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Supervisor’s Foreword

Atomistic simulations play an increasingly important role in many branches of
science and, in the future, they will play a crucial role in understanding complex
processes in biology and in developing new materials to confrontchallenges
concerning energy and sustainability. The most accurate simulations use quantum
mechanics to determine the interactions between the atoms. However, such
approaches are restricted to moderate numbers of atoms, certainly less than a
million, and, perhaps more importantly, very restricted timescales, generally less
than a nanosecond and more likely of the order of picoseconds for the largest
systems. Given these restrictions, then it is clear that the most complex problems
in materials and biology will never be addressed using quantum mechanics alone.
In contrast, atomistic simulations based on empirical interatomic potentials are
computationally inexpensive. They have been used for simulations of systems
containing billions of atoms for timescales of microseconds or even longer. Good
empirical interatomic potentials exist for metals and for ionic materials but even
these fail to describe all atomic environments with equal accuracy. Creating
accurate interatomic potentials for covalent materials has proved to be extremely
difficult.

The generation of interatomic potentials has, historically, been an art rather than
an exact science. Furthermore, all interatomic potentials have limited regions of
applicability though it has not been possible to quantify these regions in a useful
way in order to prevent simulations performed with such potentials producing
unphysical results. The new scheme for creating interatomic potentials described
in this thesis generates accurate forces for any new atomic configuration based on a
database of configurations and corresponding forces and energies gathered from
any source although, realistically, the most useful source is likely to be quantum
mechanical calculations. The new scheme does not fit an explicitly parameterised
model of the interatomic potential but instead uses a Gaussian Process to deter-
mine the forces on the atoms. Indeed, one of the most interesting conclusions of
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this approach is that the use of parameterised models for interatomic potentials is,
itself, responsible for most of the severe problems encountered in the development
of interatomic potentials. This new approach to describing interatomic interactions
is called the Gaussian Approximation Potential.

The key mathematical advance that made this approach possible was the
description of the atomic neighbourhood in terms of the elements of the bispec-
trum. The bispectrum provides a very efficient description of the local atomic
structure that takes account of the symmetries of the system, namely rotational,
permutational and translational symmetries. Hence the bispectrum is invariant
under rotations, translations and permutations of the sets atoms surrounding any
particular atom. The bispectrum is a very effective descriptor of local structure and
it will be interesting to see whether it will be applied to other problems, such as
phase transitions, in the future. Importantly, the Gaussian Process also provides an
estimate of the errors in the forces so simulations based on this potential can avoid
the problem of generating spurious unphysical results due to errors in the inter-
atomic potential. This situation would only be encountered if the simulation visited
atomic configurations which were distant from the ones used to generate the
original potential. One of the attractive features of the new approach is that, at this
point, a new potential could be generated incorporating these new atomic con-
figurations and the simulation could be continuedusing this new potential. This
procedure would not reduce the accuracy of the potential for atomic configurations
close to those in the original fitting set. This is not the case when reparameterising
conventional interatomic potentials. Thus, Gaussian Approximation Potentials
maintain accuracy as their transferability to new atomic environments is enhanced.
In contrast, standard parameterised interatomic potentials always involve a
compromise between accuracy and transferability.

These new potentials will also solve a number of the technical problems that
presently exist in hybrid or QM/MM modelling schemes in which one or more
parts of a system are described using quantum mechanics and the remainder of the
system is described using simple analytical empirical potentials. The properties of
the regions described using these new potentials would accurately match the
properties of the regions described quantum mechanically thus reducing the
problems introduced by the mismatch of, say, elastic properties across the inter-
face. Furthermore, by continually adding quantum mechanical data to the training
set for the potential, the Gaussian Approximation Potential could replace explicit
quantum mechanical calculations for the quantum regions in such simulations yet
maintain the accuracy of explicit quantum mechanical calculations. This approach
would have a profound effect of significantly increasing the timescales that are
accessible to QM/MM simulations. As a result of the work described in the thesis,
there is now a standard procedure to determine accurate forces to use in any
atomistic simulations. The Gaussian Approximation Potentials presented in the
thesis for gallium nitride and for iron were developed in a few days (which
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included the generation of the input quantum mechanical data), yet are more
accurate than existing potentials that were developed over a much longer period of
time. In the future, I would expect that the whole process of generating GAP could
be automated to allow any user to apply the method to any system of interest.

Cambridge, May 2010 Mike Payne
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Chapter 1
Introduction

Understanding the behaviour of materials at the atomic scale is fundamental to
modern science and technology. As many properties and phenomena are ulti-
mately controlled by the details of the atomic interactions, simulations of atomic
systems provide useful information, which is often not accessible by experiment
alone. Observing materials on a microscopic level can help to interpret physical
phenomena and to predict the properties of previously unknown molecules and
materials. To perform such atomistic simulations, we have to use models to
describe the atomic interactions, whose accuracy has to be validated in order to
ensure that the simulations are realistic.

Quantum Mechanics provides a description of matter, which, according to our
current knowledge, is ultimately correct, a conclusion which is strongly corrobo-
rated by experimental evidence. However, the solution of the Schrödinger equa-
tion—apart from a few very simple examples—has to be performed numerically
using computers. A series of approximations and sophisticated numerical techniques
has led to various implementations of the originally exact quantum mechanical
theory, which can be now routinely used in studies of atomic systems. In the last few
decades, as computational speed capacities grew exponentially, the description of
more and more atoms has become tractable. In most practical applications, the
electrons and the nuclei are treated separately, and the quantum mechanical
description of the nuclei is dropped altogether. This simplification, namely, that the
nuclei move on a potential energy surface determined by the interaction of the
electrons, already makes quantum mechanical calculations several order of mag-
nitudes faster. However, determining macroscopic thermodynamical quantities of
atomic systems requires a large number of samples of different arrangements of
atoms, and the number of atoms has to be large enough to minimise finite-size
effects. In fact, the computational costs associated with the solution of the Schrö-
dinger equation are so large that the use of Quantum Mechanics is limited at most to
a hundred of atoms and only a small fraction of the available configurational space.

The demand for faster calculations to allow calculations of larger systems or the
exploration of configurational space leads to the realm of analytical potentials,

A. Bartók-Pártay, The Gaussian Approximation Potential, Springer Theses,
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which are based on substituting the solution of the electronic Schrödinger equation
with evaluation using an analytic function. Whereas the quantum mechanical
description does not need validation—apart from ensuring that the errors intro-
duced by the approximations are minimised—analytic potentials have to be
checked to determine whether the description remains valid. This is often done by
comparing macroscopic quantities computed by the model to experimental values.
There is a high degree of arbitrariness in the creation and validation of such
potentials [1], and in practice it is found that they are significantly less accurate
than Quantum Mechanics.

As quantum mechanical calculations are becoming more widely available via
computer programs such as CASTEP [2], CP2K [3] or Gaussian [4], we have
access to a large number of microscopic observables. The approach we present in
this thesis is to create interatomic potentials based directly on quantum mechanical
data which are fast and have an accuracy close to the original method. To achieve
this, we have used a Gaussian Process to interpolate the quantum mechanical
potential energy surface. The Gaussian Process is routinely used by the machine-
learning community for regression, but it has never previously been adapted to
represent the atomic potential energy surface.

In traditional parametric regression a fixed functional form is assumed and a
number of free parameters are optimised such that the resulting function is the best
representation of the data. In case of complex, multivariate functions it is difficult
to find suitable functional forms and it can be often observed that refitting with
additional data significantly worsens the quality of the fit. On the other hand, non-
parametric, nonlinear regression methods such as Gaussian Processes and neural
networks offer flexible function fitting, with no prior assumptions for the func-
tional form. Adding new, complementary data does not affect the quality of the fit,
although this feature also suggests that the extrapolation capabilities of these
methods are limited. Excellent introductions to machine learning methods can be
found in [5] and [6].

Another important component of our method is the representation of atomic
environments. We describe the environment of the atoms by a vector, called the
bispectrum, which is invariant to rotations, translations and permutation of atoms
in the neighbourhood. The bispectrum has been used in signal processing origi-
nally, but Kakarala generalised the concept [7] and Kondor derived the explicit
formulae for the rotational groups. The well-known bond order parameters [8] are,
in fact, a subset of the bispectrum. Within the bispectrum representation, we regard
the potential energy surface as a sum of atomic energy functions, whose variables
are the elements of the bispectrum.

This approach for generating interatomic potentials, which we collectively refer
to as Gaussian Approximation Potentials, has the favourable scaling and speed of
analytic potentials, while the accuracy is comparable with the underlying quantum
mechanical method. With Gaussian Approximation Potentials atomistic simula-
tions can be taken to an entirely new level.

2 1 Introduction



1.1 Outline of the Thesis

The thesis is organised as follows. In Chap. 2 I discuss the representation of atomic
environments by the bispectrum. I show how the rotational invariance of the
bispectrum can be proved using Representation Theory and how the bispectrum is
related to the widely used bond-order parameters. I summarise the Gaussian
Process nonlinear regression method we used in Chap. 3, where I show the deri-
vation of the formulae based on the Bayes’ Theorem and the extensions which
allowed us to use Gaussian Process for the regression of atomic potential energy
surfaces. I describe a number of interatomic potentials and the Gaussian
Approximation Potential in detail in Chap. 4. Details of the computational
methods, which we used to test our model, are given in Chap. 5. Finally, I present
our results on generating Gaussian Approximation Potentials for several systems
and the validation of the models in Chap. 6.
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Chapter 2
Representation of Atomic Environments

2.1 Introduction

The quantitative representation of atomic environments is an important tool in
modern computational chemistry and condensed matter physics. For example, in
structure search applications [1], each configuration that is found during the
procedure depends numerically on the precise initial conditions and the path of the
search, so it is important to be able to identify equivalent structures or detect
similarities. In other applications, such as molecular dynamics simulation of phase
transitions [2], one needs good order parameters capable of detecting changes in
the local order around the atoms. In constructing interatomic potentials [3], the
functional forms depend on elements of a carefully chosen representation of
atomic neighbourhoods, e.g. bond lengths, bond angles, etc.

Although the Cartesian coordinate system provides a simple and unequivocal
description of atomic systems, comparisons of structures based on it are difficult:
the list of coordinates can be ordered arbitrarily, or two structures might be
mapped to each other by a rotation, reflection or translation. Hence, two different
lists of atomic coordinates can in fact represent the same or very similar structures.
In a good representation, permutational, rotational and translational symmetries
are built in explicitly, i.e. the representation is invariant with respect to these
symmetries, while retaining the faithfulness of the Cartesian coordinates. If a
representation is complete, a one-to-one mapping is obtained between the genu-
inely different atomic environments and the set of invariants comprising the
representation.

The most well known invariants describing atomic neighbourhoods are the set
of bond-order parameters proposed by Steinhardt et al. [4]. These have been
successfully used as order parameters in studies of nucleation [5], phase transitions
[6] and glasses [7]. In the following sections we show that the bond-order
parameters actually form a subset of a more general set of invariants called the
bispectrum. We prove that the bispectrum components indeed form a rotational
and permutational invariant representation of atomic environments. The formally

A. Bartók-Pártay, The Gaussian Approximation Potential, Springer Theses,
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infinite array of bispectral invariants provide an almost complete set, and by
truncating it one obtains representations whose sensitivity can be refined at will.

2.2 Translational Invariants

The concept of the power spectrum and the bispectrum was originally introduced
by the signal processing community. In the analysis of periodic signals the
absolute phase is often irrelevant and a hindering factor, for example, when
comparing signals. The problem of eliminating the phase of a periodic function is
very similar to the problem of creating a rotationally invariant representation of
spatial functions. We show how the bispectrum of periodic functions can be
defined and discuss its possible uses in atomistic simulations.

2.2.1 Spectra of Signals

A periodic signal f(t) (or a function defined on the circumference of a circle) where
t [ [0, 2p), can be represented by its Fourier series:

f ðtÞ ¼
X

n

fn expðixntÞ; ð2:1Þ

where the coefficients, fn, can be obtained as follows:

fn ¼
1

2p

Z2p

0

f ðtÞ expð�ixntÞdt: ð2:2Þ

A phase shift of the signal (or rotation of the function) by t0 transforms the original
signal according to

f ðtÞ ! f ðt þ t0Þ; ð2:3Þ

and the coefficients become

fn ! expðixnt0Þfn: ð2:4Þ

It follows that the power spectrum of the signal defined as

pn ¼ f �n fn ð2:5Þ

is invariant to such phase shifts:

pn ¼ f �n fn ! fn expðixnt0Þð Þ� fn expðixnt0Þð Þ ¼ f �n fn; ð2:6Þ

6 2 Representation of Atomic Environments



but the information content of different channels becomes decoupled. Figure 2.1
and Table 2.1 demonstrate two functions, f1 ¼ sinðtÞ þ sinð2tÞ and f2 ¼ sinðtÞ þ
cosð2tÞ; that can both be represented by the same power spectrum.

2.2.2 Bispectrum

As the power spectrum is not complete, i.e. the original function cannot be recon-
structed from it, there is a need for an invariant representation from which the original
function can (at least in theory) be restored. The bispectrum contains the relative
phase of the different channels, moreover, it has been proven to be complete [8].

A periodic function f : Rn ! C; whose period is Li in the ith direction, can be
expressed in terms of a Fourier series:

f ðrÞ ¼
X

x

f ðxÞ expðixrÞ; ð2:7Þ

where the Fourier-components can be obtained from

0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2Fig. 2.1 Two different peri-
odic functions that share the
same power spectrum
coefficients

Table 2.1 Fourier and power
spectrum coefficients of f1
and f2

x -2 -1 0 1 2

f1 -i -i 0 i i
f2 1 -i 0 i 1
p1 = p2 1 1 0 1 1
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f ðxÞ ¼
Yn

i¼1

1
Li

Z

V

f ðrÞ expðixrÞdr ð2:8Þ

and x ¼ ðx1;x2; . . .;xnÞ: An arbitrary translation T̂ðr0Þ transforms f as
f(r) ? f(r - r0), thus the Fourier-coefficients change as f ðxÞ ! expð�ixr0Þf ðxÞ.
The bispectrum of f is defined as the triple-correlation of the Fourier coefficients:

bðx1;x2Þ ¼ f ðx1Þf ðx2Þf ðx1 þ x2Þ�: ð2:9Þ
The bispectrum is invariant to translations:

bðx1;x2Þ ! f ðx1Þ expði� x1r0Þf ðx2Þ expði� x2r0Þ
�f ðx1 þ x2Þ� exp iðx1 þ x2Þr0ð Þ ¼ bðx1;x2Þ:

ð2:10Þ

The bispectrum has been shown to be complete [8]. The proof, which is highly
technical and would be too long to reproduce here is based on Group Theory.
Further, Dianat and Raghuveer [9] proved that in case of one- and two-dimen-
sional functions the original function can be restored using only the diagonal
elements of the bispectrum, i.e. only the components for which x1 ¼ x2.

2.2.3 Bispectrum of Crystals

Crystals are periodic repetitions of a unit cell in space in each of the three
directions defined by the lattice vectors. A unit cell can be described as a paral-
lelepiped (the description used by the conventional Bravais system of lattices)
containing some number of atoms at given positions. The three independent edges
of the parallelepiped are the lattice vectors, whereas the positions of the atoms in
the unit cell form the basis. Defining crystals in this way is not unique, as any
subset of a crystal which generates it by translations can be defined as a unit cell,
for example, a Wigner–Seitz cell, which is not even necessarily a parallelepiped.

Thus a crystal can be described by the coordinates of the basis atoms ri, where
i ¼ 1; . . .;N and the three lattice vectors aa,a = 1, 2, 3. The position of the basis
can be given in terms of the fractional coordinates xi, such that

ri ¼
X3

a¼1

xiaaa; ð2:11Þ

where 0 \ xia \ 1.
In the same way as in the case of atomic environments, the order of the atoms in

the basis is arbitrary. We introduce the permutational invariance through the
atomic density:

qðxÞ ¼
X

i

dðx� xiÞ: ð2:12Þ
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q is a periodic function in the unit cube, therefore we can expand it in a Fourier series
and calculate invariant features such as the power spectrum and bispectrum. It can be
noted that the power spectrum of q is equivalent to the structure factor used in X-ray
and neutron diffraction, and it is clear from Sect. 2.2.1 why the structure factor is not
sufficient to determine the exact structure of a crystal. In contrast, the bispectrum of
the atomic density function could be used as a unique fingerprint of the crystal that is
invariant to the permutation and translation of the basis.

We note that permuting the lattice vectors of the crystal permutes the reciprocal
lattice vectors which therefore, mixes the elements of the bispectrum. This problem
can be eliminated by first matching the lattice vectors of the two structures which
are being compared. The rotation of the entire lattice does not change the frac-
tional coordinates, hence the bispectrum is invariant to global rotations.

2.3 Rotationally Invariant Features

Invariant features of atomic environments can be constructed by several methods,
of which we list a few here. In interatomic potentials, a set of geometric param-
eters are used, such as bond lengths, bond angles and tetrahedral angles. These are
rotationally invariant by construction, but the size of a complete set of such
parameters grows as exp(N), where N is the number of neighbours. The complete
set is vastly redundant, but there is no systematic way of reducing the number of
parameters without losing completeness.

A more compact rotationally invariant representation of the atomic environ-
ment can be built in the form of a matrix by using the bond vectors ri; i ¼ 1; . . .;N
between the central atom and its N neighbours. The elements of the matrix are
given by the dot product

Mij ¼ ri � rj: ð2:13Þ

Matrix M contains the bond lengths on its diagonal, whereas the off-diagonal
elements are related to the bond angles. It can be shown that M is a complete
representation [10]. However, permuting the neighbouring atoms shuffles the
columns and rows of M, thus M is not a suitable invariant representation.

