used to treat short-range fluctuations and a large
one is for long-range fluctuations. For pseudogap state problem DMFT + Xy
method is more convenient because one still has only single site cluster but
this approach in not microscopic one.

There is another approach realized in [212] for Hubbard model and not
using DMFT ideas. There self-energy X' (k,w) is calculated in self-consistent
Born approximation (SCBA). In this case Y (k,w) is calculated as a con-
volution of spin and electron GF's that gives integral equation for ¥'(k,w)
that is solved numerically for both wave vector and frequency dependen-
cies. For Hubbard model on square lattice SCBA equations were solved for
parameter values characteristic to real cuprates materials: U = 8t and 4t,
t=0.4eV, t = —0.3t", ws = 0.4¢t. Calculations were performed for two dop-
ing values 6 = 0.05 and 0.3 and two temperatures T = 0.03t =~ 140 K and
T = 0.3t. Calculated quasiparticle spectra agree well with DMFT results for
cuprates discussed earlier. In underdoped regime pseudogap state is observed
in neighborhood of (7, 0) and (0, 7) points while in diagonal direction quasi-
particle states were preserved. This approach is not microscopic one because
it uses phenomenological expression for dynamical susceptibility x(q,w) with
adjustable parameters. From approximations described in this section only
first two [192,193] can be considered as microscopic ones however they are
not completely rigorous with respect to 1/d expansion corrections.
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We mention also works [213-215] where pseudogap state in two-dimensional
Hubbard model near half filling was obtained in perturbation theory in param-
eter W/U. This theory uses diagrammatic technique where zero-order approx-
imation is single-site Coulomb interaction term and as a perturbation intersite
hopping is considered. This diagrammatic technique has its origin in [216,217]
and contains various order cumulants connected by lines corresponding to hop-
pings t¢;;. The whole combination of irreducible graphs gives Larkin equation.
In [213,214] as simplest approximation first two graphs were taken contain-
ing first- and second-order cumulants. The first of them comes to Hubbard-I
approximation and a second one results in spectral function A(k,w) with
pseudogap states in directions (m,0) and (0, 7). As all those approaches do
not use DMFT ideas then pseudogap state is not connected with DMFT
approximation but is a result of long-range spin fluctuations.

Significant result of diagrammatic approach [213,214] is dynamical spin
susceptibility calculation. For this spin GF that is two-particle GF in Fermi
operators is calculated using expansion in W/U parameter with irreducible
diagrams. Larkin equation with approximate irreducible part gives spin GF
that resembles GF' from DMFT calculations. Static GF' for q = 0 is final
at T = 0 and for q = Q it diverges. Dynamical susceptibility x(q,w) for
q = Q has maximum for frequencies w ~ t2/U and another maximum for
w ~ U. First maximum increases with temperature lowering that is an evi-
dence of antiferromagnetic ordering for certain values of U and electronic con-
centration n. Those results agree well with Monte Carlo calculations [218]. In
approach [213-215] all specific features of strongly correlated systems appears
from frequency dependence of local cumulants of the second order as it is the
case in DMFT spin susceptibility calculations.

4.3.4 Dynamical Cluster Method

Standard DMFT method reduces electrons on the lattice problem to sin-
gle impurity model and hence neglects intersite correlations in the system.
However, a lot of important physical effects cannot be described without
such correlations taken into account. Among them is superconductivity with
d-symmetry order parameter. In Sect. 3.6 we have shown how DMFT scheme
should be extended to solve this problem. For that impurity should be replaced
by a cluster containing not one but several atoms. As such cluster for square
lattice a plaquet was chosen formed by four atoms. Inside the plaquet all
correlations can be taken into account but because of small cluster size that
corresponds in reciprocal space to short wave length correlations only.

This approach can be considered as a general way to include short wave
length correlations in DMFT and is called Cluster DMEFT (CDMFT). DMFT
equations are still the same as in single-impurity formalism but self-energy X
and hybridization function A are now matrices. In the case of plaquet they
are 4x4 matrices. There are two realizations of CDMFT. One of them uses
real space representation where matrix indexes are atomic numbers inside the
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cluster while in the second one reciprocal space representation is used. In this
case Brillouin zone is divided by so called “coarse” mesh with a wave vectors
K, (number of those vectors is equal to the number of atoms in the cluster)
and « play the role of matrix indexes for X' and A matrices [205].

As an example of the second CDMFT version we will consider work
[219] where metal-insulator transition was investigated for two-dimensional
Hubbard model in half-filling. Reciprocal space “coarse” mesh was chosen
as four points K,: (0,0), (0,7), (7,0) and (m,7). 4x4 matrix equations for
Y and A were solved by Continuous Time @QMC method that allows low-
temperature region to be investigated. Calculated phase digram on the plane
(T, U) is presented in Fig.4.17 where for comparison phase diagram obtained
in single-impurity DMFT is also shown. The basic features of both diagrams
are the same: there are metallic and insulating phases that overlaps with first
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Fig. 4.17. Phase diagram of paramagnetic Hubbard model at half-filling calculated
by (a) cluster DMFT and (b) single impurity DMFT [219]
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order metal-insulator transition. However coexistence area for metallic and
insulating phases (dashed areas in Fig.4.17) are very different in two calcu-
lations. Phase transition lines have different slopes, critical value of Coulomb
parameter U in the point where transition becomes of the second order (apex
of the dashed triangle) is Upsrr = 6.05¢ for cluster case and Upsrr = 9.35¢ in
single impurity calculation. At 7" = 0 phase transition in cluster case is close
to Upy while in single impurity to Ugo. That means that line Ugsy plays more
fundamental role than Ugcs line.

So short wave length correlations that are taken into account in CDMFT
but are absent in single impurity calculations do not change the nature of
Mott transition in Hubbard model but modify a form of the phase diagram
on (U, T) plane and the structure of coexistence area.

In work [220] CDMFT with cluster in k-space for used for detailed study
of two-dimensional Hubbard model as a model approximating superconduct-
ing cuprates. Cluster problem was solved by CT — QMC method for low-
temperature values. From many interesting results obtained in this work we
will present only two of them concerning pseudogap state and local density of
states in superconducting gap energy scale.

In Fig.4.18 spectral function A(k,w) at w = 0 is shown calculated for
doping § = 0.09 below and above superconducting transition temperature 7Tt.
For T' < T, unstable normal metallic phase was considered. One can see that
Fermi surface has “arcs” structure: quasiparticle states exist on directions to
(£, £m) while on directions to (£m,0) and (0,+m) they do not exist. That
agrees with earlier results [221, 222] using approaches described in previous
section. Advantage of C'T'— QMC method is possibility to study temperature
dependence of pseudogap state. From comparison of two figures in Fig.4.18
one can see that with temperature lowering “arcs” are compressed. Calcula-
tions show that with doping increase quasiparticle states develop “banana’”
structure.

Another interesting result is presented in Fig. 4.19 where tunnel density of
states (local density) in superconducting state is shown near Fermi energy as
a function of doping. This picture agrees with experimental data for tunnel
spectroscopy in cuprates.

Calculations shown in Fig.4.19 were done at T" = 0.025¢. For optimally
doped system superconducting gap estimated from the spectrum is A ~ 0.09¢.
Calculated values of T, depends significantly on calculations procedure and
very in the limits limits from 0.026¢ to 0.036t. The ratio 2A/T. values
are in a broad interval between 5 and 18 and that means strong coupling
superconductivity because weak coupling theory should give 2A/T. = 3.5.
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Fig. 4.18. Spectral function A(k,w) for w =0 at doping value 6 = 0.09 for two-
dimensional Hubbard model calculated in CDMFT(CT — QMC) for temperatures

(a) T =T./2 and (b) T = 2T, where T¢ is superconducting transition temperature
[220]

Fig. 4.19. Tunnel density of states for superconducting phase of two-dimensional
Hubbard model at various doping values, T' = 0.025¢ [220]



4.4 Generating Functional for Green Functions 161
4.4 Generating Functional for Green Functions

4.4.1 Baym-Kadanoff Functional

In the theory of interacting particles Baym-Kadanoff functional Fgyk for one-
electron GF is often used [223]. As there is no a rigorous way to construct this
functional its approximated forms allow analyze self-consistently all approxi-
mations in calculation scheme. Another advantage of the functional is possi-
bility to calculate free energy and so to investigate thermodynamic of the
system. In application to strongly correlated model approaches based on
Baym-Kadanoff functional were developed in [9,210,224-227]. Very detailed
description of this approach is given in review [9]. In this section we will
present basis ideas of generating functional method.
Let us consider functional Z[J] for partition function with a source .J:

Z[J)=e FlU = /Dtzpe*S*f deda’y ™ (2)J (@,2")$(") (4.4.130)

functional integral is taken over Grassmann variables ¢ (z) and 1 (z) where
x includes all characteristics of one-electrons state: coordinate, time (thermo-
dynamic) and quantum numbers. Integration over z and 2’ mean summation
over all those variables. S is an action for the system and F[J] is free energy
in the field of the source.

Variating functional (4.4.130) over the source we obtain expression for GF
as a derivative of the functional F'(J):

SF[J]

In order to get equation for GF one need to define free energy functional F[J].
Let us write functional (4.4.130) without interaction between particles

e~ FolJo] — /D¢+D¢ exp {—/daﬁdx’w"‘(x)(a% — p+ Ho + Jo)i (')

0
(4.4.132)

We have used results of integration for Gauss functional integral (see App-
endix A). That gives us explicit expression for free energy

FolJo] = —Tr In(Gy' — Jy), (4.4.133)

where we drop constant term Tr In(—1) and used expression for noninteracting
particles GF: Gy = (iw + p — Hp) ™. From functional stationarity condition
(4.4.131) we can find expression for GF without the source:

G=(Gy" —Jo)™ . (4.4.134)
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We will consider this relation as Dyson equation for GF' of interacting system
where Jy is identified with self-energy of the GF' G:

Jo = Zim[G] = Gyt — G (4.4.135)

Using equations (4.4.133) and (4.4.135) let us write expression for Baym-
Kadanoff functional:

Fpx[G] = —Tr In (Gy' = Zin[G]) — Tr (Zine[G]G) + Pk [G].  (4.4.136)

Here first term comes from expression (4.4.133), the second realizes Legendre
transformation and the third one corresponds to interaction between particles.
Pk (G) is defined as a sum of infinite series of irreducible skeleton diagrams
for free energy [223].

In functional (4.4.136) quantities X, and G can be considered as inde-
pendent variables. Differentiation of (4.4.136) over G gives equation for

self-energy:
0PBK

G 7
as a functional of GF' G. Substituting this relation to (4.4.135) we obtain
Dyson equation:

Sing = (4.4.137)

oG’
defining GF' that after substituting it in functional (4.4.136) gives system
free energy. Hence, GF' and free energy are determined by irreducible Baym-
Kadanoff functional @gk. The accuracy of @k calculation gives the accuracy
of GF and free energy.

Gyt -Gt = (4.4.138)

4.4.2 Total Energy

Let us express total energy (H) = (Ho) + (Hint) via one-electron GF that in
our notation is:

G($1,JJ2) = —<TTQ$($1)1&+(.’172)>, (44139)

together with expression for zero order Hamiltonian and interaction
Hamiltonian

BHy = /d$1d$2’421+(x1)H0(1'17x2)5(7‘1 — Tz)iz)(xz), (4.4.140)

fHine = % / daydaoth™ (1) (22)Ue (@1 — x2) Y (22) (1), (4.4.141)

In review [9] an elegant derivation is given for (H). It is done by expressing
(Hp) and (Hiy) via one-particle GF' (4.4.139). It is obvious that

B(Ho) = /ddeQHo(l'hmz)G(xz,171)5(T2 -7 +07"). (4.4.142)
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For (Hi,) one should use equation of motion for GF with equal space and
time variables:

(86‘(3:1,:52)

o7, >Tﬁm_o+ = (0 (21) [H - uN,zﬁ(xl)b. (4.4.143)

ri—ro

It is easy to check two identities following form definitions (4.4.140) and
(4.4.141) for Hy and Hipy:

/ da™ (z) W(x),Ho} = H,, (4.4.144)
[ i@ [560), Hi] = 21, (1.4145)

Using Fourier expansions of GF in variables (71 — 72)
G(zy,22) =T Y e "M ")G(ry, ro5iwn), (4.4.146)

we obtain two relations:

T/drldrgHo(rl,rg)ZG(rgrl;iwn)ei“’"O+ = (Hy), (4.4.147)

Wn,

T / dr; Z(iwn)ei“’"o+G(r1r1; iwn) = (Hy 4 2Hipne — pn). (4.4.148)

Wn

The last relation can be derived with integration of equation (4.4.143) over
variable and using expansion (4.4.141) of GF in series. Combining relations
(4.4.147) and (4.4.148) we find:

1 : .
(Hint) = §T/dr1dr2 Zelw"0+ [(iwy, + @)d(r1 —r1) — Ho(rirs)]
wn (4.4.149)

1 : 1
G(rary;iwy,) = §Tr [e“"”0+ GalG} = iTr(ZG)
Finally total energy is given by a simple expression [9]

(H) = Tr <H0G + %2@). (4.4.150)

Free energy can be calculated by (4.4.136) that we rewrite as:

Fgx = —Trln [(an + u)éij —tij — Eij (an)] 7TI'[ZG] +@BK[Gij]- (44151)
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DMFT approximation is equivalent to presenting ®pk as a sum over
independent atoms where every contribution is determined by local GF only:

SRR = DG, (4.4.152)

Relation (4.4.137) immediately gives local self-energy:
Zij(iwn) = 055 X (iwn). (4.4.153)

Substituting this expression in general formula (4.4.151) we come to expression
for free energy functional in DMFT approximation:

0P
FBK [G”] = —Tr hl |:<an + o — ﬁ)) (Sij - tij:|

5 (4.4.154)
—Tr {EG“] + ; DG

Free energy is defined by this functional if corresponding GF' is obtained
from stationarity condition:
0Gi;
It is necessary that stationarity condition defines extremum (minimum or
maximum) but not saddle point so that all second derivatives of Fgx were of
the same sign (positive or negative). So Baym-Kadanoff functional should be
constructed in a way to satisfy this condition. Such problem was investigated
in works [9,210,225-227] and is discussed in details in reviews.

— 0. (4.4.155)

4.5 DMFT for Systems with Disorder

4.5.1 Anderson-Hubbard Model

Till now we have considered homogeneous systems with translational sym-
metry. The most interesting effect of strong Coulomb interaction is metal—
insulator transition happening for large enough value of Coulomb interaction
parameter U (Mott phase transition). There is known another physical mech-
anism for metal-insulator phase transition determined by disorder in the crys-
tal: so called Anderson localization [228]. This phenomenon was predicted by
Anderson for the system of noninteracting electrons moving in a stochastic
static field that can be produced by random distribution of small concentration
impurities in the crystal. Because of electrons scattering on inhomogeneous
field mobility edge €. appears in continuous electron spectrum separating
localized electrons area € < e, from itinerant electrons € > e.. If Fermi level
er < €. then the system is insulator and for e > &, it is metal.
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The question what role Coulomb interaction plays in Anderson localization
was investigated in many works [229-231] (see also references there) however
no final answer was found. It is difficult to take into account in theoretical
analysis both factors: strong disorder and large value of Coulomb interaction
parameter U ~ W. Coherent potential method does not lead to Anderson
localization [232]. Dobroslavljevic and Kotliar [233] investigated DMFT ver-
sion [234] where stochastic DMFT equations were solved. Generalization of
this method [235] resulted later in development DMFT method taking into
account both disorder and strong Coulomb correlations. Phase diagram on the
plane (A,U) was calculated where both localization mechanisms: Anderson
and Mott are acting. Analogous phase diagram was obtained with another
way of DMFT extension for disordered systems in [236].

In both works [234,236] a simplest model was used with Anderson-Hubbard
Hamiltonian:

=t Z ¢ éjo + Zemw + Uanan, (4.5.156)

(ij)o

Here second term accounts for stochastic value of atomic level energy on the
lattice £;. Without this term Hamiltonian is a standard Hubbard model where
hopping and local Coulomb interaction do not depend on site number. The
Hamiltonian (4.5.156) is a minimal model that can describe both Anderson
localization and Mott transition.

4.5.2 Phase Diagram for Nonmagnetic State

In work [234] the following model probability distribution for atomic level
energy &; was used:
(4/2 — |ei])
A )

where O is step function and A is disorder measure. Then in (4.5.157) model
probability of realization for ¢; values is the same in an interval —A/2 < ¢; <
A/2 and is equal to 1/A. The probability is normalized to unit.

Model with Hamiltonian (4.5.156) comes to single impurity Anderson
model ensemble with various values of ¢;:

Ple;) =0 (4.5.157)

Hgiam = Z(Ei e eio + Ul

(4.5.158)
+ Z (Vké,j(;.ékg' + Vk*éigéia) + Z EkCIUCkO"
ko

As noninteracting spectrum ey semielliptical density of states was used.

No(e) = /@ — 2, (4.5.159)

wd?

where D is half band width (W = 2D).
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For every ¢; value single impurity GF G(w, ;) was calculated with density
of states p;(w) = —LImG(w,e;) and then average density of states for the
system described by Hamiltonian (4.5.156). This average density of states
was chosen as:

N 1/N N )
plw) = (H pz-) = exp KZ lnpi> -

So by multiple STAM solution p(w) and local GF are calculated

= exp [(lnp;(w))].  (4.5.160)

Gw) = [ a2 (4.5.161)

w—w

G(w) can be expressed via self-energy

that for Anderson model is defined by hybridization function:

(W) =w—nw) -G Hw), (4.5.163)
nw) = “iﬁ (4.5.164)
" w Ek

For density of state (4.5.159) expression (4.5.164) comes to
Lo
n(w) = Zd G(w). (4.5.165)

Substituting expression (4.5.165) to (4.5.163) we find equation connect-
ing G(w) and XY(w). G(w) can be calculated by relation (4.5.161) if p(w) is
known from STAM solution for fixed atomic energy ¢; value. This problem was
solved by NRG method for T' = 0. Calculated phase diagram on the plane
(U, A) is presented in Fig. 4.20. For small U values with increasing disorder
parameter A Mott phase transition happens. Curves AI\C/IF and Alé/g{ define
the the coexistence area for metallic and insulating phases similar to usual
Hubbard model phase diagram on the plane (7, U). Dashed area in Fig. 4.20
marks transition between Mott and Anderson insulators. This transition is
not a phase transition but a crossover. So nonmagnetic phases of Mott and
Anderson insulator continuously transform to each other.

Basic features of this phase diagram were confirmed in work [236] where
DMFT + 3 calculation scheme was used that was earlier applied to describe
spatial fluctuations in DMFT (see Sect.4.3.3). In this scheme local corre-
lations were treated in DMFT with local self-energy X (iw) determined by
Coulomb interaction. Spatial fluctuations were introduced in phenomenolog-
ical way and self-energy Yy (iw,,) defined bythese fluctuations was added to
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Fig. 4.20. Phase diagram for Anderson-Hubbard model at half-filling [234]

local X (iwy,). For model (4.5.156) Xk (iw,,) is determined by a second term in
the Hamiltonian and can be written as:

Sic(iwn) = A G(k, iwy). (4.5.166)
k

Here >, G(k,iw,) is average electron number n on the site and A?
is a measure of random distribution for atomic energy level ;. Gaussian
distribution of €; on the lattice was supposed [237]

1 f

- 2
Vama©
and was normalized to unit as it was done for (4.5.157). Additivity of two
contributions X (iw,) and Yy (iw,) means neglecting of interference between
electron scattering on local potential inhomogeneity and due to electron—
electron Coulomb interaction. The term (4.5.166) presents self-consistent
Born approximation for local inhomogeneity (second term in Hamiltonian
(4.5.156)).

DM FT + X calculation scheme was described in previous section. In the
present case it was applied to three-dimensional cubic lattice.

Phase diagram on the plane (A, U) calculated in DM FT + Xy method is
presented in Fig. 4.21. One can see common features with phase diagram in
Fig. 4.20 with three phases: correlated metal, Anderson insulator and Mott
insulator. There are however two differences: at first coexistence area for

Ples) = (4.5.167)
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Fig. 4.21. Phase diagram of Anderson-Hubbard model at half-filing calculated by
DMFT + %) method [236]

metallic and Mott insulator phases is defined by two diverging U.; and U,
lines in contrast to converging lines in Fig. 4.20. At second separation line
between correlated metal and Anderson insulator is parallel to abscissa axis
when in Fig. 4.20 it is going up for small U and down for large U. These
differences are due to simplified approach in [236] where interference between
two contributions to X from Coulomb interaction and scattering on inho-
mogeneities is neglected. Please note that lines defining coexistence area are
obtained by two methods: from density of states and from conductivity cal-
culations. Comparing phase diagrams in Figs. 4.20 and 4.21 one can conclude
that there are more similarity then difference between them that demonstrates
that both approaches used in [234,236] are adequate.

In order to illustrate physics behind phase diagram in Fig. 4.21 we show
densities of states (Figs.4.22 and 4.23) for two U values corresponding to
metallic and insulating phases and their change with increasing of disorder
parameter A. In Fig. 4.22 U value was chosen corresponding to metallic phase
without disorder. One can see three-peak structure with high central peak and
two Hubbard bands. With disorder increase central peak broadens and side
maximums disappear. Broad and featureless spectra distribution for strong
disorder corresponds to normal metal with effective mass close to unit.

While ordered metal with large U has a gap on Fermi level disorder leads to
gap filling and central peak creation (Fig.4.23). Numerical analysis of spectra
evolution with A and U variation results in phase diagram shown in Fig. 4.21.
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Fig. 4.22. Density of states for Anderson-Hubbard model at half-filling for various
disorder parameter A and U = 2.5 typical for correlated metal [236]

0.8
1 A/2D=0

U/2D=2.25 I § gg?

