

Refactoring To Patterns

version 0.15

Joshua Kerievsky
joshua@industriallogic.com

Industrial Logic, Inc.
http://industriallogic.com

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 2 of 137

Table of Contents

Introduction ... 6

Chain Constructors.. 12

Motivation .. 13
Mechanics .. 13
Example .. 13
Chaining To An Init Method ... 14

Replace Multiple Constructors with Creation Methods....... 15

Motivation .. 15
Mechanics .. 16
Example .. 17
Parameterized Creation Methods .. 19

Encapsulate Classes with Creation Methods..................................... 21

Motivation .. 22
Forces .. 23
Mechanics .. 23
Example .. 23
Encapsulating Inner Classes... 25

Extract Creation Class ... 27

Motivation .. 27
Mechanics .. 28
Example .. 28

Move Object Composition to Creation Method............................... 31

Motivation .. 31
Prerequisites... 31
Mechanics .. 31
Example .. 31

Replace Multiple Instances with Singleton.. 32

Replace Singleton with Object Reference.. 33

Motivation .. 33

Replace Singleton with Registry .. 34

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 3 of 137

Introduce Polymorphic Creation with Factory Method 36

Motivation .. 37
Forces .. 37
Mechanics .. 37
Example .. 38
Duplication Across Subclasses ... 40

Defer Slow Creation with Virtual Proxy ... 42

Motivation .. 43
Mechanics .. 43
Example .. 43

Replace Conditional Calculations with Strategy 44

Motivation .. 45
Mechanics .. 45
Example .. 46

Replace Implicit Tree with Composite.. 53

Motivation .. 53
Mechanics .. 54
Example .. 54

Encapsulate Composite with Builder .. 57

Motivation .. 57
Mechanics .. 58
Example .. 58
Extended Example ... 60

Extract Special-Case Behavior into Decorators............................ 63

Motivation .. 64
Mechanics .. 65
Example .. 65
Collections.synchronizedMap... 71

Replace Hard-Coded Notifications with Observer...................... 73

Motivation .. 74
Mechanics .. 75
Example .. 75

Move Accumulation to Collecting Parameter 78

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 4 of 137

Motivation .. 78
Mechanics .. 79
Example .. 79
JUnit’s Collecting Parameter... 82

Replace One/Many Distinctions with Composite 83

Motivation .. 84
Mechanics .. 84
Example .. 85

Compose Method... 86

Motivation .. 86
Mechanics .. 87
Example 1... 88
Example 2... 91
Example 3... 97

Separate Versions with Adapters .. 99

Motivation .. 100
Mechanics .. 100
Example .. 101
Adapting with Annonymous Inner Classes... 106
Adapting Legacy Systems .. 106

Adapt Interface.. 107

Motivation .. 107
Mechanics .. 108
Example .. 108

Replace Type with Type-Safe Enum... 110

Motivation .. 111
Mechanics .. 112
Example .. 112

Replace State-Altering Conditionals with State 118

Motivation .. 119
Mechanics .. 120
Example .. 121

Replace Singleton with Constant.. 132

Motivation .. 132

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 5 of 137

Mechanics .. 132
Example .. 132

Replace Retrieval with Listener.. 133

Motivation .. 133
Mechanics .. 133
Example .. 133

References .. 134
Appendix A – Naming Conventions .. 135
Appendix B – Loan Terminology .. 136
Conclusion ... 137
Acknowledgements... 137

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 6 of 137

Introduction

Patterns are a cornerstone of object-oriented design, while test-first
programming and merciless refactoring are cornerstones of evolutionary
design. To stop over- or under-engineering, it’s necessary to learn how
patterns fit into the new, evolutionary rhythm of software development. –
Joshua Kerievsky

The great thing about software patterns is that they convey many useful design ideas. It follows,
therefore, that if you learn a bunch of these patterns, you’ll be a pretty good software designer,
right? I considered myself just that once I’d learned and used dozens of patterns. They helped me
develop flexible frameworks and build robust and extensible software systems. After a couple of
years, however, I discovered that my knowledge of patterns and the way I used them frequently
led me to over-engineer my work.

Once my design skills had improved, I found myself using patterns in a different way: I began
refactoring to patterns, instead of using them for up-front design or introducing them too early
into my code. My new way of working with patterns emerged from my adoption of Extreme
Programming design practices, which helped me avoid both over- and under-engineering.

Zapping Productivity
When you make your code more flexible or sophisticated than it needs to be, you over-engineer
it. Some do this because they believe they know their system’s future requirements. They reason
that it’s best to make a design more flexible or sophisticated today, so it can accommodate the
needs of tomorrow. That sounds reasonable, if you happen to be a psychic.

But if your predictions are wrong, you waste precious time and money. It’s not uncommon to
spend days or weeks fine-tuning an overly flexible or unnecessarily sophisticated software
design—--leaving you with less time to add new behavior or remove defects from a system.

What typically happens with code you produce in anticipation of needs that never materialize? It
doesn’t get removed, because it’s inconvenient to do so, or because you expect that one day the
code will be needed. Regardless of the reason, as overly flexible or unnecessarily sophisticated
code accumulates, you and the rest of the programmers on your team, especially new members,
must operate within a code base that’s bigger and more complicated than it needs to be.

To compensate for this, folks decide to work in discrete areas of the system. This seems to make
their jobs easier, but it has the unpleasant side effect of generating copious amounts of duplicate
code, since everyone works in his or her own comfortable area of the system, rarely seeking
elsewhere for code that already does what he or she needs.

Over-engineered code affects productivity because when someone inherits an over-engineered
design, they must spend time learning the nuances of that design before they can comfortably
extend or maintain it.

Over-engineering tends to happen quietly: Many architects and programmers aren’t even aware
they do it. And while their organizations may discern a decline in team productivity, few know
that over-engineering is playing a role in the problem.

Perhaps the main reason programmers over-engineer is that they don’t want to get stuck with a
bad design. A bad design has a way of weaving its way so deeply into code that improving it

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 7 of 137

becomes an enormous challenge. I’ve been there, and that’s why up-front design with patterns
appealed to me so much.

The Patterns Panacea
When I first began learning patterns, they represented a flexible, sophisticated and even elegant
way of doing object-oriented design that I very much wanted to master. After thoroughly
studying the patterns, I used them to improve systems I’d already built and to formulate designs
for systems I was about to build. Since the results of these efforts were promising, I was sure I
was on the right path.

But over time, the power of patterns led me to lose sight of simpler ways of writing code. After
learning that there were two or three different ways to do a calculation, I’d immediately race
toward implementing the Strategy pattern, when, in fact, a simple conditional expression would
have been simpler and faster to program—a perfectly sufficient solution.

On one occasion, my preoccupation with patterns became quite apparent. I was pair
programming, and my pair and I had written a class that implemented Java’s TreeModel
interface in order to display a graph of Spec objects in a tree widget. Our code worked, but the
tree widget was displaying each Spec by calling its toString() method, which didn’t return the
Spec information we wanted. We couldn’t change Spec’s toString() method since other parts of
the system relied on its contents. So we reflected on how to proceed. As was my habit, I
considered which patterns could help. The Decorator pattern came to mind, and I suggested that
we use it to wrap Spec with an object that could override the toString() method. My partner’s
response to this suggestion surprised me. “Using a Decorator here would be like applying a
sledgehammer to the problem when a few light taps with a small hammer would do.” His solution
was to create a small class called NodeDisplay, whose constructor took a Spec instance, and
whose one public method, toString(), obtained the correct display information from the Spec
instance. NodeDisplay took no time to program, since it was less than 10 simple lines of code.
My Decorator solution would have involved creating over 50 lines of code, with many repetitive
delegation calls to the Spec instance.

Experiences like this made me aware that I needed to stop thinking so much about patterns and
refocus on writing small, simple, straightforward code. I was at a crossroads: I’d worked hard to
learn patterns to become a better software designer, but now I needed to relax my reliance on
them in order to become truly better.

Going Too Fast
Improving also meant learning to not under-engineer. Under-engineering is far more common
than over-engineering. We under-engineer when we become exclusively focused on quickly
adding more and more behavior to a system without regard for improving its design along the
way. Many programmers work this way—I know I sure have. You get code working, move on to
other tasks and never make time to improve the code you wrote. Of course, you’d love to have
time to improve your code, but you either don’t get around to it, or you listen to managers or
customers who say we’ll all be more competitive and successful if we simply don’t fix what ain’t
broke.

That advice, unfortunately, doesn’t work so well with respect to software. It leads to the “fast,
slow, slower” rhythm of software development, which goes something like this:

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 8 of 137

1. You quickly deliver release 1.0 of a system, but with junky code.
2. You attempt to deliver release 2.0 of the system, but the junky code slows you down.
3. As you attempt to deliver future releases, you go slower and slower as the junky code

multiplies, until people lose faith in the system, the programmers and even the process
that got everyone into this position.

That kind of experience is far too common in our industry. It makes organizations less
competitive than they could be. Fortunately, there is a better way.

Socratic Development
Test-first programming and merciless refactoring, two of the many excellent Extreme
Programming practices, dramatically improved the way I build software. I found that these two
practices have helped me and the organizations I’ve worked for spend less time over-engineering
and under-engineering, and more time designing just what we need: well-built systems, produced
on time.

Test-first programming enables the efficient evolution of working code by turning programming
into what Kent Beck once likened to a Socratic dialogue: Write test code to ask your system a
question, write system code to respond to the question and keep the dialogue going until you’ve
programmed what you need. This rhythm of programming put my head in a different place.
Instead of thinking about a design that would work for every nuance of a system, test-first
programming enabled me to make a primitive piece of behavior work correctly before evolving it
to the next necessary level of sophistication.

Merciless refactoring is an integral part of this evolutionary design process. A refactoring is a
“behavior-preserving transformation,” or, as Martin Fowler defined it, “a change made to the
internal structure of software to make it easier to understand and cheaper to modify without
changing its observable behavior.” [Fowler, Refactoring: Improving the Design of Existing Code
(Addison-Wesley, 1999)].

Merciless refactoring resembles the way Socrates continually helped dialogue participants
improve their answers to his questions by weeding out inessentials, clarifying ambiguities and
consolidating ideas. When you mercilessly refactor, you relentlessly poke and prod your code to
remove duplication, clarify and simplify.

The trick to merciless refactoring is to not schedule time to make small design improvements, but
to make them whenever your code needs them. The resulting quality of your code will enable you
to sustain a healthy pace of development. Martin Fowler et al.’s book, Refactoring: Improving the
Design of Existing Code (Addison-Wesley, 1999), documents a rich catalog of refactorings, each
of which identifies a common need for an improvement and the steps for making that
improvement.

Why Refactor To Patterns?
On various projects, I’ve observed what and how my colleagues and I refactor. While we use
many of the refactorings described in Fowler’s book, we also find places where patterns can help
us improve our designs. At such times, we refactor to patterns, being careful not to produce
overly flexible or unnecessarily sophisticated solutions.

When I explored the motivation for refactoring to patterns, I found that it was identical to the
motivation for implementing non-patterns-based refactorings: to reduce or remove duplication,
simplify the unsimple and make our code better at communicating its intention.

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 9 of 137

However, the motivation for refactoring to patterns is not the primary motivation for using
patterns that is documented in the patterns literature. For example, let’s look at the documented
Intent and Applicability of the Decorator pattern and then examine Erich Gamma and Kent
Beck’s motivation for refactoring to Decorator in their excellent, patterns-dense testing
framework, JUnit.

Decorator’s Intent [Design Patterns, page 175]:
Attach additional responsibilities to an object dynamically. Decorators provide a flexible
alternative to subclassing for extending functionality.

Decorator’s Applicability (GoF, page 177):

• To add responsibilities to individual objects dynamically and transparently, that is,
without affecting other objects.

• For responsibilities that can be withdrawn.

• When extension by subclassing is impractical. Sometimes a large number of independent

extensions are possible and could produce an explosion of subclasses to support every
combination, or a class definition may be hidden or otherwise unavailable for
subclassing.

Motivation for Refactoring to Decorator in JUnit
Erich remembered the following reason for refactoring to Decorator:

“Someone added TestSetup support as a subclass of TestSuite, and once we added
RepeatedTestCase and ActiveTestCase, we saw that we could reduce code duplication by
introducing the TestSetup , Decorator.” [private email]

Can you see how the motivation for refactoring to Decorator (reducing code duplication) had very
little connection with Decorator’s Intent or Applicability (a dynamic alternative to subclassing)? I
noticed similar disconnects when I looked at motivations for refactorings to other patterns.
Consider these examples:

Pattern Intent (GoF) Refactoring Motivations

Builder
Separate the construction of a complex object from
its representation so that the same construction
process can create different representations.

Simplify code
Remove duplication
Reduce creation errors

Factory
Method

Define an interface for creating an object, but let the
subclasses decide which class to instantiate. The
Factory method lets a class defer instantiation to
subclasses.

Remove duplication
Communicate intent

Template
Method

Define the skeleton of an algorithm in an operation,
deferring some steps to client subclasses. Template
Method lets subclasses redefine certain steps of an
algorithm without changing the algorithm’s
structure.

Remove duplication

Based on these observations, I began to document a catalog of refactorings to patterns to illustrate
when it makes sense to make design improvements with patterns. For this work, it’s essential to
show refactorings from real-world projects in order to accurately describe the kinds of forces that
lead to justifiable transformations to a pattern.

My work on refactoring to patterns is a direct continuation of work that Martin Fowler began in
his excellent catalog of refactorings, in which he included the following refactorings to patterns:

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 10 of 137

• Form Template Method (345)
• Introduce Null Object (260)
• Replace Constructor with Factory Method (304)
• Replace Type Code with State/Strategy (227)
• Duplicate Observed Data (189)

Fowler also noted the following:

There is a natural relation between patterns and refactorings. Patterns are where
you want to be; refactorings are ways to get there from somewhere else. Fowler,
Refactoring: Improving the Design of Existing Code (Addison-Wesley, 1999)

This idea agrees with the observation made by the four authors of the classic book, Design
Patterns: Elements of Reusable Object-Oriented Software (Addison-Wesley, 1994):

Our design patterns capture many of the structures that result from refactoring. … Design
patterns thus provide targets for your refactorings.

Evolutionary Design
Today, after having become quite familiar with patterns, the “structures that result from
refactoring,” I know that understanding good reasons to refactor to a pattern are more valuable
than understanding the end result of a pattern or the nuances of implementing that end result.

If you’d like to become a better software designer, studying the evolution of great software
designs will be more valuable than studying the great designs themselves. For it is in the
evolution that the real wisdom lies. The structures that result from the evolution can help you, but
without knowing why they were evolved into a design, you’re more likely to misapply them or
over-engineer with them on your next project.

To date, our software design literature has focused more on teaching great solutions than teaching
evolutions to great solutions. We need to change that. As the great poet Goethe said, “That which
thy fathers have bequeathed to thee, earn it anew if thou wouldst possess it.” The refactoring
literature is helping us reacquire a better understanding of good design solutions by revealing
sensible evolutions to those solutions.

If we want to get the most out of patterns, we must do the same thing: See patterns in the context
of refactorings, not just as reusable elements existing apart from the refactoring literature. This is
perhaps my primary motivation for producing a catalog of refactorings to patterns.

By learning to evolve your designs, you can become a better software designer and reduce the
amount of work you over- or under-engineer. Test-first programming and merciless refactoring
are the key practices of evolutionary design. Instill refactoring to patterns in your knowledge of
refactorings and you’ll find yourself even better equipped to evolve great designs.

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 11 of 137

Writing Goals
At present, I’ve written more than a dozen refactorings and have many more in the works. My
goal in writing this is to help you learn how to

• refactor to Patterns when appropriate and away from Patterns when something simpler is
discovered

• use Patterns to communicate intention

• know and continue to learn a large body of Patterns

• understand how to implement Patterns in simple and sophisticated ways

• use Patterns to clean, condense, clarify and simplify code

• evolve designs

The form I am using in this work is nearly identical to the one used by Martin in his Refactoring
book. I have added the following to this form:

• A section on Communication, Duplication and Simplicity

• Numbered steps in the Mechanics section that correspond to numbered steps in the
Examples section.

This is a continuously evolving piece of work. Your feedback is welcome – please send thoughts,
comments or questions to joshua@industriallogic.com. This work lives on the internet at the
following address: http://industriallogic.com/xp/refactoring/

I’ve also started an email list – called refactoring@yahoogroup.com – which is a good place to
discuss refactoring, refactoring to patterns and emerging tools and IDEs that enable automated
refactorings.

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 12 of 137

Chain Constructors

You have multiple constructors
that contain duplicate code

Chain the constructors together

to obtain the least duplicate code

public class Loan {
 ...
 public Loan(float notional, float outstanding, int rating, Date expiry) {
 this.strategy = new TermROC();
 this.notional = notional;
 this.outstanding = outstanding;
 this.rating =rating;
 this.expiry = expiry;
 }
 public Loan(float notional, float outstanding, int rating, Date expiry, Date maturity) {
 this.strategy = new RevolvingTermROC();
 this.notional = notional;
 this.outstanding = outstanding;
 this.rating = rating;
 this.expiry = expiry;
 this.maturity = maturity;
 }
 public Loan(CapitalStrategy strategy, float notional, float outstanding,
 int rating, Date expiry, Date maturity) {
 this.strategy = strategy;
 this.notional = notional;
 this.outstanding = outstanding;
 this.rating = rating;
 this.expiry = expiry;
 this.maturity = maturity;
 }
}

public class Loan {
 ...
 public Loan(float notional, float outstanding, int rating, Date expiry) {
 this(new TermROC(), notional, outstanding, rating, expiry, null);
 }
 public Loan(float notional, float outstanding, int rating, Date expiry, Date maturity) {
 this(new RevolvingTermROC(), notional, outstanding, rating, expiry, maturity);
 }
 public Loan(CapitalStrategy strategy, float notional, float outstanding,

 int rating, Date expiry, Date maturity) {
 this.strategy = strategy;
 this.notional = notional;
 this.outstanding = outstanding;
 this.rating = rating;
 this.expiry = expiry;
 this.maturity = maturity;
 }
}

!

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 13 of 137

Motivation

Code that’s duplicated across two or more of a class's constructors is an invitation for trouble.

Someone adds a new variable to a class, updates a constructor to initialize the variable, but
neglects to update the other constructors, and bang, say hello to your next bug. The more
constructors you have in a class, the more duplication will hurt you. It’s therefore a good idea to
reduce or remove all duplication if possible, which has the added bonus of reducing your
system’s code bloat.

 We often accomplish this refactoring with constructor chaining: specific constructors call
more general-purpose constructors until a final constructor is reached. If you have one
constructor at the end of every chain, I call that your catch-all constructor, since it handles every
constructor call. This catch-all constructor often accepts more parameters than the other
constructors, and may or may not be private or protected.

If you find that having many constructors on your class detracts from its usability, consider
applying Replace Multiple Constructors with Creation Methods (15).

Communication Duplication Simplicity
When constructors in a class
implement duplicate work, the
code fails to communicate what
is specific from what is general.
Communicate this by having
specific constructors forward
calls to more general-purpose
constructors and do unique work
in each constructor.

Duplicate code in your
constructors makes your classes
more error-prone and harder to
maintain. Find what is common,
place it in general-purpose
constructors, forward calls to
these general constructors and
implement what isn’t general in
each constructor.

If more than one constructor
contains the same code, it’s
harder to see how each
constructor is different. Simplify
your constructors by making
specific ones call more general
purpose ones, in a chain.

Mechanics

1. Find two constructors (called A and B) that contain duplicate code. Determine if A

can call B or if B can call A, such that the duplicate code can be safely (and hopefully
easily) deleted from one of the two constructors.

2. Compile and test.

3. Repeat steps 1 and 2 for all constructors in the class, including ones you’ve already

touched, in order to obtain as little duplication across all constructors as possible.

4. Change the visibility of any constructors that may not need to be public.

5. Compile and test.

Example

1. We’ll go with the example shown in the code sketch. We start with a single Loan class, which
has three constructors to represent different types of loans and tons of bloated and ugly
duplication:

public Loan(float notional, float outstanding, int rating, Date expiry) {

this.strategy = new TermROC();
this.notional = notional;
this.outstanding = outstanding;
this.rating = rating;
this.expiry = expiry;

}

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 14 of 137

public Loan(float notional, float outstanding, int rating, Date expiry, Date maturity) {
this.strategy = new RevolvingTermROC();
this.notional = notional;
this.outstanding = outstanding;
this.rating = rating;
this.expiry = expiry;
this.maturity = maturity;

}

public Loan(CapitalStrategy strategy, float notional, float outstanding, int rating,
Date expiry, Date maturity) {

this.strategy = strategy;
this.notional = notional;
this.outstanding = outstanding;
this.rating = rating;
this.expiry = expiry;
this.maturity = maturity;

}

I study the first two constructors. They do contain duplicate code, but so does that third
constructor. I consider which constructor it would be easier for the first constructor to call. I see
that it could call the third constructor, with a minimum about of work. So I change the first
constructor to be:

public Loan(float notional, float outstanding, int rating, Date expiry) {

this(new TermROC(), notional, outstanding, rating, expiry, null);
}

2. I compile and test to see that the change works.

3. I repeat steps 1 and 2, to remove as much duplication as possible. This leads me to the second
constructor. It appears that it too can call the third constructor, as follows:

public Loan(float notional, float outstanding, int rating, Date expiry, Date maturity) {

this(new RevolvingTermROC(), notional, outstanding, rating, expiry, maturity);
}

I’m now aware that constructor three is my class’s catch-all constructor, since it handles all of the
construction details.

4. I check all callers of the three constructors to determine if I can change the public visibility of
any of them. In this case, I can’t (take my word for it – you can’t see the code that calls these
methods).

5. I compile and test to complete the refactoring.

Chaining To An Init Method

Sometimes your own logic will prevent you from chaining constructors the way you’d like to.
[More to write]

[Init methods are sometimes necessary beause you are doing dynamic object loading –
Class.forName.newInstance()]

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 15 of 137

Replace Multiple Constructors with Creation Methods

Constructors on a class make it hard to decide
 which constructor to call during development

Replace the constructors with intention-revealing

Creation Methods that return object instances

Loan

+Loan(notional, customerRating, maturity)
+Loan(notional, customerRating, maturity, expiry)
+Loan(notional, outstanding, customerRating, maturity, expiry)
+Loan(capitalStrategy, notional, customerRating, maturity, expiry)
+Loan(capitalStrategy, notional, outstanding, customerRating, maturity, expiry)

Loan

-Loan(capitalStrategy, notional, outstanding, customerRating, expiry, maturity)
+createTermLoan(notional, customerRating, maturity) : Loan
+createTermLoan(capitalStrategy, notional, outstanding, customerRating, maturity) : Loan
+createRevolver(notional, outstanding, customerRating, expiry) : Loan
+createRevolver(capitalStrategy, notional, outstanding, customerRating, expiry) : Loan
+createRCTL(notional, outstanding, customerRating, maturity, expiry) : Loan
+createRCTL(capitalStrategy, notional, outstanding, customerRating, maturity, expiry) : Loan

!

Motivation

Some languages allow you to name your constructors any old way you like, regardless of the
name of your class. Other languages, such as C++ and Java, don’t allow this: each of your
constructors must be named after your class name. If you have one simple constructor, this may
not be problem. If you have multiple constructors, programmers will have to choose which
constructor to call by studying which parameters are expected and/or poking around at the
constructor code. What’s wrong with that? A lot. Constructors simply don’t communicate
intention efficiently or effectively. The more constructors you have, the easier it is for
programmers to mistakenly choose the wrong one. Having to choose which constructor to call
slows down development and the code that does call one of the many constructors often fails to
sufficiently communicate the nature of the object being constructed.

If you think that sounds bad, it gets worse. As systems mature, programmers often add more
and more constructors to classes without checking to see if older constructors are still being used.
Constructors that continue to live in a class when they aren’t being used are dead weight, serving
only to bloat the class and make it more complicated than it needs to be. Mature software
systems are often filled with dead constructor code because programmers lack fast, easy ways to
identify all callers to specific constructors: either their IDE doesn’t help them with this or it is too
much trouble to devise and execute search expressions that will identify the exact callers of a
specific method. On the other hand, if the majority of object creation calls come through
specifically-named methods, like createTermLoan() and createRevolver(), it is fairly
trivial to find all callers to such explicitly-named methods.

Now, what does our industry call a method that creates objects? Many would answer
“Factory Method,” after the name given to a creational pattern in the classic book, Design Pattern
[GoF]. But are all methods that create objects true Factory Methods? Given a broad definition of
the term – i.e. a method that simply creates objects – the answer would be an emphatic “yes!”
But given the way the authors of the creational pattern, Factory Method, wrote about it (in 1994),

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 16 of 137

it is clear that not every method that creates objects offers the kind of loose-coupling provided by
a genuine Factory Method. So, to help us all be clearer when discussing designs or refactorings
related to object creation, I’m using the term Creation Method to refer to a method that creates
objects. This means that every Factory Method is a Creation Method but not necessarily the
reverse. It also means that you can substitute the term Creation Method wherever Martin Fowler
uses the term “factory method” in Refactoring [Fowler] and wherever Joshua Bloch uses the term
“static factory method” in Effective Java [Bloch].

Communication Duplication Simplicity
Copious constructors don’t
communicate available types
very well – communicate type
availability clearly by offering
access to instances via intention-
revealing Creation Methods

There is no direct duplication
here; just many nearly identical-
looking constructors

Figuring out which constructor to
call isn't simple – make it simple
by offering up the various types
through intention-revealing
Creation Methods.

Mechanics

After identifying a class that has copious constructors, it’s best to consider applying Extract

Class (149) [Fowler] or Extract Subclass (330) [Fowler] before you decide to apply this
refactoring. Extract Class is a good choice if the class in question is simply doing too much work
– i.e. it has too many responsibilities. Extract Subclass is a good choice if instances of the class
only use a small portion of the class’s instance variables. If you apply Extract Subclass, also
consider applying Encapsulate Classes with Creation Methods (21).

1. Identify a class that has copious constructors, is not overburdened with responsibilities
and which has instances that use most of its instance variables.

2. Identify the catch-all constructor or create one using Chain Constructor (12).

Strictly speaking, you can implement this refactoring without having a catch-all
constructor, though it’s a good idea to create one if doing so eliminates duplicate code.

3. Identify a constructor that clients call to create a kind of instance and produce a Creation

Method for that kind of instance. Make the Creation Method call your catch-call
constructor whenever possible, to enable the elimination of constructors (step 6).

Give your Creation Method an intention-revealing name and make it accept the least
number of parameters necessary to produce valid instances. Note that you may create
more than one Creation Method for a given constructor.

4. Replace constructor calls that create the kind of instance choosen in step 3 with calls to

your Creation Method.

5. Repeat steps 3 and 4, compiling and testing as you go.

6. Delete constructors that are no longer being called and compile.

7. If your class has no subclasses, declare its remaining constructor(s) private. If it has
subclasses, declare its remaining constructor(s) protected.

8. Compile.

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 17 of 137

Example

1. I’ll use the example shown in the code sketch. We start with a simple Loan class, which has
copious constructors to represent some form of a Term Loan, Revolver or RCTL (a Revolver and
Term Loan combination).

public class Loan …
public Loan(double notional, int customerRating, Date maturity) {

this(notional, 0.00, customerRating, maturity, null);
}
public Loan(double notional, int customerRating, Date maturity, Date expiry) {

this(notional, 0.00, customerRating, maturity, expiry);
}
public Loan(double notional, double outstanding, int customerRating, Date maturity,

Date expiry) {
this(null, notional, outstanding, customerRating, maturity, expiry);

}
public Loan(CapitalStrategy capitalStrategy, double notional, int customerRating,

Date maturity, Date expiry) {
this(capitalStrategy, notional, 0.00, customerRating, maturity, expiry);

}
public Loan(CapitalStrategy capitalStrategy, double notional, double outstanding,

int customerRating, Date maturity, Date expiry) {
this.notional = notional;
this.outstanding = outstanding;
this.customerRating = customerRating;
this.maturity = maturity;
this.expiry = expiry;
this.capitalStrategy = capitalStrategy;

if (capitalStrategy == null) {
if (expiry == null)

this.capitalStrategy = new TermCapitalStrategy();
else if (maturity == null)

this.capitalStrategy = new RevolverCapitalStrategy();
else

this.capitalStrategy = new RCTLCapitalStrategy();
}

}

This class represents different types of loans that behave in similar ways and that share the
same instance variables. The class has five constructors, the last of which is the catch-all
constructor. If you look at these constructors, it isn’t easy to know which ones create Term Loans,
which ones create Revolvers, and which ones create RCTLs. I happen to know that an RCTL
needs both an expiry date and a maturity date; so to create one, I must call a constructor that lets
me pass in both dates. But did you know that? Do you think the next programmer who reads this
code will know it?

What else is embedded as implicit knowledge in the above constructors? Plenty. If you call
the first constructor, which takes three parameters, you’ll get back a Term Loan. But if you want
a Revolver, you’ll need to call one of the constructors that take two dates, and supply null for the
maturity date. Hmmm, I wonder if all users of this code will know this? Or will they just have to
learn by encountering some ugly bugs?

2. The next task is to identify the catch-all constructor for the Loan class. This is easy – it is the
constructor that takes the most parameters:

public Loan(CapitalStrategy capitalStrategy, double notional, double outstanding,
int customerRating, Date maturity, Date expiry) {
this.notional = notional;
this.outstanding = outstanding;
this.customerRating = customerRating;
this.maturity = maturity;
this.expiry = expiry;
this.capitalStrategy = capitalStrategy;

if (capitalStrategy == null) {
if (expiry == null)

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 18 of 137

this.capitalStrategy = new TermCapitalStrategy();
else if (maturity == null)

this.capitalStrategy = new RevolverCapitalStrategy();
else

this.capitalStrategy = new RCTLCapitalStrategy();
}

}

3. Next, I identify a constructor that clients call to create a kind of instance:

public Loan(double notional, int customerRating, Date maturity) {

this(notional, 0.00, customerRating, maturity, null);
}

This constructor is called to produce a Term Loan with a default TermCapitalStrategy. In order to
produce a Creation Method for this kind of instance, I write a test first:

public void testTermLoanCreation() {
Loan term1 = Loan.createTermLoan(NOTIONAL, CUSTOMER_RATING, MATURITY_DATE);
assertTrue("type = term loan", term1.toString().indexOf("term loan") > -1);

}

This test doesn’t compile, run or pass until I add the following public static method to Loan:

public static Loan createTermLoan(double notional, int customerRating, Date maturity) {

return new Loan(null, notional, 0.00, customerRating, maturity, null);
}

I make this method call Loan’s catch-all constructor since doing so may allow me to delete, at a
later step, the constructor I started with.

