Refactoring To Patterns

version 0.15

mmdustral loGic

Joshua K erievsky
joshua@industrialogic.com
Industrial Logic, Inc.
http://industriallogic.com

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Table of Contents

L gLl [H et i) o ISR 6
Chain CONSITUCLONS..........ooe 12
IMIOTIVATION ..ottt nns 13
LT o = oS TRS 13
=T 0 110] = TSP 13
Chaining To AN INit METNOA ... 14
Replace Multiple Constructors with Creation Methods......1s
0] Y= 4 T o TP 15
MECRANICS ...ttt bbb bbb s bbb s 16
=T 0 110] = TP 17
Parameterized Creation Methods ... 19
Encapsulate Classes with Creation Methods................. 21
IMIOTIVALION ..ottt nns 22
L0 o TSRS 23
IMBCRNANICS 1.ttt ettt nnas 23
EXAIMPIE ettt bbbttt ettt b bbbttt bt s 23
Encapsulating INNEr CIaSSES ...t 25
Extract Creation Class.........o 27
IMOTIVALTON .ottt s st et s bbb s bbb s 27
MECRANICS ...t bbbt b bbb s bbb s 28
EXAIMPIE ettt bbbttt ee et et b bbbttt bt s s 28
Move Object Composition to Creation Method............... 31
IMIOTIVALION .ottt nnes 31
PrEIEQUISITES ...ttt 31
MECRANICS ..t bbbttt sttt b bt 31
EXAIMPIE ettt bbb b bbbt ettt bttt et 31
Replace Multiple | nstanceswith Singleton.................. 32
Replace Singleton with Object Reference.......oo. 33
IMOTIVALTON <.ttt bbbttt sttt bbbt s s 33
Replace Singleton with RegIStrY ... 3

Page 2 of 137

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

| ntroduce Polymorphic Creation with Factory Method......3s
IMIOTIVATION .ottt et nns 37
[0] o] <1 TSRS 37
=T o] g = 1 o T 37
EXAIMPIE et b bbb bbbttt et 38
Duplication ACroSS SUDCIASSES ...t 40
Defer Slow Creation with Virtual Proxy................. 22
o) Y= 4 T 1 o TP 43
=T o] g = 1o TP 43
EXAIMPIE sttt 43
Replace Conditional Calculationswith Strategy ... 24
IMOTIVALTON <.ttt bbbt bbbt s bbb s s 45
MECRANICS ...ttt bbb bbb s bbb 45
EXAMPIE .ottt ettt b ettt ee et e a bbbt sttt et et s 46
Replace Implicit Tree with Composite.........o 53
IMIOTIVALION .ottt 53
MECRANICS ..ottt sttt s bbb 54
EXAIMPIE et 54
Encapsulate Composite with Builder ... 57
IMOTIVALTON <.ttt bbbt ettt s bbb s s 57
IMEBCRNANICS .ottt 58
EXAIMPIE Rt 58
EXTENdEd EXAMPIE ..o 60
Extract Special-Case Behavior into Decorators.......... 63
IMOTIVALTON <.ttt bbbt sttt bbbt s s 64
IMBCRNANICS 1.ttt 65
EXAIMPIE .ottt bbbttt bttt bbbttt b et s 65
Collections.SYNCNIONIZEAMEAPcoviirere s 71
Replace Hard-Coded Notifications with Observer ... 73
IMOTIVALTON <.ttt bbbttt s bt sess e 74
IMBCRNANICS 1.ttt nnes 75
EXAIMPIE .ottt ettt ettt ettt b bbbt ettt s 75
Move Accumulation to Collecting Parameter ... 78

Page 3 of 137

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

oY Y= 4 T 1 o TP 78
=T o] g = 1 o 79
EXAIMPIE et b bbb bbbttt et 79
JUNIL'S ColleCtiNG ParamEter ...ttt 82
Replace One/Many Distinctionswith Composite......... 83
IMIOTIVATION .ottt et nns 84
=T o] g = 1o 84
EXAMPIE ettt 85
CompPOoSE MENOQ........e 86
IMOTIVALTON <.ttt bbbt st bbb s bbb s 86
MECRANICS ...ttt sttt s bt b e 87
0= 0 1101 = 0 TP 88
=T 0 11 0] = TP 91
EXAMPIE Bt 97
Separate Versionswith Adapters.........o 99
IMOTIVALTON <.ttt bbb sttt sttt s bbb s s 100
IMEBCRNANICS 1.ttt bbbt nnnas 100
EXAIMPIE ettt bbb bbb bbbttt et bbb bbbttt s 101
Adapting with ANNonymMous INNEr ClaSSES.......ccorrierecesee e 106
Adapting LEGACY SYSIEIMS ...ttt st bne 106
Adapt INLEITACE.........ooeeeeee 107
IMIOTIVALION .ottt snnes 107
IMIEBCRNANICS 1.t s et s et n e ns 108
EX@IMPIE bttt 108
Replace Typewith Type-Safe Enum............oo 110
IMOTIVALTON <.ttt st bbbt et 111
IMIEBCRNANICS 1.ttt ns 112
EXAIMPIE ettt bbb bbbt e a bbb bttt s s e 112
Replace State-Altering Conditionalswith State.......... 118
IMIOTIVALION .ottt nnas 119
IMECRANICS ...ttt bbbttt 120
EXAIMIPIE bttt 121
Replace Singleton with Constant ... 132
IMIOTIVALION .ottt snnas 132

Page 4 of 137

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

IMIECNANICS 1.t 132
= 0 101 = TP 132
Replace Retrieval with LiStener ... 133
IMIOTIVALTON .ttt 133
IMECRNANICS ... 133
EXAIMPIE ot a bbb bbbt 133
REFEIEINCES ...ttt et b e st b e s et b e s e et b e etk e st et b e e bt et e neebe st e et 134
Appendix A — NamMiNg CONVENTIONSc..eiiieiririeriie ettt b bttt be et ee e see e 135
Appendix B —L0oan TEIMINOIOGYcoueiririeiriiieiriesiecries ettt bbbttt e 136
1600 ol 1 1= o o IO ST T PSP R TR PRSPPSO 137
ACKNOWIBAGEIMENTS. ...ttt e bt et bt aeeae et e se e b e seeeb e s bt eaeeneeneenbeseesbesaeeneennans 137

Page 5 of 137

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

| ntroduction

Patterns are a cornerstone of object-oriented design, while test-first
programming and merciless refactoring are cornerstones of evolutionary
design. To stop over- or under-engineering, it's necessary to learn how
patterns fit into the new, evolutionary rhythm of software development. —
Joshua K erievsky

The great thing about software patterns is that they convey many useful design ideas. It follows,
therefore, that if you learn a bunch of these patterns, you'll be a pretty good software designer,
right? | considered myself just that once I’ d learned and used dozens of patterns. They helped me
develop flexible frameworks and build robust and extensible software systems. After a couple of
years, however, | discovered that my knowledge of patterns and the way | used them frequently
led me to over-engineer my work.

Once my design skills had improved, | found myself using patterns in a different way: | began
refactoring to patterns, instead of using them for up-front design or introducing them too early
into my code. My new way of working with patterns emerged from my adoption of Extreme
Programming design practices, which helped me avoid both over- and under-engineering.

Zapping Productivity

When you make your code more flexible or sophisticated than it needs to be, you over-engineer
it. Some do this because they believe they know their system’s future requirements. They reason
that it's best to make a design more flexible or sophisticated today, so it can accommodate the
needs of tomorrow. That sounds reasonable, if you happen to be a psychic.

But if your predictions are wrong, you waste precious time and money. It's not uncommon to
spend days or weeks fine-tuning an overly flexible or unnecessarily sophisticated software
design—--leaving you with less time to add new behavior or remove defects from a system.

What typically happens with code you produce in anticipation of needs that never materialize? It
doesn't get removed, because it’s inconvenient to do so, or because you expect that one day the
code will be needed. Regardless of the reason, as overly flexible or unnecessarily sophisticated
code accumulates, you and the rest of the programmers on your team, especially new members,
must operate within a code base that’ s bigger and more complicated than it needs to be.

To compensate for this, folks decide to work in discrete areas of the system. This seems to make
their jobs easier, but it has the unpleasant side effect of generating copious amounts of duplicate
code, since everyone works in his or her own comfortable area of the system, rarely seeking
elsewhere for code that already does what he or she needs.

Over-engineered code affects productivity because when someone inherits an over-engineered
design, they must spend time learning the nuances of that design before they can comfortably
extend or maintain it.

Over-engineering tends to happen quietly: Many architects and programmers aren’t even aware
they do it. And while their organizations may discern a decline in team productivity, few know
that over-engineering is playing arolein the problem.

Perhaps the main reason programmers over-engineer is that they don’t want to get stuck with a
bad design. A bad design has a way of weaving its way so deeply into code that improving it

Page 6 of 137

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

becomes an enormous chalenge. I've been there, and that’s why up-front design with patterns
appea ed to me so much.

The Patter ns Panacea

When | first began learning patterns, they represented a flexible, sophisticated and even elegant
way of doing object-oriented design that | very much wanted to master. After thoroughly
studying the patterns, | used them to improve systems I’d already built and to formulate designs
for systems | was about to build. Since the results of these efforts were promising, | was sure |
was on the right path.

But over time, the power of patterns led me to lose sight of simpler ways of writing code. After
learning that there were two or three different ways to do a calculation, I'd immediately race
toward implementing the Strategy pattern, when, in fact, a smple conditional expression would
have been simpler and faster to program—a perfectly sufficient solution.

On one occasion, my preoccupation with patterns became quite apparent. | was pair
programming, and my pair and | had written a class that implemented Java's TreeModel
interface in order to display a graph of Spec objects in a tree widget. Our code worked, but the
tree widget was displaying each Spec by caling its toString() method, which didn’t return the
Spec information we wanted. We couldn’t change Spec’s toString() method since other parts of
the system relied on its contents. So we reflected on how to proceed. As was my habit, |
considered which patterns could help. The Decorator pattern came to mind, and | suggested that
we use it to wrap Spec with an object that could override the toString() method. My partner’s
response to this suggestion surprised me. “Using a Decorator here would be like applying a
sledgehammer to the problem when afew light taps with a small hammer would do.” His solution
was to create a small class caled NodeDisplay, whose constructor took a Spec instance, and
whose one public method, toString(), obtained the correct display information from the Spec
instance. NodeDisplay took no time to program, since it was less than 10 simple lines of code.
My Decorator solution would have involved creating over 50 lines of code, with many repetitive
delegation calls to the Spec instance.

Experiences like this made me aware that | needed to stop thinking so much about patterns and
refocus on writing small, ssimple, straightforward code. | was at a crossroads: I'd worked hard to
learn patterns to become a better software designer, but now | needed to relax my reliance on
them in order to become truly better.

Going Too Fast

Improving also meant learning to not under-engineer. Under-engineering is far more common
than over-engineering. We under-engineer when we become exclusively focused on quickly
adding more and more behavior to a system without regard for improving its design along the
way. Many programmers work this way—I know | sure have. Y ou get code working, move on to
other tasks and never make time to improve the code you wrote. Of course, you'd love to have
time to improve your code, but you either don’'t get around to it, or you listen to managers or
customers who say we'll all be more competitive and successful if we simply don’t fix what ain’'t
broke.

That advice, unfortunately, doesn’t work so well with respect to software. It leads to the “fast,
slow, slower” rhythm of software development, which goes something like this:

Page 7 of 137

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Y ou quickly deliver release 1.0 of a system, but with junky code.

Y ou attempt to deliver release 2.0 of the system, but the junky code slows you down.

As you attempt to deliver future releases, you go slower and slower as the junky code
multiplies, until people lose faith in the system, the programmers and even the process
that got everyone into this position.

wpn e

That kind of experience is far too common in our industry. It makes organizations less
competitive than they could be. Fortunately, there is a better way.

Socr atic Development

Test-first programming and merciless refactoring, two of the many excellent Extreme
Programming practices, dramatically improved the way | build software. | found that these two
practices have helped me and the organizations I’ ve worked for spend less time over-engineering
and under-engineering, and more time designing just what we need: well-built systems, produced
on time.

Test-first programming enables the efficient evolution of working code by turning programming
into what Kent Beck once likened to a Socratic diaogue: Write test code to ask your system a
guestion, write system code to respond to the question and keep the dialogue going until you've
programmed what you need. This rhythm of programming put my head in a different place.
Instead of thinking about a design that would work for every nuance of a system, test-first
programming enabled me to make a primitive piece of behavior work correctly before evolving it
to the next necessary level of sophistication.

Merciless refactoring is an integral part of this evolutionary design process. A refactoring is a
“behavior-preserving transformation,” or, as Martin Fowler defined it, “a change made to the
internal structure of software to make it easier to understand and cheaper to modify without
changing its observable behavior.” [Fowler, Refactoring: Improving the Design of Existing Code
(Addison-Wesley, 1999)].

Merciless refactoring resembles the way Socrates continualy helped dialogue participants
improve their answers to his questions by weeding out inessentials, clarifying ambiguities and
consolidating ideas. When you mercilessly refactor, you relentlessly poke and prod your code to
remove duplication, clarify and simplify.

The trick to merciless refactoring is to not schedule time to make small design improvements, but
to make them whenever your code needs them. The resulting quality of your code will enable you
to sustain a healthy pace of development. Martin Fowler et a.’s book, Refactoring: Improving the
Design of Existing Code (Addison-Wesley, 1999), documents arich catalog of refactorings, each
of which identifies a common need for an improvement and the steps for making that
improvement.

Why Refactor To Patterns?

On various projects, |I've observed what and how my colleagues and | refactor. While we use
many of the refactorings described in Fowler’s book, we aso find places where patterns can help
us improve our designs. At such times, we refactor to patterns, being careful not to produce
overly flexible or unnecessarily sophisticated solutions.

When | explored the motivation for refactoring to patterns, | found that it was identica to the

motivation for implementing non-patterns-based refactorings. to reduce or remove duplication,
simplify the unsmple and make our code better at communicating its intention.

Page 8 of 137

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

However, the motivation for refactoring to patterns is not the primary motivation for using
patterns that is documented in the patterns literature. For example, let’s look at the documented
Intent and Applicability of the Decorator pattern and then examine Erich Gamma and Kent
Beck's motivation for refactoring to Decorator in their excellent, patterns-dense testing
framework, JUnit.

Decorator’s Intent [Design Patterns, page 175]:
Attach additional responsibilitiesto an object dynamically. Decorators provide aflexible
aternative to subclassing for extending functionality.

Decor ator’s Applicability (GoF, page 177):
 To add responsibilities to individual objects dynamicaly and transparently, that is,
without affecting other objects.

» For responsihilities that can be withdrawn.

* When extension by subclassing is impractical. Sometimes a large number of independent
extensions are possible and could produce an explosion of subclasses to support every
combination, or a class definition may be hidden or otherwise unavailable for
subclassing.

Motivation for Refactoring to Decorator in JUnit

Erich remembered the following reason for refactoring to Decorator:
“Someone added TestSetup support as a subclass of TestSuite, and once we added
RepeatedTestCase and ActiveTestCase, we saw that we could reduce code duplication by
introducing the TestSetup , Decorator.” [private email]

Can you see how the motivation for refactoring to Decorator (reducing code duplication) had very
little connection with Decorator’s Intent or Applicability (a dynamic alternative to subclassing)? |
noticed similar disconnects when | looked at motivations for refactorings to other patterns.
Consider these examples:

Pattern \ Intent (GoF) Refactoring M otivations
Separate the construction of a complex object from | Simplify code

Builder | itsrepresentation so that the same construction Remove duplication
process can create different representations. Reduce creation errors
Define an interface for creating an object, but let the

Factory | subclasses decide which classto instantiate. The Remove duplication

Method | Factory method lets a class defer instantiation to Communicate intent
subclasses.

Define the skeleton of an algorithm in an operation,
deferring some stepsto client subclasses. Template
Method lets subclasses redefine certain steps of an Remove duplication
algorithm without changing the algorithm’'s
structure.

Template
Method

Based on these observations, | began to document a catalog of refactorings to patternsto illustrate
when it makes sense to make design improvements with patterns. For this work, it's essential to
show refactorings from real-world projects in order to accurately describe the kinds of forces that
lead to justifiable transformations to a pattern.

My work on refactoring to patterns is a direct continuation of work that Martin Fowler began in
his excellent catalog of refactorings, in which he included the following refactorings to patterns:

Page 9 of 137

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

* Form Template Method (345)

* Introduce Null Object (260)

* Replace Constructor with Factory Method (304)
* Replace Type Code with State/Strategy (227)

* Duplicate Observed Data (189)

Fowler also noted the following:

There is a natura relation between patterns and refactorings. Patterns are where
you want to be; refactorings are ways to get there from somewhere else. Fowler,
Refactoring: Improving the Design of Existing Code (Addison-Wesley, 1999)

This idea agrees with the observation made by the four authors of the classic book, Design
Patterns: Elements of Reusable Object-Oriented Software (Addison-Wesley, 1994):

Our design patterns capture many of the structures that result from refactoring. ... Design
patterns thus provide targets for your refactorings.

Evolutionary Design

Today, after having become quite familiar with patterns, the “structures that result from
refactoring,” | know that understanding good reasons to refactor to a pattern are more valuable
than understanding the end result of a pattern or the nuances of implementing that end result.

If you'd like to become a better software designer, studying the evolution of great software
designs will be more valuable than studying the great designs themselves. For it is in the
evolution that the real wisdom lies. The structures that result from the evolution can help you, but
without knowing why they were evolved into a design, you're more likely to misapply them or
over-engineer with them on your next project.

To date, our software design literature has focused more on teaching great solutions than teaching
evolutions to great solutions. We need to change that. As the great poet Goethe said, “That which
thy fathers have begqueathed to thee, earn it anew if thou wouldst possess it.” The refactoring
literature is helping us reacquire a better understanding of good design solutions by revealing
sensible evolutions to those solutions.

If we want to get the most out of patterns, we must do the same thing: See patterns in the context
of refactorings, not just as reusable elements existing apart from the refactoring literature. Thisis
perhaps my primary motivation for producing a catalog of refactorings to patterns.

By learning to evolve your designs, you can become a better software designer and reduce the
amount of work you over- or under-engineer. Test-first programming and merciless refactoring
are the key practices of evolutionary design. Instill refactoring to patterns in your knowledge of
refactorings and you'll find yourself even better equipped to evolve great designs.

Page 10 of 137

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Writing Goals

At present, I’ve written more than a dozen refactorings and have many more in the works. My
goal inwriting thisisto help you learn how to

» refactor to Patterns when appropriate and away from Patterns when something simpler is
discovered

e use Patterns to communicate intention

« know and continueto learn alarge body of Patterns

« understand how to implement Patterns in simple and sophisticated ways
« use Patternsto clean, condense, clarify and simplify code

» evolvedesigns

Theform | am using in thiswork is nearly identical to the one used by Martin in his Refactoring
book. | have added the following to this form:

e A section on Communication, Duplication and Simplicity

* Numbered steps in the Mechanics section that correspond to numbered steps in the
Examples section.

Thisisacontinuoudly evolving piece of work. Y our feedback is welcome — please send thoughts,
comments or guestions to joshua@industriallogic.com. This work lives on the internet at the
following address: http://industriall ogic.com/xp/refactoring/

I’ve aso started an email list — called refactoring@yahoogroup.com — which is a good place to
discuss refactoring, refactoring to patterns and emerging tools and IDEs that enable automated
refactorings.

Page 11 of 137

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Chain Constructors

Y ou have multiple constructors
that contain duplicate code

Chain the constructors together
to obtain the least duplicate code

public class Loan {

public Loan(float notional, float outstanding, int rating, Date expiry) {
this.strategy = new TermROC();
this.notional = notional;
this.outstanding = outstanding;
this.rating =rating;
this.expiry = expiry;

public Loan(float notional, float outstanding, int rating, Date expiry, Date maturity) {
this.strategy = new RevolvingTermROC();
this.notional = notional;
this.outstanding = outstanding;
this.rating = rating;
this.expiry = expiry;
this.maturity = maturity;

public Loan(CapitalStrategy strategy, float notional, float outstanding,
int rating, Date expiry, Date maturity) {

this.strategy = strategy;

this.notional = notional;

this.outstanding = outstanding;

this.rating = rating;

this.expiry = expiry;

this.maturity = maturity;

2

public class Loan {

public Loan(float notional, float outstanding, int rating, Date expiry) {
this(new TermROC(), notional, outstanding, rating, expiry, null);

public Loan(float notional, float outstanding, int rating, Date expiry, Date maturity) {
this(new RevolvingTermROC(), notional, outstanding, rating, expiry, maturity);

public Loan(CapitalStrategy strategy, float notional, float outstanding,
int rating, Date expiry, Date maturity) {

this.strategy = strategy;

this.notional = notional;

this.outstanding = outstanding;

this.rating = rating;

this.expiry = expiry;

this.maturity = maturity;

Page 12 of 137

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Motivation

Code that’ s duplicated across two or more of a class's constructorsis an invitation for trouble.
Someone adds a new variable to a class, updates a constructor to initialize the variable, but
neglects to update the other constructors, and bang, say hello to your next bug. The more
constructors you have in a class, the more duplication will hurt you. It's therefore a good idea to
reduce or remove all duplication if possible, which has the added bonus of reducing your
system’s code bloat.

We often accomplish this refactoring with constructor chaining: specific constructors call
more general-purpose constructors until a final constructor is reached. If you have one
constructor at the end of every chain, | call that your catch-all constructor, since it handles every
constructor cal. This catch-all constructor often accepts more parameters than the other
constructors, and may or may not be private or protected.

If you find that having many constructors on your class detracts from its usability, consider
applying Replace Multiple Constructors with Creation Methods (15).

Communication Duplication Simplicity
When constructors in a class Duplicate code in your If more than one constructor
implement duplicate work, the constructors makes your classes | contains the same code, it's
code fails to communicate what more error-prone and harder to harder to see how each
is specific from what is general. maintain. Find what is common, | constructor is different. Simplify
Communicate this by having place it in general-purpose your constructors by making
specific constructors forward constructors, forward calls to specific ones call more general
calls to more general-purpose these general constructors and purpose ones, in a chain.
constructors and do unique work | implement what isn’'t general in
in each constructor. each constructor.

Mechanics

1. Find two constructors (called A and B) that contain duplicate code. Determine if A
cancal B or if B can call A, such that the duplicate code can be safely (and hopefully
easily) deleted from one of the two constructors.

2. Compile and test.

3. Repeat steps 1 and 2 for al constructors in the class, including ones you' ve already
touched, in order to obtain as little duplication across al constructors as possible.

4. Changethe visihility of any constructors that may not need to be public.
5. Compile and test.
Example

1. We'll go with the example shown in the code sketch. We start with a single Loan class, which
has three constructors to represent different types of loans and tons of bloated and ugly
duplication:

public Loan(float notional, float outstanding, int rating, Date expiry) {
this.strategy = new Ter nROC() ;
this.notional = notional;
thi s. out standi ng = out st andi ng;
this.rating = rating;
this.expiry = expiry;

Page 13 of 137

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

public Loan(float notional, float outstanding, int rating, Date expiry, Date maturity) {
this.strategy = new Revol vi ngTer nROC() ;
this.notional = notional;
t hi s. out st andi ng = out st andi ng;
this.rating = rating;
this.expiry = expiry;
this.maturity = maturity;

}

public Loan(Capital Strategy strategy, float notional, float outstanding, int rating,
Date expiry, Date maturity) {

this.strategy = strategy;

this.notional = notional;

thi s. out standi ng = out st andi ng;

this.rating = rating;

this.expiry = expiry;

this.maturity = maturity;

}

| study the first two constructors. They do contain duplicate code, but so does that third
constructor. | consider which constructor it would be easier for the first constructor to call. | see
that it could call the third constructor, with a minimum about of work. So | change the first
constructor to be:

public Loan(float notional, float outstanding, int rating, Date expiry) {
thi s(new TernmROC(), notional, outstanding, rating, expiry, null);
}

2. | compile and test to see that the change works.

3. | repeat steps 1 and 2, to remove as much duplication as possible. This leads me to the second
constructor. It appears that it too can call the third constructor, as follows:

public Loan(float notional, float outstanding, int rating, Date expiry, Date maturity) {
t hi s(new Revol vi ngTernROC(), notional, outstanding, rating, expiry, maturity);
}

I’m now aware that constructor threeis my class's catch-all constructor, sinceit handles al of the
construction details.
4. | check all calers of the three constructors to determine if | can change the public visibility of
any of them. In this case, | can't (take my word for it — you can't see the code that calls these
methods).
5. | compile and test to compl ete the refactoring.

Chaining To An Init Method

Sometimes your own logic will prevent you from chaining constructors the way you'd like to.
[Moreto write]

[Init methods are sometimes necessary beause you are doing dynamic object loading —
Class.forName.newl nstance()]

Page 14 of 137

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Replace Multiple Constructorswith Creation Methods

Constructors on a class make it hard to decide
which constructor to call during devel opment

Replace the constructors with intention-revealing
Creation Methods that return object instances

Loan

+Loan(notional, customerRating, maturity)

+Loan(notional, customerRating, maturity, expiry)

+Loan(notional, outstanding, customerRating, maturity, expiry)
+Loan(capitalStrategy, notional, customerRating, maturity, expiry)
+Loan(capitalStrategy, notional, outstanding, customerRating, maturity, expiry)

7

Loan

-Loan(capitalStrategy, notional, outstanding, customerRating, expiry, maturity)

+createTermLoan(notional. customerRating. maturity) : Loan

+createTermlLoan(capitalStrategy, notional, outstanding, customerRating, maturity) : Loan

+createRevolver(notional, outstanding, customerRating, expiry) : Loan

+createRevolver(capitalStrategy, notional, outstanding, customerRating, expiry) : Loan

+createRCTL (notional. outstanding. customerRating, maturity. expiry) : Loan

+createRCTL (capitalStrategy. notional, outstanding, customerRating, maturity, expiry) : Loan

Motivation

Some languages allow you to hame your constructors any old way you like, regardless of the
name of your class. Other languages, such as C++ and Java, don't alow this. each of your
constructors must be named after your class name. If you have one simple constructor, this may
not be problem. If you have multiple constructors, programmers will have to choose which
constructor to call by studying which parameters are expected and/or poking around at the
constructor code. What's wrong with that? A lot. Constructors simply don’t communicate
intention efficiently or effectively. The more constructors you have, the easier it is for
programmers to mistakenly choose the wrong one. Having to choose which constructor to call
slows down development and the code that does call one of the many constructors often fails to
sufficiently communicate the nature of the object being constructed.

If you think that sounds bad, it gets worse. As systems mature, programmers often add more
and more constructors to classes without checking to seeif older constructors are still being used.
Constructors that continue to live in a class when they aren’t being used are dead weight, serving
only to bloat the class and make it more complicated than it needs to be. Mature software
systems are often filled with dead constructor code because programmers lack fast, easy ways to
identify all callers to specific constructors: either their IDE doesn’t help them with this or it istoo
much trouble to devise and execute search expressions that will identify the exact callers of a
specific method. On the other hand, if the majority of object creation calls come through
specificaly-named methods, like creat eTer mLoan() and creat eRevol ver (), it is fairly
trivial to find all callers to such explicitly-named methods.

Now, what does our industry call a method that creates objects? Many would answer
“Factory Method,” after the name given to a creational pattern in the classic book, Design Pattern
[GoF]. But are al methods that create objects true Factory Methods? Given a broad definition of
the term — i.e. a method that simply creates objects — the answer would be an emphatic “yes!”
But given the way the authors of the creational pattern, Factory Method, wrote about it (in 1994),

Page 15 of 137

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

it is clear that not every method that creates objects offers the kind of loose-coupling provided by
a genuine Factory Method. So, to help us all be clearer when discussing designs or refactorings
related to object creation, I'm using the term Creation Method to refer to a method that creates
objects. This means that every Factory Method is a Creation Method but not necessarily the
reverse. It also means that you can substitute the term Creation Method wherever Martin Fowler
uses the term “factory method” in Refactoring [Fowler] and wherever Joshua Bloch uses the term
“static factory method” in Effective Java [Bloch].

Communication Duplication Simplicity
Copious constructors don’t There is no direct duplication Figuring out which constructor to
communicate available types here; just many nearly identical- | call isn't simple — make it simple
very well — communicate type looking constructors by offering up the various types
availability clearly by offering through intention-revealing
access to instances via intention- Creation Methods.
revealing Creation Methods

Mechanics

After identifying a class that has copious constructors, it’s best to consider applying Extract
Class (149) [Fowler] or Extract Subclass (330) [Fowler] before you decide to apply this
refactoring. Extract Classisagood choice if the class in question is simply doing too much work
—i.e. it has too many responsibilities. Extract Subclass is a good choice if instances of the class
only use a small portion of the class's instance variables. |If you apply Extract Subclass, aso
consider applying Encapsulate Classes with Creation Methods (21).

1. ldentify aclassthat has copious constructors, is not overburdened with responsibilities
and which has instances that use most of its instance variables.
2. ldentify the catch-all constructor or create one using Chain Constructor (12).

Strictly speaking, you can implement this refactoring without having a catch-all
constructor, though it’s a good idea to create one if doing so eliminates duplicate code.

3. ldentify a constructor that clients call to create a kind of instance and produce a Creation
Method for that kind of instance. Make the Creation Method call your catch-call
constructor whenever possible, to enable the elimination of constructors (step 6).

Give your Creation Method an intention-revealing name and make it accept the least
number of parameters necessary to produce valid instances. Note that you may create
mor e than one Creation Method for a given constructor.

4. Replace constructor calls that create the kind of instance choosen in step 3 with calls to
your Creation Method.

5. Repeat steps 3 and 4, compiling and testing as you go.
6. Delete constructors that are no longer being called and compile.

7. If your class has no subclasses, declare its remaining constructor(s) private. If it has
subclasses, declare its remaining constructor(s) protected.

8. Compile.

Page 16 of 137

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Example

1. I'll use the example shown in the code sketch. We start with a simple Loan class, which has
copious constructors to represent some form of a Term Loan, Revolver or RCTL (a Revolver and
Term Loan combination).

public class Loan ...
public Loan(doubl e notional, int custonerRating, Date maturity) {
this(notional, 0.00, custonerRating, maturity, null);

public Loan(double notional, int custonerRating, Date maturity, Date expiry) {
this(notional, 0.00, customerRating, maturity, expiry);

public Loan(doubl e notional, double outstanding, int customerRating, Date maturity,
Date expiry) {
this(null, notional, outstanding, customerRating, maturity, expiry);

public Loan(Capital Strategy capital Strategy, double notional, int custonmerRating,
Date maturity, Date expiry) {
this(capital Strategy, notional, 0.00, customerRating, maturity, expiry);

public Loan(Capital Strategy capital Strategy, double notional, double outstanding,
int custonerRating, Date maturity, Date expiry) {
this.notional = notional;
thi s. out standi ng = out st andi ng;
t his. custonerRati ng = custonerRating;
this.maturity = maturity;
this.expiry = expiry;
this.capital Strategy = capital Strategy;

if (capital Strategy == null) {
if (expiry == null)

this.capital Strategy new Ter nCapi tal Strategy();

else if (maturity == null)
this.capital Strategy = new Revol verCapital Strategy();
el se

this.capital Strategy = new RCTLCapital Strategy();
}

This class represents different types of loans that behave in similar ways and that share the
same instance variables. The class has five constructors, the last of which is the catch-all
constructor. If you look at these constructors, it isn't easy to know which ones creaste Term Loans,
which ones create Revolvers, and which ones create RCTLs. | happen to know that an RCTL
needs both an expiry date and a maturity date; so to create one, | must call a constructor that lets
me pass in both dates. But did you know that? Do you think the next programmer who reads this
code will know it?

