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The XIXth International Workshop on
Operator Theory and its Applications. I

Joseph A. Ball, Vladimir Bolotnikov, J. William Helton,
Leiba Rodman and Ilya M. Spitkovsky

Abstract. Information about the workshop and comments about the first vol-
ume of proceedings is provided.

Mathematics Subject Classification (2000). 15-06, 47-06.

Keywords. Operator theory, matrix analysis, analytic functions.

The Nineteenth International Workshop on Operator Theory and its Applications
— IWOTA 2008 — took place in Williamsburg, Virginia, on the campus of the Col-
lege of William and Mary, from July 22 till July 26, 2008. It was held in conjunction
with the 18th International Symposium on Mathematical Theory of Networks and
Systems (MTNS) in Blacksburg, Virginia (Virginia Tech, July 28—-August 1, 2008)
and the 9th Workshop on Numerical Ranges and Numerical Radii (July 19-July 21,
2008) at the College of William and Mary. The organizing committee of IWOTA
2008 (Ball, Bolotnikov, Helton, Rodman, Spitkovsky) served also as editors of the
proceedings.

IWOTA 2008 celebrated the work and career of Israel Gohberg on the occa-
sion of his 80th birthday, which actually fell on August 23, 2008. We are pleased
to present this volume as a tribute to Israel Gohberg.

IWOTA 2008 was a comprehensive, inclusive conference covering many as-
pects of theoretical and applied operator theory. More information about the work-
shop can be found on its web site

http://www.math.wm.edu/"vladi/IWOTA/IWOTA2008.htm

There were 241 participants at IWOTA 2008, representing 30 countries, in-
cluding 29 students (almost exclusively graduate students), and 20 young re-
searchers (those who received their doctoral degrees in the year 2003 or later). The
scientific program included 17 plenary speakers and 7 invited speakers who gave
overview of many topics related to operator theory. The special sessions covered
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Israel Gohberg at IWOTA 2008, Williamsburg, Virginia

a broad range of topics: Matrix and operator inequalities; hypercomplex opera-
tor theory; the Kadison—Singer extension problem; interpolation problems; ma-
trix completions; moment problems; factorizations; Wiener—Hopf and Fredholm
operators; structured matrices; Bezoutians, resultants, inertia theorems and spec-
trum localization; applications of indefinite inner product spaces; linear operators
and linear systems; multivariable operator theory; composition operators; matrix
polynomials; indefinite linear algebra; direct and inverse scattering transforms for
integrable systems; theory, computations, and applications of spectra of operators.

We gratefully acknowledge support of IWOTA 2008 by the National Science
Foundation Grant 0757364, as well as by the individual grants of some organizers,
and by various entities within the College of William and Mary: Department of
Mathematics, the Office of the Dean of the Faculty of Arts and Sciences, the Office
of the Vice Provost for Research, and the Reves Center for International Studies.
One plenary speaker has been sponsored by the International Linear Algebra So-
ciety. The organization and running of IWOTA 2008 was helped tremendously by
the Conference Services of the College of William and Mary.

The present volume is the first of two volumes of proceedings of IWOTA
2008. Here, papers on operator theory, linear algebra, and analytic functions are
collected. The volume also contains a commemorative article of speeches and rem-
iniscences dedicated to Israel Gohberg. All papers (except the commemorative
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article) are refereed. The second volume contains papers on systems, differential
and difference equations, and mathematical physics.

August 2009
Added on December 14, 2009:

With deep sadness the editors’ final act in preparing this volume is to record
that Israel Gohberg passed away on October 12, 2009, aged 81. Gohberg was a
great research mathematician, educator, and expositor. His visionary ideas inspired
many, including the editors and quite a few contributors to the present volume.

Israel Gohberg was the driving force of iwota. He was the first and the only
President of the Steering Committee. In iwota, just as in his other endeavors,
Gohberg’s charisma, warmth, judgement and stature lead to the lively community
we have today.

He will be dearly missed.

The Editors:  Joseph A. Ball, Vladimir Bolotnikov, J. William Helton,
Leiba Rodman, Ilya M. Spitkovsky.

Joseph A. Ball

Department of Mathematics
Virginia Tech
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Vladimir Bolotnikov, Leiba Rodman and Ilya M. Spitkovsky
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Speeches and Reminiscences

Abstract. This is a collection of speeches given by Israel Gohberg’s colleagues
and family during the banquet that took place on July 24, 2008 at the Sadler
Center, the College of William and Mary, as part of the XIXth International
Workshop on Operator Theory and its Applications. The speech by Dan Amir
delivered on November 17, 2008 at the meeting of the School of Mathemati-
cal Sciences of Tel-Aviv University on the occasion of Israel Gohberg’s 80th
birthday is also included as well as a note by H. Baumgértel. The texts by
Gohberg’s colleagues were revised and approved by speakers. The texts by
Gohberg’s family were submitted by Gohberg.

Mathematics Subject Classification (2000). 47-06.
Keywords. Israel Gohberg.

1. Presentation of book

Marinus A. Kaashoek

Dear Professor Gohberg, dear Israel, dear Mrs. Gohberg, dear Bella, dear
members of the Gohberg family, dear guests, dear colleagues and friends.

Edited by Leiba Rodman.
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I am speaking on behalf of Harm Bart and Thomas Hempfling. The three of
us are the editors of the book Gohberg and Friends, which will be presented to
Professor Gohberg shortly.!

As you know mathematicians stand a long and time honored tradition. They
write papers and sometimes books, they read publications of fellow workers in the
field, they meet other mathematicians at conferences all over the world and some-
times in Williamsburg. In this way, in contact with colleagues from far away and
nearby, from the past via their writings and the present, mathematical results are
obtained which are recognized as valid. In this process, some distinguished indi-
viduals play a special and striking role. They assume a position of leadership, they
guide people working with them through uncharted territories, thereby making a
lasting imprint on the field, something which can only be accomplished through a
combination of rare talent, unusually broad knowledge, unfailing intuition, and a
certain kind of charisma that binds people together. All this is present in Israel Go-
hberg, the man to whom this book is dedicated on the occasion of his 80th birthday.

The documents collected here give a fascinating and sometimes moving in-
sight in the human factors that influence the development of mathematics. The
focus is not on formal mathematical results but instead on the personal relation-
ships that constitute the underlying propelling power of scientific cooperation.
Centered around the remarkable figure of Israel Gohberg, a picture emerges of the
development of operator theory and its applications during the last four or five
decades.

The above is a quote from the preface, and you can see and hear what an
excellent book it is. I want to tell a bit more about the contents of the book. It
consists of seven parts, and I will read to you the titles of the parts, adding some
additional information.

Part 1. Mathematical and Philosophical-Mathematical Tales.

This part begins with Mathematical Tales a presentation given by Israel Gohberg
at the 1988 Calgary Conference organized to celebrate his 60th birthday. It contains
stories from Gohberg’s career in mathematics, mostly from the times when he
lived in the Soviet Union before immigrating to Israel. The paper is preceded
by an introduction by Ralph Phillips. The second contribution, Philosophical-
Mathematical Tales: A personal account, is a talk given by Gohberg in January
2002 at the University of West Timigoara, where he was awarded the degree of
honorary doctor. It contains reflections on the general nature of mathematics and
on the way mathematical research is done. About the final article in this part I
will speak a little later.

Part 2. Work and Personalia.

This part contains Gohberg’s curriculum vitae, the list of his publications and a
list of his Ph.D students. Also included are a translation of a letter of reference

IThe present text is an expanded version of my speech given at the banquet. Much of the material
is taken from the book.
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written by M.G. Krein, when Gohberg was a master student, and translations
of letters and telegrams supporting his nomination as a corresponding member
of the Academy of Sciences of the Moldavian SSR. The next two documents,
written by Rien Kaashoek and by Rien Kaashoek and Leonid Lerer, respectively,
present a review of Gohberg’s mathematical work. The final document concerns
the Nathan and Lily Silver chair of Mathematics of which Israel Gohberg has been
the incumbent from 1981 to 1998.

Part 3. Gohberg Miscellania: Celebrating the 60th birthday in Calgary, Alberta,
Canada.

This part consists of the Gohberg Miscellanea, written on the occasion of his
sixtieth birthday. This biographical text was composed by H. Dym, S. Goldberg,
M.A. Kaashoek, and P. Lancaster from reminiscences, notes, letters and speeches
prepared by Gohberg’s former students, colleagues and friends.

Part 4. Celebrating the 70th Birthday at the IWOTA meeting in Groningen, the
Netherlands.

This part contains the texts of the speeches given by Alek Markus, Hugo Wo-
erdeman, Heinz Langer, Cora Sadosky, Hary Dym, Bill Helton, and Harm Bart at
the conference dinner of the IWOTA meeting in Groningen, in the context of a
pre-celebration of Israel Gohberg’s 70th birthday later in 1998.

Part 5. About Colleagues and Friends.

This part presents a collection of sixteen articles that were written or coauthored
by Israel Gohberg himself. Some of these have character of a memorial article,
paying tribute to a dear colleague who has passed away. Others are recollections
or reviews that highlight personality of a friend celebrating a special occasion.
These documents together give a fascinating, and sometimes moving, insight into
human factors that influenced the development of the field.

Part 6. Honorary doctorates, laudatios, and replies.

This part concerns the six honorary doctorates that Israel Gohberg has received.
Corresponding documents such as laudatios, acceptance speeches, and other re-
lated material are presented here.

Part 7. Festschrift 2008.

This final part consists of material comparable to that of Parts 3 and 4, but then
from a younger date and written especially for this occasion. In short articles,
seventeen friends, colleagues, and co-authors reflect on their experience with Israel
Gohberg. All of them have felt his influence. In some cases, it has changed their
lives.

Who are the authors of the book Israel Gohberg and Friends? From the short
description I gave you, you may guess, well, the authors of the book Israel Gohberg
and Friends are Israel Gohberg and friends. This answer is almost correct. There
are two authors who do not fit into these two categories. They are Zvia Faro-
Gohberg and Yanina Israeli-Gohberg, the two daughters of Israel and Bella. They
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wrote a beautiful article which appears in the first part of the book under the title
Dad’s Mathematics. 1t is a fascinating account on how their father’s mathematics
came to them in their younger years. At the same time Dad’s Mathematics gives
an impression of Israel Gohberg’s talent to convey the beauty of the field even
to those lacking elaborate mathematical training. The two Gohberg daughters are
present here at this banquet. I ask them to stand up so that we can see them and
welcome them with a warm applause.

Dear Israel, my task is completed. I wish you many happy returns. Thomas
Hempfling, the mathematics editor of Birkhauser Verlag, will continue and present
the book to you.

Thomas Hempfling

Do not worry, I will make it short. First of all, thanks for your marketing proce-
dures, if you are out of business just apply so that we can do something together.

I would like to congratulate Israel. One reason obviously is that we celebrate
his 80th birthday. The second reason is that he has continuous business with us for
30 years, which is really remarkable. And third, I did some computations yesterday
afternoon, because I had a guess, concerning the total number of pages Israel is
responsible for as an editor. Can you guess? It is close to 100,000 pages [applause],
about 37,000 for the journal and more than 60,000 for the books. This is really
something remarkable I think.

When the idea came up to do this special commemorative book, we thought
that there should be one very special version just for Israel, and here it is. It is a
bound version with silver shine on it. I think you deserve it. I congratulate you.

2. Gohberg’s colleagues
Joseph A. Ball

My first contact with Israel was as a graduate student at the University of Vir-
ginia. There were the books by Gohberg and Krein from which operator theorists
were supposed to study Operator Theory. Later we intersected at University of
Maryland. He was settling down in a new place at West Hyattsville, Maryland,
just a couple of blocks from where I grew up. So I showed him the place I grew
up. He said, “Some people are local, but you are an aborigine”. I had experience
of working with Israel over a period of four or five years on a book, one of many
books in which Israel took part. It felt like becoming part of the family. He leaves
behind a large legacy in Operator Theory, and I congratulate Israel and wish him
the best in the future. Thank you.

Ronald G. Douglas

I first met Israel at the 1966 International Mathematical Congress in Moscow. As
far as I know, this is something that most of the people here do not realize, since
they are young. If you go back to the 60’s, there were two worlds of Operator
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Theory: there was one world on one side of the iron curtain, and the other world
on the other side of the iron curtain. There were occasionally letters that went
back and forth, and a few visits, but not many. The Moscow congress provided
people in the rest of the world, the United States, Europe, Australia, Japan and
so forth, with an opportunity to actually meet these people that were creating so
much of Operator Theory. Otherwise, we would have to learn from translations of
books which would occur in one year, two years, three years, or may be never.

Among the people I met there was Israel. At the same time I met both Kreins,
M.G. Krein and S.G. Krein, Arov, Adamyan, and I can just keep going. I certainly
remember Israel standing out, I do not remember what we talked about but we
talked. We both knew who each other was. The “official” translator between the
two sides was Ciprian Foiag. We had some rousing seminars where Ciprian would
listen to the Russian and explain it to us in English, and then he would comment
in English and then in Russian, and this went on and on and on. In any case, after
that meeting I got a letter from Israel, and I also, in a bit of a surprise, started
getting these large envelopes with Israel’s reprints. And of course you heard a few
days ago that there are more than 400. I do not know what the number was there
but it was substantial. Of course I was very pleased to get those even though most
of them were in Russian; I think all of them at this point were in Russian. I later
found that, as one of the family indicated, Israel is methodical about planning and
possibly planning for the best or the worst.

After Israel emigrated to Israel, one of his first visits to the United States was
to Stony Brook. He came and spent many semesters there. In fact, he reminded
me today that his crash course in English was because Stony Brook’s Dean or Vice
President or somebody told him, “We have money to hire you, but you have to
lecture in English, and that classes started almost immediately”. So he was telling
me that his first month in Stony Brook was a lot of work, a lot of effort.

T’ll just say two more things. I remember a couple of more visits, he came
to Stony Brook many times around the seventies. But I remember one visit to
Amsterdam. I will not go through the whole visit. His grandson talked about
berries. The thing I remember, walking back from the Mathematics Department to
the apartment, was that Israel spied wild mushrooms all over the place, mushrooms
I have never seen before. He picked them up, gathered them, and took them to
the apartment. His mother was there, and she cooked wonderful dishes I could
not have imagined. I was sure I would be dead next morning. I was somewhat
surprised when I woke up. The other comment I am going to make has also to do
with Israel’s mother. She was very important part of his visits. He brought her
to Stony Brook on more than one occasion. My first visit to Israel was in 1977,
arranged by Israel, and I came over to their apartment. I was there with my family.
Israel’s mother fixed a meal that, well, it seemed like it went on and on, and my
children had to be excused because they could not even look at the food. It was
an absolutely wonderful meal which I still remember. It is clear to me where Israel
got his loving nature and optimism for life: that was from his mother. I can say
more about mathematics, but probably I have said enough.
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Roland Duduchava

Dear Colleagues.

I am very happy to call this outstanding personality my teacher. When I ar-
rived in Kishinev, it was 1968, unexperienced young man not only in mathematics
but also in life. I learned a lot from Israel Gohberg. He was a wonderful teacher
in mathematics, and in life. When I left Kishinev three years later, I brought with
me back to Georgia not only dissertation, but also wife and child. In the process
of my marriage Bella Yakovlevna and Israil Tsudikovich played an essential role,
and I am very thankful to them for this.

Harry Dym

Sayings of the Fathers is a short extract from the Talmud that includes a number
of suggestions for virtuous living. I think that many of you who are here tonight
share the sentiments expressed in the following transparency:

Sayings of the Fathers:

Acquire a teacher
and
Acquire a friend

Thanks to Israel on his %\Sth
80th
for being both.

As you can see, I have used this transparency on Israel’s 75th birthday, I am using
it again for his 80th birthday, and I would like to point out that there is a lot of
space left for the future.

I do not want to take too much time. Israel’s family is a hard act to follow,
and there are many more speakers.

You all know about Israel’s mathematical accomplishments. I would like in-
stead to tell four stories that illustrate his other dimensions. I have told them
before, but I rely on the fact that the audience is largely new, and the hope that
the older members of the audience who have heard these stories before have for-
gotten them.

I met Israel for the first time in Spring of 1975, when he joined the Depart-
ment of Mathematics at the Weizmann Institute as a part time member. Shortly
thereafter we began to work together and continued to do so for close to ten years.

Israel used to spend a day and a half at the Institute. On Sundays he would
usually arrive between 9 am and 9:30 am, we worked a little, he would lecture
from 11:00 am to 1:00 pm, afterwards we would go for lunch, then work again.
One day he arrived rather late. What happened? Well, on the way, while driving
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from Raanana (where he lives) to the Weizmann Institute, a car crashed into him
from behind. I believe it was a police car. Anyway, after he settled in, Israel called
Bella, his wife, and explained to her that he had an accident on the way to work,
someone bumped into his car from behind, but there was no need to worry, he was
not hurt.

Bella: “Why did he do that?”

You can imagine your response to that question. But Israel very calmly says,
“Bellechka, this question you have to put to him not to me.”

In between our working sessions we would talk about other things, and from
time to time would drift into anecdotes. I would like to relate two stories that I
heard from Israel from his Russian period, which illustrate Russian humor, maybe
Jewish Russian humor, sort of bittersweet.

One story is about a baker. A man goes to a bakery and wants to buy a loaf
of bread.

Baker: “Fine, it is two rubles.”

Man: “Why is it two rubles? In the store down the street it is only one ruble.”

Baker: “Ah, but that baker has no bread. If T had no bread, I would also sell
it for one ruble.”

Another story is about a collective farm where they raised chickens. An in-
spector came from the Central Committee, to see how the farm workers were doing.
He goes to one worker and asks,

Inspector: “What do you feed your chickens?”

First worker: “Corn.”

Inspector: “What! You feed your chickens corn? We do not have enough wheat
or grain to feed our children! — Siberial”

The inspector turns to a second worker and repeats the question.

Second worker: “Chocolate.”

Inspector: “What! You feed your chickens chocolate? We do not have candy
to feed our children! — Siberia!”

He then turns to a little old Jewish worker with the same question.

Worker: “I do not feed my chickens. I give them each a ruble, and they can
buy what they want.”

The final story is based on a conversation that took place when Israel met
our youngest son Michael for the first time.

Israel: “How many children are there in your class?”

Michael: “Forty three,”

Israel: “Forty three? That’s wonderful, so many friends.”

Lillian Goldberg

I am pleased to say that I go back before any of these people. I am the wife
of Seymour Goldberg who has passed on, and he met Israel in 1964, before the
mathematical congress, before anything else. I just tell one funny story, I think it
is funny.
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Bella and Israel were given permission to have Seymour at their home. This
was not easy; the KGB had to know everything about Seymour before he is per-
mitted to enter Russian house, including if you see him mailing a letter tell me
what mailbox, if he is talking to somebody tell me who he is talking to. Israel and
Bella, being what they are, and Clara, said they are going to make him a special
dinner. And they stood on line, both women, cut all these wonderful things, meat,
chicken, and everything else which was very hard to get. Shortly before Israel is
going to take Seymour home for dinner, Seymour says, “Oh, by the way, I forgot
to tell you that I am a vegetarian.” Seymour related to me, and to many other
people, that Israel called home and told his mother and his wonderful wife. And
from across the room Seymour heard in the phone two “0Oy”’s. That’s how loving
families got together, and we love them, their children and grandchildren.

J. William Helton

I am honored to be here honoring Israel Gohberg on his 80th birthday. As we are
all seeing, this conference honoring Gohberg is in our own self-interest, because it
is this occasion which has drawn here this remarkable broad collection of powerful
mathematicians from all branches of operator theory.

As we all know Gohberg has had a profound influence and much of what you
see around you this week stems from areas he invented, students he trained, and
areas where he solved basic problems. Since we all know this, maybe I should say
something about his lesser known side.

I will always recall the first time he visited my house in San Diego. We all
know Gohberg can fix bad matrices; he adds a column, takes off a row, transposes,
permutes and voila! the matrix is beautiful. However, Gohberg can also fix plumb-
ing. Our guest bathroom had drain caps on fancy levers which did not work, so
we had rubber stoppers and gaskets. I was afraid he would have trouble with our
“system”. After his shower, after breakfast, I went in with new towels; but behold
all the rubber stoppers were gone. I asked Israel if his shower went OK and he
said, “All is fine, I will show you.” He took out a coin, unscrewed the plate holding
the lever, pulled some rods out of the wall, showed how to clean and unstick them,
“that is all there is to it”.

My wife was delighted. On the other hand from then on I faced the problem
that my wife thought plumbing was easy to fix.

Another example, concerns the IWOTA conference I did not like. This is
unusual because I always love IWOTA conferences. However, at this conference a
screw fell out of my glasses. They fell apart, so I could not see anything. I could
not, see the talks, but that probably did not matter much, since they are hard
to understand anyway. Unfortunately, the lever on the conference coffee pot was
small, so I had trouble using it; clearly the situation was serious. When there are
serious situations at IWOTA we go to our president. He looked at the pieces of my
spectacles and said: “no problem, such glasses were very common” in the Soviet
Union. Immediately he got a paper clip from the registration desk, threaded it
through the hole in the glasses frame and in the paper clip tied a knot so strange
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it is found only in Moldova. Immediately, the conference began to make sense to
me.

In conclusion, Israel Gohberg is always welcome in my home, he is of great
value at conferences and his mathematics and his friendship are welcome anywhere
in the world.

Peter Lancaster

It is a great pleasure and privilege to be here, and to have the opportunity to say
a few words. I would like to repeat a number of sentiments that already have been
expressed. They each have to do with family.

I remember Israel’s mother quite well, although I could not possibly know
her intimately. I never cease to wonder at the way that she was able to protect and
inspire her children — in spite of the most dreadful times and conditions of war.
Israel and I are about the same age, and I can’t help contrasting his war years
with mine. I had a relatively sheltered and secure existence in England through
my first 15 or 16 years. So for me, it is hard to imagine the trauma that Israel and
the family went through and, in particular, how much is owed to Israel’s mother. I
sensed the strength of her personality even though I could not know her very well.

Secondly, it is wonderful to see all the Gohberg family together once more,
as we did twenty years ago in Calgary, and I am so delighted for each and every
one of you.

The third aspect of Israel’s extended family has to do with the mathematical
community. How did this come about? Of course, scholarship is at the root of it,
but it is unassuming scholarship, a modest scholarship, scholarship that does not
intimidate, that welcomes ideas and people on an equal basis. I am privileged to
have been one of these friends and colleagues.

The last little twitch on the family theme is to mention my own family, who
all have very fond memories of Israel. They join me in wishing you many happy
returns of the day.

Henry Landau

When I was a student, we heard a lot about a famous chemist. The problem for
chemists in those days was to understand the structure of molecules, and in order
to do that they had to crystallize them. This was a difficult art, but this chemist
was phenomenal not only for being able to do it seemingly at will in his own lab,
but also wherever he went all those waiting chemical solutions would suddenly
crystallize. The explanation finally given was that he had a long beard, and that
over the years so many different crystals had found their way into this beard that
when he leaned over a sample something would drop out that was just the right
seed around which everything would coalesce. Now Israel has been doing exactly
that for us for about sixty years, going from place to place and wherever he goes
ideas crystallize, beautiful structures appear — and he doesn’t even have a beard!

Well, Iz’ia, as everybody knows we owe you so much, not only in mathematical
ideas — they are precious — but even more precious are he worlds of friendship which
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you create for us and among us. You take us into your marvellous family: Bella,
Feya, Tzvia, Yanina, all of you welcome us, and make us join work with feeling.
This is something so extraordinary, as we can see just from our gathering here.

I think that every celebration really unites past and future, folds them into
the present. So I think of Mark Grigoryevich Krein, Israel’s friend and collaborator,
whom he always brings to life on such occasions. And I think too of the dark stories
of his early years that terrify even today. Here’s one I always remember: when the
nazis invaded, Israel’s mother miraculously managed to get him and Feya with
her on a train heading east away from the fighting. In the course of this voyage,
always uncertain, they stopped in a little town and were told that the train would
stay all day, so she went to try to find some food, but when she returned a short
time later the train was gone! How can one imagine this moment? Someone told
her that there was another place where the train might be, so in desperation she
gave away her only winter coat to be taken to it, and providentially the train was
indeed there and they were reunited. Such things are part of their past, as is the
endless hardship of Soviet antisemitism, and yet in all these situations Israel was
able to maintain brightness and hope. We saw this so clearly in Kishinev, on the
occasion of his honorary doctorate. There was a strange atmosphere at the formal
ceremonies, with the officials saying nothing about how he had been treated, but
later in more private meetings, when Israel broached the subject, there was such
an outpouring of emotion on the part of every one. They remembered details from
thirty years ago. It seemed to us that they had always kept him in their minds as
their source of joy, learning, and happiness in mathematics.

So as we are here all together, four mathematical generations of your friends
and students gathered in this lovely place, with a full moon overhead, it is a
wonderful moment in which to thank you. As I picture it, things may get a little
dark at times but when you appear the sun comes out and mathematics blossoms.
This will always be true, Iz’ia, so the only thing to say is: L’CHAIM!

David C. Lay

I am really pleased to participate in this conference honoring Professor Gohberg.
I think my first contact with Israel’s work was in 1973, when I spent the first
half of a sabbatical at the Free University. Rien Kaashoek and Harm Bart were
working on ideas from Gohberg’s paper, and Rien invited me to participate. Then
I met Israel in 1974 when he came to visit Seymour Goldberg at the University of
Maryland.

I have two short stories about Israel and my family that illustrate how gen-
erous and kind Israel is on a personal level. You know, I thought people will be
talking a lot about his mathematics tonight, and yet I find I am doing the same
thing they did, seeing him as a man, a wonderful man.

In the fall of 1979 I began a sabbatical year at the Free University in Ams-
terdam, and we lived in a house in the same town as Harm and Greetje Bart. My
wife Lillian and I had a 14 month old adopted daughter, Christina, and Lillian was
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pregnant as well. Soon Lillian gave birth to our second daughter in our home. For-
tunately, the midwife arrived in time, because I did not have all the preparations
ready. After a few weeks, Israel came to visit, to see our new baby. Shortly after
he entered our house, Lillian came down with our new baby, Deborah, followed
by little Christina who was just 14 months old. When Christina saw Israel she
stopped and stood very still. But Israel smiled, held out his arms, and without
hesitation Christina ran to him to be held.

After we returned to the University of Maryland, Israel and Bella started
to visit Seymour and Lillian Goldberg at our university. They came for about
two months each year for twenty years, and Israel visited our family on most of
these trips. Israel became like a grandfather or uncle to our children. When our
daughter, Deborah, was three and a half years old we had a large playhouse in our
main family room. We still have a photograph of this house with Israel down on
the carpet playing house with Deborah. He was there a long time that afternoon.
You can imagine how the children looked forward to these visits each year.

Jiirgen Leiterer

Dear Israel. You know, I too have an anniversary this year. Forty years ago I
became a student of yours, exactly forty years ago. In September 1968, I moved to
Kishinev and started my active mathematical life as your Ph.D. student. After two
years I think I got some qualification after learning the basics, and you proposed
to me to come as your collaborator. This was a big aid in my life. After that, I
think it was three or four years, we worked together. It was a very good, maybe
the best time of my life, it was a pleasure to work with you.

Then this collaboration stopped for political reasons, you moved to the West,
I remained in the East. There was an attempt of Rien Kaashoek to join us again
inviting us at the same time to Amsterdam. But this was “observed” and pre-
vented. So we have a long way back.

Already when we were working together we observed that several complex
variables are important for us, and you encouraged me to study such things. As
a result, I became more and more interested in several complex variables. At the
end, I changed the field completely. I worked in several complex variables, and
forgot about operator theory for almost twenty years.

Then politics changed and we lived again in the same world. (I did not have
to move for that, the West came to me to Berlin.) We met again, and you proposed
to me to continue our collaboration. In the beginning I was skeptical about this,
because I forgot almost everything. Nevertheless, five years ago we have started
again, and I am again very happy that we have decided to start. It is again a very
pleasant time for me.

How to explain that? There are many remarkable properties in your person-
ality. But one which is most important — you are not only the founder and the
head of a mathematical school. What you have is much more — it is a home, a
house of hospitality not just for mathematics, but for people doing mathematics.
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If T would meet somebody who is looking for a good problem to work on, I
would say, “Go go Israel. He will speak to you, you will speak to him, he will speak
to you, and at the end you will work on one of his problems. Even more, if you
have a good problem, and you approach him, then he will speak to you, you will
speak to him ..., and at the end you will forget about your problem and start to
work with him.”

Dear Israel, I am most impressed with your optimism. Meeting you I am
always infected by it. It seems to me, there is nothing in the world that could
destroy your optimism. I wish you on your birthday, most of all, keep this optimism.

Thank you.

Vadim Olshevsky

I seem to be one of the few people who are not wearing a jacket, but I believe I
got a special permission from Gohberg.

Kishinev was already mentioned quite a few times today. I got my Ph.D.
degree in Kishinev as well, but this was many years after Israel left. So I did not
have a chance to meet him until I moved to Israel in 1989 to start a post doc
position at Tel Aviv University.

I remember that Israel immediately told me that we should do something
about structured matrices. Today we have a three-day special session on structured
matrices at IWOTA which indicates that the topic has garnered a lot of attention.
But in 1989 I told him that I do not find structured matrices interesting. Well,
he insisted, and we wrote several papers together. When the first joint papers
were completed, we submitted a contributed talk for the 1990 ILAS conference
in Haifa. By mistake, it was listed as Gohberg’s talk and not mine. It was only
a contributed talk, and there were four or five parallel sessions, but many people
showed up nonetheless to come hear Israel speak.

There were about a 100 people in the room. Peter Lancaster was the chair-
man; when he announced Israel’s talk, Gohberg rose up said, “We changed the
title of the talk, and we also changed the speaker.”

And somehow I got this large audience which came to listen to Gohberg,
but instead received someone completely unknown. This helped me greatly at the
beginning of my career.

Now I realize how right was Gohberg in predicting how important this re-
search topic, structured matrices, will be in two decades. Everybody knows that
this ability to choose “the right topic” is one of Israel’s many talents. I thank you
Israel Tsudicovich for many years of working together [applause].

This was my first remark, and I would like to make a second remark.

I would like to say a few words about the “Gohberg phenomenon,” because 1
believe Israel is unique in succeeding in every enterprise he starts. One may think
why this is, and of course there are many obvious ingredients: talent, hard work,
personal charisma. But since this is a dinner speech, here I can tell you the truth.
I think that luck that plays a crucial role in Gohberg phenomenon.
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How many times today have we heard people quoting Gohberg as saying
“Do not worry, everything will be OK?” Somehow there are people with whom
everything is always OK: they can eat wild berries, wild mushrooms (as someone
mentioned a moment ago), a police car can hit you from behind (as we learnt from
another speech today), and yet “Do not worry, everything will be OK.”

Let me tell you one more personal story. Seven or eight years ago Israel visited
us in Atlanta. He gave a terrific talk, and afterwards we went to dinner together
with Mihaly Bakonyi. At that time Israel was two hours late for his dialysis, and
Bellochka was very nervous. But Israel said: “Do not worry, everything will be
OK.”

So, we went to the restaurant, and Israel ordered beer. Bella was again cau-
tious, but Israel said again: “Do not worry, everything will be OK.”

A couple of hours later, he was already four hours late for his dialysis. Ac-
tually, I needed to go back to the university because I had a class, I believe the
time was about 8 pm, and the plan was that Mihaly would drive to highway 75,
and Israel in his car would follow Mihaly, and we believed that once Israel was on
highway 75, he will find a way to my house (where his dialysis machine was). It
was back in pre-GPS era. In accordance with the plan, Mihaly drove to 75, made
a gesture to indicate this is it, and took an exit. Israel instead followed him and
also took this exit. Mihaly stopped, expecting that Gohberg would also stop and
they would talk. Instead, Gohberg continued straight ahead and disappeared.

Now let me describe the topology of Atlanta. The Chattahoochee river divides
the city, and one can cross it in only two places. Needless to say, my house was on
the other side of the river. Given all this, in the direction which Israel followed it
was simply impossible to get to my house. So we were very worried. We tried to
call him but his cell phone was off.

About an hour later, I called my house, and Israel picked up the phone. I
said, “Israel? Izrail’ Tsudikovich?” And he said, “Yes”. “How did you make it?”
“What do you mean, how did we make it? We just followed the direction you
indicated!”

To sum up, “some people” are successful even after initially taking the wrong
turn. (As you can see, by successful I mean they come to my house).

3. Gohberg’s family

3.1. The young years of Israel Gohberg
Dr. Feya Gohberg

My name is Feya Gochberg-Eidelstein and I have been a surgeon for over 50 years.
I am Israel Gochberg’s younger sister. My brother Professor Israel Gochberg was
born on August, 23, 1928 in the small town Tarutino in the region of Bessarabia,
that was then Romania and now belongs to the Ukraine.

He wasn’t born an outstanding personality nor even a professor. Like all
newborns he was small, helpless and very noisy.
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His parents Clara and Tsudick Gochberg adored him and his arrival brought
great happiness to their marriage.

His grandparents Izhak and Rivka Gochberg were very observant Jews. They
loved their firstborn grandson very much and spoiled the child in every possible
way, since he remained their only grandson for quite a long time. Our father was
one of 6 children, and he was an educated person, he had graduated in accountancy,
opened his own prosperous business — a printing house — and was a very devoted
family man.

Our mother was quite a different person: she was a resourceful, very beautiful
woman with dark skin, long brown hair and green eyes. Our mother Clara-Haya
Gochberg was a midwife. She had lost her parents at a very young age, an orphan
since the age of 14, she achieved everything in her life on her own. She graduated
from Kishinev’s nursing school, got her diploma as a qualified midwife and left for
Tarutino where she started her working career. There she met our father. The two
fell in love and soon got married. They gave birth to 2 children: my brother Israel
and 5 years after his birth — to me.

My brother was brought up in a loving, well-off family, surrounded with
warmth and care. From his early childhood his thoughts were filled with logic.
When he was only 4 years old, while visiting some relatives, he saw a young couple
kissing. When he came back home he asked his mother: “I don’t understand, why
Leon and Balbina kissed each other all the time?”. Mother, worried about his
“sexual education” tried to detract his attention and answered: “They probably
were going away and saying “good bye” to each other.” My brother thought for a
while and said: “I don’t think so. There were no suitcases around!”

Our parents tried to give him the best of everything: he had a new Mustang
bicycle, a real Sima watch and each summer they took him to a sea resort.

When he was 7 years old he began to study in Tarutino primary school and
finished with good grades.

At the age of 9 he started smoking and I was honestly fulfilling the role of a
guard warning when our mother was approaching. I had a tricycle with 3 wheels.
My brother used to let me pedal it and he himself liked to stand behind me on the
tricycle and I had to pedal on it forward. Once, while riding like that on a high
speed we both fell into a deep hole and almost got killed.

When he was punished for his deeds, I used to cry bitterly and say that
it was my fault and I was the one to be punished. He appreciated it and never
neither during our childhood nor later did he offend or hit me. Never has there
been between us jealousy or envy. Through all of our lives we have always kept a
warm and loving relationship and it was all our mother’s achievement. It was our
mother who taught us to love, honor and take care of each other. During our life
in Tarutino our parents did their best to give my brother a good education: he
took violin lessons, he was taught the Bible by a private teacher, he liked sports
and was the only goalkeeper of the school’s football team.

On finishing school in Tarutino, our parents decided to send him to one of
the best secondary schools in the region, but he wasn’t accepted there because of
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his low mark in mathematics and only because the school had a lack of students
was he enrolled there. He studied there only for one year. The Second World War
started — the most dreadful war for the whole world and especially for Jews. But
in our family a great disaster had happened before that.

When the Soviet troops occupied Bessarabia our father was arrested in the
middle of the night, without any explanation. Our mother was told that in 20
minutes, after answering some questions, father would be back home. We never saw
him again. Our father was accused of Zionism and without being even prosecuted,
he was sent to Siberia, to a Gulag. There, at the age of 40, he died of hunger.
Our mother kept waiting for him all her life! The details of his death became
available only few years ago, when the Soviet regime had changed. Our father was
rehabilitated due to the lack of any proof of his guilt. In his holy memory my
brother’s firstborn daughter was called Tsvia. Exactly 15 years later, on the day
of the anniversary, of our father’s death, I gave birth to my only daughter, whom
we naturally also named after him — Tsvia.

During the years of WW II my brother suffered hunger. We were always
hungry, we fell asleep being hungry and we woke up being even more hungry. My
brother worked in the fields together with our mother in order to get some carrots
and potatoes so that we would not starve to death. He was very creative: he learned
to make rubber rain-shoes from old tyres and exchanged them for some food. At
this period of his life, my brother had already a mature personality and he was
our mother’s chief adviser and partner. At the age of 14 he decided to change
his life and fight starvation. He stopped attending school and started working in
a bakery. When our mother found out about his new career — I remember there
was a serious scandal at home after which my brother preferred to remain being
hungry and went back to school. In spite of his absences he completed his school
education during the last year of the war.

He graduated from school with very high marks and at that time his outstand-
ing abilities in mathematics were discovered. His school teacher, Mr. Shumbarsky
noticed his talent in math. I think that he was the one who played an important
role in forming my brother’s interest in math. His teacher was sure that math
should become his future. But our mother didn’t think so. Working as a midwife,
all her life she dreamt to be a doctor, but that was impossible for her to reach. She
certainly thought that her talented son should become a physician. There was a lot
of disagreement at home and at last mother told my brother that if he didn’t ap-
ply to medical school she wouldn’t support him financially. My brother was scared
and told his teacher everything that had happened at home. His teacher paid us
a visit and told my mother that if she insisted on my brother’s learning medicine
— she should know for sure: that on that very day a great talent in mathematics
will be not developed and be lost. My mother got scared and gave in. In 1946, at
the age of 18 years, my brother became a student at the faculty of mathematics
of the Kirghiz State College. A new period in his life started.

All her life our mother lived with my brother’s family. She always helped us
and the last 10 years of her life she spent in Israel.
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Our mother died at the age of 80, she always helped us, until her last day
and was full of energy, had a tremendous sense of humor, an outstanding example
of dignity, loyalty and love. In memory of our mother Clara-Haya were named our
grandchildren: my brother’s granddaughter — Keren and my grandson Hannan.

This is our family today: my brother and his wife Bella, his elder daughter
Tsvia, her husband Nissim and their children Tali and Jonathan; his younger
daughter Yanina, her husband Arie and their children: Keren, Raviv, and Tslil,
and I — his sister Feya, my daughter Tsvia, her husband Malcolm and their children:
Hannan and Liat.

3.2. My father 1.C. Gohberg
Zvia Faro (Gohberg)

As we were growing up Dad’s work seemed very mysterious and unclear to us, we
considered it his “Dark Side”.

There was also the bright side, the Dad, whom we understood, who made us
laugh, taught us math, history, science, who was fun to be around and learn from.
I want to talk about this side, the side so dear and familiar to us.

Our Dad is a devoted family man, caring son, loving husband and Father,
dedicated brother and uncle. He is a wonderful Grandfather, who can do magic
tricks like a professional magician.

He is very athletic a good soccer player, skier, swimmer and runner.

His “golden” hands can fix or make anything. Dad is a good cook and can
create some elaborate gourmet dishes. He is a well rounded man, and has many
other interests in life besides mathematics, being very thorough, he does not accept
shortcuts and excels in everything he does.

He had many hobbies, at times it was photography, aquariums, later fishing,
agriculture, wine making and many more. When I was born Dad’s hobby was
photography. At night, when everyone was asleep, our tiny bathroom turned into
a dark room and in the morning there were many photos drying on the blanket
on the floor.

Another hobby was his bicycle, to which he installed a motor, tied a little
pillow to the ramp and often took me for long rides to the country fields.

I still remember the fun, the wind was blowing in our faces, while we were
riding and singing. Here I will probably uncover one of the very few things that
he is not good at: he does not have an ear-for-music, and I am the same. My
Mom and my sister have a perfect ear for music, so we never even dare to sing at
home, but on those trips only the wind, the cows and the sheep we passed by were
our audience and at that time I thought that they really enjoyed our out-of-tune
singing.

On the way we played games, he asked me riddles, logical puzzles and taught
addition. As I grew the trips became longer and the problems harder. Our family
often vacationed on the Black Sea. I remember how writing with a stick on the
sand he explained binary numbers and limit. Limit was hard, I kept asking what
does it mean that for every epsilon there is a delta? What if I find a smaller epsilon,
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I asked, then I will find a smaller delta he replied, drawing another segment on
the sand. He was never tired or impatient and could repeat things over and over
with new intuitive examples and jokes.

Notwithstanding his busy schedule, there always was time for us. Dad taught
us riding bike, skiing, ice skating, swimming, diving. We loved long walks in the
woods where we learned survival skills and the difference between good mushrooms
and the poisonous ones. When our Mom who is a doctor was on call, he cooked
us our favorite dinner, it was the best mashed potatoes I have ever had.

When we decided to immigrate to Israel, we were refused the exit visa and
became refuseniks.

I was expelled from the University, Dad stopped going to work, it seemed
that my life was over. We have spent a lot of time together, he became my best
friend and cheerleader. He was encouraging me, telling about the infinite opportu-
nities that awaited me and my children in the free world. I wanted to hear about
our wonderful new life, but he never painted a pink picture, preparing me for
difficulties. During those long months we discussed politics, listened to the Voice
of America, he allowed me to read forbidden Solzhenytsin SAMIZDAT books. I
learned about the world outside the Soviet Union, my heritage, the history of my
people and many other subjects that were dangerous even to think about at that
time. He taught me to fight and not to give up under any circumstances. I was very
impressed by the story of Massada fortress, a source of inspiration and a symbol
to everyone, who fights for freedom.

When we came to Israel he could not speak neither English, nor Hebrew
and in a very short time with no formal training was fluent and lectured in both
languages.

35 years since we left Russia I still admire his courage and confidence, that
helped us overcome those difficult times and opened to me and my family new
unsurpassed opportunities.

I always looked up to you, you were my role model. Today, when my kids are
grown up, I still look up to you, ask for your good advice, for encouragement, you
always stands by us and support us in all our endeavors.

When I was little, I looked very much like my Dad. People who did not know
me, stopped me on the street and asked if I was Gohberg’s daughter. I hope that
now when I am all grown up I am at least a little bit like you, and not only look
like you.

Many good wishes we are sending your way,

Get younger and younger day after day,

May you live long and happy life

Always together with your wonderful wife
(Always share with us your good advice)

The troubles and misfortunes should pass you by
May your humor and jokes make everyone smile
May your laughter roam like a thunder
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And good friends be always around you

Have nakhes from children, grandchildren and family
Happiness and sunshine with Bella sharing

We wish you health — it is needed a lot

May luck always follow you and support

Keep dreaming big and may all your dreams come true
Travel, research, prove new theorems too

And on your 80th birthdays we say right from the start
Accept our best wishes from the bottom of the heart.

3.3. Dad’s 80th birthday
Yanina Israeli (Gohberg)

I have always admired my Dad’s outstanding personality. He is a man of many
talents and excels in everything he does or puts his mind to. There are many
contradictions in his character; I often think that these contradictions make him
the remarkable person he is.

Dad is an optimist and a believer in good outcomes, but he always plans and
prepares himself for the worst.

A person, who had overcome a lot of difficulties in his life, who knew loss and
sorrow, but nevertheless loves life and enjoys every minute of it.

He is a wonderful friend with a lot of friends all over the world but on the
other hand a very private person, who religiously guards his privacy.

A devoted and loving family man, who spent a lot of time travelling far away
from the family and dedicated his life to mathematics.

Humble and modest, does not need much for himself, but very giving and
generous to the people he loves.

Flexible, curious, progressive and open-minded, he can be very conservative
and stubborn at the same time.

A person who describes himself as not a sentimental one, he is very compas-
sionate and kind-hearted.

Demanding, critical and tough he expects everyone to excel, but at the same
time he is the most caring and supportive person, who stands by and encourages
in the difficult and most disappointing moments.

Dad has a rare sense of humor and roaming laughter and a joke for every
situation, but he knows how to be very serious and with one glance can make
serious everyone around him.

He can advise in the most difficult situations, but does not interfere and
volunteer his advice, unless he is asked for his opinion.

Although he has very logical and analytical mind and believes in thinking
things through, sometimes he tends to rely on his intuition.

He can spend hours concentrating on mathematical research, being discon-
nected from the world around him, but will drop everything in a second to help
his children or grandchildren with their homework.
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Can’t live without email, loves technology and internet communication, but
on the other hand loves nature, enjoys long walks, good swim and camping away
from the civilization.

These contradictions in his character make him the most interesting, surpris-
ing and creative person. We love you and hope to be together with you and Mom
for many years to come, may you be healthy and happy, tell jokes, make us laugh,
keep being unexpected and surprise us over and over again.

3.4. Family reminiscences
Bella Gohberg

In 1951 in Bishkek, Middle Asia there were 3 inseparable friends, Nora, Fani and
me. We were juniors in college, studying medicine. It was Nora’s birthday and we
were ready to party. For some reason Fani could not come and send a “delegate”,
her brother Israel, or Izia, as she called him. The delegate was tall good looking,
skinny guy with big green eyes, long eye lashes and full head of hair. He was smart
and funny, his laughter was loud and infectious. We liked each other and after the
party Israel walked me home, he talked about math with a lot of enthusiasm.

Math was not my strongest subject, I did not believe then that math can be
a source of inspiration and disappointment, that it was possible to dedicate one’s
life to this science. I have learned it much later. Israel was the first mathematician
I have ever met.

His vacation was over, he returned to complete his degree in mathematics
in Kishinev, my studies were just beginning. After that meeting, we have written
each other and met occasionally.

A few month in the beginning of 1954 Israel worked on his Ph.D. thesis in
Leningrad, where I was completing my medical studies. He invited me to attend
the defence of his Ph.D. thesis. I felt proud and honored, was very impressed how
freely, with ease he used mathematical formulas and how attentively everyone was
listening. As my husband likes to say: It was wonderful — but not clear at all.

This was my first introduction to Advanced Mathematics.

Later in winter of 1956 Israel came to Leningrad and asked me to become his
wife. He stayed for 6 days, everyone told us it was impossible to register in 6 days,
but against all odds on February 1, 1956 we have registered our civil marriage. We
could not even dream about a traditional Jewish wedding in those difficult times.
We have celebrated our Jewish wedding 50 years later in Raanana, Israel.

I joined my husband in the town of Beltsy, Moldova 6 months after our
marriage. I was already a licensed medical doctor. 3 months later on November 1,
1956 our first daughter was born. Our friends often joked that those were precise
mathematical calculations.

In 1960 we moved to Kishinev, where our younger daughter Yanina was born.
Israel’s Mother lived with us, she was part of our family and helped us a lot. All
five of us shared a 1 bedroom apartment with a tiny kitchen.
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After 10:00 pm when everyone was asleep the kitchen became my husband’s
study. On the kitchen table under the black reading spot lamp he wrote his Ha-
bilitation thesis and his books with M.G. Krein.

Every morning we found on the table many new handwritten pages and an
ash tray full of cigarette stubs.

Often Israel went to conferences and presented his results, his Mother was
impatiently waiting for him. When he returned she would ask: “How did it go? Did
people ask you questions?” the answer was “Yes”. “So, Did you know the answers
to those questions?” “Yes”. After the second answer she looked at him with a little
skepticism and surprise, but at the same time with great love and admiration. She
was very proud of him.

An important part of his life was collaboration with Mark Grigorievich Krein.
Israel used every opportunity to work with M.G. and traveled to Odessa, often on
the weekends. Trips to Odessa and work with M.G. has inspired Israel and charged
him with energy. Even during our vacations on the Black Sea he managed to carve
some time for the work with M.G. Krein at his dacha. Professor Krein was very
demanding of himself, of his students and his coauthors. There were many revisions
of the books and many trips to Odessa.

Usually when he returned from the trips we wanted to know whether the book
was completed. Israel’s answer was: “Almost, some very little changes remained.
One more trip to Odessa”. There were anecdotes and legends among his friends
about this subject. Josef Semyonovich Iohvidov dedicated the following poem:

(From M.G. Krein’s dream, New Year’s Eve, 1963)

Around the festive table all our friends

Have come to mark our new book’s publication.
The fresh and shiny volume in their hands,
They offer Izia and me congratulations

The long awaited hour is here at last.

The sourest skeptic sees he was mistaken,

And smiling, comes to cheer us like the rest
And I am so delighted ... I awaken

(Translated from Russian by Chandler Davis)

I vividly remember an episode, when our daughter Vilia was 4 years old, we
moved to Kishinev. I was concerned, that I did not have a job and asked Israel
what are we going to do. Always an optimist my husband answered: “We will
fight!” Our little girl, heard his answer, understood it literally and said: “I don’t
want you two to fight”. It was very funny and we all laughed then, but on the
serious note the “fight” was an important part of Israel’s life. He had to fight for
his survival during the war. He had to fight for his education and career in a very
difficult situation during the time when his Father, was wrongly accused and died
in Gulag as a political prisoner.
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Israel not once fought diseases, he fought for his life when severely burned
from explosion of the gasoline vapors. The doctors considered his recovery a mir-
acle. Israel fought for the immigration to Israel. It was his dream and he initiated
this responsible event in our entire family. My husband have won many battles,
too many to name here.

His strong will, incredible optimism and intuition helped him in the “dead
ends” and most difficult situations. Israel’s life was not a rose garden. There were
plenty of thorns, that at times hurt leaving deep scars.

I am thankful to G-d for helping us overcome all the difficulties. I am very
fortunate and excited to celebrate your 80th birthday, surrounded with colleagues,
family and friends. Our life together was never boring, was always interesting and
filled with love and understanding. We are blessed with wonderful children and
grandchildren, who fortunately were born in the free world in Israel.

I am praying for many more years to be together.

3.5. Congratulations Izinka
Zvia Kavalsky

Good evening ladies and gentlemen. Dear mathematicians, family, friends, and
dear Professor Gohberg. My name is Zvia Kavalsky, and my mom Feya Gohberg
is Israel’s one and only sister and since I am her only daughter, I believe that I
just proved to everyone that I am Israel’s one and only niece.

I never called you uncle. For me you are Izinka, it’s a lovely name we call you
only at home and it is reserved only for a very close family.

Today we celebrate your 80th birthday, and I, your sister Feya, and my
daughter Liat, travelled from overseas to be able to participate and celebrate this
wonderful event. So, Israel, Izinka thank you so much for inviting us and making
it possible to share this special moment for our family here together with you.

Ever since I was a little girl, I remember you in my life. Every summer
vacation I would go to Kishinev, to my uncle’s house and have fun with my cousins.
I did it for more than 10 years. More than anything else I love to remember the
times that we spent together, the weekends, a lot of good jokes, good food, good
laughter and good energy around. It is in your house I was taught to believe that
there is a lot of goodness in the world, that one has to work hard to earn wealth
and respect, that we should be always honest, very thoughtful and extremely
rational, you shared with us your life experience, you taught us to take knowledge
and education seriously and your advice through all of my life was always useful,
sincere and worthwhile. You and your wife Bella (for me Belluchka), always treated
me as your daughter, you both always made me feel welcome and very comfortable,
you never made any difference between me and your daughters. Therefore, I will
prove now that 2 is equal to 3: what I mean is that everybody knows that you
have 2 daughters but really you do have 3, Tzvia, Yanina and me. And if anybody
can present a counterexample — I have many other proofs to present.

I would like to conclude with a quotation of a famous scientist, Louis Pasteur,
who said: “I am convinced that science will triumph over ignorance, that nations
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will eventually unite, not to destroy, but to create, and that the future will belong
to those who have done the most for the sake of humanity.”

I am very proud tonight while I stand here belonging to the family side of
this splendid event, I believe that you always managed to gather together a lot of
talented scientists that the future belongs to you and to them.

3.6. My grandfather
Jonathan Faro

I am lucky enough to have inherited a lot of traits from Israel Gohberg, my grand-
father, my mother’s Father. We all grandchildren call him Pappi. I'll start with
the most obvious one:

The Bald Gene: As a kid I remember hearing: “Hair is inherited from your
mother’s father”. I knew very early on that the odds were against me having a full
head of hair.

An appreciation of sports: I remember as a young boy, Pappi taught me how
to play soccer. And, although looking at him you may not be able to tell, he has
some serious moves!

A love of nature: Ever since I was a little kid, I remember taking nature walks
with Pappi. We’d pass by chicken coops, picked oranges from a grove and threw
things at the pecan trees so that we could collect pecans (half for eating and half
for my grandmother to bake with). These trips however, were a source of great
nervousness for me. As a boy I learned 3 rules of thumb to follow while in nature:

(1) Stay in groups
(2) Avoid dangerous wildlife
(3) Don’t eat wild berries

But on these walks Pappi would pick and eat wild berries wherever we went.
If he saw me being nervous he would say “Don’t worry these are good”, he would
then point to another bush with IDENTICAL looking berries and say “But don’t
eat these, they are VERY POISONOUS”. To this day I still enjoy our nature
walks, But I still don’t eat the wild berries.

A Thirst for Knowledge: One of the greatest gifts I got from Pappi was the
need to learn and understand things. As a boy, I remember Pappi asking me riddles
and giving me challenges. Sometimes I would solve them and sometimes I would
not. When I'd ask Pappi for the answer he’d respond “That’s not important, It’s
the road to discovering it that really matters”. Ever since, I've looked at problems
in a whole new light; I see them as opportunities to think outside the box and learn
something new. It is this quality that he instilled in me that has encouraged me to
continue my studies after attaining my degree and it motivates me to constantly
challenge myself and to learn more.

Pappi, you've always been a role model for me. Every quality I've inherited
from you makes me a better person. I hope as I grow older I become even more
like you.

I love you and Happy 80th Birthday!
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4. To Izia Gohberg on his 80th birthday

Dan Amir

I do not intend to praise Israel Gohberg the mathematician. His mathematical
merits, achievements and honors are well known, and other speakers are better
qualified to talk about them. Neither am I going to talk about Gohberg the great
teacher, I am not one of his lucky students. But I do have my own special point
of view on Izia.

It is told in the Mishna that Rabbi Yohanan Ben Zakai, the famous Rabbi
who managed to secure the continuation of Judaism after the fall of Jerusalem,
asked five of his famous pupils what do they consider as a good course for a man
to follow?

Rabbi Eliezer said: a benevolent eye. Rabbi Yehoshu’a said: a good friend.
Rabbi Yossi said: a good meighbor. Rabbi Shime’on said: seeing the forthcoming.
Rabbi El’azar said: a good heart. Rabbi Yohanan said he prefers this last answer,
because it implies all the others.

One can argue about the logic behind Rabbi Yohanan’s statement, and I will
not boast about choosing always the best way. Anyhow, I can compliment myself
upon following at least three of the advices given by his students:

When I retired and had to give away my single room and share an office with
another retired colleague, I had the foresight to choose Israel Gohberg to be my
roommate. Thus I gained not only a good neighbor, but also a good friend. As for
the other two advices, I got them too, though indirectly: Both the benevolent eye
and the good heart, I found them in my roommate Izia.

That decision was not as trivial as it might seem to be. Israel is a very diligent
retired mathematician. In fact, besides stopping lecturing, he continued, and he
still continues to this day, to work and do mathematics just as he used to do before
retirement. It was quite tempting to share office with some other retired fellow who
is much less active than Izia, who comes to the office only once a week, and not
daily as Izia does, and who has no pupils or collaborators from all over the world
who come so often to visit him in the common office, and most important: who
does not need so much shelfspace as Izia does: only the so many books he has
published, not to mention the huge book series he has edited, fills easily half a
room and more.

Yet, T was lucky to overcome all these temptations and even luckier, since
Izia was willing to become my roommate. This critical decision cost me at least
half of my mathematical books and reprints, but was one of the best decisions I
have ever made.

I am afraid Izia had to do the same and reduce his library too, but we manage
together beautifully. If you wonder how do we manage, I'll tell you another Jewish
story, from the Talmud, about two big rabbis, Rabbi Yishma’el and Rabbi Yossi.
“Big” here means literally big — it is told that when they stood together belly to
belly, a bull could pass underneath their bellies without touching them. A foreign
lady tried to tease them and said: “Your children are not yours” (because of their
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huge bellies). They answered: “Love squeezes the flesh”, i.e., with good will you
can manage even when very cramped. (By the way, there is a also a much nastier
answer attributed to them, an answer which lead the same Rabbi Yohanan to wild
speculations about the size of Rabbi Yishma’el’s organ).

Anyhow, Izia has proved himself during the years we share office to be a
wonderful roommate. He is always patient and good-spirited. He has a great sense
of humor and shares with me interesting stories and jokes. We help each other in
translation from Hebrew to English and from Russian to Hebrew. He even shares
with me the tasty sandwiches, vegetables and fruit that his wonderful loving wife
Bella sends with him daily. I don’t believe there is another roommate like him in
the all world! I hope we’ll continue to share office for many years to come!

5. Reminiscences of meetings with Israel Cudicovic Gohberg

Hellmut Baumgértel

The beginning of my meeting and subsequent friendship with Israel Cudicovic
Gohberg is a concatenation of several independent events. In 1964 I published a
little paper entitled “Zur Storungstheorie beschrankter linearer Operatoren eines
Banachschen Raumes” in the Mathematische Nachrichten (MN). After that the
Editor of the MN invited me to be a referee for this journal. In 1965 I refereed
for MN a paper of S.K. Berberian on a theorem of J.v. Neumann with the com-
ment “the proof is too complicated”. After some letter exchange with Berberian
he invited me to write a modified paper together with him to publish it in MN.
A few months later he became Editor-in-chief of the Mathematical Reviews (MR)
and he invited me to be a referee of MR. 1967 I received from MR the monograph
“Perturbation Theory for Linear Operators” of Tosio Kato. When I overviewed it 1
was pleased at the positive mention of my paper from MN in this book. It encour-
aged me to announce this topic under the title “Analytische Storungen isolierter
Eigenwerte endlicher algebraischer Vielfachheit” for a talk at the Second Congress
of the Bulgarian Mathematicians on September 1967 in Varna/Druzba. (My main
interest in that time was directed to the operator theory of wave operators in
quantum mechanics.) Professor Gohberg was a participant of this congress and he
was even chairing the session with my talk. As Professor Gohberg told me later,
at the beginning he was a little bit skeptical and he did not believe that anybody
would know more than him about the topic of my talk. As he remembers at the
end of the talk he completely changed his opinion. After the talk we have had an
exciting discussion on the matter (he spoke Russian, I spoke German but there
was a tranlator) with the result that his inquiries could be answered and he invited
me for a visit at the Institute of Mathematics of the Academy of Sciences of the
MSSR in Kishinev.

The discussion was continued during a visit of Prof. Gohberg at the Institute
of Mathematics of the Academy of Sciences of the DDR in Berlin in December
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1967. My visit in Kishinev was fixed for 1968 and the encouragement of Prof. Go-
hberg (“these are good results”) was stimulating for the idea to close completely
the already detected gap in the analytic perturbation theory. Fortunately there
was success in this project and so in June 1968 I could present the final result
in two talks entitled “Analytische Storung diskreter Spektren” at Professor Go-
hberg’s Functionalanalytic Seminar of the Institute of Mathematics in Kishinev,
i.e., the complete characterization of the behaviour of the Jordan structure for an-
alytic perturbation of an eigenvalue of finite algebraic multiplicity using the theory
of vector spaces over suitable function fields. The friendly and helpful atmosphere
in this group, into which I was naturally incorporated, did good and it is unforget-
table. Moreover, I had the occasion to visit Professor Krein in Odessa, where I got
exciting remarks on the structure theory of wave operators which were useful for
me later. Finally Prof. Gohberg recommended me to present the now completed
theory as a whole in a monograph.

In October 1968 I obtained the qualification “Habilitation” at the Humboldt-
University (HU) Berlin with these results together with structural results in scat-
tering theory. (A professorship for Analysis at the HU, supported by Professor
Schréder, was not achieved. Probably my activities in the protestant church played
arole that I could not get the position. Since the times I was at the university I have
been a “black sheep”, especially because of June 1953 where I escaped expulsion
from the HU only by the invention of the so-called “Neuer Kurs” (New Direction)
which turned into the old one soon. The ruling (communist) party forgot nothing.)

In the following time Prof. Gohberg attended the progress of the book by
valuable hints and critical remarks (he had much experience how to write Math-
ematics), for example on the occasion of my second visit in Kishinev in January
1970. We understood then that we may relay one on the other and our discussions
touched a much wider list of topics including politics also. Our meeting culminated
in the visit of Prof. Gohberg at our Institute of Mathematics in November 1970.
At that time the manuscript was finished and found Prof. Gohberg’s agreement.
It was a great event for our Institute, for example because it was the first visit
of a famous mathematician from the SU. It was highly appreciated, especially by
the chief of the institute, Prof. Schroder. My last visit in Kishinev took place in
October 1971. At that time we discussed already new topics, for example spectral
concentration coupled with factorization.

The book appeared in 1972 at the Akademie-Verlag Berlin under the title
“Endlichdimensionale analytische Storungstheorie”. It is dedicated to Israel Cu-
dicovic Gohberg. In February 1974 I was told that Prof. Gohberg left the SU to
emigrate to Israel. Since that time he was “persona non grata” also in the DDR
and I have had no further contact with him.

In 1982 I was informed by the Akademie-Verlag that Birkhduser were inter-
ested to publish an English version of the book, i.e., they planned a joint edition
with that publisher. The Akademie-Verlag let me know that they would like to
have my agreement to omit the dedication but I rejected, and the English ver-
sion appeared under the title “Perturbation Theory for Matrices and Operators”
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with the original dedication. In April 1983 Professors Gromov and Lomov from
Moscow visited me in our home and told me that they were translating the book
to Russian. However a publisher was not yet found. There was a difficulty, the
page of dedication. They did many efforts to convince me to agree with omitting
this page. They did not succeed and the book did not appear in Russian.

In 1987 I was invited to the conference to be held in 1988 in Calgary on
the occasion of the 60th birthday of Prof. Gohberg. In the following months a
tug-of-war was developed for preventing this visit: funding problems, limiting of
the number of participants from the DDR, missing signatures and wrong dates on
visa, to and from between Warsaw and Berlin. Finally, success for me came by
mediation of a colleague from the higher staff of the academy, the late Professor
Budach. (These discriminations in the eighties were typical for me, in the seventies
the situation was better because in that time I was a “single parent with two
children” and the children served as hostages for the state, they knew that I would
come back anyway. In 1982 I married again.) It was a touching event to meet again
after 17 years.

Last but not least I mention with pleasure my private visit in 1992 in Tel
Aviv to Israel and his family and the visit of him in December 1993 after his talk
at the TU Berlin in our home.

The best way to cement friendship at the occasion of the 80th birthday of
the friend seems to be for me to tie together the beginning and the present time
by a paper dedicated to the friend. This is the paper [1].

[1] Baumgartel, Hellmut: “Spectral and Scattering Theory of Friedrichs Models
on the positive Half Line with Hilbert-Schmidt Perturbations”, Annales Henri
Poincaré, 10 (2009), pp. 123-143.






Operator Theory:
Advances and Applications, Vol. 202, 1-10
(© 2010 Birkh&user Verlag Basel /Switzerland

A Quantitative Estimate for Bounded
Point Evaluations in P(u)-spaces

Alexandru Aleman, Stefan Richter and Carl Sundberg

Abstract. In this note we explain how X. Tolsa’s work on analytic capacity
and an adaptation of Thomson’s coloring scheme can be used to obtain a
quantitative version of J. Thomson’s theorem on bounded point evaluations
for P*(u)-spaces.

Mathematics Subject Classification (2000). Primary 46E15; Secondary 47B20.

Keywords. Bounded point evaluation, Cauchy transform.

