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Preface

This volume contains a substantial number of the papers presented at the
mODa 8 conference in Almagro, Castilla–La Mancha, Spain in June 2007.
mODa stands for Model Oriented Data Analysis. Previous conferences have
been held in Wartburg, then in the German Democratic Republic (1987), St
Kirik Monastery, Bulgaria (1990), Petrodvorets, St Petersburg, Russia (1992),
the Island of Spetses, Greece (1995), the Centre International de Rencon-
tres Mathematiques, Marseille, France (1998), Puchberg/Schneeberg, Austria
(2001) and Heeze, Netherlands (2004).

The purpose of these workshops has traditionally been to bring together
two pairs of groups: firstly scientists from the East and West with an interest
in optimal design of experiments and related topics; and secondly younger
and senior researchers in the field. These traditions remain vital to the health
of the series. In recent years Europe has seen increasing unity. Indeed since
the last mODa, and even this year, the EU has expanded to admit several of
the countries which have long been strong participants in mODa, with one,
Bulgaria, hosting the second conference. One might argue that this expansion
has seen the fruition on a wider scale of our mODa ideals, and maybe has
been fostered, in a small way, by them.

One might also argue that this expansion has seen mODa come of age.
Several recent conferences were financially supported by the EU. Now compe-
tition is so wide that such sources were not available. In some sense we have
had to become ’self sufficient’ and look elsewhere, with the exception that
GlaxoSmithKline has again very generously continued its support. All of the
various new sources have been Spanish based. These are mainly the University
of Castilla-La Mancha, the Spanish Ministerio de Educación y Ciencia (con-
tract MTM2006-27463-E), Caja Castilla–La Mancha, Junta de Comunidades
de Castilla–La Mancha, Diputación provincial de Ciudad Real, the Depart-
ment of Mathematics and the Institute of Mathematics Applied to Science
and Engineering of the University of Castilla-La Mancha.

We are very grateful for these substantial contributions.



VIII Preface

The major optimal design topics featuring in these proceedings include
models with covariance structures, generalised linear models, applications in
clinical trials, and designs for discrimination; also new models and criteria
appear, and classical design topics feature too. A breakdown is as follows:

1. The most common theme is that of covariance structures with the papers
by Fathy and Müller; by Fedorov and Müller; by Fedorov and Wu; by Pe-
pelyshev; by Rodrigues–Pinto and Ponce de Leon; and by Stehĺık focusing
or touching on this.

2. Generalised Linear Models feature in the contributions of Dorta-Guerra
et al; of Fedorov and Wu; of Haines et al; and of Nguyen and Torsney.

3. The topic of clinical trials arises either in the form of adaptive patient
allocation rules as in Biswas and Mandal and in Moler and Flournoy; or
in the timing of observation taking as in each of the two contributions co-
authored by Anisimov and Fedorov plus a differing third author: Downing
in one, Leonov in the other.

4. New models appear in Laycock and López–Fidalgo, in Melas and in Or-
tiz et al; while new design concepts or criteria are seen in Pázman and
Pronzato; and in Patan and Bogacka.

5. Bayesian approaches feature in two of the papers so far cited: in Patan
and Bogacka; and in Fathy and Müller.

6. The topic of designing for non-parametric testing continues from the last
conference in the papers of Basso et al; of Arborett–Giancristofaro et al;
and of Rasch and Simeckova.

7. The classical design topics of random or mixed effects features in Schmelter
et al; and in Patan and Bogacka; while that of factorial designs is seen in
Dorta–Guerra et al; in Stanzel and Hilgers; and in Ye et al.

8. Topics covered by one paper and the authors thereof are: design for dis-
crimination between models by Tommasi; micro-array experiments by
Stanzel and Hilgers; model selection in mixture experiments by Maruri–
Aguilar and Riccomagno; paired comparisons experiments by Grossman
et al; and a unique contribution on optimal design of Bell (or quantum
nonlocality) experiments by Gill and Pluch, a longstanding topic in the
theory of quantum mechanics.

9. Finally one possibly emerging theme is an emphasis on distance between
design points in a one dimensional context, a natural consideration, when
at most one observation can be taken at any design point, as happens
under some covariance structures. The paper by Stehĺık is a case in point.
Interestingly there is a similar feature in the paper by Nguyen and Torsney
on cut-point determination.

Jesús López–Fidalgo, Ciudad Real
Juan Manuel Rodŕıguez–Dı́az, Salamanca

Ben Torsney, Glasgow

January 2007
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Recruitment in Multicentre Trials: Prediction
and Adjustment
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Summary. There are a few sources of uncertainty/variability associated with pa-
tient recruitment in multicentre clinical trials: uncertainties in prior information,
stochasticity in patient arrival and centre initiation processes. Methods of statisti-
cal modeling, prediction and adaptive adjustment of recruitment are proposed to
address these issues. The procedures for constructing an optimal recruitment design
accounting for time and cost constraints are briefly discussed.

Key words: patient recruitment, optimal design, multicentre trial, adaptive ad-
justment

1 Introduction

The recruitment time (time required to complete patient recruitment) is one
of the key decision variables at the design stage of clinical trials. Existing tech-
niques of recruitment planning are mainly deterministic and do not account
for various uncertainties in input information and stochastic fluctuations of
the recruitment process.

We consider multicentre trials and propose a recruitment model, where
the patients enter different centres according to Poisson processes with time-
constant rates. This assumption seems to be well accepted; cf. Senn (1997,
1998); Anisimov et al (2003). We suggest viewing these rates as a sample from
a gamma distributed population. Other mixing distributions can be used in
a similar setting, but a gamma distribution is conjugate to a Poisson distri-
bution and is a natural candidate for describing prior uncertainties when the
Bayesian approach is used. The analysis of a number of completed trials has
shown Anisimov and Fedorov (2005) that a Poisson-gamma model is in good
agreement with existing data.

The model allows the development of methods for predicting the num-
ber of recruited patients and the recruitment time together with confi-
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dence/credibilty intervals, accounting for the randomness of the recruitment
process, the variability in recruitment rates, the random delays in centre ini-
tiation and uncertainties in prior information.

The paper is organized as follows. Section 2 deals with patient recruit-
ment modeling. Recruitment prediction is considered in Section 3. Methods
of adaptive adjustment are introduced in Section 4. Study design is discussed
in Section 5.

2 Recruitment modeling

Let n be the total number of patients needed to be recruited by N clinical
centres and let T (n,N) be the recruitment time. We assume that patients
arrive at centre i according to a Poisson process with rate λi and the recruit-
ment rates {λi}N

1 are viewed as a sample of size N drawn from a gamma
distributed population. One may also think about the Bayesian setting with
a gamma prior for recruitment rates. We consider only a homogeneous case,
i.e. {λi}N

i do not vary in time. We acknowledge that reality could be more
complex but generalization to the non-homogeneous case is beyond of the
scope of this paper; cf. Thall (1988), where the estimation problem for count
data with time-dependent rates and a random-effect parameter described by
a gamma distribution is studied.

Note that in our notation Ga(α, β) stands for a gamma distributed ran-
dom variable and its probability density function (p.d.f.) is p(x, α, β) =
e−βxβαxα−1/Γ (α) with mean α/β and variance α/β2, and Πλ(t) stands for
the Poisson process with rate λ.

Assume first that all centres are initiated at time t0 = 0. Let ni(t) be the
number of patients recruited by centre i up to time t. Then ni(t) ∼ Πλi(t)
and the total number of recruited patients n(t,N) =

∑N
i=1 ni(t), conditioned

on {λi}N
1 , is a Poisson process with rate Λ =

∑N
i=1 λi. Observing that Λ ∼

Ga(αN, β), one may conclude that the corresponding marginal distribution
of ΠΛ(t)

∧
Ga(αN, β), (compare with Johnson et al (1993), pp. 204, 308) is:

P(n(t,N) = k) =
1

kB(k, αN)
tkβαN

(t + β)k+αN
, (1)

where B(a, b) is the beta function, and the distribution of T (n,N) is a Pearson
type VI distribution with p.d.f.

p(t, n,N, α, β) =
1

B(n, αN)
tn−1βαN

(t + β)n+αN
, t ≥ 0; (2)

see Anisimov and Fedorov (2005, 2006), Johnson et al (1994), ch. 8.2. If the
parameters (α, β) were known, then (1) and (2) allow solution of the following
problems:
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1. Given n and N find the least t∗ such that

P(n(t,N) ≥ n) ≥ p . (3)

2. Given T and n find the least N∗ such that

P(T (n,N) ≤ T ) ≥ p , (4)

where p is some prescribed probability. Solutions can be found numeri-
cally. To speed up computing one may use normal approximations. For ex-
ample, in the later case for sufficiently large N and n the random vari-
able (T (n,N) −M1(n,N))/S1(n,N) is approximately normally distributed,
where M1(n,N) = E[T (n,N)] = βn

αN−1 , S2
1(n,N) = Var[T (n,N)] =

β2n(n+αN−1)
(αN−1)2(αN−2) , αN > 2 . Consequently (4) can be replaced by the (com-
putationally) much simpler equation

M1(n,N) + zpS1(n,N) = T, (5)

where zp is the p-quantile of the standard normal distribution. As the functions
M1(n,N) and S1(n,N) with respect to N are monotonically decreasing, a
unique solution of (5) exists and can easily be found numerically.

If centres are initiated at different times {ui}N
1 , then the process n(t,N) is

a non-homogeneous Poisson process with cumulative rate on the interval [0, t]

Σ(t) =
N∑

i=1

λi · [t− ui]+, (6)

where [t− ui]+ = t− ui, if t > ui and = 0 otherwise. Using the properties of
a Poisson process and a gamma distribution, we can establish the relations:

P(T (n,N) ≤ T ) = P(ΠΣ(T ) ≥ n) = P(Ga(n, 1) ≤ Σ(T )). (7)

Computationally (7) is not much more difficult than (4). Note that ui can also
be viewed as a sample from some random population (i.e. we have two mixing
levels in each centre, randomness in rate and in centre initiation date).

3 Prediction of recruitment

There are two basic stages of recruitment prediction: before the study is
started (the initial stage) and during the study, when some interim infor-
mation becomes available (the intermediate stage).
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3.1 Initial stage

At this stage the recruitment rates for centres that potentially may be involved
in a trial are solicited from site managers. The rates can be also evaluated
using historical data. This information is used to estimate the parameters (the
mean rate m = α/β and the variance s2 = α/β2) of a Poisson-gamma model.
The estimation can be done separately for different clusters of centres; for
example, for different regions. To make the model more flexible we admit a
possibility that centres may be initiated at different times. Let {ui}N

1 be the
centre initiation times where ui is generated in a specified time interval [ai, bi]
using a uniform distribution. In practice intervals [ai, bi] may be the same for
different centres. Thus, patients enter centre i according to a delayed Poisson
process ni(t) = Πλi(t − ui), where the rates λi are sampled from a gamma
population with the mean m and the variance s2.

Assume for simplicity that max bi < T , i.e. all centres are initiated before
deadline T . Denote M(t,N) = E[Σ(t)], S2(t,N) = Var[Σ(t)]. Then

M(t,N) =
N∑

i=1

M(t, ai, bi,m), S2(t,N) =
N∑

i=1

S2(t, ai, bi,m, s2), (8)

where Σ(t) is defined in (6) and

M(t, a, b,m) = mt−m(a + b)/2, (9)
S2(t, a, b,m, s2) = (m2 + s2)(b− a)2/12 + s2(t− (a + b)/2)2,

for t > b. Similar formulae are derived for t < b.
As n(t,N) is a doubly stochastic Poisson process with cumulative rate

Σ(t), then E[n(t,N)] = M(t,N), Var[n(t,N)] = M(t,N) + S2(t,N). Thus,
formulae (8),(9) provide us with the mean and the variance of the predicted
n(t,N) and at large enough N one can also calculate the approximate predic-
tion confidence boundaries over time using the normal approximation.

To find the approximation for t∗ in Problem 1 (i.e. the solution of (3)
where n and N are given) one can build approximate quantiles for n(t,N) or
solve the equation

M(t,N) − n√
M(t,N) + S2(t,N)

= zp. (10)

To solve Problem 2 we can use the fact that Σ(T ) is a sum of independent
random variables and Σ(T ) ≈ M(T,N)+S(T,N)N (0, 1) for sufficiently large
N . Observing that Ga(n, 1) ≈ n+

√
nN (0, 1) for large n and applying (7) one

may approximate N∗ by solving the following equation

M(T,N) − n√
n + S2(T,N)

= zp (11)

with respect to N . Solutions of (10) and (11) can easily be found numerically.
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3.2 Updating prediction at interim looks

Let us assume that at some interim time point t1 the information about
ongoing recruitment in N centres is available; i.e. we know how many patients
ki were recruited and initiation times, ui, in the i-th center. Let τi be the actual
duration of recruitment in centre i, (τi = t1 − ui), K1 =

∑N
i=1 ki be the total

number of patients recruited up to time t1 and K2 = n −K1. Using interim
data we want to update the distribution of T (K2, N) - the remaining time
until the recruitment target n will be met.

Assume all centres are of the same type or belong to the same group
(country, region, healthcare system, etc.). This means that the parameters
(α, β) of a Poisson-gamma model are the same for all of them. In this case
ki, as a doubly stochastic Poisson variable with gamma distributed rate, has
a negative binomial distribution with parameters (α, τi/β) (Johnson et al,
1993, p. 199). Thus, given data {ki, τi}N

1 , the log-likelihood function up to a
constant has the form

L(α, β) =
N∑

i=1

lnΓ (ki + α) −N lnΓ (α) −K1 lnβ −
N∑

i=1

(ki + α) ln(1 + τi/β),

and the ML estimator (α̂, β̂) is the point maximising L(α, β).
Suppose now that (α, β) are known. As λi has a prior gamma distribution

with parameters (α, β), then the posterior estimator of λi is λ̂i ∼ Ga(α+ki, β+
τi) with mean mi = (α + ki)/(β + τi) and variance s2i = (α + ki)/(β + τi)2.
Therefore, confidence boundaries of the updated prediction of the number of
recruited patients can be built using the re-estimated mi and s2i in each centre
and formulae similar to (8) and (9).

Let us now consider an updated distribution of the predicted remaining
recruitment time. Assume for simplicity that all N centres after time t1 con-
tinue to recruit without interruption. In this case the re-estimated overall
recruitment rate is Λ̂ =

∑N
i=1 λ̂i, and as T (K2, N) is the time of the K2-th

event of a Poisson process with rate Λ̂, its updated distribution coincides with
the distribution of Ga(K2, 1)/Λ̂.

If τi = τ (the same duration of recruitment in all centres) then Λ̂ ∼
Ga(αN + K1, β + τ) and T (K2, N) is distributed as

Ga(K2, 1)
Ga(αN + K1, 1)

(β + τ).

Thus, T (K2, N) has a Pearson type VI distribution. If the τi are different,
then for large N , Λ̃ can be well approximated by a gamma distributed ran-
dom variable with the same mean and variance as Λ̃. Thus, the distribution
of T (K2, N) can be approximated by a Pearson type VI distribution with
corresponding parameters and the inequality:

P(T (K2, N) ≤ T − t1) ≥ p (12)
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corresponding to Problem 2 (recruitment will be completed before deadline
with probability p) can easily be verified.

The impact of additional errors in estimating the parameters (α, β) on
the precision of predictions cannot be precisely evaluated as the estimators
cannot be written in closed form. However, simulation results show that if
t1/T > 2/3, the difference in predicting using either known or estimated
parameters is practically negligible Anisimov and Fedorov (2007).

Example. Consider a real multicentre trial. Initially it was planned to
recruit 366 patients by 75 centres. In the event 372 patients were recruited
by 107 centres. To provide a retrospective analysis, the total duration of re-
cruitment was divided into 4 equal periods (64 days). For each period the
following data were given: the date of initiation of each centre and the num-
ber of patients recruited in the period by this centre. During the 1st period 15
patients were recruited by 60 centres; so the estimates are: m = 0.02, α = 0.5.
After the 2nd period 118 patients were recruited by 84 centres; so m = 0.021,
α = 0.73. After the 3rd period 254 patients were recruited by 109 centres; so
m = 0.026, α = 0.9.

Figures below show the initial 95% prediction area (upper band) and 95%
confidence boundaries for the predicted number of patients after each of the
first three periods, constructed using real data and shown by the dotted line.
One can see that predictions become narrower as more data are available. As
more additional centres are added over time recruitment is accelerated.

4 Adaptive adjustment

If (12) is not satisfied, then we need to solve the updated Problem 2 to find
how many centres should be added. To attain a closed-form (but approximate)
solution we assume that τi = τ and that all new centres will be initiated with
the same delay d < T − t1. Assume also that the parameters (α, β) are known.

Then to complete recruitment before time T with probability p we need
to add M new centres, where

M ≥
A+ Bz2

p/2 + zp

√
AB + Q + B2z2

p/4

αB
, (13)

A = K2 − (αN + K1)(T − t1)/(β + τ), B = (T − t1 − d)/β,
Q = K2 + (αN + K1)(T − t1)2/(β + τ)2.
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Indeed, at t ≥ t1 the existing N centres continue to recruit with the overall
rate Λ. If we add M new centres with the same delay d, then after time t1 +d
these centres add the total rate Λ+ ∼ Ga(αM, β) and the overall rate becomes
Λ̂ + Λ+, where we use the estimated rate Λ̂ ∼ Ga(αN + K1, β + τ) instead
of Λ. Thus, the number of patients recruited in the interval [t1, T ] can be
represented as X ∼ Π

�Λ(T − t1) + ΠΛ+(T − t1 − d). The recruitment will be
completed before the deadline if X ≥ K2. Hence we need to find M such that
P(X ≥ K2) ≥ p. Assuming that the values N and K2 are large enough and
using the normal approximations of the Poisson and gamma distributions and
relation (7) we can prove (13).

If the parameters (α, β) are not known, we can replace them by their
estimators and formula (13) provides the first approximation. Simulations
show that at large enough N (N ≥ 20) and K1 ≥ 50, this value is very close
to the actual number of centres required.

If M new centres are added with delay d, then the remaining time T̂ (M)
can be represented as

T̂ (M) = d+
Ga(K3, 1)

Λ̂ + Ga(αM, β)
, (14)

where K3 = K2 − Π
�Λ(d) is the number of patients left to recruit after time

t1 + d. As d < T − t1, then at large N , K3 > 0 with probability close to one.
Different characteristics of T̂ (M) can be calculated very quickly numeri-

cally using simulation of the gamma random variables involved in (14). In this
case for a large number of simulation runs we recommend using the expression
K3 = [K2 −Π

�Λ(d)]+ to avoid possible negative values.

5 Study design

Optimal patient recruitment design should account for such major factors as
the total recruitment time, the total number of centres and costs per centre
and per study delay. It is clear that adding more centres will decrease the
recruitment time, however, it will increase study costs.

Consider the class of admissible designs satisfying (4). As the left-hand
side in (4) is monotonically increasing in N , then for any number of patients
n, there exists a minimal number of centres N∗

n satisfying (4) which can be
found using a quick numerical procedure.

Suppose now that the purpose is to find an optimal design minimizing some
risk function R(n,N) given restriction (4). Then a solution of this problem
can be found numerically using a two-step optimization procedure:
1) for any n find the optimal N : Nopt(n) = argminN≥N∗

n
R(n,N);

2) find the optimal n: nopt = argminn R(n,Nopt(n)).
Finally Nopt = Nopt(nopt) and the pair (nopt, Nopt) provide the optimal

solution for this study design problem given restriction (4).
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Consider, as an example, the risk function R(n,N) = C1n + C2N +
C3E[(T (n,N) − T )]+, where C1 and C2 are patient and centre costs, respec-
tively, and C3 is the cost per unit excess of the recruitment deadline. R(n,N)
cannot be evaluated analytically. However, as the predicted T (n,N) has either
a Pearson type VI distribution or can be represented in the form (7) or (14),
then for any values n and N , R(n,N) can be calculated very quickly either
numerically or using Monte Carlo simulation.

Additional realistic constraints might be N ≤ NMax, or C1n + C2N ≤
CMax. In this case, a search at step 1) above should be performed in the
admissible region {N ≥ N∗

n, N ≤ NMax}, or in the region {N ≥ N∗
n, C1n +

C2N ≤ CMax}, and empty regions should be excluded from consideration.
Note that in real trials the number of patients n cannot exceed several

hundred (or possibly a couple of thousands for very large trials). Thus, each
step can be performed in a very short time.
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Summary. Pharmacokinetic (PK) studies with serial sampling which are described
by compartmental models are discussed. We focus on intrinsic variability induced
by the noise terms in stochastic differential equations (SDE). For several models of
intrinsic randomness, we find explicit expressions for mean and covariance functions
of the solution of the system of SDE. This, in turn, allows us to construct opti-
mal designs, i.e. find sequences of sampling times that guarantee the most precise
estimation of unknown model parameters. The performance of optimal designs is
illustrated with several examples, including cost-based designs.

Key words: pharmacokinetic models, stochastic differential equations, intrinsic
randomness, optimal sampling times, cost-based designs

1 Introduction

Repeated measures models are often encountered in biopharmaceutical ap-
plications. Examples include pharmacokinetic (PK) studies with serial blood
sampling which are traditionally described by ordinary differential equations
(ODE). Deterministic PK models include two sources of variability: (1) mea-
surement, or observational error, and (2) population, or between-patient vari-
ability. The focus of this paper is the third source, namely within-patient
variability which comes into play from considering stochastic differential equa-
tions (SDE) instead of ODE. We address the optimal design problem, i.e. se-
lection of sequences of sampling times that maximize the information in an
experiment, and show that when costs are taken into account, designs with
smaller numbers of samples may become better than more “dense” sampling
schemes, with respect to selected optimality criterion. In this paper we focus
on the design problem; for a discussion on parameter estimation in stochastic
PK models, see Overgaard et al (2005).
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The paper is organized as follows. In Section 2 we introduce models de-
scribed by ODE (deterministic) and SDE (stochastic) and derive mean and
covariance functions for the stochastic systems. In Section 3 basic concepts
of optimal design theory are mentioned and examples of optimal sampling
schemes are presented. Section 4 outlines potential extensions and future work.

2 Models

2.1 Deterministic open one-compartment model

For illustration purposes, we select an open one-compartment model:

dη1(t) = −θ1η1(t)dt, dη2(t) = θ1η1(t)dt − θ2η2(t)dt, (1)

η1(0) = D, η2(0) = 0, where D is the dose of the drug, η1(t) is the amount of
drug at the site of administration, η2(t) is the amount of drug in the central
compartment; and θ1 and θ2 are absorption and elimination rate constants,
respectively. Functions η1 and η2 depend on parameters θ1 and θ2, but we
drop these arguments to simplify notation. The solution of system (1) is given
by

η1(t) = De−θ1t, η2(t) =
θ1D

θ1 − θ2

(
e−θ2t − e−θ1t

)
, (2)

see Gibaldi and Perrier (1982). Measurements {zij} of drug concentration are
taken from the central compartment at times tij ,

zij = η2(tij)/Vi + εij , j = 1, . . . , ki, (3)

where Vi is the volume of distribution for patient i, ki is the number of
measurements for patient i, and εij are measurements errors, the variance
of which may depend on the mean response, as in power models. We use
the notation γ = (θ1, θ2, V )T for the combined vector of PK parameters. In
population modeling, it is assumed that the parameters γi are independently
sampled from a given distribution.

2.2 Stochastic open one-compartment model

To account for intrinsic within-patient variability, we introduce a system of
SDE with additional noise terms described by Wiener processes:

dy1(t) = −θ1y1(t)dt + σ1(t)dw1(t), y1(0) = D, (4)

dy2(t) = θ1y1(t)dt− θ2y2(t)dt + σ2(t)dw2(t), y2(0) = 0,

where σi(t) ≥ 0, i = 1, 2, are deterministic functions, and wi(t) are indepen-
dent Wiener processes, for which E[wi(t)] = 0, Cov[wi(t)wi(s)] = min(t, s).
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We use Ito’s concept, so that for any given deterministic function f , the
process ξ(t) =

∫ t

0 f(u)dw(u) is a Gaussian process satisfying conditions

E[ξ(t)] = 0, Cov[ξ(t), ξ(t + s)] =
∫ t

0

f2(u)du, s > 0,

see, for example, Gardiner (1997). The solution of system (4) is given by

y1(t) = η1(t) +
1
D

∫ t

0

η1(t−u) σ1(u)dw1(u), (5)

y2(t) = η2(t) +
1
D

∫ t

0

η2(t− u)σ1(u)dw1(u) +
∫ t

0

e−θ2(t−u) σ2(u)dw2(u),

with the functions ηi(t) defined in (2). Denote S̃(t, t+s) = Cov[y2(t), y2(t+s)].
Using properties of Ito’s integral and independence of w1(t) and w2(t), it is
straightforward to show that E[y1(t)] = η1(t), E[y2(t)] = η2(t), and

S̃(t, t + s) =
θ2
1

(θ2 − θ1)2

∫ t

0

σ2
1(u)du

[
e−θ1se2θ1(u−t) + e−θ2se2θ2(u−t) −

− (e−θ1s + e−θ2s
)
e(θ1+θ2)(u−t)

]
+ e−θ2(2t+s)

∫ t

0

σ2
2(s)e

2θ2u du, s > 0. (6)

If σi(t) = σie
−vit , then the integrals in (6) can be evaluated explicitly. For

example, if v1 �= θj , j = 1, 2; v2 �= θ2, and v1 �= (θ1 + θ2)/2, then

S̃(t, t+ s) =
θ2
1σ

2
1

(θ1 − v1)2

[
e−θ1s e−2v1t − e−2θ1t

2(θ1 − v1)
+ e−θ2s e−2v1t − e−2θ2t

2(θ2 − v1)

− (e−θ1s + e−θ2s
) e−2v1t − e−(θ1+θ2)t

θ1 + θ2 − 2v1

]
+ σ2

2 e−θ2s e
−2v2t − e−2θ2t

2(θ2 − v2)
. (7)

When vi > 0, then Var[y2(t)] → 0 as t → ∞, and S̃(t, t + s) → 0 as s → ∞
for any fixed t > 0. However, if at least one vi = 0, then it follows from
(6) that Var[y2(t)] → v∗ > 0, even though E[y2(t)] → 0 as t → ∞. This
seems counterintuitive from physiological considerations, since in this case the
trajectories of the process y2(t) become negative with positive probability.

2.3 Three sources of variability

Let t1, . . . , tk be a sequence of k sampling times and S̃ = {S̃j1j2} ={
S̃(tj1, tj2), j1, j2 = 1, . . . , k

}
. The traditional sources of variability include

(a) additive measurement errors at times tj , e.g. independent εj ∼ N(0, σ2
obs),

so that measurements Z(tj) satisfy Z(tj) = y2(tj)/V + εj , and
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(b) population variability, e.g. γi ∼ N(γ0,Λ), with γ defined in Section 2.1.
If one takes into account these two sources in addition to the intrinsic vari-
ability and assumes that the variance σi(t) is rather small, then the first-
order approximation techniques lead to the following formula for the variance-
covariance matrix of the process {Z(t), t = t1, . . . , tk}, cf. Gagnon and Leonov
(2005):

S ≈ S̃/V 2 + σ2
obsIk + G Λ GT , (8)

where Ik is a (k× k) identity matrix; G is the (k×mγ) matrix of the partial
derivatives of the function g(t,γ) = η2(t)/V with respect to the parameters
γl, where mγ = dim(γ) and G =

{
Gjl =

[
∂g(tj,γ0)/∂γl

]}
, j = 1, . . . , k; l =

1, . . . ,mγ .

3 Optimal designs

Optimal experimental design techniques were exploited in a number of recent
publications to select optimal sampling schemes for population compartmental
models described by ODE; see Fedorov et al (2002), Gagnon and Leonov
(2005), Retout and Mentré (2003). The key for constructing optimal schemes is
to derive the information matrix μ(x,ϑ) of a single multidimensional “point”
x for the observed (k × 1)-vector of responses Z:

E[Z|x] = f(x,ϑ) = [f1(x,ϑ), . . . , fk(x,ϑ)]T , Var[Z|x] = S(x,ϑ),

where ϑ includes all estimated parameters, m = dim(ϑ) ≥ mγ , and x =
(t1, t2, . . . , tk) is a (k × 1) vector of sampling times. In the context of this
paper, in general, ϑ = (γ; σ1, σ2, v1, v2; σobs,Λ)T .

When the vector Z is normally distributed, then μ(x,ϑ) can be calculated
explicitly; see Magnus and Neudecker (1988), Ch. 6, or Fedorov et al (2002):

μαβ(x,ϑ)|mα,β=1 =
∂f
∂ϑα

S−1 ∂f
∂ϑβ

+
1
2

tr
[
S−1 ∂S

∂ϑα
S−1 ∂S

∂ϑβ

]
, (9)

where S = S(x,ϑ) is a (k × k) variance-covariance matrix introduced in (8).
Then the construction of optimal designs becomes straightforward once the
design region X , or the set of admissible sampling sequences x, is defined.

If ni patients are assigned to sequence xi and
∑

i ni = N , one can define
a design ξN = {(xi, ni),

∑
i ni = N, xi ∈ X} together with the information

matrix MN (ϑ) =
∑

i niμ(x,ϑ), and a normalized design ξ with the normal-
ized information matrix M(ξ,ϑ) (information per observation)

ξ = {(xi, wi), wi = ni/N, xi ∈ X}, M(ξ,ϑ) =
∑

i

wiμ(xi,ϑ). (10)

In convex design theory weights wi vary continuously, and various criteria
depending on the normalized matrix M(ξ,ϑ) are optimized; in particular
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the D-criterion Ψ = log
∣∣M−1(ξ,ϑ)

∣∣. For nonlinear models, the information
matrix μ(x,ϑ) depends on the values of the parameters ϑ, which leads to the
concept of locally optimal designs; see Atkinson and Donev (1992), Fedorov
and P. (1997).

An alternative normalization of the information matrix MN (ϑ) is possible
if costs are taken into account. If c(xi) is a cost of taking measurements at the
sequence xi and C is the total cost allowed, thereby imposing the constraint∑

i c(xi) ≤ C, then the information matrix may be normalized by the total
cost (information per unit cost),

MC(ξ,ϑ) = MN (ϑ)/C =
∑

i

wiμ̃(xi,ϑ), (11)

with wi = nic(xi)/C, μ̃(x,ϑ) = μ(x,ϑ)/c(x), and optimal cost-based de-
signs may be constructed; see Mentré et al (1997), Fedorov and Leonov (2005).

Sampling times. Traditionally in PK studies more samples are taken imme-
diately after administering a drug and then samples become more sparse after
the anticipated maximum of the time-concentration curve. In this paper we
consider a grid which possesses this property: take a uniform grid on the ver-
tical axis with respect to values of the response function and project points on
the response curve to the X-axis, to obtain sampling times. More precisely, let
T be the right end of the time interval. Divide the interval [0,maxt∈[0,T ] η2(t)]
into p equal parts which generates sampling sequences x2p with 2p sampling
times. For the final sampling time, take t2p = T ; see Fig. 2, top panel. The
construction of such a grid requires preliminary estimates of parameters θ1
and θ2. However, this is also true when using traditional sampling schemes;
for details, see Fedorov and Leonov (2006). For all examples in this section,
θ1 = 2, θ2 = 1, V = 1, D = 1, and v1 = v2 = 0.5 in (7) for all SDE examples.

3.1 Saturation effect for SDE

When σ2
obs is small enough, then it may be expected that the correlation

between measurements Z(t) and Z(t′) is substantial for small (t − t′). In
this subsection we compare information matrices generated by ODE (1) and
SDE (4) with σ1 = σ2 = 0.4 in (7). For a meaningful comparison, we con-
sider σ2

1 , σ
2
2 , v1, v2, σ

2
obs and Λ as given constants, so that, in calculating the

information matrix in (9), derivatives are not taken with respect to those
parameters. Thus, here the number of unknown parameters is m = 3 and
ϑ = (θ1, θ2, V ).

The following information matrices were calculated for sampling sequences
x2p: (1) μ1 generated by ODE with σobs = 0.1 and no population variability,
i.e. σ1 = σ2 = 0, Λ = 0; (2) μ2 generated by SDE with no measurement
errors and no population variability, i.e. σobs = 0, Λ = 0; (3) μ3 generated by
SDE with σobs = 0.1 and no population variability, Λ = 0; (4) μ4 generated
by SDE with σobs = 0.1 and Λ = diag(0.25, 0.25, 0.25). Fig. 1 presents values
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Fig. 1. Function |μs(x2p, ϑ)|1/m; σobs = 0.1 for μ1,3,4 and σobs = 0 for μ2

of |μs(x2p,ϑ)|1/3 , s = 1, 2, 3, 4, p ∈ [3, 15]. While the dashed line correspond-
ing to μ1 increases as a linear function of p, the solid line corresponding to
μ2 increases with p much more slowly. This effect may be explained by the
strong correlation in the stochastic system which reduces the need for taking
extra observations. When the observational error and population variability
are added to SDE, then the information “amount” goes down; see dotted and
dashed-dotted curves corresponding to μ3 and μ4, respectively.