Permutational invariance can be achieved by using the symmetric polynomials
[11]. These are defined by

Pkðx1; x2; . . .; xNÞ ¼ Pkðxp1 ; xp2 ; . . .; xpN Þ ð2:14Þ

for every p; where p is an arbitrary permutation of the vector ð1; 2; . . .;NÞ: The
first three symmetric polynomials are

P1ðx1; x2; . . .; xNÞ ¼
XN

i

xi ð2:15Þ
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P2ðx1; x2; . . .; xNÞ ¼
XN

i\j

xixj ð2:16Þ

P3ðx1; x2; . . .; xNÞ ¼
XN

i\j\k

xixjxk: ð2:17Þ

The series of polynomials form a complete representation, however, this set is not
rotationally invariant.

2.3.1 Bond-order Parameters

As a first step to derive a more general invariant representation of atomic envi-
ronments, we define the local atomic density as

qiðrÞ ¼
X

j

dðr� rijÞ; ð2:18Þ

where the index j runs over the neighbours of atom i. The local atomic density is
already invariant to permuting neighbours, as changing the order of the atoms in
the neighbour list only affects the order of the summation. This function could be
expanded in terms of spherical harmonics (dropping the atomic index i for clarity):

qðrÞ ¼
X

l¼0

Xl

m¼�l

clmYlm hðrÞ;/ðrÞð Þ: ð2:19Þ

However, we should note that this representation does not contain information
about the distances of neighbours. In fact, q(r) represented this way is the
projection of the positions of neighbouring atoms onto the unit sphere. The
properties of functions defined on the unit sphere are described by the group theory
of SO(3), the group of rotations about the origin.

The spherical harmonics functions form an orthonormal basis set for L2:

hYlmjYl0m0 i ¼ dll0dmm0 ; ð2:20Þ

where the inner product of functions f and g is defined as

h f jgi ¼
Z

f �ðrÞgðrÞdr: ð2:21Þ

The coefficients clm can be determined as

clm ¼ hqjYlmi ¼
X

j

Ylm hðrijÞ;/ðrijÞ
� �

: ð2:22Þ
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We note that the order parameters Qlm introduced by Steinhardt et al. [4] are
proportional to the coefficients clm. In their work, they defined the bonds in the system
as vectors joining neighbouring atoms. Defining which atoms are the neighbours of a
particular atom can be done by using a simple distance cutoff or via the Voronoi
analysis. Once the set of neighbours has been defined, each bond rij connecting
neighbour atoms i and j is represented by a set of spherical harmonics coefficients

Ylmðr̂ijÞ ¼ YlmðhðrijÞ;/ðrijÞÞ: ð2:23Þ

Averaging the coefficients for atom i provides the atomic order parameters for that
atom

Qi
lm ¼

1
Ni

X

j

Ylmðr̂ijÞ; ð2:24Þ

where Ni is the number of neighbours of atom i. Similarly, averaging over all
bonds in the system gives a set of global order parameters

�Qlm ¼
1

Nb

X

ij

Ylmðr̂ijÞ; ð2:25Þ

where Nb is the total number of bonds. Both of these order parameters are invariant
to permutations of atoms and to translations, but they still depend on the orien-
tation of the reference frame. However, rotationally invariant combinations of
these order parameters can be constructed as follows:

Qi
l ¼

4p
2lþ 1

Xl

m¼�l

ðQi
lmÞ
�Qi

lm

 !1=2

and ð2:26Þ

Wi
l ¼

Xl

m1;m2;m3¼�l

l l l
m1 m2 m3

� �
Qi

lm1
Qi

lm2
Qi

lm2
ð2:27Þ

for atoms and

�Ql ¼
4p

2lþ 1

Xl

m¼�l

�Q�lm �Qlm

 !1=2

ð2:28Þ

�Wl ¼
Xl

m1;m2;m3¼�l

l l l
m1 m2 m3

� �
�Qlm1

�Qlm2
�Qlm2 ð2:29Þ

for global structures. The factor in parentheses is the Wigner-3jm symbol, which is
nonzero only for m1 + m2 + m3 = 0.

Ql
i and Wi

l are called second-order and third-order bond-order parameters,
respectively. It is possible to normalise Wi

l such that it does not depend strongly on
the number of neighbours as follows:
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Ŵi
l ¼ Wi

l

Xl

m¼�l

ðQi
lmÞ
�Qi

lm

 !3=2,
: ð2:30Þ

Bond-order parameters were originally introduced by Steinhardt et al. [4] for
studying the order in liquids and glasses, but their approach was adopted soon for a
wide range of applications. For example, the bond-order parameters, when aver-
aged over all bonds in the system, can be used as reaction coordinates in phase
transitions [12].

For symmetry reasons, bond order parameters with l C 4 have non-zero values
in clusters with cubic symmetry and l C 6 for clusters with icosahedral symmetry.
The most widely calculated bond order parameters are l = 4 and l = 6. Different
values correspond to crystalline materials with different symmetry, while the
global values vanish in disordered phases, such as in liquids. This feature made
the Q and W invariants attractive for use as bond order parameters in many
applications.

2.3.2 Power Spectrum

Using some basic concepts from representation theory, we can now prove that the
second-order invariants are rotationally invariant, then we show a more general
form of invariants, a superset consisting of third-order invariants [13]. An arbitrary
rotation R̂ operating on a spherical harmonic function Ylm transforms it into a linear
combination of spherical harmonics with the same l index:

R̂Ylm ¼
Xl

m0¼�l

DðlÞmm0 ðRÞYlm0 ; ð2:31Þ

where the matrices D(l)(R) are also known as the Wigner-matrices. The elements of
the Wigner matrices can be generated by

DðlÞmm0 ðRÞ ¼ hYlmjR̂jYlm0 i: ð2:32Þ

It follows that the rotation operator R̂ acts on the function q as

R̂q ¼ R̂
X

l¼0

Xl

m¼�l

clmYlm ¼
X

l¼0

Xl

m¼�l

clmR̂Ylm

¼
X

l¼0

Xl

m¼�l

Xl

m0¼�l

clmDðlÞmm0 ðRÞYlm0

¼
X

l¼0

Xl

m0¼�l

c0lmYlm0 ;

ð2:33Þ
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thus the vector of coefficients cl transform under rotation as

cl ! DðlÞðRÞcl: ð2:34Þ

Making use of the fact that rotations are unitary operations, it is possible to show
that the matrices D(l) are unitary, i.e.

DðlÞ
� �y

DðlÞ ¼ I; ð2:35Þ

leading us to a set of rotationally invariant coefficients, the rotational power
spectrum:

pl ¼ cyl cl: ð2:36Þ

The coefficients of the power spectrum remain invariant under rotations:

pl ¼ c
y
l cl ! c

y
l DðlÞ
� �y� �

DðlÞcl

� �
¼ c

y
l cl: ð2:37Þ

It can be directly seen that the second-order bond-order parameters are related to
the power spectrum via the simple equation

Ql ¼
4p

2lþ 1
pl

� �1=2

: ð2:38Þ

The power spectrum is a very impoverished representation of the original
function q, because all pl coefficients are rotationally invariant independently,
i.e. different l channels are decoupled. This representation, although rotationally
invariant, is, in turn, severely incomplete.

The incompleteness of the power spectrum can be demonstrated by the fol-
lowing example. Assuming a function f in the form

f ðr̂Þ ¼
Xl1

m¼�l1

amYl1mðr̂Þ þ
Xl2

m¼�l2

bmYl2mðr̂Þ; ð2:39Þ

its power spectrum elements are pl1 ¼ jaj
2 and pl1 ¼ jbj

2. Thus only the length of the
vectors a and b are constrained by the power spectrum, their relative orientation is
lost, i.e. the information content of channels l1 and l2 becomes decoupled. Figure 2.2
shows two different angular functions, f1 = Y22 + Y2–2 + Y33 + Y3–3 and f2 =

Y21 + Y2–1 + Y32 + Y3–2 that have the same power spectrum p2 = 2 and p3 = 2.

2.3.3 Bispectrum

We will now generalise the concept of the power spectrum in order to obtain a
more complete set of invariants via the coupling of the different angular
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momentum channels [13]. Let us consider the direct product cl1 � cl2 ; which
transforms under a rotation as

cl1 � cl2 ! DðllÞ � Dðl2Þ
� �

cl1 � cl2ð Þ: ð2:40Þ

It follows from the representation theory of groups that the direct product of two
irreducible representations can be decomposed into direct sum of irreducible
representations of the same group. In case of the SO(3) group, the direct product of
two Wigner-matrices can be decomposed into a direct sum of Wigner-matrices in
the form

DðllÞ � Dðl2Þ ¼ Cl1;l2
� �y

a
l1þl2

l¼jl1�l2j
DðlÞ

" #
Cl1;l2 ; ð2:41Þ

where Cl1;l2 denote the Clebsch–Gordan coefficients. The matrices of Clebsch–
Gordan coefficients are themselves unitary, hence the vector Cl1;l2 cl1 � cl2ð Þ
transforms as

Cl1;l2 cl1 � cl2ð Þ ! a
l1þl2

l¼jl1�l2j
DðlÞ

" #
Cl1;l2 cl1 � cl2ð Þ: ð2:42Þ

We define gl1;l2;l as

a
l1þl2

l¼jl1�l2j
gl1;l2;l � Cl1;l2 cl1 � cl2ð Þ; ð2:43Þ

i.e. the gl1;l2;l is that part of the RHS which transforms under rotation as

gl1;l2;l ! DðlÞgl1;l2;l: ð2:44Þ

Analogously to the power spectrum, the bispectrum components or cubic invari-
ants, can be written as

Fig. 2.2 Two different
angular functions that share
the same power spectrum
coefficients
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bl1;l2;l ¼ cyl gl1;l2;l; ð2:45Þ

which are invariant to rotations:

bl1;l2;l ¼ cyl gl1;l2;l ! clD
ðlÞ

� �y
DðlÞgl1;l2;l ¼ cyl gl1;l2;l ð2:46Þ

Kondor showed that the bispectrum of the SO(3) space is not complete, i.e. the
bispectrum does not determine uniquely the original function. This is a deficiency
due to the fact that the unit sphere, S2 is a homogeneous space. However, he states
that the bispectrum is still a remarkably rich invariant representation of the
function.

Rewriting the bispectrum formula as

bl1;l2;l ¼
Xl

m¼�l

Xl1

m1¼�l1

Xl2

m2¼�l2

c�lmClm
l1m1l2m2

cl1m1 cl2m2 ; ð2:47Þ

the similarity to the third-order bond-order parameters becomes apparent. Indeed,
the Wigner 3jm-symbols are related to the Clebsch–Gordan coefficients through

l1 l2 l3

m1 m2 m3

� �
¼ ð�1Þl1�l2�m3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2l3 þ 1
p Clm

l1m1l2m2
: ð2:48Þ

For the spherical harmonics Ylm ¼ ð�1Þm Y�l�m; thus the third-order parameters Wl

are simply the diagonal elements of the bispectrum bl,l,l up to a scalar factor, and
thus, the bispectrum is a superset of the third-order bond-order parameters. Further,
considering that Y00 : 1, therefore the coefficient c00 is simply the number of

neighbours N, and Cl;0;l2
m;0;m2

¼ dl;l2dm;m2 , we notice that the bispectrum elements
l1 = 0, l = l2 are the power spectrum components, previously introduced:

bl;0;l ¼ Ni

Xl

m¼�l

Xl

m2¼�l

c�lmdm;m2 clm2 ¼ Ni

Xl

m¼�l

c�lmclm ¼ Nipl: ð2:49Þ

Finally, the relationship between the bond-order parameters and the bispectrum
can be summarised as

Ql /
ffiffiffiffi
pl
p /

ffiffiffiffiffiffiffiffiffi
bl;0;l

p
ð2:50Þ

Wl / bl;l;l: ð2:51Þ

2.3.3.1 Radial Dependence

The bispectrum is still a very incomplete representation, as it uses the unit-sphere
projection of the atomic environment, i.e. the distance of the atoms from the centre

2.3 Rotationally Invariant Features 15



is not represented. One way to improve this shortcoming—namely, the lack of
radial information—is to introduce radial basis functions [14], completing the
basis for three-dimensional space. In Eq. 2.19, we use the product of spherical
harmonics and a linearly independent set of radial functions gn:

qðrÞ ¼
X

n

X

l¼0

Xl

m¼�l

cnlmgnðrÞYlm hðrÞ;/ðrÞð Þ: ð2:52Þ

If the set of radial basis functions is not orthonormal, i.e. hgn | gm i = Snm = dnm,
after obtaining the coefficients c0nlm with

c0nlm ¼ hgnYlmjqi; ð2:53Þ

the elements cnlm are given as

cnlm ¼
X

n0
S�1
� �

n0n
c0n0lm: ð2:54Þ

In practice, when constructing the invariants, both c0nlm and cnlm can be used.
Rotational invariance only applies globally, therefore the different angular

momentum channels corresponding to various radial basis functions need to be
coupled. Simply extending Eq. 2.47 to the form

bn;l1;l2;l ¼
Xl

m¼�l

Xl1

m1¼�l1

Xl2

m2¼�l2

c�nlmClm
l1m1l2m2

cnl1m1 cnl2m2 ; ð2:55Þ

provides a set of invariants describing the three-dimensional neighbourhood of the
atom. In fact, this formula can easily lead to a poor representation, if the radial
functions have little overlap with each other, as the coefficients belonging to
different n channels become decoupled. To avoid this, it is necessary to choose
wide, overlapping radial functions, although this greatly reduces the sensitivity of
each channel (Fig. 2.3). The fine-tuning of the basis set is rather arbitrary, and
there does not necessarily exist an optimum for all systems. An alternative way to
construct invariants from c is to couple different radial channels, for example, as

Fig. 2.3 Two possible sets of radial basis functions, Gaussians centred at different radii. The
narrow Gaussians are more sensitive to changes in radial positions, but the coupling between
them is weaker
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bn1;n2;l1;l2;l ¼
Xl

m¼�l

Xl1

m1¼�l1

Xl2

m2¼�l2

c�n1lmClm
l1m1l2m2

cn2l1m1 cn2l2m2 : ð2:56Þ

Now we ensure that radial channels cannot become decoupled, but at the price of
increasing the number of invariants quadratically. Although adding a suitable set
of radial functions allows one to construct a complete representation, we found this
approach overly complicated. A high degree of arbitrariness is introduced by
having to choose a radial basis.

2.3.4 4-Dimensional Bispectrum

Instead of using a rather arbitrary radial basis set, we propose a generalisation of
the power spectrum and bispectrum that does not require the explicit introduction
of a radial basis set, yet still forms a complete basis of three-dimensional space.
We start by projecting the atomic neighbourhood density onto the surface of the
four-dimensional unit sphere, in a similar fashion to the Riemann-construction:

r �
x
y
z

0
@

1
A!

/ ¼ arctanðy=xÞ
h ¼ arccosðz=jrjÞ
h0 ¼ jrj=r0

; ð2:57Þ

where r0 [ rcut/p. Using this projection, rotations in the three-dimensional space
correspond to rotations in the four-dimensional space. Figure 2.4 shows such
projections for one and two dimensions, which can be more easily drawn than the
three-dimensional case that we use here.

An arbitrary function q defined on the surface of a 4D sphere can be numeri-

cally represented using the hyperspherical harmonics functions U j
m0mð/; h; h0Þ:

q ¼
X1

j¼0

Xj

m;m0¼�j

c j
m0mU j

m0m: ð2:58Þ

Fig. 2.4 Projection of a line to a circle (left), projection the two-dimensional plane onto the
three-dimensional sphere (right). The projection we use is in Eq. 2.57 the generalisation to one
more dimension
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The hyperspherical harmonics form an orthonormal basis set, thus the expansion

coefficients c j
m0m can be calculated via

c j
m0m ¼ hU

j
m0mjqi; ð2:59Þ

where h�|�i denotes the inner product in four-dimensional space. Although the

coefficients c j
m0m have two indices for each j, they are vectors and, for clarity, we

denote them as cj. Similarly to the three-dimensional case, a unitary operation R̂;
such as a rotation, acts on the hyperspherical harmonics functions as

R̂U j
m01m1
¼
X

m02m2

R j
m01m1m02m2

U j
m02m2

; ð2:60Þ

where the matrix elements R j
m01m1m02m2

are given by

R j
m01m1m02m2

¼ U j
m01m1
jR̂jU j

m02m2

D E
: ð2:61Þ

Hence the rotation R̂ acting on q transforms the coefficient vectors cj according to

c j ! Rjcj: ð2:62Þ

Rj are unitary matrices, i.e. Rj
� �y

Rj ¼ I:

The product of two hyperspherical harmonics functions can be expressed as the
linear combination of hyperspherical harmonics [15]:

Ul1
m01m1

Ul2
m02m2
¼

Xl1þl2

l¼jl1�l2j
Clm

l1m1l2m2
Clm

l1m1l2m2
Ul

m0m; ð2:63Þ

where Clm
l1m1l2m2

are the well-known Clebsch–Gordan coefficients. We can recognise
in Eq. 2.63 the four dimensional analogues of the Clebsch–Gordan expansion
coefficients, defined as Hlmm0

l1m1m01;l2m2m02
� Clm

l1m1l2m2
Clm0

l1m01l2m02
: Using the matrix notation

of the expansion coefficients, it can be shown that the direct product of the four-
dimensional rotation matrices decompose according to

Rj1 � Rj2 ¼ Hj1;j2
� �y

a
j1þj2

j¼jj1�j2j
R j

" #
Hj1;j2 : ð2:64Þ

The remainder of the derivation continues analogously to the 3D case. Finally, we
arrive at the expression for the bispectrum elements, given by

Bj1;j2;j ¼
Xj1

m01;m1¼�j1

Xj2

m02;m2¼�j2

Xj

m0;m¼�j

c j
m0m

� ��

Cjm
j1m1j2m2

Cjm0

j1m01j2m02
cj1

m01m1
cj2

m02m2
:

ð2:65Þ
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Note that the 4D power spectrum can be constructed as

Pj ¼
Xj

m0;m¼�j

c j
m0m

� ��
c j

m0m: ð2:66Þ

The 4D bispectrum is invariant with respect to rotations of four-dimensional space,
which include three-dimensional rotations. However, there are additional rotations,
associated with the third polar angle h0, which, in our case, represents the radial
information. In order to eliminate the invariance with respect to the third polar
angle, we modified the atomic density as follows:

qiðrÞ ¼ dð0Þ þ
X

j

dðr� rijÞ; ð2:67Þ

i.e. by adding the central atom as a reference point.
The magnitude of the elements of the bispectrum scale as the cube of the

number of neighbours, so we take the cube-root of the coefficients in order to make
the comparison of different spectra easier.