4. Now, I find all client calls to the constructor identified in the previous step. Since that
constructor only creates Term Loans with a default TermCapitalStrategy, it is safe to replace all
of the constructor calls with calls to the new Creation Method. So code that looked like:

Loan termLoan = new Loan(notional, customerRating, maturity);

is changed to:

Loan termLoan = Loan.createTermLoan(notional, customerRating, maturity);

5. Repeating steps 3 and 4 yields the following set of Loan Creation Methods:

public static Loan createTermLoan(double notional, int customerRating, Date maturity) {

return new Loan(null, notional, 0.00, customerRating, maturity, null);
}
public static Loan createTermLoan(CapitalStrategy capitalStrategy, double notional,

double outstanding, int customerRating, Date maturity) {
return new Loan(capitalStrategy, notional, outstanding, customerRating, maturity,

null);
}
public static Loan createRevolver(double notional, double outstanding,

int customerRating, Date expiry) {
return new Loan(null, notional, outstanding, customerRating, null, expiry);

}
public static Loan createRevolver(CapitalStrategy capitalStrategy, double notional,

double outstanding, int customerRating, Date expiry) {
return new Loan(capitalStrategy, notional, outstanding, customerRating, null, expiry);

}
public static Loan createRCTL(double notional, double outstanding, int customerRating,

Date maturity, Date expiry) {
return new Loan(null, notional, outstanding, customerRating, maturity, expiry);

}
public static Loan createRCTL(CapitalStrategy capitalStrategy, double notional,

double outstanding, int customerRating, Date maturity, Date expiry) {
return new Loan(capitalStrategy, notional, outstanding, customerRating, maturity,

expiry);

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 19 of 137

}

6. The compiler is now my friend, as I attempt to delete constructors that are no longer being
called. I’m able to delete all but the catch-all constructor, which is being called by all of the new
Creation Methods.

7. The catch-all constructor can now be safely declared private:

private Loan(CapitalStrategy capitalStrategy, double notional, double outstanding,

int customerRating, Date maturity, Date expiry)

8. The compiler agrees with my changes and I’m done.

It’s now quite clear how to obtain the different kinds of Loan instances. The ambiguities have
been revealed and the implicit knowledge has been made explicit. What’s left to do? Well, the
Creation Methods still do take a fairly large number of parameters, so I may consider applying
Introduce Parameter Object (295) [Fowler].

Parameterized Creation Methods

As you consider implementing this refactoring on a class, you may calculate in your head that
you’d need something on the order of 50 Creation Methods to account for every object
configuration supported by your class. Since writing 50 methods doesn’t sound like much fun,
you may decide not to do this refactoring. However, there are ways to handle this situation. First,
you need not produce a Creation Method for every object configuration: you can write Creation
Methods for the most popular configurations and leave some public constructors around to handle
the rest of the cases. In addition, it often makes sense to use parameters to cut down on the
number of Creation Methods – we call these parameterized Creation Methods. For example, a
single Apple class could be instantiated in a variety of ways:

• based on the family of apple
• based on the apple’s country of origin
• based on the color of apple
• with or without seeds
• peeled or not peeled

These options present numerous kinds of Apples, even though they aren’t defined as explicit

Apple subclasses. To obtain the Apple instance you need, you must call the correct Apple
constructor. But there can be many of these Apple constructors, corresponding with the many
Apple types:

public Apple(AppleFamily family, Color color) {

this(family, color, Country.USA, true, false);
}
public Apple(AppleFamily family, Color color, Country country) {

this(family, color, country, true, false);
}
public Apple(AppleFamily family, Color color, boolean hasSeeds) {

this(family, color, Country.USA, hasSeeds, false);
}
public Apple(AppleFamily family, Color color, Country country, boolean hasSeeds) {

this(family, color, country, hasSeeds, false);
}
public Apple(AppleFamily family, Color color, Country country, boolean hasSeeds, boolean
isPeeled) {

this.family = family;
this.color = color;
this.country = country;
this.hasSeeds = hasSeeds;
this.isPeeled = isPeeled;

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 20 of 137

}

As we’ve noted before, all of these constructors make the Apple class harder to use. To
improve the usability of the Apple class, yet not write a large quantity of Creation Methods, we
could identify the most popular kinds of Apples created and simply make Creation Methods for
them:

public static Apple createSeedlessAmericanMacintosh();
public static Apple createSeedlessGrannySmith();
public static Apple createSeededAsianGoldenDelicious();

These Creation Methods would not altogether replace the public constructors, but would
supplement them and perhaps reduce their number. However, because the above Creation
Methods aren’t parameterized, they could easily multiple over time, yielding many Creation
Methods that would also make it hard to choose the kind of Apple someone needed. Therefore,
when faced with so many possible combinations, it often makes sense to write parameterized
Creation Methods:

public static Apple createSeedlessMacintosh(Country c);
public static Apple createGoldenDelicious(Country c);

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 21 of 137

Encapsulate Classes with Creation Methods

Clients directly instantiate classes that reside
in one package and implement a common interface

Make the class constructors non-public and let clients

create instances of them using superclass Creation Methods

BooleanDescriptor

+BooleanDescriptor(...)

!

Client

Client

DefaultDescriptor

+DefaultDescriptor(...)

ReferenceDescriptor

+ReferenceDescriptor(...)

AttributeDescriptor

#AttributeDescriptor(...)

Descriptors

AttributeDescriptor

#AttributeDescriptor(...)
+forBoolean(...) : AttributeDescriptor
+forClass(...) : AttributeDescriptor
+forDate(...) : AttributeDescriptor
+forInteger(...) : AttributeDescriptor
+forString(...) : AttributeDescriptor

Descriptors

BooleanDescriptor

#BooleanDescriptor(...)

DefaultDescriptor

#DefaultDescriptor(...)

ReferenceDescriptor

#ReferenceDescriptor(...)

 classes not visible
 outside package

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 22 of 137

Motivation

A client’s ability to directly instantiate classes is useful so long as the client needs to know
about the very existence of those classes. But what if the client doesn’t need that knowledge?
What if the classes live in one package, implement one interface and those conditions aren’t
likely to change? In that case, the classes in the package could be hidden from clients outside the
package using public, superclass Creation Methods, each of which would return an instance that
satisfied some common interface.

There are several motivations for doing this. First, it provides a way to rigorously apply the
mantra, separate interface from implementation [GoF], by ensuring that clients interact with
classes via their common interface. Second, it provides a way to reduce the “conceptual weight”
[Bloch] of a package by hiding classes that don’t need to be publicly visible outside their
package. And third, it simplifies the construction of available kinds of instances by making the
set available through intention-revealing Creation Methods.

Despite these good things, some folks have reservations about applying this refactoring. I
address and respond to their concerns below:

1. They don’t like giving a superclass knowledge of its subclasses, since it causes a

dependency cycle - i.e. you have to add new Creation Method to a superclass just because
you create a new subclass or add/modify a subclass constructor. When I point out that
this refactoring happens within the context of one package with subclasses that
implement one interface, they usually quiet down.

2. They don’t like mixing Creation Methods with implementation methods on a superclass.

I don’t have a problem doing this, unless the Creation Methods just make it too hard to
see what the superclass does, in which case I apply Extract Creation Class (27).

3. They don’t like this refactoring when code is handed off as object code, since

programmers who must use the object code won’t be able to add or modify the non-
public classes or the Creation Methods. I’m more sympathetic to this reservation. If
extensibility within a package is necessary and users don’t have source code, I would not
encapsulate the classes, but would provide a Creation Class for common instances.

The sketch at the start of this refactoring gives you a glimpse of some object to relational

database mapping code. Before the refactoring was applied, programmers (including myself)
occasionally instantiated the wrong subclass or the right subclass with incorrect arguments (for
example, we called a constructor that took a primitive Java int when we really needed to call
the constructor that took Java’s Integer object). The refactoring reduced bug creation by
encapsulated the knowledge about the subclasses and producing a single place to get a variety of
well-named subclass instances.

Communication Duplication Simplicity

When you expect client code to
communicate with classes via
one interface, your code needs
to communicate this. Public
constructors don’t help, since
they allow clients to couple
themselves to class types.
Communicate your intentions by
protecting class constructors,
producing instances via
superclass Creation Methods
and making the return type for
the instances a common
interface or abstract class type.

Duplication isn't an issue with
this refactoring.

Making classes publicly visible
when you want clients to interact
with them via one interface isn’t
simple: it invites programmers to
instantiate and couple
themselves to class types and it
communicates that it is ok to
extend the public interface of an
individual class.
Simplify by making it impossible
to instantiate these classes and
by offering instances via
superclass Creation Methods.

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 23 of 137

Forces

• Your classes share a common public interface.

This is essential because after the refactoring, all client code will interact with class
instances via their common interface.

• Your classes reside in the same package.

Mechanics

1. Write an intention-revealing Creation Method on the superclass for a kind of instance that
a class’s constructor produces. Make the method’s return type be the common interface
type and make the method’s body be a call to the class’s constructor.

2. For the kind of instance chosen, replace all calls to the class’s constructor with calls to

the superclass Creation Method.

3. Compile and test.

4. Repeat steps 1 and 2 for any other kinds of instances that may be created by the class’s
constructor.

5. Declare the class’s constructor to be non-public (i.e. protected or package-protected).

6. Compile.

7. Repeat the above steps until every constructor on the class is non-public and all available

class instances may be obtainted via superclass Creation Methods.

Example

1. We begin with a small hierarchy of classes that reside in a package called descriptors. The
classes assist in the object-to-relation database mapping of database attributes to instance
variables:

package descriptors;

public abstract class AttributeDescriptor {

protected AttributeDescriptor(…)

public class BooleanDescriptor extends AttributeDescriptor {
public BooleanDescriptor(…) {

super(…);
}

public class DefaultDescriptor extends AttributeDescriptor {
public DefaultDescriptor(…) {

super(…);
}

public class ReferenceDescriptor extends AttributeDescriptor {
public ReferenceDescriptor(…) {

super(…);
}

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 24 of 137

The abstract AttributeDescriptor constructor is protected, and the constructors for the
three subclasses are public. Let’s focus on the DefaultDescriptor subclass. The first step is
to identify a kind of instance that can be created by the DefaultDescriptor constructor. To
do that, I look at some client code:

protected List createAttributeDescriptors() {

List result = new ArrayList();
result.add(new DefaultDescriptor("remoteId", getClass(), Integer.TYPE));
result.add(new DefaultDescriptor("createdDate", getClass(), Date.class));
result.add(new DefaultDescriptor("lastChangedDate", getClass(), Date.class));
result.add(new ReferenceDescriptor("createdBy", getClass(), User.class,

RemoteUser.class));
result.add(new ReferenceDescriptor("lastChangedBy", getClass(), User.class,

RemoteUser.class));
result.add(new DefaultDescriptor("optimisticLockVersion", getClass(), Integer.TYPE));
return result;

}

Here I see that DefaultDescriptor is being used to represent mappings for Integers and Dates.
It may also be used to map other types, but I must focus on one kind of instance at a time. So I
decide to write a Creation Method to produce attribute descriptors for Integers:

public abstract class AttributeDescriptor {

public static AttributeDescriptor forInteger(...) {
return new DefaultDescriptor(...);

}

I make the return type for the Creation Method an AttributeDescriptor because I want

clients to interact with all AttributeDescriptor subclasses via the AttributeDescriptor
interface and because I want to hide the very existence of AttributeDescriptor subclasses
from anyone outside the descriptors package.

If you do test-first programming, you would begin this refactoring by writing a test to obtain
the AttributeDescriptor instance you want from the superclass Creation Method.

2. Now client calls to create an Integer version of a DefaultDescriptor must be replaced with
calls to the superclass Creation Method:

protected List createAttributeDescriptors() {
List result = new ArrayList();
result.add(AttributeDescriptor.forInteger("remoteId", getClass()));
result.add(new DefaultDescriptor("createdDate", getClass(), Date.class));
result.add(new DefaultDescriptor("lastChangedDate", getClass(), Date.class));
result.add(new ReferenceDescriptor("createdBy", getClass(), User.class,

RemoteUser.class));
result.add(new ReferenceDescriptor("lastChangedBy", getClass(), User.class,

RemoteUser.class));
result.add(AttributeDescriptor.forInteger("optimisticLockVersion", getClass()));
return result;

}

3. I compile and test that the new code works.

4. Now I continue to write Creation Methods for the remaining kinds of instances that the
DefaultDescriptor constructor can create. This leads to 2 more Creation Methods:

public abstract class AttributeDescriptor {

public static AttributeDescriptor forInteger(...) {
return new DefaultDescriptor(...);

}
public static AttributeDescriptor forDate(...) {

return new DefaultDescriptor(...);
}
public static AttributeDescriptor forString(...) {

return new DefaultDescriptor(...);

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 25 of 137

}

5. I now declare the DefaultDescriptor constructor protected:

public class DefaultDescriptor extends AttributeDescriptor {

protected DefaultDescriptor(…) {
super(…);

}

6. I compile and everything goes according to plan.

7. Now I repeat the above steps for the other AttributeDescriptor subclasses. When I’m
done, the new code:

• gives access to AttributeDescriptor subclasses via their superclass
• ensures that clients obtain subclass instances via the AttributeDescriptor interface
• prevents clients from directly instantiating AttributeDescriptor subclasses
• communicates to other programmers that AttributreDescriptor subclasses are not

meant to be public – the convention is to offer up access to them via the superclass and a
common interface.

Encapsulating Inner Classes

The JDK’s java.util.Collections class is a remarkable example of what encapsulating
classes with Creation Methods is all about. The class’s author, Joshua Bloch, needed to give
programmers a way to make Collections, Lists, Sets and Maps unmodifiable and/or synchronized.
He wisely chose to implement this behavior using the Decorator pattern. However, instead of
creating public, java.util Decorator classes (for handling synchronization and unmodifiabilty)
and then expecting programmers to decorate their own collections, he defined the Decorators in
the Collections class as non-public inner classes and then gave Collections a set of Creation
Methods from which programmers could obtain the kinds of decorated collections they needed.
Below is a sketch of a few of the inner classes and Creation Methods that are specified by the
Collections class:

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 26 of 137

Collections

+synchronizedCollection(c: Collection) : Collection
+synchronizedListl(list: List): List
+unmodifiableCollection(c: Collection) : Collection
+unmodifiableSet(s: Set) : Set
+unmodifiableSortedSet(s: SortedSet) : SortedSet
+unmodifiableList(list: List): List
...

SynchronizedCollection

~c: Collection
~mutex: Object

. . .

Serializable

Collection

SynchronizedList
List

UnmodifiableCollection

~c: Collection
. . .

Serializable

Collection

ListUnmodifiableList

UnmodifiableSet Serializable

Set

Unmodifiable
SortedSet Serializable

SortedSet

 some of the many
 non-public, inner classes
 inside the Collections class

 return new SynchronizedList(list);

 return new UnmodifiableList(list);

 return new SortedSet(s);

java.util

4. Notice that java.util.Collections even contains small hierarchies of inner classes,
all of which are non-public. Each inner class has a corresponding method that receives a
collection, decorates it and then returns the decorated instance, using a commonly defined
interface type (such as List or Set). This solution reduced the number of classes
programmers needed to know about, while providing the necessary funcationality.
java.util.Collections is an example of a Creation Class (see Extract Creation
Class (27)).

).

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 27 of 137

Extract Creation Class

Too many Creation Methods on a class
obscure it’s primary responsibility

Move the Creation Methods for a related set

of classes to one Creation Class

!

Client

Client

Loan

#Loan(...)
+newAdvisor(...)
+newLetterOfCredit(...)
+newRCTL(...)
+newRevolver(...)
+newSPLC(...)
+newTermLoan(...)
+newVariable(...)
+calcCapital(...)
+calcIncome(...)
+calcROC(...)
+setOutstanding(...)

Loan

#Loan(...)
+calcCapital(...)
+calcIncome(...)
+calcROC(...)
+setOutstanding(...)

LoanCreator

+newAdvisor(...)
+newLetterOfCredit(...)
+newRCTL(...)
+newRevolver(...)
+newSPLC(...)
+newTermLoan(...)
+newVariable(...)

Motivation

This refactoring is essentially Extract Class [Fowler], only it’s done on a class’s Creation
Methods. There’s nothing wrong with a few Creation Methods on a class, but as the number of
them grows, a class’s own primary responsibilities – it’s main purpose in life – may begin to feel
obscured or overshadowed by creational logic. When that happens, it’s better to restore the
class’s identity by moving its Creation Methods to a Creation Class.

Creation Classes and Abstract Factories [GoF] are similar in that they create families of
objects, but they are quite different, as the following table illustrates:

 Creation Class Abstract Factory

Substitutable at runtime No Yes
Instantiates a family of products Yes Yes
Supports creation of new products easily Yes No
Separates interface from implementation May or may not Yes
Is implemented with static methods Usually No
Is implemented as a Singleton No Often

In general, Creation Classes are good if you have one and only one class for creating a family

of products, you don’t need to substitut for another object, you can safely go with a Creation

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 28 of 137

Class. anothereven though they are booin that they often create a related set of objects, but are
most unlike Abstract Factories in that you don’t substitute one Creation Class for another at
runtime, because you’re not concerned with swapping out one family of products for another.
Creation Classes are usually implemented as classes that contain static methods, each of which
instantiates and returns an object instance.

Communication Duplication Simplicity
When object creation begins to
dominate the public interface of
the class, the class no longer
strongly communicates its main
purpose. Communicate the act
of object creation by creating a
special class just to create object
instances.

Duplication is not an issue with
respect to this refactoring.

When creational responsibilities
mix too much with a class’s main
responsibilities, the class isn’t
simple. Simplify it by extracting
the creational code into a
Creation Class.

Mechanics

1. Identify a class (which we’ll call “A”) that is overrun with Creation Methods.

2. Create a class that will become your Creation Class. Name it after it’s purpose in life,

which will be to create various objects from a set of related classes.

3. Move all Creational Methods from A to your new class, making sure that all protection
privledges are accounted for.

4. Change all callers to obtain object references from your new Creation Class.

 Example

Though I use different example code from Martin Fowler, I do tend to repeat it as I am
intrinsically lazy. So if you don’t mind, we’ll work with the same brainless Loan example,
outlined in the code sketch above. Assume that there is test code for the example code below –I
didn’t include it the text since this refactoring is fairly trivial.

1. We begin with a Loan class that has lots of code for handling the responsibilities of a Loan
and being a creator of Loan objects:

public class Loan {

private double notional;
private double outstanding;
private int rating;
private Date start;
private CapitalStrategy capitalStrategy;
private Date expiry;
private Date maturity;
// . . . more instances variables not shown

protected Loan(double notional, Date start, Date expiry,
Date maturity, int riskRating, CapitalStrategy strategy) {
this.notional = notional;
this.start = start;
this.expiry = expiry;
this.maturity = maturity;
this.rating = riskRating;
this.capitalStrategy = strategy;

}
public double calcCapital() {

return capitalStrategy.calc(this);
}

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 29 of 137

public void setOutstanding(double newOutstanding) {
outstanding = newOutstanding;

}

// ... more methods for dealing with the primary responsibilities of a Loan, not shown

public static Loan newAdvisor(double notional, Date start,
Date maturity, int rating)

return new Loan(notional, start, null, maturity, rating, new TermLoanCapital());
}
public static Loan newLetterOfCredit(double notional, Date start,

Date maturity, int rating) {
return new Loan(notional, start, null, maturity, rating, new TermLoanCapital());

}
public static Loan newRCTL(double notional, Date start,

Date expiry, Date maturity, int rating) {
return new Loan(notional, start, expiry, maturity, rating, new RCTLCapital());

}
public static Loan newRevolver(double notional, Date start,

Date expiry, int rating) {
return new Loan(notional, start, expiry, null, rating, new RevolverCapital());

}
public static Loan newSPLC(double notional, Date start,

Date maturity, int rating) {
return new Loan(notional, start, null, maturity, rating, new TermLoanCapital());

}
public static Loan newTermLoan(double notional, Date start,

Date maturity, int rating) {
return new Loan(notional, start, null, maturity, rating, new TermLoanCapital());

}
public static Loan newVariableLoan(double notional, Date start,

Date expiry, Date maturity, int rating) {
return new Loan(notional, start, expiry, maturity, rating, new RCTLCapital());

}
}

2. Next, I create a class called LoanCreator, since it’s sole purpose in life is to be a place
where clients can obtain Loan instances:

public class LoanCreator {
}

3. Now I move all of the Creation Methods from Loan to LoanCreator, placing LoanCreator
in the same package as Loan (and it’s Capital stategies) so it has the protection level it needs to
instantiate Loans:

public class LoanCreator {

public static Loan newAdvisor(double notional, Date start,
Date maturity, int rating)

return new Loan(notional, start, null, maturity, rating, new TermLoanCapital());
}
public static Loan newLetterOfCredit(double notional, Date start,

Date maturity, int rating) {
return new Loan(notional, start, null, maturity, rating, new TermLoanCapital());

}
public static Loan newRCTL(double notional, Date start,

Date expiry, Date maturity, int rating) {
return new Loan(notional, start, expiry, maturity, rating, new RCTLCapital());

}
public static Loan newRevolver(double notional, Date start,

Date expiry, int rating) {
return new Loan(notional, start, expiry, null, rating, new RevolverCapital());

}
public static Loan newSPLC(double notional, Date start,

Date maturity, int rating) {
return new Loan(notional, start, null, maturity, rating, new TermLoanCapital());

}
public static Loan newTermLoan(double notional, Date start,

Date maturity, int rating) {
return new Loan(notional, start, null, maturity, rating, new TermLoanCapital());

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 30 of 137

}
public static Loan newVariableLoan(double notional, Date start,

Date expiry, Date maturity, int rating) {
return new Loan(notional, start, expiry, maturity, rating, new RCTLCapital());

}
}

4. To finish, I simply change calls of the form:

Loan termLoan = Loan.newTermLoan(…)

to

Loan termLoan = LoanCreator.newTermLoan(…)

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 31 of 137

Move Object Composition to Creation Method

Client code is responsible for wrapping objects together
to obtain one instance with the desired behavior

Move the object composition responsibility
to an intention-revealing Creation Method

Motivation

Prerequisites

Mechanics

Example

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 32 of 137

Replace Multiple Instances with Singleton

You create multiple instances of an object that
consumes too much memory and/or takes a while to create

Replace the multiple instances with a Singleton

Example about Zip Code, City, State Object

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 33 of 137

Replace Singleton with Object Reference

A class is a Singleton but has no business being a Singleton

Replace the Singleton with a plain old, non-global instance
and pass this instance to objects that need it.

public void someMethod() ...
 Profile.getInstance().getUserLevel()

!

public void someMethod(Profile profile) ...
 profile.getUserLevel()

Motivation

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 34 of 137

Replace Singleton with Registry

By J. B. Rainsberger

Motivation

You have a package or library that lives within an application and
relies on global objects (singletons) provided by a part of the
application. Your package is therefore coupled with the current
application, but you would like your package to be used somewhere
else.

You prefer not to apply Replace Global with Object Reference, because
it will cause an unknown ripple effect throughout the application.
This ripple effect is not something you can afford to handle at the
present moment, so you are looking for a refactoring to help you get
part of the way towards fixing the overall design issues.

After applying Replace Singleton with Registry, your package has
access to the same data it had before, but that access is made local
to the package in the form of a Registry. It then suffices to change
the application so that it registers its data with the package's
Registry. You can then use the package in other applications, as long
as the application places the data your package needs in the
prescribed, well-known location.

What is a Registry?

Briefly, a Registry is a namespace for objects. Clients can store
information within a Registry so that other clients can retrieve that
data without binding these clients to each other. We usually implement
a Registry as a singleton, so the Registry is a well-known, global
location for objects that allows providers and consumers of the data
to operate independently of one another.

Forces

You have an application with (usually many) singletons that individual
packages use to perform their work. Usually this is configuration
information or widely-used resources like databases and external
servers.

You would like to use one of your packages in a different application,
or simply improve its design to make it application-independent.

You can refactor the application to register its singleton instances
with well-known objects within the package. If you cannot do this,
consider creating a simple application facade [insert reference] to
help during the refactoring.

Mechanics

Identify the application-level objects your package needs to operate.
Create a class called PackageConfiguration that aggregates all these
objects.

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 35 of 137

Make PackageConfiguration a singleton, but add setX() methods for each
object your package wants the application to register.

Within your application, as each object becomes available, call the
corresponding setX() method on the PackageConfiguration object to
"register" the object.

Within your package, replace each reference to the application's
globally-accessible objects with the corresponding getX() method on
the PackageConfiguration to retrieve the registered object.

When you have finished, you will have inserted a Registry, acting as a
mediator [insert reference] between the application and your package.
By registering application-level objects with the Registry, your
application is one step closer to being decoupled from your package.
It is possible now to have multiple packages retrieve objects from the
Registry in order to perform their work. By retrieving
application-level objects from the Registry, your package is one step
closer to being decoupled from the application. It is possible now to
have any application (although only one per virtual machine) register
its global objects with the Registry without the package knowing the
source of the objects.

Why did this happen?

You may be wondering how this abuse of singletons would arise in the
first place. Put simply, the singleton is an easy way to make data
available "from the application down" -- that is, storing data within
the application and making it available to the components that need
them. In many cases, the application itself only requires an attribute
for each of these objects; however, in order to make the various
components more "independent", programmers often create singletons in
the hopes of pulling information from the application, rather than
having the application push that information to the components.

Unfortuntately, as often happens, the component programmer requires
something to be configured at the application level, and not at the
component level. The programmer may, under the constraints of time and
patience, give in to the temptation of simply "grabbing the data from
the application," rather than providing a means for the application to
configure the component.

[...]

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 36 of 137

Introduce Polymorphic Creation with Factory Method

Classes in a hierarchy implement a method similarly,
except for an object creation step

Make a single superclass version of the method that
calls a Factory Method to handle the instantiation

 OutputBuilder outputBuilder = new XMLBuilder();
 writeHeaderOn(outputBuilder);
 writeBodyOn(outputBuilder);
 writeFooterOn(outputBuilder);
 return outputBuilder.toString();

AbstractPageWriter

+pageText() : String
#writeHeaderOn(OutputBuilder)
#writeBodyOn(OutputBuilder)
#writeFooterOn(OutputBuilder)

PrimaryInsurerPageWriter

+pageText() : String

 OutputBuilder outputBuilder = new DOMBuilder();
 writeHeaderOn(outputBuilder);
 writeBodyOn(outputBuilder);
 writeFooterOn(outputBuilder);
 return outputBuilder.toString();

!
AbstractPageWriter

+pageText() : String
#createOutputBuilder(): OutputBuilder
#writeHeaderOn(OutputBuilder)
#writeBodyOn(OutputBuilder)
#writeFooterOn(OutputBuilder)

PrimaryInsurerPageWriter

#createOutputBuilder(): OutputBuilder

 OutputBuilder outputBuilder = createOutputBuilder();
 writeHeaderOn(outputBuilder);
 writeBodyOn(outputBuilder);
 writeFooterOn(outputBuilder);
 return outputBuilder.toString();

 return new DOMBuilder();

 return new XMLBuilder();

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 37 of 137

Motivation

What is a Factory Method [GoF]? It is a polymorphic method for creating and returning a
Product. The method is declared in a superclass or interface. A superclass may implement the
method and a subclass may override it, in order to make local decisions about the creation,
including whether to instantiate a subclass of Product and/or how to initialize an instance.

Factory Method is a specialization of Creation Method: both provide for object creation using
a method instead of a constructor, but Factory Method adds the ability to do polymorphic object
creation within a hierarchy. The following table illustrates primary differences:

 Creation Method Factory Method

May be implemented as abstract in a superclass No Yes
Subclasses may override the method No Yes
Is implemented with static or non-static methods Yes No

Why would you refactor to a Factory Method? One motivation involves duplicate code: you

find a method either in a superclass and overridden by a subclass or in several subclasses and this
method is implemented nearly identically, except for an object creation step. You see how you
could replace all versions of this method with a single superclass Template Method [GoF],
provided that it could issue the object creation call, while letting the superclass and/or subclasses
do the actual object creation work. No pattern is better suited to that task than Factory Method.

In his refactoring, Form Template Method (345) [Fowler], Martin Fowler observes that,
“inheritance is a powerful tool for eliminating duplicate behavior.” Inheritance is also what
enables us to implement a Factory Method’s polymorphic object creation, since subclasses may
control the class of object that gets instantiated. Template Methods often call Factory Methods
[GoF, page 330], and many programmers refactor to both patterns to reduce duplication in class
hierarchies.

Communication Duplication Simplicity

A well-chosen name for a
Factory Method communicates
intention better than a direct
constructor call. Factory
Methods also serve to
communicate that the instances
they return all implement a
common interface.

Duplication of a method often
results from a need to create an
object instance in different ways.
Remove the duplication by
making a single method that
obtains the instance it needs via
a call to a Factory Method.

It’s usually simpler to read code
that issues a call to a Factory
Method than it is to read code
that performs the actual
instantiation. However, for
those who aren’t comfortable
with polymorphism, Factory
Methods can seem to be more
complex than direct instantiation
calls.

Forces

• Near-duplicate versions of a method exist in a class hierarchy, and the only difference

between them is that they perform object instantiation differently.

• The classes of the objects being instantiated implement a common interface. If they do

not, consider applying Extract Superclass (336) [Fowler] to give them a common
interface.

Mechanics

Choose from the following two sets of mechanics:

A. When a method is duplicated because a superclass and subclass instantiate a type of object
differently, refactor as follows:

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 38 of 137

1. In the superclass method, apply Extract Method (110) [Fowler] on the object instantiation
code to produce a Factory Method.

