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Preface

The adjective ‘granular’ is attributed to materials when they are made of
sets of unfastened discrete solid particles (granules) of a size larger than one
micron, a length scale above which thermal agitation is negligible. In fact,
the dominant energy scale in granular materials is the one of a single grain
under gravity. Granular matter is common and we meet it everyday. Examples
range from the dust settled on the books of our libraries, to the sand in the
desert, to the meal used in cooking, itself obtained from grain, often stored
in silos. Granular matter displays a variety of peculiarities that distinguish
it from other substances studied by condensed matter physics and renders
its overall mathematical modeling arduous. In a review paper of 1999 [dG]
P.G. de Gennes writes: “granular matter is a new type of condensed matter,
as fundamental as a liquid or a solid and showing in fact two states: one
fluidlike, one solidlike. But there is as yet no consensus on the description of
these two states!”

Almost all preconceptions on which the standard theory of continua is
based seem to fail. The standard concept that the material element is well
identified (even in the statistical conception common in gas dynamics) fails
and, with it, the current mathematical picture assigning to it a precise place-
ment. Even useful results of the standard kinetic theory of gases can be called
upon confidently, in general. The populations of grains are far less profuse than
the molecular ones in gases and far more crowded. The constraints imposed
by grains on one another are generally too conspicuous to rigidify the lot.
Also, boundary conditions are far from the simple classical scheme suggested
by the divergence theorem and need separate critical modeling.

Heaps of granules do not sustain tension unless (at least a small) cohesion
is present. They are, in general, in anisotropic metastable states. Such states
last indefinitely unless external perturbations occur. Contrary to common
solids and fluids, no thermal average among nearby states arises (see [JNB]).
Interactions between granules are exerted through contacts occurring along
graphs with topology depending on the way in which granules are packaged,
on the distribution of the sizes of the granules themselves, on the boundary
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conditions and, above all, on the sources of external disturbances. Subsets of
granules may self-organize in order to sustain and distribute tensions along
arcs: When granules are stored in a silo the pressure at the bottom of the
silo does not increase indefinitely as the height of the stored material grows,
rather it reaches a maximum value if the lateral walls of the silo are sufficiently
tall. If the silo is shaken and grains with different sizes are stored within it,
size segregation occurs instead of mixing. The phenomenon does not fit the
entropic effects that one recognizes in standard liquids. Both traveling and
standing waves accrue in the surface layer of grains, and slip appears along
the walls of the silo. It is not clear yet how inelastic interactions and local
disorder or segregation contribute to the acoustic propagation.

Layer dynamics is present also in ‘avalanches’. The example is the addition
of grains to a heap from the top: the surface layer moves, the core persists.
The description of the connection between the surface flow and the core at
rest forces one to account for the transition between two phases, if one wants
to propose a global picture of the phenomenon. As for the contact stresses
in granular materials at rest, even for rapid flows the stresses induced by the
collisions depend on the local numerosity of granules, in other words on the
‘degree of clustering’. Segregation in dense granular flows also has an influence.
The overall mechanical behavior seems to be history-dependent.

Plastic effects may be prominent in the quasi-static regime: shear bands
appear and inelastic deformations may be accumulated by cyclic loading pro-
cesses. Inelastic collisions usually play a decisive role in dynamics, as in the
fall of avalanches and in the walk of desert dunes. Chaotic agitation of gran-
ules leads them far from thermodynamic equilibrium, so fluctuations may
be prominent. Microscopic slip friction between granules induces relaxation
analogous to that of some solids with complex microstructure. Macroscopic
friction is induced by earthquakes which may induce fluidization of granular
matter.

Critical reviews such as [JNB], [dG], [K], and [AT] provide an adequate
description of phenomena occurring in granular matter. They give a picture
of the scenario.

A typical approach to the dynamics of polydisperse granular systems is
based on the ‘inelastic’ Boltzmann equation which also provides the starting
point for a plethora of hydrodynamic models. Assumptions on the types of
contacts occurring must be chosen carefully: relative rotations may need to
be accounted for, depending on the circumstances. Closures are obtained by
assuming specific forms of the distribution function. A critical review of the
results along these lines can be found in [V].

Even in a disperse state, a granular flow is dissipative as a consequence
of the presence of inelastic collisions. Absence of equilibrium is the source
of difficulties when one applies the Chapman-Enskog perturbative method to
derive a (hydrodynamic) continuum picture from the kinetic description based
on Boltzmann equation. Since collisions are inelastic, a double expansion in
Knudsen number K and degree of inelasticity ε has to be used. Moreover, since
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ε ∝ K3 in the steady state, the expansion has to be extended up to Burnett or
super-Burnett regimes to assure consistency, the latter regime being of degree
O

(
K3

)
. The appearance of unphysical instabilities under short-wave per-

turbations, typical of Burnett and super-Burnett regimes, requires viscosity
regularizations of the field equations or the use of other possible techniques.

Attempts have been made to construct continuum models of granular
matter from first principles, without resorting to kinetic justifications based
on Boltzmann equation, especially in statics. Non-trivial difficulties arise, as
already mentioned: at a gross scale some standard paradigms of traditional
continuum mechanics need to be modified accurately. We have already men-
tioned for example the loss of the possibility of identifying perfectly a generic
material element (i.e. even to define it). This difficulty is generated by the
occurrence of segregation and also by the general lack of coherence due to
the absence of cohesion between neighboring granules. Each material ele-
ment must be then considered as an open system (as in [M]) from which
granules may migrate from it to neighboring ones. Standard balances of inter-
actions have to be then supplemented by an equation ruling the rate of local
numerosity of granules. Such a rate, which is the rate of migration of granules,
generates loss of information about the local texture of the granular matter,
and increases the configurational entropy, although segregation is opposite to
the entropic mixing (as mentioned above).

The definition of measures of deformation and stresses in terms of granular
geometries and grain-to-grain interactions may be non-trivial. As regards the
standard stress tensor, for example, a typical definition is made by the sum of
the tensor product between the intergranular force and the vector indicating in
a local frame the contact point between neighboring granules, a sum extended
to all granules in contact with a given granule. However, although such a
definition has a physical meaning, one does not know point by point (or better,
element by element) the local distribution of granules, their geometry and
the type of contact which may be inelastic and not even punctual. All these
information characterize each model that can be constructed and have also
constitutive nature.

By looking at deeper details, it is natural to consider a granular material
as a complex body (in the sense of a body in which the material texture
influences strongly the gross behavior). So, multifield descriptions of granular
matter need to be called upon, as explained in some chapters of this book.

In any case, no accepted general consensus about the overall descrip-
tion of granular bodies exists. Such an absence of a unified description of
the mechanics of the granular matter and the lack of preference for one or
another approach, for aesthetic or experimental reasons, has pushed us to col-
lect advances in the various prominent directions of research. Our aim is to
furnish a panorama clarifying the state of current researches, solving problems,
discussing critically points of view and opening new questions. Contributions
range, in fact, from the kinetic approaches to granular flows to the continuum
description of static and quasi-static behaviors. A non-trivial tentative of a
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connection between the kinetic approach and a continuum modeling based on
first principles is also present (see Chap. 4).

At the present state of knowledge and in the absence of a unitary point
of view, one can only say that the variety and the peculiarities of behavior of
granular matter render arduous the task of its overall mathematical modeling.
Mathematical and physical questions of an intricate nature appear and tools
additional to the traditional ones are needed. Some of these questions and
tools are discussed in the subsequent chapters.

Motivated by experimental results on shear bands due to (unstable) plastic
behavior of granular bodies, in Chap. 1, Joe D. Goddard discusses critically
various techniques for the homogenization of granular media in a quasi-static
regime, media that are seen here as multipolar continua in the sense of the
mechanics of complex bodies. An energy-based method of homogenization is
proposed as an improvement on previous approaches.

If one describes granular flows from the point of view of the kinetic the-
ory, inelastic collisions play a role as mentioned above. The Maxwell model of
binary collisions is a typical scheme adopted and is based on the assumption
that the collision frequency is independent of the velocity of colliding parti-
cles. Such a model can be translated from rarefied gases to the description of
granular flows. In Chap. 2, Alexander V. Bobylev, Carlo Cercignani and Irene
Martinez Gamba discuss, from a general point of view, variants of the Maxwell
model of pairwise interactions and establish their key properties that lead to
self-similar asymptotics. Existence and uniqueness issues are also analyzed.

The approach based on the dissipative Boltzmann equation is further ana-
lyzed in Chap. 3 by Giuseppe Toscani. Two paths toward the hydrodynamic
limit are discussed. They account for two different methodologies for the clo-
sure of macroscopic equations: (i) low inelasticity in the system, namely a
perturbation in a precise sense that allows the local resort to Maxwellian func-
tions, (ii) small spatial variations implying the use of a homogeneous cooling
state.

One of the editors (GC) proposes in Chap. 4 (a chapter already mentioned
above) further results on an earlier proposal for fast sparse flows. Complex
bodies with kinetic substructure are considered. They are bodies in which each
material element is a system in continuous agitation and are called pseudoflu-
ids. Granular flows fall naturally in this framework. The maelstrom within
each material element and its influence on the neighboring fellows is gov-
erned by peculiar hydrodynamic balances: they are offspring of the microscopic
interactions between granules.

The recursive analysis of higher momenta of the distribution function, even
beyond Grad’s 13 moments, has been the basic source of Extended Thermody-
namics. The results on monoatomic gases provided by such an approach sug-
gest its use in modeling granular flows. After summarizing the main modeling
issues of Extended Thermodynamics, in Chap. 5 Tommaso Ruggeri analyzes
the resulting hyperbolic system and discusses global existence questions and
stability of constant state on the basis of Kawashima condition.
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The construction of hydrodynamic models from first principles can find
appropriate suggestions from detailed numerical simulations performed by
looking directly at single granules and their contact interactions. The molec-
ular dynamic approach is pursued in Chap. 6 by Ramon Garćıa-Rojo, Sean
McNamara and Hans J. Herrmann who analyze (amid possible choices)
the persistent elastic–plastic strain accumulation in compacted granular soils
under cyclic stress conditions.

Since driven sets of granules (for example confined in a box) are in essence
systems very far from thermodynamic equilibrium, as mentioned above, the
effects of fluctuations are in general significant. Analysis of the injected power
fluctuations is presented by Alain Barrat, Andrea Puglisi, Emmanuel Trizac,
Paolo Visco and Frederic van Wijland in Chap. 7, a chapter divided into
two parts: The first part deals with the way in which the probability density
function of the fluctuations of the total energy is related to the character-
ization of energy correlations for both boundary and homogeneous driving.
The second part contains an interpretation of some numerical and exper-
imental results that seem to invalidate Gallavotti–Cohen symmetry [GC].
Such results appear contradictory to common analyses that seem to satisfy
Gallavotti–Cohen fluctuation relation. By means of Lebowitz–Spohn approach
to Markov processes, an approach applied to the inelastic Boltzmann equation,
a functional satisfying a fluctuation relation is also introduced.

The last two editors collect their contributions in Chaps. 8 and 9. In par-
ticular, in Chap. 8 PG analyzes in the continuum limit the thermodynamics
of a granular material modeled as a complex body endowed with a microstruc-
ture which is constrained and/or latent in the sense introduced by Capriz [C].
The consequences of grain rotations are described together with effects like
dilatancy.

Finally, in Chap. 9, PMM considers granular matter in slow motion and
describes it as a two-scale complex body for which each material element is
considered as a grand-canonical ensemble of granules. The evolution equation
of the numerosity of grains in each material element is derived in terms of
grain-to-grain interactions.

February, 2008 Gianfranco Capriz
Pasquale Giovine

Paolo Maria Mariano
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R. Garćıa-Rojo, S. McNamara, and H.J. Herrmann . . . . . . . . . . . . . . . . . . 109
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
2 Discrete Element Methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

2.1 Boundary Conditions: Biaxial Test . . . . . . . . . . . . . . . . . . . . . . . . . . 112
2.2 Molecular Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
2.3 The Normal-Dashpot Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
2.4 Contact Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
3.1 Comparing MD and CD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
3.2 Comparing Different Visco-Elastic Laws . . . . . . . . . . . . . . . . . . . . . . 118

4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

Fluctuations in Granular Gases
A. Barrat, A. Puglisi, E. Trizac, P. Visco, and F. van Wijland . . . . . . . . 125
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
2 A Brief Introduction to Granular Gases . . . . . . . . . . . . . . . . . . . . . . . . . . 127

2.1 Boundary Driven Gases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
2.2 Randomly Driven Gases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

3 Total Energy Fluctuations in Vibrated
and Driven Granular Gases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
3.1 The Inhomogeneous Boundary Driven Gas . . . . . . . . . . . . . . . . . . . 131
3.2 The Homogeneously Driven Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

4 A Large Deviation Theory for the Injected Power Fluctuations
in the Homogeneous Driven Granular Gas . . . . . . . . . . . . . . . . . . . . . . . . 138
4.1 The Cumulants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
4.2 The Solvable Infinite Dimension Limit . . . . . . . . . . . . . . . . . . . . . . . 145

5 Fluctuations of Injected Power at Finite Times: Two Examples . . . . . 146
5.1 The Homogeneous Driven Gas of Inelastic Hard Disks . . . . . . . . . 146
5.2 The Boundary Driven Gas of Inelastic Hard Disks . . . . . . . . . . . . . 153

6 The Dynamics of a Tracer Particle as a Non-Equilibrium
Markov Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
6.1 Detailed Balance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
6.2 Action Functionals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

An Extended Continuum Theory for Granular Media
Pasquale Giovine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
2 A First Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
3 Rotations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171



XIV Contents

4 Balance of Interactions for Material Bodies
with Affine Microstructure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

5 Observers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
6 Dilatant Granular Materials with Rotating Grains . . . . . . . . . . . . . . . . . 177
7 Inertia Forces and Balance of Granular Energy . . . . . . . . . . . . . . . . . . . . 179
8 Constitutive Restrictions in the Thermoelastic Case . . . . . . . . . . . . . . . 182
9 Suspension of Rigid Granules in a Fluid Matrix . . . . . . . . . . . . . . . . . . . 185
Appendix: Kinetic Energy Coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

Slow Motion in Granular Matter
Paolo Maria Mariano . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
2 Representation of the Granularity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
3 Balance of Interactions: R

3
� SO(3) Invariance . . . . . . . . . . . . . . . . . . . 200

4 Evolution of the Local Numerosity of Granules . . . . . . . . . . . . . . . . . . . . 204
5 A Single Granule Coinciding with the Generic Material Element . . . . 207
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211



List of Contributors

Alain Barrat
Laboratoire de Physique Théorique
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Université Paris-Sud
Orsay, France
trizac@ipno.in2p3.fr

Frederic van Wijland
Laboratoire Matière et Systèmes
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From Granular Matter to Generalized
Continuum

J.D. Goddard

Summary. Following a cursory review and synthesis of multipolar continua, the
rudiments of graph theory, and granular mechanics, a graph-theoretic, energy-based
homogenization is proposed for the systematic derivation of multipolar stress and
kinematics in granular media. This provides a weakly non-local hierarchy of multi-
polar field equations for quasi-static mechanics based on polynomial representations
of the kinematics of the type employed in past works. As an improvement on those
works, a method is proposed for avoiding “overfitting” of fluctuations based on the
so-called “Generalized Additive Method” of statistics. Among other results, it is
shown that the standard formula for Cauchy stress in granular media may break
down owing to multipolar effects, and that granular rotations in the typical granu-
lar medium should not lead to Cosserat effects, as the lowest-order departure from
the simple-continuum model.

1 Introduction

Arguments against new ideas generally pass through distinct stages from:

“It’s not true” to
“Well it’s true but not important” to
“It’s true and it’s important, but it’s not new – we knew it all along”

From The Artful Universe
by John D. Barron

(Chap. 1 of [16])

This article, an amended and enlarged version of a recent conference
paper [21], has its beginnings in a much older work [18] concerned with
the largely theoretical question as to the definition of stress in a granu-
lar assembly. By no means novel at the time, the question has taken on a
more practical importance in the intervening years, in part motivated by
“shear bands” associated with the unstable plasticity of granular media.
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According to simple continuum models, shear bands represent infinitely thin
surfaces of discontinuity, in distinct contrast to the zones of finite thickness
revealed by numerous experiments and particle-level computer simulations.
Moreover, certain of these studies indicate that the grain rotation in shear
bands may be quite different from the global rotation (vorticity) outside
the band, which is generally interpreted as a manifestation of “Cosserat”
effects.

As anticipated in the general field of plasticity and soil mechanics, some
type of “enriched” or “structured” continuum model endowed with intrin-
sic length scale is required to regularize the underlying field equations in
the presence of material instability. Furthermore, the additional forces impli-
cated in such models may actually influence the onset and evolution of
material instability, as recognized early on by Vardoulakis and coworkers
[36, 46].

Given the overall progress of granular mechanics in the last two decades, a
renewed effort to elucidate the above theoretical questions seems timely and
appropriate. With this motivation, the present paper provides a synthesis
and critique of various principles and techniques for the homogenization of
granular media, with emphasis on the quasi-static mechanical behavior.

A brief review is presented of multipolar continua, regarded as general
models for granular media, and a survey is given of the graph-theoretic
and energy principles underlying granular micromechanics, based on the
interpretation of the associated matrices as differential operators. A novel
energy-based method is proposed for homogenization, as a modification of
the abstract “best fits” proposed elsewhere. This method employs polynomial
representations for particle displacements and forces which provide the rel-
evant gradients and moment stresses for micropolar continua. Based on the
works of Eringen [16], a general formula is postulated to include contributions
from the motion of particle centroids, from particle deformation, and from
singular surfaces exhibiting slip or interfacial tension.

As new results, it is shown that:

1. In the absence of intergranular contact moments or external body couples,
grain rotations do not contribute directly to the quasi-static stress work,
in particular to frictional dissipation, and, therefore,

2. The resultant Cauchy stress derives solely from the motion of particle
centroids.

A major goal of the present work is to establish the micropolar contin-
uum as a plausible model for granular and cellular media, by showing in
a general and systematic way how micropolar effects emerge from discrete
micromechanical models. A second goal is to present a concise formulation of
the underlying mathematical techniques, and to connect to basic ideas from
topology, graph theory and to other fields of network analysis.
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1.1 Mathematical Preliminaries

The notation is similar to that employed in a previous work [19], where
bold symbols are employed for space tensors, lowercase symbols for vectors
ϕ = ϕαgα, uppercase for higher-order tensors L = Lαβ...gα ⊗ gβ ⊗ . . ., etc.,
where ⊗ denotes a tensor product, and Greek superscripts and subscripts
refer to a basis gα, α = 1, 2, 3, derived from appropriate spatial coordinates.
For the present purposes, the latter may be taken as orthogonal cartesian.
A colon is employed denote the exhaustive, ordered contractions of tensors
of rank two and higher, such that, for n ≥ m, (Lα1...αn) : (Mβ1...βm) :=
Lα1...β1,...βmMβ1...βm , and we employ superscript T to denote transposi-
tion of the right-most tensor component with all the preceding, so that
(Lα1α2...αn . . .)T := (Lαnα1α2... . . .). The standard notation Lx(=Lα

βxβgα) is
employed for linear transformations of vectors via second-rank tensors. Roman
superscripts are used throughout (in contrast to [21]) to label particles (i.e.
grains), branch vectors and the associated graph-theoretical matrices in gran-
ular assemblies. Brackets [ , ] are employed to denote closed intervals of both
reals and integers, and the standard symbol \ denotes set exclusion.

With an denoting the n-fold symmetric tensor product ⊗na, the Taylor
series expansion for the velocity (or infinitesimal displacement) v,

v(x) = vo + L1r + L2: r2 + . . . , (1)

with
r = x − xo, Ln =

1
n!

(∇n ⊗ v)T
o , (2)

provides the well-known expansion for global stress-power density in a simple
continuum

ẇ =
1
V

∫
V

T :LdV =
∑

n

ẇn, (3)

with
ẇn := Tn:Ln, Tn :=

∫
V

T ⊗ rndV, (4)

where T is Cauchy stress and L = (∇⊗v)T (first) velocity gradient. With
stress moments Tn representing generalized forces conjugate to the kinemat-
ical quantities Ln [19, 25]. Equation (4), serves to establish an equivalence
between a non-homogeneous simple continuum and a homogeneous multi-
polar continuum, i.e. a continuum endowed with intrinsic moment stresses.
We distinguish two important special cases:

1. The Ln are identical with higher gradients of the local velocity field, as
defined in (2), or

2. They are intrinsic “particulate” fields, say Lp
n(x, t), given by more general

constitutive equations.

The first represents a graded (or “Toupin–Mindlin”) continuum [23,25, 35],
while the second represents a micromorphic (or “Cosserat–Eringen”)
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continuum [14,24,35,41].1 Both are endowed with intrinsic length scales, and
the graded continuum can be regarded as a manifestation of weak non-locality,
a precursor to a fully non-local continuum [17].

By means of the mathematical “fragmentation” of a simple continuum into
discontinuous subdomains, Eringen and coworkers have derived micromor-
phic field theories resembling those obtained by certain statistical mechanical
studies of systems of deformable particles [16]. A similar technique has been
presented recently for the special case of Cosserat media [13]. The micromor-
phic continuum is a special case of a multipolar continuum endowed with a
polyad of deformable vectors or “directors” attached to each material parti-
cle [24], with Lp

n representing 3n such vectors.2 The simplest (“grade one”)
micromorphic continuum is characterized by deformable triad of vectors and,
hence, a single second-rank (velocity gradient) tensor Lp attached to each
material point that serves to represent an homogeneous microstructural (“par-
ticle”) deformation and rotation. In the special case of a micropolar (Cosserat)
continuum, Lp = Wp = −(Wp)T and ωp = vec(Wp) represent a (particle)
spin generally distinct from the global spin W = (L−LT )/2. (Recall that [16]
distinguishes micropolar as the rigid subclass of microstretch, the isotropic or
spherical subclass of micromorphic.)

The various moment stresses may be interpreted, as above, in terms of
volumetric working, or alternatively, in terms of their infinitesimal surface
actions Tn ·ds. Thus, for n = 1, one has a force (“push” or “pull”), induc-
ing displacement, and for n = 2, symmetric and skew-symmetric moments
(generalized “pinch”),3 inducing stretch and rotation, respectively, etc. For
later reference, we define a micropolar continuum of grade m as one having
wn ≡ 0 for n > m for all deformation histories, the simple continuum [43]
being grade one.

1.2 Balances

According to a microscopic treatment [19], the stress moments Tn in a mul-
tipolar continuum should satisfy a hierarchy of balances of the form:

∇·TT
n+1 + Tn = Gn+1, for n = 0, 1, . . . , (5)

where T0 := 0, T1 := T, and the G’s represent extrinsic body moments
plus accumulation of intrinsic multipolar momenta. The latter are not made

1 Both were designated as “micromorphic” in [21], based on the idea that response
to higher gradients involves some finite microstructure. Abandoning that uncon-
ventional usage, we adopt another, with “graded” designating what is sometime
called “gradient” or “higher-gradient” continuum.

2 The basic idea is attributed to Duhem in [44]. Since directors are attached to
material points, we exclude from (3) et seq. a term ẇ0 = f0 ·v0 involving a body
force f0 and a relative velocity v0, appropriate to two-phase media and anticipated
by the theory of mixtures [44].

3 A term suggested by Professor I. Vardoulakis [45].
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explicit here, since they are negligible in the quasi-static limit. It is easy to
verify that (5) leads to the following integral balance:∫

∂V

[Tn + x⊗Tn−1 + . . . + xn−1 ⊗T]·ds =
∫

V

GndV, for n = 2, 3, . . . , (6)

in which all stresses up to order n contribute to the nth surface moment.
The uncertain status of (5) should be acknowledged immediately, since

it has not been established by any of the standard methods of continuum
mechanics, neither by derivation from the energy balance, by means of invari-
ance principles (objectivity) [15, 16, 22], nor from variational principles for
elastic systems, dating back to the Cosserats [11, 44] (and treated in a recent
review [30] that includes both micromorphic and graded continua). At any
rate, the balance for n = 1 has the form found elsewhere, up to an arbitrary
additive symmetric, second-rank stress [16]. In this author’s opinion, the lat-
ter might be profitably be regarded as the divergence of a third rank tensor
and absorbed into the term ∇·TT

2 in (5).
No attention is paid here to compatibility, discontinuity and boundary

conditions for the various kinematic tensors Ln, some of which are discussed
in [16]. Also, we do not deal with discontinuity and boundary conditions for
the associated moment stresses Tn, since the main focus of this article is on
the issues surrounding the passage from discrete microstructure to continuum
model.

2 Micromechanics

The kinematics of granular media involves both extrinsic modes or degrees of
freedom, associated with motion of particle centroids, and intrinsic or inter-
nal modes associated with particle deformation. Although the two are coupled
mechanically through particle contacts, we first focus attention on the extrin-
sic modes. For the sake of completeness, the following subsection provides
some essential background material on granular media [1, 19] and elucidates
the role of grain rotation.

2.1 Granular Microstructure and Rotation

Figure 1 illustrates the standard idealization of a granular medium [19, 37],
with i, j ∈ [1, N ] enumerating particles or grains. With x denoting the position
vector, dotted lines represent moment arms rij = xi − xij connecting grain
centroid xi to nominal point of contact xij , neighbors j being defined by
triangulation on centroids (vide infra). Solid and dashed lines then represent
branch vectors lij = rij−rji = −lji, with solid lines indicating active contacts
and dashed lines representing virtual contacts (i.e. nearest neighbors without
contact).



6 J.D. Goddard

i

j

l
ij

r ij

r ji

Fig. 1. Idealized granular medium

The interparticle contact force f ij is the resultant defined by the surface
integrals on the left-hand side of (6) with n = 1, taken over a nominal contact
area ij. As shown in numerous preceding works, e.g. [1], the assumption of
contact forces f ij = −f ji localized at points xij leads to a particle contribution
to the volume-average stress (a “dipole”) given by

Ti =
1
V i

∑
j

f ij ⊗ rij , (7)

for each particle i in the interior of the granular assembly.
The vector couple about xi exerted by particle j on i is given

cij = f ij × rij + mij , (8)

where mij = −mji is the vector of the skew part of an integral of the type
(6), with n = 2, with x replaced by x−xi, and with xij representing the cen-
troid of the contact stress. Thus, for grains composed of a simple (grade one)
material, the contribution from T2 vanishes, so that the contact couple m
arises solely from the moment (x− xi)×T·ds as a kind of rolling resistance.

In the absence of external body couples and contact moments mij , the
quasi-static moment balance requires the symmetry of Ti. Furthermore, it is
easy to show that ∑

i

V iTi =
∑
i>j

f ij ⊗ lij , (9)

mapping particle dipoles into contact dipoles.
On the other hand, the power of internal contact forces is given by the

sum over distinct contacts

Ẇ =
∑
i>j

f ij ·vij (10)

with
vij = uij + W irij − W jrji, with uij = ẋi − ẋj , (11)
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where W is the skew-symmetric tensor representing particle rotation. Hence,
it follows readily that

Ẇ =
∑
i>j

f ij ·uij +
∑

i

V iTi : W i. (12)

Since the second term vanishes whenever Ti is symmetric, we have for arbi-
trary particle shapes the

Theorem. In the absence of external body couples and intergranular contact
moments (mij) the rotation of internal grains makes no direct contribution to
quasi-static stress power.

Here, “internal” refers to those grains in mechanical contact with other grains
but not with any boundary from which couples may be transmitted. Of course,
the resultant of the latter must be zero.

The preceding theorem has implications for quasi-static Cosserat effects,
since most existing micromechanical predictions of such effects, as typified
by [31,33,42], depend explicitly on contact moments. However, since the linear
dimension of typical (Hertzian) intergranular contact zones, proportional to
some O(1) power of the ratio of confining pressure to elastic modulus, is
expected to be small, especially for rigid noncohesive geomaterials such as
sand, it follows that the term f × r will dominate the term m in (8).

The same conclusion results for rigid noncohesive particles with multiple
contact zones, since the contact forces on such zones can be replaced by a
finite, statically equivalent set of forces, whose moments are once again cap-
tured by the terms of the form f × r in (8). Hence, for nearly rigid grains,
any homogenization scheme based on energy principles should yield negligible
quasi-static Cosserat effects, although particle rotations will generally have
other influences on the micromechanics.

It should be noted that certain types of cohesive contacts may give rise to
important contact moments, since they allow for a locally large tensile force
balanced by a locally large compressive force, producing a large couple m
without a correspondingly large resultant f .

The absence of intergranular contact moments not only justifies various
simple-continuum models of granular media but also implies that the break-
down of such models must be due to effects other than those associated with
Cosserat rotation. In this connection, we note that the symmetry of (7) and
hence of (9), implies that TT = T (Cauchy’s second law [43]), at least accord-
ing to the standard formula for T. However, the latter is subject to criticisms
presented below.

2.2 Graph Theory for Extrinsic Modes

Graph theory provides a particularly appealing tool for the description of
various physicochemical networks. In contrast to the mechanical networks
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associated with structural mechanics [40] or statistical physics [5], the graphs
for granular media or other mobile cellular assemblies are often transitory,
reflecting abrupt topological rearrangement engendered by finite deforma-
tion and requiring a sequence of graphs to describe evolving microstructures.
Immediately following is a concise treatment of the graph-theoretical descrip-
tion of granular mechanics, with connections to other fields of application and
to the basic mathematical literature.

In a schema dating back to the early works of Satake [31, 37, 38],4 we let
particle centroids define the nodes or vertices j ∈ [1, N ] defined by an appro-
priate Delaunay triangulation [1,19,20,37]. Note that this triangulation should
be generally based on (minimal) separation between particle surfaces rather
than particle centroids. Whenever unique, this defines an abstract (connected
simple) graph G, the granular contact network or Satake graph, with edges
or branches i ∈ [1, E] representing nominal nearest-neighbors and defining
contacts or virtual contacts.

In the associated matrix formulation, underlined lowercase quantities
denote columns (vertical arrays) associated with edges and nodes, while
superscript ∗ denotes transposition (vector-space dual), e.g. ϕ = [ϕi]∗ =
[ϕ1, . . . , ϕN ]∗ denotes a 1 × N row of scalars, ϕ = [ϕi]∗ = [ϕ1, . . . ,ϕE ]∗,
a 1 × E row (horizontal array) of space vectors, etc. Then, underlined
uppercase denotes the associated linear transformations or matrices, e.g.
A = [Aij ], A = [Aij ], etc., with dual or adjoint defined by the standard
scalar products (u, v) = (v, u) := u∗v and (u,v) := u∗ ·v =

∑
k uk ·vkF .

Assignment of directions to the edges of the above graph yields a directed
graph [4, 6], with E × N incidence matrix D = [Dij ]

Dij =

⎧⎨⎩+1, if edge i enters node j,
−1, if edge i leaves node j,

0, otherwise.
(13)

The matrix D (the transpose of the matrix D in [5, 6, 38]) and its transpose
D∗ represent difference-operators, which we designate, respectively, as the
differential and the codifferential (denoted respectively as “coboundary” and
“boundary” operators in the standard literature on graph, e.g. p. 5 of [5]).
Thus, Dϕ yields differences along edges of nodal “potentials” represented by
ϕ, while D∗f yields nodal accumulations from flows along edges ([6] and p. 5
of [5]). Since it can be shown that the column rank of D is N−1, we henceforth
delete the final column,5 corresponding to “ground” node N , and denote the
resulting E× (N −1) matrix by the same symbol D. Accordingly, we dispense
with the Nth component of column operands, reducing them to (N − 1) × 1
arrays.

4 The present treatment does not rely explicitly on the geometric properties of
voids nor on the composite (Schaefer) operators employed in [38] to express
micromorphic compatibility, discussed more generally in [16].

5 Not usually done in the prevalent literature and not made explicit in [21].
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Another important operator D× is given by

D∗D× = 0. and D∗
×D = 0, i.e. D× = ker(D∗), (14)

ker denoting the kernel or null space of a linear transformation. The matrix D×
can be taken as any E×M matrix whose M columns form a basis for the null
space of D∗, where M = dim{ker (D∗)}, but we shall express it in terms of a
normalized cycle basis [4] defined below and denote it as the cross differential
of the graph. The operators D,D∗, D× then bear an obvious resemblance
to grad, div and rot (or curl) of vector calculus, a resemblance made more
compelling below.

With power given by Ẇ = (f, u), we can formulate a virtual work principle
in terms of the above operators as follows (cf. [32]). Designating column χ
as compatible if it can be written as a nodal difference χ = Dϕ and as a
conserved flow if it satisfies D∗χ = 0, we obtain the associated conservation-
compatibility duality [6, 32]

Ẇ = (f,D ϕ) = (D∗f, ϕ) = 0 ∀ϕ, iff D∗f = 0 (15)

and

Ẇ = (D×ψ, u) = (ψ,D∗
×u) = 0 ∀ψ, iff D∗

×u = 0, (16)

i.e., compatibility implies conservation and vice versa.
Similar relations apply to arrays of space vector and tensors x = [xi]∗ and

A = [Aij ], with scalar product and adjoint

(A y, z) := (A y)∗ · z = (y,A∗z), with A∗ij = ATji. (17)

Thus, for the Satake graph G, the substitutions f → f , and u → u in (15)–(16)
yields the quasi-static equilibrium of forces and the compatibility of relative
velocities (or displacements) [31, 38]

D∗f = 0, and D∗
×u = 0. (18)

The second relation of course is satisfied identically by the substitution ϕ → v
in (15)–(16), where v = ẋ denotes (nodal) velocities (or infinitesimal dis-
placements) of grain centroids x = [xi]∗, connected by branch or edge vectors
l = [li]∗ = Dx. The first is satisfied by the substitution in (15)–(16) of a vector
array for a scalar array ψ → ψ, providing a discrete analog of the Helmholtz
representation of solenoidal vector fields.

The rank of D∗ equals N − 1 the number of independent scalar balances
in the last member of (15) or vector balances in the first member of (18),
and the rank of D∗

× equals M = E − N + 1, which follows from the cele-
brated Descartes–Euler polyhedral formula and also from the later analysis
of Kirchhoff [7,29] for electrical networks. The latter contains the notion of a
cycle basis for conserved flows, which provides a particularly attractive null-
space basis for D∗, namely the normalized irreducible cycle basis or mesh for
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Fig. 2. Meshes for a 3d simplicial complex

the associated graph G. This consists of the maximal linearly independent set
of cyclic currents f = [f1, . . . , fM ]∗ having as their only non-zero components
fk, such that |fk| = 1 on branches k forming irreducible (or “elementary” [4])
cycles or “meshes”, i.e. cycles that contain no other cycles, on G, as illus-
trated in Fig. 2 for the polyhedral graph defined by a 3d simplicial complex
(i.e. face-connected cluster).

We then take D× to be the E × M matrix (transpose of that denoted by
L in [38])

Dij
× =

⎧⎨⎩+1, if edge i is coincident and confluent with cycle j,
−1, if edge i is coincident and not confluent with cycle j,

0, otherwise.
(19)

This imparts the status of difference operator and allows for a symmetric
duality in the case of planar graphs, as discussed next.

A Note on Duality

The notion of duality is ubiquitous and varied in the literature on graphs
and geometry [4, 12], and the following paragraphs represent an attempt to
distinguish some special cases particularly relevant to the subject at hand.

In the case of the planar graph G, e.g. associated with planar electrical
networks or idealized 2d granular media [31], one can identify a dual graph G′

with node–mesh (vertex–face) duality defined by

M ′ = N − 1, N ′ = M + 1, E′ = E (20)

and illustrated by enumerated edges (e), nodes (n) and meshes (m) for the
portion of a graph shown in Fig. 3. (The graph on the right is obtained from
that on the left by letting the nodes n expand, the meshes m shrink, and the
edges e rotate, and vice versa.)

Figure 4 illustrates the further grad–rot, force–flow and potential–stream
function duality for compatible forces u and conserved flows f

D′ = D×, D′
× = D, u′ = f, f ′ = u, ϕ′ = ψ, ψ′ = ϕ, (21)

with
u = D ϕ, and f = D× ψ (22)
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This highly symmetric duality does not carry over to non-planar graphs such
as those associated with 3d polyhedra and simplicial complexes, because edges
generally are contiguous with more than two faces (or cycles). A duality that
preserves edges corresponds to a hypergraph structure [4], with “hyper-edges”
connecting more than two nodes. However, another form of duality is possible.

According to a (Schäfli–Poincaré) formula for d-dimensional polytopes
(generalized polyhedra) [12, 48], we have

d−1∑
m=0

(−1)mNm = Id, (23)

where Nk denotes the number of constituent elements of dimension k (k = 0
for vertices or nodes, k = 1 for “edges” connecting vertices, k ∈ [2, d] for
hyperfaces), and Id is a topological invariant depending on the connectivity
of the underlying manifold.6 For simply connected manifolds Id = 1 − (−1)d,
giving

N0 − N1 + N2 = 2, N0 − N1 + N2 − N3 = 0, (24)

6 The actual value of Id is less important for the present purposes than the fact
that ∆Id = 0 for any addition or deletion of nodes, edges, etc., that preserves
connectivity in an existing simplicial complex.
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for d = 3, 4, respectively. The first relation in (24) is the Descartes–Euler
polyhedral formula (with N0 = N,N1 = E,N2 = M), the planar graph repre-
senting a 3d polyhedral surface, with dual given by (20). With our 3d simplicial
complex and its graph being regarded as the an appropriate projection of the
4d polytope, the second relation in (24) yields a simplex–vertex/edge–face
duality

N ′
0 = N3, N ′

1 = N2, N ′
2 = N1, N ′

3 = N0, (25)

In the case of granular media composed of convex grains, this is tantamount
to the oft-invoked duality [1] between the Voronoi polyhedron centered on
a grain and the polyhedral complex of Delaunay simplices having the same
center as common vertex. The Voronoi construct can be employed [1] to assign
the vectorial area a discussed below to each branch l, which corresponds to
the subtended area in [2].

2.3 Extrinsic Power

As shown above, grain rotation makes no direct contribution to quasi-static
work in the absence of body couples and intergranular contact couples. Under
these circumstances, the quasi-static power (or incremental work) of contact
forces for a granular assembly is given by

Ẇ = (f ,u) := f∗ ·u =
E∑

k=1

fk ·uk. (26)

The condition Ẇ = 0, analogous to Tellegen’s theorem [40] for electrical
circuits, requires external forcing of some subset of particles.7 Otherwise, it
represents the virtual-work principle of (15)–(16).

To pass from contact network (weighted graph) to continuous manifold, we
provisionally associate branches l = D x with the tangent space, and vectors
d = [dk]∗, dk = ak/V k, with the cotangent space. As explained below in the
Appendix, ak denotes a vectorial area and V k = lk ·ak a volume associated
with simplicial edge complex (cluster of contiguous Delaunay simplices with
common edge lk). Thus,

x ⇒ x, l = D x ⇒ dx, (27)

hence
D ϕ = (D x,D ϕ) ⇒ dϕ(x) = dx·∇ϕ, (28)

where
D := [diDij ] ⇒ ∇ (29)

7 The substitution Ẇ ,v,u, f → V,x, l,a in (26), a denoting a vectorial area
discussed below, yields a geometric formula relevant to granular compaction
and dilatancy. By choosing l,a as primary variables in the maximum-entropy
estimates discussed in [20], one obtains formulae similar to those proposed in
[8,28].
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The latter is a special case of a higher-order gradient

D(n) := [dinDij ] ⇒ ∇n, with din := (di)n, n = 1, 2, · · · , (30)

subject to improvement through the replacement of Dij by a more general
(finite-difference) approximation D(n)ij , say, based on a connected set of
branches. As it stands, (30) is adequate for a continuum interpretation of
the results to follow.

3 Energy-Based Homogenization

In the following, we let 〈χ〉c, 〈χ〉φ denote, respectively, the number averages
of the components χk of array χ = [χk]∗ over branches or edges k ∈ [1, E] and
volume averages over the associated edge complexes, such that

〈χ〉c :=
1
E

∑
k

χk, 〈χ〉φ :=
1
V

∑
k

V kχk, and 〈χ〉φ = nc〈V χ〉c, (31)

where nc = E/V denotes branch (or total contact) density and V χ = [V kχk]∗.
Then, Ẇ in (26) may be assumed to arise from boundary forces that

provide the stress power

ẇ =
Ẇ

V
= 〈T :L〉φ =

1
V

E∑
k=1

V kTk :Lk, (32)

the analog of (3), where the tensor products [1, 20]

Tk =
1

V k
fk ⊗ lk, Lk =

1
V k

uk ⊗ ak, with V k = lk ·ak, (33)

represent contributions of branches to the global averages 〈Tc〉, 〈L〉c and,
hence, to 〈Tφ〉, 〈L〉φ As is the case with other heterogeneous media. ẇ in
(32) generally is not given by 〈T〉φ :〈L〉φ, owing to macroscopic gradients and
random microscopic fluctuations.

In keeping with the continuum form (1), and following previous works, we
assume that fk,uk are known, e.g. given by a micromechanical theory or a
numerical simulation, and we fit the known data for uk with

uk = ũk+uk′, with ũk = L̃lk+L̃2: lk2+ . . . +L̃m: lkm, (34)

where lkj = (lk)j . The polynomial in lk is attributed to macroscopic gradients
and uk′ to random fluctuations.

To specify the parameters L̃n in (34) for some subset of m branch
vectors lk, several authors advocate strict polynomial fits, with a maximal
value of m, or else some other “best” fit of (34) to continuum kinemat-
ics [27, 33, 42]. Given the well-known pathology (“overfitting”) of polynomial
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fits of random data, and in view of the paramount importance of energy, we
take the position that a “best” fit should rather be based on minimization
of an appropriate norm of stress-power fluctuations plus some norm of the
variation implied by (34), in the spirit of the so-called “generalized additive
models” (GAM) [49].

As a prototypical linear method, consider

σ2 = (u′,Gu′) + Q, ∂σ2/∂L̃n = 0, n = 1, 2, . . . ,m, (35)

where the Q denotes a quadratic form in the L̃n. This leads to a set of linear
equations for L̃n, with corresponding estimate for stress power

˜̇w = T̃ : L̃ + T̃2:L̃2 + . . . + T̃m:L̃m, (36)

where, as the analog of (4) and in a form proposed elsewhere [19], the moment
stresses are given by the average moments (multipoles)

T̃n = nc〈f ⊗ ln〉c =
1
V

m∑
k=1

fk ⊗ lkn, n ∈ [1,m], (37)

irrespective of the resulting solution for L̃n.
Although not explored in detail here, one plausible form for G in (35) is

G = diag[1− f̂k ⊗ f̂k], where f̂ = f/|f | . (38)

This penalizes fluctuations u′ that do no work, representing a loose analogy
to thermal fluctuations in molecular systems. One obtains a dual for (34)–(37)
by taking Q to be a quadratic form in T̃n, followed by the interchanges

uk ↔ fk/V k, n!L̃n ↔ T̃n, lk ↔ dk := ak/V k, (39)

where dkn: lkn = 1, so that

f̃k = V k(T̃dk+T̃2: dk2+. . .+T̃m: dkm), (40)

which corresponds to the so-called “static hypothesis” for contact forces of
[10]. The resulting (dual) estimate for L̃n is

L̃n = 〈Ln〉 =
1
n!

m∑
k=1

uk ⊗ dkn, n ∈ [1,m] (41)

with
Ln =

1
n!

[uk ⊗ dkn] =
1
n!

D(n) ⊗ v, (42)

where D(n) is the matrix defined in (30). The first term in (41) is equiva-
lent to the volume averages couched elsewhere [1, 2] in terms of infinitesimal
displacement gradients.
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Note that, depending on the form of Q, the estimates obtained for the
moment stresses T̃n in (40) would not necessarily agree with those of (37).
Similarly, the velocity gradients in (35) are not necessarily the same as those
given in (41).

More generally, on replacing Q in (35) by a quadratic form in both
L̃k, T̃k, and employing similar polynomial representations of ũk, f̃k in terms
of lk,dk, respectively, we obtain a more general, simultaneous (GAM) esti-
mate of stresses and gradients. Bilinearity of Q in L̃k, T̃k might allow for an
interpretation in terms of energy.8

Again, the results for T̃n, L̃n would not necessarily agree with those
obtained above, and it should be amply clear that the definitions of moment
stresses and kinematic gradients depend both on the nature of the objective
function Q and the inhomogeneity in contact forces and branch vectors.

3.1 Intrinsic Moments and Continuum Fields

The preceding discussion deals with extrinsic quantities defined by the motion
of grain centroids under the action of intergranular contact forces. The treat-
ment of localized contact mechanics (as in the Hertzian elastic contact), as
well as the treatment of intrinsic quantities such as global particle deformation
would require a consideration of the internal mechanics of individual grains,
which one usually assumes to consist of a simple continuum endowed with
appropriate constitutive equations, elastic, viscoelastic, elastoplastic, etc.

The detailed treatment of micromechanics is beyond the scope of the
present article, which is rather concerned with general aspects and conse-
quences. We merely note that the effective particle stress Tp for a particle p is
given by (7), Higher moment stresses are given by a reinterpretation of (37) in
which branch vectors l are replaced by moment arms r. In a similar way, (35)
gives a similar but less exact estimate of velocity gradients, by interpreting
u as relative velocity between contact point k and particle centroid, and by
basing dk on an effective contact area. The latter description of particle kine-
matics represents a type of finite-element approximation, whereas an exact
treatment of the micromechanics would generally involve solving field equa-
tions for the particle interior, subject to localized tractions on the particle
surface, followed by appropriate averaging of solutions over particle volume.

At any rate, it is clear that the localized surface stresses provide a coupling
of the intrinsic modes to the extrinsic modes represented by motion of particle
centroids. This paramount aspect of granular mechanics may be obscured by
the usual micromechanical analysis, where particle rotation, a property of
finite grains, is placed ab initio on the same footing as the motion of particle
centroids.

8 The preceding paragraph corrects several errors in the corresponding paragraph
of [21].
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With an appropriate replacement of (34) and (35)–(41), one obtains
higher-order micromorphic effects, represented by Tp

n, Lp
n, n > 1. The

ever-increasing dependence on particle length scales is thereby manifest. In
a similar vein, we expect that higher-order contact moments will exhibit a
similar dependence on the dimension of contact zones.

Given the above estimates of continuum-level moments, the following for-
mula is suggested by, but not rigorously derived from the above-cited works
of Eringen and coworkers:

X = νcXc + νpXp + Xs, (43)

where X = 〈Tn〉 or 〈Ln〉, n = 1, 2 . . . , represent volume (or surface) averages,
with 〈Xn〉i = O(1) for νi → 0. The superscript c refers to a continuum-
level contribution arising from the relative motion of particle centroids; p to
a contribution arising from the internal structure of particles, regarded as
pieces of a continuous medium; and s to a contribution arising from singular
surfaces. νp denotes particle volume fraction and νc void fraction, given by
1 − νp in the usual granular medium.

Typical singular surfaces involve interfacial slip, such as cracks, or other
kinematic discontinuities, or interfacial tension and other (multipolar) stress
jumps [16]. The relation (43) appears to cover various limiting case, e.g.
νp → 0, 1, and Mindlin’s special case Xc → Xp [35], often used for multipolar
elasticity.

Although the moment stress power is generally not given by 〈Ti
n〉i :〈Ln〉i,

one may readily obtain the following generalization of a well-known result for
m = 1 from (5): For a graded material of grade m, with Li

k = (∇kw)T /k! for
k ∈ [1,m], the stress power ẇm is given by

1. 〈Tm〉 : Lm for velocity fields w which have boundary values given by a
polynomial of maximal degree m, with L

i

m =(∇mw)T /m!, a constant over
∂V , and by

2. Tm : 〈Lm〉 for moment-stress fields whose surface (moment) tractions
satisfy Tkn = δkmTkn, with Tm constant over ∂V .

Since this result applies to any finite cluster of particles, subject to inho-
mogeneous conditions of displacement or effective stress on the periphery, one
concludes that volume averages do not provide a proper definition of contin-
uum fields in highly inhomogeneous assemblies. This casts considerable doubt
on the use of (7) and, hence, of (9) to define Cauchy stress, the latter of which
goes back, in the field of granular mechanics at least to Weber [3, 47] and,
in theoretical elasticity, to Cauchy [9] (cf. note B in the appendix of [34],
discussed in [18] and also in [26]). The breakdown of (7) is suggested by
the mean-field theory of Jenkins [26] for elastic-sphere assemblies, the the-
ory of Bardet and Vardoulakis [3] for small granular assemblies, and also
by more recent calculations [13]. It is worth noting that the theory of [26]
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involves gradients in contact force reminiscent of (40) above, whereas the
other results [3, 13] depend on boundary effects in small samples.

4 Conclusions

A synthesis has been presented of graph-theoretic methods and energy-based
homogenization to derive continuum models of discrete granular media. As
anticipated by several previous workers, it is concluded that the multipolar
continuum, either graded or micromorphic, represents a plausible model for
the typical granular medium.

It has been shown that the special case of a graded continuum, including
the simple (grade one) continuum, is defined solely by the extrinsic modes
associated with the motion of grain centroids, in contrast to the micrormor-
phic continuum, which arises from intrinsic modes represented by the internal
mechanics of grains.

Within the subclass of micromorphic continua, the micropolar (Cosserat)
limit is appropriate for nearly rigid grains. However, In the absence of inter-
granular contact moments, it has been demonstrated above that grain rotation
makes no direct contribution to quasi-static contact work, and that the widely
accepted formula based on volume averaging yields a symmetric Cauchy stress.
One therefore concludes that the emergence of Cosserat effects implies the
breakdown of this formula. Otherwise, the existence of moment stress must
be attribute to kinematic gradients, suggesting that the graded continuum
may prove to be more appropriate than the micropolar continuum for the
quasi-static mechanics of rigid granular media.

There remain open questions as to the validity of the multipolar balances
based on [19], the interpretation of Eringen’s micromorphic theory in terms of
volume averages, and the extension to granular dynamics. Incidentally, given
the previous works [16] on micromorphic continua, the latter appears quite
feasible.

As pointed out previously [21], further investigations of shear bands and
of short-wavelength shear waves should provide a plausible testing ground for
multipolar theories.