2.3.5 Results

In practice, the infinite spherical harmonic expansion of the atomic neighbourhood
is truncated to obtain a finite array of bispectral invariants. In Fig. 2.5 we show the
4D bispectra of atoms in a variety of environments, truncated to j B 4, which
gives 42 bispectrum coefficients. In each case the r0 parameter was set to highlight
differences between the bispectral elements.

It can be seen from Fig. 2.5 that the bispectrum is capable of distinguishing
very subtle differences in atomic neighbourhood environments. Some points of
particular interest are the following. The difference between the face-centred cubic
(fcc) and the hexagonal close-packed (hcp) structures is very small within the first
neighbour shell, as is the difference between the corresponding bispectra (panel a).
However, the difference is much more pronounced once second neighbours are
included (panel b). The difference between the cubic and hexagonal diamond
lattices is the stacking order of the (111) sheets. The positions of the four nearest
neighbours and nine atoms of the second-nearest neighbour shell are the same and,
only the positions of the remaining three neighbours are different, as shown in
Fig. 2.6. The curves in Fig. 2.5c reflect the similarity of these two structures: most
of the bispectrum coefficients are equal, except a few, which can be used for
distinguishing the structures. Figure 2.5d shows the bispectra of three atoms in
perfect diamond lattices, which differ in the lattice constants. This plot illustrates
the sensitivity of the bispectrum in the radial dimension because the expansion of a
lattice leaves all angular coordinates the same. It can be seen that the first element
of the bispectrum array remains the same, because this is proportional only to the
number of neighbours.
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We performed the principle component analysis [16] on the bispectra of atoms
in a slab of silicon. On the surface of the slab, the atoms were arranged according
to the 7 9 7 reconstruction [17]. The position of the atoms were randomised by

Fig. 2.5 Four-dimensional bispectra of atoms in various structures: a fcc/hcp/bcc lattices with a
first neighbour cutoff; b fcc/hcp/bcc lattices with a second neighbour cutoff; c hexagonal and
cubic diamond lattice; d expansion of a diamond lattice; e bulk diamond, (111) surface of
diamond and graphene; f fcc vacancy; g the A and B atoms in a zincblende structure, compared
with diamond

Fig. 2.6 Cubic and hexago-
nal diamond. Cubic diamond
is shown in the left
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0.3 Å. We projected the 42-dimensional space of the bispectrum—which corre-
sponds to j B 4—to the two-dimensional plane and clustered the points using the
k-means algorithm [18]. In Fig. 2.7, we show the result of the principle component
analysis. Different colours are assigned to each cluster identified by the k-means
method, and we coloured the atoms with respect to the cluster they belong.
This example demonstrates that the bispectrum can be used to identify atomic
environments in an automatic way.

It is straightforward to describe multi-species atomic environments using the
bispectrum. We modify the atomic density function defined in Eq. 2.18 as

qiðrÞ ¼ sidð0Þ þ
X

j

sjdðr� rijÞ; ð2:68Þ

where s contains an arbitrary set of coefficients, different for each species, which
are thus distinguished. Figure 2.5g shows the resulting bispectra for the two dif-
ferent atoms in the zincblende lattice, as well as the diamond lattice for com-
parison. It can be seen that the bispectrum successfully distinguishes between the
different species.
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Chapter 3
Gaussian Process

3.1 Introduction

Regression methods are important tools in data analysis. Parametric models can be
expressed in functional forms that contain free parameters that are fitted such that
the models reproduce observations. The model can often be formulated in a way
that the functional form is a linear combination of the parameters. The fitting
procedure in such cases is called linear regression. Nonlinear regression is needed
if the functional form cannot be expressed as a simple linear combination of the
parameters, but this case does not differ conceptually from the linear case.
However, there is often no theory or model describing a particular process—or it is
just too complicated to write the model in a closed functional form—but it is still
important to make predictions of the outcome of the process. Non-parametric
approaches, such as neural networks or Gaussian Processes, can be used to
approximate the underlying function given a set of previously collected data.
As neural network methods form a subset of Gaussian Processes [1], we decided to
use the latter approach in our work.

3.2 Function Inference

Gaussian Processes predict the values of a function whose form is not explicitly

known by using function observations as evidence. If t ¼ ftigN
i¼1 are values of a

function f : Rn ! R measured at the points X ¼ fxigN
i¼1 with some error, pre-

dicting the value tN+1 at xN+1 can be formulated as a Bayesian inference problem.
Bayes’ theorem states that

PðtNþ1jtÞ ¼
PðtjtNþ1ÞPðtNþ1Þ

PðtÞ / PðtjtNþ1ÞPðtNþ1Þ; ð3:1Þ

A. Bartók-Pártay, The Gaussian Approximation Potential, Springer Theses,
DOI: 10.1007/978-3-642-14067-9_3, � Springer-Verlag Berlin Heidelberg 2010
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where P(tN+1) is a Gaussian prior on the function space. It is possible to introduce a
Gaussian prior on function f as

f ðxÞ ¼
X

h

wh/hðxÞ ð3:2Þ

where f/hgH
h¼1 form a complete basis set and the distribution of w is a Gaussian

with zero mean and variance rh:wh *N(0, rh). Each function value fn is a linear
combination of the basis functions:

fn ¼
XH

h¼1

wh/hðxnÞ ¼
XH

h¼1

whRnh; ð3:3Þ

where Rnh :/h(xn). The covariance matrix of the function values f is the matrix of
expectation values

Q ¼ hf fTi ¼ hRwwT RTi ¼ RhwwTiRT ¼ r2
hRRT : ð3:4Þ

Thus the prior distribution of f is N(0, Q) = N(0, rh
2RRT). However, each

measurement contains noise, which we assume to be Gaussian with zero mean and
variance rm. The vector of data points also has Gaussian distribution:
P(t)*N(0, Q ? rm

2). We denote the covariance matrix of t by C :Q ? rm
2I.

The distribution of the joint probability of observing tN?1 having previously
observed t can be written as

PðtNþ1jtÞ / Pð½t tNþ1�Þ; ð3:5Þ

where P([ttN?1]) * N(0, CN?1), or explicitly

Pð½t tNþ1�Þ / exp � 1
2
½t tNþ1�T C�1

Nþ1½t tNþ1�
� �

: ð3:6Þ

The covariance matrix CN?1 and its inverse can be written as

CNþ1 ¼
CN k
kT j

� �
ð3:7Þ

and

C�1
Nþ1 ¼

M m
mT m

� �
: ð3:8Þ

The submatrices of CN?1
-1 can be calculated via

CNþ1C�1
Nþ1 ¼

CNMþ km> CNmþ mk
k>Mþ jm> k>mþ jm

� �
¼ I; ð3:9Þ
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which leads to

m ¼ j� kT C�1
N k

� ��1 ð3:10Þ

m ¼ �mC�1
N k ð3:11Þ

M ¼ C�1
N þ

1
m

mmT : ð3:12Þ

Substituting these into Eq. 3.6, we obtain

PðtNþ1jtÞ / exp � tNþ1 � t̂Nþ1ð Þ2

2r2
t̂Nþ1

 !
; ð3:13Þ

where the new variables t̂Nþ1 and rt̂Nþ1
are defined as

t̂Nþ1 � kT C�1
N t ð3:14Þ

and

r2
t̂Nþ1
� j� kT C�1

N k; ð3:15Þ

i.e. tN?1 has Gaussian distribution with mean t̂Nþ1 and variance r2
t̂Nþ1

: We use this

formula to predict function values and error bars.
Figure 3.1 shows a one-dimensional example of the Gaussian Process regres-

sion. We sampled an arbitrary function at ten random points between the interval
ð14 ; 3

4Þ and used these samples as the training points. We present the predicted
values and the predicted errors in the entire interval (0, 1). It can be seen
that inside the fitting region, the predicted values are very close to the original
functions, and the predicted variance is also small. Outside the fitting region,
the prediction is meaningless, and this is indicated by the large variance.

3.2.1 Covariance Functions

The elements of the covariance matrix Q defined in Eq. 3.4 can be determined as

Qnn0 ¼ r2
h

X

h

RnhRn0h ¼ r2
h

X

h

/hðxnÞ/hðxn0 Þ: ð3:16Þ

In our work, we used Gaussians centred at different points as basis functions.
In one dimension, these would have the form

/hðxÞ ¼ exp �ðx� xhÞ2

2r2

 !
: ð3:17Þ
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If the basis set consists of infinitely many basis functions which are distributed
uniformly, the summation in Eq. 3.16 can be replaced by an integration:

Qnn0 /
Z

exp �ðxn � xhÞ2

2r2

 !
exp �ðxn0 � xhÞ2

2r2

 !
dr: ð3:18Þ

The integral of the product of two Gaussian is also a Gaussian, leading to the final
expression—also known as the kernel—of the covariance matrix elements

Qnn0 ¼ d2 exp �ðxn � xn0 Þ2

2h2

 !
; ð3:19Þ

where d and h are usually referred to as hyperparameters. This finding demon-
strates that the Gaussian Process method is, in fact, an example of non-parametric
regression with infinitely many basis functions, but where it is not necessary to
determine the coefficients of the basis functions explicitly. We note that using
Gaussians as basis functions is a convenient choice, as the elements of the
covariance matrix can be calculated analytically using a simple Gaussian kernel,
but depending on the nature of the target function, there is a large variety of
alternative basis functions and kernels.

In the case of multidimensional input data, the Gaussian kernel could be
modified such that different length scales are associated with different directions:

Qnn0 ¼ d2 exp � 1
2

X

i

ðxni � xn0iÞ2

h2
i

 !
; ð3:20Þ
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Fig. 3.1 Gaussian Process
regression in one dimension.
The original function (dotted
line) was sampled at ten ran-
dom points (open squares).
The predicted function values
(solid line) and the errors
(dashed line) are shown
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where the vector h � fhigN
i¼1 contains the typical decorrelation length of the

function in each dimension i. If we assume that the initial Gaussian basis functions
are not aligned in the directions of the original input vectors, the kernel can be
written in the form

Qnn0 ¼ d2 exp � 1
2

xT
n HTHxn

� �
; ð3:21Þ

where H is the matrix of hyperparameters.

3.2.2 Hyperparameters

The choice of hyperparameters d; h and rm depends strongly on the data set.
h represents the width of the basis functions, i.e. it characterises the typical length
scale over which the function values become uncorrelated. d places a prior on the
variance of the parameter vector w, describing the typical variance of the function,
while rm is the assumed noise in the measured data values. Ideally, a prediction for
tN?1 would be made by evaluating the integral

PðtNþ1jxNþ1; t;XÞ ¼
Z

PðtNþ1jxNþ1; t;X; hÞPðhjt;XÞdh; ð3:22Þ

but depending on the model, the analytic form of the integral may or may not be
known. Although it is always possible to carry out the integration numerically, for
example, by Markov chain Monte Carlo or Nested Sampling [2], a computation-
ally less demanding method is to approximate the integral at the most probable
value of h. It is often possible to choose good hyperparameters based on known
features of the function, but the hyperparameters can also be optimised if needed.
If we consider the probability distribution of a hyperparameter set h given a data
set D:

PðhjDÞ / PðDjhÞPðhÞ; ð3:23Þ

optimal hyperparameters can be obtained by maximising this probability, known
as the marginal likelihood. Assuming a uniform prior on the hyperparameters and
using the result found in Eq. 3.4, i.e. P(t|X) * N(0, C), the logarithm of the
likelihood is

ln PðtjX; hÞ ¼ � 1
2

tT C�1t� 1
2

ln det C� N

2
ln 2p: ð3:24Þ

Maximising the logarithm of the likelihood with respect to the hyperparameters
can be performed by gradient-based methods such as Conjugate Gradients [3],
where that gradients can be calculated as
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o ln P

ohi
¼ 1

2
tT C�1 oC

ohi
C�1t� 1

2
tr C�1 oC

ohi

� �
: ð3:25Þ

3.2.3 Predicting Derivatives and Using Derivative Observations

Predicting the values of derivatives using a Gaussian Process can be performed by
simply differentiating the expectation value t̂ in Eq. 3.14:

ôt

oxi
¼ okT

oxi
C�1

N t: ð3:26Þ

The elements of k are given by the covariance function, hence we need to dif-
ferentiate the covariance function,

okn

oxi
¼ oCðxn; xÞ

oxi
ð3:27Þ

which gives

okn

oxi
¼ xni � xi

h2
i

d2 exp � 1
2

X

i

ðxni � xiÞ2

h2
i

 !
ð3:28Þ

in the case of Gaussian kernels.
It is also possible that values of derivatives have been measured and these are

also available. In order to use this data, we differentiate Eq. 3.2

of

oxi

����
xn

¼
X

h

wh
o/h

oxi

����
xn

; ð3:29Þ

thus we need to substitute o/h
oxi

for the basis functions in Eq. 3.16 to give

Qnn0 ¼ r2
h

X

h

RnhRn0h ¼ r2
h

X

h

o/h

oxi

����
xn

/hðxn0 Þ: ð3:30Þ

Qnn0 ¼ r2
h

X

h

RnhRn0h ¼ r2
h

X

h

o/h

oxi

����
xn

o/h

oxj

����
xn0

: ð3:31Þ

For Gaussian kernels, the covariance between a derivative and a function value
observation is

Qnn0 ¼
xni � xn0i

h2
i

d2 exp � 1
2

X

k

ðxnk � xn0kÞ2

h2
i

 !
; ð3:32Þ

or between two derivative observations the covariance is
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Qnn0 ¼
1

hihj
� 1

2
xni � xn0i

h2
i

xnj � xn0j

h2
j

 !
d2 exp � 1

2

X

k

ðxnk � xn0kÞ2

h2
k

 !
: ð3:33Þ

Finally, if the function is a composite function of the form f(x) :f(y(x)) and the

derivatives of
oxi

are available, the Gaussian covariance function between a derivative

(n-th) and function value (n0-th) observation is

Qnn0 ¼
X

k

ynk � yn0k

h2
k

oynk

oxi
d2 exp � 1

2

X

k

ðynk � yn0kÞ2

h2
k

 !
; ð3:34Þ

and between two derivative observations of
oxi

and of
oxj

is

Qnn0 ¼
X

k

1

h2
k

oynk

oxi

oyn0k

oxj
� Dij

 !
d2 exp � 1

2

X

k

ðynk � yn0kÞ2

h2
k

 !
; ð3:35Þ

with

Dij ¼
1
2

X

k

ynk � yn0k

h2
k

oynk

oxi

 !
X

k

ynk � yn0k

h2
k

oyn0k

oxj

 !
: ð3:36Þ

Using the same model for observations of function values and their derivatives
enables us to incorporate the available information into a single regression
allowing us to infer both function values and derivatives.

Since there is no reason to assume that the noise is the same in case of both the
function value and derivative observations, we use two distinct noise
hyperparameters.

3.2.4 Linear Combination of Function Values

It is possible that linear combinations of function values can be observed during
the data collection process:

f 0m ¼
X

n

Lmnf ðxnÞ ¼
X

n;h

LmnRnhwh: ð3:37Þ

If this is the case, Eq. 3.4 is thereby modified, so the covariance matrix of the
observed values can be obtained as

Q0 ¼ hf 0f 0Ti ¼ hLRwwT RT LTi ¼ r2
hLRRT LT ¼ LQLT : ð3:38Þ

In our work, Eq. 3.38 proved to be very useful, as only the total energy of an
atomic system can be obtained using quantum mechanical calculations. However,
we view the energy as arising from the sum of atomic contributions. Thus, in this
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case, the matrix L describing the relationship of the observations (total energy) to
the unknown function values (atomic energies) consists of 0s and 1s.

3.2.5 Sparsification

Snelson and Ghahramani [4] introduced a modification to the standard Gaussian
Process regression model for large, correlated data sets. The computational cost of
the training process described in Eq. 3.13 scales as the cube of the number of data
points, due to the computational cost of inverting the covariance matrix. In case of
large data sets, the training process can become computationally expensive.
Although the computational cost of predicting function values scales linearly with
the number of teaching points, this cost can also be computationally demanding. If
the data set is highly correlated, i.e. observations are made at closely spaced
points, it is feasible to use a sparse approximation of the full Gaussian Process,
which has significantly reduced computational requirements but only a little less
accuracy.