0.6 ] 4043

/2D
Fig. 4.23. The same as in Fig. 4.22 for U = 4.5D typical for Mott insulator [236]

4.5.3 Optical Conductivity

In work [236] optical conductivity was calculated in self-consistent localiza-
tion theory using equations for diffusion coefficients of electrons in disordered
systems [237]. In Figs.4.24 and 4.25 we present two results from [236] for
real part of optical conductivity. In Fig. 4.24 optical conductivity is given for
five values of A (curves 1,2,...,5). Coulomb parameter U = 2.5D is typical
for correlated metal. With A increase curves change dramatically. Curves 1
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Fig. 4.24. Optical conductivity for Anderson-Hubbard model at half-filling cal-
culated by DM FT + Yy method for various disorder parameter A and U = 2.5D
typical for correlated metal [236]
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Fig. 4.25. The same as in Fig. 4.24 for U = 4.5D typical for Mott insulator [236]

and 2 show metallic phase due to Drude peak presence. Curve 3 corresponds
to mobility edge and curves 4 and 5 to correlated Anderson insulator.
Figure 4.25 was done for larger value U = 4.5D typical for Mott insulator
so lines 1 and 2 for small A values show Mott insulator. Line 3 corresponds to
mobility edge and curves 4 and 5 to Anderson insulator. Such phase change
with disorder parameter increase one can see on phase diagram Fig. 4.21.
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Fig. 4.26. Density of states for Anderson-Hubbard model with electron concentra-
tion n = 0.8 and U = 6.0D typical for doped Mott insulator [236]
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Fig. 4.27. Optical conductivity for Anderson-Hubbard model at n = 0.8 for various
disorder parameters A and U = 6.0D typical for doped Mott insulator [236]. In the
inset: high frequency Reo(w) showing transitions to upper Hubbard band

Till now results of Anderson-Hubbard model for half-filling were discussed.
In Fig. 4.26 density of states for electronic concentration n = 0.8 at U = 6.0D
is shown. For all disorder parameter A values three-peak structure is observed.
Central peak intensity decreases with A enhancement and spectral weight is
partially transfered to Hubbard bands. In Fig. 4.27 optical conductivity is
presented calculated for the same parameters values as in previous figure.
For Figs. 4.26 and 4.27 one can see that doped Mott insulator behaves with
disorder increase similar to correlated metal considered earlier.
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Two different approaches to Anderson-Hubbard model described earlier
lead to qualitatively the same results. It is worth to note that calculation
scheme of [236] is much simpler then full numerical calculations in [234].

In both works [234,236] nonmagnetic phases were considered. For low tem-
peratures in strongly correlated materials spin ordering can happen: antifer-
romagnetic for insulator and ferromagnetic for metallic phases so it would be
interesting to investigate Anderson-Hubbard model with magnetic ordering.
Recently such investigations were done for periodic Anderson model (PAM).
In [238] DMFT was used to study ferromagnetic state in PAM in the pres-
ence of alloy disorder. Such disorder can be created in a metal by substituting
part of the atoms by isovalence elements. Alloy disorder can increase Curie
temperature due to enhancement of local magnetic moment. In work [239]
localization effects in PAM due to alloy disorder were investigated. In [240]
by the same method transport properties were studied. Such studies should
be continued because there are a lot of experimental data showing strong
influence of disorder on electronic and magnetic properties for f-electron sys-
tems that can be described by PAM or Kondo-lattice models (see references
in [238-240])).
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Periodic Anderson Model (PAM)

5.1 Early Studies for PAM

5.1.1 PAM as a Basic Model for Heavy Fermion Systems

Among many f-electrons (rare-earth and actinides) compounds especially
interesting are so called “heavy fermion” (HF') systems. Anomalously high
values of electronic specific heat and low-temperature magnetic susceptibility
evidence high effective mass m* value for charge carriers that can be tens and
hundreds time larger than electron mass m. Magnetic and transport prop-
erties of such compounds are strongly temperature dependent. For high T
f-electrons seems to be weakly interacting with itinerant electrons forming
localized magnetic moments. However for low temperatures the picture is
drastically different: local magnetic moments are suppressed and transport
properties correspond to approaching to insulating state with T decrease. At
T = 0 they could become insulators due to gap appearance on Fermi surface.
Such systems are called Kondo insulators.

Two main questions require theoretical explanation: what determines
energy scale T separating low- and high-temperature behavior and what is
the origin of heavy fermion phenomena? It is clear that the basis of this
phenomena is hybridization between localized and itinerant electrons and
also itinerant electrons scattering on localized electrons magnetic moments
with spin flip resulting in Kondo resonance appearance on Fermi surface.
In diluted magnetic systems Kondo resonance leads to localized spin screen-
ing due to polarized electrons cloud around local magnetic moment. Energy
of this screening is determined by parameter Tk called Kondo temperature.
This parameter separates two regimes: high-temperature T' > Tk where local
spins are not screened and low-temperature 7" < Tx where such screening is
effective.

In concentrated systems where number of f-atoms with partially filled
shells is comparable with a number of crystal cells a screening effect is
also present and the problem of connection between parameters T* and Tk
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appears. In general Tk defines the temperature where local moments become
to be screened by itinerant electrons and T is a temperature when coherent
state for itinerant electrons is stabilized.

Fundamental answers to these questions were found before DMFT devel-
opment and later we will give a short review of the earlier studies. Basic model
for f-systems is periodic Anderson model (PAM) with Hamiltonian:

= E&c E :Czaclff + E :tU 1(76]‘7

ijo

+EfznlU+UanTn’Ll ( ij za’fja+ ij‘f;oéiff)‘ (511)

ijo

It describes localized f-electrons on all sites embedded in itinerant electrons
bath with a term responsible for hybridization between localized and itinerant
electrons.
PAM is described by one-electron matrix GF
- Tfla]ﬁg - Tf106JTU A 7 (1.2
G”(LQ): < A2 2 E(fo( ’ )GG( ) ))
- <Talafgg —{Teéb, 71(1,2)G7,(1,2)
(5.1.2)

Here numbers note combined indexes including site number and thermody-
namic time. For example 1 = (i;71) and so on.

It is easy to write equation of motion for all four GF similar to what we
did in Chap. 3 for single impurity Anderson model (STAM). Their solution is:

1

7 (k) = _ (5.1.3)
u iwn—l—u—&f—z"(k)_m%
GFs(k) = — : Vs S, (5.1.4)
(iwn + pt — ex) [iwn + p —ep — (k)] — |Vi|
. Vi
7 (k) = — : k 5, (5.1.5)
(iwn + pt — ex) [iwn + p —ep — (k)] — |Vi|
G (k) = 1 (5.1.6)

VA |2

iwn 4 p— e = X7(k) = g —rrm

Here k = (k,iw,) is four-component momentum including wave vector and
frequency.

Expressions (5.1.3)—(5.1.6) give formal solution without a way to calculate
self-energy ¥(k,iw,) determined by Coulomb interaction among f-electrons.
In a case U = 0 relations (5.1.3)-(5.1.6) are fully defined and poles of any
component of matrix GF can be found from

(iwn + 1 — ex) (iwn + 1 —7) — |Vi|> = 0. (5.1.7)
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This equation defines two branches of spectra separated by hybridization gap
|Vk|. Self-energy X (k,iw,) modifies the spectrum and its calculation is a
central problem. For strong Coulomb interaction (U > W) various nonper-
turbative methods are used for this purpose. At first we will give short review
of PAM investigation before DMFT was developed.

5.1.2 Review of Early Analytical Studies for PAM

At the beginning we consider single impurity Anderson model (SIAM). It is
defined by Hamiltonian following from (5.1.1) if summation over sites occupied
by f atoms is omitted. After Fourier transformation we have:

Hgiam = kaélaéka +ef Zf;—fg + UﬁfTﬁfl

ko o

+ 3 (Vi fo + Vi Flér ) (5.1.8)
ko

SIAM Hamiltonian contains many parameters (W, e, U and electronic con-
centration) that means very complicated phase diagram. Two main regimes
can be distinguished differing by position of f-level relatively to Fermi level
of itinerant electrons band.

In Fig. 5.1 those two regimes are illustrated. At first case atomic level € 5 lies
below conduction band and level €y + U corresponding to double occupancy
lies above the band (Kondo regime). At the second case f-level is very close to
Fermi energy and as a result noninteger occupation of impurity state happens
(intermediate valence regime).

There is special case: symmetric Anderson model where

EF—EfZ(Sf-i-U)—EF, (5.1.9)

i.e., both levels ¢y and €5+ U have equal energy separation from Fermi energy.
In this case hole and particle excitations in f-state need the same energy. If
energy is measured relative to Fermi level (ep = 0) then relation (5.1.9) can
be rewritten as:

%+ U =0. (5.1.10)

eg+U

W =
€q

|

Fig. 5.1. Localized magnetic moment regime (Kondo regime, left side) and
intermediate valence regime (right side) in single impurity Anderson model
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Schrieffer and Wolf [241] have shown that in Kondo regime Anderson
model is equivalent to single impurity sf-exchange model defined by
Hamiltonian

Hsp = ewtl,txo — J (Ss), (5.1.11)
ko

where S is local spin operator on impurity site, s the itinerant electron spin
operator, J is exchange integral expressed via Hsianm Hamiltonian parameters:

U

J=2%f ———— <
leflles + U|

0 (5.1.12)

Effective sf-exchange coupling is antiferromagnetic that results in formation
of itinerant electrons cloud with spin polarization opposite to localized spin
direction.

This state is called Kondo singlet and its coupling energy is Kondo
temperature [242]:

Tk ~ We i, (5.1.13)

Here and in the following we assume Boltsman constant equal to unit. In this
expression pg is density of states on Fermi level and in expression (5.1.12)
for effective exchange wave vector k lies on Fermi energy. Formula (5.1.13)
was obtained in perturbation theory over parameter |J|pp < 1 and so Tk is
very small quantity comparing with characteristic electron energy scale: band
width W or Fermi energy er for normal metal.

In perturbation theory Tk is a temperature where this theory fails. In more
sophisticated approach (see Hewson book [243]) Tk defines a temperature
when localized moment starts to be screened by conduction electrons cloud.
Exact solution of Kondo model shows that at T' = 0 local spin S = 1/2 is com-
pletely screened. Tk is not phase transition point but rather a crossover where
gradual transition from weak coupling to strong coupling regimes happens.

In concentrated Kondo system that is equivalent to PAM simultaneously
with local moment screening a sharp peak in the density of states on the Fermi
level appears (Abrikosov-Suhl resonance [34,244]). Its origin is a hybridization
of f-states with itinerant electrons.

Characteristic feature of PAM is existence of energy scale similar to Kondo
temperature in SIAM. This was shown by Rice and Ueda [245,246] in cal-
culations using one of the nonperturbative approaches: variation Gutzwiller
method [247]. In Kondo regime for nearly fully occupied f-level (i.e., at
ny ~ 1) and large Coulomb interaction value they have derived effective
Hamiltonian for low-energy properties of the model. This Hamiltonian has
a form:

Hep =Y ewil,tio+ery il +Y Vo (él,fw + ffaéw) . (5.1.14)
ko 10 i
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Here explicit Coulomb interaction among f-electrons is absent and hybridiza-
tion matrix element is renormalized via dependence on f-level occupancy:

Vo =/, V. (5.1.15)
Normalizing parameter g, in the limit U — oo depends on f-states occupancy:

_Ll=mny

4o (5.1.16)

l—n‘]{

For occupancy ny ~ 1 quantity ¢, and hybridization ‘7,, have small value.
This means appearance of narrow band of hybridized states. From Hamil-
tonian (5.1.14) one can see that in second-order perturbation theory in
hybridization f-electrons can hop over the lattice sites that results in elec-
tronic band with effective width

2
W ~ ~ qo ~ (1 —ny) (5.1.17)

that vanishes with ny approaching to unit. With band narrowing effective
mass strongly increases

*

m

~ (Wejizf)il ~

1. 5.1.18
m 1—mng > ( )

that means “heavy fermion” effect. This relation can be rewritten as

*

m TF
~
m  T*

(5.1.19)

where T is degeneracy temperature in noninteracting conduction band and
T* quasiparticle energy scale (band width for f-electrons). From Gutzwiller
method calculations [247] follows that for Kondo regime (ny ~ 1)

T ~ We 27T (5.1.20)

Comparing (5.1.20) with (5.1.13) one can see that T* > Tk. Combining
expressions (5.1.13), (5.1.18), (5.1.19), and (5.1.20) we find relations between
effective masses in lattice and impurity models:

TIPAM. | o= 3T, (5.1.21)
Msram

Please note that relations (5.1.18)—(5.1.21) are valid only for Kondo regime
that is realized for ny ~ 1.
In addition to this relations we will write another one for density of f-states
on the Fermi level [248]:
T

prler) =~ p(sp)ﬁ (5.1.22)
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that is equivalent to (5.1.19). So it was shown using variational Gutzwiller
method that in Kondo regime for PAM there is a sharp f-states peak on
Fermi level. Energy scale of lattice model T is much larger that corresponding
energy scale Tk for single impurity model. Those results were confirmed in
further PAM investigations by other nonperturbative methods: “slave bosons”
[249,250], 1/N expansion method (N is f-orbital degeneracy) [124,248].

Simplest explanation for narrow f-band and correspondingly large effective
mass is that at ny ~ 1 the number of holes (and doubles) is very small so
that f-electron cannot move on the lattice without paying large Coulomb
energy price.

5.1.3 DMFT for PAM

As for Hubbard model the most rigorous solution of periodic Anderson model
can be obtained in DMFT method where lattice problem is reduced to equiv-
alent single impurity problem. DMFT equations for PAM are formulated
analogously to those for Hubbard model.

Let us consider GF for f-electrons defined by (5.1.3). In agreement with
basic DMFT idea we assume that self-energy X'(k,w) depends only on fre-
quency (spin index is omitted because we consider only paramagnetic state).
We write local GF (diagonal in site indexes matrix element Gg) and note it
as Gloc(iwn):

1

Gloc(iwn) = (5123)

[V |
iwn+H—EKk

% twn +p—ep — Dliwn) —

Here GF differs from corresponding local GF in Hubbard model by hybridiza-
tion term in denominator. If we neglect k-dependence of matrix element
Vk and replace it by real constant V' we can in (5.1.23) come from sum-
mation over k to integration over ¢ using density of states p(e) for non-
interacting band.

Then we define f-electrons GF for effective single impurity Anderson
model with the same self-energy as for lattice model:

1
iwn + pp—ep — Aliwn) — X(iwn)

Glimp (iwn) = (5.1.24)

Here A(iwy,) is hybridization function that implicitly depends on X (iw,) and
that should be calculated together with ¥ (iw,, ) from self-consistency condition

Gloc(iwn) = Gimp (iw). (5.1.25)

For that one should calculate Gipp(iwy,) of single impurity Anderson model
in the same way as it was done for Hubbard model, for example by QMC
method that was described in Chap. 3.
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Fig. 5.2. Temperature dependence of (a) total density of states and (b) f-electrons
partial density of states ps(w) calculated in DMFT(QMC) for parameter values
V =05, U =2 [251]

By this method (in Hirsch-Fye algorithm) DMFT investigations for PAM
were done in pioneering work of Jarrell [251] for symmetric model with
condition: U

&= ng=1 mnc=1 (5.1.26)
In this condition at T" = 0 the gap should appear in quasiparticle spectrum
on Fermi level and Kondo insulator state is realized.

In Fig. 5.2 spectral function is shown obtained in final temperature QMC
calculations. At low T values pseudogap appears that should transform to real
gap with temperature interpolation to zero.

At high temperatures higher than characteristic temperature T ps(w) is
a smooth frequency function. At T < T* sharp maximum is formed. Peak
appearance in ps(w) is determined by resonance Kondo scattering of conduc-
tion electrons on localized f-electron magnetic moments and its position is
comparable with Kondo temperature for PAM. In Fig. 5.2 T* = 0.23 (in band
width W units) and energy gap value in electronic spectrum is A ~ 0.57*.
Calculations for dynamical magnetic xs and charge x. susceptibilities show
that their corresponding gaps are twice as large as quasiparticle spectrum
gap: Ay = Ac = 2A = T*. So DMFT(QMC) calculations demonstrate energy
scale T existence.

In Jarrell work temperature dependence of magnetic susceptibility and
electronic specific heat were calculated for various Hamiltonian parameter
values satisfying condition (5.1.26). This quantities scale with T* while for
SIAM corresponding energy scale is Kondo temperature Tk (Figs.5.3—5.4).

So numerical calculations for PAM using DMFT(QMC) method confirm
results of earlier studies based on approximated nonperturbative methods.
They demonstrate gap existence in quasiparticle spectrum at 7T'=0 and
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Fig. 5.3. Scaling behavior of magnetic susceptibility as a function of temperature
from DMFT(QMC) calculations [251]
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Fig. 5.4. Scaling behavior of f-electrons contribution to specific heat as a function
of temperature from DMFT(QMC) calculations [251]

low-energy properties show energy scale T* that is much larger than Kondo
temperature Tk for SIAM at the same parameters €7, U, and V values.

5.2 PAM Studies by DMFT Method

5.2.1 DMFT(NRG) Results at T =0

Detail study of PAM spectral properties at T' = 0 was done in DMFT with
auxiliary single impurity Anderson model solved by numerical renorm-group
(see Sect. 3.1.5) in work of Pruschke, Bulla, and Jarrell [252]. In this section
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Fig. 5.5. Local density of f-states Ay(w) for SIAM (dashed line) and PAM (solid
line) for particle-hole symmetric case and parameters values U = 2, V2 = 0.2. The
inset shoes magnification for area near Fermi level [252]

we present results of this study. NRG technique will be described in the next
section when we will discuss more simple model: Kondo lattice model (KLM ).

At first we consider particle-hole symmetric case defined by condition
(5.1.26). In Fig. 5.5 spectral function As(w) is presented for PAM and STAM
for fixed values of model parameters U and V.

Results for STAM show well known picture: two broad peaks at frequencies
w = £U/2 (Hubbard bands) and Abrikosov-Suhl resonance at the Fermi level.
In PAM case incoherent peaks at w = +U/2 are preserved but the central
peak corresponding to coherent states is split because of hybridization between
f and s electrons. The width of this peak in PAM is significantly larger than
resonance peak width in SIAM. For SIAM the width of the peak defines
characteristic energy scale — Kondo temperature Tx. In PAM case peak width
defines lattice energy scale T* and T™* > Tk as one can see in the inset in
Fig.5.5. This result agrees with predictions in Rice and Ueda work [246].

In Fig. 5.6 frequency dependence of imaginary and real parts of self-energy
is presented for impurity and lattice models for the same parameter U and
V values as in Fig. 5.5. One can see that imaginary part of X'¢(w) is negative
for all frequencies as it is required by analytical properties of retarded GF.
Difference between results for impurity and lattice models reveals itself mostly
in area near Fermi level that can be seen in insets in Fig. 5.6.

Please note different slope of ReX'(w) curves near w = 0. The derivative
d%ReEf (w) |w=0 defines according to (3.3.146) intensity of quasiparticle peak
and also quasiparticle effective mass:

dReX'¢(w) m*

Z7l =1 — 7/ = 2.2
f dw m’ (5.2.27)

w=0

* *
One can see that mpy < Mran-
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Fig. 5.6. Self-energy X (w) for SIAM (dashed line) and PAM (solid line) for
particle-hole symmetric case and parameters values the same as in Fig.5.5. The
inset shoes magnification for area near Fermi level [252]

Numerical calculations for various parameter U and V' values (or different
Jp values) show the following dependence:

MRAML o~ (5.2.28)
Mgram
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Fig. 5.7. Anderson width I'(w) of d-level for SIAM and PAM for the same
conditions as in Fig. 5.5 [252]

So numerical calculations in DMFT(NRG) method results in exponentially
small effective mass value for lattice model comparing with impurity one. That
agrees well with Rice and Ueda results (5.1.21) however numerical coefficient
in exponent is 1/3 instead of 1/2.

Important model characteristics in DMFT together with self-energy X'y (w)
are hybridization function A(w) and Anderson impurity level width I'(w) =
—ImA(w). In impurity model I'(w) could be chosen as a constant but for
lattcie model it is impossible because I'(w) has deep depression near w = 0
and on w = 0 d-peak appears (Fig.5.7).

Let us consider now state with broken particle-hole symmetry. It can be
realized by two ways: by braking relation 24+ U = 0 preserving other condi-
tions or by changing Fermi level position. Example of the first case is shown
in Fig.5.8.

For given values of Hamiltonian parameters (n.) ~ 1 and (ns) ~ 0.92 one
can see as in symmetric case three peak structure with a quasiparticle peak
split by hybridization gap. This gap is now above the Fermi level and its width
is significantly larger than Kondo peak width in SIAM again demonstrating
increase of energy scale for lattice model. This feature is also seen on Anderson
width curve. In I'(w) narrow peak is observed slightly above Fermi level but in
contrast to ny = 1 case this peak has final width due to quasiparticle decays
for w > 0.

Another case of particle-hole symmetry braking is in setting €. > 0. In
contrast to considered earlier case ¢, = 0 where conduction electron num-
ber n. = 1, for €. > 0 case conduction electrons number n. < 1 and with
increase of €, deviation of n, from 1 can become significant. In this situation
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Fig. 5.8. Local density of states Ay(w) and Anderson width I'(w) for SIAM and
PAM in symmetric case for parameters values: ec =0, ey = —1, U = 6, V2 =02
The inset shoes magnification for area near Fermi level [252]

hybridization gap in f-electrons spectral function Ay (w) disappears. The same
happens for conduction electrons density of states p.(w) (Fig.5.9).

Hybridization gap disappearance at small n. leads to exhaustion phe-
nomenon predicted by Nozieres [253] from phenomenological considerations.
The essence of this phenomenon is the fact that in order to screen local
moments one needs one conduction electron on every lattice site occupied by
f-atom. When conduction electrons number n. becomes too small screening
of all lattice site become impossible and hybridization gap become a pseudo-
gap with a width decreasing with n. decrease. That means that energy scale
T* decreases with n. and T becomes smaller than Tk.
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Fig. 5.9. Density of states p°(w) of itinerant electrons for PAM at parameters
values: e = —1, V2= 0.2, (a) U = 6, c = 0(ne =~ 1) and (b) U = 2, ec = 0.5(n. =
0.6). Dashed lines are for noninteracting density of states p§(w) for corresponding
values of ec [252]
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Fig. 5.10. Dependence of % (m”* is effective mass for quasiparticle peak) on num-

m*

ber of electrons in itinerant band n. for U = 2, V? = 0.25, ny ~ 1. In the inset:
ratio ZSIAM = %L as a function of n. [252]
MpAM K

In Fig. 5.10 the change of effective mass with n. decrease is shown calcu-
lated for lattice and impurity models. One can see that at n. =~ 1 msram and
mpam are of the same order but mpam < msiam and so T > Tk.
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With n. decreasing quantity m;’;M ~ T* falls drastically that confirms

Nozieres prediction that for the systems with small conduction band occu-
pancy there are two energy scales: one of the order of Tk characterizes begin-
ning of Kondo screening and another one corresponds to coherent states
appearance or in other words Fermi liquid behavior. Detailed comparison
of predicted by Nozieres exhaustion picture at small n. with numerical
calculations results by DMFT(NRG) method is given in [252].