1. Introduction

For A\e Candr > 0let B(A\,7) ={z€ C:|z— ) <r}, and let M (C) denote the
set of all compactly supported complex Borel measures in C. Then for v € M. (C),
r >0, and A\ € C we write

Up (A /| d| (=)

1
U\, 7 :/ dlv
= [ )

We will refer to Uj,| as the potential of v. It is well known that U}, (\) < oo for
[Area] a.e. A € C. At every such A € C the Cauchy transform

1
Cv(\) = / = )\dz/(z)

exists and U},|(A,7) — 0 as r — 0. The purpose of this paper is to prove the
following theorem.

and
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Theorem 1.1. There exists an absolute constant C > 0 such that for every v €
M (C) and for every X € C with U},|(A) = [ rl/\ldM(z) < 0o there exists rg > 0
such that for all polynomials p and for oll 0 < r < 19 we have

POCI < 1 [ pEICu)AG).

Here g depends only on |Cv(A)|, Uj,|(A) and U), (A7) as r — 0.

The theorem is nontrivial only at points when Cv(\) # 0 and we will see
that there is an absolute constant Ky > 0 such that for all such points any r
satisfying

UM()\, ro + \/%) + \/%UM(/\) < KO |OV()\)‘
will work.

The insight that such a theorem can be used to establish bounded point
evaluations for P!(u)-spaces that are proper subspaces of L!(u) is a part of what
J. Thomson calls “Brennan’s trick”, see Theorem 1.1 of [8] and also see Section 2
below. Although as far as we know Theorem 1.1 has never been stated before in
full generality, versions of it have been implicitly derived for annihilating measures
in [1] and [2]. In fact, we shall see that it follows fairly easily from our paper
[1], and it can also be deduced from Brennan’s paper [2]. Thus we think of the
current paper mostly as an expository note, and we plan to take this opportunity
to once more carefully explain how X. Tolsa’s theorem on analytic capacity, [9]
and an adaptation of Thomson’s coloring scheme, [8] come together to prove the
current result. In Section 5 we explain how the current approach can also be used
to establish that every bounded point evaluation must either arise because of an
atom of y or it must be an analytic bounded point evaluation.

2. Thomson’s theorem

Let v be a positive finite compactly supported measure in the complex plane C,
let 1 <t < oo and let P!(u) denote the closure of the polynomials in Lf(x). In
1991 James Thomson proved the following theorem, [8].

Theorem 2.1 (J. Thomson). If P'(u) # Lt(u), then there are a Ao € C and a

constant ¢ > 0 such that
1/t
pol < ( [ otan)

The point ) is called a bounded point evaluation for P*(u). In fact, Thomson
proved that every bounded point evaluation for P*(u) is either a point mass for p
or it is an analytic bounded point evaluation, i.e., the constant ¢ can be chosen so

for every polynomial p.

that there is g9 > 0 such that [p(\)] < ¢ ([ |p|td;L)1/15 for every polynomial p and
every A € C with [A — X\g| < €.
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Thomson’s proof contains a basic construction, but at its core it is a proof by
contradiction and it originally was not clear which points Ag occur and how the c
depends on p and Ag. After the papers [2] and [1] were written we received a note
from J. Thomson which showed that a careful analysis of his original proof does
show that point evaluations occur at every point where some annihilating measure
has finite potential and nonzero Cauchy transform.

The following observation and the realization of its usefulness goes back to
Brennan, [4, 2, 5]. It shows that Theorem 1.1 gives some information on how
certain changes of the measure would affect the ¢ and c.

Lemma 2.2 (J. Brennan). Let u be a compactly supported positive measure, let
1<t <00, and let 1 < t' < oo satisfy 1/t+1/t' = 1. If G € L' () such that with
dv = Gdp we have [ pdv =0 for all polynomials p, and if r,Cy > 0 such that

Co
P57 [ pOHEAG)

then orC
mCo
Ip(N)] < Glle Il
Proof. In this paper we shall repeatedly use the inequality
1 dA A(A
sen lw—2z2| w T

for w € C, A C C (see [7, pages 2-3]). Thus in particular,

/ #dA(z) < 27,
B(A,r) lw — 2|

for all \,w € C. If [ pdv = 0 for every polynomial p, then [ %dy(w) =0
for all z € C and hence p(z)Cv(z) = C(pv)(z) for a.e. z € C. Thus,

P <L [ pe)oue)ldA)
T JB(\r)

=S [ owelaA)

B(\,r)

STAVE-

= — 7dAz w)G(w)|dp(w
# ] A
27 C 27 C
= [ 106l < 2 Gl ol 0

Note that in the above setting the largest choice of  as given by Theorem 1.1
will give the best bound for the point evaluation. If one is interested in rational
approximation, then there may be an advantage to applying the theorem with

N
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smaller values of r. Let R'(u) denote the closure in L'() of the rational functions
with no poles in the support of p. It is well known that for 1 < ¢ < 2 there are
measures p such that R'(u) # L'(u), but R'(u) does not have any bounded point
evaluations, see [3, 6]. Nevertheless the above setup can be used to obtain bounded
point evaluations for Rf(u) in case the support of u satisfies an extra condition.

Suppose that R'(u) # L'(x) and let G € L¥ (1) be such that dv = Gdu
annihilates the rational functions with poles outside the support of u. Let A, 7o > 0
be as in Theorem 1.1, let 0 < r < rg and let ¢ be a rational function with no poles in
B(\,r) ={z:]z— A < r}. By Runge’s theorem ¢ can be uniformly approximated
on B(\,r) by polynomials, hence the conclusion of Theorem 1.1 remains valid with
q in place of p. If ¢ also has no poles in the support of u, then the proof of Lemma
2.2 shows that

2nC 1
lg(AN)] < TWHGHVHQHt

Another application of Runge’s Theorem now implies that this last inequality
remains valid for each rational function ¢ which has no poles in the support of p, if
each component of the complement of the support of p has a point in C\ B(A, 7).
This implies that if R*(u) # L(p1) and if there is € > 0 such that all components
of the complement of the support of y have diameter > ¢, then R!(x) has bounded
point evaluations. This result is due to Brennan, see Theorem 1 of [5].

3. Some auxiliary lemmas

Our argument will make essential use of Xavier Tolsa’s work on analytic capacity.
For a compact K C C we define the analytic capacity of K by

V(K) =sup{|f'(00)| : f € H*(Cx \ K), | f(2)| < 1 V2 € C*\ K}
where
£/(00) = Jim [ () - £(o0)].
A good source for basic information about analytic capacity is [7].
A related capacity, vy, is defined by

Y+ (K)=sup{o(K):0>0,spt c CK,CoeL>(C),|Co(z)|<1 for A-a.e. z€C}.

Here spt o denotes the support of the measure o. Since C'o is analytic in C, \ Spt p
and (Cu) (00) = —p(K) we have

74 (K) < A(K)
for all compact K C C. In 2001, Tolsa proved the astounding result that v, and
~ are actually equivalent [9]:

Theorem 3.1 (Tolsa). There is an absolute constant Ar such that

Y(K) < Arye(K)
for all compact sets K C C.
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Lemma 3.2. Suppose w is a compactly supported bounded function times area mea-
sure. We then have the following weak-type inequality for analytic capacity

Y([ReCw > a]) < ﬂ”w” for all a > 0,
a

where A7 is Tolsa’s constant.

For a general compactly supported measure w, Cw is only defined A-almost
everywhere, so 7([Re Cw > a]) might not even make sense. The restriction we have
put on w avoids this problem since it implies that Cw is continuous and the set
[Re Cw > a] is compact. A proof of this Lemma can be found in [1], but we note
that it is a standard argument that follows easily from the definitions that
satisfies the weak-type inequality

1
Y+ ([ReCw > a]) < a||w|| for all a > 0.

Thus Lemma 3.2 follows immediately from Tolsa’s Theorem.

Lemma 3.3. There are absolute constants e > 0 and Cy < oo with the following
property. Let E C closD be compact with v(E) < €1. Then

[p(0)] < C’l/ |p|% for all p € P.
(closD)\E ™
This is Lemma B of [1] and it is proved directly by an adaptation of Thom-
son’s coloring scheme. In fact, using Thomson’s terminology for sets E with suffi-
ciently small analytic capacity it turns out that the measure xp\ gdA gives rise to
a sequence of heavy barriers around 0.
One can use the previous two lemmas to prove the following fact:

Theorem 3.4. There are constants €9 > 0 and Cy < oo such that the following is
true. If v is a compactly supported measure in C, and v = vy + vy where vy and
vy are compactly supported measures in C with

ReCr; >1 a.e. [4] in closD
and
[[v2]| < €o,
then

pOI<Co [ IpwCrwdAw)  forallpe P,
lw|<1

Proof. Let v, 11, vy satisfy the hypotheses of Theorem 3.4 with ¢y = ¢1/2A7. By

convolving with %2XB(0,1—1L) and taking limits as n — oo, we see that we may assume

that the measures v, vy, vy are all compactly supported bounded functions times

area measures, so that Cv, Cvy, Cvy are continuous, and the set E = [~ ReCrs >

l] is compact. We apply Lemma 3.2 with a = % to —vy to get

2
V(E) < 247w < e (3.1)
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For w € (closD) \ E we have
1 1
|Cv(w)] 2 ReCr(w) >1— 3=73 (3.2)
By (3.1) E satisfies the hypotheses of Lemma 3.3, hence for p € P we can apply

that lemma together with (3.2) to obtain
dA
pol<c [

(closD)\E ™

A
<o | Ip(w)Cor(w)| Z2).
we(closD)\E

This proves Theorem 3.4 with Cy = 2C. (]

4. The proof of Theorem 1.1
Lemma 4.1. Let v € M.(C) with U = f‘jl‘d|u|(z) < oo, and write U(r) =
Syl (2):
Then for any r > 0 we have
1
~Il(B(0,r)) <U(r)

and
1

7'('7"2 ‘

|Cv(w) — Cv(0)|dA(w) < 2U(r + 1) + %U.

w|<r

Proof. Let r > 0. The first inequality is trivial. We will establish the second one.
We have

rv\w) — 14 w |w| w i VilZ
[ 1ev) - cvoaw) < | </|w|<r el >> vl (2).

The estimate (2.1) implies that f‘ ﬂdA(w) < 27r? for all 2z € C. Thus

w|<r |lw—z]

/ / [ g a@) L apwi(z) < 20200 + V7).
2l <r i <

w — 2| |2

If |2| 2 r + /7, then we use

|w] / |w]
dA(w) < ———dA(w)
/|w|<r |U} - Z| |w|<r |Z| - |’U}|

1 2 5/2
< — lw]dA(w) = .
\/F Jw|<r 3

Hence

1 2 5/2
/ / Ay -Ldwiz) < T
|z|Zr+vr J|w|<r |w - Zl ‘Z‘ 3

The lemma follows. O
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Lemma 4.2. Let £9,Cy > 0 be as given by Theorem 3.4. Let v € M.(C) with
J Eﬂd|y|(z) < oo and Cv(0) # 0.
Suppose that r > 0 satisfies

/||< Cv(w) — v 2 o0, < 2ifovO)] (1)
and
1 1
LB, 7)) < ool Cv(0)] (12)
Then
pOCHO) <7 [ i) ovw)ldAw

for every polynomial p.

Lemma 4.1 implies that if the potential U),(0) is finite and if Cv(0) # 0,
then the hypothesis of this lemma is satisfied for all sufficiently small > 0. Thus
it is clear that Lemma 4.2 implies Theorem 1.1.

Proof. Set Cv(0) = a # 0. For r > 0 satisfying (4.1) and (4.2) set v, = v|C\
B(0,7), v = v|B(0,7). We have
/ dv(w)
Jw|<r W— 2

dA
2=
B(0,r) ™ |z|<r
d
/w|<r/<rﬂ—|w_zl | |( )

< 2rv|(B(0,7)),

where we have used (2.1). Hence by (4.1)

A dA A 9
/ Cvn — a2 < / Cv — a4 +/ 0| < D120 (03
B(0,r) T B(0,r) T B(0,r) T 32

The Bergman space estimate ([10])

1 dA
6 < i 17

valid for f analytic in D and z € D, rescales to
r? dA
Ol e [ I
(r2 =1[z)" JBon ~ T
for f analytic in B(0,r) and z € B(0,r). We apply this with f = Cv; — a to get

16 dA
|CV1(Z)—G| < W/ ICl/l—a,I—
B(0,r) ™
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for |z| < 27, and combining this with (4.3) we obtain that
1
|Cri(z) —al < 5lal (4.4)

uniformly in [z] < &7
We now define measures v, 01, 2 by the formulas

4 T
N _ 4 (TE
V<E) ary(2 )
R 4 T
Vl(E) = Jl/l (§E>
. 4 T
VQ(E) = Jl/g (§E> .
A calculation shows that
. 2 T
Cl/l(z) = ac’lll (5,2) .
From (4.2) and (4.4) we now see that
[72]] < €o (4.5)
and
|Cir(2) — 2| <1 for |z| < 1. (4.6)

Clearly o = {4 + 9. By (4.5) and (4.6) we thus see that 9, 0y, Do satisfy the
hypotheses of Theorem 3.4, so

uxm<Cb/“<lmuwcaw»wA@w

for every polynomial p. It follows that each polynomial p satisfies

PO < ors [ Ipw)Crw)ldA(w)

and the Lemma follows. O

5. Analytic bounded point evaluations

Thomson shows in [8] that all bounded point evaluations for P*(u) either come
from atoms of the measure p or they are analytic bounded point evaluations, i.e.,
if Ao is a bounded point evaluation for P*(u) and if u({\o}) = 0, then there are
C,e > 0 such that for all A € B(Ap, ) and for all polynomials p we have

@OWSC/WWM

This fact also follows from our approach.
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In fact, by a simple translation and rescaling argument Lemma 3.3 implies

Lemma 5.1. There are absolute constants ea > 0 and Cy < oo with the following
property. Let E C closD with v(E) < ea. Then

dA
p(\)] < Cs / |22
(closD)\E T

for allp € P and all |\ < 1/2.

It is clear that Lemma 5.1 implies that the constants of Theorem 3.4 can be
adjusted in such a way that the conclusion will be

[p(N)] < Co/ |p(w)Cv(w)|dA(w) for all p € P and all || < 1/2.

Jw|<1

Thus the proof of Lemma 4.2 implies

Theorem 5.2. There exists an absolute constant C' > 0 such that for every v €
M.(C) and for every Xo € C with U, (M) = fﬁdM(z) < oo there exist
ro > 0 such that for all polynomials p, for all 0 < r < ro, and all |A — | < 7/2
we have

C
PO < 5 [ pEICHEdAC)
= JB(Xo,r)
Here ro depends only on |Cv(Xo)|, Up|(Xo) and U, |(Xo,7) as T — 0.

Theorem 5.2 implies the statement made about analytic bounded point evalu-
ations for P?(u) made at the beginning of this section. In fact, if x4 is any compactly
supported measure in C, if 1 <t < 0o, and if A\g is a bounded point evaluations
for P*(u) with p({\o}) = 0, then there is h € L* (11) such that

p(Xo) = / phdp

for all polynomials p. It then follows that the measure dv(z) = (z — Ao)hdu(z)
satisfies the hypothesis of Theorem 5.2 and Cv(Ag) # 0. Thus Theorem 5.2 and
Lemma 2.2 prove the desired result. We note that this reasoning together with
the explanations near the end of Section 2 also shows that every bounded point
evaluation for R'(u) that lies in the interior of the support of © must either come
from an atom of u or be an analytic bounded point evaluation for R*(u).
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‘We also discuss the bounded and the compact weighted composition operators
from the Bloch space to the Hardy space H.
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1. Introduction

Let X be a Banach space of holomorphic functions on a domain 2 C C™. For ¢ a
holomorphic function on €2 and ¢ a holomorphic self-map of €2, the linear operator
defined by
Wyolf) =0(fop), [feX,

is called the weighted composition operator with symbols 1) and . Observe that
Wyo(f) = MyCyu(f) where My(f) = o f is the multiplication operator with
symbol ¢ and C,(f) = f o ¢ is the composition operator with symbol ¢. If 1 is
identically 1, then Wy, , = C,, and if ¢ is the identity, then Wy, , = M.

The study of weighted composition operators is fundamental in the study of
Banach and Hilbert spaces of holomorphic functions. The study of the geometry of
a space X is centered on the identification of the isometries on X. The connection
between weighted composition operators and isometries can be traced back to
Banach himself. In [5], Banach proved that the surjective isometries on C(Q), the

Communicated by V. Bolotnikov.
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space of continuous real-valued functions on a compact metric space @), are of the
form T'f = ¢(f o ¢), where |¢)| =1 and ¢ is a homeomorphism of @ onto itself.

Although the characterization of isometries is an open problem for most
Banach spaces of holomorphic functions, there are many spaces for which the
isometries are known. In [13], Forelli proved that the isometries on the Hardy
space HP of the open unit disk D (for p # 2) are certain weighted composition
operators. On the Bergman space AP of D, Kolaski showed that the surjective
isometries are weighted composition operators [17]. El-Gebeily and Wolfe showed
that the isometries on the disk algebra are also weighted composition operators
[12]. Thus the weighted composition operator plays a central role in the study of
the isometries on several spaces of holomorphic functions.

The first study of the isometries on the Bloch space was made by Cima and
Wogen in [8]. They analyzed the isometries on the subspace of the Bloch space
of the open unit disk whose elements fix the origin. On this space, they showed
that the surjective isometries are normalized compressions of weighted composition
operators induced by disk automorphisms. In [18], Krantz and Ma extended their
results to the Bloch space of the unit ball in C". However, in any dimension, a
description of all isometries on the entire set of Bloch functions is still unknown.

The study of weighted composition operators is not limited to the study of
isometries. The properties of the weighted composition operators are not solely de-
termined by the component operators, namely multiplication and composition op-
erators. Indeed, there exist bounded weighted composition operators on the Bloch
space for which the associated multiplication operator is not bounded. Likewise,
there are compact weighted composition operators for which neither component
operator is compact. Examples of such operators were provided by Ohno and Zhao
in [23] in the one-dimensional case. In Sections 5 and 6, we give analogous exam-
ples for the unit ball and the unit polydisk in C™. Thus, the study of weighted
composition operators is truly an evolutionary step in the field of composition
operators.

1.1. Purpose of the paper

From the previous discussion, it is clear that the study of weighted composition
operators is a worthwhile endeavor. A primary purpose of this paper is to bring the
current results on the weighted composition operators on the Bloch space to one
location. There are still many open questions, and thus opportunities for active
research. Thus, our hope is that this exposition will inspire more work in this
area. To this end, we add to this paper some new results, accompanied by some
conjectures and areas for future research.

1.2. Organization of the paper

In Section 2, we review the notion of the Bloch space on the unit disk D and
on bounded homogeneous domains. In Section 3, we outline the results known on
weighted composition operators on the Bloch space and little Bloch space of D.
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These include the characterization of the bounded and the compact operators due
to Ohno and Zhao and operator norm estimates.

In Section 4, we present the known results on the weighted composition op-
erators on the Bloch space in higher dimensions. For a bounded homogeneous
domain D we define quantities which we believe are proper candidates to charac-
terize the bounded and the compact weighted composition operators on the Bloch
space of D and on a subspace we refer to as the x-little Bloch space, which is a
higher-dimensional analogue of the little Bloch space. We give sufficient conditions
for boundedness and compactness and give operator norm estimates.

In Sections 5 and 6, we prove the conjectures presented in Sections 4 and 5 for
the Bloch space on the unit ball and unit polydisk which yield results equivalent
to Corollaries 1.4 and 1.6 of [31] and Theorems 1 and 2 of [32].

In Section 7, we characterize the bounded weighted composition operators
from the Bloch space and the x-little Bloch space into the space of bounded holo-
morphic functions on a bounded homogeneous domain and determine the norm of
such operators. As a special case, we obtain Theorem 1 of [20]. We also prove an
extension of Theorem 6.1 of [16] to the unit polydisk.

Finally, in Section 8 we discuss further developments and open problems for
the weighted composition operators on the Bloch space of a bounded homogeneous
domain.

2. The Bloch space

The Bloch space has been defined on many types of domains in C™. The first such
domain we will consider is the open unit disk . A complex-valued function f
analytic on D is said to be Bloch if

Br =sup (1= [z[*) |f'(2)] < oc.
zeD

The mapping f +— [y is a semi-norm on the space B(D) of Bloch functions on D
and B(D) is a Banach space under the Bloch norm

s = [£O)] + By-

By the Schwarz-Pick lemma, the space H>° (D) of bounded analytic functions
on D is a subset of B(D) and the containment is proper, since z — Log(1l — z) is
a Bloch function, where Log denotes the principal branch of the logarithm. The
little Bloch space Bo(D) on D is defined as the set of Bloch functions f such that

i (1= [2P) [£(2)] = 0.
The little Bloch space is a separable subspace of B(D) since the polynomials form
a dense subset. Useful references on Bloch functions and the Bloch space on D
include [24], [4] and [7].

As an immediate consequence of the Schwarz-Pick lemma, if f € B(D) and
¢ is an analytic self-map of D, then fo¢ € B(D). Furthermore, 8¢ = (o, for any
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conformal automorphism ¢ of D, that is, the Bloch space is Mdbius invariant. In
fact, it is the largest Mobius invariant Banach space [28].

The notion of Bloch function in higher dimensions was introduced by Hahn
n [14]. In [26] and [27] Timoney studied extensively the space of Bloch functions
on a bounded homogeneous domain and its subspace known as the little Bloch
space on a bounded symmetric domain.

Every bounded domain D C C" is endowed with a canonical metric called the
Bergman metric, which is invariant under the action of the group of biholomorphic
transformations, which we call automorphisms and denote by Aut(D) [15]. We will
focus on a particular class of domains in C™, the homogeneous domains. A domain
D in C" is called homogeneous if Aut(D) acts transitively on D, that is, for all
21, 22 € D, there exists ¢ € Aut(D) such that ¢(z1) = 22.

A domain D C C" is symmetric at a point zy € D if there exists ¢ €
Aut(D) such that ¢ o ¢ is the identity and zy is an isolated fixed point of ¢. A
domain is symmetric if it is symmetric at each of its points. A symmetric domain
is homogeneous and a homogeneous domain that is symmetric at a single point is
symmetric. Therefore the unit ball B,, and the unit polydisk D™ are symmetric,
since they are homogeneous and symmetric at the origin via z — —z.

Let D be a bounded homogeneous domain in C™. A holomorphic function
f:D — Cis said to be a Bloch function if 3y = sup @Qf(z) is finite, where

zeD

L5 6511
QU= B, Hlum

(VH)(z)u = (Vf(z Z Dor z)ug, and H, is the Bergman metric on D at

z. By fixing a base point 2:0 e D, the Bloch space B(D) is a Banach space under
the norm || f||z = | f(20)| + Bf [26]. For convenience, we assume the domain D to
contain the origin and take zy = 0.

In [26], Timoney proved that the space H°°(D) of bounded holomorphic
functions on a bounded homogeneous domain D is a subspace of B(D) and for
each f € H>*(D), ||f|lz < cp || fl| Where cp is a constant depending only on the
domain D. The precise value of the best bound c¢p has been calculated in [9] and
[30] when D is a bounded symmetric domain.

In Theorem 3.1 of [2], we showed that the Bloch functions on D are precisely
the Lipschitz maps between the metric spaces D and C under the Bergman metric
and Euclidean metric, respectively. Furthermore

i

By = sup
! zF#w P(Za w)

where p is the Bergman distance. In particular, for all z,w € D,

1f(z) = fw)| < I fllg p(z, w). (2.2)
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In [27] the little Bloch space on the unit ball was defined as
Bo(B,,) = {f € B(B,) : thlef(z) = 0} ,

which is precisely the closure of the polynomials in B(B,). If D is a bounded
symmetric domain in C" other than B,,, the set of functions f for which Q(z) — 0
as z approaches the boundary 0D of D consists only of the constant functions,
so By(D) is defined as the closure of the polynomials in B(D). The x-little Bloch
space is defined as

Bur(D) = {1 € BD): tim, Qs2) =0},

where 9*D denotes the distinguished boundary of D. The unit ball is the only
bounded symmetric domain D for which 0D = 9*D, so that By(B,) = Bo«(By,).
If D # B, By(D) is a proper subspace of By« (D) and By« (D) is a non-separable
subspace of B(D).

3. Weighted composition operators on the Bloch space of D

The first results on weighted composition operators on the Bloch space of the unit

disk were obtained by Ohno and Zhao in 2001 [23]. For 1 an analytic function

on I, ¢ an analytic self-map of I, and z € D, define s,,, = sup sy,,(2) and
z€D

Ty = SUP Ty, ,(2) where
z€D
2 ! 2
spp(2) = (1= |2[7) [¢¥'(2)|log ———,
1 —ep(2)]

LB )
e '

Theorem 3.1. Let ¢ be an analytic function on D and ¢ an analytic self-map of

D. Then

(a) ([23], Theorems 1 and 2). Wy, is bounded on B(D) if and only if sy , and
Ty, are finite. Furthermore, the bounded operator Wy, o, is compact on B(D)
if and only if

Typ(2) =

lim s z)= lim T z)=0.
ol vp(2) ol e (2)

(b) ([23], Theorems 3 and 4). Wy, ., is bounded on the little Bloch space By (D) if
and only if ¥ € Byo(D), sy, and Ty, are finite, and

lim - [9(2)] | ()] (1~ =) = 0.

|z|—
Furthermore, the bounded operator Wy, , is compact on By(D) if and only if

lim sy ,(2) = lim 7y ,(2) =0.

|z|—=1 |z|—=1
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In [1], we established estimates on the norm of the weighted composition
operator Wy, ,, on B(D) in terms of 7, , and the quantity

1 2 / 1+|‘P(Z)|
oy, =sup =(1—1z")|¥'(2)|log ————,
Ve b p 1~ I ) 1—o(2)|

which is closely related to sy, but is more amenable to a higher-dimensional inter-

pretation since the factor % log i‘lig‘l is precisely the Bergman distance between
0 and ¢(z).
Theorem 3.2. Let 1) be analytic on D and ¢ an analytic self-map of D. Then

(a) Wy, is bounded on B(D) if and only if ¥ € B(D), and oy, and 1y, are
finite. Furthermore,

1 1+ |o(0)]
Wy, > max< ||[¢Y]lz, = [¢(0)]log ——== 3.1
Wyl {iwlls. 3 wOI10s 24 (3.)
1 1+ |o(0)]
Wy el < maX{||¢||Ba§ |¢(0)|logm + T topep. (32)
Furthermore, Wy, ,, is compact if and only if
lim oye(z)= lim 7y ,(2)=0.

le(z)|—=1 lp(z)|—1

(b) Wy, is bounded on By(D) if and only if ¢ € Bo(D), 0y,, and 1y, are finite,
and
lim (1 —|2]) [¢(2)] | (2)] = 0.

|z|—=1

Inequalities (3.1) and (3.2) hold. Furthermore, Wy, ,, is compact if and only
if
lim oy.,(2) = lim 7y ,(2) = 0.
|z|—1 |z|—1
Proof. Assume Wy, is bounded. Using as a test function the constant 1, we
obtain ¢ € B(D). Since oy, < Sy, by Theorem 3.1, it follows that oy, and
Ty, are finite. The estimates (3.1) and (3.2) follow from Theorems 2.1 and 2.2 of
[1]. Conversely, assume ¢ € B(D), and oy, and 7y ., are finite. By the calculation
carried out in [1], Wy, , maps B(D) into itself and estimates (3.1) and (3.2) hold.
Thus Wy, is bounded. Observing that for each z € D, 0y (2 < 8y,,(2) and for
[p(2)| = 3, sp,p(2) < 204, (2), the characterization of the compactness follows at
once from Theorem 3.1. The proof of part (b) is analogous. O

The above estimates agree with the norm estimates for the composition operators
on B(D) in [29] when 1 is taken to be the constant function 1.
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4. Weighted composition operators on the Bloch space of a
bounded homogeneous domain

Let D be a bounded homogeneous domain in C". For z € D, define
w(z) =sup{|f(z)| : f € B(D), f(0) = 0 and ||f|[5 <1},
wo(z) = sup{[f(2)| : f € Bo-(D), f(0) =0, and |[[f[|z <1}.

Lemma 4.1. Let D be a bounded homogeneous domain in C". For each z € D,
w(2) and wo(z) are finite. In fact, wo(z) < w(z) < p(z,0).

Proof. Let z € D. The inequality wo(z) < w(z) is obvious. For f € B(D), by (2.1),
|f(2) — f(0)] < p(z,0)8;. By taking the supremum over all f € B(D) such that
f(0) =0 and ||f||z < 1, we have w(z) < p(z,0). O

Remark 1. By Theorems 3.9 and 3.14 in [33], it follows immediately that for all
z € B, wo(z) = w(z) = p(z,0) where

1
p(z,0) = 5 log —

It is unknown whether there are other domains for which either equality holds.
The following lemma shows the relationship between point evaluation of Bloch
functions (respectively, little Bloch functions) and w (respectively, wy).

Lemma 4.2. Let D be a bounded homogeneous domain in C"™ and let f € B(D)
(respectively, f € By« (D)). Then for all z € D, we have
|f (=) < [£(0)] + w(2)Bf,
(respectively, | f(2)] < [f(0)] + wo(2)By)-
Proof. Let f € B(D). The result is immediate if f is constant. For f non-constant
and z € D, the function defined by
1
9(z) = B_(f(z) - f(0))
f

is Bloch and satisfies the conditions g(0) = 0 and Q4(z) = ﬂifo(z) for all z € D.
Thus, ||g]|5 = 1, so |g(2)| < w(2) for all z € D. Consequently,

IF @< 1FO)+1f(z) = FO)l = [F0)] + 9(2)| B < [£(0)| + w(2)B;-
The proof for the case f € Bo-(D) is analogous. O
For z € D, denote by Jy(z) the Jacobian matrix of ¢ at z (i.e., the ma-
trix whose (j, k)-entry is gf; (2)). Define the Bergman constant of ¢ by B, =
sup,cp By(z), where for z € D

Bo(z)= sup Ho) (Jp(2)u, Jo(2)u)'/?
: ueC™\{0} H.(u,u)/2
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In [2], the Bergman constant was used for the study of composition operators on
the Bloch space. Specifically, for f € B(D),

Qrop(2) < By(2)Qs(9(2)) (4.1)
for all z € D. Letting
To,(2) = sup{@rop(2) : [ € Bo+(D), By <1},
Typ(z) = sup{Qyop(2) : f € B(D), By <1},
from (4.1), it follows that

To.o(2) < To(2) < By(2) (42)
for each z € D. Moreover, for each f € B(D) (respectively, Bo«(D)) and z € D,
Qrop(z) < Typ(2)Bs (4.3)
(respectively, Qfop(2) < To,(2)Bf)-
For z € D, by Remark 1, we have
L I le(2)]
w(p(z)) = =log——= and
WE) = 5l )
1—2P) ¢ (2
Too(z) = To(z)=3—EDEN_p o
1= p(2)]
since the right-hand side of the above formula equals (1 — [z|?)|(f o ¢)’(z)]| for
fy =2 e,
1—pw

which is in the little Bloch space.
For a bounded homogeneous domain D in C", ¢ holomorphic on D, and ¢
holomorphic self-map of D, we define

Oy = sup w(p(2))Qy(2), Ty, = sup [1p(2)| Ty (2),
zeD zeD
00,0 = SUP wWo(P(2))Qy(2),  Towe = sup [Y(2)| To,e(2)-
zeD zeD
In the case of the unit disk, oy, = 00,4, Ty, = To,u,p, and these quantities
agree with the expressions in the previous section.

Theorem 4.3. Let D be a bounded homogeneous domain in C™ and ¢ a holomorphic
self-map of D. If ¢ € B(D), and oy,, and Ty, are finite, then Wy, , is bounded
on B(D) and

max{|[|] 5, [1(0)|w((0))} < [[Wy ol < max{|[¢]]5,[4(0)|w((0) + Tw0 + Ty}

Proof. We begin by proving the upper estimate. Let f € B(D). Then for z € D,
by the product rule we have

V(i(fop))(z) = ¥(2)V(f 0 9)(2) + f(p(2)) V()(2),
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so for all u € C™ \ {0},

IV@(f o)) (2)ul < 92 [V(F)((2)Jp(2)ul + [f(p(2)] [V (4)(2)u].
By (4.3) and Lemma 4.2, we obtain

Sup Qu(fop)(2) < Ty o Br +1£(0)] By + sup w(p(2))Qu(2)0r,
zeD zeD

which is finite. So Wy, f € B(D) and again by Lemma 4.2

Wy, fllg < 19O (O)] + [£(0)] By + (Ty,0 + 0u,0) By
<[ 0)] (1F(0)] +w(#(0))B5) + £ (0) By + (Ty + 00.0) 35
= 1915 11£1ls + ([9(0)w(@(0)) + 7p,o + 0,0 = |19]|5)5s-

IE[(0)| w((0)) + Ty + 0y < [[W]] 5, then [[Wy o fllg < [[#]]5 || /]l - Otherwise,
Wy.ofllg < ([(0)|w(w(0)) 4+ Ty, + 0y.0) || fl| g - Thus, Wy, is bounded and

Wy ollg < max{|[¢]|g, [¥(0)|w((0)) + Ty + 0w}

To prove the lower estimate, observe that by considering as test function
the constant function 1, we have |[Wy ,1|[z = [|¢|[g, so that [[Wy ,|| > [|¢]]5-
Furthermore

Wil = sup{[Wp fll : £ € BD) and [ £ < 1}
> supf{[[ W fl : € B(D), £(0) =0, and [|f5 < 1}
> sup{[1:(0)| [f(2(0))] : £ € B(D), £(0) = 0, and [|f]5 < 1}
— [(0)| w(9(0)).
Thus |[ Wi || > max{][6]15, [4:(0)] w(2(0))}. O

Theorem 4.4. Let D be a bounded homogeneous domain in C"™. If ¥ € By«(D),
Oy, and Ty o are finite, and

im [6(2)| Togl() = lim en(e(2)@u(2) =0
then Wy, is bounded on By« (D) and
max{[|9[[ 5, [(0)| wo(p(0))} < [[Wy.o|| < max{||¢)] s, [¢2(0)| wo(#(0)) + Tyo + 0,0 }-

Proof. Arguing as in the proof of Theorem 4.3, it suffices to show that if ¢ €
Bo+ (D), 04,, and 7y, are finite, and

lim [9()| Tog(2) = T wo(9(2)Qu(2) =

then Wy, , maps the *-little Bloch space into itself. Let f € By« (D). Without loss
of generality, we may assume || f||; < 1. For z € D, by Lemma 4.2, we have

Qu(fop)(2) < [¥(2)| Qo (2) + [ f((2))| Qu(2)
< [P(2)] To,p (2) + [£(0)] Qu(2) + wol(p(2))Qu (2),
which approaches 0 as z — 0*D. Thus ¢(f o ¢) € Bo-(D). O
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Theorem 4.5. Let D be a bounded homogeneous domain in C", v a holomorphic
function on D, and ¢ a holomorphic self-map of D. If Wy, is bounded on the
Bloch space of D, then ¢ € B(D) and oy, is finite if and only if Ty, is finite.

Proof. First observe that ¢ = Wy ,1 € B(D). Let f € B(D), z € D and u €
C™\ {0}. Then

[f V@) (2)ul _ [V(f o)) (2)u = ¢(2)V(f o ) (2)ul

H,(u,u)/2 H,(u,u)1/2
V(@ (f 0 9))(2)ul n [P ()] V(S o p)(2)ul
- H.(u,u)/? H.(u,u)/2

Taking the supremum over all u € C™ \ {0}, and using (4.3) we get

£ (0(2))] Qu(2) < Qufop)(2) + [¥(2)]| Qrop(2)
S ﬂw(foap) + W}('z” TSO(Z)ﬁf
< (IWa,ell + [9(2)| Ty (2)) [ f1 5 -

Taking the supremum over all f € B(D) with f(0) =0 and || f||z < 1, we have

w(p(2))Qu(2) < Wy ol + [(2)| T (2)-

Thus oy, < [[Wy,pll + Ty
On the other hand, for g € B(D), with g(0) = 0 and ||g||z < 1, using
Lemma 4.2, we also obtain

[1(2)| Qgop(2) < Qugop)(2) + |9((2))]| Qu(2)
< Wye9llg + w(p(2)Qu(2)
< Wyl + 04,0

More generally, for any non-constant function f € B(D), with 5y < 1, letting
g = (f — f(0))/By, by the previous case, we obtain

[9(2) Qrop(2) = [¥(2)| Qgop (2)Br < [[Wypll + 0y

Taking the supremum over all such functions f, we deduce 7y, < |[|[Wy o] + 0y -
Consequently, oy, is finite if and only if 7, is finite.

The proof of the following result is analogous.

Proposition 4.6. Let D be a bounded homogeneous domain in C™, 1 a holomorphic
function on D, and ¢ a holomorphic self-map of D. If Wy, , is bounded on the
x-little Bloch space of D, then 1 € By-(D) and 0¢,,, s finite if and only if 70,4,
is finite.

We shall now give a sufficient condition for the compactness of W, , which
yields Theorem 3 of [25] in the special case when ) is identically one. We first need
the following result.
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Lemma 4.7. Let D be a bounded homogeneous domain in C", ¥ a holomorphic
function on D, and ¢ a holomorphic self-map of D. Then Wy , is compact on
B(D) if and only if for each bounded sequence { [} in B(D) converging to 0 locally
uniformly in D, |[(fx o )|z — 0, as k — oo.

Proof. Assume Wy , is compact on B(D). Let {fr} be a bounded sequence in
B(D) which converges to 0 locally uniformly in D. By rescaling fj, we may assume
[|frllg < 1 for all £ € N. We need to show that ||[¢(fr o ¢)|lz — 0 as k — oc.
Since Wy, is compact, the sequence {¢(f; o ¢)} has a subsequence (which for
convenience we reindex as the original sequence) which converges in the Bloch
norm to some function f € B(D). We are going to show that f is identically 0
by proving that ¢ (fx o ¢) — 0 locally uniformly. Fix zg € D and, without loss of
generality, assume f(zg) = 0. Then ¢(20) fx(¢(20)) — 0 as k — oo. For z € D, by
(2.2), we obtain

[h(2) fr(p(2)) = f(2)] < [9(2) frle(2)) = f(2) = (¥(20) fr((20)) = f(20))]
+ 9(20) fr(0(20))]
< |l(fr o) — f\lsp(z 20) + |(20) fr(¢(20))| — 0

locally uniformly as k — oo, since ¢¥(fr o ¢) — f — 0 in norm. On the other hand,
U(fr o) — 0 locally uniformly, so f must be identically 0.

Next, assume |[|1(gn 0 )||g — 0 as k — oo for each bounded sequence {g}
in B(D) converging to 0 locally uniformly in D. To prove the compactness of
Wy, it suffices to show that if { fx} is a sequence in B(D) with || fx||5z < 1 for all
k € N, there exists a subsequence { fx,} such that ¢(fx, o ¢) converges in B(D).
Fix zo € D. Replacing f, with fr — fx(20), we may assume that fr(2z0) = 0 for
all & € N. By (2.1), |fx(2)] < p(z,20), for each z € D. Thus, on each closed
ball centered at zy with respect to the Bergman distance, the sequence {fi} is
uniformly bounded, and hence also on each compact subset of D. By Montel’s
theorem, some subsequence {fy,} converges locally uniformly to some function f
holomorphic on D. By Theorem 3.3 of [2], f is a Bloch function and ||f||z < 1.
Then, letting gx; = fr, — f, we obtain a bounded sequence in B(D) converging to
(gk; 0<,0)HB — 0as k — oo.
Therefore, 1(fr,; o ) converges in norm to 1 (f o ¢), completing the proof. O

Theorem 4.8. Let D be a bounded homogeneous domain in C™, 1 a holomorphic

function on D, and ¢ a holomorphic self-map of D. If ¢ € B(D), then Wy, is
compact on the Bloch space of D if

lim  w(e(z z)=0and lim 2)| T,(2) = 0. 4.4

i wlp(2)Quz) =0 and lim 16(:)| T (2) (1.4

Proof. Assume the conditions in (4.4) hold. By Lemma 4.7, to prove that Wy ., is

compact on B(D) it suffices to show that for any sequence { f} in B(D) converging

to 0 locally uniformly in D such that ||fx||z < 1, [[¥(fro@)llz — 0 as k — oo.

Let {fr} be such a sequence and fix € > 0. Then |fx(0)| < €/(3]|¢||z) for all &

sufficiently large and there exists r such that for all k € N, [(2)| Qf,00(2) < €/3
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and w(p(2))Qy(2) < €/3, whenever p(p(z),0D) < r. Thus by Lemma 4.2, if
p(p(z),0D) < r, then

Quiron(z) = [0(2)Qpuop () + [fe(e(2))| Qu(2)
< 5+ U0 +w(p(2)Qu() < e

On the other hand, since fr — 0 locally uniformly in D, |fi(¢(2))] — 0 and
Q@ frop — 0 uniformly on the set {z € D : p(p(z),0D) > r}. Consequently, for all k
sufficiently large, Qy(f,00)(2) < € for all z € D. Furthermore, [4(0)fx(¢(0))] — 0
as k — 00, so |[(fr o ¢)||g — 0, completing the proof. O

Remark 2. Even for composition operators, the necessity of the analogue to The-
orem 4.8 was established for the unit ball and polydisk [25], but not for general
bounded homogeneous domains.

We end the section with the following conjecture.

Conjecture. Let D be a bounded homogeneous domain in C™, ¢ a holomorphic
function on D, and ¢ a holomorphic self-map of D. Then W, , is bounded on
the Bloch space of D if and only if ¢ € B(D), and oy,, and 7, are finite.
Furthermore, the bounded operator Wy, ., is compact on B(D) if and only if
lim  w(p(z z)=lim z2)|Typ(z) = 0.
i we(:)Qu) = Tm 0| Ty(:)

In the next two sections, we prove the above conjecture when D is the unit

ball or the unit polydisk.

5. Special case: The unit ball

In Theorem 3.1 of [33], the following useful formula for calculating the Bloch semi-
norm of a function f € B(B,,) was given. For z € B,

Qr(z) = (L= [l [IV(H()I - sza_zj(z) : (5.1)

Zhou and Chen characterized the bounded and the compact weighted composition
operators on the Bloch space of the unit ball under the norm

£ (0)] + Sup (=112 IV (5.2)
which is equivalent to the Bloch norm on B, [26]. The following theorem is a
special case of Corollaries 1.4 and 1.6 of [31]; their results apply to a large set of
function spaces which includes the Bloch space.
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Theorem 5.1 ([31]). Let v be a holomorphic function of B, and ¢ a holomorphic
self-map of B,,. Then Wy, ,, is bounded on B(B,,) if and only if

2
sup [1)(2)| B(2) < oo, and sup (1— ||z[]*) ||Ve(z)[|log ————— < oc.
-€E, =€B., L= 1le()l|

Furthermore, Wy, , is compact if and only if

ot ()] Be(2) =0, and

2

lim 1—||z Vy(z)||log ——— 5 = 0. 5.3

I O (5.3

We now show that the bounded and the compact weighted composition op-
erators can also be characterized in terms of the quantities oy,, and 7y ..

Theorem 5.2. Let v be a holomorphic function on B, and ¢ a holomorphic self-
map of B,,. Then
(a) Wy, is bounded on B(B,,) if and only if ¢ € B(B,,), and oy, and 7y, are
finite.

(b) The bounded operator W¢ o 1s compact on B(By,) if and only if
o ( _ R Te(2) =0, and

o)l
IIgD(ISﬂ—dQ w(2)log oy = 0 (5.4)
Remark 3. At first glance it may seem evident that conditions (5.3) and (5.4) are
equivalent due to the equivalence between the norm (5.2) and the Bloch norm.
However, we have not been able to prove directly that (5.3) implies (5.4) and thus,
the proof of (5.4) under the compactness assumption does not make use of (5.3).

Proof. (a) If ¢ € B(B,,) and oy, and 7y, are finite, then Wy, ., is bounded by
Theorem 4.3. Conversely, assume Wy, , is bounded. Then ¢ = Wy, ,1 € B(B,,) and
by Theorem 5.1, sup [1(z)| B,(z) is finite. From (4.2), we deduce

z€By

Ty, = sup |¥(2)| Ty(2) < sup |Y(2)] By(z) < .
z€B, z€B,

On the other hand, using Theorem 4.5, we see that oy, is also finite, completing
the proof of (a).
To prove (b) observe that by Theorem 4.8, if

| Vel _
oty PEBTT oG] = juiios PENTE =0,

then Wy, is compact. Conversely, assume Wy, , is compact. Then, from Theorem
5.1 we get

[W(2)| Tp(2) < lim  [¢(2)| By(z) = 0.

lim
lle(2)]]—1 le(2)||—1



24 R.F. Allen and F. Colonna

Furthermore, Wy, ,, is bounded and so

L+ [[e(2)]
su lo < 0.
S e TG
In particular,
lim z) = 0. 5.5
o 9v (@) (5:5)

Let {z;} be a sequence in B,, such that ||¢(zx)|| — 1 as k — co. For z € B,, define
2
2
<L0g7>
1—(z,0(z
log ———
1—lle(z)ll

Then {f;} converges to 0 locally uniformly in B,,. We are now going to show that
{fr} is bounded in B(B,,). For z € B, set

gr(z) = Logm-

Then by (5.1) and the Cauchy-Schwarz inequality, we have

1/2
le(z)II® = 1z () )
) = 1|2 1/2(
12172
S VI e e <2

Next, observe that for z € B,

2L0g72 ~
V() = T3V () ()
& T (lp(zn)?

So for uw € C™ \ {0}

VU@l _ 2 (08 Tkem + ) (v el
B2 tog (o) e

2(1°g(1fw)+%)@gk(z)g4<2+ . )

2
log T orr 2log2
Hence || fx||z is bounded above by log2 + 4 (2 + 5 ) By the compactness of
Wy, |10(fr 0 ©)||g — 0 as k — oo. Moreover
2¢(zk
V() = o)

29
1 — ()l
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so, for u € C™ \ {0}, we have

IV(fr)(p(zr)) Jp(zk)ul = 2 |<J<P(Zk)u,g0(zlg)>|.

1— |l(zr)l”
Hence
[o(fro)llg > sup Qu(fro0)(2) = Qu(frop)(2k)
B IV (f)(o(2k)) T2k )ul
> |Qu(2k) fi(e(2k)) |¢(Zk)|uezgl\>{o} H.(u,7)1/?
- ‘Q“Zk“ogl—||so<zw||2

200G [(Jp(zk)u, p(zx))] ‘
1— |Jo(zp)||? uecmioy  Ha(u,@)1/?

‘We now show that

N C(C7)] . [(Jo(zr)u, o(2k))|

up — =0. (5.6)
k=oo 1 — ||ip(z)||* wecrifoy  Ha(u,@)1/?
Once this is proved, it will follow that
2
lim Qw(zk) log———5 =0
hreo 1= [lp(zi)l”
since [|Y(fx 0 ¢)||z — 0 as k — oo. Noting that
2 11+ [lo(ze)ll
Qu(zr)log ————5 = Qu(z)logg T~~~
T @I S Tl
1+ [le(ze)]|
= Qulzr)log —F—— — Qyu(zx) log2
Y T llpCa)ll ~ ¥

and that by (5.5), klim Qy(z1) = 0, we obtain that the limit of the first term of
the above difference also goes to 0 as kK — oo, and hence

‘ 14 [lo(2)]
1 ! .
ot Qs Ty e =0

Let us now proceed with the proof of (5.6). For k € N and z € B,,, let
1_ 2
m(s) = L=l
1— (2, ¢(2k))
Then hy — 0 uniformly on compact subsets of B,,, and for j = 1,...,n and z € B,

%(Z) _ (L= [leC)l1)es(2r)
9z (1—(z,0(zk)))?
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Thus by (5.1), we obtain

201/2 2 1/2
Qu(e) = (LR (e )
_ V30— [P 20— )
- (1= (2, (zk))])?/2
_ V20— 121121 = [le(z)ll) <4
T A=l DA = eCll) T
20 h Gl\f(lﬂ%n) and |[|hy||z < 5. Since Wy, ,, is compact, [|[¢(hrop)|lz — 0 as

1Y (hi 0 ©)l|g = Quphiop) (2k)

1—[lp(zp)|” uecnifoy  Ha(u,@)'/?

=’Qw<zk>—M sp |<J@<zk>u,¢<zw>|’.

Since klim Qy () = 0, it follows that
—00

v (zk)| [(Joo(zr)u, o(zk))|
5 sup —1/2 =0.
koo 1~ |lp(ze)l” weem\oy  Hz(u,T)
The proof is now complete. (]

Next, we give an example of a bounded weighted composition operator on the
unit ball whose associated component multiplication operator is unbounded and
an example of a compact operator on B,, whose associated component operators
are both not compact.

Ezamples (a) Let A € OB, and define the functions 9 (z) = $Log(1 — (z,A)) and
w(z) = %()\ — z) for z € B,,. The associated multiplication operator M, is not
bounded on B(B,,) since ¢ & H>°(B,,). On the other hand, it is straightforward to

verify that sup,cp [1(2)| By(2) < oo and

sup (1 — [|2]*) ||V4(2)|| Log < 0.

2
2€k,, L= 1le()|
Therefore, Wy, ., is bounded on B(B,).

(b) Let ¢(2) = 1 — 21 and p(z) = 1=, for z € B, where 1 = (1,0,...,0). The
multiplication operator My, is not compact on B(B,), since 9 is not identically

zero. Moreover, the composition operator C,, is not compact on B(B,,) [25], since

Hoe) (Jp(2)u, Jo(z)u) 1 (1= lo(2)I) llull® + [{e(2), w)|* (1 ||=[*)?
H(u,u) 4 A=) el + 1z (L= e(2)][*)?
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which does not go to 0 if z — 1 along the real axis in the first coordinate and
u=(1,0,...,0). Observe that

b(z) = lim ¢(z) =

1m
[le(2)]|—1 z1—1

and B (z) is bounded above by a constant independent of ¢, so

m 0(2)] By(z) =

Moreover,

(1= Iz[*)1o

||sa(z>|\~1 _ H%HQ -

Therefore Wy, ,, is compact on B(B,,).

6. Special case: The unit polydisk

Theorem 6.1. Let tp be a holomorphic function on D™ and ¢ a holomorphic self-
map of D"™. Then Wy, is bounded on B(D™) if and only if 1 € B(D™), and oy,
and Ty, are finite. Furthermore, the bounded operator Wy, , is compact on B(D™)

if and only if
i w(e()Qu(z) = lim  [b(z)| Tp(2) = 0. (6.1)

@(z)—OoD" @(z)—oD"

To prove this result, we will show that the conditions for the boundedness
and compactness of Wy, , are equivalent to the conditions proven by Zhou and
Chen in the following theorem. Their results were obtained by considering on the
Bloch space of D™ the norm

_ - s |9
IIfII*fIf(O)HZSEuEg;(l 12°) azj(z)"

In [10], it was shown that for f € B(D™) and z € D,

Qf(z) = ‘((1— |21\2)g—i( )y (L= |zal?) )H

Thus ||-]|, is equivalent to the Bloch norm since

1 n 5 n
=~ =15 P) |52 6) £ Qi) £ X - 1)
j=1 j=1

for all z € D".

of

af

(6.2)

Theorem 6.2 ([32], Theorems 1 and 2). Let ¢ be a holomorphic function on D™
and ¢ a holomorphic self-map of D™. Then Wy, , is bounded on B(D™) if and only

if
sp 37 (1 -1zl

z€bn J,k=1

4
1— |ex(2))?

|22 )1

og < 00




28 R.F. Allen and F. Colonna

and
~ |9n 1— |z
sup [0l Y (5240
zehn chZ_1 9z; 1- |90k(z)|2
Furthermore, Wy, is compact on B(D™) if and only if Wy, ., is bounded and
- o 4
lim (1— 1|z (z)‘logQ =0
@(z)—0D" j,kZ:1 0z; 1 — |or(2)]
and
lim zn: &pk ’ % =0.
p(z) —>6]DJ" . 8z] 1— |@k(z)|2

Lemma 6.3. Let v be a holomorphic function on D™ and ¢ a holomorphic self-map
of D™. Then, for z € D", the following inequalities hold:

() p(0,2) < )y log =

(b) op(2) < (a1 = 125) |82(2)]) Tics log =t
(c) Tp(2) < 374y ‘%ﬁ; (2) %;
(@) e (2) < [0 Sy |22 ()] 22

Proof. Let z € D™. To prove (a), observe that for u € C",

2 0= [5P)
(e.g., see [26]), and recall that if v = (¢) (0 <t < 1) is the geodesic from w to z,
then

plw, 2) /H o (7 (£),7/ ()2 dt.

Since the geodesic from 0 to z € D™ is parametrized by v(t) = tz, for 0 <t < 1,
we obtain

n

1/2
1 2
2] / 2]
0,2) = S i I — dt < 6.3
w09 = | Z;u—mfwz zthAﬂ (03
1 n

proving (a). By the upper estimate of (6.2) and the inequality w(p(2)) < p(0, 2),
part (b) follows immediately from part (a).
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To prove (c), observe that by (1.2) of [10],

1/2
- D (= |2 )w; |
T,(2) < (2) = m = (2)
¢ S eli=1 ;; 0z 1~ |pu(2)[*
2 2\ /2
Z(Z O ’w)
lwii=1 \ g\ 102 7] 1~ Jgi(2)?
zn: i 1 — |3l
AR e

Part (d) is an immediate consequence of the formula 7y ,(2) = [1(2)| T, (2)
and part (c). O

Proof of Theorem 6.1. If Wy, , is bounded, then ¢ = Wy ,1 € B(D"), and from
Theorem 6.2, inequality (d) of Lemma 6.3, and Theorem 4.5, it follows that oy
and 7y, are finite. Conversely, if ¢ € B(D"), and oy, and 7y, are finite, then
Wy, is bounded by Theorem 4.3.

Next, assume Wy, ,, is compact. Then, by Theorem 6.2, and inequalities (b)
and (d) of Lemma 6.3, the conditions in (6.1) hold. Conversely, if Wy, , is bounded
and the conditions in (6.1) hold, then Wy , is compact by Theorem 4.8. O

We conclude the section by giving an example of a bounded weighted com-
position operator on the polydisk whose corresponding component multiplication
operator is not bounded, and an example of a compact weighted composition op-
erator on D™ whose both component operators are not compact.

Ezamples. (a) Fix an index j € {1,...,n} and define ¢(z) = Logl_izj, w;(z) =

172:_7'

52, and @i(z) = 0 for k # j, z € D". Since ¢ ¢ H>(D"), the associated
multiplication operator M,y is unbounded on B(D™). On the other hand

2
< Lol ), A <
Oy, < SUP og — 0,
P, LeDn |1_Zj| 1_‘1 z]|2

2
2
Ty, < SUpP 1_|Zj|
T e 1 )

so that Wy, ,, is bounded on B(D").

(b) Fix an index j € {1,...,n}, and for z € D" define ¢(z) = 1 — %z;, and let

©(z) be the vector with kth component 0 for k # j and jth component 1+sz

Clearly, the associated multiplication operator My, is not compact on B(D™). The
associated composition operator C,, is not compact on B(D") since

Log

< 00
1—Zj ’

11—z
W(Z):E#]ngﬁo
1_| 2 |
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for z; — 1 [25]. Furthermore,

lim 2) < lim (1 —|z:*) 1o =0, and
Lp(z)_>a]1))n 01/)790( ) — ZJ'HI( | J| ) g 1 B ylgzj ’2 9
1 1— |z
lim < — 1—z;| —= _ —0.
¢(2)—0D" Toe(2) S 2 Zjlgll| 2l 1-— |1+TZJ’2

Hence Wy, is compact on B(D").

7. Weighted composition operators from the Bloch spaces into H*

In [16], Hosokawa, Izuchi and Ohno characterized the bounded and the compact
weighted composition operators from B(D) and By(ID) into H*° (D). We now pro-
vide a characterization of the bounded operators in the environment of a bounded
homogeneous domain and determine the operator norm. We also obtain an exten-
sion of their results when the domain is the unit ball and the unit polydisk.

Theorem 7.1. Let D be a bounded homogeneous domain, 1 a holomorphic function
on D, and ¢ a holomorphic self-map of D. Then

(a) Wy, : B(D) — H>®(D) is bounded if and only if v € H*(D) and
Mg, 7= sup [(2)|w(p(2)) < oo
zeD
If Wy is bounded on B(D), then
(W, oll = max{|[¢]| o s 10,0} (7.1)
(b) Wy, : Box(D) — H*®(D) is bounded if and only if v» € H*(D) and
Mo 1= SUP [ (2)|wo(p(2)) < oo
If Wy is bounded on By (D), then

Wy, ol| = max{|[¢l| s 70,0}

Proof. To prove (a), assume Wy , is bounded on B(D). Then ¢ = Wy ,1 €
H>(D), |[¢]| < [[Wy,ell, and for each f € B(D) with |[f||z < 1, and for each
z € D, we have

[Wyoll = [[0(f o @)lloe = [0 (2)I[f(p(2)]-

Taking the supremum over all such functions f such that f(0) = 0, and over all
z € D, we obtain ||Wy,,|| > 1y, proving that 7y, < co and

Wy ol = max{|[]] o , 7,0 }- (7.2)
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Conversely, suppose ¢ € H*(D) and 7, is finite. Then, by Lemma 4.2, for
each f € B(D) we have

sup Y@ ()] < sup Y@ £0)] + w(e(2))5r)

< AWl (ANl = B5) + 19,085
< max{{[Pll s e} 1 fll5 5 (7.3)
proving the boundedness of Wy, . From (7.2) and (7.3) we also obtain (7.1). The
proof of (b) is analogous. O
Recalling that for each z € B,,,
1, 1+
n(2) = () = g log T

we deduce the following extension to the unit ball of Theorem 6.1 of [16], which
is equivalent to Theorem 1 in [20]. The evaluation of the operator norm has not
appeared before.

Corollary 7.2. Let v be a holomorphic function on B, and ¢ a holomorphic self-
map of B,,. Then the following statements are equivalent:

(a) Wy,p : B(By,) — H*®(B,) is bounded.
(b) Wy, : Bo(Bp) — H>®(B,,) is bounded.
(¢) Y € H*(B,) and

Furthermore,

Wyl = maX{|W”oo’:£§ s 1 ng i'l}

In the case where 9 is the constant function one, the condition of the finiteness of

1+ lle)ll
sup log ——+——+
:e8, L= le(2)l|

implies that ¢(z) cannot approach the boundary, or else the logarithmic term
would tend to infinity. Thus, we have the following corollary.

Corollary 7.3. Let ¢ be a holomorphic self-map of B,,. Then the following state-
ments are equivalent:

(a) Cy : B(Bn) — H*(B,) is bounded.

(b) Cy : Bo(B,) — H®(B,,) is bounded.

(¢) ¢(By) has compact closure in B,,.
Furthermore, the operator norm of C, is the mazimum between 1 and the Bergman
distance of the boundary of the range of ¢ from the origin.

We now show that Theorem 6.1 of [16] can be extended to the unit polydisk.
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Theorem 7.4. Let vy be a holomorphic on D™ and ¢ a holomorphic self-map of D™.
Then the following statements are equivalent:

(a) Wy, : B(D™) — H>®(D") is bounded.

(b) Wy, : Box(D™) — H*(D™) is bounded.

(¢) Y € H*(D"™) and

1+ @i (2)]
Zseuﬂg |(z Zlog o) < 00. (7.4)

Proof. The implication (a) == (b) is obvious.
(b) = (c¢): It is clear that ¢y € H>*(D"). Fix j =1,...,n and A € D". For z € D"
define

h(z) = Log—————.
1—zjp; ()
Then ,
|y )
I|h]|,5 = 2log2 + sup ( |217) 10 (A)] <2log2 + 2.
lzsl<t 1= 205N
Furthermore,
1— |z e (A
Qu(z) < ( |21 7) 05 M) -0

1= i (V)]
as |zj| — 1. Thus, h € Bo«(D™). By the boundedness of Wy, : Bo.(D") —
H>(D"™), we obtain

4
(21og2+2) [[Wyell = [[¢(ho@)lly = [$(N)]log ———5
L= fp; (V)]
1+ @ (V)
> [p(N)|log — =
L—=1e; (V)]
Summing over all j = 1,...,n and taking the supremum over all A\ € D", we get
(7.4).
(¢) = (a): Observe that for z € D™, by (6.3), we have
15, LT lei2)l
wlp(z)) <p - . (7.5
e D= L) :
The result follows at once from Theorem 7.1(a). O

We now give a sufficient condition for compactness which can be proved as
Theorem 4.8.

Theorem 7.5. Let D be a bounded homogeneous domain, v a holomorphic function
on D, and ¢ a holomorphic self-map of D. Then Wy, : B(D) — H*(D) is
compact if p € H>*(D) and

lim [(z)|w(p(z)) = 0.

p(2)—0D
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This sufficient condition is also necessary when D is the unit ball. Indeed,
the following result, proved by Li and Stevi¢ in [20] (Theorem 4), is the extension
to the unit ball of Theorem 6.2 of [16].

Theorem 7.6 ([20]). Let ¢ be a holomorphic function on By, and ¢ a holomorphic
self-map of B,,. Then the following statements are equivalent:

(a) Wy,o : B(Bp) — H*(B,,) is compact.

(b) Wy, : Bo(Brn) — H®(B,,) is compact.

(c) v € H*(Bn) and  lim  [(z)]lo o8 =5 = O-

The following is a consequence of Corollary 7.2 and Theorem 7.6. It follows
immediately from the finiteness of

su z)|lo ,
s (=)lles Ty

which implies that v is identically zero.

Corollary 7.7. Let v be a holomorphic function on B,. Then the following are
equivalent:
(a) My : B(B,) — H>®(B,,) is bounded.
) Mw BO( n) — H™(B,,) is bounded.
) My : B(B,) — H®(B,) is compact.
) Md, BO( n) — H®(B,) is compact.
)

e) v is identically zero.

(b
(c
(d
(

We now prove the analogue of Theorem 7.6 for the polydisk.

Theorem 7.8. Let v be holomorphic on D™ and ¢ a holomorphic self-map of D™.
Then the following statements are equivalent:

(a) Wy, : B(D™) — H>®(D") is compact.

(b) Wy.e : Bou(D™) — H>(D™) is compact.

(c) v € H*(D") and

n

. 1 + |‘PJ (2)]
lim log =0.
S5,(2)_,3]1))n |Z Z)|

Proof. The implication (a) = (b) is obvious. We now show (b) = (c). Since
Wy.o : Box(D™) — H>(D") is bounded, by Theorem 7.4, ¢ € H*°(D"). Suppose
there exists a sequence {z(*)} in D™ such that ¢(2*)) — 9D™ as k — oc. Then,
there is a number j € {1,...,n} such that |p;(2®)| — 1 as k — oo. Since (7.4)
holds, it follows that

Jim lh(z)| = 0. (7.6)

For any such index j and for z € D™, define

fe(2) = <LO — 47>2 lo ;
W= e T S EPREEE
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As shown in the proof of Theorem 5.2 for the case of the ball, the sequence {f;}
is bounded in B(D™), converges to 0 locally uniformly in D™ and each function in
the sequence is in By, (D"), since it is holomorphic on the closure of D™. By the
compactness of Wy, ,, : Bo«(D™) — H>(D"), we obtain
(2 ()
9O log SECDL 1) ()] < (i o )l — 0
1= [ (=®)]

as k — oo.

Next, assume j € {1,...,n} is such that |¢;(2®))| 4 1 as k — oo, so that
there exists 7 € (0,1) such that |p;(z®))| < r for all k € N. Then, by (7.6) we
obtain
1+ [p;(z™)] |

(k)
1—’<p (k)‘ YN =0

[9(=™))| log ——"—r

as k — oo. Hence, combining the cases when |¢;(z®)| — 1 or |p; ()| /4 1 as
k — oo, we deduce

S L4 (2]
lim [¢(2%)] ) log —2" 2 =0,
k—oo JZ:; 1— ’@](z(k))’
as desired. Lastly, (c) = (a) follows at once from (7.5) and Theorem 7.5. O

8. Further developments

In this section, we outline other topics of interest for weighted composition oper-
ators not considered in the previous sections. This list is certainly not exhaustive.
Our intent is to point out some work that has been done in other settings and
how it would pertain to the setting of the Bloch space on a bounded homogeneous
domain.

