


Springer Series in

solid-state sciences 158



Springer Series in

solid-state sciences

Series Editors:
M. Cardona P. Fulde K. von Klitzing R. Merlin H.-J. Queisser H. Störmer

The Springer Series in Solid-State Sciences consists of fundamental scientif ic books pre-
pared by leading researchers in the f ield. They strive to communicate, in a systematic and
comprehensive way, the basic principles as well as new developments in theoretical and
experimental solid-state physics.

Please view available titles in Springer Series in Solid-State Sciences
on series homepage http://www.springer.com/series/682



Bernard Pajot

123

Hydrogen-like Cent es

With 150 Figures

r

Optical Absorption of
Im urities  and Defects in
Semiconducting Crystals

p
of



Dr. Bernard Pajot
Institut des NanoSciences de Paris, Campus oucicaut
rue Lourm l 140, 75015 Paris, France
E-mail: bernard.pajot@insp.jussieu.fr

Series Editors:

Professor Dr., Dres. h. c. Manuel Cardona
Professor Dr., Dres. h. c. Peter Fulde∗
Professor Dr., Dres. h. c. Klaus von Klitzing
Professor Dr., Dres. h. c. Hans-Joachim Queisser
Max-Planck-Institut für Festkörperforschung, Heisenbergstrasse 1, 70569 Stuttgart, Germany
∗ Max-Planck-Institut für Physik komplexer Systeme, Nöthnitzer Strasse 38
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Foreword

During World War II and in the years immediately following its end, the
importance of silicon and germanium as semiconductors and their potential
for solid state electronics became very apparent. The growth of bulk semi-
conductors, free from structural and chemical imperfections, followed by the
deliberate introduction of specific impurities, were recognized as the strategy
for solid state electronics, e.g. the transistor. It was established that when
group V or III impurities were incorporated substitutionally in the elemental
Si or Ge, free carriers were released in the host making it n-type or p-type.
Simple arguments based on the tetrahedral bonding scheme showed that the
group V and the III impurities, i. e., donors and acceptors, became Coulomb
centres for the electrons and holes released, respectively. The large dielectric
constant of the host and the effective mass of the charge carrier bound to the
screened Coulomb potential of the donors or acceptors led to the important
insight that the ionization energies of these centres will be small and that
Lyman lines associated with them should be observed at low temperatures.
These were experimentally observed in the middle infrared for Si and the far
infrared for Ge. A complete understanding of the bound states of group V
donors and group III acceptors followed after their relationship with the band
structure of the host semiconductors was recognized.

In the past five decades, a number of donors, acceptors, and their com-
plexes with excitons in semiconductors have been discovered and delineated.
Isoelectronic impurities and their localized vibrational modes have also been
extensively studied in infrared absorption and Raman and luminescence
spectroscopies.

The present volume entitled “Optical Absorption of Impurities and Defects
in Semiconducting Crystals – Hydrogen-like Centres” is by Dr. Bernard Pajot.
He is an internationally recognized condensed matter experimenter. He has
made numerous significant contributions to the field of donors and acceptors;
local vibrations of oxygen related complexes in Si and Ge and magneto-
and piezo-spectroscopy of donors and acceptors. This volume contains an
authoritative and clear presentation of the theory of donors and acceptors. The
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figures of apparatus and spectra, the tables, and the extensive bibliography
will be significant resources for practicing scientists. Advanced graduate and
postgraduate students will find it invaluable in their study of semiconductor
physics.

The scientific community is indebted to Dr. Bernard Pajot for this com-
prehensive account of an important branch of the science of semiconductors.

West Lafayette Anant K. Ramdas
June 2009



Preface

Most of the technological applications of semiconducting or insulating crystals
come from the adjunction in these materials of foreign atoms which modify
their electrical, optical, or optoelectrical properties. These dopant atoms can
have to compete with foreign atoms or atomic complexes already present in
the initial materials or arising from pollution during growth or technological
processing. The properties of natural crystals, and, especially, their colour,
are also modified by the presence of foreign impurity centres. From a general
point of view, much has been learnt of the properties of these centres and on
their mutual interaction by the methods of optical spectroscopy.

Spectroscopic measurements have shown that these centres, when electri-
cally active, could be generally characterized by their electronic absorption,
luminescence, and Raman scattering spectra, while vibrational absorption and
Raman scattering are independent from the electrical activity.

From the coupling of the spectroscopic results with electrical measure-
ments has emerged a classification of the electrically-active foreign centres
into hydrogen-like (H-like) centres on the one side, opposed to deep centres
on the other side. This classification is somewhat abrupt as there exist cen-
tres, like those related to the transition metals, which can display properties
related to one or to the other category.

A H-like centre in a crystal can be vizualized as a fixed ion (atom or
complex) with a positive or negative elementary charge interacting through
a screened Coulomb potential with a negative or positive elementary charge
able to move in the crystal with the effective mass of a free electron or hole.
The resulting entity resembles, mutatis mutandis, a H-like atom in atomic
spectroscopy, hence its name. A consequence of the above structure is that
the energies of its electronic excited states depend only on the effective mass
of the charged particle and on the dielectric constant of the crystal, so that
the H-like centres are also called effective-mass (EM) centres. This definition
excludes from my presentation of the purely ionic insulators, in which no
H-like centre of this kind can exist.
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The fact that shallow p- and n-type dopants of germanium could be
considered as H-like atoms emerged at the end of the 1940s to explain the elec-
trical conductivity of this material, and this was clearly expressed by William
Shockley in his monograph “Electrons and holes in semiconductors”, first
published in 1950.

The absorption of H-like centres in semiconductors has been one of my
main fields of research. In this volume, I provide a status of their electronic
absorption, as known in 2009, and show its evolution from the mid-twentieth
century and what this spectroscopy has brought to the understanding of the
properties of semiconductors. This evolution has been marked by the im-
provement of the spectrometer–detector combinations, which have allowed an
increase of the spectral resolution by nearly three orders of magnitude, and
the production of semiconductor materials like the quasi-monoisotopic crys-
tals, which bring new information on the H-like centres and on the role of
isotopic disorder.

In an applied perspective, the interest in the spectroscopy of shallow im-
purities in semiconductors has been linked for a long time with the production
of detectors for the medium and far infrared, but the possibility to produce
terahertz lasers based on the transitions between discrete shallow levels has
aroused a renewed interest in this spectroscopy in silicon. Another new poten-
tial field of application is the domain of quantum computing. A large part of
the results presented in this book concerns silicon and this reflects the relative
volume of investigations devoted to this material.

This book is the first of two books devoted to the optical absorption of im-
purities and defects in semiconducting and insulating crystals. The second one
deals with the electronic absorption of deep centres like the native and irradi-
ation defects or some transition metals, and with the vibrational absorption
of impurity centres and defects.

Chapter 1 of the present volume provides the basic concepts related to the
properties and characterization of the centres known as shallow dopants, the
paradigm of the H-like centres. This is followed by a short history of semicon-
ductors, which is intimately connected with these centres, and by a section
outlining their electrical and spectroscopic activities. Because of the diver-
sity in the notations, I have included in this chapter a short section on the
different notations used to denote the centres and their optical transitions.
An overview of the origin of the presence of H-related centres in crystals and
guidelines on their structural properties is given in Chap. 2. To define the con-
ditions under which the spectroscopic properties of impurities can be studied,
Chap. 3 presents a summary of the bulk optical properties of semiconductors
crystals. Chapter 4 describes the spectroscopic techniques and methods used
to study the optical absorption of impurity and defect centres and the meth-
ods used to produce controlled perturbations of this absorption, which provide
information on the structure of the impurity centres, and eventually on some
properties of the host crystal. Chapter 5 is a presentation of the effective-mass
theory of impurity centres, which is the basis for a quantitative interpretation
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of the impurity spectra. Extensive sets of calculated energy levels obtained by
variational or nonvariational methods are given in this chapter for EM donors
and acceptors in silicon and germanium. For donors, it is shown how numeri-
cal values of the energy levels can be obtained for other cubic semiconductors
of known band structures and dielectric constants. The implication of the de-
generacy of the conduction band on the symmetry and eventual splitting of
the donor states is discussed with application to silicon and diamond. A brief
discussion is also given of the results of the calculations for the wurtzite form
of SiC. For acceptors, I stress the importance of the value of the spin–orbit
splitting of the valence band on the occurrence of EM impurity levels associ-
ated with the split-off valence band. This chapter ends with the calculation of
the oscillator strengths of the main transitions of the donor and acceptor spec-
tra. Experimental results on the absorption and photoconductive EM donor
spectra in semiconductors can be found in Chap. 6. The main part is devoted
to group-IV semiconductors, starting with the relatively well-known isolated
single and double donors and pursuing with the donor complexes, with a large
part devoted to thermal donors in silicon and germanium. Some results on EM-
like spectra associated with interstitial iron and on donor-like properties of
group-I atoms in silicon are also presented. It is also shown that isoelectronic-
bound excitons in silicon can give, under appropriate conditions, absorption
spectra similar to those of the EM donors. In the absorption of donors in
compound semiconductors, we distinguish between the quasi-hydrogenic EM
donors in direct-gap semiconductors and the donors in indirect-gap semicon-
ductors with camel’s back structure. As the quasi-hydrogenic donors in III–V
compounds are characterized by rather small ionization energies, the widths
of the lines of their spectra are broad and spectroscopic results obtained un-
der a magnetic field, giving sharper lines are also presented. When possible,
information on calibration coefficients relating the intensities of the absorp-
tion lines and the concentrations of the centres is provided. This chapter ends
with a section dealing with the low-frequency excitations associated with the
equivalent in semiconductors of the negative hydrogen ion in atomic physics,
and to impurity absorption features due to hopping processes in heavily doped
semiconductors. Chapter 7 is the equivalent of Chap. 6 for acceptors, and the
spectroscopic properties of shallow acceptors in different semiconductors are
described, showing the importance of the valence band structure and more
specially of the spin–orbit interaction for the acceptor spectra in silicon and
diamond. In Chap. 8, the effects of external and internal perturbations, includ-
ing mechanical stress, magnetic, and electric fields on the absorption spectra
of impurities are discussed. This allows also to discuss more synthetically of
the line widths of the EM transitions observed in semiconductors and insula-
tors as a function of the actual properties of different samples. To facilitate
reading, appendices on energy units, energy-gap values, Bravais lattices, and
group theory have been included.

This book, intended for students and scientists interested in the optical
properties of semiconductors, should also be useful to scientists and engineers
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interested or involved in the characterization of semiconductors. For the
understanding of the principles underlying the experimental data, an ele-
mentary knowledge of quantum mechanics applied to spectroscopy and of
solid-state physics is required.

I thank Michael Steger and Mike Thewalt for the communication of un-
published high-resolution absorption data on phosphorus in natural silicon
and on boron and phosphorus in quasi-monoisotopic silicon. The spectrum of
phosphorus in diamond displayed in Chap. 6 is the fruit of a collaboration with
Etienne Gheeraert and Nicolas Casanova on a sample grown at the National
Institute of Materials Science, at Tsukuba, Japan, by Satoshi Koizumi and
Tokuyuki Teraji. I am grateful to Paul Clauws for providing synthetic data on
thermal donors in germanium and to Kurt Lassmann for a clear formulation
of the principles of phonon spectroscopy. Naomi Fujita, Ivan Ivanov, Vladimir
Markevitch, Ben Murdin, and Sergey Pavlov are thanked for kindly sending
information, reprints and figures. I am also indebted to Calvin Hamilton for
a high-resolution image of the Hope diamond. Bernard Clerjaud is warmly
thanked for a critical reading of the manuscript and for his suggestions and
Anant Ramdas for having accepted to write the foreword. The help and the
suggestions of Claude Naud for a substantial part of the spectroscopic results
obtained at the Groupe de Physique des Solides-Laboratoire d’Optique des
Solides (now Institut des NanoSciences de Paris, alias INSP) is gratefully ac-
knowledged. I also thank Claudine Noguera, director of INSP, for allowing me
to write this book in the frame of this Institute. Last, but not least I thank
Claus Ascheron, for his patience during the preparation of the manuscript of
this book and Adelheid Duhm for her support in the editing phase.

Paris Bernard Pajot
12 June 2009



Notations and Symbols

Symbols in bold characters denote vectors. I have tried to comply with the
IUPAC recommendations, but when the same letter is used too often, I have
diverged (e.g. kB for the Boltzmann constant). When confusion with chemical
symbols is possible, the abbreviations are generally in italics.

Acronyms

AB Antibonding or antibonded
AM Average mass
amu Atomic mass unit
a.u. Atomic unit
BC Bond-centred
BE Bound exciton
BL Bravais lattice
BRN Background radiation noise
BZ Brillouin zone
CAS Calorimetric absorption spectroscopy
CB Conduction band
CR Cyclotron resonance
CZ Czochralski
DAC Diamond anvil cell
DAP Donor-acceptor pair
DoS Density of states
DPA Deformation potential approximation
EM(A) Effective mass (approximation)
EMT Effective-mass theory
ENDOR Electron nuclear double resonance
ESR Electron spin resonance
EXAFS Extended x-ray absorption fine structure
FE Free exciton
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FEL Free-electron laser
FA Foreign atom
FT(S) Fourier transform (spectrometer)
FWHM Full width at half maximum
FZ Float-zone or floating zone
h-e High-energy
HB Horizontal Bridgman
HPHT High pressure, high temperature
HSL High-stress limit
HVPE Hydride vapour phase epitaxy
IA Isoelectronic acceptor
IA Integrated absorption
IBE Isoelectronic bound exciton
ID Isoelectronic donor
IR Infrared
IR Irreducible representation
IS Isotope shift
JT Jahn-Teller
LA Longitudinal acoustic
LEC Liquid encapsulated Czochralski
LHeT Liquid helium temperature
LNT Liquid nitrogen temperature
LO Longitudinal optic
LVM Localized vibrational mode
MBE Molecular beam epitaxy
MIT Metal-insulator transition
MOCVD Metal-organic chemical vapour deposition
MOVPE Metal-organic vapour phase epitaxy
NEP Noise equivalent power
nn Nearest neighbour
nnn Next nearest neighbour (second nearest neighbour)
NTD Neutron or nuclear-transmutation-doping or -doped
OS Oscillator strength
PAC Perturbed angular correlation
PL Photoluminescence
PTI(S) Photo-thermal ionization (spectroscopy)
QHD Quasi-hydrogenic donor
qmi Quasi-monoisotopic
RT Room temperature
SHM Scaled hydrogen model
SIMS Secondary ion mass spectroscopy
s-o Spin-orbit
SPL Selective photoluminescence
STD Shallow thermal donor
TA Transverse acoustic
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TD Thermal donor
TDD Thermal double donor
TEC Thermal equilibrium conditions
TEM Transmission electron microscopy
TM Transition metal
TPA Two-photon absorption
TO Transverse optic
USTD Ultrashallow thermal donor
VB Valence band
ZPL Zero-phonon line (no-phonon line)

Symbols

a∗0 Effective Bohr radius
B Magnetic field flux density
B Magnetic field
Ch Chalcogen atom
d Sample thickness
E Electric field strength, doubly degenerate irreducible representation
E Electric field
E Energy, identity operation
Eg Band gap energy
Ei Ionization energy
g g-factor
I Inversion operation
I Nuclear spin
k Extinction coefficient
k Electron or photon wave vector
K Compensation ratio
K Absorption coefficient
kB Boltzmann constant
m̄ Reduced effective mass or reduced mass
me Free electron mass
mn Electron effective mass
mh Hole effective mass
M Metal atom
n Refractive index, principal quantum number, neutron, integer
n Electron or free carrier concentration, occupation number
N Interference order
Nc Conduction band density of state
N Number per unit volume
Nc Critical concentration
P Polarization, parity
p Hole concentration
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q Phonon wave vector
q Effective charge
R Reflectance
R Reflectivity
RH Hall coefficient
R∗

∞ Effective Rydberg constant
T Transmittance
T Temperature, stress magnitude
α Polarisability
β Parameter
γ Ratio of transverse and longitudinal effective masses, damping constant
γB Effective magnetic field parameter �ωc/2R∗

∞
Δso Spin-orbit splitting or energy
ΔCF Crystal field energy
ε Dielectric constant
εs Static dielectric constant
ε Strain
λ Wavelength
μ Mobility, chemical potential
ρ Electrical resistivity
σ Electrical conductivity
σ Mechanical stress
τ Lifetime
ω Pulsation (angular frequency)
ωc Cyclotron pulsation
[X] Concentration of centre X per cm3
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1

Introduction

1.1 Basic Concepts

In this monograph, semiconductors and covalent or partially covalent insula-
tors are considered. These materials differ from metals by the existence, at
low temperature, of a fully occupied electronic band (the valence band or VB)
separated by an energy gap or band gap (Eg) from an empty higher energy
band (the conduction band or CB). When Eg reduces to zero, like in mercury
telluride, the materials are called semimetals. In metals, the highest occupied
band is only partially filled with electrons such that the electrons in this band
can be accelerated by an electric field, however small it is.

From a chemical viewpoint, most of these semiconducting and insulating
crystals are elements or compounds in which all the valence electrons are used
to form covalent or partially covalent chemical bonds, leaving no extra electron
for electrical conduction. This is the case for the diamond form of carbon, for
silicon and germanium, for many crystals resulting from the combination of
group-IIB or -IIIA elements of the periodic table with group-V or -VI elements
(the II–VI or III–V compounds), or for the partially ionic IB–VII (e.g., CuCl)
compounds. In purely ionic insulators, like sodium chloride, electron capture
from the electropositive element by the electronegative element produces ions
with closed shells.

From an optical viewpoint, on the other hand, the difference between semi-
conductors and insulators lies in the value of Eg. The admitted boundary is
usually set at 3 eV (see Appendix A for the energy units) and materials with
Eg below this value are categorized as semiconductors, but crystals consid-
ered as semiconductors like the wurtzite forms of silicon carbide and gallium
nitride have band gaps larger than 3 eV, and this value is somewhat arbitrary.
The translation into the electrical resistivity domain depends on the value of
Eg, and also on the effective mass of the electrons and holes, and on their
mobilities. The solution is not unique; moreover, the boundary is not clearly
defined. “Semi-insulating” silicon carbide 4H polytype samples with reported
room temperature resistivities of the order of 1010 Ω cm could constitute the
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electrical limit between semiconductors and insulators, but the definition of
such a limit is of moderate significance. In the following, for simplification,
the term “semiconductors and insulators” are replaced by “semiconductors”.

In a category of materials known as Mott insulators, like MnO, CoO or
NiO, with band gaps of 4.8, 3.4, and 1.8 eV, respectively ([2], and references
therein), the upper energy band made from 3d states is partially occupied
resulting in metallic conduction. The insulating behaviour of these compounds
is attributed to a strong intra-atomic Coulomb interaction, which results in
the formation of a gap between the filled and empty 3d states [35].

In the covalent or partially covalent semiconductor crystals, a free electron
is created in the CB once sufficient energy has been provided to a VB electron
to overcome the energy gap Eg. This energy can be produced thermally under
equilibrium at temperature T , by optical absorption of photons with energies
hν ≥ Eg, or by irradiation with electrons in the keV energy range. These
processes leave in the VB a positively charged free “hole”, which has no
equivalent in metals, and whose absolute electric charge is the elementary
charge. When free carriers can only be produced by the above processes,
the materials are said to be intrinsic. When molecules and solids are tightly
bound, the value of Eg for covalent or partially covalent semiconductors with
sp3 bonding has been related to a covalent energy of the bonds, modulated by
the so-called metallic energy involving atomic states [19].

A consequence of the existence of an electronic band gap is that at
sufficiently low temperature, intrinsic semiconductors or insulators show no
absorption of photon related to electronic processes for energies below Eg. In-
versely, the photons with energies above Eg are strongly absorbed by optical
transitions between the valence and conduction bands, and this absorption is
called fundamental or intrinsic.

Compound semiconductor crystals show strong infrared absorptions in cer-
tain specific spectral region at photon energies below Eg, due to the vibrations
of the atoms of the crystal lattice. In these regions, the lattice absorption can
be so strong that the crystals are opaque for the usual thicknesses. At energies
below the lattice absorption region, the crystals become transparent again. In
elemental crystals like diamond (Cdiam) or silicon, this first-order vibration
of the lattice atoms is not infrared-active and hence, the pure crystals of this
kind do not become opaque, but they show, however, weaker absorption bands
due to combinations of vibration modes of the crystal lattice.

Extrinsic semiconductors are materials containing foreign atoms (FAs) or
atomic impurity centres that can release electrons in the CB or trap an elec-
tron from the VB with energies smaller than Eg (from neutrality conser-
vation, trapping an electron from the VB is equivalent to the release of a
positive hole in the otherwise filled band). These centres can be inadvertently
present in the material or introduced deliberately by doping, and, as intrinsic,
the term extrinsic refers to the electrical conductivity of such materials. The
electron-releasing entities are called donors and the electron-accepting ones
acceptors. When a majority of the impurities or dopants in a material is of
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the donor (acceptor) type, the material is termed n-type (p-type) and the
electrical conduction comes from electrons (holes). In semiconductors with
Eg � 0.6 eV, the intrinsic free-carrier concentration can usually be neglected
at room temperature (RT) compared to the extrinsic one. In these semicon-
ductors, when the energy required to release a free carrier from the dominant
donor or acceptor (the ionization energy) is comparable to the RT thermal
energy (∼26 meV), a measurement of the RT resistivity ρ = (neμ)−1, where
μ is the mobility of the free carrier, gives a representative value of the concen-
tration n of the dominant donor or acceptor. Above a temperature depending
on the value of Eg, the concentration of the electron-hole pairs produced ther-
mally in extrinsic materials can become comparable to the extrinsic carrier
concentration, and the semiconductor is said to move into the intrinsic regime.
The presence of free electrons produces at RT a Drude-type continuous opti-
cal absorption, increasing as λ2, where λ is the wavelength of the radiation.
The wavelength dependence of the free-hole absorption is not as simple. For
some values of the donor or acceptor concentrations depending on Eg, the
free-carrier absorption can be so large that the material becomes opaque in
the whole spectral range. For still higher dopant concentrations, a transition
to a quasi-metallic state occurs, which will be discussed later.

When the temperature is reduced, the free carriers in the extrinsic materi-
als are normally re-trapped by the donor or acceptor centres that had released
them and the resistivity of the materials increases.

A large number of semiconductors, used in various technologies and in pure
and applied research, are known, and most of them are grown artificially. It is
difficult to grow intrinsic semiconductors because FA contamination affects
the crystal growth; moreover, except for very special uses1, there are not
many applications for truly intrinsic materials. The purest available crystals
thus contain residual impurity atoms or more complex centres. Some of the
residual impurities are not electrically active and they cannot be detected
by electrical methods, and hence, the term intrinsic cannot be taken as a
synonym for high purity.

1.2 A Short Historical Survey

The Italian term “semicoibente”, found in the presentation by Alessandro
Volta before the Royal Society of London in 1782, could be translated into
“semi-badly-conducting”, but eventually was translated to “semi-conducting”
in English, and qualified nearly insulating substances [53]. The review by
Busch [6] gives an interesting historical survey of the emergence of the semi-
conductor physics and chemistry, but a good account of the early work

1 The fabrication of ionization bolometers used at very low temperatures (∼60 mK)
for the detection of weakly interacting massive particles (WIMPs) from outside
of the solar system requires intrinsic silicon or germanium material.
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on semiconductors can also be found in the first chapter of the book by
Smith [46]. Near 1908, on the ground of measurements performed on different
solids, Johann Königsberger, from the Albert-Ludwig University, in Freiburg
in Brisgau, proposed that the mobile charge carriers in solids resulted from
the thermal dissociation of the atoms of a “metallic” conductor into elec-
trons and remaining positive ions. As a function of the value of a parameter
Q, proportional to a dissociation energy, Königsberger classified the solids
into insulators, with Q tending to infinity, metals, with Q tending to zero at
high temperature, and “variable conductors” (Variable Leiter), for which Q
was found to have a finite value. The consequence for “variable conductors”
was that their electrical conductivity increased exponentially with tempera-
ture. These so-called variable conductors were iron oxides, and iron and lead
sulfide polycrystalline minerals. In 1911, Weiss, a student of Königsberger,
used for the first time the word “semiconductor” (Halbleiter) in his thesis
“Experimental Contribution to the Electronic Theory in the Field of Ther-
moelectricity” (Experimentelle Beiträge zur Elektronentheorie aus dem Gebiet
de Thermoelektrizität). In this work, he studied the thermoelectric effect of
different metals, graphite, silicon, and metallic oxides and sulfides and com-
pared the results with the existing electron theories. In the above context,
the terms “variable conductors” and “semiconductors” had the same mean-
ing. The term “semiconductor” is found again in a common publication [29].
The electrical properties of these early semiconductors were often irrepro-
ducible, partly due to inhomogeneities, impurities, structural imperfections
and poor electrical contacts (silicon was not explicitly recognized as a semi-
conductor then). Some physicists were wary of these problems encountered
in the study of semiconductors, which lasted till the end of the 1930s, when
potential uses were conceived beyond their use as materials for photodetectors
for the infrared.

A basis to the understanding of the electronic properties of semiconduc-
tors was provided in two papers by Wilson [56], where the concepts of intrin-
sic and extrinsic semiconductors were introduced. The fundamental nature
of extrinsic semiconduction in relation to the atomic dopants in silicon was
demonstrated [44] and it was presented in a very pedagogical manner with
germanium as an example in the textbook of Shockley [45]. Around the same
time, silicon was prepared with an acceptable purity allowing transmission
measurements to be performed (see for instance [15]). Subsequently, optical
spectroscopy, which was used for the study of insulators like diamond [42]
became and is still a widely used tool for the study and characterization of
semiconductors. This is acknowledged in several books devoted to the optical
properties of semiconductors including the spectroscopy of impurity centres
[28, 34, 37], but other contributions have been written on specialized topics,
like the ones by Ramdas and Rodriguez [41] on the electronic absorption of
hydrogen-like donor and acceptor atoms in semiconductors, by Davies [9] on
the optical properties of the luminescent centres in silicon, or the book by
Newmann [36] on the vibrational absorption of impurity centres.
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1.3 General Properties of the Hydrogen-Like Centres

The spectroscopic absorption of impurities and defects in semiconductors is in
itself a vast subject as it includes electronic and vibrational absorption. More-
over, two kinds of electronic absorptions can be roughly distinguished: the one
related to the p- and n-type dopants, which proved to be related to a more
general category of centres called hydrogen-like or effective-mass centres, and
the other due to the deep centres. The spectroscopic properties of transition
metals (TMs) are an intermediate category as the spectra of these atoms and
of their complexes display in some cases hydrogen-like properties. The content
of this book is limited to the absorption of hydrogen-like centres, including
complex centres, and to facilitate the understanding of the subject, a general
presentation of the properties of these centres is given.

1.3.1 What are the Hydrogen-Like Centres

Either from natural or artificial origin, the semiconducting and insulating
crystals contain impurity centres, doping atoms or defects. These centres can
be either electrically active or not electrically active, and we consider here the
electrically active ones. A centre is electrically active if it can display more
than one electronic charge state; this is the case for donor and acceptor cen-
tres. In the neutral charge state, the electrically active centres can contain one
or two electrons (holes) bound to an inner core, and these electrons (holes)
can be ionized in the conduction (valence) band with well-defined ionization
energies. When the contribution of the inner core can be considered as that
of a global ion or pseudo-ion, the interaction between the lowest energy elec-
tron (hole) and the inner positive (negative) core, including eventually the
second particles, is mainly Coulombic. This has led to compare these cen-
tres to hydrogen-like (H-like) pseudo-atoms with excited states comparable to
those of the H atom. A main difference originates from the embedding of these
centres in a crystal matrix with static dielectric constant εs, which reduces
the Coulomb energy by a factor εs−2 when the particle is not too close from
the charged core. The second difference comes from the mass of the particle
(the outer electron or hole), which is different from the mass me of the free
electron in vacuo. In a first step of the modelling of the properties of H-like
centres, the relevant masses are replaced by scalar “effective” masses m∗

e or
m∗

h, for electrons and holes, respectively. As will be seen later, this is an
oversimplification, but scalar values of the effective masses can be obtained
from a modelling of the RT electrical measurements. The scaling factor of
the energy of these centres with the energy spectrum E0n = R∞/n2 of H
in vacuum is s = (m∗/me)/εs2, where m∗ is the appropriate effective mass.
The energy En of the effective-mass particle in the nth excited state is thus
1.36 × 104 s/n2 (meV), where n is the principal quantum number. This is the
basis of the effective mass theory (EMT), which is discussed in more detail
in Chap. 5. Within this approximation, the ground state energy or level for
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a H-like acceptor in silicon (m∗
h
∼= 0.6me, εs = 11.7) is separated from the

VB continuum by 60meV compared with Eg =1170 meV, and for the donors
in GaAs (m∗

e
∼= 0.07me, εs = 12.9) by 5.7meV from the CB continuum,

compared with Eg =1519 meV. These values are orders of magnitude of the
ionization energies of the shallowest of these centres, known as shallow centres,
and the crude assumptions made cannot account for the effect of the VB and
CB structures on the effective masses, as well as for the effect of the chemical
nature of the impurity on the ionization energies, which can be important for
semiconductors like silicon.

The technological importance of the shallow donors or acceptors is that
they bind the electrons or holes with energies comparable to the RT thermal
energy and that the carriers released at RT by these shallow centres act as
a reservoir to control the electrical conductivity of the crystals. Under equi-
librium, this release is a thermal process and as the electrons and holes are
particles with non-integer spins, their energy distributions follow Fermi-Dirac
statistics. At a given temperature T , the concentration of electrons and holes
in the continua can be expressed as a function of the chemical potential μ of
the semiconductor and of the density of states (DoS) in the CB and the VB
(see [3]). In metal physics, the Fermi level EF is the energy of the electron level
whose occupancy probability is 1/2 and it has the same meaning as the more
general chemical potential. The term “Fermi level” has been extrapolated
from metal to semiconductor physics, despite the fact that in semiconductors,
EF lies in the band gap, with a limited number of discrete allowed states. To
comply with the common use, we keep the “Fermi level” which is at best a
quasi-Fermi level.

At very low temperature, the concentration of free carriers in the con-
tinuum is negligible as they are trapped by the ionized impurity centres of
opposite charges and EF is close to the energy level Ei of the dominant impu-
rity. This level separates the band gap into two regions: one, between Ei and
the relevant band continuum, taken as the energy origin and a second one for
energies between Ei and the opposite band continuum. In energy diagrams
for single donors (D) or acceptors (A), the zone contiguous to the opposite
continuum is denoted “+” for donors and “−” for acceptors as, when EF lies
in this zone, the centre is ionized (D+ or A−). Similarly, the second zone is
denoted “0” because when EF lies in this zone, the centre is neutral at low
temperature (D0 or A0).

1.3.2 Electrical Activity

From a chemical aspect, the electrical activity of substitutional impurities
and dopants is determined by the presence or absence of electrons after bond-
ing with the nearest neighbour crystal atoms. Thus, it usually depends on
the chemical nature of the impurity or, more simply, on the column of the
periodic table it belongs to, compared to the atom(s) of the crystal. For a
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monoatomic semiconductor crystal, a FA from the column next to the col-
umn of the atom it replaces acts usually as a single donor2, and when from
the preceding column, as a single acceptor. Similarly, substitutional FAs from
the second next column or before the column of the atom(s) of the crystal
are double donors or acceptors, respectively. When the crystal is made up
of two kinds of atoms belonging to different columns of the periodic table,
the electrical activity of a substitutional FA depends on the site occupied,
and when behaving as an acceptor on one site, it can behave as a donor or
be electrically inactive on the other site. Centres other than the isolated FAs
can also be electrically active and give H-like levels in the band gap, like the
substitutional chalcogen pairs, which are double donors in silicon, but there
are more complicated centres like the complexes made from a shallow im-
purity and from an electrically inactive impurity, or the family of O-related
thermal donors in silicon and germanium, which are relatively shallow donors,
and where the origin of the weakly bound electrons is not as obvious as for
substitutional donors. Besides substitutional impurities, interstitial FAs with
ns or ns2 external atomic configuration like Li in silicon and germanium and
Mg in silicon can display H-like donor behaviour, and there are also evidences
that this is the case for sodium and potassium in silicon ([30] and references
therein).

In a semiconductor, substitutional FAs from the same column of the peri-
odic table as the one of the crystal atom they replace are usually electrically
inactive and they are called isoelectronic with respect to the semiconductor.
It can occur, however, that for some isoelectronic impurities or electrically-
inactive complexes, the combination of the atomic potential at the impurity
centre with the potential produced by the local lattice distortion produces an
overall electron- or hole-attractive potential in a given semiconductor. This
potential can bind an electron or a hole to the centre with energies much
larger than those for shallow electrically-active acceptors or donors. The in-
teraction of these isoelectronic impurities traps the free excitons producing
isoelectronic bound excitons which display pseudo-donor or pseudo-acceptor
properties. This is discussed later in this chapter in connection with the bound
excitons, and examples of these centres are given in Chaps. 6 and 7.

At low temperature, the free carriers of a semiconducting crystal are
trapped by donor or acceptor ions of the opposite sign. With increasing con-
centration of these neutralized impurities, the separation between the elec-
tronic clouds around each impurity centre decreases. To simplify, when these
electronic clouds overlap in the ground state, an impurity band is formed at
low temperature, in which electrons or holes have an appreciable electrical mo-
bility. This is the limit of the concept of a semiconductor at low temperature
and it goes through a transition to the metal-insulator transition or MIT [35],
corresponding to a critical doping level Nc which depends on the ionization
energy of the impurity considered: for P-doped silicon, Nc is 3.5 × 1018 cm−3

2 Nitrogen is a notable exception in silicon and in germanium [26].
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and it is lowered to 1.9 × 1017 cm−3 in Ga-doped germanium, but it rises to
∼4×1020 cm−3 in B-doped diamond. The doping level for which the impurity
band merges with the semiconductor continuum and for which the material
becomes truly metallic occurs for doping levels significantly larger than Nc.
Thus, for P-doped silicon, it is estimated to be 3Nc [18].

1.3.2.1 Compensation

In a real semiconductor, more than one kind of donor and acceptor impurities
are usually present at the same time, but to simplify, a material containing
only one kind of FAs of each type is considered. The one with the highest con-
centration Nmaj is the majority impurity, which determines the electrical type
of the semiconductor and the other one is the minority impurity with concen-
tration Nmin. The net concentration of active centres able to contribute each a
free carrier is Nmaj−Nmin and this evolves from the annihilation of a concen-
tration Nmin of electron-hole pairs. This situation is called compensation, and
it can also arise from the presence of centres in concentration Ntrap which can
trap carriers from the majority impurity. The compensation ratio K is usually
defined as the ratio Nmin/Nmaj. When one neglects the intrinsic concentra-
tion of electrons and holes, the net concentration is close to the free-carrier
concentration measured when these active centres are thermally ionized, or to
the number of neutral centres which can be spectroscopically detected at low
temperature under thermal equilibrium. Between the low-temperature region
where the electron concentration n in a n-type semiconductor is practically
zero and the exhaustion region where it is Nmaj −Nmin, the temperature de-
pendence of the electron concentration n released in the CB by the donor
with ionization energy Ei is:

n =
Nmaj −Nmin

Nmin
Nce

Ei
kBT (1.1)

where Nc is the effective density of states (DoS) in the CB. A similar equation
holds for the hole concentration p in the VB in a p-type semiconductor, by
replacing Nc by the effective DoS Nv in the VB. Expression (1.1) shows that
for shallow impurities, Ei can be derived from n(T ) and it can be obtained,
for instance, from the temperature dependence of the Hall coefficient RH =
−r/ne (the Hall factor r =< τ2 >/< τ >2 depends on the electron or hole
scattering process through their lifetime τ , and in most semiconductors, it
is close to 3π/8). An example of the temperature dependence of the free-
carrier concentration deduced from Hall measurements is shown in Fig. 1.1.
An alternative is a measurement of the energy absorption spectrum of the
hydrogen-like impurities at low temperature, from which ionization energies
can be extrapolated and this method is fully explained later in the book.

Compensation reduces the concentration of active majority impurities, but
it also produces additional impurity ions of both charges. These ions are the
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Fig. 1.1. Temperature-dependence of the free-hole concentrations p in three In-
doped silicon samples measured by Hall effect. The fit of the curves shows that the
dominant acceptor in sample 3 is isolated In (Ei = 153 meV) and the In-X centre
(Ei = 111 meV) in samples 1 and 2. The compensating donor compensation ND

resulting from the fit is indicated (after [4]). Copyright 1977, American Institute of
Physics

source of the so-called impurity scattering for the majority free carriers and it
reduces their lifetime. The electrical conductivity of a crystal is proportional
to the number of free carriers and to their electrical mobility, which in turn
is proportional to their lifetime. As a consequence, in the extrinsic regime, a
high resistivity (or a low value of the carrier concentration measured directly
from Hall effect) does not necessarily mean a high purity of the material.

We have mentioned the situation of a dopant atom (Si in GaAs, for in-
stance) that can be located on two different sites, where it behaves either
like a donor or an acceptor. For some growth condition, this possibility can
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produce what is known as self-compensation, and this can occur indeed for
GaAs:Si. Another example of self-compensation is the doping of ZnO with Li:
this results in a material with a relatively high resistivity and the reason for
this is attributed to the occupancy with comparable probabilities by a Li atom
of interstitial sites, where it acts as a donor, and of Zn sites, where it acts as an
acceptor. In some cases, compensation is necessary to measure the properties
associated with impurities: for instance, in an uncompensated crystal contain-
ing only a double donor DD, which can release in the CB two electrons with
different energies, this donor is neutral at low temperature and its optical ion-
ization is that of the neutral charge state (the electronic level corresponding
to DD0/DD+). To observe the optical ionization from the DD+/DD++ elec-
tronic level and the optical spectrum of the DD+ charge state, it is necessary
to ionize permanently the first electron to produce DD+. This can be obtained
by increasing the temperature to produce thermal ionization of DD0, but the
higher the temperature, the broader the spectral line widths. Another method
is the counter-doping of the material with acceptor minority impurities or deep
traps, which partially compensate the double donor and produce DD+.

The compensation of impurities is an equilibrium process resulting from
the minimization of the electronic energy in the crystals. Thus, under equilib-
rium conditions at low temperature, donors or acceptors can be either neutral
(D0 or A0) or ionized (D+ or A−). In weakly-compensated materials, the
out-of-equilibrium partial photoionization of donors in n-type materials or of
acceptors in p-type materials produces photoelectrons or photoholes. At very
low temperature, these photocarriers can then be trapped by neutral donors
or acceptors to produce D− or A+ ions. These centres are equivalents of the
H− ion and they are introduced in Sect. 1.3.3.

The actual compensation in a material is more complex than a simple
balance between a majority impurity and a minority impurity as the material
usually contains a combination of residual impurities, dopant and deep cen-
tres, whose concentrations must be estimated to determine the actual degree
of compensation in the material. As mentioned before, compensation of the
majority impurities by adding opposite type dopant leaves in the material
charged ions, which reduce the lifetime of the free carriers. When the lifetime
of the carriers in a given pure material is known, a lifetime measurement of an
unknown sample of this material can determine the degree of compensation
of the sample.

Correlations between the free-carrier concentration and the RT resistivity
have been made for n- and p-type silicon by Irvin [22] as a function of the
dopant concentration (cm−3) assuming no compensation. From these measure-
ments, in n-type silicon with ρ ≥ 1.4 Ω cm, NP or n is about 5.0 × 1015 ρ−1

and in p-type silicon with ρ ≥ 0.9 Ω cm, NB or p is about 1.3× 1016 ρ−1. For
a more extended range in P-doped silicon, see [52].

A very close compensation between donors and acceptors is sometimes
required to obtain, for instance for epitaxial growth, substrates with a resis-
tivity close to the intrinsic one. In the case of GaAs, this can be realized nearly
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“naturally” as the GaAs crystals grown by the LEC method contain a native
deep defect labelled EL2, whose main ingredient, if not the only one, is an As
antisite (AsGa). This defect is a deep double donor with a level 0.75 eV below
the CB and it traps the residual acceptors present in the crystal. By limiting
the C acceptor doping of the crystal in the 1015−1016 at/cm3 region, it is pos-
sible to obtain semi-insulating GaAs LEC crystals with electrical resistivities
of the order of the intrinsic resistivity of the material (∼108 Ω cm). In GaAs
containing residual donors, this result is obtained by doping with chromium.

1.3.2.2 Passivation

In the compensation process, there is only a change in the charge state of
the impurity or dopant atom and it is temporarily reversible, for instance by
illumination of the crystal with band-gap or above-band-gap radiation, which
produces electrons and holes that are trapped by the ionized centres. This is
a non-equilibrium condition, which exists only during illumination.

When studying the interaction of hydrogen plasmas with crystalline sil-
icon surfaces, it was discovered that hydrogen could penetrate in the bulk
of the material and decrease its electrical conductivity [38, 43]. What could
have been due to a compensation effect revealed itself as a passivation effect
where hydrogen interacted chemically with the shallow acceptors in silicon
to form a complex. This was reminiscent of older studies which showed that
hydrogen played a role in the passivation of deep centres at the Si/SiO2 in-
terfaces and later on the bulk and interface defects in crystalline silicon, not
to mention the role of hydrogen in amorphous silicon. An evidence of this
interaction with shallow acceptors in silicon was the observation of IR vibra-
tional modes related to hydrogen-acceptor complexes. These complexes were
electrically inactive and hence, they did not contribute to the ionized impu-
rity scattering. This process has been naturally called passivation and it has
been observed for many donors and acceptors in semiconductors (for a review,
see for instance [8]). The stability of hydrogen passivation is limited by the
thermal dissociation of the electrically-inactive complexes, which produces the
reactivation of the dopant atoms, and for an annealing time of about 30min,
this usually takes place in the 350− 500◦C range. However, the interaction of
hydrogen with impurities in semiconductor crystals is complex and in some
cases, it can turn electrically inactive impurities into electrically active com-
plexes. Moreover, for double donors or acceptors, it can passivate partially the
centre and turn a deep impurity into a shallow donor or acceptor complex.

1.3.3 Optical Transitions

Atomic hydrogen excited in a discharge tube gives an emission spectrum orig-
inating from transitions between excited states and the 1S ground state [32].
This discrete spectrum extends, in the UV, from 121.57nm to the ioniza-
tion limit of 91.13nm corresponding to the Rydberg energy R∞. When the
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above-described H-like donor or acceptor centres are neutral, i.e., when they
are not electrically compensated and when temperature is low enough for
the ground state to be populated, a discrete electronic absorption spectrum
from the ground state to the excited states is observed. By analogy with the
case for hydrogen, such a spectrum is often referred to as a Lyman spec-
trum. The exact spectral region of observation depends on the ground state
energy, which is the ionization energy of the centre, but it is located in the
IR region of the electromagnetic spectrum. This absorption, determined by
the electric-dipole selection rules, is best observed at LHeT; it is relatively
intense and allows the detection of shallow impurities down to concentrations
in the 1011 − 1012 cm−3 range when the absorption lines are sharp and when
high resolution is used. This limit of detection can even be lowered to the
107−109 cm−3 range using the photoconductivity-based techniques described
in Sect. 4.4.2.2. In compensated crystals containing donors and acceptors, one
observes under equilibrium the absorption spectrum of the active uncompen-
sated majority impurities. The randomly distributed positive and negative
ions due to compensation produce statistical electric fields which interact with
the weakly bound electrons or holes whose transitions are observed. The resul-
tant inhomogeneous Stark effect broadens the spectral lines of the EM spectra
of the majority centres with respect to their standard values and this broaden-
ing is generally the signature of compensated samples. When the compensated
samples are illuminated during the absorption measurement with band-gap
or above-band-gap radiation, photoelectrons and photoholes trapped by the
compensated ions of both types convert them into neutral atoms that partic-
ipate in the optical absorption. It thus reveals the absorption spectra of both
the majority and minority centres. When the absorption spectra have been
previously calibrated, this even allows a determination of the compensation
ratio K. Examples of this method are given in Chaps. 6 and 7. At energies
above the ionization energy, the electronic absorption of the neutral centres
is continuous and is called the photoionization spectrum. The spectral depen-
dence of this continuous spectrum has been actively investigated in silicon
and germanium in relation with the production of extrinsic photodetectors.

Population inversion between discrete hydrogenic states of impurities can
in principle be produced by optical pumping in the photoionization spectrum
of the impurities. When the population of the state with the lowest energy
(Elow), i.e., the one nearest from the continuum, is higher than the one of
the state with higher energy (Ehigh), emission at energy Ehigh − Elow, can
take place, and ultimately, for sufficiently high pumping power, stimulated
emission or laser effect occurs. At the end of the 1990s, stimulated emission
between excited levels of phosphorus donors in silicon has indeed been re-
ported [39].

Some of the possible transitions are forbidden by the electric-dipole selec-
tion rules, but they can be allowed by the polarizability selection rules and
can subsequently be observed in Raman scattering experiments [24, 57].
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Electronic absorption of impurities can couple with phonon modes of the
host crystal and a photon is absorbed at an energy corresponding to the sum
of the electronic excitation and the phonon mode, and such features, resonant
with the photoionization absorption spectrum of the impurities are often ob-
served. For indirect-band-gap semiconductors, the phonon energy can corre-
spond to that of a phonon promoting the scattering of a bond electron from
a CB minimum to another minimum, and its momentum is well-defined. For
acceptor impurity transitions, corresponding to degenerate electronic states at
the maximum of the VB at k = 0 (the usual situation), the phonon coupling
takes place with zone-centre optical phonons. In covalent semiconductors, the
resonance of these coupled excitations with the photoionization spectrum of
the impurity can be strong and it results in what is known as a Fano res-
onance, after the theoretical explanation by Fano [16] of similar resonances
of atomic auto-ionizing states. For smaller couplings, generally encountered
in crystals with significant ionicity, one observes phonon replicas which can
involve several optical phonons.

In an indirect-gap semiconductor containing neutral H-like donors or ac-
ceptors, illumination with RT thermal radiation of a sample held at LHeT
is sufficient to partially ionize the neutral impurities. Coulomb interaction
implies that the recombination mainly takes place on the photoionized impu-
rities, but as has been mentioned in Sect. 1.3.2.1, these photocarriers can also
be trapped by the neutral impurities giving A+ acceptor ions and D− donor
ions. These ions are the equivalents of the H− ion, studied first by Chan-
drasekhar in relation with astrophysics (for an early review, see [7]). The
ionization energy of H− calculated by Pekeris [40] is 6083.1 cm−1 or 0.7542eV
(0.0554 Rydberg), close to the experimental value of 0.75 eV. The existence
of such ions in semiconductors was predicted by [31]. Their absorption spec-
tra have been observed at very low temperature for several donor impurities
in silicon, germanium and compound semiconductors, and also for acceptors
in silicon and germanium. The binding energies of these equivalents of the
H− ion are small, but evidence for their absorption (and photoconductivity)
in the very far IR has been given; it is presented and discussed in Sects. 7.5
and 6.9.

Under strong band-gap excitation, the photo-neutralized ions can de-excite
thermally, but in direct-band-gap semiconductors, they can also de-excite ef-
ficiently by radiative recombination of the bound electrons with the bound
holes. Such photoluminescence (PL) lines are known as donor-acceptor pair
(DAP) spectra. In a semiconductor with dielectric constant ε, the energy of
the photon emitted by a pair whose constituents, with ionization energies ED

and EA, are both in the ground state and at a distance R is:

hν(R) = Eg − (ED + EA)
e2

4πε0εR
+ J(R) (1.2)

The term J(R), which depends on the donor-acceptor interaction, becomes
important when the distance R becomes comparable with the largest effective
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Bohr radius of the two constituents. The DAP spectrum consists of many lines
whose energies differ by the Coulomb term, resulting in a continuum for large
values of R (see for instance [13]). It is also possible to create a pair separated
by R with the acceptor in an excited state A∗. The energy required, which is
larger than hν(R), is:

hvx = hν∗(R) = Eg − (ED + EA
∗) +

e2

4πε0εR
+ J∗(R) (1.3)

As the lifetime of the hole in the excited state is much shorter than that of the
DAP, the radiative recombination occurs at hν(R). Thus, by scanning energies
hνx > hν(R) and detecting at hν(R), one obtains an excitation spectrum of the
acceptor excited states from which the energies of these states can be derived.
One chooses for hν(R) a plausible energy value, provided it is large enough
for neglecting J(R) and J∗(R). This method has been proposed by Street and
Senske [48], who applied it to the study of the shallow acceptors in GaP and
it is known as selected pair luminescence (SPL). Nevertheless, sharp PL lines
due to DAPs have also been reported in indirect-gap semiconductors [58].

Free electrons and holes produced by photoexcitation with energies above
Eg can form free exciton (see Sect. 3.3.2), but a free electron (hole) can also
recombine with a hole (electron) of a neutral acceptor (donor). The energy of
the photon produced by this e-A0 or h-D0 recombination is Eg −Ei + kBT/2
where Ei is the ionization energy of the acceptor or of the donor and T the
electron or hole temperature, which is close to the lattice temperature for
moderate excitations close to Eg. In high-purity samples and at very low
temperature, these lines can be sharp and when identified, they allow a good
estimation of the impurity ionization energies when the value of Eg is known
accurately.

When band-gap excitation is obtained by irradiation of the sample with
electrons with energies in the keV range, the resulting PL is known as elec-
troluminescence or cathodoluminescence.

1.3.4 Bound Excitons

Excitons are electron-hole pairs weakly coupled through the band gap by
Coulomb interaction. When they are free to propagate in the crystal, they are
logically called free excitons (FEs) and are characterized by a binding energy
Eex. Their properties are described in Sect. 3.3.2.

The FEs can bind to neutral shallow impurities and become bound exci-
tons (BEs), with a value of Eex slightly larger than the one of the FE. The
difference is called the localization energy Eloc of the BE. For the P donor, it
is ∼4 meV in silicon, but 75meV in diamond. Eloc is given approximately by
Haynes’ empirical rule [20] as 0.1Ei, where Ei is the ionization energy of the
impurity. BEs are created by laser illumination of a semiconductor sample at
an energy larger than Eg and the study of their radiative recombination by PL
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has been and is still an active field of the optical spectroscopy of semiconduc-
tors [9,12,33,50]. The excitons can recombine radiatively by emitting a photon
at energy Egx = Eg − Eex, but in indirect-gap semiconductors, the conserva-
tion of the momentum of the weakly-bound electron, comparable to the one
of a free electron, implies the creation of a lattice phonon of opposite momen-
tum so that a part of the recombination energy is used to produce a phonon.
The energy of the photon emitted is then Egx − Ephon where Ephon is the
energy of the momentum-conserving phonon, and such transitions are called
phonon-assisted transitions, or phonon replicas. For BEs in the indirect-gap
semiconductors, however, zero-phonon-lines (ZPLs) at energies Egx are also
observed, but their intensities are smaller than those of the phonon-assisted
recombination lines. Besides the phonon-assisted replicas, the recombination
of excitons bound to complexes with internal vibration modes can take place
with the excitation of some of these modes, producing what is known as vi-
bronic sidebands. To obtain the emission of a momentum-conserving phonon,
in the absorption measurements of BE, the absorption takes place at energy
Egx + Ephon, but for PL measurements, ZPLs can also be observed.

Radiative recombination of an exciton bound to a shallow impurity gener-
ally leaves this impurity in the electronic ground state, resulting in the princi-
pal BE (PBE) line, but weaker PL lines can also be observed at lower energies,
where the impurity is left in an electronic excited state. These so-called two-
electron or two-hole PL spectra are usually observed in their phonon-assisted
form, and they mainly involve s-like excited states whose detection escapes the
absorption experiments. These PL experiments are, therefore, valuable com-
plements to absorption spectroscopy, which involves mainly the p-like excited
states, and examples will be given when appropriate.

PL evidence for the binding of more than one exciton to a shallow impurity
exists, starting with the excitonic molecule was first reported in silicon [20].
A model for the bound multi-exciton complexes in silicon (the shell model)
has been elaborated by Kirczenow [27] to explain the experimental results of
these centres. For a review on these centres, see [49].

In doped uncompensated semiconductors, very weak absorption lines due
to the direct creation of excitons bound to neutral donors or acceptors can be
observed at low temperature (typically 2K) at energies close to Eg [11,14,21].

The optical properties of an exciton bound to a neutral donor or acceptor
depend on the interaction of the exciton constituents with the neutral entity.
When, for instance, the hole part interacts more strongly than the electron
part with the neutral atom, the binding between the two exciton components
decreases and the electron part can be considered as an electron bound to a
pseudo-negative ion, forming some kind of pseudo-acceptor.

In semiconductors containing isoelectronic centres with an attracting po-
tential for electrons or holes mentioned in Sect. 1.3.2, free excitons can be
trapped because of the preferential interaction of these centres with the
electron (or hole) part of the exciton. The hole (resp. electron) part of
the exciton is then comparable to a hole (resp. electron) bound to a neg-
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atively (resp. positively) charged acceptor (resp. donor) ion, and a pseudo-
acceptor (pseudo-donor) results. This process is somewhat similar to the one
presented above for excitons bound to neutral donors and acceptors. The spec-
troscopy of excitons bound to isoelectronic centres in silicon and compound
semiconductors (isoelectronic bound excitons or IBE) has been actively in-
vestigated in the 1980s. In compound semiconductors, one of the best-studied
electron-attracting centre (pseudo-acceptor) is probably NP in GaP [51]. Iso-
electronic oxygen can also play this role in some II–VI compounds ([1] and
references therein). Bi at a P site in GaP and InP seems to be the best docu-
mented hole-attracting centre [10,55]. In silicon, the potential near a C or Ge
atom cannot bind an electron or a hole, but isoelectronic centres with pseudo-
donor properties like the Be pair at a Si site or some (C,O) complexes in
irradiated or annealed CZ silicon have been identified, and they are discussed
in Sect. 6.7.

1.3.5 Spin Effects

Electron spin effects are observed for electrically active centres with an odd
number of electrons. In charge states with an even number of electrons, the
spins are generally paired. There are, however, a few cases where a 2-electron
centre gives a resultant spin S = 1 [23]. A centre in a charge state with non-
zero spin is said to be paramagnetic. Such a centre interacts with an external
magnetic field B through the magnetic dipole moment of the electron arising
from the electron spin and the angular momentum. For many centres, the
angular momentum of the electron is quenched in the ground state so that
one can only consider the spin. In a solid, the Zeeman term can then be
expressed as [54]:

HZee = μB g SB

where μB is the Bohr magneton and g a symmetric tensor whose values g1,
g2, and g3 with respect to the principal axes of the g tensor are close to 2.
The ground state of a centre with spin S = 1/2 is split by the magnetic field
into a doublet with MS = +1/2 and −1/2 separated by μB gB (for a mag-
netic field of 1 T and g ∼ 2, this separation is ∼30 GHz(∼ 0.12 meV)) and a
magnetic dipole transition can take place between the two components. Non-
cubic centres with different equivalent orientations in a cubic crystal present
an orientational degeneracy. When these centres are paramagnetic, the dou-
blet separation depends on the angle between the magnetic field and the main
axis of the centres. In classical electron spin resonance (ESR) experiments, the
transition between the two levels is induced by the magnetic field of a fixed
microwave frequency for a critical value of B. Practically, B oriented along a
high-symmetry axis of the crystal (<100>,<111> or <110>) is tuned in order
to make the splitting of the centres with different orientations to coincide with
the microwave frequency and this is repeated for different orientations. The
variation of the number of resonances for different orientations of B allows
then to determine the orientational degeneracy of the centre.
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A paramagnetic atom with Td symmetry should give only one resonance
line, but when this atom has a nuclear spin, the electron and nuclear spins
can couple by hyperfine interaction, and for a nuclear spin I , each electronic
spin component splits into 2I + 1 components giving the same number of
ΔmI = 0 resonances. For instance, the ESR spectrum of tetrahedral intersti-
tial Al (I = 5/2) produced by electron irradiation of Al-doped silicon is an
isotropic sextuplet due to transitions between the six nuclear sublevels of each
electronic-spin component ([54], and references therein). The electron spin of
a centre can also interact with the nuclear spins of neighbouring atoms to give
additional structures and this is clearly shown for 29Si atoms (I = 1/2) in
Fig. 4 of [54]. The ESR spectrum can thus also determine the atomic struc-
ture of the centre. This can also occur for non-cubic centres and the hyperfine
structure is superimposed on the orientational structure.

For a given value of B, the energies of ΔmI = 1 transitions between
the nuclear sublevels of a given electronic spin state are much lower than
those between the electronic spin components. Information on the amplitude
of the wave function of the electron whose spin is responsible for the ESR
spectrum at different lattice sites in the vicinity of the centre was obtained by
Feher [17] by monitoring the ESR spectrum as a function of the frequencies
in the nuclear frequency range, and this technique was called electron nuclear
double resonance (ENDOR). Improvements in the sensitivity of ESR can be
obtained using optical or electrical detection methods [47].

All the neutral single donors without d or f electrons have spin 1/2 while
the double donors and acceptors have spin 0 in the ground state, but in some
excited states, they have spin 1 and optically forbidden transitions between
the singlet and triplet states have been observed. The spins of the neutral
acceptors in the ground state depend on the electronic degeneracy of the VB
at its maximum. For silicon, the threefold degeneracy of the valence band
results in a quasi spin 3/2 of the acceptor ground state.

1.4 Notations for Centres and Optical Transitions

We are faced with two interconnected problems related to the intelligibility of
the presentation. The first one concerns the nomenclature of the centres other
than isolated atoms and the second the labelling of the optical transitions.
These problems are not trivial, [5], but not as severe for H-like centres as
for deep centres. The different notations for the shallow thermal donor com-
plexes in silicon, discussed in Sect. 6.4.2, are however, a counter-example of
this statement. In this book, on the basis of the present knowledge, names of
centres, in direct relation with their atomic structure, have been privileged,
but the usual label has however been indicated. When the exact structure
is not simple and when there exist an acronym, like TDD for “thermal dou-
ble donor”, it has been used. The labelling by their excited states of the
transitions of the shallow donor centres and of similar species, whose spectra
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are experimentally and theoretically well identified, is a generally accepted
rule. There are a few exceptions, as for some lines of transition metals and
isoelectronic bound exciton spectra in silicon discussed in Chap. 6. From the
beginning, the transitions of the shallow acceptors in silicon, whose direct
attribution was much more difficult than for donors, were denoted by integers
in order of increasing energies and there have been several labelling changes
with the improvement in the resolution of the spectra. These labellings have
to be related to “physical” ones by correlation between the experimental data
and the calculated acceptor energy levels discussed in Sect. 5.3, assuming that
the comparison is significant. There is an exception for the Au and Pt transi-
tions in silicon, denoted IN, where N is the number of corresponding acceptor
lines in silicon. The label of the acceptor lines in other semiconductors (ex-
cept for diamond) is based on the notation used for germanium in [25]: the
lowest-energy transition is denoted G and the other ones denoted in inverse al-
phabetical order, with the resurgence, for the more recent spectra, of indexed
I lines near from the photoionization continuum, to cope with the observation
of additional transitions. The different notations in the case of the acceptors
and the spectroscopic attributions are discussed in detail in Chap. 7.

In the labelling of defects, the ESR family is a world of its own and when
an unidentified ESR spectrum was first observed in a given material, it has
been the rule to label it by the initials of the laboratory, city or country and
by an integer corresponding to the order of discovery (an indication of the
nature of the centre is sometimes added). There are, however, exceptions to
this labelling, where the atomic nature of the centre is indicated.
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2

Origins and Atomic Properties
of H-Like Centres

Many of the H-like centres are isolated atoms, with a few known cases of
pairing. These pairs are the simplest of a variety of complexes, whose atomic
structures have been elucidated in many cases. In this chapter, we discuss the
occurrence of H-like centres in semiconductors, and attempt to qualitatively
relate the diffusion coefficient and solubility of the simplest pair to their atomic
parameters.

2.1 Origins

2.1.1 Occurrence in Nature

Several insulators and a very few semiconductors are found in the native state.
The existence of natural diamonds with a significant electrical conductivity
was first reported in 1954 [14], and this category was classified as type IIb
diamonds, also known as blue diamonds because of a more or less intense blue
colour (Fig. 2.1). This rare variety of natural diamonds, with resistivity as low
as 5 Ω cm, contains boron in variable amounts, and it is a p-type semiconduc-
tor [9]. This is attributed to the substitutional B atom, an acceptor with a
moderate ionization energy (0.37 eV) with respect to the diamond band gap
(∼5.5 eV). The presence of B-containing minerals in the earth’s zone where
the blue diamonds are formed explains the presence of boron in these dia-
monds. The origin of their blue colour is explained in Sect. 7.2.3. The purest
natural diamond crystals, classified as type IIa diamonds, are colourless in
the absence of plastic deformation. The type II diamonds contrast with type I
diamonds that contain varying nitrogen concentrations in different complexes.

Although the above distinction between type I and type II diamonds is
useful, there exists type IIb diamonds containing both boron and a small
nitrogen content.

Blue–grey insulating diamonds were extracted from the Argyle mine in
Australia and their colour attributed to high concentrations of hydrogen,
defects containing two and four N atoms, and to a small concentration of
three-N-atom defects [36].
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Fig. 2.1. The Hope diamond (central gem), weighing 45.52 carats (9.10 g). The
original stone was discovered before 1668 in India and cut several times before
deriving the above stone. This IIb diamond belongs to the Smithsonian Institute
and its absorption spectrum confirms the presence of substitutional boron. The
smaller diamonds of the mounting are of IIa type and they are assumed to have a
very small impurity concentration. Copyright Calvin J Hamilton (2004)

The colour of many natural diamonds is also affected by the plastic
deformation they underwent during their growth and rise to the surface of
Earth.

Other FAs can be present in natural diamonds and in other native crystals,
but they give deep levels whose spectroscopic properties are not discussed in
the present volume.

From a physical aspect, the colour changes in a crystal can be attributed
to the selective absorption of light by impurities or defects in the crystal at the
corresponding energies, or to the absence of a spectral domain in the energy
spectrum reflected by the crystal, which is absorbed by the crystal (see for
instance [53]).

2.1.2 Contamination

Artificially-grown materials can be contaminated by FAs for several reasons.
The first one is the initial purity of the starting material: for instance, the
LHeT spectra of high-purity intrinsic silicon samples with RT resistivities
∼104 Ω cm show the presence of residual boron and phosphorus at concen-
trations ∼2 × 1012 cm−3 (see Fig. 7.7). Polycrystalline silicon also contains
carbon as a residual impurity, which is transferred into the single crystal [45].
In bulk crystal growth, the impurities can come from the growth atmosphere,
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and when a crucible is used to contain the melt, from chemical elements and
impurities of the crucible. To illustrate this, most of the silicon crystals used
in the electronic industry are grown by the Czochralski (CZ) method, from a
melt contained in a silica crucible by dipping a monocrystalline silicon seed
just below the melt, and slowly pulling it while the silicon solidifies as a crystal
at the seed bottom. With this method, named after the Polish metallurgist
Czochralski [15] and applied to germanium by Teal and Little [78], a rather
large concentration

(∼1018 cm−3
)

of electrically-inactive oxygen originating
from the partial dissolution or etching of silica by molten silicon is introduced
in the crystal (see [47] and references therein). If this pollution has a detri-
mental effect on the electrical properties of silicon after being subjected to
thermal treatments in the 300–500◦C range because of the production of O-
related thermal donors (see Sect. 6.4.1), it can be used after specific thermal
treatments for the internal gettering (trapping) of harmful metallic impuri-
ties introduced in silicon during its processing [71]. The purest crucible-grown
crystals are probably the undoped Ge crystals, grown from a silica crucible
in a hydrogen atmosphere by the CZ method, with an overall bulk impurities
concentration (mainly Si, O and H) in the 1014 cm−3 range (∼2.3 atomic parts
per billion (ppb)). A much lower O contamination in germanium is attributed
to its melting point (937◦C) compared to silicon (1414◦C), and to the lower
affinity of O for germanium. Severe O contamination (∼0.02%) is also ob-
served in the high-pressure growth of GaN from a gallium solution containing
dissolved nitrogen. When crystals containing an element with a high vapour
pressure, like P or As, are grown by the CZ method, they form an indirect
source of contamination: to prevent evaporation of the volatile element, a com-
pound with a low vapour pressure is placed at the top of the polycrystalline
charge to be melted. Once molten, this encapsulant makes a tight seal between
the molten material and the atmosphere of the furnace (usually nitrogen), and
this growth method is known as the Liquid Encapsulation Czochralski (LEC)
method. Consequently, the impurities contained in the molten encapsulant
are introduced in the crystals grown by this method: to grow GaAs and InP
crystals, the encapsulant used is wetted boron oxide (B2O3). In addition to
the introduction of B and O impurities at high temperature, water is added
to B2O3 to prevent sticking between the encapsulant and the crystal, and its
dissociation introduces hydrogen in the crystal [81].

The contamination introduced by melting polycrystalline charges in a cru-
cible at high temperature has, for some crystals like silicon requiring a low O
content for specific applications, led to the development of crucibleless growth
methods. In this method, a monocrystalline seed is mounted at the bottom
or at the top of a polycrystalline charge, and the polycrystalline region in
contact with the seed is melted by a contactless technique (a RF field or a
halogen lamp furnace). The melted region is prevented to flow from capillarity
forces alone, and it is displaced upward or downward by moving the RF coil,
leaving a monocrystalline region. This float zone (FZ) method was invented
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Fig. 2.2. Schematic set-up of a top-seeded FZ apparatus. A float zone of the poly-
crystalline silicon supply rod is locally melted by the RF field of the coil located
outside of the quartz tube. In this particular set-up, at the beginning of the process,
the diameter of the single crystal is reduced to a few mm to prevent dislocations to
propagate in the monocrystalline part continuing the monocrystalline seed [44]

independently by several scientists ([44], and references therein). A schematic
FZ setup for silicon crystal growth is shown in Fig. 2.2.

A down-seeded FZ apparatus is shown in Fig. 1 of Chap. 2 of [47]. The
growth of crystals, with lower melting points and low reactivity, was obtained
by the Bridgman method in an elongated crucible held horizontally, with the
monocrystalline seed at one end of the crucible (horizontal Bridgman (HB)
method). The principle of the monocrystalline growth is to displace the molten
zone from the seed region along the crucible length. The Bridgman method
is also used as a variant when a sealed crucible is displaced vertically in a
temperature gradient (vertical gradient freeze (VGF) method), for instance
in the growth of CdTe monocrystals [67]. The contamination of crystals often
occurs from the ambient gas in these methods.

Besides the nitrogen contamination due to pollution of the carrier gas,
the diamond films obtained by chemical vapour deposition (CVD) are usually
contaminated with silicon. This contamination originates from the plasma
etching of the silica walls of the reactor and of the commonly used silicon
substrates [37].

The semiconductor layers grown by the metal-organic vapour-phase
epitaxy (MOVPE) generally contain hydrogen pairs or complexes originat-
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ing from the thermal dissociation of the organic part of the metal–organic
precursor [13].

Metallic contamination by transition metals (TMs) and copper is found
in many semiconductors because of the high diffusion coefficients of these
elements. It has many origins, including the initial purity of the materials,
chemical etching, electrical contacts, mechanical contacts with metallic parts
or metallic constituents, or heating resistance in thermal treatments. For tech-
nological reasons, this contamination has been widely studied in silicon CZ
wafers and also in germanium, in relation with nuclear radiation detectors.
Generally, it remains at a low level, but can be detected by sensitive methods
like deep level transient spectroscopy (DLTS) when deep centres are pro-
duced or photo-thermal ionization spectroscopy (PTIS) when the TMs form
EM complexes.

2.1.3 Doping

The main objective for doping semiconductors and insulators is to control their
electrical properties by introducing donors or acceptors in these crystals, which
subsequently introduce well-defined concentrations of free carriers. Standard
doping of bulk semiconductor crystals is achieved by adding to the solid charge
or directly to the melt a particular amount of the dopant element or a crystal–
dopant alloy. This method works for many dopants in group-IV and in III–V
semiconductors. This is the principle; but the actual process can be more
intricate because the final objective, which is usually the homogeneous doping
of a crystal at a given level, depends on several physical factors that must be
carefully controlled. For instance, in the CZ method, when the dopant is added
to the melt, one must consider the segregation (or distribution) coefficient of
the impurities, which is the ratio of the concentrations of a given impurity
in the solid and liquid phases. It is usually smaller than unity; therefore, the
dopant concentration in the melt increases as a function of the fraction of the
melt already solidified. Subsequently, there is a steady increase of the impurity
concentration in the crystal with the solidified fraction. Incidentally, the fact
that the segregation coefficients of many electrically active impurities are less
than unity has been used in the zone-melting process to purify a large region
of semiconductor crystals grown by the Bridgman method: one extremity of
the crystal, contained in an elongated “boat,” is melted and the molten zone
is translated along the crystal, concentrating the impurities at the other end
of the crystal and the process is repeated as long as is necessary.

Different techniques have been developed to produce CZ doped crystals
with a good longitudinal homogeneity [65]. Radial fluctuations of the dopant
concentration in the melt are also related to the convection current in the
molten phase and to the speed of rotation of the crystal, and this can be
troublesome for some technological applications. This problem has been solved
in the n-type silicon by neutron transmutation doping (NTD), as shown in
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Fig. 2.3. Comparison of the radial distribution of phosphorus from the centre to
the rim of two 3-in. (∼76-mm) silicon slices cut from a crystal doped in the melt
(bottom) and from a NTD crystal (top). The local resistivity, proportional to the
inverse of [P], is measured by spreading resistance (after [31])

Fig. 2.3. A brief account of this method and of the results derived are given
in this chapter.

The principle of NTD is to use a nuclear reaction involving first the absorp-
tion of a thermal neutron, of energy in the 25meV range, by one isotope of a
chemical element of a semiconductor crystal. The second step is the conversion
of the radioactive nucleus thus formed, by emission of a high-energy (h-e) elec-
tron

(
β−), into a dopant atom. This method was first used with germanium

by Cleland et al. [12], and is illustrated here for silicon with three natural
isotopes (see the isotope table of Appendix D): nuclei of isotope 30Si (3.1%
natural abundance) can absorb thermal neutrons with an absorption cross-
section σn of 0.11 barn (1 barn is 10−24 cm−2) to produce the radioactive 31Si
nuclei in an excited state, which immediately relaxes into the ground state by
the emission of a h-e photon (γ-ray). The 31Si nuclei then convert into a stable
31P nuclei (100% natural abundance) with a characteristic lifetime of 2.5 h by
β− emission. The above nuclear reactions are written synthetically as:

30Si (n, γ)31 Si →31 P + β−

The concentration of P is proportional to
[
30Si
]

in natSi
(∼1.55 × 1021 cm−3

)
,

to the cross section σn, and to the thermal neutron fluence (integrated flux
per cm2) fn. For a thermal neutron fluence of 1 × 1018 cm−2,

[
31P
]∼1.7 ×

1014 cm−3. Besides homogeneous doping, another advantage of NTD is the
control of doping level when fn is accurately known. However, due to tech-
nological constraint, NTD is not suitable for the production of very low-
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resistivity silicon material within reasonable irradiation times. The application
of NTD to silicon doping was started in 1973 and presently, NTD silicon wafers
with a 5 Ω cm resistivity, corresponding to [P] ∼1015 cm−3, are commercially
available. Most of the high-power silicon devices and thyristors are fabricated
with NTD material because of the improvement of doping homogeneity.
Thermal neutrons can also be absorbed by 31P with a cross-section of ∼0.2
barn to give radioactive 32P, that decays with β− emission into stable 32S, with
a lifetime of 14.3 days [73]. This is the main source of temporary radioactivity
of NTD silicon, and for a planned resistivity of 5 Ω cm, the time taken to reach
a radioactivity level below 7.4 Bqg−1, considered as innocuous, is ∼45 days.

From the crystallographic point of view, a few precautions are, however,
essential before using this NTD silicon in electronic industry. The reason being
the neutron beam also contains fast neutrons which produce lattice defects
in the silicon crystal. These defects are traps for free electrons, and must be
first removed by thermal annealing of the irradiated crystals (typically near
1000◦C for a few hours) before a significant measurement of the resistivity
change due to NTD can be made. The ratio of the flux of thermal neutrons
over the fast neutrons, known as the cadmium ratio, can be roughly controlled
by wrapping the small samples in Cd foils, which have a high stopping power
for fast neutrons. Large ingots to be irradiated in light water-moderated re-
actors are usually located far from the core of the reactor so that the output
of fast neutrons is attenuated by an adequate amount of water, with Cd ra-
tios ∼500 or larger. An overview of NTD of silicon and of the advantage of
this technique over conventional doping can be found in the review by von
Hammon [82]. It must be noted that when NTD is used with germanium,
the diversity of the Ge isotopes results in the production of donors (As) and
acceptors (Ga) in a well-defined concentration ratio. This was used to obtain
crystals with a high doping homogeneity and determine the compensation
ratio for low-temperature IR bolometer [28]. Similarly, NTD of other semi-
conductors was also performed for silicon, for specific purposes including pure
research. Table 2.1 summarizes the results of this doping method.

Fast neutron irradiation has been used to produce more exotic nuclear
reactions like 28Si (n,α) 25Mg and 29Si (n,α) 26Mg, but the practical usefulness
of this method is still to be demonstrated [21]. Electrically-active impurities
can also be introduced in semiconductors by photonuclear transmutation dop-
ing. This technique, in some aspects, complementary of NTD, is based on the
absorption of h-e γ-rays (typically 30MeV) by semiconductors. The γ-ray ab-
sorption is followed by the emission by the nuclei of a neutron plus an electron
or a positron, or of a proton [46]. For instance, in the case of silicon, the two
useful nuclear reactions are 28Si

(
γ, n, β+)27 Al and 28Si (γ, p)27 Al.

The doping of epitaxial layers is realized by the thermal dissociation of
metal–organic compounds or molecules containing the doping elements and,
in general, this can be well controlled. This is shown in Fig. 2.4 by the real-
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Table 2.1. Transmutation doping in different semiconductors by the initial (n,γ)
reaction

Material Starting
element

σn

(barn)
Intermediate product Final dopant

Sia 30Si 0.11 31Si, β− decay 31P (donor)

SiCb 30Si ” as in silicon 31P ”
Gec 70Ge 3.25 71Ge, e− capture 71Ga (acceptor)

74Ge 0.52 75Ge, β− decay 75As (donor)
76Ge 0.16 77Ge, double β− decay 77Se ”

GaPd 69Ga 1.68 70Ga, β− decay 70Ge (donor)
71Ga 4.9 72Ga, ” 72Ge ”
31P 0.18 32P, ” 32S ”

GaAse Ga as in GaP Ge (donor)
75As 4.3 76As, β− decay 76Se ”

InPf 115In

{
160
40

}
116In, β− decay 116Sn (donor)

113In

{
56
2

}
114In, ”
114In, e− capture

114Sn ”
114Cd (acceptor)

P as in GaP S (donor)

InSbg In

6.2

as in InP Sn (donor)

121Sb
4

122Sb, β− decay 122Te ”
123Sb 124Sb, ” 124Te ”

ZnSh 64Zn 65Zn, e− capture 65Cu (acceptor)

The isotope distributions of the different elements are given in Appendix D
a [76], b [30], c [12], d [35], e [52], f [22], g [10], h [7]
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Fig. 2.4. SIMS profile of a δ-doped GaAs sample with three Be doping spikes.
The density of Be atoms in each layer is 4× 1012 cm−2 (after [69]). Copyright 1990,
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ization of the delta-function-like doping profiles of epitaxial layers, obtained
by growth-interrupted impurity deposition.

Be-doping profiles with full width at half-maximum of 2 nm have been
reported in GaAs by this method. For a review of δ-doping and of its interest
in III–V semiconductors, see [69].

Another method to locally dope a crystal is the implantation of the dopant.
The energy of the dopant ions determines their average penetration depth.
This allows the possibility to locate a dopant layer below the crystal surface,
and to produce the so-called buried layers of dopants. The incident ions
produce lattice defects that must be removed by thermal or laser anneal-
ing. Another role of the annealing sequence can be to control the diffusion of
the dopant atoms. To summarize, the energies and the doses of the dopant
ions as well as further annealing of the implanted zone determine the doping
level, the depth and the thickness of the doped layer.

Various techniques have been used for the diffusion of impurities in semi-
conductors [65]: the diffusion of shallow dopants from the gas phase in closed
or open tubes has been a widely-used process in semiconductor technology
to form thin doped layers. Fast diffusing transition metals like Cu, Au or Ag
can be introduced in the bulk by evaporating or electroplating a thin layer of
the metal at the surface of the sample and by annealing. Quenching of the
samples after diffusion annealing is then mandatory to limit the formation of
complexes. In other cases, a metallic element or different oxides are located in
a part of the closed tube where the diffusion takes place. This method is, how-
ever, limited to semiconductor compounds where thermal dissociation of the
material occurs at moderate temperature. The high melting point of silicon
allowed diffusion in the bulk of FAs at high temperature (1380–1400◦C). The
depth to which the FAs are introduced depends on their diffusion coefficients
as well as on the diffusion temperature and duration. This has been used,
for instance, to introduce 17O and 18O isotopes in silicon with concentrations
comparable to that of the most abundant 16O isotope [50]. More information
on the diffusion of FAs in semiconductors is given in Sect. 2.2.2.

Last but not least, the treatment of a semiconductor by a plasma con-
taining a fast diffusing and reactive impurity can lead to its introduction in
the material. This has been a widely used method to elucidate the role of
hydrogen in semiconductors (see [57]).

What is described above are general methods for doping materials, but
the introduction of a FA in a crystal at a given concentration is determined
primarily by its solubility. Moreover, it is not possible to dope any crystal
with any impurity and some of the reasons for this are discussed later in this
chapter.

2.1.4 Thermal Treatments and Irradiation

The growth and annealing of crystalline samples at high temperature produce
a steady state concentration of elementary defects, because of the thermal
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ejection of atoms from their regular sites. A slow cooling-down allows recom-
bination of the interstitial atoms into the empty sites, but a relatively fast
cooling-down or a quenching allows the most stable of these defects to survive
and/or to agglomerate at RT. This mechanism explains the origin of point de-
fects produced during the growth of some III–V and II–VI compound crystals,
as the cooling-down of the solidified fraction is not an equilibrium process. In
silicon, extended defects can be produced during the crystal growth like a
series of dislocation loops, best known as striations or swirls, which can be
decorated by oxygen in CZ silicon. Thermally-produced vacancies can also
coalesce to form macroscopic voids which can be present in CZ and FZ silicon
crystals at concentrations ∼104–107cm−3 [42, 72]. The production of shallow
acceptors, related to metallic contaminants, by quenching of germanium from
temperatures above about 800◦C to RT has been discussed in the review by
Seeger and Chik [70] and this point is further discussed in Chap. 7. Quenched-
in donors were also produced in silicon after annealing at 1000◦C [61].

A combination of proton implantation and thermal annealing of CZ or FZ
silicon has also been shown to produce shallow donors [85]. Hydrogen can also
be introduced in a region near the semiconductor surface by hydrogen plasma
treatments as long as the semiconductor surface does not suffer excessive
plasma etching.

The main native defects in III–V and II–VI compounds are vacancies and
atoms in antisites. For instance, the As antisite (AsGa) and the As vacancy
(VAs) are residual defects in LEC-grown GaAs crystals [6]. ZnO is a material
whose electrical properties are determined by native lattice defect: the pres-
ence of interstitial Zn correlated with O vacancies (VO) seems to be responsible
for the n-type electrical conductivity of many crystals, but in high-resistivity
crystals obtained by hydrothermal growth, the dominant defect is caused by
VZn [8].

Finally, annealing of CZ silicon in the 350–500◦C temperature range pro-
duces O-related electrically-active centres known as thermal donors (TDs).
The atomic structures of these TDs change as a function of the annealing du-
ration. One category, which seems to involve only O and Si atoms in the cores
of the centres, can bind two additional electrons [83]. Similar double-donor
centres can also be produced in O-doped germanium [11]. These centres are
unstable at high temperature, and are destroyed by annealing near 800◦C. In
CZ silicon containing N or H, short-time annealing in the 300–600◦C range
also produces donors known as shallow thermal donors (STDs) [2]. The spec-
tra of these H-like donor centres are discussed in Chap. 6.

2.1.5 Concentration Measurements

Hall measurements at temperatures where the shallow centres are fully ionized
give the free-carrier concentration. This concentration can be assumed to be
the net dopant concentration, but it does not determine the compensation or
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the presence of other centres of the same kind. Information on the latter cat-
egory can be obtained from Hall measurements as a function of temperature,
from which the average ionization energy can be deduced (see Fig. 1.1). As
mentioned in Sect. 1.3.2.1, with some knowledge on the RT carrier mobility,
the measurement of the RT resistivity can also be used to obtain a net impu-
rity concentration when the chemical nature of the dopant is known (see for
instance [80]). Complementary spectroscopic measurements under band-gap
light illumination can cancel the compensation effects (see Sect. 1.3.3).

Secondary-ion mass spectrometry (SIMS) can be used to detect the pres-
ence and the depth distribution of a specific impurity by etching out ions
(secondary ions) from a material with a Cs+ or O2

+ ions probe, and measur-
ing the impurity peak by mass spectrometry. This method provides a chemical
signature of the impurity, with possible interferences, however, between atomic
and molecular ions with the same masses and charges. It cannot discriminate
between the isolated impurity and complexes or precipitates in which it is
involved. Its sensitivity depends on the background of impurity. SIMS has
been used for the detection of boron acceptor in CVD diamond [39]. These
absolute methods of concentration measurements have been combined with
spectroscopic measurements, which are easier to perform, to produce spectro-
scopic calibration factors.

2.2 Structural Properties

2.2.1 Global Atomic Configurations

In crystals, impurities can take simple configurations. But depending on their
concentration, diffusion coefficient, or chemical properties and also on the
presence of different kind of impurities or of lattice defects, more complex
situations can be found. Apart from indirect information like electrical mea-
surements or X-ray diffraction, methods such as optical spectroscopy under
uniaxial stress, electron spin resonance, channelling, positron annihilation or
Extended X-ray Absorption Fine Structure (EXAFS) can provide more de-
tailed results on the location and atomic structure of impurities and defects
in crystals. Here, we describe the simplest atomic structures; more compli-
cated structures are discussed in other chapters. To explain the locations
of the impurities and defects whose optical properties are discussed in this
book, an account of the most common crystal structures mentioned is given
in Appendix B.

The classical doping of semiconductors shows that a FA can replace an
atom of the crystal at a regular lattice site. In covalent or partially cova-
lent crystals, the main parameters which must be considered for the possible
location of a FA on a substitutional site are its ability to form chemical bonds
with its neighbours and the strengths of these bonds. When a crystal is made
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up of two different elements, with the sphalerite or wurtzite structure, a sub-
stitutional FA can possibly occupy two different lattice sites. This kind of
amphoteric behaviour occurs in GaAs, where, depending on the growth con-
ditions, a Si atom can occupy either a Ga site (SiGa) where it is a donor or an
As site (SiAs) where it is an acceptor. This duality is not a general rule, how-
ever, and the doping or contamination of GaAs with carbon produces only
the CAs acceptor. In binary semiconductors, each atom type of the crystal
occupies one sublattice: for instance, in the III–V compounds, the group-III
and group-V sublattices. For different reasons, some group-V (-III) atoms can
get located on group-III (-V) sublattice, and these antisite atoms can be con-
sidered as “internal” impurity atoms. Similarly, a foreign group-V atom can
occupy a group-III site (Sb in GaAs, for instance) and act as an “external”
antisite. The location of FAs at substitutional sites is very common among
semiconductors. This does not necessarily mean that the FA takes the exact
equilibrium position of the atom it replaces as, depending on the radius and
valence of the FA, lattice distortion can occur.

Small FAs tend to occupy interstitial sites. Figure 2.5 shows possible inter-
stitial locations of isolated FAs in a III–V compound with sphalerite structure.

In the Ti sites, the impurity is located at a tetrahedral interstitial site,
where it is weakly bonded to the crystal lattice. In compounds with the spha-
lerite or wurtzite structure, with two different substitutional sites, there are
also two different Ti sites: one where the interstitial atom is nearer from atoms
of one sublattice and another where it is nearer from atoms of the other sub-
lattice (Ti III and Ti V of Fig. 2.5). As the electronic densities are different at
these two sites, the foreign interstitial atoms preferably occupy one of these
sites. This Ti location is also found for Li atoms in silicon and germanium
crystals, and as there is no chemical bond between the Li and Si or Ge atoms,
the 2s valence electron of the Li atom has a low binding energy, making in-
terstitial lithium (Lii) a shallow donor in these semiconductors (Lii cannot
form in diamond because of the very dense packing in this crystal). Another
consequence of the weak bonding and small ionic radius of the Li+ ion is its
large diffusion coefficient in silicon and germanium. A FA at the BC location
is sometimes called interstitial, but the bonding must be rearranged to allow
the foreign atom to form bonds with its neighbours. Besides a rather small
size of the atom, this location also implies a strong affinity between the for-
eign and lattice atoms. For instance, isolated H in silicon and germanium is
stable in this BC configuration at low temperature. The paradigm of such a
structure is the so-called interstitial oxygen (Oi) atom bonded to two nn Si
atoms in silicon.

An interstitial atom in an antibonding (AB) site is bonded to its nearest
neighbour lattice atom. This location is often found in H complexes involv-
ing a donor atom and results in the relaxation of the local lattice bonding.
There also exists a special interstitial structure, the di-interstitial configura-
tion. Incidentally, Fig. 2.5 shows the ternary symmetry of the sphalerite lattice
along a <111> direction. This is analogous with the wurtzite structure, where
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the <111> direction is replaced by the c-axis direction (Appendix B). In the
<111> direction, the sphalerite lattice is made of alternate layers of atoms of
the two sublattices. It can also be seen in Fig. 2.5 that the stalking sequence
is a period of three layers of atoms of the same kind (the so-called ABC
sequence).

Pairing between identical or different impurities is also found in semicon-
ductors and insulators; and is described here. Pairing of two nearest neighbour
substitutional chalcogen (S, Se and Te) atoms is found in silicon doped with
these elements [26], and this must be related to their propensity to form poly-
atomic molecules, like S8. Pairing is an efficient process; in S-doped silicon,
the concentration of S pairs is larger than the concentration of isolated S.
In diamond, two N atoms can occupy nearest neighbour substitutional sites
and this N2 pair is the dominant centre in the IaA natural diamonds [16].
In silicon and germanium, because of the relatively small size of the N atom

Fig. 2.5. High-symmetry sites (small spheres) in a III-V sphalerite lattice oriented
along a <111> vertical axis (the simple substitutional sites are not indicated). BC
bond-centred, AB antibonding, Ti tetrahedral interstitial, H hexagonal sites are
located along the <111> axis. The Ti and AB sites are noted according to the
atoms closest to these sites. The C site, midway between two next nearest neighbours
along a <110> axis, is observed according to these atoms. The M site (not shown)
is midway between two adjacent CIII and CV sites and also midway between a BC
site and a H site



34 2 Origins and Atomic Properties of H-Like Centres

Fig. 2.6. Model of the split nitrogen pair in the silicon crystal. In the perfect crystal,
the Si atoms 3, 4, 5, 6, and 7 form a zigzag chain along a <110> direction in a {110}
plane. The introduction of the two N atoms leads to the breaking of the Si-Si bonds
between atoms (3,4), (4,5) and (5,6), and to the bonding of one N to atoms 3, 4 and
5 and of the other N to atoms 4, 5 and 6. Courtesy N. Fujita

compared to the lattice atoms and also because of the high strength of the
N2 molecular bond, when introduced in silicon and germanium, most of the
nitrogen goes in the form of a nitrogen split pair (N2i) depicted schematically
in Fig. 2.6. In this configuration, the two N atoms are located at equivalent
sites which are distorted interstitial ones. Each of the two Si atoms separating
the N atoms (atoms 4 and 5 in Fig. 2.6) is bonded to the two N atoms in order
to realize the trivalent bonding of the N atoms, making this pair electrically
inactive.

This kind of bonding bears similarities with that for divalent Oi. The ex-
istence of trivalent bonding of oxygen in CZ silicon has been discussed in
relation with the possible structures of oxygen TDs produced by annealing
in the 350–550◦C range [17]. In this configuration, normally divalent oxygen
becomes electrically active and acquires a donor character. A limiting case
of pairing is observed in the interstitial hydrogen molecule found in differ-
ent semiconductors after hydrogen–plasma treatment, which is a nearly free
rotator ([32], and references therein). In GaP, N is an isoelectronic FA with
a relatively high solubility, and at concentrations larger than ∼1017 cm−3, it
can first form the so-called NN1 pair due to nnn NP atoms and when in-
creasing [N] to more distant NN pairs, whose spectroscopic properties were
reported in [79]. Pairing can also be attributed to the interaction between
atoms of opposite type, for instance the donor–acceptor substitutional pairs
found at high dopant concentrations in silicon [54]. Another kind of pairing is
a mixed one, between a substitutional acceptor atom (actually a negative ion)
and a positively charged interstitial atom. The Lii+Bs

− pair is an example
of such a configuration, but many other pairs involving interstitial transition
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metal ions also exist. The mobility of interstitial atoms produced by electron
irradiation can also result in pairing: in electron irradiated silicon containing
carbon, evidence of the presence of a mixed CiCs pair has been obtained,
related to the difference of electronic charge of the two atoms. As mentioned
before, the H2 molecule is a limiting case of homonuclear pairing, but when
introduced in semiconductors as a positive or negative ion, hydrogen can pair
with many dopants and impurities due to Coulomb interaction, producing
hydrogen-related vibrational spectra.

2.2.2 Solubilities and Diffusion Coefficients

2.2.2.1 Solubility

In many cases, impurities and dopants are introduced in the molten phase, in
which they have a definite solubility Nsol-l. In the solid phase, near the melt-
ing point, the solubility Nsol-s decreases with respect to the liquid phase and
the ratio Nsol-s/Nsol-l, the segregation coefficient, is usually less than unity.
The solubility of impurities in crystals can be considered, in most cases, as the
maximum concentration of isolated FAs which can be introduced in a crystal
before precipitation, formation of cluster of a mixed compound (e.g., SiC in
C-doped silicon) or of an alloy. The solubility of an impurity is conditioned by
its atomic radius, electronic structure, site(s) in the crystal, eventual binding
energies with the atoms of the crystal and tendencies to form a complex or
to form pairs. As it generally requires energy to introduce an impurity in a
crystal, solubility is a temperature-dependent (thermally activated) process
characterized by an activation energy (the heat of solid solution), and for this
reason, it is larger near the melting point of the crystal than at RT. When
solubility is mentioned, it is mandatory to know the temperature it corre-
sponds to. For solubilities measured near RT, one must distinguish between
the equilibrium solubility, corresponding to the cooling down of crystals after
the introduction of the FAs under conditions close to thermodynamic equi-
librium, and the non-equilibrium solubility. In the second case, the apparent
solubility is larger than the equilibrium solubility and the crystal is oversatu-
rated. This situation is encountered naturally for Oi in CZ silicon. There have
been many studies of solubility of Oi in silicon [58] and the equilibrium solu-
bility [Oi]s between the melting point (1414◦C) and 850◦C can be reasonably
represented by [51]:

[Oi]s (cm−3) = 9.0 × 1022 exp[−1.52 (eV) /kBT ] (2.1)

Within these limits, the solubility calculated using expression (2.1) varies be-
tween 2.6×1018 near the melting point and 1.4×1016 cm−3 at 850◦C. There is
no exact value of the equilibrium solubility of Oi at RT, but it is expected to be
lower than the value at 850◦C. The actual value of [Oi] measured at RT in CZ
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silicon is in the 1018 cm−3 range, showing that this material is oversaturated
with [Oi]. Comparable values have been reported in O-doped germanium [41].
In silicon, nitrogen is not a residual impurity because its solubility is much
lower than that of the other group-V elements and of carbon and oxygen.
One of the reasons for this can be the fact that its most stable configuration
in silicon is the nitrogen split pair presented above. As nitrogen doping im-
proves the mechanical properties of silicon, its doping has been extensively
investigated. Non-equilibrium solubilities of dopants can also be deliberately
reached after implantation by solid-phase-epitaxial regrowth, flash or laser
anneals of the implanted zone. These fast annealing procedures produce a lo-
cal non-equilibrium situation which is frozen at RT because of the very short
cooling down duration. The metastable solubilities obtained by such anneal-
ings can be one order of magnitude larger than the equilibrium solubilities
[19]. For group-III and group-V dopants in silicon, the smaller the dopant
atom, the higher is the solubility. This also holds true for other materials, and
the solubility of B in synthetic CVD diamond can reach ∼1022 cm−3 (∼6%
at.), leading to metallic conductivity of these heavily-doped diamonds [5]. An
order of magnitude of the equilibrium solubility of isolated P in silicon at RT
is 1×1020 cm−3 (0.2 atomic %); it is larger than that of Sb

(∼1 × 1019 cm−3
)

and Bi
(∼1 × 1017 cm−3

)
. The radius of the impurity is not the only rele-

vant factor: the P and S atoms have comparable covalent radii and in silicon,
they are single and double donors, respectively, inducing comparable distor-
tions in the silicon lattice. However, the admitted RT solubility of S is only
3× 1016 cm−3. This is partially related to the chemical bonding arrangement
of S, for which tetrahedral bonding produces distortion of the electron density.
Another contribution is the propensity of sulphur to form a variety of com-
plexes in silicon (see Sect. 6.3.1.1). The problem of FA solubility in a crystal
can be complicated by the fact that the same atom can sometimes occupy
either interstitial or substitutional sites, like some TMs in silicon. In such a
case, the apparent solubility is higher for the interstitial location. Globally,
the TMs are characterized by a solubility in the 1016–1017 cm−3 range, and
by diffusion coefficients significantly larger than those of the substitutional
shallow donors and acceptors [68]. The interstitial solubility of TMs and of
group-IB elements in silicon also depends on the concentration of substitu-
tional acceptors in the material because, as mentioned before, they can form
interstitial–substitutional pairs with these acceptors. This is also true for Lii,
which form pairs with substitutional acceptors, but there seems to be no
consensus on the room temperature solubility of Lii in FZ silicon. A value
∼1016 cm−3 can be inferred from the conclusions of [87]. As a rule, the solu-
bility of elements of groups II and VI in silicon decreases compared to that
of elements of groups III and V, with the notable exception of O and H. The
solubility of C in III–V compounds has been thoroughly investigated as in
these crystals, C is in some cases a pollutant and usually a p-type substitu-
tional dopant with a rather large solubility limit (in the 1020 cm−3 range for
GaAs). In silicon, the solubility of substitutional C at the melting point is
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∼4 × 1017 cm−3 [56] and it is found to be higher in CZ silicon than in FZ
silicon because the lattice contraction induced by Cs is compensated by the
lattice dilatation induced by Oi. In crystals supersaturated with C, annealing
can produce precipitation of SiC nanoparticles [4].

Besides the substitutional/interstitial location of the same FA, other cen-
tres can exist where more than one FA are involved, like the nn substitutional
pairs for chalcogens in silicon or nitrogen in diamond so that in these cases,
one must consider a universal value of solubility of the FAs.

In most crystals, supersaturated with substitutional or BC impurities,
these atoms are usually immobile at room temperature because their diffu-
sion coefficients are small at this temperature. However, when annealing is
performed at relatively high temperatures where materials are saturated with
impurities, precipitation or formation of complexes involving impurities can
take place because of their migration. This is the state in CZ silicon where
silica precipitates are produced during annealing at 800◦C. A limiting case is
achieved when the host crystal and the impurity are partially or fully miscible.
This is the case with Ge in silicon, giving at high Ge concentrations GexSi1−x

alloys, and also with most of the group-III FAs in III–V compounds, like Al
in GaAs giving AlxGa1−xAs alloys.

2.2.2.2 Diffusion Coefficients

The diffusion of dopants in semiconductors has been briefly discussed in
Sect. 2.1.3. At an atomic scale, the diffusion of a FA in a crystal lattice
can take place by different mechanisms, the most common being the vacancy
and interstitial mechanisms in silicon and germanium (see for instance [25]).
The interstitial/substitutional or kick-out mechanism, which is an interstitial
mechanism combined with the ejection of a lattice atom (self-interstitial) and
its replacement by the dopant atom is also encountered for some atoms like
Pt in silicon.

When the constant surface concentration of an impurity with diffusion
coefficient D is Nis, its concentration Ni (x, t) at depth x from the surface of
a plane sample of thickness d� x after a diffusion time t is given in an ideal
case by:

Nix = Niserfc
x

2
√

Dt
(2.2)

where the complementary error function erfc u = (1 − erf u) = 2√
π

∫∞
x
e−t2dt.

A table of the error function erf u can be found p. 142 of [65].
The temperature dependence of the diffusion coefficient or diffusion con-

stant is generally expressed as:

D (T) = D0 exp[−ED/kBT ] (2.3)
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Table 2.2. Values of diffusion parameters of some representative foreign atoms in
silicon

Ref. D0

(
cm2 s−1

)
ED (eV) D

Al a 1.8 3.2 2 × 10−11 (1200◦C)
P b 5.3 3.69 1.2 × 10−12 ”
S c 0.047 1.8 3.3 × 10−8 ”
Lii d 2.5 × 10−3 0.655 4.4 × 10−9 (300◦C)
Cui e 4.5 × 10−3 0.39 1.7 × 10−6 ”
Fei f 9.5 × 10−4 0.65 1.5 × 10−6 (900◦C)
Tii g 0.0145 1.79 1.1 × 10−8 (1200◦C)
Pt h 5.9 3.97 1.5 × 10−13 ”
Oi i 0.13 2.53 2.9 × 10−10 ”
C j 1.9 3.1 4.7 × 10−10 ”

D is calculated at the temperature indicated in parentheses using expression (2.3)
a [63], b [48], c [62], d [60], e [49], f [38], g [33], h [68], i [51], j [55]

where ED is an activation energy related to the diffusion mechanism. In
Table 2.2, the values of D0 and ED are listed for a few representative dopants
and impurities in silicon. Values of D for other FAs in silicon can be found
in [20].

The value of the diffusion coefficients of impurities and dopants in semicon-
ductors can be modified by the presence of compensating impurities or of crys-
tal dislocations so that the interpretation of diffusion measurements requires
some judgment. It must also be mentioned that as the diffusing species can
be ions, the diffusion coefficient can be modified by an electric field.

2.2.3 Lattice Distortion and Metastability

FAs in a crystal can induce a local deformation of the lattice. When they are
substitutional, this is caused by the difference between their atomic radii and
those of the atoms they replace and also by their chemical affinity with the
surrounding atoms. According to Vegard’s law,1 substitutional atoms having
a smaller (larger) atomic radius than the atom they replace should produce
a uniform lattice contraction (expansion) of the crystal proportional to their
concentration. With reference to the unperturbed lattice parameter a0 of cubic
crystal, the change Δa of the lattice parameter produced by a concentration
Nf of FAs can be expressed as:

Δa
a0

= βfNf , (2.4)

1 Vegard’s law is an empirical rule which holds that an approximate linear relation
exists between the crystal lattice parameter of an alloy and the concentration
of its constituent elements (L. Vegard, Z. Kristallogr. 67, 239 (1928). See also
A.R. Denton, N.W. Ashcroft, Phys. Rev. A 43, 3161 (1991)).
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where βf is a lattice distortion coefficient. For substitutional impurities in
covalent or partially covalent cubic crystals, the sign and order of magnitude
of βf can be obtained by replacing Δa by the difference between the covalent
radii of the impurity and of the host crystal, a0 by the intrinsic atomic sepa-
ration in the host crystal and Nf by the number of available sites for impurity
sites per unit volume. The value of this coefficient for substitutional boron in
silicon, calculated from the atomic radii, is βB(calc) ∼ −5×10−24 cm3 atom−1.
For dopants with a covalent radius showing a large difference from that of the
atom it replaces, like Tl or Bi in silicon, or P in diamond, this distortion limits
their solubility. Another kind of local distortion encountered for substitutional
impurities is the lowering of symmetry, like the one for isolated N in silicon
or diamond, where the atom is displaced along a N–X bond (X is an atom of
the crystal) along a <111> direction. A local distortion can also reduce the
symmetry of a centre through the Jahn-Teller effect, as for the atomic vacancy
in silicon: this defect should normally display tetrahedral symmetry, but it is
lowered to D2d, and can be detected in the paramagnetic states by the depen-
dence of the ESR spectra on the magnetic field orientation (see Sect. 1.3.5).
Lattice distortion related to the bond lengths can also occur for an intersti-
tial atom strongly bonded to atoms of the crystal in the BC configuration
of Fig. 2.6. In this particular case, if the structure remains linear, the two nn
atoms of the crystal can be pushed out of their equilibrium positions when
the lengths of the new bonds exceed the equilibrium nn separation.

When the local effect of distortion and the impurity concentration are
large, a difference in the average lattice parameter as a function of the
impurity concentration can be measured with appropriate X-ray diffrac-
tion techniques. In silicon, values of βB = −5.2 × 10−24 cm3 atom−1 and
βO = 4.4 × 10−24 cm3 atom−1 were measured for B and Oi, respectively
[34, 75, 86]. Incidentally, a good agreement is found between the measured
value of βB and the value predicted from Vegard’s law. With [Oi] ∼ 1018 cm−3

found mostly in the CZ silicon crystals, the value of βO corresponds to a rela-
tive increase of the lattice parameter of 4.4×10−6 compared to high-purity FZ
silicon. The distortion induced by substitutional carbon and silicon in GaAs
has also been investigated by X-ray diffraction [3, 18].

The lattice distortions induced by substitutional impurities can also be
measured locally from the distance between an impurity atom and its nearest
neighbours using EXAFS [64]. The results of the EXAFS experiments require
sensible interpretations as they do not necessarily follow simple rules like the
addition of the covalent radii of the elements involved [43, 84]. Local volume
changes of group-V and group-VI donor atoms in silicon have been obtained
indirectly from a comparison between the measured spacings of the absorption
lines of these donors with the calculated values [59] and the procedure is
discussed in Sect. 6.2.1. Interesting conclusions regarding the colour change of
ruby as a function of the chromium concentrations have also been drawn from
EXAFS measurements [23]. Global lattice expansion or contraction can also
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be measured, for instance by X-ray diffraction, in doped layers epitaxied on an
undoped substrate of the same material from the positive or negative interface
stresses, depending on the atomic radius of the doping atom with respect to
that of the atom it replaces. In some cases, first-principle calculations have
given a good insight of the local distortion induced by a foreign atom [27,66].

In crystals with a high concentration of shallow donors or acceptors, an-
other contribution to the volume change at room temperature is the presence
of free carriers in the continuum. This effect is related to the minimization of
the total energy of the crystal compared to that of the undoped crystal ([24]
and references therein). This purely electronic effect has been considered, to-
gether with the eventual presence of a high concentration of native defects, in
the variation of the lattice parameter of Si-doped GaAs conducting substrates
used in the electronic industry [3].

For centres with different charge states, the distortion can be modified by
changing the electronic density in the vicinity of the centre. Thus, a change
of the charge state of a centre can produce a local lattice relaxation. It is
usual to describe the electronic energy states of these centres as a function
of configuration coordinates. When a change of the charge state induces lat-
tice relaxation, the equilibrium configuration coordinates can differ in the two
states. This situation is represented in Fig. 2.7 in a lattice configuration coor-
dinate diagram, where the energies are represented approximately in 1D by
parabolas as a function of a general lattice (configuration) coordinate repre-
senting the lattice relaxation.

The optical transition (optical ionization energy Eio) takes place without
lattice relaxation while the thermal ionization energy Eith corresponds to an
equilibrium configuration. Figure 2.7 shows that in this particular situation,
Eith is smaller than Eio. The difference is the Franck–Condon shift EFC. This
diagram will be used later with some additions in the discussion of the coupling
of the electronic transitions of impurities with the phonon modes of crystal.

It should be noted that, within the same global charge state of a centre,
due to differences in electronic densities, lattice relaxation can also occur
between the ground state and excited states, with the same consequences of
equilibrium configuration coordinates.

A limiting case of distortion is the occurrence of a second atomic con-
figuration of a centre in the same charge state. The idea of this possibil-
ity was not obvious at first sight, but experimental results including optical
spectroscopy results have led to admit this situation. When two such non-
degenerate atomic configurations of a centre coexist, the one with the lowest
energy is the stable one while the other is said to be metastable. There is
an energy barrier between the two configurations, and its value determines
the temperature domain of the metastability. The corresponding centre is
often said to be bistable. A relatively well-characterized bistable centre in-
volves a Bs–Sii pair, produced in B-doped silicon by electron irradiation at
low temperature. Based on experimental results, it has been known for some
time as the interstitial B (Bi) centre [29]. However, calculations have shown
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Fig. 2.7. Configuration coordinate diagram of the electronic energies of an impurity
centre whose lattice equilibrium configurations in the ground and ionized states are
represented by configuration coordinates Qgr and Qfree with different values. The
thermal ionization energy Eith of such a centre is smaller than the optical ionization
energy Eio by the Franck–Condon energy EFC

conclusively that the centre results from the trapping of a Sii atom produced
by electron irradiation of a substitutional B atom, without the usual replace-
ment of the substitutional acceptor atom by the Si self-interstitial [1,77]. In the
positive charge state, the stable configuration is a BsSii pair with C3v symme-
try and the metastable configuration is a BSii pair with an off-centre B atom
and a resulting C1h symmetry. On the contrary, in the negative charge state,
the stable configuration is the one with symmetry C1h. The first members of
the O-related TDs series produced in O-containing silicon and germanium by
thermal annealing in the 300–500◦C range display metastable properties, with
consequences on the observation of the electronic and vibrational spectra of
these centres.

The change of configuration of a centre induced by its transition into a
metastable state produces a lattice distortion which can result in a macro-
scopic volume change. Transient effects due to the photocreation of electron–
hole pairs in n-type GaP and SI GaAs have been attributed to this
effect [74].
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3

Bulk Optical Absorption

The absorption of impurity centres is observed in the transparency domains of
semiconductors and insulators, which are limited by their intrinsic electronic
and vibrational absorptions. Further, a brief account of the relevant physical
processes and an overview of the intrinsic optical properties of these mate-
rials and of their dependence on temperature, pressure and magnetic field is
given in this chapter. Some semiconductors have been or are now synthesized
in quasi-monoisotopic (qmi) forms because of improvements in their physical
properties like thermal conductivity. A comparison of their intrinsic optical
properties with those of the crystals of natural isotopic composition is also
given. The absorption related to free carriers, due mostly to doping is also
discussed at the end of this chapter. A detailed account of the optical prop-
erties of semiconductors can be found in the books by Yu and Cardona [107]
and by Balkanski and Wallis [4].

3.1 Refractive Index and Dielectric Constant

One important macroscopic quantity related to the optical properties of non-
metallic solids is their refractive index, which is closely related to their di-
electric constant. Maxwell’s equations for electromagnetic waves propagating
in absorbing materials (see for instance [43]) lead to wave equations for the
electric and magnetic fields in the material, and a solution for the amplitude
of one component of these fields is:

Uj = U0exp [iω (t− z/v)] (3.1)

for an electromagnetic wave of pulsation ω propagating in the z direction.
As the electromagnetic plane waves are transverse, Uj corresponds to the Ux

or Uy components of the field. In (3.1), the complex phase velocity v of the
wave is:

v = [μεμ0ε0 − iσμ0μ/ω]−
1
2 (3.2)



46 3 Bulk Optical Absorption

where ε0 and μ0 are the permittivity and permeability of vacuum, and ε and
μ the relative dielectric constant and permeability of the material with an
electrical conductivity σ at pulsation ω. Velocity v in the material is c/ñ
where c is the velocity of the electromagnetic waves in vacuum and ñ the
complex refractive index at pulsation ω. The quantity ñ2 is identified with
the complex dielectric constant ε̃, with real part εR or ε1 and imaginary part
εI or ε2. For vacuum, ñ, ε and μ are unity and σ is zero so that c = (ε0μ0)

−1/2.
In most cases, at optical frequencies, the permeability of the material can be
taken as unity and

ñ2 = εR − iσ (ω) /ωε0 (3.3)

Generally, it can be shown that:

εR (ω) = 1 + P
2
π

∞∫

0

ω′εI (ω′) dω′

ω′2 − ω2
(3.4)

with a similar expression for εI. Here, P denotes the principal part of the
integral, i.e. the singular point ω′ = ω is omitted from the integration. These
expressions are known as the Kramers–Kronig relations. The complex refrac-
tive index ñ is written as n + ik where n is the real refractive index and
k the extinction coefficient or absorption index. From the above definitions,
εR = n2 − k2 and εI = 2nk = σ (ω) /ωε0.

The component Uj of expression (3.1) can then be written as:

Uj = U0 exp [iω (t+ nz/c)] exp [−ωkz/c] (3.5)

In this expression, exp [−ωkz/c] represents the attenuation (or absorption)
of the electromagnetic wave component. As the energy flow is proportional
to the product of amplitudes of the components of the electric and magnetic
vectors, and since both contain the term exp [−ωkz/c], the energy absorption
is proportional to exp [−2ωkz/c]. In absorption spectroscopy, one generally
uses the absorption coefficient K defined by:

K = 2ωk/c (3.6)

With this definition, the energy absorption is proportional to exp [−Kz]. The
reflectivity R of an electromagnetic wave or radiation propagating in vacuum
and normally incident on the plane boundary of a material with complex re-
fractive index ñ is (ñ− 1)2 / (ñ+ 1)2. Its real part is the standard reflectivity:

R =
(n − 1)2 + k2

(n + 1)2 + k2
(3.7)

and whenever k is small, as it is generally the case for impurity absorption, R
is (n− 1)2 / (n+ 1)2. For diamond, silicon, and germanium, the low-frequency
reflectivity is 0.17, 0.30, and 0.36, respectively.
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In the transparency regions, the transmission through a plane parallel
sample as a function of the wavelength λ of the radiation produces a chan-
nelled spectrum when the measurement is performed with a spectral bandpass
smaller than the fringe spacing. Theoretically, Tmax/Tmin of the transmission
fringes is (1 +R)2 / (1 −R)2. The transmission maximums and minimums
correspond to constructive and destructive interferences, respectively, between
beams transmitted with increasing path differences. Under normal incidence,
the path difference between two adjacent extrema is 2nd where d is the sam-
ple thickness. For adjacent transmission maximums at wavelengths λ1 and
λ2 (λ1 > λ2), 2nd = Nλ1 = (N + 1)λ2, where N is the order of interference.
Subsequently, one derives 2nd = λ1λ2/ (λ1 − λ2) and thus a value of n can
be obtained; but it must be realized that a linear contribution of λ to the
refractive index cannot be detected by this method. When the spectral band-
width used in spectroscopic measurements is larger than the spacing of the
interference fringes, they are averaged out. However, the existence of multiple
surface reflections must still be taken into account and, from the summation
of a geometric series, the average transmittance T of a moderately absorbing
sample under normal incidence can be calculated as:

T =
(1 −R)2 u
1 −R2u2

(3.8)

where u = exp [−Kd]. Similarly, the normal reflectance R and the absorbance
A are:

R =
R
[
1 + (1 − 2R) u2

]

1 − R2u2
and A =

(1 −R)
[
1 −Ru2 − (1 −R) u

]

1 − R2u2

For pure elemental semiconductors like silicon, the strong electronic absorp-
tion at energies above Eg produces a small non-linear dispersion of the re-
fractive index below Eg: in silicon, n = 3.57 near Eg at room temperature
(RT) and it steadily decreases to ∼3.42 for wavelengths near 12μm and stays
close to this value down to radio frequency energies (see also [20]). For these
elemental crystals, the dielectric constant ε at energies below Eg is real and
equal to n2. The refractive index is isotropic for cubic crystals, but for crys-
tals with one anisotropic axis, like those of the wurtzite type, the refractive
index for the electric field component of the radiation parallel to this axis(
n//

)
is slightly different from that for the component perpendicular to this

axis (n⊥).
To introduce changes in the dielectric constant related to phonon modes in

compound crystals, it is relevant to consider the classical interaction between
an atomic system with resonant frequency ω0 and an electromagnetic field
E = E0 exp [iω t]. The 1-D equation of motion for such a system, also known
as a Lorentz oscillator, is:

m̄ẍ+ m̄γẋ+ m̄ω2
0x = qE (3.9)
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where m̄ is an average mass, γ a damping constant, and q an effective charge.
This equation allows derivation of an expression for the macroscopic resonant
polarization Pres = Nqx of such a system, which is the number N of dipoles
qx per unit volume induced by the field E:

Pres =
Nq2E

m̄ (ω0
2 − ω2 − iγω)

(3.10)

This is a general expression and it can be used as a model for the classical
treatment of electronic as well as atomic oscillators (from here and unless
otherwise specified, we omit the tilde indicating complex quantities). When
several kinds of oscillators coexist in the crystal, the total polarization is ob-
tained by summing the polarizations of the different entities.

Having derived the microscopic expression for polarization, the focus is
now on the macroscopic formulation of the dielectric constant for a cubic
crystal. The relative dielectric constant εr (the ratio of absolute dielectric
constant εabs with ε0) can be introduced through the average electric field E
acting on a crystal unit cell as:

P = (εabs − ε0) E = ε0 (εr − 1)E (3.11)

This expression can also be written as P = ε0χ
(1)E, where χ(1) is the linear

susceptibility of the crystal. Field E takes into account the polarization P of
the crystal induced by an external field E0 and, for a crystal with a spherical
shape, E is simply E0 − P/3ε0 [49].

Alternatively, the relative dielectric constant is then defined as:

εr =
ε0E + P

ε0E
(3.12)

The polarization induces a depolarization field E1 = −P/3ε0 which is the
average electric field on the volume of a crystal unit cell. The local field is
then:

Eloc =
(εr + 2)E

3
(3.13)

The proportionality coefficient between the polarization and the local field is
the polarizability of the crystal α = P/Eloc, given by:

α =
3ε0 (εr − 1)
εr + 2

(3.14)

This expression is known as the Clausius Mossotti relation. To simplify, the
polarizability of the crystal can be taken as the sum of the electronic and
atomic contributions. The electronic polarizability, αelec, corresponds to the
coupling of the electronic cloud of the otherwise immobile atoms with the
electromagnetic wave, and it is a high-frequency process, whose contribution
can be considered more or less frequency-independent below Eg. The atomic
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polarizability αat corresponds to the coupling of the vibrational motion of the
ions with the electric field. Assuming properly averaged ionic or atomic mass
M and resonant frequency ω0, αat takes the general form:

αat =
Nq2

M (ω2
0 − ω2 − iγω)

(3.15)

For frequencies below Eg, the contribution of the two effects leads to a
frequency-dependent dielectric constant ε (ω) given by:

ε (ω) − 1
ε (ω) + 2

=
αelec + αat

3ε0
(3.16)

In compound crystals, the ω0 values considered are ωLO, the frequency of
the longitudinal optical phonons on the high-energy (h-e) side, and ωTO, the
frequency of the transverse optical phonons, on the low-energy side. The di-
electric constant at frequencies above ωLO is denoted as ε∞ while that below
ωTO is denoted as εs (the index s represents static, despite the fact that εs
shows a small dispersion between the value just below ωTO and the one at ra-
diofrequencies1). It can be seen from expressions (3.14) and (3.15) that above
ω0, the ionic contribution decreases such that ε∞ is smaller than εs. Typical
values are given in Table 3.1.

A consequence of the Kramers–Kronig relation is that, for a semiconductor
or an insulator, the static dielectric constant εs is:

εs = 1 +
2
π

∞∫

0

2nk
dω
ω

(3.17)

This expression shows that a high value of εs or the refractive index necessi-
tates a large amount of absorption throughout the electromagnetic spectrum.
This is the reason why crystals with a low Eg, for which the fundamental
electronic absorption extends far in the infra-red, display high values of the
dielectric constant, as shown in Table 3.1. There can be discrepancies in the
values reported in different references for the dielectric constants εs and ε∞
because they present a small variation with energy.

For compound crystals, the lattice contribution, which must also be taken
into consideration in the total absorption, decreases with the covalent char-
acter, which is larger for the III-V compounds than for the II-VI compounds.

The specified values of εs are considered as the low-frequency value of
n2. Usually, the low-temperature dielectric constant (or refractive index) is
slightly lower than that at RT [88]. LHeT values of εs for group-IV crystals
have also been obtained indirectly from a comparison between experimen-
tal and calculated line spacings of shallow donor impurities (see Table 5.3).
1 The notation εs is preferred compared to ε0 to avoid confusion with the permit-

tivity of free space.
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Table 3.1. Correlation between the RT band gap Eg (eV) and dielectric constants
of some semiconducting and insulating crystals for energies below Eg

Crystal Eg ε∞ εs Crystal Eg ε∞ εs

MgO (NaCl) 7.6 2.9 9.8 3C-SiC (s) ∼2.3 6.90 9.72
c-BN (s) 6.4 4.5 7.1 ZnTe (s) 2.28 7.28 9.67
AlN (w) 6.2 4.84 8.5 GaP (s) 2.27 9.11 11.11
Cdiam (d) 5.48 5.86 5.70 AlAs (s) 2.15 8.16 10
w-ZnS 3.8 5.13 9.6 CdSe (w) 1.71 6.2, 6.3 10.16, 9.29
c-ZnS 3.68 5.1 8.0 AlSb (s) 1.62 9.88 11.22
w-GaN 3.44 5.8, 5.35 9.5 CdTe (s) 1.53 6.9 11.00
c-GaN 3.30 5.3 9.7 GaAs (s) 1.42 10.89 13.08
ZnO (w) 3.4 3.75, 3.7 8.75, 7.8 InP (s) 1.34 9.52 12.56
2H-SiC (w) 3.3 7.23, 6.85 Si (d) 1.12 12.43 11.68
6H-SiC 2.86 6.52, 6.70 9.66, 10.03 GaSb (s) 0.73 14.4 15.7
ZnSe (s) 2.67 5.4 7.6 Ge (d) 0.67 16.8 15.98
CdS (w) 2.49 5.32 9.12, 8.45 InAs (s) 0.35 12.25 15.12
AlP (s) 2.45 7.54 9.8 InSb (s) 0.18 15.7 17.9

In the parentheses, d, s and w stand for diamond, sphalerite, and wurtzite, respec-
tively. For elemental crystals, ε decreases continuously from ε∞ to εs. For compound
semiconductors, ε∞ is for energies above ELO and εs for energies below ETO. In
wurtzite-type crystals, the first and second values of the dielectric constants are for
E//c and E⊥c, respectively

The dispersion of the refractive index of alkali halides and of other mate-
rials at energies above ω0 has been used to produce reasonable monochro-
matic radiation. In prism monochromators, a parallel beam of polychromatic
radiation incident on a prism made from these materials is dispersed, with
angular deviations depending on the dispersion ω2dn/dω of the refractive
index with the photon energies. Before the advent of grating monochroma-
tors and Fourier transform spectrometers, the prism monochromators were
widely used in optical spectroscopy and they are still used for specific exper-
iments.

What has been presented above is based on the interaction of electrons or
atoms with the electric field through a quadratic harmonic potential. When
potentials including higher-order terms are used, the polarization, electric
dipole moment, and optical susceptibility include, in turn, higher order terms
whose contributions are the basis of non-linear optics and anharmonic effects.

3.2 Intrinsic Lattice Absorption

3.2.1 One-Phonon Effect

Like molecules, crystals can also vibrate as a whole. Their vibrations can be
excited thermally, and they can display a residual vibrational motion at zero



3.2 Intrinsic Lattice Absorption 51

Kelvin (the zero point motion). This latter effect is explained by quantum
mechanics, and it can in turn explain absorption features of impurities in
crystalline matrices. The presentation of the fundamental vibrational modes
of crystals is based on the harmonic approximation, where one only considers
the interactions between an atom or an ion and its nearest neighbours. Within
this approximation, an harmonic crystal made of N ions can be considered as
a set of 3N independent oscillators, and their contribution to the total energy
of a particular normal mode with pulsation ωs (q) is:

(nks + 1/2) hωs (q) (3.18)

where nks is any positive integer value or 0. The analogy with the normal
modes of the radiation field in a cavity, where one does not speak of quantum
number of excitation modes, but rather of photons, has led to call phonons as
the corresponding excitations of harmonic crystal. This has also been extended
to situations involving anharmonicity.

The periodic pattern of displacement of the atoms about their equilibrium
positions can be characterized by a wavelength λ, which can take any value
between infinity (the average size of the crystal) and the lattice constant a
(for simplicity, we consider a cubic crystal). In a given direction of propa-
gation of the deformation, it is convenient to use the propagation or wave
vector q, with an amplitude q = 2π/λ. This vector has the periodicity of the
reciprocal lattice, and the study of the q-dependent physical quantities can be
restricted to the first Brillouin zone (BZ). The fundamental energy spectrum
of the crystal is determined by the pulsations ω of the individual atoms or
ions of crystals as a function of the propagation vector q. These pulsations,
or vibrational modes, are multi-valued functions of q that can be character-
ized by two kinds of dispersion curves. Those with pulsation (or energy) 0
at q = 0 (long wavelengths) show a nearly linear behaviour near the origin,
and their proportionality coefficients are the sound velocities in the crystals.
Hence, they are called acoustic modes, and they correspond to neighbour-
ing atoms vibrating in phase near q = 0. The energy spectrum of crystals
with more than one atom per unit cell also displays dispersion curves with a
maximum energy at q = 0, corresponding to vibrational modes where neigh-
bouring atoms have opposite displacements. When these atoms are different,
the resulting first-order dipole moment gives rise to optical absorption, and
the corresponding dispersion curves are therefore called optic modes. Along
the main symmetry directions of the crystals, one differentiates between the
longitudinal acoustic and optic modes (LA and LO), where the atomic dis-
placements are parallel to q and transverse acoustic and optic modes (TA
and TO) where they are perpendicular to q. For random orientations, the dis-
tinction between pure longitudinal or transverse modes is generally no longer
valid. There are two transverse modes corresponding to the propagation of the
atom along mutually perpendicular axes, and they can be either degenerate
or not, depending on the symmetry of the branches in the crystal considered.
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As already mentioned, because of the lattice periodicity of the crystals, the
dispersion curves are studied for propagation vectors lying only in the first
BZ of the crystal.

In elemental (homonuclear) crystals with cubic symmetry, the LO and TO
branches are degenerate at q = 0 (the Γ point of the BZ), and the phonons
at that point are denoted as O (Γ). The situation is different in compound
crystals, where the energy of the LO branch is larger than that of the TO
branch. This difference in compound crystals is attributed to the contribution
of an electric field effect to the restoring forces, and it can be shown that at
q = 0:

ω2 (LO) =
εs
ε∞

ω2 (TO) (3.19)

This expression is known as the Lyddane–Sachs–Teller relation [61].
The creation of an optical phonon by photon absorption requires the cou-

pling of electromagnetic radiation with a dipole moment. For elemental crys-
tals, the two neighbouring atoms are the same and there is no first-order
dipole moment, hence no one-phonon absorption is observed, but the oppo-
site displacement of the atoms results in a change of the polarizability of the
crystals. This change can be detected by Raman scattering with a frequency
shift corresponding to the O (Γ) frequency, also known as the Raman fre-
quency of the crystal. This is also true for compound crystals, and the Raman
scattering of both LO and TO modes is detected in these crystals [66]. The
one-phonon absorption is only observed in compound crystals. The radiation
that is incident normal to the crystal surface can only couple with the TO
modes, and to comply with momentum conservation, the wave vector q of the
phonon so created is zero. This absorption is very strong and the refractive
index of the crystal near TO frequencies becomes complex, with an imaginary
part corresponding to absorption. The high value of the absorption index k
results in a nearly metallic reflectivity.