What e se is embedded as implicit knowledge in the above constructors? Plenty. If you call
the first constructor, which takes three parameters, you'll get back a Term Loan. But if you want
a Revolver, you'll need to call one of the constructors that take two dates, and supply null for the
maturity date. Hmmm, | wonder if al users of this code will know this? Or will they just have to
learn by encountering some ugly bugs?

2. The next task is to identify the catch-all constructor for the Loan class. Thisiseasy —it isthe
constructor that takes the most parameters:

public Loan(Capital Strategy capital Strategy, double notional, double outstanding,
int customerRating, Date maturity, Date expiry) {
this.notional = notional;
thi s. out standi ng = out st andi ng;
t his. custonerRati ng = custonerRating;
this.maturity = maturity;
this.expiry = expiry;
this.capital Strategy = capital Strategy;

if (capital Strategy == null) {
if (expiry == null)

Page 17 of 137

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

this.capital Strategy =
else if (maturity == null)
this.capital Strategy =
el se
this.capital Strategy = new RCTLCapital Strategy();

new Ter nCapi tal Strategy();

new Revol ver Capital Strategy();

}
3. Next, | identify a constructor that clients call to create a kind of instance:

public Loan(double notional, int custonerRating, Date maturity) {
this(notional, 0.00, customerRating, maturity, null);
}

This constructor is called to produce a Term Loan with a default TermCapital Strategy. In order to
produce a Creation Method for this kind of instance, | write atest first:

public void testTernLoanCreation() {
Loan terml = Loan. createTernLoan(NOTI ONAL, CUSTOVER _RATI NG MATURI TY_DATE);
assert True("type = termloan", terml.toString().indexOf("termloan") > -1);

Thistest doesn't compile, run or pass until | add the following public static method to Loan:

public static Loan createTernloan(doubl e notional, int custonerRating, Date maturity) {
return new Loan(null, notional, 0.00, custonerRating, maturity, null);
}

I make this method call Loan’s catch-all constructor since doing so may alow me to delete, at a
later step, the constructor | started with.

4. Now, | find all client calls to the constructor identified in the previous step. Since that
constructor only creates Term Loans with a default TermCapital Strategy, it is safe to replace all
of the constructor callswith callsto the new Creation Method. So code that looked like:

Loan termLoan = new Loan(notional, customerRating, maturity);

is changed to:

Loan ternioan = Loan. createTernioan(notional, custonerRating, maturity);

5. Repeating steps 3 and 4 yields the following set of Loan Creation Methods:

public static Loan createTernloan(doubl e notional, int custonerRating, Date maturity) {
return new Loan(null, notional, 0.00, custonmerRating, maturity, null);

public static Loan createTernlLoan(Capital Strategy capital Strategy, double notional,
doubl e outstanding, int custonerRating, Date maturity) {
return new Loan(capital Strategy, notional, outstanding, custonerRating, maturity,
nul l);

public static Loan createRevol ver (doubl e notional, double outstanding,
int custonmerRating, Date expiry) {
return new Loan(null, notional, outstanding, custonmerRating, null, expiry);

public static Loan createRevol ver(Capital Strategy capital Strategy, double notional,
doubl e outstanding, int custonerRating, Date expiry) {
return new Loan(capital Strategy, notional, outstanding, custonerRating, null, expiry);
}
public static Loan createRCTL(doubl e notional, double outstanding, int customerRating,
Date naturity, Date expiry) {
return new Loan(null, notional, outstanding, custonerRating, maturity, expiry);

public static Loan createRCTL(Capital Strategy capital Strategy, double notional,
doubl e outstanding, int custonerRating, Date maturity, Date expiry) {
return new Loan(capital Strategy, notional, outstanding, custonerRating, maturity,
expiry);

Page 18 of 137

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.
}

6. The compiler is now my friend, as | attempt to delete constructors that are no longer being
called. I'm able to delete all but the catch-all constructor, which is being called by all of the new
Creation Methods.

7. The catch-all constructor can now be safely declared private:

private Loan(Capital Strategy capital Strategy, double notional, double outstanding,
int custonerRating, Date maturity, Date expiry)

8. The compiler agrees with my changes and I’ m done.

It's now quite clear how to obtain the different kinds of Loan instances. The ambiguities have
been revealed and the implicit knowledge has been made explicit. What's left to do? Well, the
Creation Methods still do take a fairly large number of parameters, so | may consider applying
Introduce Parameter Object (295) [Fowler].

Parameterized Creation Methods

Asyou consider implementing this refactoring on a class, you may calculate in your head that
you'd need something on the order of 50 Creation Methods to account for every abject
configuration supported by your class. Since writing 50 methods doesn’t sound like much fun,
you may decide not to do this refactoring. However, there are ways to handle this situation. First,
you need not produce a Creation Method for every abject configuration: you can write Creation
Methods for the most popular configurations and leave some public constructors around to handle
the rest of the cases. In addition, it often makes sense to use parameters to cut down on the
number of Creation Methods — we call these parameterized Creation Methods. For example, a
single Apple class could be instantiated in a variety of ways:

» based on the family of apple

» based on the appl€'s country of origin
e based on the color of apple

» with or without seeds

e peeled or not peeled

These options present numerous kinds of Apples, even though they aren’t defined as explicit
Apple subclasses. To obtain the Apple instance you need, you must call the correct Apple
constructor. But there can be many of these Apple constructors, corresponding with the many
Appletypes:

public Apple(AppleFam |y famly, Color color) {
this(famly, color, Country.USA, true, false);

}
public Apple(AppleFam |y famly, Color color, Country country) {
this(famly, color, country, true, false);

}
public Appl e(AppleFam |y fam |y, Color color, bool ean hasSeeds) {
this(famly, color, Country.USA, hasSeeds, false);

}
public Appl e(AppleFam |y famly, Color color, Country country, bool ean hasSeeds) {
this(famly, color, country, hasSeeds, false);

}
public Apple(AppleFanmily famly, Color color, Country country, boolean hasSeeds, bool ean
i sPeel ed) {

this.famly = famly;

this.color = color;

this.country = country;

t hi s. hasSeeds hasSeeds;

this.isPeel ed i sPeel ed;

Page 19 of 137

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

}
As we've noted before, al of these constructors make the Apple class harder to use. To

improve the usability of the Apple class, yet not write a large quantity of Creation Methods, we
could identify the most popular kinds of Apples created and simply make Creation Methods for
them:

public static Apple createSeedl essAneri canMaci ntosh();
public static Apple createSeedl essGannySnith();
public static Apple createSeededAsi anGol denDel i ci ous();

These Creation Methods would not altogether replace the public constructors, but would
supplement them and perhaps reduce their number. However, because the above Creation
Methods aren't parameterized, they could easily multiple over time, yielding many Creation
Methods that would also make it hard to choose the kind of Apple someone needed. Therefore,
when faced with so many possible combinations, it often makes sense to write parameterized
Creation Methods:

public static Apple createSeedl essMaci nt osh(Country c);
public static Apple createCol denDelicious(Country c);

Page 20 of 137

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Encapsulate Classes with Creation Methods

Clients directly instantiate classes that reside
in one package and implement a common interface

Make the class constructors non-public and let clients
create instances of them using superclass Creation Methods

Descriptors

AttributeDescriptor

#AttributeDescriptor(...)

BooleanDescriptor DefaultDescriptor ReferenceDescriptor
+BooleanDescriptor(...) +DefaultDescriptor(...) +ReferenceDescriptor(...)
4 A A
1 : 3 Client
Descriptors
AttributeDescriptor < Client

#AttributeDescriptor(...)
+forBoolean(...) : AttributeDescriptor

+forClass(...) : AttributeDescriptor
+forD R -\ 1] Descriptor
+forln r(...) o Attri Descriptor

+forString(...) : AttributeDescriptor

A

BooleanDescriptor DefaultDescriptor ReferenceDescriptor

#BooleanDescriptor(...) #DefaultDescriptor(...) #ReferenceDescriptor(...)

classes not visible
outside package

Page 21 of 137

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Motivation

A client’s ability to directly instantiate classes is useful so long as the client needs to know
about the very existence of those classes. But what if the client doesn’'t need that knowledge?
What if the classes live in one package, implement one interface and those conditions aren’t
likely to change? In that case, the classes in the package could be hidden from clients outside the
package using public, superclass Creation Methods, each of which would return an instance that
satisfied some common interface.

There are several motivations for doing this. Firgt, it provides a way to rigoroudly apply the
mantra, separate interface from implementation [GoF], by ensuring that clients interact with
classes via their common interface. Second, it provides a way to reduce the “conceptua weight”
[Bloch] of a package by hiding classes that don't need to be publicly visible outside their
package. And third, it simplifies the construction of available kinds of instances by making the
set available through intention-revealing Creation Methods.

Despite these good things, some folks have reservations about applying this refactoring. |
address and respond to their concerns below:

1. They don't like giving a superclass knowledge of its subclasses, since it causes a
dependency cycle - i.e. you have to add new Creation Method to a superclass just because
you create a new subclass or add/modify a subclass constructor. When | point out that
this refactoring happens within the context of one package with subclasses that
implement one interface, they usually quiet down.

2. They don’'t like mixing Creation Methods with implementation methods on a superclass.
| don’'t have a problem doing this, unless the Creation Methods just make it too hard to
see what the superclass does, in which case | apply Extract Creation Class (27).

3. They don't like this refactoring when code is handed off as object code, since
programmers who must use the object code won't be able to add or modify the non-
public classes or the Creation Methods. |I'm more sympathetic to this reservation. If
extensibility within a package is necessary and users don’t have source code, | would not
encapsul ate the classes, but would provide a Creation Class for common instances.

The sketch at the start of this refactoring gives you a glimpse of some object to relational
database mapping code. Before the refactoring was applied, programmers (including myself)
occasionally instantiated the wrong subclass or the right subclass with incorrect arguments (for
example, we called a constructor that took a primitive Javai nt when we really needed to call
the constructor that took Java's | nt eger object). The refactoring reduced bug creation by
encapsulated the knowledge about the subclasses and producing a single place to get a variety of
well-named subclass instances.

Communication Duplication Simplicity
When you expect client code to Duplication isn't an issue with Making classes publicly visible
communicate with classes via this refactoring. when you want clients to interact
one interface, your code needs with them via one interface isn’t
to communicate this. Public simple: it invites programmers to
constructors don't help, since instantiate and couple
they allow clients to couple themselves to class types and it
themselves to class types. communicates that it is ok to
Communicate your intentions by extend the public interface of an
protecting class constructors, individual class.
producing instances via Simplify by making it impossible
superclass Creation Methods to instantiate these classes and
and making the return type for by offering instances via
the instances a common superclass Creation Methods.
interface or abstract class type.

Page 22 of 137

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Forces
* Your classes share acommon public interface.

Thisis essential because after the refactoring, all client code will interact with class
instances via their common interface.

* Your classesreside in the same package.

Mechanics

1. Write anintention-revealing Creation Method on the superclass for akind of instance that
a class's congtructor produces. Make the method’ s return type be the common interface
type and make the method’ s body be a call to the class' s constructor.

2. For the kind of instance chosen, replace al calls to the class's constructor with calls to
the superclass Creation Method.

3. Compileand test.

4. Repesat steps 1 and 2 for any other kinds of instances that may be created by the class's
constructor.

5. Declarethe class's constructor to be non-public (i.e. protected or package-protected).
6. Compile.

7. Repeat the above steps until every constructor on the class is non-public and al available
class instances may be obtainted via superclass Creation Methods.

Example

1. We begin with a small hierarchy of classes that reside in a package called descri pt ors. The
classes assist in the object-to-relation database mapping of database attributes to instance
variables:

package descriptors;

public abstract class AttributeDescriptor {
protected AttributeDescriptor(..)

public class Bool eanDescri ptor extends AttributeDescriptor {
publ i ¢ Bool eanDescriptor(.) {
super(.);

public class DefaultDescriptor extends AttributeDescriptor {
public DefaultDescriptor(.) {
super(..);

public class ReferenceDescriptor extends AttributeDescriptor {
public ReferenceDescriptor(.) {
super(..);

Page 23 of 137

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

The abstract At t ri but eDescri pt or constructor is protected, and the constructors for the
three subclasses are public. Let’s focus on the Def aul t Descri pt or subclass. Thefirst step is
to identify a kind of instance that can be created by the Def aul t Descri pt or constructor. To
do that, I look at some client code:

protected List createAttributeDescriptors() {
List result = new ArrayList();
resul t.add(new Def aul t Descriptor("renoteld", getd ass(), Integer.TYPE));
resul t.add(new Def aul t Descriptor("createdDate", getCd ass(), Date.class));
resul t. add(new Def aul t Descri ptor ("l ast ChangedDat e", getd ass(), Date.class));
resul t. add(new Ref erenceDescriptor("createdBy", getd ass(), User.class,
Renot eUser . cl ass));
resul t.add(new Ref erenceDescriptor ("l ast ChangedBy", getd ass(), User.cl ass,
Renot eUser . cl ass));
resul t. add(new Def aul t Descriptor("optimsticLockVersion", getd ass(), Integer.TYPE));
return result;

}

Here | seethat Def aul t Descri pt or isbeing used to represent mappings for Integers and Dates.
It may also be used to map other types, but | must focus on one kind of instance at atime. So |
decide to write a Creation Method to produce attribute descriptors for Integers:

public abstract class AttributeDescriptor {
public static AttributeDescriptor forinteger(...) {
return new Defaul t Descriptor(...);
}

I make the return type for the Creation Method an At t ri but eDescri pt or because | want
clients to interact with all Attri but eDescri pt or subclasses viathe Attri but eDescri ptor
interface and because | want to hide the very existence of Attri but eDescri pt or subclasses
from anyone outsidethe descr i pt or s package.

If you do test-first programming, you would begin this refactoring by writing a test to obtain
theAttri but eDescri pt or instance you want from the superclass Creation Method.

2. Now client calls to create an Integer version of aDef aul t Descri pt or must be replaced with
callsto the superclass Creation Method:

protected List createAttributeDescriptors() {
List result = new ArrayList();
result.add(AttributeDescriptor.forlnteger("remnteld", getC ass()));
resul t. add(new Def aul t Descri ptor ("createdDate", getC ass(), Date.class));
resul t. add(new Def aul t Descri ptor ("I ast ChangedDat e", getC ass(), Date.class));
resul t. add(new Ref erenceDescriptor("createdBy", getd ass(), User.class,
Renot eUser . cl ass));
resul t. add(new Ref erenceDescri ptor ("l ast ChangedBy", getC ass(), User.cl ass,
Renot eUser . cl ass));
result.add(AttributeDescriptor.forlnteger("optimsticLockVersion", getC ass()));
return result;

}

3. | compile and test that the new code works.

4. Now | continue to write Creation Methods for the remaining kinds of instances that the
Def aul t Descri pt or constructor can create. Thisleadsto 2 more Creation Methods:

public abstract class AttributeDescriptor {
public static AttributeDescriptor forinteger(...) {
return new Defaul t Descriptor(...);

}
public static AttributeDescriptor forDate(...) {
return new Defaul tDescriptor(...);

public static AttributeDescriptor forString(...) {
return new Defaul t Descriptor(...);

Page 24 of 137

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

}

5. I now declare the DefaultDescriptor constructor protected:

public class Defaul tDescriptor extends AttributeDescriptor {
protected Defaul tDescriptor(.) {
super(.);

6. | compile and everything goes according to plan.

7. Now | repeat the above steps for the other At t ri but eDescri pt or subclasses. When I'm
done, the new code:

e givesaccesstoAttri but eDescri pt or subclassesviatheir superclass

» ensuresthat clients obtain subclassinstancesviathe At t ri but eDescr i pt or interface

» preventsclientsfrom directly instantiating At t ri but eDescri pt or subclasses

e communicates to other programmers that Attri butreDescri pt or subclasses are not
meant to be public — the convention is to offer up access to them via the superclass and a
common interface.

Encapsulating Inner Classes

The JDK’'s java. util. Col | ections class is a remarkable example of what encapsulating
classes with Creation Methods is all about. The class's author, Joshua Bloch, needed to give
programmers a way to make Collections, Lists, Sets and Maps unmodifiable and/or synchronized.
He wisely chose to implement this behavior using the Decorator pattern. However, instead of
creating public, j ava. uti | Decorator classes (for handling synchronization and unmodifiabilty)
and then expecting programmers to decorate their own collections, he defined the Decorators in
the Collections class as non-public inner classes and then gave Collections a set of Creation
Methods from which programmers could obtain the kinds of decorated collections they needed.
Below is a sketch of a few of the inner classes and Creation Methods that are specified by the
Collections class:

Page 25 of 137

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

java.util

Collections
| Collection
SynchronizedCollection Serializable
—>enaizabe s
~c: Collection
~mutex: Object -
L
e \‘
A - some of the many
non-public, inner classes
List inside the Collections class
— SynchronizedList O

Collection

=
UnmodifiableCollection .
Ser|a||zab|eC
~c: Collection
List

UnmodifiableList - —— ==

436to
 UnmodifiableSet w@
} SortedSet

Unmodifiable

SortedSet Serializable O

+synchronizedCollection(c: Collection) : Collection
+synchronizedListl(list: List): List -—~—-—-—- -
+unmodifiabl llection(c: Collection) : Collection
+unmodifiableSet(s: Set) : Set
+unmodifiableSortedSet(s: SortedSet) : SortedSet o
+unmodifiableList(list: List): List .
. ~

—-1—1— return new SynchronizedList(list);

return new SortedSet(s);

N

return new UnmodifiableList(list);

4. Noticethat java. util. Col | ecti ons even contains small hierarchies of inner classes,
all of which are non-public. Each inner class has a corresponding method that receives a
collection, decorates it and then returns the decorated instance, using a commonly defined
interface type (such as List or Set). This solution reduced the number of classes
programmers needed to know about, while providing the necessary funcationality.
java. util.Collections isan example of a Creation Class (see Extract Creation
Class (27)).

Page 26 of 137

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Extract Creation Class

Too many Creation Methods on a class
obscureit’s primary responsibility

Move the Creation Methods for a related set
of classes to one Creation Class

Loan

#Loan(...)
+newAdvisor(...)
+newl etterOfCredit(...)
+newRCTL(...)
+newRevolver(...)
+newSPLC(...)
+newTermloan(...)
+newVariable(...)
+calcCapital(...)
+calcincome(...)
+calcROC(...)
+setOutstanding(...)

2

< Client

Loan

#Loan(...)
+calcCapital(...)
+calclncome(...)
+calcROC(...)
+setOutstanding(...)

LoanCreator <

+newAdvisor(...)

+newl etterOfCredit(...)
+newRCTL(...)
+newRevolver(...)
+newSPLC(...)

Client

+newTermloan(...)
+newVariable(...)

Motivation

This refactoring is essentially Extract Class [Fowler], only it's done on a class's Creation
Methods. There's nothing wrong with a few Creation Methods on a class, but as the number of
them grows, a class's own primary responsibilities — it's main purpose in life — may begin to feel
obscured or overshadowed by creational logic. When that happens, it's better to restore the
class sidentity by moving its Creation Methods to a Creation Class.

Creation Classes and Abstract Factories [GoF] are similar in that they create families of
objects, but they are quite different, as the following tableillustrates:

Substitutable at runtime No Yes
Instantiates a family of products Yes Yes
Supports creation of new products easily Yes No
Separates interface from implementation May or may not Yes
Isimplemented with static methods Usually No
Isimplemented as a Singleton No Often

In general, Creation Classes are good if you have one and only one class for creating afamily
of products, you don't need to substitut for another object, you can safely go with a Creation

Page 27 of 137

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Class. anothereven though they are booin that they often create a related set of objects, but are
most unlike Abstract Factories in that you don’t substitute one Creation Class for another at
runtime, because you're not concerned with swapping out one family of products for another.
Creation Classes are usually implemented as classes that contain static methods, each of which
instantiates and returns an object instance.

Communication Duplication Simplicity
When object creation begins to Duplication is not an issue with When creational responsibilities
dominate the public interface of respect to this refactoring. mix too much with a class’s main
the class, the class no longer responsibilities, the class isn’t
strongly communicates its main simple. Simplify it by extracting
purpose. Communicate the act the creational code into a
of object creation by creating a Creation Class.
special class just to create object
instances.

Mechanics

1. Identify aclass (whichwe'll call “A”) that is overrun with Creation Methods.

2. Create a class that will become your Creation Class. Name it after it's purpose in life,
which will be to create various objects from a set of related classes.

3. Move al Creational Methods from A to your new class, making sure that all protection
privledges are accounted for.

4. Changeall callersto obtain object references from your new Creation Class.
Example

Though | use different example code from Martin Fowler, | do tend to repeat it as | am
intrinsically lazy. So if you don't mind, we'll work with the same brainless Loan example,
outlined in the code sketch above. Assume that there is test code for the example code below —I
didn’'t include it the text since thisrefactoring isfairly trivial.

1. We begin with a Loan class that has lots of code for handling the responsibilities of a Loan
and being a creator of Loan objects:

public class Loan {
private doubl e notional;
private doubl e out st andi ng;
private int rating;
private Date start;
private Capital Strategy capital Strategy;
private Date expiry;
private Date maturity;
/1 . . . nore instances variabl es not shown

protected Loan(doubl e notional, Date start, Date expiry,
Date maturity, int riskRating, Capital Strategy strategy) {
this.notional = notional;
this.start = start;
this.expiry = expiry;
this.maturity = maturity;
this.rating = riskRating;
this.capital Strategy = strategy;

}
public double calcCapital () {

return capital Strategy.calc(this);
}

Page 28 of 137

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

public void setQutstandi ng(doubl e newQut st andi ng) {
out st andi ng = newQut st andi ng;
}

/1 ... nore nethods for dealing with the primary responsibilities of a Loan, not shown

public static Loan newAdvi sor(doubl e notional, Date start,
Date maturity, int rating)
return new Loan(notional, start, null, maturity, rating, new TernlLoanCapital ());

public static Loan newLetter Of Credit(double notional, Date start,
Date maturity, int rating) {
return new Loan(notional, start, null, maturity, rating, new TernmlLoanCapital ());

}
public static Loan newRCTL(doubl e notional, Date start,
Date expiry, Date maturity, int rating) {
return new Loan(notional, start, expiry, maturity, rating, new RCTLCapital ());

public static Loan newRevol ver (doubl e notional, Date start,
Date expiry, int rating) {
return new Loan(notional, start, expiry, null, rating, new RevolverCapital());

public static Loan newSPLC(doubl e notional, Date start,
Date maturity, int rating) {
return new Loan(notional, start, null, maturity, rating, new TermnmLoanCapital ());

public static Loan newTernioan(doubl e notional, Date start,
Date maturity, int rating) {
return new Loan(notional, start, null, maturity, rating, new TermnmLoanCapital ());
}
public static Loan newari abl eLoan(doubl e notional, Date start,
Date expiry, Date maturity, int rating) {
return new Loan(notional, start, expiry, maturity, rating, new RCTLCapital());

2. Next, | create a class called LoanCr eat or, since it's sole purpose in life is to be a place
where clients can obtain Loan instances:

public class LoanCreator {

}

3. Now | move all of the Creation Methods from Loan to LoanCr eat or , placing LoanCr eat or
in the same package as Loan (and it's Capita stategies) so it has the protection level it needs to
instantiate Loans:

public class LoanCreator {
public static Loan newAdvi sor(doubl e notional, Date start,
Date maturity, int rating)
return new Loan(notional, start, null, maturity, rating, new TermLoanCapital ());

public static Loan newLetter O Credit(double notional, Date start,
Date naturity, int rating) {
return new Loan(notional, start, null, maturity, rating, new TermLoanCapital ());

}
public static Loan newRCTL(doubl e notional, Date start,
Date expiry, Date naturity, int rating) {
return new Loan(notional, start, expiry, maturity, rating, new RCTLCapital ());

public static Loan newRevol ver (doubl e notional, Date start,
Date expiry, int rating) {
return new Loan(notional, start, expiry, null, rating, new RevolverCapital());

public static Loan newSPLC(doubl e notional, Date start,
Date nmaturity, int rating) {
return new Loan(notional, start, null, maturity, rating, new TermloanCapital ());

public static Loan newTer nLoan(doubl e notional, Date start,

Date nmaturity, int rating) {
return new Loan(notional, start, null, maturity, rating, new TermLoanCapital ());

Page 29 of 137

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

public static Loan newari abl eLoan(doubl e notional, Date start,
Date expiry, Date maturity, int rating) {
return new Loan(notional, start, expiry, maturity, rating, new RCTLCapital());
}
}

4. Tofinish, I simply change calls of the form:

Loan ternmLoan = Loan. newTer nLoan(..)
to

Loan ternloan = LoanCreat or. newTer nLoan(..)

Page 30 of 137

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

M ove Object Composition to Creation M ethod

Client code is responsible for wrapping objects together
to obtain one instance with the desired behavior

Move the object composition responsibility
to an intention-revealing Creation Method

Motivation
Prerequisites
Mechanics

Example

Page 31 of 137

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Replace M ultiple Instances with Singleton

Y ou create multiple instances of an object that
consumes too much memory and/or takes awhile to create

Replace the multiple instances with a Sngleton

Example about Zip Code, City, State Object

Page 32 of 137

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Replace Singleton with Object Reference

A classis a Singleton but has no business being a Singleton

Replace the Sngleton with a plain old, non-global instance
and pass this instance to objects that need it.

public void someMethod() ...
Profile.getinstance().getUserLevel()

public void someMethod(Profile profile) ...
profile.getUserLevel()

Motivation

Page 33 of 137

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Replace Singleton with Registry
ByJ. B. Rainsberger

Motivation

You have a package or library that lives within an application and
relies on global objects (singletons) provided by a part of the
application. Your package is therefore coupled with the current
application, but you would like your package to be used somewhere
else.

You prefer not to apply Replace Global with Object Reference, because
it will cause an unknown ripple effect throughout the application.
This ripple effect is not something you can afford to handle at the
present moment, so you are looking for a refactoring to help you get
part of the way towards fixing the overall design issues.

After applying Replace Singleton with Registry, your package has
access to the same data it had before, but that access is made local
to the package in the form of a Registry. It then suffices to change
the application so that it registers its data with the package®s
Registry. You can then use the package in other applications, as long
as the application places the data your package needs in the
prescribed, well-known Blocation.

What is a Registry?

Briefly, a Registry is a namespace for objects. Clients can store
information within a Registry so that other clients can retrieve that
data without binding these clients to each other. We usually implement
a Registry as a singleton, so the Registry is a well-known, global
location for objects that allows providers and consumers of the data
to operate independently of one another.

Forces

You have an application with (usually many) singletons that individual
packages use to perform their work. Usually this is configuration
information or widely-used resources like databases and external
servers.

You would like to use one of your packages in a different application,
or simply improve its design to make it application-independent.

You can refactor the application to register its singleton instances
with well-known objects within the package. If you cannot do this,
consider creating a simple application facade [insert reference] to
help during the refactoring.

Mechanics

Identify the application-level objects your package needs to operate.
Create a class called PackageConfiguration that aggregates all these
objects.

Page 34 of 137

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Make PackageConfiguration a singleton, but add setX() methods for each
object your package wants the application to register.

Within your application, as each object becomes available, call the
corresponding setX() method on the PackageConfiguration object to
"register"™ the object.

Within your package, replace each reference to the application”s
globally-accessible objects with the corresponding getX() method on
the PackageConfiguration to retrieve the registered object.

When you have finished, you will have inserted a Registry, acting as a
mediator [insert reference] between the application and your package.
By registering application-level objects with the Registry, your
application is one step closer to being decoupled from your package.
It is possible now to have multiple packages retrieve objects from the
Registry in order to perform their work. By retrieving
application-level objects from the Registry, your package is one step
closer to being decoupled from the application. It is possible now to
have any application (although only one per virtual machine) register
its global objects with the Registry without the package knowing the
source of the objects.

Why did this happen?

You may be wondering how this abuse of singletons would arise in the
first place. Put simply, the singleton is an easy way to make data
available "from the application down" -- that is, storing data within
the application and making it available to the components that need
them. In many cases, the application itself only requires an attribute
for each of these objects; however, in order to make the various
components more "independent™, programmers often create singletons in
the hopes of pulling information from the application, rather than
having the application push that information to the components.

Unfortuntately, as often happens, the component programmer requires
something to be configured at the application level, and not at the
component level. The programmer may, under the constraints of time and
patience, give in to the temptation of simply "grabbing the data from
the application," rather than providing a means for the application to
configure the component.

[---1

Page 35 of 137

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

I ntr oduce Polymor phic Creation with Factory Method

Classesin a hierarchy implement a method similarly,
except for an object creation step

Make a single superclass version of the method that
calls a Factory Method to handle the instantiation

AbstractPageWriter OutputBuilder outputBuilder = new XMLBuilder();
writeHeaderOn(outputBuilder);

“T1 writeBodyOn(outputBuilder);
writeFooterOn(outputBuilder);

return outputBuilder.toString();

+pageText() : Sting -
#writeHeaderOn(OutputBuilder
#writeBodyOn(OutputBuilder)
#writeFooterOn(OutputBuilder)

OutputBuilder outputBuilder = new DOMBuilder();
writeHeaderOn(outputBuilder);

- writeBodyOn(outputBuilder);
writeFooterOn(outputBuilder);

return outputBuilder.toString();

2

OutputBuilder outputBuilder = createOutputBuilder();
writeHeaderOn(outputBuilder);

———————————————— writeBodyOn(outputBuilder);
writeFooterOn(outputBuilder);

return outputBuilder.toString();

PrimaryInsurerPageWriter

+pageText() : String

AbstractPageWriter

+pageText() : String
#createOutputBuilder(): OutputBuilder
#writeHeaderOn(OutputBuilder)
#writeBodyOn(OutputBuilder)
#writeFooterOn(OutputBuilder)

Y| return new XMLBuilder();

PrimaryInsurerPageWriter

#createOutputBuilder(): OutputBuilder -

" return new DOMBuilder();

Page 36 of 137

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Motivation

What is a Factory Method [GoF]? It is a polymorphic method for creating and returning a
Product. The method is declared in a superclass or interface. A superclass may implement the
method and a subclass may override it, in order to make local decisions about the creation,
including whether to instantiate a subclass of Product and/or how to initialize an instance.

Factory Method is a specialization of Creation Method: both provide for object creation using
a method instead of a constructor, but Factory Method adds the ability to do polymorphic object
creation within ahierarchy. The following table illustrates primary differences:

Creation Method Factory M ethod

May be implemented as abstract in a superclass No Yes
Subclasses may override the method No Yes
Isimplemented with static or non-static methods Yes No

Why would you refactor to a Factory Method? One motivation involves duplicate code: you
find a method either in a superclass and overridden by a subclass or in several subclasses and this
method is implemented nearly identically, except for an object creation step. Y ou see how you
could replace al versions of this method with a single superclass Template Method [GoF],
provided that it could issue the object creation call, while letting the superclass and/or subclasses
do the actual object creation work. No pattern is better suited to that task than Factory Method.

In his refactoring, Form Template Method (345) [Fowler], Martin Fowler observes that,
“inheritance is a powerful tool for éiminating duplicate behavior.” Inheritance is aso what
enables us to implement a Factory Method's polymorphic object creation, since subclasses may
control the class of object that gets instantiated. Template Methods often call Factory Methods
[GoF, page 330], and many programmers refactor to both patterns to reduce duplication in class
hierarchies.