3.2 Examples of optimal designs

To illustrate the performance of the first-order optimization algorithm for
the standard approach as in (10), we selected p = 8, so that [t1, . . . , t16] =
[0.033, 0.069, 0.111, 0.158, 0.215, . . . 3.294, 5],; see Fig. 2, top panel, with
a log-scale on the X-axis. For the design region, we take all combinations of
r ≤ 7 sampling times from the 16-time sequence {t1, . . . , t16}; see Gagnon
and Leonov (2005) for more details on such selections. In this subsection
Λ = diag(0.25, 0.25, 0.25) and v1 = v2 = 0.5 are considered as given constants,
so that m = 6 and ϑ = (θ1, θ2, V ; σ2

1 , σ
2
2 ; σ2

obs).
When σ1 = σ2 = 0.2, σobs = 0.3, then the locally D-optimal design is

ξ1 = {x11 = (t4−6,9−10,13−14), w11 = 0.74,x12 = (t5−6,9−10,13−15), w12 = 0.26}
(see Fig. 2, bottom panel, top design). Note that sampling times are clustered
in optimal sequences which may be explained by a relatively small correlation
of observations when the ratio σobs/σi is moderate. The three squares on the
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Fig. 2. Top panel: sampling times generated by uniform grid on the Y -axis. Bottom
panel: optimal designs, up to 7-sample sequences allowed, σ1 = σ2 = 0.2. Design ξ1:
σobs/σi = 1.5. Design ξ2: σobs/σi = 0.05. Design ξ3: σobs/σi = 0.05, cost-based

X-axis in the top panel correspond to support points xi of the D-optimal
design for the 3-parameter fixed effects model g(t,γ) = η2(t)/V , when the
design region consists of 16 single points {t1, t2, . . . , t16}. Note that sampling
times from sequences x11 and x12 “surround” points xi, i = 1, 2, 3.

As the ratio σobs/σi decreases, so does the correlation between observa-
tions, and clusters of sampling times break down. When σobs = 0.01, then

ξ2 = {x21 = (t1−3,7,10,15,16), w21 = 0.73,x22 = (t1−2,6,9,12,15,16), w12 = 0.27};
see Fig. 2, bottom panel, middle design.

Cost-driven designs. As demonstrated in our previous work for ODE, once
costs are taken into account as in (11), then sampling schemes with smaller
numbers of samples may outperform more “dense” schemes; for details, see
Gagnon and Leonov (2005), Fedorov and Leonov (2005). In this subsection,
the cost function is selected as c(xk) = cv + csk, where cv is the cost of a
patient’s enrolment and cs is the cost of analyzing a sample. When σ1 =
σ2 = 0.2, σobs = 0.01, cv = 1, cs = 2, the cost-based D-optimal design is
supported on two sequences, one with 4 and another with 6 sampling times:

ξ3 = {x21 = (t5,10,15,16), w31 = 0.4,x32 = (t1−2,6,10,15,16), w32 = 0.6};
see Fig. 2, bottom panel/design: though up to 7 samples were allowed, costs
constraints led to the selection of sequences with smaller numbers of samples.
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4 Discussion

The stochastic system (4) provides an example where the covariance function
S̃ can be written in a closed form, which allows us to construct optimal designs
using the resulting explicit expression for S̃. However, even when σi(t) → 0
in (4) as t → ∞, the trajectories y2(t) may become negative with positive
probability which cannot happen with drug dose levels. Therefore it would
be desirable to consider stochastic models with positive solutions yi(t), for
example replacing the noise terms σidwi(t) on the right-hand side of (4) with
σiyi(t)dwi(t), i.e. making them proportional to the signal. Unfortunately for
this case we were unable to derive the covariance function S̃ in a closed form.
Resorting to numerical methods is a potential solution for such cases.

We remark that for multicompartmental models one may use the matrix
representation of vector SDE: dY(t) = ΘY(t)dt+BdW(t), Y(t) = Y0, see
Gardiner (1997), for which E[Y(t)] = eΘtY0 , and

Cov[Y(t),Y(t + s)] = eΘt Y0YT
0 eΘt +

∫ t

0

eΘ(t−u)BBT eΘ(t+s−u)du .

In conclusion, we emphasize that all three sources of variability should
be considered in stochastic PK models: within-patient, between-patient, and
observational errors. We recommend cost-driven designs which allow for a
meaningful comparison of sampling schemes with unequal numbers of samples.
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Retout S, Mentré F (2003) Further developments of the Fisher information matrix in
nonlinear mixed effects models with evaluation in population pharmacokinetics.
J Biopharm Stat 13:209–227



Comparisons of Heterogeneity: a
Nonparametric Test for the Multisample Case

Rosa Arboretti Giancristofaro1, Stefano Bonnini2, and Fortunato Pesarin3

1 Department of Mathematics, University of Ferrara, Via Macchiavelli, 35, 44100
Ferrara, Italy. rosa.arboretti@unife.it

2 Center for Modelling, Computing and Statistics, University of Ferrara, Via
Macchiavelli, 35, 44100 Ferrara, Italy. bnnsfn@unife.it

3 Department of Statistical Sciences, University of Padova, Via C. Battisti,
241-243, 35121 Padova, Italy. fortunato.pesarin@unipd.it

Summary. In several scientific disciplines it is often of interest to compare the
concentration of the distribution of a categorical variable between two or more pop-
ulations. The aim is to establish if the heterogeneities of the distributions are equal
or not. We propose a nonparametric solution based on a permutation test. The
main properties of the test and a Monte Carlo simulation in order to evaluate its
behaviour will be discussed.

Key words: permutation tests, heterogeneity, categorical variables

1 Introduction

The concept of heterogeneity is mostly used in descriptive statistics and is
closely linked to the concept of homogeneity. Homogeneity normally means
the disposition of a statistical variable X to occur in the same category Ai,
1 ≤ i ≤ k,1 < k < ∞. A set of statistical units is therefore homogeneous
if all units that make it up are characterized by the same category. If this
does not occur, that is if at least two categories in the set of statistical units
are found, then we have heterogeneity. Thus heretogeneity is indicated by
the absence of homogeneity. In other words heterogeneity is the dispersion
of a categorical variable. Therefore the degree of heterogeneity measures the
uniformity in distribution of cases among the available categories of a vari-
able, i.e. the opposite tendency to that of concentration of frequencies among
categories. The degree of heterogeneity depends on the number of categories
observed as well as on their associated frequencies. In fact heterogeneity in-
creases both with the number of categories and with the uniformity in the
distribution of cases across categories. In particular heterogeneity is at a min-
imum if the distribution of the observed variable is degenerate, i.e. it assigns
a single category with a relative frequency equal to 1 and all the others with a
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frequency equal to 0. On the other hand heterogeneity is at a maximum if the
variable is equally distributed across all categories. Consequently an index of
the degree of heterogeneity of the observed phenomenon must have the fol-
lowing characteristics: 1) To assume a minimum value when the phenomenon
under study is manifested with a single category, i.e. in the presence of max-
imum homogeneity; 2) To assume increasingly greater values the more one
approaches equidistribution; 3) To assume a maximum value in the presence
of equidistribution. Heterogeneity can be associated not only with the con-
cept of concentration but also with that of diversity, that is the tendency of
a qualitative variable to assume different modalities. It is directly associated
with the concept of uncertainty and that of information because in the case of
minimum heterogeneity the uncertainty of a decision is also at a minimum and
the information derivable from a single observation is at a maximum. In the
opposite case of maximum heterogeneity one has maximum uncertainty and
minimum information derivable from a single unit. Starting from this notion,
various indicators were proposed of which only the most commonly used will
be mentioned.

2 Permutation tests for heterogeneity: two-sample case

Consider the inferential problem which consists of testing the hypothesis that
the heterogeneity of one population is greater than that of another. From
a formal point of view, given two populations X1 and X2, if we denote by
Het(Xj) the degree of heterogeneity of the population Xj , (j = 1, 2), the
hypotheses can be expressed as follows

H0 : Het(X1) = Het(X2) against H1 : Het(X1) > Het(X2).

We denote by pi, i = 1, 2, ...k, the parameters of the underlying distribu-
tion that is pi = Pr{X ∈ Ai}. We take into consideration the indices of Gini,
G = Σipi(1 − pi), of Shannon, S = −Σipilog(pi) and the index of Rényi,
Rα = 1/(1−α)log(Σip

α
i ) for α = 3 and for α → ∞, i.e., R3 = −1/2log(Σip

3
i )

and R∞ = −log[supi(pi)].The choice of R3 instead of R2 is dictated by the
fact that R2 is one-to-one related with G, and therefore the two indices im-
ply the same inferential conclusions when using permutation tests. In other
words, the two indices are permutationally equivalent (Pesarin (2001)). With
p(i), i = 1, 2, ..., k, we denote the parameters pi arranged in non-increasing
order: p(1) ≥ p(2) ≥ ... ≥ p(k). The four indices G, S, R3 and R∞ are order
invariant, i.e. their value do not change if they are calculated with ordered pa-
rameters p(i) instead of with parameters pi. If we denote by pj(i), i = 1, 2, ..., k,
the ordered probabilities for population j, j = 1, 2, the fact that the indices of
heterogeneity are order invariant allows us to express heterogeneity through
ordered parameters: two populations such that {p1(i) = p2(i), i = 1, 2, ..., k},
i.e. with the same ordered distribution, are equally heterogeneous. Moreover, if
{p1(i) = p2(i), i = 1, 2, ..., k} the data of the two samples are exchangeable and



Comparisons of Heterogeneity: a Nonparametric Test 19

so the permutation testing principle applies. In addition, if Pj(i) = Σs≤ipj(s))
are the cumulative probabilities for population j referred to the ordered pa-
rameters, the null hypothesis of our problem is equivalent to:

H0 : P1(i) = P2(i), i = 1, 2, ..., k.

Viceversa, considering the link between heterogeneity and the concentra-
tion of probabilities, we can use the dominance criterion proposed by Lorenz
to define the case of greater heterogeneity of population X1 with respect to
population X2 (Lorenz (1905)). Instead of using Lorenz’s curve to measure
concentration we can similarly use one of the indices described below. For ex-
ample the index of Gini measures the deviation of the Lorenz curve from the
diagonal representing the ideal case of homogeneity. The definition of the prob-
lem by means of cumulative probabilities makes it very similar to the problem
of stochastic dominance for ordered categorical variables, with the peculiarity
that the order is determined according to the values of the parameters pi and
not according to the categories the variable X can assume. Therefore, our
problem can be referred to as one of dominance in heterogeneity. We may ob-
serve that X in problems of heterogeneity can be a nominal variable because
heterogeneity is a property that concerns probabilities and does not involve
the categories Ai of X, whereas the problems of stochastic dominance assume
that classes A1, A2, ..., Ak are ordered. For problems of stochastic dominance
the literature offers quite a long list of exact and approximate solutions. For
the univariate case most of the proposed solutions are based on the restricted
maximum likelihood ratio test (Cohen et al (2000), Silvapulle and Sen (2005),
Wang (1996)). In general these solutions are criticized because the distribu-
tions under the null and alternative hypotheses are asymptotically mixtures of
chi-squared variables with weights essentially dependent on the unknown dis-
tribution P of the population. Nonparametric proposals are those of Troendle
(2002), Brunner and Munzel (2000), Pesarin (2001, 1994), and Pesarin and
Salmaso (2006). The latter, based on the nonparametric combination of de-
pendent permutation tests (NPC), are exact, unbiased, and consistent tests.
As far as we are concerned, when considering the difference in heterogeneity,
it is reasonable to use as test statistics the difference of sampling indices. If
we indicate a generic index of heterogeneity with I, the test statistic useful
for the comparison of 2 samples is

TI = I1 − I2,

where Ij indicates the sampling value of the index calculated for sample j,
where j = 1, 2. Clearly the tests will be significant for large values, i.e. large
values observed in the test statistic can lead to rejection of the null hypothesis
in favour of the alternative. In order to apply the tests according to the usual
approach, it is necessary to know their sampling distributions subject to a
proper estimate under H0 of the vector of the marginal ordered probabilities
(pj(1), pj(2), ..., pj(k))′, because the vectors of the probabilities (pj1, pj2, ..., pjk)′

as well as those of the ordered probabilities ((pj(1), pj(2), ..., pj(k))′, j = 1, 2,
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are unknown. In reality this question is not easy to solve exactly, with perhaps
the exception where k = 2. For this purpose, instead of the true ordering of the
unknown parameters {pj(1), pj(2), ..., pj(k); j = 1, 2}, we utilize their estimates.
To this end we observe the contingency table where fji is the relative frequence
for category Ai in the distribution of sample j so that

∑k
i=1 fji = 1 and we

utilize an estimate based on ordered sampling frequencies fji = p̂ji i = 1, , k,
such that fj(1) ≥ fj(2) ≥ ... ≥ fj(k) , j=1,2 (data-driven ordering). Thus we
obtain the ordered table:

Table 1. Estimation of the ordered probabilities by relative frequencies

Classes Sample sizes
Population (1) (2) ... (k)

X1 f1(1) f1(2) ... f1(k) n1

X2 f2(1) f2(2) ... f2(k) n2

f·(1) f·(2) ... f·(k) N

We note that the order is realized separately for each sample and as it is
based on relative frequencies rather than on classes, it could be that the i− th
column of table 1 refers to two diverse classes for the two samples. In other
words class (i) corresponds to the class whose observed relative frequency oc-
cupies the i− th position in the ordered sequence and can be different for the
two samples. Obviously the order imposed by the frequencies presents a ran-
dom component and may vary depending upon sampling variations. Therefore
under H0 data are not exactly exchangeable as would be the case if the true
order of population parameters were known and used. The exchangeability
property can only be obtained asymptotically. Therefore, permutation solu-
tions are approximate for finite sample sizes and exact only asymptotically.
Using the data in table 1, the observed value T o of the test statistic is calcu-
lated. For each permutation of the dataset one obtains a new permuted table
(as in table 2), with different values from those of the observed table but with
fixed marginal frequencies.

Table 2. Absolute frequencies after a permutation of data

Classes Sample sizes
Population (1) (2) ... (k)

X1 n∗
1(1) n∗

1(2) ... n∗
1(k) n1

X2 n∗
2(1) n∗

2(2) ... n∗
2(k) n2

n·(1) n·(2) ... n·(k) N

Using the data of the permutated table in the calculations of test statis-
tics, one obtains the permutation values T ∗. Calculating the values that can
be obtained making all the possible permutations, one obtains the permuta-
tion distribution of each test statistic. Alternatively it is possible to extract



Comparisons of Heterogeneity: a Nonparametric Test 21

from the set of all possible permutations a random sample, thus obtaining
conditional Monte Carlo estimates. In this way, for each of the four tests, it
is possible to calculate the p-value, that, if B is the number of considered
permutations, is given by

λ = �(T ∗ ≥ T o|X)/B,
where �(T ∗ ≥ T o|X) indicates the number of times permutation values are

not lower than the observed ones, conditionally on the dataset X = {Xji, i =
1, . . . , nj ; j = 1, 2}. Therefore, according to the usual decision rule, if the p-
value is less than or equal to a fixed significance level, the null hypothesis is
rejected in favour of the alternative; otherwise the null hypothesis cannot be
rejected.

3 The multisample case

In several scientific disciplines researchers might be interested in comparing
more than two populations X1, X2, . . . , XC with C > 2. For example, the
hypothesis could be that some populations of individuals resident in a certain
area present a diverse genetic heterogeneity or it could be of interest to test
the hypothesis that the heterogeneity of the professional opportunities offered
by C distinct doctorate courses is not the same. In these cases the hypotheses
of the problem are:

H0 : Het(X1) = Het(X2) = . . . = Het(XC) and H1 : H0 is not true.
Also for this problem the proposed solution implies the construction of

the ordered C × k table, with respect to the observed relative frequencies (C
empirical orderings) and so also in this case the solution is approximate. If we
indicate a generic index of heterogeneity with I, the test statistic useful for
the comparison of C samples is

T 2
I =

C∑
j=1

(Ij − Ī)2nj ,

where Ij denotes the sampling value of the index calculated for sample j,
where j = 1, 2, ..., C; nj denotes j − th sample-size; Ī denotes the sampling
value of the index calculated in the pooled sample sized N = n1+n2+ ...+nC .
Large values of this test statistic are significant. Once the observed value of
the test statistic is calculated , we perform B permutations of the dataset,
exchanging the units among the C samples, obtaining for each permutation
a table of relative frequencies from which the permutation values of the tests
are calculated. These values allow us to calculate the p-value of the test as in
section 2. In some cases it could be of interest to test for a given predefined
ordering of the heterogeneity of the C populations. In this case the alternative
hypothesis can be expressed as:

H1 : Het(X1) ≥ Het(X2) ≥ . . . ≥ Het(XC)
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where at least one inequality is strict. The latter is configured as a problem
of monotonic stochastic ordering whose theory and testing methods in the field
of the permutation approach are extensively dealt with in Pesarin (2001).

4 Simulation study

In order to assess the properties of the test we considered a simulation study
in which data are generated according to the following model:

X ∼ 1 + Int[K × U δ]

where δ ∈ �, U ∼ U(0, 1), K is a positive integer, and Int[·] denotes the
integer part of [·]. The random variable X is therefore discrete and its domain
consists of the first K positive integers. The situation of maximum heterogene-
ity can be simulated making δ = 1, because in this case X ∼ U(1, 2, ...,K)
and fi = �(X = i)/n ∼= 1/K, where n is the sample size. Generating the
data as described, for different sample sizes, different values of the parame-
ters (δ1, δ2, δ3) (to simulate different degrees of heterogeneity respectively of
the populations X1, X2 and X3) and different values of the nominal signifi-
cance level, we calculated the rejection rates of the tests in order to evaluate
their degree of approximation to the nominal significance levels, as well as the
power. Table 3 reports the rejection rates of the tests under the null hypoth-
esis, for a discrete variable with K = 8 categories, and for different degrees of
heterogeneity represented by the values 1,2,3, respectively, of the parameters
δ1, δ2 and δ3 (1 = maximum heterogeneity). 1000 datasets were generated
each by 1000 Monte Carlo Conditional simulations in order to approximate
the related permutation distribution. In general the performances of the four
tests are very similar and power increases with an increase in homogeneity of
the distributions, i.e. for high values of the parameters δi. It is evident that
the tests are substantially well approximated even if the test based on R∞
violates the nominal alpha value more frequently than its competitors.

Table 4 reports the rejection rates under the alternative hypothesis. Ob-
viously the power of the tests increases with increases in the difference of the
values of the parameters δi, i.e. of the heterogeneities of the samples, and
with increases in sample sizes (see table 4). Comparing the performances of
the four tests it emerges that if the differences of the values of the parameters
are large then test TR∞ seems slightly better than the others, whereas when
the differences are not large, test TR3 seems better.

5 Conclusions

This work consists of an inferential procedure for a solution of the problem
of hypothesis testing, in which the objective is that of comparing the hetero-
geneity of two or more populations on the basis of sampling data, i.e. to test
the hypothesis that the heterogeneity of the populations are different. Such a
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Table 3. Rejection rates of nonparametric tests under H0 and K = 8

δ1 δ2 δ3 n1 n2 n3 α Test
0.01 0.05 0.10

1 1 1 20 20 20 0.000 0.000 0.004 TS

0.000 0.000 0.002 TG

0.000 0.000 0.000 TR3

0.000 0.002 0.006 TR∞
30 20 10 0.000 0.000 0.006 TS

0.000 0.000 0.006 TG

0.000 0.000 0.002 TR3

0.000 0.000 0.006 TR∞
2 2 2 20 20 20 0.010 0.018 0.044 TS

0.008 0.026 0.052 TG

0.014 0.042 0.086 TR3

0.018 0.058 0.110 TR∞
30 20 10 0.010 0.028 0.072 TS

0.008 0.030 0.070 TG

0.010 0.050 0.090 TR3

0.010 0.056 0.114 TR∞
3 3 3 20 20 20 0.020 0.060 0.098 TS

0.020 0.058 0.096 TG

0.020 0.074 0.120 TR3

0.008 0.064 0.108 TR∞
30 20 10 0.018 0.054 0.090 TS

0.016 0.052 0.092 TG

0.020 0.060 0.116 TR3

0.018 0.054 0.090 TR∞

proposal consists of finding appropriate test statistics and a general methodol-
ogy of hypothesis testing based on the ordering of probabilites as well as on a
methodological solution inspired by that proposed in Pesarin (2001) for prob-
lems of stochastic dominance. The test statistic consists of the comparison of
the sampling indices of heterogeneity and it can vary according to the index
of heterogeneity considered. The test statistics taken into consideration are
those based on Shannon’s index of entropy, on Gini’s index of heterogeneity
and on Rényi’s indices of entropy both of order 3 and of infinite order. The
simulation study allowed for the assessment of the degree of approximation
to nominal significance levels and the power behaviour of the proposed non
parametric tests of heterogeneity. The rejection rates increase with increases
in the homogeneity of the distributions. When the differences in the values
of the parameters are large, test TR∞ seems better than the others even if it
violates the nominal significance level more frequently than its competitors,
whereas when the differences are not large test TR3 seems better. The rejec-
tion rates under the alternative hypothesis are in any case satisfactory for all
considered tests.
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Table 4. Power of nonparametric tests (K = 8)

δ1 δ2 δ3 n1 n2 n3 α Test
0.01 0.05 0.10

2 2 3 20 20 20 0.032 0.114 0.186 TS

0.032 0.116 0.184 TG

0.052 0.152 0.232 TR3

0.050 0.132 0.216 TR∞
40 30 20 0.090 0.240 0.336 TS

0.090 0.240 0.334 TG

0.104 0.238 0.352 TR3

0.074 0.174 0.304 TR∞
1 2 3 20 20 20 0.104 0.218 0.336 TS

0.104 0.222 0.334 TG

0.160 0.304 0.428 TR3

0.204 0.372 0.472 TR∞
40 30 20 0.312 0.552 0.696 TS

0.316 0.550 0.694 TG

0.394 0.590 0.702 TR3

0.458 0.638 0.712 TR∞
90 60 20 0.644 0.858 0.932 TS

0.642 0.856 0.930 TG

0.774 0.906 0.940 TR3

0.798 0.900 0.928 TR∞
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Summary. In I × J balanced factorial designs units are not exchangeable between
blocks since their expected values depend on received treatments. It does not seem
possible, therefore, to obtain exact and separate tests to respectively assess main
factor and interaction effects. Parametric two-way ANOVA F tests are exact tests
only under assumption of normal homoschedastic errors, but they are also posi-
tively correlated. Instead, it is possible to obtain exact, separate and uncorrelated
permutation tests at least for main factors by introducing a restricted kind of per-
mutations, named synchronized permutations. Since these tests are conditional on
observed data, they are distribution-free and may be shown to be almost as powerful
as their parametric counterpart under normal errors. We obtain the expression of
the correlation between the main factor ANOVA tests as a function of the number
of replicates in each block, the number of main factor levels and their noncentrality
parameters.

Key words: synchronized permutations, noncentral F distribution

1 Introduction to synchronized permutations

It is well known from the literature that the parametric F test is not robust
when applied to heavy-tailed or asymmetric distributions (see, for instance,
Arnold (1948), Mardia (1970)). In these situations, nonparametric solutions
are to be preferred. In such a context, however, the problem of testing for
interaction (Mansouri and Chang (1995)) is considered too hard unless ranks
are assigned to residuals with respect to suitable estimates of effects, leading
to asymptotic solutions. As far as we know the only exact solution for fi-
nite sample sizes is that based on synchronized permutations (Pesarin (2001),
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Salmaso (2003)). In a I × J replicated factorial design, data are assumed to
follow the linear model:

yijk = μ+ αi + βj + γij + εijk

⎧⎨⎩
i = 1, . . . , I
j = 1, . . . , J
k = 1, . . . , n

(1)

where yijk are experimental responses, μ is the overall mean, αi, βj are
main factor effects, γij are interaction effects, εijk are exchangeable exper-
imental errors, with zero mean, from an unknown distribution Pε, and n is
the number of replicates in each cell. We also assume the side-conditions∑

i αi = 0,
∑

j βj = 0,
∑

i γij = 0 ∀ j, ∑j γij = 0 ∀ i. The hypotheses which
should be separately tested are H0A : αi = 0 ∀i against H1A : ∃ i : αi �= 0,
H0B : βj = 0 ∀j against H1B : ∃ j : βj �= 0 and H0AB : γij = 0 ∀i, j against
H1AB : ∃ i, j : γij �= 0. Since, due to other potentially active effects, the
observations from different cells may have different means, they are not ex-
changeable in each null hypothesis. Then, to perform nonparametric testing
on main factor effects, we need to introduce a restricted kind of randomiza-
tion. Suppose we want to test for H0A: the totals of blocks AiBj and AsBj

(j = 1, . . . , J), after exchanging ν∗is|j units between this pair of blocks, can
respectively be written as:

n∑
k

y∗ijk = ν∗is|j [μ+ αs + βj + γsj ] + (n− ν∗is|j) [μ+ αi + βj + γij ] +
n∑
k

ε∗ijk,

n∑
k

y∗sjk = ν∗is|j [μ+ αi + βj + γij ] + (n− ν∗is|j) [μ + αs + βj + γsj ] +
n∑
k

ε∗sjk.

Let us consider the structure of the difference of these totals, to compare αi

and αs at level j of factor B:

aT ∗
is|j =

∑
k

y∗ijk −
∑

k

y∗sjk = (n− 2ν∗is|j)[αi − αs + γij − γsj ] + ε∗is|j

where ”∗” denotes that we have randomly exchanged ν∗is|j units between two
cells, and ε∗is|j is a linear combination of corresponding permuted errors. Thus,
the sum over all columns:∑

j

aT ∗
is|j =

∑
j

(n− 2ν∗is|j)[αi − αs + γij − γsj ] +
∑

j

ε∗is|j , (2)

only depends on effects αi and αs and on exchangeable errors if and only
if ν∗is|j = ν∗is, ∀j (synchronized permutations with respect to the levels of
factor B), because of the side-conditions on interaction effects. Otherwise, if
νis|j1 �= νis|j2 for some j1 �= j2, the factor A effects would be confounded with
the interaction effects in (2). Therefore, as H0A depends on α1, α2, . . . , αI , by
synchronizing permutations also with respect to row indexes i and s, i.e. by
setting ν∗is = ν∗, the test statistic:
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aT ∗
A =

∑
i<s

[
∑

j

aT ∗
is|j ]

2, (3)

only depends on effects of factor A and on exchangeable errors, hence it is a
separate exact test on factor A. In a similar way, define bT ∗

jh|i =
∑

k y
∗
ijk −∑

k y
∗
ihk the intermediate statistic for comparing factor B effects βj and βh at

level i of factor A. Then the test statistic:

bT ∗
B =

∑
j<h

[
∑

i

bT ∗
jh|i]

2, (4)

only depends on effects of factor B and on exchangeable errors, hence it is a
separate exact test on factor B. We can also define two test statistics for the
interaction:

aT ∗
AB =

∑
i<s

∑
j<h

[aT ∗
is|j −aT ∗

is|h]2 and bT ∗
AB =

∑
j<h

∑
i<s

[bT ∗
jh|i−bT

∗
jh|s]

2. (5)

Note that aT ∗
AB is obtained from synchronized permutations involving the row

factor A, whereas bT ∗
AB is obtained from permutations involving the column

factor B. Each statistic for interaction only depends on interaction effects
and on exchangeable errors; moreover, and so they are jointly and equally
informative. Thus, their linear combination T ∗∗

AB = aT ∗
AB + bT ∗

AB is a separate
exact test for interaction.

2 Constrained and unconstrained synchronized
permutations

The basic concept of synchronized permutations is exchanging the same num-
ber 0 ≤ ν∗ ≤ n of units between each pair of blocks that are considered.
Note that ν∗ is itself a random variable, which identifies distinct sets of syn-
chronized permutations. Of course, different synchronized permutations can
lead to the same ν∗. For a given ν∗, there are two ways to obtain a random
synchronized permutation: exchanging units in the same original positions
in each block (Constrained Synchronized Permutations, CSPs) or exchanging
units without considering their original position (Unconstrained Synchronized
Permutations, USPs). It is easy to see that the total number of CSPs only
depends on which exchanges have been made in the first pair of blocks AiB1

and AsB1. There are CCSP =
(
2n
n

)
possible ways to exchange units in the

first pair of blocks, therefore CCSP is the cardinality of the CSPs. Another
point to take into account is the cardinality of distinct values of the permuta-
tion test statistic (e.g., the number of distinct values of aT ∗

As if we are testing
for factor A): the squaring operation in formulas (3), (4) and (5) produces a
symmetry, i.e., there are two distinct synchronized permutations generating
the same value of the test statistic, therefore the cardinality of the support
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of the test statistic is CCSP /2. Adopting CSPs, the exact null distribution of
the test statistic can be obtained by considering all possible combinations of
2n units in groups of n (e.g. by using the R library combinat).
Adopting USPs, units being exchanged in each pair of blocks may differ from
the original positions of units exchanged in the first pair of blocks. The only
requirement is that the number of exchanges is the same. Hence, for any pair
of levels of factor A and a given number of exchanges ν∗, there are

(
n
ν∗
)2J

possible ways to choose the same number of units to be exchanged in the 2J
cells. Since the number of possible pairs of levels of factor A is I(I − 1)/2, the
total number of USPs when testing for factor A is:

n∑
x=0

(
n

x

)J×I(I−1)

Things get harder if we wish to calculate the total number of distinct values
of the test statistic (e.g. aT ∗

A). The symmetry in the test statistic plays a
different role when n is odd or even. Let us consider the case when n is odd
first: it is easy to see that we can obtain the same values of aT ∗

A when ν∗ = x
or ν∗ = n− x, 0 ≤ x ≤ (n− 1)/2. Hence, the cardinality of distinct values of
aT ∗

A when n is odd is:

Co
USP =

(n−1)/2∑
x=0

(
n

x

)J×I(I−1)

.

By first choosing 0 ≤ ν∗ ≤ (n− 1)/2, randonly shuffling the units within each
block and by exchanging the first ν∗ units within each pair of blocks, we can
obtain a random USP. The probability of making ν∗ exchanges is:

P [N = ν∗] =

(
n
ν∗
)J×I(I−1)∑(n−1)/2

x=0

(
n
x

)J×I(I−1)
. (6)

A two-step algorithm can guarantee the values of the test statistic to be
equally likely by first choosing the number of exchanges to be made in
accordance with (6), then shuffling the units within each cell and finally
exchanging the first ν∗ units between each pair of cells. The shuffling in-
side each block guarantees the values of aT ∗

A given ν∗ to be equally likely:
P [aT ∗

A = at∗A|ν∗] =
(

n
ν∗
)−J×I(I−1). When n is even, it can be demonstrated

that the cardinality of the support of aT ∗
A is:

Ce
USP =

n/2−1∑
ν=0

(
n

ν

)J×I(I−1)

+

[(
n

n/2

)2J

/2

]I(I−1)/2

, (7)

and we can apply the same strategy as before by choosing the number of
exchanges to be made in accordance with (7). The cardinality of distinct values
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of aT ∗
A rapidly increases with n, I and J , so we recommend to use USPs when

few replicates are available (say n ≤ 3). If the number of replicates is greater
than 3, one can easily apply the CSPs. A different choice between CSPs and
USPs affects the minimum achievable significance level, which is equal to 1/C,
and C is the cardinality of the support of the test statistic.