We used the sparsification procedure described in [4]. In the sparsification
procedure, a set of M pseudo-inputs fxmgM

m¼1 are chosen from the full data set of

N input values fxngN
n¼1; and the covariance matrices CNM and CM are calculated as

CM½ �mm0¼ Cðxm; xm0 Þ ð3:39Þ

and

CNM½ �nm¼ ½kn�m ¼ Cðxn; xmÞ: ð3:40Þ

In order to simulate the full covariance matrix, the matrix

K ¼ DiagðdiagðCN � CNMC�1
M CMNÞÞ ð3:41Þ

is also needed, where CN is the full N 9 N covariance matrix, although only the
diagonal elements are calculated. The elements of the covariance vector k are
calculated from the coordinates of the pseudo-inputs and the test point x*:

km ¼ Cðxm; x�Þ: ð3:42Þ

The pseudo-covariance matrix of the sparsified data set is

QM ¼ CM þ CMNðKþ r2IÞ�1CNM; ð3:43Þ

which can now be used to predict the function value and the error estimate at the
test point as

t̂ ¼ kT Q�1
M CMNðKþ r2IÞ�1t ð3:44Þ
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r2
t̂ ¼ Cðx�; x�Þ � kT

� ðC�1
M �Q�1

M Þkþ r2: ð3:45Þ

In order to obtain an optimal set of hyperparameters and pseudo-inputs, the
likelihood function

log L ¼ � 1
2

tTðCNMC�1
M CMN þ Kþ r2IÞ�1t

� 1
2

log jCNMC�1
M CMN þ Kþ r2Ij � n

2
log 2p

ð3:46Þ

is maximised in the space of hyperparameters and pseudo-inputs.
In our work, observation of single function values is not possible, i.e. only total

energies (sum of atomic energies) and forces (sum of derivatives of local energies)
are accessible. Depending on the number of atoms in the cell, in the case of total
energy observations, and the number of atoms within the chosen cutoff radius, in
the case of force observations, a large number of input values has to be added to
the training set, regardless of whether the neighbourhood of a particular atom is
different from the ones previously encountered. Thus in our case, the sparsification
process is crucial in order to develop a tractable computational scheme.
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Chapter 4
Interatomic Potentials

4.1 Introduction

A wide variety of models have been developed to describe atomic interactions,
ranging from the very accurate and extremely expensive to the fast but very
approximate. Quantum Mechanics ultimately provides a true description of matter
via solving the Schrödinger equation, but even in its crudest approximation, the
use of Quantum Mechanics is limited to a few hundreds of atoms or a few
hundreds of different configurations, which is inadequate to sample the entire
phase space of a system. A series of further simplifications leads to the realm of
analytic potentials that can be used to describe larger systems or more configu-
rations. The so-called empirical potentials are based on fixed functional forms,
which are equally based on theoretical considerations and intuition, making the
creation of new potentials a combination of ‘‘art and science’’ [1]. Analytic
potentials can be described as non-linear parametric regression from the statistical
point of view, where the fitting process is based on experimental or quantum
mechanical data. Further, the parametric formula that is chosen to describe the
behaviour of the real system is often fitted to reproduce some well-known
equilibrium properties, such as the lattice constant and elastic constants of the bulk
material or the structure of a liquid, and it is assumed that the same function will
perform well in very different configurations. This clearly implies that analytic
potentials are expected to be able to extrapolate to very different environments on
the basis of the physical insight used when the particular functional form was
chosen. Even if there exists such a functional form, it follows from the overly
complicated nature of regression in such high dimensions that finding the right
form and fitting it to each new interesting material is extremely difficult. Our work
focuses on the development of a potential based on non-linear, non-parametric
regression methods that infers the interactions directly from quantum mechanical
data, though the approach can be adopted irrespective of the origin of the data.

A. Bartók-Pártay, The Gaussian Approximation Potential, Springer Theses,
DOI: 10.1007/978-3-642-14067-9_4, � Springer-Verlag Berlin Heidelberg 2010
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4.2 Quantum Mechanics

In the general case, the Schrödinger equation takes the form

i�h
oWðr; tÞ

ot
¼ ĤWðr; tÞ; ð4:1Þ

where W is the time-dependent wave-function, r contains the coordinates of all the
particles in the system and Ĥ is the Hamiltonian operator. The Hamiltonian can be
written as

Ĥ ¼ �
X

i

�h2

2mi
r2

i þ VðrÞ; ð4:2Þ

where V(r) is the potential energy. The standing wave solution of the time
dependent Schrödinger equation is

Wðr; tÞ ¼ wðrÞ exp �iEt

�h

� �
; ð4:3Þ

which leads to the time-independent form of the Schrödinger equation

ĤwðrÞ ¼ EwðrÞ: ð4:4Þ

Atomic systems consist of electrons and nuclei, hence Eq. 4.2 becomes

Ĥ ¼ �
Xelec:

i

�h2

2me
r2

i þ
Xelec:

i\j

q2
e

rij
�
Xelec:

i

Xnuclei

A

ZA
q2

e

riA

�
Xnuclei

A

�h2

2mA
r2

A þ
Xnuclei

A\B

ZAZB
q2

e

rAB

ð4:5Þ

where me and qe are the mass and the charge of an electron, mA and ZA are the mass
and atomic number of the nucleus A. The Born–Oppenheimer approximation
further simplifies the solution of Eq. (4.4) by assuming that the coupling of the
electrons and nuclei is negligible. The basis of this assumption is that the mass
of the nuclei is at least three order of magnitudes larger than the mass of
the electrons, thus the electrons adapt to the nuclei adiabatically. The Born–
Oppenheimer approximation can be expressed as

�
Xelec:

i

�h2

2me
r2

i þ
Xelec:

i\j

q2
e

rij
�
Xelec:

i

Xnuclei

A

ZA
q2

e

riA

 !
wðr;RÞ

þ
Xnuclei

A\B

ZAZB
q2

e

rAB
¼ EeðRÞwðr;RÞ

ð4:6Þ

34 4 Interatomic Potentials



�
Xnuclei

A

�h2

2mA
r2

A þ EeðRÞ
 !

vðRÞ ¼ EvðRÞ; ð4:7Þ

where the electronic wavefunction w(r, R) only depends on the coordinates of
the electrons r and the coordinates of the nuclei R are regarded as parameters.
The solutions of Eq. 4.6, the so-called electronic Schrödinger equation provides the
potential energy surface (PES) Ee(R), which describes the interactions of the nuclei.
The nuclear Schrödinger equation is often replaced by the classical equations of
motion.

4.2.1 Density Functional Theory

The analytic solution of the electronic Schrödinger equation is impossible for
systems more complicated than a hydrogen molecular-ion H2

+. There exists a wide
range of methods that are concerned with determining the electronic structure,
ranging from the very approximate tight-binding [2] approach to the essentially
exact full configuration interaction [3] method. In our work, we used Density
Functional Theory as the underlying quantum mechanical method.

Density Functional Theory aims to find the ground state electron density rather
than the wavefunction.

qðrÞ ¼
Z
jwðr; r2; . . .; rNÞj2dr2; . . .; drN ð4:8Þ

The density depends only on three spatial coordinates instead of 3N, reducing the
complexity of the task enormously. The Hohenberg–Kohn principles prove that the
electron density is the most central quantity determining the electronic interactions
and forms the basis of an exact expression of the electronic ground state.

4.2.1.1 The Hohenberg–Kohn principles

The basic lemma of Hohenberg and Kohn [4] states that the ground state electron
density of a system of interacting electrons in an arbitrary external potential
determines this potential uniquely. The proof is given by the variational principle.
If we consider a Hamiltonian Ĥ1 of an external potential V1 as

Ĥ1 ¼ T̂ þ Û þ V̂1; ð4:9Þ

where T̂ is the kinetic energy operator and Û is the electron–electron interaction
operator. The solution of the Schrödinger equation

Ĥ1w ¼ Ew ð4:10Þ
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is the ground state wavefunction w1, which corresponds to the electron density q1.
The ground state energy is then

E1 ¼ hw1jĤ1jw1i ¼
Z

V1ðrÞqðrÞ þ hw1jT̂ þ Ûjw1i: ð4:11Þ

Considering another potential V2, which cannot be obtained as V1 + constant, with
a ground state wavefunction w2, which generates the same electron density, the
ground state energy is

E2 ¼
Z

V2ðrÞqðrÞ þ hw2jT̂ þ Ûjw2i: ð4:12Þ

According to the variational principle,

E1\hw2jĤ1jw2i ¼
Z

V1ðrÞqðrÞ þ hW2jT̂ þ ÛjW2i

¼ E2 þ
Z

V1ðrÞ � V2ðrÞ½ �qðrÞ
ð4:13Þ

and

E2\hw1jĤ2jw1i ¼
Z

V2ðrÞqðrÞ þ hw1jT̂ þ Ûjw1i

¼ E1 þ
Z

V2ðrÞ � V1ðrÞ½ �qðrÞ:
ð4:14Þ

By adding the two inequalities together, we find the contradiction

E1 þ E2\E1 þ E2: ð4:15Þ

This is the indirect proof that no two different external potentials can generate the
same electron density.

The second Hohenberg–Kohn theorem establishes a link between the total
energy and the electron density, namely that there exists a universal energy
functional, which is valid for every external potential, and its global minimum
corresponds to the ground state of the system and the ground state electron density.
To prove this theorem, we write the total energy functional as a universal
functional

E½q� ¼ FHK½q� þ
Z

VðrÞqðrÞ þ EZZ ; ð4:16Þ

where FHK applies to every electronic system. It determines the entire electronic
energy except the energy due to the external potential V(r). EZZ is the interaction
between the nuclei. The ground state energy is given by

E ¼ hwjĤjwi ¼ E½q�: ð4:17Þ
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According to the variational principle, changing the wavefunction to a different w0,
which in turn corresponds to a different electron density q0, the resulting energy

E\E0 ¼ hw0jĤjw0i; ð4:18Þ

is greater than E, thus q cannot correspond to the exact ground state.
We note that the ground state wavefunction can be found from the variational

principle

E ¼ min~wh~wjT̂ þ Û þ V̂j~wi; ð4:19Þ

where ~w is a trial wavefunction. The variational principle can be reformulated in
terms of trial densities, ~q :

E ¼ min~qE½~q� ð4:20Þ

4.2.1.2 The self-consistent Kohn–Sham equations

The Hohenberg–Kohn principles provide the theoretical basis of Density Functional
Theory, specifically that the total energy of a quantum mechanical system is
determined by the electron density through the Kohn–Sham functional. In order to
make use of this very important theoretical finding, Kohn–Sham equations are
derived, and these can be used to determine the electronic ground state of atomic
systems.

The total energy of a system of interacting electrons in the external potential of
the classic nuclei can be written as

E½q� ¼ T ½q� þ EH½q� þ Exc½q� þ EZe½q� þ EZZ ; ð4:21Þ

where T [q] is the kinetic energy functional, Exc is the exchange-correlation
functional, EH is the Hartree interaction between electrons, EZe is the interaction
between the electrons and the nuclei and EZZ is the nuclei–nuclei interaction. The
latter three energies have the forms

EH½q� ¼
Z

qðrÞqðr0Þ
jr� r0j drdr0 ð4:22Þ

EZe½q� ¼
Xnuclei

A

Z
ZA

qðrÞ
jr� rAj

dr ð4:23Þ

EZZ ¼
Xnuclei

A\B

ZAZB

jrA � rBj
; ð4:24Þ

whereas the exact form of functionals T [q] and Exc[q] is not specified by the
theory. However, according to the Hohenberg–Kohn principle, any system of
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interacting electrons can be described as a system of independent electrons moving
in an effective potential, meaning that the kinetic energy functional can repre-
sented by the kinetic energy of non-interacting electrons, TS. The difference
between the true kinetic energy functional and TS

DT ¼ T ½q� � TS ð4:25Þ

is included in the exchange-correlation functional, which still needs to be deter-
mined. The non-interacting kinetic energy operator TS is simply written as

TS ¼ �
�h2

2me

Xelec:

n

hwnjr2
njwni; ð4:26Þ

where wn are the independent electron orbitals. The one-electron orbitals deter-
mine the charge density as

qðrÞ ¼
X

n

w�nðrÞwnðrÞ: ð4:27Þ

Hence the ground state will correspond to the electronic density at which the
functional derivative of the total energy with respect to wn is zero, while maintaining
the orthogonality constraints

hwijwji ¼ dij ð4:28Þ

via the Lagrange multipliers �ijij. Thus minimising the energy functional and the
constraints

d E �
P

ij �ijðhwijwji � dijÞ
h i

dwn
¼ 0; 8n ð4:29Þ

leads to the Kohn–Sham equations,

0 ¼ dTS

dwn
þ EH½q� þ Exc½q� þ EZe½q�

dq
dq
dwn
�
P

ij �ij wijwj

� �

dwn

¼ Dnwn þ V̂effwn �
X

j

�njwj;
ð4:30Þ

which can be solved as n independent equations,

Dnw
0
n þ V̂effw

0
n ¼ �0nw

0
n; ð4:31Þ

since there exists a basis set where the energy matrix is diagonal. Although the
minimisation can be performed directly, as implemented in CASTEP as conjugate
gradients for insulating systems or EDFT [5], an iterative approach is more often
used. The effective potential V̂eff depends on the electronic density, thus it is
calculated using some initial guess for the density, then the Kohn–Sham equations
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are solved, resulting in a new density. This process is repeated until the electron
density becomes self-consistent.

4.3 Empirical Potentials

The Born–Oppenheimer approximation, as given in Eq. 4.6, suggests that when
considering solely the interactions between the nuclei, the electrons do not have to
be explicitly taken in account. The reason why the Schrödinger equation has to be
solved in many applications is the need for the accurate description of the Potential
Energy Surface provided by Quantum Mechanics. If there were an alternative way
to determine the Potential Energy Surface felt by the nuclei VðRÞ � EðRÞ,
Quantum Mechanics could be bypassed entirely. Empirical potentials, as well as
our research, aim to achieve this.

4.3.1 Hard-sphere Potential

The simplest interatomic potential is the hard-sphere potential, that can be char-
acterised as

VðrÞ ¼ 0 if r� r0

1 if r [ r0

�
; ð4:32Þ

where r0 is the radius of the sphere. Even this simple functional form can describe
the fact that atoms repel each other due to the Pauli exclusion principle, albeit in a
rather crude way. As this potential completely lacks attractive terms, its use is
usually limited to bulk phases. The hard-sphere model is often used for testing
purposes, as despite of its simplicity, a system of hard-spheres shows a fluid–solid
phase transition [6, 7]. More recently, systems of colloid particles were also
modelled as hard spheres [8, 9], and the results of these simulations have received
strong experimental support.

4.3.2 Lennard–Jones Potential

The Lennard–Jones Potential

VðrÞ ¼ 4�
r12

r12
� r6

r6

� �
ð4:33Þ

was originally introduced to describe the interaction between argon atoms [10].
The two terms in the expression are the repulsion due to Pauli exclusion and the
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attraction which arises from dispersion interactions. The r-6 variation is obtained
by considering the interaction of two induced dipoles on closed-shell atoms.
Although the r-12 term has been introduced primarily because it is the square of
the other term—therefore its computation is very efficient— and has no theoretical
justification, the Lennard–Jones potential reproduces the properties of argon
remarkably well [11]. In the case of other noble gases, quantum effects (for He and
Ne), contribution from the interaction of higher order moments and relativistic
effects (for Kr, Xe, Ra) become more significant and so the Lennard–Jones model
is not so successful. The Lennard–Jones potential has been applied to different
types of systems, because of the ease of computation and the strong physical basis.
Potentials for ions are often built as Lennard–Jones spheres and point charges [12,
13], the most successful water models are based on partial charges and Lennard–
Jones term(s) [14, 15], or even groups of atoms, such as methyl groups are
modelled as a single Lennard–Jones particle [16]. While being a relatively simple
potential, systems composed of Lennard–Jones particles show complex phase
behaviour, which makes the use of this potential attractive as test systems in such
studies and method development [17–19].

4.3.3 The Embedded-Atom Model

The embedded-atom model was developed by Daw and Baskes [20] and was
originally intended to describe metallic systems. In general, the potential takes the
form

E ¼
X

i

FðqiÞ þ
1
2

X

j 6¼i

UðrijÞ; ð4:34Þ

where qi is the electron density at the centre of atom i due to the atoms at
neighbouring sites

qi ¼
X

j 6¼i

qjðrijÞ; ð4:35Þ

where qj is the electronic density of atom j. F is the embedding functional and
U represents the core–core repulsion. This potential is derived from density
functional theory, where the electron density is approximated by a sum of atomic
contributions and the energy functional is substituted by a simple analytic function.
The parameters in the embedded atom potentials used in the original applications
were fitted to experimental observables, such as lattice constants and elastic moduli.

More recently, a particularly interesting new formulation of the embedded-atom
model, called the force-matching method has been published by Ercolessi and
Adams [21]. In this work, no prior assumptions were made on the actual functional
forms in Eqs. 4.34 and 4.35. All functions were described by splines, and the
splines were fitted such that the difference between the forces predicted by the
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model and the forces determined by first-principle calculations is minimal. This
method is an early example of using a flexible regression for building interatomic
potentials. The differences between the forces predicted by the Ercolessi–Adams
potential and Density Functional Theory are remarkably small in bulk fcc
aluminium, although the description of surfaces is less accurate.

4.3.4 The Modified Embedded-Atom Model

Although the embedded atom model proved to be a good potential for metallic
systems, it fails to describe covalent materials, such as semiconductors. The reason
for this is that the electron density in Eq. 4.35 is assumed to be isotropic, which is
a good approximation in close packed systems, like fcc crystals, but in the case of
covalent bonds, the electron density is higher along the bonds. In order to correct
this, an angle-dependent density term was introduced by Baskes [22] for silicon

qi ¼
X

j 6¼i

qðrijÞ þ
X

j 6¼i; k 6¼i

qðrijÞqðrikÞgðcos hjikÞ; ð4:36Þ

where hjik is the bond angle between the ji and ki bonds. The original formulation
used the fixed functional form

gðcos hjikÞ ¼ 1� 3 cos2 hjik ð4:37Þ

for the angle-dependency, which biased the equilibrium bond angle preference to
tetrahedral angles, resulting in a poor description of liquid or non-tetrahedral
phases of silicon. Lenosky et al. [23] adopted the force-matching method for the
modified embedded-atom model.