The study of the one-phonon density of states of crystals has shown the
existence of singularities corresponding to critical points (CPs) located within
or at the surface of the BZs along particular directions (the BZs for diamond
and sphalerite structures are the same as the one shown in Fig. B2 of Ap-
pendix B). They arise from the topology of the ωt (q) dispersion curves, where
the index t refers to a given phonon branch. It can be shown that the density
of vibrational state g (ω) can be written as:

g (ω) ∝
∑

t

∫

St−(ω)

dSt

|∇qωt (q)| (3.20)

where St is the surface in the BZ for which ω t (q) = ω. These CPs are those
for which ∇qω (q) = 0, and for the diamond-like crystals, they correspond to
points X, L, K and W of Fig. B2. They are defined by:
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qX = (2π/a) (1, 0, 0)
qL = (2π/a) (1/2, 1/2, 1/2)
qK = (2π/a) (3/4, 3/4, 0)
qW = (2π/a) (1, 1/2, 0)

This analysis is based on topological considerations, but other CPs can emerge
depending on the actual shape of the dispersion curves in the BZ [50]. Some-
times, the Γ point is included in the CPs, but when this is done, this can be
only for the optical branches. The degeneracy of the TO and LO branches
at the Γ point for the diamond structure. A similar topological degeneracy
of the LA and LO branches at the X point (noted L(X)) also exists for this
structure. Dispersion curves of phonons in diamond are shown in Fig. 3.1. The
curves for silicon and germanium are qualitatively similar.

In binary crystal with large differences between the masses of the two
atoms (e.g. in GaP or InP), the frequencies of the LA phonons at the BZ
boundaries is significantly smaller than that of the TO phonons, and this
difference is usually referred to as the phonon gap.

Because the reflectivity at energies near the TO mode is strongly frequency-
dependent, this effect has been used with alkali halides in infrared spectroscopy
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Table 3.2. RT energies
(
cm−1

)
of phonons in some semiconducting and insulating

crystals with the cubic and hexagonal structures compiled from literature

Cubic TO (Γ) LO (Γ) Cubic TO (Γ) LO (Γ) Hexagonal TO (E2) TO (E1) LO (A1)

Cdiam 1132.4 GaSb 223.6 232.6 2H-SiC 764 799 968
SiC 796.2 972.2 InP 303.7 345.0 AlN 656 670 890
Si 520.2 InAs 217.3 238.6 w-GaN 570 ∼560 735
Ge 301 InSb 179.1 190.4 InN 488 476 586
c-BN 1056 1306 MgO 402 718 ZnO 439 379 577
AlAs 361.7 403.7 c-ZnS 271 352 w-ZnS 274 274 352
AlSb 318.7 340.0 ZnSe 213 253 CdSa 256 243 305
GaN 552 739 ZnTe 177 207 w-CdSe 172 172 210
GaP 367.3 403.0 CdTe 140 169
GaAs 268.5 291.9 CaF2 261 482

aAt25K

to select IR energies by successive reflections on these materials (the German
term Reststrahlen (residual ray) method has been coined for this technique).
Table 3.2 gives values of the frequencies of optical phonons in some semicon-
ducting and insulating materials with cubic and hexagonal structures. For
those with the cubic structure, these values correspond to the zone-centre
phonons. For the crystals with the wurtzite structure, the different phonons
are usually denoted by the IRs of the C6v point group and the strongest
Raman lines in the usual scattering geometry are produced by the A1 LO
phonon at the zone centre along the c axis and by the E2 TO folded phonon.
When two structures of the same compound exist, the frequency of the E1

zone-centre TO phonon of the wurtzite-type crystals is relatively close to the
one of the TO (Γ) phonon.

A decrease in temperature produces a decrease of the lattice spacing and
a corresponding increase of the phonon mode frequencies.2 A hydrostatic
pressure also reduces the lattice spacings of the crystals and one of the con-
sequences is an increase of the phonon modes with pressure [74, 95]. The
variation of the phonon frequencies with the isotopic composition has been
measured in many semiconductors, and the shifts observed can generally be
accounted for by considering a virtual crystal with an average mass cor-
responding to the isotopic composition (the virtual crystal approximation
(VCA)). For instance, extensive results for Cdiam were given by Hass et al. [37]
and they show a variation of O (Γ) Raman frequency from ∼1282 to 1333 cm−1

between qmi13Cdiam and 12Cdiam at RT. However, these results also show a
departure from the VCA. A general account of the subject can be found
in the review by Cardona and Thewalt [18]. The energies of some optical

2 In a temperature domain below ∼100 K, a temperature decrease can result in an
increase of the lattice spacing, as in silicon or in some sphalerite-type crystals.
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and acoustical lattice phonons can also be obtained from the observation of
phonon replicas on the low-energy side of photoluminescence (PL) electronic
recombination no-phonon lines.

The primitive cells of the nH and 3nR SiC polytypes contain n formula
(Si–C) units, and the unit cell of the polytypes along the c-axis is n times
larger than that of the basic 3C SiC polytype. The BZ of the corresponding
polytype is thus reduced in the Γ−L direction by a factor 1/n [70]. One then
speaks of folded BZ and some of the folded acoustical phonons with non-zero
frequencies at the zone centre are IR- and Raman-active. Their absorptions,
with lines as sharp as 0.03 cm−1 at LHeT have been reported for the 6H and
15R SiC polytypes ([77], and references therein).

3.2.2 Multi-Phonon Absorption and Anharmonicity

Higher-order lattice absorption or Raman scattering has been observed in ele-
mental [36,98] as well as in compound semiconducting and insulating crystals.
Higher-order effects can arise from two mechanisms: (a) anharmonic coupling
between phonons, arising from third and higher order terms in the potential
energy, and (b) second and higher order terms in the electric moment. Fun-
damentally, these effects are similar to those leading to overtones, summation
or difference bands in molecular spectroscopy. In process (a), the anharmonic
mechanism has been described [14] by the coupling of a photon with a TO
phonon, which subsequently couples with two other phonons. The net result
can be either the creation of two phonons (summation process) or the creation
of one phonon and the annihilation of the other (difference process). The con-
dition for process (a) to occur is the existence of a first-order dipole moment,
and it is therefore ruled out in elemental crystals. In process (b), where the
first-order dipole moment can be zero, the photon couples directly with two
phonons, the first one producing an asymmetry in the electronic charge distri-
bution, which is then displaced by the second phonon. The phonons involved
in both processes are the short-wavelength phonons for which the nearest-
neighbour atomic motion is more asymmetric than the one of the zone-centre
phonons. As a result, a second-order electric moment is produced that couples
with the photon. The net result is the same as for anharmonicity. The above
description implies that both the anharmonicity and the effect of higher-order
moment can be present in compound crystal while multi-phonon absorption
of elemental crystals can only be explained by second-order dipole moment.
The absorption due to the summation process is observed at energies above
that of the zone-centre phonons while that due to the difference process is
observed below, in the far infra-red.

The absorption coefficient for a multi-phonon combination can be ex-
pressed as the product of three terms. The first one is the matrix element of
the coupling term between the phonons involved in the process. It is non-zero
only for specific phonon combinations determined by selection rules derived
from symmetry considerations. The second one describes the temperature
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dependence of the phonon population, and the third one is related to the
phonon density of states. The IR and Raman selection rules for two- and
three-phonon summation processes in the diamond and sphalerite structures
have been derived by Birman [6]. It is found that in the diamond-like crystals,
the two-phonon combinations are usually IR active when they originate from
different branches (e.g. TO (X) + LO(X) or LO (L) + LA (L)), but the over-
tones are forbidden. In sphalerite-like crystals, some overtones, like 2TO (Γ)
are allowed, and they are IR active. Tables of the symmetry-allowed three-
phonon combinations in the diamond and sphalerite structures can also be
found in [6].

The temperature-dependent term represents the difference in the occupa-
tion numbers of the phonon states involved in the process. As phonons are
bosons, the occupation number for a phonon of pulsation ω at temperature T
is given by the Bose–Einstein statistics as

n (ω, T ) = [exp (�ω/kBT ) − 1]−1 (3.21)

For two-phonon processes involving branches t and t’ and phonons with wave
vectors q and –q, the temperature-dependent term is:

[(nqt + 1) (n−qt′ + 1) − nqtn−qt′ ] (summation process) (3.22a)

or
[nqt (n−qt′ + 1) − (nqt + 1)n−qt′ ] (difference process) (3.22b)

Similar relationships can be obtained for three-phonon processes. At low tem-
perature, n (ω, T ) is much smaller than unity and the above expression tends
to unity for summation processes, and to zero for the difference processes,
which are, therefore, not observed at low temperature. At higher tempera-
ture, the absorption intensity increases for both processes [45], at a difference
with the one-phonon process, which is temperature-independent.

We have mentioned the existence of CPs in the one-phonon density of
states, but this can be measured only for compound crystals. The situation is
different in multi-phonon absorption because the high-frequency phonons of
the BZ boundary are mostly involved (note that in three-phonon processes,
the q = 0 zone-centre phonons can also be involved without problem for mo-
mentum conservation). For the two-phonon absorption, the density of states
is proportional to an integral similar to the one in expression 3.20, with ωt

replaced by the sum of the two pulsations ωt and ωt′ of the phonons of
the combination. Besides the trivial case where ωt = ω′

t = 0, the condi-
tion ∇q (ωt (q) + ωt′ (q)) = 0 is fulfilled when ∇q (ωt) = ∇q (ωt′) = 0 or
when ∇q (ωt) = −∇q (ωt′). The observed two-phonon absorption is the sum
of the contributions of the possible two-phonon processes. Figure 3.2 shows
the RT absorption of silicon in the two- and three-phonon absorption region.
In the two-phonon region, it is fitted with the two-phonon dispersion curves
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for silicon along the Δ and Λ directions of the BZ. As already mentioned,
the multi-phonon absorption in compound crystals can arise both from an-
harmonicity and from induced dipole moments and, as shown in Fig. 3.3, it is
stronger than in elemental crystals.

For TO and LA phonons with wave vectors at the boundary of the first
BZ, the value of the phonon gap for compound crystals is ω (TO) − ω (LA),
with small variations considered depending on the BZ point considered. In the
multi-phonon spectrum of InP shown in Fig. 3.3, this gap is close to the differ-
ence of the order of 100 cm−1 between ω (2TO (X)) and ω (TO (X) + LA (X)).

3.3 Electronic Absorption

3.3.1 Energy Gap and Fundamental Absorption

Electromagnetic radiation can be absorbed by an intrinsic semiconductor
or insulator crystal to promote an electron from the valence band (VB)
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to the conduction band (CB). In a molecular orbital representation of the
bond between two nearest neighbours in a valence crystal, the first step is
the transition of the electron from a bonding state to an antibonding state,
separated by an energy of the order of the energy gap. The energy of the
electron in this antibonding state is small, so that it can be thermally ion-
ized in the continuum. In the semiconductor representation, the electron in
the antibonding state can be considered as a free exciton that is an electron–
hole pair bonded by Coulomb interaction. It is usual to represent the electron
energies in crystalline solids as a function of the wave vector k of the elec-
tron along directions of the reciprocal lattice in the first BZ. These energies
are labelled Eb (k) where index b refers to a particular band, and it can be
shown that the velocity of an electron in the CB is vc (k) = �

−1∇kEc (k).
An effective-mass tensor

[
M−1 (k)

]
ij

= ∓�
−2 ∂2Eb (k) /∂kikj can be similarly

derived, where the – and + signs refer to a band maximum (for holes) and
to a band minimum (for electrons). The mass tensor plays an important role
in the spectroscopy of impurities in semiconductors, especially when a mag-
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netic field is involved. The optical interband transitions take place between
the extrema of the valence and conduction bands. Near extrema Ec or Ev of
the conduction or valence bands, it is possible to express the energy as:

Eb (k) = Eb ± �
2
(
k2
1/2m1 + k2

2/2m2 + k2
3/2m3

)
(3.23)

where Eb equals Ec or Ev. The + and – signs refer to the conduction and
valence bands, respectively. The effective mass parameters mi are different
for the two bands. For the CB, the absolute energy minimum can occur at
k = 0, but can also occur at k 
= 0 while the VB maximum occurs mostly at
k = 0. The maximum VB states are related to the atomic bonding between
the atoms of the crystal. This results in a threefold electronic degeneracy when
electron spin is neglected for diamond, silicon and germanium covalent crys-
tals with p-like bonds. When spin–orbit (s–o) interaction is considered, the
valence band edge splits into fourfold degenerate p3/2-like states separated
from twofold degenerate p1/2-like states by the s–o splitting energy, usually
denoted by Δso. The constant energy surfaces about the extrema are ellip-
soids or warped spheres specified by their principal axes ki, the three effective
masses mi and the location in k-space of the ellipsoids, which determine the
symmetry of the ellipsoids and the orientational degeneracy of the extrema
in k-space. In the case of revolution symmetry, as for the CBs in group IV
non-metallic crystals, there are only two electron effective-mass parameters,
a longitudinal mass mnl along the main axis of the ellipsoid and a transverse
mass mnt along the two perpendicular axes. For the onset of the optical ab-
sorption, one is generally concerned with the absolute maximum of the VB
and the absolute minimum of the CB. It is this energy difference that de-
termines the values of the band gaps Eg given in Appendix C. In all the
non-metallic group-IV crystals, the absolute minimum of the CB is for k 
= 0
and it is material-dependent. In such a case, the optical transitions between
these two extrema imply a change in the electron momentum and they are
forbidden to zeroth order. Indirect absorption can, however, take place, with
the difference in electron momentum being compensated by annihilation or
creation of lattice phonons of opposite momentum, but this so-called indirect
absorption has some influence on the lifetime of the intrinsic electrons in the
CB. Thus, whenever the band gap of semiconductors is a relevant parameter,
such materials are labelled as indirect-band-gap semiconductors. As an exam-
ple of the electronic structure of semiconductor crystals, Fig. 3.4 shows the one
for crystalline Ge, calculated by the pseudopotential method and represented
in the first BZ of the fcc lattice. This calculation includes the effect of the s–o
coupling of the VB electrons; when s–o coupling is neglected, the Γ8

+ and
Γ7

+V Bs are replaced by the Γ5
+band (see Table 3.3). The electronic bands at

critical points of the BZ are noted following irreducible representations (IRs)
of the representations of the symmetry point groups associated with these
points (see Appendix B and Chap. 2 of [107] for more details). The CB min-
imum (L6

+) is at point L of the BZ of germanium and the constant-energy
surfaces correspond to eight half-ellipsoids at this point with their main axis
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along <111> direction. By a suitable choice of primitive cells in k-space, they
can be represented by four ellipsoids, the half-ellipsoids on opposite faces be-
ing joined together by translations through suitable lattice vectors, yielding
the fourfold degeneracy of the CB minimum of germanium. The band gap
Eg of germanium is the energy difference between the Γ8

+ and L6
+ points

and the direct band gap the one between the Γ8
+ and Γ7

− points. Away from
the Γ point, the degeneracy of the upper VB is lifted so that at the Γ point,
the curvatures of the two sub-bands are different. The VB with the lowest
curvature is usually called the heavy hole valence band, with effective mass
mhh and the one with the highest curvature the light hole valence band, with
effective mass mlh. The effective mass of the holes in the s–o split Γ7

+ band
is denoted by mso.

This representation takes into account the s–o coupling, and is necessary
for the study of the optical properties related to the VB. This is usually not
the case for those related to the CB and Table 3.3 gives the correspondence
between the IRs of the double group used above and those of the standard
group used for instance by Cohen and Bergstresser [25] to label the electronic
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Table 3.3. Correspondence between the IRs of some particular points of the
electronic band structure of cubic crystals with and without s–o coupling [80]

Diamond structure (O7
h) Sphalerite structure (T 2

d )

Double group
(s-o coupling)

Standard group
(no spin)

Double group
(s-o coupling)

Standard group
(no spin)

VB Γ8
+ (4) Γ5

+ (Γ25′ ) (3) Γ8 (4) Γ5 (Γ15) (3)
Γ7

+ (2) Γ7 (2)
CB Γ7

− (2) Γ2
− (Γ2′ ) (1) Γ6 (2) Γ1 (1)

Γ6
− (2) Γ5

− (Γ15) (3) Γ7(2) Γ5 (Γ15) (3)
Γ8

− (4) Γ8 (4)
X5 (4) X1 (2) X6 (2), X7 (2) X1 (1), X3 (1)

The notation used in [7] and the dimensions of the IRs are given in parentheses

band structure with different symmetry points of the BZ that we are concerned
with here.

The group-IV materials are not the only indirect-gap cubic semiconduc-
tors. For instance, GaP and the III–V compounds with sphalerite structure in-
volving Al are also indirect-gap semiconductors. There is a difference between
the two structures, however: while the energy dispersion curves of diamond-
type crystals are degenerate at the X point of the BZ (see Fig. 3.4), this degen-
eracy is lifted for the sphalerite structure into a lower band, X1 and a higher
band, X3 (X6 and X7, respectively when s–o interaction is considered) sepa-
rated typically by an energy of ∼0.4 eV. It turns out that the relative ordering
of these two bands depends on the origin of the coordinate system, which can
be chosen at a group-III or group-V site (the same reasoning holds also for the
II–VI compounds) through a potential that differs for the two sites [67]. When
this potential attracts electron on one site, the electron states on that site are
the lowest and they belong to the CB minimum. For GaP, it has been found
that this potential is positive and it attracts electrons on a P site and repels
electrons on a Ga site. As a consequence, an electron on the X1 band is concen-
trated on a P site and on the X3 band on a Ga site. This has important con-
sequences for donors at P or Ga sites in GaP and this is discussed in Chap. 6.

Logically, when the both extrema of CB and VB of a semiconductor lie
at the same value of k, the gap is said to be direct. III–V compounds like
InP, GaAs and InSb belong to this category, with extrema for k = 0. As
already mentioned, in the crystals with the diamond or sphalerite structure,
the electron wave functions at the top of the VB at k = 0 are triply degenerate.
They form a basis for a three-dimensional IR of the diamond (Oh) or sphalerite
(Td) symmetry point group. This IR is Γ5

+ for diamond and Γ5 for sphalerite
(see Table 3.3). Under s–o interaction, the Γ5

+V B splits into the Γ8
+ and

Γ7
+ bands separated by Δso. In an isolated atom, Δso increases as Z∼4 and

a similar trend is observed in crystals. In most crystals, the band with the
highest energy is Γ8

+ (Oh) or Γ8 (Td). One exception is CuCl, where Γ7 is
about 60 meV above Γ8 (the energies are taken as negative below the VB
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maximum) and this is due to the hybridization of the Cu 3d levels with the
Cl 3p levels, because their energies are similar [32].

In germanium and in other indirect-gap semiconductors, the direct Γ8
+ →

Γ7
− transitions from the VB to CB can be detected in the fundamental

absorption region by an increase of the absorption cross-section, as shown in
Fig. 3.5.

The fundamental absorption of semiconductors and insulators is very
strong and the value of Eg determines the visual aspect of intrinsic polished
crystals (the visible spectrum extends from about 400 to 750nm, that is for
photons between 3.10 and 1.65 eV). The crystals with Eg<1.65 eV display a
quasi-metallic aspect due to their intrinsic absorption in the visible region,
correlated with a high reflectivity; those with Eg between 1.65 and 3.10 eV
are transparent, with a colour depending on the value of Eg while those with
Eg > 3.10 eV are colourless when pure.
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Table 3.4. Selected band-structure parameters of indirect-band-gap cubic crystals

Ca
diam 3C-SiC Sia Gea GaPa AlSba

kmin ∼0.75k (X) k (X) 0.84k(X) k(L) k (X)∗ k (X)∗

mnl 1.7b 0.667d 0.9163‡ 1.57 0.90l 1.8

mnt 0.31b (0.36c) 0.247d 0.1905‡ 0.0807 0.251 0.259

mhh 1.08 0.54 0.35† 0.67† 0.872†

mlh 0.36 0.45 0.15 0.043† 0.17† 0.091†

mso 0.15 0.24 0.095 0.465

Δso (meV) 6e–13f 14.4g 42.65h 296i 80 673
Direct gap (eV) 7.3 7.0 3.48 0.81 2.90 2.38

γ1 3.61j 2.8 4.28 13.3k 4.05 4.15
γ2 0.09j 0.16 0.375 4.24k 0.49 1.01

γ3 1.06j 0.65 1.45 5.69k 1.25 1.75

kmin denotes the wave-vector symmetry and modulus for the absolute CB minimum
with respect to the critical points of the BZ. The electron and hole effective masses
are in units of me. Δso is the s-o splitting of the VB. The direct gap corresponds to
Γ8 (V B)-Γ6 (CB) for sphalerite and Γ+

8 − Γ−
7 for diamond. The VB parameters γi

are in units of 2me/�
2

∗ See text † Values near from k = 0 along the [111] direction ‡ [39], a [64], b [19], c [71],
d [47], e [84], f [102], g [103], h See Sect. 7.2.1.2, i [1], j [85], k [40], l [76]

There are a few cubic crystals for which an optical transition between
the maximum of the VB and the absolute minimum of the CB is symmetry-
forbidden. This is notably the case for Cu2O, where the absolute minimum of
the CB is about ∼ 0.8 eV above the VB (direct thermal gap) while the direct
optical gap is 2.2 eV [23].

Choosing the z axis along kmin and taking the electron energy origin at
kmin, the energy E of a conduction electron near kmin for the indirect-gap
semiconductors of Table 3.4 is:

E =
�

2

2

[
(kz − kmin)2 /mnl +

(
kx

2 + ky
2
)
/mnt

]
(3.24)

and the constant energy surfaces in the k-space are prolate revolution ellipsoids
with their main axis along z. The band structure of the sphalerite-type crys-
tals is similar to that of the diamond-type crystals, with a few differences,
however, but for most of them, the CB minimum is at k = 0.

In the vicinity of the VB maximum at k = 0, the expressions for the
constant-energy surfaces of the VB electrons in the highest-energy band of
the diamond- or sphalerite-type crystals are usually given as functions of three
parameters A, B and C. These maxima are warped spheres in the k-space
given by:

E(3/2)± = −Ak2+̄
[
B2k4 + C2

(
kx

2ky
2 + ky

2kz
2 + kz

2kx
2
)]1/2 (3.25)

which can be seen as the sum of a spherical and a cubic contribution. E(3/2)+,
with a smaller energy dispersion (a corresponding larger mass) than E(3/2)−
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is the heavy-hole VB (Ehh) and E− the light-hole VB (Elh) (Fig. 3.4). The
dispersion curves of the constant-energy surface for the holes of the VB split
by s–o coupling is:

E(1/2) = −Δso +Ak2

and they are spheres in the k-space.
New VB parameters γ1, γ2, and γ3 were introduced by Luttinger [60]

in his description of holes in the silicon VB. These so-called Luttinger VB
parameters, which have been adopted for other semiconductors, are different
from the ones in (3.25) as holes were considered instead of electrons:

�
2

2me
γ1 = −A �

2

me
γ2 = −B �

2

me
γ3 =

√
B2 + C2/3

In the practical case, these parameters are given in units of �
2/2me so that

γ1 = −A, γ2 = −B/2 and γ3 = 1
2

√
B2 + C2/3. The Hamiltonian for holes

in the upper VB of silicon using these parameters, known as the Luttinger
Hamiltonian HL is:

HL
1

me

[(
γ1 +

5

2
γ2

)
p2

2
− γ2

(
p2

xJ2
x + p2

yJ2
y + p2

zJ
2
z

) − 2γ3 ({pxpy}{JxJy} + cp)

]

(3.26)

where pi are the components of the hole linear momentum and Ji the com-
ponents of the angular momentum operator corresponding to spin 3/2. The
cyclic permutation is denoted by cp and {ab} = (ab+ ba) /2. This Hamilto-
nian is found to be suitable for diagonalization, specially in the presence of
additional perturbations and it has also been used for a description of the
upper VB of other cubic semiconductors. For sphalerite-type crystals with
symmetry point group Td, the Hamiltonian must include a term taking into
account the asymmetry of these crystals with respect to inversion. This addi-
tional term is written as:

HA =
2C√
3�

(px {Jx, Vx} + py {Jy, Vy} + pz {Jz , Vz}) (3.27)

where Vx = Jy
2 − Jz

2, Vy = Jz
2 − Jx

2 and Vz = Jx
2 − Jy

2. Parameter C in
expression (3.27) is different from the one in expression (3.25). Estimations
of the values of parameter C of expression (3.27) for different semiconduct-
ing compounds have been calculated by Cardona and Christensen [16]. For
InSb, C is ∼8.7 × 10−8 meV cm and this value is in reasonable agreement
with the one

(
9.3 × 10−8 meV cm

)
obtained by Pidgeon and Groves [83] from

magneto-optical reflection measurements at 1.5 K. In many practical cases,
the contribution of HA is neglected.

Hamiltonian (3.26) will be used to explain the principles of the calculation
of the shallow acceptor levels in these crystals. For a magnetic field B, derived
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from a vector potential A through B = ∇ × A, satisfying the condition
∇× A = 0, the hole momentum π can be written in SI units as:

π = −i�∇ + eA

and an expression similar to (3.26) can be obtained for the EM Hamiltonian
with the addition of field-dependent VB parameters κ and q introduced in
[60]. The term HB, linear in B, added to Hamiltonian (3.26) can be written
as:

HB = μB (g1B J) + g2
(
BxJx

3 + ByJy
3 + BzJz

3
)

(3.28)

where parameters g1 and g2 are called the g-factors of the VB [5]. These
g-factors are related to Luttinger VB parameters by g1 = 2κ and g2 = 2q.

From the experimental side, the band-structure parameters are mainly
determined from the cyclotron resonance (CR) spectra of electron and holes
(see for instance [4]). Some of these parameters can also be obtained from
the Zeeman splitting of electronic transitions of shallow impurities involving
levels for which the electronic masses can be taken as those of free electrons
or holes, or from the magnetoreflectivity of free carriers. Average effective
masses can also be deduced from the Hall-effect measurements or from other
transport measurements. Calculation methods that have been used to ob-
tain band-structure parameters free from experimental input are the ab-initio
pseudopotential method, the k-p method and a combination of both. These
theoretical methods are presented in Chap. 2 of [107]. VB parameters at k = 0
including κ and q have been calculated for several semiconductors with dia-
mond and zinc-blended structures by Lawaetz [55].

Table 3.4 gives a few relevant band-structure parameters of group-IV and
group-III–V crystals. The structure of the CB near from its minimum is gen-
erally simpler to model than that of the VB. The CB parameters are known,
therefore, with a reasonable accuracy from the experimental data. For di-
amond, mnt = 0.31me is deduced from the Zeeman splitting of 2p±1 (P) in
Cdiam [19] and mnl = 1.7me from the ratio γ = mnt/mnl whose determination
is explained in the text accompanying Table 5.3.

This is not the case for the VB and there is still a significant uncertainty
on the exact values of the VB parameters of diamond (see for instance [102]).
For silicon and germanium, there is only a moderate dispersion of the val-
ues of these parameters. Gray tin (α–Sn) is a semi-metal stable below 13◦C,
where the energy separation (0.14 eV) between Γ8 (v, c) and the conduction
band minimum at L6

+ is sometimes called the optical energy gap because it
corresponds to the onset of a higher absorption [58], but the absorption coef-
ficient of α−Sn at energies below this onset is already in the 104 cm−1 range.
The VB s–o splitting of α-Sn is 0.8 eV.

The X point is on the Δ axis of the BZ with <100> orientation and the
absolute energy minimum of the CB of the corresponding cubic crystals of
Table 3.4 is sixfold degenerate in k-space. For germanium, it is only fourfold
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degenerate. For GaP and AlSb, the CB minima are also along the <100>
directions at 0.925k (X1) and 0.90k (X1), respectively. The energy dispersion
curve of these crystals shows a small maximum ΔE (see Table 3.5) at the X1

point with respect to the two nearby minima and this configuration has been
coined the camel’s back structure. This situation is depicted in Fig. 3.6.

The existence of the camel’s back structure and of the already men-
tioned relative minimum of the CB at the X3 point, introduces complexity
in the determination of the values of the electron effective masses for the
interpretation of experimental data [51]. The energy dispersion at the camel’s
back for GaP and AlSb are described by the expression:

E (k) =
�

2

2

(
k2

///ml + k2
⊥/mt

)
−
(
(Δ/2)2 +Δ0�

2k2/2ml

)1/2

(3.29)

where k// and k⊥ are the components of k parallel and perpendicular to the
<100> direction and ml and mt the effective masses parallel and perpendic-
ular to the <100> direction. Parameter Δ0 describes the non-parabolicity of

Table 3.5. CB parameters of three cubic crystals with camel’s back structure near
the CB minimum X1 at the X point of the BZ. The values for GaAs apply under
hydrostatic pressure above ∼4GPa. The effective masses are in me units

ΔE (meV) Δ (meV) Δ0(meV ) ml mt

GaPa 2.7 355 422.6 0.90 0.251
AlSb 7.4 261 1.8 0.259
GaAs 9.3 304 1.8 0.257

a [76]

E E

a b
 Si GaP

ml

mll

X3

X1

X1

X

ΔE

Δ0Δ0

Δ

X
km

k<100>
k<100>k0

–km

–k0

Fig. 3.6. Comparison between the CB minima at the X point in silicon and in GaP.
In silicon, the CB minima are on the k<100> axis at ∼± 0.84k (X). In GaP, there is
a splitting of the two dashed curves of silicon at the crossing point giving the upper
X3 band and the lower X1 band showing the camel’s back [76]. Reproduced with
permission from the Physical Society of Japan
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the CB and Δ is the separation between the X1 and X3 minima. The apparent
effective mass m// at the minima of the X1 camel back is given by:

m// = ml

(
1 − (Δ/Δ0)

2
)−1

(3.30)

The relevant numerical values are given in Table 3.5 and the value for m//

deduced from these values is 3.06me. The direct-gap crystal GaAs has been
added to this table as it is possible to convert it under hydrostatic pressure
into an indirect-gap structure with a minimum at the X1 point [44].

Calculation of CB parameters in the vicinity of the X1 point in III–V
semiconductors have been performed by Kopylov [51]. It must be pointed out
that at the X1 point, because of the local curvature of the CB, the effective
mass is negative.

The electron effective masses mn at the CB minimum at k = 0 are gen-
erally smaller than the ones for k 
= 0 CB minima, as can be judged from
Table 3.6. The Luttinger VB parameters have been determined by many au-
thors, though biased in some cases by the values used in the most recent cal-
culations of the shallow-acceptor levels. The situation is complicated by the
fact that for semiconductors like InSb, where there is an interaction between
the valence and the conduction bands, effective Luttinger VB parameters γ̃i

have been defined by [82] as:

γ̃1 = γ1 − EP

3Eg
and γ̃i = γi − EP

6Eg
for i = 2, 3

where EP is known as Kane energy and is related to the VB–CB interaction.
It is of the order of 20 eV. For InSb, the parameters γ̃i are sometimes given
as the Luttinger parameters and this can create some confusion.

Table 3.6. Experimentally-determined effective masses (in units of me) at k = 0 ex-
trema and VB Luttinger parameters for some direct-band-gap cubic semiconductors

GaAs GaSb InP InAs InSb ZnSe ZnTe CdTe

mn 0.0662a 0.041 0.0793b 0.022c 0.0139c 0.13 0.122d 0.093
mhh 0.53 0.8 0.58 0.4 0.42 0.84
mlh 0.08 0.05 0.12 0.026 0.016 0.12
mso 0.15 0.12 0.14
Δso (eV) 0.341 0.76 0.108 0.39 0.850c 0.40c 0.91 0.80
γ1 6.98e 11.80f 6.28f 19.67f 35.65i

(3.25)
3.77f 3.90g 5.30h

γ2 2.25 4.03 2.08 8.37 15.70̃.1.3) 1.24 0.80 1.70
γ3 2.9 5.26 2.76 9.29 16.97

(0.0)
1.67 1.70 2.00

At this CB minimum, mn can be considered as nearly isotropic. For germanium,
mn at k = 0 is 0.038 [1]. For InSb, values of the effective Luttinger parameters are
given in parentheses. The Luttinger parameters of Lawaetz are calculated values
a [52], b [42], c [64,65], d [24], e [92], f [55], g [30], h [56], i [105]
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The structure of the VB maximum of the wurtzite-type crystals differs
from that of the sphalerite-type crystals. This difference, which determines
the intrinsic optical features of these crystals, is due to the combination of the
crystal field mentioned in Appendix B with the s–o coupling. Ignoring the s–o
coupling and the crystal field, the VB maximum of wurtzite at k = 0 is made
of two degenerate bands associated with the one-dimensional Γ1 and two-
dimensional Γ5 IRs of the C6v symmetry point group. The combined effect of
the crystal field and of the s–o coupling is to lift 1) the degeneracy between
the Γ1 and Γ5 bands and 2) the intrinsic degeneracy of the Γ5 band. In the
double group representation of C6v due to the introduction of spin, the VB
maximum then corresponds to the Γ9 IR, separated from two bands both
corresponding to the IR Γ7. These three VBs are usually denoted by A, B
and C in order of decreasing energy. The separations EAB and EAC between
the Γ9 (A), Γ7 (B) and Γ7 (C) bands as a function of the crystal field and s–o
energy parameters Δcf and Δso have been calculated as [41]:

EAB =
1
2
(Δso + Δcf) − [

1
4
(Δso + Δcf)2 − 2

3
ΔsoΔcf ]

1
2 (3.31a)

EAC =
1
2
(Δso + Δcf) + [

1
4
(Δso + Δcf)2 − 2

3
ΔsoΔcf ]

1
2 (3.31b)

Most wurtzite-type crystals are direct band-gap materials (2H–SiC is an ex-
ception) and interband transitions can take place between these three VBs
and the Γ7 CB minimum. These materials are anisotropic and this anisotropy
reflects on the selection rules for the optical transitions and on the effec-
tive masses. The Γ9 (A) → Γ7 (CB) transitions are only allowed for E⊥c
while the two Γ7 (B,C) → Γ7 (CB) transitions are allowed for both polariza-
tions. However, the relative values of the transition matrix elements for the
Γ7 (B,C) → Γ7 (CB) transitions can vary with the material. For instance, in
w-GaN, the Γ7 (B) → Γ7 (CB) transition is predominantly allowed for E⊥c
while the Γ7 (C) → Γ7 (CB) transition is predominantly allowed for E//c [22].
Table 3.7 gives band structure parameters of representative materials with the
wurtzite structure.

A few semiconductors have VB extrema at other points of the BZ, like
the direct-gap lead chalcogenides (PbS, PbSe, PbTe), with rocksalt structure,
where the valence and conduction bands extrema are both located at the L
point of the BZ.

When two semiconducting materials are fully miscible, a semiconducting
alloy is obtained. Binary semiconducting alloys are scarce (SiC is a definite
compound) and the best known (and used) is Ge1−xSix. The addition to ger-
manium of a small percentage of silicon opens the band gap relatively rapidly
up to x∼0.15, while above this value, the increase is smaller [8]. The value
x∼0.15 corresponds to the cross-over from Ge-like alloys with CB minimums
at the L points of the BZ, along <111> directions, to Si-like alloys with CB
minimums along <100> directions (see Table 3.4). Many ternary alloys are
known, like those of the Hg1−xCdxTe family, used as intrinsic photodetectors
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Table 3.7. Selected band structure parameters of four compounds with the wurtzite
structure. The energies for ZnO and GaN are given at LHeT and at 80 K for CdSe
and CdS (the effective masses are expressed in units of me)

w-CdSe ZnO w-GaN w-ZnS

Γ9(A) – Γ7(CB) (eV) 1.829 3.4370a 3.504 3.864
Γ9(A)– Γ7(B) (meV) −26 −9.5a −6 −29
Γ9(A) – Γ7(C) (meV) −1, 429 −49.8a −43 −117
Δso (meV) 16a 12 86
Δcf (meV) 39 43a 37.5 58
mn⊥, mn// 0.12 0.19 0.28
mh⊥(A), mh//(A) 0.45 > 1 0.59, 0.59 0.33, 2.03 0.48, 1.4
mh⊥(B), mh//(B) ” 0.34, 1.25
mh⊥(C), mh//(C) 0.35, 0.31 2.22, 0.15
a [86]

in the ∼50–200 meV region of the electromagnetic spectrum [101]. Their band
gap values vary from nominally zero at RT for HgTe to 1.53 eV for CdTe. Be-
tween 77K and RT, the most widely used expression [35] of the variation of
the direct band gap of these alloys with x and T is:

Eg

[
Hg1−xCdxTe

]
(eV) = −0.302+1.93x+5.35 × 10−4T (1 − 2x) − 0.81x2+0.832x3

There exists many III–V ternary and quaternary alloys, and we just mention
here the In1−xGaxAs family, that has many applications in microelectronics.
The variation of the direct band gap of these alloys at RT is given by:

Eg [In1−xGaxAs] (eV) = 0.324 + 0.7x+ 0.4x2

A list of the band gaps of ternary and quaternary III–V compound alloys
can be found in [64]. There are, however, more complicated situations found
for instance in the Pb1−xSnxTe alloys, which are of interest because tunable
laser diodes are made from them. While both compounds are semiconducting,
there are strong indications that the Pb1−xSnxTe alloy with x = 0.38 has a
zero band gap at RT [27].

To try to make things more quantitative, for direct-gap semiconductors,
assuming spherical effective masses mn and mh for electrons and holes, the
interband absorption coefficient K(ω) can be shown (see for instance [43]) to
be proportional to

|pcv|2 (2m)3/2 (�ω − Eg)1/2

�ω
(3.32)

where pcv is the momentum matrix element governing the transition proba-
bility between the valence and conduction bands and m the reduced effective
mass (mnmh) / (mn +mh). This energy dependence is closely followed in the
vicinity of Eg by semiconductors like InSb.

The indirect transitions involve the creation (emission) or annihilation
(absorption) of a phonon for momentum conservation. It has been proposed
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that in the vicinity of the indirect-band-gap energy, the absorption coefficient
with phonon annihilation was:

Ka ∝ n(ωph)(�ω − (Eg − �ωph))2 (3.33)

where n (ωph) in (3.33) is the occupation number for the annihilated phonon.
Similarly, the absorption coefficient with phonon creation is

Kc ∝ (1 + n(ωph))(�ω − Eg − �ωph)2 (3.34)

where n (ωph) in (3.34) is the occupation number for the created phonon.
It follows that the indirect absorption should be proportional to the sum of
expressions (3.33) and (3.34). The phonons ωph involved in the momentum-
conserving process for the indirect-band-gap absorption of semiconductors
must have wave vectors q opposite to the electron wave vectors kmin given in
Table 3.4.

In indirect-gap semiconductors, this phonon-assisted electronic absorption
is revealed by kinks in the vicinity of the electronic absorption edge. They are
due to the different energies of the momentum-conserving phonons involved
as well as to the above-discussed different phonon processes. The evolution
of this near band gap absorption with temperature can be seen in Fig. 3.7
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Fig. 3.7. Absorption of natGe near the band gap energy for different temperatures.
It is plotted as a function of the square root of the absorption coefficient for a better
appreciation of the structures. The insets provide a better appreciation of the details
of the measurements. The positions of Eg at 291 K and 4.2 K that can be derived,
indicated by the dotted bars, are 0.670 and 0.745 eV, respectively (after [62])
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for germanium, combined with the temperature dependence of Eg. At low
temperature, only phonon creation can occur and Ka is zero at Eg. A detailed
interpretation of these spectra can be found in the original reference [62] and
in [43]. In indirect-band-gap semiconductors, accurate determination of the
band gap at low temperature relies mainly on the interpretation of the free
exciton spectra.

The interband absorption of semiconductors produces free electrons and
holes in the conduction and valence bands. These free carriers produce intrin-
sic photoconductivity above the band gap in adequate structures, and several
types of infrared photoconductors have been built on this principle [43].

When a semiconductor is illuminated with the band-gap radiation, excess
electrons and holes are photo-created. They can form free excitons or be
trapped by ionized impurities, but their ultimate fate is their annihilation
by thermal or radiative recombination. The formation of free excitons will be
discussed in Sect. 3.3.2, but in direct band-gap semiconductors, electron–hole
radiative recombination can also occur at an energy close to Eg if the pump-
ing beam is kept at a low level. This can provide an accurate determination
of Eg [87].

Band gap energies at RT and LHeT of different semiconductors and insu-
lators are given in Appendix C.

In the presence of a magnetic field B, the calculations of Landau [54] have
shown that the energy of electrons in metals becomes quantized in a plane
perpendicular to the field, but remains continuous in the direction of the field.
The result is an helical motion of the electrons in the plane perpendicular
to B with the Landau energy EN = �ωc (N + 1/2), ignoring the electron
spin. In this expression, which can also be written as 2μBB (N + 1/2), ωc =
eB/me is the cyclotron pulsation and N can be 0 or a positive integer. In
semiconductors, the band structure in the presence of a magnetic field becomes
complicated in the direction perpendicular to the field as the continuum of
the valence and conduction bands split into different Landau level ladders
characterized by different total angular momenta J and spacings. In addition,
the spin degeneracy of these Landau levels is removed (for s-type bands, J =
1/2 level is split into sublevels with MJ = +1/2 and –1/2). When a degeneracy
of the VB occurs for k = 0, this degeneracy is also lifted by the magnetic
field. Subsequently, the absorption coefficient for interband transitions in the
presence of a magnetic field takes the form:

K(B, ω) ∝ �ω c

∑

l

(�ω − EN )−1/2 (3.35)

where
EN = Eg + (N + 1/2) �ω c + μB (gcMJc − gvMJv) B (3.36)

The effective mass involved for the cyclotron pulsation is a reduced mass
m comparable to the one used for the interband transitions in expression
(3.32) and for each band, (N + 1/2)�ωc is 1.1577 × 10−1 (N + 1/2)Bme/
m∗ (meVT−1

)
. The effective electron g-factors in the valence and conduction
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Fig. 3.8. Direct magnetoabsorption in germanium at RT. The polarization condition
is usually referred as π polarization. The calculated peaks 1− and 2− correspond
to transitions from spin-split levels of the Landau ladder of the heavy hole valence
band and the 1+ and 2+ ones to corresponding transitions for light hole VB. With
the ordinate scale used, the indirect absorption is barely visible (after [13])

bands are gc and gv. The selection rules require that ΔN = 0, whatever the
polarization, with ΔMJ = 0 for B // E and ΔMJ = ±1 for B⊥E. The net
result is that the onset of absorption is shifted to higher energies by �ωc/2,
and the absorption displays an oscillatory behaviour. Figure 3.8 illustrates this
effect for the direct magnetoabsorption of a 3 μm-thick Ge sample at RT.

The electronic band gaps are correlated with the cohesive energies of the
materials and, for covalent crystals, with the atomic binding energies. Hence,
for group IV elements, the band gap decreases as the atomic number of the
element increases. This rule is also followed by binary compounds with one
element fixed, and it allows for a very few exceptions like PbSe and PbTe with
band gaps of 0.26 and 0.29 eV, respectively, at RT.

When temperature is lowered, the band gaps usually increase [15]. There
again, a few materials like lead sulphides or some copper halides are excep-
tions with a band gap increasing with temperature [96]. A quantitative anal-
ysis of the temperature dependence of the energy gaps must consider the
electron–phonon interaction, which is the predominant contribution, and the
thermal expansion effect. The effect of thermal expansion can be understood
intuitively on the basis of the decrease of the interatomic distances when
the temperature is decreased. A quantitative analysis of the electron–phonon
contributions is more difficult, and most calculations have been performed
for direct band-gap structures [75]. Multi-parameter calculations of the tem-
perature dependence of band gaps in semiconductors can be found in [81].
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From a practical viewpoint, an increase of the absorption of CdTe near the
RT band gap (∼1.5 eV) has been correlated with 10.06 μm laser illumination
[73]. It has been attributed to the temperature-induced shift of the band gap
to lower energies generated by residual absorption of the crystal at 10.06 μm.
The band-gap increase of silicon between RT and LHeT is ∼50 meV, and re-
cent measurements at ultra-high resolution of the shift with temperature of
the strongest B acceptor bound exciton line of qmi 28Si between 4.8 and 1.3K
show a band-gap increase of ∼1 GHz or 4 μeV in this temperature domain [17].

The positions of the energy bands are also pressure-dependent and this
results in a change of the value of the band gap under a hydrostatic pres-
sure. As a rule, the direct band gaps increase with pressure and the order of
magnitude of the linear part of the increase for II–V and III–V compounds
is 100 meVGPa−1 [29]. Figure 3.9 shows the increase of Eg with hydrostatic
pressure for InP at RT.

The indirect band gap of InP (∼2.03 eV at zero pressure), decreases with
increasing pressure and produces the low-energy tail observed at the highest
pressures in Fig. 3.9. The same trend exists in indirect-band-gap semiconduc-
tors, and for silicon, this decrease amounts to ∼14 meVGPa−1 at RT [100]. At
very high hydrostatic pressures, the diamond lattice can become unstable: for
instance, the opacity of indirectgap semiconductors silicon and germanium in
the IR for pressures above about 10GPa (∼100 kbar) is attributed to a change
from cubic to the tetragonal β-Sn metallic phase.
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Fig. 3.9. Variation with hydrostatic pressure of the direct band-gap absorption
threshold of InP at RT (1 GPa is taken for 10 kbar) (after [69])
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The decrease of the indirect band gaps of silicon and germanium at RT
under uniaxial stress along different axes has been measured indirectly by
Bulthuis [11] and the values found to lie between −50 and −100 meVGPa−1.

Finally, a band-gap change can also occur when the isotopic composition
of the crystal changes. Natural diamond is 12C13

0.989C0.011, but qmi 13Cdiam

crystals have been grown and their physical properties investigated. In a 99%
13Cdiam sample, an increase of 13.6meV of the indirect band gap – a rela-
tive increase of 0.25% – has been measured in comparison with natCdiam [26].
The major contribution to this upward shift has been attributed to the effect
of the isotope change on the mean-square displacement of the crystal atoms
in relation with the electron–phonon coupling. The other contribution is the
effect of the negative volume change due to the decrease of the zero-point
vibration frequency [26]. Values of the isotope shift (IS) of Eg in silicon have
been deduced from the ISs of excitons bound to shallow impurities (BEs)
measured by PL at LHeT [38, 48] and a value of the IS of +0.98 meV/amu
(+0.084%) can be deduced from these results. For germanium, a value of the
IS of Eg of +0.36 meV/amu (+0.049%) is reported by Parks et al. [79]. In
compound crystals, the sign of the IS can depend on the nature of the atom
replaced: in CuCl, it has been observed that the direct band gap (3.206 eV at
LHeT) increased by 364 μeV/amu when increasing the mass of the Cl atom,
but decreased by 76 μeV/amu when increasing the mass of the Cu atom [32].
A simple explanation can be related to the usual band structure of many
compound crystals, for which the upper valence band corresponds to the va-
lence electrons of the most electronegative element, and the conduction band
to the valence electrons of the most positive element. However, for CuCl, the
role of phonon modes in the gap renormalization is determinant and it ex-
plains the above isotope effects as well as the increase of the band gap with
temperature [32].

In nanocrystals with average radii typically below 10 nm, the band gap
increases due to confinement. This is shown in Fig. 3.10 for the excitonic gap
(the energy required to create an exciton) of CdS [94].

The review by Yoffe [106] provides a good account of the optical properties
of nanocrystals in compound semiconductors (see also [89]).

3.3.2 Excitons

At the beginning of the chapter, an analogy between the band gap excitation
and that of an electron in an anti-bonding state in a quasi-molecular descrip-
tion was mentioned. In the electron band scheme, this situation is described
as an exciton, resulting only from Coulomb attraction between the electron
and the positive hole. A steady-state concentration of excitons is produced in
semiconductors by continuous or pulsed illumination at energies higher than
Eg. Excitons, which can be seen as pseudo-hydrogenic atoms where the role of
the positive ion is taken by the positive hole, are free to propagate as a whole
in the crystal during their lifetimes, hence the name free excitons (FEs). Their
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Fig. 3.10. Calculated direct excitonic gap of wurtzite-type (upper line) and
sphalerite-type (lower line) CdS spherical clusters as a function of the cluster radii,
compared with the experimental results. Full diamonds and circles are for sphalerite-
and wurtzite-type clusters, respectively. The exciton binding energy in bulk CdS is
∼0.03 eV (after [94]). Copyright 1996, American Institute of Physics

binding energy Eex depends obviously on the effective masses of the particles,
on the static dielectric constant of the crystal and on its ionicity. The dissoci-
ation of these so-called Mott–Wannier excitons results in a free electron and
a free hole. The energy Egx = Eg–Eex required to create such a pair is often
referred to as the excitonic gap. For a direct-gap semiconductor with spherical
energy bands, the exciton levels can be fitted to a hydrogen-like series whose
energies are given by:

Eex (n) = R∞eff/n2 (3.37)

where R∞eff is an effective Rydberg R∞m/ε2s , where R∞ is weighted by the
reduced effective massm of the exciton and by the static dielectric constant εs.
Figure 3.11 shows a well-resolved spectrum of the exciton absorption in GaAs
[28]. From the difference between the energies of n = 1 and 2 transitions
at 1.5149 and 1.5180 eV, respectively, the exciton ground state energy Eex

in GaAs is found to be 4.13meV. This value compares well with 4.2meV
obtained from m = 0.05me and εs = 12.7.

The FE binding energy increases with ionicity: it is nearly 2% of the band
gap for ZnO and about 6% for CuCl. This rather high value is due to the
change from the sp3 hybridization of the orbitals for most of the semicon-
ductors to p-d hybridization for CuCl. The FE binding energies for covalent
and mainly covalent crystals are smaller, and for Ge, Si, and Cdiam, the in-
direct FE binding energies correspond to 0.56, 1.32, and 1.46% of the band
gap, respectively. Excitons can recombine or decay thermally (with a small
probability because of the energies involved) or radiatively, with the emission
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Fig. 3.11. 1s, 2s and 3s FE absorption lines in GaAs at 1.2 K (note the ordinate
scale). The saturation of the 1s and 2s lines is indicated by the dashed part. The
exciton binding energy is 4.1 meV. The energy gap Eg of GaAs is indicated (after
[28]). Copyright 1985, with permission from Elsevier

of a photon, which can be detected by standard PL methods. In indirect-gap
semiconductors, a direct absorption of FEs like the one shown in Fig. 3.11 is
forbidden because momentum is not conserved in such a transition, and its
intensity is very small, and this is also true from FE recombination involving
only the emission of one photon at energy Egx. What is observed in these
materials are PL lines at energies smaller than Egx assisted by the emission
of one or two momentum-conserving phonons ([99] and reference therein).
The measurement of the absorption leading to the creation of free indirect
excitons in germanium has shown the existence of a splitting of the exciton
ground state, which can be explained by the departure of the cubic symmetry
by the introduction of the CB ellipsoids [108]. This property is predicted for
the indirect excitons in indirect-band-gap semiconductors and numerical val-
ues of the splitting of these FEs have been calculated by Lipari and Altarelli
[59]. In the 1970s, there have been many studies on the internal absorption
of the indirect FE corresponding to transitions between ground and excited
states. These transitions have been measured in germanium in the very far
IR (∼1–4 meV) under band-gap excitation (see for instance [10, 33, 53, 91]).
The energies of the lines observed are in good agreement with the energies
of the transitions predicted from the calculations taking into account the FE
ground-state splitting [59]. For germanium, the experimental values of Eex

for the indirect FE are 3.14 and 4.15meV and the splitting is expected to be
smaller for silicon.

The IS of the excitonic gap Egx of the indirect FE has been measured in
qmi Ge samples and it is +0.36 meV/amu [79]. In natGe,

(
72.59Ge

)
, values of

Egx between 740.6 and 741.0meV at LHeT have been given. Assuming a value
of 740.8meV and adding the binding energy of FE, taken as 4.2meV results
in a value of ∼745 meV for the indirect band gap of natGe at LHeT.
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The absorption due to the formation of direct excitons associated with the
Γ7

− CB (see Fig. 3.4) have also been observed at energies above Eg in very
thin silicon and germanium samples [63], and for germanium, Eex(Γ−

7 ) of the
direct FE is ∼1.5 meV [57].

The FEs produced at low temperature by illumination with photons in
the vicinity or above Eg have finite lifetimes that depend on temperature
(see [34] for silicon), their binding energies, and on the band structure of
the semiconductor (the lifetime is larger in semiconductors with indirect gap
than direct gap). During their lifetime, they can diffuse in the crystal and
be trapped by impurities and defect to become bound excitons (BEs) with
energies slightly different from that of the FE.

In ionic crystals, the exciton can be considered as an ion in an excited
state. This excitation, called a Frenkel exciton, can also propagate in the
crystal through similar ions. The excitation energies of the Frenkel excitons are
significantly larger than the binding energies of the Mott–Wannier excitons.
A thorough treatment of the optical properties of excitons in semiconductors
and insulators can be found in [107].

3.3.3 Free-Carrier Effects

In semiconductors with small band gaps and small electron effective masses,
a high concentration of n-type dopants produces a large accumulation of elec-
trons in the CB. This can prevent the interband transitions with the low-
est energies, and an efficient interband absorption takes places only at ener-
gies larger than Eg. The above explanation was provided independently by
Burstein [12] and Moss [68] to explain the h-e shift of the band gap observed
in InSb with increasing free electron concentrations (from a value of 0.18 eV
up to an apparent band-gap value of ∼0.6 eV for an electron concentration
of ∼1019 cm−3). This energy shift, coined the Burstein–Moss effect, has been
observed in PbS [78] and in GaSb [31]. This effect has also been put forward
to explain most of the substantial low-energy shift (from about 2 eV to near
0.7 eV) of the band gap of InN in samples with moderate decrease of the
carrier concentrations [104]. The low value of the band gap of InN has been
attributed to Mie scattering by In metallic clusters or droplets in the samples
[9, 90] and a value of the band gap near 1.3 eV was proposed. However, the
last results published confirm a band-gap value of ∼0.8 eV with a moderate
Burstein–Moss effect [2].

We have assumed up to now that besides lattice absorption, intrinsic semi-
conductors were essentially transparent to photon energies less than the band
gap at RT and below. Now, like electrons in metals, the free carriers in semi-
conductors can absorb electromagnetic radiation to increase their energies.
In the calculation of the intrinsic free-carrier concentrations in the VB and
CB of a semiconductor, one has to consider the effective densities of states
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(DoS) Nc and Nv in the conduction and valence bands and the fact that elec-
trons obey the Fermi–Dirac distribution. These effective DoS can be expressed
generically as a function of the DoS effective mass m∗

dos (mcdos or mvdos) as
2
(
m∗

doskBT/2π�
2
)3/2. This DoS effective mass depends on the dispersion of

the energy bands of the semiconductors. For non-degenerate parabolic bands,
it is simply mn or mh. For electronic bands that have ellipsoidal symmetry
near their extremum, m∗

dos = (mxxmyymzz)
1/3. When there are Mc equiv-

alent CB minimums, as for group-IV semiconductors, this must be taken
into account in the DoS effective mass: for CB electrons in these materials,

mcdos =
[
Mc

(
mn�m

2
nt

)1/2
]2/3

. With the CB parameters of Table 3.4, mcdos

is 1.66, 1.062 and 0.547 for Cdiam, silicon and germanium, respectively, in
me units. For energy bands that are degenerate at their extremum, one must
consider the individual bands separately and for the VB of the group IV semi-

conductors, mvdos =
(
m

3/2
hh +m

3/2
�h

)2/3

. In the intrinsic regime, there are as
many free holes as free electrons and their concentrations ni at temperature
T is:

ni = 2
(
mekBT

2π�2

)3/2

(mcdosmvdos)
3/4 e−

Eg
2kBT (3.38)

with mcdos and mvdos in units of me, (3.38) written as:

ni

(
cm−3

)
= 4.84 × 1015T 3/2(mcdosmvdos)3/4e−

Eg
2kBT

This expression is derived from the more general case where the electron
and hole concentrations in the conduction and valence bands are n and p
with np = n2

i . At RT, taken as 300K, the intrinsic carrier concentration ni

is ∼1.1 × 1010 cm−3 in silicon, but it increases to about 4 × 1013 cm−3 in
germanium to reach 2 × 1016 cm−3 in intrinsic InSb.

In the classical electron transport model in metals or semiconductors, for a
material with a free electron concentration n and an average electron scatter-
ing time (also called relaxation time) τ , the DC conductivity is σ0 = ne2τ/m∗.
In this classical expression, m∗ (m∗

c or m∗
v) is the conductivity effective mass,

which is an average mass different from the DoS effective mass (see for instance
[4]. In cubic semiconductors with degenerate CB extrema, the conductivity
effective mass for electrons is:

m∗
c =

3mnlmnt

mnt + 2mnl
(3.39)

and for holes, it is given by:

1
m∗

v

=
m

1/2
hh +m

1/2
lh

m
3/2
hh +m

3/2
lh

(3.40)

For non-degenerate CBs, m∗
c is equal to mn. On the basis of a free-electron

model, with an equation of motion analogous to expression (3.9) but without
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restoring force and with an appropriate electron effective mass m∗, the polar-
ization P for a free-electron concentration N is:

P = − Ne2E

m∗ (ω2 + iγω)
(3.41)

where γ = τ−1 is the collision frequency for electrons. Defining ω2
p as

Ne2/m∗ε0, where ωp is the plasma frequency, the dielectric function can be
written as:

ε (ω) = ñ2 (ω) = 1 − ω2
p

ω (ω + iγ)
(3.42)

In a semiconductor, when considering expression (3.41), the contribution to
the dielectric function of the high-frequency interband transitions at energies
≥Eg is considered by replacing 1 by the high-frequency dielectric constant
ε∞.

From the modified expression, one derives:

n2 − k2 = ε∞ − ω2
p

ω2 + γ2
(3.43a)

and

2nkω = γ
ω2

p

ω2 + γ2
(3.43b)

For small absorptions and at IR frequencies high compared to collision fre-
quencies, these expressions reduce to:

n2 = ε∞ − ω2
p

ω2
(3.44a)

and

2nkω = γ
ω2

p

ω2
. (3.44b)

For an intrinsic semiconductor with refractive index n, where the mean life-
times between collisions are τn and τh for electrons and holes, respectively, it
leads to an energy-dependent free-carrier absorption coefficient Kfc given by
the contribution of the free electrons and holes:

Kfc =
nie

2

meε0cω2n
(

1
m∗

cτn
+

1
m∗

vτh
) (3.45)

with m∗
c and m∗

v in me units. For an extrinsic semiconductor, ni in expression
(3.45) is replaced by the actual free-carrier concentration n or p and only the
appropriate term is left in the parentheses.

Expression (3.45) predicts a free-carrier absorption proportional to the
square of the wavelength of the radiation when the scattering time is inde-
pendent of energy. An energy dependence of τ rises at low energy from the
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interaction between free electrons and acoustic phonons; in this case, it can
be shown that absorption follows a λp wavelength dependence with p between
2 and 3. For free electron absorption (n-type semiconductor), a practical ex-
pression relating the absorption coefficient to λ2 is:

Kfccm−1 = 5.26 × 10−17 λ
2(μm2)n(cm−3)

nm∗2
c μn(cm2/Vs)

(3.46)

where μn = eτn/m
∗
c is the electron mobility. The RT free-carrier absorption

of InSb, a semiconductor of technological interest shows, for intrinsic crystals,
a very weak energy dependence between the band gap and the onset of the
multi-phonon absorption. The average value of this absorption coefficient near
100meV is about 10 cm−1 and the deviation from (3.45) can be attributed to
the free-hole absorption. Such a dependence has been observed in n-type InSb
and n-type silicon [3, 93].

In p-type semiconductors with moderate band gaps, the VB states of lower
energy are occupied at RT by the free holes released by the shallow acceptors.
Direct absorption from electrons can then take place between the occupied
VB states and the empty upper states. The direct Γ+

8 → Γ+
7 transition (see

Fig. 3.4) at k = 0 is parity forbidden, but direct transitions for k 
= 0 are
observed. Depending on the location of the Fermi level with respect to the
different VBs, transitions can take place from the s–o split and/or light-hole
VBs to the heavy-hole VB and from the light-hole to the heavy-hole VBs.
This kind of inter-valence band absorption has been specially studied in p-
type Ge, where it gives rise at RT to three broad absorption bands: the ones
at 0.37 and 0.27 eV, with absorption cross-sections K/p near 1 ×10−16 cm2,
are due to transitions from the spin-split VB to the heavy- and light-holes
VBs, respectively, and the one at ∼0.08 eV to transitions from the light to
heavy hole bands ([12], and references therein).

Expression (3.7) for normal reflectivity shows that when n = 1 and k is
small in comparison, R and the reflectance R tend to zero. From (3.44a), this
occurs at a frequency given by ω2

R=0 = ω2
p/ (ε∞ − 1). A good illustration of

this point is shown in Fig. 3.12 for n-type InSb.
At slightly lower frequencies, for ω2 = ω2

p/ε∞, n goes to zero and the
reflectance rises to values near unity. The determination of ωR=0 when the
free-carrier concentration and ε∞ are known allows determination of the con-
ductivity effective mass. For non-parabolic CBs, the values of m∗ so obtained
for different filling factors of the CB are different from those measured at the
bottom of the CB.

The plasma frequency corresponds to an oscillation as a whole of the elec-
tronic charge density with respect to the fixed ionic charge. By analogy with
the phonon excitation, the corresponding excitation is called plasmon and
it can be considered as the quantization of classical plasma oscillation. The
plasmon oscillation is longitudinal with respect to its propagation and is com-
parable to the TO phonon mode. The macroscopic electric field associated
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Fig. 3.12. RT reflectance minima for n-type InSb samples with different free-carrier
concentrations between 248 and ∼35meV. The spectral variation of the refractive
index n of the sample with n = 6.2×1017 cm−3 is also shown (after [93]). Copyright
1957 by the American Physical Society

with plasmons can give rise to Raman scattering. For some carrier concen-
trations, the plasma frequency can approach the LO phonon frequency and
interaction between the two modes occurs.
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24. B. Clerjaud, A. Gélineau, D. Galland, K. Saminadayar, Phys. Rev. B 19, 2056

(1979)
25. M.L. Cohen, T.K. Bergstresser, Phys. Rev. 141, 789 (1966)
26. A.T. Collins, S.C. Lawson, G. Davies, H. Kanda, Phys. Rev. Lett. 65, 891

(1990)
27. J.O. Dimmock, I. Melngailis, A.J. Strauss, Phys. Rev. Lett. 16, 1193 (1966)
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4

Methods and Techniques of Absorption
Spectroscopy of Solids

4.1 Introduction

As a function of the underlying physical process, the absorption of electro-
magnetic radiation by impurities in semiconductors and insulators extends
from energies near the band gap, lying in the UV region, to the very far IR.
The discrete absorption spectra, especially those obtained at low temperature,
can include very narrow absorption lines, with full width at half maximum
(FWHM) as low as 0.005 cm−1 (∼0.6 μeV). This means that the absorption
spectroscopy of impurities in semiconductors and insulators can be considered
in some aspects as a high-resolution spectroscopy. Low-temperature trans-
mission experiments with semiconductors also require sensitive spectrometric
systems because of the reflection losses of crystals with high refractive indices
and of the transmission losses of the optical cryostat windows. Typically, the
transmission spectrum of the sample recorded is given by expression (3.8). In
addition to impurities or defects, the sample can also present intrinsic lattice
absorption in the spectral region of interest, and the total absorption coeffi-
cient K at a given energy is the sum of an intrinsic part Ki and an extrinsic
part Ke. When the intrinsic contribution interferes with the impurity spectra,
for instance in the case of multiphonon absorption, the transmission of an
intrinsic reference sample of the same thickness d is measured and the ratio of
the two spectra is free from the intrinsic contribution. Quantitatively, it can
be verified that the relative transmission Trel, ratio of the raw transmission
Ti+e of the sample and the raw transmission Ti of the reference sample is
given by:

Trel =
ue

(
1 −R2u2

i

)

(1 −R2u2
i u2

e)
, (4.1)

where ui = exp [−Kid] and ue = exp [−Ked]. There is still a small intrinsic
contribution, but for Kid much smaller or much larger than unity, Trel reduces
to
(
1 −R2

)
ue/
(
1 −R2u2

e

)
or to ∼ ue, respectively, which can be reversed to

provide a Ke value.
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For technological purposes, it can be also desirable to obtain a distribu-
tion map of a defect centre in a semiconductor wafer. One then chooses an
absorption or PL line of this centre and scans its intensity at different points
of the wafer.

The measured peak absorption coefficient, Kmax, for a discrete impurity
transition depends on the oscillator strength of the transition and on the impu-
rity concentration. The measured profile of a recorded line is the convolution
product of its true profile by the instrumental function of the spectroscopic
device used. It depends significantly on the ratio of the true FWHM of the
line to the spectral resolution (the spectral band width) of the spectroscopic
device. When this ratio is of the order of 3 or above, the measured FWHM can
be considered as the true FWHM and the observed profile is close to the true
profile. For lower values of this ratio, the measured FWHM increases steadily
while the measured value of Kmax decreases, and it is assumed that when the
ratio becomes ∼1/3 or smaller, the measured FWHM is the spectral resolu-
tion and the measured profile the instrumental function. This effect is known
as instrumental broadening. For isolated lines, the absorption coefficient can
be integrated over the entire line to give an integrated absorption IA:

IA =
∫ ν̃max

ν̃min

K (ν̃) dν̃

where the integration is over the spectral extent of the line, here the wavenum-
ber, denoted by ν̃. This integrated absorption is independent of the spectral
resolution. For continuous absorption,K is specified at a definite energy. When
the concentration N of impurities producing a given absorption is known, one
can define a more general quantity, the absorption cross-section σ

(
cm2
)

=
Kmax/N , which is physically significant when instrumental broadening is con-
sidered, or an integrated absorption cross-section σIA (cm) = IA/N , which is
the same whatever the spectral resolution. For a given impurity and a given
line of its spectrum, (σIA)−1 is the impurity concentration for unit IA of that
line and constitutes an integrated calibration factor of that line.

The correction for instrumental broadening is known as deconvolution.
Deconvolution procedures that can be used with dispersive spectrometers
have been described (see for instance [51]. In this book, unless otherwise spec-
ified, the FWHMs indicated are considered to be corrected for instrumental
broadening.

For low intensities of probing radiation, the absorption coefficient is inde-
pendent of intensity, but for large intensities, the absorption decreases because
of saturation effects (discussed later in the chapter).

In classical optical absorption measurements, the absorption of a sample
under different conditions as a function of the energy of the incident elec-
tromagnetic radiation is studied. This can be achieved in two ways: one can
either take a broadband source and use a spectrometer to disperse the electro-
magnetic spectrum, or use a monochromatic tunable source. There is also a
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technique known as excitation spectroscopy, which can be used in absorption
as well as in PL modes. In this technique, a monochromator is set at the energy
of a chosen absorption or PL line of a sample while the sample is illuminated
with monochromatic light of varying energy by a second monochromator or
a tunable source. The excitation spectrum is a record of the intensity change
of the absorption or PL line through the first monochromator as a function
of the energy of the additional exciting radiation.

A discrete transition between two levels of a centre in a crystal is
characterized by its energy and a FWHM, which is the sum of the widths
of the ground and excited states. In an ideal case, for given experimental con-
ditions and for an homogeneously distributed centre, this FWHM is the same
throughout the crystal and it can be defined as the homogeneous width of
the transition. Eventually, because of local distortions or of inhomogeneities
in the local electric field, a small change in the transition energy can occur
locally. This can be due for instance to the random distribution of other cen-
tres or defects, producing strains in the crystal, or to the random distribution
of a centre in a very disproportionate alloy. The observed absorption line is
then the superposition of lines with slightly different energies corresponding
to sites with different perturbations. The observed line width, corresponding
to the energy distribution of the sum of the different lines, is larger than the
homogeneous line width and the profile is said to be described by inhomoge-
neous broadening. When the lifetime of the excited state of the transition is
large, giving a small homogeneous line width, it is possible, by illuminating
the sample with laser radiation whose energy is within the inhomogeneous
line width of an absorption transition, to excite selectively centres with the
same homogeneous width. This produces a dip (a spectral hole) in the in-
homogeneous absorption line and the technique is known as hole burning.
This possibility was first demonstrated by Szabo [45] to study the effect of a
ruby laser illumination on the in homogeneously broadened R1 line of Cr in
ruby at 693.4nm. Hole burning informs on the homogeneous line width of the
transition, and also on the resonant excitation transfers [29].

In some experiments, the absorption of a transition is measured at a given
energy as a function of the incident power. This is usually performed with
a pulsed laser, for which the power dynamics can be adjusted in a broad
range and where the repetition rate can be controlled. The transmitted energy
can be measured directly with a variable attenuator placed in front of the
detector to avoid its saturation for high incident power, or in a pump-probe
geometry. What is generally observed as a function of the incident power is first
a constant value of the absorption followed, for increasing power, by a decrease
of the absorption, which can reach a point where it goes to zero. Such an effect
is known as saturated absorption or optical bleaching. The kinetics of the
absorption decrease, observed for both electronic and vibrational transitions
[3, 46], also allows determination of the lifetimes of the excited states.

For sufficiently high power intensities, non-linear effects can give rise to
two-photon absorption (TPA) where simultaneous absorption of two photons
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with energy �ω1 produces a transition at energy 2�ω1, and the possibility of
such an effect was predicted by Maria Göppert–Mayer [11]. An experimental
verification of TPA was provided by [18], who reported a blue fluorescence at
425.0 nm (2.917 eV) of Eu2+ salts in CaF2 as a consequence of the illumination
with the red light of a ruby laser at 694.3 nm (1.796 eV). TPA is theoretically
explained by the presence of an intermediate virtual state at mid-point be-
tween the initial and final states. The possibility to observe TPA of shallow
donors in semiconductors has been discussed by Golka and Mostowski [10] and
examples of such absorptions for donors in GaAs are presented in Sect. 6.8.1.1.

An electronic or vibrational excited state has a finite global lifetime and its
de-excitation, when it is not metastable, is very fast compared to the standard
measurement time conditions. Dedicated lifetime measurements are a part of
spectroscopy known as time domain spectroscopy. One of the methods is based
on the existence of pulsed lasers that can deliver radiation beams of very short
duration and adjustable repetition rates. The frequency of the radiation pulse
of these lasers, tuned to the frequency of a discrete transition, as in a free-
electron laser (FEL), can be used to determine the lifetime of the excited state
of the transition in a pump-probe experiment. In this method, a pump energy
pulse produces a transient transmission dip of the sample at the transition
frequency due to saturation. The evolution of this dip with time is probed by
a low-intensity pulse at the same frequency, as a function of the delay between
the pump and probe pulses.1 When the decay is exponential, the slope of the
decay of the transmission dip as a function of the delay, plotted in a log-linear
scale, provides a value of the lifetime of the excited state.

Impurity photoconductivity (extrinsic photoconductivity) is a type of ab-
sorption measurement where the detector is the sample itself. Classical photo-
conductivity occurs when the absorption of an electron or of a hole takes place
between a discrete state and a continuum, where it can contribute to the elec-
trical conductivity. When the final state of a discrete transition is separated
from the continuum by an energy comparable to kBT at the measurement
temperature, the electron or the hole in this state can be thermally ionized
in the continuum and give rise to photoconductivity at the energy of the dis-
crete transition. This two-step process, which is temperature-dependent, is
known as photo-thermal ionization spectroscopy (PTIS) and is discussed in
more detail later in the section on extrinsic photoconductors.

Under a directional perturbation, a uniaxial stress or a magnetic field, the
absorption of impurities in a crystalline sample shows dichroism with respect
to the polarization of the radiation used for the absorption measurement. This
means that the features of the spectra are different for a polarization parallel or
perpendicular to the direction of the perturbation. It includes the polarization
rules and there is no mention of dichroism at this point. In the spectroscopy of
paramagnetic centres with related absorption lines, magnetic circular dichro-
ism (MCD), the difference between the absorption of left- and right-circularly

1 In the pump-probe geometry, the two beams are crossed.
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polarized radiation, can be used to detect the absorption associated with the
broad features of paramagnetic centres.

At low energies, in the meV energy range, acoustic phonon spectroscopy
with superconducting thin film tunnel junctions evaporated onto opposite
surfaces of a sample has been used as a technique complementary to optical
spectroscopy [7]. In this technique, used in silicon and germanium, phonons
are generated and detected by appropriate biasing of the junctions. Biased at
voltages 2ΔG/e above the energy gap 2ΔG of the superconductor, a phonon
line that can be tuned by the voltage is generated. Inversely, biased at voltages
below the gap, a junction becomes a phonon detector with energies sufficient
to excite extra quasiparticles (i.e to break Cooper pairs) in the thin film
of the detector junction. With Al–Al2O3–Al and Sn–SnOx–Sn junctions as
phonon generators and detectors, respectively, the available phonon spectrum
extends from 280 to 3000GHz (∼9.3–100 cm−1 or ∼1.2–12.4 meV), and spec-
tral resolutions of 2GHz (∼0.07 cm−1 or ∼8 μeV) can be achieved. The typical
sample thickness is 1–2mm. The Al critical temperature of 1.2 K determines
the operating temperature (∼1 K and below) of this phonon spectrometer
(the critical temperature of Sn is 3.2K). This type of high-resolution acoustic
phonon spectroscopy has been developed and used between 1976 and 2000
at the University of Stuttgart to study low energy electronic and vibrational
excitations, mainly in silicon and germanium ([26], and references therein).

4.2 Radiation Sources and Spectrometers

4.2.1 Tunable Sources

Tunable sources are essentially tunable lasers, and several kinds of devices of
this type are known. Among them are the dye laser, the sapphire:Ti laser,
the laser diode and the free electron laser (FEL). The dye laser consists of a
fixed frequency laser (UV or visible) pumping a dye solution cell in an optical
cavity. The dye solution can emit laser radiation at frequencies within the flu-
orescence curve of the solution. The emitted laser frequency is tuned through
the fluorescence curve by inserting an adjustable dispersing element (a grating
which is part of the optical cavity, a prism, and/or a Fabry–Perot etalon). The
dye lasers operate in the visible and near IR region of the spectrum. The laser
diodes are made from direct-gap compound semiconductors, and those whose
output extends the farthest in the IR are the Pb1−xSnxTe diodes. Most of
these diodes are operated near LHeT, and their peak emission corresponds to
the band gap of the alloy. They can be tuned by varying the temperature of the
diode in a controlled manner or, for a more restricted range, by varying the in-
jection current intensity. Resolutions ∼0.001 cm−1 (0.12 μeV) near 1000 cm−1

(124meV) have been reported with a temperature-tuned Pb0.86Sn0.14Te laser
diode and used for the study of vibrational modes of ReO−

4 molecules in KI
crystals at LHeT [5]. Another option is to use magnetic field tuning by chang-
ing the Landau level separation of the semiconductor (the electron effective
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masses of these lead salts are relatively small). FEL radiation is the coherent
synchrotron radiation of a relativistic electron beam crossing the gaps of a se-
ries of magnets arranged to produce zones of alternating magnetic fields. The
magnetic fields of this array of magnets, called an undulator (or a wiggler), ac-
celerate the electrons sinusoidally and the coherent radiation emitted depends
on the electron energy. As an example, the CLIO FEL in Orsay, France, can
be tuned between 10.3 and 413meV (120− 3 μm) with a minimum relative
spectral width between 0.2 and 1%. These tunable sources have mainly been
used for very-high resolution molecular spectroscopy and also for experiments
with semiconductors, like the FEL at Rijnhuisen, in the Netherlands (FELIX).
Impressive results have recently been obtained on bound-exciton absorption
in 28Si using a tunable Yb-doped fibre laser [50]. In the late Soviet Union,
submillimetre microwave generators known as backward-wave tubes (BWT),
which can deliver monochromatic radiation power of ∼1 mW, have been used
as sources in the very far IR and adapted to the absorption spectroscopy of
impurities in semiconductors in the 0.25–2mm (5–0.6meV) spectral region [9].

4.2.2 Broadband Sources

The alternative to tunable sources is the absorption spectrometer, composed
schematically from a broadband incoherent source, a monochromator and a
detector. Additional equipment is also needed, as additional sources for band
gap excitation. Each part of the equipment is specific to the spectral range
investigated.

With increasing energies, the most utilized broadband sources are (1) the
continuous spectrum of the high-pressure xenon–mercury arc lamp with a
quartz envelope, used in the far IR from ∼1 meV to about 20meV
(1.24 mm–60 μm), (2) the quasi-black body emission of the Joule-heated SiC
element (globarTM), operated in air or in vacuum at a temperature near 1500
K, useful in the 20–600meV (∼60–2 μm) spectral range, and (3) a tungsten
filament in a quartz envelope, operated near 3000 K in an iodine atmosphere
to reduce evaporation of the metal (the so-called quartz-halogen lamp), gener-
ally used in the 0.5–3.4 eV (∼2.5 μm–360 nm) range. The quartz-halogen lamp
also produces a small amount of IR radiation below 0.5 eV due to the heat-
ing of the quartz envelope by the tungsten filament. The most common UV
source is the deuterium lamp. This latter source provides a continuous spec-
trum between 3.35 and 7.5 eV (∼370–165 nm). Above 7.5 eV, emission lines
predominate, but with a MgF2 UV-transmitting window, it can still be used
up to ∼10.8 eV (115 nm). Continuous far IR coherent and incoherent radia-
tion are produced by synchroton radiation, covering a broad energy range,
from UV to IR, and it is superior to the high-pressure mercury arc at energies
below 20 cm−1. In the 1960s, spectrometers for the 2–15 μm spectral region
were equipped with a Nernst filament as a source. It consisted of a mixture of
yttrium and zirconium oxides in a small rod, electrically heated to ∼2000 K.
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This filament was highly resistive for Joule heating from room temperature
and required an initial proximity heating.

4.2.3 Spectrometers

Two main categories of monochromators can be distinguished: one is the dis-
persive monochromator where an energy spectrum dispersed in space is ob-
tained with a reflection or a transmission diffraction grating (more rarely now
with a prism). The other is the Fourier transform spectrometer (FTS). The
principles of these two types of spectrometers are described below.

4.2.3.1 Dispersive Monochromators

Dispersive monochromators use either a prism or a diffraction grating as a
dispersive element. Before the grating monochromators were introduced at
the end of the 1960s, prisms were used in a spectral range where the refractive
index of the prism material presented energy dispersion with wavelength. The
dispersion used was the one on the h-e side of the lattice absorption bands,
which could be converted into spatial dispersion of a polychromatic source due
to the prism geometry. Quartz was used as a prism material in the visible-near
IR region and different alkali halide materials were used in the infrared, with
a lower energy limit of about 25meV or 200 cm−1 (50 μm) for caesium iodide.
A dispersive grating monochromator comprises schematically an entrance slit
on which the output of the broadband source is focused, a collimating mirror,
usually spherical, a plane reflection diffraction grating (in the visible region,
transmission diffraction gratings are also used), and an exit slit. The divergent
beam from the entrance slit is made parallel by a spherical collimating mirror
and redirected on the diffraction grating. The radiations with energies kν̃d
(where k is the diffraction order and ν̃d the wavenumber in cm−1, for k =
1 corresponding to a specific diffraction angle) are focused on the exit slit
by a spherical mirror identical to the collimating mirror. An optical filter is
inserted in the beam just after the exit slit to allow radiation corresponding
to only a single value of k, in order to get a nearly monochromatic radiation.
Sequential scanning of the spectrum at the exit slit is realized by rotating the
grating about an axis parallel to the grooves of the grating, which changes
the useful diffraction angle.2 It can be shown that the theoretical resolving
power R = ν̃d/δν̃d of a grating monochromator for infinitely small exit slits is
the product of the width of the grating effectively illuminated by the number
of lines (or grooves) of the grating per unit length. The lines of a reflection
diffraction grating are cut to produce a maximum of diffraction efficiency for
a given reflection angle (the blaze angle). For common uses, this angle is ∼30◦

2 In spectrographs, the dispersing element is immobile and the spatially dispersed
spectrum is recorded on a photographic plate or on a linear array charge-coupled
device (CCD) detector.
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and the number of lines per unit length can be chosen as desired, with the
proviso that the grating step (the distance between two successive lines) must
remain comparable with the diffracted wavelength in the first order for useful
diffraction angles near the blaze angle. For instance, in the 10 μm IR region
(1000 cm−1 or 0.124 eV), for a grating with a width of 100mm ruled with
100 lines/mm, the theoretical spectral band-width δν̃d is 0.1 cm−1 or 12.4 μeV.
This is valid only for a full illumination of the grating, in the absence of optical
aberrations and infinitely narrow slits. Practically, with the above parameters,
working energy resolution ∼0.3–0.4 cm−1 (40–50 μ e V) were achieved. With a
dispersive monochromator, a spectrum is made of N spectral elements (not
necessarily equal) scanned sequentially at the exit slit of the monochromator.
The values of these spectral elements, which can be considered as the spectral
resolution, depend on δν̃d and on the actual values of the mechanical widths
of the entrance and exit slits. The intensity of the radiation diffracted by a
reflection grating is higher for the electric vector of the radiation parallel to
the grooves than for electric vector perpendicular to the grooves so that the
output of a grating monochromator is always partially polarized.

The dimension of a monochromator is conditioned by the size of the grat-
ing. The main reason being, to reduce optical aberrations, the focal length of
the collimating mirror must be at least 4–5 times the width of the grating.
There exist a few different configurations of grating monochromators intended
to reduce optical aberrations for a given optical and volume limitations. The
best known are the Czerny-Turner, Ebert-Fastie and Littrow mountings. In
the Littrow mounting, the maximum diffraction of the grating is obtained
when the diffraction angle is equal to the angle of incidence i. Under this
condition, the wavelength diffracted at angle i in the kth order by a grating
with N lines per unit length is λd = 2 sin i/kN and the spectral domain is
scanned by the rotation of the grating.

The idiosyncrasies of the Littrow mounting were found in the Model 99
infrared monochromator, a rather compact prism unit produced at the end
of the 1950s by the Perkin-Elmer Corporation, supplemented by Model 99G,
equipped with a grating, which has been used in many semiconductor ab-
sorption studies. In this mounting, the collimating mirror was an off-axis
paraboloid mirror with a focal length of 264mm (an off-axis paraboloid mirror
is corrected for optical aberrations for a given off-axis angle while a spheri-
cal mirror is not). For radiation detection by the lock-in technique and also
to discriminate between the dispersed and background radiations, the beam
from the source is time-modulated by a rotating chopper also providing an
electric reference signal at 13Hz for a phase-locked amplification, adapted to
the time constant of the radiation thermocouple. With the use of photocon-
ductive detectors with smaller time constants, an electrically driven tuning
fork with soldered blades, tuned at 400Hz and located close to the entrance
slit has also been used.

In the above Littrow mounting, internal modulation of the dispersed beam
and an appropriate optical mounting allowed a second dispersion of the beam
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Fig. 4.1. Schematic of an experimental set-up for absorption measurements at low
temperature incorporating a Perkin-Elmer Model 99G monochromator. S1, S2 and
S3 are IR sources selectable with plane mirrors M1 and M2. FM: focusing spherical
mirrors. E1 and E2: entrance and exit slits. CM: off-axis paraboloid collimating
mirror. G: plane reflection grating. Beam 1 from S1 is converted by CM into a parallel
beam dispersed by G. One wavelength is diffracted in a direction where it can be
intercepted by first mirror M as beam 2 and focused on the internal chopper Ch.
Modulated beam 2 is redirected toward G as beam 3 and re-dispersed a second time
as beam 4. Beam 4 intercepted by IM is focused on E2 and re-focused on the sample
by FM. The divergent monochromatic beam is finally focused on thermocouple D
by ellipsoidal mirror EFM. F1, F2 and Pol are locations for transmission filters and
a polarizer. Beam 1 can be blocked by shutter Sh (after [37]). With permission from
the Institute of Physics

on the grating before reaching the exit slit (the so-called Walsh double pass
system). With the same mechanical slit width, this allowed a reduction of
the spectral band-width by a factor of ∼2 with respect to single pass. In the
double-pass mode, the 99G monochromator allowed a practical resolution of
∼20 μ e V near 0.124 eV using 64 × 64 mm diffraction gratings ruled with 100
lines/mm. A full experimental set-up for low-temperature absorption mea-
surements of solid samples used in the 1960s is shown in Fig. 4.1.

The Czerny-Turner mounting and the Ebert-Fastie mounting, an elegant
variant of the Czerny-Turner mounting, that allows the use of long slits with-
out additional aberrations, have been used for the design of commercial and
custom-made monochromators in a broad spectral range, from UV to the far
IR, with grating as large as 300mm, requiring focal lengths of the collimating
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mirrors between 1 and 2m. Many commercial grating spectrometers were de-
signed to produce two separate modulated optical beams, which recombined
on the detector. These double-beam spectrometers were used to directly mea-
sure the ratio of the absorption of a sample, inserted in one beam, with respect
to that of a reference sample in the other beam. In compact monochromator
designs, the plane grating was sometimes replaced by a spherical concave
grating, which replaces both the collimating mirror and the grating. For more
details on the dispersive monochromators, see [15].

Presently, grating monochromators are used every time a sample must be
illuminated with quasi-monochromatic radiations that are tunable in a broad
spectral range or for experiments in the visible–UV range. Another interest
of dispersive monochromators is the possibility of wavelength modulation of
the output of these monochromators in order to get the first derivative of the
transmission spectrum. This has the advantage of increasing the sensitivity,
and this technique is also used in laser spectroscopy.

4.2.3.2 Fourier Transform Spectrometers

The heart of the FTS is a two-arm Michelson interferometer equipped with a
light source and a detector. The optical beam from the source is divided into
two beams by a semi-reflecting beam splitter, and these beams are reflected
back to the beam splitter by two plane mirrors M1 and M2 (a compensator
parallel to the beam splitter is inserted in one arm of the interferometer to
ensure identical transmission). In the classical mounting, one of the mirrors
M1 or M2 moves perpendicularly to its plane and the signal from the beam
recombined on the beam splitter/compensator is recorded by the detector as a
function of the path difference between the two mirrors. This signal constitutes
an interferogram, and the energy spectrum of the source is obtained by calcu-
lating the Fourier transform in the time domain of the interferogram. In one
alternative, the beam splitter/compensator unit and the two mirrors parallel
to it can rotate about an axis perpendicular to the interferometer mount-
ing while M1 and M2 are immobile, providing a path difference between the
two optical beams [44]. The corollary is the pendulum interferometer, where
mirrors M1 and M2, mounted at 90◦, are at the end of two linked identical
mechanical arms mounted at 90◦. These two arms (and mirrors M1 and M2)
can move as a whole like a pendulum about a common point, providing again
a path difference between the two optical beams. Small and large FTSs with
this pendulum design are now commercially available.

A commercial high-resolution FTS is depicted in Fig. 4.2. The output of the
broadband source is focused on a circular aperture (entrance iris). As in the
dispersive set-up, the optical beam is made parallel by a collimating mirror,
and it intercepts a beam splitter at a non-normal incidence (usually 45 or
60◦). One part of the beam is transmitted towards a fixed plane mirror while
the other part towards a plane mirror, which can be translated continuously
or in steps at a given distance (scan mirror). The beams reflected back by
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Fig. 4.2. Schematic of a commercial FTS (BOMEM DA8, discontinued). The two
ellipsoid mirrors and the two paraboloid mirrors are identical so that the mounting is
symmetric (the image of the entrance iris is at the sample location). The scan mirror
tube is vertical. The two symmetrical sample locations allow the permanent mount-
ing of two different detectors and the redirecting mirror to transfer the modulated
beam to external experimental set-ups

these two mirrors recombine on the beam splitter and form an unique beam
carrying phase information of both beams. This resultant beam is focused by
an appropriate optical element on the virtual exit iris aperture and directed
toward a detector. Some FTS are provided with adjustable iris apertures which
can accommodate small samples with an intercepting area less than 1 mm2.
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When a monochromatic source (a laser line, for instance) with wavenum-
ber ν̃0, taken as a Dirac function, is used, the interferogram is a sine function
with period 1/ν̃0 and the Fourier transform of this sine wave in the time do-
main is close to the initial monochromatic line. In the practical cases, the
interferogram of a broadband source is recorded from a path difference prior
to the optical contact between the two plane mirrors (zero path difference or
zpd) to a maximum value optical path difference δmax, equal to two times
the maximum mechanical path difference xmax, defined by experimental con-
ditions. In an ideal case, this interferogram should present a peak at the zpd,
where all the optical frequencies are in phase. Strong oscillations near zpd,
and farther away, result in an average signal close to I0/2, but still containing
information. Practically, the small remaining dispersion of the beam splitter
and the response time of the detector and of the associated electronics pro-
duce an asymmetry of the recorded interferogram, visible near the zpd. This
asymmetry has to be corrected before the symmetrization of the interferogram
from −δmax to +δmax. This is the role of the phase correction process, where
the correction is calculated from a small double-sided interferogram from −ε
to +ε, with ε typically ∼20 μm, which can be taken from the large singly-sided
interferogram, or recorded separately. It can be shown that the Fourier trans-
form of the symmetrized interferogram is the power spectrum of the source.

A notable difference exists between the Michelson interferometer and the
dispersive monochromator. While recording a spectrum made fromN spectral
elements with the first, each spectral element is measured during the whole
recording time of the interferogram, but with the second, each spectral ele-
ment is recorded only during 1/N times the whole recording time. Therefore,
for the same recording time of a spectrum of N spectral elements, the gain in
the signal over noise (S/N) ratio for the interferometer is

√
N (Felgett or mul-

tiplex advantage). A second difference lies in the use of a circular iris, allowing
a larger radiation input than a slit (Jacquinot advantage). In FTSs, the path
difference between the two mirrors is indexed from zero by the fringes of a
single-mode laser (stabilized He–Ne for high-resolution FTSs), whose emission
wavelength is accurately known. This provides an accurate internal wavenum-
ber calibration of the Fourier transform spectrum, which does not require an
external calibration with absorption lines of reference molecular gases, as for
the non-commercial grating monochromators (Connes advantage). The FTSs
require a better mechanical stability than the dispersive systems because a
very good parallelism between the two plane mirrors is required. Hence, the
plane mirrors of the interferometer are sometimes replaced by corner cube re-
flectors, as in the high-resolution Bruker IFS125, or by cat’s eyes, which are
insensitive to small differences of optical parallelism between the two mirrors,
or are provided with a dynamic alignment system which controls and main-
tains the parallelism between the two mirrors (Fig. 4.2). For interferometers
with a mirror moving in steps (when very large values of δmax are required),
the signal is recorded when the mirror is at rest and this requires a time
modulation of the optical beam as for dispersive spectrometers. In most com-
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mercial FTSs, the mirror moves continuously at a constant (adjustable) ve-
locity vm. In this case, using again the example of a monochromatic source, a
radiation with wavenumber ν̃0 is modulated in time with frequency f0 = vmν̃0.
For a broadband spectrum containing optical frequencies between ν̃min and
ν̃max, the input is time-modulated at frequencies between fmin and fmax, and
this frequency domain must be compatible with the response time of the detec-
tor. The ultimate spectral bandwidth or spectral resolution of a FTS depends
on the maximum path difference that can be achieved by the machine and on
the apodization function used. The fact that the interferogram is practically
recorded or symmetrized between −δmax and +δmax corresponds to the mul-
tiplication of an infinite interferogram by a boxcar function, equal to unity
between −δmax and +δmax, and to zero outside this interval. Therefore, the
calculated spectrum is the product of the original spectrum and a function
sin (x) /x whose FWHM is ∼1.207/2δmax, and this value constitutes the maxi-
mum resolution achievable for a given spectrum. For instance, for the BOMEM
DA8.2 FTS, the maximum mechanical path difference is 25 cm and its ulti-
mate resolution is 0.012 cm−1 or 1.5 μeV. The spectral resolution of the Bruker
IFS 125 HR is slightly better than 0.001 cm−1 or 125neV. For a given value of
δmax, the spectral lines with natural FWHM smaller than that of the sin (x) /x
function will reproduce in their profile the side lobes of this function. To atten-
uate or suppress these oscillations, the raw interferogram can be multiplied by
various apodization functions, which produce actual FWHM or apodized reso-
lutions larger than 1.207/2δmax, the unapodized resolution. For the frequently
used apodization functions, the practical resolution is reduced to ∼1/δmax.
This loss of resolution compared to that obtained with the boxcar apodiza-
tion has the advantage of improving the S/N ratio of the computed spectrum.

The beam splitter is made from a transparent material with a good optical
homogeneity. In the near and medium IR regions, quartz, CaF2 and KBr are
used, and in the far IR, mylar films with different thicknesses. An alternative
to the classical Michelson interferometer at very low energy (typically below
40 cm−1 or 5meV) is the lamellar-grating interferometer, which obviates the
need for a beam splitter. The wave-front incident from the radiation source
is divided into two parts by reflection on a lamellar mirror consisting of two
sets of parallel interleaved facets. One set is fixed while the other can move
perpendicular to the plane of the fixed facets, producing an adjustable path
difference between the two reflected beams (see for instance [32]. The lowest
energy measured with such a FTS is 1.5 cm−1 or 0.2meV, while the highest
energy rarely exceeds 150 cm−1 or 18meV. In the 1970s, one lamellar grating
interferometer was sold by Beckman RIIC, but due to the small market for
experiments in this spectral region, no instrument of this type is commercially
available now.

When discussing the methods of measurement of the refractive index, we
had mentioned in Chap. 3 the recording of periodic interference fringes in the
transmission spectra of dielectric plane parallel samples with a spectral band-
width smaller than the fringe spacing. This situation is often encountered
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involuntarily in high-resolution spectroscopy of solids or when measuring the
transmission of a thin sample. It is found to interfere with the measurement
of the parameters of weak absorption lines. With thick samples, wedging can
circumvent this drawback, but for very-high resolution spectra in the far IR,
the wedging becomes excessive. Moreover, this is not possible when measuring
thin wafers. As these fringes originate from constructive interferences between
successive beams reflecting at the sample interface, these fringes disappear
when the radiation is incident on the sample at the Brewster angle iB defined
by tg iB = n, where n is the refractive index. In this geometry, the output
beam is polarized in the plane of incidence and there is no reflection loss
at the interface [27, 39]. In experiments performed with a FTS, an alterna-
tive consists in replacing the points of the peaked zone corresponding to the
fringes in the FT spectrum by zero in the primary interferogram. This is not a
panacea, however, as, if the channelled spectrum is efficiently removed by this
procedure, the wings of sharp absorption lines can show oscillations. A more
general, but more time-consuming method, consists in subtracting from the
spectral regions of interest a suitable sine function with adequate dispersion
and attenuation.

In absorption spectroscopy, and more specially at high resolution, one must
take into account the fact that carbon dioxide and water vapour found in
atmosphere give rise to vibrational absorption lines in the infrared which can
turn effective transmittance to zero in some spectral regions. Before the advent
of spectrometers operating in vacuum, this parasitic absorption was reduced
by flushing the optical path of the IR spectrometers and monochromators
with dry nitrogen or desiccated air. Presently, all the FTSs are operated under
primary vacuum, but in some critical cases, it can still be necessary to use
sorption pumps cooled with liquid nitrogen to reduce the residual absorption
of atmospheric gases. Evidently, the vacuum-operated machines can also be
alternatively operated flushed with dry nitrogen.

With a high-resolution FTS, it is in principle possible to get an estima-
tion of the true line width by decreasing the spectral resolution δν̃s until the
observed FWHM stays constant. In the experiments performed with tunable
lasers, this condition is generally met. There are also experimental situations
where the profile of an absorption or PL spectral feature containing several
unresolved individual lines cannot be further resolved by increasing the reso-
lution because of the combination of the intrinsic FWHMs of the components
and of their separations. It is possible to artificially decrease the FWHMs of
the components in order to determine accurately their positions by a method
known as self-deconvolution [19].

The uncertainty (or accuracy) on the measured position of an absorption
line depends on the noise in the spectrum, but for negligible noise, as a rule
of thumb, it can be considered to be ultimately limited to one tenth of the
FWHM.
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4.3 Filtering and Polarization

Optical filters are necessary with grating monochromators to retain only one
diffraction order, usually the first, and with FTSs to limit the spectral do-
main and the radiant power incident on the detector. This can be obtained
with low-frequency pass absorption filters with a high-frequency cut-off above
which the filter is opaque. From their optical properties, semiconductors are
adequate substrates as they already provide a high-frequency cut-off corre-
sponding to their band gap energy, but the reflection losses due to the high
refractive indices have to be compensated by anti-reflection coatings. Silicon,
germanium, indium arsenide or indium antimonide substrates have been used
and the list is not limitative. The low-frequency cut-off of compound crystals
due to the onset of the one-phonon absorption can be used when simple high-
frequency pass absorption filters are required (note that these compounds
become transparent again at frequencies below the one-phonon absorption re-
gion). It is also possible to grow on transparent substrates interference filters
with different spectral bandwidths and peak transmissions energies. Before
the advent of FTS machines, filtering for far and very far IR experiments
was a very serious problem. A decrease of the high-frequency radiation con-
tribution was obtained by using mirror substrates polished with 10 or 20 μm
diameter alumina powder grit. The scattering properties of these mirrors for
high-frequency radiation made them acceptable reflection filters for the far
IR. Similarly, materials transparent in the far IR, but translucent or opaque
in the near IR like polyethylene or black polyethylene were and are still used
as optical components and filters in the far IR. The selective near-metallic
reflection of the alkali halides and alkaline earth halides, due to their strong
absorption near the TO absorption region (see Sect. 3.2.1), has also been used
by replacing in the far IR set-ups the metallic mirrors by “reststrahlen” plate
made from these compounds, adapted to the spectral range being investigated,
but this is very rarely used presently.

For some absorption experiments on dichroic or anisotropic samples, it is
desirable to use radiation where the orientation of the electric vector with
respect to crystal axes is known (linearly polarized radiation). This can be
obtained with dispersive monochromators as well as with FTS by inserting
a transmission polarizer in the optical path. The most popular ones are the
wire grid polarizers made from a metallic wire grid (Au or Al) evaporated on a
transparent substrate (ZnSe, AgBr, KRS5 and polyethylene have been used).
For wire spacing smaller than the wavelength of the radiations of interest, this
array acts as a metallic mirror for electric vector of the radiation parallel to the
wires of the grid, but the electric vector component perpendicular to the wires
is transmitted with an overall efficiency depending on the metallized area and
on the refractive index of the substrate. These polarizers are mounted on a
rotating holder so that the orientation of the transmitted electric vector can
easily be selected. Before the advent of wire grid polarizers, linear polarization
of IR radiation was obtained by reflection of a natural parallel beam on a
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silicon or germanium slab at Brewster angle. For germanium, this angle is
∼75◦. The component of the electric vector E perpendicular to the plane of
incidence is totally reflected and the transmitted beam is polarized in the
plane of incidence. For the far IR, several plates of polyethylene were used.

4.4 Radiation Detection

A radiation detector is a device in which the photons absorbed are transformed
ultimately into electrical energy. The efficiency with which the photons are
transformed into electrical power is described by the responsivity of the de-
tector, and it is expressed as the voltage generated by one watt of incident
radiant power. The average time required for the incident power to be trans-
formed and dissipated by the detector characterizes the response time, or time
constant of the detector. To be specific, the electrical response of a detector to
a radiation beam time-modulated at frequency f is similar to the frequency
response R(f) of a low-pass electrical filter with time constant τ :

R (f) =
R0

(1 + 4π2f2τ2)1/2

where R0 is the response at zero frequency. For a detector with time con-
stant τd, the modulation frequency or its average value can be considered
as 4π2f2τ2 = 1. Fluctuations in the detector generate an electrical signal
known as noise, and as will be seen later, noise in radiation detectors can
have different origins. The ultimate performance of a detector is determined
by a quantity directly related to noise: the noise equivalent power (NEP),
discussed also later in this chapter.

Radiation detectors can be separated into two categories. The first one
comprises devices called thermal detectors that detect a radiation-induced
variation of the temperature of the sensor; the second one includes all the
semiconductor-based devices where a photon is used to make an energy-
dependent electronic transition producing a free electron–hole pair or a free
carrier of a given type (photoconductivity), and also the photo-emissive de-
tectors. In thermal detectors, the photon energy is transformed into thermal
energy and these detectors display, therefore, a flat spectral response indepen-
dent of the photon energy. In the detectors belonging to the second category,
the photon energy must be larger than a threshold value below which the ab-
sorption coefficient for the relevant transition is zero. These latter detectors
are called the photoconductive detectors. Note that the detectors discussed
here are those used with laboratory spectrometers. In space research, very
sophisticated thermal and photoconductive detectors are used, but they are
not discussed here.

4.4.1 Thermal Detection

Among the thermal detectors, the thermocouple has been extensively used in
the 1960s with broadband commercial spectrometers and IR monochromators,
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but it is no longer or rarely used now in infrared spectroscopy. In this device,
one of the thermocouple junctions is heated by the radiation while the other
is kept at a constant temperature, producing a thermoelectric voltage due to
the Seebeck effect. The actual devices include several pairs of junctions and
a blackened radiation absorber. The responsivity of the best of these radia-
tion thermocouples was in the 25 VW−1 range, with a time constant ∼30 ms,
allowing a time modulation frequency of ∼10 Hz. The infrared spectral re-
sponse of these small thermal detectors, operated under vacuum, was limited
by the optical window (above ∼25meV or below ∼50 μm when fitted with a
CsI window), but mainly limited by the input signal with a diamond window.

The Golay cell uses the distortion of a reflecting Sb-coated collodion mem-
brane, closing one of the ends of a so-called pneumatic chamber. This distor-
tion is caused by the thermal expansion of a gas heated by the radiation
incident in the cell, and produces the deflection of a beam of visible light,
which is detected by a photocell. The Golay cell was used, fitted with a di-
amond window, with the first far IR FTS and its responsivity and response
time were comparable to those of the radiation thermocouple. For more details
on these detectors, see [15].

A thermal detector still in use in commercial spectrometers is the pyro-
electric detector. The materials of these detectors are ferroelectric compounds
used at temperatures not far below their Curie point. In this temperature
range, they display a pronounced temperature dependence of their sponta-
neous polarization, and the induced change of their dielectric constant pro-
duces a capacitance change in an electric circuit. The frequently used dielectric
(ferroelectric) materials in these RT-operated detectors are triglycine sulphate
(TGS), deuterated TGS (DTGS), and L-α-alanine-doped DTGS (DLATGS).
The ones with the broadest spectral band in the near IR are fitted with KRS5
windows, which makes them useful in the ∼30–620 meV range (∼40 − 2 μm).
Those in the far IR are fitted with polyethylene windows and can be used
for energies in the 50–700cm−1 (200–14 μm). These detectors have larger re-
sponsivities

(∼5 kVW−1
)

and noise than the radiation thermocouple, and a
smaller time constant (∼3 ms), allowing slightly higher modulation frequency
of the radiation beam.

The simplest thermal detector, the bolometer was invented by Langley
[25]. It is based on the change in the electrical resistance of an appropriate
thermometer when heated by the radiation through a radiation absorber. The
first thermometers were blackened platinum strip resistances held at room
temperature; they were used as radiometers rather than as detectors cou-
pled with spectrometers. The extended use of physical measurements near
LHeT led to investigate new materials for the conception of low-temperature
radiation bolometers, with the objective of a low heat capacity and a large
temperature dependence of the electrical resistance, possibly coupled with a
large absorption coefficient. One example is the superconducting bolometer
described in [31], a tin film deposited on a mica substrate and maintained at a
temperature within the superconducting transition domain of tin (∼3.74 K),
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where its equilibrium resistance is about half the value in the normal state.
Such detectors require an accurate temperature control

(∼10−4 K
)
, and this

is one of the reasons why the commercial low-temperature bolometers used
today with IR spectrometers are of the semiconductor type. They are based on
the absorption of radiation by the free carriers in heavily-doped non-metallic
germanium or silicon crystalline samples and the temperature rises from the
coupling of the free-carriers with the crystal lattice. It must be pointed out
that this electron–lattice coupling is not always operative: in direct band gap
semiconductors like InSb, the coupling of small effective-mass electrons with
the lattice in n-type crystals can be weak when the accelerating electric field
is raised (Ohm’s law is no longer valid). Such electrons are called the hot
electrons, and they can be characterized by a hot-electron temperature higher
than the lattice temperature. They can absorb electromagnetic radiation to
increase their temperature and as the electron mobility goes as T 3/2, a net
increase of the electrical conductivity is obtained. This effect has been used by
Kinch and Rollins [22] to develop a low-temperature free electron bolometer
(FEB), characterized by a time constant much smaller

(∼10−7 s
)

than that
of the classical bolometers, but the FEB has been used only for very specific
applications.

Depending on the doping level, the electrical compensation and the op-
erating temperature, the temperature dependence of the resistance of the
silicon and germanium bolometers may be larger than T 5 in the best cases. A
prototype of these bolometers has been described by Low [30]. The simplest
bolometer is a semiconductor element supported in vacuum by electrical wires
providing also the thermal link to the cooled substrate (the heat sink). The
sensitivity and time constant of the detector are improved by using a sensing
element with the smallest possible size, and this is usually detrimental to an
efficient absorption of radiation. The situation can be improved by placing the
sensing element in an integrating gold-coated cavity with a small aperture to
admit external radiation. Another possibility is to use a distinct heat collector
glued to the sensing element. This absorber is made from a metallic film (Bi
or Nichrome is often used) deposited on a dielectric substrate with low heat
capacity and high thermal conductivity (sapphire or diamond). Such bolome-
ters are known as composite bolometers. The time constant of a bolometer is
determined by the heat capacity of the sensing element, but it can be reduced
(at the expense of sensitivity) by increasing the thermal conductance with
the heat sink. Inversely, a high sensitivity requires a lower thermal conduc-
tance to the heat sink through thin lead wires, resulting in a time constant in
the 10ms range. Accidental mechanical vibration of these wires can be a source
of microphonics for bolometers, which are more sensitive to this problem than
photoconductive detectors. Practically, the low-temperature bolometers used
with IR spectrometers down to about 10meV (up to 120–130 μm) are op-
erated at a nominal temperature of 4.2K. In the very far IR, down to and
below 1 meV, they are operated at the lowest temperature that can be ob-
tained by pumping liquid He (∼1.3–1.6 K depending on the performance of
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the pumping system). The performances of the bolometers used with IR spec-
trometers depend on the surrounding thermal radiation. This is discussed in
the section devoted to noise in detectors. For a review on IR bolometers, see
[38]. Slightly different configurations have also been used where, for instance,
the temperature rise of a sample due to optical absorption is detected by a
bolometer located close to the sample [48]. One of the advantages of the Si and
Ge bolometers is that they are relatively insensitive to the effects of magnetic
fields. They can, therefore, be used very close to the superconducting solenoid
without much change in their response.

The measurement of very small absorption coefficients (down to ∼10−5

cm−1) of optical materials has been carried out by laser calorimetry. In this
method, the temperature difference between a sample illuminated with a laser
beam and a reference sample is measured and converted into an absorption
coefficient at the laser energy by calibration [13]. Photoacoustic spectroscopy,
where the thermal elastic waves generated in a gas-filled cell by the radiation
absorbed by the sample are detected by a microphone, has also been performed
at LHeT [34]. Photoacoustic detection using a laser source allows the detection
of very small absorption coefficients [14]. Photoacoustic spectroscopy is also
used at smaller absorption sensitivity with commercial FTSs for the study
of powdered or opaque samples. Calorimetric absorption spectroscopy (CAS)
has also been used at LHeT and at mK temperatures in measurement using
a tunable monochromatic source. In this method, the temperature rise of the
sample due to the non-radiative relaxation of the excited state after photon
absorption by a specific transition is measured by a thermometer in good
thermal contact with the sample [34, 36].

4.4.2 Photoconductive Detection

4.4.2.1 Intrinsic Photoconductors

The main advantage of photoconductors over thermal detectors is their higher
sensitivity and a much smaller time constant. The materials used to make pho-
toconductive detectors are semiconductors chosen for their band-gap energies
or for the ionization energies of specific impurities that fit a given spectral
range. Photons with energies above Eg are absorbed by semiconductors (see
Sect. 3.3.1). This intrinsic absorption produces photoconductivity when ohmic
contacts are made to such a crystal, and an electric field applied to the crys-
tal. An alternative to these simple photoconductors is a p-n junction. Subse-
quently, even without a polarizing field, the electron of a free electron–hole pair
photo-created at the junction is drifted by the electric field to the n-region and
the hole to the p-region, thus contributing to the photocurrent. The detectors
based on this latter principle are called photovoltaic detectors and most of the
modern intrinsic semiconductor photon detectors are of this type. The sensi-
tivity of intrinsic photoconductors is increased when cooled at liquid nitrogen
temperature (77K). They are characterized by time constants of the order of
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1 μs or less, and the order of magnitude of the intrinsic absorption coefficients
allows for small-sized detectors. The lowest-energy detection limit of detectors
made from HgTe–CdTe alloys corresponds to a band gap of ∼55meV at LNT,
and this seems to be the low-energy limit of use of commercially-available in-
trinsic photoconductors. Some direct band gap InSb detectors or those made
with the HgTe–CdTe alloys, known generically as mercury cadmium telluride
(MCT) detectors, when optimized for high-resolution measurements, are very
sensitive (see [49]). Consequently, when the radiation density incident on these
detectors is too large, they show saturation effects (the signal is sublinear with
the radiation power input). This can be corrected by reducing the spectral
band width of the input signal by optical filtering or by using, when possible,
a smaller iris aperture for a FTS.

4.4.2.2 Extrinsic Photoconductors

In the 1960s, when the intrinsic detector technology had not reached today’s
maturity, the extrinsic Ge:Au photoconductor operating at 77K was very
popular for high sensitivity detection down to about 0.16 eV (∼8 μm), and
Ge:Hg cooled below ∼30 K with liquid H2 was used for detection down to
∼92 meV (∼13 μm). Currently, different liquid N2-cooled intrinsic MCT de-
tectors are available for photon energies above ∼55 meV (∼23 μm), but when
radiation detection is required below this energy together with a short time
constant, extrinsic photoconductors are continued to be used. These detectors
are based on the photoionization of an impurity centre of relatively low en-
ergy. The shallow acceptor centres in germanium (mainly Ga) are well suited
for this purpose, but are limited to energies above ∼10 meV (below ∼120 μm).
As a consequence, these detectors must be operated at LHeT to prevent ther-
malization of the ground state, from which photoionization occurs. Their sizes
are larger than those of the intrinsic detectors because the extrinsic absorp-
tion coefficient is smaller than the intrinsic one. An attempt to increase the
optical path within the detector volume is the rooftop detector geometry al-
lowing internal reflections. In germanium, a decrease of the ionization energies
of acceptors has been observed under a uniaxial stress [20], and this property
has been applied to the Ge:Ga photoconductor, whose normal low frequency
detection limit is ∼90 cm−1 (11 meV), down to about 50 cm−1 (∼6 meV) with
good detecting properties observed by applying a stress of 660 MPa along
a<100> axis [21]. No commercially available extrinsic photoconductor seem
to exist for lower energies. If a short time constant is necessary, an InSb FEB
can be used, or else, a semiconductor bolometer must be used.

There are cases where, in absorption measurements, the sample itself can
be used as an extrinsic photoconductor, once provided with electrical con-
tacts. This is illustrated in the specific case of germanium co-doped with
acceptor couples (Ga, Zn), (Zn, Cu) and (Cu, Hg). The ionization energy of
Ga is 11.3meV, and those of the double acceptors, when neutral, are 32.9meV
(Zn), 43.2 meV (Cu) and 91.6meV (Hg). The continuous photoconductivity
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Fig. 4.3. Absorption lines of the neutral Hg acceptor detected by the photocon-
ductivity signal of Cu0 in germanium at LHeT. The photoconductivity increase
near 91–92 meV is due to the Hg0 contribution to the photoconductivity after [33].
Copyright 1965, with permission from Elsevier

of the acceptor with the lowest energy of the pair can then be used to de-
tect the discrete absorption spectrum of the one with the highest energy and
Fig. 4.3 shows the line spectrum of Hg0 (see Table 7.15) detected in the pho-
toconductive signal of Cu0 [33].

Another possibility which does not require co-doping can be used with
crystals containing impurities whose excited states are separated from the
continuum by energies Ei of the order of kBT at the temperature of the mea-
surement. Normally, an electron or a hole in such an excited state de-excites
directly into the ground state by phonon creation. But in this situation, low-
energy acoustic phonons present in the crystal can annihilate by promoting
the photoexcited electrons or holes into the continuum. This results in pho-
toconductivity peaks for photons absorbed at energies of discrete transitions.
This effect, presently termed as PTIS, was discovered by Lifshits and Nad
[28], who called it photoelectric spectroscopy. At the lowest temperatures,
PTIS detects the excited levels close to the continuum, but increasing tem-
perature also allows detection at deeper levels. In germanium, a temperature
of ∼8 K allows the observation of the entire shallow impurity spectrum, and
in silicon a temperature of ∼16 K is required. This rises to values between 70
and 140K for boron in diamond. PTIS measurements require, in principle,
electrical contacts on the sample. These contacts have to be ohmic at low
temperature, and they must not contribute to additional noise in the mea-
suring circuit or to the introduction of additional shallow impurities in the
sample. In silicon and germanium, the best contacts are obtained by ion im-
plantation of P in n-type material and of B in p-type material. The problem
of reproducible ohmic contacts on high-resistivity materials can be avoided by
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a contactless PTIS method where the sample is inserted between the plates of
one of the capacitors of a high-frequency capacitance bridge. When properly
analyzed, the changes in the complex admittance of the capacitor containing
the sample under photon absorption can yield a spectrum comparable to the
one obtained traditionally [1]. The PTI spectra of Fig. 4.4 were obtained by
this contactless method.

Illuminating the sample with a band gap radiation allows detection of lines
of neutralized minority impurities as negative peaks.

PTIS is not quantitative as the relative intensities of the photoconductivity
peaks depend on temperature, but it is very sensitive as can be inferred from
Fig. 4.4, since, in the best cases, the peaks emerge from a zero background,
and impurity concentrations as low as 107 cm−3 can be detected and identified
by this technique.

The samples used in PTIS measurements are, however, characterized by
an effective optical thickness which can be much larger than their physical
thickness because of internal reflections or scattering, or of their lateral di-
mensions. For relatively “large” impurity concentrations

(∼1012 cm−3
)
, the

internal transmission of a line can tend to zero in such samples, producing
saturation effects which are not as obvious as in classical absorption spec-
troscopy. The result is an apparent FWHM larger than the FWHM measured
at the same resolution by classical optical absorption [1, 2].

4.4.3 Limits to Detectors Sensitivity

The spontaneous fluctuations at the output of any detector may have several
origins, and they produce what is called noise. For a general presentation, see
[41]. The statistical nature of radiation emission and absorption is the origin of
radiation noise, a fundamental process sometimes called thermal noise in ther-
mal detectors and photon noise in photoconducting detectors (note that the
Johnson noise arising from thermal fluctuations in voltage occurring at the re-
sistor output is sometimes also called a thermal noise). We introduce here the
term background radiation noise (BRN). For a thermal detector, the BRN can
be derived from the temperature fluctuations of a black body with a heat ca-
pacity C in an environment at temperature T . The average value of the radia-
tion exchange power Wtherm between a thermal detector and its surroundings,
at temperature T in an electrical frequency range Δf can be expressed as:

< W 2
therm >1/2= 2T (GkBΔf)1/2 (4.2)

where G is the thermal conductance of the detector to its surroundings. When
considering only coupling by radiation, for an absorbing medium of area A,
G derived from Stefan’s radiation law is 4AεσT 3 where σ = π2k4

B/�
3c2 is

Stefan’s constant
(
5.6704 × 10−8c Wm−2K−4

)
and ε the emissivity of the

medium. Hence, for a field of view of 2π steradians:

< W 2
BRN >1/2= 4(AkBσT

5Δf)1/2 (4.3)
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It must be noted that this radiative power, called the BRN equivalent power,
noted here as NEPBR, is frequency-independent and varies with T 5/2. As-
suming an ideal absorbing medium with ε = 1, for A = 1 cm2, T = 300 K and
Δf = 1 Hz,NEPBR (cm, 300 K, 1 Hz) is 6 × 10−11 W.

When a thermal detector is at a temperature Tdet different from that of the
background, Tback, the total mean square of the radiation power is given by:

< W 2
BRN >= 8AkBσ(T 5

det + T 5
back)Δf (4.4)

When a detector is cooled to 4.2K with a background temperature of 300K,
it produces a reduction in the room-temperature NEPBR by a factor of 1/

√
2,

while NEPBR (cm, 4.2K, 1Hz) deduced from expression (4.3) is 1.4× 10−15 W.
This is the reason why, under laboratory conditions, the background radiation
(BR) incident on low-temperature thermal detectors is strongly attenuated
by filters cooled at the detector temperature, which cut the medium IR back-
ground and provide a low value of Tback. An improvement is also observed by
reducing the field of view of the incident radiation.

Expression (4.3) is actually derived by integration from the more general
expression

< W 2
BRN >=

8Aπh2Δf
c2

∞∫

0

ν4 exp(hν/kBT )

[exp(hν/kBT ) − 1]2
dν (4.5)

where the integrand involves the temperature derivative of the spectral emis-
sivity per unit of area and solid angle at frequency ν of a black body at
temperature T , known as the Planck function

B (v, T ) = 2hv3/
[
c2 (exp(hv/kBT ) − 1)

]

Currently, a photoconductor does respond to the number of photons that pro-
duce an electronic excitation in the detector. When defining qν as the photon
quantum efficiency at frequency ν and ν0 as the frequency of interest, it can
be shown (see [15] for the derivation) that if the photodetector temperature
is much less than the temperature T of the surroundings, the radiation back-
ground NEP for a photoconductor is given by:

(NEPBR)2 = 4πA (Δf)
h2ν2

0

c2

∞∫

0

qνν
2 exp (hν/kBT )

[exp(hν/kBT ) − 1]2
dν (4.6)

At a difference with thermal detectors, the background noise of photoconduct-
ing detectors is frequency-dependent. If it is assumed that the photoconductor
is used to detect radiation at a frequency just above its cut-off frequency νc,
the detectors with a cut-off in the near IR display a much smaller background
noise than those with a cut-off at lower energies. This is because in the near
IR, the black body emissivity contribution at room temperature and below is
very small.
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Besides the BRN, there are additional sources of noise due to the physical
nature and operation method of the detectors. Most bolometers and photocon-
ducting detectors are basically resistors, and they display at their terminals
voltage fluctuations due to the random motion of the electric charges within
this resistor. The corresponding noise is called Johnson noise or thermal noise.
The voltage fluctuations Vn at the terminal of a resistor R at temperature T
for an electrical band width Δf is:

< V 2
n > 1/2 = (4kBTRΔf)1/2 (4.7)

known also as the Nyquist’s formula. The associated open-circuit noise equiv-
alent power, which is independent of R is:

NEPn = 4kBTΔf (4.8)

At 300K and for Δf = 1Hz,NEPn is 4.14 × 10−21 W. Under the same con-
ditions, the thermal noise voltage Vn in a 1 Ω resistor is 1.21 × 10−10 V. It
decreases to 1.7 × 10−12 V at LHeT, but for a detector with a 1 M Ω resis-
tance, one must keep in mind that it is 1.7 μV. Johnson’s noise is frequency-
independent and for this reason, it is referred to as a “white” noise.

In thermal detectors and especially in bolometers, the energy exchange
between the sensing element and the heat sink through a thermal link of
conductance G results in a thermal noise known as phonon noise. The NEP
associated with this phonon noise, which is a white (frequency-independent)
noise, is given by:

NEPphon =
(
4kBT

2GΔf
)1/2

(4.9)

For a bolometer with G = 10−5 WK−1, operated at 4.2 K, NEPphon is about
10−15 W for Δf = 1 Hz; this is comparable with NEPBR when the detector
and its surroundings are both at 4.2 K. The bolometer time constant can
be reduced by increasing G, but this results both in a sensitivity loss, as
mentioned above, and also in an increase of the phonon noise.

Deep centres are often present in photoconductors and they can trap the
photo-generated carriers. The statistical trapping (recombination or capture)
and subsequent release (generation or emission) of these carriers leads to an ex-
tra source of noise called generation–recombination (g–r) noise. The presence
of this noise depends on the purity of the material used as a photoconductor,
but in some cases, it is inherent to the deliberate technological process as re-
combination centres can be added to reduce the time constant of the detector
for specific applications. The time constant τ of a single trap is related to
its capture and emission time constants τc and τe by τ−1 = τ−1

c + τ−1
e , and

when the g–r noise arises from a trap with a definite value of τ , the observed
noise spectrum has a Lorentzian dependence on the modulation frequency f ,
peaking at f0 = 1/2πτ .

The time constant of a trap in a photoconductor is temperature-dependent:
it depends on the energy position of the corresponding level in the band gap
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and on the position of the Fermi level of the photoconductor in the dark
region. At low temperature, when the Fermi level is above the trap level, it
can be shown that τ is essentially a constant.

Low-frequency noise, referred to as 1/f noise, has been observed in both
thermal and photon detectors. Current noise that appears when an electrical
current is passed through a resistor has this approximate spectral dependence.
This noise has several origins, some of them technological, other more funda-
mental and its contribution can vary in different detectors. Besides the fact
that the amplification of electric signals can be made more selective at high
frequencies, the existence of this noise is an incentive to use, when possible,
high modulation frequencies.

The performance of the radiation detectors depends on their intrinsic prop-
erties, temperature and external conditions of use. They can be compared by
using a factor of merit D*, known as the detectivity, equal to the inverse of
the NEP for a detector with unit area used with an electrical band-width Δf
of 1 Hz and expressed in cm Hz1/2 W−1. When a value of D* is indicated for a
thermal detector, it is considered to be independent of the radiation frequency
and the time modulation frequency is assumed to be adapted to the intrinsic
time constant τd of the detector. For a photoconductive detector, D* peaks
at a radiation frequency very close to the band gap for an intrinsic detector
or to the ionization energy of the relevant centre for an extrinsic detector and
decreases steadily at lower energies.

4.5 Conditioning the Samples

First, there are valuable samples, like cut gemstones or diamonds, which must
be measured as they are, and where conditioning is out of question. The best
absorption measurements are made on samples cut from crystals or polycrys-
tals in orthogonal parallelepipeds shapes. The surfaces of the samples inter-
cepting the radiation beam must be reasonably plane and optically polished
to prevent scattering of the incident radiation by the surface inhomogeneities,
with dimensions of the order of the wavelength. This condition becomes less
drastic with increasing wavelengths and in the very far IR, samples with
ground surfaces are acceptable. However, mechanical cutting and polishing
leave uneven surfaces at the microscopic scale; therefore, as a function of the
mechanical properties of the crystals and of the kind of experiment envisaged,
it can be necessary to remove the perturbed layer by adequate chemical etch-
ing. The surface of cleaved samples has a good optical quality and this is also
generally true for the epitaxied samples, with the possible exception being the
back surface of the substrate, and these samples do not usually require fur-
ther mechanical treatment. The absorption measurements on commercial sili-
con wafers with etched back surfaces are usually performed in the as-received
surface state. This surface state reduces the transmission because of the scat-
tering of the back surface and expression (3.8) is no longer valid. A discussion
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Fig. 4.5. Schematic side view of the positioning in a spectrometer beam of a sample
cut with a 45◦ geometry allowing for multiple internal reflections, and of the two
mirrors of the sample holder (not shown) redirecting the output beam along the
optical axis. The beam delimited by dashes is the normal beam (courtesy C. Naud)

of the methods used to deal with this situation, centred on the vibrational
absorption of Oi, can be found in [4].