Make sure the return type for the Factory Method is a generic type, not the type of the
concrete product being instantiated.

2. On each subclass that overrides the superclass method to do custom object creation,

extract the instantiation logic (using Extract Method (110) [Fowler]) to produce a Factory
Method with the same signature as the superclass Factory Method

3. Remove subclass versions of the method that are no longer needed, compile and test.

If you don’t expect subclasses to ever override this method, declare it as final.

B. When a method is duplicated across several subclasses because they instantiate a type of
object differently, refactor as follows:

1. Create a Factory Method on the superclass. Declare it abstract if it does not make sense
to have a default implementation, otherwise make it instantiate and return a default
instance.

2. On each subclass that duplicates the method to do custom object creation, extract the

instantiation logic (using Extract Method (110) [Fowler]) to produce a Factory Method
with the same signature as the superclass Factory Method.

3. Apply Form Template Method (345) [Fowler], compile and test.

When you finish this step, the once duplicated method will now be a Template Method on
the superclass, and this Template Method will call your new Factory Method.If you don’t
expect subclasses to ever override this method, declare it as final.

Example

Writing data in the form of XML or HTML is a pretty common task these days. The code sketch
at the start of this refactoring comes from a system that outputs XML data using a hierarchy of
PageWriter classes. Let’s begin by looking at code from the AbstractPageWriter class:

public abstract class AbstractPageWriter…

public String pageText() {
OutputBuilder outputBuilder = new XMLBuilder();
writeHeaderOn(outputBuilder);
writeBodyOn(outputBuilder);
writeFooterOn(outputBuilder);
return outputBuilder.toString();

}
protected abstract void writeBodyOn(OutputBuilder builder);
protected abstract void writeFooterOn(OutputBuilder builder);
protected abstract void writeHeaderOn(OutputBuilder builder);

The method, pageText(), is a Template Method [GoF]. By default, it creates an

OutputBuilder of type XMLBuilder and passes it to three methods, after which it returns the
OutputBuilder’s output. Subclasses override the three methods to customize what they output.
Before we look at an example subclass, let’s look at OutputBuilders:

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 39 of 137

<<interface>>
OutputBuilder

XMLBuilder DOMBuilder

XMLBuilder is a class that can build simple XML documents. It is usually sufficient for
producing output in a system. On some occasions, however, code that builds output needs
something a little more sophisticated, such as a DOMBuilder, which gives access to the
Document Object Model.

A subclass of AbstractPageWriter, called PrimaryInsurerPageWriter, needed a
DOMBuilder, so a programmer overrode the pageText() method as follows:

public class PrimaryInsurerPageWriter extends AbstractPageWriter…

public String pageText() {
OutputBuilder outputBuilder = new DOMBuilder();
writeHeaderOn(outputBuilder);
writeBodyOn(outputBuilder);
writeFooterOn(outputBuilder);
return outputBuilder.toString();

}

As you can see, this is nearly a replica of the superclass pageText() method, the only

difference being what kind of OutputBuilder is instantiated. Such duplication is a “breeding
ground for bugs,” as Martin Fowler likes to call it. The duplication can be removed by
refactoring to a Factory Method [GoF], as the steps below will show. Note: the refactoring
mechanics labeled as “A” will be used in this example.

1. On the superclass, AbstractPageWriter, we apply Extract Method (110) [Fowler] to
produce a Factory Method [GoF], called createOutputBuilder():

public abstract class AbstractPageWriter…

public String pageText() {
OutputBuilder outputBuilder = createOutputBuilder();
writeHeaderOn(outputBuilder);
writeBodyOn(outputBuilder);
writeFooterOn(outputBuilder);
return outputBuilder.toString();

}
protected OutputBuilder createOutputBuilder() {

return new XMLBuilder();
}

2. We peform a similar step on the subclass, PrimaryInsurerPageWriter:

public class PrimaryInsurerPageWriter extends AbstractPageWriter…

public String pageText() {
OutputBuilder outputBuilder = createOutputBuilder();
writeHeaderOn(outputBuilder);
writeBodyOn(outputBuilder);
writeFooterOn(outputBuilder);
return outputBuilder.toString();

}
protected OutputBuilder createOutputBuilder() {

return new DOMBuilder();
}

3. Now the pageText() method from PrimaryInsurerPageWriter can be deleted:

public class PrimaryInsurerPageWriter extends AbstractPageWriter…

public String pageText() {

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 40 of 137

OutputBuilder outputBuilder = createOutputBuilder();
writeHeaderOn(outputBuilder);
writeBodyOn(outputBuilder);
writeFooterOn(outputBuilder);
return outputBuilder.toString();

}

We compile and run tests, such as testPrimaryInsurerPageOutput(), to confirm that
everything still works:

public void testPrimaryInsurerPageOutput() {

String primaryInsurerOutput = getPrimaryInsurerPageWriter().pageText();
assertTrue(primaryInsurerOutput.indexOf(KIM_NAME) > -1);
assertTrue(primaryInsurerOutput.indexOf(KIM_ADDRESS) > -1);
assertTrue(primaryInsurerOutput.indexOf(KIM_OCCUPATION) > -1);
...

}

Duplication Across Subclasses

!

Query

+doQuery()

 if (sdQuery != null) sdQuery.clearResultSet();
 sdQuery = sdLoginSession.createQuery();
 executeQuery(sdQuery);

QuerySD52

+doQuery()

 if (sdQuery != null) sdQuery.clearResultSet();
 sdQuery = sdSession.createQuery();
 executeQuery(sdQuery);

QuerySD51

+doQuery()

Query

#createQuery() : SDQuery
+doQuery()

 if (sdQuery != null)
 sdQuery.clearResultSet();
 sdQuery = createQuery();
 executeQuery(sdQuery);

 return sdLoginSession.createQuery();

QuerySD52

#createQuery()

 return sdSession.createQuery();

QuerySD51

#createQuery()

This example is similar to the previous one, only this time we begin with duplication in two
subclasses. We can remove this duplication by introducing a Factory Method and a Template
Method. I’ll use the mechanics labeled as “B” to demonstrate how this refactoring works.

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 41 of 137

1. We start with some classes that handle doing database queries:

abstract class Query…
public abstract void doQuery() throws QueryException;

class QuerySD51 extends Query …
public void doQuery() throws QueryException {

if (sdQuery != null) sdQuery.clearResultSet();
sdQuery = sdSession.createQuery(SDQuery.OPEN_FOR_QUERY);
executeQuery(sdQuery);

}

class QuerySD52 extends Query …
public void doQuery() throws QueryException {

if (sdQuery != null) sdQuery.clearResultSet();
sdQuery = sdLoginSession.createQuery(SDQuery.OPEN_FOR_QUERY);
executeQuery(sdQuery);

}

I add a Factory Method to the superclass, Query, and declare it abstract so that subclasses must
implement it:

abstract class Query…

protected abstract SDQuery createQuery() throws QueryException;

2. Now I’ll create a Factory Method in each subclass by extracting the instantiation logic from
the subclass implementations of doQuery():

class QuerySD51 extends Query …

protected SDQuery createQuery() {
return sdSession.createQuery(SDQuery.OPEN_FOR_QUERY);

}
public void doQuery() throws QueryException {

if (sdQuery != null) sdQuery.clearResultSet();
sdQuery = createQuery();
executeQuery(sdQuery);

}

class QuerySD52 extends Query …
protected SDQuery createQuery() {

return sdLoginSession.createQuery(SDQuery.OPEN_FOR_QUERY);
}
public void doQuery() throws QueryException {

if (sdQuery != null) sdQuery.clearResultSet();
sdQuery = createQuery();
executeQuery(sdQuery);

}

3. Finally, I apply Form Template Method (345) [Fowler], to produce a single, superclass
doQuery() method:

abstract class Query…

protected abstract SDQuery createQuery() throws QueryException;
public void doQuery() throws QueryException {

if (sdQuery != null) sdQuery.clearResultSet();
sdQuery = createQuery();
executeQuery(sdQuery);

}

class QuerySD51 extends Query …

protected SDQuery createQuery() {
return sdSession.createQuery(SDQuery.OPEN_FOR_QUERY);

}

class QuerySD52 extends Query …
protected SDQuery createQuery() {

return sdLoginSession.createQuery(SDQuery.OPEN_FOR_QUERY);
}

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 42 of 137

Defer Slow Creation with Virtual Proxy

One or many objects take a while to instantiate or load,
but your system may not use them during execution.

Create a Virtual Proxy that can instantiate

and delegate to the real object, when necessary

<<singleton>>
Volatilities

-currencyVolatilities: Map
+crossCurrency(currency1, currency2): double
+loadCurrencyVolatilities()

CurrencyVolatility

+crossVolatility(currency): double

 public static void loadCurrencyVolatilities() {
 Iterator it = Currency.allCurrencies.iterator(); // represents 183 world currencies
 while (it.hasNext()) {
 String currency = (String)it.next();
 loadCurrencyVolatilitiesFor(currency); // loads many doubles per currency
 }
 }

183

<<singleton>>
Volatilities

-currencyVolatilities: Map
+crossCurrency(currency1, currency2): double
+loadCurrencyVolatilities()

CurrencyVolatility

+crossVolatility(currency): double

 Iterator it = Currency.allCurrencies.iterator();
 while (it.hasNext()) {
 String currency = (String)it.next();
 currencyVolatilities.put(currency, new CurrencyVolatilityProxy(currency));
 }

183

<<interface>>
Volatility

+crossVolatility(currency): double

CurrencyVolatilityProxy

-realVolatility: CurrencyVolatility
+crossVolatility(currency) : double

1

 if (realVolatility == null)
 realVolatility = new CurrencyVolatility(...);
 return realVolatility.crossVolatility(currency);

!

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 43 of 137

Motivation

ne one or more methods that return a context instance, properly outfitted with the appropriate
Strategy instance.

Conditional Logic or Slow Code.

Communication Duplication Simplicity
Code readability is often
sacrificed when deferred
creation logic is mixed together
with primary logic. Let the
primary logic communicate
clearly by placing the deferred
creation logic into a Virtual
Proxy, where it will be invisible to
client code.

Conditional logic that checks
whether an expensive object has
been loaded tends to get
duplicated in client programs.
Remove the duplication by
centralizing the conditional logic
in a Virtual Proxy.

The simplicity of a system is
slightly reduced when a Virtual
Proxy is implemented, since it
adds a minor amount of
sophistication around the act of
object creation. However, since
the interface of a proxy and real
subject are identical, it’s just as
simple for a client program to
use one or the other.

Mechanics

Example

Many custom banking applications calculate risk on financial products. The calculations

often require access to large amounts of numerical data, such as cross-currency volatilities. The
trouble is, it can take a while to instantiate (or create) all of the data that may be used by the
calculations, and meanwhile, the users want their numbers to be computed quickly. Virtual
Proxies offer a good solution here. Data that may not be necessary during program execution
doesn’t need to be loaded, but can instead be represented by a lightweight delegate, which looks
and acts like the real thing.
 Our example deals with cross-currency volatility data. Let’s begin by see how this data is
loaded into objects:

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 44 of 137

Replace Conditional Calculations with Strategy

You use a lot of conditional logic in a calculation

Delegate the calculation to a Strategy object

public class Loan ...
 public double calcCapital() {
 return riskAmount() * duration() * RiskFactor.forRiskRating(rating);
 }
 private double riskAmount() {
 if (unusedPercentage != 1.00)
 return outstanding + calcUnusedRiskAmount();
 else return outstanding;
 }
 private double calcUnusedRiskAmount() {
 return (notional - outstanding) * unusedPercentage;
 }
 private double duration() {
 if (expiry == null)
 return ((maturity.getTime() - start.getTime())/MILLIS_PER_DAY)/365;
 else if (maturity == null)
 return ((expiry.getTime() - start.getTime())/MILLIS_PER_DAY)/365;
 else {
 long millisToExpiry = expiry.getTime() - start.getTime();
 long millisFromExpiryToMaturity = maturity.getTime() - expiry.getTime();
 double revolverDuration = (millisToExpiry/MILLIS_PER_DAY)/365;
 double termDuration = (millisFromExpiryToMaturity/MILLIS_PER_DAY)/365;
 return revolverDuration + termDuration;
 }
 }
 private void setUnusedPercentage() {
 if (expiry != null && maturity != null) {
 if (rating > 4) unusedPercentage = 0.95;
 else unusedPercentage = 0.50;
 } else if (maturity != null) {
 unusedPercentage = 1.00;
 } else if (expiry != null) {
 if (rating > 4) unusedPercentage = 0.75;
 else unusedPercentage = 0.25;
 }
 }

!

TermLoanCapital

#riskAmount();
#duration();

Loan

RevolverCapital

#riskAmount();
#duration();

RCTLCapital

#riskAmount();
#duration();

CapitalStrategy

-loan : Loan
+calc(Loan loan)
#riskAmount();
#duration();

1

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 45 of 137

Motivation

A lot of condition logic can obscure any calculation, even a simple one. When that happens,
your calculation can be misunderstood by others and harder to maintain, debug and extend.
Strategy is a pattern that deals well with calculations. A context object obtains a Strategy object
and then delegates a calculation (or calculations) to that Strategy. This lightens the context class
by moving the conditional calculation logic to a small collection of independent calculation
objects (strategies), each of which can handle one of the various ways of doing the calculation.

 Does this sound like a pattern you’d refactor to a lot? It may, but in my experience, I don’t
refactor to Strategy that often. I certainly have refactored to it, but I find that a lot of calculation
logic I either write or come across isn’t sufficiently complicated to justify using Strategy. In
addition, when there is enough conditional logic to merit using the pattern, I have to consider
whether a Template Method would be a better choice. But using a Template Method assumes
that you can place the skeleton of your calculation in a base class, and have subclasses supply
some or all of the calculation details. That may or may not be possible given your situation. For
example, if you already have subclasses and the various ways of calculating something won’t
easily fit into those subclasses, you may not be able to Form Template Method [Fowler]. Or, you
may find that by placing calculations in separate subclasses, you limit your ability to swap one
calculation type for another at runtime, since it would mean changing the type of object a client is
working with, rather than simply substituting one Strategy object for another.

Once you do decide to refactor to Strategy, you have to consider how the calculation
embedded in each strategy class will get access to the variables it needs to do its calculation. To
accomplish that, I usually pass the context class as a reference to the Strategy object, and make
whatever variables are needed by each Strategy accessible via public methods on the context
class.

The final thing to consider is how your context class will obtain its Strategy. Whenever
possible, I like to shield client code from having to worry about both instantiating a Strategy
instance and passing it to a context’s constructor. Creation Methods can help with this: just
define one or more methods that return a context instance, properly outfitted with the appropriate
Strategy instance.

Communication Duplication Simplicity

Copious conditional logic
obscures the steps of a
calculation. Communicate the
steps clearly by separating each
calculation variety into its own
Strategy class. Then clarify
which variety of calculation your
object uses by writing code to
pass the appropriate Strategy to
the object for its use in
performing the calculation.

Conditional calculation code can
often contain duplicate
conditional statements that are
used to calculate various
variables in an algorithm.
Replace all of the conditional
logic by encapsulating each
variety of the calculation in its
own Strategy class.

Classes that contain a lot of
conditional logic are never
simple. But if a class contains
lots of conditional logic for
calculating something in a
variety of ways, it may also be
more complex than it needs to
be, as it knows too much.
Simplify the class by extracting
each variety of the calculation
into its own Strategy class and
then delegate to one of these
classes to obtain a calculation.

Mechanics

1. On a class (which we’ll call “A”) identify a calculation method, or helper methods to

such a method, that contain a lot of conditional logic. This class will be known as your
context class as it will be the context for a Strategy object.

2. Create a concrete class and name it based on the behavior performed by the chosen

calculation method. This will be your Strategy.

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 46 of 137

You can append the word “Strategy” to the class name if you find it helps communicate
the purpose of this new type.

3. Apply Move Method [Fowler] to move the primary calculation method and any helper

methods to your Strategy class. If the code you move needs to obtain information from
A, pass A as a parameter to the primary calculation method or as a parameter to the
Strategy class’s constructor and make sure the information on A is publicly available.

You can alternatively pass the necessary information from A to the Strategy, without
passing a reference of A to the Strategy. This will result in less coupling between A and
your Strategy, but may require you to pass a lot of information. See Design Patterns
[GoF] for an in-depth discussion about communication between the context, A, and the
Strategy.

4. Create a field (which we’ll call “S”) in A for the Strategy and instantiate it.

5. Update the primary calculation method in A to delegate the calculation to S.

6. Compile and test

7. On the Strategy class, apply Replace Conditional with Polymorphism [Fowler] on the

primary calculation method and any helper methods you moved from A. It is best to do
this step slowly, by focusing on extracting one subclass at a time, then performing steps 8
and 9 below and then repeating this step. When finished, you will have substantially
reduced the conditional logic in your Strategy class and you will have defined concrete
Strategy classes for each variety of the calculation you started with.

Consider applying Form Template Method [Fowler] for your Strategy’s primary
calculation method. You may also make your original Strategy class abstract.

8. Add code to A to either use its internal logic to set the value of S or to allow an external

client to pass in a value for S.

If you go with the latter approach, let clients pass in a value for S via constructor calls if
clients won’t need to change S’s value at runtime. Otherwise, supply a setter method to let clients
set the value of S at runtime. For convenience, you can also do both. If clients will be able to pass
in a value of S to A, you’ll need to update the code for every existing client of A.

9. Compile and test.

Example

The example in the code sketch above deals with calculating capital for bank loans. It shows
a fair amout of conditional logic that’s used in performing this calculation, although it is even less
conditional logic than was contained in the original code, which had to handle capital calculations
for 7 different loan profiles.

In the example, the context class is called Loan. We’ll be seeing how Loan’s method for
calculating capital can be strategized, i.e. delegated to a Strategy object. As you study the
example, you may wonder why Loan wasn’t just subclassed to support the three different styles
of capital calculations. That was an option, however, because the application that uses Loan
needed to change a Loan’s capital calculation at runtime, without changing the class type of the
Loan, it was better to use the Strategy pattern.

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 47 of 137

1. We’ll begin by looking at the Loan class’s calcCapital() method and its helper methods
(note: I show a few tests for calcCapital() in step 6 below):

public class Loan ...

private double notional;
private double outstanding;
private int rating;
private double unusedPercentage;
private Date start;
private Date expiry;
private Date maturity;
private static final int MILLIS_PER_DAY = 86400000;

public double calcCapital() {
return riskAmount() * duration() * RiskFactor.forRiskRating(rating);

}
private double calcUnusedRiskAmount() {

return (notional - outstanding) * unusedPercentage;
}
private double duration() {

if (expiry == null)
return ((maturity.getTime() - start.getTime()) / MILLIS_PER_DAY) / 365;

else if (maturity == null)
return ((expiry.getTime() - start.getTime()) / MILLIS_PER_DAY) / 365;

else {
long millisToExpiry = expiry.getTime() - start.getTime();
long millisFromExpiryToMaturity = maturity.getTime() - expiry.getTime();
double revolverDuration = (millisToExpiry / MILLIS_PER_DAY) / 365;
double termDuration = (millisFromExpiryToMaturity / MILLIS_PER_DAY) / 365;
return revolverDuration + termDuration;

}
}
private double riskAmount() {

if (unusedPercentage != 1.00)
return outstanding + calcUnusedRiskAmount();

else
return outstanding;

}
public void setOutstanding(double newOutstanding) {

outstanding = newOutstanding;
}
private void setUnusedPercentage() {

if (expiry != null && maturity != null) {
if (rating > 4)

unusedPercentage = 0.95;
else

unusedPercentage = 0.50;
} else if (maturity != null) {

unusedPercentage = 1.00;
} else if (expiry != null) {

if (rating > 4)
unusedPercentage = 0.75;

else
unusedPercentage = 0.25;

}
}

2. The Strategy I’d like to define will handle the calcCapital() calculation. So I create a class
called CapitalStrategy.

public class CapitalStrategy {
}

3. Now I’m up to the hardest step: I need to move methods from Loan to CapitalStrategy. I
begin with the calcCapital() method. In this case, I don’t want to move this method, but
rather, copy it to CapitalStrategy:

public class CapitalStrategy {

public double calc() {
return riskAmount() * duration() * RiskFactor.forRiskRating(rating);

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 48 of 137

}
}

That code won’t even compile, because CapitalStrategy doesn’t contain the methods it is
calling. No problem. I pass calc() a Loan parameter and update the code as follows:

public double calc(Loan loan) {

return loan.riskAmount() * loan.duration() * RiskFactor.forRiskRating(loan.rating);
}

That gets us closer, but the compiler still complains that the methods and variable I’m

accessing on Loan aren’t visible (i.e. they are private, not public). I change the visibility to
public and finally the compiler is happy. Later, I’ll be moving some of these public
methods/fields to CapitalStrategy or making them accessible via Loan getter methods.

Now I focus on moving each piece of the calculation from Loan to CapitalStrategy. The
method, riskAmount() (which is now public) is first on my radar screen.

public double riskAmount() {

if (unusedPercentage != 1.00)
return outstanding + calcUnusedRiskAmount();

else
return outstanding;

}

This method relies on other fields and methods within Loan. I study the code and see that the

field, outstanding, is used extensively in the Loan class, but the field, unusedPercentage,
along with the methods, setUnusedPercentage() and calcUnusedRiskAmout() are only
there to help the calcCapital() method. So I decide to move all of this code, with the
exception of the field, outstanding, to CapitalStrategy:

public class CapitalStrategy {

private Loan loan;
public double calc(Loan loan) {

this.loan = loan;
return riskAmount() * loan.duration() * RiskFactor.forRiskRating(loan.rating);

}
private double calcUnusedPercentage() {

if (loan.expiry != null && loan.maturity != null) {
if (loan.rating > 4)

return 0.95;
else

return 0.50;
} else if (loan.maturity != null) {

return 1.00;
} else if (loan.expiry != null) {

if (loan.rating > 4)
return 0.75;

else
return 0.25;

}
return 0.0;

}
private double calcUnusedRiskAmount() {

return (loan.notional - loan.outstanding) * calcUnusedPercentage();
}
public double riskAmount() {

if (calcUnusedPercentage() != 1.00)
return loan.outstanding + calcUnusedRiskAmount();

else
return loan.outstanding;

}
}

To make this compile, I need to make more fields on Loan public:

public class Loan ...

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 49 of 137

public double notional;
public double outstanding;
public int rating;
private double unusedPercentage; //replaced with calculation method on CapitalStrategy
public Date start;
public Date expiry;
public Date maturity;

By now I’m not happy having all these public fields. So I make getter methods for them and

update the CapitalStrategy code accordingly. After this, all I do is move the duration()
calculation over to CapitalStrategy and this step of the refactoring is done.
CapitalStrategy now looks like this:

public class CapitalStrategy {

private Loan loan;
private static final int MILLIS_PER_DAY = 86400000;
public double calc(Loan loan) {

this.loan = loan;
return riskAmount() * duration() * RiskFactor.forRiskRating(loan.getRating());

}
private double calcUnusedPercentage() {

if (loan.getExpiry() != null && loan.getMaturity() != null) {
if (loan.getRating() > 4) return 0.95;
else return 0.50;

} else if (loan.getMaturity() != null) {
return 1.00;

} else if (loan.getExpiry() != null) {
if (loan.getRating() > 4) return 0.75;
else return 0.25;

}
return 0.0;

}
private double calcUnusedRiskAmount() {

return (loan.getNotional() - loan.getOutstanding()) * calcUnusedPercentage();
}
public double duration() {

if (loan.getExpiry() == null)
return (

(loan.getMaturity().getTime() - loan.getStart().getTime()) / MILLIS_PER_DAY)
/ 365;

else if (loan.getMaturity() == null)
return (

(loan.getExpiry().getTime() - loan.getStart().getTime()) / MILLIS_PER_DAY)
/ 365;

else {
long millisToExpiry = loan.getExpiry().getTime() - loan.getStart().getTime();
long millisFromExpiryToMaturity =

loan.getMaturity().getTime() - loan.getExpiry().getTime();
double revolverDuration = (millisToExpiry / MILLIS_PER_DAY) / 365;
double termDuration = (millisFromExpiryToMaturity / MILLIS_PER_DAY) / 365;
return revolverDuration + termDuration;

}
}
public double riskAmount() {

if (calcUnusedPercentage() != 1.00)
return loan.getOutstanding() + calcUnusedRiskAmount();

else
return loan.getOutstanding();

}
}

4. Now I need to make a field in the Loan class for the CapitalStrategy class:

public class Loan…

private CapitalStrategy capitalStrategy = new CapitalStrategy();

5. And I’m finally ready to have Loan delegate its calculation of capital to CapitalStrategy’s
calc() method:

public double calcCapital() {

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 50 of 137

return capitalStrategy.calc(this);
}

6. I can now compile and run my tests. Here are a few of the tests that ensure whether the capital
calculation works for various types of loan profiles:

public void testTermLoanCapital() {

Loan termLoan = Loan.newTermLoan(10000.00, startOfLoan(), maturity(), RISK_RATING);
termLoan.setOutstanding(10000.00);
assertEquals("Capital for Term Loan", 37500.00, termLoan.calcCapital(), penny);

}
public void testRevolverROC() {

Loan revolver = Loan.newRevolver(10000.00, startOfLoan(), expiry(), RISK_RATING);
revolver.setOutstanding(2000.00);
assertEquals("Capital for Revolver", 6000.00, revolver.calcCapital(), penny);

}
public void testRevolverTermROC() {

Loan rctl = Loan.newRCTL(10000.00, startOfLoan(), expiry(), maturity(),RISK_RATING);
rctl.setOutstanding(5000.00);
assertEquals("Capital for RCTL", 28125.00, rctl.calcCapital(), penny);

}

These tests, and similar ones, all run successfully.

7. At this point I’ve moved a lot of code out of the Loan class and into the CapitalStrategy
class, which now encapsulates the bulky conditional calculation logic. I want to tame this logic
by decomposing CapitalStrategy into several subclasses, one for each way we calculate
capital. I do this by applying Replace Conditional with Polymorphism [Fowler].

First, I identify a total of three different ways of doing the capital calculation, each of which
corresponds to a specific Loan profile: Term loan, Revolver or RCTL (a combination of a
Revolver, which converts to a Term Loan on an expiry date). I decide to start by creating a
subclass of CapitalStrategy that is capable of calculating capital for a Term Loan:

public class TermLoanCapital extends CapitalStrategy {
}

Now, I find the specific calculation code that applies to a Term Loan and push it down into the
new subclass:

public class TermLoanCapital extends CapitalStrategy {

protected double duration() {
return (

(loan.getMaturity().getTime() - loan.getStart().getTime()) / MILLIS_PER_DAY)
/ 365;

}
protected double riskAmount() {

return loan.getOutstanding();
}

}

I now push on to steps 8 and 9 of the refactoring, after which I’ll circle back to define, configure
and test two more concrete Strategy classes: RevolverCapital and RCTLCapital.

8. Now I need to configure the Loan class with the TermLoanCapital strategy when it is
applicable, so that I can test whether it works. To do this, I make the following modifications:

public class Loan...

private CapitalStrategy capitalStrategy;

protected Loan(double notional, Date start, Date expiry,
Date maturity, int riskRating, CapitalStrategy strategy) {
this.notional = notional;
this.start = start;

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 51 of 137

this.expiry = expiry;
this.maturity = maturity;
this.rating = riskRating;
this.capitalStrategy = strategy;

}
public static Loan newRCTL(double notional, Date start, Date expiry,

Date maturity, int rating) {
return new Loan(notional, start, expiry, maturity, rating, new CapitalStrategy());

}
public static Loan newRevolver(double notional, Date start, Date expiry,

int rating) {
return new Loan(notional, start, expiry, null, rating, new CapitalStrategy());

}
public static Loan newTermLoan(double notional, Date start, Date maturity,

int rating) {
return new Loan(notional, start, null, maturity, rating, new TermLoanCapital());

}

9. I compile and test and all goes well. Now I circle back to step 7, to define the additional
concrete Strategy classes, configure the Loan class to work with them and test everything. When
I’m done, almost all of the original conditional calculation logic is gone and I have three
Strategies for calculating capital:

public class Loan...

public static Loan newRCTL(double notional, Date start, Date expiry,
Date maturity, int rating) {
return new Loan(notional, start, expiry, maturity, rating, new RCTLCapital());

}
public static Loan newRevolver(double notional, Date start, Date expiry,

int rating) {
return new Loan(notional, start, expiry, null, rating, new RevolverCapital());

}
public static Loan newTermLoan(double notional, Date start, Date maturity,

int rating) {
return new Loan(notional, start, null, maturity, rating, new TermLoanCapital());

}

public abstract class CapitalStrategy {

protected Loan loan;
protected static final int MILLIS_PER_DAY = 86400000;
public double calc(Loan loan) {

this.loan = loan;
return riskAmount() * duration() * RiskFactor.forRiskRating(loan.getRating());

}
protected abstract double duration();
protected abstract double riskAmount();

}

public class TermLoanCapital extends CapitalStrategy {
protected double duration() {

return (
(loan.getMaturity().getTime() - loan.getStart().getTime()) / MILLIS_PER_DAY)
/ 365;

}
protected double riskAmount() {

return loan.getOutstanding();
}

}

public class RevolverCapital extends CapitalStrategy {
private double calcUnusedPercentage() {

if (loan.getRating() > 4) return 0.75;
else return 0.25;

}
private double calcUnusedRiskAmount() {

return (loan.getNotional() - loan.getOutstanding()) * calcUnusedPercentage();
}
protected double duration() {

return (
(loan.getExpiry().getTime() - loan.getStart().getTime()) / MILLIS_PER_DAY)
/ 365;

}
protected double riskAmount() {

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 52 of 137

return loan.getOutstanding() + calcUnusedRiskAmount();
}

}

public class RCTLCapital extends CapitalStrategy {
private double calcUnusedPercentage() {

if (loan.getRating() > 4) return 0.95;
else return 0.50;

}
private double calcUnusedRiskAmount() {

return (loan.getNotional() - loan.getOutstanding()) * calcUnusedPercentage();
}
protected double duration() {

long millisToExpiry = loan.getExpiry().getTime() - loan.getStart().getTime();
long millisFromExpiryToMaturity =

loan.getMaturity().getTime() - loan.getExpiry().getTime();
double revolverDuration = (millisToExpiry / MILLIS_PER_DAY) / 365;
double termDuration = (millisFromExpiryToMaturity / MILLIS_PER_DAY) / 365;
return revolverDuration + termDuration;

}
protected double riskAmount() {

return loan.getOutstanding() + calcUnusedRiskAmount();
}

}

Thinking I’m now done, I inspect the results of the refactoring. I wonder, “Is there anything left
to simplify or communicate better?” “Is there any duplication to remove?” The duration
calculations for the three strategies execute a similar formula: find the difference in time between
two dates, divide them by the number of milliseconds in a day, and divide that by 365. That
formula is being duplicated! To remove the duplication, I apply Pull Up Method [Fowler]:

public abstract class CapitalStrategy…

private static final int DAYS_PER_YEAR = 365;
protected double calcDuration(Date start, Date end) {

return ((end.getTime() - start.getTime()) / MILLIS_PER_DAY) / DAYS_PER_YEAR;
}

public class TermLoanCapital extends CapitalStrategy…
protected double duration() {

return calcDuration(loan.getStart(), loan.getMaturity());
}

public class RevolverCapital extends CapitalStrategy {
protected double duration() {

return calcDuration(loan.getStart(), loan.getExpiry());
}

public class RCTLCapital extends CapitalStrategy…
protected double duration() {

double revolverDuration = calcDuration(loan.getStart(), loan.getExpiry());
double termDuration = calcDuration(loan.getExpiry(), loan.getMaturity());
return revolverDuration + termDuration;

}

I compile, run the tests and everything is good. Now, for the moment, I’m done.