Appendix: Simplex and Edge-Complex Gradients

The following, an elaboration on the method employed in [19], serves to define
gradients and various geometrical properties associated with simplicial com-
plexes. In a (Euclidean) space of dimension d, we define the simplicial gradient
of a function ϕ = [ϕk]∗, specified on the d + 1 vertices xk of a simplex s,
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by means a linear interpolation ϕ(x) based on barycentric coordinates ξk(x)
[12, 32] (affine functions of x defined below9), with

ϕ(x) =
d+1∑
k=1

ξkϕk,

d+1∑
k=1

ξk = 1, ξk ∈ [0, 1], ξk(xk) = 1, (44)

∇ϕ =
d+1∑
k=1

gkϕk, gk := ∇ξk (const.),
d+1∑
k=1

gk = 0, (45)

so that

∇ϕ =
d+1∑
k=1

gk(ϕk − ϕo), o ∈ [1, d + 1]. (46)

The last member of (45) is merely Green’s theorem for simplex s, since

0 =
∫

V s

∇(1)dV =
∫

∂V s

(1)ds ≡
d+1∑
k=1

sk, with sk = 2V sgk. (47)

The vector sk is normal to facet (i.e. a bounding hyperplane of dimension
d− 1) k, having magnitude |sk| equal to its (d − 1)-volume, and V s is the
d-volume of the simplex. (The formulae presented here follow from a consid-
eration of the linear map that carries a standard d-simplex, i.e. one-half the
unit d-hypercube, into an arbitrary d-simplex.)

Given a basis composed of d edge vectors gk = lk [19], an appropriate set
d of the d + 1 vectors gk provide a reciprocal basis, with gi · gj = δi

j. This is
illustrated by the special case ϕ ≡ x in (44), yielding by (46) a well-known
expression for the unit tensor

1 =
d+1∑
k=1

gk ⊗ gk, with gk = xk − xo, for o, k ∈ [1, d + 1]. (48)

In this representation, xo serves as origin for gk, k ∈ [1, d+1]\o, with gj , j �=k,
lying in the facet normal to gk. This is illustrated for d = 3, o = 4 in Fig. 5.

The further special case ϕ ≡ ξk in (44) yields an explicit formula for
barycentric coordinates

ξk(x) = gk ·(x − xk) + 1, for k ∈ [1, d + 1], (49)

with ξk(xj) = gk ·(xj − xk) + 1 = gk ·(gj − gk) + 1 = δk
j .

With index s enumerating simplices, (46) becomes

∇ϕs =
∑

k

gsk(ϕsk − ϕso) ≡ 1
V s

∑
k

ssk(ϕsk − ϕso),

9 ξk = cos2 θk, θk ∈ [0, π/2], provide part of a branched covering [39] of the
(d + 1)-sphere surface by a d-simplex.
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Fig. 5. Elements of an edge basis and its reciprocal facet basis for a 3d simplex

yielding for the volume-average gradient over an assembly

〈∇ϕ〉 =
1
V

∑
s

V s∇ϕs =
1
V

∑
s

∑
k

ssk(ϕsk − ϕso), (50)

where ranges on summations are understood.
For clarity we restrict the discussion to d ≤ 3 and define a simplicial edge

complex (or edge cluster) σ(e) to be the set of simplices having common edge e,
with e = {ko} in (50). Then, on rearranging summations and recalling the
definition of the matrix differential D = [Den], we may express (50) as

〈∇ϕ〉 =
1
V

E∑
e=1

V e〈∇ϕ〉e, where 〈∇ϕ〉e =
N∑

n=1

deDenϕn, (51)

with
de = ae/V e, ae =

∑
s∈σ(e)

ss ≡ 2
∑

s∈σ(e)

V sge. (52)

The second relation in (51) obviously can be written as [〈∇ϕ〉e]∗ = Dϕ, which
establishes the relation (29).

The volume V e introduced here is arbitrary and could be chosen as the sum
of simplex volumes V s, s ∈ σ(e). However, for purposes of defining volume
averages, it seems more appropriate to employ disjoint volumes, either by
reference to particle-based Voronoi cells [1,2] or related particle-free geometric
constructs.
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In S. Flügge, editor, Encyclopedia of Physics (Handbuch der Physik), volume
III/1. Springer, Berlin, 1960.

45. I. Vardoulakis. Private communication, 2005.
46. I. Vardoulakis and E. C. Aifantis. Gradient dependent dilatancy and its implica-

tions in shear banding and liquefaction. Arch. Appl. Mech. (Ingenieur Archiv),
59(3):197–208, 1989.

47. J. Weber. Recherches concernant le contraintes intergranulaires dans les milieux
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Generalized Kinetic Maxwell Type Models
of Granular Gases

A.V. Bobylev, C. Cercignani, and I.M. Gamba

Summary. In this chapter we consider generalizations of kinetic granular gas
models given by Boltzmann equations of Maxwell type. These type of models for non-
linear elastic or inelastic interactions, have many applications in physics, dynamics
of granular gases, economy, etc. We present the problem and develop its form in the
space of characteristic functions, i.e., Fourier transforms of probability measures,
from a very general point of view, including those with arbitrary polynomial non-
linearities and in any dimension space. We find a whole class of generalized Maxwell
models that satisfy properties that characterize the existence and asymptotic of
dynamically scaled or self-similar solutions, often referred as homogeneous cooling
states. Of particular interest is a concept interpreted as an operator generalization of
usual Lipschitz conditions which allows to describe the behavior of solutions to the
corresponding initial value problem. In particular, we present, in the most general
case, existence of self similar solutions and study, in the sense of probability mea-
sures, the convergence of dynamically scaled solutions associated with the Cauchy
problem to those self-similar solutions, as time goes to infinity. In addition we show
that the properties of these self-similar solutions lead to non classical equilibrium
stable states exhibiting power tails. These results apply to different specific problems
related to the Boltzmann equation (with elastic and inelastic interactions) and show
that all physically relevant properties of solutions follow directly from the general
theory developed in this presentation.

1 Introduction

It has been noticed in recent years that a significant non-trivial physical
phenomena in granular gases can be described mathematically by dissipa-
tive Boltzmann type equations, as can be seen in [17] for a review in the
area. As motivated by this particular phenomena of energy dissipation at the
kinetic level, we consider in this chapter the Boltzmann equation for non-linear
interactions of Maxwell type and some generalizations of such models.
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The classical conservative (elastic) Boltzmann equation with the Maxwell-
type interactions is well-studied in the literature (see [5, 14] and references
therein). Roughly speaking, this is a mathematical model of a rarefied gas
with binary collisions such that the collision frequency is independent of the
velocities of colliding particles, and even though the intermolecular potentials
are not of those corresponding to hard sphere interactions, still these models
provide a very rich inside to the understanding of kinetic evolution of gases.

Recently, Boltzmann equations of Maxwell type were introduced for mod-
els of granular gases were introduced in [7] in three dimensions, and a bit
earlier in [3] for in one dimension case. Soon after that, these models became
very popular among the community studying granular gases (see, for exam-
ple, the book [13] and references therein). There are two obvious reasons
for such studies The first one is that the inelastic Maxwell–Boltzmann equa-
tion can be essentially simplified by the Fourier transform similarly as done
for the elastic case, where its study becomes more transparent [6, 7]. The
second reason is motivated by the special phenomena associated with homo-
geneous cooling behavior, i.e., solutions to the spatially homogeneous inelastic
Maxwell–Boltzmann equation have a non-trivial self-similar asymptotics, and
in addition, the corresponding self-similar solution has a power-like tail for
large velocities. The latter property was conjectured in [16] and later proved
in [9, 11]. This is a rather surprising fact, since the Boltzmann equation for
hard spheres inelastic interactions has been shown to have self similar solu-
tions with all moments bounded and large energy tails decaying exponentially.
The conjecture of self-similar (or homogeneous cooling) states for such model
of Maxwell type interactions was initially based on an exact one-dimensional
solution constructed in [1]. It is remarkable that such an asymptotics is absent
in the elastic case (as the elastic Boltzmann equation has too many conserva-
tion laws). Later, the self-similar asymptotics was proved in the elastic case
for initial data with infinite energy [8] by using another mathematical tools
compared to [9] and [12].

Surprisingly, the recently published exact self-similar solutions [12] for
elastic Maxwell type model for a slow down process, derived as a formal
asymptotic limit of a mixture, also is shown to have power-like tails. This fact
definitely suggests that self-similar asymptotics are related to total energy
dissipation rather than local dissipative interactions. As an illustration to
this fact, we mention some recent publications [2, 15], where one-dimensional
Maxwell-type models were introduced for non-standard applications such as
models in economics and social interactions, where also self-similar asymp-
totics and power-like tail asymptotic states were found.

Thus all the above discussed models describe qualitatively different
processes in physics or even in economics, however their solutions have a
lot in common from mathematical point of view. It is also clear that some
further generalizations are possible: one can, for example, include in the
model multiple (not just binary) interactions still assuming the constant
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(Maxwell-type) rate of interactions. Will the multi-linear models have similar
properties? The answer is yes, as we shall see below.

Thus, it becomes clear that there must be some general mathematical
properties of Maxwell models, which, in turn, can explain properties of any
particular model. That is to say there must be just one main theorem, from
which one can deduce all above discussed facts and their possible generaliza-
tions. Our goal is to consider Maxwell models from very general point of view
and to establish their key properties that lead to the self-similar asymptotics.

All the results presented in this chapter are mathematically rigorous. Their
full proofs can be found in [10].

After this introduction, we introduce in Sect. 2 three specific Maxwell
models of the Boltzmann equation: (A) classical (elastic) Boltzmann equation;
(B) the model (A) in the presence of thermostat; (C) inelastic Boltzmann
equation for Maxwell type interactions. Then, in Sect. 3, we perform the
Fourier transform and introduce an equation that includes all the three mod-
els as particular cases. A further generalization is done in Sect. 4, where the
concept of generalized multi-linear Maxwell model (in the Fourier space) is
introduced. Such models and their generalizations are studied in detail in
Sects. 5 and 6. The most important for our approach concept of L-Lipschitz
nonlinear operator is explained in Sect. 4. It is shown (Theorem 4.2) that all
multi-linear Maxwell models satisfy the L-Lipschitz condition. This property
of the models constitutes a basis for the general theory.

The existence and uniqueness of solutions to the initial value problem is
stated in Sect. 5.1 (Theorem 5.2). Then, in Sect. 5.2, we present and study
the large time asymptotics under very general conditions that are fulfilled, in
particular, for all our models. It is shown that L-Lipschitz condition leads to
self-similar asymptotics, provided the corresponding self-similar solution does
exist. The existence and uniqueness of such self-similar solutions is stated in
Sect. 5.3 (Theorem 5.12). This theorem can be considered, to some extent, as
the main theorem for general Maxwell-type models. Then, in Sect. 5.4, we go
back to multi-linear models of Sect. 4 and study more specific properties of
their self-similar solutions.

We explain in Sect. 6 how to use our theory for applications to any specific
model: it is shown that the results can be expressed in terms of just one func-
tion µ(p), p > 0, that depends on spectral properties of the specific model.
General properties (positivity, power-like tails, etc.) self-similar solutions are
studied in Sect. 6.1 and 6.2. It includes also the case of one-dimensional mod-
els, where the Laplace (instead of Fourier) transform is used. In Sect. 6.3, we
formulate, in the unified statement (Theorem 11.1), the main properties of
Maxwell models (A), (B) and (C) of the Boltzmann equation. This result is,
in particular, an essential improvement of earlier results of [7] for the model
(A) and quite new for the model (B).

Applications to one-dimensional models are also briefly discussed at the
end of Sect. 6.3.
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2 Maxwell Models of the Boltzmann Equation

We consider a spatially homogeneous rarefied d-dimensional gas (d = 2, 3, . . .)
of particles having a unit mass. Let f(v, t), where v ∈ R

d and t ∈ R+ denote
respectively the velocity and time variables, be a one-particle distribution
function with usual normalization∫

Rd

dv f(v, t) = 1. (1)

Then f(v, t) has an obvious meaning of a time-dependent probability density
in R

d. We assume that the collision frequency is independent of the veloc-
ities of the colliding particles (Maxwell-type interactions). We discuss three
different physical models (A), (B) and (C).

(A) Classical Maxwell gas (elastic collisions). In this case f(v, t)
satisfies the usual Boltzmann equation

ft = Q(f, f) =
∫

Rd×Sd−1
dw dω g(

u · ω
|u| )[f(v′)f(w′) − f(v)f(w)], (2)

where the exchange of velocities after a collision are given by

v′ =
1
2
(v + w + |u|ω), and w′ =

1
2
(v + w − |u|ω),

where u = v−w is the relative velocity and Ω ∈ Sd−1. For the sake of brevity
we shall consider below the model non-negative collision kernels g(s) such that
g(s) is integrable on [−1, 1]. The argument t of f(v, t) and similar functions
is often omitted below (as in (2)).

(B) Elastic model with a thermostat. This case corresponds to model
(A) in the presence of a thermostat that consists of Maxwell particles with
mass m > 0 having the Maxwellian distribution

M(v) = (
2πT

m
)−d/2 exp(−m|v|2

2T
) (3)

with a constant temperature T > 0. Then the evolution equation for f(x, t)
becomes

ft = Q(f, f) + θ

∫
dw dω g(

u · ω
|u| )[f(v′)M(w′) − f(v)M(w)], (4)

where θ > 0 is a coupling constant, and the exchange of velocities is now

v′ =
v + m(w + |u|ω)

1 + m
, and w′ =

v + mw − |u|ω
1 + m

,

with u = v − w the relative velocity, and ω ∈ Sd−1.
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Equation (4) was derived in [12] as a certain limiting case of a binary
mixture of weakly interacting Maxwell gases.

(C) Maxwell model for inelastic particles. We consider this model
in the form given in [9]. Then the inelastic Boltzmann equation in the weak
form reads

∂

∂t
(f, ψ) =

∫
Rd×Rd×Sd−1

dv dw dω f(v)f(w)
|u · ω|
|u| [ψ(v′) − ψ(v)], (5)

where ψ(v) is a bounded and continuous test function,

(f, ψ) =
∫

Rd

dv f(v, t)ψ(v), u = v −w, ω ∈ Sd−1, v′ = v − 1 + e

2
(u · ω)ω, (6)

the constant parameter 0 < e ≤ 1 denotes the restitution coefficient. Note
that the model (C) with e = 1 is equivalent to the model (A) with some
kernel g(s).

All three models can be simplified (in the mathematical sense) by taking
the Fourier transform.

We denote
f̂(k, t) = F [f ] = (f, e−ik·v), k ∈ R

d, (7)

and obtain (by using the same trick as in [6] for the model (A)) for all three
models the following equations:

(A) f̂t = Q̂(f̂ , f̂) =
∫

Sd−1
dω g(

k · ω
|k| )[f̂(k+)f̂(k−) − f̂(k)f̂(0)],

(8)
where k± = 1

2 (k ± |k|ω), ω ∈ Sd−1, f̂(0) = 1.

(B) f̂t = Q̂(f̂ , f̂) + θ

∫
Sd−1

dω g(
k · ω
|k| )[f̂(k+)M̂(k−) − f̂(k)M̂(0)],

(9)

where M̂(k) = e−
T |k|2
2m , k+ = k+m|k|ω

1+m , k− = k − k+, ω ∈ Sd−1, f̂(0) = 1.

(C) f̂t =
∫

Sd−1
dω

|k · ω|
|k| [f̂(k+)f̂(k−) − f̂(k)f̂(0)], (10)

where f̂(0) = 1, k+ = 1+e
2 (k ·ω)ω, k− = k−k+, with ω ∈ Sd−1 is the direction

containing the two centers of the particles at the time of the interaction.
Equivalently, one may alternative write k− = 1+e

4 (k−|k|nω̃), and k+ = k−k−,
where now ω̃ ∈ Sd−1 is the direction of the post collisional relative velocity,
and the term |k·ω|

|k| dw is replaced by a function g(k·ω̃
|k| )dω̃.

Case (B) can be simplified by the substitution

f̂(k, t) = ˜̂
f(k, t) exp[−T |k|2

2
], (11)
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leading, omitting tildes, to the equation

(B′) f̂t = Q̂(f̂ , f̂) + θ

∫
Sd−1
dω g(

k · ω
|k| )[f̂(

k + m|k|ω
1 + m

) − f̂(k)], (12)

i.e., the model for (B) with T = 0, or equivalently a linear collisional term the
background singular distribution. Therefore, we shall consider below just the
case (B′), assuming nevertheless that f̂(k, t) in (12) is the Fourier transform
(7) of a probability density f(v, t).

3 Isotropic Maxwell Model in the Fourier
Representation

We shall see that these three models (A), (B) and (C) admit a class of isotropic
solutions with distribution functions f = f(|v|, t). Indeed, according to (7)
we look for solutions f̂ = f̂(|k|, t) to the corresponding isotropic Fourier
transformed problem, given by

x = |k|2, ϕ(x, t) = f̂(|k|, t) = F [f(|v|, t)], (13)

where ϕ(x, t) solves the following initial value problem

ϕt =
∫ 1

0

dsG(s) {ϕ[a(s)x]ϕ[b(s)x] − ϕ(x)}+

+
∫ 1

0

dsH(s) {ϕ[c(s)x] − ϕ(x)} ,

ϕt=0 = ϕ0(x), ϕ(0, t) = 1,

(14)

where a(s), b(s), c(s) are non-negative continuous functions on [0, 1], whereas
G(s) and H(s) are generalized non-negative functions such that∫ 1

0

dsG(s) < ∞,

∫ 1

0

dsH(s) < ∞. (15)

Thus, we do not exclude such functions as G = δ(s − s0), 0 < s0 < 1, etc.
We shall see below that, for isotropic solutions (13), each of the three
equations (8), (10), (12) is a particular case of (14).

Let us first consider (8) with f̂(k, t) = ϕ(x, t) in the notation (13). In that
case

|k±|2 = |k|2 1 ± (ω0 · ω)
2

, ω0 =
k

|k| ∈ Sd−1, d = 2, . . . ,

and the integral in (8) reads∫
Sd−1

dω g(ω0 · ω)ϕ
[
x

1 + ω0 · ω
2

]
ϕ

[
x

1 − ω0 · ω
2

]
. (16)
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It is easy to verify the identity∫
Sd−1

dω F (ω · ω0) = |Sd−2|
∫ 1

−1

dz F (z)(1 − z2)
d−3
2 , (17)

where |Sd−2| denotes the “area” of the unit sphere in R
d−1 for d ≥ 3 and

|S0| = 2. The identity (17) holds for any function F (z) provided the integral
as defined in the right-hand side of (17) exists.

The integral (16) now reads

|Sd−2|
∫ 1

−1

dz g(z)(1 − z2)
d−3
2 ϕ(x

1 + z

2
)ϕ(x

1 − z

2
) =

=
∫ 1

0

dsG(s)ϕ(sx)ϕ[(1 − s)x],

where

G(s) = 2d−2|Sd−2|g(1 − 2s)[s(1 − s)]
d−3
2 , d = 2, 3, . . . . (18)

Hence, in this case we obtain (14), where

(A) a(s) = s, b(s) = 1−s, H(s) = 0,
(19)

G(s) is given in (18).
Two other models (B′) and (C), described by (12), (10) respectively, can

be considered quite similarly. In both cases we obtain (14), where

(B′) a(s) = s, b(s) = 1 − s, c(s) = 1 − 4m
(1 + m)2

s,

H(s) = θG(s),
(20)

G(s) is given in (18):

(C) a(s) =
(1 + e)2

4
s, b(s) = 1 − (1 + e)(3 − e)

4
s,

H(s) = 0, G(s) = |Sd−2|(1 − s)
d−3
2 .

(21)

Hence, all three models are described by (14) where 0 < a(s), b(s), c(s) ≤ 1
are non-negative linear functions. One can also find in recent publications
some other useful equations that can be reduced after Fourier or Laplace
transformations to (14) (see, for example, [2, 15] that correspond to the case
G = δ(s − s0), H = 0).

Equation (14) with H(s) = 0 first appeared in its general form in [9] in
connection with models (A) and (C). The consideration of the problem of
self-similar asymptotics for (14) in that paper made it quite clear that the
most important properties of “physical” solutions depend very weakly on the
specific functions G(s), a(s) and b(s).
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4 Models with Multiple Interactions

We present now a general framework to study solutions to the type of problems
introduced in the previous section.

We assume, without loss of generality, (scaling transformations t̃ = αt,
α = const.) that ∫ 1

0

ds [G(s) + H(s)] = 1 (22)

in (14). Then (14) can be considered as a particular case of the following
equation for a function u(x, t)

ut + u = Γ (u), x ≥ 0, t ≥ 0, (23)

where

Γ (u) =
N∑

n=1

αnΓ (n)(u),
N∑

n=1

αn = 1, αn ≥ 0,

Γ (n)(u) =
∫ ∞

0

da1 . . .

∫ ∞

0

dan An(a1, . . . , an)
n∏

k=1

u(akx), n = 1, . . . , N.

(24)

We assume that

An(a) = An(a1, . . . , an) ≥ 0,
∫ ∞

0

da1 . . .

∫ ∞

0

dan A(a1, . . . , an) = 1,

(25)
where An(a) = An(a1, . . . , an) is a generalized density of a probability mea-
sure in R

n
+ for any n = 1, . . . , N . We also assume that all An(a) have a

compact support, i.e.,

An(a1, . . . , an) ≡ 0 if
n∑

k=1

a2
k > R2, n = 1, . . . , N, (26)

for sufficiently large 0 < R < ∞.
Equation (14) is a particular case of (23) with

N = 2, α1 =
∫ 1

0

dsH(s), α2 =
∫ 1

0

dsG(s)

A1(a1) =
1
α1

∫ 1

0

dsH(s)δ[a1 − c(s)]

A2(a1, a2) =
1
α2

∫ 1

0

dsG(s)δ[a1 − a(s)]δ[a2 − b(s)].

(27)

It is clear that (23) can be considered as a generalized Fourier transformed
isotropic Maxwell model with multiple interactions provided u(0, t) = 1, the
case N = ∞ in (24) can be treated in the same way.
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4.1 Statement of the General Problem

The general problem we consider below can be formulated in the following
way. We study the initial value problem

ut + u = Γ (u), u|t=0 = u0(x), x ≥ 0, t ≥ 0, (28)

in the Banach space B = C(R+) of continuous functions u(x) with the norm

‖u‖ = sup
x≥0

|u(x)|. (29)

It is usually assumed that ‖u0‖ ≤ 1 and that the operator Γ is given by
(24). On the other hand, there are just a few properties of Γ (u) that are essen-
tial for existence, uniqueness and large time asymptotics of the solution u(x, t)
of the problem (28). Therefore, in many cases the results can be applied to
more general classes of operators Γ in (28) and more general functional space,
for example B = C(Rd) (anisotropic models). That is why we study below the
class (24) of operators Γ as the most important example, but simultaneously
indicate which properties of Γ are relevant in each case. In particular, most
of the results of Sects. 4–6 do not use a specific form (24) of Γ and, in fact,
are valid for a more general class of operators.

Following this way of study, we first consider the problem (28) with Γ
given by (24) and point out the most important properties of Γ .

We simplify notations and omit in most of the cases below the argument x
of the function u(x, t). The notation u(t) (instead of u(x, t)) means then the
function of the real variable t ≥ 0 with values in the space B = C(R+).

Remark 1. We shall omit below the argument x ∈ R+ of functions u(x), v(x),
etc., in all cases when this does not cause a misunderstanding. In particular,
inequalities of the kind |u| ≤ |v| should be understood as a point-wise control
in absolute value, i.e., “|u(x)| ≤ |v(x)| for any x ≥ 0” and so on.

We first start by giving the following general definition for operators acting
on a unit ball of a Banach space B denoted by

U = {u ∈ B : ‖u‖ ≤ 1} (30)

Definition 1. The operator Γ = Γ (u) is called an L-Lipschitz operator if
there exists a linear bounded operator L : B → B such that the inequality

|Γ (u1) − Γ (u2)| ≤ L(|u1 − u2|) (31)

holds for any pair of functions u1,2 in U .
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Remark 2. Note that the L-Lipschitz condition (31) holds, by definition, at
any point x ∈ R+ (or x ∈ R

d if B = C(Rd)). Thus, condition (31) is much
stronger than the classical Lipschitz condition

‖Γ (u1) − Γ (u2)‖ < C‖u1 − u2‖ if u1,2 ∈ U (32)

which obviously follows from (31) with the constant C = ‖L‖B, the norm of
the operator L in the space of bounded operators acting in B. In other words,
the terminology “L-Lipschitz condition” means the point-wise Lipschitz con-
dition with respect to an specific linear operator L.

We assume, without loss of generality, that the kernels An(a1, . . . , an)
in (24) are symmetric with respect to any permutation of the arguments
(a1, . . . , an), n = 2, 3, . . . , N .

The next lemma states that the operator Γ (u) defined in (24), which
satisfies Γ (1) = 1 (mass conservation) and maps U into itself, satisfies an
L-Lipschitz condition, where the linear operator L is the one given by the
linearization of Γ near the unity. See [10] for its proof.

Theorem 1. The operator Γ (u) defined in (24) maps U into itself and
satisfies the L-Lipschitz condition (31), where the linear operator L is given by

Lu =
∫ ∞

0

daK(a)u(ax), (33)

with

K(a) =
N∑

n=1

nαnKn(a),

where Kn(a) =
∫ ∞

0

da2 . . .

∫ ∞

0

dan An(a, a2, . . . , an) and
N∑

n=1

αn = 1.

(34)

for symmetric kernels An(a, a2, . . . , an), n = 2, . . .N .

And the following corollary holds.

Corollary 1. The Lipschitz condition (32) is fulfilled for Γ (u) given in (24)
with the constant

C = ‖L‖ =
N∑

n=1

nαn,

∞∑
n=1

αn = 1, (35)

where ‖L‖ is the norm of L in B.

It can also be shown that the L-Lipschitz condition holds in B = C(Rd)
for “gain-operators” in Fourier transformed Boltzmann equations (8), (9)
and (10).
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5 The General Problem in Fourier Representation

5.1 Existence and Uniqueness of Solutions

It is possible to show, with minimal requirements, the existence and unique-
ness results associated with the initial value problem (28) in the Banach space
(B, ‖ · ‖), where the norm associated to B is defined in (29). In fact, this exis-
tence and uniqueness result is an application of the classical Picard iteration
scheme and holds for any operator Γ which satisfies the usual Lipschitz condi-
tion (32) and transforms the unit ball U into itself. The proof of all statements
below can be found in [10].

Lemma 1 (Picard Iteration scheme). The operator Γ (u) maps U into
itself and satisfies the L-Lipschitz condition (32), then the initial value prob-
lem (28) with arbitrary u0 ∈ U has a unique solution u(t) such that u(t) ∈ U
for any t ≥ 0.

Next, we observe that the L-Lipschitz condition yields an estimate for the
difference of any two solutions of the problems in terms of their initial states.
This is a key fact in the development of the further studies of the self similar
asymptotics.

Theorem 2. Consider the Cauchy problem (28) with ‖u0‖ ≤ 1 and assume
that the operator Γ : B → B

(a) Maps the closed unit ball U ⊂ B to itself, and
(b) Satisfies a L-Lipschitz condition (31) for some positive bounded linear

operator L : B → B.

Then

(i) There exists a unique solution u(t) of the problem (28) such that ‖u(t)‖ ≤ 1
for any t ≥ 0;

(ii) Any two solutions u(t) and w(t) of problem (28) with initial data in the
unit ball U satisfy the inequality

|u(t) − w(t)| ≤ exp{t(L − 1)}(|u0 − w0|). (36)

Note that under the same conditions as in Theorem 1 the operator Γ given
in (24) satisfies necessary conditions for the Theorem 2.

We remind to the reader that the initial value problem (28) appeared as
a generalization of the initial value problem (14) for a characteristic function
ϕ(x, t), i.e., for the Fourier transform of a probability measure (see (13), (1)).
It is important therefore to show that the solution u(x, t) of the problem (28)
is a characteristic function for any t > 0 provided this is so for t = 0, which
is addressed in the following statement.
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Lemma 2. Let U ′ ⊂ U ⊂ B be any closed convex subset of the unit ball U
(i.e., u = (1− θ)u1 + θu2 ∈ U ′ for any u1,2 ∈ U ′ and θ ∈ [0, 1]). If u0 ∈ U ′ in
(28) and U is replaced by U ′ in the condition (1) of Theorem 2, the theorem
holds and u(t) ∈ U ′ for any t ≥ 0.

Remark 3. It is well-known (see, for example, the textbook [18]) that the
set U ′ ⊂ U of Fourier transforms of probability measures in R

d (Laplace
transforms in the case of R+) is convex and closed with respect to uniform
convergence. On the other hand, it is easy to verify that the inclusion Γ (U ′) ⊂
U ′, where Γ is given in (24), holds in both cases of Fourier and Laplace
transforms. Hence, all results obtained for (23), (24) can be interpreted in
terms of “physical” (positive and satisfying the condition (1)) solutions of
corresponding Boltzmann-like equations with multi-linear structure of any
order.

We also point out that all results of this section remain valid for operators
Γ satisfying conditions (24), with a more general condition such as

N∑
n=1

αn ≤ 1, αn ≥ 0, (37)

so that Γ (1) < 1 and so the mass may not be conserved. The only difference
in this case is that the operator L satisfying conditions (33), (34) is not a
linearization of Γ (u) near the unity, but nevertheless Theorem 1 remains true.
The inequality (37) is typical for Fourier (Laplace) transformed Smoluchowski-
type equations where the total number of particles is decreasing in time (see
[21, 22] for related work).

In the next three sections we study in more detail the solutions to the initial
value problem (28)–(29) constructed in Theorem 2 and, in particular, their
long time behavior, existence, uniqueness, and properties of the self-similar
solutions.

5.2 Large Time Asymptotics

The long time asymptotics results are a consequence of some very general
properties of operators Γ , namely, that Γ maps the unit ball U of the Banach
space B = C(R+) into itself, Γ is an L-Lipschitz operator (i.e., satisfies (31))
and that Γ is invariant under dilations.

These three properties are sufficient to study self-similar solutions and
large time asymptotic behavior for the solution to the Cauchy problem (28)
in the unit ball U of the Banach space C(R+).
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Main properties of the operator Γ :

(a) Γ maps the unit ball U of the Banach space B = C(R+) into itself, that is

‖Γ (u)‖ ≤ 1 for any u ∈ C(R+) such that ‖u‖ ≤ 1. (38)

(b) Γ is an L-Lipschitz operator (i.e., satisfies (31)) with L from (33), i.e.,

|Γ (u1)−Γ (u2)|(x) ≤ L(|u1−u2|)(x) =
∫ ∞

0

daK(a)|u1(ax)−u2(ax)|,
(39)

for K(a) ≥ 0, for all x ≥ 0 and for any two functions u1,2 ∈ C(R+) such
that ‖u1,2‖ ≤ 1.

(c) Γ is invariant under dilations:

eτDΓ (u) = Γ (eτDu), D = x
∂

∂x
, eτDu(x) = u(xeτ ), τ ∈ R. (40)

No specific information about Γ beyond these three conditions will be used
in this section.

It was already shown in Theorem 2 that the conditions (a) and (b) guar-
antee existence and uniqueness of the solution u(x, t) to the initial value
problem (28)–(29). The property (b) yields the estimate (36) that is very
important for large time asymptotics, as we shall see below. The property (c)
suggests a special class of self-similar solutions to (28).

We recall the usual meaning of the notation y = O(xp) (often used below):
y = O(xp) if and only if there exists a positive constant C such that

|y(x)| ≤ Cxp for any x ≥ 0. (41)

In order to study long time stability properties to solutions whose initial
data differs in terms of O(xp), we will need some spectral properties of the
linear operator L.

Definition 2. Let L be the positive linear operator given in (33), (34), then

Lxp = λ(p)xp, 0 < λ(p) =
∫ ∞

0

daK(a)ap < ∞, p ≥ 0, (42)

and the spectral function µ(p) is defined by

µ(p) =
λ(p) − 1

p
. (43)

An immediate consequence of properties (a) and (b), as stated in (39), is
that one can obtain a criterion for a point-wise in x estimate of the difference
of two solutions to the initial value problem (28) yielding decay properties
depending on the spectrum of L, as the following statement and its corollary
assert.
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Lemma 3. Let u1,2(x, t) be any two classical solutions of the problem (28)
with initial data satisfying the conditions

|u1,2(x, 0)| ≤ 1, |u1(x, 0) − u2(x, 0)| ≤ C xp, x ≥ 0 (44)

for some positive constant C and p. Then

|u1(x, t) − u2(x, t)| ≤ Cxp e−t(1−λ(p)), for all t ≥ 0 (45)

Corollary 2. The minimal constant C for which condition (44) is satisfied is

C0 = sup
x≥0

|u1(x, 0) − u2(x, 0)|
xp

=
∥∥∥∥u1(x, 0) − u2(x, 0)|

xp

∥∥∥∥ , (46)

and the following estimate holds∥∥∥∥u1(x, t) − u2(x, t)|
xp

∥∥∥∥ ≤ e−t(1−λ(p))

∥∥∥∥u1(x, 0) − u2(x, 0)|
xp

∥∥∥∥ (47)

for any p > 0.

A result similar to Lemma 3 was first obtained in [9] for the inelastic
Boltzmann equation whose Fourier transform is given in example (C), (10).
Its corollary in the form similar to (47) for (10) was stated later in [11] and
was interpreted there as “the contraction property of the Boltzmann operator”
(note that the left-hand side of (47) can be understood as a distance between
two solutions). Independently of the terminology. the key reason for estimates
(45)–(47) is the Lipschitz property of the operator Γ . It is remarkable that
the large time asymptotics of u(x, t), satisfying the problem (28) with such
Γ , can be explicitly expressed through spectral characteristics of the linear
operator L.

In order to study the large time asymptotics of u(x, t) in more detail we
distinguish two different kinds of asymptotic behavior:

(1) Convergence to stationary solutions
(2) Convergence to self-similar solutions provided the condition (c), of the

main properties on Γ , is satisfied

The case (1) is relatively simple. Any stationary solution ū(x) of the
problem (28) satisfies the equation

Γ (ū) = ū, ū ∈ C(R+), ‖ū‖ ≤ 1. (48)

If the stationary solution ū(x) does exists (note, for example, that Γ (0) = 0
and Γ (1) = 1 for Γ given in (24)) then the large time asymptotics of some
classes of initial data u0(x) in (28) can be studied directly on the basis of
Lemma 3. It is enough to assume that |u0(x) − ū(x)| satisfies (44) with p such
that λ(p) < 1. Then u(x, t) → ū(x) as t → ∞, for any x ≥ 0.
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This simple consideration, however, does not answer at least two questions:

(A) What happens with u(x, t) if the inequality (44) for |u0(x) − ū(x)| is
satisfied with such p that λ(p) > 1?

(B) What happens with u(x, t) for large x (note that the estimate (45)
becomes trivial if x → ∞).

In order to address these questions we consider a special class of solutions
of (28), the so-called self-similar solutions. Indeed the property (c) of Γ shows
that (28) admits a class of formal solutions us(x, t) = w(x eµ∗t) with some
real µ∗. It is convenient for our goals to use a terminology that slightly differs
from the usual one.

Definition 3. The function w(x) is called a self-similar solution associated
with the initial value problem (28) if it satisfies the problem

µ∗Dw + w = Γ (w), ‖w‖ ≤ 1, (49)

in the notation of (40), (24).

The convergence of solutions u(x, t) of the initial value problem (28) to a
stationary solution ū(x) can be considered as a special case of the self-similar
asymptotics with µ∗ = 0.

Under the assumption that self-similar solutions exists (the existence is
proved in the next section), we state the fundamental result on the conver-
gence of solutions u(x, t) of the initial value problem (28) to self-similar ones
(sometimes called in the literature self-similar stability).

Lemma 4. We assume that

(i) For some µ∗ ∈ R, there exists a classical (continuously differentiable if
µ∗ �= 0) solution w(x) of (49) such that ‖w‖ ≤ 1;

(ii) The initial data u(x, 0) = u0 in the problem (28) satisfies

u0 = w + O(xp), ‖u0‖ ≤ 1, for p > 0 such that µ(p) < µ∗, (50)

where µ(p) defined in (43) is the spectral function associated to the
operator L.
Then

|u(xe−µ∗t, t) − w(x)| = O(xp)e−pt(µ∗−µ(p)) (51)

and therefore
lim

t→∞u(xe−µ∗t, t) = w(x), x ≥ 0. (52)

Remark 4. Lemma 4 shows how to find a domain of attraction of any self-
similar solution provided the self-similar solution is itself known. It is remark-
able that the domain of attraction can be expressed in terms of just the
spectral function µ(p), p > 0, defined in (43), associated with the linear
operator L for which the operator Γ satisfies the L-Lipschitz condition.

Generally speaking, the equality (52) can be also fulfilled for some other
values of p with µ(p) > µ∗ in (50), but, at least, it always holds if µ(p) < µ∗.
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We shall need some properties of the spectral function µ(p). Having in
mind further applications, we formulate these properties in terms of the
operator Γ given in (24), though they depend only on K(a) in (42)

Lemma 5. The spectral function µ(p) has the following properties:

(i) It is positive and unbounded as p → 0+, with asymptotic behavior given by

µ(p) ≈ λ(0) − 1
p

, p → 0, (53)

where, for Γ from (24)

λ(0) =
∫ ∞

0

daK(a) =
N∑

n=1

αnn ≥ 1,
N∑

n=1

αn = 1, αn ≥ 0, (54)

and therefore λ(0) = 1 if and only if the operator Γ (24) is linear (N = 1);
(ii) In the case of a multi-linear Γ operator, there is not more than one point

0 < p0 < ∞, where the spectral function µ(p) achieves its minimum, that
is, µ′(p0) = d µ

d p (p0) = 0, with µ(p0) ≤ µ(p) for any p > 0, provided N ≥ 2
and αN > 0.

Remark 5. From now on, we shall always assume below that the operator Γ
from (24) is multi-linear. Otherwise it is easy to see that the problem (49) has
no solutions (the condition ‖w‖ ≤ 1 is important!) except for the trivial ones
w = 0, 1.

The following corollaries are readily obtained from Lemma 5 part (ii) and
its proof.

Corollary 3. For the case of a non-linear Γ operator, i.e., N ≥ 2, the spectral
function µ(p) is always monotone decreasing in the interval (0, p0), and µ(p) ≥
µ(p0) for 0 < p < p0. This implies that there exists a unique inverse function
p(µ) : (µ(p0),+∞) → (0, p0), monotone decreasing in its domain of definition.

Corollary 4. There are precisely four different kinds of qualitative behavior
of µ(p) shown on Fig. 1.

Proof. There are two options: µ(p) is monotone decreasing function (Fig. 1a)
or µ(p) has a minimum at p = p0 (Fig. 1b–d). In case Fig. 1a µ(p) > 0 for all
p > 0 since µ(p) > 1/p. The asymptotics of λ(p) (42) is clear:

(1) λ(p) −−−→
p→∞ λ∞ ∈ R+ if

∫ ∞

1+
daK(a) = 0; (55)

(2) λ(p) −−−→
p→∞ ∞ if

∫ ∞

1+
daK(a) > 0. (56)
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0
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Fig. 1. Possible profiles of the spectral function µ(p)

In the case (1) when µ(p) → ∞ as p → 0, two possible pictures (with
and without minimum) are shown on Fig. 1b and Fig. 1a, respectively. In case
(2), from (42) it is clear that λ(p) grows exponentially for large p, therefore
µ(p) → ∞ as p → ∞. Then the minimum always exists and we can distinguish
two cases: µ(p0) < 0 (Fig. 1d) and µ(p0) > 0 (Fig. 1c).

We note that, for Maxwell models (A), (B), (C) of Boltzmann equation
(Sects. 2 and 3), only cases (a) and (b) of Fig. 1 can be possible (actually
this is the case (b)) since the condition (55) holds. Figure 1 gives a clear
graphic representation of the domains of attraction of self-similar solutions
(Lemma 4): it is sufficient to draw the line µ(p) = µ∗ = constant, and to
consider a p such that the graph of µ(p) lies below this line.

Therefore, the following corollary follows directly from the properties of
the spectral function µ(p), as characterized by the behaviors in Fig. 1, where
we assume that µ(p0) = 0 for p0 = ∞, for the case shown on Fig. 1a.

Corollary 5. Any self-similar solution us(x, t) = w(xeµ∗t) with µ(p0) < µ∗ <
∞ has a non-empty domain of attraction, where p0 is the unique (minimum)
critical point of the spectral function µ(p).

Proof. We use Lemma 4 part (ii) on any initial state u0 = w + O(xp) with
p > 0 such that µ(p0) ≤ µ(p) < µ∗. In particular, (51) and (52) show that
the domain of attraction of w(xeµ∗t) contains any solution to the initial value
problem (28) with the initial state as above.
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It is clear that the inequalities of the kind u1 − u2 = O(xp) for any p > 0
such that µ(p) < µ∗, for any fixed µ∗ ≥ µ(p0) play an important role. We can
use specific properties of µ(p) in order to express such inequalities in more
convenient form.

Lemma 6. For any given µ∗ ∈ (µ(p0),∞) and u1,2(x) such that ‖u1,2‖ < ∞,
the following two statements are equivalent:

(i) There exists p > 0 such that

u1 − u2 = O(xp), with µ(p) < µ∗. (57)

(ii) There exists ε > 0 such that

u1 − u2 = O(xp(µ∗)+ε), with p(µ∗) < p0, (58)

where p(µ) is the inverse to µ(p) function, as defined in Corollary 3.

Finally, to conclude this section, we show a general property of the initial
value problem (28) for any non-linear Γ operator satisfying conditions (a) and
(b) given in (38) and (39) respectively. This property gives the control to the
point-wise difference of any two rescaled solutions to (28) in the unit sphere
of B , whose initial states differ by O(xp). It is formulated as follows.

Lemma 7. Consider the problem (28), where Γ satisfies the conditions (a)
and (b). Let u1,2(x, t) are two solutions satisfying the initial conditions
u1,2(x, 0) = u1,2

0 (x) such that

‖u1,2
0 ‖ ≤ 1, u1

0 − u2
0 = O(xp), p > 0. (59)

then, for any real µ∗,

∆µ∗(x, t) = u1(xe−µ∗t, t) − u2(xe−µ∗t, t) = O(xp)e−pt[µ∗−µ(p)] (60)

and therefore
lim

t→∞∆µ∗(x, t) = 0, x ≥ 0, (61)

for any µ∗ > µ(p).

Remark 6. There is an important point to understand here. Lemmas 3 and 4
hold for any operator Γ that satisfies just the two properties (a) and (b) stated
in (38) and (39). It says that, in some sense, a distance between any two
solutions with initial conditions satisfying (59) tends to zero as t → ∞. Such
terminology and corresponding distances were introduced for specific forms of
Maxwell–Boltzmann models in [4,19]. It should be pointed out, however, that
this contraction property may not say much about large time asymptotics of
u(x, t), unless the corresponding self-similar solutions are known, for which
the operator Γ must be invariant under dilations (so it satisfies also property
(c) as well, as stated in (40)). In such case one can use estimate (61) to deduce
the convergence in the form (52), (53).

Therefore one must study the problem of existence of self-similar solutions,
which is considered in the next section.
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5.3 Existence of Self-Similar Solutions

We develop now a criteria for existence, uniqueness and self-similar asymp-
totics to the problem (49) for any operator Γ that satisfies conditions (a), (b)
and (c) from Sect. 6, with the corresponding spectral function µ(p) defined
in (43).

Theorem 3 below shows the criteria for existence and uniqueness of self-
similar solutions for any operator Γ that satisfies just conditions (a) and (b).
Then Theorem 4 follows, showing a general criteria to self-similar asymptotics
for the problem (28) for any operator Γ that satisfying conditions (a), (b)
and (c).

We consider (49) written in the form

µxw′(x) + w(x) = g(x), g = Γ (w), µ ∈ R, (62)

and, assuming that ‖w‖ < ∞, transform this equation to the integral form.
It is easy to verify that the resulting integral equation reads

w(x) =
∫ 1

0

dτ g(xτµ). (63)

By means of an iteration scheme, the following result can be proved.

Theorem 3. Consider (62) with arbitrary µ ∈ R and the operator Γ sat-
isfying the conditions (a) and (b) from Sect. 6. Assume that there exists a
continuous function w0(x), x ≥ 0, such that

(i) ‖w0‖ ≤ 1 and

(ii) ∫ 1

0

dτ g0(xτµ) = w0(x) + O(xp), g0 = Γ (w0), (64)

with some p > 0 satisfying the inequality

µ(p) =
1
p
[
∫ ∞

0

daK(a)ap − 1] < µ. (65)

Then there exists a classical solution w(x) of (62). The solution is unique in
the class of continuous functions satisfying conditions

‖w‖ ≤ 1, w(x) = w0(x) + O(xp1 ), (66)

with any p1 such that µ(p1) < µ.

Combining Lemmas 1 and 4, the following general statement related to
the self-similar asymptotics for the problem (28) is obtained.
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Theorem 4. Let u(x, t) be a solution of the problem (28) with ‖u0‖ ≤ 1
and Γ satisfying the conditions (a), (b), (c) from Sect. 6. Let µ(p) denote the
spectral function (65) having its minimum (infimum) at p = p0 (see Fig. 1),
the case p0 = ∞ is also included. We assume that there exists p ∈ (0, p0) and
0 < ε < p0 − p such that∫ 1

0

dτ g0(xτµ(p)) = u0(x) + 0(xp+ε), g0 = Γ (u0), ε > 0. (67)

Then

(i) There exists a unique solution w(x) of (62) with µ = µ(p) such that

‖w‖ ≤ 1, w(x) = u0(x) + O(xp+ε), (68)

(ii)
lim

t→∞ u(x e−µ(p)t, t) = w(x), x ≥ 0, (69)

where the convergence is uniform on any bounded interval in R+ and

u(x e−µ(p)t, t) − w(x) = O(xp+εe−β(p,ε)t), (70)

with β(p, ε) = (p + ε)(µ(p) − µ(p + ε)) > 0.

Hence, a general criterion (68) is obtained for the self-similar asymptotics
of u(x, t) with a given initial condition u0(x). The criterion can be applied
to the problem (28) with any operator Γ satisfying conditions (a), (b), (c)
from Sect. 5.2. The specific class (24) of operators Γ is studied in Sect. 6. We
shall see below that the condition (68) can be essentially simplified for such
operators.

5.4 Properties of Self-Similar Solutions

We now apply the general theory (in particular, Theorem 4) to the partic-
ular case of the multi-linear operators Γ considered in Sect. 4, where their
corresponding spectral function µ(p) satisfies (65), (34) whose behavior cor-
responds to Fig. 1. We also show that p0 = minp>0 µ(p) > 1 is a necessary
condition for self-similar asymptotics.

In addition, Theorem 5 establish sufficient conditions for which self-similar
solutions of problem (62) will lead to well defined self-similar solutions (dis-
tribution functions) of the original problem after taking the inverse Fourier
transform.

We consider the integral equation (63) written as

w = Γµ(w) =
∫ 1

0

dt g(xtµ), g = Γ (w), µ ∈ R. (71)

The following two properties of w(x) that are independent of the specific form
(24) of Γ .
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Lemma 8.

(i) If there exist a closed subset U ′ ⊂ U of the unit ball U in B, such that
Γµ(U ′) ⊂ U ′ for any µ ∈ R, and for some function w0 ∈ U ′ the conditions
of Theorem 3 are satisfied, then w ∈ U ′.

(ii) If the conditions of Theorem 3 for Γ are satisfied and, in addition,
Γ (1) = 1, then the solution w∗ = 1 of (71) is unique in the class of
functions w(x) satisfying the condition

w(x) = 1 + O(xp), µ(p) < µ. (72)

We observe that the statement (ii) can be interpreted as a necessary con-
dition for existence of non-trivial (w �= const.) solutions of (71): if there exists
a non-trivial solution w(x) of (71), where Γ (1) = 1, such that

‖w‖ = 1, w = 1 + O(xp), p > 0, then µ ≤ µ(p). (73)

We recall that µ(p) satisfies the inequality µ(p) ≥ µ(p0) (Fig. 1).
If p ≥ p0 (provided p0 < ∞) in (73), then there are no non-trivial solutions

with µ > µ(p0).
On the other hand, possible solutions with µ ≤ µ(p0) (even if they exist)

are irrelevant for the problem (28) since they have an empty domain of
attraction (Lemma 4).

Therefore we always assume below that µ > µ(p0) and, consequently,
p ∈ (0, p0) in (73).

Let us consider now the specific class (24)–(25) of operators Γ , with func-
tions u(x) satisfying the condition u(0) = 1. Then, u(0, t) = 1 for the solution
u(x, t) of the problem (28).

In addition, the operators (24) are invariant under dilation transforma-
tions (40) (property (c), Sect. 6). Therefore, the problem (28) with the initial
condition u0(x) satisfying

u(0) = 1, ‖u0‖ = 1; u0(x) = 1 − βxp + · · · , x → 0, (74)

can be always reduced to the case β = 1 by transformation x′ = xβ1/p.
Moreover, the whole class of operators (24) with different kernels

An(a1, . . . , an), n = 1, 2, . . ., is invariant under transformations x̃ = xp, p > 0.
The result of such transformation of Γ is another operator Γ̃ of the same class
(24) with kernels Ãn(a1, . . . , an).

Therefore we fix the initial condition (74) with β = 1 and transform the
function (74) and the (28) to new variables x̃ = xp. Then we omit the tildes
and reduce the problem (28), with initial condition (74) to the case β = 1,
p = 1. We study this case in detail and formulate afterward the results in
terms of initial variables.
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Next, we assume a bit more about the asymptotics of the initial data u0(x)
for small x, namely

‖u0‖ = 1, u0(x) = 1 − x + O(x1+ε), x → 0, (75)

with some ε > 0.
Then, our goal now is to apply the general theory (in particular, Theorem 4

and criterion (67)) to this particular case. We assume that the spectral func-
tion µ(p) given by (65), (34), corresponds to one of the four cases shown on
Fig. 1 with p0 > 1.

Let us take a typical function u0 = e−x satisfying (75) and apply the
criterion (67), from Theorem 4 or, equivalently, look for such p > 0 that (67)
is satisfied. That is, find possibles values of p > 0 such that

Γµ(p)(e−x) − e−x = 0(xp+ε), (76)

in the notation of (71).
It is important to observe that now the spectral function µ(p) is closely

connected with the operator Γ (see (65) and (34)), since this was not assumed
in the general theory of Sects. 4–7. This connection leads to much more specific
results, than, for example, the general Theorems 3, and 4.