The spectral transmission of a plane parallel sample of thickness d and
refractive index n is modulated by equal-thickness fringes with spacing Δν̃
in wavenumber, approximately equal to 1/2nd. When the spectral bandwidth
δν̃d is larger than this spacing, the fringes are averaged out, but they become
visible at higher resolution. Solutions to this problem have been discussed in
Sect. 4.2.3.2.

The optical thickness of a sample must be adapted to the peak absorption
of the impurities to avoid saturation of the lines, and this can lead to very
thin samples when the impurity concentration is large and cannot be reduced,
and when the OS is also large. Inversely, the measurement of small impurity
concentrations can require thick samples and this limits the spectroscopic
measurements of impurities. In some cases, as an alternative to the increase
of the thickness of the sample, it can be cut with a geometry allowing multiple
internal reflections, which increases the optical path, as shown schematically
in Fig. 4.5.

4.6 Cooling the Samples

Many absorption experiments on impurities and defects are performed at low
temperature or as a function of temperature, especially for the observation
of discrete spectra. This is a necessity when the population of the ground
state level of a transition or of a series of transitions is thermalized at room
temperature. Another reason for using low temperatures is the decrease of
the widths of spectral lines with temperature due to the reduced coupling of
the levels with lattice phonons. The samples have to be, therefore, cooled in
optical cryostats.
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Presently, the most convenient cryostats, when liquid helium is not avail-
able, are the commercial closed-cycle cryostats based on Joule–Thomson
cooling, with a reservoir of compressed He gas and a Gifford–McMahon type
regenerator. These refrigerators do not require manipulation of cryogenic liq-
uids, and standard units allow a temperature of 6K with useful dissipation
power. Recently, temperatures as low as 3K have been achieved with such
cryostats. The cold head of these refrigerators can be fitted with an optical
cryostat, and mechanical vibrations reduced to a point where optical measure-
ments are possible. When liquid He is available, the most useful cryostats to
cool the small samples down to about 5K are the continuous flow cryostats,
through which liquid He is continuously pumped from a container and vapor-
ized in a small exchanger cell. The exchanger cell can eventually be filled with
liquid He and pumping on it can allow temperatures near 2K to be obtained
for a short time. For other purposes, cryostats with a liquid He reservoir
are preferable, for instance in experiments where the sample must be pro-
cessed (implanted or irradiated) at LHeT before optical measurements with-
out breaking the low-temperature conditions, or when measurements between
the temperatures of the boiling points of liquid He at atmospheric pressure
and at the lambda point are needed with samples mounted in vacuum. When
the sample is directly immersed in liquid He, bubbling of the liquid induces
a strong scattering of the transmitted radiation. To overcome this, reducing
the pressure over the liquid is then necessary to reach temperatures below the
lambda point of 4He (50 kPa or 38.3 torr for T ∼ 2.18 K) where the liquid be-
comes superfluid with no subsequent bubbling. The cryostats with a liquid He
reservoir are thus widely used for transmission and PL experiments between
∼2 and 1.2K.

Below 1.2K, the cryostats using natural He are replaced by 3He/4 He
dilution refrigerators. Such refrigerators are commonly used to cool the
bolometer/radiation detectors in the mK range (typically ∼30–60 mK range).
They are used, for instance, in the detection of the weakly interacting massive
particles (WIMP). They have only been used in a limited number of cases for
optical studies of impurities in semiconductors [36].

When temperatures ∼80–100 K are required regularly, liquid nitrogen
(boiling point: 77K) is a convenient cryogenic liquid.

Cooling a sample in vacuum can be obtained by gluing it to a part of the
cryostat called a sample holder (cold finger) generally made of copper. This
requires gluing a material with good thermal conductance and mechanical
strength. In the 1960s, type N or H Apiezon grease eventually mixed with
copper powder, or GE low-temperature varnish 7031, both with a low vapour
pressure, were used for this dual purpose, but silicon grease has later been
used. Accurate temperature measurement also necessitates a temperature sen-
sor glued to the sample. This kind of cooling can be useful for measurements
between 2 and ∼5 K as bubbling prevents measurements with the sample im-
mersed in liquid He in this temperature range. However, with such mounting,
the sample itself must have a good thermal conductance to avoid thermal
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gradients, and it must not be easily cleaved as inhomogeneous mechanical
strains are inevitably produced within the sample (mounting of very thin
samples is problematic). The presence of these inhomogeneous strains can
also lead to inhomogeneous broadening of sharp electronic absorption lines
with high piezospectroscopic coefficients.

The best way to avoid some of the above problems is to use a cryostat like
the one shown in Fig. 4.6, with an extra sample compartment, which can be

Sample compartment
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Electrical
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He gas return

Radiation shield

Heat exchanger
& thermometer
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Optical axis
RT  window
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Liquid He
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Fig. 4.6. Cross-section of an optical continuous-flow cryostat (CF 204 of Oxford
Instruments), with the extremity of the removable transfer tube inserted, but with-
out sample holder. The evacuation valve at the top is masked by the sample port.
The optional windows on the radiation shield can be replaced by metallic irises to
reduce the field of view. This cryostat can be fitted with one or two more optical
windows at 90◦ from the main optical axis for additional excitation, and also with
a down-looking window. The arrows indicate the direction of the flow of liquid or
gaseous helium. Reproduced with permission from Oxford Instruments
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filled independently with He gas at low pressure from a clean He gas supply
with a small oil-free pumping system. Since cooling is insured by gas, the me-
chanical contact between the sample and the holder can be made loose as long
as the sample is immobile during the measurement (for instance, by loosely
fitting the sample in an aluminium paper holder fixed to the sample holder by
aluminium Scotch R© tape, which retains sticking properties down to LHeT).
Temperature can be measured by a sensor located close to the sample. The
temperature of the sample can be varied easily by controlling the tempera-
ture of the gas with an additional heater. Another advantage of gas cooling
is that the positions of the samples can be changed or varied with respect to
the radiation beam by using sample holders with a thin intermediate tubular
section and an extremity at RT. When several samples are mounted on the
low-temperature side of such a holder, the use of an appropriate spacer on
the RT side of the holder allows adjustment of the position of a given sample
on the radiation beam. Thin spacers coupled with small cross-sections of the
optical beam (down to 0.2 mm2 with some FTSs) allow measurement of the
low-temperature absorption at different points of a sample. Axial rotation of
the holder is possible through its RT O-ring. The use of spacers allows cooling
of the sample in a position above that of the sample beam, avoiding its illu-
mination with room temperature BR during cooling-down. This configuration
corresponds to a true thermal equilibrium configuration while the usual one
(sample in the optical beam) is called the pseudo-thermal equilibrium config-
uration. The entire holder can even be removed and replaced by a new one
by temporarily limiting the liquid He flow and over-pressurizing the sample
compartment with He gas at RT.

The price to pay for these advantages is the necessity of cold windows on
the exchange gas compartment, in addition to the RT windows of the cryo-
stat. Cold windows are, of course, mandatory in cryostats with a liquid He
reservoir, where the sample is immersed in liquid He. These windows must not
be hygroscopic and be resistant to thermal shocks. From the UV to ∼0.25 eV,
corundum with the c-axis perpendicular to the window surface (to avoid po-
larization effects) is a good option. Polycrystalline ZnSe can be used from
about 2.7 eV in the visible region of the spectrum down to ∼0.03 eV. Such
windows, already mounted on metal flanges, are commercially available and
the whole unit can be mounted on the exchange gas as well as liquid He
compartments (they are tight for superfluid He) with standard In seals or,
for some flanges, with Cu gaskets. KRS5 (thallium bromo-iodide) cold win-
dows are also proposed and this material has the advantage of a relatively
extended spectral range (down to ∼25 meV or up to ∼50 μm) compared to
ZnSe, but its reflection losses are higher and its high frequency cut-off is near
2.1 eV. For the far IR, thin polypropylene films (∼30 μm-thick) can be used
[24]. These films are slightly permeable to He gas at RT, but become He-tight
at lower temperatures. Below the one-phonon absorption, the compound in-
sulating materials again become transparent: at LHeT, corundum and ZnSe
windows can again be used below ∼23 meV (above ∼55 μm). Diamond, which
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is transparent from the UV region to the far IR, with only a few spectral
regions showing absorption, presents good optical and mechanical properties,
and synthetic diamond windows are commercially available.

4.7 Compressing the Samples

Important information on the atomic properties of impurity centres and de-
fects are obtained by recording the transmission of a sample while subjected to
an external pressure. The pressure can be hydrostatic and it can be applied to
amorphous as well as monocrystalline samples. This is usually performed by
inserting the sample in a diamond anvil cell (DAC). When the samples are
monocrystalline, the stress can be applied along one symmetry axis of the
crystal. In the following section, the set-ups with which a uniaxial stress can
be applied to a sample are described.

4.7.1 Uniaxial Stresses

Most of the uniaxial stress experiments are performed at LHeT because the
mechanical properties of the crystals improve when temperature is lowered.
For this purpose, continuous flow cryostats are often used because they allow a
rather large temperature gradient between the room temperature and LHeT
sides using thin stainless steel tubes for the force-transmitting jig. Force is
applied to the room-temperature side of the piston by a spring or by pressur-
ized gas, and the sample is inserted between the piston and a base, as shown
in Fig. 4.7. With such a set-up, the heat load is larger than with a classical
sample holder, and hence, it is difficult to cool the samples under stress at
temperatures below 8 K. The value of the force applied is measured either by
a force transducer when using a spring or by a manometer reading the gas
pressure. The pressure is the ratio of the applied force to the cross-section of
the sample.

The maximum pressure that can be applied to the samples depends on
their mechanical strength and cleaving properties. Qualitatively, the mechan-
ical strength of crystals increases with covalent bonding and higher pressures
can be applied to group IV crystals than to III-V compounds. To apply very
high pressures, the pressurized gas set-ups are superior to those with a spring-
loaded piston. Under good experimental conditions, silicon and diamond crys-
tals can withstand at low temperature uniaxial pressures in the 0.5–1 GPa
range.

In addition to accurate crystalline orientation, the sample must be cut with
a very good parallelism between opposite sides to avoid crushing when apply-
ing stress. A combination of cardboard, Cu or In spacers are placed between
the sample and the metallic surfaces to avoid edge effects and minimize the
effect of possible misalignment. It is usual to consider that the ratio between
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Fig. 4.7. Schematic of a stress apparatus of the compressing-spring type devised
by C. Naud to be inserted in a continuous-flow optical cryostat for measuring the
absorption of a sample under uniaxial stress. Extra optical apertures are indicated.
The height adjustment system to the top of the cryostat is not shown (after [6])

the sample length and the largest side of the base section must be ≥3 in order
to obtain a reasonable uniaxial stress within the central region of the sample.

Centering of the samples is delicate and it can be made easier by accurate
lapping of the sample ends into pyramidal shapes (Fig. 4.8a) which fit into
corresponding hopper-shaped slots in the brass parts of the stress rig, as shown
in Fig. 4.8b [47].

4.7.2 Hydrostatic Stresses

The optical absorption of small samples subjected to a hydrostatic pressure
is usually measured in a diamond anvil cell (DAC). There are several types of
DACs, differing mainly in the way in which the pressure is transmitted to the
cell [17]. Some of these cells, like the so-called Merril-Basset one, have been
modified for absorption spectroscopy at low temperature [12]. The basic part
of a DAC is shown in Fig. 4.9. It is made of two diamonds separated by an
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Fig. 4.8. (a) Sample cut for uniaxial stress measurements with ends lapped into a
pyramidal shape. (b) Detail of the stress rig showing the sample mounted between
the two brass parts [47]

Fig. 4.9. Basic part of a diamond anvil cell. Pressure is exerted on the diamond
tables by the metallic plates (not shown) [17]. Copyright 1983 by the American
Physical Society
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indented metal plate, at the centre of which a hole has been drilled to form
the sample chamber. The resulting metal gasket acts as a seal when pressure
is applied.

The diamonds used in DACs are brilliant-cut type with the bottom part
of the gem (the culet) removed by grinding to obtain another flat surface,
or standard cut octagonal diamonds, better suited for very high pressure ex-
periments [16]. These diamonds have a small size and the largest dimension
of their tables does not exceed 1 mm, requiring a concentrating optics. Type
I diamonds show absorption in the 1100–1400cm−1 spectral region due to
nitrogen under different forms, but they are more common (and less expen-
sive!) than the purer IIa ones. They are, therefore, used for DACs except in
situations where access to the above spectral region is needed. Note that the
2- and 3-phonon absorption of diamond between about 1900 and 3900 cm−1

limits its transparency in this region. The gasket is made of a metal or alloy
(inconel, different varieties of stainless steel, BeCu, rhenium) adapted to the
intended experiment, with a thickness in the 0.1 − 0.2 mm range. Pressure is
exerted on the diamond tables by two metallic plates with apertures for ad-
mitting radiation. The largest size of the crystalline samples is of the 0.3mm
order of magnitude, with thicknesses in the 50 μm range. One of the metallic
plates is stationary and the other pushed by a movable mechanical device,
for instance through a lever arm [35], but for low-temperature measurements,
screws mounted directly on the plates exerting pressure on the metallic tables
are preferred [43].

The use of relatively large sapphire anvil cells has also been reported for
PL measurements at LHeT in the near IR. This allows chamber volume for
the sample about one order of magnitude larger than the one of DACs at
reasonable cost, at the expense of a smaller hydrostatic stress [42].

The sample chamber of a DAC is filled with a medium that is able to trans-
fer to the sample a homogeneous pressure, and is transparent in the spectral
region of interest. At low temperatures, He, Ne and Xe and also homonu-
clear molecules (H2, D2, N2 or O2) have been used as pressure-transmitting
media. The hydrostatic behaviour of He and H2 allows experiments at low
temperature up to 60 GPa (The kbar unit, traditionally used in many exper-
iments with DACs, is close to 0.1GPa) and N2 can be used up to 13GPa.
Loading the sample chamber with the sample and the pressure transmitting
medium is usually performed by the liquid-immersion technique [40]. Hydro-
static pressure measurements in absorption experiments can be obtained from
a calibration of the DAC using the pressure-induced shift of R1 and R2 fluo-
rescence lines of Cr3+of a ruby chip near 694nm, developed by [8]. However,
this calibration is performed at RT and it must be extrapolated at low tem-
peratures. It has been shown by Hsu [16] that the shift of the vibrational lines
of the CO2 impurities contained in N2 used for pressure transmission could
be used to measure pressure at low temperature.
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4.8 Magnetooptical Measurements

The measurement of absorption by impurities and defects in crystalline solids
under magnetic fields is mainly intended to observe the Zeeman splitting and
shift of their levels or of bound excitons. As for a uniaxial stress, magnetic
field is applied along the main symmetry axes of the crystal. When the prop-
agation vector k of the radiation is parallel to the magnetic field B, one refers
to Faraday configuration, allowing only E⊥B polarization, and when k is
perpendicular to B, to Voigt configuration, allowing both E⊥B and E//B
polarizations.

Minimizing the line widths and preventing thermalization implies that
most of the optical experiments on impurities under a magnetic field are per-
formed at LHeT. In the first experiments of this kind, the tail of an optical
cryostat was inserted in the gap between the poles of a dc electromagnet,
and samples could be subjected to effective magnetic fields up to near 4 T(
1T = 104 G

)
[52]. Larger values of the magnetic field (∼10 T) could also be

obtained in some cases like the Francis Bitter National Magnet Laboratory
(Cambridge, Massachusetts) using a Bitter solenoid operated at RT. The first
commercially available magnetooptical cryostats incorporating superconduct-
ing solenoids consisted in a solenoid made from Nb–Ti alloy or Nb3Sn wire
(later cable), whose horizontal bore allowed insertion of a sample holder with
the sample glued to it. With good thermal contacts, the temperature of the
sample was about 8 K. The Faraday configuration was standard, but with
a bore diameter of 20mm, a sample holder with two parallel mirrors at 45◦

could be used to allow Voigt configuration. Later, the solenoids were winded
into a split-coil configuration or even replaced by two close solenoids (split
pair) with the magnetic field along a vertical axis and a standard geometry
in Voigt configuration. They were provided with an exchange-gas cryostat in
which the sample could be rotated and its temperature adjusted, or with an
anti-cryostat for measurements at RT. A magnetic field homogeneity of 10−3

at the centre of the solenoids combination is sufficient for standard optical
measurements. For magnetic resonance measurements, an improvement of at
least two orders of magnitude in the field homogeneity is necessary, and it
requires design modifications of the overall solenoid structure.

The value of B at the centre of a standard solenoid of length L, made from
N turns of conducting or superconducting material produced by an electric
current of intensity I circulating in the solenoid is μ0NIL

−1. As N and L are
generally known, the value of B can be deduced from the value of the intensity
of the low-voltage dc current. However, the relationship between the current
intensity and the magnetic field is provided by the supplier for commercial
solenoids, irrespective of their structure. The maximum allowable value of I
must be kept below a limit corresponding to the transition field Bs above
which the material of the solenoid returns to the normal resistive state. The
most widely used superconductors in commercial solenoid magnets are the
Nb–Ti alloys (40–60% Ti) with a transition temperature Ts between 10 and
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Fig. 4.10. LHeT spectra of the transition of donors in InSb samples obtained (a) at a
laser wavelength of 890 μm

(
11.24 cm−1 or 1.393 meV

)
as a function of the magnetic

field. The broken curve gives the transmittance and the full curve the photocon-
ductivity. The features labelled A, B, C and D are due to electronic transitions of
different chemical donors

(
ND – NA = 8 × 1013 cm−3

)
. (b) FTS photoconductivity

spectra at a resolution of 0.2 cm−1 (∼25 μeV) for different values of the magnetic field
of a sample with ND – NA = 5 × 1013 cm−3 after [23]. Reproduced with permission
from the Institute of Physics
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12 K and Bs values near 12 T and Nb3Sn, with Ts = 18 K and Bs = 22 T.
The set-up of large current intensities in the magnetooptical cryostats leads to
non-negligible Joule heating of the ohmic metallic leads and electrical contacts
with the solenoid, and a corresponding increase of liquid He evaporation. To
reduce this evaporation, the manufacturers of magnetooptical cryostats con-
nect the solenoid with a parallel circuit made from the same superconductor.
During the set-up of current, a part of this circuit (the so-called supercon-
ducting switch) is kept resistive by an external heater so that current flows
in the solenoid, but when the desired current intensity is reached, the heater
is switched-off and the whole circuit becomes superconducting. The intensity
of the current source can then be set to zero while the solenoid operates in
closed loop. This type of operation is called persistent mode.

In magneto-optical experiments, and especially in the ones performed in
the very-far IR, two methods can be used. In the first one, the transmission
or photoconductivity of a sample subjected to a constant magnetic field is
analyzed in energy with a spectrometer. In the second one, the transmission
or photoconductivity of the sample at the energy of a laser line is measured
as a function of the magnetic field. This allows a better S/N ratio than the
first method because of the low emissivity of the IR sources in the very-far IR.
However, the thermal population of the different impurity levels may change
when the magnetic field is swept, so that the relative intensities of the lines
associated with different centres do not truly reflect their relative concentra-
tions. Furthermore, the change in the magnetoresistance of the sample with
the magnetic field can also modify the sensitivity with PTI detection. An
example is shown in Fig. 4.10.

Figure 4.10a shows the 1s → 2pm = −1 transition ((0 0 0) → (01̄0) in the
high-field limit of donors in high-purity InSb at LHeT obtained by the field-
sweeping method. This can be compared in Fig. 4.10b with the same spectrum
obtained by the “classical” method for different values of the magnetic field,
where spectral noise is clearly visible [23].
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5

Effective-Mass Theory and its Use

5.1 Initial Assumptions

A historical perspective of the early developments on the theory of impurity
levels in semiconductors can be found in the review by Pantelides [47]. The
measurement of the IR absorption of p-type silicon at low temperature in
the mid-1950s revealed broad features, which could be attributed to the elec-
tronic absorption of dopants, and a correlation between the chemical nature
of the dopant and the spectra was established [15]. They provided spectro-
scopic estimations of the ionization energies of the dopant atoms, which were
earlier derived from electrical measurements. The results thus derived stim-
ulated theoretical developments aimed at calculating the ionization energies
of shallow dopants in silicon and germanium [28], and later of the discrete
spectrum [32–34], which demonstrated the significance of the free-carrier ef-
fective masses and of the static dielectric constant to explain the experimental
results. The generalization of these ideas led to the concept of effective-mass
(EM) centres and to the development of effective-mass theory (EMT), which
was proved to be successful in predicting the energy of the excited levels of
some donors and acceptors in many materials, and the relative intensities of
the lines of the spectra of many acceptor or donor centres.

A brief introduction to the EM centres in semiconductors has been pro-
vided in Sect. 1.3.1. The EM centres are defined as isolated atoms or complexes
with bound electrons (donors) or holes (acceptors) whose excited states can
be described by a formalism known as the EMT or effective-mass approxi-
mation (EMA). They are best represented by substitutional donor atoms of
groups IV and VI of the Periodic Table in III-V compounds like GaAs and
InP, and by the group-III and group-V substitutional atoms and interstitial
Li in silicon and germanium. The deepest energy levels of the electron or
hole bound to the positive or negative ion are discrete, and their spacings de-
crease with their binding energy. They converge towards the ionization energy
limit, which is actually the ground state energy. Macroscopically, above this
limit, one speaks of the free carriers, but quantum mechanically, one rather
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speaks of continuum states. Below the ionization energy, the photon absorp-
tion spectrum is discrete while above this, it is continuous and known as the
photoionization spectrum.

The main assumption of the EMA is that the effective mass of an electron
or a hole bound to an ionic core in a semiconductor crystal can be taken
as the effective mass tensor of a CB electron or of a hole in the VB (see
Sect. 3.3.1). This assumption is valid when the electronic probability density
extends over the volume of the crystal and is large compared to the ionic
core. This condition is met for the excited states of many centres. The EMA
should, therefore, describe correctly the donor and acceptor excited states
and still more precisely, the states characterized by a pseudo-orbital quantum
number �, for which parity P = (−1)� is odd. For an electronic state with
wave function ψ(r), the electronic probability density is |ψ(r)|2 and for a
hydrogenic 1s ground state, this probability is maximum at the ionic core.
In this case, screening by the static dielectric constant is no longer effective
and the local atomic potential must be considered. The logical conclusion
is that unless the EM is very small, the ground state cannot be properly
described within the EMA and hence, except for donor centres in direct-gap
semiconductors with small electron EMs, EMT usually fails to quantitatively
account for the ground state energies. As a matter of fact, the ground state
energies of centres with EM excited states can cover a broad range: the value
for the B acceptor in silicon is 45.7meV, but it rises to 602meV for the P
donor in diamond. There are even impurity atoms with a very deep ground
state with respect to the band gap of the host crystal, whose excited states
display an EM behaviour: this is the case for interstitial isolated donor-like Fe
(a TM with several ground-state configurations) in silicon, with ground state
energies between 788.71 and 795.63meV. By comparison, the ground state of
interstitial Li (a nearly perfect EM donor centre) in silicon is 31 meV. Among
the substitutional impurity atoms in elemental crystals, one can identify those
with only one more or less electron in their electronic configuration than the
host atom (e.g. P and Al in silicon or As and Ga in germanium). Their ionic
core is the same as that of the host atom, and they are singled out as isocoric.
For these impurities, the electronic potential near the core is close to a pure
Coulombic one.

Since the first energy level calculations of the EM centres in silicon and
germanium [28,34], many calculations have been undertaken to explain quan-
titatively the absorption and photoluminescence (PL) spectra associated with
these centres in many semiconductors. The first part of this chapter is devoted
to the presentation of the energy level calculations of EM donors and it is fol-
lowed by the results of the calculations for EM acceptors. The modification
to EMA, which is independent of the chemical nature of the centres, is also
discussed. The chapter concludes with results of calculations of the oscillator
strength (OS) for transitions between the ground states and the acceptor or
donor states.
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5.1.1 Selection Rules

Optical absorption in a medium can take place because of the existence of
electric or magnetic dipole moments associated with atomic, molecular or
crystal entities. Unless otherwise specified, only electric dipoles are consid-
ered here. In quantum mechanics, the condition related to the dipole moment
for discrete optical absorption appears in terms of transition probability be-
tween the initial and final states. It can be formally expressed as the modulus
squared of a matrix element involving the wave functions Ψi and Ψf of the
initial and final states and the electric dipole operator, which reduces, within
a proportionality factor to the general displacement coordinate rα:

< i|rα|f >=
∫
ψ∗

i rα ψf dτ (5.1)

where Ψ∗
i is the complex conjugate of Ψi. The actual value of the general

displacement coordinate depends on both the physical situation and the po-
larization conditions.

The symmetry of an isolated atom is that of the full rotation group R+(3),
whose irreducible representations (IRs) are D(j), where j is an integer or half
an odd integer. An application of the fundamental matrix element theorem
[22] tells that the matrix element (5.1) is non-zero only if the IR D(i) of
Ψi is included in the direct product D(α) × D(f) of the IRs of rα and Ψf .
The components of the electric dipole transform like the components of a
polar vector, under the IR D(1) of R+(3). Thus, when the initial and final
atomic states are characterized by angular momenta J1 and J2, respectively,
the electric dipole matrix element (5.1) is non-zero only if D(J1) is contained
in D(1) × D(J2) = D(J2+1) + D(J2) + D(J2−1) for J2 ≥ 1. This condition is
met for J1 = J2 + 1, J2, or J2 − 1. However, it can be seen that a transi-
tion between two states with the same value of J is allowed only for J 
= 0
as D(1) × D(0) = D(1) (D(0) is the unit IR of R+(3)). For a hydrogen-like
centre, when an atomic state is defined by an orbital quantum number �,
this can be reduced to the Laporte selection rule Δ� = ± 1. This is of course
formal, as it will be shown that an impurity state is the weighted sum of
different atomic-like states with different values of � but with the same parity
P = (−1)�. These states are represented by an atomic spectroscopy notation,
with lower case letters for the values of � (0, 1, 2, 3, 4, 5, etc. correspond
to s, p, d, f , g, h, etc.). The impurity states with P = 1 and −1 are called
even- and odd-parity states, respectively. For the one-valley EM donor states,
this quasi-atomic selection rule determines that the parity-allowed transitions
from 1s states are towards np (n ≥ 2), nf (n ≥ 4), nh (n ≥ 6), or nj (n ≥ 8)
states. For the acceptor states in cubic semiconductors, the even- and odd-
parity states labelled by the double IRs Γi of Oh or Td are indexed by + or −,
respectively, and the parity-allowed transition take place between Γi

+ and
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Γj
− states.1 As already mentioned, these series of donor and acceptor transi-

tions are somewhat analogous to the Lyman series for the H atom, and hence
the corresponding impurity spectra are sometimes called Lyman spectra.

When the degeneracy of the EM levels due to the symmetry of the CB
of the material is included, a donor state is represented by different IRs of
the symmetry point group of the donor centre. For instance, for centres with
Td point group symmetry, the 1s and nd0 even-parity states correspond to
the six-dimensional reducible representation A1 + E + T2 in silicon and by
the four-dimensional A1 + T2 representation in germanium. The correspond-
ing degeneracy of the 1s state is partially lifted by the valley-orbit interaction,
which is discussed later in this chapter. When considering these IRs and those
associated with the components of the electric dipole for the same symmetry
point group, the rule derived from the fundamental matrix-element theorem
stated above can be used to determine the symmetry-allowed transitions that
are independent of the parity-allowed transitions. It can be verified that for
donors with Td symmetry, this procedure allows transitions between states
with A1 and T2 symmetries. When they are not parity-allowed, the inten-
sities of these symmetry-allowed transitions depend on the chemical nature
of the donors and on their lattice sites. The possibility for such transitions
explains why the 1s (A1) → 1s (T2) and 1s (A1) → 3d0 transitions can be
observed in some donor spectra. The 1s (A1) → 1s (E) transition is IR parity
and symmetry-forbidden, but it is Raman-allowed and has been observed for
donors in silicon by Raman scattering. As for donors, the optical transitions
between the acceptor states take place with a change of parity. One transition
without a change of parity has also been observed by Raman scattering. For
donors as well as for acceptors, two-electron or two-hole transitions involving
even-parity excited states can be observed in PL. The experimental results
for donors and acceptors are presented in Chaps. 6 and 7.

5.2 Donor Centres

5.2.1 The One-Valley Approximation

Formally, the Hamiltonian He of an electron with effective mass m∗ and wave
vector k in the CB of a semiconductor crystal lattice is:

He = − �
2

2m∗∇2 + V (r) (5.2)

where V (r) is an effective periodic potential and the eigenfunctions of He are
Bloch functions ϕnk (r) that are products of periodic functions unk (r) and
eikr, and −�

2∇2 is the operator p2 = �
2k2. The classical Hamiltonian Hed of

a donor electron in a such a lattice is derived from (5.2) by adding a potential
1 The different notations for the IRs of Oh and Td are given in Appendix B. For the

acceptors, the Bethe-Koster notation is used and for donors, the Mulliken’s one.
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energy term arising from the Coulomb interaction between an electron and the
positive donor ion screened by the static dielectric constant εs of the crystal:

Hed − �
2

2m∗∇2 + V (r) − e2

4πε0εsr
(5.3)

It can be shown [33] that the eigenfunctions ψ (r) of (5.3) are the products of
Bloch functions and hydrogen-like envelope functions F (r). It can be further
demonstrated that the envelope functions are eigenfunctions of a so-called EM
equation:

HEM = − �
2

2m∗∇2 − e2

4πε0εsr
(5.4)

and this Hamiltonian can be used with the above-mentioned limitations on
the effective screening provided by εs.

The anisotropy of the electron effective masses at the energy minima of the
CB reflects its symmetry. For indirect-band-gap semiconductors, like group-
IV crystals (see Table 3.4), the CB has equivalent energy minima along the
six equivalent <100> directions for Cdiam and silicon, and along the four
equivalent <111> directions for germanium (these directions are the same
for the reciprocal and direct lattices). There are as many total donor wave
functions ψ(i) = F (i) (r)ϕk(i) (r) as equivalent CB minima. We first consider
a bound donor electron, with an effective mass equivalent to that of a free
electron along one of the CB minima. This is often qualified as one-valley
approximation because of the shape of the energy dispersion vs. k curve at the
CB minima. The neglect of the CB degeneracy will be a posteriori justified by
comparison with the spectroscopic results. The EM energy levels of the bound
electron are eigenvalues of HEM, where z is the main axis of the constant-
energy ellipsoid, mnt the transverse effective mass of a conduction electron
and γ the effective mass ratio mnt/mnl of the transverse and longitudinal
effective masses (see Sect. 3.3.1 for the definition of the effective masses), viz.:

HEM − �
2

2mnt

[(
∂2

∂x2
+

∂2

∂y2

)
+ γ

∂2

∂z2

]
− e2

4πε0εsr
(5.5)

This Hamiltonian is invariant under a rotation about the z axis. The corre-
sponding symmetry group is the axial rotation group D∞h, whose IRs are
characterized by the integral values of quantum number |m|, which is a pro-
jection of the quantized angular momentum � on the symmetry axis. The net
result of this symmetry is the splitting of a hydrogenic n state into n (n, �)
sublevels, characterized by quantum number � and varying from 0 to n − 1.
Each (n, �) sublevel is, in turn, split into (n, �, |m|) sublevels with |mmax| = �.
This splitting is analogous to that observed for a H atom placed in an external
electric field (Stark effect). These levels are represented by an atomic spec-
troscopy notation, with lower case letters for the values of � (0, 1, 2, 3, 4, 5,
etc. correspond to s, p, d, f , g, h, etc.) and an index for m: a hydrogenic state
with n = 2 is for instance, split into 2s and 2p states, and the 2p state is in
turn split into 2p (m = 0) and 2p (|m| = 1) substates. It is usual to replace the
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whole expression for |m| by index 0, ±1, ±2, etc., depending on the value of
±m, e.g., 2p0 and 2p±1. The continuous symmetry group D∞h of Hamiltonian
(5.5) is useful when studying the effect of external perturbations, considering
that the wave functions for the ns, np0 and np±1 states correspond, respec-
tively, to IRs Σg

+, Σu
+ and Πu of this group. By choosing the atomic units

of length and energy for donors, an effective Bohr radius a∗0d = a0εs/mnt and
an effective Rydberg R∗∞d =

(
mnt/ε

2
s

)
R∞, with mnt expressed in units of

me, HEM can be rewritten as:

HEM = −
(
∂2

∂x2
+

∂2

∂y2
+ γ

∂2

∂z2

)
− 2
r

(5.6)

For γ < 1, no eigenvalue of this Hamiltonian can be found analytically and
a variational method, like the one initiated by Faulkner [17], is used in most
cases [13, 26]. However, a non-variational method has also been used by the
Kogan group in the late Soviet Union (see [7,8], and references therein). This
method is facilitated by transforming Hamiltonian (5.6) using a deformed
new coordinate frame X = γ1/6x/a, Y = γ1/6y/a, Z = γ1/3z/a, where a =
γ1/3a0d

∗
. From cos θ = Z/R with R =

(
X2 + Y 2 + Z2

)1/2
, Hamiltonian (5.5)

can be rewritten as:

HEM = −∇2
R

2
− q(θ)

R
(5.7)

where q (θ) =
[
1 − (1 − γ) cos2 (θ)

]1/2. Expression (5.7) differs from (5.6) in
the transfer of anisotropy of the problem from the kinetic energy term to the
potential energy term, which further simplifies the calculations.

In the variational method, the calculation principle is to define a N × N
matrix whose elements are <φj |H0|φ′j>, and to obtain its eigenvalues by
proper diagonalization under minimization conditions with respect to vari-
ational parameters [17]. The basis hydrogen-like wave functions used in this
calculation are:

φn�m (x, y, z) = (β/γ)1/4
ψn�m(x, y (β/γ)1/2

z) (5.8)

where ψn�m(x,y,(β/γ)1/2
z) corresponds to hydrogenic wave functions:

ψn�m (x, y, z) = Rn,� (r)Y�,m (θ, φ) (5.9)

and β is an adjustable parameter that depends only on parity P = (−1)�

and m. The spherical harmonics Y�,m (θ, ϕ) are orthogonal for different values
of (�m) and the normalized radial wave functions Rn,�(r) are orthogonal for
different values of n. The radial wave functions used are:

Rn,� (r) =
2α3/2

n2

√
(n − �− 1)!

[(n + �)!]3

(
2αr
n

)�

e−αr/nL2�+1
n−�−1

(
2αr
n

)
(5.10)
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where Lk
p (u) =

p∑

s=0
(−1)sus [(p − k)!]2 / [(p − s)! (k − s)!s!] is a Laguerre poly-

nomial of order p. In the hydrogen radial wave function, α = 1/a0, but in the
variational calculations, it is taken as a variable parameter that is the same
for a given value of (�, m) and different values of n. Invariance of Hamilto-
nian (5.5) with respect to inversion implies that the matrix elements involving
wave functions with a change of parity are zero, and it can be shown that the
angular part < �,m|H0|�′,m′> of the matrix element <φj|H0|φj′> is non-zero
for

Δ� = 0,±2 and Δm = 0

where |�, m> stands for Y�,m (θ, ϕ). In [13], for the even parity states ns, nd,
ng,.., the states considered were those with |m| = 0, 1, 2, 3 and 4, and for
the odd parity states np, nf , nh,..., the states with |m| = 0, 1, 2, 3, 4 and 5.
The results obtained in this reference are derived from the diagonalization of
matrices between 70 × 70 for the h±4 and h±5 states and 105 × 105 for the
s states. Therefore, the eigenfunctions of (5.6) are linear combinations of the
basis functions (5.8) with a given parity and a given value of |m|, viz.:

Fn� =
∑

n′,�′
Cn′�′ φn′�′ (5.11)

and they are called the envelope wave functions [33,49]. For the deepest states
like 2p0 or 2p±1, the contributions of the corresponding basis functions are
predominant, but for more excited states, it decreases drastically. Also, the
contributions of other basis functions become more important than the one
corresponding to the � value of the state and this can be seen in Tables 2 and
3 of [6]. Thus, it can be understood that an attempt to calculate energy levels
by a variational method applied only to the diagonal matrix element for each
basis function gives results with little or no relationship with the eigenvalues
of the EM Hamiltonian except for the very first states [62].

The eigenvalues of Hamiltonian (5.4) where a simple Coulomb potential
is used are independent of the chemical nature of the donor. This situation
corresponds to experiment for the odd-parity levels, but not for the even-parity
ones and especially for the 1s ground state. There have been many attempts
to use impurity-dependent potentials in Hamiltonian (5.4) in a generalized
effective mass theory to provide realistic ground-state energies (see [47]).

For γ < 1, it has been said that a hydrogenic n state is split into states
(n,�,|m|) with definite parity P = (−1)�. For instance, the odd-parity states for
n = 6 are 6h, 6f , and 6p corresponding to � = 5, 3, and 1, respectively. In his
ordering of the levels, Faulkner assumed that, in the limit of γ < 1, near from
1, for a given value of |m|, the energies of the states decreased with increasing
�, that is, for odd-parity states with |m| = 1, E(6p±1) > E(6f±1) > E(6h±1).
Each state corresponds to a linear combination of basis eigenfunctions (5.8).
[13] considered the calculated contributions of these coefficients near from
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γ = 1 and labelled each state by a hydrogen-like state with the largest co-
efficient in the expansion (5.11). This results in an ordering of states differ-
ent from that of Faulkner: in the above example, with this new ordering,
E(6h±1) > E(6f±1) > E(6p±1) and the 6p±1 state becomes the 6h±1 state.
However, as Faulkner’s labelling is widely used, we stick to its notations. The
EM donor levels have been calculated for values of the physical parameter
γ1/3 = (mnt/mn�)

1/3 with a step of 0.1 between 0.1 and 1 [17] and 0.2 and 1
[13]. Results for an oblate ellipsoid (γ > 1) are also presented in [13], relevant
to the calculation of the acceptor levels in the limit of a very high applied
uniaxial stress.

For γ1/3 between 0.5 and 1, the differences between the energy levels ob-
tained from the two calculations are within ±5%, but for larger anisotropy,
significant differences occur for a number of excited states. This is explained by
the larger value of �max used by Broeckx et al. in their calculations, providing
good convergence of the energies (the claimed precision is between 10−4R∗∞d

for all the calculated energies when γ1/3 > 0.35 and 10−3R∗∞d in the range
0.15 < γ1/3 < 0.35) and from the instabilities in Faulkner’s calculations for
large anisotropies, in relation to the interactions between closely-spaced lev-
els. The binding energies of the EMT donor states for a prolate ellipsoid in
units of R∗∞d are given in Tables 5.1 and 5.2. They allow to obtain by inter-
polation, the energies of EM one-valley donor states in any indirect-gap cubic
semiconductor with prolate CB minimum constant-energy surfaces.

For a known value of γ, the values of the levels in physical units (usually
meV) require a determination of the value of R∗∞d. When there is a doubt
on the value of εs at low temperature,2 this can be done in a self-consistent
way by comparison with experimental spectroscopic data [17]. In this method,
the experimental 3p±1 − 2p±1 spacings of the donor spectra are used because
they are the largest, ensuring the best accuracy, and because they depend
marginally on the chemical nature of the donors, it is assumed that they
are given correctly by EMT (as a matter of fact the calculated spacings in
physical units are used in the identification of unknown lines). Subsequently,
R∗∞d is derived from the ratio of the experimental and calculated spacings.
In fact, any experimental np±1 − n′p±1 spacing can be used for this purpose
and any combination with a nf±1 line can be used as well. The spacings given
in Table 5.3 for Cdiam, Si and Ge are those for the P donor, and for 3C-SiC,
the one for the N donor on a C site [43]. The values of γ are obtained from
Table 3.4, and the calculated 3p±1−2p±1 spacings interpolated from Table 5.2.
Values of low-temperature static dielectric constants and refractive indices of
Si and Ge are self-consistent from ε2s = mntR∞/R∗∞d, with the values of mnt

given in Table 3.4 in good agreement with those derived from refractive index
measurements at 1.5K in the far IR [39].

For diamond, the low-temperature value of εs has been measured inde-
pendently [19, 50] to be 5.697. From mnt ∼ 0.30me deduced from the Zeeman

2 In [13], εs is noted ε∞.
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Table 5.1. Binding energies of the first EM even-parity donor states for γ < 1 in
effective Rydberg units [13]

γ1/ 3: 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

1s 2.694 2.321 2.0116 1.7604 1.5530 1.3796 1.2329 1.1077 1.0000
2s 1.327 0.958 0.7051 0.5436 0.4375 0.3656 0.3151 0.2782 0.2500
3s (3d0) 0.888 0.602 0.4143 0.3034 0.2354 0.1905 0.1577 0.1319 0.1111
3d0 (3s) 0.643 0.427 0.2841 0.2202 0.1857 0.1582 0.1374 0.1223 0.1111
4s (4d0) 0.481 0.322 0.2447 0.1900 0.1432 0.1125 0.0911 0.0750 0.0625
4d0 (4s) 0.365 0.280 0.2028 0.1395 0.1056 0.0879 0.0763 0.0682 0.0625
5s (5d0) 0.312 0.245 0.1571 0.1174 0.0950 0.0748 0.0598 0.0486 0.0400
5d0 (5g0) 0.277 0.193 0.1382 0.1030 0.0762 0.0636 0.0542 0.0465 0.0400

5g0 (5s) 0.213 0.166 0.1207 0.0876 0.0718 0.0566 0.0484 0.0434 0.0400

(3d±1) 0.344 0.300 0.2584 0.2225 0.1921 0.1665 0.1449 0.1266 0.1111
(4d±1) 0.263 0.217 0.1735 0.1403 0.1156 0.0969 0.0826 0.0714 0.0625
(5d±1) 0.211 0.168 0.1288 0.1000 0.0798 0.0654 0.0548 0.0466 0.0400
(5g±1) 0.172 0.135 0.1009 0.0812 0.0701 0.0604 0.0522 0.0455 0.0400

(3d±2) 0.153 0.148 0.1424 0.1370 0.1316 0.1262 0.1210 0.1160 0.1111
(4d±2) 0.126 0.113 0.0995 0.0878 0.0790 0.0729 0.0687 0.0653 0.0625
(5d±2) 0.104 0.092 0.0772 0.0683 0.0631 0.0572 0.0510 0.0452 0.0400
(5g±2) 0.088 0.076 0.0710 0.0635 0.0544 0.0481 0.0443 0.0418 0.0400

(5g±3) 0.074 0.070 0.0649 0.0601 0.0555 0.0512 0.0471 0.0434 0.0400

(5g±4) 0.047 0.047 0.0464 0.0454 0.0444 0.0433 0.0422 0.0411 0.0400

The state labels are those used by [17]. Those of [13] are indicated in parentheses
when they differ

splitting of 2p±1(P) in Cdiam (see Sect. 8.3.1.3), a value of effective Rydberg
R∗∞d =

(
mnt/εs

2
)
R∞ of 125.8meV is obtained. The experimental 3p±1 −

2p±1 spacing of the P donor spectrum in diamond is 20.2meV (Table 6.11), or
0.1606 a.u. Using Table 5.2, this spacing is found to correspond3 to γ1/3 ∼ 0.56,
giving a longitudinal effective mass mnl = 1.7me close to the value of 1.8me

derived by Gheeraert et al. [21] on the basis of a self-consistent fit with EMT.
A value of the energy corresponding to the Coulomb term e2/ (4πε0εsa0d

∗)
for a value of r equal to the effective Bohr radius a0d

∗ is also given for com-
parison in Table 5.3. For H, this energy is 27.2 eV.

A non-variational method of calculation has been used for the determina-
tion of eigenvalues of EM-donor Hamiltonian [31]. It is based on the finite
boundedness method. A review of this method can be found in [1]. This

3 In Table 5.2, a 2p±1 − 3p±1 spacing of 0.1606 a.u. corresponds also to γ1/3 ∼ 0.72,
but this latter value of γ1/3 does not fit the experimental 2p±1 − 4p±1 spacing of
∼ 0.22a.u.
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Table 5.2. Same as 5.1 for the first odd-parity EM donor states

γ1/3: 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

2p0 1.682 1.251 0.9386 0.7214 0.5661 0.4520 0.3664 0.3009 0.2500
3p0 1.040 0.718 0.4977 0.3594 0.2694 0.2083 0.1653 0.1342 0.1111
4p0 0.738 0.488 0.3221 0.2234 0.1622 0.1223 0.0953 0.0763 0.0625
4f0 0.552 0.360 0.2296 0.1547 0.1158 0.0985 0.0843 0.0724 0.0625
5p0 0.423 0.278 0.1736 0.1364 0.1094 0.0811 0.0622 0.0492 0.0400
5f0 0.328 0.220 0.1623 0.1143 0.0797 0.0629 0.0535 0.0461 0.0400
6p0 0.255 0.194 0.1359 0.0906 0.0746 0.0580 0.0440 0.0344 0.0278
6f0 (6h0) 0.224 0.176 0.1113 0.0880 0.0606 0.0453 0.0382 0.0325 0.0278
6h0 (6f0) 0.196 0.139 0.1081 0.0702 0.0544 0.0436 0.0366 0.0317 0.0278

2p±1 0.405 0.384 0.3615 0.3399 0.3195 0.3003 0.2823 0.2656 0.2500
3p±1 0.297 0.253 0.2106 0.1782 0.1549 0.1387 0.1272 0.1183 0.1111
2p±1− 3p±1 0.108 0.131 0.1509 0.1617 0.1646 0.1616 0.1551 0.1482 0.1389
4p±1 (4f±1) 0.233 0.190 0.1499 0.1237 0.1086 0.0956 0.0833 0.0721 0.0625
4f±1 (4p±1) 0.189 0.151 0.1260 0.1114 0.0938 0.0805 0.0721 0.0666 0.0625
5p±1 (5f±1) 0.156 0.135 0.1132 0.0876 0.0718 0.0620 0.0538 0.0464 0.0400
5f±1 (5p±1) 0.142 0.122 0.0909 0.0726 0.0624 0.0529 0.0464 0.0425 0.0400
6p±1 (6h±1) 0.129 0.101 0.0810 0.0666 0.0529 0.0447 0.0383 0.0326 0.0278
6f±1 0.106 0.092 0.0738 0.0578 0.0496 0.0423 0.0367 0.0319 0.0278
6h±1 (6p±1) 0.100 0.083 0.0649 0.0540 0.0439 0.0375 0.0324 0.0295 0.0278

(4f±2) 0.138 0.128 0.1157 0.1045 0.0942 0.0849 0.0466 0.0691 0.0625
(5f±2) 0.113 0.101 0.0866 0.0740 0.0639 0.0559 0.0495 0.0443 0.0400
(6f±2) 0.095 0.083 0.0688 0.0568 0.0480 0.0416 0.0363 0.0318 0.0278
(6f±2) 0.080 0.069 0.0578 0.0515 0.0453 0.0394 0.0345 0.0326 0.0278

(4f±3) 0.079 0.077 0.0753 0.0732 0.0711 0.0689 0.0667 0.0646 0.0625
(5f±3) 0.068 0.063 0.0576 0.0522 0.0479 0.0450 0.0430 0.0414 0.0400
(6f±3) 0.058 0.053 0.0469 0.0434 0.0410 0.0378 0.0343 0.0309 0.0278
(6h±3) 0.049 0.045 0.0448 0.0404 0.0355 0.0320 0.0300 0.0288 0.0278

(6h±4) 0.045 0.043 0.0413 0.0389 0.0365 0.0341 0.0319 0.0298 0.0278

(6h±5) 0.039 0.029 0.0312 0.0309 0.0303 0.0297 0.0291 0.0284 0.0278

The 2p±1 − 3p±1 energy difference can be used to determine the effective
Rydberg when γ is known, or inversely, a value of γ when the effective Rydberg
is known

method generally gives results comparable to those obtained by the varia-
tional method, as can be evaluated from Tables 5.4 and 5.5.

A non-variational method has also been used by [25] to determine the
donor energy levels in uniaxial crystals, with an application to 4H-SiC. It
considers first a constant-energy ellipsoid with three different electron effec-
tive masses mX , mY and mZ along three mutually orthogonal axes, which
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Table 5.3. Anisotropy parameters and EMT donor parameters for group IV crys-
tals. The calculated values of the 3p±1 − 2p±1 spacings are in units of R∗∞d. The
values of εs in parentheses are derived self-consistently from the calculations. For
diamond, the experimental value of εs in brackets is used to determine γ

Cdiam 3C-SiC Si Ge

γ1/3 = (mnt/mnl)
1/3 0.56† 0.7181 0.5924 0.3718

3p±1 − 2p±1 (calc) (a.u.) 0.1606† 0.1604 0.1645 0.1462
3p±1 − 2p±1 (exp) (meV) 20.2 5.59 3.282 0.687
R∗∞d (meV) 125.8† 34.85 19.95 4.70
e2/ (4πε0εsa0d

∗) (meV) 251.5 69.70 39.89 9.31
εs at LHeT 5.697† (9.82) (11.40) 11.40a (15.36) 15.44b
n =

√
εs 2.387 3.15 3.38 3.91

† See text, a [61], b [39]

is more general than the constant-energy revolution ellipsoid considered in
Hamiltonian (5.5), and dielectric constants that can be different along the
anisotropy axis

(
ε//

)
and perpendicular to it (ε⊥). To facilitate the com-

putation, generalized masses m1 = mX , m2 = mY , and m3 = ε//

ε⊥
mZ are

considered, where the largest one defines the Oz axis and the smallest one
the Oy axis. For convenience, these two generalized masses are relabelled mz

and my, respectively. A coordinate transformation similar to the one used to
derive Hamiltonian (5.7) is:

ξ =
√
mx

my
x, η = y, ζ =

√
mz

my
z

With spherical coordinates ξ = r cosϕ sinϑ, η = r sinϕ sinϑ and ζ = r cosϑ,
and atomic units of length a and energy R∗∞ as defined below, the effective-
mass Hamiltonian for a donor electron in the uniaxial crystal takes the form:

−∇2 − 2

r
√

1 − α cos2 ϑ− β sin2 ϑ cos2 ϕ
(5.12)

comparable to the Hamiltonian (5.7). The atomic units of length (effective
Bohr radius) and energy (effective Rydberg) are defined here as a = a0ε/my

andR∗∞ =
(
my/ε

2
)
R∞, where ε = √

ε//ε⊥. In (5.11) α = 1−my/mz ≤ 1 and
β = 1 −my/mx ≤ α are the two parameters describing the anisotropy (note
that parameter β used here is different from the one of expression (5.8)). In the
general case, it can be verified that the symmetry group of Hamiltonian (5.12)
is D2h, but for β = 0, it reduces to D∞h, the symmetry group of (5.7) (in that
case, (1 − α)my/mz is identical to γ in Hamiltonian (5.5)). The calculations
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Table 5.4. Calculated energies (meV) of the first odd-parity EM donor states in
silicon for |m| = 0 and 1. The values of the last column are obtained by a non-
variational method and the corresponding states are denoted by nP0 for m = 0 and
nP± for |m| = 1

Statea Energy Stateb Energyb

2p0 11.492c (11.51)a 2P0 11.491
2p±1 6.402 (6.40) 2P± 6.401
3p0 5.485 (5.48) 3P0 5.485
4p0 3.309 (3.33) 4P0 3.309
3p±1 3.120 (3.12) 3P± 3.120
4f0 2.339 (2.33) 5P0 2.339
5p0 2.235 (2.23) 6P0 2.235
4p±1 2.187 (2.19) 4P± 2.187
4f±1 1.894 (1.89) 5P± 1.894
5f0 1.630 (1.62) 7P0 1.631
6p0 1.510 (1.52) 8P0 1.510
5p±1 1.449 (1.44) 6P± 1.449
5f±1 1.260 (1.27) 7P± 1.259
6f0 1.241 (1.20) 9P0 1.243
6h0 1.102 (1.10)
6p±1 1.070 (1.04) 8P± 1.071
7p0 1.004
6f±1 1.002 9P± 1.002
7f0 0.980 (0.98)
6h±1 0.886 (0.88) 10P± 0.886
7h0 0.842
7p±1 0.822 11P± 0.823

8p0 0.764d

7f±1 0.750 12P± 0.750

8f0 0.733d

7h±1 0.676 13P± 0.678

8p± 0.636d 14P± 0.637

8f±1 0.596d 15P± 0.596
8h±1 0.566d 16P± 0.566

a [17], b [7], c [26], d Broeckx and Clauws, unpublished results

for β = 0 have been performed in [25] by the same non-variational method
as that used in [51] for the acceptors in cubic semiconductors, with γ1/3 as a
parameter. The obtained energy levels are close to those defined of [13], given
in Tables 5.1 and 5.2.

The energies of the odd-parity states of donors in silicon calculated by
variational and non-variational methods are given in Table 5.4.
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Table 5.5. Comparison of the calculated energies (meV) of odd-parity EM donor
states in germanium. The values of the last column are obtained by a non-variational
method and the corresponding states are denoted by nP0 for m = 0 and nP± for
m = ±1

Statea Energyb Statec Energyc

2p0 4.776 (4.74)a 2P0 4.750
3p0 2.586 (2.56) 3P0 2.573
2p±1 1.729 (1.726) 2P± 1.720
4p0 1.696 (1.67) 4P0 1.689
4f0 1.220 (1.16) 5P0 1.217
3p±1 1.042 (1.03) 3P± 1.037
5p0 0.93 (0.84) 6P0 0.928
5f0 0.80 (0.80) 7P0 0.800
4p±1 0.753 (0.73) 4P± 0.750
6p0 0.73 (0.61) 8P0 0.735
4f±1 0.609 (0.61) 5P± 0.607
6f0 0.58 (0.55)
5p±1 0.573 (0.53) 6P± 0.573
6h0 0.55
5f±1 0.465 (0.41) 7P± 0.467
6p±1 0.397 (0.38) 8P± 0.399
6f±1 0.379 (0.32) 9P± 0.384
6h±1 0.318 (0.29) 10P± 0.328
7p±1 0.308 11P± 0.313
7f±1 0.29 12P± 0.290
7h±1 13P± 0.282

a [17], b [13,16], c [7]

One can note the good agreement between the values obtained by the
variational and non-variational methods. The difference between Faulkner’s
and Janzén et al.’s values is only a matter of accuracy.

The energies of the odd-parity levels of donors in germanium calculated
by variational and non-variational methods are given in Table 5.5.

The energy levels from 13P± (0.282meV) to 17P± (0.207meV) have also
been calculated in [7].

For the odd-parity levels of donors in germanium, the difference in the
values obtained by the two methods never exceed a few percent, but the dis-
crepancies with Faulkner’s values are larger for the shallowest excited states.
They can reach the values of the spacings between excited levels (see for in-
stance, 6h±1), and their origins have already been discussed. For n > 2, one
observes a slight difference between silicon and germanium in the ordering of
the np0 and nf0 levels with respect to the odd-parity levels with |m| = 1.
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As will be seen later, the calculations of the donor levels based on the
one-valley approximation give values of the energy levels in good agreement
with the experimental ones as long as the impurity potential can be fitted to
a Coulomb potential screened by the static dielectric constant of the crystal,
and as long as the actual symmetry of the donor wave functions related to the
point group symmetry of the crystal is ignored. This conjunction was met for
the odd-parity states, but the situation is different for the even-parity states,
at least for the first ones and the degeneracy of the CB electrons needs to be
introduced in that case. For further comparisons, Table 5.6 gives the one-valley
values of the first even-parity donor levels for silicon and germanium.

The experimental ionization energies of all the substitutional group-V
donors in silicon and germanium are larger than the energies of the 1s levels
calculated in the one-valley EMA, as shown from the comparison with the
1s (A1) values of Table 5.9. For shallow donors in diamond, with γ1/3 = 0.56
and R∗∞d = 125.8 meV taken from Table 5.3, the 1s and 2s EM energies
interpolated from Table 5.1 are 205.8 and 60.4meV, respectively.

For double donors, a scaling with the He0 and He+ energy levels of helium
can be used to obtain the one-valley energy levels for the ground state. The
ratios of the ground-state energy levels of He0 and He+ with that of H are
1.808 and 4.002, respectively and we assume that the same ratios also hold
for EM donors. For silicon, with a calculated H-like donor ground state of
31.26meV, the corresponding one-valley ground states for He0-like and He+-
like donors are 56.52 and 125.10meV, respectively.

Table 5.6. One-valley energies (meV) of the first even-parity donor states in silicon
and germanium [13], extrapolated to states with � > 0. The values in parentheses
are those of [26] for silicon and those of [17] for germanium

State labela Silicon Germanium

1s 31.26b (31.262) 9.84b (9.81)
2s 8.86 (8.856) 3.60 (3.52)
3s 4.78 (4.777) 2.15 (2.01)
3d±1 3.87 (3.874) 1.27
3d0 3.75 (3.751) 1.48 (1.34)
4s 2.91 (2.911) 1.21 (1.17)
3d±2 2.63 (2.632) 0.68
4d±1 2.34 (2.338) 0.87
4d0 2.14 (2.141) 1.07
5s 1.93 (1.929) 0.83 (0.72)
5d±1 1.62 (1.617) 0.65
4d±2 1.59 (1.587)
5d0 1.55 (1.546) 0.69 (0.61)
5g0 1.46 (1.458) 0.64 (0.53)

a [17], b [16]
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The experimental ionization energies of P in diamond and of N in 3C-
SiC are 604 and 51.19meV, respectively, compared with the one-valley 1s
energies of 206 and 47.2meV, respectively. For N at the hexagonal site in
4H-SiC, the measured ionization energy is 61.4meV, and it can be compared
with the general value derived from the one-valley Hamiltonian, which is just
discussed below.

In 4H-SiC, the CB minimum is at the M point on the surface of the BZ
of the hexagonal lattice, along one of the three equivalent directions [1̄100],
[01̄10] and [101̄0] (Figure B.1 of Appendix B), and it is thus triply degener-
ate. The three electron effective masses at this point are different: in units
of me, their values by decreasing order are mΓM = 0.58, mML = 0.33 and
mMK = 0.31, along the Γ–M, M–L and M–K directions, respectively. The
relevant values of the dielectric constants are ε// = 10.36 and ε⊥ = 9.55, such
that the parameters α = 1−mMK/mΓM and β = 1−(ε⊥/ε//

)
(mMK/mML) of

Hamiltonian (5.12) are 0.466 and 0.098, respectively. In the general case, the
donor energy levels have to be calculated with Hamiltonian (5.12), with no
assumption made on the site of the donor atom. As for D∞h symmetry, the
eigenfunctions of (5.12) are expanded for the point group D2d in the series
of normalized spherical harmonics Um

�,n(r)

r Y�,m (θ, ϕ), where
Um

�,n(r)

r are the co-
efficients in the expansion [25]. They involve linear combinations of spherical
harmonics whose parities (−1)� and parities of quantum number m depend
on the IR of D2d considered. Each wave function has a definite parity, but
different values of m. The basis wave functions for the Γ1

+ IR of D2d involve
spherical harmonics with both � and m even and within the one-valley ap-
proximation, Γ1

+ is the IR corresponding to the nS states. The parity- and
symmetry-allowed electric dipole transitions from the 1S ground state are only
possible towards levels whose wave functions transform as basis functions of
the IRs Γ2

−, Γ3
−, and Γ4

− of D2d. The spherical harmonics that are basis
functions for Γ2

−, Γ3
−, and Γ4

− IRs involve only (� odd, m odd), (� odd, m
even), and (� odd, m odd) values of � and m, respectively. For Γ3

−, these basis
functions correspond to nP0 states, for Γ2

−, to nP− states, and for Γ4
−, to

nP+ states [25]. The main difference with the D∞h symmetry is the splitting
of the np±1 states. The calculated binding energies of the deepest EM donor
levels in 4H-SiC corresponding to the four IRs of D2d of interest are displayed
in Table 5.7 (see [25] for the details of the calculation). A table including the
first ten binding energies of the states associated with all the IRs can be found
in the above reference. The levels are labelled considering the value of � with
the largest weight in the term Y�,m (θ, ϕ) ± Y�,−m (θ, ϕ) in the expansion of
the wave function, and the subscript indicates the corresponding value of |m|
(1 is omitted). The “+” and “−” subscripts of the P states are used only
in a somewhat arbitrary fashion to indicate P+ as the state with the highest
energy.

The one-valley ionization energies of the donors are a relatively small frac-
tion of the energy gaps of the semiconductors: their ratios are 0.028, 0.015,
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Table 5.7. Calculated binding energies (meV) of the five deepest donor states in
4H-SiC for each of the IRs involved in the optical transitions after [25]

S-like
(
Γ1

+
)

P0-like
(
Γ3

−) P+-like
(
Γ4

−) P−-like
(
Γ2

−)

1S 53.99 2P0 15.67 2P+ 12.79 2P− 12.25
2S 13.72 3P0 7.046 3P+ 5.735 3P− 5.504
3D0 6.781 4P0 4.044 4F+ 3.672 4F− 3.559
3S 5.998 4F0 3.649 4P+ 3.238 4P− 3.114
3D2 5.386 4F2 3.358 4F+3 2.979 4P−3 2.978

0.022, and 0.035 for silicon, germanium, 3C-SiC, and diamond, respectively
and they are dominated by the influence of the effective masses and dielectric
constant, justifying the initial assumptions of the model.

5.2.2 Conduction Band Degeneracy

The absolute CB minima of the indirect-band-gap crystals show an orienta-
tional degeneracy in k-space (see Table 3.4) which translates on the EM donor
levels in these crystals. The donor optical spectra show that in the case of the
first ns donor states, this multi-valley degeneracy is broken and the resultant
splitting of the levels must be accounted for satisfactorily by theory. This de-
generacy is also of fundamental importance in explaining the splitting of the
donor spectra when an external uniaxial perturbation, like a magnetic field
or a uniaxial stress, is applied to a crystalline sample.

When all the equivalent minima of the CB are considered, the wave func-
tions ψ(j)(r) where index j corresponds to a given CB minimum are degenerate
eigenfunctions of a Hamiltonian corresponding to (5.5). In this case, the total
wave functions of an eigenstate span as a basis for a representation of the
symmetry point group Td of the tetrahedrally bonded substitutional donor.
In silicon, for instance, there are six equivalent one-valley wave functions that
transform as x, −x, y, −y, z and −z under the symmetry operations of Td

(the character table of this group is given in Table B.4 of appendix B). The
values of the characters of this representation for the different symmetry op-
eration classes of Td are 6 (E), 0 (8C3), 2 (3C2), 0 (6S4) and 2 (6σd). This
representation then reduces into the IRs A1 + E + T2 (or Γ1 + Γ3 + Γ5, in
Koster’s notations) of Td for the states with |m| = 0 (ns, np0, nd0, etc.). For
the states with |m| = 1, it can be shown [49] that because of the additional
twofold degeneracy associated with |m|, the IRs associated with these states
are 2T1 + 2T2 (or 2Γ4 + 2Γ5). For donors in germanium, with four equivalent
ellipsoids along the <111> axes, the IRs for the states with |m| = 0 and
|m| = 1 are A1 + T2 and E + T1 + T2, respectively. The wave functions
including degeneracy are thus expressed as:

ψn� =
N∑

j=1

α(j)F
(j)
n� (r)ϕk(j) (r) =

N∑

j=1

α(j)ψ(j)
n (r) (5.13)
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Table 5.8. Coefficients α(j) of the one-valley wave functions in the total donor
electron wave functions corresponding to different IRs in silicon, diamond and
germanium for levels with m = 0. They include the normalization coefficient

A1 (1, 1, 1, 1, 1, 1)/
√

6

E ((−1, −1, −1, −1, 2, 2)/
√

12
Si, Cdiam (1, 1, −1, −1, 0, 0)/2)

((1, −1, 0, 0, 0, 0)/
√

2

T2 (0, 0, 1, −1, 0, 0)/
√

2

(0, 0, 0, 0, 1, −1)/
√

2)

A1 (1, 1, 1, 1)/2
((1, 1, −1, −1)/2

Ge T2 (1, −1, −1, 1)/2
(1, −1, 1, −1)/2)

where N is the number of equivalent valleys. For the ns and np0 donors
states in silicon, there are six different linear combinations similar to (5.13)
corresponding to the dimensions of the IRs (one for A1, two for E and three
for T2) and four in the case of germanium (one for A1 and three for T2). The
symmetry-dependent coefficients α(j) of the wave functions (5.13) are given in
Table 5.8.

The combined effect of the multi-valley degeneracy and the interactions
of the donor electron at and near from the donor ion site are generally called
valley-orbit coupling. Logically, the result of this coupling is the valley-orbit
splitting. The ns envelope wave functions are non-zero for r = 0, and because
the wave function associated with the different CB minima are in phase for the
ns (A1) states, the interaction between the substitutional donor electron and
the donor ion is expected to be more significant for this configuration than
for ns(E) and ns (T2). The expected result is the lifting of degeneracy, more
pronounced for 1s because of the relatively stronger localization of the wave
function near from and at r = 0, where the screened potential assumption no
longer holds. A qualitative estimate of the 1s donor splitting in silicon has
been made by Kohn and Luttinger [34] using a tight-binding approximation
for the functions ψ(i)

1s (r) in the vicinity of the donor ion. It consists in tak-
ing for these functions a linear combination of s and p radial atomic donor
wave functions with adequate coefficients, and to express the wave functions
(5.13) accordingly. Within this approximation, the ψ (1s (A1)) wave function
is a linear combination of atomic s wave functions (the terms with the p
wave functions cancel out because of the symmetry of the coefficient of the
p atomic functions). As a consequence, the interaction between the electron
and the donor is the largest for this 1s (A1) state and it is thus expected to
be the deepest in energy. Similarly, as the two ψ (1s (E)) wave functions are
identically zero, they should be the less perturbed of the 1s wave functions in
the vicinity of the donor, and the 1s (E) state should be the shallowest of the
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1s states. The three ψ (1s (T2)) include only the p wave functions, and the
1s (T2) level should be somewhat deeper than the 1s (E) state. This is borne
out by experiments, with the energy of the 1s (E) state not too different from
the one calculated using the one-valley approximation, and the 1s (T2) ground
state slightly higher in energy.

The value of ψ (1s) at r = 0 for a given donor can be estimated from
the splitting of the ESR line due to the interaction between the electronic
and nuclear spins mentioned in Sect. 1.3.5, and this point is discussed in the
review [33]. This property distinguishes between donors whose ground state
has 1s (A1) symmetry, with values of |ψ (1s) (0) |2 much larger than those with
1s (T2) symmetry.

A quantitative treatment of the splitting of the degenerate 1s donor state
considering intervalley coupling was provided by Baldereschi [2]. The coupling
terms between equivalent valleys, that can be ignored for odd-parity states,
must be considered and they contain a k-dependent dielectric constant εij =
ε (ki − kj) where the wave vectors correspond to the minima of the equivalent
valleys. When coupling is neglected, ki = kj and εij reduces to εs, but for
ki 
= kj, this k-dependent dielectric constant, calculated earlier for silicon and
germanium [44], must be used. For instance, in silicon, the EM equation of a
donor electron for valley 1 with a wave vector k1, taken along the x axis can
be written as:
[
(px − �k1)

2

2ml
+
p2

y + p2
z

2mt
− e2

4πε0εsr

]

f1 (r) −
5∑

j 	=1

e2

4πε0ε (k1 − kj)
fj (r) =Ef1(r)

(5.14)

together with five similar equations for the other valleys. Equation (5.14) has
the symmetry of the silicon host crystal, and depends on the valley wave
vectors for both the kinetic and potential energy terms. The values of ε(k)
decrease with increasing k and this takes partially into account the change
from a fully screened potential far from the impurity (k = 0) to a bare po-
tential for higher values of k. Baldereschi performed the calculations for sili-
con by considering for the valley a minimum located at kx = (2π/a) (x, 0, 0)
along the Δ direction of the BZ (actually kx = 0.84kX) and a 1s state with
the classical anisotropic one-valley wave function with two variational pa-
rameters. The coupling term in (5.14), including the dielectric functions with
k = (2π/a) (2x, 0, 0) and (2π/a) (x, x, 0) calculated from the values of [45] was
treated as a perturbation. As expected from the experimental results, a split-
ting of the T2 and A1 levels from the E level was found for the domain of
variation of x investigated (∼0.55–1). Moreover, the magnitude of the 1s (E)−
1s (A1) splitting for x = 0.84 was about one order of magnitude larger than the
one for 1s (E)−1s (T2) observed experimentally. More accurate values of these
splittings, that are also dependent on the chemical nature of the donors, have
been obtained by calculations involving the atomic potential near from and at
the donor site and they will be discussed in due time. A similar result was also
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Table 5.9. Comparison between the experimental values and spacings (meV) of
the 1s manifold energy levels showing the amplitude of the valley-orbit/chemical
splittings of the group-V donors in silicon and germanium and the calculated values
of [2], where no chemical effect is included. More accurate experimental values of
the E (1s (A1)) are given in Tables 6.3 and 6.7

P As Sb Bi Calc.

1s (A1) 45.58 53.76 42.77 70.88 31.26a

Si 1s (A1) − 1s (T2) 11.70 21.1 9.8b 38.4b 10.6

1s (T2) − 1s (E) 1.33 1.4 1.4b 2.6b 1.1

Ge 1s (A1) 12.89 14.19 10.32 12.81 9.84a

1s (A1) − 1s (T2) 2.81 4.12 0.32 2.85 0.6

a One-valley values of Table 5.6, b Average of spin-split levels

obtained for germanium, but the splitting by a smaller order of magnitude is to
be correlated with a smaller intervalley coupling. This difference can be under-
stood in view of the larger spread of the donor ground state wave function in
the real space in germanium, compared to silicon. A comparison between the
experimental values and the calculations of [2] is given in Table 5.9. The valley-
orbit/chemical splittings 1s (A1)− 1s (T2) of germanium and 1s (A1)− 1s (E)
of silicon are sometimes denoted by 4Δc and 6Δc, respectively, after [48].

For P in diamond, the experimental value for 1s (A1) is 604.0 meV. The
calculated one-valley 1s energy is 205.8meV, and this value should be close
to the energy of the 1s(E) level, while the 1s (T2) level could be 5–10meV
deeper. A lifting of the degeneracy is, in principle, possible for the odd-parity
states, but the envelope functions of these states are zero at r = 0 and they are
spread out in a large volume of the crystal so that multi-valley effects expected
for these states are very small. It will be seen later that for the odd-parity
states, there is indeed a very good agreement between experiment and the
results of the calculations with the one-valley approximation. Quantitatively,
the experimental energies of the ns states other than ns (A1) are not too
different from the ones obtained in the one-valley calculations, and this also
includes the 1s state.

Calculations of realistic ground state energies of donors and of the valley-
orbit splitting have been undertaken (see [47], and references therein). Ground
state energies have been calculated by considering a more appropriate dielec-
tric screening and taking into account the lattice distortion at the donor atom
site, and they will be compared with the experimental results. The above re-
sults concerning the ordering of the valley-orbit split of 1s levels are valid
for substitutional donors as it turns out that for interstitial Li in silicon and
germanium, it has been found experimentally that the 1s (A1) state was the
shallowest one.

The question of the long-range changes in the eigenvalues of the one-
valley Hamiltonian (5.5) produced by the lattice deformation arising from
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the introduction of the donor atom in an otherwise perfect lattice has been
addressed by Stoneham [58]. The basis of the method is to derive the perturba-
tion potential induced by the foreign atom as a function of the CB deformation
potentials Ξd and Ξu, assumed to be the same as those for weakly bound elec-
trons, and of the actual strain at the donor site. The diagonal terms of this
perturbation, when added to (5.5), can be computed as a function of the actual
strains at the donor site. The results can be obtained by numerical integration
and expressed in terms of a small number of constants (the deformation poten-
tials, elastic constants and effective-mass Bohr radii for the donor electron),
a cut-off to describe the short-range variation of the strain, and the volume
change ΔV induced by the donor atom in a large finite crystal. Every energy
level is expected to be shifted by this perturbation; the deeper the level, the
stronger is the shift observed. To see if such shifts can be detected in practice,
one should compare the splitting between the excited levels calculated from
the point-charge Hamiltonian (5.5) with the experimental one.

In the above discussion of the electronic structure of the donor levels, the
electron spin has been neglected. It has been, however, proven necessary to in-
troduce the spin-orbit coupling to explain the observation of parity-forbidden
transitions for donors with relatively deep 1s (A1) ground states. Using the
double group representation of Td, it is found (see Table B.4 of appendix B)
that the simple representations A1 and E transform into the Γ6 and Γ8 double
representations, respectively and that T2 transforms into Γ7 + Γ8. Electric-
dipole transitions are symmetry-allowed between A1 (Γ6) and the two T2 (Γ7)
and T2 (Γ8) levels.

Valley-orbit splitting has also been investigated in the case of donors in
4H-SiC. In this material, a donor atom can occupy a hexagonal (h) site, with
local symmetry C3v, or a quasi-cubic site with symmetry close to Td (see
Appendix B). The case when a N donor atom sits on the h site of the C
sublattice has been analyzed by Ivanov et al. [24]. Similarly, for crystals with
Td symmetry, as a result of the threefold degeneracy of the CB band of 4H-
SiC, the total wave functions of an eigenstate, whose expressions are similar
to (5.13), are threefold degenerate. They form a basis for the representation
of the C3v point group, which comprises two 1D IRs Γ1 and Γ2 and one 2D
IR Γ3. Also, in the one-valley approximation, the shallow donor states in 4H-
SiC can be separated into S, P0, P+ and P− states, respectively, associated
with the IRs Γ1

+, Γ3
−, Γ4

− and Γ2
− of the D2d symmetry group of the one-

valley Hamiltonian. At a h site, the total wave function of the donor electron
transforms as a representation of the C3v point group, which can be deduced
from the transformation properties of the one-valley wave functions under the
symmetry operations of C3v. As a result, for the S, P0 and P+ states, the
resulting reducible representation of C3v is Γ2 + Γ3, and for the P− state, it
is Γ1 + Γ3. For the 1S state, the valley-orbit coupling splits the 1S (Γ2 + Γ3)
state into the non-degenerate 1S (Γ2) and doubly degenerate 1S (Γ3) levels,
the ground state being 1S (Γ2). A fit of the spectroscopic data is less simple
than in the case of donors in silicon and germanium, because the experimental
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results are scarce. It gives for N at the h site energies of 61.37 and 53.9meV
for the 1S (Γ2) and 1S (Γ3) states, respectively [25].

For C3v symmetry, the z component of the dipole moment transforms as Γ1

and the x and y components as Γ3. As a consequence, for E//c (z component),
the parity-allowed transitions from 1S (Γ2) are toward the odd-parity states
belonging to the Γ2 IR; from 1S (Γ3), they are toward the odd-parity
states belonging to the Γ3 IR. For E⊥c (x and y components), the parity-
allowed transitions from 1S (Γ2) are toward the odd-parity states belonging
to the Γ3 IR, and from 1S (Γ3) toward the odd-parity states belonging to the
Γ1, Γ2 and Γ3 IRs. Evidently, symmetry-allowed transitions are also possible
from the 1S states toward the even-parity states with appropriate symmetry.

5.2.3 The Quasi-Hydrogenic Case

In direct-gap semiconductors where the CB minimum lies at k = 0, the donor
states are not degenerate in k-space. This is the case for many III-V and II–VI
compounds (GaAs, InP, and ZnTe fall in this category). Another important
characteristic of some of these materials is that the electron effective mass
can be considered in a first approximation as spherical, corresponding to a
parabolic CB. In semiconductors with an anisotropy axis like the wurtzite-
type materials, one usually considers mn//, corresponding to optical proper-
ties measured with E parallel to this axis and mn⊥, corresponding to optical
properties measured with E perpendicular to this axis, but for a parabolic CB,
these two quantities should be the same. In direct-gap cubic semiconductors,
the effective Rydberg for the EM donors R∗∞d = R∞mn/ε

2
s can be taken as

a reasonable approximation of the ground state energy of the donor electron,
but the actual value of R∗∞d depends critically on εs. The energy of the nth
excited state is then R∗∞d/n2 and the energies of the 1s→ np transitions are
given by the modified expression R∗∞d

(
1 − 1/n2

)
of the Lyman series for the

H atom. The calculated energies of the first donor lines in InSb, GaAs, InP,
ZnSe and CdTe are given in Table 5.10.

The effective Rydberg values for GaAs and InP in this table differ slightly
from the ones 5.74 and 7.33meV, respectively) given by [56].

Departure from the CB parabolicity results in a non-isotropic effective
mass, whose value depends on the electron energy E in the CB. This is the
main reason for the spread in the values of mn reported for semiconductors
with CB minimum at k = 0, another being polaron coupling. Non-parabolicity
has been addressed inter alia for w-GaN, without reference to a difference
between mn// and mn⊥. The most recent results give mn0 = 0.208me at
the CB edge (E = 0) and the increase of mn with E is given empirically by
mn = mn0 (1 + 2KE/Eg), with K = 2.5 for GaN [60].

For c-GaN, the effective Rydberg value calculated for mn = 0.19me and
εs = 9.5 is 28.6meV. For w-GaN, a difference between mn// and mn⊥ would
produce a splitting of the n = 2 level into 2s, 2p0 and 2pm=±1 states. Calcula-
tions including central-cell corrections have been performed by [42], resulting
in Table 5.11.
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Table 5.10. Calculated EM transition energies (meV (cm−1 in parentheses)) from
the 1s state to the first np quasi-hydrogenic donor levels of five compounds with the
sphalerite structure. Enp is R∗∞d/n2. For InSb, GaAs, and InP, εs at low tempera-
ture is taken as 17, 12.4, and 12.2, respectively, and mn/me is taken from Table 3.6.
Experimental 1s → 2p transition energies are given in Table 6.37

InSb GaAs InP CdTe ZnSe

1s → 2p 0.491 (3.96) 4.393 (35.43) 5.417 (43.69) 9.87 (79.5) 19.3 (155)
E2p 0.163 1.465 1.805 3.28 6.43
1s → 3p 0.582 (4.69) 5.207 (42.00) 6.420 (51.78) 11.7 (94.2) 22.8 (184)
E3p 0.073 0.651 0.802 1.46 2.86
1s → 4p 0.614 (4.95) 5.492 (44.29) 6.771 (54.61) 12.3 (99.4) 24.1 (194)
E4p 0.041 0.366 0.451 0.82 1.6
R∗∞d, Ei 0.654 (5.28) 5.858 (47.25) 7.222 (58.25) 13.1 (106)a 25.7 (207)b

a [54], b [12]

Table 5.11. Calculated energies (meV) of the first donor transitions in GaN for
different chemical donors [42]

c-GaN w-GaN

Si O C Si O C

1s (Ei) 29.5 30.4 32.5 30.4 31.4 32.7
1s → 2p±1 21.8 22.7 24.4 22.3 23.3 25.1
1s → 2p0 22.8 23.7 25.6
1s → 3p0 26.1 26.9 29.0 27.0 28.0 30.1

The splitting between the 1s → 2p±1 and 1s → 2p0 transitions is due to
the difference between the values of mn// and mn⊥ used for the calculation
(0.19me and 0.22me, respectively), leading to a value of γ > 1. This condition
results in an energy of the 2p0 level, which is smaller than that of the 2p±1

level.
As will be seen later, the experimental values of the lines of the QHD

spectra show small differences with the calculated values of Table 5.10 due to
small central-cell corrections for different donors and non-parabolicity effects.
This latter effect leads to small changes in the values of mn with increasing
impurity concentrations. A consequence of these small binding energies is a
large spread of the donor electronic density, which can be visualized by the
effective Bohr radius of the donor electron a∗0d. In the nth excited state,
a∗0dn = n2a∗0d. For GaAs, a0d2

∗ is ∼40 nm, but it rises to ∼0.3 μm for InSb,
and in this semiconductor, no donor spectrum can be observed without the
help of an additional magnetic field because of the overlap of the donor enve-
lope wave-functions. For QHD electrons (as well as for shallow acceptor holes)
in a semiconductor, the most significant parameter is the effective magnetic
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field parameter4. γB, which is defined as �ωc/2R∗∞, where ωc is the cyclotron
pulsation eB/ma

∗ and R∗∞ the appropriate effective Rydberg (γB is also de-
fined as B/B0 with B0 = R∗∞ma

∗/meμB, where ma
∗ is the effective mass

expressed in mass unit). Typically, for values of γB < 1, the QHD spectra con-
sist in transitions from 1s to npm=−1, npm=0 and npm=+1 states. The energy
of the 2pm=−1 line does not change much with the magnetic field B, but the
2pm=+1 line energy increases linearly with B (the 2pm=+1 − 2pm=−1 energy
splitting is �ωc) and the split 3p components also show a strong magnetic field
dependence, as can be judged from Fig. 5.1.

For γB � 1, the modelling of the interaction of the QHDs with a magnetic
field, must be treated in the high-field case [64], but more general treatments
have been given by [20,55]. The donor energy levels are eigenvalues of an EM
Hamiltonian including the magnetic field terms and in the high-field limit,
they are labelled by three quantum numbers (N , M , λ). N corresponds to
the Landau level considered, M (N,N − 1, N − 2, . . .−∞) is the magnetic
quantum number and λ (0, 1, 2, etc.) is the number of nodes of the eigenstates
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1s → 2pm=0

1s → 2pm=+1

1s → 3pm=−1

1s → 3pm=0

1s → 3pm=+1Experimental
Theoretical

QHD in GaAs

Fig. 5.1. Splitting of the 1s → 2p and 1s → 3p QHD transitions in GaAs as a
function of magnetic field. The solid curves are from the variational calculations
while the data points are derived from experiment (after [57]). Copyright 1977, with
permission from Elsevier

4 This parameter is usually denoted by γ, but to avoid a confusion with the ratio
of the transverse and longitudinal effective masses, it is denoted here by γB.
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in the direction of the magnetic field; the parity P of such a state is (−1)M+λ.
Let us first consider N = 0 case in the high-field limit. For each value of M
(0,−1,−2, etc.), there is an infinite number of bound states corresponding to
the different values of λ and for large values of γB, the energy of the state
with respect to N = 0 Landau level decreases with increasing λ. Each of these
bound states extrapolates to low-field (n, �,m) states, as shown below (the
states are denoted here by (N M λ)), but the physical context should prevent
a confusion with the (h k l) planes defined by Miller indices h, k and l in cubic
crystals).

1s → (0 0 0) 2pm=−1 → (0 1̄ 0) 2p0 → (0 0 1)

2s → (0 0 2) 3pm=−1 → (0 1̄ 2) 3p0 → (0 0 3)
3s → (0 0 4) 3dm=−1 → (0 1̄ 1) 3d0 → (0 0 6)

For N > 0, only those states with M = N extrapolate to hydrogen-like
states at low field. All the states for which M < N are stable only for infinite
magnetic fields and for intermediate fields, their lifetime is determined by
autoionization into the N = 0 continuum state, and they are considered as
metastable states.

The strongest Zeeman transition with E⊥B is the one corresponding to the
(0, 1̄, 0) state. One notes that the level corresponding to 2pm=+1 is associated
with the second Landau level, implying that the ionization energy of a QHD in
the presence of a magnetic field becomes blurred because the split components
can be associated with Landau levels with l > 1.

5.3 Acceptor Centres

The levels structure of the EM acceptor centres is determined by the char-
acteristics of the VB of their host crystal near from its absolute extremum.
As mentioned before, this extremum is located at k = 0 in most semiconduc-
tors. The contribution of the atomic p states of the constituent semiconductor
atoms is predominant in the VB (for the compound crystals, it is related to the
most electronegative atom). When spin-orbit (s-o) coupling is included, the
pseudo-angular momentum J associated with the upper VB is L+S where
|L| = 1 corresponds to the p electrons of the host crystal. For this reason and
since they correspond to the pseudo-angular momenta J = 3/2 and 1/2, in
the description of the acceptor states in diamond-type semiconductors, the
Γ8

+ and Γ7
+ VBs are often labelled the p3/2 and p1/2 bands, respectively.

In the general case, Luttinger’s Hamiltonian for a positive hole bound to
a negative acceptor ion is derived from Hamiltonian (3.26) by adding the
Coulomb potential and the s-o coupling term. It is necessary to consider s-o
coupling when the magnitude of the s-o splitting Δso is of the order of or
smaller than the energies of the excited state. This is the case for Si, 3C-SiC,
Cdiam, and the sphalerite-type crystals with a light anion like cubic GaN. This
yields a 6× 6 matrix operator for the Hamiltonian, as the parameters of both
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the Γ8
+ or Γ8 and Γ7

+ or Γ7 VBs need to be considered. For Ge, where the
s–o coupling is strong, only the upper Γ8

+ VB needs to be considered in the
calculations, leaving still a 4× 4 matrix operator. Calculations of the first ac-
ceptor levels in germanium and in silicon considering the full cubic symmetry
of the problem were first performed in [53]; more levels were calculated in
germanium in [40] and in silicon in [41]. Luttinger’s Hamiltonian (3.26) con-
tains only quadratic terms pipj and JiJj which can be put in a tensor form
by introducing the second-rank tensor operators

Pij = 3pipj − δijp
2 and Jij =

3
2

(JiJj + JjJi) − δijJ
2 (5.15)

where the δij are the Kronecker symbols, which are symmetric and have a
zero trace (Pijδij and Jijδij are both zero). In the general case, by taking
for energy and length units an effective Rydberg R∗∞a = R∞/γ1εs

2 and an
effective Bohr radius a0γ1εs, where γ1 is one of the Luttinger VB parameters,
the acceptor EM Hamiltonian including the s-o term can be written as:

H =
1

�2

(
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3

(
μ
(
P (2) I(2)

)
−δ

{ [
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)
Δso − 2

r
(5.16)

where P (2) and I(2) are the second-rank Cartesian tensor operators defined
in (5.15), with Iik = 3 (IiIk + IkIi) /2 − δikI

2. Ix, Iy and Iz are the matrix
elements of an angular momentum operator I corresponding to � = 1 (the
definition of the tensor product terms in the Hamiltonian (5.16) are given in
Appendix E). This Hamiltonian was given in [5], and it included the screening
of the dielectric constant by a dielectric function not considered in (5.16).
The VB coupling parameters μ and δ are expressed as a function of the
Luttinger parameters used in Hamiltonian (3.26) as μ = (6γ3 + 4γ2) /5γ1 and
δ = (γ3 − γ2) /γ1. It was shown in [3] that this could be further simplified by
separating the original Hamiltonian into a spherical part Hsph and a cubic
part Hcub, whose expressions, for vanishing s-o interaction, are:

Hsph =
1
�2

(
p2 − 1

3
μ
(
P (2) I(2)
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− 2
r

(5.17a)
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(5.17b)

The energy dispersion of the VB in terms of parameters μ and δ can then be
written as [4]:

E± = −�
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2me
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δ
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⎭
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In the spherical approximation where δ is neglected, it reduces to:

E± = −�
2γ1

2me
(1 ± μ) k2 (5.18)

In [3], it has been considered that for semiconductors where the ratio δ/μ is
small, the cubic term could be first neglected and later treated as a perturba-
tion in the EM Hamiltonian. This condition is met for some semiconductors
like Ge, but not for Si. Calculations have been performed in [3] as a function of
the value of μ in two limiting cases: no (or weak) s-o coupling and infinite s-o
coupling. For the latter case, where the VB is split into J = 3/2 and J = 1/2
VBs, Hsph for the J = 3/2 band is:

Hsph
1
�2

[
p2 − 1

9
μ
(
P (2).J (2)

)]
− 2
r

(5.19)

The total pseudo-angular momentum F for a hydrogenic atomic state with
angular momentum L is L + J . Thus, by analogy with the atomic notation,
the nLJ states corresponding to |L| = 0 and 1 are denoted by nS3/2, nP1/2,
nP3/2 and nP5/2 while those associated with the spin-orbit split J = 1/2 VB
are denoted by nS1/2, nP1/2 and nP3/2. When the s-o splitting Δso of the
VBs is comparable to or larger than the ionization energies of the acceptors,
the shallow acceptor states associated with the split-off band are resonant
with the semiconductor VB (see Fig. 2.5) with the possible exception of the
1S1/2 state. It can be shown that within the spherical approximation, the s-o
coupling term in (5.16) couples states with the same value of F and ΔL = 0,
±2. This means that nS3/2 states will couple with n’D3/2 states, and nP3/2

and nP5/2 states with n’F3/2 and n’F5/2 states. It must be noted that for these
states with non-integral angular momentum, Kramers theorem [22] holds and
their degeneracy is not removed, even under a perturbation symmetrical with
respect to time reversal, as a uniaxial stress or an electric field. Such a doubly
degenerate state is referred to as a Kramers doublet.

For vanishing s-o interaction, the appropriate spherical Hamiltonian is
given by expression (5.17a). States where I = L+L where L = 1 is the pseudo-
momentum associated with the VB when spin is neglected. Subsequently,
when considering L = 0 and 1, the corresponding states are nS1 (nS), nP0

and nP1 states.
The energies of the first acceptor states have been calculated as a function

of the VB parameter μ in the weak and strong s-o coupling limits (Δso = 0 and
Δso = ∞) in the spherical approximation described by Hamiltonian (5.19).
These energies are given in Tables 5.12 and 5.13.

For both strong and weak s-o couplings, the calculated energies diverge
for a few levels when μ = 1, this is consistent with the dispersion relation
(5.18) which shows that for μ = 1, the E− heavy-hole VB becomes flat and
gives rise to an infinite binding energy for a Coulomb potential. Not all levels
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Table 5.12. First nLJ acceptor energy levels in semiconductors in units of the
effective Rydberg R∗∞a = R∞/γ1ε

2
s as a function of the VB parameter μ in the

strong s-o coupling limit in the spherical approximation. R∗∞a is 24.46 and 4.34
meV for silicon and germanium, respectively [3]

μ 1S3/2 2S3/2 2P1/2 2P3/2 2P5/2

0.00 1.000 0.250 0.250 0.250 0.250
0.05 1.002 0.251 0.238 0.261 0.248
0.10 1.009 0.254 0.227 0.273 0.248
0.15 1.021 0.258 0.217 0.287 0.249
0.20 1.037 0.264 0.208 0.302 0.251
0.25 1.060 0.273 0.200 0.320 0.256
0.30 1.089 0.284 0.192 0.341 0.262
0.35 1.125 0.297 0.185 0.365 0.270
0.40 1.171 0.313 0.179 0.394 0.281
0.45 1.228 0.333 0.172 0.428 0.295
0.50 1.299 0.358 0.167 0.468 0.322
0.55 1.388 0.388 0.161 0.518 0.336
0.60 1.503 0.426 0.156 0.580 0.366
0.65 1.653 0.476 0.152 0.660 0.406
0.70 1.857 0.542 0.147 0.767 0.461
0.75 2.145 0.635 0.143 0.917 0.539
0.80 2.580 0.773 0.139 1.142 0.657
0.85 3.309 1.003 0.135 1.518 0.857
0.90 4.768 1.460 0.132 2.268 1.259
0.95 9.145 2.820 0.128 4.521 2.470
1.00 ∞ ∞ 0.125 ∞ ∞

have diverging energies for μ = 1, however, and this is the case for the nP1/2

and nP0 levels, associated with the E+ light-hole VB, which stays parabolic
for μ = 1.

A detailed analysis of the effect of the cubic part of the acceptor Hamil-
tonian on the binding energies was studied in [4] in the strong s-o coupling
limit. This cubic part can be written in terms of vector products of the spher-
ical tensor operators P (2) and J(2) already used for the spherical part of the
Hamiltonian (the relevant properties of these tensors are given in Appendix
E) and is:

Hcub =
1

9�2
δ

{
[
P (2) × J(2)

](4)

4
+

√
70
5

[
P (2) × J (2)

](4)

0
+
[
P (2) × J(2)

](4)

−4

}

The simplest way to treat it qualitatively is to consider the way the hydrogenic
wave functions transform when reducing the symmetry from R+(3) (the 3D
rotation group) to the Td symmetry point group of the acceptor in a cubic
crystal.
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Table 5.13. First acceptor energy levels in semiconductors (same unit as in
Table 5.12) as a function of the VB parameter μ in the weak s-o coupling limit
in the spherical approximation [3]

μ 1S1 2P0 2P1 2P2

0.00 1.000 0.250 0.250 0.250
0.05 1.004 0.227 0.263 0.249
0.10 1.017 0.208 0.278 0.251
0.15 1.037 0.192 0.294 0.255
0.20 1.064 0.179 0.313 0.261
0.25 1.100 0.167 0.333 0.269
0.30 1.145 0.156 0.357 0.281
0.35 1.201 0.147 0.384 0.295
0.40 1.268 0.139 0.417 0.312
0.45 1.351 0.132 0.455 0.333
0.50 1.453 0.125 0.500 0.360
0.55 1.580 0.119 0.556 0.393
0.60 1.742 0.114 0.625 0.435
0.65 1.952 0.109 0.714 0.490
0.70 2.234 0.104 0.833 0.565
0.75 2.631 0.100 1.000 0.669
0.80 3.228 0.096 1.250 0.827
0.85 4.227 0.093 1.667 1.091
0.90 6.224 0.089 2.500 1.619
0.95 12.213 0.086 5.000 3.207
1.00 ∞ 0.083 ∞ ∞

The hydrogenic wave function for a S state transforms as IR Γ1 of Td

(see Table B.4 of Appendix B) while the one for a P state transforms as
Γ4. In the limit of infinite s-o coupling, the total wave function of a S3/2

acceptor state transforms as Γ8. The wave functions of the acceptor P states
associated with the Γ8

+ VB transform as the direct product Γ4×Γ8, that can
be decomposed into Γ6 + Γ7 + 2Γ8 by using Table B.4. It can be verified that
the P1/2, P3/2 and P5/2 transform as Γ6, Γ8, and Γ7 + Γ8, respectively. The
cubic terms, thus, produce a splitting of the P5/2 states into P5/2 (Γ7) and
P5/2 (Γ8) states. More refined calculations of the first acceptor levels in silicon
and germanium considering the split of Γ7

+ VB and a better description of
the hole screening through the use of a dielectric function in the Coulomb
potential term were performed in [5]. These calculations provided for the first
time calculated values of the acceptor energy levels which allowed a clear
identification of the first acceptor lines in these semiconductors.

The relative significance of the cubic contribution with respect to the
spherical term in the VB structure of different semiconductors can be un-
derstood from Table 5.14.

The notations of the states usually follow the ones for the corresponding
IRs of the Td double group and the parity is indicated by superscript + or −.
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Table 5.14. Values of the parameters δ and μ determining the importance of the
cubic contribution over the spherical term for different cubic semiconductors deduced
from Tables 3.4 and 3.6

Cdiam Si Ge SiC GaPa GaAs InP InSb ZnSe ZnTeb CdTeb

μ 0.372 0.477 0.768 0.342 0.48 0.767 0.792 0.935 0.795 0.60 0.72
δ 0.269 0.251 0.109 0.175 0.18 0.114 0.108 0.036 0.114 0.12 0.09

a [59], b [52]
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Fig. 5.2. Acceptor levels near from the top of the VB of a crystal with diamond
structure (the energy scale corresponds to B in silicon). The Γ7

+ VB is separated
from Γ8

+ by s-o splitting Δso. The lengths of the solid segments of the odd-parity
p1/2 and p3/2 states are proportional to the OSs of the optical transitions from the
1Γ8

+ state (after [14]). Copyright 1992 by the American Physical Society

For the Γ8
+ VB, the 1S3/2 ground state is denoted by 1Γ8

+ and the nP
states give nΓ6

−, nΓ7
− and nΓ8

− states. The same reasoning holds for the
Γ7

+ spin-orbit split VB : the corresponding even-parity 1S1/2 acceptor state
is denoted by 1Γ7

+; for the nD states (n > 2), there are two nΓ8
+ and one

nΓ6
+ levels. For silicon and diamond, where Δso is comparable to or smaller

than the acceptor binding energies, 1Γ7
+ lies in the band gap (see Fig. 5.2),
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but for germanium, where Δso is about 30 times larger than the group-III
acceptor binding energies, 1Γ7

+ is resonant with the semiconductor VB.
The energy separation between 1Γ8

+ and 1Γ7
+ acceptor levels is called the

acceptor spin-orbit splitting ΔA
so and it depends on the chemical nature of the

acceptor and the host crystal. The nP1/2 and nP3/2 states associated with
the Γ7

+ VB give Γ6
− and Γ8

− states distinct from those of the Γ8
+ V B, and

are resonant with the VB. The acceptor transitions between the 1Γ8
+ state

and the odd-parity states associated with the p3/2 V B Γ8
+ are responsible for

the so-called p3/2 spectrum. Logically, transitions between the 1Γ7
+ state and

the odd-parity resonant states associated with the p1/2 VB should also pro-
duce a distinct spectrum. No such transitions have been observed for Si, as
the 1Γ7

+ state, which lies in the band gap, is depopulated up to RT, but
for diamond, due to the smaller value of Δso

A in this material, weak tran-
sitions between 1Γ7

+ and the odd-parity states associated with the Γ7
+ V B

have been observed near 80K [27]. As no selection rule forbids them, tran-
sitions between the 1Γ8

+ state and the p1/2 resonant acceptor states have
indeed been observed in silicon, reported first in [66], and they are known as
the p1/2 spectrum.

In order to improve the accuracy of the calculated acceptor levels in silicon
and germanium, particularly for the even-parity ones, Lipari et al. [38] have
used a screened point-charge impurity potential based on the wave-vector-
dependent dielectric function calculated for Si, Ge, GaAs and ZnSe [65]. They
make use of a phenomenological parameter α, adjusted to fit the calculated
q-dependent dielectric function ε(q), in this potential. The resulting potential
in real space is:

V (r) = 2
[
1 + (εs − 1) e−α r

]
r−1 (5.20)

and it corresponds to r-dependent screened interaction between a hole and an
isocoric acceptor ion (Al in silicon or Ga in germanium). For a non-isocoric
acceptor, an additional short-range potential term Ar−1e−βr must be added
to account for the central-cell corrections, with parameters A and β derived
from the experimental ground state values [11, 14]. In the non-variational
method of calculation of the acceptor levels used in [9], parameters of the EM
ground state wave function obtained by a fit to the experimental energy of the
impurity considered are used in the whole volume. This correction is called the
zero-radius central cell approximation in the Russian literature. The results
of different calculations of the first odd-parity EM bound acceptor states in
silicon are given in Table 5.15. In the levels sequence, depending on the method
used, there are sometimes inversions in the labels.

The notation α (L) in [14] corresponds to Γα
± (L), where L is the angular

momentum of the hydrogenic state and the + or − superscript corresponds
to even- or odd-parity, respectively. The main difference between the unpub-
lished results of Binggeli and Baldereschi and the other results is the energy
ordering of 1Γ6

− and 1Γ7
−. It should be noted that a good quantitative agree-

ment exists between the results obtained from variational method and those
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Table 5.15. Correspondences between calculated energies (meV) of odd-parity p3/2

acceptor states in silicon with respect to the Γ8
+ VB. The correspondence with the

nLJ states is given for the first states. These levels are given in Table 1 of [37] with
the only labelling of Binggeli and Baldereschi (1989), leading to some inversions in
the energy ordering

Statea Energya Stateb Energyb Stated Energyd Statee Energye

1Γ8
−2P3/2 15.5 1Γ8

− 15.63 1Γ8 15.79 1Γ8
− 15.78

2Γ8
−2P5/2 11.4 2Γ8

− 11.54 2Γ8 11.48 2Γ8
− 11.69

3Γ8
−3P3/2 7.3 3Γ8

− 7.35 3Γ8 7.24 3Γ8
− 7.48

1Γ7
−2P5/2 6.1 1Γ7

− 6.08 1Γ7 6.23 1Γ6
− 6.13

1Γ6
−2P1/2 5.8 1Γ6

− 5.98 1Γ6 6.18 1Γ7
− 6.09

4Γ8
−3P5/2 5.8 4Γ8

− 5.87 4Γ8 5.95 4Γ8
− 6.00

5Γ8
−4P3/2 4.1 5Γ8

− 4.17 5Γ8 4.24 5Γ8
− 4.25

2Γ6
−3P1/2 3.6 2Γ6

− 3.70 6Γ8 3.84 2Γ6
− 3.82

6Γ8
−4P5/2 3.5 6Γ8

− 3.63 2Γ6 3.81 6Γ8
− 3.69

2Γ7
− 3.50 2Γ7 3.62 2Γ7

− 3.53
7Γ8

− 3.24 7Γ8 3.33 7Γ8
− 3.27

3Γ6
− 2.88 3Γ6 2.97 3Γ6

− 2.95
3Γ7

− 2.86 4Γ7 2.88 3Γ7
− 2.87

8Γ8
− 2.67 9Γ8 2.70 8Γ8

− 2.71
5Γ7 2.50 9Γ8

− 2.47
9Γ8

− 2.43 11Γ8 2.44 4Γ6
− 2.45

4Γ6
− 2.43 5Γ6 2.41

4Γ7
− 2.35 12Γ8 2.36 4Γ7

− 2.37
10Γ8

− 2.29 10Γ8
− 2.31

11Γ8
− 2.12 13Γ8 2.17 11Γ8

− 2.15
5Γ6

− 1.96 6Γ7 2.04 5Γ6
− 2.02

12Γ8
− 1.91 7Γ6 1.93 12Γ8

− 1.92
7Γ7 1.92

5Γ7
− 1.87 15Γ8 1.88 5Γ7

− 1.88
13Γ8

− 1.85 13Γ8
− 1.88

6Γ6
− 1.76 6Γ6

− 1.77
6Γ7

− 1.71c 8Γ7 1.68 6Γ7
− 1.73

7Γ7
− 1.61c 16Γ8 1.61 7Γ7

− 1.62
16Γ8

− 1.52c 9Γ7 1.55 16Γ8
− 1.54

17Γ8
− 1.50c 17Γ8 1.53 17Γ8

− 1.51
18Γ8

− 1.41c 18Γ8 1.44 18Γ8
− 1.43

19Γ8
− 1.36c 19Γ8 1.35 19Γ8

− 1.37

a [5], b [14]. c Buczko and Bassani (1989), unpublished results quoted in [37], d [9],
e Binggeli and Baldereschi (1989), unpublished results quoted in [37]

obtained from non-variational method [9]. This latter method produces label
inversions with levels obtained by the variational method, and the appear-
ance of the 3Γ7, 4Γ8, 4Γ6, and 10Γ8 levels at energies of 3.07, 2.85, 2.77, and
2.61meV, respectively, without any corresponding energy. For the shallowest
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states, there are levels very close to each other and a correlation cannot be
guaranteed. As a rule, the difference between the acceptor levels calculated
by different authors is larger than those between the donor levels, and this
can illustrate the differences in the approximations made and the inherent
difficulty of such calculations.

The odd-parity acceptor states in germanium have been calculated varia-
tionally [14, 16]. As for silicon, the acceptor states in germanium have also
been calculated by a non-variational method [36]. In this latter study, a
screened Coulomb potential is used, but no correction is made for the acceptor-
dependent central cell potential. The results of these calculations are given in
Table 5.16.

Here again, the results obtained by variational and non-variational meth-
ods look very similar, except for the Γ6 states. The correspondence with the
nLJ states shows that symmetry is not the only point and it will be shown
in Chap. 8 that under uniaxial stress, states with the same symmetry can be-
have differently. The experimental ionization energies of all the substitutional
group-III acceptors given in Tables 7.2 and 7.9 for silicon and germanium, re-
spectively, are larger than the values of 31.56 and 9.73meV obtained in the
EMA by Baldereschi and Lipari [4] and it shows the importance of the central-
cell contributions in the energy of the 1Γ8

+ ground-state of the acceptor for
silicon.

Table 5.16. Comparison of energies (meV) of the first odd-parity acceptor states
in germanium with respect to the Γ8

+ VB calculated by different authors. The
correspondence with the nLJ states is given for the first states. The values of the
last column are obtained by a non-variational method

State Energya Energyb Energyc

1Γ8
−2P3/2 4.581 4.58 4.550

2Γ8
−2P5/2 2.875 2.88 2.867

1Γ7
−2P5/2 2.125 2.13 2.144

3Γ8
−3P3/2 2.103 2.10 2.091

4Γ8
−3P5/2 1.477 1.48 1.479

5Γ8
−4P3/2 1.210 1.22 1.213

1Γ6
−2P1/2 1.142 1.14 -

2Γ7
−3P5/2 1.140 1.15 1.155

6Γ8
−5P3/2 1.128 1.13 1.108

3Γ7
−4P5/2 1.012 1.01 1.023

7Γ8
− 0.920 0.93 0.930

8Γ8
− 0.777 0.80 0.798

9Γ8
− 0.77 0.771

2Γ8
− 0.756 0.760 0.766∗

∗ Given as 1Γ6
−, a [16], b [14], c [36]
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Table 5.17. Calculated energies (meV) of the first even–parity states of isocoric
and non-isocoric acceptors in silicon and germanium with respect to the Γ8

+V B,
where the Γα

+ (�) states are denoted by α (�) by [14]

Silicon Germanium

State Al B State Ga Al Point centre

8(0) 1Γ8
+ 79.74 (45.02) 8(0) 1Γ8

+ 11.35 (11.15) 10.34
7(0) 1Γ7

+ 56.72 21.94 8(0) 2Γ8
+ 3.29 3.26 3.14

8(0) 2Γ8
+ 17.22 13.34 8(2) 3Γ8

+ 2.15 2.15 2.16
8(0) 7.43 6.75 6(2) 1Γ6

+ 1.73 1.73
8(2) 3Γ8

+ 6.73 6.35 8(0) 4Γ8
+ 1.69 1.69 1.64

6(2) 5.34 5.34 7(4) 1Γ7
+ 1.33 1.33

7(2) 4.99 4.60 8(2) 5Γ8
+ 1.27 1.27 1.27

8(0) 4.18 3.97 8(2) 6Γ8
+ 1.22 1.22 1.22

8(2) 4Γ8
+ 3.96 3.75 6(2) 2Γ6

+ 1.11 1.11 1.12a

8(2) 3.74 3.70 8(0) 7Γ8
+ 1.04 1.0 1.01

For B in silicon and Al in germanium, the parameters A and β (see text) of the short-
range potential are obtained from the experimental ground state energies. The last
column gives the non-variational values of [36] for a point-centre acceptor
a Given as 1Γ7

+ in [36]

The energies of the first even-parity levels have been calculated variation-
ally for the isocoric acceptors in silicon and in germanium using potential
(5.20) with α = 0.93 a.u. for both semiconductors, and for non-isocoric B in
silicon (A = −23.7 and β = 1 a.u.) and Al in germanium (A = −7.86 and
β = 1 a.u.). They are given in Table 5.17. In [14], the states are represented by
α (�) corresponding to Γα (�), where � is the angular momentum of the hydro-
genic state. The energies of some even-parity states of B in silicon have been
determined in 2-hole PL experiments [63] and also calculated by [38]. These
even-parity states have also been calculated by [36] using a non-variational
method. The correspondence between the calculated states, denoted by nΓα

+,
and the α(�) states is given in Table 5.17, where it is compared with the results
of [36] considering a point centre acceptor (no central cell correction).

With the possible exception of the ground state, the energies of the ac-
ceptor states associated with the Γ7

+ s-o split VB in silicon are smaller than
the s-o splitting Δso and they are resonant with the VB. One consequence is
a possible interference with continuum-lying bound VB states, mentioned by
Buczko and Bassani [14]. These resonant states have been calculated for sili-
con and germanium by these authors and their energies given in Table 5.18 for
the even-parity ones. They can be calculated in the spherical approximation
to the first order, and the hydrogen-like quantum numbers n and � are indi-
cated in this table. Similar to the band-gap states, these states are denoted
by the IRs of Td derived from the correspondence between the even IRs of
the 3D rotation group associated with F = �+ J where J = 1/2 and those of
Td (see for instance, [35], p. 101).
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Table 5.18. Calculated energies (meV) of the first even–parity resonant bound
states of isocoric and non-isocoric acceptors in silicon and germanium with respect
to the Γ7

+ VB [14]

n � State Al in Si B in Si En,�

2 0 Γ7
+ 4.09 4.39

3 2 Γ8
+ 2.60 2.60 2.58

” 2 Γ8
+ 2.56 2.56

” 2 Γ6
+ 2.54 2.54

” 0 Γ7
+ 2.03 2.03

4 2 Γ8
+ 1.44 1.44 1.45

” 2 Γ8
+ 1.41 1.41

” 2 Γ6
+ 1.40 1.40

” 0 Γ7
+ 1.23 1.20

n � State Ga in Ge Al in Ge En,�

1 0 Γ7
+ 3.57 3.41 3.94

2 0 Γ7
+ 0.994 0.987 1.02

3 2 Γ8
+ 0.477 0.477 0.477

” 2 Γ8
+ ” ”

” 2 Γ6
+ ” ”

” 0 Γ7
+ 0.451 0.450 0.460

4 2 Γ8
+ 0.267 0.267 0.268

” 2 Γ8
+ ” ”

” 2 Γ6
+ ” ”

” 0 Γ7
+ 0.253 0.253 0.261

In silicon, the n = 1 state is in the band gap. The parameters A
and β are the same as those used in Table 5.17. The values of the
last column are calculated from (5.21)

For k-vectors away from the centre of the BZ, the whole EM Hamiltonian
combines with the Bloch functions of the Γ8

+ and Γ7
+ VB states, and this

breaks the parabolicity of the Γ7
+ VB. Normally, for a parabolic band, the

energy levels are independent from � and given by En (a.u.) = 1/n2. When
non-parabolicity is taken into account, it has been shown by [14] that the
modification of the energy levels from band mixing leads to a perturbation
term yielding:

En,� =
1
n2

− 2
μ2

Δso

[
8

(2�+ 1) n3
− 3

n4

]
(5.21)

The energies obtained from (5.21) are compared in Table 5.18 with those cal-
culated from the EM Hamiltonian. It shows that for silicon, the two values
are very close for � > 0.

The energies of the odd-parity resonant states have also been calculated
for silicon and germanium, and the values for silicon are given in Table 5.19
(the values for germanium can be found in the original paper [14]). In this
table, anticipating the next section, are also given the calculated OSs for the
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Table 5.19. Calculated energies (meV) of the odd-parity p1/2 resonant bound states
of acceptors in silicon with respect to the Γ7

+ VB and calculated OSs for transitions
from the 1Γ8

+ ground state of the acceptor [14]

OS
(×10−4

)

n � State Energy Al B

2 1 Γ6
− 5.34 25 87

” 1 Γ8
− 5.26 3.5 15

3 1 Γ6
− 2.41 7.4 25

” 1 Γ8
− 2.35 1.1 4.0

4 3 2Γ8
− + 2Γ7

− + Γ6
− 1.48 0.62 0.87

” 1 Γ6
− 1.38 3.0 11

” 1 Γ8
− 1.26 0.34 1.8

5 3 2Γ8
− + 2Γ7

− + Γ6
− 0.94 0.18 0.15

” 1 Γ6
− 0.895 1.8 5.3

” 1 Γ8
− 0.890 0.33 0.84

6 5 4Γ8
− + 2Γ6

− + Γ7
− 0.67 0.094 0.029

” 3 2Γ8
− + 2Γ7

− + Γ6
− 0.66 0.024 0.032

” 1 Γ6
− 0.628 1.0 3.1

” 1 Γ8
− 0.628 0.19 0.49

transitions from the 1Γ8
+ ground state. For � = 3 and 5, the IRs indicated for

the states with Td symmetry correspond to the IRsD+
5/2 and D+

7/2 (� = 3)
and D+

11/2 and D+
9/2 (� = 5) of the 3D rotation group.

Non-variational calculations of the excited acceptor states in cubic com-
pound semiconductors using the finite element method and Arnoldi algorithm
have also been performed, with application to some II–VI and III–V com-
pounds [51, 52]. The nS3/2 states (n = 1 to 8) have been calculated in the
spherical approximation for μ varying between 0 and 0.95 in steps of 0.05
while the nP3/2 (Γ8), nP5/2 (Γ8) and nP5/2 (Γ7) states (n = 2 to 5) have been
calculated including the cubic term δ (δ = 0.05 and 0.15) for the same domain
of variation of μ. The case of the single and double acceptors in GaAs has
been specifically studied by Fiorentini [18]. A discussion of the results of these
calculations will be presented in relation to the experimental data.

5.4 Oscillator Strengths

Most of the lines observed in the EM donor and acceptor spectra can be
identified from their energies alone as they fit reasonably well with those
calculated from EMT. Closer identification can still be obtained from their
relative intensities and this is one of the reasons why it is worth while to try
and predict these intensities. This can be done for at least the parity-allowed
transitions, and we give there an outline of the procedure. Let us consider an
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electric-dipole absorption transition between state a with energy Ea and state
b with energy Eb (Ea < Eb). The OS of this transition is defined as:

fa→b =
2m∗
�2

(Eb − Ea) |1 rab|2

where rab is the dipole matrix element and 1 the unit polarization vector
of the radiation. This OS is a dimensionless quantity that can be considered
as a transition probability from state a to state b and it is normalized to
unity (Σb fa→b = 1). Note that the final states include discrete as well as
continuous states and the sum is taken over all the possible states. The set
of all transitions from state a can be considered as a spectrum and one can
define the energy dependence of this spectrum with a higher limit Emax as:

∫ Emax

0

σ (E) dE

where σ (E) is the absorption cross-section from state a at energy E; for
impurity states in semiconductors, Emax can be safely taken as the band-gap
energy Eg. Alternatively, when the absorption cross-section σab of a transition
from state a to an excited state b can be evaluated, the OS fab can be defined
as the ratio of σab to the whole cross-section spectrum. In order to satisfy the
normalization condition, for cubic semiconductors, the correct donor effective
mass to be used is the one given by (3.39) and for the acceptors, it is me/γ1,
where γ1 is one of the Luttinger VB parameters.

5.4.1 Donor Transitions

We consider first the OS of the donor electron transitions corresponding to a
single valley. With the axis orientation used in Hamiltonian (5.5), the matrix
elements for transitions from the 1s state to odd-parity states with m = 0
are non-zero when the electric vector (polarization vector) of the radiation
is parallel to the z axis; similarly those for transitions from the 1s state to
odd-parity states with m = ±1 are non-zero when the electric vector is per-
pendicular to the z axis. The one-valley OSs are denoted accordingly as f//

and f⊥. When considering the multi-valley degeneracy, it can be shown that
for an arbitrary choice of the polarization vector, the OS for transitions from
the 1s (A1) ground state to the odd-parity states with m = 0 is f0 = 1

3f// and
those for transitions from the 1s (A1) ground state to the odd-parity states
with m = ±1 is f±1 = 2

3f⊥. The ratio f0/f±1 is equal to γ|<1s|r|np0>|2
2|<1s|r|np±1>|2 and

for comparable values of the matrix elements, the OSs of the transitions to-
wards the np0 states are expected to be weaker than those towards the np±1

states. These OSs have been calculated for donors in silicon and germanium
in the EMA using one-valley wave functions derived from Hamiltonian (5.5)
and also with a point charge potential including variable screening adjusted
to the experimental energies of the 1s (A1) state for different donors [7, 16]).
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Table 5.20. Calculated OSs of shallow donor transitions from the 1s (A1) state
in silicon

Final statea Energyb OSc OSb

2p0 11.491 58.6 (106.7) 57.9 (107.4)
2p±1 6.401 287.7 (524.0) 287 (532.5)
3p0 5.485 8.1 (14.8) 7.81 (14.5)
4p0 3.309 2.9 (5.3) 2.75 (5.10)
3p±1 3.120 54.9 (100) 53.9 (100)
4f0 2.339 0.1 (0.2) 0.057 (0.11)
5p0 2.235 1.4 (2.6) 1.27 (2.36)
4p±1 2.187 18.7 (34.1) 18.7 (34.7)
4f±1 1.894 6.0 (10.9) 6.00 (11.1)
5f0 1.631 0.8 (1.5) 0.74 (1.37)
6p0 1.510 – – 0.014 (0.026)
5p±1 1.449 14.9 (27.1) 14.9 (27.6)
5f±1 1.259 0.6 (1.1) 0.594 (1.10)
6f0 1.243 – – 0.48 (0.89)
6p±1 1.071 6.9 (12.6) 6.89 (12.8)
6f±1 1.002 0.0 (0.0) 4 × 10−4

(
7 × 10−4

)

6h±1 0.886 4.4 (8.0) 3.64 (6.75)
7p±1 0.823 1.8 (3.3) 2.26 (4.19)
7f±1 0.750 – – 1.41 (2.61)
7h±1 0.678 – – 2.69 (4.99)
8p±1 0.637 – – 7 × 10−4

(
1.3 × 10−3

)

8f±1 0.596 – – 2.39 (4.43)
8h±1 0.566 – – 0.95 (1.76)

a [17], b [7], c [16]
The energies of the final state (meV) are indicated. The OSs given
by Clauws et al. [16] have been multiplied by 1000 for an easier
comparison with those of [7], where this factor had already been
included. The values in parentheses are normalized to 100 for the
1s (A1) → 3p± transition

The EMA OSs are given in Tables 5.20 (silicon) and 5.21 (germanium) for
the screened potential of Hamiltonian (5.5). The agreement between the re-
sults based on non-variational calculations (a) and those based on variational
calculations (b) is remarkable, except for the highly excited donor states in
germanium.

One can note that contrary to the np transitions, the variation with n of
the OSs to the nf levels is not monotonous and that the OS to 5f0 is larger
than that to 4f0. The calculated OS to 6f±1 is very small in silicon and the
predictive value of the above calculation is attested by the absence in the
donor spectra of this crystal of a line that could be attributed to a transition
to this state.
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Table 5.21. Calculated OSs of shallow donor transitions from the 1s ground state
in germanium

Final statea Energyb OSc OSb

2p0 4.750 18.8 18.8
3p0 2.573 2.0 1.91
2p±1 1.720 233.7 233
4p0 1.689 0.7 0.648
4f0 1.217 0.3 0.316
3p±1 1.037 40.4 40.6
5p0 0.928 – 0.184
5f0 0.800 – 1.7 × 10−3

4p±1 0.750 22.1 21.8
6p0 0.735 – 0.116
4f±1 0.607 20.0 20.3
5p±1 0.573 2.6 2.26
5f±1 0.467 7.3 7.11
6p±1 0.399 6.4 7.44
6f±1 0.384 2.6 1.40
6h±1 0.328 8.0 5.71
7p±1 0.313 0.0 2.01
7f±1 0.290 – 0.16
7h±1 0.282 – 2.28
8p±1 0.250 – 2.80
8f±1 0.244 – 0.79
8h±1 0.217 – 2.87
8k±1 0.207 – 1.44

a [17], b [7], c [16]
The energies of the final state (meV) are indicated. The
OSs given in [16] have been multiplied by 1000 for an easier
comparison with those of [7], where this factor had already
been included

As expected, the OSs of the transitions to the np0 states are weaker than
those to the np±1 states and the effect is more pronounced for germanium
(γ = 0.051) than for silicon (γ = 0.208). At a difference with silicon, the OSs
of the nf levels in germanium decrease monotonously with n. The sums of
the OSs listed in Tables 5.20 and 5.21 are 0.47 (silicon) and 0.37 (germanium),
respectively. Neglecting the OSs of the discrete transitions of higher energy,
the differences with unity of these sums should correspond to the contributions
of the OSs of the photoionization spectrum, viz. 0.53 for silicon and 0.63 for
germanium. The contribution of the continuous transitions to the total OS
has been evaluated [7] and it is in good agreement with the above differences.
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For the quasi-hydrogenic donors discussed in Sect. 5.2.3, the OS fab be-
tween the two discrete levels a and b are assumed to be the same as those for
the hydrogen atom, and the absorption cross section is scaled by the factor(
ε
1/2
s mn

)−1

(Stillman et al. [57]). The OSs for the more important transitions,
normalized to unity, are (Bethe and Salpeter, [10]):

f1s→2p = 0.4162 f1s→3p = 0.0791
f1s→4p = 0.0290 f1s→5p = 0.0139
f1s→6p = 0.0078 f1s→7p = 0.0048
f1s→8p = 0.0032 f1s→cont = 0.436

5.4.2 Acceptor Transitions

The OSs for shallow acceptor transitions between ground state (0) with de-
generacy g0 and final state (f) in cubic semiconductor can be expressed as:

f0f =
2me

γ1�
2g0

(Ef − E0)
∑

i,j

| < Φ0,i|z|Φf,j > |2

where the summation is taken over the degeneracies of the ground and final
states. The expression for the envelope wave-functions Φk is given in expres-
sion (9) of [11]. OSs for shallow acceptor transitions in silicon and germa-
nium have been calculated by different groups ([14,16,30], [46], and references
therein).

OSs of the first transitions of the p3/2 spectrum in silicon and germanium
obtained using different calculations are shown in Tables 5.22 and 5.23.

Table 5.22 shows notable differences for EM acceptors in silicon between
the OSs calculated from the variational and non-variational methods for the
highly excited states, as well as differences in the attribution for these states.
On the other hand, Table 5.23 shows a good consistency of the values of the
OSs obtained from variational methods by two different groups. The sum of
the calculated OSs of the discrete Al transitions in silicon is close to 7%.
For the Ga transitions in germanium, this sum amounts to 19% for the 24
first transitions calculated by Buczko and Bassani [14]. Even when adding the
contribution of the resonant spectrum, it shows that the contribution of the
photoionization spectrum is determinant in the OS of the transitions from
the ground state. It must be kept in mind, however, that the OSs depend
on the ground state energy and that the higher this energy, the smaller the
contribution of the discrete transitions. This will be shown in the detailed
comparison with the experimental results in Chap. 7.