5.3 Kondo Lattice

5.3.1 DMFT for Kondo Lattice

In the previous section we have shown that in Kondo regime Anderson model is
equivalent to sf-model (5.1.11) with antiferromagnetic exchange interaction
between localized spins and itinerant electrons that is called Kondo lattice
model (KLM). That means that found in DMFT calculations features of
PAM should be observed in KLM too. That includes existence of two energy
scales T and Ty. We will show that it is indeed so from KLM analysis. KLM
Hamiltonian is:

H=> eél,éo+J Sisi. (5.3.29)
ko %

Here S is local spin operator on impurity site and s is itinerant electron spin
operator that can be expressed via Fermi operators:

si = e, (5.3.30)

nz

where o is a vector formed by Pauli matrices oy, and ¢, (éio) are Fermi

operators of creation (annihilation) of conduction electron on cite ¢ that are
connected with ¢y, (ELO_) operators by Fourier transformation:

A 1 s kR,
Civ = —— Crg€ . 5.3.31
(2 \/N zk: k ( )

DMFT method can be applied to Hamiltonian (5.3.29). Such calculations
were done in Costi and Manini works [254, 255] that will be described in this
section.

Retarded GF' for conduction electrons is:

GE(t —t') = ((Gie (1), (1)) (5.3.32)
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(definition is given in Appendix B). Its Fourier component in spatial and time
variables G7 (k,w) is expressed by Dyson equation via self-energy X9 (k,w):
1

7(k = .
G (k,w) w+p—ex — 2ok, w)

(5.3.33)

Following basic DMFT idea we neglect wave vector dependence and introduce
local GF' (diagonal in site indexes matrix element):

G (w) = ; Py gi =) (5.3.34)

We define GF of auxiliary sf-model G{__(w) with the same self-energy

imp
Y7(w) and parameters satisfying self-consistency condition:

G3(w) = Gy (). (5.3.35)

To two DMF'T equations (5.3.34) and (5.3.35) we add equation for chemi-
cal potential that expresses conduction electron number n. via electronic GF":

e = %Z@o@ﬁ = ;/de(w)p‘Z(w), (5.3.36)

P9 (w) = —}Tlmag(w). (5.3.37)

In the following we will consider paramagnetic phase and so spin index in GF
and density of states will be omitted.

As usual in DMFT one need to calculated single-impurity problem GF.
We have already described in Chap. 3 quantum Monte Carlo (QMC') method
for this problem and now we will describe another popular method Numerical
Renorm-Group (NRG). Applications of this method to PAM were described
in previous section and now we will describe how this method can be applied
to KLM.

5.3.2 Numerical Renorm-Group Method for Single Impurity
Kondo Problem Solution

Single impurity Kondo problem Hamiltonian is:

Himp = Y _ exll, ko + JSs. (5.3.38)
ko

NRG method was initially applied to this model by Wilson and later by other
authors [116,148,252,256,257]. It includes logarithmic discretization of energy
space and then consecutive taking into account contributions from high-energy
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states to effective Hamiltonian. In the result we obtain Hamiltonian corre-
sponding to low-energy physics of the system. That is very important for
Kondo model where sharp Kondo resonance appears on the Fermi level.

We assume that Fermi level (chemical potential for final temperatures) lies
inside conduction electron band of width 2D and its low edge is —D_ and high
edge is D. We will divide energy region on unequal energy slices £ D A™"™,
n =1,2,... and A > 1. Value n = 0 corresponds to initial energies +D.
and with n increase chosen energy mesh become more dense. Let us assume
that in the limits of one energy slice between points n and n + 1 Hamiltonian
parameters are constant. With some unitary transformation of discretized
Hamiltonian we will come from Hamiltonian (5.3.38) with continuous states
to discrete states Hamiltonian so that A, ~ A~"/2.

1mp - JZSb()#UquOV + Z En

n=0,v

+ Z Ao (0 b + B 1 bnw). (5.3.39)

n=0,v

where we have new set of by, such that by, = ¢oo-

We distinguish in this Hamiltonian point with n = 0 and the rest with
states n = 1,2,... we diagonalize and come to new set of k states dy, with
dispersion Fy,. In the result effective Hamiltonian has a form:

1mp - JZ SbOHU/LUbOy + ZEObO bOy + Z Ekuakuaku

nv
+ > (Vd, bow + Vk*boydku). (5.3.40)
kv
Hybridization parameter Vi is formally defined here via relation:
Aobioe = Vi (5.3.41)
k

So in the result of energy discretization we come to effective Hamiltonian
(5.3.40) that is generalization of single-impurity Anderson Hamiltonian where
“localized” state with energy eg is embedded in continuum of states with
energies Fyo and localized state has exchange interaction with localized spin.

Retarded GF for “localized” state is:

G (@) = (oo ey} = (oo |B,))e- (5.3.42)
Equation of motion for it gives a pair of connected equations:

(w=£0)G7 (W) =1+ Y Viel{aro b}, + I (w)
k

(w = Exo)({akolbfs))w = kG (w), (5.3.43)
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where

I (w) = (O [bfy) e (5.3.44)
Oy = = (bosS~7 + 0bpsS?). (5.3.45)

Solution for system of (5.3.43) can be written as:

W = S R ) (5.3.46)
2
A%(w) =" w"i—k|Ek (5.3.47)
k
57 (w) = EUEZ; (5.3.48)

5.3.3 Two Energy Scales

In works [254,255] all expressions for Kondo lattice and spin S = 1/2 were
derived at fixed value of parameter J/D = 0.3 and different values of n. and T'.
In Fig.5.11 density of states is presented for conduction electrons ps(w) and
spectral function for localized electrons Ay(w) for two values of n. at zero
temperature.

One can see that exchange interaction with localized spins leads to two
effects: broadening of conduction electrons band (noninteracting band is
restricted by —D < w < D area) and pseudogap formation due to hybridiza-
tion effects. Local density of states shows Kondo resonance on Fermi level
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Fig. 5.11. Local spectral function Ay (w) for Kondo lattice (solid line) and itinerant
electrons p.(w) (dashed line) for two values of band filling nc: (a) ne = 0.9 and
(b) ne = 0.6; T = 0 [254,255]
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(sharp peak) that for n. = 1 is split due hybridization in the same energy
scale as a pseudogap. For n, = 0.6 this splitting is not observed because second
(right) peak intensity is strongly suppressed with n. decrease but the splitting
can still be seen at all values 0.2 < n. < 0.96. So in Fig. 5.11 two energy scales
existence can be observed. One for pseudogap width and another low energy
one for Kondo resonance width. For small conduction band occupancy only
low energy scale is present in Ay(w).

For half-filling (n. = 1) pseudogap becomes true gap and Kondo insulator
state is realized. We call characteristic high energy scale defined by pseudogap
width as T*. Numerical calculations analysis shows that T* is of the order of
Kondo temperature Tk for single impurity case. With occupancy n. decrease
T* slowly decreases, however, for n. =2 0.6 T* is in the interval T%/D =
0.02 — 0.025. So high energy scale is approximately the same for all electron
concentrations.

Low energy scale Tj reveals itself in temperature dependence. Let us con-
sider imaginary part of self-energy X'(w) as a function of frequency at vari-
ous temperatures (Fig. 5.12). ImX¥(w) defines quasiparticle decay and becomes
zero at Fermi level as temperature approaches Ty and so Ty is called Fermi lig-
uid coherence temperature. Deep minimum in ImX(w) evidence strong quasi-
particle damping on the pseudogap edge above the Fermi level and corre-
sponding frequency w value has an order of high energy scale T*. As one can
see from the figure its values do not change in broad temperature interval
values well beyond Tj.

As for the second scale Ty its value strongly depends on electron concen-
tration n¢. At n. ~ 1 Ty has an order of T* values but for n. decreasing Tj
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——- T/T,=2.08
—-— T/T,=0.93

- T/T,=0.41
— T/T,=0.18

Im[2(0,T)]
|

-15¢F
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Fig. 5.12. Temperature dependence of imaginary part of self-energy X (w) for
ne = 0.8 showing existence for scale Ty [254,255]
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Fig. 5.13. Temperature dependence of p.(w) and Af(w) for n. = 0.8 showing
existence of high-energy scale T together with low-energy scale Ty [254,255]

drastically falls. Already for concentration n. = 0.8 % ~ 17 and for n, = 0.4

% ~ 300. In the same time at fixed n. Ty and T™* vary with J change in the
same way.

Two energy scales existence is well pronounced in Fig. 5.13 where temper-
ature dependence of spectral functions p.(w) and Af(w) is presented. Behav-
ior of this quantities is direct consequence of ImX(w) behavior as shown in
Fig.5.12. One can see that as for self-energy quantity Ty describes temper-
ature dependence of p.(w) and A¢(w) near Fermi level. In contrast to that
energy region corresponding to minimum in p.(w) (pseudogap area) starts
changing with temperature at T' > Ty. Two energy scales existence Ty and
T* in Kondo lattice was also demonstrated in work [258] with slave boson
technique.

5.3.4 Photoemission Spectra Calculations by NRG Method

Low-energy physics of Kondo lattice systems obtained in theoretical studies
can be checked in photoelectron spectroscopy (PES) and inverse photoelectron
spectroscopy (IPES) experiments. Spectral intensity can be calculated as:

I_(w) = f(w)Af(w), (5.3.49)
1) = [1— f@)) As(w), (5.3.50)

where f(w) is Fermi distribution function. So I_(w) (PES) gives information
about occupied states and I (w) (IPES) about empty states.

In Fig.5.14 calculated spectra for Kondo lattice are presented at n. =
0.8. As PES and IPES intensities are proportional to local density of states
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Fig. 5.14. Temperature dependence of PES (left) and IPES (right) for Kondo
lattice at n. = 0.8 [254,255]
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Fig. 5.15. Comparison of temperature dependence of calculated PES for Kondo
lattice (lines) with experimental spectra (symbols) for YbInCuy [259]

this figure follows temperature dependence of A¢(w) as shown in Fig. 5.13.
Formulas (5.3.49) and (5.3.50) together with calculated values of Af(w) allow
comparison with experimental spectroscopy data.

In Figs.5.15 and 5.16 comparison of experimental and theoretical PES
spectra for two compounds YbInCuy [259] and YbAgCu, [260] is presented.
One can see that in both cases experimental curves form and their temperature
dependence agree well with calculated spectra. Detail comparison of theory
and experiment is done in [254,255].
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Fig. 5.16. Temperature dependence of PES for YbAgCuy [260] in comparison with
calculations for Kondo lattice [254,255]

5.3.5 Magnetic Ordering in Kondo Lattice Study
by Continuous-Time QMC Method

Results of [254,255] were obtained for rather weak exchange antiferromag-
netic interaction J/D = 0.3. In work [145] detail study of Kondo lattice was
performed for exchange interaction of both signs and broad range of values.
That allowed to study phase transitions to magnetically ordered sates. Sin-
gle impurity problem was solved by CT-QMC method with hybridization
expansion (see Sect. 3.2.5). Exchange interaction of conduction electrons with
localized spin has local character and was included in single-impurity problem.
Zeroth order GF is a matrix whose eigenvalues can be easily found. Expan-
sion in hybridization means that exchange interaction can be arbitrary large.
CT-QMC method does not suffer from “sign problem” and can be effectively
used for low temperatures.

We will present here few results from [145]. In Figs. 5.17 and 5.18 calculated
values of electron GF' as a function of thermodynamic time 7 are presented for
ferromagnetic (Fig.5.17) and antiferromagnetic (Fig. 5.18) exchange interac-
tions. Please note logarithmic scale on G(7) axis that shows drastic decrease
of GF with variation of exchange interaction |J|. Final (nonzero) values of
G(7) on whole 7 interval evidence metallic ground state of the system.

In the ferromagnetic coupling case metal-insulator phase transition hap-
pens between values J/t = —6 and —8 while for antiferromagnetic coupling at
lower J/t values. From Fig. 5.18 one can see that with T' decrease G(7) value
falls fast and at 7' — 0 a gap should open that means Kondo insulator state.
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Fig. 5.17. Electron GF for Kondo lattice calculated by Continuous-time QMC
method for ferromagnetic exchange interaction [145]
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Fig. 5.18. Electron GF for Kondo lattice calculated by Continuous-time QMC
method for antiferromagnetic exchange interaction [145]

In this state in spin and charge fluctuation spectra gaps As and A should
open increasing with parameter |.J|/t increase (Fig.5.19).

Similar behavior was found by Jarrell in PAM in Kondo regime in
calculations by Hirsch-Fye QMC method [251].

In Fig.5.20 we show sublattice magnetization on antiferromagnetic state
as a function of J/¢ and T. In Fig.5.20 one can see that for small |J| values
magnetic ordering vanishes for J/t values between 1.0 and 1.2 and quantum
transition from antiferromagnetic to paramagnetic state happens. In classical
case (S = oo0) Neel temperature is significantly lower than for quantum case
(S = 1/2). In the same time quantity m? in quantum case is significantly
smaller than in classical case due to suppression of antiferromagnetic order by



gap A/t

Fig. 5.19. Spin
parameter J [145]

0.4
0.35
0.3
0.25
0.2
0.15
0.1
0.05

and

0.1

0.08

0.06

0.04

0.02

0.16
0.14
0.12

0.1
0.08
0.06
0.04
0.02

5.3 Kondo Lattice

charge gap as

0.6

0.7

0.8
Ji

0.9

195

a function of antiferromagnetic exchange

T T T T
X
—>§§< classical spin Jit=1 R
X
S i
X
L X i
X
r o o °© . 7]
X (=] quantum spin
L X ® i
i @
1 3, N2 . N7} N2 R
0 0.02 0.04 0.06 0.08 0.1
Th

Fig. 5.20. Sublattice magnetization of antiferromagnetic Kondo model: (a) as
a function of exchange interaction parameter and (b) as a function of tempera-

ture [145]
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quantum fluctuations. From calculations in [145] it follows that for antiferro-
magnetic coupling antiferromagnetic state is connected with Kondo-insulator
state.

5.4 Ferromagnetic Kondo Lattice

5.4.1 DMFT Equations for sd-Model with Classical Spin

In previous section we studied Kondo lattice model (or sf-exchange model)
for antiferromagnetic coupling (J < 0). In this case Kondo effect reveal itself
when localized spin is screened by conduction electrons. In this section we will
consider ferromagnetic coupling (J > 0). sf-model for J > 0 and relatively
small band width J 2 W is called “double exchange” model [36,37,261] and is
considered as a working tool for manganites with colossal magnetoresistance
effect. We will consider large spin case S > 1. In the limit S — oo atomic
spin can be considered as classical one and it is relevant for manganites as it
is explained in Sect. 6.5.
sf-model Hamiltonian in the limit S — oo can be written as:

H= Zt” ¢, C szszUw'Cw , (5.4.51)

ijo

where m; unit vector in localized spin direction on site i. We assume that
JsaSi = (JsaS)m; = Jm; and JgqS = J is a final quantity in the limit
S — oo.

According to the general DMFT idea lattice problem is reduced to effec-
tive single impurity problem. DMFT equations for Hamiltonian (5.4.51) were
derived by Furukawa [262]. Later we follow works in [263,264]. We define
action for single impurity problem as:

S[w!,¥;m] = //dﬁdeW(ﬁ)go (11— 72)¥(72)
0

B
—J [ drm¥t(1)o¥ (7). (5.4.52)
/

Here ¥ = (c c)) is two-component spinor composed of Grassmann variables.
Electronic GF is a functional integral over fermionic variables and directions
of vector m:

/ D [@1] D [@] dme ™S ]y (rywi (7). (5.4.53)

This expression is a matrix 2 x 2 size in spin indexes. As action has quadratic
form in Grassmann variables the functional integral can be calculated and we
obtain expression for Fourier component of GF in variables 7 — 7':
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1 _
G (iwn) = Z / dmP(m) [Gy ' (iwn) + Jmo] ' (5.4.54)

where i

P(m) = Eefseff“") (5.4.55)
defines statistical probability for realization of localized spin direction m in
the system.

Effective action S'eff(m) is defined by the following relation for partition
function of the system:

7 = / dm / D [w1] D [w]e S ¥m] = / dmeSerr(m), (5.4.56)

and hence
Ser(m) = — In / D [wt] D[] e S ¥m], (5.4.57)

After functional integral is calculated we have from expression (5.4.57):
1
Set (M) = — zn:ln det [E (Gy M (iwn) + Jma)] : (5.4.58)
According to Seg(m) definition we have the following relations:
/de(m) =1, (5.4.59)

(m) = /de(m)m; (5.4.60)

The last relation defines magnetic moment in the system.
Now we can write DMF'T equations for the model:

1
W) = . - y 4.61
Glion) zk: iwn + 1 — e — X(iwy,) (5.4.61)

Gy M iwn) = Z(iwn) — G~ (iw). (5.4.62)

All quantities in (5.4.61) and (5.4.62) namely Gy, G, and X' are 2 x 2 matri-
ces. From these equations the following DMFT calculation scheme can be
constructed:

1. For initial Gy '(iw,) value Seg(m) is calculated by formula (5.4.58) and
single site GF by the formula (5.4.54).

2. Calculated G(iwy,) value is substituted in left part of equation (5.4.61) and
from it self-energy X(iw,,) is calculated.

3. From Dyson equation (5.4.62) new value for G, '(iw,) is calculated and
iteration process continues till self-consistency is achieved.
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5.4.2 Analysis of DMFT Equations Solution

We will consider at the beginning few specific cases where analytical solution
of DMFT equations can be found [263,264]. For paramagnetic phase due to
rotation invariance we have G (iw,) = go(iw,)I where go is a scalar and I
unit matrix. Taking into account relations (m) = 0, <m2> = 1 we obtain from
(5.4.54) expression for one-electron GF and self-energy:

1 1 1
Giwy) = = + )1 5.4.63
(i) 2 <gol(iwn)+J 9o Hiwn) — J ) ( )
Y(iwn) = J2go(iw,)1. (5.4.64)
Spectral density

1
A(w) = ——ImG(iw, — w +id) (5.4.65)

™

in this case has two peaks centered at w = +J and having width Igy 1(w) ~t.
Peaks intensity is the same for both spin projections.

For ferromagnetic state with spontaneous magnetization M = (m,) spec-
tral function intensity is redistributed between electrons with different spin
projections. In order to obtain analytical estimation for electronic GF we
consider a limit of large J > W and take noninteracting GF as

1

e — 5.4.66
wH+pFJ+iW’ ( )

go(w) =

where W is a band width. Then from formula (5.4.54) we have for G(w) with
the accuracy of the order of W/J [263,264]:

Py
wHJ+pu—Plex+iPr W
Py
+ — ——
w—J+p—Prex+iP W

Go(k,w) =

(5.4.67)

Here P is statistical weight of electronic states with different spin projections:

= 5 (5.4.68)

So there are two one-electron bands centered at w + p = £J with width W.
For different spin projections intensities of lower and upper bands are inter-
changed. In ground state M = 1 electrons with spin ¢ =T occupy lower band
and electrons with spin ¢ =] occupy upper band. Electronic system with
such properties are usually called ferromagnetic half-metal. With temperature
increase admixture of opposite spin appears in every band. In paramagnetic
phase different spin intensities become equal that corresponds to expression
(5.4.63) for single site (local) density of states. So model (5.4.51) describes in
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Fig. 5.21. Curie temperature Tc as a function of J/W and doping = for model
(5.4.51) calculated by DMFT method [263,264]

the limit J > W half-metallic ground state where Fermi surface exists only
for electrons with spin ¢ =1 and ferromagnetism is saturated.

We will consider later some results of numerical calculations based on
(5.4.54), (5.4.61), and (5.4.62) [263,264].

In Fig.5.21 one can see that T, increases with band width W increase
that is a measure of kinetic energy. The relation T, ~ W reflects the mecha-
nism of ferromagnetism in model (5.4.51) that is called kinetic exchange. This
mechanism was proposed many years ago by Zener [261] to explain physical
properties of manganites. In Fig. 5.21 it is shown that 7. increases with doping
and at J > W dependence of T, on z is close to relation

Te ~Wa(l —x), (5.4.69)

that reflects particle-hole symmetry of the model.

Please note that in Fig. 5.21 ferromagnetic state appears for some doping
values depending on ratio J/W. At = 0 in the system antiferromagnetic
state is realized. DMFT equation solutions on Bethe lattice results in Neel
temperature Ty dependence on J/W as shown in Fig. 5.22.

At J > W Ty corresponds to Heisenberg model results with kinetic
exchange ~ % ~ WTZ In other limit J <« W Ty corresponds to mean-field
theory result for spin density wave state where Ty ~ J. Figure 5.22 combines
both these limits so that at intermediate values of J/W curve for Tx comes
through maximum, that reproduces result found in studies of other models
for strongly correlated systems. In the interval 0 < < 1 at final values
of J/W homogeneous ferromagnetic state is unstable and phase separation
area exists where in antiferromagnetic matrix small islands of ferromagnetic
phase appears or at high-temperature paramagnetic phase. In Fig.5.23 we
show phase diagram calculated for fixed value % =4.
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Fig. 5.22. Neel temperature at x = 0 calculated by DMFT method [263]

0.025 - - -
W/ W =4)
0.020 1 i
P
0.015 1 i
=
F 0.010 F .
0.005 1 i
0.000 - \ :
0 0.05 0.1 0.15 0.2

Fig. 5.23. Phase diagram of model (5.4.51) for - =4 [263]. AF — P and AF — F
mark inhomogeneous phases when in antiferromagnetic matrix small areas of
paramagnetic phases appear

Furukawa calculated some other physical properties of the model (5.4.51)
among them resistivity and magnetization temperature dependence, quasi-
particle spectra for various T" and x, spin wave spectra in ferromagnetic phase
(see review in [263]). Calculation results agree rather well with experimental
data for manganites where s f-model with ferromagnetic exchange coupling (it
is also called double exchange model [36,37,261]) is considered as a relevant
model. However, this agreement is more qualitative than quantitative one. For
example dependence of T, on z as shown in Fig.5.21 resembles observed in
manganites but the value of T is strongly overestimated.