Communication Duplication Simplicity
A well-chosen name for a Duplication of a method often It's usually simpler to read code
Factory Method communicates results from a need to create an | that issues a call to a Factory
intention better than a direct object instance in different ways. | Method than it is to read code
constructor call. Factory Remove the duplication by that performs the actual
Methods also serve to making a single method that instantiation. However, for
communicate that the instances | obtains the instance it needs via | those who aren’t comfortable
they return all implement a a call to a Factory Method. with polymorphism, Factory
common interface. Methods can seem to be more
complex than direct instantiation
calls.
Forces

* Near-duplicate versions of amethod exist in a class hierarchy, and the only difference
between them is that they perform object instantiation differently.

e The classes of the objects being instantiated implement a common interface. If they do
not, consider applying Extract Superclass (336) [Fowler] to give them a common
interface.

Mechanics

Choose from the following two sets of mechanics:

A. When a method is duplicated because a superclass and subclass instantiate a type of object
differently, refactor asfollows:

Page 37 of 137

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

1. Inthe superclass method, apply Extract Method (110) [Fowler] on the object instantiation
code to produce a Factory Method.

Make sure the return type for the Factory Method is a generic type, not the type of the
concrete product being instantiated.

2. On each subclass that overrides the superclass method to do custom object creation,
extract the instantiation logic (using Extract Method (110) [Fowler]) to produce a Factory
Method with the same signature as the superclass Factory Method

3. Remove subclass versions of the method that are no longer needed, compile and test.
If you don’t expect subclasses to ever override this method, declare it asfinal.

B. When a method is duplicated across several subclasses because they instantiate a type of
object differently, refactor as follows:

1. Create a Factory Method on the superclass. Declare it abstract if it does not make sense
to have a default implementation, otherwise make it instantiate and return a default
instance.

2. On each subclass that duplicates the method to do custom object creation, extract the
instantiation logic (using Extract Method (110) [Fowler]) to produce a Factory Method
with the same signature as the superclass Factory Method.

3. Apply Form Template Method (345) [Fowler], compile and test.

When you finish this step, the once duplicated method will now be a Template Method on
the superclass, and this Template Method will call your new Factory Method.If you don’'t
expect subclassesto ever override this method, declare it asfinal.

Example

Writing data in the form of XML or HTML is a pretty common task these days. The code sketch
at the start of this refactoring comes from a system that outputs XML data using a hierarchy of
PageWriter classes. Let’sbegin by looking at code from the Abst r act PageW it er class:

public abstract class AbstractPageWiter...
public String pageText() {
Qut put Bui | der out put Bui | der = new XM.Bui | der () ;
wr i t eHeader On(out put Bui | der) ;
wri t eBodyOn(out put Bui | der) ;
wri t eFoot er On(out put Bui | der) ;
return outputBuilder.toString();

}

protected abstract void witeBodyOn(CQutputBuil der buil der);
protected abstract void witeFooterOn(QutputBuil der builder);
protected abstract void witeHeader On(Qut put Bui | der buil der);

The method, pageText (), is a Template Method [GoF]. By default, it creates an
Cut put Bui | der of type XM_Bui | der and passes it to three methods, after which it returns the
Qut put Bui | der’s output. Subclasses override the three methods to customize what they output.
Before we look at an example subclass, let’slook at Qut put Bui | der s:

Page 38 of 137

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

<<interface>>
OutputBuilder

?

XMLBuilder DOMBuilder

XMLBuilder is a class that can build ssimple XML documents. It is usualy sufficient for
producing output in a system. On some occasions, however, code that builds output needs
something a little more sophisticated, such as a DOMBuilder, which gives access to the
Document Object Model.

A subclass of Abstract PageWiter, caled Primaryl nsurerPageWiter, needed a
DOMBUI | der , so aprogrammer overrode the pageText () method as follows:

public class PrimarylnsurerPageWiter extends AbstractPageWiter...
public String pageText() {
Qut put Bui | der out put Bui | der = new DOMBuI | der () ;
wri t eHeader On(out put Bui | der) ;
wri t eBodyOn(out put Bui | der) ;
wri t eFoot er On(out put Bui | der) ;
return outputBuilder.toString();

}

As you can seg, this is nearly a replica of the superclass pageText () method, the only
difference being what kind of Qut put Bui | der is instantiated. Such duplication is a “breeding
ground for bugs,” as Martin Fowler likes to call it. The duplication can be removed by
refactoring to a Factory Method [GoF], as the steps below will show. Note: the refactoring
mechanics labeled as“ A” will be used in this example.

1. On the superclass, Abstract PageWiter, we apply Extract Method (110) [Fowler] to
produce a Factory Method [GoF], caled cr eat eQut put Bui | der () :

public abstract class AbstractPageWiter...
public String pageText() {
Qut put Bui | der out put Bui | der = creat eCut put Bui | der () ;
wri t eHeader On(out put Bui | der);
wr i t eBodyOn(out put Bui | der) ;
wri t eFoot er On(out put Bui | der) ;
return outputBuilder.toString();

protected QutputBuil der createQutputBuilder() {
return new XM.Bui l der();
}

2. We peform asimilar step on the subclass, Pri mar yl nsur er PageW i ter:

public class Primaryl nsurerPageWiter extends AbstractPageWiter...
public String pageText() {
Qut put Bui | der out put Bui | der = creat eQut put Bui | der () ;
wr i t eHeader On(out put Bui | der) ;
wr i t eBodyOn(out put Bui | der) ;
wri t eFoot er On(out put Bui | der) ;
return outputBuilder.toString();

protected QutputBuil der createCQutputBuilder() {
return new DOMBuI | der () ;
}

3. Now the pageText () method from Pri maryl nsur er PageW i t er can be deleted:

public class Primaryl nsurerPageWiter extends AbstractPageWiter...

Page 39 of 137

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

}

We compile and run tests, such as test Pri maryl nsur er PageQut put (), to confirm that

everything still works:

public void testPrimaryl nsurerPageCQut put () {
String primarylnsurerQutput = getPrinmarylnsurerPageWiter().pageText();
assert True(pri maryl nsurer Qut put. i ndexOf (KI M_NAVE) > -1);
assert True(pri maryl nsurerQut put.i ndexOf (KI M ADDRESS) > -1);
assert True(pri maryl nsurerQut put . i ndexOf (KI M_OCCUPATION) > -1);

Duplication Across Subclasses

Query

+doQuery()

Query

#createQuery() : SDQuery

+doQuery() ,

if (sdQuery != null)
sdQuery.clearResultSet();

sdQuery = createQuery();

executeQuery(sdQuery);

N

QuerySD51
+doQuery() .|

if (sdQuery != null) sdQuery.clearResultSet();
sdQuery = sdSession.createQuery();
executeQuery(sdQuery);

QuerySD52
+doQuery() .

if (sdQuery != null) sdQuery.clearResultSet();
sdQuery = sdLoginSession.createQuery();
executeQuery(sdQuery);

QuerySD51
#createQuery()

return sdSession.createQuery();

QuerySD52

#createQuery() -

return sdLoginSession.createQuery();

This example is similar to the previous one, only this time we begin with duplication in two
subclasses. We can remove this duplication by introducing a Factory Method and a Template
Method. I'll use the mechanicslabeled as“B” to demonstrate how this refactoring works.

Page 40 of 137

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.
1. We start with some classes that handle doing database queries:

abstract class Query...
public abstract void doQuery() throws QueryException;

cl ass QuerySD51 extends Query ...
public void doQuery() throws QueryException {
if (sdQuery != null) sdQuery.clearResultSet();
sdQuery = sdSessi on. creat eQuery(SDQuery. OPEN_FOR_QUERY) ;
execut eQuery(sdQuery);

}

class QuerySD52 extends Query ...
public void doQuery() throws QueryException {
if (sdQuery !'= null) sdQuery.clearResultSet();
sdQuery = sdLogi nSessi on. cr eat eQuer y(SDQuery. OPEN_FOR_QUERY) ;
execut eQuery(sdQuery);

| add a Factory Method to the superclass, Query, and declare it abstract so that subclasses must
implement it:

abstract class Query...
protected abstract SDQuery createQuery() throws QueryException;

2. Now I'll create a Factory Method in each subclass by extracting the instantiation logic from
the subclass implementations of doQuer y() :

cl ass QuerySD51 extends Query ...
protected SDQuery createQuery() {
return sdSession. creat eQuery(SDQuery. OPEN_FOR_QUERY) ;

public void doQuery() throws QueryException {
if (sdQuery !'= null) sdQuery.clearResultSet();
sdQuery = createQuery();
execut eQuery(sdQuery);

}

class QuerySD52 extends Query ...
protected SDQuery createQuery() {
return sdLogi nSessi on. cr eat eQuery(SDQuery. OPEN_FCOR_QUERY) ;

}

public void doQuery() throws QueryException {
if (sdQuery != null) sdQuery. clearResultSet();
sdQuery = createQuery();
execut eQuery(sdQuery);

}

3. Finally, | apply Form Template Method (345) [Fowler], to produce a single, superclass
doQuery() method:

abstract class Query...
protected abstract SDQuery createQuery() throws QueryException;
public void doQuery() throws QueryException {
if (sdQuery !'= null) sdQuery.clearResultSet();
sdQuery = createQuery();
execut eQuery(sdQuery);
}

cl ass QuerySD51 extends Query ...

protected SDQuery createQuery() {
return sdSession. creat eQuery(SDQuery. OPEN_FOR_QUERY) ;
}

cl ass QuerySD52 extends Query ...
protected SDQuery createQuery() {
return sdLogi nSessi on. creat eQuer y(SDQuery. OPEN_FOR_QUERY) ;
}

Page 41 of 137

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Defer Slow Creation with Virtual Proxy

One or many objects take awhile to instantiate or load,
but your system may not use them during execution.

Create a Virtual Proxy that can instantiate
and delegate to the real object, when necessary

<<singleton>> 183 .
volatilities Ko>——— CurrencyVolatility
-currencyVolatilities: Map +crossVolatility(currency): double

+crossCurrency(currencyl, currency?): double
+loadCurrencyVolatilities() ..

public static void loadCurrencyVolatilities() {
Iterator it = Currency.allCurrencies.iterator(); // represents 183 world currencies
while (it.hasNext()) {
String currency = (String)it.next();
loadCurrencyVolatilitiesFor(currency); // loads many doubles per currency
}
}

2

<<interface>>
Volatility

+crossVolatility(currency): double

&

CurrencyVolatility CurrencyVolatilityProxy

-realVolatility: CurrencyVolatility
+crossVolatility(currency) : double

+crossVolatility(currency): double

183
<<singleton>> o
Volatilities
-currencyVolatilities: Map if (realVolatility == null)
+crossCurrency(currencyl. currency?): double realVolatility = new CurrencyVolatility(...);
+loadCurrencyVolatilities() . return realVolatility.crossVolatility(currency);

Iterator it = Currency.allCurrencies.iterator();
while (it.hasNext()) {
String currency = (String)it.next();
currencyVolatilities.put(currency, new CurrencyVolatilityProxy(currency));

}

Page 42 of 137

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Motivation

ne one or more methods that return a context instance, properly outfitted with the appropriate
Strategy instance.
Conditional Logic or Slow Code.

Communication Duplication Simplicity
Code readability is often Conditional logic that checks The simplicity of a system is
sacrificed when deferred whether an expensive object has | slightly reduced when a Virtual
creation logic is mixed together been loaded tends to get Proxy is implemented, since it
with primary logic. Let the duplicated in client programs. adds a minor amount of
primary logic communicate Remove the duplication by sophistication around the act of
clearly by placing the deferred centralizing the conditional logic | object creation. However, since
creation logic into a Virtual in a Virtual Proxy. the interface of a proxy and real
Proxy, where it will be invisible to subject are identical, it's just as
client code. simple for a client program to

use one or the other.

Mechanics

Example

Many custom banking applications calculate risk on financial products. The calculations
often require access to large amounts of numerical data, such as cross-currency volatilities. The
trouble is, it can take a while to instantiate (or create) all of the data that may be used by the
calculations, and meanwhile, the users want their numbers to be computed quickly. Virtua
Proxies offer a good solution here. Data that may not be necessary during program execution
doesn’t need to be loaded, but can instead be represented by a lightweight delegate, which looks
and acts like the redl thing.

Our example deals with cross-currency volatility data. Let's begin by see how this datais
loaded into objects:

Page 43 of 137

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Replace Conditional Calculationswith Strategy

You use alot of conditional logic in acalculation
Delegate the calculation to a Strategy object

public class Loan ...
public double calcCapital() {
return riskAmount() * duration() * RiskFactor.forRiskRating(rating);

private double riskAmount() {
if (unusedPercentage != 1.00)
return outstanding + calcUnusedRiskAmount();
else return outstanding;

private double calcUnusedRiskAmount() {
return (notional - outstanding) * unusedPercentage;

private double duration() {
if (expiry == null)
return ((maturity.getTime() - start.getTime())/MILLIS_PER_DAY)/365;
else if (maturity == null)
return ((expiry.getTime() - start.getTime())/MILLIS_PER_DAY)/365;
else {
long millisToExpiry = expiry.getTime() - start.getTime();
long millisFromExpiryToMaturity = maturity.getTime() - expiry.getTime();
double revolverDuration = (millisToExpiry/MILLIS_PER_DAY)/365;
double termDuration = (millisFromExpiryToMaturity/MILLIS_PER_DAY)/365;
return revolverDuration + termDuration;
}
}

private void setUnusedPercentage() {
if (expiry != null && maturity != null) {
if (rating > 4) unusedPercentage = 0.95;
else unusedPercentage = 0.50;
} else if (maturity != null) {
unusedPercentage = 1.00;
} else if (expiry != null) {
if (rating > 4) unusedPercentage = 0.75;
else unusedPercentage = 0.25;
}
}

4

CapitalStrategy

1

-loan: Loan

+calc(Loan loan)
#riskAmount();
#duration();

TermLoanCapital RevolverCapital RCTLCapital
#riskAmount(); #riskAmount(); #riskAmount();
#duration(); #duration(); #duration();

Page 44 of 137

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Motivation

A lot of condition logic can obscure any calculation, even a simple one. When that happens,
your calculation can be misunderstood by others and harder to maintain, debug and extend.
Strategy is a pattern that deals well with calculations. A context object obtains a Strategy object
and then delegates a calculation (or calculations) to that Strategy. This lightens the context class
by moving the conditional calculation logic to a small collection of independent calculation
objects (strategies), each of which can handle one of the various ways of doing the calculation.

Does this sound like a pattern you'd refactor to alot? It may, but in my experience, | don’t
refactor to Strategy that often. | certainly have refactored toit, but | find that alot of calculation
logic | either write or come across isn't sufficiently complicated to justify using Strategy. In
addition, when there is enough conditiona logic to merit using the pattern, | have to consider
whether a Template Method would be a better choice. But using a Template Method assumes
that you can place the skeleton of your calculation in a base class, and have subclasses supply
some or all of the calculation details. That may or may not be possible given your situation. For
example, if you already have subclasses and the various ways of calculating something won't
easily fit into those subclasses, you may not be able to Form Template Method [Fowler]. Or, you
may find that by placing calculations in separate subclasses, you limit your ability to swap one
calculation type for another at runtime, since it would mean changing the type of object aclient is
working with, rather than simply substituting one Strategy object for another.

Once you do decide to refactor to Strategy, you have to consider how the calculation
embedded in each strategy class will get access to the variables it needs to do its calculation. To
accomplish that, | usually pass the context class as a reference to the Strategy object, and make
whatever variables are needed by each Strategy accessible via public methods on the context
class.

The final thing to consider is how your context class will aobtain its Strategy. Whenever
possible, | like to shield client code from having to worry about both instantiating a Strategy
instance and passing it to a context’'s constructor. Creation Methods can help with this: just
define one or more methods that return a context instance, properly outfitted with the appropriate
Strategy instance.

Communication Duplication Simplicity
Copious conditional logic Conditional calculation code can | Classes that contain a lot of
obscures the steps of a often contain duplicate conditional logic are never
calculation. Communicate the conditional statements that are simple. Butif a class contains
steps clearly by separating each | used to calculate various lots of conditional logic for
calculation variety into its own variables in an algorithm. calculating something in a
Strategy class. Then clarify Replace all of the conditional variety of ways, it may also be
which variety of calculation your | logic by encapsulating each more complex than it needs to
object uses by writing code to variety of the calculation in its be, as it knows too much.
pass the appropriate Strategy to | own Strategy class. Simplify the class by extracting
the object for its use in each variety of the calculation
performing the calculation. into its own Strategy class and

then delegate to one of these
classes to obtain a calculation.

Mechanics

1. On aclass (which we'll call “A”) identify a calculation method, or helper methods to
such a method, that contain a lot of conditional logic. This class will be known as your
context class asit will be the context for a Strategy object.

2. Create a concrete class and name it based on the behavior performed by the chosen
calculation method. Thiswill be your Strategy.

Page 45 of 137

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

You can append the word “ Srategy” to the class name if you find it helps communicate
the purpose of this new type.

3. Apply Move Method [Fowler] to move the primary calculation method and any helper
methods to your Strategy class. If the code you move needs to obtain information from
A, pass A as a parameter to the primary calculation method or as a parameter to the
Strategy class' s constructor and make sure the information on A is publicly available.

You can aternatively pass the necessary information from A to the Strategy, without
passing a reference of A to the Strategy. This will result in less coupling between A and
your Strategy, but may require you to pass a lot of information. See Design Patterns
[GoF] for an in-depth discussion about communication between the context, A, and the
Strategy.

4. Createafield (whichwe'll call “S’) in A for the Strategy and instantiate it.
5. Update the primary calculation method in A to delegate the calculation to S.
6. Compile and test

7. On the Strategy class, apply Replace Conditional with Polymorphism [Fowler] on the
primary calculation method and any helper methods you moved from A. It is best to do
this step slowly, by focusing on extracting one subclass at atime, then performing steps 8
and 9 below and then repeating this step. When finished, you will have substantially
reduced the conditional logic in your Strategy class and you will have defined concrete
Strategy classes for each variety of the calculation you started with.

Consider applying Form Template Method [Fowler] for your Strategy’s primary
calculation method. Y ou may also make your original Strategy class abstract.

8. Add codeto A to either useitsinternal logic to set the value of S or to allow an externa
client to passin avaluefor S.

If you go with the latter approach, let clients passin a value for S via constructor calls if
clientswon't need to change S'svalue at runtime. Otherwise, supply a setter method to let clients
set the value of S at runtime. For convenience, you can also do both. If clientswill be able to pass
inavalue of Sto A, you'll need to update the code for every existing client of A.

9. Compile and test.
Example

The example in the code sketch above deals with calculating capital for bank loans. It shows
afair amout of conditional logic that’s used in performing this calculation, athough it is even less
conditional logic than was contained in the origina code, which had to handle capital calculations
for 7 different loan profiles.

In the example, the context class is called Loan. WEe'll be seeing how Loan’s method for
calculating capital can be strategized, i.e. delegated to a Strategy object. As you study the
example, you may wonder why Loan wasn't just subclassed to support the three different styles
of capital calculations. That was an option, however, because the application that uses Loan
needed to change a Loan’s capital calculation at runtime, without changing the class type of the
Loan, it was better to use the Strategy pattern.

Page 46 of 137

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

1. WE'll begin by looking at the Loan class's cal cCapi t al () method and its helper methods
(note: | show afew testsfor cal cCapi tal () instep 6 below):

public class Loan ...
private doubl e notional;
private doubl e out standi ng;
private int rating;
private doubl e unusedPer cent age;
private Date start;
private Date expiry;
private Date maturity;
private static final int MLLIS PER DAY = 86400000;

public double calcCapital () {
return ri skAmount () * duration() * Ri skFactor.forRi skRating(rating);

private doubl e cal cUnusedRi skAnount () {
return (notional - outstanding) * unusedPercentage;
}

private doubl e duration() {
if (expiry == null)
return ((maturity.getTine() - start.getTime()) / MLLIS PER DAY) / 365;

else if (maturity == null)
return ((expiry.getTinme() - start.getTime()) / MLLIS PER DAY) / 365;
el se {

long mllisToExpiry = expiry.getTime() - start.getTime();

long mllisFronmExpiryToMaturity = maturity.getTine() - expiry.getTinme();
doubl e revol verDuration = (mllisToExpiry / MLLIS PER DAY) / 365;

doubl e ternDuration = (mllisFromExpi ryToMaturity / MLLIS_PER DAY) / 365;
return revol verDuration + ternDuration;

}

}
private doubl e riskAmount () {
if (unusedPercentage != 1.00)
return outstanding + cal cUnusedRi skAmount ();
el se
return outstanding;

}

public void setQutstandi ng(doubl e newCut st andi ng) {
out st andi ng = newQut st andi ng;

}

private void set UnusedPercentage() {
if (expiry !'=null & maturity !'= null) {
if (rating > 4)
unusedPer cent age = 0. 95;
el se
unusedPer cent age = 0. 50;
} elseif (maturity !'=null) {
unusedPer cent age = 1. 00;
} elseif (expiry !'=null) {
if (rating > 4)
unusedPer cent age = 0. 75;
el se
unusedPer cent age = 0. 25;

2. The Strategy I'd like to define will handle the cal cCapi t al () caculation. So | create aclass
called Capi t al Strat egy.

public class Capital Strategy {
}

3. Now I'm up to the hardest step: | need to move methods from Loan to Capi tal Strat egy. |
begin with the cal cCapi t al () method. In this case, | don’'t want to move this method, but
rather, copy itto Capi t al Str at egy:

public class Capital Strategy {
public double calc() {
return riskAmount () * duration() * RiskFactor.forRi skRating(rating);

Page 47 of 137

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

}
}

That code won't even compile, because Capi t al St r at egy doesn’t contain the methodsit is
calling. No problem. | passcal c() alLoan parameter and update the code as follows:

public doubl e cal c(Loan | oan) {
return |l oan.riskAnount() * loan.duration() * Ri skFactor.forR skRating(loan.rating);
}

That gets us closer, but the compiler still complains that the methods and variable I'm
accessing on Loan aren’'t visible (i.e. they are private, not public). | change the visibility to
public and finally the compiler is happy. Later, I'll be moving some of these public
methods/fields to Capi t al St r at egy or making them accessible viaLoan getter methods.

Now | focus on moving each piece of the calculation from Loan to Capi t al St rat egy. The
method, ri skAmount () (whichisnow public) isfirst on my radar screen.

public double riskAmunt() {
if (unusedPercentage != 1.00)
return outstanding + cal cUnusedRi skAnount () ;
el se
return outstanding;

This method relies on other fields and methods within Loan. | study the code and see that the
field, out st andi ng, is used extensively in the Loan class, but the field, unusedPer cent age,
aong with the methods, set UnusedPer cent age() and cal cUnusedRi skAmout () are only
there to help the cal cCapital () method. So | decide to move al of this code, with the
exception of thefield, out st andi ng, to Capi t al Str at egy:

public class Capital Strategy {
private Loan | oan;
public doubl e cal c(Loan |oan) {

this.loan = | oan;
return riskAmount () * loan.duration() * R skFactor.forRi skRating(loan.rating);
}
private doubl e cal cUnusedPercent age() {
if (loan.expiry !'= null &% loan.maturity != null) {
if (loan.rating > 4)
return 0.95;
el se
return 0.50;
} elseif (loan.maturity != null) {
return 1.00;
} elseif (loan.expiry !'=null) {
if (loan.rating > 4)
return 0.75;
el se
return 0. 25;
return 0.0;

}
private doubl e cal cUnusedRi skAmount () {
return (loan.notional - |oan.outstanding) * cal cUnusedPercentage();

}
public double riskAmount () {

if (cal cUnusedPercentage() != 1.00)
return | oan. outstandi ng + cal cUnusedRi skAmount ();
el se

return | oan. out standi ng;

}
}

To make this compile, | need to make more fields on Loan public:

public class Loan ...
Page 48 of 137

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

publ i c doubl e notional;

publ i ¢ doubl e out st andi ng;

public int rating;

private—double—unusedPercentager- //replaced with cal cul ati on method on Capital Strategy
public Date start;

public Date expiry;

public Date maturity;

By now I'm not happy having all these public fields. So | make getter methods for them and
update the Capi t al Strat egy code accordingly. After this, al | do is move the dur ati on()
calculation over to Capital Strategy and this step of the refactoring is done
Capi t al St r at egy now looks like this:

public class Capital Strategy {
private Loan | oan;
private static final int MLLI S PER DAY = 86400000;
public doubl e cal c(Loan |oan) {
this.loan = | oan;
return riskAmount () * duration() * RiskFactor.forRi skRating(loan.getRating());

private doubl e cal cUnusedPercent age() {

if (loan.getExpiry() !'= null && loan.getMaturity() != null) {
if (loan.getRating() > 4) return 0.95;
el se return 0.50;

} elseif (loan.getMaturity() != null) {
return 1.00;

} else if (loan.getExpiry() !'= null) {
if (loan.getRating() > 4) return 0.75;
el se return 0. 25;

return 0.0;
}
private doubl e cal cUnusedRi skAnmount () {
return (loan.getNotional () - |oan.getQutstanding()) * cal cUnusedPercentage();

}
public double duration() {
if (loan.getExpiry() == null)

return (
(loan.getMaturity().getTinme() - loan.getStart().getTime()) / MLLIS PER DAY)
/ 365;
else if (loan.getMaturity() == null)
return (
(loan.get Expiry().getTine() - loan.getStart().getTime()) / MLLIS PER DAY)
/ 365;
el se {

long mllisToExpiry = |loan.getExpiry().getTine() - loan.getStart().getTinme();
long mllisFronExpiryToMaturity =

| oan. get Maturity().getTime() - |oan.getExpiry().getTinme();
doubl e revol verDuration = (millisToExpiry / MLLIS PER DAY) / 365;
doubl e ternDuration = (mllisFromExpi ryToMaturity / MLLIS PER DAY) / 365;
return revol verDuration + ternDuration;

}
}
public double riskAmunt() {
if (cal cUnusedPercentage() != 1.00)
return | oan. get Qutstandi ng() + cal cUnusedRi skAmount ();
el se

return | oan. get Qut standi ng();

4. Now | need to make afield inthe Loan classfor the Capi t al St r at egy class:

public class Loan...
private Capital Strategy capital Strategy = new Capital Strategy();

5. And I'mfinally ready to have Loan delegate its calculation of capital to Capi tal Strategy’s
cal ¢() method:

public double calcCapital () {
Page 49 of 137

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

return capital Strategy.cal c(this);

}

6. | can now compile and run my tests. Here are afew of the tests that ensure whether the capital
calculation works for various types of loan profiles:

public void testTermlLoanCapital () {
Loan termLoan = Loan. newTer mLoan(10000. 00, startOfLoan(), maturity(), R SK_RATING;
t er mLoan. set Qut st andi ng(10000. 00) ;
assert Equal s("Capital for Term Loan", 37500.00, ternlioan.calcCapital (), penny);

}

public void testRevol verROC() {
Loan revol ver = Loan. newRevol ver (10000. 00, startOf Loan(), expiry(), R SK_RATING;
revol ver. set Qut st andi ng(2000. 00) ;
assert Equal s("Capital for Revolver", 6000.00, revolver.calcCapital (), penny);

}

public void testRevol ver Ter fROC() {
Loan rctl = Loan. newRCTL(10000.00, startOfLoan(), expiry(), maturity(), Rl SK_RATI NG ;
rctl. set Qut st andi ng(5000. 00) ;
assert Equal s(" Capital for RCTL", 28125.00, rctl.calcCapital (), penny);

}

These tests, and similar ones, all run successfully.

7. At this point I’ve moved alot of code out of the Loan class and into the Capi t al St r at egy
class, which now encapsulates the bulky conditional calculation logic. | want to tame this logic
by decomposing Capi tal Strategy into several subclasses, one for each way we calculate
capital. | do this by applying Replace Conditional with Polymorphism [Fowler].

Firgt, | identify a total of three different ways of doing the capital calculation, each of which
corresponds to a specific Loan profile: Term loan, Revolver or RCTL (a combination of a
Revolver, which converts to a Term Loan on an expiry date). | decide to start by creating a
subclass of Capi t al St rat egy that is capable of calculating capital for a Term Loan:

public class TernlLoanCapital extends Capital Strategy {
}

Now, | find the specific calculation code that applies to a Term Loan and push it down into the
new subclass:

public class TernmloanCapital extends Capital Strategy {
protected doubl e duration() {
return (

(loan.getMaturity().getTime() - loan.getStart().getTime()) / MLLIS PER DAY)
/ 365;

}

protected doubl e riskAmount () {
return | oan. get Qut standi ng();

}

}

I now push on to steps 8 and 9 of the refactoring, after which I'll circle back to define, configure
and test two more concrete Strategy classes. Revol ver Capi t al and RCTLCapi t al .

8. Now | need to configure the Loan class with the Ter mLoanCapi t al strategy when it is
applicable, so that | can test whether it works. To do this, | make the following modifications:

public class Loan...
private Capital Strategy capital Strategy;

protected Loan(double notional, Date start, Date expiry,
Date maturity, int riskRating, Capital Strategy strategy) {
this.notional = notional;
this.start = start;

Page 50 of 137

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

this.expiry = expiry;
this.maturity = maturity;
this.rating = riskRating;
this.capital Strategy = strategy;

public static Loan newRCTL(doubl e notional, Date start, Date expiry,
Date maturity, int rating) {
return new Loan(notional, start, expiry, maturity, rating, new Capital Strategy());

public static Loan newRevol ver (doubl e notional, Date start, Date expiry,
int rating) {
return new Loan(notional, start, expiry, null, rating, new Capital Strategy());

public static Loan newTernioan(doubl e notional, Date start, Date maturity,
int rating) {
return new Loan(notional, start, null, maturity, rating, new TermnmLoanCapital ());

}

9. | compile and test and all goes well. Now | circle back to step 7, to define the additional
concrete Strategy classes, configure the Loan class to work with them and test everything. When
I'm done, aimost al of the original conditional calculation logic is gone and | have three
Strategies for calculating capital:

public class Loan...
public static Loan newRCTL(doubl e notional, Date start, Date expiry,
Date naturity, int rating) {
return new Loan(notional, start, expiry, maturity, rating, new RCTLCapital());

public static Loan newRevol ver (doubl e notional, Date start, Date expiry,
int rating) {
return new Loan(notional, start, expiry, null, rating, new RevolverCapital());

public static Loan newTernLoan(doubl e notional, Date start, Date maturity,
int rating) {
return new Loan(notional, start, null, maturity, rating, new TernmlLoanCapital ());

}

public abstract class Capital Strategy {
protected Loan | oan;
protected static final int MLLI S PER DAY = 86400000;
public doubl e cal c(Loan | oan) {
this.loan = | oan;
return riskAmount () * duration() * RiskFactor.forRi skRating(loan.getRating());

protected abstract double duration();
protected abstract double riskAmunt();
}

public class TernlioanCapital extends Capital Strategy {
protected doubl e duration() {
return (
(loan.getMaturity().getTime() - loan.getStart().getTime()) / MLLIS PER DAY)
/ 365;

}

protected doubl e riskAmount () {
return | oan. get Qut standi ng();

}

}

public class RevolverCapital extends Capital Strategy {
private doubl e cal cUnusedPercent age() {
if (loan.getRating() > 4) return 0.75;
el se return 0. 25;

}
private doubl e cal cUnusedRi skAmount () {
return (loan.getNotional () - |oan.getCQutstanding()) * cal cUnusedPercentage();

protected double duration() {
return (
(loan. getExpiry().getTime() - loan.getStart().getTime()) / MLLIS PER DAY)
| 365;

}
protected doubl e riskAmunt () {
Page 51 of 137

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

return | oan. get Qut standi ng() + cal cUnusedRi skAmount ();
}
}

public class RCTLCapital extends Capital Strategy {
private doubl e cal cUnusedPercent age() {
if (loan.getRating() > 4) return 0.95;
el se return 0.50;
}
private doubl e cal cUnusedRi skAmount () {
return (loan.getNotional () - |oan.getQutstanding()) * cal cUnusedPercentage();

protected doubl e duration() {
long mllisToExpiry = |loan.getExpiry().getTine() - loan.getStart().getTime();
long mllisFronExpiryToMaturity =
| oan. getMaturity().getTine() - loan.getExpiry().getTime();
doubl e revol verDuration = (mllisToExpiry / MLLIS PER DAY) / 365;
doubl e ternDuration = (mllisFromExpi ryToMaturity / MLLIS PER DAY) / 365;
return revol verDuration + ternDuration;

}
protected doubl e riskAmount () {

return | oan. get Qut standi ng() + cal cUnusedRi skAmount () ;
}

}

Thinking I’'m now done, | inspect the results of the refactoring. | wonder, “Is there anything left
to smplify or communicate better?” “Is there any duplication to remove?’ The duration
calculations for the three strategies execute a similar formula: find the difference in time between
two dates, divide them by the number of milliseconds in a day, and divide that by 365. That
formulais being duplicated! To remove the duplication, | apply Pull Up Method [Fowler]:

public abstract class Capital Strategy...
private static final int DAYS _PER YEAR = 365;
protected doubl e cal cDuration(Date start, Date end) {
return ((end.getTinme() - start.getTine()) / MLLIS _PER DAY) / DAYS_PER YEAR

public class TernLoanCapital extends Capital Strategy...
protected doubl e duration() {
return cal cDuration(loan.getStart(), |oan.getMaturity());
}

public class RevolverCapital extends Capital Strategy {
protected doubl e duration() {
return cal cDuration(loan.getStart(), |oan.getExpiry());
}

public class RCTLCapital extends Capital Strategy...
prot ected doubl e duration() {
doubl e revol verDuration = cal cDuration(loan.getStart(), |oan.getExpiry());
doubl e ternDuration = cal cDuration(loan.getExpiry(), loan.getMaturity());
return revol verDuration + ternDuration;

}

I compile, run the tests and everything is good. Now, for the moment, I’ m done.