In group-IV semiconductors, donors like P and As and acceptors like Al
are monoisotopic, but others show an isotopic distribution (see appendix D).
Beyond EMT, calculations of the isotopic splitting of the ground state of
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Table 5.22. Calculated OSs of the first p3/2 transitions from the 1Γ8
+ ground state

of isocoric Al in silicon compared with those of non-isocoric B

Levela Energya OS (Al)a OS (B)a Levelb Energyb OS (Al)b OS (B)b

1Γ8
− (1) 15.63 55.6 194 1Γ8 15.79 67 177

2Γ8
− (1) 11.54 272 769 2Γ8 11.48 276 640

3Γ8
− (1) 7.35 21.2 53.8 3Γ8 7.24 25 54

1Γ7
− (1) 6.08 92.3 370 1Γ7 6.23 84 260

1Γ6
− (1) 5.98 95.5 359 1Γ6 6.18 146 376

4Γ8
− (1) 5.86 32.1 32.1 4Γ8 5.95 22 23

5Γ8
− (1) 4.17 8.26 5.1 5Γ8 4.24 9 17

2Γ6
− (1) 3.70 2.75 1.19 6Γ8 3.84 0.4 0.03

6Γ8
− (1) 3.63 4.24 2.23 2Γ6 3.81 10 12

2Γ7
− (1) 3.50 10.2 27.4 2Γ7 3.62 12 31

7Γ8
− (1) 3.24 3.81 3.37 7Γ8 3.33 4 3

3Γ7 3.07 2 6
3Γ6

− (3) 2.88 9.75 27.1 3Γ6 2.97 19 36
3Γ7

− (3) 2.86 14.0 50.6 4Γ7 2.88 15 42
8Γ8 2.85 0.3 0.06
4Γ6 2.77 0.6 2

8Γ8
− (1) 2.66 3.96 6.43 9Γ8 2.70 3 5

10Γ8 2.61 0.8 02.1
5Γ7 2.50 5.2 12.3

9Γ8
− (3) 2.43 0.835 0.0225 11Γ8 2.44 2.4 3.9

4Γ6
− (3) 2.43 1.15 7.62 5Γ6 2.41 0.4 1.7

4Γ7
− (3) 2.35 4.48 10.9 12Γ8 2.36 0.03 0.01

10Γ8
− (3) 2.29 0.368 0.611 13Γ8 2.17 1.2 1.0

11Γ8
− (3) 2.12 2.34 2.48 6Γ6 2.07 3.6 3.8

5Γ6
− (3) 1.96 2.22 2.95 6Γ7 2.04 3.7 8.8

12Γ8
− (3) 1.91 0.0542 0.488 14Γ8 1.95 0.7 1.5

5Γ7
− (3) 1.87 7.30 27.1 7Γ6 1.93 0.5 1.8

13Γ8
− (1) 1.85 1.90 3.38 7Γ7 1.92 1.6 5.4

6Γ6
− (3) 1.76 3.59 17.5 15Γ8 1.88 0.4 0.5

The OSs of the transitions calculated in [14], where α(�) corresponds to Γ −
α (�), are

compared with some of the ones in [46]. There are differences in the attributions
for the highly excited states. The original OSs have been multiplied by 104. The
energies (final states) are in meV
a [14], b [46]

impurities have been made [23,29]. This isotopic splitting is attributed to the
interaction of the weakly bound electron or hole with zero-point vibrations at
the impurity site. As the frequency is the smallest for the heaviest isotope,
the calculations predict that the heavier the isotope, the higher the ionization
energy.
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Table 5.23. Comparison of the calculated OSs of the isocoric Ga transitions from
the 1Γ8

+ ground state of the p3/2 spectrum in germanium obtained from variational
calculations

Final state Energya OSa OSb

1Γ8
− 4.58 22.6 23

2Γ8
− 2.88 941 952

1Γ7
− 2.13 529 531

3Γ8
− 2.10 74.8 76

4Γ8
− 1.48 55.8 59

5Γ8
− 1.22 18.6 20

2Γ7
− 1.15 39.2 36

1Γ6
− 1.14 18.7 19

6Γ8
− 1.13 19.5 19

3Γ7
− 1.01 35.9 37

7Γ8
− 0.93 23.4 28

8Γ8
− 0.80 8.38 7

9Γ8
− 0.77 1.5 5

2Γ6
− 0.76 5.82

The energy (meV) indicated is that of the
final state. The original OSs values have been
multiplied by 104

a [14], b [16]
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6

Donor and Donor-Like EM Spectra

6.1 Introduction

In 1956, Picus et al. [213] reported the observation of absorption lines, related
to group-V donors in silicon, at low temperature. This nearly coincided with
the calculations of Kohn and Luttinger [136] which resulted in an electronic
level scheme of the group-V donor states in silicon (see also [134, 135]). The
absorption of group-V donors in germanium was first reported by Fan and
Fisher [59]. Since then, the situation has somewhat evolved. Section 5.2 dealt
with the theoretical aspect of the EM donor spectra and the present chapter
describes the experimental situation. It must be pointed out that there has
been in this domain, as in other domains of the semiconductor field, a clear cor-
relation between technological interest and the amount of results on a family
of materials. For instance, research on extrinsic photodetectors in the 1970–
1980s has been a strong inducement for optical studies of impurities in silicon
and germanium while the development of LED technologies based on III-V
compounds like GaAs and GaP has stimulated the studies on these materials.

The known donor centres can be classified into single and double donors.
There is not much information on potential triple donors like the substitu-
tional group-VII elements in group-IV semiconductors, and their solubility
seems to be very small. Substitutional single donors are elements of the col-
umn of the Periodic Table next to that of the atom they replace, and the
double donors are elements of the second next column. In binary compounds,
the donor or acceptor property of an atom depends on the atomic sublattice
it is located on. Besides isolated atoms or atom pairs, more complex struc-
tures like the centres produced by thermal annealing in O-containing silicon
and germanium also display donor properties and EM donor spectra. Donor-
like EM spectra have also been observed in semiconductors containing TMs,
together with classical internal transitions. The isoelectronic centres with an
attractive potential for holes are mentioned in Sect. 1.3.4. These centres can
bind the hole of an exciton pair relatively strongly. The Coulomb interaction
between the hole and the electron of an exciton pair is small (typically a few
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meV), but the combined potentials of the isoelectronic centre and of the hole
experienced by the electron are much larger, so that the exciton bound to
such an isoelectronic centre can be seen as a pseudo-donor characterized by
an EM-like donor spectrum and a well-defined ionization energy.

A single donor can either be neutral and optically active or ionized and
optically inactive (however, the earlier-mentioned negatively charged donors
produced under band gap illumination are not discussed here). A double donor
can be neutral, singly and doubly ionized. In the neutral state, it gives an ab-
sorption spectrum very similar to that of a single donor. In the singly-ionized
state, the energy positions of its absorption lines are about twice the en-
ergies of the neutral state and the spacing between lines about four times
that between corresponding lines of the neutral state. Most of the absorp-
tion lines are due to optical transitions with a change of parity between the
ground and excited states (see Sect. 5.1.1). However, for substitutional donors
with ionization energies much higher than the EM value, absorption due to
parity-forbidden transitions that are symmetry-allowed is also observed. The
lines observed in the donor spectra can generally be well identified using a
self-consistent comparison with the EMT developed in Chap. 5 and they are
labelled by the final state of the transition.

In the k-space, for semiconductors with degenerate CBs, the free electrons
are evenly distributed among the different CB minimums. For most donor cen-
ters, this situation is also encountered by the electrons in the shallow excited
states (we will see later that the symmetry of some donor complexes imposes
restrictions to this situation). During its lifetime in one CB minimum, an ex-
cited donor electron can be scattered into another minimum by phonons with
appropriate wave vectors (this is the equivalent of the inter-valley scattering
for free electrons). For silicon, the multi-valley structure of the CB is shown
in Fig. 8.1. Phonon-assisted inter-valley scattering can take place between val-
leys on perpendicular axes (f -process) like pairs (3, 2) or (3, 5) of Fig. 8.1, or
on the same axis (g-process), like the (3, 4) pair. For symmetry reasons, a few
phonons are considered by these processes; they are the LA and TO phonons
with S1 symmetry for the f -process and the LO phonon with Δ′

2 symmetry
for the g-process. Their energies, given by Asche and Sarbei [11], have been
re-evaluated by Janzén et al. [119], and for silicon, they are 48.1, 59.1, and
63.9meV for fLA(S1), fTO(S1), and gLO(Δ′

2), respectively. At low tem-
perature, this can be radiation-induced through electron-phonon interaction
at energies resonant with the photoionization continuum. This process pro-
duces what is known as a Fano resonance [60] and it was first reported in
the photoconductivity spectrum of n-type silicon [194], and explained with-
out reference to a Fano resonance. It is commonly observed in the chalcogen
spectra in silicon and germanium [84,119].

In the following, an attempt to provide the most useful absorption data on
centres with donor effective-mass-like properties in semiconductors is made.
The group-IV crystals are considered first, and then the III-V and II-VI
compounds.
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In the last section of the chapter are considered two kinds of low-frequency
absorption related to donors. The first one is due to the negatively charged
donors, which are solid-state equivalents of negatively charged hydrogen in
atomic physics, and the second one due to the hopping of an electron from a
neutral donor to a positive donor ion in a heavily-doped compensated semi-
conductor.

Most of the measurements described here and in the following chapters
are performed at LHeT because at this temperature the intensities of the
lines are the largest, and their widths the smallest. Moreover, there is a small
decrease of the transition energies with temperature and the measurements at
LHeT provide a convenient energy reference. However, for definite purposes
(for instance, to populate thermally higher energy levels), measurements have
to be performed at higher temperatures. In the figures and tables, the donor
lines are identified by their EM final state.

6.2 Group-V and Li Donors in Group-IV Crystals

6.2.1 Silicon

In silicon, all the substitutional group-V elements display a characteristic
donor behaviour, except nitrogen whose most stable configuration in silicon
is the electrically-inactive interstitial split pair (Fig. 2.6). The observation of
the ESR spectrum (SL5) of isolated substitutional nitrogen in laser-annealed
N-implanted silicon has been reported by Brower [31]. This centre shows a
trigonal distortion along a<111> axis and it is stable up to ∼400◦C; a value of
Ec−0.33 eV for the N+/N0 level has been given by Murakami et al. [175], but
no discrete electronic absorption associated with this centre has been reported.

There exists a huge amount of spectroscopic data on donors in silicon,
reflecting its technological importance. Figure 6.1a shows the absorption spec-
trum at liquid-helium temperature (LHeT) of a natural silicon (natSi) sample
doped with phosphorus by NTD. The lines observed are due to the parity-
allowed transitions from the 1s (A1) ground state of the P donor. This spec-
trum extends over about 12meV

(∼100 cm−1
)

below the ionization energy of
P in silicon (45.6meV). This energy span represents the ionization energy
of the deepest final state (2p0) for parity-allowed transitions. The 2p±1 line
of this spectrum is truncated to be able to observe less intense lines, and
in Fig. 6.1b is displayed a spectrum where the relative line intensity can be
appreciated.

The absorption cross-section of 2p0(P) estimated from the spectra of
Fig. 6.1a, b are 6 × 10−14 and 3.4 × 10−14 cm2, respectively. This difference
is partly due to the fact that the FWHMs of the corresponding lines are
21 and 26 μ eV. The published LHeT spectra of other donors in nat Si are
similar to those of P [115], and for a FWHM of 24 μ eV, the absorption cross-
section of 2p0(As) estimated from the spectrum of Fig. 6.3 of this reference is
3.8 × 10−14 cm2.
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Fig. 6.1. (a) Overall absorption spectrum of P
(∼1.2 × 1014 cm−3

)
in NTD natSi

between 250 and ∼360 cm−1 for an apodized resolution δν̃s of 11 μeV
(∼0.09 cm−1

)
.

The 2p±1 line is truncated because the transmission is close to zero with the sample
used. (b) The same absorption between 266 and 363 cm−1 in a conventionally-doped
natSi thinner sample with [P] ∼2 × 1014 cm−3, where the relative intensity of the
2p±1 line can be estimated [115]. Copyright 1981 by the American Physical Society

LHeT and 1.6K values of the FWHMs of donor lines in different FZ natural
silicon (nat Si) and qmi 28 Si samples have been reported by different authors
under high-resolution conditions. The results are summarized in Table 6.1.
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Table 6.1. Measured FWHMs of donor lines in different FZ silicon samples. The
spectral resolution is δν̃s

T (K) Dopant δν̃s FWHM (cm−1 (μeV))
2p0 2p±1 3p±1 4p±1 5p±1 6p±1 7p±1

LHeT P in natSi 0.06a 0.21 0.27 0.20
2 × 1014cm−3 (7.4) (26) (33) (25)

” P, NTD in natSi ” 0.17 0.22 0.24
1.2 × 1014 cm−3 (21) (27) (30)

” P, NTD in natSi ” 0.20 0.23
2 × 1015 cm−3 (25) (28)

” As in natSi ” 0.19 0.23
7 × 1014 cm−3 (24) (28)

” Li in natSi ” 0.15 0.20 0.19
2 × 1014 cm−3 (18) (25) (23)

” P in natSi 0.056b 0.17 0.18 0.17∗ 0.17 0.17
5 × 1013 cm−3 (6.9) (21) (22) (21) (21) (21)

” Sb in natSi ” 0.4 0.48
n = 2 × 1014 cm−3 (∼50) (60)

1.6 P∗ in natSi 0.012c 0.082 0.123 0.105 0.089 0.072 0.07 0.057
3 × 1012 cm−3 (1.5) (10) (15) (13) (11) (8.9) (8.8) (7)

1.6 P∗ in qmi 28Si ” 0.033 0.061 0.051 0.029 0.022 0.020
(4.0) (7.6) (6.3) (3.6) (2.7) (2.5)

1.6 Li 0.014d 0.13†

in qmi 28Si (1.7) (16)

∗ Residual, † Doublet, a [115], b After [200], c [232], d [126]

PTI spectra of P in high-resistivity n-type nat Si, obtained at 17.8K with
a resolution of 0.03 cm−1 (∼4 μ eV), have been reported to display lines with
FWHMs of 0.08 cm−1 (∼10 μ eV) for the sharpest ones [225]. This implies that
the true FWHMs of the P lines in FZ nat Si depend moderately on temperature
below 20K, and also indicate that the FWHMs obtained in the high-resolution
spectra in 1979–1981 were probably broadened by residual strains due to the
mounting of the samples. A comparison of the FWHMs of residual P donor
lines in a qmi28 Si sample enriched to 99.99% [232] shows a decrease of the
FWHMs in this sample by a factor of ∼2.5, compared to those in nat Si. This
is illustrated with 2p0(P) in Fig. 6.2 (this figure also shows Li donor lines,
which will be discussed later).

The relative peak amplitudes of the most intense P lines of Fig. 6.1a and
OSs measured by Andreev et al. [9] are compared with the OSs calculated for
P by Clauws et al. [46] in Table 6.2. The peak amplitudes are not the best
reference as they do not include the line widths, given only for a few lines
of the spectra, but the values are included in parentheses as products of the
amplitudes by the line widths of Table 6.1.
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The uncertainties for the relative peak amplitudes of the 2p±1(P) line are
related to assumptions concerning its FWHM in spectrum 6.1b and possibly
to saturation effects for the experimental OS. It has been pointed out in
Sect. 5.4.1 that the calculated OS of the 5f0 line was larger than that of 4f0,
and this has been confirmed by experiment (see for instance, Fig. 2 of [16]).

In the absorption spectrum of Bi, the 2p0 line at 59.4meV is resonant
with the SifTO(S1) phonon at 59.1meV. This phonon produces an inter-
valley scattering of the bound electron in a given CB valley into perpendicular
valleys, leading to a resonant broadening of 2p0(Bi), which can be shown in
Fig. 6.3. This point is further discussed in Sect. 8.2.1.1.

Besides the group-V donors, another simple donor with tetrahedral sym-
metry is the interstitial Li (Lii), already mentioned in Sect. 1.3.2. Its ioniza-
tion energy is relatively close to the one-valley EM donor energy in silicon,
but ESR measurements revealed that the 1s(E) and 1s (T2) states of Lii are
degenerate and deeper than 1s (A1) by ∼1.8 meV [266]. The line spectrum of
Li observed at LHeT originates from this 1s (E + T2) level, but a moderate
temperature increase allows the observation of lines originating from 1s (A1)
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Table 6.2. Comparison of the relative intensities of the strongest P lines measured
in natSi with the OSs calculated for P by [46]

Linea Position (meV)b Peak amplitudec OS (exper.)d OS (calc.)

2p0 34.109 134 (94)ca (96)cb 107 104

2p±1 39.175 ∼410† (∼343)ca 525 442
3p0 40.104 29 17 21
4p0 42.269 14 8 9
3p±1 42.458 100 (100) 100 100
4p±1 43.389 48 36 36
4f±1 43.684 14 6 12
5p±1 44.119 33 19 29
5f±1 44.312 2 1.7
6p±1 44.496 10 9 14

The relative intensities of the As lines are comparable. The values are normalized
to those for the 3p±1 line. The values in parentheses are comparisons of the prod-
uct of the amplitudes by the FWHMs of Table 6.1. Indices ca and cb correspond
to Fig. 6.1a, b, respectively
a [61], b Rounded from Table 6.2, c From Fig. 6.1, d [9], resolution: 8 μ eV,
† Estimated from Fig. 6.1b

[115]. A high-resolution measurement of the Li spectrum introduced inad-
vertently in qmi 28 Si at a concentration of ∼1 × 1014 cm−3 shows (Fig. 6.2)
an unresolved triplet structure of 2p0(Li) and an unresolved doublet struc-
ture of 2p±1(Li) and 4p±1(Li). The ∼0.06 cm−1 (7 μ eV) splitting common to
these three Li lines has been tentatively attributed to a very small splitting
of 1s (E + T2) ground state level (Li isotope effect is ruled out because of
the large difference between the 6 Li and 7 Li natural isotopic abundances).
The additional splitting of 2p0(Li) has been attributed to a valley-orbit split-
ting of the final 2p0 state with A1 + E + T2 representation [126]. Such a
splitting is not observed for 2p0(P) in Fig. 6.2, but a larger splitting is ob-
served in the spectrum of the interstitial double donor Mg in silicon for
2p±1 [103].

In CZ silicon, Lii can be trapped as a neighbour of electrically-inactive
Oi, giving rise to (Li,O) donor complexes, and six such donors denoted A, B,
C, D, E, and F were reported with ionization energies1 of 39.7, 39.3, 38.7,
38.2, 36.6, and 35.4meV, respectively [76]. At a difference with isolated Li,
the deepest ground state of these (Li,O) donors is 1s (A1) [115]. From the
results of Hall-effect measurements on Na-implanted silicon samples [276],
the ionization energy of interstitial Na has been estimated to lie between 35
and 38meV.

1 These ionization energies are 0.5 meV higher than those in the original reference
because the energy of the 3p±1 level used was 2.6 meV instead of the presently
admitted value of 3.12 meV.
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The measured positions of the first parity-allowed transitions of the group
V, Li and (Li,O) donors in natural silicon are given in Table 6.3. The predicted
OS of the 4f0 line is only two thousandth of that of 3p±1 and the latter line has
only been detected in P and Bi spectra. The 5p0 and 4p±1 lines are ∼50 μ eV
apart, and the 4p±1 line is more than ten times stronger than 5p0. These
lines have, thus, been partially or wholly resolved only on some P spectra
[200, 232, 275], but not for other donors. The optical ionization energies Eio

given in this table are obtained by adding to the experimental position of the
3p±1 line the calculated EM energy of the 3p±1 level (3.120meV). The reason
being that for a few centres related to oxygen thermal donors or to chalcogen,
that are discussed later, the 2p±1 line is split, but not the 3p±1 line.
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Table 6.3. Positions (meV) at LHeT of the first parity-allowed group-V, Li and
Li-O donor lines in natSi

Line‡ Pa Asb Sbb Bib Lic (Li,O)c EMTf

2p0 34.1090 [11.469] 42.258 31.237 59.54d† 21.483 28.10e 11.492
(275.108) (340.83)∗ (251.94)∗ (173.27)

2p±1 39.1748 [6.403] 47.359 36.370 64.598 26.601 33.277 6.402
(315.966) (381.98) (293.34)∗ (521.02) (214.55) (268.40)

3p0 40.1039 [5.474] 48.274 37.270 65.50d 27.53e 34.16e 5.485
(323.460) (389.36) (300.60)∗

4p0
±42.2688 [3.309] 50.459 39.44 67.68d 29.70e 36.34e 3.309

(340.921) (406.98) (318.1)
3p±1 42.4583 [3.120] 50.638 39.643 67.863 29.879 36.552 3.120

(342.449) (408.42) (319.74)∗ (547.35) (240.99) (294.81)

4f0 43.25 [2.33] 68.62d 2.339

(348.8)b

5p0 43.3386 [2.239] + + 2.235
(349.549)

4p±1 43.3885 [2.189] 51.565 40.58 68.777 30.808 37.479 2.187
(349.952) (415.90) (327.3)∗ (554.72) (248.48) (302.29)

4f±1 43.6842 [1.894] 51.85 40.84 69.049 31.104 37.767 1.894
(352.337) (418.2) (329.4)∗ (556.92) (250.87) (304.61)

5f0 43.9401 [1.638] 41.09 69.31d 31.38e 38.01e 1.630
(354.401) (331.4)∗

5p±1 44.1187 [1.459] 52.297 41.29 69.507 31.537 38.208 1.449
(355.841) (421.80) (333.0) (560.61) (254.36) (308.17)

5f±1 44.312 [1.266] 52.487 31.73e 38.38e 1.260

(357.40)b∗ (423.34)c

6p±1 44.4964 [1.082] 52.671 41.67 69.917 31.914 38.584 1.070
(358.888) (424.82)c (336.1) (563.92) (257.40) (311.20)

6h±1 44.6797 [0.898] 0.886
(360.366)

Eio 45.578 53.758 42.763 70.983 33.999 39.672 31.262
(367.604) (433.58) (344.90) (572.51) (266.15) (319.97)

The values in cm−1 are indicated in parentheses when available. The (Li,O) donor
is the one denoted A in [76]. The energy levels of the excited states of the P lines
using the calculated 3p±1 reference are given in brackets, and the calculated energy
levels in the last column
‡ Faulkner’s attributions, ± Reduced accuracy, ∗ Corrected, † Resonant phonon inter-
action, + Not detectable by PTIS, a [232], b [200], c [275] PTIS at 17K, d [35], e [115],
f [118]

Except for Li, the ground state of the transitions of Table 6.3 is 1s (A1).
The value for 5f±1(P) obtained by Yu et al. [275] by PTIS at 17K is
357.43 cm−1 (44.316meV), and there are small differences (∼0.03 cm−1 or
less) between the positions of the P lines of Table 6.3 and those reported in
this reference. Transitions to levels above 9h±1 have also been identified by
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absorption spectroscopy in the P spectrum in nat Si [232]; their energies are
given in Table 6.16 with corresponding ones observed in some S-related spec-
tra. The measurements by Yu et al. [275] on nat Si samples with low P content
(4 × 1012 at cm−3, or even less) have also allowed to observe transitions up
to 9p±1 because of the intrinsic sensitivity of PTIS for the highly excited
levels.

It has been explained in Sect. 3.3.1 that when monoatomic semiconductors
with several natural isotopes are grown with only one isotope (qmi crystals),
the indirect band gap Eg of the qmi crystals increases with the mass of the
isotope. For silicon, taking Eg

(
28 Si

)
as a reference, the increases of Eg

(
29 Si

)

and Eg

(
30 Si

)
are 8.72 and 15.98 cm−1 (1.081 and 1.981meV), respectively

[246]. This increase reflects on the ionization energies of shallow impurities in
these crystals. The effect is small, but because the line widths of the impurities
in qmi crystals are small, small shifts can be detected under high-resolution
conditions: At 1.6K, the positions of 3p±1(P) measured at a resolution of
0.012 cm−1 (1.5 μ eV) in qmi 28 Si, 29Si and 30 Si are 342.429, 342.492 and
342.540 cm−1 (42.4558, 42.4636, and 42.4695meV), respectively, compared to
342.449 cm−1 (42.4583meV) in 28.1 Si natural silicon [232]. The corresponding
increases of Eio(P) in 30 Si with respect to 28Si is estimated to ∼0.14 cm−1

(∼17 μ eV). An extensive list of the positions of the P lines in qmi 28Si, 29Si
and 30Si compared to those in natSi is given by Steger et al. [232]. It shows that
the silicon isotope effect concerns mainly the 1s (A1) ground state, and that no
“substantial” effect is observed for the excited states, with the exception of the
deepest 2p0 odd-parity state: the shift of the 6p±1 line between qmi 28Si and
30Si samples is +0.126 cm−1 (15.6 μ eV), but it is only +0.057 cm−1 (7.1 μ eV)
for 2p0.

The one-valley EMT developed in Sect. 5.2.1 gives results independent
from the chemical nature of the donor. A near-independence is observed for
the energies of the odd-parity states, and this should reflect on the spacing
between lines corresponding to parity-allowed transitions of EM centres. This
is relatively well observed for lines involving only |m| = 1 excited states, but
for differences involving a line with m = 0 excited state related to the fully
symmetric A1 IR, this is only true to the first order for the smaller values of
the principal quantum number n. This can be shown in Table 6.4 where the
experimental separations between line 2p±1 and other lines of Table 6.3 are
compared with the calculated ones. This close correlation has been used for
the identification of lines, together with the calculated OSs based on EMT.

It has been mentioned in Sect. 5.2.2 that the comparison of the experimen-
tal spacing of donor lines and the difference between corresponding excited
levels could actually determine the volume change ΔV produced in the lattice
by a donor atom [237]. The donor-dependent difference between the donor-
independent one-valley EMT results and the experimental data has been in-
terpreted in the framework of the lattice-distortion model as the addition to
the EMT value of a donor-dependent perturbation term. When considering
the experimental separation S2p = 2p±1 − 2p0, the order of magnitude of the
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Table 6.4. Comparison of the experimental spacings (meV) between line 2p±1 and
other donor lines in natural silicon with the calculated EMT spacing

Spacing P As Sb Bi Li (Li,O) EMTa EMTb

3p±1 − 2p0 8.3492 8.380 8.406 8.32† 8.396 8.45 8.372 8.371

2p±1 − 2p0 5.0657 5.102 5.133 5.07† 5.118 5.20 5.090 5.090
3p0 − 2p±1 0.9291 0.915 0.900 0.900 0.90 0.88 0.917 0.916
4p0 − 2p±1 3.0940 3.100 3.07 3.07 3.07 3.06 3.093 3.092
3p±1 − 2p±1 3.2835 3.278 3.273 3.265 3.278 3.274 3.282 3.281
4f0 − 2p±1 4.07 4.01 4.063 4.062
5p0 − 2p±1 4.1638 − − − − − 4.167 4.166
4p±1 − 2p±1 4.2137 4.206 4.21 4.182 4.207 4.202 4.215 4.214
4f±1 − 2p±1 4.5094 4.49 4.47 4.451 4.503 4.489 4.508 4.507
5f0 − 2p±1 4.7653 4.71 4.70 4.76 4.73 4.772 4.770
5p±1 − 2p±1 4.9439 4.937 4.92 4.909 4.936 4.931 4.953 4.952
5f±1 − 2p±1 5.138 5.128 5.11 5.142 5.142
6p±1 − 2p±1 5.3216 5.312 5.30 5.319 5.313 5.307 5.332 5.330
6h±1 − 2p±1 5.5049 5.516 5.515
E2p±1 6.403 6.398 6.393 6.384 6.398 6.394 6.402 6.401

E2p0 11.469 11.500 11.526 11.44† 11.516 11.57 11.492 11.491

When the line positions come from two sources, the spacing is measured from the
same source. The 3p±1 − 2p0 spacing is included because it allows comparisons with
donor centres where the 2p±1 line is split, as in the oxygen thermal donor spectra
† Resonant phonon broadening of 2p0,

a [118], b [21]

relative volume change ΔV/V0 brought about by the substitution of a donor
atom D with a Si atom with volume V0 is [237]:

ΔV/V0 = 2.9(meV−1)(S2p(D) − S2p(EMT))(meV) (6.1)

Using the values of Table 6.4, the relative volume changes for P, As and Sb
derived from (6.1) are −0.07,+0.004 and +0.013, respectively and they are
comparable to those (−0.08,+0.04 and +0.17, respectively) given by Pajot
and Stoneham [205]. One must be aware that this relies heavily on the ac-
curacy of the EMT calculations and for silicon, the values of S2p obtained
by variational and non-variational calculations are the same (5.090meV), but
this is not the case for germanium.

In Table 6.4, the variation of the 3p±1−2p0 spacing, which follows the same
trend as the 2p±1 − 2p0 spacing for Lii and (Li,O) with respect to the EM
value, indicates a global perturbation of the electronic potential in the vicinity
of the centre, and the changes in the values of these spacings are assumed to
also provide a qualitative estimation of the perturbation for more complex
centres.

Some parity-forbidden symmetry-allowed lines are also observed in the
group-V donor spectra but they are usually weak. This is the case for the



180 6 Donor and Donor-Like EM Spectra

0

1.0

Si:Bi

LHeT

Γ7

Γ8

36 38 40 42
Photon energy  (meV)

A
bs

or
pt

io
n 

co
ef

fi
ci

en
t 

 (
cm

−1
)

Fig. 6.4. Parity-forbidden absorption of the 1s (A1) level to the 1s (T2) state split by
spin-orbit interaction at 38.08 and 39.08 meV (307.1 and 315.2 cm−1). The spectral
range is 282.3–338.8 cm−1. [Bi] is ∼1016 cm−3 (after [143])

3d0 line, at 41.76, 50.0, and 67.18meV (336.8, 620, and 832.8 cm−1) in the
P, As, and Bi spectra, respectively. Broad absorptions due to transitions to
the 1s states split by valley-orbit interaction have also been observed at 2K
in silicon samples doped with P and As at concentrations in the 1018cm−3

range [253], and several parity-forbidden lines are observed for Bi. The deepest
ones are due to transitions from the 1s (A1) Γ6 ground state to the spin-valley
split 1s (T2) Γ7 and 1s (T2) Γ8 levels [143], shown in Fig. 6.4 (Γ7 and Γ8 are
two-valued IRs of Td).

Considering the Bi concentrations, the peak absorption of this parity-
forbidden doublet is about one order of magnitude weaker than the 2p0 line
of Fig. 6.3. Other n s (T2) lines together with the 3d0 line have also been re-
ported in the Bi spectrum [35]. For the other group V donors, the energies
of the 1s (T2) and 1s (E) levels have been obtained indirectly by raising the
temperature of the samples to populate these levels by thermalization. Since
E → T2 and T2 → T2 transitions are symmetry-allowed, transitions from
these levels are observed at lower energies [163]. For Si:Sb, this procedure also
shows the spin-orbit splitting of the 1s (T2) ground state (Fig. 6.5). Because
of the lower mass of Sb compared to Bi, this splitting is reduced to 0.29meV
for Sb compared to 1.00meV for Bi.

A positive shift of 0.09meV (∼0.7 cm−1) of the energies of the 1s (A1) →
2p0(P) and 1s (A1) → 2p±1(P) transitions between a nominal temperature
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Fig. 6.5. Absorption spectrum from the 1s excited states of Sb donors in sili-
con, showing the spin-valley splitting of the 1s (T2) state, observed by raising the
temperature of the sample to ∼ 30 K. The lowest energy line of the 1s (A1) spec-
trum is at 31.24 meV

(
251.9 cm−1

)
. The spectral range is 145.2–243.6 cm−1. [Sb] is

∼ 2.6 × 1015 cm−3 [163]. Copyright 1993 by the American Physical Society

of 4 and 54K has been measured by White [268], and comparable results
were obtained by Pajot [199]. This shift is due to the electron-phonon inter-
action, the main contribution coming from an increase of the 1s (A1) ground-
state energy with temperature, higher than those for the excited states.
For the 1s (A1) → 2p0 transition, the shifts at 30 and 60K deduced from
the calculations of [43] are +0.030 and +0.060 meV, respectively. The shifts
with temperature of transitions involving the 1s (E) and 1s (T2) states can
be deduced from a comparison between laser emission at LHeT [208, 209]
and thermalized absorption at higher temperatures [3, 163]. A small nega-
tive shift of the energies of the 1s (E) → 2p0(As), 1s (E) → 2p±1(As), and
1s (T2) → 2p±1(As) transitions (−0.14,−0.06, and −0.02 meV, respectively)
is found between LHeT and 60K, and this trend is confirmed qualitatively
by the measurements of the energies of the thermalized transitions from the
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Table 6.5. Spectroscopically-determined energies (meV) with respect to the CB of
the first even-parity states of group-V and Li donors in silicon at LHeT

Level P As Sb Bi Li (Li,O) EMTa

1s (A1) 45.578 53.758 42.763 70.99 31.24b 39.672 31.26

1s (T2) Γ7 33.88c∗ 32.69c† 32.70k 33.16c‡ 32.89d 32.999 32.00b ”

1s (T2) Γ8 ” ” 32.86c‡ 32.83l 31.89d ” ” ”

1s (E) 32.55c∗ 31.26c† 31.36k 30.55c‡ 29.9c ” ” ”
2s (A1) 10.61e 11.28e 8.86

2s (T2) 9.07f 9.11g 8.78h 9.0e ”
3s (A1) 5.32e 5.33e 4.78
3s (T2) 4.70i 5.0e ”
3d0 3.82j 3.8m+ 3.80i 3.75
4s (A1) 3.14e

4s (T2) 2.89i 2.91

The energies of the 1s (A1) states (1s (E + T2) state for Li) are the same as the
values of Eio of Table 6.3. The energies obtained from laser emission are noted l.e.
after the reference
∗ At 45 K, † At 60K, ‡ At 30K at 89K, + Identified as 4p0 in this reference, a [30],
b [115], c [163], d [143], e [221] PL, f [245] PL, g [105], h [141], i [35], j After [200], k [208]
l.e., l [209] l.e., m [24]

1s (E) and 1s (T2) levels between 30 and 80K for the P donor by Aggarwal
and Ramdas [3]. These shifts are at the opposite of those observed for transi-
tions from the 1s (A1) state, and they can also be explained qualitatively by
the model of Cheung and Barrie [43].

Lines due to different ns states of P, As and Li have also been observed in
silicon by two-electron PL spectroscopy [221,245]. Laser emission of transitions
involving the 1s (E) and 1s (T2) states as final states has also been observed
in Si:As and Si:Sb at LHeT [208,209]. A list of the experimentally-determined
even-parity excited states of group-V, Li and (Li,O) donors in silicon is given
in Table 6.5. Raman scattering between the 1s (A1) and 1s (E) levels has also
been observed at LHeT for P, As and Sb [116, 270], providing a value of the
energy of the 1s (E) level in good agreement with the thermalized absorption
results.

In the 1s (A1) ground state, the probability of presence of the donor
electron at the donor site is non-zero because of the analytical form of the
wave functions (5.12) and of the values of the coefficients in Table 5.8. There-
fore, when the donor atom has a nuclear spin I , it can interact with the
donor electron spin in the 1s(A1) state. Though this interaction is small, it is
responsible for the hyperfine interaction detected in ESR measurements [62].
A zero-field splitting of the ground state of the 31P donor (I = 1/2) in silicon
of 117.53MHz (486 neV or 0.00392 cm−1) is measured by this method. The
smallest FWHMs of the P lines measured in qmi 28Si are ∼2.5 μ eV (Table 6.1)
and the above splitting cannot be detected, but the situation is different in
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Fig. 6.6. PLE spectrum of the P BE due to the absorption of laser radiation
tuned over the absorption range of the P BE no-phonon α1 line near 1150 meV in a
qmi silicon sample enriched at 99.991% with 28Si. The large bracket at the bottom
corresponds to the 486 neV hyperfine splitting of the ground state of the P donor
atom. For the two smaller brackets, see text [273]. Copyright 2006 by the American
Physical Society

the near-IR. In this region, the absorption or PL of the P BE gives a ZPL at
1150.0meV, known as the α or α1 line, due to a transition between the BE
ground state and the 1s (A1) P state [101,245]. In a silicon sample enriched to
99.991% with 28Si, a tunable laser providing a spectral resolution of 0.3 neV
(2 × 10−5 cm−1) was tuned over the α1 line. In order to get a better sensitiv-
ity, the PLE spectrum produced by the laser absorption was detected as the
TO-phonon-assisted recombination radiation of the BE, about 58meV below
the ZPL or no-phonon line [248,273]. The PL output as a function of the laser
energy is displayed in Fig. 6.6.

This spectrum shows two relatively close components separated by a larger
splitting. This splitting corresponds to the zero-field splitting of 117MHz of
the 1s (A1) ground state of the P donor due to the hyperfine interaction. The
two smaller splittings are assumed to result from the coupling between the P
electron spin with the spin of other neutral impurities randomly distributed
around it [248, 273]. This measurement also shows the extreme sharpness of
the P BE no-phonon transition in highly-enriched qmi silicon.

The above-described donor absorption spectra in the medium and far IR
can be observed in natSi in a broad concentration range, from high-resistivity
(∼104 Ω cm) FZ samples to doped samples below the metal-insulator tran-
sition (MIT), introduced in Sect. 1.3.2 [173]. When the donor concentration
increases, the FWHMs of the electronic lines starts increasing, due to the pro-
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gressive overlap of the wave functions of the excited states. The variation of the
donor absorption in silicon with increasing P concentrations toward the MIT
has been investigated by several groups. In the 1980s, detailed investigations
on the low-temperature absorption of Si:P in a broad concentration range,
supported by a model based on donor pairs and clusters, were published by
Thomas et al. [253]. Figure 6.7 shows the absorption near 2 K of three silicon
samples with widely separated P concentrations.

The analysis of the contribution of donor pairs is based on the assumption
of a random distribution of donors, with atoms closer to each other than
the average nn distance rc = N

−1/3
D (for a statistical Poisson distribution,

<rnn> = 0.54rc). When two donor atoms are close enough, by analogy with
the H atoms, the 1s ground state energy is reduced because of the limited
propensity to form a bond between the two atoms. In the pair description,
the ground state is denoted D1sD1s. The first kind of excitation considered
is a charge transfer giving rise to D+D−, sometimes referred to as a donor
exciton. For P donors in silicon, the calculation of the energy of this excitation
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as a function of the pair separation gives a minimum of 29.8meV for a pair
spacing of 6.5 nm [253].

The other excitations are more classical and they correspond, for the first
ones, to D1sD2p0 or D1sD2p±1 pair states, where the electron of one of the
neutral atoms of the pair makes a transition to a 2p0 or 2p±1 state, with
an energy distribution corresponding to the pair separation. A representative
spectrum, where the contribution of donor pairs to the electronic absorption
can be appreciated, is shown in Fig. 6.8.

Absorption due to the donor pairs in germanium has also been reported
by Kobayashi et al. [131].

Measurement of the intensity differences of the 2p±1 line at LHeT in in-
trinsic FZ silicon samples and the same samples after NTD with different
doses have been made by Pajot and Débarre [202]. The peak absorption co-
efficient K2p±1 of the 2p±1 line was measured with a spectral resolution δν̃s
of 0.45 cm−1 (53 μ eV) and for the P concentrations introduced, the observed
FWHM of 2p±1 was equal to δν̃s. For P concentrations up to 1 × 1015 cm−3,
the valid relationship for δν̃s ≥ 0.45 cm−1 is:

[P](cm−3) = 2.13 × 1013δvs(cm−1)[K2p±1(cm−1)]

and it agrees with the calibration factor of 2.13 × 1013 K2p±1 (cm−1) for the
P concentration obtained by Kolbesen [138] for δν̃s = 1 cm−1. Resolution-
independent calibration factors based on the measurement of the integrated
absorption of samples where the P concentration is deduced from RT resis-
tivity measurements2 have been given by Porrini et al. [215]. These factors,
inverse of an integrated absorption cross-section, are 4.2, 1.2, and 23 ×
1013 cm−1 for the 2p0(P), 2p±1(P), and 3p0(P) lines, respectively (for 2p±1(P),
a value of 1.0 × 1013 cm−1 was given by Jones et al. [121]). For a sample of
reasonable thickness (5–10mm), a spectral resolution of 0.1 cm−1 and an ade-
quate suppression of the interference fringes, a quantitative detection limit of
about 1011 cm−3 can be achieved, well below [P] in the purest silicon samples
(see Fig. 7.7). For qualitative detection of shallow donors in silicon, absorption
spectroscopy does not compare with PTIS, whose detection limit is in the
107 cm−3 range, but requires temperatures above 10K (see [225], and refer-
ences therein).

For group-V donors in silicon, the photoionization cross-section at LHeT
is maximum just above the ionization energy and, in units of 10−15 cm2, it is
given as 8.5, 2.5, 1.6, and 0.72 for Sb, P, As, and Bi, respectively ([21], and
references therein).

2 ASTM F 723, Standard practice for conversion between resistivity and dopant
density for boron-doped, phosphorus-doped, and arsenic-doped silicon. The 1999
annual book of ASTM standards, American Society for Testing and Materials.
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6.2.2 Germanium

The ionization energies of the EM group-V and Li donors in germanium are
lower than those in silicon, and the discrete absorption spectra occur at photon
energies below ∼13 meV. The published spectra in the vicinity of Eio consist
of parity-allowed transitions extending over about 5meV (∼40 cm−1) below
Eio. For donors with cubic symmetry, the valley-orbit interaction splits the
1s state into a 1s (A1) singlet and a 1s (T2) triplet (see Sect. 5.2.2). The
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ground state is 1s (A1) for group-V donors, but for Lii, as in silicon, it is
1s (T2). Spectrometers based on backward-wave tubes far IR sources have
been used to directly detect the 1s (A1) → 1s (T2) absorption of P and As
donors [36] and also the transitions from the first excited states (Gershenson
and Gol’tsman [70]). For Lii, the 1s (T2)−1s (A1) separation deduced from the
splitting of the parity-allowed Lii lines [49] is 46 μ eV (0.37 cm−1). A larger
value of the Li valley-orbit splitting (0.12meV or 0.97 cm−1) has also been
deduced indirectly from an analysis of the electron-phonon scattering derived
from thermal conductivity measurements of Li-doped germanium between 0.4
and 20K [2], but the spectroscopic value is considered as more reliable. The
valley-orbit splitting of the P, As and Bi donors has also been measured by
Reuszer and Fisher [217] by thermalization of the 1s (T2) state in the same way
as for silicon. As shown in Fig. 6.9, for Sb, thermalization of the 1s (T2) state is
already present at LHeT because of the small value of the valley-orbit splitting
for this donor. The third-order non-linear optical susceptibility of Ge:P and
Ge:As samples has been measured by simultaneously illuminating the samples
with frequencies ω1 and ω2 of two Q-switched CO2 lasers (ω1 > ω2), and
measuring the intensity of the radiation generated at frequency 2ω2 − ω1 due
to the non-linear effect [269]. By tuning the frequencies ω1 and ω2, a sharp
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Fig. 6.9. Absorption spectrum between 5 and ∼11.2 meV of a Ge sample with
[Sb] = 8×1014 cm−3 at a temperature between 1.7 and 4.2 K. The spectral resolution
is 0.14 cm−1 (∼17 μeV). The lines with indexes (1) and (3) originate from the 1s (A1)
and 1s (T2) levels, respectively. Band gap radiation reaching the sample explains the
sharpness of the lines and the observation of line D of the B acceptor. [15] Copyright
1997, with permission from World Scientific Publishing Co. Pte. Ltd, Singapore
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Table 6.6. Valley-orbit splitting 1s (A1) − 1s (T2)(meV(cm−1 in parentheses)) of
the isolated single donors in germanium

P As Sb Bi Lii

2.812 (22.68)a 4.118 (33.21)a 0.316 (2.55)b 2.85 (23.0)c 0.046 (0.37)a

a [49], b [15], c [217]

resonance of the generated radiation is observed when ω1 −ω2 is equal to the
valley-orbit splitting 1s (A1) − 1s (T2) of the donor. The values obtained for
P and As are 2.80 and 4.17meV, respectively, and they compare reasonably
well with the values of Table 6.6 obtained from absorption measurements. As
already mentioned, the value of this valley-orbit splitting is often denoted 4Δc

in germanium.
In germanium, the small energy differences between the excited levels re-

quires high resolution, and only one high-resolution absorption study is known,
for Ge:Sb (Fig. 6.9). PTIS is certainly the best-suited method to investigate
the shallow donor spectra in germanium [49, 90, 224, 230], but it is difficult
to detect the n p0 lines with this method, and it does not give the relative
intensities of the lines [49]. Values of np0 and nf0 transition energies with
n ≥ 4 have been obtained for Sb from uniaxial stress absorption studies in
the high-stress limit [14]. This limit is achieved when the identical splittings
under stress of the np0 and np±1 donor states are much larger than the valley-
orbit splitting of the donor (see Sect. 8.2.1.1 and Fig. 8.7). It has been found
that under this condition, for a force F// <111> and for the electric vector of
the radiation E//F , the absorption spectrum at LHeT is dominated by lines
denoted np0 (∞) by Baker and Fisher, whose positions can be related simply
to the zero stress positions.

An appreciation of the relative intensities of the donor lines in germanium
from the absorption spectrum of Fig. 6.9 is difficult. In the absence of another
detailed absorption spectrum of a shallow donor in germanium, an order of
magnitude of the relative intensities can be obtained from the calculated OSs
of Table 5.20: when the intensity of the 2p±1 line is taken as 100, the intensities
>1 expected for the other lines are approximately: 2p0: 10, 3p0: 1, 3p±1: 20,
4p±1: 10, 4f±1: 10, 5p±1: 1, 5f±1: 3, 6p±1: 3 (Faulkner’s labels are used). The
predicted strength of line 5p±1 is notably smaller than those of lines 4f±1 and
5f±1, and this is corroborated by the absence of a line that could be attributed
to 5p±1 in most of the experimental donor spectra in germanium. When this
line is reported with Faulkner’s label, the energy level of the excited state
is generally found to be close to 0.46–0.47meV, showing that it is actually
5f±1. Values of the 5p±1 energy level of Sb and P in germanium (0.57meV)
have been deduced from the “hot” 2s → 5p±1 PTIS transition [70], close
to the calculated value (0.573meV) for the 5p±1 level. A line at 9.24 cm−1

(1.146meV), above the 2p±1 line, has been reported in the PTIS spectrum of
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P by Darken [49]. From the BC−2p±1 separation of 1.729meV in germanium,
the energy of this line3 is 0.583meV, identifying it as 5p±1(P).

In the 1970s, the need to understand the role of impurities and defects in
germanium nuclear radiation detectors led to the production of high-purity
germanium crystals, and to their physico-chemical characterization. Because
of its sensitivity, PTIS was a privileged tool and many results were obtained
by this technique [90]. High-purity CZ germanium crystals were grown from
silica crucibles under a hydrogen atmosphere, chosen because it was shown to
produce crystals with the best characteristics for nuclear radiation detectors,
and the residual impurities in these crystals were H and Oi. The measure-
ment of the concentration of residual Oi, in the 1012 − 1014 cm−3 range in
these crystals, by the lithium precipitation method [65] led to the study of the
interaction of Li with Oi.. Evidence for the formation of a (Li,O) complex, as-
sumed to be the only one, was obtained by PTIS ([90], and references therein).
This complex displays EM donor spectra with a complicated behaviour; four
distinct spectra due to the splitting of the ground state are related to this
complex [49,90]. The spectrum corresponding to the deepest state is denoted
here D1(Li,O) and its ionization energy is 10.48meV. It was previously re-
ported by Seccombe and Korn [224] and Skolnick et al. [230] as spectrum
A and S, respectively. The positions of the lines of the D1(Li,O) spectrum
are given in Table 6.7 with the values of [230]. The D1(Li,O) lines are sharp
and insensitive to the uniaxial stress [89]. The results of ESR measurements
of this D(Li,O) donor at 23GHz (95 μ eV) with a high quality factor can be
explained by single-valley donors oriented along a <111> direction [90]. Ini-
tially, the conjunction of these two facts was explained by the existence of
a dynamic tunnelling of the interstitial Li atom around the four equivalent
<111> orientations [89, 90], but a static model has also been proposed [91].
Three thermalized donor spectra of the (Li,O) complex have been reported
[49,90], and their lines are broad and stress-sensitive. They are noted here as
D2(Li,O), D3(Li,O), and D4(Li,O) and the positions of their 2p±1 lines are
8.313, 8.250, and 7.66meV (67.05, 66.54, and 61.8 cm−1) respectively, down-
shifted by 0.433, 0.496, and 1.09meV from that of D1(Li,O).

The ionization energy of Lii (10.033meV) is close to those of D2(Li,O)
and D3(Li,O) (10.042 and 9.979meV, respectively) and this explains why the
Lii spectrum can be measured in good condition only in germanium samples
where [Li]� [Oi].

We conclude the study of the Li-related complexes in germanium by men-
tioning two other centres labelled (Li,X) and (Li,Y). The (Li,X) spectrum
is only observed in germanium crystals with [Li] � [Oi] grown from a sil-
ica crucible, and that of (Li,Y) in crystals grown from a graphite crucible.
The 2p±1(Li,X) and 2p±1(Li,Y) positions are 70.72 and 62.90 cm−1 (8.768
and 7.799meV), respectively, giving Eio(Li,X) and Eio (Li, Y) = 10.497 and

3 In this reference, it is identified as 5F±1 following the labels of Broecks et al.
(1986).
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9.528meV, respectively. For the observation of the spectra of these complexes,
from the conditions mentioned above, it has been suggested that X is Si and Y
is C [49]. It must be noted that the D1(Li,O) and (Li,X) spectra are separated
by only ∼0.2 cm−1 (25 μ eV).

When samples cut from high-purity germanium crystals are annealed at
400−450◦C, and subsequently quenched to RT, two shallow acceptor centres,
also called fast acceptors, are detected. After annealing slightly above RT,
they are replaced by a moderately stable “fast” shallow donor, which van-
ishes under annealing at ∼150◦C [87]. The production of this shallow donor
requires the simultaneous presence in the crystals of hydrogen and Oi, and
it was therefore proposed that hydrogen was involved in this donor as well
as in the acceptors. This was confirmed by the observation of an IS of about
−0.41 cm−1 (−51 μ eV) of the lines of this donor in samples cut from crystals
grown in a deuterium atmosphere [88]. This donor centre is denoted D(H,O)
by Haller et al. [90] and the positions of the lines from its ground state spec-
trum D1(H,O) are given in Table 6.7. A weak signature of D1(H,O) can be
seen, inverted, in the upper PTI spectrum of Fig. 4.4. This spectrum had
been reported before without attribution by Seccombe and Korn [224], and
by Skolnick et al. [230] as spectrum C.

As for D1(Li,O), the lines of the D1(H,O) spectrum are sharp and insen-
sitive to the uniaxial stress, but there is an upper limit of ∼21 MPa where
the D1(H,O) spectrum rapidly diminishes in intensity, disappears and is re-
placed for increasing stress by a new donor spectrum shifted toward lower
energies by 2.65meV. The lines of this new spectrum are also sharp and in-
sensitive to stress up to the maximum stress, compatible with these PTIS
experiments (∼150 MPa). To end this unconventional behaviour under stress,
it must be added that the effect of the large uniaxial stress is partly reversible
and that the D1(H,O) spectrum can be made to reappear by raising the tem-
perature to 9K and above [122]. The sharpness of n p±1 lines of the ground
state spectrum of D(H,O) has been evaluated from low-field magnetooptical
measurements (0.05− 0.3 T) using low-frequency lasers (see Sect. 3.8) and for
the 2p±1 Zeeman components, a FWHM value of 8 μ eV (0.07 cm−1) has been
reported [186], and this is consistent with the absence of response of these
electronic lines to stress.

At zero stress, a moderate temperature rise of samples containing the
D(H,O) centres results in the observation of two thermalized spectra D2(H,O)
and D3(H,O) with 2p±1 lines at 8.224 and 7.76meV, respectively [185]. If it
is assumed that the final states of the lines of these spectra are the same as
those ofD1(H,O), one deduces D1 (H,O) –D2 (H,O) and D1 (H,O) –D3 (H,O)
energy separations of 2.512 and 2.98meV, respectively. Thus, the thermal
population of the 1s (D2) and 1s (D3) states corresponding to these energy
differences should result in intensity ratios between the D2 and D3 spectra
on the one hand and the D1 spectrum on the other hand, smaller than those
actually measured. A fit of the measured intensity ratios to the splitting de-
duced from the realistic Boltzmann factors gives only 1.57 and 1.94meV for
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the D1 (H,O) –D2 (H,O) and D1 (H,O)–D3 (H,O) energy separations. This
can be explained by the splitting of the np±1 levels by 0.98meV, with tran-
sitions from the 1s(D1) state to the highest np±1 component and from the
1s(D2) and 1s(D3) states to the lowest np±1 component [185]. A model for
the electronic structure of this centre accounting for its stress-induced reori-
entation for a stress along a <111> direction was proposed by Broeckx et al.
[29]. The tunnelling hydrogen model and some static models explaining some
of the spectral features of the D(H,O) complex were compared by Ham [91],
but the experimental tests suggested to favour one of them have apparently
not been done.

The positions of the lines of the known EM donor spectra reported in
germanium for different centres (except the so-called thermal double donors,
discussed separately, and those where the position of only one line is known)
are given in Table 6.7.

In the PTIS spectrum of P [49], lines have also been observed at 12.630, and
12.660meV (101.87, and 102.11 cm−1), with semi-experimental excited state
energy values of 0.256 and 0.226meV, respectively, which can be ascribed to
8p±1 and 8h±1 levels [20]. The positions of the 4f0, 5p0, 6p0, and 6f0 lines
of Sb extrapolated from absorption measurements in the high-stress limit [14]
are 73.40, 75.72, 77.76, and 78.40 cm−1 (9.100, 9.388, 9.641, and 9.720meV),
respectively. It is interesting to note that in this study, no value is reported at
the position expected (76.75 cm−1) for 5f0. This absence is correlated with a
calculated OS for that line about two orders of magnitude smaller than those
for the other lines of the series (see Table 5.21).

The comparison between the experimental and calculated line spacings is
fundamental for the correct attribution of the lines observed (Table 6.8). One
can, however, observe some scattering for the values of the highest energy As
lines and for 6f±1(P), though the reason for this is not clear.

The FWHMs of the 2p±(As) line in natGe has been measured at 3.2K
as a function of [Ga] to determine the contribution of the Stark broadening,
and the value of the homogeneous line width for negligible compensation is
0.072 cm−1 (9 μ eV) [127]. The concentration dependence of the donor spec-
tra in germanium has been investigated theoretically in the low-concentration
region of impurity conduction (up to 4 × 1016 cm−3) and compared with ex-
perimental As spectra ([110], and references therein).

What is known from the even-parity donor states in germanium above
1s (T2) has been obtained mainly from the absorption or PTIS measurements
from excited states on the Sb donor between ∼10 and 12K [72], and references
therein). The 2s → 4p±1, 3s → 4p±1, and 3d0 → 4p±1 transitions are, for
instance, observed at 2.86, 1.40, and 0.74meV (23.1, 11.3, and 6.0 cm−1),
respectively. The 2s, 3s, and 3d0 energies deduced from these results using
Table 6.7 are 3.62, 2.16, and 1.50meV, respectively, in reasonable agreement
with the calculated EM values of Table 5.6.
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Table 6.8. Comparison of the experimental spacings (meV) deduced from Table 6.7
between line 2p±1 and other lines of different donors in germanium with those be-
tween the corresponding calculated EM energy levels

Spacing P As Sb Bi Li D (Li, O) D (H, O) EMTa EMTb

2p±1 − 2p0 3.037 3.00 3.039 3.08 3.047 3.030
3p0 − 2p±1 0.855 0.83 0.851 0.88 0.857 0.853
4p0 − 2p±1 0.041 0.033 0.031
4f0 − 2p±1 0.513c 0.509 0.503
3p±1 − 2p±1 0.686 0.684 0.681 0.64 0.688 0.683 0.684 0.687 0.683
5p0 − 2p±1 0.801c 0.80 0.792
4p±1 − 2p±1 0.971 0.975 0.976 0.973 0.971 0.968 0.976 0.970
6p0 − 2p±1 0.992c 1.00 0.985
4f±1 − 2p±1 1.115 1.121 1.108 1.120 1.112 1.113 1.120 1.113
5p±1 − 2p±1 1.146 1.156 1.147
6f0 − 2p±1 1.133c 1.15
5f±1 − 2p±1 1.253 1.287 1.260 1.251 1.249 1.264 1.253
6p±1 − 2p±1 1.321 1.297 1.335 1.323 1.321 1.319 1.332 1.321
6f±1 − 2p±1 1.390 1.367 1.350 1.336
6h±1 − 2p±1 1.405 1.407 1.388 1.395 1.411 1.392

a [46], (1986), b [20], c [14], see above

Table 6.9. Calibration factors
(
cm−1

)
of the integrated absorption of the 2p±1 and

3p±1 lines for some donors in germanium (after [218])

P As Sb

Line

2p±1 8.3 × 1012 1.0 × 1013 4.6 × 1012

3p±1 4.8 × 1013 5.3 ×1013 3.7 × 1013

Integrated absorption radii (the inverse of the integrated calibration factors
mentioned for P in silicon) relating the integrated intensities of group-V donor
lines at LHeT and the actual donor concentration were obtained by Rotsaert
et al. [218]. The calibration factors are given in Table 6.9.

As in silicon, for group-V donors in germanium, the photoionization cross-
section at LHeT is maximum just above the ionization energy, but it is larger:
in units of 10−14 cm2, it is given as 1.8, 1.5, and 1.1 for Sb, P, and As, respec-
tively ([21], and references therein).

6.2.3 Silicon Carbide

The only donor characterized spectroscopically in 3C-SiC is nitrogen on a C
site (NC) [170]. The CB minimum of 3C-SiC is located at the X point of the
surface of the BZ so that it is only threefold degenerate, compared to sixfold
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Fig. 6.10. Absorption spectrum of substitutional N in 3C-SiC at two temperatures.
The transitions from the 1s (A1) and 1s(E) levels of NC are indexed (1) and (2),
respectively. The three small sharp lines belong to the unidentified EMD spectrum
(after [170]). Copyright 1995, with permission from Elsevier

for silicon. For the ns and np0 states, there are three linear combinations of
one-valley wave functions corresponding to the non-degenerate A1 and doubly
degenerate E IRs of Td. Figure 6.10 shows the absorption at two temperatures
of a 3C-SiC sample containing NC.

A valley-orbit splitting of the 1s state of NC is apparent from this figure
as a temperature raise populates the 1s(E) state (a normal ordering of the
levels is assumed). The transitions from the 1s(E) state are clearly broader
than those from 1s(A1). Small sharp lines can also be observed in the two
spectra of Fig. 6.10, showing no thermalization effect. They are attributed to
an unidentified effective-mass donor with no detectable valley-orbit splitting,
denoted EMD in the original reference [170].

Table 5.3 gives a semi-empirical value of the effective Rydberg R∗∞d for
EM donors in 3C-SiC. It is the ratio of the experimental 3p±1−2p±1 spacing of
the NC spectrum obtained from Table 6.10 to the same spacing in atomic units,
obtained by a linear interpolation of the calculated energy levels of Table 5.2
for γ1/3 = 0.7181. This value of R∗∞d (34.85meV) is used to calculate the
energies of the other donor levels by the same interpolation method. The first
two rows of Table 6.10 gives the experimental positions of the lines attributed
to NC and to the EMD centre in 3C-SiC by Moore et al. [170]. The calculated
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Table 6.10. Below the label Position: Positions (meV) of the lines of the NC and
EMD donor spectra in 3C-SiC at LHeT

Line 2p0 2p±1 3p0 3p±1 4p0 4p±1 4f±1 5p±1 6p±1 Eio or 1s

Position
NC (1s (A1 ) 38.99 43.84 47.49 49.43 50.09 50.95 51.45 52.1 52.69 54.19
NC (1s (E) 30.63 35.1 41.1 42.61 43.17 45.83
EMD 32.54 37.41 42.99 44.47 45.01 47.75

Level energy
Calculated 15.21 10.35 6.99 4.76 4.09 3.25 2.75 2.11 1.52 47.15
NC 15.20 10.35 7.00 [4.76] 4.10 3.24 2.74 2.1 1.50
EMD 15.21 10.34 [4.76] 3.28 2.74

Below the label Level energy: Calculated energies (meV) of the EM donor states in
3C-SiC and semi-empirical energy levels of the excited donor states of NC and EMD
(after [170])

energy of the 3p±1 level (4.76meV) is added to the positions of the 3p±1 lines
to give the ionization energies Eio. The third row gives the energies of the
corresponding EM ground state and excited levels calculated by the above-
mentioned method. The last two rows give the energy levels of the donor
centres obtained by assuming the same calculated value of the 3p±1 level for
the two centres.

The measured 1s (A1) – 1s(E) valley-orbit splitting of the NC donor is
8.36meV so that the 1s(E) level energy is 45.83meV, slightly less than the
one-valley EM value, but such a situation is also encountered for the Sb and
Bi 1s(E) levels in silicon (Table 6.5). For EMD, Eio is close to that calculated
in the EMA and no valley-orbit splitting is detected.

For the 4H-SiC polytype, a detailed study of the donor level classification
and selection rules for an EM donor at the hexagonal (h) site has been given by
Ivanov et al. [114]. It has been applied to the N donor, for which 10 electronic
lines between 38 and 56meV have been reported by different groups, with an
ionization energy Eh(N) of 61.4meV ([114] and references therein). This value
of Eh(N) contrasts with the value obtained for the ionization energy Ec(N)
at the cubic site, which rises to 125.5meV ([113].

The absorption of N donors in 6H-SiC has been reported by Suttrop et al.
[241], where a donor can locate on an hexagonal (h) site and on two different
cubic sites k1 and k2 (see Fig. B.5 of appendix B). The values of Eh, Ec1,
and Ec2 deduced from these measurements are 81.0, 137.6, and 142.4meV,
respectively, with a valley-orbit splitting of 12.6meV for the h donor centre.

Absorption spectra observed at LHeT in N-doped 4H- and 6H-SiC doped
with P by NTD between ∼33 and 89meV have been attributed to P and N
electronic transitions [99], but no correlation with specific EM donor spectra
has been attempted.
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6.2.4 Diamond

In diamond, NC is a deep donor, with an optical ionization energy of 2.2 eV
and a thermal ionization energy of 1.7 eV due to the lattice relaxation between
the neutral and ionized states. The only clearly identified shallow donor is P,
introduced in synthetic diamonds by adding phosphine to the gases used in
the CVD growth [137]. A first value of its ionization energy (630meV) was
obtained from cathodoluminescence measurements of the DAP spectra in dif-
ferent samples by Sternschulte et al. [234]. Electronic absorption of phospho-
rus in the 500–1000meV region was later reported by Gheeraert et al. [73,74],
consisting in a discrete spectrum between ∼500 and 600meV, followed by
a photoionization spectrum. Fano resonances involving inter-valley phonons
superimposed on the photoionization spectrum have also been reported. The
most intense structures involve a LO phonon with an energy in the 152–
155meV range [73,86] and these resonances have been used to determine the
energies of some electronic excitations.

Three absorption lines of the P donor observed below the ionization limit
are shown in Fig. 6.11.

The characteristics of the P lines and of the first energy levels of P in
diamond are given in Table 6.11. The calculated EMT positions are derived

Fig. 6.11. Absorption spectrum of a 5 μm–thick P-doped diamond sample at LHeT
([P] is estimated to be ∼1 × 1018 cm−3). The demarcation of the P photoionization
spectrum is not clearly defined. The bar indicates the optical ionization energy
Eio [75]
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Table 6.11. Spectroscopic characteristics (meV (cm−1 in parentheses)) of the P
lines of the spectrum of Fig. 6.11

Line EMT level Position (exp.) Level (exp.) FWHM Peak absorption
(
cm−1

)

2p0 79.0 524.0 (4226) 80.0 11.4 (92) 33
2s 60.4 544a (∼4390) 60 (Fano resonance)
2p±1 41.2 562.8 (4539) [41.2] 3.4 (27) 235
3p±1 20.7 583.0 (4702) 21.0 ∼4 (32) ∼10
4p±1 14.4 590a (∼4760) 14
Eio 205.8(1s) 604.0

The positions of the levels are given with respect to the CB. Eio is obtained by
adding 41.2 meV to the position of the 2p±1 line. The peak absorption has been
determined after subtraction of the photoionization background. Features observed
at 77K by [86] have also been included with index a

self-consistently by linear interpolation from Tables 5.1 and 5.2 for γ1/3 =
0.56 (this value of γ1/3 is obtained by first converting the experimental
3p±1 − 2p±1 meV spacing into a value in atomic units by using R∗∞d =
125.8 meV, and then finding by interpolation the corresponding value of γ1/3

in Table 5.2).
By assuming a similarity with P in silicon, the expected energy of the

1s (T2) level should be comparable to the 1s EMT energy and the 1s (T2)
line observed in the 400meV

(∼3200 cm−1
)

range. The measured value of the
2p±1−2p0 spacing is 38.8meV, compared to a calculated spacing of 37.8meV.
The binding energy of the 590meV feature measured at 77K by photocur-
rent spectroscopy by Haenen et al. [86] is 14meV and it is attributed to the
4p±1 transition. Similarly, in the same work, a Fano resonance is reported
to correspond to an energy of 544meV, close to the difference (∼543 meV)
between Eio and the calculated 2s energy level, and it could be due to the
2s (E) level.

The optical ionization energy Eio of Table 6.11 is in good agreement with
the value of (610 ± 10) meV obtained from electrical measurements [74].

The FWHM at LNT of the 2p±1 (P) line has been correlated with the
RT electrical mobility of CVD diamond films [73] and values of 2.9meV(
23 cm−1

)
have been reported for the samples with the highest mobilities(∼120 − 200 cm2 V−1 s−1

)
. This shows the importance of the role of compen-

sation by impurities or defects in the line shapes of the P spectrum in diamond.
The electrically-detected ESR at RT and at 120K of two P-related cen-

ters has been reported in a n-type diamond containing the P donor [78].
One of these centres showed a low spin density on the P site, suggesting a
P-containing complex, while the other, observed inadvertently in these exper-
iments, could be accounted for by an EM centre with a large spin density on
the P site. The results of pulsed ESR measurements at 10K of P-containing
diamond and SiC have been reported by Isoya et al. [111]. The spectra ob-
tained, clearly related to P, show that at a difference with the P donor in
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silicon, the wave function of the ground state at the P site has predominantly
a p-like character (small spin density). They also show that the symmetry of
the P atom lowers from Td in silicon and germanium to D2d in diamond and
3C-SiC. In the valley-orbit-splitting scheme, the first result is an equivalent
of a T2 ground state in Td symmetry, with an energy not too different from
that of an EM donor, a situation more or less comparable to that for Lii in
silicon [266]. If the ESR spectrum corresponds to an isolated P donor, this
represents an EM ground state of ∼0.6 eV, rather different from the value of
∼0.2 eV deduced from the above IR measurements, and one wonders if this
centre is the isolated donor or another P-related centre.

All the calculations of the site symmetry of substitutional P in diamond
indicate a symmetry lower than Td, as the atomic radius of P is about 40%
larger than that of C. The most recent ab-initio calculations [197], and refer-
ences therein) show that a D2d symmetry is marginally more stable than a
C3v one. They also predict an outward distortion of the nn C atoms by ∼10%,
while quantitatively, the D2d symmetry remains relatively close to the Td one.

6.3 Group-VI- and Mg Donors in Group-IV Crystals

6.3.1 Silicon

In this section, the electronic spectra associated to the group-VI elements S,
Se, and Te in silicon are considered. These elements, often called chalcogens,4

are represented here generically as Ch. From their electronic configuration,
they are expected to be double donors when substitutional. Compared to the
group-V donors, the isolated S and Se atoms are relatively deep donors in
silicon, with 0/+ and +/+ + levels located at ∼0.3 and 0.6 eV, respectively,
below the CB. The group-IIA element Mg, which is a double interstitial donor
Mgi in silicon [67], is also included in this section. As noted before, in the EM
donor picture where the group-V donors are compared with H, the group-VI
donors and Mgi could be qualitatively compared with He and the ionization
energies are much larger than those of the group-V donors. Besides the isolated
substitutional form, chalcogen atoms can also be found in close pairs, which
are also double donors, and in other complex centres. Extensive studies on
chalcogen donors in silicon have been performed at Wacker Heliotronic [262]
in the 1980s and by the group at the University of Lund [83].

6.3.1.1 The Neutral Charge State

In the neutral charge state, one expects that the interactions between the two
electrons bound to the Ch double donors would give rise to a He-like energy
spectrum. However, these double donors are characterized by two electrons
with wave functions very different in their spatial extension, and the inner
4 From the Greek chalcos “ore”, literally: ore generating (many sulphides are metal-

lic ores).
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electron provides an almost perfect screening of the extra ionic charge. As a
consequence, the spectrum observed in the neutral charge state is very similar
to those for the group-V H-like donors. In the singly-ionized state, however,
these double donors must be compared to He+, and their energy levels with
respect to the H-like donors must be scaled by the ratio of the ionization
energies of He+ and H, which is close to 4.00. Another difference between
group-V and group-VI elements is that the latter are involved in several EM
donor complexes, some being double donors and others single donors. First,
the double donor centres are considered.

Besides the isolated Ch donors, other chalcogen-related double donors
known in silicon are the Ch pairs, noted as Ch2. The existence of S pairs
has been inferred by Ludwig [156] from the ESR results and from the inter-
pretation of piezospectroscopic measurements on Si:S by Krag et al. [144].
The reason for the Ch2 pairs being double donors can be explained by their
proposed configuration: three electrons from each of the two nn substitutional
Ch atoms are involved in the bonding with three nn atoms of the host crystal
and two electrons of each atom involved in the Ch-Ch interaction, which could
be considered the same as those in the Ch2 molecule ([198] and references
therein). This leaves one unpaired electron on each Ch atom that accounts
for the double donor characteristics of the pair. The propensity to form pairs
depends on the closeness of the atomic radius of the Ch atom to that of sili-
con. Hence, the S2 pair is the dominant centre in S-doped silicon after natural
cooling from the diffusion temperature, but isolated S concentration can be
increased by quenching. This dominance is illustrated by the fact that in the
first absorption measurements on sulphur donors [145], the ionization energies
obtained in the S-doped silicon samples and attributed to the S0 and S+ were
shown later to correspond to S2

0 and S2
+. Inversely, the spectrum of the Te2

pair is about one order of magnitude less intense than that of isolated Te. The
point group symmetry of the homonuclear Ch2 pairs is D3d. With this sym-
metry, the states with |m| = 0 correspond to the sum A1

+ + A1
− + E+ + E−

of IRs of D3d and those with |m| = 1 to A1
++A1

−+A2
++A2

−+2E++2E−.
The deepest state is 1s

(
A1

+
)

followed in this order by 1s (E+), 1s (E−), and
1s
(
A1

−). The symmetry-allowed transitions from the 1s
(
A1

+
)

ground state
are towards states involving the A1

− and E− IRs [118]. In silicon samples
doped with different chalcogen atoms (S/Se and Se/Te), spectra ascribed to
mixed pairs have also been reported [262].

At a difference with the inverted ground state configuration of interstitial
Li, the deep ground state of Mg0 is 1s (A1). The Mg0 spectrum in silicon is
shown in Fig. 6.12, together with an unidentified Mg-related complex denoted
XMg. This complex has been ascribed to a (Mg,O) centre ([102], and references
therein). The spectrum of Mg-diffused silicon also shows electronic lines on the
low-energy side of the Mg0 spectrum, which have been attributed to another
Mg-related centre with an ionization energy of ∼93 meV [152]. No transition
toward the even-parity states has been observed for this donor [103].



200 6 Donor and Donor-Like EM Spectra

800 850 900 950 1000
Wavenumber  (cm−1)

T
ra

ns
m

it
ta

nc
e 

(a
rb

it
ra

ry
 u

ni
ts

)

Si:Mg

5p± 5p±

4p±

E1 E1

4p±2p± 2p±

3p± 3p±

3p0 3p02p0 2p0

Mg0 XMg

Fig. 6.12. Transmittance spectrum of the Mg0 EM donor in silicon at LHeT, fol-
lowed at higher energy by another EM donor spectrum due to a Mg-related complex
XMg, identified later as a (Mg,O) centre. The lines are denoted by their excited state.
The arrows indicate unidentified lines and EI the ionization energies. The energy
range is 93–130 meV [249]. Copyright 1994 by the American Physical Society

The Ch-related donor spectra differ on that point as several parity-
forbidden transitions are observed. They start with symmetry-allowed transi-
tions from the 1s ground state to the valley-orbit split 1s excited states, and
are supplemented with 2s (T2) and 3s (T2) lines and Fano resonances within
the photoionization spectrum. This is shown in Fig. 6.13 for Se0. Compared to
group-V donors, this extends the energy span of the Ch0-related spectra to the
ionization energy of the 1s (T2) level (35–40meV in isolated chalcogens) and it
can even increase to 40–48meV when singlet-triplet spin-forbidden transitions
are observed.

The 1s state of isolated chalcogens, with Td symmetry, displays the same
kind of valley-orbit splitting as that of group-V donors. The 1s (A1) → 1 s (T2)
transition is observed for all the chalcogen atoms and its intensity is compa-
rable to that of the parity-allowed transitions, as seen in Fig. 6.13a while it
was about one order of magnitude weaker for Bi. Considering the magnitude
of the valley-orbit splitting, thermalization is clearly inappropriate in deter-
mining the energy of the 1s (E) state. Fortunately, there are no strict selection
rules for the Fano resonances with the photoionization spectrum, and such res-
onances have been attributed to the 1s (A1) → 1s (E) transitions assisted with
fTO and gLO phonons [119]. The 1s (A1

+) → 1s (E+) transition of the Ch2

pairs is symmetry-forbidden, but the positions of the 1s (E+) and 2s (A1
+)
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ionization energy of Se0 [118]. Copyright 1984 by the American Physical Society



202 6 Donor and Donor-Like EM Spectra

Wavenumber  (cm-1)

Se2
0 pairs in silicon

Res.: 0.5 cm-1 (62 µeV)

1s(E-)

1s(A1
-)

2s
3s

3d0

2p0 2p±1 3p±1

Photon energy  (meV)

A
bs

or
pt

io
n 

co
ef

fi
ci

en
t 

(c
m

-1
)

Fig. 6.14. Absorption spectrum at LHeT of the Se2
0 pairs in silicon showing the

first ns
(
A1

−) and ns
(
E−) lines and the 3d0 line

levels have also been determined from Fano resonances with the photoioniza-
tion spectra while the first ns (E−), and ns

(
A1

−) levels are determined more
accurately from the symmetry-allowed transitions, as shown in Fig. 6.14. The
ordering of the 1s (E−) and 1s

(
A1

−) levels has been deduced from absorption
measurements under a uniaxial stress [144].

The total spin of the donor electrons of the neutral double donors can be
0 or 1. Repulsion energy is minimized in the ground state for a spin zero state
and the singlet to triplet spin transition is in principle forbidden. However,
besides the relatively strong 1s (A1) → 1s (T2) line, a weak line attributed to
the 1s (A1) → 1s

(
3T2

)
singlet-triplet transition has been observed in Se0 and

Te0 spectra [22,210]; Pajot unpublished). The positions and FWHMs of these
lines are given in Table 6.12.

The singlet and triplet 1s (T2) transitions of Se0 are shown in Fig. 6.15,
where the intensities of the allowed 1s (T2) and forbidden 1s

(
3T2

)
transitions

are in a ratio ∼50/1 when weighted by the FWHMs, not far from 45/1 mea-
sured by Peale et al. [210]. This ratio decreases when the lattice distortion
induced by the foreign atom increases, and is ∼10/1 for Te0 [210].

In a natSi sample doped with 34S, a negative sulphur IS of −76 μeV(−0.61cm−1
)

with respect to 32S is observed for the 1s (T2) line of S0, and this
IS becomes −87 μeV

(−0.70 cm−1
)

for the 2p±(S2
0) line in a sample doped

with natS [233], in agreement with the isotopic shift model of [132]. Inversely,



6.3 Group-VI- and Mg Donors in Group-IV Crystals 203

Table 6.12. Energies and FWHMs (meV (cm−1 in parentheses)) of the 1s (A1) →
1s(3T2) and 1s(A1) → 1s (T2) transitions of Se0 and Te0 in natSi at LHeT [210]. For
S, the singlet-triplet transition is not observed

natSe0 natTe0 natS0

Line Energy FWHM Energy FWHM Energy FWHM

1s
(
3T2

)
266.117 0.04 151.059 0.05

(2146.38) (0.3) (1218.37) (0.4)
1s (T2) 272.210 0.06 159.658 0.36 283.722 0.035

(2195.52) (0.5) (1287.73) (2.9) (2288.37) (0.28)

Fig. 6.15. Absorption of the 1s (A1) → 1s
(
3T2

)
and 1s (A1) → 1s (T2) lines of Se0

([Se] ∼2.5×1016 at cm−3) in silicon under band-gap light illumination. The FWHM
of the 1s

(
3T2

)
line is ∼0.3 cm−1 (∼0.04 meV) and its position is 2146.40 cm−1. The

1s (T2) line is truncated and its peak absorption is 35 cm−1

matrix ISs of +223 and +119 μeV
(
1.80 and 0.961 cm−1

)
are observed for the

1s (T2)
(
32S0

)
and 2p±(32S2

0) lines, respectively, when a qmi 30Si host lattice
replaces qmi 28Si [233]. These latter ISs are due to the increase ofEg in qmi 30Si.

Table 6.13 summarizes the results of the determination of the first even-
parity levels of the isolated Ch0 atoms and of the Ch2

0 pairs in silicon, as
obtained from absorption measurements at LHeT. The EM ground state for a
He0–like double donor is 56.5meV, but it can be seen that the 1s split states
are already H-like.
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Table 6.13. Energies (meV) of the first even-parity levels of neutral isolated chalco-
gens and chalcogen pairs in silicon with respect to the CB. The optical ground state
energies Eio is the same as that of the deepest level (first row)

Level S0 Se0 Te0 EMT a Level S2
0 Se2

0 Te2
0

1s (A1) 318.340 306.675 198.869 1s(A1
+) 187.638 206.469 158.16

1s
(
3T2

)
40.558b 47.810b 1s(E+) 34.4d 33.2d

1s (T2) 34.618 34.465b 39.211b 31.26 1s(E−) 31.260 31.317 32.94

1s (E) 31.7c 31.4c 31.6d ” 1s(A1
−) 26.53 25.77 25.71

2s (A1) 18.4d 18.0d 15.2d 8.856 2s(A1
+) 15.3d 15.9d

2s (T2) 9.37 9.270 9.67 ” 2s(E−) 8.848 8.851
2s(A−) 8.247 8.141 8.15

3s (T2) 4.90 5.07 4.777 3s(E−) 4.792 4.79 4.76
3s(A−) 4.52

3d0 3.82 3.87 3.751 3d0 3.92a 3.89a 3.89
4s (T2) 2.84?a 2.99 2.911 2.81?a

a [118] for H-like donors, b [210], c [23], d [119]

One notes that the energy of the 1s
(
A−

1

)
level of the Ch2 pair is smaller

than the 1s EM value and a possible explanation has been proposed [220],
quoted by Bergman et al. [23]. The ionization energies of mixed S/Se, S/Te
and Se/Te neutral chalcogen pairs reported by Wagner et al. [262] are 191.9,
156.2, and 170.8meV, respectively. For S/Se and Se/Te, the values are between
the energies of the parent homonuclear pairs, but the one for S/Te is slightly
less than that of the Te2

0 pair.
With good natSi samples and stress-free mounting, the lowest FWHMs

measured for the neutral S-related complexes are about 25 μeV
(
0.20 cm−1

)
.

The FWHM increases with the atomic radius of the donor and is ∼0.125 meV(
1 cm−1

)
for the Te0 spectrum. Table 6.14 gives the positions of the first

parity-allowed transitions of the Ch-related double donors and of Mg0 in sili-
con, to which are added the positions of the lines of the first ChcX1 complexes.
Under high resolution, 2p0 (ScX1) is partially resolved into two components
in a ratio ∼6/1 for the highest energy one, and smaller unresolved splittings
are also observed for 3p0 and 4p0 of that centre. The positions of the lines of
the ScX3 complex have also been added to Table 6.14. A particularity of its
spectrum is the splitting of the 2p±1 line into a doublet.

It is interesting to compare the line spacings of these neutral double donors
with those measured for the single donors, given in Table 6.4. The correspond-
ing spacings are given in Table 6.15.

Table 6.15 shows that the level spacings of these He-like donors, when
neutral, correspond to H-like centres whose inner core includes the second
donor electron. At the spectroscopic level, this second electron manifests it-
self in the neutral spectra only through its spin, which can be detected in
one singlet to triplet transition. There is a noticeable correlation between the
S2p = 2p±1 − 2p0 difference for group-V donors of Table 6.4 and for group-VI
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neutral donors of the same row of the Periodic Table in Table 6.15, show-
ing the same trend in the local volume variation induced by a foreign atom
in the silicon lattice. This correlation has been used to ascertain that the
group-VI atoms are located on a substitutional site at a time when it was still
argued that they could be interstitial atoms [205]. For the chalcogen-related
complexes, the binding energy of the 2p0 level increases with the atomic dis-
tortion induced by the complex, but the correlation between the two electrons
must also play a role, as shown in the case of Mg0. The global perturbation
probed by the 3p±1 − 2p0 spacing follows the atomic radius of the chalcogen
atom and it increases for the complexes.

In Tables 6.3 and 6.14, the list of the parity-allowed transitions of single
donors and neutral double donors in silicon is limited to 6h±1 and 7p±1, re-
spectively. For some donor spectra, lines have been detected at higher energies
and their positions are given in Table 6.16.

Thus, for P and some neutral S-related complexes in natural silicon, the
absorption of about 24 parity-allowed transitions is observed. One can note
that while differences exist between the calculated and experimental energy
levels, the differences between the corresponding experimental energy spacings

Table 6.16. Energies (meV (cm−1 in parentheses)) at LHeT of the ultimate parity-
allowed transitions observed in the donor spectra of P [232], S0 [233], S2

0 and ScX
0
1

[204] in natSi. The energies (meV) of the excited states are given in brackets

P S0 S2
0 ScX1 EMTb

7p±1 (360.876) 44.7429 186.800 108.697
[0.835] [0.838] [0.841] 0.822

7f±1 (361.453) 44.8145 317.582 186.875 108.765
[0.763] [0.758] [0.763] [0.773] 0.750

7h±1 (362.029) 44.8859 317.655 186.945 108.840
[0.692] [0.684] [0.693] [0.698] 0.676

8p±1
a (362.40) 44.932 0.636

[0.646]
8f±1 (362.683) 44.9670 187.031 108.925

[0.611] [0.607] [0.613] 0.596
8h±1 (362.929) 44.9975 187.065 108.857

[0.580] [0.573] [0.581] 0.566
9p±1 (363.575) 45.0776 187.132 109.028

[0.500] [0.506] [0.510] 0.498c

9h±1 (364.113) 45.1443 187.204 109.11
[0.434] [0.434] [0.43] 0.438c

a (364.578) 45.2019 187.27
[0.376] [0.37]

b ±(364.957) 45.2489
[0.329]

± Reduced accuracy, a [275], b [204], c Broeckx and Clauws, unpublished
results
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of different donors remain small because it corresponds to differences between
nearly perfect EM energy levels: the 9p±1−7p±1 spacing for P, S2

0 and ScX1
0

are 0.335, 0.332 and 0.331meV, respectively, compared to the EM spacing of
0.324meV.

6.3.1.2 The Singly-Ionized Charge State

In compensated n-type silicon, double donors are in the singly-ionized charge
state at thermal equilibrium. The corresponding spectra are observed at about
twice the photon energies of those for the neutral charge state (the ratio of the
ionization energies of He+ and He0 is 2.213) and the line spacings are close to
four times the corresponding ones for the neutral charge state, otherwise, the
two spectra look similar. The FWHMs of the lines are somewhat larger than
those for the neutral charge state, and it is more marked for the lines closer
to the ionization limit. This arises partly from an inhomogeneous Stark effect
due to the compensation of the samples necessary to ionize the first electron.
The spectrum of Mg+ observed in p-type silicon diffused with Mg is shown
in Fig. 6.16.

As for Mg0, no even-parity transition is detected in the Mg+ spectrum,
but the Fano resonances involving the 2s (A1) and 2s (T2) transitions allow
determination of the position of these two levels [130]. This high-resolution
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Fig. 6.16. Transmittance spectrum of Mg+ in silicon at LHeT in the ∼205–255 meV
range. Four unidentified lines are denoted A, B, C, and D [249]. Copyright 1994 by
the American Physical Society
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Fig. 6.17. Enlargement of the spectral regions of the 2p±1 and 3p±1 lines of Mg+

showing their splitting (236 and 74 μeV, respectively) by valley-orbit and central-cell
interactions. The split components are indexed l and h in Table 6.18 [249]. Copyright
1994 by the American Physical Society

spectrum is interesting because the 2p±1 line is split into two components.
This is better seen in Fig. 6.17, which clearly shows the splitting of the 2p±1

line (already noted by Ho and Ramdas [103]) and of the 3p±1 line.
An EM spectrum attributed to the singly-ionized state of a (Mg,O) com-

plex has been observed in O-containing B-doped silicon diffused with Mg at
higher energy than the Mg+ spectrum, and the ionization energy of this cen-
tre is 274.90meV [102]. This seems to show that the (Mg,O) complex is a
double donor.

As for single donors, the spin of the donor electron of Ch+ allows for spin-
valley coupling and it splits the 1s(T2) state into 1s(T2)Γ7 and 1s(T2)Γ8

substates, similar to those already observed for Bi and Sb in silicon (Figs. 6.4
and 6.5), but here, because of the larger separation between the levels, it is
already observed for S+ [82]. This splitting is 0.366, 2.263, and 5.49meV for
S+, Se+, and Te+, respectively. In a natSi sample containing sulphur and mea-
sured at high resolution, many lines of the S+ spectrum have been observed
at LHeT, contrary to the parity-allowed transitions, the lines 1s(T2)Γ7 and
1s(T2)Γ8 (noted thereafter 1Γ7 and 1Γ8) remain sharp in this sample [206].
This allows the detection of a fine structure, shown in Fig. 6.18, which can
only be explained by assuming a combination of Si and S isotopic effects as-
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Fig. 6.18. High-resolution spectrum (see Table 6.16) of 1Γ7

(
S+
)

and 1Γ8

(
S+
)

in
natSi at LHeT showing components associated with different SSi4 isotopic combina-
tions. The FWHMs of 0 (Γ7) and of 0 (Γ8) are 22 and 30 μeV (0.18 and 0.24 cm−1),
respectively. The features attributed to 28Si2

29Si30Si are indicated by arrows [206].
Copyright 2004 by the American Physical Society

sociated with the S atom and its four Si nn, viewed as some kind of SSi4
pseudo-molecule.

This attribution is confirmed by the observation of an expected isotope
component (unresolved) of the 1Γ7 line in a silicon sample doped with sulphur
enriched with isotope 33S [206]. The isotope shifts observed for 1Γ7 and 1Γ8

with respect to the strongest component, noted 0 in Fig. 6.18, are given in
Table 6.17.

This IS is negative for larger Si atomic masses, but positive for larger S
masses. The magnitude of the S IS is slightly larger for 1Γ7 (+34 μeV/amu)
than for 1Γ8 (+30 μeV/amu), but it is the inverse for the Si IS (−34 and
−73 μeV/amu, respectively).

The 1Γ7 and 1Γ8 1s(T2) lines of S+ have recently been observed at 1.5K
in qmi 28Si at a resolution of 0.3 μeV

(
0.0024 cm−1

)
by Steger et al. [233].

The isotopic effect due to silicon is absent as well as the broadening of the
lines due to isotopic randomness existing in natSi. The FWHMs of 1Γ7 and
1Γ8 observed for 34S are 1.0 and 2.7 μeV, respectively (0.008 and 0.022 cm−1),
compared to 22 and 30 μeV in natSi at ∼6 K in Fig. 6.18. A FWHM of 1 μeV is
presently the smallest one ever reported for an electronic impurity absorption
line in silicon and probably in any bulk semiconductor. The FWHMs reported
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Table 6.17. Values of the shifts (μeV) from the 0 component of the isotope satellites
of 1Γ7

(
S+
)

and 1Γ7

(
S+
)

in natSi (accuracy: ±7μeV)

Satellite 1Γ7 shift 1Γ8 shift Attribution

H1 +69 +59 34S28Si4
+35 33S28Si4

0 − − 32S28Si4
L1 −34 −44 34S28Si3

29Si
L2 −69 −84 34S28Si3

30Si
−100 −120 34S28Si2

29Si30Si

The same value of +35μ eV is obtained for the 33S shift of
line Γ7 either by linear interpolation between the 32S and
34S values or by direct measurement in a sample enriched
with 33S. The last row is an estimation of the shifts of the
components denoted by arrows in Fig. 6.18 [206]. For the
positions of 0(Γ7) and 0(Γ8), see Table 6.18

for the np±1 transitions in qmi 28Si in Table 6.1 are more than twice as large
as the FWHM of 1Γ7 of S+ and this must also be related to the longer natural
lifetime of the parity-forbidden 1s (T2) transitions.

At high resolution, the absorption of 1Γ7

(
Se+
)

in natSi shows a pro-
nounced asymmetry,with a FWHM of 60 μeV

(
0.48 cm−1

)
, but no fine structure

is observed (see Fig. 6.19). This profile can, however, be explained by the
existence of six Se isotopes (the most abundant ones are 76Se, 77Se, 78Se, 80Se
and 82Se with natural abundances of 0.094, 0.076, 0.238, 0.496, and 0.087,
respectively), and it has been shown [206] that it could be reasonably fitted
to the individual isotopic components with FWHM of 27 μeV

(
0.22 cm−1

)
.5

The IS for Si resulting from this fit is −34 μeV/amu, the same as that
for S+, but the chalcogen IS decreases from +34 to +11 μeV/amu between S
and Se, in qualitative agreement with the mass increase. On this basis, a Te
IS of ∼5 μeV/amu and the same Si IS as that for the S+ and Se+ lines is a
reasonable estimate for the 1Γ7

(
Te+
)

line. On this premise, the global FWHM
of the 1Γ7

(
Te+
)

line in natSi is expected to be comparable to those for Se+

(the natural abundances (%) of 122Te, 124Te, 125Te, 126Te, 128Te and 130Te
are 2.6, 4.7, 7.1, 18.8, 31.7, and 34.1, respectively). Now, the true FWHM of
the 1Γ7

(
Te+
)

line measured at LHeT in natSi is ∼0.2 meV
(
1.6 cm−1

)
and the

line is rather symmetric. These differences with 1Γ7

(
Se+
)

seem to rule out
for 1Γ7

(
Te+
)

a profile determined by an isotope effect [206].

5 An IS of all the parity-allowed transitions of the B shallow acceptor in silicon
(10B and 11B), opposite to those for S+, has been observed by Karaiskaj et al.
[126] in qmi 28Si. Thus, the statement made by Pajot et al. [206] that the ISs
reported for S+ and Se+ were the first ones observed for EM-like donor and
acceptor absorption spectra in semiconductor was partially incorrect.
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Fig. 6.19. Peak fitting of the 1Γ7

(
Se+
)

profile with Si and Se ISs in natSi obtained
by summing the intensities of the 18 strongest SeSi4 isotopic combinations and
fitting the peak absorption and energy of the 80Se28Si4 component to 3.28 cm−1 and
427.346 meV [206]. Copyright 2004 by the American Physical Society

The 1Γ7

(
Se+
)

component has recently been measured in a natSi sample
doped with 77Se and in qmi 28Si samples doped with natSe or 77Se [248].
With 77Se, the absorption of 1Γ7

(
Se+
)

in natSi shows three components
with a FWHM ∼25 μeV

(
0.2 cm−1

)
, close to the value obtained from the fit

used in Fig. 6.19. This is due to the Si isotope effect involving the 77Se28Si4,
77Se28Si293 Si and 77Se28Si303 Si combinations. In the qmi 28Si sample doped
with natSe, the lines of the fine structure observed are only due to the Se
isotope effect, with FWHMs ∼1.0 μeV

(
0.008 cm−1

)
, and relative intensities

matching the Se natural abundance. With such small FWHMs, the Se IS of
+9 μeV/amu can be measured directly and is in reasonable agreement with
the fitted value of Fig. 6.18 (+11 μeV/amu). In the qmi 28Si sample doped
with 77Se, the structure simplifies, but two lines are still observed separated
by 0.056 cm−1 (∼7 μeV), the hyperfine splitting due to the coupling of the spin
1
2 of 77Se nucleus with the electron spin. This 1s (A1) ground state hyperfine
splitting can be determined by optical absorption spectroscopy because of
the very small FWHM of the 1Γ7

(
Se+
)

component in qmi silicon. In nat-
ural material, it is obtained more easily (and more accurately) from ESR
measurements. The value actually obtained by this method for 77Se in natSi
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is (5.532 ± 0.002) × 10−2 cm−1 [81]. When a magnetic field is applied, the
electronic and nuclear spin contributions can be separated and the g-factors
of the 1s (A1) and 1s (T2) Γ7 states be determined [233].

The Si IS is explained by considering the S-Si bond softening effect of the
SSi4 pseudo-molecule in the electronic ground state, which is larger than that
in the excited state. The positive IS of S is attributed to the effect of a vibronic
coupling in the electronic excited state with the τ2 mode of vibration of SSi4
within the bond softening framework.

With the exception of the 1s (T2) Γ7 and 1s (T2) Γ8 lines of S+ and Se+, the
lines of the spectra of the singly-ionized chalcogen-related donors are broader
than those of the neutral donors. One reason for this is the inhomogeneous
Stark broadening due to the ionized donors themselves and the compensating
ionized acceptors; this usually reduces the number of lines observed. As al-
ready mentioned, the spacing between corresponding lines of singly-ionized
He-like donors is multiplied by a factor of four

(
Z2
)

compared to the neu-
tral H-like donors. Hence, level splitting induced by the atomic structure of
non-cubic donor centres produces detectable line splittings which were barely
observed in the neutral state. The positions of the lines observed in the S+,
Se+, and Te+ spectra are given in Table 6.18, together with the energies of
the corresponding excited levels.

Table 6.18. Positions (meV) of the first lines of singly-ionized isolated chalcogen
and Mg spectra in silicon at LHeT

Line S+ Se+ Te+ Mg+a EMT

1s (T2) Γ7 429.233∗(184.56) 427.341 (162.1) 234.574 (176.2) 125.05
1s (T2) Γ8 429.599∗ (184.19) 429.594 (159.8) 240.06 (170.7) ”

2p0 568.03 (45.76) 547.15 (42.2) 364.4b (46.4) 208.66 (48.02) 45.96

2s (T2) 573.14 (40.65) 374.4b (36.4) 35.44

2p±1 588.01 (25.78) 563.8c [25.6.] 385.2b[25.6] l 230.25 (26.43) 25.61
h 230.48 (26.20)

3p0 592.27 (21.52) 233.91 (22.77) 21.92
3s (T2) 593.04 (20.75) 19.12

3d0 598.52d (15.27) 15.00
4p0 243.05 (13.63) 13.24

3p±1 601.32 [12.48] 578c l 243.98 (12.70) 12.48
h 244.06 (12.62)

4s (T2) 601.99 (11.80) 11.64

4p±1 605.8† (8.0) 247.93 [8.75] 8.75
5p±1 608.07 (5.73) 250.87 (5.81) 5.80

Eio 613.80 589.4c 410.8b 256.68

The energies of the excited levels (in parentheses) are normalized to four times the
calculated EM energy of the 3p±1 state for S+, of the 2p±1 state for Se+ and Te+,
and of the 4p±1 state for Mg+, noted in brackets. The energies of the last column
are four times the EMT values of [118] for neutral single donors
∗ Lines 0 of Fig. 6.18, † Blended with 5s (T2),

a [249], b [81], c [243], d [142]
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The positions (meV) of the (Mg,O)+ lines given by Ho [102] are 227.07
(2p0), 248.83 (2p±1), 252.38 (3p0), 262.42 (3p±1), and 266.36 (4p±1), resulting
in Eio = 274.90 meV.

Lines due to 5f0, 5f±1, and 6h±1 are observed in the S+ spectrum at
607.50, 608.07, 608.76, and 610.32meV, respectively, and the energy levels ob-
tained for the excited states are in good agreement with the EMT values [206].
The 2s (T2) line of S+ at 573.14meV is relatively broad, due to unresolved
spin-valley splitting. The profile of 2p± (S+) is asymmetric and the 34S −32S
IS of that line has been measured to be −175 μeV

(−1.41 cm−1
)

in natSi.
The asymmetry persists in qmi 28Si and 30Si, but in qmi 28Si :77 Se, the
2p±

(
77Se+

)
transition shows a splitting of 166 μeV

(
1.34 cm−1

)
[233], which

can be compared with the one for Mg+.
In natSi samples diffused with 34S, an IS of −0.14 meV

(−1.1 cm−1
)

with respect to 32.07S (natural S) has been measured for the parity-allowed
transitions of the 34S+ spectrum by Forman [64] and a comparable value
(−0.175 meV or –1.41 cm−1) has been reported by Steger et al. [233]. The
sign of IS, which is in agreement with the model of [132] is the opposite of the
above-reported one for the parity-forbidden 1 s (T2) Γ7 and Γ8 transitions of
S+ and Se+, which is related to different vibronic coupling effects.

Some lines associated with the deepest donor excited states of the S2
+

and Se2
+ pairs and of ScX1

+ and SecX1
+ have also been observed and their

positions are given in Table 6.19. By analogy with the 1 s (T2) state of the
Ch+ donors, the 1 s (E−) state of the Ch+

2 donors with D3d symmetry can be
assumed to be split by spin-valley interaction into 1 sΓ−

5 and 1 sΓ−
6 , where Γ−

5

and Γ−
6 are single-valued IRs of the double group of D3d. In Table 6.19, the

two first low-energy lines of S2
+ and Se2

+ are labelled accordingly.
The position of the line attributed to 3p±1

(
SecX1

+
)

is of rather lower en-
ergy than expected by EMT and the reason for this is not clear. A spectrum
of Se2

+ is displayed in Fig. 6.20. In this spectrum, the low-energy 1s compo-
nents are globally denoted 1s (E−). This spectrum is partially superimposed
on the photoionization spectrum of Se0 and the transitions of Se2

+ above 3p0

are severely broadened.
The high- and low-energy component of the 2p lines of the Ch2

+ pairs
have been tentatively attributed to 2p (E−) and 2p

(
A1

−), respectively.
It is interesting to compare the ratio of the ionization energies of the

chalcogen-related double donors and Mg in the singly ionized and neutral
states. For the isolated chalcogens, it is 1.96, 1.93 and 2.07 for S, Se and Te,
respectively, but it rises to 2.39 for Mg and 2.56 for ScX1, compared to an
EM ratio of 2.21. The 2p±1 and 3p±1 lines of the Ch2

+ spectra are split into
a doublet attributed, for Mg+, to the valley-orbit splitting. This splitting,
which is not observed for the isolated Ch+ donors, is larger for Se2

+ than for
S2

+, and larger for 2p0 than for 2p±1. While the lines of the S2
+ spectrum

can be identified up to 4p±1, the 3p±1

(
Se2

+
)

transition is broad and no line
is observed at higher energy for that centre.
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Table 6.19. Positions (meV) of lines of the singly-ionized S2
+, Se2

+, ScX1
+, and

SecX1
+ donors in silicon at LHeT

Line S2
+ Se2

+ ScX1
+a,b SecX1

+c EMTb

1sΓ5
− 220.98 (150.14) 264.55 (124.9) 163.2 (84.0) 154.3 125.05

1sΓ6
− 221.54 (149.58) 270.9 (118.6)

221.93 (149.19) 272.88 (116.6)
225.77 (145.35)

1s
(
A1

−) 274.9b (96.2) 296.64 (92.9)
2p0 323.45 (47.67) 340.34 (49.2) 201.6 (46.3) 166.3 (47.4) 45.96

324.74 (46.38) 342.51 (47.0)
2s 340.01 (31.11) 358.34 (31.2) 220.8 (26.4) 35.44
2p±1 344.51 (26.61) 362.52 (27.0) 222.0 (25.9) 188.1 [25.6] 25.61

344.84 (26.28) 363.29 (26.2)
362.3c (27.2)

3p0 348.48 (22.64) 365.98 (23.5) 225.3 (22.6) 21.92
349.0 (22.1) 367.1 (22.4)

3d0 355.51d (15.61) 15.00
3p±1 358.64 [12.48] 377.0c [12.5] 235.4 [12.5] 197.2 (16.5) 12.48
4s 362.58 (8.54) 11.64

Eio 371.12 389.5∗ 247.9b 213.7c

Eio is obtained by adding 12.48 meV to the position of the 3p±1 line. The energies
of the excited states are indicated in parentheses. There are interferences between
the 1s(S2

+) and 2p±1(ScX
+
1 ) lines

a [262], b [118], c [243], d [142]

6.3.1.3 Other Chalcogen-Related Donors

Spectra due to other Ch-related donor complexes in silicon have also been
reported [118,243,262] and these complexes have been denoted ChcXn where
index c represents complex and n = 2, 3, 4, and 5. The spectroscopic data
of the ChcX1 complexes and of ScX3 are already included in Tables 6.14 and
6.15. The spectra of the other complexes show only a few lines and their main
characteristics are given in Table 6.20. Each chalcogen is given in order of
decreasing ionization energies and a correlation between the indices and the
atomic structure of the complexes has not been established.

The 3p±1−2p0 spacings of the TecXi complexes other than TecX1 are close
to the EM value. This has also been observed in other measurements (Pajot,
unpublished results) and the reason for this is not clear. An increase in the
ionization energies of the corresponding complexes from S to Te, at the in-
verse of those of Table 6.14 for the isolated neutral chalcogens and chalcogen
pairs are observed. The positions of the lines of complex ScX2, whose con-
centration is low in most S-doped samples, are not indifferent, in connection
with the partial passivation of S0 by hydrogen discussed below. The values
deduced by Janzén et al. [118] for the 2p±1, 3p±1 and 4p±1 lines of ScX2 are
690.4, 716.9 and 724.3 cm−1 (85.60, 88.88 and 89.80meV), respectively. Line
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Fig. 6.20. Spectrum of Se2
+ in silicon under TEC at LHeT. The sample contains

a small concentration of Se0. Due to the experimental conditions, the only Se0 line
observed is the sharp 1s (T2) line at 272.2 meV

(
2195 cm−1

)
, barely visible, plus

Fano resonances of the same transition

Table 6.20. 2p±1 − 2p0 spacings and ionization energies (meV) of ChcXi chalcogen
complexes in silicon [262]

ScX2 ScX3 ScX4 ScX5 SecX2 SecX3 TecX2 TecX3 TecX4 EM

3p±1 − 2p0 8.6 8.7 8.7 8.66b 8.4 8.4 8.3 8.37
Eio 92.00a 82.1 80.6 56.5 94.22 53.1 109.8 93.3 73.1

a [118], b Pajot, unpublished results

2p0 (ScX2) must be close to a transition toward a 1s excited state of ScX1 and
to 4f±1 (ScX3), though it has not been identified with certainty.

In silicon, the electrical activity of group-V donors can be passivated by
hydrogen, when a Si − H bond involving the donor electron is formed on a
Si atom nn of the donor. For double donors, IR absorption allows one to
make a difference between full passivation of the electrical activity of the
double donor centre, resulting in a decrease or a disappearance of the elec-
tronic spectra, and partial passivation of the centre, where the same effect is
accompanied by the appearance of the spectrum of a new single donor. While
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DLTS measurements have concluded the full hydrogen passivation of the elec-
trical activity of the isolated chalcogen donors and donor pairs [212], IR mea-
surements have demonstrated partial hydrogen passivation of the S-related
donors [211]. In the S-doped hydrogenated samples, the intensity of the ScX2

spectrum, very weak in the spectra of the non-hydrogenated samples, was
found to increase by more than one order of magnitude after hydrogenation.
In addition, four new EM single-donor spectra were observed, together with a
small decrease of the intensities of the S-related spectra measured before hy-
drogenation. These results show a small, but effective passivation by hydrogen.
In hydrogenated samples, the lines of the spectrum of ScX2 show a shift of
−2.2 cm−1 (−0.27 meV) when 1H is replaced by 2H, indicating that a hydrogen
atom is part of this complex. This proves that ScX2, relabelled (S,H)c [92 meV]
by Peale et al. [211], with the indication of the ionization energy, and here
more simply (S,H)c1, is a partially hydrogen-passivated double donor centre
existing in a small concentration in as-doped samples. The four new (S,H)
spectra denoted (S,H)c [135.07 meV], (S,H)c [135.45 meV], (S,H)c [82.4 meV],
and (S,H)c [82.6 meV] in the original reference (here, (S,H)c2 (S,H)c3 and
(S,H)c4 (S,H)c5, respectively) are divided into two pairs, (S,H)c2-(S,H)c3
and (S,H)c4-(S,H)c5, with relatively close ionization energies. It is assumed
that the lowest-energy spectrum of each pair is derived from the split upper
ground state of the same centre, but differences observed in relative intensities
of the corresponding lines of the pair for different cooling-down procedures af-
ter high-temperature hydrogenation indicate that the two spectra of each pair
are due to two distinct centres. As for (S,H)c1, the (S,H)c2-(S,H)c3 pair shows
a 1H/2H isotope effect, displayed in Fig. 6.21 for the 2p0 lines, confirming the
presence of hydrogen in the atomic structure of (S,H)c2 and (S,H)c3. This
residual passivation can also be present for other chalcogens and be related
to other complexes of Table 6.20.

The lines of the (S,H)c4-(S,H)c5 pair are close to those of ScX3 (see
Table 6.20), but they do not show any 1H/2H isotope effect. The ionization
energies of the above-discussed (S,H) complexes are summarized in Table 6.21.

The first spectroscopic evidence of the presence of (S,H) and (S,D) centres
in hydrogenated S-doped silicon was actually provided by Love et al. [155] in
a study of spectral hole burning in the 2p0 and 2p±1 lines of the (S,H)c2 and
(S,H)c3 spectra inhomogeneously broadened in Si0.999Ge0.001 alloy samples.

In the absence of absorption measurements under uniaxial stress, there
has been no correlation between the spectra and specific hydrogenated double
donors. Two spin 1/2 ESR spectra, Si-NL54 and Si-NL55, have been reported
in hydrogenated S-doped silicon [277]. They are due to centres with <111>
axial symmetry, and the corresponding ENDOR measurements on samples
enriched with 33S isotope and on samples where 2H2 is used for hydrogenation,
show that each centre contains one S and one H atom.
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Fig. 6.21. 1H/2H isotope effect of the 2p0 lines of the centres (S,H)c2 and (S,H)c3 in
silicon at 1.7 K. The resolution is 0.5 cm−1 (62 μeV) (after [211]). Reproduced with
permission from Trans Tech Publications

Table 6.21. Ionization energies (meV (cm−1 in parentheses)) of the (S,H) EM donor
complexes in silicon with the above-defined notations (after [211]). No line positions
were given in that reference

(S, H)c1(ScX2) (S,H)c2 (S,H)c3 (S,H)c4 (S,H)c5

92.0 (742) 135.07 (1089.4) 135.45 (1092.5) 82.4 (665) 82.6 (666)

6.3.2 Germanium

There has been much less work on the properties of chalcogens in germa-
nium than in silicon. The review by Grimmeiss et al. [84] shows that a larger
difference between the ionization energies of the group-V and -VI donors is
observed in germanium than in silicon: the ratios of the ionization energies
of the (S0/P), (Se0/As), and (Te0/Sb) pairs are ∼22, 19, and 9, respectively,
in germanium compared to ∼7, 5.7, and 4.7, respectively, in silicon. This dif-
ference in the ionization energies is also mirrored in the singly-ionized charge
state. A comparison between the energy levels measured for the Se and Te
donor in germanium and those for P is given in Table 6.22. The results of [192]
for Se0 are obtained from germanium samples enriched with 74% 76Ge doped
with 77Se by NTD (see Table 2.1). In this reference, the level denoted 4p±1,
following [30], corresponds to 4f±1 in Faulkner’s notation (used throughout
the book).
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Table 6.22. Comparison of the first energy levels measured for Se0, Te0, and Se+

in germanium with the calculated EM values [30] and those measured for P (meV
units). The values for Se+ are divided by four except for 1s(A1). FR stands for Fano
resonance

Level Se0 a Se0 b Te0 b Se+ b P EMT

1s (T2) 9.99 9.95 10.08 9.84
2s (A1) 7.4 (FR) 3.60
2p0 4.78 4.75 (4.7) 4.80 (FR) 4.75 4.78
2s (T2) 3.58 3.60
3p0 2.63 2.57 2.55 (FR) 2.56 2.59
2p±1 1.73 1.73 1.73 1.73 1.73 1.73
3p±1 1.07 1.04 ± 0.03 0.98 1.04 1.04
4f±1 0.65 0.61 0.61
1s (A1) or Eio 268.85 268.22 93.4 512.4 12.89

a [192], b [84]
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Fig. 6.22. Absorption between 2055 and 2420 cm−1 of 77Se0 in a qmi Ge sample
with

[
77Se

]
= 3 × 1015 cm−3. FR is the Fano resonance. The energy of the O (Γ)

phonon is 37.7 meV
(
304 cm−1

)
(after [192]). Copyright 1998, with permission from

Elsevier

The positive difference (+0.63 meV) between the values of Eio

(
Se0
)

in
the sample enriched with 76Ge and natGe sample could be attributed to the
increase of Eg in qmi 76Ge.

The absorption spectrum of 77Se0 obtained at LHeT by Olsen et al. [192]
in the germanium sample enriched with 76Ge is shown in Fig. 6.22.
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An evoked possibility of n-type doping of diamond with sulphur [219] has
aroused an interest for the electronic properties of this element in diamond.
It is now well established that, as expected from the properties of chalcogens
in silicon and germanium, S behaves in diamond as a deep donor, with an
ionization energy of ∼1 eV for S0, predicted from the ab initio DFT calcula-
tions [177]. However, the existence of S-related complexes with native defects
or impurities like B is a possibility which could explain some appealing ex-
perimental results ([37], and references therein).

6.4 O-Related Donors in Group IV Crystals

In silicon with relatively high Oi content, thermal annealings at temperatures
between ∼400 and 600◦C produce what is known as oxygen-related thermal
donors. Some of them have only O and Si as constituents and they are double
donors, with electronic absorption comparable to the Ch-related centres and
Mg. Similar centres have also been observed in O-containing germanium. In
CZ silicon, containing appreciable concentrations of nitrogen and/or hydro-
gen, other donors with lower ionization energies, known as shallow thermal
donors, include FAs other than O and Si, and H has been identified with
certainty as one of these atoms. Other donors with still smaller ionization
energies, known as ultrashallow thermal donors, seem to also involve carbon.
The electronic spectroscopy of these donors is presented below.

6.4.1 The Thermal Double Donors

Half a century ago, Fuller and Logan [68] published the first evidence of
the production of donors in oxygen-containing silicon heat-treated between
350 and 500◦C. It has been pointed out in Sect. 2.2.2.1 that CZ silicon was
oversaturated with Oi at RT. Annealing this material at higher tempera-
tures is expected to induce modifications in the oxygen distribution, and this
correlation was recognized in a detailed study by Kaiser et al. [124], who
proved that annealing CZ silicon between 350 and 550◦C produced donor
centres associated with oxygen. They were logically called thermal donors or
more precisely 450◦C thermal donors, as their production rate was maximum
near from 450◦C, and also because later, new O-related centres were found
to be produced by annealing between 650 and 800◦C. The 450◦C thermal
donors have a limited stability domain and become unstable when temper-
ature rises above 550◦C. They can be totally removed by a relatively short
time (∼10mn) annealing at temperatures above 800◦C, followed by quenching
at RT. During the post-growth cooling-down, the CZ silicon crystals spend
some time in a temperature range where TDs can be produced and hence,
the as-grown CZ crystals already contain these thermal donors at a concen-
tration, which depends on the cooling rate. These crystals, therefore, require
a thermal treatment to reach their initially-planned resistivity. Because of its
importance in the electrical properties of silicon, the production kinetics of
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thermal donors has been widely investigated. For instance, in annealing ex-
periments in the temperature range known to produce these centres, their
maximum concentration was found to be proportional to the 3rd power of the
initial Oi concentration, and their initial formation rate to the 4th power of
the same concentration [124]. This latter fact was the reason why it was then
proposed that these centres involved four O atoms (a SiO4 entity).

The n-type doping observed in germanium, accidentally polluted by air
admission during zone refining, led to assume that, like chalcogens, the O
element was a n-type dopant in germanium [57]. This assumption was clarified
by the work of Bloem et al. [27], which proved the existence of O-related donor
complexes containing several O atoms.

6.4.1.1 Silicon

The first IR measurements on silicon samples saturated with oxygen near
the melting point, either as-prepared or further annealed at 430◦C, produced
electronic spectra similar to those of the group-V donors, showing the simul-
taneous presence of several different new EM donors [106]. Renewed interest
for these TDs was triggered by Wruck and Gaworzewski [271], confirming
the presence of several TDs and demonstrating that they were in fact double
donors. They were relabelled thermal double donors or TDDs, identified by
index i = 1, 2, etc. by order of decreasing ionization energy [263]. The differ-
ent varieties of TDDs can be obtained in CZ silicon by varying the duration
of the 350–550◦C annealing and the post-annealing thermal treatments. In
as-grown CZ crystals, only the TDDs up to ∼i = 4 are produced, with TDD2
and TDD3 being predominant. The variation of the contributions of different
TDDs as a function of annealing time can be estimated from Figs. 6, 7, and 8
of [263]. The absorption spectra associated with the neutral TDDi0 (or TDi0)
have been reported up to i = 16, with ionization energies ranging from 69.3
to 41.9meV (558 to 338 cm−1) and those associated with the singly-ionized
TDDi+ up to i = 9, with ionization energies ranging from 156.3 to 116meV
(1260 to 935 cm−1).

A centre, called the α trap in connection with the study by Haynes and
Hornbeck [98], has been reported to be the first TDD species, but without
giving data on its ionization energies [159]. The electronic properties of this
centre, labelled BTD-α for bistable thermal donor, or alternatively TDD0,
have remained elusive for some time and they will be discussed with the
metastability properties of the TDDs. To avoid any confusion in the following,
the ionization energies of the different TDDs in the neutral and singly-ionized
states are listed in Table 6.23. Apparently, no data have been reported for
TDDi+ above TDD9.

A thermal donor denoted TDD7′, with an ionization energy of 55.8meV
when neutral, has been added to this list by Emtsev et al. [58]. The ratio
Ei+/Ei0 varies from 2.25 for i = 1 and stabilizes to 2.19 for i = 7, close to the
EM ratio 2.21 for He-like donors. As the energy spans of the parity-allowed
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Table 6.23. Ionization energies (meV) of the thermal double donors TDDi in silicon,
denoted here i, and indexed 0 and + in the neutral and singly-ionized states

i 0a 1b 2b 3b 4b 5b 6b 7b 8b 9b

Ei0 72.4 69.2 66.8 64.6 62.2 60.1 58.0 56.5 54.5 53.0
Ei+ 164.1 156.3 149.7 143.8 138.2 133.0 128.3 123.6 119.3 116.0

i 10b 11b 12c 13c 14c 15c 16c

Ei0 51.4 49.9 48.3 46.6 45.0 43.4 41.9

a [176], b [263], c [77]

Fig. 6.23. Absorption of the first TDDi0, denoted here i0, in as-grown CZ Si:P with
[P] = 3× 1014 at cm−3, cooled and recorded under band-gap-light illumination. The
mixing of the spectra produces in some cases near coincidences of lines pertaining
to the spectra of different TDDs. A broad Oi vibrational feature at 517 cm−1 is
superimposed on the electronic spectra

neutral and singly-ionized EMT donor spectra are about 12 and 48meV, re-
spectively, one can infer from Table 6.23 that the spectra of the different TDDs
superimpose on each other. This can be seen in Fig. 6.23, showing the elec-
tronic absorption of the first TDD0s in an as-grown P-doped silicon sample.

This figure also shows the splitting of the 2p±1 lines of TDD20, TDD30

and TDD40. Despite the proximity of the 5p±1

(
TDD30

)
line seen as a high-

frequency elbow, the value of the splitting estimated for 2p±1

(
TDD10

)
is in
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Table 6.24. Positions (meV (cm−1 in parentheses)) at LHeT of the lines of the first
TDD0s in silicon

Line TDD00a TDD10 TDD20 TDD30 TDD40

2p0 60.5 (488) 57.231 (461.60) 54.807 (442.05) 52.5 (423)b 50.2 (405)b

2p±1
l 66.15 (533.5) 62.91 (507.3) 60.516 (488.03) 58.162 (469.05) 55.91 (450.9)

2p±1h 62.97 (507.8) 60.603 (488.73) 58.280 (470.00) 56.028 (451.84)
3p0 63.67 (513.5) 61.223 (493.73) 58.893 (474.94) 56.5 (456)b

3p±1 69.3 (559) 66.197 (533.85) 63.779 (514.35) 61.441 (495.49) 59.178 (477.24)

4p±1 67.103 (541.15) 64.688 (521.68) 62.347 (502.80) 60.09 (484.6)
4f±1 67.37 (543.3) 64.983 (524.06) 62.635 (505.12)
5p±1 67.837 (547.07) 65.425 (527.62) 63.08 (508.7)
6p±1 68.215 (550.12) 65.802 (530.66) 63.45 (511.7)
6h±1 65.97 (532.0) 63.6 (513)*
5p±1−2p0 8.8 8.97 8.97 8.9 9.0
Eio 72.4 69.30 66.88 64.53 62.30

Except for TDD0, the uncertainty varies between ±0.1 and 0.2 cm−1 (13 and
25 μ eV). The ionization energy Eio is obtained by adding to the 3p±1 line posi-
tion the calculated EM value (3.120 meV) of the 3p±1 state
* Elbow or near-coincidence, a [176], b [263]

good agreement with those (0.5 cm−1 or 62 μeV) reported by Marinchenko
et al. [161] from measurements with 0.1 cm−1 (13 μeV) resolution (no line po-
sition is given in this reference). Table 1 of [263] is supplemented by Table 6.24,
which gives the 2p±1 splitting of the first TDDs0 and the positions of a few
lines not included in the former tables.6 Some of the isolated lines of Table 6.24,
like 2p0

(
TDD20

)
, show asymmetry and the positions indicated, which can

vary slightly with resolution, are those of the maximums for a spectral resolu-
tion of 0.3 cm−1 (37 μeV). For TDD50 and TDD60, which are seemingly the
lowest energy donors for which a splitting of the 2p±1 line has been measured,
the splitting for both donors is 1.5 cm−1 (0.186meV). The splitting of 2p±1

into two components 2p l
±1 and 2p h

±1 (l for low and h for high) seems to
be obvious, but a deconvolution analysis of the profile of 2p±1

(
TDD50

)
has

revealed, at least for that thermal donor, a triplet structure with components
at 433.5, 434.0 and 435 cm−1 [161]. The absorption spectrum of TDD0 has
been reported by Murin et al. [176] under specific conditions which will be
discussed later.

Considering the He-like ionization energies of the TDDs and their elec-
tronic degeneracy, no parity-forbidden transition equivalent to the 1 s (T2)
line is observed in the TDD spectra.

The comparison of the lines spacings of the TDD10 and TDD20 spectra
with those of the group-V, neutral group-VI and Mg0 spectra shows an EM
behaviour of the unsplit np±1 lines with n > 2. For i > 4, reliable values of
the TDDi0 ionization energies depend on accurate measurements and identifi-

6 The positions of the lines of TDD12 to TDD16 are given in Table 1 of Götz
et al. [77].
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cations of 3p±1 or 4p±1 lines, a difficult task because of their weak intensities
and already mentioned coincidences with other lines. The energy of the 2p0

level of the TDD1-TDD12 donors varies around 12.0meV compared to the EM
value of 11.49meV, but starting with TDD120, a decrease of the energy of this
level is measured, which reaches 11.3meV for TDD160. The 3p±1–2p0 spac-
ings of the first TDDi0 are significantly larger than the EM value (8.37meV),
indicating a strong perturbation with respect to a point charge model.

In CZ silicon doped with acceptors and turned n-type by the production
of TDDs either during cooling-down or during annealing at ∼350–550◦C, one
can observe TDD+s spectra similar to the singly-ionized chalcogen spectra
of Sect. 6.3.1.2. In p-type material, the observation requires external band-
gap radiation pumping for partial neutralization of the TDD++s. It must be
pointed out that the TDD+s spectra can also be observed at LHeT under
TEC in samples where these centres are supposed to be neutral. This effect
is due to the photoionization of the TDD0s by the RT background radiation
coming through the optical windows and from the sampling beam itself. The
TDD+ spectra are characterized by a splitting of the 2p±1 lines, which is
larger than the one in the TDD0 spectra, and also by a splitting of the 3p±1

lines, reported earlier for 3p±1

(
Mg+

)
. An overall spectrum of the TDD+s in

a p-type CZ silicon sample with a B concentration near 1015cm−3, annealed
for 1 h at 450◦C, is shown in Fig. 6.24. The total TDD++s concentration is

Fig. 6.24. Absorption spectrum at LHeT under band-gap-light illumination of the
first TDDi+, denoted here i+, after short-term annealing. The same sample, p-type
under TEC, is used as a reference



6.4 O-Related Donors in Group IV Crystals 225

about 2.5 × 1014 cm−3 and thus, the sample is still p-type. As mentioned
before, partial neutralization of the TDDs is achieved here by controlling the
intensity of the pumping band-gap radiation [203].

It is interesting to note that weak lines of TDD0+ are observed in this spec-
trum, superimposed for two of them on lines of other TDDs. Above 1240 cm−1,
the 4p±1, 4f±1, and 5p±1 lines of TDD0+ reported by Murin et al. [176] are
also observed in this spectrum.

Table 6.25 gives the positions of the lines of singly-ionized TDDs in silicon.
The positions of 2p0 line for TDD7+ and TDD8+ are 613.8 and 585.1 cm−1

(76.10 and 72.54meV), respectively. The splitting of the 2p±1 transition for
the higher TDDi+ is rather large (29 cm−1 for TDD9+) and is given in Table
1-b of [263]. The 3p±1 transition of these centres is also split and superimposed
on other lines, making its detection very difficult.

Table 6.25. Positions (meV (cm−1 in parentheses)) at LHeT of the lines of the
singly-ionized TDDs in silicon. Up to TDD4+, the ionization energy Eio is obtained
by adding to the 4p±1 line position the calculated energy level (8.75 meV) of the
4p±1 state. The uncertainty is ±0.2 cm−1 (±25 μeV)

Line TDD0+a TDD1+ TDD2+ TDD3+ TDD4+ TDD5+ TDD6+

2p0 114.39 105.93 99.97 94.58 88.502 84.20 79.97
(922.6) (854.4) (806.3) (762.8) (713.82) (679.1) (645.0)
(920.6)c

2p±1
l 137.87 129.48 122.96 117.17 110.22 105.03 99.07b

(1112) (1044.3) (991.7) (945.0) (889.0) (847.1) (804)

2p±1
h 138.34 130.01 123.76 118.07 112.16 106.89 102.32

(1115.8) (1048.6) (998.2) (952.3) (904.6) (862.1) (825.3)
3p0 127.06

(1024.8)

3p±1
l 151.4 143.24 137.04 131.14 125.45 120.0b

(1221) (1155.3) (1105.3) (1057.7) (1011.8) (968)

3p±1
h 151.5 143.39 137.28 131.42 125.79 120.5b

(1222) (1156.5) (1107.2) (1060.0) (1014.6) (972)
4p±1 155.4 147.22 141.11 135.17 129.4

(1253) (1187.4) (1138.0) (1090.1) (1044)
4f±1 156.6 148.45 142.21 136.30

(1263) (1197.3) (1147.0) (1099.3)

5p±1 158.3 150.16 143.92 138.0†

(1277) (1211.1) (1160.8) (1113)

6p±1 151.6† 145.51
(1223) (1173.6)

Eio 164.1 155.97 149.84 143.90 138.2 133.0b 128.3b

† Superimposed on 3p±1

(
0+
)
, ‡ Superimposed on 2p±1

(
0+
)
, a [176], b [263],

c Pajot, unpublished
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Fig. 6.25. Spacing 2p±1
h−2p±1

l of the components of the 2p±1 lines of the TDDi+

spectra for increasing values of i [263]

Table 6.26. Energies (meV) of the 2p0 levels of TDDi+ donors, identified as i+,
compared to the He+-like EM value (Pajot, unpublished, [263])

0+ 1+ 2+ 3+ 4+ 5+ 6+ 7+ 8+ He+-like

50.0 50.04 49.84 49.33 49.8 49.0 48.4 47.6 46.8 46.0

The step-like increase of the spacings between the observed components
of the 2p±1

(
TDDi+

)
lines for increasing values of i can be seen in Fig. 6.25.

The energies of the 2p0 levels of the TDDi+ donors are significantly larger
than the EM value, taken as four times the H-like value. This is shown in
Table 6.26, but their values tend to decrease with i, a trend already observed
for the TDDi0 donors, but for larger values of i.