8.1. Isometries

A characterization of the isometric weighted composition operators on the Bloch
space of the unit disk is not currently known, although the isometric multiplication
operators and the isometric composition operators have been described in Theorem
3.1 of [1], and Corollary 2 of [11] (see also [22], Theorem 1.1). These results provide
a means by which to construct isometric weighted composition operators.

In higher dimensions, the isometric multiplication operators acting on the
Bloch space of a large class of bounded symmetric domains are precisely the con-
stant functions of modulus 1 [3]. Yet, it is not known whether nontrivial isometric
multiplication operators exist on a general bounded homogeneous domain. Con-
ditions for a composition operator on the Bloch space of a bounded homogeneous
domain to be an isometry were given in [2]. These conditions allow us to gener-
ate nontrivial examples of isometric weighted composition operators on the Bloch
space for a large class of domains that have the unit disk as a factor.



Weighted Composition Operators 35

8.2. Spectrum

The spectrum of the multiplication operator on the Bloch space of the unit disk is
known ([1], Theorem 4.1), while the determination of the spectrum of the compo-
sition operator on the Bloch space of the unit disk is still an open problem. The
authors determined the spectrum of the isometric composition operators on the
Bloch space of the unit disk, and in turn, the spectrum of a large class of isometric
weighted composition operators on the Bloch space of the unit disk. The spectrum
of a non-isometric weighted composition operator has not been determined for a
general class of symbols.

In higher dimensions, the spectrum of a class of isometric composition oper-
ators on the Bloch space of the unit polydisk has been determined ([2], Theorem
7.1). In [3] (Theorem 5.1), we showed that the spectrum of a multiplication oper-
ator on the Bloch space of a bounded homogeneous domain is the closure of the
range of its symbol. On the other hand, in [3] (Corollary 3.6), we proved that the
only bounded multiplication operators on the Bloch space of the polydisk D™ (for
n > 2) are those whose symbol is constant. Thus, the only isometric multiplica-
tion operators are those induced by constant functions of modulus one and the
corresponding spectrum reduces to the value of that constant.

8.3. Essential norm

The essential norm of a bounded operator T is the distance from 7" to the compact
operators, i.e., ||T||, = inf{||T — K|| : K is compact}. In [21], MacCluer and Zhao
established estimates on the essential norm of a weighted composition operator
acting on the Bloch space of the unit disk. They showed that

1
maX{Aw,sm ng} < Wypll, < Ay + Byp,

where

o =1m sup [(2)][¢' ()|

By =lim sup [¢/(2)| (1~ |2[*) log —————.

=lip(z)|>s 1—1e(2)|
An estimate on the essential norm of the weighted composition operators on
the Bloch space of the polydisk has been given by Li in [19]. To date, no results
have appeared on the essential norm of a weighted composition operator acting on
the Bloch space of the unit ball or other types of bounded homogeneous domains.
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Images of Minimal-vector Sequences Under
Weighted Composition Operators on L*(D)

Paul S. Bourdon and Antoine Flattot

Abstract. Let X be either the unit interval in R or the unit disk D in C.
Chalendar, Flattot, and Partington [2] study weighted composition operators
T, on L?(X), where w € L°(X), v : X — X is injective, and Ty~ f = w foy
for f € L?*(X). They introduce a (strict) partial order < on X associated
with Ty, and use it to obtain a sufficient condition for convergence of the
sequence (T yn) where (yy) is a backward minimal-vector sequence for T .
For the L?(D) case, they give a detailed analysis of the situation where v is
linear-fractional. Through further study of the partial order <, we are able
to generalize results from [2] that apply when « is linear-fractional, replacing
the linear-fractional hypotheses with univalence. In particular, our work yields
generalizations of an invariant-subspace theorem in [2].

Mathematics Subject Classification (2000). Primary 47A15, 47B33.

Keywords. Minimal-vector, hyperinvariant subspace, weighted composition
operator.

1. Introduction and background

Ansari and Enflo [1] introduce the idea of backward (and forward) minimal vec-
tors and explore the roles these vectors may play in establishing the existence
of nontrivial hyperinvariant subspaces for certain classes of linear operators, e.g.,
compact and normal operators. Let T be a bounded linear operator with dense
range on the Hilbert space H, let f be a nonzero vector in H, and let e satisfy
I/l > € > 0. For each positive integer n, the backward minimal vector y, for T,
f, and € is the unique vector in H satisfying

IT"yn — fll <€ and lyn|| = min{[ly[| : [T"y — f]| < €}.

Ansari and Enflo [1, §2] prove the following (a Banach-space version appears in [7]):

Communicated by J.A. Ball.
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Theorem AE. IfT : H — H is quasinilpotent and has a sequence (y,) of backward
minimal points such that (T™y,) converges (in norm), then T has a nontrivial
hyperinvariant subspace.

Given the connection between convergence of images of backward minimal-
vector sequences and the existence of nontrivial invariant subspaces, the study of
such convergence has attracted significant attention. Ansari and Enflo [1, Theorem
7] show that whenever T': H — H is a cyclic normal operator with dense range,
then (T™y,,) will be convergent for any sequence (y,,) of backward minimal vectors
for T. This result has been generalized to noncyclic normal operators [3, Proposi-
tion 2.1] and to operators of “normal type” [2, Theorem 2.2]. However, in general,
(T™y,) need not converge. For example, Wiesner [9, Section 4] shows that there
are matrix operators on C? that have backward minimal-vector sequences (y,,) for
which (T™y,,) fails to converge, while Chalendar and Partington [3, Theorem 3.1]
present a necessary and sufficient condition for a dense-range bilateral weighted
shift T on ¢%(Z) to have the property that (T"y,) is convergent for all backward
minimal-vector sequences (y,,) for T.

Chalendar, Flattot, and Partington [2, Theorem 3.2] have obtained a suffi-
cient condition for convergence of images of backward minimal-vector sequences
for certain weighted composition operators on L? spaces (while giving an exam-
ple [2, p. 96] showing such sequences do not always converge). They work on L?
of the closed unit interval I or closed unit disk . We will confine our attention
to the disk setting and work on the open unit disk I instead of D. (Of course,
L?(D) = L*(D) because the Lebesgue area measure of dI) is zero. None of the
results or proofs in [2] are changed by replacing D with D.)

Let w € L*(D) and let v : D — D be a univalent mapping such that
w/v" € L®(D). Then it is easy to check that the weighted composition operator
T, defined by

Tw~rf=wfory
is bounded and linear on L*(D) (with ||Ty || < [[w/v']|ec). Also easy to check is
the following formula for the adjoint T} . of Ty 4

Eov_l

* . 71
Tw,’yf_ |7/07_1|2XW(D)JC07 . (1)

Throughout this paper, unless we indicate otherwise, the functions w and vy are
assumed to satisfy the restrictions described above; in particular, v is a univalent
self-map of D.

We restrict our attention to those operators T, » that have dense range. Let
m denote Lebesgue area measure.

Proposition 1. The operator Ty, ~ : L*(D) — L?(D) has dense range if and only if
w # 0 a.e. with respect to m.

Proof. If w vanished on a subset E of D for which m(E) > 0, then every function
in the range of Ty, ~ would also vanish a.e. on E and Range(T,,,,) would not be
dense.
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Conversely, suppose that T, , does not have dense range so that there is
nonzero function f € L?*(D) such that T f = 0. Let E C D be such that
m(E) > 0 and f is nonzero a.e. on E. Then m(vy(E)) is also positive (see, e.g.,
the discussion preceding the statement of Lemma 1 in Section 3). Since we are
assuming 7 | f = 0, the formula (1) now shows that w must vanish a.e. on £, a
set of positive area measure. O

Let Ty, : L*(D) — L*(D) have dense range. In [2], Chalendar, Flattot, and
Partington develop a criterion for all backward minimal-vector sequences (y,) for
T~ to have the property that (T}, . yn) is convergent. The criterion depends on a
(strict) partial order < on D related to the symbols w and vy of Ty, . For z,v € D,
this partial order is defined by

n
z <v if and only if limsup M
n—oo h(yIM(v))
where h = |w/+/|? and [ denotes the nth iterate of . Theorem 3.2 of [2] shows
that if < has certain regularity properties with respect to m, then (Tlﬁvyn) will
be convergent for backward minimal-vector sequences (y,) for Ty, .

Having obtained in their Theorem 3.2 information about the behavior of
backward minimal-vector sequences, the authors of [2] turn their attention to in-
variant subspace theorems, seeking to apply Theorem AE, which means they must
develop criteria for quasinilpotence of T, . Proposition 4.3 of [2] shows that if
v has an attractive fixed point zp in D or in its closure D, such that the iter-
ate sequence (™) converges uniformly on I to zp, and if h := |w/4'|? extends
continuously to zg, then Ty, - is quasinilpotent if and only if h(z) = 0.

Recall that any (not necessarily univalent) analytic self-map v of D that is not
an elliptic automorphism has a unique attractive fixed point wy € D, its Denjoy-
Wolff point, and that when wp lies in D, necessarily |7'(wp)| < 1 and that when
wo lies in 9D, necessarily 0 < +'(wo) < 1, where 7/(wg) is the angular derivative
of v at wg (see, e.g., [6]). We remark that when v has an angular derivative at
¢ € 9D, then 7' has a continuous extension from N to N U {(} where N is any
nontangential approach region in D with vertex (; however, v/ need not extend
continuously from D to DU{(}. For further information about angular derivatives,
the reader may consult [4] or [6]. When

<1, (2)

e wp €D and 0 < |y (wp)| < 1, we will say that v is of Schrider type;
e when wp € 9D and ' (wp) < 1, we say that + is of hyperbolic type;
e when wy € 9D and ' (wp) = 1, we say that « is of parabolic type.

Using their Proposition 4.3 and Theorem 3.2 and assuming that T, has
dense range, Chalendar, Flattot, and Partington obtain the following invariant-
subspace theorem for T}, [2, Theorem 4.5]:

Theorem CFP. Suppose that v : D — D is a non-automorphic, linear-fractional
mapping and one of the following holds:
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(i) v has two fized points, one in D and the other outside ﬁ_(possz'bly at o), or
(ii) v has two fized points, one on OD and the other outside D (possibly at co).

Suppose also that w extends to be (complex) differentiable at the attractive fized
point wy of v, with w(wy) = 0 and w'(wo) # 0. Then Ty~ : L*(D) — L*(D) has a
nontrivial hyperinvariant subspace.

Our interest in the preceding theorem is principally in its proof, where it is
shown that when the hypotheses of theorem hold, then the partial order < of (2)
has the regularity properties required by Theorem 3.2 of [2]; consequently, (Tgﬁyn)
is convergent for each backward minimal-vector sequence (y,) for Ty, . Observe
that in case (i) of Theorem CFP, « is of Schroder type and in case (ii), 7 is of
hyperbolic type; in particular, in both cases, we have |y (wp)| < 1.

We now summarize the principal results of this paper. Propositions 2, 3, and
5 below combine to show the following: Let v be any (not necessarily univalent)
analytic self-map of D that is not an elliptic automorphism and let wy be its
Denjoy- Wolff point. Suppose that w satisfies the hypotheses of Theorem CFP and
|7 (wo)| < 1; then the partial order < defined in (2) has the regularity proper-
ties needed to apply Theorem 3.2 of [2]. As a consequence, we obtain Theorem 2
below, our main theorem: if v is any uniwalent mapping of Schréder or hyper-
bolic type, then (Tlﬁvyn) is convergent for each backward minimal-vector sequence
(Yn) for Ty -

We remark that if w is continuous and nonzero at wy (so that it does not
satisfy the hypotheses of Theorem CFP), then for v of any of the types, Schroder,
hyperbolic, or parabolic, we have

fmsup POTE) g [0 )/ (61 E) wawmﬁ

n—oo h(yIM(v))  n=oe |w(rl"l(v)) /¥ (41" (v)) w(wo) /7' (wo)
so that no two points of D are comparable under definition (2) of < and one cannot
regard the vacuous partial order < as satisfying the regularity properties needed
to apply Theorem 3.2 of [2]. Also, when  is of parabolic type, the discussion on
page 101 of [2] shows that even if w satisfies the hypotheses of Theorem CFP, the
partial order < need not have the regularity properties required by Theorem 3.2
of [2].

Let 7 be any (not necessarily univalent) analytic self-map D that is of Schroder
or hyperbolic type and let w satisfy the hypotheses of Theorem CFP. In the fol-
lowing section, we show that for all but countably many points v of D, the limit
superior used to define the partial order < of (2) may be replaced by a limit;

that is,

N ICE)

n—sc h(y1")(v))
exists for every z € D and v € D\ S, where S is at most a countable set. We
show that the limit will be the squared modulus of quotient of classical analytic
intertwining maps: Koenigs functions in Case I and Valiron functions in Case II.
In Section 3, we describe the regularity properties of < needed for Theorem 3.2

2
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of [2] to hold. Then we prove that whenever f is analytic and nonconstant on D,
the partial order < defined on D by

z=<wv ifand only if |f(2)| <|f(v)]

has these regularity properties. In Section 4, we combine the results of our Sections
2 and 3 with Theorem 3.2 of [2] to obtain our main result about convergence of
images of backward minimal-vector sequences. We also discuss implications of
our work for invariant-subspaces of weighted composition operators, obtaining
generalizations of Theorem CFP.

2. Koenigs and Valiron functions

In this section, we assume that w € L°°(D) and that v : D — D is an analytic
self-map of D that is not necessarily univalent.

Suppose that + is not an elliptic automorphism. Assume +’s Denjoy-Wolff
point wy lies in D and that 7/(wg) # 0. Since v is not an elliptic automorphism,
we know (by Schwarz’s Lemma) that |7/ (wo)| < 1, so that v is of Schréder type.
Koenigs [5] (see also, [6, Chapter 5], e.g.) proved that the sequence

Al — g

,.Yl(wo)n
converges uniformly on compact subsets of D to a nonconstant analytic function
o on D satisfying Schréder’s functional equation

(3)

ooy =7(wo)o. (4)

We call o the Koenigs’ function for . Note that o(wp) = 0 and ¢’ (wg) = 1. Koenigs
proved that o is the unique function satisfying o(wg) = 0, o’(wp) = 1, and the
relation (4). Finally, note that Hurwitz’s Theorem shows that o will be univalent
whenever « is univalent.

Recall that associated with our weighted composition operator T, , is the
function h(z) = |w(z)/9'(2)|? that participates in the definition of the partial
order < defined by (2). The next result shows when ~ satisfies the restrictions
holding in the preceding paragraph and w satisfies the hypotheses of Theorem
CFP, then the limit superior in (2) can be replaced with a limit for all but at most
countably many values of v € D.

Proposition 2. Suppose that v has Denjoy- Wolff point wy lying in D, that 0 <
|7 (wo)| < 1, and that o is the Koenigs function for . Suppose that w is differen-
tiable at wy with w(wy) = 0 and w'(wo) # 0. Then, for every z € D and for every
v € D that is not a zero of o, we have
h(71")(2))

lim =

()
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Proof. We interpret “w is differentiable at wy” to include the assumption that w
is defined in a neighborhood of wy. Let z € D, and let v € D be such that o(v) # 0.
We have

o) ‘ww (2)) 76 ()

h(y(v)) — [w( () v (1 (2))
w(y(2)) " (z)—wo
Al (2)—wo 7' (wo)™ ’Y’(’Y[n](v))
w (v (v)) v (v)—wo ~/(~[n]
#OUG) TG 3/ (517(2))
‘w'm) a(2) 7' (wo) |
w'(wo) o(v) v'(wo)

o(2) |’

a(v)

Observe that when ~ satisfies the hypotheses of the preceding proposition and
is also univalent, then its Koenigs function o, which vanishes at wq, is univalent as
well, which means that ¢ vanishes only at wy. Thus when -y is univalent the limit
fact (5) is valid for all z € D and allv € D\ {wo}.

We now turn to the case where v is an analytic self-map of D that has no
fixed point in D, so that its Denjoy-Wolff point wq lies on OD. In this case the
Julia-Carathéodory Theorem (see, e.g., [6, p. 57] or [4, Theorem 2.44]) shows that

2 lim /() = 7/ (w0). )

‘ 2

2

(as n — 00)

. O

where 7/ (wp) is the angular derivative of v at wy and Zlim denotes the nontangen-
tial (or angular) limit. Necessarily 7/(wg) < 1. If we assume that 7/(wp) < 1, then
for each z € D, the sequence (y[")(2)) converges nontangentially to wy (see, e.g., [4,
Lemma 2.66]). Hence, in view of (6), we see that if 7'(wp) < 1, then (7/(y[")(2)))
converges to 7' (wg) for every z € D.

Suppose that «y is an analytic self-map of D whose Denjoy-Wolff point wy lies
on 9D and suppose that 7/(wp) < 1, so that v is of hyperbolic type. Fix zo € D.
Valiron [8] proved that the sequence

A — w
[y} (20) — wol

converges uniformly on compact subsets of D to a nonconstant analytic map v
satisfying

vory =7 (wo)v.
We call v the Valiron function for . We remark that the work of [8] is all in
the right half-plane, but is easily transferred to the disk and yields the results
about v described above. For example, if wy = 1 is the Denjoy-Wolff point of
and F(2) = (1+2)/(1 —2), then T = F oy o F~! will be a self-map of the right
half-plane with attractive fixed point at oco.
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Proposition 3. Suppose thaty has Denjoy- Wolff point wg lying in 0D, that v/ (wg) <
1, and that v is the Valiron function for ~v. Suppose that w extends to be differen-
tiable at wy with w(wp) =0 and w'(wp) # 0. Then, for every z € D and for every
v € D that is not a zero of v, we have

L (M) | v(e)
A () (o) ®

Proof. We interpret “w extends to be differentiable at wy” to mean that for some
€ > 0, w is defined on wy U (Dﬂ {z:]z —wo| < e}) and w(z)/(z — wp) converges

to w'(wp) as z — wp from within D. We have for z € D and v not a zero of v,

h(y"(2)) _ ’w(v[” (2)) v (v [n]( ))’
h(fy[n](v)) (,-Y[n () v ( ( ))
s Tl 7 (7))
w(y (v yrl(v)—wo n(z
SO o v/ (017(2)
W' (wo) v(2) 7' (wo) |”
w'(wo) ¥(v) 7' (wo)
v(z) 2
v(v)

Observe that when + satisfies the hypotheses of the preceding proposition
and is also univalent, then its Valiron function v is univalent as well (again by
Hurwitz’s Theorem), which means that v can vanish at only one point of I so
that the limit fact (7) is valid for all z € D and all but at most one v € D.

Note that if the hypotheses of either Proposition 2 or Proposition 3 hold,
then the conclusions of these propositions show that the partial order (2) used in
[2] takes the form

2

2

/

(as n — o0)

O

z=<wv ifandonly if |f(2)| < |f(v)],

where f is a nonconstant analytic function on D (either a Koenigs function or
Valiron function). In the next section we show that any such partial order satisfies
the regularity properties required to apply results from [2].

3. Regularity properties of <

Let f be defined on the open unit disk . Define the strict partial order < on D
by

z=v it [f(z)] <[f()l. (8)
Call a subset Y of D inner-filled relative to < provided that whenever v € Y and
z < v, then z € Y. For example, if v € D, then Y := {2z € D : z < v} is inner-filled
relative to <. Call a subset Y of D outer-filled relative to < provided that whenever
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v €Y and v < z, then z € Y. For example, if v € D, then Y :={z€D:v < z} is
outer-filled relative to <.

Let

pw=m/m

so that p is normalized Lebesgue area measure for D. We say that < is inner-reqular
with respect to p on D provided that for each set Y C D that is inner-filled relative
to < and each ¢ > 0, there is a v € Y such that y({z € D: z < v}) > pu(Y") — 0.
We say that < is outer-reqular with respect to p provided that for each set Y C D
that is outer-filled relative to < and each & > 0, there is a v € Y such that
p({z €D:v < z}) > u(Y) — 4. Finally, we say that < is regular with respect to
1 provided that it is both inner- and outer-regular with respect to p. We remark
that our regularity terminology differs from that in [2], where left-regular is used
instead of inner-regular and right-regular is used instead of outer-regular.

Suppose that f is nonconstant and analytic on an open connected set G C C.
Then it’s easy to see that f must take a subset of G having positive area measure to
a set of positive area measure. This follows immediately from multivalent change-
of-variables formulas such as [4, Theorem 2.32]. Here’s an alternate argument based
on the univalent change-of-variable formula. Suppose that A C G has positive area;
then since f’ has at most countable many zeros, there will be a point z € A that
is a Lebesgue-density point of A such that f'(z) # 0. Because f’(z) # 0 there is
an open disk D, centered at z of positive radius on which f is univalent. Because
z is a Lebesgue-density point of A, m(D, N A) > 0. We have

112 _
O</DzmAf| dm—/f(DzmA)dmgm(f(A)),

Hence we have the following.

Lemma 1. Let f : D — C be nonconstant and analytic on D. If E C C is such that
m(E) = 0; then u(f~1(E)) = 0.

Proposition 4. Suppose that f is nonconstant and analytic on D and < is defined
by (8). Then for every v € D,

p{zeD:z<vorv=<z}) =1 9)
Proof. Let veDandlet A={z€D:z<wvorv < z}. Note that
D\NA={zeD:|f(z)]=[f(v)[}

Since D\ A = f7H(|f(v)] : [{| = 1} and m({|f(v)] : [¢] = 1}) = 0, Lemma 1
shows that u(D\ A) = 0 and hence p(A) =1, as desired. O

Proposition 5. Suppose that f is analytic and nonconstant on D; then the partial
order defined by (8) is reqular with respect to .

Proof. Let Y C D be inner-filled relative to < and let § > 0. Choose a positive
number 7 with 7 < 1 such that u(Y N {z:|z| > r}) < /2. Set Y =Y NrD.
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Let s = sup{|f(v)| : v € Y} and note s is finite since Y C 7D and f is
continuous on 7D. Let (v,) be a sequence of points in Y such that (|f(v,)]) is an
increasing sequence with limit s. Note that

fYsD) DY (10)
Let n € N be arbitrary. Observe that

i (F716D)) =i (P @IID) = (1D (171 ) D))
= n(fUED), (11)

where E,, = (sD) \ (|f(vn)|D). Since |f(v,)| approaches s as n — oo, we see that
w(Ey) — 0 as n — oc.

We claim that u (f_l(En)) must also approach 0 as n — oco. Note that the
sequence (f~1(E,)) of u-measurable subsets of D) is nested:

f Y Euy1) € fYE,) for every n € N
and thus F := M52, f~(E;) satisfies

u(F) = Tim u(f71(B)).

n—oo

Note that if z € F, then |f(v;)| < |f(2)] < s for all j, which implies |f(z)| = s.
Hence F C f~1({¢s : [¢] = 1}). Since m({¢s : |C| =1}) =0, Lemma 1 shows that

(
p(F) = 0 and hence limy, oo (7 (En)) =0

Choosing ng € N sufficiently large, we have u(f~(E,,)) < §/2. Now using
(10) and the equality from (11), we have

p(Y) = p (71 (0ng)ID)) < 8/24 p(Y) = (F71(1f (vno)ID))
§6/2+u(f N ) “H(1f (vng) D))
:5/2+M(f 1( n))

and it follows that < is inner-regular since f~! (|f(vno)|]D)) ={zeY  :z<uvy}
and v, € Y.

The proof of outer-regularity is quite similar. Let Y C D be outer-filled
relative to < and let § > 0. Let v € Y be arbitrary. Observe that

Y O {zeD:v=<z}
{zeD: |fW)] < If()}
e\ )ID)) -

Let s = inf{|f(v)] : v € Y} and let (v,) be a sequence of points in ¥ such that
(If (vn)|) is decreasing and lim,, | f (v, )| = s. Let n € N. We have

“H{c\sp) 2 2 771 (C\ If)ID). (12)
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Now note that
u(F7HC\SD)) = (£ CNf(wa)D) = (FH(C\SD)\ (£ (C\IF (o)D) ) )
:N(f_l(En))ﬂ (13)
where E, = (C \ sD)\ (C\ |f(v,)|D) = {z € C: s < z < |f(vy)|}. Since |f(vy)]

approaches s as n — oo, we see u(E,) — 0 as n — oo.
Just as in the proof of inner-regularity, the sequence (f~1(E,,)) of u-measur-
able subsets of D is nested:

Y Eny1) € fYE,) foreveryn €N
and F := N52, f~(E;) satisfies
u(F) = lim pu(f7'(E)).
n—oo
If z € F, then s < |f(z)| < |f(v;)| for all j, which implies |f(z)] = s. Hence,
F C f71({¢s : [¢| = 1}). Since m({¢s : [¢| = 1}) = 0, Lemma 1 shows that
w(F) =0 and hence lim,, . i (f‘l(En)) =0.

Choosing ng € N sufficiently large, we have u(f~1(E,,)) < 6. Now using (12)
and the equality from (13), we have

W) = i (@ Fwn)ID) < w (FHCNSD)) — e (F7H(CN [ (on, ) D))

= M (fil(Eno)) <4,

and it follows that < is outer-regular since f~1(C\ |f(vp,)|D) = {2 € Y : v, < 2}
and v,, € Y. d

4. Main results

For the work of this section, we assume that v and w have the following properties:
w € L*(D), w is nonzero a.e. with respect to p, and ~y is a univalent self-map of
D such that w/y" € L*°(D). These assumptions ensure that T,  is a bounded
operator on L?(D) with dense range. As usual, set h = |w/4/|?>. Our work up to
this point has been directed toward application of the following result from [2],
which we state in the context of weighted composition operators on L?(D).

Theorem 1 (Theorem 3.2 of [2]). Suppose that the partial order (2) determined by
h is regular and such that for every v € D

p{ze€D:z<vorv=<z}) =1

Then (T}, ,yn) converges in norm for each backward minimal-vector sequence (yn)
for Ty ~.

The preceding Theorem, together with the work of Sections 2 and 3, yields
our main result.
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Theorem 2. Let v be a univalent self-map of D of Schréider or hyperbolic type,
having Denjoy- Wolff point wy; and let w extend to be differentiable at wy with
w(wo) = 0 and w'(wo) # 0. Then (T3, ,yn) converges in norm for each backward
minimal-vector sequence (yn) for Ty .

Proof. The work of Section 2 shows that under the hypotheses of this theorem, the
partial order < defined by (2) is determined by a nonconstant analytic function f
on D as in (8) of Section 3. Thus by Propositions 4 and 5 of Section 3, Theorem 1
applies and Theorem 2 follows. O

Here are two concrete examples to which Theorem 2 applies.

Ezample 1. Let f be the Koebe function, so that f(z) = z/(1 — 2)? and f maps
D univalently onto C\ (=00, —1/4]. Let v = f~! o (f/2) so that v is a univalent
self-map of D such that (D) is the slit disk D\ (=1, —3 + 2v/2]. Note that 7 is
of Schréder type, with wyp = 0 (and 4/(0) = 1/2). Note also that by the Koebe
Distortion Theorem |y/(z)| > ¢(1 — |z]|) for some positive constant c¢. Now let w be
defined piecewise by w(z) = z if |2| < 1/2 and w(z) = (1 — |2]) if 1/2 < |2| < 1.
Then w € L*®(D), w # 0 a.e. on D, and w is differentiable at 0 with w(0) = 0
and w'(0) # 0. Finally, the continuous function w/v’ is bounded on the compact
set {z : |z| < 1/2}; moreover, |w/+'| < 1/con {z:1/2 < |z| < 1}. Thus T, is
a bounded operator on L*(D) with dense range, and by Theorem 2, (T} \yy) is
convergent for any backward minimal-vector sequence (yy,) for T, .

Ezample 2. Take w(z) =1 — z and

224 (2~ 6)2 — 3 —2i
2) = 5o -
224+ (20 —2)z—7—2i

Note (1) = 1 while 7/(1) = 1/2 < 1. Also ~ is analytic on a neighborhood of
the closed disk and thus +/ is as well; in particular 7’ has continuous extension
to 1. Moreover, 7' has no zeros on the closed disk. Thus w/y" € L>(D) and T, -
is bounded (and has dense range since w(z) = 1 — z is nonzero a.e. with respect
to u). To see that + is univalent on D, observe that v(z) = F~1 oI o F, where
F(z)=(142)/(1—2)and I'(z) = 2z2+1+44i—1/(2+1). The function T is a self-map
of the right half-plane IT := {2z : Rez > 0} and I'"(z) = 2 + 1/(z + 1)2. Because
T’ has positive real part on II, we see that I" : II — II is univalent and that ~
is therefore univalent, being a composition of univalent maps. All the hypotheses
of Theorem 2 apply and (T}, ,y») is convergent for any backward minimal-vector
sequence (yy,) for Ty, -.

Corollary 1. Suppose that v : D — D is an analytic self-map of D that is univalent
and that one of the following holds:
(1) ~ is of Schroder type and v¥(D) C rD for some r <1 and k > 1, or
(IT) ~ is of hyperbolic type, v extends continuously to DU {wy}, where wy is the
Dengoy-Wolff point of v, and, for some k > 1, v[F(D) is contained in a
(proper) subdisk of D internally tangent to OD at wy.
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Suppose also that w extends to be differentiable at the Denjoy- Wolff point wg of
v, with w(wg) = 0 and w'(wp) # 0. Then Ty~ : L?(D) — L?(D) has a nontrivial
hyperinvariant subspace.

Proof. Theorem 2 shows that under either (I) or (II), images of backward minimal-
vector sequences converge. Moreover, it’s not difficult to show that if either (I) or
(IT) holds, then (y!"™) converges uniformly on I to wy. Moreover, because ¥’ extends
continuously to D U {wo}, h = w/’ extends continuously to wy and h(wy) =
0. Thus, by Theorem 4.3 of [2], Ty, is quasinilpotent. Hence the corollary is a
consequence of Ansari and Enflo’s result, Theorem AE. O

Observe that the preceding corollary is a natural generalization of Theo-
rem CFP, which applies when 7 is a non-automorphic linear-fractional mapping
of either Schroder or hyperbolic type. However, both of these invariant-subspace
theorems are more easily obtained as consequences of a much more general obser-
vation, which we state below in the context of subsets of the complex plane, with
area measure.

Observation: Suppose that X C C has positive area measure, that
v: X — X, and that w € L*(X) is such that T,  is bounded on
L?(X). If the range of v omits a subset E of X having positive
measure, then the kernel of T, , is nontrivial, containing, e.g.,
XE, and thus the kernel of Ty, . is a nontrivial hyperinvariant
subspace of Ty, ~.

Remarks. (1) If the weighted composition operator T, , : L*(X) — L*(X) de-
scribed in the preceding observation has dense range, then w is nonzero a.e. with
respect to m; and it’s easy to see in this case that T, , will be injective if and only
if m(X \ v(X)) = 0. (2) Note that the weighted composition operator described
in Example 1 above is injective and has the property that images of backward
minimal-vector sequences are always convergent. It would be of interest to prove
that such weighted composition operators must have nontrivial hyperinvariant
subspaces.
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Abstract. We give a definition of k-indefinite Toeplitz-Krein-Cotlar triplet of
Archimedean type, on an interval of an ordered group I' with an Archimedean
point. We show that if a group I' has the indefinite extension property, then
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interval of ', can be extended to a Toeplitz-Krein-Cotlar triplet on the whole
group I', with the same number of negative squares &.
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1. Introduction

The aim of this paper is to introduce a notion of operator-valued k-indefinite
Toeplitz-Krein-Cotlar triplets on an ordered group and to obtain some extension
results.

Usually the extension problem for k-indefinite functions has been considered
on an interval of the real line. Gorbachuk [18] proved that every continuous func-
tion, with x negative squares on (—a, a), can be extended to a continuous function
on the real line with the same number of negative squares. More information on
the extension problem for k-indefinite scalar-valued continuous functions, on an
interval of the real line, can be found in the paper of Krein and Langer [20].

The case of a positive definite function corresponds with x = 0. Krein [19]
proved that every scalar-valued continuous positive definite function, on an interval
of the real line, can be extended to a continuous positive definite function on the
real line. Also a scalar-valued positive definite function, defined on an interval of

Both authors were supported in part by the CDCH of the Universidad Central de Venezuela.
Communicated by J.A. Ball.
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an ordered group, can be extended to a positive definite function on the whole
group (see the book of Sasvari [22, page 105]). Additional information about the
extension problem for positive definite functions and k-indefinite functions can be
found in the historical survey [23].

The problem of the extension of an operator-valued k-indefinite function
defined on an interval of an ordered group was studied by the authors in [8],
where some extension results were obtained for ordered groups which satisfy an
Archimedean condition. The main purpose of this paper is to extend some of the
results obtained in [8] to Toeplitz-Krein-Cotlar triplets.

In our previous paper [6] a equivalence between a Naimark-type dilation of a
positive definite Toeplitz-Krein-Cotlar triplet and a commutant lifting theorem for
contractive representations of the ordered group was shown. Since there is a finite
number of negative squares version of the commutant lifting theorem [1], it would
be interesting to relate the results of our present paper to obtain a version of the
indefinite commutant lifting theorem on the ordered group setting, see also [3].

Also in [7] the case k = 0 of the result of the present paper is obtained
in the context of the commutant lifting application under the assumption that
the ordered group is semi-Archimedean as in the present paper. Later works for
the commutant lifting setting [4] and for the Toeplitz-Krein-Cotlar triplet set-
ting [9, 10] showed that, for the k = 0 case, this semi-Archimedean hypothesis
is removable. We cannot remove the semi-Archimedean hypothesis for the more
general case k > 0 since we use previous results of our paper [8]; in that paper the
Archimedean condition is used, among other things, to guarantee the continuity
of some isometric operators on an associated I, space. It is an open problem if
the semi-Archimedean hypothesis is removable for the k > 0 case.

It should also be pointed out that this ordered group setting leaves out a
lot of interesting examples. Thus if one tries to solve the two-dimensional moment
problem with moments specified in a general rectangle even with x = 0, the obvious
necessary conditions are not sufficient, and necessary and sufficient solution criteria
are much more complicated see [5, 17] as well as [15, 16, 11].

2. Preliminaries

Let (I',4+) be an Abelian group with neutral element Op. I is an ordered group if
there exists a set I'y C I' such that:

L+ =ry,  IyNETy) ={0r), LU =T
In this case if z,y € [ we write x <y if y—xe€l';, wealsowritexz <yifax <y
and z #y,s0 'y = {y €T :~ > 0r}. If there is not possibility of confusion, we
will use 0 instead of Op. When T is a topological group it is supposed that '} is
closed.
If a,b €T and a < b,

(a,b) ={r €Tl :a <z <b}, [a,b) ={z €T :a <z <b}, etc.
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If H is a Hilbert space, L(H) indicates the space of the continuous linear
operators from H to itself.

Definition 2.1. Let T" be an ordered group, a € T', a > 0, let (M, (, )») be a Hilbert
space and let xk be a nonnegative integer.
A function f : [—2a,2a] — L(H) is said to be k-indefinite if:
(a) f(x) = f(—=x)* for all x € [—2a, 24,
(b) for any finite set of points z1,...,z, € [—a,a] and vectors hq,...,h, € H,
the Hermitian matrix

(f(@i —zj)his hydn)i s

has at most x negative eigenvalues, counted according to their multiplicities,
and at least one such matrix has exactly s negative eigenvalues.

We will consider a special class of ordered groups, which satisfies an
Archimedean condition. For an ordered group I' the following definitions were
given in our previous paper [8].

It is said that 9 € I' is an Archimedean point if for each v € T there exists
a positive integer n such that nyg > .

It is said that T' is semi-Archimedean if ' is an ordered group and if it has
an Archimedean point.

Let a € T, a > 0 and a, € (0,a]. A function f : [-2a,2a] — L(H) is said
to be k-indefinite with respect to a, if it is k-indefinite and if for some choice of
neN, z1,...,2, €[—a,a—ag] and hy,..., h, € H, the Hermitian matrix

((f (@i — zj)hi, hy)w) =

has exactly k negative eigenvalues, counted according to their multiplicity. If " is
semi-Archimedean, it is said that f is of Archimedean type if it is k-indefinite with
respect to some Archimedean point.

Definition 2.2. It is said that the ordered group I has the indefinite extension prop-
erty if T is a locally compact Abelian semi-Archimedean group and the following
holds:

If H is a Hilbert space, a € T, a > 0 and f : [—2a,2a] — L(H) is a weakly
continuous k-indefinite function of Archimedean type, then there exists a weakly
continuous x-indefinite function F': I' — L(H) such that F|[_g, 24 = [

The groups Z and R have the indefinite extension property, see Theorems 5.5
and 5.6 in [8].

Also, in our previous paper [8] it was shown that if a group I' is semi-
Archimedean and it has the indefinite extension property then I' x Z, with the
lexicographic order and the product topology, has the indefinite extension prop-
erty. As a corollary it was obtained that the groups Z" and R x Z™ have the
indefinite extension property.
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3. Toeplitz-Krein-Cotlar triplets

In the following I' is an ordered group, Hi,H2 are Hilbert spaces and L(Hq,Hg)
stands for the space of the continuous linear operators from H, to Hg (for o, 5 =
1,2).

Let 1 be an interval of the form [0,d], where d € T, d > 0or Q1 =T

Definition 3.1. A Toeplitz-Krein-Cotlar triplet, C, on (I',Q1, H1, Hz2) consists of
three functions

CaﬁQa_Qﬁ_)L(HOUHﬂ) aaﬁ:172;a§ﬁa

where Q2 = — Q1.
If C is a Toeplitz-Krein-Cotlar triplet we define Co1(y) = Cia(—7)* for

v E Q2 — Q1.

Remark 3.2. Toeplitz-Krein-Cotlar triplets were introduced in [10] as a particular
case of Toeplitz-Krein-Cotlar forms, according to the definition given in [2] and
it is related with the concept of generalized Toeplitz kernels introduced by Cotlar
and Sadosky in [14], where a generalization of the Herglotz-Bochner theorem for
such kernels and applications to the Helson-Szego theorem were obtained.

Toeplitz-Krein-Cotlar forms have been usually considered in the positive def-
inite case. We are going to consider the indefinite case.

Definition 3.3. We shall say that the Toeplitz-Krein-Cotlar triplet

C on (I'Qi,Hi, Ha)

is k- mdeﬁmte 1f for any finite sets of points a:( ) . ,xg) € Qn, xf), e ,:13512) € Q2
and vectors h1 R h%l) € Hi, h1 ey hgl € H2 the Hermitian matrix

[(Cn@! —afn hV), |

2 1y, (2 1 "
[ - @ O, |

e

[<012( W 2P P, } ,

ij=1

[ (Coa(a? — )P 1P, |

ij=1

has at most k negative eigenvalues, counted according to their multiplicities, and
at least one such matrix has exactly x negative eigenvalues.

As in [8] it will be convenient to consider intervals of the form [—2a, 2a].

Definition 3.4. Let I' be an ordered group, let a € T, a > 0 and a, € (0,a]. A
Toeplitz-Krein-Cotlar triplet on (T, [0, 2a], H1, H2) is said to be k- indeﬁm'te with

respect to a, if it is k-indefinite and if for some choice of n € N z; ) (1)
[0,2a — a,), 1:(1 ), cee 22 e € [-2a, —a,] and vectors hg ), .. h(l) € Hai, h(2)
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hg) € Ho the Hermitian matrix

Len@ — D W0 | [ (Ca@® — P 1), |
Jj=1

ij= i.j=1

n

[<012( (1) x§_2>)h§1)7h§_2)>7{2]] 1 [<022( ) _ (2))h(2),h§2)> 2} -

iyj= i,j=
has exactly x negative eigenvalues, counted according to their multiplicity.
If T is semi-Archimedean, we will say that C is of Archimedean type if it is
k-indefinite with respect to some Archimedean point.

Lemma 3.5. Let C be a Toeplitz-Krein-Cotlar triplet on (T, [0, 2al], H1,Ha) and let
f:[—2a,2a] — L(H1 ® H2) be defined by
Fy) = Cu(v)  Cauly—2a)
Cia(y+2a)  Cn(v)
Then

(i) The triplet C is k-indefinite if and only if the function f is k-indefinite.
(ii) The triplet C is of Archimedean type if and only if the function f is of
Archimedean type

Proof.
(i) Consider n € N, y1,...,yn € [—a,a], g1,...,9n € H1 & Ha and let

A= [ (f(yp - yq)gpvgq>’H1€9’H2 ]”

pg=1"
If & = [wi,...,wn] € C" and ? = Wi, Wny W1, .., Wy, a calculation
shows that L o
<Awﬂ w) <B£7 £>C2"7 (31)
where
[<Cn(x§” SIS } [ Cor (2 — 2D a1y, } .
B= ,
[<012(x§1) — 2t ))h(l) h(2 } [ Coo(x @ _ 2))h£2),h§-2)>7{2] -
4,j=1 4,5=1
(1) =y;+a, x(2) =y; —aand h ) e Hi, h 52) € Hy are such that g; = h(l) &) h(2)

forlgzgn

On the other hand for m € N, 2V .. 2 € [0,24], 2?,..., 2% € [-2a,0],
pY RS e Hy, B R € Hy et

[(Ch( 1 _ ('1))hz('1)vh§1)>H1Lj:1 {(Cgl( @) _ (1))hl(2)’h§'1)>ﬂl}ij:1
D=
|:<012(z7;(1) _ Z]<2))hz('l)’ h§2)>H2L,j:1 {<022(2i(2) _ ZJ(Z))}LE?), h§2)>H2L,j:1
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N
If A\ = [)\1, cery )\gm} € C?™ a calculation shows that

(DX, X)ezm = (EX, X)can, (3-2)
where
E= [ <f(§p —Cg)hp, hq>7—t1ea7-t2 ];2:;:1 ’
Gp=2"—a h=hrV®0 fl1<p<m
and

Cp:ZZ(f,)m%‘a, hp:(]@hl(){)m ifm+1<p<2m.

Equations (3.1) and (3.2) show that C is k-indefinite if and only if f is k-
indefinite.
(ii) It is enough to note that

Yy Yn € [—a,a — a,]
if and only if
gcgl), ozt e0,2a —a,] and ajgz), cz? e [~2a, —a,)
and
Clye vy Com € [—a,a — ay)
if and only if zil), cey POoNs [0,2a — a,], 252), cey 22 e [—2a, —a,). O

4. Extension result

Theorem 4.1. Let I' be a group that has the indefinite extension property and let
‘H1,Hs be a pair of Hilbert spaces.

If C = (Cup) is a weakly continuous k-indefinite Toeplitz-Krein-Cotlar triplet
on (I',]0,2a], H1, Ha) of Archimedean type, then there exist a weakly continuous
k-indefinite Toeplitz-Krein-Cotlar triplet V.= (Vo) on (I, Ty, H1, Hz2) such that

Caﬁ(7) = Vaﬁ(P)/) for Y€ Qa - Qﬁ;
where Q1 = [0,2a] and Q2 = [—2a,0].

Proof. Let f be as in Lemma 3.5, then f is a weakly continuous k-indefinite
function of Archimedean type. Since I' has the indefinite extension property there
exists a weakly continuous k-indefinite function F' : I' — L(H; @ H2) such that
F|[72a,2a] = f

Let

i1 Fy
F=
{Fm Fo
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the representation of F' with respect to the decomposition Hi @ Hs and let V =
(Vap) the Toeplitz-Krein-Cotlar triplet on (I',T'y, H1, H2) defined by

Vii(y) = Fii(y) for y € T

Vo1(y) = Fo1(y + 2a) for v € —T'4
Via(y) = Fia(y — 2a) for y € T'y
Vaa(y) = Faa(y) for y € T

We have that F extends f, so V extends C. Also equation (3.1) holds for F'
instead of f, for (V,g) instead of (C,p) and for xgl), . x;” ely, x§2), ... ,xf) €

—I';. Since F'is k-indefinite we have that the triplet V = (V,3) is k-indefinite. O

5. Generalized Toeplitz kernels with real parameter

Scalar-valued generalized Toeplitz kernels with real parameter were considered and
an extension result was given in [12, Theorem 5.1]. Our approach can also be used
to obtain an operator-valued extension of this result.

Let H; and Ho be Hilbert spaces and let a be a positive real number. An
operator-valued generalized Toeplitz kernel on I = [—a,a] or I = R is a func-
tion ¢ with domain I x I such that there exist four functions ¥.p : Io — Ig —
L(Ho,Hp) «, f=1,2, such that

U(@,y) = Yap(® —y)
for every (z,y) € Iy x Ig for o, = 1,2, where Iy = I N [0,400) and Iy =
IN(—00,0).
As usual, it is said that the kernel ¢ is k-indefinite if
(a‘) 7/}(1‘734) = 7/}(755’ 7y)* for all (x,y) erlx Ia
(b) for any finite set of points z1,...,x, € I and vectors hq,...,h, € H, the
Hermitian matrix
has at most k negative eigenvalues, counted according to their multiplicities,
and at least one such matrix has exactly x negative eigenvalues.

The generalized Toeplitz kernel 9 is said to be weakly continuous if all the
functions 1y, are weakly continuous.

Theorem 5.1. Fvery operator-valued weakly continuous k-indefinite generalized
Toeplitz kernel on an interval of the form [—a,a] can be extended to a weakly
continuous k-indefinite generalized Toeplitz kernel on the real line R.

Proof. We will follow the same idea of the proof of Theorem 4.1, with some mod-
ifications because 0 is not in the domain of 115.
Let ¢ : (—a,a) — L(H; & Hz) defined by

| Yuly)  va(y—a)
e = yaly+a)  Gaal()
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As before it can be proved that ¢ is a weakly continuous k-indefinite function
on (—a,a). From Theorem 3.5 of [13] it follows that ¢ can be extended to a weakly
continuous k-indefinite function on the real line R; using the same idea of the proof
of Theorem 4.1 the extension result is obtained. g
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Multivariable Weighted Composition
Operators: Lack of Point Spectrum,
and Cyclic Vectors

Isabelle Chalendar, Jonathan R. Partington and Elodie Pozzi

Abstract. We study weighted composition operators T, on L2([0, 1]¢) where
d > 1, defined by

Towf(x1,...,2q) =w(x1,...,zq0)f{z1 + a1}, ..., {xa + aa}),
where a = (au,...,aq) € R and where {.} denotes the fractional part.
In the case where « is an irrational vector, we give a new and larger
class of weights w for which the point spectrum of T, ., is empty. In the case

of a € Q% and w(x1,...,24) = x1...2q, we give a complete characterization
of the cyclic vectors of Ty ..

Mathematics Subject Classification (2000). Primary: 47A15, 47A10, 47A16.
Secondary: 47B33, 47A35.

Keywords. Weighted composition operator. Invariant subspace. Point spec-
trum. Cyclic vector.

1. Introduction

We study weighted composition operators T, on L2([0,1]%) where d > 1, defined
by:

Towf(@1,...,2q) =w(@1,...,za)f{z1 +aa}, ..., {za + aa}), (1)
where @ = (o, ..., a4) € R? and where {.} denotes the fractional part. These are
said to be of Bishop type, and in the case of one variable, the T}, ., where w(z) =z
and a € R\Q were introduced by Bishop as potential examples of operators with no
nontrivial invariant subspace. In 1974 Davie [7] proved two significant results about
them (still with w(z) = x): (1) if & is not a Liouville number, then T, has nontrivial
hyperinvariant subspaces; (2) if « is irrational, then T, has no point spectrum, and
thus the hyperinvariant subspaces are not simply eigenspaces. Since then, there

Communicated by J.A. Ball.
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have been several further contributions and generalizations of this result. Blecher
and Davie [2] proved that the same conclusion holds if w is a continuous func-
tion with no zeros on [0, 1) whose modulus of continuity x satisfies the condition
fol #dt < oo. MacDonald [9] considered operators T, ., : L*([0,1]) — L3([0,1])
of the form (Ty,o f)(2) = w(x) f({x + a}) where w € L>([0,1]) and o € R\Q, and
proved the existence of nontrivial hyperinvariant subspaces in the case where w is
a function analytic in some neighbourhood of [0, 1]. A multivariate version of this
result was then proved by MacDonald [10] for operators T, ., on L%([0,1]¢) given
by (1).

More recently, Chalendar, Flattot and Guillotin-Plantard [3] obtained an
extension of Davie’s result on the lack of point spectrum for a general class of
multivariate Bishop-type operators, and also characterized the spectrum for the
case of a general d > 1, with « an irrational vector, where the weight w has the
form

w1, ..., zq) =wi(z1) ... w(xq),
and each w; is a positive, convex and increasing function in L*°([0, 1]).

The present paper extends these results in various ways. In Section 2 we
show the non-existence of the point spectrum of T, ,,, in the case where d = 1,
a is in R\Q and w is a positive and an increasing function such that the growth
of logw is bounded below, which generalizes the “standard” case of an increasing
and convex weight. Then in Section 3, we generalize this result to the general
multivariable case (d > 1) with « equal to an irrational vector. First, we study
a weight w on [0,1]4, d > 2 having the form w(z1,...,24) = wi(z1). .. wa(xq),
where each w; satisfies the same hypothesis as in the one-variable case. Second, we
consider w a positive function on [0,1]¢ such that for (z1,...,74), (y1,...,%4) €
[0,1]¢, whenever w(xy,...,24) = w(y1,...,Ya), then there exists a permutation
o= le Z(i) such that (a,,...,2:,) < (Yi,,--.,¥:,) for the lexicographic
order. Finally, in Section 4, we give a characterization of cyclic vectors of Ty, :
L2([0,1]¢) — L%(]0,1]%) for d > 1, where a € Q¢ and w(x) = x1...24 on [0,1]%,
distinguishing the case where a;, i € {1,...,d} do not have the same denominator
and the case where ay, ¢ € {1,...,d} have the same denominator.

The methods employed to study weighted composition operators of Bishop
type draw on measure theory, ergodic theory and some number theory; this is in
contrast to the study of (weighted) composition operators on spaces of holomorphic
functions [6, 11], where tools from complex analysis have been found useful.

We now give some precise definitions and notation. In the sequel, if x is in
[0,1]¢ where d > 1, and « is in R?, we will denote the vector ({z; +a1},..., {za+
agq}) by {x + a}. Recall that a vector a = (av,...,aq) is an irrational vector if
(1,a1,...,aq) is linearly independent over Q. Moreover, for T' a bounded linear
operator on a complex Banach space X, a vector f € X is a cyclic vector for T if

Orb(T, f) :={P(T)f: P e C[X]}

is dense in X. We shall use p to denote Lebesgue measure.
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2. The single-variable case

Proposition 2.1. Let w be a positive function on a sub-interval I of the real line.
Suppose that there exists 6 > 0 such that for all c,d € I,

log(w(d)) — log(w(c))
d—c

> 4, (2)
then, for all 8 € (0,1/2), we have
pl{te T —wit)] < 0}) <

Proof. First take s # t such that w(s),w(t) € [1 — 8,1+ (]. By hypothesis, we
have

4p
T.

1+ 8
1-p

Now, note that using the mean value theorem, for all v > v, we have

(u—v).

0ls —t| < |logw(s) — logw(t)| < log

log(1 —log(1 <
og(1 +u) — log( +v)_1+v

Therefore we get

s —t] < ——=- < . O

Corollary 2.2. Let § > 0 and suppose that w is differentiable and satisfies ‘lt:((tt))” >0
on a real sub-interval I. Then, for all § € (0,1/2), we have

p{te -] < B) < 2.

Proof. The result follows from Proposition 2.1, since we clearly have (2) by the
mean value theorem. ]

Example 2.3. Let P C L*°([0,1]) be the class of functions P on [0, 1] such that

P(z) = CH(x — ;)% for some so,...,s, € Ry and a constant C, with z; € [0, 1]
=0

fori = 0,...,n. Operators of Bishop type associated with a weight in P are studied

in [1] and this is called the class of “generalized polynomials”. If w € P, then w

satisfies the conditions of Corollary 2.2. In particular, w(t) = v/t € P is not an

admissible function in the sense of [3] or [5].

Proposition 2.4. Let 0 = ag < a1 < --- < ay = 1 and suppose that w is a positive
and increasing function on each interval (ag, ary1) fork =0,..., N —1, satisfying
(2) on each interval. Let § € (0,1/2), a« € R\ Q and XA € C\ {0}. We write for all
n>1,
1 ,
Fn(t) = >\_n H w({t - ]a})'

j=1
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Then,
43N
ul{t 1 - |Fa(o)] < B < 5
Proof. First, note that we can partition (0,1) into at most n/N subintervals such

that if ¢ and d belong to the same subinterval, then {c¢ — ja} and {d — ja} are in
the same subinterval of the original partition for each j = 1,...,n. It follows that

log(w({d — ja})) = ) log(w({c —ja}))
10g|Fn(d)‘ _10g|Fn<C)‘ ; Jz:;

d—c i
B Z log(w({d - ja})) ~ loglutfe — ja})
> né.

Thus, on each subinterval |F,,| satisfies the hypothesis of Proposition 2.1, with §
replaced by nd. Using Proposition 2.1, we get
4PN

O
0

p({t € 0.1): 11~ [Eu(0]] < 8)) < 2 vm

The proof of the next result uses ideas from the proof of Theorem 2 in [7].

Theorem 2.5. Let « € R\Q and suppose that w satisfies the hypothesis of the
Proposition 2.4. Then,

0p(Tow) =92

Proof. Suppose that the point spectrum of T, , is not empty. Then, there exist
A € C and nonzero f € L?([0,1]) such that Th o f = Af.
e If A = 0, then, since w is positive, it follows that f = 0 on [0, 1], which is
impossible.
e Now, suppose that A # 0. By Dirichlet’s theorem, there are two sequences
(Pk)k>1, (qr)k>1, such that

< —

Pk
o — =

gk

and lim g = oo.
k—o0

By Lusin’s theorem, for every ¢ > 0 there is a (uniformly) continuous function

g that equals f on the complement of a set of measure at most . Since g(x) —

g({zx—qral) P 0 uniformly, it follows easily that f(z) — f({x — qra}) — 0
—00 — 00

in measure (similar arguments can be found, for example, in [3, p. 355-356]). Hence

for all B, >0 p({e € [0,1]: |f({a - qua}) — F(@)] > B)) <.
for k sufficiently large.



Multivariable Weighted Composition Operators 67

Suppose that 3 € (0, %) such that g < 5%, andn=1-— %, where ¢ is as

given in condition (2). We can construct a subsequence of (g ), which we continue
to call (g )k, such that:

forall k>1, pu ({x €[0,1]: |f({z — qra}) — f(z)] < %}) >1-19.

By hypothesis, we have:
[z = qua}) = AT f ({2 — ara}) = Fe(z)f(2),

where Fj(x) = A\~% H w{z —ja}).
j=1

48N
Using Proposition 2.4, we know that p({t: |1 — |F,(t)|| < 8}) < ﬁT
Since |f(z) — f({z — qra})| = |1 = Fi(2)| [f(2)] and [f({z — qra}) = f(2)] <
on a set of measure greater than 1 — 7, it follows that for all £ > 1, we have

|f(x)| < 1 on a set of measure greater than ’BT.

Eadies

The ergodicity of the transformation x — {z+a} implies that f =0on [0,1]. O

Remark 2.6. In [2], the authors study Bishop-type operators whose continuous
and positive weight w satisfies the following condition

1
/ $t) dt < oo, where o(t) = sup |logw(z)—logw(y)l. (3)
o le—y|<t
Unfortunately, there is no link between condition (3) and condition (2). Indeed,
for w(t) = e!" where k > 1, (2) is not satisfied but (3) is satisfied since ¢(t) < kt.
On the other hand, for w(t) = " where 0 < k < 1, (2) is satisfied with 6 = k but
(3) is not satisfied since ¢(t) > kt*F~1.

Nevertheless, since (3) is satisfied when SUD, pe[0,1]a£0 M < 00,
it follows that whenever there exist positive numerical constants C7, Cs such that
logw(a) — logw(b)

a—1b
then 0p(Thw) = @ and Ty, has nontrivial hyperinvariant subspaces for non-
Liouville irrational o.

C, <

< Cqy

3. The multivariable case

Theorem 3.1. Let o = (a1, ..., aq), where d > 2, be an irrational vector and sup-

pose that w is a function of L>=([0,1]%) such that for all x = (x1,...,74) € [0,1]4,
d

w(z) = le(xz) where w; € L*([0,1]), ¢ € {1,...,d} satisfies the conditions of

i=1
Proposition 2.4. Then,
op(Tow) = 2.
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Proof. Suppose that the point spectrum of T, is nonempty. Then, there exist
A€ C and f € L%([0,1]%) such that Ty o f = \f.
e If A\ = 0, then, since w is positive, it follows that f = 0 on [0, 1]¢, which is
impossible.
e Now, suppose that A # 0. By Dirichlet’s theorem, for ¢ € {1,...,d}, there
are two sequences (pg,i)k>1, (qk)k>1 such that

1
= 7z
qy ¢

_ Pri
gk

i

and lim ¢ = oo.
k—oo

Using Lusin’s theorem again, as in the proof of Theorem 2.5, we have: f(z)—
f{z - qra}) — 0 in measure. So,

for alle,n >0, p({ze€0,1]%: |f({z —qra})— f(z)] >e}) <n

for k sufficiently large.

Suppose that 8 € (0, %) such that 8 < % andn=1-— (%)d, where ¢ is
as in Condition (2). We can construct a subsequence of (gx)x, which again we call
(qk)k, such that:

forall k>1, p ({.’E €10,1]: |f{z — qxa}) — f(2)] < %}) >1—n.
By hypothesis, we have:

fRz —qea}) = A7 TE f({2 — ara}) = Fr(x)f(2),

qk qk d
where Fy(z) = A" [Jw({z — ja}) = A [ [ [[wi{zi — jou}).
j=1 j=1i=1
qk qk
Let fi(x1) = A% [Jwi({21 — jon}) and fi(w:) = [Jwil{zi —jei}), i €
i i—=1
{2,...,d}. ’ ’
By Proposition 2.4, we have, for i € {1,...,d},
46N
(s € 0,117 1~ |faGe)l < B) < 2

So, fori € {1,...,d}, 1 — B < |fi(z;)| <1+ 3 on a set of measure less than
46TN and |1 — |Fi(z)|| > (1+ )¢ — 1 on a set of measure greater than 1 — (MTN)d.
Since | f(z) — f({z — qra})| = |1 = Fi(2)[ | f(2)] and | f({z — gra}) — f(2)] <

d
7(1H2 —L on a set of measure greater than 1 — 7 = (MTN)‘I, it follows that for all

k>1,|f(z)] < % on a set of measure greater than (%)d(Sd —44).
It follows that f = 0 on a set of measure greater than (BTN)d(5d —49) > 0;
the ergodicity of the transformation = + {z + a} implies that f = 0 on [0,1]¢,

which is impossible. O
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Proposition 3.2. Let w be a positive function on a domain D C R?. Suppose that
there exists 6 > 0 such that for all (c1,c2) and (dy,ds) € D,

|log(w(c1, c2)) — log(w(dy, d2))|
[[(d1, dz2) — (c1, c2)l|2
then, for all 8 € (0,1/2), we have

>0, (4)

852
p{(s,t) € D: 1 —w(s, )] < B}) < =5
Proof. First take (s1,$2) # (t1,t2) such that w(sl,SQ),w(tl,tg) el1-p,1+0.
By hypothesis, we have
1+
1-3
Using the mean value theorem as in the single-variable case, we have

1 26 l’
-84~

3ll(s1,82) = (t1, t2)[l2 < [logw(si, s2) —logw(ty, t2)| < log

[[(s1,82) — (t1,t2)[[2 <
and
16 _ st
202 52

862

1
|(s1 —t1)(s2 — t2)| < §||(51a52) — (t1,12)]13 <
So, we get

p({(s,t) € D[l —w(s,t)] < p}) < .

Corollary 3.3. Let § > 0 and suppose that w is dzﬁer@ntmble, positive and satisfies
duh) > 5|\, for h € R? and u € D C R2. Then, for all 3 € (0,1/2), we have

w(w)

W({(5,1) € D+ |1 w(s, ] < B)) < o

Proof. Using Taylor’s theorem with the integral remainder term, we have, for
c=(c1,c2) € D,h € R,

[log(w(c+ 1) —log(w(e))] _ Jy dlogow)erm(W)dt _
Thll2 Tl =

so w satisfies (4). O
Example 3.4. Let w : (z1,22) — /&1 + 2 + 2. Then, w satisfies (4) on [0, 1]%.
Indeed, let = = (21, 72),h = (h1, ha) € (0,1]%. We have:

1 dy (1) Il
dwy(h) = ——————=(h ho) = > .
) = S g ) = 00 Seupepay w@)

So, w satisfies the hypothesis of Corollary 3.3 on (0,1]? and so, the condition (4)
n (0,1]2. Suppose that (c1,ca) = (0,0) and take (d1,ds) € (0,1]%
The function
log(1+ %)

frxe (0,4 — o
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is decreasing. This implies that:

2 |log(2) — log(vAi +d3 +2)| _ log(1+ %)

for all  (dy,d2) € (0,1] di + do 2

So, w satisfies (4) on [0, 1]2.

Definition 3.5. Let (R?, <) and (R, <) be ordered sets, where < is the usual real
order. A function f : R? — R is increasing if

forall z,y € R? z=<y= f(z) < f(y).

Proposition 3.6. Suppose that w € L>([0,1]2) is a positive and increasing func-
tion in the sense of Definition 3.5 on each cube (ay,art1) X (b, bi41) for k,l =
0,...,N — 1, satisfying (4) on each cube. Let 3 € (0, %), a an irrational vector
and A € C\{0}. Forn > 1, let

n

Fals,t) = 5 [T s — jon}, {1 — jao))

j=1

Then
832 N?

p({(s,t) € 10,1)%: [1 = |Fu(s,t)|| < B}) < 52

Proof. As in the single-variable case, one can partition (0,1)? into (nN)? cubes
such that if ¢,d € [0,1]%, ¢ < d, then, for all j = 1,...,n, {c¢ — ja} < {d — ja}.
Then, we have:

" log(w({d — jo})) — > log(w({e — ja}))
10g|Fn(d)| _IOgan(C)| Jz::l Jz::l

|d = cll2 |d = cll2
_ - log(w({d — ja})) —log(w({c - ja}))
-2 [d—l.
§ nd.

%: using the condition (2) with w o g;, where g; : x — {z + ja}.

Then, on each cube, |F,| satisfies the hypothesis of Proposition 3.2 with nd
instead of §. So,

832 N2
52

2
({(s,0) € 0,121 = |Fu(s, )l < D) < oo = 255 o
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Example 3.7.
1) Consider the following total order on [0, 1] x [0, 1]:

1tz < Y1+ Y2
(r1,22) 21 (y1,92) f Sx14+22 = Y14y and z1 <y

1 =1y and xy=ys.
Let w(x,y) = v/ +y+ 2. Then, w is positive, increasing with respect to =<3
on [0,1] x [0,1] and satisfies the condition (4) by Example 3.4.

2) Let C' > 0. One can also consider the total orders on [0, 1] x [0, 1] denoted by
=p,c, p > 1 and defined by

(X1 +C)P + (z2+C)?
<+ O+ (g2 +C)
or

(z1,22) Zp.c (Y1, 92) ifS (21 + O + (22 + O)F
=(y1+C)P 4+ (y2+ C)? and 21 < y1

or

r1=9y1 and xz9=1yo.