The properties of self-similar solutions to problem (62) for p0 > 1, and
consequently, for

µ(p) ≥ µ(p0) > − 1
p0

> −1, (77)

can be obtained from the structure of Γµ(e−x) for any µ > −1 using its explicit
formula ((65) and (34)). In particular, for

Γµ(e−x) =
N∑

n=1

αn

∫
R

n
+

da1 . . . danAn(a1, . . . , an)Iµ

[
x

n∑
k=1

ak

]
, (78)

where

Iµ(y) =
∫ 1

0

dt e−ytµ

, µ ∈ R, y > 0,
N∑

n=1

αn = 1. (79)

the following two statements can be proven.

Lemma 9. The condition (76) is fulfilled if and only if p ≤ 1, and therefore
µ(p) ≥ µ(1) whenever p0 > 1 with µ(p0) = minp>0 µ(p).

Theorem 5. The limiting function w(x) constructed by the iteration scheme
to prove existence in the solution w in Theorem 3 satisfies (71) with µ = µ(1),
where Γ is given in (24), µ(p) is defined in (65), (34). Then, the following
conditions are fulfilled for w(x):
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(1) It satisfies

0 ≤< w(x) ≤ 1, with w(0) = 1 and w′(0) = −1, (80)

w′(x) ≤ 0, |w′(x)| ≤ 1, and w(x) = e−x + O(xπ(µ)), (81)

with

π(µ) =

⎧⎨⎩
2 if µ > − 1

2 ,
2 − ε for any ε > 0 if µ = 1

2 ,
1
|µ| if −1 < µ < − 1

2 .

(2) Further
e−x ≤ w(x) ≤ 1, lim

x→∞w(x) = 0, and (82)

(3) There exists a generalized non-negative function R(τ), τ ≥ 0, such that

w(x) =
∫ ∞

0

dτ R(τ)e−τx

∫ ∞

0

dτ R(τ) =
∫ ∞

0

dτ R(τ)τ = 1. (83)

The integral representation (83) is important for properties of correspond-
ing distribution functions satisfying Boltzmann-type equations. Now it is easy
to return to initial variables with u0 given in (74) and to describe the complete
picture of the self-similar relaxation for the problem (28).

6 Main Results for Maxwell Models with Multiple
Interactions

6.1 Self-Similar Asymptotics

We apply now the results of Sect. 6 to the specific case when the Cauchy
problem (28) with a fixed operator Γ (24) corresponds to the Fourier transform
problem for Maxwell models with multiple interactions. In particular we study
the time evolution of u0(x) satisfying the conditions

‖u0‖ = 1; u0 = 1 − xp + O(xp+ε), x → 0, (84)

with some positive p and ε. Then, from Theorems 3 and 4, there exists a
unique classical solution u(x, t) of the problem (28), (84) such that, for all
t ≥ 0,

‖u(·, t)‖ = 1; u(x, t) = 1 + O(xp), x → 0. (85)

First, consider the linearized operator L given in (33)–(34) and construct
the spectral function µ(p) given in (65) which will be of one of four kinds
described qualitatively on Fig. 1.

Second, find the value p0 > 0 that corresponds to minimum (infimum)
of µ(p). Note that p0 = ∞ just for the case described on Fig. 1a, otherwise
0 < p0 < ∞. Compare p0 with the value p from (84). If p < p0 then the
problem (28), (84) has a self-similar asymptotics (see below).
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In particular, two different cases are possible: (1) p ≥ p0 provided p0 < ∞;
(2) 0 < p < p0. In the first case a behavior of u(x, t) for large t may depend
strictly on initial conditions.

Depending on how p compares with p0, we can obtain. We again use
Lemma 7 with u1 = u and u2 = us = ψ(xeµ(p)t) and obtain for the solution
u(x, t) of the problem (28), (84):

lim
t→∞u(xe−µt, t) =

⎧⎪⎨⎪⎩
1 if µ > µ(p)
ψ(x) if µ = µ(p)
0 if µ(p) > µ > µ(p + δ),

(86)

with sufficiently small δ > 0.
We see that ψ(x) = w(xp), where w(x) has all properties described in

Theorem 5. The equalities (86) explain the exact meaning of the approximate
identity,

u(x, t) ≈ ψ(xeµ(p)t), t → ∞, xeµ(p)t = const., (87)

that we call self-similar asymptotics.
In particular, the following statement holds.

Proposition 1. The solution u(x, t) of the problem (28), (84), with Γ given
in (24), satisfies either one of the following limiting identities:

(1)
lim

t→∞ u(xe−µt, t) = 1, x ≥ 0, (88)

for any µ > µ(p0). if p ≥ p0 for the initial data (84),
(2) Equation (86) provided 0 < p < p0.

The convergence in (88), (86) is uniform on any bounded interval 0 ≤ x ≤ R,
and

u(xeµ(p)t, t)−ψ(x) = O(xp+ε)e−β(p,ε)t, β(p, ε) = (p+ε) (µ(p)−µ(p+ε)),

for 0 < p < p0 and 0 < ε < p0 − p.

Remark 7. There is a connection between self-similar asymptotics and non-
linear wave propagation. It is easy to see that self-similar asymptotics becomes
more transparent in logaritheoremic variables

y = lnx, u(x, t) = û(y, t), ψ(x, t) = ψ̂(y, t)

Thus, (87) becomes

û(y, t) ≈ ψ̂(y + µ(p)t), t → ∞, y + µ(p)t = const., (89)

hence, the self-similar solutions are simply nonlinear waves (note that
ψ(−∞) = 1, ψ(+∞) = 0) propagating with constant velocities cp = −µ(p) to
the right if cp > 0 or to the left if cp < 0. If cp > 0 then the value u(−∞, t) = 1
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is transported to any given point y ∈ R when t → ∞. If cp < 0 then the profile
of the wave looks more naturally for the functions ũ = 1 − û, ψ̃ = 1 − ψ.

We conclude that (28) can be considered in some sense as the equation for
nonlinear waves. The self-similar asymptotics (89) means a formation of the
traveling wave with a universal profile for a broad class of initial conditions.
This is a purely non-linear phenomenon, it is easy to see that such asymptotics
cannot occur in the particular case (N = 1 in (24)) of the linear operator Γ .

6.2 Distribution Functions, Moments and Power-Like Tails

We have described above the general picture of behavior of the solutions u(x, t)
to the problem (28), (84). On the other hand, (28) (in particular, its special
case (14)) was obtained as the Fourier transform of the kinetic equation.
Therefore we need to study in more detail the corresponding distribution
functions.

Set u0(x) in the problem (28) to be an isotropic characteristic function of
a probability measure in R

d, i.e.,

u0(x) = F [f0] =
∫

Rd

dv f0(|v|)e−ik·v , k ∈ R
d, x = |k|2, (90)

where f0 is a generalized positive function normalized such that u0(0) = 1
(distribution function). Let U be a closed unit ball in the B = C(R+) as
defined in (30).

Then, we can apply all results of Sect. 5, and conclude that there exists a
distribution function f(v, t), v ∈ R

d, satisfying (1), such that

u(x, t) = F [f(·, t)], x = |k|2, (91)

for any t ≥ 0, and a similar conclusion can be obtain if we assume the Laplace
(instead of Fourier) transform in (90).

Then there exists a distribution function f(v, t), v > 0, such that

u(x, t) = L[f(·, t)] =
∫ ∞

0

dv f(v, t)e−xv, u(0, t) = 1, x ≥ 0 , t ≥ 0, (92)

where u(x, t) is the solution of the problem (28) constructed in Theorem 2
and Lemma 2.

The approximate equation (87) in terms of distribution functions (91)
reads

f(|v|, t) � e−
d
2 µ(p) tFp(|v|e− 1

2 µ(p) t), t → ∞, |v|e− 1
2 µ(p) t = const., (93)

where Fp(|v|) is a distribution function such that

ψp(x) = F [Fp], x = |k|2, (94)
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with ψp given by
us(x, t) = ψ(xeµ(p)t) (95)

(the notation ψp is used in order to stress that ψ defined in (95), depends
on p). The factor 1/2 in (93) is due to the notation x = |k|2. Similarly, for
the Laplace transform, we obtain

f(v, t) � e−µ(p)tΦp(ve−µ(p)t), t → ∞, ve−µ(p)t = const., (96)

where
ψp(x) = L[Φp]. (97)

The positivity and some other properties of Fp(|v|) follow from the fact
that ψp(x) = wp(xp), where wp(x) satisfies Theorem 5. Hence

ψp(x) =
∫ ∞

0

dτ Rp(τ)e−τxp

,

∫ ∞

0

dτ Rp(τ) =
∫ ∞

0

dτ Rp(τ)τ = 1, (98)

where Rp(τ), τ ≥ 0, is a non-negative generalized function (of course, both
ψp and Rp depend on p).

In particular we can conclude that the self-similar asymptotics (93) for any
initial data f0 ≥ 0 occurs if p0 > 1, otherwise it occurs for p ∈ (0, p0) ⊂ (0, 1).
Therefore, for any spectral function µ(p) (Fig. 1), the approximate equality
(93) holds for sufficiently small 0 < p ≤ 1. In addition,

m2 =
∫

Rd

dv f0(|v|)|v|2 < ∞ if p = 1

and m2 = ∞ if p < 1. Similar conclusions can be made for the Laplace
transforms.

The positivity of F (|v|) in (94)–(97) follows from the integral representa-
tion (98) with p ≤ 1, since it is well-known that

F−1(e−|k|2p

) > 0, L−1(e−x2p

) > 0

for any 0 < p ≤ 1 (the so-called infinitely divisible distributions [18]).
Thus, (98) explains the connection of the self-similar solutions of generalized
Maxwell models with infinitely divisible distributions.

Using standard formulas for the inverse Fourier (Laplace) transforms,
denote by (d = 1, 2, . . . is fixed)

Mp(|v|) =
1

(2π)d

∫
Rd

dke−|k|2p+ik·v,

Np(v) =
1

2πi

∫ a+i∞

a−i∞
dx e−xp+xv, 0 < p ≤ 1,

(99)
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we obtain the self-similar solutions (distribution functions) are given in (96),
(98) (right-hand sides), by

Fp(|v|) =
∫ ∞

0

dτ Rp(τ)τ− d
2p Mp(|v|τ− 1

2p ),

Φp(v) =
∫ ∞

0

dτ Rp(τ)τ− 1
p Np(vτ− 1

p ), v ≥ 0, 0 < p ≤ 1.

(100)

Note that M1(|v|) is the standard Maxwellian in R
d. The functions Np(v) (99)

are studied in detail in the literature [18, 20]. Thus, for given 0 < p ≤ 1, the
kernel R(τ), τ ≥ 0, is the only unknown function that is needed to describe
the distribution functions F (|v|) and Φ(v). See [10] for a study of R(τ) in
more detail.

Now, from (34), (42), and recalling µ = µ(1), we can show the moments
equation can be written in the form

(sµ(1) − λ(s) + 1)ms =
N∑

n=2

αnIn(s), (101)

where

In(s) =
∫

R
n
+

da1 . . . danA(a1, . . . , an)
∫

R
n
+

dτ1 . . . , dτn g(s)
n (a1τ1, . . . , anτn)

n∏
j=1

R(τj)

(102)

g(s)
n (y1, . . . , yn) =

( n∑
k=1

yk

)s

−
n∑

k=1

ys
k, n = 1, 2, . . . .

and, due to the properties of R(τ), one gets g
(s)
1 = 0 for any s ≥ 0 and

m0 = m1 = 1.
Our aim is to study the moments ms defined in (92), for s > 1, on the

basis of (101). The approach is similar to the one used in [15] for a simplified
version of (101) with N = 2. The main results are formulated below in terms
of the spectral function µ(p) (see Fig. 1) under assumption that p0 > 1.

Proposition 2.

(i) If the equation µ(s) = µ(1) has the only solution s = 1, then ms < ∞ for
any s > 0.

(ii) If this equation has two solutions s = 1 and s = s∗ > 1, then ms < ∞
for s < s∗ and ms = ∞ for s > s∗.

(iii) ms∗ < ∞ only if In(s∗) = 0 in (101) for all n = 2, . . . , N .
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Now we can draw some conclusions concerning the moments of the
distribution functions (100) as follows. Denote by

ms(Φp) =
∫ ∞

0

dv Φp(v)vs, ms(Rp) =
∫ ∞

0

dτ Rp(τ)τs,

m2s(Fp) =
∫

Rd

dv Fp(|v|)|v|2s, s > 0, 0 < p ≤ 1,

and use similar notations for Np(v) and Mp(|v|) in (100). Then, by formal
integration of (100), we obtain

ms(Φp) = ms(Np)ms/p(Rp)

m2s(Fp) = m2s(Mp)ms/p(Rp),

where Mp and Np are given in (99) and we show that finite only for s < p < 1.
In the remaining case p = 1 all moments of functions

M1(|v|) = (4π)−d/2 exp
[
− |v|2

4

]
, v ∈ R

d;

N1(v) = δ(v − 1), v ∈ R+,

are finite. Therefore, everything depends on moments of R1 in with p = 1, so
it only needs to apply Proposition 2.

In particular, the following statement holds for the moments of the
distribution functions (93), (96).

Proposition 3.

(i) If 0 < p < 1, then m2s(Fp) and ms(Φp) are finite if and only if 0 < s < p.
(ii) If p = 1, then Proposition 2 holds for ms = m2s(F1) and for ms = ms(Φ1).

Remark 8. Proposition 3 can be interpreted in other words: the distribution
functions Fp(|v|) and Φp(v), 0 < p ≤ 1, can have finite moments of all orders
in the only case when two conditions are satisfied

(1) p = 1, and
(2) The equation µ(s) = µ(1) (see Fig. 1) has the unique solution s = 1.

In all other cases, the maximal order s of finite moments m2s(Fp) and ms(Φp)
is bounded.

This fact means that the distribution functions Fp and Φp have power-like
tails.
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6.3 Applications to the Conservative or Dissipative
Boltzmann Equation

We recall the three specific Maxwell models (A), (B), (C) of the Boltzmann
equation from Sect. 2. Our goal in this section is to study isotropic solutions
f(|v|, t), v ∈ R

d, of (2), (4), and (5) respectively. All three cases are considered
below from a unified point of view. First we perform the Fourier transform
and denote

u(x, t) = F [f(|v|, t)] =
∫

Rd

dv f(|v|, t)e−ik·v, x = |k|2, u(0, t) = 1. (103)

It was already said at the beginning of Sect. 4 that u(x, t) satisfies (in all three
cases) (23), where N = 2 and all notations are given in (27), (14), (18)–(21).
Hence, all results of our general theory are applicable to these specific models.
In all three cases (A), (B), (C) we assume that the initial distribution function

f(|v|, 0) = f0(|v|) ≥ 0,
∫

Rd

dv f0(|v|) = 1, (104)

and the corresponding characteristic function

u(0, t) = u0(x) = F [f0(|v|)], x = |k|2, (105)

are given. Moreover, let u0(x) be such that

u0(x) = 1 − αxp + O(xp+ε), x → 0, 0 < p ≤ 1, (106)

with some α > 0 and ε > 0. We distinguish below the initial data with finite
energy (second moment)

E0 =
∫

Rd

dv |v|2f0(|v|) < ∞ (107)

implies p = 1 in (106) and the in-data with infinite energy E0 = ∞. If p < 1
in (106) then

m(0)
q =

∫
Rd

dv f0(|v|)|v|2q < ∞ (108)

only for q ≤ p < 1 (see [18, 20]).
Also, the case p > 1 in (106) is not possible for f0(|v|) ≥ 0.
In addition, note that the coefficient α > 0 in (106) can always be changed

to α = 1 by the scaling transformation x̃ = α1/px. Then, without loss of
generality, we set α = 1 in (106).

Since it is known that the operator Γ (u) in all three cases belongs to the
class (24), we can apply Theorem 5 and state that self-similar solutions of
(23) are given by

us(x, t) = Ψ(x eµ(p)t), Ψ(x) = w(xp), (109)
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where w(x) is given in Theorem 5 and 0 < p < p0 (the spectral function µ(p),
defined in (43), and its critical point p0 depends on the specific model.)

According to Sects. 6.1–6.2, we just need to find the spectral function µ(p).
In order to do this we first define the linearized operator L = Γ ′(1) for Γ (u)
given in (24), (27). One should be careful at this point since A2(a1, a2) in
(27) is not symmetric and therefore (32) cannot be used. A straight-forward
computation leads to

Lu(x) =
∫ 1

0

dsG(s)(u(a(s)x) + u(b(s)x)) +
∫ 1

0

dsH(s)u(c(s)x), (110)

in the notation (18)–(21). Then, the eigenvalue λ(p) is given by

Lxp = λ(p)xp which implies

λ(p) =
∫ 1

0

dsG(s) {(a(s))p + (b(s))p} +
∫ 1

0

dsH(s)(c(s))p,
(111)

and the spectral function (43) reads

µ(p) =
λ(p) − 1

p
. (112)

Note that the normalization (22) is assumed.
At that point we consider the three models (A), (B), (C) separately and

apply (111) and (112) to each case.
(A) Elastic Boltzmann Equation (2) in R

d, d ≥ 2. By using (18), (19), and
(22) we obtain

λ(p) =
∫ 1

0

dsG(s)(sp + (1 − s)p), G(s) = Ad g(1 − 2s)[s(1 − s)]
d−3
2 ,

(113)

where the normalization constant Ad is such that (22) is satisfied with H = 0.
Then

µ(p) =
1
p

∫ 1

0

dsG(s)(sp + (1 − s)p − 1), p > 0. (114)

It is easy to verify that p µ(p) → 1 as p → 0, µ(p) → 0 as p → ∞, and

µ(p) > 0 if p < 1; µ(p) < 0 if p > 1;

µ(1) = 0, µ(2) = µ(3) = −
∫ 1

0

dsG(s) s(1 − s).
(115)

Hence, µ(p) in this case is similar to the function shown on Fig. 1b with
2 < p0 < 3 and such that µ(1) = 0. Then the self-similar asymptotics hold all
0 < p < 1.
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(B) Elastic Boltzmann Equation in the presence of a thermostat (4) in R
d,

d ≥ 2. We consider just the case of a cold thermostat with T = 0 in (14),
since the general case T > 0 can be considered after that with the help of
(11). Again, by using (18), (19), and (22) we obtain

λ(p) =
∫ 1

0

dsG(s)(sp + (1 − s)p) + θ

∫ 1

0

dsG(s)(1 − 4m
(1 + m)2

)p,

G(s) =
1

1 + θ
Ad g(1 − 2s)[s(1 − s)]

d−3
2 ,

(116)

with the same constant Ad as in (113). Then

µ(p) =
1
p

∫ 1

0

dsG(s)( sp + (1 − s)p − θ(1 − βs)p − (1 + θ)),

β =
4m

(1 + m)2
, p > 0,

(117)

and therefore, as in the previous case (A), p µ(p) → 1 as p → 0, µ(p) → 0 as
p → ∞, with

µ(1) = −θ β

∫ 1

0

dsG(s) s. (118)

which again verifies that µ(p) is of the same kind as in the elastic case (A) and
shown on Fig. 1b. A position of the critical point p0 such that µ′(p0) = 0 (see
Fig. 1b) depends on θ. It is important to distinguish two cases: (1) p0 > 1 and
(2) p0 < 1. In case (1) any non-negative initial data (104) has the self-similar
asymptotics. In case (2) such asymptotics holds just for in-data with infinity
energy satisfying (106) with some p < p0 < 1. A simple criterion to separate
the two cases follows directly from Fig. 1b: it is enough to check the sign of
µ′(1). If

µ′(1) = λ′(1) − λ(1) + 1 < 0 (119)

in the notation of (116), then p0 > 1 and the self-similar asymptotics hold for
any non-negative initial data.

The inequality (119) is equivalent to the following condition on the positive
coupling constant θ

0 < θ < θ∗ = −
∫ 1

0
dsG(s) ( s log s + (1 − s) log(1 − s))∫ 1

0
dsG(s) (β s + (1 − βs) log(1 − βs))

. (120)

The right-hand side of this inequality is positive and independent on the nor-
malization of G(s), therefore it does not depend on θ (see (117). We note that
a new class of exact self-similar solutions to (4) with finite energy was recently
found in [12] for β = 1, θ = 4/3 and G(s) = const. A simple calculation of the
integrals in (120) shows that θ∗ = 2 in that case, therefore the criterion (119)



54 A.V. Bobylev et al.

is fulfilled for the exact solutions from [12] and they are asymptotic for a wide
class of initial data with finite energy. Similar conclusions can be made in the
same way about exact positive self-similar solutions with infinite energy con-
structed in [12]. Note that the inequality (119) shows the non-linear character
of the self-similar asymptotics: it holds unless the linear term in (4) is “too
large”.

(C) Inelastic Boltzmann Equation (5) in R
d. Equations (21) and (22) lead

to

λ(p) =
∫ 1

0

dsG(s)((a s)p + (1 − b s)p),

where

G(s) = Cd (1 − s)
d−3
2 , a =

(1 + e)2

4
, b =

(1 + e)(3 − e)
4

,

with such constant Cd that (22) with H = 0 is fulfilled. Hence

µ(p) =
1
p

∫ 1

0

dsG(s)((a s)p + (1 − b s)p − 1), p > 0, (121)

and once more as in the previous two cases, p µ(p) → 1 as p → 0, µ(p) → 0
as p → ∞, with now

µ(1) = −1 − e2

4

∫ 1

0

dsG(s) s.

Thus, the same considerations lead to the shape of µ(p) shown in Fig. 1b. The
inequality (119) with λ(p) given in (121) was proved in [11] (see (4.26) of [11],
where the notation is slightly different from ours). Hence, the inelastic Boltz-
mann equation (5) has self-similar asymptotics for any restitution coefficient
0 < e < 1 and any non-negative initial data.

Hence, the spectral function µ(p) in all three cases above is such that
p0 > 1 provided the inequality (120) holds for the model (B).

Therefore, according to our general theory, all “physical” initial conditions
(104) satisfying (106) with any 0 < p ≤ 1 lead to self-similar asymptotics.
Hence, the main properties of the solutions f(v, t) are qualitatively similar
for all three models (A), (B) and (C), and can be described in one unified
statement: Theorem 6 below.

Before we formulate such general statement, it is worth to clarify one point
related to a special value 0 < p1 ≤ 1 such that µ(p1) = 0. The reader can see
that on Fig. 1b that the unique root of this equation exits for all models (A),
(B), (C) since µ(1) = 0 in the case (A) (energy conservation), and µ(1) < 0
in cases (B) and (C) (energy dissipation). If p = p1 in (106) then the self-
similar solution (109) is simply a stationary solution of (23). Thus, the time
relaxation to the non-trivial (u �= 0, 1) stationary solution is automatically
included in Theorem 6 as a particular case of self-similar asymptotics.
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Thus we consider simultaneously (2), (4), (5), with the initial condition
(104) such that (106) is satisfied with some 0 < p ≤ 1, ε > 0 and α = 1. We
also assume that T = 0 in (4) and the coupling parameter θ > 0 satisfies the
condition (120).

In the following Theorem 6, the solution f(|v|, t) is understood in each
case as a generalized density of probability measure in R

d and the convergence
fn → f in the sense of weak convergence of probability measures.

Theorem 6. The following two statements hold

(i) There exists a unique (in the class of probability measures) solution
f(|v|, t) to each of (2), (4), (5) satisfying the initial condition (104). The
solution f(|v|, t) has self-similar asymptotics in the following sense:
For any given 0 < p ≤ 1 in (106) there exits a unique non-negative
self-similar solution

f (p)
s (|v|, t) = e−

d
2 µ(p) tFp(|v|e− 1

2 µ(p) t), (122)

such that

e
d
2 µ(p) tf(|v|e− 1

2 µ(p) t, t) →t→∞ Fp(|v|), (123)

where µ(p) is given in (114), (117), (121), respectively, for each of the
three models.

(ii) Except for the special case of the Maxwellian

F1(|v|) = M(|v|) = (4π)−d/2e−
|v|2
4 (124)

for (2) with p = 1 in (106) (note that µ(1) = 0 in this case), the function
Fp(|v|) does not have finite moments of all orders. If 0 < p < 1, then

mq =
∫

Rd

dv Fp(|v|)|v|2q < ∞ only for 0 < q < p. (125)

If p = 1 in the case of (4), (5), then mq < ∞ only for 0 < q < p∗, where
p∗ > 1 is the unique maximal root of the equation µ(p∗) = µ(1), with µ(p)
given in (106), (121) respectively.

In addition, we also we obtain the following corollary.

Corollary 6. Under the same conditions of Theorem 6, the following two
statements hold.

(i) The rate of convergence in (123) is characterized in terms of the corre-
sponding characteristic functions in Proposition 1.

(ii) The function Fp(|v|) admits the integral representation (100) through
infinitely divisible distributions (99).
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Proof. It is enough to note that all results of Sects. 6.1 and 6.2 are valid, in
particular, for (2), (4), (5).

Finally, we mention that the statement similar to Theorem 6, can be easily
derived from general results of Sect. 6.1 in the case of one-dimensional Maxwell
models introduced in [2,15] for applications to economy models (Pareto tails,
etc.). The only difference is that the “kinetic” equation can be transformed to
its canonical form (23)–(24) by the Laplace transform and that the spectral
function µ(p) can have in this case any of the four kind of behaviors shown in
Fig. 1. The only remaining problem for any such one-dimensional models is to
study them for their specific function µ(p), and then to apply Propositions 1,
2 and 3.

Thus, the general theory developed in this chapter is applicable to all
existing multi-dimensional isotropic Maxwell models and to one-dimensional
models as well.
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Hydrodynamics from the Dissipative
Boltzmann Equation

Giuseppe Toscani

Summary. In this chapter we discuss various questions related with the modeling
of hydrodynamic equations for granular gases, starting from the kinetic description
based on the dissipative Boltzmann equation. A comparison with the elastic case is
briefly presented, together with the main open problems.

1 Introduction

This chapter deals with some questions related with the modeling of hydro-
dynamic equations for granular gases, at the light of recent mathematical
results on the large-time behavior of the dissipative Boltzmann equation.
This subject is relatively new, and the relevant mathematical theory is still
restricted. In the pertinent literature [Duf01], rapid granular flows were fre-
quently described at the macroscopic level by means of equations for fluid
dynamics, modified to account for dissipation due to collisions among parti-
cles. This was the approach of Haff, which, in his pioneering paper [Haf83],
gave a macroscopic description of the behavior of a granular material treating
the individual grains as the molecules of a granular fluid, without resorting to
the mesoscopic picture (the Boltzmann or Enskog kinetic equations).

In more recent years it became clear that, in agreement with the well
established derivation of conservative fluid dynamics from the Boltzmann
equation [BGL91, BGL93], kinetic theory was the basis for a deeper under-
standing of macroscopic equations even for dissipative flows. Kinetic theory
is suitable to describe the evolution of materials composed of many small dis-
crete grains, in which the mean free path of the grains is much larger than the
typical particle size. In this regime, granular gases can be described within the
concepts of classical statistical mechanics, by adapting methods of the kinetic
theory of ideal gases [Kog69,CIP94].

Many authors (see [NY93,DLK95,BCP97,EP97,BCG00,BP00a] and the
references therein) adopted this line of thought, by introducing and dis-
cussing the evolution of a system of partially inelastic rigid spheres through
Boltzmann-like equations. A typical kinetic model for the study of the
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evolution of a granular material takes the following form: the unknown is
a time dependent density in phase space f(x, v, t) satisfying a Boltzmann–
Enskog equation for inelastic hard-spheres, which for the force-free case
reads

∂f

∂t
+ v · ∇xf =

1
ε

C(f, f)(x, v, t). (1)

Here v · ∇xf is the usual transport operator where C(f, f) is the so-called
granular collision operator, which describes the change in the density function
due to creation and annihilation of particles in dissipative binary collisions.
The ε-parameter (Knudsen number) represents a measure of the mean free
path, and has to be assumed small in fluid dynamical regimes.

The loss of energy in the microscopic collision translates at a macroscopic
level in the progressive cooling of the gas, a phenomenon which is responsible
of most of the difficulties in extending methods of classical kinetic theory
of ideal gases to granular ones. A clear understanding of the new problems
one has to deal with in the derivation of macroscopic equations in dissipative
kinetic theory can by obtained through the use of the splitting method, very
popular in the numerical approach to the Boltzmann equation [GPT97,PR01].
If at each time step we consider sequentially the transport and relaxation
operators in the Boltzmann equation (1), during this short time interval we
recover the evolution of the density from the joint action of the relaxation

∂f

∂t
=

1
ε

C(f, f)(x, v, t), (2)

and transport

∂f

∂t
+ v · ∇xf = 0. (3)

In classical kinetic theory, the energy is conserved in collisions, and the relax-
ation (2) pushes the solution towards the Maxwellian equilibrium with the
same mass, momentum and energy of the initial datum. Then, if ε is suf-
ficiently small, one can easily argue that the solution to (2) is sufficiently
close to the Maxwellian, and this Maxwellian can be used into the transport
step (3). When dissipation is present, solutions of the inelastic Boltzmann
equation lose energy until all particles travel at the same speed, and the relax-
ation (2) pushes the solution towards the asymptotic state represented by a
δ function concentrated in the mean velocity of the initial value. It is evident
that, if ε � 1, so that the solution to (2) is close to this poor asymptotic state,
substitution into the transport step (3) does not lead to any correct behavior.

To circumvent this difficulty, two different procedures have been proposed.
The first one requires that microscopic collisions are weakly inelastic. In this
case, one assumes that the collision operator C(f, f) can be decomposed as

C(f, f) = B(f, f) + βI(f, f), (4)

where B(f, f) is the elastic collision operator, while I(f, f) represents the
inelastic correction. If β is of the same order of ε, so that β/ε → λ as β, ε → 0,
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we can easily modify in this case the aforementioned splitting, putting the
elastic collision operator in the relaxation step

∂f

∂t
=

1
ε

B(f, f)(x, v, t), (5)

and including the granular correction into the transport

∂f

∂t
+ v · ∇xf =

β

ε
I(f, f). (6)

As before, the relaxation (5) pushes the solution towards the Maxwellian
equilibrium with the same mass, momentum and energy of the initial datum.
Then, if ε is sufficiently small, β/ε ∼= λ, and the Maxwellian solution can be
used in the transport step (6), to get explicitly computable equations for the
macroscopic quantities.

A second method is based on a more precise study of the asymptotic
behavior of the solution in the relaxation step. This is obtained by looking for
exact solutions to (2) (homogeneous cooling states), with the aim to use this
exact solution in the transport (3).

The main advantage in working with small inelasticity is that one can
easily include in the procedure any type of inelastic collisions, and in partic-
ular general coefficients of restitution. Various studies enlighten in fact the
dependence of the cooling problem on the coefficient of restitution in the
microscopic collision, and emphasize the effects of a non-constant restitution
coefficient [BP00a,BP03a]. Special attention has been devoted in this respect
to a system of viscoelastic spheres, a quite realistic model whose coefficient of
restitution has been recently derived [RPBS99]. Moreover, the elastic collision
dominated regime prevents the derivation to be sensible to the strength of spa-
tial gradients. From a mathematical point of view, the granular Boltzmann
equation has been object of some attention in a recent past [BC02b,BC03], and
hydrodynamic closure in a weakly inelastic regime has been discussed already
in [GS95,BCG00,BDKS98,Tos04], mostly at the level of Euler equations. A
further step beyond the Euler level, in which closure is achieved by simply
using the zero order solution (the equilibrium Maxwellian) for the distribu-
tion function, has been recently done in [RC02,BST04], by resorting to a Grad
13-moment expansion able to capture the relevant Grad equations. The idea
of applying Grad’s method to inelastic gases goes back to Jenkins and Rich-
mann [JR85]. In this pioneering paper they outline the main ideas of Grad’s
derivation of hydrodynamics from a kinetic equation, using the Maxwellian
distribution to close the hierarchy of transport equations. An important fea-
ture of Grad’s equations is that they still contain collision terms, and are
affected by the same small parameters as the kinetic equations. They lend
themselves then to a classical asymptotic procedure of the Chapman–Enskog
type, and provide as important byproduct hydrodynamic equations at the
Navier–Stokes level. We refer to the recent paper [GK02] for a detailed treat-
ment of the classical Chapman–Enskog derivation of hydrodynamics given in
the framework of Grad’s moment equations.
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As far as the second method is concerned, the common assumption which
has been at the basis of several recent papers on the matter is that there
are only small spatial variations, so that the zero order approximation of the
solution (and of any asymptotic expansion) is constituted by the so-called
homogeneous cooling state (see for instance [BDKS98] and the references
therein). A detailed theory of the homogeneous cooling state for viscoelas-
tic particles in terms of expansion in Sonine polynomials has been recently
developed [BP00b, BP00c]. Such spatially homogeneous solution turns out
to depend not only on the similarity variable, as it would occur for constant
restitution coefficient, but also on time explicitly. In addition, temperature has
been shown to decay asymptotically according to a corrected Haff’s law (see
also [SP98]). Asymptotic expansions around the homogeneous cooling state
have been used then as hydrodynamic closure for the macroscopic equations in
order to achieve a Navier–Stokes level via a Chapman–Enskog procedure also
for non-constant restitution coefficient [LS86]. In particular, the complete set
of hydrodynamic equations and transport coefficients have been derived in this
frame for a granular gas of viscoelastic particles [BP02,BP03b]. From a math-
ematical point of view, the possibility of using the homogeneous cooling state
to close the transport equation (3) would require precise statements on the role
of this exact solution, which has to be the intermediate solution of the homo-
geneous problem for a large physical class of initial densities. For a simplified
model of the Boltzmann equation, the so-called Maxwellian model [BCG00],
recent results showed that this holds true [BCT03, BCT05a]. These results
were first motivated by a question posed by Ernst and Brito [EB02a,EB02b],
concerning the fat tails of the self-similar solution for this model.

2 Modeling Dissipative Boltzmann Equation

In a granular gas, the microscopic dynamics of grains is governed by the
restitution coefficient e which relates the normal components of the particle
velocities before and after a collision. If grains are identical perfect spheres of
diameter σ > 0, (x, v) and (x−σn,w) are their states before a collision, where
n ∈ S2 is the unit vector along the center of both spheres, the post collisional
velocities (v∗, w∗) are such that

(v∗ − w∗) · n = −e((v − w) · n). (7)

Thanks to (7), and assuming the conservation of momentum, one finds the
change of velocity for the colliding particles as

v∗ = v − 1
2
(1 + e)((v − w) · n)n , w∗ = w +

1
2
(1 + e)((v − w) · n)n. (8)

For elastic collisions one has e = 1, while for inelastic collisions e decreases
with increasing degree of inelasticity.
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In the literature, it is frequently assumed that the restitution coefficient is a
physical constant. In real applications, however, the restitution coefficient may
depend on the relative velocity in such a way that collisions with small relative
velocity are close to be elastic. The simplest physically correct description of
dissipative collisions is based on the assumption that the spheres are composed
by viscoelastic material [BP00a,BP00d]. This analysis suggests that in general
the coefficient of restitution is such that

1 − e = 2βγ (|(v − w) · n|) , (9)

where γ(·) is a given function and β is a parameter which is small in presence
of small inelasticity. For example, for small values of α, the velocity depen-
dence of the restitution coefficient in a collision of viscoelastic spheres can be
expressed at the leading order as in (9), choosing γ(r) = r1/5 [BP00a]. In a
rarefied regime, a general model of bilinear operator for dissipative collisions
is obtained by choosing

C(f, f)(x, v, t) = G(ρ)Q̄(f, f)(x, v, t), (10)

where Q̄

Q̄(f, f)(v) = 4σ2

∫
IR3

∫
S+

q · n {χf(v∗∗)f(w∗∗) − f(v)f(w)} dw dn. (11)

In (10)

ρ(x, t) =
∫

IR3
f(x, v, t) dv (12)

is the density, and the function G(ρ) is the statistical correlation function
between particles, which accounts for the increasing collision frequency due
to the excluded volume effects. We refer to [Cer95] for a detailed discussion
of the meaning of the function G.

In (11), q = (v −w), and S+ is the hemisphere corresponding to q ·n > 0.
The velocities (v∗∗, w∗∗) are the pre collisional velocities of the so-called
inverse collision, which results with (v, w) as post collisional velocities. The
factor χ in the gain term appears respectively from the Jacobian of the trans-
formation dv∗∗dw∗∗ into dvdw and from the lengths of the collisional cylinders
e|q∗∗ · n| = |q · n|. For a constant restitution coefficient, χ = e−2.

In what follow we write the operator (11) in weak form [Tos04]. More
precisely, for all smooth functions ϕ(v), it holds

< ϕ , Q̄(f, f) > =
∫

IR3
ϕ(v)Q̄(f, f)(v) dv =

4σ2

∫
IR3

∫
IR3

∫
S+

q · n (ϕ(v∗) − ϕ(v)) f(v)f(w)dv dw dn =

2σ2

∫
IR3

∫
IR3

∫
S2

|q · n| (ϕ(v∗) − ϕ(v)) f(v)f(w)dv dw dn. (13)
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The last equality follows since the integral over the hemisphere S+ can be
extended to the entire sphere S2, provided the factor 1/2 is inserted in front
of the integral itself. Let (v′, w′) be the post collisional velocities in a elastic
collision with (v, w) as incoming velocities,

v′ = v − (q · n)n , w′ = w + (q · n)n. (14)

Using (8) and (14) one obtains

v∗ = v′ +
1
2
(1 − e)(q · n)n , w∗ = w′ − 1

2
(1 − e)(q · n)n. (15)

If we assume that the coefficient of restitution satisfies (9),

v∗ − v′ = βγ (|q · n|) (q · n)n. (16)

Let us consider a Taylor expansion of ϕ(v∗) around ϕ(v′). Thanks to (16)
we get

ϕ(v∗) = ϕ(v′) + β∇ϕ(v′) · γ (|q · n|) (q · n)n + O(β). (17)

If the collisions are nearly elastic, β � 1, and we can cut the expansion (17)
after the first-order term. Inserting (17) into (13) gives

< ϕ , Q̄(f, f) > = 2σ2

∫
IR3

∫
IR3

∫
S2

|q · n| ×
(ϕ(v′) − ϕ(v) + β∇ϕ(v′) · γ (|q · n|) (q · n)n) f(v)f(w)dv dw dn =
< ϕ , Q(f, f) > +β < ϕ , I(f, f) >. (18)

It is a simple matter to recognize that in (18) Q(f, f) is the classical Boltzmann
collision operator for elastic hard-spheres molecules [CIP94,CK70],

Q(f, f)(v) = 2σ2

∫
IR3

∫
S2

|q · n| {f(v′)f(w′) − f(v)f(w)} dw dn. (19)

In fact, the velocity v′ into (18) is obtained from (v, w) through the elastic
collision (14).

The second contribution to the inner product (18) can be easily com-
puted [Tos04]. For weak inelasticity the granular correction is the nonlinear
friction operator βI(f, f)(v), where

I(f, f)(v) = 2σ2divv

∫
IR3

∫
S2

n(q · n)|q · n|γ (|q · n|) f(v′)f(w′)dw dn. (20)

The nonlinear friction operator is such that mass and momentum are colli-
sional invariant, while the energy is not. If the restitution coefficient satisfies
(9), the Enskog–Boltzmann equation can be modeled at the leading order as

∂f

∂t
+ v · ∇xf = G(ρ)Q(f, f)(x, v, t) + G(ρ)βI(f, f)(x, v, t), (21)

where Q is the classical elastic Boltzmann collision operator, and I is a dissi-
pative nonlinear friction operator which is based on elastic collisions between
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particles. An interesting property of the collisional integral I, connected with
the passage to fluid dynamics, is that it leads to exact computations in
correspondence to a locally Maxwellian function

M(x, v, t) =
ρ(x, t)

(2πT (x, t))3/2
exp

(
− (v − u(x, t))2

2T (x, t)

)
. (22)

In (22) ρ(x, t), u(x, t) and T (x, t) represent its mass, mean velocity and tem-
perature, respectively. In particular one can explicitly evaluate moments. Let
us consider the case in which γ(r) = rp, with p ≥ 0. Then [Tos04]

<
1
2
v2 , I(M,M) > = −Γ (2 + p/2)27+p

√
π

(4 + p)
ρ2T (3+p)/2. (23)

3 Hydrodynamic Limit and the Euler Equations

Let us fix the coefficient of restitutions to satisfy γ(r) = rp. This choice will
include both the constant coefficient of restitution and the physically relevant
case of the viscoelastic spheres. The procedure discussed in the introduction
allows to formally derive the fluid dynamical equations in the regime of small
inelasticity. Since Q is the classical elastic Boltzmann collision operator, from
(2) we obtain that the solution is close to the Maxwellian equilibrium with
the same mass, momentum and energy of the initial datum provided ε is
sufficiently small. Inserting this Maxwellian into the transport step (3), gives∫

IR3
ψ(v)

(
∂M

∂t
+ v · ∇xM − g(ρ)

β

ε
I(M,M)(x, v, t)

)
dv = 0, (24)

for any test function ψ. It is well-known that system (24) for the moments
of f , which is in general not closed, is closed by assuming f to be a locally
Maxwellian function like (22) [CIP94]. Since the dissipative operator I is such
that ψ = 1, v are collisional invariants, choosing ψ = 1, v, 1

2v2 we obtain from
(24) the dissipative Euler equations for density ρ(x, t), bulk velocity u(x, t)
and temperature T (x, t)

∂ρ

∂t
+ div(ρu) = 0

∂u

∂t
+ (u · ∇)u +

1
ρ
∇p = 0 (25)

∂T

∂t
+ (u · ∇)T +

2
3
Tdivu = −β

ε
Cpg(ρ)ρT (3+p)/2

where p = ρT , and

Cp =
Γ (2 + p/2)27+p

√
π

3(4 + p)
, (26)
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This approximation is valid when both ε � 1, β � 1 in such a way that
β/ε = λ. This is clearly a nearly elastic regime. If we assume this relationship
between β and ε, and p = 1/5, we obtain the Euler system for a weakly
dissipative system of viscoelastic spheres

∂ρ

∂t
+ div(ρu) = 0

∂u

∂t
+ (u · ∇)u +

1
ρ
∇p = 0 (27)

∂T

∂t
+ (u · ∇)T +

2
3
Tdivu = −λC1/5g(ρ)ρT 8/5

Further applications of this idea lead to higher order hydrodynamic equa-
tions [BST04]. Now, the sought approximate closure for the collision term
is achieved by replacing, in the evaluation of higher order moments, both
in Q(f, f) and I(f, f) the actual distribution function f with the Grad
distribution function [Gra49], which, in the spatially one-dimensional case,
reads as

fG(v) =
ρ

(2πT )
3
2

e−
c2
2T

[
1 +

p

2ρT 2

(
− 1

2
c2 +

3
2

c2
z

)
+

4
5

q

2ρT 2
cz

(
c2

2T
− 5

2

)]
,

(28)
and constitutes the weighted polynomial approximation to f sharing the same
moments up to heat flux. Consistently with our hypothesis of small ε and
small β, (28) represents a perturbation to a Maxwellian distribution, solution
to the elastic problem in the hydrodynamic limit.

We remark that at present there are no rigorous results which justify the
derivation of macroscopic equations in the case of dissipative collisions. As a
matter of fact, in classical elastic kinetic theory, one of the main ingredients
in the proof is the well-known Boltzmann H-theorem, which guarantees that,
at any fixed positive time, the solution is close to the Maxwellian equilibrium
provided the Knudsen number is small enough. In recent years, many efforts
have been done to obtain explicit computable formulas which allow to quantify
the space homogeneous time decay of the solution towards the Maxwellian in
terms of the time decay of the relative entropy

H(f |M) =
∫

IR3
f(v) log

f(v)
M(v)

dv, (29)

where M is the Maxwellian function with the same constant mass ρ, drift
velocity u and temperature T of f . In particular, lower bounds on the entropy
production

−D(f) =
∫

IR3
log f(v)Q(f, f)(v)dv

in terms of the relative entropy have been obtained in [TV99a].
The main problem here is the lack of H-theorem for the dissipative

Boltzmann equation. A semi-formal discussion on the behavior of the
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Boltzmann entropy in this case can be found in [BST04]. We only recall
that, since the granular gas is cooling, the correct relative entropy in this
case should be

H(f |M)(t) =
∫

IR3
f(v, t) log f(v, t) dv − ρ log ρ +

3
2

ρ log
[
2πeT (t)

]
, (30)

with H(f |M) ≥ 0.

4 Hydrodynamics from Homogeneous Cooling States

As described in the previous section, the macroscopic description of a rapid
granular flow in a weakly inelastic regime by means of the closure with a
local Maxwellian is easy to handle, and reasonable in many physical situa-
tions. The alternative to this approach relies in closing the equations with
respect to the homogeneous cooling state, namely an exact solution to the
dissipative Boltzmann equation. In principle, this alternative way of closure
requires a knowledge of its stability which in many cases is far from being
understood.

In many fields of evolution equations, exact solutions of self-similar type
play an important role as attractors of wide classes of other solutions. Among
others, this is the case of nonlinear diffusions, where Barenblatt type self-
similar solutions have been recognized as intermediate solutions for the
large-time behavior of porous medium equations [Vaz83, Vaz03]. Unlikely,
this is not the case in kinetic theory of rarefied gases, where various exam-
ples show that self-similar solutions are not always stable with respect to
a reasonably large class of physical data. The first example is furnished by
the well-known Bobylev–Krook–Wu mode of the Maxwell–Boltzmann equa-
tion [Bob88, KW76], a special self-similar solution of the elastic Boltzmann
equation for Maxwellian molecules. In fact, even if has been conjectured that
the BKW-mode attracts solutions of the Boltzmann equation for a large
class of initial data, before these solutions reach the Maxwellian equilib-
rium, this conjecture has never been verified. More recently, Caglioti and
Villani [CV02] gave a precise mathematical proof of the very weak stability
properties of the self-similar solution of the nonlinear friction equation intro-
duced by McNamara and Young [NY93,BCP97] as one-dimensional model for
the cooling of a granular gas. After their analysis, it is obvious to question-
ing about the role of homogeneous cooling states, at least in the case of too
simplified dissipative models.

As far as the hydrodynamics closure is concerned, the first step in the
validation of the closure around the homogeneous cooling state requires a
proof of the intermediate asymptotic property of the cooling state itself. In
other words, one has to be sure that, (at least in homogeneous situations)
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if f∞(v, t) denotes the homogeneous cooling state of (2), the solution to this
equation is such that

f(v, t/ε) = f∞(v, t/ε) + O(ε2). (31)

Relation (31) insures that the solution to the dissipative Boltzmann equation
reaches the self-similar profile before reaching the asymptotic state which has
the form of a Dirac delta. A proof of this result is difficult due to the fact that
there is no H-theorem, while this theorem is at the basis of similar results
in the nonlinear diffusion case [CT00,CJMTU01].

The program has been realized in the case of solutions of the homoge-
neous Boltzmann equation for the inelastic Maxwell molecules introduced
in [BCG00], where in (1)

C(f, f) = B
√

θ(t)Q̃(f, f). (32)

Here, Q̃(f, f) is the inelastic Boltzmann collision operator with Maxwellian
molecules,

(ϕ, Q̃(f, f)) =
1
4π

∫
IR3

∫
IR3

∫
S2

f(v)f(w)
[
ϕ(v′) − ϕ(v)

]
dv dw dn. (33)

In expression (32), the factors B and the temperature of f in front of Q,

θ(t) =
1
3

∫
IR3

|v|2f(v, t) dv,

allow the Maxwell model to have the same loss of temperature law of the
inelastic hard-spheres model (11).

In (33) the outgoing velocities assumed by a particle in the collision defined
by the ingoing velocities v, w and the angular parameter n ∈ S2:

v′ =
1
2
(v + w) +

1 − e

4
(v − w) +

1 + e

4
|v − w|n, (34)

w′ =
1
2
(v + w) − 1 − e

4
(v − w) − 1 + e

4
|v − w|n . (35)

The restitution coefficient e is here assumed to be constant.
Inelastic Maxwell models are of interest for granular fluids in spatially

homogeneous states because of the mathematical simplifications resulting
from their energy-independent collision rate. For this reason, after its intro-
duction in [BCG00], (32) has been widely studied with or without energy
supplies.

Among others, one of the interesting features of granular flows, which can
be observed in the framework of Maxwellian molecules, is the knowledge of
many of the properties of self-similar solutions in the homogeneous cooling
problem, and the non-Maxwellian behavior of these solutions, which display
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power-like decay for large velocities. Inelastic Maxwell models allow one to
take advantage of the powerful Fourier transform methods. Using these tech-
niques for the self-similar scaling problem, existence of solutions with power-
like tails has been proven by several authors [BMP02,BK00,BK02,EB02a].
A systematic approach to the existence of self-similar profiles for both elas-
tic and inelastic interactions was subsequently proposed by Bobylev and
Cercignani in [BC03], who obtained also results of convergence towards the
self-similar solution. Later on, these results have been improved in [BCT03],
by showing that convergence towards the self-similar profile occurs for all
solutions corresponding to initial data which have more that two moments
bounded. In both papers, however, no rate of convergence was found. We
remark here that, in view of the passage to hydrodynamics, the knowledge
of the rate of convergence is of paramount importance to prove conditions of
type (31).

Concerning the problem of the Boltzmann equation with an energy source,
Bobylev and Cercignani [BC02a] found steady solutions to the inelastic
Maxwell model with a heat bath, that behave like exp(−r|v|). The prob-
lem of convergence towards the steady solution has been subsequently dealt
with in [BCT05a]. By means of the contraction property of a suitable met-
ric in the set of probability measures, existence, uniqueness, boundedness of
moments and regularity of the steady state have been derived. Furthermore,
explicit decay rates of general solutions towards the stationary state were
obtained.

Using ideas from [BCT05a] in [BCT05b] various problems related to the
convergence towards the self-similar profile were solved, reckoning precise rates
of convergence in terms of suitable metrics defined in terms of the Fourier
transform. Contraction properties of these metrics allow to show existence and
uniqueness of the similarity solution, as well as various properties of the solu-
tion itself. In particular, it has been possible to discuss in detail the conjecture
on the self-similar solution formulated by Ernst and Brito in [EB02a,EB02b].