The TDD+s should be paramagnetic and an ESR spectrum labelled NL8
has been related to the TDD+s [174]. This will be discussed further in Chap. 8
in connection with the piezospectroscopic results on the TDDs.

In samples annealed at 450◦C for a considerable time, lines whose inten-
sities increase with the TDD+s concentration, but whose positions do not
fit a He+-like EM level scheme have been reported [203, 263]. The positions
of these unattributed lines are, by order of increasing energies, 77.16, 80.33,
82.45, 86.23, 89.90, 91.59, and 97.02meV (622.3, 647.9, 665.0, 695.8, 725.1,
738.7 and 782.5 cm−1) and they are displayed in Fig. 6.26. Broad vibrational
lines at 724, 728, 734, 744 and 748 cm−1, related to other lines at 988, 999,
1006, 1012 and 1015 cm−1 have been attributed to TDDs [153], but they seem
distinct from the unidentified lines of Fig. 6.26.
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Fig. 6.26. Part of the absorption spectrum of a silicon sample showing low-energy
TDDi+ lines and unidentified lines denoted by an asterisk. A high-purity FZ sil-
icon sample used as a reference allows the subtraction of the silicon two-phonon
absorption. Line Cs is the vibrational mode of residual carbon at 607.4 cm−1

The possibility of passivation of the TDDs by hydrogen has been inves-
tigated, but this point and the results obtained by optical spectroscopy will
be discussed in the next section, with the properties of the shallow thermal
donors.

The exact structure of TDDs in silicon and the origin of the double donor
behaviour has been a matter of controversy for many years. The ESR mea-
surement indicates that these centres are oriented in the crystal along the
<110> axes. ENDOR measurements have also shown that they involved O
atoms. The consensus is that they are complexes whose atomic constituents
are O and Si atoms, and that their atomic structure is dominated by Si-O-Si
zigzag chains along the <110> direction. This will be discussed in Chap. 8,
where the results of electronic absorption measurements under uniaxial stress
are presented.

Metastability

Electrical experiments have shown that the TDDs with the highest ionization
energies are metastable, with two different arrangements of the atoms. The
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stable form (denoted sometimes X) is electrically inactive and the metastable
form gives the TDDs [255]; similar results were also reported in germanium
[154]. Metastability manifests itself in n-type material cooled under TEC
from RT to temperatures of the order of 100K or below. When the free-
carrier concentration is measured at these temperatures, it is found to be
smaller in the samples cooled under TEC than the one expected from the
ionization energies of the TDDs [255]. When the TDDs spectra are measured
at low temperature in n-type samples cooled under TEC or quasi-TEC, the
TDD1 and TDD2 contributions are reduced compared to those measured in
the same sample cooled under band gap light illumination, indicating that
part of these centres is in the X form [151,263,272]. Occurrence of metastabil-
ity depends on the Fermi level position in the sample and it is not observed in
p-type material containing TDDs. For initially high resistivity or moderately
p-type samples, it depends on the duration of the annealing producing TDDs.
Metastability of TDD1 is always observed in n-type samples, and the conse-
quence is shown in Fig. 6.27: in (a), the sample has been cooled from room
temperature in the dark (quasi-thermal-equilibrium conditions (quasi-TEC))
and the contribution of TDD1 is missing as this centre turned into a sta-
ble electrically-inactive X configuration; in (b) before recording the spectrum,

Fig. 6.27. Changes in the absorption spectrum of TDD10
(
10
)

in a CZ Si:P sample(
[P] = 3 × 1014 cm−3

)
due to metastability (a): cooled under TEC (b): cooled from

200 K under band-gap light illumination (same notations as in Fig. 6.23)
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the sample has been warmed from LHeT to 200K and after 10min at this
temperature, cooled-down again to LHeT under band-gap light illumination.
After this latter treatment, the centre has turned into the metastable donor
state and the associated TDD1 spectrum is then visible. Both spectra are
recorded without external excitation. An interesting point is that the absence
of 2p±1

(
10
)

in (a) allows one to observe the weak 5p±1

(
30
)

line.
The observation of the metastability of TDD2 requires further production

of thermal donors to raise the Fermi level position. The limiting value of EF

is Ec − 0.25 eV at room temperature and for samples with EF in this energy
region, partial metastability of TDD2 may be observed, as in Fig. 6.28.

When a metastable sample has been cooled from room temperature to
LHeT under TEC, band-gap light illumination at LHeT cannot turn the X
form into the metastable TDD form, as expected for a thermally-activated
process. Absorption experiments at LHeT have been performed to determine
the temperature where switching on band-gap illumination after cooling under
TEC to this temperature does not produce the metastable form. A value of
∼110 K is obtained for both TDD1 and TDD2 [263].

The complementary experiment consists in measuring the thermal stability
of the metastable forms TDD1 and TDD2, whose initial absorptions K0 have
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Fig. 6.28. Metastability effect in the LHeT absorption of TDD1+ and TDD2+ lines
in a CZ Si:B sample

(
[B] = 4 × 1015 cm−3

)
annealed for 30 h at 460◦C (a): cooled

under TEC; (b): cooled under band-gap light illumination (same notations as in
Fig. 6.24) (after [263])
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Fig. 6.29. Fraction measured at LHeT of metastable TDDs remaining after 5 mn
isochronal annealing of a silicon sample from LHeT under TEC at different temper-
atures (after [263])

been measured at LHeT after cooling-down under band-gap-light illumination.
For this, the temperature of the sample is raised under TEC to a value T ,
where it stays for a given time and lowered back under TEC to LHeT, where
the absorption KT of TDD1 and TDD2 is measured again. The variation of
the ratio KT/K0 with T for both TDDs is displayed in Fig. 6.29 for a hold
time of 5 mn at temperature T .

From the first kind of experiment, an activation energy of 0.16 eV and at-
tempt frequencies in the range 105–106 s−1 are derived for the transformation
from the stable to the metastable state for both thermal donors. Metasta-
bility implies that the activation energies for the inverse transformations are
not the same and the second kind of experiment yields values of 0.54 and
0.71 eV for TDD1 and TDD2, respectively, with the same order of magni-
tude of 1010–1011 s−1 for the attempt frequencies [263]. The energy barrier
measured for TDD00 is only 0.28 eV [176], and when in the metastable state
at LHeT, this centre is turned back into the X state at a temperature lower
than that required for TDD10 and TDD20. The observation of the TDD00

spectrum [176] has then been made possible by recording first the spectrum
of a n-type CZ Si sample cooled under band-gap light illumination, producing
TDD00, TDD10, and TDD20. The sample is then annealed at 200K under
TEC to turn TDD00 into the X state, leaving TDD10 and TDD20 in the
metastable state.7 The difference between the initial spectrum and those at
LHeT after this annealing is displayed in Fig. 6.30 and it shows three weak

7 From Fig. 6.29, one would think that a 200 K annealing would also turn TDD10

into the X state, but after a single annealing cycle at 200 K, this is apparently
not the case.
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Fig. 6.30. Part of spectra between 56.4 and 71.3 meV of an as-grown CZ silicon
sample with [Oi] = 9× 1017 cm−3 cooled (1) under band-gap light illumination and
(2) under TEC from 200 K. The difference (3) between spectra 1 and 2 (same nota-
tions as in Fig. 6.23) shows the weak absorption of TDD00 (after [176]). Copyright
2003, with permission from Elsevier

lines whose relative intensities and spacings are the signature of a new TDD
identified as TDD0.

A spectrum including a signature attributed to TDD0+ has been obtained
from the difference spectrum of a CZ p-type sample annealed at 1250◦C for
40min in H2 gas ambient and of the same sample after supplementary an-
nealing at 300◦C for 2 h [176].

6.4.1.2 Germanium

As-grown CZ germanium contains a very small O concentration
(∼1012–1013

cm−3
)

compared to CZ silicon because of its smaller reactivity with O and
its melting point of 937◦C. It can, however, be doped with O whose solubility
is comparable to that in silicon, by adding for instance oxygen gas or water
vapour to the growth atmosphere. When O-doped germanium is annealed
in the range 300–500◦C, the same kind of thermal double donors as in CZ
silicon are produced, but their rate of formation is about 500 times larger
than in silicon. A consequence is that for the same value of [Oi], the TDDs
concentration is about one order of magnitude larger in germanium than in
silicon ([45], [44], and references therein).

The ground state energies of these thermal donors extend from 18.1 to
14.3meV when neutral and from 40.5 to 31.0meV when singly ionized. When
comparing the energy spacing between the 2p0 and 2p±1 EM levels in ger-
manium (∼4 meV) with the ionization energies spanning the TDDs, it can be
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Fig. 6.31. Absorption spectra between ∼9.3 and 36meV of the first TDDs in a
natGe sample with [Oi] = 2.5 × 1017 cm−3 at three temperatures. At 33 K, the
thermal ionization of the neutral donors D0 allows one to observe the absorption
of the singly-ionized donors D+. There is a near-coincidence between the 2p0 (D+)
and 2p±1

(
D0
)

transitions. The spectra have been displaced vertically for clarity
[45]. Copyright 1996, with permission from Elsevier

seen in Fig. 6.31 that the 2p0 transitions are relatively well separated from the
higher energy ones.

The TDD0-related spectra in germanium are denoted D0, E0, F 0′, F 0,
G0, H0, I0 and J0 in order of decreasing ionization energies and the TDD+-
related spectra A+, B+, C+, D+, E+, F+, G+, H+ and I+ [44]. There is
a correlation between the presence of Cu, a fast-diffusing acceptor impurity
and contaminant in germanium, and the observation of the A+, B+ and C+

spectra (The acceptor Cu doping was used for partial compensation of n-type
germanium to observe the TDD+ spectra at LHeT). As can be seen later, the
D0, E0, F 0′, D+ and E+ spectra correspond to the neutral and singly-ionized
charge states of the same centre denoted usually TD1; the F , G, H , I and J
spectra are identified with the double-donor centres denoted TD2, TD3, TD4,
TD5 and TD6, respectively, by Clauws [45]. The different spectra related to
the TDDs are not easy to sort because their ground-state energies are close
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Table 6.27. Positions (meV (cm−1 in parentheses)) at LHeT of the first lines of
the TDD0s spectra in germanium

Line TD1 TD2 TD3 TD4 TD5 TD6
D0 E 0 F ’0 F 0 G0 H 0 I 0 J 0

2p0 12.305 11.961 11.492 11.370 10.996 10.45 9.5 9.2
(99.23) (96.46) (92.68) (91.69) (88.68) (84.3) (77) (74)

11.536 11.189 10.76 9.92
(93.03) (90.23) (86.8) (80.0)

10.819
(87.25)

2p±1 16.366 15.874 15.516 15.593 15.362 14.897 14.3
(131.98) (128.02) (125.13) (125.75) (123.89) (120.14) (115)
16.410 15.558 14.985

(132.34) (125.47) (120.85)
3p±1 17.093 16.529 16.238 16.088 15.752

(137.85) (133.30) (130.95) (129.74) (127.03)
4p±1 17.386 16.812 16.529 16.392

(140.21) (135.58) (133.30) (132.19)
4f±1 17.525 16.955 16.679 16.518

(141.33) (136.73) (134.51) (133.21)
Eio 18.13 17.57 17.28 17.3 17.13 16.79 16.0 15.2

1.7 1.7 ∼1.6
3.3

The ionization energy Eio is obtained by adding to the line position the calculated
energy level (1.04 meV) of the 3p±1 state except for F 0 where the value for the 2p±1

state (1.73 meV) is used. Lines from split upper 1s states have been observed for
TD2, TD3 and TD4. The separation of these 1s states from Eio is indicated in the
last row [44]

and sometimes nearly degenerate, and also because of a multiplet splitting of
the ground state for some of them. The identification of the first lines of the
main spectra of the neutral centres, given in Table 6.27, illustrate these points.

The splitting for these lines is assumed to originate from the final state.
One observes a splitting of the 2p±1 transition in the D and F ′ spectra, which
could be reminiscent of the situation in silicon, but the splitting of the 2p0

lines is new. The identification of the first lines of the spectra in the singly-
ionized state is given in Table 6.28. These spectra include A+, B+ and C+,
assumed to be Cu-related.

Distinct ESR spectra correlated with the IR spectra F 0, G0, H0, and
I0 have been reported at 1.6K and below 10K [19, 47]. This situation con-
trasts with the one in silicon, where no ESR spectrum can be correlated
with the TDDi0. For silicon, this absence is explained by a “normal” neu-
tral configuration with antiparallel electron spins and resultant total spin 0.
In germanium, the low-temperature ESR spectra are observed under condi-
tions where TDD+s centres are absent. They have been attributed to the
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Table 6.28. Positions (meV (cm−1 in parentheses)) at LHeT of the first lines of
the spectra related to the TDD+s and to Cu-related centres in germanium [44]

Cu-related TD1 TD2 TD3 TD4 TD5

Line A+ B+ C+ D+ E+ F+ G+ H+ I+

2p0 21.0 20.1 19.28 18.7 17.94 17.4 16.43 15.4 14.1
(169) (162) (155.5) (151) (144.7) (140) (132.5) (124) (114)

16.68 15.81 14.8
(134.5) (127.5) (119)

2p±1 33.6 32.9 32.0 31.5 30.6 30.1 29.20 28.09 27.0
(271) (265) (258) (254) (247) (243) (235.5) (226.5) (218)

30.3 29.5 28.6 27.59
(244) (238) (231) (222.5)

3p±1 36.3 35.6 34.2 33.4 32.9 32.2 31.4
(293) (287) (276) (269) (265) (260) (253)

Ei 40.5 39.8 38.9 38.4 37.5 37.0 36.3 35.3 34.2
36.4 35.9 35.0 34.7 36.8

32.1

Lines from split upper 1s states have been observed for TD1, TD2 and TD3. The
separations of these 1s states from Eio is indicated in the last row

presence of TDD0s with parallel spins and total spin 1, which seems to be the
equilibrium configuration [112]. No ESR spectrum has, however, been corre-
lated with the set of D0, E0 and F 0′ spectra.

In silicon, the Si-NL8 ESR spectrum can be correlated with the TDDi+,
but because of the relatively small anisotropy of the electron spin g-factors,
all the ESR responses of the different thermal donors are superimposed on
the Si-NL8 signal (Fig. 8.17a). This is not the case in germanium for the spin
1 spectra because of the larger value of the spin-orbit coupling coefficient,
allowing one to discriminate the ESR signals of different donors and determine
their symmetry in the crystal. In germanium, an ESR spectrum due to the
S = 1/2 singly-ionized thermal donors, equivalent to the Si-NL8 spectrum,
can also be observed in properly compensated samples [47].

Metastability

As for the TDDs in silicon, Fermi-level-dependent metastability has been ob-
served in the TDD-related spectra in germanium depending on the cooling-
down conditions. This effect is illustrated for the neutral charge state in
Fig. 6.32. It represents the 2p0 lines corresponding to different thermal donors
in three different samples measured at 7 K for cooling-down conditions 1
and 2. In 1, the samples are cooled from room temperature under TEC,
and in 2, they are cooled under band-gap light pumping. Sample (a) with
[Oi] = 5 × 1016 cm−3 is as-grown (n = 2 × 1014 cm−3) and the dominant
centre is TD1, giving the D0, E0 and F ′0 lines. A comparison between condi-
tions 1 and 2 shows that this centre is 100% metastable in the given sample,
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Fig. 6.32. Metastability effects of the neutral thermal donor spectra (2p0 lines)
between 8.9 and 12.4 meV observed in three O-doped germanium samples with free-
carrier concentrations increasing from (a) to (c) (see text). The spectra denoted
1 are obtained after cooling-down from RT under TEC and those denoted 2 after
cooling-down under band-gap light illumination (after [47])

while the other centres are stable. Sample (b) with [Oi] = 2 × 1017 cm−3 has
been annealed at 350◦C for 22 mn (n = 3× 1015 cm−3), and the early-formed
TD1 centre is absent, but TD2 (F 0 lines), now the dominant centre, is 100%
metastable. Sample (c) is an as-grown sample with [Oi] = 2 × 1017 cm−3 and
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a rather large free-carrier concentration (n = 3 × 1016 cm−3). In this sam-
ple, TD2 is still metastable, but TD3 (G0 lines), now the dominant centre, is
partially metastable as the Fermi level is closer to the CB.

These infrared metastability experiments have been correlated with ESR
measurements, and the comparison has allowed a fair understanding of these
donors. Also, some differences exist with the situation in silicon where the
point group symmetries of the different TDDs are either C2v or C2h. In
germanium, if TD2 and TD5 display C2v symmetry, TD3 and TD4 display
axial <111> symmetry (C3v).

When the same measurements as those of Fig. 6.32 are repeated at 34K
with sample (a), the only contribution observed is that of the singly-ionized
charge states at higher energies, with metastability. A noticeable difference,
however, is that if full metastability is observed for the D+ and E+ lines, no
equivalent of the F ′0 line is detected in any spectrum. It has been suggested
that despite the fact that no ESR signal can be related with TD1, the F ′0

spectrum could be due to S = 1 configuration [48].
Vibrational absorption of the O atoms of the TDDs in silicon and germa-

nium has been observed and will be discussed in [201].

6.4.2 The Shallow Thermal Donors in Silicon

Shallow donor spectra in the 230–290 cm−1 (∼28–36 meV) range were reported
for CZ silicon samples annealed at 450◦C after a short annealing at 770◦C in
nitrogen [184]. Similar spectra observed in N-containing CZ silicon, but absent
in N-lean CZ silicon and in N-doped FZ silicon, were attributed to shallow
thermal donors (STDs) involving oxygen and nitrogen [238, 239]. Similar re-
sults were also reported by Griffin et al. [80]. Pulling CZ silicon under a
nitrogen atmosphere had become a common practice at the end of the 1980s
to improve the mechanical strength of the material and to enhance the O
precipitation rate near 800◦C for technological uses. This explains the de-
tection of presence of these STDs in as-grown CZ silicon by Hu et al. [109].
The observation in an as-grown FZ silicon sample with a relatively high Oi

concentration for a FZ material (4× 1016 cm−3) of the spectra of two shallow
donors at a small concentration level was also reported by Yu et al. [275] using
high-resolution PTIS

(
0.06 cm−1

)
.

These STDs are characterized by a larger production range and a higher
thermal stability than the TDDs discussed in Sect. 6.4.1.1: they can be pro-
duced at temperatures up to 600◦C [231] and some of them can survive ther-
mal annealing at 900◦C [238]. Several labels have been used for these STDs.
They have been denoted N–O-n (n = 1, 2, 3, . . .) by Suezawa et al. [239],
and STD-N with N = A, B, C,. . . by Griffin et al. [80] or D(N,O)-n with
n = 1, 2, 3, . . . by Hara [92]. In a paper by Newman et al. [187] where a par-
allel is made with the TDDi donors because of the possibility of their partial
passivation by hydrogen, they were denoted STD(i) (actually STD(N)) with
i = 1, 2, 3, . . .The relations between the different labels are given in Table 6.29.
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Table 6.29. Relation between the different labels of the N-related STDs in CZ
silicon. The average position of 2p±1 line of their spectra at LHeT is indicated

Ref. a Ref. b Ref. c Ref. d 2p±1

(
cm−1

)

STD(7) 226.1
STD-A N–O-6′ STD(6) 230.6
STD-B N–O-1 STD(5) 233.8
STD-C N–O-2 D (N,O)-1 237.8

STD(4) 238.4
STD-D N–O-3 D (N,O)-2 240.4

N–O-8 241.5
STD-E N–O-4 242.5
STD-F N–O-6 D (N,O)-3 STD(2) 247.0
STD-G N–O-5 D (N,O)-4 249.8

STD(1) 253.6

a [80], b [239], c [92], d [187]

Table 6.30. Positions (meV (cm−1 in parentheses)) at 10 K of the first parity-
allowed transitions of the N-induced STDs in silicon [6]. NSD1 and NSD2 were
reported from PTIS measurements at 17K in a FZ sample with a RT resistivity of
1000 Ω cm [275]. The cm−1/meV conversion factor used is 0.124

2p0 2p±1 3p±1 3p±1–2p0 Eio

STD labels
N–O-6′ 23.30 (187.9) 28.59 (230.6) 31.86 (256.9) 8.56 34.97
N–O-1 23.65 (190.8) 28.99 (233.8) 32.25 (260.1) 8.60 35.37
N–O-2 24.16 (194.9) 29.49 (237.8) 32.76 (264.2) 8.60 35.88
N–O-3 24.51 (197.7) 29.81 (240.4) 33.08 (266.8) 8.57 36.20
N–O-8 24.69 (199.1) 29.94 (241.5) 33.25 (268.2) 8.56 36.37
N–O-4 24.82 (200.2) 30.07 (242.5) 33.35 (269.0) 8.53 36.47
NSD1 30.230 (243.79) 33.492 (270.10) 36.612
NSD2 30.586 (270.10) 33.856 (273.03) 36.976
N–O-6 25.34 (204.4) 30.62 (247.0) 34.00 (274.2) 8.66 37.12
N–O-5 25.71 (207.4) 30.975 (249.8) 34.27 (276.4) 8.56 37.39

Families of STDs involving H, Al and another ingredient X, with very close
ionization energies, have been labelled STD-N(H), STD-N(Al), and STD-
N(X), respectively [216]. There has, however, been no evidence of the presence
of N in the atomic core of these STDs. Nevertheless, on the basis of recent
correlations between the intensities of the electronic lines of some of them and
the N concentration, it has been concluded that at least four of them each
contain one N atom Alt et al. [6].

The positions of the first lines of the N-induced STDs spectra and of the
SDs reported by Yu [275] are listed in Table 6.30. [6] reported a new STD
spectrum (N–O-8), close to N–O-4, detected because of the smaller FWHMs
in these samples.
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The 3p±1–2p0 spacing in the STD spectra is ∼8.57 meV, significantly larger
than the EM and average group-V donor values (8.37 and ∼8.4 meV, respec-
tively), but smaller than that for the TDDi0. As expected, the 3p±1–2p±1

spacing in the STD spectra is close to the EM value (3.28meV) but the one
for N–O-6 is slightly larger (3.38 meV), and this can be due to unresolved
components.

No transitions which could be associated with a second donor electron have
been observed for the N-related STDs. Therefore, it is concluded that they
are single donors [80] and this is probably also true for the other STDs [216].
This single-donor behaviour of the STDs is associated with an ESR signature
known as Si-NL10 [79] and the ESR results indicate a C2v symmetry for these
centres, the same as that of the TDDs.

The attribution of all these centres to N-related complexes is question-
able. It is worth noting, for instance, that [76] reported the presence of
centers E and F with corrected ionization energies of 36.6 and 35.4meV
in FZ silicon samples containing lithium and oxygen, which correspond to
N–O-1 and NSD1 of Table 6.30. Different STDs can have ionization energies
very close to each other, and there are also small discrepancies between the
positions/attributions of the lines reported from the absorption and PTIS
measurements. This is partly due to the uncertainty of the measurements,
but also to genuine differences in the constituents of the STDs, and it will
be discussed later in this section. A 1s–2s energy difference of 27.95meV has
been deduced for N–O-5 from two-electron PL measurements [231], giving an
energy of 9.42meV for the 2s level of this centre, slightly larger than the EM
value (8.86meV). Absorption experiments between LHeT and 45K down to
∼110 cm−1 (∼14 meV) show the existence of STDs spectra originating from
split 1s states [226]. Evidence for a 1s excited state split by about 10meV
from the ground state has been obtained for five STDs, but because of the
small differences between the ground state energies of the different donors, it
has not been possible to ascribe a definite value of the splitting to a given
STD. For two STDs, spectra originating from what appears to be a second 1s
excited state separated from the first one by 3–4meV have also been reported
in the same reference.

Possible atomic compositions of (N,O) STDs have been proposed by Alt
et al. [6] from the measurements of the intensities of their spectra as a function
of [Oi], in relation with the theoretical calculations of [69] on the (N,O)
complexes in silicon. In this study, N–O-5 and N–O-3 are attributed to NO
and ONO structures, respectively. The NO structure is similar to the split
nitrogen pair of Fig. 2.6, where one O atom replaces one N atom, and the
tricoordinated O atom accounts for the donor behaviour of this pair [69]. The
N–O-6 spectrum is elusive and it is only observed in the CZ samples with
the highest values of [Oi]. A recent IR study of the (N,O) STDs, focused on
the N–O-3, N–O-5, and N–O-6 spectra, has been reported by Ono [193]. It
is shown that N–O-6 anneals at a temperature (∼600◦C) lower than that for
the two other STDs, and that the thermal regeneration of the STDs after
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Fig. 6.33. LHeT absorption spectra between 27.9 and 31.6 meV centred on the
2p±1 lines of different STDs produced in (a) CZ silicon pre-heated in N2 gas and
annealed at 550◦C (same notation as in Table 6.29 (Ref. a) with STD omitted), (b)
hydrogenated CZ silicon annealed at 470◦C and (c) Al-doped CZ silicon pre-heated
in argon gas and annealed at 470◦C. The vertical lines are included as a guide for
the eye (after [216]). Reproduced with permission from the Institute of Physics

high-temperature annealing fails to produce N–O-6 again. In the same study,
from calculations of the formation energies of NO and of different ONO con-
figurations, it is suggested that the N–O-6 corresponds to NO.

The observation of STDs in annealed N-free CZ silicon nominally suggests
that other families of STDs may exist. This is indeed the case in hydrogenated
CZ silicon and CZ Al-doped silicon [158,216]. In these materials, STD spectra
with lines slightly shifted in position from those in silicon not containing these
impurities are observed, as shown in Fig. 6.33.

The unknown constituent in the STDs whose spectra are observed in
N-containing CZ silicon is denoted X in this figure. The measured shifts de-
pend on the STD considered and on the accuracy with which a peak position
can be measured. The FWHMs of most of the STD lines are between 1 and
2 cm−1 (0.124 and 0.25meV) and it is reasonable to assume an uncertainty
of one tenth of the FWHM. A complete list of the STD(X), STD(Al) and
STD(H) line positions is given in Ammerlaan’s contribution on STDs in silicon
[7]. When considering the positions of the lines of the STD(X)-N spectra as
references, the lines of the STD(Al)-N spectra are found to be red-shifted.
The values of the most significant Al-induced shifts of the 2p±1 lines with
respect to the positions in Table 6.29 are (in cm−1) for STD-A: −1.4, STD-B:
−1.5, STD-C: −0.5, STD-G: −0.9, and this seems to imply that an Al atom
is present in the core of these donor centres. The values of the shifts (positive)
of the STD(H) spectra are smaller or non-existent. The largest ones are +0.5
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and +0.7 cm−1 for C and D, respectively, giving for STD(H)D the same ion-
ization energy of 36.3meV as that of D(N,O)-2, implying that the donors are
the same.

The existence of a shift between the lines of STD(X) and STD(H) spec-
tra is an indication that H can be a constituent of these centres. The ab-
sence of a shift of the spectra of other STD(H) centres with respect to other
STD(X) centres can also be an indication that some of the STD(X) centres,
like the D(N,O)-1 and D(N,O)-2 centres, are indeed H-related STDs and that
hydrogen is either present in as-grown CZ silicon or introduced during the
nitridation process.

A definite proof of the presence of hydrogen in these centres has been
obtained by using 2H instead of 1H in the hydrogenation process: this substi-
tution has been correlated with a small, but unmistakable negative IS of some
of the STD(H) lines, visible in Fig. 6.34. The values of the 2H shifts are −0.18
and −0.15 cm−1 (−22 and −15 μeV) for SPD-D and SPD-F , respectively.

It must be noted that the 2H IS of the STD(H)-D and STD(H)-F donors is
negative, as those for the D(H,O) donor in germanium discussed in Sect. 6.2.2.

The observation of three STD absorption spectra has been reported in
H-doped n-type CZ silicon samples irradiated with 3MeV electrons after
annealing in the 300–600◦C temperature range [96]. The values of Eio for
two of these STDs (D2 and D3) are 37.0 and 36.3meV, respectively, very
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Fig. 6.34. 2p±1(STD(H)-D) and 2p±1(STD(H)-F ) lines (left) and 2p±1

(
TDD30

)

line (right) in the LHeT spectra of a pair of P-doped CZ silicon samples heated (a)
in a deuterium plasma for 34 h and (b) in a hydrogen plasma for 17 h. The 1H/2H
IS is visible in the difference spectrum in (c) (left), obtained after renormalization
(the absorbance of the deuterated sample is weaker than that of the hydrogenated
sample) (after [187]). In this reference, the STD(H) A, B, C, D, and F centres are
denoted STD(6), (5), (4), (3) and (2), respectively. The positions of the lines are
given in Tables 6.29 and 6.24
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close to those of D(N,O)-3 and D(N,O)-2 of Table 6.30, and they correspond
to the same centres, but the D1 STD, with Eio = 42.6 meV is reported for the
first time and is tentatively attributed to an oxygen-hydrogen-vacancy centre.

One of the interests of a spectroscopic study of hydrogenated CZ sili-
con was a search for electronic spectra associated with partially passivated
TDD0s similar to those observed for sulphur in silicon. DLTS measurements
have proved the passivation of the electrical activity of TDDs in silicon af-
ter exposure to a hydrogen plasma at relatively low temperature (100–150◦C)
[42,120]. The reduction of the TDDs concentration indicates that in the region
closest to the surface, full passivation is achieved. The thermal stability of the
(TDD,H) complexes thus created has been found to be moderate, and full elec-
trical recovery takes place at about 200◦C. The passivation efficiency depends
on the TDDi considered, but this is not discussed here. It has been suggested
that some of the STD(H) centers could be H-passivated TDDi [187]. However,
the temperature difference between the reactivation of the H-passivated TDDi
(∼200◦C) and the temperature of dissociation of STD(H) centres (∼500◦C)
has led to abandon this assumption [216].

6.4.3 The Ultrashallow Thermal Donors in Silicon

The observation at LHeT of absorption spectra between ∼230 and 130 cm−1

(∼28–16 meV) has been reported by Hara [92] in N- and C-rich CZ silicon sam-
ples, when annealed between 500 and 600◦C for typically 20 h or longer. They
correspond to EM donors with ionization energies between 35 and 28meV,
distinct from the above-discussed STD centres, whose production is hindered
by the presence of carbon. They have, however, a stability domain comparable
to the STDs, limited to about 700◦C. These donors are known as ultrashal-
low thermal donors (USTDs) as their ionization energies vary between 27.90
and 34.85meV, compared to the EMT value of 31.3meV. Spectra associated
with 12 such donors have been identified by Hara [92], and the shallowest
line for a donor electronic transition from the ground state in silicon seems to
be 2p0(USTD1) at ∼128.0 cm−1 (15.87meV). Table 6.31 gives spectroscopic
values for the USTDs (the 3p±1 line has not been reported for these centres).

Table 6.31. Positions of the 2p±1 lines, values (meV) of the 2p±1 − 2p0 spacings
and ionization energies of the USTDs in silicon obtained from LHeT spectra

USTD 1 2 3 4 5 6 7 8 9 10 11

2p±1 21.49 21.82 22.23 25.0 25.09 25.99 26.77 26.88 27.49 28.17 28.42
2p±1−2p0 5.62 5.40 5.40 5.36 5.31 5.24
Eio 27.90 28.24 28.65 31.4 31.51 32.40 33.19 33.30 33.89 34.57 34.82
CCC −3.36 −3.02 −2.61 0.14 0.25 1.14 1.93 2.04 2.63 3.31 3.56

The central-cell correction (CCC) is the difference between the ionization energy Eio

of the donor and the EM value taken as 31.26 meV. The EM value of the 2p±1 −2p0

spacing is 5.09 meV (after [92])
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A negative value of the central-cell correction indicates a central-cell po-
tential which is repulsive for electrons.

It must also be mentioned that evidence for USTDs with ionization en-
ergies down to ∼23 meV has been obtained by low-temperature admittance
spectroscopy and thermally-stimulated capacitance measurements in standard
CZ silicon samples annealed at 470◦C in oxygen ambient for up to 500h [1].

6.5 Other Shallow Donors Involving Hydrogen

The interaction of hydrogen with impurities can assume several character-
istics, one of which is the electrical passivation of the shallow acceptors
and donors in several semiconductors. It has also been shown at the end
of Sect. 6.3.1 that partial passivation by hydrogen of double chalcogen donors
produced single donors with EM spectra. New acceptors and donors can also
be produced by thermal treatments involving hydrogen and electrically in-
active impurities, like the already-mentioned D(H,O) donor in germanium
grown in a hydrogen or deuterium atmosphere, discussed in Sect. 6.2.2, and the
O-related STD(H)-D and STD(H)-F donors in silicon discussed in Sect. 6.4.2.
Another contribution arises from the interaction between hydrogen and lat-
tice defects. This is illustrated by the observation of shallow donor spectra in
as-irradiated NTD FZ silicon after different hydrogen-plasma treatments at
temperatures between ∼240 and 400◦C for a few hours [95]. These treatments
produce a n-type layer, typically a few μm-thick with a resistivity allowing
one to perform PTIS measurements. Besides the P spectrum associated with
NTD, several shallow EM donor spectra, denoted HDi, are observed. They are
characterized by a splitting of the 2p±1 line, already observed for some TDD0i,
like TDD03, but the interesting point is the observation in these spectra of a
positive IS of the donor lines when 1H is replaced by 2H in the plasma. This
shift is rather small (0.1–0.2 cm−1 or ∼12–24 μeV) and comparable in value
to the one reported for the STD(H)-D and STD(H)-F donors by Newman
et al. [187]. However, a noticeable difference with two other kinds of donors
is that the 2H IS of the HDi donors is opposite to the one observed for the
STD(H)D and STD(H)F donors (the 2H-related lines of the HDi donors are
at energies higher than the 1H-related one). The origin of these donors has
not been elucidated, but they must be related to the complexing of defects
with hydrogen during the dissociation of the radiation damages produced by
the neutron irradiation. These thermal donors are stable up to ∼500◦C and
the positions of the first lines of their spectra are given in Table 6.32. As the
measurements were performed by PTIS, the transitions toward the np0 levels
are not observed.

The first values of Eio of Table 6.32 are in the same energy range as those of
Table 6.30, but considering the accuracy of the measurement, they correspond
to different donor centres, in which oxygen is probably not involved. Moreover,
the opposite hydrogen ISs clearly speaks for a difference.
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Table 6.32. LHeT positions (meV (cm−1 in parentheses)) of lines of HDi spectra
in as-irradiated NTD FZ silicon after annealing in the 240–400◦C range in a 1H2

plasma

Line HD3 HD4 HD5 HD6 HD7

2p±1 27.70 29.37 32.19 37.86 46.05
(223.4) (236.9) (259.6) (305.4) (371.4)
27.86 29.46 32.26 37.99 46.20

(224.7) (237.6) (260.2) (306.4) (342.6)
3p±1 30.97 32.66 35.46 41.16 49.32

(249.8) (263.4) (286.0) (332.0) (397.8)
4p±1 31.86 33.57 36.39 42.08 50.26

(257.0) (270.8) (293.5) (339.4) (405.4)
5p±1 34.31 37.12 42.79

(276.7) (299.4) (345.1)
Eio 34.09 35.78 38.58 44.28 52.44
2H −1H (μeV) + 19 + 25 + 12 + 19
Eio is obtained by adding 3.12 meV to the position of the 3p±1 line. The last row
gives average values of the 2H− 1H energy difference (accuracy ±6 μeV) (after [95])

6.6 TMs, Group-I Elements and Pt in Silicon

6.6.1 Interstitial Iron

In its isolated form, iron is incorporated in silicon at a tetrahedral interstitial
site (Fei). This configuration is moderately stable and thermal annealings
show that atomic migration of Fe starts for temperatures of about 170◦C
[189]. The absorption spectrum between ∼5700 and 6450 cm−1(∼0.71 and
0.80 eV) shown in Fig. 6.35 is associated with Fei as all the spectral features
decrease at the same rate under thermal annealing [250].

The lines observed in the h-e region have spacings and relative intensi-
ties typical of EM donor spectra. In order to understand the origin of this
spectrum, a brief introduction to transition metals (TMs) at tetrahedral in-
terstitial states is necessary. When submitted to a tetrahedral crystal field,
the one-electron d states of a TM are split into an orbital triplet t2 state and
an orbital doublet e state and for an interstitial location, the t2 state is deeper
in energy compared to the continuum. It must be noted that these e and t2
states are not pure d states, but also contain contributions from the p-like host
state (covalency). The orbital momentum is totally quenched by the crystal
field for an electron in an e-state whereas an effective orbital momentum � = 1
corresponding to a manifold of p orbitals can be associated with an electron in
a t2-state. As first evidenced by Ludwig and Woodbury [157], the outermost
s electrons of a TM are incorporated in the d shell when the atom enters the
crystal interstitially. For Fe with electronic configuration Ard6s2, this leads to
an Ard8 configuration. Following the first two Hund’s rules and the convention
for the multi-electron atomic notations, an isolated d8 configuration is repre-
sented by a 3F ground state. In a crystal field with tetrahedral symmetry, this
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Fig. 6.35. Absorption between ∼713 and 800 meV at a resolution of 0.3 cm−1

(37 μeV) of a Fe-diffused n-type silicon sample at LHeT (after [250]). Reproduced
with permission from Trans Tech Publications

state is split into three substates: 3A2 (ground state), which corresponds to 6
d-electrons in t2 orbitals and 2 d-electrons in e orbitals (t62e2 configuration),
3T1 and 3T2 [240]. ESR experiments have proved that for Fe0

i in silicon, 3A2

was indeed the ground state [157]. This deep state is the fundamental state
of the transitions shown in Fig. 6.35.

4T1 Γ7

Γ6

Γ8(5/2)

Γ8(3/2)

+ s-o coupling

In its excited state, Fe0
i consists of a Fe+ d7 core 8 plus an electron weakly

bound (ewb) to this core. This ewb is then considered adequately decoupled
from the Fe+ core for its eigenstates to be described by EMT. However, in
order to arrive at a more detailed interpretation of the different EM spectra
apparent in Fig. 6.35, one must get some insight of the level structure of the
d7 core responsible for this diversity. This d7 core is considered as an isolated
entity. Its configuration is thus represented by a 4F ground state, split by the
“weak” crystal field of the tetrahedral interstitial site, giving a 4T1 high-spin
8 The term “core” usually refers to the electrons of the closed shells and it is used

here in a slightly different meaning.
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ground state corresponding to a t25e2 configuration [240]. Under s-o coupling,
the 4T1 state splits as shown in the diagram on the preceding page.

Of course, the 4T1 state being an orbital triplet, can be affected by Jahn-
Teller coupling and therefore, the energies of the sublevels are not necessarily
in agreement with those calculated in the frame of pure s-o coupling.

Figure 6.36 is a blow-up of Fig. 6.35 in the region of the EM donor spectra,
whose relative intensities and line spacings are comparable to those observed
for shallow donors. The spectrum labelled A in Fig. 6.36 corresponds to
transitions from the 3A2

(
d8
)

Fe0
i ground state to a series of EM excited donor

states
(
d7 + weakly-bound electron

)
with the d7 core in the Γ6 state. Similarly,

the spectra labelled B, C, and D correspond to transitions from the 3A2 ground
state to a series of EM donor excited states with the d7 core in the Γ8 (3/2), Γ7

and Γ8 (5/2) states, respectively [252]. The positions of the lines of spectra A,
B, C and D are given in Table 6.33. The antepenultimate row of the table gives
the EM ionization energies of the weakly bound electron from the d8

(
3A2

)

state leaving Fe+
i in the d7Γ (i) states indicated in the penultimate row.
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(after [251]). Copyright 1990, with permission from World Scientific Publishing Co.
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Table 6.33. Positions (meV (cm−1 in parentheses)) of the lines of spectra of the
A, B, C and D series of Fe0 in silicon near LHeT

Line Series A Series B Series C Series D EMTa

2p0 (6268.21) (6310.83) (6318.73) (6324.34)
777.159 11.55 782.443 11.49 783.423 11.51 784.118 11.51 11.492

2s (A1) (6280.14) (6323.42)
778.638 10.07 784.004 9.93 8.856

2p±1 (6309.72) (6351.85) (6359.89) (6365.58)
782.306 [6.40] 787.529 [6.40] 788.526 [6.40] 789.231 [6.40] 6.402

3p0 (6317.11) (6359.34) (6367.20) (6372.95)
783.222 5.49 788.458 5.47 789.432 5.50 790.145 5.48 5.485

3s(A1) (6319.54) (6361.14) 4.777
783.523 5.19 788.681 5.25

4p0 (6334.55) (6376.68) (6390.42) 3.309
785.384 3.33 790.608 3.32 792.311 3.32

3p±1 (6336.11) (6378.20) (6386.2) (6391.88)*
785.578 3.13 790.796 3.13 791.79 3.14 792.492 3.14 3.120

4p±1 (6343.61) (6385.74) (6399.37) 2.187
786.507 2.20 791.731 2.20 793.421 2.21

5p±1 (6349.37) (6391.88)* 1.449
787.222 1.49 792.492 1.44

3p±1 − 2p0 8.42 8.353 8.37 8.374 8.372

Ej
i 788.71 793.93 794.93 795.63

d7Γ6 d7Γ8 (3/2) d7Γ7 d7Γ8 (5/2)

Ej
i − EA

i − 5.22 6.22 6.92
The semi-experimental energy levels are in italics, and the reference energy in brack-
ets. The Ej

i values are obtained by adding 6.402 meV to the position of the 2p±1 lines.
The corresponding states of the d7 Fe+ configuration are given in the penultimate
row. The estimated accuracy of the line positions vary between 0.05 and 0.3 cm−1

(6 and 37 μeV) and the ionization energies have been rounded up accordingly (after
[252])
* Superimposed lines, a [118]

In the framework of EMT, the true ionization energy of Fe0
i , leaving Fe+

i

in its lowest energy d7 substate is the one corresponding to the A series
(788.71meV). Considering a band gap of 1.170 eV at LHeT for silicon, one
can then locate the Fe0/Fe+ donor level at Ev + 0.371 eV at LHeT, in good
agreement with the value of Ev + (0.375 ± 0.015) eV near 100K obtained by
a combination of ESR and Hall measurements [63].

From the comparison of the observed 3p±1 − 2p0 spacings with the EM
donor at the interstitial Fe site, it can be seen that the local perturbation felt
by the excited states is very small.

Until now, we only considered the EM excited states with n ≥ 2, but the
electron bound to the d7 core can also be found in the 1s state. In this state,
the electron is more localized around the d7 core, and therefore, more affected
by the local potential. The d7 core and the 1s electron ground states being
represented by 4T1 and 2A1, respectively, their coupling gives T1 states with a
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total spin 2 and 1
(
5T1 and 3T1

)
with the 5T1 high-spin ground state. Under

s-o coupling with � = 1 effective angular momentum, the 5T1 level splits as
shown in the diagram below.

5T1

Γ4(1)

Γ5(3)

Γ5(2)

Γ4(3)
Γ2

Γ3

+ s-o coupling

With the help of absorption experiments under magnetic field, [250] have
shown that the lines at 5824.39, 5860.77, and 5862.64 cm−1 (722.123, 726.643,
and 726.875meV), labelled respectively FeL1, FeL2, and FeL3 in Fig. 6.35, are
due to the transitions from the d8

(
3A2

)
state to the Γ4 (1), Γ3 and Γ5 (2)

substates of 5T1, respectively. It is assumed that the weak line at 5872.8 cm−1

(728.13meV), labelled FeL1 in Fig. 6.35 is due to a transition from the d8
(
3A2

)

state to one of the remaining sublevels of 5T1.
The spectrum in Fig. 6.35 also displays a broadband around 5800 cm−1 and

two resonances R1 and R2. These features have the same annealing behaviour
as the sharp lines described until now, suggesting that they are also due to
Fei [250]. Transitions between the d8

(
3A2

)
ground state and the d8

(
3T2

)
and

d8
(
3T1

)
states could be potential candidates for these bands.

6.6.2 Ag, Au, and Pt

Ag and Au are substitutional group-I elements in silicon. These atoms are
amphoteric, giving an acceptor and a donor state. The absorption related to
the donor state is discussed here and that of the acceptor state in Chap. 7. Pt
is also included here as it displays the same amphoteric behaviour.

In the transmission spectrum of Ag-diffused silicon, a series of sharp
lines is observed at LHeT in the 6200–6700 cm−1 (770–830 meV) range [190].
This series does not fit a classical EM donor or acceptor spectrum, but the
h-e limit is not too different from the Ag donor (Ag (D)) level located at
Ev + 0.34 eV (Ec − 0.83 eV) in the Si band gap [12]. A comparison of this spec-
trum with the spectrum of Te0 in silicon has made possible a few correlations
which seemingly allow to ascribe the Ag spectrum to a modified EM donor
spectrum where the np±1 lines are absent, the np0 lines very weak and the
ns (T2) lines predominant (see Fig. 6.37).

The ns (T2) lines observed in some donor spectra are denoted ns (E + T2)
for Ag (D) in this reference because the observed splitting of the 1s (E + T2)
line implies a non-cubic symmetry of the Ag atom site. In this symmetry,
the 1s (E) level of the Td symmetry, to which no IR active transition from
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Fig. 6.37. Transmission spectrum between 775 and 828 meV of Ag in silicon at
LHeT. The section in the dotted rectangle is shown below an expanded scale [190].
Copyright 1988 by the American Physical Society

the 1s (A1) ground state is possible, splits into sublevels which can be the fi-
nal states of some symmetry-allowed transitions. The nC lines (n = 1, 2, 3, 4)
of Fig. 6.37 have been interpreted by assuming some s-o interaction between
the electrons of the donor core and the weakly-bound electron. For the Se
and Te substitutional double donors, this interaction is responsible for the
extra 1s

(
3T2

)
state and the corresponding 1s

(
3T2

)
line. For Ag (D), the

corresponding transitions should be 1C. This is substantiated by the average
spacing between the nC and ns (E + T2) lines, which decreases as 1/n3, as
expected for such a kind of interaction [189]. Fano resonances are, in gen-
eral, more clearly observed in PTIS than in standard absorption. With this
method, Fano resonances have been observed in the Ag photoionization spec-
trum. For a donor, the phonons involved in these resonances should be fTO,
gLO and fLA inter-valley phonons, and replicas of the 1C and 1s (E + T2)
transitions involving the fTO and gLO phonons have been observed in the
6800–6950 cm−1 (∼840–860 meV) range [190]. The lines with (X) or (Y) added
in Fig. 6.37 are phonon-assisted replicas of the original lines and their spac-
ings

(
50 cm−1 (6.2meV) for (X) and 180 cm−1 (22.3meV) for (Y)) indicate

that the phonons involved are resonant with the silicon acoustic phonon
branches.

The energies of the transitions of the Ag (D) spectrum are listed in
Table 6.34.

The value of the Ag (D) level deduced from Eio is in very good agreement
with the value Ev + 0.34 eV, obtained from DLTS measurements [12]. Lines
A, B and C have also been observed in PL experiments and Ag-isotope effects
have been identified; it has been pointed out that the decay time of these lines
is consistent with their attribution to an exciton bound to an isoelectronic
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Table 6.34. Positions (meV (cm−1 in parentheses)) of the transitions of Ag(D) in
silicon at LHeT

Line Position Level EMTa

A 778.91 (6282.3) 47.23
B 779.85 (6289.9) 46.29
1C 784.35 (6326.2) 41.79 31.262
1s (E + T2) (1) 795.79 (6418.5) 30.35 ”
” (2) 796.73 (6426.1) 29.41 ”
” (3) 797.17 (6429.6) 28.97 ”
” (4) 797.76 (6434.4) 28.38 ”
2p0 814.56 (6569.9) 11.58 11.492
2C 816.06 (6582.0) 10.08 8.856
2s (E + T2) 817.58 (6594.2) 8.56 ”
3p0 820.65 (6619.0) [5.49] 5.485
3C 821.06 (6622.3) 5.08 4.477
3s (E + T2) 821.54 (6626.2) 4.60 ”
4s (E + T2) 823.38 (6641.0) 2.76 2.911
Eio 826.14

(Ev + 0.344 eV)

The energies of the levels are calculated using 3p0 as a reference (after
[190]), a [118]

centre [258]. At first sight, the LHeT absorption of the Au donor in silicon
seems to limit to the four components A, B, B’ and C of a structure centred
at 6395 cm−1 or 793meV [267], also observed by PL [244], very similar to the
1s (E + T2) multiplet of Ag. The results of piezospectroscopic and Zeeman
measurements on this spectrum confirm the substitutional location of Au,
with a static <100> tetragonal distortion [244,267].

The only absorption which has been ascribed to a donor-like state for Pt in
silicon is a set of three lines near 8000 cm−1 (992meV) investigated by Olajos
et al. [191], denoted the T-lines and shown on the h-e side of Fig. 7.19.

6.7 Pseudo-Donors and Isoelectronic Donors

It was mentioned in Sect. 1.3.2 that in semiconductors, isoelectronic impurity
centres could present a relatively strong attracting potential for electrons or
holes. Excitons can be trapped by or created at these isoelectronic centres to
form an isoelectronic bound exciton (IBE). The electron (hole) of this exci-
ton is also more strongly bound to the isoelectronic centre than in classical
excitons and the second constituent of the exciton, hole (electron) can be
considered to be bound to a compound negative or positive ion. These struc-
tures are similar to those of neutral donors or acceptors and they are called
isoelectronic donors or acceptors [104]. When formed by near band-gap or
above band-gap laser illumination, the long lifetimes of these IBEs result in
sharp PL lines, and this has for some time aroused interest for these centres
as potential near IR radiation emitters.
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This seems to be also valid for excitons bound to deep neutral centres not
necessarily isoelectronic, giving pseudo-donors or pseudo-acceptors.

This section is devoted to the absorption of excitons bound to isoelec-
tronic or deep centres with a strong attracting potential for holes (isoelectronic
donors (IDs) and pseudo-donors), but for a more general description, it will
be referred to the PL and PLE results. A point to consider is the interaction
between the deep hole and the shallow electron of the IBE or BE, mediated
by the competition between s-o coupling and the local attracting potential for
hole. This often results in a quenching of the hole orbital momentum, with
the only coupling of the electron spin with the hole pseudo-spin, giving a spin
1 triplet state, the lowest in energy, and a spin 0 singlet state split by electron-
hole exchange [168]. Spectroscopically, the IBEs or BE are characterized in
the near IR by a sharp no-phonon line which can be observed by absorption or
by PL, respectively, due to the creation or recombination of the exciton in its
fundamental state. These fundamental lines can be accompanied by phonon
replicas at lower or higher energies depending on both the temperature and
the detection mode. At higher energies, weaker no-phonon transitions related
to the fundamental line can also be observed by PL above LHeT and by PLE
spectroscopy or absorption at LHeT. In PLE experiments, where photolumi-
nescence is observed at the energy of the fundamental line as a function of the
illumination with a tunable excitation source, the exciton can be created in an
EM excited state of the weakly bound electron and de-excite into the ground
state, where it recombines radiatively [260]; in absorption, the lines are sim-
ply due to the creation of an IBE or of a BE in an excited state (the binding
energies EIBE or EBE of the exciton to the specific centres are the difference
between Eg and the position of the fundamental lines). Another spectroscopic
possibility consists in producing the exciton in the near IR under an appro-
priate illumination and in observing simultaneously the induced absorption
of the shallow ID or pseudo-donor in the far IR ([18], and references therein).
Near IR spectra related to IBE or BE have been observed in silicon and two
examples of such centres in silicon are considered.

6.7.1 The “C” and “P” Centres in Silicon

In electron-irradiated CZ silicon annealed at different temperatures, two of the
PL lines studied at the end of the 1960s (see [254], and references therein), the
C- and P -lines, have been thoroughly investigated, in relation with the study
of the (C,O) complexes and of some O-related thermal donors. The C-line, at
789.6meV, also known as the 0.79 eV line, is observed in CZ silicon irradiated
with electrons in the 1− 3 MeV energy range, preferably after annealing near
200◦C, while the P -line, at 767.2meV (also called the 0.767 eV line) is observed
in the same samples after annealing in the 300–400◦C range. From IS studies,
these lines have been shown to be C- and O-related [50,147]. The absorption
of the C-line under a uniaxial stress measured by Foy [66] was consistent
with C1h symmetry of the related centre. Weak lines associated with the C-
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Fig. 6.38. Absorbance of the P-line (truncated) and of EM excited states of the
IBE to the (C,O) complex (see text) in p-type CZ silicon under TEC at LHeT. A
weak absorption due to the C-line can still be observed. The peak absorbance of the
P-line is 0.15

and P -lines have been observed at higher energies in PL or PLE experiments
[260] and in absorption [66, 203], and they have been found to correspond
to BE transitions associated with electrons excited mostly to the even-parity
EM states (a few lines corresponding to electrons excited to odd-parity states
have also been observed). The spectrum in Fig. 6.38 shows the P -line and the
weak absorptions due to the creation of the BE in EM excited states.

The positions of the pseudo-donor lines of the C- and P -line centres are
given in Table 6.35. The Ag(D) lines of Table 6.34 are close to those of the
“C” and “P” centres.

In absorption, a value of 0.184meV
(
1.48 cm−1

)
has been measured for

the FWHM of the P line at LHeT in CZnatSi. In 30Si, the energies of the
fundamental lines are found to increase by about 0.8meV [97].

The identification of the spectra as those of pseudo-donors with a ground
state corresponding to the fundamental line allows determination of the
electron binding energy (the ionization energy of the ID). For the BEs as-
sociated with the “C” and “P” centres, the electron binding energies of the
pseudo-donors are very similar (38.26 and 34.77meV, respectively). The bind-
ing energies of the holes to the neutral centres are the differences between EBE
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Table 6.35. Energies (meV (cm−1 in parentheses)) and attributions of the lines
associated with the “C” and “P” centres in natSi, showing the importance of the
even-parity transitions

“P” centre “C” centre

Absorptiona PLEb Absorptiona PLEc

Triplet ? 763.54 (6158.4)

Fundamental 767.189 767.15d 789.607 789.57d

(6187.80) (6368.61)
P -line 767.2 C-line

1s multiplet 773.71 773.7 794.99 795.2
” 774.43 774.4 800.17 800.4
” 775.48 775.5 801.34 801.8
” 779.89 779.9 805.36 805.6
2p0 790.27 (6374.0) 790.1 816.32 816.8
2s multiplet 792.69 792.5 818.11 818.6
” 793.4 818.75 819.2
” 794.1
2p±1 795.56 795.4 821.47 821.9
3p0 796.3
3s 796.8
”
4s 798.6
EBE 403 meV 380 meV

The lines labelled as fundamental correspond to the creation of a BE in its ground
state. All the absorption measurements are performed at LHeT
a After [203], b [260], c After [261], d [97] PL

and the electron binding energies, and are 342 and 368meV for the “C” and
“P” centres, respectively. The hole binding energy of 342meV of the “C” cen-
tre must be related to the donor level (a hole trap) at Ev + 0.38 eV measured
by DLTS [169]. The splitting under uniaxial stress of the C-line measured in
absorption by Foy [66], and of the P -line measured in PL by Dörnen et al.
[56] indicate the same C1h symmetry for the two corresponding centres. The
centre giving the Si-G15 ESR spectrum, observed in electron-irradiated CZ sil-
icon, first reported by Watkins [265], has spin S = 1/2 and monoclinic I (C1h)
symmetry, and it has been shown to be the same as the bare “C-centre” [256].

In a far-IR absorption study of the USTDs (see Table 6.31), the existence of
a centre with an ionization energy of 34.82meV (USTD11) has been reported
in a C-rich CZ silicon sample by Hara [92]. This value is close to the ionization
energy of the ID associated with the “P” centre (34.77meV), containing C
and O, but it is not known if the excitation conditions for the production of
the far-IR ID spectrum were fulfilled in Hara’s study.

All the pseudo-donors do not have small ionization energies. In electron-
irradiated n-type CZ silicon, the observation of an absorption line at 615.0meV
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(
4960 cm−1

)
at LHeT, after several hours of above-band-gap-light illumina-

tion, has been reported ([242] and references therein). Weak lines observed
at energies near 790meV

(∼6400 cm−1
)

have been associated with even-
parity EM-like transitions related to the 615meV-line. The identification of
a 2s (E + T2) transition at 818meV, assuming to simplify a Td symmetry for
the centre, allows one to estimate an ionization energy ∼196 meV for this deep
pseudo-donor, which has not yet been identified.

6.7.2 The (S,Cu) Centre in Silicon

In sulphur-doped silicon samples quenched from about 1000◦C to RT, a se-
ries of PL lines, first reported by Brown and Hall [32], is observed in the
800–980meV range at low temperature. This is due to two metastable config-
urations, denoted SA and SB, of the same centre, assumed to consist of one (or
more) S atom plus another impurity with nuclear spin I = 3/2 (presumably
Cu) [162]. For simplicity, this centre is denoted (S,Cu). In samples cooled from
RT to LHeT under quasi-TEC, the SA PL spectrum alone is first observed
for low laser power illumination, but with increasing illumination times and
laser power, the SB spectrum starts appearing and its intensity increases at
the expense of SA. This indicates a transformation of the configuration of the
(S,Cu) centre under illumination at LHeT [229]. Besides this metastability
effect, each spectrum is characterized by two no-phonon lines separated by
∼10 meV. The ones with the lowest energy, indexed 0,

(
SA

0 , SB
0
)

are due
to IBEs created in the triplet state and the others, indexed 1,

(
SA

1 , SB
1
)

to
IBEs created in the singlet state [229].

It appears that no absorption measurements of (S,Cu) in the near IR
has been reported, but absorption measurements of the isoelectronic donor
centres associated with SA and SB have been performed at lower energies
under continuous photoexcitation with a Nd-YAG laser operated at 1.06 or
1.32 μm (1.17 or 0.939eV) by Beckett et al. [18]. At LHeT, the creation in
the triplet state is predominant and the ground state for the EM spectra
is therefore, the triplet states SA

0 and SB
0. The photoinduced spectrum so

obtained is displayed in Fig. 6.39.
The positions of the lines and the energy levels related to this (S,Cu) centre

are given in Table 6.36.
The values of the hole binding energies of the (S,Cu) isoelectronic centre

are 137 and 292meV for SA and SB, respectively. The ID ionization energies
associated with this centre (65.28 and 66.21meV) are significantly larger than
those of the pseudo-donor (C,O) complexes associated with lines C and P ,
and this has been attributed to the (S,Cu) centre for a central-cell potential
which is also attractive for electrons, but to a lesser extent than for holes [18].

The triplet line at 811.96meV
(
6548.9 cm−1

)
of the S0

B centre has been
measured by PL at 1.5K in qmi 28Si : natS and in qmi 28Si : 34S samples
[274]. As for absorption measurements in similar materials, the line becomes
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Fig. 6.39. (a) Absorption spectrum at LHeT between ∼420 and 540 cm−1 of the
SA and SB ID associated with the metastable (S,Cu) centre in silicon, obtained
under near-band gap auxiliary illumination, compared to (b) the absorption of the
P donor (lower scale). The top display consists of two spectra separated by about
1meV, which arise from transitions from the SA

0 and SB
0 IBE ground states to EM

excited state [18]. Copyright 1989 by the American Physical Society

very sharp. Besides the line shifts due to the shift of the energy gap in qmi
materials, S- and Cu-related fine structures are observed showing that this
centre contains at least three Cu atoms.

6.7.3 Pseudo-Donor BEs in Germanium

PL of excitons bound to neutral group-II acceptors in germanium has been
reported by Nakata and Otsuka [179], Thewalt et al. [247], and references
therein. Such excitons can be seen as positively ionized group-II acceptors
(A+ions) bound to an electron. These A+ ions, discussed in Sect. 7.5, are
stable at very low temperature, and when they trap an electron, they can be
considered as pseudo-donors. The far-IR absorption and magnetoabsorption
at 1.6 and 4.2K of these pseudo-donors, produced by the above-band-gap
laser excitation of Be- and Zn-doped germanium samples, has for instance
been reported by Natsaka and Otsuka [180], and references therein, [148],
([247], and references therein). This absorption is shown in Fig. 6.40.
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Table 6.36. Energy levels (meV) of the SA and SB ID in silicon, deduced from the
positions of the lines of the far IR absorption spectra and from those of the near IR
PL lines (denoted *) for the singlet and split 1s states

SA SB

Level Energy Position Energy Position EMTa

Triplet 65.28 968.24* 66.21 811.96* 31.26
Singlet 56.47 977.05* 56.26 821.91* ”
? 45.52 988.0 (SA

2)* 44.37 833.8 (SB
2)* ”

Split 1s 22.8 1004.7* 29.9 848.3* ”
” 27.0 1006.5* 26.7 851.5* ”
2p0 11.78 53.50 11.75 54.41 11.49
2p±1 6.44 58.84 6.37 59.84 6.40
3p0 5.44 59.84 5.57 60.64 5.49
4p0 3.39 61.89 3.36 62.85 3.31
3p±1 3.12 62.16 3.12 63.09 3.12
4p±1 2.22 63.06 2.22 63.99 2.19
4f±1 1.95 63.33 1.92 64.29 1.89
5p±1 1.50 63.78 1.50 64.71 1.45
EIBE 202 358
The energy levels are obtained for a 3p±1 binding energy of 3.12 meV. The uncer-
tainty on the levels deduced from the absorption lines is ±0.17 meV. The last row
gives the IBE binding energy. All the values are in meV (after [18]), a [118])

The spectra show odd-parity transitions of EM donor spectra, but because
of the splitting of the BE ground state, and also of the Be0 ground state (see
Sect. 7.3.1.1), they include thermalized components. Taking 744.8meV for Eg

and estimated values of 734.8 and 737.2meV (after [247]) for the ground state
energies of Be0X and Zn0X, respectively, where X denotes an exciton, the dis-
sociation energies of Be0X and Zn0X into an acceptor, an electron and a hole
are found to be 9.9 and 7.5meV respectively. A comparison with the binding
energies of the extra hole to Be0 and Zn0 given in Sect. 7.5 (4.7 and 1.9meV,
respectively), yields ionization energies of 5.2 and 5.6meV, respectively, for
the pseudo-donor. The energies of the 2P± (2p±1) transitions from the ground
states of the Be0X and Zn0X pseudo-donors are 3.45 and 3.75meV, respec-
tively [247]. The binding energies of the 2p±1 states of these pseudo-donors
are thus deduced to be 1.75 and 1.85meV for Be and Zn, respectively. These
values compare with the EM energy of 1.73meV for the 2p±1 donor level in
germanium, and they confirm the pseudo-donor behaviour of these centres.

6.8 Donors in III-V and II-VI Compounds

With the exception of GaAs, GaP, InP and InSb, the absorption studies on
donors in compound semiconductors are much less documented than those
in group-IV materials. This does not reflect a lack of interest for these ma-
terials, as they have been the subjects of many PL experiments, but rather
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Fig. 6.40. Pseudo-donor absorption spectrum in the far IR of excitons bound to
Be0 and Zn0 in germanium. The transition labels, at the top, are those of the
shallow donor states associated with the excited states of the pseudo-donors. The
components of the 2P± line in Ge:Be and Ge:Zn show thermalization between 1.6
and 4.2 K, indicating splitting of the BE ground states. The energy scales have been
shifted so as to align the 3P± transitions of the Ge : Be0 and Ge : Zn0 spectra.
The FE feature in (a) and (b) is due to the FE absorption. Reproduced from [247].
Copyright 1987, with permission from Elsevier

the difficulty to obtain good electronic absorption spectra in the vicinity of
phonon absorption bands and also problems related to impurity complex-
ing and interaction with native defects. Technologically, the study of the
direct-band-gap compounds requires high-purity samples and besides GaAs
and InP, they are hard to find in other semiconductors. Unless otherwise
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specified, the compound semiconductors considered in this section have the
sphalerite structure. From their spectroscopic behaviour, a distinction is made
between the direct-band-gap and indirect-band-gap materials. Donor absorp-
tion and magnetoabsorption in a few direct-band-gap materials with small
effective masses (GaAs, InP, InSb and CdTe) have been studied because of
the high electron mobility or electro-optical interest of these materials. The
donors in these semiconductors are nearly pure hydrogenic ones and their
spectroscopy is presented in the following sub-section while the spectroscopy
of shallow donors in indirect-band-gap materials, which is more intricate, is
presented later.

6.8.1 Quasi-Hydrogenic Effective-Mass Donors

6.8.1.1 Cubic Semiconductors

As mentioned above, the donor centres in the direct-gap cubic semiconductors
with isotropic electron effective masses display a quasi-hydrogenic behaviour
and are called quasi-hydrogenic donors (QHDs). To zeroth order, their ioniza-
tion energies are given by the effective Rydberg R∗∞d = R∞mn/ε

2
s and the

theoretical donor spectrum by lines with energies E∗
n of a Lyman series equal

to R∗∞d

(
1 − 1/n2

)
. The calculated energies of the first donor lines in InSb,

GaAs, InP, ZnSe and CdTe are given in Table 5.10. Calculations taking into
account wave-vector dependent dielectric functions and polaron effects have
also been performed by Grinberg et al. [85] and for CdTe, the energy of the
1s→ 2p transition obtained is larger than the experimental one.

High-resolution measurements of the discrete spectrum of donors in high-
purity GaAs and InP have been performed by PTIS and in most cases, the
spectra have been obtained under a magnetic field to reduce the spatial am-
plitude of the wave function, in order to limit the interaction between the
electrons bound to neighbouring donors. With the application of a magnetic
field, the FWHMs of the individual lines are drastically reduced and a com-
parison with the zero-field spectrum can be made in Fig. 6.41a, b.

The presence of several lines associated with the same Zeeman component
indicates the presence in the sample of several QHDs with different central-cell
corrections. Figure 6.42 shows a spectrum of a high-purity GaAs sample at a
lower resolution, but in a broader spectral domain, where more components
are observed.

These magneto-optical experiments, often performed with magnetic fields
in the 5–20 T range, have been used to determine the effective masses and
dielectric constants of the material, and a small dispersion of these values is
observed. Table 6.37 gives the experimental energy positions of the 2p lines
for different QHDs in GaAs, InP and CdTe (PTIS measurements) and ZnSe
(absorption measurements and two-electron PL) and the corresponding ioniza-
tion energy. For GaAs, the comparison between the positions at zero magnetic
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Table 6.37. Peak positions (meV (cm−1 are given in parentheses)) of the 2p line at
LHeT for different chemical or unidentified QHDs in GaAs, InP, CdTe, and ZnSe.
The experimental ionization energies of the last column are obtained by adding to
the 2p line positions the values of E2p of Table 5.10

B = 0 B = 6.32 T Ei

2p line 2pm=−1 line

GaAsa Te 4.3458 (35.051) 4.3371 (34.981) 5.81
Si 4.3728 (35.269) 4.3873 (35.386) 5.83

Sn or Se 4.3858 (35.374) 4.3986 (35.477) 5.85
S 4.4269 (35.705) 4.4505 (35.896) 5.89
Ge 4.5113 (36.386) 4.5688 (36.850) 5.97

InPa P1 5.5630 (44.869) 5.1467 (41.511) 7.37
P2 (Si) 5.5847 (45.044) 5.2934 (42.694) 7.39

P3 5.6136 (45.277) 5.3235 (42.937) 7.42
P4 (S) 5.6501 (45.571) 5.2375 (42.243) 7.46

P5 (Ge) 5.6978 (45.956) 5.3024 (42.767) 7.51

CdTeb A 10.008 (80.72) 13.28
C 10.276 (82.88) 13.56
D ∼10.35 (∼83.5) ∼13.6
E 10.834 (87.38) 14.11

ZnSe Al 18.96c (152.9) 25.39c

19.14e

Cl 19.64c (158.4) 26.07c

19.66e

Ga 20.72e (167.1) 27.15
In 21.67 (174.8)c 28.10c

21.69e

F 22.14d (178.6) 28.57d

a [235], b [228], c [181], d [25] , e [164], two-electron PL

field and at 6.32 T for the 2pm=−1 line shows a relatively small magnetic-field
dependence of this component. For InP, the energies of the 2pm=−1 compo-
nents start decreasing with increasing values of B down to a minimum at
2.5T and then increase monotonously, the zero field values being reached for
B∼10 T [227]. This is in qualitative agreement with the calculations of [149].
For ZnSe, the differences between the values of Ei and those quoted by Merz
et al. [164] come only from the value of E2p taken in this reference as the
values of the energy of the 2p line obtained by absorption and by two-electron
PL for different donors agree closely.

The possibility of two-photon absorption (TPA) due to non-linear effects
has been mentioned in Sect. 4.1. The magnetic-field-tuned LHeT absorption
by n-type GaAs of a laser line at 20.2 cm−1 (2.50meV) has been reported
by [28] for B = 1.15 T and attributed to a two-photon 1s → 2s transition
at 40.4 cm−1 (5.00meV). The fact that the initial and final states of this
transition have the same parity can be explained by assuming an odd-parity
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character of the virtual intermediate state. TPA can prove helpful in detect-
ing the electronic transitions resonant with the phonon Reststrahlen band in
compound semiconductors, where classical one-photon absorption is nearly
impossible to perform: TPA at 139 cm−1 (17.2meV) has been used to ob-
serve magnetic-field induced polaron coupling at LHeT between a 1s→ 3d+2

transition of the Si donor in GaAs and the GaAs LO mode at 296 cm−1 [214].
The existence of metastable quasi-hydrogenic donor (QHD) states asso-

ciated with Landau levels with N > 0 for large values of the magnetic field
has been mentioned in Sect. 5.2.3. The absorption of a large number of such
states has been observed on GaAs for relatively high doping levels, as shown
in Fig. 6.43.

The situation for InSb is somewhat different, the reason being the small
electron effective mass and large dielectric constant, which result in a rather
large effective Bohr radius (∼0.3 μm for n = 2 state) and a small value
of R∗∞ d. The Bohr radius is thus comparable with the average nearest-
neighbour donor distance, even in high-purity material and this produces
an overlap of the donor wave functions. This overlap produces an impurity
band, resulting in donor-induced metallic conduction. No donor spectrum is
therefore observed in InSb without the application of a magnetic field, which
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Fig. 6.43. Magnetic-field tuned PTI spectrum at LHeT of Si-doped GaAs with
ND − NA∼5 × 1014 at cm−3 at (a) a laser wavelength of 118.8 μm (84.18 cm−1 or
10.44 meV) and (b) a laser wavelength of 46.2 μm (216.5 cm−1 or 26.84 meV). The
final states of most of the donor transitions observed are metastable states (the high-
field-limit labelling is used with the parentheses omitted) (after [128]). Copyright
1990, American Institute of Physics
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produces a transition from a conducting to an insulating state due to the
field-induced reduction of the spatial amplitude of the QHD wave functions.
For InSb, the parameter γB = �ωc/2R∗∞ d is unity for B ∼0.16 T, and as the
best magnetospectroscopic results for donors have been obtained for magnetic
fields of the order of several T, the modelling of the interaction of the QHDs
in InSb with a magnetic field, must be treated in the high-field limit (see
Sect. 5.2.3). The (0 0 0) → (01̄0) transitions of four residual QHDs, denoted
A, B, C and D observed in high-purity InSb samples are shown in Fig. 4.10a, b.
At magnetic fields in the 10 T range, the line positions depend on the chemical
nature of the donor and the separation between the A and D components is
∼1.8 cm−1 or 0.22meV at 13T, but it decreases with the magnetic field. The
average energy of the transition also decreases with the magnetic field and it
is about 0.6meV at 1 T; value extrapolated at zero magnetic field after the
data of [125] is ∼0.5 meV (4 cm−1 or 120GHz), close to the calculated value
of Table 6.36 for the 1s → 2p transition. The attributions of A, B, C, and D
to specific donor impurities is not yet solved: doping InSb with Sn produces
a new line with an energy between those of B and C while Se and Te dopings
produce lines at the position of B and C, respectively, and also new lines at
energies below that of D. This and other tentative attributions are discussed
in the paper by Kuchar et al. [146].

6.8.1.2 Non-Cubic Semiconductors

The LHeT absorption spectrum of QHDs in w-GaN samples shows for each
donor a single line ascribed to 1s → 2p transitions. Such a line is shown at
215 cm−1 (26.7meV) in Fig. 6.44. Similar lines have been reported at 23.30
and 25.95meV [171]. The observation of a single transition implies that the
anisotropy of the electron effective mass of w-GaN is small, and this assump-
tion is validated by the results of [38]. A value of 0.22me for mn⊥ has been
derived from the Zeeman splitting measurements of [171], in excellent agree-
ment with the CR value [5]. By taking a low-temperature isotropic dielectric
constant εs∼10, the above value of the electron effective mass yields a donor
effective Rydberg value R∗∞d (w-GaN)∼29.9 meV. The binding energy of a
2p state in the quasi-hydrogenic approximation is 0.25R∗∞d. By adding this
energy (7.5 meV) to the positions of the 2p lines at 23.3, 26.0, and 26.7 meV,
one obtains the values of 30.8, 33.5, and 34.2meV, respectively for Eio. These
values are not too different from those obtained self-consistently (31.1, 33.8,
and 34.5meV) by Moore et al. [171] by deriving first a value εs = 9.8 from the
QHD with the 2p line at 23.30meV, assumed to yield an effective Rydberg
value of 31.07meV. If the dielectric constant εs is taken as 9.5, the value of
εs⊥ measured by Barker and Ilegems [17], the effective Rydberg for the E⊥c
experimental configuration is 33.17meV.

HVPE GaN films are known from SIMS measurements to contain Si and O
as dominant impurities, and a comparison with results obtained on Si-doped
GaN [264] has led Moore et al. [171] to identify tentatively the 31.1meV donor
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the 2p line is 2 cm−1 (∼ 0.25 meV). The vertical bar indicates the ionization energy
of 35.5 meV (after [165]). Copyright 1995, with permission from Elsevier

with Si. Calculation of the ionization energies of QHDs in c- and w-GaN
including central-cell correction (see Table 5.11) predict that the shallowest
donor is Si, followed with increasing energy by O and C. Considering their
calculated ionization energies as quantitatively exact, Mireles and Uloa [167]
have argued that the 31.1meV donor should be O rather than Si and that
the 34.6meV donor could be C. However, from the previous comparisons for
shallow donors in silicon and germanium we have learned that even when
knowing the experimental ionization energy of a chemical donor, the agree-
ment with the calculated ionization energy was largely qualitative. Thus, the
Si attribution for the 31.1meV donor remains plausible.

The choice of the values of mn// and mn⊥ made by Mireles and Ulloa
results in an energy position of the 2p0 line slightly higher than that of the
2p±1 line. In the absence of Zeeman splitting, a line observed at 16.96meV by
Moore et al. [171] was tentatively attributed to a 2p0 line associated with the
line at 23.30meV, the strongest of the whole spectrum, ascribed to the 2p±1

line of the 31.1meV donor. With this attribution, the rather large positive
2p±1 − 2p0 difference between the energies of the two lines implies a value of
γ < 1. The consequence of the non-parabolicity of the CB of w-GaN on the
values of mn// and mn⊥ has not been accurately evaluated, but the above
attribution would require a value of mn⊥ significantly lower than that of
mn// and this seems unlikely, hence the attribution of the 16.96meV line
remains open.

An ionization energy of 19.5meV for an unknown donor in CdSe has
been determined from two-electron PL transitions [100]. As donors should
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be considered as QHD in this material, this value should be representative of
the donor ionization energies in wCdSe.

6.8.2 Semiconductors with CB Degeneracy

GaP is an indirect-band-gap cubic semiconductor with a CB minimum very
close to the X point, resulting in a threefold degeneracy of the donor electron
in k-space. As a consequence of the positive value of the antisymmetric part
of the pseudo-potential, the apparent symmetry of the lowest CB depends on
the donor site [172]. For O, S, Se, and Te donors on a P site, the lowest CB
has X1 symmetry, and for Si, Ge, and Sn donors on a Ga site (in GaP, C is
an acceptor on a P site), it has X3 symmetry (see Sect. 3.3.1). Consequently,
the above threefold degeneracy of the ground-state electron corresponds to
A1 + E (Γ1 + Γ3) IRs of Td for the P-site donors and to T2 (Γ5) IR for the
Ga-site donors. By analogy with the donors in silicon and germanium, one
can expect a valley-orbit splitting of the A1 + E degeneracy of the 1s ground
state of the group-VI donors, the 1s (A1) being the deeper. One outcome of
this situation is that because of the different values of the electron effective
masses at the X1 minimum with camel’s back structure and the X3 minimum
with ellipsoidal structure, the line spacings in the spectra for the donors on
Ga sites is expected to be different from those in the spectra for the donors
on P sites.

After several reports between 1965 and 1980, no new information has been
published on the spectroscopy of donors in GaP. Odd-parity transitions from
the ground to excited states associated with the lowest X band for the Si,
S and Te donors have been reported in the 55–100meV

(∼440–810 cm−1
)

spectral domain [10, 39, 196, 223]. The spectra are superimposed on the two-
phonon spectrum of GaP and the FWHMs of the absorption lines at LHeT
are ∼0.6 meV. LHeT photoconductivity measurements in the photoionization
region of shallow impurities in GaP revealed dips due to electronic transitions
accompanied by the emission of LA(X) and LO (Γ) phonons with energies of
404 and 254 cm−1, respectively, and they have contributed to the understand-
ing of the donor spectra [222]. LHeT transmission spectra of GaP:Si samples
at LHeT showing Si donor transitions are displayed in Fig. 6.45.

DAP spectra of GaP samples doped with Si from 30Si-enriched silica pow-
der have produced evidence of a very small IS (−0.05 meV or 0.4 cm−1) of
the ionization energy of SiGa when 28Si was replaced by 30Si [54]. Many
fundamental results on the donor excited states in GaP have also been ob-
tained through PL and excitation measurements, and they are also discussed
here. Spectra of the O donor have been obtained in the 840–1,020meV range(∼6670–8225 cm−1

)
by PLE spectroscopy, measuring the intensity variation

of the ZPL O0 line at 841meV as a function of the energy of the photons
producing PL [53]. This line is due to the radiative transition of an electron
trapped in a shallow EM state, assumed to be 1s (E) to the deep 1s (A1)
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ground state. This transition has the particularity to show an electronic O
isotope effect of −0.67 meV

(−5.4 cm−1
)

when 16O is replaced by 18O. The
ionization energy of the deep OP donor has been obtained experimentally
from DAP spectra by Dean [51], Vink et al. [259] and it is 898.7meV. The
only transition observed by Raman scattering is the one between the 1s (A1)
and 1s (E) states for S, Se and Te donors [160].

Internal donor absorption has also been observed in the 300–600meV
(2400–4800 cm−1) spectral region ([195], and references therein). It is due
to a transition from the ground state associated with the lowest energy X
band to the 2p±1 excited state associated with the next X band at higher en-
ergy. Only one such transition has been observed for each of the Si, S and Te
donors. For Si, the ground state is 1s (X3) and the final state 2p±1 (X1) and
the X bands are inverted for S and Te. These lines, denoted here 2p′±1, have
FWHMs ∼20 meV

(∼160 cm−1
)
, mainly due to the decay of the excited elec-

tron into electron states of the lowest X band, and their positions are given in
Table 6.38. The energy difference between the 2p′±1 line and the 2p±1 line as-
sociated with the lowest CB gives an estimation of the separation Δ between
the X1 and X3 CBs.

The number of donor transitions observed in GaP is limited and some
attributions can differ, but line 2p±1 is observed for all the donors and its
position is taken as a reference. The energies of these transitions are given in
Table 6.38.
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Table 6.38. LHeT positions (meV) of donor transitions observed in GaP samples,
labelled by the final state of the transition

Line 1s(E)f 2s(A1) 2s(E) 2p0 3p0 4p0 2p±1 4f 0 3p±1 4p±1 2p’±1
g

SiGa
a - 66.86 74.80 77.56 79.26 81.74 432

(539.3) (603.3) (625.6) (639.3) (659.3)

SP
b 53.4 71.5 84.9 89.4 96.8 457

83.2c 90.6c 71.4c 89.4c 96.7c

(671) (731) (576) (721) (780)
SeP 54.0 81.8c 89.4c 70.2c 87.5c 95.0c

(660) (721) (566) (706) (766)

TeP 40.5 67.8c 56.3d 82.6d 441
55.7c 71.5c 73.9c 82.6c

(547) (449) (578) (597) (666)
OP

e 842.1e 864.8 878.7 884.4 888.2 891.7
Some allowed and forbidden transitions are observed together with phonon emission
(see text). For SiGa, the ground state is 1s (T2). For the other donors, it is 1s (A1).
When available, the values in cm−1 are indicated in parentheses
a [39], b [223], c [222], d [139] at 20K, e [53], f [160] Raman scattering at 20K, g [195]

Table 6.39. Comparison of the experimental spacings (meV) between line 2p±1

and other donor lines in GaP taken from Table 6.38

Spacing Si S Se Te O

2p±1–2p0 25.3 24.8 26.4 23.6
2p±1–3p0 7.94 11.9 11.1 9.5
2p±1–4p0 7.4 7.5 8.7 3.8
4f0–2p±1 2.76
3p±1–2p±1 4.46 3.5
4p±1–2p±1 6.94

In this table, 2p0 (Si) is missing as this line is expected at about
50meV

(
400 cm−1

)
, a zone of strong lattice absorption. 3s (E) (S) is observed

at 772 cm−1 (95.7meV). Assuming that the identification is correct, a com-
parison of the spacings between the corresponding lines for different donors is
given in Table 6.39.

The critical 3p±1–2p±1 spacing is expected to be independent of the nature
of the chemical donor, but it differs significantly between SiGa and OP. This
reflects the fact that the CB minimum for the donors on P site is associ-
ated with the X1 camel’s back structure. Variational calculations based on
k.p perturbation theory have been performed for P-site donor and compared
self-consistently with spectroscopic data [40]. The calculations are performed
as a function of the ratio of a non-parabolicity parameter9 Q to the separation
Δ between CBs X1 and X3. The authors use an anisotropy parameter μ equal

9 Q is the same parameter as Δ0 in expression (3.29).
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to the inverse of the ratio γ of the transverse and longitudinal effective masses,
but in order to obtain results that can be compared with the experimental
data, they have to add a variational parameter λ describing the eccentric-
ity of the wave functions, introduced in the coordinate vector r defined as
(x′, y′, z′) =

(
x, y, λ1/2z

)
. The energy level calculations have been performed

with μ = 4 and the eigenvalues minimized independently as a function of
parameter λ. The best agreement is obtained for CB minima at ±0.83k (X)
with a value of 3.2meV of the camel’s back energy ΔE, close to the values
reported in relation with Fig. 3.6. The binding energy of the 2p±1 level de-
termined from this calculation using an effective Rydberg value of 28.5meV
is 10.54meV. By adding this value to the positions of the 2p±1 lines of Ta-
ble 6.38, the Eio values for the S, Se, Te, and O donors are determined to
be 107.3,∼106, 103.1, and 898.7meV, respectively, and for the O donor, this
value is the same as the one obtained directly from the DAP spectra. The
first energy levels calculated in this reference are given in Table 6.40.

Some two-electron PL lines have been observed at 1.6K in GaP:S and
GaP:Se samples, where the donor electron is left in an excited (usually even-
parity) state [52]. Absorption dips due to transitions to even-parity states
with phonon emission have also been reported for the S, Se, and Te donors by
Scott [222] and they are included in Table 6.38. The experimental values of the
energy levels of the corresponding states, not given in the original reference
are for the S donor, 26.0, 17.1, 12.4 and 9.7meV for 2s (A1), 3s (A1), 3d0 (A1),
and 4s (A1), respectively [41].

The EM levels of the SiGa donor are associated with the X3 CB and there is
no direct information on the electron effective masses of this band. To compare
with their experimental results, the energy levels of the SiGa donor have been
calculated by Carter et al. [39] using the numerical results of Faulkner [61] by
assuming that the bound electron of this donor can be described by Hamilto-
nian (5.5) with a prolate effective mass. The idea is to find by interpolation
the γ1/3 value for which the calculated ratio (2p±1 − 3p0) / (3p±1 − 2p±1) of
the energy levels is the same as the experimental ratio for the energies of
the corresponding lines. This allows an a priori determination of the effective
Rydberg R∗∞d, and subsequently, the values of the energies. Combining this
value of R∗∞ d with the low-temperature value of the dielectric constant of

Table 6.40. Calculated energy levels (meV) for donors in GaP. The first row is
for the donor on P site (S, Se, Te) associated with the CB with the camel’s back
structure

Level 1s 2s 2p0 3p0 4p0 4f 0 2p±1 3p±1 4p±1 4f ±1

P-sitea 61.95 24.37 35.64 18.93 12.37 7.78 [10.54] 7.39 5.01 3.41

SiGa
b 35.65 [19.87] 13.09 9.11 [11.93] [7.47] 5.44

SiGa
c 69.92 27.13 35.67 [19.89] 13.30 9.70 [11.95] [7.49] 5.52 4.48

a [40], b [39] with Faulkner’s values (R∗
∞d = 31.6 meV), c Same as Carter et al. cal-

culations with values of Table 5.2 (R∗
∞d = 31.97 meV)
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GaP (εs = 11.02) determined by Vink et al. [259] allows one to also obtain an
estimation of the transverse effective mass mt. The more recent data of [30]
given in Table 5.2 have also been used for the calculation of the energy levels
of SiGa and the results obtained are close to those of [39]. The calculated en-
ergy levels are given in Table 6.40, where they are compared with the results
of [40], valid for the P-site donors. The optical ionization energy Eio (SiGa) de-
rived from these calculations and from the absorption data is 86.73meV and
it compares with the value of 85meV given by Kopylov and Pikhtin [140].

With Faulkner’s values (Table 5.1), mt = 0.275me and γ1/3 = 0.325(γ =
0.0345). With the values of Broeckx et al. (Table 5.2), mt = 0.285me and
the fit of the value (1.78) of the experimental ratio (2p±1–3p0) / (3p±1–2p±1)
depends critically on the value of γ1/3. This fit is obtained for γ1/3 between
0.3433 and 0.3434 (γ = 0.0405).

Information on the Sn donor in GaP have been obtained from PL spec-
troscopy measurements of DAPs [55, 259]. The 1s (T2) ground state of Sn is
split by spin-orbit interaction into 1s (T2,Γ8) and 1s (T2,Γ7) sublevels, in the
same way as the 1s (T2) level of the Bi and Sb donors in silicon (see Table 6.5),
but compared to Sb in silicon where it is 0.3meV, this splitting amounts to
2.1meV for Sn in GaP [55]. An ionization energy of 65.5meV is given for SnGa

[55]. A value of 72meV has also been quoted for this donor, but its origin is
not clear. Spin-orbit splitting of the 1s (T2) ground state has also been de-
tected and evaluated to be 0.5meV

(
4 cm−1

)
for the Si donor. This can be a

supplementary cause of broadening of the Si absorption spectrum.
The absorption of Te and Se donors in AlSb has been measured by Ahlburn

and Ramdas [4]. The Te spectrum is located in the 38–70meV
(
306–565 cm−1

)

spectral region, a very uncomfortable domain for the observation of an im-
purity spectrum as the strong absorption of the AlSb TO-phonon mode near
320 cm−1 is followed at higher energies by a relatively intense two-phonon
spectrum. The Se spectrum is observed between 110 and 160meV (∼890 and
1290 cm−1). Recent studies of the shifts of the AlSb donor lines with hydro-
static pressure have been performed on the same samples [108]. As for GaP,
the interpretation of the donor spectra in terms of EMT is far from obvious
because of the camel’s back structure of absolute CB minimum of AlSb. The
lines of the two donors, whose positions are given in Table 6.41, were at first
simply labelled by integers increasing with photon energy. Some of the initial
attributions of Ahlburn and Ramdas for the donor lines have been modified
in the light of calculations taking into account the camel’s back structure of
the CB minimum at X1 point.

On the basis of the scaling of the calculated values obtained for donors
in GaP, the EM positions of the 1s, 2p0 and 2p±1 donor levels in AlSb have
been calculated to be 48.4, 22.2 and 3.2meV, respectively, from the CB min-
imum [108]. One derives from them a 2p±1 − 2p0 spacing of 19.2meV, in fair
agreement with the experimental values of 25.2 and 21.6meV for Te and Se,
respectively, derived from Table 6.41. By adding to the position of the 2p±1
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Table 6.41. Positions (meV) at LHeT of donor absorption lines in Te- and Se-doped
AlSb samples with net doping concentrations between 1 and 2 × 1016 at cm−3 [4]

Linea Te attribution Tea Se attribution Sea Seb

1 2p0 38.31 ± 0.03 2p0 117.13 ± 0.05 117
2 57.96 ± 0.04 134.3 ± 0.2
3 59.2 ± 0.1 135.7 ± 0.5
4 59.7 ± 0.1 2p±1 138.7 ± 0.2 139
5 2p±1 63.5 ± 0.1 3p±1 142.4 ± 0.3
6 3p±1 66.7 ± 0.5 146.3 ± 0.5
7 68.8 ± 0.1

a [4], b [108]

line the calculated value of the 2p±1 level, spectroscopic ionization energies
Eio(Te) and Eio(Se) in AlSb of 67 and 142meV, respectively are obtained.
These values are comparable with ionization energies of 0.068 and 0.16 eV
obtained through Hall effect measurements [257].

Other transitions have been observed in the Se and Te spectra at energies
higher than those of the above-reported lines. They have been attributed to
phonon-assisted donor transitions involving the emission of AlSb TO(Γ) and
LO(Γ) phonons at 323 and 344 cm−1, respectively [4].

It has been mentioned at the end of Sect. 3.3.1 that for hydrostatic pres-
sures ≥ 4 GPa, GaAs turned from a direct-band-gap semiconductor with CB
minimum at the Γ point into an indirect-band-gap semiconductor with an ab-
solute CB minimum at the X point. This has consequences on the absorption
spectrum of the shallow donors in this material: discrete electronic absorp-
tion has been reported in GaAs at 487 (60.4meV) and 405 cm−1 (50.2meV)
for the SiGa and SnGa donors, respectively under hydrostatic pressures of
about 6GPa, with a small pressure dependence of their positions (−0.5 and
+0.14 meVGPa−1 for the Si and Sn lines, respectively) [107]. This absorption
is shown in Fig. 6.46 for GaAs:Sn.

The increase in energy of the positions of the lines for these two donors with
respect to the positions of the lines associated with the Γ minimum of the CB
under atmospheric pressure, whose positions are given in Table 6.37, reflects
the effective mass difference. The fact that only one transition is observed
for each donor has been related to the camel’s back structure of the CB
minimum at the X point for the cubic III-V semiconductors. The calculations
of [139] for GaP have been adapted by Hsu et al. [107] to the situation for
GaAs under pressure. They find that the ionization energies of the levels
corresponding to the 1s and 2p0 EM states for silicon are 37.7 and 11.8meV
below the CB continuum while the 2p±1 and 3p0 states lie several meV above
the continuum. This means that states above 2p0 are autoionizing states, and
it can explain why only one line, attributed to 2p0, is observed under pressure.
Assuming that the contribution of the donor central-cell is negligible for the
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Fig. 6.46. Absorption spectra between 43.4 and 86.8 meV of two GaAs:Sn samples
under hydrostatic pressures above the Γ/X crossover where the band gap of GaAs
becomes indirect. (a): n = 2.3 × 1016 cm−3, (b): n = 1.2 × 1015 cm−3. The FWHM
in (b) is 4.7 cm−1 or 0.58 meV. The final state of the transition giving the unique
line observed is ascribed to 2p0 (see text) (after [107])

2p0 state, ionization energies of 73.7 and 61.7meV are estimated for Si and
Sn, respectively at the crossover pressure of 4 GPa in GaAs [107].

6.9 The D− Ion and Hopping Absorption

6.9.1 The Donor Equivalent of H−: the D− Ion

In weakly-compensated p- or n-type semiconductors held at LHeT, steady
state illumination with RT background radiation can ionize the neutral shal-
low impurities. Some of the free carriers so created can recombine with neutral
impurities to form D− ions in n-type materials and A+ ions in p-type ma-
terials. The ionization energies of these centres are comparable to the EM
ionization energy of the impurity centres scaled by the ratio (0.0554) of the
ionization energy of H− (0.754 eV) to the Rydberg constant. For donors in
silicon, germanium, and gallium arsenide, such scaled values of Ei(D−) are
1.7, 0.54, and 0.32meV (∼14, 4.4, and 2.6 cm−1), respectively. The two elec-
trons of these D− states can be either antiparallel, giving a singlet state with
zero spin, or parallel, giving a triplet state with spin one. It has been shown
that the triplet state is not bound at zero magnetic field and that it has to
be considered only in experiments under a magnetic field [150].
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Determinations of Ei (P−) singlet state in silicon were reported by several
authors from absorption [71], photoconductivity [188] or phonon spectroscopy
measurements [34]. The actual value for isolated centres is concentration-
dependent and the most reliable one is that obtained for the smallest con-
centration. A value of Ei (P−)∼2 meV seems to be consistent with these
measurements, while the predicted value scaled from the ionization energy
of P0 is 2.5meV. For germanium, photoconductivity measurements were per-
formed at 0.38K in the very far IR with a lamellar grating interferometer
on germanium samples with a donor concentration of ∼5 × 1013 cm−3. They
yielded values of Ei(D−) of 0.625 and 0.75meV for Sb and As, respectively, to
be compared with predicted scaled values of 0.57 and 0.78meV, respectively,
for these two donors using the experimental ionization energies of the neutral
state ([182], and references therein). Similar photoconductive measurements
have also been performed in germanium and in silicon under uniaxial stresses
and magnetic fields [182,183].

The absorption or photoconductivity measurements on the D− states
associated with QHDs in III-V compounds are more difficult to perform be-
cause of the small values of the ionization energies, and experiments on GaAs
have been performed in the presence of a magnetic field [178]. PL measure-
ments at zero field performed between 4.2 and 0.45K on a high-purity GaAs
MBE sample under very low excitation conditions have revealed lines at-
tributed to D−-A0 recombination at an energy higher than that of the D0-A0

DAP [94]. In this study, the identification of the residual acceptors, the obser-
vation of the corresponding e-A0 PL lines, and a fit of the relative intensities
of these lines as a function of the temperature of the He bath have allowed
to obtain a value of the 1D− singlet binding energy in GaAs of 2.65 cm−1

(0.329meV), remarkably close to the estimation from the H− scaling. Similar
PL experiments with a magnetic field added have shown one additional line
due to the 3D−-A0 recombination for each acceptor [93]. The increase of the
energies of the 1D− and 3D− states with the magnetic field has been com-
pared with existing calculations [150, 207]. For B ∼2 T, the measured values
of E

(
1D−) and E

(
3D−) are about 2.6 and 0.9meV, respectively.

6.9.2 Photon-Induced Hopping

In highly-doped compensated silicon and germanium, a theory of the ab-
sorption of electromagnetic radiation in the very far IR has been proposed by
Blinowski and Mycielski [26]. This theory predicts low-temperature absorption
(from ∼1.5 to 12meV (800 to 100 μm) in silicon and from 0.4 to 2.5meV
(2.5 cm to 500 μm) in germanium) due to photon-induced hopping of a donor
electron from a neutral to an ionized donor, with relatively large absorption
cross-sections.

Evidence for this process was given by Milward and Neuringer [166], who
reported an absorption between ∼10 and 90 cm−1 (∼1.2 and 11meV) with
a broad maximum in n-type silicon with neutral ND

0 in the 1017–1018 cm−3
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Fig. 6.47. Absorption between ∼1.2 and 11.2 meV of lightly-compensated n-type
silicon samples due to electron hopping between D0 and D+. The absorption is
normalized by dividing by the compensation ratio K [166]. Copyright 1965 by the
American Physical Society

range and compensation ratios between ∼0.1 and 0.4. This absorption is shown
in Fig. 6.47 for three As-doped samples with K ∼0.1.

A similar absorption has been reported by Jang et al. [117] in p-type
NTD germanium between ∼4 and 40 cm−1 (∼0.5 and 5meV) and it is briefly
presented here because photon-induced hopping is not discussed in Chap. 7.
In this latter study, the compensation ratio was kept fixed at ∼0.3 and the
position of the broad maximum shifted towards higher energies with the neu-
tral acceptor concentration. Qualitatively, for the same neutral impurity con-
centration, the absorption coefficient in p-type germanium is larger than in
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n-type silicon. These results are compared with calculations of the energy
dependence of the process in p-type germanium and silicon [123], and the
agreement is found to be only approximate.
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28. W. Böhm, E. Ettlinger, W. Prettl, Phys. Rev. Lett. 47, 1198 (1981)
29. J. Broeckx, P. Clauws, J. Vennik, J. Phys. C 13, L141 (1980)
30. J. Broeckx, P. Clauws, J. Vennik, J. Phys. C 19, 511 (1986)
31. K.L. Brower, Phys. Rev. B 26, 6040 (1982)
32. T.G. Brown, D.C. Hall, Appl. Phys. Lett. 49, 245 (1986)
33. H. Buijs, (1985) Photo thermal ionization spectroscopy for shallow donor im-

purity determination in GaAs. BOMEM application note no. 1
34. W. Burger, K. Lassmann, Phys. Rev. Lett. 53, 2035 (1984)
35. N.R. Butler, P. Fisher, A.K. Ramdas, Phys. Rev. B 12, 3200 (1975)
36. V.V. Buzdin, A.I. Demeshina, A. Kurskii Yu, V.N. Murzin, Sov. Phys. Semi-

cond. 6, 1792 (1975)
37. Y. Cai, T. Zhang, A.B. Anderson, J.C. Angus, L.N. Kostadinov, T.V. Albu,

Diam. Relat. Mater. 15, 1868 (2006)
38. W.E. Carlos, J.A. Freitas, M. Asif Khan, D.T. Olson, J.N. Kuznia, Phys. Rev.

B 48, 17878 (1993)
39. A.C. Carter, P.J. Dean, M.S. Skolnick, R.A. Stradling, J. Phys. C 10, 5111

(1977)
40. Y.C. Chang, T.C. McGill, Solid State Commun. 33, 1035 (1980)
41. Y.C. Chang, T.C. McGill, Phys. Rev. B 24, 5779 (1981)
42. A. Chantre, S.J. Pearton, L.C. Kimerling, K.D. Cummings, W.C. Dautremont-

Smith, Appl. Phys. Lett. 50, 513 (1987)
43. C.Y. Cheung, R. Barrie, Can. J. Phys. 45, 1421 (1967)
44. P. Clauws, in Germanium-Based Technologies. From Materials to Devices, ed.

by C. Clayes, E. Simoen (Elsevier, Amsterdam, 2007), Chap. 4
45. P. Clauws, Mater. Sci. Eng. B 36, 213 (1996)
46. P. Clauws, J. Broeckx, E. Rotsaert, J. Vennik, Phys. Rev. B 38, 12377 (1988)
47. P. Clauws, F. Callens, F. Maes, J. Vennik, E. Boesman, Phys. Rev. B 44, 3665

(1991)
48. P. Clauws, J. Vennik, in Defects in Semiconductors 15, ed. by G. Ferenczi

(Trans Tech, Switzerland, 1989); Mater. Sci. Forum 38–41, 473
49. L.S. Darken, J. Appl. Phys. 65, 1118 (1989)
50. G. Davies, E.C. Lightowlers, R. Woolley, R.C. Newman, A.S. Oates, J. Phys.

C 17, L499 (1984)
51. P.J. Dean, in Deep centers in semiconductors A state-of-the-art approach, 2nd

edn. 1992, Ed. by S.T. Pantelides (Gordon and Breach, 1986), pp. 215–377
52. P.J. Dean, D. Bimberg, F. Mansfield, Phys. Rev. B 15, 3906 (1977)
53. P.J. Dean, C.H. Henry, Phys. Rev. 176, 928 (1968)
54. P.J. Dean, C.J. Frosch, C.H. Henry, J. Appl. Phys. 39, 5631 (1968)
55. P.J. Dean, R.A. Faulkner, S. Kimura, Phys. Rev. B 2, 4062 (1970)
56. A. Dörnen, R. Sauer, J. Weber, in Proceedings of 13th International Con-

ference on Defects in Semicond, ed. by L.C. Kimerling, J.M. Parsey Jr (The
Metallurgical Society of AIME, Warrendale, 1984), pp. 653–660

57. G. Elliot, Nature (London) 180, 1350 (1957)
58. V.V. Emtsev, G.A. Oganesyan, K. Schmalz, Def. Dif. Forum 103–105,

505 (1993)



274 6 Donor and Donor-Like EM Spectra

59. H.Y. Fan, P. Fisher, J. Phys. Chem. Solids 8, 270 (1959)
60. U. Fano, Phys. Rev. 124, 1866 (1961)
61. R.A. Faulkner, Phys. Rev. 184, 713 (1969)
62. G. Feher, Phys. Rev. 114, 1219 (1959)
63. H. Feichtinger, J. Waltl, A. Gachwandtner, Solid State Commun. 27, 867

(1978)
64. R.A. Forman, Appl. Phys. Lett. 37, 776 (1980)
65. R.J. Fox, IEEE Trans. Nucl. Sci. 13, 367 (1966)
66. C. Foy, J. Phys. C 15, 2059 (1982)
67. R.K. Franks, J.B. Robertson, Solid State Commun. 5, 479 (1967)
68. C.S. Fuller, R.A. Logan, J. Appl. Phys. 28, 1427 (1957)
69. A. Gali, J. Miro, P. Deák, C.P. Ewels, R. Jones, J. Phys Cond. Matter 8, 7711

(1996)
70. E.M. Gershenzon, G.N. Gol’tsman, A.I. Elant’ev, Sov. Phys. JETP 45, 555

(1977)
71. E.M. Gershenzon, G.N. Gol’tsman, A.P. Mel’nikov, Sov. Phys. JETP Lett. 14,

185 (1971)
72. E.M. Gershenzon, G.N. Gol’tsman, N.G. Ptitsina, Sov. Phys. JETP 49, 355

(1979)
73. E. Gheeraert, N. Casanova, S. Koizumi, T. Teraji, H. Kanda, Diam. Relat.

Mater. 10, 444 (2001)
74. E. Gheeraert, S. Koizumi, T. Teraji, H. Kanda, Solid State Commun. 113, 577

(2000)
75. E. Gheeraert, B. Pajot, T. Teraji, S. Koizumi, (2002) Unpublished results
76. T.E. Gilmer, R.K. Franks, R.J. Bell, J. Phys. Chem. Solids 26, 1195 (1965)
77. W. Götz, G. Pensl, W. Zulehner, Phys. Rev. B 46, 4312 (1992)
78. T. Graf, M.S. Brandt, C.E. Nebel, M. Stutzmann, S. Koizumi, Phys. Stat. Sol.

A 193, 434 (2002)
79. T. Gregorkiewicz, H.H.P.Th. Beckman, C.A.J. Ammerlann, Phys. Rev. B 38,

3998 (1988)
80. J.A. Griffin, J. Hartung, J. Weber, H. Navarro, L. Genzel, Appl. Phys. A 48,

41 (1989)
81. H.G. Grimmeiss, E. Janzén, H. Ennen, O. Schirmer, J. Schneider, R. Wörner,

C. Holm, E. Sirtl, P. Wagner, Phys. Rev. B 24, 4571 (1981)
82. H.G. Grimmeiss, E. Janzén, K. Larsson, Phys. Rev. B 25, 2627 (1982)
83. H.G. Grimmeiss, E. Janzén, in Deep Centers in Semiconductors. A State-

of-the Art Approach, 2nd edn, ed. by S.T. Pantelides (Gordon and Breach,
Switzerland, 1992), pp. 87–176

84. H.G. Grimmeiss, L. Montelius, K. Larsson, Phys. Rev. B 37, 6916 (1988)
85. M. Grinberg, S. Legowski, H. Meczynska, Phys. Stat. Sol. B 130, 325 (1985)
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112. D. Israël, F. Callens, P. Clauws, P. Matthys, Solid State Commun. 82, 215

(1992)
113. I.G. Ivanov, A. Henry, E. Janzén, Phys. Rev. B 71, 241201 (2005)
114. I.G. Ivanov, B. Magnusson, E. Janzén, Phys. Rev. B 67, 165212 (2003)
115. C. Jagannath, Z.W. Grabowski, A.K. Ramdas, Phys. Rev. B 23, 2082 (1981)
116. K. Jain, S. Lai, M.V. Klein, Phys. Rev. B 13, 5448 (1976)
117. H.F. Jang, G. Cripps, T. Timusk, Phys. Rev. B 41, 5152 (1990)
118. E. Janzén, R. Stedman, G. Grossmann, H.G. Grimmeiss, Phys. Rev. B 29,

1907 (1984)
119. E. Janzén, G. Grossmann, R. Stedman, H.G. Grimmeiss, Phys. Rev. B 31,

8000 (1985)
120. N.M. Johnson, S.K. Hahn, Appl. Plys. Lett. 48, 709 (1986)
121. C.E. Jones, D. Schafer, W. Scott, R.J. Hager, J. Appl. Phys. 52, 5148 (1981)
122. B. Joós, E.E. Haller, L.M. Falicov, Phys. Rev. B 22, 832 (1981)
123. E. Kaczmarek, Z. Gortel, Phys. Rev. B 10, 2535 (1974)
124. W. Kaiser, H.L. Frisch, H. Reiss, Phys. Rev. 112, 1546 (1958)
125. R. Kaplan, R.A. Cooke, R.A. Stradling, Solid State Commun. 26, 741 (1978)
126. D. Karaiskaj, J.A.H. Stotz, T. Meyer, M.L.W. Thewalt, M. Cardona, Phys.

Rev. Lett. 90, 186402 (2003)
127. J. Kato, K.M. Itoh, E.E. Haller, Physica B 302–303, 1 (2001)
128. A. Klarenbosch, T.O. Klaassen, W.T. Wenckebach, C.T. Foxon, J. Appl. Phys.

67, 6323 (1990)
129. W.H. Kleiner, W.E. Krag, Phys. Rev. Lett. 25, 1490 (1970)
130. M. Kleverman, K. Bergman, H.G. Grimmeiss, Semicond. Sci. Tech. 1, 49 (1986)



276 6 Donor and Donor-Like EM Spectra

131. M. Kobayashi, S. Sawada, S. Narita, J. Phys. Soc. Jpn. 51, 844 (1982)
132. Sh. M. Kogan, Sov. Phys. Semicond. 13, 1131 (1980)
133. Sh. M. Kogan, R. Taskinboev, Sov. Phys. Semicond. 17, 1007 (1983)
134. W. Kohn, Phys. Rev. 98, 1856 (1955)
135. W. Kohn, in Solid State Physics Advances in Research and Application, vol. 5,

ed. by F. Seitz, D. Turnbull (Academic, New York, (1957), pp. 257–320
136. W. Kohn, J.M. Luttinger, Phys. Rev. 98, 915 (1955)
137. S. Koizumi, T. Teraji, H. Kanda, Diam. Relat. Mater. 9, 935 (2000)
138. B.O. Kolbesen, Appl. Phys. Lett. 27, 353 (1975)
139. A.A. Kopylov, A.N. Pikhtin, Sov. Phys. Semicond. 11, 510 (1977)
140. A.A. Kopylov, A.N. Pikhtin, Solid State Commun 26, 735 (1978)
141. W.E. Krag, W.H. Kleiner, H.J. Zeiger, Bull. Am. Phys. Soc. 15, 279 (1970)
142. W.E. Krag, W.H. Kleiner, H.J. Zeiger, Phys. Rev. B 33, 8304 (1986)
143. W.E. Krag, in Proceedings of 10th International Conference On Physics

of Semiconductor, Cambridge, MA (USAEC Div. Technical Information,
Washington DC, 1970), pp. 271–277

144. W.E. Krag, W.H. Kleiner, H.J. Zeiger, S. Fischler, J. Phys. Soc. Jpn.
21(Suppl.) 230 (1966)

145. W.E. Krag, H.J. Zeiger, Phys. Rev. Lett. 8, 485 (1962)
146. F. Kuchar, R. Kaplan, R.J. Wagner, R.A. Cookes, R.A. Stradling, P. Vogl, J.

Phys. C 17, 6403 (1984)
147. W. Kürner, R. Sauer, A. Dörnen, K. Thonke, Phys. Rev B 39, 13327 (1989)
148. D. Labrie, M.L.W. Thewalt, B.P. Clayman, T. Timusk, Phys. Rev. B 32,

5514 (1985)
149. D.M. Larsen, Phys. Rev. B 8, 535 (1973)
150. D.M. Larsen, Phys. Rev. B 20, 5217 (1979)
151. I. Latushko Ya, L.F. Makarenko, V.P. Markevich, L.I. Murin, Phys Stat. Sol.

A 93, K181 (1986)
152. A.L. Lin, J. Appl. Phys. 53, 6989 (1982)
153. J.L. Lindström, T. Hallberg, (1996) in Proceedings of NATO Advanced Work-

shop on the Early Stages of Oxygen Precipitation in Silicon. NATO ASI Series
3, Vol. 17, ed. by R. Jones (Kluwer, Dordrecht, 1996), pp. 41–60

154. V.V. Litvinov, G.V. Pal’chik, V.I. Urenev, Sov. Phys. Semicond. 19, 841 (1985)
155. S.P. Love, K. Muro, R.E. Peale, A.J. Sievers, W. Lo, Phys. Rev. B 36, 2950

(1987)
156. G.W. Ludwig, Phys. Rev. 137, A1520 (1965)
157. G.W. Ludwig, H.H. Woodbury, in Solid State Physics Advances in Research

and Application, vol. 13, ed. by F. Seitz, D. Turnbull (Academic Press, New
York, (1962), pp. 223–304

158. S.A. McQuaid, R.C. Newman, E.C. Lightowlers, Semicond. Sci. Tech. 9, 1736
(1994)

159. L.F. Makarenko, L.I. Murin, Sov. Phys. Semicond. 20, 961 (1986)
160. D.D. Manchon Jr, P.J. Dean, in Proceedings of 10th Internatnational Confer-

ence on Physics of Semiconductors,Cambridge, MA (USAEC Div. Technical
Information, Washington DC, 1970), pp. 760–766

161. A.V. Marinchenko, L.I. Khirunenko, V.I. Shakhovtsov, V.I. Yashnik, Sov. Phys.
Semicond. 24, 712 (1990)

162. P.W. Mason, H.J. Sun, B. Ittermann, S.S. Ostapenko, G.D. Watkins, L.
Jeyanathan, M. Singh, G. Davies, E.C. Lightowlers, Phys. Rev. B 58, 7007
(1998)



References 277

163. A.J. Mayur, D.M. Sciacca, A.K. Ramdas, S. Rodriguez, Phys. Rev. B 48, 10893
(1993)

164. J.L. Merz, H. Kukimoto, K. Nassau, J.W. Shiever, Phys. Rev. B 6, 545 (1972)
165. B.K. Meyer, D. Volm, A. Graber, H.C. Alt, T. Detchprohm, A. Amano,

I. Akasaki, Solid State Commun. 95, 597 (1995)
166. R.C. Milward, L.J. Neuringer, Phys. Rev. Lett. 15, 664 (1965)
167. F. Mireles, S.E. Ulloa, Appl. Phys. Lett. 74, 248 (1999)
168. B. Monemar, U. Lindefelt, W.M. Chen, Physica B + C 146, 256 (1987)
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7

EM Acceptor Spectra

7.1 Introduction

The first report of the absorption spectrum of acceptors in semiconductors is
probably the paper by Burstein et al. [26], showing the LHeT transmission
spectra of two p-type silicon samples. In one of these spectra, broad elec-
tronic lines, attributed to boron, could be seen at 0.034, 0.040 and 0.043 eV
while in the other, from a nominally undoped sample, lines near 0.055 and
0.06 eV were observed, now known to be due to the aluminium acceptor. Since
then, many acceptors have been identified in silicon and other semiconductor
crystals and with the same technological incentive as for donors, their opti-
cal spectroscopy has been widely used to characterize them, evaluate their
concentrations, provide physical insight into the VB structures of the crys-
tals and more recently evaluate the effect of impurity isotope broadening in
quasi-monoisotopic crystals.

Single substitutional acceptors at a given crystal site are atoms of the
column of the periodic table preceding that of the atom they replace (e.g.,
group-III atoms in group-IV crystals). The position of the double acceptors
in the periodic table is determined in a similar manner (e.g., group-II atoms
in group-IV crystals). At a difference with donors, a few triple acceptors, like
Cu in germanium, have been identified in semiconductors. Besides the well-
defined isolated shallow acceptors, residual acceptor complexes involving C,
O and H, some TMs and pseudo-acceptors (the counterpart of the pseudo-
donors discussed in Sect. 6.6) have also produced EM acceptor spectra which
are discussed in this chapter.

The electrical and optical activity of acceptors as a function of their charge
state and of the electrical compensation of the semiconductor can be derived in
the same way as what has been described for donors. Also, in all semiconduc-
tors and insulators, many of the spectroscopic properties of the hydrogen-like
acceptors are determined by the energy structure of the VB maximum, located
at k = 0. There is no strict equivalent of the Fano resonances observed for
donors in crystals with several equivalent CB minima in k space, but discrete
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hole transitions accompanied by the emission of 1, 2, 3, . . ., N zone-centre
phonons superimposed on the photoionization spectrum have been observed
in the acceptor spectra. Related oscillatory photoconductivity has been, for
instance, reported in the p-type InSb by Engeler et al. [54] and in the p-type
germanium by Benoit à la Guillaume and Cernogora [19].

In this chapter, the experimental results of the acceptor absorption spectra
are presented. We follow the same sequence as in Chap. 6, beginning with ac-
ceptors in group-IV crystals and extending later to compound materials. For
the donor spectra, a pseudo-atomic notation of the lines could be established
relatively quickly. On the contrary, for the acceptor spectra, whose interpre-
tation was essentially more difficult, notations varied from one material to the
other, and I have taken some time, especially in the case of silicon, to try to
establish a correlation between the lines and their spectroscopic attributions.

7.2 Group-III Acceptors in Group-IV Crystals

7.2.1 Silicon

We now have an acceptable insight into the acceptor absorption spectroscopy
in silicon. It is based on high-quality experiments supplemented by the results
of the acceptor level calculations presented in Sect. 5.3. The acceptor ground
state is 1Γ8

+ where the + superscript represents an even-parity state. This
level is fourfold degenerate and can be split into two Kramers doublets by a
uniaxial stress. In natSi, a small splitting of this ground state was observed by
different techniques, the best evidence being given by high-resolution PL of
the acceptor bound exciton (for a short summary, see [93]). These splittings
for B, Al, Ga, and In in natSi are 5.3, 12, 12, and 20 μeV (0.043, 0.10, 0.10,
and 0.16 cm−1), respectively, and they are too small to be detected by IR
absorption spectroscopy because the FWHMs are larger than these values.
Jahn-Teller effect was put forward to explain this splitting before the com-
pletion of the same high-resolution PL measurements with qmi 28Si samples.
In these qmi samples, no splitting was detected, showing that it was actually
due to the effect of the randomness of the natSi isotopic contribution [93].
The natural isotopic distribution would lower the symmetry at the acceptor
site and produce the observed splitting, but up to now, no calculation to this
effect has been published.

In the acceptor spectra, a distinction is made between the p3/2 spectrum
due to transitions between the 1Γ8

+ ground state and the excited states asso-
ciated with the Γ8

+ VB (pseudo-angular momentum J = 3/2) and the p1/2

spectrum, at higher energy, associated with the same ground state and excited
states associated with the Γ7

+ VB (pseudo-angular momentum J = 1/2). The
ionization energy of the p3/2 spectra corresponds to the thermal ionization en-
ergy of the acceptors and it is lower than that of the p1/2 spectra.
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7.2.1.1 The p3/2 Spectra

Because of the large differences between the ionization energies of the group-III
acceptors in silicon, their p3/2 spectra are observed between 30 and 230meV,
and the IR-allowed absorption transitions usually extend over ∼15 meV be-
low the ionization energy of the acceptor. Presently, over 40 lines have been
observed in the B absorption spectrum and about 30 in the Al, Ga and In
spectra. In the early times, the attribution of their final states to specific levels
was not possible in the absence of accurate calculation of the energy levels,
and the observed acceptor lines in silicon were labelled by integers increasing
with their energy positions [41]. Further spectra showed that some lines had
been overlooked and rather than modifying the labelling, letters were added
to the number with eventual changes. This led to some inconsistencies (4A
line, observed before line 4B in boron, is at a higher energy, while the order is
reversed for gallium). To avoid the extra letters, Lewis et al. [108] relabelled
ab initio the boron transitions they observed, being aware that with the im-
provement of the measurement techniques, this labelling was provisional for
the lines near from the continuum. The correspondence between the different
numberings (Numberings 1, 2, 3, and 4 of Table 7.1) is given for the compar-
ison of the spectra from different origins.

A boron spectrum in natSi is displayed in Fig. 7.1a, where lines 1, 2, and
4, 5 are truncated, and Fig. 7.1b shows these lines on extended horizontal and
vertical scales [82]. A comparison with the OSs of Table 5.22 indicates that
the final states of lines 1, 2, 3, 4, 5 and 6 are the 1Γ8, 2Γ8, 3Γ8, 1Γ6, 1Γ7, and
4Γ8 states, respectively (level ordering of Binggeli and Baldereschi [21]).

The less intense h-e boron lines are displayed in Fig. 7.2 and it also allows
one to follow the numbering used in Fig. 7.1a. In the spectrum of Fig. 7.2, the
sharpest boron lines, like line 7, have FWHMs ∼0.2 cm−1 (∼25 μeV), taking
into account the instrumental resolution.

The positions of the first absorption lines observed for group-III acceptors
are given in Table 7.2. In this table, the lines are labelled using numbering
4 of Table 7.1. The correspondence between the numbers and the final states
of the transitions is based on the calculated level ordering given by Binggeli
and Baldereschi [21] and on the OSs of the transitions. For lines at higher
energies, because of the crowding of the transitions, there cannot be a one-
to-one correspondence between the indexed lines and the transitions. As for
the donor centres, the choice of the calculated energy of a reference acceptor
level, associated with a well-identified transition allows determination of semi-
experimental spectroscopic values of the ionization energies and also of the
binding energies of the excited states of the transitions observed with respect
to the VB. For boron, it has been argued that because of the different scal-
ings between the calculated energies and the line spacings, a selected fitting
of several calculated energies to the corresponding experimental transitions
was preferable [108]. By construction, this method gives a perfect agreement
between the calculated and semi-experimental values for the lines used for
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Table 7.1. Position (meV) at LHeT and correspondence between the different num-
berings (Number) of the first boron lines in natSi obtained from different experiments

Ramdas and Pajot,
Rodriguez [143] Fischer and Rome [59] Lewis et al. [108] unpublished

Number. Position Number. Position Number. Position Number. Position
1 2 3 4

1 30.38 1 30.37 1 30.371 1 30.369
2 34.53 2 34.49 2 34.510 2 34.505
3 38.35 3 38.35 3 38.378 3 38.374
4 39.6 4 39.59 4 39.67 4 39.601
4B 39.68 4B 39.67 5 5 39.679
4A 39.92 4A 39.91 6 39.93 6 39.913
5 41.52 5 41.47 7 41.474 7 41.473

6A 41.91 8 41.913 8 41.913
6B 42.06 9 42.060 9 42.047

6 42.19 6 42.16 10 42.168 10 42.166
7 42.41 11† 42.423 11 42.409

7 42.79 8 42.74 12 42.716 12 42.7166a

13 42.761 13 42.7480a

8A 42.92 14 42.922 14 42.936
9A 43.16 15 43.169 15 43.166

8 43.27 9 43.24 16 43.282 16 43.277
17 43.305a

17‡ 43.378
18 43.454

10A 43.49 19 43.522 18 43.479
10B (43.64) 20 43.616 19 43.613
10 43.71 21 43.729 20 43.72

10C 43.78 22 43.793 21 43.800
9 43.86 23 43.865 22 43.867

10D 43.95 24 43.965 23 43.959
24 44.10

11B (44.20) 25 44.167
26 44.24

11 44.27 27 44.260
10 44.32 28 44.344

25 44.408 29 44.442

Unless otherwise specified, the lines of the acceptor spectra in silicon are labelled
later using numbering 4. As other weak or blended lines have been observed or
separated in qmi silicon, modifications to numbering 4 is expected in the range of
line 20 and above when considering the qmi spectra
a Steger and Thewalt, private communication,† Blended with 3p± (P), ‡ 4p± (P)

the fit, but a better agreement is not a goal in itself and differences can lead
to central-cell corrections. It is true, especially for acceptors that the semi-
experimental energy values depend on the choice of the reference transition,
but by choosing reference lines with sufficiently EM-like excited states, the
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Fig. 7.1. (a) Absorption spectrum at LHeT of p3/2(B) between 234 and 363 cm−1

in a natSi sample with [B] = 8.5×1014 cm−3. P donor lines are also observed because
band-gap radiation reaches the sample. (b) Lines 1, 2 and 4, 5, 6 of B on an expanded
scale in the same sample with a reduced thickness [82]. Numbering 1 is given in
parentheses. For the attributions, see Table 7.2. Copyright 1981 by the American
Physical Society

energy dispersion is small: while it is 0.52meV for lines 1–5, it reduces to
0.15meV for lines 6–15. Line 14, observed in the four acceptor spectra, is
reasonably sharp and its excited state has been identified as 8Γ8

− by Binggeli
and Baldereschi [21], with a calculated energy of 2.67meV, and as 9Γ8

− by
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B in natSi
LHeT
Res.: 0.1 cm−1

Fig. 7.2. Part of the p3/2(B) absorption spectrum at LHeT in a natSi FZ sample
with [B] ∼ 1015 cm−3 at a resolution of 0.1 cm−1 (12.4 μeV). P lines are also observed
because of the band-gap illumination of the sample

Beinikhes et al. [18], with a calculated energy of 2.71meV. The average cal-
culated value of the energy of the excited state of line 14 (2.69meV) is added
to its measured position to obtain the optical ionization energy Eio of the
group-III acceptors in silicon. The excited state of line 11, identified as 7Γ8

−,
has been used before as the reference level to obtain Eio [132], but in most
boron spectra, this line is rather close to the 3p±1(P) line of residual P while
line 14 is well isolated and more intense.

The positions of higher energy lines 31, 32, 33, 34, 35, and 36 of the boron
spectrum of Fig. 7.2 are 44.62, 44.70, 44.73, 44.80, 44.87, and 44.91meV (359.9,
360.5, 360.8, 361.3, 361.9, and 362.2 cm−1), respectively.

By comparison, the value of Eio for boron obtained by Lewis et al. [108]
with a curve-fitting method is ∼45.6 meV, depending slightly on the origin of
the calculated values. The values of Eio of Table 7.2 obtained from the method
indicated in the title are close to those given by Ramdas and Rodriguez [143]
(45.71, 70.18, 74.05, and 156.90meV for B, Al, Ga, and In, respectively),
except for Eio (Al) because of the resonant broadening of line 4 (Al) used as a
reference by these authors. The values of Fischer and Rome [59], determined
empirically from a value of Eio(B), are ∼1.3 meV lower.