Page 52 of 137

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Replace Implicit Tree with Composite

Y ou implicitly form atree structure, using a
primitive representation, such as a String

Replace your primitive tree representation
with Composite

String orders = "<orders>";

orders += "<order number='123">";
orders += "<item number='x1786">";
orders += "carDoor";

orders += "</item>";

orders += "</order>";

orders += "</orders>";

2

TagNode orders = new TagNode("orders");
TagNode order = new TagNode("order");
order.addAttribute("number"”, "123");
orders.add(order);

TagNode item = new TagNode("item");
item.addAttribute("number", "x1786");
item.addValue("carDoor");
order.add(item);

String xml = orders.toString();

Motivation

One problem with implicit tree construction is the tight coupling between the code that builds
the tree and how the tree is represented. Consider the example above, in which an XML
document is built using a String. The nodes on the built XML tree and the way that they are
formatted are combined in one place. While that may seem simple, it actually makes it harder to
change the tre€'s representation and forces every programmer to remember every tree
representation rule: like using single quotes for attributes or closing all open tags. |'ve seen
programmers fight many bugs that originated in primitive tree formatting mistakes.

A Composite encapsulates how atree is represented. This means that a client only needs to
tell a Composite what to add to a tree and where to add it. When a client needs a representation
of the tree, it can ask the Composite to render it. This simpler arrangement leads to less error-
prone code.

But this doesn’t mean that you should aways avoid using primitive tree construction. What if
your system doesn't create many trees? In that case, why go to the trouble of creating a
Composite when some primitive tree construction code would do? If you later find that you or
others are creating more trees, you can refactor to a solution that simplifies the tree construction
perhaps by decoupling the tree-building code from the tree-representation code.

The choice may also involve your development speed. On a recent project, | was tasked with
generating an HTML page from XML data using an XSLT processor. For this task, | needed to
generate an XML tree that would be used in the XSLT transformation. | knew | could use a
Composite to build that tree, but | instead choose to build it with a String. Why? Because | was
more interested in going fast and facing every technical hurdle involved in doing the XSLT
transformation than | was in producing refined XML tree construction code. When | completed
the XSLT transformation, | went back to refactor the primitive tree construction code to use a
Composite, since that code was going to be emulated in many areas of the system.

Page 53 of 137

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Communication

Duplication

Simplicity

The best tree-construction code
communicates the structure of a
tree without overwhelming
readers with unnecessary tree-
construction details. Primitive
tree-construction code exposes
too many details. Trees
composed using Composite
communicate better by hiding
tedious and repetitive tree-
construction tasks.

Code that manually builds a tree
often repeats the same set of
steps: format a node, add the
node to the tree and balance the
node with a corresponding node
or some such thing. Composite-
constructed trees minimize
duplication by encapsulating
repetitive instructions, like
formatting nodes and tree-
construction mechanics.

It's easier to make mistakes
building trees manually than it is
to build trees using Composite.
Manually-constructed trees must
ensure that child nodes are
added correctly — for example, a
tag in an XML tree must have a
corresponding end tag. By
knowing how to construct
themselves, Composite-
constructed trees are simpler.

Mechanics
1. Identify the primitive tree-construction code you' d like to refactor.
2. ldentify node types for your new Composite. Keep it smple: test-first design one or more
concrete node types and don’t worry about creating an abstract node type (you may not

need one). Create a method to validate the contents of your budding Composite.

3. Give your nodes the ability to have children. Do not give nodes the ability to remove
children if your application only adds nodes and never removes them. Compile and test.

4. If needed, give clients away to set attributes on nodes. Compile and test.

5. Replace the original tree-construction code with calls to your new Composite. Compile
and test.

Example

1. We'll begin with the XML example from the code sketch above:

String orders = "<orders>";
orders += "<order nunber='123"'>";
orders += "<item nunber='x1786">";
orders += "carDoor";

orders += "</item";

orders += "</order>";

orders += "</orders>",

2.

In this case, every node in the tree has an open tag (“<orders>") and close tag (“ </orders>").

While some of the nodes have attributes and values, | identify just one node type that we need to
produce a Composite version of thistree. | test-first design anode type called TagNode, give this
classaway to set its name and create atoString() method to return the resulting XML.:

public void test OneNodeTree() {

}

String expectedResult =

"<orders>" +

"</ orders>";

TagNode orders = new TagNode("orders");

assert XM_LEqual s("xm conparison", expectedResult, orders.toString());

public class TagNode {

private String tagNane;

Page 54 of 137

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

public TagNode(String nane) {
tagName = nane;

}

public String toString() {
String result = new String();
result += "<" + tagName + ">";
result += "</" + tagNane + ">";
return result;

3. Next, | give TagNode the ability to have children.

public void testAddi ngChil drenToTree() {
String expectedResult =
"<orders>" +
"<order>" +
"<itemp" +
"<litem" +
"</ order>" +
"</ orders>";
TagNode orders = new TagNode("orders");
TagNode order = new TagNode("order");
TagNode item = new TagNode("itent);
orders. add(order);
order.add(item;
assert XM_Equal s("addi ng children", expectedResult, orders.toString());

}

public class TagNode {
private String tagNane;
private List children = new ArraylList();
public TagNode(String name) {
tagName = nane;

}
public void add(TagNode chil dNode) {
chi | dren. add(chi | dNode) ;

}
public String toString() {
String result = new String();
result += "<" + tagName + ">";
Iterator it = children.iterator();
while (it.hasNext()) {
TagNode node = (TagNode)it.next();
result += node.toString();
}
result +="</" + tagName + ">";
return result;

4. Now the Composite must be extended to support XML attributes or values or both. Again, | do
this by letting my test code drive the development process:

public void test TreeWthAttri butesAndVal ues() {
String expectedResult =
"<orders>" +
"<order>" +
"<item nunber ="' 12660' quantity="1">" +
"Dog House" +
"<[item" +
"<item nunber =' 54678' quantity="1">" +
"Bird Feeder" +
"<[item" +
"</ order>" +
"</ orders>";
TagNode orders = new TagNode("orders");
TagNode order = new TagNode("order");
TagNode iteml = new TagNode("itent);
iteml. addAttri bute("nunmber", "12660");
iteml. addAttribute("quantity", "1");
itenl. set Val ue("Dog House");

Page 55 of 137

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

TagNode iten2 = new TagNode("itent);

itenR. addAttri bute("nunber", "54678");

itenR. addAttribute("quantity", "1");

itenR. setValue("Bird Feeder");

orders. add(order);

order.add(iteml);

order. add(iten®);

assert XM_LEqual s("attri but es&val ues", expectedResult, orders.toString());

}

public class TagNode {
private String tagName;
private String tagValue = "";
private String attributes ="";
private List children = new ArraylList();
public TagNode(String name) {
tagName = nane;

}
public void add(TagNode chil dNode) {
chi | dren. add(chi | dNode) ;

public void addAttribute(String name, String value) {
attributes += (" " + nane + "="" + value + "'");
}

public void addVal ue(String val ue) {
tagVal ue = val ue;

}
public String toString() {
String result = new String();
result += "<" + tagName + attributes + ">";
Iterator it = children.iterator();
while (it.hasNext()) {
TagNode node = (TagNode)it.next();
result += node.toString();

}

if (!tagVal ue.equals(""))
result += tagVal ue;

result += "</" + tagNane + ">";

return result;

5. Inthefinal step, | replace the original primitive tree-construction code with the
Composite code, compile and test:

TagNode orders = new TagNode("orders");
TagNode order = new TagNode("order");
order.addAttri bute("nunber", "123");
orders. add(order);
TagNode item = new TagNode("itent);
item addAttribute("nunber", "x1786");
i tem addVal ue(" car Door");
order. add(item;

Page 56 of 137

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Encapsulate Composite with Builder

Y our Composite code exposes too many details, forcing clients to
create, format, add and remove nodes and handle validation logic

Encapsulate the Composite with a simpler,
mor e intention-revealing Builder

TagNode orders = new TagNode("orders");
TagNode order = new TagNode("order");
order.addAttribute("number", "123");
orders.add(order);

TagNode item = new TagNode("item");
item.addAttribute("number", "x1786");
item.addValue("carDoor");
order.add(item);

String xml = orders.toString();

2

XMLBUuilder orders = new XMLBUuilder("orders");
orders.addBelow("order");
orders.addAttribute("number", "123");

orders.addBelow("item");
orders.addAttribute("number", "x1786");
orders.addValue("carDoor");

String xml = orders.toString();

Motivation

I’m aways interested in ssimplifying client code: | want it to read as clearly as English. So
when it comes to creating really simple tree-construction code, | like the Builder pattern even
better than the Composite pattern. Builders give clients a clean and easy-to-use interface while
hiding details about how the nodes of a Composite are hooked together and what accompanying
steps must take place during construction.

If you study atypical piece of client code that creates some tree structure, you'll often find
node creation and setup logic mixed together with tree creation and validation logic. A Builder-
based aternative can simplify such code by taking on the burden of node creation and tree
validation logic and let client code concentrate on what is important: building the tree. The result
of refactoring to Builder is often ssimpler, more intention-revealing client code.

| use Builders alot with XML. XML documents represent trees, so they work well with both
the Composite and Builder patterns. But Composite-only solutions for creating an XML tree
expose too many details. XML Builders, by contrast, offer anice way to have your cake and eat it
too: clients talk to a simple XML Builder interface, while the XML Builder itself relies on a
Composite for representing the XML tree. The example below will show you how thisis done. In
addition, I've included an extended example which shows how an XML Builder was updated to
implement and encapsulate performance logic used in rendering a Composite of XML nodes to a
string.

Page 57 of 137

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Communication Duplication Simplicity
Client code that creates a tree Composite-based tree- With a Composite, a client must
needs to communicate the construction code is filled with know what, where and how to
essence of the activity: what is calls to create new nodes and add items to a tree. With a
added to the tree, and where itis | add them to trees. Builder code | Builder, a client needs to know
added. A Composite solution removes this duplication by only what and where to add to
doesn’t communicate this clearly | handling node creation and the tree; the Builder takes care
because it exposes too many simplifying how nodes are added | of the rest. Builders often
details. By handling the tree- to a tree. simplify client code by handling
construction details, Builders the mechanics of tree
enable client code to construction.
communicate clearly.

Mechanics

1. Identify the Composite that you would like to encapsulate.

2. Create anew Builder class:
* Givethe new class a private instance variable for the encapsulated Composite.
* Initialize the Composite in a constructor.
» Create amethod to return the results of doing abuild.

3. Create intention-revealing methods on your Builder for every type of node that gets
added to your Composite. These methods will add new nodes to an inner Composite and
keep track of the state of the tree.

You may create additional methods to let users set attributes on nodes, or you can let
users add new nodes and set attributes on them using one convenient method call.

4. Replace the tree-construction Composite calls with calls to the Builder. Compile and test.
Example

1. WE€'ll begin with the Composite code that was shown in the code sketch above. As| study this
code, | realize that it contains more detail than it needs to:

TagNode orders = new TagNode("orders");

TagNode order = new TagNode("order");

order. addAttri bute("nunber", "123");

orders. add(order);
TagNode item = new TagNode("itent);
item addAttri bute("nunmber", "x1786");
i tem addVal ue(" car Door");
order.add(item;

2. | define an XMLBuilder class, encapsulate the original Composite, initialize it and write a
toString() method to obtain the results of a build. | do this all from test code, which helps me
confirm that my new class produces correct XML.

public void testOneEl enent Tree() {
String expected =
"<orders>" +
"</ orders>";
XM_Bui | der buil der = new XM.Bui |l der ("orders");
assert XMLEqual s("one el ement tree", expected, builder.toString());

}
Now, my Builder looks like this:
public class XM.Buil der {

Page 58 of 137

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

private TagNode root;
public XM.Buil der(String rootNane) {
root = new TagNode(r oot Nane) ;

}

public String toString() {
return root.toString();

}

}

3. Next, | create methods for every type of node that gets added to the Composite. In this case
it's trivial: there are only TagNodes. But | still have to consider the different ways in which
clients will add nodes to the inner Composite. | begin with the case of adding nodes as children
of parent nodes:

public void test AddBel ow() {
String expected =
"<orders>" +
"<order>" +
"<itenp" +
"<litem" +
"</ order>" +
"</ orders>";
XML.Bui | der bui | der = new XM.Bui | der ("orders");
bui | der. addBel ow("order");
bui | der. addBel ow("itent');
assert XM_Equal s("addi ng bel ow', expected, builder.toString());
}

This leads to the creation of the addBel ow() method, along with a few changes to the
XMLBui | der class:

public class XM.Builder {
private TagNode root;
private TagNode current;
public XM.Buil der(String rootNanme) {
root = new TagNode(r oot Nane) ;
current = root;

}

public void addBel owm(String child) {
TagNode chi | dNode = new TagNode(chil d);
current. add(chil dNode) ;
current = chil dNode;

}

public String toString() {
return root.toString();

}

}

Next | must enable the XMLBuUi | der to add a node at the same level as an existing node (i.e., not
asachild, but asasibling). Thisleadsto moretest and XM_Bui | der code:

public void testAddBeside() {
String expected =
"<orders>" +
"<order>" +
"<item" +
"<[item" +
"<itemp" +
"</itemp" +
"</ order>" +
"</ orders>";
XM_Bui | der buil der = new XM.Bui | der ("orders");
bui | der. addBel ow(" order");
bui | der. addBel ow("itent);
bui | der. addBesi de("itent);
assert XM_LEqual s("addi ng besi de", expected, builder.toString());

}

public class XM.Builder {
private TagNode root;

Page 59 of 137

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

private TagNode current;

private TagNode parent;

public XM.Buil der(String root Nane) {
root = new TagNode(r oot Nane) ;
current = root;
parent = root;

}

public void addBel owm(String child) {
TagNode chi | dNode = new TagNode(chil d);
current. add(chil dNode) ;
parent = current;
current = chil dNode;

}

public void addBeside(String sibling) {
TagNode si bl i ngNode = new TagNode(si bling);
par ent . add(si bl i ngNode) ;
current = siblingNode;

}

public String toString() {
return root.toString();

}

}

| continue on this approach until 1 have a working Builder that satisfies al of my tests. In some
cases, adding new behavior to the XMLBui | der istrivial, since it merely requires delegating calls
to the inner Composite. For example, hereis how XML attributes are implemented:

public void test AddBel owWthAttri bute() {
String expected =
"<orders>" +
"<order nunber='12345" quantity='2'">" +
"</ order>" +
"</ orders>";
bui | der = createBuil der("orders");
bui | der. addBel ow("order");
bui | der. addAttri bute("nunber”, "12345");
bui | der.addAttribute("quantity", "2");
assert XMLEqual s("built xm ", expected, builder.toString());
}

public class XM.Builder. . .
public void addAttribute(String name, String value) {
current. addAttri but e(nane, val ue);
}

}

4. Now it is time to replace the original client code that used the Composite with the
XMLBUi | der . | do thisoneline at atime, removing some lines and rewriting others. The final code
makes no references to the now encapsulated Composite, TagNode.

XMLBui | der orders = new XM.Buil der("orders");
orders. addBel ow("order");
orders. addAttri bute("nunber", "123");
orders. addBel owm("i tent);
orders. addAttri bute("nunber", "x1786");
orders. addVal ue("car Door");

Notice how the calls to the XM_Bui | der are generic — the methods and data passed to them
reveal nothing about the underlying structure of the tree. Should we need to work with a variety
of Builders, we won't have to change very much client code.

Extended Example

| could not resist telling you about a performance improvement that was made to the above-
mentioned XM_Bui | der class, since it reveals the elegance and simplicity of the Builder pattern.
Some of my colleagues at a company called Evant had done some profiling of our system and
they'd found that a StringBuffer used by the XM.Buil der’s encapsulated composite

Page 60 of 137

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

(TagNode) was causing performance problems. This Stri ngBuffer is used as a Collecting
Parameter — it is created and then passed to every node in a composite of TagNodes in order to
produce the results returned from calling TagNode’s toString(). To see how this works, see the
example in Move Accumulation to Collecting Parameter (78).

The Stri ngBuf fer that was being used in this operation was not instantiated with any
particular size, which means that as more and more XML is added to the StringBuffer, it must
automatically grow when it can no longer hold all itsdata. That’s fine, sincethe St ri ngBuf f er
class was written to be able to automatically grow. But there is a performance penalty one pays
when you allow a St ri ngBuf f er to automaticaly grow: i.e. when it has to grow, it has work to
do to transparently increase its size. That performance penaty in the Evant system was not
acceptable and so the team needed to make an improvement.

The solution was to know what size the St ri ngBuf f er needed to be before instantiating it,
and then to ingtantiate it with the proper size so that it would not need to grow. How could we
compute this size? Easy. As each node gets added to an XML tree viaan XM.Bui | der, the
builder increments a buffer size based on the size of the strings in the node. Then the fina
computed buffer size could be used when instantiating the St ri ngBuf f er. Let’s see how this
was implemented.

Asusual, we start by writing atest. The test below will build an XML tree by making calls to
an XMLBui | der , then it will obtain the size of the resulting XML string returned by the builder
and findly, it will compare the size of the string with the computed buffer size for use by a
StringBuffer:

public void testToStringBufferSize() {
String expected =
"<orders>" +
"<order nunber='123">" +
"</ order>" +
"</ orders>";
bui | der = createBuil der("orders");
bui | der. addBel ow("order");
bui | der. addAttri bute("nunber”, "123");

int stringSize = builder.toString().length();
int computedSi ze = ((XMBuil der)buil der).bufferSize();
assert Equal s("buffer size", stringSize, conputedSize);

}

To passthistest and otherslike it, the following XM_LBui | der attributes and methods were added
or updated:

public class XM.Buil der {
private int outputBufferSize;
private static int TAG CHARS SIZE = 5;
private static int ATTRI BUTE _CHARS Sl ZE = 4;

public void addAttribute(String name, String value) {
/1 logic for adding an attribute to a tag
i ncrement Buf f er Si zeByAttri but eLengt h(nanme, val ue);

}

public void addBel owm(String child) {
/1 logic for adding a Tag bel ow anot her Tag
i ncrement Buf f er Si zeByTagLengt h(chi |l d);

}

public void addBeside(String sibling) {
/1 logic for adding a Tag besi de another Tag
i ncrement Buf f er Si zeByTagLengt h(si bl ing);

public void addBesi deParent (String uncle) {
/1 logic for adding a Tag beside the current Tag' s parent
i ncrenent Buf f er Si zeByTagLengt h(uncl e) ;

}
public void addVal ue(String val ue) {
/1 logic for adding a value to a node
i ncrenent Buf f er Si zeByVal ueLengt h(val ue);

Page 61 of 137

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

}

public int bufferSize() {
return outputBufferSize;

}

private void increnmentBufferSizeByAttri buteLength(String name, String value) {
out put Buf ferSi ze += (nane.length() + value.length() + ATTRI BUTE_CHARS_SI ZE);
}

private void increnmentBufferSi zeByTagLength(String tag) {
int sizeO OpenAndd oseTags = tag.length() * 2;
out put Buf fer Si ze += (sizeO OpenAndd oseTags + TAG CHARS S| ZE) ;
}
private void increnentBufferSizeByVal ueLength(String val ue) {
out put Buf fer Si ze += val ue. |l ength();
}

protected void init(String rootNanme) {
/1 logic for initializing the builder and root node
out put Buf fer Si ze = 0;
i ncrenent Buf f er Si zeByTagLengt h(r oot Nane) ;

The changes made to the XM_Bui | der are transparent to the users of the builder, as it

encapsulates this new performance logic. The only additional change must be made to the
XMLBui | der’ s toString() method, so that it can instantiate a St ri ngBuf f er of the correct
size, and passit on to the root TagNode, which will accumulate the contents of the XML tree. To
make that happen, thet oSt ri ng() method was changed from

to:

public String toString() {
return root.toString();
}

public String toString() {
return root.toStringHel per (new StringBuffer(outputBufferSize));
}

And that wasit. The tests passed and the XMLBui | der was now significantly faster.

Page 62 of 137

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.
Extract Special-Case Behavior into Decorators
Y our classes or methods contain special-case behavior

Retain the core behavior but extract the optional or
special-case behavior into Decorators

CarRental
public float calcPrice() {

+loat() : calcPrice float price = (model.price * days);
+getDaysRented() : int e if (hasinsurance)
+getModel() : Model .| price += insuranceAmount();
+getFuelConsumed() : float if (hasRefuelOnReturn)
+setFuelConsumed(amount : float) : void price += .refueIPrlce(),
+setlnsurance(rate : float) : void return price;
+setRefuelOnReturn(pricePerGallon : float) : void }

2

«Interface»
Rental

+calcPrice() : float
+getDaysRented() : int 1
+getFuelConsumed() : float
+setFuelConsumed(amount : float) : void
+getModel() : Model

A

CarRental CarRentalDecorator

#rental : Rental

+calcPrice() : float +calcPrice() : float
+getDaysRented() : int +getDaysRented() : int
+getFuelConsumed() : float +getFuelConsumed() : float
+setFuelConsumed(amount : float) : void +setFuelConsumed(amount : float) : void
+getModel() : Model +getModel() : Model
Insurance RefuelOnReturn
-insuranceAmount() : float -refuelPrice() : float
+calcPrice() : float +calcPrice() : float

public float calcPrice() {
return rental.calcPrice() + insuranceAmount();
}

Page 63 of 137

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Motivation

Decorator is one of my favorite Patterns. It is simple and elegant, but | have to resist
overusing it. Thefact is, many problem chunks of code simply don’t need to be refactored to use
Decorator. Simpler solutions are often better. However, there is a time and place for this
refactoring, and when you do use it to solve the right problems, it can add a great dea of clarity
and simplicity to your design.

So what are the types of problems that merit this refactoring? Glad you asked. Let’slook at
an example. Consider an Invoice class that is responsible for keeping track of payment
information for a customer invoice. Most invoices are simple - some dollar amount is owed, and
all the Invoice object hasto do is calculate the amount owed. But what happens when the amount
owed is overdue or if a specia discount must be applied because the customer is a preferred
customer? Those are two special conditions that the Invoice’'s cal cAnount Oned() method will
have to deal with. No big deal — we probably still don’t need a fancy Decorator to clean up the
small amount of conditional logic in Invoice' s cal cAmount Oned() method.

But what happens when we add more specia conditions to cal cAmount Oned() ? As more
special conditions are added, the Invoice class gets more complex: it holds onto more instance
variables, it supports more getter and setter methods for handling special conditions and its
calculation logic gets longer and more involved.

So now we have a more complex Invoice class. Do we need it? What happens if you
observe that most of the time the system needs to work with the simplest of Invoice objects — no
special conditions, just a simple dollar amount that some customer owes. There are a few places
in the system where the specia conditions are needed, but not many. So why mix this some-of-
the-time logic with your core logic? Keeping this logic together just makes your class more
heavyweight, harder to understand and harder to maintain. This is good reason to refactor to
Decorator.

What are other conditions under which this refactoring makes sense? Say your codeis calling
special methods on related objects, but you'd redlly like to have your code talk to one method on
a common interface and handle the specia stuff behind the scenes. Essentially, you are trying to
make your processing logic polymorphic. So this may be a good place to refactor to Decorator,
but maybe not. If you can remove al of the client calls to special methods and replace them with
a single intention-revealing method, your code will be simpler and easier to understand. But
what will you have to implement to make this possible?

There is some work involved in implementing this refactoring. In Java, refactoring to
Decorator involves creating a Decorator class and special-purpose concrete Decorator subclasses
as well as producing instantiation code that will wrap objects with the appropriate Decorator(s).
Thisisafair amount of work. It will make sense to do this only if you have more than one or two
chunks of specia behavior and/or you can really simplify your design with this refactoring.

Communication

Duplication

Simplicity

Some code just doesn't have to
be run very often. But if you
lump that code in with code that
does have to be run often, you
don't communicate what is and
what is not important.
Decorators give you a way to
communicate what is core code
from what is optional.

As logic gets more complicated,
you often see code that tries to
accommodate many
combinations of behavior. This
can lead to a lot of duplicate
code. Decorators offer a better
way to handle diverse
combinations of behavior without
duplicating code.

Code that mixes together the
essential with the optional isn’t
as simple as code that contains
solely what is essential. On the
other hand, Decorators aren't
always simple to use when you
have to worry about the order in
which you add them.

Page 64 of 137

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

10.

Mechanics

On some class (we'll call it “A™) find an algorithm that is bulky with optional or special-
case processing logic. Choose a piece of logic to extract.

Create an interface (we'll call it “1A™) composed of all of A’s public methods and make
A implement that interface.

Create a class that implements the IA interface and name this class after the optiona or
special-case logic you chose. This will be your first concrete Decorator.

Don’'t worry about creating an abstract Decorator at this point. Abstract Decorators are
only needed when you have multiple concrete Decorators that need to share part of their
implementation.

In your new Decorator, create an instance variable of type IA (we'll cdl it “delegate”)
and let users set it from a constructor argument.

For each method defined by your Decorator, forward each method cdl to the same
method on del egate.

Test that your Decorator works: create a new instance of A, decorate it with an instance
of your new Decorator and assert that it works just like an instance of A.

Now move the piece of logic you chose in step 1 to your new Decorator. This step may
require you to make changes to IA and A that let the moved logic function without
duplication of state or behavior.

Test that your Decorator still works: create an instance of A, decorator it with an instance
of your Decorator and assert that it works just like an instance of A.

Repeat for any other Decorators you would like to create. As you do this, it is best to
factor out common Decorator code into an abstract Decorator class. As soon as you have
created more than one Decorator, test that decorating objects with multiple Decorators
work.

You have to be very careful with supporting multiple Decorators. It is best to have
Decorators be so independent of each other that they can be added to objects in any
combination. In practice, however, that may not be possible, in which case you can write
Creation Methods to give access to objects decorated in various ways.

Adjust client code to refer to IA instead of A, and decorate instances of A where
necessary.

Example

If you've ever rented a car, you know that you can rent different types of cars with different rental
options, such as an insurance or no-insurance option, a refuel or no-refuel option, one driver or
additional drivers, limited miles or unlimited miles and so forth.

WEe'll be looking at a Car Rent al class that can handle just two rental options: insurance
and the refuel option. We'll be refactoring this code to use Decorator to show how this
refactoring is done. However, if you carefully study the Before Code, you may wonder if the code
is complicated enough to justify this refactoring. In my opinion, it isn’'t. I'd prefer if the Before

Page 65 of 137

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Code were harder to follow, perhaps having to handle three or more rental options, which could
be combined in different ways. But if the example contained al of that code, it might span five
pages of code. So please use your imagination and consider that CarRental is more complex than
itisinthisexample.

1. We begin with the Car Rent al classand it'scal cPri ce() method. The optional or special-
caselogicfromcal cPri ce() ishighlighted in bold:

class CarRental {
protected float fuel Consuned;
protected int days;
protected Mdbdel nodel;
protected float insuranceRate;
protected bool ean hasl nsurance;
protect ed bool ean hasRef uel OnRet ur n;
protected float refuel Price;

public CarRental (Mbodel m int rental Days) {
nmodel = m
days = rental Days;
hasl nsurance = fal se;
hasRef uel OnReturn = fal se;

public float calcPrice() {
float price = (nodel.price * days);
i f (hasl nsurance)
price += insuranceAnount();
if (hasRefuel OnRet urn)
price += refuel Price();
return price;
}
public int getDaysRented() {
return days;

}
public Model getMdel () {
return nodel ;

}
public float getFuel Consuned() {
return fuel Consuned;

public void set Fuel Consuned(fl oat anmount) {
fuel Consuned = anount;

private float insuranceAnount () {
return insuranceRate * getDaysRented();

public void setlnsurance(float rate) {
insuranceRate = rate;
hasl nsurance = true;

private float refuel Price() {
return(get Mbdel (). fuel Capacity - getFuel Consunmed()) * refuel Price;

}

public void setRefuel OnReturn(float pricePerGallon) {
refuel Price = pricePer@Gll on;
hasRef uel OnReturn = true;

}

cl ass Model {
public float fuel Capacity;
public float price;
public String nane,;

public Model (float fuel Capacity, float price, String nane) {
this.fuel Capacity = fuel Capacity;
this.price = price;
thi s. name = nane,

Page 66 of 137

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

In CarRental’s cal cPri ce() method you can see that the algorithm handles cases in which
a rental car has insurance or the refuel on return option or both. Below, | show how three
different CarRenta instances may be created: one that uses none of the specia options, one that
uses insurance and one that uses both insurance and the refuel option:

Model m = new Mddel (10. 0f, 50.0f, "Ford Taurus");
CarRental rl = new CarRental(m 5);
assert(rl.cal cPrice() == 250.0f);

CarRental r2 = new CarRental (m 5);
r2.setlnsurance(12.5f);
assert(r2.calcPrice() == 312.5f);

CarRental r3 = new CarRental (m 5);
r3.setlnsurance(12. 5f);

r 3. set Ref uel OnRet ur n(3. 75f);
assert(r3.calcPrice() == 350.0f);

We will see how the above client code changes after we do the refactoring. Our task now is
to choose which piece of special-case logic we want to extract from CarRental’s cal cPri ce()
method. | will choose the insurance option.