3 Correlation between test statistics

It is known that the two-way ANOVA test statistics are ratios between in-
dependent quadratic forms. In particular, the main factor test statistics are
defined as:

FA =
SSA/(I − 1)
SSε/IJ(n− 1)

and FB =
SSB/(J − 1)
SSε/IJ(n− 1)

,

where SSA/(I − 1) and SSB/(J − 1) are unbiased estimates of σ2 only if the
related null hypothesis is true, whereas SSε/IJ(n− 1) is always an unbiased
estimate of σ2. Since both statistics have the same denominator, they are
positively correlated. In this section we obtain the correlation between FA

and FB as a function of I, J, n, and noncentrality parameters α and β. We
want to evaluate:

ρ(FA, FB) =
COV (FA, FB)√

V ar(FA)
√
V ar(FB)

,

where FA and FB are noncentral F if the corresponding alternative is true.
Given that SSA, SSB and SSε are independent χ2 variables, we have:

COV [FA, FB ] = E[FA · FB] − E[FA]E[FB ]
= E[SSA/(I − 1)]E[SSB/(J − 1)]E[I2J2(n− 1)2SS−2

ε ] +

− E[SSA/(I − 1)]E[SSB/(J − 1)]E[IJ(n− 1)SS−1
ε ]

2

= E[MSA]E[MSB]V ar[IJ(n− 1)SS−1
ε ] > 0,

even in the null hypothesis H0A ∩H0B. Being a χ2 random variable, SSε be-
longs to the Gamma family, so it is easy to obtain V ar[SS−1

ε ]. More precisely,
SSε ∼ Ga(ab(n− 1)/2, 1/2σ2), hence:

V ar[IJ(n− 1)SS−1
ε ] =

2I2J2(n− 1)2

[IJ(n− 1) − 2]2[IJ(n− 1) − 4]σ4

and:

V ar(FA) =
2I2J2(n− 1)2

(I − 1)2
× α2 + [(I − 1) + 2α][I − 1 + IJ(n− 1) − 2]

[IJ(n− 1) − 2]2[IJ(n− 1) − 4]

V ar(FB) =
2I2J2(n− 1)2

(J − 1)2
× β2 + [(J − 1) + 2β][J − 1 + IJ(n− 1) − 2]

[IJ(n− 1) − 2]2[IJ(n− 1) − 4]
.
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Hence:

ρ(FA, FB) =
E[MSA]E[MSB]V ar[IJ(n− 1)SS−1

ε ]

[V ar(FA)V ar(FB)]1/2

=
[(I − 1) + α][(J − 1) + β]√

σ̃2(FA)σ̃2(FB)
, (8)

where:

σ̃2(FA) = α2 + [(I − 1) + 2α][(I − 1) + ab(n− 1) − 2], α = Jn
∑

i

α2
i /σ

2;

σ̃2(FB) = β2 + [(J − 1) + 2β][(J − 1) + ab(n− 1) − 2], β = In
∑

j

β2
j /σ

2.

Let us consider the synchronized permutation test statistics for main factors
now. The tests on main factors are defined on different permutation spaces.
In particular, aT ∗

A is obtained by exchanging units between pairs of rows and
within columns, bT ∗

B is obtained by exchanging units between pairs of columns
and within rows. Hence, without loss of generality, consider the case when we
are testing for H0A : αi = 0∀i. This hypothesis allows us to exchange units
between rows and within columns. The test statistic aT ∗

A is a random variable
and its probability function P (aT ∗

A) is defined on the related support. Units
are exchanged within columns, so the total of each column is constant. Let
Y·j , j = 1, . . . , J be the total of column j. Then:∑

i

bT ∗
jh|i =

∑
i

[
∑

k

y∗ijk −
∑

k

y∗ihk] =
∑

i

∑
k

y∗ijk −
∑

i

∑
k

y∗ihk = Y·j − Y·h

hence:
bT ∗

B =
∑
j<h

[
∑

i

T ∗
jh|i]

2 ≡
∑
j<h

(Y·j − Y·h)2 = bTB

where bTB is the observed value of the test statistic for factor B. Since bT ∗
B is

constant, ρ(aT ∗
A,

bT ∗
B) = 0.

4 Power comparison

Table 1 reports a comprehensive power simulation comparison between CPS
and ANOVA test statistics. Four types of error distribution have been consid-
ered: the normal, the Gamma (with one and two degrees of freedom) repre-
senting asymmetric error distributions, and the student t3 representing heavy-
tailed errors. Nominal significance levels have been chosen to be as close as
possible to the usual ones (1%, 5% and 10%) from the achievable signifi-
cance levels: when n = 4 the nominal levels are 0.029, 0.058 and 0.114.
When n = 7, 10, the nominal levels are 0.016, 0.048 and 0.104. Recall that
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the achievable significance levels are multiple of 2/CCSP . Then, for each er-
ror distribution, the observed rejection rates are reported for main factors
and interaction at the correspondent nominal level. The effects of main fac-
tors/interaction were set in accordance to a 3× 2 full factorial design matrix.
The true sizes of the effects (whose label is ”T.S.”) are displayed in third
column, and were set equal to σ/2, 3σ/2, σ for respectively factor A, factor
B and interaction. The error variance σ2 is held fixed to one. Note how the
power of synchronized permutation tests is very close to that of the ANOVA
test for any considered distribution. As regards the interaction, we have ap-
plied the linear combination of the test statistics in (5). See Pesarin (2001)
for details on nonparametric combination. Figure 1 shows the relationship
between main factor test statistics when synchronized permutation (top) and
two-way ANOVA (bottom) tests are applied. Synchronized permutation tests
statistics are denoted with ”T.A” and ”T.B”, and their related p-values with
”pa” and ”pb”. Two-way ANOVA test statistics are denoted with ”F.A” and
”F.B”, and their related p-values with ”pfa” and ”pfb”. The four scatterplots
on the left-hand side are the results of 1000 independent sample generations
with normal error under H1A ∩H0B ∩H0AB in a 2× 2 design with n = 5. We
have set α1 = −α2 = 1.5σ and applied the CSPs. Note the discrete nature of
CSPs: while the points representing factor B p-values assume any value that
is a multiple of 1/126 in the interval [0,1], factor A p-values only assume the
values 1/126, 2/126 and 3/126.
The four scatterplots on the right-hand side are the results of 1000 indepen-
dent sample generations with normal error under H1A ∩ H1B ∩ H1AB in a
2 × 2 design with n = 5. We have set α1 = −α2 = β1 = −β2 = σ and
|γij | = 0.5σ, i, j = 1, 2. Here the correlation between F.A and F.B is ev-
ident, while the pairs (T.A, T.B) are still randomly spread. Synchronized
permutation tests are separate because they only depend on the effects of the
factor/interaction under testing. Moreover, they allow for separate inferences
because the tests are uncorrelated to each other.
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Table 1. Power simulation in a 3×2 design. Synchronized permutation and two-way
ANOVA tests.

Pε Norm Exp t3 Ga2

n Factor T.S. Constrained Synchronized Permutation Tests

A .5 .226 .353 .507 .309 .442 .579 .360 .516 .664 .278 .405 .548
4 B 1.5 .996 .999 1.00 .996 .998 1.00 .983 .992 .996 .992 .998 1.00

AB 1 .814 .906 .958 .857 .906 .960 .867 .907 .953 .850 .922 .964

A .5 .387 .606 .763 .439 .615 .734 .514 .685 .797 .426 .620 .741
7 B 1.5 1.00 1.00 1.00 .615 1.00 1.00 .997 .999 1.00 1.00 1.00 1.00

AB 1 .997 .998 1.00 .981 .992 .998 .974 .981 .994 .988 .997 1.00

A .5 .521 .691 .796 .523 .678 .794 .592 .746 .841 .482 .652 .792
10 B 1.5 1.00 1.00 1.00 1.00 1.00 1.00 .999 1.00 1.00 1.00 1.00 1.00

AB 1 1.00 1.00 1.00 .997 .998 1.00 .992 .993 .994 .999 1.00 1.00

n Factor T.S. Two-way ANOVA Tests

A .5 .244 .373 .516 .344 .455 .582 .401 .524 .650 .299 .409 .544
4 B 1.5 1.00 1.00 1.00 1.00 1.00 1.00 .994 .997 .997 1.00 1.00 1.00

AB 1 .871 .928 .961 .845 .914 .949 .882 .920 .951 .856 .919 .959

A .5 .431 .636 .763 .427 .613 .736 .517 .686 .783 .433 .614 .755
7 B 1.5 1.00 1.00 1.00 1.00 1.00 1.00 .958 .999 1.00 1.00 1.00 1.00

AB 1 .955 .997 1.00 .965 .992 .995 .974 .987 .993 .981 .994 1.00

A .5 .658 .803 .892 .663 .795 .877 .749 .847 .907 .637 .796 .880
10 B 1.5 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

AB 1 1.00 1.00 1.00 .995 .997 1.00 .987 .992 .993 .999 1.00 1.00
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Fig. 1. Test statistic and p-value scatterplots of main factors in synchronized per-
mutation and two-way ANOVA tests.
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Summary. Response-adaptive designs may be used in phase III clinical trials to
allocate a larger number of patients to the better treatment. Optimal response-
adaptive designs are used for the same purpose, but the design is derived from
some optimal points of view. The available optimal response-adaptive designs are
only for two treatment trials. In the present paper, we extend this idea and derive
some optimal response-adaptive designs for phase III clinical trials for more than
two treatments. In particular, we work on three treatments. The extension is not
trivial, as the designs for three treatments are often iterative, and they need specific
algorithms for computation. The proposed approaches are numerically illustrated.

Key words: ethics, minimization, objective function, sequential estimation, urn
models

1 Introduction

Response-adaptive designs are used in phase III clinical trials to achieve the
ethical goal of treating a larger number of patients by the better treatment
arm. Several such adaptive designs are available for binary treatment re-
sponses, e.g., the play-the-winner (PW) rule (Zelen (1969)), the randomied
play-the-winner (RPW) rule (Wei and Durham (1978)), the generalized Pòlya
urn design (GPU) (Wei (1979)), the success driven design (Durham et al
(1998)), the birth and death design (Ivanova et al (2000)), the drop-the-loser
(DL) (Ivanova (2003)). These are suggested primarily from intuition, and then
some theoretical properties are illustrated. It is important to note that such
designs allocate a larger proportion of patients to the better treatment. None
of these designs are suggested from an optimal point of view, yet some of
them are quite popular. In fact, almost all the real applications available in
the literature are based on the PW (Rout et al (1993)) and the RPW (Bartlett
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et al (1985), Tamura et al (1994), Biswas and Dewanji (2004)). Some of the
designs can also be easily extended to more than two treatments (e.g. GPU,
RPW, success driven design, birth and death, DL).

Recently, there has been interest in deriving optimal response-adaptive
designs for binary responses. Note that the Neyman allocation is an opti-
mal allocation which allocates in proportion to the standard deviations of
treatment responses. If nA and nB be the number of allocations to the two
competing treatments A and B, with nA + nB = n, and pk(= 1 − qk) is the
probability of success under treatment k, k = A,B, the Neyman allocation
proportion to treatment A is

πA =
√
pAqA√

pAqA +
√
pBqB

. (1)

This allocation (1) may not be ethical, but maximizes power (see Rosen-
berger and Lachin (2002), p. 197). With two treatments at hand, Rosenberger
et al (2001) extended the approach of Hayre (1979) and derived optimal
response-adaptive designs for binary responses by minimizing the expected
number of failures subject to a fixed variance of the estimated treatment dif-
ference. In their optimal design, Rosenberger et al (2001) minimized

qAnA + qBnB

subject to

V ar(p̂A − p̂B) =
pAqA

nA
+

pBqB

nB
= K, (2)

for a preassigned constant K. [Note that the Neyman allocation minimizes
nA + nB subject to (2).] Writing R = nA/nB, the optimal proportion for
treatment A, πA = R/(R+ 1), turns out to be

πA =
√
pA√

pA +
√
pB

. (3)

The design suggests sequential estimates of pA and pB based on the available
data, and a plug-in estimate of πA by which to allocate any entering patient
to treatment A with probability π̂A. Note that the urn designs like the RPW
or the DL has a limiting allocation of

πA =
1

qA

1
qA

+ 1
qB

. (4)

Note that any allocation design minimizes

nAΨA + nBΨB, (5)

subject to
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σ2
A

nA
+

σ2
B

nB
=

pAqA

nA
+

pBqB

nB
= K, (6)

where Ψk, k = A,B, is a function of pA and pB such that ΨA is decreasing
in pB (for fixed pA), or decreasing in pA (for fixed pB), and ΨA is positive. A
similar interpretation holds for ΨB (by interchanging the roles of A and B).
The minimization problem (5) subject to (6) is quite similar to the formulation
of Jennison and Turnbull (2000) (p. 328), which is for continuous treatment
responses, and ΨA and ΨB were functions of treatment differences. However,
we present this as a function of individual treatment parameters, which is
easy to extend to more than two treatments.

Now, based on this Ψ , the optimal allocation is

ρΨ =
√
ΨBσA√

ΨBσA +
√
ΨAσB

=
√
ΨB

√
pAqA√

ΨB
√
pAqA +

√
ΨA

√
pBqB

=

√
pAqA√
ΨA√

pAqA√
ΨA

+
√

pBqB√
ΨB

.

It is necessary to choose an appropriate ΨA and ΨB. This can be done in
several ways. The RPW or DL rule (4) considers

ΨA = pAq
3
A. (7)

The optimal rule (3) of Rosenberger et al (2001) considers

ΨA = qA. (8)

Note that the popular urn designs like the RPW and DL are easy to extend
to three or more treatments. Unfortunately the above optimal designs are not
so easy to extend to more than two treatments, and no optimal design is
available in the literature for more than two treatments and binary responses.
The present paper attempts to fill this gap.

2 Optimal design for three treatments

Here we extend the optimal designs of Rosenberger et al (2001) for more
than two treatments. But, as expected, the level of difficulty will increase
remarkably. In fact, the optimal design is obtained in an iterative way. For
simplicity, we illustrate our proposed design for three treatments, A, B and
C. There is no optimal response-adaptive design available in the literature for
more than two treatments satisfying any standard optimality criterion. One
can easily extend (3) and (4) in intuitive ways to suggest, e.g., an allocation
proportion of

πj =
√
pj√

pA +
√
pB +

√
pC

, (9)

or
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πj =
1
qj

1
qA

+ 1
qB

+ 1
qC

, (10)

for the jth treatment, j = A,B,C. In fact, (10) is the limiting proportion of
the urn designs like the RPW or DL in a three-treatment scenario. But, we
do not know whether the rules (10) and (9) are optimal or not, in some sense.

Suppose we want to minimize

nAΨA + nBΨB + nCΨC , (11)

subject to

lA
σ2

A

nA
+ lB

σ2
B

nB
+ lC

σ2
C

nC
= lA

pAqA

nA
+ lB

pBqB

nB
+ lC

pCqC

nC
= K.

for some prefixed constants lA, lB and lC , where nA + nB + nC = n, and Ψk,
k = A,B,C, is a function of pA, pB and pC such that ΨA is decreasing in pA

(for fixed pB and pC), and ΨA is positive. Similar interpretations hold for ΨB

and ΨC .
Suppose nB/nA = RB and nC/nA = RC , and hence

πA =
nA

n
=

1

1 + RB + RC
, πB =

nB

n
=

RB

1 + RB + RC
, πC =

nC

n
=

RC

1 + RB + RC
.

Clearly problem (11) reduces to minimizing (with respect to RB and RC)

n

1 + RB + RC
(ΨA + RBΨB + RCΨC)

subject to
1 + RB + RC

n

(
lAσ

2
A + lB

σ2
B

RB
+ lC

σ2
C

RC

)
= K.

The solution for RB and RC can be obtained by differentiating

(ΨA + RBΨB + RCΨC)
(
lAσ

2
A + lB

σ2
B

RB
+ lC

σ2
C

RC

)
,

keeping the constraint in mind, which gives

RB =
√
ΨA + RCΨC

√
lBpBqB

√
ΨB

√
lApAqA + lCpCqC

RC

= F1(RC),

RC =
√
ΨA + RBΨB

√
lCpCqC

√
ΨC

√
lApAqA + lBpBqB

RB

= F2(RB). (12)

Note that, when lA = lB = lC , the solution of (12) is simply

RB =
√

pBqB

ΨB

/√
pAqA

ΨA
, RC =

√
pCqC

ΨC

/√
pAqA

ΨA
,
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which results in

πj =

√
pAqA

ΨA√
pAqA

ΨA
+
√

pBqB

ΨB
+
√

pCqC

ΨC

,

for j = A,B,C. For Ψj = pjq
3
j , we realise the allocation (10), and for Ψj = qj

we obtain the allocation (9). Thus, for lA = lB = lC , the optimal alloca-
tion can be directly extended from the corresponding two-treatment optimal
allocation. But, the situation will be different when the lj ’s are not the same.

3 Implementation and simulation

The implimentation of this optimal rule for unequal lj ’s is as follows.
• The first m patients are treated with equal probability 1/3 to each

treatment. After m responses are available, we have sufficient data to obtain
estimates of pA, pB and pC .

• For the allocation of the (i+1)st patient, i ≥ m, we calculate p̂Ai, p̂Bi and
p̂Ci, the estimated proportions of successes to the corresponding treatments
up to the first i patients. We treat these as true values at this stage, plug
them into (12), and solve for RB and RC iteratively.

• To solve for (RB,i+1, RC,i+1), the (RB, RC)-values for the (i + 1)st pa-
tient, one can take any reasonable value of RB and RC (say R

(0)
B and R

(0)
C )

as the starting values for the iteration for the (i + 1)st patient. A reason-
able choice may be R

(0)
B = RB,i and R

(0)
C = RC,i, the RB and RC values for

the ith patient. Let the values of RB and RC , after convergence, be RB,i+1

and RC,i+1. Then, we allocate the (i + 1)st patient to the three treatments
with probabilities 1/(1+RB,i+1 +RC,i+1), RB,i+1/(1+RB,i+1 +RC,i+1) and
RC,i+1/(1 + RB,i+1 + RC,i+1), respectively.

Tables 1-2 give the πj ’s for different pj ’s (which might be estimates at
some stage). Table 1 considers equal lj-values, where the results of Table 2
are obtained assuming unequal ljs. We consider four designs for comparison;
namely: (i) the RPW rule for three treatments, (ii) the Rosenberger et al
(2001) optimal allocation for three treatments, (iii) our optimal design with
Ψj = pjq

3
j , and (iv) our optimal design with Ψj = qj . It is observed that the

limiting allocations of (i) and (iii) are the same for equal ljs, and those for
(ii) and (iv) are also the same for equal ljs. But, when the ljs are different,
the limiting allocation of the rules (iii) and (iv) change quite a bit, whereas
those of (i) and (ii) do not change.

Keeping (7) and (8) in mind, the possible choices of Ψk can be

Ψk = pkq
3
k, qk,

for k = A,B,C. Other suitable choices of Ψk will provide other ‘optimal’
allocations. The convergence of the simultaneous equations (12) can be guar-
anteed as follows.
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Table 1. Limiting allocation proportions for k = 3, lA = lB = lC , for different values
of (pA, pB, pC). Design I: RPW rule for three treatments, Design II: Rosenberger et
al.-type design for three treatments, Design III: optimal design with Ψj = pjq

3
j ,

Design IV: optimal design with Ψj = qj .

(pA, pB, pC) (πA, πB , πC)
Design I≡Design III Design II≡Design IV

(.8,.8,.8) (.333,.333,.333) (.333,.333,.333)
(.8,.8,.6) (.400,.400,.200) (.349,.349,.302)
(.8,.8,.4) (.429,.429,.142) (.369,.269,.262)
(.8,.8,.2) (.444,.444,.111) (.400,.400,.200)
(.8,.6,.6) (.500,.250,.250) (.366,.317,.317)
(.8,.6,.4) (.545,.273,.182) (.389,.386,.275)
(.8,.6,.2) (.571,.286,.143) (.423,.366,.211)
(.8,.4,.4) (.600,.200,.200) (.414,.293,.293)
(.8,.4,.2) (.632,.210,.158) (.453,.320,.227)
(.8,.2,.2) (.666,.167,.167) (.500,.250,.250)
(.6,.6,.6) (.333,.333,.333) (.333,.333,.333)
(.6,.6,.4) (.375,.375,.250) (.355,.355,.290)
(.6,.6,.2) (.400,.400,.200) (.388,.388,.224)
(.6,.4,.4) (.428,.286,.286) (.380,.310,.310)
(.6,.4,.2) (.462,.308,.230) (.418,.341,.241)
(.6,.2,.2) (.500,.250,.250) (.464,.268,.268)
(.4,.4,.4) (.333,.333,.333) (.333,.333,.333)
(.4,.4,.2) (.364,.364,.272) (.369,.369,.262)
(.4,.2,.2) (.400,.300,.300) (.414,.293,.293)
(.2,.2,.2) (.400,.300,.300) (.414,.293,.293)

Note that, here
∂F1

∂RB
= 0,

∂F2

∂RC
= 0,

and

∂F1

∂RC
=

1
2

√
lBpBqB

√
ΨA + ΨCRC

√
ΨB

√
lApAqA + lCpCqC

RC

⎡⎣ ΨC

ΨA + ΨCRC
+

lCpCqC

R2
C

(
lApAqA + lCpCqC

RC

)
⎤⎦

=
1
2
F1(RC) ×

⎡⎣ ΨC

ΨA + ΨCRC
+

lCpCqC

R2
C

(
lApAqA + lCpCqC

RC

)
⎤⎦ = O(R−1/2

C ),

∂F2

∂RB
=

1
2

√
lCpCqC

√
ΨA + ΨBRB

√
ΨC

√
lApAqA + lBpBqB

RB

⎡⎣ ΨB

ΨA + ΨBRB
+

lBpBqB

R2
B

(
lApAqA + lBpBqB

RB

)
⎤⎦

=
1
2
F2(RB) ×

⎡⎣ ΨB

ΨA + ΨBRB
+

lBpBqB

R2
B

(
lApAqA + lBpBqB

RB

)
⎤⎦ = O(R−1/2

B ).
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Table 2. Limiting allocation proportions for k = 3, lA = 1, lB = 0.5, lC = 0.25,
for different values of (pA, pB , pC). Design I: RPW rule for three treatments (same
as Table 1), Design II: Rosenberger et al.-type design for three treatments (same as
Table 1), Design III: optimal design with Ψj = pjq

3
j , Design IV: optimal design with

Ψj = qj .

(pA, pB , pC) (πA, πB , πC)
Design III Design IV

(.8,.8,.8) (.453,.320,.227) (.453,.320,.227)
(.8,.8,.6) (.511,.361,.128) (.467,.330,.203)
(.8,.8,.4) (.534,.377,.089) (.485,.343,.172)
(.8,.8,.2) (.546,.386,.068) (.511,.361,.128)
(.8,.6,.6) (.624,.220,.156) (.489,.299,.212)
(.8,.6,.4) (.658,.233,.109) (.509,.311,.180)
(.8,.6,.2) (.676,.239,.085) (.537,.329,.134)
(.8,.4,.4) (.713,.168,.119) (.540,.270,.190)
(.8,.4,.2) (.735,.173,.092) (.571,.286,.143)
(.8,.2,.2) (.768,.136,.096) (.624,.220,.156)
(.6,.6,.6) (.453,.320,.227) (.453,.320,.227)
(.6,.6,.4) (.490,.347,.163) (.473,.334,.193)
(.6,.6,.2) (.511,.361,.128) (.501,.354,.145)
(.6,.4,.4) (.554,.261,.185) (.504,.291,.205)
(.6,.4,.2) (.581,.274,.145) (.536,.309,.155)
(.6,.2,.2) (.624,.220,.156) (.589,.241,.170)
(.4,.4,.4) (.453,.320,.227) (.453,.320,.227)
(.4,.4,.2) (.480,.340,.180) (.485,.343,.172)
(.4,.2,.2) (.525,.278,.197) (.540,.270,.190)
(.2,.2,.2) (.453,.320,.227) (.453,.320,.227)

One can choose the initial value (R(0)
B , R

(0)
C ) large enough such that∣∣∣∣∣

(
∂F1

∂RC

)
R

(0)
B ,R

(0)
C

∣∣∣∣∣ < 1,

∣∣∣∣∣
(
∂F2

∂RB

)
R

(0)
B ,R

(0)
C

∣∣∣∣∣ < 1,

and consequently the convergence of the simultaneous iteration procedure is
guaranteed (see Scarborough (1966) , Ch. XII, p. 301).

4 Conclusions

The present paper describes optimal response-adaptive designs for three-
treatments. A detailed research on such designs for general k (≥ 2) treatments
with one constraint and with the issue of power, expected failure, etc., and il-
lustration with some real data is under investigation. We overlook these issues
in this short article for the sake of brevity.

We have the following generalizations in mind. First, one may think of
finding optimal designs with more than one constraint. Then, optimal designs
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in the presence of covariates is of interest. We hope to pursue some of these
issues in future communications.
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Summary. D-optimal experiments for binary response data have been extensively
studied in recent years. On the other hand two-level fractional factorials are often
used as screening designs at the preliminary stage of an investigation when the
outcome is continuous. We explore the performance of the one-half two-level experi-
ments for a logistic model with three factors, and show that the conventional wisdom
about this kind of experiment does not apply when the response is binomial.

Key words: binary data, local D-optimality, two-level designs, one-half two-level
designs

1 Introduction

When the response of interest can be conveniently modeled through first or-
der normal linear regression models, two-level factorial experiments are either
optimal or close to optimal among all experiments with the same sample size,
for a broad class of experimental regions and for most sensible optimal de-
sign criteria, including the determinant of the information matrix. (e.g. see
Pukelsheim (1973)). Furthermore, when ’fractioning’ two-level factorial exper-
iments, “spatially” balanced allocations treating all factors symmetrically by
assigning the same number of experimental combinations to each of their lev-
els and the same number of runs on each experimental combination, leading to
orthogonal design matrices, are always at least as good as allocations leading
to non-orthogonal design matrices with the same number of runs. Also, it is
well known that under normal response models, two complementary fractions
of a full two-level factorial are statistically equivalent. None of this holds for
binary response models.

The design of experiments literature most often uses optimal design criteria
based on the Fisher information matrix, I(β). In particular, the D-optimal
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criteria of maximizing the determinant of I(β) is the most widely studied one.
Under binary response models, the Fisher information matrix depends on the
parameters of the model, which much complicates a lot the construction of
an optimal design. To get round this difficulty the local optimality approach
assumes that the value of the parameters are known. The D-optimal designs
obtained in this way are called local D-optimal designs.

Many authors have considered the construction of local D-optimal designs
for logistic models, which are the usual models for binary response data. For
example, Abdelbasit and Plackett (1983) discuss the construction of local D-
optimal designs for a binary response with one explanatory variable, Sitter
and Torsney (1995) deal with the case of two design variables, and Ford et al
(1992) reduce the optimal design of experiments for generalised linear models,
including binary response models, to a canonical form. The results in these,
and in many other papers indicate that local D-optimal designs are not two-
level experiments.

In this paper we study the performance of four point designs that fall
within the class of two-level experiments with three factors, all under the lo-
gistic model for binary responses. In particular, we search for the experiments
centered at a given point and maximizing the determinant of I(β), assuming
no restriction on the experimental region. We provide a set of easy-to-use ta-
bles that determine the best fractional experiment for each case, and we show
how the standard 23−1 fractions used for normal response models are not the
best option for logistic models.

2 Logistic models

Often, quality improvement experiments on manufacturing processes asses
quality through pass or fail inspection of the articles produced. For example,
Bisgaard and Fuller (1995) consider the case of a grinding process, where one
is interested in the effect of blade size, centering, leveling and speed on the
presence or absence of undesirable marks on steel samples.

In binary response experiments with three design variables or factors, ni

articles are tested at levels xi = (x1i, x2i, x3i) of the design variables for
i = 1, . . . , q, (or ni subjects are administered dose levels xi = (x1i, x2i, x3i),
in dose response experiments), and the outcome is binary. Usually the total
number of subjects, n =

∑q
i=1 ni, is specified from the start and one assumes

that the number of successes on the ni subjects under xi, yi, are conditionally
independent binomial random variables, yi|xi, β ∼ Binomial(ni, p(xi;β)).

Under the main effects logistic regression model for binary responses, one
assumes that

p(xi;β) =
1

1 + exp(β0 + β1x1i + β2x2i + β3x3i)
= F (zi)

where zi = β0 + β1x1i + β2x2i + β3x3i.
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Fig. 1. Two-level three-factor experiment. The plane denoted by EDF (z8) is the
effective doses which contains point x8. All the exprimental points are supported on
planes parallel to EDF (z8).

The contour levels of the surface, p(x;β), are planes, and therefore the set
of design points xi = (x1i, x2i, x3i) such that p(xi;β) = F (z) for a given z,
which define the equal dose set EDF (z), are also planes. The Fisher informa-
tion matrix for the experiment supported on x1, . . . , xq in R3, is

I(β) = n

q∑
i

λih(zi)(1, x1i, x2i, x3i)
′
(1, x1i, x2i, x3i) (1)

where λi = ni/n are the weights of the support points and where h(zi) =
F ′(zi)2/(F (zi)(1 − F (zi))) = ezi/ (1 + ezi)2 (see Sitter and Torsney (1995)).

3 Local D-optimal one-half fraction of 23 experiments

In this paper, we restrict attention to one-half fractions of 23 experiments,
which are experiments supported on 4 of the 23 vertices of a design as il-
lustrated in Fig. 1. That is, we consider experiments supported on points
xi of the form xi = (x10 + a1iR1, x20 + a2iR2, x30 + a3iR3), where the aji’s
are either −1 or +1, R1, R2, R3 are the half ranges, x0 = (x10, x20, x30) is
the center point of the 23 experiment which is on the EDF (z0) plane with
z0 = β0 + β1x10 + β2x20 + β3x30 and zi = z0 + a1iβ1R1 + a2iβ2R2 + a3iβ3R3.

Let A be the 8×4 standardized design matrix, whose i-th row is the vector
(1|ai) = (1, a1i, a2i, a3i), that is

A =

�
����������

1 −1 −1 −1
1 +1 −1 −1
1 −1 +1 −1
1 +1 +1 −1
1 −1 −1 +1
1 +1 −1 +1
1 −1 +1 +1
1 +1 +1 +1

�
����������

(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)

and let Ai1,i2,i3,i4 be the 4× 4 submatrix of A formed by its rows i1, i2, i3, i4.
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Dorta-Guerra et al (2005) evaluated the determinant of I(β) under a gen-
eralized linear model for a two-level experiment. From this result it is easy
to see that the determinant of I(β) under the main effects logistic model
described above is given by the following expression:

(β1β2β3)
2det(I(β))/n4 = t21t22t23

�
{i1,i2,i3,i4}

ci1,i2,i3,i4λi1λi2λi3λi4h(zi1)h(zi2)h(zi3 )h(zi4)

(2)

where ti = βiRi, zi = z0 + a1it1 + a2it2 + a3it3 and the summation is
over all 70 possible combinations of (i1, i2, i3, i4) obtained as subsets of
{1, 2, 3, 4, 5, 6, 7, 8} of size 4, and where c1,4,6,7 = c2,3,5,8 = 44, c1,2,3,4 =
c1,2,5,6 = c1,2,7,8 = c1,3,5,7 = c1,3,6,8 = c1,4,5,8 = c2,3,6,7 = c2,4,5,7 = c2,4,6,8 =
c3,4,5,6 = c3,4,7,8 = c5,6,7,8 = 0, and ci1,i2,i3,i4 = 43 for all other 56 terms.
Finally ci1,i2,i3,i4 = (det(Ai1,i2,i3,i4))2.

Observe that (2) is a function of z0, (t1, t2, t3) and (λ1, . . . , λ8). Notice
that all two-level experiments centered on a point on the EDF (z0) with the
same ti’s and λj ’s have the same value of (β1β2β3)2det(I(β))/n4. Once we
have the optimal ti’s we can also determine the optimal zi’s and automati-
cally the p(xi;β)’s through the F (zi)’s. In the optimization process for fixed
F (z0) we compute the optimal ti’s and λj ’s which maximize (2) using the
Quasi-Newton method. It is worth noting that optimal values for ti do not
depend on the parameters of the model and therefore, neither do the p(xi;β)’s
depend on such parameters. Moreover, to calculate the experimental points,
it is necessary to get an initial estimation of the parameters to obtain the half
ranges Ri = ti/βi.

Our goal is to characterize the seventy possible one-half fractions of a 23

experiment. In fact, it turns that one-half fraction is the local D-optimal ex-
periment among the class of all two-level experiments, including full two-level
factorial experiments (see Dorta-Guerra et al (2005)). Taking into account
that the model has four parameters and that this experiment has four points,
the optimal λj ’s are equal to 1/4. In the next section we show that we can
construct five classes of experiments taking into account the determinant of
their information matrix. For example, when β1 > 0, β2 > 0 and β3 > 0, the
local D-optimal one-half fraction when it is centered above the 50 percentile
is the one supported on the points x2, x3, x4 and x5. This fraction is denoted
by (2345), and its corresponding standardized sub-matrix and zi’s are

A2,3,4,5 =

�
��

1 +1 −1 −1
1 −1 +1 −1
1 +1 +1 −1
1 −1 −1 +1

�
��

⇒ z2 = z0 + β1R1 − β2R2 − β3R3
⇒ z3 = z0 − β1R1 + β2R2 − β3R3
⇒ z4 = z0 + β1R1 + β2R2 − β3R3
⇒ z5 = z0 − β1R1 − β2R2 + β3R3

On the other hand, if we change the sign of the first parameter, that is,
β1 < 0, β2 > 0 and β3 > 0, the local D-optimal one-half fraction is the
one supported at x1, x3, x4 and x6, which is labeled as (1346) and has as a
standardized sub-matrix and zi’s

As can be seen, the z values are equal and hence the determinant for these
two experiments is the same. It is easy to verify that A1,3,4,6 can be obtained
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A1,3,4,6 =

�
��

1 −1 −1 −1
1 −1 +1 −1
1 +1 +1 −1
1 +1 −1 +1

�
��

⇒ z1 = z0 − (−|β1|)R1 − β2R2 − β3R3
⇒ z3 = z0 − (−|β1|)R1 + β2R2 − β3R3
⇒ z4 = z0 + (−|β1|)R1 + β2R2 − β3R3
⇒ z6 = z0 + (−|β1|)R1 − β2R2 + β3R3

by multiplying the second column of A2,3,4,5 by (−1), after reordering the
rows. If a change of sign takes place for β2 instead of β1, we would have to
multiply the third column of A2,3,4,5 by (−1) instead of the second column,
and so on. This implies that one can always reduce the complexity of the
problem, by considering without loss of generality that the parameters of the
model are all positive to start with. It should be clear from the above argument
that the fraction (2345), depicted in Fig. 2 with label β1 > 0, and the fraction
(1346), depicted in Fig. 2 with label β1 < 0, locate their four optimal support
points on the same EDF planes, and both lead to the same determinant of
I(β).