The function w : (21, z2) — (21 +C)P 4 (22 + C)? is increasing relative to the
order <, ¢ and satisfies the hypothesis of Corollary 2.2. Indeed, w is clearly
an increasing function relative to <, ¢. Letting (z1,22), (h1, ha) € [0,1]?, we

have
dw(z, o) (M1, h2)  plzy + C)P7 hy + plaa + C)P~Lhy
w(z1,22) w(z1,22)
pll(h1, ko)1
= op+1

Proposition 3.8. Suppose that w € L*([0,1]?) is a positive function such that for
all (‘TlazQ) and (y17y2) € [Oa 1]27

1 <Y1 or (x1=vy1 and xz3 <yo)
w(z1, z2) = w(yi, y2) = or (5)
Lo < Yo or (ra=vy2 and 1 <y1)

and satisfying the condition (4) on each cube (ag,ars+1) X (b, bi41) for k,1 =
0,...,N—1. Let 3 € (0,%), a an irrational vector and X\ € C\{0}. Forn > 1, let

Fals0) = 5 [ s = jarh {t = jas})
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Then,
832N?
p{(s:) € 0,17 1= [Fu(s, )] < BY) < —5—
Proof. Note that if we consider the relation on [0, 1] x [0, 1] defined by (x1,z2) =
(y1,92) if:

w(T,22) < w(y1,y2)

or
1 <y1 or (r1=y1 and z3<ys2)
w(r1,22) = w(y1,y2) and or
o <yz or (ze=y2 and x1 <yi)

then by (5), we have that < is a total order on [0,1]? and w : ([0,1]2, %) — (R, <)
is increasing in the sense of Definition 3.5. As in the single-variable case, one can
partition (0,1)? into (nN)? cubes such that if ¢, d € [0, 1]? with ¢ < d, then for all
j€{1,...,n} one has {¢ — ja} < {d — ja}. Then, we have:

log(w({d — ja})) = ) log(w({c —ja}))
log | (d)| — log | Fi(c)| Jz:; JZ:;

ld — |2 ld — |2
_ e log(w({d — ja})) —log(w({c — ja}))
> [d= el
; no.

%: using the condition (2) with w o g;, where g; :  — {x + ja}.
Then, on each cube, |F),| satisfies the hypothesis of Proposition 3.2 with nd instead
of §. So,

832 832 N2

p({(s.0) € 0P [1 = |F(s. DI € ) € iz (V) = T—. O

Proposition 3.9. Let w be a positive function on a domain D C R?, d > 2. Suppose
that there exists 6 > 0 such that, for all (x1,...,24) and (y1,...,y4) € D,
|10g(UJ(Z1, cee 7Id)) - log(w(yla R yd))| > 6, (6)
(1, 2a) = (Y1, ya)lla
then, for all 8 € (0,1/2), we have

w({(z1,...,2q) € D: |1 —w(z1,...,2q)|) <0} < —=

Proof. Take (x1,...,24) # (y1,--.,yd) such that w(z1,...,24) and w(y1,...,yd)
are in [1 — 3,1+ §]. By hypothesis, we have

1+
1-8"

5||(I1,...,Id)—(y17.. '7yd)||d < |logw(z1,...,xd)—logw(yl,. '~7yd)| < 10g
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Using the mean value theorem as in the single-variable case, we have

1 28 4p
ce. — R << —.
||($17 ,{L'd) (yh 7yd)||d > 1*/6 s =5
and using the inequality of arithmetic and geometric means, we have:
d 1 J 4d d
g(xz —yi)| < E”(mla v ) = (Y1, ¥a)llg < 250
So, we get:
4d,6d
p{(er ) €D L= wlon, o za) < AY) € = C

We now give an analogous version of Corollary 3.3 in dimension d > 2.

Corollary 3.10. Let § > 0 and suppose that w is differentiable, positive and satisfies
dwy(h)/w(u) > S|k, h € R4 u e D C R Then, for all 3 € (0,1/2), we have
4dﬂd
dse

Using similar arguments, one can prove the following result in the case of d
variables, d > 2:

w({(@r, ... 2) €D i |1 - wlan,...,xa) < BY) <

Proposition 3.11. Let w € L>=([0,1]%) be a positive function satisfying (6) on each
cube (ag,ak4+1) X (b, by41), with k,1=0,..., N — 1. Suppose that for (z1,...,2q)

and (y1,-..,ya) in [0,1]%, whenever w(xy,...,24) = w(yi,...,ya), there exists a
. 1 ... d

permutation o = { ; ) such that (i, ..., %i,) < (Yirs--.,Yi,) for the
e g

lezicographic order. Let 8 € (0,%), o an irrational vector and A € C\{0}. For
n>1, let

n

1

Fo(z1,...,2q) = 0 jl;[lw({xl —jor}t, .. {xa — jaa}).
Then,
p({(@1,...,2zq) €10, 1] 1 —|Ey(x1,...,24)|| < BY) < 4d§;i\[d
Theorem 3.12. Let o = (au,...,aq) be an irrational vector and suppose that w

is a positive function of L°°([0,1]?) satisfying condition (6) and the hypothesis of
Proposition 3.11. Then,

op(Taw) = @.
Proof. Suppose that the point spectrum of T, , is not empty. Then, there exist
A€ C and f € L%([0,1]%) such that T, o f = \f.

e If A\ = 0, then, since w is positive, it follows that f = 0 on [0, 1]¢, which is
impossible.
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e Now, suppose that A # 0. By Dirichlet’s theorem, for ¢ € {1,...,d}, there
are two sequences (pxi)k>1, (¢x)r>1 such that:
1
< T
9y ¢

_ Pri
qk

Qg

and klim qr = 00.
Using Lusin’s theorem, we have: f(x)— f({z — qxa}) — 0 in measure. So,
—00

forall e,n>0, p({ze[0,1]’: [f({x—aua}) - fx)] >e}) <n.

Set 0 < C < dfl/d. Suppose that 3 € (0,%) such that 8 < C‘S—N and =

where § is as in condition (6). We can construct a subsequence of

}) >1—-n.
By hypothesis, we have:
fz —ara}) = AT, f({2 — ara}) = Fr(2)f(z)

d
CNp
1- (&2

(g )k, which will still be called (gx)x such that:

>

forall k>1, pu ({x € [0,1]%: |f({z — qra}) — f(z)| <

9k

where Fj(z) = A\~ % H w{z —ja}).
j=1

By Proposition 3.11, we have

4dﬁde
pllr € 0,1 1= [Fu@)l] < 5) <~
Since | f(z) — f({z — qra})| = [1 = Fi(2)| | f(2)] and |f({z —qra}) — f(2)] <
% on a set of measure greater than 1 —n = (%)d, it follows that for all £ > 1,

d
| f(z)] < 1 on a set of measure greater than ﬁTN) (% - Cd).

d
It follows that f = 0 on a set of measure greater than (%) (% — C’d) > 0;

the ergodicity of the transformation z — {2 +a} implies that f = 0 a.e. on [0, 1]¢,

which is impossible. O

4. Cyclic vectors for T, o € Q¢

It is easy to see that, if a € Q% the Bishop operator T, has many non-trivial
invariant subspaces. A full description of the lattice of invariant subspaces for the
case d = 1 was given in the unpublished report [4], and the cyclic vectors were also
characterized (this characterization can also be derived from results announced
without proof by Lipin [8]). For the reader’s convenience we recall the cyclicity
result for d = 1.
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Definition 4.1. Let f € L?([0,1]) and f, = T*~1f, k € {1,...,q}. The determinant
of f associated with o = p/q is the 1/g-periodic function in L?/9([0,1]) defined by:

f {fl(t)/} f {fq(t)/}
({t+ J({t+
Alf,p/q) = Weepja) {e+p/a)

A+ @—Dp/ay) o fu{t+ (@ Dp/a})

Note that, since p and ¢ have no common divisor, |A(f,p/q)| = |A(f,1/q)|.
The cyclicity result for d = 1 is then the following.

Theorem 4.2. Let T' = T),,, where p < q and p and q are coprime. A function
f € L2([0,1]) is cyclic for T if and only if A(f,1/q) is nonzero almost everywhere
on [0,1].

4.1. The case a € Q?

In the case d > 2 the cyclicity results have a similar flavour, but are technically

more complicated to derive. We give the case d = 2 in detail, since the notation is

simpler. The result for the general case is given later, as Theorem 4.15. We also

give some examples (Examples 4.10), to show how the condition can be tested.
The operator Ty, is defined by

T, : L*([0,1]*) — L*([0,1]?)
f = Tof :zc[0,1P — zaaf({z1 +aa}, {z2 + az}).
pi
4’
4.1.1. The case ¢1 # go. Suppose that GCD(p;,¢;) = 1,i € {1,2}. We write
T,=T,q=LCM(q1,q2) and for r € {0,...,q — 1}, fr4s1 =T"f.
The following formula is easy to derive, and we omit the proof.

Set a = (Oél,OéQ) with o =

Proposition 4.3. Let w;(x;) = v {z; + a;} .. . {x; + (¢: — Doy},
l; = 2, fori € {1,2}, and (n,r) € N2, with r < q. Take f € L*([0,1]?). Then,
4

K3
T f (w1, w2) = Wi (1)wh 2 (22) fran (1, 72).
Remark 4.4. Note that for i € {1,2}, w; is a %—periodic function.

Definition 4.5. Let f € L?([0,1]?). The determinant of f associated with (a1, az)
is the determinant

J1(s,t) fa(s,t)
NS Atrablorsl) o alirad ol |
At ey o n({rs) e

It is a function in L%/9([0, 1]?).

+
|
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Lemma 4.6. Let n be a positive integer and f € L*([0,1]?). Let h € L>([0,1]?) be
such that h(s,t) =0 for (s,t) € Q, ¢ where Qy, ¢ is the (qi

Qs = {s0en?:|a (f,q—lq—z)]ﬁ}u

et (s 1 2o}

Then, there exist hi,...,hy € L*([0,1]?), (%7 q%) -periodic functions such that

q
h = thfk,
k=1

- -pertodic set

q

Proof. If h = thfk where hi,...,hy € L>([0,1]?) are (q% i) -periodic func-
k=1

tions, then, for (s,t) € [0,1]?,

h(s,t) = hi(s,t)fi(s,t)

et ferd]) meon (o

1

Using matrices, we have:

h(s,t)

hi(s,t)
(et oesl) | (a6
(e femy)) e

qi) in Definition 4.5.

1
a
(f7 - q%)’ > % > 0; so, A is an invertible

where A is the matrix whose determinant defines A(f,

For (s,t) € Q ,, we have:

matrix on QF 7 and
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e On QF , the h; are combinations of the functions

A(ar i) o r(atea))

in L>([0,1]?), for k,1 € {0,...,q— 1} and r € {1,...,q}. Moreover, for (s,t) €

Qc ot o)

n,fr
so fr({.+ qﬁl}7 {+ q%})) are bounded. For (s,t) € 1, ¢, set hi(s,t) = 0. Thus, the
h; are functions in L>°([0, 1]?).

1 1

e One can verify that the h; are (q—l, -

)—periodic functions. O

Lemma 4.7. Let F be a function in L? ({O, qil] X [O, ‘ILZD that is not equal to zero
almost everywhere. Then,

{g(w1,w2)F : g € C[X,Y]} s dense in L* ({0, ﬂ X {07 q%D

Proof. Let G be a function in L? ([0 i] X [0, qizD such that

G € {g(w1,w)F : g€ C[X, Y]} .
Then,
// G(s,t)F(s,t)g(w1,wa)(s,t)dsdt = 0.
o] <[o]

For i € {1,2} we write w; for the continuous function on [07 qi} obtained by

restricting w; to [O, qi) and defining

“()-1 35

Now B := {g(w1,w2)F : g € C[X,Y]} is a subalgebra of C ({O, q%} X [0 iD

)
q2
which separates points and contains a non-zero constant function. Moreover,

g(w1,w2) € B= g(w1,wz) = g(w1,w2) € B,

therefore B is a self-adjoint algebra. By the Stone—Weierstrass theorem, we have
that B is dense in C ({O L ] X [07 q%D for ||.||oo-

N
Let k be an element of C ({O, q%] X [07 ‘Z%D Then, there exists a sequence
(kn)nen of elements of B such that lim ||k, — k||cc = 0.
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1
a2

Now
|// G(s,t)F(s,t)k(s,t)dsdt
[o.25] x[o.

/ (—=G(s,t)F(s,t)kn(s,t) + G(s,t)F(s,t)k(s,t))dsdt

< (//[0 ;] x[o,i} |G(s,t)F(s,t)|ds dt) [kn — k|-

Thus, we obtain: s G(s,t)F(s,t)k(s,t)dsdt = 0.
[o.2]x[0.3]

1
0,4
Set

D:fr //[O’L] x[0.2] Jendnec <[0’ ‘111 g [O’ ;QD*

q2

where dA(s,t) = G(s,t)F(s,t)du(s,t) is an absolutely continuous measure.

1 [ 17\"
The function ® is null as an element of C <{07 —] x 10, —}) , 80 dA = 0.
q1 q2

It follows that for (s,t) € [0, q%] X [O, q%} ,G(s,t)F(s,1) =0 a.e.
Since F' is not equal to 0 almost everywhere, we have that G =0 a.e.
So, {g(wi,w2)F : g € C[X,Y]} is dense in L2 ([0 i} X [0 iD O

' q1 ’ q2

We use the above lemma to give a condition guaranteeing that a function is
cyclic for T'.

Lemma 4.8. Let h € L*°([0,1]?) be a (q%’ qig
If:
. 1 1
i) A (f, —, —) #0 a.e., and
q1 g2
(ii) for all e > 0, there exists g € C[X,Y] such that ||g(w1,w2)fr — hfkl|l2 <e,

then f is a cyclic vector for T.

)-periodic function and f € L?([0,1]?).

Proof. Suppose that ¢ > 0 and £ € L?([0,1]?). Let us write

F= U {h € L>=([0,1]*),h = 0 a.e. on Q, s }.

n>1
Claim: F is dense in L?([0,1]?).

Indeed, suppose that g € L?([0,1]?). Since L>°([0, 1]?) is dense in L?([0, 1]?),
there exists k € L*([0,1]?) such that ||k — gllz < §. For all n > 1, we have
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kX[O’l]Z\Qnyf € F and

Ikxp.02\0,, — gl < 11k = gll2 + lkxp,u2\0.., — kll2
1
1k = gll2 + [[ll22(Q2n, 5) 2
1
1k = gll2 + [ Elloopt(2n, 1) 2.

IN N

1 1
Since A (f, —, —) # 0 a.e., then, there exists ng € N* such that
q1 G2

(feoenirsa(g i) en<it) < ()

and therefore
Ikx0,12\0, ; — 9ll2 <e.
This completes the proof of the claim.

Hence there exists h € F such that |[£ — k|2 < §. Since h is an element of F,

q
by Lemma 4.6, h = thfk, where the functions h; are in L>°([0,1]?) and are
j=1

q1’ g2
By hypothesis, for all j € {1,..., ¢}, there exists g; € C[X, Y] such that

( L ) periodic.

13
llgj(w1,w2)fj = hjfill2 < 20

therefore,

q

Z (wi,w2) fj —hyf5)| < ZHQJ wi,w2) fj = Ny fill2

A

2

< —qg=¢/2.
< 2qq e/

By Proposition 4.3, T f(z1, 25) = W (21w (2) fri1 (1, 22); so, for all P =
Z aiXi S (C[X
T)(f) =) al'f = Zazwn'll B frig, i = nag 4
i
a

Y Qj(wi,wa)f;,  with Q; € C[X,Y].

j=1

The above equality is deduced by collecting together the functions f, and noticing
that r depends only on the remainder of the division of ¢ by ¢. So, if G(T)f =
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q
Zgj(wth)fj, we have:
=1

IGT)f =)l < |G(T)f — k2 + ||h — €]
e €
< 5 + 5 =£g,
which implies that f is a cyclic vector for T O

We are now ready for the main theorem of this section.
Theorem 4.9. Suppose that T' = T(q, ,) with, fori € {1,2},
o =" GCD(prgr) =1, f e L3([0,1]%).
Then,
f 1s a cyclic vector for T <= A (f,q—l7 q—2) #0 a.e. on [0,1]2.

Proof. Suppose that A <f, o q—z) # 0 a.e. on [0, 1)%
Let k € {1,...,q}. Set:

o= EE (et )

By Lemma 4.7, there exists g€ (C[X , Y] such that

(b2)-b2)

llg(wr, wa) F — hFHLz([O,%) «[o.)) <¢

(s,t) — |(g(w1,w2)(s,t)—h(s,t)) fr(s,t)|? is an integrable function for the product
measure. Using Fubini’s theorem, we get

// g(wi,w2)(s,t) — h(s, 1)) fr(s,t)|*dsdt
[0,1)2

£ [ oo (b 2))

0<i<q1—1
0<j<g2—1
i i\ I?
X fr ({s+—},{t+—}> dsdt
q1 q2
=:7, say.
Note that
2
q1—1g2—1 i ]
o = (SE]e (i} 1)
i=0 j=0 Q1 a2
qg1—1g2—1 2

Y

>

i=0 j=0

(e} 2]




Multivariable Weighted Composition Operators 81

g(wi,wa)(s,t) —h ({er ql_l} ’ {t+ ;_2}>
w({erg ) {ee L)) we
g(wi,w2)(s,t) —h ({3+ é} ’ {t+ ;_2}>

2

sl iyt at)l) o

2
|F(s, 1) dsdt,

and therefore

1 1
/q1 /q2
0 0

1q2

q1—

SIS

1 1
i=0 j=0

1 1
/q1 /02
0 0

q1—

2
VA

2

IN

q2—1

D

1
=0 j5=0
1 1
/q1/qz
0 0

glwr,w2)(5,8) — b ({+ i} , {H— i})
Uil q2
implying that

lg(wr,w2) fie = hfillz < llg(wr, w2) ' = AF | 2o, L) (0,2
< e

’q2

Lemma 4.8 implies that f is a cyclic vector for T
e Now suppose that A (f7 o q—z) = 0 a.e. on a set S C [0,1]? of measure
w(S) > 0.

Then, the row vectors (L1, ..., Ly) of A (f, o q— are linearly dependent on S.

So, there exists a function A = (g, ..., A\g—1) : [0,1]2 — C?\{0} such that
Ao(s,t)Li(s,t) + ...+ A= 1(3 t)L4(s,t) =0 a.e. on S.

Therefore, for all k € {1,..., q}7

No(s, ) fre(s,t) + -+ N1 (s, ) fr ({8+ qq_1 1},{t+ qq—Ql}) =0 a.e. onS.

Set & = T'f € {T"f : n € N}. We can write ® = T+ = "2 f, | where
l=ng+r and

z_;m({+qi}{ - zwh i fons ({21 fer 21)

—O a.e. on S.

Therefore, for all P € C[X], P(T)f =Y bT"f, we have

S ({2} {r+4)) <0 se ons

Jj=
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Thus,

1

:35&@02)57(%+5}’%+i}>

=Saorar (fov 21 fie 1)

and we obtain that for all ® € {P(T)f : P € C[X]}, we also have

qzlxj ({S+i}’{t+é}>:0 ac. (s,8) €S (™)

j=

0
Since p(S) > 0, there exist 4,5 € {0,...,¢ — 1} such that

i i+1 J ]—|—1>>
sn|—, 0.
H( <Q1 q1 > <Q2 q2 7

DSy (o4} )

. 1 1 . . .
But, A (f, e q—z) =0a.e.on S and A (f, o q—z) is a (q_1’ q—z)—pemodlc function,
S0 necessarily S is a qi, - -periodic set.

So, for all 4,5 € {0,...,q — 1},

1+ 1 1
((on i) @)
@ Q1 42 Q2
If f were cyclic7 then, we would have L?([0,1]?) = {P(T)f: P € C[X]}, and for

all @ € L%([0,1]?), the relation (7) would hold.
Let i € {1,...,q}. With the function ® = XSm( ; 1“) ( N ﬂ) if (s,t) € S, we

q1’ a1

have
0 if k+#1,
Nb+£hﬁ+£ﬂ={lﬁk_i

Using (7), we have:

Ai(s,t)® ({5+i},{t+i}) =0 ae. (s,1) GSQ<L,Z+1>X(i,z+1).
0 q2 a G 92  q2

So, for all i € {1,...,q}, \i(s,t) = 0 a.e. on S, which is impossible; thus, f is not
a cyclic vector for T O

Example 4.10. Note that the determinant A ( f,+ R ) defined in Definition 4.5,

is a function of s and t that remains unchanged if we either translate s by 1/¢;
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or translate ¢ by 1/g2 (modulo 1). Thus checking its vanishing on a set of positive
measure can be reduced to checking where it vanishes on [0,1/¢;] x [0,1/g2].

The simplest way to produce non-cyclic vectors (and hence proper invariant
subspaces) is to stipulate that f vanishes on a non-null subset of [0,1/¢1] x [0, 1/g2],
together with the translates of that set, but there are clearly other more compli-
cated possibilities, found by solving linear relations between the columns of the
matrix defining A.

Further, the vanishing of the determinant implies the existence of linear re-
lationships between f and its translates over the ring of polynomial functions (at
least on a set of positive measure); this gives a way to produce cyclic vectors: for
a function such as s'/2 + ¢'/2 is necessarily cyclic, as no such relations can exist.
Issues such as the density of cyclic vectors can be analysed similarly.

4.1.2. The case q; = go. For completeness, we mention briefly the case of ¢; = ¢o.
With the same notation, one can define the determinant of f associated with
(%1, %2), denoted by A (f, %, %) L ([o, %]2), which is a (%, %)—periodic function.

With the same hypothesis as Lemma 4.6, if h € L°°(]0,1]?) equal to 0 on
Q. ¢, there exist periodic functions hi,...,h, € L>°([0,1]?), (é, %) such that h =

q
Z hifr. The following lemma gives us a set dense in L?(]0, %]2) different from

k=1
that given in Lemma 4.7:

Lemma 4.11. Let F be a non-trivial function in L?([0, %]2), Then,

2
{g(w)F : g € C[X]} is dense in L? ([0, ﬂ )
Therefore, as in the case g1 # ¢, a sufficient condition for cyclicity is given by:
Lemma 4.12. Let he L*°(]0,1]2) be a (%,%) periodic function and f € L*([0,1]2). If:
(i) A (f, %, %) #0 a.e., and
(ii) for all e > 0, there exists g € C[X], such that ||g(w)fx — hfrll2 <e,

then, f is a cyclic vector for T.
This implies the following result.
Theorem 4.13. Suppose that T = Tia, a,) with, for i € {1,2}, oy = %,
GCD(pi,q) =1, f € L([0,1]?). Then:
f is a cyclic vector for T <= A (f7 %, %) #0 a.e. on [0,1]2.

4.2. Cyclic vectors for T, o € Q%, d > 1

The general case (including the simpler case d = 1) can be treated by similar
methods.
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The operator T, is defined by
To: 20,01 — L3(0,1)%)
f = Tof:zel0,1]%—aizo...zqf({z14+1},...,{xa+ aq}).

Set o = (a1, gy ..., aq) With a; = &, i € {1,...,d}. Suppose that GCD(p;, ¢;) =
4

1,i € {1,...,d}. We write T, = T, ¢ = LCM(¢;,¢ € {1,...,d}) and fr41 =T"f
forr € {0,...,q —1}.

Definition 4.14. Let f € L2([0,1]%). The determinant of f associated with (o, ...
aq) is the determinant

1 1
A<f7_7"'7_>
q1 qd

filxy, ..., xq) fo(z1,...,24q)

Aoratodaral) o Al dera) |
f({n =Y e =) g () fe 22))

With similar arguments, one can prove the following result:

Theorem 4.15. Set f € L2([O7 1](1). Suppose that T = Tar,....au) with o; = % and
GCD(pi,q;) =1 forie {1,...,d}. Then:
f is a cyclic vector for T <—= A (f, qil,... L ) #0 a.e. on [0,1]%.

' qa
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Abstract. We construct an algorithm that allows us to determine an effective
generalized factorization of a special class of matrix functions. We use the
same algorithm to analyze the spectrum of a self-adjoint operator which is
related to the obtained generalized factorization.
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1. Introduction
Let T denote the unit circle and consider the space Lz(T). As usual,
LE(T) = ImPy, Ly °(T) = mP-, L; (T) = L;"(T) & C,

where Py = (I£5)/2 denote the projection operators associated with the singular
integral operator S, with Cauchy kernel,

So(t) = - /T “’(T)t dr, tT,

T —

and I represents the identity operator.
We say that a matrix-valued function A, such that A*! € [Loo(T)], n, admits
a left (right) generalized factorization in Lo(T) if it can be represented as

A=A ANA_ (A_AAL),
where
Ail € [L;(T)]n,’ﬂv Afl € [LQ_ (T)]n”ﬂv A = diag{t"ﬂa e 7t’in}7
K1 > -+ > K, areintegers, and A+P+A;II (A_P, A”'I) represents a bounded

linear operator in [Lo(T)],.

This research was partially supported by CEAF at Instituto Superior Técnico (Portugal).
Communicated by I.M. Spitkovsky.
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If k1 = -+ = Kk, = 0, then A is said to admit a left (right) canonical
generalized factorization.

The explicit factorization of matrix-valued functions has applications in dif-
ferent areas, such as the theory of singular integral operators, boundary value
problems, scattering theory, the theory of linear and non-linear differential equa-
tions (see, for instance, [1, 4, 15, 16]). It is well known that there exist algorithms
to determine explicit factorizations for rational matrix functions (see, for instance,
[2], [3], and [18]). However, algorithms for obtaining explicit factorizations of non-
rational matrix functions exist only for some restricted classes of matrix functions
(see, for instance, [6, 9, 10]).

In the following sections we shall be dealing with the class of matrix functions

Ay (b) = < bi b*bive > (1.1)

where e represents the identity matrix function of order n, b is a matrix func-
tion whose entries are essentially bounded functions on the unit circle, b* is the
Hermitian adjoint of b and « is a non-zero complex constant.

The main objective of this work is the construction of an algorithm for ob-
taining explicit factorizations for matrix functions of that class. Strong relations
between a factorization of (1.1) and the operators

Ny(b) = PLbP_b*Py and N_(b) = P_b*P,bP_, (1.2)
Ni(b) : [La(T)],, ,, — [L2(T))]

n,m’
are analyzed.

Some results related with A, (b) can be seen in [5, 6, 7, 8, 12, 13, 14, 15, 16].

Matrix functions of type (1.1) appeared for the first time related with the
generalized Riemann problem (see, for instance, [15, Chap. 4]), and now it is known
that a factorization of A, (b) can also be used in more general cases, as for example,
in the generalized Riemann problem with shift (see [12]).

It was discovered, more than thirty years ago, that the factorization problem
for matrix functions of type (1.1) is related with the study of singular operators
that can be represented as a product of Hankel operators (see [14]).

The paper [13] relates a canonical factorization of a second-order matrix
function A, (b), when v > 0, with the resolvent operator of an operator that can
be represented through an Hankel operator with symbol b.

In general, it is possible to show, for second-order matrix functions (see [15,
Section 15.7] and [16, p. 289]), that the study of the factorization of any Hermitian
matrix functions G, with elements belonging to the class of all essentially bounded
functions on the unit circle, Lo, (T), and with (at least) one of the diagonal entries
preserving the sign almost everywhere on the unit circle, can be reduced to the
study of A_1(b). It is proved in [15, pp. 157-158] that the matrix functions G and
A_1(b) admit a generalized factorization in Lo(T) only simultaneously and that
their partial indices coincide. It is also proved that the matrix function A_;(b)
admits a right generalized factorization in Ls(T) if and only if the unity does not
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belong to the condensation spectrum (i.e., the set of the accumulation points of the
spectrum and of the eigenvalues with infinite multiplicity — see, for instance, [11,
p. 59]), oy, of the self-adjoint operator N_(b*) = HyH} (Hy, = P_bP, is a Hankel
operator with symbol b) and its partial indices are +I, where [ is the multiplicity
of 1 as an eigenvalue of N_(b*).

Let us note that, in general, even if we know that

dimKer (N_(b*) — I) < oo,

we do not know if the unity belongs to the condensation spectrum, that is, if
A_1(b) admits a generalized factorization.

In [7] we consider the class of matrix-valued functions (1.1). For these matrix-
valued functions, when —~ belongs to the resolvent set, p, of the self-adjoint posi-
tive operator N (b) = H}. Hy-, we obtain that, it is possible to compute a canon-
ical factorization (see Theorem 4.4 in [7]) when the entries of the matrix function
b are in a certain decomposing algebra of continuous functions and satisfy some
additional conditions. The method used therein was based on the construction of
the resolvent of the operator Ny (b).

In [8] we generalize our previous result, simplifying some of the conditions
imposed before and obtaining a left canonical factorization of A, (b) (when —vy €
p(N4 (b)) and b is a scalar function) through the use of the solutions of the non-
homogeneous equations,

(N (b) + 7Ty =1 (1.3)
and

In [5] we generalize our results when b is an essentially bounded function
and we also describe a method to solve the equation (1.3) when A, (b) admits a
left canonical generalized factorization and b can be represented as an inner-outer
factorization, b = r 6, with a rational outer function r, that is, b € H,.g.

In [6] we consider second-order matrix functions (1.1) that admit a left non-
canonical generalized factorization. In that paper we describe a method to obtain
a generalized factorization using the solutions of two related non-homogeneous
equations

(No(B) +7D)as =R and  (Ny() +9D)ys =0 R (L5)

with R; ., © =1, 2, polynomials of degree less than or equal to the dimension of
the kernel of the operator N (b) + ~vI.

Now we are able to construct an algorithm, [AFact], that allows us to know
if a matrix function of the form (1.1), with b € H, ¢, admits, or not, a generalized
factorization. Moreover, if A (b) is factorable, the algorithm allows us to determine
if the generalized factorization is canonical or non-canonical, and it gives us a
left generalized factorization of the matrix function. For that, we construct an
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algorithm, [AEq], to solve equations of the form

(N4 (0) +yDwy (1) = g+(t) (1.6)
when the function b € H, g.

Using [AEq], we obtain the kernel of the operator N (b) 4+ I, by solving the
associated homogeneous equation.

Let x be the dimension of that kernel. Obviously, there are two possibilities:
kK=0orx>0.

For the case k = 0, we have that —y € p (N, (b)) and we use [AEq] to solve
the equations (1.3) and (1.4). A left canonical generalized factorization of (1.1) is
obtained.

For the case k > 0 we have that v < 0, and so we can use some results of [5]
and the fact that

to find out if there exist, or not, two polynomials, R; , and Rj ., such that the
non-homogeneous equations (1.5) are solvable. If at least, one of the two polyno-
mials does not exist, then the matrix function (1.1) does not admit a generalized
factorization and —y € oy (N4 (b)). Otherwise, we use [AEq] to solve the equa-
tions (1.5), and a left non-canonical generalized factorization of (1.1), with partial
indices k and —k, is obtained.

For the construction of the algorithms [AEq] and [AFact] we need to use
some already published results. So, in Section 2, besides the new results, we repeat
the main results on relations between a generalized factorization of (1.1) and the
spectrum of the operator N, (b), and we also generalize some of those results that
appear in [5] and [6], for the case when b is a matrix function of order n.

In Section 3, we analyze the solubility of the equation (1.6). We also describe
the main steps of the algorithms [AEq] and [AFact]. Using the linear system .S, o,
that appears at the end of [AEq], we formulate the main results of this paper.
In fact, we can relate the spectrum of the operator Ny (b) with the linear system
S4,0. We can see that, through the solutions of Sy, it is possible to know if —y
belongs to the spectrum of N4 (b). And, in that case, using the Ker (N4 (b) + v I)
and (1.7), it is also possible to know if —v belongs to the condensation spectrum
of N+ (b)

Section 4 is dedicated to the description of the algorithms [AEq| and [AFact].

Finally, in the last section, some examples are given for the canonical and
non-canonical generalized factorizations.

2. Relations between a generalized factorization of A, (b)
and the spectrum of N, (b)
In this section we describe some strong relations between a generalized factor-

ization of the matrix function (1.1) and the spectrum of the self-adjoint opera-
tors (1.2).
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Let p (N4 (b)) denote the resolvent set of the operator N, (b) and or (N4 (b))
its spectrum. Let us consider the set

o (N4(b)) = or (N4(b)) \or (N+(b)) ,

where o; (N4 (b)) represents the condensation spectrum of N (b).

Using the fact that A, (b) admits a left canonical generalized factorization in
Lo(T) if and only if the singular integral operator Py + A, (b)P_ is an invertible
operator in [L2(T)],, ,, and the fact that (see [5])

p (N4 (b)) = p(N-(b)),
we obtain that (see Theorem 2.1 of [5])

Theorem 2.1. The matriz function Ay(b) admits a left canonical generalized fac-
torization in Lo(T) if and only if —v € p(NL(b)).

Consequently, and since N (b) is a positive operator we can conclude that

Corollary 2.2. If v > 0, orif v € C\R, then A,(b) admits a left canonical
generalized factorization in Lo(T).

For the canonical case, we study the following Riemann boundary value prob-
lem

4 = A, (D)(E+2)
{ ®_(00) =0 , (2.1)
where b € [Loo(T)]n,n and E is the identity matrix function of order 2n.
The objective is to determine matrix functions, @+ € [LE (T)]2n,2n, solutions
of the problem, and, using ®., to obtain a canonical generalized factorization of
A, (b). It is possible to show that ®4 (when (2.1) is solvable) can be represented

through the solutions of the non-homogeneous equations

(N4 () + D)y = e
and
(N4 (b) + 7 )vy = Py (b).
It is known that if A, (b) admits a left canonical generalized factorization

A, (b) = ATAS

Yy

then the problem (2.1) has the unique solution

o, =AF, ®_=(A))"'-E.

So, by solving the Riemann boundary value problem (2.1) and relating the
existence of a left canonical generalized factorization of the matrix function (1.1)
with the fact that —y belongs to the resolvent set of N4 (b), we get the following
result about an effective generalized factorization of (1.1).
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Theorem 2.3. If —y € p(N(b)), then the matriz function A(b) admits a left
canonical generalized factorization

A, (b) = ATAZ,
where
+ U+ Ut
Ay _W( Pr(b*ug) e+ Pr(bvy) )
and
A _ et PbP-(b*us)] —P_b+ P_[bP_(b"v)] -
v —P_(b*u4) e — P_(b*vy) ’

with

(N (b)) +v)ur =e  and  (N4(b) + 1) vy = Py (D).

Remark 2.4. If the matrix function b can be represented as b = by + b_, where

by € [Loo(T)NLF(T)],, and b€ [LOO(T) OLQ_’O(’H‘)} :

aw=( o) (o).

So, we can assume, without any loss of generality, that b has an analytic continu-
ation into the interior of the unit circle.

then

If v < 0, we can always relate A, (b1) with A_;(b) through

Ay(by) = ( 0 e >A1(b)( o e )

where by = /=7 b. So, using a reasoning similar to that used in [15, Chap. 4,
Theorem 12] it can be proved that

Theorem 2.5. The matriz function A, (b) admits a left generalized factorization in
Lo(T) if and only if —~ ¢ o1(N+(b)).

Also, if A, (b) admits a left generalized factorization in Ly(T), we prove that
Proposition 2.6. If v <0, then
dimKer(N4 (b) +~I) = &, (2.2)

where kK is the sum of the positive partial indices of a left generalized factorization
of the matriz (1.1).

Proof. If ~ < 0, then (1.1) is an Hermitian matrix function. In that case, a
generalized factorization of A, (b) has the partial indices

{KlyK/Qa ooy Bpy, —Rp,..., —R2, _Kfl}
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(see [16], p. 258). Since
I —-bP_\ (I 0
(Pr + 4, (0)P-) (0 I > (0 yPy+ P - P+b*P+bP)

~\W*P. N_(b)+~1)°
then
K1+ -+ K, = dimKer(N_(b) + +1). -

So, using Theorems 2.1, 2.5 and Proposition 2.6 we get the following result
for a non-canonical generalized factorization of (1.1).

Theorem 2.7. The matriz function A,(b) admits a left non-canonical generalized
factorization
A, (b) = Aj A AT (2.3)
if and only if —vy € o(NL(D)). And, in that case,
A(t) = diag {t™, ..., t" ¢, L T
and
K1+ -+ kp = dimKer (N4 (b) +v1).

We consider now the case when —y € o(N4(b)).
To obtain a left non-canonical generalized factorization of (1.1) we can not
consider the Riemann boundary value problem (2.1) because

Proposition 2.8. If —vy € o(N4(b)), then the problem (2.1) is not solvable.

Proof. Since A, (b) admits a left non-canonical generalized factorization (2.3), we
used the fact (see, for instance, [16, Chap. 3, Corollary 3.1]) that for the solvability
of the problem (2.1) it is necessary, for all j =1, ..., n with x; < 0, that

/T (A(t)A;(t))j thdt =0, k=0,...,—k; — 1.
0

So, we need to find another Riemann boundary value problem that allows
us to obtain a left non-canonical generalized factorization of the matrix function
(1.1).

Using Theorem 3.2 of [16, p. 87], we obtain the following result.

Proposition 2.9. Let A,(b) admit a left non-canonical generalized factorization
(2.3). Then there exist two unique matric functions Ry ., and Rs ., whose entries
are polynomials of degree < k such that the Riemann boundary value problem

O, = A, (b) <<1>_ + ( Rg“ RS,K )) , (2.4)
D_(c0) =0

1s solvable.
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Using a similar method to the one described in [7], we obtain the solutions
of the problem (2.4) (see Theorems 3.6, 3.7, and 3.8 of [6] for the case when b is a
scalar function) through the solutions of the non-homogeneous equations (1.5).

Theorem 2.10. If the problem (2.4) is solvable, then the equations (1.5) are solv-
able. In that case, considering the solutions of the equations, (;Sf and ¢2+ , respec-
tiwely, we have that

_ ¢ oF
e ( Py(b*¢F) yRaw + Py(b"¢3) ) ’ (2.5)
_ 1 P.OP-(v*¢})) —Pb+ P (bP_(b"¢5))
=35 ( —P_(b" ¢1) —P_(b* ¢%) ) : (2.6)

Although it is possible to prove that, when —y € o (N4 (b)), there is a Rie-
mann boundary value problem (2.4) associated to a non-canonical generalized fac-
torization of (1.1), it is not easy to determine the matrix functions R; ., i = 1,2,
due to the fact that the matrix function A7 (co) may assume a lot of different
forms. Besides that, since

o (e ) ) L,

we have to multiply the matrix function ¢ by a matrix function G such that

— — -1
AT =@, G and A7 =A"'(AF) A, ()

are the factors of a generalized factorization (2.3) of (1.1). To find the matrix
function G we have to consider all the partial indices of the left generalized factor-
ization of (1.1). So, since we do not know how to determine them if b is not a scalar
function, we can not obtain yet a left non-canonical generalized factorization of
(1.1), for the general case.

For the case when b is a scalar function, we know that the left generalized
factorization of (1.1) depends on the behavior of the matrix function A7 (c0), and
we have three different cases

(Case 1)
a—_(00) b_(o0)
A (00) = , a_(00) #0, d_(o0) # 0, b_(o0) arbitrary,
0 d_(o0)
(Case 2)
a_(00) b_(o0)
A7 (00) = , b_(00) #£0, c—(c0) #0, a_(co) arbitrary,
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(Case 3)

c—(00) d_(c0)

where, in (Case 3), a_(00) and b_(c0) are not simultaneously equal to zero. How-
ever, we have more information on the polynomials R; , and Rj . (see Propo-
sitions 3.2, 3.3 and 3.4 of [6]) and so we can obtain an explicit left generalized
non-canonical factorization of the matrix function (1.1), through the solutions of
the problem (2.4). We use Theorem 3.2 of [16, p. 87], which describes how to obtain
the general solution of a problem of the form

i = A, (D) +g,

through the factors of a factorization of the matrix function A, (b) (see Theorems
3.6, 3.7 and 3.8 of [6]), to obtain the next result (where G depends on the case of
45 ()

Let us consider ®4 and ®_ as in (2.5) and (2.6).

Theorem 2.11. If —y € o (N4 (b)), then the matriz function A,(b) admits the left
non-canonical generalized factorization (2.3),where

AT =0, G, A1) =diag {t*, 77}, AT = AT (AD) T A,0),  (27)

~
and . .
G=|( & 0 or G= 01 L or G=( & 0 , (2.8)
0 1 -0 2o
—_——— ~—_——— —_———

case 1 case 2 case 3

with
c—(00)

So, to obtain an explicit left generalized non-canonical factorization of (1.1),
when it exists, we need to find the polynomials R .(t) and R .(t) that make the
problem (2.4) solvable. For that we use (1.7) and (2.2).

For the case 1:
Rlﬁ(t) =1 and R27,€(t) ="+ Sgﬁ_l(t), (29)

where s3 ,—1 is a polynomial with degree k — 1.
For the case 2:

R17,€(t) ="+ 817,€_1(t) and R27K(t) =1, (210)
where s1 -1 is a polynomial with degree x — 1.
For the case 3:
Ri,ﬁ(t) =t"+ Siﬁ,l(t), 1=1, 2, (2.11)

where s; ,—1 is a polynomial with degree x — 1.
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Now, we need to solve the non-homogeneous equations (1.5). In order to
solve this kind of equations, we generalized the method described in [5]. With that
generalization we can solve equations of the type (1.6), when the function b can
be represented as the product of an inner function 6 and a rational outer function.

3. Relations between the spectrum of the operator N, (b)
and a linear system

Let H, g denote the set of all the functions of Hy, (the class of all bounded and
analytic functions in the interior of the unit circle) that can be represented as the
product of a rational outer function r and an inner function 6 (i.e.,  is a bounded
analytic function on the interior of the unit circle such that its modulus is equal
to one a.e. on T).

In this section we describe the main results that we need in order to see
if (1.1) admits a left generalized factorization and also to obtain a generalized
factorization (when it exists) of the matrix function (1.1).

In particular, we describe how we construct the algorithm [AEq] for solving
(solvable) equations of the form

(N4 (b) +71) wy g, (t) = g4+(2), (3.1)
when b € H, .

It is shown that we can get the solution(s) of equations of the type (3.1), and,
consequently, a generalized factorization of a factorable matrix function (1.1), by
solving a linear system.

Let us start with the solvability of the equation. Note that if g4 (¢) is the null
function, then the algorithm [AEq] gives us the kernel of the operator Ny (b)+~I.

If —y € p(N4(b)), then the equation is uniquely solvable,

Wi g, (1) = (N4 (0) +7I) " g4 (t).
If —v € 0 (N4 (b)), then the equation can or cannot be solvable. Since
(N4 (b) +I) wy g, (t) = g4(t) is solvable
if and only if
g4(t) € Im (N4 (b) + 1),
we get, using the equality (1.7), the following result.

Proposition 3.1. Let v < 0. The equation (3.1) is solvable if and only if
(g4 (8), T (1) = 0 for all () € Ker(Na(b) +1). (3.2)

So, if we are interested in the study of the factorability of a second-order
matrix function (1.1), we first solve, with [AEq], the homogeneous equation

(N () + 7 1) wy g, () =0, (3.3)
to obtain the kernel of the operator N4 (b) + v I and its dimension k.
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If we get k = 0 we can conclude that —y € p (N4 (b)) (see Corollary 2.2 and
Proposition 3.1) and a left canonical generalized factorization of (1.1) is obtained
using the solutions of the equations (1.3) and (1.4) and Theorem 2.3.

If, on the other hand, we obtain x > 0 we can conclude that, if (1.1) is
factorable (that is, if —y ¢ o; (N4 (b)) — see Theorem 2.5), then (1.1) admits a left
non-canonical generalized factorization (see Corollary 2.2 and Proposition 2.6).

How can we know if (1.1) admits or not a generalized factorization?

Using Proposition 3.1, we can find if there are two polynomials, R, and
Ry, of the form (2.9), (2.10), or (2.11), such that the non-homogeneous equations
(1.5) are solvable. If at least one of the polynomials does not exist, then the matrix
function (1.1) does not admit a generalized factorization, and —y € o; (N4 (b)).
Otherwise, —y € o (N4 (b)) and we use [AEq] to obtain the solutions of the equa-
tions (1.5). A left non-canonical generalized factorization of (1.1) is obtained using
Theorem 2.11.

We now describe how to construct [AEq] for solving (solvable) equations of
the form (3.1). For that we consider that the function b € H, g. Without any loss
of generality we can assume that

m — )\ )8
T(t) =k M

n

[T (= py)

kyAiy i € C, and {1, ..., Ay f1, - - -5 phn } has m 4+ n distinct elements, such that

, where «a;, 3; € Ny,

IAi| >1foralli=1,mand |p;|>1forall j =1,n.

Let
k‘o == Zﬁi—zaj — 1.
i=1 j=1
Let us consider the Hardy space Hs and its decomposition
Ho =0Hs @ (HQ ) GHQ).

The following result (see [17, p. 30])) is very important to the construction of
[AEq]:

Lemma 3.2. If 0 is an inner function, then
Hy,S&0H, = HyNZ6 Hy,
where the bar stands for complex conjugation.
We also need to consider the orthogonal projection
Pp: Lo(T) — Hy © 0Hy, Py = Pyp,)r =Py — OP,0I.

We do not consider the case when b is an inner function, since, in that case,
or(N4 (b)) = {0,1}, and, when the matrix function (1.1) admits a left canonical
generalized factorization, such factorization is trivial (see [5]). Besides that,

Ny(b)=P, and Ker(N,(b)—1I)=HySbHy.
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We know that dim(Hs © b Hz) < oo if and only if b is a finite Blaschke product
(see [17, p. 33]). So, using Theorem 2.7, we conclude that the matrix function
A_1(b) admits a left non-canonical generalized factorization if and only if b is a
finite Blaschke product. Let b be a finite Blaschke product and ¢ a function of
H,; © bH5. Considering the factorization of b,

b(t) = b-(t) " ba(t),
we get the factorization of A_1(b),
A_1(b) = AT AA”,,

by (b— ) b7 _ — o Bb. —b_
AT, — + +/) Y+ — P+
-1 < 0 bJ_rl ’ A—l b_l 0 )

A(t) = diag{tn®, ... ¢~indby

where

and

We now show how we can relate the solution(s) of (3.1) to the solution(s) of
a linear system.
Applying the substitution

1
W9 = P (G

in the equation (3.1), we get

P = % [Fgr —|r|*Po o — TPy (rp-)]

where

Py =t"'0(t) . (t) and +_ = P_a).
Using Lemma 3.2 we obtain that

t710(t) @y (1)

=L (w190) 20 (B2 00 50) - 2 0 P 1))

t

(3.4)

So, we need to calculate Ty and _ to get the function(s) ¢ and, con-
sequently, the solution(s) of (3.1). For that we construct a linear system whose
solution(s) gives us the solution(s) of (3.1). We now give a brief description of that
construction. The details of going from the equation (3.4) to the linear system can
be found (with some adaptations) in [5], where the case g4 (t) = 1 was considered.
First, we need to decompose the functions r(t), r(t), |r(t)|* and @ in
elementary fractions. We obtain different decompositions, depending on the value

of the constant kg:
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ko >0 = |r(t)|2=iatl+§n: QZ by G +k§:2@'
0= t L t—p) " (A—7t) #

=1

peril el A Chall 1 — 1
rOF 5~ s { bji cji }
ko< -2 = = ;
t ; l; (t=py)t (=5 t)
ko+1 n o Qj gil
ko> -1 = r(t) = Zflthz(tj i
=0 j=11=1 K
n oj )
ko< -2 = r(t) =Y (t_gﬂ 57
j=11=1 M

Mo Cm)y  So -my - ot
—~ _ T Hﬁll(—)\_z)ﬁz n_ oy "
ko< —1 = r(t) =k ==L 4 i
[T (=) ;  (1—75 t)!
ko+1 no (o u < kotl
ko>0 = [rOP =S wit + [ i i ] . L
; ng L) (=mt) ; :
Uji Sil
ho=—1 = |r(H]* =wo+ { ) ) } ,
j; lzzl (t—p)t  Q—p5t)
ko <—2 = |r(t)]* = i S { Ui n Sji }
B Sl L)t A =pg )

Next, using the above decompositions, we define the finite rank operators
Kl; KQ; K37 K47 K5 and KG:

1) (ko >0)
ko 141 n B
Ko@) =2 o) At ”1+ZZbﬂZi)l 7
=0 Jj=11=1 i=1
aj l i—1 ko+2 —

- ¢j 1 i
K= e () S EE o
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ko+1 l n F
Ksy_(t) =P { [Z szE t= ’+ZZQ;12%]};

j=11=1 i=1

ko+1 l n o l

_ ko+1 l F..
Kep_(t) = P { (1) ZﬁZE D g]z ﬁ :
)

through the functionals

ER0) £y

Ai(zy) = W Bz‘j(fC+):W7 Cij(zy) =
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)@ O 0y
M; Ei(¢_):¢+i!(0); Fij(lb—):w(i_ii;]);

Di(z4) = il
e () =T e )= o and (1) = 0) T )
Using the finite rank operators K;, i = 1, 6, we define the functions fi, fa,
f3 and f42

Fi(t) = () Ky (8) + Ko (t) — Kato_ () + 0(t) Ku_(2),
folt) = Ky (t) + y () Koy () — y—(t) Kt (t) + Ky (1),

f(t) = % Ky (8) + Kot ()]

where y_(t) = 0(t).

Let z; 4, i = 1,s4, be the zeros, with multiplicity ¢; 1, of v + |r(¢)[?, such
that |z; 4| < 1.

Let z; —, i = 1,5_, be the zeros, with multiplicity ¢; _, of v + |r(¢)|?, such
that |z; —| > 1.

We get the linear system, S, 4, , that gives us T7 and ¢_:

< __ ) o
1(J)(Zi,+) =- (Pe [T(t) 9+(f)]) (zi4), i=1,51, j=0,q;4+ — 1

()=~ (-0 P [0 02 0])” (i), i=Trom, j=0g- 1

- Sro (i-1) j

(P- [@a-0]) " ©

1 -

Solving this linear system we obtain the solution(s) w4 4, (f) of the equa-
tion (3.1):

1 B -
Wign (0)= = {900 = () 700 70 — Pellrv-) (0]}
When g4 (t) = 0, the solution(s) of Sy, gives us the solution(s) of the homo-
geneous equation (3.3), that is, we get the kernel of the operator N4 (b) + v I and
its dimension k.
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Obviously, Sy, has only the trivial solution if and only if x = 0. So, when
Sy.0 has only the trivial solution, we can use Corollary 2.2 and Proposition 3.1
to conclude that, the equations (1.3) and (1.4) are solvable, and, consequently,
—~ € p(N4(b)). This gives the proof of

Theorem 3.3. Let b € H, 9. The system S, o has only the trivial solution if and
only if —v € p(N4(b)).

When the linear system S, ¢ has no trivial solutions, the kernel of the oper-
ator N4 (b) + I is not trivial. So, —y € o (N1 (b)). We know that if the matrix
function (1.1) admits a left generalized factorization, then there exist two poly-
nomials R; .(t), ¢ = 1, 2, such that the problem (2.4) is solvable (see Proposition
2.9). Then, using Proposition 3.1, we can know if the polynomials R; . (t), i = 1, 2,
exist. Consequently, we can formulate the following result:

Theorem 3.4. Let b€ Hyg and S0 a system with no trivial solutions.
If there exist R; ,,(t), i =1, 2 as in (2.9), (2.10), or (2.11) such that

g+1(t) =7 Rix(t) and g4 a(t) = 7b Ro,u(t)
satisfy the conditions (3.2), then —y € o (N4 (b)). Otherwise, —y € o (N4 (b)).
So, if the linear system S, has only the trivial solution, then the matrix
function (1.1) admits a left canonical generalized factorization and we can solve
the linear systems S, 1 and S, to obtain the solutions of the equation (1.3) and
(1.4). Using Theorem 2.3, a left canonical generalized factorization of (1.1) can be

obtained. -
To solve S, 1 and S, we need to simplify Py [r(t) g+ (t)} for

i) g+(t) =1
Py [@!ﬁr(’f)] =7(0) [1 - @e(t)} :

=1
b) if kg < —1
n oy l i—1
_ sy 1
Py [r(Dg+ (0] =D > —2— [@(t) - Gy (t - _) ] :
[ } =1 1=1 (1-7 t>l i=1 Hi
where
gli—1) (é) o)
K (0)
o H =
Gii = =gy ad Hi=—
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If the linear system S, ¢ has no trivial solution and —y € o (N, (b)), then,
using Proposition 3.1, we can determine R; ., i = 1,2, as (2.9), (2.10), or (2.11). We
then solve the linear systems S, g, ., and S, b R, . to obtain the solutions of the
equations (1.5). Using Theorem 2.11, a left non-canonical generalized factorization
of (1.1) can be obtained.

To solve Sy 4 g, . and S, 4 g, We need to simplify Py [@g+ (t)} for
Z) g+ = PYRl,/{

Py [rBg+(0)] = [Pe = 6P 1] [rB R c(0)].

We have to decompose the function r(t) Ry . (t) in elementary fractions. Then,
we have to choose the fractions without poles in the interior of the unit circle and
use

P, (M tl) = Z 0@')"(0) =i 1 >0.

!
— il
ii) g+(t) =7bRyx

Py [r0g+(8)] =7 { P+ [In(t)? Ras(t) 6(8)] = 0(8) Py [Ir(6)]? Ra.n(8)]}-
We have to decompose the function |r(t)|? Ra .(t) in elementary fractions.

Then, we have to choose the fractions without poles in the interior of the unit
circle and use

ot) 1 - NG (%) 1 i1
e e G = Tl G M IR

and

4. Algorithms [AEq| and [AFact]
This section is dedicated to the algorithms [AEq] and [AFact] .

Tt is possible to implement, on a digital computer, the algorithms [AEq] and [AFact], using
the Mathematica 6.0 application. The programming features and the built-in functions of this
application can be used to compute the extensive symbolic calculations demanded by the algo-
rithms. As a final result, we can obtain two Mathematica notebooks, one for each algorithm,
that automate the factorization process as a whole. The enclosed examples in Section 5 were
obtained in such a way. Presently, we are using parts of the implemented notebooks to construct
new factorization algorithms. Therefore, we postpone the discloser of the source code.
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[AEq]

[ Input]]: Insertion of the zeros of r(¢) and their algebraic multiplicity. Insertion
of the poles of r(t) and their algebraic multiplicity. Insertion of the constants k
and ~y. Insertion of the function 6(t).

[ Initialization ]]:  Determination of the constants m, n, and ko. Definition of

- #)|2
the functions r(¢), r(¢), |r(t)|? and M Definition of the auxiliary operator for

the decomposition of abstract functions in elementary fractions. Definition of the
projection operators Py and P_.

[[ Decomposition in elementary fractions]]: Decomposition of the functions r(t),
- £)|?

r(t), |r(t)|? and @

[[ Definition of f; and K;]]: Definition of the finite rank operators K;, i = 1, 6.
Definition of the functions f;, i = 1, 4.

[[ Finding roots of v+ |r(t)|*]]: Resolution of the equation ~ + |r(¢)|? = 0.

[[ System S, 4, ]]: Insertion of g, (t). Determination of Py [@ng (t)} . Determi-
nation of P_ [@ g+ (t)} . Resolution of the linear system S, 4, .

[[ Output]]: Determination of the solution(s) wy 4, (t).

[AFact]

[ Input]]: Insertion of the zeros of r(t) and their algebraic multiplicity. Insertion
of the poles of r(¢) and their algebraic multiplicity. Insertion of the constants k
and +. Insertion of the function 6(t).

using [AEq].

[[ Sy.9+ ]]l: Resolution of the linear system S, 4.,

[[{g+(t), ] (t)) = 07]]: Analysis of the solubility of the equation (3.1), through
the condition (3.2) of Proposition 3.1.

[ R1,x(t)]]: Analysis of the existence of a polynomial R; ,, satisfying the condition
3.2), for g4 = Ry .

(

[[ R, (t)]]: Analysis of the existence of a polynomial Ry ,, satisfying the condition
(3.2), for g+ = bR ..
[

[ No Generalized Factorization ]]: The matrix function (1.1) does not admit a left
generalized factorization.

[[ Canonical Generalized Factorization A, = A¥ x A7]]: The matrix function
(1.1) admits a left canonical generalized factorization.

[[ Non-Canonical Generalized Factorization A, = AT x A x A7]]: The matrix
function (1.1) admits a left non-canonical generalized factorization.

[[ Output AT, A7 ]]: Determination of the factors A¥ and A7 .
[[ Output AT, A, A7 ]]: Determination of the factors A¥, A, and A7 .
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Canonical
Generalized
Factorization No
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Factorization
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No
‘Generalized
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N

Non-Canonical
Generalized
Factorization
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=

% Non-Canonical

Generalized
Factorization

FIGURE 1. Flowchart of [AFact] algorithm
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5. Examples

We will now present some examples of the obtained results.
Let us consider the function

b0 = (1 5 ) o

where 6(t) is an inner function.
Using the algorithm [AFact], we obtain a left generalized factorization of the
matrix function A, (b) for two distinct values of ~.
5.1. Canonical factorization
7
[[Input]]: Let v = 1 Since v > 0, A,(b) admits a left canonical generalized

factorization (see Corollary 2.2).

[ Sy 1l

wn(t) = 2O G)is(®) + 2781

* (716 () 2+ 81)(t —3)(3t — 1)

where

i (t) = —7(t—3)8 (é) 244 (2t — 3)0(1).
[ Sy 1]

) (t):g J+(®)6(t) — 5046 (3)

TG PS¢t -3)Et 1)
where

g (t) = t(2t — 3) [7(3t —1)0 ( ) | 4 243 (t — 3)]

[[ Qutput A%, AT ]]: Using Theorem 2.3 we obtain a left canonical generalized
factorization of the matrix function Az (b),

7 u v -1
+ _ ' 94 + - _ + ,
4= ( Py(buy) 1+ Pp(bvy) ) and A <A%) A (),

- 1 (3t — 2)0(%) (@u@) yor— 81t>
Ey <b(t)“+(t)> IO TR [ t(t—3)(3t—1)
and
- 1 (31 = 2) (31 1) — 5047000 (3))
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5.2. Non-canonical factorization

[ Input]]: Let v = —1. Let 0(t) be a function defined in a neighborhood of z; 4 =

g((?) —)zf) and in a neighborhood of z;,_ = (3 + iv/7), such that (z;,4) =
21,— 0.

20(z1.4) +t(=3 4+ 2t)0(t) }

[ Sy 1l Ker (Ny(b) = 1) = Span{ 0(211)(2 — 3t + 2£2)

= 1 eor (N ().
(19T () = 0?]): (N4(b)+7 D) us(t) =1 is not solvable.
[Rin(®)]: Riu(t) =t —3(1—0(21,4)0(0)).
([ Sy ri. I

—2t(=3+2t)(0(z1,4+) — 0(t)) — 30(21,4)t0(0)h(t) + 3 Ah(t)
30(z1,4)(2 — 3t + 2t2) ’

1 (t) =
where
h(t) = 20(z1,4) + t(—3 + 2¢)0(¢)
and A is an arbitrary constant.
[[ (b, goj'(t)) =07]): (N4(b) +~vI)vs(t) =b(t) is not solvable.
[Ron(t)]]: Rox(t) =t
[ Syabron I

0(z1,4)[4 B +t0(t)(6 — 13t + 12t% — 4t3)] + BtO(t)(4t — 6)
20(21,4)(2 — 3t + 2t2)

3 (t) =
where B is an arbitrary constant.

[[ Non-Canonical Generalized Factorization A, = AT x A x A7 ]]: The matrix
function A_1(b) admits a left non-canonical generalized factorization (Case 3), see
Theorem 2.11,

A_1(b) = AJ_F1 ANAT,,
where

Af = ®, G, A(t) =diag {t, '}, A=, = A1 (AF)) A, (b),

‘I>+< gz)jr+ # 7o+ >,G=(% 0),A—det‘b+’
P+(b¢1) _R2,R+P+(b¢2) % 1

and the constant p depends on the inner function 6(t).
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Structured Primal-dual
Interior-point Methods
for Banded Semidefinite Programming

Zhiming Deng, Ming Gu and Michael L. Overton

Abstract. For semidefinite programming (SDP) problems, traditional primal-
dual interior-point methods based on conventional matrix operations have an
upper limit on the problem size that the computer can handle due to mem-
ory constraints. But for a special kind of SDP problem, which is called the
banded symmetric semidefinite programming (BSDP) problem, a memory-
efficient algorithm, called a structured primal-dual interior-point method, can
be applied. The method is based on the observation that both banded matri-
ces and their inverses can be represented in sequentially semi-separable (SSS)
form with numerical ranks equal to the half bandwidths of the banded matri-
ces. Moreover, all computation can be done sequentially using the SSS form.
Experiments of various problem sizes are performed to verify the feasibility
of the proposed method.

Mathematics Subject Classification (2000). 65F05, 90C22, 90C51, 65F99,
90C25.

Keywords. Banded matrix, semidefinite program, interior-point method,
sequentially semi-separable.

1. Introduction

Let S™ denote the space of real symmetric n x n matrices and B;, denote the space
of real symmetric n x n banded matrices with a half bandwidth of w,

St = {X|XeRv" X=XT1}

B, = {X|XeS" X,; =0for|i—j|>w}
The inner product on 8" is X ¢ Y = trXY, and we write X = 0 (> 0) to
respectively mean that X is positive semidefinite (positive definite). The primal

Communicated by L. Rodman.
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form of a banded semidefinite program (BSDP) is
H}%n CeX
st. AyeX =by, k=1,....m (1)
X =0,

where Ay, C € By, b € R™, and any feasible solution X € §". The dual form is

max bTy
Y,z

m
st. Sy +2Z2=0C (2)

k=1
Z =0,
where y € R™. It is straightforward that any solution Z also satisfies Z € BJ}.
The BSDP is just a special case of a semidefinite program (SDP) where the known
matrices, Ay and C, are limited to be banded. Therefore, any existing methods
that can solve SDP can be directly applied to the BSDP without any changes. In
this paper we introduce a revised primal-dual interior-point method that makes
use of the banded characteristic and provides fast and memory-efficient iterations.
We assume throughout the paper that there exist X > 0 satisfying (1) and
(y,Z) with Z > 0 satisfying (2). As is well known [12], these strict feasibility
assumptions imply that solutions exist to both (1) and (2), and furthermore that,

for all u > 0, the system

AkOXZbkk=1,...7m
YA +Z=C
k=1

XZ = ul
X+0,Z+0

3)

has a unique solution (X,,,y., Z,). The set of such triples is called the central
path. As  — 0, (X, yu, Z,) converges to (Xo, Yo, Z,), where X, solves (1) and
(Yo, Zo) solves (2).

We consider a standard primal-dual path following algorithm, called the X Z
method in [1] and the H..K..M method in [12]. The basic idea is to apply Newton’s
method to (3), reducing p as the iteration proceeds. We initialize X and Z to the
identity matrix, which satisfies the third equation in (3) with 4 = 1, and we
initialize y = 0. Substituting X, y and Z respectively with X + AX, y + Ay and
Z + AZ in (3), we obtain:

AkO(X—i-AX):bk k=1,....m

m

Yok +Ay)Ar +(Z+AZ)=C
k=1

(X + AX)(Z + AZ) = ul
X+AX -0, Z4+AZ >0
AX = AXT

AZ =AZ7T.
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For now, we neglect the positive definite constraints and the symmetry constraints.
The equations for AX, Ay, AZ become

Ak.AX—bk—Ak.Xk—l
m

Z AykAk + AZ = C - E ykAk —
=1 k=1
X AZ+AX-Z+AX-AZ=ul —XZ.

Neglecting the second-order term, AX - AZ, in the third equation, the equations

become linear:
Ak.AX:bk—Ak.Xk:L...,m
ZAykAk+AZ:Cf EykAku
k=1 k=1
X - AZ+AX - Z=ul —XZ.