A crucial role in the analysis of [BCT05b] is played by the weak norm con-
vergence, which is obtained by further pushing the development of a method
first used in [GTW95] to control the exponential convergence for Maxwellian
molecules in certain weak norms.

Easy computations show that (ϕ(v), Q(f, f)) = 0 whenever ϕ(v) = 1, v,
while (ϕ(v), Q(f, f)) < 0 if ϕ(v) = v2. This corresponds to conservation of
mass and momentum, and, respectively, to loss of energy for the solution to
(32). For this reason, if we fix the initial data to be a centered probability
density function, the solution will remain centered at any subsequent time
t > 0.

Let Ps(IR3) be the set of probability measures with bounded s-moment.
The Fourier-based metrics ds, for any s > 0, are defined as

ds(f̂ , ĝ) = sup
k∈IR3

|f̂(k) − ĝ(k)|
|k|s
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for any pair of probability measures in Ps(IR3). As usual, f̂ is the Fourier
transform of the density f(v),

f̂(k, t) =
∫

IR3
f(v, t)e−iv·k dv.

By simple Taylor expansion, one shows that the distance is well-defined and
finite for any pair of probability measures with equal moments up to order [s],
where [s] denotes the integer part of s. Moreover, in case s ≥ 1 be an integer,
it suffices equality of moments up to order s − 1 for being ds finite. In fact,
ds with s ≥ 2 topology is equivalent to the weak-star topology for measures
plus convergence of moments up to order [s] [TV99b], and can be related to
the Wasserstein distance between probability measures. This distance can be
considered as a Lyapunov functional in this case.

To fix ideas, let us set ε = 1 in the Boltzmann equation (2), with the
collision operator satisfying (32). The spatially homogeneous dissipative
Boltzmann equation then reads

∂f

∂t
= B

√
θ(t)Q̃(f, f) . (36)

Self-similar solutions of (32) are obtained through a suitable scaling of both
time and velocity in such a way that energy of the solution is conserved. If

f(v, t) = θ−
3
2 (τ) g(v θ−

1
2 (τ), τ),

where

τ =
B

E

∫ t

0

θ
1
2 (w) dw, (37)

and E = 8/(1 − e2), g satisfies the equation

∂g

∂τ
= −∇v ·

(
v g(v)

)
+ EQ(g, g). (38)

This equation now may admit a nontrivial steady state, because the energy
dissipative effects of the Boltzmann collision operator are balanced by the
energy input coming from the term −∇v ·

(
v g(v)

)
. Self-similar solutions of

the original Boltzmann equation correspond to stationary solutions g∞ of (38).
Let us consider the pressure tensor for the solutions f(v, τ) of (36), namely,

for i �= j the quantity

pij(τ) =
∫

IR3
vivjf(v, τ) dv.

If Φ̂(k, τ) is defined as

Φ̂(k, τ) =

⎧⎪⎨⎪⎩
− 1

2

∑
i�=j

pij(τ)kikj if |k| ≤ 1

0 if |k| > 1
(39)

the following theorem holds:
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Theorem 1 ([BCT05b]). Let g(v, t) denote a solution to (38) correspond-
ing to the initial value g(0) with unit mass and zero mean velocity, then the
following exponential decay towards the corresponding steady state g∞ holds:

d2(ĝ(τ), ĝ∞) ≤ C2 , 2+α

θ0

[
2 d2+α(ĝ(0) − Φ̂(0), ĝ∞) + C1

]2/(2+α)

× exp
{
− 2

2 + α
C(α, e) τ

}
+

C2

θ0
exp

{
− 1 + e

1 − e
τ

}
.

(40)

The previous theorem gives explicit rates of exponential convergence to
the steady state of the ds-distance. The rate of convergence towards the
self-similar solution (homogeneous cooling state) is easily derived from the
previous theorem by coming back to the original time variable t. The evolution
equation for the temperature yields

θ(t) =
{

θ
− 1

2
0 +

1 − e2

8
Bt

}−2

,

hence time scaling (37) is nothing but

τ = log

[
1 +

B

Eθ
− 1

2
0

t

]
.

Therefore, to any exponential decay in the variable τ there corresponds an
algebraic decay in t. From Theorem 1 we get the following estimate for
the convergence of each solution f(v, t) towards the homogeneous cooling
state f∞(t):

d2(f̂(t), f̂∞(t)) ≤ C2 , 2+α

[
2 d2+α(f̂(0) − Φ̂(0), f̂∞(0)) + C1

]2/(2+α)

×
[
1 +

B

Eθ
− 1

2
0

t

]−(2(1−A(α,e))E)/(2+α)

+ C2

[
1 +

B

Eθ
− 1

2
0

t

]− (3−e)/(1−e)

.

The previous estimate guarantees that the homogeneous cooling state for the
dissipative Boltzmann equation for Maxwell molecules attracts all solutions
with finite moments of order 2 + δ, so that it is highly reasonable to use this
cooling state to close fluid dynamics equations.

Analogous results for the dissipative Boltzmann equation with rigid-
spheres kernel are not available. Recent mathematical studies [MM05a,
MM05b] however, proved existence (without uniqueness) and various prop-
erties of the cooling state in this case.

5 Conclusions

In this chapter, we briefly discussed the passage to hydrodynamics for
rapid granular flows, described at a kinetic level in terms of the dissipative
Boltzmann equation. This problem requires new hints on the mathematical
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tools necessary to justify rigorously the target macroscopic equations. Two
possibilities are discussed. The first is linked to the presence of low inelastic-
ity in the system, which allows to use locally Maxwellian functions to close
macroscopic equations. We are confident in this case the passage can be jus-
tified by using methods close to thats applicable to the elastic Boltzmann
equation. The second requires small spatial variations, and makes use of the
homogeneous cooling state to close macroscopic equations. The first step in the
justification of this procedure requires a proof of stability of the cooling state
with respect to a large class of physical data. Recent mathematical results for
the simplified model of the Boltzmann equation for Maxwell molecules then
show that this stability property holds with respect to a distance equivalent
to the weak* convergence of measures [BCT03]. The general situation is still
unclear, and a result analogous to that for Maxwell molecules looks completely
hopeless for the moment.

References

[BC02a] Bobylev, A.V., Cercignani, C.: Moment equations for a Granular
Material in a Thermal Bath’ J. Statist. Phys. 106, 547 (2002)

[BC02b] Bobylev, A.V., Cercignani, C.: Self-similar solutions of the Boltzmann
equation and their applications. J. Statist. Phys. 106, 1039 (2002)

[BC03] Bobylev, A.V., Cercignani, C.: Self-similar asymptotics for the
Boltzmann equation with inelastic and elastic interactions. J. Statist.
Phys. 110, 333 (2003)

[BCG00] Bobylev, A.V., Carrillo, J.A. Gamba, I.: On some properties of kinetic
and hydrodynamics equations for inelastic interactions. J. Statist.
Phys. 98, 743 (2000)

[BCP97] Benedetto, D., Caglioti, E., Pulvirenti, M.: A kinetic equation for
granular media. Mat. Mod. Numer. Anal., 31, 615 (1997)

[BCT03] Bobylev, A.V., Cercignani, C., Toscani, G.: Proof of an asymp-
totic property of self-similar solutions of the Boltzmann equation for
granular materials. J. Statist. Phys. 111, 403 (2003)

[BCT05a] Bisi, M., Carrillo, J.A., Toscani, G.: Decay rates towards self-similarity
for the Ernst-Brito conjecture on large time asymptotics of the
inelastic Maxwell model. Preprint (2005), 301–331

[BCT05b] Bisi, M., Carrillo, J.A., Toscani, G.: Decay rates towards self-similarity
for the Ernst-Brito conjecture on large time asymptotics of the
inelastic Maxwell model. (Preprint) (2005)

[BDKS98] Brey, J.J., Dufty, J.W., Kim, C.S., Santos, A.: Hydrodynamics for
granular flows at low density. Phys. Rew. E 58, 4638 (1998)

[BGL91] Bardos, C., Golse, F., Levermore, C.D.: Fluid dynamic limits of kinetic
equations. I. Formal derivations. J. Statist. Phys. 63, 323 (1991)

[BGL93] Bardos, C., Golse, F., Levermore, C.D.: Fluid dynamic limits of kinetic
equations. II. Convergence proofs for the Boltzmann equation. Comm.
Pure Appl. Math. 46, 667 (1993)

[BK00] Ben-Naim, E., Krapivski, P.: Multiscaling in inelastic collisions. Phys.
Rev. E 61, R5 (2000)



Hydrodynamics from the Dissipative Boltzmann Equation 73

[BK02] Ben-Naim, E., Krapivski, P.: Nontrivial velocity distributions in
inelastic gases. J. Phys. A 35, L147 (2002)

[BMP02] Baldassarri, A., Marconi, U.M.B., Puglisi, A.: Influence of correlations
in velocity statistics of scalar granular gases. Europhys. Lett. 58, 14
(2002)

[Bob88] Bobylev, A.V.: The theory of the nonlinear spatially uniform
Boltzmann equation for Maxwell molecules. Sov. Sci. Rev. C. Math.
Phys. 7, 111 (1988)
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Bodies with Kinetic Substructure

Gianfranco Capriz

Summary. In some earlier papers an elementary approach was followed to suggest
a set of balance laws governing, within a continuum theory, the evolution of bod-
ies made up of countless molecules afflicted by chaotic agitation. The set is larger
than usual to insure strict observer independence of consequent thermal entities.
Here preliminary steps are taken to pursue the same goal but with an inception
closely akin to that prefacing the kinetic theory of gases; the quest here, however,
exacts divergence from the route followed in the latter theory. Thus some, possibly
controversial, notions emerge and are proffered here for criticism.

1 Kinetics

Consider a body in its deportment at an instant τ , when it occupies a region B;
a region which, in imagination, is envisaged as split into tiny spatial segments.
Each segment e contains many molecules and, although it is said to be located
at a place x within B, it must be imagined to have a microexpanse within
which subplaces can be distinguished at a lower scale. Accordingly, and con-
trary to the bias mooted by the standard kinetic theory, of each molecule one
presumes here to gauge not only the velocity w (which in principle can be
any member of the vector space V) but also the subplace z within e (z being
distinct, at our penetrating magnification, from x).

Consequently one seeks the distribution θ, valid for e (x) at time τ , such
that θ (τ, x; z, w) dzdw gives the number of molecules passing in the vicinity
of z and with velocity near w. θ is presumed to be such that all integrations
involving it and mentioned below are convergent. In particular

ω =
∫

e

∫
V

θ (τ, x; z, w) , [θ] = L−6T 3, (1)

gives the (finite, though large) number of molecules in e (x) at time τ . Take
note that, at any instant τ , there may be many molecules passing through the
immediate neighbourhood of z, possibly with widely different velocities.
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If all molecules have the same mass µ (as always presumed below for
simplicity) then

µω = (meas e) ρ, (2)

where ρ is the gross mass density at x.
Some formulae below are shortened by use of the distribution θ̃

θ̃ (τ, x; z) =
∫
V

θ (τ, x; z, w) ,
[
θ̃
]

= L−3, (3)

which counts the number of molecules near z whatever their velocity.
Vice versa, within the kinetic theory, as already mentioned, only the

alternative reduced distribution θ̂ matters,

θ̂ (τ, x;w) =
∫

e

θ (τ, x; z, w) ,
[
θ̂
]

= L−3T 3, (4)

which counts the number of molecules in the whole e and velocity near w.
Using θ, or θ̃, one determines he centre of gravity of all molecules in e

x = ω−1

∫
e

∫
V

θz = ω−1

∫
e

θ̃z; (5)

it is after such x that the segment is labelled. Then z can be split into x and
y, and, with a slight abuse of notation, one has∫

e

∫
V

θy =
∫

e

θ̃y = 0. (6)

As it is done, with success, in the standard theory of fluids, the velocity v
assigned at x is, by fiat, the average velocity

v = ω−1

∫
e

∫
V

θw. (7)

Similarly one attributes to the subelement at z the average velocity w̃ of
all molecules passing there

w̃ = θ̃−1

∫
V

θw (8)

so that, in particular,

v = ω−1

∫
e

θ̃w̃, ω =
∫

e

θ̃. (9)

Thus correct evaluation of total momentum for e is assured summoning
reduced quantities θ̃ and w̃ only. Actually v can be secured also by turning to
θ̂ only

v = ω−1

∫
V

θ̂w, ω =
∫
V

θ̂, (10)

as in the kinetic theory of gases, within which, though, no meaning can be
attached to w̃.
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2 A Shadow Speck of Matter

Availability of the fields v and w̃ grants us licence to invent a shadow speck
of matter which, in imagination, simply translates with velocity v and within
which, besides, the shadow subspeck at z flies with relative velocity w̃. We can
then deal with the speck as it were a subbody (in the sense of standard theory
of continua) rather than a collection of riotous molecules, a subbody occupying
instantaneously the segment e consisting of subplaces each identified by the
variable z, where the material density is µθ̃.

One may now proceed to evaluate Euler’s inertia tensor Y around x,

Y = ω−1

∫
e

∫
V

θy ⊗ y = ω−1

∫
e

θ̃y ⊗ y (11)

and the tensor moment of momentum K

K = ω−1

∫
e

∫
V

θy ⊗ (w − v) = ω−1

∫
e

∫
V

θy ⊗ w = ω−1

∫
e

θ̃y ⊗ w̃. (12)

Neither tensor could be defined with access to the distribution θ̂ only. Vice
versa the kinetic energy tensor per unit mass W

W =
1
2
ω−1

∫
e

∫
V

θw ⊗ w =
1
2
ω−1

∫
V

θ̂w ⊗ w (13)

cannot be achieved with the distribution θ̃ only. Thus, the ‘reduced’ tensor
W̃ acquires a decisive reserve rôle

W̃ =
1
2
ω−1

∫
e

∫
V

θw̃ ⊗ w̃ =
1
2
ω−1

∫
e

θ̃w̃ ⊗ w̃. (14)

The difference

W − W̃ =
1
2
ω−1

∫
e

∫
V

θ (w − w̃) ⊗ (w − w̃) (15)

will be relegated within some ‘internal energy’ tensor.
One can take now a further step and invent for the shadow speck a con-

gruent affine kinetic field with a rate of deformation B, say; congruent in the
sense that, for it, the tensor moment of momentum, now amounting to Y BT ,
is still equal to K: B need only be chosen to coincide with KT Y −1. There is
a similarity here with the process that led to the selection of v: in that case it
was the global momentum of the molecules pertaining to the segment which
turned out to be equal to that which would have been experienced, within
the segment, were all molecules to fly with the same velocity v. In the devised
affine impetus, the tensor moment of momentum remains that occurring in
the real molecular transit through e.



80 G. Capriz

Having also assembled the field B (x, τ), one can imagine it generated
by a fictitious affine deformation G from an arbitrary constant reference. In
principle one need only integrate the partial differential equation

∂G

∂τ
+ (gradG) v = BG, (16)

an integration which determines G a constant right factor apart. Basically the
process in not different from that which leads to trajectories in ordinary fluid
dynamics through an integration over v (a vector which we know to be an
average over a population, not the property of a specific mass-point).

Abiding by the notation Ñ = GGT and R′ = Ñ− 1
2 G used in an earlier

paper [1] G can be split into the product

G = Ñ
1
2 R′, (17)

with the orthogonal tensor R′ providing an intrinsic local reference R. The
inverse G−1 could be intended to express the retrogression of e into a paragon
segment e∗ and of the subplace y into a paragon subplace s: y = Gs (in such a
way, we recall, that K does not change if, in its definition, w−v is substituted
by Ġs).

The average molecular velocity with respect to R, w̃ − v − Ġs, can be
pulled back with the help of G to provide us with the ‘peculiar’ velocity c

c = G−1
(
w̃ − v − Ġs

)
. (18)

Some additional remarks:

(i) c is observer-independent; any rotation of the observer does not influence
the reading of c.

(ii) The choices of s and c are such that, not only
∫

e
θ̃s = 0,

∫
e
θ̃c = 0, but

also ∫
e

θ̃s ⊗ c = 0. (19)

(iii) Those choices make the integral∫
e

θ̃ (w̃ − v − By)2 (20)

a minimum; thus, also in this sense, the option suggested for B is best
fitting.

A crucial precondition for progress is to make it clear, even if repetitive,
that the spatial segment e is meant to be interpreted as the instantaneous
placement of a fictitious material speck which translates with the velocity v
and deforms affinely with a rate directed by B; the placement e derives from
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another changeless fictional placement e∗, with the central assumption that
the transplacement from e∗ to e preserves mass:

·
µθ detG = 0. (21)

A decisive corollary ensues: if G is a sufficiently regular function of z and τ ,
then (∫

e

θ̃G
)·

=
∫

e

θ̃G·. (22)

Hence, in particular, ω̇ = 0.
The assumption (21) is compatible with macroscopic mass balance because

molecules of one speck may protrude into and from neighbouring specks. Inside
e the agitation of the molecules is described only within the limits allowed by
the assignment of the field w̃. A global estimate of the intensity of agitation
at x (i.e., within e) is offered by the tensor H :

H = ω−1

∫
e

θ̃
(
w̃ − v − Ġs

)
⊗

(
w̃ − v − Ġs

)
= ω−1G

(∫
e

θ̃c ⊗ c

)
GT ; (23)

notice that
W̃ = BY BT + H. (24)

Exploiting the shadow kinetics, one finds that

Ẏ =
(

ω−1

∫
e

θ̃y ⊗ y

)·
= ω−1

∫
e

θ̃
·

(y ⊗ y) =

= ω−1

∫
e

θ̃ (w ⊗ y + y ⊗ w) = KT + K = BY + Y BT . (25)

On the other hand from the equation for G above one gets also(
GGT

)·
= BGGT + GGT BT . (26)

Thus the ‘strain’ GGT satisfies the same condition required of Y ; choosing the
arbitrary factor so as to adjust also dimensions one is led to the identification

Y = (meas e)
2
3 GGT . (27)

Y can be interpreted as an intrinsic metric at x and, ultimately at all points
occupied by the body.

3 Straining and Allied Notions

It may be argued that our entire analysis balances precariously on the razor
edge of ingrained ambiguities tied with the simultaneous concerns with two
scales; misconceptions must be prevented already with regards to the notion
of straining.
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Above the tensor G was sought from knowledge of B; likewise the formal
construction of the placement gradient F can be effected. However, whereas
the former rendition is conceived strictly within e, the latter demands knowl-
edge of v over all elements in the immediate gross neighbourhood of x, so that
L = gradxv be available. Then F can be sought as a solution of Ḟ = FL and
there is no geometric reason for F to be conditioned by G, nor, of course,
L by B. Furthermore, within e, one can evaluate gradyw̃:

gradyw̃ = B + G (gradyc) , (28)

yet another distinct tensor, which averaged over e

ω−1

∫
e

θ̃gradyw̃ = B + ω−1G

(∫
e

θ̃gradyc

)
(29)

leads to a new field over B, say J (x, τ), which assesses a sort of micro-
stretching and spin evoked from the molecular maelstrom and to be, possibly,
attributed to e.

Thus B, chosen to estimate most fittingly the relative kinetic energy is
not quite as successful in matching average micro straining. Of course, the
additional term might still vanish or, at least, amount to little and thus be
negligible; only the scrutiny of many special instances will offer evidence one
way or another. Rewriting the correction to B in the form

ω−1G

(∫
e

θ̃gradyc

)
= ω−1G

(∫
∂e

θ̃c ⊗ n −
∫

e

c ⊗ grady θ̃

)
(30)

(n the normal to ∂e) evidences a contribution due to a flux through ∂e and
one due to a rearrangement within e.

Below attention is focused on the requited rôle of F versus G or of L
versus B. In a sense, G may be envisioned to account for:

(i) The influence within the element of the macrostretch F , plus
(ii) The rearrangement of molecules within the macrostretched element inso-

far as a crowding near the centre implies a smaller moment of inertia than
a crowding at the periphery, and

(iii) The protrusion of molecules beyond the element bounds after they are
expanded by the macrostretch and insofar as they can be accounted for
affinely.

Above the concepts of stretch are, of course, virtual as quantities derived
from an irregularly evolving reality. They might, nevertheless, take up direct
capacity within some ensuing developments; then the formal splitting of G into
the product of GF−1 by F (or, rather, of F by F−1G ) separates nominally
the outcome of action (i) from the other two; to the combined effect of the
latter the contribution of (ii) could be measured by GGT though such choice
includes consequences of protrusion proper (though excluding, however, the
effects mentioned in the previous paragraph).
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In an essay on perfect pseudofluids [2], the following strain characteristics
were invoked

C = FT F, N = GT G, X = G−1F, (31)

leading to the rates

Ċ = 2FT (symL)F, Ṅ = 2GT (symB)G, Ẋ = G−1 (L − B)F. (32)

Notice that Ẋ is not independent of Ċ, Ṅ . Thus, strictly, X is not the appro-
priate characteristic to pool with C and N ; rather that rôle could be properly
taken by

Q = R′T R, (33)

where R and R′ are the orthogonal tensors associated with F and G respec-
tively, with

F = RC
1
2 , G = R′N

1
2 . (34)

In fact,
Q̇ = R′T

(
ṘRT − Ṙ′R′T

)
R = R′T (skwL − skwB)R (35)

is evidently independent of Ċ, Ṅ .
Protrusion does not necessarily mean loss or gain of molecules: in an ele-

ment number density may easily be balanced by intrusion from neighbouring
elements. Thus a discrepancy between F and G by itself is insufficient to imply
mass variation, it might simply give a hint as to the extent of interpenetra-
tion. A scalar measure of the latter could be the different change of volume
attributed by F and G: α = det

(
FG−1

)
, leading to the rate

α̇ = αtr (L − B) . (36)

Rather, it is only in the presence of a relatively steep gradient of α or, more
generally, of X that protrusion implies deviant features. Thus that gradient
enters necessarily among descriptive variables, perhaps through associated
quantities, such as wryness, torsion, Burgers’ vector, but also ‘extra matter’.

Strain measures like C, N and Q appear inappropriate when address-
ing phenomena in fluids; in fact one may deem the bare pull-back linked
to F , or G, as artificial; although a reference state could still be imagined:
e.g., one where molecules are distributed homogenously within the element
at some standard number density. Also, one must not disregard the oppor-
tunity offered apparently by those strain measures, to compare and contrast
models of semisolids subject to ‘configurational’ changes, i.e. to mutations of
background.

Strictly, when seeking theories for fluids, one should rather evidence
measures bearing only on the current state such as the metrics

C̃ = FFT and Ñ = (meas e)−
2
3 Y = GGT , (37)
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the rotation
Q̃ = R′RT , (38)

a wryness w defined as the gradient of GF−1, the consequent torsion h, dis-
location density and Burgers’ vector b (relative to any plane of normal n)
given by

w = grad
(
GF−1

)
, h =

1
2
(
w − wt

)
, b =

(
ehT

)
n, (39)

where the exponents t and T mean minor right transposition and major
transposition respectively in the third-order tensors w and h, e is Ricci’s
permutation tensor. The common invariants of all those tensors have then
a crucial rôle to play.

4 Balance Laws

The scenario promoted in the previous sections evidences within the region B,
once totals over each e are affected, the substratum provided by the fields of
gross density ρ and moment of inertia Y

ρ =
µ

(meas e)

∫
e

θ̃, Y = ω−1

∫
e

θ̃y ⊗ y (40)

and, later, the kinematic fields v, B and H

v = ω−1

∫
e

θ̃w̃, B =
(∫

e

θ̃w̃ ⊗ y

)(∫
e

θ̃y ⊗ y

)−1

, (41)

H = ω−1

∫
e

θ̃ (w̃ − v − By) ⊗ (w̃ − v − By) . (42)

Thus, the intention is not to press the depth of description of events in the
body down to the details of the distribution θ (or, yet less deeply, θ̃) but to
stop at the stage set by those fields. Further, one expects that the evolution of
the latter be ruled by balance laws also lingering at their level, hence involving,
on the one hand, the time derivatives of v, B (or, better, K), H and, on the
other hand, totals over e of impact and/or bonding effects be those intimate
(or close, i.e. among subspecks within e), internal (among distinct specks),
external to the body. Such totals per unit mass are formally expressed by the
integrals

ω−1

∫
e

θ̃gc, ω−1

∫
e

θ̃gi, ω−1

∫
e

θ̃ge (43)

and could, in principle, be given substance once a collision/coherence oper-
ator (as occurs in Boltzmann equation) were known. Be that as it may, the
presumption below is that

·
w̃ equals the sum gc + gi + ge as per Newton law.
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Disregarding, as said above, possible deeper inhomogeneities (which would
be gauged by θ̃ (τ, z) and would be related to div w̃), conservation of mass is
invoked by the standard law

ρ̇ + ρdiv v = 0. (44)

What could be called law of conservation of moment of inertia was already
written (see (27)) and follows immediately from the definition (40)2

Ẏ = 2symK. (45)

Because totals of intimate interactions vanish, conservation of momentum
embodied by (see (41)1 and (43))

ρv̇ = ρω−1

∫
e

θ̃
(
gi + ge

)
, (46)

might take the usual form

ρv̇ = ρb + divT, (47)

though here one should justify anew the presumption that external actions
sum up into a functional absolutely continuous with gross volume, whereas
internal actions obey Cauchy’s assertions.

Conservation of moment of momentum follows from the definition of K
(see (12) and, again, (43))

K̇ = ω−1

∫
e

θ̃w̃ ⊗ w̃ + ω−1

∫
e

θ̃y ⊗ (
gc + gi + ge

)
, (48)

from the link (24) and the property (25)

ω−1

∫
e

θ̃w̃ ⊗ w̃ = ω−1

∫
e

θ̃
(
Ġs + Gc

)
⊗

(
Ġs + Gc

)
= BK + H, (49)

with the conclusion

K̇ − BK − H = ω−1

∫
e

θ̃y ⊗ (
gc + gi + ge

)
. (50)

Notation introduced in earlier papers could be called upon

M = ω−1

∫
e

θ̃y ⊗ ge, A = −1
ρ

∫
e

θ̃y ⊗ gc. (51)

No impelling case, but analogy and convenience, is yet available to declare
that the third addendum in the right-hand side of (50) be expressible as the
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divergence of a third-order tensor m, the factor ρ−1 apart, again as used in
earlier papers. But, when that is the case the next balance law reads

ρ
(
K̇ − BK − H

)
= ρM − A + div m. (52)

Finally one finds, again with reference to (43), (24), (25)

Ḣ = 2sym
[
ω−1

∫
e

θ̃
(
gc + gi + ge − Ġc

)
⊗ Gc

]
(53)

or
Ḣ + 2symBH = 2ω−1sym

∫
e

θ̃
(
gc + gi + ge

)⊗ Gc. (54)

Again, using notation of earlier papers for tensor virials

S = 2ω−1sym

∫
e

θ̃ge ⊗ Gc, (55)

Z = −1
ρ
sym

∫
e

θ̃gc ⊗ Gc, (56)

and presuming again that also the virial of internal actions have contact char-
acter so that they be expressed as the divergence of a third-order tensor s, the
last balance equation takes the disguise

ρ
(
Ḣ + 2symBH

)
= ρS − Z + divs. (57)

5 Balance of Kinetic Energy

Energy has the leading rôle in the continuum discussed here. Thus it seems
appropriate to assemble a few results below, even if largely mentioned else-
where.

Within our model the kinetic energy tensor per unit mass W can be split
thus

W = W̃ + U (58)

with a thermal contribution

U =
1
2
ω−1

∫
e

∫
V

θ (w − w̃) ⊗ (w − w̃) (59)

and a properly kinetic one

W̃ =
1
2ω

∫
e

θ̃w̃ ⊗ w̃ =
1
2ω

∫
e

θ̃
(
v + Ġs + Gc

)
⊗

(
v + Ġs + Gc

)
, (60)
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or, see remarks at the end of Sect. 2,

W̃ = v ⊗ v + BY BT + H. (61)

The tensorial kinetic energy theorem follows from the balance equations
(47), (52), (57) multiplying tensorially the first by v, the second by B, sum-
ming the two with the third one (divided by 2) term by term, taking the
symmetric part of both sides and integrating, by parts where appropriate,
over the region occupied by the body∫

B
ρ

·
W̃ =

∫
B

ρsym

(
v ⊗ f + BM +

1
2
S

)
−

−
∫
B

(
sym

(
1
2
Z + LT T

)
+ BA + bmt

)
+ (62)

+
∫

∂B
sym

(
v ⊗ Tn + B (mn) +

1
2
sn

)
,

where n is the unit normal vector to ∂B, b is the gradient of B, and the
exponent t to m indicates minor right transposition:

(
bmt

)
ij

= Bia,bmajb.
The central term in the right-hand side must be interpreted as the tensor
power of intimate and internal actions, with densities respectively

−sym

(
1
2
Z + BA

)
and −sym

(
LT T + bmt

)
. (63)

Hence the density of scalar power is given by

−
(

1
2
trZ + L · T + B · AT + b · (mt

)T
)

. (64)

The equation of balance of moment of momentum (52) does not secure
here observer independence of (64), as occurs in the classical case for the
vectorial version. Two observers on frames in relative motion read different
values of L and B: the change in both is the addition of the same skew tensor.
Hence observer independence is assured if and only if

skwT = skwA. (65)

If one were to demand observer independence of the tensor power then the
stronger condition

T = −AT (66)

would be required, when the tensor power would reduce to

−sym

(
1
2
Z + (L − B) T T + bmt

)
. (67)
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It was already remarked in Sect. 3 that symL and symB can be expressed
in terms of the strain rates Ċ and Ṅ respectively and skw (L− B) in terms
of Q̇

symL =
1
2
FT ĊF−1, symB =

1
2
GT ṄG−1,

skw (L − B) = R′Q̇RT . (68)

Longer algebra shows that

bijk + bjik = G−1
Bi ṅABKG−1

AjF
−1
Kk − ṄABG−1

BaGaC,k

(
G−1

Ai G
−1
Cj + G−1

AjG
−1
Ci

)
(69)

where n = (gradN)F .
Thus the scalar power density can be written as an affine function of

Ċ, Ṅ , Q̇, ṅ

−trZ − (
tb − b

) · m − (
F−1 (symT )F−T

) · Ċ − (
G−1 (symA)G−T

) · Ṅ +

+
(
G−1

Ai G
−1
Cj + G−1

Aj G
−1
Ci

)
G−1

BaGaC,kmijkṄAB − (70)

− 2
[
R′T (skwT )R

] · Q̇ − G−1
Ai G

−1
BjmijkF

−1
Ck ṅABC .

This result suggests the possible existence of continua for which a potential
ϕ (C,N,Q,m) exists and is such that

symT = 2ρF
∂ϕ

∂C
FT , skwT = skwA = ρR′ ∂ϕ

∂Q
RT , (71)

mijk = 2ρGiAGjBFkC
∂ϕ

∂nABC
; (72)

thus m is symmetric in the first two indices and, as a consequence, the second
term in the sum (70) vanishes. The factor multiplying ṄAB is equal to

G−1
Ai (symA)ij G−1

Bj + 2ρGiRGjSFkT
∂ϕ

∂nRST

(
G−1

Ai G
−1
Cj + G−1

AjG
−1
Ci

)
G−1

BaGaC,k

(73)
and hence

(symA)ij = 2ρGiA
∂ϕ

∂NAB
GjB − 2ρ (GiRGjS)k FkT

∂ϕ

∂nRST
. (74)

Finally
trZ = 2ρϕ̇. (75)

When the constitutive laws above apply, the balance equations of momen-
tum and tensor moment of momentum acquire the rôle of evolution equations
for v and B (or x and G). The rule of progress for H needs additional physical
insight.
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6 The First Principle

A deeper kinetic energy theorem ensues if molecular events are graded more
finely inside the distribution θ rather than θ̃. Then, some intriguing corol-
laries ensue; their deduction is barely sketched below omitting adscititious
qualifications to display the essence.

Choose θ (z, w)h dwdz to represent the resultant of the forces acting on
the molecules belonging to the immediate neighbourhood of z, w, molecules
numbering θdwdz and h to be eventually split into the sum hc + hi + he, as
g was earlier.

Then ẇ = h and

Ẇ =
(

1
2
ω−1

∫
e

∫
V

θw ⊗ w

)·
= ω−1

∫
e

∫
V

θsym (w ⊗ h) . (76)

Recall notation introduced at the beginning of Sect. 5

W = W̃ + U. (77)

Hence
·

W̃ + U̇ = ω−1

∫
e

∫
V

θsym (w ⊗ (h − g)) + ω−1

∫
e

∫
V

θsym (w ⊗ g) ; (78)

but, from the restricted kinetic energy theorem and the appropriate interpre-
tation of terms∫

B
ρ

·
W̃ =

∫
B

µ (meas e)−1
∫

e

∫
V

θsym (w ⊗ g) −

−
∫
B

sym

(
1
2
Z + LT T + BA + bmt

)
(79)

so that ∫
B

ρU̇ =
∫
B

µ (meas e)−1
∫

e

∫
V

θsym (w ⊗ (h − g)) +

+
∫
B

sym

(
1
2
Z + LT T + BA + bmt

)
. (80)

Finally, through the standard criterion of localization justified by the fact that
the law above would equally apply when the integrals were extended to any
subbody of B,

ρU̇ = µ (meas e)−1
∫

e

∫
V

θsym (w ⊗ (h − g))+

+ sym

(
1
2
Z + LT T + BA + bmt

)
. (81)

Such is the local equation which expresses, under the circumstances, the first
principle of thermodynamics.
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From Extended Thermodynamics
to Granular Materials

Tommaso Ruggeri

Summary. Taking into account the analogy with the kinetic approach of rarefied
gases, we present a brief review of some recent results obtained in Rational Extended
Thermodynamics, suggesting that this theory could be useful in modeling granular
materials.

1 Introduction

Rapid granular flows are frequently described at the macroscopic level by
the fluid-dynamic equations, suitably modified in order to take into account
the dissipation due to the collisions among particles. This is the continuum
approach, see for example the papers by Haff [1] and Capriz [2–4]. The limit
of this method is that the transport coefficients are unknown and also it is not
clear the validity limit of the theory. Alternative to the continuum approach
is the kinetic approach, which makes use of the method borrowed by the
theory of rarefied gases. In this framework the mean free path of the grains
are supposed much larger than the typical particle size (see, for example,
Cercignani et al. [5], Benedetto et al. [6], Bobylev et al. [7]).

The prototype of Extended Thermodynamics (ET) [8] is the Grad 13-
moment theory [9] and several authors have used the methods of Grad to
attack the problem of granular materials (see, for example, Jenkins and
Richman [10] and Bisi et al. [11]).

On the other hand, in the case of rarefied gases, we know that in some
situations the results of Grad are unsatisfactory when compared to the exper-
iments. Examples concern sound waves in the limit of high frequencies, light
scattering and shock waves [8]. In all these cases it is necessary to increase the
number of moments. In such situations ET methodology has revealed itself to
be successful and now we have a well-established theory [8]. Therefore taking
into account the analogy between rarefied gases and granular materials, as
well as the fact that ET is in the middle between kinetic and macroscopic
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theories, perhaps the approach of ET may be useful also to obtain new results
in the research field of granular materials.

For this reason we present in this chapter the fundamentals of ET along
with some recent mathematical results, as a starting point for a possible new
approach in the granular materials theory.

2 Boltzmann Equation and Moments

The kinetic theory describes the state of a rarefied gas through the phase
density f(x, t, c) where f(x, t, c)dc is the number density of atoms at the
point x and time t that have velocities between c and c + dc. The phase
density obeys the Boltzmann equation

∂tf + ci ∂if = Q, (1)

in which the right-hand side is due to collisions between the atoms. It is well
known that macroscopic thermodynamic quantities are identified as moments
of the phase density

Fk1k2···kj =
∫

fck1ck2 · · · ckj dc, (2)

and the moments satisfy a hierarchy of balance laws in which the flux in one
equation becomes the density in the next one:

∂tF + ∂iFi = 0
↙

∂tFk1 + ∂iFik1 = 0
↙

∂tFk1k2 + ∂iFik1k2 = Pk1k2

↙
∂tFk1k2k3 + ∂iFik1k2k3 = Pk1k2k3

...
∂tFk1k2...kn + ∂iFik1k2...kn = Pk1k2...kn

...

Taking into account that Pkk = 0, the first five equations are conservation
laws and coincide (using different symbols) with the well known conservation
of mass, momentum and energy, respectively.

If we chose instead

h = k

∫
f log f dc, hi = k

∫
f log f ci dc (3)
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as momentum, we obtain

∂th + ∂ih
i = g ≤ 0 (4)

representing the balance of entropy when we identify −h, −hi and −g as the
entropy density, the entropy flux and the entropy production respectively.

2.1 The Closure of Extended Thermodynamics

When we stop the hierarchy at the density with tensor of rank n, we have
the problem of closure because the last flux and the productions terms are
not in the list of the densities. The idea of Rational Extended Thermodynam-
ics [8] is to consider the truncated system a as phenomenological system of
continuum mechanics and then we consider the new quantities as constitutive
functions

Fk1k2...knkn+1 ≡ Fk1k2...knkn+1 (F, Fk1 , Fk1k2 , . . . Fk1k2...kn)
Pk1k2...kj ≡ Pk1k2...kj (F, Fk1 , Fk1k2 , . . . Fk1k2...kn) 2 ≤ j ≤ n

to be determined.
According with the continuum theory, the restrictions on the constitutive

equations come only from universal principles, i.e.: the entropy principle, the
objectivity Principle and Causality and Stability (convexity of the entropy).
We discuss later the implications of these three principles.

2.2 Macroscopic Approach of ET in the 13 Fields

The first attempt of ET was the 13-moments case. Thirteen is a special number
because the first thirteen moments have a physical meaning:

∂tF + ∂iFi = 0
∂tFk1 + ∂iFik1 = 0
∂tFk1k2 + ∂iFik1k2 = Pk1k2

∂tFk1kk + ∂iFik1kk = Pk1kk

The constitutive quantities are in the present case : Fi<k1k2>, Fik1kk, P<k1k2>

and Pk1kk (the <> indicates the deviatoric – traceless – part of the tensor).
The restrictions of ET due to the universal principles – in particular the

entropy principle – of ET are so strong that, at least for processes not too
far from equilibrium, the system is completely closed and the results are in
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perfect agreement with the kinetic closure procedure proposed by Grad [9].
In this case the closed system becomes (employing the usual symbols):

∂

∂t
ρ +

∂

∂xi
(ρvi) = 0

∂

∂t
(ρvj) +

∂

∂xi
(ρvivj + pδij − σij) = 0

∂

∂t

(
ρe + ρ

v2

2

)
+

∂

∂xk

{(
ρe + ρ

v2

2
+ p

)
vk + qk − σkjvj

}
= 0

∂

∂t

{
ρ

(
vivj − v2

3
δij

)
− σij

}
+

∂F<ij>k

∂xk
= τo σij

∂

∂t

{(
ρv2 + 5p

)
vk + 2qk − 2σkjvj

}
+

∂Fppik

∂xk
= 2τoσkjvj − τ1qk

(5)

where

F<ij>k = Fijk − 1
3
Fhhkδij ;

Fijk = ρvivjvk +
(

pvk +
2
5
qk

)
δij +

(
pvi +

2
5
qi

)
δjk +

(
pvj +

2
5
qj

)
δik;

Fppij =
(
ρv2 + 7p)

)
vivj + (pδij − σij) v2 −

− σikvkvj − σjkvkvi +
14
5

(qivj + qjvi) +
4
5
qkvkδij +

p

ρ
(5pδij − 7σij) .

The first five equations are the usual conservation laws of mass, momentum
and energy, while the last two blocks are evolution balance laws for the shear
stress σij and for the heat flux qi, respectively. They reduce to the Navier–
Stokes and Fourier constitutive equations when some relaxation times are
small [8].

We would like to stress that in the present case we have assumed the sys-
tem (5) motivated by the kinetic theory but, after that, our procedure was
completely macroscopic forgetting that the F ′s are related to a distribution
function. It is very interesting to observe that the macroscopic universal princi-
ples give results which are in perfect agreement with the kinetic considerations
obtained by Grad.

3 Extended Thermodynamics of Moments

Unfortunately, for rarefied gases we have discovered that in limit situations as
high frequencies for sound waves, or special angles for light scattering, or large
Mach number in shock waves, the 13-moment theory gives better results with
respect to the Fourier–Navier–Stokes one, but its predictions are unsatisfac-
tory when the results coming from the theory are compared to experiments.
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In such situations we need more moments. In this case it is too difficult to
proceed with a pure macroscopic theory (as the 13-moments theory) and it
is necessary to recall that the F ′s are moments of a distribution function f .
To explain this approach we first rewrite the hierarchy of balance laws in the
more compact notation

∂tu
A + ∂iF

iA = gA, (6)

with

uA =
∫

fcAdc; F iA =
∫

fci cAdc; (7)

gA =
∫

QcAdc, (8)

where cA

cA =
{

1 for A = 0
ci1ci2 · · · ciA for 1 ≤ A ≤ n

and

uA =
{

u for A = 0
ui1i2···iA for 1 ≤ A ≤ n

; F iA =
{

ui for A = 0
uii1i2···iA for 1 ≤ A ≤ n

the indices i and i1 ≤ i2 ≤ · · · ≤ iA assume the values 1, 2, 3.
We require for the truncated system (6) the compatibility with an entropy

law, i.e. all the solutions of (6) must satisfy also the supplementary entropy
balance law (4) where h, hi and g are functionals of f trough the moments (6)
with A = 0, . . . , n.

This condition becomes now a strong restriction for the distribution func-
tion f and the problem is: For which distribution function fn all the classical
solutions of (6) with (7) and (8) are solutions of (4)?

It was proved by Boillat and Ruggeri [12] that the function fn depends on
(x, t, c) only trough a single variable

fn ≡ fn(χn),

where

χn =
n∑

A=0

u′
A(x, t)cA

which is a polynomial in c. In this case we have

h =
∫

(χnF ′(χn) − F (χn)) dc; (9)

hi =
∫

ci(χnF ′(χn) − F (χn)) dc;

g =
∫

Qχn dc,
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where the partition function F (χn) satisfies the relation

F ′ =
dF

dχn
= fn(χn).

Introducing the potentials

h′ =
n∑

A=0

uAu′
A − h; h′

i =
n∑

A=0

FA
i u′

A − hi;

we obtain

h′ =
∫

F (χn) dc, h′
i =

∫
F (χn)ci dc,

and, choosing the main filed variable u′
A as field, it is possible to verify that

uA =
∂h′

∂u′
A

; F iA =
∂h′

i

∂u′
A

;

and the original moment system becomes closed in the main field components
and symmetric hyperbolic [12]

HAB∂tu
′
B + HAB

i ∂iu
′
B = gA(u′

C), (10)

where

HAB(u′
C) =

∂2h′

∂u′
A∂u′

B

=
∫

F ′′(χn)cAcBdc;

HAB
i (u′

C) =
∂2h′

i

∂u′
A∂u′

B

=
∫

F ′′(χn)ci
cAcB dc.

Indeed, the matrix H is positive definite provided that F ′′(χn) > 0 holds,
since

HABXAXB =
∫

F ′′ (cAXA

)2
dc > 0 ∀X �= 0.

If we require now that −h is the usual entropy density for non-degenerate
gases, viz.

h = k

∫
fnln fn dc

we obtain from (9)

(χn − k lnF ′)F ′ − F = 0.

and by differentiation we obtain

fn(χn) = e−1+χn/k. (11)
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At the equilibrium, (11) reduces to the Maxwellian distribution function.
We observe that fn is not solution of the Boltzmann equation but we have the
conjecture (open problem) that for n → ∞, fn tends to the solution of the
Boltzmann equation. There are several mathematical difficulties in the full
non linear case, in particular about the convergence of the momentum with
the approximate distribution function (11), but the convergence is ensured at
least near to the equilibrium state (see, e.g., [13–15]).

4 Maximization of Entropy

There is an alternative to Extended Thermodynamics of moments for the
determination of the phase density fn. This alternative is the maximization
of entropy under constraints. The two methods are equivalent.

The maximization of entropy is a method often used in statistical mechan-
ics for the calculation of the phase density, and over the years it has acquired a
certain plausibility so that its logic seems convincing. Therefore it is important
to prove the consistency – even equivalence – of Extended Thermodynamics
with the maximization method.

We treat the more general case in which h is a generic functional of f

h =
∫

ψ(f)dc.

We ask the phase density to provide a maximum of h under the constraints of
fixed values for the moments uA. With the Lagrange multipliers λA we form
the expression ∫

ψ(f)dc +
n∑

A=0

λA

(
uA −

∫
cAfdc

)
(12)

and obtain ∫ (
dψ

df
−

n∑
A=0

λAcA

)
δfdc = 0.

Thus we have

dψ

df
=

n∑
A=0

λAcA

as a necessary condition for an extremum. Hence it follows that fn is a
function of

χ =
n∑

A=0

λAcA

and that ψ(f) has the form

ψ(f) = χnfn −
∫

fndχn. (13)
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As a sufficient condition for a maximum, we have a restriction on the function
ψ(f), viz. d2ψ/df2 < 0.

Insertion of (13) into (12) gives exactly the same result as the entropy
principle, since F ′ = fn and F =

∫
fndχn hold. Thus we conclude that the

maximization of entropy leads to the same result as Extended Thermodynamics
of moments [12].

The reverse is also true, since
∫

(χnF ′ − F )dc with F ′′ < 0 provides a
maximum of h under the constraint. In particular, the Lagrange multipliers
λA are identical to the main field components u′A.

The first Author that applied the idea of maximization of entropy in Exten-
ded Thermodynamics was Dreyer [16] (see also [17]) who started from the
observation of Kogan [18] that the 13-moment phase density of Grad maxi-
mizes the entropy. The procedure of maximizing entropy was introduced in
information theory and physics by Jaynes [19] and it is extensively used under
the name of Maximum Entropy Principle (see, for example, the book by
Kapur [20]).

5 Maximum Characteristic Velocity in Classical Theory

The characteristic velocities λ (in the direction of propagation having unit
vector n ≡ (ni)) of the symmetric hyperbolic system (10) are eigenvalues
of G

GAB = HAB
i ni − λHAB = k

∫
f(χ)(c · n− λ)cAcB dc

and in particular the wave speed for disturbances propagating in an equilib-
rium state are eigenvalues of∫

fM (c · n− λ)cAcB dc , (14)

where fM is the Maxwellian

fM = ae−b(c2
1+c2

2+c2
3); a =

ρ√
2πkT

3 ; b =
1

2kT
.

The integrals in (14) are known and therefore it is simple to evaluate the
maximum eigenvalues for increasing n.

Numerical results were obtained by Weiss [21] that has remarked an increas-
ing value of the maximum characteristic velocity for increasing number of
moments N . For instance, for N = 20, λmax = 1.8 and for N = 15,180,
λmax = 9.36, where λmax is the maximum characteristic velocity evaluated in
equilibrium in sound wave unity. Therefore an interesting problem is: What
is the limit of λmax when n → ∞?

Before giving an answer to this question, we have to recall the theory of
principal subsystems.
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6 Nesting Theories and Principal Subsystems

What kind of relation does exist between two closure theories with different
n (a theory Sn and a theory Sm with n > m)?

Boillat and Ruggeri [22] have proved that Sm is a principal subsys-
tem of Sn. They showed that Sm is obtained from Sn by setting u′α =
0, (α = m+1, . . . , n) and neglecting the corresponding equations for α =
m+1, . . . , n, i.e. if

Sn :

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∂ua(u′b, u′β)

∂t
+

∂F a
i (u′b, u′β)

∂xi
= Πa(u′b, u′β),

∂uα(u′b, u′β)
∂t

+
∂Fα

i (u′b, u′β)
∂xi

= Πα(u′b, u′β)

a = 0, . . . ,m; α = m + 1, . . . , n.

than

Sm :
∂ua(u′b, 0)

∂t
+

∂F a
i (u′b, 0)
∂xi

= Πa(u′b, 0).

For general principal subsystems it was proved that the so-called subchar-
acteristic conditions hold [22]

λ
(n)
min ≤ λ

(m)
min; λ(n)

max ≥ λ(m)
max; ∀n > m. (15)

As a consequence, the maximum velocity does not decrease when the number
of moments increase.

6.1 Example of 13-Moments Principal Subsystems

As an example, we present the principal subsystems of the 13-moment
theory (5). In the present case, the components of the main field u′ are

u′ ≡ (ξ, Λj, ζ, Λ<ij>, Ωk) ,

where

ξ =
1
θ

{
G − v2

2
+

1
2p

σij vi vj − ρ

5p2
qi vi v

2

}
;

Λi =
1
θ

{
vi − 1

p
σij vj +

ρ

5p2

(
v2qi + 2qj vj vi

)}
;

ζ = −1
θ

{
1 − 2ρ

3p2
qkvk

}
; (16)

Λ<ij> = −1
θ

{
1
2p

σij +
ρ

5p2

(
vi qj + vj qi − 2

3
vk qk δij

)}
;

Ωi =
ρ

5θp2
qi,

being G the chemical potential and λmax = 1.65cS.
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Let us consider the principal subsystems that we can obtain.
The 10-moment system is a subsystem of the 13-moment system, obtained

when
Ωi = 0 → qi = 0

and neglecting the last block equation of (5)

∂

∂t
ρ +

∂

∂xi
(ρvi) = 0;

∂

∂t
(ρvj) +

∂

∂xi
(ρvivj + pδij − σij) = 0; (17)

∂

∂t

(
ρe + ρ

v2

2

)
+

∂

∂xk

{(
ρe + ρ

v2

2
+ p

)
vk − σkjvj

}
= 0

∂

∂t

{
ρ

(
vivj − v2

3
δij

)
− σij

}
+

∂F<ij>k

∂xk
= τo σij .

In this case λmax = 1.34cS.
The equilibrium Euler system is a principal subsystem of the 13- and

10-moment systems with

Ωi = 0, Λ<i,j> = 0 → qi = 0, σij = 0

and neglecting the last block equation of (17)

∂

∂t
ρ +

∂

∂xi
(ρvi) = 0;

∂

∂t
(ρvj) +

∂

∂xi
(ρvivj + pδij) = 0;

∂

∂t

(
ρe + ρ

v2

2

)
+

∂

∂xk

{(
ρe + ρ

v2

2
+ p

)
vk

}
= 0.