Millis et al [265-268] proposed to extend model (5.4.51) with terms respon-
sible for electron—lattice interaction that includes Jahn-Teller effect in crys-
tal structure for real manganites. Results of calculation with this extended
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Fig. 5.24. Kondo lattice phase diagram with ferromagnetic exchange on the plane
“exchange integral — electron concentration” [266]. 0 is an angle between magnetic
sublattice

model will be described in Sect. 6.5. As it was shown in [265-267] electron—
lattice interaction allows to describe physical properties of manganites on
quantitative level.

Phase diagram of the Kondo lattice with ferromagnetic exchange coupling
was obtained in [266] using free energy calculations (see Fig.5.24). This dia-
gram agrees with the diagram shown in Fig. 5.23 where on y-coordinate not J
but T was measured. For large J and not very small doping x = 1—n ferromag-
netic phase is present while for small < 1 there is commensurate antiferro-
magnetic phase. Between them inhomogeneous phase (phase separation PS)
is observed with incommensurate magnetic state. Phase transition between
ferromagnetic and incommensurate phases is of the second order and between
commensurate antiferromagnetic and incommensurate phase transition is of
the first order.
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Electronic Structure Calculations for Real
Materials by LDA + DMFT Method

6.1 Combining Density Functional Theory
and Dynamical Mean-Field Theory:
LDA + DMFT method

6.1.1 Coulomb Interaction

In Chaps. 3-5 we have presented in details Dynamical Mean-Field Theory
(DMFT) for Hubbard and Anderson models. The system under consideration
was usually approximated by Bethe lattice or hypercubic lattice and often
space dimension d was explicitly assumed to be infinite (d — oo limit). Such
models investigations were found to be very useful to study DMFT method
abilities and gave fundamental new results in strongly correlated systems the-
ory. The example is metal-insulator transition with gradual spectral weight
transfer between Hubbard bands and quasiparticle band.

However, to study strongly correlated compounds of d- and f-elements it
is necessary to go from model lattices (Bethe and hypercubic) to real crystal
structures in finite space dimension (d = 3) and to take into account explicit
atomic orbitals shape. The corresponding Hamiltonian construction and its
parameters determining in Wannier functions basis were described in details
in Sect.2.2. In its full form Hamiltonian defined by formulas (2.2.24) and
(2.2.47) is rather complicated and in real calculations various approximations
are used.

When DMFT method is applied to the problem defined by such a Hamil-
tonian the calculation scheme can be considered as ab-initio method because
all problem parameters were obtained from Density Functional Theory (DFT)
calculations for full set of electronic states in realistic crystal structure without
any adjustable or empirical quantities. Resulting method was given a name
LDA + DMFT [122]

We consider at first Coulomb interaction part of the Hamiltonian (see
Sect. 2.2.2). Full four-operators form of such a term (2.2.24) presents
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very complicated for solution problem. It can be solved only with some
approximations such as static mean-field method (LDA + U method, see
Sect. 2.3). In this approximation decoupling (2.3.63) of four-operators term in
Hamiltonian (2.2.24) results in quadratic forms for creation—annihilation oper-
ators ¢, . Gimo (see (2.3.65)). That leads to one-electron potential matrix
Vo v (2.3.66) depending on density matrix n%,,., = (&} im0 ) in basis of
orbitals |ilmo).

In more complicated dynamical mean-filed approximation (Chap.3)
Coulomb interaction Hamiltonian in full four-operator form (2.2.24) prac-
tically was not used. From all developed in present time methods to solve
effective impurity model appearing in DMFT (see Sect.3.1.5) only Contin-
uous Time Quantum Monte Carlo (CT — QMC') method with expansion in
Coulomb interaction [142] gives possibility to work with full four-operator
form (2.2.24).

Popular standard Quantum Monte Carlo (QMC') method with Hirsch-Fye
algorithm (see Sect. 3.2.1)) uses Hubbard-Stratonovich transformation (3.2.58)
for Coulomb interaction Hamiltonian term as a product of particle number
operators fmefme (2.2.29). Due to that fact in nearly all DMFT applica-
tions Coulomb interaction is assumed to be in the form of (2.2.29) or (2.2.30).
Sometimes a term corresponding to pair spin flip (2.2.27) is added.

6.1.2 Computation of Lattice and Local Green Functions
in General Case

Realistic systems are described by Hamiltonian in Wannier functions basis
(2.2.47) obtained in calculation Hubbard—Stratonovich Sect.2.2 and based
on solution for Density Functional Theory equations (Sect.2.1). In general
case in the Hamiltonian not only localized d- and f-orbitals are included
where interelectron Coulomb interaction is taken into account described by
(2.2.30) but also the orbitals are present corresponding to itinerant states.
Hybridization in the Hamiltonian (2.2.47) is defined not only between d and
f orbital as in Hubbard model or between localized and itinerant states as
in Anderson model but also among all states present in the Hamiltonian.
In addition to that localized d and f state are degenerate and cannot be
described by simple dispersion law ex and equation (3.1.38) for lattice GF
used in Sect. 3.1.3 for basic DMFT equation is not valid any more.

In most general case matrix of electronic lattice GF' in the basis of orbitals
|ilm) is defined by the following equation:

-1

Gt vt (i) = —— / dk [(iwn + ) — Ho(k) — ﬁ(iwn)] ,
’ % ilm,i'l'm/
(6.1.1)

where ﬁo(k) is noninteracting Hamiltonian of the problem obtained from
DFT Hamiltonian (2.2.47) by subtracting “double counting” correction Hpe

(2.2.35). Wave vectors integration is performed over Brillouin zone volume
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Vg and 1 is a unit matrix. As usual we consider paramagnetic case and spin
indexes are omitted.

In this equation self-energy ﬁ(zwn) is a matrix of the size equal to the size
of the Hamiltonian Hy(k) matrix. However, its nonzero parts form matrix
of smaller size N equal to a number of d(f) orbitals in Coulomb interac-
tion Hamiltonian (2.2.30). Correspondingly all DMFT equations defined in
Sect. 3.1.3 also become matrix equation with dimensions N x N.

We define GF of effective single impurity Anderson model Gimp as a matrix
Gmm with dimensions N x N obtained from full matrix of lattice GF (6.1.1)
preserving only terms where indexes i = ' = iq, | =1 = lq (i4lqy corresponds
to d(f) atomic shells). Matrix “bath” GF Go(iw,) is defined in the same
way as in Chap.3 where DMFT application to simple Hubbard model was
considered:

Go ' (iwn) = Gt (iwn) + Z(iw). (6.1.2)

According to general DMFT calculation scheme we solve Anderson model
with “bath” C;o(iwn) and calculate new impurity GF G’imp(iwn). New approx-
imation for self-energy X (iw,) is calculated using equation (6.1.2):

Siwn) = Gy H(iwn) — G (iwn). (6.1.3)
This new self-energy X(iw,) is substituted in equation (6.1.1) to calculate
new lattice GF' and hence new approximation for “bath” GF Gg(iwn) from
(6.1.2). This iteration loop continues till quantities X (iw,) will stabilizes.

That defines matrix form of basic DMFT equations and formally their
realization is straightforward. However additional problems appear. Using
Coulomb interaction Hamiltonian as a product of particle number operators
AmePm o (2.2.29) assumes that electrons occupy states corresponding to pure
orbitals |iglgmo) and no mixing between those orbitals is allowed. However,
if because of the problem symmetry off-diagonal in orbital index m matrix
elements of matrices Gimp (iwn) and X (iw,) exist it correspond to possibility
of mixing of orbitals with different m.

This contradiction can be lifted only if all three matrices Gimp(iwn)7
Go(iwy), and Y (iw,) are diagonal in index m. This approximation is used in
practically all application of LDA+ DMFT method. For high-symmetry crys-
tal structures this approximation is exact if a basis of orbitals |iglgmo) is cho-
sen as basis of irreducible representations of point group symmetry operations
corresponding to lattice site ig4.

There is a special case where relations (6.1.1-6.1.3) can be essentially
simplified. If only d-orbitals are included in the Hamiltonian and those orbitals
are degenerate by symmetry then matrix b3, (iwy) is diagonal and equal in size
to Hamiltonian matrix with diagonal matrix elements not depending on orbital
index m (Xy,m = X). Then equation (6.1.1) can be written as:

-1

G (i) = Vl—B / dk [(iwn = o)) - Ho)| . (6.14)
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In integral (6.1.4) quantity X(iw,) enters as an addition to complex energy
1wy, + (0 SO one can write:

G (iwy) = G (iwn, — X(iwy)), (6.1.5)
where noninteraction GF is defined:
1 . -1
GO (iwp) = A /dk [(iwn + p)I — Ho(k) , (6.1.6)
B mm
that can be expressed via density of states po(e) = —LImGY, () of nonin-
teracting Hamiltonian with Hilbert transformation:
GO¢) = | de Zofi (6.1.7)

Finally, interacting GF' (6.1.4) can be expressed via integral of density of
states:

, ‘ . po(e)
G (iwy,) = GY n— X(iwy)) = [ d . 6.1.8
(1) = Gl = (i) = [deHD . (6.08)
Equation (6.1.8) is widely used in DMFT application but one should remem-
ber that it is fully justified only in a special case defined earlier. In all other
cases when d-orbitals are not degenerate or other orbitals are included in the
Hamiltonian one should use general expression (6.1.1).

6.1.3 Total Energy Calculation in LDA + DMFT

In LDA + DMFT applications important part is calculation of total energy
of the system as a function of external parameters (volume, crystal structure
parameters, temperature, etc.). As LDA + DMFT is a combination of LDA
(see Sect. 2.1) and Dynamical Mean-Field Theory (DMFT) (see Chap. 3) then
for total energy the following expression is used [269]:

Eiot = ELpa + Epvrr — Evr, (6.1.9)

where Eppya is total energy obtained in LDA calculation, Epppr is an energy
calculated in DMFT and Eyr is an energy corresponding to static mean-field
approximation (restricted Hartree-Fock) for the same Hamiltonian as used in
DMFT calculations. The last term is needed to avoid double counting for
Coulomb interaction terms present in Eppa. Then Epypr — Emr IS pure
correlation correction to Erpa.

In its turn Epypr is a sum of two contributions: from noninteracting
Hamiltonian Hy(k) and from Coulomb interaction Hamiltonian (2.2.29):

11

EpmrT = ﬁVB /deTrHo )C;’k(z'(,un)ei‘*’"o+

Z Z {Umm nzlmanzlm 0> + (Umm/ - Jmm’)<ﬁilmaﬁilm’a>}a

i=iq,l=lg m,m’,c

NJI»—A

(6.1.10)
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where Gy (iwy,) is electronic GF corresponding to wave vector k:
. .. . —1
Cicliwn) = [(z’wn )l — Ho(k) — Z(uun)} , (6.1.11)

The average values for particle number operators products (fimefitm/ o) and
(RitmeNiimz) can be calculated directly in @MC method (see Sect. 3.2).

Energy corresponding to static mean-filed approximation Eyp is cal-
culated analogously to (6.1.10) with replacing interacting GF Gk(iwn) on
éﬁDA(iwn) calculated with LDA Hamiltonian:

GEPA (iw,) = [(z‘wn + )l — H*PA(k) B : (6.1.12)

and also with replacing second term in (6.1.10) on Coulomb interaction energy
in the following form:

1-
Ecoulomb = Z iUnd(nd - 1), (6113)

i=iq,l=lq

where ng = > (Riy,mo) is a total correlated electrons number on the site
iq and U is an average value of Coulomb interaction among different orbitals.

6.2 Early Transition Metal Oxides: Mott Insulators
and Strongly Correlated Metals

LDA + DMFT method described in Sect. 6.1 was last years widely used to
study electron correlation effects in d and f elements compounds. In this
chapter we will describe some typical results of this method application for
various types of correlated systems.

At first we will consider a simplest example: StVO3 compound where there
is only one electron in degenerate d-band. LDA+ DMFT method gave for this
compound strongly correlated metal state with typical three peak structure of
spectrum. Next example is classical Mott insulator VoO3 where in paramag-
netic phase both metallic and insulating states could be realized. This system
is more complicated than the first one because cubic degeneracy for d states
is lifted by trigonal distortion and there are two electrons in d-band. In com-
pound LiV2Qy4 formally there are 1.5 electrons per V' atom and experimentally
at low-temperatures strong enhancement for magnetic susceptibility and elec-
tron specific heat is observed that is typical for “heavy fermion” system with
f-electrons but that was never previously found for d-systems.

All those compounds belong to Mott systems where strong correlation
effects happens in partially filled d-band that is well separated in energy from
occupied oxygen p band so that p-states could be projected out from the
model and only d-states included in the Hamiltonian. There is another class of
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strongly correlated materials called “charge transfer insulators” where energy
separation between d and p states A is smaller than Coulomb interaction
parameter U and oxygen p states should be explicitly included in the problem
Hamiltonian. The lowest energy excitation in such materials happens between
oxygen p and transition metal d states in contrast to d — d transition in Mott
insulators and hence the name “charge transfer insulators”. We will consider
typical “charge transfer insulators” NiO and also MnO where metal-insulator
transition with pressure is observed.

Next we consider LDA + DMFT results for f-system: metallic cerium
where two different volume phases exist with drastically different degree of
localization for 4f electrons. The effect of electron—lattice interaction taken
into account in LDA + DMFT will be demonstrated on the example of man-
ganites Laj;_,Sr,MnOs. In the end a problem of correlation effects influence
on electronic structure of new superconductors based on pnictides materials
will be considered.

6.2.1 SrVOs3: One Electron in Degenerate d-Band, Strongly
Correlated Metal

SrVOg3 compound has cubic perovskite crystal structure where vanadium ions
have as nearest neighbors six oxygen ions forming octahedron (Fig. 6.1). Point
group symmetry for vanadium ion is cubic Oy, and d states should transform
according to irreducible representations of this group: triply degenerate ¢,
and doubly degenerate e4. In Fig. 6.2 results of LDA calculations for electronic
structure of SrVOs are shown [270]. Fermi level is a zero and crosses partially

O (basal)

Fig. 6.1. Perovskite crystal structure for compound SrVOs;
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Fig. 6.2. Density of states from LDA calculation for SrVOs [270]

filled relatively narrow d-band of ts, symmetry. Below it (from —2eV till
—7eV) there is occupied oxygen 2p band. Above from 0 to 6 eV one can see
broad band formed by V3d states of e; symmetry.

Well pronounced separation of those bands from each other allows to
simplify the problem and consider only partially filled ¢24, band. In Wannier
function basis Hamiltonian construction procedure described in Sect.2.2.4
this corresponds to the choice for projection in formula (2.2.39) only V3d
o4 atomic orbitals and Bloch functions corresponding to to4 band.

In the result one has triply degenerate band with one electron (vanadium
ion valence in this compound is equal to 4 that corresponds to configuration
d'). Please note that in this case it is possible to use Hilbert transformation
for density of states to calculate electronic GF' (formula (6.1.8)). Calculation
of Coulomb interaction parameters by constrain DFT method (see Sect. 2.2.5)
gave values U = 3.55eV and J = 1eV [270]. Coulomb interaction Hamilto-
nian in a form (2.2.30) using Kanamori parameterization gave the following
parameters: for electrons on the same orbital U = 5.55eV and on different
orbitals U’ = U — 2J = 3.55eV assuming that constrain DFT calculations
result U = 3.55eV corresponds to the average over all pairs of a4 orbitals
value.

DMFT calculations for this Hamiltonian with effective impurity prob-
lem solved by Quantum Monte Carlo method in Hirsch-Fye algorithm (see
Sect. 3.2) result in spectral functions presented in Fig.6.3. Spectra have typi-
cal for DMF'T three peak structure described in details in Sect. 3.3: quasipar-
ticle peak at Fermi level and two Hubbard bands corresponding to incoherent
states: lower occupied band at ~ — 2eV and upper empty band at ~3eV.
Essential difference with half-filled nondegenerate Hubbard model described
in Sect. 3.3 is strong particle-hole asymmetry of spectral function in Fig. 6.3:
lower Hubbard band has significantly lower intensity than upper Hubbard
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Fig. 6.3. Spectral function for d-states obtained in LDA + DMFT calculations for
SrVOs at T = 300K (solid curve) and T' = 700K (dashed line) and T = 1,100 K
(dotted line) [270]

band. That is a consequence of d band degeneracy and occupancy value much
less that corresponding to half filling.

In Fig.6.3 calculation results are shown for three temperature values:
T = 300K (solid line), T = 700K (dashed line) and T" = 1,100 K (dotted
line). @QMC calculations with Hirsch-Fye algorithm for such low-temperature
value as T' = 300 K are very rare because for real compounds with degenerate
d band they require huge computer resources and practically all calculation
are usually done for T = 1,100 K (that corresponds to 8 = 10). This result
gave opportunity to analyze temperature dependence of spectral function.
As one can see in Fig.6.3 temperature lowering leads to intensity enhance-
ment of quasiparticle peak on the Fermi level. That means that in order to
describe susceptibility and electronic specific heat temperature lowering in
QMC calculations can become crucial.

In Fig. 6.4 a comparison is presented between calculated and experimental
spectra of SrVOs. Calculated spectra were obtained by multiplying DMFT
spectral function by Fermi distribution function fr(¢) (for comparison with
photoemission spectra, left side of Fig.6.4) or by 1 — fr(e) (for compari-
son with absorption spectra, right side of Fig.6.4) and in addition some
broadening was done to take into account experimental resolution.

As one can see from Fig. 6.4 agreement between calculated and experimen-
tal spectra is satisfactory. Main result is reproducing of experimental peak at
~ — 2eV corresponding to lower Hubbard band in DMFT spectrum. A pres-
ence of such a peak in experimental spectrum is considered to be a direct
evidence of strong correlation in SrVOs because in one-electron description
based on LDA calculations (see Fig. 6.2) this peak cannot be reproduced.
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Fig. 6.4. Spectra obtained in LDA + DMFT(QMC) calculations for SrVOs3 (solid
line) in comparison with experimental spectra (circles) PES (left) and absorption
spectra X AS (right) [271]

SrVOs example with high symmetry and small number of electrons allows
to study correlation effects influence not only on total spectrum but also on
wave vector k resolved spectral function A(k,w) and to obtain renormalized
energy bands £(k).

For that one needs to calculate self-energy X'(w) for real energies w. In
DMFT all calculations are performed for complex energy values correspond-
ing to Matsubara frequencies iw,, and it is necessary to analytically continue
Y (iwy,) function on real energy axis. Maximum entropy method (Sect. 3.2.2)
allows to calculate spectral function for real energies A(w). Spectral function
is defined by retarded GF Gf(w): A(w) = —2ImG*(w) and hence:

GR(w) = /dE& (6.2.14)

wHid—¢

(46 is infinitesimal imaginary quantity).
Green function on real axis can be expressed using (6.1.8) via integral over
density of states:

po(e)
GRw)= [d : 6.2.15
(@) / €w+i5—2(w)—5 ( )
Knowing G¥(w) from (6.2.14) it is possible to find X (w).

In Fig. 6.5 real and imaginary parts of X'(w) for StVO3 calculated in this
way are presented. Spectral functions A(k,w) for wave vector values k were
calculated with the following expression:

-1

Alk,w) = —%Im’ﬁ (@~ BT - Ao (6.2.16)
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Fig. 6.5. Real (solid line) and imaginary (dashed line) parts of self-energy X'(w)
obtained in LDA + DMFT(QMC) calculation for SrtVOs [272]. Dotted line shows
slope of ReX(w) near Fermi level. In the inset behavior of ReX(w) is shown near
Fermi level in magnification

Calculated spectral functions A(k,w) for wave vectors k along symmetric
directions in cubic Brillouin zone are shown in Figs. 6.6 and 6.7. The curves
A(w, k) can be presented as a sum of Lorentzians with a width defined by
the values of imaginary part of self-energy Y'(w). As imaginary part of X'(w)
tends to zero as w? at w — 0 then near Fermi level peaks A(k,w) become very
narrow and it is possible to define new dispersion law £(k) as an energy value
where function A(k,w) has a maximum.

In Fig.6.8 calculation results for £(k) (points) are shown in compari-
son with (k) calculated for noninteracting Hamiltonian Hy(k). £(k) bands
looks like compressed in energy scale (k) bands. Such renormalization due
to Coulomb correlation effects can be explained in the following way.

Near Fermi level (see inset in Fig.6.5) imaginary part of self-energy
ImX(w) tends to zero and real part ReX(w) can be approximated by linear
function:

dReX (w)

. 2.1
dw w=0 (6 7)

ReX(w) ~ ReX(0) +w
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Fig. 6.6. Calculated by LDA + DMFT(QMC') method spectral functions A(k,w)
for V-3d (t24) bands of SrVO3 compound [272]

Then expression (6.2.16) can be written as:

dReX (w)

Ak,w) = f%ImTr {(w(l W

lo—o — ReX(0))I — ﬁo(k)} )

— —%ImTrZ [(w — ZReX(0)) — Zﬁo(k)} o
(6.2.18)

Z=(1- dRCd—i(”) lo=0)"t = (m*/m)~! is quasiparticle spectral weight and m*
is quasiparticle effective mass. A term ZReX'(0) gives a shift of energy scale
and in the result spectral functions A(k,w) calculated with (6.2.18) are delta
functions for energies corresponding to eigenvalues of effective Hamiltonian
ZHy(k) = (m*/m)~*Hoy(k). These eigenvalues give new dispersion law:

E(k) = (m*/m) te(k). (6.2.19)

For SrVO3 m*/m = Z=! = 1.9 and in Fig.6.8 by dotted line £(k) are
shown calculated from LDA bands by renormalization (6.2.19). As one can
see agreement of £(k) calculated from (6.2.16) and the bands renormalized by
(6.2.19) is very good. LDA+ DMFT calculation results obtained in [270] were
later confirmed by works [273,274].
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Fig. 6.7. Magnification of Fig. 6.6 near Fermi energy [272]

6.2.2 V5,03: Two Electrons in d-Band with Trigonal Crystal-Field
Splitting

V503 is considered to be typical example of Mott insulator. This compound
can be in metallic as well as in insulating phases and both of them are para-
magnetic. Paramagnetic insulator state existence can be explained only in
Mott-Hubbard theory.