Fig. 2. Local D-optimal one half-fraction for the main effects three factor logistic
model when β2 > 0, β3 > 0 and where the sign of β1 is either positive or negative.

In addition, if columns 2 and 4 of the matrix A2,3,4,5 are switched we ob-
tain the A2,3,5,7 matrix (sorting the indices in ascending order). Note that the
optimal z’s are equal for both experiments, so we have two experiments. So
the same determinant, that is, the experiments are equivalent. Consequently,
when β1, β2 and β3 are positive we can use either experiment (2345) or (2357).
Therefore, for given parameters, we can ensure that reordering the last three
columns of a standardized sub-matrix we obtain all the equivalent experi-
ments.

4 Classes of one-half fractions of 23 experiments

The seventy possible one-half fractions of a 23 experiment can be divided into
five different classes according to their geometric configuration. In this section,
we compute the local D-optimal experiment in each one of these five classes
of one-half fractions. We also present tables which allow one to obtain the
D-optimal configurations under all possible combinations of signs for β1, β2

and β3, depending on whether the EDF of the center point of the fraction is
larger or smaller than 50%. The determinant of the D-optimal experiment in
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each of the five classes of one-half fractions is also given as a function of the
EDF (z0), where appropriate.

4.1 Class (a)

This class corresponds to the standard 23−1 resolution III fraction of a full
factorial for linear normal response models, which is the D-optimal fraction
for normal models, and has the only geometric configuration which leads to an
orthogonal standardized design matrix; its designs have two support points on
each of the faces of the cube. This class is formed only by the fractions (1467)
and (2358), and either one or the other of these two fractions will be local D-
optimal in this class, depending on the signs of β1, β2 and β3, and depending
on whether EDF (z0) is larger or smaller than 50%, in the way described in
Table 1. For example, if we are interested in an experiment centered above 50%
and all the parameters are positive the local D-optimal one-half experiment
is formed by points (2358). In contrast, if the experiment is centered under
50% we should use the (1467) design. Notice that, contrary to the case of
normal models, under the logistic model complementary fractions like (1467)
and (2358) are not equivalent.

β3 > 0 β3 < 0
β1 > 0 β1 < 0 β1 > 0 β1 < 0 β1 > 0 β1 < 0 β1 > 0 β1 < 0

EDF(z0) β2 > 0 β2 > 0 β2 < 0 β2 < 0 β2 > 0 β2 > 0 β2 < 0 β2 < 0

> 50% (2358) (1467) (1467) (2358) (1467) (2358) (2358) (1467)
< 50% (1467) (2358) (2358) (1467) (2358) (1467) (1467) (2358)

EDF (z0) .10 .20 .30 .40 .50 .60 .70 .80 .90 .95

(1467) 106n−4(β1β2β3)
2Det(I(β)) 271 533 614 565 447 307 175 73 15 3

(2358) 106n−4(β1β2β3)
2Det(I(β)) 15 73 175 307 447 565 614 533 271 96

Table 1. Local D-optimal designs among all the fractions included in class (a).

4.2 Class (b)

This class includes all one-half fractions in which three of the four support
points are on one of the faces of the cube, and the other one is on the opposite
face of the cube, at the vertex connected to the vertex on the opposite face
which does not have any support point. This class always includes the local
D-optimal experiment among all one-half fractions. Therefore, in particular,
it is obvious that the largest determinant attained through any fraction of
in class (a) (which is the default one-half fraction under normal models) will
always be smaller than the determinant of the best configuration included
in class (b). In fact, we find the largest determinant in class (a) to be 78%
smaller than in class (b).
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β3 > 0 β3 < 0
β1 > 0 β1 < 0 β1 > 0 β1 < 0 β1 > 0 β1 < 0 β1 > 0 β1 < 0

EDF (z0) β2 > 0 β2 > 0 β2 < 0 β2 < 0 β2 > 0 β2 > 0 β2 < 0 β2 < 0

(2345) (1346) (1247) (1238) (1678) (2578) (3568) (4567)
> 50% (2357) (1468) (1457) (2368) (1367) (2458) (1358) (2467)

(2356) (1456) (1478) (2378) (1267) (1258) (3458) (3467)
(4567) (3568) (2578) (1678) (1238) (1247) (1346) (2345)

< 50% (2467) (1358) (2458) (1367) (2368) (1457) (1468) (2357)
(3467) (3458) (1258) (1267) (2378) (1478) (1456) (2356)

EDF (z0) .05 .10 .20 .30 .40 .50 .60 .70 .80 .90

(2345) 106n−4(β1β2β3)
2Det(I(β)) 1 12 123 489 1329 2909 5511 9345 14268 18495

(4567) 106n−4(β1β2β3)
2Det(I(β)) 17332 18495 14268 9345 5511 2909 1329 489 123 12

Table 2. Local D-optimal designs among all the fractions included in class (b).

4.3 Class (c)

This class includes all the experiments with three support points on one face
of the cube, with the fourth support point on the opposite face, at the vertex
opposite to the vertex which corresponds to the support point ’between’ the
first three. The local D-optimal configurations among all those in this class
can be constructed from the information in Table 3 for any combination of
signs for βi and position of the center point x0 of the experiment.

β3 > 0 β3 < 0
β1 > 0 β1 < 0 β1 > 0 β1 < 0 β1 > 0 β1 < 0 β1 > 0 β1 < 0

EDF (z0) β2 > 0 β2 > 0 β2 < 0 β2 < 0 β2 > 0 β2 > 0 β2 < 0 β2 < 0

> 50% (1235) (1246) (1347) (2348) (1567) (2568) (3578) (4678)
< 50% (4678) (3578) (2568) (1567) (2348) (1347) (1246) (1235)

EDF (z0) .05 .10 .20 .30 .40 .50 .60 .70 .80 .90

(1235) 106n−4(β1β2β3)
2Det(I(β)) 0 0 1 9 35 112 310 804 2047 5329

(4678) 106n−4(β1β2β3)
2Det(I(β)) 8496 5329 2047 804 310 112 35 9 1 0

Table 3. Local D-optimal designs among all the fractions included in class (c).

4.4 Class (d)

This class includes all the experiments with three support points on one of
the faces of the cube, with the fourth support point located on the opposite
face of the cube, opposite either of the first three design points which is not
’between’ the other two. Contrary to the previous three classes of one-half
fractions, in this class the determinant of the corresponding local D-optimal
configuration does not depend on whether EDF (z0) is larger or smaller than
50%.

4.5 Class (e)

This class is formed by those designs with four support points all falling on the
same plane, and thus by the one-half fractions which do not allow estimation of
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β3 > 0 β3 < 0
β1 > 0 β1 < 0 β1 > 0 β1 < 0 β1 > 0 β1 < 0 β1 > 0 β1 < 0
β2 > 0 β2 > 0 β2 < 0 β2 < 0 β2 > 0 β2 > 0 β2 < 0 β2 < 0
(2346) (1345) (1248) (1237) (2678) (1578) (4568) (3567)
(2347) (1348) (1245) (1236) (3678) (4578) (1568) (2567)
(3567) (4568) (1578) (2678) (1237) (1248) (1345) (2346)
(2456) (1356) (2478) (1378) (1268) (1257) (3468) (3457)
(2567) (1568) (4578) (3678) (1236) (1245) (1348) (2347)
(3457) (3468) (1257) (1268) (1378) (2478) (1356) (2456)

EDF (z0) .05 .10 .20 .30 .40 .50 .60 .70 .80 .90

(2346) 106n−4(β1β2β3)
2Det(I(β)) 196 541 1375 2163 2713 2909 2713 2163 1375 541

Table 4. Local D-optimal designs among all the fractions included in class (d).

one of the three parameters βi. These fractions lead to a singular information
matrix with a zero determinant. There are two sets of experiments with these
characteristics; those with four points in the same face of the 23 experiment
{(1234), (1357), (1256), (2468), (3478), (5678)}, and those with points on the diag-
onal planes of the 23 experiment {(1278), (1368), (1458), (2457), (2367), (3456)}.

5 Conclusions

In this paper we study the amount of information, measured through the
determinant of I(β), in one-half fractions of 23 experiments for the logistic
model. The default 23−1 fractions for normal response data are not the best
ones for binary response data. We also catalogue all the possible two-level four
point design configurations, and find the best experiments in each one of the
5 possible classes.
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Summary. It is assumed that the covariance matrix of N observations has the form
Cθ =

�R
r=1 θr Ur where U1, . . . , UR are known covariance matrices and θ1, . . . , θR

are unknown parameters. Estimators for
�R

r=1 θr br with known b1, . . . , bR are char-
acterized which minimize the Bayes risk within all invariant quadratic unbiased
estimators. In this characterization, the matrix A, which determines the quadratic
form of the estimator, is given by a linear equation system which is not of full rank.
It is shown that some solutions of the equation system prove to be asymmetric ma-
trices A. Therefore, sufficient conditions are presented which ensures symmetry of
the matrix A. Given this result, the influence of designs on the Bayes risk is studied.

Key words: Bayes invariant quadratic unbiased estimator, quadratic form, time
dependence, spatial covariance, one and two dimensional designs

1 Introduction

We assume that an observation z(x) ∈ � at the experimental condition x ∈ �q

is given by
z(x) = f(x)
 β + e(x),

where f : �k −→ �p is a known regression function, β ∈ �p an unknown
parameter vector and e(x) is measurement error with expectation equal to 0.
Several observations z1(x1), . . . , zN(xN ) at x1, . . . , xN are given by the vector
Z = (z1(x1), . . . , zN (xN ))
 and the design matrix F = (f(x1), . . . , f(xN ))


so that we have the linear model Z = Fβ + E.
In many linear models it is assumed that the covariance matrix of the

error vector E = (e(x1), . . . , e(xN ))
 is the identity matrix times an un-
known variance parameter. This means in particular that normally distrib-
uted observations z1(x1), . . . , zN(xN ) are stochastically independent. But if
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the experimental conditions are time points or points in space it is more likely
that points which are closer together provide similar observations than points
which are further apart. Then the errors e(x1), . . . , e(xN ) and the observations
z1(x1), . . . , zN(xN ) are no longer uncorrelated. In general it is possible for E
to have an arbitrary covariance matrix.

Since a general covariance matrix will have more parameters than available
observations, some assumptions are needed for the covariance structure of E.
Here we will consider the case that the covariance matrix is given by a linear
combination of known covariance matrices U1, . . . , UR so that

Cθ =
R∑

r=1

θr Ur,

where only θ = (θ1, . . . , θR)
 is unknown. Hence we consider a mixed linear
model with variance components θ1, . . . , θR. In many cases one matrix Ur will
be the identity matrix and another matrix will have components Ur(xi, xj)
which are a decreasing function of the distance between xi and xj . Then the
identity matrix represents the effect which is known as the nugget effect in
spatial statistics (see e.g. Cressie (1993)).

There are several possibilities for estimating the variance components
θ1, . . . , θR (see e.g. Rao and Kleffe (1988) or Koch (1999)). If a linear combi-
nation α =

∑R
r=1 brθr with given b = (b1, . . . , bR)
 is to be estimated, then

this can be done by an estimator given by the quadratic from α̂0(Z) = Z
QZ.
Such estimators should be invariant with respect to linear transformations of
the linear model, i.e. they should satisfy α̂0(Z +Fβ) = α̂0(Z) for any β ∈ �p.
This invariance property is in particular satisfied if the estimator has the form
α̂0(Z) = Z
M AMZ where M = I − F (F
F )−F
 is the projection matrix.
Then one can also work with observation vectors Y = M Z with expectation
0 and covariance matrix

C̃θ = M Cθ M

 =

R∑
r=1

θr M Ur M

 =

R∑
r=1

θr Vr.

The aim is then to determine the matrix A in the quadratic form α̂(Y ) =
Y 
AY . Assuming an a-priori distribution for the unknown parameters θ1, . . . ,
θR, in Section 2 we present a characterisation of the matrix A of the estima-
tor which minimizes the Bayes risk within all invariant quadratic unbiased
estimators. It turns out that the matrix A is given by an equation GO = W
where the vector O contains the matrix A in vectorized form and the matrix G
and the vector W depend on V1, . . . , VR and b, respectively. Thereby the form
of A depends very much on which g-inverse of G is used to solve the equation.
It is shown that sometimes a solution is obtained such that the matrix A
is not symmetric. It is desirable that A be symmetric since quadratic forms
based on a symmetric matrix have good inference properties, their distribu-
tions usually being of the χ2 family. One possible solution is to symmetrise
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A by replacing it by (A + A
)/2. Another possibility is to find symmetric
solutions A satisfying the equation GO = W . Section 3 provides a condition
which ensures this. Having a method by which to calculate a reasonable es-
timate α̂(Y ) = Y 
AY , we study in Section 4 the influence of the design on
the Bayes risk of this estimator by examples.

2 Bayes invariant quadratic unbiased estimators
(BAIQUE)

Unbiased quadratic estimators α̂(Y ) = Y 
AY for α =
∑R

r=1 brθr = b
θ are
characterized by Rao (1973) as follows.

Lemma 1. The quadratic estimator Y 
AY is an unbiased estimator for the
linear function α = b
θ if and only if

trAVr = br for r = 1, . . . , R. (1)

Let pΘ be a prior distribution for the vector of parameters (θ1, θ2, . . . , θR)
which has second order moments of the form

E(ΘiΘj) =
∫

θiθj pΘ(θ)dθ = Cij ≥ 0; i, j = 1, . . . , R.

We assume here that the matrix of these second order moments is positive
semidefinite so that we can write

C = (Cij)i,j=1,...,R = S S
 = (
R∑

r=1

sirsjr)i,j=1,...,R. (2)

The Bayes risk of the estimator α̂(Y ) = Y 
AY is given by

r(α̂) = E(EΘ(α̂(Y ) − α)2) =
∫

Eθ(α̂(Y ) − α)2pΘ(θ)dθ.

Definition 1. (Gnot and Kleffe (1983)) A quadratic form α̂(Y ) = Y 
AY is
called a Bayes invariant quadratic unbiased estimator (BAIQUE) if it mini-
mizes E(EΘ(α̂(Y )−α)2) subject to all invariant unbiased quadratic estimators.

Theorem 1. (Compare Fathy and Qassim (2002))
The quadratic form Y 
AY is BAIQUE if and only if the matrix A satisfies

�
���������������

vecV1 vecV2 . . . vecVR

... T

. . . . . . . . . . . .
... . . .

0 0 . . . 0
... (vecV1)

�

0 0 . . . 0
... (vecV2)

�

...
...

...
...

...
...

0 0 . . . 0
... (vecVR)�

�
���������������

�
��������

λ1

λ2

...
λR

. . .
vecA

�
��������

=

�
������������

0
...
0

. . .
b1

...
bR

�
������������

(3)



52 Younis Fathy and Christine Müller

where λ1, . . . , λR are Lagrange multipliers corresponding to the constraint (1),
vec stands for the vec operator, T =

∑R
r=1 Tr

⊗
Tr, Tr =

∑R
i=1 sirVi with sir

given by (2).

Proof. The Bayes risk for unbiased α̂ satisfies

r(α̂) = E(V arΘ(Y 
AY )) = E(2trAC̃ΘAC̃Θ) = 2(
R∑
i

R∑
j

E(ΘiΘj)trAViAVj)

= 2(
R∑
i

R∑
j

CijtrAViAVj) = 2
R∑

i=1

R∑
j=1

R∑
r=1

sirsjrtrAViAVj = 2
R∑

r=1

trATrATr.

Since
∂
∑R

r=1 trATrATr

∂A
= 2

R∑
r=1

TrATr,
∂(trAVr − br)

∂A
= Vr,

there exists Lagrange multipliers λ1, . . . , λR such that

(
R∑

r=1

Tr

⊗
Tr)vecA +

R∑
r=1

λrvecVr = 0.

This implies the assertion together with the constraint (1).

Example (Asymmetric A)
Let consider the one dimensional design of observations at 1, 3, 5 with the
regression function f(x) = 1. Assume that the covariance model is

V ar(Z) = θ1 exp(−D) + θ2I3×3

where the matrix D = (hij)i,j=1,2,3 represents the matrix of Euclidean dis-
tances and exp(−D) stands for the matrix with components exp(−hij). So we
find

D = (hij)i,j=1,2,3 =

⎛⎝0 2 4
2 0 2
4 2 0

⎞⎠ .

Suppose a uniform prior information on the parameters is given by

p1(θ1) = 0.25; 1 ≤ θ1 ≤ 5, p2(θ2) = 0.33; 0 ≤ θ2 ≤ 3,

and Θ1 and Θ2 are independent. Then equation (3) can be written asGO = W
with G ∈ �11×11, O ∈ �11, W ∈ �11. A solution O, if it exists, is given by
O = G−W where G− stands for a generalized inverse of G. For the case
b = (1, 1)
, one obtains from O the Lagrange multipliers λ1 = −15.3284,
λ2 = 12.8534 and the asymmetric matrix A given by

A =

⎛⎝ 0.6217 0.2478 −0.8696
0.1217 0.1304 −0.2522
−0.7435 0 0

⎞⎠ .
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3 Sufficient conditions for a symmetric matrix A

In this section we assume R = 2, U1 = J and U2 = I, where J is an arbitrary
covariance matrix and I = IN×N denotes the identity matrix. Then we denote
by U = MJM and V = MIM = M the given matrices in the linear repre-
sentation of the covariance matrix of Y . Let be u = vecU and v = vecV and
T be defined as in Theorem 1. Moreover, we assume that the prior satisfies
E(ΘΘ
) = I2×2, so that T = U

⊗
U + V

⊗
V . Then equation (3) can be

written as GO = W where

G =

�
�������

u v
... T

. . . . . . . . . . . .

0 0
... u�

0 0
... v�

�
�������

, W =

�
��������

0
...
0
....
b1

b2

�
��������

, O =

�
���

λ1

λ2

. . .
vecA

�
��� .

Theorem 2. Let O = (G
G)−G
W satisfy GO = W , where (G
G)−

denotes the Moore-Penrose inverse of G
G, and let be M = KK
 with
K
K = Il×l, where l is the rank of M . If the maximum eigenvalue of K
 J K
is less than 1 and vecA is given by O, then A is a symmetric matrix.

For proof of Theorem 2, we need the following lemmas.

Lemma 2. Let M = KK
 ∈ Rp×p be a symmetric idempotent matrix of
rank r, where K
K = I ∈ Rr×r is the identity matrix, and let B ∈ Rp×p be a
nonsingular symmetric matrix. Then the Moore-Penrose inverse of (MBM)2

is given by ((MBM)2)− = K(K
BK)−2K
 = K[(K
BK)−1]2K
.

Lemma 3. See Kincaid and Cheney (1991), p.172-173.
If A is an n × n matrix such that the maximum eigenvalue of A
A is less
than 1, then I −A is invertible, and

(I −A)−1 =
∞∑

k=0

Ak.

Lemma 4. See Mirsky (1990), p.337-338. Let φp, ψp, χp : �p×p → �p×p be
defined by

φp(z) =
∞∑

m=0

amzm, ψp(z) =
∞∑

m=0

bmzm, χp(z) =
∞∑

m=0

cmzm,

with cm = a0bm + a1bm−1 + . . . + amb0 for m = 0, 1, 2, . . .. Assume that
φ1, ψ1, χ1 are convergent for z ∈ � with |z| < ρ and suppose that φ1(z)ψ1(z) =
χ1(z) for |z| < ρ. If all characteristic roots of A ∈ �p×p are less than ρ, then



54 Younis Fathy and Christine Müller

φp(A)ψp(A) = χp(A).

Proof of Theorem 2. At first note that

O = (G
G)−G
W =
( −(D−BC−)L

(C− + C−B
D−BC−)L

)
,

where

D = A−BC−B
, A =
(
u
u u
v
v
u v
v

)
, B2×p2 =

(
u
T
v
T

)
,

C = T 2 + uu
 + vv
 and L = b1u + b2v. Only (C− + C−B
D−BC−)L is
important for determination of A. An extension of the Sherman-Morrison-
Woodbury lemma (see e.g. Henderson and Searle (1981)) implies

C− =
cH− −H−uu
H−

c
− (cH− −H−uu
H−)vv
(cH− −H−uu
H−)

c2d
,

where H = T 2, c = 1 + u
H−u and d = 1 + v
(H + uu
)−v. Using this, we
obtain

C−L = H−(η1u + η2v),

and thus after some calculations

vecA = (C− + C−B
D−BC−)L = H−(ζ1u + ζ2v + ξ1Tu+ ξ2Tv)

where η1, η2, ζ1, ζ2, ξ1, ξ2, ∈ �. To determine the Moore-Penrose inverse of
H = T 2, we use the fact that the maximum eigenvalue of K
JK

⊗
K
JK is

less than 1 if the maximum eigenvalue of K
JK is less than 1. Hence, since
T = M

⊗
M(I

⊗
I + J

⊗
J)M

⊗
M , Lemma 2 and Lemma 3 provide

(T 2)− = K
�

K

��
I
�

I + K�JK
�

K�JK
�−1
�2

K��K�

= K
�

K

� ∞�
k=0

(−1)k(K�JK)k
�

(K�JK)k

�
� ∞�

l=0

(−1)l(K�JK)l
�

(K�JK)l

�
K��K�.

Since ρ = 1 satisfies the condition of Lemma 4 for φ1(z) = ψ1(z) =∑∞
k=0(−1)kzk and χ1(z) =

∑∞
k=0(−1)k(k+1) zk, the order of the summation

can be exchanged so that we obtain

H− = (T 2)− =
∞∑

k=0

∞∑
l=0

(−1)k+l(K(K
JK)k+lK
⊗K(K
JK)k+lK
).

The assertion follows now from the fact that for any symmetric matrices Q
and P , we have Q

⊗
Q vecP = vec(QPQ).
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4 The influence of the design on the Bayes risk

Let b = (1, 1) and let the covariance matrix J be given by J = exp(−D) where
D is the matrix of distances between the design points, i.e.

D = (‖xi − xj‖)i,j=1,...,N .

For all considered designs the maximum eigenvalue of K
 J K is less than
1, so that the matrix A, in the BAIQUE α̂, is symmetric if A is determined
via O = (G
G)−G
W . The Bayes risk r(α̂) = 2 tr(AM J M AM J M) +
2 tr(AM AM) of the BAIQUE is given for the following one and two dimen-
sional simple designs. More examples can be found in Fathy (2006).

4.1 One dimensional designs

Table 1 provides the Bayes risk for different four point designs on [0, 1] for
the stationary model with f(x) = 1 and for the linear regression model with
f(x) = (1, x)
. It can be seen that the influence of the design on the Bayes

Table 1. Bayes risks for one dimensional designs

Bayes risk Bayes risk

Design points for f(x) = 1 for f(x) = (1, x)�

0, 0.3, 0.7, 1 2.3145 386.93
0.1, 0.25, 0.85, 1 0.8856 455.77
0.1, 0.4, 0.7, 1 3.9366 213.51

0.1, 0.49, 0.61, 1 4.6978 29.48
0.4, 0.5, 0.6, 1 2.9779 279.05
0.7, 0.8, 0.9, 1 34.0702 219.41

risk depends very much on the model: the best design for the stationary model
is the worst for the model with a linear trend and, if the last design is excluded
from consideration, vice versa.

4.2 Two dimensional designs

Table 2 provides the Bayes risk for different four point designs on [0, 15] ×
[0, 10] for the model with linear trend so that f((x(1), x(2)) = (1, x(1), x(2))
.
Thereby different forms of designs are compared which satisfy x1(1)+x1(2)+
x2(1) + x2(2) + x3(1) + x3(2) + x4(1) + x4(2) = 40 for the design points
xi = (xi(1), xi(2)). The distance between design points is measured by L1,
L2 and L∞ norms. It turns out that the different distance measures provide
similar Bayes risks and that the triangular design always has the smallest risk
followed by the trapezoid design. This may be caused by the fact that in both
designs two design points are rather close to each other, which is, as in the
one dimensional case, a favorite property for estimating θ1 + θ2.
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Table 2. Bayes risks for two dimensional designs

Bayes risk
Design form Design points L1 L2 L∞

square (1,1), (1,9), (9,1), (9,9) 3.2325 3.8362 3.3503
rectangular (1,1), (1,6), (12,1), (12,6) 3.3801 3.3805 3.3812
triangular (1,6), (6,1), (6,6), (8,6) 0.5364 0.5341 0.5352

kite (2,2.5), (6,1), (6,10), (10,2.5) 3.4884 2.6369 2.3821
trapezoid (1,5), (3,3), (9,3), (11,5) 2.7287 1.4195 0.5505
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Summary. In this paper we consider optimal design of experiments for correlated
observations. We approximate the error component of the process by an eigenvector
expansion of the corresponding covariance function. Furthermore we study the lim-
iting behavior of an additional white noise as a regularization tool. The approach is
illustrated by some typical examples.

Key words: correlated errors, random field, regression experiment

1 Introduction

Let X denote the design space, corresponding to a finite set of potential trials.
We can observe a random field

yj(xi) = η(xi, β) + εj(xi), (1)

where η(x, β) is the response function at x ∈ X containing q unknown para-
meters β = (β1, . . . , βq)T ∈ IRq. Let us further assume that the random noise
ε(x) consists of two independent components

ε(x) = u(x) + e(x),

such that for both E[u] = E[e] = 0 and thus E[ε] = 0, and that

Cov[e(x), e(x′)] = σ2(x)δx,x′ ,

and
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Cov[u(x), u(x′)] = k(x, x′),

the latter - the so-called covariance kernel - being a known function; δx,x′

denotes the Kronecker-symbol. Component ej(x) can be viewed as an obser-
vational error, which can be reduced by placing, for example, ri geiger coun-
ters at location xi and e′j(xi) = r−1

i

∑ri

l=1 ejl(xi) and Var[e′j(xi)] = σ2(xi)/ri.
Component uj(x) is a random process which describes the deviation on, say a
particular day j from the local average η(x, β) and can thus not be replicated.

Hence Cov[ε(x), ε(x′)] = σ2(x)δx,x′ + k(x, x′), where x, x′ ∈ X. This setup
has many potential applications, but it is extremely relevant in environmental
studies, which exhibit, for instance spatial or temporal data or both (cf. Müller
(forthcoming 2007)). While e(x) represents a so called nugget effect, u(x)
describes local (temperature, humidity, etc.) fluctuation, which are usually
correlated at relatively short distances.

We will in the following approximate the correlated component u(x) by
Mercer’s eigenfunction expansion (cf. Mercer (1909)) of the respective kernel
k(x, x′), thereby allowing embedding our problem into standard convex design
theory. This idea has already been suggested in Fedorov (1996) and Fedorov
and Flanagan (1997), but the approach has never been fully developed, im-
plemented and tested. Furthermore we will relate our results to alternative
methods for the limiting cases σ2 → ∞ (independence) and σ2 → 0 (random
fields).

2 Expansion of the covariance kernel

The approach is based on the fact that the error component u(x) in the
random process can be represented by the infinite expansion

u(x) =
∞∑
l=1

γlϕl(x),

and correspondingly k(x, x′) =
∑∞

l=1 λlϕl(x)ϕl(x′) where the γl are specific
independent random values with E[γl] = 0 and Cov[γl, γl′ ] = λlδl,l′ = Λl,l′ ,
and the ϕl(x) and λl are the eigenfunctions and eigenvalues, respectively, of
the covariance kernel k(x, x′), given through λlϕl(x) =

∫
X k(x, x′)ϕl(x′)dx′.

Usually this fact is referred to as Mercer’s theorem (cf. Mercer (1909)).
If {λl} diminishes rapidly then the random process (1) can be approxi-

mated:

yj(x) = η(x, β) +
p∑

l=1

γljϕl(x) + e(x), (2)

where yj can be seen as an observation on day j and γlj is sampled from
N(0, λl).

On an intuitive level the choice of p should depend upon the locality of
η(x, β), x ∈ X and the variance σ2(x) of the measurement error. The pre-
sentation can now be regarded as a mixed effects model (a special form of
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a random coefficient regression model, cf. eg. Pinheiro and Bates (2000)) as
long as it admits replications, where θ = {β1, . . . , βq, γ1, . . . , γp} with

E[θ] = θ̄ = {β, 0p},

and

Cov[θ, θ′] =
(

0q×q 0q×p

0p×q Λp×p

)
.

The covariance of the total error ε(x) can thus be written as Cov[ε(x), ε(x′)] =
σ2(x)δx,x′ + ϕT (x)Λϕ(x′), where ϕT (x) = {ϕ1(x), . . . ϕp(x)}. Often replica-
tions can be understood as observations of the corresponding number of closely
allocated sensors, meters, etc..

Random coefficient models can be embedded into standard convex design
theory (cf.eg. Gladitz and Pilz (1982)), thus allowing the use of powerful
design tools such as equivalence theorems and first order gradient algorithms.
There remains the issue, however, of which design criterion is relevant for a
specific situation and to resolve this there seem to be at least three plausible
options:

a) The main interest of the researcher is in the “trend” parameters β and the
component u(x) is regarded solely as a nuisance. This problem appears,
for instance, if one is interested in weather patterns in the region X.

b) The emphasis is on the prediction of individual instances of the process,
thus the information on γl must also enter a design criterion, a problem
which occurs in weather prediction.

c) One desires prediction of the average process, i.e. η(x, β) at a given set of
x ∈ Z �= X.

In this paper we will, for clarity of exposition, consider in detail only case
a), but treatment of the other cases is similar. Furthermore, to eventually
avoid the arbitrary choice of the order of approximation p, we will want to
reformulate results in terms of the original covariance kernel k(x, x′) rather
than its approximation.

3 Design for the estimation of trend

For simplification we now and in the following consider a linearisation f(x) =
∂η(x, β)/∂β|β=β0 of the response around a prior guess of the parameter β0,
eventually leading to so-called locally optimum designs.

Let us further assume that we observe the random field y(x) at n distinct
points x1, . . . , xn, that is observations are generated according to

yij = βT f(xi) +
p∑

l=1

γljϕl(xi) + eij , i = 1, . . . , n, j = 1, . . . ,m,
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with r1, . . . , rn repeated measurements respectively. We assume that for all
j the collection {xi,

ri

R }n
1 = ξn, with R =

∑n
i=1 ri, (the design) is the same.

Actually, we assume that m = 1; the reader can add a multiplier m−1 where
needed. Also we then assume for the sake of simplicity σ2(x) = σ2. Thus from
now on we admit the possibility of repeated observations, which will reflect
microscale variations. For instance, in the case of designing a spatial network,
these replications can stem from observations from very closely neighboring
measurement sites.

In this setup the best linear unbiased estimator of the trend parameter β
is

β̂ = {FV −1FT }−1FV −1ȳ,

with

F = {f(x1), . . . , f(xn)},
Φ = {ϕ(x1), . . . , ϕ(xn)},
V = σ2Ω + ΦTΛΦ, and
ȳT = (ȳ1, . . . , ȳn), ȳi = 1

ri

∑ri

l=1 yi1, Ωii′ = δii′
ri

.

The asymptotic covariance matrix of the estimator β̂ is M−1(ξn) =
m−1{FV −1FT }−1 and thus an optimum design ξ∗n must seek to satisfy

ξ∗n = argmin
ξn

Ψ{M(ξn)}, (3)

for a reasonably chosen design criterion, say Ψ{M} = − log detM .
Let us now consider the best linear unbiased estimator θ̂T = (β̂T , γ̂T ) in

the full (random coefficient) model. Its covariance matrix is

D(ξn) =
(
Dff Dfϕ

DT
fϕ Dϕϕ

)
=
(
FWFT FWΦT

ΦWFT ΦWΦT + Λ−1

)−1

,

where Wii′ = R
σ2 δii′ξ(xi), ξ(xi) being a design measure at xi.