Taylor showed an elegant generalisation of the modified embedded atom model
in [24]. In this work, he formulated a Taylor-expansion of the total energy func-
tional around the ground-state density of atoms in terms of density variations,
which led to a general expression for the total energy of the system as a function of
the atomic coordinates. The energy of an atomic system is determined as a
functional of the atomic density as

E ¼ U½qðrÞ�; ð4:38Þ

where

qðrÞ ¼
X

i

dðr� riÞ ð4:39Þ

and d is the Dirac-delta function. This form is, in fact, an alternative description of
the total energy as given by Density Functional Theory. The atomic density
determines, through Poisson’s equation, the external potential through which the
electrons move as
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r2Vext ¼ �
q
�0
; ð4:40Þ

which in turn corresponds to a ground state electron density and a total energy. If E0

is the minimum of the total energy with respect to the atomic density, the energy can
be expressed in a Taylor series in variations in the density q = q0 ? dq as

E ¼ E0 þ
Z

dE

dq r
dqðrÞdrþ

ZZ
d2E

dq2

����

����
r;r0

dqðrÞdqðr0Þdrdr0 þ � � � : ð4:41Þ

The density variation dq is given by

dqðrÞ ¼
X

i

d r� riÞ � dðr� r0
i

� 	
 �
; ð4:42Þ

where r0
i are the equilibrium positions of the atoms, corresponding to the ground

state atomic density. The first-order term in Eq. 4.41 disappears because the
Taylor-expansion is performed around the minimum. Substituting 4.41 in
Eq. 4.42, then integrating results in

E ¼ E0 ¼
X

i;j

d2U
dq2

ri;rj

� d2U
dq2

����

����
r0

i ;rj

�d2U
dq2 ri;r

0
j
þ d2U

dq2

����

����
r0

i ;r
0
j

: ð4:43Þ

Introducing the new functions

f ðri; rjÞ ¼
d2U
dq2

����
ri;rj

ð4:44Þ

and

gðriÞ ¼
X

j

d2U
dq2

ri;r
0
j

¼
X

j

d2U
dq2

�����

�����
r0

j ;ri

ð4:45Þ

we can write the total energy as a sum of one- and two-body terms

E ¼ E00 þ
X

i

gðriÞ þ
X

i;j

f ðri; rjÞ þ � � � : ð4:46Þ

Similarly, if we consider the local atomic densities around atom i

diðrÞ ¼
X

j 6¼i

dðr� rjÞwðrijÞ; ð4:47Þ

where w is a screening function, we obtain the total energy expression up to second
order
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E ¼
X

i

Ei;0 þ
X

i

X

j 6¼i

gðrijÞwðrijÞ

þ
X

i

X

j 6¼i

X

k 6¼i

f ðrij; rikÞwðrijÞwðrikÞ:
ð4:48Þ

This expression has the same form as the modified embedded atom model. Taylor
represented the local atomic density by bond-order parameters and different radial
functions as discussed in Sect. 2.3.1 in Chap. 2. By choosing appropriate radial
functions, he obtained the original modified embedded-atom formula, but
systematic improvement of the formula is also possible in his framework.

4.3.5 Tersoff Potential

The form of interatomic potential suggested by Tersoff [25] is an example of the
wider family of bond-order potentials [26]. The total energy is written as a sum of
pair like terms,

E ¼ 1
2

X

i 6¼j

Vij ð4:49Þ

Vij ¼ fcutðrijÞ½fRðrijÞ þ bijfAðrijÞ� ð4:50Þ

where fR and fA are repulsive and attractive terms, fcut is a cutoff function, and bij is
the bond-order term

fRðrijÞ ¼ Aij expð�kijrijÞ ð4:51Þ

fAðrijÞ ¼ �Bij expð�lijrijÞ ð4:52Þ

fcutðrijÞ ¼
1 if rij\Rij

1
2þ 1

2 cos prij�Rij

Sij�Rij

� 
if Rij\rij\Sij

0 if rij [ Sij

8
><

>:
ð4:53Þ

bij ¼ vij 1þ bni
i fni

ij

� 1=2ni

ð4:54Þ

fij ¼
X

k 6¼i;j

fcutðrikÞxikgðhijkÞ ð4:55Þ

gðhijkÞ ¼ 1þ c2
i

d2
i

� c2
i

d2
i þ ðhi � cos hijkÞ2

: ð4:56Þ

The resulting potential is, in fact, a many-body potential, as the bond-order terms
depend on the local environment. Bond-order potentials can also be derived from a
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quantum mechanical method, tight-binding [26] and can be regarded as an ana-
lytical approximation of the solutions of the Schrödinger equation.

4.4 Long-range Interactions

The electrostatic contribution to the total energy is often not negligible. If there is
charge transfer between atoms or polarisation effects are significant, the interac-
tion between charges, dipoles or even higher order multipoles needs to be calcu-
lated. There are well-established methods to determine the electrostatic energy and
forces, such as the Ewald-summation technique [27]. The central question is the
values of the electric charges and multipoles in a particular model. In many cases
fixed charges are used, for example, most water potentials [28] and models of ionic
crystals [29] have predetermined charges. Classical water potentials describe the
structure of bulk liquid water well, however, the representation of solutions is
often poor due to the fact that these models no longer describe the interactions
correctly in the modified environment and the resulting electric fields.

The electronegativity equalisation method [30] and the charge equilibration
method [31] were designed to introduce charges which depend on the atomic
environment and the local electric field. The atomic charges predicted by these
methods agree well with the experimental values and with the ones determined by
quantum mechanical methods for ionic crystals and organic molecules.

Electrostatic models including multipoles have also been developed. The mul-
tipoles are often deduced from the electronic structure determined by ab initio
methods, for example, by using Wannier functions [32]. The dependence of the
multipoles on the local electric field is accounted for by including polarisability in
the model. An example of a polarisable model is the shell model, where a charge is
attached to the atom by a spring, hence the dipole of the atom reacts to changes in the
local electric field.

4.5 Neural Network Potentials

Behler and Parrinello [33] presented a new scheme for generating interatomic
potentials using neural networks that are trained to reproduce quantum mechanical
data. The main assumption of the model is that the total energy of an atomic
system can be described as a sum of atomic contributions

E ¼
X

i

Ei; ð4:57Þ

where each individual term Ei depends only on the configuration of the neighbouring
atoms within a given cutoff distance. This local environment is represented using a
set of symmetry functions
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G1a
i ¼

X

j 6¼i

exp½�gaðrij � rsaÞ2� fcutðrijÞ ð4:58Þ

G2b
i ¼ 21�fb

X

j 6¼i

X

k 6¼i

ð1þ kb cos hijkÞfb

exp �gb r2
ij þ r2

ik þ r2
jk

� h i
fcutðrijÞfcutðrikÞfcutðrjkÞ;

ð4:59Þ

where the cutoff function is

fcutðrÞ ¼
1
2þ 1

2 cos pr
rcut

� 
if rij� rcut

0 if rij [ rcut

(
: ð4:60Þ

Thus the atomic local energies Ei depend on the set of symmetry variables

fG1a
i ;G

2b
i g in an unknown way. Instead of trying to find a parametric model for

this function, Behler and Parrinello used non-parametric regression via neural
networks. The input data used to perform the regression is a set of total energies
from reference calculations, in this case these were Density Functional Theory
calculations of different configurations of bulk silicon. The parameters in the
layers of the neural network were optimised such that the difference between the
reference energies and the energies predicted by the neural network is minimal.
The resulting potential can then be used to describe an arbitrary number of silicon
atoms. For each atom, the symmetry variables are first determined, then these are
fed to the neural network and the neural network predicts the atomic energies,
which are added together to obtain the total energy.

4.6 Gaussian Approximation Potentials

Our aim is to formulate a generic interatomic potential, which can be reliably used
in a wide variety of applications. Arguably, Quantum Mechanics is such an
interatomic potential, as it provides ab initio data that, to our current knowledge, is
ultimately correct to the extent that any inaccuracies are due to the limitation of the
Born–Oppenheimer approximation or the employed quantum mechanical model.
The great advantage of quantum mechanical methods is that they have true and
proven predictive power, whereas classical potentials can be regarded as para-
metric regression formulas that, in general, cannot be used outside their fitting
regime, which usually cannot be unambiguously classified. However, the solution
of quantum mechanical equations is computationally expensive, which limits the
use of Quantum Mechanics to a modest number of atoms and a few nanoseconds
of simulation time—woefully inadequate for biomolecular and nanotechnological
applications.

As in the case of other interatomic potentials, we base Gaussian Approximation
Potentials on the assumption that the total energy of the system can be written as a
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sum of two terms: the first is a local, atomic contribution and the second is the
long-range, electrostatic part

E ¼
Xatoms

i

ei þ
1
2

Xatoms

i\j

L̂iL̂j
1
rij
; ð4:61Þ

where the operator L̂ can be written as

L̂i ¼ qi þ pi � ri þQi : riri þ � � � ; ð4:62Þ

and qi, pi and Qi denote the charge, dipole and quadrupole of the ith atom,
respectively. We formulate the locality of the atomic energy contributions as

ei � eðfrijgÞ; ð4:63Þ

where only the relative positions rij of the neighbouring j atoms within a spherical
cutoff are considered. In atomic systems, for which charge transfer between atoms
and polarisation effects are negligible, we can simply drop the second term in
Eq. 4.61. We note that short-range, well screened electrostatic effects can be
implicitly merged into the first term in Eq. 4.61 without great sacrifices in accuracy.

The strict localization of e enables the independent computation of atomic
energies.

The central challenge in the development of interatomic potentials is finding the
form of eðfrijgÞ. In our approach, we do not make any prior assumptions about the
functional form of the potential. Instead, we use non-parametric, non-linear
regression in the form of a Gaussian Process to find the function values at arbitrary
values. In the regression, quantum mechanical data, such as total energies and
atomic forces are used as evidence. Gaussian Approximation Potentials can be
regarded as interpolation of the quantum mechanical potential energy surface.
Moreover, the Gaussian Process framework allows us to to build into the model a
strong bias, namely, that the atomic energy function is smooth.

The advantage of Gaussian Approximation Potentials is that they are very
flexible. In contrast to analytic potentials, the accuracy of Gaussian Approximation
Potentials can be improved by adding more quantum mechanical data at various
points in configurational space without changing the fit globally. As the Gaussian
Process predicts its own accuracy, it is possible to use it as a ‘‘learn on the fly’’
method, i.e. if the predicted variance of the energy of the force in the case of a new
configuration is higher than a pre-set tolerance, the energy and forces for the new
configuration can be calculated using Quantum Mechanics, then the obtained data
is added to the database in order to improve the fit. The flexibility of the fit ensures
that the best possible fit is achieved for any given data.

The Gaussian Approximation Potential scheme is similar to the Neural Network
potentials introduced by Behler and Parinello [33], as both uses non-linear,
non-parametric regression instead of fixed analytic forms. However, the repre-
sentation of the atomic environments in GAP is complete and the Gaussian Process
uses energies and forces for regression. Moreover, the training of the neural
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network involves the optimisation of the weights, whereas the training in the case
of Gaussian Process is a simple matrix inversion.

4.6.1 Technical Details

The atomic energy function e depends on the atomic neighbourhood, but it is
invariant under rotation, translation and permutation of the atoms. One of the key
ideas in the present work is to represent atomic neighbourhoods in a transformed
system of coordinates that accounts for these symmetries. Ideally, this mapping
should be one-to-one: mapping different neighbourhood configurations to the same
coordinates would introduce systematic errors into the model that cannot be
improved by adding more quantum mechanical data. In Sect. 2.3 in Chap. 2 we
described a number of transformations that can be adapted to construct an
invariant neighbourhood representation. For our work, we have chosen the four
dimensional bispectrum elements. In order to ensure that the representation is
continuous in space, we modified the atomic density in Eq. 2.18 to

qiðrÞ ¼ dðrÞ þ
X

j

dðr� rijÞfcutðrijÞ; ð4:64Þ

where fcut is a cutoff function, in our case

fcutðrÞ ¼
0 if r [ rcut

1=2þ cosðpr=rcutÞ=2 if r� rcut

�
: ð4:65Þ

In Quantum Mechanics, atomic energies are not directly accessible, only the
total energy of a configuration and the forces on each atom can be determined.
The forces contain cross-terms of the derivatives of the local energies. The force
on atom i can be obtained by differentiating the total energy with respect to the
Cartesian coordinates of atom i, written as

fia ¼
oE

oria
¼
Xatoms

j

oej

oria
: ð4:66Þ

As e � 0 for any rij [ r{cut, this summation only runs over the Ni neighbours of
atom i. The atomic energies depend directly on the bispectrum elements, which are
determined by the neighbourhood, thus the force becomes

fia ¼
XNi

j

X

k

oe
obk

� �

bj

obk

oria
; ð4:67Þ

where bk is the kth element of the bispectrum vector, and bj is the bispectrum of
atom j. Therefore we can substitute total energy observations in the form of sums
of atomic energies, and forces, in the form of sums of derivatives of atomic
energies, directly in the formulae shown in Sects. 3.2.3 and 3.2.4 in Chap. 3.
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If N is the number of teaching points, the computational resources required for
Gaussian Process regression scales as N3 for training and as N for predicting values
and as N2 for predicting variances. Due to the fact that we cannot add single atomic
energy observations to the database, only total energies or forces, the size of the
training set and therefore the computational costs would grow enormously.
For example, if we intend to add configurations with defects to a database that up
to this point contains data for bulk atoms only, we have to add all the atomic
neighbourhoods in the configuration that contains the defect, despite of the fact
that most of them are redundant because they incorporate the bulk data that is
already in the database. Similarly, a single configuration can contain many
correlated neighbourhoods.

A possible solution for this problem was given by Snelson and Ghahramani [34]
and it was described in Sect. 3.2.5 in Chap. 3. By choosing M sparse points from
the complete training set, the computational resources required for the training
process scale as NM2, while the cost of the prediction of function values and
variances scales as M and M2, respectively.

4.6.2 Multispecies Potentials

It is possible to extend the scope of Gaussian Approximation Potentials to cases
where there are more than one atomic species present in the system. There are two
main differences with respect to the method described above for monoatomic
potentials. On the one hand, the different species have to be distinguished in the
atomic neighbourhood while retaining the rotational and permutational invariance,
and, on the other hand, charge transfer between different types of atoms might occur,
in which case the long-range interactions have to be taken in account. The latter is
not necessary in every multispecies system, for example, in hydrocarbons or
metallic alloys there are no significant long-range interactions present [35].

By modifying the atomic density function in Eq. 2.18 as in Eq. 2.68:

qiðrÞ ¼ sidð0Þ þ
X

j

sjdðr� rijÞ; ð4:68Þ

where the different species are distinguished by the different weights of the
Dirac-delta functions. The bispectrum of qi remains invariant to the global rotation
of the atomic neighbourhood and to permutations of atoms of the same species.

In this study, we have not developed any potentials that contain electrostatics
explicitly, but there is good evidence [36], that electrostatic parameters, such as
charges and multipoles can be obtained from electronic structure calculations. It is
possible to fix these parameters, but in general, the charges and multipoles will be
determined by the local neighbourhood and the local electric field, and so these
effects must be incorporated any accurate potential. This branch of our research
awaits implementation.
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Chapter 5
Computational Methods

5.1 Lattice Dynamics

5.1.1 Phonon Dispersion

Crystalline materials are composed of periodic replicas of unit cells. In our case,
the unit cell is a parallelepiped defined by the edge vectors a1, a2 and a3. The
volume of the unit cell is the absolute value of determinant of the lattice matrix
A = [a1, a2, a3], which is nonzero, as the column vectors of the matrix are linearly
independent. The smallest unit cell is called the primitive cell. The positions r0

j of
the atoms in the primitive cell form the basis of the crystal.

The crystal is built by translating the primitive cell by all the translation vectors

Rl ¼ l1a1 þ l2a2 þ l3a3; ð5:1Þ

where l1, l2 and l3 are integers. Hence the equilibrium position of the ith atom in
the crystal can be written as

r0
i ¼ r0

lj ¼ r0
j þ Rl: ð5:2Þ

At finite temperature, atoms vibrate around their equilibrium positions, and their
displacement can be described by a small vector u. The actual position of an atom
is given by

rlj ¼ r0
lj þ ulj: ð5:3Þ

The total potential energy / of the crystal is a function of the positions of the
atoms. The Taylor-expansion of the potential energy is

/ ¼ /0 þ
X

l;j;a

/ljaulja þ
1
2

X

l;j;a

X

l0;j0;a0
/lja;l0j0a0uljaul0j0a0 þ � � � ; ð5:4Þ
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where /0 is the equilibrium energy. The first term in Eq. 5.4 is the related to the
force through

/lja ¼
o/
oulja

¼ �flja: ð5:5Þ

This term is zero, because we perform the Taylor expansion around the minimum.
The second term contains the harmonic force constants, given by

/lja;l0j0a0 ¼
o2/

ouljaoulja
: ð5:6Þ

In the harmonic approximation, higher order terms in the Taylor-expansion are
neglected. Newton’s equations of motion are therefore written as

mj€ulja ¼
X

l0j0a0
/lja;l0j0a0ul0j0a0 ; ð5:7Þ

which have wavelike solutions

uljðtÞ ¼
1ffiffiffiffiffiffiffiffi
Nmj

p
X

km

Aðk; mÞeðk; m; jÞ exp i kr0
lj � xðk; mÞt

� �h i
: ð5:8Þ

Substituting 5.8 in 5.7, we obtain the eigenvalue equation

x2ðkÞeaðki; m; jÞ ¼
X

a0j0m0
Daa0

k
jm; j0m0

� �
ea0 ðk; m0; j0Þ; ð5:9Þ

where D is the dynamical matrix, the Fourier transform of the force constant
matrix:

Daa0
k

jm; j0m0

� �
¼ 1

mjmj0

X
/lja;l0j0a0 exp ik r0

lj � r0
l0j0

� �h i
: ð5:10Þ

Non-trivial solutions of Eq. 5.9 can be found by solving the secular determinant

jDðkÞ � x2Ij ¼ 0; ð5:11Þ

where the solutions are the frequencies of different phonon modes at wavevector k.
Substituting these solutions into 5.9, the mode eigenvectors can also be obtained,
and these correspond to the normal modes of the vibrations. A more complete
discussion of lattice dynamics can be found, for example, in [1].