The Tl spectrum in silicon at LHeT shows only four resolved lines or fea-
tures at 1877, 1907, 1948, and 1968 cm−1 (232.7, 236.4, 241.5, and 244.0meV)
attributed to lines 1, 2, (4,5,6) and probably (7,8,9), respectively, of the Tl
acceptor spectrum, and a shoulder at 1937 cm−1 (240meV) attributed to line
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Table 7.2. Positions (meV (cm−1 in parentheses)) at LHeT of lines of the p3/2

spectrum of group-III acceptors in natSi

Line Attribution Ba Alb Gac Inb

1 1Γ8
− 30.3694

(244.946)
54.910
(442.88)

58.24 142.020
(1145.47)

2 2Γ8
− 34.5042

(278.295)
58.534
(472.10)

∼61.7† 145.792
(1175.89)

3 3Γ8
− 38.3770

(309.531)
67.13 149.784

(1208.09)
4 1Γ6

− 39.5973
(319.374)

64.09
(516.9)†

67.97 150.813
(1216.39)

5 1Γ7
− 39.6789

(320.032)
64.997
(524.24)

68.26 151.088
(1218.61)

6 4Γ8
− 39.9118

(321.910)
65.187
(525.77)

68.44 151.16
(1219.2)

7 5Γ8
− 41.4748

(334.517)
66.351
(535.16)

69.95 152.786
(1232.30)

8 2Γ6
− ±41.9119

(338.042)
9 6Γ8

− ±42.0494
(339.151)

66.75
(538.4)

[70.40] 153.29
(1236.44)

10 2Γ7
− 42.1602

(340.045)
66.82
(538.9)

70.51 153.390
(1237.17)

11 7Γ8
− 42.409

(342.05)
67.095
(541.16)

70.79 153.647
(1239.25)

12 3Γ6
− 42.7180

(344.544)
67.400
(543.62)

71.13 153.987
(1241.99)

13 3Γ7
− 42.7540

(344.834)
67.475
(544.22)

14 8Γ8
− 42.9361

(346.303)
67.67
(545.8)

71.35 154.210
(1243.79)

15 4Γ6
− 43.1677

(348.171)
67.83
(547.1)

[71.53] 154.43
(1245.6)

16 4Γ7
− 43.2683

(348.982)
67.911
(547.74)

71.62 154.50
(1246.0)

17 10Γ8
− 43.305

(349.28)b

18 11Γ8
− 43.4799

(350.689)
68.139
(549.58)

71.85 154.715
(1247.86)

19 5Γ6
− 43.6116

(351.751)
68.354
(551.31)

154.87
(1249.1)

20 5Γ7
− 43.7160

(352.593)
68.437
(551.98)

72.07 154.938
(1249.66)

21 6Γ6
− 43.7985

(353.259)
68.519
(552.64)

[72.13] 155.02
(1250.3)

22 6Γ7
− ±43.8714

(353.847)
68.603
(553.32)

155.10
(1251.0)

(continued)
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Table 7.2. (continued)

Line Attribution Ba Alb Gac Inb

23 7Γ−
7 43.9616

(354.574)
68.727
(554.32)

72.31 155.192
(1251.71)

24 17Γ8
− 44.0868

(355.584)
68.84
(555.2)

[72.44] 155.332
(1252.84)

25 8Γ6
−∗

44.167
(356.23)b

68.90
(555.7)

[72.52] 155.44
(1253.7)

26 18Γ8−∗
44.24
(356.8)‡b

72.62 72.62 155.49
(1254.1)

27 9Γ7
− 44.2692

(357.055)
68.986
(556.41)

28 10Γ6
− 44.3444

(357.662)
69.096
(557.30)

155.57
(1254.8)

29 44.4446
(358.470)

69.212
(558.23)

155.69
(1255.7)

30 44.56
(359.4)b

155.79
(1256.5)

Eio 1Γ8
+ 45.63 70.36 74.04 156.90

The attributions of the final states of the transitions are those of [161] except those
with an asterisk. They are derived from the energy levels of the last two columns
of Table 5.15 [21]. The accuracy of the positions for Ga is ±0.02 meV and ±0.05 for
the values in brackets. The optical ionization energy Eio is obtained by adding
2.69 meV to the position of line 14
a [161], b Pajot, unpublished, c [59], ± Reduced accuracy, † Phonon broadened, ‡ Not
resolved from 27

3 [153]. When adding to the energy of line 2 (Tl) 11.1meV, the energy sep-
aration of lines 2(B) or 2(In) from the VB, an ionization energy Eio (Tl) of
247.5meV is obtained, close to that of 246meV given in the original reference.

In the boron absorption spectrum, a line at 22.77meV has been reported
for [B] ≈ 1017 cm−3 and it has been attributed to a parity-forbidden tran-
sition between the 1Γ8

+ state and the 1Γ7
+ state associated with the Γ7

+

VB (Chandrasekhar et al. [32]). This transition, which represents the boron
spin-orbit splitting Δso

B in silicon (see Fig. 5.2), is Raman-allowed and it has
been observed by Raman scattering [190]. The energies of some even- and
odd-parity acceptor states in silicon have been determined from the two-hole
bound exciton (BE) PL spectra [111,171]. Knowing Eio, the shift E between
the energy of the principal BE (PBE) line leaving the acceptor in its ground
state 1Γ8

+ and that of the BE leaving the acceptor in an excited state is the
equivalent of a transition energy between the two states. In silicon, the most
intense two-hole BE PL lines are the TO-phonon-assisted lines. Most of these
lines correspond to even-parity excited states, but a few odd-parity states
are also considered: for boron, E

(
1Γ8

−) and E
(
2Γ8

−) obtained from these
experiments are 30.42 and 34.54meV, respectively [171], and they compare
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Table 7.3. Comparison between the calculated energies (meV) of even-parity
acceptor levels in silicon and the experimental ones deduced from absorption, PL
and Raman scattering experiments

B Al Ga In

Levela calc.a Exp.b calc.b Exp.b calc.b exp.b calc.b Exp.b

1Γ7
+ 21.94 22.86c 56.72a ∼55d ∼60d 152.7d,e

2Γ8
+ (0) 13.34 13.44 ± 0.1 17.22a 16.94 20.65 19.22 ± 0.5

13.3f

3Γ8
+ (2) 6.35 6.38 ± 0.1 7.14 6.11 ± 0.3 7.34 6.58 ± 0.15 8.26 8.12 ± 0.3

4Γ8
+ (2)? 3.75 3.85 ± 0.15 4.06 3.78 ± 0.15 4.14 4.02 ± 0.15 4.52 4.48 ± 0.3

5Γ8
+ (2)? 2.7b 2.7 ± 0.2 2.6 2.6 ± 0.2 2.62 2.78 ± 0.2 2.82 2.59 ± 0.3

a [24], b [111], c After [32], d After [152], e After [154], f [164]

with the energies of lines 1 and 2 of Table 7.2. A Fano resonance due to an
even-parity state has also been observed by Suezawa et al. [164]. The relevant
energies of the first even-parity states of B, Al, Ga and In in silicon with
respect to the VB obtained from such experiments and from calculations are
given in Table 7.3.

In P-compensated In-doped silicon, an absorption line at 1213 cm−1

(150.4meV) is observed at LHeT under TEC [135]. The vanishing of this
line1 when the compensating donor is neutralized suggests that it could be a
parity-forbidden transition. Its excited-state binding energy of 6.5meV makes
the attribution to a 2Γ7

+ level plausible.
The acceptor spin-orbit splitting Δso

A = 1Γ8
+−1Γ7

+ is 22.77, ∼15, ∼14,
and 4.1meV for B, Al, Ga, and In, respectively and this decrease has been
discussed by Schroth et al. [152]. One consequence of the moderate splitting
for In is that transitions from the 1Γ+

7 state could be observed for this acceptor
at moderate temperatures (∼30–40 K) about 4meV below the p3/2 spectrum
of In.

The line widths of some acceptor lines in silicon show an anomalous
broadening due to resonant interaction with phonons. This is the case for
line 2(Ga), whose severe broadening is due to the interaction with the O(Γ)
phonon at 65.0meV at LHeT. This effect, which is very strong, as can be
judged from Fig. 7.3, has been discussed by Chandrasekhar et al. [32].

The p3/2 spectrum of Al in silicon in the 60meV spectral region also shows
evidence of the interaction of electronic transitions with the O(Γ) phonon of
the silicon lattice, as seen in Fig. 7.4, where part of the broadening of lines 2
and 4, and the absence of line 3, are due to this interaction. The absorption
profiles of lines 1 and 2 of the p3/2 Al spectrum seem to depend on the

1 This line was reported at 150.38 ± 0.06 meV as an elbow of line 4(In) in Onton’s
thesis [131].
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Fig. 7.3. Absorption spectrum of p3/2(Ga) between 57 and 73 meV in a natSi sample
with [Ga] ∼ 1×1015 cm−3. It shows the anomalous broadening of line 2 by interaction
with the O(Γ) phonon. The dagger denotes a component of line 2 split by the
interaction and very close to the energy of the O(Γ) phonon of silicon (after [59])

illumination conditions of the sample and this effect has not been elucidated.
This resonant interaction also has some influence on the positions of the lines.

The FWHMs of lines 1 and 2 of the Al spectrum of Fig. 7.4 are ∼0.14
and 0.21meV (∼1.1 and 1.7 cm−1), respectively, compared to ∼0.06 meV
(∼0.5 cm−1) for the sharpest line of this spectrum. By comparison with the Ga
and In spectra, the complete spectrum of indium in silicon, without any reso-
nant broadening is shown in Fig. 7.5. In this spectrum, as in the Al spectrum,
some of the highest-energy transitions are identified as unresolved doublets
or shoulders. The lines of the Al and Ga spectra are superimposed on the
2-phonon spectrum of silicon and the In spectrum on the 3-phonon spectrum,
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Si:Al
LHeT
Res.: 0.1 cm−1 (12.4 µeV)

14

25

Fig. 7.4. Part of the absorption spectrum of p3/2(Al) in a FZ natSi sample with
[Al] ∼ 1015 cm−3. The peak absorption coefficients of lines 1 (not shown) and 2 are
2.8 and ∼6 cm−1, respectively, and line 3 is absent

and this contributes to a general broadening of the electronic lines. This is
why some lines observed in the boron spectrum are not observed in the other
acceptor spectra, making line numbering and attributions a delicate task. For
instance, line 8(B) does not seem to have an equivalent in the other acceptor
spectra and the peak attributed to line 13 in the In spectrum should corre-
spond to the 12–13 doublet in the boron spectrum.

On an expanded scale, the In lines of Fig. 7.5 show a low-frequency
asymmetry indicating a possible residual inhomogeneous Stark effect, so that
better spectra could in principle be obtained.

Table 7.4 gives a comparison of the measured spacings, between line 14 and
the other lines of the boron, aluminium, gallium, and indium spectra, and the
corresponding spacings, derived from calculations based on the attributions
of Table 7.2. The choice of the correspondence has been made by considering
first the similarity between the spacings and subsequently, the calculated OSs.

In Table 7.4, the differences between the experimental values for Al and
Ga for the first lines compared to B and In can be attributed to the above-
mentioned phonon resonances. There are also non-negligible differences be-
tween the measured and calculated spacings as well as between the calcu-
lated spacings for the deepest levels. As already mentioned, it is possible to
use a self-consistent method to obtain experimental acceptor energy levels in
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Fig. 7.5. Absorption spectrum obtained under band-gap light illumination of
p3/2(In) in a FZ natSi sample. The estimated value of [In] is 4 × 1015 cm−3. The
vibrational absorption of residual Oi is observed near 1136 cm−1

agreement with the calculated ones [108], but the physical meaning of such an
agreement seems limited as the differences between the calculated and exper-
imental levels are more fundamental. Even without resonant interaction with
phonons, the widths of the acceptor lines are not uniform. FWHMs of some
of the lines of the B and In spectra in natSi are given in Table 7.5.

Recent measurements on high-purity natSi show that for boron, the FWHMs
decrease to ∼0.2 cm−1 (25 μeV) for some of the higher energy lines. For Al
and In, the FWHMs also show some decrease with increasing line energies.
Part of this broadening results from some kind of inhomogeneous broadening
due to isotopic disorder.

Absorption experiments have been performed with qmi silicon B-doped
samples. They show a small increase of the line positions with the Si isotope
mass, already observed for the P donor lines, which is due to the increase of Eg

with the Si isotope mass. For line 1
(
1Γ8

−), the estimated shift between qmi
28Si and 30Si is +0.26 cm−1 (+33 μeV), and it reaches +0.38 cm−1 (+47 μeV)
for line 13

(
3Γ7

−). The corresponding IS for Eio(B), is about +0.41 cm−1 or
+51 μeV [161]. These measurements also show that while no sharpening with
respect to the FWHMs in natural silicon is observed for some lines like 1, 5, 7,
and 8, the FWHMs of other lines can be reduced by an order of magnitude in
qmi silicon. With this reduction of the FWHM, a splitting due to the presence
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Table 7.4. Comparison of the measured separations (meV) between line 14 and
other lines of Table 7.2 with spacings derived from the calculations by (a) Beinhikes
et al. [18] and (b) [21]. The energy level of line 14 is taken as 2.69 meV

Separ. B Al Ga In Spacinga Calc.a Spacingb Calc.b

14–1 12.57 12.76 13.11 12.19 9Γ8
− − 1Γ8

− 13.08 8Γ8
− − 1Γ8

− 13.07
14–2 8.43 9.14 ∼9.7 8.41 9Γ8

− − 2Γ8
− 8.78 8Γ8

− − 2Γ8
− 8.98

14–3 4.56 4.22 4.43 9Γ8
− − 3Γ8

− 4.54 8Γ8
− − 3Γ8

− 4.77
14–4 3.34 3.58 3.38 3.40 9Γ8

− − 1Γ7
− 3.53 8Γ8

− − 1Γ6
− 3.42

14–5 3.26 2.67 3.08 3.12 9Γ8
− − 1Γ6

− 3.48 8Γ8
− − 1Γ7

− 3.38
14–6 3.02 2.48 2.91 3.05 9Γ8

− − 4Γ8
− 3.25 8Γ8

− − 4Γ8
− 3.29

14–7 1.46 1.32 1.40 1.42 9Γ8
− − 5Γ8

− 1.54 8Γ8
− − 5Γ8

− 1.54
14–8 1.02 9Γ8

− − 6Γ8
− 1.14 8Γ8

− − 2Γ6
− 1.11

14–9 0.89 0.92 0.95 0.91 9Γ8
− − 2Γ6

− 1.11 8Γ8
− − 6Γ8

− 0.97
14–10 0.77 0.85 0.84 0.82 9Γ8

− − 2Γ7
− 0.92 8Γ8

− − 2Γ7
− 0.82

14–11 0.53 0.57 0.56 0.56 9Γ8
− − 7Γ8

− 0.63 8Γ8
− − 7Γ8

− 0.56
14–12 0.22 0.27 0.22 0.22 9Γ8

− − 3Γ6
− 0.27 8Γ8

− − 3Γ6
− 0.24

14–13 0.19 0.19 9Γ8
− − 4Γ7

− 0.18 8Γ8
− − 3Γ7

− 0.16
15–14 0.23 0.16 0.18 0.22 10Γ8

− − 9Γ8
− 0.09 4Γ6

− − 8Γ8
− 0.26

5Γ7
− − 9Γ8

− 0.20
16–14 0.34 0.24 0.27 0.29 11Γ8

− − 9Γ8
− 0.26 4Γ7

− − 8Γ8
− 0.34

5Γ6
− − 9Γ8

− 0.29
17–14 0.37 10Γ8

− − 8Γ8
− 0.40

18–14 0.54 0.47 0.50 0.51 13Γ8
− − 9Γ8

− 0.53 11Γ8
− − 8Γ8

− 0.56
19–14 0.68 0.68 0.66 6Γ6

− − 9Γ8
− 0.63 5Γ6

− − 8Γ8
− 0.69

6Γ7
− − 9Γ8

− 0.66
20–14 0.78 0.77 0.72 0.73 14Γ8

− − 9Γ8
− 0.75 12Γ8

− − 8Γ8
− 0.79

7Γ6
− − 9Γ8

− 0.78
21–14 0.87 0.85 0.78 0.81 15Γ8

− − 9Γ8
− 0.82 13Γ8

− − 8Γ8
− 0.83

5Γ7
− − 8Γ8

− ”
22–14 0.93 0.93 0.89 6Γ−

6 − 8Γ8
− 0.94

23–14 1.02 1.06 0.96 0.98 8Γ7
− − 9Γ8

− 1.02 6Γ7
− − 8Γ8

− 0.98
24–14 1.16 1.17 1.09 1.11 16Γ8

− − 9Γ8
− 1.09 7Γ−

6 − 8Γ8
− 1.07

9Γ7
− − 9Γ8

− 1.15 15Γ8
− − 8Γ8

− 1.09
7Γ7

− − 8Γ8
− 1.09

25–14 1.23 1.23 1.17 1.23 17Γ8
− − 9Γ8

− 1.17 16Γ8
− − 8Γ8

− 1.17
17Γ8

− − 8Γ8
− 1.20

26–14 1.30 1.27 1.28 18Γ8
− − 9Γ8

− 1.26 18Γ8
− − 8Γ8

− 1.28
27–14 1.32 1.32 19Γ8

− − 9Γ8
− 1.35 19Γ8

− − 8Γ8
− 1.34

28–14 1.41 1.43 1.36 20Γ8
− − 8Γ8

− 1.37
29–14 1.51 1.54 1.48 9Γ7

− − 8Γ8
− 1.41

30–14 1.62 1.58 10Γ−
6 − 8Γ8

− 1.51

of the 11B and 10B isotopes is observed [93], as in Fig. 7.6 for a qmi 28Si sample,
allowing a direct chemical identification of the spectrum. The boron IS, which
is independent of the transitions, is 0.154 cm−1 (19.1 μeV) for the whole boron
spectrum [161].
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Table 7.5. Intrinsic FWHM (μeV (cm−1 in parentheses)) at LHeT of some of the
B lines ([82], Steger and Thewalt, private communication, Pajot, unpublished) and
In lines (Pajot, unpublished) in natSi. The lines are identified with numbering 4 of
Table 7.1 with numbering 1 in parentheses. The second row refers to the attributions
of [21] for the final state

Line 1 2 3 4 5(4B) 6(4A) 7(5) 11 15 16

1Γ8
− 2Γ8

− 3Γ8
− 1Γ6

− 1Γ7
− 4Γ8

− 5Γ8
− 7Γ8

− 4Γ6
− 4Γ7

−

B 59
(0.48)

105
(0.85)

63
(0.51)

37
(0.30)

61
(0.49)

66
(0.53)

∼25
(∼0.2)

36
(0.29)

32
(0.26)

In 310
(2.5)

285
(2.3)

210
(1.7)

∼110
(∼0.9)

∼86
(∼0.7)

3p±(P)
4p±(P)

11B

10B 11B

10B

7Γ8

3Γ6

3Γ7

8Γ8

4Γ6

4Γ7

10Γ8 11Γ8

natB in qmi 28Si
Res.: 0.005 cm−1  (0.6 µeV)

11 12 13 14 15 16 17 18

Fig. 7.6. Part of the p3/2 absorption spectrum of natB at 1.8 K in a qmi 28Si sample
showing a B isotope effect (the 11B/10B natural abundance has a ratio of 4). The
10B component of 3Γ6 is masked by 3Γ7. Transition 10Γ8 is clearly observed in this
spectrum (Steger and Thewalt, private communication). The line labels below the
spectrum are those of Table 7.2

In this figure, a weak transition is observed on the h-e side of line 16 (4Γ7

in the notations of [21] used for the attributions of the lines of this figure).
This weak transition due to 10Γ8 is the weak h-e shoulder 17 of line 16 of
Fig. 7.2. Considering the numbering 4, the FWHMs of the 11B component of
lines 13, 15, 21, and 23 measured in this qmi 28Si sample are 0.041, 0.043,
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0.024, and 0.025 cm−1 (5.1, 5.3, 3.0, and 3.1 μeV), respectively [161]. In the
qmi 28Si spectrum, other lines too weak or too close from stronger ones, not
observed in the natSi sample studied in this work, are also observed, so that
numbering 4 of Table 7.1 has to be reconsidered after proper identification of
all the boron transitions. An extensive list of the positions of the 11B lines in
qmi 28Si, 29Si, and 30Si is given by Steger et al. [161]. An estimation of the
positions of the 10B components can be deduced by adding the B IS to the
positions of the 11B components.

Calibration factors relating the integrated intensity absorptions (cm−2) of
p3/2 boron lines in silicon at LHeT and the boron concentration (cm−3) have
been obtained by Porrini et al. [142]. For the 1(B), 2(B) and 4–5(B) lines in
silicon, they are 6.8, 1.5, and 1.7× 1013 cm−1, respectively. NTD of In-doped
FZ silicon has been used to determine a spectroscopic calibration coefficient
of indium in silicon [134]. The calibration factors at LHeT for lines 1(In)
and 2(In) are found to be 5.6× 1015 and 8 × 1014 cm−1, respectively2 (unless
otherwise specified, the spectroscopic quantity considered is the integrated
intensity). LHeT calibration factors for 2(B), 2 (Al), 2(In), and 2 (Tl) have
been given by Jones et al. [85]; they are 1.5 × 1013, 5 × 1013, 2 × 1015, and
1.2 × 1016 cm−1, respectively, and the difference between the values of the
calibration factor of 2(In) in the two references is discussed by Tardella and
Pajot [167]. The possibility of absorption spectroscopy for the measurement
of residual impurities and of compensation in high-purity silicon is illustrated
in Fig. 7.7 (see also [102]).

The B0 concentration under equilibrium deduced from spectrum (a) of
Fig. 7.7 is ∼7 × 1011 cm−3, and it corresponds to a RT resistivity of about
18 kΩ cm (a value of 495 cm2V−1s−1 is taken for the RT hole mobility [162])
and the estimated [B−] from spectrum (b) is ∼1.4 × 1012 cm−3. As already
mentioned for donors, PTIS is much more sensitive than absorption spec-
troscopy, however, because of the principles of this method, compensation
effects are not so clearly dealt with by PTIS, and the lines of the compensat-
ing species neutralized by band-gap illumination appear as negative peaks in
the PTI spectra.

A model of the spectral dependence of the photoionization spectrum of
group-III acceptors in silicon has been presented by Edwards and Fowler [52].
This model uses hydrogenic continuum states and hydrogenic ground-state
wave functions scaled to account for central-cell corrections, and it provides
a good description of the energy dependence of the cross-sections, as can be
seen from Fig. 7.8.

These results show that the increase of the shift of the maximum absorp-
tion correlates with the difference between Ei and the EM ionization energy.
These maximums for B, Al, Ga, and In are approximately located at 50, 80,
100, and 310meV (400, 650, 800, and 2500 cm−1). Near LHeT, the optical

2 In the original publication, the calibration factor of 1.1 × 1014 cm−1 for line 1 is
an error.
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2p±1(P)

4(B)

5(B)

10 kΩ cm Si:B
Res.: 0.2 cm−1 (25 µeV)

(a)

(b)

Fig. 7.7. Absorption coefficient at LHeT of a FZ p-type natSi sample with a nominal
RT resistivity of 10 kΩ cm (a) under TEC and (b) under band-gap light illumination.
The sample thickness is 7.6 mm
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Fig. 7.8. Comparison of the calculated spectral dependence of the photoionization
absorption for group-III acceptors in silicon (solid and dashed curves) with experi-
ment (open circles). Ei is the ionization energy of the acceptor. The widths of the
solid lines correspond to the use of different basic assumptions in the calculation
(after [52]). The solid and dashed curves for boron correspond to different values of
a mass parameter. The experimental results for B, Al, and Ga are from [27], and
those for In from [116]. Copyright 1977 by the American Physical Society
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cross-section σM at this maximum, expressed in units of 10−16 cm2, is ∼10, 4,
2.5, and 0.45 for B, Al, Ga, and In, respectively, [62,151]. For indium, a higher
value of σM (1.55) at LNT has been reported by Parker et al. [136], based on
corrections to the determination of [In] from the Hall-effect measurements.

In the 1980s, EM acceptor spectra related to group-III elements, but with
ionization energies somewhat smaller than those of the isolated acceptors,
were reported [85]. An estimation of the concentration of the corresponding
centres compared to that of the isolated acceptors varied from 10−2 to 10−5.
These so-called acceptor-X centres received special attention from the manu-
facturers of extrinsic photoconductive detectors based on group-III acceptors,
especially In, because these new centres produced unwanted photoconductiv-
ity at energies lower than the normal low-frequency cut-off for these detectors.
The low-frequency lines of the acceptor-X spectra are given in Table 7.6. For
these spectra, the reference line 14 used for the isolated acceptors cannot be
observed and Eio is obtained by adding the value calculated by Beinikhes et al.
[18] for the 2Γ8

− state (11.5meV) to the position of line 2. This produces a
slight increase of the value of Eio with respect to the other procedures.

The results of piezospectroscopic measurements on the Al-X spectrum are
consistent with a trigonal <111> oriented centre [33]. Early measurements of
the X-centre concentration showed no dependence on the concentration of
interstitial oxygen, but a linear dependence on [Cs] which led to their attribu-
tion to (C, acceptor) pairs [85]. However, subsequent measurements on NTD
Ga-doped FZ silicon with undetectable [Cs] showed the presence of Ga-X
centres after annealing at 450–550◦C [145] so that the atomic structure of
these centres is still an open problem. Calibration factors for lines 1(B-X),
2(Al-X), 2(Ga-X), and 2(In-X) given by Jones et al. [85] are 1.1, 2.5, 2.5,
and 28 × 1013 cm−1, respectively.

In B- and Al-doped FZ silicon samples subjected to NTD, two new EM
acceptor spectra are observed after annealing at 500–600◦C, besides the above-
discussed B-X and Al-X spectra [179]. These spectra, called BNTD and AlNTD,
are similar to those of the isolated acceptors, but their ionization energies
are 28.24 and 43.25meV for BNTD and AlNTD, respectively. The ionization
energy of BNTD is smaller than the EM energy calculated for acceptors in
silicon (31.6meV) by Baldereschi and Lipari [13]. Such centres have also been

Table 7.6. Positions (meV (cm−1 in parentheses)) at LHeT of the first acceptor X
lines in silicon [85]. The value of Eio for these centres is obtained by adding 6.2 meV
to the position of line 4. The value of Eio for the isolated acceptor is given in brackets
for comparison

Line 1 2 3 4 Eio

B–X 22.8 (184) 27.3 (220) 31.0 (250) 32.4 (261) 38.6 [45.7]
Al–X 41.9 (338) 46.1 (372) 50.1 (404) 51.3 (414) 57.5 [70.4]
Ga–X 43.0 (347) 47.2 (381) 52.4 (423) 58.6 [74.1]
In–X 99.1 (799) 103.0 (831) 107.0 (863) 108.2 (873) 114.4 [157.0]
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found on the donor side (see Sect. 6.4.3) and this has been attributed to a
repulsive core for electrons. Here, the explanation would be for a repulsive
core for holes. The BNTD and AlNTD spectra anneal above 700◦C and the
piezospectroscopic measurements reveal an unexpected cubic symmetry [179].

7.2.1.2 The p1/2 Spectra

For an acceptor in a group-IV semiconductor, the p1/2 spectrum consists of
transitions from the 1Γ8

+ state to nΓ−
6 (� = 1) odd-parity states associated

with the Γ7
+ VB (see Fig. 5.2 and Table 5.19), and it was first reported for

boron in a combined Zeeman study by Zwerdling et al. [193]. A maximum of
four lines, denoted 2p′, 3p′, 4p′, and 5p′, which can be labelled 2Γ6

−, 3Γ6
−,

4Γ6
−, and Γ6

− has been observed for the p1/2 spectra of the different group-III
acceptors and they are shown for the Al acceptor in Fig. 7.9.

The positions of the np′ lines observed for different group-III acceptors are
given in Table 7.7.

The limit of these np′ lines for large values of n is the ionization energy
E∗

io with respect to the Γ7
+ VB. It must be borne in mind that in expression

(5.21) for En,�, the contribution of the n−k terms with k > 2 is very small.
Thus, a good approximation of E∗

io is obtained by linear extrapolation of
the experimental values Enp′ as a function of n−2, and when applied to the
Al spectrum, it gives a value of 113.0meV for E∗

io (Al). The values of the
first np′ levels have been calculated using expressions similar to (5.21), with

2p'

3p'

4p'

5p'

Si:Al
LHeT
Res.: 0.4 cm−1 (50 µeV)

Fig. 7.9. Absorption spectrum of p1/2(Al) in a FZ silicon sample with [Al]
∼1015 cm−3. The FWHM of 3p′ is 2.0 cm−1 (0.25 meV)
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Table 7.7. Transition energies E′
np (meV (cm−1 in parentheses)) of the lines of the

p1/2 spectrum of group-III acceptor in silicon at LHeT

E2p′ E3p′ E4p′ E5p′

Ba 82.901 (668.64) 85.914 (692.94) 87.011 (701.79)
Alb 107.528 (867.27) 110.555 (891.69) 111.619 (900.27) 112.11 (904.2)
Gac 111.24 (897.2) 114.25 (921.5) 115.30 (930.0) 115.8 (934)
Inc 194.08 (1565.4) 197.11 (1589.8) 198.18 (1594.4)

a [192], b Pajot, unpublished, c [59]

Table 7.8. Values of the separation E∗
io (meV) between the 1Γ8

+ ground state of
group-III acceptors and the Γ7

+ VB in silicon. The last column gives an average
value of the silicon so splitting Δso (meV) deduced from the data for each acceptor

Ref. 1a Ref. 2b Ref. 3c Ref. 4d Δso (see text)

B 88.2 88.39 88.45 42.71
Al 113.0 113.04 112.97, 113.0∗ 42.61
Ga 116.73 42.64
In 199.58 42.63

a [193], b [59], same VB parameters as (a), c [192], d Pajot, unpub-
lished, ∗ Linear extrapolation (see text)

appropriate VB parameters [192, 193] or more sophisticated methods also
requiring the same VB parameters [24]. Thus, a “preliminary” value of the
VB s-o splitting Δso is needed for this calculation. However, this value is not
critical as it intervenes in a small corrective term (in the first measurements
of the p1/2 spectra of B and Al by Zwerdling et al. [193], an estimate of
0.05 eV was used for Δso). The first np′ levels in silicon calculated by Buczko
and Bassani are given in Table 5.19 and from the calculated OSs, the level
considered in this table for the accurate determination of Δso = E∗

io − Eio

is the � = 1 level corresponding to Γ6 symmetry. Values of E∗
io for different

acceptors are summarized in Table 7.8. For Ref. 3 and Ref. 4, they are obtained
by adding the calculated value of the 3Γ−

6 (1) energy level given in Table 5.19
(2.41meV) to the experimental value of E3p′ of the appropriate reference.

The main aim of this comparison is to show that there is a good agreement
between the values of E∗

io obtained by the different groups. When subtracting
from the average values of E∗

io of Table 7.8, the values of Eio of Table 7.2, the
values of Δso of the last column of Table 7.8 are obtained. From these results,
an average value of (42.65± 0.06) meV is obtained for Δso in silicon, in good
agreement with that proposed (42.62± 0.01) meV by Yu et al. [192]. The dif-
ference with the accepted value of 44 meV deserves some comments. For the
values given by Zwerdling et al. [193] and Fischer and Rome [59], it is derived
from the underestimation of the ionization energies Eio of the acceptors in
these references. The value of Δso determined from the electroreflectance mea-
surements by [10] is (44±10) meV. Values of Δso near 44meV have also been
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obtained from electroabsorption experiments at 50K by Evangelisti et al. [55]
and from modulated absorption at 1.8K [130], slightly above the silicon band
gap. These measurements are based on the observation of phonon-assisted ex-
citon absorptions at the Γ8

+ and Γ7
+ VB maxima. In these determinations, a

possible difference between the exciton binding energies at these two maxima
is not taken into account.

Finally, it can be pointed out from the origin of the np′ levels that their
energies with respect to the Γ7

+ VB maximum show a pronounced acceptor
EM-like behaviour. This can be appreciated from the energy differences be-
tween these lines and some lines of the p3/2 spectrum whose energies can be
assumed to be acceptor-independent. For instance, the energy differences be-
tween the 3p′ line and the reference p3/2 line 14 of Table 7.2 are 42.98, 42.89,
42.90, and 42.90meV for B, Al, Ga, and In, respectively.

For 2p′(B), an integrated calibration factor of ∼1.7 × 1014 cm−1 at LHeT
is given by Jones et al. [85]. As for 2p′ (Al) shown in Fig. 7.9, this line is
asymmetric, and its FWHM at LHeT is ∼6 cm−1 (∼0.7 meV) for [B] up to
∼1017 cm−3. The linear coefficient between the peak absorption coefficient of
the line near LHeT and [B] is given3 as 2.58 × 1015 cm−2 [158].

7.2.2 Germanium

In germanium, the value of the VB s-o splitting (∼0.3 eV) is significantly
larger than the ionization energy of the shallow acceptors, and the p1/2 spec-
tra should be observed near 0.3 eV, but no report of such spectra has appar-
ently been published. An exhaustive study of the group-III acceptor spectra
in germanium was published in 1965 by Jones and Fisher [84], with the lines
denoted in alphabetical order from the h-e side. The line shapes in these early
spectra were determined mainly by spectral resolution, and the spectra ob-
tained later at higher resolution using PTIS and band-gap pumping revealed
more acceptor lines. New empirical labels were, therefore, added to the old
ones with eventual differences, as primed or double-primed A lines. As for the
acceptor spectra in silicon, labelling of lines can be done using integers increas-
ing with energies. However, in the different presentations of the experimental
results, the notation with letters is traditionally used and has been retained
here. A LHeT absorption spectrum of boron in germanium is displayed in
Fig. 7.10. Despite the low resolution, it has the advantage of showing lines like
G and E, not usually seen in the more recent PTIS spectra.

In the boron spectrum of Fig. 7.10, as well as in the thallium spectrum
displayed in the same reference, the intensity of line C is larger than that
of line D while in other spectra, the inverse is observed systematically. Cal-
culations also predict this latter intensity ordering, however, the reason for
this difference is not explained. Table 7.9 gives the positions of the group-III
acceptor lines in germanium with attributions taken from the calculations of

3 In the original reference, it is misprinted as 2.575 × 105.



7.2 Group-III Acceptors in Group-IV Crystals 301

6.0 6.4 7.4 7.8 8.2 8.6 9.0 9.4 9.8 10.2
Photon energy  (meV)

0

2

4

0

2

4

6

A
bs

or
pt

io
n 

co
ef

fi
ci

en
t 
(c

m
−1

)

Ge:B #1
LHeT

Ge:B #2
LHeT

G

E

D
C

B A" A'

ab

Fig. 7.10. Absorption spectrum of boron in germanium at LHeT between ∼47 and
53 cm−1 (line G) and ∼58 and 84 cm−1. [B] in sample #1 is ∼ 2 × 1014 cm−3 and
∼8×1014 cm−3 in sample #2. The resolution is indicated by the vertical bars (after
[157]). Copyright 1973 by the American Physical Society

Kurskii [104]. For the Ai and Ii lines, the notations used are those of Darken
[46]. Some of the attributions are not easy to make because of the closeness
between some of the calculated levels. As we shall see later, most of these
absorption lines correspond to transitions between the 1Γ8

+ ground state and
the odd-parity states, with a few attributed to the even-parity excited states.

The choice of the calculated value of the 4Γ8
− excited state of line B to

determine Eio is deliberate and the apparent accuracy does not truly reflect
the physical accuracy: if the energy calculated for the 2Γ8

− state by Kurskii
(2.8673meV) is added to the position of line D, the Eio values for B, Al, Ga,
In and Tl are 10.813, 11.144, 11.307, 11.953 and 13.42meV, respectively. All
these values of Eio are marginally different from those of Table 6 of [143], and
they show the EM character of the odd-parity excited states of the group-III
acceptors in germanium. This is further demonstrated in the comparison of
the energy spacings between the acceptor lines given in Table 7.10.

A high-resolution overall spectrum of Al in natGe is shown in Fig. 7.11,
and the weak line of highest energy is I1 (Al) of Table 7.9 at 87.62 cm−1. The
strongest lines of Fig. 7.11 are truncated, but the relative intensities of the B
and G lines are found to be acceptor-dependent. The calculated ratio of the
OSs of the B (4Γ8

− final state) transition to the G (1Γ8
− final state) one for

isocoric Ga in germanium (Table 5.23) is ∼2.5, and it seems to be comparable
to the experimental intensity ratio for Al.

The above spectrum provides an upper limit for the FMHM of ∼0.1 cm−1

(∼12 μeV) for the sharpest lines (see Fig. 8.26). The absorption of Al in a
natGe sample with p = 3 × 1011 cm−3 has also been measured at LHeT at
a resolution of 0.01 cm−1 (1.24 μeV) by Andreev et al. [6] and the FWHM
of C (Al) was found to be the narrowest of the spectrum, with a value of
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Table 7.10. Energy spacings (meV) between line B (4Γ8
− excited state) and other

lines of the group-III acceptor spectra in germanium derived from Table 7.9, com-
pared with the calculated spacings. The final state of the second line is indicated in
the “Attribution” column

B Al Ga In Tl Attribution EMa EMb

B–G 3.111 3.080 3.104 3.08 3.02 1Γ8
− 3.071 3.104

B–E 1.78 1.80 2.05 2.07 2Γ8
+ 1.66 1.81c

B–D 1.381 1.381 1.384 1.385 1.38 2Γ8
− 1.388 1.398

B–C 0.632 0.629 0.636 0.635 0.63 1Γ7
− 0.665 0.648

B–C∗ 0.617 3Γ8
− 0.612 0.626

A4–B 0.254 0.262 0.256 0.260 5Γ8
− 0.266 0.267

A3–B 0.335 0.338 0.335 0.335 0.37 2Γ7
− and 6Γ8

− 0.324 0.335
0.337

A2–B 0.463 0.468 0.464 0.468 0.50 3Γ7
− 0.465 0.456

A1–B 0.543 0.546 0.544 0.542 7Γ8
− 0.549 0.557

I8–B 0.673 0.668 0.671 0.670 8Γ8
− 0.681 0.700

I7–B 0.727 0.727 0.726 0.731 2Γ6
− and 9Γ8

− 0.738 0.721
I6–B 0.818 0.822 0.823 0.827 5Γ7

− and 12Γ8
− 0.817

0.836
I5–B 0.864 0.866 0.868 0.868 3Γ6

− 0.864
I4–B 0.941 0.942 0.943 0.945 6Γ7

− 0.945
I3–B 1.006 1.010 1.012 1.007 8Γ7

− and 18Γ8
− 1.013

1.015
I2–B 1.073 1.075 – 1.103
I2–B 1.204 1.198 1.206 1.208

a Kurskii [104], b [39], c The value chosen for the 2Γ8
+ level is the one for isocoric

Ga of Table 5.17

0.038 cm−1 (4.7 μeV). For line D(Ga), a FWHM value of ∼40 μeV (0.3 cm−1)
at LHeT has been extrapolated from compensation measurements in germa-
nium samples containing controlled mixtures of 70Ge and 74Ge [81].

Calibration of the integrated absorption of lines D and C of the group-III
acceptors and of Cu0 spectra in germanium have been reported by Rotsaert
et al. [146]. These calibration factors are given in Table 7.11.

This table shows a tendency of the OSs of the transitions to decrease when
the ionization energy of the acceptor increases.

7.2.2.1 Single Acceptor Complexes

Besides the isolated group-III acceptors, the spectra of several complexes with
single-acceptor behaviour have been observed in germanium. They are gen-
erally produced by high-temperature annealing followed by quenching at RT.
One category is the H-related complexes found in germanium crystals grown
under a hydrogen atmosphere in graphite or silica crucibles, ascribed to ac-
ceptor centres denoted A(H,C) or A(H,Si), respectively [66]. They have been
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Table 7.11. Calibration factors (in cm1) of the integrated absorption of the D and
C lines of the group-III acceptors and of Cu0 in germanium. For their positions, see
Tables 7.9 and 7.15 (after [146])

B Al Ga In Cu0

Line
D
(
2Γ8

−) 4.9 × 1012 6.9 × 1012 7.2 × 1012 8.8 × 1012 2.5 × 1014

C
(
3Γ8

−) 6.4 × 1012 1.0 × 1013 9.3 × 1012 1.3 × 1013 5.0 × 1014

Eio (meV) 10.81 11.14 11.30 11.95 43.20

identified by Kahn et al. [88] as static trigonal centres with C3v symmetry and
they are stable up to ∼200◦C. The ground state spectrum of these acceptors,
observed at the lowest temperature compatible with PTIS measurements, is
indexed 2 and the thermalized spectrum indexed 1 in Table 7.12, where the
positions of the first lines of theses spectra are given.

Other H-related complexes with Be and Zn double acceptors and with
Cu have also been identified and they are discussed in Sect. 7.3.1.1 where the
neutral multi-charged acceptors in germanium are presented.

Another rather large category of acceptors is produced when germanium
samples containing group-I or TM elements are annealed at temperatures
above ∼850◦C and quenched to RT. From the temperature dependence of the
Hall effect, centres produced by this method were labelled as SA1 and SA2,
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Table 7.12. Positions (meV) at LHeT of the first lines of the A(H,C) and A(H,Si)
spectra in germanium. Eio is obtained by adding 2.87 meV to the position of line D
[66]

D C B A4 A3 A2 A1 Eio

A (H, C)1 7.42 8.17 10.29
A (H, C)2 9.39 10.14 10.77 11.04 11.13 11.24 11.32 12.26
A (H, Si)1 7.71 8.44 10.58
A (H, Si)2 8.78 9.53 10.17 10.41 10.50 10.64 10.71 11.65

with ionization energies of 8.4 and 12meV, respectively. SA1 was found to be
stable up to ∼350◦C and SA2 up to ∼450◦C [91]. In the 45–75 cm−1 (5.6–
9.3meV) region, two EM acceptor spectra labelled SA′

1 and SA′′
1 separated

by 6.44 cm−1 (0.80meV) were observed by PTIS at LHeT in quenched germa-
nium samples in the same domain of stability as SA1 [90]. Their attribution
to different acceptors with ionization energies of 8.69 and 9.48meV for SA′

1

and SA′′
1, respectively, seemed more likely than an attribution to the spectra

arising from the same acceptor with the ground state split into two sublevels.
New EM spectra, with ground-state binding energies of 13.89meV (SA′

2) and
14.42meV (SA′′

2), were tentatively attributed to the same SA2 acceptor with a
split ground state, while a third spectrum, with a ground state binding energy
of 17.89meV was attributed to acceptor SA3 [23]. Fast-diffusing TM contam-
inants were suspected to be involved in these quenched-in acceptors, and this
was confirmed indirectly as other similar spectra were observed in quenched-in
Ni-diffused or Cu-contaminated germanium samples [23]. In some quenched-in
samples, new acceptor spectra SA′

1(s) and SA′′
1(s) with a small upward shift

from SA′
1 and SA′′

1, associated presumably to a SA1(s) acceptor, were also
reported in the same study. The vanishing of the SA′

1(s) and SA′′
1(s) spec-

tra for temperatures ∼450–500◦C indicated a higher stability of the SA1(s)
acceptor compared to SA1.

The spectroscopy of these quenched-in centres was revisited by Hattori and
co-workers, who performed measurements as a function of temperature [69],
magnetic field [70], presence of additional impurities [71], and uniaxial stress
[72,73]. In a first paper [69], it was established that the SA′

1 and SA′′
1 spectra

were associated with the split ground state of only the SA1 acceptor. They
used labels different from those above for the spectra and the correspondences
can be found in Table 7.13, with the binding energies of the ground state of
each spectrum.

In germanium samples diffused with TMs or Cu-contaminated, SA1-like
acceptor spectra were also observed [23, 71]. These acceptors are also charac-
terized by a split ground state. The ionization energies of their ground and
thermalized states are given below, with SA1 for comparison:
In the Ni-diffused samples, two other spectra apparently related to SA1Ni, with
ionization energies of 9.37 and 9.62meV, were reported [23]. It must be noted
that the closeness of the ground state energies of the above-mentioned SA′

1(s)
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Table 7.13. Groundstate (GS) energies (meV) of the EM spectra associated with
the different quenched-in acceptors in germanium

Spectrum labela SA′
1 SA′′

1 SA′
2 SA′′

2 SA3

Spectrum labelb SA1a SA1b A SA2 1 SA2 2 3 4
Acceptor label SA1 A SA2 SA3

GS energyb 8.69 9.48 11.89 13.89 14.42 17.89 25.75
a [23,90], b [69]

SA1 SA1Ni SA1Cu SA1Ag SA1Au

Eig (meV) 9.49 9.21 10.06 9.57 9.58
Eith (meV) 8.72 9.02 9.76 8.88 9.09

and SA′′
1(s) spectra (8.86 and 9.59meV, respectively) with the energies of

the ground-state sublevels of SA1Ag make the identification between the two
spectra very likely. Other Cu-related spectra connected with acceptor A of
Table 7.13 have been reported by Hattori et al. [74].

The piezospectroscopic measurements performed on some of the quenched-
in centres [72, 73] suggest that the SA1 acceptor series are constructed from
a pair of substitutional and interstitial atoms on a <111> axis, with an
additional TM atom for the SA1TM centres, but the conclusions remain vague
in the absence of other kind of measurements where spin properties could be
measured.

7.2.3 Diamond and SiC

There is only one known acceptor in diamond, responsible for the p-type
conductivity of the IIb diamonds. For some time, it was assumed that this
acceptor was aluminium [49], but it has been suggested [43] and finally shown
conclusively [38] that boron was indeed responsible for the p-type conductiv-
ity and the spectroscopic properties of type IIb blue diamonds. Natural IIb
diamonds had been identified ca. 1954 (see Sect. 2.11), and synthetic IIb dia-
monds were obtained at the beginning of the 1960s [80]. Boron is commonly
introduced as a dopant in synthetic diamonds and its ionization energy Ei is
370meV [177]. The discrete acceptor spectrum of B extends approximately
70meV below Ei and is superimposed on the two- and three-phonon spectra of
Cdiam. Boron acceptor absorption lines are observed at 305, 347 and 363meV
(∼2780, 2800, and 2930 cm−1) at RT, giving phonon-assisted transitions near
464 and 504meV (see [140], and references therein).

In silicon, the electronic spectra arising from the 1Γ8
+ ground state to

the excited states associated with the Γ8 and Γ7 VBs (the so-called p3/2 and
p1/2 spectra) are well separated and clearly distinguished, but no acceptor
transitions from the 1Γ7

+ state has been reported in silicon. In diamond, the
position of the 1Γ7

+ state has been measured by Raman scattering and it is
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distant from the 1Γ8
+ ground state (the boron s-o splitting Δ B

so , denoted also
Δ′) by only 2.00meV (16.1 cm−1) [96]. Thus, transitions from the 1Γ7

+ state
can be observed in diamond at moderate temperatures. High-resolution Ra-
man scattering measurements have shown that the 1Γ8

+ → 1Γ7
+ transition

is indeed a doublet separated by 0.100meV (0.81 cm−1) and this effect is at-
tributed to a JT splitting of the 1Γ8

+ ground state into a Kramers doublet [95].
The two lowest-energy electronic lines of the B acceptor at 290 and

304meV are resonant with a two-phonon combination and they are broad
(FWHMs ∼6 meV). Compared to the B lines in silicon, the other B lines
reported in Cdiam at LHeT are significantly broader, with line widths vary-
ing from ∼0.6 to 5.5meV (∼5 to 44 cm−1), and there is a huge difference
between the intensities of the strongest and faintest lines. Figure 7.12 shows
the compared absorptions at LHeT of a pure IIa diamond and of a IIb semi-
conducting diamond. The absorption of the IIa diamond is only due to the
two- and three-phonon absorption while B contributes to the absorption of
IIb diamond. The three most intense lines of the B spectrum, truncated in
the global spectrum, are lines 13, 14 and 15 of the inset of Fig. 7.12 at 346.6,
347.21, and 349.29meV (2795.5, 2800.4, and 2817.2 cm−1), respectively. Also
observed is the already-mentioned broad B line at 304meV superimposed on
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Fig. 7.12. Absorption spectrum of a natural type IIb diamond showing the acceptor
B lines. The dashed spectrum is that of a high-purity type IIa diamond. The low-
energy features are 2-phonon absorptions of Cdiam. The strong B lines in the range
2750–2850 cm−1 are shown in the inset for a natural type IIb diamond with a smaller
B concentration. The resolution is 1 cm−1 or 0.124 meV (after [96]). The numbering
of the lines of the inset corresponds to that of Table 7.12. Copyright 1998 by the
American Physical Society
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a two-phonon combination of Cdiam. The photoionization spectrum of B in
diamond extends in the red region of the visible spectrum, and it is the ab-
sence of this contribution in the visible spectrum transmitted or refracted by
the IIb diamonds which is considered responsible for their characteristic blue
colour.

Spectra allowing observation of weaker B lines in natural IIb diamond at 5
and 80 K are displayed in Fig. 7.13 (the acceptor was not specifically identified
as B at the time when these spectra were obtained). In this figure, the lines
denoted by an asterisk are due to transitions from the 1Γ7

+ level, split from
the 1Γ8

+ ground state level by ∼2 meV (see also Fig. 5 of [96]).
A continuous absorption spectrum extending from about 1000 cm−1 to the

Cdiam Raman frequency (1332 cm−1) with a peak at 1290 cm−1 (160meV) is
also observed in B-containing diamond at RT. This spectrum shows structures
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at lower temperature, which have been attributed to a first-order phonon
spectrum of Cdiam activated by the presence of substitutional B [96]. The
photoionization spectrum of B extends over 370meV and its continuity is
broken by structures with Fano resonances [47]. These structures have also
been interpreted as a combination of B transitions, with the activated first-
order phonon spectrum [96].

As in silicon, the B lines are denoted by integers increasing with energy.4

In connection with an experimental study of the effect of the Stark effect
on the acceptor levels in diamond, an energy level diagram of these states
is given by [4]. There has, however, been no calculation of the EM accep-
tor levels in diamond similar to those performed for silicon and germanium,
making the identification of the observed lines difficult. The positions of some
of these lines are given in Table 7.14 and compared with those measured in
qmi 13C diamond. It is seen that, at a difference with Δ′, the B lines in
qmi 13Cdia are shifted upwards by different amounts with respect to natCdiam

(12C 13
0.989 C0.011), in agreement with the shift of the band gap. These ISs have

been discussed by Cardona [28] in terms of the re-normalization of the energy
gap of diamond by electron-phonon interaction. (In silicon, a qualitatively
similar shift, but with smaller (+35 μeV) has been mentioned for line 1(B)
between qmi 28Si and 30Si.)

In Fig. 7.13, new electronic lines are observed in the 80K spectrum. They
are due to transitions from the 1Γ7

+ state, which is populated at this tem-
perature, to odd-parity levels associated with the Γ8

+ VB. It is possible to
identify pairs of lines (one appearing at 5 and 80 K and the other only at

Table 7.14. Positions (meV (cm1 in parentheses)) at LHeT of some electronic lines
of B in natCdiam and in qmi 13Cdiam including the most intense ones (after [96]). Δ′

is the boron acceptor s-o splitting

Line natCdiam qmi 13Cdiam
13Cdiam −nat Cdiam

Δ′ 2.07 (16.7) 2.01 (16.2) −0.06
11 337.38 (2721.2) 337.76 (2724.2) 0.38
12a 343.60 (2771.3) 344.65 (2779.8) 1.05
13 346.60 (2795.5) 347.81 (2805.3) 1.21
14 347.21 (2800.4) 348.37 (2809.8) 1.16
15 349.29 (2817.2) 350.54 (2827.3) 1.25
17 354.1a

18 356.7a

19 357.9a

20 359.56 (2900.0) 360.96 (2911.3) 1.40
22 362.64 (2924.9) 364.10 (2936.7) 1.46
a [73]

4 In the paper by Collins and Lightowlers (1968), phonon-assisted transitions in
the 490–550 meV range have also been noted from the low-energy side by letters
in alphabetical order.
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80 K) and all these pairs exhibit a separation close to 2meV, the value of the
separation of the 1Γ8

+ and 1Γ7
+ acceptor levels.

A good linear correlation was found between the integrated absorption
of the strongest RT line centred at 347meV and the neutral acceptor con-
centration obtained from Hall effect measurements of five natural IIb dia-
monds [43]. This was later converted into a RT calibration factor of this band
of ∼1 × 1014 cm−1, assumed to be valid for B concentrations up to a few
1018 cm−3. For larger B concentrations going up to ∼1×1020 cm−3, a calibra-
tion factor of about one order of magnitude larger was obtained by correlation
with SIMS measurements on CVD diamonds [64]. These calibration factors
are discussed in the review by Thonke [177].

A p1/2 spectrum, similar to the one observed in silicon, should be observed
at energies a few meV above the ionization energy. However, such a spectrum
has not been clearly identified.

An ESR spectrum denoted C-NL1 corresponding to J = 3/2 has been
detected in IIb diamond at 1.4K under a uniaxial stress ∼0.5 GPa and it has
been attributed to neutral B [3].

In 6H-SiC, B replaces a Si atom and its ionization energies in the three
non-equivalent sites measured by admittance spectroscopy are 0.27, 0.31, and
0.38 eV [56]. In undoped and boron-doped p-type 6H-SiC samples, a pho-
toionization spectrum with a temperature-dependent threshold between ∼0.5
and 0.7 eV, and a maximum at 1.75 eV has been reported [83]. The difference
between the threshold energy and the electrically-measured ionization energy
of B (0.3–0.4 eV) is attributed to lattice relaxation. This photoionization spec-
trum is correlated with the observation near LHeT of three narrow absorption
lines at 2.824, 2.863, and 2.890eV tentatively attributed to excitons bound to
neutral B at the three possible sites in 6H-SiC.

7.3 Groups-II and -I Acceptors in Group-IV Crystals

Substitutional group-II elements in silicon and germanium are double accep-
tors with two charge states A0 and A−. In germanium, at a difference with
silicon, Mg is a double substitutional acceptor. The group-IB atoms Cu and
Au can locate substitutionally in germanium,5 where they have been identi-
fied as triple acceptors [189]. There exist many studies on group-II acceptors
in germanium, aimed in the 1960s toward the fabrication of extrinsic photode-
tectors and photodetector arrays. Groups II and I acceptors can be partially
or totally passivated by hydrogen. Under partial passivation, they retain an
acceptor behaviour and spectra of these hydrogenated centres are observed
and are also discussed here. The energy levels of the A0 and A−charge states
of the group-II double acceptors in germanium have been calculated in the

5 Cu can also locate in an interstitial site, but its solubility on that site is lower
than on the substitutional site (Andreev et al. [5]).
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EM approximation where the neutral state is described by a mean-field single-
particle model [58]. We first consider germanium because it is has been the
most studied crystal matrix for group-I and group-II acceptors.

7.3.1 Germanium

7.3.1.1 The A0 Charge State

Absorption measurements of Zn0 and Cu0 were reported in 1960 by Fisher and
Fan [60] and results on Cu by Greenaway [65]. This was followed by results on
Hg0 [35,133], on Zn0, Hg0, and Cu0 [119] and on Cd0 [120]. Absorption results
on Be0 and Mg0 were presented in 1983 by Cross et al., but electrical evidence
of the p-type behaviour of Mg in germanium had already been given in 1979
by Bannaya et al. [16] and by Ho [78]. In germanium, Be0 is the shallowest
group-II acceptor with Ei∼25 meV, followed by Zn0, Mg0, Cd0, and Hg0 (33,
36, 55, and 92meV, respectively). When observed at low resolution (typically
1 cm−1 or 0.12meV), the neutral group-II acceptor spectra at LHeT are very
similar to those of the group-III acceptors in germanium [119,120].

The spectroscopic studies on Hg0 at LHeT soon produced evidence of a
ground state splitting by 0.65meV [36], and this splitting was explained by
an electrostatic interaction between two j = 3/2 holes, leading to states with
J = 0 and J = 2 by j-j coupling, to comply with Pauli’s principle. This
resulted in a Γ1 (J = 0) and Γ3 + Γ5 (J = 2) levels, with the J = 2 level
assumed to be the deepest in energy with respect to the VB, in accordance
with first Hund’s rule [36]. There was initially no suggestion of a ground-state
splitting of the Zn0 spectrum [121], but experiments performed between 12 and
30K revealed a broad low-energy component D∗, attributed to a transition
from a thermalized state to the excited state of line D [174]. From these
results, a ground state splitting of 2.4meV was deduced for Zn0, and it is
comparable to the one (1.75meV) reported by Thewalt et al. [173] for Mg0.

For three holes, the case for Cu0, it can be shown that the ground-state
symmetry is Γ8, as for the single acceptors so that no splitting of this state is
expected in the absence of a perturbation [149].

The low-resolution positions of the lines of the neutral group-II acceptors
and of Cu0 in germanium are given in Table 7.15. In the group-III acceptor
spectra in germanium, whose labelling is used for the group-II and Cu neutral
spectra, the A4 and A3 lines on the one side, and the A2 and A1 lines on
the other side, are separated by ∼0.1 meV. These pairs cannot be resolved in
the group-II and the Cu neutral spectra, and because A3 is about three times
more intense than A4 (see Fig. 7.11), the (A4, A3)−B spacing in the group-II
and Cu neutral spectra is close to the A3 −B spacing of Table 7.10. Similarly,
the (A2, A1) − B spacing is close to the A1 −B spacing of this table. This is
also the case for the (I7, I6, I5) − B spacing, close to the I6 − B spacing of
Table 7.10. For these reasons, in the literature, the (A4, A3), (A2, A1), and
(I7, I6, I5) lines of the group-II and Cu neutral spectra in germanium are
usually labelled as A4, A3, and A2, or A′′, A′, and A, respectively.
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Table 7.15. Low-resolution positions (meV) of lines of the neutral groupII acceptors
and of Cu0 in germanium near 7K. When given, the positions of the thermalized
lines are the upper ones. The optical ionization energy reported for Au0 is 0.21 eV
[89]

Line Be0a Mg0a Zn0b Cd0b Hg0b Cu0c

86.41

G 19.9b 31.21 28.27 50.40 87.07 38.67

∼31.4∗ ∼27.9† 88.12

D 21.92b 32.95 30.10 52.08 88.77 40.37

C 22.70b 33.71 30.86 52.83 89.51 41.12

B 23.35b 34.34 31.48 53.41 90.17 41.76

23.66
(A4,A3) 23.76 34.68 31.84 90.52 42.07

23.86
(A2,A1) 23.96 34.88 32.01 90.70 42.27

24.16
(I7,I6,I5) 24.26 35.14 32.23

E‡
io 24.84 35.78 32.92 54.85 91.61 43.20

a [44], b [120], c [149], ∗ D∗ line, estimated from [173], ‡ See text,
† D∗ line, estimated from [174]

For Hg0, only the thermalized transitions corresponding to lines D and
G can be observed because of interferences of the thermalized components
with other lines. The energy of the 4Γ8

− state (1.44meV) calculated by [58],
corresponding to the final state of line B is used to obtain the Eio values of
Table 7.15. At 15K, where the D∗ lines are observed, the positions of the D
lines are ∼0.2 meV larger than the ones at 7K.

The spectroscopic results of the group-II acceptors other than Hg0 are
difficult to interpret because at high resolution the lines generally show more
than two components. For Be0, a first explanation is a second ground-state
splitting between the Γ3 and Γ5 states, illustrated in Fig. 7.14 showing the
multiplet structure of some Be0 lines at LHeT.

The ground-state splittings deduced from Fig. 7.14 imply an inverted
ordering of the ground-state levels, where Γ1 is the deepest state. From
the splittings of line A, the separation between the Γ3 and Γ5 Be0 levels
is 0.055meV and they are 0.15meV above the Γ1 level [172]. However, the
ground-state splittings alone cannot explain the six components observed for
D
(
Be0
)

and a small splitting of the excited states is also assumed.6

6 It has also been proposed that the multiplet structure of the Be0 lines in germa-
nium was due to a distortion of the Be0 atom from the Td site, with a lowering
of its symmetry [121].
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Fig. 7.14. Absorption between ∼175.3 and 195.6 cm−1 of Be0 in germanium at
1.3 and 7K. The unapodized resolution is 0.1 cm−1. The three-component brackets
at the bottom of the A to D transitions indicate how the threefold ground state
splitting is replicated in all four absorption lines. Reproduced from [172]. Copyright
1987, with permission from Elsevier

The actual situation for Zn0 could be still more complicated as high-
resolution measurements at 2K have shown that G

(
Zn0
)

is a doublet with
a 0.24 cm−1 (30 μeV) separation, and that between 2 and 7K, the lines D,
C, and B of the Zn0 spectrum display a shift indicating a small ground state
splitting [182].

In germanium, grown in a hydrogen atmosphere and doped with Be and
Zn, the spectra of acceptor complexes (Be,H) and (Zn,H) with ionization
energies of 11.29 and 12.53meV have been observed [113]. They result from
the partial passivation of Be and Zn by hydrogen, but no IS has been detected
for 2H. The ground state of (Be,H) is split into two components separated by
0.5meV, giving two distinct spectra and if no splitting has been observed for
(Zn,H), it is none the less expected. Uniaxial stress measurements have shown
that these centres have a static trigonal (C3v) symmetry [88].

The diffusion of copper in high-purity germanium, grown under a hydro-
gen atmosphere, results in several hydrogenated acceptor complexes with
ionization energies depending on the hydrogen isotope [87]. The results
obtained from germanium crystals grown in a 1H2 +2 H2 atmosphere are ex-
plained by the interaction of two hydrogen nuclei and a hole with the triple-
acceptor Cu, and this has been further confirmed by plasma treatments in
1H2 −3 H2 mixtures. The ionization energies of these complexes are between
16.8 and 18.2meV and they show a small positive IS with increasing masses.
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These ionization energies are significantly smaller than those of the neutral
Cu acceptor (43.2meV) and this seems to be a general trend of the hydro-
genated acceptor (and donor) complexes with respect to the isolated neutral
centre. These complexes are tentatively explained by a model in which the
hydrogen atoms rotate or tunnel around the Cu atom, with an interaction be-
tween this nuclear motion and the acceptor’s electronic states. Uniaxial stress
measurements show that some of the complexes with two 1H atoms have a
Td symmetry, with a complicated ground state splitting, but that when 1H is
replaced by a heavier isotope, the resulting complexes have a lower symmetry,
with only a single ground-state component [87].

In a germanium sample from an As-doped crystal pulled in vacuo and con-
taminated with Cu, the PTIS spectrum of a CuX centre has been reported
by Sirmain et al. [156]. Its first ionization energy is 10.05meV and the ther-
malized energy is 9.15meV. Piezospectroscopic measurements indicate a C3v

symmetry and the dissociation conditions of this complex have led to the
tentative attribution of CuX to a (Cus, As) acceptor complex, which should
normally behave as a double acceptor.

7.3.1.2 The A− Charge State

The discrete Be− spectrum is observed in the 44–53meV region(∼ 350–430 cm−1
)

and the Zn− spectrum in the 66–85meV region(∼ 530–690 cm−1
)

and they are superimposed on the two-phonon spectrum
of germanium. The Zn− spectrum displayed in Fig. 7.15 includes a part of the
photoionization region, which shows Fano resonances involving the optical
zone-centre phonon of germanium.

Good-quality spectra of Zn− in germanium have been reported by Piao
et al. [138]. The line positions of Be− are given in Table 7.16 and compared
with the calculations of Fiorentini and Baldereschi [58].

In a recent investigation [139], the profile of line C
(
Zn−) has been ana-

lyzed and fitted with four components C(1), C(2), C(3), and C(4) at 78.107,
78.327, 78.57, and 78.85meV, respectively. In the light of the piezospectro-
scopic results obtained in this study, the features C(1) and C(2) identified
initially as having 3Γ8

− and 1Γ7
− final states (Table 7.16) were re-attributed

to 3Γ8
+ and 1Γ7

− + 3Γ8
−, respectively. Values of Eio

(
Be−

)
and Eio

(
Zn−),

obtained by adding to the position of line B the calculated value of the 4Γ8
−

state, are 58.14 and 86.66meV, respectively. These values are comparable to
the ones (58.02 and 86.54meV) obtained by merely adding four times the
calculated energy of the single-acceptor 2Γ8

− state to the positions of lines
D
(
Be−

)
and D

(
Zn−). A value of 64meV has been reported for the thermal

ionization energy of Be− by Tyapkina et al. [178], and the reason for the
relatively large difference with the optical value is not clear.

Sb-doped germanium samples diffused with copper show absorption thresh-
olds at 0.32 eV in the near IR which can be associated with the onset of the
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Table 7.16. Measured positions (meV) of the Be− [44] and Zn− lines in germanium
at LHeT. Attributions and energy calculations of the final state (third row) from
Fiorentini and Baldereschi [58] and private communication quoted by Piao et al.
[138]. Some of the values for Zn− have been truncated to keep two significant digits.
A Zn− line (I7) with final state 9Γ8

− is observed at 83.36 meV [138,139]

G E D C a B A4 A3 A2 A1

1Γ8
− 2Γ8

+ 2Γ8
− 3Γ8

− 1Γ7
+ 4Γ8

− 5Γ8
− 6Γ8

− 3Γ7
− 7Γ8

−

1Γ7
−

Be− 46.50 49.78 52.18 53.7
Zn− 67.80 69.06 75.02 78.12 79.83 80.79 81.79 82.27 82.80 83.08

78.33
Ecal 18.77 17.78 11.64 8.59 6.98 5.92 4.91 4.46 4.08 3.66

8.55

continuum absorption of the Cu− charge state [65], in agreement with the elec-
trical results of [189] and the DLTS results of [155] for the Cu−/Cu2− level.
The onset near 0.5 eV observed at 20K by Greenaway [62] should correspond
to the Cu2−/Cu3− DLTS level at Ec − 0.259 eV [40].

For shallow multiple acceptors associated with the Γ8
+V B, the fourfold

degeneracy allows one to accommodate a maximum of four holes. Photocon-
ductivity measurements in the very-far IR at LHeT and down to 1.2K have
indeed shown that group-II neutral acceptors and Cu0 could bind an extra
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hole to give the equivalent of (1s)3 and (1s)4 configurations [67,68]. The bind-
ing energy of this extra hole goes from 5.1meV for Be+ down to 2.0meV for
Cu+. A uniaxial stress can partially lift this degeneracy and these A+ states
are no longer stable and dissociate.

7.3.2 Silicon

In this section are presented results on Au, a group-IB element, and on the
group-II acceptors. The results on Pt and Mn, two transitions metals whose
spectrum bears resemblance with that of Au, are also presented.

The behaviour of group-II FAs in silicon is interesting. Mg behaves as
an interstitial double donor and Zn as a substitutional double acceptor. Be
shows an acceptor behaviour, but it has been stated that only ∼10% of the
Be concentration in silicon is electrically active (quoted by Crouch et al. [45]).
Discrete acceptor spectra have been reported at LHeT in Be- and Zn-doped
silicon and they include many complexes. In the case of Be, EM acceptor-like
spectra associated with four different centres have been reported [45,99]. They
are sometimes denoted in the literature Be-I, Be-II, Be-III, and Be-IV, with
ionization energies of 192, 146, 200, and 93meV, respectively. Spectra due to
(Be, Lii) pairs have also been reported [45,137]. Only the first low-energy lines
of these spectra are observed, but the line spacings are comparable to those
observed for the group-III p3/2 spectra. Some of the p1/2 spectra associated
with these centres have also been observed [99, 137].

Piezospectroscopic measurements show that the Be-I centre has tetrahedral
symmetry which could be attributed to Be0 [77]. This attribution was expected
from the observation of a red-shifted replica of the 1.7K spectrum when the
temperature is raised to 8K, attributed to a splitting of the ground state
expected for a double acceptor, discussed above in the case of germanium.
The replica is split by −4 cm−1 (−0.5 meV) and is observed for all the lines
of the Be0 spectrum. The direct transition between the Γ1 and Γ5 sublevels of
the Be0 ground state has also been directly observed at 4 cm−1 (0.5 meV) in
the very far IR at 1.2K [137]. A weak temperature-independent component
of the Be0 spectrum shifted by +0.53 meV has been reported by [77] and at-
tributed to a splitting of the final state. Fano resonances associated with lines
of Be0 have been reported between 1925 and 2030 cm−1 (∼ 238 and252 meV)
by Kleverman and Grimmeiss [99].

The p3/2 spectrum of Be-II shows no evidence of a split ground state and
it has been suggested that this centre could be a pair of nn substitutional Be
atoms (Be2), whose trigonal symmetry has been confirmed by the piezospec-
troscopic measurements of [77]. It may be seen [45] as a divacancy V2 into
which two Be atoms are placed: the two valence electrons of each Be atom
satisfies four of the six dangling bonds of V2 and the two remaining bonds are
completed by two electrons of the VB, leaving two holes. Within this scheme,
the Be2 pair should then be a double acceptor. An unusual feature is the
observation of a much weaker replica of the main spectrum, blue-shifted by
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2meV, whose relative intensity with respect to the main spectrum is tem-
perature independent. A short discussion of this doublet in relation with a
uniform splitting of the excited states is given by Heyman et al. [77]. These
two sets of lines of Be-II are displayed in Fig. 7.16.

The Be-IV centre is the (Be, H) complex, as H can be introduced in-
advertently. H has been intentionally introduced in Be-doped silicon for an
investigation on proton tunnelling and to compare the results with those ob-
tained with (Be, 2H) and (Be, Li) by Muro and Sievers [122]. This study shows
inter alia that there exists for the (Be, H) complex a splitting of the ground
state into five components giving temperature-dependent p3/2 acceptor spec-
tra in the 620−750 cm−1 (77 – 93meV) region. It also shows that the positive
IS when 1H is replaced by 2H is rather large (7.8 cm−1 or 0.97meV), compared
to those observed for H-related donors. This large difference can be explained
by considering the tunnelling of 1H and 2H into symmetry-equivalent positions
around the Be atom, which is related to the tunnel splitting energy.

The temperature and stress dependences of the p1/2 spectra of the (Be,
1H), (Be, 2H), and (Be, Li) complexes have also been investigated [137]. They
confirm that the (Be, 1H) and (Be, 2H) complexes undergo either tunnelling
or hindered rotor motion.

We have presented here results on the acceptor properties of Bes. Beryllium
is also known to produce in silicon substitutional-interstitial pairs which are
electrically inactive. These pairs can trap an exciton and the absorption of
these excitons will be discussed in due time.

Absorption measurements as a function of temperature show that the Zn0

ground state in silicon is split (as for Be0 in germanium) into a triplet with
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states at 1.9 and 2.8meV above the fundamental state while the excited states
are split twofold [51]. A value of the Zn0 ground-state splitting is derived
from phonon spectroscopy results showing a peak at 1.92meV, corresponding
presumably to the first excited state of Zn0 [160].

An overview of the acceptor spectrum of the (Zn, H) complex has been
given by Merk et al. [115], but the positions of the most intense lines of the
(Zn, H) spectrum and the hydrogen IS were provided by Suezawa and Mori
[165]. Moreover, in this study, a comparison is made between samples doped
with 64Zn and 68Zn and the result showed for line 2 of the (Zn, H) complex
a negative IS of ∼ 1 cm−1 (0.13meV) when 64Zn is replaced by 68Zn. The
hydrogen positive IS when 1H is replaced by 2H is 12.1 cm−1 (or 1.5meV) and
it is still larger than the one for Be. This is an indication that in silicon, the
same kind of tunnelling of the H atom as the one in the (Be, H) complex also
occurs for (Zn, H). As for (Be, H), a splitting of the (Zn, H) acceptor ground
state can be inferred from the broadening or asymmetry of the (Zn, H) lines.

The lines of the spectra observed for the neutral group-II acceptors and
some of their complexes in silicon are given in Table 7.17. When the ground
state is split, only the spectrum from the deepest level is considered. Good
spectra of the (Be, H), (Be, D), and (Be, Li) pairs are shown in the paper by
Peale et al. [137], but very few line positions are given.

The 2p′ transition of the p1/2 spectrum of Be0 has been observed and
its position deduced from a figure of [77] is ∼1847 cm−1 (229meV). Similarly,
from Fig. 7.8 of [137], 2p′ (Be,Li) is found to peak at ∼1158 cm−1 (143.6meV)
at 1.7K, but at 30K, a component red-shifted by 11.1 cm−1 (1.38meV) reveals
the splitting of the ground state of the (Be, Li) pair.

There seems to be no absorption study of Cd in silicon. Two Cd acceptor
levels have been detected in DLTS investigations of silicon implanted with
radioactive 111In transmuting into 111Cd [107]. However, the case of Cd in
silicon seems to be more complex than the other group-II elements as a donor
state seemingly associated with substitutional Cd has been identified by ESR
under TEC at LHeT [128].

There is no report of the absorption spectrum of Be− in silicon, and even
though values ∼0.4 eV have been reported for its ionization energy, there is

Table 7.17. Positions (meV) of p3/2 lines of the Be0 and Zn0 double acceptors and
of some of their complexes in silicon at LHeT. The line label is that of [45]

Line (Be, H)a Be0b
2 Be0c Be-IIId (Be, Li)b Zn0e (Zn, H)f Zn (X2)

e

1 77.54 130.2 176.4 – 91.8 303.90 ∼260.4∗ 322.19
2 81.30 134.4 180.3 188.3 95.1 307.79 264.14 325.95
3 – 136.4 184.3 192.2 99.1 311.68
4–4A 86.35 139.7 185.6 193.5 100.4 312.99 269.05 331.48
(5) 269.44
(7) 141.9
Eio 92.6 145.9 191.8 199.8 106.6 319.3 275.6 337.5

a [122], b [45], c [115], d [99], e [51], f [165], ∗ Estimated from Fig. 2 of this reference
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no absolute report of this energy [2]. The ionization energy of Zn− deter-
mined from electron-capture measurements is 664meV at RT [187], but there
again, no absorption spectrum of Zn− has been reported. Electric-dipole spin
resonance of Zn− reveals that its spin-orbit acceptor splitting Δso

A is only
0.31meV [152].

Gold is a group-IB element and platinum is the nearby TM element with a
5d9 electronic configuration. In silicon, they are rapid diffusers and their elec-
tronic properties have been actively investigated as they are used to control the
lifetimes of free electrons and holes. In silicon, they locate on a substitutional
site, but they can also form complexes with other atoms.

Absorption at LHeT of gold and platinum diffused in silicon near 1100◦C
has been reported by Armelles et al. [8] and Kleverman et al. [100], and one
of the observed spectra attributed to the 0/− acceptor level. This level is
located approximately at Ev + 0.61 eV (Ec − 0.56 eV) for Au and at Ev +
0.92 eV (Ec − 0.25 eV) for Pt. The observed p3/2 spectra are similar to those
of the group-II elements in silicon. When the group-III-acceptor lines are
denoted 1, 2, 3, etc., the Au and Pt lines are denoted I1, I2, I3, etc. [8]. In Au
as well as in Pt, line I1 shows a small splitting similar to the one observed for
Be and Cd, presumably due to a ground state splitting. In the range of the Pt
p3/2 spectrum, lines which do not fit the EM scheme are also observed and this
extends above the p3/2 ionization limit. Most of these additional lines have
been attributed to phonon replicas of the p3/2 lines and for a zero-phonon line
Ii (0), the one- and two-phonon lines are denoted Ii (1) and Ii (2), respectively
[100]. The Au and Pt p3/2 spectra at LHeT are compared in Fig. 7.17.

This figure shows no phonon replicas in the Au spectrum. A p3/2 trans-
mission spectrum of Pt at LHeT showing the I1 (0) splitting is displayed
in Fig. 7.18. The measured FWHM of the components of I1 (0) is ∼1 cm−1

(∼124 μeV) and the true width should be somewhat smaller, but excited shal-
lower levels are broader.

The widths of the phonon replicas I1 (1) and I2 (1) are only 2–4 times
larger than the no-phonon lines, and this implies a relatively small coupling
with the electronic transitions, which has been discussed by Kleverman et al.
[100] in terms of a pseudolocalized phonon in the vicinity of the acceptor
atom. The positions of the no-phonon acceptor lines of Au and Pt and of the
phonon replicas of Pt in silicon are given in Table 7.18.

From Table 7.18, the energy of the Pt-associated localized phonon resonant
with the acoustic phonon band is found to be 7.12meV or 57.4 cm−1.

At higher energies, structures were observed in the Au and Pt PTI spec-
tra by [100] and the first ones, near 7790 cm−1 (966meV) and 5310 cm−1

(658meV) in the Pt and Au spectra, respectively, were attributed to a split 2p′

line of the p1/2 spectrum, partly due to the absorption-like spectra of phonon
resonances when measured by photoconductive methods. Recent piezospec-
troscopic measurements have led to the re-attribution of these structures
to a Fano resonance involving a 1s3/2 (Γ8) transition and an O (Γ) phonon
of silicon [101]. This 1s3/2 (Γ8) transition is assumed to take place between
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the deep atomic level and an EM 1s
(
Γ8

+
)

state of the kind calculated by
Baldereschi and Lipari. This attribution is made from the similarity between
the deformation potentials for the 1s

(
Γ8

+
)

for boron and those obtained in
this study for Au and Pt [101]. From the values of the resonance, the 1s

(
Γ8

+
)

transition energy should be 4796 and 7278 cm−1 (594.6 and 902.4meV) for Au
and Pt, respectively, but no lines are observed at these positions. Other Fano
resonances involving an O (Γ) phonon are also observed for both elements at
higher energies and the whole structure displayed in Fig. 7.19.

Mn is a TM element with a 3d54s2 configuration close to that of Fe
(
3d64s2

)

and this fast diffuser is located on a Td interstitial site. At a difference with Fei
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I1(0) I2(0) I3(0)

I1(1)I2'(0)

I4(0)

I2(1)

Si:Pt
LHeT

Eio

Fig. 7.18. Part of the transmission spectrum of p3/2 (Pt) in silicon on an expanded
scale at a resolution of 0.55 cm−1 (68 μeV). The features of this spectrum above I2(1)

are not identified. The I2′ label is from [100]. The vertical bar indicates the value of
Eio, obtained by adding 11.5 meV to the position of line I2(0)

Table 7.18. Positions (meV (cm1 in parentheses)) at LHeT of the no-phonon Au
and Pt acceptor lines Ii(0) in silicon, complemented for Pt by the phonon replicas
Ii(1) and Ii(2). The position of I ′

2(0)(Pt) is 920.74 meV
(
7426.3 cm1

)
[8]

I1(0) I2(0) I3(0) I4(0) Eio

Au
0/−

607.36
(4898.7)

611.27
(4930.2)

615.27
(4962.5)

616.45
(4972.0)

622.8
Ec−0.547 eV

607.55
(4900.2)

616.59
(4973.1)

Pt
0/−

915.935
(7387.51)

919.86
(7419.2)

923.81
(7451.0)

925.1
(7461.0)

931.4
Ec − 0.239 eV

916.098
(7388.75)

925.19
(7462.2)

I1(1) I2(1) I3(1) I4(1)
923.10
(7445.3)

926.98
(7476.6)

I1(2) I2(2) I3(2) I4(2)
934.18
(7534.7)a

939.44
(7577.1)a

a [100]
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Fig. 7.19. Spectra of Au (647.2–690.6 meV) and Pt (954.7–998.1 meV) in silicon at
LHeT. Note the difference between the Fano resonance shapes of Pt in the transmis-
sion and photoconductive (PC) spectra. The splitting associated with the 1s3/2 (Γ8)
structure is attributed to the crystal field. The Fano resonances labelled F1, F2, and
F2′ include the I1(0), I2(0), and I2′(0) lines of Fig. 7.18. The T-lines are related to a
Pt donor centre [101]. Copyright 1997 by the American Physical Society

for which only a donor state is known in silicon, Mn gives a deep acceptor state
at Ec−0.13 eV. Its absorption spectrum at 2K shows only four well-separated
reasonably sharp lines with FWHMs of 2.5 cm−1 (0.3meV). When tempera-
ture is raised, additional lines with intensities growing with temperature are
observed [20].

7.4 An Isoelectronic Acceptor: the Be2 Pair in Silicon

It has been mentioned in Sect. 6.6 that when the electron part of an exciton
was bound more strongly to an isoelectronic centre, an isoelectronic acceptor
(IA) could form. In Be-doped silicon, two sets of PL lines were reported near
1077 and 1115meV [75]. The most intense one, consisting of three lines de-
noted A, B, and B′ at 1078.27, 1076.34, and 1075.74meV, respectively, was
attributed from Zeeman measurements to an exciton bound to the isoelec-
tronic (Bes, Bei) pair with axial symmetry [75,94], and it was suggested that
this centre could be an isoelectronic donor. The PL of lines A, B, and B′ of
(Bes, Bei) at 8K is displayed in Fig. 7.20. The inset in this figure shows how
the coupling of the electron (je = 1/2) with the hole (jh = 3/2) of an exci-
ton bound to an isoelectronic centre with Td symmetry gives first a triplet
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Fig. 7.20. Spectrum of the recombination of the exciton bound to the isoelectronic
(Bes, Bei) centre in silicon showing line A, B, and B′. The inset shows a schematic
energy diagram for the IBE (see text). The additional magnetic-field-induced B′′

line is indicated by a broken line (after [94]). Reproduced with permission from the
Institute of Physics

(J = 1) and then a quintuplet (J = 2) state, and how the symmetry lowering
of the (Bes, Bei) pair splits the triplet state into substates with MJ = 0 and
±1 denoted |1, 0〉 and |1,±1〉 and the quintuplet state into substates |2, 0〉,
|2,±1〉, and |2,±2〉. In this inset, it is further shown that A, B, and B′ lines
are attributed to the creation or annihilation of an IBE in the |1,±1〉 substate
for A line, the |2,±1〉 substate for B line, and the |2,±2〉 substate for B′ line.
Creation or annihilation from the |2, 0〉 substate is forbidden, but is allowed
under a magnetic field, giving line B′′.

Line A was also observed in absorption and PLE measurements near 2K.
In the PLE spectrum of line B′, other weaker lines were reported at energies
between ∼1110 and 1114meV, and they were attributed first to the transi-
tions toward the excited states of the IBE. Inversely, in the PL measurements
at 1.2K, only line B′ was observed (with a weak contribution of line B) while
at 15K, line A predominated, and at 40K, two weak PL lines due to recom-
bination from the excited states were also observed [176].

The two weaker lines observed in PL near 1115meV (A1 and B1 at 1117.0
and 1115.21meV, respectively) were initially attributed to the recombination
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of excitons bound to neutral Be-related acceptors. However, the relatively
long lifetime measured for line B1 (2.3ms) led to ascribe these lines to
the recombination of another IBE. A third transition B′

1 with an energy of
1114.53meV, extrapolated from a fit of the lifetime of B1 vs. temperature, was
also associated with this new IBE. By analogy with the acceptor-X centres
in silicon, this IBE was tentatively attributed to a (Bes, Bei) pair perturbed
by a nearby C atom [176].

The “long” lifetime (480 μs) measured by [176] for the |2,±2〉 excited state
of B′ allowed to perform absorption measurements in the far IR similar to
those7 on the SA and SB IDs. The results of these measurements demon-
strated without ambiguity that the (Bes, Bei) pair was indeed an isoelectronic
acceptor [106, 175]. The difference between the far-IR spectra of a Be-doped
silicon sample under above-band-gap illumination and under TEC are dis-
played in Fig. 7.21 at different temperatures and compared with the p3/2
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Fig. 7.21. Absorption between ∼120 and 320 cm−1 of the p3/2 spectrum of the Be2

pair in Be-doped silicon induced by modulated illumination with 1.92 eV radiation.
The ground state of the lines observed at 1.4 K is B′. Components nB, nB′′, and nA
at 15K arise from thermalization to the B, B′′, and A ground state sublevels of the
IBE. The p3/2(B) dashed spectrum is shifted down by 3.0 meV to position the lines
into coincidence (after [106]). Copyright 1984 by the American Physical Society

7 This far-IR spectrum on the (Bes, Bei) pair actually provided the first results on
the odd-parity states of an IBE shallow-impurity-like centre.
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spectrum of boron in silicon. These spectra show the existence of a new
acceptor-like spectrum due to illumination.

At the lowest temperature, three acceptor lines denoted 1B′, 2B′, and
3B′ are observed at 27.51, 31.44, and 36.50meV, respectively, and from com-
parison with the p3/2 (B) spectrum, their excited states are comparable to the
1 Γ8

−, 2 Γ8
−, 1 Γ6

− +1 Γ7
−, respectively, in Td symmetry. Their ground state

is the IBE |2,±2〉 substate, and for higher temperatures, the thermalization
of the other sublevels of the IBE ground state gives lines nB, nB′′, and nA,
with n = 1, 2, and 3. In the shallow acceptors numbering 4 of Table 7.2, lines
1B′, 2B′ and 3B′ correspond to lines 1, 2, and 4–6 of the p3/2 spectrum of
group-III acceptors.

The existence of an IA led to the conclusion that the PL excitation spec-
trum of line B′ obtained before by Thewalt et al. [176] was indeed a two-hole
excitation spectrum of the IA [175]. In this spectrum, line A is due to the
recombination of the IBE from the “excited” ground state A of the IA, but
other lines are due to the IBE recombination leaving the hole bound to the IA
in an excited state. The three most intense lines of the two-hole spectrum at
1099.16, 1105.68, and 1111.89meV correspond to the 1 Γ7

+, 2 Γ8
+, and 3 Γ8

+

even-parity excited states, while two weak lines at 1103.2 and 1107.1meV, the
equivalent of lines 1 and 2 in the far-IR spectrum, correspond to 1 Γ8

− and
2 Γ8

− odd-parity excited states.
The spacings between the sublevels of the IBE ground state deduced from

the splittings of the far-IR lines 1, 2 or 3 at 15K or from the spacings of the
near-IR lines A, B, B′, and B′′ are similar and they are given in Table 7.19.

It can be assumed that this IA is EM-like, and by adding the calculated
EM energy of the 2 Γ8

− level (11.5meV) to the position of line 2B′ (line 2
of the p3/2 spectra), an ionization energy Eio of 42.9meV can be estimated
for the (Bes, Bei) IA. The energies of the (Bes, Bei) IA transitions obtained
from the near-IR and far-IR spectra are summarized in Table 7.20 with the
corresponding attributions. The above value of Eio can be used to deduce
from the experimental values of the IA transitions corresponding values of
the energy levels of the excited states, and to compare them with those for
the group-III B acceptors. This comparison clearly shows the validity of the
IA scheme for the (Bes, Bei) IBE.

The binding energy EIBE for the (Bes, Bei) pair is only 95meV, which is
rather small compared to the values of EIBE for the “C” and “P” O-related

Table 7.19. Comparisons of the spacings (meV) of the ground-state sublevels of
the (Bes,Bei) IBE in silicon obtained by the near-IR and induced far-IR absorption
measurements (after [175])

Sublevels spacing Near-IR Far-IR

|2,±2〉 − |1,±1〉 (B′–A) 2.53 ± 0.13 2.50 ± 0.01
|2,±2〉 − |2,0〉 (B′–B′′) 0.9 0.95 ± 0.10
|2,±2〉 − |2,±1〉 (B′–B) 0.60 ± 0.10 0.62 ± 0.08
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Table 7.20. Experimental energies (meV) of the transition to odd-parity and even-
parity levels of the (Bes,Bei) IA in silicon measured by the near-IR PL excitation
and induced far-IR absorption (after [175]). The last two columns give a comparison
of the empirical energies of the excited states of the IA with those of boron. The Td

symmetry labels are used as an approximation

Final state Transition
energy

Excited state
energy (Bes,Bei)

Excited state
energy (boron)

1Γ7
+ 23.42 19.5 22.94

1Γ8
− 27.51 15.4 15.26

2Γ8
+ 29.94 13.0 13.44

2Γ8
− 31.44 [11.5] 11.02

3Γ8
+ 36.15 6.7 6.38

1Γ6
− + 1Γ7

− 36.50 6.4 ∼5.8
4Γ8

+ 38.56 4.3 3.85
Eio 42.9

centres or for the (S, Cu) centres. Assuming that the binding energy of the
electron part of the exciton to the centre is EIBE –Eio, it is found to be
∼52 meV, about half the exciton binding energy.

The close similarity between the B′, B, A set of lines and the B′
1, B1,

A1 set at higher energy had led to assume that the latter one was due to an
IBE, possibly due to a (Bes, Bei) pair perturbed by a nearby C atom [176]. A
comparison of the PL excitation spectra and the photoinduced far-IR spectra
in Be-doped silicon samples with a low and high value of [Cs] allowed to detect
a new IA spectrum with an ionization energy ∼35 meV in the sample with
a high [Cs] value, in addition to the above-discussed one, and this seems to
confirm the above suggestion about the structure of this new IA [105].

Calculations of the atomic structures of the Be-related centres in silicon
favour for the Be2 pair, discussed in this section, a (Bes, Bei) pair along a
<111> axis [169], and this is confirmed by the experimental results of [76] on
a local vibrational mode of the Be2 pair.

7.5 An Acceptor Equivalent of H−: the A+ Ion

In the weakly compensated n-type semiconductors, a neutral donor can bind
an electron at low temperature by thermal ionization of part of the neutral
donors and trapping of some of the free electrons by the neutral donors (see
Sect. 6.9.1). These D− ions have equivalents in p-type semiconductors, and
the spectroscopy of the A+ ions has been investigated for group-III acceptors
in silicon and group-II acceptors in germanium. The ionization energies Ei of
positively-charged group-III acceptors in silicon has been measured by acous-
tic phonon spectroscopy at 1K by Burger and Lassmann [25], and the values of
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Ei (B+), Ei (Al+), and Ei

(
Ga+

)
are 1.9, 1.7, and 1.6meV, respectively. These

values do not scale with the ionization energies of the neutral acceptors, rather
they fit well with the hydrogenic model giving a value of 0.055 for the ratio
Ei (A+) /Ei

(
A0
)
, where Ei

(
A0
)

is the EM value of the acceptor ionization
energy [63]. Taking Ei

(
A0
)

= 31.56 meV [14] gives Ei (A+) = 1.73 meV. The
value of Ei

(
In+
)

for the relatively deep In acceptor is 5.8meV.
In germanium doped with the double acceptor Be, under appropriate fil-

tering allowing RT blackbody illumination, photoconductivity (PC) with a
threshold at ∼5 meV

(∼40 cm−1
)

was observed at temperatures below ∼3 K.
This PC signal, which merged near ∼10 meV with the PC signal of the shallow
acceptors, was attributed to the photoionization of Be+ ions produced by the
RT illumination [67]. The hole equivalents of this hypothetical (1s)3 configu-
ration were also observed in germanium doped with other group-II acceptors
and Mn, and the hole equivalent of an hypothetical (1s)4 configuration was
observed in Cu-doped germanium. The trapping of a maximum of four holes
by an acceptor is possible because of the fourfold degeneracy of the germanium
(and silicon) VB. A uniaxial stress along a [112] axis decouples the VB into
two twofold degenerate subbands, and the acceptors coupled to the upper one
can accommodate only two holes, precluding the stability of a (1s)3-like con-
figuration for a sufficiently high stress. This explains why the low-temperature
PC response of Be+ in germanium disappears for values of a [112] stress above
70MPa [67]. Values of the ionization energies of 4.7, 1.9, 2.9, 12.2, 3.2, and
2.0meV have been reported for Be+, Zn+, Mg+, Hg+, Mn+, and Cu+, re-
spectively [68, 125, 126]. Variational calculations of these ionization energies
using pseudo He or Li atoms have been performed and they provide an upper
bound for the ground state energies in each configuration [191].

7.6 Acceptors in III-V and II-VI Semiconductors

7.6.1 Groups-II and -IV Acceptors in III-V Compounds

In III-V compounds, group-II acceptors are located on the atom-III sublat-
tice and group-IV acceptors on the atom-V sublattice. In GaAs, however,
the Si atom can also be found on atom-III sublattice, where it behaves as a
donor. Two main types of GaAs LEC crystals can be considered: a) the semi-
insulating (SI) crystals, with a Fermi level pinned near Ec −0.8 eV because of
the presence of the AsGa deep donor (EL2), where the residual acceptors are
ionized at LHeT under TEC and b) the Ga-rich samples which can be made
p-type by doping with shallow acceptors.

For GaAs, spectroscopic data exist for BeGa, MgGa, ZnGa, CdGa, CAs,
SiAs, and GeAs acceptors. The first detailed results on the acceptor spectra
in GaAs, including Zeeman measurements, were obtained on epitaxial lay-
ers by PTIS [97]. When it was found that the deep donor EL2 in SI GaAs
could be converted into an electrically inactive metastable state creating a
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non-equilibrium concentration of free holes by illumination with ∼1.1 eV pho-
tons below 120K, absorption measurements of the residual acceptors in SI
samples were also reported [184].

The absorption spectra of EM acceptors in GaAs consist of three to five
lines which bear a resemblance with those in germanium, and are noted from
the low-energy side G, E, D, C, and B. The shallow acceptor transitions are
observed between 122 and 235 cm−1 (15.1 and 29.1meV), on the low-energy
side of the strong one-phonon absorption of GaAs (269 cm−1 or 33.4meV at
LHeT), in a spectral region where the “static” dielectric constant εs shows a
non-negligible increase with energy compared to the true static value due to
dispersion, with an effective Rydberg proportional to εs−2. The absorption of
BeGa in GaAs at 1.9K is shown in Fig. 7.22 and the three lines G, D, and
C correspond in order of increasing energies to the 2P3/2, 2P5/2 (Γ8), and
2P5/2 (Γ7) final states of the first column of Table 5.16 for germanium. In SI
GaAs, the ionized shallow acceptors are neutralized by converting first the EL2
donor into a metastable state, that does not trap free holes, by illumination at
1.06 μm (1.17 eV) with a Nd3+ YAG laser. The electronic Raman scattering of
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Fig. 7.22. Absorption of BeGa between 14.9 and 29.8 meV in a GaAs sample with
[Be] = 2.3× 1016 cm−3. The labelling is the same as for the acceptor lines in germa-
nium. The broad feature near 140 cm−1 is due to the mylar window of the cryostat.
The ionization energy of Be corresponds to ∼225 cm−1 or 27.9 meV [109]. Copyright
1996 by the American Physical Society
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the C and Zn acceptors associated with illumination at that energy has been
reported [183,186]. The most intense Raman line observed is the E line, due
to a 1S3/2

(
Γ8

+
)→ 2S3/2

(
Γ8

+
)

transition, which is very weak or non-existent
in the absorption spectrum.

The measured FWHMs of the acceptor lines are usually broader (∼1.5 −
2 cm−1 or 0.19 − 0.25 meV) than those observed in silicon and germanium,
but a FWHM of 0.7 cm−1 (87 μeV) has been reported by Atzmüller et al. [11]
for the G line of the CAs acceptor.

The positions of the absorption lines of some shallow acceptors in GaAs
are given in Table 7.21. The attributions are those of [97]. The GeAs lines are
closer to the one-phonon absorption of GaAs and their positions have been
deduced from selective-pair PL measurements [98].

Two lines at 192.5 and 195.3 cm−1 (23.87 and 24.21meV) have been ob-
served in the CAs spectrum by Kirkman et al. [97] between lines B and A of
Table 7.21. They have been attributed to the equivalent for GaAs of the A4

and A3 lines of Table 7.9 for germanium.
The ionization energies of Be, Mg, Zn, and C are close to the low-energy

onset of the one-phonon absorption of GaAs, but those of Si and Ge are within
this strong intrinsic absorption and most of the discrete electronic transitions
of these latter acceptors are resonant with the one-phonon absorption. Hence,
their energies have been deduced from PL measurements near from the GaAs
band gap.

Table 7.21. Positions (meV (cm−1 in parentheses)) of the shallow acceptor absorp-
tion lines observed in GaAs at LHeT

Line Attribution BeGa
a MgGa

b ZnGa
c CAs

b SiAs
b GeAs

d

G 2P3/2

(
Γ8

−)

or 1Γ8
−

16.66
(134.4)

17.08
(137.9)

19.38b

(156.3)
15.19
(122.5)

26.1

E 2S3/2

(
Γ8

+
)

or 2Γ8
+

21.6e

(174)
18.41c

(148.5)
28.3

D 2P5/2

(
Γ8

−)

or 2Γ8
−

20.68
(166.8)

21.06
(169.9)

23.14
(186.6)

19.36
(156.1)

27.29
(220.1)

30.1

C 2P5/2

(
Γ−

7

)

or 1Γ7
−

22.60
(182.3)

23.06
(186.0)

24.92
(201.1)

21.19c

(170.9)
29.15
(235.1)

31.6

B 3P3/2

(
Γ8

−)

or 3Γ8
−

22.92
(184.9)

A 2P1/2

(
Γ6

−)

or 1Γ6
−

29.10
(234.7)

24.87
(200.6)

Eio 27.88 28.26 30.34 26.56 34.49 37.3
1S3/2 28.0 28.4 30.7 26.0 34.5 40.4

The GeAs transitions are deduced from PL measurements. The attribution of the
excited state is indicated. Eio is obtained by adding to the position of line D the
energy of 7.80 meV calculated by Fiorentini [57] for the 2P5/2

(
Γ8

−) state. Below
Eio, the last row gives, for comparison, the 1S3/2 binding energy derived from
different PL measurements. For 1S3/2 (Cd), it is 34.7 meV [9]
a [109], b [97], c [11], d [98], e [186]
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Like Si, Sn also displays an amphoteric behaviour in GaAs and the ion-
ization energy of SnAs is rather large (117.1meV) compared to those of the
other group-IV acceptors [150].

Calculated values of the energies of the first EM acceptor states in different
semiconductors including GaAs are given in papers by Baldereschi and Lipari
[14, 15], where the contribution of the cubic term is taken into account. A
value of the EM ground state in GaAs (26.3meV) is given in [15] and it
compares with a value of 32.9meV obtained by Fiorentini [57]. This value
is obtained by considering the dielectric screening and the split-off VB, with
an effective Rydberg of 12.73meV. This calculation was further refined with
site-dependent corrections yielding EGa = 30.9 meV and EAs = 38.9 meV,
where the index corresponds to the acceptor site. Non-variational calculations
of the acceptor energy levels in GaAs have also been performed by Said and
Kanehisa [147].

The experimental values of the 2P5/2

(
Γ8

−)−2P3/2

(
Γ8

−) and 2P5/2 (Γ7
−)

− 2P5/2

(
Γ8

−) spacings derived from Table 7.21 are compared with the calcu-
lated values in Table 7.22.

This table shows that there is a significant dispersion in the experimental
spacings, which can be attributed in part to the closeness of the spectra and
to the uncertainty in the measurements due to the proximity of the strong
one-phonon absorption, and to the dispersion of the dielectric constant in this
spectral region, which can also play a role. There is also some dispersion in
the calculated values. Semi-empirical ionization energies Eio of the different
acceptors are obtained by adding to the position of line D of Table 7.21 the
value of the 2P5/2

(
Γ8

−) state (7.20meV) calculated by Baldereschi and Lipari
[14]. It is seen that with the exception of SnGa, the ionization energies of the
group-II and group-IV acceptors in GaAs are not too far from those calculated
with the site-dependent corrections, demonstrating their EM character. At a
difference with the group-III acceptors in silicon, the chemical effect implies,
however, a small repulsive potential of the atomic core for the hole.

In GaP, selected pair luminescence (SPL), whose principle is explained in
Sect. 1.3.3, has been used by Street and Senske [163] to directly measure the
transition energies of the MgGa, ZnGa, and CP acceptors. The advantage of
this method is that a value of the ground state energy can also be obtained
directly. The absorption by the classical method of a few lines of Be, Mg, Cd,
and C acceptors in GaP has also been reported by Kopylov and Pikhtin [103].

Table 7.22. 2P5/2

(
Γ8

−)−2P3/2

(
Γ8

−) and 2P5/2

(
Γ7

−)−2P5/2

(
Γ8

−) spacings for
different shallow acceptors in GaAs derived from Table 7.15 compared with different
calculated spacings

BeGa MgGa ZnGa CAs SiAs GeAs EMa EMb

2P5/2

(
Γ8

−) − 2P3/2

(
Γ8

−) 4.02 3.98 3.76 4.17 4.00 4.18 3.7
2P5/2

(
Γ7

−) − 2P5/2

(
Γ8

−) 1.93 2.00 1.88 1.92 1.86 1.5 1.75 1.9

a [14], b [147]
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Table 7.23. Measured energies (meV) of different acceptor transitions from the
1S3/2

(
Γ8

−) ground state in GaP, where the TO-LO one-phonon region (reststrahlen
band) is between 45 and 50 meV

2P3/2 2P5/2

(
Γ8

−) 2P5/2

(
Γ7

−) 2P1/2

(
Γ6

−) 1S3/2

(
Γ8

+
)

EMa

Be a
Ga 35.8 55.3

Mg b
Ga 39.7 43.4 52.3a 53.1 60.4

Zn b
Ga 44.5 51.4 53.3 61.0

57.1a 61.6a 64.8a 69.7
Cd a

Ga 82.7 89.5 94.1 98.3 102.2
C b

P 33.5 37.1 39.4 46.9
33.7a 53.2

a [103], IR absorption, b [163], SPL

These results are hampered by the fact that, except for the CdGa acceptor, the
spectra lie in the close vicinity or within the one-phonon absorption region of
GaP, and by the high acceptor concentration used, but they are apparently the
only absorption results existing for GaP. The positions of different acceptor
transitions in GaP are given in Table 7.23.

In this table, the only concordant values between absorption and SPL re-
sults are for 2P3/2 (C), and a difference of 6–8meV in the ionization energies is
noted. The undifferentiated EM value of the ionization energy for acceptors in
GaP, including the cubic contribution, is 49.5meV in the infinite s-o coupling
limit [15]. An electrical measurement of Eith (C) in GaP gives 41±3 meV [22].

Absorption lines pertaining to three shallow acceptors have been reported
for AlSb [1]. The three lines of the acceptors denoted A and B are located
between 22 and 34meV on the low-energy side of the one-phonon band (the
TO and LO phonon energies are 39.5 and 42.2meV, respectively) and the
two lines of acceptor C are located at 91.68 and 94.46meV. A few other
lines have also been observed, but no attribution has been given except for
some LO phonon replicas. The spacing between the two highest-energy lines
of these three acceptors is the same (2.78meV), indicating EM excited states.
Further piezospectroscopic measurements indicate that these acceptors have
Td symmetry [1].

The absorption of the G and D lines of the ZnIn acceptor in InP have been
reported by Causley and Lewis [30], and this appears to be the only known
acceptor absorption result for this compound. Their positions are 241.5 cm−1

(29.94meV) for the G line (2P3/2

(
Γ8

−) and 286.0 cm−1 (35.46meV) for the
D line (2P5/2

(
Γ8

−). The scarcity of absorption results is due to the fact
that such spectra would be close to the one-phonon absorption of InP (37.7
and 42.8meV for the TO and LO phonons, respectively). However, shallow
acceptor transitions have been identified in InP by selective pair luminescence
(SPL) and excitation spectroscopy (Dean et al. [48]). The separation from the
1S3/2 ground state of some S and P acceptor states of ZnIn and CdIn have
also been measured by Raman scattering [188].
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Table 7.24. Positions (meV) of the first energy levels for some acceptors in InP de-
duced from SPL measurements. The value for 1S3/2

(
Γ8

+
)

represents the ionization
energy of the acceptor (after [17])

1S3/2

(
Γ8

+
)

2P3/2

(
Γ8

−) 2S3/2

(
Γ8

+
)

2P5/2

(
Γ8

−) 2P5/2

(
Γ7

−)

MgIn 40 15.1 11.5 10 7.8
ZnIn 46.1 15.9 13.8 11.1 8.2
CP 41 15.6 12.6 10.4 8.2

SiP 37a 13.4b 11.2b 8.3b

EMA 39.5 17.7 11.8 10.8 8.3

a [141], b [86]

Table 7.25. Positions (meV) of the first lines for some acceptors in InSb at LHeT.
Eio is obtained by adding the calculated energy of the 2P5/2

(
Γ8

−) level to the
energy of the D line

Line G E D C A Eio

2P3/2

(
Γ8

−) 2S3/2

(
Γ8

+
)

2P5/2

(
Γ8

−) 2P3/2

(
Γ7

−) 2P1/2

(
Γ6

−)

Zn, Cda 5.7 6.94 7.31 7.93 8.58b 9.85
Geb 5.9 6.85 7.25 7.80 8.53 9.79
Aga 23.5 26.5 27.3 27.9 29.8
EMA 4.24 2.63 2.54 1.91 0.155 8.55

a [92], b [123]

The energy of the first acceptor levels obtained from these measurements
are given in Table 7.24.

The ionization energy of Cd in InP is given as 53.6meV (White et al.,
unpublished, quoted by Baldereschi and Lipari [13]), but considering an en-
ergy of 34.2meV of the Raman 2P3/2 (Cd) line and an average value of the
2P3/2 experimental energy levels of Table 7.24, Ei (Cd) seems to be closer to
∼50 meV. By adding to the energy of line D (Zn) measured by absorption [30],
the EMA value of the 2P5/2

(
Γ8

−) level of Table 7.23, one obtains for Ei (Zn)
a value of 46.3meV close to the value of 46.1meV from SPL measurements.

In InSb, acceptor absorption spectra have been reported by Kaplan [92]
and Murzin et al. [123]. PTIS spectra were also reported by Meisels and
Kuchar [114]. The ZnIn and CdIn lines cannot be practically distinguished
and Table 7.25 shows that they are very close to those of the GeSb lines. The
last row gives the values of the excited states calculated by Baldereschi and
Lipari [14]. An attempt [144], and reference therein) to evaluate the effect
of the addition of the inversion asymmetry term (3.27) in the acceptor EM
Hamiltonian on the InSb acceptor energy levels shows that this contribution
is very small.8

8 In this reference, the value of parameter K used (corresponding to parameter C
of expression (3.27) expressed in atomic units) is about five times larger than
more recent determinations.
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7.6.2 The BAs (78-meV/203-meV) Double Acceptor in GaAs

In GaAs, two unidentified acceptors labelled by their ionization energies as
the 68-meV and the 78-meV acceptors, were reported by Elliot et al. [53].
The 78-meV acceptor was identified as the neutral charge state of a double
acceptor whose ionization energy rose to 203meV in the singly-ionized charge
state. The absorption spectrum of the 78-meV acceptor is located close to
the two-phonon spectrum of GaAs, and three lines of this spectrum at 70.95,
72.94, and 74.5meV have been observed [53] in undoped p-type GaAs grown
from a Ga-rich melt. With the labelling of Table 7.21, they should be ascribed
to lines D, C and B, giving Eio = 78.2 meV. The 78-meV and the 203-meV
spectra have also been observed in B-doped samples cut from SI crystals
after initial annealing at 1200◦C and different subsequent annealings [166]. A
detailed study of the observation of these spectra as a function of additional
near-IR illumination and of various isochronal annealings of the sample during
the optical measurements was reported in the same reference. The 203-meV
spectrum is shown in Fig. 7.23, with three lines at 172.3, 181.0, and 186.3meV,
and a clearly visible elbow at ∼179.6 meV.

It is tempting to ascribe the 172.3 and 181.0meV lines of this spec-
trum, separated by 8.7meV, to transitions of the 2P5/2 (Γ8

−) and 2P5/2 (Γ7
−)

053105410551
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Fig. 7.23. Discrete absorption between 192 and 167 meV of the 203-meV-BAs
−

acceptor spectrum at LHeT in a B-doped GaAs sample annealed at 600◦ C after an
initial annealing at 1200◦ C. A filter blocking photons with energies above 400 meV
has no effect on the absorption coefficient (solid-line spectrum) compared to the
dashed-line spectrum obtained without filter (after [166]). Copyright 1994, American
Institute of Physics
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final states (lines D and C) as their spacing is close to four times the
2P5/2 (Γ7

−)−2P5/2

(
Γ8

−) spacing of Table 7.22, in qualitative agreement with
what is expected for a singly-ionized acceptor spectrum. This double accep-
tor has been tentatively ascribed to the Ga antisite (GaAs), but a correlation
between PL and DLTS measurements in B-containing GaAs samples and the
local vibrational modes due to BAs have convincingly proved that the 78-meV
and 203-meV levels corresponded to the two charge states of BAs [129]. The
68-meV acceptor has been reported to be a dominant intrinsic acceptor in
p-type GaAs and its electronic Raman spectrum reported by Wagner et al.
[185] but GaAs would be a potential candidate.

7.6.3 TMs Acceptors in III-V Compounds

The incorporation of TMs in III-V and II-VI compounds has aroused interest
because some of them have a very high solubility in these compounds and
because their magnetic moment can lead, by substitution with cations, to
diluted magnetic alloys, known as diluted magnetic semiconductors (DMS).
In a cubic II-VI compound, within the sp3 tetrahedral bonding scheme, the
substitution of a group-II cation with a s2 external shell by a 3d TM with
electronic structure [Ar] 3dn4s2 (n = 1, 2, . . ., 9) does not lead to any change
as the d electrons do not participate in the bonding. In this aspect, the TM
can be regarded as some kind of isoelectronic impurity. The situation in III-V
compounds is different because only five ns2np3 electrons of the anion are
available for tetrahedral bonding, which is then achieved by the adjunction of
an electron from the host VB. This configuration of the TM is often denoted
TM2+ considering only the electrons not involved in the bonding. The presence
of a hole results in an acceptor behaviour for these TMs and an EM acceptor
spectrum of Mn in GaAs was first observed by Chapman and Hutchinson
[34] and other studies followed [110,168], and references therein). The Lyman
EM absorption spectra of Mn in GaAs, GaP, and InP, and of Co and Cu in
GaAs have been reported by Tarhan et al. [168]. Figure 7.24 shows the Lyman
acceptor spectra at LHeT of Co and Mn in two GaAs samples.

The transition energies for these TMs are given in Table 7.26. For Cu in
GaAs, two EM spectra denoted CuI and CuII are observed, with temperature-
independent relative intensities and their possible origin is discussed later.
Using the calculated value (5.33meV) of the acceptor energy level 2P5/2 (Γ7)
of GaAs [14], one obtains the values of Eio of Table 7.26. For GaP:Mn and
InP:Mn, the values of Eio are obtained from the corresponding energy level
2P5/2 (Γ8) calculated in the same reference.

These TM acceptors display an EM excited level, and for the GaAs host
crystal, the line spacings are similar to those measured for shallow acceptors,
as can be seen from the comparison between Tables 7.22 and 7.27.

The electronic configurations of Cr and Cu, with only one 4s electron, differ
from those of the other 3d TMs (see above). With the same binding process as
for Mn and Co, one expects the incorporation of two VB electrons to complete
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Fig. 7.24. Comparison of the acceptor spectra of Co and Mn in GaAs at a resolution
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)
. The absorption of a pure GaAs sample is shown as a reference.

The 2P3/2 lines of both spectra are brought into coincidence. The relevant energy
scales are indicated by vertical arrows (after [168]). Copyright 2003 by the American
Physical Society

Table 7.26. Observed positions (meV) at LHeT of the acceptor lines of the EM
spectra of some TMs in III-V compounds [168]

2P3/2 2P5/2 2P5/2 3P5/2 3P5/2 4P5/2 4P5/2 Eio

(Γ8) (Γ7) (Γ8) (Γ7) (Γ8) (Γ7)

GaP:Mn 368.84 374.71 379.52 387.75
InP:Mn 204.66 210.06 213.12 220.04
GaAs:Mn 101.17 105.13 106.99 108.52 109.37 109.82 110.55 112.32
GaAs:Co 163.32 167.33 169.22 110.74 174.55
GaAs:CuI 146.50 150.51 152.45 154.72 157.78
GaAs:CuII 147.36 151.37 153.28 158.61

Table 7.27. 2P5/2 (Γ8)− 2P3/2 and 2P5/2 (Γ7)− 2P5/2 (Γ8) spacings (meV) derived
from Table 7.26. They are noted here δ(2P 5/2−3/2) and δ(2P 5/2−5/2), respectively

GaP:Mn InP:Mn GaAs:Mn GaAs:Co GaAs:CuI GaAs:CuII

δ(2P 5/2−3/2) 5.87 5.40 3.96 4.01 4.01 4.01
δ(2P 5/2−5/2) 4.81 3.06 1.86 1.89 1.94 1.91
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tetrahedral bonding, yielding He-like acceptors. However, no striking differ-
ence is observed in the ionization energies. A difference originates from the
observation of two Cu-related spectra, CuI and CuII. As suggested in the pa-
per by Tarhan et al. [168], it is tempting to ascribe CuI to the 3d10 4s2 4p Cu2−

He-like configuration, and CuII to a 3d9 4s2 4p Cu− H-like configuration in-
volving only one 3d and one VB electron.

7.6.4 Acceptors in II-VI Compounds

The II-VI compounds have a larger ionicity than the III-V compounds, and
it was first assumed that most of the residual donors and acceptors were due
to the lattice defects like the anion and cation vacancies (VII and VVI) and to
group-II and group-VI interstitial atoms, but it was later found that in most
cases, group-I and group-V impurities were involved [118]. In some of these
compounds, Li occupies a group-II site, where it is an acceptor, but it can
also be present in the interstitial form, leading to self-compensation.

A few acceptor absorption spectra have been identified in ZnSe, ZnTe and
CdTe, but most of the results have been obtained by PL. Table 7.28 gives the
transition energies for Li and Na in cubic ZnSe deduced from PL excitation
spectra and from SPL.

There is some uncertainty on the attribution of 2P3/2 (Na) as the experi-
mental 2P3/2 − 2P5/2 (Γ8) spacing for Na is 4.4meV larger than the one for
Li and than an EM estimation of this spacing from Baldereschi and Lipari’s
calculations [14]. The results of PL experiments on the N acceptor in ZnSe
have been reported by Dean et al. [50], giving an estimated ionization energy
of 110meV for this acceptor. The results of PL and SPL experiments on MBE
ZnO-doped ZnSe have been interpreted as due to an O-related acceptor with
an ionization energy of 84meV ([37], and references therein). Calculations
of the electrical activity of O in ZnSe predict an acceptor behaviour for an
interstitial O atom strongly bonded to a Zn atom [31].

More absorption data exist for acceptors in ZnTe, together with PL mea-
surements and they are given in Table 7.29.

A significant difference is observed between the Eio(Au) values measured
by PL and absorption measurements. The energies of the 3P3/2, 3P5/2(Γ8),
3P5/2(Γ7), and 2P1/2 transitions of Ag measured by Stadler et al. [159] are
113.4, 115.1, 116.4, and 117.2meV, respectively.

Table 7.28. Energies (meV) of the Li and Na acceptor transitions in cubic ZnSe
near LHeT. The uncertainty is ±1meV (±2meV for 2P5/2 (Γ8)) [170]. The value
measured by absorption by Nakata et al. [127] for 2P3/2 (Li) is (72.9 ± 0.1) meV

2P3/2 2S3/2 2P5/2 (Γ8) 2P5/2 (Γ7) 3S3/2 2P1/2 4S3/2 Ei

Li 72.9 82.6 85.8 93.0 97.8 100.1 102.5 114
Na 83.1 ? 97.6 100.4 106.8 110.5 113.0 114.7 128
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Table 7.29. Energies (meV) of acceptor transitions in ZnTe near LHeT. The values
of Eio in parentheses in the last row are obtained directly from PL measurements.
The other values are obtained by adding 15.8 meV to the energy of the 2P5/2 (Γ8)
transition. The EM energies of the excited states are given in the last column

LiZn
a PTe

b AsTe
a CuZn

c AgZn
d AuZn EMTf

2P3/2 37.9 39.6 55.0 124.0 23.5
2S3/2 43.4 45.4 58.6 125.6 100.3 244c 17.2

2P5/2 (Γ8) 44.8b 46.5 63.2 105.9 255.3e 15.8
2P5/2(Γ7) 47.7 53.0 66.8 109.8 259.0e 12.5
3S3/2 52.8 54.1c 69.4 137.5 111.0 8.6
Eio 60.6

(60.5)c
62.3
(63.5)c

79.0
(79.0)c

148.0 121.7
(121)c

271.1
(277)c

a [148] Raman scattering, b [124], absorption, Raman scattering, c [180], PL, d [159],
absorption, e [112], f [147]

Table 7.30. Energies (meV) of acceptor transitions in CdTe near LHeT. The tran-
sitions are labelled by the final state

LiCd
a NaCd

b CuCd
c AgCd

d PTe
b EM

2P3/2 34.0 34.9 44.9 33.4 (23.7)
2S3/2 42.8c 43.3 124.4d 87.9 51.0 40.2 (16.9)
2P5/2 (Γ8) 44.4 45.0 130.94 92.5 53.1 41.7 (15.4)
2P5/2 (Γ7) 47.1 47.5 134.60 96.2 56.6 45.4 (11.6)

3S3/2 49.1b 49.8 136.0d 97.9 58.8 48.4 (10.8)
Eio 59.8 60.4 146.3 107.9 68.5 57.0

The calculated transition energies of the last column are the difference between the
ground and excited states energies (in parentheses) calculated by [61]. The
acceptor ionization energies are obtained by adding 15.4 meV to the energy of the
2P5/2 (Γ8) transition
a [61], absorption, b [118], PL, c [159], absorption, d [117], absorption and PL

The spectroscopy of acceptors in CdTe has been actively investigated by
absorption and PL [118], and references therein). The energies of some ac-
ceptor impurity transitions are given in Table 7.30. EM acceptor energy levels
in CdTe have been calculated self consistently with adjustments of the VB
parameters and of the dielectric constant of the host crystal. The EM energy
obtained for the ground state is 56.8 [118] and 57.0meV [61]. The EM transi-
tion energies to the corresponding excited states are given in the last row of
Table 7.30.

The energies of the 3P3/2, 3P5/2(Γ8), 3P5/2(Γ7), and 2P1/2 transitions
of CuCd measured by Stadler et al. [159] are 136.38, 138.33, 140.64, and
142.65meV, respectively. The calculated 2P5/2(Γ7)–2P5/2(Γ8) spacing (3.8
meV) differs notably from the experimental one for Li and Na (2.7 and
2.5meV, respectively). This was noted by Molva et al. [118] and attributed to
a resonant coupling of the Li and Na lines with the 2LO(Γ) overtone of CdTe
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at 42.4meV. This point is also discussed by Friedrich et al. [61]. The com-
plexity of the Li acceptor spectrum in CdTe can be appreciated in Fig. 7.25.

In II-VI compounds, the cation vacancy VM
2− is a deep double acceptor

and in CdTe, the most recent estimations give Ev + 0.76 eV for VCd
2−/VCd

−

[29]. It combines with the ClTe donor to give a relatively shallow acceptor
complex which has been identified by the conjunction of PL and ODMR mea-
surements as a centre with trigonal symmetry and Ei ∼120 meV [79].
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134. B. Pajot, D. Débarre, D. Roche, J. Appl. Phys. 52, 5774 (1981)



344 7 EM Acceptor Spectra

135. B. Pajot, A. Tardella, in Neutron transmutation doping of semiconductor ma-
terials, ed by R.D. Larrabee, (Plenum, 1984), pp. 261

136. G.J. Parker, S.D. Brotherton, I. Gale, A. Gill, J. Appl. Phys. 54, 3926 (1983)
137. R.E. Peale, K. Muro, A.J. Sievers, Phys. Rev. B 41, 5881 (1990)
138. G. Piao, R.A. Lewis, P. Fisher, Solid State Commun. 75, 835 (1990)
139. G. Piao, P. Fisher, R.A. Lewis, Phys. Rev. B 61, 7466 (2000)
140. C. Piccirillo, G. Davies, A. Mainwood, C.M. Penchina, Diam. Relat. Mater.

11, 338 (2002)
141. G.S. Pomrenke, J. Cryst. Growth 64, 158 (1983)
142. M. Porrini, M.G. Pretto, R. Scala, A.V. Batunina, H.C. Alt, R. Wolf, Appl.

Phys. A 81, 1187 (2005)
143. A.K. Ramdas, S. Rodriguez, Rep. Progr. Phys. 44, 1297 (1981)
144. F. Raymond, Solid State Commun. 18, 171 (1976)
145. J.J. Rome, W.C. Mitchel, G.J. Brown, D.W. Fischer, M.C. Ohmer, T.L. Pe-

terson, Appl. Phys. Lett. 41, 254 (1982)
146. E. Rotsaert, P. Clauws, J. Vennik, L. van Goethem, Physica 146B, 75 (1987)
147. M. Said, M.A. Kanehisa, Phys. Stat. Sol. B 157, 311 (1990)
148. M. Said, M.A. Kanehisa, M. Jouanne, M. Balkanski, J. Phys C 20, 2917 (1987)
149. E.H. Salib, P. Fisher, P.E. Simmonds, Phys. Rev. B 32, 2424 (1985)
150. W. Schairer, E. Grobe, Solid State Commun. 8, 2014 (1970)
151. W. Schelter, W. Hell, R. Helbig, M. Schulz, J. Phys. C 15, 5839 (1982)
152. H. Schroth, K. Lassmann, S. Voss, H. Bracht, Phys. Rev. Lett. 85, 417 (2000)
153. W. Scott, J.L. Schmit, Appl. Phys. Lett. 33, 294 (1978)
154. J. Serrano, A. Wysmolek, T. Ruf, M. Cardona, Physica B 273–274, 640 (1999)
155. E. Simoen, P. Clauws, M. Lamon, J. Vennik, Semicond. Sci. Tech. 1, 53 (1986)
156. G. Sirmain, O.D. Dubon, W.L. Hansen, C.S. Olsen, E.E. Haller, J. Appl. Phys.

79, 209 (1996)
157. H.P. Soepangkat, P. Fisher, Phys. Rev. B 8, 870 (1973)
158. B.L. Sopori, Appl. Phys. Lett. 47, 39 (1985)
159. W. Stadler, D.M. Hofmann, H.C. Alt, T. Muschik, B.K. Meyer, E. Weigel,

G. Müller-Vogt, M. Salk, E. Rupp, K.W. Benz, Phys. Rev. B 51, 10 619 (1995)
160. J. Staiger, P. Gross, K. Lassmann, H. Bracht, N.A. Stolwijk, in Defects in

Semiconductors 17, ed. by H. Heinrich, W. Jantsch (Trans Tech, Switzerland,
1994); Mater. Sci. Forum 143

161. M. Steger, A. Yang, D. Karaiskaj, M.L.W. Thewalt, E.E. Haller, I.I.I.J.W.
Ager, M. Cardona, H. Riemann, N.V. Abrosimov, A.V. Gusev, A.D. Bulanov,
A.K. Kaliteevskii, O.N. Godisov, P. Becker, H.J. Pohl, Phys. Rev. B 79, 205210
(2009)

162. A. Strachan, in Properties of Crystalline Silicon, EMIS Datareviews Series No
20, ed. by R. Hull (INSPEC Publication, London, 1999), p. 457

163. R.A. Street, W. Senske, Phys. Rev. Lett. 37, 1292 (1976)
164. M. Suezawa, A. Kasuya, K. Sumino, Y. Nishina, J. Phys. Soc. Jpn. 57, 4021

(1988)
165. M. Suezawa, R. Mori, Phys Stat Sol B 210, 507 (1998)
166. M. Suezawa, K. Sumino, J. Appl. Phys. 76, 932 (1994)
167. A. Tardella, B. Pajot, J. Physique 43, 1789 (1982)
168. E. Tarhan, I. Miotkowski, S. Rodriguez, A.K. Ramdas, Phys. Rev. B 67,

195202/1–9 (2003)
169. E. Tarnow, S.B. Zhang, K.J. Chang, D.J. Chadi, Phys. Rev. B 42, 11252 (1990)



References 345

170. H. Tews, H. Venghaus, P.J. Dean, Phys. Rev. B 19, 5178 (1979)
171. M.L.W. Thewalt, Solid State Commun. 23, 733 (1977)
172. M.L.W. Thewalt, D. Labrie, I.J. Booth, B.P. Clayman, E.C. Lightowlers, E.E.