2. Now | must create a common interface to be implemented by the CarRental class and any new
Decorators that we create. Thisinterface must be composed of all of CarRenta’ s public methods,
since we want existing client code to communicate with CarRental instances (or decorated
CarRental instances) using this new interface. After creating the interface, we make CarRental
implement it:

interface Rental {
public float cal cPrice();
public int getDaysRented();
public Model getMdel ();
public float getFuel Consuned();
public void setFuel Consuned(fl oat anmount);
public void setlnsurance(float rate);
public void setRefuel OnReturn(fl oat pricePerGallon);

}

class CarRental inplenments Rental.

3. Next, I'll create a concrete Decorator called Insurance. The Insurance Decorator will be used
to add an insurance option to CarRental instances. |nsurance will aso implement the Rental
interface:

class Insurance inplenents Rental {
public float calcPrice() {}
public int getDaysRented() {}
public Model getMdel () {}
public float getFuel Consuned() {}
public void set Fuel Consuned(float amount) {}
public void setlnsurance(float rate) {}
public void setRefuel OnReturn(float pricePerGallon) {}

}

4. The next step isto give Insurance a Rental instance variable and let users set that instance from
aconstructor:

class Insurance inplenments Rental.
private Rental rental;
public Insurance(Rental rental) {
this.rental = rental;
}

5. Now, each of Insurance's methods will forward their method cals to the rental instance
variable:

Page 67 of 137

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

class Insurance inplenents Rental {
private Rental rental;
public Insurance(Rental rental) {
this.rental = rental;

public float calcPrice() {
return rental.cal cPrice();

}
public int getDaysRented() {
return rental . get DaysRented();

}
public Mdel getMdel () {
return rental . get Mbdel ();

}
public float getFuel Consunmed() {
return rental . get Fuel Consuned();

public void setFuel Consuned(float amount) {
rental . set Fuel Consunmed(anount) ;

public void setlnsurance(float rate) {
rental . setlnsurance(rate);

public void setRefuel OnReturn(fl oat pricePerGallon) {
rental . set Ref uel OnRet urn(pri cePer Gal | on) ;
}

6. I'll now test that the Insurance Decorator works;

Model m = new Model (10. 0f, 50.0f, "Ford Taurus");
Rental ford = new CarRental (m 5);

ford. setlnsurance(12.5f);

int fordPrice = ford.calcPrice();

Rental insuredFord = new I nsurance(new CarRental (m 5));
i nsuredFord. set | nsurance(12. 5f);

int insuredFordPrice = insuredFord.calcPrice();

assert (fordPrice == insuredFordPrice);

7. Next, | move the insurance logic from CarRenta’s cal cPri ce() method and place it in the
Insurance Decorator. This involves moving insurance-related variables and methods from
CarRental to Insurance. It also provides an opportunity for simplifying the Rental interface, since
CarRenta’s set I nsurance(float rate) method can be replaced by an insuranceRate
parameter being passed to an Insurance constructor:

interface Rental {
public float calcPrice();
public int getDaysRented();
public Model getMdel ();
public float getFuel Consuned();
public void setFuel Consuned(fl oat anmpunt);

public void setlnsurance(float rate);
public void setRefuel OnReturn(fl oat pricePerGallon);

}
class CarRental inplenents Rental {
protected-boolean—haslnsurance;-
public CarRental (Model m int rental Days) {
nodel = m

days = rental Days;
hasRef uel OnReturn = l"al se;

public float calcPrice() {
float price = (nodel.price * days);

; i A ()
Page 68 of 137

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

if (hasRefuel OnReturn)
price += refuel Price();
return price;

+
. id ¢ E
insuranceRate—=—rate;-
haslnsurance——=true-

Moving insurance logic to the Insurance Decorator involves:

* replacingtheset | nsurance(fl oat rate) method with aconstructor argument

e creating an instance variable, called r at e, to hold the insurance amount

» creating a copy of the old CarRental method, i nsur anceAmount ()

e updating the cal cPrice() method to add the computed insurance amount to the rate
computed by the delegate variable, rental.

class Insurance inplenments Rental {
private float rate;
private Rental rental;

public I nsurance(Rental rental, float insuranceRate) {
this.rental = rental;
rate = insuranceRate;

}

private float insuranceAnount() {
return rate * rental.get DaysRented();

public float calcPrice() {
return rental.calcPrice() + insuranceAnount();

P
publ-c—voi-d-settnsurance{float—rate){
+

}

8. | now test the Insurance Decorator:

Model m = new Model (10. 0f, 50.0f, "Ford Taurus");

Rent al insuredFord = new | nsurance(new CarRental (m 5), 12.5f);
float insuredFordPrice = insuredFord.cal cPrice();

assert (i nsuredFordPrice == 312.5f);

9. | repeat the above steps to turn CarRental’s refueling rental option into a Decorator. This
further simplifies the CarRental class, which can now be decorated when necessary. In the code
below, you can see the reduction of CarRental’ s responsihilities by looking at the reduction of its
public methods and the size of its cal cPri ce() method. In addition, since we now have two
Decorators, it makes sense to factor out common behavior into an abstract Decorator superclass.

interface Rental {
public float calcPrice();
public int getDaysRented();
public float getFuel Consuned();
public void setFuel Consuned(fl oat anmpunt);
publ i c Model get Model ();

}

cl ass CarRental Decorator inplenents Rental {
protected Rental rental;
protected CarRental Decorator(Rental r) {
rental = r;

public float calcPrice() {

Page 69 of 137

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.
return rental.calcPrice();

}
public int getDaysRented() {
return rental . get DaysRented();

}

public float getFuel Consuned() {
return rental . get Fuel Consuned();

}

public void setFuel Consuned(fl oat amount) {
rental . set Fuel Consunmed(anount) ;

}

public Mdel getMdel () {
return rental . get Mbdel ();

}

}

cl ass | nsurance extends CarRental Decorator {
protected float rate;

public Insurance(Rental r, float rate) {
super(r);
this.rate = rate;

private float insuranceAnount() {
return rate * rental.get DaysRented();

public float calcPrice() {
return rental.calcPrice() + insuranceAnount();
}

}

cl ass Refuel OnReturn extends Car Rental Decorator {
private float refuel Price;
public Refuel OnReturn(Rental r, float refuel Price) {
super(r);
this.refuel Price = refuel Price;

private float refuel Price() {
return(rental.get Mbdel ().fuel Capacity - rental.get Fuel Consuned()) * refuel Price;

public float calcPrice() {
return rental.calcPrice() + refuel Price();
}

We must now test that multiple CarRental Decorators work. Here's how:

Model m = new Model (10. 0f, 50.0f, "Ford Taurus");

Rent al i nsuredFord = new | nsurance(new CarRental (m 5), 12.5f);
Rent al refuel | nsuredFord = new Refuel OnRet urn(i nsuredFord, 3.75f);
float price = refuel I nsuredFord. cal cPrice();

assert (price == 350.0f);

Rent al refuel Ford = new Refuel OnRet urn(new CarRental (m 5), 3.75f);
Rent al insuredRefuel Ford = new I nsurance(refuel Ford, 12.5f);

float price = insuredRefuel Ford. cal cPrice();
assert (i nsuredFordPrice == 350.0f);

10. We change client code that looked like this:

Model m = new Model (10. 0f, 50.0f, "Ford Taurus");
CarRental rl = new CarRental (m 5);
r2.setlnsurance(12. 5f);

to code that looks like this;

Mbodel m = new Model (10. 0f, 50.0f, "Ford Taurus");
Rental r1l = new | nsurance(new CarRental (m 5), 12.5f);

The refactored version of CarRental came out to be 34 lines longer than the original code. That
may or may not happen when you do this refactoring — it al depends on the kind of code you'll

Page 70 of 137

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

be replacing with Decorator. If it iscomplex conditional code, chances are that adding Decorator
may decrease the lines of code. But in any event, introducing Decorator into your system should
make your code simpler and easier to understand. It may even help you reduce duplication if
your code must handle numerous special-case combinations of behavior.

Let me finish by repeating what | said at the beginning of this refactoring: please don’t overuse
the Decorator pattern. If you'd like to see an excellent example of using Decorator in a design,
study the Decorator code in the extensions package of the JUnit testing framework
(http://www.junit.org).

Collections.synchronizedMap

[Todo: Write up the story of the move from the synchronized Vector and Hashtable classes to the
unsynchronized collections classes that use Collections.synchronizedMap() to obtain a synchronization
decorator].

Vector
public synchronized void addElement(Object obyj) {
modCount++;
ensureCapacityHel per(elementCount + 1);
elementDatal elementCount++] = obj;

static class SynchronizedCollection implements Collection, Serializable {
Collection c; // Backing Collection
Object mutex; // Object on which to synchronize

SynchronizedCollection(Collection c) {
this.c = c; mutex = this;

}

public boolean add(Object 0) {
synchronized(mutex) { return c.add(o);}

public boolean remove(Object 0) {
synchronized(mutex) { return c.remove(o);}

}

Collections...
public static List synchronizedList(List list) {
return new SynchronizedList(list);

}

static class SynchronizedList extends SynchronizedCollection
implements List {
private List list;

SynchronizedList(List list) {

super(list);

thislist = list;
}
SynchronizedList(List list, Object mutex) {

super(list, mutex);
thislist = list;
}

Page 71 of 137

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

public void add(int index, Object element) {
synchronized(mutex) {list.add(index, element);}

public Object remove(int index) {
synchronized(mutex) { return list.remove(index);}

Page 72 of 137

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Replace Hard-Coded Notificationswith Observer

Y our class or numerous subclasses perform
custom object notifications at designated times

Replace your custom notification code

TestResult

+addError(...)
+addFailure(...)

+run(...)
N

with the Observer pattern

SwingUITestResult

TextTestResult

-fRunner : TestRunner

UlTestResult

+addError(...)
+addFailure(...)

+addError(...)
+addFailure(...)

-fRunner : TestRunner

«Instantiates»

<<Instaﬁtiates>>

+addError(...)
+addFailure(...)

«l nstar;ﬁtiates»

swingui.TestRunner

textui.TestRunner

ui.TestRunner

+run(...)
+createTestResult(...)

+run(...)
+createTestResult(...)

+run(...)
+createTestResult(...)

TestResult

2

0

TestListener

-Vector fListeners

+addListener(:TestListener)
+addError(...)
+addFailure(...)

+run(...)

+addError(...)
+addFailure(...)

7

swingui.TestRunner

textui.TestRunner

ui.TestRunner

+run(...)
+createTestResult(...)

+run(...)
+createTestResult(...)

+run(...)
+createTestResult(...)

Page 73 of 137

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Motivation

The Observer pattern is popular. Many programmers know it well and use it often. But the
trick isto learn when you actually need to use Observer and when you don’t.

Consider under what circumstances the authors of Design Patterns suggest using Observer
(see Design Patterns, page 294):

* When an abstraction has two aspects, one dependent on the other. Encapsulating these
aspects in separate objects lets you vary and reuse them independently.

» When a change to one object requires changing others, and you don’t know how many
objects need to be changed.

* When an object should be able to notify other objects without making assumptions about
who these objects are. In other words, you don’t want these objects tightly coupled.

Now, what happens when you do know the object you want to update and it isn’'t necessarily
to have loose coupling with that object? For example, class A needs to update objects of type B,
based on some event. Since this is a notification responsibility, you may want to implement a
solution using the Observer pattern (or Java's Listeners -- essentially the same idea). But do you
really need to go that far? Could Observer be too heavyweight a solution given this example?
What if you simply wrote code in class A that would notify B objects at appropriate times?

Certainly that could work just fine, until objects of type C aso need to be notified about A’s
events. You could then experiment with your code. See if adding more hard-coded notification
logic in class A overcomplicates the class. If it doesn't, you've solved your immediate need
without writing much new code.

Eventually, class A’s notification responsibilities may grow. As the responsihilities grow,
you must observe your own interactions with the code. Ask yourself questions like:

« Aml| finding duplicate notification code?

e Am/ creating relatively dumb subclasses just to satisfy new notification needs?

* Ismy notification logic becoming too complex?

» Isit awkward to passin object referencesto class A just for the purpose of notification?

The answers to these questions may lead you to refactor to Observer. Doing so should lead to
simpler, smaller and easier-to-read code. Just remember that once you do decide to refactor to
Observer, try to do so in the simplest way possible. For example, if your observers will never
need to stop getting notifications, do not write the removeObserver() code on your Subject class -
- it would only be wasted code that no one uses.

Communication
Hard-coded object notifications

Duplication
If you are compelled to write

Simplicity

A few runtime object notifications

enable runtime collaborations,
but the code doesn’t
communicate this very well:
objects get passed into
constructors, and notifications
happen in random methods.
Compatre this to a class that
implements the Observer pattern
— both who can observe its
events and when they get
notified is clearly communicated
in the class declaration.

special code for every class that
must be notified at runtime, you
can easily produce more code
than you need, perhaps resulting
in parallel or near-parallel class
hierarchies. For only a few
notifications, this is no big deal.
But as you add more and more
special notification code,
duplication and code bloat take
over.

can be easily handled with
simple custom code. But when
the number of notifications
increases, lots of special code
will be written or more and more
subclasses will be produced to
obtain the necessary behavior.
At that point, your code can be
simplified by using the Observer
pattern.

Page 74 of 137

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Mechanics

1. ldentify a Subject: a class that accepts an object reference and contains hard-coded
notification instructions that coupleit directly to the object reference type.

2. Define an Observer: an interface that consists of the set of public methods called by the
Subject on the referenced object.

3. Add to the Subject an Observers list and a way for clients to add to that list via a public
addObserver(Observer 0) method. Add a corresponding removeObserver(Observer o)
method only if oneis needed.

4. For code in the Subject that accepted an object reference and directly notified that
reference, replace with code that iterates over Subject’'s Observer list, updating each
Observer instance.

5. For any class that needs to get notified by Subject, make it implement the Observer
interface.

6. Replace code that passed in an object reference to the Subject with code that registers that
object reference as an Observer of the Subject. You'll use Subject's
addObserver(Observer 0) method for this purpose.

7. Compile and test.

Example

The code sketch above is from Kent Beck and Erich Gamma' s JUnit Testing Framework. Prior to
JUnit 3.x, the authors defined specific TestResult subclasses (like Ul TestResult, SwingTestResult
and TextTestResult) that were responsible for gathering up test information and reporting it to
TestRunners. Each TestResult subclass was coupled to a specific TestRunner, such as an AWT
TestRunner, Swing TestRunner or Text-based TestRunner. At runtime, after creating a
TestResult subclass, a TestRunner would pass itself in as a reference to that TestResult, and then
wait to be notified by the TestResult. Each TestResult subclass was hard-coded this way to talk
with a specific TestRunner, and that is where our refactoring begins.

In JUnit 3.1, Kent and Erich refactored the TestResult/TestRunner code to use the Observer
pattern. This enabled them to eliminate all of the special TestResult subclasses (Ul TestResult,
SwingTestResult and TextTestResult) and simplify each of the concrete TestRunners.

Our example will look at this real-world refactoring of the JUnit framework. I’ ve deliberately
simplified some of the JUnit code in order to concentrate on the refactoring, not the inner
workings of JUnit. However, if you want to study the JUnit code (which | highly recommend),
you can download it at http://www.junit.org.

1. Our first task isto find a Subject. In this case, the UITestResult class will be our Subject, but
later our Subject will become the TestResult class. What is the reason for this? Wedll, as a
subclass of TestResult, UlTestResult doesn’t add much new behavior: it exists only because it has
the ability to talk directly to an AWT TestRunner class. Our refactoring will seek to eiminate
UlTestResult and move its behavior up to the TestResult class.

Let'slook at the code for all three classes, minus some details you don’t need to worry about.
I highlight in bold the coupling between Ul TestResult and its AWT TestRunner:

package junit.framework;
public class TestResult extends Object {
protected Vector fFailures;

Page 75 of 137

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

public TestResult() {
f Fai |l ures= new Vector (10);
}

public synchroni zed void addFail ure(Test test, Throwable t) {
f Fai | ures. addEl enent (new Test Fai lure(test, t));

public synchroni zed Enuneration failures() {
return fFailures. el ements();

protected void run(TestCase test) {
start Test(test);

try {
test.runBare();

catch (AssertionFail edError e) {
addFai l ure(test, e);

}
endTest (test);

}

package junit.ui;
class U Test Result extends TestResult {
private Test Runner fRunner;
Ul Test Resul t (Test Runner runner) {
f Runner = runner;
}

public synchroni zed void addFailure(Test test, Throwable t) {
super. addFailure(test, t);
f Runner . addFai l ure(this, test, t);

}

package junit.ui;
public class TestRunner extends Franme {
private TestResult fTestResult;

protected TestResult createTest Resul t (Test Runner runner) {
return new Ul Test Resul t (Test Runner. this);
}

synchroni zed public void runSuite() {

fTest Result = createTestResult(Test Runner.this);
testSuite.run(fTestResult);

public void addFailure(TestResult result, Test test, Throwable t) {
f Nunber Of Fai | ures. set Text (I nteger.toString(result.testFailures()));
appendFai l ure("Failure", test, t);

}
2. Our next task isto define an Observer interface. Kent and Erich call thisa TestListener:

package junit.framework;

public interface TestListener {
public void addError(Test test, Throwable t);
public void addFail ure(Test test, Throwable t);
public void endTest (Test test);
public void startTest(Test test);

}

3. We must now add a list of Observers to our Subject and provide clients (that implement the
Observer interface) away to add themselves to thislist. We do this work on the TestResult class
rather than the Ul TestResult class, which we hope to eliminate:

public class TestResult extends Object {
protected Vector fFailures;
protected Vector fListeners;
public TestResult() {
f Fai l ures= new Vector();
fLi steners= new Vector();

Page 76 of 137

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

public synchroni zed voi d addLi stener(TestListener listener) {
fLi steners. addEl enent (| i stener);
}

}

4. Now we need to make our Subject update its Observers when an event happens. Thisinvolves
refactoring TestResult methods like addFailure(), addError() and so on. For simplicity, we will
examine only how addFailure() is refactored. Here's what the original method looked like on
Ul TestResult:

class U TestResult. . .
public synchroni zed void addFail ure(Test test, Throwable t) {
super. addFailure(test, t);
f Runner . addFai l ure(this, test, t);

}

Rather than refactor UlTestResult's addFailure() method, we focus on the same method in
TestResult, the superclass. TestResult’s addFailure method will continue to do what it used to do,
but it will now iterate through its registered Observers, calling each one’' s addFailure() method. In
this context, since Observers are usually TestRunners, this code will inform each registered
TestRunner that a failure has been added. When that happens, the TestRunners have a chance to
do things like update a GUI to reflect just how many test failures have occurred. Here's what
TestResult’ s refactored addFailure() method looks like:

class TestResult. . .
public synchroni zed void addFail ure(Test test, AssertionFailedError t) {
f Fai | ures. addEl enent (new Test Fai lure(test, t));
for (Enuneration e= clonelListeners().elenents(); e.hasMreEl enents();) {
((TestListener)e.nextEl enent()).addFailure(test, t);
}

}

5. Now, in order for the AWT TestRunner to register itself as an Observer of a TestResult, we
must make the ui.TestRunner class implement the TestListener interface:

package junit.ui;
public class TestRunner extends Object inplenents TestListener . . .

6. Thefinal step isto register the Observer with the Subject of choice. In this case, we'll ook at
the code that registers the ui.TestRunner with a TestResult instance:

package junit.ui;

public class TestRunner extends Object inplenents TestlListener {
private Vector fFailedTests;
private TestResult fTestResult;

protected TestResult createTestResult() {
return new TestResult();
}

synchroni zed public void runSuite() {
fTestResult = createTestResult();
f Test Resul t. addLi st ener (Test Runner. this);

}

7. Finaly, we can now compile and test that our refactored ui. TestRunner and TestResult work
together the way we expect. In the real world, Kent and Erich refactored al of the TestResult
subclasses and TestRunners to use the Observer pattern.

Page 77 of 137

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Move Accumulation to Collecting Parameter

Y ou have a single bulky method
that accumulates information to avariable

Accumulate your result to a Collecting Parameter
that you pass to extracted methods.

class TagNode. . .
public String toString() {
String result = new String();
result +="<" + tagName + " " + attributes + ">";
Iterator it = children.iterator();
while (it.hasNext()) {
TagNode node = (TagNode)it.next();
result += node.toString();

if (ItagValue.equals("™))

result += tagValue;
result +="</" + tagName + ">";
return result;

class TagNode. . .
public String toString() {
return toStringHelper(new StringBuffer(""));

}

private String toStringHelper(StringBuffer result) {
writeOpenTagTo(result);
writeChildrenTo(result);
writeEndTagTo(result);
return result.toString();

}

Motivation

Kent Beck defined the Collecting Parameter pattern in his classic book, Smalltalk Best
Practice Patterns. A Collecting Parameter is an object that you pass to methods in order to collect
information from those methods. A good reason to use this pattern is when you want to
decompose a bulky method into smaller methods (using Extract Method [Fowler]), and you need
to accumulate information from each of the extracted methods. Instead of making each of the
extracted methods return a result, which you later combine into a fina result, you can
incrementally accumulate your result by passing a collecting parameter to each of the extract
methods, which in turn, write their results to the collecting parameter.

Collecting Parameter works nicely with the Composite pattern, since you can use a Collecting
Parameter to recursively accumulate information from a Composite structure. Kent Beck and
Erich Gamma combined these two patterns in their JUnit testing framework to enable a single
TestResult object to gather test result information from every test in a hierarchical structure of
test case objects.

| recently combined Collecting Parameter with Composite when | refactored a class's
toString() method (see the code sketch above). My initial goal was to replace a lot of dow
String concatenation code with faster St ri ngBuf f er code, but when | realized that a smple
replacement would generate lots of St ri ngBuf f er instances (because the code is recursive), |
retreated from this approach. Then my programming partner at the time, Don Roberts, seized the
keyboard, saying “I’ve got it, I’ve got it” and then quickly refactored the code to use a single

Page 78 of 137

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

StringBuffer as a Collecting Parameter. The resulting code (partially shown in the code
sketch) had a far simpler design, communicated better with the reader and, thanks to the
St ri ngBuf f er , was far more efficient.

Communication Duplication Simplicity

Bulky methods don’t You don't often reduce duplicate | Extract Method is at the heart of
communicate well. Communicate | code using this refactoring. The this refactoring. You use it to
what you are accumulating by only exception would be if you reduce a bulky method into a
placing each step into intention- have different types of Collecting | simpler method that delegates to
revealing methods that write Parameters that can be passed intention-revealing methods.
results to a parameter. into the same methods.

Mechanics

1. ldentify a chunk of code that accumulates information into a variable (we'll call that
variable “result”). Result will become your Collecting Parameter. If result’s type won't
let you iteratively gather data across methods, change result’s type. For example, Java's
String won't let us accumul ate results across methods, so we use a StringBuffer.

2. Find an information accumulation step and extract it into a private method (using Extract
Method [Fowler]). Make the method’ s return type be void and pass it result. Inside the
method, write information to result.

3. Repeat steps 2 for every accumulation step, until the origina code has been replaced with
callsto extracted methods that accept and write to result.

4. Compile and test.

Example

In this example, we will see how to refactor Composite-based code to use a Collecting
Parameter. We'll start with a composite that can model an XML tree (see Replace Primitive Tree
Construction with Composite for a complete example of this XML composite code).

The composite is modeled with a single class, caled TagNode, which has a toString()
method. The toString() method recursively walks the nodes in the XML tree, and produces a
final String representation of what it finds. It does afair amount of work in 11 lines of code. We
will refactor toString() to make it smpler and easier to understand.

1. The following toString() method recursively accumulates information from every tag in a
composite structure and stores resultsin avariable called “result”:

cl ass TagNode. . .
public String toString() {
String result = new String();
result += "<" + tagName + " " + attributes + ">";
Iterator it = children.iterator();
while (it.hasNext()) {
TagNode node = (TagNode)it.next();
result += node.toString();

}

if (!tagVal ue.equals(""))
result += tagVal ue;

result += "</" + tagName + ">";

return result;

}

| change result’ stype to be a StringBuffer in order to support this refactoring:

StringBuffer result = new StringBuffer("");

Page 79 of 137

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

2. | identify the first information accumulation step: code that concatenates an xml open tag along
with any attributes to the result variable. | Extract Method on this code as follows:

result += "<" + tagName + " " + attributes + ">";

is extracted to:

private void witeOpenTagTo(StringBuffer result) {
resul t.append("<");
resul t. append(nane);
result.append(attributes.toString());
resul t.append(">");

}
The original code now looks like this:

StringBuffer result = new StringBuffer("");
writeOpenTagTo(result);

3. Next, | want to continue to extract methods from toString(). | focus on the code that adds
child XML nodes to the result. This code contains a recursive step (which | highlight below in
bold):

cl ass TagNode. . .
public String toString(). . .
Iterator it = children.iterator();
while (it.hasNext()) {
TagNode node = (TagNode)it.next();
result += node.toString();

}
if (!tagVal ue.equal s(""))
result += tagVal ue;

}

Since this code makes a recursive call, it isn't so easy to extract into a method. The following
code will show you why:

private void witeChildrenTo(StringBuffer result) {
Iterator it = children.iterator();
while (it.hasNext()) {
TagNode node = (TagNode)it.next();
node.toString(result); // can't do this because toString() doesn't take argunents.

}

Since toString() doesn't take a StringBuffer as an argument | can’'t simply extract the method. |
have to find another solution and | decide to solve the problem using a helper method. This
method will do the work that toString() used to do, but it will take a StringBuffer as a Collecting
Parameter:

public String toString() {
return toStringHel per(new StringBuffer(""));
}

private String toStringHel per(StringBuffer result) {
wri teOpenTagTo(result);

return result.toString();

Page 80 of 137

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

With the new toStringHel per() method in place, | can go back to my original task: extracting the
next accumulation step:

private String toStringHel per(StringBuffer result) {
wri teQpenTagTo(result);
writeChildrenTo(result);

return result.toString();
}
private void witeChildrenTo(StringBuffer result) {
Iterator it = children.iterator();
while (it.hasNext()) {
TagNode node = (TagNode)it.next();
node.toStringHel per(result); // nowrecursive call will work

if (!value.equals(""))
resul t. append(val ue);

}

As | stare a the wri t eChil drenTo() method, | redlize that it is handling two steps: adding
children recursively and adding a value to a tag, when one exists. To make these two separate
steps stand out, | extract the code for handling a value into its own method:

private void witeVal ueTo(StringBuffer result) {
if (!value.equals(""))
resul t. append(val ue);

}

To finish the refactoring, | extract one more method that writes an XML close tag. Here's what
the final code looks like:

public class TagNode . . .
public String toString() {
return toStringHel per(new StringBuffer(""));

private String toStringHel per(StringBuffer result) {
writeOpenTagTo(result);
writeChildrenTo(result);
writeValueTo(result);
writeEndTagTo(result);
return result.toString();
}
private void witeOpenTagTo(StringBuffer result) {
resul t.append("<");
resul t. append(nane);
result.append(attributes.toString());
resul t.append(">");
}
private void witeChildrenTo(StringBuffer result) {
Iterator it = children.iterator();
while (it.hasNext()) {
TagNode node = (TagNode)it.next();
node. t oSt ri ngHel per (result);
}
}
private void witeValueTo(StringBuffer result) {
if (!value.equals(""))
resul t. append(val ue);
}
private void witeEndTagTo(StringBuffer result) {
resul t.append("</");
resul t. append(nane);
resul t.append(">");

}

Or so | thought that was the final code. An astute reader of the above code pointed out that when
thewri t eChi | drenTo() method recursively callst oSt ri ngHel per (), it isreturned a String,
which it promptly ignores. In other words, the only time that the return result of

Page 81 of 137

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

toStringHel per () isusediswhenitiscaled fromthet oSt ri ng() method. This meansthat
the code can be made more efficient as follows:

public String toString() {
StringBuffer result = new StringBuffer("");
toStringHel per(result);
return result.toString();

}

public void toStringHel per(StringBuffer result) {
writeQpenTagTo(result);
writeChildrenTo(result);
writeValueTo(result);
wri teEndTagTo(result);

}

4.1 compile, run my tests and everything is good.

JUnit’s Collecting Parameter

To get a better understanding of the Collecting Parameter pattern, let’s have a look at another
example, which comes from the unit testing framework, JUnit. In JUnit, every test is an object.
Test objects get put into suites, which may be put into more suites, which results in a composite
of tests. To report on how each test performs (did it pass, fail or generate errors?), some object
needs to accumulate and report results as each test in the Composite is executed. TestResult is
that object and it serves the role of Collecting Parameter.

[add uml and more description]

Page 82 of 137

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Replace One/Many Distinctions with Composite

Y ou have separate code for handling
single elements and collections of those elements

Combine the code to handle single
or multiple elements using Composite

public class Product...
protected Vector singleParts = new Vector();
protected Vector collectedParts = new Vector();

public void add(Part part) {
singleParts.addElement(part);

}
public void add(PartSet set) {
collectedParts.addElement(set);

}
public float getPrice() {
float price = 0.0f;
Enumeration e;
for (e=singleParts.elements(); e.hasMoreElements();) {
Part p = (Part)e.nextElement();
price += p.getPrice();
}
for (e=collectedParts.elements(); e.hasMoreElements();) {
PartSet set = (PartSet)e.nextElement();
price += set.getPrice();
}

return price;

}

public class Product...
protected Vector parts = new Vector();

public void add(Part p) {
parts.addElement(p);

}
public float getPrice() {
float price = 0.0f;
for (Enumeration e=parts.elements(); e.hasMoreElements();) {
Part p = (Part)e.nextElement();
price += p.getPrice();

return price;

}

Page 83 of 137

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

public class DomainRepository...
List repository;

public List isSatisfiedBy(SearchCriteria criteria) {
loop on repository
collect all objects that meet search criteria
return list

public List isSatisfiedBy(List searchCriteriaList) {
for each criteria in list
loop on repository
collect all objects that meet search criteria
return list

}

2

public class DomainRepository...
List repository;

public List isSatisfiedBy(SearchCriteria criteria) {
loop on repository
collect all objects that meet search criteria
return list

}

Motivation

A good reason to refactor to Composite isto get rid of code that distinguishes between single
objects and collections of those objects. You may find code that makes these distinctions when
you have a hierarchy of objects, some of which are leaves and some of which are collections of
leaves (or collections of collections). Treating both the leaf objects and the collections identically
isan important goal of Composite.

[I' have much more to write in this section]

Communication

Duplication

Simplicity

If you're performing the same
behavior on single objects or
collections of those objects, it is
useful to communicate this in
your code. But code that
handles the different class types
in separate bits of code doesn't

Make it clear by using the
Composite pattern to treat your
single and multiple objects
uniformly.

communicate this message well.

One of the primary reasons to
refactor to Composite is to
remove duplication. Identify
separate chunks of code that
execute similar behavior on
different class types and
consolidate this code by treating
the objects uniformly via an

interface or common base class.

Having separate code to process
single objects and collections of
objects isn't simple —itis a
symptom of code that is
needlessly complex. Simplify
this code by treating the class
types uniformly via an interface
or common base class.