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 53 of 137

Replace Implicit Tree with Composite

You implicitly form a tree structure, using a
primitive representation, such as a String

Replace your primitive tree representation

with Composite

String orders = "<orders>";
orders += "<order number='123'>";
orders += "<item number='x1786'>";
orders += "carDoor";
orders += "</item>";
orders += "</order>";
orders += "</orders>";

TagNode orders = new TagNode("orders");
 TagNode order = new TagNode("order");
 order.addAttribute("number", "123");
 orders.add(order);
 TagNode item = new TagNode("item");
 item.addAttribute("number", "x1786");
 item.addValue("carDoor");
 order.add(item);
String xml = orders.toString();

!

Motivation

One problem with implicit tree construction is the tight coupling between the code that builds
the tree and how the tree is represented. Consider the example above, in which an XML
document is built using a String. The nodes on the built XML tree and the way that they are
formatted are combined in one place. While that may seem simple, it actually makes it harder to
change the tree’s representation and forces every programmer to remember every tree
representation rule: like using single quotes for attributes or closing all open tags. I’ve seen
programmers fight many bugs that originated in primitive tree formatting mistakes.

A Composite encapsulates how a tree is represented. This means that a client only needs to
tell a Composite what to add to a tree and where to add it. When a client needs a representation
of the tree, it can ask the Composite to render it. This simpler arrangement leads to less error-
prone code.

But this doesn’t mean that you should always avoid using primitive tree construction. What if
your system doesn’t create many trees? In that case, why go to the trouble of creating a
Composite when some primitive tree construction code would do? If you later find that you or
others are creating more trees, you can refactor to a solution that simplifies the tree construction
perhaps by decoupling the tree-building code from the tree-representation code.

The choice may also involve your development speed. On a recent project, I was tasked with
generating an HTML page from XML data using an XSLT processor. For this task, I needed to
generate an XML tree that would be used in the XSLT transformation. I knew I could use a
Composite to build that tree, but I instead choose to build it with a String. Why? Because I was
more interested in going fast and facing every technical hurdle involved in doing the XSLT
transformation than I was in producing refined XML tree construction code. When I completed
the XSLT transformation, I went back to refactor the primitive tree construction code to use a
Composite, since that code was going to be emulated in many areas of the system.

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 54 of 137

Communication Duplication Simplicity
The best tree-construction code
communicates the structure of a
tree without overwhelming
readers with unnecessary tree-
construction details. Primitive
tree-construction code exposes
too many details. Trees
composed using Composite
communicate better by hiding
tedious and repetitive tree-
construction tasks.

Code that manually builds a tree
often repeats the same set of
steps: format a node, add the
node to the tree and balance the
node with a corresponding node
or some such thing. Composite-
constructed trees minimize
duplication by encapsulating
repetitive instructions, like
formatting nodes and tree-
construction mechanics.

It’s easier to make mistakes
building trees manually than it is
to build trees using Composite.
Manually-constructed trees must
ensure that child nodes are
added correctly – for example, a
tag in an XML tree must have a
corresponding end tag. By
knowing how to construct
themselves, Composite-
constructed trees are simpler.

Mechanics

1. Identify the primitive tree-construction code you’d like to refactor.

2. Identify node types for your new Composite. Keep it simple: test-first design one or more

concrete node types and don’t worry about creating an abstract node type (you may not
need one). Create a method to validate the contents of your budding Composite.

3. Give your nodes the ability to have children. Do not give nodes the ability to remove
children if your application only adds nodes and never removes them. Compile and test.

4. If needed, give clients a way to set attributes on nodes. Compile and test.

5. Replace the original tree-construction code with calls to your new Composite. Compile
and test.

Example

1. We’ll begin with the XML example from the code sketch above:

String orders = "<orders>";
orders += "<order number='123'>";
orders += "<item number='x1786'>";
orders += "carDoor";
orders += "</item>";
orders += "</order>";
orders += "</orders>";

2. In this case, every node in the tree has an open tag (“<orders>”) and close tag (“</orders>”).
While some of the nodes have attributes and values, I identify just one node type that we need to
produce a Composite version of this tree. I test-first design a node type called TagNode, give this
class a way to set its name and create a toString() method to return the resulting XML:

public void testOneNodeTree() {

String expectedResult =
"<orders>" +
"</orders>";
TagNode orders = new TagNode("orders");
assertXMLEquals("xml comparison", expectedResult, orders.toString());

}

public class TagNode {
private String tagName;

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 55 of 137

public TagNode(String name) {
tagName = name;

}
public String toString() {

String result = new String();
result += "<" + tagName + ">";
result += "</" + tagName + ">";
return result;

}
}

3. Next, I give TagNode the ability to have children.

public void testAddingChildrenToTree() {

String expectedResult =
"<orders>" +

"<order>" +
"<item>" +
"</item>" +

"</order>" +
"</orders>";
TagNode orders = new TagNode("orders");
TagNode order = new TagNode("order");
TagNode item = new TagNode("item");
orders.add(order);
order.add(item);
assertXMLEquals("adding children", expectedResult, orders.toString());

}

public class TagNode {
private String tagName;
private List children = new ArrayList();
public TagNode(String name) {

tagName = name;
}
public void add(TagNode childNode) {

children.add(childNode);
}
public String toString() {

String result = new String();
result += "<" + tagName + ">";
Iterator it = children.iterator();
while (it.hasNext()) {

TagNode node = (TagNode)it.next();
result += node.toString();

}
result += "</" + tagName + ">";
return result;

}
}

4. Now the Composite must be extended to support XML attributes or values or both. Again, I do
this by letting my test code drive the development process:

public void testTreeWithAttributesAndValues() {

String expectedResult =
"<orders>" +

"<order>" +
"<item number='12660' quantity='1'>" +
"Dog House" +
"</item>" +
"<item number='54678' quantity='1'>" +
"Bird Feeder" +
"</item>" +

"</order>" +
"</orders>";
TagNode orders = new TagNode("orders");
TagNode order = new TagNode("order");
TagNode item1 = new TagNode("item");
item1.addAttribute("number", "12660");
item1.addAttribute("quantity", "1");
item1.setValue("Dog House");

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 56 of 137

TagNode item2 = new TagNode("item");
item2.addAttribute("number", "54678");
item2.addAttribute("quantity", "1");
item2.setValue("Bird Feeder");
orders.add(order);
order.add(item1);
order.add(item2);
assertXMLEquals("attributes&values", expectedResult, orders.toString());

}

public class TagNode {
private String tagName;
private String tagValue = "";
private String attributes = "";
private List children = new ArrayList();
public TagNode(String name) {

tagName = name;
}
public void add(TagNode childNode) {

children.add(childNode);
}
public void addAttribute(String name, String value) {

attributes += (" " + name + "='" + value + "'");
}
public void addValue(String value) {

tagValue = value;
}
public String toString() {

String result = new String();
result += "<" + tagName + attributes + ">";
Iterator it = children.iterator();
while (it.hasNext()) {

TagNode node = (TagNode)it.next();
result += node.toString();

}
if (!tagValue.equals(""))

result += tagValue;
result += "</" + tagName + ">";
return result;

}
}

5. In the final step, I replace the original primitive tree-construction code with the
Composite code, compile and test:

TagNode orders = new TagNode("orders");

TagNode order = new TagNode("order");
order.addAttribute("number", "123");
orders.add(order);

TagNode item = new TagNode("item");
item.addAttribute("number", "x1786");
item.addValue("carDoor");
order.add(item);

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 57 of 137

Encapsulate Composite with Builder

Your Composite code exposes too many details, forcing clients to
create, format, add and remove nodes and handle validation logic

Encapsulate the Composite with a simpler,

more intention-revealing Builder

TagNode orders = new TagNode("orders");
 TagNode order = new TagNode("order");
 order.addAttribute("number", "123");
 orders.add(order);
 TagNode item = new TagNode("item");
 item.addAttribute("number", "x1786");
 item.addValue("carDoor");
 order.add(item);
String xml = orders.toString();

XMLBuilder orders = new XMLBuilder("orders");
 orders.addBelow("order");
 orders.addAttribute("number", "123");
 orders.addBelow("item");
 orders.addAttribute("number", "x1786");
 orders.addValue("carDoor");
String xml = orders.toString();

!

Motivation

I’m always interested in simplifying client code: I want it to read as clearly as English. So
when it comes to creating really simple tree-construction code, I like the Builder pattern even
better than the Composite pattern. Builders give clients a clean and easy-to-use interface while
hiding details about how the nodes of a Composite are hooked together and what accompanying
steps must take place during construction.

If you study a typical piece of client code that creates some tree structure, you’ll often find
node creation and setup logic mixed together with tree creation and validation logic. A Builder-
based alternative can simplify such code by taking on the burden of node creation and tree
validation logic and let client code concentrate on what is important: building the tree. The result
of refactoring to Builder is often simpler, more intention-revealing client code.

I use Builders a lot with XML. XML documents represent trees, so they work well with both
the Composite and Builder patterns. But Composite-only solutions for creating an XML tree
expose too many details. XML Builders, by contrast, offer a nice way to have your cake and eat it
too: clients talk to a simple XML Builder interface, while the XML Builder itself relies on a
Composite for representing the XML tree. The example below will show you how this is done. In
addition, I’ve included an extended example which shows how an XML Builder was updated to
implement and encapsulate performance logic used in rendering a Composite of XML nodes to a
string.

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 58 of 137

Communication Duplication Simplicity

Client code that creates a tree
needs to communicate the
essence of the activity: what is
added to the tree, and where it is
added. A Composite solution
doesn’t communicate this clearly
because it exposes too many
details. By handling the tree-
construction details, Builders
enable client code to
communicate clearly.

Composite-based tree-
construction code is filled with
calls to create new nodes and
add them to trees. Builder code
removes this duplication by
handling node creation and
simplifying how nodes are added
to a tree.

With a Composite, a client must
know what, where and how to
add items to a tree. With a
Builder, a client needs to know
only what and where to add to
the tree; the Builder takes care
of the rest. Builders often
simplify client code by handling
the mechanics of tree
construction.

Mechanics

1. Identify the Composite that you would like to encapsulate.

2. Create a new Builder class:

• Give the new class a private instance variable for the encapsulated Composite.
• Initialize the Composite in a constructor.
• Create a method to return the results of doing a build.

3. Create intention-revealing methods on your Builder for every type of node that gets

added to your Composite. These methods will add new nodes to an inner Composite and
keep track of the state of the tree.

You may create additional methods to let users set attributes on nodes, or you can let
users add new nodes and set attributes on them using one convenient method call.

4. Replace the tree-construction Composite calls with calls to the Builder. Compile and test.

Example

1. We’ll begin with the Composite code that was shown in the code sketch above. As I study this
code, I realize that it contains more detail than it needs to:

TagNode orders = new TagNode("orders");
TagNode order = new TagNode("order");
order.addAttribute("number", "123");
orders.add(order);

TagNode item = new TagNode("item");
item.addAttribute("number", "x1786");
item.addValue("carDoor");
order.add(item);

2. I define an XMLBuilder class, encapsulate the original Composite, initialize it and write a
toString() method to obtain the results of a build. I do this all from test code, which helps me
confirm that my new class produces correct XML.

public void testOneElementTree() {
String expected =
"<orders>" +
"</orders>";
XMLBuilder builder = new XMLBuilder("orders");
assertXMLEquals("one element tree", expected, builder.toString());

}

Now, my Builder looks like this:

public class XMLBuilder {

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 59 of 137

private TagNode root;
public XMLBuilder(String rootName) {

root = new TagNode(rootName);
}
public String toString() {

return root.toString();
}

}

3. Next, I create methods for every type of node that gets added to the Composite. In this case
it’s trivial: there are only TagNodes. But I still have to consider the different ways in which
clients will add nodes to the inner Composite. I begin with the case of adding nodes as children
of parent nodes:

public void testAddBelow() {
String expected =
"<orders>" +

"<order>" +
"<item>" +
"</item>" +

"</order>" +
"</orders>";
XMLBuilder builder = new XMLBuilder("orders");
builder.addBelow("order");
builder.addBelow("item");
assertXMLEquals("adding below", expected, builder.toString());

}

This leads to the creation of the addBelow() method, along with a few changes to the
XMLBuilder class:

public class XMLBuilder {
private TagNode root;
private TagNode current;
public XMLBuilder(String rootName) {

root = new TagNode(rootName);
current = root;

}
public void addBelow(String child) {

TagNode childNode = new TagNode(child);
current.add(childNode);
current = childNode;

}
public String toString() {

return root.toString();
}

}

Next I must enable the XMLBuilder to add a node at the same level as an existing node (i.e., not
as a child, but as a sibling). This leads to more test and XMLBuilder code:

public void testAddBeside() {

String expected =
"<orders>" +

"<order>" +
"<item>" +
"</item>" +
"<item>" +
"</item>" +

"</order>" +
"</orders>";
XMLBuilder builder = new XMLBuilder("orders");
builder.addBelow("order");
builder.addBelow("item");
builder.addBeside("item");
assertXMLEquals("adding beside", expected, builder.toString());

}

public class XMLBuilder {

private TagNode root;

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 60 of 137

private TagNode current;
private TagNode parent;
public XMLBuilder(String rootName) {

root = new TagNode(rootName);
current = root;
parent = root;

}
public void addBelow(String child) {

TagNode childNode = new TagNode(child);
current.add(childNode);
parent = current;
current = childNode;

}
public void addBeside(String sibling) {

TagNode siblingNode = new TagNode(sibling);
parent.add(siblingNode);
current = siblingNode;

}
public String toString() {

return root.toString();
}

}

I continue on this approach until I have a working Builder that satisfies all of my tests. In some
cases, adding new behavior to the XMLBuilder is trivial, since it merely requires delegating calls
to the inner Composite. For example, here is how XML attributes are implemented:

public void testAddBelowWithAttribute() {

String expected =
"<orders>" +

"<order number='12345' quantity='2'>" +
"</order>" +

"</orders>";
builder = createBuilder("orders");
builder.addBelow("order");
builder.addAttribute("number", "12345");
builder.addAttribute("quantity", "2");
assertXMLEquals("built xml", expected, builder.toString());

}

public class XMLBuilder. . .
public void addAttribute(String name, String value) {

current.addAttribute(name, value);
}

}

4. Now it is time to replace the original client code that used the Composite with the
XMLBuilder. I do this one line at a time, removing some lines and rewriting others. The final code
makes no references to the now encapsulated Composite, TagNode.

XMLBuilder orders = new XMLBuilder("orders");
orders.addBelow("order");
orders.addAttribute("number", "123");

orders.addBelow("item");
orders.addAttribute("number", "x1786");
orders.addValue("carDoor");

Notice how the calls to the XMLBuilder are generic – the methods and data passed to them
reveal nothing about the underlying structure of the tree. Should we need to work with a variety
of Builders, we won’t have to change very much client code.

Extended Example

I could not resist telling you about a performance improvement that was made to the above-
mentioned XMLBuilder class, since it reveals the elegance and simplicity of the Builder pattern.
Some of my colleagues at a company called Evant had done some profiling of our system and
they’d found that a StringBuffer used by the XMLBuilder’s encapsulated composite

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 61 of 137

(TagNode) was causing performance problems. This StringBuffer is used as a Collecting
Parameter – it is created and then passed to every node in a composite of TagNodes in order to
produce the results returned from calling TagNode’s toString(). To see how this works, see the
example in Move Accumulation to Collecting Parameter (78).

The StringBuffer that was being used in this operation was not instantiated with any
particular size, which means that as more and more XML is added to the StringBuffer, it must
automatically grow when it can no longer hold all its data. That’s fine, since the StringBuffer
class was written to be able to automatically grow. But there is a performance penalty one pays
when you allow a StringBuffer to automatically grow: i.e. when it has to grow, it has work to
do to transparently increase its size. That performance penalty in the Evant system was not
acceptable and so the team needed to make an improvement.

The solution was to know what size the StringBuffer needed to be before instantiating it,
and then to instantiate it with the proper size so that it would not need to grow. How could we
compute this size? Easy. As each node gets added to an XML tree via an XMLBuilder, the
builder increments a buffer size based on the size of the strings in the node. Then the final
computed buffer size could be used when instantiating the StringBuffer. Let’s see how this
was implemented.

As usual, we start by writing a test. The test below will build an XML tree by making calls to
an XMLBuilder, then it will obtain the size of the resulting XML string returned by the builder
and finally, it will compare the size of the string with the computed buffer size for use by a
StringBuffer:

public void testToStringBufferSize() {

String expected =
"<orders>" +

"<order number='123'>" +
"</order>" +

"</orders>";
builder = createBuilder("orders");
builder.addBelow("order");
builder.addAttribute("number", "123");

int stringSize = builder.toString().length();
int computedSize = ((XMLBuilder)builder).bufferSize();
assertEquals("buffer size", stringSize, computedSize);

}

To pass this test and others like it, the following XMLBuilder attributes and methods were added
or updated:

public class XMLBuilder {

private int outputBufferSize;
private static int TAG_CHARS_SIZE = 5;
private static int ATTRIBUTE_CHARS_SIZE = 4;

public void addAttribute(String name, String value) {
// logic for adding an attribute to a tag
incrementBufferSizeByAttributeLength(name, value);

}
public void addBelow(String child) {

// logic for adding a Tag below another Tag
incrementBufferSizeByTagLength(child);

}
public void addBeside(String sibling) {

// logic for adding a Tag beside another Tag
incrementBufferSizeByTagLength(sibling);

}
public void addBesideParent(String uncle) {

// logic for adding a Tag beside the current Tag’s parent
incrementBufferSizeByTagLength(uncle);

}
public void addValue(String value) {

// logic for adding a value to a node
incrementBufferSizeByValueLength(value);

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 62 of 137

}
public int bufferSize() {

return outputBufferSize;
}
private void incrementBufferSizeByAttributeLength(String name, String value) {

outputBufferSize += (name.length() + value.length() + ATTRIBUTE_CHARS_SIZE);
}
private void incrementBufferSizeByTagLength(String tag) {

int sizeOfOpenAndCloseTags = tag.length() * 2;
outputBufferSize += (sizeOfOpenAndCloseTags + TAG_CHARS_SIZE);

}
private void incrementBufferSizeByValueLength(String value) {

outputBufferSize += value.length();
}
protected void init(String rootName) {

// logic for initializing the builder and root node
outputBufferSize = 0;
incrementBufferSizeByTagLength(rootName);

}
}

The changes made to the XMLBuilder are transparent to the users of the builder, as it

encapsulates this new performance logic. The only additional change must be made to the
XMLBuilder’s toString() method, so that it can instantiate a StringBuffer of the correct
size, and pass it on to the root TagNode, which will accumulate the contents of the XML tree. To
make that happen, the toString() method was changed from

public String toString() {

return root.toString();
}

to:

public String toString() {
return root.toStringHelper(new StringBuffer(outputBufferSize));

}

And that was it. The tests passed and the XMLBuilder was now significantly faster.

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 63 of 137

Extract Special-Case Behavior into Decorators

Your classes or methods contain special-case behavior

Retain the core behavior but extract the optional or
 special-case behavior into Decorators

CarRental

+float() : calcPrice
+getDaysRented() : int
+getModel() : Model
+getFuelConsumed() : float
+setFuelConsumed(amount : float) : void
+setInsurance(rate : float) : void
+setRefuelOnReturn(pricePerGallon : float) : void

public float calcPrice() {
 float price = (model.price * days);
 if (hasInsurance)
 price += insuranceAmount();
 if (hasRefuelOnReturn)
 price += refuelPrice();
 return price;
}

«Interface»
Rental

+calcPrice() : float
+getDaysRented() : int
+getFuelConsumed() : float
+setFuelConsumed(amount : float) : void
+getModel() : Model

CarRental

+calcPrice() : float
+getDaysRented() : int
+getFuelConsumed() : float
+setFuelConsumed(amount : float) : void
+getModel() : Model

CarRentalDecorator

+calcPrice() : float
+getDaysRented() : int
+getFuelConsumed() : float
+setFuelConsumed(amount : float) : void
+getModel() : Model

#rental : Rental

Insurance

-insuranceAmount() : float
+calcPrice() : float

RefuelOnReturn

-refuelPrice() : float
+calcPrice() : float

1

public float calcPrice() {
 return rental.calcPrice() + insuranceAmount();
}

!

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 64 of 137

Motivation

Decorator is one of my favorite Patterns. It is simple and elegant, but I have to resist
overusing it. The fact is, many problem chunks of code simply don’t need to be refactored to use
Decorator. Simpler solutions are often better. However, there is a time and place for this
refactoring, and when you do use it to solve the right problems, it can add a great deal of clarity
and simplicity to your design.

So what are the types of problems that merit this refactoring? Glad you asked. Let’s look at
an example. Consider an Invoice class that is responsible for keeping track of payment
information for a customer invoice. Most invoices are simple - some dollar amount is owed, and
all the Invoice object has to do is calculate the amount owed. But what happens when the amount
owed is overdue or if a special discount must be applied because the customer is a preferred
customer? Those are two special conditions that the Invoice’s calcAmountOwed() method will
have to deal with. No big deal – we probably still don’t need a fancy Decorator to clean up the
small amount of conditional logic in Invoice’s calcAmountOwed() method.

But what happens when we add more special conditions to calcAmountOwed()? As more
special conditions are added, the Invoice class gets more complex: it holds onto more instance
variables, it supports more getter and setter methods for handling special conditions and its
calculation logic gets longer and more involved.

So now we have a more complex Invoice class. Do we need it? What happens if you
observe that most of the time the system needs to work with the simplest of Invoice objects – no
special conditions, just a simple dollar amount that some customer owes. There are a few places
in the system where the special conditions are needed, but not many. So why mix this some-of-
the-time logic with your core logic? Keeping this logic together just makes your class more
heavyweight, harder to understand and harder to maintain. This is good reason to refactor to
Decorator.

What are other conditions under which this refactoring makes sense? Say your code is calling
special methods on related objects, but you’d really like to have your code talk to one method on
a common interface and handle the special stuff behind the scenes. Essentially, you are trying to
make your processing logic polymorphic. So this may be a good place to refactor to Decorator,
but maybe not. If you can remove all of the client calls to special methods and replace them with
a single intention-revealing method, your code will be simpler and easier to understand. But
what will you have to implement to make this possible?

There is some work involved in implementing this refactoring. In Java, refactoring to
Decorator involves creating a Decorator class and special-purpose concrete Decorator subclasses
as well as producing instantiation code that will wrap objects with the appropriate Decorator(s).
This is a fair amount of work. It will make sense to do this only if you have more than one or two
chunks of special behavior and/or you can really simplify your design with this refactoring.

Communication Duplication Simplicity
Some code just doesn't have to
be run very often. But if you
lump that code in with code that
does have to be run often, you
don't communicate what is and
what is not important.
Decorators give you a way to
communicate what is core code
from what is optional.

As logic gets more complicated,
you often see code that tries to
accommodate many
combinations of behavior. This
can lead to a lot of duplicate
code. Decorators offer a better
way to handle diverse
combinations of behavior without
duplicating code.

Code that mixes together the
essential with the optional isn’t
as simple as code that contains
solely what is essential. On the
other hand, Decorators aren't
always simple to use when you
have to worry about the order in
which you add them.

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 65 of 137

Mechanics

1. On some class (we’ll call it “A”) find an algorithm that is bulky with optional or special-

case processing logic. Choose a piece of logic to extract.

2. Create an interface (we’ll call it “IA”) composed of all of A’s public methods and make
A implement that interface.

3. Create a class that implements the IA interface and name this class after the optional or

special-case logic you chose. This will be your first concrete Decorator.

Don’t worry about creating an abstract Decorator at this point. Abstract Decorators are
only needed when you have multiple concrete Decorators that need to share part of their
implementation.

4. In your new Decorator, create an instance variable of type IA (we’ll call it “delegate”)

and let users set it from a constructor argument.

5. For each method defined by your Decorator, forward each method call to the same
method on delegate.

6. Test that your Decorator works: create a new instance of A, decorate it with an instance

of your new Decorator and assert that it works just like an instance of A.

7. Now move the piece of logic you chose in step 1 to your new Decorator. This step may
require you to make changes to IA and A that let the moved logic function without
duplication of state or behavior.

8. Test that your Decorator still works: create an instance of A, decorator it with an instance

of your Decorator and assert that it works just like an instance of A.

9. Repeat for any other Decorators you would like to create. As you do this, it is best to
factor out common Decorator code into an abstract Decorator class. As soon as you have
created more than one Decorator, test that decorating objects with multiple Decorators
work.

You have to be very careful with supporting multiple Decorators. It is best to have
Decorators be so independent of each other that they can be added to objects in any
combination. In practice, however, that may not be possible, in which case you can write
Creation Methods to give access to objects decorated in various ways.

10. Adjust client code to refer to IA instead of A, and decorate instances of A where
necessary.

Example

If you’ve ever rented a car, you know that you can rent different types of cars with different rental
options, such as an insurance or no-insurance option, a refuel or no-refuel option, one driver or
additional drivers, limited miles or unlimited miles and so forth.

We’ll be looking at a CarRental class that can handle just two rental options: insurance
and the refuel option. We’ll be refactoring this code to use Decorator to show how this
refactoring is done. However, if you carefully study the Before Code, you may wonder if the code
is complicated enough to justify this refactoring. In my opinion, it isn’t. I’d prefer if the Before

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 66 of 137

Code were harder to follow, perhaps having to handle three or more rental options, which could
be combined in different ways. But if the example contained all of that code, it might span five
pages of code. So please use your imagination and consider that CarRental is more complex than
it is in this example.

1. We begin with the CarRental class and it’s calcPrice() method. The optional or special-
case logic from calcPrice() is highlighted in bold:

class CarRental {
protected float fuelConsumed;
protected int days;
protected Model model;
protected float insuranceRate;
protected boolean hasInsurance;
protected boolean hasRefuelOnReturn;
protected float refuelPrice;

public CarRental(Model m, int rentalDays) {
model = m;
days = rentalDays;
hasInsurance = false;
hasRefuelOnReturn = false;

}
public float calcPrice() {

float price = (model.price * days);
if (hasInsurance)

price += insuranceAmount();
if (hasRefuelOnReturn)

price += refuelPrice();
return price;

}
public int getDaysRented() {

return days;
}
public Model getModel() {

return model;
}
public float getFuelConsumed() {

return fuelConsumed;
}
public void setFuelConsumed(float amount) {

fuelConsumed = amount;
}
private float insuranceAmount() {

return insuranceRate * getDaysRented();
}
public void setInsurance(float rate) {

insuranceRate = rate;
hasInsurance = true;

}
private float refuelPrice() {

return(getModel().fuelCapacity - getFuelConsumed()) * refuelPrice;
}
public void setRefuelOnReturn(float pricePerGallon) {

refuelPrice = pricePerGallon;
hasRefuelOnReturn = true;

}
}

class Model {
public float fuelCapacity;
public float price;
public String name;

public Model(float fuelCapacity, float price, String name) {
this.fuelCapacity = fuelCapacity;
this.price = price;
this.name = name;

}
}

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 67 of 137

In CarRental’s calcPrice() method you can see that the algorithm handles cases in which
a rental car has insurance or the refuel on return option or both. Below, I show how three
different CarRental instances may be created: one that uses none of the special options, one that
uses insurance and one that uses both insurance and the refuel option:

Model m = new Model(10.0f, 50.0f, "Ford Taurus");
CarRental r1 = new CarRental(m, 5);
assert(r1.calcPrice() == 250.0f);

CarRental r2 = new CarRental(m, 5);
r2.setInsurance(12.5f);
assert(r2.calcPrice() == 312.5f);

CarRental r3 = new CarRental(m, 5);
r3.setInsurance(12.5f);
r3.setRefuelOnReturn(3.75f);
assert(r3.calcPrice() == 350.0f);

We will see how the above client code changes after we do the refactoring. Our task now is
to choose which piece of special-case logic we want to extract from CarRental’s calcPrice()
method. I will choose the insurance option.

2. Now I must create a common interface to be implemented by the CarRental class and any new
Decorators that we create. This interface must be composed of all of CarRental’s public methods,
since we want existing client code to communicate with CarRental instances (or decorated
CarRental instances) using this new interface. After creating the interface, we make CarRental
implement it:

interface Rental{

public float calcPrice();
public int getDaysRented();
public Model getModel();
public float getFuelConsumed();
public void setFuelConsumed(float amount);
public void setInsurance(float rate);
public void setRefuelOnReturn(float pricePerGallon);

}

class CarRental implements Rental. . .