In our work, we first constructed a large supercell from the primitive cell, then
perturbed each atom in the original l = (0, 0, 0) cell by a small amount along the
coordinate axes and calculated the forces on the atoms in the perturbed supercell.
We obtained an approximate force constant matrix by the numerical differentiation
of the forces, which we Fourier-transform to obtain the dynamical matrix. This
procedure can be performed using any interatomic potential model, although using
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Quantum Mechanics can be particularly expensive in the case of large supercells,
i.e. for small wavenumbers. However, this large computational cost in DFT can be
avoided by calculating phonon dispersion relations using Density Functional
Perturbation Theory, as described in [2].

5.1.2 Molecular Dynamics

Alternatively, the phonon frequencies can also be obtained from molecular
dynamics runs [3]. The relative displacements ulj in Eq. 5.8 can be Fourier-
transformed, leading to

�kjðtÞ ¼
1

Ncell

X

j

X

l

expð�i k RlÞulj /
X

m

expð�ixðk; mÞtÞ; ð5:12Þ

where Ncell is the number of primitive cells in the supercell. Fourier-transforming
equation 5.12 to frequency space gives

�kðxÞ /
X

m

dðx� xk;mÞ: ð5:13Þ

The spectral analysis of �kðxÞ; i.e. finding sharp peaks in the power spectrum

Pkj � j�kjðxÞj2 ð5:14Þ

gives the phonon frequencies.
The advantage of this method is that it can be used for more complicated

systems, where explicit calculation of the full dynamical matrix would be extre-
mely expensive. Furthermore, we can calculate the temperature dependence of the
phonon spectrum by simply performing molecular dynamics simulations at dif-
ferent temperatures. The temperature dependence of the phonon spectrum is due to
anharmonic effects, i.e., at larger displacements when terms higher than second
order contribute to the potential energy in Eq. 5.4.

5.1.3 Thermodynamics

The quantum mechanical solution of a system of harmonic oscillators [1] states
that the allowed energies of a phonon mode labelled by k and m are

Ekm ¼
1
2
þ n

� �
xðk; mÞ; ð5:15Þ

where �h is the reduced Planck constant, and n is a non-negative integer. The
canonical partition function of a system can be calculated as
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Z ¼
X

j

expð�bEjÞ; ð5:16Þ

where Ej is the energy of the jth state and b ¼ 1
kBT : Substituting 5.15 into this

expression, we obtain

Zvib: ¼
Y

k;m

X1

nkm¼0

exp �b
1
2
þ nkm

� �
�hxðk; mÞ

� �" #
ð5:17Þ

which can be simplified by using

X1

n¼0

expð�nxÞ ¼ 1
1� expð�xÞ ð5:18Þ

to

Zvib: ¼
Y

k;m

expð�b�hxðk; mÞ=2Þ
1� expð�b�hxðk; mÞÞ : ð5:19Þ

In the case of a crystal, the total partition function is

Z ¼ expð�b/0ÞZvib:: ð5:20Þ

The partition function can be used to obtain all thermodynamic quantities. For
example, the free-energy can be obtained as

F ¼ �kBT ln Z ð5:21Þ

¼ /0 þ kBT
X

k;m

ln 2 sinhðb�hxðk; mÞ=2Þ½ �; ð5:22Þ

and the internal energy is

U ¼ 1
Z

oZ

ob
ð5:23Þ

¼ /0 þ
X

k;m

�hxðk; mÞ 1
2
þ 1

expð�b�hxðk; mÞÞ � 1

� �
: ð5:24Þ

This result leads us to a rather crude method for approximating the real temper-
ature in the case of a classical molecular dynamics run [4]. We equate the kinetic
energy Ekin.(TMD) to the quantum mechanical vibration energy Uvib.(TQM) and find
the temperature TQM when Uvib.(TQM) = Ekin.(TMD). In the high temperature limit
TQM = TMD, but this expression allows us to relate results from low-temperature
molecular dynamics runs to experimental values.
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The constant-volume heat capacity is defined as

cV ¼
oU

oT
; ð5:25Þ

which, in the case of harmonic crystals, can be calculated as

CV ¼
X

k;m

ck;m; ð5:26Þ

where ck;m is the contribution to the specific heat from mode (k,m)

ck;m ¼ kB
�hxðk; mÞ

kBT

� �2
expðb�hxðk; mÞÞ

expðb�hxðk; mÞÞ � 1½ �2
: ð5:27Þ

The volumetric thermal expansion coefficient can also be calculated from the free
energy. The thermal expansion coefficient is defined as

a ¼ 1
V

oV

oT

� �

p

¼ 1
V

oV

op

� �

T

op

oT

� �

V

¼ jT
op

oT

� �

V

; ð5:28Þ

where jT is the isothermal compressibility. The pressure is given by

p ¼ � oF

oV

� �

T

; ð5:29Þ

which leads to the expression

a ¼ jT

V

X

k;m

ck;mck;m; ð5:30Þ

where ck;m are the k-vector dependent Grüneisen parameters

ck;m ¼ �
V

xðk; mÞ oxðk; mÞoV ¼ o ln xðk; mÞ
o ln V

; ð5:31Þ

which describe the dependence of the phonon frequencies on the lattice volume.
The linear thermal expansion can be obtained in a similar way and the derivation
can be easily extended to non-isotropic cases.

We note that through the Grüneisen parameters anharmonic corrections of the
potential energy are involved in the thermal expansion coefficient. The approxi-
mation that the vibrational free-energy function depends on the volume of the
crystal through the change of the phonon frequencies described by the first-order
approximation

xðk; m;VÞ ¼ xðk; m;V0Þ þ
oxðk; mÞ

oV
DV ð5:32Þ

is usually referred to as the quasi-harmonic approximation [1].
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At low temperatures, if most of the anharmonic effects are due to lattice
expansion, the quasi-harmonic approximation can be successfully applied. How-
ever, if the average displacement of the atoms is so large that the potential energy
cannot be approximated by quadratic terms anymore, the approximation fails. In
such cases, we can use a classical simulation method such as molecular dynamics
to sample the phase space and calculate observables using these samples. We
should note that this is strictly valid only in case of high temperatures, where
TMD & TQM.

However, if the anharmonic effects are large even at low temperatures, precise
results can be obtained by methods that treat the quantum character of the nuclei
explicitly, for example by path-integrals [5] or explicitly solving the nuclear
Schrödinger equation [6]. Path-integral methods have been successfully used to
calculate the partition function of semiconductor crystals [7] and hydrogen
impurity in metals [6]. Explicit solution of the nuclear Schrödinger equation is
routinely performed in the case of molecules [8] by using the system of eigen-
functions of the harmonic solution to expand the wavefunction.
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Chapter 6
Results

6.1 Atomic Energies

The total energy in Quantum Mechanics is a global property of the system con-
sisting of N atoms and depends on 3N–6 variables, namely, the coordinates of the
atoms. However, all interatomic potentials are based on the assumption that the
energy can be written as a sum of atomic or bond energies, which are local and if
appropriate, a long-range electrostatic component. In our work, we intend to
estimate the atomic energies by a regression scheme based directly on quantum
mechanical data. If there were a way to extract atomic energies directly from
quantum mechanical calculations, these could be used in the regression. Firstly,
we consider ideas that lead to such atomic energies.

In fact, the existence of atomic energies can be justified by showing that the
force acting on an atom does not change significantly if the position of another
atom that is far enough away is perturbed. This statement can be formulated as

rn
xj
rxi E! 0 as jxj � xij ! 1; for 8n; ð6:1Þ

which we refer to as the ‘‘strong locality assumption’’.

6.1.1 Atomic Expectation Value of a General Operator

The basic idea in the derivation of atomic properties in Quantum Mechanics is
partitioning the total expectation value of an arbitrary operator by using a suitable
atomic basis set. This is a generalisation of the Mulliken charge partitioning
scheme. We consider a system of non interacting electrons moving in an effective
potential Veff, which is the case in DFT. Thus the expectation value of a general
operator Ô is

A. Bartók-Pártay, The Gaussian Approximation Potential, Springer Theses,
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hOi ¼
X

i

fihwijÔjwii; ð6:2Þ

where fi is the occupation number of the single-electron orbital wi. If wi is
expressed in an atomic basis {/a} in the form

wi ¼
X

a

Na
i /a; ð6:3Þ

we can write Eq. 6.2 as

hOi ¼
X

i

X

ab

fiN
a
i Nb

i

� ��
h/bjÔj/bi: ð6:4Þ

Introducing the density kernel K as

Kab ¼
X

i

fiN
a
i Nb

i

� ��
ð6:5Þ

and the matrix of operator Ô as

Oba ¼ h/bjÔj/ai ð6:6Þ

we obtain

hOi ¼
X

ab

KabOba ¼
X

a

ðKOÞaa ¼ Tr KOð Þ: ð6:7Þ

Each basis function /a belongs to a certain atom, thus we use the partitioning

hOiA ¼
X

a2A

KOð Þaa; ð6:8Þ

which conserves the total value

hOi ¼
X

A

hOiA: ð6:9Þ

6.1.1.1 Mulliken Charges

The total number of electrons is obtained by setting the operator to Ô ¼ 1:

N ¼
X

i

fihwijwii ¼
X

i

fi ¼
X

a;b

Kab
Z

/aðrÞ/�bðrÞ ð6:10Þ

which leads to the well-known expression for the Mulliken-charges
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NA ¼
X

a2A

KSð Þaa; ð6:11Þ

where the elements of the overlap matrix are defined by

Sab ¼
Z

/�aðrÞ/bðrÞ ð6:12Þ

6.1.2 Atomic Energies

Substituting the Hamiltonian operator Ĥ into Eq. 6.8, we obtain a possible
definition for the atomic energies. In the case of Density Functional Theory,
the operators can be formulated as follows.

The total energy can be written as

E½q� ¼ Ts þ EH½q� þ Exc½q� þ EZe½q� þ EZZ : ð6:13Þ

The independent-particle kinetic energy Ts is given by

Ts ¼ �
1
2

Xelec:

i

fihwijDijwii; ð6:14Þ

thus we need to substitute Ô ¼ � 1
2

P
i Di and the matrix elements

P
ih/a |Di|/bi

have to be calculated to obtain the atomic kinetic energy.
The Hartree energy is defined by the Eq.

EH½q� ¼
1
2

Z Z
dr dr0

qðrÞ qðr0Þ
jr� r0j ; ð6:15Þ

which we rewrite as

EH½q� ¼
1
2

Z
dr qðrÞVHðrÞ ¼

1
2

X

i

fihwijV̂H jwii; ð6:16Þ

where the Hartree-operator can be obtained as

VHðrÞ ¼
1
2

Z
dr0

qðr0Þ
jr� r0j : ð6:17Þ

Similarly, the interaction between electrons and nuclei is given by

EZe½q� ¼
Z

dr qðrÞVext; ð6:18Þ

6.1 Atomic Energies 59



and the exchange-correlation energy is

Exc½q� ¼
Z

dr qðrÞ�xc½qðrÞ�: ð6:19Þ

Hence the operators Vext and �xc[ q(r)] are required to calculate the matrix ele-
ments of the external energy matrix and the exchange-correlation energy matrix.

6.1.3 Atomic Multipoles

In general, the multipole coefficients of an arbitrary charge distribution q(r) can be
obtained as

l n1;n2;...;nl
¼ 1

l!

Z
dr xn1

xn2
; . . .; xnl

qðrÞ; ð6:20Þ

where xn1
; xn2

; . . .; xnl
are the Cartesian coordinates. This definition can be regarded

as an expectation value of the general position operator X̂; therefore it can be
substituted into Eq. 6.8, to produce the definition of atomic multipoles:

l A;n1;n2;...;nl
¼ 1

l!

X

a2A

X

b

Kab
Z

dr xn1
xn2
; . . .; xnl

/aðrÞ/�bðrÞ; ð6:21Þ

where xnl
is measured from atom A.

It is interesting to note that the expression for atomic multipoles in Eq. 6.21 can
be obtained by defining the atomic charge density qA as

qAðrÞ ¼
X

a2A

Kab/aðrÞ/�bðrÞ: ð6:22Þ

This definition of the atomic charge density is consistent with general physical
considerations, for example it gives the total electron density when summed for all
atoms:

qðrÞ ¼
X

A

qAðrÞ: ð6:23Þ

6.1.4 Atomic Energies from ONETEP

ONETEP [1], the order-N electronic total energy package is a numerical imple-
mentation of Density Functional Theory. Unlike usual implementations of DFT, the
computational resources required for the calculation of the energy of a particular
atomic system scales linearly with the number of electrons, which makes it
exceptionally efficient in investigations of large systems. However, in our work we
exploited another feature of ONETEP, namely, that it uses local basis functions.
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6.1.4.1 Wannier Functions

The electronic structure of periodic crystalline solids is usually represented by
Bloch orbitals wnk, where n and k are quantum numbers of the band and crystal
momentum, respectively. The Bloch states are eigenfunctions of the Hamiltonian
of the crystal, obeying the same periodicity. Because of the fact that they are
usually highly delocalised, it is often difficult to deduce local properties from
Bloch orbitals, for instance, bonding between atoms or atomic charges.

An equivalent representation of the electronic structure is provided by Wannier
functions [2], which are connected to the Bloch orbitals via a unitary transfor-
mation. Denoting the Wannier functions of band n of cell R by wn(r - R), we
express the transformation as follows:

wnðr� RÞ ¼ V

8p3

Z
dk e�ikR wnkðrÞ: ð6:24Þ

The back transformation is given by

wnkðrÞ ¼
X

R

eikRwnðr� RÞ; ð6:25Þ

where the sum is performed over all the unit cells in the crystal.
The Wannier functions obtained in Eq. 6.25 are not unique, because it is

possible to mix the Bloch states of different band numbers by a unitary matrix
U(k). The resulting Wannier functions are also a complete representation of the
electronic structure, although their localisation features are different:

wnðr� RÞ ¼ V

8p3

Z
dk e�ikR

X

m

UðkÞmn wmkðrÞ
 !

: ð6:26Þ

Since both transformations in 6.25 and 6.26 are unitary, and the original Bloch
states are orthogonal, the resulting Wannier functions are also orthogonal.

6.1.4.2 Nonorthogonal Generalised Wannier Functions

The matrix U can be optimised in such a way that the resulting Wannier functions
are maximally localised, as described in [2]. However, orthogonality and locali-
sation are two competing properties, and more localised Wannier functions can be
obtained if the orthogonality constraint is removed.

The linear combination of the Bloch orbitals of different bands can be
performed by using a non-unitary matrix, resulting in nonorthogonal Wannier
functions [3] /aR:

/aRðrÞ ¼
V

8p3

Z
dk e�ikR

X

m

MðkÞma wmkðrÞ
 !

: ð6:27Þ
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In ONETEP, Wannier functions are constrained in a localisation sphere centred on
atoms, i.e. /aR : 0 outside the localisation sphere, providing an atomic basis set.
The radius of the localisation sphere is set by considering the electronic structure
of the system or it can be increased until convergence of the physical properties is
achieved. The nonorthogonal Wannier functions are optimised during the elec-
tronic structure calculation, hence they represent the ‘‘best possible’’ atomic basis
functions of a particular system. In our studies of the atomic properties, we used
these Wannier functions as the atomic basis set for calculating atomic properties
with our definition for these properties given in Eq. 6.8.

6.1.5 Locality Investigations

In order to use the atomic energies obtained from quantum mechanical calcu-
lations as the target data of our regression scheme we have to ensure that the
atomic energies are local. We tested the degree of this locality through the
variation of the local energy caused by the perturbation of atoms outside a
spatial cutoff. If the atomic energies are local, they can be regarded purely as
functions of the local atomic environment and can be fitted by the Gaussian
Process method.

The basic idea for testing the degree of the locality is that we generate a number
of configurations, where the nearest neighbours of a certain atom were held fixed,
while the positions of other atoms were allowed to vary. We calculated the local
energy of the atom whose neighbourhood was fixed for each of these configura-
tions and compared them. We then repeated this process for different neigh-
bourhood configurations.

As a test system, we used clusters of 29–71 silicon atoms. The configurations
were generated by molecular dynamics simulation at 3,000 K, where the forces
were obtained from the Stillinger–Weber potential [4]. We performed the elec-
tronic structure calculations of the different clusters using ONETEP, and we also
used ONETEP to determine the atomic energies, as described in Sect. 6.1.2.
A typical cluster is shown in Fig. 6.1.

Fig. 6.1 An example con-
figuration of the examined
Si clusters. The atoms which
were fixed during the molec-
ular dynamics simulation are
shown in a different shade
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We examined the components of the atomic energies which depend principally
on the electron density of the central atom. We calculated the average variation of
the atomic kinetic, nonlocal and exchange-correlation energies and also, the total
atomic energy corrected for the long-range interactions. The atomic energy was
calculated as

Ei ¼ Ekini þ Enonloc
i þ Exc

i þ Eee
i þ EZe

i �
1
2

Xatoms

j

L̂iL̂j
1
rij
; ð6:28Þ

where the operator L̂ can be written as

L̂i ¼ qi þ pi � ri þQi : riri þ � � �: ð6:29Þ

The variations of the sum of kinetic, nonlocal and exchange-correlation terms
are depicted in Fig. 6.2, while Fig. 6.3 shows the spread of atomic energies
corrected for long-range interactions. Ideally, variations in the atomic energies
should be within 0.1 eV for each neighbourhood as this is usually reckoned to be
the standard DFT error. It is obvious that our results do not fit into this range.
These results are not satisfactory and indicate that either the atomic energies
depend on more neighbours, or that the atomic energies calculated by this
particular method are not local. However, we found when using our final
implementation of Gaussian Process (described in Sect. 4.6.1 in Chap. 4) an
explicit definition of local energies is not necessary, as the Gaussian Process
infers these from total energies and forces. We shall discuss the inferred atomic
energies in Sect. 6.6.
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Fig. 6.2 Atomic energies
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6.2 Gaussian Approximation Potentials

We have implemented the Gaussian Process to infer atomic energies from total
energies and atomic forces. Gaussian Processes belong to the family of non-linear,
non-parametric regression methods, i.e. not having fixed functional forms. The
atomic environments are represented by the four dimensional bispectrum, which is
invariant to permutation of neighbouring atoms and the global rotation of the
environment. In order to demonstrate the power of this new tool, we built
potentials for a few technologically important materials and we examined how
closely the fitted potential energy surface is to the original, quantum mechanical
one. At this stage of the work, most of the configurations we used for the training
were close to the crystalline structure of the material, hence the use of the current
potentials is limited to crystalline phases. However, to show the ability of our
potential to describe mode widely varying configurations, in the case of carbon we
built a potential that could describe the sp2–sp3 transition of the carbon atoms,
the (111) surface of diamond and a simple point defect.