V3203 crytalizes in corundum structure where vanadium ions are sur-
rounded by six oxygen ions forming octahedron with small trigonal distortion
(Fig.6.9). Vanadium d states transform according to irreducible representa-
tions of trigonal point symmetry group Dsq: a1, (nondegenerate) and e, (dou-
ble degenerate). To representation e, correspond two pairs of orbitals: eg and
g In Fig.6.10 partial densities of states for V5O3 are shown calculated in
LDA [275]. d-band consists of two well separated subbands: low-energy par-
tially filled band formed by ai, and ej states (for undistorted octahedron
with cubic symmetry those states correspond to to, orbitals), and high-energy
empty band formed by eJ (corresponding to cubic e, orbitals). Vanadium
valence in this compound is +3 that corresponds to configuration d2.

Metallic and insulating phases of V2O3 are realized in the same corun-
dum structure with different lattice parameters. Spectral functions for d-bands
obtained in LDA + DMFT(QMC) calculations for VoO3 [275] are presented
in Fig.6.11 (upper part corresponds to calculations with metallic phase lattice
parameters and lower part is for insulating phase). As one can see calculations
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of LDA + DMFT(QMC) calculation (dots). LDA + DMFT(QMC') bands are well
described by LDA bands renormalized by effective mass ratio m*/m = Z~! = 1.9
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Fig. 6.9. Corundum crystal structure for compound V203

have allowed to reproduce metal-insulator transition with lattice parameters
change. Temperature dependence of calculation results is even stronger than
for SrVOs3 (Fig. 6.3). While for T' = 1160 K spectral function of metallic phase
shows only weakly pronounce “bump” near Fermi level, room temperature
T = 300K calculations gave high and sharp quasiparticle peak that is typical
for strongly correlated systems on the edge of metal-insulator transition.
Spectral functions in Fig.6.11 have much more complex character than
simple three-peak structure obtained for SrVOg (Fig.6.3). There are two rea-
son for this fact. First of all d? configuration has more complicated multiplet
atomic structure than simple d! configuration in SrVOs. At the second trigo-
nal crystal filed splitting of cubic 2, states into a1y and €] states (Fig.6.10)
absent in SrVOgs lifts degeneracy of partially filled d-band. While the strength
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Fig. 6.11. Spectral functions for d-band obtained in LDA+ DMFT(QMC) calcula-
tion of V2Os3 for crystal structure parameters corresponding to metallic (upper part)
and insulating (lower part) phases for three temperature values 7' = 1160 K (solid
line), T00 K (dashed line), 300 K (dotted line) [275]
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Fig. 6.12. Spectral functions corresponding to orbitals of a1, (solid line) and e
(dashed line) symmetry for paramagnetic insulator state V203 [275]
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Fig. 6.13. Comparison of spectra obtained in LDA + DMFT(QMC) calculations
[275] forV2 O3 in metallic phase with experimental spectra (left side — photoemission
spectra [276,277], right side X-ray absorption spectra [278])

of this trigonal splitting estimated as centers of gravity difference for partial
densities of states for a;4 and eq orbitals is relatively small (0.3eV in compar-
ison with band width 2.5eV) it is enough to result in strong orbital polariza-
tion. In Fig.6.12 spectral functions are shown corresponding to orbitals a4
(solid line) and ey (dashed line) obtained in LDA + DMFT(QMC) calcula-
tions for V503 in insulating phase. One can see that occupied band below
Fermi level is predominantly formed by ej states while a;, states form empty
band above Fermi level. That results in occupancy 0.86 for every ey orbital
while occupancy for a;, orbital is equal to 0.28.

Comparison of the spectra calculated in LDA + DMFT(QMC) [275]) for
V203 in metallic phase with experimental spectra (Fig.6.13) shows a good
agreement. Please note the presence in both calculated and experimental spec-
tra of the peak at ~1.5eV corresponding to lower Hubbard band that is absent
in LDA calculation results (Fig. 6.10).
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6.2.3 LiV204: Heavy Fermion in d-Electron System

“Heavy fermion” phenomenon (drastic effective electron mass increase at
low temperatures) is usually observed in f-electrons systems (rare-earth or
actinides elements compounds). Recent discovery of such effect in d-system
LiV2Oy4 with m*/m = 25 was a great surprise because “heavy fermion” effect
is explained by the presence of narrow Kondo peak at the Fermi level appear-
ing from weak hybridization of localized f-electron with conduction band
states. d-band width in transition metal compounds is of the order of few eV
that excludes narrow Kondo peak presence.

In work [279] LiV,04 was investigated by LDA + DMFT method. The
critical temperature where effective mass increase is observed is Tk ~ 28K
and hence using QMC method with Hirsch-Fye algorithm as impurity solver
(see Sect. 3.2.1) for this problem is impossible because it works for high tem-
peratures only. For this case PQMC method was applied (see Sect. 3.2.4) that
was derived in the limit of 7' — 0.

LiV50y4 has spinel crystal structure where vanadium ions are surrounded
by six oxygen ions forming octahedron with small trigonal distortion
(Fig.6.14). In the same way as for VoO3 compound vanadium d-states in
LiV504 transform according to irreducible representations of trigonal point
symmetry group Dsq: a14 (nondegenerate) and e, (double degenerate). Formal
valence of vanadium in LiV50y is +3.5 that corresponds to 1.5 electrons per
vanadium atom. In Fig.6.15 energy bands and partial densities of states are
shown for partially filled d band obtained in LDA calculation for LiVoOy [279).

From Fig. 6.14 one can see that width of a;4 is much smaller than the width
of e7 band. Crystal field splitting estimated as difference of partial densities of
states centers of gravity shows that energy of a1, orbitals is 0.26 eV lower than
energy of ey orbitals. One can expect that with taking into account Coulomb
correlations this fact will lead to electrons localization on a4 orbitals.

Fig. 6.14. Spinel crystal structure for compound LiV2Oy4
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Fig. 6.15. Energy bands and partial densities of states for partially filled d-band
for compound LiV204 obtained in LDA calculation [279]
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Fig. 6.16. Left: spectral functions from LDA+ DMFT calculations [279] of LiV2O4
for states of a1y (upper part) and e (lower part) symmetry. Solid line corresponds
to zero temperature (impurity problem solved by PQMC), dashed line is for final
temperature T'= 1/3 = 1/40 eV. Right: corresponding experimental spectra divided
on Fermi distribution function for various temperatures [280]

In Fig. 6.16 (left side) spectral functions for a1, and e states obtained in
LDA+ calculations [279] are shown. Indeed as it was expected aq4 orbitals
show distribution characteristic for nearly insulating half-filled state. Number
of ajy electrons is equal to 0.98. As for ej orbitals they are quarter filled
(occupancy = 0.52) and their distribution is far from metal-insulator pattern.

Applying PQMC method with zero temperature as impurity solver was

crucial for success of LDA + DMFT calculations for LiVoOy [279]. While



220 6 Electronic Structure Calculations for Real Materials

QMC-Hirsch-Fye calculations (dashed line in Fig.6.16, left side) at T =
300K gave very weak feature on the Fermi level, PQMC curve (solid line)
demonstrates very narrow (10 meV width) peak situating 4 meV above Fermi
level.

Existence of such a peak was directly confirmed by high resolution pho-
toemission spectroscopy. In Fig. 6.16 (right side) experimental photoemission
spectra for LiVo0O4 are shown divided by Fermi distribution function for vari-
ous temperatures [280]. They demonstrate the presence of very narrow peak in
density of states just above the Fermi level. Such narrow peak close to Fermi
energy naturally explains high value of effective mass at low temperatures.

Physical reason for such a peak existence is very different from Kondo peak
mechanism in f-elements compounds. In [279] an explanation was proposed
based on lightly doped Mott insulator picture. In Fig.3.18 in Chap. 3 spec-
tral function evolution for doped Mott insulator is shown. At small doping
values narrow peak on the Fermi level appears. In LDA + DMFT calcula-
tions for LiV,04 [279] occupancy of a1 is equal to 0.98 corresponding to very
small doping 0.02 that results in appearance of anomalously narrow peak in
spectrum.

6.3 Late Transition Metal Oxides: Charge Transfer
Insulators

6.3.1 NiO: Band Structure for Charge Transfer Insulator

All early transition metal compounds described earlier belong to Mott insu-
lator class of materials where energy gap is opened between Hubbard bands
formed by d-states. Filled oxygen p-bands are well below both Hubbard bands
and can be projected out by constructing Hamiltonian with d-symmetry Wan-
nier functions only. However for late transition metal oxides the picture is dif-
ferent: d-states energy is much lower than for early transition metal oxides and
hence closer to oxygen p-bands so that A,q (energy difference between €4 and
€p) becomes smaller than Coulomb parameter U. In the result lower Hubbard
band falls below the top of oxygen band and then lowest excitation energy
corresponds to transition from occupied oxygen band to unoccupied upper
Hubbard band. In Zaanen-Sawatzky-Allen classification [281] such systems
are called “charge transfer insulators” (meaning that lowest energy excita-
tion corresponds to electron transfer from oxygen to metal ion). For proper
description of such materials oxygen p states should be explicitly included in
the Hamiltonian in addition to transition metal d-states [282].

Nickel oxide is a typical example of charge transfer insulators. This com-
pound has cubic structure of NaCl type where every nickel atom is surrounded
by six oxygen atoms forming an octahedron. Ni d-states transform according
to two irreducible representations of cubic Oy, symmetry group: triply degen-
erate to, and double degenerate e4. Nickel valence in this compound is equal



6.3 Late Transition Metal Oxides: Charge Transfer Insulators 221

Spectral density

LA

-10 0
Energy (eV)

Spectral density

AL
.I.\./..}.\...I....I.e.g

Energy (eV)

PN
-20

Fig. 6.17. Spectral functions for oxygen p states and nickel d-states of t2, and eq
symmetry obtained in LDA+DMFT calculation [283] for NiO. In inset corresponding
partial densities of state from LDA calculations are presented

to +2 that corresponds to configuration d®. Energy of ¢, states is lower than
eq orbitals that gives for eight d-electrons fully occupied ¢z, electronic shell
and half occupied e, shell.

In work [283] NiO was studied by LDA + DMFT(QMC) method with
Wannier functions basis Hamiltonian including both nickel d-states and oxy-
gen p states. In Fig.6.17 spectral function are shown obtained in LDA +
DMFT(QMC) calculations. In inset in 6.17 noncorrelated partial densi-
ties of states are presented from LDA calculations. One can see that while
noncorrelated curves show well separated bands formed by p and d states,
LDA + DMFT(QMC) spectral functions corresponds to complete overlap of
occupied d states with oxygen band. Fully occupied 4 orbitals gives contri-
bution to lower Hubbard band while half-filled e, states form both lower and
upper Hubbard bands.

In Fig.6.18 a comparison is presented of experimental photoemission and
inverse photoemission spectra with LDA + DMFT(QMC') spectral functions
for Ni-d (solid line) and O-p (dashed area) states. Experimental spectrum
for excitation energy 120eV corresponds to predominantly Ni-d states while
spectrum for 66 eV is determined by mainly O-p orbitals. One can see a good
agreement between experimental and theoretical curves in energy separation
among peaks for empty and occupied states as well as for Ni-d and O-p states
distribution.

Spectral functions of Fig.6.17 show that top of the valence band peak
is formed by Ni-d states with a significant admixture of O-p states. That
fact contradicts to “charge transfer insulator” classification for NiO where
an energy gap should be between oxygen p states and upper Hubbard band
d-states. The reason for this is strong p — d hybridization. Pure Ni-d states of
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Fig. 6.18. Theoretical Ni-d and O-p (dashed area) spectra calculated in LDA +
DMFT [283] for NiO in comparison with experimental photoemission and inverse
photoemission spectra [284]. Lower and upper curves correspond to photoemission
spectra obtained for excitation energies 120eV and 66 eV and describing excitation
of nickel and oxygen states, respectively

lower Hubbard band correspond to peak in d spectral function at —10eV and
are situated well below oxygen band.

In order to clarify the problem of orbital character for states at the top
of valence band in [283] calculations were done for hole doped NiO. If NiO is
indeed “charge transfer insulator” then additional holes should go into oxygen
p band and then doping results in decreasing of oxygen orbitals occupancy
while d-orbitals occupancy should not change. In Fig.6.19 results of LDA +
DMFT(QMC) calculations for NiO with hole concentration ny = 0.6 are
shown. Theoretical spectral functions correspond to strongly correlated metal
with significant spectral weight transfer from Hubbard bands to quasiparticle
peak on Fermi level. With doping increase this spectral weight transfer is
enhanced as one can see from comparison of results for hole concentration
np = 0.6 and 1.2 (see inset in Fig.6.19).

There is a series of compounds Li,Ni;_,O that corresponds to hole
doped nickel oxide. In Fig.6.20 a comparison is presented of theoretical
LDA + DMFT(QMC) spectral function for NiO with hole concentration
np = 0.6 and experimental photoemission and inverse photoemission spec-
tra for Lig 4NiggO. Metallic character of both theoretical and experimental
spectra is well pronounced with satellite peak at —8 eV corresponding to lower
Hubbard band.

To analyze states appearing with hole doping in NiO calculated orbital
occupancies are presented in Table 6.1. Comparing values for undoped (ny, = 0)
and doped cases one can see that oxygen p states occupancies are significantly
decreased when electrons are removed from NiO while occupancies for Ni-d
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Fig. 6.20. Theoretical Ni-d spectra calculated in LDA + DMFT [283] for NiO
with holes concentration nj, = 0.6 in comparison with experimental photoemission
spectra and inverse photoemission spectra [285] for Lip.4Nig.¢O

Table 6.1. Orbital occupancies and fluctuating magnetic moment mg on Ni for
various hole doping values obtained in LDA + DMF'T calculations [283] for NiO

Mnh neg ntzg Np mq
0 0.547 1.000 0.969 1.85
0.6 0.531 0.994 0.885 1.50

1.2 0.530 0.980 0.800 1.28
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orbitals are much weaker influenced by doping. That confirm O-p character of
hole states in NiO as it should be for “charge transfer insulator” in spite of Ni-
d character of top of valence band peak for undoped NiO. Magnetic moment
value my is strongly suppressed with hole doping. It is consequence of spectral
weight transfer from Hubbard bands (that are responsible for localized states
forming magnetic moment) to quasiparticle peak on Fermi level.

A presence in the same energy region of strongly correlated localized Ni-d
states and delocalized O-p states results in unusual energy band structure in
nickel oxide. It reveals itself in experimental data of Angle-Resolved Photoe-
mission Spectroscopy (ARPES) for NiO [287]. In Fig. 6.21 by symbols energy
bands e(k) measured by ARPES are shown. One can see dispersive bands
together with nearly flat bands. In [286] LDA + DMFT(QMC) method was
used to calculate spectral functions A(k,w) shown in Fig. 6.21 for wave vectors
k along direction I'-X. Darker regions of (k,w) plane correspond to larger val-
ues of A(k,w). Comparison with experimental data shows a good agreement
of theoretical and experimental spectra. Analysis of orbital contributions to
A(k,w) confirms that dispersive bands correspond to nearly pure O-p states
while flat bands are formed by strongly correlated Ni-d states.

These results demonstrate that LDA+ DMFT method can be successfully
applied to so complicated systems as late transition metal oxides belonging to
“charge transfer insulator” class. A presence in these materials simultaneously
correlated d states and delocalized oxygen p states hybridizing with each other
makes more sophisticated problem than Hubbard or Anderson models. Good
agreement of calculated and experimental spectra for NiO demonstrates great
potential of DMFT approach.

6.3.2 MnO: Metal-Insulator Transition with Pressure and d-ion
Magnetic Moment Collapse

Manganese oxide (MnO) similar to NiO crystallizes in cubic structure of NaCl
type and belongs to “charge transfer insulator” class of materials. However,
d shell of transition metal ion in this material is half-filled (configuration d®)
that results in high-spin ground state of Mn*? with S = 5/2. With pressure
metal-insulator transition of the first order is experimentally observed in MnO
with a volume jump V/Vj = 0.68 — 0.63 and magnetic moment collapse from
Sup to < lup (see review of experimental data in [288]).

In [288] electronic structure and magnetic properties of this compound
in paramagnetic state as a function of volume and pressure was studied by
LDA + DMFT(QMC) method. As for NiO calculations were done with full
set of Wannier functions having symmetry of oxygen p and nickel d states.
In Fig. 6.22 occupancy of tp, and e, orbitals are shown as a function of vol-
ume together with local magnetic moment values defined as a square root
of average value of magnetic moment on site operator square M, = /(m?).
At ambient pressure (V/Vp = 1) manganese ion is in well defined high-spin
state M, = 5up with the same half filling for both ¢34 and e, orbitals. With
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Fig. 6.21. Spectral function A(k,w) (darker areas corresponds to larger values of
A(k,w)) for wave vectors k along direction I'-X calculated in LDA + DMFT [286]
for NiO. Symbols show the bands measured in [287]

volume decrease below V/V; = 0.7 magnetic moment value sharply decreases
with simultaneous decreasing of e, orbitals occupancy and increasing of ty4
occupancy. For volume less than V/Vy = 0.6 system is in low-spin state
with M, ~ 1pp nearly empty e, orbitals and nearly occupied ty, orbitals
Ntoy ~ 0.8.
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Fig. 6.22. Dependence on volume of local magnetic moment M, (upper panel) and
occupancies of e4 and t2g orbitals (lower panel) calculated in LDA + DMFT [288]
for MnO. Solid lines correspond to calculations with parameters U = 6.9eV, J =
0.86 eV, dashed lines to calculation with enhanced exchange parameter J = 1eV.
Vertical lines show the volume value where gaps are closed for t24 and ey spectral
functions
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Fig. 6.23. Evolution with volume of Mn 3d spectral functions (e, — left and
tog — right) calculated in LDA + DMFT [288] for MnO. Dashed line corresponds
to noncorrelated (LDA) partial densities of states

Spectral functions evolution with volume obtained in LDA+DMFT(QMC)
calculation is shown in Fig.6.23. For V/V, = 0.8 typical insulating ground
state is observed with half-filled ¢24 and e, orbitals corresponding to high-spin
state of Mn ion. With volume decrease transition to metallic state happens
with well pronounced quasiparticle peak for t24 spectral function and nearly
empty ey band (V/Vp = 0.53). In Fig. 6.23 by dashed line noncorrelated partial
densities of states are shown obtained in LDA calculation. As one can see they
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Fig. 6.24. Schematic diagram of Mn 3d energy levels corresponding to high-spin
(HS) and low-spin (LS) states realizing at normal conditions (H.S) and for pressure
higher then critical one (LS). In high-spin case two electrons with spin-up occupy
e4 levels increasing total energy on 2A.; due to crystal field splitting but winning
exchange energy —10J. In low-spin state crystal field splitting A.s becomes too
large and only t24 become occupied [288]

HS

are very close to LDA + DMFT(QMC) spectral function for V/V, = 0.53.
It means that in low-spin state with empty e, band and partially filled o4
band the system is in weakly correlated regime in contrast to high-spin state
for V/Vh = 0.8 where to, and e, spectral functions show Mott insulator state
with large energy separation among Hubbard bands.

In order to clarify the physical origin of metal-insulator transition with
pressure in MnO let us consider a problem of d® configuration ion in cubic
crystal field. In Fig.6.24 energy level scheme for this problem is presented.
Cubic crystal field splits five-degenerate d level on triply degenerate to4 level
and doubly degenerate ¢4 level with energy separation among them equal to
Acy. In high-spin state (left side) five states with the same spin projection are
occupied so that ¢y, and e, levels are half filled. That gives a loss of energy
2A.¢ due to two electrons in high-energy e, states that is compensated by a
gain in exchange energy —10.J. In low-spin state all five electrons are on low-
energy to, level (right side) and there is no loss of energy due to crystal field
splitting but exchange energy decreases to —4J. Hence there is a competition
between crystal field splitting and exchange interaction with equal energies
for high-spin and low-spin states when A.; = 3J.

With lattice compression under pressure exchange energy parameter J
is practically unchanged because it is determined by intraion interactions.
However, crystal field splitting parameter A.s significantly increases due to
increased orbitals overlap with contraction of interatomic distances. In inset
of Fig.6.25 volume dependence of Hamiltonian parameters is shown: crystal
field splitting parameter Ay increases 2.5 times with volume compression
from A,y ~ 1eV at ambient pressure to Ay = 2.5eV at volume value corre-
sponding to metal-insulator transition V/Vy = 0.6. This agrees well with the
relation A,y = 3J for critical value of crystal field splitting parameter because
exchange interaction parameter used in calculation was equal to J = 0.86.

In [288] total energy as a function of volume for MnO was calculated
(see Sect.6.1.3). In Fig.6.25 (left side) the corresponding curve is shown. At
volume value corresponding to the transition a bend on the curve is observed.
Spline interpolation for E(V) is shown by dashed line. Differentiation of
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Fig. 6.25. Equation of state calculated in LDA + DMFT [288] for MnO. On the
left side energy as a function of volume is shown (dashed line is spline interpolation)
and on the right side volume as a function of pressure (hatch marks calculation
accuracy). Vertical lines on V(P) curve show critical pressure for transition P* =
120 4+ 15 GPa determining volume collapse V/Vy = 0.68 — 0.59. Dashed line gives
curve V(P) calculated for enhanced exchange parameter J = 1eV. Inset on the left
panel shows dependence of the Hamiltonian parameters on the volume: crystal field
splitting parameter A,y increases 2.5 times in going from normal to critical pressure

E(V) function gave pressure P = dE/dV and allows to calculate volume
as a function pressure V(P) (right side of Fig.6.25). This curve shows that
at critical pressure value P" = 120 & 15 GPa volume collapse happens
V/Vy = 0.68 — 0.59. This agrees well with experimental values of critical
pressure P&*P =~ 100 GPa and volume collapse V/V = 0.68 — 0.63.

LDA + DMFT calculation [288] show that a reason for metal-insulator
transition with pressure in MnO is not simple band width increase and compe-
tition between kinetic and Coulomb energy as in standard Mott transition but
magnetic transition from high-spin to low-spin state in manganese ion d-shell.
To check this conclusion LDA + DMF'T calculation with increased exchange
parameter value J = 1.0eV was performed [288] instead of J = 0.86¢eV value
obtained in constrain DF'T calculations (Sect. 2.2.5). The corresponding curve
is shown by dashed line in right side of Fig. 6.25 and in Fig. 6.22. As one can
see from comparison of curves for J = 1.0eV and J = 0.86eV exchange
parameter increase results in critical pressure value increase and hence to
decrease of volume value where the transition happens. That agrees well with
relation Ay = 3J for critical value of crystal filed splitting: larger J value
requires larger A, that means smaller volume.
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6.4 f-Electron Systems: a — « Transition in Ce

f-electron systems comparing with d-electron materials considered earlier
have some special features. f-electrons are much more localized than
d-electrons and for rare-earth elements 4 f-electrons are often considered as
free ion electron shell not interacting with crystal. In addition to that “heavy
fermion” materials where experimentally strong increase of carriers effective
mass is observed are intermetallic compounds where narrow band of nearly
localized f-electrons is embedded into wide metallic bands of delocalized spd
electrons.