3. Next, I’ll create a concrete Decorator called Insurance. The Insurance Decorator will be used
to add an insurance option to CarRental instances. Insurance will also implement the Rental
interface:

class Insurance implements Rental {

public float calcPrice() {}
public int getDaysRented() {}
public Model getModel() {}
public float getFuelConsumed() {}
public void setFuelConsumed(float amount) {}
public void setInsurance(float rate) {}
public void setRefuelOnReturn(float pricePerGallon) {}

}

4. The next step is to give Insurance a Rental instance variable and let users set that instance from
a constructor:

class Insurance implements Rental. . .

private Rental rental;
public Insurance(Rental rental) {

this.rental = rental;
}

5. Now, each of Insurance’s methods will forward their method calls to the rental instance
variable:

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 68 of 137

class Insurance implements Rental {

private Rental rental;
public Insurance(Rental rental) {

this.rental = rental;
}
public float calcPrice() {

return rental.calcPrice();
}
public int getDaysRented() {

return rental.getDaysRented();
}
public Model getModel() {

return rental.getModel();
}
public float getFuelConsumed() {

return rental.getFuelConsumed();
}
public void setFuelConsumed(float amount) {

rental.setFuelConsumed(amount);
}
public void setInsurance(float rate) {

rental.setInsurance(rate);
}
public void setRefuelOnReturn(float pricePerGallon) {

rental.setRefuelOnReturn(pricePerGallon);
}

}

6. I’ll now test that the Insurance Decorator works:

Model m = new Model(10.0f, 50.0f, "Ford Taurus");
Rental ford = new CarRental(m, 5);
ford.setInsurance(12.5f);
int fordPrice = ford.calcPrice();

Rental insuredFord = new Insurance(new CarRental(m, 5));
insuredFord.setInsurance(12.5f);
int insuredFordPrice = insuredFord.calcPrice();
assert(fordPrice == insuredFordPrice);

7. Next, I move the insurance logic from CarRental’s calcPrice() method and place it in the
Insurance Decorator. This involves moving insurance-related variables and methods from
CarRental to Insurance. It also provides an opportunity for simplifying the Rental interface, since
CarRental’s setInsurance(float rate) method can be replaced by an insuranceRate
parameter being passed to an Insurance constructor:

interface Rental{
public float calcPrice();
public int getDaysRented();
public Model getModel();
public float getFuelConsumed();
public void setFuelConsumed(float amount);
public void setInsurance(float rate);
public void setRefuelOnReturn(float pricePerGallon);

}

class CarRental implements Rental {
protected float insuranceRate;
protected boolean hasInsurance;

public CarRental(Model m, int rentalDays) {
model = m;
days = rentalDays;
hasInsurance = false;
hasRefuelOnReturn = false;

}
public float calcPrice() {

float price = (model.price * days);
if (hasInsurance)

price += insuranceAmount();

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 69 of 137

if (hasRefuelOnReturn)
price += refuelPrice();

return price;
}
private float insuranceAmount() {

return insuranceRate * getDaysRented();
}
public void setInsurance(float rate) {

insuranceRate = rate;
hasInsurance = true;

}
}

Moving insurance logic to the Insurance Decorator involves:

• replacing the setInsurance(float rate) method with a constructor argument
• creating an instance variable, called rate, to hold the insurance amount
• creating a copy of the old CarRental method, insuranceAmount()
• updating the calcPrice() method to add the computed insurance amount to the rate

computed by the delegate variable, rental.

class Insurance implements Rental {

private float rate;
private Rental rental;

public Insurance(Rental rental, float insuranceRate) {
this.rental = rental;
rate = insuranceRate;

}

private float insuranceAmount() {
return rate * rental.getDaysRented();

}
public float calcPrice() {

return rental.calcPrice() + insuranceAmount();
}
public void setInsurance(float rate) {

rental.setInsurance(rate);
}

}

8. I now test the Insurance Decorator:

Model m = new Model(10.0f, 50.0f, "Ford Taurus");
Rental insuredFord = new Insurance(new CarRental(m, 5), 12.5f);
float insuredFordPrice = insuredFord.calcPrice();
assert(insuredFordPrice == 312.5f);

9. I repeat the above steps to turn CarRental’s refueling rental option into a Decorator. This
further simplifies the CarRental class, which can now be decorated when necessary. In the code
below, you can see the reduction of CarRental’s responsibilities by looking at the reduction of its
public methods and the size of its calcPrice() method. In addition, since we now have two
Decorators, it makes sense to factor out common behavior into an abstract Decorator superclass.

interface Rental{
public float calcPrice();
public int getDaysRented();
public float getFuelConsumed();
public void setFuelConsumed(float amount);
public Model getModel();

}

class CarRentalDecorator implements Rental {
protected Rental rental;
protected CarRentalDecorator(Rental r) {

rental = r;
}
public float calcPrice() {

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 70 of 137

return rental.calcPrice();
}
public int getDaysRented() {

return rental.getDaysRented();
}
public float getFuelConsumed() {

return rental.getFuelConsumed();
}
public void setFuelConsumed(float amount) {

rental.setFuelConsumed(amount);
}
public Model getModel() {

return rental.getModel();
}

}

class Insurance extends CarRentalDecorator {
protected float rate;

public Insurance(Rental r, float rate) {
super(r);
this.rate = rate;

}
private float insuranceAmount() {

return rate * rental.getDaysRented();
}
public float calcPrice() {

return rental.calcPrice() + insuranceAmount();
}

}

class RefuelOnReturn extends CarRentalDecorator {
private float refuelPrice;
public RefuelOnReturn(Rental r, float refuelPrice) {

super(r);
this.refuelPrice = refuelPrice;

}
private float refuelPrice() {

return(rental.getModel().fuelCapacity - rental.getFuelConsumed()) * refuelPrice;
}
public float calcPrice() {

return rental.calcPrice() + refuelPrice();
}

}

We must now test that multiple CarRental Decorators work. Here’s how:

Model m = new Model(10.0f, 50.0f, "Ford Taurus");
Rental insuredFord = new Insurance(new CarRental(m, 5), 12.5f);
Rental refuelInsuredFord = new RefuelOnReturn(insuredFord, 3.75f);
float price = refuelInsuredFord.calcPrice();
assert(price == 350.0f);

Rental refuelFord = new RefuelOnReturn(new CarRental(m, 5), 3.75f);
Rental insuredRefuelFord = new Insurance(refuelFord, 12.5f);
float price = insuredRefuelFord.calcPrice();
assert(insuredFordPrice == 350.0f);

10. We change client code that looked like this:

Model m = new Model(10.0f, 50.0f, "Ford Taurus");
CarRental r1 = new CarRental(m, 5);
r2.setInsurance(12.5f);

to code that looks like this:

Model m = new Model(10.0f, 50.0f, "Ford Taurus");
Rental r1 = new Insurance(new CarRental(m, 5), 12.5f);

The refactored version of CarRental came out to be 34 lines longer than the original code. That
may or may not happen when you do this refactoring – it all depends on the kind of code you’ll

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 71 of 137

be replacing with Decorator. If it is complex conditional code, chances are that adding Decorator
may decrease the lines of code. But in any event, introducing Decorator into your system should
make your code simpler and easier to understand. It may even help you reduce duplication if
your code must handle numerous special-case combinations of behavior.

Let me finish by repeating what I said at the beginning of this refactoring: please don’t overuse
the Decorator pattern. If you’d like to see an excellent example of using Decorator in a design,
study the Decorator code in the extensions package of the JUnit testing framework
(http://www.junit.org).

Collections.synchronizedMap

[Todo: Write up the story of the move from the synchronized Vector and Hashtable classes to the
unsynchronized collections classes that use Collections.synchronizedMap() to obtain a synchronization
decorator].

Vector
 public synchronized void addElement(Object obj) {

 modCount++;
 ensureCapacityHelper(elementCount + 1);

 elementData[elementCount++] = obj;
 }

 static class SynchronizedCollection implements Collection, Serializable {
 Collection c; // Backing Collection
 Object mutex; // Object on which to synchronize

 SynchronizedCollection(Collection c) {
 this.c = c; mutex = this;
 }

 public boolean add(Object o) {
 synchronized(mutex) {return c.add(o);}
 }
 public boolean remove(Object o) {
 synchronized(mutex) {return c.remove(o);}
 }

Collections…
 public static List synchronizedList(List list) {
 return new SynchronizedList(list);
 }

static class SynchronizedList extends SynchronizedCollection
 implements List {
 private List list;

 SynchronizedList(List list) {
 super(list);
 this.list = list;
 }
 SynchronizedList(List list, Object mutex) {
 super(list, mutex);
 this.list = list;
 }

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 72 of 137

 public void add(int index, Object element) {
 synchronized(mutex) {list.add(index, element);}
 }
 public Object remove(int index) {
 synchronized(mutex) {return list.remove(index);}

 }

 }

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 73 of 137

Replace Hard-Coded Notifications with Observer

Your class or numerous subclasses perform
custom object notifications at designated times

Replace your custom notification code

with the Observer pattern

TextTestResult

+addError(...)
+addFailure(...)

UITestResult

-fRunner : TestRunner
+addError(...)
+addFailure(...)

SwingUITestResult

-fRunner : TestRunner
+addError(...)
+addFailure(...)

TestResult

+addError(...)
+addFailure(...)
+run(...)

swingui.TestRunner

+run(...)
+createTestResult(...)

«Instantiates»

textui.TestRunner

+run(...)
+createTestResult(...)

ui.TestRunner

+run(...)
+createTestResult(...)

TestResult

+addListener(:TestListener)
+addError(...)
+addFailure(...)
+run(...)

-Vector fListeners
TestListener

+addError(...)
+addFailure(...)

*

swingui.TestRunner

+run(...)
+createTestResult(...)

textui.TestRunner

+run(...)
+createTestResult(...)

ui.TestRunner

+run(...)
+createTestResult(...)

!

«Instantiates»«Instantiates»

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 74 of 137

Motivation

The Observer pattern is popular. Many programmers know it well and use it often. But the
trick is to learn when you actually need to use Observer and when you don’t.

Consider under what circumstances the authors of Design Patterns suggest using Observer
(see Design Patterns, page 294):

• When an abstraction has two aspects, one dependent on the other. Encapsulating these
aspects in separate objects lets you vary and reuse them independently.

• When a change to one object requires changing others, and you don’t know how many
objects need to be changed.

• When an object should be able to notify other objects without making assumptions about
who these objects are. In other words, you don’t want these objects tightly coupled.

Now, what happens when you do know the object you want to update and it isn’t necessarily

to have loose coupling with that object? For example, class A needs to update objects of type B,
based on some event. Since this is a notification responsibility, you may want to implement a
solution using the Observer pattern (or Java’s Listeners -- essentially the same idea). But do you
really need to go that far? Could Observer be too heavyweight a solution given this example?
What if you simply wrote code in class A that would notify B objects at appropriate times?

Certainly that could work just fine, until objects of type C also need to be notified about A’s
events. You could then experiment with your code. See if adding more hard-coded notification
logic in class A overcomplicates the class. If it doesn’t, you’ve solved your immediate need
without writing much new code.

Eventually, class A’s notification responsibilities may grow. As the responsibilities grow,
you must observe your own interactions with the code. Ask yourself questions like:

• Am I finding duplicate notification code?
• Am I creating relatively dumb subclasses just to satisfy new notification needs?
• Is my notification logic becoming too complex?
• Is it awkward to pass in object references to class A just for the purpose of notification?

The answers to these questions may lead you to refactor to Observer. Doing so should lead to

simpler, smaller and easier-to-read code. Just remember that once you do decide to refactor to
Observer, try to do so in the simplest way possible. For example, if your observers will never
need to stop getting notifications, do not write the removeObserver() code on your Subject class -
- it would only be wasted code that no one uses.

Communication Duplication Simplicity
Hard-coded object notifications
enable runtime collaborations,
but the code doesn’t
communicate this very well:
objects get passed into
constructors, and notifications
happen in random methods.
Compare this to a class that
implements the Observer pattern
– both who can observe its
events and when they get
notified is clearly communicated
in the class declaration.

If you are compelled to write
special code for every class that
must be notified at runtime, you
can easily produce more code
than you need, perhaps resulting
in parallel or near-parallel class
hierarchies. For only a few
notifications, this is no big deal.
But as you add more and more
special notification code,
duplication and code bloat take
over.

A few runtime object notifications
can be easily handled with
simple custom code. But when
the number of notifications
increases, lots of special code
will be written or more and more
subclasses will be produced to
obtain the necessary behavior.
At that point, your code can be
simplified by using the Observer
pattern.

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 75 of 137

Mechanics

1. Identify a Subject: a class that accepts an object reference and contains hard-coded
notification instructions that couple it directly to the object reference type.

2. Define an Observer: an interface that consists of the set of public methods called by the

Subject on the referenced object.

3. Add to the Subject an Observers list and a way for clients to add to that list via a public
addObserver(Observer o) method. Add a corresponding removeObserver(Observer o)
method only if one is needed.

4. For code in the Subject that accepted an object reference and directly notified that

reference, replace with code that iterates over Subject’s Observer list, updating each
Observer instance.

5. For any class that needs to get notified by Subject, make it implement the Observer

interface.

6. Replace code that passed in an object reference to the Subject with code that registers that
object reference as an Observer of the Subject. You’ll use Subject’s
addObserver(Observer o) method for this purpose.

7. Compile and test.

Example

The code sketch above is from Kent Beck and Erich Gamma’s JUnit Testing Framework. Prior to
JUnit 3.x, the authors defined specific TestResult subclasses (like UITestResult, SwingTestResult
and TextTestResult) that were responsible for gathering up test information and reporting it to
TestRunners. Each TestResult subclass was coupled to a specific TestRunner, such as an AWT
TestRunner, Swing TestRunner or Text-based TestRunner. At runtime, after creating a
TestResult subclass, a TestRunner would pass itself in as a reference to that TestResult, and then
wait to be notified by the TestResult. Each TestResult subclass was hard-coded this way to talk
with a specific TestRunner, and that is where our refactoring begins.

In JUnit 3.1, Kent and Erich refactored the TestResult/TestRunner code to use the Observer
pattern. This enabled them to eliminate all of the special TestResult subclasses (UITestResult,
SwingTestResult and TextTestResult) and simplify each of the concrete TestRunners.

Our example will look at this real-world refactoring of the JUnit framework. I’ve deliberately
simplified some of the JUnit code in order to concentrate on the refactoring, not the inner
workings of JUnit. However, if you want to study the JUnit code (which I highly recommend),
you can download it at http://www.junit.org.

1. Our first task is to find a Subject. In this case, the UITestResult class will be our Subject, but
later our Subject will become the TestResult class. What is the reason for this? Well, as a
subclass of TestResult, UITestResult doesn’t add much new behavior: it exists only because it has
the ability to talk directly to an AWT TestRunner class. Our refactoring will seek to eliminate
UITestResult and move its behavior up to the TestResult class.

Let’s look at the code for all three classes, minus some details you don’t need to worry about.
I highlight in bold the coupling between UITestResult and its AWT TestRunner:

package junit.framework;
public class TestResult extends Object {

protected Vector fFailures;

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 76 of 137

public TestResult() {
fFailures= new Vector(10);

}
public synchronized void addFailure(Test test, Throwable t) {

fFailures.addElement(new TestFailure(test, t));
}
public synchronized Enumeration failures() {

return fFailures.elements();
}
protected void run(TestCase test) {

startTest(test);
try {

test.runBare();
}
catch (AssertionFailedError e) {

addFailure(test, e);
}
endTest(test);

}
}

package junit.ui;
class UITestResult extends TestResult {

private TestRunner fRunner;
UITestResult(TestRunner runner) {

fRunner= runner;
}
public synchronized void addFailure(Test test, Throwable t) {

super.addFailure(test, t);
fRunner.addFailure(this, test, t);

}
...

}

package junit.ui;
public class TestRunner extends Frame {

private TestResult fTestResult;
...
protected TestResult createTestResult(TestRunner runner) {

return new UITestResult(TestRunner.this);
}
synchronized public void runSuite() {

...
fTestResult = createTestResult(TestRunner.this);
testSuite.run(fTestResult);

}
public void addFailure(TestResult result, Test test, Throwable t) {

fNumberOfFailures.setText(Integer.toString(result.testFailures()));
appendFailure("Failure", test, t);

}
}

2. Our next task is to define an Observer interface. Kent and Erich call this a TestListener:

package junit.framework;
public interface TestListener {

public void addError(Test test, Throwable t);
public void addFailure(Test test, Throwable t);
public void endTest(Test test);
public void startTest(Test test);

}

3. We must now add a list of Observers to our Subject and provide clients (that implement the
Observer interface) a way to add themselves to this list. We do this work on the TestResult class
rather than the UITestResult class, which we hope to eliminate:

public class TestResult extends Object {
protected Vector fFailures;
protected Vector fListeners;
public TestResult() {

fFailures= new Vector();
fListeners= new Vector();

}

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 77 of 137

public synchronized void addListener(TestListener listener) {
fListeners.addElement(listener);

}
}

4. Now we need to make our Subject update its Observers when an event happens. This involves
refactoring TestResult methods like addFailure(), addError() and so on. For simplicity, we will
examine only how addFailure() is refactored. Here’s what the original method looked like on
UITestResult:

class UITestResult. . .

public synchronized void addFailure(Test test, Throwable t) {
super.addFailure(test, t);
fRunner.addFailure(this, test, t);

}

Rather than refactor UITestResult’s addFailure() method, we focus on the same method in
TestResult, the superclass. TestResult’s addFailure method will continue to do what it used to do,
but it will now iterate through its registered Observers, calling each one’s addFailure() method. In
this context, since Observers are usually TestRunners, this code will inform each registered
TestRunner that a failure has been added. When that happens, the TestRunners have a chance to
do things like update a GUI to reflect just how many test failures have occurred. Here’s what
TestResult’s refactored addFailure() method looks like:

class TestResult. . .

public synchronized void addFailure(Test test, AssertionFailedError t) {
fFailures.addElement(new TestFailure(test, t));
for (Enumeration e= cloneListeners().elements(); e.hasMoreElements();) {

((TestListener)e.nextElement()).addFailure(test, t);
}

}

5. Now, in order for the AWT TestRunner to register itself as an Observer of a TestResult, we
must make the ui.TestRunner class implement the TestListener interface:

package junit.ui;
public class TestRunner extends Object implements TestListener . . .

6. The final step is to register the Observer with the Subject of choice. In this case, we’ll look at
the code that registers the ui.TestRunner with a TestResult instance:

package junit.ui;
public class TestRunner extends Object implements TestListener {

private Vector fFailedTests;
private TestResult fTestResult;

protected TestResult createTestResult() {
return new TestResult();

}
synchronized public void runSuite() {

. . .
fTestResult = createTestResult();
fTestResult.addListener(TestRunner.this);
. . .

}
}

7. Finally, we can now compile and test that our refactored ui.TestRunner and TestResult work
together the way we expect. In the real world, Kent and Erich refactored all of the TestResult
subclasses and TestRunners to use the Observer pattern.

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 78 of 137

Move Accumulation to Collecting Parameter

You have a single bulky method
that accumulates information to a variable

Accumulate your result to a Collecting Parameter

that you pass to extracted methods.

class TagNode. . .
public String toString() {
 String result = new String();
 result += "<" + tagName + " " + attributes + ">";
 Iterator it = children.iterator();
 while (it.hasNext()) {
 TagNode node = (TagNode)it.next();
 result += node.toString();
 }
 if (!tagValue.equals(""))
 result += tagValue;
 result += "</" + tagName + ">";
 return result;
 }

class TagNode. . .
public String toString() {
 return toStringHelper(new StringBuffer(""));
}
private String toStringHelper(StringBuffer result) {
 writeOpenTagTo(result);
 writeChildrenTo(result);
 writeEndTagTo(result);
 return result.toString();
}

!

Motivation

Kent Beck defined the Collecting Parameter pattern in his classic book, Smalltalk Best
Practice Patterns. A Collecting Parameter is an object that you pass to methods in order to collect
information from those methods. A good reason to use this pattern is when you want to
decompose a bulky method into smaller methods (using Extract Method [Fowler]), and you need
to accumulate information from each of the extracted methods. Instead of making each of the
extracted methods return a result, which you later combine into a final result, you can
incrementally accumulate your result by passing a collecting parameter to each of the extract
methods, which in turn, write their results to the collecting parameter.

Collecting Parameter works nicely with the Composite pattern, since you can use a Collecting
Parameter to recursively accumulate information from a Composite structure. Kent Beck and
Erich Gamma combined these two patterns in their JUnit testing framework to enable a single
TestResult object to gather test result information from every test in a hierarchical structure of
test case objects.

I recently combined Collecting Parameter with Composite when I refactored a class’s
toString() method (see the code sketch above). My initial goal was to replace a lot of slow
String concatenation code with faster StringBuffer code, but when I realized that a simple
replacement would generate lots of StringBuffer instances (because the code is recursive), I
retreated from this approach. Then my programming partner at the time, Don Roberts, seized the
keyboard, saying “I’ve got it, I’ve got it” and then quickly refactored the code to use a single

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 79 of 137

StringBuffer as a Collecting Parameter. The resulting code (partially shown in the code
sketch) had a far simpler design, communicated better with the reader and, thanks to the
StringBuffer, was far more efficient.

Communication Duplication Simplicity
Bulky methods don’t
communicate well. Communicate
what you are accumulating by
placing each step into intention-
revealing methods that write
results to a parameter.

You don’t often reduce duplicate
code using this refactoring. The
only exception would be if you
have different types of Collecting
Parameters that can be passed
into the same methods.

Extract Method is at the heart of
this refactoring. You use it to
reduce a bulky method into a
simpler method that delegates to
intention-revealing methods.

Mechanics

1. Identify a chunk of code that accumulates information into a variable (we’ll call that

variable “result”). Result will become your Collecting Parameter. If result’s type won’t
let you iteratively gather data across methods, change result’s type. For example, Java’s
String won’t let us accumulate results across methods, so we use a StringBuffer.

2. Find an information accumulation step and extract it into a private method (using Extract

Method [Fowler]). Make the method’s return type be void and pass it result. Inside the
method, write information to result.

3. Repeat steps 2 for every accumulation step, until the original code has been replaced with

calls to extracted methods that accept and write to result.

4. Compile and test.

 Example

In this example, we will see how to refactor Composite-based code to use a Collecting
Parameter. We’ll start with a composite that can model an XML tree (see Replace Primitive Tree
Construction with Composite for a complete example of this XML composite code).

The composite is modeled with a single class, called TagNode, which has a toString()
method. The toString() method recursively walks the nodes in the XML tree, and produces a
final String representation of what it finds. It does a fair amount of work in 11 lines of code. We
will refactor toString() to make it simpler and easier to understand.

1. The following toString() method recursively accumulates information from every tag in a
composite structure and stores results in a variable called “result”:

class TagNode. . .
public String toString() {

String result = new String();
result += "<" + tagName + " " + attributes + ">";
Iterator it = children.iterator();
while (it.hasNext()) {

TagNode node = (TagNode)it.next();
result += node.toString();

}
if (!tagValue.equals(""))

result += tagValue;
result += "</" + tagName + ">";
return result;

}

I change result’s type to be a StringBuffer in order to support this refactoring:

StringBuffer result = new StringBuffer("");

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 80 of 137

2. I identify the first information accumulation step: code that concatenates an xml open tag along
with any attributes to the result variable. I Extract Method on this code as follows:

result += "<" + tagName + " " + attributes + ">";

is extracted to:

private void writeOpenTagTo(StringBuffer result) {
result.append("<");
result.append(name);
result.append(attributes.toString());
result.append(">");

}

The original code now looks like this:

StringBuffer result = new StringBuffer("");
writeOpenTagTo(result);

 …

3. Next, I want to continue to extract methods from toString(). I focus on the code that adds
child XML nodes to the result. This code contains a recursive step (which I highlight below in
bold):

class TagNode. . .

public String toString(). . .
Iterator it = children.iterator();
while (it.hasNext()) {

TagNode node = (TagNode)it.next();
result += node.toString();

}
if (!tagValue.equals(""))

result += tagValue;
. . .

}

Since this code makes a recursive call, it isn’t so easy to extract into a method. The following
code will show you why:

private void writeChildrenTo(StringBuffer result) {

Iterator it = children.iterator();
while (it.hasNext()) {

TagNode node = (TagNode)it.next();
node.toString(result); // can’t do this because toString() doesn’t take arguments.

}
. . .

}

Since toString() doesn’t take a StringBuffer as an argument I can’t simply extract the method. I
have to find another solution and I decide to solve the problem using a helper method. This
method will do the work that toString() used to do, but it will take a StringBuffer as a Collecting
Parameter:

public String toString() {

return toStringHelper(new StringBuffer(""));
}

private String toStringHelper(StringBuffer result) {
writeOpenTagTo(result);
. . .
return result.toString();

}

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 81 of 137

With the new toStringHelper() method in place, I can go back to my original task: extracting the
next accumulation step:

private String toStringHelper(StringBuffer result) {

writeOpenTagTo(result);
writeChildrenTo(result);
…
return result.toString();

}
private void writeChildrenTo(StringBuffer result) {

Iterator it = children.iterator();
while (it.hasNext()) {

TagNode node = (TagNode)it.next();
node.toStringHelper(result); // now recursive call will work

}
if (!value.equals(""))

result.append(value);
}

As I stare at the writeChildrenTo() method, I realize that it is handling two steps: adding
children recursively and adding a value to a tag, when one exists. To make these two separate
steps stand out, I extract the code for handling a value into its own method:

private void writeValueTo(StringBuffer result) {

if (!value.equals(""))
result.append(value);

}

To finish the refactoring, I extract one more method that writes an XML close tag. Here’s what
the final code looks like:

public class TagNode . . .

public String toString() {
return toStringHelper(new StringBuffer(""));

}
private String toStringHelper(StringBuffer result) {

writeOpenTagTo(result);
writeChildrenTo(result);
writeValueTo(result);
writeEndTagTo(result);
return result.toString();

}
private void writeOpenTagTo(StringBuffer result) {

result.append("<");
result.append(name);
result.append(attributes.toString());
result.append(">");

}
private void writeChildrenTo(StringBuffer result) {

Iterator it = children.iterator();
while (it.hasNext()) {

TagNode node = (TagNode)it.next();
node.toStringHelper(result);

}
}
private void writeValueTo(StringBuffer result) {

if (!value.equals(""))
result.append(value);

}
private void writeEndTagTo(StringBuffer result) {

result.append("</");
result.append(name);
result.append(">");

}
}

Or so I thought that was the final code. An astute reader of the above code pointed out that when
the writeChildrenTo() method recursively calls toStringHelper(), it is returned a String,
which it promptly ignores. In other words, the only time that the return result of

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 82 of 137

toStringHelper() is used is when it is called from the toString() method. This means that
the code can be made more efficient as follows:

public String toString() {

StringBuffer result = new StringBuffer("");
toStringHelper(result);
return result.toString();

}
public void toStringHelper(StringBuffer result) {

writeOpenTagTo(result);
writeChildrenTo(result);
writeValueTo(result);
writeEndTagTo(result);

}

4. I compile, run my tests and everything is good.

JUnit’s Collecting Parameter

To get a better understanding of the Collecting Parameter pattern, let’s have a look at another
example, which comes from the unit testing framework, JUnit. In JUnit, every test is an object.
Test objects get put into suites, which may be put into more suites, which results in a composite
of tests. To report on how each test performs (did it pass, fail or generate errors?), some object
needs to accumulate and report results as each test in the Composite is executed. TestResult is
that object and it serves the role of Collecting Parameter.

[add uml and more description]

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 83 of 137

Replace One/Many Distinctions with Composite

You have separate code for handling
single elements and collections of those elements

Combine the code to handle single

or multiple elements using Composite

public class Product...
 protected Vector singleParts = new Vector();
 protected Vector collectedParts = new Vector();

 public void add(Part part) {
 singleParts.addElement(part);
 }
 public void add(PartSet set) {
 collectedParts.addElement(set);
 }
 public float getPrice() {
 float price = 0.0f;
 Enumeration e;
 for (e=singleParts.elements(); e.hasMoreElements();) {
 Part p = (Part)e.nextElement();
 price += p.getPrice();
 }
 for (e=collectedParts.elements(); e.hasMoreElements();) {
 PartSet set = (PartSet)e.nextElement();
 price += set.getPrice();
 }
 return price;
 }

public class Product...
 protected Vector parts = new Vector();

 public void add(Part p) {
 parts.addElement(p);
 }
 public float getPrice() {
 float price = 0.0f;
 for (Enumeration e=parts.elements(); e.hasMoreElements();) {
 Part p = (Part)e.nextElement();
 price += p.getPrice();
 }
 return price;
 }

!

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 84 of 137

public class DomainRepository...
 List repository;

 public List isSatisfiedBy(SearchCriteria criteria) {
 loop on repository
 collect all objects that meet search criteria
 return list
 }
 public List isSatisfiedBy(List searchCriteriaList) {
 for each criteria in list
 loop on repository
 collect all objects that meet search criteria
 return list
 }

public class DomainRepository...
 List repository;

 public List isSatisfiedBy(SearchCriteria criteria) {
 loop on repository
 collect all objects that meet search criteria
 return list
 }

!

Motivation

A good reason to refactor to Composite is to get rid of code that distinguishes between single

objects and collections of those objects. You may find code that makes these distinctions when
you have a hierarchy of objects, some of which are leaves and some of which are collections of
leaves (or collections of collections). Treating both the leaf objects and the collections identically
is an important goal of Composite.

[I have much more to write in this section]
.

Communication Duplication Simplicity
If you’re performing the same
behavior on single objects or
collections of those objects, it is
useful to communicate this in
your code. But code that
handles the different class types
in separate bits of code doesn’t
communicate this message well.
Make it clear by using the
Composite pattern to treat your
single and multiple objects
uniformly.

One of the primary reasons to
refactor to Composite is to
remove duplication. Identify
separate chunks of code that
execute similar behavior on
different class types and
consolidate this code by treating
the objects uniformly via an
interface or common base class.

Having separate code to process
single objects and collections of
objects isn’t simple – it is a
symptom of code that is
needlessly complex. Simplify
this code by treating the class
types uniformly via an interface
or common base class.