Also, we can convert the matrix-form equations into vector-form equations by
applying the matrix stack operator,

Ao AX = vec(Ar)Tvec(AX)
Ao X = vec(Ag)Tvec(X),
and applying the Kronecker product operator, [7],
vec(X - AZ) = vec(X -AZ-1I)
(I®X)-vec(AZ)
vee(I - AX - Z)
(ZT 1) - vec(AX)
= (Z®I)- vec(AX).

vec(AX - Z)

Therefore, a set of vector-form equations for the unknown vectors Az £ vec(AX),
Ay, Az 2 vec(AZ) can be generated,

A-Azx = 1 (4)
AT Ay+Az = 1y (5)
Z - Az+X-Az = r (6)

where

[I>

[vec(A;) vec(As) vec(As) ... vec(An)]" € R™*
I®X RV

Z®I eR¥*™

vec(X) € R"’

Tp b—Ax eR™

vec(C — Z) — ATy € R™

vee(ul — XZ) € R™.

s N X P>

> 1> > >

[I>

[I>

Te
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Since Z > 0, Z must be invertible. Block elimination, which we informally write
as (4)+A-Z71-X-(5)—A-Z71.(6), gives
M-Ay=r,+ AZ'X. rg — AZ ! “Te,
where the definition of M is
M £ AZ'XAT e R, (7)

Assuming A has full row rank, or equivalently all A’s are independent, M is
non-singular and there is a unique solution for Az, Ay, Az for equations (4)-(6),

Ay = M ' (r,+AZ'X rg—AZ™" 1) (8)
Az = rg— ATAy 9)
Ar = Z7' (r.—X-Az). (10)
AX and AZ can be recovered from Az and Az,
AZ = C—Z- pAv— ) AypAy (11)
k=1 k=1
AX = (Wl-X2)-Z27'-X-AZ- 7271 (12)

However, AX, Ay, AZ can not be used directly since we still need to check the
positive definite constraints and the symmetry constraints. First, we check the
symmetry of AZ and AX. AZ is symmetric since

m m
CT =77 =3 AL =D Ay
k=1 k=1

(az)"

C—-Z- ZykAk - ZAykAk
k=1 k=1

= AZ

In fact, it is easy to verify that AZ € B]. But this is not generally true for AX
since

X -AZ-Z7'+£77V.AZ X.
Therefore, we set

AX, = % (AX +AXT). (13)

The symmetric matrix AX, still satisfies (4) but usually does not satisfy (6).
Furthermore, we require the new X and Z to be positive definite. We choose a
fixed parameter 7, 0 < 7 < 1 and define step lengths « and (3,

(e

g

min{1, 74}, & £ sup{a: X +aAX, =0}

min{1,78}, B2 sup{B: Z+BAZ = 0}. (14)

(1> >
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Then X, y and Z can be updated as

Xpew = X+ aAX, (15)
Ynew = Y + /BAZJ (16)
Zoew = Z+BAZ. (17)

In general, if « = 1 and 3 = 1, this is an exact feasible solution of the BSDP. If
a < 1 or <1, the new point does not satisfy the linear constraints. In either
case, we call Xjew ® Zhew the duality gap of the current iteration. For the next
iteration, a new parameter pney can be defined as

—0. Xnew L4 Znew
Hnew n )

where 6 is a parameter with 0 < 6 < 1.

Now we consider the computational complexity and memory usage in each
iteration. The computational work load in each iteration is dominated by the
formation and the Cholesky factorization of M. According to (7), the elements of
M must be computed separately,

M;; = vec(A)"(Z7' @ X)vec(A;)
= vec(A;)Tvec(XA;Z7h)
= tr(A4XAZ7Y.
Since X > 0 and Z = 0, they have Cholesky factorizations, X = ST Sx and
7 = S} Sz, where Sx and Sz are upper triangular. Therefore,
M;; = tr(A4;SxSxA;S,'S,T)
tr(S, T A;S%SxA;S,1)
— u(dlA)) (18)
where R
A; 2 Sx AiS,t
The computational complexity of one iteration is summarized in Table 1. The

memory usage in each iteration is dominated by the memory used to store the A;.
The order is O(mn?).

TABLE 1. Computational complexity of the general primal-
dual interior-point method

Computation Complexity
Computation of all A; = SXAZ-SE1 O(mn?)
Computation of M O(m?n?)
Factorization of M O(m?)

Total O(mn® + m?n? + m?3)
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From the above analysis, we can see that solving a BSDP by the general
primal-dual interior-point method does not have any reduction either in computa-
tion complexity or in memory usage compared with solving an SDP, as all matrices
except Z are still dense in general. In the following sections, a new method based
on a different matrix representation will be developed to make use of the banded
characteristic and reduce both computation complexity and memory usage. In the
proposed method, not only the banded matrix Z but also other related matrices
including Sz, Sgl, X, Sx have compact representations.

This paper is focused specifically on banded SDPs; as far as we know such a
structure has not been addressed in the literature previously. For a general survey
on exploiting structure in SDP, see [9].

2. Sequentially semi-separable representation (SSS)
for banded matrices

In this section, we introduce the sequentially semi-separable(SSS) representation
of square matrices and show that all the required matrix computations in the
primal-dual interior-point method can be performed in the SSS form.

2.1. Structures of SSS matrices
P
Let A € R™*™ and let {n;,i = 1,...,p} be positive integers satisfying > n; = n.

=1
Then A can be partitioned to a compound matrix with sub-block matrices A4;; €
Rmexmi 1< 4,5 < p,

A A Az oo A
Ag1 Agp Az -+ Ay

A= | A1 Aszp Aszz - Ay | (19)
Apl Ap? Ap3 e App

All sub-block A;;’s can be expressed in terms of a sequence of matrices {D;,1 <
i <ph U1 <i<p—1}5 {Vi,2<i <p}h, (Wi, 2<i<p— 1}, {P,2 <i < p},
{Qi, 1 <i<p—1},{R;,2 <i<p— 1}, called sequential matrices, as follows:

A” = UiWi-i,-l T Wj—l‘/jH 1< .7 (20)
PEL,RLLQN i)

To make the matrix multiplication operations in (20) valid, dimension constraints
must be applied to D;’s, U;’s, V;’s, W;’s, P;’s, @Q;’s and R;’s. In fact, we can specify
two sequences of positive integers {r;,1 < ¢ < p—1} and {l;,1 < i < p — 1},
together with {n;}, to define their dimensions, as listed in Table 2. The integer set
{ni, ri, 1;} is called the numerical rank.
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TABLE 2. Dimensions of sequential matrices

Matrix D; U; V; W; P; Qi R;

Dimension Mg XM | My X | Mg XTj—1 | Ti—1 X713 Nn; X li—l n; X 11 lz’—l X lz

Consider the memory efficiency of the SSS representation. For simplicity, we
assume that all n; are identical, n; = n, all r; are identical, r; = 7 and all [; are
identical, [; = [. Then the memory size required to store the sequential matrices is

p® + (p—1) (2a7 +2nl) + (p — 2) (7 + I?) <p(R +7 +1)°.

Thus the required memory is at most O(p(7 4 7 + [)?). If there exists a low rank
SSS representation so that n,7,l < n, the SSS representation can be much more
memory efficient than the conventional dense matrix representation.

The SSS representation can be applied to any square matrix, as we now show:
Theorem 1. Let A € R™ ™. For any specified positive integer sequence {n;,1 <

P

i < p} satisfying > n; = n, we can find sequential matrices so that A is block-
i=1

partitioned to the form of (19) and each block matriz A;j is defined by (20).

Proof of Theorem 1. The proof is constructive and is similar to that in [3]. The
construction of D; is straightforward,

Di:Aiii:L---;p-

We continue to construct {U;}, {V;} and {W;} for the upper triangular part of A.
Let H; be the ith upper off-diagonal block, also known as the ith upper Hankel
block following [5],

Ay ipr Arigo - A
Hi: E E 7::].,...7p_]..
Aiir1 Aiig2 - Agp
The construction starts from H;. Let H; = E1X1 F; 1H denote the economic singular
value decomposition (SVD) of Hy, so X; is an invertible diagonal matrix. Fy can
be further partitioned to two sub-blocks,

Ny TOWS
P

Py
=1 .
Fy

n; TOWS.
i=3

Now we are ready to define Uy, r1 and V5,
U =EF;

r1 = number of columns of Uy
Vo = F13y,
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and H; has a decomposition
Hy = Uy [Vt s ]
The second step is to look at Hy. According to the decomposition of Hy,

__A13 Alp
HQ—_AQS o Ay,
| mxﬂi]

| [A2z -+ Az

:'Ulo]{ o PR ]
0 I ]| [Ags - Ayl |

Hs

Let ffg = EQEQFQI_I denote the economic SVD of Hg, and let

EQ 71 TOWS FQ n3 rows
Ey = R F = R P
E, | no rows B 247%‘ LOWS.
Therefore we define Us, 72, W5 and V3,
Uy = By
ro = number of columns of U,
Wy = E»
‘/:3 = FQ EQu
and the decomposition of Hs becomes
Uy 0 Wo .
Hy [()I}{%}[@[&@w
UL W- ~
- [ ;]22 MV:;H Tab5 ]

Now suppose we have accomplished the decomposition of H;_1,

UWoWs - - Wiy
U Wiy - Wiy
: [ vH

2

S FH T

Ui—1
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Then for H;,
[ Ay o Ay UWaoWs - Wiy
Az jy1 -+ Agp Us W3 --- W5y .
. . . Zi—lF"Ii]_
Hi = : : = : ’
Aicrivr - Aiciyp Ui—1
Ay 0 Ay [Aiit1 -+ Ay
UiWoWs - - Wiy
UsWs -+ W; 4 .
_ . 0 |: Ei—lFiIil :|
N : Aiip1 o Ay ’
Ui, [ + p]
i 0 I H;
Let ﬁi = EZEZFlH denote the economic SVD of ﬁi, with
b El rioyrows L, _ }?l gi+1 TOwWs
’ E; n; TOWS g F; > nj rows.
j=it+2
Therefore we define U;, r;, W; and V41,
U, = E;
ri = n}lmber of columns of U;
Wi =E;
Vier = B3%,
and the decomposition of H; becomes
UWoWs - - W4
UaW3 - Wiy 0 -
= : { v ] [ Vi iEf ]
Ui—1
i 0 I
[ U WoWs - W,
U W3-+ W; " -
= . [ Vien X ]
U,

119

Repeat this process until H,_; is decomposed. At the last step, F},_; is an empty
matrix. Then the sequential matrices U;’s, V;’s and W;’s are constructed and r; is
the number of columns of U;. This algorithm is numerically stable [3]. Substituting
EiﬁiH in the decomposition formula of each H;, each upper off-diagonal block H;
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has the form

UWoWs---W;
UsWs - W;
Hi = : [ VE WiV, 0 Wi Wige - W V) .
Ui VE,
U;
(21)
Similarly, let G; denote the ith lower off-diagonal block,
Aiv11 Aigr2 - Aiprg
Gi = : : : i=1,...,p—1
Ap Ays o Ay

Then P;, Q); and V; can be derived and [; is the number of columns of ;. G; has
the following decomposition formula

Q1R2R3 - R;
Q2R3 R;
Gfl = . [ le—{i-l Ri+1Pin_2 ce- Ri_;,_lRH_Q s Rp_lppH } .
Qi PEH
Qi
(22)
Therefore a complete SSS representation for A is constructed. O

According to the algorithm in the proof of Theorem 1, representing a matrix
in the SSS form requires a lot of computational efforts. However, for banded matri-
ces, if the partition sequence {n;} is properly selected, the SSS representation can
be obtained immediately without any computation. Let A € B}. For simplicity,
suppose 1 and w satisfy the condition n = p - w where p is a positive integer.
Then we can assign n; = w, i = 1,...,p, and A is partitioned to block matrices
Aij, 1 < 14,7 < p, satisfying

A; 41 is lower triangular
Ai41 4 is upper triangular

A ;=0 li —j| > 1.
The sequential matrices are
D; = Ay
U = Qi=Aiim=A%,, (23)
‘/i = Pz = Iw><w
W, = R;=0.

The numerical rank is 7; = I; = w and the order of memory usage is O(nw). A
huge memory saving is achieved if w < n.
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2.2. Numerical rank reduction

For a fixed matrix A, the SSS representation is not unique. In fact, there are
an infinite number of them. But we are only interested in those which have the
minimal numerical rank. Therefore, we need to know what is the optimal SSS
representation with minimal numerical rank and how to reduce the numerical
rank for any given SSS representation. First, we define the left proper form and
the right proper form.

Definition 1. (Left Proper Form and Right Proper Form) The construction manner
from the proof of Theorem 1 shows each upper off-diagonal block H; is separable
as (21). The upper triangular part of A is said to be in left proper form if every
U; has orthogonal columns, that is,

Uu; = diagonal
and it is in right proper form if every V;;1 has orthogonal columns, that is,

Vi1 Vit = diagonal.

The same concepts can be applied to the lower triangular part. Each lower off-
diagonal block G; is separable as (22). It is in left proper form if every Q; has
orthogonal columns and it is in right proper form if every P;;; has orthogonal
columns.

Lemma 1. Let A € R™*™ be represented in the SSS form. Then it can be converted
to either the left proper form or the right proper form in a sequential manner.

Proof of Lemma 1. We prove the theorem by constructing a sequential algorithm.
We only consider the conversion of the upper triangular part of A. For the lower
triangular part of A, the same algorithm can be applied to the upper triangular
part of AH. First, in order to convert the given SSS representation to the left
proper form, consider the following recursion to update {U;}, {V;}, {W:} to {U:},

{Vi}, {Wi):

Wi = Wi ¥, F! economic SVD

o ! (24)
Wipn = XiF7Wip

Vier = Vi EFiY

with Wy and W, being empty matrices. The result is in left proper form. Because
Z/{l = Ulu

U, = U0 = Iy, s, -
Furthermore, if L?F_li;{i_l =1In, i xni_1s

K3

G0 — [ Wi, O | [ } _WHEGH g+ 0RO,

= .[/T/’LI_IV‘A/Z + U'LHUl = Iany

Therefore, the new SSS representation must be in left proper form.
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Second, consider the following recursion to update {U;}, {Vi}, {W;} to {U;},
{Vi}, {W;} so that the result is in right proper form.

[ I/T‘//ZH ] = [ Vi‘fH ] 3, F economic SVD
Wi—l - Wi+1FiEi (25)
U1 = U_1EY;

with W, and Wp being empty matrices. The result is in right proper form. Because
Vp = Vb,

N A H

VoV =V, Vp =1In,xn,-
Furthermore, if f}ililszq-l = In; 1 xniy, then

HA ~ P Vi
H _ 7
V; V, = [ V;H Wivg'_l ] |: f/iJeriH :|
= VZHVz + WivgﬂA/iJﬂWiH
- ‘zH‘Z + WZWF
= Inixni
So, the new SSS representation is in right proper form. O

Lemma 1 states that left proper form and right proper form can be achieved
separately. However, we also want to know whether the two proper forms can be
achieved at the same time. Lemma 2 addresses this problem.

Lemma 2. If A € R™*"™ has been represented in the right proper form, that is,
VﬂlVHl = diagonal i =1,...,p—1,
the new SSS representation of A after the recursion (24) is still in right proper
form. On the other hand, if A € R™™™ has been represented in the left proper
form, that is,
Z/{iHZ/{i = diagonal i =1,...,p—1,
the new representation after the recursion (25) is still in left proper form.
Proof of Lemma 2. We prove the first statement by induction:
. A
Vp Vo = Vp Vo
2p—lFg;{—lVpHVpr—lEp—l
= Ep_lF;_Ifl (VZI;IV;D) Fp—lzp—l
= o1 (VV) Spa
= diagonal.
Moreover, if f}i—&-l satisfies

]}ErlfjiH =%; (V1 Vis1) 8; = diagonal,
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then

o= [ W, ] [ Efw . }
= téHv€‘+I@2£fi1i€+1VV?
= VZHVz + WiZs (V}LVM) EH/T/Z»H
= VAV + Wi P (VE Vi) S
= VVi+ W, (V1 Vi) W
Sic Bty (ViVi+ WiV Vi W) FiaSia
= iR (V'YV) FiaXia
= X (ViHVz‘) Mi—1.

pH

Therefore, each V; has orthogonal columns and the right proper form remains. We
prove the second statement also by induction. According to recursion (25),

uu, = Ui,
= YL FRUPUL R,
= SRy (U'th) F2%,
= X (U'U) By
= diagonal.
Moreover, if U;_, satisfies
UL Uiy =% U Ui—1) 2,
then

N
o

<
|

Z/A[i—}Wi ]
Ui
= Wz‘HZ/A{Eﬂ/A[iﬂWi + UIHUZ
- WiHEi (ui}ilui—l) Wi + UZHUl
= WIS P (U \U;—y) FixW; + U
Wz‘H (uiH—1Ui71) Wi + UzHUz
Sip B WU U Wi + UP'US) Fin S
i Py (UPUs) Fia S
= Y41 (UZ-HUi) Yt

wra, o |

K2

Therefore, each f; has orthogonal columns and the left proper form remains. O

Hence, the SSS representation of every matrix can be converted to both the
left proper form and the right proper form. And now we are ready to show that
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an SSS representation in both the left proper form and the right proper form has
the minimum numerical rank.

Theorem 2. For any square matriz A € R"*" and a fized matriz partition {n;},
an SSS representation has the minimum numerical rank if the representation is
in the left proper form and the right proper form at the same time. Moreover, the
minimum numerical rank satisfies

r; = rank(H;)i=1,...,p—1
l;, = rank(G;)i=1,...,p—1L

Proof of Theorem 2. According to the construction in the proof of Theorem 1 and
the separation formula of H; in (21),

r; = number of columns of U; > rank(U;) > rank(H;)
r; = number of columns of Vi1 > rank(V;y1) > rank(H;).

If the given SSS representation is in the left proper form and the right proper
form at the same time, U; and V;;1 have full column rank and all the inequalities
in the equations become equalities. Therefore, the given representation must be
minimum and r; = rank(H;). The same analysis can be applied to I;. [l

Now we have a lower bound on the numerical rank. In practice, the numerical
rank can be further reduced for a given non-zero tolerance. In detail, when we per-
form economic SVD operations in recursion (24) and (25), we can neglect singular
values that are less than a given threshold level §. Such an SVD operation is called
a d-accurate SVD. The tolerance § can be any positive number, not necessarily
tiny.

2.3. SSS matrix operations

Important matrix operations that can be accomplished in SSS form and related to
the proposed structured primal-dual interior-point method are introduced in this
section. Computational complexity and the numerical rank of the computational
result are analyzed.

Theorem 3. (Inverse of Block Lower Triangular Matrices) A block lower triangu-
lar matriz L € C™ " is represented in SSS form. Then L~1 is also block lower
triangular with sequential matrices given by

DL = D;YI)

P(L™") = -D;NL)P(L)

QL1 = D;H(L)Qi(L)

Ri(L7Y) = Ry(L)—- PML)D;H(L)Qi(L).

A proof of Theorem 3 can be found in [5]. The numerical rank of the result
is the same as the original block lower triangular matrix, [(L~"') = I(L). The

computational complexity is O(p(n +1)3). For a block upper triangular matrix, we
have a similar theorem.
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Theorem 4. (Inverse of Block Upper Triangular Matrices) A block upper triangu-
lar matriz S € R™*" is represented in SSS form. Then S~—! is also block upper
triangular with sequential matrices given by

Di(S7h) = DiY(S)

Ui(S™Y) = D;H(S)Ui(S)

Vi(s™h) = —D;(S)Vi(S)

Wi(S™h) = Wi(S) = VE(S)D7H(S)U(S).

Theorem 5. (Cholesky Factorization) Let A € 8™ and A > 0. Let S = Chol(A)
be the unique upper triangular Cholesky factorization of A, with A = STS and S
upper triangular. If A is in SSS form, then there exists a sequential algorithm to
find the block upper triangular matriz S.

Proof of Theorem 5. We prove the theorem by construction. A = A” means that
A can be represented in a form such that P;(A4) = V;(A), Q:(A) = U;(A), R;(4) =
Wi(A) and D; € S™. Define A; to be a lower-right diagonal block of A,

Aii Aiipr o Aip

. Ay Aigrir 0 Ay

A = . . )
L Ap i Ap i+1 Ap P
[ D; (A) Uz(A)WiJrl (A) o VpH (A)
L V() WEL (AT (A) - Dy(A)

and let VE | be

Vii=[ Vi WiaVE, o WiaWin - VE .

Then the factorization process starts from /11. We have

S = Chol(A) = Chol(A;)
Di(4) Uy (AVY
Chol <{ VzUllH(A) 1 Ay })
Chol(Dy (A)) H
[ 0 Chol(/lz — Hi'H,) ]

where

Hy = [Chol(Dy (4))] U (A) VI

U
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Let Uy = E; % F! denote the economic SVD. Then we can define Dy (S), Uy (S),
‘/Q(S), WQ:

Di(S) = Chol(Dy(A))

Ui(S) = Ei

Va(S) = V(AR
Wy = S FHW,(A)

The second step is to compute Chol(/lg — HH4). Hy can be expressed as
Hy = Uy (S) [VQH(S) v“vzv;f} .
So
Va(S )
i = | A | oEsms) [ v g
Va(S)VEA(S)  Va(S)WaVi!
VsWHVHE(S)  VaWHIW,VH
Chol(Ay — HIH,)
(| P2 = VSVES)  [a(4) - eS| i
O ~ ~ ~ ~
Vs [US(4) ~ WEVE(S)] As = VWV
Chol(D2(A) — Va(S)V5'(S)) Ha
0 Chol (A3 — [VsWEWa Vi + 1§74, )

where

Hs = [Chol(D(A) ~ Va(S)Vi(8))] ™ [Ua(4) — Va(S)TF2] VL.

Ua
Let
{ Ws } = EpX, Fl
2
be an economic SVD, and let
E, ] r1(S) rows

By = [ Es | ma(S) rows.

Then we can define Dy(S), Us(S), Wa(S), V5(S), Ws:

D»(S) = Chol(Dy(A) — Va(S)V5(S5))
Us(S) = Es

WQ(S) = E2

V3(S) = V3(A) X

Wy = S,FHW(A).
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Generally suppose we have finished the (¢—1)th step. Then H;_; has the expression
_H ~
Himy = [Chol(Dio1(4) = Via (S)VE ($)] " [Uima(A) = Viea () Wi | V.

ﬁi*l
Perform an economic SVD,
Wit Ei H
~ f A~ Ei_ Fﬁ .
[Ui—l ] [Ei—l} e

Then D;_1(S), Ui—1(S), Wi_1(S), Vi(S), W; are ready to be computed,

D; 1(S) = Chol(D; 1(A) = Vi1 (S)VH,(S))
Uii(S) = Eia
Wi-1(S) = Ei

i(8) = Vi(A)Fi1Xia

Wi - Zi—lFiIilVVi(A)'

The next step is to compute Chol(A; — {ViWiIill/T/i_ll)}{ + H?lei_l] )-

VWE W VR HE 1 = viWE W VE Ol U VR
=V [Wzlil 03{71} [ Wi_l }VzH
1—1
Vi(9) 2
v | Lt i, )

_ [ visvis) Vi)W,
LV WRVES) Vi WIWIVE, ]
Therefore
Chol(A; — [ViW}LWi_lVF + H?_lm_l})
[ DA ViV [Uia) Vi) Vi
= (0] ~ N ~ ~
Vit [UiH(A) - WiHV;H(S)} Aipr = Vi WHW VL
Chol (D;(A) = Vi(S)V(9)) Hi
0 Chol (Ai+1 — |:Vi+1 WZHWZVEA + H?HZ:D

where

M, = [Chol(Di(4) — Vi(S)VA(S))] " [Ui(4) - Vi(s)Wi] VL.

|

U;
Let

=

Li ] = E;%F!

S
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be an economic SVD, and let

B E;z ri—1(S) rows
" | E; | ni(S) rows.

Then we can define D;(S), U;(S), Wi(S), Vi(i + 1), Wii:

D;(S) = Chol(D;(A) — Vi(S)VH(9))
Ui(S) = E;

wWi(S) = E;

Vit1(S) = Vim(A)EE;

Wiy = SiFRW,(A).

The ith step is complete. Repeat this process and we can find all the sequential
matrices of S.

As a summary, the Cholesky factorization can be accomplished by the fol-
lowing recursion algorithm:

D;i(S) = Chol (D;(A) — Vi(S)V;(S)H)
W (9)
! - S SVD
Di(S)fH[Ui(A) —Vi(SYW,] ] |: U;i(S) } economic
Vitr(S) = Vi (A)FY;
Wipn = NiFfWipi(A)
where Vi (S) and Wy are empty matrices. 0

The computational complexity of the Cholesky factorization is O(p(n +7)3).
The numerical rank of the factorization result is no greater than the original ma-
trix, 7(S) < 7(A).

For A € 8" and A = 0, A~! can be computed sequentially in two steps.
First, A can be factorized. Then A~! can be computed by finding the inverses of
two block triangular matrices.

Theorem 6. (Addition) Let A,B € R™*™, with both in SSS form and n;(A) =
ni(B), i = 1,...,p. Then A+ B can be represented in SSS form by sequential
matrices given by

D,(A+B) = D;(A)+ Di(B)

Ui(A+B) = [Ui(A) U(B) ]
ViA+B) = [ Vi(A) Vi(B) ]
wia+n = | WA WZ_(()B)
P(A+B) = [ P(A) P(B) ]
Qi(A+B) = | Qi(4) Qi(B)
ra+p) = | F RZ_?B)

Notice that TLZ(A + B) = ’ILZ(A), Tl(A + B) = ’I’Z(A) + Tl(B) and lz(A +
B) = l;(A) + 1;(B). The numerical rank increases additively which can make the
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representation of computation result inefficient. The computation complexity is
O(1). When the two operands are both banded with the same bandwidth, we know
the result will also be banded. Therefore, we do not have to use the algorithm in
Theorem 5 to compute their sum. Instead, relying on (23), we have the following
algorithm for addition of banded matrices without numerical rank expansion:

D;(A+B) = D;(A)+ D;(B)
Ui(A+B) = U;(A)+Ui(B)
Vi(A+B) = I
Wi(A+B) = 0
P,(A+ B) = Pi(A)+ P(B)
Qi(A+B) = 1
Ri{(A+B) = 0

Theorem 7. (Matrix-Matrix Multiplication) Let A, B € R™*™  with both in SSS
form and n;(A) =n;(B), i=1,...,p. Then A- B can be represented in SSS form
by the following recursions:

(i) N1 =0, Niy1 = QH(AU(B) + RMANW;(B), i=1,....,p—1

(
(ii) M, =0, M;_y =V (A)P,(B) +Wi(A)M;R(B), i =p,...,2
) +

(i) D;(AB) = D;(A)D;(B l(A>N'VH( )+ Ui(A)M; Q' (B)
Ui(AB) = [ Di(A)Ui(B) + Pi(A)N;Wi(B) Uj(4) ]
Vi(AB) = [ Vi(B) D{{(B)Vi(A) + Qi(B)M'WH(A) |

Pi(AB) = [ Di(A)P;(B) + U;(A)M;R}(B) P;(A) |

Qi(AB) = [ Qi(B) Di(B)Qi(A) + Vi(B)N/'Ri(A) ]
Ri(B) PMNB)Qi(A)

) = | R )

A proof of Theorem 7 can be found in [4]. The result can be inefficient
since n;(AB) = ni(A), ri(AB) = ri(A) +ri(B), l;(AB) = [;(A) + l;(B). The
computational complexity is O(p(i + 7 + 1)3).

3. Structured primal-dual interior-point method

The proposed structured primal-dual interior-point method for BSDP is based
on the general primal-dual interior-point method for SDP but all the matrices
including intermediate and final results are represented in SSS form. Under the
assumption that the banded matrices are narrow-banded, that is w < n, this
method offers the benefits of memory saving and reduced computation complexity.
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3.1. Method descriptions

STEP 1. Construct the SSS representations for Ay and C. Since Ax,C € B}, the
conversion can be accomplished easily according to (23) with n; = r; = I; = w. The
{n;} determines the block partition of all matrices and is kept constant throughout
the whole process. The r; and [; of A and C' do not change but those of others,
e.g. X and Z, do change. In the following discussions, we only consider r; due to
symmetry. Let 7 denote the average of all r;. The quantity 7 can be used as a
measurement of the numerical rank of an SSS matrix.
Next we specify initial solutions for X, y and Z. Make X = I,,x, and Z =
I, xn. Then we convert them to SSS form by the same manner applied to A and
C. The initial y is set zero.
Note that the initial Cholesky factorizations of X and Z satisfy Sx = Sz = I.
Finally, calculate the initial duality gap pu. Choose a fixed parameter 6, 0 < 6 < 1,
Xinit ® Zinit Tel

Linit = 0 =40
n n

6.

STEP 2. Construct M. The formula for M is defined in (18). The matrices Aj =
SXA;CSE1 can be computed in SSS form. The computation includes computing
the inverses of a block upper triangular matrix and matrix-matrix multiplications.
Each element of M can be computed by

My =tr (AT 4;).

It is also interesting to examine the numerical rank of A since it dominates the
memory usage of the algorithm.

ri(Ay) = ri(Sx)+ri(Ar) + r:(S;1)
= ri(Sx)+ri(Ar) +r:i(Sz)
ri(Sx) + 7i(Ax) +ri(Z)
= ’I"i(SX) + 2w.

N

Here we have used the obvious fact that both A, and Z in each iteration are
banded matrices.

STEP 3. Compute the direction Ay. The computation is based on (8). We need to
rewrite the formula to make it suitable for sequential SSS operations. Substitute
M, rp, 74 and 7. in the formula,

Ay=Sm 'Sm "
x [(b— Az) + AZ7'X - (vec(C — Z) — ATy) — AZ 'vec(ul — X Z)]
tI‘(AlX) tr([llf])

tr(Ax X) tr(Ax0)

= SM_lsM_T b— = SM_lsM_Tga

tr(Ap X) (A )
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where Sy is the Cholesky factorization of M, M = Syt Swm. Since M is not
structured, this has to be performed by a normal Cholesky factorization algorithm.
U and U are defined by

U=C-> yrAr — nSx'Sx" and U = SxUS;".
k=1

The numerical ranks of U and U are

ri(C — ZykAk) + 7 (S¥") +7:(Sx)

’r‘i(U) =
k=1
= 2r;(Sx)+w
ri(U) = 1i(Sx) +7r:(U) +ri(S5")

N

= 3r;(Sx) + 2w.
The computation of b and Ay can only be performed by normal matrix operations.

STEP 4. Direction AZ. The computation is based on (11). For convenience we
rewrite the formula as

m m
AZ=C—Z-) yphx— Y AypAy.
k=1 k=1

Since A, C, Z € B;,, we have that AZ € B;}. It reflects an important fact that Z
will be kept a banded matrix throughout all iterations.

STEP 5. Direction AX. Substitute AZ in (12) by (11),

AX = pZ ' =X -XCZ'+ X+ pXAZ '+ ApXAZ™!
k=1 k=1

= ) AuXAZ ' -XxUZ!

k=1
= STSx <Z Ayp Ay — U) S,ts,t (26)
k=1
k=1
= ST <Z Ayp Ay, — U) ST (28)
k=1

We will use (28) to compute AX since it gives better numerical stability and
primal feasibility than (26) and (27) according to [1]. The matrices U and Ay, have
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been computed in previous steps. Now consider the numerical rank of AX,

ri(AX) = Ti(S)T<)+Ti(U)+7”<ZAy<k>;1k>+7“i(5§T)
k

N

ri(Sx) + 3r:(Sx) + 2w + 7 <Z Aykflk> +7:i(Z)
k=1

4ri(SX) + 3w + 1y (Z Aykzzlk>

k=1

A problem arises from the term r;( Y. AyrAy). By direct SSS matrix additions,
k=1

m ~
it equals Y r;(Ay). This is undesirable since it adds a lot of redundancy in the
k=1
numerical rank. Our strategy is to do matrix addition and rank reduction at the
m ~
same time to avoid quick growth of the numerical rank. Moreover, r;( > Ay, Ay)
k=1

m
after rank reduction can be estimated, given that > AygAjy is banded, by
k=1

Tz(z AypAy) = ri(Sx <Z AykAk> S;M)
k=1

k=1

= ri(Sx)+m <i AykAk> +7:(Sz)

k=1
< ri(Sx) + 2w.

So,
ri(AX) < 5r;(Sx) + dw.

STEP 6. Update solutions. Once we have computed search directions AX, Ay and
AZ, we can update our solutions. First we need to symmetrize AX by AXg =
$(AX 4+ AXT) as in (13). The numerical rank of AX, is

Tl<AXS) = 27‘1(AX)
< 107(Sx) + 10w.

Next we need to find step lengths o and [ which are defined in (14). In [1], an
exact formula relying on an eigenvalue computation can be used to obtain & and B .
Unfortunately, that does not work here, because there is no sequential algorithm
to find the eigenvalues of an SSS matrix. Therefore, we use a bisection search with
Cholesky factorization to estimate the values of & and 3. Then we can define
and (§ by specifying a fixed parameter 7.

Finally we get updated solutions Xpew, Ynew and Znew based on (15)—(17).
We still need to estimate the numerical rank of X, .. since this can affect the
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sizes of matrices in following iterations. To find 7;(Xpew), we have the following
theorem.

Theorem 8. Let X = Z~ 1, where both X and Z have been expressed in the simplest
SSS form with minimum numerical ranks. Then

ri(X) = ri(2)
LX) = L(2).

Proof of Theorem 8. This conclusion is a direct result of a fact about general ma-
trices that any sub-matrix of a non-singular square matrix X has the same nullity
with the complementary sub-matrix of X !, [11], [2]. Two sub-matrices are “com-
plementary” when the row numbers not used in one are the column numbers used
in the other. Therefore, given that X = Z~!, any upper off-diagonal matrix of X,
H;(X), and the corresponding upper off-diagonal matrix of Z, H;(Z) are comple-
mentary sub-matrices. They have the same rank:

rank(H;(X)) = rank(H;(Z)) = ri(X) =ri(2).
The second equality is based on Theorem 2. Similarly,
rank(G; (X)) = rank(G;(Z2)) = L(X)=1(Z). O

Now if the updated solutions X,y and Zyew are approximately on the central
path, then it is satisfied that Xew = /,LZn‘e}N. We know that Z,.y is banded, then
7i(Xnew) = w and 1;(Xpew) = w. The new Cholesky factorization Sxpew and Sznew
can also be computed.

At the end, a new target duality gap should be calculated,

0
HMnew = Etr(s)l_(l'newSXnewsgneWSZnew)-

Refresh Sx, Sz, i and go back to Step 2 for next the iteration until ;1 becomes
less than a preset threshold.

SZ ~ SZnew
SX ~ SXnew
U = Hnew-

3.2. Algorithm analysis

We have described each step of the structured primal-dual interior-point method
in detail. This method always maintains simple SSS structures since at the end of
each iteration, Sy will return to low rank after rank reduction. As a summary, we
list the numerical ranks of some critical intermediate matrices in each iteration in
Table 3. As in the case for unstructured problems, the memory usage is dominated
by the storage of Aj. The memory usage is O(mw?), compared to O(mn?) for
unstructured problems.

It is also interesting to look at the computational complexity of the proposed
method, as shown in Table 4. Comparing to the analysis in Table 1, the computa-
tional complexity can be reduced everywhere except in the Cholesky factorization
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TABLE 3. Numerical ranks of intermediate matrices

Matrix Numerical Rank
Ay, ri(Sx) + 2w
U 3ri(Sx) + 2w
AZ w
AX 573 (Sx) + bw
AX, 107;(Sx) + 10w
Znew w
Xow 12r;(Sx) + 10w
S Znew w
Sxnew (after rank reduction) ~w

TABLE 4. Computation complexity of the structured method

Computation Complexity
Computation of all A; = SXAZ-SE1 O(mnw?)
Computation of M O(m?*nw?)
Factorization of M O(m?)
Total O(m?*nw? + m?)

of M. However, this does not dominate the cost of the algorithm. In fact, to
guarantee the number of constraints in the BSDP to be less than the number of
unknowns, it must be the case that

m < (2n — wZ)(w +1)
and in the worst scenario
m = O(nw).
Hence the overall computation complexity of the proposed method is bounded by

O(m*nw? + m®) = O(n*w* + n*w?) = O(n3w?).

Thus the need to factorize M does not affect the effectiveness of the algorithm.

Another issue concerns the rank reduction of Sxyew, which is accomplished
using d-accurate SVDs in the SSS computations. There are two possible strategies:
one is to fix § to a small value throughout the algorithm, and the other is to reduce
0 adaptively.
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3.3. Experiments

In order to test the feasibility of the proposed structured algorithm, several exper-
iments were carried out. We generate large size random BSDP’s that have strictly
feasible solutions by the following manner:

— Generate random banded matrices A, k=1,...,n
— Generate random diagonal matrices X and Z with positive diagonal elements
— Generate a random vector y
— Define by, = A, e X, k=1,...,n
Define C = Y ypAr + Z.
k=1
Problems with different sizes are tested with different rank reduction strategies.
— n =100, 500, 2000, 5000
- m =10, 20
—w=29
— constant §, adaptive 4.

We set parameters 7 = 0.9 and 6 = 0.25 and the convergence condition for the
duality gap is n - 107'2. In the constant § strategy, we fix § to be 10~'3 while in
the adaptive  strategy, J is linked to p in each iteration by § = 0.1u.

Fig. 1-Fig. 8 show experimental results for each iteration including the nor-
malized duality gap p, the normalized numerical rank X)) after rank reduction,
the primal residual max{|by — Ay e X|} and the dual residual max{|C — Z —

m

> yrAg|}. We see that for the constant 0 strategy, smaller ranks for X, implying
fesls computational cost, are achieved, at the price of increased primal infeasibility,
but this infeasibility is steadily reduced as the iteration continues, finishing with
the same accuracy as the constant ¢ strategy. The sharp drop in primal residual at
the beginning of the constant ¢ iterations is explained by the fact that as soon as
a primal step a = 1 is taken, primal infeasibility drops to zero in exact algorithm.
Similarly, the sharp drop in dual residual in later iterations, for both the constant
and adaptive § strategies, is explained by a dual step = 1 being taken. The
machine used was Dell PowerEdge 2950 with 2 x 3.0 GHz Dual Core Xeon 5160
processors. The CPU time for different experiments are summarized in Table 5 on
page 140.
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TABLE 5. CPU time for different experiments

Experiments Time(constant ¢) | Time(adaptive §)

(seconds) (seconds)
1 (n=100,m = 10,w = 5) 4.00 x 101 2.9 x 10
2 (n =100,m = 20,w = 5) 1.19 x 102 9.15 x 10*
3 (n =500,m = 10,w = 5) 3.77 x 102 1.91 x 102
4 (n =500,m = 20, w = 5) 7.57 x 102 4.68 x 102
5 (n = 2000, m = 10,w = 5) 3.87 x 10° 1.61 x 10°
6 (n = 2000, m = 20,w = 5) 5.59 x 10° 2.29 x 103
7 (n = 5000, m = 10,w = 5) 1.19 x 10% 5.45 x 103
8 (n = 5000, m = 20, w = 5) 2.44 x 104 1.16 x 10*

4. Conclusion and future work

A structured primal-dual interior-point method has been presented for the BSDP
and its feasibility has been tested by solving problems of various sizes. Both theory
and experiments show that the application of SSS forms in square matrix repre-
sentations and operations can save a lot of computation and memory. Therefore
solving problems with huge sizes becomes possible by using the proposed struc-
tured algorithm.

However, there still exist some open problems. Our experiments demonstrate
the importance of the selection of §. A good J-selection strategy should reduce
numerical ranks dramatically, but the introduced errors must not affect the con-
vergence of solutions. More investigation is needed to find the best strategy.
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A Note on Semi-Fredholm Hilbert Modules

Ronald G. Douglas and Jaydeb Sarkar

Abstract. A classical problem in operator theory has been to determine the
spectrum of Toeplitz-like operators on Hilbert spaces of vector-valued holo-
morphic functions on the open unit ball in C™. In this note we obtain neces-
sary conditions for k-tuples of such operators to be Fredholm in the sense of
Taylor and show they are sufficient in the case of the unit disk.

Mathematics Subject Classification (2000). 47A13, 46E22, 46M20, 47B32.

Keywords. Hilbert modules, quasi-free Hilbert modules, Fredholm tuple,
Corona property.

1. Introduction

A classical problem in operator theory is to determine the invertibility or the
spectrum of Toeplitz operators on the Hardy space over the unit disk D. When
the symbol or the defining function is continuous, the result is well known and
due to Gohberg in the scalar case (see [12]) and Gohberg-Krein in the vector-
valued case (see [13]). Generalizations of these results to other Hilbert spaces of
holomorphic functions on the disk such as the Bergman space (see [1]) or to the
unit ball B™ (see [16]) or other domains in C™ (see [2]) have been studied during
the past few decades. In the several variables context, the problem is not too
interesting unless we start with a matrix-valued symbol or a k-tuple of operators
and consider the Taylor spectrum or essential spectrum which involves the Koszul
complex (see [14]).

In this note we consider two problems, neither of which is new. However, we
believe the results are more general and our methods provide a more constructive
approach. Moreover, they identify some questions in multi-variable operator the-
ory (and algebra) indicating their importance in the spectral theory for k-tuples of
vector-valued Toeplitz-like operators. Finally, the results suggest lines of investi-
gation for generalizations of the classical Hilbert spaces of holomorphic functions.

This research was partially supported by a grant from the National Science Foundation.
Communicated by J.A. Ball.
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All the Hilbert spaces in this note are separable and are over the complex
field C. For a Hilbert space H, we denote the Banach space of all bounded linear
operators by L(H).

We begin by recalling the definition of quasi-free Hilbert module over A(2)
which was introduced in ([7],[6]) and which generalizes classical functional Hilbert
spaces and is related to earlier ideas of Curto—Salinas [4]. Here A(Q2) is the uniform
closure of functions holomorphic on a neighborhood of the closure of €2, a domain
in C™. The Hilbert space M is said to be a bounded Hilbert module over A(Q) if
M is a unital module over A(Q?) with module map A(2) x M — M such that

lefllae < Cllellallfllm

for ¢ in A(R?) and f in M and some C' > 1. The Hilbert module is said to be
contractive in case C' = 1.

A Hilbert space R is said to be a bounded quasi-free Hilbert module of rank
nover A(2), 1 <n < oo, if it is obtained as the completion of the algebraic tensor
product A(Q2) ® £2 relative to an inner product such that:

(1) eval,: A(Q) ® 12 — 2 is bounded for z in Q and locally uniformly bounded

on 2;

(2) (X0 ®@xi)llr = 112200 @ zillr < Cll@lla@ll 220 ® zillr for ¢, {6;} in

A(Q) and {x;} in ¢2 and some C > 1; and

(3) For {F;} a sequence in A(Q)) ® ¢2 which is Cauchy in the R-norm, it follows

that eval, (F;) — 0 for all z in § if and only if | F;||r — O.

If 1,, denotes the maximal ideal of polynomials in C[z] = Cl[z1, ..., zy,] which
vanish at wq for some wq in Q, then the Hilbert module M is said to be semi-
Fredholm at wq if dim M/, - M = n is finite (cf. [10]). In particular, note that
M semi-Fredholm at wg implies that I,,M is a closed submodule of M. Note
that the notion of semi-Fredholm Hilbert module has been called regular by some
authors.

One can show that w — R/I, - R can be made into a rank n Hermitian
holomorphic vector bundle over Q if R is semi-Fredholm at w in Q, dimR/I, - R
is constant n, and R is quasi-free, 1 < n < co. Actually, all we need here is that
the bundle obtained is real-analytic which is established in ([4], Theorem 2.2).

A quasi-free Hilbert module of rank n is a reproducing kernel Hilbert space
with the kernel

K(w,2z) = evalyevall: Qx Q — L(£2).

2. Necessary conditions

Note that if R is a bounded quasi-free Hilbert module over A(B™) of finite mul-
tiplicity, then the module R over A(B™) extends to a bounded Hilbert module
over H>°(B™) (see Proposition 5.2 in [5]). Here B™ denotes the unit ball in C™.
In particular, the multiplier space of R is precisely H>(B™) ® M,,(C), since R is
the completion of A(f2) Ralg 12, by definition.
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Proposition 1. Let R be a contractive quasi-free Hilbert module over A(B™)
of finite multiplicity n and {p1,...,pr} be a commutator subset of H>*(B™) ®
M (C). If (My,,...,My,) is a semi-Fredholm tuple, then there exists an € > 0
and 1> 6 > 0 such that

k
> 0i(2)pi(2)" > elen,
i=1

for all z satisfying 1 > ||z|| > 1 — 6 > 0. In particular, if the multiplicity of R is

one then
k

D i) > e,
i=1
for all z satisfying 1 > ||z|| > 1 —4.

Proof. Let K : B™ x B™ — M, (C) be the kernel function for the quasi-free
Hilbert module R. By the assumption, the range of the row operator Mg =
(Mg, ..., My,) in £L(R*,R) has finite co-dimension; that is,
dim[R/(My, R+ -+ My, R)| < oo,
and, in particular, M¢ has closed range. Consequently, there is a finite rank pro-
jection F' such that
k
MeMj+F =Y MyM; +F:R—TR
i=1
is bounded below. Therefore, there exists a C' > 0 such that
k
(FIG, Kz) + <Z M%M:;,,,KZ,KZ> > C (K, K)
i=1
for all z in B™. Then
k
K;F(2)K, + Y K;M, M} K, > CK; K,
i=1
and so

k
F(2)Icn + Y @i2)pi(2)" > Clen,
=1

for all z in B™. Here F'(z) denotes the matrix-valued Berezin transform for the
operator F defined by F(z) =< FK,|K,|™!, K,|K,|~* > (see [5], where the scalar
case is discussed). Using the known boundary behavior of the Berezin transform
(see Theorem 3.2 in [5]), since F is finite rank we have that || F'(z)| < € for all 2
such that 1 > ||z|| > 1 — § for some 1 > § > 0 depending on C. Hence

k
S = 5

for all z such that 1 > ||z|| > 1 — ¢ > 0; which completes the proof. O
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A k-tuple of matrix-valued functions (@1, ..., ¢x) in H*(B™)® M, (C) satis-
fying the conclusion of Proposition 1 will be said to have the weak Corona property.

In Theorem 8.2.6 in [11], a version of Proposition 1 is established in case R
is the Bergman module on B™.

The key step in this proof is the vanishing of the Berezin transform at the
boundary of B for a compact operator. The proof of this statement depends on
the fact that K,|K,|~! converges weakly to zero as z approaches the boundary
which rests on the fact that R is contractive. This relation holds for many other
domains such as ellipsoids €2 with the proof depending on the fact that the algebra
A(Q) is pointed in the sense of [5].

It is an important question to decide if semi-Fredholm implies Fredholm in
the context of Proposition 1. We will discuss this issue more at the end of the
paper. However, the converse of this result is known (see Theorem 8.2.4 in [11]
and pages 241-242) for the Bergman space for certain domains in C™.

A necessary condition for the converse to hold for the situation in Proposi-
tion 1 is for the essential spectrum of the m-tuple of co-ordinate multiplication
operators to have essential spectrum equal to JB™, which is not automatic, but is
true for the classical spaces.

3. Sufficient conditions

We will use the following fundamental result of Taylor (see [14], Lemma 1):

Lemma 1. Let (T1,...,Ty) be in the center of an algebra A contained in L(H) such
that there exists (S1,...,Sk) in A satisfying Zle T;S; = Iy. Then the Koszul
complex for (Ty,...,Tg) is exact.

Now we specialize to the case when m = 1 where we can obtain a necessary
and sufficient condition. Consider a contractive quasi-free Hilbert module R over
A(D) of multiplicity one, which therefore has H>° (D) as the multiplier algebra. It
is well known that H°°(ID) satisfies the Corona property; that is, a set {p1,..., ok}

in H>°(D) satisfies Zle |ok(2)] > € for all z in D for some € > 0 if and only if
there exist {¢1,...,¢¥r} C H*(D) such that Zle o = 1.
The following result is a complement to Proposition 1.

Proposition 2. Let R be a contractive quasi-free Hilbert module over A(D) of mul-
tiplicity one and {¢1, ..., ¢k} be a subset of H*(D). Then the Koszul complex for
the k-tuple (My,,...,M,,) on R is exact if and only if {p1,...,or} satisfies the
Corona property.

Proof. If Zle wity; = 1 for some {91, ...,¢r} C H®(D), then the fact that Mg
is Taylor invertible follows from Lemma 1. On the other hand, the last group of
the Koszul complex is {0} if and only if the row operator M, in L(RF,R) is

bounded below which, as before, shows that Zle |vi(2)] is bounded below on D.
This completes the proof. O
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The missing step to extend the result from D to the open unit ball B™ is
the fact that it is unknown if the Corona condition for {¢1,...,¢r} in H>*(B™)
is equivalent to the Corona property. Other authors have considered this kind of
question ([15]) for the case of Hardy-like spaces for the polydisk and ball. See [15]
for some recent results and references.

Theorem 1. Let R be a contractive quasi-free Hilbert module over A(D) of multi-
plicity one, which is semi-Fredholm at each point z in D. If {p1,..., @i} is a subset
of H* (D), then the k-tuple Mo = (M, ..., M,,) is semi-Fredholm if and only
if it is Fredholm if and only if (p1,..., k) satisfies the weak Corona condition.

Proof. If Mg is semi-Fredholm, then by Proposition 1 there exist ¢ > 0 and 1 >
6 > 0 such that

k
Y lei@)? > ¢
i=1
for all z such that 1 > |z| > 1 —¢ > 0. Let Z be the set

Z={zinD:¢;(z)=0foralli=1,...,k}.

Since the functions {®;}¥_; can not all vanish for z satisfying 1 > |z| > 1 -4, it
follows that the cardinality of the set Z is finite and we assume that card(Z) = N.
Let
Z={z1,22,...,2N}

and /; be the smallest order of the zero at z; for all ¢; and 1 < j < k. Let B(z) be
the finite Blaschke product with zero set precisely Z counting the multiplicities.
If we define & = %, then & is in H*°(D) for all i = 1,..., k. Since {¢1,..., 0%}
satisfies the weak Corona property, we obtain

k
Sl > e
=1

for all z such that 1 > |z|] > 1 — J. Note that {&1,...,&,} does not have any

common zero and so
k
> lE()P > e
i=1

for all z in D. Therefore, {1, ..., &} satisfies the Corona property and hence there
exists {n1,...,Mk}, a subset of H>°(D), such that Zle &i(2)ni(z) =1 for all z in
D. Thus, Zle ©i(2)ni(z) = B for all z in D. This implies Zle My, M,, = Mg,

and consequently,
k

Z M%MW = M—37

i=1
where M, is the image of M, in the Calkin algebra, Q(R) = L(R)/K(R). But
the assumption that M,_,, is Fredholm for all w in D yields that Mp is Fredholm.
Therefore, X = Zle M, M, is invertible. Moreover, since X commutes with the
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set {My,,...,My,,M,,,...,M,},it follows that (M, , ..., M,,) is a Fredholm

tuple, which completes the proof ([

Although, the use of a finite Blaschke product allows one to preserve norms,
a polynomial with the zeros of Z to the same multiplicity could be used. This
would allow one to extend the Theorem to all domains in C for which the Corona
theorem holds.

Our previous result extends to the case of finite multiplicity quasi-free Hilbert
modules.

Theorem 2. Let R be a contractive quasi-free Hilbert module over A(D) of multi-
plicity n, which is semi-Fredholm at each point z in D and let {p1,...,pr} be a
commutator subset of H® (D) ® M,(C). Then the k-tuple Mo = (M,,,...,M,,)
is Fredholm if and only if it is semi-Fredholm if and only if (¢1,...,pk) satisfies
the weak Corona condition.

Proof. As before, the assumption that Mg is semi-Fredholm implies that there
exists € > 0 and 1 > § > 0 such that

Z (Pz z > GI(C"

for all z such that 1 > ||z]] > 1 — §. After taking the determinant, this inequality
implies

Z |det p; (2 |2 =€

Using the same argument as in Theorem 1, we can find n, ..., in H*°(D) and
a finite Blaschke product B such that

an )det p;(z) = B(z),

for all z in D. For 1 < i < k, let $;(z) be the cofactor matrix function of ¢;(z)
which is used in Cramer’s Theorem. Then

$i(2)di(2) = di(2)$i(2) = det pi(z) Ien,
for all z in D and 1 <14 < k. Note that this relation implies that the algebra gen-

erated by the set {My,,..., My, , My, ... M¢k} is commutative. Thus we obtain

Z@ ni(2) ¢i(2) = B(2)Ic, qu 1i(2) = B(2)Icn,

where 7;(2) = 1;(2)$i(2) is in H*(D) ® M, (C) and 1 < i < k. Therefore we have

that
k
Z My, My, = Mg,
i=1



A Note on Semi-Fredholm Hilbert Modules 149

and consequently, the proof follows immediately from the last part of the proof of
Theorem 1. O

4. Further comments

One reason we are able to obtain a converse in the one variable case is that we
can represent the zero variety of the ideal generated by the functions in terms of a
single function, the finite Blaschke product (or polynomial). This is not surprising
since C|z] is a principal ideal domain. This is, of course, not true for Clz1, ..., 2]
for m > 1 and hence one would need (at least) a finite set of functions to determine
the zero variety for the ideal generated by the functions. How to do that in an
efficient manner and how to relate the Fredholmness of the k-tuple to that of this
generating set is not clear but is the key to answering many such questions.

What is required involves two steps, both in the realm of algebra. The first
we have already mentioned but the second is how to relate the generators to the
Koszul complex.

Let us consider one example of what might be possible. Consider the case
in which the p1(2),...,pr(2) are polynomials in C[z1, 22] so that 0 is the only
common zero. Assume that there are sets of polynomials {¢1(2),...,qx(2)} and
{r1(z),...,m5(2)} such that

k k
Y pi@ai(z) = 2" and Y pilz)ri(z) = 257,
i=1 i=1

for some positive integers k; and k.
Two questions now arise:

(1) Does the assumption that (M,,,...,M,,) is semi-Fredholm with Z = {0}
imply the existence of the subsets {r1,...,rx} and {q1,...,qx} of C[z1, 22]?
What if the functions {pi,...,px} are in H>°(B?) and we seek {ry,...,r}
and {q1,...,qr} in H>®(B?)?

(2) If the functions {ry,...,7} and {q,...,qr} exist and we assume that
(Mz’fl , MZEQ) acting on the quasi-free Hilbert module R is Fredholm, does it

follow that (M,,, ..., Mp,) is also.

These questions can be generalized to the case where one would need more
than two polynomials to determine the zero variety, either because the dimension
m is greater than 2 or because Z contains more than one point. But answering
these questions in the simple case discussed above would be good start.

After this note was written, J. Eschmeier informed the authors that both
questions have an affirmative answer, at least when the zero variety is a single
point.
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The S-recurrence of Schur Parameters
of Non-inner Rational Schur Functions

Vladimir K. Dubovoy, Bernd Fritzsche and Bernd Kirstein

Abstract. The main goal of this paper is to investigate the Schur parameter
sequences of non-inner rational Schur functions. It is shown that these Schur
parameter sequences are characterized by the membership in the space l2 and
a particular recurrence property which is called S-recurrence. Moreover, we
indicate a principle of extending a finite sequence of numbers from the open
unit disk to an S-recurrence sequence belonging to ls.
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0. Introduction

This paper deals with particular aspects connected to the classical Schur algorithm
which was introduced in I. Schur’s fundamental paper [9]. Our main goal is to study
the Schur parameter sequences of the non-inner rational Schur functions. The inner
rational Schur functions are exactly the finite Blaschke products. As was shown by
I. Schur in [9], if # is a Schur function, then the Schur algorithm for 6 terminates
after a finite number n of steps if and only if 0 is a finite Blaschke product of
degree m. Thus, the Schur parameter sequence of a finite Blaschke product is
finite. Surprisingly, we could not find anything in the mathematical literature
about the Schur parameter sequences of non-inner rational Schur functions. The
starting point of our investigations is the first author’s recent research [4] on the
Schur parameter sequences of pseudocontinuable non-inner Schur functions. It will
turn out that the machinery developed in [4] can be used to obtain many insights
into the structure of the Schur parameter sequences of non-inner rational Schur
functions. (What concerns comprehensive expositions of many aspects and facets
of the Schur algorithm we refer the reader to the monographs by D. Alpay [1],

Communicated by J.A. Ball.
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C. Foias/A. Frazho [6], B. Simon [10], [11], and S.N. Khrushchev [8], and the
references therein.)

In order to review the content of this paper in more detail, first we roughly
sketch the classical Schur algorithm.

Let D := {z € C: |z| < 1} be the open unit disk of the complex plane C. The
symbol S denotes the set of all Schur functions in D, i.e., the set of all functions
0 : D — C which are holomorphic in D and satisfy the condition |0(¢)| < 1 for
all ¢ € D. A function 6 € S is called inner if its boundary values are unimodular
almost everywhere with respect to the Lebesgue measure on the unit circle. The
symbol RS (resp. J) stands for the subset of S which consists of all rational
(resp. inner) functions belonging to S. The simplest rational inner functions are
the elementary Blaschke factors. For a € D the elementary Blaschke factor b, is
the rational function given by

(—a
ba(¢) := I
A finite product of elementary Blaschke factors multiplied by a unimodular con-
stant is called finite Blaschke product. Thus, the intersection RS N J consists of
all finite Blaschke products.
Let 6 € S. Following I. Schur [9], we set 6y := 6 and 7o := 00(0). Obviously,
|70] < 1. If |y0| < 1, then we consider the function 67 : D — C defined by

L 6o(¢) — 0
0 ==
1(¢) ¢ 1—=%060(¢)
In view of the Lemma of H.A. Schwarz, we have #; € S. As above we set
v := 61(0) and if || < 1, we consider the function 6 : D — C defined by
1 6(Q)—m

(0= 7 T 50

Further, we continue this procedure inductively. Namely, if in the jth step a func-
tion @; occurs for which |y;| < 1 where 7; := 60;(0), we define #;,1 : D — C
by

1 60;(0) —
0j+1(¢) = = - s
o ¢ 1=7556;(¢)
and continue this procedure in the prescribed way. Then setting Ny := {0,1,2,...}
two cases are possible:

(0.1)

(1) The procedure can be carried out without end, i.e., |y;| < 1 for each j € Ny.
(2) There exists a w € Ny such that |y,| = 1 and, if w > 0, then |y;| < 1 for
each j € {0,...,w—1}.
Thus, a sequence (73‘)5‘”:0 is associated with each function 6 € S. Here we have
w = 0o (resp. w = n) in the first (resp. second) case. From 1. Schur’s paper [9] it
is known that the second case occurs if and only if 6 is a finite Blaschke product
of degree n. Consequently, condition (2) provides a complete description of all
parameter sequences (’Yj);‘v:o which correspond to functions of the class RS N J.



Recurrence of Schur Parameters 153

The above procedure is called a Schur algorithm and the sequence (%,);p:o
obtained here is called the Schur parameter sequence associated with the function
6, whereas for each j € {0, ..., w} the function 6; is called the jth Schur transform
of 8. The symbol I' stands for the set of all Schur parameter sequences associated
with functions belonging to S.

The following two properties established by I. Schur in [9] determine the
particular role which Schur parameters play in the study of functions of class S.

(a) Each sequence (v;)}_, of complex numbers, 0 < w < oo, which satisfies one
of the conditions (1) or (2) belongs to I
(b) There is a one-to-one correspondence between the sets S and T'.

Thus, the Schur parameters are independent parameters which completely deter-
mine the functions of class S.

Now we take a look at the class RS\ J from the perspective of the Schur algo-
rithm. Let 6 € RS\J. and let (v;)52, be its Schur parameter sequence. From the
shape of formula (0.1) it follows immediately that each member of the sequence
(05)32, belongs to RS\ J, too. Taking into account that for each j € Ny the func-
tion €, has the Schur parameter sequence (7y,1)52 o, we see that the elimination of
an arbitrary first finite section from the Schur parameter sequence (y)72, does not
effect the membership of the corresponding function having the reduced sequence
as Schur parameter sequence to the class RS\ J.

On the other hand, for each ¢ € D, the relation (0.1) can be rewritten in the
form
0,(C) = C0i+1(0) +; .

! 1+ 75¢0;41(¢)
From this we see that if we replace the sequence (7;)32, by the sequence (v-14;)3%,
where |y_1] < 1, i.e., if we consider the function #_; : D — C defined by

_ G0+
Tl45=1¢oQ)’

then we get again a function 6_; belonging to RS\ J. Thus, adding a finite number
of elements from D to the sequence (7;)52, does not effect the membership of the
associated function belonging to the class RS\ J.

Let n € No and let (v;)_, be a sequence from D. Then our previous con-
siderations lead us to the following result which in particular contains a complete
description of all functions from RS\ J having (7;)%_, as the sequence of its first
n + 1 Schur parameters.

0-1(¢)

Proposition 0.1. Let n € Ny and let (’Vj)?:o be a sequence from D. Further, let
P : C — C?*2 be defined by

\n
Yilj=0

R YA Ay Dy
P(,Yj)?zo €)= H (’TJC 11 and let Py, o=, Yi)i=o Vi)i=o |

(e Av)r,
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Denote by [S\(RS N J)|((7;)j=o) the set of all functions belonging to S\(RS NJ)
which have (’Yj)?:o as the sequence of their first n + 1 Schur parameters.
(a) Let 0 € [S\(RSNJ)|((7;)j=o) and let 041 be the (n+1)th Schur transform
of 0. Then 6,41 € S\(RSNJ) and

g — Y00 Ont1 4 beyp)m,

)iy " Ontr + d(%‘)?’:o'

If 0 € [S\(RS N N)|((75)j=0) N (RS\J), then Op41 € RS\J.
(b) Let g € S\(RSNJ). Then

g 20 9 F P,

Capre -9t diypr,

belongs to [S\(RS N J)|((7j)}=0) and g coincides with the (n + 1)th Schur
transform 041 of 0. If g € RS\J, then 6 € RS\J.
(¢) The function

by,
“0i)ico (0.2)
diyyyn_,

belongs to RS\J and has the Schur parameter sequence Yo,. .., ¥n,0,0,. ...

0(’)’]‘ )_;l:() =

It should be mentioned that the function defined in (0.2) was already studied
by I. Schur in [9]. In the framework of the investigation of the matricial version
of the classical Schur problem the matricial generalization of this function was
studied with respect to several aspects (see, e.g., the paper [7] where its entropy
extremality was proved).

Let # € S and let

0(0) => ¢;¢?, CeD, (0.3)
§=0
be the Taylor series representation of 6. Moreover, let (’Yj)}”;o be the Schur pa-

rameter sequence associated with 6. As it was shown by I. Schur in [9], for each
integer n satisfying 0 < n < w, the identities

Yn = P (co, €1, .. Cn) (0.4)
and

Cp = \Iln(PYOv’Yla"'vfyn) (05)

hold true. Here, I. Schur presented an explicit description of the function ®,,. For
the function ¥,,, he obtained the formula

n—1

‘l/n(’YO?’yla oo 77%) =Tn" H (1 - |WJ|2) + EJTL—l (’YO ce a’yn—l) (06)
7=0

where \I’n,l is a polynomial of the variables vo, 70, - -, Yn—1, Tn—1-
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It should be mentioned that the explicit form of the functions {Ivln_l was
described in [3]. Thus, for every integer n satisfying 0 < n < w, the sequences
(ck)i_o and (yx)7_, can each be expressed in terms of the other.

We are interested in the rational functions belonging to S. According to
a well-known criterion (see, e.g., Proposition 1.1 in [2]), the power series (0.3)
corresponds to a rational function if and only if there exist an integer ng > 1 and
a sequence (a;)72; of complex numbers such that for each n > ng the identity

Cntl = 01Cy + Q2Cn—1 F ... + QpyCr—ngt1 (0.7)

is fulfilled. From this, (0.5) and (0.6) it follows that the rationality of a function
f € S can be characterized by relations of the form

Yn+1 = gn(’YO;’Yl, e 7777,); n Z no, (08)

where (gn)n>n, 1S some sequence of given functions. It should be mentioned that
the functions (gn )n>n, Obtained in this way do not have such an explicit structure
which enables us to perform a detailed analysis of the Schur parameter sequences
of functions belonging to the class RS\ J.

The main goal of this paper is to present a direct derivation of the relations
(0.8) and, in so doing, characterize the Schur parameter sequences associated with
functions from RS\ J.

Our strategy is based on applying the tools developed in [4]. Our approach
is motivated by Theorem 5.9 in [4] (see Theorem 1.11 below), which contains
a first characterization of functions belonging to RS\J in terms of their Schur
parameters. This characterization is presented at the beginning of this paper.
We want to demonstrate in which way the recurrence properties of the Taylor
coefficient sequence of a function from RS\ J are reflected in its Schur parameter
sequence.

This paper is organized as follows. In Section 1, we state some preliminary
facts and notions. This material is mostly taken from [4].