Metallic cerium in spite of its simple chemical composition and cubic face
centered crystal (FCC) structure demonstrates very unusual physical proper-
ties. Low-temperature a-phase and high-temperature «-phase of cerium have
the same FCC crystal structure but their volume values have 15% difference.
Temperature dependence of magnetic susceptibility shows Curie-Weiss law
for vy-phase that means local magnetic moment existence. At the same time
a-phase is Pauli paramagnet that gives local magnetic moments absence in
this phase.

Earlier various approaches were proposed to explain those effects. In
[289,290] it was assumed that while in y-phase f-electrons are localized and
so form local moment and do not participate in chemical bond, in a-phase
volume decrease leads to hybridization enhancement and hence their com-
plete delocalization. Alternative explanation [291,292] was based on Kondo
model. Stronger hybridization of f-electrons in a-phase gives larger Kondo
temperature parameter value comparing with y-phase. In the result in a-
phase local moments are completely screened by Kondo exchange and do not
reveal themselves in magnetic experiments while in «-phase the screening is
absent.

In all those theories uncontrolled assumptions were done for parameters
values and only direct solution of the problem where correlated f-electrons
hybridize with spd-states and each other can clarify this issue. In [293] LDA+
DMFT(QMC) method was used to study o — «y transition in Ce. In problem
Hamiltonian complete set of orbitals including f as well as spd states was
included.

In Fig.6.26 densities of state are shown obtained in LDA calculation for
cerium in 7-phase. Fermi level crosses lower edge of partially filled narrow
(width =1eV) f-band. Coulomb parameter U value from constrain DFT cal-
culations (Sect.2.2.5) is equal to 6eV. So large value of Coulomb interaction
to band width ratio U/W = 6 means that cerium f states are in strongly
correlated regime.

In Fig.6.27 (left side) LDA + DMFT(QMC) spectral functions A(w) are
presented for various volume values. For V = 45A3 in A(w) only Hubbard
bands are observed so that f-electrons are fully localized. At V = 34A% that
corresponds to y-phase quasiparticle states appear at Fermi level but their
spectral weight (the strength of Kondo peak) is very weak. At volume value
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cerium in ~-phase from LDA calculations
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Fig. 6.27. Left: evolution with volume of spectral function A(w) calculated in LDA+
DMFT(QMC) for Ce [293] at T = 632 K. Central quasiparticle peak spectral weight
drastically decreases with volume increase from V = 29 to 34A® corresponding to
a-v transition. Right: comparison of spectral calculated in LDA + DMFT(QMC)
with experimental photoemission and inverse photoemission spectra for « (upper
part) and ~y (lower part) phases [294]
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V = 29A3 corresponding to a-phase intensity of the peak on Fermi level is
strongly enhanced due to spectral weight transfer from Hubbard bands. With
further compression till V = 20A3 nearly all spectral weight is in quasiparticle
band with weak shoulders at Hubbard bands positions.

In right side of Fig. 6.27 comparison is shown of experimental and theoret-
ical spectra obtained from A(w) by multiplying on Fermi distribution function
fr(w) for photoemission spectra and on 1 — fr(w) for inverse photoemission
spectra for a (upper part) and 7 (lower part) phases [294]. In going from « to
« phase a strong increase of intensity for peak on Fermi level is observed in
both theoretical and experimental spectra.

A total energy as a function of volume calculations for various tem-
peratures was also calculated in [293]. In Fig.6.28 corresponding LDA +
DMFT(QMC) curves for E(V) are shown (solid lines) together with E(V)
curves obtained in polarized unrestricted Hartree-Fock calculations for the
same Hamiltonian (dashed line). A difference between DMFT and Hartree-
Fock results can be considered as pure correlation effect. One can see that
all Hartree-Fock curves have only one minimum at volume values higher
than ~ phase volume. LDA + DMFT(QMC) curves for E(V) at higher
temperatures also have minimum at ~ phase volume value. With temper-
ature lowering at first a bend in the curve appears near a volume value
and at lowest calculations temperature this bend transforms into minimum.

25 T
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20
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Fig. 6.28. Total energy for Ce calculated in LDA+ DMFT(QMC) (solid line) and
in polarized Hartree-Fock approximation (dashed line) [293] for three temperature
values. Long dashed line corresponds to pressure for a-v transition: £ = —Peyp V'
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Such minimal temperature T' = 0.054 eV =~ 600K is significantly higher than
experimental transition temperature but qualitatively LDA + DMFT(QMC)
method describes successfully a-v transition in cerium metal.

6.5 Manganites

6.5.1 Manganites Physical Properties

Manganites with perovskite crystal structure attract great interest due to
colossal magnetoresistance effect (see [295-297]). General chemical formula
for these materials is T7_,D,MnO3 where T is three-valence rare-earth ion
(T =La,Pr,Nd,...) and D is two-valence alkaline-earth ion (D = Ca, Sr,...).
In Fig.6.29 perovskite crystal structure is shown with six oxygen atoms
octahedron surrounding Mn ion.

Manganites have complex phase diagram. Typical example is shown in
Fig. 6.30. While ending members of T;_,D,MnO3 series for t =0 and x = 1
are insulators there is a broad range of doping values where ferromagnetic
metallic (FM) state is realized. Long ago there was proposed [261] that the
source of ferromagnetism in these materials is not standard superexchange
between Mn ions that should be antiferromagnetic but so called “double
exchange” that has kinetic energy nature and is formed by itinerant electrons
interacting via Hund exchange with local magnetic moments on Mn ions.

Colossal magnetoresistance effect with its great application potential for
electronics consists in strong suppression of electrical resistivity R(H) with
applying magnetic field for materials in F"M area of phase diagram. The effect

%ﬁ;m that can have value of tens percents or

even hundreds percents (Fig.6.31). R(T') curve strongly depends on doping
value. As one can see from Fig. 6.31a at small doping values Laj _,Sr,MnOs3 is
insulator and for « > 0.15 it is metal. For all « values R(T") maximum is near
Curie temperature T,.. Magnetoresistivity effect is illustrated in Fig. 6.31b: in
field B = 15T resistivity near T, falls two times. In general magnetoresistiv-
ity effect is due to magnetic moments ordering in the system with external
magnetic field that results in decreasing electrons scattering on magnetic fluc-
tuations. The closer temperature T is to T, the stronger effect should be.

measure is quantity n =

La, Sr, Ca,...

v
i ve

Fig. 6.29. Perovskite crystal structure for manganites
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Fig. 6.30. Phase diagram for La;_,Sr,MnQOs3 on plane temperature-doping. PI is
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Fig. 6.31. Resistivity of La;—;Sr,MnOs as a function of temperature (a) at various
doping values and (b) for various magnetic field values and fixed doping [298]
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However, decreasing of R(T) for T > T is a results of electronic structure
peculiarities and requires detailed theoretical study.

Manganites properties were considered in Furukawa works [262-264] and
described in Sect. 5.4 on the basis of sd-model with ferromagnetic coupling
(double exchange model). DMFT calculations gave correct behavior of elec-
trical resistivity, magnetization, and optical conductivity but only qualitative
agreement was found with experimental data. For example it was shown that
Curie temperature depends on doping as T, ~ z(1 — x) but T, value was
strongly overestimated, nearly an order of magnitude larger than experimen-
tal value. Millis et al. [295] have shown that to get quantitative agreement with
experiment double exchange model should be extended to take into account
electron—lattice interaction, especially Jahn-Teller effect and peculiarities of
manganites electronic structure.

6.5.2 Electronic Model for Manganites

Mn ions with local magnetic moments are in cubic crystal field due to octa-
hedral surrounding and hence 5-degenerate 3d level is split in two multiplets:
three to, orbitals (dgy, dyz, d.,) and two e, orbitals (dy2_,2,ds.2_,2). tag level
is lower in energy and is occupied by three electrons that have parallel spins
due to Hund exchange interaction thus forming localized Mn ion spin S = 3/2.
Two eg4 orbitals have 1 — z electrons per Mn ion.

Jahn and Teller have shown that cubic symmetry with two degenerate e,
orbitals is unstable and lattice distortion should happen that lowers system
energy. Hence in LaMnOg cubic perovskite structure is distorted and e, level
is split. In addition to that one should take into account electrons interaction
with dynamic phonons of oxygen ions surrounding Mn because such phonons
can lead to dynamical transition among e, states. Corresponding local modes
are shown in Fig. 6.32.

That results in the following model for manganites characterized by
Hamiltonian [300]:

Fig. 6.32. Oxygen atoms vibrations for two Jahn-Teller modes Q2 and Qs [299]
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Here first line is double exchange Hamiltonian with degenerate e, orbitals
(indexes I and m mark orbitals ds,2_,2 and d,2_,2). The second line describes
Coulomb and exchange interaction of electrons on Mn ion and third line corre-
sponds to electrons interaction with Jahn-Teller modes Q2 and @3 and these
modes energy. In the last term index a marks these modes; (2 is frequency of
localized mode that are supposed to be degenerate, @, (i.e., Q2 and Q3) are
normal vibrations and P, is corresponding momentum. Pauli matrices 7® and
7% describe transitions between e, orbitals and their splitting due to oxygen
ions vibrations. Electron—phonon interaction structure in H was proposed by
Kanamori [301].

6.5.3 QMC for Systems with Electron—Lattice Coupling

To solve auxiliary single impurity problem corresponding to Hamiltonian
(6.5.20) Quantum Monte Carlo method can be used generalized for lattice
degrees of freedom and electron-lattice interaction [299]. For nondegener-
ate Hubbard model @MC method in Hirsch-Fye algorithm was described in
Sect. 3.2. Before going to QMC for complicated Hamiltonian (6.5.20) we con-
sider at first simple model for noninteracting nondegenerate electrons coupled
to local phonons. Later we follow [299].
We consider Hamiltonian

o R 1
H=>) tijehéjo—g) midi+ 3 > (7] + 2°F}). (6.5.21)
ijo i i
Here @; and m; are normal coordinates and momenta for atomic displacements.
Second term in H describes electrons interaction with vibration modes and
the third term presents Hamiltonian for harmonic local lattice vibrations.

In DMFT effective action for auxiliary single impurity problem should be
defined and we choose it as:

B
S = —/ drdr’ Zéj(r)ggfl(f —1e (")
0 e

s B
—g/ dri(r)®, + %/ dr [(9')? + 2°¢2] (6.5.22)
0 0

where &, = &(1), &, = dP(7)/dr. Partition function and Green function are
written as functional integrals over Grassmann variables ¢, (7) and ¢} (1) for
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electrons and @, for phonons:
/D Ddie , (6.5.23)
= f—/D [(|D&c, (T)ct (0)e™, (6.5.24)

As it was described in Sect. 3.2.1 we divide time interval 0 < 7 < § on
L slices with discrete time values 7, = (I — 1)A7 where At = 8/L. Then
instead of formulas (6.5.23) and (6.5.24) the corresponding quantities can be
introduced with fixed set of phonon fields {®;}:

Z{@.l} = /D e~ Sm, (6.5.25)

{2:})

mn(

/D lemoc,t e St (6.5.26)
{951}

where ¢pme = €6 (Tm)

L L
Stoy == 3. > (G cme — gAT S B+ K({®1}),  (6.5.27)
Im o l

L 2
o At @l+1 — @[ 2 29
K{&,}) = - El <A—T> + 24 P; (6.5.28)
Impurity GF G¢,, is given by expression
Go= 2o o (g, (6.5.29)
mn Z mn

{2}

Quantity Z¢y/Z is a measure of probability for configuration {®;}. Functional
integrals over @(7) in expressions (6.5.23) and (6.5.24) come then to sums
over discretized configurations {@;} that could be calculated numerically with
QMC. In these terms single-site GF' is written as:

Sy G121
ZDpanl

Now we consider full model with Hamiltonian (6.5.20). Partition function

and single-site electronic GF' can be expressed as functional integrals over all
fields:

o
Gmn

(6.5.30)

/D D[] D[Q2]D[Qs)e™?, (6.5.31)
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Here indexes ;1 and v note two e, orbitals and have two values: 1 and 2. Due
to rotational invariance of Hamiltonian integral over vector S orientations can
be replaced by sum over two opposite directions S% = +[S].

In integration over Grassmann variables we can use Hubbard—-Stratonovich-
Hirsch transformation (3.2.58) to linearize Coulomb term in Hamiltonian. For
all inter and intra orbital interactions that gives six auxiliary Ising fields (see
Sect. 3.2). These discrete fields can be combined with fields corresponding
to Jahn-Teller modes. In the result partition function and single-site GF' are
presented in the form:

> Zisiay,s (6.5.33)
{51,Q1}
z
nro _ {S Q'Y uvo l
Ghw = Y. ——Gnr{s.Q"), (6.5.34)
{5.Q1}
Zis1 o :/D[&]D[c]e‘s{sw}, (6.5.35)
G ({5,Q'}) = [ PleDdenscie e (6530
Z{SZQ}

Integration over S directions is omitted because we assume ferromagnetic state
with saturated magnetic moment.
Effective action in (6.5.35) and (6.5.36) is a sum of terms:

SH{S, QY = So+ Kg + Sy + So + Su, (6.5.37)
where
So== D ho(G)impuCrve
Ilm,pvo
. AT Ql+1 Ql e
Ko=F 3 l( ) o

Sy = —J|S|ATZ(”WT = Nul),
lp (6.5.38)
SQ = —gAT Z C?;LU(QZQTI + QgTZ)ClVUv

lpvo

SU - - Z |:>\USll'](nl1T - nlli) + AUS%](”[QT — nlzl):|
l

- Z A\ S (1o — muzs) + Av—pSI_p(nine — muss)] -

lo
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Here )\, = arccosh(e*27/?); {Sb,gb,sy,Sg’_F} are Ising auxiliary fields
for {Unminm, Vnienas, (V — F)nienas} correspondingly. We remind that
51 = Qa (Ta) and Cmve = Cuo (Tm)
Effective action S is diagonal in spin but has off-diagonal matrix elements
between e, orbitals and hence 2x2 matrix should be introduced for every
time 7;:

VI =VE + VY, (6.5.39)

where 27O gArQ)!

lo . [(94TW3 g TQ3
Vg = (gATQZQ —gATQ?) (6.5.40)

from phonon contribution Sg and
Vvie — _ AUS%]O' + AvS{}’ + )\V,FS{}’_F ~ q
s 0 )\US%]J - AVS€7 — /\Vsté/g_F

(6.5.41)

from Coulomb contribution Sy .

The further QMC' calculation scheme is the same as described in Sect. 3.2
for nondegenerate Hubbard model. The same equations are valid connecting
GF for some Ising fields configuration {S!,Q'} with configuration {S!, Q'}
that differs from previous one by sign change of only one Ising field. If we
denote

gy = —Gl? ({5',Q'})

e = —Glr? ({8, Q')).

Then quantities g and g are connected by equation
Toun = I + (G = Sm) Ao [1+ (1 = g7) Ao] " g, (6.5.42)

where .
AT =e""e”V — 1. (6.5.43)

This equation leads to the probability ratio of new configuration realization
with respect to previous one:

R=e®a=Ka T det(1 + (1 - gf) Ao). (6.5.44)

Here determinant is calculated over orbital indexes only. In QMC' calculations
every configuration change denoted by line above includes shift of all bosonic
fields and spin flip of one of arbitrary chosen Ising fields for time index I.
Relations (6.5.42)—(6.5.44) are generalization of corresponding relation of
Sect. 3.2.
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6.5.4 LDA+ DMFT(QMC) Results for Laj_,Sr,MnOs3

For LaMnQOg3 compound the following Coulomb interaction parameters values
were chosen: U’ = 3.5eV from [302], J = 0.75eV calculated from energy
splitting between spin states T and | from LSDA calculations. Localised spin
of tog states S = 3/2 was considered as classical spin.

Calculated spectra for e, orbitals are presented in Fig.6.33. On upper
panels dispersion curves are shown for symmetrric directions in cubic and
orthorhombic lattices calculated in LDA. Fermi level for nonmagnetic LDA
calculations is below all e, bands and crosses tg, band (not shown on the fig-
ure) giving metallic ground state. z is dimensionless parameter equal to ratio
of crystal field splitting of e4 states to hopping parameter t ~ W/6 where W
is band width for e, states. On middle panels LDA + U calculation results are
shown with Fermi level in the gap between e, states split by Coulomb interac-
tion. That gives insulating ground state but it is known that LDA+ U method
overestimates correlation effects. On lower panels LDA + DMFT calculation

L L L L L L L 1 1

41 cubic 0 GPa i ortho 11 GPa 7 ortho 0 GPa
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2 1
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Fig. 6.33. Band structure of LaMnOg for cubic (left panel) and orthorhombic (right
panel) crystal structures by LDA (upper part), LDA+U (center) and LDA+ DMFT
(lower part) [302,303]. Energies are ineV, wave vectors in 7/a units. Fermi level is
inw=20
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results are presented. They show that in cubic phase LaMnO3; should be a
metal while in orthorhombic phase it is an insulator with a gap ~2eV in
agreement with experimental data. Hence a correct description of mangan-
ite LaMnO3 in LDA + DMFT calculation can be achieved with simultaneous
inclusion of Coulomb correlations and electron-lattice interaction.

Please note arrows and numbers near dispersive curves and densities of
state in Fig. 6.33. Arrows mark spin direction and numbers are for orbitals
ds.2_,2 and dg2_y2. In LDA + DMFT ty, states are not included explicitly
but only as localized spins interacting with eg-electrons. Due to this exchange
interaction eg-electrons are spin polarized as one can see in central lower panel
in Fig. 6.33. In right lower panel dashed line is density of states for d,2_
orbitals and solid line is for ds,2_,2 orbitals. On the left panel d,=_,» and
ds,2_,2 density of states are degenerate.

In Figs.6.34—6.36 calculation results are presented for local density of
states with electron—lattice interaction taken into account (lattice model
Hamiltonian (6.5.20)). Model parameter values were:

U=5eV, F=0.75eV,V=U—-2F=35eV,2J5=27eV, W =3.6eV.

From Raman spectroscopy phonon frequency {2 = 0.07eV was obtained in
[304]. Coupling constant g in calculations was free parameter. In contrast to
LDA calculations where static Jahn-Teller effect was taken into account inclu-
sion of phonon in Hamiltonian (6.5.20) allowed to consider effect of dynamic
Jahn-Teller distortions.

Spectral function in Fig. 6.34 has three-peak structure analogous to those
shown in lower panel of Fig.6.33 for orthorhombic phase. Energy gap value

0.2 T T T T T T T T T T

— =005, p=30] -

0.15

0.1

A(®)

0.05

O74 -2 0 2 4 6 8
o(eV)

Fig. 6.34. Local spectral density in paramagnetic phase of LaMnO3 for model

including electron—phonon interaction with parameter values: g = 0.05 (eV)_3/2,

W =3.6eV and 8 = 30. In QMC calculation time slice value is AT = 0.35 so that

number of time slices for interval 0 < 7 < 3 was L = 120 [299]
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Fig. 6.35. Local spectral density in paramagnetic phase for various values of
electron—phonon constant g and model parameters: 8 = 16, n = 0.8 [299]
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Fig. 6.36. Local spectral density for various values of electron concentration n and
parameters: 3 = 16, g = 0.10 [299]

agrees with experiment that gives LaMnOg as insulator but in Fig. 6.34 there
is small final density of states near w = 0.

Special interest present calculation results for doped manganites in con-
centration x interval where ferromagnetic metallic state is formed. In Fig. 6.35
results for electronic concentration n = 0.8 (corresponding to x = 1—n = 0.2)
are shown for various values of Jahn-Teller coupling constant value. Without
Jahn-Teller coupling spectrum has broad quasiparticle peak on Fermi level
and the system is metallic. With ¢ increasing quasiparticle peak is gradually
suppressed and spectral weight on Fermi level decreases with a dip in A(w)
near w = 0 and for large g values a gap appears. Lower Hubbard band is
shifted to lower energies while upper Hubbard band shifts higher in energy.
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Fig.6.36 shows evolution of spectral function with doping increase. Stoi-
chiometric compound (n = 1) is a good insulator. For small doping = = 0.1
states in the gap appear so that pseudogap is formed that becomes completely
filled at n = 0.3 (z = 0.7).

Analogous behavior of spectra is observed in optical conductivity o(w).
Fig. 6.37 shows optical conductivity calculated for paramagnetic phase at var-
ious electron concentrations. Spectra have two peaks at 1 — 2eV and 6eV
and with doping increase low-energy peak shifts down in agreement with
experimental data (Fig. 6.38).

T T T T T 1

o (eV)

Fig. 6.37. Optical conductivity in paramagnetic phase at various values of electron
concentration n; § = 30, g = 0.10 [299]
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Fig. 6.38. Optical conductivity of La;_;Sro,MnO3; at room temperature and
dopings: (z = 0; 0.10; 0.15; 0.175; 0.20; 0.30 [305])
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Fig. 6.39. Curie temperature T as a function of doping for g = 0.10 [299]

From Fig. 6.38 one can see that phase transition from insulator to metal
happens for doping values between z = 0.175 and 0.20. Doped compounds are
insulating for (0 < z < 0.175) and metallic for x = 0.3. Low-energy part of
optical conductivity is strongly suppressed in insulating phase and Drude peak
appears in metallic phase at > 0.3. In insulating phase optical conductivity
has two peaks: low-energy peak at w =~ 1 — 2eV and high-energy peak at
w =~ 6eV. That agrees with calculated o(w) curve shown in Fig.6.37.

Let us consider now calculation results for Curie temperature 7. obtained
from magnetic susceptibility temperature dependence x(7"). In Fig. 6.39 T, as
a function of doping is shown. Theoretical prediction for 7. at fixed coupling
constant value agrees in form with phase diagram in Fig. 6.30 but the values
are 2-3 times larger than experimental values. As one can see from Fig. 6.40
T. depends strongly on electron—lattice coupling constant value. g variation
from g = 0.10 (Fig.6.39) to g = 0.12 corresponding to A = 2.0/2.2 (Fig. 6.40)
decreases T, nearly two times. Results presented in Fig. 6.40 are close to earlier
obtained by Millis et al. [265] and Edwards [306].