Mechanics

[to do]

10 rules in validation
plus 5
only use 8 plus 2 more originals

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 85 of 137

Example

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 86 of 137

Compose Method

It isn’t easy to understand your method’s logic

Transform the logic into a small number of
intention-revealing steps at the same level of detail

public boolean contains(Component c) {
 Point p = c.getLocation();
 int locX = new Double(p.getX()).intValue();
 int locY = new Double(p.getY()).intValue();
 boolean completelyWithin =

(locX >= coords[0] &&
locY >= coords[1] &&
(locX+CardComponent.WIDTH) <= coords[2]) &&
(locY+CardComponent.HEIGHT) <= coords[3];

 if (completelyWithin) return true;

 locX = locX+CardComponent.WIDTH;
 locY = locY+CardComponent.HEIGHT;
 boolean partiallyWithin =

(locX > coords[0] &&
locY > coords[1] &&
(locX < coords[2]) &&
(locY < coords[3]));

 return partiallyWithin;
}

public boolean contains(Component c) {
 return completelyWithin(c) || partiallyWithin(c) ;
}

private boolean completelyWithin(Component c) {
 Point p = c.getLocation();
 return (p.x >= coords[0] &&
 p.y >= coords[1] &&
 (p.x + CardComponent.WIDTH) <= coords[2] &&
 (p.y + CardComponent.HEIGHT) <= coords[3]);
}

private boolean partiallyWithin(Component c) {
 Point p = c.getLocation();
 return ((p.x + CardComponent.WIDTH) > coords[0] &&
 (p.y + CardComponent.HEIGHT) > coords[1] &&
 (p.x + CardComponent.WIDTH) < coords[2] &&
 (p.y + CardComponent.HEIGHT) < coords[3]);
}

!

Motivation

Kent Beck once said that some of his best patterns are those that he thought someone would
laugh at him for writing. Composed Method [Beck] may be such a pattern. A Composed Method
is a small, simple method that is easy to understand. Do you write a lot of Composed Methods? I
like to think I do, but I often find that I don’t, at first. So I have to go back and refactor to this
pattern. When my code has many Composed Methods, it tends to be a easy to use, read and
extend.

I find myself aggressively refactoring to this pattern quite often. For example, just the other
day I was debugging a method in some code I’ve been writing with a friend. The method, called

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 87 of 137

contains(), wasn’t very complex, but it was complex enough that I had to think about how it
was doing its job. I knew this method would be easier to debug if I refactored it first. But my ego
wasn’t ready for that, just then: I just wanted to get rid of the bug. So, after writing an automated
test to demonstrate the bug, I wrote new code in the contains() method to fix the bug. That
code didn’t fix the bug and after two more failed attempts, I was ready to refactor. It wasn’t
difficult to transform contains() into a Composed Method. But after doing so, it was so much
easier to follow the logic. And moments after the refactoring, I found and fixed my bug.

Communication Duplication Simplicity
It may be clear what a method
does but not how the method
does what it does. Make the
“how” easy to understand by
clearly communicating every
logical step. You’ll often
implement part of this refactoring
using Extract Method [Fowler].

Duplicate code, whether blatant
or subtle, clutters a method’s
logic. Remove the duplication to
make the code smaller and
simpler. Doing so often reveals
further refactoring opportunities.

Composed Methods often read
like English. If your method has
too many lines of code, such that
you can’t easily explain how it
does its job, simplify it by
extracting logic till it is a
Composed Method.

Mechanics

This is one of the most important refactorings I know of. Conceptually, it is also one of the

simplest. So you’d think that this refactoring would lead to a simple set of mechanics. In fact,
just the opposite is the case. While the steps themselves aren’t complex, there is no simple,
repeatable set of these steps. But there are guidelines for refactoring to Composed Method, some
of which include:

• Think Small – Composed Methods are rarely more than 10 lines of code, and are usually
more like 5.

• Remove Duplication – Reduce the amount of code in the method by getting rid of blatant

and/or subtle code duplication.

• Communicate Intention – do so with the names of your variables and methods, and by
making your code simple.

• Simplify – there are many ways to skin a cat. Refactor to the way that is most simple and

that best communicates your intention. Simple methods may not be the most highly
optimized methods. Don’t worry about that. Make your code simple and optimize it
later.

• Similar Levels – when you break up one method into chunks of behavior, make the
chunks operate at similar levels. For example, if you have a piece of detailed conditional
logic mixed in with some high-level method calls, you have code at different levels.
Push the detail into a new or existing high-level chunk.

• Group Related Code – Some code is simply hard to extract into its own method. You can

easily see a way to extract part of the code, but the rest remains in the original method.
You now have code at different levels. In addition, because you have an unnatural split
between related fragments of code, your code is harder to follow. In general, look for
ways to group related code fragments, even if they aren’t obvious at first.

 Let’s now look at three examples of refactoring to Composed Method:

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 88 of 137

Example 1

I’ll start with the game example from the code sketch above. We begin with a single bulky
method, called contains(), which figures out whether a Component is fully or partially
contained within a rectangular area:

public boolean contains(Component c) {
Point p = c.getLocation();
int locX = new Double(p.getX()).intValue();
int locY = new Double(p.getY()).intValue();
boolean completelyWithin =
(locX >= coords[0] &&
locY >= coords[1] &&
(locX+CardComponent.WIDTH) <= coords[2]) &&
(locY+CardComponent.HEIGHT) <= coords[3];

if (completelyWithin) return true;

locX = locX+CardComponent.WIDTH;
locY = locY+CardComponent.HEIGHT;
boolean partiallyWithin =
(locX > coords[0] &&
locY > coords[1] &&
(locX < coords[2]) &&
(locY < coords[3]));

return partiallyWithin;
}

Before we get into the refactoring, let’s look at one of six test methods for the contains()

method. The following method tests to see if a card is initially contained within the first player’s
play area, then moves the card out of the first player’s play area and follows that with another
test:

public void testCardOutOfPlayAreaOne() {
Hand hand = (Hand)explanations.getCurrentPlayer().getHand();
Card card = (Card)hand.elements().nextElement();
CardComponent c = new CardComponent(card,explanations);
PlayerArea area = explanations.getPlayerArea(0);
explanations.moveCard(c, area.upperLeft());
assertEquals("area contains card", true, area.contains(c));

explanations.moveCard(c, CardComponent.WIDTH + 10, CardComponent.HEIGHT + 10);
assertEquals("area does not contain card", false, area.contains(c));

}

The above test, and the other five tests, all pass (or “run green’) before I begin refactoring. I

run these tests after each of the small steps I am about to do below.
To begin, my first impulse is to make the contains() method smaller. That leads me to

look at the conditional represented by the variable, completelyWithin:

boolean completelyWithin =
(locX >= coords[0] &&
locY >= coords[1] &&
(locX+CardComponent.WIDTH) <= coords[2]) &&
(locY+CardComponent.HEIGHT) <= coords[3];

While that variable helps make it clear what the conditional logic does, the contains()
method would be smaller and easier to read if this fragment were in it’s own method. So I start
with an Extract Method:

public boolean contains(Component c) {

Point p = c.getLocation();
int locX = new Double(p.getX()).intValue();
int locY = new Double(p.getY()).intValue();
if (completelyWithin(locX, locY)) return true;

locX = locX+CardComponent.WIDTH;

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 89 of 137

locY = locY+CardComponent.HEIGHT;
boolean partiallyWithin =

(locX > coords[0] &&
locY > coords[1] &&
(locX < coords[2]) &&
(locY < coords[3]));

return partiallyWithin;
}

private boolean completelyWithin(int locX, int locY) {
return (locX >= coords[0] &&

locY >= coords[1] &&
(locX+CardComponent.WIDTH) <= coords[2]) &&
(locY+CardComponent.HEIGHT) <= coords[3];

}

Next, after seeing a similar temporary variable, called partiallyWithin, I do another Extract
Method:

public boolean contains(Component c) {

Point p = c.getLocation();
int locX = new Double(p.getX()).intValue();
int locY = new Double(p.getY()).intValue();
if (completelyWithin(locX, locY)) return true;
locX = locX+CardComponent.WIDTH;
locY = locY+CardComponent.HEIGHT;
return partiallyWithin(locX, locY);

}

private boolean partiallyWithin(int locX, int locY) {
return (locX > coords[0] &&

locY > coords[1] &&
(locX < coords[2]) &&
(locY < coords[3]));

}

The contains() method is now smaller and simpler, but it still seems cluttered with

variable assignments. I notice that the assignments to locX and locY are performed simply for
use by the new methods, completelyWithin() and partiallyWithin(). I decide to
let those methods deal with the locX and locY assignments. The easiest way to do this is to
just pass the Point variable, p, to each of the methods:

public boolean contains(Component c) {

Point p = c.getLocation();
if (completelyWithin(p)) return true;
return partiallyWithin(p);

}

Now, the contains() method is really looking smaller and simpler. I feel like I’m done.

But then I look at that first line of code:

Point p = c.getLocation();

 The level of that code seems wrong – it is a detail, while the rest of the code in the method
represents core pieces of logic. The two methods I’m calling each need the Point variable. But
each of those methods could easily obtain the Point variable if I just sent them Component c. I
consider doing that, but then I worry about violating the rule of doing things once and only once.
For if I pass variable c, the Component, to each method, each method will have to contain code
to obtain a Point from c, instead of just getting one passed in directly.

Hmmmm. What is my real goal here? Is it more important to get the levels of the code right
or to say things once and only once? After some reflection, I realize that my goal is to produce a
method that can be read and understood in seconds. But as it stands, that first line of code takes
away from the readability and simplicity of the method. So I push down the code to obtain a
Point into the two called methods and end up with the following:

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 90 of 137

public boolean contains(Component c) {
return completelyWithin(c) || partiallyWithin(c);

}

private boolean completelyWithin(Component c) {
Point p = c.getLocation();
int locX = new Double(p.x).intValue();
int locY = new Double(p.y).intValue();
return (locX >= coords[0] &&

locY >= coords[1] &&
(locX + CardComponent.WIDTH) <= coords[2]) &&
(locY + CardComponent.HEIGHT) <= coords[3];

}

private boolean partiallyWithin(Component c) {
Point p = c.getLocation();
int locX = new Double(p.x).intValue() + CardComponent.WIDTH;
int locY = new Double(p.y).intValue() + CardComponent.HEIGHT;
return (locX > coords[0] &&

locY > coords[1] &&
(locX < coords[2]) &&
(locY < coords[3]));

}

Now I think I’m really done. But whenever you think you’re really done, you’re not. A reviewer
of this refactoring, named Andrew Swan, observed that I was converting p.x and p.y to ints,
when they are already ints! So this lead to a further simplification:

public boolean contains(Component c) {

return completelyWithin(c) || partiallyWithin(c) ;
}

private boolean completelyWithin(Component c) {
Point p = c.getLocation();
return (p.x >= coords[0] &&

p.y >= coords[1] &&
(p.x + CardComponent.WIDTH) <= coords[2] &&
(p.y + CardComponent.HEIGHT) <= coords[3]);

}

private boolean partiallyWithin(Component c) {
Point p = c.getLocation();
return ((p.x + CardComponent.WIDTH) > coords[0] &&

(p.y + CardComponent.HEIGHT) > coords[1] &&
(p.x + CardComponent.WIDTH) < coords[2] &&
(p.y + CardComponent.HEIGHT) < coords[3]);

}

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 91 of 137

Example 2

public static Vector wrap(String s) {
 Vector wrapVector = new Vector();
 String words;
 String word;
 int lastPos;
 do {
 if (s.length() > 16) {
 words="";
 word="";
 lastPos=0;
 for (int i=0;i<16;i++) {
 if (s.charAt(i)==' ' || s.charAt(i)=='-') {
 words+=word+s.charAt(i);
 lastPos = i+1;
 word="";
 } else word+=s.charAt(i);
 }
 if (lastPos==0) {
 // Rare case that there was no space or dash, insert one and break
 words+=word+"-";
 lastPos=16;
 }
 wrapVector.addElement(words);
 s = s.substring(lastPos, s.length());
 }
 } while (s.length() > 16);
 if (s.length()>0) wrapVector.addElement(s);
 return wrapVector;
}

public static Vector wrap(StringBuffer cardText) {
 Vector wrapLines = new Vector();
 while (cardText.length() > 0)
 wrapLines.addElement(extractPhraseFrom(cardText));
 return wrapLines;
}

private static String extractPhraseFrom(StringBuffer cardText) {
 StringBuffer phrase = new StringBuffer("");
 StringBuffer word = new StringBuffer("");
 final int MAXCHARS = Math.min(MAX_LINE_WIDTH, cardText.length());
 for (int i=0; i<MAXCHARS; i++) {
 addCharacterTo(word, cardText.charAt(i));
 if (isCompleteWord(word, cardText))
 addCompleteWordTo(phrase, word);
 }
 addRemainingWordTo(phrase, word);
 removePhraseFrom(cardText, phrase);
 return phrase.toString();
}

private static boolean addCharacterTo(StringBuffer word, char character) ...
private static boolean isCompleteWord(StringBuffer word, StringBuffer cardText) ...
private static void addCompleteWordTo(StringBuffer phrase, StringBuffer word) ...
private static void addRemainingWordTo(StringBuffer phrase, StringBuffer word) ...
private static void removePhraseFrom(StringBuffer cardText, StringBuffer phrase)...

!

In a game I’ve been writing with a friend, text needs to be displayed on graphical cards. The
text is typically too long to fit on one line of each card, so it must be displayed on multiple lines
of each card. To enable this behavior, we test-first programmed a wrap() method. Here are a few
of the tests:

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 92 of 137

public void accumulateResult(String testString) {
int i = 0;
for (Enumeration e = CardComponent.wrap(testString).elements();e.hasMoreElements();)

result[i++] = (String)e.nextElement();
}

public void testWrap() {
accumulateResult("Developers Misunderstand Requirements");
assertEquals("First line","Developers ",result[0]);
assertEquals("Second line","Misunderstand ",result[1]);
assertEquals("Third line","Requirements",result[2]);

}
public void testWrap2() {

accumulateResult("Stories Are Too Complex");
assertEquals("First line","Stories Are Too ",result[0]);
assertEquals("Second line","Complex",result[1]);

}
public void testWrap3() {

accumulateResult("Intention-Revealing Code");
assertEquals("First line","Intention-",result[0]);
assertEquals("Second line","Revealing Code",result[1]);

}

With these tests in place, I can work on refactoring the following bloated method:

public static Vector wrap(String s) {

Vector wrapVector = new Vector();
String words;
String word;
int lastPos;
do {

if (s.length() > 16) {
words="";
word="";
lastPos=0;
for (int i=0;i<16;i++) {

if (s.charAt(i)==' ' || s.charAt(i)=='-') {
words+=word+s.charAt(i);
lastPos = i+1;
word="";

} else word+=s.charAt(i);
}
if (lastPos==0) {

// Rare case that there was no space or dash, insert one and break
words+=word+"-";
lastPos=16;

}
wrapVector.addElement(words);
s = s.substring(lastPos, s.length());

}
} while (s.length() > 16);
if (s.length()>0) wrapVector.addElement(s);
return wrapVector;

}

The first thing I notice is that we have some blatant duplicate logic: the line, s.length() > 16,
appears in a conditional statement at line 6 and at the end of the while statement. No good. I
experiment with removing this duplication by using a while loop instead of a do..while loop.
The tests confirm that the experiment works:

public static Vector wrap(String s) {
Vector wrapVector = new Vector();
String words;
String word;
int lastPos;
while (s.length() > 16) {

words="";
word="";
lastPos=0;
for (int i=0;i<16;i++)

if (s.charAt(i)==' ' || s.charAt(i)=='-') {
words+=word+s.charAt(i);

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 93 of 137

lastPos = i+1;
word="";

} else word+=s.charAt(i);
if (lastPos==0) {

// Rare case that there was no space or dash, insert one and break
words+=word+"-";
lastPos=16;

}
wrapVector.addElement(words);
s = s.substring(lastPos, s.length());

}
if (s.length()>0) wrapVector.addElement(s);
return wrapVector;

}

Next I notice more duplication. At two places in the middle of the method, the code says:

word+=s.charAt(i).

By consolidating this logic, I see a way to simplify a conditional statement:

for (int i=0;i<16;i++) {

word+=s.charAt(i); // now we say this only once
if (s.charAt(i)==' ' || s.charAt(i)=='-') {

words+=word;
lastPos = i+1;
word="";

} // else statement is no longer needed

}

Additional duplicate logic doesn’t jump out at me just yet, so I continue to look (I know it is
there!). I wonder about the variable, lastPos. What does it store? Can I figure out what the
value of lastPos would be, without having to declare and set a variable for it? After a little bit
of study, I try some experiments. Gradually it dawns on me that words.length() contains the
exact value as that held by lastPos. This allows me to get rid of another variable, and all of the
assignments to it:

public static Vector wrap(String s) {

Vector wrapVector = new Vector();
String words;
String word;
while (s.length() > 16) {

words="";
word="";
for (int i=0;i<16;i++) {

word+=s.charAt(i);
if (s.charAt(i)==' ' || s.charAt(i)=='-') {

words+=word;
word="";

}
}
if (words.length() == 0) // if no space or dash, insert one

words+=word+"-";
wrapVector.addElement(words);
s = s.substring(words.length(), s.length());

}
if (s.length()>0) wrapVector.addElement(s);
return wrapVector;

}

The code is definitely getting smaller and more manageable. But the body of the while
method still seems big and bulky. I decide to Extract Method [Fowler]:

public static Vector wrap(String s) {

Vector wrapVector = new Vector();
String words;
while (s.length() > 16) {

words = extractPhraseFrom(s);

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 94 of 137

wrapVector.addElement(words);
s = s.substring(words.length(), s.length());

}
if (s.length()>0) wrapVector.addElement(s);
return wrapVector;

}

private static String extractPhraseFrom(String cardText) {
String phrase = "";
String word="";
for (int i=0;i<16;i++) {

word += cardText.charAt(i);
if (cardText.charAt(i)==' ' || cardText.charAt(i)=='-') {

phrase += word;
word="";

}
}
if (phrase.length() == 0) // no found space or dash, insert dash

phrase+=word+"-";
return phrase;

}

We’re making progress. But I’m still not happy with the wrap() method: I don’t like the fact

that the code is adding elements to the wrapVector both inside and outside the while loop and I
also don’t like the mysterious line that changes the value of the String “s” (which is a bad name
for a variable that holds on to a card’s text):

s = s.substring(words.length(), s.length());

So I ask myself how I can make this logic clearer? Given some card text, I would like my

code to show how the text is broken up into pieces, added to a collection and returned. I decide
that the best way to achieve this objective is to push all code that is responsible for creating a
“phrase” into the extractPhraseFrom() method. I hope to end up with a while loop that has
one line of code.

My first step is to rename and change the type of the String variable, s. I call it cardText
and change it to be StringBuffer, since it will be altered by the extractPhraseFrom()
method. This change requires that I make all callers of wrap() pass in a StringBuffer instead of
a String. As I go about doing this work, I see that I can also get rid of the temporary variable,
word, leaving the following:

public static Vector wrap(StringBuffer cardText) {

Vector wrapVector = new Vector();
while (cardText.length() > 16) {

wrapVector.addElement(extractPhraseFrom(cardText));
cardText.delete(0, words.length());

}
if (cardText.length()>0) wrapVector.addElement(cardText.toString());
return wrapVector;

}

Now I must figure out how to push the fragmented pieces of phrase-construction logic down

into the extractPhraseFrom() method. My tests give me a lot of confidence as I go about
this work. First, I go for the low-hanging fruit: the code that deletes a substring from cardText
can easily be moved to extractPhraseFrom(), which yields the following:

public static Vector wrap(StringBuffer cardText) {

Vector wrapVector = new Vector();
while (cardText.length() > 16)

wrapVector.addElement(extractPhraseFrom(cardText));
if (cardText.length()>0) wrapVector.addElement(cardText.toString());
return wrapVector;

}

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 95 of 137

Now, I’ve just got the line of code after the while loop to worry about:

if (cardText.length()>0) wrapVector.addElement(cardText.toString());

How can I get that code to live in the extractPhraseFrom() method? I study the while

loop and see that I’m looping on a magic number, 16. First, I decide to make a constant for that
number, called MAX_LINE_WIDTH. Then, as I continue to study the loop, I wonder why the
wrap() method has two conditionals fragments that check cardText.length(), (one in the
while loop and one after the while loop). I want to remove that duplication. I decide to change
the while loop to do its thing while cardText.length() > 0.

This last change requires a few changes to the extractPhraseFrom method to make it
capable of handling the case when a line of text isn’t greater than 16 characters (now called
MAX_LINE_WIDTH). Once the tests confirm that everything is working, wrap() now feels like a
Composed Method, while extractPhraseFrom() is getting there. Here’s what we have
now:

public static Vector wrap(StringBuffer cardText) {
Vector wrapLines = new Vector();
while (cardText.length() > 0)

wrapLines.addElement(extractPhraseFrom(cardText));
return wrapLines;

}

private static String extractPhraseFrom(StringBuffer cardText) {
String phrase = "";
String word="";
final int MAX_CHARS = Math.min(MAX_LINE_WIDTH, cardText.length());
for (int i=0; i<MAX_CHARS; i++) {

word += cardText.charAt(i);
if (cardText.charAt(i)==' ' || cardText.charAt(i)=='-' ||

cardText.toString().endsWith(word)) {
phrase += word;
word="";

}
}
if (phrase.length() == 0)

phrase=word+"-";
cardText.delete(0, phrase.length());
return phrase;

}

This code is simpler than the original, so we could stop here. But I’m not altogether happy with
the extractPhraseFrom() method. It’s not a Composed Method, so I’m drawn to continue
refactoring it. What’s wrong with it? Well, there’s a lot of conditional logic in it, and that
conditional logic doesn’t communicate very well. For example, what does this mean:

if (cardText.charAt(i)==' ' || cardText.charAt(i)=='-' ||

cardText.toString().endsWith(word)) {
phrase += word;
word="";

}

Since my pair and I wrote that code, I know that it means, “if we’ve found a complete word, then
add the word to the phrase, and blank out the word variable so we can find the next word.” But
the next reader will have to figure that out. So I’ll make the intention clear, by using Extract
Method (which also requires changing some variables from Strings to StringBuffers):

private static String extractPhraseFrom(StringBuffer cardText) {

StringBuffer phrase = new StringBuffer("");
StringBuffer word = new StringBuffer("");
final int MAXCHARS = Math.min(MAX_LINE_WIDTH, cardText.length());
for (int i=0; i<MAXCHARS; i++) {

word.append(cardText.charAt(i));
if (isCompleteWord(word, cardText)) // note how more intention-revealing this is

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 96 of 137

addCompleteWordTo(phrase, word); // same for this line
}
if (phrase.length() == 0)

phrase.append(word + "-");
cardText.delete(0, phrase.length());
return phrase.toString();

}

private static boolean isCompleteWord(StringBuffer word, StringBuffer cardText) {
return (word.charAt(word.length()-1) ==' ' || word.charAt(word.length()-1) =='-' ||

cardText.toString().endsWith(word.toString()));
}

private static void addCompleteWordTo(StringBuffer phrase, StringBuffer word) {
phrase.append(word);
word.delete(0, word.length());

}

We’re getting closer. But I still don’t like the cryptic conditional statement that comes after the
for loop. So I apply Extract Method to it:

private static String extractPhraseFrom(StringBuffer cardText) {

StringBuffer phrase = new StringBuffer("");
StringBuffer word = new StringBuffer("");
final int MAXCHARS = Math.min(MAX_LINE_WIDTH, cardText.length());
for (int i=0; i<MAXCHARS; i++) {

word.append(cardText.charAt(i));
if (isCompleteWord(word, cardText))

addCompleteWordTo(phrase, word);
}
addRemainingWordTo(phrase, word); // now this code communicates intention
cardText.delete(0, phrase.length());
return phrase.toString();

}

private static void addRemainingWordTo(StringBuffer phrase, StringBuffer word) {
if (phrase.length() == 0)

phrase.append(word + "-");
}

The extractPhraseFrom() method is now 10 lines of code and reads a lot more like English.
But it is still uneven! Consider these two lines of code:

word.append(cardText.charAt(i));

cardText.delete(0, phrase.length());

Both of these lines aren’t complicated, but compared with the other code, which reads like
English, these bits of code stick out, demanding that the reader concentrates to understand them.
So I push myself to extract these 2 lines of code into 2 intention-revealing methods:
addCharacterTo() and removePhraseFrom(). This yields a Composed Method:

private static String extractPhraseFrom(StringBuffer cardText) {

StringBuffer phrase = new StringBuffer("");
StringBuffer word = new StringBuffer("");
final int MAXCHARS = Math.min(MAX_LINE_WIDTH, cardText.length());
for (int i=0; i<MAXCHARS; i++) {

addCharacterTo(word, cardText.charAt(i));
if (isCompleteWord(word, cardText))

addCompleteWordTo(phrase, word);
}
addRemainingWordTo(phrase, word);
removePhraseFrom(cardText, phrase);
return phrase.toString();

}

My tests run green and I’m satisfied.

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 97 of 137

Example 3

private void paintCard(Graphics g) {
 Image image = null;
 if (card.getType().equals("Problem")) {
 image = explanations.getGameUI().problem;
 } else if (card.getType().equals("Solution")) {
 image = explanations.getGameUI().solution;
 } else if (card.getType().equals("Value")) {
 image = explanations.getGameUI().value;
 }
 g.drawImage(image,0,0,explanations.getGameUI());

 if (highlight)
 paintCardHighlight(g);
 paintCardText(g);
}

private void paintCard(Graphics g) {
 paintCardImage(g);
 paintCardHighlight(g);
 paintCardText(g);
}

!

The above, original paintCard() method isn’t long, nor is it complicated. It paints a card
image, checks a flag to see if it must paint a card highlight, and then paints text onto the card.
Painting the card highlight and card text are performed by the methods,
paintCardHighlight() and paintCardText(). But the code that paints the card image lives
not in a separate method but in the paintCard() method itself. So? Well, consider the
refactored version of paintCard(). I can look at the refactored version and know what it does
in 2 seconds, while I have to spend a few brain cycles to figure out what the previous version
does. Trivial difference? No, not when you consider how much simpler an entire system is when
it consists of many composed methods, like paintCard().

So what was the smell that led to this refactoring? Code at different levels: raw code mixed
with higher-level code. When the method contains code at the same levels, it is easier to read and
understand. As the guidelines in the mechanics section say, above, Composed Methods tend to
have code at the same level.
 Implementing this refactoring was incredibly easy. I did Extract Method [Fowler] as follows:

private void paintCard(Graphics g) {

paintCardImage(g);
if (highlight)

paintCardHighlight(g);
paintCardText(g);

}

private void paintCardImage(Graphics g) {
Image image = null;
if (card.getType().equals("Problem")) {

image = explanations.getGameUI().problem;
} else if (card.getType().equals("Solution")) {

image = explanations.getGameUI().solution;
} else if (card.getType().equals("Value")) {

image = explanations.getGameUI().value;
}
g.drawImage(image,0,0,explanations.getGameUI());

}

 To finish this refactoring, I took the sole conditional statement in the method (if
(highlight)…) and pushed it down into the paintCardHightlight() method. Why? I

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 98 of 137

wanted the reader to simply see three steps: paint image, highlight image and paint card text. The
detail of whether or not we do highlight the card isn’t important to me – the reader can find that
out if they look. But if that confuses other programmers, I’d be happy to see the method
renamed to paintCardHighlighIfNecessary(g) or something similar.

private void paintCard(Graphics g) {

paintCardImage(g);
paintCardHighlight(g);
paintCardText(g);

}

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 99 of 137

Separate Versions with Adapters

One class adapts multiple versions of a
component, library, API or other entity

Write Adapters for each version

!

QuerySD51

-sdLogin: SDLogin
-sdSession: SDSession

+login(...);
#createQuery: SDQuery

QuerySD52

-sdLoginSession: SDLoginSession
-configFileName: String

+QuerySD52(configFileName: String)
+login(...);
#createQuery: SDQuery

Query

#sdQuery: SDQuery

+doQuery()
+login(...)
#createQuery() : SDQuery

 2 login() methods:
 one for
 SuperDatabase 5.1,
 one for version 5.2

 classes for
 SuperDatabase
 version 5.1

 void doQuery() ...
 if (sd52)
 ...
 else
 ...

SDLogin

+loginSession(...) : SDSession

SDSession

+createQuery(...) : SDQuery

SDLoginSession

+loginSession(...) : void
+createQuery(...) : SDQuery

SDQuery

+clearResultSet()
+execute()

 a class for
 SuperDatabase
 version 5.2

 A class for
 SuperDatabase
 versions
 5.1 & 5.2

Client
Query

-sdLogin: SDLogin
-sdSession: SDSession
-sdLoginSession: SDLoginSession
-sdQuery: SDQuery
-sd52: boolean

+login(...)
+login(...)
+doQuery()

1

SDQuery

+clearResultSet()
+execute()

SDLogin

+loginSession(...) : SDSession

SDSession

+createQuery(...) : SDQuery

Client

SDLoginSession

+loginSession(...) : void
+createQuery(...) : SDQuery

1

1

1

1

1

1

1

1

1

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 100 of 137

Motivation

While software must often support multiple versions of a component, library or API, code

that handles these versions doesn’t have to be a confusing mess. And yet, I routinely encounter
code that attempts to handle multiple versions of something by overloading classes with version-
specific state variables, constructors and methods. Accompanying such code are comments like
“this is for version X – please delete this code when we move to version Y!” Sure, like that’s
ever gonna happen. Most programmers won’t delete the version X code for fear that something
they don’t know about still relies on it. So the comments don’t get deleted and many versions
supported by the code remain in the code.

Now consider an alternative: for each version of something you need to support, create a
separate class. The class name could even include the version number of what it supports, to be
really explicit about what it does. We call such classes Adapters [GoF]. Adapters implement a
common interface and are responsible for functioning correctly with one (and usually only one)
version of some code. Adapters make it easy for client code to swap in support for one library or
API version, or another. And programmers routinely rely on runtime information to configure
their programs with the correct Adapter.