In Section 2, we indicate the recurrent character of the Schur parameter
sequence associated with a function § € RS\J. An important step in realizing
this aim is reached by introducing the concept of S-recurrence for sequences v =
(75)520- The study of S-recurrence is the central theme of Section 2. The concept
of S-recurrence is based on particular vectors which are called S-recurrence vectors
associated with v (see Definition 2.1). It is already known from Theorem 5.9 in [4]
that the Schur parameter sequence of a function § € RS\J belongs to the set I'ly
of all sequences (’Yj)})io which belong to I' N ls. This observation allows us to use
more of the tools introduced in [4]. In particular, this concerns various sequences of
complex matrices which were associated with a sequence v € I'ly in [4]. It will turn
out (see Proposition 2.4) that the S-recurrence vectors associated with v € Ty
are exactly those vectors from the null space of the matrices A, (y) introduced in
(1.17) which have a non-zero last entry. This enables us to characterize the Schur
parameter sequences of the functions from RS\ J as the sequences v € I'ly which
are S-recurrent. This is the content of Theorem 2.5 which is one of the main results
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of this paper. The next central result is Theorem 2.8 which yields essential insights
into the intrinsic structure of S-recurrence sequences v = (’Yj)}?io- In particular,
we will see that there is some r € N such that for each integer n > r the number
Yn+1 can be expressed in terms of the sequence (7;)%_, of the preceding elements.

The main theme of Section 3 is connected to a closer analysis of a sequence
(£, (7)) nen of complex matrices (see (1.7)) which are associated with a sequence
v € Tly. It will be shown (see Lemma 3.1) that the matrix £,() is completely
determined by its first column and the section (7;)7_,. This leads us to an impor-
tant notion which is introduced in Definition 3.2. Given a finite sequence (v;)’_
from D, we call the data [II11,(L;1)}-,] compatible with (v;)%_, if a certain
matrix £,410 (see (3.3)) is contractive, but not strictly contractive. The matrix
Ari10 = Ly — £r+170£j+170 is called the information matrix associated with
[(¥5)5=0-111,1, (Lj,1)—1] because it turns out that this matrix contains essential
information on the data under consideration. The study of the structure of A, ;o
is the central topic of Section 4.

In Section 5, we consider an inverse problem. Starting with suitable data
[(7j)5=0> 1,1, (Lj,1)%—1] we want to construct an S-recurrent sequence which starts
with (7j)§:0~ Our strategy is based on a closer analysis of the information matrix
A;41,0. The main result of Section 5 is Theorem 5.2 which contains an explicit
recursive construction of an S-recurrent sequence v with first section (v;)j_o. This
construction is based on the use of vectors from the null space of A,4; ¢ having
nonzero last element. In the special case r = 1 the expressions from Theorem 5.2
can be simplified considerably (see Theorem 5.5).

In subsequent work we plan a closer analysis of the procedure used in the
proof of Theorem 5.2 to obtain an S-recurrent extension of a finite sequence (;)j_o
from D. More precisely, we are interested in constructing sequences v = (Vj)}?io for
which the associated functions € RS\ J have prescribed properties. In particular,
we want to construct outer functions 6 which belong to RS\ J.

1. Preliminaries

This paper is a direct continuation of [4] where the Schur parameter sequences of
pseudocontinuable non-inner Schur functions have been characterized. Keeping in
mind that a non-inner rational Schur function is pseudocontinuable it seems to be
quite natural to use methods introduced in [4]. In this section, we summarize some
notions and results from [4], which we will need later. We continue to work with
the notions used in [4].

Let 6 € RS\J and let (v;)}_, be the associated sequence of Schur parameters.
Then from the properties (1) and (2) of Schur parameters listed in the Introduction
it follows that (v;)}, is an infinite sequence, i.e., w = oc. From Corollary 4.4 in
[4] we get additional essential information relating to the sequence (7;)%2:
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Lemma 1.1. Let § € RS\J and denote by v = ()52 its Schur parameter se-
quence. Then

Z [v;]? < +o0. (1.1)
=0

In the following, the symbol Is stands for the space of all sequences (zj)‘;‘;o
of complex numbers such that 372 |2;|* < co. Moreover,

Tl —{’y— ’y]) o €lay; ED]ENO}
Thus, I'lz is the subset of all v = (v;)32, € I, for which the product

[T —hiP) (1.2)

Jj=0

converges. Hence, if § € RS\J, then Lemma 1.1 implies that its Schur parameter
sequence 7 belongs to I'ly.

For functions § € S with Schur parameter sequence v belonging to I'ly, we
note that the sequence (L, (7)), introduced in formula (3.12) of [4] via

Lo(7) := 1 and, for each positive integer n, via Ly (y) :=

n [ee] oo (oo}
DBC D DEED DD DD DIk F T e
r=1 s1+s2+...+sr=n ji1=n—s1 jo=j1—s2 Jr=Jr—1—5r
(1.3)
plays a key role. Here the summation runs over all ordered r-tuples (s1,...,s;) of
positive integers which satisfy s; + - -+ + s, = n. For example,
o0
= T
§=0
and
ZWJWJ-F? + Z Z Vir Vi +1Yj2 Vi +1-
Ji=1j2=j1—1
Obviously, if v € T'la, then the series (1.3) converges absolutely.
For each v = ()32, € T'l2, we set
o0
0 == [[ Dy,» k€N, (1.4)

Jj=k

D’Yj =4/1— |’}/j|2, 7 € Nop. (15)

In the space ls we define the coshift mapping W : Iy — I3 via
(25)720 + (2+1)520- (1.6)

where
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Let v € Tly. For each n belonging to the set N := {1,2,3,...} of all positive
integers we set (see formula (5.3) in [4])

114 0 0 ... 0
Mo Ly (W) I, 0 ... 0

£.7) = | Tsla(Wn)  HsLi(W?y) I3 - 0
0,L, 1(Wy) I,L, o(W2y) I,L, 3(W3y) ... I,

The matrices introduced in (1.7) will play an important role in our investiga-
tions. Now we turn our attention to some properties of the matrices £,,(), n € N,
which will later be of use. From Corollary 5.2 in [4] we get

Lemma 1.2. Let v = (v;)32 € I'la and let n € N. Then the matriz £,(v) defined
by (1.7) is contractive.

We continue with some asymptotical considerations.

Lemma 1.3. Let v = (’Yj)?io € I'ly. Then:

(a) limk_,oo Hk =1.
(b) Let j € N. Then limp, oo Lj(W™~v) =0.
(¢) Let n € N. Then limy, oo £,(W™y) = I,,.

Proof. The choice of « implies that 7 is a sequence from I which satisfies (1.1).
From this we infer the convergence of the infinite product [~ D,,. This im-
plies (a). Assertion (b) is an immediate consequence of the definition of the
sequence (L;(W™~))s°_; (see (1.3) and (1.6)). By inspection of the sequence
(£, (W™~))s°_, one can immediately see that the combination of (a) and (b)
yields the assertion of (c). O

Let v € T'ly. A closer look at (1.7) yields the block decomposition

st = (i) 1) =

where
T
bn(,)/) = Hn+1 . (Ln(W7)7 Ln—l(sz}/)a <. aLl(WnrY)) . (19)
Analogously, we obtain
IT; O1xn
£, = 1.10
+1() (Bn+1(7) »:n(Wv)) (1.10)

(see [4], formula (5.23)), where

Bpi1(v) = (e Ly(W~), T3 Loa(W7), ..., Ty La (WA . (1.11)
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The following result is Lemma 5.3 in [4].

Lemma 1.4. Let v = (v;)72 € I'lz and let n € N. Then

En(')/) = mn('Y) : Sn(W'y)? (112)
where
M () = (1.13)
D, 0 0 0
—’7172 D’Yz 0 e 0
—711D~,73 —Y273 D,, 0
-n (H;:gl Dw) Tn 72 (H;::al va) Tn —73 (H;:i Dw) Yo oo Dy,
Moreover, M, () is a nonsingular matriz which fulfills
L = My (V)M (7) = 0 (V). (), (1.14)
where
T
n—1
Nn(y) = 71,7205 sV HD”/]' . (1.15)
j=1

Corollary 1.5. Let v = (v;);2 € T'la and let n € N. Then the multiplicative
decomposition

La.(y) =[] (W) (1.16)
k=0
holds true.
Proof. Combine part (c) of Lemma 1.3 and (1.12). O

For each v = (7;)72y € I'l2, we introduce the matrices
An(y) =1, — £,(v)L5(7), neN. (1.17)
Then Lemma 1.2 shows that for each n € N the matrix A, () is nonnegative
Hermitian. We will later see that the determinants
on(y) = 1 ,ifn=0
T det An(y) L ifneN
contain essential information on the behavior of Schur parameters of a function
0 e RS\J.
The following result is contained in Theorem 5.5 in [4].

(1.18)

Theorem 1.6. Let v = (v;)32, be a sequence from T'ly. Then
(a) For each n € N, the inequalities 0 < o,(v) < 1 and ony1(y) < on(y) hold
true. Moreover, lim,,_,o, op,(y) = 0.
(b) If there exists some ng € Ny such that oy, (y) > 0 and op,41(y) = 0, then
for all integers n > ng the relation rank A, () = ng holds true.
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(c) For each n € N, the identity

An(7) = 10 (V)1 (7) + I (1) An (W), (7) (1.19)
holds, where M., () and n, () are defined via (1.13) and (1.15), respectively.

Remark 1.7. For each n € N, the identity (1.19) is an easy consequence of (1.17),
(1.12), and (1.14). Indeed, for each n € N we have

An(y) = L= LML) = In — M (7) L (W) L5 (W) ()
= L = M, (V)M (7) + My (1) An (W) D (7)
N (7)1, () + D (7) A (W), (7).

Formula (1.18) and part (b) of Theorem 1.6 lead us to the following notion
(see Definition 5.20 in [4])

Definition 1.8. Let v = ()32, € T'la.

(a) Suppose that there exists some positive integer n such that o, () = 0. Then
the nonnegative integer ng satisfying oy, () > 0 and op,+1(y) = 0 is called
the rank of the sequence ~. In this case we will write ranky = ng to indicate
that ~ has the finite rank ng.

(b) If o, () > 0 for all n € Ny, then ~ is called a sequence of infinite rank.

In the cases (a) and (b), we write ranky = ng and ranky = oo, respectively.
Remark 1.9.
(a) Let v = (v;)32y € I'l2. Using (1.18), (1.17), and (1.7) we then get
o1(y) =Ai(y)=1~- \31(7”2 =1- H%-

Thus, ranky = 0 if and only if 7; =0 for all j € N.
(b) Conversely, let (v;)32, be a sequence of complex numbers which satisfies
Yo € D and «; = 0 for each j € N. Then v € I'l; and ranky = 0.

Remark 1.10. Let r € N and let v = (’yj);?';o be a sequence from D which satisfies
v =0, je{r+1,r+2,...} (1.20)

Then 7 € T'ly. From (1.4), (1.5) and (1.20) we conclude I, 1 = 1. Combining this
with (1.8) and Lemma 1.2, we see that

Er(’)/) Orxl)
£, = .
+1(7) <01><T 1
Thus, (1.17) yields
A, 0,
Ars1(y) = <0 ™ 0“). (1.21)
Ixr
Let e,11:= (0,...,0,1)T € C"*1. Then from (1.21) we infer
ery1 € ker A1 (V)\{O0¢r41)x1}-
Using (1.18) and (1.21), we get o, 11(7) = det A,11(y) = 0. Thus, ranky < 7.
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Theorem 5.9 in [4] yields the following characterization of the Schur param-
eter sequences of rational Schur functions.

Theorem 1.11. Let 0 € S and let by v = (’yj)}“:o denote its Schur parameter
sequence. Then the function 0 is rational if and only if one of the following two
conditions is satisfied:

(1) w< o0.
(2) w = oo, the sequence v belongs to Ty, and there exists an ng € N such that
Ono (7) = 0, where op, () is defined via (1.18).

If (2) holds, then 6 € RS\J.
Remark 1.12. It should be mentioned that condition (1) in Theorem 1.11 is exactly

the well-known criteria by I. Schur for the membership of a function to the class
RS N J. We have already discussed this fact in detail in the introduction.

2. The S-recurrence property of the Schur parameter sequences
associated with non-inner rational Schur functions

It is known (see, e.g., Proposition 1.1 in [2]) that the power series

Z cjzj (2.1)
§=0

can be written as a quotient g of two polynomials P and @ where Q(z) =1 —
1z — -+ —q-2" if and only if there exists some m € Ny such that for each integer
n with n > m the relation

Cn4+1 = q1Cp, + q2Cn—1 + -+ qrCn—r+41 (22)

holds true. In this case the sequence ¢ = (c;)72, is said to be a recurrent sequence
of rth order and formula (2.2) is called a recurrence formula of order r.
We rewrite equation (2.2) in a different way. Here we consider the vectors

q = (_qrafqr—la'--aiqla]-)T (23)
and
tri1(c) := (o, 1, .- -y c7._1,c_7.)T. (2.4)
For each n € {m,m +1,...} we have then
NT+1(WR_T+1C) = (CnfrJrlv Cn—r+2,--+5Cn, CnJrl)T»

where W is the coshift given by (1.6). Thus, for each integer n with n > m, the
recursion formula (2.2) can be rewritten as an orthogonality condition in the form

<Q7MT+1(W”‘7T+1C))CT+1 = 07 (25)

where (-,+)cr+1 stands for the usual Euclidean inner product in the space C"*?
(i.e., (x,9)cr1 = y*x for all z,y € C™1).
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Let the series (2.1) be the Taylor series of a function § € RS\J and let
v = (75)520 be the sequence of Schur parameters associated with 6. Then it will
turn out that the recurrence property of the Taylor coefficient sequence (cj);?‘;o
implies some type of recurrence relations for the sequence v = (Vj);?i(r With this
in mind we introduce the following notion.

Definition 2.1. Let v = (Wj)}?io € I'. Then the sequence ~y is called S-recurrent

if there exist some 7 € N and some vector p = (py,Pr_1,...,p0)" € C'H! with
po # 0 such that for all integers n with n > r the relations
n::il
po| IT s W) [ e (W) | =0 (2.6)
k=0

Cr+1
are satisfied, where the matrix 9, 1(y) and the vector n,,1(y) are defined via
(1.13) and (1.15), respectively. In this case the vector p is called an rth order
S-recurrence vector associated with ~y.

Remark 2.2. If we compare the vectors p,41(c) and n,41(7y) introduced in (2.4)
and (1.15), respectively, then we see that the numbers 7 in the vector n,1(7) are
multiplied with the factor Hf;ll D.,; which can be thought of as a weight factor.
Moreover, contrary to (2.5), the vector n,+1(W"~"~) is paired in (2.6) with the
matrix product

—_
n—r—1

II &HPH(kaV)
k=0
In the case n = r the latter product has to be interpreted as the unit matrix I, 1.
The following result plays an important role in our subsequent considerations.

Lemma 2.3. Let v = (7)72, € T'la and let n € N. Then A, (7) defined via (1.17)
can be represented via

An(1) =Y i (& (), (2.7)
j=0
where .
j—1
& (1) = | [T 2 VE9) | ma (W), 5 € N, (2.8)
k=0

Proof. Applying (1.19) to W instead of v we obtain
An (W) = 00 (W) (W) + D (W) Ay (W2) 90, (W)
Inserting this expression into (1.19) we get

An() = a0 () + I ()00 (W), (W) I, ()
D0 (7) M, (W) A (W) D0 (W) M ().
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This procedure will be continued now. Taking into account the contractivity
of the matrices M, (W), j € Ny, and the limit relation lim,, o A, (W™y) =
O(n4+1)x (nt1), Which follows from part (c) of Lemma 1.3 and (1.17), we obtain
(2.7). O

Let r € N. Using (2.8) one can see that condition (2.6), which expresses
S-recurrence of rth order, can be rewritten in the form

(P &11.5(1))ern =0, j € No. (2.9)

Thus the application of Lemma 2.3 leads us immediately to the following result.
Proposition 2.4. Let v = (v;)52, € T'la. Further, letr € N and let p = (p;, . .. o)t
€ C™'. Then p is an rth order S-recurrence vector associated with v if and only
if po #0 and

p € ker A, 11(7). (2.10)

Now we are able to prove one of the main results of this paper. It establishes
an important connection between the S-recurrence property of a sequence v €
I'l; and the rationality of the Schur function 6, the Schur parameter sequence of
which is .

Theorem 2.5. Let v = ()32 € I' and let 0 be the Schur function with Schur
parameter sequence y. Then 8 € RS\J if and only if v is an S-recurrent sequence
belonging to T'ls.

Proof. From Theorem 1.11 it follows that 8 € RS\J if and only if v belongs to
I'ly and there exists some r € N such that o,41(7) = 0. In this case, we infer from
part (b) of Theorem 1.6 that there exists an ng € Ny such that o,,(y) > 0 and
Ono+1(7) = 0. If ng = 0, then
0=01(y) =1- [0 =
j=1

Thus, v; = 0 for all j € N. This implies that ¢ is the constant function in D
with value 9 € D. If ng € N, then we have det A,,, () > 0 and det A,,+1(y) = 0.
The condition det Ay, +1(y) = 0 is equivalent to the existence of a nontrivial vector
P = (Png,---,p0)T € CF! which satisfies

p € ker Ayy11(7)- (2.11)
From (1.8) and (1.17) we obtain the block decomposition
Any (7) — Lo (7)o (7) >
A, = [ Ol o\7)%no . 2.12
S e R s (242

From (2.12) it follows that py # 0. Indeed, if we would have pg = 0, then from
(2.12) we could infer (p,,,...,p1)T € ker A, (7). In view of det A, (y) # 0, this
implies (png, - - -, P1)T = Opnyx1 Which is a contradiction to the choice of p. Now the
asserted equivalence follows immediately from Proposition 2.4. O
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Proposition 2.6. Let ng € N, and let v = (’yj)?’;o be a sequence which belongs to
T'ly; and satisfies rank~y = ng. Then:

(a) The sequence v is S-recurrent and ng is the minimal order of S-recurrence
vector associated with v. There is a unique ngth order S-recurrence vector
P = (Png,---,00)" of v which satisfies py = 1.

(b) Letr be an integer with r > ng and let p be an noth order S-recurrence vector
associated with .
(bl) Let the sequence (%);;{“’H of vectors from C™*1 be defined by

g1:=p, Go:=M, 1 (7)p,

r=notl (2.13)
<oy Gr—ng+1 = H fmZOH(W’W) p-
k=0
Then the C"t1-vectors
~ 0
g ~ 0
0 g2 .
g1 = . , g2 = 0 y ey Or—mo+l = O (214)
0 0 g’!‘—no"rl

form a basis of ker A, 11(7).
(b2) The sequence v has S-recurrence vectors of rth order and every such
vector p has the shape

ﬁ: a1491 + a2g2 + -+ Qp—no+19r—nog+1, (215)
where (a; );;f"+1 s a sequence of complex numbers satisfying

Qr—ng+1 7£ 0.

Proof. (a) From Definition 1.8 the relation

no = min{r € No : ker A, 11 (7) # {O0¢41)x1}} (2.16)
follows. The block decomposition (2.12) shows that
dim[ker A, +1(7)] = 1. (2.17)

Let p = (Pno,---»p0)" € ker Apg11(7)\{0(ng+1)x1}- As in the proof of Theorem
2.5 it can be shown then that py # 0. Thus, Proposition 2.4 yields that p is
an noth order S-recurrence vector associated with . Taking into account (2.17)
and applying again Proposition 2.4, we see that there is a unique ngth order S-
recurrence vector p = (P, ..., po)’ associated with v which satisfies pg = 1. In
particular, v is S-recurrent. In view of (2.16), applying Proposition 2.4 we see that
ng is the minimal order of S-recurrence vector associated with .
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(bl) In the case r = ng the assertion is already proved above. Let r = ng + 1.
Using (1.10) and (1.17), we obtain the block decomposition

_ 1_H% HlB 1(7)
““T“”’(—Bﬁﬂmnl A (W) — By (1) Bl (v >>' (2.18)

In view of p € ker A,,+1(7y) the block decomposition (2.12) with n =ng + 1
implies that g; = g belongs to ker A, y2(7). Furthermore, using (1.19) with
n = ng, we see that

Mo 11 (7)p € ker Apg 1 (W).

Now the block decomposition (2.18) implies that the vector go = (;) also
2

belongs to ker A, +2(7). In view of pg # 0 and the triangular shape of the matrix

not1(7) (see (1.13)), we see that the last component of the vector go does not
vanish. Thus, the vectors g1 and gy are linearly independent vectors belonging to
ker Ay, +2(77). Since part (b) of Theorem 1.6 implies that dim[ker A,,+2(7)] = 2,
we obtain that g; and g form a basis of ker A, +2(7). One can prove the assertion
by induction for arbitrary r € {ng,no +1,...}.

(b2) This follows immediately by combining Proposition 2.4 with part (bl). O

Proposition 2.6 leads us to the following notion.

Definition 2.7. Let ng € N and let v = (’yj)J‘?';o be a sequence which belongs to
T'l; and satisfies rank v = ng. Then the unique ngth order S-recurrence vector p =
(Prgs - --»po) T satisfying po = 1 is called the basic S-recurrence vector associated
with 7.

Let v = (7j)72¢ € T'l2 be an S-recurrent sequence and let p be the basic
S-recurrence vector associated with . Then Proposition 2.6 shows that all S-
recurrence vectors associated with v can be obtained from p.

Our next consideration is aimed at working out the recurrent character of
formula (2.6). More precisely, we will verify that, for each integer n with n > r,
the element 7,11 can be expressed in terms of the preceding members g, ..., v,
of the sequence «. In view of Proposition 2.6, this is the content of the following
result.

Theorem 2.8. Let v = (Wj)?io be an S-recurrent sequence which belongs to T'ls and

let p = (pr,pr_1,.-.,00)% be an rth order S-recurrence vector associated with .
Further, let

- lH D%] (PrsDr—1,- -, p1) 7. (2.19)
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Then for every integer n with n > r the relations

n n—r—1 n
Ynt1 = [HD;I] II 2t oviy|a [ 11 DJJ] (W™ 7y)
s=1 7=0 k=n—r+1
Cr
(2.20)

hold where D, W, M.(v), and n.(v) are defined via (1.5), (1.6), (1.13), and
(1.15), respectively.

Proof. Since p is an rth order S-recurrence vector associated with -, the relation
(2.6) is satisfied. From Definition 2.1 it follows that py # 0. We rewrite (2.6) in
the form

—
n—r—1

H m:+1(wk7) P, et (W' 7y) = 0. (2.21)

k=0
Cr+1

In view of Proposition 2.4, we have p € ker A, ;1(v). Applying (1.19) for
n =1+ 1, we obtain
(2, Mr41(7)) grer =0 (2.22)
and
M1 (7) - p € ker Ay (W), (2.23)
Using (1.14) for n = r+ 1, we see that, for all x € C"*! which are orthogonal
to n,41(7), the identity M (v)z = M, (y)z holds true. Thus, from (2.22) we
infer
M (V)p =M (V)p- (2.24)
Bearing (2.23), (2.24), and Lemma 1.4 in mind, replacing p in these consid-
erations with 90t%, ; ()p, we obtain

vt (W)L (7)p € ker Ay (W?7)
and
r 1t (W) (v)p = fm;il (WV)m;Jil (V)p.
Thus, by induction we get

— —
n—r—1 n—r—1

II 2 v )| p=| [ 2LW)|p. (2.25)
k=0 k=0

From (2.19) we see that the vector p can be written in the form
— .-, D A
P =po < [Hs—i 1A (2.26)
From (1.13) we infer that the matrix 91,1 (7) has the block decomposition

o) = (0 ). 227

* Yrt1
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Formula (2.27) implies the block representation

o) = (T, 0 gt ). (2.29)

*
Yr41
Combining (2.28) and (2.26), we conclude that the right-hand side of (2.25)
can be rewritten in the form

—

n—r—1 r _ n—r—1 —
B - Dt M (Wh~) | A
[T 2oLV )| p=po- s ”S]{ ko M 7)} (2.29)
k=0 kn—r

where k,_, is some complex number. On the other hand, taking into account
(2.27) and (2.26), we find that the left-hand side of (2.25) can be expressed by

—

n—r—1
* *
[T oty ppo-( n-r-1p) ) (2.30)
k=0 k=0 Yr4+1+k

The combination of (2.25), (2.29), and (2.30) yields

n—r—1
kn_r = H D77‘+1+k- (231)
k=0
Combining (2.25), (2.29), and (2.31) yields
n—r—1 r _ =1
. - _, D! [ 0T MY (W) | A
[T o v )| p=po- [T D, ]n_r_’“l—o (W)
k=0 k=0 Drriain
(2.32)
From (1.15) we get
_ (%) >
Nry1(7) <—%+1 HZ:1 D, )
Consequently,
n—r 0 (W"") >
T w = T . 2.33
" +1( PY) <Py”+1 Hk:l D’7k+n7»« ( )
Using (2.32) and (2.33), we infer
n:—I
II 2V ) p s nea (W)
k=0
Ccr+1
T nil )
= po- —[HD%1]~ I 2y x, n(Wwns)
s=1 7=0
cr

+ <nﬁ D“/r+1+k> Tn+1 <1:[ ka+nr>] . (2.34)

k=0 k=1



168 V K. Dubovoy, B. Fritzsche and B. Kirstein

Taking into account (2.31), (2.34), and py # 0, a straightforward computation
yields (2.20). Thus, the proof is complete. O

Remark 2.9. Let v = ('Yj)?io be a sequence which satisfies the assumptions of
Theorem 2.8. Then it is possible to recover the whole sequence  via the formulas
(2.20) from the section (v;)j_q and the vector A = (A1,.. ., A)T. Indeed, for n = r
we have

r - i} 1
Yr+1 = [H D'ykg‘| N (7))\ = (1 _ |'71|2) Z AT k+17k H D’YJ
k=1

1_|7T 1

In the case n = r + 2 the vector A has to be replaced by 9, 1 (W+) and the
sequence (7;)%_, has to be replaced by (7;4+1)j—o- The matrix 90,.(y) depends on
the section (v;)%_,. Thus, the matrix 9, * (W) depends on the section (v;11)-;
Consequently, formula (2.20) yields an expression for 7,42 in terms of the sequence
(v );ﬂ Continuing this procedure inductively we see that, for all integers n with
n > r, formula (2.20) produces an expression for 7,1 which is based on the
section (7;)7_,. Consequently, the sequence (v;)52, is completely determined by
the section (v;)j_o and the vector A. It should be mentioned that in the case
no = 1, which corresponds to a sequence of rank 1, for each n € N formula (2.20)

has the form
777.

I p—
! 1= (1 =112
Observe that, for this particular case ng = 1, it was derived in Theorem 5.22
in [4].

Our next goal can be described as follows. Let ng € N and let v = (v;)72, €
I'l; be a sequence which satisfies ranky = ng. Furthermore, let r be an integer
with > ng and let p be an rth S-recurrence vector associated with . Then we
will show that the identity

TIC =Pl =10 = A" (2 ()" () = L) A
k=1
holds, where Iy, A and £, () are defined via (1.4), (2.19), and (1.7), respectively.
To accomplish this we still need to make some preparations. In this way, we will
be led to several results that are, by themselves, of interest.
Let n € N. Then the symbol ||.||c. stands for the Euclidean norm in the
space C™.

Lemma 2.10. Let v = (7;)32, be a sequence from D. Let n € N and let 1, () be
defined via (1.15). Then

1= ()20 = HD
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Proof. For n = 1 the asserted equation obviously holds. Now let n > 2. Then from
(1.15) we see the block decomposition

() = (v—n [nnZi?l)?%D '

Thus, taking into account the definition of the Euclidean norm, we get

n—1
2
cn-1 + |’Yn|2 [H D?/k] .

k=1

7 (DlEn = lt-1(7)]

Now, the assertion follows immediately by induction. ([

Lemma 2.11. Let n € N. Furthermore, let the nonsingular complex n X n matriz
M and the vector n € C™ be chosen such that

I, — MM =™ (2.35)
holds. Then 1 — HnHén > 0 and the vector
~ 1 .
7= 72971 7 (2.36)
V1= lnllg.
satisfies
I, — MM = 7. (2.37)

Proof. The case n = 0,,x1 is trivial. Now suppose that n € C"\{0,,x1}. From (2.35)
we get

(I, — 9N )y = ™ = [0l 2 - 1) (2.38)
and consequently
MMy = (1 — [|nllz) - 0. (2.39)

Hence 1 — ||17||(2:n is an eigenvalue of MIN* with corresponding eigenvector 7. Since
I is nonsingular, the matrix IMMIN* is positive Hermitian. Thus, we have 1 —
HnHén > 0. Using (2.38) we infer

(In = MMM = M* (1, — MM ) = ||| - M. (2.40)
Taking into account (2.39) we can conclude
* 112 * * * 2 2 2
1Dl = 0™ MM = 0" | (L= |[nllcn) -n| = (L= lnllen) - lInlle.— (2:41)
and therefore from (2.36) we have

[llcn = lInllen > 0. (2.42)

Formulas (2.40), (2.36) and (2.42) show that ||7]] é" is an eigenvalue of I, —
MM with corresponding eigenvector 7. From (2.35) and 1 # 0,1 we get

rank(Z, — M*IM) = rank(l,, — MM*) =1
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So for each vector h we can conclude

(L — M M)A = (I, — MM (h, ——— ), - = (B, )il = T b O
[l ™" MI7llgn
Proposition 2.12. Let v = ('Yj)?io €TI'ly and let n € N. Then

1 * *
mfmn(v)nn (V)15 (V)M ()

where M, (v) and n,(7y) are defined via (1.13) and (1.15), respectively.

I = 9, ()M (y) =

Proof. The combination of Lemma 1.4, Lemma 2.10 and Lemma 2.11 yields the
assertion. (]

The following result should be compared with Lemma 2.3. Under the as-
sumptions of Lemma 2.3 we will verify that for each n € N the right defect matrix
I, — £5(v)£, () admits a series representation which is similar to the series rep-
resentation for the left defect matrix I,, — £, (7) L% (7).

Proposition 2.13. Let v = (v;)52, € Tz, let n € N and let £,(7) be defined via
(1.7). Then

I — £5(y Z T (7 (2.43)
where for each j € Ng the matriz m, j(7y) is deﬁned via
Jjt+n ; ‘
() = | I D31 | | T] 2% ) | me (W) (2.44)
k=j+1 k=j

and where Do, , W, 9, (7y), and 0, (7) are given by (1.5), (1.6), (1.13), and (1.15),
respectively.

Proof. From (1.12) we obtain £,(y) = M, () - £,(W+). Thus, we get
L = £,(M)En(7) = £, (W) [In = M, (1) M (7)] L0 (W) + L = £5, (W) £ (W)

Considering now £, (W) instead of £,(y) and repeating the above proce-
dure, we obtain, after m—steps the formula

I, — £5(v) Z LHWItLy) [1, — 00 (W), (Wo)] £, (WIH1)
+In — (W) L0 (Wy). (2.45)
Combining (2.45) with part (¢) of Lemma 1.3, we get
I, — Zs* W) (1, — 0 (WIy)D, (Wiy)] £, (WIH ).

(2.46)
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For each j € Ny, from (1.16)

Lo (W) =[] Mn (W) (2.47)
k=3
follows and Proposition 2.12 implies
I =900, (W), (W) = H D2 | I (W5 (WA ) (W) D, (W ).
k=j+1
(2.48)
Now the combination of (2.46)—(2.48) yields (2.43). O

Lemma 2.14. Let v = ()52 € T'ly, let r € N, and let T1y be defined via (1.4).
Then

T

me [H 1—m|2>] — = ) -2,
k=1

k=1

Proof. Taking into account (1.4) and (1.5), we obtain

[Ta -1 = [H(l — ll?)

[|77’+1|2 + (1 - |7r+1|2)}

k=1 k=1
T r+1
= prnf? [H(l — )|+ 1T = 1wl
k=1 k=1
r+1 r+2
= |rl? lH (1= )| + hyrgel? lH(l =)+ T = el
k=1 k=1 k=1

Iterating this procedure, for each integer m with m > r, we get

T m m+1
T = - Z Yn+1]? lH A=+ TTa= P -
k=1 k=1 k=1
This yields the assertion after passing to the limit m — oo. U

Theorem 2.15. Let ng € N and let v = ()32, be a sequence which belongs to
T'ly and satisfies rank~y = ng. Further, let r be an integer with r > ng, let p =
(Pry---,p0)T be an rth order S-recurrence vector associated with v, and let X be
defined via (2.19). Then

r

[ =l =1 = A (L ()" e () — 1) A (2.49)

k=1

where Iy and £,-(y) are defined by (1.4) and (1.7), respectively.
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Proof. Let n be an integer with n > r. Then, from Theorem 2.8 by rewriting
formula (2.20) we get the relation

n n n—r—1
Yn+1 <H D'y:«) = < H D,y;) nr(W"") H M (WEy) | A (2.50)
k=1 k=n—r+1 k=0
From (1.16) it follows that
n:—I :
I otk = | T 9wk | €7 ().
k=0 k=n—r

Inserting this into (2.50), we get

Ynt1 <HD%> =< I1 D{) Wy | I (W) | e ()
k=1

k=n—r+1 k=n—r

This implies
> oot (122,
n=r k=1

= Z( 11 D;f) X | T 2 ) | (W)

n=r \k=n—r+1 k=n—r
W) | T 2R | €70 (1A
k=n—r
= X&) Z( 11 DJ&’) [T o ) | vy
n=r \k=n—r+1 k=n—r
W) | [T 2Ry | | £ (). (2.51)
k=n—r

According to Lemma 2.14 the left-hand side of equation (2.51) can be rewrit-
ten as

> gl <H D3k> =] - lwl?) -113. (2.52)
k=1

n=r k=1
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Substituting the summation index j = n — r and taking (2.44) and (2.43)
into account, we obtain

—

E:( I1 Dﬁ) [T ovwey) | n.(wn=ry)

k=n—r+1 k=n—r

W) | T e (W)

k=n—r
o Jj+r ; _
= > U II o2 | | T] 2wy | me (W)
J=0 \k=j+1 k=j

(W) Hfm (Wky)

ZTW =1 — £.(7)& (). (2.53)

The combination of (2.52), (2.51), and (2.53) yields

T

[Ta= 1) -1 = X(E () (I — £:(1)L () &7 (1A
k=1
= N (ML)~ L) A
Thus, the proof is complete. O

Remark 2.16. We reconsider Theorem 2.15 in the particular case that ng = 1 and
r =1 holds. From (1.7) we get £1(y) = II;. Thus, equation (2.49) has the form

1
1= 2 — MF(——Q

1B (1 - |yf? —I2) = AP (1 - 13). (2.54)

Hence,

Equation (2.54) was obtained in the proof of Theorem 5.22 in [4] (see [4, p. 245]).
We note that the method of proving Theorem 2.15 is a generalization to the case
of a sequence v = (7;)72, € I'l> having arbitrary finite rank of the method of
proving equation (2.54) in [4, p. 245] which works only for sequences having first
rank.
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3. Recovering the matrices £, 1(7) from its first column
and the sequence (7;)7_

At the beginning of this section we turn our attention to the sequence of matrices
(£n(7))pZ1 which are associated with a sequence v = (7;)52, € I'l2. We will see
that for each r € N the matrix £,41(y) can be recovered from its first column
and the section (’Yj)?:o of the sequence . In this way, we will uncover particular
relationships between the columns of the matrix £,41(7).

Lemma 3.1. Let v = ()52, € I'la. Further, let r € N and let the matriz £,41(7)
be defined via (1.7). Then the sequence (’Yj)?:o and the elements of the first column

(I, o Ly (W), M Lo(WH), ..., Ty L (W) (3.1)
of £r41(y) uniquely determine all the remaining elements of £,41(7).
Proof. Given the sequence (v;)}_, and II; we first obtain, successively

I, = D%lﬂl, I3 = D;;Hz, vy gy = D;er,

where D, is defined in (1.5). Thus, using (3.1) we now compute the numbers
Li(W~),...,L.(W~). According to Corollary 3.9, in [4] we have for m € {1,2,...,

r—1}and k € {1,2,...,r +1 — m} the recurrence formulas
m—+k—1
Ln(WHy) = Ln(W*y) + T D L (WH). (3.2)
j=k

From (3.2) we see that, for each j € {1,2,...,r}, the elements of the (j+1)th
column of £,11() can be expressed in terms of the elements of the jth column
of £,11(7). Tterating this procedure, we get that the elements of all columns of
£r4+1(7) can be expressed in terms of the sequence (v;)j_o and the first column
(3.1) of £,41(7). O

Lemma 3.1 leads us to the following considerations. Let v = (v;)52, € ['la.
Further, let r € N and let the matrix £,11(7) be defined via (1.7). Then Lemma 3.1
tells us that given the sequence (v;)’_, and the elements of the first column (3.1)
of £,11(v) all remaining elements of £,11 () can be computed. More precisely, the
proof of Lemma 3.1 shows in which way the remaining elements can be calculated.
In our following investigations we suppose that some r € N and some sequence
(7j)j=o from D are given. Then we are looking for a positive number II; ; and
a sequence (L;1)7_, such that if we construct the complex (r + 1) x (r + 1)
matrix £,41,0 as we did the matrix £,11(7) in the proof of Lemma 3.1, then the
corresponding defect matrix I, 11 — £,41,0L; 41,0 is nonnegative Hermitian and
singular. This leads us to the following notion.
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Definition 3.2. Let r € N and let (v;)_, be a sequence from D. Let II; ; € (0, 00)
and let (L;1)5_; be a sequence of complex numbers. Let

IT; 4 0 0 . 0

Iy 2L II; 2 0 . 0
Lri10:= Iy 3L9,1 Il 3L 2 IT; 3 e 0 (3.3)

IM41lery IypgiLle—12 Iipqile—o3 ... Ili,p1
where
H172 = D;llﬂlyl, H173 = D,;;HLQ, ey Hl,r+1 = D,;TIHLT, (34)
and where the numbers (Ly, ) m-1.....—1 are defined by the recurrent formulas
k=2,..., r4+l—m
m—+k—1
Loy k41 = L ko + Vmrke Z YiLj k. (3.5)
j=k

Then [II; 1, (L;1)5-;] is called compatible with (v;)%_q if

L1 — £041,0L7 51,0 2 Org1yx(r1) and det (Lry1 — L4105 41 9) =0
hold. In this case, the matrix

Ari1,0 = Lrp1 — £r41087 410

is called the information matriz associated with [(;)j—q, 11, (Lj1)j=1]-

Lemma 3.3. Let r € N and let (7;)}— be a sequence from D. Further, let
(IL1,1, (Lj1)5=1] be compatible with (v;)5_y. Then:

(a) Let the sequence (Hlj)gi% be defined via (3.4). Then (Hlj)gii is a mono-
tonically increasing sequence from (0,1].

(b) Let s €{1,2,...,r}. Then the following statements are equivalent:

(i) I s = 1.

(ii) For all j € {s,s+1,...,r+ 1}, the relation it holds II, ; =1 holds.
(iii) For all j € {s,s+1,...,7} the relation v; = 0 is valid.
If (i) is satisfied, then L;1 =0 for each j € {s,s+1,...,r}.

(c) IfI11 =1, then the matriz £,410 defined via (3.3)=(3.5) coincides with the
unit matriz Iry1. In particular, the matriv Ary1,0 = Ir

Julfills Ari1,0 = 0(rs1)x(r11)-

+1 = L1087 410

Proof. (a) From the construction of the sequence (Hlj)gii it is immediately ob-
vious that this is a monotonically increasing sequence from (0, c0). Since by as-
sumption the matrix £,11 ¢ is contractive and since the sequence (II;, J)gii forms
the main diagonal of £,11 ¢, we obtain that it is a sequence from (0, 1].

(b) The equivalence of (i), (ii), and (iii) is an immediate consequence of (a). Let
(i) be satisfied and let j € {s,s +1,...,r}. In view of (ii), then II; 41 = 1.
Since IIj 541 is the (s 4 1)th diagonal element of the contractive matrix £, ¢ all
remaining elements of the (s + 1)th row of £, have to be 0. Since in view of
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(3.3) and Iy 541 = 1 the first element of the (s+ 1)th row of £,11¢ is Ls 1, we get
Ls1=0.

(c) Taking into account II; ; = 1 we infer from (b) that II; ; = 1 for each j €
{1,2,...,7 4+ 1}. Thus, all diagonal elements of the contractive matrix £,11 ¢ are
equal to 1. This forces £,41,0 = 41 and consequently A, 41,0 = Oq1)x(r41). U

Remark 3.4. Let r € N and let (%‘)37:0 be a sequence from . Let I; ; := H;:l D,,
and let (L;1)5_; be a sequence of complex numbers such that [Ty 1, (L;1)7;] is
compatible with (7;)7_g. From (3.4) we see then that

My, = 1. (3.6)

Let £,41,0 be defined via (3.3)—(3.5). Then by assumption £,4; ¢ is contrac-
tive. Combining this with (3.6), we see that the last row of £,41, is (0,...,0,1).
Thus the information matrix A, 1,0 associated with [(v;)7_q, 11,1, (Lj1)}-,] has

the shape
_ * Orxl
Ar+1,0 - <01><T 0 > .

Hence, the (r+1)x 1 matrix e, 41 := (0,...,0,1)" belongs to ker Ay 41,0\ {0¢41)x1}-
Now we turn our attention to the special case r = 1.

Remark 3.5. Let v1 € D, II1 1 € (0,00) and Ly; € C. Furthermore, let II; o :=

D»;llHl,l;
114 4 0
Lo0:= i 3.7
2.0 <H1,2L1,1 H1,2) ’ (3.7)
and
AQ’O = IQ — Sz’oss’o. (38)
Then )
1-1I —1II; {11 oL
Ay — 11 1,101 2L 1 > 39
0 <—H1,1H1,2L1,1 1- H%72(1 +|L11)?) (3.9)
and 2 2 2 2
1-— —1II 117 | L
det Ay o = (1 —T12,) Ml My il (3.10)

1—|mf? 1—|ml?
Lemma 3.6. Let (v;)i_o be a sequence from D and let [T11 1, (Lj1)}—,] be compatible
with ('yj)]lzo. Suppose that Iy 1 < 1. Then:

(a) The relation
2

1-1I7
H2 . (1 - |’yl‘2 - H%,l)
1,1

[Lial* =
holds true.
(b) The inequality 11, 1 < D, holds.
(c) The null space ker As ¢ is the linear hull of the vector (p1,1)T where
HilLl,l

P i (3.11)
D’Yl(l 7H%,1)
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(d) The number A := —D~,p1 fulfills

I3 — (1= |y + NI, + A2 =0.

Proof. (a) Let Az be defined by (3.7) and (3.8). By assumption, we have
det A2 9 = 0. (3.12)

Now the combination of (3.12) and (3.10) yields (a).
(b) Since 1 —1II7 | > 0, the assertion of (b) is an immediate consequence of (a).
(¢) In view of 1 —II3 | # 0, we see from (3.9) that there is a unique p; € C such
that Az o - (p1,1)T = (0,0)”. From (3.9) we get

(1 - Hil, —H1,1H1,2H) (p1, )" =0.
This implies (3.11).
(d) Using (3.10) and the identity

S (1 -1 4)2
Lii=—"—""2)\
1,1 H%’l )
we obtain
_ - H%,l 4 2 2\ 172 2
det Az 9 = *m [H1,1 — (1= )" + (AT 1 + [A ] . (3.13)
Taking into account IT; ; < 1, we obtain part (d) from (3.12) and (3.13). O

The combination of Definition 3.2, Definition 1.8, and the proof of Lemma
3.1 provides the following result.

Proposition 3.7. Let ng € N, let v = (v5)72, € I'lz be such that ranky = no,
and let v be an integer with r > ng. Let 11y and let the sequence (L;j(W~))i_; be
defined by (1.4) and (1.3), respectively. Then (v;)i_, is a sequence from D and
[y, (Lj(W~))5—1] is compatible with (v;)j_q. Moreover, the matriz

Ari1(7) = Lrj1 — Lr1 () €51 (7)
is the information matriz associated with [(v;)%_o, 1, (L;(W7))j_,].

Now let r € N and let (v;)7_, be a sequence from D. Using Proposition 3.7
we will show then that in a simple way one can always find data compatible with

(’Yj)?:o-

Remark 3.8. Let r € N and let (y;)7_ be a sequence from D. For each j €
{r+1,r+2,...} wesety; := 0. Then Remark 1.10 shows that v belongs to
['ly and that ranky < r. Thus Proposition 3.7 implies that [Ty, (L;(W~))i_,] is
compatible with (v;)5_o. Moreover, IT; = [[’_, D,,.
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Remark 3.8 leads us to the following notion.

Definition 3.9. Let r € N, let (v;)7_, be a sequence from D, and let II;; :=
[[j=, D-;- For each k € {1,2,...,r} let Ly := Ly(W~), where the sequence
v = (75)72, is that extension of (v;)7_, which is given by ~; = 0,for each integer
J with j > r + 1. Then [II; 1, (L;1)}_,] are called the canonical data compatible
with (7;)j=o-

4. On the structure of the information matrix A, o

Let r € N and let (v;)7_, be a sequence from D. Furthermore, let [II11, (L;1)j_4]
be compatible with (v;)j_o. Let the matrix £,11 be built from this data as in
(3.3)—(3.5) and let (in generalization of (3.8))

Ari1,0 = Lrp1 = L1087 410 (4.1)

be the information matrix associated with [(v;)7_q, 1,1, (Lj1)5=1]-
To analyse the structure of the information matrix A, 1, for all m €
{1,2,...,r} and k € {1,2,...,7+2 — m}, we introduce the matrices

Em,k—l
I, 0 0
Iy g1 L1k Iy k11 0

— Iy g2 Lok L g2 L1 kg1 I k2

I ktm—1Ligm—16 I gpm—1Legm—2k+1 1 gpme1Lrtm—3k+2

0
0
0 (4.2)
Ty krm—1
and
Am—1 = I — Sm,k,1£;17k_1. (4.3)

If we compare the matrices introduced in (3.3)—(3.5) and (4.2)—(4.3) with the
matrices defined in (1.7), then we observe that now the numbers II; j, and Ly, j
play the role of the numbers I and L,,(W*y) in (1.7). Thus, the matrices £,
and Ay, x play the role of the matrices £,,(W¥*~) and A,,(W¥*~), respectively.

The recurrence formulas (3.5) are modelled after the pattern of the recurrence
formulas (3.2). It can be immediately checked that the formulas (3.2) are equivalent
to (1.12). Let m € {1,2,...,r} and k € {1,2,...,r — m}. Starting with the
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sequence (7;)7_o, we introduce the matrix

D'Yl+k 0
—V1+kV2+k D,,.,
mm b = _’yl+kD.’Y2+k73+k _72+.k’73+k

—1 —1 _
—V1+k (H;‘nZQ_;,_k D’yj) TYm+k  —V2+k (1—[;11:3+k D’y]) Ym+k

0 e 0
0 e 0
D’Y3+k~ 0 (4_4)
—Y3+k (H;n:jli_k D,),j> Vmak o Drypgs

Obviously, 9, 5 coincides with the matrix 9, (W*v) introduced in (1.13).
However, the notations are different because now we only know the finite section
(75)j=o of the first 7 + 1 elements of the sequence v = (7;)32,. Consequently, we
have

Im - mm,km%,]f - nm,kn;,k7 (45)
where
T
m—+k—1
T,k ‘= 71+k772+kDW1+k7 <oy Ymtk H D"/j . (46)
j=1+k

Obviously, the vector 7, coincides with the vector 7,,(W*y) defined in
(1.15). Moreover, we get
Lk = My kL k+1 (4.7)
which resembles
Lrn(Why) = My (WE) L (W),
In the case m = r and k = 0 identity (4.7) has the form

Lro=M 0L 1. (4.8)
Using (4.7) we obtain, in the same way we did (1.19), the identity
Ak = M kM e + Mo e Am k0100, - (4.9)
In particular, in the case n = r and k = 0 we have
Aro = 0r0m0 + My 0 Ar 19 . (4.10)

From (4.2) we obtain block decompositions for the matrix £,, x—1 which are
analogous to the block decompositions (1.8) and (1.10), namely

_(Lm-1k—1 O
»Qm,k'—l - (b;knl’kl Hl,m> (411)
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and
Skt = (Bglkk1 Em?,kH) ’ (4.12)
where
bn1k1 =1 (Ton15> L2581+ » Lipgm2) (4.13)
and
Bi-1(v) = (Mg g1 L1 Iy j2 Lo gy - My Lo i) (4.14)

respectively. From (4.11) and (4.12) we obtain block decompositions for the matrix
A k-1 which are similar to the block decompositions (2.12) and (2.18), namely

Am—l k—1 *Em—l k—lbm—l k—1
Am,kf - < * . * ,* ) 415
! 7bm71,k71£m71,k71 1- H%,m - bmf1,k71bm—1,k’—l ( )
and

Amp—1 = ( (4.16)

respectively. Formulas (4.7)-(4.16) show that the information matrix A,;1, has
the same structure as the matrix A,11(7y) introduced in (1.17). Thus, imitating
the proof of Proposition 2.6, we obtain the following result.

2 *
1- Hl,k _HLkBm,k—l
—Bpgp—1Ilig Am—1k41 — Bmg—1Bp, 1)’

Proposition 4.1. Let r € N, let (’Yj)?:o be a sequence from D, and let

[M1,1, (Lj1)5=1] be compatible with (v;)i_. Let the matriz £,410 be built from
these data as in (3.3)~(3.5) and let Ar410 be the associated information matrix
introduced in (4.1). Let Ago = 1 and for each n € {1,2,...,r} let A, o be the
n X n-matriz in the left upper corner of A.41,0. Then:

(a) There exists someng € {0,1,...,7} such that det Az, o > 0 and rank A, o =

ng for each m € {ng+ 1,9+ 2,...,r+ 1}.
(b) for each p = (Piy,---,P0)" € ker Asiy41,0\{Ogg11)x1} the inequality po # 0

18 true.
(c) Let p € ker Azy41,0\O0go+1)x1} and let the sequence (ﬁj);;{“’“ be defined
by
r—%—&-l
Gr=0 G =M 10hr s Gromorr = | || Miosin| P
k=0
Then the (r + 1) x 1 matrices
~ 0
9N ~ 0
0 g2
O .
g1 = . y g2 = y cecy Gr—motl & :
. : 0
O 0 §T7ﬁ0+1

form a basis of ker Ay11 .
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Corollary 4.2. Under the assumptions of Proposition 4.1 there exists some vector
p=(pr,...,po)T € ker A, 110 which satisfies py # 0.

5. Constructing a sequence belonging to I'l; and having finite rank
no < r from a section (v;)’_, and compatible data [II, 1, (L;1)}_,]

The main goal of this section can be described as follows. Let r € N, let (v;)}_, be a
sequence from D, and let [I1,1, (L;,1)5_;] be compatible with (v;)_,. Then we will
demonstrate a method for extending (v;)j_y to an infinite sequence v = (7;)52, €
I'l; which satisfies rank~y < r. Our method of extending the sequence (’Yj)gzo is
of recurrent type. More precisely, it is suggested by the recurrence formulas which
were obtained in Theorem 2.8.

Let p,q € Nand let A € CP*9. Then || A||s stands for the operator norm of A.

Lemma 5.1. Let n € N. Further, let A € C"*"™ andn € C" be such that A —nn* >
Onxn- Then [Infg. < [|Alls.

Proof. In view of A —nn* > 0% and nn* > 0, %, We obtain
1Alls = llnn*lls = lInllE = 0]z O

The following theorem is one of the central results of this paper.

Theorem 5.2. Let r € N, let (v;)j—o be a sequence from D, and let [I11 1, (Lj1)j_4]
be compatible with (7;)i_y. Let the matriz £.110 be built from these data as in
(3.3)~(3.5) and let A, 41,0 be the associated information matriz introduced in (4.1).
According to Corollary 4.2, let p = (p,,...,po)T be a vector from ker A,41.0 which
satisfies po # 0 and let

1 r
A= —— HD’Yk '(pr;p'r‘fla-“;pl)T:
Po |15

where D.,; is defined via (1.5). Let the sequence ()7 be extended to an infinite
sequence v = (7;j)52 by defining recursively for n € {r,r +1,...} the elements
Yn+1 ViQ

—

n n—r—1 n
V1 = [HD%}} [T = Aa[ II Dwf] Mrn—r (5.1)
s=1

k=0 k=n—r+1

Cr

where My, and Ny n—r are defined via (4.4) and (4.6), respectively. Then v belongs
to ly and satisfies ranky < r. Moreover, Ay11,0 > Art1(7) and p is an rth order
S-recurrence vector associated with .

Proof. Let Ago :=1 and, for each n € {1,2,...,7}, let A, o be the n x n-matrix
in the left upper corner of A,y 0. In view of part (a) of Proposition 4.1, there



182 V K. Dubovoy, B. Fritzsche and B. Kirstein

exists some nonnegative integer moy with ng < 7 such that det Az, o > 0 and
rank A, o = ng for each m € {ng + 1,79+ 2,...,7+1}. Thus

rank A, 41,0 = rank A, o = np. (5.2)
By assumption (see Definition 3.2) we have
Ar1,0 2 04 1) x (r41)- (5.3)

Taking into account (4.15), (5.2), and (5.3), we obtain by a standard argument
(see, e.g., Lemma 1.1.7 in [5])

Arj10=F, Aro Orxa Fr (5.4)
01><r 0
where
_ Ir O7"><1
F*"(—wﬂE;WAiO 1 ) (5:5)

and where the symbol .A: o stands for the Moore-Penrose inverse of the matrix
Ay.0. Denote by M, the orthogonal complement of the linear subspace of C"*1

which is generated by the columns of the matrix F. .= F. (OIT OTOXl). From
1xr

(5.5) we see that rank F,. = r. Hence dim M, = 1. Let

p=(Dr---:00)" € M\{0(11)x1}- (5.6)
From (5.3) and the choice of M, we have
P Fr = 01 g, (57)

Using (5.4) and (5.7), we get

~k ~_ o~ Ar 0, *~ _ ~x 13 A 0 .~
A1, 0D =D"F) (01;2 0X1> Ep=pF: < o T“) Fp=0. (5.8)

From (5.3) and (5.8) we infer

ﬁ € ker AT+170. (59)
Taking into account (5.6) and (5.7) we see that
po # 0. (5.10)

Our next step is to define the element ;4. This will be done as follows. In
accordance with (4.6) let

T

r—1
Nr,0 ‘= %7%1)71’-"?? HD’YJ‘ (511)
j=1

and let
7= PrPr1,...,01)". (5.12)
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Taking into account (5.10)—(5.12) we define
1

5o (M1 Dr) (@ o) -

Yr+1 = —

In view of (5.11), the vector

s

Nr+1,0 = Ta%D’Yla"WW/T‘Fl HD’yj
j=1

has the block decomposition

_ Tr,0
0 =\ (02, 0) )
Using (5.6) and (5.12)—(5.14), we get

- q r,0
(P, 77r+1,0)<cr+1 = (ﬂ) | =— Hr D
Po Yr4+1 j=1"7 Cr

= (av nT,O)C'" +50’Y7«+1 H D’YJ =0.

j=1
Now we are going to show that

Ar1,0 = Nr+1,0M 51,0 = Ot 1) x (r41)-

183

(5.13)

(5.14)

(5.15)

(5.16)

In view of (5.15) and the construction of the space M,, we see that the vector
Nr+1,0 belongs to the linear subspace of C"*! which is generated by the columns

of the matrix ﬁr. Thus, there is some u € C"*! such that 1,410 = ﬁru. Choosing,

the block decomposition u = ( v ), where v € C", we obtain

urJrl

_ Ir O7“><1 v _ v
10 = <01><’r‘ 0 ) (Ur+1> =5 <0> ’

Combining (5.14), (5.5), and (5.17) we get

Nr4+1,0 = Fy (776,0> .

By virtue of (5.4) and (5.18) we infer

AT+170 - 77T+1,07’]T+1’0 — Fr ( r,0 0 777‘,07’7*,0 r0><1) F,,, .
Ixr

In view of (4.10) we have

* *
Ao = 1,050 = My 0 Ar, 1IN .

(5.17)

(5.18)

(5.19)

(5.20)
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Using (4.16) for m =r + 1 and k = 1 it follows
* *
r = " . 5.21
Ari10 (* At — Br+1,k13r+1,k1> ( )
From (5.3) and (5.21) we can conclude A, ; — Bry1,6-1B7 11 g1 = 0pxyp. Thus,
Ar,l 2 0r><r~ (522)

Now the combination of (5.19), (5.20), and (5.22) yields (5.16). From (5.16)
and Lemma 5.1 we get

11r+1,0l1Em+1 < [MAr10lls- (5.23)

From (3.3) it is obvious that det £,41 9 # 0. Consequently, the matrix A, 410 is
strictly contractive. This implies

[Art1olls < 1. (5.24)

Taking into account (1.15) and (5.11), and applying Lemma 2.10 yields

T

In-oller =1 =TT = hsl?). (5.25)

j=1
Because of (5.14), (5.25), and (1.5) we get

2
771",0 r
[ || — = [Inrollg- + el D3,
r Ccr+1 o) (H;Zl D'y]) - r,0llC r Jl;[l Vi
r r r+1
= 1-JJa =P+ el [ TTQO =16 | =1 =TT 1)
j=1 j=1 j=1
Hence
r4+1
10— 1) =1~ Insrolles. (5.26)
j=1
Since (7;)j—o is a sequence from D we have
I
[Ta =1 >o. (5.27)

j=1
From (5.26) and (5.27) we have
1- ||77r+1 0||2r+1
1= g = o rsiollers
' [l (1= 1vl?)

The combination of (5.28), (5.23), (5.24), and (5.27) yields |y,4+1| < 1. Con-
sequently, we now have a sequence (’yj);fié from D. Starting with (fyj)gié
troduce the matrix 9,410 via (4.4). From (4.4) it is obvious that

det M, 41,0 # 0. (5.29)

(5.28)

we in-
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Corresponding to (4.8) we define

g1 =ML L0 (5.30)
Bearing in mind (4.3) we then obtain
Ariin =l — L1180 (5.31)
Using (4.1), (5.30), formula (4.5) for m =7+ 1 and k = 0, and (5.31) we get
Ari1o0 = Lrp1 — L1080 0= Lrp1 = Mi108r 1108001 1M1 0
Lor = Mg, 0M 1o+ Megno (Lo — Lo11L5400) Do
= 41,0410 + M1, 0Ar 1290 o (5.32)
In view of (5.32) and (5.29), we conclude
Arprn = I o (Arsr,0 = D107 41,0) D10 (5.33)
The combination of (5.16) and (5.33) yields
Ari11 2 04 1) x (r41)- (5.34)
From (5.29) and (5.33) we see that
rank A, 411 = rank (Ar41,0 — 7r41,07410) - (5.35)
By assumption, we have det A, 41,0 = 0. Combining this with (5.16) yields
det (Ar41,0 — r41,0m541,0) = 0. (5.36)
Applying (5.35) and (5.36) we get
det Ayy11 = 0. (5.37)

Obviously (5.30) implies
Lr1,0 = Mrg1,0Lr41,1- (5.38)

This means that the matrix £,11 1 is built from (y;41 )2:0 and [IT; o, (Lj’g);:I]
in the same way as the matrix £,41,0 is built from (v;)7_y and [Ty 1, (L;j,1)}_4]-
Taking into account that (7yj11)7_¢ is a sequence from I, we conclude from (5.34)
and (5.37) that [II1 2, (L 2)}_,] is compatible with (v;4+1)j_o. Thus, it is possible
to repeat the above procedure and to define the number v, € D. In this second
step one has to increase the corresponding index associated with the 4’s by one
unit. For instance, instead of (5.32) we get

Argrr = e 00+ Mg 10 Arp1 290
Inserting this into (5.32) provides us

* * *
Ar+1,0 = Mr+1,0"Mr+1,0 + mr+17077r+1,177r+1,19ﬁr+1,0
+IMy 1,09 1,1 A 41,290y I o (5.39)

After the second step formula (5.38) has the shape
Lri1,0 =M 1,0Mr 1180412 (5.40)
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Analogously to (5.34) and (5.37) we obtain

Ari1,2 2 04 1)x (r41) (5.41)
and
det AT+172 =0. (542)

By induction we now continue the above procedure to obtain an infinite
sequence v = (7;)52, from D. Let us consider an arbitrary n € N. After the nth
step formula (5.40) has the shape

Cri10=Mp10Mri11- - M1 lrgin. (5.43)
Instead of (5.41) and (5.42) the matrix
Apgin = Iop1 = Lopinliinm (5.44)
satisfies the relations
Ari1n 2 004 1)x(r41) (5.45)
and
det Ay 41, = 0. (5.46)

Now we compare the elements in the left upper corner of the matrices on
both sides of equation (5.43). Taking into account (3.3), (4.4), and (4.2) we obtain

My =DyDyy- - =Dyl (5.47)

In view of (5.45) the matrix £,41 5, is contractive. Since IIj ,, 1 is the element
in the left upper corner of £, , we obtain

Iy g < 1. (5.48)
By assumption we have IT; ; > 0 and D, D.,, - --- - D, > 0. Thus, (5.47) implies
I g1 > 0. (5.49)
Combining (5.47)—(5.49) we obtain
D,D.,, - --- -D, >II; >0. (5.50)
After the nth step the analogue of formula (5.39) is
w1 (ko1 K1
Art10 = Z H M1 | D1, 6M 1k H My
k=0 \ j=0 7=0
1 -
+ H M1y | Artin H M1 (5.51)
§=0 3=0

where as above we have used the convention

—1 —1
o= Iy

I =11

Jj=0 j=0
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Let m € Ny and k& € Ny. Comparing (1.13) and (4.4) we get

M e = My (W) (5.52)
whereas from (1.15) and (4.6) we see
D = N (WH). (5.53)
Taking into account (5.52) and (5.53), an application of (5.43) and (5.51) yields
el
o= | [] P V7y) | Lri1m (5.54)
j=0
and
n—1 1:1 ) I; )
Aviio = D | TT 2tcaVi) | mepa Wy WEy) | [T 9 (W7)
k=0 \ j=0 =0
+ | T 2 V7)) | A | TT 20 779) | - (5.55)
Jj=0 j=0

Now we use the previous observations connected to the nth step of our proce-
dure to derive several properties of the sequence . Since -y is a sequence from D we
conclude from (5.50) that the infinite product H]o'io D.,; converges. This implies

~v € Tly. (5.56)
In view of (5.56), applying (1.16) yields

[T i (W) = £4a(0), (5.57)
k=0

where £,.1(7) is defined via (1.7). Because of (5.57) and det £,11(y) # 0 we infer
from (5.54) that the sequence (£,41,,)2%, converges and that its limit

Lriloo = lim L5491 (5.58)
satisfies the equation
£r+1,0 = £r+1(7)£7‘+1,oo- (559)
Let
ArJrl,oo = I»,qu — £T+17OO£’T'+17OO' (560)
Using (5.44), (5.58), and (5.60), we get
ArJrl,oo = lim ATJan. (561)

Applying (5.45) and (5.60) we obtain
Ar+1,oo Z O(r+1)><(r+1)' (562)
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Now we pass to the limit n — oo in formula (5.55). Using (5.56), Lemma 2.3,
(5.57), and (5.61), we obtain

Ari1,0 = A1 (7) + Lrp1 () Ar1,00L7 11 (7)- (5.63)
From (5.56) and Lemma 1.2 we infer
Ari1(7) 2 0(rg1)x (r1)- (5.64)
According to Corollary 4.2 let
p=(pry.,p0)" Eker Ario (5.65)
be such that
po # 0. (5.66)

Using (5.62)—(5.65) we see that
p € ker A, 11 (7). (5.67)

Taking into account (5.56), (5.66), (5.67), and applying Proposition 2.4 yields that
p is an rth order S-recurrence vector associated with . Having this in mind and
paying attention to (5.52)—(5.53), from Theorem 2.8 we know that (5.1) holds
for each integer n with n > r. Taking into account (5.62) and (5.63), we infer
Ari1,0 > Ars1(7y). Thus, the proof is complete. O

Corollary 5.3. Let r € N and let (%‘)?:o be a sequence from . Further, let
(1,1, (Lj1)5=1] be the canonical data compatible with (v;)7_y and let A1 be
the associated information matriz. Then:
(a) The (r+1)x1 matriz e,41 := (0,...,0,1) belongs to ker A41,0\{O(11)x1}-
(b) Denote by (v)52, 11 that sequence which is constructed by using p = er41 as
in Theorem 5.2. Then v,4+1 = 0 for each integer n with n > r.