The maximum velocity is now λmax = 1 cS.

6.2 Lower Bound Estimate and Characteristic Velocities
for Large n

In the previous example we have seen the validity of the subcharacteristic
condition (15), now we are able to prove the behavior of λmax when n → ∞.
The (k + 1)(k + 2)/2 components of order k of the main field

u′
i1i2...ik

, i1 ≤ i2 ≤ · · · ≤ ik,

can be mapped in the corresponding variables
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u′
pqr, p + q + r = k,

where p, q, r are, respectively, the number of indices equal to 1, 2, 3. With this
notation

χn =
∑
p,q,r

u′
pqrc

p
1c

q
2c

r
3; 0 ≤ p + q + r ≤ n.

Theorem 1 (Boillat and Ruggeri [12]). For any n we have the lower
bound conditions

λmax

cS
≥

√
6
5

(
n − 1

2

)
, (18)

where cS is the sound velocity. Therefore λmax becomes unbounded when
n → ∞.

Sketch of the proof : Using the variable u′
pqr, the components of the

matrix G are given by

ni ∂2h′
i

∂u′
pqr∂u′

stu

− λ
∂2h′

∂u′
pqr∂u′

stu

=
∫

fM (cin
i − λ)cp+s

1 cq+t
2 cr+u

3 dc.

We know that H is positive definite, while G is semi-definite negative, if λ is
the largest eigenvalue λmax. Now the elements aij of a semi-definite matrix
satisfy the inequalities

aiiajj ≥ a2
ij

and therefore we must have∫
fM (cin

i − λmax)c
2p
1 c2q

2 c2r
3 dc∫

fM (cin
i − λmax)c2s

1 c2t
2 c2u

3 dc ≥ (19)(∫
fM (cin

i − λmax)c
p+s
1 cq+t

2 cr+u
3 dc

)2

.

In this case (19) reduces to

λ2
max

∫
fMc2p

1 c2q
2 c2r

3 dc

∫
fMc2s

1 c2t
2 c2u

3 dc ≥(∫
fM (cin

i − λmax)c
p+s
1 cq+t

2 cr+u
3 dc

)2

. (20)

With the choice p = n, s = n − 1, q = r = t = u = 0,n ≡ (1, 0, 0), this
inequality becomes

λ2
max ≥

∫
fMc2n

1 dc1∫
fMc

2(n−1)
1 dc1

=

=
1
b

Γ (n + 1/2)
Γ (n − 1/2)

=
6
5
c2
S

(
n − 1

2

)
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Fig. 1. The behavior of the maximum characteristic velocity versus the truncation
number n and the lower bound estimate (18)

and the proof is complete. Therefore

lim
n→∞λmax = ∞.

In Fig. 1 we compare the numerical values of λmax/cS given by Weiss [21] with
the right-hand side of our lower bound (18).

This is a very surprising result because the first motivation of ET was to
repair the paradox of infinite velocity of the Fourier–Navier–Stokes classical
approach. Therefore for any finite n we have symmetric hyperbolic systems
with finite characteristic velocities but when we take infinite moments we have
a parabolic behavior.

Instead, in relativistic context it was proved that the limit of the maximum
characteristic velocity for n → ∞ is the light velocity [23, 24].

7 Qualitative Analysis

The ET equations are a particular case of a system of balance laws

∂tu + ∂xF(u) = f(u), (21)

where u,F and f are R
N vectors.
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The production term f(u) represents the dissipation but, unfortunately,
as we have seen, not all the components of f are different from zero

f(u) ≡
(

0
g(u)

)
; g ∈ R

N−M .

7.1 Shizuta–Kawashima Condition

The coupling condition discovered by Shizuta and Kawashima (K-condition)
[25, 26] states that the dissipation term present in the second block of the
equations has an effect also on the first block. This plays a very important
role in this case for global existence of smooth solutions. The condition reads:

In the equilibrium manifold any characteristic eigenvector is not in the
null space of ∇f , i.e.:

∇f · d(i)
∣∣∣
E
�= 0 ∀ i = 1, . . . , N, (22)

where d(i) are the right-eigenvectors of the hyperbolic system (21)

(A − λI)d = 0; A = ∇F

and E stands for the equilibrium state, i.e.:

f(uE) = 0. (23)

7.2 Global Existence of Smooth Solutions

If (21) is endowed with a convex entropy law, with h(u) convex entropy
function, and the system (21) is dissipative (see [22, 27] for the appropriate
definition), then the K-condition becomes a sufficient condition for the exis-
tence of global smooth solutions provided that the initial data are sufficiently
smooth. Hanouzet and Natalini [28] in one-space dimension and Yong [29] in
the multidimensional case, have proved the following theorem:

Theorem 2 (Global existence of smooth solutions). Assume that the
system (21) is strictly dissipative and the K-condition is satisfied. Then there
exists δ > 0, such that, if ‖u(x, 0)‖2 ≤ δ, there is a unique global smooth
solution, which verifies

u ∈ C0
(
[0,∞); H2(R) ∩ C1

(
[0,∞);H1(R)

))
Moreover Ruggeri and Serre [30] have proved in the one-dimensional case

that the constant states are stable:

Theorem 3 (Stability of Constant State). Under natural hypotheses of
strongly convex entropy, strict dissipativeness, genuine coupling and “zero
mass” initial for the perturbation of the equilibrium variables, the constant
solution stabilizes

‖u(t)‖2 = O
(
t−1/2

)
.
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In both theorems it plays an important role the possibility to put the
system (21) in the symmetric form thanks to the introduction of the main
field u′ = ∇h introduced first by Boillat [31] in a classical context and by
Ruggeri and Strumia [32] in a covariant formulation.

There are many examples of dissipative systems satisfying the K-condition:
the p-system with damping, the Suliciu model for the isothermal viscoelastic-
ity, the Kerr–Debye model in non linear electromagnetism and the Jin–Xin
relaxation model. Moreover quite recently it was proved that the K-condition
is true also for the Extended Thermodynamics of gases [33] and for binary
mixture of Euler fluids in the presence of chemical reaction [34, 35].

Nevertheless the K-condition is only a sufficient condition for the global
existence of smooth solution. In fact there are examples in which the K-
condition is violated but the system have global smooth solutions (e.g.,
[36]). Recently Lou and Ruggeri [37] have observed that the K-conditions
is necessary (but not sufficient) condition for genuine non linear waves.

8 Comparison with Experiments: Sound Waves
and Light Scattering

The ET is very successful when the results are compared to experiments, in
particular for what concerns sound waves in the limit of high frequencies and
light scattering. In Fig. 2, taken from the book [8], we can see that the so-called
dynamic factor S(x, y) obtained by the ET fits very well the experimental data
(represented in the figure by dots) when n is sufficiently large.

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
x

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

S (x,y)

Fig. 2. Dynamical factor: the perfect agreement between the ET and the
experiments
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Influence of Contact Modelling
on the Macroscopic Plastic Response
of Granular Soils Under Cyclic Loading

R. Garćıa-Rojo, S. McNamara, and H.J. Herrmann

Summary. An alternative to the use of continuous equations and constitutive mod-
els is the microscopic description of the material in terms of the grains themselves
and the contacts (interactions) between them. This approach has been successfully
applied in recent years to the study of many different problems in soil mechanics and
granular physics. An open question is how realistic the microscopic model must be
in order to accurately describe the macroscopic behavior observed in experiments.
The objective of this contribution is to show the influence of different simple models
of compacted granular soils on the overall elasto-plastic response of the system as a
whole. We will focus our investigation on granular ratcheting, which is the persistent
strain accumulation that a granular soil suffers under certain cyclic stress conditions.
The direct influence of different models on the ratcheting response of the material
will also help us to understand further this peculiar behavior of the system. The
influence of particle shape will be also discussed.

1 Introduction

The differences between continuum and discrete methods perfectly reflect the
different ways of approaching problems in soil mechanics. On the one hand,
a continuum description of the material is possible based on well established
constitutive equations, whose parameters are usually measured experimen-
tally. On the other hand, a discrete description will directly take into account
that the material is composed of distinct grains or particles that interact with
each other. The final aim of this micro-structural approach is, however, to find
macroscopic state variables in terms of micro-variables such as contact forces,
grain displacements, local interactions, etc., in the same way that hydrody-
namic fields can be connected with motion of molecules in a fluid. There is
however no analog to Kinetic Theory in soil mechanics, although some useful
results are available connecting macroscopic mechanical variables with a local,
microscopic description of the material [1, 2].

Molecular Dynamics algorithms (MD) has been extensively used during
more than fifty years for the numerical solution of a wide variety of problems.
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Although molecular fluids were the original application of the method [3], it
has been also applied successfully to the study of granular materials in their
diverse forms [4]. In the field of soil mechanics, the term discrete element
method is often applied to this technique, in order to emphasize the differ-
ences with finite element methods. This general name should be understood
as referring to all numerical solving methods in which the dynamics of the
grains are solved. In this sense, the term discrete element method is general
and includes the Molecular Dynamics based methods (usually called Distinct
Element Methods [5]) as well as more recent algorithms in which the basic
unit are also the grains and their interactions [6]. The Non Smooth Contact
Dynamics (CD) is therefore also a discrete element method, in the sense that
the evolution of the system is solved reproducing the dynamics of the particles
in terms of their inter-particle interactions [7]. It has been profusely used in
the investigation of force networks and contact forces [8–11].

The aim of this chapter is the investigation of the influence of contact mod-
elling on the overall macroscopic response of a granular material subjected to
a stress-controlled cyclic loading experiment. In such experiment and above
the shakedown limit, there is a plastic response of the system characterized
by a constant strain-rate and a cyclic behavior of the sliding contacts (usually
called ratcheting) [12, 13]. In order to investigate these phenomena, we first
reproduce several loading cycles and analyze the differences found using dif-
ferent simulation methods, namely the MD and CD algorithms. This will also
lead us to the briefly discuss the response of the system to a gradual increase
of pressure up to the point where deformation starts. The applicability of
both MD and CD discrete schemes to the study of the micro-mechanics of
our simple granular soil model will be also briefly discussed. Results from MD
and CD simulations of a dense system of spheres under the conditions of a
biaxial test will be presented.

Recently, a thorough comparison of both methods has been presented for
the case of a very simple granular packing [14]. In that reference, the influence
of the iterative process inherent to CD, on the indeterminacy of the method
has also been discussed and has been shown to be relevant for the overall
material response. In this chapter, we want to investigate the relevance of
the contact law used in the MD algorithm. For that purpose, results of the
simulation of a granular packing using a linear and a non-linear contact law
will be discussed.

This chapter is organized as follows. In Sect. 2 some basic features of MD
and CD methods are presented. In Sect. 3, we present the results of the simu-
lation of rigid and deformable particles under biaxial test conditions. We use
Contact Dynamics for rigid particles and Molecular Dynamics for deformable
ones. In this latter case, we show also results of two different contact laws.
We conclude, in Sect. 4, with the discussion of the results.
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2 Discrete Element Methods

A granular medium is a physical system composed by distinct basic units
(grains) of a macroscopic size (typically bigger that 1 µm). If the material is
dry and non-cohesive, the only interactions between grains are friction and
repulsion. In this chapter, we will stick to the usual case of Mohr–Coulomb
friction. The discrete character of the medium results in a complex behavior
during loading and unloading that cannot be described properly up to now
by any constitutive equation. Given the nature of the system, it is possible,
however, to solve numerically the evolution of the grains once a valid model
has been established.

Discrete element methods fit by construction and nature in a microscopic
description of the granular medium. In this approach, the nature of the grains,
and their interactions, fully determine the material response. How these inter-
actions are modeled is an interesting subject itself, since contact modelling is
a key point for any discrete model [15]. Currently used discrete methods can
be basically divided into two main categories, depending on the nature of the
particles (soft or infinitely hard). The simplest model reproducing most of the
key features of granular material is an assembly of disks (or spheres, in 3D). In
the MD method, the disks are soft in the sense that they can overlap, and the
interaction between them is visco-elastic and proportional to the overlap. This
idealization mimics the deformation that two real grains experience in their
collision (see Fig. 1). The dynamics of the system is then solved in fixed time
steps in which disturbances propagate only to the closest neighbors. In CD,
the grains are rigid and an implicit iterative algorithm is used, which has the
significant advantage that the implementation of friction is straightforward.

Particle 2 Grain 2

Grain 1Particle 1

r2

1r

d

A

Fig. 1. Model of the deformation of the grains and contact forces. The particles
(idealized grains on the right side of the figure) are allowed to overlap, but they are
subjected then to an elastic force proportional to the overlapping that pull them
apart. The interaction of two grains is represented on the left side of the figure,
where their deformation is explicitly shown
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We will describe the algorithms used for the MD and CD simulations pre-
sented in this chapter, after dealing with the boundary conditions used in our
simulations.

2.1 Boundary Conditions: Biaxial Test

The biaxial test is often used in engineering to characterize the stress–strain
behavior of materials. A sample is closed in a rectangular test chamber, and
subjected to a confining pressure. Then a force is applied to the fully mobile
box walls, so that σ1 �= σ2, as shown in Fig. 2. In our experiments, we put a
granular material in the biaxial test chamber, and start with σ1 = σ2. The
walls compress the originally dilute material into a dense packing. Then, σ2

increases gradually until the sample starts to deform, i.e., σ1 and σ2 obey

σ1 = P0, σ2 = P0(1 + ∆σf(t)), (1)

where f(t) is a function of time, and the ∆σ controls the loading intensity.
Note that ∆σ is basically the maximum value of the deviatoric stress reached
during the test. We choose f(t) so that the system is loaded quasi-statically,
that is, it passes through a series of stationary states, up to the value of
∆σf(t0) where the sample yields. The response of the system will be measured
by the dimensional quantity γ, which is be defined in terms of the deviatoric
permanent strain. This, analogously to the deviatoric stress, is the difference
of the strains in the principal directions. Let the permanent strains in the
principal directions be

ε1(t) =
Lx(t)
L0

x

, (2)

ε2(t) =
Ly(t)
L0

y

, (3)

where Lx/y(t) are the dimensions of the system at time t, whereas L0
x/y are

the dimension at the beginning of the loading. Then, γ is defined as

γ = ε2 − ε1. (4)

Fig. 2. Hambly’s principle for biaxial test. The degrees of freedom of the walls
allows to impose any pair of stresses σ1, σ2 to the system
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Sometimes it is interesting to define the recoverable resilient strain, γR,
accumulated along a cycle. Similarly to (4), the resilient deviatoric strain is
defined in terms of the resilient strains as

γR = εR
2 − εR

1 . (5)

The definition of εR
1 and εR

2 are similar to that in (2) and (3). They are
both measured at the final stage of the loading, just before unloading starts.
More detailed information about γR and other resilient parameters can be
found under the reference [16].

2.2 Molecular Dynamics

In MD, the contact forces are calculated by considering that the overlap
between two touching particles represents the deformation that generates the
collision. The most successfully applied model for the contact between two
spherical bodies is the well known Hertz–Mindlin model [17], in which the con-
tact forces in the normal (fn) and tangential (ft) directions are proportional
to the overlap distance δ

fn = −Knδn, (6)
ft = −Ktδt, (7)

with the relatively complicated expression for the contact stiffnesses

Kn =
4
3
E∗√R∗δ1/2

n , (8)

Kn = 8G∗√R∗δ1/2
n , (9)

being E∗ is the equivalent Young modulus, G∗ the equivalent shear modulus
and R∗ the equivalent radius of the particles. An incremental approach for
the force calculation, based in the previous calculation, allow to account for
dissipative micro-slip effects

∆ft = −Kt∆δt, (10)

where
Kt(δn, δt, E

∗, G∗, R∗, µ, . . .) (11)

The periods in the previous function indicate further dependencies that might
also be important (such us the stress path, or any other additional rele-
vant variables). This law is sometimes known as Hertz–Mindlin–Deresiewicz
incremental contact law.
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2.3 The Normal-Dashpot Model

A simpler approach, originally proposed by Cundall and Strack [18], is easily
applicable to larger systems of granular materials will be used. Let us suppose
that two particles i and j first touch at time t∗. Two imaginary springs are
then created, one pointing along the normal direction, and the other along
the tangential direction. The two springs have different properties to account
for the difference between normal and tangential forces. The normal spring
simply oppose to further overlapping (as shown in Fig. 1). The constant of
the spring, kn, controls the stiffness of the contact (i.e., the typical depth of
the overlapping). Besides this elastic force exert in each contact, a viscous
damping is also imposed, assuring some dissipation during the collision. Thus
the normal force is

R = knδn − γδ̇n, (12)

where δn is the length of the normal spring.
The calculation of the tangential forces T is slightly more complicated,

because they must obey the Coulomb condition |T | ≤ µR, where µ is the static
friction coefficient. We suppose that a tangential spring is created at time t∗
and it is related to the tangential force via a second spring constant kt and a
damping constant γt. One must first calculate a candidate tangential force

T̃ = ktδt − γδ̇t, (13)

where δt is the length of the tangential spring. Then, the Coulomb condition
is enforced

T =
{

T̃ , |T̃ | ≤ µR,

sgn(T̃ )µR, otherwise.

Several modifications of (12) and (13) are found in the literature, and
used to capture more realistic or specific features. A modified version of the
spring-dashpot model coupling fluid flow and particle interaction has been
recently used by Olivera and Rothenburg [19] to study the effect of friction on
the undrained response. These authors have that friction provides additional
particle instability, whereas the macroscopic strength is significantly enhanced
by increasing the friction coefficient. Other modifications of the model allow
for the introduction of cohesive interactions in the sample [20].

The Normal Spring Length

An interesting point, is how the definition of the normal spring length δn

affects the spring-dashpot model and, more specifically, the material response.
The most usually variant, defines δn as the penetration distance between two
overlapping disks (distance d in Fig. 1)

R = knd− γḋ. (14)
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Another possibility is to define the spring length proportional to the over-
lapping area (A, in the figure). In order to be consistent with the dimensions,
the normal contact law between to interacting grains with respective radii r1

and r2 will be in this case

R = kn
A

r1 + r2
− γṗ. (15)

Note that the repulsive force depicted in this equation is not linear with
the overlap distance.

In the range of overlapping distances involved in our simulations, the
behavior of the contact laws is obviously different (Fig. 3).

From the contact forces calculated with the non-linear law (15), it is
possible to estimate an equivalent linear normal stiffness, as

k∗
l =

∣∣∣∣∆Fn

∆p

∣∣∣∣ , (16)

where ∆ represents the increment of the variables. So defined, this stiffness is
similar to the Hertz–Mindlin–Deresiewicz incremental contact law of (10). It
is now interesting to know if this stiffness so defined is still independent of the
overlapping distance d. Figure 4 shows that there is a power-law dependence,
k∗

l ∝ δ0.5. Note that this result is consistent with the dependence of the
overlapping Area A with d.

2.4 Contact Dynamics

In Contact Dynamics, there is no overlapping of disks, for they are considered
as perfectly rigid and interacting with each other only at the contact point.
The algorithm is basically an iterative procedure after which a force network is
calculated down to some precision satisfying certain physical restrictions [21].
Each contact force depends on the adjacent contact forces, which means that
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Fig. 4. Equivalent linear stiffness k∗
l as a function of the overlapping distance at

the contacts in the simulation with a non-linear law in the normal spring. The
overlapping distance is scaled with the mean radius of the particle R

the problem cannot be solved locally for each contact. The main constrain
to be fulfilled is impenetrability. The normal force is chosen to be the small-
est value R needed to avoid interpenetration. The proper tangential force is
chosen that prevents the contact from sliding. If Coulomb’s condition cannot
be satisfied, the contact will slide with T = µR against the relative velocity.
The main drawback of CD is the indeterminacy of the forces. The important
question arises: what makes the CD method choose one of these possible solu-
tion among the others? or, is the selected solution somehow special among
the other admissible, or are they all equivalent [22, 23].

We conclude by noting one important difference between the CD and MD
approach. In CD, the granular packing has access to any possible force net-
work, whereas in MD, its choice is restricted, because the forces can only be
modified by small motions of the grains.

3 Results

In this section we will present the results of our simulations. The system
we are dealing with is composed of 100 disks with a Gaussian distribution
of radii, whose mean is R = 1 cm. The initial condition was obtained by
compressing a random distribution of the grains up to a certain pressure P0.
The compression was carried out without friction between the particles, in
order to increase the volume fraction. The same initial condition was used for
all the experiments shown.

The main parameter of the MD model is the normal stiffness kn. In our
simulations kn = 1.6106 Nm−1. The typical frequency of the spring ω (and
therefore the characteristic oscillation period ts = π/ω), can be defined in
terms of kn

ω =
√

kn/mij − η0. (17)
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In this expression, mij is the reduced mass of the particles that interact and
η0 is the damping constant, another parameter of the simulations. In terms of
this latter quantity, the relaxation time is tr = 1/η0. In the MD simulations,
this time should be much bigger than ts, tr � ts. The MD time step tMD,
should also taken big enough, so that tMD � ts. In the cyclic loading, we
choose the typical period much bigger than the oscillation time, t0/ts = 105.
Important parameters for the simulation are the ratio of stiffnesses kt/kn

and the static friction coefficient. In our simulations kt/kn = 0.33, and the
confining pressure P0 = 0.001kn. Since all our experiments are in the quasi-
static range, we can assume that the static and dynamics friction coefficient
are equal µ = 0.1. For the CD simulations, the same value of the friction is
used. In the iterative process, the previous force configuration at the contacts
is used as first guess, as a sensible way of implementing history dependence
in the simulation [14].

3.1 Comparing MD and CD

For the comparison between the algorithms, the system is first homogeneously
compressed under a certain pressure P0 = σ1+σ2

2 , until a compacted state is
reached. This first stage is carried out with the MD algorithm. After this
preparation of the sample, two different simulations (MD and CD) are run
in which the axial component of the stress, σ2, is periodically changed. We
choose the simplest expression for f(t) in (1)

f(t) =
{

t, if t < t0/2,
t0/2 − t, if t > t0/2

Figure 5 shows the strain–stress curve after one of this cycles, obtained
with the MD algorithm (left) and with the CD algorithm (right). The dif-
ferences in the range of values are already obvious for this first cycle. The
perturbation that the loading exerts on the system is much weaker in the CD
simulation, and related to the precision of the method. But note also that the
energy dissipated is bigger in the MD cycle, and so is the remanent strain at
the end of the process.

The higher inertia of the CD method is even more clearly observed in
Fig. 6, where the evolution of the strain γ is plotted for both methods in an
experiment in which the load is steadily increased

f(t) = t.

In the MD simulation, the system starts expanding slowly. A sudden com-
pression is perceived t = 2,700 s, after which the deformation rate seems to
grow in each cycle. This leads to a collapse of the sample at the end of the
simulation. In this range of values, however, the CD simulated sample seems
to remain unaltered. A closer look to its behavior is presented in the inset of
the figure. In the CD simulation, the response is smoother than in the MD
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Fig. 5. Stress–strain curve obtained after the loading and unloading of a compressed
sample in a MD (top) and CD (below) simulation. The initial condition was the
same in both experiments. The system was compressed at a linear rate and the
decompressed at the same rate until the original stress state was reached. Note
the difference in horizontal axes (γ). The maximum value of the deviatoric stress in
this simulation is ∆σ = 0.2

case. At a first stage, the system seems not to be affected by the imposed
loading. There is however a critical load, beyond which, the system expands.
In contrast to the MD experiment, this expansion is carried out without any
collapse or breakage of the physical structure of the grains.

3.2 Comparing Different Visco-Elastic Laws

The existence of granular ratcheting has been reported in MD simulations
of a dense packing of polygons [12] and disks [13]. The response of a given
compressed system of disks subjected to cyclic loading varies according to the
imposed loading going from a resilient (elastic) response, to a regime in which
the permanent accumulated deformation increases after each cycle in a fix
amount.
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Fig. 6. Evolution of the permanent strain γ in the Molecular Dynamics and in the
Contact Dynamics simulations. The inset shows, in a more appropriate scale, the
behavior of γ in the CD simulation

Initial Configuration

For comparison, we have used the same initial conditions for both simula-
tions with different contact laws. This initial configuration (a system of 100
polydisperse disks) has been therefore carefully obtained. First, the system
is homogeneously compressed under a certain pressure P0 = σ1+σ2

2 using a
non-linear contact law for the contacts, until a compacted state is reached.

Note that the normal spring stiffness kn is the same for both simula-
tions. A change in the contact law therefore implies a change in the confining
pressure necessary to keep the initial configuration as well. A secondary com-
pression is consequently necessary in the simulation with the linear law. We
have calculated that the equivalent confining pressure in the linear case to be

P lin
0 = 2.2528P area

0 . (18)

Material Response

After this preparation of the sample, two different simulations are run (with a
linear and a non-linear law for the normal at the contacts) in which the axial
component of the stress, σ2, is periodically changed,

σ2(t) = P0

[
1 +

∆σ

2

(
1 − cos

(
2πt

t0

))]
, (19)

where t is the time and t0 is the period of the cyclic loading. The changes in
the loading are characterized by the parameter ∆σ, which is directly related
to the maximum value of the deviatoric stress.

The different contact models induces then both a microscopic and macro-
scopic different response of the material. On the one hand, Fig. 8 shows a
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as a function of the number of cycles. In this simulation, ∆σ = 0.10

big difference in the number of sliding contacts, although in both simula-
tions ns is periodical, being ns much smaller in the linear case. This different
behavior of the sliding in the system induces a diverse material behavior,
reflected in the stress–strain cycles of Fig. 7, being the stiffness of the mate-
rial higher in the linear case. This can be measured in terms of the resilient
modulus MR = ∆σ/γR, which is the ratio of the maximum deviatoric stress
and the corresponding deviatoric resilient strain defined in (5). MR is notice-
ably higher for the simulation that uses the linear law. Observe also that in
this linear case, dissipation (the area enclosed by the cycle) is almost null,
when compared with the other curve in the graph.

The effect on the permanent strain accumulation is also very clear, as
one can see on Fig. 9. If a linear contact law is used, the system accumulates
permanent strain at a speed order of magnitude lower than the non-linear
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case. Reason for the different behavior in the system described up to now is
the change in the typical value of the ratio of the normal and tangential forces
Fn/Ft that the change in the contact law implies. This is so, because we have
changed Fn, but no change on the tangential law (therefore on Ft) has been
done. One may think of adjusting the parameter kn/kt in the linear case,
trying to reproduce the results of the non-linear contact law. We now know
that this parameter (kn/kt) affects the macroscopic strain accumulation, for it
is strongly related to sliding in the system [16]. Figure 10 shows that the strain
rate ∆γ/∆N , actually decreases as the ratio of stiffnesses kn/kt increases.
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We have increased the value of the ratio from kt = 0.33kn to kt = 4kn,
and the results in the strain–stress cycles and the number of sliding contacts
are shown in Figs. 11 and 12. The differences in the stiffness (MR) and the
number of sliding contacts are still appreciable, although some correction is
observed resect to the low kT values. It is important to note, that higher
values of the ratio kt/kn have been tried, but no difference is observed with
the results shown in Figs. 11 and 12 above a certain limit kt ≈ 2kt.
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P 0
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Fig. 11. Stress–strain cycles for the linear and non-linear (area) contact laws. The
details of the simulation are similar to the ones on Fig. 7, except that kt/kn = 4 in
this case
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Fig. 12. Evolution of the number of sliding contacts ns with the number of cycles
for the simulation shown in Fig. 11
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4 Conclusions

A different behavior of the plastic response of a system simulated by a MD
algorithm and a CD algorithm has been shown. The response of the material
is more apparent in the MD simulation, while CD is much more resistant to
collapse. This behavior is probably related to the indeterminacy of the forces
in the CD method [22, 23]. In the Contact Dynamics method, the system
has many possible force configurations that are compatible with the stress
conditions. The system can jump from one force configuration to another
without any movement of the particles. This is not the case in the Molecular
Dynamics scheme, were the forces can only be changed by small motions of
the grains.

MD results have been compared with experimental triaxial tests data and
a good correlation has been found [13]. No similar validation of the CD method
for the repetitive loading case has been reported yet, although CD method has
been successfully applied by different authors to the description of the contact
forces of a static packing [8–11]. Further investigation is therefore needed in
order to delimit the exact physical implications of the divergences between
methods reported here.

We have shown that the law used to model the contact between grains
strongly influences the material response to cyclic loading. The use of a contact
law proportional to the overlapping area is equivalent to the use of a linear
law with an incremental non-linear stiffness.

For equivalent initial configuration of the contacts and preparation of the
sample, a linear contact law implies less sliding contacts, less accumulation
of permanent strain and also a higher stiffness of the material (as measured
with the resilient modulus MR).

The parameter kn/kt can be used to adjust the linear contact law, but it
is not possible to reproduce the same results than in the non-linear case. A
systematic comparison of the simulation results with experimental data will
help to determine the best contact law to use in each experiment.
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124 R. Garćıa-Rojo et al.

4. H. J. Herrmann and S. Luding, Continuum Mechanics and Thermodynamics
10, 189 (1998).

5. P. A. Cundall, in Proc. Symp. Int. Rock Mech. (Balkema, Nancy, 1971), vol. 2.
6. J. J. Moreau, Ann. Inst. H. Poincaré Anal. Non Lin’eaire XXX, 1 (1989).
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19. R. Olivera and L. Rothenburg, in Powders and Grains 2005, edited by

H. H. R. Garćıa-Rojo and S. McNamara (Taylor and Francis, 2005), pp.
1223–1227.

20. O. R. Walton, in Particulate two-phase flow, edited by M. C. Roco (Butterworth-
Heinemann, Boston, 1993), p. 884.

21. F. Radjai, L. Brendel, and S. Roux, Phys. Rev. E 54, 861 (1996b).
22. S. McNamara and H. J. Herrmann (2004).
23. T. Unger, J. Kertész, and D. Wolf (2004), cond-mat/0403089.



Fluctuations in Granular Gases

A. Barrat, A. Puglisi, E. Trizac, P. Visco, and F. van Wijland

Summary. A driven granular material, e.g. a vibrated box full of sand, is a sta-
tionary system which may be very far from equilibrium. The standard equilibrium
statistical mechanics is therefore inadequate to describe fluctuations in such a sys-
tem. Here we present numerical and analytical results concerning energy and injected
power fluctuations. In the first part we explain how the study of the probability
density function (pdf) of the fluctuations of total energy is related to the char-
acterization of velocity correlations. Two different regimes are addressed: the gas
driven at the boundaries and the homogeneously driven gas. In a granular gas, due
to non-Gaussianity of the velocity pdf or lack of homogeneity in hydrodynamics
profiles, even in the absence of velocity correlations, the fluctuations of total energy
are non-trivial and may lead to erroneous conclusions about the role of correlations.
In the second part of the chapter we take into consideration the fluctuations of
injected power in driven granular gas models. Recently, real and numerical experi-
ments have been interpreted as evidence that the fluctuations of power injection seem
to satisfy the Gallavotti–Cohen Fluctuation Relation. We will discuss an alterna-
tive interpretation of such results which invalidates the Gallavotti–Cohen symmetry.
Moreover, starting from the Liouville equation and using techniques from large
deviation theory, the general validity of a Fluctuation Relation for power injec-
tion in driven granular gases is questioned. Finally a functional is defined using
the Lebowitz–Spohn approach for Markov processes applied to the linear inelastic
Boltzmann equation relevant to describe the motion of a tracer particle. Such a
functional results to be different from injected power and to satisfy a Fluctuation
Relation.

1 Introduction

In equilibrium thermodynamics one characterizes the stable phases of a system
using a limited set of macroscopic state variables, therefore bypassing much
of the microscopic details of the systems under study. It is only very recently
that the same strategy has been applied to systems in Non-Equilibrium
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Steady-States (NESS). And the need for such an approach is all the more
pregnant for the study of NESS that no general formalism parallel to the stan-
dard equilibrium Gibbs–Boltzmann ensemble theory exists. This field started
with experiments carried out on turbulent flows or convection cells, and much
more recently on granular systems. Global observables, namely spatially inte-
grated over the whole system, and their distribution, may indeed coarse-grain
the irrelevant microscopic details specific to the system at hand, while allow-
ing for comparisons between different systems. They are expected to be more
robust and more exportable tools for analysis than local probes, like, e.g. struc-
ture factors. This has led to the observation of intriguing similarities between
turbulent flows and granular systems [BHP98,BdSMRM05,Ber05]. However,
one must take into account the key ingredient making a NESS way different
from its equilibrium counterpart: steady flows of energy, matter, or else, run
across the system. The existence of currents characterizes a NESS, and makes
it different from an equilibrium state in that detailed balance (time reversibil-
ity) no longer holds. Given that the time direction plays a central rôle, one
is led to the idea that time integration may also be useful in smoothening
out various details of the microscopic dynamics. This has motivated several
authors to consider the distribution of time integrated and spatially averaged
quantities characterizing the NESS as such, like that of the injected power in
a turbulent flow or in a granular gas.

We briefly turn to a reminder of phenomenological thermodynamics of
nonequilibrium systems, as presented in [dGM69]. There, for systems only
slightly away from equilibrium, the concept of entropy can be extended in a
consistent fashion, and its time evolution goes according to

dS

dt
=

∫
V

σirr −
∫

V

∇ · JS . (1)

The intrinsic entropy production rate σirr is positive definite, and cancels
under the condition that the system reaches equilibrium. The other piece in
the rhs of (1), which features an entropy current JS , conveys the existence of
external sources, often located at the system’s boundaries, driving the system
out of equilibrium. The entropy current is not but a linear combination of the
various currents flowing through the system, with the conjugate affinities (like
a temperature or a chemical potential gradient) as the proportionality factors.
The entropy current – when it can univoquely be defined – therefore stands as
a relevant measure of how far the system is from equilibrium. For that reason,
various studies, starting from the pioneering work of Evans et al. [ECM93], in
a study of a thermostatted fluid under shear, have been focused on the appro-
priately generalized expression of the latter entropy current. In Evans, Cohen
and Morriss’ case it is simply proportional to the power provided by the ther-
mostat to compensate for viscous dissipation. They went on to determine the
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distribution function of QS(t), the time integrated entropy flow (or equiva-
lently the energy provided by the thermostat), denoted by P (QS , t). In doing
so they empirically noticed a remarkable property of the pdf of QS , namely

lim
t→∞

1
t

log
P (QS , t)

P (−QS, t)
= qS , (2)

where qS = QS/t, which is a time-intensive quantity, is the time average of JS

over [0, t]. This symmetry property of the pdf of QS was soon to be formalized
into a theorem for thermostatted systems by Gallavotti and Cohen [GC95],
and has since triggered a flurry of studies. The mathematical object defined
by π(qS) = limt→∞

log P (qS t,t)
t is seen to be extending the concept of intensive

free energy to a nonequilibrium setting, and will occupy much of our numerical
and analytical efforts.

In the realm of nonequilibrium systems, granular gases play a central
rôle as systems exhibiting a strongly irreversible microscopic dynamics due
to inelastic collisions, and for these no viable definition of entropy, let alone
entropy flow, is available. This has led various authors [AFMP01, FM04] to
conjecture that, by analogy to thermostatted systems, the power injected into
the system to maintain it in a steady-state, could satisfy a symmetry prop-
erty like the one uncovered by [ECM93], and its ensuing consequences in terms
of generalized fluctuation–dissipation theorems. Fortunately, a well-controlled
kinetic theory-based statistical mechanics exists for dilute gaseous systems,
and we shall build upon it to investigate the questions raised above.

The outline of the present review is as follows. We begin in Sect. 2 with a
brief introduction to granular gases and the basics of their statistical mechan-
ics. In Sect. 3 we analyze the distribution of the total kinetic energy of the gas,
as a first choice for a global observable. In Sect. 4 and 5 we address numeri-
cally, analytically and also experimentally, the issue of interpreting the power
injected into a gas in terms of entropy flow, the negative outcome of which
leads us to Sect. 6. There we construct a one particle observable exhibiting the
properties expected from an entropy flow, and quite notably its distribution
function displays the symmetry property (2).

2 A Brief Introduction to Granular Gases

A granular gas is an assembly of macroscopic particles kept in a gaseous steady
state by a constant excitation [BTE05] (the typical example can be illustrated
thinking of many beads in a strongly vibrated box). The simplest way to
characterize such systems is to consider N identical smooth hard spheres,
losing a part of their kinetic energy after each collision. The total momentum
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is conserved in collisions, and only the normal component of the velocity is
affected. Thus, the collision law for a couple of particles (1, 2) reads:{

v∗
1 = v1 − 1

2 (1 + α)(v12 · σ̂)σ̂
v∗

2 = v2 + 1
2 (1 + α)(v12 · σ̂)σ̂,

(3)

where σ̂ is a unitary vector along the center of the colliding particles at
contact. Here α is a constant, called the coefficient of normal restitution (0 ≤
α ≤ 1, and when α = 1 collisions are purely elastic). Without some energy
injection mechanism the total energy of the gas will decrease in time, until
all the particles are at rest (cooling state). However, when some energy input
is provided, the system can reach a nonequilibrium stationary state. Energy
injection may be supplied in several ways, which can be divided in two main
categories: injection from the boundaries and homogeneous driving. In the
former category energy is supplied by a boundary condition, the system hence
develops spatial gradients and it is not homogeneous. The latter category
refers to systems where energy injection is achieved by a homogeneous and
isotropic force acting on each particle.

2.1 Boundary Driven Gases

In this section we will give a short introduction to the methods used to describe
the behavior of a granular gas in which energy is injected by a boundary
condition (typically a vibrating wall). This kind of system has been widely
studied in the literature [GZBN97, MB97, ML98, Kum98, BRMM00, BT02],
and one of its main characteristics is that the density and the temperature
are not homogeneous over the system: there is a heat flux, which does not
verify Fourier law. This feature is well described by kinetic theory and in good
agreement with the hydrodynamic approximation, which allows an analytical
calculation of the density and temperature profiles. In the dilute limit, such a
system is well described by the Boltzmann equation:

∂tf(r,v1, t) + v1 · ∇f(r,v1, t) = J [f |f ]. (4)

Here J [f |f ] is the collision integral, which takes into account the inelasticity
of the particles:

J [f |f ] = σd−1

∫
dv2

∫ ′
dσ̂(v12 · σ̂)

(
f(v∗∗

1 , t)f(v∗∗
2 , t)

α2
− f(v1, t)f(v2, t)

)
,

(5)

where the notation v12 denotes the relative velocity between particles 1 and 2,
the two stars superscript (i.e. v∗∗) denote the precollisional velocity of a parti-
cle having velocity v, and the primed integral is a short-hand notation meaning
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that the integration is performed on all angles satisfying v12 · σ̂ > 0. The
hydrodynamic fields are defined as the velocity moments:

n(r, t) =
∫

dvf(r,v, t), (6)

n(r, t)u(r, t) =
∫

dv vf(r,v, t), (7)

d

2
n(r, t)T (r, t) =

∫
dv

m

2
(v − u)2f(r,v, t), (8)

and the hydrodynamic balance equations for those quantities are derived
taking the velocity moments in (4). Their expression is:

∂tn + ∇ · (nu) = 0, (9)

(∂t + u · ∇)ui + (mn)−1∇jPij = 0, (10)

(∂t + u · ∇ + ζ) T +
2
3n

(Pij∇jui + ∇ · q) = 0, (11)

where the pressure tensor Pij , heat flux q, and the cooling rate ζ are defined
by:

Pij(r, t) =
∫

dv m(vi − ui)(vj − uj)f(r,v, t), (12)

q(r, t) =
∫

dv
m

2
(v − u)2(v − u)f(r,v, t), (13)

ζ(r, t) =
(1 − α2)mπ

d−1
2 σd−1

4dΓ
(

d+3
2

)
n(r, t)T (r, t)

∫
dv1

∫
dv2 |v12|3 f(r,v1, t)f(r,v2, t).

(14)
Explicit analytical expressions for the above quantities have been obtained
in the limit of small spatial gradients by Brey et al. [BDKS98,BC01]. More-
over for systems in the steady state without a macroscopic velocity flow the
hydrodynamic equations simplify, and therefore the temperature and density
profiles can be explicitly computed.

2.2 Randomly Driven Gases

We consider here a granular gas kept in a stationary state by an external
homogeneous thermostat, the so called “Stochastic thermostat”, which cou-
ples each particle to a white noise. Energy injection is hence achieved by
means of random forces acting independently on each particle, and drives the
gas into a non-equilibrium steady state. The equation of motion governing the
dynamics of each particle is therefore:

m
dvi

dt
= Fcoll

i + Fth
i , (15)

where Fcoll
i is the force due to collisions and Fth

i is a Gaussian white noise
(i.e. 〈F th

iγ (t)F th
jδ (t′)〉 = 2Γδijδγδδ(t − t′), where the subscripts i and j are
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used to refer to the particles, while γ and δ denote the Euclidean compo-
nents of the random force). This model is one of the most studied in granular
gas theory and reproduces many qualitative features of real driven inelastic
gases [WM96,PO98,PLM+98, vNETP99,HBB00,MSS01,PTvNE02, vNE98].
After a few collisions per particle the system attains a non-equilibrium sta-
tionary state. This state seems homogeneous. From the equations of motion
it is possible to derive the homogeneous Boltzmann equation governing the
evolution of the one-particle velocity distribution function [vNE98]:

∂tf(v1, t) = J [f, f ] + Γ∆v1f(v1), (16)

where the Laplace operator ∆v ≡ (∂/∂v)2 is a diffusion term in velocity
space characterizing the effect of the random force, while J [f, f ] is the collision
integral, which takes into account the inelasticity of the collisions (cf. (5)). The
granular temperature of the system is defined as usual as the mean kinetic
energy per degree of freedom, Tg = 〈v2〉/d. The stationary solution of (16) has
extensively been investigated in the last years. Even if an exact solution is still
missing, a general method is to look for solutions in the form of a Gaussian
distribution multiplied by a series of Sonine polynomials [CC60]:

fst(v) = e
− v2

2Tg

(
1 +

∞∑
p=1

apSp

(
v2

2Tg

))
. (17)

The expression of the first three Sonine polynomials is:

S0(x) = 1

S1(x) = −x +
1
2
d (18)

S2(x) =
1
2
x2 − 1

2
(d + 2)x +

1
8
d(d + 2).

Moreover the coefficients ap are found to be proportional to the averaged
polynomial of order p:

ap = Ap

〈
Sp

(
v2

2Tg

)〉
, (19)

where Ap is a constant and the angular brackets denote average with weight
fst. From this observation one directly obtains that the first coefficient a1 van-
ishes by definition of the temperature. A first approximation for the velocity
pdf is therefore to truncate the expansion up to the second order (p = 2). An
approximated expression for the coefficient a2 has been found as a function
of the restitution coefficient α and the dimension d [vNE98,CDPT03,MS00].
Its expression is:

a2(α) =
16(1 − α)(1 − 2α2)

73 + 56d− 24αd − 105α + 30(1 − α)α2
. (20)

It must be noted that the second Sonine approximation is only valid for not
too large velocities, since the tails of the pdf have been shown [vNE98] to be
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overpopulated with respect to the Gaussian distribution. It is known [vNE98]
that in high energies log f(v) ∼ −(v/vc)3/2 with a threshold velocity vc that
diverges when the dimension d goes to infinity. This means that at high dimen-
sions the distribution is almost a Gaussian, since both the tails and the a2

contributions tend to vanish. All the above results have been confirmed by
numerical simulations, in particular through Molecular Dynamics (MD) and
Direct simulation Monte Carlo (DSMC) [Bir94] methods. Those two numer-
ical methods, although very different, show a surprisingly good agreement.
This points out to correctness of the molecular chaos assumption and thus
to the relevance of the DSMC method, which is particularly well adapted to
simulate the dynamics of a homogeneous dilute gas.

3 Total Energy Fluctuations in Vibrated and Driven
Granular Gases

3.1 The Inhomogeneous Boundary Driven Gas

In this section we will study the energy fluctuations of a granular gas in
the case where the energy is injected into the system by a vibrating wall.
Recently Aumâıtre et al. [AFFM04] investigated, by means of Molecular
Dynamic (MD), the fluctuations of the total energy of the system. In par-
ticular they looked at the behavior of the first two moments of the energy
pdf when the system size is changed, at constant averaged density. Because
of the inhomogeneities, the mean kinetic energy is no more proportional to
the number of particles, and thus it is not an extensive quantity, and anal-
ogously the mean kinetic temperature is no more intensive. This has led to
the definition of an effective (intensive) temperature and an effective number
of particles, which makes the energy extensive. In the following we will show
how a rough calculation (neglecting correlations and small non-Gaussianity)
using the hydrodynamic prediction for the temperature profile [VPB+06b],
can explain the phenomenology observed in [AFFM04]. Within this descrip-
tion it is possible to get an expression of the effective temperature and number
of particles as a function of the system parameters (i.e. number of particles,
restitution coefficient, and temperature of the vibrating wall).

Energy Probability Distribution Function

In this part we will compute the energy pdf for a granular gas between two
(infinite) parallel walls. The distance between the two walls is denoted by H ,
oriented along the x axis. Here we assume that one of the walls (in x = 0)
has small and random vibrations, acting as a thermostat that fixes to T0 the
temperature at x = 0. Our boundary conditions therefore are:

T (� = 0) = T0,
∂T

∂�

∣∣∣∣
�=�m

=
∂T

∂x

∣∣∣∣
x=H

= 0, (21)
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where the rescaled length � will be defined below. For the particular case of
a steady state without macroscopic velocity flow, is it possible to solve those
balance equations and get the temperature profile [BRMM00]:

T (�) = T0

⎛⎝cosh
(√

a(α)(�m − �)
)

cosh
(√

a(α)�m

)
⎞⎠2

, (22)

where a(α) is a function of the restitution coefficient (its complete expression
is given in [BdSMRM04]). The variable � is proportional to the integrated
density of the system on the x axis. Its definition is given by the following
relation involving the local mean-free-path λ(x):

d� =
dx

λ(x)
, λ(x) =

[ √
2π

d−1
2

Γ [(d + 1)/2]
σd−1n(x)

]−1

. (23)

In the following we will suppose the velocity distribution to be a Maxwellian (a
small non-Gaussian behavior exists, but it is not relevant for this calculation)
with a local temperature (variance) given by (22):

f(v, �) =
e−

v2
2T (�)

(2πT (�))d/2
. (24)

The distribution for the energy of one particle (e = v2/2) is hence:

p(e, T (�)) = f 1
T(�) , d

2
(e), (25)

where fα,ν(x) is the gamma distribution [Fel71]:

fα,ν(x) =
αν

Γ (ν)
xν−1e−αx. (26)

Our interest goes to the macroscopic fluctuations integrated over all the sys-
tem. Thus, the macroscopic variable of interest is the granular temperature
Tg, defined here as the average of the local temperature over the x profile:

Tg =
1
N

∫
V

n(r)T (r) dr =
1
�m

∫ �m

0

T (�) d�. (27)

with

�m = Nx

√
2π

d−1
2 σd−1

Γ [(d + 1)/2]
, Nx =

N

Vd−1
, (28)

where Vd−1 is the area of the surface of dimension d − 1 orthogonal to the
x-direction, i.e. H × Vd−1 = V . When d = 2 one has Vd−1 ≡ L where L is
the width of the system. Nx is the number of particles per unit of section
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perpendicular to the x axis. To get an expression of the energy pdf over the
whole system, it is useful to divide the box in �m/∆� boxes of equal height (in
the � scale) ∆�. It is helpful to use the length scale � because the number of
particles N� in each box of size L×∆� is a constant. Moreover, in each box i
we will suppose the temperature a constant Ti ≡ T (i ∆�), defined expanding
the granular temperature in a Riemann sum:

Tg = lim
∆�→0

�m/∆�∑
i=0

Ti ∆� . (29)

The calculation of the pdf of the box energy εi, i.e. a sum of the energies of
the N� particles in a box i, is hence straightforward when the velocities of the
particles are supposed to be uncorrelated:

qi(y) ≡ prob(εi = y) = f 1
Ti

,
dN�
2

(y), (30)

The characteristic function of qi(y) is

q̃i(k) =
1

(1 − ikTi)
dN�
2

. (31)

Thus, the characteristic function for the kinetic energy of the whole system
E =

∑
εi can be obtained as the product of the characteristic functions q̃i(k):

P̃ (k) =
�m/∆�∏

j=0

q̃j(k) =
�m/∆�∏

j=0

1

(1 − ikTj)
dN�
2

. (32)

Since the number of particle per box N� is a known fraction of the total
number of particles (N� = N∆�/�m), one can rewrite the expression (32)
as a Riemann sum. In the limit ∆� → 0 this yields the total kinetic energy
characteristic function:

P̃ (k) = exp

(
− dN

2�m

∫ �m

0

log (1 − ikT (�)) d�

)
. (33)

Note that this result is valid for any temperature profile T (�) and hence it
can be applied also to other situations with different boundary conditions or
different hydrodynamic equations.