It is easy to show (Frobenius formula) that

Dff (ξ) ∝ M−1(ξn)

and thus the criterion (3) is equivalent to subset D-optimality (DS-optimality)
in a random coefficient regression model. It now follows directly from standard
design theory (cf. Theorem 2.7.1 in Fedorov (1972)), that a necessary and
sufficient condition for an approximate design ξ∗ to optimize (3) is

φ(x, ξ∗) = φθ(x, ξ∗) − ϕT (x)
[
Λ−1 + ΦWΦT

]−1
ϕ(x)

≤ trD(ξ∗)M(ξ∗) − tr
[
Λ−1 + ΦWΦT

]−1
ΦWΦT , (4)

with φθ(x, ξ∗) = (f(x), ϕ(x))TD(ξ∗)(f(x), ϕ(x)). There exists an optimal de-
sign with no more than q(2p + q + 1)/2 + 1 design points.
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Note that this equivalence condition effectively reflects the design problem
discussed in section 3 of Wynn (2004), which embeds our problem further
into the maximum entropy framework. It is essential for the development of
numerical algorithms and analysis of their properties. We have used the first
order exchange algorithm, which at its s iteration adds some mass to point

x+
s = argmax

x∈X
φ(x, ξs)

and substracts some at point

x−s = arg min
x∈supp ξs

φ(x, ξs).

Details of the algorithm and its properties (convergence) can be found in
Fedorov (1972).

The so-called sensitivity function φ(x, ξ) can thus be routinely employed
in such a standard design optimization algorithm. However, since the original
problem is formulated in terms of the covariance kernel a preferred formulation
is

φ(x, ξ) = fT (x, ξ)Dff(ξ)f(x, ξ) (5)

with

fT (x, ξ) = fT (x) − kT (x, ξ)K−1(ξ)
(
W + K−1(ξ)

)−1
WFT ,

Dff(ξ) =
{
F
[
W −W

(
W + K−1(ξ)

)−1
W
]
FT

}−1

,

kT (x, ξ) = {k(x, x1), . . . , k(x, xn)}, and
[K(ξ)]ii′ = k(xi, x

′
i) for all xi, x

′
i ∈ supp ξ.

Here we use the fact that for sufficiently large p and after neglecting re-
mainder terms one can (cf. Fedorov and Flanagan (1997)) adopt the approxi-
mation K � ΦTΛΦ. The advantage of this formulation is, that a practitioner
solely has to specify the response function and the covariance kernel and needs
not to bother with the implicit eigenvalue expansion. A derivation of this pre-
sentation can be found in the Appendix.

4 Examples

To illustrate the technique presented above we have performed a standard
one-point correction design algorithm based on the sensitivity function (4) on
two typical examples. Calculations were performed on a 101 design point grid
with a uniform measure as the initial design and stopped after 10000 itera-
tions. Asymmetries are due to numerical inaccuracies and the finite number
of iterations and possible slight shifts are due to the finiteness of the grid. As
a criterion we used D-optimality, where Ψ{M} = − log detM .
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4.1 Näther’s Case

Firstly consider a simple linear regression model, i.e. fT (xi) = (1, xi), on
X = [−1, 1] with an error covariance kernel given by

k(x, x′) =
{

1 − |x− x′| for |x− x′| < 1
0 for |x− x′| ≥ 1.

This example gained some prominence in the design literature for correlated
errors, since it linearly relates the response function to the covariance kernel,
which allows for a direct proof of uniform optimality of a three point design
concentrated on {−1, 0, 1}, see Näther (1985). Moreover note, that it served as
a motivating case for the considerations in Müller and Pàzman (2003), where
also regulatory noise was employed. In contrast, in the present paper, this has
been made dependent upon the design measure itself.

It is thus easy to guess what a reasonable design algorithm should yield
for the extreme settings of large σ (independence; σ > 102 was used for the
computations) and small σ (dependence due to k; here σ = 10−2). In the
former case, as expected, the algorithm yields the design measure equally
distributed between the extremal points −1 and 1, whereas in the latter case
it yields the measure displayed in Figure 1, which adds some (unfortunately
barely visible, but from the sensitivity function easily deducible) very small
measure at the center, which highly corresponds to the computational results
of Müller and Pàzman (2003) displayed in their Fig.1. In all our figures the
dashed line represents a rescaled sensitivity function, the solid line the design
measure. Note that for intermediate choices of σ a respective proportion of
the central weight is distributed to the extremal points.

Fig. 1. Design measure (solid line) and rescaled sensitivity function (dashed line)
for Näther’s case on a 101-point grid; horizontal x, vertical ξ(x).
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4.2 Third order polynomial and poisson kernel

Next, assume the response function to be a third order polynomial, i.e.
fT (xi) = (1, xi, x

2
i , x

3
i ) and that the error covariance structure is described

by the Poisson kernel

k(x, x′) =
1 − ζ2

1 − 2ζ cosπ(x − x′) + ζ2
,

where 0 ≤ ζ ≤ 1 is a shape parameter and the design region is X = [0, 1]. We
have chosen ζ = 0.2 for all the numerical examples in this subsection.

The optimum design in the uncorrelated case follows from Theorem 2.3.3.
in Fedorov (1972) as the roots of the polynomial [1− (2x− 1)2][3(2x− 1)2 −
1], which yields the points 0,0.211,0.789,1. This is also the result that our
numerical algorithm yields (approximately) for any large σ (here even σ >
101), see Figure 2.

Fig. 2. Design measure (solid line) and rescaled sensitivity function (dashed line)
for third order polynomial (under independence) on a 101-point grid; hor. x, ver. ξ.

The situation is very different for the case of letting σ decrease, i.e. ap-
proaching the ‘purely’ correlated case. In the beginning the two inner points
move outwards to merge with the extremal points. The measure around these
two points is now much more spread out (see Figure 3 for σ = 10−2). Further
decreasing σ now shifts the collapsed points toward the center (see Figure
4 for σ = 10−30) to end up with a design with an extremly flat sensitivity
function over a wide range of the region.
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Fig. 3. Design measure (solid line) and rescaled sensitivity function (dashed line)
for third order polynomial (σ = 10−2) on a 101-point grid; hor. x, ver. ξ.

Fig. 4. Design measure (solid line) and rescaled sensitivity function (dashed line)
for third order polynomial (σ = 10−30) on a 101-point grid; hor. x, ver. ξ.

Appendix

For the derivation of φθ we require the entries Dff , Dfϕ and Dϕϕ. For brevity
we omit arguments. We have

Dff =
{
FWFT − FWΦT

(
ΦWΦT + Λ−1

)−1
ΦWFT

}−1

and hence



Optimum Design for Correlated Fields via Covariance Kernel Expansions 65

D−1
ff = FWFT − FWΦT

(
ΦWΦT + Λ−1

)−1
ΦWFT

� FWFT − FWΦT
(
Λ− ΛΦ(W−1 + K)−1ΦTΛ

)
ΦWFT

� F
[
W −W (W + K−1)−1W

]
FT .

Note that K � ΦTΛΦ. Also we have
Dfϕ = −DffFWΦ

�
ΦWΦT + Λ−1

�−1 and
Dϕϕ =

�
ΦWΦT + Λ−1

�−1
+
�
ΦWΦT + Λ−1

�−1
ΦWFDffFWΦ

�
ΦWΦT + Λ−1

�−1

Now we can write

φθ(x, ξ) = (f(x), ϕ(x))T

�
Dff Dfϕ

DT
fϕ Dϕϕ

�
(f(x), ϕ(x))

= fT (x)Dfff(x) + 2fT (x)Dfϕϕ(x) + ϕT (x)Dϕϕϕ(x)

= fT (x)Dfff(x) − 2fT (x)DffFWΦ
�
ΦWΦT + Λ−1

�−1

ϕ(x)

+ϕT (x)
�
ΦWΦT + Λ−1

�−1

ϕ(x)

+ϕT (x)
�
ΦWΦT + Λ−1

�−1

ΦWFDffFWΦ
�
ΦWΦT + Λ−1

�−1

ϕ(x).

Note that the one but last summand will be subtracted in the definition
of the sensitivity function so that we can subsume

φ(x, ξ) =
(
fT (x) − ϕT (x)

(
ΦWΦT + Λ−1

)−1
ΦWF

)
Dff ×

×
(
fT (x) − ϕT (x)

(
ΦWΦT + Λ−1

)−1
ΦWF

)T

= fT (x)Dfff(x).

So, it remains to revert f(x) to a presentation in terms of the original
covariance function. For that purpose we require the presentation(

ΦWΦT + Λ−1
)−1 � Λ− ΛΦ

(
K + W−1

)−1
ΦTΛ

Then

fT (x) = fT (x) − ϕT (x)
(
ΦWΦT + Λ−1

)−1
ΦWFT

� fT (x) − ϕT (x)
(
Λ− ΛΦ

(
K + W−1

)−1
ΦTΛ

)
ΦWFT

� fT (x) −
(
kT (x) − kT (x)

(
K + W−1

)−1
K
)
WFT ,

using the convenient notation kT (x) � ϕT (x)ΛΦ.
And from

kT (x) − kT (x)
(
K + W−1

)−1
K = kT (x)K−1

(
W + K−1

)−1

the sensitivity function given in (4) easily follows.
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Generalized Probit Model in Design of Dose
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Summary. In clinical studies, continuous endpoints are very commonly seen. How-
ever, either for ease of interpretation or to simplify the reporting process, some
continuous endpoints are often reported and (unfortunately) analyzed as binary or
ordinal responses. We emphasize the usefulness of differentiation between response
and utility functions and develop tools to build locally optimal designs for corre-
sponding models. It is also shown that dichotomization of responses may lead to
significant loss in statistical precision. We consider an example with two responses
and one utility function. The generalization to a larger number of responses and
utility functions is straightforward.

Key words: dichotomized and continuous responses, multivariate probit model,
optimal design, utility function

1 Generalized probit model

1.1 Background model and notations

In clinical trials, there are often multiple endpoints to a treatment. Exclusively
for the sake of simplicity, we assume there are two endpoints and let Z denote
these two continuous responses. We further assume that

Z ∼ N (η,Σ), (1)

where η is a vector of means and Σ is the variance-covariance matrix. We
assume that the first component corresponds to toxicity and the second to ef-
ficacy. Generalization to higher dimension looks straightforward but leads to
unavoidably complicated notation and more intensive computing. Potentially
both η and Σ may depend on some covariates like doses of various com-
pounds(drugs), age, sex, etc. In this paper the only covariate is drug dose,
x ∈ X , and the matrix Σ is constant within X .
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Responses ZT = (Z1, Z2) can be observed either directly or only some
functions of them can be observed (and partial loss of information is to be
expected). A popular choice is a dichotomization of Z (compare with Ashford
and Sowden (1970) ):

Yk =
{

1, if Zk ≤ ck

0, otherwise , k = 1, 2, (2)

i.e. Yk is binomially distributed with the parameter

P (Yk = 1) = Φ.k(υ∗
k;R) =

∫ ∞

−∞
dυk′

∫ υ∗
k

−∞
dυkφ(υ1, υ2, R), (3)

where φ(υ1, υ2, R) is the density function of the standard bivariate normal
distribution, υ = (diagΣ)−1/2(z − η), υ∗

k = (ck − ηk)/σk, σ2
k = Σkk, and R is

the correlation matrix corresponding to Σ. Similarly,

P (Y1 = 1, Y2 = 1) = Φ12(υ∗
1 , υ

∗
2 ;R) =

∫ υ∗
1

−∞
dυ1

∫ υ∗
2

−∞
dυ2φ(υ1, υ2, R). (4)

Responses Yk defined by (2) can be replaced by multilevel ordinal, or by
a mixture of continuous, binary, ordinal responses, etc. For instance, one can
define Yk = LT

kZ, where Lk is a given vector or

Yk =

⎧⎨⎩
2, if Zk ≤ dk2

1, if dk2 < Zk ≥ dk1

0, otherwise.

In general Components of a response vector are dependent if Σ is not diagonal.
This feature is useful in modelling stochastic dependence of various responses
to treatment; see Dragalin et al (2005), and Dragalin et al (2006).

Often, while responses Z can be observed, a regulatory agency is interested
only in the function

p(x) = P (Y1 = 1, Y2 = 0|x) = P (Y1 = 1|x) − P (Y1 = 1, Y2 = 1|x), (5)

where Y1 and Y2 are toxicity and efficacy values respectively.
Unfortunately there are examples when practitioners use dichotomized ver-

sions of the observed data for analysis (not for reporting). We show that this
may lead to a substantial loss of information. Thus it is worth distinguishing
between response functions and utility functions, understanding that some-
times they may coincide; distinguishing as in Dragalin et al (2006).

For illustration purposes, in Figure 1 we show three cases: two contin-
uous responses; both responses dichotomized; efficacy continuous, toxicity
dichotomized. For the first two cases, the utility function is based on di-
chotomized responses and in the last case utility is the conditional (Y1 = 1,
i.e. no toxicity) mean of efficacy. Note that

E(Y2|Y1 = 1) =
θT
2 f2(x)Φ1.((c1 − θT

1 f1(x))/σ1) − σ2ρφ((c1 − θT
1 f1(x))/σ1)

Φ1.(υ∗
1)

.
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Fig. 1. Examples of various combinations of continuous/dichotomized responses
and utility function.

2 Optimal design

2.1 Notation

Let ξ = {xi, λi}N
1 , xi ∈ X ,

∑N
i=1 λi = 1 and

M(ξ,Θ) =
N∑

i=1

λiμ(xi, Θ), (6)

where μ(xi, Θ) is the information matrix of a single observation at dose x
(Dragalin et al (2006)), and Θ is a collection of unknown parameters. Our
main goal is to build and to compare locally optimal continuous designs

ξ∗(Θ) = arg min
ξ

Ψ [M(ξ,Θ)], (7)

for various scenarios of dichotomization and different optimality criteria.

2.2 Information matrices for a single observation

Calculation of the information matrix for a single observation is a crucial step
in optimal design construction. For the sake of simplicity we assume that Σ
is known, i.e. does not contain unknown parameters. Otherwise a technique
similar to Fedorov et al (2001) should be applied.

When both Y1 and Y2 are continuous, and ηk(x,Θ) = θkf(x), k = 1, 2 and
ΘT = (θT

1 , θ
T
2 ) then
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μ(x,Θ) = F (x)Σ−1FT (x) = Σ−1
⊗

f(x)fT (x),

where F (x) =
(
f(x) 0

0 f(x)

)
.

When both responses are dichotomized, the information matrix is:

μ(x,Θ) = C1C2(P − ppT )−1CT
2 CT

1 ,

with

C1 =

(
φ( c1−θT

1 f(x)
σ1

) 0

0 φ( c2−θT
2 f(x)

σ2
)

)⊗
f(x),

C2 =
(
Φ(u1) 1 − Φ(u1) −Φ(u1)
Φ(u2) −Φ(u2) 1 − Φ(u2)

)
,

uk =
(ck′ − θT

k′f(x))/σk′ − ρ(ck − θT
k f(x))/σk√

1 − ρ2
,

P =

(
P (Y1 = 1, Y2 = 1) 0 0

0 P (Y1 = 1, Y2 = 0) 0
0 0 P (Y1 = 0, Y2 = 1)

)
, p = diag P.

Note that we set 1 ≤ rank{μ(x,Θ)} ≤ 2 and therefore the optimal designs
may have less support points than dim(θ1)+dim(θ2) as one might expect. We
do not discuss the mixed case (only one response is dichotomized) because we
failed to derive a closed form expression for μ(x,Θ).

2.3 Locally optimal designs

All computation were done under the assumption that the parameters of the
“normal” background model are: θ = (−1.5, 2.7,−0.05, 2.2).

If one is interested only in x∗(Θ) = arg minx p (x;Θ) then Ψ [M(ξ,Θ)] =
LT (Θ)M−1(ξ,Θ)L(Θ), where LT (Θ) = ∂x∗/∂Θ.

Since x∗(Θ) depends on all unknown parameters, we may conclude that it
is expedient to build ξ∗D = arg maxξ |M(ξ,Θ)|.

Locally D-optimal designs for estimating Θ using continuous responses
consist of two boundary points with equal weights and stays the same for all
parameter values (since the model is linear with respect to unknown parame-
ters), while the design region is 0 ≤ x ≤ 1 and there is no dependence on the
unknown parameters (compare with Dragalin et al (2006)).

The L-optimal design for continuous responses has the same support points
0 and 1, but with weights 0.6 and 0.4 respectively. Deviation of weights from
0.5 leads to very minor changes in both D and L criteria.

For dichotomized responses and the same utility function, the D-optimal
design is ξ∗D = {0, 0.4; 0.35, 0.5; 0.95, 0.1} and the L-optimal design is ξ∗L =
{0, 0.5; 0.85, 0.5}. For practical reason, the weights in the designs have been
rounded but this does not greatly affect the properties of the design.
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Table 1. Determinant of variance-covariance matrix of Θ̂ for sample size 200

Continuous case, design Dichotomized case, design
Model L-optimal D-optimal L-optimal D-optimal

Continuous 0.049 0.045 0.086 0.068

Binary 15.19 14.00 13.68 13.04

Table 2. Standard error of x̂∗ for sample size 200

Continuous case, design Dichotomized case, design
Model L-optimal D-optimal L-optimal D-optimal

Continuous 0.028 0.029 0.029 0.030

Binary 0.039 0.039 0.038 0.039

Table 1 lists the determinant of the variance-covariance matrix of Θ̂ for dif-
ferent models and designs. The D-optimal design always provides the smallest
value for the corresponding model and it is obvious that the continuous re-
sponse model provides more accurate parameter estimates, i.e. a smaller value
of the determinant of variance-covariance matrix. If one uses dichotomized
responses, 270% more subjects are needed to achieve the same precision in
parameter estimation as using continuous responses. Table 2 lists the theoret-
ical standard deviation, for 200 subjects, of the estimated target dose under
different designs and two models using continuous or binary outcomes. As ex-
pected, under the same model, the corresponding L-optimal design provides
the most accurate estimates of target dose x∗ in terms of minimizing the stan-
dard deviation of x̂∗. However, under the bivariate regression model, all of the
standard errors of the estimated target dose are around 0.03 which is smaller
than the standard errors obtained under the bivariate probit model (around
0.04), showing that using dichotomized responses leads to loss of accuracy in
the target dose estimator. In other words, to attain the same accuracy with
dichotomized responses as compared to continuous responses requires 78%
more subjects.

3 Simulation

To compare the performance for locating the maximum utility between using
continuous and dichotomized responses, we generate 200 continuous observa-
tions according to four designs: L and D optimal designs under the bivariate
probit model and bivariate regression model introduced in section 2, respec-
tively. We then fit a bivariate regression model to obtain parameter estimates,
calculate the corresponding p(Y1 ≤ c1, Y2 ≥ c2) and locate the target doses.
We then fit a bivariate probit model using the same 200 observations with
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cutoff values c1 = 0.5 and c2 = 0.1 and estimate the target dose which maxi-
mizes p10. We repeat the procedure 1000 times to compare the distributions
of the estimated target doses under the two models. Note that at dose zero
the toxicity rate is close to 0 and at the highest dose one, the efficacy rate is
close to 1. In the simulated data, it is likely that there is no non-efficacious
response at dose 1 or no toxicity response at dose 0. This consequently leads
to singularities in the parameter estimation procedure. To fix this problem,
we introduce regularization of the likelihood function.

The simulation results support the theoretical results in Table 1. Due to
space limitations, we only plot the results of the L-optimal design under the
bivariate regression model and the bivariate probit model in Figure 2. The
graph on the left illustrates the results when both responses are binary and the
graph on the right shows the results when both responses are continuous. The
spread of the histogram under the bivariate regression model is substantially
smaller than under the bivariate probit model. All the results suggest that
using continuous responses provides more accurate estimates of the target
dose. We suggest use of the L-optimal design. However, if this is difficult to
obtain, the D-optimal design should be a good alternative.

Fig. 2. Histogram for x̂∗ from simulations. Left panel: Histogram of x̂∗ according
to L-optimal design under the bivariate probit model. Right panel: Histogram of x̂∗

according to L-optimal design under the bivariate regression model.

4 Conclusion

The models discussed, which are based on a multivariate normal distribution,
are particular cases of what is called a generalized probit model (probably we
abuse established terminology but failed to find something better) and they
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are parsimonious and flexible. They allow a reasonable description of cases
which can be met in dose finding practice. We discussed only locally optimal
designs with the clear understanding that further research on adaptive and
Bayesian designs similar to Dragalin and Fedorov (2006) and Dragalin et al
(2006) should follow. The result on wastage of information, if one resorts to
dichotomization, can be viewed as a spin off to the above.
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1 Introduction

During the last century quantum theory developed to a successful theory
which describes the physical reality of the mesoscopic and microscopic world.
Quantum mechanics was developed with the aim of describing atoms and
explaining detected spectral lines in a measurement apparatus. It took more
than eighty years from its discovery before it was possible to experimentally
determine and visualize the most fundamental object in quantum mechanics,
the wave function. At this point the statistical community also began to take
part in developments.
There are two papers from the last century, of interest from an interpretational
point of view: Einstein et al (1935) and Bell (1964). In the first, the authors
argued that the theory of quantum mechanics is not a complete theory of
nature. So if we are able to formulate a complete theory (including hidden
variables), we are able to make precise predictions. In their opinion quantum
mechanics is incomplete if it is true. Their main assumption is nowadays
described as local realism. Bell showed that the most general local hidden
variable theory could not reproduce some correlations that arise in quantum
mechanics. So local realism is false if quantum mechanics is true. Clauser et al
(1969), Greenberger et al (1989) and Hardy (1993) proposed experiments to
try to establish one of the above statements. In the literature there also exists
a large number of proofs of Bell’s theorem stating that quantum mechanics is
incompatible with local realistic theories of Nature.
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2 Bell-type experiments

In the following we study the sets of all possible joint probability distributions
of the outcomes of a Bell-type experiment, under two sets of assumptions,
corresponding respectively to local realism and to quantum physics. Bell’s
theorem can also be interpreted as stating that the set of LR (local realism)
probability laws is strictly contained in the QM (quantum mechanics) set.
We now want to give a description of a p × q × r Bell experiment, where
p ≥ 2, q ≥ 2 and r ≥ 2 are fixed integers. The experiment involves a source
and a number p of parties, usually called Alice, Bob, and so on in the phys-
ical literature. The source sends entangled3 photons to Alice and each other
party. Before the photons arrive at the parties, each of the parties commits
him or herself to use of a particular measurement device out of some set of
possible measurement setups. Let us suppose that each party can choose one
of q measurements.
When the photons arrive, each of the parties measure with their chosen set-
ting. We suppose that the possible outcomes for each of the parties can be
classified into one of r different outcome categories. Given that Alice chose
setting a, Bob b, and so on, there is some joint probability p(x, y, . . . |a, b, . . . )
that Alice will then observe outcome x, Bob y, . . . . We suppose that the
parties chose their settings a, b, . . . , at random from some joint distribu-
tion with probabilities σ(a, b, . . . ); a, b, · · · = 1, . . . , q. Altogether, one run
of the whole experiment has outcome (a, b, . . . ;x, y, . . . ) with probability
p(a, b, . . . ;x, y, . . . ) = σ(a, b, . . . )p(x, y, . . . |a, b, . . . ).
One can consider “unbalanced” experiments with possibly different numbers
of measurements per party, different numbers of outcomes per party’s mea-
surement. More complicated multi-stage measurement strategies are also of
interest. We stick here to the basic “balanced” designs, for ease of exposition.

Fig. 1. Schematic Bell experiment

In fig.(1) we give an example of a 2×2×2 Bell experiment. The outcomes X ,
3 Quantum entanglement is a fundamental concept in quantum physics in which

the quantum states of two or more objects have to be described with reference
to each other, even if the individual objects are spatially separated. This leads to
correlations between observable physical properties of the system.
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Y are conventionally coded ±1. Alice and Bob both choose between settings
numbered or labelled 1, 2 for the setting of the measurement A,B; they can
switch between a = 1 or 2 and b = 1 or 2 on Alice’s and Bob’s apparatus. The
random variable A denotes the measurement setting of Alice and the random
variable B denotes the measurement setting of Bob, both taking values in
{1, 2}. The experimenter decides on the distribution σ of (A,B),

σ(a, b) = P{A = a,B = b}. (1)

The random variable X denotes the measurement outcome of Alice and Y the
outcome of Bob’s measurement. The joint distribution of (X,Y ) depends on
the chosen setting pair (a, b) ∈ {1, 2}2. The state of the entangled qubit4 Ψ
together with the measurement settings determines four conditional distribu-
tions of (X,Y ) given (A,B),

Q(x, y|a, b;Ψ) = PΨ
a,b{X = x, Y = y} (2)

The joint distribution of (A,B,X, Y ) for a single trial of the experiment reads
as

Q(a, b, x, y;Ψ, σ) = σ(a, b)QΨ
ab(X = x, Y = y). (3)

We explain how the quantum probabilities are computed in a moment.
Local realistic theories are characterized by the possibility of jointly modelling
the outcomes given all possible settings. In this case we have four binary
random variables (X1, X2, Y1, Y2). For given a ∈ {1, 2}, Xa ∈ {−1, 1} denotes
the outcome which Alice would have observed if her measurement setting was
a. Take π as the probability distribution for (X1, X2, Y1, Y2) which can be
thought of as an arbitrary 16-dimensional probability vector. Then π ∈ Π
determines four distributions of (X,Y ) given (A,B) given by

Pπ
a,b(X = x, Y = y) = P (x, y|a, b;π) =

∑
x1, x2, y1, y2 ∈ {±1}

xa = x, yb = y

πx1,x2,y1,y2 (4)

A nonlocality proof is to find a state Ψ and measurements that violate local
realism, i.e. there exists no π such that P (., .|a, b;π) = Q(., .|a, b;Ψ)∀(a, b) ∈
{1, 2}2.

The classical polytope

Local realism means the following:

“Measurements which were not done also have outcomes; and both
actual and potential measurement outcomes are independent of the
measurement settings actually used by all the parties”.

4 is a unit of quantum information similar to a bit in classical information theory.
It is described by a state vector in a two-level quantum mechanical system.
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For ease of notation let us consider a two party experiment. As before, X1,
. . . , Xq and Y1, . . . , Yq denote the counterfactual outcomes of each of Alice’s
and Bob’s possible q measurements (taking values in {1, . . . , r}. We may think
of these in statistical terms as missing data; in physical terms they are called
hidden variables. Denote by A and B Alice’s and Bob’s random settings, each
taking values in {1, . . . , q}. The actual outcomes obse rved by Alice and Bob
are therefore X = XA and Y = YB. The data arising from one run of the
experiment, A,B,X, Y , has joint probability distribution function

p(a, b;x, y) = σ(a, b)π(Xa = x, Yb = y).

Now the joint probability distribution of Xa and Yb can be arbitrary, but in
any case it is a mixture of all possible degenerate distributions of these vari-
ables. Consequently, for a fixed setting distribution σ, the joint distribution
of A,B,X, Y is also a mixture of the possible distributions corresponding to
degenerate (deterministic) hidden variables. Since there are only finitely many
degenerate distributions when p, q and r are fixed, we see that

under local realism and freedom, the joint probability laws of the
observable data lie in a convex polytope, whose vertices correspond
to degenerate hidden variables.

We call this polytope the classical polytope.

The quantum body

The basic rule for computation of probabilities in quantum physics is called
Born’s law: take the squared lengths of the projections of the state vector into
a collection of orthogonal subspaces corresponding to the different possible
outcomes. Let H and K denote two complex Hilbert spaces. We take a unit
vector |Ψ〉 in H ⊗ K. For each a, let La

x, x = 0, . . . , r − 1, denote orthogonal
closed subspaces of H, together spanning all of H. Similarly, let M b

y denote the
elements of q collections of decompositions of K into orthogonal subspaces.
Finally, define QΨ (x, y|a, b) = ‖ΠLa

x
⊗ΠMb

y
|Ψ〉‖2, where Π denotes orthogonal

projection into a closed subspace. This defines a collection of joint probability
distributions of X and Y , indexed by (a, b). Note that the quantum probabil-
ities depend not just on Ψ but also on the collections of subspaces indicated
above; when we write Ψ as a parameter of these probability distributions, we
are really thinking of the whole collection of state and subspaces.
We note following facts:

The collection of all possible quantum probability laws of A,B,X, Y
(for fixed setting distribution σ) forms a closed convex body containing
the local polytope.
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The no-signalling polytope:

The two convex bodies so far defined are forced to live in a lower dimensional
affine subspace, by the basic normalization properties of probability distri-
butions:

∑
x,y P (a, b|x, y) = σ(a, b) for all a, b. Moreover, probabilities are

necessarily non negative, so this restricts us further to some convex polytope.
However, physics (locality) implies another collection of equality constraints,
putting us into a still smaller affine subspace. These constraints are called the
no-signalling constraints:

∑
y p(a, b;x, y) should be independent of b for each

a and x, and vice versa. It is easy to check that both the local realist proba-
bility laws, and the quantum probability laws, satisfy no-signalling. Quantum
mechanics is certainly a local theory as far as manifest (as opposed to hidden)
variables are concerned.

The set of probability laws satisfying no-signalling is therefore another
convex polytope in a low dimensional affine subspace; it contains the
quantum body, which in turn contains the classical polytope.

3 GHZ paradox

van Dam et al (2005) proved Bell’s theorem in the 3× 2× 2 case. Under local
realism we can introduce hidden variables X1, X2, Y1, Y2, Z1, Z2, standing for
the counterfactual outcomes of a three party experiment. The experimenters’
settings are (assigned by) setting 1 or 2. These variables are binary, their
possible outcomes are ±1. Now note that

(X1Y2Z2).(X2Y1Z2).(X2Y2Z1) = (X1Y1Z1).

Thus, if the setting patterns (1, 2, 2), (2, 1, 2) and (2, 2, 1) always result in X ,
Y and Z with XY Z = +1, it will also be the case that the setting patte rn
(1, 1, 1) always results in X , Y and Z with XY Z = +1.
Next define the 2 × 2 matrices

σ1 =
(

0 1
1 0

)
, σ2 =

(
1 0
0 −1

)
.

One can easily check that σ1σ2 = −σ2σ1, (anticommutation), σ2
1 = σ2

2 = 1,
the 2×2 identity matrix, since σ1 and σ2 are both Hermitean with eigenvalues
±1.
Now define matrices X1 = σ1 ⊗ 1 ⊗ 1, X2 = σ2 ⊗ 1 ⊗ 1, Y1 = 1 ⊗ σ1 ⊗ 1,
Y2 = 1 ⊗ σ2 ⊗ 1, Z1 = 1 ⊗ 1 ⊗ σ1, Z2 = 1 ⊗ 1 ⊗ σ2. It is now easy to check
that

(X1Y2Z2).(X2Y1Z2).(X2Y2Z1) = −(X1Y1Z1),

and that (X1Y2Z2), (X2Y1Z2), (X2Y2Z1) and (X1Y1Z1) commute with one
another.
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Since these four 8×8 Hermitean matrices commute they can be simultaneously
diagonalized. Some further elementary considerations lead one to conclude the
existence of a simultaneous eigenvector |ψ〉 common to all four, with eigen-
values +1, +1, +1, −1 respectively. We take this to be the state |ψ〉, with the
three Hilbert spaces all equal to C2. We take the two orthogonal subspaces
for the 1 and 2 measurements of the parties all to be the two eigenspaces
of σ1 and σ2 respectively. This generates quantum probabilties such that the
setting patterns (1, 2, 2), (2, 1, 2) and (2, 2, 1) always result in X , Y and Z
with XY Z = +1, while the setting pattern (1, 1, 1) always results in X , Y
and Z with XY Z = −1.
Thus we have shown that a vector of quantum probabilities exists, which can-
not possibly occur under local realism. Since the classical polytope is closed,
the corresponding quantum law must be strictly outside the classical poly-
tope. It therefore violates a generalized Bell inequality corresponding to some
face of the classical polytope, outside of which it must therefore lie.

4 GHZ experiment

How should one design good Bell experiments, and what is the connection of
all this physics with mathematical statistics? Indeed there are many connec-
tions — as already alluded to; the hidden variables of a local realist theory
are simply the missing data of a nonparametric missing data problem.
In the laboratory one creates the state Ψ by a source of entangled photons,
and the measurement devices of Alice and Bob by assemblages of polarization
filters, beam splitters and photodetectors implementing thereby the measure-
ments corresponding to the subspaces Lx

a, etc. One also settles on a joint
setting probability π. One repeats the experiment many times, hoping to in-
deed observe a quantum probability law lying outside the classical polytope,
i.e., violating a Bell inequality. The famous Aspect et al (1982) experiment
implemented this program in the 2× 2× 2 case, violating the so-called CHSH
inequality (which we will describe later) by a large number of standard de-
viations. What is being done here is statistical hypothesis testing, where the
null hypotheses is local realism, the alternative is quantum mechanics; the
alternative being true by design of the experimenter and validity of quantum
mechanics.