[to do]

10 rulesin validation
plus 5

only use 8 plus 2 more originals

Mechanics

Page 84 of 137

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Example

Page 85 of 137

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.
Compose M ethod

It isn’t easy to understand your method’ s logic

Transformthe logic into a small number of
intention-revealing steps at the same level of detail

public boolean contains(Component c) {

Point p = c.getLocation();

int locX = new Double(p.getX()).intValue();

int locY = new Double(p.getY()).intValue();

boolean completelyWithin =
(locX >= coords[0] &&
locY >= coords[1] &&
(locX+CardComponent.WIDTH) <= coords[2]) &&
(locY+CardComponent.HEIGHT) <= coords[3];

if (completelyWithin) return true;

locX = locX+CardComponent.WIDTH,;
locY = locY+CardComponent.HEIGHT;
boolean partiallyWithin =

(locX > coords[0] &&

locY > coords[1] &&

(locX < coords[2]) &&

(locY < coords[3]));

return partiallyWithin;
}

2

public boolean contains(Component c) {
return completelyWithin(c) || partiallyWithin(c) ;

}

private boolean completelyWithin(Component c) {
Point p = c.getLocation();
return (p.x >= coords[0] &&
p.y >= coords[1] &&
(p.x + CardComponent.WIDTH) <= coords[2] &&
(p.y + CardComponent.HEIGHT) <= coords[3]);

}

private boolean partiallyWithin(Component c) {
Point p = c.getLocation();
return ((p.x + CardComponent. WIDTH) > coords[0] &&
(p.y + CardComponent.HEIGHT) > coords[1] &&
(p-x + CardComponent.WIDTH) < coords[2] &&
(p.y + CardComponent.HEIGHT) < coords|[3]);

Motivation

Kent Beck once said that some of his best patterns are those that he thought someone would
laugh at him for writing. Composed Method [Beck] may be such a pattern. A Composed Method
isasmall, simple method that is easy to understand. Do you write alot of Composed Methods? |
like to think | do, but I often find that | don't, at first. So | have to go back and refactor to this
pattern. When my code has many Composed Methods, it tends to be a easy to use, read and
extend.

| find myself aggressively refactoring to this pattern quite often. For example, just the other
day | was debugging a method in some code I’ ve been writing with afriend. The method, called

Page 86 of 137

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

cont ai ns(), wasn't very complex, but it was complex enough that | had to think about how it
was doing itsjob. | knew this method would be easier to debug if | refactored it first. But my ego
wasn't ready for that, just then: | just wanted to get rid of the bug. So, after writing an automated
test to demonstrate the bug, | wrote new code in the cont ai ns() method to fix the bug. That
code didn’t fix the bug and after two more failed attempts, | was ready to refactor. It wasn't
difficult to transform cont ai ns() into a Composed Method. But after doing so, it was so much
easier to follow thelogic. And moments after the refactoring, | found and fixed my bug.

Communication Duplication Simplicity
It may be clear what a method Duplicate code, whether blatant | Composed Methods often read
does but not how the method or subtle, clutters a method’s like English. If your method has
does what it does. Make the logic. Remove the duplication to | too many lines of code, such that
“how” easy to understand by make the code smaller and you can't easily explain how it
clearly communicating every simpler. Doing so often reveals does its job, simplify it by
logical step. You'll often further refactoring opportunities. | extracting logic till it is a
implement part of this refactoring Composed Method.
using Extract Method [Fowler].

Mechanics

This is one of the most important refactorings | know of. Conceptudly, it is also one of the
simplest. So you'd think that this refactoring would lead to a smple set of mechanics. In fact,
just the opposite is the case. While the steps themselves aren't complex, there is no simple,
repeatable set of these steps. But there are guidelines for refactoring to Composed Method, some
of which include:

» Think Small — Composed Methods are rarely more than 10 lines of code, and are usualy
more like 5.

* Remove Duplication — Reduce the amount of code in the method by getting rid of blatant
and/or subtle code duplication.

e Communicate Intention — do so with the names of your variables and methods, and by
making your code simple.

» Smplify —there are many ways to skin acat. Refactor to the way that is most simple and
that best communicates your intention. Simple methods may not be the most highly
optimized methods. Don't worry about that. Make your code simple and optimize it
later.

* Smilar Levels — when you break up one method into chunks of behavior, make the
chunks operate at similar levels. For example, if you have a piece of detailed conditiona
logic mixed in with some high-level method calls, you have code at different levels.
Push the detail into anew or existing high-level chunk.

e Group Related Code — Some code is simply hard to extract into its own method. You can
easily see a way to extract part of the code, but the rest remains in the original method.
You now have code at different levels. In addition, because you have an unnatural split
between related fragments of code, your code is harder to follow. In general, look for
ways to group related code fragments, even if they aren’'t obvious at first.

Let’s now look at three examples of refactoring to Composed Method:

Page 87 of 137

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Example 1

I'll start with the game example from the code sketch above. We begin with a single bulky
method, called contai ns(), which figures out whether a Component is fully or partially
contained within arectangular area:

publ i c bool ean cont ai ns(Conmponent c¢) {
Point p = c.getlLocation();
int locX = new Doubl e(p.getX()).intValue();
int locY = new Doubl e(p.getY()).intValue();
bool ean conpl etel yWthin =
(locX >= coords[0] &&
locY >= coords[1] &&
(1 ocX+Car dConponent . WDTH) <= coords[2]) &&
(1 ocY+Car dConponent . HEI GHT) <= coords[3] ;
if (conpletelyWthin) return true;

l ocX = | ocX+Car dConponent . W DTH,;
locY = | ocY+Car dConponent . HEl GHT;
bool ean partiallyWthin =

(locX > coords[0] &&

locY > coords[1] &&

(locX < coords[2]) &&

(locY < coords[3]));

return partiall yWthin;

Before we get into the refactoring, let’s look at one of six test methods for the cont ai ns()
method. The following method tests to see if a card isinitialy contained within the first player’'s
play area, then moves the card out of the first player’s play area and follows that with another
test:

public void testCardQut O Pl ayAreaOne() {
Hand hand = (Hand) expl anati ons. get Current Pl ayer (). get Hand();
Card card = (Card)hand. el ements(). nextEl ement ();
Car dComponent ¢ = new Car dConponent (car d, expl anati ons) ;
Pl ayer Area area = expl anations. get Pl ayer Area(0);
expl anati ons. noveCard(c, area.upperlLeft());
assert Equal s("area contains card", true, area.contains(c));

expl anati ons. noveCard(c, CardConponent.WDTH + 10, CardConponent. HEl GHT + 10);
assert Equal s("area does not contain card", false, area.contains(c));

The above test, and the other five tests, al pass (or “run green’) before | begin refactoring. |
run these tests after each of the small steps | am about to do below.

To begin, my first impulse is to make the cont ai ns() method smaller. That leads me to
look at the conditional represented by the variable, conpl et el yW t hi n:

bool ean conpletelyWthin =
(locX >= coords[0] &&
locY >= coords[1] &&
(1 ocX+Car dConponent . WDTH) <= coords[2]) &&
(1 ocY+Car dConponent . HEl GHT) <= coords][3] ;

While that variable helps make it clear what the conditional logic does, the cont ai ns()
method would be smaller and easier to read if this fragment were in it's own method. So | start
with an Extract Method:

publ i c bool ean contai ns(Conponent c¢) {
Point p = c.getlLocation();
int 1ocX = new Doubl e(p.getX()).intValue();
int locY = new Doubl e(p.getY()).intValue();
if (completelyWthin(locX, locY)) return true;

| ocX = | ocX+Car dConponent . W DTH,;
Page 88 of 137

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

locY = | ocY+Car dConponent . HEl GHT;

bool ean partiallyWthin =
(locX > coords[0] &&
locY > coords[1] &&
(locX < coords[2]) &&
(locY < coords[3]));

return partiall yWthin;

}

private bool ean conpletelyWthin(int locX, int locY) {
return (locX >= coords[0] &&
locY >= coords[1] &&
(1 ocX+Car dConponent . WDTH) <= coords[2]) &&
(1 ocY+Car dConponent . HEI GHT) <= coords[3] ;
}

Next, after seeing a similar temporary variable, called parti al | yW t hi n, | do another Extract
Method:

publ i c bool ean cont ai ns(Conmponent c¢) {
Point p = c.getlLocation();
int 1ocX = new Doubl e(p.getX()).intValue();
int locY = new Doubl e(p.getY()).intValue();
if (completelyWthin(locX, locY)) return true;
l ocX = | ocX+Car dConponent . W DTH,;
l ocY = | ocY+Car dConponent . HEl GHT;
return partiallyWthin(locX, |ocY);

}

private bool ean partiallyWthin(int locX, int locY) {
return (locX > coords[0] &&
locY > coords[1] &&
(locX < coords[2]) &&
(locY < coords[3]));

The cont ai ns() method is now smaller and simpler, but it still seems cluttered with
variable assignments. | notice that the assignmentsto | ocX and | ocY are performed simply for
use by the new methods, conpl et el yWt hin() andpartial l yWthin(). | decideto
let those methods deal with the |l ocX and | ocY assignments. The easiest way to do this is to
just passthe Poi nt variable, p, to each of the methods:

publ i c bool ean contai ns(Conponent c¢) {
Point p = c.getLocation();
if (conpletelyWthin(p)) return true;
return partiall yWthin(p);

Now, the cont ai ns() method is really looking smaller and simpler. | feel like I'm done.
But then | look at that first line of code:

Point p = c.getLocation();

The level of that code seems wrong — it is a detail, while the rest of the code in the method
represents core pieces of logic. The two methods I'm calling each need the Poi nt variable. But
each of those methods could easily obtain the Poi nt variableif | just sent them Conponent c. |
consider doing that, but then | worry about violating the rule of doing things once and only once.
For if | passvariable c, the Conponent, to each method, each method will have to contain code
to obtain aPoi nt from c, instead of just getting one passed in directly.

Hmmmm. What is my real goal here? Isit more important to get the levels of the code right
or to say things once and only once? After some reflection, | realize that my goal is to produce a
method that can be read and understood in seconds. But as it stands, that first line of code takes
away from the readability and simplicity of the method. So | push down the code to obtain a
Poi nt into the two called methods and end up with the following:

Page 89 of 137

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

publ i c bool ean contai ns(Conponent c¢) {
return conpletelyWthin(c) || partiallyWthin(c);
}

private bool ean conpl et el yWt hi n(Conponent c) {
Point p = c.getlLocation();
int locX = new Doubl e(p. x).intVal ue();
int locY = new Doubl e(p.y).intValue();
return (locX >= coords[0] &&
locY >= coords[1] &&
(l ocX + CardConponent. WDTH) <= coords[2]) &&
(locY + CardConponent. HElI GHT) <= coords[3];

}
private bool ean partiall yWthin(Conponent c) {
Point p = c.getlLocation();
int locX = new Doubl e(p.x).intValue() + CardConponent.W DTH,
int locY = new Doubl e(p.y).intValue() + CardConponent. HEl GHT;
return (locX > coords[0] &&
locY > coords[1] &&
(locX < coords[2]) &&
(locY < coords[3]));
}

Now | think I'm really done. But whenever you think you're really done, you're not. A reviewer
of this refactoring, named Andrew Swan, observed that | was converting p. x and p. y toi nt s,
when they areaready i nt s! So thislead to afurther simplification:

publ i c bool ean cont ai ns(Conmponent c) {
return conpletelyWthin(c) || partiallyWthin(c) ;
}

private bool ean conpl etel yWt hi n(Conponent c) {
Point p = c.getlLocation();
return (p.x >= coords[0] &&
p.y >= coords[1] &&
(p.x + CardComponent. W DTH) <= coords[2] &&
(p.y + CardConponent. HEl GHT) <= coords[3]);

}
private bool ean partial |l yWthin(Conponent c) {

+ Car dConponent. WDTH) > coords[0] &&
Car dConponent . HEI GHT) > coords[1] &&
Car dConponent . WDTH) < coords[2] &&
Car dConponent . HEI GHT) < coords[3]);

TTOTT
< X< x
+ + +

Page 90 of 137

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Example 2

public static Vector wrap(String s) {
Vector wrapVector = new Vector();
String words;

String word,;
int lastPos;
do {
if (s.length() > 16) {
words="";
word="";
lastPos=0;
for (int i=0;i<16;i++) {
if (s.charAt(i)==""| s.charAt(i)=="-") {
words+=word+s.charAt(i);
lastPos = i+1,;
word="";

} else word+=s.charAt(i);

if (lastPos==0) {
/I Rare case that there was no space or dash, insert one and break
words+=word+"-";
lastPos=16;

}

wrapVector.addElement(words);

s = s.substring(lastPos, s.length());

}
} while (s.length() > 16);
if (s.length()>0) wrapVector.addElement(s);

return wrapVector;

}
public static Vector wrap(StringBuffer cardText) {
Vector wrapLines = new Vector();
while (cardText.length() > 0)
wrapLines.addElement(extractPhraseFrom(cardText));
return wrapLines;

}

private static String extractPhraseFrom(StringBuffer cardText) {

StringBuffer phrase = new StringBuffer("");
StringBuffer word = new StringBuffer(");
final int MAXCHARS = Math.min(MAX_LINE_WIDTH, cardText.length());
for (int i=0; iKMAXCHARS; i++) {

addCharacterTo(word, cardText.charAt(i));

if (isCompleteWord(word, cardText))

addCompleteWordTo(phrase, word);

addRemainingWordTo(phrase, word);
removePhraseFrom(cardText, phrase);
return phrase.toString();

}

private static boolean addCharacterTo(StringBuffer word, char character) ...
private static boolean isCompleteWord(StringBuffer word, StringBuffer cardText) ...
private static void addCompleteWordTo(StringBuffer phrase, StringBuffer word) ...
private static void addRemainingWordTo(StringBuffer phrase, StringBuffer word) ...
private static void removePhraseFrom(StringBuffer cardText, StringBuffer phrase)...

In a game I’ ve been writing with a friend, text needs to be displayed on graphical cards. The
text is typicaly too long to fit on one line of each card, so it must be displayed on multiple lines
of each card. To enable this behavior, we test-first programmed awr ap() method. Here are afew
of the tests:

Page 91 of 137

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

public void accunul ateResult(String testString) {
int i =0;
for (Enuneration e = CardConponent.w ap(testString).elenents();e. hasMoreEl enents();)
result[i++] = (String)e.nextEl enent();

}

public void testWap() {
accunul at eResul t (" Devel opers M sunderstand Requirenents");
assert Equal s("First line","Devel opers ",result[0]);
assert Equal s("Second line","M sunderstand ",result[1]);
assert Equal s("Third line","Requirements",result[2]);

}

public void testWap2() {
accunul at eResul t ("Stories Are Too Conpl ex");
assertEqual s("First line","Stories Are Too ",result[0]);
assert Equal s(" Second |ine", " Conpl ex",resul t[1]);

}

public void testWap3() {
accunul at eResul t ("I ntenti on- Reveal i ng Code");
assert Equal s("First line","Intention-",result[0]);
assert Equal s(" Second |ine", "Revealing Code",result[1]);

}
With these tests in place, | can work on refactoring the following bloated method:

public static Vector wap(String s) {
Vector w apVector = new Vector();
String words;

String word;
int |astPos;
do {
if (s.length() > 16) {
wor ds="";
wor d="";
| ast Pos=0;
for (int i=0;i<16;i++) {
if (s.charAt(i)=="" || s.charAt(i)==""-") {
wor ds+=wor d+s. char At (i) ;
| ast Pos = i +1;
wor d="";

} el se word+=s.charAt(i);

}

if (lastPos==0) {
/! Rare case that there was no space or dash, insert one and break
wor ds+=wor d+"-";
| ast Pos=16;

}

wr apVect or . addEl ermrent (wor ds) ;

s = s.substring(lastPos, s.length());

}
} while (s.length() > 16);
if (s.length()>0) wapVector.addEl ement (s);
return w apVector;

Thefirst thing | noticeis that we have some blatant duplicate logic: theline, s. | engt h() > 16,
appears in a conditional statement at line 6 and at the end of the while statement. No good. |
experiment with removing this duplication by using awhi | e loop instead of ado. . whi | e loop.
The tests confirm that the experiment works:

public static Vector wap(String s) {
Vector wrapVector = new Vector();
String words;
String word;
int |astPos;
while (s.length() > 16) {

wor ds="";
wor d="";
| ast Pos=0;
for (int i=0;i<16;i++)
if (s.charAt(i)=="" 1] s.charAt(i)=="-") {

wor ds+=wor d+s. char At (i) ;

Page 92 of 137

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

| ast Pos = i +1;
wor d="";
} el se word+=s.charAt(i);
if (lastPos==0) {
/! Rare case that there was no space or dash, insert one and break
wor ds+=wor d+"-";
| ast Pos=16;
}
wr apVect or . addEl emrent (wor ds) ;
s = s.substring(lastPos, s.length());

}
if (s.length()>0) wapVector.addEl ement (s);
return w apVector;

Next | notice more duplication. At two placesin the middle of the method, the code says:

wor d+=s. char At (i).

By consolidating thislogic, | see away to simplify a conditional statement:

for (int i=0;i<16;i++) {
wor d+=s. charAt(i); // now we say this only once
if (s.charAt(i)=="" 1] s.charAt(i)=="-") {
wor ds+=wor d;
| ast Pos = i +1;
wor d="";
} /] else statenent is no | onger needed

Additional duplicate logic doesn’t jump out at me just yet, so | continue to look (I know it is
therel). | wonder about the variable, | ast Pos. What does it store? Can | figure out what the
value of | ast Pos would be, without having to declare and set a variable for it? After alittle bit
of study, | try some experiments. Gradually it dawns on me that wor ds. | engt h() contains the
exact value asthat held by | ast Pos. This alows meto get rid of another variable, and all of the
assignmentsto it:

public static Vector wap(String s) {
Vector w apVector = new Vector();
String words;
String word;
while (s.length() > 16) {
wor ds="";
wor d="";
for (int i=0;i<16;i++) {
wor d+=s. char At (i) ;

if (s.charAt(i)==""" || s.charAt(i)=="-") {
wor ds+=wor d;
wor d=""":
}
if (words.length() == 0) // if no space or dash, insert one

wor ds+=wor d+"-";
wr apVect or . addEl ermrent (wor ds) ;
s = s.substring(words.length(), s.length());

}
if (s.length()>0) wapVector.addEl ement (s);
return wapVector;

The code is definitely getting smaller and more manageable. But the body of the while
method still seems big and bulky. | decide to Extract Method [Fowler]:

public static Vector wap(String s) {
Vector wapVector = new Vector();
String words;
while (s.length() > 16) {
words = extract PhraseFron{(s);

Page 93 of 137

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

wr apVect or . addEl ement (wor ds) ;
s = s.substring(words.length(), s.length());

}
if (s.length()>0) wapVector.addEl ement (s);
return w apVector;

}

private static String extractPhraseFron(String cardText) {
String phrase = ""
String word="";
for (int i=0;i<16;i++) {
word += cardText.charAt(i);

if (cardText.charAt(i)==" " || cardText.charAt(i)=="-") {
phrase += word;
wor d="""
}
if (phrase.length() == 0) // no found space or dash, insert dash

phrase+=word+"-";
return phrase,;

We're making progress. But I'm still not happy with thewr ap() method: | don’t like the fact
that the code is adding elements to the wr apVect or both inside and outside the while loop and |
also don't like the mysterious line that changes the value of the String “s” (which is a bad name
for avariable that holds on to a card’ stext):

s = s.substring(words.length(), s.length());

So | ask myself how | can make this logic clearer? Given some card text, | would like my
code to show how the text is broken up into pieces, added to a collection and returned. | decide
that the best way to achieve this objective is to push all code that is responsible for creating a
“phrase” into the ext r act Phr aseFr om() method. | hope to end up with a while loop that has
one line of code.

My first step is to rename and change the type of the St ri ng variable, s. | call it car dText
and change it to be StringBuffer, since it will be altered by the extract PhraseFrom()
method. This change requiresthat | make al callers of wrap() passin a StringBuffer instead of
a String. As | go about doing this work, | see that | can also get rid of the temporary variable,
wor d, leaving the following:

public static Vector wap(StringBuffer cardText) {
Vector wapVector = new Vector();
whil e (cardText.length() > 16) {
wr apVect or . addEl enent (extract PhraseFron{ cardText));
cardText. del ete(0, words.length());

}
if (cardText.length()>0) w apVector.addEl ement (cardText.toString());
return w apVector;

Now | must figure out how to push the fragmented pieces of phrase-construction logic down
into the ext r act Phr aseFron() method. My tests give me a lot of confidence as | go about
thiswork. First, | go for the low-hanging fruit: the code that deletes a substring from car dText
can easily be moved to ext r act Phr aseFr on() , which yields the following:

public static Vector wap(StringBuffer cardText) {
Vector wapVector = new Vector();
whil e (cardText.length() > 16)
wr apVect or . addEl enent (extract PhraseFron{ cardText));
if (cardText.length()>0) w apVector.addEl enent (cardText.toString());
return wapVector;

Page 94 of 137

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.
Now, I've just got the line of code after the while loop to worry about:

if (cardText.length()>0) w apVector.addEl enent (cardText.toString());

How can | get that code to live in the ext r act Phr aseFron() method? | study the while
loop and see that I'm looping on a magic number, 16. First, | decide to make a constant for that
number, called MAX_LINE_WIDTH. Then, as | continue to study the loop, | wonder why the
wr ap() method has two conditionals fragments that check car dText . | engt h(), (one in the
while loop and one after the while loop). | want to remove that duplication. | decide to change
thewhi | e loop to doitsthingwhilecar dText .l ength() > 0.

This last change requires a few changes to the ext r act Phr aseFr ommethod to make it
capable of handling the case when a line of text isn't greater than 16 characters (now called
MAX_ LI NE_W DTH). Once thetests confirm that everything is working, wrap() now feelslike a
Composed Method, while ext r act Phr aseFr on{) is getting there. Here's what we have
now:

public static Vector wap(StringBuffer cardText) {
Vect or wrapLines = new Vector();
while (cardText.length() > 0)
wr apLi nes. addEl enent (extract PhraseFron{cardText));
return wr aplLi nes;

}

private static String extractPhraseFronm(StringBuffer cardText) {
String phrase = ""
String word="";
final int MAX_CHARS = Math. mi n(MAX_LI NE_W DTH, cardText.length());
for (int i=0; i<MAX_CHARS; i++) {
word += cardText.charAt(i);
if (cardText.charAt(i)==" "]| cardText.charAt(i)=="-" ||
cardText.toString().endsWth(word)) {
phrase += word;
wor d="";

}

}
if (phrase.length() == 0)
phrase=wor d+"-";
cardText. del ete(0, phrase.length());
return phrase;

}

This code is simpler than the original, so we could stop here. But I'm not altogether happy with
the ext r act Phr aseFr om() method. It's not a Composed Method, so I'm drawn to continue
refactoring it. What's wrong with it? Waell, there's a lot of conditional logic in it, and that
conditional logic doesn’t communicate very well. For example, what does this mean:

if (cardText.charAt(i)==" " || cardText.charAt(i)=="-" ||
cardText.toString().endsWth(word)) {
phrase += word;
wor d="";

}

Since my pair and | wrote that code, | know that it means, “if we've found a complete word, then
add the word to the phrase, and blank out the word variable so we can find the next word.” But
the next reader will have to figure that out. So I'll make the intention clear, by using Extract
Method (which also requires changing some variables from Strings to StringBuffers):

private static String extractPhraseFron{StringBuffer cardText) {
StringBuffer phrase = new StringBuffer("");
StringBuffer word = new StringBuffer("");
final int MAXCHARS = Math. m n(MAX_LI NE_W DTH, cardText.length());
for (int i=0; i<MAXCHARS; i++) {
wor d. append(cardText.charAt(i));
if (isConpleteWrd(word, cardText)) /1 note how nore intention-revealing this is

Page 95 of 137

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.
addConpl et eWor dTo(phrase, word); // same for this line

if (phrase.length() == 0)

phrase. append(word + "-");
cardText . del ete(0, phrase.length());
return phrase.toString();

}
private static bool ean i sConpl eteWrd(StringBuffer word, StringBuffer cardText) {
return (word.charAt(word.length()-1) ==" " || word.charAt(word.length()-1) =="-"' ||
cardText.toString().endsWth(word.toString()));
}

private static void addConpl et eWor dTo(Stri ngBuffer phrase, StringBuffer word) {
phrase. append(wor d) ;
wor d. del ete(0, word.length());

}

We're getting closer. But | still don’t like the cryptic conditional statement that comes after the
f or loop. So | apply Extract Method to it:

private static String extractPhraseFron(StringBuffer cardText) {

StringBuffer phrase = new StringBuffer("");
StringBuffer word = new StringBuffer("");
final int MAXCHARS = Math. m n(MAX_LI NE_W DTH, cardText.length());
for (int i=0; i<MAXCHARS; i++) {

wor d. append(cardText.charAt(i));

if (isConpletewrd(word, cardText))

addConpl et eWor dTo(phrase, word);

addRemai ni ngWor dTo(phrase, word); // now this code comuni cates intention
cardText. del ete(0, phrase.length());
return phrase.toString();

}

private static void addRemai ni ngWor dTo(Stri ngBuffer phrase, StringBuffer word) {
if (phrase.length() == 0)
phrase. append(word + "-");

The ext ract PhraseFr on() method is now 10 lines of code and reads a lot more like English.
But it is still uneven! Consider these two lines of code;

wor d. append(cardText . char At (i));

cardText. del ete(0, phrase.length());

Both of these lines aren't complicated, but compared with the other code, which reads like
English, these hits of code stick out, demanding that the reader concentrates to understand them.
So | push myself to extract these 2 lines of code into 2 intention-revealing methods:
addChar act er To() andr enovePhr aseFr on() . Thisyieldsa Composed Method:

private static String extractPhraseFron(StringBuffer cardText) {

StringBuffer phrase = new StringBuffer("");
StringBuffer word = new StringBuffer("");
final int MAXCHARS = Math. m n(MAX_LI NE_W DTH, cardText.length());
for (int i=0; i<MAXCHARS; i++) {

addChar act er To(word, cardText.charAt(i));

if (isConpleteWrd(word, cardText))

addConpl et eWor dTo(phrase, word);

}

addRemai ni ngWor dTo(phrase, word);
renmovePhr aseFron{ cardText, phrase);
return phrase.toString();

}
My tests run green and |’ m satisfied.

Page 96 of 137

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Example 3

private void paintCard(Graphics g) {

Image image = null;

if (card.getType().equals("Problem™)) {
image = explanations.getGameUl().problem;

} else if (card.getType().equals("Solution")) {
image = explanations.getGameUl().solution;

} else if (card.getType().equals("Value")) {
image = explanations.getGameUl().value;

g.drawlmage(image,0,0,explanations.getGameUl());

if (highlight)
paintCardHighlight(g);
paintCardText(g);

2

private void paintCard(Graphics g) {
paintCardimage(g);
paintCardHighlight(g);
paintCardText(g);

}

The above, original pai nt Card() method isn't long, nor is it complicated. It paints a card
image, checks a flag to see if it must paint a card highlight, and then paints text onto the card.
Painting the card highlight and card text are peformed by the methods,
pai nt Car dHi ghl i ght () and pai nt Car dText () . But the code that paints the card image lives
not in a separate method but in the pai nt Card() method itsef. So? Weaell, consider the
refactored version of pai nt Card(). | can look at the refactored version and know what it does
in 2 seconds, while | have to spend a few brain cycles to figure out what the previous version
does. Trivial difference? No, not when you consider how much simpler an entire system is when
it consists of many composed methods, like pai nt Car d() .

So what was the smell that led to this refactoring? Code at different levels: raw code mixed
with higher-level code. When the method contains code at the same levels, it is easier to read and
understand. As the guidelines in the mechanics section say, above, Composed Methods tend to
have code at the same level.

Implementing this refactoring was incredibly easy. | did Extract Method [Fowler] as follows:

private void paintCard(G aphics g) {
pai nt Car dl mage(g);
if (highlight)
pai nt Car dHi ghl i ght (g);
pai nt CardText (g);
}

private void paint Cardl mage(G aphics g) {

I mage i mage = null;

if (card.getType().equal s("Problenm)) {
i mage = expl anati ons. get GaneUl (). probl em

} else if (card.getType().equals("Solution")) {
i mmge = expl anations. get GaneUl (). sol uti on;

} else if (card.getType().equal s("Value")) {
i mge = expl anati ons. get GaneUl (). val ue;

g. drawl nage(i nage, 0, 0, expl anati ons. get GarreUl ());

To finish this refactoring, | took the sole conditiona statement in the method (i f
(hi ghlight).) and pushed it down into the pai nt Car dHi ght | i ght () method. Why? |

Page 97 of 137

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

wanted the reader to simply see three steps: paint image, highlight image and paint card text. The
detail of whether or not we do highlight the card isn’t important to me — the reader can find that
out if they look. But if that confuses other programmers, I'd be happy to see the method
renamed to pai nt Car dHi ghl i ghl f Necessary(g) or something similar.

private void paintCard(G aphics g) {
pai nt Car dl nage(g);
pai nt Car dHi ghl i ght (g);
pai nt CardText (9) ;

Page 98 of 137

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Separate Versionswith Adapters

One class adapts multiple versions of a
component, library, API or other entity

Write Adapters for each version

SDLogin '\ | classes for
Client 1 1 | +loginSession(...) : SDSession |) SuperDatabase
Query /| version 5.1
[N SDSession
-sdLogin: SDLogin 1
-sdSession: SDSession +createQuery(...) : SDQuery
2 login() methods: B -sdLoginSession: SDLoginSession
one for -sdQuery: SDQuery = SDLoginSession B
SuperDatabase 5.1, | -sd52: boolean 1 g ~ eslclasstc:rb
one for version 5.2 — +loginSession(...) : void uper a5a2 ase
*tlogin(...) +createQuery(...) : SDQuery version .
- +login(...)
void doQuery() ... B
- +doQuel =
if (sd52) | HdoQuery() 1 SDQuery R P —
clse +clearResultSet() SuperDatabase
+execute() versions
* 51&5.2
Client > i SDQuery
1 Query 1
+clearResultSet()
+execute()
#sdQuery: SDQuery
+doQuery()
+login(...)
#createQuery() : SDQuery
_— QuerySD51 1 SbLogin
- - +loginSession(...) : SDSession
-sdLogin: SDLogin
-sdSession: SDSession
- > SDSession
+ogin(...); 1
#createQuery: SDQuery +createQuery(...) : SDQuery
> SDLoginSession
— QuerySD52 1 9
+loginSession(...) : void
-sdLoginSession: SDLoginSession +createQuery(...) : SDQuery
-configFileName: String
+QuerySD52(configFileName: String)
+login(...);
#createQuery: SDQuery

Page 99 of 137

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Motivation

While software must often support multiple versions of a component, library or API, code
that handles these versions doesn’t have to be a confusing mess. And yet, | routinely encounter
code that attempts to handle multiple versions of something by overloading classes with version-
specific state variables, constructors and methods. Accompanying such code are comments like
“this is for version X — please delete this code when we move to version Y!” Sure, like that's
ever gonna happen. Most programmers won't delete the version X code for fear that something
they don’t know about still relies on it. So the comments don’t get deleted and many versions
supported by the code remain in the code.

Now consider an dternative: for each version of something you need to support, create a
separate class. The class name could even include the version number of what it supports, to be
realy explicit about what it does. We call such classes Adapters [GoF]. Adapters implement a
common interface and are responsible for functioning correctly with one (and usually only one)
version of some code. Adapters make it easy for client code to swap in support for one library or
APl version, or another. And programmers routinely rely on runtime information to configure
their programs with the correct Adapter.

| refactor to Adapters fairly often. | like Adapters because they let me decide how | want to
communicate with other people’'s code. In a fast-changing world, Adapters help me stay
insulated from the highly useful but rapidly changing APIs, such as those springing eternally
from the open-source world.