Haller, Physica 146B, 47 (1987)
173. M.L.W. Thewalt, D. Labrie, B.P. Clayman, Solid State Commun. 56, 751

(1985)
174. M.L.W. Thewalt, B.P. Clayman, D. Labrie, Phys. Rev. B 32, 2663 (1985)
175. M.L.W. Thewalt, D. Labrie, T. Timusk, Solid State Commun. 53, 1049 (1985)
176. M.L.W. Thewalt, S.P. Watkins, U.O. Ziemelis, E.C. Lightowlers, M.O. Henry,

Solid State Commun. 44, 573 (1982)
177. K. Thonke, Semicond. Sci. Tech. 18, S20 (2003)
178. N.D. Tyapkina, M.M. Krivopolenova, V.S. Vavilov, Sov. Phys. Sol. State 6,

1732 (1965)
179. M.K. Udo, C.R. LaBrec, A.K. Ramdas, Phys. Rev. B 44, 1565 (1991)
180. H. Venghaus, P.J. Dean, Phys. Rev. B 21, 1596 (1980)
181. R.E.M. Vickers, P. Fisher, C.A. Freeth, Solid State Commun. 65, 271 (1988)
182. R.E.M. Vickers, P. Fisher, C.A. Freeth, Phys. Stat. Sol. B 210, 839 (1998)
183. J. Wagner, H. Seelewind, J. Appl. Phys. 64, 2761 (1988)
184. J. Wagner, H. Seelewind, P. Koidl, Appl. Phys. Lett. 49, 1080 (1986)
185. J. Wagner, K.H. Ko, J. Lagowski, Phys. Rev. B 43, 5163 (1991)
186. K. Wan, R. Bray, Phys. Rev. B 32, 5265 (1985)
187. A.C. Wang, L.S. Lu, C.T. Sah, Phys. Rev. B 30, 5896 (1984)
188. M. Wenzel, G. Irmer, J. Monecke, Solid State Commun. 104, 371 (1997)
189. H.H. Woodbury, W.W. Tyler, Phys. Rev. 105, 84 (1957)
190. G.B. Wright, A. Mooradian, Phys. Rev. Lett. 18, 608 (1967)
191. Y. Wu, L.M. Falicov, Phys. Rev. B 29, 3671 (1984)
192. Z. Yu, Y.X. Huang, S.C. Shen, Phys. Rev. B 39, 6287 (1989)
193. S. Zwerdling, K.J. Button, B. Lax, L.M. Roth, Phys. Rev. Lett. 4, 173 (1960)



8

Effects of Perturbations

8.1 Introduction

The frequencies of the spectral lines in crystals can be shifted by perturbations
and when levels are degenerate, splitting can occur. Discrete levels of impu-
rities and defects are characterized by their energies and their widths, which
determine the positions and the FWHMs of the transitions. The degeneracy of
the levels is a less obvious parameter related to their symmetry or to the sym-
metry of the centres in the crystal, and its consequences can only be derived
from optical measurements under external perturbations. It has been shown in
Chap. 5 that the multi-valley degeneracy of the CB of indirect-band-gap semi-
conductors translated into the same degeneracy of the EM donor states and
that this degeneracy was partially lifted by valley-orbit coupling. Similarly,
due to the structure of the VB maximum, the EM acceptor states also present
an intrinsic electronic degeneracy. These degeneracies are the same whatever
the atomic structure of the centres because they are due to the band struc-
ture of the semiconductor. Another form of degeneracy is due to the atomic
symmetry of the centres with equivalent orientations in the crystal, and is
logically called orientational degeneracy. An example is the <111> oriented
chalcogen substitutional donor pairs in silicon, with a fourfold orientational
degeneracy. In the preceding chapters, examples of the splitting of the spec-
tra of impurities in crystals under different perturbations have been given. A
more systematic treatment of these perturbations, which can be mechanical,
electrical or magnetic, is considered in this chapter.

In a crystal, perturbations can be classified as internal and external. The
internal perturbations are disturbances from an equilibrium condition, taken
as an ideal uniform distribution of impurities or defects which do not mod-
ify the crystal lattice and the average electronic density. Mechanical pertur-
bations can be microscopic, like those introduced by impurities or defects
producing large local volume changes, which reflect on crystal lattice spacings
when their concentration is large, or macroscopic due to residual or accidental
stresses. Permanent perturbations can also be produced by unrelaxed stresses
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originating from lattice misfits in epitaxially-grown sample and it must be
noted that in this case, the perturbation can also be biaxial. Electrical per-
turbations can be produced by fluctuations in the impurity concentration or
due to compensation inhomogeneities, responsible for the already-mentioned
inhomogeneous Stark effect.

The external perturbations, on the other hand, are uniaxial or hydrostatic
stresses, electric fields and magnetic fields. Strong illumination of samples
with radiation at or above band-gap energies, intended to modify the carrier
concentration, can also be considered as perturbations (not considered in this
chapter).

When an external perturbation is applied along a given crystal direction, it
generally reduces the overall symmetry of the crystal by adding an anisotropy
axis. The change in symmetry at a given atomic site under an external uniaxial
perturbation depends not only on the orientation of the perturbation, but also
on its nature: uniaxial stress and electric field are polar vectors which change
sign under inversion operation, but a magnetic field is an axial vector which
does not. As a consequence, the point group symmetries differ: starting for
instance from a donor or an acceptor at a site with Td symmetry, a magnetic
field along a [100], [110] or [111] direction reduces the site symmetry to S4,
C1h or C3, respectively, but a uniaxial stress along the same direction reduces
the site symmetry to D2d, C2v and C3v, respectively.

In the general case, a transition involving degenerate levels is split into
two or more components under an external perturbation. One usually follows
the spectral positions of the component as a function of the amplitude of the
perturbation, and this result in “fan” charts of the kind shown in Fig. 8.8.
In such charts, there are values of the perturbation for which two compo-
nents from different transitions can, in principle, intersect. As a function of
the symmetries of these components with respect to the perturbation, these
components can cross without interaction, but there are cases where the two
components interact, giving rise to an anti-crossing or avoided crossing con-
figuration which can be properly dealt with by an appropriate perturbation
calculation.

8.2 Mechanical Stresses

A detailed presentation of the piezospectroscopy of semiconductors can be
found in [124]. Uniaxial stress is the most easily-produced perturbation (for
experimental details, see Sect. 4.7.1), and the spectroscopy performed under
stress is called piezospectroscopy. The relevant piezospectroscopic parameters
for an impurity line are the number of components observed, their polarization
characteristics and the amplitude of their shifts and splitting as a function of
the value of the stress. Piezospectroscopy is useful when studying degenerate
electronic transitions of the EM-like centres as it can lift intrinsic degeneracy.
It can also lift the orientational degeneracy of electronic (and vibrational)
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transitions. Another interest of piezospectroscopy is that, by modifying the
spacing between levels, it is possible to study interactions and resonances
between levels. It is restricted to monocrystalline samples of a reasonable
size and this explains why some materials have not been investigated by this
technique. The maximum stress which can be applied to a material depends
on its mechanical properties, but these properties improve at lower tempera-
tures, and stresses that would pulverize a sample at RT can safely be applied
at LHeT. A moderate hydrostatic stress does not change the overall crystal
symmetry, but it can change the energies of the electronic bands of the crystal
as different bands can display opposite pressure coefficients to such stresses:
a direct-gap semiconductor like GaAs becomes an indirect-gap semiconductor
for hydrostatic pressures above ∼4GPa [149]. For much larger hydrostatic
stresses, the crystal structure itself can change (above about 12GPa, cubic
silicon turns into tetragonal β-tin structure, with metallic properties), but this
kind of perturbation is not considered in this book.

The stress-induced splitting of the levels with intrinsic degeneracy like the
triply degenerate levels of vibrational and electronic transitions of cubic cen-
tres has been treated by Kaplyanskii [73], and the doubly degenerate levels of
trigonal or tetragonal centres in cubic crystals by Hughes and Runciman [63].
From a mathematical aspect, the treatment of the effects of stress must con-
sider the fact that stress is a tensor, so that some piezospectroscopic quantities
also have tensor properties. The general textbook by Bir and Pikus [18] on
the stress-induced effects in semiconductors includes piezospectroscopic prop-
erties and a detailed presentation of the necessary group theoretical tools.

In this section, we first consider the effect of mechanical stresses on EM
electronic transitions and present typical examples. The second part develops
the relation between orientational degeneracy and splitting under uniaxial
stress or other external perturbations.

8.2.1 Effects on Electronic Transitions

A stress applied to a crystal results in a strain. A phenomenological description
of the electron energy levels under elastic strain was developed by Bardeen
and Shockley [12]. It is referred to as the deformation potential approxima-
tion (DPA), in which the one-electron Hamiltonian is developed in a Taylor’s
series of the strain components εαβ . The perturbation is written in cartesian
coordinates, for a linear order in strain, as:

V =
∑

α,β

Vαβεαβ, (8.1)

where Vαβ are symmetric with respect to α and β, and used to obtain energy
shifts and splitting of specific energy levels.

We consider first the effect of a uniaxial stress on the EM-like elec-
tronic spectra of donors with CB degeneracy and then the situation for
acceptors.
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8.2.1.1 EM Donors with CB Degeneracy

Shallow Donors in Multi-Valley Semiconductors

Under stress, a one-valley EM donor state follows the energy shift of the valley
it belongs to. A study of the effect of a uniaxial stress on the donor spectra in
a multi-valley semiconductor (silicon) has been undertaken by Tekippe et al.
[140]. The treatment given below follows this presentation closely, with minor
changes in the notations. Following the deformation potential analysis of [60],
the shift in energy ΔE(j) of valley j of the CB of silicon or germanium with
respect to the zero-stress conditions is:

ΔE(j) =
∑

α,β

[
Ξdδαβ + Ξuk

(j)
α k

(j)
β

]
εαβ, (8.2)

where Ξd is the deformation potential (DP) for the dilatation in the two direc-
tions perpendicular to the valley axis and Ξu the DP for a stretch along the
valley axis and a contraction along the two perpendicular directions (shear
DP), k(j)

α and k(j)
β are the components of a unit vector pointing from the cen-

tre of the BZ towards the position of minimum j and εαβ are the components
of the strain tensor. In other descriptions of the strain effects on the CB of
semiconductors, different notations for the DPs have been used: The defor-
mation potential term Ξd + 1

3Ξu associated with the hydrostatic component
of the stress is represented as E1 + a1 by Laude et al. [92], after [26], while
Ξu is identical to E2 for silicon (CB minima along <100> direction) and to
2E2 for germanium (CB minima along <111> direction).

Let us consider the case of silicon. The multi-valley structure of the CB
minimum of silicon is depicted in Fig. 8.1, with six constant energy surfaces
along the <100> direction Δ of the BZ. A force F has also been included in
this figure, whose direction is defined by polar angles θ and φ.

When replacing in expression (8.2), the components k(j)
α and k

(j)
β by the

direction cosines l,m and n of the external stress, the shift of valley j becomes:

ΔE(j) = Ξd (εxx + εyy + εzz)
+Ξu

(
l2εxx +m2εyy + n2εzz + 2 (mnεyz + nlεxz + lmεxy)

)
. (8.3)

The shift of the centre of gravity (c.g.) of the six valleys deduced from (8.3) is:

< ΔE(j) >=
1
6

6∑

j=1

ΔE(j) = (Ξd + 1 /3 Ξu) (εxx + εyy + εzz) (8.4)

and it represents the value of the hydrostatic shift of the CB minima
of silicon (this also holds true, mutatis mutandis, for the four CB minima of
germanium). The shift of valley j with respect to the centre of gravity can be
expressed as:
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Fig. 8.1. Multi-valley structure of the CB minimum of silicon showing the constant-
energy ellipsoids along <100>. For convenience, the direction of an applied compres-
sive force F is defined with respect to the orthogonal axes chosen along the <100>
direction (after [140]). Copyright 1972 by the American Physical Society

δE(j) = Ξu

[
l2εxx +m2εyy + n2εzz + 2 (mnεyz + nlεzx + lmεxy)

−1
3

(εxx + εyy + εzz)
]

σxx. (8.5)

The strain tensor is the product of the elastic compliance tensor of the crystal
by the stress tensor with components σαβ . For cubic crystals, where the non-
zero components of the elastic compliance tensor are S11, S12 and S44, it can
be expressed1 as:

⎡

⎢
⎢
⎢
⎢
⎢⎢
⎣

εxx

εyy

εzz

εyz

εzx

εxy

⎤

⎥
⎥
⎥
⎥
⎥⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢⎢
⎢
⎣

S11 S12 S12 0 0 0
S12 S11 S12 0 0 0
S12 S12 S11 0 0 0
0 0 0 1

4S44 0 0
0 0 0 0 1

4
S44 0

0 0 0 0 0 1
4S44

⎤

⎥
⎥
⎥
⎥
⎥⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢⎢
⎣

σxx

σyy

σzz

σyz

σzx

σxy

⎤

⎥
⎥
⎥
⎥
⎥⎥
⎦

. (8.6)

1 In cubic crystals, there are three non-zero compliance components S11, S12 and S44

closely related to the second-order elastic moduli C11, C12 and C44: S11 =
(C11+C12) [(C11−C12) (C11+2C12)]

−1, S12 = −C12 [(C11−C12) (C11+2C12)]
−1

and S44 is C−1
44 .
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Using the expression for the components of the strain tensor derived from
(8.6), the shift δE(j) for the silicon CB can be rewritten as:

δE(j) = Ξu

{
(S11 − S12)

[
l2σxx +m2σyy + n2σzz − 1

3
(σxx + σyy + σzz)

]

+S44 (mnσyz + nlσzx + lmσxy)
}
. (8.7)

The components of the stress tensor in the crystal due to a stress T applied
along a crystal axis with respect to an orthogonal set of coordinates x, y, z
can be expressed as:

σαβ = ±nαnβT, (8.8)

where nα and nβ are the direction cosines of the stress in the orthogonal
reference frame and T the magnitude of the stress (the applied force per unit
surface). The plus and minus signs are for tension (dilatation) and compression
(the usual case), respectively.

When taking nj as a unit vector along the direction from the centre of
the BZ to valley j, expression (8.7) is transformed to give, for a compressive
force:

δE(j) = −ΞuT (S11 − S12)
[
(nj · nF )2 − 1/3

]
, (8.9)

where nF is a unit vector along F. For an arbitrary orientation of the com-
pressive force, and following the valley labels of Fig. 8.1, one obtains:

δE(1,2) = −ΞuT (S11 − S12)
[
cos2 θ sin2 φ− 1/3

]

δE(3,4) = −ΞuT (S11 − S12) [sin2 θ sin2 φ− 1/3]. (8.10)
δE(5,6) = −ΞuT (S11 − S12) [cos2 φ− 1/3]

For F// [100] (θ = 0 and φ = 90◦), valleys 3, 4, 5, and 6 are equivalent and a
triply-degenerate T2 EM level splits into a doublet, as for F// [110] (θ = 45◦

and φ = 90◦). For F// [111], θ = 45◦ and φ = 54.736◦ and there is no shift
(and no splitting), as can be expected without calculation from symmetry
alone and δE(j) is zero for the six valleys.

For germanium, where the CB minima are at the L point of the surface of
the BZ, along a <111> direction, the shifts of the four valleys with respect to
the shift of the centre of gravity are, for a compressive force, the equivalent
of expression (8.9) is [123]:

δE(j) = −1
2
ΞuT S44

[
(nj · nF )2 − 1/3

]
. (8.11)

The effect of a force applied along a <100> direction is the same for the four
valleys, but when applied along <110> or <111> axes, the shifts are different.

The compliance coefficient Sij for silicon, germanium, and diamond are
given in Table 8.1.
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Table 8.1. Compliance coefficients
(
GPa−1

)
for silicon [55, 112], germanium [28]

and diamond [5]

S11 S12 S44

Diamond 0.949 × 10−3 −0.100 × 10−3 1.734 × 10−3

Silicon 7.69 × 10−3 −2.14 × 10−3 12.58 × 10−3

Germanium 9.67 × 10−3 −2.42 × 10−3 14.64 × 10−3

Table 8.2. Shift δE(j) of the CB minima (valleys) in silicon (units of
ΞuT (S11 − S12) /3)) and germanium (units of ΞuTS44)/6) for a compressive force
along the indicated direction. The valley labels for silicon are those of Fig. 8.1; for
germanium, valleys 1, 2, 3, and 4 are parallel to the [111], [11̄1̄], [1̄1̄1], and [1̄11̄]
directions, respectively

F// [100] F// [110] F// [111]

Valley point Valley point Valley point

Valleys δE(j) group δE(j) group δE(j) group

Sia 1,2 −2 C2v −1/2 C1 0 Cs

3,4 +1 C2 −1/2 C1

5,6 +1 C2 1 C2v

Geb 1 0 Cs −1 Cs −2 C3v

3 −1 Cs 2/3 Cs

2,4 1 Cs 2/3 Cs

a [140], b [125]

For silicon, the value of S11−S12 measured at LHeT is 9.745×10−3 GPa−1.
The effect of a uniaxial stress on the valleys of the CB translates, in the general
case, into a level splitting assumed to be the same for the np0 and np±1 EM
levels and is given in Table 8.2 for particular cases in silicon and germanium.
When considering the effect of an external perturbation on a semiconductor
with a CB degeneracy similar to the one in silicon or germanium, another
symmetry besides the site symmetry in the real space is the valley symmetry
in k-space, to which is associated the valley point group. This latter group
consists of symmetry elements leaving a given valley undisplaced. This is
summarized in Table 8.2.

From Table 8.2, the splitting of the np states in silicon are ΞuT (S11 − S12)
and ΞuT (S11 − S12) /2 for F// [100] and F// [110], respectively. For ger-
manium, they are ΞuTS44)/3 and 4ΞuTS44)/9 for F// [110] and F// [111],
respectively. The splitting of the 1s (T2) level in silicon has been calculated
by Wilson and Feher [148] for F// [100] and it is found to be the same as
that of the np states.

The fundamental group-V donor spectra arise from a 1s (A1) ground state
which is not exactly EM-like because of chemical effects and also because of
the CB degeneracy we are concerned with here. Independent of the chemical
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effect, the calculation of the valley-orbit splitting shows that the contribution
of all the valleys are the same for the 1s (A1) state. Therefore, under stress,
this state experiences an average shift which is not related to a particular
valley, but to the value of the 1s (A1) − 1s (E) valley-orbit splitting (denoted
6Δc) in silicon and 1s (A1) − 1s (T2) valley-orbit splitting (denoted 4Δc) in
germanium. This shift of the ground state has been calculated explicitly for
a compressive force F// [100] in silicon [148]. For this configuration, strain
induces a mixing of the lowest-energy split components of the 1s (E) state
with the 1s (A1), giving two states. The dependence with stress of the deepest
one is:

δEgs = Δc

[

3 +
1
2
x− 3

2

(
x2 +

4
3
x+ 4

)1/2
]

,

where x = −Ξu (S11 − S12) /3Δc. The stress dependence of the other state is
also nonlinear with stress, but the highest-energy split component of 1s (E)
shows a linear dependence with stress and for F// [100], it is ΞuT (S11−S12) /3.

The upper part of Fig. 8.2 shows the experimental splitting of the 2p±1 (P)
line in silicon at LHeT for increasing stresses along the [100] direction. The
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Fig. 8.2. (a) Measured stress dependence at LHeT of the two components of the
2p±1(P) line in silicon (open circles). The solid straight lines are drawn from the
energy spacings of the components considering the linear energy spacing with stress
of the 2p±1 sublevel components divided in the ratio +1/−2 of Table 8.2 with respect
to the zero stress position. Above ∼500 MPa, the energy of the lower component
becomes independent of the stress magnitude [38]. (b) stress dependence of the
ground state calculated by taking the difference between the positions of the straight
lines and experimental curves of the upper part (after [140]). Copyright 1972 by the
American Physical Society
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nonlinear shift of the components with stress is due to the shift of the
ground state. The experimental stress dependence of the ground state shift
is shown in Fig. 8.2 and is obtained by dividing the experimental spacing
in a 1/2 ratio with respect to the zero-stress position. At the maximum
value of the stress (∼180 MPa), the splitting between the two components is
∼16 meV

(
129 cm−1

)
and its ratio to the valley-orbit splitting of the P donor

at zero stress is ∼1.2. For stress magnitudes above ∼500 MPa, the position
of the low-energy component becomes stress-insensitive because the negative
stress dependences of its initial and final states are the same [38].

Transitions are parity-allowed between the 1s (A1) ground state and the
np0 and np±1 states, but when an anisotropy axis is superimposed, polariza-
tion effects of the incident radiation are expected and it becomes necessary to
determine the symmetry of the split levels.

Group theory must be used to determine the IRs of the new site symmetry
point groups characterizing the split sublevels; an example of the method
followed is given by Ramdas et al. [122]. It starts with the determination
of the IRs for the valley symmetry point group corresponding to the donor
wave functions. This can be obtained from the decomposition of the IRs of
the continuous group D∞h of the donor Hamiltonian (5.5) for a given valley
into the IRs of the valley symmetry groups. For the donor p-states which are
considered in the following, one must note that the IRs of D∞h are different
for the m = 0 and for the m = ±1 states. Once obtained, the Frobenius’
reciprocity theorem (see for instance [102]) must be used to find the IRs of
the new site symmetry point group which are generated by the IRs of the
valley symmetry groups. Tables 8.3 and 8.4 gives the IRs of the sublevels of
donor states with initial site symmetry Td under a uniaxial stress in silicon and
germanium. The case when there is no splitting is not considered. As expected,
one sees that the stress-split sublevels correspond to specific CB valleys.

Table 8.3. IRs of the site symmetry point groups of the sublevels of np donor states
in silicon split by a uniaxial stress, deduced from the IRs of the valley group. The
site symmetry group under stress is indicated close to the stress orientation. The
magnitudes of the splitting, independent of the value of m, are given in Table 8.2
(after [2])

Stress IRs of the IRs of the Td IRs of the new
orientation m valley group site group site group

[100] D2d 0 A of C2 (3, 4, 5, 6) A1 + E + T2 A1 + B1 + E
A1 of C2v (1, 2) A1 + B2

±1 2B of C2 (3, 4, 5, 6) 2T1 + 2T2 2A2 + 2B2 + 2E
B1 + B2 of C2v (1, 2) 2E

[110] C2v 0 A1 of C2v (5, 6) A1 + E + T2 2A1

A of C1 (1, 2, 3, 4) A1 + A2 + B1 + B2

±1 B1 + B2 of C2v (5, 6) 2T1 + 2T2 2B1 + 2B2

2A of C1 (1, 2, 3, 4) 2A1 + 2A2 + 2B1 + 2B2
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Table 8.4. Same as Table 8.3 for germanium (after [125])

Stress IRs of the IRs of the Td IRs of the new
orientation m valley group site group site group

[111] C3v 0 A′ of Cs (2, 3, 4) A1 + T2 A1 + E
A1 of C3v (1) A1

±1 A′ + A” of Cs (2, 3, 4) E + T1 + T2 A1 + A2 + 2E
E of C3v (1) E

[110] C2v 0 A′ of Cs (2, 4) A1 + T2 A1 + B2

A′ of Cs (1, 3) A1 + B1

±1 A′ + A” of Cs (2, 4) E + T1 + T2 A1 + A2 + B1 + B2

A′ + A” of Cs (1, 3) A1 + A2 + B1 + B2

1s(A1)

np0

A1+E+T2

np±1

2T1+2T2

E // F E ⊥ F

F = 0
Site symmetry Td

F // [100]
Site symmetry D2d

1s(A1)

np±1 (+)
2A2+2B2+2E

np±1 (−)
    2E

np0 (+)
A1+B1+E

np0 (−)
A1+B2

Fig. 8.3. Energy levels of shallow donors in silicon (not to scale) showing the
allowed transitions between the 1s (A1) state and the stress-split sublevels of np0

and np±1 for F// [100]. In the high-stress limit, the stress dependence of the 1s (A1),
np0 (A1 + B2) and np± (2E) are the same so that the transitions between these states
are stress-independent (after [123]). Reproduced with permission from the Institute
of Physics

The selection rules for transitions between the 1s (A1) state and the stress-
split sublevels can be deduced from group theory when one knows the IRs un-
der which the components of the dipole moment (actually, x, y, and z) trans-
form. As an example, Fig. 8.3 shows the polarization features of the allowed
transitions from the 1s (A1) state for F// [100] in silicon. The splitting under
stress of the 1s (T2) donor level in silicon is the same as those of the np0 and
np±1 levels shown in this figure. For F// [100], the highest- and lowest-energy
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components of 1s (T2) have symmetries B2 and E, respectively, and when the
1s (B2) level is thermally populated, the energies of the 1s (B2) → np±1 (−)
transitions are stress-independent.

The polarization rules are deduced from the fact that the dipole moments
for np0 transitions associated with a given valley orientation are along the
valley principal axis while for np±1 transitions, they are in a plane perpen-
dicular to this axis. The two components of the np±1 lines are observed for
E⊥F while only the transition to the h–e component of the np0 lines is ob-
served for the same polarization. These symmetry-deduced polarization rules
are confirmed by experiment as seen from Fig. 8.4.

The ground state level of the Lii donor in silicon is 1s (T2), instead of
1s (A1) for the shallow substitutional donors (see Table 6.5). Under stress, the
1s (T2) level splits like the np0 and np± levels, and the transitions involving
this level are not shifted by stress. Shifted transitions are, however, observed
in the Lii spectrum, and they are due to one of the components of the stress-
split 1s (E) level at LHeT [68]. Piezospectroscopic results have been obtained
for the (Li,O) complexes A and D, and they indicate that these centres have
symmetry axes along [100], [010], and [001] directions [68].

It has been pointed out in Sect. 6.2.1 that the near resonance with lattice
phonons of the 2p0 line of Bi in silicon produced an anomalous broadening of
that line, shown in Fig. 6.3. The strength of this interaction can be changed by
a uniaxial stress which tunes the separation between the phonon frequency and
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Fig. 8.4. Effect of a uniaxial stress along the [100] axis of a Si:As sample with
n∼3 × 1015 cm−3 on its LHeT absorption spectrum. The propagation vector k of
the radiation is parallel to [011]. The dotted lines are the zero-stress positions (after
[123]). The estimated stress magnitude is 15 MPa. Reproduced with permission from
the Institute of Physics
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Fig. 8.5. Change with stress of the LHeT absorption profile of the 2p0 line of Bi in
silicon for F// < 100 >. The solid and dotted lines are for a stress of 29.6 MPa and
the dashed line for a stress of 4.7 MPa. For each polarization, only one component
is observed (Table 8.4). The zero stress position is indicated by an arrow (after [29])

the 2p0 components. The experimental results of [29] show that for sufficiently
high stresses, the FWHMs of the 2p0 (+) and 2p0 (−) components are reduced
as illustrated in Fig. 8.5. The profile of the low-stress component of Fig. 8.5
(dashed line) is rather symmetric and broad, with a FWHM of 0.85meV.
This is assumed to occur from near coincidence (at 59.1meV) between the
electronic transitions and the fTO(S1) phonon mode. Modelling of this kind
of interaction has been investigated by Harris and Prohofsky [56], and by
Rodriguez and Schultz [127], and a reasonable fit of the spectroscopic results
for the 2p0 line can be obtained. From a simple physical point of view, the
broadening of the electronic line can be explained by a drastic reduction of
the lifetime of its excited state through an efficient decay via the inter-valley
phonon. It is interesting to note that it is also possible to use stress to bring
together the 3p0 (−) or 2p±1 (−) components of the Bi spectrum and the
phonon mode, but then no conspicuous broadening is observed [29].

The selection and polarization rules for the np donor transitions from the
1s (A1) state in germanium for a stress along<111> are given in Fig. 8.6. Here,
due the different valley group symmetry and stress orientation, the selection
rules differ from those in silicon and one more component is observed for
E//F .

The stress splitting of the Sb donor lines in germanium has also been
studied in the high-stress limit (HSL) by Baker and Fisher [8]. In this limit, due
to thermalization and changes in the relative intensities, the transitions from
1s (A1) to np0(−) (and nf0(−)) of Fig. 8.6 are predominant. They are denoted
np(1)0 (−) (∞) in this reference and a high-resolution spectrum of Ge:Sb taken
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1s(A1)

np±1
E+T1+T2

np0
A1+T2

F = 0

F // [111]
Site symmetry C3v np±1 (+)

A1+A2+2E

np0 (+)
A1+E

np±1 (−)
   E

np0 (−)
A1

1s(A1)

Fig. 8.6. Energy levels of donors in germanium (not to scale) showing the allowed
transitions between the 1s (A1) state and the stress-split sublevels of np0 and np±1

for F// [111]. The dashed and full arrows are for E parallel and perpendicular to
F , respectively (after [125]). Copyright 1965 by the American Physical Society

Ge:Sb
E//F//<111>
51.55 MPa

Fig. 8.7. Effect of a uniaxial stress of 50.88 MPa parallel to the [111] axis on the
LHeT absorption spectrum between 4.3 and 10.5 meV of a Ge:Sb sample (spectral
resolution: 0.072 cm−1 or 9 μeV). The small lines denoted by greek letters, while
very probably linked to Sb, have not been further investigated. Reproduced from
[8]. Copyright 1996, with permission from Elsevier

in the HSL is shown in Fig. 8.7 (it can be compared with that of Fig. 6.9, taken
at zero stress). The value of the stress for this spectrum is such that the ratio
of the extrapolated np stress splitting into the valley-orbit splitting of Sb at
zero stress is 17.3 and this justifies the HSL condition.
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In the stress studies involving the (1sA1), 1s (T2)) doublet in germanium,
one considers a centre of gravity located between the singlet and triplet states,
separated from 1s (A1) by 3Δc and from 1s (T2) by Δc. In the HSL, the stress
shift coefficient of the 1s (A1) state with respect to the centre of gravity is
−ΞuTS44/3. This is precisely the same stress shift coefficient as the one of the
np (−) states with respect to the np zero-stress positions. Thus, the zero-field
positions of the np (−) lines can be obtained by adding 3Δc to the positions of
the np (−) (∞) lines. For the 2p0, 3p0, and 4p0 transitions, there is a very good
agreement between the values of Table 6.7 measured at zero field and those de-
duced from the high-stress spectrum (in the paper by Baker and Fisher [8], the
lines identified as 5p0, 6p0, 7p0, 8p0 and 9p0 correspond in fact, to 4f0, 5p0, 6p0,
6f0, and 6h0, respectively) using the Faulkner’s nomenclature of Table 5.5 for
the EM levels. This is an impressive result made possible only by piezoabsorp-
tion in the HSL as beyond the 4p0 line, the corresponding zero-field transitions
are too weak to be observed. Such measurements with other group-V donors
with larger valley-orbit splitting require stresses about one order of magnitude
larger to reach the HSL and the germanium matrix may become too fragile.

The above-described piezospectroscopic measurements have led to a bet-
ter understanding of the shallow donors. They have shown that the values of
the shear deformation potential Ξu of 8.8 and 16.4 eV for silicon and germa-
nium, respectively, determined spectroscopically at LHeT for electrons bound
to shallow donors [123] agree well with the values of 8.6 eV [92] obtained for
CB electrons by wavelength modulation methods under stress, and of 16.4 eV
at LNT obtained from the piezoresistance measurements [11]. Recently, the
RT measurement of the hydrostatic DP Ξd, which cannot be obtained from
the above-described piezospectroscopic measurement, and of Ξu, have been
reported in both silicon and germanium [36, 100]. These quantities were de-
termined from the change in the gate tunnelling currents in Si- and Ge-metal
oxide semiconductor field effect transistors (MOSFETs) under a uniaxial me-
chanical stress. For silicon and germanium, Ξd was found to be 1.0 ± 0.1
and −4.3 ± 0.3 eV, respectively, and Ξu to be 9.6 ± 1.0 and 16.5 ± 0.5 eV,
respectively.

Spectroscopic measurements on silicon and germanium samples through
optical surfaces, symmetrically abraded with slurries containing 15 μm Al2O3

or # 400 grit (22 μm average) SiC particles, have revealed the existence of
a uniaxial compressive stress perpendicular to the abraded optical surfaces
[45], and the magnitude of the stress is inversely proportional to the sample
thickness. For a 1mm-thick silicon monocrystalline sample where the <100>
axis is perpendicular to the optical surface, the uniaxial stress obtained after
abrasion with a 15 μm Al2O3 slurry is estimated to be 1MPa from the splitting
of the 2p±1 (P) line.

The response to stress of the deep chalogen-related donors in silicon shows
some differences due to the large separation of the deepest 1s state from the
other EM-like 1s states, and also to the introduction of degeneracy of the
chalcogen pairs, discussed in the following section.
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Isolated Chalcogen Donors in Silicon

The results presented here are adapted from a detailed investigation of the
stress splitting of some S- and Se-related donors in silicon [14]. At a difference
with the centres considered in the preceding section, the separation between
the 1s ground state and the EM-like 1s states of the deep donors precludes a
stress-induced interaction between these states. The experimentally-observed
shift rate with stress of a transition is the difference between the shift rates
of the excited (e) and ground (g) states, defined by the invariant operators
VA1 = 1√

3
(Vxx + Vyy + Vzz) which, for degenerate excited states, affect only

their centre of gravity. The transition stress parameter A1 is defined as:

A1 =
1√
3

(
<e|VA1

|e>−<g|VA1
|g>) .

It can be shown that for a non-EM ground state, the shift in energy relative
to the centre of gravity of the CB is proportional to the stress and is given
by A1 (S11 + 2S12) T for a compressive stress and this is the situation for the
1s (A1) state, whatever the orientation.

The 1s (E) and 1s (T2) states of an isolated neutral Ch atom in silicon
split linearly with stress into two components as indicated in Table 8.5.

The stress-dependence of the components of transitions from the ground
state to the higher excited states of S0 is shown in Fig. 8.8. One can note the
linear slope with stress, which differs from that of Fig. 8.2a. This is due to the
linear shift with stress of the ground state in the S0 spectrum. The positive
shift with stress of the ground state is evidenced by the negative slope of the
line positions for F// [111].

Similar results have been obtained for Se0. Figure 8.9 shows the stress
splitting of the 1s (T2) line of Se0 for different stress orientations. This line,
accompanied by the weaker spin triplet 1s

(
3T2

)
line, is shown at LHeT in

Fig. 6.15 in an unstressed silicon sample. It is interesting to see from Fig. 8.9

Table 8.5. Shift δE with respect to zero-stress positions of the 1s (T2) and 1s(E)
states of deep donors in silicon for compressive stresses along the [100] and [110]
axes (units of ΞuT (S11 − S12)/3). The components are labelled by the IRs of the
appropriate site symmetry group. When crossing, components of the same symmetry
may interact. This can occur with the 1s (A1) components of the 1s (T2) and 1s(E)
for F// [110] as the former is deeper than the latter (after [14])

Td F// [100] (D2d) δE F// [110] (C2v) δE

1s(E) 1s (B1) +1 1s (A1) +1/2
1s (A1) −1 1s (A2) −1/2

1s (T2) 1s(E) +1 1s (A1) +1
1s (B2) −2 1s (B1 + B2) −1/2
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e component of the 1s

(
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)
line located at 2146.4 cm−1 at zero stress. The spectral

range is 260.4-291.4 meV [14]. Copyright 1989 by the American Physical Society

that the low-energy component of 1s (T2) interacts with the h–e component
of the 1s

(
3T2

)
line and this anti-crossing (or avoided crossing) is attributed

to the s–o interaction. This interaction is too small for S0 and no anti-crossing
is observed.
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Figure 8.9 shows for F// [110], the anti-crossing of the h–e component of
1s (T2)

(
Se0
)

with the h–e component of 1s (E) as these components have the
same symmetry (see Table 8.5). This interaction allows one to extrapolate the
position of the 1s (E) component at zero stress to 2.1meV

(∼25 cm−1
)

above
the 1s (T2) line and to obtain a value of the position of this symmetry- and
parity-forbidden line in good agreement with the one deduced from the Fano
resonances [14].

The stress dependences of the transitions from the ground state to the
higher excited states of S+ and Se+ are similar to those shown in Fig. 8.8,
and they can be fitted with values of Ξu and A1 comparable to those obtained
for the neutral charge state. The shift under increasing stresses of lines cor-
responding to the higher excited states of Se+ in silicon can be appreciated
in the transmission spectra of Fig. 8.10, which are representative of the line
splitting of the higher excited states of donors in silicon. In this particular
case, it can be seen that the homogeneity of the stress field is good as the
widths of the components do not increase substantially with stress.

The 1s (T2) state of S+ and Se+ is split by spin-orbit interaction into
1sΓ7 and 1sΓ8 and the electronic IS of these components has been discussed
in Sect. 6.3.1.2. The splitting under stress of this doublet for S+ is shown in
Fig. 8.11 and it is in contrast with the linear dependences displayed in the
preceding figures. Here, the s–o interaction is combined with the stress effects
and it cannot be treated in the simple DPA. A discussion of the resultant
stress splitting of this doublet is given by Bergman et al. [14].

The net result derived from Fig. 8.11 is the splitting of the 1s (Γ8) level
into two components and a reduction of the amplitude of the splitting with
respect to the simple DPA, whose expected effects are shown as lighter dashed
lines in the figure. A quadratic ad hoc term is included in the numerical fit, but
it is attributed to a nonlinearity of the interactions rather than to quadratic
stress effects.

Chalcogen Donor Pairs in Silicon

Up to now, the centres considered in this chapter were isolated atoms with
cubic symmetry, but it has been seen in Chap. 6 that there exists many other
donor centres with non-cubic symmetry. These centres, with symmetries lower
than cubic, present an orientational degeneracy in addition to the electronic
degeneracies related to their atomic structure. The effect of a uniaxial stress
on their spectroscopic properties depends also on this additional degeneracy so
that it cannot be treated as a whole. The general piezospectroscopic properties
of non-cubic centres in cubic crystals have been discussed by Kaplyanskii [73].

Among the chalcogen-related centres in silicon, the chalcogen pairs (Ch2)
are well-characterized by electronic spectroscopy and ESR, and their atomic
and electronic structures are well-established. The ESR results have shown
that in silicon, they are oriented along a <111> crystal axis and their site
symmetry is, therefore, D2d when the two Ch atoms are the same and C3v
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when different. Piezospectroscopic measurements have been performed on S2

and Se2 in the neutral and singly-ionized charge states [14] and the most
salient features are presented here.

The effect of stress on the transitions from the deep ground state to EM
excited states can be seen as the superposition of a DP contribution similar
to the one for the cubic centres and of a ground-state contribution due to
orientational degeneracy, characterized by a transition stress parameter A2.
The combined shift and splitting of the ground state of a deep donor centre
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Table 8.6. Effect of a compressive stress on the ground state of deep centres with
site symmetries C3v or D3d, with an orientational degeneracy of 4 [14]

Stress direction Relative intensity Energy shift

[100] 4 A1 (S11 + 2S12) T
[110] 2 [A1 (S11 + 2S12) + 1/2A2S44] T

2 [A1 (S11 + 2S12) − 1/2A2S44] T

[111] 1 [A1 (S11 + 2S12) + A2S44] T
4 [A1 (S11 + 2S12) − 1/3A2S44] T

with orientational degeneracy (we insist on the fact that the effects of these
combined contributions are observed only if the ground state of the centre
is non-EM like) are given in Table 8.6. For silicon, the value of S11 + 2S12

deduced from Table 8.1 is 3.41 × 10−3GPa−1.
It must be borne in mind that the splitting of the ground state given in

Table 8.5 is some kind of built-in splitting due to the combination of stress
and defect anisotropy such that no thermalization effect is expected for the
deep ground states to which this effect applies.

There is practically no difference between the isolated chalcogen-donor and
chalcogen-pair spectra for a stress along [100] as the four orientations of the
pairs are equivalent with respect to that direction, but the existence of two
families of the pairs with different ground-state energies for F// [110] and
F// [111] produces for the np lines twice more split components than for the
isolated chalcogens with Td symmetry, as can be seen in Fig. 8.12 for S0

2.
Numerical fits to the 2p±1 splitting of the neutral pairs give for Ξu values

similar to those for isolated shallow and deep donors and for A1 and A2 values
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of 0.44 (0.55) and −1.5 (−1.5) eV for S0
2

(
Se0

2

)
, respectively. For F// [111],

the fit shows that the components with the positive slope are due to the pairs
parallel to the stress.

Symmetry-allowed transitions are observed between the 1s
(
A+

1

)
ground

state and the 1s (E−) and 1s
(
A−

1

)
states of the donor pairs (see Fig. 6.14). For

F// [100], the 1s (E−) line is expected to split into two components while the
1s
(
A−

1

)
line is merely shifted, and this allowed to establish the ordering of the

two levels ([87] and references therein). The results of [14] confirm the point
and they show some nonlinear effects due to interactions between sublevels.

The splitting under stress of the first lines of the S+
2 spectrum is qualita-

tively similar to that of S0
2, but the behaviour of the 2p0 zero-stress doublet

confirms that the zero-stress splitting of the Ch2 pair spectra (see Fig. 6.14
for the one of Se0

2) is due to the non-symmetric central cell potential due to
the atomic structure of the pair.

The DLTS measurement of the uniaxial-stress dependence of the electron
emission rates of the S0 and S+ ground states have allowed determination of
the shear DP Ξu associated with these centres, and values in the 10.7–11.6eV
range have been obtained for temperatures between 150 and 220K [99].

Oxygen Thermal Donors in Silicon

The electronic absorption of the O-related thermal double donors (TDDs)
in silicon has been discussed in Sect. 6.4.1.1. The absorption spectra under
stress of the first TDD0s (2p0 and 2p±1 lines) are rather puzzling at first sight
[137]. They are characterized by the absence of splitting of the lines for F//
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[100] and by a small splitting for F// [111]. For F// [110], the 2p0 lines show
no splitting and the 2p±1 lines give a triplet. This situation is depicted in
Fig. 8.13.

Splitting of the donor lines for F// [111] has been associated with orien-
tational degeneracy for the Ch donor pairs and the same origin is assumed
for the TDDs. The absence of splitting for F// [100] could be understood for
a centre with Td symmetry with a 1s (T2) ground state as this state presents
the same splitting as the np states. For donors in silicon, this situation is met
for Lii, but a 1s (E) state is close to this ground state so that the observed
splitting for Lii results from a combination of transitions from sublevels of
these two states [68]. An important point is that equal ground and excited
state splitting are preserved for symmetries lower than Td for a ground state
constructed from wave functions associated with a pair of CB valleys along
the same direction in k-space [135], and this fundamental assumption is made
to explain the piezospectroscopic data on TDDs.

Figure 8.14a shows a level diagram of the allowed transitions from a 1s (T2)
ground state to np states for F// [100]. It shows that for E//F , the only
transitions allowed are 1s (−) → 2p0 (−) and 1s (+) → 2p±1 (+).

The piezospectroscopic measurements of the TDD0s with polarized radi-
ation are particularly instructive. Spectra obtained at 20 and 65K for F//
[100] and E//F are compared in Fig. 8.15.
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The 65K spectrum shows no difference with the 20K spectrum for the
np0 lines, but a decrease in the intensity of the np±1 lines is observed. For
a spectrum corresponding to the energy level diagram of Fig. 8.14a, one
would expect the inverse because of the thermalization of the population
of 1s (−) into 1s (+) (in silicon, the EM 1s (T2) and np levels are split by
∼17 meV

(∼140 cm−1
)

for a stress of 196MPa parallel to [100]). However,
for orientationally degenerate donors, there are two families of TDDs with
respect to stress: with the conventions of Fig. 8.1 and Table 8.2, the force is
oriented along valleys 1 and 2 and the TDDs associated with these valleys2

correspond to level 1s (−) in Fig. 8.14b while those associated with valleys
3, 4, 5, and 6 correspond to level 1s (+). Thermalization is thus impossible
between 1s (−) and 1s (+), which correspond to physically distinct centres,
and this explains why the 1s (−) level does not depopulate when temperature
is raised. Inversely, 1s (+) comes nearer from the CB and starts depopulating.
More insight into the symmetry of the TDDs comes from the existence of a
small splitting of the lines for F// [111]: this obviously rules out a <100>
symmetry for the TDDs as in this case no splitting is expected for the stress
orientation.

If it is assumed that the TDDs are oriented preferentially along a <110>
axis, with a C2v site symmetry, the piezospectroscopic results can be explained
satisfactorily on the basis of the stress-induced line shifts and polarizations
calculated by Kaplyanskii [73], which are discussed in the next section. This
led to propose the C2v site symmetry for the TDDs in silicon [137]. In ex-
pression (8.15), the non-zero components of the piezospectroscopic tensor for
C2v centres, labelled as orthorhombic (or rhombic) I, are Axx (A2), Ayy (A2),
Azz (A1) and Axy = Ayx (A3). These orthorhombic I centres have a C2 sym-
metry axis in the <100> direction and the 1s → 2p0 transitions have their
transition dipole moment oriented along this axis for a 1s state constructed
from a pair of valleys along this axis, while the 1s → 2p±1 transitions have
their transition dipole moment oriented in a plane perpendicular to this axis.
In a cubic crystal, a C2v centre has a sixfold orientational degeneracy repre-
sented by the six diagonals of a cube (see Fig. 8.16a).

With the notations of this figure, for a stress along [110], the shifts ΔA,
ΔB, and ΔC obtained from Table 3 of [73] are (A1 +A2) /2, A2–A3, and
A2 +A3, respectively. When radiation propagates with k// [001], only subset
A contributes to the 2p0 lines while the three subsets contribute to the 2p±1

lines. From these results, it can also be inferred that A1 and A2 are close to
zero. The order of magnitude of A3 is 3.7meV GPa−1, the value measured for
TDD20.

Uniaxial stress measurements have also been performed on the TDDi+ and
they confirm the conclusions drawn from the results on the TDDi0 [134]. A
detailed presentation of the results on the TDDi+ is given in this reference. It
also provides an interpretation of the observed zero-stress splitting of the np±1

2 This does not mean that the TDDs are oriented along the <100> axes.
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lines of the TDDi+ spectra into two components, relabelled np±1
l and np±1

h

in Table 6.25, and visible in Figs. 6.24 and 6.25. It is based on the following: to
explain the respective splitting of the 2p0 and 2p±1 lines in samples stressed
along a [110] direction, it has been stated that the transition dipole moments
for the np±1 lines associated with the C2v donor centres B and C in Fig. 8.16b
lie in a (001) plane perpendicular to those for the np0 lines of these donors,
and parallel to the [001] axis (C2 axis). Actually, for a given C2v centre in the
(001) plane (consider centre C along [110]), the linear combinations of np±1

orbitals rearrange to give np±1(πp contributions3 along the main [110] axis
of the centre and np±1 (π′) contributions along the perpendicular [11̄0] axis.
For an ideal point-like centre, these two np±1 levels are equivalent, but the
directional stresses induced by the anisotropy of the TDDs lift this degeneracy.
This effect repeats for the other orientations and the net result is a splitting
of the np±1 lines into np±1 (π) and np±1 (π′) components, which is the origin
of the effect observed at zero stress. The transition moment of the 2p0 lines
along the [001] axis has no spatial degeneracy and no zero-stress splitting of
these lines is, therefore, observed.

The splitting under stress of the 2p±1
l and 2p±1

h components presents an
interesting feature when observed for σ// [111] and E//σ: starting from zero
stress, these components are observed to merge with increasing stresses into
an apparent single line for some value of the stress, and then to diverge above
this value [134,136]. This can be explained in the following manner: each set of
np±1 (π) and np±1 (π′) level is orientationally degenerate and for a stress along
[111], each level (and therefore each line) splits into a doublet corresponding
to the two different TDD subsets. One component of each subset shifts to

3 The notation π is chosen by analogy with the π orbitals in molecular spectroscopy.
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lower energy and the other to higher energy so that two components of the
two subsets must invariably cross for some stress value. It turns out that for
E//σ, the selection rules are such that only transitions from the two crossing
components are allowed. As a consequence, for that polarization, the np±1

l

and np±1
h merge with increasing stress into a single line and then diverge for

larger stresses. The value of the crossing point depends of the TDD considered
as the splitting between np±1

� and np±1
h is TDD-dependent (see Table 6.25).

For E⊥σ, the intensities of the crossing components are smaller than those of
the outer components of each set. As the low-energy outer component shifts
to lower energies and the h–e outer component to higher energies, divergence
in energy with stress of the 2p±1 doublet is observed at the onset of stress
application for that polarization [134].

We have mentioned in Chap. 6 that the TDDi+ were paramagnetic. As
there are several different TDD species, one would expect ESR spectra re-
lated to these different centres, but the Si-NL8 ESR spectrum of the TDDi+

displayed in Fig. 8.17(a) shows only two main lines. The observation of only
two ESR lines is attributed to the small anisotropy of the g-factor of these
centres with respect to the free electron g-factor, which reduces the magnetic
field expansion of the ESR signal. Figure 8.17b shows the angular dependence
of this ESR spectrum for a rotation of the magnetic field in a (110) plane
[105]. This angular dependence indicates that the TDD+s must be oriented
along <110> axes, corresponding to six different directions and that, as a
consequence, they must have a C2v symmetry.

ESR measurements of the Si-NL8 spectrum have been made under uniax-
ial stress and they show population effects consistent with the orientational
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Fig. 8.17. (a) ESR absorption of the NL8 spectrum of the TDD+s in silicon at
30 K in a p-type CZ silicon sample with [B] > 1015 cm−3 annealed for 6 h at 460◦C
(ordinates of the ESR signal in arbitrary units). (b) Angular dependence of the
TDD+s ESR spectrum for a rotation of the magnetic field in a [110] plane. The
integers denote the six C2v-oriented donors (after [105]). Copyright 1989 by the
American Physical Society
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degeneracy of a C2v centre, and they have indeed proved that the centres
responsible for the NL8 spectrum were the TDD+s [95].

DLTS measurements on Schottky structures containing TDD+s show an
electron emission peak vs temperature corresponding to an ionization energy
of 0.15 eV, this corresponds to the emission from the first TDDi+ [80], as can
be checked from a comparison with Table 6.23. The results of DLTS mea-
surements on the TDD+s under stress are consistent with the IR absorption
measurement ([79] and references therein). From the DLTS principles, elec-
tronic reorientation between different orientations of the centres can occur
through the CB, which is not possible directly in the absorption measure-
ments. This allows determination of the ground state splitting, and a value of
the shear DP Ξu of ∼9 eV is obtained, not far from 8.8 eV derived from the
piezospectroscopic measurements [123].

In the above-described experiments, a uniaxial stress was used to change
the electronic energy levels, but equipartition of the TDD concentrations
among the different configurations was maintained. It is possible to modify
this equipartition by maintaining the CZ silicon samples under stress during
the TDD formation treatment and cooling it under stress to RT. In this case,
one expects the TDDs to grow in configurations, minimizing their formation
energies with respect to stress, producing a sample with TDD populations
depending on the stress orientation with respect to TDD orientations. This
has been performed for stresses applied along the [001] and [110] directions
[146]. The result is shown for a stress along [001] in Fig. 8.18.

For an aligning stress along [001] at 460◦C, the TDDi are formed prefer-
entially in the (011) plane. The dipole moment for the 2p0 line of the TDDi
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Fig. 8.18. TDDi+ absorption at LHeT in a CZ silicon sample annealed 110 min at
460◦C under an aligning stress of 600 MPa along [001]. The C2 axes of the different
orientations are indicated. The spectral range is 136.4-86.8 meV. See text. Reprinted
with permission from [146]. (Copyright 1987, American Institute of Physics)
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formed in this plane are along the valleys parallel to the [100] and [010] axes.
Thus, for E//[001], there will be practically no contribution of 2p0 in the
spectrum, but the contribution of the np±1 lines will be maximum. The in-
verse occurs for E// [100], but as the np±1 lines are proportionally more in-
tense than the 2p0 lines, their intensities are reduced, but they remain clearly
visible.

8.2.1.2 EM Acceptors

The EM acceptor levels are calculated from the VB parameters and, by anal-
ogy with the situation for EM donors, we consider first the splitting of the VB
under a uniaxial stress. A stress along a <100> or <111> direction reduces
the point group symmetry of the diamond structure to D4h or D3d, respec-
tively. In the linear regime, the strain-induced part H ′ of the VB Hamiltonian
corresponding to (8.1) can be written as [57]:

H ′ = Dd

∑

i

εii + 2Du

∑

i

εii

(
Ii − 1 /3 I2

)
+ 4D′

u

∑

i<j

εij {IiIj}, (8.12)

where I and Ii are the angular momentum matrices, Dd is the VB isotropic
deformation potential (DP), and Du and D′

u the uniaxial DPs, which are
positive quantities defined by Kleiner and Roth [82] considering electrons. Bir
et al. [16], and references therein, considering holes in the VB, have used an
isotropic DP a equal to Dd and uniaxial DPs b and d, equal to − 2

3Du and
− 2√

3
D′

u, respectively.4 The a, b and d DPs are the only ones used now.
Under a stress of intensity T , defined as negative for compression, the

Γ8
+ (J = 3/2) VB of silicon or germanium, taken as the energy origin, splits

into an upper VB (mJ = ±1/2) corresponding to the absolute VB maximum
and a lower VB (mJ = ±3/2). For a stress along [100], the Bloch functions
of the upper (mJ = ±1/2) and lower (mJ = ±3/2) VBs transform as the Γ6

+

and Γ7
+ IRs of the D4h group, and the energies E

(
Γ7

+
)

and E
(
Γ6

+
)

in the
small stress regime are given by:

E±1/2

(
Γ+

6

)
=

2
3
Du (S11 − S12)T = −b (S11 − S12)T = −E±3/2

(
Γ+

7

)
.

Similarly, for a stress along [111], the symmetry is reduced to D3d, and the
functions of the upper and lower VBs transform as the Γ4

+ and Γ5
+ + Γ6

+

IRs of the D3d group, respectively. The energies E
(
Γ4

+
)

and E
(
Γ5

+ + Γ6
+
)

are then given by:

E±1/2

(
Γ+

4

)
=

1
3
D′

uS44T = − 1
2
√

3
d = −E±3/2

(
Γ5

+ + Γ6
+
)
,

4 The VB deformation potentials a, b, and d are defined in p. 311 of the book by
Bir and Pikus [17]. The correspondence between the two notations is given in
note 35 of [59].
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where the Sij are the components of the elastic compliance tensor. The ab-
solute maximum of the VB corresponds to m = ±1/2 and the values of the
splitting δE3/2−1/2 between the two states are given by:

δE1/2−3/2[100] = 2|b| (S11 − S12)T = Δ100 (8.13)

δE1/2−3/2 [111] =
1√
3
|d|S44T = Δ111. (8.14)

The expression for the splitting Δ110 for a stress along <110> is more com-
plicated (see [58]) and it is not considered here. A relatively simple relation
can, however, be derived among Δ100, Δ110, and Δ111, namely:

4 (Δ110)
2 = (Δ100)

2 + 3 (Δ111)
2

and it shows that if any two splitting among Δ100, Δ110, and Δ111 are equal,
then, the three are. This situation is referred to as stress isotropy [32]. The
hydrostatic DP a produces a uniform shift of the levels, independent of the
stress orientation, equal to a (S11 + 2S12) T , denoted Δ000.

Under large strains, the two bands associated with the mJ = ±1/2 and
±3/2 states decouple along the stress direction. Their separation is always
given by (8.13) or (8.14) but the constant energy surfaces for the upper VB
(mJ = ±1/2) become prolate ellipsoids. Quantitatively, for germanium, the
VB splitting Δ111 (T ) is 3.73 × 10−2|T | (MPa) [59]. The stress-dependent ef-
fective masses m// along the stress direction is smaller than m⊥ perpendicular
to the stress direction. For shallow acceptors, this high-stress limit bears re-
semblance with those for shallow donors, but with a value of the parameter
γ = m⊥/m// larger than unity, and this facilitates the calculation of their
energy levels as the Hamiltonian is similar to the one given by (5.5) [25].

Broeckx and Vennik [24] have solved variationally for germanium the
acceptor Hamiltonian containing the stress interaction term (8.12) for stresses
parallel to the <100> and <111> axes in the 1–1000MPa range. The results
show that throughout the low stress region, up to ∼200MPa in germanium,
the acceptor ground state splitting is linear, given by (8.13) and (8.14), but the
energy levels show an upward quadratic shift. With increasing stress, the en-
ergies no longer follow a simple power law with stress, due to interactions
with the even-parity excited states. The energy splitting of the first odd-
parity states remains linear at very low stress, but quadratic shifts are also
present. The intermediate stress region is dominated by interactions between
states with the same symmetry, leading to a complicated pattern. In the high-
stress region, above 500MPa, the energy spectrum simplifies again, because
of decoupling of the VB in the stress direction mentioned in the preceding
paragraph, and the energies of the levels with respect to the VB become
stress-independent. The situation for a stress parallel to <100> is shown in
Fig. 8.19. The labellings on the left-hand side correspond to the excited states
of lines G, D, C, B, A4, A3, A2, and A1 of the group-III acceptors in germa-
nium in the order of decreasing energy.
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Fig. 8.19. Stress dependence of the computed binding energies for the first odd-
parity excited acceptor states in germanium for F//<100>. The energy origin is
the top of the Γ6

+ (mJ = ±1/2) VB (D4h symmetry). The labelling on the LHS
corresponds to the attributions of zero-stress acceptor lines of germanium given in
Table 7.9. The one on the RHS corresponds to the high-stress limit (after [24]).
Copyright 1987 by the American Physical Society

Energies and wave functions of shallow acceptor states in silicon and ger-
manium for stresses along the <100> and <111> axes have also been calcu-
lated by Buczko [27] using the full stress-dependent Hamiltonian up to the
high-stress limit. The results of these calculations will be discussed in com-
parison with the experimental results.

The absorption lines of the shallow acceptor spectra in silicon and in ger-
manium have been well-identified (see Tables 7.2 and 7.9) and a qualitative
understanding of their splitting under stress can be derived from their symme-
try. For uniaxial stresses along <100>,<110> and <111> axes, the symmetry
of an acceptor on a Td site is lowered to D2d, C2v, and C3v, respectively. The
zero-stress levels of the acceptors associated with the Γ8

+ VB belong to three
IRs of the double group of Td, namely Γ8, Γ7, and Γ6. Under stresses along
<100>, <110> or <110> directions, the Γ8 levels split into a doublet and
there is no splitting of the Γ7 and Γ6 levels. This situation, which also prevails
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Fig. 8.20. Allowed transitions from a Γ8 acceptor ground state to Γ8, Γ7, and Γ6 ex-
cited states of the double group T̄d for compressive forces along <111>, and <100>.
The IRs of the double groups are indicated next to the levels. The superscripts for
the even- and odd-parity states have been omitted. The dashed and full arrows are
for transitions with E//F and E⊥F , respectively [115]. The labels of some of the
transitions for F// < 111 > are the same as those of components of the spectrum
of boron in silicon in Fig. 8.21. Copyright 1967 by the American Physical Society

for acceptors in diamond, is represented in Fig. 8.20 for F // <100> and F //
<111>. The ordering of the Γ8 ground state sublevels shown in this figure has
been deduced from the piezospectroscopic measurements of [115] on different
group-III acceptors in silicon. Two orderings are given for sublevels of the Γ8

excited states. These reversed orderings are in agreement with the polariza-
tion properties of the split components of lines 1 and 2 for F // <111> and
the transitions are labelled according to the components of these two lines,
shown in Fig. 8.21. A qualitative comparison with the experimental spectrum
is no longer valid for F // <100> because the excited state of line 1 shows
no detectable splitting for the group-III acceptors in silicon for this specific
stress orientation [115].

The energies of the sublevels of a Γ8 acceptor level with Td symmetry split
by stresses along <100> and <111> are given in Table 8.7.
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Table 8.7. Energies and symmetries of the stress-split sublevels of a Γ8 level of an
acceptor with Td symmetry in a group-IV semiconductor (after [32])

F parallel to Sublevels symmetry Energy J

<100> Γ6 (D2d) Δ000 + b (S11 − S12)T ±3/2
Γ7 (D2d) Δ000 − b (S11 − S12)T ±1/2

<111> Γ5 + Γ6 (C3v) Δ000 +
(
d/2

√
3
)
S44T ±3/2

Γ4 (C3v) Δ000 − (d/2
√

3
)
S44T ±1/2

There is a distinct set of DPs a, b, and d for each Γ8 level, and for each
Γ6 and Γ7 levels, there is one isotropic DP a.

Figure 8.21 shows a composite truncated spectrum of boron in a silicon
sample in which a stress along <111> is produced by differential contrac-
tion between the sample and the copper jig. Because of the relatively low
resolution used in this study, only lines 4 and 4A/6 were resolved and line
4B/5 was not considered (it was in 1967), but this figure gives none the less a
very good global idea of the stress splitting of acceptors at low stress in silicon.
A comparison can be made with the zero stress p3/2 spectrum of Fig. 7.1.
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The stress-split components are well resolved and this splitting can be
interpreted from symmetry considerations considering that the ground state
of the p3/2 and p1/2 spectra is a Γ8 state and that the odd-parity excited states
have Γ8, Γ7, and Γ6 symmetries. This figure shows that if the amplitudes of the
splitting of lines 1 and 2 are comparable, the polarization properties of their
components are different, due to a reverse ordering of the split levels. This is
due to the fact that the 1Γ8 and 2Γ8 excited states of the transitions giving
lines 1 and 2 correspond to different nLJ configurations (2P3/2 and 2P5/2).

The interpretation of the acceptor spectra in silicon under uniaxial stress
has considered the splitting of lines 1 and 2 and of the 2p′ lines of the B,
Al, and In acceptors. It is based on the assumption that the splitting of the
1Γ8 acceptor ground state and excited states can be fitted into expressions
like (8.13) or (8.14) for the Γ8

+ VB, but with values of the DPs b and d
depending on the Γ8 state considered. These DPs are denoted (b0, d0) for the
1Γ8

+ ground state and (b1, d1) and (b2, d2) for the 1Γ8
− and 2Γ8

− states,
respectively.

The stress dependence of the splitting of the Γ+
8 ground state is conve-

niently measured from the splitting observed for the 2p′ line, attributed to
this state. The splitting displayed in Fig. 8.22 for 2p′(B) for three stress ori-
entations show that within experimental error, the ground-state splitting is
independent of the stress direction.

A similar stress isotropy of the ground-state splitting is also observed for
the other acceptors, but with different values of the ground state DPs b0
and d0.

The DPs bi and di for the 1Γ8
+ ground state and for the 1Γ−

8 and 2Γ−
8

excited states pertaining to lines 1 and 2 were determined for the B, Al, and In
acceptors in silicon by [32] for stresses up to 140MPa along <100>, <110>,
and <111>. Such stresses allowed the study of the anti-crossing behaviour
of components of different lines with the same symmetry. The results of the
detailed piezospectroscopic measurements on B in silicon performed for lower
values of the stress (up to 40MPa) have also been reported by Lewis et al.
[97]. They provide values of the DPs bi and di for the 1Γ+

8 ground state and
several excited states. In Table 8.8 are presented experimental values of the
uniaxial DPs bi and di of the first acceptor levels in silicon, where they are
compared with calculated values.

The values of b0 and d0 (−1.42 and −3.7 eV, respectively) for B obtained
from ESR under a small uniaxial stress [110] are slightly smaller5 than those
in Table 8.8. A determination of the DPs b and d of the Γ8

+ VB of silicon
from the spectroscopic values of b0 and d0 of 1Γ8

+(B) using correction factors
calculated [16,138] gives ∼− 2.0 and −4.7 eV for b and d, respectively. There
is a good agreement between the values obtained by other methods and by
calculation (see Table V of the paper by Chandrasekhar et al. [32]).

5 In this reference, the ground state DPs are denoted b′ and d′.
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Table 8.8. Uniaxial deformation potential constants (eV) of acceptor ground and
excited states in silicon deduced from piezospectroscopic measurements compared
with the calculated ones. The corresponding lines of the spectrum are indicated in
parentheses

1Γ8
+ (GS) 1Γ8

−(1) 2Γ8
−(2) 3Γ8

−(3) 5Γ8
−(7)

b0 d0 b1 d1 b2 d2 b3 d3 b7 d7

B a −1.61 −4.50 0.20 −2.31 1.61 2.64
b −1.46 −3.91 −0.055 −1.76 1.53 1.36 0.03 −2.1 0.01 −2.1

Al a −1.43 −3.84 0.10 −3.11 1.43 2.56
In a −0.98 −2.68 ∼0 −3.22 1.76 2.54

c −1.39 −4.17 −0.025 −1.84 1.09 2.04 0 −1.70 0 −1.65

a [32], b [97], c [27], calculated
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If the isotropic coefficients ai cannot be obtained separately from the
above-described piezospectroscopic measurements, the differences ai − a0 can
be. For boron, these differences are –0.41, 0.86, −2.17, and −1.0 eV for lines
1, 2, 3, and 7, respectively [97].

At a difference with line 2p′, the stress splitting observed for lines 1 and
2 is a combination of the ground and excited state splitting. Anti-crossing
behaviour between components of different zero-stress lines can be observed
when they have the same symmetry. This is the case for component 1.4 of
line 1 and component 2.1 of line 2 of B in silicon (see Fig. 7 of the paper by
Chandrasekhar et al. [32]).

In the p3/2 Ga spectrum of Fig. 7.3, an anomalous broadening of line 2(Ga)
is observed, together with a rather sharp, but weak X feature near from the
energy of the O(Γ) phonon in silicon. This feature is attributed to a splitting of
line 2 due to the interaction with the O(Γ) phonon. This resonant interaction
has been further studied under uniaxial stress by Chandrasekhar et al. [34].
The X feature is seen to be split by stress and its relative sharpness at zero
stress is attributed to its interaction with phonons close to the q = 0 Γ point
while line 2 interacts with a larger phonon distribution.

There are several reports on the piezospectroscopy of group III acceptors
and on Zn− in germanium in the low-stress limit, aimed at confirming the
symmetry of the excited states and in determining the DPs ([123], and refer-
ences therein, [143]). We pick here in the study by Vickers et al. an interesting
comparison shown in Fig. 8.23 between the splitting of the D and C lines of
gallium in germanium. The splitting of the D line in four components is con-
sistent with the 2Γ8

− excited state of this line, which displays under stress an
ordering of the sublevels reversed with respect to the one of the 1Γ8

+ ground
state. These orderings are the same as those shown schematically in Fig. 8.20
for line 2. The splitting of line C is much more complex, showing ten compo-
nents which can be attributed to a zero-stress 3Γ8

−+3Γ8
++1Γ7

− combination
of excited states. The deformation potential b0 of the 1Γ8

+ ground state of
Ga in germanium derived from this measurement is −1.2 eV and it is sig-
nificantly smaller than the value of b (−2.2 eV) measured for the Γ8

+ VB
of germanium by Hensel and Suzuki [59].

The relative intensities of the stress-induced components have been ob-
tained by calculating the matrix elements of the dipole moment operator for
the different components of the multiplets. This has been performed for the
three categories of zero stress transitions and for the stress-induced compo-
nents of the Γ8 → Γ8 transitions, the intensities depend on parameters defined
in terms of ratios of the magnitudes of matrix elements appropriate to the dif-
ferent unperturbed multiplets ([123], and references therein).

The results of PTIS experiments on high-purity p-type silicon under
stresses up to 550MPa have been described by [38]. Lines reported between
258 and 350 cm−1 (32 and 43.4meV) for a stress of 550MPa along the <111>
axis have been attributed to the different donor-like transitions with an
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effective-mass anisotropy factor γ of 4.9 due to the decoupling of the VB,
and a qualitative agreement with a crude EM calculation is obtained.

Piezospectroscopic results of residual B and Al in germanium for stresses
between ∼300 and 640MPa along the <100> and <111> axes have been
reported by Kazanskii et al. [77] using PTIS. They were able to determine
directly the shift with stress T of the ionization energies Ei of these acceptors
at 2K (see Fig. 8.24).

This shift represents the separation between the highest energy component
of the ground-state doublet and the mJ = ±1/2 VB, and it is found to decrease
with stress, and is faster for stress along <100> than along <111>. For large
stresses, Ei can be expanded in inverse power of the stress or strain amplitude
[54]. Its value Ei∞ for very large stresses, obtained from a best fit of the
experimental data, is 6.4meV for Al compared to the zero-stress value of
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11.1meV, and it is very close to the value measured6 for T = 640 MPa for F //
<100>. For such stresses, the discrete acceptor spectrum simplifies because
of the VB decoupling, and under the experimental conditions, only three lines
denoted L1, L2, and L3 in order of decreasing energy are observed for the
highest stress (Fig. 8.25).

From a comparison with their calculated values of the acceptor levels in
germanium in the high-stress limit, lines L1, L2, and L3 have been attributed
to the 3p0, 2p0, and 2p± donor-like transition, respectively, by Broeckx and
Vennik [24]. The energies at 640MPa are close to those calculated by these
authors and by Buczko [27]. As for Ei, these transitions have been assumed
to follow with stress an inverse power law and their energies become stress-
independent at high stress. On the one hand, this is in agreement with the
near independence from the stress of the calculated energies of the odd-parity
energy levels at high stress, displayed in Fig. 8.19, and on the other hand,
with the same independence determined experimentally for the ground state
energy and reported above [77].

8.2.1.3 Stress-Induced Inhomogeneous Broadening

A distribution of stresses in a crystal sample produces random splitting of the
electronic levels and the net result is, to the first order, an inhomogeneous
broadening of the electronic lines.
6 The values of Ei of Kazanskii et al.’s paper are measured at half height of the

photoresponse signal.
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Distribution of stresses is found in the immediate vicinity of dislocations
in semiconductors and it is the origin of the so-called dislocation broadening.
This effect was recognized and discussed in conjunction with the conditions for
the observation of ESR spectra in silicon [17,84]. An example of this effect on
an absorption line is shown in Fig. 8.26, displaying the profiles at LHeT of the
G(Al) line in germanium samples cut in two different regions of a Ge:Al ingot.

The profile of the line in the more dislocated sample is observed to
be broadened. There are also additional splitting of the line (∼0.054 and
0.093 cm−1) (∼6.7 and 12 μeV). This doublet splitting can be due to the ef-
fect of inhomogeneous stress induced by dislocations [142].
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Another source7 of random stress in semiconductors is the presence of
FAs with atomic radii significantly smaller or larger than the one(s) of the
atom(s) of the crystal. When these atoms are electrically inert, an increase
of the FWHMs of the lines of shallow donor or acceptor spectra can be at-
tributed to this kind of inhomogeneous stress broadening. This effect has been
reported for the spectra of phosphorus in silicon doped with Sn, where an in-
crease of the FWHM of 2p± 1(P) from ∼0.3 cm−1 in silicon without Sn to
∼2 cm−1 in samples with [Sn] = 1.7 × 1019 cm−3 was measured [106]. In ger-
manium co-doped with Ba (this element is electrically inert in germanium
[51], and its atomic radius is 215pm compared to 125pm for Ge), a splitting
of ∼0.06 meV

(
0.5 cm−1

)
of the D(Ga), C(Ga), and B(Ga) lines was reported

and attributed to the effect of Ba doping [6]. Such a splitting is similar to the
above-reported one for G(Al), while larger, and it has been discussed in terms
of inhomogeneous stress effect.

8.2.2 Uniaxial Stress and Orientational Degeneracy

The splitting under stress of non-degenerate electronic and vibrational tran-
sitions of impurity centres depend almost exclusively on the symmetry of
these centres through their orientational degeneracy, already defined as the

7 It must also be noted that a stress distribution can also be generated at low
temperature in crystal samples tightly fixed to a metal sample holder in vacuo in
order to ensure a good thermal contact.
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Fig. 8.27. (a): Polyhedra having the symmetries of the different non-cubic centres in
a cubic crystal. (b): Dipole oscillators of the centres. (c): Corresponding piezospec-
troscopic tensors. C′

2 and C”2 also indicate axes perpendicular to the symmetry
planes σ′

v and σv (after [74]). The type of centres are those of Table 8.9. Reproduced
with permission from EDP Sciences

number of distinct equivalent orientations that a centre can take in a crys-
tal. It depends on the symmetries of the centre and of the crystal in which
it is embedded. Further, it is necessary to classify the possible symmetries
of centres in crystals. This has been done for cubic crystals by Kaplyanskii
[73] to study their stress splitting, but it can be extended to other kinds of
perturbations [74].

In cubic crystals, one can distinguish six kinds of centres whose symmetries
are those of the polyhedra shown in Fig. 8.27. In this figure are also indicated
the components Aij of the piezospectroscopic tensor defined in (8.15).

In Table 8.9, these polyhedra are defined by their edges a1, a2, and a3

(along the z [001] axis) and the angles α, β, and γ between these edges (angle
γ taken as the one between a1 and a2), and the triclinic centres have been
added.

More generally, in a diamond-type crystal, the orientational degeneracy R
of a centre whose symmetry corresponds to a subgroup of order g of the full
cubic group Oh is R = G/g, where G is the order (48) of Oh. This orienta-
tional degeneracy is shared by the electronic and vibrational lines associated
with the centre, in addition to their possible intrinsic degeneracies. Under
non-isotropic perturbations, such as oriented stresses and magnetic or electric
fields, orientational degeneracy can be partially or totally lifted by defining
sub-families of centres with the same orientational degeneracy Ri with respect
to perturbation and a line splitting is observed. Similar orientational degen-
eracies also occur in non-cubic crystals. For a few centres with non-cubic
symmetries there can exist, however, high-symmetry orientations along which
stress has no effect on the initial orientational degeneracy.
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Table 8.9. Main symmetry characteristics of the non-cubic centres in cubic crystals.
The notations of Fig. 8.27 are indicated first for the centre type. Columns 2 and 3
refer to the polyhedra of Fig. 8.27. Possible point-group symmetries for the related
centres are given in the last column

Restrictions on the
lengths of the edges

Type of centre and angles Symmetry axes Point groups

Tetragonal a1 = a2 	= a3 C4 along [001] D4h, D4, C4v, D2d,
α = β = γ = 90◦ C4h, C4, S4

Trigonal a1 = a2 = a3 C3 along [111] D3d, D3, C3v,
α = β = γ 	=
90◦ < 120◦

C3i, C3

Rhombic I a1 	= a2 	= a3 C2 along [110] D2h, D2, C2v

α = β = γ = 90◦ C′
2 along [001]

C′′
2 along [11̄0]

Rhombic II a1 	= a2 	= a3 C2, C ′
2, C′′

2 along D2h, D2, C2v

α = β = γ = 90◦ <100> directions
Monoclinic II a1 	= a2 	= a3 C2 or a normal to C2h, C1h, Cs

α = β = 90◦ 	= γ σv along [001]
Monoclinic I a1 	= a2 	= a3 C2 or a normal to C2h, C1h, Cs

α = β = 90◦ 	= γ σv along [110]
Triclinic No restriction C1

Centres with different symmetries are characterized by a piezospectro-
scopic tensor A whose components are determined by symmetry considera-
tions [73]. The shifts Δ with stress of a transition of a centre referenced in an
orthogonal system is:

Δ = Axxσxx +Ayyσyy +Azzσzz + 2(Axyσxy +Ayzσyz +Azxσzx), (8.15)

where Aij are the components of the piezospectroscopic tensor, which depend
on the orientational degeneracy of the centre in the crystal. The components
σij of the stress tensor are defined by:

σij = ninjT, (8.16)

where ni and nj are the direction cosines of the stress in the reference frame
and T is the magnitude of the compressional stress. The values of Δ for the
different orientations of non-cubic centres are given in Table 3 of Kaplyanskii’s
paper [73]. The shift of the centre of gravity of the split components is inde-
pendent of the stress direction and is equal to one third of the shift for a
hydrostatic stress of the same magnitude. The stress splitting of doubly de-
generate states of centres with tetragonal and trigonal symmetry has been
treated by Hughes and Runciman [63].
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The number of independent components Aij in expression (8.15) depends
on the symmetry of the centre and the values of these components on the
interaction of the centre with the crystal.

The centres with trigonal and rhombic I crystallographic symmetries are
considered in detail. A trigonal centre has a C3 symmetry axis along a <111>
direction and the piezospectroscopic tensor Atrig has two independent compo-
nents A1 and A2. A rhombic I centre has one C2 axis along a <110> direction
and the piezospectroscopic tensor Arhomb has three independent components
A1, A2 and A3. (see Fig. 8.27).

The reference frames chosen for the definition of the direction cosines nj

of stress depend on the sub-family of the centres considered. The general
piezospectroscopic parameters for the trigonal and orthorhombic I centres are
given in Tables 8.10 and 8.11.

The shift of the centre of gravity Δcg of the split components is indepen-
dent of the orientation of stress and is given by:

Δcg =
1
R

∑

i=1

RiΔi,

where the sum is taken on the sub-families for one of the stress orientations.
It can be checked that for the trigonal and orthorhombic I symmetries, Δcg

is A1 and (A1 + 2A2)/3, respectively [73]. It corresponds to the response of
the line to a hydrostatic pressure.

If spectroscopy under uniaxial stress is a method which allows determi-
nation of the orientational degeneracy of many centres, this property (and
the symmetry of the centres) can also be determined for paramagnetic ones

Table 8.10. Piezospectroscopic characteristic of trigonal centres in cubic crystals.
Ri denotes the residual orientational degeneracies under stress. The direction cosines
nx, ny, and nz of the stress in the reference frames associated with each sub-family
are those given in [73] and the shift Δi per unit stress is calculated using expression
(8.15)

Intensities for
Stress E//σ : E⊥σ
direction Ri nx, ny, nz Δi π dipoles σ dipoles

[100] 4 1, 0, 0 A1 1:1 1:1

[111] 1 1/√3, 1/√3, 1/√3 A1 + 2A2 3:0 0:3
3 1/√3, −1/√3, 1/√3 A1 − A2/3 1:4 8:5

Intensities for
E// [110]:[001]:[11̄0]

[110] 2 1/√2, 1/√2, 0 A1 + A2 2:1:0 1:2:3
2 1/√2, −1/√2, 0 A1 − A2 0:1:2 3:2:1
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Table 8.11. Same as Table 8.8 for rhombic I centres (from [73])

Intensities for
Stress E//σ : E⊥σ
direction Ri nx, ny, nz Δi π dipoles σ dipoles

[100] 4 1, 0, 0 A2 2:1 0:1
2 0, 0, 1 A1 0:1 1:0

[111] 3 1/√3, 1/√3, 1/√3 (A1 + 2A2 + 2A3)/3 4:1 1:1
3 1/√3, −1/√3, 1/√3 (A1 + 2A2 − 2A3)/3 0:3 1:1

Intensities for
E// [110]:[001]:[11̄0]

[110] 1 1/√2, 1/√2, 0 A2 + A3 1:0:0 0:1:0
4 1/√2, 0, 1/√2 (A1 + A2)/2 1:2:1 2:0:2
1 1/√2, −1/√2, 0 A2 − A3 0:0:1 0:1:0

from the number of components of their ESR spectrum for high-symmetry
orientations of the magnetic field: for a monoclinic I centre with C1h symme-
try and spin 1/2, in a diamond-type crystal, the maximum number of ESR
components for B in a {110} plane is 7, but it reduces to 2, 3, and 4 for
B //<100>, <111>, and <110>, respectively (see also Fig. 8.17).

8.3 Effect of Magnetic Fields

The perturbation produced by a magnetic field on the electronic spectra in
atomic and solid-state spectroscopies is known as the Zeeman effect [152] and
it produces a splitting of the lines. The magnetic field is an axial vector with
the symmetry of the DC current loop by which it is produced, and when
the direction of current (or time) is reversed, the direction of the magnetic
field is also reversed and time-reversal symmetry is broken. This results in the
splitting of the degenerate Kramers doublets of the electronic levels. Another
consequence is the lowering of the point group symmetry with respect to a
uniaxial stress: the point group symmetry for a cubic crystal with B // [001],
[111] or [110] directions are S4, C3, and C1h (Cs), respectively. A general
presentation of the effect of a magnetic field on Bloch electrons is given in the
review by Ramdas and Rodriguez [123].

Considering the simple case of an electron bound to a shallow electronic
ion in a crystal with static dielectric constant εs, when the magnetic field B
is oriented along the z axis, the EM Hamiltonian at a non-degenerate band
extremum characterized by an effective mass m∗ is:

He B =
�

2k2

2m∗ +
e� B
2m∗Lz +

e2B2

8m∗ (r2 − z2) − e2

4πε0εsr
. (8.17)
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Table 8.12. Values of the critical field B0 (T ) for EM donors and acceptors in
some semiconductors. As a magnetic-field dependence of the effective masses is not
considered and because of the spread in the published values of the V B parameter
γ1, these values should be regarded as estimates. For the H atom, B0 is 2.35× 105 T

Cdiam SiC Si Ge GaP GaAs InP InSb CdTe

EM
donors

B0 (T ) 695 149 65.5 6.4 126 6.6 10 0.14 22

EM
acceptors

B0 (T ) 555 315 98.7 5.6 115 34 44 5.8 89

InHeB, Lz is a constant of the motion and the eigenvalues can be characterized
by the quantum number N of the Landau levels and by m, associated with the
eigenvalues of Lz. If the magnetic field is strong enough, the Coulomb term
can be taken as a perturbation and the Landau levels must be considered
first. The validity of this approximation is characterized by the value of the
dimensionless effective magnetic field parameter γB equal to �ωc/2R∗

∞ or
μBB/m∗R∗

∞ already introduced for donors in Sect. 5.2.3, but here, m∗ is
expressed in units of me. The value B0 = m∗R∗∞/μB (denoted also β0) of
the magnetic field for which γB = 1 must be considered as a boundary above
which the low-field limit is no longer applicable.

With m∗ in units of me, γB = 4.2544 × 10−6 (εs/m
∗)2 B(T). For shallow

donors in multi-valley semiconductors, m∗ is the electron transverse effective
mass mnt of Table 3.4 and for QHDs in direct-band-gap semiconductors, it
is the effective mass mn at the Γ minimum of the CB of Table 3.6. For the
shallow acceptors where the effective Rydberg R∗

∞a is defined as R∞/γ1ε2
s ,

B0 is equal to R∗∞a/γ1μB. Values of B0 for shallow donors and acceptors in
different semiconductors are given in Table 8.12.

In the Zeeman experiments, two effects can be distinguished: the linear one,
which produces a splitting of the zero-field lines, and the quadratic Zeeman
effect, producing a shift of the Zeeman components.

8.3.1 Shallow Donors in Multi-Valley Semiconductors

The symmetry classification of the components of the odd-parity donor states
with m = 0 and ±1 split by a magnetic field in silicon and germanium has
been given by [122].

When neglecting spin, which gives the same splitting for all the levels, the
linear Zeeman effect of shallow donors is essentially the splitting by the mag-
netic field of EM states with m 
= 0, that is, the np±1 lines in the experimental
spectra. Their splitting is:

ΔE± =
2μBB
mt

cosβ, (8.18)
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Table 8.13. Splitting ΔE± of the Zeeman components of the 1s (A1) → np±1

donor transitions in silicon in units of 2 μBB/mt as a function of the orientation
of the magnetic field B with respect to the valleys (D: doublet, S: singlet). The
orientations of the pair of valleys are those of Fig. 8.1. Y (yes) and N (no) correspond
to the observation conditions resulting from polarization. k is the propagation vector
of the radiation. The number of components for each polarization is given in the
last line for each orientation of B

k⊥B

B parallel to valley splitting ΔE± k//B E//B E⊥B

[001] 5,6 D 1 Y N Y
1,2,3,4 S 0 Y Y Y

Number of components: 3 1 3

[111] 1,2,3,4,5,6 D 1/
√

3 Y Y

Number of components: 2 2

E// [001] E// [11̄0]

[110] 5,6 Ss 0 N Y Y

1,2,3,4 D 1/
√

2 Y Y Y

Number of components: 2 3 3

where β is the angle between the magnetic field and the principal directions
of the valleys of the CB, and mt the transverse effective mass of the donor
electron expressed in units of me [53, 93]. In this expression, any magnetic-
field dependence of mt is neglected. The splitting of a np±1 line in silicon for
specific values of angle β is given in Table 8.13, but it is also valid for donors
in 3C–SiC and for P in diamond. In this table, the direction of the magnetic
field varies from [001] to [110] in a (01̄1) plane and the notation for the pairs
of valleys is the same as in Fig. 8.1.

In the Voigt configuration (k⊥B), for B // [001], only one line is observed
for E //B, and in the Faraday configuration (k //B), for B // [110], the num-
ber of components depends on the polarization. For a general orientation of B
in the (01̄1) plane, the split structure is a quartet, but for a random orientation
of the magnetic field, it becomes a sextet, as shown in Fig. 2a of [116].

The splitting with the magnetic field orientation of a np±1 line in germa-
nium associated with the four ellipsoids oriented along <111> directions has
been calculated and put in a graphical form by [53]. It is given here in the
form of Table 8.14.

For a random orientation of B, the split structure of a np±1 donor line in
germanium is an octet.
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Table 8.14. Same as Table 8.13 for the 1s (A1) → np±1 donor transitions in germa-
nium. The four valleys of the germanium CB are denoted 1, 2, 3, and 4 for [111],
[1̄1̄1], [11̄1̄], and [1̄11̄] orientations, respectively

k⊥B

B parallel to valley splitting ΔE± k//B E//B E⊥B

[001] 1,2,3,4 D 1/
√

3 Y Y

Number of components: 2 2

E//[11̄1] E//[01̄1̄]

[211] 2 S 0 N Y Y
[211] 1 D ∼0.95 Y Y
[211] 3,4 D ∼0.47 Y Y

Number of components: 4 5 5
[111] 1 D 1 Y N Y
[111] 2,3,4 D 1/3 Y Y Y

Number of components: 4 2 4

[110] 1,2 D
√

2/3 Y Y
3,4 S 0 Y Y

Number of components: 3 3

The quadratic shift of the Zeeman components has been calculated for
silicon and germanium by a perturbation method [117]8, [139] and by a full
calculation [108]. The physical interpretation of this second-order effect in
terms of the ratio γ of the transverse and longitudinal effective masses of the
donor electron is far from simple.

8.3.1.1 Silicon

The experimental magnetospectroscopy of shallow impurities in silicon has
first been investigated in 1959–1960 at the M.I.T. group [93,154] using classical
electromagnets. Commercial magnetooptical cryostats using superconducting
solenoids became available at the end of the 1960s and results obtained with
these systems were published by Pajot et al. [116], and later on by Mu et al.
[108] using the PTIS detection and magnetic fields up to 10T (γB = 0.145).

PTI spectra of P in silicon showing low-field Zeeman splitting in the
Faraday configuration are displayed in Fig. 8.28.

The asymmetry of the triplet splitting of 2p±1 due to the quadratic effect
is clearly visible in Fig. 8.28b. The increase of the intensity of the 3p0 line in
(c) compared to (a) is due to its interaction with the 2p+ component. The field
dependence of the splitting of the first np± lines of P in silicon up to 10T

8 In this reference, the sign between the last two terms of H2 and in front of the
expression for Hb should be –, and in the expression for Hc, B should be squared.
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[108]). Copyright 1993 by the American Physical Society

is shown in the paper by Shen et al. [129] for B //<100>. The resolution
used and the relatively small FWHMs of the components allow to observe
a small splitting of the central component of the 2p± line attributed9 to a
quadratic effect. The splitting shown for the 3p± line is somewhat different
from the one measured by classical absorption for the same orientation, and
shown in Fig. 4 of [116]. Anti-crossing behaviours have been observed between
the 2p+ component and the 3p0 line for B //<111> and calculated between
interacting components by Pajot et al. and by Mu et al. Such an effect can be
appreciated in Fig. 8.29 with the repulsion between the 3p0 line and the 2p+

component for B //<111>.
This effect, which is accompanied by an increase of the intensity of the

3p0 line, which becomes 2p+-like, and by a decrease of the intensity of the
2p+ component, which becomes 3p0-like, has been discussed by Shen [129].
The quadratic contribution to the Zeeman effect of P in silicon has also been
measured and compared with the calculations [108,116,117].

9 This splitting could also be produced by a small deviation of the orientation of
the sample with respect to B, with B remaining in a (110) plane.
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Expression (8.18) has been used to derive values of the transverse ef-
fective mass of donor electrons in silicon from experiments on the P donor
for different orientations of the magnetic field [116]. The low-field data give
mt = (0.195 ± 0.002)me, a value slightly larger than the one derived for the
free electrons from the CR experiments (see Table 3.4).

Spectral lines due to the transitions from the 1s (A1) ground state to the
1s (T2) and 1s

(
3T2

)
excited states were reported for the Se0 and Te0 dou-

ble donors in Chap. 6 (Table 6.12 and Fig. 6.15). The 1s
(
3T2

)
excited state

corresponds to a 1s (A1) 1s (T2) configuration with parallel spins and the tran-
sition from the ground state is only possible if s–o interaction is present. The
Zeeman effect of the Se0 and Te0 1s

(
3T2

)
line was investigated experimen-

tally by Peale and Muro [120], who also provided a modelling of their results
on the basis of s–o interaction. It is based on an analogy with the 3P term of
a free atom, which allows one to write the s–o interaction as:

Hso = λ (L · S) , (8.19)

where λ is the s–o coupling parameter for the 3T2 term. In expression (8.19),
L is an effective angular momentum whose value is 1, always by analogy with
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a free atom [1]. An effective total angular momentum, J=L+S, is introduced
corresponding to three s–o split levels with J = 0, 1, and 2. The IRs of Td are
A2 (J = 0), T2 (J = 1), and E + T1 (J = 2) and transitions from the 1s (A1)
state are only possible to the T2 state with J = 1.

The magnetic field splits this state into a triplet with MJ = +1, 0, and
−1, whose energy levels EM depend on λ and on the orbital and spin g factors
gL and gS. The transition to the MJ = 0 state is a so-called π transition with
E //B polarization, which can be observed only in the Voigt configuration
while those to the MJ = ±1 states are σ transitions with E⊥B polarization,
which are seen only in the Faraday configuration. The linear Zeeman term of
a 3T2 state with a magnetic field B may be written as:

HZ = gLμB L ·B + gSμB S · B.

With the justified assumption that gL∼ 0, the expressions for E±1 and E0 (see
[120] for the derivation) are finally given as:

E±1
∼= ± gSμBB −

[
λ2 +

1
4

(gSμBB)2
]1/2

(8.20a)

and
E0

∼= −λ
(
1 − 1/2α2 + 3/8α4 − 7/16α6 + . . .

)
, (8.20b)

where α = gSμBB/λ. These expressions predict an isotropic splitting of the
1s
(
3T2

)
components, with a central component showing a nonlinear effect.

The validity of this prediction is demonstrated in Fig. 8.30, showing the Zee-
man splitting of the 1s

(
3T2

)
line of Fig. 6.15. In the Voigt configuration, both

the π central component and the σ doublet are observed, but in the Faraday
configuration, only the σ doublet is observed.

These results and those obtained at zero field allow one to determine the
experimental values of the s–o interaction parameters, which are, as expected,
larger for Te0 than for Se0 [120]. These measurements have been extended to
higher values of the magnetic field and also to the s–o-split 1Γ7 and 1Γ8

components of the 2T2 state of S+ and Se+ [121].

8.3.1.2 Germanium

The first Zeeman measurement on donors in germanium for B //<100> for
fields up to ∼1.7 T were reported in 1959 by Fan and Fisher [41], from which
they deduced mt = (0.077 ± 0.005)me, a value close to the one obtained
from CR measurements for free electrons (Table 3.4). Oscillatory magnetoab-
sorption as a function of the field or of the frequency, explained by the field
dependence of the Zeeman components, was reported by Boyle [20]. The ex-
perimental results of Boyle and Howard [21] on the splitting of 2p±1(As) for
fields up to 3T were compared with variational calculations and a connection
with the high-field limit established. Extensive measurements of the Zeeman
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effect of the As and Sb donors in germanium at a temperature of ∼2 K were
reported in several papers by Horii and Nisida ([62], and references therein) for
fields up to 4.6T (γB∼0.7) parallel to a <111> axis, and the Zeeman splitting
was found to be given by expression (8.18). The spectra were characterized
by the importance of the quadratic Zeeman effect, and for the Sb donor by
the contribution of transitions from the 1s (T2) components separated from
1s (A1) by only 0.32meV. The magnetic field dependence of the positions of
the split components of the first lines of the As donor spectrum is shown in
Fig. 8.31, where the solid and dashed lines are guides to the eye. In this figure
are also shown the magnetic field dependences of components denoted a, b,
and c. Because of its slope, a is probably due to 4f+B, while b and c have been
interpreted as donor levels associated with higher-energy Landau levels [62].
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Fig. 8.31. Magnetic-field dependence of the Zeeman components of the As donor
absorption lines in germanium for k //B//<111>. Each np±1 line gives four Zee-
man components. With the notations of Table 8.14, valley 1 corresponds to A and
valleys 2, 3, and 4 to B). The energy Ei of As at zero field is indicated (after [62]).
Reproduced with permission from the Physical Society of Japan

In Fig. 8.31, the split components are denoted np+ and np− for np+1 and
np−1, followed by the valley index (A for the valley parallel to B, with the
largest Zeeman splitting and B for the other valleys).

Variational calculations of the eigenvalues of Hamiltonian (8.17) for donors
in germanium have been made using EM wave functions to calculate the shifts
of the 1s and 2p0 levels while the positions of the components of the 2p±1 and
3p±1 lines were calculated with harmonic-oscillator trial wave functions, tak-
ing into account the Landau levels structure [114]. These calculations, limited
to the case where the magnetic field is along the main axis of the ellipsoid
(B //<111>), were extended by Lee et al. [96] to the general case and values
explicitly given for B //<100> and B //<111>.
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Fig. 8.32. Zeeman splitting of the 2p±1 line of P in diamond for B//<111>. [P] is
∼2–3×1018 at cm−3 (after [30]). Copyright Wiley-VCH Verlag GmbH & Co. KGaA.
Reproduced with permission

Fine structures in the magnetic-field-tuned PTIS spectrum of P donors in
germanium have been related to the spin splitting of the 1s (A1) and 1s (T2)
levels [50]. Spin splitting is also involved in the anti-crossing of Zeeman compo-
nents with opposite spin of 1s (T2) states of As donors in germanium measured
by four-wave spectroscopy, and the effect is more marked when a fixed uniax-
ial stress along the [110] direction is used to split the 1s (T2) state into three
sublevels ([151], and references therein).

8.3.1.3 Diamond

Under a magnetic field of 13 T along a <111> direction, a weakly resolved
splitting of 2.8meV (∼23 cm−1) of the 2p±1 line of P in diamond, shown in
Fig. 8.32, has been observed by Casanova et al. [30].

The large width of the components and the small amplitude of the central
dip produce an apparent reduction of the splitting, whose actual value can
be estimated to be 2.9meV, from which mt = 0.31me, reported in Table 3.4,
is derived using expression (8.18). Qualitatively, the splitting should be the
same as the one for donors in silicon.

8.3.2 Shallow Acceptors

Formally, the linear Zeeman term in the EM acceptor Hamiltonian is similar
to the one for free holes (expression (3.28), except that g1 and g2 are replaced
by g′1 and g′2. Calculations of the linear Zeeman splitting of the acceptor levels
in germanium and silicon have been performed in the weak field limit, starting
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with a study of the Γ8
+ ground state for deformed and non-deformed crystals

by Bir et al. [16] and by Suzuki et al. [138] (the weak field limit is delimited
in relation with the above-defined critical field B0). Perturbation calculations
involving the Γ8

+ ground state and the Γ8
−, Γ7

−, and Γ6
− excited states of

acceptors in germanium were also reported for B // [001] by Lin Chung and
Wallis [101].

A group theoretical study of the Zeeman effect of acceptors in silicon and
germanium has been presented by Bhattacharjee and Rodriguez [15]. It was
aimed towards the determination of the selection rules, energy splitting and
relative intensities of the Zeeman components and it included the considera-
tion of the terms quadratic in B. The main assumption made in this study
is that the Zeeman splitting remains small compared to the zero-field level
separation. According to simple group theoretical considerations, the Zeeman
part of the Hamiltonian for a Γ6 or Γ7 level can be written as:

H
(i)
Z = μBg

(i)B · σ + q(i)B2i = 6, 7, (8.21)

where σ is similar to the spin- 1
2

matrix, and the one for a Γ8 level

H
(8)
Z = μB

(
g′1B · J + g′2

(
BxJx

3 + ByJy
3 + BzJz

3
))

+ q1B2 + q2 (B · J)2

+q3
(
Bx

2Jx
2 + By

2Jy
2 + Bz

2Jz
2
)
, (8.22)

where J is the angular momentum matrix for j = 3
2 . The g(i) and g′i are called

the g-factors and the q(i) and qi the quadratic diamagnetic coefficients.
In the study by Bhattacharjee and Rodriguez, the Zeeman splitting has

been explicitly calculated for the Γ6, Γ7, and Γ8 levels as a function of the
g(6), g(7), g′1 and g′2 g-factors10 for the magnetic field oriented along [001],
[111], and [110] crystal directions11. Except for B // [001], the Γ8 splitting
also include quadratic terms. For B // [001], [111] or [110], the Γ6 and Γ7

levels (j = 1/2) split into a doublet whose energy levels, with reference to the
Zeeman Hamiltonian (8.19), are:

E(i)
μ = μμBg

(i)B + q(i)B2 (8.23)

with i = 6, 7, and μ = 1/2, −1/2. The splitting is the same for the three
orientations, given by ΔE (i)

±1/2 = μBg
(i)B.

A Γ8 level (j = 3/2) splits into a quartet, where the energy of the linear
part with B can be expressed as:

E(8)
μ = μμBg|μ|B, (8.24)

10 There have been several notations for the equivalent of g′
1 and g′

2 for the magnetic
field splitting of a Γ8 ground state: [19] has used parameters g and f , and [150]
parameters K and L. The correspondences are g′

1 = g = K and g′
2 = f = L.

11 In the expressions for the Zeeman Hamiltonian, it is assumed that for B // <100>,
B is along the z-axis.
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Table 8.15. Expressions of gμ describing the Zeeman splitting of a Γ8 level for the
three main orientations of the magnetic field (after [23])

B // [001] B // [111] B // [110]

g1/2 g′
1 (1 + r) g′

1 (1 + 13r) g′
1{r
[
(2/r + 17)2 + 27

]1/2
– (1 + 7r) }

3g3/2 3g′
1 (1 + 9r) g′

1r
[
(3/r + 23)2 + 32

]1/2
g′
1{r
[
(2/r + 17)2 + 27

]1/2
+ (1 + 7r) }

where the g-factor g|μ| is g1/2 or g3/2, with an actual value depending on the
orientation of B with respect to the crystal axes.

For B // [001], with reference to the Zeeman Hamiltonian (8.20), the en-
ergy levels of the quadruplet are:

Eμ
(8) = μμB(g′1 + g′2μ

2)B +
[
q1 + (q2 + q3)μ2

]
B2 (8.25)

with μ = +3/2, +1/2, −1/2, −3/2. Parameter r = g′2/4g
′
1 is often used in the

expression of the linear part of (8.23), except in Bhattacharjee and Rodriguez’
paper, where p = g′1/g

′
2 is used.

For B // [111], the energy levels are:

E±1/2
(8) = ±1/2μBg

′
1 (1 + 13r) B + (q1 + 1/4q2 + 5/4q3) B2, (8.26a)

E±3/2
(8) = ±1/2μBg

′
1r
[
(3/r + 23)2 + 32

]1/2

B + (q1 + 9/4q2 + 5/4q3) B2.

(8.26b)

The g-factors gμ of the Γ8 levels for the main orientations of the magnetic
field are given in Table 8.15. The expressions for g′1, g′2 and r as a function of
g1/2[001] and g3/2[001] are:

g′1 =
(
9g1/2 − g3/2

)
/8, (8.27a)

g′2 =
(
g3/2 − g1/2

)
/2, (8.27b)

r =
g3/2 − g1/2

9g1/2 − g3/2
. (8.27c)

The separation ΔE±μ(B) between two sublevels ±μ is given by 2μμBg|μ|B.
The value of g|μ| is thus given by 8.638ΔE±μ (meV) / (μB (T)).

The selection rules between the Zeeman sublevels of the Γ8 ground state
and those of the Γ8, Γ7, and Γ6 excited states have been derived from group
theory by Bhattacharjee and Rodriguez [15] for the double point group Td.
In this reference, the relative intensities of the Zeeman components of the
Γ8 → Γ6, Γ8 → Γ7, and Γ8 → Γ8 transitions for the main orientations of B
have also been derived. Oh point group symmetry of the acceptor Hamiltonian
has been considered rather than Td by Schmitt et al. [128] and while not
modifying the physical results, it leads to some changes in the ordering of
labels and in the corresponding selection rules [17]. As this later notation is
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Table 8.16. Selection rules and polarizations for the transitions between the Zeeman
sublevels of the ground state and those of the Γ6, Γ7, and Γ8 excited states of shallow
acceptors in silicon and germanium for B // [001]. The point-group symmetries with
the magnetic field are S̄4

a for T̄d and C̄4h for Oh. The first polarization is for S̄4

and the second one for C̄4h (after [15,128])

T̄d, Ōh Ground state Γ8, Γ+
8

μ +3/2 +1/2 −1/2 −3/2
S̄4, C̄4h Γ6, Γ

+
8 Γ7, Γ

+
5 Γ8, Γ

+
6 Γ5, Γ

+
7

Γ6, Γ
−
6 +1/2 Γ5, Γ

−
7 E⊥(−), E⊥(+) E//, 0 E⊥(+), E⊥(−) 0, E//

−1/2 Γ6, Γ
−
8 0, E// E⊥(−), E⊥(+) E//, 0 E⊥(+), E⊥(−)

Γ7, Γ
−
7 +1/2 Γ7, Γ

−
5 E⊥(+), E⊥(−) 0, E// E⊥(−), E⊥(+) E//,0

−1/2 Γ8, Γ
−
6 E//, 0 E⊥(+), E⊥(−) 0, E// E⊥(−), E⊥(+)

Γ8, Γ8
− +3/2 Γ6, Γ

−
8 0, E// E⊥(−), E⊥(+) E//, 0 E⊥(+), E⊥(−)

+1/2 Γ7, Γ
−
5 E⊥(+), E⊥(−) 0, E// E⊥(−), E⊥(+) E//, 0

−1/2 Γ8, Γ
−
6 E//, 0 E⊥(+), E⊥(−) 0, E// E⊥(−), E⊥(+)

−3/2 Γ5, Γ
−
7 E⊥(−), E⊥(+) E//, 0 E⊥(+), E⊥(−) 0, E//

a In the character table for S̄4, p. 40 of Koster et al.’s book referenced in appendix
B, the characters associated with the S̄4 class (last column) for the Γ5, Γ6, Γ7, and
Γ8 IRs should read ω3, −ω, −ω3, and ω, respectively, where ω = exp (πi/4)

Table 8.17. Same as Table 8.16 for B // [111] (point-group symmetry C̄3) (after
[15])

T̄d Ground state Γ8

μ +3/2 +1/2 −1/2 −3/2
C̄3 Γ6 Γ4 Γ5 Γ6

Γ6 +1/2 Γ4 E⊥(−) E// E⊥(+) E⊥(−)

−1/2 Γ5 E⊥(+) E⊥(−) E// E⊥(+)

Γ7 +1/2 Γ4 E⊥(−) E// E⊥(+) E⊥(−)

−1/2 Γ5 E⊥(+) E⊥(−) E// E⊥(+)

Γ8 +3/2 Γ6 E// E⊥(+) E⊥(−) E//

+1/2 Γ4 E⊥(−) E// E⊥(+) E⊥(−)

−1/2 Γ5 E⊥(+) E⊥(−) E// E⊥(+)

−3/2 Γ6 E// E⊥(+) E⊥(−) E//

used for the interpretation of some experimental results for germanium and
for GaAs, the two labellings and selection rules are given in Table 8.16. For
B // [111] and B// [110], the two notations are the same. The right-handed
coordinate system (x′, y′, z′) is chosen with z′ along B. The right-handed (rcp)
and left-handed circular (lcp) polarizations with respect to B are denoted
here by E+ and E−, respectively, and the longitudinal polarization E// or
E //B. Practically, as linearly polarized radiation can be decomposed into
two opposite circularly polarized radiations, E+ and E− correspond to E⊥B.
In the following tables, E+ and E− are, therefore, denoted E⊥(+) and E⊥(−),
respectively (Table 8.17 and Table 8.18).
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Table 8.18. Same as Table 8.16 for B // [110]. The point-group symmetries with
the magnetic field are C̄1 h for T̄d and C̄2h for Ōh. For the orientation of B, the
selection rules are the same for lcp and rcp radiation and no index is added to E⊥,
but they are inverted for Ōh and T̄d (after [15,128])

T̄d, Ōh Ground state Γ8

μ +3/2 +1/2 −1/2 −3/2
C̄1h, C̄2h Γ3 Γ4 Γ3 Γ4

Γ6 +1/2 Γ3 E⊥, E// E//, E⊥ E⊥, E// E//, E⊥
−1/2 Γ4 E//, E⊥ E⊥, E// E//, E⊥ E⊥, E//

Γ7 +1/2 Γ4 E//, E⊥ E⊥, E// E//, E⊥ E⊥, E//

−1/2 Γ3 E⊥, E// E//, E⊥ E⊥, E// E//, E⊥

Γ8 +3/2 Γ3 E⊥, E// E//, E⊥ E⊥, E// E//, E⊥
+1/2 Γ4 E//, E⊥ E⊥, E// E//, E⊥ E⊥, E//

−1/2 Γ3 E⊥, E// E//, E⊥ E⊥, E// E//, E⊥
−3/2 Γ4 E//, E⊥ E⊥, E// E//, E⊥ E⊥, E//

The expression of the g-factors when considering an Oh point group sym-
metry for the acceptor Hamiltonian instead of Td leads to changes in the
attributions of the Zeeman sublevels and this has been used by Atzmüller
et al. [7] and Schmitt et al. [128]. Its consequences for an isolated Γ8 level has
been given by Bir et al. [17], but when one considers transitions between two
Γ8 levels, one must keep a reference identical for the two symmetries and the
choice is to keep the mj attributions for the ground state split components
unchanged, so that g′1 (Td) and g′1 (Oh) on the one hand and g′2 (Td) = g′2 (Oh)
on the other hand are the same. With this proviso, the correspondence for
the excited states are obtained by taking a ground state sublevel with a given
value of mj and considering the transitions from this state to the excited
states with the same polarization characteristics for both point group symme-
tries (the polarization characteristics are physical properties independent of
the choice between Td and Oh). This can be done with the help of Table 8.16,
and taking for instance the mj = −3/2 ground state, it can be checked that
mj = +3/2, +1/2, −1/2, and –3/2 excited state sublevels for the S̄4 point
group correspond to the mj = −1/2, −3/2, +3/2, and +1/2 sublevels, re-
spectively, for the C̄4 h point group. The relationship between the g-factors
of the excited states for a line J of an acceptor spectrum for the two point
group symmetries are the same. They are given below to convert the g-factors
obtained with Td symmetry into those in Oh symmetry, but the point group
symmetries can be inverted as well:

g
(J)
1 (Td) = −

[
10g(J)

1 (Oh) + 91/4g(J)
2 (Oh) /3 , (8.28a)

g
(J)
2 (Td) =

[
4g(J)

1 (Oh) + 10g(J)
2 (Oh)

]
/3. (8.28b)
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The spacing between the ±1/2 and ±3/2 sublevels in the Oh starting sym-
metry, proportional to g(J)

1/2 (Oh) and 3 g(J)
3/2 (Oh), are naturally different from

those in the Td symmetry, but they are still given by the same formal expres-
sions as those for the Td symmetry, but with g(J)

1 (Oh) and g(J)
2 (Oh) g-factor.

This also holds true for the ratio r(J) (Oh), still defined by g
(J)
2 (Oh) /4 g(J)

1

(Oh), but with a value different from r(J) (Td). An application of these ex-
pressions will be given in the discussion of the Zeeman results in germanium
and GaAs.

Later on, the eigenstates of the EM Hamiltonian including the magnetic
field for acceptors in cubic semiconductors have been calculated by a varia-
tional method by Broeckx [22]. This Hamiltonian included the s–o split Γ7 V B
and the calculations were performed for B // [001] and B // [111] for field
strengths in the 0–5T range. In an application to acceptors in germanium,
the energy levels corresponding to the 36 odd-parity Zeeman excited substates
corresponding to lines G, D, C, B, A4, A3, A2, and A1 of the acceptor Ge
spectrum (see Table 7.9) were calculated, together with those of the Zeeman
quadruplet ground state. These rather general calculations involved quadratic
effects and they showed the interactions between substates of different lines
with the same symmetry. The OS of the transitions from the ground state
sublevels were also calculated and used to produce simulated spectra. The
results obtained will be compared later with the experimental observations.

At about the same time, another detailed theoretical study was presented
with intended applications to the acceptor spectrum in germanium and GaAs
up to relatively large values of B parallel to the three main crystal orientations
[128]. Considering the VB s–o splitting in these crystals, the Γ7 VB was disre-
garded so that the calculations cannot be transposed to acceptors in silicon.
The numerical method (the “matrix method”) used to determine the eigen-
values in this study is non-variational and different from the finite-element
method of Said et al. (ref. 51 in Chap 5). The results of these calculations will
also be compared later with the experimental observations.

8.3.2.1 Silicon

The Zeeman effect of Al in silicon was reported by Zwerdling et al. [154]. The
results of absorption measurements of Si:B were reported by Merlet et al. [104]
and the Zeeman splitting of the Raman 1Γ8

+ → 1Γ+
7 boron line by Cherlow

et al. [35].
Before discussing the optical results, it seems appropriate to present the

results on the acceptor ground state splitting derived from ESR measure-
ments. The first ESR measurements were obtained under uniaxial stress [42]
because of the presence in the early crystals of random internal strains due
to dislocations and other imperfections, especially in the FZ crystals. These
strains produced a splitting of the ground state varying with the acceptor po-
sitions, resulting in an overall broadening of the ESR lines. This broadening
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prevented the observation of the ESR lines unless an external uniaxial stress
which is large compared to the internal stress is applied. Later, the production
of nominally dislocation-free FZ crystals allowed us to obtain useful acceptor
ESR spectrum in silicon at zero external stress and values reported for g′1 and
g′2 for the ground state of boron were −.071 ± 0.002 and −0.031 ± 0.001,
respectively [110]. The negative sign corresponds to an ordering deduced from
the ESR measurements under stress [16,42], and a positive sign corresponding
to an ordering of 3/2, 1/2, −1/2, −3/2, with energies increasing from the top
of the VB has been adopted [138].

The magneto-Raman measurements of [35] were performed up to 9.16T
at LHeT for the three main orientations of B on a sample giving a relatively
broad Raman line12 (FWHM of 0.45meV (∼3.6 cm−1)). They were interpreted
by considering only the Zeeman splitting of the 1Γ8

+ state and the values of
g′1 and g′2 so obtained were 0.84 ± 0.09 and 0.13 ± 0.08, respectively.

The Zeeman absorption measurements on boron-doped samples were per-
formed in the Voigt and Faraday configurations for the main orientations of
the magnetic field up to 6.4T at a temperature ∼11 K [104]. The lines 1,
2, 3 and 4–5–6 of the boron spectrum were investigated at a resolution of
∼0.12 meV (1 cm−1), so that only line 6 (4A) was resolved from line 4 (see
Table 7.1 for the line labels and positions), but the spectra were resolution-
limited. The components show a small quadratic effect, absent for lines 1 and
2. The splitting of these two lines with increasing values of B // [001] is shown
in Fig. 8.33. The components are represented in alphabetical order indexed by
the line number for increasing values of the slope a of the energy shift of the
component with respect to the zero-field position.

While 11 of the 12 possible components are observed for line 1, only 6 are
observed for line 2 because of the larger widths of the components of that line.
A detailed investigation of line 3 was difficult because of its small intensity and
the interpretation of the results on lines 4–6 (4–4A) flawed by ignoring line 5.
Starting from the assumption that the ground state splitting E±1/2(B) and
E±3/2(B) are symmetric with respect to the zero-field position of the level,
the attributions of the split components of lines 1 and 2 allow one to estimate
a B-dependent shift s±μ (I) of the centre of gravities of the ±μ components
of line I with respect to the zero-field position EI(0) of the excited state. This
shift is given by:

s±μ (I) =
{[
E(I)+μ (B) − E(I)−μ (B)

]
/2 − EI(0)

}
/B. (8.29)

It has been found that s±μ (I) was dependent on the orientation of B. Values
of the g-factors of the boron 1Γ8

+ ground state and of the excited states of
line 1 (1Γ−

8 ) and line 2 (2Γ−
8 ) were deduced from this study and are given in

Table 8.19.

12 Raman scattering measurements require larger impurity concentrations than ab-
sorption measurements.
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Table 8.19. Experimental values of factors g1/2 and g3/2 of the ground (1Γ8
+)

and excited states of lines 1 and 2 of the boron acceptor in silicon as a function
of the orientation of the magnetic field and values of the corresponding g1 and r
parameters. The field dependence of the shift s±μ(I) of the centre of gravity of
the EI±1/2 and EI±3/2 sublevels with the orientation of B, expressed in units of
10−2 meV T−1 (after [104])

Level B // [001] B // [111] B // [110]

1Γ8
+ g1/2 1.04 ± 0.06 1.19 ± 0.08 1.13 ± 0.05 g′

1 1.03 ± 0.06
3g3/2 3.36 ± 0.06 3.33 ± 0.09 3.33 ± 0.09 r 0.010 ± 0.06

1Γ8
− g1/2

(1) −1.09 ± 0.05 −0.26 ± 0.10 2.02 ± 0.10 g1
(1) −1.16 ± 0.06

3g3/2
(1) −1.71 ± 0.12 −0.26 ± 0.10 0.57 ± 0.09 r(1)

s±1/2(1) −0.5 −0.9 −0.3
s±3/2(1) −1.2 −0.6 −1.7

2Γ8
− g1/2

(2) −1.86 ± 0.16 1.71 ± 0.16 1.79 ± 0.13 g1
(2) −2.17 ± 0.76

3g3/2
(2) 1.59 ± 0.15 1.80 ± 0.15 0.62 ± 0.12 r(2) −0.137 ± 0.008

S±1/2(2) 0.8 0.8 0.11
s±3/2(2) 1.2 0.11 0.05
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This table shows the importance of the contribution of the ground state
to the Zeeman splitting of the lines, a situation which is the inverse of the
one encountered in germanium, as will be seen later. It also shows that while
the ground state splitting is nearly isotropic with respect to the orientation
of the magnetic field, the 1Γ−

8 and 1Γ−
8 excited display a strong anisotropy

implying a crossing of the E1/2 and E3/2 levels with the orientation changes
of the magnetic field.

A study of the Zeeman effect of the PL lines of the excitons bound to
group-III acceptors in silicon by Karasyuk et al. [75] has allowed us to obtain
the ground-state g-factors and the quadratic coefficients q2 and q3 of these
acceptors.

A comparison of the g-factors of the ground state obtained from absorption
and PL measurements with those obtained from ESR, dielectric resonance
absorption is shown in Table 8.20.

It is not easy to determine the values of the g-factors of free holes in silicon
because in the CR experiments, one is more interested in effective masses than
in the g-factors. It is usually assumed that g2 for the VB is ∼0 [16]. A value
of parameter κ of the VB of silicon, quoted by Lawaetz (ref. 55 of Chap. 3),
is −0.26 and g1 = 2κ should then be 0.52.

8.3.2.2 Germanium

The splitting discussed here for germanium and in the next subsection for
cubic III–V and II–VI compounds concern the ground and excited states of
lines G, D, C, and B of the acceptor spectra.. In different references, the

Table 8.20. Comparison of the experimental g-factors g′
1 and g′

2 of the acceptor
ground state in silicon obtained from different sources with calculated values. The
values obtained from ESR under stress by Shimizu and Tanakac have been converted
into the zero-stress g-factors by Neubrandb. The last two columns give the quadratic
coefficients of the Zeeman Hamiltonian (8.20)

g′
1 g′

2 r q2(μeV T−2) q3(μeV T−2)

Ba 1.03 0.04 0.010 0.21e 0.07e

Bb 1.071 0.031 0.007
Bc 1.048 0.061 0.015

Bd 1.070 0.033 0.008
Ale 0.98 −0.01 −0.003 0.11 −0.03

Ald 0.997 −0.014 −0.004
Gae 0.96 −0.01 −0.003 0.09 −0.02

Gad 0.993 −0.017 −0.004
Ine 0.86 −0.05 −0.015 0.29 −0.01

Ind 0.885 −0.056 −0.016
Tle 0.60 0.05 0.021 0.20 −0.03

Calc.f 0.93 0.13 0.035

a [104], b [110], c [131], d [85], e [75], f [138]



406 8 Effects of Perturbations

ground state can be found labelled 1Γ8
+ or 1 S3/2 (Γ8). For germanium, the

excited states of lines G, D, C, and B correspond to 1Γ−
8 , 2Γ−

8 , 3Γ8
+1Γ−7

7

and 4Γ−
8 , respectively (Table 7.9). For cubic compound semiconductors, the

excited state of line G is denoted 1Γ8
− or 2P3/2 (Γ8), the one of line D, 2Γ−

8

or 2P5/2 (Γ8), and the one of line C, 3Γ−
8 or 2P5/2 (Γ7) (Table 7.21).

The Zeeman effect of group-III acceptors in germanium was first reported
by Fisher and Fan [43] and later in more detail by Soepangkat and Fisher
[133] and by Broeckx et al. [23]. Zeeman measurements of the neutral double
acceptors Zn0 and Hg0 were also reported by Moore [107].

Magnetoacoustic resonance attenuation measurements in Ga-doped ger-
manium at LHeT in the range 0–12T have allowed [142] to measure the
g-factors of the ground state of this acceptor, including two of the qi quadratic
terms of expression (8.22). The values thus obtained are:

g′1 = −0.16 ± 0.08 q2 = (4.3 ± 1.7) × 10−4 meVT−2,

g′2 = 0.08 ± 04 (r = −0.125) q3 = (−5.2 ± 1.7) × 10−4 meVT−2.

While these values have been obtained for the Ga acceptor, they should not
differ markedly for the other group-III acceptors as magnetic effects are rela-
tivistic effects which are relatively insensitive to the chemical effects at and in
the near vicinity of the acceptor ion [23]. Then, for the first Zeeman measure-
ments performed for B ∼ 2.5 T or less, it was justified to neglect the ground
state splitting as its maximum amplitude was less than ∼0.06 meV (0.5 cm−1).

High-resolution measurements of the Zeeman splitting of B, Al, and Ga
spectra in germanium have been reported by Fisher’s group [9,44] for magnetic
fields up to 7T parallel to [001]. Assuming that the ordering of the Zeeman
sublevels of lines G and D was the one predicted by the calculations, allowed
a quantitative self-consistent interpretation of the Zeeman splitting of these
lines. The low-field dependence of lines D(B) and D(Al) is shown in Fig. 8.34a
for B // [001], compared to that of line B(Al) in Fig. 8.34b. The transitions
are denoted (i, j), where i and j correspond to the indices of the IRs Γ+

i of
Table 8.16 for point group C̄4 h.

The low-field splitting of line D is similar for both acceptors and it in-
creases monotonously with the field. Eight of the ten possible transitions are
observed. It contrasts with the apparently erratic splitting of B(Al) where the
12 components allowed for both polarizations are, however observed, and a
similar result is obtained for B(B) [44]. The calculations of [22] and [128] can
reproduce the splitting observed. For higher values of the magnetic field, the
apparently simple Zeeman splitting of D(Al) can become more intricate, as
seen in Fig. 8.35.

The determination of the experimental splitting of the 1Γ8
+ round state for

the B and Ga acceptors from the attributions of the high-resolution Zeeman
spectra gives an ordering, in agreement with those calculated by Broeckx [22],
but it shows that the ±1/2 sublevels shift linearly with field with a positive
g1/2 factor whereas the ±3/2 sublevels show nonlinear shifts and splitting,
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408 8 Effects of Perturbations

Table 8.21. Comparison of the experimental g-factors g′
1 and g′

2 of the boron and
aluminium ground states in germanium obtained from different sources with the
calculated ones

Ref. [44] [142] [22] [128]

B Ga Ga Calc. Calc.

g′
1 −0.164 ± 0.001 −0.132 ± 0.002 −0.16 ± 0.08 −0.45 −0.5904

g′
2 +0.091 ± 0.001 +0.084 ± 0.002 +0.08 ± 0.04 +0.22 +0.2257

r −0.139 −0.159 −0.13 −0.12 −0.096

Table 8.22. Experimental and calculated g-factors of the excited states of lines G,
D, and B in germanium. (r(J) = g2

(J)/4g1
(J)). Schmitt et al. [128] have calculated

gi
(D)(Oh), which have been converted into g1

(D)(Td) using expressions (8.28a) and
(8.28b)

Ba Ala Gab Theoryc Theorya

g1
(G) ±2.05 −2.57

r(G) −0.134 −0.122

g1
(D) ±6.97 −8.4 ±7.41 +6.97 −7.00

r(D) −0.119 −0.121 −0.122 −0.217 −0.122

g1
(B) −8.27

r(B) −0.122

a See [22], b [46], c After [128]

with a negative value of the g3/2 factor. The linear terms of the splitting have
been used to obtain the ground-state g-factors that are compared with the
calculated ones in Table 8.21.

Determination of the boron ground-state splitting have been made possible
by Zeeman measurements on the boron spectrum for B //<110> up to 18T,
where eight components are clearly observed for line G (B) [144]. In these
experiments, the Zeeman components are denoted (I.K,J.L), where I and J
are the indices of the IRs (4 for Γ4, 3 for Γ3) of point group C1h, while K
and L correspond to the sign of M = 3/2, 1/2, −1/2, −3/2 (1 for positive
values and 2 for negative values). The amplitude of the Zeeman splitting of
1Γ8

+ (B) measured in germanium at 15T is 0.46meV, is compared with an
extrapolated value of 2.9meV in silicon. Measurements at such high fields
are interesting as they go through the boundary between low and high fields,
estimated at ∼6 T for acceptors in germanium.

The value of the g-factors
(
gi

(J)(Td)
)

obtained for the excited states of the
G, D and B lines of different group-III acceptors in germanium are given in
Table 8.22.

Piezo-Zeeman experiments have been reported by Freeth et al. [46] where
the low-field Zeeman splitting on the G and D lines of Ga in germanium was
measured for a fixed stress of ∼13 MPa along [001] combined with magnetic
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fields up to 1.2T along a [100] direction. The results of these experiments
yield values ∼0 for the ground state g-factors and the values of Table 8.22 for
the excited states of lines G and D.

8.3.2.3 Diamond

The results of a magneto-Raman study of the Δ′ transition between the 1Γ8
+

and 1Γ7
+ levels of boron in diamond have been reported by Kim et al. [78]

for the three main orientations of the magnetic field up to 6 T. In addition
to transitions between the Zeeman sublevels of the two states, other ones
within the 1Γ8

+ manifold (Raman-EPR transitions) have also been observed.
It must be noted that in B-doped diamond, where the s–o coupling of both
the crystal and the acceptor are small, the splitting is independent of the
orientations of the magnetic field and the relation between g|μ| and g′1 and
g′2 given in Table 8.15 are no longer valid. The g-factors for boron in diamond
are given by ([78]):

g′1 =
(
g1/2 + g3/2

)
/2, (8.30a)

g′2 = 2g3/2 − g1/2. (8.30b)

The measured values of g1/2 and g3/2 are 0.21 and −0.95, respectively, from
which the values g′1 = −0.37 and g′2 = −2.11 are obtained. On the other
hand, the relative intensities of the Raman components depend on the mag-
netic field orientation and their interpretation has allowed us to evaluate the
ratio γ2/γ3∼0.1 of the Luttinger VB parameters of diamond [78].