5 How to compare different experiments

In the laboratory one will prefer an experiment under which the distance from
the quantum physical reality is far from the nearest local realistic or classical
description. Physicists have invested a lot of research into Euclidean distance
for this purpose; but it is not clear what this distance means operationally,
and whether it is comparable over experiments of different types. Moreover
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the Euclidean distance is altered by taking different setting distributions π. It
shows that Euclidean distance is closely related to noise resistance, a kind of
robustness to experimental imperfection. As one mixes the quantum proba-
bility distribution more and more with completely random, uniform outomes,
corresponding to pure noise in the photodetectors, the quantum probability
distribution shrinks towards the center of the classical polytope, at some point
passing through one of its faces. The amount of noise which can be allowed
while still admitting violation of local realism is directly related to Euclidean
distance.

6 Kullback-Leibler divergence and statistical strength

van Dam et al (2005) proposed use of relative entropy,

D(q : p) =
∑
abxy

q(abxy) log2(q(abxy)/p(abxy)),

where q now stands for the “true” probability distribution under some quan-
tum description of reality, and p stands for a local realist probability distri-
bution. They evaluate supq infp D(q : p) where the supremum is taken over
parameters at the disposal of the experimenter (the quantum state |ψ〉, the
measurement projectors, the set ting distribution π); while the infimum is
taken over probability distributions of outcomes given settings allowed by lo-
cal realism. (Thus the q and p in the above supremum and infimum roles stand
for something different from the probability laws q and p lying in the quantum
body and classical polytope respectively; hopefully this abuse of notation may
be excused.)
They argue that this relative entropy gives direct information about the num-
ber of trials of the experiment required to give a desired level of confidence in
the conclusion of the experiment. Two experiements which differ by a factor 2
are such that the one with the smaller divergence needs to be repeated twice
as often as the other in order to give an equally convincing rejection of local
realism.
Moreover, optimizing over different sets of quantum parameters leads to var-
ious measures of “strength of non-locality”. For instance, one can ask what
is the best experiment based on a given entangled state |ψ〉? Exper iments
of different format can be compared with one another, possibly discounting
the relative entropies according to the numbers of quantum systems involved
in the different experiments in an obvious way. They proved that the interior
infimum is basically the computation of a nonparametric maximum likelihood
estimator in a missing data problem; so statistical methods can be used.
Let Z be an arbitrary finite set. For a distribution Q over Z, Q(z) denotes the
probability of event {z}. For two (arbitrary) distributions Q and P defined
over Z, the Kullback-Leibler (KL) divergence from Q to P is defined as
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D(Q‖P ) =
∑
z∈Z

Q(z) log
Q(z)
P (z)

(5)

where the logarithm is to base 2. We use the conventions that, for y > 0,
y log 0 := ∞, and 0 log 0 := limy→0 y log y = 0. As above we have fixed our
experiment and σ; from a Bayesian data analyst’s point of view we will use
the KL distance as

− log(P (Pσ|data))
N

≈ inf
π
D(QσΨ‖P σΨ ). (6)

In the frequentist setup we consider the p-value of the best test statistics of
H0 : Pσ versus H1 : Qσ and derive

− log(p(data))
N

≈ inf
π
D(QσΨ‖P σΨ ). (7)

This measure of statistical strength can be performed for different experimen-
tal setups in a quantum experiment and is used for evaluating the performance
of a quantum experiment. For details on this we refer to van Dam et al (2005).

7 Conclusions

Bell experiments offer a rich field involving many statistical ideas, beautiful
mathematics, and offering some exciting challenges. Moreover it is a hot topic
in quantum information and quantum optics. Much remains to be done.

References

Aspect A, Dalibard J, G R (1982) Experimental test of bell’s inequalities using time-
varying analyzers. Phys Rev Lett 49:1804–1807

Bell J (1964) On the einstein-podolsky-rosen paradox. Physics 1:195–200
Clauser J, Horne M, Shimony A, Holt R (1969) Proposed experiment to test local

hidden-variable theories. Phys Rev Lett 23:880–884
van Dam W, Gill RD, Grünwald PD (2005) The statistical strength of nonlocality

proofs. IEEE – Trans Inf Theory 51:2812–2835
Einstein A, Podolsky B, Rosen N (1935) Can quantum-mechanical description of

physical reality be considered complete? Phys Rev 47:777–780
Greenberger D, Horne M, Zeilinger A (1989) Going beyond bell’s theorem. In:

Kafatos M (ed) Bell’s Theorem, Quantum Theory and Conceptions of the Uni-
verse, Kluwer, Dordrecht

Hardy L (1993) Nonlocality for two particles without inequalities for almost all
entangled states. Phys Rev Lett 71:1665–1668



A Comparison of Efficient Designs for Choices
Between Two Options

Heiko Großmann1, Heinz Holling2, Ulrike Graßhoff3, and Rainer Schwabe3

1 School of Mathematical Sciences, Queen Mary, University of London, Mile End
Road, London E1 4NS, United Kingdom h.grossmann@qmul.ac.uk

2 Psychologisches Institut IV, Westfälische Wilhelms-Universität Münster,
Fliednerstr. 21, 48149 Münster, Germany holling@psy.uni-muenster.de

3 Institut für Mathematische Stochastik, Otto-von-Guericke-Universität
Magdeburg, PF 4120, 39016 Magdeburg, Germany
ulrike.grasshoff@mathematik.uni-magdeburg.de,

rainer.schwabe@mathematik.uni-magdeburg.de

Summary. Optimal designs for choice experiments with choice sets of size two are
frequently derived under the assumption that all model parameters in a multino-
mial logit model are equal to zero. In this case, optimal designs for linear paired
comparisons are also optimal for the choice model. It is shown that the methods for
constructing linear paired comparison designs often require a considerably smaller
number of choice sets when the parameters of primary interest are main effects.
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1 Introduction

The question why people prefer some products or services over others is easy to
ask but usually not easy to answer. Generally, a number of factors or attributes
enter into the evaluation of the available options and an advantage of, say, a
mobile phone in terms of display size may well be offset by its tiny keypad.
Choice experiments are by now widely used to learn how the various attributes
influence decisions, and applications in marketing, health economics and other
fields abound. Excellent descriptions of these experiments, their background,
underlying models and analysis can be found in textbooks such as Louviere
et al (2000) and Train (2003).

A typical choice experiment consists of a series of choice tasks. Each task
offers a choice set of options and asks the respondent to select, for example, the
most attractive alternative. The choice sets presented are generated according
to an experimental design which specifies attribute levels for the options in
each set. Originating with the work of Louviere and Woodworth (1983) the
optimal and efficient design of choice experiments has attracted considerable
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attention. Most of these developments have been summarized by Großmann
et al (2002) and Louviere et al (2004) and new results continue to appear
(Sándor and Wedel (2005); Kessels et al (2006)).

Models for choice data are nonlinear in the unknown model parameters.
For the common alphabetic optimality criteria it is therefore not possible to
find designs that are optimal regardless of the parameter values. Yet, opti-
mal designs that do not depend on the parameters can be derived when it
is assumed that all model parameters are equal to zero or, equivalently, that
within each choice set each option is chosen with the same probability. More
precisely, the optimal design problem for the choice model is then equiva-
lent to the corresponding problem for an approximating linear model (see e.g.
Großmann et al, 2002). Under the above assumption optimal choice designs
have been derived in a series of papers by researchers at the University of
Technology, Sydney (Street et al (2001); Burgess and Street (2003); Street
and Burgess (2004a); Burgess and Street (2005)). For the practically impor-
tant case of choices between two options these designs can be contrasted with
optimal designs for linear paired comparison models (Graßhoff et al (2003,
2004)) which are also optimal for choice experiments when the model para-
meters are assumed to be zero.

This note aims to provide guidance for the design of choice experiments
with choice sets of size two by comparing the above design approaches. In
particular, we will be consider which designs are available when the attributes
in an experiment have varied numbers of levels and how many choice sets are
required. After a discussion of choice and linear paired comparison models
the main part of the paper is devoted to designs for main effects models.
Subsequently, we very briefly comment on the few design approaches available
to date for models which include interaction terms.

2 Models

Suppose there are K attributes that are assumed to drive the preferences for
the options in a product category. Although some of these may be quantitative
in nature, usually only a finite set Xk = {1, . . . , vk} of levels is investigated
for each attribute k in a choice experiment. The options are then represented
by combinations of attribute levels. In what follows, we restrict ourselves to
choices between two options. The first option in each choice set is denoted
by s = (s1, . . . , sK) and the second one by t = (t1, . . . , tK), which are both
elements of X1 × . . .×XK .

Many choice models can be derived from random utility theory (see e.g.
Train, 2003). To this end, it is assumed that the utility U(s) obtained from
each option s can be additively decomposed into a deterministic part V (s)
and a random part ε. Furthermore, it is assumed that a decision maker al-
ways chooses the option with the highest utility. Thus if Y denotes the binary
random variable that equals 1 when s is chosen and 0 otherwise, this amounts
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to P (Y = 1) = P (U(s) > U(t)) for any two options s and t. The additional
assumption that all ε variables are independent identically distributed ac-
cording to the Gumbel distribution gives rise to the multinomial logit (MNL)
model which is most commonly used in practice and for which the choice
probabilities take the form P (Y = 1) = eV (s)/(eV (s) + eV (t)).

The deterministic part of the utility function is related to the attributes
by a minimal linear parametrization V = f ′β, where f = (f1, . . . , fp)′ is a
vector of p known regression functions and β contains the unknown model
parameters. The choice probabilities in the MNL model can then be written
as P (Y = 1) = e(f(s)−f(t))′β/(1 + e(f(s)−f(t))′β) from which it is easily seen
that for choices between two options the MNL model is equivalent to logistic
regression with predictors given by the components of (f (s) − f(t))′.

Linear paired comparison models were developed for situations in which
again two options are compared at a time, but where the response variable is
(at least approximately) continuous. Such variables occur, for example, when
respondents are asked to state how much they prefer one option over the other.
In this case, the evaluation of the pair (s, t) can be described by the model
equation Ỹ = (f (s) − f(t))′β̃ + ε̃ where β̃ denotes the unknown parameter
vector and the random variable ε̃ has mean zero. Observations corresponding
to different pairs are assumed to be uncorrelated with constant variance σ2.
A positive value of Ỹ indicates the degree to which s is preferred over t and
similarly a negative value of Ỹ corresponds to the opposite preference. As an
aside, it is worth noting that the linear paired comparison model can be used
to estimate parameter vectors β̃ for individual respondents, whereas the MNL
model usually requires a group-level analysis.

An exact design ξN for a choice experiment specifies the N choice sets that
are presented for evaluation. When each choice set consists of two options, ξN

can be represented as an N -tuple of pairs, that is ξN = ((s1, t1), . . . , (sN , tN )).
Notice that not all pairs specified by ξN need to be different. Moreover, note
that here the choice sets are represented by ordered pairs so that two pairs
(si, ti) and (sj , tj) with sj = ti and tj = si are regarded as different.

Exact designs for the linear paired comparison model are specified in ex-
actly the same manner. The common optimality criteria for measuring the
quality of a design ξN = ((s1, t1), . . . , (sN , tN )) in this model are based on
the normalized information matrix M(ξN ) = 1

N X′X, where X is the N×p de-
sign matrix whose ith row is the vector (f(si)−f(ti))′, i = 1, . . . , N . Similarly,
measures for the performance of ξN in the MNL model are usually functionals
of the normalized information matrix M(ξN ; β) in that model which depends
on the unknown parameter vector β. Yet if β = 0 or if, equivalently, the choice
probabilities are equal to 1

2 , it follows that M(ξN ; β) = 1
4M(ξN ). The impor-

tant consequence for the common optimality criteria such as the D-criterion
is then that within the class Ξ = {ξN : N ∈ N} any optimal design for the
linear paired comparison model is also optimal for the MNL model and vice
versa, whenever β = 0 is assumed. With regard to the definition of optimality
in terms of the normalized information matrix we note that if ξ∗ ∈ Ξ is a
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design for which the criterion function based on the normalized information
matrix attains its optimum, and if for a given number of choice sets N a de-
sign ξN with M(ξN ) = M(ξ∗) can be found, then this design is also optimal
among all designs of size N when the criterion function is evaluated for the
non-normalized information matrix X′X.

When optimal designs for the MNL model are derived under the above
assumption it is worthwhile to note the following implications. First, the de-
signs are generally not optimal, if β �= 0. Second, the MNL model is implicitly
replaced by a simpler linear model and optimal designs for this linear model
are also optimal for the MNL model. Finally, since optimal designs are not
unique, optimal designs for the surrogate linear model can be more economical
in that they require a smaller number of choice sets.

In what follows we present the first comparison of efficient designs for
choices between two options that were derived under the assumption β = 0
and optimal designs for the linear paired comparison model. In doing so we
hope to provide orientation for practical applications.

3 Designs for estimating main effects

Many choice experiments focus on the mean effects of the various attribute
levels on the responses assuming that attribute interactions are negligible.
The deterministic part of the utility obtained from option s is then taken to
be the sum V (s) =

∑K
k=1 βk,sk

where βk,sk
is interpreted as the utility of the

level sk of attribute k.
Such experiments can be described by a main effects model with a minimal

parametrization derived from suitable identifiability conditions. Here we adopt
the standard conditions

∑vk

i=1 βk,i = 0 for every k = 1, . . . ,K which implies
that the attribute levels in the vector f are effects–coded. More precisely, we
have f = (f ′1, . . . , f

′
K)′ with components fk, k = 1, . . . ,K, where fk(i) is the

ith unit vector of length pk = vk −1 for i = 1, . . . , vk −1 and fk(i) = −1pk
for

i = vk. As usual, 1a denotes a column vector of length a with all entries equal
to 1. The parameter vector in the MNL model can be partitioned accordingly
as β = (β′

1, . . . ,β
′
K)′ with βk = (βk,1, . . . , βk,pk

)′ for k = 1, . . . ,K. In total,
there are then p = p1 + . . .+ pK model parameters.

Most of the optimal designs for choice and paired comparison experiments
have been derived using the D-criterion which aims at maximizing the de-
terminant of the normalized information matrix. When all attributes have
the same number of levels v1 = . . . = vK = v, optimal designs which re-
quire 1

2v
K(v − 1)K choice sets or pairs have been constructed by Graßhoff

et al (2004). For the special case v = 2 the same designs were also derived
by Street et al (2001) using a different approach. Generally, the number of
responses required by these designs is much too large to be useful in practice.
Constructions that yield smaller optimal designs were presented by Street
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and Burgess (2004a) for v = 2 and for general v by Graßhoff et al (2004) and
Burgess and Street (2005).

The method described by Street and Burgess (2004a, p. 188) uses a regular
fractional factorial of resolution III or higher for K two-level factors to gen-
erate the choice sets. Each row of the fractional factorial represents the first
option in a pair. The corresponding second option is then obtained by taking
the foldover of the first one. Using the coding 0 for the low and 1 for the high
level of each factor, the implication is that for generating the second option
every 0 in the first option is replaced by 1 and every 1 by 0. With this coding,
the second options can equivalently be constructed by adding the vector 1′

K

to every row of the fractional factorial using modulo 2 arithmetic. If for any
two options s and t both (s, t) and (t, s) are generated by this procedure, then
only one of these pairs is used as a choice set in the final design. We note that
in our notation the low level of each attribute would be represented by 1 and
the high level by 2. The fractional factorial then defines the option s in every
pair and the second option t is obtained by setting tk = 2 when sk = 1 and
tk = 1 when sk = 2 for every k.

In general, the minimum number of choice sets required by this foldover
construction is equal to 2K−m where m is the largest number for which a reg-
ular two-level fractional factorial of resolution III or higher can be generated
by means of m defining contrasts. If there exists a corresponding fractional
factorial such that the m defining contrasts have even wordlength (see e.g. Wu
and Hamada, 2000, p. 157), this number can be reduced further to 2K−m−1.

A different technique, which is also applicable when the number of lev-
els v is larger than two, uses Hadamard matrices to construct designs with
a reduced number of pairs (Graßhoff et al, 2004, p. 366). As originally pre-
sented, this construction produces the design in the form of the design ma-
trix. Alternatively, the method can be described as follows. For K factors
with v levels each, consider the smallest Hadamard matrix of order u ≥ K
and choose a u ×K submatrix H of that matrix. Generate a column vector
a whose components are the v(v − 1)/2 ordered pairs corresponding to the
subsets of size two of {1, . . . , v} listed in some arbitrary order, for example,
a = ((1, 2), (1, 3), . . . , (1, v), (2, 3), . . . , (v − 1, v))′. Denote by a− the vector
obtained by replacing each pair (i, j) in a with (j, i). Furthermore, replace
every 1 in H with a and every −1 with a− respectively. The resulting array
has N rows and K columns where N = 1

2uv(v − 1) and is denoted by D.
The element in row n and column k of D is an ordered pair (xn,k, yn,k). For
n = 1, . . . , N set sn = (xn,1, . . . , xn,K) and tn = (yn,1, . . . , yn,K). The design
ξN consisting of the pairs (sn, tn) is then optimal.

For v = 2 the foldover construction and the Hadamard approach both
require 4 choice sets when K = 3 or K = 4, and 8 sets when 5 ≤ K ≤ 8.
However, a comparison of the designs for arbitrary values of K is complicated.
The reason is, that in order to determine the minimum number of choice sets
for the foldover construction it is necessary to investigate whether there ex-
ists a regular fractional factorial of resolution III or higher generated by m (as
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defined above) defining contrasts of even wordlength. Generally, this investi-
gation requires the use of some algorithm as, for example, the one presented by
Laycock and Rowley (1995). In practice, implementations of such algorithms
are rarely available, however, and fractional factorials are usually taken from
textbooks or similar sources. Suppose then that for a given number of at-
tributes K a regular fraction of resolution III or higher with the least possible
number of runs has been identified in this way, which is subsequently used in
the foldover construction. Suppose further that of the m corresponding defin-
ing contrasts at least one has odd wordlength. In this case, if there exists a
regular fraction of resolution III or higher with the same number of runs that
is generated by m defining contrasts which all have even wordlength, then the
number of choice sets resulting from the foldover construction will generally
be considerably larger than the number of sets required by the Hadamard
approach.

For v > 2 the Hadamard approach can also be compared with a general
construction for situations where the attributes can have different numbers of
levels (Burgess and Street, 2005, p. 296). The optimal designs generated by
this approach consist of at least v1 × . . . × vK choice sets. When vk = v for
k = 1, . . . ,K, this lower bound is equal to vK . By contrast, the Hadamard
construction produces optimal designs with 1

2uv(v− 1) sets, where u ≤ K +3
for all practically relevant values of K. In fact, the inequality holds at least for
every K ≤ 424 since Hadamard matrices are known to exist for every multiple
of 4 up to this value (e.g. Graßhoff et al, 2004, p. 366). Thus the number of
choice sets grows only linearly in the number of factors, whereas this number
increases exponentially for the construction proposed by Burgess and Street
(2005).

For specific values of v some additional constructions are available which
often produce even smaller optimal designs than the Hadamard approach.
Corresponding results for v = 3, 4, 5 are presented by Graßhoff et al (2004). For
example, these methods can be used to generate an optimal design for K = 5
and v = 4 with 24 choice sets, whereas 48 sets are required by the Hadamard
approach as well as an optimal design considered by Street et al (2005, p. 467).
Specific constructions sometimes even produce saturated designs; that is, the
number of choice sets equals the number of model parameters.

Only a few results are available for the case of attributes with different
numbers of levels v1, . . . , vK . The method of Burgess and Street (2005, p. 296)
is generally applicable, but the number of choice sets can quickly become very
large. In fact, the number of sets required is generally a multiple of v1 × . . .×
vK . Another approach is similar in vein to the Hadamard construction and
replaces the symbols in the columns of a mixed orthogonal array of strength
two with pairs of attribute levels (Graßhoff et al, 2004, p. 368). This method is
less widely applicable, but yields optimal designs with a comparatively small
number of choice sets. Graßhoff et al (2004) illustrate the construction for six
factors with three and one factor with four levels with a design consisting of 18
choice sets. By contrast, 2916× 3 = 8748 sets are needed when the method of
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Burgess and Street (2005) is used. Moreover, the method based on orthogonal
arrays is particularly useful when some attributes in a choice experiment have
two and all other attributes have three levels. For example, optimal designs
with 36 choice sets are available for experiments with up to 11 two-level and
up to 12 three-level attributes.

4 Interactions

Optimal designs for estimating main effects and two-factor interactions were
derived by van Berkum (1987), Street et al (2001) and Graßhoff et al (2003).
Generally, these designs are too large for practical applications. For the case
of two-level attributes Street and Burgess (2004a) presented a generalization
of the foldover construction for main effects models. The size of the corre-
sponding designs is a multiple of the number of runs of a two-level regular
fractional factorial of resolution V . When the attributes have different num-
bers of levels, results are only available for K = 2, 3, 4 attributes (Burgess and
Street (2005)).

5 Concluding remarks

The rapidly growing number of applications of choice experiments in many
fields has led to an increased interest in choice designs in recent years. One
strand of research has focused on deriving optimal designs under the assump-
tion that the parameters in the multinomial logit model are equal to zero. For
choices between two options this assumption implies that optimal designs for
linear paired comparison models are also optimal within the context of choice
experiments. When the parameters of primary interest are main effects, these
designs are particularly attractive since they require a comparatively small
number of choice sets.

Further research is needed to derive optimal designs with practical num-
bers of choice sets for models with interaction terms. Moreover, there are other
important problems, such as the construction of designs for partial profiles
(Graßhoff et al (2003, 2004); Großmann et al (2006)) and for choice experi-
ments containing a no-choice option (Street and Burgess (2004b)), which need
further study.
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Linda M. Haines1, Gaëtan Kabera2, Principal Ndlovu2 and Timothy E.
O’Brien3

1 Department of Statistical Sciences, University of Cape Town, Rondebosch 7700,
South Africa. lhaines@stats.uct.ac.za

2 School of Statistics and Actuarial Science, University of KwaZulu-Natal,
Pietermaritzburg 3200, South Africa.
201291190@ukzn.ac.za ndlovup@ukzn.ac.za

3 Department of Mathematics and Statistics, Loyola University Chicago, 6525 N.
Sheridan Road, Chicago, Illinois 60626, U.S.A. teobrien@gmail.com

Summary. In this paper locally D-optimal designs for the logistic regression model
with two explanatory variables, both constrained to be greater than or equal to zero,
and no interaction term are considered. The setting relates to dose-response exper-
iments with doses, and not log doses, of two drugs. It is shown that there are two
patterns of D-optimal design, one based on 3 and the other on 4 points of support,
and that these depend on whether or not the intercept parameter β0 is greater than
or equal to a cut-off value of −1.5434. The global optimality of the designs over
a range of β0 values is demonstrated numerically and proved algebraically for the
special case of the cut-off value of β0.

Key words: D-optimality, logistic regression in two variables

1 Introduction

Logistic regression models with two or more explanatory variables are widely
used in practice, as for example in dose-response experiments involving two
or more drugs. There has however been only sporadic interest in optimal de-
signs for such models, with the papers of Sitter and Torsney (1995), Atkinson
and Haines (1996), Jia and Myers (2001), Torsney and Gunduz (2001) and
Atkinson (2006) and the thesis of Kupchak (2000) providing valuable insights
into the underlying problems. In the present study a simple setting, that of
the logistic regression model in two explanatory variables with no interaction
term, is considered. The variables are taken to be doses, and not log doses, of
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two drugs and are thus constrained to be greater than or equal to zero. The
aim of the study is to construct locally D-optimal designs, and in so doing to
identify patterns in the designs that may depend on the values of the para-
meters in the model, and in addition to demonstrate the global optimality of
these designs both numerically and algebraically.

2 Preliminaries

Consider the logistic dose-response model defined by

logit(p) = β0 + β1d1 + β2d2

where p is the probability of success, β0, β1 and β2 are unknown parameters
and d1 and d2 are doses, not log doses, of two drugs such that d1 ≥ 0 and
d2 ≥ 0. Responses are assumed to increase with dose for both drugs and the
parameters β1 and β2 are thus taken to be greater than 0. In addition, from
a practical point of view, the response at the control d1 = d2 = 0 is assumed
to be less than 50% and the intercept parameter β0 is accordingly taken to be
less than 0. Note that, without loss of generality, the model can be expressed
in terms of the scaled doses z1 = β1d1 and z2 = β2d2 as

logit(p) = β0 + z1 + z2 with z1 ≥ 0 and z2 ≥ 0. (1)

Then the information matrix for the parameters β = (β0, β1, β2) at a single
observation z = (z1, z2) is given by

M(β; z) = g(z)g(z)T =
eu

(1 + eu)2

⎡⎣ 1 z1 z2
z1 z2

1 z1z2
z2 z1z2 z2

2

⎤⎦
where g(z) = e

u
2

(1 + eu) (1, z1, z2) and u = β0 + z1 + z2.

Consider now an approximate design which puts weights wi on the distinct
points zi = (z1i, z2i) for i = 1, . . . r, expressed as

ξ =
{

(z11, z21), . . . , (z1r, z2r)
w1, . . . , wr

}
where 0 < wi < 1 and

r∑
i=1

wi = 1.

Then the information matrix for the parameters β at the design ξ is given by

M(β; ξ) =
r∑

i=1

wig(zi)g(zi)T . In the present study locally D-optimal designs,

that is designs which maximize the determinant of the information matrix at
best guesses of the unknown parameters β0, β1 and β2, are sought (Chernoff
(1953)).
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3 D-optimal designs

3.1 Designs based on 4 points

Sitter and Torsney (1995) and Jia and Myers (2001) considered the two-
variable dose-response model, logit(p) = β0 + z1 + z2, with a design space
based on the entire (z1, z2)-plane but constrained to lie within two parallel
lines chosen arbitrarily and so as not to coincide with lines of constant logit.
These authors constructed D-optimal designs comprising 4 equally weighted
points of support located at the intersection of the parallel boundaries of the
design space and lines of constant logit defined by β0 + z1 + z2 = ±u with
u = 1.223. It would thus seem sensible to adopt the form of these designs in
the present case with z1 ≥ 0 and z2 ≥ 0 and to consider a 4-point design
denoted by ξ�

f and given by

ξ�
f =

{
(−u− β0, 0) (0,−u− β0) (u− β0, 0) (0, u− β0)

w w 1
2 − w 1

2 − w

}
with 0 < u ≤ −β0. The support points of this design lie on the boundary of the
design space on lines of constant, complementary u-values and the allocation
of the weights is based on symmetry arguments. Note that the constraint
on u ensures that the doses are positive. The determinant of the associated
information matrix is given by

|M(β; ξ�
f )| =

2e3uu2w(1 − 2w){(u − β0)2 + 8β0uw}
(1 + eu)6

and is maximized by setting its derivatives with respect to w and u to zero
and solving the resultant equations simultaneously. Specifically, the optimal
weight satisfies the quadratic equation

48β0uw
2 + 4(u2 − 6β0u + β2

0)w − (u− β0)2 = 0

together with the feasibility constraint 0 < w < 1
2 and is given uniquely by

w� =
−u2 + 6uβ0 − β2

0 +
√
u2 + 14β0u + β2

0

24β0u
.

It then follows that the optimal u value, denoted by u�, satisfies the transcen-
dental equation

u2(3+3eu +2u−2ueu)+β2
0(1+eu +2u−2ueu)+a(1+eu +u−ueu) = 0 (2)

where a =
√
u4 + 14β2

0u
2 + β4

0 , together with the constraint 0 < u ≤ −β0.
Equation (2) cannot be solved explicitly, only numerically, but it is neverthe-
less instructive to examine the dependence of the optimal values of u and w
on β0. Values for u� and w� for selected values of β0 are presented in Table 1.
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Table 1. Values of u� and w� for selected β0 for 4-point designs

β0 -5 -4.5 -4 -3.5 -3 -2.5 -2 -1.55

u� 1.292 1.306 1.323 1.346 1.376 1.418 1.474 1.542

w� 0.1975 0.1934 0.1888 0.1838 0.1785 0.1731 0.1686 0.1667

Note that u� decreases monotonically with β0, that for a value of β0 = −10
the probability of a success at the control d1 = d2 = 0 is very small (of the
order of 4.5 × 10−5) and that there is a cut-off value of β0, approximately
equal to −1.5434, above which the optimal doses −u� − β0 become negative.
This latter result is discussed in more detail in Sect. 3.3.

The global optimality or otherwise of the proposed D-optimal designs can
be confirmed by invoking the appropriate Equivalence Theorem (see Atkinson
and Donev (1992)) and, specifically, by proving that the directional derivative
of the log of the determinant |M(β; ξ)|−1 at ξ�

f in the direction of z = (z1, z2),
written φ(ξ�

f , z, β), is greater than or equal to 0 over the design space. In fact 4-
point designs of the form ξ�

f were shown to be globally D-optimal numerically
for a wide range of β0 values less than −1.5434. As an example, consider
β0 = −4. The proposed D-optimal design is given by

ξ�
f =

{
(2.677, 0) (0, 2.677) (5.323, 0) (0, 5.323)
0.1888 0.1888 0.3112 0.3112

}
and the directional derivative by

φ(ξ�
f , z, β) = 3 − 3.955e−4+z1+z2(18.817− 8z1 − 8z2 + z2

1 + z2
2 + 1.701z1z2)

(1 + e−4+z1+z2)2
.

A careful search of the values of φ(ξ�
f , z, β) over a fine grid of points z = (z1, z2)

in the region [0, 10] × [0, 10] indicated that the design ξ�
f is indeed globally

D-optimal and the 3-dimensional plot of φ(ξ�
f , z, β) against z1 ≥ 0 and z2 ≥ 0

given in Figure 1(a) illustrates this finding. An algebraic proof of the global D-
optimality or otherwise of the proposed 4-point designs was somewhat elusive,
the main problems being that the weights assigned to the support points are
not equal and that the optimal u value cannot be determined explicitly. A
strategy for the required proof is indicated later in the paper.

3.2 Designs based on 3 points

For values of β0 ≥ −1.5434, the 4-point designs described in the previous
section are no longer feasible and it is appealing to consider candidate D-
optimal designs which put equal weights on the three support points (0, 0), (u−
β0, 0) and (0, u − β0) where u > β0. The determinant of the standardized
information matrix for the parameters β at such a 3-point design, denoted by
ξ�
t , is given by
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Fig. 1. Plots of the directional derivative φ(ξ, z, β) against z1 and z2 for model (1)
with (a) β0 = −4 and (b) β0 = −1.

|M(β; ξ�
t )| =

(u− β0)4eβ0+2u

27(1 + eβ0)2(1 + eu)4

and the value of u maximizing this determinant satisfies

∂ |M(β; ξ�
t )|

∂u
=

(u − β0)3(2 − β0 + 2eu + β0e
u + u− ueu)

27(1 + eβ0)2(1 + eu)5
= 0.

The solution u = β0 is not meaningful since the resultant design comprises
the single point (0, 0). Thus the value of u for which |M(β; ξ�

t )| is a maximum
satisfies the equation

2 − β0 + 2eu + β0e
u + u− ueu = 0 (3)

Numerical studies indicate that there is a unique solution to (3) for values of
u > β0, say u�, but this solution does not have an explicit form. Values of u�

for selected values of β0 are presented in Table 2.

Table 2. Values of u� for selected β0 for 3-point designs

β0 -1.5434 -1.5 -1.25 -1 -0.75 -0.5 -0.25 0

u� 1.5434 1.562 1.674 1.796 1.930 2.075 2.231 2.399

The global D-optimality or otherwise of the candidate designs can be con-
firmed by demonstrating that the directional derivative φ(ξ�

t , z, β) is greater
than or equal to zero for all points z in the positive quadrant. This check was
performed numerically for selected values of β0 in the range −1.5434 to 0 us-
ing a fine grid of points in the region [0, 10]× [0, 10] as outlined for the 4-point
designs of the previous section. For example, consider β0 = −1. The proposed
3-point D-optimal design puts equal weights on the points (0, 0), (0, 2.796)
and (2.796, 0). The directional derivative is given by
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φ(ξ�
t , z, β) = 3 − 5.095e−1+z1+z2{2.995 − 2.142(z1 + z2) + 0.766z1z2 + z2

1 + z2
2}

(1 + e−1+z1+z2)2

and the 3-dimensional plot of φ(ξ�
t , z, β) against z1 ≥ 0 and z2 ≥ 0 shown

in Figure 1(b) indicates that the design is indeed globally optimal. For
β0 ≥ −1.5434, confirming the global optimality or otherwise of 3-point de-
signs of the form ξ�

t algebraically is not straightforward however, since, in
particular, the support points of the proposed designs are not associated with
complementary u values.