Our aim is twofold. On the one hand, we would like to generate potentials for
general use, which can be extended, if needed. On the other hand, there are
applications where ‘‘disposable’’ force fields are sufficient. For example, when
simulating a crack or defects in a crystalline material, only a restricted part of the
potential energy surface is accessible. In these cases, a purpose-built potential can
be used, which can be generated more rapidly.
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6.2.1 Gaussian Approximation Potentials for Simple
Semiconductors: Diamond, Silicon and Germanium

Our first application of the Gaussian Approximation Potentials was a set of
potentials for simple semiconductors. We calculated the total energies and forces
of a number of configurations, which were generated by randomly displacing
atoms in the perfect diamond structure. We included 8-atom and 64-atom super-
cells at different lattice constants and we perturbed the lattice vectors in some
cases. The atoms were displaced at most by 0.3 Å.

The parameters of our representation are the spatial cutoff and the resolution of
the bispectrum. We set the former to 3.7, 4.8 and 5.0 Å for carbon, silicon and
germanium, respectively. The resolution of the bispectral representation can be
changed by varying a single parameter, the maximum order Jmax of the spherical
harmonics coefficients we use when constructing the bispectrum. We used
Jmax = 5 in all cases. During the sparsification, we chose 300 atomic neigh-
bourhoods in all cases. Due to the method of generating these configurations
all the neighbourhoods were similar, thus we decided to select the set of atomic
environments for the sparsification randomly.

The electronic structure calculations were performed using CASTEP [5].
We used the local density approximation for carbon and the PBE generalised
gradient approximation for silicon and germanium. The electronic Brillouin zone
was sampled by using a Monkhorst–Pack k-point grid, with a k-point spacing of at
most 1.7 Å-1. The plane-wave cutoff was set to 350, 300 and 300 eV for C, Si and
Ge, respectively, and the total energies were extrapolated for infinite plane-wave
cutoff. Ultrasoft pseudopotentials were used with four valence electrons for all ions.

In Fig. 6.4 we show the performance of GAP, compared to the state-of-the-art
interatomic potential, the Brenner potential [6]. The set of configurations used for
testing was obtained from a long ab initio molecular dynamics run of a 64-atom
supercell at 1,000 K. The absolute values of the components of the difference
between the predicted and the DFT forces are shown as a function of the

Fig. 6.4 Force errors compared to DFT forces for GAP and the Brenner potential in diamond.
The left shows the force errors at different DFT forces. On the right, the distribution of the force
errors is shown
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DFT force components and the distribution of these differences is also displayed.
The force and energy evaluation with the Gaussian Approximation Potential for
diamond, in the current implementation, is about 4,000 times faster than Density
Functional Theory in the case of a 216-atom supercell.

We show in Fig. 6.5 the results for our potentials which were developed to
model the two other group IV semiconductors, silicon and germanium, compared
to the Tersoff potential.

The strict localisation of the atomic energies places a limit on the accuracy with
which the PES can be approximated. If we consider an atom whose environment
inside rcut is fixed, but the position of other atoms are allowed to vary, the forces
on this atom will still show a variation, depending on its environment outside the
cutoff. An estimate of this theoretical limit can be obtained by calculating the force
on an atom inside a fixed environment in various configurations. For carbon atoms
in the diamond structure with rcut = 3.7 Å this error estimate is 0.1 eV/Å.

6.2.2 Parameters of GAP

In diamond, we carried out the GAP training process using different parameters to
determine the accuracy of the representation. We truncated the spherical har-
monics expansion in Eq. 2.58 at Jmax, which therefore represents the resolution of
the bispectrum. Employing more spherical harmonics coefficients requires more
computational resources, partially because of the increased number of operations
needed for the calculation of the bispectrum and partially because there are more
invariant elements, which affects the calculation of the covariances in Eq. 3.20.
Figure 6.6 shows the force error of three different GAP models. The cutoffs of all
three models were 3.7 Å, but the spherical harmonics expansion was truncated
at the first, the third and the fifth channel, respectively. We chose Jmax = 5 for
our model, as in this case the standard deviation of the force errors reached the
theoretical limit of 0.1 eV/Å associated with the spatial cutoff.

Figure 6.7 shows the force errors of three Gaussian Approximation Potential
models for diamond with cutoffs of 2.0, 2.75 and 3.7 Å. The difference between
the latter two models is negligible. However, the elastic moduli calculated from

Fig. 6.5 Force errors compared to DFT forces for GAP and the Tersoff potential. The silicon
potentials are shown in the left and the germanium potentials in the right
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the model with rcut = 2.75 Å did not match the elastic moduli of the ab initio
model and so we chose rcut = 3.7 Å for our final GAP potential.

6.2.3 Phonon Spectra

The force error correlation is already a good indicator of how well our potential fits
the original potential energy surface. In addition, we determined the accuracy of a

Fig. 6.6 Force correlation of GAP models for diamond with different resolution of represen-
tation. The number of invariants were 4, 23 and 69 for Jmax = 1, 3 and 5, respectively

Fig. 6.7 Force correlation of GAP models for diamond with different spatial cutoffs
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few other properties. The phonon dispersion curves represent the curvature of the
potential energy surface around the lowest energy state. We calculated the phonon
spectrum by the finite difference method using GAP. The force-constant matrix of
the model was calculated by the numerical differentiation of the forces, and the
phonon spectrum was obtained as the eigenvalues of the Fourier-transform of the
force-constant matrix. The parameters of the GAP potentials are given in
Table 6.1. We compared the phonon values at a few points in the Brillouin zone
with the ab initio values and the analytic potentials. These results are shown in
Figs. 6.8, 6.9 and 6.10 for diamond, silicon and germanium, respectively.
The GAP models show excellent accuracy at zero temperature over most of the
Brillouin zone, with a slight deviation for optical modes in the (111) direction. The
agreement of the phonon spectrum of GAP with the phonon spectrum of Density
Functional Theory suggests that any quantity that can be derived from the
vibrational free-energy, such as the constant-volume heat capacity, at low
temperatures will also show good agreement. We found excellent agreement
between the phonon frequencies calculated by the GAP potential for diamond and
the dispersion curves measured by inelastic neutron scattering [7, 8], shown in
Fig. 6.11.

We also calculated the elastic constants of our models and these are compared
to Density Functional Theory and existing interatomic potentials in Table 6.2.
We note that to our current knowledge, no existing analytic potential could
reproduce all of the elastic constants of these materials with an error of only a
few percents.

Table 6.1 Parameters of the
used GAP potentials

C Si Ge

rcut/Å 3.7 4.8 5.0
Jmax 5 5 5

Fig. 6.8 Phonon dispersion of diamond calculated by GAP (solid lines), the Brenner potential
(dotted lines) and LDA-DFT (open squares)
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6.2.4 Anharmonic Effects

In order to demonstrate the accuracy of the potential energy surface described by
GAP outside the harmonic regime, we calculated the temperature dependence of
the optical phonon mode of the C point in diamond. In fact, the low temperature
variation of this quantity has been calculated using Density Functional Perturba-
tion Theory by Lang et al. [9]. The ab initio calculations show excellent agreement

Fig. 6.9 Phonon dispersion of silicon calculated by GAP (solid lines), the Tersoff potential
(dotted lines) and PBE-DFT (open squares)

Fig. 6.10 Phonon dispersion of germanium calculated by GAP (solid lines), the Tersoff potential
(dotted lines) and PBE-DFT (open squares)
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with experimental values determined by Liu et al. [10]. We calculated this optical
phonon frequency using a molecular dynamics approach. We first performed a
series of constant-pressure molecular dynamics simulations for a 250-atom
supercell at different temperatures in order to determine the equilibrium lattice
constant as a function of temperature. Then, for each temperature, we used the
appropriate lattice constant to run a long microcanonical simulation, from which

Fig. 6.11 Phonon dispersion of diamond calculated by GAP (solid lines) and experimental data
points [7, 8] (open squares)

Table 6.2 Table of elastic
constants, in units of GPa

C

DFT GAP Brenner

C11 1,118 1,081 1,061
C12 151 157 133
C44

0 610 608 736
C44 603 601 717

Si

DFT GAP Tersoff

C11 154 152 143
C12 56 59 75
C44

0 100 101 119
C44 75 69 69

Ge

DFT GAP Tersoff

C11 108 114 138
C12 38 35 44
C44

0 75 75 93
C44 58 54 66
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we calculated the position–position correlation function. We selected the phonon
modes by projecting the displacements according to the appropriate wavevector.
From the Fourier-transform of the autocorrelation function, we obtained the
phonon frequencies by fitting Lorentzians on the peaks. We present our results in
Fig. 6.12, where our values for the phonon frequencies were shifted to match the
experimental value at 0 K.

We note that even at 0 K there are anharmonic effects present due to the zero-
point motion of the nuclei. We accounted for the quantum nature of the nuclei by
rescaling the temperature of the molecular dynamics runs, by determining the
temperature of the quantum system described by the same phonon density of states
whose energy is equal to the mean kinetic energy of the classical molecular
dynamics runs. The scaling function for the GAP model is shown in Fig. 6.13.

We are aware that at low temperatures this approximation is rather crude, and
the correct way of taking the quantum effects into account would be solving the
Schrödinger equation for the nuclear motion. However, we note that the anhar-
monic correction calculated by Lang et al. [9] by Density Functional Perturbation
Theory and our value show good agreement (Table 6.3).

6.2.5 Thermal Expansion of Diamond

Another phenomenon that occurs as a result of the anharmonicity of the potential
energy surface is thermal expansion. The temperature dependence of the thermal

Fig. 6.12 Temperature
dependence of the optical
phonon at the C point in
diamond

Table 6.3 Anharmonic shift
of the C phonon frequency in
diamond

Dmanharmonic/THz

LDA 0.95
GAP 0.93
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expansion coefficient calculated from first principles using the quasi-harmonic
approximation is remarkably close to the experimental value at low temperatures.
However, at larger temperatures the quasi-harmonic approximation is less valid,
because other anharmonic effects, which cannot be modelled assuming first-order
dependence of the phonon frequencies on the lattice constant, are more significant.
This effect can be calculated exactly by solving the nuclear Schrödinger equation
for the nuclear motion, or by classical molecular dynamics simulation. Herrero and
Ramírez used a path-integral Monte Carlo method to calculate the thermal
expansion of diamond modelled by the Tersoff potential [11]. We determined the
thermal expansion by calculating the equilibrium lattice constant by running a
series of constant-pressure molecular dynamics simulations at different tempera-
tures. We fitted the analytic function

aðTÞ ¼ c1T þ c2T2 þ c�1T�1 þ c0 ð6:30Þ

to the lattice constants, and then calculated the thermal expansion using the
definition

aðTÞ ¼ 1
aðTÞ

da
dT

� �

T

: ð6:31Þ

The same analytic function was used by Skinner to obtain the thermal expansion
coefficient from the experimental lattice constants [12]. Our results are shown in
Fig. 6.14, together with the experimental values [12] and values calculated by
LDA and GAP using the quasiharmonic approach. The results obtained by using
the Brenner potential is shown in the right panel of Fig. 6.14. It can be seen that
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Fig. 6.13 Temperature of
the quantum system descri-
bed by GAP whose energy is
equal to the average kinetic
energy of the classical sys-
tem, as a function of the
temperature of the classical
system. The dotted line is the
identity function f(x) : x,
and is merely shown to pro-
vide a guide to the eye
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the thermal expansion is extremely well predicted using GAP in molecular
dynamics simulations.

The GAP results for the thermal expansion coefficients obtained from the
quasiharmonic approximation show excellent agreement with the LDA values.
This verifies that the potential energy surface represented by the GAP model is,
in fact, close to the ab initio potential energy surface, even outside the harmonic
regime. In the case of Density Functional Theory, the molecular dynamics
simulation would be computationally expensive, because a large supercell has to
be used to minimise finite-size effects. However, with GAP, these calculations can
be easily performed and the thermal expansion coefficients obtained match the
experimental values well, even at high temperatures.

6.3 Towards a General Carbon Potential

The ultimate aim of our research is to create potentials for general use. In the case
of carbon, describing the diamond phase is certainly not sufficient. Although we
still have to add many more training configurations to complete a general carbon
potential, we demonstrate the capabilities of the GAP scheme by extending the
scope of the diamond potential described in the previous section to include
graphite, surfaces and vacancies.

We generated a set of randomised graphite configurations in a similar fashion to
the diamond training configurations. We randomised the atomic positions of the
carbon atoms in 54- and 48-atom supercells of rhombohedral and hexagonal
graphite and we also considered a number of uniaxially compressed supercells.
The training configurations also included diamond configurations with a vacancy

Fig. 6.14 Temperature dependence of the thermal expansion coefficient
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and (111) surfaces, in particular, configurations of the unreconstructed (111)
surface and the 2 9 1 Pandey-reconstruction were included in the training set.

We tested how accurately the resulting GAP potential reproduces the rhom-
bohedral graphite–diamond transition. Fahy et al. described a simple reaction
coordinate that transforms the eight-atom unit cell of rhombohedral graphite
(Fig. 6.15) to the cubic unit cell of diamond. In Fig. 6.16 we show the energies of
the intermediate configurations between rhombohedral graphite and diamond
calculated using GAP, DFT and the Brenner potential. The lattice vectors aa and
the atomic coordinates ri of these configurations were generated by

aa ¼ ð1� xÞagraphite
a þ xadiamond

a ; where a ¼ 1; 2; 3 ð6:32Þ

ri ¼ ð1� xÞrgraphite
i þ xrdiamond

i ; where i ¼ 1; . . .; 8: ð6:33Þ

Fig. 6.15 Rhombohedral
graphite

Fig. 6.16 The energetics of
the linear transition path from
rhombohedral graphite to
diamond calculated by DFT,
GAP and the Brenner
potential
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The reaction coordinate x corresponds to graphite at x = 0 and to diamond at
x = 1. It can be seen that the Brenner potential cannot describe the change in the
bonding of the carbon atoms, whereas the GAP potential reproduces the quantum
mechanical barrier accurately.

We also calculated the energetics of the vacancy migration in a similar fashion,
i.e. along a linear path between two configurations, where the vacancies are at two
neighbouring lattice sites. Our results are shown in Fig. 6.17. The GAP model
predicts the same the energies as the Density Functional Theory, whereas the
Brenner potential overestimates the energy barrier of the migration.

Our results for the surface energies of the diamond (111) surface are presented
in Table 6.4 again showing very good agreement between GAP predictions and
LDA results.

6.4 Gaussian Approximation Potential for Iron

The Gaussian Approximation Potential scheme is not limited to simple semicon-
ductors. We demonstrate this by applying the scheme to a metallic system, namely
the body-centred cubic (bcc) phase of iron. We included configurations in the
training set where the lattice vectors of the one-atom primitive cell were randomised
and where the positions of the atoms in 8 and 16-atom supercells were also

Fig. 6.17 Energy along a
vacancy migration path in
diamond by DFT, GAP and
the Brenner potential

Table 6.4 Surface energies in the units of J/m2 of the unreconstructed and 2 9 1 Pandey-
reconstructed surface of the (111) diamond surface

LDA-DFT GAP Brenner Tersoff

unreconstructed 6.42 6.36 4.46 2.85
2 9 1 4.23 4.40 3.42 4.77
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randomised. These configurations were represented by 50 sparse points in the
training set for the GAP potential. The spatial cutoff for the GAP potential was 4.0 Å
and we used the spherical harmonics coefficients for the bispectrum up to Jmax = 6.

We checked the accuracy of our potential by calculating the phonon spectrum
along the high symmetry directions and comparing the phonon frequencies at a
few k-points with Density Functional Theory. These spectra, together with those
generated by the Finnis–Sinclair potential are shown in Fig. 6.18. In Fig. 6.19 we
compared the phonon frequencies calculated by the GAP potential to the
experimental values obtained by the neutron-inelastic-scattering technique [13].
The main features of the phonon dispersion relation, for example, the crossing
of the two branches along the [n, n, n] direction, are reproduced by the

Fig. 6.18 Phonon spectrum of iron using the GAP potential (solid lines), the Finnis–Sinclair
potential (dotted lines) and PBE-DFT (open squares)

Fig. 6.19 Phonon dispersion of iron using the GAP potential (solid lines) and experimental
values (open squares) [13]
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GAP potential. The errors in the frequencies can be attributed to our Density
Functional Theory calculations.

The elastic moduli calculated with our model, the Finnis–Sinclair potential [14]
and Density Functional Theory are given in Table 6.5. The elastic properties and
the phonon dispersion relations described by the GAP model show excellent
agreement with the values calculated by Density Functional Theory.

6.5 Gaussian Approximation Potential for Gallium Nitride

So far our tests of the Gaussian Approximation Potentials were limited to single-
species systems, but the framework can be extended to multispecies systems. Here
we report our first attempt to model such a system, the cubic phase of gallium
nitride. Gallium nitride (GaN) is a two-component semiconductor with a wurtzite
or zinc-blende structure. There is a charge transfer between the two species.