Comparison of calculated and experimental results gives a set of parameter
values giving the best agreement for all observed properties in Laj_,Sr,MnOj3
[299]:

W =3.6eV; U =33eV; 2JS =2.7eV; F =0.75¢V;
2 =0.07eV; g =0.077 (eV)3/2,

Main conclusion from LDA + DMFT(QMC) calculations for Laj_,Sr,
MnOg is the following: Jahn-Teller distortions of oxygen ions surround-
ing Mn are essential to understand manganites physics. However, these
distortions alone are not enough to reproduce energy gap appearance in elec-
tronic spectrum. Only simultaneous effect of Coulomb correlations and Jahn-
Teller distortions allows to understand stoichiometric and doped compounds.
Microscopic model defined by Hamiltonian (6.5.20) is complete enough for
perovskite manganites.
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Fig. 6.40. Curie temperature as a function of dimensionless coupling parameter
A =9/02/% at n = 0.8 and parameter values: to = 0.6eV and 2 = 0.07 eV [299]

6.6 High-T, Superconductors Based on Pnictides
Compounds

Recently, high-temperature superconductivity (7. = 28—56 K) was discov-
ered in a new class of materials: pnictides compounds with typical exam-
ple LaOFeAs [307]. At stoichiometry LaOFeAs is not superconducting but
below T' = 135K spin density wave state is observed. With substitution of
part of oxygen by fluorine spin density wave formation is suppressed and
LaFeAsO;_,F, becomes superconducting.

LaOFeAs crystal structure consists from alternating layers of LaO and
FeAs (see Fig. 6.41). Every iron ion is surrounded by four arsenic atoms form-
ing tetrahedron that is slightly distorted by squeezing along ¢ axis. Lanthanum
and oxygen atoms are situated far enough in space from iron ions and it is rea-
sonable to expect that their electronic states will be weakly hybridizing with
d orbitals of Fe ions. Formal valence of Fe in LaOFeAs is +2 that corresponds
to configuration d°.

Density Functional (DFT) calculations for LaOFeAs [308] gave energy
band structure in a good agreement with the earlier analysis. In Fig. 6.42 one
can see partially filled band from —2eV till 4+2eV (Fermi level is at zero)
formed by Fe-3d states. This band is separated from occupied band formed
by oxygen and arsenic p states that is situated at [—5.5eV/ — 2eV] interval.
Fe-3d band filling corresponds to 6 electrons per Fe atom and the band has a
width of =4 eV. It consists of two sub-bands separated by a deep depression
with Fermi level situated on the upper slope of the lower sub-band. These sub-
bands corresponds to bonding and antibonding combination of Fe-3d orbitals
due to strong hybridization among Fe-3d state in FeAs layer.
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Fig. 6.42. Total and partial densities of states for LaOFeAs obtained in DFT
calculations [308]

Tetrahedral surrounding of iron ion by As atoms leads to crystal field
splitting of d-states on low-energy double degenerate set corresponding to
representation ey (orbitals 322 — 72, zy) and high-energy triply degenerate to,
representation set (orbitals 22 —y?, xz, yz). However, the actual value of crys-
tal field splitting parameter is rather small A.y ~ 0.25eV. Slight tetragonal
distortion results in additional small splitting and finally orbitals energies are:
€3;2_p2 = 0.00 eV, €4y = 0.03 eV, €5,4. = 0.26 eV, £,2_,2» = 0.41 eV. Those
quantities are much smaller than the d-band width and all five d-orbitals form
common band.
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Fig. 6.43. Partial densities of states for Fe-3d, As-4p and O-2p states obtained
within the DFT (filled areas) and LDA + DMFT orbitally resolved spectral
functions [308]

The problem of Coulomb correlation influence of LaOFeAs electronic struc-
ture was investigated by LDA + DMFT method in [308-310]. Constrain DF'T
calculations in [308] gave Coulomb interaction parameter values U = 3.5eV
and J = 0.8eV. We will present later results of LDA + DMFT calculations
for LaOFeAs [308] with these parameter values. In Fig. 6.43 spectral functions
from LDA+ DMF'T calculations are shown in comparison with noninteracting
partial densities of states from DFT calculations.

Analysis of the curves in Fig.6.43 leads to conclusion that LaOFeAs is
not strongly correlated material. The general shape of spectra does not show
either Kondo resonance at the Fermi level or Hubbard bands; the features in
Fe-d spectral functions below —2eV correspond to hybridization with As-p
and O-p bands. The reason for such weak correlation effects in spite of the
relatively large Coulomb interaction parameter value is a strong hybridiza-
tion of the Fe-d orbitals with As-p states (see the peaks in the Fe-d spectral
function in the —2/—3eV range corresponding to mixing with As-p bands).
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This hybridization provides an additional very efficient channel for screening
of the Coulomb interaction among Fe-d electrons.

However, this material cannot be called “weakly correlated” either because
quasiparticle states near Fermi level show significant renormalization com-
paring with noninteracting bands. The calculated values of the quasiparticle
renormalization factor Z = (1 — 8%5}“” |w:0))_1 are found to be 0.56, 0.54,
0.45, 0.56 for dgy, dy. (or d.), d3,2_,2, dy2_,2 orbitals, respectively. These
values agree well with the effective narrowing of the LDA+DMFT spectral
functions comparing with LDA DOS (Fig.6.43).

The effective mass enhancement values m* = Z~! are 1.8, 1.59, 1.41,
2.17 for dyy, dy. (or d..), d3,2_,2, dy2_,2 orbitals, respectively, agree well
with the mass enhancement factor between 1.7 and 2.1 reported in the dHvA
study [311]. The d,2_,2 orbital has the largest effective mass and exhibits the
most evident narrowing of LDA spectrum (see Fig.6.43). This orbital has its
lobes directed into the empty space among nearest iron neighbors in the Fe
plane. Hence, it has the weakest overlap, the smallest band width, and the
largest U/W ratio.

In Fig. 6.44 the total LDA+DMFT spectral function calculated in LDA +
DMFT [308] is shown together with the experimental photoemission data of
[312]. One can see a good agreement between the theory and experiment. The
sharp peak at the Fermi energy corresponds to a partially filled Fe-d band
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Fig. 6.44. Calculated total LDA + DMFT [308] spectral function (solid line) and
experimental LaFeAsO photoemission PES spectrum (circles) from [312]
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while the broad feature between —2 and 6eV corresponds to the oxygen and
arsenic p bands.

Quasiparticle band narrowing by a factor of m* ~ 2 obtained in LDA +
DMFT [308] can be compared with Angle Resolved Photoemission Spec-
troscopy (ARPES) experiments. Good quality ARPFES data are available for
BaFeyAsy compound [313] that has physical properties analogous to LaFeAsO.
LDA + DMFT calculations for this material were done in [314] and have
shown results close to those for LaFeAsO in [308] with effective mass values
m* = 2.05, 2.05, 2.05, 1.85 for dyy, dy. (or d..), ds,2_,2, dy2_,2 orbitals.

In Fig. 6.45 the theoretical k-dependent spectral function A(k,w) is com-
pared with ARPES data of Liu et al. [313]. Both theory and experiment show
dispersive bands crossing the Fermi level near the I' and X points. Near I'
point in addition to that two weakly pronounced relatively flat bands can
be seen in the region of —0.2/—0.3eV and at —0.5/—0.6eV. The shape and
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Fig. 6.45. The k-resolved total spectral function A(k, w) for BaFe;As, calculated
in LDA + DMFT [314] along the I'-X line in the Brillouin zone(upper panels). The
left and right upper panels correspond to X and I' point regions. The two lower
panels represent the experimental ARPES intensity map of Liu et al. [313]
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Fig. 6.46. Energy bands of BaFesAss along the I'-X line in the Brillouin zone
calculated in LDA+DMFT (open circles) and LDA (solid lines) [314]. The same
regions of I'-X direction as in Fig. 6.45 are used

size of electron and hole pockets centered, respectively, at X and I points in
calculated spectral function are also in good agreement with ARPES data.
For more detailed analysis of the DMFT calculations results presented in
Fig. 6.45 peaks position were calculated for the spectral function A(k,w). A
set of these peaks positions as a function of wave vector k gives energy bands
renormalized by correlation effects. In Fig.6.46 the DMFT band structure is
compared with noncorrelated bands obtained in LDA. Comparison of DMFT
and LDA bands shows that the former can be with a good accuracy obtained
from the latter by compressing approximately by factor of 2. This bands renor-

malization agrees well with a number of experimental studies for BaFeyAss
[315,316].

6.7 The List of Strongly Correlated Materials
Investigated by DMFT Method

In Chap.6 we described LDA + DMFT calculation results for some typical
examples of strongly correlated materials that illustrate the method and its
ability to study physical properties influenced by Coulomb correlations. The
choice of these examples naturally is defined by the authors preferences but
we consider those materials as a representative set. Many other materials
investigated by LDA + DMFT method are listed in Table 6.2. A reader can
learn about these calculation results from the references in the table. In a
third column basic physical properties studied in the corresponding work are
mentioned. Example are density of states (spectral function) p(w), optical
conductivity o(w), static magnetic susceptibility x(7"), magnetization as a
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Table 6.2. Materials studied by LDA + DMFT method
Material Physical problems Calculated References
properties

d-systems
V203 MT transition See Sect. 6.2.2 [275,317,318]
VO, Peierls insulator at p(w) for T > T, and  [319,320]

T < Te T < Te
SrVOs3, CaVOs3 M transition [270,272,321-323]
LaTiOgz, YTiO3 Orbital ordering See Sect. 6.2.1 [324-328]
SrTiO3/LaTiOgz Kinks
LiVoOy Heavy fermions See Sect. 6.2.3 [329-331]
Laj—,Ca,MnOs, Colossal magnetore- M (x), M(T), p(w), [262,300, 302, 332,

LaCoOs3 sistance o(w) see Sect. 6.5 333]

Cag_;SrzRuOy Unconventional Normal phase: p(w), [187,334-337]

superconductiv- E(k)

ity, orbital

selective Mott

transition
NagzCoO2 Unconventional Normal phase: p(w), [119,338-342]

superconductiv- E(k)

NiO, NiS , TaSs

KCuFs
FeSi

MnO, FeO, CoO,
Fes O3

Fe3zOy4

T1oMnsO7

TiOCl

NiMnSb, FeMnSb,
VAs, CrAs,
CrOa,
CooMnj . Fe,Si,
YbRhsSi2

Fe, Ni, CoPt

Gai_Mng;As
LiRhoO4

F
Ce

ity, hole pockets
in Fermi surface

Charge transfer
insulators

Jahn-Teller effect

Correlated band
insulator

M transition with
a change of spin
state

Verwey transition

Insulator in
contradiction
with LDA results

Insulator in
contradiction
with LDA results

Half-metallic
ferromagnets,
nonquasiparticle
states

Ferromagnetic
metals

Ferromagnetic
semiconductors

Thermopower

Isostructural phase
transition

See Sect. 6.3.1

Lattice distortions
R(T), x(T)

See Sect. 6.3.2
p(w) with

Jahn-Teller
distortions

p(w), o(w)

p(w)

P (@), pL(w), o(w)

p(w), M(T), x(T)
M(T), M(x)
R(T),

See Sect. 6.4

[283, 286, 343-348]

[349, 350]
[351]
(288,345, 352]
[353]

[354]

[355, 356]

[357-364]

[365-369]
[370]
[371]

[293,372-376]

(Continued)
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Material Physical problems Calculated References
properties
Pu See review G. [9,377-381]
Kotliar et al.,
Rev. Mod. Phys.
78, 866 (2006).
Am (382,383
Ce, Nd, Pr Structural p(w), E(V), P(V), [374]
transitions under ng(V)
pressure
CeCu2Sia Heavy fermions p(w), ng(V) [384]
AmN, AmSb, PuTe, p(w) [385]
PuSe
USe, PuSe, UTe Ferro and antiferro-  p(w) comparison [386]
magnetics with with PES
strong spin-orbit
coupling
PuCoGas superconductor with  p(w) quasiparticle [387]

T. = 18.5K and
d-symmetry
order parameter

peak

function of temperature M(T), and doping M (z) and also quasiparticle dis-
persion E(k). This list reflect the present state of the field and undoubtedly
will soon be come obsolete as a flow of new LDA+ DMF'T studies is increasing

now.
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Conclusion

Two decades have passed since first ideas appeared leading to development of
Dynamical Mean-Field Theory (DMFT) that becomes now a basic method
to study strongly correlated systems (SCS). During this time hundreds of
theoretical works were done using DMFT to study as basic models as well
as real materials where physics is determined by correlation effects. A basic
approximation of DMF'T is neglect of spatial correlations with full description
of local dynamical fluctuations. That is equivalent to approximation where
self-energy is local depending only on frequency but not on wave vector.
In DMFT method lattice problem is mapped on single-site impurity prob-
lem where atom with Coulomb interaction among electrons in d or f shell is
embedded in energy (or time) dependent Weiss field (hence the name of the
method: dynamical mean field). Spatial correlations neglect is justified when
the system is not close to transition in long-range ordering state so that long
coherent length fluctuations do not develops. With very few exceptions like
high-T,. cuprates such conditions are realized in real materials and DMFT
method was very successful in vast majority of applications.

Auxiliary single-site impurity problem in DMFT is much simpler for solu-
tion than initial lattice problem and can be solved with a high accuracy with-
out severe approximations. The most widely used last years was Quantum
Monte Carlo (QMC) method in Hirsch-Fye algorithm that is exact if statistic
of stochastic sampling is good enough but it is applicable only for high temper-
ature values because needed computer time resources grow exponentially with
T lowering. Recently new versions of QMC method were developed like Con-
tinuous Time QMC' and Projective QMC' that allow to study low-temperature
physics.

Initially, DMFT was applied to basic SCS models like nondegenerate
Hubbard model, periodic Anderson model and sd-model (Kondo lattice model).
In these studies the structure of quasiparticle spectra was investigated and its
evolution with variation of Coulomb interaction parameter U to band width
W ratio value. In half-filled Hubbard model spectral function evolves with U
increase from metal to insulator with Mott-Hubbard transition at U ~ W.
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Near transition three-peak structure appears with quasiparticle peak on Fermi
level and two Hubbard bands corresponding to incoherent states. With vary-
ing U and T values intensity and width of quasiparticle peak changes showing
strong renormalization of effective carriers mass value responsible for trans-
port properties. DMFT also allowed to investigate three-peak spectra evolu-
tion with deviation from half-filling with doping 0 thus producing full phase
diagrams on planes (T, U) and (T, 4).

In periodic Anderson model strong Coulomb interaction also lead to
sharp quasiparticle peak on Fermi level thus explaining “heavy fermion” phe-
nomenon. DMFT calculations show appearing of universal energy scale T
separating high-temperature area (T' 2 Tp) where f-electrons form local mag-
netic moments and low-temperature region 7' < Ty where Kondo singlets are
formed and local moments are screened.

DMFT method gave many spectacular examples of successful description
for physical properties of SCS. For example not only paramagnetic state can
be treated by this approach also but long-range ordering: antiferromagnetic
and superconducting. For that DMFT scheme should be extended by replac-
ing effective single-impurity model on cluster model with few atoms in cluster
instead of only one. For antiferromagnetism with two sublattices two-atom
cluster is enough while for superconductivity with d-symmetry order param-
eter minimal cluster is four-atomic plaquet. Special calculation scheme was
developed: Dynamical Cluster DMFT to treat short-range fluctuations in the
system.

Going beyond local approximation for self-energy that is a basis of DMFT
approach is needed when spatial fluctuations are important as it is for pseu-
dogap effect in cuprates. This effect appears for normal metal phase with
partial destruction of Fermi surface on certain areas. It can be treated by
DMFT if short-wave fluctuations are included in microscopic theory or long
wave fluctuations in phenomenological theory. There were attempts to extend
DMFT by adding corrections of the order of 1/d (DMF'T itself is exact in the
limit of infinite dimensions d = 00). The theories were also developed where
instead of static Coulomb interaction U frequency dependent interaction U (w)
is defined (in diagrammatic technique that corresponds to taking into account
dynamical local vertexes).

DMFT can be applied not only to one of the basic models of SCS but also
to real materials. Density functional theory (DFT) in local density approxi-
mation (LDA) was successful in calculation of densities of states and disper-
sion laws for any materials knowing only its crystal structure and elements
numbers in periodic table. Combining LDA and DMFT lead to development
LDA+ DMFT method that was very effective in strongly correlated materials
studies.

In contrast to model approach in LDA + DMFT full set of degenerate d
or f orbitals characteristic for material is included in problem Hamiltonian.
This approach can be called “first principles” one but there are some approx-
imations used in calculation scheme. At first certain orbitals are considered
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as interacting ones while all others are left as they were given by LDA. At
second Coulomb interaction is considered to be local on site. The most impor-
tant approximation is a choice of method to solve effective impurity problem:
IPT, NRG, QMC. QMC is a rigorous method but is requires large computer
resources.

In spite of many approximations used in calculation scheme LDA+ DMFT
results are sufficiently reliable as can be checked by comparison with experi-
mental data. Many different classes of materials were treated in this approach:
transition metal oxides, high-T, cuprates, f-electron compounds with heavy
fermions, ferromagnetic metals and half-metallic ferromagnets, rare-earth and
actinide materials. The list of materials presented in Table 6.2 is fast extend-
ing with time. It is safe to say that now DMFT is an universal tool to study
strongly correlated materials.

It is worth to note that many LDA + DMF'T calculations cannot be called
fully ab initio because Coulomb interaction parameters were not calculated
from “first principles” but taken as calculation parameter. “First princi-
ples” calculations for U were done in few cases but they are in general rare.
Another important direction to extend calculation scheme is to calculate lat-
tice properties such as compressibility, phonon spectra and lattice structure
parameters.
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Functional Integral and Partition Function

Partition function of the system with Hamiltonian H is defined as a trace of
operator e AH.
Z=Tre P = Z <a|e_ﬂH|a> . (A1)

«

Here |a) form full orthogonal basis for expansion of Hamiltonian H eigen-
functions. For Z calculation any basis can be used, however, for numerical
calculations so called coherent states basis is most convenient. Such choice
leads to presentation of Z as functional integral over some fields with struc-
ture different for Bose and Fermi systems. While for Bose systems such fields
can be determined by ordinary complex numbers, for Fermi systems they are
defined by some anticommutating quantities called Grassmann variables. In
both cases coherent states are defined via creation—annihilation operators in
second quantization representation and difference among fields generated by
these coherent states is connected with commutation rules for these operators.
Anticommutation of Fermi operators results in need for Grassmann variables
in Fermi systems. Ideology of coherent states method is the same for Bose and
Fermi systems but its realization depends on commutation rules for second
quantization operators. Later we at first present the method for Bose systems
and then for Fermi systems. Functional integral method was initially devel-
oped by Feynman [388,389] and full details of mathematical derivations can
be found in monographs and reviews [390-393].

Bose Systems

Let us consider systems of bosons described by creation and annihilation oper-
ators &2’, d; where i are quantum numbers defining particle state (site number,
band number, polarization, etc.). The system Hamiltonian

H =Hla}, ). (A.2)

is a polynomial of operators &j‘, d; in normal form (creation operators are left
of annihilation operators).
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At first for simplicity we consider the case where only one state of Bose
system exists so that index ¢ of operators d;r, a; can be omitted. This state
with n bosons can be defined as:

my=""L0), ajo) =, (A.3)

where |0) is vacuum state. It is easy to check that set of states |n) form
orthonormal basis:
(njm) = dpm.- (A.4)

From states |n) new basis can be defined as linear combinations |«) that
could be more convenient for our task: partition function calculation. For that
we introduce operator:

D(a) = exp (aat — a*a), (A.5)

depending on two complex numbers a and a*. Using Becker-Hausdorf identity
expression (A.5) can be rewritten as:

~ ]2 .4 A

D(a) =e 2 e e @9 (A.6)

This identity for two operators A and B satisfying condition

corresponds to relation
eA+B —_ efé[A,B] A B. (A?)

Let us introduce a set of states |«) characterized by « number:

la) = D()[0) = e 'F a7 [0), (A8)

Expending the exponent in Tailor series it is easy to show that |a) is a linear
combination of states |n):

Z \/_|n (A.9)

So coherent states are superposition of states with different particles number
values.

We will now show that |«) is eigenfunction of annihilation operator a. For
that we will act by operator @ on relation (A.9) and use standard relation
from second quantization method:

aln) = valn —1), (n>1),a0) = 0. (A.10)
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That results in equation
ala) = ao|ay, (A.11)

proving that |a) is eigenfunction of annihilation operator. This remarkable
property makes coherent states a convenient basis to calculate Z.

Normalization condition (a]a) = 1 is satisfied if one takes into account
relation (a|at = (a]a*. States |n) defined by expression (A.3) form full basis
because the following relation is valid:

S )l =1, (A.12)
n=0

Coherent functions |a) also form complete basis that corresponds to relation

/d—|a>< | =1, (A.13)

7r
where d?a = d(Re a)d(Im «) and integration is performed over full complex
variables plane.

To prove last relation we substitute expression (A.9) (and its conjugated

counterpart) to left side of equation (A.13) and transform to polar coordinates
a = pe'?. Then

d2 m-!,-n 27 .
/T|O< / dppe™” Z\/Tn/o dgel(n=m)e,

and keeping in mind that integral over d¢ is proportional to d,,., we arrive to
relation (A.13).

Relation (A.13) can be considered as operator expansion of unit and one
can use it to represent arbitrary operator L via its matrix elements in coherent
states basis:

~ PN 20 2 ~
p-iti= [ 22 [ SRl (A14)

We apply this relation to Hamiltonian H presented as normal expansion
in second quantization operators:

57:(& a Z\/%urn()m

Because of relation (A.11) we have

(alH|B) = Z m )" (B)™ = H(a", ). (A.15)

So Hamiltonian matrix element among coherent states written in normal
form can be obtained by simple substitution of operators &t and & by complex
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numbers. This can be done not only for Hamiltonian but also for any operator
in normal form.
It is easy to produce inverse expansion of |n) function via coherent states:

In) = / dTo‘(f‘/%n ), (A.16)

and also to prove two useful relations

a2 2
<a|ﬁ>=exp(—% BE 6) (A17)

o0 2 R
:Z (n|L|n) = /d (a|L|a). (A.18)

Now we generalize obtained results on general case where Bose parti-
cle is characterized by combined index i = {iy,42,...,inx} with N possible
values. In this case for coherent states definition a set of complex numbers
{a1,@2,...,an} is needed and then

a) = [J e —aits|o) = e (@il —aian|g), (A.19)

Instead of relation (A.17) we have now

;2 12
(a|B) = exp < Z <% + @ - ozf&)) (A.20)

%

Equations (A.13) and (A.18) are still valid but one should keep in mind that

2 2 .
da | I1 dai. (A.21)

™ ™

Now everything is ready to calculate partition function. According to
general relation (A.18) we write Z as:

Z = / dﬁo‘ (ale™PH|a). (A.22)

We use a known limit

L—oo

N L
e P = fim Ty <1 - 5TH> (A.23)
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and consider expression with final L value:

N\ L
Tr <1 — ﬁTH> = /DLaDLa*

H H H
(ot — T jar)olt = 2l o) -+ s ~ 2L o).