3.3 A special case

The 4-point design introduced in Sect. 3.1 with optimal u value, u� = −β0,
reduces to the 3-point design which puts equal weights on the support points
(0, 0), (−2β�

0 , 0) and (0,−2β�
0) where β�

0 satisfies the equation

1 + β0 + eβ0 − β0e
β0 = 0 (4)

for β0 < 0. In other words β�
0 ≈ −1.5434 and the 3-point design of interest,

denoted by ξ�
g , is given by (0, 0), (3.0868, 0) and (0, 3.0868). Note that the

support points are associated with the complementary u values, ±β�
0 . The

design with u� = −β0 = −β�
0 can be shown to be globally D-optimal as

follows.

Theorem 1. Consider the logistic regression model in two variables defined
by (1) with u� = β0 = β�

0 . Then the 3-point design ξ�
g which puts equal weights

on the support points (0, 0), (−2β�
0 , 0) and (0,−2β�

0) is globally D-optimal.

Proof. Assume that β0 = β�
0 . Then the directional derivative of ln |M(β; ξ)|

at ξ�
g in the direction of a single point z = (z1, z2) is given by

φ(ξ�
g , z, β) = 3 − 3

eβ0+z1+z2 (1 + eβ0)2

eβ0 (1 + eβ0+z1+z2)2

�
2β2

0 + z2
1 + z2

2 + z1z2 + 2β0(z1 + z2)

2 β2
0

�
.

Further, since u1 = β0 + z1 + z2 implies z2 = u1 − β0 − z1, the directional
derivative can be reexpressed as

φ(ξ�
g , z, β) = 3 − 3

eu1 (1 + eβ0)2

eβ0 (1 + eu1)2

{
β2

0 + u2
1 + (β0 − u1)z1 + z2

1

2 β2
0

}
(5)

with 0 ≤ z1 ≤ u1 − β0. It now follows from the Equivalence Theorem for
D-optimal designs that the design ξ�

g is globally D-optimal provided the con-
dition φ(ξ�

g , z, β) ≥ 0 holds. Consider u1 fixed, i.e. consider points z on a line
of constant logit. Then φ(ξ�

g , z, β) given by (5) is proportional to the quadratic
function f(z1) = β2

0 + u2
1 + z1(β0 − u1) + z2

1 which has a unique minimum
at z1 = u1−β0

2 . Therefore, the maxima of f(z1) within the design space are
located at the boundary points z1 = 0 and z1 = u1 − β0. Thus the minima
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of the directional derivative φ(ξ�
g , z, β) for all points z in the positive quad-

rant occur on the boundaries z1 = 0 and z2 = 0. Now on setting z1 = 0 or
z1 = u1 − β0 in (5), the inequality φ(ξ�

g , z, β) ≥ 0 reduces to

2
eβ0 (1 + eu1)2

eu1 (1 + eβ0)2
≥ (β2

0 + u2
1)

β2
0

. (6)

This condition, together with the fact that β0 satisfies equation (4) and thus
β0 = β�

0 , is precisely the condition which emerges in invoking the appropriate
directional derivative to prove the global optimality of the D-optimal design
for a logistic regression model with one explanatory variable. Thus it follows
immediately from that setting that condition (6) holds for all u1 ∈ IR and
thus, in the present case, for all feasible u1 ≥ β�

0 .

The framework of the above theorem can be used to devise a strategy for
proving the global D-optimality of the candidate 3- and 4-point designs dis-
cussed in the earlier sections.

4 Conclusions

The main aim of the present study has been to construct locally D-optimal
designs for the logistic regression model in two variables subject to the con-
straint that the values of the variables are greater than or equal to zero. In
particular it is shown that the designs so constructed depend on the parame-
ters β1 and β2 of model (1) only through the scaling of the two explanatory
variables but that the basic pattern of the designs is determined by the in-
tercept parameter β0. Specifically, if β0 < β�

0 , where β�
0 satisfies equation (4)

then the D-optimal design is based on 4, points of support located on comple-
mentary logit lines, whereas if β�

0 ≤ β0 ≤ 0 then the design comprises 3 points
including a control. The global D-optimality of the designs for a wide range
of β0 values was demonstrated numerically but was only proved algebraically
for the case with β0 = β�

0 . The broad strategy used in the proof for the latter
setting, that is in Theorem 1, should be applicable to all D-optimal designs
reported here. However the extension is not entirely straightforward and is
currently being investigated.

There is much scope for further work. In particular there is a need to relate
the D-optimal designs constructed here to the geometry of the design locus
as elucidated in Sitter and Torsney (1995), to the “minimal” point designs
developed in Torsney and Gunduz (2001) and to the results of Wang et al
(2006) on Poisson regression. In fact the work reported here forms part of a
larger study aimed at identifying patterns and taxonomies of designs for the
logistic regression model in two variables both with and without an interaction
term and with a range of constraints on the variables. Finally it would be
interesting to extend the design construction to accommodate other criteria
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and, following Torsney and Gunduz (2001), to logistic regression models with
more than two explanatory variables.
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Avda. Camilo José Cela 3, 13071–Ciudad Real, Spain
jesus.lopezfidalgo@uclm.es

Summary. In this paper experimental designs are considered for classic extreme
value distribution models. A careful review of the literature provides some informa-
tion matrices in order to study experimental designs. Regression models and their
design implications are discussed for some situations involving extreme values. These
include a constant variance and a constant coefficient of variation model plus an ap-
plication in the context of strength of materials. Relative efficiencies calculated with
respect to D–optimality are used to compare the designs given in this example.

Key words: generalised extreme value distribution, D–optimality, regression,
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1 Introduction

There are many situations where extreme values or extreme objectives might
affect the design of experiments. In this paper we consider regression models
where the dependent variable is an extreme value or has an implied extreme
value distribution. Classic experimental designs, such as factorial designs, frac-
tional and block designs, or response surface designs are typically constructed
on the assumption of a linear regression model for the response variate with
additive, finite variance, errors. More specifically, the usual model assumes
that the data vector y is N(Xθ, σ2I) and we choose X = {x1,x2, ...,xn}T so
as to optimise the estimation of θ in some straightforward way. Such designs
are typically optimised for conditions where ANOVA techniques are used, im-
plying linearity, additivity and finite variance. Fortunately, many designs are
known to be useful and relevant under wide variations of this model. See for
example Silvey (1980), Atkinson and Donev (1992) or Fedorov and P. (1997).
Our examples will concentrate on the strength or endurance of materials,
where max-stable extreme value distributions form a natural alternative to
the Normal family. These were introduced by Fisher and Tippett (1982) and
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some standard reference books are Leadbetter et al (1983) and the recent one
of Coles (2001).

The layout of this paper is as follows. In Section 2 we study design im-
plications for regression models where the dependent variable is a measured
extreme. Constant variance models are examined in Section 2.1 then constant
coefficient of variation models in Section 2.2 - illustrated by an extensive
numerical study of a pitting corrosion data set. A model introduced by Lead-
better et al (1983) applicable to the strength of materials is studied in Section
3 and illustrated by an application to designs for examining the breaking
strength of wide paper strips.

2 Designs for regression of extremes

It is a frequent occurrence in data collection for only the maxima (or equiv-
alently, minima) of appropriately grouped sets of values to be observed, or
recorded. It is then natural to assume, in the first instance and without spe-
cific alternatives, that a member of the generalized extreme value (GEV)
family of distributions is applicable. See, for example Jenkinson (1955), Fin-
ley (1967) or Walden et al (1981). This family has a cumulative distribution
function which can be expressed in the form (for maxima)

F (y) = exp{−[1 − κ(y − δ)/α]1/κ}, α > 0, y ≤ α

κ
+ δ (1)

with upper (else lower, depending on the sign of κ) bound ξ = δ + α/κ. We
write GEV(δ, α, κ) for the distribution in (1). The parameters δ and α are
location and scale parameters respectively whilst κ is an index, usually held
constant. This third parameter effectively defines the particular member of
the GEV family to be applied to the current data set. The distribution has
mean function

μ = ξ − α

κ
Γ (1 + κ), provided κ > −1 (2)

and standard deviation

σ =
α

κ

[
Γ (1 + 2κ) − Γ (1 + κ)2

] 1
2
, provided κ > −1

2
(3)

with appropriate limiting forms for the special case κ = 0, which is also known
as the Type I extreme value distribution or the extreme value distribution
or Gumbel’s distribution; see Gumbel (1958). The GEV family has regular
likelihood properties only in the range (− 1

2 < κ < 1
2 ). Outside this range, the

distribution becomes heavily skewed relative to an upper (or lower) boundary,
which becomes the dominant fact characterizing the data.
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2.1 Constant variance model

A natural regression model for this distribution is yi ∼ GEV (δi, α, κ) with
δi = βTxi; see for example Reiss and Thomas (1997), page 102. With the
parameters α and κ absorbed into the regression constant, this model produces
linearity in the mean and constant variance for the regression of y on x, and
hence satisfies the standard Gauss-Markov assumptions for ordinary least-
squares. That is, we will have

E[yi | xi] = β0 +βTxi, with V ar[yi | xi] = (α/κ)2
[
Γ (1 + 2κ) − Γ (1 + κ)2

]
,

where β0 = (α/κ)[1−Γ (1+κ)]. Therefore all the usual experimental designs,
as referred to above, can be justified for the estimation of β. Also β̂0 and
the residual variance can subsequently be used to provide moment estimators
for α and κ. Full simultaneous maximum likelihood for β, α and κ produces
a parameter-dependent information matrix, with the usual requirements for
some form of prior information concerning the parameters. An example of
such an analysis is offered in the next section. Alternative procedures might
be based on the canonical forms described in Ford et al (1992).

2.2 Constant coefficient of variation model

It is commonplace in statistical practice that data is more likely to exhibit
a constant coefficient of variation rather than a constant variance. For com-
ments on this see Kendall and Stuart (1976), §37, or Aitchison and Brown
(1957) and for the alternative generalized linear model approach, see McCul-
lagh and Nelder (1989), pp22-23. An extreme value model exhibiting constant
coefficient of variation is

yi ∼ GEV (δi, αi, κ)

with link function η common to δi and αi, so that

δi = δ0η(βTxi), αi = α0η(βTxi), giving μi = μ0η(βTxi) and σi = σ0η(βTxi)

and hence a constant coefficient of variation, σ0/μ0, where μ0, σ0 are given
by (2) and (3) respectively, using δ0 and α0. This model has been used and
justified for pitting corrosion data by Laycock et al (1990) and extended for
order statistics of pitting data by Scarf et al (1992). A convenient link here is

η(βTxi) = exp(βTxi) =
∏

j
z

βj

ji with zji = exp(xji),

so that, setting y∗i = log(yi) we have

μ∗
i = E[y∗i | xi] ≈ β∗

0 + βTxi,
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where β∗
0 = log(μ0) and y∗i has (approximately) constant variance, indepen-

dent of β and x. Therefore, with this link function, all the usual experimental
designs for the linear regression model can be approximately justified for the
estimation of β∗

0 and β. Full maximum likelihood again produces a parameter-
dependent information matrix, with the usual design requirements for some
form of prior information concerning the parameters. We give an example
below of a search for a locally optimum design.

3 Strength of materials

Leadbetter et al (1983), page 267, model the breaking strength of materials as
a function of tested length, x, using extreme value distributions for minima.
For the recommended Type III GEV or Weibull distribution, they set

αi = α0x
−κ
i and suggest x0 = 0

implying

μi = (α0x
−κ
i /κ)Γ (1 + κ) and σi =

α0x
−κ
i

κ

[
Γ (1 + 2κ) − Γ (1 + κ)2

] 1
2

and hence constant coefficient of variation.
But taking logs here does not produce an (approximately) linear model,

since the regression parameter is the highly non-linear shape parameter, κ.
Their distribution function for a single observation, assuming x0 = 0, is

F (y) = 1 − exp{−x[κy/α0]1/κ}, x > 0, α0 > 0, y > 0,

where a convenient parameterization has been used here. If we fix the scale
parameter at α0 = 1 and make use of the well known equality,

E

[
−∂2 log f

∂κ2

]
= E

[(
∂ log f
∂κ

)2
]

for evaluating Fisher’s information function, I, valid in this situation with
known bound, it can be shown that at zi = exp(xi)

Ii = [(6+12(γ−1)κ+(6−12γ+6γ2+π2)κ2+12κ(1+(γ−1)κ)zi+6κ2z2
i ]/(6κ4),

where γ is Euler’s constant. This is a simple quadratic in zi with positive
coefficients; and since information is additive the total information on κ will
be maximized by the ‘extreme design’ which places all the observations at the
top end of any design interval x ∈ [a, b]. We were not able to derive a general
expression for the information matrix in the case of joint estimation of α0 and
κ. So numerical integration was required in the following example.
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Design a b c d e f g h

D-%efficiency 100 108 116 147 125 125 69 6

equivalent n 11 10.2 9.5 7.5 8.8 8.8 15.9 174

Table 1. Design efficiencies for strength of materials model

Leadbetter et al (1983), page 272, Example 14.2.1, give mean plots for
the breaking strength, y, (in KNewtons per metre, of 5cm wide paper strips)
for ‘several’ experiments in which the strips varied in length, x, from 8cm
up to 10m. From their plots we inferred approximate values: α0 = 2 and
κ = 0.10 and have then used these values in a numerical search for a locally
‘best’ design based on a maximum of 11 distinct observations. This is both
a convenient choice and one which would typically be regarded as a large
number of distinct levels for a designed experiment. A uniform design and
seven alternatives were compared via the usual D-optimality. Their relative
efficiencies in percentage terms - using the square-root of the determinant of
the information matrix - compared to the uniform design, are given in Table
1. In the row labeled “equivalent n” the number of observations needed to get
the same D–efficiency as design a) with 11 observations is computed; that is:
the equivalent n = 11 × 100/D − %efficiency. The relative ordering of these
designs proved to be almost exactly the same under A, E and c–optimality
for the variance of κ̂ (not shown explicitly in the table).

The details for these designs are as follows (see Table 2 and Figure 1):

a) Uniform design over the design region with 11 levels and equal weights.
The ‘n’ here corresponds to a design with one observation at each design
point.

b) Uniform design on a log scale, also with 11 levels, giving an 8% increase
in efficiency.

c) Bailey (1982) suggests {sin(2πi/p), i = 1, 2..., p}, with appropriate scale
and location, instead of the uniform design with p levels. This results
in orthogonal polynomials becoming simple contrasts and with p prime
ensures a canonical partitioning of the degrees of freedom for quantitative
treatments. Here a design with p=11, a prime power, is used giving a
further 8% increase in efficiency.

d) The classic D–optimal 2 point ‘extreme design’, giving a nominal 47%
increase in efficiency over the 11 point uniform design, but with the usual
weaknesses for model checking. This was also the best design for estimat-
ing κ.

e) A 3 point design, uniform on the log scale, offering a 25% improvement
on the 1st design.

f) A 3 point design, with Bailey spacing on a log scale, also offering a 25%
improvement.
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Design, ξ Support points and weights (below)

a 8 107.2 206.4 305.6 404.8 504 603.2 702.4 801.6 900.8 1000
1

11
1

11
1

11
1

11
1

11
1

11
1

11
1

11
1

11
1

11
1

11

b 8 13.0 21.0 34.1 55.2 89.4 145.0 234.9 380.7 617.0 1000
1

11
1

11
1

11
1

11
1

11
1

11
1

11
1

11
1

11
1

11
1

11

c 8.2 10.0 14.4 24.2 45.3 89.4 176.6 329.9 554.5 804.0 975.7
1

11
1

11
1

11
1

11
1

11
1

11
1

11
1

11
1

11
1

11
1

11

d 8 1000
1
2

1
2

e 8 89.4 1000
1
3

1
3

1
3

f 11.1 89.4 723.7
1
3

1
3

1
3

g 8
1

h 1000
1

Table 2. Designs for constant coefficient of variation model

Fig. 1. Designs for Leadbetter’s example (for each design all support points receive
equal weights)

As it happens, a one point design is technically feasible for this nonlinear
problem. This is because here both the mean and variance depend on the
same two parameters. The situation can then be compared, for example, to
estimating both the mean and (residual) variance for a normal straight line
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regression through the origin from multiple observations at a single point.
Nevertheless, the one–point designs only give 69% efficiency when x� = 8
(design g), falling to 6% when x� = 1000 (design h).

It seems worthwhile to base designs on a log scale using the Bailey spacing
with a reasonable number of design points, for the scope this gives in fully
exploring this model in an efficient manner.

4 Conclusions

We have examined a variety of design situations where extreme value theory
can be used to suggest good or optimal designs. In particular, some regression
situations involving extremes can be shown to be suitable for the application
of classic design theory, while others require search techniques adapted from
other areas of nonlinear design theory. These searches have resulted in sugges-
tions for a “best” design in the example. Situations involving extremes, but
not examined in this paper, include designs suitable for the general class of
‘heavy tailed’ distributions, by which is meant distributions with tails heav-
ier than the normal, distributions with infinite variance or the modern high
throughput ‘screening designs’ using extreme value theory for Gaussian se-
quences.
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Summary. Experiments with mixture and process variables are often constructed
as the cross product of a mixture and a factorial design. Often it is not possible to
implement all the runs of the cross product design, or the cross product model is
too large to be of practical interest.

We propose a methodology to select a model with a given number of terms
and minimal condition number. The search methodology is based on weighted term
orderings and can be extended to consider other statistical criteria.

Key words: mixture-amount designs, term orderings, condition number

1 Models for mixture experiments with process variables

When a mixture experiment cannot be performed under uniform conditions or
when the responses depend on factors other than the mixture components, like
the total mixture amount or some process variables, then the cross product
of a standard mixture design and a full factorial design in the non mixture
factors is often recommended (see e.g. (Cornell, 2002, Ch. 7) and Prescott
(2004)). But product designs might have a larger number of runs than desired
and only a subset of the design is implemented.

Let x = (x1, . . . , xq) ∈ R
q be the mixture components and

z = (z1, . . . , zk) ∈ R
k the process variables. The xi, i = 1, . . . , q are to be

interpreted as proportions, possibly scaled, of a total amount and it might be
one of the zj, which is often denoted by m. We assume that a design D is a
finite set of points in R

q+k, usually the mixture components are listed first,
and that there are no replicated runs. The projection of D over the x-space is
Dx and Dz is the projection over the process variable space. Both Dx and Dz

admit replicates. For small values of q and k the full product design, Dx×Dz,
is recommended in the literature, where Dx is a simplex lattice design and
Dz is a full factorial design (Cornell, 2002, Ch. 7).
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In the literature various models for studying the combined effect of the x
and z factors are proposed. Often they have a fairly regular structure derived
from a standard cubic or quadratic model for factorial designs (g below) and a
Scheffé quadratic or cubic polynomial model, in a relevant parametrization, in
the mixture components (f). In Draper and Pukelsheim (1998) for pure mix-
ture designs Kronecker type models are recommended of degree two or three.
Typically proposed models are additive regression type models like y(x, z) =
f(x) + g(z), or complete cross product models of the type y(x, z) = f(x)g(z),
or combinations of these such as y(x, z) = f(x)+g(z)+

∑q
i=1

∑k
j=1 fij(xi, zj)

(see e.g.(Cornell, 2002, §7.10)), where the fij comprises products of terms in f
and g. For a mixture amount experiment (Cornell, 2002, §7.5 and page 405) a
mixture amount model of the form f0(x)+mf1(x)+ . . .+mpfp(x) is suggested
where

fp(x) =
∑

i

γ
(p)
i xi +

∑
i<j

γ
(p)
ij xixj + . . .+

∑
i1<...<il

γ
(p)
1,...,lxi1 . . . xil

,

l ≤ q, p is a positive integer and the γ(p) are regression parameters. A com-
ponent amount model has a smaller number of terms and takes the form
f(a1, . . . , aq) for ai = xim, i = 1, . . . , q and a suitable polynomial function f .

2 Homogeneous representation of a mixture experiment

In algebraic statistics an indeterminate xi is identified with the i-th fac-
tor in the experiment and the design, D, is described and defined by the
set of polynomials in the xi’s vanishing at all the design points. This infi-
nite set of polynomials is called the design ideal, Ideal(D). The ideal gener-
ated by the polynomials f1, . . . , fv is defined as 〈f1, . . . , fv〉 = {∑v

i=1 sifi :
si being polynomials}.
Example 1. A {q,m} simplex lattice design (see Scheffé (1958)) is the intersec-
tion of the simplex in R

q and the full factorial design in q factors and with the
uniformly spaced levels {0, 1/m, . . . , 1}. Thus the ideal of the {q,m} simplex
lattice design is

〈
m∏

j=0

(x1 − j/m), . . . ,
m∏

j=0

(xq − j/m),
q∑

i=1

xi − 1〉

That is, the first q polynomials give the full factorial design and the last one
is the simplex condition which selects the points of the full factorial whose
components sum to one.

In Maruri-Aguilar et al (2006) it is shown that for a pure mixture design,
i.e., D = Dx, an alternative polynomial representation is meaningful and
useful. The design is identified with the set of lines through the origin of
the x-space and a point in D, to indicate that in a pure mixture experiment
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the relative proportions of the component are of interest irrelevant of the
total mixture amount. The set of all such lines is called the design cone and
indicated as CD. The set of all polynomials vanishing on all points of CD is
Ideal(CD).

Example 2. The simplex centroid design, D in R
q (see Scheffé (1963)) is the

projection, on the simplex in R
q with respect to the origin, of the full factorial

design with levels 0 and 1. This shows that it has 2q − 1 points, that the
coordinates of each point are either zero or equal to each other, and, moreover,
it holds

Ideal(CD) = 〈x2
i xj − xix

2
j : i, j = 1, . . . , q; i �= j〉

In particular the design point with projective coordinates (1 : . . . : 1) ∈ R
q

is the barycenter point of the simplex in R
q. See (Maruri-Aguilar et al, 2006,

§4.2).

In mathematical terms, a mixture experiment is thus to be interpreted
as a projective variety. For the consequence of this interpretation we refer to
Maruri-Aguilar et al (2006). Note that Ideal(CD) is a homogeneous ideal, that
is an ideal generated by homogeneous polynomials. A polynomial is homoge-
neous of degree s ∈ Z≥0 if each one of its terms has the sum of its exponents
equal to s. By convention a ∈ R has degree zero. Indeed if f is a homoge-
neous polynomial of degree s and f(d) = 0 for all d ∈ Dx, then for λ ∈ R

f(λd) = λsf(d). The converse is true; see Theorem 1 in Maruri-Aguilar et al
(2006).

2.1 Homogeneous models for pure mixture experiments

Cone design ideals lead naturally to consideration of homogeneous polyno-
mial regression models. We need to recall the basics of algebraic statistics
for design of experiments (Pistone et al (2001)). Let R[x1, . . . , xd] be the set
of all polynomials in x1, . . . , xd with real coefficients. The set of real valued
functions over D is isomorphic to the quotient space R[x1, . . . , xd]/ Ideal(D)
defined by the equivalence relationship stating that two polynomials f and g
are equivalent if they take the same values over all the points of D. The quo-
tient space is a R-vector space, of dimension equal to the number of points in
D and it admits vector space bases formed by monomials.

In Lemma 3 and Theorem 4 of Maruri-Aguilar et al (2006) it is proved that
if D is a mixture design then there are bases formed by monomials of the same
total degree larger than a suitable integer and an algorithm to compute them
is provided. Any such basis can be used to construct homogeneous polynomial
regression models of the Kronecker type (Draper and Pukelsheim (1998)) and
submodels.

Example 3. For the design in Example 2 the largest set of degree three, linearly
independent monomials in the quotient space is

x3
i , for all i = 1, . . . , q x2

i xj , for all i < j, i, j = 1, . . . , q
xixjxk, for all i < j < k, i, j, k = 1, . . . , q
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A full basis of a given degree, equivalently a saturated homogeneous model
identified by D, can be retrieved only for a degree larger than three.

3 A model selection algorithm

Consider a product design D = Dx × Dz with no replicated runs. Let Ex =
{xα : α ∈ Lx} ⊂ R[x1, . . . , xq] be a set of linearly independent monomials
in R[x1, . . . , xq ]/ Ideal(Dx) and Ez = {zα : α ∈ Lz} ⊂ R[z1, . . . , zk] a set
of linearly independent monomials in R[z1, . . . , zk]/ Ideal(Dz). Let Ex ⊗Ez be
the Kronecker product of Ex and Ez. Then by the basic property of Kronecker
and tensor products, Ex ⊗Ez is a set of linearly independent monomials in
R[x, z]/ Ideal(D). Moreover if also Dz and Dx have no replicated points, then
it is a R-vector space basis and it has dimension nxnz where ni is the number
of points in Di, i = z, x. Typically Ex is a set of monomials of the same
degree, two or three, and Ez is an order ideal. In Section §3.5 of Pistone et al
(2001) and Section §3 of Maruri-Aguilar et al (2006) algorithms are provided
to compute Ex and Ez for generic Dx and Dz.

In practice and when q and k are not small, it has to be expected: a) that
Ex ⊗Ez is large and restriction to a subset has to be considered to generate
response surface models for the problem at hand, and also b) that not all runs
in Dx × Dz can be implemented. We suggest an algorithm for selection of a
subset L of Ex ⊗Ez to be used as support for a model identifiable by a given
fraction F ⊂ D. The subset L is selected according to a “statistical” criterion.

The design/model matrix for D and a model supported over a subset of
Ex ⊗Ez must be of full rank, independently of the selected representatives of
the homogeneous points in CDx . (This is an immediate corollary of Lemma
3 in Maruri-Aguilar et al (2006)). That is, identifiability does not depend on
the homogeneous coordinates. However, other properties of the design/model
matrix are strongly effected by the representatives used; for example the eigen-
values of the corresponding information matrix.

We choose to minimise the condition number λ of the information matrix.
It is defined as λ = λmax/λmin where λmax and λmin ≥ 0 are the maximum
and minimum eigenvalues of the information matrix, Xt

LXL where t indicates
transpose. If Xt

LXL is close to singular then its columns are almost linearly
dependent and this is signaled by a minimum eigenvalue close to zero. Thus a
small condition number indicates more stability in the least square estimates
and a smaller variance inflation factor than for larger condition numbers.

In Draper and Pukelsheim (1998) Kronecker type models are studied for
pure mixture experiments and in Prescott et al (2002) quadratic Kronecker
models are conjectured to be the most robust to miss-specification of the
information matrix among second order models for experiments with mixtures.
In particular in Corollary 1 the authors in Prescott et al (2002) show that any
model in a K-chain has higher maximum eigenvalue of the information matrix
than the Kronecker type model. A K-chain is a chain of mixture models all
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of the same size; a model in the chain differs from the next one by one term;
and the final model is of the Kronecker type. Thus Ex is of Kronecker type.

Other statistical criteria can be considered. A referee, whom the authors
thank, suggested coupling the condition number criterion with a criterion
related to the goodness of fit of the model. The major change in the algorithm
below is in the definition of λi which could become a vector or remain scalar
and should now correspond to the new criterion or combinations of criteria.
In Example 6 of Section 3.2 we simply checked that the R2 values expressing
the goodness of fit of the selected sub-model were not worse than those of
previous analyses presented in the literature.

3.1 Selection based on term orderings

As mentioned, the number of columns in the design/model matrix, X , for
Ex ⊗Ez and D or F might render a full search prohibitive. Nevertheless term
orderings can be used to guide this search. The search might start with a
Kronecker type model Ex (likely to have a low condition number). Terms are
substituted one at a time according to a term ordering which favours the x-
indeterminates. We suggest and sketch a variation of the algorithms in Babson
et al (2003); Maruri-Aguilar et al (2006) to scan the class of models obtained
with term orderings. This class of models is typically smaller than the class of
sub-matrices of X which are of full rank and of size n. The search we suggest
is based on the algorithms for exchange of bases introduced in Faugère et al
(1993), developed in Babson et al (2003), and described for designs in Section
§3.5 of Pistone et al (2001) and Section §3 of Maruri-Aguilar et al (2006). In
Bates et al (2003) an algorithm is given for listing all saturated models which
are order ideal and have the same support size.

The idea is to order the finite set of monomials Ex ⊗Ez , equivalently the
columns of X they label, in all possible ways that can be extended to a full
term ordering. We do so by using vectors of weights, i.e. w ∈ Z

q+k
≥0 . It turns out

that a finite set of weighing vectors is sufficient to describe all such possible
ways. The set of all weighing vectors, W , depends only on the exponents of
monomials in the candidate set Ex ⊗Ez. Thus W can be computed once for
each set Ex ⊗Ez independently of the design and become part of a library. The
computation of W is straightforward for models in two dimensions, but for
models in higher dimensions there is still need for efficient algorithms. This is
largely investigated in Maruri-Aguilar (2007) to which we refer for discussion
on the computation of W . See also Example 6 for a method to compute W
approximately.

Example 4. There are only two ways of ordering the three monomials x2
1, x1x2,

x2
2 ∈ R[x1, x2] which are extendable to term ordering. They are x2

1 < x1x2 <
x2

2 and x2
2 < x1x2 < x2

1. The first one corresponds to the weighing vector w =
(1, 2), indeed ((1, 2) · (2, 0)) = 2 < ((1, 2) · (1, 1)) = 3 < ((1, 2) · (0, 2)) = 4.
Many other weighing vectors can be equivalently considered.
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Call Xw the matrix X whose columns are reordered according to w. Then
the first n linearly independent columns of Xw can be used as support for re-
gression models. We select the model with n terms and the smallest condition
number across w ∈ W . The algorithm can be outlined as follows.

Input: Dx and Dz , a fraction F ⊆ Dx × Dz and the number of terms in
the final submodel n and the sets of monomials Ex and Ez, which are
determined following the guidelines at the beginning of Section 3. The
final submodel size n cannot be greater than the number of points in F
to ensure identifiability.

Output: a submodel L0 with a minimal condition number λ0. The final sub-
model is formed by the smallest terms of Ex ⊗Ez with respect to a term
ordering.

Technique: the search space of candidate submodels is generated by ordering
Ex ⊗Ez with different weight vectors, and within this search space we look
for the submodel with the smallest condition number.

Step 1: Compute the design-model matrix X using the points in F and the
terms in Ex ⊗Ez. Compute (see also Example 6), the set of weight vectors,
W := {w1, . . . , ws}. Initialize i := 1, λ0 := ∞ and L0 := [].

Step 2: Order Ex ⊗Ez and the corresponding columns of X using the weight
vector wi. Let L be the first n monomials of Ex ⊗Ez such that the rank
of XL is n. Let λi be the condition number of Xt

LXL.
Step 3: If λi < λ0 then λ0 ← λi and L0 ← L.
Step 4: Update i ← i + 1. If i ≤ s then repeat from Step 3.1, otherwise L0

is the set of terms of the wanted model.

The algorithm clearly ends as W is a finite set (Babson et al (2003)).
Moreover, any weight vector identifies a model of size n and thus the algorithm
gives an answer. The algorithm is of order O((nxnz)2(qk−1)n2) and, as the
dimensions q and k are fixed, the algorithm is of polynomial order in (nxnz)
(see Babson et al (2003). This argument is detailed in Chapter 4 of Maruri-
Aguilar (2007)). The search space is certainly more restricted than the full
combinatorial search of exponential order

(
nxnz

n

)
= O((nxnz)nxnz ). However

the final model respects a hierarchical structure, unlike many of the models
in a combinatorial search and the search is clearly much faster.

3.2 Examples

Example 5. A mixture-amount design D is given in the left-hand side of Table
1 in affine coordinates. Here x1 and x2 are proportions of a total amount m.
The ideals of interest are Ideal(D) = 〈x1 + x2 − m, (m − 1)(m − 2), (x2 −
1)(m − 2), (x2 − 1)(x2 − 2)〉, Ideal(CDx) = 〈x1x2(x1 − x2)〉 and Ideal(Dm) =
〈(m − 1)(m − 2)〉, from which we have that Ex = {x2

1, x1x2, x
2
2} and Ez =

{1,m}. The corresponding X matrix is shown in the right side of Table 1.
The algorithm of Section 3 returns L0 = {x2

1, x
2
2, x1x2,mx2

2} for the weighing
vector w = (1, 2, 3). In this simple case we can additionally perform a full
combinatorial search, which returns the same result.
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x1 x2 m x2
1 x1x2 x2

2 mx2
1 mx1x2 mx2

2

0 1 1 0 0 1 0 0 1
0 2 2 0 0 4 0 0 8
1 1 2 1 1 1 2 2 2
2 0 2 4 0 0 8 0 0

Table 1. Mixture-amount design and matrix X for Example 5.

Example 6. We consider the well-known bread experiment introduced in Næs
et al (1998), for which Dx is a simplex lattice with three factors and 10 runs
and Dz is a factorial 32 design. The analysis in Prescott (2004) returns a final
model of n = 15 terms and with condition number 86.83; see Equation (11)
in Prescott (2004).