8.3.2.4 Compound Semiconductors

The first Zeeman study in GaAs was performed up to 9 T by Kirkman et al.
[81], in addition to the extensive zero-field PTIS measurements concerning
mainly CAs. A calculation of the splitting and of the intensities of the Zeeman
components was also made in this reference. Results on CAs and ZnGa have
been published by Atzmüller et al. [7] up to 7 T for the three main orientations
of the magnetic field in the Voigt geometry, and they have allowed us to
obtain accurate values of the g-factors for CAs. Measurements on BeGa up to
7T in the Voigt geometry were performed by Lewis et al. [98], and the field
dependence of the splitting of C (Be) is shown in Fig. 8.36.

Further measurements were performed by these authors in the Faraday
geometry for fields up to 30T. The most notable result was the observation,
above 25T, of a line above the one-phonon band, whose energy increased
linearly with the field. It was speculated that this feature was related to the
first Landau level of the VB.

The splitting of the G line of Zn in InP has been measured up to 6.5T
in the Voigt geometry [31] and while all the Zeeman components expected
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Fig. 8.36. Field dependence of the Zeeman components of line C (Be) in GaAs.
The component denoted (7,8) corresponds to the Γ+

7 (m − 3/2) → Γ+
8 (+3/2)

transition of Table 8.11, observed for E⊥B, and so on. The full lines are a second-
order polynomial fit to the data. The dashed line represents a fit to the average
energy of the highest- and lowest-energy components [98]. Copyright 2003 by the
American Physical Society

are not observed, a determination of g-factors could, however, be made by
comparison with the splitting behaviour of the G line of CAs reported in [7].

The Zeeman effect of the Li acceptor in CdTe has also been studied by
Friedrich et al. [47].

The g-factors of the acceptor ground and excited states in GaAs, InP,
and CdTe derived from these Zeeman measurements are compared with those
calculated for GaAs in Table 8.23. In this table, the g-factors of the Li acceptor
ground and excited states of the G line in CdTe shown in Fig. 7.25 have also
been included.

From this table, one can note the good agreement between the calculated
and observed values for GaAs.

The aim of [47] in their Zeeman measurements of Li in CdTe was not only
to determine the g-factors of this acceptor, but also values of the VB parame-
ters of CdTe by the method proposed and used in the case of GaAs [128]. This
method, which is self-consistent, is indirect and is based on the adjustment of
the VB parameters of the acceptor Hamiltonian including magnetic field terms
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Table 8.23. Values of the g-factors of the ground and first excited states (g
(J)
i (Td))

of different acceptors in compound cubic semiconductors. For some acceptors, the
g
(J)
i (Oh) values are given in parentheses

g′
1 g′

2 g
(G)
1 g

(G)
2 g

(D)
1 g

(D)
2

Theorya (GaAs) +0.2081 +0.1147 −2.402
(+0.2445)

+1.024
(+0.2093)

−3.642
(−1.7068)

+1.826
(1.2305)

C (GaAs)b +0.30 +0.09 −2.38
(+0.27)

+1.01
(+0.19)

−3.15
(−1.41)

+1.57
(+1.035)

Be (GaAs)c +0.30 +0.09 −1.63 +0.64 −2.88 +1.47
Zn (InP)d +0.96 −0.18 −2.28 +0.98
Li (CdTe)e ±0.483 ±0.001 ±2.07

(±0.311)
±0.870
(±0.137)

a [128], b [7], c [98], d [31], e [47]

to calculate the Zeeman splitting matching the experimental ones. Putting
aside the technical difficulties of an accurate calculation, for spectra in the
vicinity of the one-phonon absorption, where the dielectric constant presents
non-negligible dispersion, the final results depend critically on the choice of
this quantity, which also determines the actual value of the effective Rydberg.

8.4 Effect of Electric Fields

The effects of electric fields on neutral shallow EM impurities at low tem-
perature in insulating samples are discussed here. In the absence of electrical
compensation of the samples, a homogeneous electric field can be produced in
a sample by voltage biasing through appropriate electrical contacts. In a com-
pensated sample, the presence of statistically distributed anions and cations
produces a permanent random electric field whose importance depends, in a
first approximation, on the compensation ratio. We consider first the effect of
the homogeneous electric fields. This situation has known a renewed interest
with the proposal of the control of the charge state and the spin of individual
dopant atoms, including application to quantum computing by Kane [71].

8.4.1 Homogeneous Electric Fields

There is an essential difference between the application of a homogeneous
electric field to an insulating semiconductor sample at low temperature, com-
pared to that of a magnetic field. While there seems to be no limit to the
maximum magnetic field which can be applied to a sample, the maximum
electric field is limited by the dielectric strength of the crystal. This strength
is characterized by a breakdown electric field Ebreak above which the crystal
becomes electrically conducting (in standard air, Ebreak ∼ 3.6×106 V m−1). In
semiconductors, made insulating at low temperature by the trapping of elec-
trons or holes by ionized impurities, there are two main mechanisms by which
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free carriers can be generated by the electric field. The first one is an impact
ionization of the bound electrons or holes by injected or stray free carriers and
the second one is field ionization by which the electrons (holes) tunnel from
the neutral donor (acceptor) to the CB(VB). To be precise, there is no abrupt
breakdown of the field as field ionization is progressive and the field region
where ionization takes place is loosely defined. It has been measured at LHeT
for P in silicon by Dargys et al. [39] and for shallow donors in germanium by
Žurauskas et al. [153]. It was found that, in the nanosecond time scale, the
tunnelling from the ground state occurred for fields in the 17–26 kV cm−1 and
1.1–1.9 kV cm−1 ranges for silicon and germanium, respectively.

There has been recent calculations of the Stark effect of the 1s donor
triplet levels of P in silicon, based on EMA taking into account the valley-
orbit splitting in different ways [40,48,132]. The study by Debernardini et al.
[40] compares the electric field dependence of the energies of the first donor
levels with the energy dependence with field of the ionization threshold. It
indicates that for the 2p0 level, field ionization takes place for ∼3 kV cm−1,
but that for the 1s (A1) ground state, it is only reached in the 25 kV cm−1

region, in qualitative agreement with the experimental determination. Within
the EMA, an increase with the field of E (2p0) is predicted while E (1sA1)
remains practically unchanged and this leads to an interaction between the two
levels for fields ∼24.5 kV cm−1. The calculations also show that the difference
between the EM-like 1s (E) and 1s (T2) levels and the 1s (A1) level decreases
with increasing electric fields [40,48]. These calculations have been extended to
the ground state donor level of the 4H SiC polytype by Ivanov and Janzén [65].

The splitting of the impurity levels by a homogeneous electric field has been
studied by Kohn [84]. For shallow donors, electron described by Hamiltonian
(5.4) submitted to an external electric field E along a z axis, the perturbation
Hamiltonian is:

HSt = −eEz. (8.31)

The EM Hamiltonian is invariant under inversion and the matrix elements
of HSt between two eigenstates ψ(i) = ΣiF

(i) (r)ϕk(i) (r) of this Hamiltonian
vanish in the absence of accidental degeneracies such as the (2s, 2p) degeneracy
in the case of hydrogen atom. There is, therefore, no linear Stark effect within
this approximation. The second-order Stark shift of a non-degenerate level m,
quadratic with the electric field, is due to the contribution of the interaction
of this level with other levels mediated by the electric field and is given by:

ΔESt(m) =
∑

n	=m

|〈m |HSt|n〉|2/ (Em − En).

Estimation of this shift [147] for the 2p level in silicon for an electric field of
1 kV cm−1 gives ΔESt ∼ 60 μeV

(
0.5 cm−1

)
.

In a first approximation, a Γ8 acceptor state is neither split nor shifted by
an external electric field when considering a Hamiltonian with inversion sym-
metry (Oh). However, it becomes possible when considering a local symmetry
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Td for the central cell [17, 84]. When keeping Oh symmetry, to second order,
the field-induced perturbation combines the contributions from the neighbour-
ing states and the Γ8 state considered can display a quadratic shift, and as
in the case of a uniaxial stress, a splitting into two Kramers doublets. From
the spectroscopic viewpoint, these calculations predict that except for the
2p0 line, other odd-parity transitions should be impossible to observe above
∼1 kV cm−1.

Practically, the production of an electric field in a crystal necessitates
the fabrication of ohmic contacts to the crystal and this is not an obvious
task because of the possibility to create rectifying contacts resulting from
the accidental production of diode structures with the insulating medium.
Electrical contacts have been obtained by first implanting and annealing a
dopant of the same type as the one in the bulk of the sample to produce a
p+ p p+ or a n+ n n+ structure before soldering wires to the highly doped p+

or n+ region. Metal electroplating and formation of a metal/semiconductor
eutectic has also been used for p-type silicon [147]. Inversely, the depletion
region of diode structures has been used as a medium in which relatively high
electric fields could be produced.

A decrease with the electric field of the ionization energy of P in silicon
has been measured by Guichar et al. [52] from a photoconductivity study
of the photoionization spectrum of P at LHeT. This decrease was found to
be maximum (−3 meV) for E∼400 Vcm−1 for [P] ∼2 × 1017 cm−3, and it
was interpreted as a first-order Stark effect due to a coupling between two P
atoms, which is the largest when the P atoms are neither tightly nor loosely
coupled. A study of the Stark effect of the first transitions of Se0 in sili-
con at 35K has been reported by Larsson and Grimmeiss [91] using a p+n
diode structure, with the measurements performed in the depletion region
of the diode. They observed an increase of the intensity of the 1s (T2) line
with field and were able to follow a quadratic shift of the 1s (T2) state of
2.1 × 10−3 meV cm2 kV2 for fields up to ∼17 kV cm−1. For the 2p0 state, the
quadratic shift is 3.0 × 10−2 meV cm2 kV−2 for fields up to ∼6 kV cm−1. These
shifts are both negative and this is in qualitative agreement with the calcu-
lations of [40]. Electroabsorption measurements of the SP donor spectrum in
GaP were performed at 20K by Kopylov et al. [86]. They revealed an inversion
splitting of 2p± 1 line related to the camel’s back structure of the CB mini-
mum of GaP and an analysis was made of a model suitable for the calculation
of the inversion splitting associated with the camel’s back structure. These
measurements also allowed us to measure the Stark shifts and broadening of
the lines investigated.

A shift and a broadening of the absorption of lines 1, 2, 3, and 4 of boron
in silicon have been reported by White [147] from absorption measurements13

13 The spectral resolution and the fact that the compensation ratio of the sample
used was ∼2 resulted in a superposition of lines 4 and 5 of Table 7.2, with 1Γ6

and 1Γ7 excited states, in peak 4 observed in this reference.
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under a DC electric field performed at LHeT. The apparent peak shift could
be fitted to a quadratic field-dependence, as shown in Fig. 8.37.

The observed broadening of the same lines, taken as the difference h1/2
(J)

(E) between the FWHM(E) and the FWHM at zero field, appeared to follow
a quadratic field dependence. It was fitted to h1/2

(J) (E) = t(J)E2 for line
J , and the values of t(J) for lines 1, 2, 3, and 4 are 2.0, 1.2, 30.0, and 10.2,
respectively, in units of 10−5 μeV cm2 V−2. This broadening was attributed
to an unresolved Stark splitting of the acceptor states due to a second order
partial removal of the degeneracies by the field. Since all the FWHMs of
the absorption lines increased with field, some ground-state splitting may
be present and an upper limit of this splitting was estimated as 12 μeV at
1 kV cm−1 [147]. Theoretical estimates of the first- and second-order Stark
splitting of the 1Γ8 ground state [17] are well within this upper limit.
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8.4.2 Internal Electric Fields

In electrically neutral semiconductor samples, random internal electric fields
can be present at low temperature because of the compensation and/or of
the simultaneous presence of the electrically-charged deep centres. The fol-
lowing estimation of the effect of random internal electric fields on shallow
impurity levels is taken from [123] who used it for a qualitative explanation
of the broadening of some donor lines in NTD silicon [67], and from [64], who
presented it in a more general form.

In a semiconductor with dielectric constant ε, skipping the factor (4πε0)
−1,

the potential energy V (r) due to the ionized centres evaluated at a distance
r close from a neutral impurity atom can be written as [66]:

V (r) =
∑ ei

ε |Ri − r | = 4π
∑

i

ei

εRi

∞∑

l=0

l∑

m=−l

1

2l + 1

(
r

Ri

)l

Ylm
∗(θi, ϕi)Ylm(θ, ϕ),

(8.32)

where ei denotes the electric charge (positive or negative) on the ith centre
with spherical coordinates Ri, θi, ϕi, and r, θ, ϕ the spherical coordinates
of r. For l = 0, expression (8.32) reduces to Σiei/εRi, which is the potential
evaluated at the neutral centre (r = 0). This term shifts all the levels of the
neutral impurity by the same amount and leaves, therefore, the transition
energies unchanged. The l = 1 terms reduce to −E(0) · r where E(0) is the
electric field associated with the potential, evaluated at r = 0. This term
produces the Stark effect and for weak electric fields, the levelEn of a hydrogen
atom with principal quantum number n expressed in Rydberg units [88] is:

En(E) = −1/2n2 + 3/2n (n1 − n2) E

−1/16n
4
[
17n2 − 3 (n1 − n2)

2 − 9m2 + 19
]
E2 + . . . , (8.33)

where m is the magnetic quantum number for the orbital angular momentum
along the direction of the electric field, and the integers n1 and n2, which can
be positive or equal to zero, obey n = n1 + n2 + |m| + 1. This perturbation
produces a shift of the energy levels which depends on En and the energy
distribution of these shifts results in a broadening of the lines due to an
inhomogeneous Stark effect.

An estimate of the value of the average electric field 〈E〉 produced by an
ion at a neutral donor site has been given [123] as

〈E〉∼e
ε

(NI)
2/3

,

where NI is the concentration of ions. For n = 3 in expression (8.33), it is
found that the contribution of the linear Stark effect is larger than that of the
quadratic Stark effect. Linear Stark effect can be present for QHD-like shallow
donors in direct-gap III–V or II–VI compounds with degenerate np states, but
the situation is different for donors in silicon where levels with different values
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of l are not degenerate. This is the reason why for shallow donors in silicon
and germanium, the linear Stark effect is assumed to be zero, as mentioned
in Sect. 8.4.1. This implies that from expression (8.33), the contribution of
the inhomogeneous (quadratic) Stark effect to the donor spectra in silicon
and germanium is negative, producing an asymmetric broadening of the lines,
with a tail towards the low-energy side.

The l = 2 terms in the multi-pole expansion (8.32), which are linear in
the electric field gradient (∂E/∂z)r=0, are known as the quadrupole terms
[89,90] and they produce a broadening of the shallow impurity lines known as
the quadrupole broadening. At a difference with the quadratic Stark broad-
ening, the quadrupole broadening results in a more symmetric profile of the
perturbed line [90].

In the early studies of the inhomogeneous line broadening by internal elec-
tric fields, it has been assumed that the distribution of ionized impurities was
random. While this is likely to be the case for the atomic distribution, the sit-
uation can be different when considering the charge state of the compensated
majority impurities. In the case of strongly compensated semiconductors, a
correlated distribution of the electrons (holes) occurs at LHeT on the majority
donor (acceptor) impurities in such a way that the distribution of ionized ma-
jority impurities is frozen in a configuration of minimum energy. In the general
case, [70] found that this correlated distribution reduced the average distance
between the neutral and ionized impurities of the same kind because neutral
and ionized impurities tend to form pairs. In these pairs, the mean distance Rp

between the neutral and charged impurities, which is of the order of the mean
distance Rr = N

−1/3
I in the absence of correlation (NI is the concentration of

ionized impurities), becomes Rp =
(
N0/N

2
I

)−1/3 when correlation is present
(N0 is the concentration of neutral impurities), and it is smaller than Rr. As
a consequence, in the case of correlation, there is an increase of the line width
compared to the random distribution in the case of high compensation. It is
pointed out that a temperature increase or background illumination should re-
store a random distribution and lead to a decrease of the line width. Inversely,
in the case of lightly doped compensated semiconductors where quadrupole
effects dominate, considering a correlated distribution results in a decrease of
the low-temperature line width compared to the random distribution [83].

Extensive theoretical studies of donor and acceptor spectra have shown
that in semiconductors with a concentration of neutral impurities N0 and a
concentration of ionized centres NI, the increase of the line widths is propor-
tional to (NI/N0)

2/3 when linear Stark effect is present, to (NI/N0)
4/3 when

the quadratic Stark effect dominates, and to NI/N0 when the quadrupole
effect dominates [70, 90].

Figure 8.38b gives an experimental display of the consequence of the
quadratic Stark effect of the profile of the 3p±1 (P) line in a partially an-
nealed NTD silicon sample.

In (a), where the FWHM of the line is ∼0.1 meV
(
0.8 cm−1

)
, the line shape

and the broadening can be accounted for by a quadratic Stark effect due to a
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650◦ C and (b) a complementary annealing at 800◦C, showing the effect of quadratic
Stark effect in (a). The spectral range is 340.37–343.59 cm−1 and the resolution
0.06 cm−1 (7 μeV) (after [67]). Copyright 1981 by the American Physical Society

charged defect concentration estimated at ∼1015 cm−3 after the first annealing
(before annealing, no P line is observed because of the total donor compensa-
tion by the irradiation defects produced by the fast-neutron component). The
FWHM in (b) is ∼0.03 meV

(
0.24 cm−1

)
[67].

The effect of the internal electric field on the line widths of the Ga acceptor
lines has been studied as a function of compensation in isotopically controlled
germanium samples with different 70Ge/74Ge ratios, where the Ga and As
dopant was introduced by NTD [64]. The absorption of D (Ga) and C (Ga)
lines for the same neutral Ga concentration N0, but different compensation
ratios K = NAs/NGa is shown in Fig. 8.39.

The FWHM of the D (Ga) line was found to be roughly proportional to
the ratio NI/N0 where NI is 2[As] and N0 is [Ga] – [As], indicating the domi-
nant contribution of a quadrupole interaction between the acceptor atoms and
the electric field gradient. Estimations of the compensation dependence of the
FWHM of D (Ga) for correlated and random distributions of ionized impuri-
ties showed that the experimental dependence could be explained by a cor-
related distribution (with the random model, the dependence of the FWHM
on NI was overestimated by a factor of 4–5). The comparison of the corre-
lated distribution fit with the experimental dependence also showed that the
domain of validity of the fit determined by Kogan and Lien [83] extended
beyond the compensation limit where the fit was supposed to be valid. By
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measuring the FWHMs for increasing temperatures, no sign of a transition
from correlated-to-random distribution was observed around the temperature
predicted by theory [64].

The inverse experiment was carried out by Kato et al. [76] who measured
the FWHM of 2p±1(As) in germanium samples with different Ga compensa-
tion ratios, in the low-concentration regime where concentration broadening
can be ignored. They found that for low compensation ratios, the dependence
of the FWHM of 2p±1(As) on K is consistent with a random distribution
of ionized impurities. In this region, the FWHM increases from ∼0.07 to
∼0.6 cm−1(9−70 μeV) from negligible compensation to K∼ 0.4. For higher
values of K, the increase of the FWHM is comparatively smaller due to the
transition into the correlated distribution regime and it is only ∼0.8 cm−1

(0.1meV) for K∼0.98.

8.5 Line Widths and Lifetimes

In the preceding chapters and in the present one, values of the FWHMs of
the EM electronic transitions have been considered, either as intrinsic charac-
teristics of the transitions or in connection with the broadening mechanisms
which depend on concentration, compensation ratio, or inhomogeneous im-
purity distribution. In Chaps. 6 and 7, examples of resonant broadening with
lattice phonons, which depend on the difference between the phonons and
electronic frequencies, have also been given and they are not considered here.
The broadening due to the inhomogeneous Stark effect has been discussed in
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the preceding section and the reader is referred to this section for more details.
In the EM spectra considered under TEC in compensated samples (all sam-
ples are compensated to some extent), this broadening is present and hence,
when the observation of sharp lines is the main objective, the compensated
samples are illuminated with above-band-gap light to suppress this effect, but
with the addition of the lines of the compensating impurity.

In an ideal crystal, the FWHMs of the lines of a H-like centre should be
determined by its interaction with the lattice phonon. This so-called phonon
broadening is discussed in the next subsection.

8.5.1 Phonon Broadening

Phonon broadening is due to the interaction of the H-like centre with lattice
phonons and possibly to the isotopic distribution of atoms of the lattice, and
this broadening should determine the FWHMs of the donor and acceptor lines
in high-purity uncompensated crystals in the absence of residual strains. The
interaction between lattice phonons and electronic transitions of shallow im-
purities has been considered early by Lax and Burstein [94], who proposed
that the widths of the ground and excited states were proportional to the
mean square amplitude of the nuclear vibrations of the lattice atoms. In this
model, the acoustical phonons of importance are those with a wavelength of
the order or larger than a/2, where a is the effective Bohr radius for a given
state. One of the features of this model is that, when comparing the excited
states with the 1 s ground state, the number of modes with wavelength > a/2
is inversely proportional to (a/2)3, the broadening of the 2p, 3p, or 4p states
are reduced roughly by factors 1/8, 1/27 or 1/64, respectively, with respect
to that of the ground state, so that the contribution of this state to the width
of the line is predominant. Considering the zero-point vibration of the lattice,
simple estimations of this model yielded 0 K values of the width ∼3.6 meV
for shallow impurities in silicon, and this seemed adequate to explain the line
widths of the order of the meV observed at that time for donor and acceptor
electronic lines in silicon. In a phonon-based description, this broadening pro-
cess corresponded to the simultaneous emission or absorption of acoustical
phonons accompanying the electronic transition. In view of the weakness of
the electron to phonon interaction, Kane [72] suggested that the electron to
phonon interaction contributed only a broad background to the spectrum and
that the widths observed were purely instrumental. To account for a finite line
width, he proposed that the broadening is due to the lifetime of the excited
state, mediated by its de-excitation with the emission of one phonon, and he
estimated a 0 K value of ∼50 μeV for the width of the lowest excited state. A
more detailed study based on Kane’s premise was carried out by Nishikawa
and Barrie [113] with an application to shallow impurity lines in silicon [13].
In this theory, it was shown that the lifetime broadening of a given excited
state resulted from the electron–phonon interaction through the other excited
states.
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Experimentally, the phonon broadening has mainly been investigated in
silicon for the group-III acceptors and the group-V and -VI donors in a con-
centration range where concentration broadening could be ignored. To get
rid of residual strains, the sample is cut from FZ material where the residual
strain due to the presence of a large concentration of Oi is minimized. A few
studies on group-III acceptors and group-V donors have also been performed
in germanium.

In germanium, the FWHMs of the shallow donor and acceptor lines look
roughly independent from the transition considered, probably because the line
energies lie below the phonon energy spectrum. For silicon, if the FWHMs of
the donor lines seem also to be independent of the transition considered, this
is different for the lowest energy transitions of boron and indium, correspond-
ing to the deepest states, which are larger than the other ones, probably
because of a stronger coupling with the two-phonon and three-phonon back-
ground (see Table 7.5). In natSi, the sharpest FWHMs of the acceptor lines are
∼0.2 cm−1 (25 μeV). The FWHMs of the lines of the donor spectra are more
uniform and for the P donor they are ∼0.08 cm−1 (10 μeV). The FWHMs of
the neutral chalcogen and chalcogen complexes have been measured in natSi,
and the sharpest ones (∼0.2 cm−1 or 25 μeV) are observed for the highly ex-
cited states of the sulphur-related spectra.

A substantial decrease of the FWHMs has been observed in silicon between
the values measured in natural and qmi materials. This is illustrated for donors
in Table 6.1, where the FWHM of 2p0 (P) is seen to decrease by a factor of ∼2.6
in qmi 28Si as compared with natSi. For boron, the decrease is not uniform,
and the broadest lines in natSi remain broad in qmiSi, but for line 15(B), the
decrease is by a factor 6.6 in qmi 28Si (compare Figs. 7.2 and 7.6).

Presently, the most dramatic effect occurs for component Γ7 of 1 s (T2)(
Se+
)
. This component is shown in Fig. 6.18 in natSi doped with natSe, and

its FWHM is ∼0.5 cm−1 (60 μeV). In natSi doped with 77Se, the FWHM of the
line is reduced to 0.18 cm−1 (22 μeV) because of the absence of contribution
of isotopes other than 77Se, but in qmi 28Si, the FWHM of 1 s (T2)

(
77Se+

)

shrinks to 0.008 cm−1 (1 μeV) and the decrease comes with a factor ∼22 [141].
This demonstrates the existence of a broadening mechanism due to the ran-
dom isotopic distribution of lattice atoms and one can wonder the energy
dependence of this isotope effect.

The sharpest donor lines reported in natGe are 4p±1 (D (H,O) and
4f±1 (D (H,O), with FWHMs ∼6.4 μeV

(
0.05 cm−1

)
. The model of Nishikawa

and Barrie [113] has been used by Navarro et al. [109] to compare with the cal-
culated line width the residual width of the 2p±1 line of the D (H,O) donor in
ultrapure natGe, measured by Zeeman tuning of the energieer frequencies. The
broadening calculated by taking into account the interaction of the 2p±1 level
with the four nearest levels (2p0, 2s, 3p0, and 3s) was ∼2.5 μeV, compared
to an experimental value of 8.6 μeV for the FWHM of the 2p±1 line, but the
calculated value was found to be sensitive to the value of the effective Bohr
radius used in the calculation. For the acceptors, the sharpest line reported
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in natGe seems to be C (Al), with a FWHM14 of 0.038 cm−1 (4.7 μeV). One
should also expect to observe an isotopic sharpening of the lines of the H-like
centres in germanium, for which qmi crystals with different isotopes have been
prepared, but no information on high-resolution shallow impurity spectra in
qmi germanium seems to be presently available.

Line widths limited by electron–phonon interaction have also been mea-
sured in QHD spectra in GaAs under a magnetic field (see Fig. 6.41b) and
the FWHMs of 1 s→ 2 pm = −1 transitions for Te, S, and Sn or Se are 0.06,
0.045, and 0.02 cm−1 (7, 5.6, and 2.5 μeV), respectively, for a magnetic field
of 6.3T.

When temperature increases above LHeT, shallow impurity spectra are
usually observed as long as the ground state is populated, but the FWHMs of
the line increases as the phonon broadening is temperature-dependent. The
increase for line 2(Al) in silicon has, for instance, been followed up to 90K
and for [Al] = 4.4 × 1014 cm−3, the FWHM is ∼0.75 meV

(
6.0 cm−1

)
at this

temperature [61] compared to ∼0.2 meV
(
1.7 cm−1

)
at LHeT in the spectrum

of Fig. 7.4.
Information on the broadening of donor and acceptor lines in FZ silicon

between 5 and 60K is given in a concise report by Agladze et al. [3], where the
spectra were obtained when necessary under high resolution. Representative
examples are given in Fig. 8.40. In the original figure, the lines considered were
not indicated and tentative attributions have been made here.
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14 The value is given first in the unit used in the original publication.
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Within experimental error, the very small increase of the FWHM of
2p±1 (P) between 5 and ∼15 K is consistent with the absence of broaden-
ing deduced from the FWHM values at 16K reported by Shen et al. [130].
For In, line 2 must be chosen because, while slightly sharper than line 1, it is
about one order of magnitude more intense.

It is clear that the thermal broadening of the acceptor lines is stronger than
those of the donor lines, and for the acceptor lines, the larger the central-cell
effect, the larger is the broadening observed.

8.5.2 Concentration Broadening

Extreme examples of concentration broadening are visible in Figs. 6.7 and
6.8. This effect is due, above some critical concentration, to an overlap of
the envelope functions of the excited states, and it was investigated by [111].
Spectroscopic data obtained in the 1960s showed that for B in silicon, concen-
tration broadening of the doublet 4–5 (unresolved at that time) was already
present for a neutral [B] value of 1.2×1015 cm−3 [37], while a crude calculation
by Baltensperger [10] predicts a corrected onset of 3 × 1015 cm−3. The onset
should be proportional to (a0

∗)−3, where a0
∗ is the effective Bohr radius of the

impurity, and is correlated with the EM parameters of the semiconductors: it
is smaller for shallow donors and acceptors in germanium than in silicon, with
no reference, however, to diamond. At the inverse, for donors in GaAs, inter-
action between donors is observed in the standard samples, explaining why a
magnetic field is needed in this material to obtain sharp lines (see Fig. 6.41).
There has, however, been no recent systematic study of concentration broad-
ening of impurities is silicon or germanium.

8.5.3 Lifetimes

A lower limit of the lifetimes of the excited states can be estimated from these
FWHMs if one assumes no broadening of the ground state. For a Lorentzian
line shape, the lifetime τe of the excited state is given by

τe (s) =
(
2πcFWHM

(
cm−1

))−1
. (8.34)

When expressed in picosecond, τe is given as 5.31 × (FWHM
(
cm−1

))−1, or
658 × (FWHM (μeV))−1.

With the demonstration of the stimulated emission associated with these
states [119], and also with the requirement of quantum computing, a keen
interest has developed on the actual lifetimes of the donor excited states in
silicon. Population inversion of donor electrons has been achieved by non-
resonant pumping with a CO2 laser with discrete energies tunable in the
∼124 meV range, and by resonant pumping at the energies of the donor ab-
sorption lines with a FEL [118]. These experiments have shown the importance
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of the 2p0 level, with a relatively long lifetime, because it is separated from
the 1s (E) and 1s (T2) levels by a relatively high energy, and of the 1s (E)
level, with a relatively short lifetime due to an efficient de-excitation to the
ground state mediated by the emission of a g– TA inter-valley phonon. Such
experiments have been performed at LHeT with natSi:P, natSi:As, and natSi:Sb
with donor concentrations in the 3×1015 cm−3 range, and the laser transitions
observed were 2p0 → 1s (E), 2p±1 → 1s (E), and 2p±1 → 1s (T2).

The lifetime of the excited state of the 2p0 (P) line at 34.1meV was mea-
sured at 10K by a pump-probe experiment with a FEL in a natSi FZ sample
with [P] ∼2 × 1015 cm−3. This was done by following the transient decay of
the transmission dip at 34.1meV as a function of the time delay between the
pump and probe pulses (the pulse duration was 10 ps and pump powers were
between ∼0.1 and 1.67 kWcm−2). A simple exponential decay gave a value of
τexc of (205 ± 18) ps [145]. This lifetime is much larger than the one (∼65 ps)
derived from the FWHM of 2p0 (P) measured at 1.6K in a natSi FZ sample
with [P] ∼3 × 1012 cm−3, but comparable to the one (∼170 ps) derived from
the FWHM of 2p0 (P) in a qmi 28Si sample (see Table 6.1). This shows that
the lower limits of the lifetimes deduced from the FWHMs of the lines do not
represent generally the actual lifetimes of the excited states, and this could be
due to the neglected ground state contribution to the FWHM and to residual
inhomogeneous broadening. The LHeT lifetimes of the excited states of the
np±1 (P) lines have also been measured by the transient decay method and the
values are near 160 ps. By comparison, the lifetimes for 2p0 (As) and 2p±1 (As)
in natSi are near 120 ps (for 2p0 (As) the lifetime deduced from the FWHM of
Table 6.1 is ∼28 ps). The transient decay results are summarized in Fig. 8.41.

In the same study, the temperature dependence of the apparent lifetime
of the donor electron in 2p0 (P) and 2p±1 (P) before being re-trapped in the
ground state has been investigated up to 110K. It is found that up to ∼50 K,
this lifetime increases (to a value of ∼200 ps for 2p±1 (P)). This increase can
be attributed to the contribution of thermal ionization from the excited state
to the bottom of the CB, followed by some kind of cascade recombination to
the ground state. At higher temperature, the electron is excited higher in the
CB and it recombines directly to the ground state with TO phonon emission
and this reduces the lifetime [145].

By analogy with the donor states, an order of magnitude of the lifetimes
of some boron excited states in silicon can be obtained from the FWHMs
measured in qmi samples. In qmi 28Si, the FWHM of the 11B component of
lines 21 (353.33 cm−1 in natSi) and 23 (354.55 cm−1 in natSi) is 0.022 cm−1 at
1.4K, corresponding to lifetime of ∼240 ps.

In germanium, the lifetimes of the first excited states of the Sb donor
and of the 1Γ8

− acceptor state15 of boron have been determined by careful

15 In this reference, the germanium acceptor states are noted following [103],
where the (8–01) and (7–0) states correspond in this book to 1Γ8

− and 1Γ7
−,

respectively.
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measurements of transitions between the excited states detected by PTIS
as a function of the background radiation and of temperature [49]. These
LHeT lifetime values for 2p0 (Sb), 3p0 (Sb), and 2p±1 (Sb) are 400, 100, and
600 ps, respectively, slightly larger than the ones for P in silicon, and they
are concentration-independent up to about 1014 cm−3. The LHeT lifetime
reported for the hole in the 1Γ8

− (B) state is very large
(
6 × 104 ps

)
compared

to the donor values, and independent of the acceptor concentration up to
5 × 1015 cm−3. For comparison, the lower limit of the lifetime of the hole in
the 1Γ7

− (Al) state deduced from the FWHM of C (Al) is 173 ps. All these
results confirm that the frequency-domain spectroscopy with natSi and natGe
samples can provide only a lower limit of the lifetimes of the excited states.
It would be interesting to know if the measurement with qmi Ge samples
would produce the same sharpening of the donor and acceptor lines as the
one observed in silicon, considering that this sharpening could depend on the
isotopic purity of the samples.
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Appendix A

Energy Units Used in Spectroscopy
and Solid-State Physics

The energy of an electron accelerated by a potential of 1 volt is 1 elec-
tron volt (eV), a quantity of the order of magnitude of the energies at the
atomic scale. The infrared spectroscopists prefer the wavenumber (the num-
ber of wavelengths λ per unit length, usually noted ν̃), specially when dealing
with vibrational energies. It is commonly expressed in reciprocal centimeter(
cm−1

)
. The phonon frequencies are often evaluated in Terahertz. The ab-

solute temperature is often used to measure energy in statistical mechanics.
The correspondence with macroscopic energies is provided by multiplying the
energies in eV by the Avogadro constant NA and evaluating the result in kJ
per mole

(
1 J = 6.24151× 1018 eV

)
.

The correspondences between the eV and these units is given below. It is
derived from E = eV = hc ν̃ = hν = kBT = hc/λ (the Boltzmann constant is
noted kB instead of k).

E (eV) ν̃
(
cm−1

)
ν (THz) K (Kelvin) kJmole−1 λ (μm)

1 8065.545 241.7992 11,604.50 96.48534 1.239842
1.239842× 10−4 1 0.0299792 1.438781 0.0119627 10,000
0.004135667 33.35641 1 47.99237 0.399030 299.792
8.61734× 10−5 0.695036 0.0208366 1 0.00831444 14,387.8
0.0103643 83.5935 2.50608 120.273 1 119.627
1.239842 10,000 299.792 14,387.81 119.627 1

In the book, 1 cm−1 is taken as 0.1239842meV. In the visible and UV
regions of the spectrum, the nanometre (nm) wavelength unit is used (1 Å =
0.1 nm). In the IR region of the spectrum, the μm wavelength unit is mostly
used above 2500nm and below 1 mm.
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Values of Selected Physical Constants Recommended
by CODATA (2006)

Except for the value for c, μ0 = 4π × 10−7, and ε0, taken as exact, all the
physical constants are rounded.

Speed c of light in vacuum
(
m s−1

)
: 299,792,458

Magnetic constant μ0

(
NA−2

)

(permeability of vacuum):
12.566, 370, 614. . .× 10−7

Electric constant ε0 = 1/μ0c
2
(
F m−1

)

(permittivity of vacuum):
8.854187817. . .× 10−12

Electron charge e (C): 1.602176487 (10) × 10−19

Planck constant h (J s): 6.62606896 (33)× 10−34

Planck constant h (eV s): 4.13566733 (10)× 10−15

Planck constant over 2π � (J s): 1.054571628 (53) × 10−34

Planck constant over 2π � (eV s): 6.58211899 (16) × 10−16

Boltzmann constant kB

(
J K−1

)
: 1.3806505 (24) × 10−23

′′ (
eV K−1

)
: 8.617343 (15)× 10−5

Bohr radius a0 (m) = ε0h
2/πmee

2 0.529177208 (59) × 10−10

Rydberg constant R∞
(
m−1

)

= mee
4/
(
8ε20h

3c
) 10 973731.568527(73)

Rydberg constant converted in eV: 13.60569193(34)

Avogadro constant NA (atom per mole): 6.02214179(30)× 1023

Electron mass me (kg) 9.10938215 (45)× 10−31

Atomic mass constant
mu = 1

12m
(
12C
)

(kg)
1.660538782× 10−27

Bohr magneton μB = e�/2me

(
JT−1

)
927.400915 (23)× 10−26

′′ (
eVT−1

)
5.7883817555× 10−5

In the atomic units (a.u.) system, the permittivity of vacuum is dimen-
sionless and set equal to (4π)−1, while a0, e2, me, and � are set equal to unity.
The atomic unit of energy, the Hartree, is equal to two times the Rydberg
constant.
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Bravais Lattices, Symmetry and Crystals

3D space can be filled without voids or overlapping by identical prismatic cells
with well-defined symmetries, and their types are limited to seven. These units
cells can be defined by the lengths of three nonplanar primitive vectors a1, a2

and a3 and by the angles α, β and γ between these vectors. They generate
the seven simple crystal systems or classes, defined by the sets of all points
taken from a given origin of these cells, that are defined by vectors

R = n1a1 + n2a2 + n3a3 (B.1)

where n1, n2 and n3 are integers. TableB.1 enumerates these crystal systems
and their geometric characteristics.

The other crystal lattices can be generated by adding to some of the above-
defined cells extra high-symmetry points by the so-called centering method.
Table B.2 shows the new systems added to the simple crystal lattices (noted s,
or P , for primitive) and the numbers of lattice points in each conventional unit
cell. The body-centred lattices are noted bc or I (for German Innenzentrierte),
the face-centred, fc or F , and the side-centred or base-centred lattices are
noted C (an extra atom at the Centre of the base). These 14 lattice systems
are known as the Bravais lattices (noted here BLs). A representation of their
unit cells can be found in the textbook by Kittel [7].

A primitive cell of a BL is a cell of minimum volume that contains only one
lattice point, so that the whole lattice can be generated by all the translations
of this cell. This definition allows for different primitive cells for the same BL,
but their volumes must be the same. The parallelepiped defined by the three
primitive vectors a1, a2, and a3 of a simple BL is a primitive cell of this lattice.

The conventional unit cell showing the symmetry of the hexagonal system
is that of a right prism, whose height is usually noted c, with a regular hexagon
as a base. This cell contains three lattice points, hence three primitive cells
consisting in a right prism with a base made of a rhomb with one 120◦ angle.

The unit cells of the simple P systems are primitive cells. Primitive cells
are not unique and most don’t have the BL symmetry, but it is possible
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Table B.1. The seven 3D simple crystal systems. The conditions on the primitive
vectors of the unit cells and on their orientations are indicated. Angle γ is taken as
the one between a1 and a2

Restrictions for vectors
System lengths and angles

Triclinic a1 	= a2 	= a3

α 	= β 	= γ
Monoclinic a1 	= a2 	= a3

α = γ = 90◦ 	= β
Orthorhombic or rhombic a1 	= a2 	= a3

α = β = γ = 90◦

Tetragonal a1 = a2 	= a3

α = β = γ = 90◦

Hexagonal a1 = a2 	= a3

α = β = 90◦, γ = 120◦

Trigonal a1 = a2 = a3

α = β = γ 	= 90◦, <120◦

Cubic (isometric) a1 = a2 = a3

α = β = γ = 90◦

Table B.2. Number of lattice points in the unit cells of the 14 3D Bravais lattices

System Simple (P ) Body-centred Face-centred Base-centred

Triclinic 1 – – –
Monoclinic 1 – – 2
Orthorhombic 1 2 4 2
Tetragonal 1 2 – –
Hexagonal 1 – – –
Trigonal 1 – – –
Cubic (c) 1 (sc) 2 (bcc) 4 (fcc) –

to construct a primitive cell with the symmetry of the BL. The recipe is
to connect a given lattice point to its nearest neighbours by straight lines
and to intersect these lines at mid-point by perpendicular planes. The inner
volume defined by these planes is the volume of the primitive cell known as
the Wigner-Seitz cell. In particular, the Wigner-Seitz cell for the hexagonal
system is an hexagonal prism whose volume is that of the hexagonal unit cell.

Real crystal lattices are made from atoms, atomic or molecular entities
associated with lattice points of the BLs or of their combinations. For instance,
when they are centred at the lattice points of a fcc BL, entities of two same
atoms lying along the diagonal of the unit cell of this BL and separated by
one quarter of this diagonal generate the diamond structure (when the two
atoms are different, the structure generated is that of sphalerite, also called
zinc-blende).
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B.1 The Reciprocal Lattice

When dealing with the interactions of crystals with particles that can display
wave-like properties, like photons, phonons or electrons, it is useful to intro-
duce a reciprocal lattice associated with the real (or direct) crystal lattice. Let
us consider a set of vectors R constituting a given 3D BL and a plane wave
eik.r. For special choices of k, it can be shown that k can also display the
periodicity of a BL, known as the reciprocal lattice of the direct BL. For all
R of the direct BL, the set of all wave vectors G belonging to the reciprocal
lattice verify the relation

eiG.(r+R) = eiG.r (B.2)

for any r. The reciprocal lattice can thus be defined as the set of wave vectors
G satisfying

eiG.R = 1 (B.3)

The reciprocal lattice of a BL whose primitive unit cell is defined by three
vectors a1, a2 and a3 is generated by three primitive vectors

b1 = 2π
a2 ∧ a3

v
,b2 = 2π

a3 ∧ a1

v
,b3 = 2π

a1 ∧ a2

v
(B.4)

where v = a1. (a2 ∧ a3) is the volume of the primitive unit cell of the
direct lattice (the notation u ∧ v denotes the vector product of vectors
u and v).

It is clear that the ai and bj satisfy condition B.3 as ai.bj = 2πδi j where
δij is the Kronecker symbol (0 if i 
= j, 1 if i = j). Similarly, it can be checked
that for any vector G = m1b1 +m2b2 +m3b3 (m1, m2 and m3 being integers)
of the lattice generated by the bj, condition B.3 is met when R is a vector of
the direct lattice.

It can be also checked by using expressions B.4 that the reciprocal lattice
of the reciprocal lattice is the original direct lattice and that the volume of
the primitive unit cell of the reciprocal lattice is (2π)3/v. The Wigner-Seitz
primitive cell of the reciprocal lattice is known as the first Brillouin zone
(BZ) of the reciprocal lattice. As an example, the reciprocal lattice of the
fcc BL with conventional cubic unit cell of side a is the corresponding bcc
BL with a conventional cubic unit cell of side 4π/a, and by applying twice
the construction of a reciprocal lattice, it is seen that the reciprocal lattice
of the bcc BL is the corresponding fcc BL. The angular correspondence is
not a general rule, however, and the reciprocal lattice of the hexagonal BL
is another hexagonal BL rotated through 30◦ about the c axis of the direct
lattice. A general account on the symmetries of the Wigner-Seitz cells for
the different BLs can be found in the review by Koster [8] and be easily
extrapolated to the first BZs.
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B.2 Lattice Planes and Miller Indices

Let us start with a few definitions. A lattice plane of a given 3D BL contains at
least three noncollinear lattice points and this plane forms a 2D BL. A family
of lattice planes of a 3D BL is a set of parallel equally-spaced lattice planes
separated by the minimum distance d between planes and this set contains all
the points of the BL. The resolution of a given 3D BL into a family of lattice
planes is not unique, but for any family of lattice planes of a direct BL, there
are vectors of the reciprocal lattice that are perpendicular to the direct lattice
planes. Inversely, for any reciprocal lattice vector G, there is a family of planes
of the direct lattice normal to G and separated by a distance d, where 2π/d
is the length of the shortest reciprocal lattice vector parallel to G. A proof of
these two assertions can be found in Ashcroft and Mermin [1].

As one generally uses a vector normal to a lattice plane to specify its
orientation, one can as well use a reciprocal lattice vector. This allows to
define the Miller indices of a lattice plane as the coordinates of the shortest
reciprocal lattice vector normal to that plane, with respect to a specified set of
direct lattice vectors. These indices are integers with no common factor other
than 1. A plane with Miller indices h, k, l is thus normal to the reciprocal
lattice vector G = hb1 + kb2 + lb3. and it is contained in a continuous plane
G.r = constant. This plane intersects the primitive vectors ai of the direct
lattice at the points of coordinates x1a1, x2a2 and x3a3, where the xi must
satisfy separately G.xiai = constant. Since G.a1, G.a2 and G.a3 are equal to
h, k and l, respectively, the xi are inversely proportional to the Miller indices of
the plane. When the plane is parallel to a given axis, the corresponding x value
is taken for infinity and the corresponding Miller index taken equal to zero.

Lattice planes are specified by giving their Miller indices in parentheses: (h
k l). For instance, in the cubic system, the Miller indices of a plane intersecting
the a1, a2 and a3 axes at 3, −1 and 2, respectively will be (2 −6 3) and the
plane will be noted (26̄3). The corresponding normal direction in the direct
lattice is noted [26̄3]. The body diagonal of the unit cell of the cubic lattice
lies in a [111] direction and more generally, the lattice point n1a1+n2a2+n3a3

lies in the direction [n1 n2 n3] from the origin. For symmetry reasons, there
exists equivalent families of planes in non triclinic crystals and the equivalent
planes are noted collectively {u v w}. For instance, in the cubic lattice, the
(100), (010) and (001) planes are noted {100}. Similarly, the [100], [010],
[001], [1̄00], [01̄0] and [001̄] directions are collectively noted <100>.

In fcc and bcc lattices, there are no cubic primitive cells whereas in simple
cubic system, the reciprocal lattice is also simple cubic and the Miller indices
of a family of lattice planes represent the coordinates of a vector normal to
the planes in the usual Cartesian coordinates. As the lattice planes of a fcc
cubic lattice or a bcc cubic lattice are parallel to those of a sc lattice, it has
then been fixed as a rule to define the lattice planes of the fcc and bcc cubic
lattices as if they were sc lattices with orthogonal primitive vectors of the
reciprocal lattice.
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Fig. B.1. First Brillouin zone of the hexagonal BL

The lattice planes of the hexagonal structures can be defined by three
coplanar basis vectors a1, a2 and a3 at 120◦ from one another and such as
a1 + a2 + a3 = 0 and by axis c perpendicular to these vectors. The Miller
indices of a plane for these structures is written (h k i l) where h, k and i
are the reciprocals of the intercept of the plane with a1, a2 and a3 and l
the reciprocal of the intercept in the c direction. The indices h, k and i are
not linearly independent and their sum must be zero. The first BZ of the
hexagonal BL is shown in Fig. B.1.

B.3 A Toolbox for Symmetry Groups

B.3.1 The Abstract Groups

A presentation of the optical spectroscopy of impurity centres in crystals
requires some understanding of group theory and we provide here basic def-
initions. Specific answers to many questions on group theory and to its ap-
plications in solid state physics and spectroscopy can be found in [5]. Among
other properties (see Heine [6]), the abstract finite groups are characterized
by (1) their order, i.e., the number of elements they contain; (2) a closed com-
bination law within the group such that the application of this law to any two
elements of the group still yields an element of the group. The order of appli-
cation is important because for any two group elements G and P , the element
resulting from GP is usually different from that resulting from P G, where
multiplication is used as the combination law. When GP gives the same result
as P G whatever G and P , the group is said to be abelian; (3) the existence
of an identity element (noted E) such as, for any G belonging to the group,
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GE or EG yields G; and (4) the existence for any element G of an inverse
element G−1 belonging to the group and such that GG−1 = G−1G = E. Two
elements A and B of a group are said to be conjugate if A = GBG−1, from
which B = G−1AG is readily derived. A set of mutually conjugate elements of
a group constitutes a class of the group and any element of the group appears
only in one class (E is a class by itself). A subset of a given group displaying
general group properties with the same multiplication law as the initial group
is called a subgroup of this group.

B.3.2 The Symmetry Point Groups

The 3D symmetry point groups are a particular category of finite groups whose
elements are spatial symmetry operations and 32 of them, derived from the
symmetries of the BLs, are known as the crystallographic point groups. A
BL or any entity left invariant under all the symmetry operations of a given
point group is said to belong to this point group. Two or three of these point
groups can sometimes show a one to one correspondence between their ele-
ments, with the same formal multiplication tables, despite the fact that the
symmetry operations are spatially different. Such groups, which correspond
to the same abstract group, are said to be isomorphous. There are two nota-
tions for the point groups: the international one, also known as the Hermann-
Mauguin notation, mainly used by cristallographers, and the one based on the
Schönflies notation (used here), mainly used in molecular and semiconductor
physics. The correspondence between the two notations is given in Tables 7.2
and 7.3 of [1], pp. 121 and 122.

A short description of the 32 crystallographic point groups is given below.
They are:

– The pure rotation groups Cn (n = 1, 2, 3, 4, 6) containing only rotations
2πk/n about an axis (k is an integer between 1 and n). The rotations made
clockwise are noted Cn, and those made counter-clockwise C−1

n (they are
obviously the inverse of each other), except for n = 2 where the two
rotations yield the same result. For the Cn groups, these two rotations
are unilateral (not equivalent) and they form two distinct classes. When
k differs from n and from n/2 (Cn/2

n = C2), the rotations Ck
n belong to

different classes. For instance, the different classes of the C6 group are E,
C6, C6

2 = C3, C6
3 = C2, C6

4 ≡ C−1
3 and C6

5 ≡ C6
−1. The Cn groups

are called cyclic as the Cn operation repeated n times (Cn
n) gives E. The

only element of group C1 is E. Other point groups derived from Cn are:
– The S2n groups (n = 1, 2, 3), with additional rotations π/n about the

main axis, followed by a reflection through a plane perpendicular to the
main axis (S2n or S2n

−1 rotation-reflections). For n = 1, this corresponds
to inversion I. The Sn operations are called improper rotations, by com-
parison with the proper rotations Cn. The only element of group S2 (be-
sides E) is I so that this group is also noted Ci.
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– The Cnh groups (n = 1, 2, 3, 4, 6), with additional Sn rotation-reflections
and a symmetry reflection σh through a plane perpendicular to the main
axis, plus I for n even. A symmetry reflection is another kind of improper
rotation (rotation-inversion) resulting from a rotation C2 followed by in-
version (IC2);

– The Cnv groups (n = 2, 3, 4, 6), with additional reflections through n sym-
metry planes containing the main axis (one kind, σv, for n = 3, two kinds,
σv and σ′v, for n even);

– The Dn groups (n = 2, 3, 4, 6), with additional rotations of an angle π
through n axes perpendicular to the main axis (one kind, C′

2, for n = 3,
two kinds, C ′

2 and C ′′
2 for n even). For the groups including these additional

rotations, the Cn and C−1
n rotations about the main axis are equivalent

(bilateral) and they belong to the same class of symmetry operations.
– The Dnh groups (n = 2, 3, 4, 6), derived from the Dn groups by adding

reflections through n symmetry planes containing the main axis and the
C′

2 axes (one kind, σv, for n = 3, two kinds, σv and σ′v, for n even), a
reflection σh through a plane containing the C ′

2 axes, plus I for n even;
– The Dnd groups (n = 2, 3), derived from the Dn groups by adding reflec-

tions through n symmetry planes containing the main axis and midway of
the C′

2 axes (one kind, σv, for D3d, two kinds, σv and σ′
v, for D2d), plus

I for D3d.

The five other point groups are known as the cubic point groups. They are
groups T and O, including all the proper rotational symmetries of the tetra-
hedron and of the cube, respectively, group Th, derived from T by adding a
centre of symmetry, and finally groups Td and Oh, including all the rotational
symmetry transformations of the tetrahedron and of the cube, respectively.

As already said, the above point groups are derived from the symmetries of
the BLs. They cannot therefore include groups with C5 rotational symmetry,
like the C5 group and the groups derived from it. The icosahedral point group,
sometimes noted Y , contains fifteen C2, ten C3, and six C5 axes. It displays the
rotational symmetries of the regular icosahedron and dodecahedron, the two
other regular polyhedra (platonic solids) besides the tetrahedron, the cube and
the octahedron. The Ih point group, also often referred to as the icosahedral
point group, is derived from Y by the addition of a centre of symmetry and
it is the point group with the largest number of symmetry elements (120). Ih
is the symmetry point group attributed to fullerene (C60), whose structure
possess regular hexagonal and pentagonal faces. C5 rotational symmetry can
also be found in some quasicrystals (for a review, see [4]).

B.3.3 Representations and Basis Functions

A set of matrices transforming under the multiplication laws of a group con-
stitutes a representation of this group. When this set is in the diagonal form
and that it can be reduced into subsets that cannot be further reduced
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(we assume the reader is familiar with matrix algebra), these subsets form
irreducible representations (IRs) of this group. When the initial set cannot be
reduced, it is already an IR of the group. There are as many IRs of a group
as the number of classes of this group. The sums of the diagonal elements of
the diagonalized matrices are the characters of the IRs and they are the same
for all the elements of a given class. As the identity E is a class by itself,
the characters of the IRs corresponding to E are simply the dimensions of
the IRs. Most of the group characters are real numbers, but some of them
can also be imaginary (for instance in group C4) or complex (for instance in
group C3). The character tables of the 32 crystallographic point groups can
be found in [6,8,9]. A function or a set of functions that transforms under the
symmetry operations R of a group through the set of matrices corresponding
to a given representation forms a basis for this representation (actually, the
basis functions are used to determine the representations). Among the IRs,
there is always a unit representation, 1D, whose characters are 1, whatever
the class.

In the notation of [11], the IRs are noted by capital letters eventually with
indices and/or primes, the convention being to label by A or B the 1D IRs,
by E (not to be confused with the identity operation E), the 2D ones and by
T the 3D ones. In the notation of Bethe [2] used by Koster [9], the IRs are
simply noted Γi (i = 1, 2, 3, etc), eventually with indices and primes.

The symmetry operations considered up to now are supposed to apply on
components x, y, z of polar vectors (like those of a force or of an electric field),
that change sign under inversion symmetry, or on components Sx, Sy, Sz of
axial vectors, or pseudo-vectors, (like the angular momentum or the magnetic
field) that do not change sign under inversion. It is possible to calculate the
characters of the 3D matrix representations associated with the components
of polar and axial vectors for the different symmetry operations of the 32
point groups and the corresponding list [10] is given in TableB.3.

This table can be used to determine the representation for a polar or axial
vector in a given symmetry group. In some cases, these representations are
irreducible, as for the Td group, but for the others, they are reducible and
the character table of the IRs of the group must be used for the reductions
into IRs.

Now, to go further and to provide conceptual tools that will be used in the
interpretation of the electronic spectra of impurities in crystals, a new group
has to be introduced, the 3D rotation group, noted here R+(3), which is the

Table B.3. Characters of the representations spanned by polar and axial vectors
for the different symmetry operations of the crystallographic point groups

Symmetry operation E C2 C3 C4 C6 I σ S3 S4 S6

Polar vector 3 −1 0 1 2 −3 1 −2 −1 0
Axial vector 3 −1 0 1 2 3 −1 2 1 0
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group of all the rotations through any angle about any axis. R+(3) is an infi-
nite group and its IRs and their basis functions are intimately related to the
quantum-mechanical properties of the total angular momentum of an electron
in a free atom. In the one-electron approximation, quantum mechanics tells us
that the energy level of an electron whose eigenvalue of angular momentum is
j is (2j + 1)-fold degenerate. This level is associated with (2j + 1) eigenfunc-
tions differing in the value m of the z-component of the angular momentum,
running from j to −j. For integral values of j, these eigenfunctions are the
spherical harmonics

Ylm = NlmPl|m| (cos θ) eimφ

where θ and φ are the spherical polar coordinates, Pl|m| an associated Legendre
polynomial and Nlm a normalizing factor. When the electron spin is included,
j can take integral and half-integral values so that the degeneracy is 1, 2,
3, etc . . .. From the quantum-mechanical analogy between the operators of
an infinitely small rotation and angular momentum, it can be shown that
the value of j can be used to label the (2j + 1)-dimensional IRs of R+(3),
noted D(j). The unit representation of R+(3) is D(0) and the components of
an axial vector transform as IR D(1) of R+(3). Under rotation by angle φ
about a given axis, the basis functions of IRj are multiplied by eimφ. For half-
integral values of j, it is seen that the rotation of 2π about an arbitrary axis
does not correspond to the unit element E for R+(3) as the basis functions
change sign, but to a new element of the group, usually noted Ē (notations
Ê and Q are also found) and such that ĒĒ = E. This can be translated to
point groups when studying the symmetry properties of electronic systems
with half-integral values of the angular momentum in crystals. In that case,
besides Ē, one has to introduce for the point group new classes of symmetry
operations, noted here generically R̄ with respect to the usual ones, such that
RĒ = R̄, and they lead to a two-valued representation of the group, sometimes
referred to as the double group in this particular case. For instance, a C̄n class
corresponds to CnĒ. The number of classes of the double group is larger than
that of the original group, but not always twice as large.

The tables of characters of a point group are very useful to determine
the splitting of a degenerate electronic energy level in a crystal field of a
given symmetry. They also allow to determine if a transition between two
levels associated with different IRs is IR-allowed or Raman-allowed. For the
double groups, the characters of the IRs not involving spin are the same for
the R and R̄ symmetry operations. For those involving spin, the characters
are different, unless the R and R̄ operations belong to the same class. As an
example, the full double group character table of the Td symmetry point group
is given in TableB.4. The double groups and their symmetry operations keep
the notation of the standard point groups with an upper bar

(
T̄d

)
.

For the double representations, the basis functions that are eigenfunctions
of angular momentum j and projection m on the z axis are noted φ (j,m).
For Γ7, the basis functions transform like the products φ (j,m) of the basis
functions of Γ6 and those of Γ2 and they are noted Γ6 × Γ2.
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Table B.4. Double group characters table for the Td point group. The numbers
before the symmetry operations correspond to the number of geometrically different
axes or symmetry planes. Some of the operations of the double group belong to the
same class as those of the original group. When more than one IR is indicated, the
first one corresponds to the notation of Mulliken [11], the second one to Koster et al.
[9] and the one in parentheses to [3]

Symmetry 3C2 6σd Basis
classes: IRs E Ē 8C3 8 C̄3 3 C̄2 6S4 6 S̄4 6 σ̄d functions

A1, Γ1 1 1 1 1 1 1 1 1 xyz
A2, Γ2 1 1 1 1 1 −1 −1 −1 SxSySz

E, Γ3 (Γ12) 2 2 −1 −1 2 0 0 0 (2z2 − x2–y2)√
3
(
x2 − y2

)

T2, Γ5 (Γ15)
a 3 3 0 0 −1 −1 −1 1 x, y, z

T1, Γ4 (Γ25) 3 3 0 0 −1 1 1 −1 Sx, Sy, Sz

Γ6 2 −2 1 −1 0
√

2 −√
2 0 φ (1/2, 1/2),

φ (1/2,−1/2)

Γ7 2 −2 1 −1 0 −√
2

√
2 0 Γ6 × Γ2

Γ8 4 −4 −1 1 0 0 0 0 φ (3/2, 3/2),
φ (3/2, 1/2),
φ (3/2,−1/2),
φ (3/2,−3/2)

B.3.4 The Symmetry Space Groups

The global symmetry of a crystal is specified not only by a spatial invariance
with respect to the proper and improper rotations defined by the elements of
its point group, but also by the translation operations1 by vectors tn defined by
B.1. The primitive translation vectors are defined by the lattice points of the
primitive cells of the different BLs and they constitute an invariant symmetry
group. The symmetry space group of a crystal contains elements combining
the operations of the point (or rotation) group and of the translation group of
the crystal. The number of symmetry space groups is finite and equal to 230
in 3D. The translation group of operations is a subgroup of the space group
of the crystal. When this group contains only the primitive translations of the
BL, the rotation group is also a subgroup of the space group of the crystal,
which is then called symmorphic or simple space group. There are 73 such
space groups in 3D. The translation groups of the other space groups (157 in
3D) contain vectors that are not primitive vectors of the BLs and the rotation
groups associated with these space groups are not subgroups of these space
groups [8].

We consider here a few particular space groups. The fcc BL is generated
by three primitive translation vectors making equal angles with one another.

1 For a crystal of finite size, translation symmetry necessitates proper consideration
of boundary conditions (Heine [6]).
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The unit cell contains four lattice points. If one lattice point is at the corner of
the cube, the three primitive translations extend from this point to the centre
of the faces of the cube adjacent to this corner. They can be taken as:

t1 =
(
t /

√
2
)

(i + j)

t2 =
(
t /

√
2
)

(i + k) (B.5)

t3 =
(
t /

√
2
)

(j + k)

where i, j, and k are unit vectors along the edges of the cube and t the
length of the translations. The combinations of these primitive translations
with the Td and Oh point groups result in the symmorphic Td

2 and Oh
5 space

groups2 (noted F4̄3m and Fm3̄m, respectively in the international notation).
Td

2 is the space groups of sphalerite (cubic ZnS), a crystal structure shared
by several III-V and II-VI compounds, and Oh

5 the space group of sodium
chloride and calcium fluoride. When adding to the fcc primitive translations
(B.5) the nonprimitive translation 1

4
(t1 + t2 + t3) and combining with Oh,

the space group generated is Oh
7 (Fd3̄m). By construction, this space group

is not symmorphic and it generates the diamond structure.
The BZ of the fcc BL, associated with space groupOh

5 is shown in Fig. B.2,
where the Miller indices of the main symmetry axes are indicated. The crit-
ical points Δ, Λ, and Σ are general points inside the BZ on the indicated
axes.

The BZ of the Oh
7 and Td

2 space groups have the same geometry, but the
point group symmetries associated with the critical points can differ. These
symmetries are given in Table B.5.

The combination of the primitive translation vectors of the hexagonal BL
and of a nonprimitive translation vector to be defined later with the C6v

rotation group results in the C6v
4 space group (P63mc). This space group is

the one of wurtzite (hexagonal ZnS) to which belong the III–V nitrides and
several II–VI compounds. The BZ of the hexagonal BL is shown in Fig. B.1.
The point groups along the Γ–Δ–A, K–P–H, and M–U–L axes of the BZ for
the wurtzite structure are C6v, C3v, and C2v, respectively [12].

Table B.5. Point group symmetries associated with the critical points of the BZ of
the fcc BL for different space groups

Space group Γ Δ Λ Σ X L K W

Oh
5 and Oh

7 Oh C4v C3v C2v D4h D3d C2v D2d

Td
2 Td C2v C3v C2v D2d C3v C2v S4

2 These notations simply mean that T 2
d was the second space group including Td

and O5
h the fifth space group including Oh derived by Schönflies.
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Fig. B.2. First Brillouin zone of the fcc BL, showing the critical points. Its geometry
is the same as that of the Wigner-Seitz primitive cell of the bcc BL

B.4 Some Crystal Structures

B.4.1 Cubic Structures

The cubic structure is found in many crystals, but with different arrangements
of the atoms. The simplest ones are the NaCl and the CsCl structures. The
NaCl structure is the superposition of two identical fcc Bravais sublattices
shifted by 1/2 of the edges of their unit cell; one Na+ (Cl−) ion has 6 Cl−(
Na+

)
nns along <100> directions. The CsCl structure is the superposition of

two identical simple cubic (sc) sublattices translated by 1/2 of the diagonal of
their unit cell; one Cs+ (Cl−) ion has 8 Cl−

(
Cs+

)
nns of the other sublattice

along<111> directions. The symmorphic space group of CsCl is Oh
1 (Pm3m).

The fluorite (CaF2) lattice is the superposition of a fcc sublattice of Ca++

ions with a sc sublattice of F− ions. The lengths of the edges of the unit cells
of the Ca++ and F− sublattices are in the ratio of 2 to 1, respectively and
the F− unit cell is shifted by 1/4 along the diagonal of the Ca++ cubic cell.
The CaF2 lattice is thus made of unit cells containing each four Ca++ ions
and eight F− ions. Crystals with the same atomic arrangement as fluorite, but
where the more electronegative element is exchanged with the more positive
one of fluorite, like Mg2Si, are said to have the antifluorite structure. This
Mg-based family of crystals has semiconductor properties.

The diamond structure and the cubic ZnS (sphalerite or zinc-blende) struc-
ture can be seen as the superposition of two identical fcc Bravais sublattices
translated by one quarter of the diagonal of their unit cell. In these structures,
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Fig. B.3. (a) Ball and sticks model of the sphalerite structure showing the two
interpenetrating fcc unit cells. Each cell contains only one type of atom. The dis-
placement between the two cells is materialized by the bond between atoms 1 and
2. (b) Same cells as in (a) showing atoms bonding along a privileged <111> axis
of the crystal. Along this axis, the period of the crystal is the diagonal of one unit
cell and it contains three stacks of atoms of one type (the ABC stacking period of
sphalerite). The atoms not involved in the bonding have been omitted for clarity

each atom is bonded to its four nns in a regular tetrahedral configuration (see
Fig. B.3 (a) and (b)). In the diamond structure, the atoms of the two sublat-
tices are the same and the associated rotational symmetry is the one of the
fcc structure, Oh, or m3m in the international notation, which includes in-
version symmetry. In the sphalerite structure, as the two atoms are different,
there is no more inversion symmetry and the point group symmetry is Td or
4 3m. There must be no confusion with the site symmetry of a substitutional
impurity, which is Td for both structures. A partial list of crystals with these
structures is given in Appendix C.

The perovskite structure is shared by many oxides and other compounds
of generic formula AMX3 where A is a group IIA atom, M, a metal atom and
X is a group VI atom. The unit cell is the exact superposition of two identical
bcc and fcc lattices. Atom A with coordinates 0,0,0 is common to both lattices,
atom M is at the centre of the cube and the X atoms are at the centres of
the faces of cube. An A atom has 12 nearest neighbours (nn) X atoms, an M
atom has 6 nn X atoms and 8 nn A atoms while an X atom has two M nn
and four A nn. In some compounds including CaTiO3 (perovskite), this cubic
structure is distorted and the structure is no longer cubic, but orthorhombic.

B.4.2 Hexagonal Structures

The hexagonal closed-packed (hcp) structure can be viewed as two interpene-
trating hexagonal BLs where one is shifted vertically along the c-axis by half
of the height c of the hexagonal unit cell and horizontally so that the points
of one hexagonal lattice lie directly above the centres of the triangles formed
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Fig. B.4. Ball and sticks model of the wurtzite structure. Along the c direction, the
period of the crystal is equal to the height c of the cell and it contains two stacks of
atoms of one type (the AB stacking period of wurtzite). To better appreciate the
symmetry, the limits of one hexagonal subunit have been outlined. The minimum
distance between superposed non-bonded atoms along the c-axis is ∼ 0.625c.

by the points of the other one. The hcp structure is the same as that of a
close-packed stack of identical spheres. If the radius of these spheres is a, the
distance c/2 between the first and second layers is

√
2/3 a and this packing

condition determines the ratio 1.633 between the side a of the hexagon and
the height c of the unit in the hcp structure. The wurtzite structure (so called
after the hexagonal allotropic form of ZnS) is the superposition of two hcp
sublattices whose unit cells are shifted by 5c/8 along the height of the cell
(the c-axis) and it is shown in Fig.B.4.

The symmetry point group associated with this structure is C6v (6 mm)
and it is derived from the corresponding space group. The symmetry difference
between wurtzite and sphalerite leads naturally to environment differences:
in sphalerite, an atom has 24 closer 3rd nn atoms and 12 more distant 3rd nn
atoms. In wurtzite there are four categories of 3rd nn atoms: only one 3rd nn
atom is at a distance only slightly larger than the nn, along the same c-axis
as the reference atom. The three other categories contain 6, 6 and 12 atoms.
The real crystals with wurtzite structure do show a small crystal distortion
along the c axis so that the ratio c/a between the height of the unit cell and
the side of the regular hexagonal base differs from the ideal value 1.6333. This
produces a small increase of the nn and nnn distances for orientations along
or predominantly along the c-axis.

Many IIA-sulphides and -oxides as well as IIIA-nitrides crystallize in the
wurtzite form, but some of them (ZnS, of course, but also CdS, GaN and
others) can also be found in the sphalerite form. SiC can adopt the wurtzite
form (2H-SiC) or less frequently the sphalerite form (3C-SiC), with a notable
difference in the band gap (3.3 or 2.3 eV, respectively), but when grown by
vapour-phase epitaxy, SiC is usually obtained in the form of polytypes with
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Fig. B.5. Unit cell of the 6H-SiC polytype showing the ABCACB stalking se-
quence and the different sites (see text)

stacking periods different from those of 3C–SiC and 2H–SiC. One of the
most common variety is 6H-SiC, whose stacking period along the c-axis is
ABCACB. Its unit cell is shown in Fig.B.5.

In the 6H-SiC polytype, there are three different sites: an hexagonal one
noted h, and two cubic ones noted k1 and k2. As shown in Fig. B.5, an h site
is surrounded by three k1 and one h nn sites, a k1 site by three h and one k2

nn sites, and a k2 site by three k2 and one k1 nn sites.
Very small carbon crystals with the hexagonal structure of Fig. B.4 have

been found in some meteorites, and this form of carbon is called lonsdaleite.

B.4.3 Other Crystal Structures

Corundum (α-Al2O3) structure displays trigonal (or rhombohedral) symme-
try. When considering an ionic configuration

(
Al3+

)
2

(
O2−)

3
, the point group
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symmetry of this crystal is C3v or 3/m. Instead of considering the trigonal
unit cell containing two Al2O3 units, it is usual to consider an hexagonal cell
with axis c along the longest diagonal of the trigonal unit cell. The side a of
the hexagon is the projection of a0 in a plane perpendicular to the c axis and
the height c of the cell is the length of the longest diagonal of the trigonal
unit cell. For corundum, a and c are 0.47489 and 1.29912nm, respectively,
and each Al3+ cation is surrounded by 6 nn O2− anions at the corners of a
nearly regular octahedron. 3 among these 6 nns are slightly closer to Al3+

than the others (0.1856 and 0.1969nm).
Besides the 3D crystalline structures, 2D crystalline structures can also

form 3D solids. In these solids, the bonding between the layers is weak and
an archetype of these solids is graphite. Graphite, a semimetal, has a simple
2D hexagonal BL with C atomic layers separated by about 2.4 times the nn
separation in the layer plane. Such a structure can also be considered as a 3D
crystal with space group D6h

4 (P63/mmc). It is actually the stable structure
of crystalline carbon while diamond and lonsdaleite are metastable phases.
Similarly, the stable form of BN is a 2D hexagonal form (h-BN), but at a
difference with graphite, where half of the C atoms of one layer projects onto
the empty centre of hexagons of the adjacent layers and the other half on
C atoms, a B atom of a h-BN layer always projects onto a N atom of the
adjacent layers. In these 2D crystals, the axis perpendicular to the plane of
the layers is noted as the c-axis. Layered structures made of composite layers
of several atoms are found for instance in many III-VI compounds like GaSe,
often termed as lamellar. In this latter structure, the “unit” layer is made of
a four-layer structure in which two inner bonded layers of Ga atoms are each
bonded to an external layer of Se atoms.
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Optical Band Gaps and Crystal Structures
of Some Insulators and Semiconductors

Band-gap energies Eg (eV) at RT and, when known, at LHeT of some
insulators and semiconductors with direct (D) or indirect (I) band gaps. For
the uniaxial crystals, the band gaps for E//c and E⊥c slightly differ and the
value given is an average. The equivalent of the RT value of Eg is expressed
in wavelength (λ) in the last column. It is close to the high-frequency limit of
transparency for pure and nondiffusing materials. The visible range extends
from 400 to about 750nm.

For the crystal structures, c, h, and hcp stand for cubic, hexagonal,
and hexagonal close-packed, respectively. The name of the crystals used as
references are bold-faced.

Material Crystal structure Eg (RT) Eg (LHeT) λ (nm)

MgF2 (sellaite) Tetragonal 11.3 110
SiO2 (α-cristobalite) Tetragonal ∼10 ∼124
CaF2 (fluorite) fluorite (c) ∼9.5 130
SiO2 (α-quartz) h ∼9 ∼140
α-Al2O3 (corundum) Trigonal ∼9 ∼140
NaCl (halite) NaCl (c) 9.0 D 138
CdF2 c (fluorite) 7.8 159
MgO (periclase) c (NaCl) 7.6 D 163
c-BN c (sphalerite) 6.4 I 194
AlN hcp (wurtzite) 6.2 D 200
C (lonsdaleite) hcp ∼5.5 ∼220
Cdiam (diamond) Cdiam (c) 5.475 I 5.487a 226
h-BN h 2D 5.2 I 238
ZnS (wurtzite) wurtzite (hcp) 3.8 D 325
ZnS (sphalerite) sphalerite (c) 3.68 D 3.78 335
w-GaN or α-GaN hcp (wurtzite) ∼3.4 D 3.50 365
ZnO (zincite) hcp (wurtzite) 3.4 D 3.44 365

(continued)
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Material Crystal structure Eg (RT) Eg (LHeT) λ (nm)

c-GaN or β-GaN c (sphalerite) 3.30 D 3.41 376
2H-SiC (moissanite) hcp (wurtzite) 3.3 I 3.33 376
CuCl (nantokite) c (sphalerite) 3.26 D 3.399 381
4H-SiC polytype 3.23 I 3.27 384
6H-SiC polytype 2.86 I 3.03 434
ZnSe (stilleite) c (sphalerite) 2.67 D 2.82 460
CdS (hawleyite) c (sphalerite) 2.50 D 496
CdS (greenockite) hcp (wurtzite) 2.49 D 498
AlP c (sphalerite) 2.45 I 2.505 506
3C-SiC c (sphalerite) ∼2.3 I 2.41 ∼540
ZnTe c (sphalerite) 2.28 D 2.394 544
GaP c (sphalerite) 2.272 I 2.350 546
Cu2O (cuprite) c ∼2.2 D ∼560
AlAs c (sphalerite) 2.15 I 2.229 577
HgI2 tetragonal 2.13 D 2.37 582
α-HgS (cinnabar) trigonal 2.10 I 2.275 590
GaSe quasi-2D ∼2 D ∼620
CdSe (cadmoselite) hcp (wurtzite) 1.714 D 1.829a 709
AlSb c (sphalerite) 1.62 I 1.686 765
CdTe c (sphalerite) 1.526 D 1.607 812
GaAs c (sphalerite) 1.424 D 1.519 873
InP c (sphalerite) 1.344 D 1.424 923
H-MnTe h (NiAs) 1.27 976
B β-rhombohedral ∼1.6 I ∼1000
Si c (Cdiam) 1.124 I 1.1700 1101
CuInSe2 Tetragonal

(chalcopyrite)
∼1 ∼1240

β-FeSi2 Orthorhombic 0.87 D 0.93 1425
CdO (monteponite) c (NaCl) 0.84 I 1476
InN hcp (wurtzite) ∼0.8 D ∼1550
GaSb c (sphalerite) 0.727 D 0.811 1705
Ge c (Cdiam) 0.670 I 0.7447 1851
Mg2Si c (antifluorite) ∼0.6 I 0.77 ∼2070
Mg2Ge c (antifluorite) 0.54 I 0.74 ∼2480
PbS (galena) c (NaCl) 0.41 D 0.29 ∼3350
InAs c (sphalerite) 0.354 D 0.418 ∼3440
Te (native) trigonal 0.32 (//)

0.37 (⊥)
∼3440

PbTe (clausthalite) c (NaCl) 0.29 D 0.190 ∼4280
PbSe (altäıte) c (NaCl) 0.26 D 0.165 ∼4770
SnTe c (NaCl) 0.19 D ∼6320
Mg2Sn c (antifluorite) 0.18 I ∼6900
InSb c (sphalerite) 0.18 D 0.2344 ∼6900

a At LNT
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Table of Isotopes

An asterisk denotes a radioactive isotope whose lifetime is indicated in the
column Natural abundance. When a stable element has several radioactive
isotopes, a few ones have been chosen for their interest in different applica-
tions. For the radioactive elements, only the isotopes with the longest lifetimes
and at least one with a nonzero nuclear spin I are indicated. The electronic
configuration of an element with atomic number Z is given in italics in the
Name and symbol column. When relevant, the old Group label notation of the
periodic table is indicated in brackets in this same column. The radioactive
elements francium, radium, and actinium (Z =87, 88, and 89, respectively)
have been omitted.

Number of Natural Average
Name and symbol Z nucleons abundance (%) mass (amu) I

Hydrogen (H or 1H) 1 1 (99.985) 1.008 1/2
Deuterium (D or 2H)) 2 (0.0148) 1
Tritium∗ (T or 3H) 3∗ 12.32 y 1/2
1s
Helium (He) 2 3 (0.000138) 4.003 1/2
1s2 4 (99.999862) 0
Lithium (Li) [IA] 3 6 (7.6) 6.941 1
[He] 2s 7 (92.4) 3/2
Beryllium (Be) [IIA] 4 9 (100) 9.012 3/2
[He] 2s2 10∗ 1.52 × 106 y 0
Boron (B) [IIIB] 5 10 (19.8) 10.81 3
[He] 2s22p 11 (80.2) 3/2
Carbon (C) [IVB] 6 12 (98.93) 12.01 0
[He] 2s22p2 13 (1.07) 1/2

14∗ 5,715y 0
Nitrogen (N) [VB] 7 14 (99.632) 14.01 1
[He] 2s22p3 15 (0.368) 1/2

(continued)
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Number of Natural Average
Name and symbol Z nucleons abundance (%) mass (amu) I

Oxygen (O) [VIB] 8 16 (99.757) 16.00 0
[He] 2s22p4 17 (0.038) 5/2

18 (0.205) 0
Fluorine (F) [VIIB] 9 18∗ 1.83 h 19.00 1
[He] 2s22p5 19 (100) 1/2
Neon (Ne) 10 20 (90.48) 20.18 0
[He] 2s22p6 21 (0.27) 3/2

22 (9.25) 0
Sodium (Na) [IA] 11 22∗ 2.605y 22.99 3
[Ne] 3s 23 (100) 3/2
Magnesium (Mg) [IIA] 12 24 (78.99) 24.31 0
[Ne] 3s2 25 (10.00) 5/2

26 (11.01) 0
Aluminium (Al) [IIIB] 13 26∗ 7.1 × 105 y 26.98 5
[Ne] 3s23p 27 (100) 5/2
Silicon (Si) [IVB] 14 28 (92.23) 28.086 0
[Ne] 3s23p2 29 (4.67) 1/2

30 (3.10) 0
31∗ 2.62 h 0

Phosphorus (P) [VB] 15 31 (100) 30.97 1/2
[Ne] 3s23p3 32∗ 14.28d 1
Sulphur (S) [VIB] 16 32 (94.93) 32.07 0
[Ne] 3s23p4 33 (0.76) 3/2

34 (4.29) 0
36 (0.02) 0

Chlorine (Cl) [VIIB] 17 35 (75.78) 35.45 3/2
[Ne] 3s23p5 36∗ 301,000y 0

37 (24.22) 3/2
Argon (Ar) 18 36 (0.337) 39.95 0
[Ne] 3s23p6 38 (0.063) 0

39∗ 268y 7/2
40 (99.600) 0

Potassium (K) [IA] 19 39 (93.26) 39.10 3/2
[Ar ] 4s 40∗ (0.012) 4

1.28 × 109 y
41 (6.73) 3/2

Calcium (Ca) [IIA] 20 40 (96.941) 40.08 0
[Ar ] 4s2 41∗ 102,000y 7/2

42 (0.647) 0
43 (0.135) 7/2
44 (2.086) 0

(continued)
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Number of Natural Average
Name and symbol Z nucleons abundance (%) mass (amu) I

46 (0.004) 0
48 (0.187) 0

Scandium (Sc) 21 45 (100) 44.96 7/2
[Ar ] 3d 4s2 46∗ 83.81d 4
Titanium (Ti) 22 44∗ 67y 0
[Ar ] 3d2 4s2 46 (8.25) 47.87 0

47 (7.44) 5/2
48 (73.72) 0
49 (5.41) 7/2
50 (5.18) 0

Vanadium (V) 23 50 (0.25) 50.94 6
[Ar ] 3d34s2 52 (99.75) 7/2
Chromium (Cr) 24 50 (4.35) 52.00 0
[Ar ] 3d54s 51∗ 27.7 d 7/2

52 (83.79) 0
53 (9.50) 3/2
54 (2.36) 0

Manganese (Mn) 25 53∗ 3.7 × 106 y 7/2
[Ar] 3d54s2 55 (100) 54.94 5/2
Iron (Fe) 26 54 (5.85) 55.85 0
[Ar ] 3d64s2 56 (91.75) 0

57 (2.12) 1/2
58 (0.28) 0
60∗ 1.5 × 106 y 0

Cobalt (Co) 27 58∗ 70.9 d 2
[Ar ] 3d7 4s2 59 (100) 58.93 7/2

60∗ 5.271y 5
Nickel (Ni) 28 58 (68.08) 58.69 0
[Ar ] 3d84s2 59∗ 76,000y 3/2

60 (26.22) 0
61 (1.14) 3/2
62 (3.63) 0
64 (0.93) 0

Copper (Cu) [IB] 29 63 (69.17) 63.55 3/2
[Ar ] 3d104s 64∗ 12.701h 1

65 (30.83) 3/2
66∗ 5.09m 1

Zinc (Zn) [IIB] 30 64 (48.63) 65.41 0
[Ar ] 3d104 s2 65∗ 243.8 d 5/2

66 (27.90) 0
67 (4.10) 5/2

(continued)
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Number of Natural Average
Name and symbol Z nucleons abundance (%) mass (amu) I

68 (18.75) 0
70 (0.62) 0

Gallium (Ga) [IIIB] 31 69 (60.11) 69.72 3/2
[Ar ] 3d104s24p 70∗ 21.1m 1

71 (39.89) 3/2
72∗ 14.10h 3

Germanium (Ge) [IVB] 32 70 (20.84) 72.64 0
[Ar ] 3d104s24p2 71∗ 11.2 d 1/2

72 (27.54) 0
73 (7.73) 9/2
74 (36.28) 0
75∗ 1.38h 1/2
76 (7.61) 0
77∗ 11.30d 7/2

Arsenic (As) [VB] 33 75 (100) 74.92 3/2
[Ar] 3d104s24p3 76∗ 26.3 h 2
Selenium (Se) [VIB] 34 74 (0.89) 78.96 0
[Ar ] 3d104s24p4 76 (9.37) 0

77 (7.63) 1/2
78 (23.77) 0
79∗ 65,000y 7/2
80 (49.61) 0
82 (8.73) 0

Bromine (Br) [VIIB] 35 77∗ 2.376d 3/2
[Ar ] 3d104s24p5 79 (50.69) 79.90 3/2

81 (49.31) 3/2
Krypton (Kr) 36 78 (0.35) 83.80 0
[Ar] 3d104s24p6 80 (2.28) 0

82 (11.58) 0
83 (11.49) 9/2
84 (57.00) 0
85∗ 10.73 y 9/2
86 (17.30) 0

Rubidium (Rb) [IA] 37 83∗ 86.2 d 5/5
[Kr ] 5s 85 (72.17) 85.47 5/2

87∗ (27.83) 3/2
4.75 × 1010 y

Strontium (Sr) [IIA] 38 84 (0.56) 87.62 0
[Kr ] 5s2 86 (9.86) 0

87 (7.0) 9/2

(continued)
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Number of Natural Average
Name and symbol Z nucleons abundance (%) mass (amu) I

88 (82.58) 0
90∗ 29.1 y 0

Yttrium (Y) 39 89 (100) 88.91 1/2
[Kr ] 4d 5s2

Zirconium (Zr) 40 90 (51.45) 91.22 0
[Kr ] 4d25s2 91 (11.22) 5/2

92 (17.15) 0
94 (17.38) 0
96∗ (2.80) 0

3.9 × 1019 y
Niobium (Nb) 41 92∗ 3.7 × 107 y 7
[Kr ] 4d45s 93 (100) 92.91 9/2

94∗ 24,000y 6
Molybdenum (Mo) 42 92 (14.84) 95.94 0
[Kr ] 4d55s 93∗ 3,500y 5/2

94 (9.25) 0
95 (15.92) 5/2
96 (16.68) 0
97 (9.55) 5/2
98 (24.13) 0

100 (9.63) 0
Technetium∗ (Tc) 43 97∗ 2.6 × 106 y 9/2
[Kr ] 4d55s2 98∗ 4.2 × 106 y 6

99∗ 213,000y 9/2
Ruthenium (Ru) 44 96 (5.52) 101.1 5/2
[Kr ] 4d75s 98 (1.88) 0

99 (12.70) 0
100 (12.60) 0
101 (17.00) 5/2
102 (31.60) 0
104 (18.70) 0

Rhodium (Rh) 45 101∗ 3.5 y 1/2
[Kr ] 4d85s 102∗ 2.9 y 6

103 (100) 102.9 1/2
Palladium (Pd) 46 102 (1.02) 106.4 0
[Kr ] 4d10 104 (11.14) 0

105 (22.33) 5/2
106 (27.33) 0
107∗ 6.5 × 106 y 5/2
108 (26.46) 0
110 (11.72) 0

(continued)
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Number of Natural Average
Name and symbol Z nucleons abundance (%) mass (amu) I

Silver (Ag) [IB] 47 105∗ 41.3 d 1/2
[Kr ] 4d105s 107 (51.83) 107.9 1/2

109 (48.17) 1/2
Cadmium (Cd) [IIB] 48 106 (1.25) 112.4 0
[Kr ] 4d10 5s2 108 (0.89) 0

110 (12.49) 0
111 (12.80) 1/2
112 (24.13) 0
113 (12.22) 1/2
114 (28.73) 0
116 (7.49) 0

Indium (In) [IIIB] 49 111∗ 2.805d 9/2
[Kr ] 4d10 5s25p 113 (4.3) 114.8 9/2

115∗ (95.7) 9/2
4.4 × 1014 y

Tin (Sn) [IVB] 50 112 (1.0) 118.7 0
[Kr ] 4d10 5s25p2 114 (0.7) 0

115 (0.4) 1/2
116 (14.7) 0
117 (7.7) 1/2
118 (24.3) 0
119 (8.6) 1/2
120 (32.4) 0
122 (4.6) 0
124 (5.6) 0

Antimony (Sb) [VB] 51 121 (57.3) 121.8 5/2
[Kr ] 4d10 5s25p3 122∗ 2.72d 2

123 (42.7) 7/2
124∗ 60.30d 3

Tellurium (Te) [VIB] 52 119∗ 16 h 1/2
[Kr ] 4d10 5s25p4 120 (0.09) 127.6 0

122 (2.55) 0
123 (0.89) 1/2
124 (4.74) 0
125 (7.07) 1/2
126 (18.84) 0
128 (31.74) 0
130 (34.08) 0

Iodine (I) [VIIB] 53 127 (100) 126.9 5/2
[Kr ] 4d10 5s25p5 129∗ 1.7 × 107 y 7/2

(continued)
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Number of Natural Average
Name and symbol Z nucleons abundance (%) mass (amu) I

Xenon (Xe) 54 124 (0.10) 131.3 0
[Kr ] d10 5s25p6 126 (0.09) 0

127∗ 3.64 d 1/2
128 (1.91) 0
129 (26.40) 1/2
130 (4.10) 0
131 (21.20) 3/2
132 (26.90) 0
134 (10.40) 0
136 (8.90) 0

Caesium (Cs) [IA] 55 133 (100) 132.9 7/2
[Xe] 6s 134∗ 2.065y 4

135∗ 2.3 × 106 y 7/2
137∗ 30.2 y 7/2

Barium (Ba) [IIA] 56 130 (0.106) 137.3 0
[Xe] 6s2 132 (0.101) 0

133∗ 10.53 y 1/2
134 (2.417) 3/2
135 (6.592) 0
136 (7.854) 3/2
137 (11.23) 0
138 (71.70) 0

Lanthanum (La) 57 137∗ 60,000y 7/2
[Xe] 5d 6s2 138 (0.09) 138.9 5

139 (99.91) 7/2
Cerium (Ce) 58 136 (0.19) 140.1 0
[Xe] 4f 5d 6s2 138 (0.25) 0

139∗ 137.6 d 3/2
140 (88.48) 0
142 (11.08) 0

Praseodymium (Pr) 59 141 (100) 140.9 5/2
[Xe] 4f36s2

Neodymium (Nd) 60 142 (27.13) 144.2 0
[Xe] 4f46s2 143 (12.18) 7/2

144 (23.80) 0
145 (8.30) 7/2
146 (17.19) 0
148 (5.76) 0
150 (5.64) 0

(continued)
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Number of Natural Average
Name and symbol Z nucleons abundance (%) mass (amu) I

Promethium∗ (Pm) 61 145∗ 17.7 y 5/2
[Xe] 4f56s2 146∗ 5.53 3

147∗ 2.62 y 7/2
Samarium (Sm) 62 144 (3.1) 150.4 0
[Xe] 4f 66s2 146∗ 1.03 × 108 y 0

147 (15.0) 7/2
148 (11.2) 0
149 (13.8) 7/2
150 (7.4) 0
151∗ 90 y 5/2
152 (26.8) 0
154 (22.8) 0

Europium (Eu) 63 151 (47.8) 152.0 5/2
[Xe] 4f 76s2 152∗ 13.5 y 3

153 (52.2) 5/2
154∗ 8.59 y 3
155∗ 4.76 y 5/2

Gadolinium (Gd) 64 152 (0.20) 157.3 0
[Xe] 4f75d 6s2 154 (2.18) 0

155 (14.80) 3/2
156 (20.47) 0
157 (15.65) 3/2
158 (24.84) 0
160 (21.86) 0

Terbium (Tb) 65 157∗ 110y 3/2
[Xe] 4f85d 6s2 158∗ 180y 3

159 (100) 158.9 3/2
Dysprosium (Dy) 66 156 (0.06) 162.5 0
[Xe] 4f 95d 6s2 158 (0.10) 0

160 (2.34) 0
161 (18.90) 5/2
162 (25.50) 0
163 (24.90) 5/2
164 (28.20) 0

Holmium (Ho) 67 165 (100) 164.93 7/2
[Xe] 4f 105d 6s2

Erbium (Er) 68 162 (0.14) 167.3 0
[Xe] 4f115d 6s2 164 (1.61) 0

166 (33.60) 0
167 (22.95) 7/2
168 (26.80) 0
170 (14.90) 0

(continued)
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Number of Natural Average
Name and symbol Z nucleons abundance (%) mass (amu) I

Thulium (Tm) 69 169 (100) 168.93 1/2
[Xe] 4f 125d 6s2 171∗ 1.92 y 1/2
Ytterbium (Yb) 70 168 (0.13) 173.0 0
[Xe] 4f 135d 6s2 170 (3.05) 0

171 (14.30) 1/2
172 (21.90) 0
173 (16.12) 5/2
174 (30.80) 0
176 (12.70) 0

Lutecium (Lu) 71 173∗ 1.37 y 7/2
[Xe] 4f 145d 6s2 174∗ 3.3 y 1

175 (97.41) 175.0 7/2
176 (2.59) 7

Hafnium (Hf) 72 174 (0.16) 178.5 0
[Xe] 4f 145d26s2 176 (5.20) 0

177 (18.60) 7/2
178 (27.10) 0
179 (13.74) 9/2
180 (35.20) 0

Tantalum (Ta) 73 180 (0.012) 180.9 0
[Xe] 4f 14 5d3 6s2 181 (99.988) 7/2
Tungsten (W) 74 180 (0.13) 183.9 0
[Xe] 4f 14 5d46s2 182 (26.30) 0

183 (14.30) 1/2
184 (30.67) 0
186 (28.60) 0

Rhenium (Re) 75 185 (37.4) 186.2 5/2
[Xe] 4f 14 5d56s2 187 (62.6) 5/2
Osmium (Os) 76 184 (0.02) 190.2 0
[Xe] 4f 14 5d66s2 186 (1.58) 0

187 (1.6) 1/2
188 (13.3) 0
189 (16.1) 3/2
190 (26.4) 0
192 (41.0) 0

Iridium (Ir) 77 191 (37.3) 192.2 3/2
[Xe] 4f 14 5d76s2 193 (62.7) 3/2
Platinum (Pt) 78 190 (0.01) 195.1 0
[Xe] 4f 14 5d96s 192 (0.79) 0

193∗ 60 y 1/2
194 (32.90) 0

(continued)
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Number of Natural Average
Name and symbol Z nucleons abundance (%) mass (amu) I

195 (33.80) 1/2
196 (25.30) 0
198 (7.20) 0

Gold (Au) [IB] 79 193∗ 17.62h 3/2
[Xe] 4f14 5d10 6s 195∗ 186.12d 3/2

197 (100) 197.0 3/2
Mercury (Hg) [IIB] 80 193∗ 3.80 h 3/2
[Xe] 4f14 5d10 6s2 195∗ 9.5 h 1/2

196 (0.15) 200.6 0
198 (10.10) 0
199 (17.00) 1/2
200 (23.10) 0
201 (13.20) 3/2
202 (29.65) 0
204 (6.80) 0

Thallium (Tl) [IIIB] 81 201 (29.524) 204.4 1/2
[Xe] 4f14 5d10 6s2 6p 204∗ 3.78 y 2

205 (70.476) 1/2
Lead (Pb) [IVB] 82 204 (1.4) 207.2 0
[Xe] 4f14 5d10 6s2 6p2 206 (24.1) 0

207 (22.1) 1/2
208 (52.4) 0

Bismuth (Bi) [VB] 83 207∗ 35 y 208.98 9/2
[Xe] 4f14 5d10 6s2 6p3 209 (100) 9/2
Polonium∗ (Po) 84 207∗ 2.898y 1/2
[Xe] 4f14 5d10 6s2 6p4 209∗ 102 y 0

210∗ 138.38d 0
Astatine∗ (At) 85 210∗ 8.1 h 5
[Xe] 4f14 5d10 6s2 6p5 211∗ 7.2 h 9/2
Radon∗ (Rn) 86 211∗ 14.6 h 1/2
[Xe] 4f14 5d10 6s2 6p6 222∗ 3.824d 0
Thorium∗ (Th) 90 229∗ 7,900y 5/2
[Rn] 6d2 7s2 232∗ (100) 232.04 0

1.4 × 1010 y
Protactinium∗ (Pa) 91 231∗ 32,000y 3/2
[Rn] 5f26d 7s2

Uranium (U) 92 233∗ 2.45 × 105 y 5/2
[Rn] 5f36d 7s2 234 (0.0055) 0

235∗ (0.7200) 7/2
7.04 × 108 y

238 (99.2745) 238.03 0



Appendix E

Some Tensor Properties

This appendix is based on the one in the paper by Baldereschi and Lipari [1]
and it outlines the fundamental tensor properties of Pij and Jij introduced in
Sect. 5.3, with reference to Luttinger’s Hamiltonian for holes in the J = 3/2
VB. In an orthogonal reference frame, a tensor T (k)

ij of rank k can be reduced

to a sum of irreducible spherical tensors T (k)
q of ranks 0, 1, . . .kwith 2k + 1

values of q, sometimes called the dimension of the tensor (see, for instance,
Edmonds [3]). Two spherical tensors T (k1)

q1 and U
(k2)
q2 of ranks k1 and k2 can

be coupled together to give a set of spherical tensors whose ranks k are limited
by the condition |k1 − k2| ≤ k ≤ k1 + k2, and defined by:
[
T (k1) × U (k2)

](k)

q
= (−1)k1−k2+q (2k + 1)1/2 ×

∑

q1,q2

(
k1 k2 k
q1 q2 −q

)
T (k1)

q1
U (k2)

q2

(E.1)

The
(
k1 k2 k
q1 q2 −q

)
quantities are the Wigner 3-j coefficients or symbols (see, for

instance, [3]) and their values for the lowest values of the parameters have been
tabulated by [2]. The zero-rank compound tensor operator

[
T (k) × U (k)

](0)
0

of
two tensors of rank k, or scalar tensor operator, is related to the scalar product
of tensors T and U :
(
T (k).U (k)

)
=
∑

q

(−1)qT (k)
q U

(k)
−q = (−1)k (2k + 1)1/2

[
T (k) × U (k)

](0)

0

(E.2)
With the second-rank tensors P (2) and J(2) defined in (5.14), it can be shown
that:
(
p2

xJ
2
x + p2

yJ
2
y + p2

zJ
2
z

)
=

1
3
p2J2 +

2
45

(
P (2).J(2)

)
+

1
18

{[
P (2) × J (2)

](4)

−4

+
√

70
5

[
P (2) × J (2)

](4)

0
+
[
P (2) × J(2)

](4)

4

}
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and

{pxpy}{JxJy} + {pypz}{JyJz} + {pzpx}{JzJx} =

1
30

(
P (2).J(2)

)
− 1

36

{[
P (2) × J(2)

](4)

−4
+

√
70
5

[
P (2) × J (2)

](4)

0

+
[
P (2) × J (2)

](4)

4

}

These expressions remain valid if operator J is replaced by operator I of
Hamiltonian (5.16) of Chap. 5.
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1/f noise, 110

3D rotation group, 151, 440

450◦C thermal donors, 220

6H-SiC, 195, 311, 447

A+ acceptor ions, 13, 254, 269, 327

AlSb, 267

absorbance, 47

absorption

coefficient, 46, 55, 70, 71, 79, 85

cross-section, 86, 160, 171, 295

intrinsic, 62, 85

saturated, 87

acceptor

complexes, 281, 304, 305

deformation potentials, 378, 379

double, 7, 311, 334

g-factors, 398, 401, 405, 409, 411

isocoric, 154, 157

pseudo-, 7, 16, 281

quenched-in, 30, 304, 306

spin-orbit splitting, 154, 289

triple, 281, 311

X centre, 297

acoustic mode or phonon, 51

acoustic phonon spectroscopy, 89, 270,
327

activation energy, 35, 38, 230

admittance spectroscopy, 311

Ag, see silver

aligning stress, 372

amphoteric behaviour, 32, 247

angular momentum, 64
effective, 393
matrix, 398
pseudo, 148, 150, 284

anharmonic coupling, 55
anisotropy, 129, 265
anti-crossing, 348, 362, 378, 380
antisite, 11, 30, 32
atomic spectroscopy notation, 127, 129
Au, see gold
autoionizing states, 268
axial rotation group, 129
axial vector, 348, 388, 440

background radiation noise, 106
backward-wave tube, 90, 187
band gap, 1, 449

direct, 61, 68
indirect, 59, 62, 63, 265
isotopic dependence, see isotopic shift
magnetic field dependence, 71
pressure dependence, 73, 268
temperature dependence, 72

binding energy, see ionization energy
Bloch functions, 128, 158
blue diamond, see diamond, blue
Bohr magneton, 16, 389, 398, 432
bolometer, 101

free-electron, 102
breakdown field, 411
Bridgman method, 24
Brillouin zone, 51, 65, 139, 196, 435,

437, 444
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broadening

anomalous, see resonant

concentration, 422

dislocation, 383

inhomogeneous, 87, 113, 382, 423

instrumental, 86

phonon, 419

resonant, 174, 289, 380, 418

Stark, 192, 213

thermal, 421

Burstein–Moss shift, 77

calibration factor, 31, 86, 185, 193, 247,
295, 304, 309, 311

calorimetric absorption spectroscopy,
103

camel’s back structure, 66, 263, 267,
413

cathodoluminescence, see
electroluminescence

CdSe, 262

CdTe, 145, 146, 257, 337, 338

central-cell correction, 145, 154, 241,
257, 262, 295

central-cell potential, 253

centre of gravity of split components,
386

chalcogens, 198, 218

complexes, 198, 204, 214, 217

isotope effects, 210, 212

pairs, 33, 199–201, 204, 363

channelled spectrum, 47, 98

chemical vapour deposition (CVD), 24

class (in group theory), 438

Clausius Mossotti relation, 48

closed cycle cryostat, 112

clusters, 184

compensation, 8, 197, 208, 232, 295

ratio, 8, 12, 27, 271, 411, 417

compliance coefficient, 352

conduction band

deformation potentials, 140, 350, 352

parameters, 63, 66, 67, 69

see also effective masses, 67

configuration coordinate diagram, 40

confinement, 74

constant-energy ellipsoid, 59, 351
oblate, 132
prolate, 132, 374
see also effective mass ratio, 59

continuous-flow cryostat, 113
copper, 25, 314
correlated distribution, 416
Coulomb

interaction, 129, 169
potential, 148, 150
screened potential, 138, 161

critical point, 52
crystal field, 68, 243
cyclotron resonance (CR), 65
Czochralski method, 23

liquid encapsulated, 23

D− donor ion, 13, 269
deep-level transient spectroscopy

(DLTS), 25, 217, 241, 248, 316,
372

degeneracy
electronic, 140, 347
multi-valley or CB, 140, 350
orientational, 16, 140, 347, 349, 363,

365, 370, 384
density of states (DoS), 6, 77
detectivity, 110
diamond

I, 21
IIa, 21
IIb, 21
anvil cell, 116
blue, 21
P-doped, 196
p-type, B-doped, 307
synthetic, 115, 196, 307

dichroism, 88
dielectric constant, 45, 260, 338

relative, 48
static, 49, 125, 129, 329

dielectric function, 79, 142, 149, 257
wave-vector-dependence, 142, 154

dielectric screening, 143, 331
dielectric strength, 411
differential contraction, 377
diffusion coefficient, 25, 36, 37
diffusion mechanisms, 38
diluted magnetic semiconductor, 335
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dilution refrigerator, 112
dipole moment, 51, 145

magnetic, 16
operator, 380
second-order, 55

dispersive monochromator, 91
donor

deformation potentials, 350, 360
double, 7, 138, 198
electron spin, 17, 182, 197, 202, 209,

234, 247
g-factors, 213, 234, 371, 394
pairs, 169, 199, 204, 348, 363
pseudo-, 7, 16, 170, 249
quasi-hydrogenic, 145, 147, 163, 257,

260
single, 7, 238
spin-orbit interaction, 267, 363
spin-orbit splitting, 180, 267

donor-acceptor pair (DAP) spectra, 13,
196, 263, 266, 270

donor exciton, 184
dopant reactivation, 11
double group representation, 60, 68,

144, 214, 441
dye laser, 89
dynamic tunnelling, 189

effective Bohr radius, 130, 146, 260, 419
effective magnetic field parameter, 146,

261, 389
effective mass

anisotropy, 129, 261, 265
approximation, 5, 126
longitudinal, 59, 129
non-isotropic, 145
ratio, 129, 131, 135, 197, 374
reduced, 69
spherical, 145
tensor, 58
theory, 126
transverse, 59, 129, 267, 390, 393

effective Rydberg, 75
acceptors, 151, 331, 412
donors, 130, 133, 135, 145, 194, 257

EL2, 11, 328
metastability, 328

elastic compliance tensor, 351, 374
elastic moduli, 351

electric dipoles, selection rules, see
selection rules

electric field, 411
homogeneous, 411
internal, 415
ionization, 412

electric moment, 55
second order, 55

electric vector, 160, 188
electrical mobility, 3, 7, 31, 80, 197, 257,

295
electroluminescence, 14
electron-phonon interaction, 170, 181,

310, 419, 421
electron-phonon scattering, 187
electron spin resonance (ESR), 16, 31

acceptors, 311, 319
chalcogens, 199, 212, 217
pseudo- and isoelectronic donors, 252
shallow thermal donors, 238
single donors, 142, 171, 174, 182, 189,

197
thermal donors, 226, 233, 234
TMs, Au, Ag, Pt, 244, 246

ellipsoid, see constant-energy ellipsoid
encapsulant, 23
ENDOR, 17, 217, 227
energy levels

acceptors in germanium, 156, 157
acceptors in silicon, 155, 157
donors in germanium, 137, 138
donors in silicon, 136, 138

envelope wave function, 131, 141, 146
EXAFS, 39
excitation spectroscopy, 87
exciton

bound, 14, 183, 250
free, 14, 74
isoelectronic bound (IBE), 16, 249,

324
excitonic molecule, 15
extinction coefficient, 46
extrinsic photodetector, see

photodetector, extrinsic

Fano resonance, 13, 170, 196, 200, 208,
248, 289, 315, 317, 321, 363

Faraday configuration, 119, 390, 394
Fermi-Dirac statistics, 6
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Fermi level, 6, 80
float zone (FZ) method, 23
folded acoustical phonons, 55
Fourier transform spectrometer (FTS),

94
Franck–Condon shift, 40
free-carrier absorption, 3, 79
free-carrier concentration, 10
free electron laser (FEL), 89, 90
frequency-domain spectroscopy, 424
full width at half maximum (FWHM),

85, 87, 171, 212, 251, 258, 283, 294
acceptors (double), 320, 323
acceptors (single), 269, 283, 290, 292,

294, 301, 308, 330
donors (double), 203, 204, 208, 210,

212
donors (single), 171, 182, 185, 191,

197, 257, 263, 264

g-factors
acceptors, 397, 400, 401, 410, 411
electron, 71

GaN, 145, 148, 261, 262
GaP, 16, 263–267, 331, 335
generation-recombination noise, 109
gold, 247, 320
ground state energy, 126
ground-state splitting, 312, 315, 320
growth atmosphere, 22

H− ion, 10, 13, 270
Hall coefficient, 8
Hall effect measurements, 31, 65, 175,

246, 268, 297, 305, 311
harmonic crystal, 51
harmonic potential, 50
He0, He+, 138
He-like, 198, 204, 213, 221, 337
high-field limit (magnetic), 147, 261,

394
high-stress limit, 188, 358, 374, 382
hole burning, 87
hole pseudo-spin, 250
homogeneous width, 87, 192
hydrogen, 5, 11

complexes, 25, 191, 217, 237, 240,
242, 318

contamination, 23, 25

defects, 21

passivation, 11, 216, 314

hydrogen-like centres, 5

hydrostatic

pressure, 118, 268, 349

shift, 350

stress, 348, 386

hyperfine interaction, 17, 182, 183

hyperfine splitting, 212

impact ionization, 412

implantation, 29

impurity band, 7, 260

impurity pairs, 33

impurity photoconductivity, 88

insulator, 7

interferogram, 94

interstitial site, 32

inter-valley coupling, 142, 143

inter-valley phonons, 196, 248, 358, 423

inter-valley scattering, 170, 174

inversion asymmetry, 64, 333

ionization energy

optical, 176, 195, 196, 267, 286, 313

thermal, 197, 282, 315

ionization threshold, 412

iron, 243

irreducible representations (IR), 59,
127, 139, 152, 439

isocoric impurity, 126

isoelectronic centres, 7, 15, 250

acceptors (IAs), 323

donors (IDs), 169, 249, 253

isotope shift (IS)

band gap, 74

boron, 293

carbon, 310

hydrogen, 191, 217, 240, 242, 243, 314

oxygen, 264

selenium, 212, 219

silicon, 210, 263, 292

sulphur, 210, 214

zinc, 319

isotopic disorder, 292

isotopic distribution, 282, 419

isotopic shift model, 202

isotopic splitting, 163
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j-j coupling, 312

Jahn-Teller (JT)

coupling, 245

effect, 39, 282

splitting, 308

Johnson noise, 109

Kramers doublet, 150, 282, 308, 388,
413

labelling, 17, 283, 307

lamellar grating interferometer, 97

Landau levels, 71, 89, 148, 389, 395

laser

calorimetry, 103

diode, 89

emission, 182

lattice

deformation, 143

distortion, 32, 38, 41, 202

relaxation, 40

Li complexes in germanium, 189–192

lifetime, 87, 88, 170, 211, 249, 325, 358,
422–424

lines positions

acceptors:

in II-VI compounds, 338

in III-V compounds, 330, 332, 333,
336

in germanium, 302, 306, 313, 316

in silicon, 287, 297, 299, 319, 322

donors:

in 3C-SiC, 195

in GaP and AlSb, 265, 268

in germanium, 190, 233, 234

in silicon, 177, 205, 213, 215, 223,
225, 237, 243, 246, 252

temperature dependence, 181

localization energy, 14

longitudinal effective mass, see effective
mass, longitudinal

Lorentz oscillator, 47

Luttinger

Hamiltonian, 64

VB parameters, 64, 65, 67, 149

Lyddane–Sachs–Teller relation, 52

Lyman spectrum, 12

magnesium, 198, 200, 208, 311, 312
magnetic circular dichroism, 88
magnetic dipole transition, 16
magneto-Raman, 402, 409
majority impurity, 8
manganese, 335
metal-insulator transition (MIT), 7, 184
metastability, 38, 221, 227, 234, 253
minority impurity, 8
multi-exciton complexes, 15

neutron transmutation doping (NTD),
25

nitrogen split pair, 34, 238
nitrogen, substitutional, 171
no-phonon line, see zero-phonon line
noise equivalent power (NEP), 100, 109
non-variational method, 130, 133, 154,

157
notation, 17, 152
nuclear spin, see also donor, 17

one-phonon band, 332
one-valley approximation, 129, 138, 143
optical mode, 51
orbital momentum

electron, 243
hole, 249, 250

orientational degeneracy, see degeneracy
oscillator strength, 86, 126, 159, 160

acceptors, 163, 283, 291, 299, 301, 304
donors, 162, 173, 176, 178, 192

oxygen (interstitial), 32
oxygen-related thermal donors, 220
oxygen thermal double donors (TDDs)

germanium, 231
metastability, 227, 234
silicon, 220
stability, 220

p1/2 spectrum, 154, 282, 298, 300, 307,
317

p3/2 spectrum, 154, 282, 283, 287, 307,
317

parabolic band, 158
parity, 126–128, 131, 139, 152, 259
passivation, see also hydrogen

partial, 217, 314
Pauli’s principle, 312
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phase correction process, 96
phonon gap, 53, 57
phonon replica, 13, 15, 55, 248, 320, 332

phonon spectroscopy, see acoustic
phonon spectroscopy

photoacoustic spectroscopy, 103
photodetectors, 4

extrinsic, 104
intrinsic, 103

photoinduced spectrum, 253, 325
photoionization, 224

cross-section, 185, 193
spectrum, 12, 126, 162, 163, 196, 200,

248, 263, 295, 309, 310, 413
photoluminescence excitation (PLE),

183, 250
photo-thermal ionization spectroscopy

(PTIS), 25, 88, 105, 188, 189, 192,
236, 258, 295, 300, 328, 333, 380,
381, 391, 397, 424

contactless, 106
photon-induced hopping, 270
piezospectroscopic tensor, 369, 385, 386
platinum, 243, 320
polar vector, 348
polarization rules, 357
potassium, 7
proton tunnelling, 318, 319
pump-probe experiment, 87, 423

quadratic diamagnetic coefficients, 398
quadrupole broadening, 416
quadrupole interaction, 417
quantum computing, 411, 422
quasimonoisotopic (qmi) crystals

diamond, 74, 310

germanium, 74, 76
silicon, 74, 172, 175, 178, 182, 203,

210–214, 253, 282, 292, 420

radiation damages, 242
radiative recombination, 13
Raman scattering, 12, 182, 264, 288,

308, 330, 335
random

impurity distribution, 183, 416, 418
internal electric fields, 411, 415
isotopic distribution, 210, 282, 420

splitting, 382
stress, 384, 402

reduced effective mass, see effective
mass, reduced

reference level, 77, 286
reflectance, 47, 81
refractive index, 46, 97, 132
relative intensities, 188
reorientation

atomic, 372
electronic, 372

residual impurities, 10, 22, 295
resistivity, 3, 10, 11, 21
resolving power, 91
resonant

spectrum, 163
resonant broadening, see broadening,

resonant
resonant polarization, 48
resonant states, 150, 154, 157–159
responsivity, 100

(S,Cu) centre in silicon, 253
saturated absorption, see absorption
saturation effect, 86, 104, 106
secondary ion mass spectroscopy

(SIMS), 31, 261, 311
segregation coefficient, 35
selected pair luminescence, 14, 331
selection rules, 127, 195, 356, 358, 371,

398–400
electric dipole, 12

self-compensation, 10
semi-insulating, 11, 328
semiconducting alloys, 68, 104
semiconductors, 4

direct-band-gap, 61, 68, 257, 389
extrinsic, 2
indirect-band-gap, 63, 69
intrinsic, 3, 57
n-type, 3
p-type, 3

semimetals, 1, 65
shallow thermal donors (STDs), 30,

220, 236
H-related families, 240

shear deformation potential, 350, 360
silver, 247
sodium, 7, 175
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solubility, 35
spectral resolution, 86, 92, 93, 97
spherical approximation, 150, 159
spherical harmonics, 139
spin, 212

electron, 183
electronic, 142
nuclear, 17, 141, 182, 213, 253
splitting, 397

spin-orbit (s-o)
coupling, 59, 144, 148, 245, 247, 250,

393
interaction, 59, 248, 267, 363
splitting, see valence band

spin-valley
coupling, 209
splitting, 214

Stark effect, 412, 413, 415
first order, 413, 414
linear, 415, 416
quadratic, 412, 413, 415, 416

Stark splitting, 414
inhomogeneous, 12, 348, 415, 418

states or levels
even parity, 127, 131, 138, 145,

153–157, 182, 192, 208, 251, 266,
301

even parity resonant, 157, 158
odd parity, 127, 131, 136–138,

142–145, 154–158, 160, 178, 251,
255, 288, 298, 301

odd parity resonant, 154, 159
stimulated emission, 12, 422
strain, 144, 349
strain tensor, 351
stress isotropy, 374
stress tensor, 351, 352, 386
stress-induced reorientation, 192
susceptibility, 48

nonlinear, 187
synthetic diamond, see diamond,

synthetic, see diamond, synthetic

thallium, 286, 300, 301
thermal annealing, 23, 27, 29, 220, 241
thermal conductivity, 45, 187
thermal donors, 30, 220
thermal double donors, see oxygen

thermal double donors

thermal quenching, 30, 191
thermal stability, 220, 236, 241, 306
thermalization, 180, 187, 194
thermalized transitions, 309, 314, 325
three-phonon

process, 56
three-phonon spectrum, 291, 308
time constant, 100–103
time domain spectroscopy, 88
time-reversal symmetry, 388
transient decay method, 423
transition metals (TMs), 5, 25, 243,

305, 306, 320
transition probability, 127, 160, 243
transitions, 214

“hot”, 188
parity-allowed, 127, 128, 139, 159,

200
parity forbidden, 144, 145, 171
Raman-allowed, 128
spin-forbidden, 200
symmetry-allowed, 179, 199, 202, 248
two-electron, 128
two-hole, 128

transmittance, 47
transverse effective mass, see effective

mass, transverse
triplet state, 202, 270
tunable lasers, 89
tunnelling, 192, 318, 412
two-electron PL, 15, 182, 257, 262
two-hole PL, 15
two-phonon

processes, 56
spectrum, 263, 267, 308, 315, 320,

334, 420
two-photon absorption, 88, 259

ultrashallow thermal donors (USTDs),
220, 241

uncertainty, 98
uniaxial crystals, 134

valence band
bands parameters, 63, 64, 67, 69
coupling parameters, 149
g-factors, 65
heavy hole, 60, 63, 67
light hole, 60, 63, 67
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parameters, 63, 67, 69
spin-orbit splitting, 60, 63, 67, 299

valley-orbit
coupling, 141, 142, 144
interaction, 186
splitting, 141–144, 175, 187, 194, 214,

263, 354, 412
valley symmetry point group, 353
variational calculations, 130–134,

150–156
variational method, 130
variational parameters, 130
Vegard’s law, 38
vibrational lines, 226, 236
vibrational modes, 11, 335
vibronic sidebands, 15
virtual crystal approximation, 54
Voigt configuration, 119, 390, 394

wavenumber calibration, 96

wire grid polarizers, 99

X-ray diffraction, 39

Zeeman
effect, 388, 397, 409

quadratic shift, 391, 395

splitting, 119, 133, 261, 393, 395

transition, 148
zero-field splitting, 182, 183

zero-phonon-line, 15, 183, 250, 263, 266,
320

zero-radius central cell approximation,
154

ZnO, 30, 337

ZnSe, 145, 154, 257, 337


	Optical Absorption ofIm urities  and Defects inSemiconducting Crystals
	solid-state sciences 158
	ISBN 3540959556
	Foreword
	Preface
	Notations and Symbols
	Contents

	1 Introduction
	1.1 Basic Concepts
	1.2 A Short Historical Survey
	1.3 General Properties of the Hydrogen-Like Centres
	1.3.1 What are the Hydrogen-Like Centres
	1.3.2 Electrical Activity
	1.3.2.1 Compensation
	1.3.2.2 Passivation

	1.3.3 Optical Transitions
	1.3.4 Bound Excitons
	1.3.5 Spin Effects

	1.4 Notations for Centres and Optical Transitions
	References

	2 Origins and Atomic Properties of H-Like Centres
	2.1 Origins
	2.1.1 Occurrence in Nature
	2.1.2 Contamination
	2.1.3 Doping
	2.1.4 Thermal Treatments and Irradiation
	2.1.5 Concentration Measurements

	2.2 Structural Properties
	2.2.1 Global Atomic Configurations
	2.2.2 Solubilities and Diffusion Coefficients
	2.2.2.1 Solubility
	2.2.2.2 Diffusion Coefficients

	2.2.3 Lattice Distortion and Metastability

	References

	3 Bulk Optical Absorption
	3.1 Refractive Index and Dielectric Constant
	3.2 Intrinsic Lattice Absorption
	3.2.1 One-Phonon Effect
	3.2.2 Multi-Phonon Absorption and Anharmonicity

	3.3 Electronic Absorption
	3.3.1 Energy Gap and Fundamental Absorption
	3.3.2 Excitons
	3.3.3 Free-Carrier Effects

	References

	4 Methods and Techniques of Absorption Spectroscopy of Solids
	4.1 Introduction
	4.2 Radiation Sources and Spectrometers
	4.2.1 Tunable Sources
	4.2.2 Broadband Sources
	4.2.3 Spectrometers
	4.2.3.1 Dispersive Monochromators
	4.2.3.2 Fourier Transform Spectrometers


	4.3 Filtering and Polarization
	4.4 Radiation Detection
	4.4.1 Thermal Detection
	4.4.2 Photoconductive Detection
	4.4.2.1 Intrinsic Photoconductors
	4.4.2.2 Extrinsic Photoconductors

	4.4.3 Limits to Detectors Sensitivity

	4.5 Conditioning the Samples
	4.6 Cooling the Samples
	4.7 Compressing the Samples
	4.7.1 Uniaxial Stresses
	4.7.2 Hydrostatic Stresses

	4.8 Magnetooptical Measurements
	References

	5 Effective-Mass Theory and its Use
	5.1 Initial Assumptions
	5.1.1 Selection Rules

	5.2 Donor Centres
	5.2.1 The One-Valley Approximation
	5.2.2 Conduction Band Degeneracy
	5.2.3 The Quasi-Hydrogenic Case

	5.3 Acceptor Centres
	5.4 Oscillator Strengths
	5.4.1 Donor Transitions
	5.4.2 Acceptor Transitions

	References

	6 Donor and Donor-Like EM Spectra
	6.1 Introduction
	6.2 Group-V and Li Donors in Group-IV Crystals
	6.2.1 Silicon
	6.2.2 Germanium
	6.2.3 Silicon Carbide
	6.2.4 Diamond

	6.3 Group-VI- and Mg Donors in Group-IV Crystals
	6.3.1 Silicon
	6.3.1.1 The Neutral Charge State
	6.3.1.2 The Singly-Ionized Charge State
	6.3.1.3 Other Chalcogen-Related Donors

	6.3.2 Germanium

	6.4 O-Related Donors in Group IV Crystals
	6.4.1 The Thermal Double Donors
	6.4.1.1 Silicon
	6.4.1.2 Germanium

	6.4.2 The Shallow Thermal Donors in Silicon
	6.4.3 The Ultrashallow Thermal Donors in Silicon

	6.5 Other Shallow Donors Involving Hydrogen
	6.6 TMs, Group-I Elements and Pt in Silicon
	6.6.1 Interstitial Iron
	6.6.2 Ag, Au, and Pt

	6.7 Pseudo-Donors and Isoelectronic Donors
	6.7.1 The ``C'' and ``P'' Centres in Silicon
	6.7.2 The (S,Cu) Centre in Silicon
	6.7.3 Pseudo-Donor BEs in Germanium

	6.8 Donors in III-V and II-VI Compounds
	6.8.1 Quasi-Hydrogenic Effective-Mass Donors
	6.8.1.1 Cubic Semiconductors
	6.8.1.2 Non-Cubic Semiconductors

	6.8.2 Semiconductors with CB Degeneracy

	6.9 The D- Ion and Hopping Absorption
	6.9.1 The Donor Equivalent of H-: the D- Ion
	6.9.2 Photon-Induced Hopping

	References

	7 EM Acceptor Spectra
	7.1 Introduction
	7.2 Group-III Acceptors in Group-IV Crystals
	7.2.1 Silicon
	7.2.1.1 The p3/2 Spectra
	7.2.1.2 The p1/2 Spectra

	7.2.2 Germanium
	7.2.2.1 Single Acceptor Complexes

	7.2.3 Diamond and SiC

	7.3 Groups-II and -I Acceptors in Group-IV Crystals
	7.3.1 Germanium
	7.3.1.1 The A0 Charge State
	7.3.1.2 The A- Charge State

	7.3.2 Silicon

	7.4 An Isoelectronic Acceptor: the Be2 Pair in Silicon
	7.5 An Acceptor Equivalent of H-: the A+ Ion
	7.6 Acceptors in III-V and II-VI Semiconductors
	7.6.1 Groups-II and -IV Acceptors in III-V Compounds
	7.6.2 The BAs (78-meV/203-meV) Double Acceptor in GaAs
	7.6.3 TMs Acceptors in III-V Compounds
	7.6.4 Acceptors in II-VI Compounds

	References

	8 Effects of Perturbations
	8.1 Introduction
	8.2 Mechanical Stresses
	8.2.1 Effects on Electronic Transitions
	8.2.1.1 EM Donors with CB Degeneracy
	8.2.1.2 EM Acceptors
	8.2.1.3 Stress-Induced Inhomogeneous Broadening

	8.2.2 Uniaxial Stress and Orientational Degeneracy

	8.3 Effect of Magnetic Fields
	8.3.1 Shallow Donors in Multi-Valley Semiconductors
	8.3.1.1 Silicon
	8.3.1.2 Germanium
	8.3.1.3 Diamond

	8.3.2 Shallow Acceptors
	8.3.2.1 Silicon
	8.3.2.2 Germanium
	8.3.2.3 Diamond
	8.3.2.4 Compound Semiconductors


	8.4 Effect of Electric Fields
	8.4.1 Homogeneous Electric Fields
	8.4.2 Internal Electric Fields

	8.5 Line Widths and Lifetimes
	8.5.1 Phonon Broadening
	8.5.2 Concentration Broadening
	8.5.3 Lifetimes

	References

	Appendix A Energy Units Used in Spectroscopy and Solid-State Physics
	Appendix B Bravais Lattices, Symmetry and Crystals
	B.1 The Reciprocal Lattice
	B.2 Lattice Planes and Miller Indices
	B.3 A Toolbox for Symmetry Groups
	B.3.1 The Abstract Groups
	B.3.2 The Symmetry Point Groups
	B.3.3 Representations and Basis Functions
	B.3.4 The Symmetry Space Groups

	B.4 Some Crystal Structures
	B.4.1 Cubic Structures
	B.4.2 Hexagonal Structures
	B.4.3 Other Crystal Structures

	References

	Appendix C Optical Band Gaps and Crystal Structures of Some Insulators and Semiconductors
	Appendix D Table of Isotopes
	Appendix E Some Tensor Properties
	References

	Index