In severa of the refactorings in this catalog, | assert the importance of not refactoring to a
pattern too quickly in order to avoid overengineering. There must be a genuine need to refactor
to a pattern, such as an overabundance of conditional logic, code bloat, duplication or
unnecessary complexity. However, in the case of code that handles multiple versions of a
component, library, AP, etc., | often find compelling reasons to refactor to Adapters early, since
not doing so can lead to a propagation of conditional or version-dependent logic throughout a
system. So, while I'm not suggesting you adapt too early, be on guard for any complexity or
propagating conditionality or maintanance issues accruing from code written to handle multiple
versions of something. Adapt early and often so that it's easy to use or phase out various versions
of code.

Communication Duplication Simplicity
A class that mixes together When each version of a When a class is responsible for
version-specific state variables, component, library, API, etc., functioning correctly with several
constructors and methods isn't isolated in its own Adapter, versions of some other code, it is

doesn't effectively communicate | but is instead accessed directly rarely simple. Version-specfic
how each version is different or or through a single class, there code tends to bloat the single

similar. Communicate version tends to be the same repeating class and leads to conditional
differences by isolating the chunks of conditional logic that logic in the client code that uses
differences in separate Adapter make version-specific calls to it. Adapters provide a simple way
classes. Communicate how code. Such duplication bloats a | to isolate versions and give
versions are similar by making class and makes the code clients a simple interface to

each Adapter implement a harder to follow. every version.

common interface — either by
subclassing an abstract class,
implementing the same interface
or a combination thereof.

Mechanics

There are different ways to go about this refactoring, depending on what your code looks like
before you begin. For example, if you have a class that uses alot of conditional logic to handle
multiple versions of something, it's likely that your can create Adapters for each version by
repeatedly applying Replace Conditional with Polymor phism (255) [Fowler]. If you have a case
like that shown in the code sketch — in which a single class supports multiple versions of

Page 100 of 137

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

something by containing version-specific variables and methods, you'll refactor to Adapter using
adlightly different approach. I'll outline the mechanics for this latter scenario.

1.

2.

Identify the overburdened class (we'll call thisclass, “V™).

Apply Extract Subclass (330) [Fowler] or Extract Class (149) [Fowler] for a single
version of the multiple versions supported by V. Copy or move all instance variables and
methods used exclusively for that version into the new class.

To do this, you may need to make some private members of V public or protected. It may
also be necessary to initialize some instance variables via a constructor in your new
class, which will necessitate updates to callers of the new constructor.

Compile and test that your new class works as expected.

Repeat steps 2 —3 until there is no more version-specific codein V.

Remove any duplication found in the new classes, by applying refactorings like Pull Up
Method (322) [Fowler] and Form Template Method (345) [Fowler].

Compile and test.

Example

The code we'll refactor in this example, which was depicted in the code sketch above, is
based on real-world code that handles queries to a database using a third party library. To protect
the innocent, I’ ve renamed that library “ SD,” which stands for SuperDatabase.

1. We begin by identifying a class that is overburdened with support for multiple versions of
SuperDatabase. This class, called Query, provides support for SuperDatabase versions 5.1 and
5.2, which means it is already an Adapter to the SuperDatabase code. It just happens to be an
Adapter that is adapting too much.

In the code listing below, notice the version-specific instance variables, duplicate | ogi n()
methods and conditiona codeindoQuery():

public class Query . . .

private SDLogi n sdLogi n; /1 needed for SD version 5.1

private SDSessi on sdSessi on; /1 needed for SD version 5.1

private SDLogi nSessi on sdLogi nSessi on; /1 needed for SD version 5.2

private bool ean sd52; /1 tells if we're running under SD 5.2
private SDQuery sdQuery; /1 this is needed for SD versions 5.1 & 5.2

/1 this is alogin for SD 5.1
/1 NOTE: renove this when we convert all aplications to 5.2
public void login(String server, String user, String password) throws QueryException {

}

sd52 = fal se;
try {
sdSessi on = sdLogi n. | ogi nSessi on(server, user, password);
} catch (SDLogi nFail edException Ife) {
t hrow new QueryExcepti on(QueryExcepti on. LOG N_FAI LED,
"Login failure\n" + Ife, Ife);
} catch (SDSocket!| nitFail edException ife) {
t hrow new QueryExcepti on(QueryExcepti on. LOG N_FAI LED,
"Socket fail\n" + ife, ife);

/1 5.2 login
public void login(String server, String user, String password, String
sdConfi gFi | eName) throws QueryException {

sd52 = true;

Page 101 of 137

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

sdLogi nSessi on = new SDLogi nSessi on(sdConfi gFi | eNane, false);
try {
sdLogi nSessi on. | ogi nSessi on(server, user, password);
} catch (SDLogi nFail edException |fe) {
t hrow new Quer yExcepti on(Quer yExcepti on. LOG N_FAI LED,
"Login failure\n" + Ife, Ife);
} catch (SDSocket!| nitFail edException ife) {
t hrow new Quer yExcepti on(Quer yExcepti on. LOG N_FAI LED,
"Socket fail\n" + ife, ife);
} catch (SDNot FoundException nfe) {
t hrow new Quer yExcepti on(QueryExcepti on. LOG N_FAI LED,
"Not found exception\n" + nfe, nfe);

}

public void doQuery() throws QueryException {
if (sdQuery != null)
sdQuery. cl ear Resul t Set () ;
if (sd52)
sdQuery = sdLogi nSessi on. cr eat eQuer y(SDQuery. OPEN_FOR_QUERY) ;
el se
sdQuery = sdSessi on. creat eQuery(SDQuery. OPEN_FOR_QUERY) ;
execut eQuery();
}

2. Because Query doesn’t already have subclasses, | decide to apply Extract Subclass (330)
[Fowler] to isolate code that handles SuperDatabase 5.1 queries. My first step is to define the
subclass and create a constructor for it:

cl ass QuerySD51 extends Query {
public QuerySD51() {
super () ;

}

Next, | find al calls to the constructor of Query and, where appropriate, change the code to call
the Quer ySD51 constructor. For example, | find the following:

public void | ogi nToDat abase(String db, String user, String password)...
query = new Query();
try {
if (usingSDVersion52()) {
query. |l ogi n(db, user, password, getSD52ConfigFileName()); // Login to SD 5.2
} else {
query. |l ogi n(db, user, password); // Login to SD 5.1
}

} ca.t“ch(QJeryExcepti on ge) ...
And change thisto:

public void | ogi nToDat abase(String db, String user, String password)...

try {
if (usingSDVersion52()) {
query = new Query();
query. |l ogi n(db, user, password, getSD52ConfigFileName()); // Login to SD 5.2
} else {
query = new QuerySD51();
query. |l ogin(db, user, password); // Loginto SD5.1

} ca.t”ch(QJeryException ge) {

Next, | apply Push Down Method (328) [Fowler] and Push Down Fidd (329) [Fowler] to outfit
Quer ySD51 with the methods and instance variables it needs. During this step, | have to be
careful to consider the clients that are make calls to public Query methods, for if | move a public
method like | ogi n() from Query to aQuer ySD51, the caller will not be able to call the public
method unless its type is changed to Quer ySD51. Since | don't want to make such changes to

Page 102 of 137

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

client code, | proceed cautioudly, sometimes copying and modifying public methods instead of
completely removing them from Query. While | do this, | generate duplicate code, but that
doesn’'t bother me now - I'll get rid of the duplication in step 5.

class Query...
. . in:
protected SDQuery sdQuery; ’
/!l this is alogin for SD5.1

public void login(String server, String user, String password) throws QueryException {
/1 | make this a do-nothing nethod
}

public void doQuery() throws QueryException {
if (sdQuery != null)
sdQuery. cl ear Resul t Set () ;

H—({sd52)-
sdQuery = sdLogi nSessi on. cr eat eQuer y(SDQuery. OPEN_FOR_QUERY) ;
else

execut eQuery();
}

cl ass QuerySD51 {
private SDLogi n sdLogi n;
private SDSessi on sdSession;

public void login(String server, String user, String password) throws QueryException {

try {
sdSessi on = sdLogi n. | ogi nSessi on(server, user, password);
} catch (SDLogi nFail edException Ife) {
t hrow new Quer yExcepti on(Quer yExcepti on. LOG N_FAI LED,
"Login failure\n" + Ife, Ife);
} catch (SDSocket!| nitFail edException ife) {
t hrow new Quer yExcepti on(Quer yExcepti on. LOG N_FAI LED,
"Socket fail\n" + ife, ife);

}

public void doQuery() throws QueryException {
if (sdQuery != null)
sdQuery. cl ear Resul t Set () ;

sdQuery = sdSessi on. creat eQuer y(SDQuery. OPEN_FOR_QUERY) ;
execut eQuery();

3. | compile and test that Quer ySD51 works. No problems.

4. Next, | perform steps 2 and 3 to create Quer ySD52. Along the way, | can make the Query
class abstract, along with the doQuer y() method. Here'swhat | have now:

Page 103 of 137

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Query

#sdQuery: SDQuery

+doQuery()

+login(...)

+login(...)

I
QuerySD52 QuerySD51

-sdLoginSession: SDLoginSession -sdLogin: SDLogin
-configFileName: String -sdSession: SDSession
+login(...) +login(...)
+doQuery() +doQuery()

Query isnow free of version-specific code, but it is not free of duplicate code.

5. 1 now go on amission to remove duplication. | quickly find some in the two implementations
of doQuery():

abstract class Query...
public abstract void doQuery() throws QueryException;

cl ass QuerySD51...
public void doQuery() throws QueryException {
if (sdQuery !'= null)
sdQuery. cl ear Resul t Set () ;

sdQuery = sdSessi on. creat eQuery(SDQuery. OPEN_FOR_QUERY) ;
execut eQuery();
}

cl ass QuerySD52...
public void doQuery() throws QueryException {
if (sdQuery != null)
sdQuery. cl ear Resul t Set () ;

sdQuery = sdLogi nSessi on. creat eQuer y(SDQuery. OPEN_FOR_QUERY) ;
execut eQuery();

Each of the above methods simply initializes the sdQuery instance in a different way. This
means that | can apply Introduce Polymorphic Creation with Factory Method (36) and Form
Template Method (345) [Fowler] to create a single superclass version of doQuer y() :

public abstract class Query ...
protected abstract SDQuery createQuery(); /1l a Factory Method [GoF]

public void doQuery() throws QueryException { /1 a Tenpl ate Met hod [GoF]
if (sdQuery != null)
sdQuery. cl ear Resul t Set () ;
sdQuery = createQuery(); /!l call to the Factory Method
execut eQuery();

}

cl ass QuerySD51...
protected SDQuery createQuery() {
return sdSessi on. creat eQuery(SDQuery. OPEN_FOR_QUERY) ;
}

cl ass QuerySD52...
protected SDQuery createQuery() {
return sdLogi nSessi on. creat eQuer y(SDQuery. OPEN_FOR_QUERY) ;

Page 104 of 137

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

}

After compiling and testing the changes, | now face a more obvious duplication problem: Query
still declares public method for the SD 5.1 & 5.2 1 ogi n() methods, even though they don’'t do
anything anymore (i.e. the real login work is handled by the subclasses). The signatures for these
two | ogi n() method are identical, except for 1 parameter:

/1 SD 5.1 login
public void login(String server, String user, String password) throws QueryException ...

/1 SD 5.2 login
public void login(String server, String user,
String password, String sdConfigFileNane) throws QueryException ...

| decide to make the | ogi n() signatures the same, by simply supplying Quer ySD52 with the
sdConfi gFi | eName information viaits constructor:

cl ass QuerySD52 ...
private String sdConfi gFil eNaneg;
public QuerySD52(String sdConfigFil eNane) {
super () ;
t hi s. sdConfi gFi | eName = sdConfi gFi | eNane;
}

Now Query hasonly one abstract | ogi n() method:

abstract class Query ...
public abstract void login(String server, String user,
String password) throws QueryException ...

And client code is updated as follows:

public void | ogi nToDat abase(String db, String user, String password)...
if (usingSDVersion52())
query = new QuerySD52(get SD52Confi gFi | eName());
el se
query = new QuerySD51();

try {
query. | ogi n(db, user, password);

} ca't”ch(QJeryExcepti on ge) ...

I’'m nearly done. Since Query is an abstract class, | decide to rename it Abst r act Query, which
communicates more about its nature. But making that name change necessitates changing client
code to declare variables of type Abstract Query instead of Query. Since | don't want to do
that, | apply Extract Interface (341) [Fowler] on Abstract Query to obtain a Query interface
that Abst r act Query canimplement:

interface Query {
public void login(String server, String user, String password) throws QueryException;
public void doQuery() throws QueryException;

}
abstract class AbstractQuery inplenments Query ...

Now, subclasses of Abstract Query implement | ogi n(), while Abst r act Quer y doesn't even
need to declarethel ogi n() method, sinceit isan abstract class.

Page 105 of 137

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

6. | compile and test and everything works as planned. Each version of SuperDatabase is now
fully adapted. The code is smaller and treats each version in a more uniform way, all of which
makes it easier to

* seesmilarities and differences between the versions
» remove support for older, unused versions
» add support for newer versions

Adapting with Annonymous Inner Classes

JDK 1.0 included an interface called Enuner at i on, which was used to iterate over collections
like Vect or s or Hasht abl es. Over time, better collections classes were added to the JDK,
along with a new interface, called Iterator. To make it possible to interoperate with code written
using the Enumeration interface, the JDK provided the following Creation Method, which uses
Java' s anonymous inner class capability to adapt an Iterator with an Enumeration:

public class Collections...
public static Enuneration enuneration(final Collection c) {
return new Enuneration() {
Iterator i = c.iterator();

publ i c bool ean hasMreEl ements() {
return i.hasNext();

public Ooject nextEl ement () {
return i.next();
}

Adapting Legacy Systems

An organization has an extremely sophisticated system which brings in most of their income,
but which happens to be written in about 2 million lines of COBOL, little of which was ever
refactored over a decade of development. Sound familiar? Systems like this are usually hard to
extend because they were never refactored. And as a result, organizations that maintain such
systems can't easily add new features to them, which makes them less competitiveness, which
can ultimately put them out of business.

What to do? One popular approach is to use Adapters to model new views of the legacy
system. Client code talks to the Adapters, which in turn talk to the legacy code. Over time, teams
rewrite entire sytstems by simply writing new implementations for each Adapter. The process
goes likethis:

e ldentify a subsystem of your legacy system

e Write Adaptersfor that subsystem

* Write new client programs that rely on calls to the Adapters
e Create versions of each Adapter using newer technologies

e Test that the newer and older Adapters function identically
e Update client code to use the new Adapters

e Repeat for the next subsystem

This is an example of applying Separate Versions with Adapter (99), only it is performed
across an entire system or subsystem, so the mechanics are a hit different.

Page 106 of 137

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Adapt Interface

Y our class implements an interface but only provides
code for some of the interface’s methods.

Move the implemented methods to an Adapter
of the interface and make the Adapter
accessible from a Creation Method.

public class CardComponent extends Container implements MouseMotionListener ...
public CardComponent(Card card,Explanations explanations) {

addMouseMotionListener(this);

public void mouseDragged(MouseEvent e) {
e.consume();
dragPos.x = e.getX();
dragPos.y = e.getY();
setLocation(getLocation().x+e.getX()-currPos.x,
getLocation().y+e.getY()-currPos.y);
repaint();

public void mouseMoved(MouseEvent e) {
}
public class CardComponent extends Container ...
public CardComponent(Card card,Explanations explanations) {

addMouseMotionListener(createMouseMotionAdapter());

}

private MouseMotionAdapter createMouseMotionAdapter() {
return new MouseMotionAdapter() {
public void mouseDragged(MouseEvent e) {
e.consume();
dragPos.x = e.getX();
dragPos.y = e.getY();
setLocation(getLocation().x+e.getX()-currPos.x,
getLocation().y+e.getY()-currPos.y);
repaint();

Motivation

Empty methods in concrete classes bother me. | often find that they’ re there because a class
needs to satisfy a contract by implementing an interface, but only really needs code for some of
the interface’ s methods. The rest of the methods get declared, but remain empty: they were added
to satisfy a compiler rule. | find that these empty methods add to the heftiness of a class's
interface (i.e. it's public methods), falsely advertise behavior (I'm a class that can, among other
things, do X(), Y() and Z() — only I realy only provide code for X()), and forces me to do work
(like declaring empty methods) that I’ d rather not do.

The Adapter pattern provides a nice way to refactor this kind of code. By implementing
empty methods for every method defined by an interface, the Adapter lets me subclass it to
supply just the code | need. In Java, | don’t even have to formally declare an Adapter subclass: |
can just create an anonymous inner Adapter class and supply a reference to it from a Creation
Method.

Page 107 of 137

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Communication

Duplication

Simplicity

Empty methods on a class don't
communicate very much at all.
Either someone forgot to delete
the empty method, or it is just
there because an interface
forces you to have it there. Itis

If more than one of your classes
partially implements an interface,
you’ll have numerous empty
methods in your classes. You
can remove this duplication by
letting each of the classes work

It is always simpler to supply
less code than more. This
refactoring gives you a way to
cut down on the number of
methods your classes declare.
In addition, when used to adapt

multiple interfaces, it can provide
a nice way to partition methods
in each of their respective
adapters.

with an Adapter which handles
the empty method declarations.

far better to communicate only
what you actually implement,
and an Adapter can make this
feasible.

Mechanics

1. If you don't aready have an adapter for the interface (which we'll call A), create a class
that implements the interface and provides do-nothing behavior. Then write a Creation
Method that will return a reference to an instance of your Adapter (which we'll call
Adapterinstance).

2. Delete every empty method in your class that's solely there because your class
implements A.

3. For those methods specified by A for which you have code, move each to your
Adapterlnstance.

4. Remove code declaring that your classimplements A.
5. Supply the Adapterinstance to clients who need it.
Example

We'll use the example from the code sketch above. In this case we have a class called
Car dConponent that extends the JDK Conponent class and implements the JDK's
MouseMot i onLi st ener interface. However, it only implements one of the two methods
declared by the MbuseMdt i onLi st ener interface. So our task here is to replace a partially
implemented interface with an Adapter.

1. The first step involves writing a Creation Method for our Adapterinstance. If we don’t have
an Adapterinstance, we need to create one using the refactoring, Adapt Interface. In this case, the
JDK aready supplies us with an adapter for the MouseMot i onLi st ener interface. It's called
MouseMot i onAdapt er . So we create the following new method on the Car dConponent class,
using Java s handy anonymous inner class capability:

private MouseMtionAdapter createMuseMtionAdapter() {
return new MouseMtionAdapter () {

}s
}

2. Next, we delete the empty method(s) that Car dConponent declared because it implemented
MouseMot i onLi st ener . In this case, it implemented nouseDr agged() , but did not implement
mouseMoved() .

. . 0

3. We're now ready to move the nouseDr agged() method from Car dConponent to our
instance of the MouseMbt i onAdapt er :

Page 108 of 137

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

private MuseMtionAdapter createlMuseMtionAdapter() {
return new MouseMbdti onAdapter () {
public void nouseDragged(MouseEvent e) {

e. consune();

dragPos. x = e.get X();

dragPos.y = e.getY();

set Locati on(getLocation().x+e. get X()-currPos. x,
get Location().y+e.getY()-currPos.y);

repaint();

}
4. Now we can removethei npl enent s MbuseMbt i onLi st ener from Car dConponent .
public class CardConponent extends Contai ner inpltenrents—MiuseMti-onkistener {

5. Finally, we must supply the new adapter instance to clients that need it. In this case, we must
look at the constructor. It has code that 1ooks like this:

publ i ¢ CardConponent () {

'a'ddl\/busel\/bti onLi stener(this);
}

This needs to be changed to call our new, private, Creation Method:

publ i c CardConponent () {

addMbuselMbt i onLi st ener (cr eat eMouselMdt i onAdapter());
}

Now we test. Unfortunately, since this is mouse related code, | don’t have automated unit tests.
So | resort to some simple manual testing and confirm that everything is ok.

Page 109 of 137

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Replace Type with Type-Safe Enum

A field’' slanguage-defined type (e.g. String, int, etc.) failsto protect it
from unsafe assignments and invalid equality comparisons

Constrain the assignments and equality comparisons
by making the field type-safe

SystemPermission

-state : String
+REQUESTED : String public final static REQUESTED = "REQUESTED";
+FAILED : String
+CLAIMED : String
+DENIED : String
+GRANTED : String
+DELIVERED : String

+SystemPermission() state = REQUESTED;
+state() : String
+claimed() : void
+failed() : void
+denied() : void
+granted() : void
+delivered() : void

if (Istate.equals(CLAIMED)) return;
state = GRANTED;

2

SystemPermission

-state : PermissionState

+SystemPermission() state = PermissionState. REQUESTED;
+state() : SystemPermission
+claimed() : void
+failed() : void
+denied() : void
+granted() : void
+delivered() : void

if (Istate.equals(PermissionState. CLAIMED)) return;
state = PermissionState. GRANTED;

PermissionState

-name : String) . 1o public final static PermissionState REQUESTED =
*REQUESTED . PermissionState new PermissionState("REQUESTED");

+FAILED : PermissionState
+CLAIMED : PermissionState
+DENIED : PermissionState
+GRANTED : PermissionState
+DELIVERED : PermissionState

-PermissionState(String : name)
+toString() : String

Page 110 of 137

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Motivation

A Type-Safe Enum bundles together a user-defined type with a set of constant instances of
that type. A primary motivation for refactoring to Type-Safe Enum is to constrain the possible
values that may be assigned to or equated with avariable.

To understand the value of this pattern, it helps to study code that isn't type-safe. Consider
the following test case:

public void testPernm ssionRequest () {
Syst enPer m ssi on perm ssion = new SystenPerni ssion();
assert Equal s(" perm ssion state", perni ssion. REQUESTED, permnission.state());
assert Equal s("perm ssion state", "REQUESTED', permi ssion.state());

The first line of code creates a Syst enPer mi ssi on object. The constructor for this object
setsits st at e instance variable equal to the Syst enPer ni ssi on. REQUESTED state:

public SystenPerm ssion() {
state = REQUESTED;

}

Other methods within Syst enPer mi ssi on assign st at e to system permission states such
as GRANTED and DENI ED. Now, given that each of these state types was defined using St ri ng
constants (like public final static String REQUESTED = "REQUESTED'), and st ate
was defined as type St ri ng, then the two tests above would both evaluate to true since st at e -
accessible via permission. state() - would be considered equal to
Syst enPer mi ssi on. REQUESTED and the St r i ng, “REQUESTED.”

What's the problem with that? Glad you asked. The St ri ng, “REQUESTED” represents one
object reference while the constant String, Syst enPer mi ssi on. REQUESTED, represents a
different object reference, and yet the instance variable, st at e, is considered equal to both of
them? That's not good, for just after a Syst enPer ni ssi on isingtantiated, we want itsst at e to
be equal to the object reference, SystenPer mi ssi on. REQUESTED, and no other object
reference. A Type-Safe Enum can easily accomplish this.

Another motivation for refactoring to a Type-Safe Enum occurs when callers can change the
value of an instance variable to an invalid value. For example, consider this code:

public class SystenPerm ssion...
public void setState(String newState){
state = newSt at e;
}

permi ssion.setState(“thinking”); // “thinking” is not a valid SystenPermni ssion state

If one didn’t use a Type-Safe Enum to prevent such spurious assignments, you' d have to fill your
classes with lots of unnecessary validation logic.

Communication Duplication Simplicity
It is useful to communicate the Duplication isn’'t an issue with A family of constants defined
availability of a type and respect to this refactoring. using a language-based type is
constant values of that type. A slightly simpler to declare than a
Type-Safe Enum does this well family of Type-Safe Enums, but
because it is a class that exists because Type-Safe Enums
solely to define the type and prevent spurious assignments
constants. from occurring, they often help

us simplify code.

Page 111 of 137

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Mechanics

1. ldentify a type-unsafe instance variable — i.e. a variable declared as a language-defined
type, which is assigned to or compared against a family of constant values. Identify any
getting/setting methods associated with this variable.

2. Rename the variable and any associated getting/setting methods, taking care to update al
callers to the getting/setting methods.

The type-unsafe variable often already has the name you want, so a quick rename now
will later allow you to define your type-safe variable with the name you want.

3. Compile and test

4. Declare a new class to store the family of constant values, naming the class after the
kinds of typesit will store. Thiswill be your Type-Safe Enum.

5. Choose one constant value that the type-unsafe instance variable is assigned to and/or
compared against and define a new version of this constant in your Type-Safe Enum class
by creating a public final static constant that is an instance of the Type-Safe Enum class.

6. Inthe classthat declared the type-unsafe instance variable, create atype-safe version of it
by declaring an instance variable whose type is the Type-Safe Enum class. Create any
necessary getting/setting methods for this instance variable, mirroring the getting/setting
methods declared for the type-unsafe instance variable.

7. Wherever the type-unsafe instance variable is assigned to the constant value choosen for
step 5, add code to assign the type-safe instance variable equal to the type-safe enum
constant created during step 5.

8. Wherever the type-unsafe instance variable is compared against the constant value
choosen in step 5, change the code to compare it against the type-safe enum constant,
created in step 5.

9. Compile and test.
10. Repeat steps 5, 7, 8 and 9 for every constant in the family of constant values.

11. Delete the type-unsafe instance variable, any getting/setting methods associated with it,
any direct assignmentsto it and all of the type-unsafe constants.

12. Compile and test.
Example

This example, which was shown in the code sketch and mentioned in the Motivation section,
deals with handling permission requests to access software systems. We'll begin by looking at
relevant parts of the class, Syst enPer ni ssi on:

public class SystenPerm ssion {
private String state;
private bool ean grant ed;
private bool ean fail ed;

public final static String REQUESTED = "REQUESTED';

Page 112 of 137

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

public final static String FAILED = "FAI LED";
public final static String CLAI MED = "CLAlI MED';
public final static String DEN ED = "DEN ED';
public final static String GRANTED = " GRANTED';
public final static String DELI VERED = "DELI VERED";

public SystenPerm ssion() {
state = REQUESTED;
failed = fal se;
granted = fal se;

}

public bool ean isGanted() {
return granted;
}

public bool ean hasFail ed() {
return fail ed,;
}

public String state() {
return state;
}

public void clained() {
if (state.equal s(REQUESTED))
state = CLAI MED,

}

public void failed() {
if (!state.equal s(REQUESTED)) return;
state = FAI LED;
failed = true;

}

public void denied() {
if (state.equal s(CLAI MED))
state = DEN ED,

}

public void granted() {
if (!state.equal s(CLAIMED)) return;
state = GRANTED,
granted = true;

}

public void delivered() {
if (state.equal s(GRANTED) || state.equal s(DEN ED))
state = DELI VERED;

}

1. The instance variable we're interested in here is called st at e, since it can be assigned to or
compared against a family of Stri ng constants also defined inside Syst enPer ni ssi on. Our
goal isto make st at e type-safe.

2. The first step is to rename st at e and its associated getting/setting methods. I'll rename
it to ol d_st at e, and, since st at e only has a getting method and no setting method, I'll
create amethod called ol d_st at e() and update client code to use it:

public class SystenPermi ssion...
private String old_state;

public SystenPerm ssion() {
ol d_state = REQUESTED;

}

public String old_state() {
return ol d_state;

}
Page 113 of 137

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

/1l etc.

And here is some client code that | update:

public class SystenPerm ssionTest extends Test Case. ..
public void testPerm ssionRequest () {
assert Equal s("request”, SystenPerm ssion. REQUESTED, permi ssion.old_state());
}

Note: It is best to use an automated refactoring tool to handle the renaming of the variable and
method(s).

3. | compile and test to make sure the name changes didn’t break anything.

4. Now | create aclass called Per ni ssi onSt at e, which will be my Type-Safe Enum class:

public final class PermissionState {

}

I makeit final because it will not need to be subclassed.

5. I now choose one constant value that the type-unsafe instance variable is assigned to or
compared against, and | create a version of this constant in Per mi ssi onSt at e, making it a
public constant Per i ssi onSt at e member variable and instance of Per mi ssi onSt at e:

public final class PermissionState {
public final static Perm ssionState REQUESTED = new Perni ssionState();

}

This new type-safe constant will be easier to work with if | can query itst oSt ri ng() method to
see which Per i ssi onSt at e typeitis. So | make the following change:

public final class PermissionState {
private String nane;

private Perm ssionState(String nanme) {
thi s. name = nane,

}

public final static Perm ssionState REQUESTED = new Perni ssi onSt at e(“ REQUESTED") ;

public String toString() {
return nane;

}
}

6. | create a new type-safe instance variable inside Syst enPer mi ssi on, using the type,
Permi ssi onSt ate. Since ol d_st at e only had a getting method and not a setting method, |
only need to create a getting method for st at e:

public class SystenPerm ssion...
private Perm ssionState state;

public Perm ssionState state() {
return state;
}

7. Wherever | find code that assigns ol d_st at e to Syst enPer mi ssi on. REQUESTED, | must
add code to assign st at e to Per i ssi onSt at e. REQUESTED:

public class SystenPerm ssion...
public SystenPerm ssion() {
ol d_state = REQUESTED;

Page 114 of 137

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

state = Perm ssionSt at e. REQUESTED;
failed = fal se;
granted = fal se;

}

Note: I'll delete the ol d_st at e assignment code later, when doing so won't cause logic
problems with code that expectsit to have a certain value.

8. Wherever ol d_st at e iscompared against Syst enPer mi ssi on. REQUESTED, | must replace
this code to compare st at e against Per mi ssi onSt at e. REQUESTED:

Here is some test code that needs updating:

public class SystenPerni ssionTest extends Test Case. ..
private SystenPerm ssion perm ssion;

public void setUp() {
perni ssion = new Syst enPerm ssion();

public void testPerm ssionRequest () {
assert Equal s("request”, SystenPerm ssion. REQUESTED, permi ssion.old_state());
}

Thet est Per m ssi onRequest method becomes:

public void testPerm ssionRequest () {
assert Equal s("request", Perm ssionState. REQUESTED, perm ssion.state());
}

Thefollowing codein Syst enPer ni ssi on aso needs updating:

public class SystenPerm ssion...
public void clained() {
if (ol d_state.equal s(REQUESTED))
ol d_state = CLAI MED;
}

public void failed() {
if (!'old_state.equal s(REQUESTED)) return;
ol d_state = FAI LED;
failed = true;

}
| change thisto:

public class SystenPerm ssion...
public void clained() {
if (state.equal s(Perm ssionState. REQUESTED))
ol d_state = CLAI MED;

}

public void failed() {
if (!state.equal s(Perm ssionState. REQUESTED)) return;
ol d_state = FAI LED,
failed = true;

}

9. Now | compile and test to see that everything is still working smoothly.

10. Next, | repeat steps 5, 7, 8 and 9 for every constant in the family of constant values. I'll spare
you the details.

Page 115 of 137

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

11. Findly, | have the pleasure of deleting ol d_st at e, the getting method, ol d_st at e(), all
assignments made to ol d_st at e, and the entire family of Syst enPer mi ssi on type-unsafe
constants. Here are afew of the deletions:

public class SystenPerm ssion...

pri-vate-String-old-state-

public SystenPerm ssion() {

state = PernissionState. REQUESTED,;

public void clained() {
if (state.equal s(Perm ssionState. REQUESTED)) {
obd_state = CLA-VED-

state = PernissionState. CLAl MED;
}
}

/! and so on...