Comparison with Simulations

Aumâıtre et al. [AFMP01, AFFM04] showed by Molecular dynamic simula-
tions, that the pdf of the total energy is well fitted by a χ2 law Π(E) =
f 1

TE
,

Nf
2

(E) with a number of degrees of freedom Nf different from dN ,
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and a temperature TE different from the granular temperature Tg. The two
parameters Nf and TE are functions of the first two cumulants of the pdf:

Nf = 2
〈E〉2c
〈E2〉c , TE =

〈E2〉c
〈E〉c . (34)

The notation 〈X〉c denotes the cumulant of the variable X . Here we want
to compare result (33) with these numerical results. Since we are not able
to analytically calculate the inverse Fourier Transform of (33) using (22)
as a temperature profile, we used a numerical computation to obtain it in
an approximate form. Moreover, an expression of the cumulants of the total
kinetic energy can be obtained from the characteristic function (33):

〈Ep〉c =
dN

2�m

∫ �m

0

T p(�)d�. (35)

In Fig. 1 the Inverse Fourier Transform of (33) is compared with the function
Π(E) previously defined. The similarity of the two functions is remarkable.
Another important feature that can be checked with this results is the depen-
dence of the above defined two macroscopic quantities (Nf and TE) with
system size. It is straightforward to see, from (27) and (35), that the granular
temperature and the total kinetic energy are respectively an intensive and an
extensive variable if �m is independent from the system size. This is effectively
the case if both the density ρ = N/V and the total height H are kept constant.
Moreover, for large enough �m, the integral in (35) becomes size independent:∫ �m

0

T p(�)d� ∼ T p
0

2p
√

a(α)
. (36)

Thus, the effective temperature TE defined above becomes a constant propor-
tional to the temperature of the wall, while the parameter Nf still depends
on the system size:

100 150 200 250 300
E

1e-06

0,0001

0,01

P(
E

)

P(E)
χ2

Fig. 1. Energy pdf (solid line) and a gamma distribution with same mean and same
variance (dotted line) for a restitution coefficient α = 0.9 , N = 100 particles in two
dimensions in a box of density ρ = 0.04, height H = 50, and with a wall temperature
T0 = 5
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Nf ∼ 1√
a(α)

dN

�m
, TE ∼ T0

2
. (37)

Numerical simulations show that TE effectively remains a constant for large
systems, and under several procedures of box size increase. The behavior of
Nf is determined by the maximum of the integrated density �m. For a square
cell at constant density one finds �m ∝ √

N , so that Nf ∝ √
N , which is not

far from N0.4 observed in [AFFM04]. Moreover, if only the height H of the
cell is increased, �m is proportional to N , and Nf becomes constant. All those
features are in agreement with the numerical observations in [AFFM04]. The
above results clearly show that a rough calculation, which takes into account
only the inhomogeneities of the system, is able to quantitatively describe the
behavior of the fluctuations of the total kinetic energy of a vibrated granular
gas. In some cases the energy pdf can be approximated with a gamma distri-
bution, which is the standard distribution for the energy pdf in the canonical
equilibrium. Nevertheless there are strong deviations from the equilibrium the-
ory of fluctuations, since the two parameters of the gamma distribution (i.e.
the temperature and the number of degrees of freedom) are not the granu-
lar temperature neither the number of degrees of freedom. Another important
remark is that correlations, and in particular contributions from the two points
distribution function, do not play a primary role to explain those deviations
from the equilibrium theory of fluctuations. In order to characterize correc-
tions arising from the two particles velocity pdf, one should measure energy
fluctuations at a given height x from the vibrating wall. As already noted
in [AFFM04] this task is very hard, since the available statistic become very
poor. Nevertheless an effective way to quantify those fluctuations is to look at
homogeneous systems, where contributions coming from the inhomogeneities
vanish. With this objective in mind, we will be interested in the following in
granular gases heated by an homogeneous and isotropic driving.

3.2 The Homogeneously Driven Case

In this section we will present some numerical results concerning the energy
fluctuations in a dilute gas driven by the stochastic thermostat presented in
Sect. 2.2 [VPB+06b]. When the system reaches a stationary state, the dissi-
pated energy is compensated by the energy injected by the thermostat, and
the temperature fluctuates around its mean value. Here we are interested in
the fluctuations of the total energy measured by the quantity

σ2
E = N

〈E2(t)〉 − 〈E(t)〉2
〈E(t)〉2 . (38)

Note that σ2
E ≡ 2N/Nf . Brey et al. have computed, by means of kinetic

equations, an analytical expression for σ2
E in the homogeneous cooling state,

which is equivalent to the so-called Gaussian deterministic thermostat. One
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Fig. 2. Energy pdf (dots) from DSMC simulations with a restitution coefficient
α = 0.5 and N = 100 particles for a system driven with the stochastic thermostat.
The solid line shows a gamma distribution with same mean and same variance

of the main differences of this stochastic thermostat with a deterministic one,
is found in the elastic limit. On the one hand, for the cooling state, when the
restitution coefficient tends to 1, the conservation of energy imposes that the
energy pdf is a Delta function, and the quantity σE goes to 0. On the other
hand, with the stochastic thermostat, if the elastic limit is taken keeping the
temperature constant, the strength of the white noise will tend to zero, but
it will still play a role in the velocity correlation function.

We performed DSMC simulations to measure the energy pdf of such a sys-
tem. A plot of this pdf is shown in Fig. 2, and it is close to a χ2-distribution
with same mean and same variance. Nevertheless the number of degrees of free-
dom of this χ2-distribution is lower than the true number of degrees of freedom
(i.e. (N − 1) × d). This effect may arise from two separated causes: the non-
gaussianity of the velocity pdf, and the presence of correlations between the
velocities. This feature also suggests that a calculation of the energy pdf with
the hypothesis of uncorrelated velocities (but non-Gaussian) could explain
at least a part of this non-trivial effect. In order to quantify these contribu-
tions we will consider that the velocity pdf is well described by a Gaussian
multiplied by the second Sonine polynomial:

f(v) =
e−

v2
2T

(2πT )d/2

(
1 + a2S2

(
v2

2T

))
, (39)

where a2 is given by expression (20).
The calculation of the pdf of the sum of the square of N variables dis-

tributed following (39) is straightforward. The characteristic function of the
energy pdf is:

P̃N (k) =
1

(1 − ikT )
Nd
2

(
1 +

d(d + 2)
8

a2

(
1

(1 − ikT )2
− 2

(1 − ikT )
+ 1

))N

(40)
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Fig. 3. Plot of σ2
E versus the restitution coefficient α for N = 100 (open circle)

and N = 1,000 (open square) particles. The result of the calculation assuming
uncorrelated velocities (42) is shown by the dashed line

where N is the number of particles of the system. This yields:

〈E〉 =
d

2
NT, 〈E2〉 − 〈E〉2 =

d

2
NT 2

(
1 +

d + 2
2

a2

)
. (41)

It is now possible to have an explicit expression for the energy fluctuations:

σ2
E(uncorr.)

=
2
d

(
1 +

d + 2
2

a2

)
. (42)

In Fig. 3 this result is compared with the result of DSMC simulations, per-
formed for several values of the restitution coefficient α and for two different
values for the number of particles N . The disagreement between the uncorre-
lated calculation and the simulations is a clear sign of the correlations induced
by the inelasticity of the system. One can note that the fluctuations increase
when the restitution coefficient decreases. One can also see that there is a
value of the restitution coefficient α around 1/

√
2, that is when the approxi-

mate expression of a2 vanishes, for which σ2
E is exactly 1 ≡ 2/d, as for a gas

in the canonical equilibrium (velocities are then uncorrelated).
We now turn to the dependence of σ2

E on the strength of the white noise Γ .
It is useful, for this purpose, to introduce a rescaled, dimensionless energy

Ẽ =
E − 〈E〉√〈E2〉 − 〈E〉2 . (43)

We have plotted in Fig. 4 this rescaled energy pdf for a system of N = 100
particles with a restitution coefficient α = 0.5 and for several values of the
strength of the white noise Γ . One can see how all the pdfs collapse into a
unique distribution. The role of the noise’s strength is thus only to set the
temperature (or mean kinetic energy) scale. Besides, relative energy fluctua-
tions depend only on α and N . Moreover, since σ2

E does not depend on the
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Fig. 4. Plot of the pdf of the rescaled energy Ẽ for a restitution coefficient α = 0.5
and for N = 100 for several values of the strength of the noise Γ

number of particles N (for N large enough), the central limit theorem applies,
and hence P (Ẽ) is a Gaussian in the thermodynamic (N → ∞) limit. In con-
clusion we have shown that randomly driven granular gases display non trivial
fluctuations, because of the correlations induced by the inelasticity. Two dif-
ferent kinds of correlations contribute to this behavior of the fluctuations.
First, the non-Gaussianity of the velocity pdf, which simply tells that the
Euclidean components of the velocity of each particle are correlated one to
each other. Second, a contribution from the two particles velocity pdf, which
does not factorize exactly as a product of two one-particle distributions. It
must be pointed out, however, that these correlations do not invalidate the
Boltzmann equation. As already noted in [EC81, BdSMRM04, CPM07], the
two points correlation function g2(v1,v2), which is defined by:

g2(v1,v2) = f (2)(v1,v2) − f(v1)f(v2), (44)

where f (2) is the two points distribution, is of higher order in the density
expansion (roughly speaking O (g(v1,v2)) ∼ O (f(v1)f(v2)) /N). This is con-
firmed by the numerical observations, since when the number of particles
increases, the energy pdf tends be closer and closer to a Gaussian. Spatial
correlations, which can be at work in homogeneously driven granular gases,
at higher densities, and which have been neglected here (assuming spatial
homogeneity) can also play a relevant role in fluctuations [PBV07].

4 A Large Deviation Theory for the Injected Power
Fluctuations in the Homogeneous Driven Granular Gas

From now on we turn our attention to the fluctuations of another global quan-
tity, i.e. the power injected into the system by the external source of energy.
In particular in this section our main goal is to obtain a kinetic equation able
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to describe the behavior of the large deviations function of the time integrated
injected power [VPB+05,VPB+06a] in a randomly driven gas (cf. Sect. 2.2).
The latter quantity is the total work W provided by the thermostat over a
time interval [0, t]:

W(t) =
∫ t

0

dt
∑

i

Fth
i · vi. (45)

Our interest goes to the distribution of W(t), denoted by P (W , t), and to its
associated large deviation function π∞(w) defined for the reduced variable
w = W/t (W(t) being extensive in time):

π∞(w) = lim
t→∞ πt(w), πt(w) =

1
t

logP (W = wt, t). (46)

We introduce ρ(ΓN ,W , t) the probability that the system is in state ΓN at
time t with W(t) = W . The function we want to calculate is

P (W , t) =
∫

dΓNρ(ΓN ,W , t). (47)

We shall focus on the generating function of the phase space density

ρ̂(ΓN , λ, t) =
∫

dWe−λWρ(ΓN ,W , t) (48)

and on the large deviation function of

P̂ (λ, t) =
∫

dWe−λWP (W , t) =
∫

dΓN ρ̂(ΓN , λ, t) (49)

which we define as
µ(λ) = lim

t→∞
1
t

log P̂ (λ, t). (50)

Note that µ(λ) is the generating function of the cumulants of W , namely

lim
t→∞

〈Wn〉c
t

= (−1)n dnµ(λ)
dλn

∣∣∣∣
λ=0

. (51)

Moreover π∞(w) can be obtained from µ(λ) by means of a Legendre transform,
i.e. π∞(w) = µ(λ∗) + λ∗w with λ∗ such that µ′(λ∗) = −w.

The observable W is non-stationary but it is Markovian, hence a general-
ized Liouville equation for the extended phase-space density ρ(ΓN ,W , t) can
be written. It varies in time under the combined effect of the inelastic collisions
(which do not alter W) and of the random kicks:

∂tρ = ∂tρ
∣∣∣
collisions

+ ∂tρ
∣∣∣
kicks

(52)
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Considering that the thermostat acts independently on each particle, it can
be shown that

∂tρ̂
∣∣∣
kicks

=
∑

i

[
Γ (∆vi + 2λΓvi · ∂vi + Γ (dλ + λ2v2

i )
]
ρ̂ (53)

This additional piece is linear in ρ̂ just as the collision part is. The large
time behavior of ρ̂ is governed by the largest eigenvalue µ(λ) of the evolution
operator of ρ̂. In the large time limit, we thus expect that

ρ̂(ΓN , λ, t) � C(λ)eµ(λ)tρ̃(ΓN , λ), (54)

where ρ̃(ΓN , λ) is the eigenfunction associated to µ, and C(λ) is such that
ρ̃(ΓN , λ) is normalized to unity. We then introduce

f̂ (k)(v1, . . . , vk, λ, t) =
∫

dΓN−kρ̂, (55)

where
∫

dΓN−k means an integration over N − k particles, we have that

∂tf̂
(1)(v, λ, t) = Γ∆vf̂ + 2λΓ∂v · vf̂ + Γ (λ2v2 − dλ)f̂ + Ĵ (56)

with Ĵ =
∫

dWe−λWJ the Laplace transform of the collision integral in which
f(v,W , t) now plays the role of the velocity distribution. Quite unexpectedly
the above equation has a straight physical interpretation: consider a many
particle system where a noise of strength Γ and a viscous friction-like force
F = −2λΓv act independently on each particle, and where the particles inter-
act by inelastic collisions. Consider then that the particles annihilate/branch
(depending on the sign of λ) at constant rate dλΓ , and branch with a rate
proportional to λ2v2Γ . Then, the equation governing the evolution of the one
particle velocity distribution of such a system is exactly (56), where λ is a
parameter tuning the strength of the external fields. Moreover, in spite of
there being no a priori reason for that, ρ̃, as well as f̃ =

∫
dΓN−1ρ̃, can be

interpreted as probability density functions.
The one and two-point functions f (1)(v,W , t) and f (2)(v1, v2,W , t) that

enter the expression of J are expected to verify, at large times,

f̂ (1)(v1, λ, t) = C(λ)eµtf̃ (1)(v1, λ), (57)

and
f̂ (2)(v1, v2, λ, t) = C(λ)eµtf̃ (2)(v1, v2, λ), (58)

where both f̃ (1) and f̃ (2) are normalized to unity. We perform the following
molecular-chaos-like assumption:

f̃ (2)(v1, v2, λ) � f̃ (1)(v1, λ)f̃ (1)(v2, λ) (59)

which does have a definite physical interpretation in the language of the inelas-
tic hard-spheres with fictitious dynamics (viscous friction, velocity dependent
branching/annihilation) described in the above paragraph. Then we get that
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µf̃(v, λ) = Γ∆vf̃ + 2λΓv · ∂vf̃ + Γ (dλ + λ2v2)f̃

+
1
�

∫
v12·σ̂>0

dv2dσ̂v12 · σ̂
[
α−2f̃(v∗∗1 , λ)f̃(v∗∗2 , λ)− f̃(v1, λ)f̃(v2, λ)

]
(60)

where we have now omitted the superscript (1) denoting the one-point func-
tion. The λ = 0 limiting case yields the usual Boltzmann equation, since in
this case a stationary solution exists, and hence µ(λ = 0) = 0. The boundary
condition to the evolution equation above is thus:

f̃(v, λ = 0) = fst(v) (61)

with fst(v) the stationary velocity pdf (cf. (17)).

4.1 The Cumulants

Here we find an approximated expression of µ(λ) solving a system of equations
obtained projecting (60) on the first velocity moments. First we shall define
a dimensionless velocity c = v/v0(λ), where v0(λ) plays the role of a thermal
velocity:

v2
0(λ) = 2T (λ) =

2
d

∫
dv v2 f̃(v, λ). (62)

Then, defining the function f(c, λ) = v0(λ)f̃ (v, λ), and its related moments
of order n

mn(λ) =
∫

dc cnf(c, λ), (63)

one obtains the following recursion relation:

(µ + Γ (2n + d)λ)mn =
Γ

v2
0

n(n + d − 2)mn−2 + Γλ2v2
0mn+2 − v0νn, (64)

where
νn = −

∫
dc cn J [f, f ]. (65)

Recalling the definition of the cumulants (51), and the approximated solution
for the stationary velocity pdf, it appears natural to argue that, for λ ∼ 0,
the function f(c, λ) should be well approximated by:

f(c, λ) = φ(c)
(
1 + a1(λ)S1

(
c2

)
+ a2(λ)S2

(
c2

))
+ O(a3) , (66)

where φ(c) = π−d/2 exp(−c2) is the Gaussian distribution. Even in this case,
from the relation (19) and from the definition (62), the coefficient a1 is found
to be 0. The method consists in taking (64) for n = 0, 2 and 4 in order to find
an explicit expression of µ, v0, and a2 in the limit λ → 0. The quantities ν2
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and ν4 have been calculated at the first order in a2 [vNE98], and their explicit
expressions are:

ν2 =
(1 − α2)

2�
Ωd√
2π

{
1 +

3
16

a2

}
=

dΓ√
2T 3

0

{
1 +

3
16

a2

}
, (67)

and
ν4 =

dΓ√
2T 3

0

{T1 + a2T2} , (68)

with

T1 = d +
3
2

+ α2 (69)

T2 =
3
32

(10 d + 39 + 10α2) +
(d − 1)
(1 − α)

, (70)

where T0 =
(

2dΓ�
√

π
(1−α2)Ωd

)2/3

is the granular temperature obtained averaging

over Gaussian velocity pdfs (i.e. the zero-th order of Sonine expansion). The
expression of the first moments mn is:

m0 = 1 (71a)
m2 = d/2 (71b)

m4 =
(1 + a2) d (2 + d)

4
(71c)

m6 =
(1 + 3 a2) d (2 + d) (4 + d)

8
(71d)

With the help of the above defined temperature scale T0, we introduce some
dimensionless variables:

µ̃ = µ
T0

dΓ
, λ̃ = λT0,

ṽ2
0 =

v2
0

2T0
, ν̃p =

√
2 T 3

0

Γ
νp.

(72)

Note that this scaling naturally defines the scales for the other quantities of
interest, namely:

π̃t = πt
T0

dΓ
, w̃ =

w

dΓ
, W̃ =

W
〈W〉 . (73)

The expression of the moment equation (64) becomes, for the above defined
dimensionless quantities:(

µ̃d + (2n + d)λ̃
)

mn =
n(n + d− 2)

2ṽ2
0

mn−2 + 2ṽ2
0mn+2 − ṽ0ν̃n. (74)
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First we solve the above equation for n = 0, getting the following result:

µ̃(λ̃) = −λ̃ + λ̃2ṽ2
0(λ̃). (75)

Recalling that when λ → 0 one has v2
0 = 2Tg + O(λ), it is important to note

that if we restrict our analysis to the Gaussian approximation for P (W , t),
that is if we truncate µ(λ) to order λ2, (75) will read:

µ

dΓ
= λ(λTg − 1). (76)

Then we see that indeed

µ(λ) = µ

(
1
Tg

− λ

)
, (77)

which means that π∞(w) = maxλ{µ(λ) + λw} verifies

π∞(w) − π∞(−w) =
w

Tg
. (78)

However, the nontrivial functions mn(λ) will break the property (77), as we
shall explicitly show later. In order to characterize more precisely the depen-
dence of µ̃ upon λ̃ for small values of λ̃, it is useful to expand ṽ2

0 and a2 in
powers of λ̃:

ṽ2
0(λ̃) = ṽ2(0)

0 + λ̃ṽ2(1)

0 + λ̃2ṽ2(2)

0 + O(λ̃3) (79a)

a2(λ̃) = a
(0)
2 + λ̃a

(1)
2 + λ̃2a

(2)
2 + O(λ̃3) (79b)

In this way we can find ṽ2(i)

0

(
a
(i)
2

)
solving (74) for n = 2:

ṽ2(0)

0 =

(
1 − a

(0)
2

8

)
, (80)

ṽ2(1)

0 = −4
3

+
a
(0)
2

3
− a

(1)
2

8
, (81)

ṽ2(2)

0 = 2 − a
(0)
2

(
1
12

+
d

3

)
+

a
(1)
2

3
− a

(2)
2

8
. (82)

Then we substitute ṽ2
0(λ̃) in the third equation and expand it in powers of λ̃

to find the expression of a
(i)
2 (α). Note that one has also to expand in powers

of a2 and keep only the linear terms in order to be coherent with the ν̃p

calculations. We find the following expressions, which are plotted in Fig. 5:

a
(0)
2 =

4 (1 − α)
(
1 − 2 α2

)
19 + 14 d− 3 α (9 + 2d) + 6(1 − α)α2

(83)

a
(1)
2 = −4 (1 − α)2

(−1 + 2 α2
) (

31 + 2 α2 + 16 d
)

(19 + 14 d− 3 α (9 + 2d) + 6(1 − α)α2)2
(84)

a
(2)
2 =

A(α)
B(α)

(85)
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(0)
2 , a
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2 and a

(2)
2 versus α for d = 2

with

A(α) = 16 (−1 + α)2 (−1 + 2 α2)×
× {906 + α [−984 + α (85 + 3 α (−19 + 6 (−1 + α)α))] + 985 d+
+ α [−951 + α (−25 + 3 α (7 + 6 (−1 + α)α))] d+

+ (269 + 3α (−75 + 2 α (−7 + 3 α))) d2} ,

(86)

and
B(α) = 3 (−19 − 14 d + 3 α (9 + 2 (−1 + α) α + 2 d))3 (87)

The v2(0)

0 expression, as well as the a
(0)
2 expression, gives the usual results

established for granular gases [vNE98,MS00]. At this point the computation
of the cumulants becomes straightforward. From relation (51) it follows:

lim
t→∞

〈Wn〉c
t

= (−1)nNdΓT n−1
0 n! ṽ2(n−2)

0 . (88)

Moreover, since the a
(i)
2 corrections are numerically small, the zero-th order

(Gaussian) approximation already gives a good estimate for the cumulants.
Namely, the first cumulants are , in this approximation:

〈W〉c = tNdΓ,
〈W2

〉
c

= 2tNdΓT0,〈W3
〉

c
= 8tNdΓT 2

0 ,
〈W4

〉
c

= 48tNdΓT 3
0 .

(89)

All the above expansions in powers of λ, at the second order in Sonine coeffi-
cients (e.g. a2) can be carried out just expanding v0 and a2 in (79) to higher
powers of λ. Moreover, expanding in higher order in Sonine coefficient (e.g. a3)
remains in principle still possible, but it will involve a higher number of equa-
tions in the hierarchy (74) (e.g. n = 6), and therefore will need the expression
of higher order collisional moments (e.g. ν6).
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4.2 The Solvable Infinite Dimension Limit

Strong arguments [VPB+06a] can be given showing that in high dimensions
f̃(v, λ) is not far from a Gaussian. We are therefore led to consider, in the
limit d → ∞, f̃(v, λ) to be a Gaussian with a λ-dependent second moment.
In this situation the dimensionless function f will read:

f(c) =
e−c2

πd/2
(90)

with c = v/v0(λ). In this context one can solve (74) in order to get an
explicit expression for µ(λ). Solving the system defined by (74) for n = 0 and
n = 2 gives a unique solution for µ̃(λ̃) which verifies the physical requirement
µ̃(0) = 0:

µ̃(λ̃) = −λ̃ +
λ̃2

2
ṽ2
0(λ̃), (91)

with:

ṽ2
0(λ̃) =

1 + 4 λ̃3

2 λ̃4
+

b1(λ̃)
2

−

− 1
2

⎡⎢⎣−32
λ̃2

+
2
(
1 + 4 λ̃3

)2

λ̃8
+ b2(λ̃) − b3(λ̃) +

b4(λ̃)
4b1(λ̃)

⎤⎥⎦
1
2

, (92)

and

b1(λ̃) =
√

λ̃−8 +
8
λ̃5

− b2(λ̃) + b3(λ̃),

b2(λ̃) =
16

(
2
3

) 1
3

λ̃3
(
9 +

√
3
√

27 + 256 λ̃3
) 1

3
,

b3(λ̃) =
2
(

2
3

) 2
3
(
9 +

√
3
√

27 + 256 λ̃3
) 1

3

λ̃4
,

b4(λ̃) =
256
λ̃3

−
192

(
1 + 4 λ̃3

)
λ̃6

+
8
(
1 + 4 λ̃3

)3

λ̃12
.

(93)

This expression of the velocity scale reduces to the kinetic temperature for
λ = 0, and decreases monotonically as λ−1/2 when λ → ∞. This means that
in the limit λ → ∞ f̃ approaches a Dirac distribution as exp(−λv2/2). This
feature supports the intuition that the small W events (which are related to
the large values of λ) are provided by the small velocities. The behavior of
µ̃ is shown in Fig. 6. The large deviations function µ̃(λ̃) becomes complex for
λ̃ < − 3

28/3 , because of the terms containing
√

27 + 256λ̃3. Moreover for large
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Fig. 6. The solid line shows µ̃ in the limit d → ∞. The dashed line is µ̃ at fourth
order in λ̃ from (75) for d = 2 and α = 0.5. Finally the dotted line shows the same
quantity calculated with a truncation at second order in λ, which would satisfy the
G–C relation

λ̃ the behavior of this function is µ̃(λ̃) ∼ −λ̃
1
4 . In the vicinity of the singularity

(i.e. λ̃ = λ0 = − 3
28/3 ) the behavior of the large deviation function is:

µ̃(λ̃) =
3

23/2
− 32/321/6

√
λ̃ − λ0 + O(λ̃ − λ0). (94)

From the behavior for large λ̃ it is possible to recover the left tail of the large
deviation function π∞. In general, if µ(λ) ∼ −λβ for λ → ∞, this leads to
µ′(λ∗) = −βλβ−1

∗ = −w. This last relation tells us that for β < 1 we are
recovering the limit w → 0+, with a behavior of the large deviation function
given by π∞(w) = µ(λ∗) + λ∗w ∼ w

β
β−1 . Moreover, from the behavior of µ

near λ0, an analogous calculation provides the right tail of the large deviation
function: π∞(w) ∼ λ0w, when w → ∞. Finally, in our particular case, the
tails are given by

π̃∞(w̃ → 0+) ∼ −w̃−1/3, π̃∞(w̃ → ∞) ∼ −w̃, (95)

Note that there is no w < 0 tail to π̃∞. The graph of the whole function
π̃∞(w̃) is depicted in Fig. 7.

5 Fluctuations of Injected Power at Finite Times:
Two Examples

5.1 The Homogeneous Driven Gas of Inelastic Hard Disks

In this section the results of numerical simulations of two models (inelas-
tic hard spheres and inelastic Maxwell model) are presented with particular
attention to the verification of the Fluctuation Relation for the injected power.
The main requirement to pose the question about the validity of the Fluctua-
tion Relation is a clean observation of a negative tail in the pdf of the injected
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power. This dramatically limits the time t of integration of W(t). In numerical
simulations, as well as in real experiments, at time larger than a few mean free
times the negative tail disappears. On the other hand, at times of the order of
1–3 mean free times, the Fluctuation Relation appears to be correctly verified
for the inelastic Hard Spheres model and slightly violated for the inelastic
Maxwell model. The measure of the cumulants, anyway, gives a neat indica-
tion of the fact that the time of convergence of the large deviation function
is at least 10 times as large and that the true asymptotic is well reproduced
by the theory exposed in this chapter. This theory shows strong arguments
against the validity of a symmetry relation of the Gallavotti–Cohen type for
the large deviations of injected power.

The stationary state of a driven granular gas, modeled by (16), under
the assumption of Molecular Chaos may be studied with a Direct Simula-
tion Monte Carlo technique [Bir94, MS00]. As a first check of reliability of
the algorithm, we have measured the granular temperature Tg and the first
non-zero Sonine coefficient a2 ≡ (〈v4〉/〈v2〉2 − 3)/3. The measured granular
temperature is always in perfect agreement with the estimate. The measured
a2 coefficient is a highly fluctuating quantity and its average is in very good
agreement with the theoretical estimate.

In Fig. 8 the probability density functions p(w, t) ≡ tP (wt, t) (for t equal
to 1 mean free time) for three different choices of parameters N,Γ (at fixed
restitution coefficient α) is shown. The values of the first two cumulants of the
distribution and their theoretical values are compared in Table 1, with very
good agreement. In the same table we present also the measure of the third
and fourth cumulants.

The comparison with a Gaussian with same mean value and same variance
shows that the pdf P (W , t) is not exactly a Gaussian. In particular there are
deviations from the Gaussian form in the right (positive) tail. This is well
seen in Fig. 9. It must be noted that the important deviations in the right tail
arise at values of W(t) larger than the minimum W(t) available in the left
tail, i.e. they have no influence in the following plot of Fig. 10 regarding the
Gallavotti–Cohen symmetry.
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Fig. 8. Probability density function of the injected power, p(w, t) ≡ tP (W(t) =
wt, t) with t equal to 1 mean free time. In all three cases the value of the restitution
coefficient is α = 0.9. Other parameters are (a) N = 100, Γ = 0.5; (b) N= 100,
Γ = 12.5; (c) N = 200, Γ = 0.5. The dashed line represents a Gaussian with
same first two cumulants. These distributions have been obtained with ∼ 1.5 × 109

independent values of W(t)

Table 1. Rescaled cumulants of the distribution of injected work P (W, t), measured
with t equal to 1 mean free time for different choices of the parameters

N Γ 〈W(t)〉/t 〈W(t)2〉c/t NΓd 2NΓdTg 〈W(t)3〉c/t 〈W(t)4〉c/t

100 0.5 100 20,835 100 21,052 6.02779 × 105 1.54181 × 108

100 12.5 2,500 13,019,125 2,500 13,157,900 9.47684 × 109 6.12963 × 1013

200 0.5 199.9 42,009 200 42,120 1.21911 × 106 3.09634 × 108
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Fig. 9. Ratio of P (W, t) and a Gaussian with the same first two moments, for the
same parameters as in Fig. 8: (a) corresponds to N = 100, Γ = 0.5, (b) to N = 100,
Γ = 12.5 and (c) to N = 200, Γ = 0.5. The range between the vertical dotted lines
is the useful one for the check of the Gallavotti–Cohen relation. It can be noted that
the strongest deviations from the Gaussian behavior appear outside of this range

In Fig. 10 the Gallavotti–Cohen relation πt(w)− πt(−w) = βeffw is ques-
tioned for the same choice of the parameters. The relation, at this level of
resolution and for this value of the time t (1 mean free time), is well sat-
isfied. Moreover Table 2 shows that the value of βeff is well approximated
by β = 1/Tg, as expected if the truncation of µ(λ) at the second order were
valid, see (78). In Fig. 11 the same relation is checked for different values of t,
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Fig. 10. Plot of πt(w)− πt(−w) versus w, for the same choice of the parameters as
in Fig. 8. The values of the slope βeff of the fitting dashed lines are in Table 2

Table 2. Factor of proportionality in the “Gallavotti–Cohen” relation compared
with β

N Γ βeff 1/Tg

100 0.5 0.0100 0.00955
100 12.5 0.000402 0.000382
200 0.5 0.00995 0.00952
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Fig. 11. Plot of πt(w)−πt(−w) versus w, for the system with N = 100 and Γ = 0.5
for different values of t. We recall that in this case 〈w〉 = 100. The dashed line has
slope β = 1/Tg . In the inset the corresponding p(w, t) are shown

slightly larger (i.e. up to t equal to 3 mean free times). No relevant deviations
are observed as t is increased. Moreover this figure is important to under-
stand the dramatic consequences that a larger t has on the “visibility” of the
Gallavotti–Cohen symmetry: as t is increased, events with negative integrated
power injection become rarer and rarer. This eventually leads to the vanishing
of the left branch of P (W , t).

The main conclusion is that no appreciable departure from the λ2 trunca-
tion is observed at this level of resolution. Much larger statistics are required
to probe the very high energy tails of p(w, t). Further numerical insights make
evident that the small times used to check the GC Relation (t smaller or
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Fig. 13. Numerical measurement of π̃t for a time of 50 collisions per particle (when
a stationary value for the rescaled cumulant is reached)

equal than 3 mean free times) are far from the time where the asymptotic
large deviation scaling starts working. In Fig. 12 we show indeed the numer-
ical measure of the third cumulant of W(t) rescaled by the first cumulant,
varying the integration time t. The time of saturation is of the order of ∼ 50
mean free times. The saturation value is in very good agreement with the
value predicted by our theory, (89). Note that this value is not at all trivial,
since the third cumulant for a Gaussian distribution is zero. At that time the
measurable πt(w) is shown in Fig. 13, rescaled by 〈w〉. The accessible range
of values from a numerical simulation is dramatically poor and we think it is
already remarkable to have obtained a good measure of the third cumulant
with such a resolution.

The reason for a verification at small times of the GC formula is the fol-
lowing: near w = 0 the pdf of w is almost a Gaussian. In the Gaussian case
we immediately get πt(w)− πt(−w) = βeffw with βeff = 2〈W(t)〉/〈W(t)2〉c.
The first two cumulants at small times are easily obtained considering an
uncorrelated sequence of energy injection, obtaining 〈W(t)〉/t = NΓd and
〈W(t)2〉c/t = 〈(∑i F

th
i · vi)2〉c = 2NΓdTg. Then the value βeff = 1/Tg

is unavoidable. In this case the GCFR observed is nothing else than the
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Green–Kubo (or Einstein) relation, which is known to be valid for driven
granular gases: 〈W(t)2〉/t = 2Tg〈W(t)〉/t [PBL02, PBV07]. Small deviations
from a Gaussian appear, in first approximation, as small deviations from the
slope 1/Tg, but the straight line behavior is robust since the first non-linear
term of πt(w) − πt(−w) is not w2 but w3 [AFMP01].

Numerical simulations of the Inelastic Maxwell Model have been performed
with a Direct Simulation Monte Carlo analogous to the one used in the Hard
Spheres model. The Maxwell gas is a kinetic model due to Maxwell, who
observed that a pair potential proportional to r−2(d−1), r being the distance
between two interacting particles, gives rise to a great simplification of the
collision integral [Max67]. In fact this kind of interaction makes the collision
frequency velocity independent. It must be noted that when the inelasticity
of the particles is considered, this model looses its straight physical inter-
pretation, but it nevertheless keeps its own interest. The collision integral is
analytically simpler than the hard particles model and preserves the essential
physical ingredients in order to have qualitatively the same phenomenology. In
the recent development of granular gases this kinetic model has been exten-
sively investigated [BMP02, BNK02, BNK03, EB02, BCG00]. Thanks to the
simplifications present in this model, we are able to improve the number of
collected data by more than a factor of ten. The distributions of the injected
power p(w, t) are shown in Fig. 14 for some choices of the restitution coeffi-
cient α. The driving amplitude Γ has been changed in order to keep constant
the stationary granular temperature Tg. In Fig. 15 we have displayed the devi-
ations from the Gaussian of P (W , t). The non-Gaussianity of P (W , t) is highly
pronounced, but again it is striking only in the positive branch of the pdf. We
have tried, with success, a fit with a fourth order polynomial, which is consis-
tent with the usual truncation of the Sonine expansion to the second Sonine
polynomial.
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Fig. 14. p(w, t) ≡ tP (wt, t) for different values of α (at fixed constant temperature
Tg) in the Driven Inelastic Maxwell Model measured at a time t equal to 1 mean free
time. The dashed lines are Gaussian distributions with the same mean and same
variance. These distributions have been obtained with ∼ 4×1010 independent values
of W(t)
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average and same variance for different values of α (at fixed constant temperature
Tg) in the Driven Inelastic Maxwell Model. The light dashed lines represent a fit
with a polynomial of fourth order
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Fig. 16. (Color online). Finite time check of Gallavotti–Cohen relation for the
injected power (with t equal to 1 mean free time), i.e. πt(w) − πt(−w) versus w, in
a numerical simulation of the Driven Inelastic Maxwell Model with N = 50, and
different values of α (the driving amplitude Γ has been rescaled in order to fix the
granular temperature Tg). The dashed curve is a straight line with slope β = 1/Tg .
The dotted curve is a straight line obtained fitting the α = 0.1 data points until
w = 45, useful as a guide for the eye. The thin solid curve is a fit with a cubic
(0.28w + 5.6 · 10−4w2 − 1.1 · 10−5w3)

Finally, in Fig. 16, we have attempted a check of the Gallavotti–Cohen
fluctuation relation. The relation seems to be systematically violated. This
appears in two points (1) the right–left ratio of the large deviation function
is not a straight line; (2) the best fitting line has a slope which is larger
than 1/Tg. The “curvature”(and the deviation from the 1/Tg line) increases
with decreasing values of α, indicating that the inelasticity is the cause of
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the deviation from the Gallavotti–Cohen relation. It should be noted that to
achieve this result we have collected more than 4 × 1010 independent values
of W(t), so that the statistics of the negative large deviations could be clearly
displayed.

5.2 The Boundary Driven Gas of Inelastic Hard Disks

In a recent experiment on vibrated granular gases [FM04] it has been argued
that the statistics of the power injected on a subsystem by the rest of the
gas fulfills the Fluctuation Relation (FR) by Gallavotti and Cohen. The
experiment was performed by putting in a two-dimensional vertical box N
disks of glass and submitting the container to a strong vertical vibration.
We have reproduced the experiment by means of a Molecular Dynamics
(MD) simulations of inelastic hard disks, observing perfect agreement with
the experimental results and obtaining a deeper insight into the system. The
main difference of this model with respect to the previous “homogeneously
driven” model is that the external energy source is located at the two hor-
izontal (top and bottom) walls. This boundary driving mechanism leads to
the development of spatial inhomogeneities and the appearance of internal
currents.

The event driven MD simulations have been performed for a system of N
inelastic hard disks with restitution coefficient α, diameter σ and mass m = 1.
The vertical two-dimensional box of width Lx = 48σ and height Ly = 32σ is
shaken by a sinusoidal vibration with frequency f (period τbox = 1/f) and
amplitude 2.6σ. Collisions with the elastic walls inject energy and allow the
system to reach a stationary state. We have checked that possible inelastic
collisions with the walls hardly affect the results. Gravity – set to g = −1.7σf2

in order to be consistent with the experiment – has a negligible influence on
the measured quantities. We have varied the restitution coefficient from 0.8
up to 0.99 (glass beads yield on average α ≈ 0.9) and the total area coverage
from 0.138 (i.e. N = 270) up to 0.32 (N = 620). In Fig. 17-left a snapshot
of the system is shown. During the simulations the main physical observ-
ables are statistically stationary. The local area coverage field Φ(x, y) and
the granular temperature field T (x, y) (defined in two dimensions as the local
average kinetic energy per particle) are almost uniform in the horizontal direc-
tion, apart from small layers near the side walls. In Fig. 17-right the profiles
Φ(y) = (1/Lx)

∫
dxΦ(x, y) and T (y) = (1/Lx)

∫
dxT (x, y) are shown to be

symmetric with respect to the bottom and the top of the box. Following the
experimental procedure, we have focused our attention on a “window” in the
center of the box, fixed in the laboratory frame, of width 2Lx/5 and height
Ly/3, marked in Fig. 17-left. Apart from the negligible change of potential
energy due to gravity, the total kinetic energy of the particles inside the win-
dow, changes during a time τ because of two contributions: ∆Kτ = Qτ − Iτ

where Qτ is the kinetic energy transported by particles through the boundary
of the window (summed when going-in and subtracted when going-out) and Iτ
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Fig. 17. Left: Snapshot of the system considered for MD simulations, with the
inner region marked by the solid rectangle. Right : Corresponding vertical profiles
of density (Φ(y), dashed line) and temperature (T (y), solid line). The dotted lines
mark the bottom and top boundaries of the inner region. Here N = 270 and α = 0.9.
The mean free path is ∼5.7d

is the kinetic energy dissipated in inelastic collisions during time τ . For several
values of τ we have measured, as in the experiments, Qτ which is related to
the kinetic contribution to the heat flux (we checked that inclusion of the col-
lisional contribution, even if non small [HMZ04], does not change the picture).
With N = 270 and α = 0.9 the characteristic times are the mean free time
τcol ≈ 0.47τbox, the diffusion time across the window τdiff = 0.82τbox and
the mean time between two subsequent crossings of particles (from outside to
inside) τcross ≈ 0.039τbox.

We define the injected power as qτ = Qτ/τ and two relevant probabil-
ity density functions (pdfs): fQ(Qτ ) and fq(qτ ). Figure 18a shows fq(qτ )
for different values of τ . A direct comparison with Fig. 3 of [FM04] sug-
gests a fair agreement between simulations of inelastic hard disks and the
experiment. The pdfs are strongly non-Gaussian and asymmetric, becoming
narrower as τ is increased. At small τ a strong peak in qτ = 0 is visible.
More interestingly, fq(qτ ) at small values of τ has two different exponen-
tial tails, i.e. fq(qτ ) ∼ exp(∓β±τqτ ) when qτ → ±∞ with β− > β+. The
peak and the exponential tails at small τ are observed also in the experi-
ment (see Fig. 3 of [FM04]) and in similar simulations [AFMP01]. In Fig. 18b
we display log[fq(qτ )/fq(−qτ )]/τ versus qτ , which is equivalent to the graph
of πτ (qτ ) − πτ (−qτ ) versus qτ where πτ (qτ ) = log[fQ(τqτ )]/τ . From Fig. 18
it appears that at large values of τ , πτ (qτ ) − πτ (−qτ ) is linear with a
τ -independent slope βeff �= 1. We have measured βeff with various choices
of the restitution coefficient α and of the covered area fraction finding similar
results. Feitosa and Menon [FM04] report βeffTgran ∼ 0.25 where Tgran is
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Fig. 18. (a) Pdfs of injected power fq(qτ ) from MD simulations for different values
of τ = (1, 2, 4, 8, 16, 32) × τmin with τmin = 0.015τbox. Here N = 270 and α = 0.9.
The distributions are shifted vertically for clarity. The dashed lines put in evidence
the exponential tails of the pdf at τ = τmin. (b) Plot of (1/τ ) log[fq(qτ )/fq(−qτ )]
versus qτ from MD simulations (same parameters as above) at large values of τ . The
solid curve is a linear fit (with slope βeff ) of the data at τ = 128τmin. The dashed
line has a slope βgran = 1/Tgran. In the inset the same graph is shown for small
values of τ = (1, 2, 4, 8) × τmin (from bottom to top)

the mean granular temperature in the observation window. Similar values are
measured in our MD simulations. At area fraction 13.8% and α = 0.9 we have
βeffTgran ≈ 0.23. At fixed α and increasing area fraction, βeffTgran slightly
increases, as in the experiment. As α → 1 the slope βeff decreases. At α = 1
(without gravity and external driving) the distribution of Qτ is symmetrical
and βeff = 0, indicating that 1/βeff is not a physically relevant temperature
concept. Interestingly, it appears that βeff is a non hydrodynamic quantity:
different systems may show the same density and temperature profiles, with
very different values of βeff .

We now adopt a coarse-grained description of the experiment which is able
to entirely capture the observed phenomenology. The measured flow of energy
is given by

Qτ =
1
2

(
n+∑
i=1

v2
i+ −

n−∑
i=1

v2
i−

)
, (96)

where n− (n+) is the number of particles leaving (entering) the window during
the time τ , and v2

i− (v2
i+) are the squared moduli of their velocities. In order

to analyze the statistics of Qτ we take n− and n+ as Poisson-distributed
random variables with average ωτ , where ω corresponds to the inverse of
the crossing time τcross. In doing so we neglect correlations among particles
entering or leaving successively the central region. A key point, supported
by direct observation in the numerical experiment, lies in the assumption
that the velocities vi+ and vi− come from populations with different tem-
peratures T+ and T− respectively. Indeed, compared with the population
entering the central region, those particles that leave it have suffered on
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average more inelastic collisions, so that T− < T+. Finally we assume Gaus-
sian velocity pdfs. Within such a framework, the distribution fQ(Qτ ) of Qτ

can be studied analytically. Here it is enough to recall that 1
2

∑n
i=1 v2

i , in D
dimensions, if each component of vi is independently Gaussian-distributed
with zero mean and variance T , is a stochastic variable x with a distri-
bution χn,T (x) = f1/T,Dn/2(x), where fα,ν(x) is the Gamma distribution,
and whose generating function reads χ̃n,T (z) = (1 − Tz)−Dn/2 [Fel71]. It is
then straightforward to obtain the generating function of Qτ in the form
f̃Q(z) = exp[τµ(z)] with

µ(z) = ω
(
−2 + (1 − T+z)−D/2 + (1 + T−z)−D/2

)
. (97)

We observe that f̃Q(z) has two poles in z = ±1/T± and two branch cuts on
the real axis for z > 1/T+ and z < −1/T−. From µ(z) we immediately obtain
the cumulants of fQ(Qτ ) through the formula 〈Qn〉c = τ dn

dzn µ(0).
For τ → ∞ the large deviation theory states that fQ(Qτ ) ∼

exp(τπ∞(Qτ/τ)) and π∞(q) can be obtained from µ(z) through a Legendre
transform, i.e. π∞(q) = max

z
(µ(z)−qz). The study of the singularities of µ(z)

reveals the behavior of the large deviation function π∞(q) for q → ±∞. It can
be seen that

π∞(q) ∼ − q

T+
(q → ∞), π∞(q) ∼ q

T−
(q → −∞). (98)

We emphasize however that it is almost impossible to appreciate these tails
in simulations and in experiments, since the statistics for large values of q and
τ is very poor.

A Gallavotti–Cohen-type relation [GC95, LS99, Kur98], e.g. π∞(q) −
π∞(−q) = βq for any q and an arbitrary value of β would imply µ(z) =
µ(β − z). One can see that such a β does not exist, i.e. the fluctuations of Qτ

do not satisfy a Gallavotti–Cohen-like relation. The observed linearity of the
graph log[fq(qτ )/fq(−qτ )]/τ = π(qτ ) − π(−qτ ) versus qτ can be explained by
the same observation pointed out in the previous subsection: at large values
of τ it is extremely difficult, in simulations as well as in experiments, to reach
large values of q, while for small q, π(q) − π(−q) ≈ 2π′(0)q + o(q3), i.e. a
straight line with a slope βeff = 2π′(0) is likely to be observed. It has been
already shown [Far02] that in dissipative systems deviations from the FR can
be hidden by insufficient statistics at high values of q. The knowledge of µ(z)
is useful to predict this slope. At large τ , π′(0) ≈ Π ′(0) = −z∗(0) where z∗(q)
is the value of z for which µ(z) − qz is extremal. This gives

βeff =
T δ

+ − T δ−
T δ+1

+ + T δ+1
−

with δ =
2

2 + D
. (99)

When T+ = T− (i.e. if α = 1) βeff = 0. We emphasize that βeff does not
depend upon ω. We have compared with success these predictions with the
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numerical and experimental results, measuring the temperatures T+ and T−
in the simulation.

What happens for small values of τ? We note that f̃Q(z) has the form
exp(τµ(z)) for any value of τ and not only for large τ . Therefore at small
τ one can expand the exponential, obtaining f̃Q(z) ∼ 1 + ωτ(−2 + (1 −
T+z)−D/2 +(1 +T−z)−D/2). This immediately leads to an analytical expres-
sion for fQ(Qτ ) = const × δ(Qτ ) + χ1,T+(Qτ ) + χ1,T−(−Qτ ), which fairly
accounts for the strong peak which is observed in the experiment and
in the simulations, and predicts exponential tails for fQ(Qτ ): χ1,T (x) ∝
xD/2−1 exp(−x/T ) so that β+ = 1/T+ and β− = 1/T−. This suggests an
experimental test of this theoretical approach: the measure at small values
of τ of the slopes of the exponential tails of fQ(Qτ ) should coincide with
a direct measure of T+ and T−. However, we point out that the values of
β+ and β− obtained by fitting the tails in the hard disks simulation, using
values as small as τ = 0.00015τbox yield estimates of T+ and T− which are
larger (by a factor ∼1.6) than those found by a direct measure. This dis-
agreement brings the limits of such a simple two-temperature picture to
the fore. In the simulation and in the original experiment the measured
injected energy is indeed the sum of several different contributions, namely
Qτ ≈ Qxx

τ + Qxy
τ + Qyx

τ + Qyy
τ where Qij

τ is the kinetic energy transported by
the i component of the velocity by particles crossing the boundary through
a wall perpendicular to direction j. Two main differences with the simplified
interpretation given above arise: (a) there are two couples of temperatures, i.e.
T x

+, T x
− as well as T y

+, T y
− [BC98,ML98,BK03]; (b) the diagonal contributions

Qjj
τ are sums of squares of velocities whose distribution is not a Gaussian but

is ∼v exp(−v2/T ), since the probability of crossing is biased by the velocity
itself. The calculation of fQ(Qτ ) is still feasible, with qualitatively similar
results.

6 The Dynamics of a Tracer Particle
as a Non-Equilibrium Markov Process

In the search for a quantity that is, more rigorously, related to the “entropy
production” in a granular gas, we consider in this section the projection
of the dynamics of the gas onto that of a tracer particle, which is easier
since it is equivalent to a jump Markov process. We are interested in the
dynamics of a tracer granular particle in a homogeneous and dilute gas of
grains which is driven by an unspecified energy source. The requirements
are that the gas is dilute, spatially homogeneous and time translational
invariant. The gas is characterized by its velocity probability density func-
tion P (v) which, for the sake of simplicity, will be considered of the form
P (v) = 1

(2πT )d/2 exp
(
− v2

2T

)
(1+ a2S

d
2 (v2/2T )), where Sd

2 is the d-dimensional
second Sonine polynomial already defined in (2.2). The gas is therefore
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parametrized by its temperature T and its second Sonine coefficient a2 which
measures its non-Gaussianity.

The linear Boltzmann equation for the tracer, in generic dimension d,
reads:

dP∗(v, t)
dt

=
1
�

∫
dv1

∫
dv2

∫ ′
dω̂|(v1 − v2) · ω̂|P∗(v1)P (v2)×

×
{

δ

(
v − v1 +

1 + α

2
[(v1 − v2) · ω̂]ω̂

)
− δ(v − v1)

}
(100)

where P∗(v) is the velocity pdf of the test particle and the primed integral
again indicates that the integration is performed on all angles that satisfy
(v1 − v2) · ω̂ > 0. The mean free path � appears in front of the collision
integrals. In the following (when not stated differently) we will put � = 1,
which can be always obtained by a rescaling of time.

We rewrite (100) as a Master equation for a Markov jump process
[PVTvW06]:

dP∗(v, t)
dt

=
∫

dv1P∗(v1)K(v1,v) −
∫

dv1P∗(v)K(v,v1). (101)

The transition rate K(v,v′) of jumping from v to v′ is given by the following
formula:

K(v,v′) =
(

2
1 + α

)2 1
�
|∆v|2−d

∫
dv2τP [v2(v,v′,v2τ )], (102)

where ∆v = v′ − v denotes the change of velocity of the test particle after a
collision. The vectorial function v2 is defined as

v2(v,v′,v2τ ) = v2σ(v,v′)σ̂(v,v′) + v2τ , (103)

where σ̂(v,v′) is the unitary vector parallel to ∆v, while v2τ is entirely con-
tained in the (d− 1)-dimensional space perpendicular to ∆v (i.e. v2τ ·∆v = 0).
This implies that the integral in expression (102) is (d − 1)-dimensional.
Finally, to fully determine the transition rate (102), the expression of v2σ

is needed:
v2σ(v,v′) =

2
1 + α

|∆v| + v · σ̂. (104)

6.1 Detailed Balance

Here, we obtain a simple expression for the ratio between K(v,v′) and
K(v′,v). When exchanging v with v′ the unitary vector σ̂ changes sign. Fur-
thermore one has that v2σ(v,v′) �= v2σ(v′,v). From all these considerations
and from (102) one obtains immediately:
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K(v,v′)
K(v′,v)

=
∫

dv2τP [v2(v,v′)]∫
dv2τP [v2(v′,v)]

≡ P [v2σ(v,v′)]
P [v2σ(v′,v)]

. (105)

We note that this ratio depends only on the choice of the pdf of the gas, P ,
and not on the other parameters (such as α). However in realistic situations
(experiments or Molecular Dynamics simulations) P is not a free parameter
but is determined by the choice of the setup (e.g. external driving, material
details, geometry of the container, etc.).