 I refactor to Adapters fairly often. I like Adapters because they let me decide how I want to
communicate with other people’s code. In a fast-changing world, Adapters help me stay
insulated from the highly useful but rapidly changing APIs, such as those springing eternally
from the open-source world.

In several of the refactorings in this catalog, I assert the importance of not refactoring to a
pattern too quickly in order to avoid overengineering. There must be a genuine need to refactor
to a pattern, such as an overabundance of conditional logic, code bloat, duplication or
unnecessary complexity. However, in the case of code that handles multiple versions of a
component, library, API, etc., I often find compelling reasons to refactor to Adapters early, since
not doing so can lead to a propagation of conditional or version-dependent logic throughout a
system. So, while I’m not suggesting you adapt too early, be on guard for any complexity or
propagating conditionality or maintanance issues accruing from code written to handle multiple
versions of something. Adapt early and often so that it’s easy to use or phase out various versions
of code.

Communication Duplication Simplicity
A class that mixes together
version-specific state variables,
constructors and methods
doesn’t effectively communicate
how each version is different or
similar. Communicate version
differences by isolating the
differences in separate Adapter
classes. Communicate how
versions are similar by making
each Adapter implement a
common interface – either by
subclassing an abstract class,
implementing the same interface
or a combination thereof.

When each version of a
component, library, API, etc.,
isn’t isolated in its own Adapter,
but is instead accessed directly
or through a single class, there
tends to be the same repeating
chunks of conditional logic that
make version-specific calls to
code. Such duplication bloats a
class and makes the code
harder to follow.

When a class is responsible for
functioning correctly with several
versions of some other code, it is
rarely simple. Version-specfic
code tends to bloat the single
class and leads to conditional
logic in the client code that uses
it. Adapters provide a simple way
to isolate versions and give
clients a simple interface to
every version.

Mechanics

There are different ways to go about this refactoring, depending on what your code looks like

before you begin. For example, if you have a class that uses a lot of conditional logic to handle
multiple versions of something, it’s likely that your can create Adapters for each version by
repeatedly applying Replace Conditional with Polymorphism (255) [Fowler]. If you have a case
like that shown in the code sketch – in which a single class supports multiple versions of

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 101 of 137

something by containing version-specific variables and methods, you’ll refactor to Adapter using
a slightly different approach. I’ll outline the mechanics for this latter scenario.

1. Identify the overburdened class (we’ll call this class, “V”).

2. Apply Extract Subclass (330) [Fowler] or Extract Class (149) [Fowler] for a single
version of the multiple versions supported by V. Copy or move all instance variables and
methods used exclusively for that version into the new class.

To do this, you may need to make some private members of V public or protected. It may
also be necessary to initialize some instance variables via a constructor in your new
class, which will necessitate updates to callers of the new constructor.

3. Compile and test that your new class works as expected.

4. Repeat steps 2 –3 until there is no more version-specific code in V.

5. Remove any duplication found in the new classes, by applying refactorings like Pull Up

Method (322) [Fowler] and Form Template Method (345) [Fowler].

6. Compile and test.

Example

The code we’ll refactor in this example, which was depicted in the code sketch above, is
based on real-world code that handles queries to a database using a third party library. To protect
the innocent, I’ve renamed that library “SD,” which stands for SuperDatabase.

1. We begin by identifying a class that is overburdened with support for multiple versions of
SuperDatabase. This class, called Query, provides support for SuperDatabase versions 5.1 and
5.2 , which means it is already an Adapter to the SuperDatabase code. It just happens to be an
Adapter that is adapting too much.

In the code listing below, notice the version-specific instance variables, duplicate login()
methods and conditional code in doQuery():

public class Query . . .

private SDLogin sdLogin; // needed for SD version 5.1
private SDSession sdSession; // needed for SD version 5.1
private SDLoginSession sdLoginSession; // needed for SD version 5.2
private boolean sd52; // tells if we're running under SD 5.2
private SDQuery sdQuery; // this is needed for SD versions 5.1 & 5.2

// this is a login for SD 5.1
// NOTE: remove this when we convert all aplications to 5.2
public void login(String server, String user, String password) throws QueryException {

sd52 = false;
try {

sdSession = sdLogin.loginSession(server, user, password);
} catch (SDLoginFailedException lfe) {

throw new QueryException(QueryException.LOGIN_FAILED,
"Login failure\n" + lfe, lfe);

} catch (SDSocketInitFailedException ife) {
throw new QueryException(QueryException.LOGIN_FAILED,

"Socket fail\n" + ife, ife);
}

}

// 5.2 login
public void login(String server, String user, String password, String
sdConfigFileName) throws QueryException {

sd52 = true;

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 102 of 137

sdLoginSession = new SDLoginSession(sdConfigFileName, false);
try {

sdLoginSession.loginSession(server, user, password);
} catch (SDLoginFailedException lfe) {

throw new QueryException(QueryException.LOGIN_FAILED,
"Login failure\n" + lfe, lfe);

} catch (SDSocketInitFailedException ife) {
throw new QueryException(QueryException.LOGIN_FAILED,

"Socket fail\n" + ife, ife);
} catch (SDNotFoundException nfe) {

throw new QueryException(QueryException.LOGIN_FAILED,
"Not found exception\n" + nfe, nfe);

}
}

public void doQuery() throws QueryException {
if (sdQuery != null)

sdQuery.clearResultSet();
if (sd52)

sdQuery = sdLoginSession.createQuery(SDQuery.OPEN_FOR_QUERY);
else

sdQuery = sdSession.createQuery(SDQuery.OPEN_FOR_QUERY);
executeQuery();

}

2. Because Query doesn’t already have subclasses, I decide to apply Extract Subclass (330)
[Fowler] to isolate code that handles SuperDatabase 5.1 queries. My first step is to define the
subclass and create a constructor for it:

class QuerySD51 extends Query {

public QuerySD51() {
super();

}
}

Next, I find all calls to the constructor of Query and, where appropriate, change the code to call
the QuerySD51 constructor. For example, I find the following:

public void loginToDatabase(String db, String user, String password)…

query = new Query();
try {

if (usingSDVersion52()) {
query.login(db, user, password, getSD52ConfigFileName()); // Login to SD 5.2

} else {
query.login(db, user, password); // Login to SD 5.1

}
…

} catch(QueryException qe)…

And change this to:

public void loginToDatabase(String db, String user, String password)…

try {
if (usingSDVersion52()) {

query = new Query();
query.login(db, user, password, getSD52ConfigFileName()); // Login to SD 5.2

} else {
query = new QuerySD51();
query.login(db, user, password); // Login to SD 5.1

}
…

} catch(QueryException qe) {

Next, I apply Push Down Method (328) [Fowler] and Push Down Field (329) [Fowler] to outfit
QuerySD51 with the methods and instance variables it needs. During this step, I have to be
careful to consider the clients that are make calls to public Query methods, for if I move a public
method like login() from Query to a QuerySD51, the caller will not be able to call the public
method unless its type is changed to QuerySD51. Since I don’t want to make such changes to

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 103 of 137

client code, I proceed cautiously, sometimes copying and modifying public methods instead of
completely removing them from Query. While I do this, I generate duplicate code, but that
doesn’t bother me now - I’ll get rid of the duplication in step 5.

class Query…

private SDLogin sdLogin;
private SDSession sdSession;
protected SDQuery sdQuery;

// this is a login for SD 5.1
public void login(String server, String user, String password) throws QueryException {

// I make this a do-nothing method
}

public void doQuery() throws QueryException {
if (sdQuery != null)

sdQuery.clearResultSet();
if (sd52)
sdQuery = sdLoginSession.createQuery(SDQuery.OPEN_FOR_QUERY);
else

sdQuery = sdSession.createQuery(SDQuery.OPEN_FOR_QUERY);
executeQuery();

}

class QuerySD51 {

private SDLogin sdLogin;
private SDSession sdSession;

public void login(String server, String user, String password) throws QueryException {
sd52 = false;
try {

sdSession = sdLogin.loginSession(server, user, password);
} catch (SDLoginFailedException lfe) {

throw new QueryException(QueryException.LOGIN_FAILED,
"Login failure\n" + lfe, lfe);

} catch (SDSocketInitFailedException ife) {
throw new QueryException(QueryException.LOGIN_FAILED,

"Socket fail\n" + ife, ife);
}

}

public void doQuery() throws QueryException {
if (sdQuery != null)

sdQuery.clearResultSet();
if (sd52)

sdQuery = sdLoginSession.createQuery(SDQuery.OPEN_FOR_QUERY);
else
sdQuery = sdSession.createQuery(SDQuery.OPEN_FOR_QUERY);
executeQuery();

}
}

3. I compile and test that QuerySD51 works. No problems.

4. Next, I perform steps 2 and 3 to create QuerySD52. Along the way, I can make the Query
class abstract, along with the doQuery() method. Here’s what I have now:

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 104 of 137

QuerySD51

-sdLogin: SDLogin
-sdSession: SDSession
+login(...)
+doQuery()

QuerySD52

-sdLoginSession: SDLoginSession
-configFileName: String
+login(...)
+doQuery()

Query

#sdQuery: SDQuery
+doQuery()
+login(...)
+login(...)

Query is now free of version-specific code, but it is not free of duplicate code.

5. I now go on a mission to remove duplication. I quickly find some in the two implementations
of doQuery():

abstract class Query…

public abstract void doQuery() throws QueryException;

class QuerySD51…

public void doQuery() throws QueryException {
if (sdQuery != null)

sdQuery.clearResultSet();

sdQuery = sdSession.createQuery(SDQuery.OPEN_FOR_QUERY);
executeQuery();

}

class QuerySD52…

public void doQuery() throws QueryException {
if (sdQuery != null)

sdQuery.clearResultSet();

sdQuery = sdLoginSession.createQuery(SDQuery.OPEN_FOR_QUERY);
executeQuery();

}

Each of the above methods simply initializes the sdQuery instance in a different way. This
means that I can apply Introduce Polymorphic Creation with Factory Method (36) and Form
Template Method (345) [Fowler] to create a single superclass version of doQuery():

public abstract class Query …

protected abstract SDQuery createQuery(); // a Factory Method [GoF]

public void doQuery() throws QueryException { // a Template Method [GoF]
if (sdQuery != null)

sdQuery.clearResultSet();
sdQuery = createQuery(); // call to the Factory Method
executeQuery();

}

class QuerySD51…

protected SDQuery createQuery() {
return sdSession.createQuery(SDQuery.OPEN_FOR_QUERY);

}

class QuerySD52…

protected SDQuery createQuery() {
return sdLoginSession.createQuery(SDQuery.OPEN_FOR_QUERY);

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 105 of 137

}

After compiling and testing the changes, I now face a more obvious duplication problem: Query
still declares public method for the SD 5.1 & 5.2 login() methods, even though they don’t do
anything anymore (i.e. the real login work is handled by the subclasses). The signatures for these
two login() method are identical, except for 1 parameter:

// SD 5.1 login
public void login(String server, String user, String password) throws QueryException …

// SD 5.2 login
public void login(String server, String user,

String password, String sdConfigFileName) throws QueryException …

I decide to make the login() signatures the same, by simply supplying QuerySD52 with the
sdConfigFileName information via its constructor:

class QuerySD52 …

private String sdConfigFileName;
public QuerySD52(String sdConfigFileName) {

super();
this.sdConfigFileName = sdConfigFileName;

}

Now Query has only one abstract login() method:

abstract class Query …

public abstract void login(String server, String user,
String password) throws QueryException …

And client code is updated as follows:

public void loginToDatabase(String db, String user, String password)…

if (usingSDVersion52())
query = new QuerySD52(getSD52ConfigFileName());

else
query = new QuerySD51();

try {
query.login(db, user, password);
…

} catch(QueryException qe)…

I’m nearly done. Since Query is an abstract class, I decide to rename it AbstractQuery, which
communicates more about its nature. But making that name change necessitates changing client
code to declare variables of type AbstractQuery instead of Query. Since I don’t want to do
that, I apply Extract Interface (341) [Fowler] on AbstractQuery to obtain a Query interface
that AbstractQuery can implement:

interface Query {

public void login(String server, String user, String password) throws QueryException;
public void doQuery() throws QueryException;

}

abstract class AbstractQuery implements Query …

public abstract void login(String server, String user,
String password) throws QueryException …

Now, subclasses of AbstractQuery implement login(), while AbstractQuery doesn’t even
need to declare the login() method, since it is an abstract class.

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 106 of 137

6. I compile and test and everything works as planned. Each version of SuperDatabase is now
fully adapted. The code is smaller and treats each version in a more uniform way, all of which
makes it easier to

• see similarities and differences between the versions
• remove support for older, unused versions
• add support for newer versions

Adapting with Annonymous Inner Classes

JDK 1.0 included an interface called Enumeration, which was used to iterate over collections
like Vectors or Hashtables. Over time, better collections classes were added to the JDK,
along with a new interface, called Iterator. To make it possible to interoperate with code written
using the Enumeration interface, the JDK provided the following Creation Method, which uses
Java’s anonymous inner class capability to adapt an Iterator with an Enumeration:

public class Collections…

public static Enumeration enumeration(final Collection c) {
return new Enumeration() {

Iterator i = c.iterator();

public boolean hasMoreElements() {
return i.hasNext();

}
public Object nextElement() {

return i.next();
}

};
}

Adapting Legacy Systems

An organization has an extremely sophisticated system which brings in most of their income,

but which happens to be written in about 2 million lines of COBOL, little of which was ever
refactored over a decade of development. Sound familiar? Systems like this are usually hard to
extend because they were never refactored. And as a result, organizations that maintain such
systems can’t easily add new features to them, which makes them less competitiveness, which
can ultimately put them out of business.

What to do? One popular approach is to use Adapters to model new views of the legacy
system. Client code talks to the Adapters, which in turn talk to the legacy code. Over time, teams
rewrite entire sytstems by simply writing new implementations for each Adapter. The process
goes like this:

• Identify a subsystem of your legacy system
• Write Adapters for that subsystem
• Write new client programs that rely on calls to the Adapters
• Create versions of each Adapter using newer technologies
• Test that the newer and older Adapters function identically
• Update client code to use the new Adapters
• Repeat for the next subsystem

This is an example of applying Separate Versions with Adapter (99), only it is performed

across an entire system or subsystem, so the mechanics are a bit different.

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 107 of 137

Adapt Interface

Your class implements an interface but only provides
code for some of the interface’s methods.

Move the implemented methods to an Adapter

of the interface and make the Adapter
accessible from a Creation Method.

public class CardComponent extends Container implements MouseMotionListener ...
 public CardComponent(Card card,Explanations explanations) {
 ...
 addMouseMotionListener(this);
 }
 public void mouseDragged(MouseEvent e) {
 e.consume();
 dragPos.x = e.getX();
 dragPos.y = e.getY();
 setLocation(getLocation().x+e.getX()-currPos.x,

 getLocation().y+e.getY()-currPos.y);
 repaint();
 }
 public void mouseMoved(MouseEvent e) {
 }

public class CardComponent extends Container ...
 public CardComponent(Card card,Explanations explanations) {
 ...
 addMouseMotionListener(createMouseMotionAdapter());
 }
 private MouseMotionAdapter createMouseMotionAdapter() {
 return new MouseMotionAdapter() {
 public void mouseDragged(MouseEvent e) {
 e.consume();
 dragPos.x = e.getX();
 dragPos.y = e.getY();
 setLocation(getLocation().x+e.getX()-currPos.x,
 getLocation().y+e.getY()-currPos.y);
 repaint();
 }
 };
 }

!

Motivation

Empty methods in concrete classes bother me. I often find that they’re there because a class
needs to satisfy a contract by implementing an interface, but only really needs code for some of
the interface’s methods. The rest of the methods get declared, but remain empty: they were added
to satisfy a compiler rule. I find that these empty methods add to the heftiness of a class’s
interface (i.e. it’s public methods), falsely advertise behavior (I’m a class that can, among other
things, do X(), Y() and Z() – only I really only provide code for X()), and forces me to do work
(like declaring empty methods) that I’d rather not do.

The Adapter pattern provides a nice way to refactor this kind of code. By implementing
empty methods for every method defined by an interface, the Adapter lets me subclass it to
supply just the code I need. In Java, I don’t even have to formally declare an Adapter subclass: I
can just create an anonymous inner Adapter class and supply a reference to it from a Creation
Method.

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 108 of 137

Communication Duplication Simplicity
Empty methods on a class don’t
communicate very much at all.
Either someone forgot to delete
the empty method, or it is just
there because an interface
forces you to have it there. It is
far better to communicate only
what you actually implement,
and an Adapter can make this
feasible.

If more than one of your classes
partially implements an interface,
you’ll have numerous empty
methods in your classes. You
can remove this duplication by
letting each of the classes work
with an Adapter which handles
the empty method declarations.

It is always simpler to supply
less code than more. This
refactoring gives you a way to
cut down on the number of
methods your classes declare.
In addition, when used to adapt
multiple interfaces, it can provide
a nice way to partition methods
in each of their respective
adapters.

Mechanics

1. If you don’t already have an adapter for the interface (which we’ll call A), create a class

that implements the interface and provides do-nothing behavior. Then write a Creation
Method that will return a reference to an instance of your Adapter (which we’ll call
AdapterInstance).

2. Delete every empty method in your class that’s solely there because your class

implements A.

3. For those methods specified by A for which you have code, move each to your
AdapterInstance.

4. Remove code declaring that your class implements A.

5. Supply the AdapterInstance to clients who need it.

Example

We’ll use the example from the code sketch above. In this case we have a class called
CardComponent that extends the JDK Component class and implements the JDK’s
MouseMotionListener interface. However, it only implements one of the two methods
declared by the MouseMotionListener interface. So our task here is to replace a partially
implemented interface with an Adapter.

1. The first step involves writing a Creation Method for our AdapterInstance. If we don’t have
an AdapterInstance, we need to create one using the refactoring, Adapt Interface. In this case, the
JDK already supplies us with an adapter for the MouseMotionListener interface. It’s called
MouseMotionAdapter. So we create the following new method on the CardComponent class,
using Java’s handy anonymous inner class capability:

private MouseMotionAdapter createMouseMotionAdapter() {

return new MouseMotionAdapter() {
};

}

2. Next, we delete the empty method(s) that CardComponent declared because it implemented
MouseMotionListener. In this case, it implemented mouseDragged(), but did not implement
mouseMoved().

public void mouseMoved(MouseEvent e) {}

3. We’re now ready to move the mouseDragged() method from CardComponent to our
instance of the MouseMotionAdapter:

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 109 of 137

private MouseMotionAdapter createMouseMotionAdapter() {

return new MouseMotionAdapter() {
public void mouseDragged(MouseEvent e) {

e.consume();
dragPos.x = e.getX();
dragPos.y = e.getY();
setLocation(getLocation().x+e.getX()-currPos.x,

getLocation().y+e.getY()-currPos.y);
repaint();

}
};

}

4. Now we can remove the implements MouseMotionListener from CardComponent.

public class CardComponent extends Container implements MouseMotionListener {

5. Finally, we must supply the new adapter instance to clients that need it. In this case, we must
look at the constructor. It has code that looks like this:

public CardComponent() {

…
addMouseMotionListener(this);

}

This needs to be changed to call our new, private, Creation Method:

public CardComponent() {
…
addMouseMotionListener(createMouseMotionAdapter());

}

Now we test. Unfortunately, since this is mouse related code, I don’t have automated unit tests.
So I resort to some simple manual testing and confirm that everything is ok.

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 110 of 137

Replace Type with Type-Safe Enum

A field’s language-defined type (e.g. String, int, etc.) fails to protect it
from unsafe assignments and invalid equality comparisons

Constrain the assignments and equality comparisons

by making the field type-safe

SystemPermission

-state : String
+REQUESTED : String
+FAILED : String
+CLAIMED : String
+DENIED : String
+GRANTED : String
+DELIVERED : String

+SystemPermission()
+state() : String
+claimed() : void
+failed() : void
+denied() : void
+granted() : void
+delivered() : void

 state = REQUESTED;

!

 if (!state.equals(CLAIMED)) return;
 state = GRANTED;

PermissionState

-name : String
+REQUESTED : PermissionState
+FAILED : PermissionState
+CLAIMED : PermissionState
+DENIED : PermissionState
+GRANTED : PermissionState
+DELIVERED : PermissionState

-PermissionState(String : name)
+toString() : String

SystemPermission

-state : PermissionState

+SystemPermission()
+state() : SystemPermission
+claimed() : void
+failed() : void
+denied() : void
+granted() : void
+delivered() : void

 if (!state.equals(PermissionState.CLAIMED)) return;
 state = PermissionState.GRANTED;

 state = PermissionState.REQUESTED;

 public final static REQUESTED = "REQUESTED";

 public final static PermissionState REQUESTED =
 new PermissionState("REQUESTED");

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 111 of 137

Motivation

A Type-Safe Enum bundles together a user-defined type with a set of constant instances of
that type. A primary motivation for refactoring to Type-Safe Enum is to constrain the possible
values that may be assigned to or equated with a variable.

To understand the value of this pattern, it helps to study code that isn’t type-safe. Consider
the following test case:

public void testPermissionRequest() {
SystemPermission permission = new SystemPermission();
assertEquals("permission state", permission.REQUESTED, permission.state());
assertEquals("permission state", "REQUESTED", permission.state());

}

The first line of code creates a SystemPermission object. The constructor for this object

sets its state instance variable equal to the SystemPermission.REQUESTED state:

public SystemPermission() {
state = REQUESTED;

}

Other methods within SystemPermission assign state to system permission states such

as GRANTED and DENIED. Now, given that each of these state types was defined using String
constants (like public final static String REQUESTED = "REQUESTED"), and state
was defined as type String, then the two tests above would both evaluate to true since state -
accessible via permission.state() - would be considered equal to
SystemPermission.REQUESTED and the String, “REQUESTED.”

What’s the problem with that? Glad you asked. The String, “REQUESTED” represents one
object reference while the constant String, SystemPermission.REQUESTED, represents a
different object reference, and yet the instance variable, state, is considered equal to both of
them? That’s not good, for just after a SystemPermission is instantiated, we want its state to
be equal to the object reference, SystemPermission.REQUESTED, and no other object
reference. A Type-Safe Enum can easily accomplish this.

 Another motivation for refactoring to a Type-Safe Enum occurs when callers can change the
value of an instance variable to an invalid value. For example, consider this code:

public class SystemPermission...
public void setState(String newState){

state = newState;
}

permission.setState(“thinking”); // “thinking” is not a valid SystemPermission state

If one didn’t use a Type-Safe Enum to prevent such spurious assignments, you’d have to fill your
classes with lots of unnecessary validation logic.

Communication Duplication Simplicity

It is useful to communicate the
availability of a type and
constant values of that type. A
Type-Safe Enum does this well
because it is a class that exists
solely to define the type and
constants.

Duplication isn’t an issue with
respect to this refactoring.

A family of constants defined
using a language-based type is
slightly simpler to declare than a
family of Type-Safe Enums, but
because Type-Safe Enums
prevent spurious assignments
from occurring, they often help
us simplify code.

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 112 of 137

Mechanics

1. Identify a type-unsafe instance variable – i.e. a variable declared as a language-defined
type, which is assigned to or compared against a family of constant values. Identify any
getting/setting methods associated with this variable.

2. Rename the variable and any associated getting/setting methods, taking care to update all

callers to the getting/setting methods.

The type-unsafe variable often already has the name you want, so a quick rename now
will later allow you to define your type-safe variable with the name you want.

3. Compile and test

4. Declare a new class to store the family of constant values, naming the class after the

kinds of types it will store. This will be your Type-Safe Enum.

5. Choose one constant value that the type-unsafe instance variable is assigned to and/or
compared against and define a new version of this constant in your Type-Safe Enum class
by creating a public final static constant that is an instance of the Type-Safe Enum class.

6. In the class that declared the type-unsafe instance variable, create a type-safe version of it

by declaring an instance variable whose type is the Type-Safe Enum class. Create any
necessary getting/setting methods for this instance variable, mirroring the getting/setting
methods declared for the type-unsafe instance variable.

7. Wherever the type-unsafe instance variable is assigned to the constant value choosen for

step 5, add code to assign the type-safe instance variable equal to the type-safe enum
constant created during step 5.

8. Wherever the type-unsafe instance variable is compared against the constant value

choosen in step 5, change the code to compare it against the type-safe enum constant,
created in step 5.

9. Compile and test.

10. Repeat steps 5, 7, 8 and 9 for every constant in the family of constant values.

11. Delete the type-unsafe instance variable, any getting/setting methods associated with it,

any direct assignments to it and all of the type-unsafe constants.

12. Compile and test.

Example

This example, which was shown in the code sketch and mentioned in the Motivation section,
deals with handling permission requests to access software systems. We’ll begin by looking at
relevant parts of the class, SystemPermission:

public class SystemPermission {

private String state;
private boolean granted;
private boolean failed;

public final static String REQUESTED = "REQUESTED";

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 113 of 137

public final static String FAILED = "FAILED";
public final static String CLAIMED = "CLAIMED";
public final static String DENIED = "DENIED";
public final static String GRANTED = "GRANTED";
public final static String DELIVERED = "DELIVERED";

public SystemPermission() {
state = REQUESTED;
failed = false;
granted = false;

}

public boolean isGranted() {
return granted;

}

public boolean hasFailed() {
return failed;

}

public String state() {
return state;

}

public void claimed() {
if (state.equals(REQUESTED))

state = CLAIMED;
}

public void failed() {
if (!state.equals(REQUESTED)) return;
state = FAILED;
failed = true;

}

public void denied() {
if (state.equals(CLAIMED))

state = DENIED;
}

public void granted() {
if (!state.equals(CLAIMED)) return;
state = GRANTED;
granted = true;

}

public void delivered() {
if (state.equals(GRANTED) || state.equals(DENIED))

state = DELIVERED;
}

}

1. The instance variable we’re interested in here is called state, since it can be assigned to or
compared against a family of String constants also defined inside SystemPermission. Our
goal is to make state type-safe.

2. The first step is to rename state and its associated getting/setting methods. I’ll rename
it to old_state, and, since state only has a getting method and no setting method, I’ll
create a method called old_state() and update client code to use it:

public class SystemPermission...
private String old_state;

public SystemPermission() {
old_state = REQUESTED;
…

}

public String old_state() {
return old_state;

}

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 114 of 137

// etc.

And here is some client code that I update:
public class SystemPermissionTest extends TestCase...
public void testPermissionRequest() {
assertEquals("request", SystemPermission.REQUESTED, permission.old_state());

}

Note: It is best to use an automated refactoring tool to handle the renaming of the variable and
method(s).

3. I compile and test to make sure the name changes didn’t break anything.

4. Now I create a class called PermissionState, which will be my Type-Safe Enum class:

public final class PermissionState {
}

I make it final because it will not need to be subclassed.

5. I now choose one constant value that the type-unsafe instance variable is assigned to or
compared against, and I create a version of this constant in PermissionState, making it a
public constant PermissionState member variable and instance of PermissionState:

public final class PermissionState {
public final static PermissionState REQUESTED = new PermissionState();

}

This new type-safe constant will be easier to work with if I can query its toString() method to
see which PermissionState type it is. So I make the following change:

public final class PermissionState {
private String name;

private PermissionState(String name) {
this.name = name;

}

public final static PermissionState REQUESTED = new PermissionState(“REQUESTED”);

public String toString() {
return name;

}
}

6. I create a new type-safe instance variable inside SystemPermission, using the type,
PermissionState. Since old_state only had a getting method and not a setting method, I
only need to create a getting method for state:

public class SystemPermission…
private PermissionState state;

public PermissionState state() {
return state;

}

7. Wherever I find code that assigns old_state to SystemPermission.REQUESTED, I must
add code to assign state to PermissionState.REQUESTED:

public class SystemPermission...
public SystemPermission() {
old_state = REQUESTED;

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 115 of 137

state = PermissionState.REQUESTED;
failed = false;
granted = false;

}

Note: I’ll delete the old_state assignment code later, when doing so won’t cause logic
problems with code that expects it to have a certain value.

8. Wherever old_state is compared against SystemPermission.REQUESTED, I must replace
this code to compare state against PermissionState.REQUESTED:

Here is some test code that needs updating:

public class SystemPermissionTest extends TestCase...
private SystemPermission permission;

public void setUp() {
permission = new SystemPermission();

}
public void testPermissionRequest() {
assertEquals("request", SystemPermission.REQUESTED, permission.old_state());

}

The testPermissionRequest method becomes:

public void testPermissionRequest() {
assertEquals("request", PermissionState.REQUESTED, permission.state());

}

The following code in SystemPermission also needs updating:

public class SystemPermission...
public void claimed() {
if (old_state.equals(REQUESTED))
old_state = CLAIMED;

}

public void failed() {
if (!old_state.equals(REQUESTED)) return;
old_state = FAILED;
failed = true;

}

I change this to:

public class SystemPermission...
public void claimed() {
if (state.equals(PermissionState.REQUESTED))
old_state = CLAIMED;

}

public void failed() {
if (!state.equals(PermissionState.REQUESTED)) return;
old_state = FAILED;
failed = true;

}

9. Now I compile and test to see that everything is still working smoothly.

10. Next, I repeat steps 5, 7, 8 and 9 for every constant in the family of constant values. I’ll spare
you the details.

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 116 of 137

11. Finally, I have the pleasure of deleting old_state, the getting method, old_state(), all
assignments made to old_state, and the entire family of SystemPermission type-unsafe
constants. Here are a few of the deletions:

public class SystemPermission...
private String old_state;

public final static String REQUESTED = "REQUESTED";
public final static String FAILED = "FAILED";
public final static String CLAIMED = "CLAIMED";
public final static String DENIED = "DENIED";
public final static String GRANTED = "GRANTED";
public final static String DELIVERED = "DELIVERED";

public SystemPermission() {
old_state = REQUESTED;
state = PermissionState.REQUESTED;
...

}

public String old_state() {
return old_state;

}

public void claimed() {
if (state.equals(PermissionState.REQUESTED)) {
old_state = CLAIMED;
state = PermissionState.CLAIMED;

}
}

// and so on...