12. | compile and test after al of the deletions. Now the instance variable, st at e, istype-safe:

public class SystenPernission {
private Perm ssionState state;
private bool ean grant ed,;
private bool ean fail ed;

public SystenPerm ssion() {
state = Perm ssi onSt at e. REQUESTED;
failed = fal se;
granted = fal se;

}

public bool ean isGranted() {
return granted;

}

public bool ean hasFail ed() {
return fail ed;

}

public Perm ssionState state() {
return state;

}

public void clained() {
if (state.equal s(Perm ssionState. REQJESTED))
state = Perm ssi onSt ate. CLAI MED;
}

public void failed() {
if (!state.equal s(Perm ssionState. REQUESTED)) return;
state = Perm ssionStat e. FAI LED,
failed = true;

}
public void denied() {

if (state.equal s(Perm ssionState. CLAI MED))
state = Perm ssionSt at e. DEN ED;

Page 116 of 137

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

}

public void granted() {
if (!state.equal s(Perm ssionState. CLAIMED)) return;
state = Perm ssionSt at e. GRANTED,
granted = true;

}

public void delivered() {
if (state.equal s(Perm ssionState. GRANTED) | |
st at e. equal s(Perm ssi onSt at e. DENI ED))
state = Perm ssionSt at e. DELI VERED;

Page 117 of 137

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.
Replace State-Altering Conditionals with State

Complex conditional expressions control an object’ s state transitions

Replace the conditionals with Sate classes that handle
specific states and transitions between them

SystemPermission

-state : String

*REQUESTED . String public void claimedBy (SystemAdmin admin) { |\
FCLAMED . String if (state '= REQUESTED &&.

+DENED . String state = UNIX_REQUESTED)

+GRANTED : String return:

2LNIX_REQUESTHDY String this.admin = admin;

+UNIX_CLAIMED : String if (state == REQUESTED)

+SystemPermission(...) state = CLAIMED;

+state() : String else if (state == UNIX_REQUESTED)
+claimedBy(...) : void state = UNIX_CLAIMED;

+grantedBy(...) : void }

+deniedBy(...) : void

SystemPermission

| _state : Permission state = Permission.REQUESTED;

+SystemPermission(...)
+state() : Permission
+setState(state: Permission)
+claimedBy(...) : void
+grantedBy(...) : void
+deniedBy(...) : void

state.claimedBy(...);;

Permission

+REQUESTED : Permission
+CLAIMED : Permission
+GRANTED : Permission
+DENIED : Permission

+UNIX_REQUESTED : Permission
+UNIX_CLAIMED : Permission

public final static Permission CLAIMED
=new PermissionClaimed();

+claimedBy(...) : void
+grantedBy(...) : void
+deniedBy(...) : void

UnixPermissionRequested PermissionRequested public void claimedBy(SystemAdmin admin,
+claimedBy(...) : void +claimedBy(...) : void ~ SystemPermission permission) {
permission.w illBeHandledBy (admin);
UnixPermissionClaimed PermissionClaimed }permlss|on.setState(Permlssmn.CLAIMED);
+grantedBy(...) : void +grantedBy(...) : void
+deniedBy(...) : void +deniedBy(...) : void

PermissionGranted |——| PermissionDenied |

Page 118 of 137

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Motivation

The primary reason for refactoring to the State pattern is to tame overly-complex state-
altering conditional logic. Such logic, which tends to spread itself thoughout a class, controls an
object’s state, including how states transition to other states. When you implement this pattern
you create state classes that represent specific states of an object and the transitions between those
states. The object that has its state changed is known as the context. A context delegates state-
changing behavior to a state object. State objects make state transitions at runtime by making the
context point to a different state object.

If you don’t know the State pattern very well, you'll understand this refactoring better if you
study the State pattern in Design Patterns [GoF]. If you do know this pattern, you might be using
it when you don’t need to be: i.e. when simple state-altering conditional logic would do. This
refactoring is concerned with the edge — the place where state-altering conditional logic is no
longer easy to follow or extend and when the State pattern can really make a difference.

Before | ever refactor to State, | always seeif | can implement a smpler solution by applying
low-level refactorings, like Extract Method (110) [Fowler]. If those refactorings still don’t tame
the conditional logic, | know I’'m ready for State. The State pattern has a way of reducing or
removing many lines of conditional logic, yielding clean, simple and extensible code.

If your state objects have no instance variables, context objects can share instances of them.
Sharing state instances is often achieved via the Singleton or Flyweight patterns. If you need to
easily write and configure mock objects for specific states, be careful that your Singleton or
Flyweight code doesn’t make working with mocks too difficult. If you don’t need mock objects
for state instances and your state instances are stateless, context objects can share the instances by
getting access to them via Creation Methods on their superclass (see Encapsulate Classes with
Creation Methods (21)).

This refactoring is different from Replace Type Code with State/Strategy (227) [Fowler] in a
few areas. First, | don't have a single refactoring for the State and Strategy patterns because |
view them as different patterns, | refactor to them for different reasons (see Replace Conditional
Calculations with Strategy (44)) and the mechanics of the refactorings to each pattern differ.
Second, Martin dedliberately doesn't document a full refactoring to the State pattern, since the
complete implementation depends on a further refactoring he wrote, called Replace Conditional
with Polymorphism (225) [Fowler]. While | respect that decision, | thought it would be more
helpful to readers to understand how the refactoring works from end to end, so my mechanics and
example sections delineate all of the steps to get you from conditional state-changing logic to a
State pattern implementation.

Communication Duplication Simplicity
Many lines of state-altering When you have a lot of state- One of the main reasons to
conditional logic don't altering conditional logic, you perform this refactoring is to
communicate intent very well. tend to see the same conditional | simplify complex state-changing
Communicate this logic clearly phrases repeated throughout the | logic. If you can’t easily follow
by splitting out the state methods of a class. the state-changing logic in your
transition logic into classes that Implementing the State pattern class, it may be a good time to
know how to handle their state will allow you to remove much of | refactor to the State pattern.
transitions. this conditional logic.

Page 119 of 137

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

10.

Mechanics

A class (which we'll call the context class) contains a field (which we'll call the original
state field) that gets assigned to or compared against a family of constants during state
transitions. Rename this field and any associated getting/setting methods, taking care to
update all calersto the getting/setting methods.

Compile and test.

Declare a new abstract class and name it based on the name or general purpose of the
original satefield.

Declare subclasses of the abstract class, one for each of the states the context class may
enter.

- If you have 5 constant values that represent states, you'll create 5 subclasses.

- Your subclasses won’'t have any methods in them to start — you’ll add methods later.

- If clients will interact with your state subclasses solely through the interface of their
superclass, it's a good idea to make every subclass constructor non-public.

Create anon-public field (which we'll call the state field) in the context class, making its
type that of the abstract class (from step 3). Create any necessary getting/setting methods
for this field, mirroring the getting/setting methods on the field choosen in step 1.

Identify a state the context class can enter. For each context class method that transitions
this state to one or more other states, declare a similar method on the abstract class (from
step 3) and on the subclass that corresponds with this state.

- It'sbest to start with the state the context class enters after being instantiated.

Implement the method(s) on the subclass, making whatever changes are necessary for
each method to perform the state transition logic currently residing in the context class.

- You may decide to pass a context class reference to the method(s) so the subclass code
can call back on the context class.
- At this point, you aren’t replacing the state transition logic in the context class.

Wherever the original state field is assigned to the constant value for the state, add code
to set the state field equal to an instance of the subclass you just worked with.

- If this subclass is stateless, you can make a public static final version of it available via
the abstract classor a creation class.

Wherever the original state field is compared against the constant value for the selected
state, change the code to compare the state field against the subclass instance.

Compile and test.
Repest steps 5 through 8 for each context class state.

For every method in the context class that can change state, replace all of the code with a
single delegation call to the state field.

Compile and test.
Page 120 of 137

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

11. Delete the original state field, any getting/setting methods and constants associated with
it and any direct assignments to it. This step involves deleting code in the state
subclasses.

Compile and test.

Example

To understand when it makes sense to refactor to the State pattern, it helps to study a
class that manages its state without requiring the sophistication of the State pattern.
Syst enPer m ssi on is such aclass. It uses simple conditional logic to keep track of
the state of a permission request to access a software system. Over the lifetime of a
Syst enPer m ssi on object an instance variable named st at e transitions between
the states requested, claimed, denied and granted. Here is a UML representation of the
possible transitions:

system permission
requested by user

admin claims request

admins
notified of request

admin grants request admin denies request

Below is the code for Syst enPer m ssi on and a fragment of test code to show
how the class gets used:

public class SystenPerm ssion {
private SystenProfile profile;
private Systenlser requestor;
private SystemAdni n admi n;
private bool ean i sG ant ed;
private String state;

public final static String REQUESTED = "REQUESTED';
public final static String CLAI MED = "CLAl MED';
public final static String GRANTED = " GRANTED';
public final static String DENIED = "DEN ED';

public SystenPerm ssion(Systenlser requestor, SystenProfile profile) {
this. requestor = requestor;
this.profile = profile;
state = REQUESTED;
isGanted = fal se;
noti f yAdm nCOf Per mi ssi onRequest () ;
}

public String state() {
return state;
}

public void clai medBy(SystemAdm n adm n) {
Page 121 of 137

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

if (state != REQUESTED)
return;
this.admn = adm n;
state = CLAI MED,
}

public void deni edBy(SystemAdnmi n adm n) {
if (state != CLAI MED)
return;
if (this.admn !'= admn) return;
isGanted = fal se;
state = DEN ED,
noti f yUser OF Per m ssi onRequest Resul t () ;
}

public void grantedBy(SystemAdm n adm n) {
if (state != CLAI MED)
return;
if (this.admn != admn) return;
state = GRANTED;
isGanted = true;
noti fyUser O Per mi ssi onRequest Resul t () ;
}

public bool ean isGanted() {
return i sGanted;
}

public void notifyAdm nCOf Perm ssi onRequest () {
...

}

public void notifyUserOf Perm ssi onRequest Resul t () {
/1 .
}

}

public class TestStates extends TestCase ...

public void testGantedBy() {
per m ssi on. grant edBy(admi n);
assert Equal s("requested", perni ssion. REQUESTED, permission.state());
assert Equal s("not granted", false, permission.isGanted());
per m ssi on. cl ai medBy(admi n);
per m ssi on. grant edBy(admni n);
assert Equal s("granted", perm ssion. GRANTED, perm ssion.state());
assert Equal s("granted", true, permission.isGanted());

Notice how the instance variable, st at e, gets assigned to different values as clients call
specific Syst enPer ni ssi on methods. Now look at the overal conditiona logic in
Syst enPer m ssi on. This logic is responsible for transitioning between states, but the
logic isn't very complicated so the code doesn’t require the sophistication of the State pattern.

This conditional state changing logic can quickly become hard to follow as more real-world
behavior gets added to the Syst enPer m ssi on class. For example, a client told us about
their security system in which users needed to obtain unix and/or database permissions before the
user could be granted general permission to access a given software system. The state transition

logic for a system that requires unix permission before general permission may be granted looks
likethis:

Page 122 of 137

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

admin
claims request

system permission
requested by user

system
permission
claimed

system
permission
requested

admins
notified of request

admin attempts to
grant permission

admin denies request
and user notified

unix permission
required before
granting request

system
permission
denied

unix
permission
requested

system
permission
granted

admin claims request

admin grants request admin rejects request

unix
permission
claimed

Adding support for unix permission makes Syst enPer mi ssi on’s state-altering conditional
logic alot more complicated than it used to be. Consider the following:

public class SystenPerm ssion...
public void clainedBy(SystemAdm n admi n) {
if (state ! = REQUESTED &&
state ! = UNl X_REQUESTED)
return;
this.adm n = adm n;
if (state == REQUESTED)
state = CLAI MED;
else if (state == UN X_REQUESTED)
state = UNI X_CLAI MED;
}

public void deni edBy(SystemAdni n admin) {
if (state !'= CLAI MED &&
state !'= UNI X_CLAI MED) return;
if (this.admn != admin) return;
isGranted = fal se;
i sUni xPerm ssi onGranted = fal se;
state = DEN ED,
noti fyUser OF Per mi ssi onRequest Resul t () ;

}

public void grantedBy(SystemAdm n adm n) {
if (state !'= CLAI MED &&
state !'= UNI X_CLAI MED) return;
if (this.admn != admin) return;

if (profile.isUnixPerm ssionRequired() &%
state == UNI X_CLAI MED)
i sUni xPerm ssi onGranted = true;

else if (profile.isUnixPerm ssionRequired() &&
1'i sUni xPerm ssi onGranted()) {
state = UNI X_REQUESTED;
noti f yUni xAdm nsOf Per mi ssi onRequest () ;
return;

}
state = GRANTED;

isGanted = true;
noti fyUser OF Per mi ssi onRequest Resul t () ;

An attempt can be made to simplify the above code by applying Extract Method (110) [Fowler].
For example, one could refactor the gr ant edBy () method like so:

Page 123 of 137

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

public void grantedBy(SystemAdm n adm n) {

if (lislnCOainmedState()) return;

if (this.admin !'= admn) return;

if (isUnixPerm ssionRequestedAndd ai ned())
i sUni xPer mi ssionGranted = true;

el se if (isUnixPerm sionDesiredButNot Requested()) {
state = Perm ssionState. UNl X_REQUESTED;
not i f yUni xAdm nsCOf Per mi ssi onRequest () ;
return;

}

That's a little better but now the Syst enPer m ssi on class has lots of state-specific boolean
logic (i.e. methods liks isUni xPer nmi ssi onRequest edAndd ai med()) and vyet
grant edBy() dtill isn't simple. It'stimeto simplify things by refactoring to the State pattern.

1. Syst enPer ni ssi on has a field caled st at e and a corresponding accessor method called
state(). | rename these to ol d_st at e because | want to use the name state for the State
pattern implementation.

public class SystenPerm ssion...
private String ol d_state;

publ i c SystenPerm ssi on(Systenmser requestor, SystenProfile profile) {
this.requestor = requestor;
this.profile = profile;
ol d_state = REQUESTED;
isGanted = fal se;
i sUni xPerm ssi onGranted = fal se;
not i f yAdm nCf Per mi ssi onRequest () ;
}

public String old_state() {
return ol d_state;

}

I make sure al client code is updated, compile and test that the name changes work.

2. Now | create a new abstract class that will serve as a base class for al of the states that a
Syst enPer mi ssi on can enter. “Permission” sounds like a good name for this class:

public abstract class Perm ssion {

}

3. Next, it's time to create Permi ssion subclasses for each of the states that a
Syst enPer i ssi on can enter.

public class Perm ssi onRequest ed extends Perm ssion {}
public class Perm ssionC ai ned extends Perm ssion {}
public class Perm ssionG anted extends Perm ssion {}
public class Perm ssionDeni ed extends Perm ssion {}
public class Uni xPerm ssi onC ai ned extends Perm ssion {}
public class Uni xPerm ssi onDeni ed extends Perm ssion {}

Sincethe Syst enPer i ssi on class will interact with each of these state subclasses viathe
interface of their superclass, | make each of their constructors protected.

4. Now | create a private Per ni ssi on field in Syst enPer i ssi on along with a getting
method for it. | don’t create a setting method for it (yet), because I'm simply mirroring what the
field, ol d_st at e, had (i.e. agetting method and no setting method)

public class SystenPerm ssion...
private Perm ssion state;

Page 124 of 137

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

public Perm ssion state() {
return state;

}

5. Now comes the fun part. | identify the first state that a Syst enPer mi ssi on object can enter:
the REQUESTED state. | study which Syst enPer ni ssi on method(s) can transition the
REQUESTED state to some other state and find that cl ai medBy(..) is the only method that
does so — it alows the transition from REQUESTED to CLAIMED. This leads me to declare a
cl ai medBy(..) method onthe Per i ssi on and Per mi ssi onRequest ed classes.

public abstract class Permssion...
public void clai medBy(SystemAdm n adnmin) {}

public class Perm ssi onRequest ed extends Permi ssion...
public void clai medBy(SystemAdm n adnmin) {}

6. | can now implement the Per mi ssi onRequest ed. cl ai medBy(..) method. | start by
studying the Syst enPer mi ssi on. cl ai nedBy(..) method:

public class SystenPerm ssion...
public void clainedBy(SystemAdm n admi n) {
if (old_state ! = REQUESTED && ol d_state ! = UNl X_REQUESTED)
return;
this.admin = adm n;
if (old_state == REQUESTED)
ol d_state = CLAI MED,
else if (old_state == UN X _REQUESTED)
ol d_state = UN X_CLAI MED;
}

This method is weighted down with logic, much of which isn't important to my present task of
writing code to handle the transition from the REQUESTED state to the CLAIMED state. The
guard clause at the start of the method won't be necessary in my State-pattern implementation,
and the conditional logic to check if ol d_st at e is equal to REQUESTED also isn’'t important,
since | know I'll be in the PermissionRequested state when the claimedBy(...) method is called.
Finally, | don’t care at al about any logic relating to UNIX states. So, ignoring most of the logic
in this method, | wrote the following code:

public abstract class Permssion...
public void clai medBy(SystemAdni n adni n, SystenPerni ssion permni ssion)

public class Perm ssi onRequest ed extends Permi ssion...
public void clai nedBy(SystemAdm n adnmin, SystenPerm ssion perm ssion) {
permi ssi on. wi | | BeHandl edBy(admi n);
permi ssi on. set A dSt at e(per m ssi on. CLAI MED) ;

}

public class SystenPermi ssion...
public void wi || BeHandl edBy(SystemAdm n admin) {
this.adm n = adm n;
}
public void setOdState(String state) {
this.old_state = state;

}

7. Now | find al places in SystenPermi ssion where ol d_state is assigned to the
REQUESTED constant and | add code to assign st at e equa to a Per nmi ssi onRequest ed
instance:

Page 125 of 137

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

public class SystenPerm ssion...

publ i c SystenPerm ssi on(SystenmJser requestor, SystenProfile profile) {
this.requestor = requestor;
this.profile = profile;
ol d_state = REQUESTED;
state = Perm ssi on. REQUESTED;
isGanted = fal se;
i sUni xPer mi ssi onG anted = fal se;
not i f yAdm nCOf Per mi ssi onRequest () ;

}

public abstract class Permssion...
public final static Perm ssion REQUESTED = new Perm ssi onRequest ed();

8. Next, | find al places in Syst enPer mi ssi on where ol d_state is compared to the
REQUESTED constant and | change the code to compare state with the
Per mi ssi onRequest ed instance:

Here's some test code that needs updating:

public class TestStates extends TestCase...
private Systemser user = new Systemnser ("Doe", "John");
private SystemAdnmi n adnmin = new SystemAdm n("Joe", "Brontesaurus");
private SystenProfile profile = new SystenProfil e("Enpl oyee Benefits");
private SystenPerm ssion perm ssion;

public TestStates(String nanme) {
super (nane) ;

public void setUp() {
permi ssion = new SystenPerm ssion(user, profile);

}

public void testRequestedBy() {
assert Equal s("requested”, permni ssion. REQUESTED, permi ssion.old_state());

}

Thet est Request edBy() method becomes:

public void testPerm ssionRequest () {
assert Equal s("request"”, Perm ssion. REQUESTED, permission.state());

}

Thefollowing Syst enPer i ssi on code also requires updating:

public class SystenPerm ssion...
public void clai medBy(SystemAdm n admn) {

if (old_state ! = REQUESTED && ol d_state != UN X _REQUESTED)
return;

this.adm n = admin;

if (old_state == REQUESTED)
ol d_state = CLAI MED;

else if (old_state == UNl X_REQUESTED)
ol d_state = UNI X_CLAI MED;

| change thisto:

public class SystenPerm ssion...
public void clai medBy(SystemAdm n adm n) {

if (!state.equal s(Perm ssion. REQUESTED) && ol d_state != UNl X REQUESTED)
return;

this.adm n = adm n;

if (state.equal s(Perm ssion. REQUESTED))
ol d_state = CLAI MED;

else if (old_state == UNI X_REQUESTED)
ol d_state = UNI X_CLAI MED;

Page 126 of 137

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

}

| compile and test to confirm that these changes work.

9. Now | must repeat steps 5-8 for each of the additional states that a Syst enPer nmi ssi on can
enter. It would require too many pages to show you all of these changes, so I'll just show you
what changes are hecessary to implement the State pattern version of the CLAIMED state.

To implement step 5, | must identify which Syst enPer i ssi on method(s) can transition
the CLAIMED state to one or more other states. Syst enPer ni ssi on. grant edBy(..) and
deni edBy(..) arethose methods. So | write the following code:

public abstract class Permssion...
public final static Perm ssion REQUESTED = new Perm ssi onRequest ed();
public void clai nedBy(SystemAdm n adnmin, SystenPerm ssion perm ssion) {}
public void deni edBy(SystemAdnmi n adnmin) {}
public void grantedBy(SystemAdm n adnmin) {}

public class Perm ssiond ai med extends Perm ssion...
public void deni edBy(SystemAdnm n admin) {}
public void grantedBy(SystemAdm n adnmin) {}

To implement step 6, | must implement Pernissiond ai med. grantedBy(.) and
deni edBy(..). Again, | look in the original methods to discover what actions are performed. |
learn that the CLAIMED state may transition to either DENIED, UNIX_ REQUESTED or
GRANTED. So | write the following code:

public abstract class Permssion...
public void grantedBy(SystemAdnm n adnin, SystenPerm ssion perm ssion) {}
public void deni edBy(SystemAdni n admi n, SystenPerm ssion perm ssion) {}

public class Pernissiond ai med extends Permni ssion {
public void deni edBy(SystemAdn n adnmin, SystenPerm ssion perm ssion) {
per mi ssi on. wi | | BeHandl edBy(admni n) ;
permi ssi on. set O dSt at e(per m ssi on. DENI ED) ;
perm ssion. setlsGanted(fal se);
permi ssion. notifyUser O Perm ssi onRequest Resul t () ;

public void grantedBy(SystemAdm n admi n, SystenPerm ssion perm ssion) {

perm ssion.w | | BeHandl edBy(admi n);

if (permssion.profile().isUnixPerm ssionRequired() &&
! per mi ssi on. i sUni xPerm ssionGanted()) {
perm ssion. set A dSt at e(per m ssi on. UNl X_REQUESTED) ;
permi ssion. noti fyUni xAdm nsOf Per m ssi onRequest () ;
return;

}

permi ssion. set O dSt at e(per m ssi on. GRANTED) ;

permi ssion.setlsGanted(true);

perm ssion. notifyUser O Perm ssi onRequest Resul t () ;

Toimplement step 7, | find al placeswhere ol d_st at e gets assigned to the CLAIMED constant
and | add codeto assign st at e equal to aPer i ssi ond ai med instance:

public abstract class Permssion...
public final static Perm ssion CLAI MED = new Perni ssi ond ai med();

public class SystenPerm ssion...
public void clai medBy(SystemAdm n adm n) {

if (state.equal s(Perm ssion. REQUESTED)) {
ol d_state = CLAI MED;
state = Perm ssi on. CLAI MED;

}

Page 127 of 137

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Per mi ssi onRequest ed also makes an assignment to the CLAIMED state, so | add code there
aswell:

public class Perm ssi onRequest ed extends Pernission {
public void clai nedBy(SystemAdm n adnmi n, SystenPerm ssion permni ssion) {
per mi ssion. wi | | BeHandl edBy(admni n) ;
permi ssi on. set A dSt at e(per m ssi on. CLAI MED) ;
per mi ssi on. set St at e(Per mi ssi on. CLAI MED) ;

}
}

To implement step 8, | look for places where ol d_st at e is compared against the CLAIMED
constant and | change the code to compare st at e against the Per ni ssi onC ai med instance.
Here are the changes | make:

public class TestStates extends TestCase...
public void testd ai medBy() {
per m ssi on. cl ai medBy(adm n) ;
assert Equal s("cl ai med", Perm ssion. CLAI MED, permi ssion.state());

}

public class SystenPerm ssion...
public void deni edBy(SystemAdni n admi n) {
if (!state.equal s(Perm ssion. CLAIMED) && old_state != UNI X _CLAI MED) return;

}
public void grantedBy(SystemAdm n adm n) {
if (!state.equal s(Perm ssion. CLAIMED) && old_state != UNI X CLAI MED) return;

-

I compile and test to confirm that all of the changes work. Next, | continue to implement steps 5-8
for the remainder of Syst enPer ni ssi on states.

10. Now comes the fun part — making Syst enPer nmi ssi on delegate to methods on the st at e
field for all of its state transitions. This step alows me to delete many lines of code:

public class SystenPerm ssion...
public void clainedBy(SystemAdm n admi n) {
state. cl ai mredBy(adm n, t his);

public void deni edBy(SystemAdm n adm n) {
state. deni edBy(adm n, this);

Page 128 of 137

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

public void grantedBy(SystemAdm n adm n) {
state. grantedBy(adm n,this);

}

I compile and test that unbelievably, everything works as expected.

11. Findly, | get a chance to remove more unnecessary code: i.e. everything associated with
ol d_st at e, including the ol d_st at e assignments made from the state subclasses. Here are a
few of the deletions | make:

public class Perni ssi onRequest ed extends Permi ssion {
public void clai nedBy(SystemAdm n adnmi n, SystenPerm ssion permi ssion) {
perm ssion.w | | BeHandl edBy(admi n);

per i ssi on. set St at e(Per m ssi on. CLAI MED) ;

}
}

public class SystenPerm ssion...

prvate-String-old_state-

publ i c SystenPerm ssion(Systenlser requestor, SystenProfile profile) {

| compile and run my tests to confirm that everything isworking. I've now fully implemented the
State pattern. Was all that work worth it? I'll let you decide. Consider the code in a few of the
state subclasses (listed below) and compare it against the state-altering conditional logic we
started with:

Page 129 of 137

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

public class Perm ssi onRequest ed extends Permni ssion {
protected Perm ssionRequested() {
super ();

public void clai nedBy(SystemAdm n adnmin, SystenPerm ssion perm ssion) {
perm ssi on. wi | | BeHandl edBy(adm n);
per mi ssi on. set St at e(Per mi ssi on. CLAI MED) ;
}
}

public class Uni xPerm ssi onRequest ed extends Perm ssion {
protected Uni xPerm ssi onRequest ed() {
super ();

public void clai nedBy(SystemAdm n admi n, SystenPerm ssion perm ssion) {
per i ssion. wi | | BeHandl edBy(admni n);
per nmi ssi on. set St at e(Per mi ssi on. UNI X_CLAI MED) ;
}
}

public class Uni xPerm ssionC ai med extends Perm ssion {
protected Uni xPerm ssi ond ai med() {
super();

public void deni edBy(SystemAdnm n adnmin, SystenPerm ssion perm ssion) {
per i ssi on. wi | | BeHandl edBy(admni n) ;
per m ssi on. set St at e(Per mi ssi on. DENI ED) ;
perm ssion. setlsGanted(fal se);
per i ssi on. set | sUni xPer nm ssi onG ant ed(fal se);
permi ssion. notifyUser Of Perm ssi onRequest Resul t () ;

public void grantedBy(SystemAdm n adnmin, SystenPerm ssion perm ssion) {
per i ssion. wi | | BeHandl edBy(admni n);
per ni ssi on. set St at e(Per m ssi on. GRANTED) ;
permi ssion.setlsGanted(true);
per m ssi on. set | sUni xPer m ssi onGrant ed(true);
pernmi ssion. notifyUser O Perm ssi onRequest Resul t () ;

}

}

public class Perm ssi onG anted extends Perm ssion {
protected Perm ssionG anted() {
super () ;

}

public class Perm ssionDeni ed extends Perm ssion {
protected Perm ssionDenied() {
super();

Page 130 of 137

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 131 of 137

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Replace Singleton with Constant

Motivation
Mechanics

Example
public void deni ed(ApplicationPerm ssion pernission)
per m ssi on. set St at e(Appl i cati onPerni ssi onDeni ed. get | nstance());

becomes

public void denied(ApplicationPerm ssion pernission) {
per i ssi on. set St at e(per ni ssi on. DENI ED) ;

Page 132 of 137

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Replace Retrieval with Listener

[Colloguium Example]
[SAX vs DOM]

Motivation
Mechanics

Example

Page 133 of 137

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

References

[Beck]
Beck, Kent. Smalltalk Best Practice Patterns. Upper Saddle River, N.J.: Prentice Hall, 1997.

[Bloch]
Bloch, Joshua. Effective Java. Addison-Wesley, 2001.

[Fowler]
Fowler, Martin. Refactoring: Improving the Design of Existing Code. Addison-Wesley.

[GOF]
Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides. Design Patterns. Elements of
Reusable Object Oriented Software. Reading, Mass.: Addison-Wesley, 1995.

[JUnit]
Kent Beck and Erich Gamma. JUnit Testing Framework. Available on the Web
(http://www.junit.org).

Page 134 of 137

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.
Appendix A —Naming Conventions

[describe forName, writeOn, claimedBy, etc].

Page 135 of 137

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.
Appendix B —Loan Terminology

A few of the code fragments used in the examplesin this book are based on financial systems that
calculate numbers for Loans. If you don’'t have experience writing systems like that, you may
find that the example code is hard to understand. No problem. You don’'t need to know much to
make sense of this code. The following describes the three major loan types used in the example
code:

* Term Loan: often abbreviated as a TL, is the simplest of loans: | give you $100 and ask
you to pay it back by some date, which is known as the maturity date of the loan.

* Revolver: a Revolver is an instrument that provides “revolving credit”, like a credit card

with a spending limit and expiry date. Financia companies often abbreviate Revolvers as
“RC.”

* RCTL —thisisacombination of a Revolver and Term Loan. The loan startsitslifeasa
Revolver, and on its expiry date, becomes a Term Loan. RCTLs have both expiry and
maturity dates.

It is common to calculate numbers for loans, such as capital, risk-adjusted capital, return on
capital, etc. When we do risk-adjusted calculations, we often need to use the numbers from some
risk-table. In general, the kinds of calculations done on the various loan types shouldn’t effect
your understanding of the refactoring steps.

Page 136 of 137

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Conclusion

Stay tuned for more refactorings. Thiswork is only the beginning of alarger work on this subject.
I welcome your thoughts and feedback. If you are interested in seeing the latest copies of this
work, please visit http://industriall ogic.com/xp/refactoring/

Acknowledgements

I'd like to thank my wife, Tracy, for her loving support and continuous encouragement.

Eric Evans has contributed more than any one else to making this work what it istoday. | want to
thank him for his continued support, thoughtful conversations, great ideas and feedback.

I’d also like to the thank the following people:

Russ Rufer and all of the many great members of the Silicon Valey Patterns Group
(Tracy Bialik, Alan Harriman, Chris Lopez, Charlie Toland, Bob Evans, John Brewer,
Jeff Miller, Patrick Manion, Debbie Utley, Carol Thistlethwaite, Summer Misherghi, Ted
Y oung, Siging Zhang). Y our feedback has been invaluable.

Raobert Hirshfeld, for helping clarify the Decorator mechanics section.

Martin Fowler for inspiration and encouragement, for giving me the advice that | once
gave him (i.e. use code sketches at the beginning of each refactoring) and for numerous
helpful suggestions and ideas.

Kent Beck for his reviews and suggestions.
John Vlissides for his reviews and suggestions.

Ralph Johnson, Brian Foote, Brian Marick, Don Roberts, John Brant and others from the
University of Illinois.

Somik Raha — for many great pairing sessions, refactoring ideas and some poor code he
once wrote when he was tired which provided great refactoring material.

Many thanks to the following folks who provided excellent suggestions. Rob Mee, Jeff
Grigg, Kaoru Hosokawa, Don Hinton, Andrew Swan, Erik Meade, Craig Demyanovich.

Page 137 of 137