Introducing the short-hand notation v2σ = v2σ(v,v′), v′2σ = v2σ(v′,v)
and v

(′)
σ = v(′) · σ̂, we also note that

(v′2σ)2 = v2
2σ + (vσ + v′σ)2 − 2v2σ(vσ + v′σ), (106)

from which it follows that

∆2 = (v2σ)2 − (v′2σ)2 = −∆− 2
1 − α

1 + α
∆ = −3 − α

1 + α
∆, (107)

where ∆ = v2
σ − (v′σ)2 ≡ |v|2 − |v′|2, i.e. the kinetic energy lost by the

test-particle during one collision. When α = 1 then ∆2 = −∆ (energy
conservation). From the above considerations it follows that

• in the Gaussian case, it is found

log
K(v,v′)
K(v′,v)

=
∆

2T
+ 2

1 − α

1 + α

∆

2T
=

3 − α

1 + α

∆

2T
(108)

• in the First Sonine Correction case, it is found

log
K(v,v′)
K(v′,v)

=
3 − α

1 + α

∆

2T
+ log

{
1 + a2S

d=1
2

[
( 2

1+α (v′
σ−vσ)+vσ)2

2T

]}
{

1 + a2Sd=1
2

[
( 2

1+α (vσ−v′
σ)+v′

σ)2

2T

]} (109)

In the case where P (v) is a Gaussian with temperature T , it is immediate
to observe that

P∗(v)K(v,v′) = P∗(v′)K(v′,v) (110)

if P∗ is equal to a Gaussian with temperature T ′ = α+1
3−αT ≤ T . This

means that there is a Gaussian stationary solution of (101) (in the Gaussian-
bulk case), which satisfies detailed balance. The fact that such a Gaussian
with a different temperature T ′ is an exact stationary solution was known
from [MP99]. It thus turns out that detailed balance is satisfied, even out
of thermal equilibrium. Of course this is an artifact of such a model: it is
highly unrealistic that a granular gas yields a Gaussian velocity pdf. As soon
as the gas velocity pdf P (v) ceases to be Gaussian, detailed balance is vio-
lated, i.e. the stationary process performed by the tracer particle is no more
in equilibrium within the thermostatting gas. We will see in Sect. 6.2 how to
characterize this departure from equilibrium.
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6.2 Action Functionals

From the previous section we have learnt that the dynamics of the velocity
of a tracer particle immersed in a granular gas is equivalent to a Markov
process with well defined transition rates. This means that the velocity of
the tracer particle stays in a state v for a random time t ≥ 0 distributed
with the law r(v)e−r(v)tdt and then makes a transition to a new value v′

with a probability r(v)−1K(v,v′), with r(v) =
∫

dv′K(v,v′). At this point
it is interesting to ask about some characterization of the non-equilibrium
dynamics, i.e. of the violation of detailed balance, which we know to happen
whenever the surrounding granular gas has a non-Gaussian distribution of
velocity.

To this extent, we define two different action functionals, following [LS99]:

W (t) =
n(t)∑
i=1

log
K(vi → v′

i)
K(v′

i → vi)
(111a)

W (t) = log
P∗(v1)

P∗(v′
n(t))

+
n(t)∑
i=1

log
K(vi → v′

i)
K(v′

i → vi)
(111b)

≡ log
P(v1 → v2 → ... → vn(t))

P(vn(t) → vn(t)−1 → ... → v1)
(111c)

where i is the index of collision suffered by the tagged particle, vi is the velocity
of the particle before the i-th collision, v′

i is its post-collisional velocity, n(t)
is the total number of collisions in the trajectory from time 0 up to time t,
and K is the transition rate of the jump due to the collision. Finally, we
have used the notation P(v1 → v2 → ... → vn) to identify the probability
of observing the trajectory v1 → v2 → ... → vn. The quantities W (t) and
W (t) are different for each different trajectory (i.e. sequence of jumps) of
the tagged particle. Note that the first term log P∗(v1)

P∗(v′
n(t))

in the definition of
W (t), (111c), is non-extensive in time. The two above functionals have the
following properties:

• W (t) ≡ 0 if there is exact symmetry, i.e. if K(vi → vi+1) = K(vi+1 → vi)
(e.g. in the microcanonical ensemble); W (t) ≡ 0 if there is detailed balance
(e.g. any equilibrium ensemble).

• We expect that, for large enough t, for almost all the trajectories
lims→∞ W (s)/s = lims→∞ W (s)/s = 〈W (t)/t〉 = 〈W (t)/t〉; here (since
the system under investigation is ergodic and stationary) the meaning of
〈〉 is intuitively an average over many independent segments of a single
very long trajectory.

• For large enough t: (1) at equilibrium 〈W (t)〉 = 〈W (t)〉 = 0; (2) out of equi-
librium (i.e. if detailed balance is not satisfied) those two averages are
positive; we use those equivalent averages, at large t, to characterize the
distance from equilibrium of the stationary system.
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• If S(t) = − ∫
dvP∗(v, t) log P∗(v, t) is the entropy associated to the pdf of

the velocity of the tagged particle P∗(v, t) at time t (e.g. −H where H is
the Boltzmann-H function), then

d
dt

S(t) = R(t) − A(t) (112)

where R(t) is always non-negative, A(t) is linear with respect to P∗ and,
finally, 〈W (t)〉 ≡ ∫ t

0
dt′A(t′). This leads to consider W (t) equivalent to the

contribution of a single trajectory to the total entropy flux. In a stationary
state A(t) = R(t) and therefore the flux is equivalent to the production;
this property has been recognized in [LS99].

• FRW (Lebowitz–Spohn–Gallavotti–Cohen fluctuation relation): π(w) −
π(−w) = w where π(w) = limt→∞ 1

t log f t
W (tw) and f t

W (x) is the probabil-
ity density function of finding W (t) = x at time t; at equilibrium the FRW

has no content; note that in principle π′(w, t) = 1
t log f t

W (tw) �= π(w) at
any finite time; a generic derivation of this property has been obtained
in [LS99], while a rigorous proof with more restrictive hypothesis is
in [Mae99]; the discussion for the case of a Langevin equation is in [Kur98].

• FRW (Evans–Searles fluctuation relation): π(w, t) − π(−w, t) = w where
π(w, t) = 1

t log f t
W

(tw) and f t
W

(x) is the probability density function of
finding W (t) = x at time t; at equilibrium the FRW has no content;
this relation is derived in [LS99]; the analogy between this relation and
the Evans–Searles fluctuation relation [ES94,ES02] has been put forward
in [PVTvW06].

A detailed numerical study [PVTvW06] of the fluctuations of W (t) and
W (t) in this model has shown on the one hand that, out of equilibrium (i.e.
when the surrounding gas is non-Gaussian), the FRW is always satisfied.
On the other hand the FRW is always violated, even if it was expected on
the basis of the arguments given in [LS99]. The difference between the two
functionals defined in (111) is a term which is non-extensive in time, but
which has fluctuations whose distribution has exponential tails and therefore,
in principle, can contribute to the large deviation function of W (t) [PRV06,
Vis06]. Such a failure of a large time Fluctuation Relation, which is much
more pronounced in the near-to-equilibrium cases, is similar to that observed
in other systems [ESR05,Far02,vZC03,BGGZ05].

7 Conclusions

The study of the fluctuations of global physical quantities in a granular
gas is at its very beginning. In the lack of a general rigorous theory in
the framework of non equilibrium statistical mechanics, experiments and
numerical simulations are the main source of results, together with few exact
analytical calculations. In this review of recent results [VPB+05, PVB+05,
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VPB+06a, PVTvW06, VPB+06b] we have indicated some routes that have
been followed, focusing on two global quantities (total energy and energy
injection rate) that are of interest in nowadays physics of non-equilibrium
systems [BHP98,BdSMRM05,AFMP01,AFFM04,Far02,Far04]. On one hand
we have shown that total energy fluctuations have a pdf that strongly depends
on the model considered. We have also pointed out that definitive inferences
about the presence of correlations, starting from the observation of “anoma-
lous” pdfs of total energy, must be drawn with caution, since the lack of
spatial or temporal translational invariance may play a major role. On the
other hand we have presented a method to calculate the large deviation func-
tion of injected power in a granular gas: this method strongly suggests the
disappearance of a negative branch in such large deviation function. This
result is a direct consequence of the time-irreversibility of inelastic collisions:
injected power fluctuations are dominated at large times by the energy dis-
sipated in collisions, which is always positive. Finally we have sketched a
recipe to obtain a quantity related to time-reversal asymmetry (i.e. violation
of detailed balance) whose large deviations can be both positive and negative.
This quantity has the advantage of being measurable in experiments, but the
disadvantage of not having an obvious “macroscopic” counterpart. It contains
in fact information on the non-Gaussianity of the velocity pdf of the gas. This
consideration is in our opinion the main open issue in this study.
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An Extended Continuum Theory
for Granular Media

Pasquale Giovine

Summary. In a dilatant granular material with rotating grains the kinetic energy
in addition to the usual translational one consists of three terms owing to the
microstructural motion; in particular, it includes the rotation of granules and the
dilatational expansion and contraction of the individual (compressible) grains and of
the grains relative to one another. Therefore the balance and constitutive equations
of the medium are obtained by considering it as a continuum with a constrained
affine microstructure. Moreover, the balance of granular energy is demonstrated to
be a direct consequence of the balance of micromomentum, while the dilatational
and the rotational microstresses are turned out to be of different physical nature.
Finally, a kinetic energy theorem implies that, locally, the power of all inertial forces
is the opposite of the time-rate of change of kinetic energy plus the divergence of
a flux through the boundary. The peculiar case of a suspension of rotating rigid
granules puts in evidence the possibility for granular materials of supporting shear
stresses through the generation of microrotational gradients.

1 Introduction

In this study we extend the continuum theory of dilatant granular materials,
as developed in [31], by the consideration of possible rotations of compressible
granules (see also, [1] and [40]); that theory generalized the models of perfect
fluids with microstructure of Capriz in Sect. 12 of [7] and of distributed bodies
of Goodman and Cowin [33].

The theory of distributed continuum proposed in [33] was widely used to
study the slow flows of granular materials and, in particular, the propagation
of all sort of waves, the basic equations of the equilibrium theory obtained
from variational principles, the multiphase granular mixtures, the shearing
flows, etc. (see, e.g., [34], [38], [45]–[48] and [22]). The material was assumed
to consist of dry cohesionless compressible spheres of uniform size and the
flow behaviour has required a combination of suggestions from both fluid and
solid mechanics owing to the fact that the material has an essentially fluid-like
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behaviour, but it can also be heaped and, moreover, its bulk compressibility
depends on the initial voids distribution in the reference placement (see the
experimental results in [41] and [2]). An additional equation of balance for
the microinertia was needed for the new independent kinematical variable
introduced in [33], the volume fraction of the grains which describes the local
arrangements of the grains themselves: hence granular materials are a special
case of continua with microstructure [7].

In [50] and [16] it was observed that the constitutive hypotheses made
in [33] raised some uncertainties: these was partially rectified in Sect. 3 of [50]
and in [20] and [28], at least in the case of incompressible grains. Instead, the
compressible case was extensively analysed in [30], [27] and [31]. In particu-
lar, in [30] the dynamic equations of motion was obtained, in the conservative
case, from a Hamiltonian variational principle of local type for a perfect fluid
with microstructure, in accordance with the fluid-like behaviour of granu-
lar materials (the preference for a Eulerian variational principle, rather than
Lagrangian, was not in contrast with the previous appeal to a reference
placement because the difference between the former and the latter formu-
lation is not so peremptory for such materials (see also, [3])). The choice of
the expression of the total kinetic energy and of the independent constitutive
variables was made in accordance with [4] (“. . . the dilatational motion consists
of expansion and contraction of the individual (compressible) grains . . . and of
the grains relative to one another . . . ”) and [21] (“. . . the gradient of solid’s
volume fraction is not, by itself, the appropriate second geometric measure of
local structure . . . ”), respectively.

An interesting application of the theory in [30] was investigated in [32] for
the study of seismic waves propagating through a sediment filled basin in the
case of rigid grains; one of the advantages of the model, with respect to purely
propagative models, was the reproduction of a nonlinear effect experimentally
observed for real seismic waves: site amplification decreases as the amplitude
of the incident wave increases.

In this chapter we consider a suspension of elastic spheres in a compressible
gas of negligible mass; we assume a volume concentration close to that of
packed particles, so that the mean free path of the particles is very short
in comparison to the size of the particles themselves (as it is the case of
cohesionless soil or sand with rough surface grains).

In Sects. 2 and 3 we present the model for a dilatant granular material with
rotating grains and make a proposal for the kinetic energy instead to mention
momentum and inertia, because it appears easier to conceive an appropri-
ate expression of the former quantity rather than of the latter. The total
kinetic energy consists of four terms: in addition to the usual translational
one, there are three types of microstructural motion that are modelled by our
theory, the two dilatational motions previously mentioned and the rotation of
granules.
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In Sects. 4 and 5 we introduce the balance equations and the principal fields
for continua with affine microstructure and analyse the meaning of objectivity
for change in observer for these fields.

In Sect. 6 we study the kinematical constraint of spherical microstructure
by imposing that the changes in the affine microstructure are conformal and
then obtain the pure field equations that rule the time evolution of the macro-
and micro-motion and of the temperature; moreover, we get an equation for
reactions to the constraint.

In Sect. 7 we assume the validity of a kinetic energy theorem which implies
that, locally, the power of all inertial forces be the opposite of the given time-
rate of change of the kinetic energy plus the divergence of the flux through the
boundary. Furthermore, we define the granular temperature in our theory and
recover the balance of granular energy as a direct consequence of the balance
of micromomentum.

In Sect. 8 we impose constitutive postulates for a thermoelastic granular
medium, deduce that the Helmholtz free energy represents a sort of potential
for stresses and microstresses, and compare the results with previous theo-
ries by using comments and remarks. In particular, we observe the different
physical nature of the dilatational microstress with respect to the rotational
one, the former expressing a sort of internal non-local action rather than the
usual connection with boundary microtractions of the latter [12].

Finally, in Sect. 9 we consider the peculiar case of a suspension of rotating
rigid granules in a fluid matrix and notice that the microstructure behaves as
that of a microrigid Cosserat’s continua. By considering possible rotations of
grains during the motion, we also show that, even when the volume fraction
of the grain distribution is constant, the model predicts the possibility of
supporting shear stress through the generation of microrotational gradients.

2 A First Model

The continuum model for dilatant granular materials here considered is
directly referred to the models proposed in [6] and [4]. The material elements
of the body are a sort of quasi-particle, that will be called a ‘chunk’ of mate-
rial, and are thought of as envelopes which fill the body without voids between
them (see also, [13]): each one consists of a grain and its immediate neigh-
bours as it is the case of a suspension of elastic particles in a compressible
fluid, whose density is considered to be negligible compared with the proper
density ρm of the suspended particles; so the chunk mass density ρ of the
body equals ρm times the volume fraction ν of the grains

ρ = ρmν, (1)

with ν ∈ [0, 1).
In [31] the motions allowed within the chunk were merely expansions (or

contractions) of the inclusions and radial motions of the spherical crust due
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to the displacements of the grain relative to the centre of mass of the element
itself; neither diffusion of the grains through the envelope, nor effects of rela-
tive rotations of the elements or of the granules themselves were considered:
assumptions rather limiting for this type of media, but necessary to obtain
suggestions for the choice of an appropriate expression of the density per unit
mass of the additional kinetic coenergy χ (ρm, ρ̇m) due to the microstructure
and related to the kinetic energy κd by the Legendre transformation

∂χ

∂ρ̇m
· ρ̇m − χ = κd (2)

(see [10]). In (2) the dot denotes material time derivative, i.e.,

˙ρm :=
∂ρm

∂τ
+ v · gradρm. (3)

In particular, if v denotes the velocity of the mass centre of the element,
whose local position vector is x at the time τ (x∗ being the reference one),
thus the total kinetic coenergy of the material in [31] is homogeneous of second
degree in the macro- and micro-velocities and so equal to the total kinetic
energy κtot (see again, [10]); precisely, it is:

κtot = κt + κf + κd, (4)

with

κt :=
1
2
v · v, κf :=

1
2
γ(ρ)ρ̇2, κd :=

1
2
α(ρm)ρ̇2

m. (5)

In (4) κt is the usual translational kinetic energy related to the velocity of
the centre of mass of the macro-element; κf is the ‘fluctuation’ kinetic energy
associated to the ‘dilatancy’, as defined by Reynolds [49], by means of the
motion of individual grains relative to the centre of mass, i.e., the kinetic
energy due to the variations of the volume of chunk interstitial voids and
expressed in terms of the rate of change of the chunk mass density ρ, with
γ(ρ) a scalar constitutive coefficient; κd is the ‘dilatational’ kinetic energy
related to local expansions (or contractions) of the inclusions in the chunk
and written in terms of the rate of change of the proper mass density of the
grains ρm, with α(ρm) another scalar constitutive function.

Explicit evaluations for the constitutive functions γ(ρ) and α(ρm) can be
obtained if one imagines simple microstructural motions and peculiar geomet-
rical shapes for chunks and/or granules. In particular, if the grains and the
chunks expand or contract homogeneously with independent motions and if
the envelope of the chunk is imagined as a spherical surface of radius ς con-
taining some spherical inclusions, the grains, of radius ϕ, which have the same
radius ς∗ and ϕ∗, respectively, in a reference placement B∗ of the material, we
calculate the following expressions (see the Appendix):

γ(ρ) = γ∗ρ−
8
3 , α(ρm) = α∗ρ

− 8
3

m , (6)
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with

γ∗ =
16
351

ρ
2
3∗ ς2

∗ , α∗ =
1
15

ρ
2
3
m∗ϕ2

∗ (7)

and where, now and in the course, the subscript (·)∗ refers to the value of the
quantity in the reference placement B∗.

When other geometric configurations of the grains and of the elements are
considered, it is possible to compute more general expressions for γ and α (see
Sect. 2 of [4]).

3 Rotations

Hereafter we denote by Lin+, Sym+ and Orth+ the collection of second-order
tensors with positive determinant, symmetric and positive definite, and proper
orthogonal, respectively. Moreover, sym A and skw A are the symmetric and
skew parts of a second-order tensor A, respectively, while the spherical and
deviatoric parts of A are defined to be, respectively,

sphA :=
1
3
(trA)I and dev A := symA − sphA, (8)

where trA := A · I is the trace of A and I := (δik) the identity tensor with
δik the delta of Kronecker. Also, Skw is the collection of all skew second-
order tensors and Sym that of all symmetric second-order tensors, direct sum
of Sph and Dev, the subspaces of spherical and traceless elements of Sym,
respectively.

Now we generalize the expression of the density of dilatational kinetic
energy κd obtained in [31], and defined in (5)3, in order to allow effects of
relative rotations of the compressible granules.

We suppose that each grain of the continuum is capable of an affine defor-
mation distinct from (and independent of) the local affine deformation ensuing
from the macromotion (and so not adequately modelled by the classical gra-
dient of deformation F = ∂x

∂x∗
(x∗, τ) ∈ Lin+). In particular, we assume that

the microstructure of the dilatant granular material is spherical, as defined
in [16], i.e., the microstructural tensor field G of Lin+, describing the changes
in the affine structure, is conformal:

G(x∗, τ) = β(x∗, τ)R(x∗, τ), (9)

with β(x∗, τ) > 0 and R(x∗, τ) ∈ Orth+, and the reference microinertia tensor
field J∗ ∈ Sym+ has spherical values:

J∗(x∗) = µ2
∗(x∗) I, ∀x∗ ∈ B∗. (10)

Remark: We observe that the reference microinertia tensor J∗ is directly
related to the Euler’s microinertia tensor per unit mass J of the generic chunk
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with respect to its centre of mass x at time τ and to the corresponding kinetic
energy density κs, two fields which have the following form, respectively:

J = GJ∗GT ∈ Sym+ and κs =
1
2
(VJ∗) · V, (11)

where V(x∗, τ) := Ġ(x∗, τ) is the microvelocity over the current placement
Bτ = x(B∗, τ) of the body B (see e.g., (2.10) and (2.35) of [16] and, more in
general, (5) and (16) of [9]).

For dilatant granular materials with rotating grains, the microstructure is
supposed spherical and relations (9) and (10) apply, hence the Euler’s tensor
J is always spherical and the inertia related to the admissible micromotions
of grains is decomposed in two terms because the trace of the skew tensor
product ṘRT vanishes; they are expressed by

J = µ2 I and κs =
3
2
µ̇2 +

1
2
µ2 Ṙ · Ṙ, (12)

respectively, with
µ(x∗, τ) := µ∗(x∗)β(x∗, τ). (13)

An explicit suggestion for the constitutive expression of µ is obtained by
considering the previous model of Sect. 2 as a particular case of this one; thus,
by restricting the rotation R to coincides with the identity tensor I, the kinetic
energy κs must reduce to the kinetic energy κd of (5)3 with α(ρm) given by
(6)2. Thus the following relation is valid by identification (in the case R = I):

3
2
µ̇2 =

1
2
α∗ ρ

− 8
3

m ρ̇2
m; (14)

so that a straightforward integration of the latter equation yields the following
requested constitutive term:

µ(ρm) = µ∗ +
√

3α∗(ρ
− 1

3
m − ρ

− 1
3

m∗ ). (15)

Therefore, by choosing µ∗ = ρ
− 1

3
m∗

√
3α∗, we have that

µ(ρm) = ρ
− 1

3
m

√
3α∗ and β(ρm) =

(
ρm∗
ρm

) 1
3

, (16)

so the conformal coefficient β accounts for the homogeneous expansion or
contraction of the grains.

At the end, in this chapter the total kinetic energy κext of the extended
model for dilatant granular media is:

κext =
1
2
v · v +

1
2
γ(ρ)ρ̇2 +

3
2
µ̇2(ρm) +

1
2
µ2(ρm) Ṙ · Ṙ, (17)

with γ(ρ) and µ(ρm) given by (6)1 and (16)1, respectively.
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4 Balance of Interactions for Material Bodies
with Affine Microstructure

The local statements of the balance laws for granular materials will be
obtained in Sect. 6 by the general ones for bodies with affine microstruc-
ture by imposing the internal constraint (9) on the tensor field G describing
the changes in the affine structure. These equations of balance governing an
admissible thermomechanical process are (see e.g., Sect. 21 of [7] and Sect. II.C
of [43]):

ρ̇ + ρ trL = 0, (18)
c + div T = 0, (19)

C − Z + div Σ = 0, (20)

skwT = skw
(
GZT + gradG� Σ

)
, (21)

ρε̇ = T · L + Z · V + Σ · gradV + ρλ − div q. (22)

Equation (18) is the conservation law of mass and L is the usual velocity gra-
dient: L := gradv (= ḞF−1); equation (19) is the standard law of Cauchy’s
balance, where c is the vector density per unit volume of external bulk forces
and T the stress tensor; equation (20) is the balance of microstructural inter-
actions, in which C and −Z are the resultant tensor densities per unit volume
of external bulk interactions on the microstructure and internal self-force,
respectively, while Σ is the third-order microstress tensor that, in general, is
not necessarily related to a sort of boundary microtractions, unless it is pos-
sible to define a physically significant connection on the manifold of values of
the microstructure by which the gradient on it may be evaluated in covariant
manner (see [11]); equation (21) is the balance law of angular momentum and
the tensor product � between third-order tensors is so defined:

(gradG � Σ)ij := Gih,kΣjhk; (23)

equation (22) is the balance of mechanical energy in which ε is the specific
internal energy per unit mass, λ the scalar rate of heat generation per unit
mass due to irradiation and q the heat flux vector.

We accept here the principle of entropy as it applies in its classical form
purely thermal: intrinsic production of entropy is always non-negative during
every admissible thermodynamic process for the body. This production is
given by the rate of variation of the specific entropy, whose density per unit
mass is η, less the rate of heat exchange due to a flux of entropy through
the boundary of vector density −θ−1q, where θ is the (positive) absolute
temperature, and a production owing to distributed entropy sources of specific
density per unit mass λθ−1. The local form of the principle is given by the
Clausius–Duhem inequality

ρη̇ + div
(
θ−1q

)− ρλθ−1 ≥ 0; (24)
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moreover, if we introduce the Helmholtz free energy per unit mass ψ := ε−θη
and use (22), we obtain a reduced version of this inequality, that is,

ρ
(
ψ̇ + θ̇η

)
+ θ−1q · g ≤ T · L + Z ·V + Σ · gradV. (25)

where g := grad θ.
Equations (20) and (21) are not immediately recognized to be the bal-

ance equations which are usually proposed for studying continua with affine
microstructure (see e.g., [17]) or micromorphic media (see e.g., [26]), but, mod-
ulo some innocuous changes in notation and, after, by considering the effects
of inertia of possible internal vibrations of the substructures, we can recover
them.

Firstly, by transposing the balance equation of micromomentum (20) and
multiplying both sides by the microstructural tensor variable G, we have the
following result:

GCT − GZT − gradG � Σ + div
(
G � tΣ

)
= 0, (26)

where the minor left transposition (of exponent t) on a tensor Ω of the third
order has the following meaning: ((tΩa)b)c = ((Ωa)c)b, for each triple of
vectors a, b and c, while the tensor product � between tensors of the second
and the third order is so defined: (A � Ω)ijl := AihΩhjl.

Then, by using the balance equation of moment of momentum (21) and
by introducing the following second- and third-order tensors

C̃ := GCT , Z̃ := sym [GZT + gradG � Σ] and Σ̃ := G� tΣ (27)

into (26), it becomes

C̃− Z̃ − skwT + div Σ̃ = 0. (28)

Secondly, we decompose the volume forces C in their inertial Cin and
noninertial ρB parts as

C = Cin + ρB (29)

and observe that Cin is the opposite of the Lagrangian derivative of the
microstructural kinetic coenergy χs(V), homogeneous of second degree in the
micro-velocity V and so equal to the kinetic energy κs defined in (11)2, thus
it is

Cin = −ρ

[
d

dτ

(
∂κs

∂V

)
− ∂κs

∂G

]
= −ρV̇J∗ (30)

(see also, [10] or (60) of [43]).
Hence, by transposing this relation, multiplying both sides by the

microstructural tensor variable G and using relation (11)1, we have that:
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G(Cin)T = −ρGJ∗V̇T = −ρJ(V̇G−1)T , (31)

Then, by introducing the second-order tensors B̃ := GBT and using the
relation (31) together with the (29) into (28), it becomes

ρJ(V̇G−1)T = ρB̃− Z̃ − skwT + div Σ̃. (32)

Finally, let us insert the second-order kinematical tensor W for the micro-
motion corresponding to the velocity gradient L of the macromotion, i.e., the
wrenching tensor

W(x∗, τ) := V(x∗, τ)G−1(x∗, τ); (33)

for relation (11)1 it satisfies the kinematical relation

J̇ = JWT + WJ (34)

that some Author calls the new fundamental conservation equation of microin-
ertia, similar, in some sense, to the continuity equation (18) for macromotion
(see, e.g., Theorem 5 in [26]): here, however, it is a simple consequence of
definition (11)1.

By using the wrenching (33) and relation (34) into (32), we are led to the
requested classical form of equation for micromomentum (4.18) of [17]:

ρ
[ ˙(JWT) − WJWT

]
= ρB̃− Z̃ − skwT + div Σ̃, (35)

where B̃ is the generalized body moment, Σ̃ is the hyperstress and Z̃ rep-
resents the symmetric part of the generalized moment of interaction of the
microstructure and the gross motion. By replacing these fields in (22), we
obtain the related energy equation in presence of affine microstructure in the
usual form (see also (2.5) of [16]):

ρε̇ = T · L + (Z̃ + skwT) ·WT + Σ̃ · grad
(
WT

)
+ ρλ − div q. (36)

5 Observers

Now, in order to give a suitable definition of a continuum with microstructure
subject to internal kinematical constraints, as (9) and (10) are, and to study
the consequences of them on the balance equations (18)–(22) and (25), we
need an objective version of the total power density of mechanical internal
actions Pint acting on the body B, that is the quantity appearing, with the
opposite sign, in the right-hand side of the reduced version of the imbalance
of entropy (25) (see Sect. 3 of [31]):

Pint = − (T · L + Z · V + Σ · gradV) . (37)
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A change in observer of a body with affine microstructure B relates two
processes (x̆, Ğ, θ̆)(τ) and (x,G, θ)(τ) if, for any (x∗, τ) ∈ B∗ ×�,

x̆(x∗, τ) = c(τ) + Q(τ)x(x∗, τ), Ğ(x∗, τ) = Q(τ)G(x∗, τ) (38)

and
θ̆(x∗, τ) = θ(x∗, τ), (39)

where c is a vector and Q a proper orthogonal tensor of Orth+.
This means that G transforms like the deformation gradient F and can be

considered as a double vector, while the velocity v, the microvelocity V and
the gradient of temperature g transform as follows:

v̆ = ċ + Q̇d + Qv, V̆ = Q̇G + QV and ğ = Qg, (40)

where d is the position vector of x relative to a fixed origin in E .
Now, let D (:= symL) and Y (:= −skwL) be the stretching and the

spin tensor, respectively, and D̃ (:= symW) and Ỹ (:= −skwW) the micro-
stretching and the micro-spin tensor, respectively, so that

L = D− Y and W = D̃ − Ỹ; (41)

therefore one can compute from (40)1,2 the transformation laws for L̆ and W̆:

L̆ = ˘grad v̆ =
∂L̆
∂x∗

F̆−1 =
(
Q̇F + Q

∂v
∂x∗

)
F−1QT = Q̇QT + QLQT (42)

and
W̆ = V̆Ğ−1 =

(
Q̇G + QV

)
G−1QT = Q̇QT + QWQT ; (43)

consequently, L̆ can be split into the symmetric and skew part, respectively:

D̆ = QDQT and Y̆ = −Q̇QT − QYQT , (44)

as well as W̆.
Owing to the transformation laws (40)2 and (42)4, the expression (37) for

the power density Pint is not frame indifferent, apparently; instead, by using
the balance of angular momentum (21) and relations (41), we have that

−Pint = D · symT + Y · skw
(
ZGT + Σ � gradG

)
+

+W · (ZGT + Σ� gradG
)

+ (G � tΣ) · grad (WT ) =

= D · symT + (Y − Ỹ) · skw
(
ZGT + Σ� gradG

)
+

+ D̃ · sym
(
ZGT + Σ � gradG

)
+ (G � tΣ) · grad (D̃ + Ỹ)

(45)

and hence Pint is indifferent to changes in observer, as requested.
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6 Dilatant Granular Materials with Rotating Grains

We now impose the perfect kinematical constraint of spherical microstructure,
as described by formulas (9) and (10), in order to obtain the balance laws for
granular materials which allow effects of microrotation of the compressible
grains, other than the dilatancy of the chunks.

The body B is said to be internally constrained if the allowed velocity,
microvelocity and temperature gradient distributions are such that not all
values of the objective factors D, D̃, (Y − Ỹ), grad D̃, grad Ỹ and g are
accessible. In our case the wrenching W, the micro-stretching D̃ and the
micro-spin Ỹ are given by

W = β̇β−1I + ṘRT , D̃ = β̇β−1I, Ỹ = −ṘRT , (46)

respectively, and so the macromotion is not constrained at all, while

grad (WT ) = I ⊗ grad (β̇β−1) + grad (ṘRT ). (47)

Furthermore, we follow classical theories (see [36] and [18]) and suppose
that each quantity, which, in absence of the constraint, is ruled by a consti-
tutive prescription (that is T, Z, Σ, q, ε, η, ψ) is now the direct sum of one
active and one reactive component

T = Ta + Tr, Z = Za + Zr, etc. (48)

and only the active component is bound through suitable constitutive relations
to the independent thermokinetic variables.

The additional request that the constraint is perfect, i.e., internally friction-
less, is specified, in this wider thermomechanic rather than purely mechanical
context, by the property that the entropy production due to the reaction
is null, that is the contribution of the reactions to the inequality (25) are
identically zero for every process allowed by the constraint (see also, Sect. 27
of [7]):

ρ
(
ψ̇r + ηr θ̇

)
+ θ−1qr · g = Tr · L + Zr · V + Σr · gradV. (49)

By using the representation (45)1 of Pint, the constraint relation (9), (46)
and (47) into (49), we have

ρ
(
ψ̇r + ηr θ̇

)
+ θ−1qr · g = symTr ·D − skw Tr · Y +

+ (β̇β−1) [βZr ·R + Σr · grad (βR)] +
(
βΣT

r RT
) · grad

(
β̇β−1

)
− (50)

− skw
[
βZrRT + Σr � grad (βR)

] · Ỹ + (βR � tΣr) · grad Ỹ,

for every totally free choice of θ̇ and (β̇β−1) among the scalars, g among
the vectors, Y and Ỹ among the skew tensors and D among the symmetric
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tensors; in (50) the transposition of exponent T on a tensor Ω of the third
order has the following meaning: ((ΩT a)b)c = ((Ωc)b)a, for each triple of
vectors a, b and c.

The reactions are then characterized by the following requirements:

ψr = const., ηr = 0, qr = 0, (51)

Tr = 0, Zr · βR + Σr · grad (βR) = 0,

skw
[
βZrRT + Σr � grad (βR)

]
= 0,

ΣT
r RT = 0 and skw

[
βR (Σrw)T

]
= 0, ∀ vectorw;

(52)

hence, from definitions (27)2,3, we have that reactions must be such that

Z̃r =
[
β ZrRT + Σr � grad (βR)

] ∈ Dev,

Σ̃r w = β R (Σr w)T ∈ Dev, ∀ vectorw,
(53)

and, accordingly,

Z̃a ∈ Sph and
(
Σ̃a w

)
∈ Sph ⊕ Skw, ∀ vectorw, (54)

while, for (52)1, Ta is a free tensor field, not necessarily symmetric-valued.
Now we are able to obtain a set of pure equations which rules the ther-

momechanical evolution of our model of dilatant granular material B; in fact,
by splitting the stress tensor T into its symmetric and skew parts and by
using the condition (52)1 into (48)1, together with the balance of moment of
momentum (21) and condition (52)3, the following reaction-free expression for
the stress T follows:

T = symTa + skw
[
βRZT

a + grad (βR) � Σa

]
, (55)

which will be the object of a constitutive prescription and it is clearly not
symmetric, in general.

Moreover, by using relations (53) and (54), the balance for micromomen-
tum in the shape (28), broken up into spherical, skew and deviatoric part,
delivers

sph
(
C̃− Z̃a + div Σ̃a

)
= 0, skw

(
C̃ − T + div Σ̃a

)
= 0 (56)

and Z̃r − div Σ̃r = dev C̃, (57)

respectively; therefore, the constraint (9), definitions (27) and the skew part of
the stress tensor furnished by (55) permit us to write the following equations:

β (C − Za + div Σa) ·R = 0, β skw
[
(C− Za + div Σa)RT

]
= 0 (58)

and Zr − div Σr =
[
dev

(
CRT

)]
R . (59)
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In conclusion, only the active constitutive components of the fields of
stress, internal actions and microstress appear in the Cauchy equation (19),
with T given by (55), and in the spherical and skew parts of equation for
micromomentum (58): these are the pure equations which rule the mechanical
evolution of the body.

Once a motion is ensued from them, the corresponding reactions to the
constraint are obtained by the condition (59) (other than by (51)) within
the intrinsic indeterminacy generated from equation itself for Zr and Σr, as
pointed out in Sects. 205 and 227 of [51] or in Remark 1, Sect. 3 of [15].

Now let us use the definition of the Helmholtz free energy ψ and the results
(51), (52) and (55) in the balance equation for energy (22); on repeating the
same procedure leading to (50), we immediately get

ρ
˙(ψa + θηa) = D · symTa +

(
β̇β−1

)
[βZa ·R + Σa · grad (βR)] +

+
(
Y + ṘRT

)
· skw

[
βZaRT + Σa � grad (βR)

]
+ (60)

+
(
βΣT

a RT
) · grad

(
β̇β−1

)
− (βR � tΣa) · grad

(
ṘRT

)
+ ρλ − div qa,

where there is no trace of effects due to the constraint: we have obtained the
pure equation of evolution for the temperature of the body.

We observe that (60) will be greatly simplified when the constitutive pre-
scriptions for the active fields will be given and the consequences of the
Clausius–Duhem inequality (25) will be taken into account.

7 Inertia Forces and Balance of Granular Energy

The fundamental pure equations of balance (19) (with the stress tensor T
given by (55)), (58) and (60) presented in the previous sections apply to the
general class of materials with spherical microstructure.

The material properties of granular media are assigned through constitu-
tive hypotheses of thermomechanic and kinematical character: the former will
be rendered explicit in the next section with the choice of constitutive postu-
lates for a thermoelastic continuum; the latter involve the delicate argument of
the connection between an appropriate choice of the densities of macro- and
micro-structural inertia forces and the chosen expression (17) for the total
kinetic energy density κext.

We follow Mariano [43] and Capriz [7] and, firstly, decompose the volume
force density c in its inertial cin and noninertial ρ f part, as made in (29)
for C:

c = cin + ρf ; (61)

after we assume the validity of a kinetic energy theorem, which implies that,
locally, the power for unit volume of inertial forces be the opposite of the time-
rate of change of the kinetic energy density per unit mass κext, times ρ, plus
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the divergence of the flux of kinetic energy density k through the boundary,
that is

cin · v + Cin ·V = −ρ κ̇ext + div k. (62)

It is easy to check that

ρ κ̇ext = ρ
[
v · v̇ + ρ̇

(
γ(ρ)ρ̈ + 1

2γ
′(ρ)ρ̇2

)
+ 3µ̇µ̈ + µµ̇ Ṙ · Ṙ + µ2 Ṙ · R̈

]
=

=
{
ρv̇ + grad

[
ρ2

(
γ(ρ)ρ̈ + 1

2γ′(ρ)ρ̇2
)]} · v + (63)

+ µ∗ρ
(
µ̈R + 2µ̇Ṙ + µR̈

)
·
(
β̇R + βṘ

)
− div

[
ρ2

(
γ(ρ)ρ̈ + 1

2γ
′(ρ)ρ̇2

)
v
]
,

where the continuity equation (18), the relation (13) and the properties
R ·R = 3 and R · Ṙ = 0 of the orthogonal tensor R are used; the prime
(·)′ denotes differentiation with respect to the argument. Therefore, it must
be:

cin = −ρ v̇ − grad
[
ρ2

(
γ(ρ)ρ̈ + 1

2γ
′(ρ)ρ̇2

)]
, (64)

Cin = −µ∗ρ
(
µ̈R + 2µ̇Ṙ + µR̈

)
and k = −ρ2

(
γ(ρ)ρ̈ + 1

2γ
′(ρ)ρ̇2

)
v.

We observe that, for the constraints (9) and (10), Cin satisfies again
relation (30)2, while the expression (64)1 for cin was already obtained in
Appendix B of [28] and Sect. 3 of [30] with variational procedures.

Furthermore, we also note from (64)1 that there is a contribution to
the total Cauchy stress tensor T̃ in addition to the classical surface actions
exerted through the boundary and coming from an influx of linear momentum
described by a tensor of inertia flux M which is the Lagrangian derivative,
times ρ I, of the fluctuation energy κf and measures the agitation within a
chunk of material (see [29]): hence, it is

T̃ = T + M with M := −ρ2

[
γ(ρ)ρ̈ +

1
2
γ′(ρ)ρ̇2

]
I (65)

with T given by (55) (see also, the collisional–translational contribution to
the total stress tensor in (2.6) of [39] or, for (18), the spherical part of a
type of Reynolds stress tensor of the turbulence theory in (3.14) of the review
paper [37], in which many other granular theories that split the stress tensor
are examined); therefore, by using (61), the Cauchy equation in this context
is so written:

ρv̇ = ρf + div T̃. (66)

From relations (29), (64)2 and (13) and the properties of R, it follows that
the frictionless micromomentum balances (58) are now:

ρ
(
3µµ̈ − µ2Ỹ · Ỹ

)
= βR · (ρB− Za + div Σa) and

ρ
(
µ2Ỹ

)·
= skw

[
βR (ρB− Za + div Σa)T

] (67)
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or, by inserting the constitutive expressions (16) and (6)2,

3ρρ
4
3
m

[
α(ρm)

(
ρ̈m − ρmỸ · Ỹ

)
+ 1

2α
′(ρm)ρ̇2

m

]
= ρ

1
3
m∗R · (ρB− Za + div Σa)

and 3ρρ
1
3
m

(
ρ2

mα(ρm)Ỹ
)·

= ρ
1
3
m∗skw

[
R (ρB − Za + div Σa)T

]
. (68)

Equation (59) for the reactions is now

Zr − div Σr = ρ
[
dev

(
BRT + µ∗µ2Ỹ2

)]
R , or

Zr − div Σr = ρ
[
dev

(
BRT + 3ρ−

1
3

m∗ ρ
7
3
m α(ρm) Ỹ2

)]
R .

(69)

In the sequel of this section, we recover the relation of evolution for the
granular temperature of the body (the granular heat transfer equation (4.6)
of [13] or the balance of pseudo-thermal energy (2.7) of [39]) as a direct
consequence of our equations for micromomentum balance (67).

The quantity that is usually introduced as granular temperature ϑ rep-
resents a fraction of the extra energy due to grains agitation and to chunks
dilatancy (and is the trace of the so-called Reynolds tensor which measures
the momentum flux in fluid dynamics); in our theory it corresponds to the
fluctuation energy κf plus the roto-dilatational kinetic energy κs (multiplied
by 2

3 ):

ϑ :=
2
3
(κf + κs) =

1
3
γ(ρ)ρ̇2 + µ̇2(ρm) +

1
3
µ2(ρm) Ỹ · Ỹ, (70)

where relation (46)3 was used.
By differentiating with respect to the time and by using (17), (63) and (18),

the representation (65)2 of the inertia flux tensor M and the antisymmetry
of Ỹ, we obtain

3
2
ρϑ̇ = M · L + ρµ̇µ−1

(
3µµ̈ − µ2Ỹ · Ỹ

)
+ ρỸ ·

(
µ2Ỹ

)·
; (71)

at the end, the equations for micromomentum balance (67) give

3
2
ρϑ̇ = div u + M · L + ι + ρB · (βR)· . (72)

Equation (72) is the so-called balance of granular energy in which we can
easily recognize, with appropriate identifications, usual terms introduced in
granular theories: u :=

[
ΣT

a

(
βRT

)·] is the granular heat flux vector, an
interstitial work flux of mechanical nature, in excess of the usual flux due to
surface tractions, owing to interactions between chunks and due to grains–
boundary collisions or to exchange of granules through the chunk boundary
itself as well as to weakly nonlocal spatial effects (see [31], [24], [25] and
[23]); (M · L) is the rate of working of the inertia component of the stress
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tensor;
[
ρB · (βR)·

]
is a granular heat source, that some author call the ‘stir’

due to external actions; ι := − [
Za · (βR)· + Σa · grad (βR)·

]
is the local

rate of dissipation due to the inelastic nature of collisions between particles,
dissipation which also appears, when (9) and (52)2,3,4,5 are taken into account,
on the right-hand side of the balance of thermic internal energy (22) with the
opposite sign (see also, (2.4) of [39]).

8 Constitutive Restrictions in the Thermoelastic Case

The peculiar flow behaviour of granular materials can be considered similar
to fluid one, except that its bulk compressibility and temperature distribution
depend on the initial porosity (see e.g., [2] and the experimental results in [4])
and thus the medium has a preferred reference placement with respect to
volume distribution.

Therefore, we assume that the overall response of a thermoelastic dilatant
granular materials with rotating grains depends on the set S ≡ {ρ∗, ρ, s :=
gradρ,S := grad 2ρ, β,p := gradβ,P := grad 2β,R,Π := gradR, θ∗, θ,g}.
The symmetric tensors S and P are inserted among variables not only for con-
sistency with the results of the conservative case in absence of rotations [30],
but also because they seem the appropriate second geometric measures of
local structure, namely, a sort of rough measurements of anisotropy of grains
and chunks distributions, respectively (see, also, [21] and [44]).

The equipresence principle requires that each dependent constitutive field
is given by a smooth function of the set S, i.e.,

{ψa, ηa, symTa, Za, Σa, qa} =
{
ψ̂, η̂, T̂, Ẑ, Σ̂, q̂

}
(S); (73)

now let us check the compatibility of these prescriptions with the Clausius–
Duhem inequality, in its reduced version (25), by incorporating the condition
(49) of perfect constraint and the functional dependence of the free energy ψa

and by using the chain rule, the conservation of mass (18) and the identities

˙gradR = grad Ṙ − (gradR)L and ˙gradω = grad ω̇ − LT gradω, (74)

for each scalar function ω.
We require that the entropy imbalance (25) be valid for any choice of the

fields in the set S and their derivatives, consequently, when the terms are
appropriately ordered, the inequality reads{

sym
[
Ta + ρ

(
s ⊗ ψ̂s + p ⊗ ψ̂p + ΠT � ψ̂T

Π

)]
+ ρ2

(
ψ̂ρ + ψ̂s · s

)
I
}
·D −

− skw
[
βRẐT + grad (βR) � Σ̂ + ρ

(
s ⊗ ψ̂s + p⊗ ψ̂p + ΠT � ψ̂T

Π

)]
·Y −

− ρ
(
η̂ + ψ̂θ

)
θ̇ +

[
βẐ · R + Σ̂ · grad (βR) − ρβψ̂β − ρψ̂p · p

] (
β̇β−1

)
+
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+skw
[
βRẐT + grad (βR) � Σ̂ + ρ

(
ψ̂RRT + ψ̂Π � Π

)]
· Ỹ −

− ρ
(
ψ̂S · Ṡ + ψ̂P · Ṗ + ψ̂g · ġ

)
+ β

(
Σ̂T RT − ρψ̂p

)
· grad

(
β̇β−1

)
+

+
[
R �

(
β tΣ̂− ρ tψ̂Π

)]
· grad Ỹ · +ρ2

(
I⊗ ψ̂s

)
· gradD − θ−1q · g ≥ 0,

(75)

where subscripts denote partial differentiation with respect to the shown field,
e.g., ψ̂p := ∂ψ̂

∂p .
The left-hand member of inequality (75) is linear in D, Y, θ̇, (β̇β−1),

Ỹ, Ṡ, Ṗ, ġ, grad
(
β̇β−1

)
, grad Ỹ and gradD and hence, because one can

imagine, for each material element, thermomechanical processes along which
these quantities take up arbitrary values at a given instant, its fulfillment
implies that the coefficients in the linear expression must all vanish:

ψ̂ = ψ̂(ρ∗, ρ, β,p,R,Π, θ∗, θ), η̂ = −ψ̂θ,

T̂ = −ρ
[
ρψ̂ρI + sym

(
p ⊗ ψ̂p + ΠT � ψ̂T

Π

)]
,

skw
[
βRẐT + grad (βR) � Σ̂ + ρ

(
p⊗ ψ̂p + ΠT � ψ̂T

Π

)]
= 0,

βẐ · R + Σ̂ · grad (βR) = ρ
(
βψ̂β + ψ̂p · p

)
, (76)

skw
[
βRẐT + grad (βR) � Σ̂ + ρ

(
ψ̂RRT + ψ̂Π � Π

)]
= 0,

Σ̂T RT = ρψ̂p, skw
{
R

[(
β Σ̂ − ρ ψ̂Π

)
w

]T
}

= 0, ∀ vectorw,

while the heat flux q̂ must satisfy identically the Fourier inequality

q̂ · g ≤ 0. (77)

The following compatibility condition on the free energy ψ̂, which comes
out from (76)4 and (76)6:

skw
(
p⊗ ψ̂p + R ψ̂T

R + ΠT � ψ̂T
Π + Π� ψ̂Π

)
= 0, (78)

expresses simply the condition of frame-indifference for ψ̂, namely,

ψ̂
(
ρ∗, ρ, β,Qp,QR, (Q� Π)QT , θ∗, θ

)
= ψ̂(ρ∗, ρ, β,p,R,Π, θ∗, θ), (79)

for each Q ∈ Orth+.
Moreover, the total Cauchy stress tensor T̃ for a thermoelastic medium is

given by (65), (55) and (76)3,4:
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T̃ = −ρ2

[
γ(ρ)ρ̈ +

1
2
γ′(ρ)ρ̇2 + ψ̂ρ

]
I − ρ

(
p⊗ ψ̂p + ΠT � ψ̂T

Π

)
, (80)

where we recognize the usual thermodynamic pressure for fluids π := ρ2ψ̂ρ,
related to the compressibility of granules, a stress of Ericksen’s type (−ρp⊗
ψ̂p) that justifies the ability of granular continua to support shear in equi-
librium also in absence of microrotation, as evidenced by the characteristic
angle of repose of these materials, and a further stress term

(
−ρΠT � ψ̂T

Π

)
,

which shows that they could still sustain shear stresses when the grains are
rigid, giving rise to the generation of microrotation gradients.