Proof. (a) From Definition 3.9 and Remark 3.8 we have II; ; = H;Zl D.,;. Thus
(a) follows from Remark 3.4.

(b) Taking into account (a) we choose p = e,4+1 in Theorem 5.2. Then, if A is chosen
as in Theorem 5.2, we get A = 0,x1. Hence, from (5.1) we conclude (b). O

Now we consider the situation of Theorem 5.2 for the particular case r = 1.
We will then obtain a considerable simplification of the recurrence formulas (5.1).
First we state an auxiliary result.

Lemma 5.4. Let 1 € D\{0} and let A € C be such that 0 < XA < 1. Then there
exists some u € (0,1) which satisfies

u? = (1= |+ APu+ A =0 (5.68)
if and only if |A\] <1 —|y1].



Recurrence of Schur Parameters 189

Proof. Let the function f : R — R be defined by

fl@) =2 = (1= P + APz + A2 (5.69)
Let
7o 1= 5 (1=l + A2, (5.70)
From (5.70) and the choice of 1 and A we get 29 € (0,1). Moreover,
£(0) =|A? > 0and f(1) = |5|* > 0. (5.71)

From (5.69) and (5.70) we obtain f(z) > f(zo) for each x € R. Thus, taking
into account (5.71), we see that there exists some u € (0, 1) satisfying (5.68) if and
only if

f(zo) < 0. (5.72)
In view of
1
f(zo) = *1(1 = PP+ A2
we infer that (5.72) is equivalent to
AP < (1=l + A%
Because of 71 < 1 this is equivalent to 2|A\| < 1 — |y1|2 + |A|?, ie, to [m]? <

1 —2[Al + A2 = (1 — |A])%. Thus, because of |\] < 1 we obtain that this is
equivalent to |y1| < 1 — |A| and the proof is complete. O

Theorem 5.5. Let (v;)j—o be a sequence from D and let [Ty 1, (Lj1)j=y] be com-

patible with (v;)j—o- Denote by v = (v;)32, that extension of (v;)j=o which is
constructed as in Theorem 5.2. Taking into account 0 <11, ; <1, we set

nf, Loy .
P 11_’1_[? ; , if H171 S (0, 1)
0 Jif Ty p = 1.
Then:
(a) For each n € N, the number yp4+1 can be represented via

Y+l = /\nv—n2~
Hj:1(1 = |l?)

(b) The relations v € Tly and rank~y < 1 hold true. The vector (—D7'X\,1)T is
an S-recurrence vector associated with ~y.
(¢) The following statements are equivalent:
(i) A=0.
(ii) For alln € N, v,41 = 0.
(iii) There exists an m € N such that ym+1 = 0.
(d) The inequality || < 1 — |y1] holds.
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Proof. (a) Let n € N and let Ay be the information matrix associated with

(V) j=0»> 1,1, (Ljyl)jl-zl]. Then using part (b) of Lemma 3.6 in the case II; ; € (0,1)

and part (c) of Lemma 3.3 in the case II; 1 = 1, we get
_\p-1
( )\1le > € kerA270. (573)

Taking into account (5.73), (4.4), and (4.6), we conclude from (5.1) the relation

[ n T n—2 n
oo = [To2] (| T o |0 [T 252
=1 i k=0 k=n
L ct
[ n T 7(:2
— -1 —1 1
- H D% H D’Yl+k As D'Yn Tn
s=1 i k=0
L ct
_ Yn

[T (1= |l?)
(b) In view of (5.73), part (b) is an immediate consequence of Theorem 5.2.

(¢) The implications “(i)=-(ii)” and “(ii)=-(iii)” are obvious. Now suppose (iii).
Taking into account (iii), let k be the smallest positive integer m such that ~,, = 0.
If k = 1, then v, = 0 and part (b) of Lemma 3.3 implies IT; 1 = 1 and hence, A = 0.
Let us consider the case k > 2. Then ~;_1 # 0 and vy, = 0. Thus, using (b) we get

k—1
Tk

A= TTa =1 = 0.
=1 V-1

Consequently, in any case condition (i) is satisfied.
(d) For A = 0 the assertion is trivial. Now suppose

X £ 0. (5.74)
Then from (c) and the definition of A we infer
Yn # 0, for each n € N. (5.75)
According to (5.75) and (a), for each n € N, we conclude

oal _ A
el ~ L= (= )

From this we get

. |7n+1| _ |)‘|

where IT; is defined in (1.4). Because of v € I'ly the series > 77 |vj]? converges.
Combining this with (5.76) the quotient criterion for the convergence of infinite
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series yields

2 2
Dy, Danl
117 n—oco |7y
and, consequently,
I\ <TI2 < 1. (5.77)
In view of (5.75), parts (a) and (b) of Lemma 3.3 provide us with
H171 S (07 1). (578)
Taking into account (5.73) and (b), we apply part (c) of Lemma 3.6 and obtain
Iy — (1= I+ AP, + A2 =0. (5.79)
Because of (5.74) and (5.77)—(5.79), we obtain from Lemma 5.4 the inequality
Al <1 = |ml 0

Lemma 5.6. Let (’Yj)}:o be a sequence from D where 1 # 0. Further, let A € C
satisfy 0 < |A| <1 —|y1|. Then:

(a) There exists some I1; 1 € (0,1) such that

iy = (1=l + AP + AP = 0.

(b) Let II1 1 be chosen as in (a) and let
1112, _
Ly =——F5—"M\

M,

Then [Ty,1, (Lj1)j—] is compatible with (v;)i_q-

(¢) Denote by Az o the information matriz associated with

[(¥i)j=0- 1,1, (Lj1) ).

-1
< D{“ A) € ker.A270.

Proof. (a) This follows from Lemma 5.4.

(b) Let the matrix As o be defined by (3.8). In view of (a), we obtain from (3.13)
then det As o = 0. Thus, taking into account 1 —II; ; > 0 and (3.9), we see that
Az o > 02x2. Hence, (b) is proved.

Then

(¢) Because of (b) and the definition of L; ; the assertion of (c) follows from part
(c) of Lemma 3.6. O

Theorem 5.7. Let (’yj)}:o be a sequence from D where 1 # 0. Furthermore, let
A € C satisfy 0 < |A| < 1—|vy1]. For eachn €N, let

Y+l i= p P —
15— (1= |l?)
Then the sequence v = (’yj)‘j?‘;o belongs to T'ly and satisfies ranky < 1. Moreover,
the vector (ngll)\, )T is an S-recurrence vector associated with .
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Proof. Let [I11 1, (L;j1)j—,] be the data compatible with (v;)j_, which were con-
structed in Lemma 5.6. Then from the definition of L, ; we get

_ I3, Lag
-1,

Thus, part (a) of Theorem 5.5 shows that (v;)32, is that extension of (%’);:0
which was constructed in Theorem 5.2. Now all assertions follow from part (b) of
Theorem 5.5. g

It should be mentioned that Theorem 5.5 and Theorem 5.7 contain reformu-
lations of statements which were obtained in Theorem 5.22 and Corollary 5.23 of
[4] by other methods. The difference is that Theorem 5.5 is formulated in terms of
compatible data. Moreover, Theorem 5.5 is a consequence of Theorem 5.2 which
describes the situation for an arbitrary positive integer n.

Finally, we note that in Section 5.4 of [4], for the case r = 1, several concrete
examples were considered, which we do not discuss here.

The last assertion in Theorem 5.2 leads us to the following notion.

Definition 5.8. Let 7 € N, let (7;)_ be a sequence from D, and let

(11,1, (Lj1)=1] be compatible with (v;)%_. Furthermore, let A, 11,0 be the asso-
ciated information matrix and let p = (pr,...,po)’ be a vector from ker A, 1o
which satisfies py # 0. Denote by ~ the extension of (%‘);:0 to a sequence belong-
ing to I'ly which was constructed in Theorem 5.2 outgoing from the quadruple
[(vj)5=0> 1,1, (Lj,1)5=1,p]. Then the triple [IIy 1, (L;1)5—,p] is called minimal
with respect to (v;)j—q if Ari1,0 = Ary1(7) where A,.11(7) is given by (1.17).

Let np € N and let v = (Wj)?io be a sequence which belongs to I'ly and
satisfies rank v = ng. Furthermore, let r be an integer with > ng. Then according
to Proposition 3.7 there is a natural choice of data [Il1 1, (L;,1)}_;] compatible with
(’yj)gzo. Now we verify that the procedure of Theorem 5.2 applied to these data
provides exactly the original sequence v and, moreover, it produces a triple which
is minimal with respect to (v;)}_o-

Proposition 5.9. Let ng € N and let v = (%‘)?io be a sequence which belongs to
T'ly and satisfies ranky = ng. Furthermore, let r be an integer with r > ng and

let p= (pr,...,p0)T be an rth order S-recurrence vector associated with «y. Let Tl
and the sequence (L;(W~))i_; be defined by (1.4) and (1.3), respectively.

(a) It is (v;)j—o a sequence from D and [y, (L;(W~))i_,] is compatible with
(7)j=o- Moreover, the matriz A,11(7) defined in (1.17) is the information
matriz associated with [(7v;)j—o, 11, (L;(W7))j_4].

(b) The relations p € ker A,11(7y) and po # 0 hold true.

(c) Taking into account (a) and (b) and given (v;)i—o, [, (Lj(W7))j—,], and p,
let v = (%);";0 be the sequence from T'ls which is constructed via Theorem
5.2. Then v = .

(d) The triple [y, (Lj(W~))i_,p] is minimal with respect to (7v;)%_g-
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Proof. (a) This follows from Proposition 3.7.
(b) This follows from Proposition 2.4.

(¢) Taking into account (5.52) and (5.53), the assertion of (c¢) follows inductively
by combining Theorem 2.8 and Theorem 5.2. Indeed, one has only to compare
formulas (2.20) and (5.1).

(d) This follows from (a). O

Corollary 5.10. Let r € N and let (%‘);:o be a sequence from D. Furthermore,
let [I1q 1, (Lj71);:1] be the canonical data compatible with (7]»);:0 and let e,41 =
(0,...,0,1)" € C"**. Then the triple (1111, (Lj1)5—1, ery1] is minimal with respect
to (%’);:0-

Proof. Let v = (7;)32, be that extension of (v;)j_ which is given for each j €
{r+1,r+2,...} by 7, = 0. Then from Remark 1.9 we infer that v € I'ly and
rank~y < r. Moreover, taking into account Definition 3.9, we get II; ; = II; and
L;j1 = Lj(Wx) for each j € {1,2,...,7}, The combination of Remark 1.9 and
Proposition 2.6 shows that e,;; is an rth order S-recurrence vector associated
with ~. Thus, part (d) of Proposition 5.9 yields the assertion. O
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Abstract. Given a Banach algebra we construct a principal bundle with con-
nection over the similarity class of projections in the algebra and compute
the curvature of the connection. The associated vector bundle and the con-
nection are a universal bundle with attendant connection. When the algebra
is the linear operators over a Hilbert module, we establish an analytic diffeo-
morphism between the similarity class and the space of polarizations of the
Hilbert module. Likewise, the geometry of the universal bundle over the latter
is studied. Instrumental is an explicit description of the transition maps in
each case which leads to the construction of certain functions. These functions

are in a sense pre-determinants for the universal bundles in question.
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1. Introduction

The book of Helton et al. [22] outlined a program of operator-analytic techniques
using flag manifold models, the theorems of Beurling-Lax-Halmos, Wiener-Hopf
factorization and M x M-theory, which could be applied to the study of integrable
systems (such as the Sato-Segal-Wilson theory [33, 32, 34]) and Lax-Phillips scat-
tering (cf. work of Ball and Vinnikov [2, 3]). Several of the fundamental techniques
implemented in this scheme of ideas can be traced back to the remarkable accom-
plishments of Professor I. Gohberg and his co-workers spanning a period of many

years.

Communicated by J.A. Ball.
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Our interest in this general subject arose from two directions. Initially, the
first two authors (with Evard) studied the problem of smooth as well as analytic
parametrization of subspaces of a Banach space using global techniques. The work
on this problem had been significantly motivated by that of Gohberg and Leiterer
[18, 19]. The general results that were obtained appear in [17, 11, 12]. From another
direction [14, 15, 16] we have developed an operator-theoretic, Banach algebra
approach to the Sato-Segal-Wilson theory, in the setting of Hilbert modules with
the extension of the classical Baker and Tau(7)-functions to types of operator-
valued functions. One aspect of this latter work involved looking at the geometry
of the space of polarizations of a Hilbert module using a Grassmannian over the
Banach algebra A in question, a topic which is developed in this paper. We consider
the techniques and results as presented here to be also of independent interest in
related areas of operator theory.

If P(A) denotes the space of projections in A, then we consider the geometry
of the space A = Sim(p, A), namely the similarity class of a given projection
p € P(A). We construct a principal bundle with connection over A and compute
the curvature of the connection. The transition map for this bundle leads to the
construction of a function which we refer to as the 7 -function. If 3 denotes the
space of polarizations of a Hilbert module H 4 (where A is a unital C*-algebra),
we show that A and 8 are analytically diffeomorphic (Theorem 4.1). Related (in
the case A = C) is the T-function of [28, 39] obtained over B via a cross-ratio
approach.

To be more specific, let us point out that the 7-function is effectively the
co-cycle for the universal bundle over the space of restricted polarizations, relating
essentially the same two underlying sections, but initially this is viewed in terms of
the corresponding principal bundle. Hence the interest is in the calculation of the
geometry, connection, and curvature of the principal bundle of the universal bundle
using two sections which are each covariantly constant over two complementary
subbundles of the tangent bundle of the space of restricted polarizations. Our
approach is justified by the fact that, technically, one only needs a single section
to trivialize a principal bundle over the domain of the section and hence knowledge
of the covariant derivative of that section allows the computation of the horizontal
subspace over points of the image of the section, which can then be transferred
to any fiber passing through the image of that section using the action of the
structure group of the principal bundle. However, if one can find sections known
to have zero covariant derivative along certain subbundles of the base tangent
bundle, then the computation is certainly simplified, and in the case at hand we
have two which suffice.

One main task we describe in this paper is to use the restricted algebra di-
rectly. Since the analysis only depends on the fact that the restricted algebra is
a Banach algebra, our treatment presents, for any Banach algebra, a representa-
tion of the manifolds in question, as those naturally embedded in Banach spaces
which provide a natural geometry recovering the exact same geometry that arises
in [28, 39] thus leading to the well-known Tau(7)-function [33, 34]. In particular,
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we are able to obtain simple expressions for the 7-function, the connection form,
and the curvature (see, e.g., Theorem 8.1). As observed in [39] one can calculate in
coordinates, but here we have natural embeddings which give the geometry. Using
coordinates we can calculate, but we cannot visualize, whereas using the natural
embeddings we can both visualize and simplify the final formulas. This means the
determination of the Tau-function is reduced purely to analytic questions concern-
ing the existence of determinants of the operator values in the particular subgroup
of the algebra which forms the group of the principal bundle. This, along with
other related issues, is taken up in [16].

2. Algebraic preliminaries

2.1. The Grassmannian over a semigroup

To commence, let A be a (multiplicative) semigroup with group of units denoted
by G(A), if A has an identity. Let

P(A):={pe A : p>=p}, (2.1)

that is, P(A) is the set of idempotent elements in A (for suitable A, we can regard
elements of P(A) as projections). Recall that the right Green’s relation is pRyq, if
and only if pA = gA for p,q € A.

Let Gr(A) = P(A)/R be the set of equivalence classes in P(A) under R. As
the set of such equivalence classes, Gr(A) will be called the Grassmannian of A.
Note that as the equivalence classes partition A, elements of Gr(A) are in fact
subsets of P(A). Relative to a given topology on A, Gr(A) is a space with the
quotient topology resulting from the natural quotient map

IT : P(A) — Gr(A). (2.2)

In fact if A is a Banach algebra, it follows that P(A) is an analytic submanifold
of A, and that Gr(A) has a unique analytic manifold structure (holomorphic, if A
is a complex algebra) such that II is an analytic open map having local analytic
sections passing through each point of P(A) (see [11, §4], cf. [30]).

Let h : A — B be a semigroup homomorphism. Then it is straightforward
to see that the diagram below is commutative:

pra) 2. pB

- l“ (2.3)

ar(4) FM ar(B)

Clearly, if A is a semigroup of linear transformations of a vector space F, then we
have I1(r) = TI(s), if and only if 7(E) = s(E) as subspaces of E. Notice that 7~1(0)
is a complement for r(E), so if F is a topological vector space and all members of
A are continuous, then r(F) is closed with a closed complement, that is, r(E) is a
splitting subspace.



198 M.J. Dupré, J.F. Glazebrook and E. Previato

If we reverse the multiplication of A, we obtain the opposite semigroup A°P
and consequently, the right Green’s relation in A°P is the left Green’s relation in
A. But P(A) = P(A°P), and so this construction gives II°? : P(A) — GrP(A4),
where by definition Gr°P(A) = Gr(A°P).

In the case where A is a semigroup of linear transformations of a vector space
E, we see immediately that II°P(r) = II°P(s), if and only if »=1(0) = s~1(0) as
subspaces of E. Because of this we sometimes denote II(r) = Im(r), and II°P(r) =
Ker(r), for r € P(A) with A now taken to be an arbitrary semigroup. Clearly, if
h: A — B is a semigroup homomorphism, then so too is h : A°® — B°P. Thus
Gr°P and II°P produce an analogous commutative diagram to (2.3). We observe
that II(r) = II(s) if and only if both rs = s and sr = r, so in the dual sense,
II°P(r) = II°P(s), if and only if both rs = r and sr = s. Consequently, if both
Im(r) = Im(s) and Ker(r) = Ker(s), then r = s, and thus the map

(Im, Ker) : P(A) — Gr(A) x Gr°P(A), (2.4)

is an injective map which, in the case A is a Banach algebra, we later show to
be an analytic embedding of manifolds whose image is open in the righthand side
product.

Remark 2.1. Notice that if A is commutative, then A°? = A, so Im(r) = Im(s), if
and only if Ker(r) = Ker(s) and therefore by (2.4), II = II°P is injective and thus
bijective.

2.2. The canonical section

As in the case where A is a Banachable algebra, we know that II is a continuous
open map [11]. Then it follows that if A is a commutative Banach algebra, then II
is a homeomorphism. Because of (2.4), we see that if K € Gr°?(A), then Im|K :
K — Im(K) C Gr(A) is a bijection whose inverse, we refer to as the canonical
section over Im(K). If p € K, then we denote this canonical section by Sp. We set
U, = Im(K) C Gr(A) and W, = Im™~*(U,) C P(A). Thus, we have S, : U, —
W, C P(A) is a section of Im = II for p € W), and S,(Im(p)) = p. In this situation
we refer to S, as the canonical section through p. In fact, from the results of [11],
we know that if A is a Banach algebra, then U, is open in Gr(A) and S, is a local
analytic section of Im = II.

2.3. Partial isomorphisms and relative inverses

Definition 2.1. We say that u € A is a partial isomorphism if there exists a v € A
such that uvu = u, or equivalently, if u € wAu. If also vuv = v, we call v a relative
inverse (or pseudoinverse) for u. In general, such a relative inverse always exists,
but it is not unique. Effectively, if u = wwu, then w = wuw is a relative inverse for
u. We take W(A) to denote the set (or space, if A has a topology) of all partial
isomorphisms of A.

Notice that W(A°P) = W(A) and P(A) C W(A). If u and v are mutually
(relative) inverse partial isomorphisms, then r = vu and s = uv are in P(A). In this
latter case, we will find it useful to simply write w : 7 — s and v : s — r. Thus
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we can say u maps 7 to s, regarding the latter as a specified map of idempotents
in P(A). Moreover, v is now uniquely determined by the triple (u,r, s), meaning
that if w is also a relative inverse for v and both wu = r and uw = s hold, then it
follows that v = w. Because of this fact, it is also useful to denote this dependence
symbolically as

v=u"", (2.5)

which of course means that v = v~ If u,v € W(A) with u : p — 7 and
v:1r — s, then vu : p — s. Thus we have

(vu) ~P3) = 4= (Pr)gy = (), (2.6)

In particular, the map u : r — 7 implies that u € G(rAr) and v~ is
now the inverse of w in this group. Thus G(rAr) C W(A), for each r € P(A).
For u € G(rAr), we write u=" = u~("") for short. It is a trivial, but useful
observation that if r,s € P(A) C W(A), and if Im(r) = Im(s), then r : r — s
and s : s — 7, are mutually inverse partial isomorphisms. Likewise working
in A°P, and translating the result to A, we have that if Ker(r) = Ker(s), then
r:s—rand s:r — s, are mutually inverse partial isomorphisms. Therefore,
ifu:q—r, if p,s € P(A) with Ker(p) = Ker(¢) and Im(r) = Im(s), then on
applying (2.6), it follows that u = rug : p — s has a relative inverse

u*(Pas) — puf(q’r)g 18— p. (27)

Thus the relative inverse is changed (in general) by changing ¢ and r for fixed wu,
and (2.7) is a useful device for calculating such a change.

Now it is easy to see [11] that the map IT has an extension IT = Im : W(4) —
Gr(A), which is well defined by setting II(u) = II(s), whenever u € W(A) maps to
s. Again, working in A°P, we have IT°? = Ker : W(A) — Gr°P?(A), and because
u:r — sin A, is the same as u : § — r in A°P, this means that Ker(u) = Ker(r)
if u: r — s. More precisely, observe that if p,q,r, s € P(A), if u € W(A) satisfies
both w : p — ¢ and u : r — s, then it follows that Ker(p) = Ker(r) and
Im(q) = Im(s). In fact, if v = u=®9 and w = u="*), then we have

rp = (wu)(vu) = wluwv)u = wqu = wu =T, (2.8)

so rp = r and symmetrically, pr = p,which implies Ker(p) = Ker(r). Applying this
in A°P, yields Im(q) = Im(s).

Remark 2.2. Of course the commutative diagram (2.3) for II extends to the same
diagram with W( ) replacing P( ) and likewise, in the dual sense, for 1I°P = Ker,
on replacing A by A°P.

2.4. Proper partial isomorphisms

If p € P(A), then we take W(p, A) C W(A) to denote the subspace of all par-
tial isomorphisms u in A having a relative inverse v satisfying vu = p. Likewise,
W (A, q) denotes the subspace of all partial isomorphisms u in A having a rela-
tive inverse v satisfying uv = ¢. So it follows that W (A, q) = W(q, A°P). Now for
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p,q € P(A), we set
Wi(p,A,q) = W(p, A)NW(A,q)
={ueW(A) :u:p— q} (2.9)
={u€qgAp:3JveEpAq, vu=pand uv =gq }.

Recall that two elements x,y € A are similar if x and y are in the same orbit
under the inner automorphic action * of G(A4) on A. For p € P(A), we say that
the orbit of p under the inner automorphic action is the similarity class of p and
denote the latter by Sim(p, A). Hence it follows that Sim(p, A) = G(A) * p.

Definition 2.2. Let u € W(A). We call u a proper partial isomorphism if for some
W(p, A, q), we have u € W(p, A, q), where p and ¢ are similar.

We let V(A) denote the space of all proper partial isomorphisms of A. Observe
that G(A)V(A) and V(A)G(A) are both subsets of V(A). In the following we set

G(p) = G(pAp).

2.5. The spaces V(p, A) and Gr(p, A)

If p € P(A), then we denote by V(p, A) the space of all proper partial isomor-
phisms of A having a relative inverse v € W (g, A, p), for some ¢ € Sim(p, A). With
reference to (2.9) this condition is expressed by

Vip, )= |J WA (2.10)
g€Sim(p,A)

Observe that V(p, A) C V(A) N W (p, A), but equality may not hold in general,
since for u € V(A), it may be the case that Ker(p) C P(A) intersects more than
one similarity class and that u € V(A) by virtue of having u : r — s where r and
s are similar. But u : p — ¢ only for ¢ ¢ Sim (p, A). However, we shall see that
if A is a ring with identity, then each class in Gr(A) is contained in a similarity
class and thus also for Gr°P(A). Further, as IT and II°P are extended to W(A), this
means that as soon as we have u : p — ¢, with p and ¢ belonging to the same
similarity class, then u : r — s implies that r and s are in the same similarity
class.

Clearly, we have G(A) -p C V(p, A) and just as in [11], it can be shown that
equality holds if A is a ring. The image of Sim(p, A) under the map II defines the
space Gr(p, A) viewed as the Grassmannian naturally associated to V(p, A).

For a given unital semigroup homomorphism h : A — B, there is a restric-
tion of (2.3) to a commutative diagram:

Vip,4) 2 vig, B)

nAl lnB (2.11)

Gr(p,h)
—_—

Gr(p, A) Gr(q, B)
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where for p € P(A), we have set ¢ = h(p) € P(B). Observe that in the general
semigroup setting, V(p, A) properly contains G(A)p. In fact, if p € P(A), then
V(p,A) = G(A)G(pAp) (see [13] Lemma 2.3.1).

Henceforth we shall restrict mainly to the case where A and B are Ba-
nach(able) algebras or suitable multiplicative subsemigroups of Banachable al-
gebras. In this case, as shown in [11], the vertical maps of the diagram (2.11)
are right principal bundles, the group for V(p, A) being G(pAp). Moreover, G(A)
acts G(pAp)-equivariantly on the left of V(p, A) simply by left multiplication, the
equivariance being nothing more than the associative law.

Let H(p) denote the isotropy subgroup for this left-multiplication. We have
then (see [11]) the analytically equivalent coset space representation

Gr(p, A) = G(A)/G(IL(p)), (2.12)

where G(II(p)) denotes the isotropy subgroup of II(p). Then there is the inclusion
of subgroups H(p) C G(II(p)) C G(A), resulting in a fibering V' (p, A) — Gr(p, A)
given by the exact sequence

G(I(p))/H(p) = V(p, A) = G(A)/H(p) — Gr(p, A) = G(A)/G(Il(p)), (2.13)

generalizing the well-known Stiefel bundle construction in finite dimensions.

In general, if A is a semigroup, we say that the multiplication is left trivial
provided that always xy = x, whereas we call it right trivial if xy = y. In either
case, we have P(A) = A. If the multiplication is right trivial, then obviously
IT = Im is constant and II°? = Ker is bijective. Whereas if the multiplication is
left trivial, then Ker is constant and Im = II is bijective.

Remark 2.3. For the ‘restricted algebra’ to be considered in § 3.2, we recover the
‘restricted Grassmannians’ as studied in [29, 32, 34] (cf. [21]). Spaces such as
V(p,A) and Gr(p, A) are infinite-dimensional Banach homogeneous spaces of the
type studied in, e.g., [4, 8, 9, 36] in which different methods are employed. Emphasis
on the case where A is a C*-algebra, can be found in, e.g., [5, 25, 26, 27, 37],
again using different methods. Other approaches involving representations and
conditional expectations are treated in [1, 5, 6, 31].

2.6. The role of the canonical section

Suppose that R is any ring with identity. Now for x € R, we define z = 1 — .
The ‘hat’ operation is then an involution of R leaving P(R) invariant. Further,
it is easy to check that for r,s € P(R), we have Im(7) = Im($), if and only if
Ker(r) = Ker(s). This means that there is a natural identification of Gr°P(R)
with Gr(R) unique such that Ker(r) = Im(#), for all » € P(R). For instance, if
r € P(R), then rR7 and 7Rr are subrings with zero multiplication. On the other
hand, r + #Rr is a subsemigroup with left trivial multiplication and r + rR7 is a
subsemigroup with right trivial multiplication. Thus Im|(r + #Rr) is injective and
Ker|(r + #Rr) is constant, whereas Im|(r + rR#) is constant and Ker|(r 4+ rR7) is
injective. In fact, we can now easily check that (e.g., see [11])

Im ™ (Im(r)) = r + rA?, (2.14)
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and

Ker ' (Ker(r)) = 7 + #Ar = P(A) NV (p, A). (2.15)
Thus this section is again none other than the canonical section through r. From
(2.15), it now follows immediately that when Ker(r) = Ker(s), we have

r+7Ar = s+ §As, (2.16)

and from the symmetry here, one easily deduces that
TAr = §As. (2.17)
This means that the sub-ring §As is constantly the same as 7 Ar along the points
of the image of the canonical section through r which is r+7#Ar = P(A)NV (p, A),

by (2.15). But this also means that sAS§ is constantly the same as r A7 at all points
of # +rAr. If s € r + rA7, then

ST —rAF =7+ rAr, (2.18)

and consequently we obtain again sAs = rA#. Thus P(A) in effect contains a ‘flat
X-shaped subset’ through any r € P(A), namely

X = (r+7Ar)U (r + rAr). (2.19)

This suggests that P(A) is everywhere ‘saddle-shaped’.

Now, as in [11], we observe here that if Im(r) = Im(s), then r and s are in the
same similarity class. For there is y € r A7 with s = r + y. But the multiplication
in rA7 is zero, so e¥ = 1+y € G(A) with inverse e ¥ =1 — y, and

s=rs=re¥ =e Yre’. (2.20)

As r : r — s, this means that r € V(r, A,s), and so each class in Gr(A) is
contained in a similarity class. In the dual sense then, each class of Gr°P(A) is also
contained in a similarity class, as is easily checked directly by the same technique
and (2.15). In particular, we now see that for each p € P(A), we have V(p, A) =
V(A)NW(p,A), and if u : r — s belongs to W(A), and also u € V(A), then r
and s belong to the same similarity class.
Recalling the canonical section S, (through p) let us take p,r € P(A) with r €

W,, and therefore Im(r) = Im(S,(Im(r))). We have of course Ker(S,(Im(r))) =
Ker(p), by definition of S,, and hence r and p are in the same similarity class. Set
rp = Sp(Im(r)). Thus Im(r) = Im(r,) and Ker(r,) = Ker(p). We can find x € pAp
so that 7, = p 4+ z, and then we have pr, = p = prp,p and rppr, = rpp = r,. This
shows that

Sp(Tm(r)) = p~ (Spm(r):p) (2.21)
and

(S, (Im(r)))~@Sp0mr) — (2.22)

Proposition 2.1.
(1) We have the equation

(Sp(Im(r)) =P = pr:r — p. (2.23)
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(2) The canonical section is a local section of |V (p, A) : V(p, A) — Gr(p, A).

Proof. Part (1) follows from (2.7) and (2.22). For part (2), observe that since
Ker(S,(Im(r))) = Ker(p), we have S, (Im(r)) and p in the same similarity class and
thus the canonical section is actually simultaneously a local section of ITI|V (p, A) :
V(p, A) — Gr(p, A). O

If A is any semigroup and u : r — s is in W(A) and k € P(A), we say
that u projects along k provided that ku = kr. Thus, if A is a semigroup of linear
transformations of a vector space F, then this condition guarantees that u(h) — h
belongs to k~1(0), for every h € r(E).

Remark 2.4. Clearly this last statement has no content unless k~1(0) is close to
being complementary to r(E) and s(F), but in applications this is not a problem.

If m € P(A) with Ker(m) = Ker(k), then mk = m and km =k, sou € W(A)
projects along k if and only if it projects along m. Thus we can say u projects along
K € Gr°"(A) provided that it projects along k, for some and hence all k € K.
We can now easily check that if w : r — s in W(A) projects along K, then so
too does u~("*). It will be important to observe this when later we consider the
T -function.

If r,s € P(A) and it happens that rs : s — 7, then it is the case that rs
projects along Ker(r), and hence (rs)~(*") does also. Thus even though Ker(rs) =
Ker(s), we have rs projecting along Ker(r). In particular, by (2.23), if r € W),
then S,(Im(r)) and its inverse pr both project along Ker(p), and therefore, if also
p € W,., then S, (Im(p)) and its inverse rp both project along Ker(r). If we consider
the case of a semigroup of linear transformations of a vector space E, then we see
that for rs to be in W(A) requires that 7=1(0) has zero intersection with s(E).
Thus, if rs € W(A), then we should think of r as close to s. For instance, if A is
any ring with identity and r,p € P(A) with rp+7p € G(A), then, for g = rp+7p,
we have

rg =1Tp = gp. (2.24)
Therefore, rp = gp, so rp : p — r must project along Ker(r). Moreover as
r = gpg~!, we have rp : p — 7 is a proper partial isomorphism and rp € V(p, A)
such that (rp)~7") = pg~' = g~ 'r. Note that for A a Banach algebra, the group
of units is open in A, and therefore the set of idempotents r € P(A) for which
rp+7p € G(A), is itself an open subset of P(A).

2.7. The spatial correspondence

If A is a given topological algebra and F is some A-module, then A = L4(FE)
may be taken as the ring of A-linear transformations of E. An example is when E
is a complex Banach space and A = L(E) is the Banach algebra of bounded linear
operators on F. In order to understand the relationship between spaces such as
Gr(p, A) and the usual Grassmannians of subspaces (of a vector space E), we will
describe a ‘spatial correspondence’.
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Given a topological algebra A, suppose E is an A-module admitting a de-
composition
E=FoF° FnFe={0}, (2.25)
where F, F¢ are fixed closed subspaces of E. We have already noted A = L(E)
as the ring of linear transformations of E. Here p € P(E) = P(L(FE)) is chosen
such that F = p(F), and consequently Gr(A) consists of all such closed split-
ting subspaces. The assignment of pairs (p, L(E)) — (F,E), is called a spatial
correspondence, and so leads to a commutative diagram

V(p,L(E)) —— V(p,E)
Hl JH (2.26)
Gr(p, L(E)) —— Gr(F,E)
where V(p, E) counsists of linear homomorphisms of F' = p(FE) onto a closed split-
ting subspace of E similar to F. If u € V(p,L(E)), then ¢(u) = u|F and if
T : F — FE is a linear homeomorphism onto a closed complemented subspace
of E similar to F, then ¢~ '(T) = Tp : E — E. In particular, the points of
Gr(p, L(F)) are in a bijective correspondence with those of Gr(F, F).
Suppose E is a complex Banach space admitting a decomposition of the type
(2.25). We will be considering a ‘restricted’ group of units from a class of Banach
Lie groups of the type

A [T1 S1

G(E) c {|g, TJ . Ty € Fred(F), Ty € Fred(F), Sy, € K(E)},  (2.27)

that generates a Banach algebra A acting on F, but with possibly a different norm.
Here we mention that both compact and Fredholm operators are well defined in the
general category of complex Banach spaces; reference [38] provides the necessary
details.

3. The restricted Banach *-algebra A, and the space of
polarizations

3.1. Hilbert modules and their polarizations

Let A be a unital C*-algebra. We may consider the standard (free countable
dimensional) Hilbert module H 4 over A as defined by

Ha={{G}, GeEA, i>1:) GG A=A, (3.1)

i=1

where each A; represents a copy of A. Let H be a separable Hilbert space (separa-
bility is henceforth assumed). We can form the algebraic tensor product H ®ag A
on which there is an A-valued inner product

(z@¢, yon) = (x,y) ('n, r,ye H, (,ne A (3.2)
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Thus H ®aig A becomes an inner product A-module whose completion is denoted
by H ® A. Given an orthonormal basis for H, we have the following identification
(unitary equivalence) given by H ® A~ H 4 (see, e.g., [23]).

3.2. The restricted Banach *-algebra A,

Suppose now that H 4 is polarizable, meaning that we have a pair of submodules
(Hy,H_), such that Ha = Hy @ H_ and Hy NH_ = {0} (cf., e.g., [24]). Thus we
call the pair (Hy,H_) a polarization of H 4. If we have a unitary A-module map J
satisfying J2 = 1, there is an induced eigenspace decomposition Hq = Hy & H_,
for which Hy = H 4. This leads to the Banach algebra A,es = L£;(H 4) as described
in [14] (generalizing that of A = C in [32]). Specifically, we define

Aves ;= Lj(Ha) ={T € LA(HA) : [J,T)] is Hilbert-Schmidt}, (3.3)

for which the norm is ||T'||; = ||T|| + ||[J, T]||2, for T € Apes.
e Once this restriction is understood, we shall simply write A = A, =
L7(H ) until otherwise stated, and let G(A) denote its group of units.

Remark 3.1. Note that A is actually a (complex) Banach *-algebra. The spaces
Gr(p, A) are thus generalized ‘restricted Grassmannians’ [14, 15|, which for the
case A = C, reduce to the usual restricted Grassmannians of [32, 34]. In this case,
V(p, A) is regarded as the Stiefel bundle of ‘admissible bases’ (loosely, those for
which a ‘determinant’ is definable).

The space Gr(p, A) may be realized more specifically in the following way.
Suppose that a fixed p € P(A) acts as the projection of H4 on Hy along H_.
Therefore Gr(p, A) is the Grassmannian consisting of subspaces W = r(H 4), for
r € P(A), such that:

(1) the projection py = pr: W — H, is in Fred(H 4), and
(2) the projection p_ = (1 —p)r: W — H_ is in Lo(H4, H_) (Hilbert-Schmidt
operators).
Alternatively, for (2) we may take projections ¢ € P(A) such that for the fixed
p € P(A), the difference ¢ — p € Lo2(H4,H_). Further, there is the big cell C}, =
Cv(p1,A) C Gr(p, A) as the collection of all subspaces W € Gr(p, A), such that
the projection py € Fred(H 4) is an isomorphism.

3.3. The space P of polarizations

Let us define p1 € A by

1+J
pe=—5—. (3.4)

Then py € P(A) can be seen to be the spectral projection of J with eigenvalue
+1. Clearly p— +py =1,s0 p- =1 —p;y = py. Thus,

(Hi Ho) = (p+ (Ha),p-(Ha)), (3.5)
is a polarization. Notice that if H 4 is infinite-dimensional, then members of the

group of units G = G(L(H 4)) of the unrestricted algebra, are clearly not Hilbert-
Schmidt in general. If ¢ € G with g(py)g~! = p_, then using (3.4), we find
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gJ + Jg = 0, which means that [g, J] = 2gJ € G. This means that in the restricted
algebra A = A, the projections py and p_ must be in different similarity classes.
For this reason, when dealing with the Grassmannian Gr(ps, A) and the Stiefel
bundle V(p4, A) over it, the map Ker will take values in Gr(p_, A) which is an
entirely different space referred to as the dual Grassmannian of Gr(p+, A). Thus
for any p € P(A), let

Gr*(p, A) = Gr(p, A) = Gr°P(p, A). (3.6)

We also note that by (3.4), we have [T, J| = 2[T, p4], for any operator in L(H 4). So
the definition of the restricted algebra is equally well given as the set of operators
T € L(H 4) for which [T, p,] is Hilbert-Schmidt.

Now let (Hy,H_) be the fixed polarization defined by p; and (Ki,K_) an-
other polarization, so that Hq4 = Hy & H_ = K, & K_, whereby the projections
parallel to H_ and K_ are isomorphisms of the spaces Hy and K, respectively.
Further, when restricting K1 to be in Gr(p+, A), then under these specified condi-
tions, the Grassmannian Gr(p_, A) is the ‘dual Grassmannian’ of Gr(p4, A). Let
us denote this dual Grassmannian by Gr*(p;, A). Then, on setting p = p4, the
space P of such polarizations can be regarded as a subspace

B C Gr(p, A) x Gr*(p, A). (3.7)

3.4. The case where A is commutative

Here we address the case where A is a commutative separable C*-algebra. The
Gelfand transform implies there exists a compact metric space Y such that ¥ =
Spec(A) and A = C(Y). Setting B = L;(H), we can now express the Banach
*_algebra A in the form

A= B ® A= {continuous functions Y — B}, (3.8)

for which the || ||o-trace in the norm of A is regarded as continuous as a function
of Y. The Banach algebra B = L;(H) corresponds to taking A = C, and as
mentioned in Remark 3.1, with respect to the polarization H = H, & H_, we
recover the usual restricted Grassmannians Gr(H,, H). Given our formulation,
and in view of the spatial correspondence, it will sometimes be convenient to set
Gr(q, B) = Gr(H4, H), for suitable ¢ € P(A). In fact, there is a natural inclusion
Gr(q, B) C Gr(p, A) as deduced in [15].

4. Constructions for the submanifold geometry and bundle theory

4.1. Some preliminaries

In this section we will compute in various bundles where the manifolds involved
are submanifolds of Banach spaces, and in this context, adopt some notation which
will facilitate the calculations. If £ = (7, B, X) denotes a bundle, meaning simply
that we start with a map 7 : B — X, and denote by &, = B, = 7 1(x), the fiber
of £ over x € X. We write m = m¢ for the projection of this bundle and B = B¢ for
its total space. When no confusion results, we will simply write B for the bundle
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&It = (h; f) : &€ — (, meaning that nch = fre, then ¢, = h, denotes the
restriction of h to a map of &, into ¢ #(z)- By the same token we shall simply write
h in place of 1. As usual, by a section of £, we simply mean a map s : X — B
satisfying ms = idx.

If £ is a vector bundle over X, then we take z¢ to denote the zero section
of £. We denote by €(X, F)) the trivial bundle X x F over X with fiber F. If M
is a manifold (of some order of differentiability), then we will need to distinguish
between the tangent bundle T(M) of M and the total space TM of the former.
We let zp = 27(ar)- Thus, 2/ is a standard embedding of M into T'M.

When ¢ is a subbundle of the trivial bundle € = e(X, F'), then . is the first
factor projection and the second factor projection, mo assigns each b € X x F' its
principal part. Thus we have a subset F,, = mo(B;) C F, so that B, = {z} X F.
Moreover, if s is here a section of & C ¢, then we call mos the principal part of s.
Consequently, s = (idx, f), where f = mas : X — F, must have the property
that f(z) € F, for each z € X, and any f : X — F having this property is the
principal part of a section. In particular, if M is a submanifold of a Banach space
F, then T(M) is a vector subbundle of ¢(M, F'), and we define T,,M = F,. Thus
T,.(M) ={a} x T, M. If H is another Banach space, N a submanifold of H, and
f:M — N is smooth, then T, f : T,M — Ty(x)N, is the principal part of the
tangent map, so that we have T'f, = id, x T, f.

Locally, we can assume that M is a smooth retract in /' which means any
smooth map on M can be assumed to have at each point, a local smooth extension
to some open set in F' containing that point. So if v € T, M, then T,f(v) =
D, f(xz) = f'(z)v, this last term being computed with any local smooth extension.
In our applications, the maps will be defined by simple formulas which usually
have obvious extensions, as both F' and H will be at most products of a fixed
Banach algebra A and the formulas defined using operations in A.

4.2. The tangential extension

If o: M x N — @ is a smooth map, then we have the associated tangent map
Te: TMxTN — TQ. If we write ¢(a,b) = ab, then we also have T'p(z,y) = xy,
if (z,y) € TM x TN. Employing the zero sections, we shall write ay in place of
zp(a)y and xb in place of zzxn(b). Thus it follows that ab = zp(a)zn(b) is again
identified with ¢(a,b); that is, we regard Tp as an extension of ¢ which we refer
to as the tangential extension (of ).

Since T(M x N) = TM x TN, which is fiberwise the direct sum of vector
spaces, we readily obtain for (z,y) € T,M x T, N, the relation

xy = ay + xb = ay +4p xb, (4.1)

where for emphasis, we denote by 4+, the addition map in the vector space T4, @
(recall that ¢(a,b) = ab).
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4.3. Tangential isomorphisms

In the following, we will have to be particularly careful in distinguishing between
the algebraic commutator ‘[ , ]ae’ and the Lie bracket ‘[ , o’ (of vector fields),
when dealing with functions taking values in a Banach algebra. Specifically, we let
[, y]alg denote the algebraic commutator which can be taken pointwise if x,y are
algebra-valued functions, and [z, y]¢ to denote the Lie bracket of vector fields or
principal parts of vector fields which may also be algebra-valued functions.

Relative to the restricted algebra A,es in (3.3), let us recall that the space of
polarizations is the space B of complementary pairs in the product

PB C Gr(p, Ares) X GroP(p, Ares). (4.2)

A significant observation, is that as a set, 8 can be identified with the similarity
class Sim(p, Ayes) of Aes. In fact (see below),

P = Sim(p, Ares) C P(Ares)- (4.3)

Now from [11], we know that IT = Im and II°? = Ker are analytic open maps.
In fact, the calculations are valid in any Banach algebra, so henceforth, A can be
taken to be any Banach algebra with identity. Thus, we can begin by observing
from (2.4) that for any Banach algebra A, the map ¢ = (II, II°P) = (Im, Ker) is an
embedding of the space of idempotents P(A) as an open subset of Gr(A4) x Gr(A).

Theorem 4.1. Let ¢ = (I, II°P) = (Im,Ker) : P(A) — Gr(A) x Gr(A), be as
above and let r € P(A).

(1) We have an isomorphism

TIL|[{r} x (#A7)] : {r} x (FAr) — Ty Gr(A), (4.4)
and
Ker T1I, = {r} x (rAr). (4.5)
(2) In the dual sense, we also have an isomorphism
TTP|[{r} x (rAF)] : {r} x (rA?) — Ty Gr(A), (4.6)
and
Ker TIEP = {r} x (FAr). (4.7)

(3) The map ¢ is an injective open map and an analytic diffeomorphism onto its
image. Hence B is analytically diffeomorphic to Sim(p, A).

Proof. As we already know, since the map ¢ is injective, it suffices to apply the
Inverse Function Theorem (see, e.g., [20]) when noting that the tangent map T'¢
is an isomorphism on fibers of the tangent bundles. To do this, we apply the
formulation of [11]. Firstly, from [11], we know that

T,P(A) = fAr + rAr. (4.8)
If r € P(A), then we deduce from [11] the canonical section S, : U, — P(A)
whose image is P(A) N V(r,A) = r + 7#Ar, which is analytic on its domain
U, C Gr(A). Specifically, we know from [11] that S, is the inverse of the analytic
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diffeomorphism II|(r + #Ar), which maps onto U, and that U, is an open subset
of Gr(A) containing r. This shows that T,.II|{r} x (#Ar) is an isomorphism onto
Tri(r)Gr(A). On the other hand, II is constant on r + rA7 = II"*(II(r)) C P(A).
Thus, we see that Ker T,.II = {r} x (rA#). This establishes part (1).

Likewise for part (2), Ker|(r + 7Ar) is constant and Ker|(r + rA7) is an
analytic diffeomorphism onto an open subset of Gr(#, A) which of course is an
open subset of Gr(A) as IT is an open map and Sim(g, A) is open in P(A). Thus
(2) follows.

For part (3), note that since #Ar and r A7 are complementary subspaces of
T.P(A), it follows that T;.¢, = T;.(II,II°P) is an isomorphism onto T [Gr(A) x
Gr(A)]. Thus ¢ is indeed an injective open map and an analytic diffeomorphism
onto its image. Now GrP(p,A) = Gr*(p, A) = Gr(p, A), and clearly ¢ carries
Sim(p, A) onto this sub-product, namely the space of polarizations . O

5. The space V,, and its geometry

5.1. Transversality and the transition map

We now fix any idempotent p € P(A), and for ease of notation in the following,

we set
A = Sim(p, 4), Gr(p) = Gr(p,A), V=V (p,A)

ma = A, and 7y = I|V.

Note that from Theorem 4.1(3), we have the analytic diffeomorphism A 2 5.
From [11, §7] we know that (my,V,Gr(p)) is an analytic right principal
G(pAp)-bundle whose transition map

ty : V xz V. — G(pAp), (5.2)

(5.1)

is the analytic map such that if u,v € V, and r € A, with 7y (u) = 7y (v) = 7wa(r),
then (recalling the notation of (2.5)) we have
ty(u,v) = u~ Py, (5.3)

Define Vy = w3 (V), so then V3 C A x V is an analytic principal right G(pAp)-
bundle over A, and clearly
Va={(r,u) € A XV :7p(r) =my(u)}. (5.4)

The fact that Vj is an analytic submanifold of A x V' and hence of A x A, follows
from the fact that by (4.4) any smooth map to Gr(p) is transversal over mp.

Likewise, we denote by ta the transition map for Vy, as the analytic map
given by the formula:

ta((r,u), (r,v)) =ty (u,v) = u~ Py, (5.5)

We keep in mind that if (r,u) € Vi, then as mp(r) = 7wy (u), it follows that
u: p — 7 and therefore u~®") is defined.
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The next step is to uncover the geometry natural to V4 coming from the fact
that we can calculate T}, ,)Va C A x A. Since 75 and 7y are transversal as maps
to Gr(p), it follows that

TiruyVa = {(z,y) € A X T, Va : [Trp]r(r,2) = [Try]u(u,y)} C Ax A (5.6)

Lemma 5.1. We have T,,V = Ap, and rAp is the vertical tangent space of V' over
wg(r) = my (u). Further, #Ap and rAp are complementary subspaces of Ap =T,V .

Proof. Tt is straightforward to see that T,.A = #Ar 4+ rA# C A, and from [11], we
know that V' = G(A)p is open in Ap. It follows that T,V = Ap. As 7y is a principal
bundle projection, we know that Ker T, 7y = T,[uG(pAp)], the tangent space to
the fiber over u € V, is the kernel of T'ry. As there is a g € G(A) with u = gp,
and as left multiplication by ¢ is G(pAp)-equivariant (simply by the associative
law for multiplication in A), it follows that

Tu[uG(pAp)] = gT,G(pAp) = gpAp = uAp. (5.7)
Since ru = u, and uu~®") = r_ it follows that wAp = rAp. Thus r Ap is the vertical
tangent space of V over wg(r) = my(u), so #Ap and rAp are complementary
subspaces of Ap =T,V. O

On the other hand, from [11], we know that ANV = S,(Up,) is the image
of the canonical section and both mp, 7y coincide on A N'V. This means that by
(4.4), we know [T'm, ], carries {p} x pAp isomorphically onto T(,)Gr(p) and agrees
with the isomorphism (4.4), so we see easily that

TpVa = {(2,y) € [pAp + pAp] : zp = py}. (5.8)
Differentiating the equation ru = u, we see that any (x,y) € T(,,,)Va must

satisfy xu + ry = y which is equivalent to the equation zu = 7y. Notice this is
exactly the equation for the tangent space at (p,p), so we claim

Ti)Va = {(z,y) € T, A x Ap : zu = iy} (5.9)

Effectively, a straightforward calculation using (5.8) and the fact that G(A) acts
G(pAp)-equivariantly on V on the left by ordinary multiplication to translate the
result in (5.8) over to the point (r,u), establishes (5.9).

5.2. The connection map V

Now the projection 7* = 7y, of Vi is a restriction of the first factor projection of
A x A onto A which is linear. Thus T\, ,y7*(z,y) = =, and therefore the vertical
subspace of T\, ,yVa is the set {0} x rAp. The projection of the tangent bundle
TV onto this vertical subbundle is clear, and we define

V:TVy — TV,
V((T7 u)? (x,y)) = ((73 u)7 (O,Ty)),

for any (x,y) € T(y,.)Va, and for any (r,u) € Va. For convenience, let V,.,,y be the
action of V on principal parts of tangent vectors, so that we obtain

V(r,u)(x7y) = (O’Ty)' (511)

(5.10)
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It is obvious that V is a vector bundle map covering the identity on V, and that
VoV =V. Thus we call V the connection map.

Since the right action of G(pAp) on V is defined by just restricting the mul-
tiplication map on A x A, it follows that the tangential extension of the action of
G(pAp) to act on TV is also just multiplication on the right, that is, yg is just
the ordinary product in A. This means that in TV we have (z,y)g = (z,yg) as
the tangential extension of the right action of G(pAp) on T{; ,,)Va. From this, the
fact that V is G(pAp)-equivariant, is clear. Thus the map V defines a connection
on Vj.

Let H = (idpy — V), so H is the resulting horizontal projection in each fiber.
Then clearly for (x,y) € T(,.4)Va, we have on principal parts of tangent vectors

H(r,u)(x7y) = (x,y) - (O,ry) = (xvfy) = (m,xu) (5'12)

Moreover, this clarifies that (v, 2u) € H(T{;,)Va) is (the principal part of) the
horizontal lift of z € T,.A.

If o is any smooth local section of V), then for a vector field x on A it follows
that the covariant derivative is just the composition

Vyo =V[To]x, (5.13)

which is a map of A to V(T'V,) lifting 0. Because the differentiation here is essen-
tially applied to the principal part of the vector field, if f is the principal part of
o and w is the principal part of y, then for the purpose of calculations, we can
also write V,, f = V[f'w] = VD, f, where the meaning is clear.

6. The connection form and its curvature

6.1. The connection form wy

The right action of G(pAp) on Vj in (5.4), when tangentially extended, gives
(r,u)y € T()Va when y € T,G(pAp) = pAp. As the right action of G(pAp)
on Vj is defined by (r,u)g = (r,ug), it follows that (r,u)y = (0,uw), for any
w € T,G(pAp) = pAp. The connection 1-form w = wy can then be determined
because it is the unique 1-form such that, in terms of the connection map V, we
have

(rﬂ u)w(nu) (Ia y) = V(r,u) (I, y) (61)

Notice that if (z,y) € T{;.)Va, then we have y € Ap, and so u= Py € pAp =
T,G(pAp). We therefore have both

(r, u)w(nu) (z,y) = (0,ry) and (r, u)uf(’”)y = (0,ry), (6.2)
which by comparison expresses the connection form as

Wiru (2,y) = u” Py € T,G(pAp) = pAp. (6.3)
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6.2. The curvature form O,
To find the curvature 2-form Q, of wp, we simply take the covariant exterior
derivative of wy:

Qp = Vwpa = Hdwy. (6.4)
Notice that by (5.12), as r# = 0, we have wy (Hv) = 0, for any v € T'Vj, as should
be the case, and therefore if w; and ws are local smooth tangent vector fields on
Va, then, on setting 2 = Q for ease of notation, we have

Qwr, w2) = —w([H(w1), H(wz)]e)- (6.5)

This means that the curvature calculation is reduced to calculating the Lie bracket
of two vector fields on V. Since V) C A x A is an analytic submanifold, it is a
local smooth retract in A x A.

In order to facilitate the calculation, let

(Fa): W — WNVa, (WCAx A, (6.6)

be an analytic local retraction of an open set W in A x A, onto the open subset
W NV of Va. We can then use (7, %) to extend all functions on W NV to be
functions on W. As w; and ws are tangent vector fields, assumed analytic on
W N Vy, their principal parts can be expressed in the form a; = (z1,y1) and
as = (x2,y2), and we can therefore assume that as functions, they all are defined
on W. We then have pointwise on W N Vy,

wili =1y = (1= 7y,  fori=1,2. (6.7)

But then M. ) (s, y:) = (i, x5u) on W NV, meaning that the principal part of
[H(w1), H(wz)]g is just [(z1,210), (T2, 22@)]|[(W N Vy).

The next simplification is to notice that on W N Vy, the function @ is just
the same as the second factor projection A x A — A. On differentiating, this
simplifies the application of the product rule. The result is that the principal part
of [H(w1), H(ws)]e evaluated at (r,u) € Vi, has the form

(Ca cu + [an xl]algu)a (68)

for suitable ¢, and where x; is now just the value of the preceding function of the
same symbol at (r,u).

Proposition 6.1. For wy,wy € (T'V)) () having principal parts (z1,y1) and (x2,y2)
respectively, we have the curvature formula

Qp(wy,wa) = ) [%1, Z2]algU- (6.9)
Proof. As the Lie bracket of a pair of vector fields tangent to a submanifold, again

remains tangent to that submanifold, this means that (¢, cu+ [z2, Z1]aigu) in (6.8),
is tangent to V. Hence, we must also have

cu = 7(cu + [z2, Z1]aigt), (6.10)

and therefore,
reu = 7z, T1]alg- (6.11)
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Applying (6.3) and (6.5), we now obtain
w(H(w1), H(wa)]e) ruy = u~ P (cu + [22,21]aigw). (6.12)
In view of the fact that u~®")r = u~ (") and (6.12) above, we deduce that
w([H(w1), H(wa)]e)ruy = u~ P[22, 21]argu. (6.13)
Thus by (6.5), we finally arrive at
Qwr, wg) = u~ Pz, zo]a1gu, (6.14)

where now wi,ws € (T'VA)(r,) have principal parts (21,y1) and (z2,y2) respec-
tively. [l

This of course means that x1,xo € T,.A = 7 Ar + r A7, that y1,y2 € T,VA =

Ap, and thus z;u = 7y;, for i = 1,2. But, V) = G(A)u, so there is g € G(A) with

u = gp. It then follows that u~®") = pg—!, and therefore we can also write, when
u = gp,

Q(w1,w2) = [97133197971‘”29]211@ (6.15)

In this way we can simply transfer the computation to the Lie algebra of G(pAp).
We make the following observations:

(1) Because ru = u and u~®"yr = y= @7 when (r,u) € V4, it follows that
(6.14) can also be written as

Qwy,wy) = u_(p’T)T[$17$2]algTu7 (6.16)

and the factor r[x1, z2]aler simplifies greatly because x1, z2 € rA7 + 7 Ar.
(2) If 21 and 22 both belong to rA#, or both belong to #Ar, then the result is
Q(wl, w2) =0.
(3) If 1 € rA7 and xo € #Ar, the result is

Q(wy,wy) = u” P g pou. (6.17)
Whereas if the reverse is the case, that is x1 € #Ar and x5 € r A7, the result is
Qwy,wy) = —u~ P o, (6.18)

Remark 6.1. Again, by Theorem 4.1(3), since A = 3, the construction of the
principal bundle with connection (Va,wa) — A, may be seen to recover that of
the principal bundle with connection (Vig, wsp) — P as in [39, § 3]. We will elab-
orate on matters when we come to describe the 7-function in §8.1. This principal
bundle has for its associated vector bundle (with connection) the universal bundle
(vp, V) — B. In the following section, the latter will be recovered when we
construct the universal bundle (with connection) (ya,Va) — A associated to
(VA, wA) —s A
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7. The universal bundle over A

7.1. The Koszul connection

Next we relate the geometry of Vi to the geometrical context of [39] (cf. [28]).
First we must show that V) is the principal bundle of the universal bundle in an
appropriate sense. In fact, if F is a Banach A-module, then we can form an obvious
universal vector bundle, denoted yp over A, as defined by

o ={(r,m) € A X E: rm =m}, (7.1)

and whose projection ., is just the restriction of first factor projection. Thus the
principal part of a section is here simply a map f : A — FE with the property
that f(r) € rE, for every r € A.

In this case, a natural Koszul connection V, arises. Effectively, we have
a covariant differentiation operator, given by its operation on principal parts of
sections of v, via the formula

Vaof(r) =rD.f(r) =rT.f(x), © € T, A. (7.2)
If « is the principal part of a tangent vector field on A, then it follows that
Va;f = idADa:f = idATidAf(aj). (73)

If (r,m) € ~a, then the principal part of the tangent space to v at the point
(r,m) is just

Tirmyya = {(z,w) € T,A X E: rw+ xm = w}, (7.4)
which can also be written as
Tirmya = {(z,w) € ToA x E : xm = fw}. (7.5)

Since 7, is simply the restriction of first factor projection which is linear, it follows
that the vertical subspace is

VTrmyva = Ker Ty 1y = {(0,w) € T,A X E : rw = w}, (7.6)

so the vertical projection

Vy i Tya — T, (7.7)
as a vector bundle map covering id,, , is given by
Vo ((r;m), (z,w)) = ((r;m), (0, rw)). (7.8)
This of course means that the horizontal projection H, is given by
Hy((r,m), (z,w)) = ((r,m), (z,Fw)) = ((r,m), (x,zm)), (7.9)

which makes it clear that the horizontal lift to (r,m) € ya of (r,z) € TA is just
((r,z), (z,2m)).

Thus, the geometry of the universal bundle 5 turns out to be very natural
and straightforward. In order to see that v, is the associated vector bundle to the
principal bundle Vj, we first note that the principal part of the fiber of y5 over
p € A is pE and we can define the principal map

Q:Va X pE — vy, (7.10)
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by
Q((r,u),m) = (r,um), ((r,u),m) € Va X pE. (7.11)

Proposition 7.1. The map @ in (7.11) is the analytic principal bundle map for
which the universal bundle (ypo = VA[pE],Va) is an analytic vector bundle with
connection associated to the principal bundle with connection (Vy,wy).

Proof. Clearly V) x pE has a principal right G(pAp)-action given by
((T7 u)? m))g = ((T7 u)97 g—pm> = ((7'7 ug)7 g—pm)7 (7'12)

with transition map

t(((?", u)’ m)’ ((T’ U)’ n)) = t/\((rv u)7 (’I“, 'U))a (7'13)
and @ establishes a bijection with the orbit space of this action. To conclude that
@ is the actual principal map making yo = Vi[pE] the associated bundle to Vi
with fiber pF, it suffices to show that @ has analytic local sections, because @
itself is clearly analytic.

To that end, observe that if o is a local section of Vi over the open subset
U C A, then o = (ida,u) where u : U — V = V(p, A), such that for every r € U,
we have u(r) : p — r is a proper partial isomorphism. We then define A, the
corresponding local analytic cross section of @) by

Ar,m) = ((ryu(r)), u(r) =" m). (7.14)

Following [11] we know that u~(") as a function of 7 € U, is analytic as a map
to V(A). Indeed, Q is the principal map and yo = Vj[pM]. It is now a routine
calculation to see that the connection on 7, defined above is the same as the
connection derived from the connection wy already defined on Vj. [l

For instance, if f : V5 — pF is an equivariant smooth map, and x is any
section of T'A, then f defines a smooth section s of yo whose covariant derivative
Vs is the same as the section defined by the derivative of f in the direction of the
horizontal lift of x. As @ is the principal map, it is the projection of a principal
bundle and therefore T'Q is vector bundle map covering ¢ which is surjective on
the fibers. We have

TQ(((r,u),m), ((z,y), w)) = ((r,um), (z,ym + uw)), (7.15)
and

VyTQ((r,w),m), ((z,y), w)) = ((r,um), (0, r[ym + uwl)), (7.16)

along with
TRV (((r,u),m), ((z,y),w)) = TQ((r;u), m), ((0,ry), w))

= ((r,um), (0, rym + uw)).

But ru = w for (r,u) € Vi. Hence from (7.16) and (7.17), we have V,TQ = TQV*,
where V* denotes the connection map of the vertical projection on Vj x pE pulled

back from V) by the first factor projection map of Vy x pE — Vj, which being
equivariant, defines a pullback square. This shows that the vertical projection on

(7.17)
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~a is that defined by the vertical projection on Vj. Thus we have constructed V)
to be the principal bundle for any universal bundle defined by any left Banach A-
module such as E. In particular, we could take E = A for the existence of one, but
for the 7-function construction we would take £ = H 4. In other words, we would
take E to be the underlying Banach space of H 4 so A would act as a subalgebra
of the commutant of A in the algebra of bounded operators.

8. The 7 -function

8.1. Definition of the 7 -function

From our constructions so far, even though they are quite general, it should be clear
that we have all the ingredients for the construction of a function, denoted by 7,
that generalizes the function, denoted by ¥ and defined via cross-ratio in [28, 39] as
a pre-determinant, thus providing the Tau (7)-function studied in [28, 34]. Similar
to [39], we will define two local sections a;, and (3, over WS , the latter taken to
be an open neighborhood of p € P(A), which is our reference projection. For W;,)
we take the set of 7 € W, = 75 *(p + pAp) such that ¢,(r) = rp +7p € G(A). As
G(A) isopen in A, and as ¢,(p) = 1 € G(A), it follows that WZ? is indeed open in
A and contains p.
Next we describe the sections o, and 3,:

(1) For oy, we take the restriction of the pullback by ma of the canonical section
S, which is defined over ma(W),) C Gr(p, A). Thus, as in the pullback, ay
becomes a composition with 7. It follows from (4.5) that if w = (r,z) € TA
with € A7, then V0p = 0.

(2) For B, with g = ¢,(r) and r € W), we have g € G(A) and rp : p — 7
is a proper partial isomorphism which projects along Ker(r), so we define
Bp(r) = (r;7p).