As in our previous work, the configurations for fitting the GAP model were
generated by randomising the lattice vectors of the primitive cell and randomly
displacing atoms in larger supercells. Owing to the charge transfer, we need to
include the long-range Coulomb-interaction in our model. We decided to use the
charges obtained from the population analyses of the ground state electronic structure
of a number of atomic configurations. Due to the fact that these configurations are
similar, the fluctuation of the atomic charges was not significant, hence we chose to
use a simple, fixed charge model with -1e charge on the nitrogen atoms and 1e
charge on the gallium atoms. We calculated the electrostatic forces and energies for
each training configuration by the standard Ewald-technique [15] and subtracted
these from the forces and energies obtained from the Density Functional Theory
calculations. We regarded the remaining forces and energies as the short-range
contribution of the atomic energies, and these were used for the regression to
determine the GAP potential. The cutoff of the GAP potential was chosen to be
3.5 Å, Jmax = 5 and we sparsified the training configurations using 300 sparse points.

We checked the correlation of the predicted forces of the resulting GAP
potential with the ab initio forces, and the results are shown in Fig. 6.20. We used
64-atom configurations where the atoms were randomly displaced by similar
amounts to the training configurations. The phonon spectrum calculated by GAP is
shown in Fig. 6.21 and the elastic moduli are listed in Table 6.6.

Even this simple GAP model for gallium nitride shows remarkable accuracy in
these tests, which we take as evidence that we can adapt GAP to multispecies

Table 6.5 Elastic moduli of
iron in units of GPa
calculated using different
models

PBE-DFT GAP Finnis–Sinclair

C11 236 222 245
C12 160 156 138
C44 117 111 122
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systems. However, in the case of very different neighbourhood configurations we
will probably have to include variable charges, and we will possibly have to
consider the contributions of multipole interactions in the long-range part of the
potential. This is the subject of future research.

Fig. 6.20 Force components
in GaN predicted by GAP
versus DFT forces. The
diagonal line is the f(x) : x
function, which represents the
perfect correlation. The inset
depicts the distribution of the
difference between the force
components

Fig. 6.21 Phonon spectrum of GaN, calculated by GAP (solid lines) and PBE-DFT (open
squares)

Table 6.6 Elastic moduli of
GaN in units of GPa
calculated using PBE-DFT
and GAP

PBE-DFT GAP

C11 265 262
C12 133 136
C44 153 142
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6.6 Atomic Energies from GAP

In Sect. 6.1.2 we investigated a possible definition of atomic energies based on
localised atomic basis sets. According to our results in Sect. 6.1.5, however, those
atomic energies could not be used in our potential generation scheme because they
showed a large variation between numerically identical local environments. Instead,
we employed some extensions of the Gaussian Process regression method—learning
from derivatives, use of linear combination of function values and sparsification—,
which make the explicit definition of atomic energies unnecessary. Nonetheless,
we found it striking that an alternative possible definition of the quantum mechanical
atomic energies, i.e. the ones inferred by the Gaussian Approximation Potentials
appeared to be successful. In other words, using these atomic energies we can obtain
the most commensurate forces and total energies for a given spatial cutoff, therefore
these atomic energies are optimal in this sense.

We show two examples which demonstrate that the atomic energies predicted by
GAP are consistent with physical considerations. In the first application, we
calculated the atomic energies of the atoms in a 96-atom slab of diamond, which had
two (111) surfaces. The training configurations were generated by scaling the lattice
vectors and positions of the atoms of the minimised configuration by a constant
factor and randomising the atomic positions, and each of these steps was started from
a previous one. This means that in 20 steps, we created a series of samples between
the minimised structure and a completely randomised, gas-like configuration.
We calculated the total energy and the forces of the configurations by DFTB [16],
and used these to train a GAP model. The cutoff of the model was 2.75 Å and the
atomic environments were represented by 100 sparse teaching points. We used this
model only to determine the atomic energies in the original slab. The atomic
energies of the carbon atoms as a function of their distance from the surface are
plotted in Fig. 6.22. It can been seen that the atomic energy is higher at the surface
and then gradually reaches the bulk value towards the middle of the slab.

We also calculated the atomic energies defined by GAP in a gallium–nitride
crystal where permutational defects were present. We created two configurations
which contained such defects. The first one was generated by swapping the
positions of a gallium and nitrogen atom in a 96-atom wurtize-type supercell, and
then we swapped the positions of another pair to generate the second configura-
tion. We calculated the total energies and forces of the two configurations by
Density Functional Theory and used this data to train a very simple GAP potential.
The cutoff of the model was 3.5 Å and we used six sparse point to represent the
atomic environments. We used this model to calculate the atomic energies in the
same two configurations. Certainly, the resulting potential is not a good repre-
sentation of the quantum mechanical potential energy surface, but it still detects
the defects and predicts higher atomic energies for the misplaced atoms.

Figure 6.23 shows the configurations with the defects and the perfect lattice.
The colouring of atoms represent their atomic energies. It can be seen that the
atomic energies of the atoms forming the defect and surrounding it are higher.
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In random structure search applications [17] GAP can be directly employed to
detect permutational defects. If there are more than one species present in the
structure, the structure search can result in many similar lattices, none of which are
perfect, because of the large number of permutations of different species.
GAP models, which are generated on the fly, can be used to suggest swaps of atoms
between the local minima already found, which can then result in lower energy
structure. Using GAP as an auxiliary tool in such structure searches can possibly
achieve a significant speedup in searching for the global energy minimum.
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Fig. 6.22 Atomic energies
of carbon atoms in a slab of
diamond with two (111) sur-
faces as a function of the
distance of the atom from the
surface

Fig. 6.23 The atomic energies in gallium–nitride crystals. We show the perfect wurtzite struc-
ture on the left, a crystal containing a single defect (a gallium and a nitrogen atom swapped) is on
the middle and a crystal containing two defects (a further gallium–nitrogen pair swapped) is on
the right. The smaller spheres represent the nitrogen atoms, the larger ones represent the gallium
atoms. The coloured bar on the right shows the energy associated with the colour shades,
in electrovolt
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6.7 Performance of Gaussian Approximation Potentials

The total computational cost of Gaussian Approximation Potentials consists of two
terms. The first term, which is a fixed cost, includes the computation of the
ab initio forces and energies of the reference calculations and the generation of
the potential. The time required to generate the potential scales linearly with the
number of atomic environments in the reference configurations and the number of
sparse configurations. In our applications, performing the DFT calculations
typically took 100 CPU hours while the generation of a GAP potential was about a
CPU hour.

Even for small systems, GAP potentials in our current implementation are order
of magnitudes faster than Density Functional Theory, but significantly—about a
hundred times—more expensive than analytical potentials. Calculation of the
energies and forces requires about 0.01 s for every atom on a single CPU core.
For comparison, a timestep of a 216-atom simulation cell takes about 190 s per
atom on a single core by CASTEP, which corresponds to 20,000-fold speedup.
The same calculation for iron would take a million times longer by CASTEP.

References

1. C.-K. Skylaris, P.D. Haynes, A.A. Mostofi, M.C. Payne, J. Chem. Phys. 122, 84119 (2005)
2. N. Marzari, D. Vanderbilt, Phys. Rev. B 56, 12847 (1997)
3. C.-K. Skylaris, A.A. Mostofi, P.D. Haynes, O. Diéguez, M.C. Payne, Phys. Rev. B 66,

035119 (2002)
4. F.H. Stillinger, T.A. Weber, Phys. Rev. B 31, 5262 (1985)
5. S.J. Clark et al., Zeit. Krist. 220, 567 (2005)
6. D.W. Brenner et al., J. Phys.: Cond. Mat. 14, 783 (2002)
7. J.L. Warren, J.L. Yarnell, G. Dolling, R.A. Cowley, Phys. Rev. 158, 805 (1967)
8. J.L. Warren, R.G. Wenzel, J.L. Yarnell, Inelastic Scattering of Neutrons, (International

Atomic Energy Agency, Vienna, 1965), p. 361
9. G. Lang et al., Phys. Rev. B 59, 6182 (1999)

10. M.S. Liu, L.A. Bursill, S. Prawer, R. Beserman, Phys. Rev. B 61, 3391 (2000)
11. C.P. Herrero, Phys. Rev. B 63, 024103 (2000)
12. B.J. Skinner, Am. Mineral. 42, 39 (1957)
13. V.J. Minkiewicz, G. Shirane, R. Nathans, Phys. Rev. 162, 528 (1967)
14. M.W. Finnis, J.E. Sinclair, Phil. Mag. A 50, 45 (1984)
15. P.G. Cummins, D.A. Dunmur, R.W. Munn, N.R.J, Acta Crystallogr. Sect. A 32, 847 (1976)
16. E. Rauls, J. Elsner, R. Gutierrez, T. Frauenheim, Sol. Stat. Com. 111, 459 (1999)
17. C.J. Pickard, R.J. Needs, Phys. Rev. Lett. 97, 045504 (2006)

6.7 Performance of Gaussian Approximation Potentials 81



Chapter 7
Conclusion and Further Work

During my doctoral studies, I implemented a novel, general approach to building
interatomic potentials, which we call Gaussian Approximation Potentials.
Our potentials are designed to reproduce the quantum mechanical potential energy
surface (PES) as closely as possible, while being significantly faster than quantum
mechanical methods. To achieve this, we used the concept of Gaussian Process
from Inference Theory and the bispectral representation of atomic environments,
which we derived and adapted using the Group Theory of rotational groups.

I tested the GAP models on a range of simple materials, based on data obtained
from Density Functional Theory. I built interatomic potentials for the diamond
lattices of the group IV semiconductors and I performed rigorous tests to evaluate
the accuracy of the potential energy surface. These tests showed that the GAP
models reproduce the quantum mechanical results in the harmonic regime, i.e.
phonon spectra, elastic properties very well. In the case of diamond, I calculated
properties which are determined by the anharmonic nature of the PES, such as the
temperature dependence of the optical phonon frequency at the C point and the
temperature dependence of the thermal expansion coefficient. Our GAP potential
reproduced the values given by Density Functional Theory and experiments.

These potentials constituted our initial tests of the scheme, and represented only
a small part of the PES. In the case of carbon, I extended the GAP model to
describe graphite, the diamond (111) surface and vacancies in the diamond lattice.
I found that the new GAP potential described the rhombohedral graphite–diamond
transition, the surface energies and the vacancy migration remarkably well.

To show that our scheme is not limited to describing monoatomic semicon-
ductors, I generated a potential for bcc iron, a metal, and for gallium nitride, an
ionic semiconductor. Our preliminary tests, which were the comparison of the
phonon dispersion and the elastic moduli with Density Functional Theory values,
demonstrate that GAP models can easily be built for different kinds of materials.
I also suggest that the Gaussian Approximation Potentials can be generated on the
fly and used as auxiliary tools for example, in structure search applications.
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7.1 Further Work

In my thesis I presented preliminary tests and validation of our potential genera-
tion scheme. In the future, we intend to build models and perform large scale
simulations on a wide range of materials. The first step will be to create a general
carbon potential, which can describe amorphous and liquid carbon at a wide range
of pressures and temperatures as well as defects and surfaces. We are also planning
to create ‘‘disposable’’ potentials, which can be used, for instance, in the case of
crack simulations. These do not have to be able to describe the high-temperature
behaviour of the materials, as only a restricted part of the configurational space is
accessible under the conditions of the simulation. The description of electrostatics
will be soon implemented, with charges and polarisabilities which depend on the
local environment and the electric field. This will allow us to simulate more
complex systems, for example silica or water and our ultimate aim is to build
interatomic potentials—force fields—for biological compounds. None of these
potentials have to be based on Density Functional Theory, for instance it might be
necessary to use more accurate solutions of the electronic Schrödinger equation.
Finally, using GAP as a post-processing tool to determine atomic energies derived
from on Quantum Mechanics is also a future direction of our research, for
example, in structure searches.
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Chapter 8
Appendices

8.1 A: Woodbury Matrix Identity

The likelihood function in Eq. 3.46 is used during the sparsification procedure in
order to optimise the hyperparameters and the sparse points. At first sight, it seems
that the inverse of an N 9 N matrix has to be calculated, the computational cost of
which would scale as N3. However, by using the matrix inversion lemma, also
known as the Woodbury matrix identity, the computational cost scales only with
NM2 if N� M. If we want to find the inverse of a matrix, which can be written in
the form Z + UWVT, the Woodbury matrix identity states that

ðZþ UWVTÞ�1 ¼ Z�1 � Z�1UðW�1 þ VT Z�1UÞ�1VT Z�1: ðA:1Þ

In our case, Z is an N 9 N diagonal matrix, hence its inverse is trivial, and W-1 is
M 9 M. The order of the operations can arranged such that none of them requires
more than NM2 floating point operations:

tTðCNMC�1
M CMN þ !Þ�1t

¼ tT!�1t� ðtT!�1ÞCNMðC�1
M þ CMN!�1CNMÞ�1CMNð!�1tÞ;

ðA:2Þ

where ! ¼ Kþ r2I: In the evaluation of the second term in Eq. 3.46 we used the
matrix determinant lemma, which is analogous to the inversion formula:

detðZþ UWVTÞ ¼ detðW�1 þ VT Z�1UÞ detðWÞ detðZÞ: ðA:3Þ
In our implementation, the determinants are calculated together with the inverses,
without any computational overhead.

We also note that at certain values of the hyperparameters the matrix CM is ill
conditioned. In the original Gaussian Process, the covariance matrix Q can also be
ill conditioned, but by adding the diagonal matrix rm

2I this problem is eliminated,
except for very small values of the rm parameters. Snelson suggested1 that a small

1 E. Snelson, personal communication.
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diagonal matrix n2I should be added to CM to improve the condition number of the
matrix. This small ‘‘jitter’’ factor can be regarded as the internal error of the
sparsification.

8.2 B: Spherical Harmonics

8.2.1 Four-dimensional Spherical Harmonics

The spherical harmonics in three dimensions are the angular part of the solution of
the Laplace equation

o2

ox2
þ o2

oy2
þ o2

oz2

� �
f ¼ 0: ðB:1Þ

This concept can be generalised to higher dimensions. In our case, we need the
solutions of the four dimensional Laplace equation

o2

ox2
þ o2

oy2
þ o2

oz2
þ o2

oz2
0

� �
f ¼ 0; ðB:2Þ

which can be written in the form of the three-dimensional rotation matrices, the
Wigner D-functions.

The definition of the elements of the rotational matrices is

DðlÞmm0 ðRÞ ¼ hYlmjR̂jYlm0 i; ðB:3Þ

where the rotation R̂ is defined by three rotational angles. The rotational operator is
usually described as three successive rotations

• rotation about the z axis by angle a,
• rotation about the new y0 axis by angle b,
• rotation about the new z0 axis by angle c, where a, b and c are called the Euler-

angles. The Wigner D-functions are usually formulated as the function of these
three angles and denoted as DJ

MM0 ða; b; cÞ: However, in some cases the rotation
can be described more conveniently in terms of x, h and /, where the rotation is
treated as a single rotation through angle x about the axis n(h, /). The vector n
is determined by the polar angles h and /.

The rotational matrices in the form UJ
MM0 ðx; h;/Þ; where the four dimensional

polar angles are 2h0 :x, h and / are the four dimensional spherical harmonics.
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The matrix elements can be constructed as

UJ
MM0 ðh0; h;/Þ ¼

ð�ivÞ2J u
�iv

� �MþM0
e�iðM�M0Þ/

�
P

s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðJþMÞ!ðJ�MÞ!ðJþM0Þ!ðJ�M0Þ!
p
s!ðsþMþM0Þ!ðJ�M�sÞ!ðJ�M0�sÞ! ð1� v�2Þs;

M þM0 � 0

ð�ivÞ2J u�

�iv

� ��M�M0
e�iðM�M0Þ/

�
P

s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðJþMÞ!ðJ�MÞ!ðJþM0Þ!ðJ�M0Þ!
p
s!ðs�M�M0Þ!ðJþM�sÞ!ðJþM0�sÞ! ð1� v�2Þs;

M þM0 � 0

8
>>>>>>>>>>><

>>>>>>>>>>>:

; ðB:4Þ

where

v ¼ sin h0 sin h ðB:5Þ

u ¼ cos h0 � i sin h0 cos h: ðB:6Þ

In our application, each time an entire set of UJ
MM0 has to be calculated, thus the use

of recursion relation is computationally more efficient. The recursion relations are

UJ
MM0 ðh0; h;/Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J �M

J �M0

r
u�U

J�1
2

Mþ1
2M0þ1

2
ðh0;x; hÞ

� i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J þM

J �M0

r
vei/U

J�1
2

M�1
2M0þ1

2
ðh0;x; hÞ

for M0 6¼ J

ðB:7Þ

and

UJ
MM0 ðh0; h;/Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J þM

J þM0

r
uU

J�1
2

M�1
2M0�1

2
ðh0;x; hÞ

� i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J �M

J þM0

r
vei/U

J�1
2

Mþ1
2M0�1

2
ðh0;x; hÞ

for M0 6¼ �J:

ðB:8Þ

The actual implementation does not involve the explicit calculation of the polar
angles, we calculate the spherical harmonics in term of the Cartesian coordinates
x, y, z and z0. The first two four-dimensional spherical harmonics are

U0
00 ¼ 1 ðB:9Þ

and

U
1
2

�1
2�1

2
¼ 1ffiffiffi

2
p z0 � iz

r
ðB:10Þ
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U
1
2

�1
2	1

2
¼ � iffiffiffi

2
p x	 iy

r
; ðB:11Þ

which are indeed analogous to their three-dimensional counterparts.

8.2.2 Clebsch–Gordan coefficients

We used the following formula to compute the Clebsch–Gordan coefficients:

Ccc
aabb¼ dc;aþbDðabcÞ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðaþaÞ!ða�aÞ!ðbþbÞ!ðb�bÞ!ðcþcÞ!ðc�cÞ!ð2cþ1Þ

p

�
X

z

ð�1Þz

z!ðaþb�c� zÞ!ða�a� zÞ!ðbþb� zÞ!ðc�bþaþ zÞ!ðc�a�bþ zÞ! ;

ðB:12Þ

where D-symbol is

DðabcÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðaþ b� cÞ!ða� bþ cÞ!ð�aþ bþ cÞ!

ðaþ bþ cþ 1Þ!

s

: ðB:13Þ
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