12. I compile and test after all of the deletions. Now the instance variable, state, is type-safe:

public class SystemPermission {
private PermissionState state;
private boolean granted;
private boolean failed;

public SystemPermission() {
state = PermissionState.REQUESTED;
failed = false;
granted = false;

}

public boolean isGranted() {
return granted;

}

public boolean hasFailed() {
return failed;

}

public PermissionState state() {
return state;

}

public void claimed() {
if (state.equals(PermissionState.REQUESTED))
state = PermissionState.CLAIMED;

}

public void failed() {
if (!state.equals(PermissionState.REQUESTED)) return;
state = PermissionState.FAILED;
failed = true;

}

public void denied() {
if (state.equals(PermissionState.CLAIMED))
state = PermissionState.DENIED;

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 117 of 137

}

public void granted() {
if (!state.equals(PermissionState.CLAIMED)) return;
state = PermissionState.GRANTED;
granted = true;

}

public void delivered() {
if (state.equals(PermissionState.GRANTED) ||
state.equals(PermissionState.DENIED))
state = PermissionState.DELIVERED;

}
}

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 118 of 137

Replace State-Altering Conditionals with State

Complex conditional expressions control an object’s state transitions

Replace the conditionals with State classes that handle
specific states and transitions between them

!

 public void claimedBy(SystemAdmin admin) {
 if (state != REQUESTED &&
 state != UNIX_REQUESTED)
 return;
 this.admin = admin;
 if (state == REQUESTED)
 state = CLAIMED;
 else if (state == UNIX_REQUESTED)
 state = UNIX_CLAIMED;
 }

Permission

+REQUESTED : Permission
+CLAIMED : Permission
+GRANTED : Permission
+DENIED : Permission
+UNIX_REQUESTED : Permission
+UNIX_CLAIMED : Permission

+claimedBy(...) : void
+grantedBy(...) : void
+deniedBy(...) : void

 state.claimedBy(...);;

 state = Permission.REQUESTED;

 public f inal static Permission CLAIMED
 = new PermissionClaimed();

PermissionRequested

PermissionGranted PermissionDenied

PermissionClaimed
+grantedBy(...) : void
+deniedBy(...) : void

UnixPermissionClaimed
+grantedBy(...) : void
+deniedBy(...) : void

UnixPermissionRequested
+claimedBy(...) : void

 public void claimedBy(SystemAdmin admin,
 SystemPermission permission) {
 permission.w illBeHandledBy(admin);
 permission.setState(Permission.CLAIMED);
 }

1

+claimedBy(...) : void

SystemPermission

-state : String
+REQUESTED : String
+CLAIMED : String
+DENIED : String
+GRANTED : String
+UNIX_REQUESTED: String
+UNIX_CLAIMED : String

+SystemPermission(...)
+state() : String
+claimedBy(...) : void
+grantedBy(...) : void
+deniedBy(...) : void

SystemPermission

-state : Permission

+SystemPermission(...)
+state() : Permission
+setState(state: Permission)
+claimedBy(...) : void
+grantedBy(...) : void
+deniedBy(...) : void

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 119 of 137

Motivation

The primary reason for refactoring to the State pattern is to tame overly-complex state-

altering conditional logic. Such logic, which tends to spread itself thoughout a class, controls an
object’s state, including how states transition to other states. When you implement this pattern
you create state classes that represent specific states of an object and the transitions between those
states. The object that has its state changed is known as the context. A context delegates state-
changing behavior to a state object. State objects make state transitions at runtime by making the
context point to a different state object.

If you don’t know the State pattern very well, you’ll understand this refactoring better if you
study the State pattern in Design Patterns [GoF]. If you do know this pattern, you might be using
it when you don’t need to be: i.e. when simple state-altering conditional logic would do. This
refactoring is concerned with the edge – the place where state-altering conditional logic is no
longer easy to follow or extend and when the State pattern can really make a difference.

Before I ever refactor to State, I always see if I can implement a simpler solution by applying
low-level refactorings, like Extract Method (110) [Fowler]. If those refactorings still don’t tame
the conditional logic, I know I’m ready for State. The State pattern has a way of reducing or
removing many lines of conditional logic, yielding clean, simple and extensible code.

If your state objects have no instance variables, context objects can share instances of them.
Sharing state instances is often achieved via the Singleton or Flyweight patterns. If you need to
easily write and configure mock objects for specific states, be careful that your Singleton or
Flyweight code doesn’t make working with mocks too difficult. If you don’t need mock objects
for state instances and your state instances are stateless, context objects can share the instances by
getting access to them via Creation Methods on their superclass (see Encapsulate Classes with
Creation Methods (21)).
 This refactoring is different from Replace Type Code with State/Strategy (227) [Fowler] in a
few areas. First, I don’t have a single refactoring for the State and Strategy patterns because I
view them as different patterns, I refactor to them for different reasons (see Replace Conditional
Calculations with Strategy (44)) and the mechanics of the refactorings to each pattern differ.
Second, Martin deliberately doesn’t document a full refactoring to the State pattern, since the
complete implementation depends on a further refactoring he wrote, called Replace Conditional
with Polymorphism (225) [Fowler]. While I respect that decision, I thought it would be more
helpful to readers to understand how the refactoring works from end to end, so my mechanics and
example sections delineate all of the steps to get you from conditional state-changing logic to a
State pattern implementation.

Communication Duplication Simplicity
Many lines of state-altering
conditional logic don’t
communicate intent very well.
Communicate this logic clearly
by splitting out the state
transition logic into classes that
know how to handle their state
transitions.

When you have a lot of state-
altering conditional logic, you
tend to see the same conditional
phrases repeated throughout the
methods of a class.
Implementing the State pattern
will allow you to remove much of
this conditional logic.

One of the main reasons to
perform this refactoring is to
simplify complex state-changing
logic. If you can’t easily follow
the state-changing logic in your
class, it may be a good time to
refactor to the State pattern.

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 120 of 137

Mechanics

1. A class (which we’ll call the context class) contains a field (which we’ll call the original
state field) that gets assigned to or compared against a family of constants during state
transitions. Rename this field and any associated getting/setting methods, taking care to
update all callers to the getting/setting methods.

Compile and test.

2. Declare a new abstract class and name it based on the name or general purpose of the

original state field.

3. Declare subclasses of the abstract class, one for each of the states the context class may
enter.

- If you have 5 constant values that represent states, you’ll create 5 subclasses.
- Your subclasses won’t have any methods in them to start – you’ll add methods later.
- If clients will interact with your state subclasses solely through the interface of their
superclass, it’s a good idea to make every subclass constructor non-public.

4. Create a non-public field (which we’ll call the state field) in the context class, making its

type that of the abstract class (from step 3). Create any necessary getting/setting methods
for this field, mirroring the getting/setting methods on the field choosen in step 1.

5. Identify a state the context class can enter. For each context class method that transitions

this state to one or more other states, declare a similar method on the abstract class (from
step 3) and on the subclass that corresponds with this state.

- It’s best to start with the state the context class enters after being instantiated.

6. Implement the method(s) on the subclass, making whatever changes are necessary for

each method to perform the state transition logic currently residing in the context class.

- You may decide to pass a context class reference to the method(s) so the subclass code
can call back on the context class.
- At this point, you aren’t replacing the state transition logic in the context class.

7. Wherever the original state field is assigned to the constant value for the state, add code

to set the state field equal to an instance of the subclass you just worked with.

- If this subclass is stateless, you can make a public static final version of it available via
the abstract class or a creation class.

8. Wherever the original state field is compared against the constant value for the selected

state, change the code to compare the state field against the subclass instance.

Compile and test.

9. Repeat steps 5 through 8 for each context class state.

10. For every method in the context class that can change state, replace all of the code with a
single delegation call to the state field.

Compile and test.

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 121 of 137

11. Delete the original state field, any getting/setting methods and constants associated with

it and any direct assignments to it. This step involves deleting code in the state
subclasses.

Compile and test.

Example

To understand when it makes sense to refactor to the State pattern, it helps to study a

class that manages its state without requiring the sophistication of the State pattern.
SystemPermission is such a class. It uses simple conditional logic to keep track of
the state of a permission request to access a software system. Over the lifetime of a
SystemPermission object an instance variable named state transitions between
the states requested, claimed, denied and granted. Here is a UML representation of the
possible transitions:

requested

claimed

deniedgranted

system permission
requested by user

admin claims request

admins
notified of request

admin denies requestadmin grants request

Below is the code for SystemPermission and a fragment of test code to show
how the class gets used:

public class SystemPermission {
private SystemProfile profile;
private SystemUser requestor;
private SystemAdmin admin;
private boolean isGranted;
private String state;

public final static String REQUESTED = "REQUESTED";
public final static String CLAIMED = "CLAIMED";
public final static String GRANTED = "GRANTED";
public final static String DENIED = "DENIED";

public SystemPermission(SystemUser requestor, SystemProfile profile) {
this.requestor = requestor;
this.profile = profile;
state = REQUESTED;
isGranted = false;
notifyAdminOfPermissionRequest();

}

public String state() {
return state;

}

public void claimedBy(SystemAdmin admin) {

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 122 of 137

if (state != REQUESTED)
return;

this.admin = admin;
state = CLAIMED;

}

public void deniedBy(SystemAdmin admin) {
if (state != CLAIMED)
return;

if (this.admin != admin) return;
isGranted = false;
state = DENIED;
notifyUserOfPermissionRequestResult();

}

public void grantedBy(SystemAdmin admin) {
if (state != CLAIMED)
return;

if (this.admin != admin) return;
state = GRANTED;
isGranted = true;
notifyUserOfPermissionRequestResult();

}

public boolean isGranted() {
return isGranted;

}

public void notifyAdminOfPermissionRequest() {
// ...

}
public void notifyUserOfPermissionRequestResult() {
// ...

}
}

public class TestStates extends TestCase ...
public void testGrantedBy() {
permission.grantedBy(admin);
assertEquals("requested", permission.REQUESTED, permission.state());
assertEquals("not granted", false, permission.isGranted());
permission.claimedBy(admin);
permission.grantedBy(admin);
assertEquals("granted", permission.GRANTED, permission.state());
assertEquals("granted", true, permission.isGranted());

}

Notice how the instance variable, state, gets assigned to different values as clients call

specific SystemPermission methods. Now look at the overall conditional logic in
SystemPermission. This logic is responsible for transitioning between states, but the
logic isn’t very complicated so the code doesn’t require the sophistication of the State pattern.

This conditional state changing logic can quickly become hard to follow as more real-world
behavior gets added to the SystemPermission class. For example, a client told us about
their security system in which users needed to obtain unix and/or database permissions before the
user could be granted general permission to access a given software system. The state transition
logic for a system that requires unix permission before general permission may be granted looks
like this:

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 123 of 137

system
permission
requested

system
permission

claimed

system
permission

granted

system
permission

denied

system permission
requested by user

admins
notified of request

unix
permission
requested

unix
permission

claimed

admin
claims request

admin denies request
and user notified

unix permission
required before

 granting request

admin attempts to
grant permission

admin claims request admin rejects requestadmin grants request

Adding support for unix permission makes SystemPermission’s state-altering conditional
logic a lot more complicated than it used to be. Consider the following:

public class SystemPermission...
public void claimedBy(SystemAdmin admin) {
if (state != REQUESTED &&
state != UNIX_REQUESTED)
return;

this.admin = admin;
if (state == REQUESTED)
state = CLAIMED;

else if (state == UNIX_REQUESTED)
state = UNIX_CLAIMED;

}

public void deniedBy(SystemAdmin admin) {
if (state != CLAIMED &&
state != UNIX_CLAIMED) return;

if (this.admin != admin) return;
isGranted = false;
isUnixPermissionGranted = false;
state = DENIED;
notifyUserOfPermissionRequestResult();

}

public void grantedBy(SystemAdmin admin) {
if (state != CLAIMED &&
state != UNIX_CLAIMED) return;

if (this.admin != admin) return;

if (profile.isUnixPermissionRequired() &&
state == UNIX_CLAIMED)
isUnixPermissionGranted = true;

else if (profile.isUnixPermissionRequired() &&
!isUnixPermissionGranted()) {
state = UNIX_REQUESTED;
notifyUnixAdminsOfPermissionRequest();
return;

}
state = GRANTED;
isGranted = true;
notifyUserOfPermissionRequestResult();

}

An attempt can be made to simplify the above code by applying Extract Method (110) [Fowler].
For example, one could refactor the grantedBy() method like so:

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 124 of 137

public void grantedBy(SystemAdmin admin) {
if (!isInClaimedState()) return;
if (this.admin != admin) return;
if (isUnixPermissionRequestedAndClaimed())
isUnixPermissionGranted = true;

else if (isUnixPermisionDesiredButNotRequested()) {
state = PermissionState.UNIX_REQUESTED;
notifyUnixAdminsOfPermissionRequest();
return;

}
…

That’s a little better but now the SystemPermission class has lots of state-specific boolean
logic (i.e. methods liks isUnixPermissionRequestedAndClaimed()) and yet
grantedBy() still isn’t simple. It’s time to simplify things by refactoring to the State pattern.

1. SystemPermission has a field called state and a corresponding accessor method called
state(). I rename these to old_state because I want to use the name state for the State
pattern implementation.

public class SystemPermission...
private String old_state;

public SystemPermission(SystemUser requestor, SystemProfile profile) {
this.requestor = requestor;
this.profile = profile;
old_state = REQUESTED;
isGranted = false;
isUnixPermissionGranted = false;
notifyAdminOfPermissionRequest();

}

public String old_state() {
return old_state;

}

I make sure all client code is updated, compile and test that the name changes work.

2. Now I create a new abstract class that will serve as a base class for all of the states that a
SystemPermission can enter. “Permission” sounds like a good name for this class:

public abstract class Permission {
}

3. Next, it’s time to create Permission subclasses for each of the states that a
SystemPermission can enter.

public class PermissionRequested extends Permission {}
public class PermissionClaimed extends Permission {}
public class PermissionGranted extends Permission {}
public class PermissionDenied extends Permission {}
public class UnixPermissionClaimed extends Permission {}
public class UnixPermissionDenied extends Permission {}

Since the SystemPermission class will interact with each of these state subclasses via the
interface of their superclass, I make each of their constructors protected.

4. Now I create a private Permission field in SystemPermission along with a getting
method for it. I don’t create a setting method for it (yet), because I’m simply mirroring what the
field, old_state, had (i.e. a getting method and no setting method)

public class SystemPermission...
private Permission state;

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 125 of 137

public Permission state() {
return state;

}

5. Now comes the fun part. I identify the first state that a SystemPermission object can enter:
the REQUESTED state. I study which SystemPermission method(s) can transition the
REQUESTED state to some other state and find that claimedBy(…) is the only method that
does so – it allows the transition from REQUESTED to CLAIMED. This leads me to declare a
claimedBy(…) method on the Permission and PermissionRequested classes:

public abstract class Permission...
public void claimedBy(SystemAdmin admin) {}

public class PermissionRequested extends Permission...
public void claimedBy(SystemAdmin admin) {}

6. I can now implement the PermissionRequested.claimedBy(…) method. I start by
studying the SystemPermission.claimedBy(…) method:

public class SystemPermission...
public void claimedBy(SystemAdmin admin) {
if (old_state != REQUESTED && old_state != UNIX_REQUESTED)
return;

this.admin = admin;
if (old_state == REQUESTED)
old_state = CLAIMED;

else if (old_state == UNIX_REQUESTED)
old_state = UNIX_CLAIMED;

}

This method is weighted down with logic, much of which isn’t important to my present task of
writing code to handle the transition from the REQUESTED state to the CLAIMED state. The
guard clause at the start of the method won’t be necessary in my State-pattern implementation,
and the conditional logic to check if old_state is equal to REQUESTED also isn’t important,
since I know I’ll be in the PermissionRequested state when the claimedBy(…) method is called.
Finally, I don’t care at all about any logic relating to UNIX states. So, ignoring most of the logic
in this method, I wrote the following code:

public abstract class Permission...
public void claimedBy(SystemAdmin admin, SystemPermission permission)

public class PermissionRequested extends Permission...
public void claimedBy(SystemAdmin admin, SystemPermission permission) {
permission.willBeHandledBy(admin);
permission.setOldState(permission.CLAIMED);

}

public class SystemPermission...
public void willBeHandledBy(SystemAdmin admin) {
this.admin = admin;

}
public void setOldState(String state) {
this.old_state = state;

}

7. Now I find all places in SystemPermission where old_state is assigned to the
REQUESTED constant and I add code to assign state equal to a PermissionRequested
instance:

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 126 of 137

public class SystemPermission...
public SystemPermission(SystemUser requestor, SystemProfile profile) {
this.requestor = requestor;
this.profile = profile;
old_state = REQUESTED;
state = Permission.REQUESTED;
isGranted = false;
isUnixPermissionGranted = false;
notifyAdminOfPermissionRequest();

}

public abstract class Permission...
public final static Permission REQUESTED = new PermissionRequested();

8. Next, I find all places in SystemPermission where old_state is compared to the
REQUESTED constant and I change the code to compare state with the
PermissionRequested instance:

Here’s some test code that needs updating:

public class TestStates extends TestCase...
private SystemUser user = new SystemUser("Doe", "John");
private SystemAdmin admin = new SystemAdmin("Joe", "Brontesaurus");
private SystemProfile profile = new SystemProfile("Employee Benefits");
private SystemPermission permission;

public TestStates(String name) {
super(name);

}

public void setUp() {
permission = new SystemPermission(user, profile);

}

public void testRequestedBy() {
assertEquals("requested", permission.REQUESTED, permission.old_state());

}

The testRequestedBy() method becomes:

public void testPermissionRequest() {
assertEquals("request", Permission.REQUESTED, permission.state());

}

The following SystemPermission code also requires updating:

public class SystemPermission...
public void claimedBy(SystemAdmin admin) {
if (old_state != REQUESTED && old_state != UNIX_REQUESTED)
return;

this.admin = admin;
if (old_state == REQUESTED)
old_state = CLAIMED;

else if (old_state == UNIX_REQUESTED)
old_state = UNIX_CLAIMED;

}

I change this to:

public class SystemPermission...
public void claimedBy(SystemAdmin admin) {
if (!state.equals(Permission.REQUESTED) && old_state != UNIX_REQUESTED)
return;

this.admin = admin;
if (state.equals(Permission.REQUESTED))
old_state = CLAIMED;

else if (old_state == UNIX_REQUESTED)
old_state = UNIX_CLAIMED;

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 127 of 137

}

I compile and test to confirm that these changes work.

9. Now I must repeat steps 5-8 for each of the additional states that a SystemPermission can
enter. It would require too many pages to show you all of these changes, so I’ll just show you
what changes are necessary to implement the State pattern version of the CLAIMED state.

To implement step 5, I must identify which SystemPermission method(s) can transition
the CLAIMED state to one or more other states. SystemPermission.grantedBy(…) and
deniedBy(…) are those methods. So I write the following code:

public abstract class Permission...
public final static Permission REQUESTED = new PermissionRequested();
public void claimedBy(SystemAdmin admin, SystemPermission permission) {}
public void deniedBy(SystemAdmin admin) {}
public void grantedBy(SystemAdmin admin) {}

public class PermissionClaimed extends Permission...
public void deniedBy(SystemAdmin admin) {}
public void grantedBy(SystemAdmin admin) {}

To implement step 6, I must implement PermissionClaimed.grantedBy(…) and
deniedBy(…). Again, I look in the original methods to discover what actions are performed. I
learn that the CLAIMED state may transition to either DENIED, UNIX_REQUESTED or
GRANTED. So I write the following code:

public abstract class Permission...
public void grantedBy(SystemAdmin admin, SystemPermission permission) {}
public void deniedBy(SystemAdmin admin, SystemPermission permission) {}

public class PermissionClaimed extends Permission {
public void deniedBy(SystemAdmin admin, SystemPermission permission) {
permission.willBeHandledBy(admin);
permission.setOldState(permission.DENIED);
permission.setIsGranted(false);
permission.notifyUserOfPermissionRequestResult();

}
public void grantedBy(SystemAdmin admin, SystemPermission permission) {
permission.willBeHandledBy(admin);
if (permission.profile().isUnixPermissionRequired() &&
!permission.isUnixPermissionGranted()) {
permission.setOldState(permission.UNIX_REQUESTED);
permission.notifyUnixAdminsOfPermissionRequest();
return;

}
permission.setOldState(permission.GRANTED);
permission.setIsGranted(true);
permission.notifyUserOfPermissionRequestResult();

}

To implement step 7, I find all places where old_state gets assigned to the CLAIMED constant
and I add code to assign state equal to a PermissionClaimed instance:

public abstract class Permission...
public final static Permission CLAIMED = new PermissionClaimed();

public class SystemPermission...
public void claimedBy(SystemAdmin admin) {
...
if (state.equals(Permission.REQUESTED)) {
old_state = CLAIMED;
state = Permission.CLAIMED;

}
...

}

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 128 of 137

PermissionRequested also makes an assignment to the CLAIMED state, so I add code there
as well:

public class PermissionRequested extends Permission {
public void claimedBy(SystemAdmin admin, SystemPermission permission) {
permission.willBeHandledBy(admin);
permission.setOldState(permission.CLAIMED);
permission.setState(Permission.CLAIMED);

}
}

To implement step 8, I look for places where old_state is compared against the CLAIMED
constant and I change the code to compare state against the PermissionClaimed instance.
Here are the changes I make:

public class TestStates extends TestCase...
public void testClaimedBy() {
permission.claimedBy(admin);
assertEquals("claimed", Permission.CLAIMED, permission.state());

}

public class SystemPermission...
public void deniedBy(SystemAdmin admin) {
if (!state.equals(Permission.CLAIMED) && old_state != UNIX_CLAIMED) return;
...

}
public void grantedBy(SystemAdmin admin) {
if (!state.equals(Permission.CLAIMED) && old_state != UNIX_CLAIMED) return;
...

}

I compile and test to confirm that all of the changes work. Next, I continue to implement steps 5-8
for the remainder of SystemPermission states.

10. Now comes the fun part – making SystemPermission delegate to methods on the state
field for all of its state transitions. This step allows me to delete many lines of code:

public class SystemPermission...
public void claimedBy(SystemAdmin admin) {
state.claimedBy(admin,this);

if (!state.equals(Permission.REQUESTED) &&
!state.equals(Permission.UNIX_REQUESTED))
return;

this.admin = admin;
if (state.equals(Permission.REQUESTED)) {
old_state = CLAIMED;
state = Permission.CLAIMED;

}
else if (state.equals(Permission.UNIX_REQUESTED)) {
old_state = UNIX_CLAIMED;
state = Permission.UNIX_CLAIMED;

}
}

public void deniedBy(SystemAdmin admin) {
state.deniedBy(admin, this);

if (!state.equals(Permission.CLAIMED) &&
old_state != UNIX_CLAIMED) return;

if (this.admin != admin) return;
isGranted = false;
isUnixPermissionGranted = false;
old_state = DENIED;
state = Permission.DENIED;
notifyUserOfPermissionRequestResult();

}

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 129 of 137

public void grantedBy(SystemAdmin admin) {
state.grantedBy(admin,this);

if (!state.equals(Permission.CLAIMED) &&
!state.equals(Permission.UNIX_CLAIMED)) return;

if (this.admin != admin) return;

if (profile.isUnixPermissionRequired() &&
state.equals(Permission.UNIX_CLAIMED))
isUnixPermissionGranted = true;

else if (profile.isUnixPermissionRequired() &&
!isUnixPermissionGranted()) {
old_state = UNIX_REQUESTED;
state = Permission.UNIX_REQUESTED;
notifyUnixAdminsOfPermissionRequest();
return;

}
old_state = GRANTED;
state = Permission.GRANTED;
isGranted = true;
notifyUserOfPermissionRequestResult();

}

I compile and test that unbelievably, everything works as expected.

11. Finally, I get a chance to remove more unnecessary code: i.e. everything associated with
old_state, including the old_state assignments made from the state subclasses. Here are a
few of the deletions I make:

public class PermissionRequested extends Permission {
public void claimedBy(SystemAdmin admin, SystemPermission permission) {
permission.willBeHandledBy(admin);
permission.setOldState(permission.CLAIMED);
permission.setState(Permission.CLAIMED);

}
}

public class SystemPermission...
private String old_state;

public final static String REQUESTED = "REQUESTED";
public final static String CLAIMED = "CLAIMED";
public final static String GRANTED = "GRANTED";
public final static String DENIED = "DENIED";
public final static String UNIX_REQUESTED = "UNIX REQUESTED";
public final static String UNIX_CLAIMED = "UNIX CLAIMED";

public SystemPermission(SystemUser requestor, SystemProfile profile) {
...
old_state = REQUESTED;
...

}

public String old_state() {
return old_state;

}

public void setOldState(String state) {
this.old_state = state;

}

I compile and run my tests to confirm that everything is working. I’ve now fully implemented the
State pattern. Was all that work worth it? I’ll let you decide. Consider the code in a few of the
state subclasses (listed below) and compare it against the state-altering conditional logic we
started with:

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 130 of 137

public class PermissionRequested extends Permission {
protected PermissionRequested() {
super();

}
public void claimedBy(SystemAdmin admin, SystemPermission permission) {
permission.willBeHandledBy(admin);
permission.setState(Permission.CLAIMED);

}
}

public class UnixPermissionRequested extends Permission {
protected UnixPermissionRequested() {
super();

}
public void claimedBy(SystemAdmin admin, SystemPermission permission) {
permission.willBeHandledBy(admin);
permission.setState(Permission.UNIX_CLAIMED);

}
}

public class UnixPermissionClaimed extends Permission {
protected UnixPermissionClaimed() {
super();

}
public void deniedBy(SystemAdmin admin, SystemPermission permission) {
permission.willBeHandledBy(admin);
permission.setState(Permission.DENIED);
permission.setIsGranted(false);
permission.setIsUnixPermissionGranted(false);
permission.notifyUserOfPermissionRequestResult();

}
public void grantedBy(SystemAdmin admin, SystemPermission permission) {
permission.willBeHandledBy(admin);
permission.setState(Permission.GRANTED);
permission.setIsGranted(true);
permission.setIsUnixPermissionGranted(true);
permission.notifyUserOfPermissionRequestResult();

}
}

public class PermissionGranted extends Permission {
protected PermissionGranted() {
super();

}
}

public class PermissionDenied extends Permission {
protected PermissionDenied() {
super();

}
}

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 131 of 137

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 132 of 137

Replace Singleton with Constant

Motivation

Mechanics

Example

public void denied(ApplicationPermission permission) {

permission.setState(ApplicationPermissionDenied.getInstance());
}

becomes

public void denied(ApplicationPermission permission) {
permission.setState(permission.DENIED);

}

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 133 of 137

Replace Retrieval with Listener

[Colloquium Example]
[SAX vs DOM]

Motivation

Mechanics

Example

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 134 of 137

 References

[Beck]
Beck, Kent. Smalltalk Best Practice Patterns. Upper Saddle River, N.J.: Prentice Hall, 1997.

[Bloch]
Bloch, Joshua. Effective Java. Addison-Wesley, 2001.

[Fowler]
Fowler, Martin. Refactoring: Improving the Design of Existing Code. Addison-Wesley.

[GOF]
Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides. Design Patterns: Elements of
Reusable Object Oriented Software. Reading, Mass.: Addison-Wesley, 1995.

[JUnit]
Kent Beck and Erich Gamma. JUnit Testing Framework. Available on the Web
(http://www.junit.org).

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 135 of 137

Appendix A – Naming Conventions

[describe forName, writeOn, claimedBy, etc].

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 136 of 137

Appendix B – Loan Terminology

A few of the code fragments used in the examples in this book are based on financial systems that
calculate numbers for Loans. If you don’t have experience writing systems like that, you may
find that the example code is hard to understand. No problem. You don’t need to know much to
make sense of this code. The following describes the three major loan types used in the example
code:

• Term Loan: often abbreviated as a TL, is the simplest of loans: I give you $100 and ask
you to pay it back by some date, which is known as the maturity date of the loan.

• Revolver: a Revolver is an instrument that provides “revolving credit”, like a credit card

with a spending limit and expiry date. Financial companies often abbreviate Revolvers as
“RC.”

• RCTL – this is a combination of a Revolver and Term Loan. The loan starts its life as a

Revolver, and on its expiry date, becomes a Term Loan. RCTLs have both expiry and
maturity dates.

It is common to calculate numbers for loans, such as capital, risk-adjusted capital, return on
capital, etc. When we do risk-adjusted calculations, we often need to use the numbers from some
risk-table. In general, the kinds of calculations done on the various loan types shouldn’t effect
your understanding of the refactoring steps.

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 137 of 137

 Conclusion

Stay tuned for more refactorings. This work is only the beginning of a larger work on this subject.
I welcome your thoughts and feedback. If you are interested in seeing the latest copies of this
work, please visit http://industriallogic.com/xp/refactoring/

Acknowledgements

I’d like to thank my wife, Tracy, for her loving support and continuous encouragement.

Eric Evans has contributed more than any one else to making this work what it is today. I want to
thank him for his continued support, thoughtful conversations, great ideas and feedback.

I’d also like to the thank the following people:

• Russ Rufer and all of the many great members of the Silicon Valley Patterns Group
(Tracy Bialik, Alan Harriman, Chris Lopez, Charlie Toland, Bob Evans, John Brewer,
Jeff Miller, Patrick Manion, Debbie Utley, Carol Thistlethwaite, Summer Misherghi, Ted
Young, Siqing Zhang). Your feedback has been invaluable.

• Robert Hirshfeld, for helping clarify the Decorator mechanics section.

• Martin Fowler for inspiration and encouragement, for giving me the advice that I once
gave him (i.e. use code sketches at the beginning of each refactoring) and for numerous
helpful suggestions and ideas.

• Kent Beck for his reviews and suggestions.

• John Vlissides for his reviews and suggestions.

• Ralph Johnson, Brian Foote, Brian Marick, Don Roberts, John Brant and others from the
University of Illinois.

• Somik Raha – for many great pairing sessions, refactoring ideas and some poor code he
once wrote when he was tired which provided great refactoring material.

• Many thanks to the following folks who provided excellent suggestions: Rob Mee, Jeff
Grigg, Kaoru Hosokawa, Don Hinton, Andrew Swan, Erik Meade, Craig Demyanovich.