(A.24)

We define here matrix element for power of operator (1 — %) via matrix ele-

ments product. The variables a;(I =1,2,..., L) are sets of complex numbers
o = {aar, agp, ..., anit and also

L d2q;
DFaDla* = €. A25
a H g) - (A.25)

According to relations (A.20) and (A.15) we transform every multiplier in
(A.24) in the following way:

6I§[ Qi l— 2 air]? *
(azf1|1—T|OLl>=eXP —Z[ | 21| +| 2' — Qg 10l

%

S~

H(Oéf,z_l,au)]) : (A.26)

Using the fact that for large L quantity ﬁTH is small we transform expansion in

1/L in exponent. Multiplying all terms in (A.24) we present this expression as:

N\ L
H
Tr (1 — %) = /DLaDLa*exp (— Z [ajp (ur — o n—1)

%

‘o (i1 —ain2)+ ...+ aj (@ — aio)
g .
-7 El: Hag, q 0u)]| |- (A.27)

For Z calculations a limit of L — oo is needed and then sum over [ in
expression (A.27) will become an integral and differences «;; for nearest values
of [ can be written via derivatives:

Oa; B

5 T (A.28)

Qi — O 1—1 =

In the result we arrive to presentation Z as a functional integral

0

B
Z = /Da(T)Da* (T)exp (/ drL(a* (T),Oz(T))) . (A.29)
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where

£=- Z o (T)%ai(ﬂ — H(a; (1), (7). (A.30)
In this functional integral integration is done over all complex functions

*

af (1) and a4 (7) with boundary conditions:
a; () = a; (0), ai(B) = i (0). (A.31)

If H has quadratic form in Bose operators (free particles) then functional
integral can be calculated explicitly. For that one should use the following
expression for finite-dimensional Gaussian integral

A%y .
/ [ —"exp(= > ;i Lijay) = (detL) ", (A.32)
[ 1]

™

where L;; is hermitian matrix. This equality is easy to prove if matrix is
diagonalized by unitary transformation of variables. In the result of standard
Gaussian integral calculation we have result as a product of eigenvalues of
matrix L;; and that is equal to matrix determinant.

Let Hamiltonian be a quadratic form of creation—annihilation operators
for bosons:

H =" afhia,, (A.33)
j

where h;; in general can depend on time 7. Then expression (A.30) is also
a quadratic form of variables af and «a; depending on 7. Gaussian integral
calculation corresponding to functional integral (A.29) gives the same result
(A.32) and partition function is given by expression

Z= {det (_a% - h)] - : (A.34)

This expression can be connected with one-particle Green function. We
introduce GF' corresponding to operator (fa% — h) satisfying to equation

0
= 5-Gi(n ) - > hiGry(r,7') = 6550(7 = 7'), (A.35)
k
or in operator form
. o A\
G=|—-—5—-h A.36
(-5 -4) (A.36)
Then expression (A.34) for partition function can be written as
Z = detG, (A.37)

For interacting bosons (H = Hy + Hiy) functional integral (A.29) can
be calculated in perturbation theory via exponent expansion in powers of

Hi,y with integration of every term of the series. That gives diagrammatic
techinque for Bose systems.
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Fermi Systems

The system Hamiltonian is expressed via fermion operators éj‘, ¢; as polyno-
mial with normal ordering of creation—annihilation operators:

= H(E ), (A.38)
Fermionic operators satisfy anticommutation relations
(65, e+ = 8ig, [6F, 8]+ = [é1,85)l+ =0, (A.39)

Our task is to present partition function as functional integral over
variables 3; and 3} that are not ordinary complex numbers but so called
Grassmann variables with anticommutation rules for multiplication operation:

BiB; = —PB;Bis (A.40)
and standard other multiplication operation rules:

B:i(8;8k) = (8:B5)Br; (Bi + B5) Bk = Bibr + B 5k,

In analogy with Bose systems we introduce coherent states:
18:) = %7 (0), (A41)

where |0) is vacuum state (¢;|0) = 0). Taking into account properties of
Grassmann variables and fermionic operators

B =0, ()2 =0, (A.42)

K3

we have efi&l =1+ B;¢; and then following relations are valid:

BilBi) = Bi(1 + Bic])|0) = 3i|0),
&lBi) = & (14 B¢l )|0) = 5;]0).

That gives equation
¢ilBi) = BilBi, (A.43)

showing that |3;) is eigenfunction for annihilation operator. Analogously to
Bose systems case we introduce two sets of Grassmann variables 8 and ;
with properties:

BBy = —PiBi (A.44)

The asterisk sign does not mean complex conjugation. It is used here to
define a pair of “numbers” 3 and 3;.
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-+

()

If we have only one degree of freedom (to omit index ¢ for operators ¢
and ¢;) then any function of 3 and (; can be presented as

f(B",8) = foo + forB + fr08" + fu1BB3". (A.45)

where f;; are standard complex numbers.
Let us define integration over Grassmann variables via following formulas:

/dﬁ =0, /dﬁ* =0, /dﬁﬁ =1, /dﬁ*ﬁ* =1, (A.46)

assuming that dg*, dg are Grassmann variables anticommutating with each
other and with 3, 8*. Then integrating expression (A.45) over both variables
we obtain:

[arasre = [a [ / dﬁf(ﬂ*,m} — [a5 o+ uBt) =

Now we clarify the problem of completeness of |3) states set. For fermions
with one degree of freedom states space basis consists of two vectors: vacuum
state |0) and occupied state |1) = ¢7|0) so that completeness condition can
be written as:

0)(0] + [1){1] = 1, (A.47)

meaning that the state is either occupied or empty. For coherent states |3)
corresponding condition is given by equality:

[ asase 2o = 1. (A.48)

This relation can be proved presenting integral as:
[ as - 5)10) + BI)0] + (115,

Term by term integration gives expression |0)(0| + |1)(1| that due to equality
(A.47) is equal 1 that finalize the prove.

There are two additional relations. The first one gives matrix element of
operator H if it is written in normal form

(0| H|B) = H(a", B), (A.49)

in the same way as it is for Bose systems. Second relation defines overlapping
for coherent states:

(418) = (01 + (11y")([0) + BI1)) = 1+ B =77,
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Now we write expression for coherent states and overlapping in general
case where fermion has many degrees of freedom marked by index ::

8) = exp(3_ BieH)Io), (A.50)
(118) = exp(3_ i ), (A.51)

These formulas help us to represent partition function as a functional integral.
In the same way as for Bose systems we write using expansion (A.48) for
unit:

Z = lim / H 1:[ dB;;dBuexp{— Z[ﬂfL(ﬂiL — Bi,L-1)

. . B
+ﬁi,L71(5i,L—2 — Bi,L—Q) + ...+ 858 — Bio) — 7 zl: Z S i1 Bl }-
(A.52)
Replacing differences (8 — Bi,1—1) by derivatives over 7, = [ % we present

(A.52) in a final form:

s
Z = /Dﬁ*(T)Dﬂ(T)eXP </0 dTﬁ(ﬂ*(T)vﬁ(T))> ; (A.53)

where
= 3 B ) A i) — HE: (), i), (A54)
D*(r)DA(r) = lim HHdﬂlldﬂll (A.55)
i 1=0

Formally partition function expression is the same for Bose and Fermi
systems but while for Bose systems integration is on the field of complex
numbers for Fermi systems it is done on the field of Grassmann variables.
Border conditions in contrast to (A.31) are antiperiodic (8 = 1/T):

Bi (B) = =57 (0), Bi(8) = —B:(0). (A.56)

For noninteracting Fermions Hamiltonian H is bilinear in variables §*
and 3 and functional integral comes to Gaussian integral. It can be calculated
using (A.46). In its simplest form such integral is:

/ dp*dpe P = / dgrdp(1 — A\G*B) = / dgrdp(1+ A8B*) = A. (A.57)

General form Gaussian integral over Grassmann variables with arbitrary
quadratic form in exponent is calculated bytransforming it in diagonal form
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and we have:
/ [[ds dBexp | = 87 AiB; | = detA. (A.58)
i i

It is interesting that determinant appears here in numerator and not in
denominator as in corresponding expression (A.32) for Bose systems.
If Hamiltonian for fermions has the form:

H=> ¢l hije;, (A.59)
j

then in contrast to (A.34) we have the following expression for partition
function:

o .
Z=det|———h A.
e ( 5 > , (A.60)
or R
Z = [detG] ™, (A.61)
where G is Green function for operator (—5)—7 — iL) satisfying equation
a / / /
—EGij(T,T)—Zhikaj(T,T):61'3'(5(7'—7')7 (A62)
k

with antiperiodic boundary condition
G(r+3,7)=G(r,7 + 3) = -G(r, 7). (A.63)

To calculate many-particle GF it is convenient to introduce generating
functional Zp[V'1, V] that is generalization of partition function Z:

Zp[VT, V] = Tr{e AT, ¢V ataVy (A.64)

Here
Via+a'v => (Vi'a; +alvy) (A.65)

3

is a linear combination of creation—annihilation operators in state ¢ and V;r, Vi
are corresponding to them fluctuating fields. Those fields are ordinary complex
numbers for Bose systems and Grassmann variables for fermions.

We consider at first Bose systems. One-particle GF' is expressed as a second
derivative over fields V1 and V from generating functional

G(1,2) = — < Trag, (1), (12) > (A.66)

G

ZplVE V| _y»
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and two-particle GF' can be defined as a fourth order derivative

G<12;34) = (—1)2 < Trail (Tl)&iQ (Tg)dis (Tg)du (7’4) > (A67)
54

B
( )5V15V25V55V21

ZplVi V|, -

Numbers 1,2... are used as combined indexes (e.g., 1 = (i171)).

Generating functional can be represented as a functional integral over
complex fields @ and a* analogously with partition function representation
(A.29):

B
Zpv',v] = /Da(T)Da* (T)exp /dT {—Zaz‘ (T)%Oéi(T)
0 i

—H(a; (1), i (7)) + i (T)os(7) + s(r)vl (7) 5 | . (A.68)

If interaction term in Hamiltonian is neglected leaving only quadratic form in
«; then Gaussian integral appears that can be calculated and the results is:

/DozDoz*e_o“*K‘JH'O“*“'O‘”T = (det K)_le_”TKﬂ”. (A.69)

To prove this relation we consider final-dimension integral over [ [, do;da; and
do transformation of variables a = o/ + K ~v. Then integral (A.69) will be:

e_”TKﬂ”/DO/Da*’e_a Kol (A.70)

Instead of variables o/ and o* we introduce o/ = x + iy and o* = z — iy and
from variables x and y come to 2’ and vy’ using following formulas:

$:K71/2$,, y:Kfl/Qy/-

Transformation Jacobian is

Oz Oz
ox’ Oy’
9y 9y
oz’ Oy’

K-12

0 K- =det K" = (det K) 7",

det = det

and after standard Gaussian integrals calculations over z; and y; we arrive to
relation (A.69). Comparing expressions (A.65) and (A.66) we come to K =
Gy'. Assuming v = v* = 0 in (A.69) we obtain expression (A.34) for partition
function of noninteracting bosons. Now we perform the same calculations for
fermions. We introduce generating functional
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Zp[ot,v] = Tr{e PHT, e 0010} (A.71)

where
o+ bfo = Z(vji)z + l;;fvi), (A.72)
2
vj and v; are Grassmann variables.

One-particle fermionic GF' in the same way as bosonic GF can be cal-
culated as second derivative of generating functional and two-particle as a
fourth order derivative. The only difference is that for fermions one should
distinguish “left” and “right” derivatives over Grassmann fields. So we have:

G(1,2) = — < Tyby, (11)b], (12) > (A.73)
5
=———7Z v=0,
dva 51)1 Pl 7U]| 0
G(12;34) = — < Tby, (11)bs, (12)0], (13)0], (14) > (A.74)
555 8

Distinguishing “left” and “right” derivatives is needed only to take into
account sign change in transposition of Grassmann variables when derivative
is calculated of some product. For “left” derivative it is needed to put the
corresponding variable (the derivative is taken with respect to) to leftmost
position and for “right” derivative to rightmost position.

For Fermi systems the formula analogous to (A.69) for functional integral
can be derived if interaction Hjy is ignored:

/Dﬁ*Dﬁe—ﬁ*Kﬁ'i‘B*V"rﬂVT — (det K)G_VTKilv. (A75)

It is interesting to note that in this formula the factor det K is present while
for Bose systems the corresponding factor is (det K)~!. This fact is due to
antisymmetry of matrix K in expression (A.75):

K'=-K, (A.76)
here KT is transposed K matrix.

After linear transformation 8 = 3’ — K~'V integral in the left part of
equation (A.75) comes to

e~ VIKTV / Dp*DpBe P KB, (A.77)
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In the last integral we do transformation of variables 8 = L3 and then
quadratic form in exponent becomes

*Kp=p"K'p, K =L"KL. (A.78)

It is known that for any antisymmetric matrix K of even dimensionality
there is unimodal (det L = 1) matrix L such that K’ = LT K L is quasidiagonal
matrix consisting of n two-dimensional blocks:

0 ... 0 X\
0 ... =M\ 0
K'=] : , (A.79)
0 —\ 0
~n 0 0
and .
H e(det K)'/2, (A.80)

where € can have values 1 and —1.
Now we can calculate integrals in expression (A.77).

/DﬁDﬁ*efﬂ*K’@ = /Dﬁ'Dﬁ*’eXp{Z( 2i—1>9 ;z/) (O)\Z )(\)Z) <5%Z_1> }

=1
/Dﬁ’Dﬁ*/H (1= XiB3i_1 3 H = Aibj-1)
Jj=1
12 ) (T[] =det& (A.81)
1= =1

Substituting this result in expression (A.77) we arrive to relation (A.75) with
sign ambiguity. We assume for certainty positive sign here. Relation (A.75) for
fermions differs from corresponding relation (A.69) for bosons due to different
symmetry of K matrix in these relations.

In conclusion we give expressions for one-particle GF' of Bose and Fermi
systems as functional integrals over complex fields a(7), a*(7) in the first case
and Grassmann variables 8(7), 5*(7) in the second case.

G(i1T1,i272) = —ZLB/DQ(T>D01*(T)

B
exp (/ drL(a* (7'),04(7'))) ag, (1), (12),  (A.82)
0
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. , 1 “
G(i1,1272) = fZ—/Dﬁ(T)Dﬂ (1)
F
B
exp | [ dro( (m),000) ) 6 (g, (A8
0

Here Z is partition function determined by integral (A.29) for Bose systems
and by integral (A.53) for Fermi systems. Both relations can be obtained
from expressions (A.66) and (A.73) presenting GF's as variational derivatives
of generating functional over fields.
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Green Functions Formalism

Mathematical basis of Dynamical Mean-Field Theory (DMFT) is temperature
(Matsubara) Green functions formalism [115]. For fermions one-particle GF
is defined by expression

GU(’th;iQTg) = —< Tféila(Tl)C;'rzg(TZ) >, (Bl)

where ¢;, and é;rg are creation—annihilation operators for electron in Heisen-
berg representation with full Hamiltonian H:

H H

Teige T & (7) =Ml oM (B.2)

i i

Cio (t)=¢e

Here < ... > is statistical averaging, T is chronological time ordering operator
putting operators in order of increasing thermodynamical time 7 that varies in
interval 0 < 7 < 1/T, T is temperature [394]. We emphasize that é|_(7) is not
hermitian conjugated to éla quantity because 7 is imaginary time. In standard
textbook [115] this quantity is marked as G, (7). We will use definition of
(B.1).

If Hamiltonian is divided in two parts H = Ho + Hint then GF [115] can
be written in interaction representation where:

. . < Tréi oy (11)él | (m)o(B) >0
2 21 _ TH1101 120
< TrGi\o, (Tl)ci202 (7—2) >= = 0_(5) 2>0 . (B?))
Here symbol < ... >¢ in contrast to < ... > means statistical averag-
ing with Hamiltonian Hy and ¢;,(7) and C}LD_(T) are operators in interaction
representation, they are given by formulas (B.2) where H is replaced by Hj.
o(B) is temperature scattering matrix:

8
— f Hine (7)dT
0

o(B) =Tre
I Y L T AR
= Z /[; /0 d 1d nTT{Hlnt( 1)'-'H1nt( n)}7

n!

(B.4)

n=0
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where
Hint (T) = eHDTHinteiHDT- (B5)

GF (B.1) depends on time difference 71 — 72 and can be expanded in
Fourier series with discrete frequencies:

Golirmiars) =Ty Golivigiwy)e (1772, (B.6)

For Fermi systems (Matsubara) frequencies wy,, are odd:
wy = (2n+ )7 T, (B.7)

and for Bose systems they are even.

Expression (B.4) for scattering matrix reduces electronic GF' calculation to
perturbation series in powers of Hi,y. Averaging < T ... >¢ of corresponding
Fermi-operators products can be performed using Wick theorem:

< Trel(m)el(m) . a(m) ...l (m) >0 (B.8)
+G (1 — 1) < Trlel, el meb(ma) .. el (Tm) >0
iG?Q(Tl —T) < TTci(ﬁ)[c;7 Cllry - - .C;fn(Tm) >0 £ ..

iG?m(Tl —Tm) < TTCJ{ (Tl)cg(rz) . [c;fn, ¢tlr, >o0-

In the left part there is an average of T-product of m operators ¢ and cf.
The number of ¢ and ¢! should be equal to each other, if not then average is
equal to zero. Let ¢; is operator for electron in state [. In right part of (B.8)
expression [c], ¢]7, is a commutator [c], ¢;]4 in interaction representation for
coinciding time values 7,. Quantities G?p(r) are one-electron GF of zeroth
approximation.

G (1) = =81y < Trer(r)eh(0) >o. (B.9)

Sign in front of summand in right part of (B.8) is defined by parity of operator
¢; transposition from original position to the given one.
Anticommutator of ¢ and ¢t operators is a c-number

[C;a Cl]Tp = 5lp7 (B].O)

and in every summand in right part of (B.8) there are two operators less than
in original average in left part. Repeating algorithm (B.8) it is possible to
reduce original average to a set of summands consisting of products of G°(7).
That is an idea of Wick theorem. Expansion (B.4) for scattering matrix and
algorithm defined by (B.8) is a basis of diagrammatic technique (graphic rep-
resentation of perturbation series) for GF calculations. Diagrammatic tech-
nique for Fermi systems was described in many textbooks such as, e.g., [115].
Algorithms of the (B.8) type can be developed for other more complicated
operators, such as spin operators and X Hubbard operators [44,395].
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Temperature GF's have no direct physical meaning but they are connected
with other functions such as retarded and advanced GF's [396,397] that defines
observable properties and response functions. Retarded electron GF is defined
as

Gl (iit15iats) = —iO(ty — to) < [ciyo(t1), L, (t2)] 4 >. (B.11)

Here < ... > is symbol of statistical averaging, ¢;,(t) and c;ra (t) are Fermi
operators in Heisenberg representation in real time:

Cio(t) = oM, o= Mt ol (t) = oMt o1

i o

e Mt (B.12)

czo(t) is hermitian conjugated to c¢;»(t). In addition to retarded GF it is

possible to define advanced GF'
G?(iitu ’L'th) = i@(tz — tl) < [Cilg(tl), C;-rza(tQ)]+ >. (BIS)
G" and G* depends on time difference ¢; —t2 and can be expanded in Fourier
integral:
1 & )
G?’A(iitl;igtg) = 2—/ dwe_zw(tl_tz)G(}j’A(iliz;w). (B14)
T J-—co

Temperature, retarded and advanced GF are connected with each other
as is seen in their spectral representations [115]:

Lo ° pg(ilig;w')
Gg-(lllg;lwn) :/_OO du}/iwn—_wl, (B15)
oo ;o ’
. po(iriz;w’)
GEA(iyig;w) :/ dw/—wiié—w" (B.16)
—o0

Here po(iiig;w) is (real) spectral density of GF. From relation (B.16) fol-
lows that retarded GF is analytical in upper complex half-plane. On real
axis imaginary part of GF has a jump that is defined by spectral density of
corresponding correlators:

1 > .
< eno(t)ch (0) > = — / o (irin; w)e=", (B.17)
2 2 J_

1 *° ;
<l (®) > = o [ dod(nizw)e e (Bs)

here . i
G Y d e _G ..

Jg(iliQ; OJ) = — g (1122’].&)) 7,80' (21227 O.)) )

— e Bw

(B.19)

Remarkable result from comparison of spectral relations (B.15) and (B.16)
is a statement: causal (thermodynamic) GF after analytical continuation from
discrete points on imaginary axis to real axis gives retarded GF [115]. That
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defines a way to calculate various observable properties of the system. For
that one can calculate corresponding thermodynamic GF' using diagrammatic
technique based on Wick theorem and then perform analytical continuation
to real axis to obtain retarded GF.

There is another method: to use from the beginning retarded GF formalism
where there is no diagrammatic technique but it is possible to write equations
of motion and to solve them with some approximations, for example equations
decoupling [397].

For retarded GF it is convenient to use special symbols. Let us define GF
determined by (B.11) as << cig(t)|c;a (t') >>. Differentiating this quantity
with respect to ¢ variable we obtain the following equation:

d
ig << cia(O)]el, (t') >> = < [cig, cl,]4 > 6(t — 1) (B.20)

+ << [cig,H]t|c}U(t’) >>.

In the last term of this equation we take into account equation of motion for
operator:

.d
zacw(t) = [cin (t), H]. (B.21)

Equation of motion (B.20) connects original one-electron GF with more com-
plicated GF in the last term of (B.20). For them special equation should
be written by calculating derivatives over ¢ or ¢'. In such a way a chain of
equations can be obtained that can be cut off with some approximation.
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