As Sp(Im(r)) projects along Ker(p), we generalize the T-function of [39] by the
function 7 by recalling the transition map t5 in (5.5), and then defining

T(r) = talap(r), Bp(r)). (8.1)
Hence we may express the latter by 7 = ta(ap, Gp)-

In [39], the function ¥ constructed via cross-ratio is used to define the connec-
tion form wgs on the principal bundle Vi — B, where the corresponding curvature
2-form €l can be computed in coordinates on the product of Grassmannians. In
order to see that the geometry here is essentially the same as that of [39], we
show that a, and (8, are parallel (covariantly constant) sections. Specifically, it
suffices to show that V,a, =0, if w = (r,z) with € rA#, and that V5, = 0 if
w = (r,x) with « € #Ar. The first of these has already been observed in (1) above.
As for the second, since (3,(r) = (r,rp), it follows that T,.6,(x) = (z, zp), for any
x € T.A, and therefore

VuBp = V((r,rp), (z,2p)) = ((r,p), (0, rzp)). (8.2)
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As ¢ € #Ar implies rzp = 0, we also have V,,6, =0, for w = (r,z) with = € 7 Ar.
We therefore know that the geometry is the same as in [39] and we can now apply
our formulas to calculate 7. But, we know from the definition of the transition
function ¢5 in (5.5), that we have

ta((ryu), (r,0)) = u= Py, (8.3)

and we know that the relative inverse for the canonical section is p itself, indepen-
dent of r. Hence, we finally have 7 (r) = prp.

8.2. Curvature formulas

Returning to the universal bundle (with connection) (ya, Vo) — A, we can easily
calculate the curvature form using the Koszul connection of the connection Vu
operating on principal parts of sections of y5. If x and y are principal parts of
local smooth tangent vector fields to A, and if f is an E-valued smooth function
on the same domain, then we can consider that ordinary differentiation D acting
on functions, is the Koszul connection of the flat connection on e(A, E). So the
curvature operator Ry can be computed keeping in mind that Rp = 0. Thus,
letting L : A — L(E, E) be the action of left multiplication of A on FE, noting
that L(r)m = em, we then have

Rv ((E, y)f = [vxa vy]f - v[x,y];;f (84)
Theorem 8.1. With respect to the above action L : A — L(E, E) of left multipli-
cation of A on E, we have the following formulas for the curvature operator Ry,
for x,y € T.A:

(1)
(2)

Ry (2,y) = L(D.L)D, — (D,L)D,). (8.5)

Rv(x,y) = L[x7y]alg- (86)

Proof. Firstly, observe that notationally V,f = LD, f. Since the pointwise prod-
uct is LL = L, it follows that

VauVyf = LDy(LDyf) = LD L|[Dy f] + LD D, f, (8.7)
and therefore (8.4) becomes
Rv(x,y)f = LID,L|[Dyfl + LD, D, f — (L[DyL|[Dyf] + LDyD, f) — LDy 6 f-

(8.8)
Consequently, we have
Ry (z,y)f = (L[Dz L] Dy — [DyL|Dz) f + LRp(x,y) f, (8.9)
and therefore, as Rp = 0, it follows that
Rv(z,y)f = L[(DyL)Dy — (DyL)D,]f. (8.10)
Thus we may write
Rv(x,y) = L[(DL)Dy — (D,L)D,], (8.11)

which establishes (1).
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On the other hand, we note that L is the restriction of the linear map defined
by the left regular representation L4 of A on E, defined by the module action of
A on M. So we have D, L = L(x), the composition of L4 with x. This means
that

(Do L) (r)m = La(x(r))m = [x(r)lm = (zm)(r), (8.12)

for r € A and m € rE. Therefore, we have for f, that
Ry (z,y)f = L(La(x))Dy — (La(y))Dalf = LxDy — yD,]f. (8.13)

For the curvature operator at a specific point, we can take any m € E, and define
fm = Lm, so that we have f,,(r) = L(r)m = rm. Then f is given by the module
action of A on E which is linear, for fixed m € E. Thus, Dy f = La(z)m = zm
and (8.13) becomes

Rv(x,y)f = L[xvy}algm7 (814)

which means that we finally arrive at (2):
Ry (z,y) = Lz, yla. (8.15)
g

8.3. Remarks on the operator cross ratio

Returning to the case A = L;(H ), let us now mention some examples (to be
further developed in [16]). Firstly, we recall the ¥ function of [39] defined via cross-
ratio. Consider a pair of polarizations (Hy,H_), (K, K_) € PB. Let Hy and K1
be ‘coordinatized’ via maps Py : Hy — Hy, and Q= : KLt — K4, respectively.
Following [39] (Proposition 2), we can consider the composite map

Hy 5k, 2ol (8.16)
as represented by the operator cross-ratio (cf. [39]):
T(Hy Ho Ko K ) = (P Py~ 1) (P-Qe—1)(Q-Qs 1) HQ_Pe—1). (8.17)

For this construction there is no essential algebraic change in generalizing from po-
larized Hilbert spaces to polarized Hilbert modules. The principle here is that the
transition between charts define endomorphisms of W € Gr(p, A) that will become
the transition functions of the universal bundle vz — . These transition func-
tions are defined via the cross ratio as above and thus lead to End(vyyp)-valued 1-
cocyles, in other words, elements of the cohomology group H*(Gr(p, A), End(ygp)).

Regarding the universal bundle y4 — A, the transition between charts is
already achieved by means of the 7-function on A. From Theorem 4.1 (3) we have
an analytic diffeomorphism ¢ : P — A (where ¢ = ¢~ 1), and effectively, &T =%
in this case.
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8.4. The connection and curvature forms on Vi

In view of §8.1, we will exemplify the construction of [39, § 3] for the connection
form wg on the principal bundle Vig — P, and the curvature form Qg. We start
by fixing a point P = (Hy,H_) € B, and consider a pair of local sections «, 8 of
Vi, which are related as follows:

a=p3%, f=a% L (8.18)
Next let V1 denote covariant differentiation with respect to the direction H.. The
local sections «, 0 have the property that:
(a) « is covariantly constant along {H;} x Gr*(p, A), with respect to fixed H.
(b) S is covariantly constant along Gr(p, A) x {H_} with respect to fixed H_.
(c) Properties (a) and (b) imply the equations V_a = 0,V ;3 = 0, along with
Via=pV, T =a% 'V, %
We obtain the connection wg on the principal bundle Vig by setting wyp =
wy = TV, T. We have the exterior covariant derivative d = 0, + 0_, where

O+ denotes the covariant derivative along HL. Straightforward calculations as in
[39, § 3] yield the following:

8+w+ =0 y (819)
0wy =(Q-Qy—1)""Q-Q(Q-Q1—1)"Q-dQ; —(Q-Q4+ —1)"1dQ_dQ.

The curvature form {2y relative to wy is then given by

Qp = (Q-Q+ —1)7'dQ_Q+(Q-Q+ — 1) 'Q_dQ+ — (Q-Q+ — 1)1dQc€Q+-)
8.20

8.5. Trace class operators and the determinant

An alternative, but equivalent, operator description leading to ¥ above can be
obtained following [28]. Suppose (H4,H_), (K4, K_) € P are such that H is the
graph of a linear map S : K — K_ and H_ is the graph of a linear map
T : Ko — K;. Then on H 4 we consider the identity map Hy #H_ — KL §K_,
as represented in the block form

[a Z} (8.21)

Cc

where a : Hy — K4, d: Hy — K_ are zero-index Fredholm operators, and
b:Hy — K4, ¢: Hy — K_ are in K(H 4) (the compact operators), such that
S=catand T =bd!.

The next thing is to consider the operator 1 —ST = 1—ca~'bd~'. In particu-
lar, with a view to defining a generalized determinant leading to an operator-valued
Tau-function, we need to consider cases where ST is assuredly of trace class.

(a) When A = C as in [28, 34, 39|, we take b, ¢ to be Hilbert-Schmidt operators.
Then ST is of trace-class, the operator (1 — ST) is essentially

I(H+7 H*a KJra K*)
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above, and the Tau (7)-function is defined as
T(Hy, Ho Ky, Ko) =Det T(Hy,H_, K, K_) =Det(1 —ca 'bd™ ).  (8.22)

Starting from the universal bundle v¢ — Gr(p, A), then with respect to an
admissible basis in V(p, A), the Tau function in (8.22) is equivalently derived
from the canonical section of Det(yg)* — Gr(p, A).

(b) The case where A is a commutative C*-algebra is relevant to von Neumann
algebras (see, e.g., [7]), and we may deal with a continuous trace algebra. In
particular, for Hilbert *-algebras in general, we have the nested sequence of
Schatten ideals in the compact operators [35]. Thus if we take the operators
b, ¢ as belonging to the Hilbert-Schmidt class, then ST is of trace class [35],
and 7(H4,K_,K4,K_) is definable when the operator (1 — ST) admits a
determinant in a suitable sense.
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Abstract. This paper presents a contractive operator view on the inversion
formula for finite Toeplitz operator matrices due to Gohberg-Heinig. The gen-
eral setting that will be used involves a Hilbert space operator 7" and a con-
traction A such that the compression of T'— A*T A to the orthogonal com-
plement of the defect space of A is the zero operator. For such an operator T'
the analogue of the Gohberg-Heinig inversion formula is obtained. The main
results are illustrated on various special cases, including Toeplitz plus Hankel
operators and model operators.
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1. Introduction

Let T be an operator acting on a direct sum £™ of n copies of a Hilbert space &,

and let T be generated by an n x n Toeplitz operator matrix, that is,

Ry R_1 -+ R_nt &

Ry Ry -+ Ry &

T = ) ) ) ) on .
Rnfl Rn72 e RO £

Communicated by V. Bolotnikov.
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To state the Gohberg-Heinig inversion theorem for 7" we need to consider the
following four equations:

To 1 Z—n+1 0
1 0 :
TX =T . =| .|, TZ=T : - :
: : Z-1 0
$N7l O zo I
YT:[yO Y_1 - yinJrl]T:[I 0o --. 0]7
WT:[wn—l oWy wo}T:[O o 0 [}.

The entries in these matrices are operators on &, and I denotes the identity op-
erator on £. In the case when T is invertible, X and Z are, respectively, equal
to the first and last column in the n x n operator matrix representation of T~1,
and Y and W are, respectively, equal to the first and last row in the n x n oper-
ator matrix representation of T7!. If the above equations are solvable, then it is
straightforward to check (see [12]) that z¢ = yo and zp = wy.

Now assume that these four equations are solvable, and that one of the op-
erators xo and z¢ is invertible. Then the Gohberg-Heinig theorem from [12] (see
also [11]) tells us that T is invertible, that both operators zo and zg are invertible,
and that 7! is given by the operator matrix

Yo,0  ct Y0,n—1 &
T =1 : on | 1,
VYn—-1,0 “*° Yn—1,n—1 &
where
min{j, k} min{j, k}
Vik= D TiwTG Yk — D FnitivZ Wni-kir (G k>0).
v=0 v=1

For the scalar case, i.e., when £ = C, this result is due to Gohberg-Semencul [18].

Solving the four equations does not require the full inverse of the operator
T. In fact, in the positive definite case, one only needs two of the four equations
and these can be solved recursively by using Levinson type algorithms. This is a
great advantage, and the Gohberg-Semencul/Heinig inversion formula has inspired
the development of fast algorithms for inversion of Toeplitz matrices, of block
Toeplitz matrices, of block Toeplitz like matrices and, more generally, of structured
matrices of different classes. Such algorithms are now widely used in numerical
computations. The literature on this subject is extensive; here we only mention
[21], [14], [16, 17], and the books [19], [24] and [25].

In the present paper we present a generalization of the Gohberg-Heinig inver-
sion formula to a contractive operator setting. This contractive operator version
will allow us to view a number of different inversion formulas from one point of
view and to extend them to a somewhat more general setting.
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To put the Gohberg-Heinig inversion formula in a contractive operator per-
spective, we first observe that in closed form the above formula for 7! can be

rewritten as
n—1
7' =Y N (Xz,'VY = NZz 'WN*) N*, (1.2)
v=0
where N is the block lower shift on £ given by the n x n operator matrix

0 €0 0
I 0 el €0
N = . . s N . - . . (1'3)
I 0 €n—1 €n—2

Moreover, an operator 7" on a direct sum £" admits an operator matrix
representation as (1.1) if and only if

0 0 x
T— N*TN = | Co

0 -~ 0 *

* * K

where the x denotes unspecified entries. In other words, T is of the form (1.1) if
and only if the compression of the operator T— N*T'N to the first n —1 coordinate
spaces is zero. The operator T'— N*TN is usually referred to as a displacement
operator (cf., [22], [3], and the review article [23]).

Next, note that the block lower shift NV is a contraction on £", and that
the subspace of £ spanned by the first n — 1 coordinate spaces is precisely the
orthogonal complement of the defect space Dy of N, and the subspace of £"
spanned by the last n—1 coordinate spaces is precisely the orthogonal complement
of defect space Dy« of N* (see the final paragraph of the present section for
the used terminology and notation). Thus the fact that T is given by a Toeplitz
operator matrix is just equivalent to the requirement that the compression of the
displacement, operator T' — N*T'N to the orthogonal complement of the defect
space Dy is zero. Furthermore, the operators X, Z, Y, W appearing in (1.2) are
solutions of the following equations

TX =M., TZ=1p,, YT=Ip., WT=Ip,,
and zo and zg in (1.2) are given by
o :HDN*X, 20 :HDNZ-

Here and in the sequel we use the convention that for a subspace F of a Hilbert
space H, the symbol IIx denotes the orthogonal projection of H onto F, viewed
as an operator from H onto F, and hence II’: is just the canonical embedding of
F into 'H.
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Finally, recall that an operator A is called exponentially stable if A¥ — 0 in
the operator norm for v — oo or, equivalently, the spectrum of A is contained in
the open unit disc. Since N™ = 0, the operator N is trivially exponentially stable.

Using these connections one sees that the following theorem, which is the first
main result of this paper, is the natural analogue of the Gohberg-Heinig inversion
formula in a contractive operator setting.

Theorem 1.1. Let T be an operator on X, and let A be an exponentially stable
contraction on X such that the compression of the displacement operator T—A*T A
to the orthogonal complement of the defect space D of A is zero. Assume that
there exist operators

X:Dy-— X, Z:Dyp—X, Y:X Dy, W:X—>Dy (1.4)
satisfying the equations
rX=M1p,, TZ=1p,, YT=Ip,., WT=Ip,, (1.5)

and put xo = llp,. X and 2o = llp, Z. If, in addition, one of the operators x
or zg 1s invertible, then the operator T is invertible, both operators xo and zy are
invertible, and the inverse of T is given by

T = > A (Xap'Y — AZz 'WAT) AT, (1.6)
v=0

T7' = Y AV (Zz'W - A" Xag 'Y A) A (1.7)
v=0

In general, without the exponential stability condition on A, the hypotheses
in the above theorem do not yield the invertibility of the operator T, not even in
the case when the underlying space X is finite dimensional. A counter example is
given in Section 3 below. On the other hand, assuming 7" to be invertible, a large
part of the above theorem holds true. In fact, we shall prove the following result.

Theorem 1.2. Let T be an invertible operator on X, and let A be a contraction
on X such that the compression of the displacement operator T — A*T A to the
orthogonal complement of the defect space D of A is zero. Consider the operators

X=T""Mp,, :Da— X, Z=T 'll;, :Da— X, (1.8)
Y=1p, T': X =Dy, W=llp, T7': X — Dy, (1.9)

and put xo = Ilp,. X and zg = Ilp,Z. Then xg is invertible if and only if zo is
invertible, and in this case the inverse of T is determined by
T~ AT 'A* = Xag'V — AZzj'WA*, (1.10)
T'— AT 'A = Zz)'W— A" Xay 'Y A (1.11)
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In particular,

T='h = > A (Xag'V — AZzy'WA*) A*Vh, he€ X,

v=0
whenever A* is pointwise stable,  (1.12)
oo
T~'h = Y A" (Zzx'W - A*Xa;'YA) A"h, he X,
v=0

whenever A is pointwise stable. (1.13)

Recall that an operator A on X is called pointwise stable if for each z in X
the vector Az — 0 as v — oco. Exponential stability implies pointwise stability,
but the converse is not true. If X’ is finite dimensional, the two notions coincide,
and in that case we simply say that A is stable. Notice that the two theorems
above are of interest only when D 4 is not the full space. In fact, the “smaller” the
space D4 the better it is.

We shall also show (see Corollary 3.2 below) that 7" will be one-to-one when-
ever T satisfies the conditions of Theorem 1.1 with A being pointwise stable. In
particular, in that case T will be invertible if T" is the sum of an invertible operator
and a compact operator.

Theorem 1.2 will be proved in the next section in a somewhat more general
setting. The proof we shall give is inspired by the proof of the Gohberg-Heinig
inversion formula as given in Section 1 of [13].

We shall illustrate our main theorems by deriving some known inversion
formulas as corollaries, including a somewhat modified version of Arov’s general-
ization of the Gohberg-Heinig formula for the model operator given in [1]. A new
application will be an inversion formula for operators that are of the form block
Toeplitz plus block Hankel, which have been considered in the book [4].

The paper consists of seven sections, including the present introduction. In
Section 2 we prove Theorem 1.2. Section 3 contains the counter example referred
to above and the proof of Theorem 1.1. In the remaining sections we illustrate
our main theorems. In Section 4 we show that Theorem 1.2 covers the classical
formula for the inverse of a block Toeplitz operator from [15]. Section 5 specifies
our results for operators that are of block Toeplitz plus block Hankel type. In
particular, we present a generalization to the non-selfadjoint case of Theorem
11.1.2 in the Ellis-Gohberg book [4]. In Section 6 we deal with model operators
and Arov’s generalization [1] of the Gohberg-Heinig inversion formula. In the final
section we apply Theorem 1.1 to obtain an inversion formula for certain structured
operators, namely for operators that satisfy Stein (discrete Lyapunov) equations
appearing in metric constrained interpolation problems.

We conclude this introduction with some notation and terminology used in
this paper. Throughout X is a Hilbert space. We write Iy (or simply I when
the underlying space is clear) for the identity operator on X. Given a subspace
F of X, the symbol F+ denotes the orthogonal complement of F in X, that is,
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F+ = X © F. As mentioned before, we write ILr for the orthogonal projection
operator of X onto F viewed as an operator from X onto F. The operator II%,
the adjoint of IIz, is the canonical embedding of F into X, that is IT% = Ix|r.
By definition, for an operator R on X', the compression of R to the subspace F
is the operator II’-RIlr. Finally, recall that for a contraction A on X, the defect
operator D 4 is the positive square root of I — A* A and the defect space D4 is the
closure of the range of D 4.

2. Proof of Theorem 1.2

It will be convenient first to prove a somewhat more general theorem. Assume that
the Hilbert space X admits two orthogonal direct sum decomposition

X=U &I =Us DV, (2.1)

and let A be an operator on X such that relative to these decompositions A is of
the form:

A= { A0 ] : { th } — { gQ } where A, is invertible. (2.2)
2

0 A N2
Next, let K be another operator on X of the form:
| K 0 | | U U a1
K—[O Kg}'[yg]_){yl] where Ky = A;". (2.3)

It is emphasized that both A; and K5 are invertible, and Ky = A2_1. As before,
115 stands for the orthogonal projection of X onto the subspace H, viewed as an
operator from X onto H.

The next theorem contains Theorem 1.2 as a special case.

Theorem 2.1. Let T be an invertible operator on X = Uy & V1 = Us B Vs, and let
A and K be as in (2.2) and (2.3), respectively. Assume that

y, (I' = KTA)II}, = 0. (2.4)

Consider the operators defined by
X = T, U= X, Z=T '}, U — X, (2.5)
Y = My T ' X Uy, W=IT ' X —U. (2.6)

Furthermore, put xo =y, X and zo =y, Z. Then xo is invertible if and only if
zo 1s invertible, and in this case the inverse of T satisfies the identities

T '—AT'K = Xap'V — AZz'WK, (2.7)
T'-KT'A = Zz'W - KXux;'YA.
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In particular, if A and K are contractions, then

T'h = Y A" (Xa,'V - AZzy'WK) K"h, he X,
n=0
whenever K is pointwise stable, (2.9)
T 'h = Z K" (Zzy'W — KXy 'Y A) A™h, h € X,

n=0

whenever A is pointwise stable.  (2.10)

Proof. Consider the following two operator matrix representations of 7':

e[S R ]m [B] e[ R [R] e

A simple calculation shows that

ar f KiazAr Kif242
T-KTA= { " gl ] a [ Koy A1 K202A2 } '
Thus
My, (T — KTA)I =0 <= 6 = K054, (2.12)
Next we apply Lemma 2.2 below. According to the definitions of zy and zg
we have

le[i@:}on[g’}ﬂ, le[gfi]on[gﬁ]. (2.13)
Here x denotes unspecified entries. By comparing the first representation of T in
(2.11) with the first representation of T~! in (2.13), we see that Lemma 2.2 below
implies that the operator zg is invertible if and only if §; is invertible. Analogously,
using the second parts of (2.11) and (2.13), we see that z is invertible if and only
if 99 is invertible.

In what follows we assume that the hypotheses of the theorem are fulfilled,
that is, (i) the compression of T— KT A to ) is zero and (ii) g or z is invertible.

According to (2.12) assumption (i) implies that d; = K3d2A45. Note that
the identity §; = K2d2As, together with the fact that Ky and As are invertible,
implies that ; is invertible if and only if J- is invertible. But then the result of
the previous paragraph, together with assumption (ii), yields that the operators
zo and zg are both invertible and that the same holds true for §; and ds.

Since ¢; and d2 are both invertible, the operator T admits the following
factorizations:

T:H g:HEok 5}“&2 i}on[gﬂ” (k=1,2).  (2.14)

Here = = ap — ﬂk.(;k_lfyk is the Schur complement of aj in T for k = 1,2. Note
that
B =1, T, =20, =50 =1L, T ', = 0. (2.15)
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Observe that the matrix factorization for 7" in (2.14) can also be expressed as

- s 1[5 0] ]
= 11}, Exlly, + T113, 6;, '1ly, T.
This implies that
T =11, Exlly, + T3, 6, 'y, T (for k= 1,2). (2.16)

Multiplying by 7! on the left and right of this equation and using the identities
in (2.15), yields

71 Xag'Y +113,6, 'y,  (k=2) (2.17)
T' = Zx'W+1I3, 6,1y, (k=1). (2.18)
Recall that §; = K552 A5, and thus 52_1 = AgéflKg. Using
I3, Ay = Al Kolly, = [Ty, K

this yields II3, 65 'IIy, = AII3, 67 'IIy, K. Thus by multiplying (2.18) by A on
the left and K on the right, and then subtracting the resulting identity from
(2.17) we obtain the identity (2.7). Analogously, using §; ' = K20, ' Az, we have
I3, 67 'y, = K113, 65 "Iy, A. Thus by multiplying (2.17) by K on the left and
A on the right, and then subtracting the resulting identity from (2.18) we arrive
at the identity (2.8).

To prove the final formulas for 71, note that (2.7) and (2.8) imply that for
eachn =20,1,2... we have

T — AP R = N A (Xag 'Y - AZzg 'WEK)KY, (2.19)
v=0

T - K"HTTAMY = N KY(Z20'W - KX 3 'YA) AV (2.20)
v=0

By assumption A and K are contractions. Then for each h € X and for n going
to infinity the term A T1T~1K"*1} tends to zero whenever K is pointwise stable
and K" 1T~ A" 1] tends to zero whenever A is pointwise stable. This yields the
desired formulas for the inverse of T'. O

In the above proof we used the following lemma. The result is standard; see,
e.g., Theorem III.4.1 in [8].

Lemma 2.2. Let T be an invertible operator on X = U & Y. Then Iy T}, is
invertible if and only if IIyT1L3, is invertible.

Proof of Theorem 1.2. Recall that D4 is the positive square root of I — A*A and
Dy, is the closure of the range of D 4. It is well known that AD4 = Dy« A and
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A*D g« = D4 A*. Hence A maps D4 into D 4+ and A* maps D 4+ into D 4. It follows
that A admits a matrix representation of the form

A _ Al 0 . DA - DA*
T 0 Ay || Di Dy |
The operator As is a unitary operator mapping D4 onto D4.; see Lemma V.2.1
in [5]. Indeed, for y € D% we have (I — A*A)y = DaD sy = 0, and hence
lyll = [[A"Ayl| < [|[A*[[ [[Ayll < [|Ayll < [lyll,

because A and A* are contractions. Thus ||Ay| = ||y||. Hence A; is an isometry.
As (A)* = A*|Dj* an analogous reasoning shows that (A2)* is also an isometry.

Thus As is unitary.
Now consider the spaces

U =Das, V1 =Di, Uy=Da-, Yo=Diy.. (2.21)

In this setting, we take K = A*. In other words, K admits a matrix representation

of the form
K= Kl 0 o AT 0 X DA* N DA
|10 Ko | | 0O A || DL D |-
Since Ap is a unitary operator, Ko = Aj is the inverse of A;. By consulting
Theorem 2.1, we obtain the desired formulas (1.10), (1.11), (1.12), and (1.13). O

3. Invertibility and proof of Theorem 1.1

Let A be a contraction on X, and let T" be an operator on X such that the
compression of T — A*T A to Dy is zero. Assume that there exist operators

X :Dpr— X, Z:Dy—-X, Y: XDy, W:X—->Dy (3.1)
such that
TX:H}BA*, T72=15,, YT=Ip,., WI=Ip,. (3.2)

Furthermore, assume one of the operators o = Ilp,. X and zg = IIp,. Z to be
invertible. First we present an example with X finite-dimensional showing that the
above assumptions do not imply that 7" is invertible.

Counter example. Take X = C3, and let 7 and A on X = C? be defined by

Then A is a contraction,

100 00 0
Di=10 0 0|, Ds-=10 0 0|, T—ATA=
00 0 00 1

S O =
o O O
o O O
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With eq, es, e3 being the standard basis vectors of C2, we have

Da = span{e; }, D+ = span{es, e3},

Da- =span{ez},  Dj. = span{er, e}

It follows that the compression of T'— A*T' A to the orthogonal complement of D4
is equal to zero.
Next, consider the operators

X=T4,,, Z=Tp,, Y=Tp,., W=Ip,.
Then X, Z, Y, W satisfy (3.1) and (3.2). Moreover, ¢ := IIp,. X = Ip,. and

zo :=1lp,Z = Ip,, and thus o and zp are both invertible. Nevertheless T" is not
invertible. Notice that for this example

Xag'V — AZzy'WA* = 1; lp,.,
A(Xzg'Y — Azg 'TWA*) A* = 1Ip Ilp,,
A (Xag'Y — AZzy'WA*) A2 = 0.

Thus, the expression Y~ ; A” (Xxo_lY — AZZO_1WA*) A*¥ makes sense, although
A is not pointwise stable and T is not invertible.

Next we prove Theorem 1.1. In fact, we shall prove a somewhat more general
version of Theorem 1.1 by using the setting of Section 2. In other words, we have

X:Lﬁ@yl:Uz@ym

and A and K are operators on X admitting the following partitionings:
A 0 U Us
A = : 3.3
ARt 33
Ky O U U
K = : . 3.4
BEIREARE =
Furthermore, we assume that As is invertible and Ko = A5 L

Theorem 3.1. Let T be an operator on X such that the compression of T — KT A
to V1 is the zero operator. Assume that there exist operators

X:lU—X, Z:U—-X, Y:X—-U, W:X->U (3.5)
such that
TX =1, TZ=1,, YT =1, WT=I,. (3.6)
Furthermore, assume one of the operators xqg = Wy, X and zg = Iy, Z to be
invertible. Then
KerT C Np>o Ker Iy, A", ImT' D span,,»q Im K117, . (3.7

In particular, the operator T is invertible if, in addition, the following identities
hold:
Nn>o KerIly, A" = {0} and span,,>oIm K"l = X. (3.8)
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We emphasize that in the second parts of (3.7) and (3.8) we do not take the
closure but just the algebraic linear span. Let us show how Theorem 1.1 follows
from Theorem 3.1.

Proof of Theorem 1.1. The fact that A is assumed to be an exponentially stable
contraction implies that for some positive integer N we have

X=Dp+ADp+---+ AN 1Dy, (3.9)

To see this let W,, be the operator acting on Dy @ --- ® Dy, the Hilbert space
direct sum of n copies of D4, defined by

Wn:[DA A*Dgy A*QDA A*n_lDA].

Here n is an arbitrary positive integer. Multiplying the identity I — A*A = D?
form the left by A* and from the right by A yields

n—1

WaWy =3 ADIA =T— A"A",

j=0
Because A is exponentially stable, A™ converges to zero in the operator norm,
and thus, A*"A™ also converges to zero in the operator norm. Using W, W} =
I — A" A", we see that there exists an integer N such that WyWY}; is invertible,
or equivalently, Wy is onto the whole space X. In other words, for this N the
identity (3.9) holds.

Next we apply Theorem 3.1 with K = A* and with

Uy =Da, V1 =D4, Uy =Da-, Vo=DF..

Note that (3.9) implies that span, -, Im A*"IIj, = X. With K = A* the latter
identity is just the second part of (3.8). By taking adjoints in span,,>o Im A* "I}, =
X, we see that the first part of (3.8) is also fulfilled. Hence, according to the final
statement in Theorem 3.1, the operator T is invertible. To finish the proof we just
apply Theorem 1.2. O

Proof of Theorem 3.1. Throughout we assume that xg is invertible. The proof with
zp invertible follows an analogous line of reasoning. Since the final statement in
Theorem 3.1 is an immediate corollary of (3.7), it suffices to prove (3.7). We split
the proof into two parts. In the first part we establish the first inclusion in (3.7),
and in the second part we prove the second inclusion in (3.7).

Part 1. In this part we first show that A"KerT C KerT' C );. Take ¢ € KerT,
that is, T'o = 0. It follows that WT'¢ = 0. But WT = Iy, . Hence II;;,o = 0. In
other words, ¢ € V;. Thus KerT' C ).

Again take p € KerT'. Since ¢ € Y1, the fact that ILy, (T'— KT A)II3, is zero
implies that KT Ap = —(T — KT A)p € U;. Write T Ap as

TAp =1, uz + 115, y2, where uz € Up and ya € Va.

Then KTAp = 11}, Kiug + 115, Koy2, where Kyuz € Uy and Kays € V. But
KTAp € Uy. Thus Koys = 0. Recall that K is invertible. It follows that ys = 0,
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and hence TAp = I}, ua. As ¢ € KerT and KerT' C ), we have Ap € )», and
thus Iz, Ap = 0. Next observe that

YTAp = (YT)Ap =y, Ap =0,
YTAQO = Y(TAQD) = YHZZ2'LL2 = YTX’LLQ = HMZX’LLQ — ToU2.

We conclude zgus = 0. But zq is assumed to be invertible, and therefore us = 0.
In other words, T'Ap = 0.

Repeating the argument with Ay in place of ¢ we see that TA%p =
Continuing in this way one proves by induction that T A"y = 0 for each n >
Hence A"KerT C KerT C ).

From the inclusions proved so far we see that

0.
0.

Iy, A%p =0 for each ¢ € KerT and each n > 0.

In other words, Ker T C Ny,>o Ker Iy, A™, which is the first part of (3.7).

Part 2. Let f be a linear functional on X such that f annihilates the range of T,
that is, fT = 0. Note that we do not require f to be continuous. We first prove
that fKT = 0.

From fT'" = 0 it follows that fT'Z = 0. But TZ = IIj; . Hence the map
[, = 0. In other words, fly, = 0. Next, using Iy, (T — KTA)IT;, = 0, we
obtain

f(T = KTANL, = f(Pu, + Py, (T = KT A,
= 1T}, Iy, (T — KT AL, = 0.

(Here Py denotes the orthogonal projection onto the subspace H.) Since fT =0,
we conclude that fKTAly, = 0. But AY; = ), and therefore f KTy, = 0.
Next note that

JKTX = fK(TX) = fKIIj;, =0 because KUy C Uy,
FKTX = (fKT)X = fKT(Py, + Py,)X = fKT Py, X
= fKTT, Ty, X = fKTIG, x0.

Recall that xq is invertible. Hence f KTy, = 0. By combining this with the result
of the previous paragraph we obtain fKT = 0.

Repeating the argument with fK in place of f we obtain fK2T = 0. Contin-
uing in this way we see by induction that fK™T = 0 for each n > 0. It follows (see
the beginning of the second paragraph of this part of the proof) that fK"II;, = 0.
Thus fT' = 0 implies fK"1Ij; =0 for each n > 0.

Let us now prove the second inclusion in (3.7). Since Im T is a linear space, it
suffices to show that Im K™IIj; is contained in Im T for each n > 0. Suppose this
inclusion does not hold for some n, n = n., say. In that case there exists a vector
ro € Im K"°IIj;, such that zo ¢ ImT. But then (see, e.g., Theorem 2.4.2 in [27])
there exists a linear functional f on X such that f(x,) is non-zero and fTx = 0 for
each x € X. However, this contradicts the conclusion from the previous paragraph.
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Thus Im K"IIj;, is contained in ImT" for each n > 0, and the second part of (3.7)
is proved. O

Corollary 3.2. Let T be an operator on X, and let A be a pointwise stable contrac-
tion on X such that the compression of the displacement operator T — A*T A to
the orthogonal complement of the defect space D of A is zero. Assume that there
exist operators

X :Dp > X, Z:Dyg—X, Y:X>5Dys, W:X—>Dy

satisfying the equations (3.2), and let one of the operators zo = Ilp,. X and
zo = lp,Z be invertible. Then the operator T is injective. Furthermore, T is
invertible if, in addition, T is the sum of an invertible operator and a compact
operator.

Proof. The fact that A is a pointwise stable contraction implies that

n—1
h=> ADIAh=A"A"h —0 (n— )
j=0

for each h € X. It follows that span,,>oIm A* "I}  is dense in & In other words,
Np>o0 Kerp, A™ = {0}. According to the first part of (3.7) in Theorem 3.1, the
latter identity implies that T is injective.

Finally, if T is of the form invertible plus compact, then T is invertible if
and only if T is injective. Indeed, if T is of the form invertible plus compact, then
ImT is closed and dimKerT = dim X/ImT; see Theorem 15.4.1 in [10]. This
together with the result of the previous paragraph yields the final statement of
this corollary. O

To conclude this section let us mention that conditions (3.8) can be under-
stood as controllability and observability conditions. The fact that such conditions
appear is expected from the theory of Toeplitz like operators as developed in the
book [19]; see, e.g., Propositions 1.3 and 1.3’ in the second part of [19]. Note that
in [19] displacement operators of the form UT — TV are used. Here we work with
displacement operators of the form T'— KT A.

4. Toeplitz operators

Theorem 1.2 covers the classical formula for the inverse of a block Toeplitz operator
from [15]. To see this let us consider the case when A = S is the forward shift on
63_ (&), the Hilbert space of all square summable unilateral sequences with entries
from the Hilbert space £. In this case A is an isometry, thus D 4 is the zero operator,
and hence D7 is the full space. Thus with A = S the compression of T — A*T A
to Dj is the zero operator if and only if T'— S*T'S = 0, that is, if and only if T is
a block Toeplitz operator.
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Now assume additionally that T is invertible. Since D 4 is the zero operator
and D 4~ is the orthogonal projection of 63_ (€) onto its first coordinate space, we
see that we only have to consider the operators

o 1
X1 _1 0
X = T =T R
Y=[ww y1 y2 - ]=[1 00 - ]T7N

Obviously, o = yg. Since T is invertible, a usual Schur complement argument
shows that xg is invertible. In this case the identity (1.10) reduces to

T7'— AT7'A* = XY,

Since S* = A* is a pointwise stable contraction, we get

T7'h=> S"Xag'VS*™h, heli().

v=0
Thus
70,0 70,1 70,2 min{j, k}
v e e R s Y et Gk 0)
. ' ' . v=0

which is the classical formula for the inverse of a block Toeplitz operator from [15].

5. Toeplitz plus Hankel

In this section we will use our techniques to invert the Toeplitz plus Hankel op-
erators occurring in Chapter 11 of the book Ellis-Gohberg [4]. Such operators act
on (2 (€) @ (2 (£), where (2 (£) is defined as in the previous section and 2 (£) is
a copy of €i(5 ) with the sequences ordered in the reverse direction.

Let R on (3 (&) and V on ¢2(€) be the operators defined by the following
Toeplitz operator matrices:

Ro R_l R—2 . . .
Rl Ro Rfl ) ) )
R=|R, R Ry - | V= 50 V‘;I “;72 . (5.1)
1 0 -1

Va i W
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Let G be the Hankel operator from ¢2 (£) into ¢2 (€) given by the operator matrix:

GQ Gy Go
o Gy Gy Gy , ,
G=| ... Gy Gy Gy | €2(E)—=L3(E). (5.2)

Notice that G starts with Gg in the upper right-hand corner. Let H be the Hankel
operator from ¢2 (£) into % (€) given by the operator matrix:

H= Hz 33 ﬁ4 - L2(E) — LA(E). (5.3)

H, H, H;j
Ho H, H>
Thus H starts with Hy in the lower left-hand corner. Now consider the operator
T on X defined by
(R G (2@
T_[H V]OHX_{ﬁ(E) . (5.4)

We refer to T as a Toeplitz plus Hankel operator. Finally, let S; be the forward
shift on ¢2 (£), and S_ the forward shift on 2 (€), that is,

0 0 0
I 0 0
0 I 0 on (2 (£). (5.5)

Sy = on (2(8), S_ =

OO -

I 0
0 I
00
To present an inversion formula of Gohberg-Heinig type for Toeplitz plus
Hankel operators we need some additional notation.

We define II;, to be the operator which picks out the last component of
(&) ® (2 (), and II, will be the operator which picks out the first component
of 2(€) @ (% (€), that is,

My, = [0 00 - 00 I]:68Ear(E)—E, (5.6)
My, = [1 00 -+~ 00 0]:28)ar(E) —E.
We shall need operators X, Y, Z and W of the form
X = [?}UQ_)[%EE” (5.8)
2

z - [ 7 ]w-[58] (.9
Yy = (Y. V] [ ﬁ%gg ] s, (5.10)
wo= [W, W] [ ﬁ%gg; } . (5.11)
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Theorem 5.1. Let T be an invertible Toeplitz plus Hankel operator of the form (5.4),
and let the operators X, Y, Z, W in (5.8)~(5.11) be solutions of the following four
equations

TX =1, TZ=1l;, YT =1y, WT=I,. (5.12)
Furthermore, put
2o =1y, X and 2z =1y, Z. (5.13)

Then xg is invertible if and only if zo is invertible, and in this case a formula for
T~ can be obtained in the following way. Write

T = {: ﬂ on X = { %Eg } (5.14)

Then o, 3, v and 6 are determined by

a—SyaS = Xyag'Vy — Sy Zyzy ' WSt

B—S:BS- = Xixg'Vo—S,Z.25'W_S_

vy—=8ySy = X_xy'Yy — SiZ,z61W+Si

§—8*6S. = X ay'V.—-S*Z 2'W_S_ (5.15)
and

a—SiaSy = Zyzg'Wi—SiXiay'YiS:

B—SipS* = Zyzy'W_o —SiXix;'Y_S*

y—=S 4SSy = Z zg'Wi—-S X a;'Y. S,

§—S_0S* = Z_z'W_-S_X_x;'Y_S* (5.16)

Because S is pointwise stable, o and v are given by (see (5.15)):

oo

ah = Z(SJ,.)V (X+$61Y+ — S+Z+Z()_1W+Si) (Si)uh
v=0

vh = D () (Xoap 'Yy — ST Z 25 "W, ST) (ST)"h
v=0

Since S is pointwise stable, 3 and ¢ are given by (see (5.16)):

S S (Zpzy W = ST X ag'Y_8") (S)"k

v=0

Bk

bk = D (S-)"(Z-zg'W- = S_X_a'Y_57) (S2)"k
v=0

Here h is an arbitrary vector in (%.(E) and k is an arbitrary vector in (% (E).

Proof. A simple calculation shows that the following holds
R=SIRS,, V=S'VS_, S,G=GS- S'H=HS,. (5.17)
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Let A be the operator on X defined by

A= [ SO+ ;i } on [ ig_%(g) } (5.18)

Set K = A*. Consider the subspaces
Uy =Ker A, Y1 = (Ker A)L7 Uz = Ker A" Yo = (Ker A*)L.

Notice that ¢ is the subspace of X obtained by embedding £ in the last component
of X', while Us is the subspace of X obtained by embedding £ in the first component
of X'. Moreover, I, and ITy, are given by (5.6) and (5.7). So I, embeds & into
the last component of X = (3 (£) ® % (&), while I}, embeds & into the first
component of X. Observe that

I 0 3(€) 2(€)
y, = |- 2 5 .
0 S* 2 (&) 2 (&)
Since A is a partial isometry, Ay = Aly, is a unitary operator mapping (Ker A)+
onto Im A. In particular, AQ is invertible. This allows us to apply Theorem 2.1.
Notice that GS_ = G where G is the Hankel operator matrix determined by
replacing G; with G,41 in (5.2). Observe that G; in the upper right-hand corner

of G. Moreover, HS = H where H is the Hankel operator matrix determined by
replacing H; with H;i; in (5.3). The operator H; appears in the lower left-hand

corner of H. Using V = S*VS_, we arrive at

., [1 o R GI[I o
Iy T, = [o SiHH VHO s_]
B R GS- |_|R G|_x%
- | HS, S*VS_ | | H v |

The operator T is the Toeplitz plus Hankel operator defined by the last equality.
Furthermore, we have
" I ) R G Sy 0
ATA =1 S_HH vH 0 Si]
[ S3RS. SiGsr | R GS_S*
S_HS, S_VS* | | S_HS, S_VS§*

R GS* ~
= ~ - =113, T1Iy,.
S H S.VS* i
This readily shows that
A'TA =115, T1ly, . (5.19)

Using the fact that T = Iy, TIT3, with I = IIy, T}, , we obtain
Iy, (T — A*TA) I}, = Iy, TIT, — Iy, A*T AL, = T — Iy, [T}, TTly, IT3, = 0.
Thus Iy, (T — A*TA)II, = 0.
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Finally, note that o and zy are the compressions of T~ to Uy and U, respec-
tively. Since one of the operators zy and 2 is assumed to be invertible, Theorem
2.1 shows that both are invertible and gives the desired inversion formulas. To see
this one uses the block matrix representations in (5.8)—(5.11) for the operators X,
Y, Z and W defined by (5.12). Then (5.15) and (5.16) follow from equations (1.10)
and (1.11) in Theorem 1.2. O

The next proposition extends Theorem 11.1.2 in [4] to the non-selfadjoint
setting.

Proposition 5.2. Let T be a Toeplitz plus Hankel operator of the form (5.4), and
assume that the Toeplitz operators R and V are invertible and that the Hankel
operators G and H are compact. Furthermore, assume there exist operators X, Y,
Z, W as in (5.8)=(5.11) satisfying the equations

TX =15, TZ=1,, YT=I,, WT=I,. (5.20)

If, in addition, one of the operators xo = Iy, X and zo = Iy, Z is invertible. Then
T is invertible.

Proof. In what follows we use freely the notations introduced in the first paragraph
of the proof of Theorem 5.1. First note that

ket [ 50| [49],

According to the first part of (3.7) we have KerT' C N,,>oKerIT,, A™. Thus

¢ = [ gi‘ } € KerT = ¢_ =0, and hence { fffﬁi } =T¢=0.
Since R is assumed to be invertible, we conclude that ¢, = 0. But then ¢ = 0.
Thus T is injective.

Next note that R, V invertible and G, H compact imply that T" is the sum
of an invertible operator and a compact operator. Hence T is injective yields T is
invertible. O

Theorem 5.1 and Proposition 5.2 have natural analogues for the case when
R and V in (5.4) are finite block Toeplitz matrices and G and H in (5.4) are
finite block Hankel matrices. For this case Theorem 1.1 yields a result of the type
appearing in Section I1.2.2 of [19]; we omit the details. See [14] for related numerical
aspects.

6. Compressions of a Toeplitz operator

In this section we show that operators T of the type appearing in Theorems 1.1 and
1.2 naturally occur when a (block) Toeplitz operator is compressed to a subspace
invariant under the backward shift. In the first subsection, this idea is presented
in the abstract setting of isometric liftings. In the second subsection, we treat a
special model case studied by Arov [1] and extend it to a non-selfadjoint setting.
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6.1. The isometric lifting setting

Let A be a contraction on a Hilbert space X, and let V on K = X & 'H be an
isometric lifting of A, that is, V is an isometry and the operator matrix of V'
relative to the decomposition I = X & H is of the form

A 0 X
V= [C F} on [H} . (6.1)
Here C' is an operator mapping X into H, and F' is an operator on H. The fact
that V is an isometry implies that the same holds true for F'. We say that B is a

Toeplitz operator with respect to V if B is an operator on K = X @& H satisfying
B=V*BV.

Proposition 6.1. Let A be a contraction on X, and let T on X be the compression
of a Toeplitz operator B with respect to V', where V is the isometric lifting of A
n (6.1). Then

Hps (T — A*TA) H%A% =0. (6.2)
If, in addition, T is invertible, then its inverse may be obtained by the formulas in

Theorem 1.2.

Proof. Since T is the compression of B to X, the operator B admits a matrix
representation of the form:

B= {B:; g;j on Fﬂ (6.3)

Using the fact that B = V*BV, we have

T Bu| _ [T Be][A 0

By Baa| Bs1 By |C F
- A* C* TA+312O B, F
T |0 F*||ByA+ ByxC BoF
_ [A*TA+ A*B15C + C* By A+ C* By C A*B1oF + C*Ba F
N F*By1 A+ F*BgyC F*Boy I '

By matching the (1, 1)-entry of these 2 x 2 matrices, we obtain
T=A"TA+ A*B15C + C*Bo1 A+ C* By C. (6.4)

As V is an isometry, we have A*A + C*C = Iy, and hence C*C = D?. It follows
that D4 = Ker C. By consulting (6.4), we obtain (6.2). O

In the sequel, given a Hilbert space £, the symbol H?(£) denotes the Hardy
space of £-valued analytic functions on the open unite disc D with square summa-
ble &-valued Taylor coefficients. Furthermore, £(&, &) stands for the space of all
bounded linear operators on &.
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6.2. The model case

In this subsection, X = H?(&)omH?(E), where m is a scalar-valued inner function
and & is a Hilbert space. Let A on X be the compression of the unilateral shift
S on H%(E) to X, that is, A = IIxS|x. Notice that S is an isometric lifting of
A. Since S* is pointwise stable and A* = S*|y, we see that A* is also pointwise
stable.

Now let B be any Toeplitz operator on H2(€) and T on X the compression of
B to X, that is T = I1x B|x. By Proposition 6.1, the compression T’ of B satisfies
the identity

p (T — A*TA) H;‘)j =0.

When T is invertible, we can apply Theorem 1.2.

It is well known that D4, D« and £ are unitarily equivalent. This fact allows
us to rewrite the solutions X, Y, Z and W of the four equations in (1.5) as analytic
functions with values in €. To be more specific, there exists an isometry ¢ from
& into X mapping £ onto D4 and an isometry ¢ from £ into X mapping £ onto
D4~ In fact, two such isometries are given by

B lfm(/\)m(())a .
oty = SEERGL Ge

W -m©)
(pa)(N) = WSSOI (a €&);

see Section XIV.8 in [5]. Assume that X,Z : &€ - X and Y, W : X — & are
operators satisfying the equations

TX=¢, TZ=¢, YT =¢", WT =" (6.5)

Furthermore, put

o =¢*X, and z9=p*Z. (6.6)
Notice that the operators X, Z, Y, W, xg, 2o in (6.5) and (6.6) are unitarily
equivalent to the corresponding operators in Theorems 1.1 and 1.2.

In order to restate Theorems 1.1 and 1.2 for the present setting we need
some additional notation. Since X = H?(£) © mH?() is a subspace of H?(E),
any operator F' from £ into X can be identified in a canonical way with a function
F(-), analytic on the open unit disc, with values in L(&, ), via the formula

F(\a=(Fa)(\), (\eD, a€é). (6.7)

We say that the operator F from &£ into X generates an H-function if this
associate function F'(-) is uniformly bounded in the operator norm on the open
unit disc. In that case M will the operator of multiplication by F(-), acting on
H?(E), that is, (Mph)(\) = F(A\)h()) for each h in H?(E). The compression of
this operator to X will be denoted by Ap. Thus Ap = Iy Mp|x. The fact that
the inner function m is assumed to be scalar implies that the space mH?(&) is
invariant under Mg, and hence

Iy Mp :Apﬂx. (68)
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Next, let Fy be the canonical embedding of £ into H?(€) defined by (Epa)(-) = a
for each a € &, and let u be any operator on £. Then Egu is an operator from £ into
H?(&) and, trivially, Egu generates an H°°-function. The corresponding operator
of multiplication Mg, acts as a block diagonal operator. The compression of Mg,
to X will be denoted by A(u), that is, A(u) = Ag,w. If v is an invertible operator
on &, then A(u) is also invertible and A(u)~! = A(u™1).

We are now ready to state the analogue of Theorem 1.2 for the model case.

Proposition 6.2. Let X = H?(E) © mH?(E), where m is a scalar-valued inner
function. Let T on X be the compression of a Toeplitz operator B on H?(E) to
X, and assume that T is invertible. Furthermore, assume that X, Z, Y™ and W*,
where X, Z,Y and W are the operators given by (6.5), all generate H -functions.
If, in addition, xog or zy is invertible, then both x¢ and zg are invertible, and the
inverse of T is given by

T = AxAzo) Ay — ANz A(20) T HAG. AF. (6.9)
Here A is the compression of the unilateral shift S on H*(E) to X.

The above result is a mild generalization of the Gohberg-Heinig type inversion
formula in Arov [1]. Note that in Arov’s paper [1] the operator T is assumed to
be strictly positive. On the other hand, in [1] there is an interesting additional
condition on T that allows one to work with H°°-functions. See also Proposition
6.3 below.

Proof. Due to the unitary equivalence between the operators in (6.5) and the
corresponding operators in Theorem 1.2, induced by ¢ and ¢, we only have to
derive (6.9). Note that in the present setting equation (1.13) becomes

T'— AT 'A* = Xag 'Y — AZzy ' WA*, (6.10)

Since A* is pointwise stable, we have

T7'h=>Y A" (Xay'V — AZz'WA*) A*Fh, heX. (6.11)
k=0
To write T~1 in the desired form (6.9), we use the fact that X, Z, Y*, and
W* generate H°°-functions. In what follows F' is one of these operators, and we
use freely the notations introduced in the second paragraph preceding the present
proposition. Thus F maps £ into X and F' generates an H°°-function. Recall that
Ey is the canonical embedding of € into H?(€) defined by (Epa)(-) = a for each
a € E. Tt follows that F' = IIy MpEy, and hence (6.8) yields F' = ApllyEy. Thus
we have
X =AxlxEy, Z=AzI0xEy, Y =EjIIYAY., W = EjIIAjy-,
and the right-hand side of (6.10) can be rewritten as
Xay'Y — AZz W A*
= AxTly Egzy ' E§TIA A, — ANz Ty Egzy P BT Ay A* (6.12)
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Next we use that A = I1xSIT%, where S is the unilateral shift on H?(&). Since S
leaves mH?(&) invariant, Ally = I1yS. This implies that

AApIly = ApIlyS. (6.13)

Indeed, AAFHX = AH/'»(MF = HXSMF = HxMFS = AFHXS. USil’lg (613) with
X, Z,Y*, or W* in place of F' we obtain

AP (AxTIx Egzg ' EGITR Ay ) A*F
= AxIy (S"Eoxg 'E5S™F) TG A, (6.14)
AR (ANZTIx Eozy ' EGTT Ajyn AY) AP
= AAz1ly (S*Eozy 'EGS*F) My Ay  A*,  (6.15)
for k =0,1,2,.... Finally, note that

ZHXS’“EOUESS*’“H} =A(u) foru=ax5"oru=z", (6.16)
k=0
with pointwise convergence. Using the identities (6.12), (6.14), (6.15) and (6.16)
in (6.11) we obtain the desired formula (6.9). O

Proposition 6.3. Let X = H?(E) © mH?(E), where m is a scalar finite Blaschke
product. Let T on X be the compression of a Toeplitz operator B on H?(&) to X,
and assume that there exist operators X,Z : &€ — X and Y, W : X — & satisfying
the equations (6.5). Furthermore, let one the operators xy = ¢*X or zg = ¢*Z be
invertible. Then the operator T is invertible and the operators X, Z, Y* and W*
generate H°-functions.

Proof. Recall that m is the minimal function for A; see Sz.-Nagy-Foias [26]. In
particular, m(A) = 0. If p is the polynomial formed by the numerator for m,
then all the zeros of p are contained in the open unit disc and p(A4) = 0. Because
p(A) = 0, the spectral mapping theorem (cf., Exercise 4 to Part I in [8]) implies that
the spectrum of A consist of eigenvalues contained in the zeros of p. In particular,
the spectrum of A is in the open unit disc. Hence A is exponentially stable, and
we can apply Theorem 1.1 to show that T is invertible.

Since m is a scalar finite Blaschke product, there exists » > 1 such that
the space X = H?(E) © mH?(E) consists of £-valued rational functions that are
analytic on the disc |A| < r; see Section X.1 in [5]. It follows that for each operator
F: & — X the L(€,E)-valued function F(-) defined by (6.7) is analytic on |A| <
r. In particular, such a function F(-) is uniformly bounded on D, and hence F
generates an H-function. It follows the operators X, Z, Y* and W* generate
H*°-functions. U

To conclude this section we note that for m(\) = A", Propositions 6.2 and
Proposition 6.3 yield the classical Gohberg-Heinig inversion result discussed in
Section 1.
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7. Inverting solutions of Stein equations

In this section we use Theorem 1.1 to derive the inverse of an operator R satisfying
the following Stein equation (discrete Lyapunov equation):

R— A*RA=0C + C*T. (7.1)

Here A is an exponentially stable operator on a Hilbert space X, and C is an
operator mapping X into a Hilbert space ). Furthermore, T and ¥ are operators
mapping X into ) and ) into X, respectively. Without loss of generality we shall
assume that the range of C is dense in ), that is, C'* is one-to-one.

Operator equations of the form (7.1) appear naturally when solving inter-
polation problems of Nevanlinna-Pick and Carathéodory-Toeplitz type; see, e.g.,
Chapters 18 and 22 in [2], where the spaces X and ) are finite dimensional, or
Chapter 1 of [6], where X and Y are allowed to be infinite dimensional (see also [20]
and [7]). In the interpolation setting the operator R represents the Carathéodory-
Pick operator. When T = ¥*, equation (7.1) is usually referred to as a symmetric
Stein equation (see [2], page 578). Notice that (6.4) is also an equation of the form
(7.1).

The identity (7.1) implies that the compression of R — A*RA to KerC is
the zero operator. Conversely, if the latter holds true and ImC' = Y, then (7.1) is
satisfied for a suitable choice of ¥ and Y. In what follows the particular choice of
¥ and T does not play a role.

We do not assume that A is contractive. However, we require the operator
Q= .2, A*"C*CAY to be strictly positive. Since A is exponentially stable, the
operator () is well defined and is the unique solution to the Stein equation

Q- A*QA = C*C. (7.2)

In the case when the space X is finite dimensional and the operator A is stable, the
existence of a strictly positive solution @ to (7.2) is equivalent to the requirement
that the pair (C, A) is observable.

The condition that @ is strictly positive and satisfies (7.2) is equivalent to
the requirement that the operator Q'/24Q~1/2 is a contraction. In other words,
the operator A is assumed to be a contraction with respect to the inner product
[z,2'] = (Qx,2’), where (x,2') is the original inner product on X. Note that the
two inner products [+, -] and (-, -) are equivalent.

Since the adjoint of a contraction is again a contraction, it follows that
Q'/24*Q'? is a contraction and thus the operator Q! — AQ~'A* is non-
negative. So there exists a one-to-one operator B mapping U into X such that

Q' - AQ'A* = BB (7.3)

In the sequel we assume additionally that the operator C' maps the space
X onto Y. Since the range of C is assumed to be dense in ), this condition is
automatically fulfilled in the case when ) is finite dimensional. The condition
Im C' = Y implies that the operator B in (7.3) has closed range. To see this, note
that Im C' = Y implies that the defect operator of the contraction Q'/2AQ~1/2
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has closed range. But then the defect operator of the adjoint of Q~! — AQ 1 A*
has closed range too. Thus the range of the operator Q~* — AQ 1 A* is closed, and
hence the range of B is closed. Therefore in what follows we have

Q— A*QA = C*C where C : X — ) is onto, (7.4)

Q' — AQ™'A* = BB* where B : U — X is one-to-one
and has closed range.  (7.5)

The following result is the analogue of Theorem 1.1 for the case considered here.

Theorem 7.1. Let Q be a strictly positive operator on X, and let C and B be such
that (7.4) and (7.5) hold. Assume that R is a solution to the Stein equation (7.1)
with A being exponentially stable, and assume that there exist operators

F-U—-X, H:Y—-X G:X—-U K:X->)Y (7.6)

satisfying the equations
RF=Q@B, RH=C*, GR=DB*Q, KR=C. (7.7)
Then B*QF = GQB and CH = KC*. If, in addition, one of the operators B*QF

and C'H 1is invertible, then R is invertible, both B*QF and C'H are invertible, and
the inverse of R is given by

R = i An (F (B*QF)™' G — AH (CH)™" KA*) A (7.8)
n=0

Proof. We split the proof into two parts. First we prove the theorem for the special
case when @ is the identity operator on X. In the second part we reduce the general
case to this special case.

Part 1. Assume the hypotheses of the theorem are fulfilled for @ = Ix. From (7.4)
with Q = Ix it follows that D% = C*C. Since the range of C is equal to Y, we
have Im D% = Im C*. This implies that

Ker D4 = Ker D4 = (Im D%)* = (ImC*)* = Ker C.

Hence D4 = Ker C. But then the identity (7.1) shows that the compression of
R—A*RA to ’Dj is the zero operator. Thus Theorem 1.1 is applicable with T' = R.

Since C'is onto and B is one-to-one with closed range, the operators CC* and
B*B are invertible. This allows us to introduce the following auxiliary operators:

E:Y—X, E=cC*(Cc*) ™z (7.9)
E,:U— X, E,=B(B*B)Y2 (7.10)

From the properties of C and B it follows that both F and E, are isometries,
the range of E is equal to D4 and the range of E, is equal to D 4+. In particular,
EE* and E, E; are the orthogonal projections on D4 and D4-, respectively. Now,
define

X:Dpr—> X, Z:Dy—-X, Y:X—>Dys, W:X—>Dy
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by setting
X =F(B*B)"'?E{L;, ., Z=H(CC*)'?ET;,,
Y =1Ilp,. E.(B*B)"Y2G, W =1Ip,E(CC*)"Y2K.

Here R, H, G, and K are assumed to satisfy (7.7) with Q = Ix. Since EE* and
E,E7} are the orthogonal projections on D4 and D4+, respectively, it is straight-
forward to check that

RX =1, ., RZ=1,, YR=Ilp,, WR=Ip,.

Thus the identities in (1.5) are satisfied with R in place of T
Next, put z¢g = IIp,. X and zy = IIp, Z. Using Ker B* = D%, and KerC' =
D+ one computes that

(E:1Ip, . )zo = (B*B)~Y*(B*F)(B*B) (B}, ),
(E*Il}, )20 = (CC*)~V2(CH)(CC) V(B T}, ).

Notice that E7II; | is a unitary operator from Dy« onto U and E¥II;, is a
unitary operator from D4 onto V. It follows that x( is invertible if and only if
B*F is invertible, and zq is invertible if and only if C'H is invertible. According
to our hypotheses (with @ = Iy) one of the operators B*F and CH is invertible,
and hence the same holds true for one of the operators g and zy. Thus we can
apply Theorem 1.1 (with R in place of T') to show that R is invertible. Moreover
in this case (1.6) transforms into (7.8). Thus Theorem 7.1 is proved for the case
when Q = Iy.

Part 2. In this part we prove Theorem 7.1 by reduction to the case when Q = Ix.
Put

A=QY2AQ°Y2, B=QY?B, C=cQ V2,
R=Q YV2RQ™V?2, ¥ =0Q 1w, T=1Q V2
Then A is exponentially stable and R satisfies the Stein equation
R—A*RA=0C +C*T.
Moreover
I—A*A=C*C where C : X — Y is onto, (7.11)
I — AA* = BB* where B : U — X is one-to-one
and has closed range. (7.12)
Thus we are in the setting of the previous part. Put
F=QY?F, G=GQY* H=QY?H, K=KQV2
Then
RF=B, RH=C*, GR=B*, KR=C,
B*F = B*QF, GB=GQB, CH=CH, KC*=KC".
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From these identities and the result of the previous part, it follows that B*QF is
invertible if and only if CH is invertible. Now assume that one of the operators
B*QF and C'H is invertible. Then one of operators B*F and CH is invertible,
and from what has been proved in the previous part we know that R is invertible
and

R1=3 A (F(B*F)—lé - Amém—lm*) A,
n=0
It is then clear that R is invertible and that R™! is given by (7.8). O

Notice that apart from the given operators A and C, Theorem 7.1 also re-
quires the operator B which involves the inverse of ). In some cases, for instance
when the spaces X and Y are finite dimensional, one can construct a B satisfying
(7.3) without inverting ). This fact will be illustrated by the next example, which
is also presented to illustrate Theorem 7.1.

Example. Consider the n x n matrix

P1e1 +Clug 1cn + 1o,
1-— apoq 1-— a0y,
R= : ces :
wncl + EnU1 . ¢ncn + EnfUn
1—a,a1 1 —a,o
Here aq,...,a, are distinct complex numbers in the open unit disc D, while
C1,...,Cn are non-zero complex numbers, and 1,...,%, and vi,...,v, are ar-

bitrary complex numbers. We shall use Theorem 7.1 to show that R is invertible
whenever certain equations are solvable and to compute its inverse.
First we show that R satisfies the Stein equation

R—A"RA=VYC+C*"7,
with A, C, ¥, and T being given by

a; 0 - 0 1
0 ay - 0 Vo
A = . . . ) \Ij: . )
0 0 0 a ¥
C = [61 [RERE cn],
S .

In this setting & = C" and Y = C. Note A is stable because all a; are inside D.
In this case

cic1 ciCp
0o 1-— Qo 1— a0y,
Q — § :A* VOYCOAY = .
v=0 CnC1 CnCn

1—-—a,0 1 —a,an,
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The fact that aq,...,a, are distinct numbers in D and the fact that all numbers
c1,...,Cy are non-zero together imply that @) is strictly positive.

Lemma 7.2. A matriz B of size n x 1 satisfying Q' — AQ~'A* = BB* is given

by
b1
bo 1— .12 .
B=|_]1, bj:ﬂ, mj:Hu (1<j<n).
: c;m; Py 1—araj
bn

Proof. Let m be the Blaschke product whose zero’s are given by the distinct num-
bers ay, ..., a,, that is,

A —a
m\) =[] — a:A . (7.13)
k=1

Notice that m admits a partial series expansion of the form:

m(\) :m(O)Jr,\iw (7.14)
— m;(1—a;)’ '
Jj=1
where m; is the complex number defined by
a; — O .
k£ F
Using our definition of by, ..., b,, we see that
" c;ib;
A)=m(0)+ A —37 7.16
m) = m(0) 23 L (7.16)

Set D = m(0) = (—1)" H?:l a;. Then using the partial fraction expansion in
(7.16), it is easy to verify that {A, B,C, D} is a realization of m, that is,

m(\) =D+ \C(I —\A)"'B. (7.17)

Since the dimension of the state equals n, the degree of the Blaschke product,
{4, B,C, D} is a minimal realization. Hence {A, B, C, D} is a controllable and ob-
servable realization of m. Because m is an inner function and {A, B, C, D} is mini-
mal, it follows from the theory of unitary realizations (see, e.g., Sections XX VIIIL.2
and XXVIIL.2 in [9]) that Q is the observability Gramian for {C, A} if and 