As observed at the end of Sect. 6, the evolution equation for the temper-
ature of granular materials (60) simplifies considerably and reduces to the
classical one, that is,

ρθ ˙̂η = ρλ − div q̂. (81)

Furthermore, with the use of constitutive relations (76) in (73), we are
able to express the dependent fields on the right-hand side of pure equations
of micromotion (68) in function of the Helmholtz free energy ψ̂; precisely, by
using (76)5,7 in the former and (76)6,8 in the latter, we have(

div Σ̂ − Ẑ
)
·R = div

(
ρψ̂p

)
− ρψ̂β and (82)

skw
[
β R

(
div Σ̂− Ẑ

)T
]

= skw
{
R

[
div

(
ρψ̂Π

)
− ρψ̂R

]T
}

,

where ψ̂ represents a sort of potential for stresses and microstresses.
Now, if we introduce in (82) internal forces of dilatancy δ and of rotation

N, the dilating microstress vector hdil and the third order spinning hyperstress
tensor Σspi, defined by

δ := 1
3ρ

(
βψ̂β + p · ψ̂p

)
, N := 1

3ρ skw
(
R ψ̂T

R + Π⊗ ψ̂Π

)
, (83)

hdil := 1
3ρβψ̂p and Σspiw := 1

3 skw
[
ρR

(
ψ̂Πw

)T
]
, ∀ vectorw, (84)

as a consequence the balances of dilatational and rotational micromomentum
(68) are, respectively:

ρρm

[
α(ρm)

(
ρ̈m − ρmỸ · Ỹ

)
+ 1

2α
′(ρm)ρ̇2

m

]
= ρ φ − δ + div hdil

and ρ
(
ρ2

mα(ρm)Ỹ
)·

= ρO− N + div Σspi, (85)

where φ := 1
3β B · R and O := 1

3 skw
(
βRBT

)
are the external dilatational

force and the external tensor moment per unit mass, respectively.
These equations for micromomentum together with the balance of mass

(18) and the Cauchy’s balance of linear momentum (66) (T̃ given by (80)) are
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the pure field equations of motion for thermoelastic dilatant granular materials
with rotating grains, the evolution of the temperature being ruled by (81).

Remark 1: We observe now that hdil and Σspi, defined in (84), are particular
examples of the stirring and the twisting hyperstress tensor defined in [14]
and [8], but, unlike those papers, we think that it is not possible the assignment
of prescribed boundary conditions to both of them, the stirrer hdiln̂ and the
twister Σspin̂ (n̂ is the exterior unit normal to the boundary surface).

In fact they are of different physical nature: while for the twister the bound-
ary distribution of the external couples could be assigned in analogy to the
microrigid Cosserat brother’s continua [19], on the contrary, for the stirrer,
it appears difficult to imagine a direct way to act on the proper grain com-
pressibility through the boundary itself; rather, only the sum (−δ + div hdil)
has sense, has the right properties of covariance and could express weakly
non-local effects (see [7], pages 26–27, [42], page 21, and [5]).

In [11] a wide discussion about the manifold of values of the microstruc-
tures with, or without, physically significant connection and the consequent
presence, or absence, of the related microstress is presented.

Remark 2: In this context, the mechanical interstitial work flux u, introduced
at the end of Sect. 7 in the balance of granular energy (72), is now written as

u = 3
[(

β̇β−1
)

hdil + ΣT
spiỸ

]
; (86)

thus terms related to contractions or dilatations of grains and to rotations
appear clearly put in evidence.

9 Suspension of Rigid Granules in a Fluid Matrix

In the analysis of flows of a large number of discrete inelastic particles at
relatively high concentrations and with interstices filled with a fluid or a gas
of negligible mass (as it is the case of cohesionless soil, such as sand with
rough surface grains, or of fluidized particulate beds), we must assume that the
granules are incompressible; therefore, the proper mass density ρm is constant
and, for relation (1), the chunk mass density ρ comes down to be proportional
to the volume fraction ν of grains (ρ = ρm∗ν) and so the conservation of mass
(18) gives

ν̇ + ν trL = 0. (87)

Furthermore, for condition (16)2, the coefficient β in the constraint relation
(9) disappears (β ≡ 1) and G = R, so that

κs =
1
2
µ2
∗ Ṙ · Ṙ, W = ṘRT = ỸT , D̃ = 0 and grad (WT ) = grad Ỹ. (88)
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Remark: When the effects of relative rotations of the chunks and of the
grains are also negligible (R = I), we recover the essence of the theory in [28]
and in Sect. 6 of [31]: in particular, in both of them the Coulomb’s model for
the stress at equilibrium in a granular material with incompressible grains:

Te =
(
β0 − β1ν

2 + β2gradν · grad ν + 2 β3 ν ∆ν
)
I − 2 β4 gradν ⊗ gradν

with βi material constants for i = 0, 1, 2, 3, 4, is obtained as a peculiar example
(see also, (9.1) of [33]). Alternatively, the complementary case in which R = I,
but the grains are elastic, is studied in [30] and again in [31].

We focus here on the simple inelastic case for which relations (88) apply
and we develop calculations of Sects. 6–8 with few adjustments.

Firstly, we obtain the following prescriptions for reactions:(
ZrRT + Σr � gradR

) ∈ Sym, R (Σr w)T ∈ Sym, ∀ vectorw,

Tr = 0, ψr = const., ηr = 0, qr = 0,
(89)

and, correspondingly, for actions(
ZaRT + Σa � gradR

) ∈ Skw, R (Σa w)T ∈ Skw, ∀ vectorw,

T = symTa − skw
(
ZaRT + Σa � gradR

)
.

(90)

Secondly, the reaction-free equation of micromomentum balance for our
suspension of rigid granules is now

ρµ2
∗

˙̃Y = skw
[
R (ρB− Za + div Σa)T

]
, (91)

while the equation for the reactions to the constraint is

Zr − div Σr = ρ
[
sym

(
BRT + µ2

∗Ỹ
2
)]

R. (92)

We observe that the (91) for the microstructural actions is the same that
rules the micromotion for the microrigid Cosserat’s continua (see (23.1) of [7]
or (63) of [35]).

Thirdly, the set of constitutive variables for a thermoelastic materials with
rotating rigid grains is now

Srigid ≡ {ν∗, ν, gradν, grad 2ν,R,Π, θ∗, θ,g},
and so the entropy imbalance (25) and relations (65) and (87) give the
following constitutive prescriptions for dependent fields:

ρm∗ψa = ψ̄(ν∗, ν,R,Π, θ∗, θ) =

= ψ̄
(
ν∗, ν,QR, (Q� Π)QT , θ∗, θ

)
, ∀Q ∈ Orth+,

T̃ = −ν2
[
γ̄(ν)ν̈ + 1

2 γ̄
′(ν)ν̇2 + ψ̄ν

]
I − νΠT � ψ̄T

Π, ηa = −ψ̄θ, (93)

skw
{
R

[(
Σa − ν ψ̄Π

)
w

]T
}

= 0, ∀ vectorw, qa · g ≤ 0,
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with
γ̄(ν) = γ̄∗ν− 8

3 and γ̄∗ =
16
351

ρm∗ν
2
3∗ ς2

∗ . (94)

In (93)3 the thermodynamic pressure is now π̄ := ν2ψ̄ν and is related to
the compressibility of chunks, while the stresses of Reynolds’ and of Ericksen’s
type measure, respectively, the agitation within a chunk of material and
the ability of rigid granular continua to support shear stresses in equilib-
rium, by inducing the generation of microrotation gradients, even when the
proper mass density and the volume fraction of the grain distribution is
constant.

Finally, the balance of rotational micromomentum (68) is given by

ρm∗νµ2
∗

˙̃Y = ρm∗ν Ō− N̄ + div Σ̄spi, (95)

where

Ō := skw
(
RBT

)
, N̄ := ν skw

(
R ψ̄T

R + Π⊗ ψ̄Π

)
, (96)

Σ̄spiw := skw
[
νR

(
ψ̄Πw

)T
]
, ∀ vectorw, (97)

are the new external and internal rotational tensor moment per unit mass and
the new third order spinning hyperstress tensor, respectively.

The pure field equations of mass, macro- and micromotion and of temper-
ature for granular materials with rigid rotating grains are then (87), (66) with
T̃ given by (93)3, (95) and (81).

Appendix: Kinetic Energy Coefficients

To compute explicitly the constitutive functions γ(ρ) and α(ρm) we imagine
the chunk consisting, in a mental magnification, of a spherical grain and its
immediate spherical neighbours (see [6]), and the envelope of the chunk as a
spherical surface of variable radius ς containing all these spherical compress-
ible inclusions of variable radius ϕ with interstices filled with a fluid or a gas
of negligible mass; the envelopes and the grains have the same radius ς∗ and
ϕ∗, respectively, in a reference placement B∗ of the material.

Moreover, we assume that the chunks and the grains expand and/or con-
tract homogeneously with independent radial motions; therefore, if we indicate
with ς̃ the distance from the centre of mass of the chunk to the centre of mass
of a grain in the chunk itself, and with ϕ̃ the distance from the centre of mass
of a grain to the element of volume dvm, they are related to ς and ϕ by

ς̃ =
ς̃∗
ς∗

ς and ϕ̃ =
ϕ̃∗
ϕ∗

ϕ, (98)

respectively.
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Furthermore, the average density of kinetic energy (κch
f + κch

d ) per unit
volume associated to each chunk, as effect of the homogeneous expansions or
contractions of a typical chunk itself and of the inclusions (in addition to the
classical kinetic energy of translation κch

t ), will be written

κch
f + κch

d =
1
2

1
4
3πς3

n∑(
m ˙̃ς2 +

∫
Vm

ρm
˙̃ϕ2 dVm

)
, (99)

where
∑

denotes summation over all of the grains of the chunk, n is the
number of the grains in a chunk, Vm and m are the volume and the mass of
a typical grain, respectively, i.e.,

Vm =
4
3
πϕ3 and m =

4
3
ρmπϕ3 =

4
3
ρm∗πϕ3

∗ (100)

(see also, (2.3) of [4]); hence, from relations (98)2 and (100)3, the time rate of
change of ϕ̃ can be expressed in terms of the rate of change of ρm:

˙̃ϕ = −1
3
ϕ̃∗ ρ

1
3
m∗ ρ

− 4
3

m ρ̇m. (101)

We observe that the quasi-particles are assumed to fill the space of the
granular material, without voids between them, and so the volume fraction ν
of the chunk is

ν =
1

4
3πς3

n∑ 4
3
πϕ3 =

n∑(
ϕ

ς

)3

, (102)

while (being ς∗ and ϕ∗ constants in the same chunk)

ν∗ =
n∗∑(

ϕ∗
ς∗

)3

= n∗

(
ϕ∗
ς∗

)3

. (103)

Moreover, the granules are supposed homogeneous, strictly packed and
such that they do not diffuse throughout the envelope of the chunk; there-
fore, ρm∗ = const., the immediate neighbours of a grain are twelve, with
n = n∗ = 13, and, finally, the volume and the mass density of a macroelement
are, respectively,

V =
4
3
πς3 and ρ =

ρ∗V∗
V = ρ∗

(
ς∗
ς

)3

. (104)

Thus, it follows from (98)1 and (104)3 that the time rate of change of ς̃
can be expressed in terms of the rate of change of ρ

˙̃ς = −1
3
ς̃∗ ρ

1
3∗ ρ−

4
3 ρ̇ (105)
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and, from (100)3, (104)3 and (105), that the ‘fluctuation’ kinetic energy κch
f

of the chunk is

κch
f =

1
2

1
4
3πς3

n∑
m ˙̃ς2 =

ρ
2
3∗ ρ̇2

18ρ
8
3 ς3

n∗∑
ρm∗ϕ3

∗ς̃
2
∗ =

ρm∗ϕ3
∗ρ̇

2

18ς3∗ρ
1
3∗ ρ

5
3

n∗∑
ς̃2
∗ , (106)

where we used the fact that the single grains of a chunk are homogeneous and
of the same radius ϕ∗ in the reference placement B∗ of the material.

Nevertheless, we supposed the granules strictly packed in B∗, therefore, the
centre of mass of the chunk coincides with the centre of the main grain (hence
the related ς̃∗ vanishes), while the centre of mass of its twelve immediate
spherical neighbours are distant two time the constant radius ϕ∗ of a grain
from the centre of the main grain (hence, ς̃∗ = 2ϕ∗); moreover, the radius of
the chunk envelope ς∗ is three time the radius ϕ∗, i.e., ς∗ = 3ϕ∗ and ς̃∗ = 2

3 ς∗.
Thus, by using also relations (1) and (103), we have

ρm∗

(
ϕ∗
ς∗

)3

=
ρ∗
n∗

and
n∗∑

ς̃2
∗ =

4
9
(n∗ − 1)ς2

∗ ; (107)

at the end, by inserting (107) and n∗ = 13 in (106)3, we obtain the density of
kinetic energy κch

f per unit volume associated to each chunk

κch
f =

1
2
ρ

(
16
351

ρ
2
3∗ ς2

∗

)
ρ−

8
3 ρ̇2. (108)

Now, if we consider the ‘dilatational’ kinetic energy κch
d of the chunk and

use relations (100), (101), (104)3 and, after, (1) and (103)1, we obtain

κch
d =

1
2

1
4
3πς3

n∑∫
Vm

ρm
˙̃ϕ2 dVm =

ρρ
5
3
m∗ρ̇2

m

24πρ∗ς3∗ρ
8
3
m

n∗∑∫ ϕ∗

0

4πϕ̃4
∗ dϕ̃∗ =

=
ρρ

2
3
m∗ϕ2

∗ρ̇
2
m

30ρς3∗ρ
8
3
m

[
ρm∗
ρ∗

n∗∑(
ϕ∗
ς∗

)3
]

=
1
2
ρ

(
1
15

ρ
2
3
m∗ϕ2

∗

)
ρ
− 8

3
m ρ̇2

m. (109)

The constitutive expressions (6) and (7) for the coefficients γ(ρ) and α(ρm),
which appear in formula (5) are then easily recognized in (108) and (109)4.
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Slow Motion in Granular Matter

Paolo Maria Mariano

Summary. Agglomerations of granules are described as continuous complex bodies
in which the generic material element is an open system made of a family of granules.
Inertia is neglected while migration of granules is allowed: an evolution equation
for the local numerosity of granules is derived in the present setting. In a reduced
framework in which the generic material element coincides with a single granule, the
balance of interactions governing the motion of a single granule during segregation
is also discussed.

1 Introduction

Granular matter is said to be in slow motion when inertia effects and effects
due to collisions between granules are negligible and only ‘slow’ migration
(or better segregation) of granules, clustering with respect to sizes, occurs.
As a consequence, besides equilibrium conditions, only the evolution equation
of the density of granules has to be determined, especially when more than
one family of granules is present. Such a type of equation is derived here
in a continuum representation of granular matter in which I consider each
material element as made of a family of granules each of them being free
to migrate toward the neighboring material elements (each one being the
smallest patch of matter characterizing the body). The path followed is strictly
the one developed in [18] for general complex bodies allowing migration of
substructures between material elements, elements that are then considered
as open systems. The basic reason is that a granular material can in principle
be considered as a complex body, a body in which the material texture (here
the manner in which granules are arranged in clusters) influences prominently
the gross behavior in a way in which the interactions due to the changes of the
texture itself cannot be neglected and must be represented directly.

The physical manifestations of granular agglomerations in fast and slow
motions are manifold (see remarks in [1], [14], [15], [16]) and the appear-
ance of entangled effects suggest different theoretical approaches that may
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describe some aspects and neglect others (as it is natural). Fast motion of
granular matter suggests microscopic approaches based on (inelastic) Boltz-
mann equation (see [2], [3], [8], [11]). The description of equilibrium states is
often based on points of view arising from the mechanics of complex bodies
(see, e.g., [12], [21]) or from the direct statistical analyses of contact forces
amid granules [9]. In the middle there is an approach proposed in [6], [7],
an approach in which hydrodynamic equations are obtained from first princi-
ples by analyzing directly the motion of single granules within the assembly
contained by the generic material element.

The approach proposed here is reminiscent of remarks in [6], [12] and [9];
however, differences are evident, above all in the treatment of the evolution
of the numerosity.

The case in which each material element is made of a single granule under-
going own rotations is treated last: the force driving a single granule with
respect to the neighboring fellows is then deduced.

2 Representation of the Granularity

A body may be considered as an abstract set B, each e ∈ B being the smallest
piece of matter characterizing the material composing it, i.e. a ‘representative
volume element’, called also material element, in the common parlance. The
essential starting point is then the representation of B, precisely the geometri-
cal structure one attributes to B by mapping it in some other set. In standard
continuum mechanics, each e is considered as a windowless box described only
by the place in space occupied by its centre of mass [23], [22]. However, the
effects of the changes in the structure internal to e, the material substructure,
cannot be often neglected because interactions conjugated with these changes
determine prominent effects. In this case bodies are called complex. In the
mechanics of complex bodies (see [5], [17], [20] for general issues) the basic
view is to assign to each material element a morphological descriptor of the
inner substructure, a descriptor that is selected in general as an element of a
finite-dimensional differentiable manifold, which is then the manifold of sub-
structural shapes. In this way the description of the body becomes multifield
since one manages the placement field of B and the field of morphological
descriptors of its substructure.

I adopt this point of view here with the aim of constructing a model of
granular matter in the continuum limit. For such a purpose, the use of two
isomorphic copies of R

3, indicated respectively by R
3 and R̂

3, ι : R̂
3 → R

3

the isomorphism, is needed. In R
3 the generic element e of B is represented

by a point while R̂
3 is used to describe the granularity within e. In this sense,

R
3 and R̂

3 collect the events occurring at two scales. In R̂
3 a prototype mate-

rial element e is expanded. One may consider e (i) as composed only by a
single granule or (ii) as made of a family of n̂ cohesionless granules each one
placed at x̂r , r = 1, ..., n̂. All granules have the same mass m̂. In both cases
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(i) and (ii) no attention is paid to the shape of granules. Contact between
adjacent granules is with perfect friction.

The total mass m of e is then

m = n̂m̂.

The position x̂ of the centre of mass of e is given by

x̂ :=
1
n̂

n∑
r=1

x̂r. (1)

After introducing the relative position vector

ẑr := x̂r − x̂, (2)

with
∑n

r=1 ẑr = 0, a natural descriptor of the shape of the family of granules
within e is the second rank symmetric tensor

Y :=
1
n̂

n∑
r=1

ẑr ⊗ ẑr.

Its trace indicates an average of the squared distance of the granules from
x̂ (see [10]). Y · (r̂ ⊗ r̂) ≥ 0 for any vector r̂ ∈ R̂

3; also Y is symmetric by
definition. Essentially it is the moment of inertia of the family of granules.

Functions [0, t̄ ] � t  → x̂r (t), r = 1, ..., n̂, describe in R̂
3 the motion of each

granule. As a consequence, the linear momentum p̂ of the system of granules
within e is given by

p̂ :=
n∑

r=1

m̂
dx̂r

dt
= m

dx̂

dt
,

when the numerosity of granules within e remains constant in time. The tensor
moment of momentum m̂ of the same system is defined by

m̂ :=
n∑

r=1

m̂

(
x̂r ⊗ dx̂r

dt
− dx̂r

dt
⊗ x̂r

)
. (3)

By using (1) and (2), elementary algebra allows one to rewrite (3) in the form

m̂ = 2

(
n∑

r=1

m̂ẑr ⊗ dẑr

dt
+ skw (x̂ ⊗ p̂)

)
− mẎ , (4)

where skw extract the antisymmetric part of its argument. Notice that the
rate of Y describes only the possible shuffling of the material element, not the
rotational effects of the granules inside it.

A crucial step below is the identification (through the isomorphism) of
the place x̂ in R̂

3 of the centre of mass of the system of granules with the
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place x := ι (x̂) assigned in R
3 to the whole material element e. Then one may

identify the linear momentum p̂ of the family of granules within e with the
linear momentum p := mdy(x,t)

dt of the mass point y(x, t) in R
3 corresponding

to x when t = 0 and to ι (x̂ (t)) at any t. Consequently, the relation (4) suggests
that the intrinsic tensor moment of momentum of each material element is
given by the sum of two contributions:

(a) the moment of momentum of the entire system, namely 2skw (x̂ ⊗ p̂), a
quantity that can be identified with the tensor moment of momentum of
the mass point at y in R

3, which is 2skw (y ⊗ p), and
(b) the moment of momentum of the agitation within e:

2
n∑

r=1

m̂ẑr ⊗ dẑr

dt
− mẎ =

n∑
r=1

m̂

(
ẑr ⊗ dẑr

dt
− dẑr

dt
⊗ ẑr

)
.

The collection of all centres of mass of all elements of B, identified with
points in R

3, is a place (or better a gross place) of the body. It is defined by
the image of a one-to-one map

kp : B → R
3.

The set B := kp (B) is assumed to be a bounded domain of R
3 with boundary

∂B of finite two-dimensional measure, a boundary where the outward unit
normal n is defined to within a finite number of corners and edges. It is
convenient to select a reference place B0 = kp,0 (B), the generic point of
which is labeled by x. All other places, the generic one being indicated by B,
are achieved from B0 by means of a standard transplacement y which maps
B0 onto B, namely

B0 � x  → y (x) :=
(
kp ◦ k−1

p,0

)
(x) ∈ B.

As usual, the transplacement map y is assumed to be (i) one-to-one,
(ii) piecewise continuously differentiable and (iii) orientation preserving. The
latter requirement implies that at each x the spatial derivative of y, a deriva-
tive indicated by F , and called as usual gradient of deformation, has positive
determinant at each point. F is the value of the map

B0 � x  → F := F (x) ∈ Hom
(
TxB0, Ty(x)B

) � R
3 ⊗ R

3 = M3×3

such that detF > 0. In deforming the body from B0 to B, the material
elements crowd and\or shear with each other. A measure of these mechanisms,
that is a measure of how lengths and angles in B0 change as a consequence of
the deformation, is easily available when one assign metrics in B0 and B, say
γ and g respectively, and compare them in a common paragon setting. For
example, if one decides that the appropriate paragon setting is B0, by pulling
back g in B0 by means of y, and writing y#g for the pull-back,
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y#g := F ∗F ∈ Hom (TxB0, T
∗
xB0) ,

half of the difference y#g−γ defines the non-linear deformation tensor E that
is the desired pointwise measure of gross deformation. In the common nota-
tion of textbooks in continuum mechanics, the linear operator F ∗F , the right
Cauchy–Green tensor, is indicated by C, in components CAB = F ∗i

A gijF
j
B,

so that E is defined by E := 1
2 (C − γ).

When one assigns a place to a material element e, the distances inside e,
say the dimensions of the granules and/or the distances between the centres of
mass of neighboring granules, become internal lengths because e is collapsed
in a point. This is the point of view of standard continuum mechanics of
Cauchy’s bodies. No information about the granularity inside e is furnished
by the placement map kp, so that the representation of B is not sufficient. At
least coarse grained information about the granularity have to be accounted
for at ‘kinematical’ level. They can be introduced by means of a morphological
descriptor which summarizes the main geometrical information about the
family of granules within the generic e. In this way information in R̂

3 (where
the material element is expanded) about the discrete system of granules can
be translated in a continuous field theory in R

3. This is the basic reason for
resorting to two different isomorphic copies of R

3.
In all relations written above in R̂

3, it is implicitly presumed that one
knows the exact place x̂r of each granule within each material element e ∈ B
when it is expanded in R̂

3. Such an assumption is of course highly optimistic
because at most one knows a distribution θ (x̂′, v̂) of places and velocities
(see [7]). However, since only slow motion is under scrutiny here, it is sufficient
to make use of a reduced distribution θ̂ (x̂′) of sole places, a distribution
coinciding with the average of θ over the space of velocities.

Quantities in R̂
3 pertinent to e may be then re-defined in terms of θ̂ so

that the centre of mass x̂ is given by

x̂ :=
1
n

∫
R̂3

θ̂ (x̂′) x̂′ dx̂′,

and, after choosing the local frame in R̂
3 in a way in which x̂ = 0, the shape

tensor Ỹ (really the moment of inertia) can be defined by

Ŷ :=
∫

R̂3
θ̂ (x̂′) x̂′ ⊗ x̂′ dx̂′,

where the normalization condition 1
n̂

∫
R̂3 θ̂ (x̂′) dx̂′ = 1 is assumed to hold.

Ŷ is the counterpart of Y , the latter tensor defined by considering e as a
deterministic (discrete) system. A characteristic internal length � pertinent to
the material element can be then defined by

� :=
(∫

R̂3
θ̂ (x̂′) |x̂′|2 dx̂′

) 1
2

.
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Take note that when the number of granules changes within the material
element, one is forced to consider a family θ̂t of distributions parametrized
by time. If one assumes that the material element occupies in R̂

3 a compact
domain with finite volume, a domain indicated also by e, then θ̂ has compact
support and the integrals above over the entire R̂

3 reduce simply to integrals
over e.

All the elements above concur in suggesting to select a second-rank tensor
ν as appropriate morphological descriptor of the granularity within the generic
material element, namely

ν ∈ Hom
(
R

3, R3
)
.

The space Hom
(
R

3, R3
)

plays here the role of manifold of substructural
shapes, the collection of possible inner shapes of the material element, a
manifold indicated below by M.

In addition to the placement map kp, another map

km : B → M

assigns then to each e ∈ B the morphological descriptor of the granular
structure inside it. One then gets

B0 � x  → ν = ν (x) :=
(
km ◦ k−1

p,0

)
(x) ∈ M, (5)

a map assumed here differentiable. Its spatial derivative is indicated by N so
that, at each x,

N := Dν (x) ∈ Hom
(
TxB0, Tν(x)M

)
.

By exploiting the reference place B0 for the Lagrangian (referential)
description of fields, along a given interval of time [0, t̄ ], motions are then
time parametrized mappings of places and morphological descriptors so that
one has time–space fields

B0 × [0, t̄ ] � (x, t)  → y = y (x, t) ∈ B,

B0 × [0, t̄ ] � (x, t)  → ν = ν (x, t) ∈ M.

In this coarse grained representation, direct information about the numeros-
ity of granules is now given by a map

φ : M → R
+,

a distribution over M assigning to the generic material element, with inner
granular arrangement ν, the number of granules involved in that arrangement
(strictly, in the actual coarse grained representation, φ takes the role of n̂ used
in R̂

3). The explicit assignment of φ at the initial instant is a constitutive
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prescription. The numerosity can be considered as a field over B0 along ν
when one introduces the map

α := φ ◦ ν : B0 → R
+,

that will be of later use. α is assumed to be of class C1.
At a given place, time variations of ν may be determined by (i) changes in

numerosity of granules, (ii) variations of the characteristic internal length and
(iii) rearrangement of granules. Each material element is then an open system
that may exchange both energy (by contact interactions) and mass (through
migration of granules) with the neighboring fellows. An interpretation of the
physical meaning to be attributed to ν accrues by considering once more e
expanded in R̂

3 and assuming that each granule be characterized by an affine
motion in R̂

3 that is, to within an additive constant vector,

dx̂r

dt
= Âx̂r,

with Â a 3×3 matrix independent of r. The independence of r is tantamount
to assume that the system of granules inside e suffers a global affine motion.
By polar decomposition, one would then get uniquely Â = R̂Û , with R̂ and
Û orthogonal and symmetric tensors respectively. ν has then the meaning of
Â. It accounts for both local rotations of granules (the ones described by R̂

in R̂
3) and the shuffling of granules themselves (such an effect is accounted

for by Û). If Â, then ν, coincides with Û , the effect of the local rotations is
neglected. In particular, when ν belongs to the subspace of M{

ν ∈ Hom
(
R

3, R3
) | ν = ν∗, ν · (r ⊗ r) > 0, ∀r ∈ R̂

3, r̂ �= 0
}

then it can be identified with Ŷ that one may normalize further by dividing
it by �2. The requirement

ν · (r ⊗ r) > 0, ∀r ∈ R̂
3, r̂ �= 0

implies that it is excluded that the centres of mass of all granules within e lie
on a plane or along a line. When Â coincides only with R̂, only the effect of
local rotations inside e are accounted for. The same interpretation holds when
ν coincides with R̂.

The model presented here is then the one of a body with affine structure,
differences with respect to standard continuum schemes of affine bodies (see,
e.g., [5]) relying above all in the assumption that the material element is
an open system, so that (contrary to standard issues) the elements of the
internal structure (here the granules) may migrate from one material element
to another. The other essential difference is that I consider a distribution of the
numerosity of granules by adding so information on the material substructure
(the general structure in [18] is adopted this way). Due to the link between
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α and ν, I consider below only substructural interactions associated with the
rate of change of ν, in addition to the standard ones power conjugated with the
rate of change of place. It is then assumed that the substructural interactions
selected include also the ones associated with the rate of change of numerosity.
Consequently, it is only necessary that α satisfies a continuity equation that
is intrinsically the balance of mass in the present setting.

3 Balance of Interactions: R
3

� SO(3) Invariance

At each pair (x, t), time rates are indicated by

ẏ :=
dy (x, t)

dt
, ν̇ :=

dν (x, t)
dt

.

Let W be the space of pairs ϑ := (y, ν), a generic element of its tangent space
TϑW at ϑ is then given by the pair (ẏ, ν̇) = ϑ̇. Moreover, the symbol P (B0)
denotes the algebra of parts of B0 that is the set of all subsets of B0 with
non-vanishing volume measure and the same regularity properties of B0 itself.

Any power is such a map P : P (B0) × TW → R
+ that

• P
(
·, ϑ, ϑ̇

)
is additive on disjoint parts and

• P (b, ϑ, ·) is linear.

Of course, a key problem is the explicit representation of the power, that
implies, in a sense, the selection of the type of interactions one is considering.
In a wide sense, the explicit selection of the power is ‘constitutive’ because
one selects the type of interactions occurring within a body. Here, once a
part b of B0 is selected arbitrarily, the attention is focused on the external
power that is the power of all actions exchanged by b with the rest of B0 and
the external environment. As usual in continuum mechanics, I consider bulk
and contact actions, the latter exerted through the boundary ∂b. No peculiar
external bulk actions act directly on granules except the gravitation, because
granules are only massive inert objects. Then the vector b indicates the sole
standard macroscopic bulk force which includes, when relevant, inertial and
non-inertial terms. At the boundary ∂b, standard contact interactions due to
the relative change of place of neighboring material elements, are measured
by means of the first Piola–Kirchhoff stress P while contact interactions due
to relative changes of grain distributions inside material elements in contact
through ∂b are measured by a microstress S.

By indicating by Pext
b (ẏ, ν̇) the external power over b along (y, ν), with

the pair (ẏ, ν̇) := (ẏ (x, t) , ν̇ (x, t)) belonging to the relevant T(y,ν)W at each
(x, t), its explicit representation is then given by

Pext
b (ẏ, ν̇) :=

∫
b

b · ẏdx +
∫

∂b

(Pn · ẏ + Sn · ν̇) dH2,
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where dH2 is the two-dimensional measure, n the normal to ∂b in all places
in which it is defined, that is everywhere except a finite number of corners
and edges.

The basic interest here is on consequences of the requirement that Pext
b be

invariant under synchronous semi-classical changes in observers. Changes in
synchronous classical observers, the class of changes in observers commonly
used in standard continuum mechanics, are defined by (i) invariance of the
time scale (from which the qualifier ‘synchronous’) and the reference place B0,
(ii) isometric changes of the ambient space R

3; they are thus governed by the
action of the Euclidean group R

3
�SO (3) on R

3. In this case one would have
to consider the velocity ẏ evaluated at x and t by the observer O and the one,
indicated by ẏ#, measured by the observer O′, shifting in time isometrically
with respect to O. Then one should pull-back in the frame O the rate ẏ#

obtaining a value ẏ∗ := QT ẏ# given by

ẏ∗ = ẏ + c (t) + q (t) × (x − x0) , (6)

where c (t) and q (t) are respectively the relative translational and rotational
velocities of the two observers. Basically, equation (6) means that O registers
a velocity ẏ∗ measured by O′, a velocity given by the rate ẏ evaluated by O
itself, augmented by the relative rigid motion c (t) + q (t) × (x − x0) between
O and O′.

Contrary to the standard issue, here for the description of the shape and
the motion of a granular body the manifold M is involved besides the interval
of time, the reference place B0 and R

3. As a consequence, since an observer
is a representation of all the geometrical environments necessary to describe
the morphology and the motion of a body, it is necessary to consider even
the changes in the representation of M due to changes (here isometric) in
observers. For this reason here changes in observers are called semi-classical.
In fact, since the selection of M is in essence the choice of a model (a coarse
grained model) of the real material texture, a change in observe in the ambient
space ‘alters’ the perception of the material texture, that is the representation
of M.

Let then t  → Q (t) ∈ SO (3) be a smooth curve over SO (3). From the
definition of ν it follows that, after the action of the generic Q (t) ∈ SO (3),
it changes as

ν# = Q∗νQ,

then

ν̇# = Q̇∗νQ + Q∗ν̇Q + Q∗νQ̇,

the superposed dot meaning the derivative with respect to t.
By indicating by ν̇∗ := Qν̇#QT the pull-back of ν̇# by means of Q, it

follows that
ν̇∗ = ν̇ + Wν + νW = ν̇ + Aq,
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where W ∈ so (3) for any t, q the axial vector of W and

A (ν) ∈ Hom
(
R

3, TνM
)
.

Specifically, A is given by the difference eν− νe, where e is Ricci’s alternating
tensor, namely

Aαβi =
(
eαiγνγ

β

)t

− νγ
αeγβi,

the exponent t indicating minor right transposition. Greek indices denote
coordinates on M while Latin indices the ones on R

3.
Note that the transformation leading to ẏ∗ and ν̇∗ are considered syn-

chronous.
The requirement of invariance of the external power under the isometric

changes in synchronous semi-classical observers described above is the basic
axiom used in this section (see [17], [20] for its use in the case of general
complex bodies).

Axiom of invariance. At equilibrium the power of external actions is
invariant under semi-classical changes in observers, namely

Pext
b (ẏ, ν̇) = Pext

b (ẏ∗, ν̇∗)

for any choice of b, c and q.
The axiom is strictly equivalent to requiring

Pext
b (c + q × x,Aq) = 0,

for any choice of b, c and q, a result which is the weak integral balance of
actions. The arbitrariness of c, q and b then implies the result below.

Theorem 1. (i) If for any b the vector fields x  → Pn and x  → A∗Sn are
defined over ∂b and are integrable there, the integral balances of actions on b
hold: ∫

b

b dx +
∫

∂b

Pn dH2 = 0, (7)∫
b

((x− x0) × b + A∗β) dx +
∫

∂b

((x − x0) × Pn + A∗Sn) dH2 = 0. (8)

(ii) Moreover, if the tensor fields x  → P and x  → S are of class C1 (B0) ∩
C0

(B̄0

)
then

DivP + b = 0 (9)

and there exist a covector field x  → z ∈ Tν(x)M such that

skw (PF ∗) = e (A∗z + (DA∗)S) (10)
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and
DivS − z = 0, (11)

with z = z1 +z2, z2 ∈ KerA∗ and e Ricci’s tensor. ( iii) Finally, if in addition
the fields x  → ẏ (x, t) and x  → ν̇ (x, t) are C1 (B0) ∩ C0

(B̄0

)
then

Pext
b (ẏ, ν̇) =

∫
b

(
P · Ḟ + z · ν̇ + S · Ṅ

)
dx. (12)

Eulerian versions of the balance equations above can be obtained as usual
by means of the inverse Piola transform. They read

div σ + ba = 0,

skw (σ) = e (A∗za + (DA∗)Sa) ,

divSa − za = 0,

where the operator div is calculated with respect to y and

σ := (det F )−1
P

(
F−1

)∗
, ba := (detF )−1

b,

Sa := (detF )−1 S (
F−1

)∗
, za := (detF )−1

z

are the actual measures of external and internal actions.
A micromechanical interpretation of them can be done by exploiting the

space R̂
3 where one imagines as above that the generic material element e

occupies a bounded compact domain with finite volume, the smallest domain
containing the granules within e in a compacted configuration. Other material
elements can be also imagined to be expanded in R̂

3 and occupy compact
domains having with the one just described only parts of the boundary in
common. In what follows Ie indicates the set indexing the granules within the
material element e (that are the granules not touching the boundary of e),
while I∂e is the set indexing the granules on the boundary of e. For j ∈ Ie,
dj is the diameter of the j-th granule within e. Let also f(ij) be the total
force exchanged through contact between the granule i and the granule j,
and r(ij) be the vector defined by x̂(i) − x̂(j) that is the difference between
the points occupied by the centres of mass of the granule i and the granule
j. If two granules are in contact, then

∣∣r(ij)

∣∣ ≤ 1
2 (di + dj). The total force

f(ij) is considered applied to a contact point x̂c

(ij) and rc
(ij) := x̂c

(ij) − x̂ is the
vector connecting the centre of mass x̂ of e with x̂c

(ij). Another total force g(h)

is exchanged between e and the h-th neighboring material element in contact
with it. Such a force is applied at a point x̂c

(h) and r(h) := x̂c
(h) − x̂ is the

vector connecting the centre of mass x̂ of e with x̂c

(h). With these premises, by

making use of the isomorphism between R
3 and R̂

3, I suggest the following
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microscopic interpretation of the coarse grained measures of interaction in
Eulerian description:

z(β)
a (ι (x̂)) =

1
|e|

∑
i�=j∈Ie

f(ij) ⊗ rc
(ij), (13)

σ(β) (ι (x̂)) =
1
|e|

∑
h

g(h) ⊗ r(h), (14)

S(β)
a (ι (x̂)) =

1
|e|

∑
h

∑
i∈I∂e, j∈I∂eh

f(ij) ⊗ rc
(ij) ⊗ r

c(h)
(ij) , (15)

where ι (x̂) corresponds to a generic point y in B, and r
c(h)
(ij) := x̂c

(h)− x̂(h) with
x̂(h) the centre of mass of the h-th material element eh in contact with e. The
apex β indicates that z

(β)
a , σ(β), and S(β)

a are referred to a given specific β-th
(here deterministic) configuration of granules. In a coarse grained sense one
should then calculate za, σ, and Sa as averages aver all possible β’s.

The interpretation above has strict analogies with the one of Edwards and
Grinev [9] on Cauchy tensor in granular agglomeration. Differences are also
evident: in [9] the generic material element coincides with only one granule so
that the Cauchy stress can be identified basically with (14) (cf. formula (7)
in [9]). However, in [9], za and Sa do not exist even if a fourth-rank hyperstress
is introduced (see formula (17) in [9]) as a perturbation of the standard stress.
Really, even here the microstress Sa can be considered as a hyperstress. This
circumstance occurs when one imposes the internal constraint ν = F or ν =
f (F ), with f a M-valued function. In this case the substructure becomes
‘latent’ in the sense of Capriz [4], the balance of substructural actions, namely
(11) disappears and falls within Cauchy balance of standard forces generating
a perturbation of the standard stress: the scheme reduces to the one of a
second-grade material. However, contrary to [9], the hyperstress generated
by the internal constraint linking ν to F is a third-rank tensor. Formulas
(13)–(15) can be written of course in terms of the distribution function θ̂c of
the contact points x̂c and the distribution θ̂h of the centres of mass x̂h of the
material elements in a neighborhood of e, the latter distribution necessary for
the microstress Sa, to account for uncertainties about the exact location of
contact points and neighboring material elements. However, even acting so,
the physical interpretation of the measures of interactions does not change.

4 Evolution of the Local Numerosity of Granules

When granules migrate from a material element into another, the numerosity
satisfies the continuity equation

d

dt

∫
b

α dx +
∫

∂b

ω · n dH2 = 0
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for any b ∈ P (B0). In this equation, the vector ω is the flux through the
boundary ∂b, n the outward unit normal to regular points of ∂b. If (x, t)  →
α (x, t) and (x, t)  → ω (x, t) are C1 maps, the arbitrariness of b implies

α̇ + Div ω = 0, (16)

a continuity equation which coincides with the conservation of mass when∫
∂B0

ω · n dH2 = 0,

since it has been presumed that all granules have equal mass.
Migration of granules implies also the growth of local configurational

entropy, entropy related with the loss of information about the distribution
of granules within the generic material element suffering migration. For any
b ∈ P (B0), the entropy production due to the migration of granules across
the boundary ∂b is presumed to be given by∫

∂b

h · n dH2

where h is a C1
(B0 × [0, t̄ ] , R3

)
vector density along ∂b (this assumption has

been made also in [13] in the case of mass transport of one specie in multi-
phase materials and in [18] in the case of migration of general substructures
in complex fluids, a paper, the latter, in which the interpretation of h as con-
figurational entropy has been proposed). The vector flux h is assumed to be
proportional to the flux of granules, namely

h = µω. (17)

The map (x, t)  → µ (x, t), µ ∈ C1 (B0 × [0, t̄ ]), is properly the chemical poten-
tial since all granules have the same mass. Of course µ can be defined because
the assembly of granules is considered as a single continuum.

Let Ψ (b, t) be the free energy of b ∈ P (B0) at the instant t. By taking into
account the contribution of the configurational entropy due to the migration
of substructures, the isothermal version of the Clausius–Duhem inequality
(then a mechanical dissipation inequality) along (y, ν) can be then written as

d

dt
Ψ (b, t) −

∫
∂b

h · n dH2 − Pext
b (ẏ, ν̇) ≤ 0,

for any b ∈ P (B0) and any choice of the rates involved. A standard assumption
in continuum mechanics is that the free energy of any b is given by

Ψ (b, t) :=
∫

b

ψ dx,
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with ψ a C1 density. The arbitrariness of b and Theorem 1 imply the local
dissipation inequality

ψ̇ − Div h − P · Ḟ + z · ν̇ + S · Ṅ ≤ 0. (18)

In addition to (17), constitutive assumptions about the free energy and the
representatives of interactions have to be accounted for in order to finding
consequences of (18). Constitutive assumptions then are

ψ := ψ (F, ν,N, µ,Dµ) , (19)

P := P (F, ν,N, µ) , (20)

z := z (F, ν,N, µ) , (21)

S := S (F, ν,N, µ) . (22)

By inserting (17) and (19)–(22) in (18) and making use of (16), the arbitrari-
ness of the rates involved implies the results listed in what follows.

• Under the assumptions above the free energy density ψ cannot depend
on Dµ.

• The constitutive restrictions listed below follow:

P = ∂F ψ (F, ν,N, µ) , S = ∂Nψ (F, ν,N, µ) , (23)

z = µDνα + ∂νψ (F, ν,N, µ) . (24)

• The reduced dissipation inequality

ω · Dµ ≥ 0 (25)

implies
ω = ADµ, (26)

with A the mobility tensor, a second-rank definite positive tensor.

From (24) one gets immediately

µ =
1

|Dνα|2
〈z − ∂νψ,Dνα〉T∗

ν M , (27)

where 〈·, ·〉T∗
ν M is a scalar product over T ∗

ν M. By using (26) and (11), one
changes (16) as

α̇ = −Div

(
AD

(
1

|Dνα|2
〈DivS − ∂νψ,Dνα〉T∗

ν M

))
, (28)

for sufficient smoothness of the fields involved. Equation (28) is the desired
evolution equation of the numerosity. A distributional version of it holds also.
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Once a granular body is at rest, re-compaction may change its mass density
up to 20% so that (28) describes effects of clustering of granules that are often
non-negligible. Equation (28) is a special case in Lagrangian representation
of the evolution equation for general substructures derived in [18]. It suggests
that the basic mechanism ruling the migration of granules is the competi-
tion of substructural actions between neighboring material elements. Such an
interpretation follows from the presence of the gradient of the projection of
DivS − ∂νψ ∈ T ∗

ν M along Dνα. Due to the interpretation of the measures of
interaction in terms of contact forces between the granules within the generic
material element, in the case in which all granules have equal shape, from (28)
one may infer that the granules migrate between a certain material element
and the neighboring elements in with a less number of contacts occur. The
interpretation is suggested by the presence of the right-hand-side term. It is
more evident in the case of latence. In this case, by selecting for the sake of
simplicity the internal constraint as ν = F , one gets from (28)

α̇ = −Div

(
AD

(
1

|DF α|2 〈Div∂DF ψ − ∂F ψ,DF α〉
))

, (29)

where now the scalar product 〈·, ·〉 in (29) is on T ∗
F Hom

(
TxB0, Ty(x)B

)
. The

difference Div∂DF ψ − ∂F ψ is the difference between the first Piola–Kirchhoff
stress and the perturbation induced on it by the hyperstress ∂DF ψ. The
discrete evolution in time of (29) may clarify the interpretation: One gets
in fact

αi+1 = αi − (∆ti)Div

(
AD

(
1

|DF αi|2
〈Div∂DF ψ − ∂F ψ,DF αi〉

))
, (30)

where ∆ti is the time step at ti. So, since α0 is assigned at the initial
time as a constitutive prescription, the subsequent steps in time are deter-
mined by the actual values of the stress and the hyperstress. No evolu-
tion occurs when 〈Div∂DF ψ − ∂F ψ,DF αi〉 = 0 or, more generally, when
〈DivS − ∂νψ,Dνα〉T∗

ν M = 0.

5 A Single Granule Coinciding with the Generic
Material Element

The generic material element can be also considered as composed by a single
granule only. The multifield setting presented above applies when one aims to
account for local rotations of granules. In this case ν can be ‘identified’ with
R̂, namely ν can be considered as an element of SO (3). However, one could
reduce the tensor order of ν by imagining it as a unit vector belonging to the
unit sphere S2 in R

3. The isomorphism between S2 and SO (3) assures this



208 P.M. Mariano

possibility. The scheme becomes then the one of continua with spin structure,
a scheme adopted below.

Migration of granules cannot be treated as above because the material
element is no more a family of granules that may loose or get fellows. However,
the motion of a single granule relative to the rest of the body can be described
directly by considering it as a point defect. I review here some results collected
in [19] and valid for continua with spin structure. They apply to the case
analyzed in this section.

Imagine a granule located at x̄ in B0, a granule that moves in B relatively
to B itself. By means of y−1 one may picture this motion in B0 in a sort
of non-material motion described by a differentiable map t  → x̄ (t), a motion
with (material) velocity w := dx̄(t)

dt . A driving force f is power conjugated with
w. Since the motion t  → x̄ (t) is ‘virtual’ (in the sense that it is the ‘shadow’
in B0 of t  → y (x̄, t), that is the actual motion of the granule in B relatively
to B itself), the force f is ‘virtual’ too so it has to be expressed in terms of the
true standard and substructural actions, the ones that push eventually the
granule to move in B relatively to the neighboring fellows. Let br be a sphere
of radius r contained in B0 and centered at x̄ at any t. At each t the driving
force f is given by

f = lim
r→0

∫
∂br

Pn dH2, (31)

where P is the extended Hamilton–Eshelby tensor given by P := ψI − F ∗P −
N∗S (see [19] for the proof of (31) in a wider setting). At each t, local balances
of standard and substructural actions hold also at x̄. They read

lim
r→0

∫
∂br

Pn dH2 = 0, lim
r→0

∫
∂br

Sn dH2 = 0

(see also [19] for the proof).
The driving force f is intrinsically dissipative in the sense that f ·w ≥ 0

with the identity holding when w �= 0. As a consequence f = g (w) w, with
g (w) a definite positive scalar function that has constitutive nature. The
velocity w is different from zero only when f satisfies a certain threshold along
a given direction. In this case the balance (31) becomes the evolution equation

g (w)w = lim
r→0

∫
∂br

Pn dH2.

Since w can be written as |w| s, s ∈ S2, for prominent anisotropy of the
body, the ‘strength’ around x̄ can be described by making use of a map
f = S2 → R

+. In this case f is called subcritical when f · s < f (s) for all
s ∈ S2, critical when there exist some s ∈ S2 such that f · s = f (s) while
subcriticality is granted for all directions, supercritical when there exist some
s ∈ S2 such that f · s > f (s). The dissipation D along the motion t  → x̄ (t) is
given by D (f, s) = (f · s) |w| = g (w) |w|2 and occurs along directions where f
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is supercritical. When many directions assure supercriticality, the maximum
dissipation principle indicates the direction s along which the motion develops,
namely s is the argument of

max
s∈S2

{D (f, s) s. t. f · s > f (s)} .

Acknowledgement

I wish to thank Gianfranco Capriz for many essential discussions on the nature
of granular matter. My gratitude goes also to Serena Poppi who pushed
indirectly me to conclude this chapter during contemporary pressing work.
The support of the Italian National Group of Mathematical Physics (GNFM-
INDAM) and of MIUR under the grant 2005085973 – “Resistenza e degrado
di interfacce in materiali e strutture” – COFIN 2005 is acknowledged.

References

1. Aronson, I.S., Tsimring, L.S.: Patterns and collective behavior in granular
media: theoretical concepts. Rev. Modern Phys., 78, 641–692 (2006)

2. Bobylev, A.V., Carrillo, J.A., Gamba, I.M.: On some properties of kinetic and
hydrodynamic equations for inelastic interactions. J. Stat. Phys., 98, 743–773
(2000)

3. Bobylev, A., Cercignani, C., Toscani, G.: Proof of an asymptotic property of
the Boltzmann for granular materials. J. Stat. Phys., 111, 403–416 (2003)

4. Capriz, G.: Continua with latent microstructure. Arch. Rational Mech. Anal.,
90, 43–56 (1985)

5. Capriz, G.: Continua with Microstructure. Springer Tracts in Natural Philoso-
phy. Springer-Verlag, Berlin Heidelberg New York, 35 (1989)

6. Capriz, G.: Elementary preamble to a theory of granular gases. Rend. Sem. Mat.
Univ. Padova, 110, 179–198 (2003)

7. Capriz, G.: Pseudofluids. In: Capriz, G., Mariano, P.M. (eds) Material Substruc-
tures in Complex Bodies: from Atomic Level to Continuum. Elsevier Science
B.V., Amsterdam, 238–261 (2007)

8. Cercignani, C.: Microscopic foundations of the mechanics of gases and gran-
ular materials. In: Capriz, G., Mariano, P.M. (eds) Material Substructures
in Complex Bodies: from Atomic Level to Continuum. Elsevier Science B.V.,
Amsterdam, 63–79 (2007)

9. Edwards, S.F., Grinev, D.V.: The statistical–mechanical theory of stress
transmission in granular matter. Physica A, 263, 545–553 (1999)

10. Ericksen, J.L.: Kinematics of macromolecules. Arch. Rational Mech. Anal., 9,
1–8 (1962)

11. Gamba, I.M., Panferov, V., Villani, C.: On the Boltzmann equation for
diffusively excited granular media. Comm. Math. Phys., 246, 503–541 (2004)

12. Goddard, J.D.: Material instability in comlex fluids. Ann. Rev. Fluid Mech.,
35, 113–133 (2003)



210 P.M. Mariano

13. Gurtin, M.E.: Generalized Ginzburg–Landau and Cahn–Hilliard equations
based on a microforce balance. Physica D, 92, 178–192 (1996)

14. Jaeger, H.M., Nagel, S.R., Behringer, R.P.: Granular solids, liquid and gases.
Rev. Modern Phys., 68, 1259–1273 (1996)

15. Kadanoff, L.P.: Built upon sand: Theoretical ideas inspired by granular flows.
Rev. Modern Phys., 71, 435–444 (1999)
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