For the natural sets Ex = {x1, x2, x3, x
2
1, x

2
2, x

2
3, x1x2, x1x3, x2x3} and

Ez = {1, z1, z2, z2
1 , z1z2, z

2
2}, the set Ex ⊗Ez has 54 monomials, and the num-

ber of submodels with fifteen terms is
(
54
15

) ≈ 8.6× 1012. A full search on this
space is impossible but the algorithm of Section 3 can be applied to select a
candidate model with a small condition number.

Instead of computing the full set of weighing vectors W , which, as
mentioned, can be computationally expensive, we mimic it as follows. The
(q+ k− 1)-dimensional simplex intersects all “cones of equivalence classes” of
the weighing vectors. In this sense every point on the simplex is equivalent to
an element of W . We apply our algorithm with a sample of random vectors
uniformly distributed over the simplex. If the sample is large enough, there
is a high chance of picking at least one w from each equivalence class. This
alternative is properly quantified in Chapter 2 of Maruri-Aguilar (2007).

The variables are listed as (x1, x2, x3, z1, z2). The algorithm returns the
submodel L0 = ({x1, x2, x3} ⊗ {1, z1, z2} ∪ {x2, x3} ⊗ {z2

1 , z1z2, z
2
2}) for

w = (17, 12, 10, 3, 2). The model L0 traded the monomials x1z
2
1 , x1z

2
2 in Equa-

tion(11) of Prescott (2004) for x2z1z2 and x3z1z2, and this slight asymmetry
allows for the reduction of the condition number to 47.47. With respect to the
model in Prescott (2004), there is a slight increase in the root-mean-squared
error, while R2 is practically the same.

4 Final comments

In this note we considered a design F ⊆ Dx × Dz and a set of linearly inde-
pendent monomial functions over the vector space of real functions defined
over Dx ×Dz.

An algorithm for selecting a model identified by F , with a given number
of terms and of minimal condition number is described. It has polynomial
complexity in the number of design points and model size. Its search space is
smaller than the one of a full search. In the authors’ experience, (see also Bab-
son et al (2003)), not only it is fast (especially when coupled with a search of
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the W vectors over a grid as in Example 6) but also it performs well in return-
ing good models. One possible drawback is that it might exclude models which
are symmetric in the factors. This is inherent in the use of term orderings and
thus w vectors. Indeed there is no term ordering for which x2

2 < x2
1 < x1x2.

Symmetric models might be added to the search space or one can use only
partially weighing vectors w. Methods for working with monomial bases of the
quotient space which are free of term-ordering computations and are based
on multiplication tables are being studied in the algebraic community; see
Rouillier (1999) for a first example. Other criteria can be substituted for the
minimal condition number criterion and general designs, even with replicated
runs, can be considered. We focused on mixture designs with process vari-
ables or mixture amount experiments. The final model we obtain is usually
not one suggested in the literature; it differs usually from the model obtained
by running the standard algorithm in §3.5 of Pistone et al (2001), and when
comparable it performs statistically at least as well as other models suggested
in the literature for the examples we tried.
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dimensional Gröbner bases by change of ordering. J Symb Comp 16(4):329–344

Maruri-Aguilar H (2007) Algebraic statistics in experimental design. Ph.D. thesis
(submitted), Department of Statistics, University of Warwick

Maruri-Aguilar H, Notari R, Riccomagno E (2006) On the description and identifi-
ability analysis of mixture designs. Accepted for publication in Statistica Sinica

Næs T, Færgestad EM, Cornell J (1998) A comparison of methods for analysing
data from a three component mixture experiment in the presence of variation
created by two process variables. Chem Int Lab Syst 41:221–235

Pistone G, Riccomagno E, Wynn HP (2001) Algebraic Statistics, Monographs on
Statistics and Applied Probability, vol 89. Chapman & Hall/CRC, Boca Raton

Prescott P (2004) Modelling in mixture experiments including interactions with
process variables. Qual Tech & Qual Manag 1(1):87–103

Prescott P, Draper NR, Dean AM, Lewis SM (2002) Mixture experiments: ILL-
conditioning and quadratic model specification. Technometrics 44(3):260–268

Rouillier F (1999) Solving zero-dimensional systems through the rational univariate
representation. Appl Algebra Engrg Comm Comput 9(5):433–461
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Summary. The paper is devoted to experimental design for nonlinear regression
models, whose derivatives with respect to parameters generate a generalized Cheby-
shev system. Most models of practical importance possess this property. In particu-
lar it is seen in exponential, rational and logistic models as well as splines with free
knots. It is proved that support points of saturated locally D-optimal designs are
monotonic and real analytic functions of initial values for those parameters on which
models depend nonlinearly. This allows one to represent the functions by Taylor se-
ries. Similar properties of saturated maximin efficient designs are also investigated.

Key words: nonlinear regression models, exponential, rational and logistic models,
locally D-optimal designs, maximin efficient D-optimal designs, functional approach

1 Introduction

Assume experimental results y1, . . . , yN ∈ R arise under the standard nonlin-
ear regression model

yj = η(xj , Θ) + εj, j = 1, . . . , N, (1)

where xj ∈ X, j = 1, . . . , N are observation points, X is a set of possible val-
ues for these points, Θ = (θ1, . . . , θm)T is the vector of unknown parameters,
εi, i = 1, . . . , N are independent identically distributed random values such,
that Eεj = 0, Dεj = σ2 > 0, σ2 is unknown constant.

Let the regression function be of the form

η(x,Θ) =
k∑

i=1

aiηi(x, Λ), Λ = (λ1, . . . , λm−k)T , (2)

where ai �= 0, i = 1, . . . , k, Λ ∈ Ω, Ω is an open set in Rm−k such that
min
i�=j

|λi −λj | � � > 0, X is a finite or semi-infinite interval in R, � is a given

small value, Θ = (a1, . . . , ak, λ1, . . . , λm−k)T .
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Consider the following assumptions.

A1 Assume that the functions ηi(x, Λ), i = 1, . . . , k are real analytic in x ∈ X
for any fixed Λ ∈ Ω.

A2 Assume that for all fixed Λ ∈ Ω the functions

fj(x) = ηj(x, Λ), j = 1, . . . , k, (3)

fk+j(x) =
∂

∂λj

k∑
i=1

aiηi(x, Λ), j = 1, . . . ,m− k (4)

are linearly independent and such that any linear combination

m∑
i=1

αifi(x),

where {αi} are arbitrary numbers from R, possesses no more than m− 1
isolated roots allowing for their multiplicity.

We will say that model (1)–(2) possesses a generalized Chebyshev property
if it satisfies A2. Thus we impose on the function system f1(x), . . . , fm(x)
the requirement which is more strong than weak Chebyshev property and is
more weak than the extended Chebyshev property in the sense of (Karlin and
Studden (1966), Ch.1).

It is easy to check that many nonlinear models used in practice satisfy A1
and A2. Consider a few examples.

Example 1 (General exponential model). Let

η(x, θ) =
s∑

i=1

a0ix
i−1 +

n−k∑
j=1

lj∑
ν=1

ajνx
ν−1e−λjx, (5)

a = (a1, . . . , ak)T = (a01, . . . , a0s, a11, . . . , am−k,lm−k
)T ;

x ∈ [d1, d2]; λ1, . . . , λm−k > 0; k = s+
m−k∑
j=1

lj.

The corresponding functions fi(x), i = 1, . . . ,m generate an extended
Chebyshev system (see Karlin and Studden (1966), Ch. 1) and consequently
the model possesses property A2. Since exponential functions are real and
analytic we have also property A1. Functions of the form (5) generate an
important class of solutions of linear differential equation systems. For this
reason they are widely used in practice. Frequently occurring particular cases
are:

a1e
−λ1x, a1 + a2e

−λ1x, a1(e−λ1x − e−λ2x), a1e
−λ1x + a2e

−λ2x

(see, e.g., Han and Chaloner (2003) and Becka and Urfer (1996) among many
others).
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Example 2 (Rational models). The regression functions

a1x

x + λ1
,

a1x + a2

x2 + λ1x + λ2

are widely used in many fields (see, e.g. , Ratkowsky (1990)).

It is easy to check that these functions with λ1, λ2 > 0, x ∈ [d1, d2], d1 ≥ 0
satisfy A1 and A2. Under similar restrictions the general rational model

η(x, θ) =
k∑

i=1

aix
i−1

/(
m−k∑
i=1

λix
i−1 + xn−k−1

)

also possesses properties A1 and A2 (see, e.g., Melas (2006), Ch.5).

Example 3 (Splines with free knots). Let

η(x, θ) =
k∑

i=1

aix
i−1 +

m−k∑
i=1

(x− λi)k−1
+ ,

where (a)+ = max{0, a}; d1 ≤ λ1 < . . . < λm−k ≤ d2; x ∈ [d1, d2].

This function satisfies A2 (see, e.g., Dette et al (2006)). Note that the
property A1 is satisfied only for x ∈ (d1, λ1) ∪ (λ1, λ2) ∪ . . . ∪ (λn−k, d2).

The Chebyshev property of basic regression functions has been mainly
exploited for constructing c- and E-optimal designs for linear models (see
Studden (1968) and Imhof and Studden (2001)). For nonlinear (in parameters)
rational models as in Example 2 similar results were obtained for locally c-
and E-optimal designs Dette et al (2004a). Here we will concentrate on the D-
criterion. For nonlinear models (1)–(2) D-optimal designs usually depend on
the true values of parameters, here λ1, . . . , λm−k. We will use two approaches
in order to overcome this difficulty: locally optimal and maximin efficient
designs. The locally optimal approach consists of replacing true values by
initial ones and was first implemented in Chernoff (1953).

The maximin approach was considered in Melas (1978). It consists of max-
imizing the determinant (or other functional) of the information matrix for
the least favorable values of nonlinear parameters. Müller (1995), Dette (1997)
and others consider the problem of maximizing the ratio of two determinants.
One of these is the determinant of the information matrix of a given design
and the other is a similar determinant for a locally D-optimal design. The
corresponding designs are usually called maximin efficient D-optimal designs.

Locally D-optimal designs for regression functions from Example 1 are
studied in Melas (1978) on the base of a functional approach. This approach
consists of considering support points of optimal designs as implicit functions
of the initial values of the parameters. This enables a proof that support points
of locally D-optimal designs are monotonic and it also allows represention of
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the functions by Taylor series. In Melas (2005), Melas (2006) this approach
was entended to models possessing properties A1 and A2. And in Dette et al
(2006) it was implemented for splines with free knots.

Here we present similar results in a more simple and general form for
locally D-optimal as well as for maximin efficient D-optimal designs. We will
consider designs with minimal support, that is designs with the number of
support points equal to the number of unknown parameters. Such designs
will be called saturated. For many models it has been proved theoretically or
empirically that optimal designs are saturated (see, e.g., He et al (1996) and
Melas (2006)).

2 Locally D-optimal designs

Let experimental results satisfy relations (1)–(2) and let assumptions A1 and
A2 be fulfilled. A discrete probability measure given by the table

ξ =
(
x1 . . . xn

ω1 . . . ωn

)
,

where xi �= xj (i �= j); ωi > 0;
∑

ωi = 1; xi ∈ X ; i = 1, . . . , n will be called
as usual an (approximate) experimental design. Consider the value

detM(ξ,Θ), (6)

where

M(ξ,Θ) =
n∑

i=1

f(xi)fT (xi)ωi.

The functions f(x),generally speaking, depend on Θ and are determined by
(3)–(4). It is easy to check that the design maximizing (6) does not depend
on the vector a, but can depend on Λ.

A design maximizing (6) over the class of all designs with n = m support
points under a fixed Λ will be called saturated locally D-optimal design (SLD-
design). In many cases (see, e.g., He et al (1996) and Melas (2006)) such a
design is unique and maximizes (6) among all (approximate) designs. It is easy
to check (see, e.g., Fedorov (1972)) that in such a design all weight coefficients
are the same: ωi = 1/m, i = 1, . . . ,m.

Without loss of generality assume that

d1 ≤ x1 < . . . < xm ≤ d2.

Let τ = (τ1, . . . , τs), s = m, s = m − 1 or s = m − 2 be the vector of
design points not coinciding with the bounds of the interval. Then the design
ξ = ξτ depends only on the vector τ . Assume that

A3 All SLD-designs with Λ ∈ Ω have the same type.
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A4 For a point Λ = Λ0 ∈ Ω there exists a unique SLD-design, denoted it by
ξ0 = ξτ(s) .

As was verified in papers Melas (2005), Melas (2006), and
Dette et al (2006) many nonlinear models possess properties A1–A4. The
following result holds.

Theorem 1. For regression model (1)–(2) let assumptions A1–A4 be fulfilled.
Then for any Λ ∈ Ω there exists a unique SLD-design ξ = ξτ , τ = τ̂(Λ). The
vector function

τ̂(Λ) : Λ ∈ Ω → τ̂ (Λ) ∈ [d1, d2]s

is real analytic and all its components monotonically depend on each of the
parameters λ1, . . . , λm−k.

A proof of the theorem is based on the Implicit Function Theorem of
Gunning and Rossi (1965) and a representation for the Jacobian matrix. It
is similar to arguments in (Melas (2006), Ch. 2). Here we give a more simple
and more universal formulation of condition A2.

Remark 1. If the design ξτ(0) , τ(0) = τ̂ (Λ0) is found (analytically or numer-
ically) the vector function τ(Λ) can be expanded into a Taylor series using
recurrent formulae given in Melas (2005) and Melas (2006).

3 Maximin efficient designs

Since a locally D-optimal design does not depend on a we can set, without
loss of generality, a1 = a2 = . . . = ak = 1. Denote

M(ξ, Λ) := M(ξ,Θ),

where Θ = (a1, . . . , ak, λ1, . . . λm−k)T and a1 = a2 = . . . = ak = 1.
Let

Ω = Ω = {Λ : (1 − z)ci ≤ λi ≤ (1 + z)ci, i = 1, . . . ,m− k},

where c = (c1, . . . , cm−k)T is an initial value for Λ and z > 0 is the value of
the relative error of this approximation. Denote by

Ωc = {(1 − z)c, (1 + z)c},

the set of the two extreme points of Ω. A design ξ will be called a saturated
maximin efficient (D-optimal) design for Ω or, briefly, SMME design if

min
Λ∈Ω

detM(ξ, Λ)
detM(ξ∗(Λ), Λ)

= max
ξ

min
Λ∈Ω

detM(ξ, Λ)
detM(ξ∗(Λ), Λ)

, (7)
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where ξ∗(Λ) is an SLD-design and maximin is taken over all saturated designs.
The value of the left side taken to degree 1/m will be called the minimal
efficiency of the design ξ. Note that the ratio

detM(ξ, Λ)/ detM(ξ∗(Λ), Λ)

can be redefined while preserving continuity if min
i�=j

| λi − λj | =

0 (see Melas and Pepelyshev (2005)). A design ξ will be called a maximin
efficient (D-optimal) design with a minimal structure if it is an SMME design
for Ω = Ωc.

The following result allows substantial simplification of the problem.

Theorem 2. Let regression model (1)–(2) satisfy assumptions A1–A4. Then
there exists a positive value z∗ such that for any z ≤ z∗ there exists a unique
MMEMS design and it is a unique SMME design for Ω = Ω. The weights
of this design are uniform and its nontrivial points are real analytic functions
of z with 0 < z < z∗.

A proof of this theorem is based on the Taylor expansion of the criterion
value. It is obtained by the same arguments as in the proof of Theorem 4.2 in
Dette et al (2006). In that paper the recurrent formulae for expanding these
functions into Taylor a series can also be found.

Let us demonstrate the approach by the following example. Let

η(x,Θ) = a1e
−λ1x + a2e

−λ2x; x ∈ [0,∞); a1, a2 �= 0, Λ = (λ1, λ2)T ,

Λ ∈ Ω = {Λ : (1 − z)ci ≤ λi ≤ (1 + z)ci, i = 1, 2}.
In Dette et al (2004b) it is proved that the locally D-optimal design for

this model is unique and is of the form

ξ =
(

0 τ1 τ2 τ3
1/4 1/4 1/4 1/4

)
. (8)

Thus, properties A3 and A4 hold and A1 and A2 are in evidence for the
general exponential model as was discussed above. The locally D-optimal
designs for this model were constructed in Melas (2005). Let us consider
SMME designs for Ω. Without loss of generality we can assume that
c1 ≤ c2. It can be checked that the SMME design has the form (8) with
τ1 = τ̂i(c1, c2, z), i = 1, 2, 3 and τ̂i(c1, c2, z) = τ̂i(1, c2/c1, z)/c1, i = 1, 2, 3.

Thus it will do to consider the case c1 = 1. Take c2 = 5 (in other cases we
obtained similar results). The Taylor expansions obtained by formulae from
Dette et al (2006) are the following

τ̂1(z) = 0.161 + 0.038z2 + 0.021z4 + . . . ,
τ̂2(z) = 0.626 + 0.232z2 + 0.163z4 + . . . ,
τ̂3(z) = 1.819 + 0.813z2 + 0.513z4 + . . . .
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Note that it is difficult to study the radius of convergence of these series
analytically. However, we found numerically that they converge with arbitrary
z < 1, and with z ≤ 0.5 the first three terms are sufficient to obtain design
points with precision 10−3. Also we found that the corresponding designs
practically coincide with SMME designs for z ≤ 0.28. (This can be checked
numerically, using an equivalence theorem.)

The minimal efficiency of the MMEMS design and the locally D-optimal
design for the point Λ = c is shown in Figure 1.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

z

Fig. 1. The efficiency of the MMEMS design (higher curve) and the locally optimal
design in c (lower curve).

We can see that MMEMS designs have considerable advantage when
z > 0.2. However, for z > 0.28 it is possible to construct more efficient designs.
For example, for z = 0.5 we constructed numerically a design, which is MME
among all approximate designs. This design has six support points and is
approximately equal to(

0 0.140 0.440 1.048 1.75 3.25
0.24 0.18 0.19 0.16 0.13 0.10

)
.

The minimal efficiency of this design is equal to 0.8431, whereas for the
MMEMS design this efficiency is equal to 0.7045. For the equidistant de-
sign in 10 points on the interval [0, 2], which is the best among equidistant
designs, this efficiency equals 0.5904.
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Summary. In this work, we consider an adaptive linear regression model designed
to explain the patient’s response in a clinical trial. Patients are assumed to arrive
sequentially. The adaptive nature of this statistical model allows the error terms to
depend on the past which has not been permitted in other adaptive models in the
literature.

Some techniques of the theory of optimal designs are used in this framework
to define new concepts: a-posteriori efficiency and mean a-posteriori efficiency. We
then explicitly relate the variance of the allocation rule to the mean a-posteriori
efficiency. These measures are useful for studying the comparative performance of
adaptive designs. As an example, a comparative study is made among several design-
adaptive designs to establish their properties with respect to a criterion of interest.

Key words: optimal designs, adaptive allocation, adaptive regression

1 Introduction

In this work we relate two topics: optimal designs and adaptive designs for
clinical trials.

Adaptive designs constitute a class of sequential designs in which the prob-
ability distribution of the nth allocation depends on the accrued informa-
tion obtained from the previous n− 1 treament allocations and/or responses
to treatment. The use of adaptive allocation for randomization can reduce
sources of bias and permit the inclusion of ethical issues in the assignment of
treatments; see Rosenberger and Lachin (2002).

The theory of optimal designs deals with the construction of an experi-
mental design which optimizes some criterion given a statistical model; see,
for instance, Atkinson and Donev (1992).

The general framework is a clinical trial for comparing the performance of
L different treatments and a linear regression model which relates the response
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of the patient to the treatment allocation. Thus, an experimental design ξ in-
dicates the proportion of patients assigned to each treatment i, i = 1, . . . , L.
Some recent papers deal with this problem; see, for instance, Zhang and Rosen-
berger (2006), Rabie and Flournoy (2004) and Dragalin et al (2006).

We are interested in using the classical techniques of the theory of linear
optimal designs to measure the performance of an adaptive design with respect
to a criterion. However, when an adaptive design is used to allocate patients to
treatments, a complicated correlation structure is generated among the errors
of the linear model. In the following, we introduce an adaptive linear model
which allows us to deal with this situation.

Let {δj}j≥1 be a sequence of L-dimensional random vectors such that, if
the j-th patient is assigned to treatment i, then δji = 1 and δjr = 0 for r �=
i. Given n sequential treatment assignments, the L-random vector Nn/n =
(Nn1/n, . . . , NnL/n) is generated, where Nni :=

∑n
j=1 δji, i = 1, . . . , L. Then,

the resulting design is denoted

ξn :=
{

1 . . . L
Nn1/n . . . NnL/n

}
.

Consider the sequence of random vectors {Zn} = {(Zn1, Zn2, . . . , ZnL)},
where Zni represents the response of the nth patient to the ith treatment,
i = 1, . . . , L. We assume throughout the paper that
[A1] for each treatment i , {Zni}n≥1 is a sequence of identically distributed
random variables, such that μi = E[Zni], σ2

i = V ar[Zni] > 0 and Zni is
independent of the past history of the trial σ(δ1, . . . , δn−1, Z1, . . . ,Zn−1)
and of the current allocation rule δn.

Let Yn be the observed response of the n-th patient. As we allocate patients
following an adaptive design, consider the adaptive regression model

Yn

σn
=

L∑
i=1

μi
δni

σn
+

εn

σn
, σ2

n =
L∑

i=1

δniσ
2
i . (1)

Then, from [A1], {εn} is a sequence of martingale differences with respect to
the increasing sequence of σ-algebras {σ(δ1, . . . , δj)}j≥1 such that, for each
n, εn := Yn − E[Yn|δ1, . . . , δn]. This model permits errors to depend on the
past history of the trial, which is necessary for many adaptive designs. No
assumptions are made on the response distribution and we use ordinary least
squares (OLS) estimation. This setup contrasts with that of the study of
optimal adaptive designs by Baldi Antognini and Giovagnoli (2005) in that
they rely on maximum likelihood estimators

Let μ̂n = (μ̂n1, . . . , μ̂nL) denote the OLS estimator when n patients have
been treated. Lai and Wei (1982) show that the conditional variance of the
OLS estimator is the diagonal matrix diag(σ2

1/Nn1, . . . , σ
2
L/NnL) and provide

sufficient conditions for the strong consistency of, and the existence of a central
limit theorem for, the sequence {μ̂n}n≥1, namely: [C1] for each i = 1, . . . , L,
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Nni = O(n), that is, there exist constants c1, c2 > 0 such that for each
treatment i

c1 < lim
n→∞Nni/n < c2, a.s.,

and [C2] E[‖εn‖α|δ1, . . . , δn] < ∞, for α > 2.
Some adaptive designs satisfy the following condition

[A2] Nn/n → π a.s.,
√
n(Nn/n− π) → N(0, Σ), [D]

where π = (π1, . . . , πL) is the asymptotic allocation, [D] denotes convergence
in distribution and Σ = (Σij) is the covariance matrix of the asymptotic
distribution. Observe that if πi > 0, i = 1, . . . , L, [C1] holds.

The paper is organized as follows. In section 2, we introduce the necessary
tools related to the concept of design efficiency with practical interpretations.
In section 3, we describe how to use these new measures of efficiency for
several optimality criteria. Finally, in section 4, we illustrate how to use these
measures in a comparative study of several design-adaptive designs. These
measures can be used for response-adaptive designs as well.

2 A-posteriori and mean a-posteriori efficiencies

In the theory of optimal designs for linear models, an optimality criterion is a
real convex (or concave) function φ which takes values in the space of infor-
mation matrices. For a design ξ, it takes the value φ(ξ). Let ξ∗ = minξφ(ξ)
be the design for which the information matrix minimizes (maximizes) the
criterion function.

Because Nn is a random vector which takes values depending on the n-
length realization of the adaptive design, conditional on the adaptive treat-
ment allocation, we define a-posteriori efficiency as

PEn :=
φ(ξ∗)

φ(ξn|Nn)
. (2)

Using the random value PEn, we avoid evaluating exact moments of the adap-
tive design over time, which is a difficult task, but is required for the traditional
definition of efficiency: φ(ξ∗)/E[φ(ξn)|Nn]. The behaviour of the stochastic
process {PEn} is useful for comparing different adaptive designs because it is
closely related to that of Nn, as we will see in section 3 for selected criteria.
We also define mean a-posteriori efficiency as

MEn := ENn [PEn] = φ(ξ∗)ENn

[
1

φ(ξn)

]
. (3)

Observe that the sequence {MEn} is not random and, under some condi-
tions, an explicit relation with the two first moments of the adaptive allocation
can be obtained. For this reason, it appears to be an appropriate tool to com-
pare the performance of adaptive designs.
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Both expressions (2) and (3) take values in the interval [0, 1] when the
criterion functions are convex and positive, a usual situation among the clas-
sical optimality criteria. This allows interesting interpretations in practical
problems. When PEn = 1, the design applied is optimal. The a-posteriori loss
with the design applied is then PLn = n(1 − PEn). Similar expressions can
be obtained with the efficiency (3).

3 Efficiencies

In this section, we use the efficiencies introduced in the previous section to
compare the behavior of several adaptive designs for a clinical trial with two
treatments and the linear model (1). We explicitly relate the variance of the
allocation rule given by a design to the mean a-posteriori efficiency. This is
useful for a comparative study. In the following subsections, we illustrate the
procedure with two criteria. The first one focusses on optimizing a statistical
property of the estimators, whereas the second one focusses on optimizing the
ethics of the design.

3.1 Criterion: minimize variance of mean treatment differences

The 2 group DA-optimal design minimizes V ar[μ̂1n − μ̂2n|δ1, . . . , δn]. Given
a design ξn, the a-posteriori efficiency reaches the value zero when all pa-
tients are allocated to only one treatment and the value one when the optimal
allocation ξ∗ is applied.

Assuming equal variance, σ2, for the patient responses, given a design ξn,
it follows that V ar[μ̂n|δ1, . . . , δn] = σ2diag(1/Nn1, 1/Nn2). Then, V ar[μ̂1n −
μ̂2n|δ1, . . . , δn] = σ2(1/Nn1 + 1/Nn2). The minimum value of this expression,
4σ2/n, occurs under equal allocation. So we can write

PEn =
4σ2/n

σ2(1/Nn1 + 1/Nn2)
= 4

[
π1(1 − π1) + Nn1/n− π1 − ((Nn1/n)2 − π2

1)
]

(4)

When [A2] holds and π1 �= π2, from Slutsky’s theorem we have that√
n(PEn − 4π1π2) → N(0, 16(π2 − π1)2Σ11); otherwise, it converges to zero.

This result shows that high variability in the allocation rule, Σ11, implies
that the adaptive design can yield allocations with poor a-posteriori efficien-
cies. This relationship appears explicitly if we have that E[Nn1/n] = π1, which
maybe an appropriate approximation for moderate to large samples; taking
expectations in (4), we obtain

MEn = 4π1(1 − π1) − 4V ar[
Nn1

n
]. (5)

Observe that the higher the variance of the design, the smaller is the mean a-
posteriori efficiency of the design, even if the design is balanced asymptotically
(which is the optimal situation with this criterion).
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When the responses do not have equal variances, given a design ξn,
V ar[μ̂1n − μ̂2n|δ1, . . . , δn] = σ2

1/Nn1 + σ2
2/Nn2 reaches the minimum value,

(σ1 + σ2)2/n, with Neyman allocation, which is π1 = σ1/(σ1 + σ2). Let
r := σ2/σ1 and bn := Nn1/n− π1. Then, we can write

PEn =
(σ1 + σ2)2

σ2
1/(Nn1/n) + σ2

2/(Nn2/n)

= (1 + r)2
Nn1/n(1 −Nn1/n)
1 − (1 − r2)Nn1/n

=
(1 + r)2

1 − π1(1 − r2)
(π1 + bn)(1 − π1 − bn)

1

1 − 1 − r2

1 − π1(1 − r2)
bn

. (6)

Consider f(r) := (1 − r2)/(1 − π1(1 − r2)) and g(r) := f(r)(1 + r)/(1 − r).
Now, under the assumption that |f(r)| < 1, the Taylor expansion of (6) is

PEn = g(r)[π1(1 − π1) + (1 − 2π1)bn − b2n][1 + f(r)bn + f(r)2b2n + o(b2n)]
= g(r)π1(1 − π1) + g(r)

(
1 − 2π1 + f(r)π1 − f(r)π2

1

)
bn

−g(r) (1 − f(r)(1 − 2π1) − f(r)2π1(1 − π1)
)
b2n + o(b2n)

:= a(π1) + b(π1)bn − c(π1)b2n + o(b2n). (7)

The function a(π1) is a function of π1 whose maximum is the Neyman
allocation. When [A2] holds, reasoning as before, a central limit theorem holds
for PEn in which the variance of the asymptotic distribution is b(π1)2Σ11.

Taking expectations of (7) under the assumption that E[Nn1/n] = π1

yields
MEn ∼ a(π1) − c(π1)V ar[Nn1/n], (8)

where f(n) ∼ g(n) means f(n)/g(n) → 1 as n → ∞. As c′(π1) = 3f(r)2c(π1),
c(π1) takes only positive values in the interval [0, 1] and thus, the higher the
variability of the adaptive allocation, the smaller will be the efficiency of the
resulting designs.

3.2 Criterion: minimize the mean response

The ethical criterion we study is to minimize the total expected number of
failures. So ξ∗ = argminξ{n1q1 + n2q2}, where q1 and q2 are the probability
of failure under treatments 1 and 2, respectively. A generalization of this
criterion, to include continuous responses and, assuming less response is better
for the patient, is {n1μ1 + n2μ2}, where μ1 and μ2 are expected responses
under treatments 1 and 2, respectively. In Zhang and Rosenberger (2006) this
criterion is considered, but subject to a known variance.

Assume positive mean responses in this section, i.e., μ1 > 0 and μ2 >
0. Without loss of generality, let μ1 < μ2. Then minξn{n1μ1 + n2μ2} =
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minξn{nμ2 + (μ1 − μ2)n1} = nμ1, which corresponds to the design which
allocates all patients to the best treatment. The a-posteriori efficiency of an
adaptive design relative to one that minimizes the total number of failures is

PEn =
μ1

μ2 + (μ1 − μ2)Nn1/n

=
μ1

μ2

1[
1 − π1(1 − μ1

μ2
) − (1 − μ1

μ2
)(Nn1/n− π1)

] . (9)

Define c := μ1/μ2, c := 1 − μ1/μ2 and bn := Nn1/n − π1. Then, when

| c

1 − cπ1
| < 1, we have

PEn =
c

1 − cπ1

1

1 − c

1 − cπ1
bn

=
c

1 − cπ1
[1 +

c

1 − cπ1
bn + (

c

1 − cπ1
)2b2n + o(b2n)]

:= a(π1) + b(π1)bn + c(π1)b2n + o(b2n). (10)

As c < 1, a(π1) is an increasing function when π1 ∈ [0, 1]. When most patients
are allocated to treatment 1, a(π1) is close to one, yielding the maximum
efficiency.

Observe that
√
n(PEn−a(π1)) → N(0, b(π1)2Σ11). Since b2n is the squared

deviation of Nn1/n from its limit, it is a measure of the variability in the de-
sign at stage n. As 0 < c < 1 we have that, (1 − c)π < 1, and so, c(π1) is
positive in [0, 1]. Thus, PEn increases with b2n. This trade-off between effi-
ciency and variability of the allocation rule is reflected more clearly when we
take expectations in (10) under the assumption E[Nn1/n] = π1, because then
we obtain

MEn ∼ a(π1) + c(π1)V ar
[
Nn1

n

]
. (11)

So, a high variance of the allocation rule results in an increment of the effi-
ciency for the ethical criterion. This agrees with previous results in the litera-
ture. For instance, in Hu and Rosenberger (2003) several adaptive designs are
compared for dichotomous responses. They conclude that the Play the Win-
ner rule has high variance and, then, the estimators obtained with this design
have high variability. However, from the ethical point of view, it provides the
best performance among the designs considered in their paper.

Minimizing expected failures is a criterion function that reaches a global
minimal value in the allowable set; that is, [0, 1]× [0, 1]. The transformation
(PEn − μ1/μ2)(μ2/(μ2 − μ1)) takes values in [0, 1] and allows us to interpret
the a-posteriori efficiency in the usual terms where 0 and 1 correspond with the
worst and best efficiency, respectively. Slight modifications in the a posteriori
efficiency function allow us to deal with negative values for the mean response.
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4 Example

In this section we illustrate how to use PEn and MEn as a comparative
tool among adaptive designs. We use the mean efficiency given by (5) for
comparing the difference between mean responses with equal variance, as in
Atkinson (2002); but it can be performed with any other appropriate criterion
function.

A simulation study was carried out with 5000 replications of each design.
For a deeper description of each design shown in Table 1, see chapter 3 in
Rosenberger and Lachin (2002) for [A], [C], [F] and [G], Chen (2000) and
Baldi Antognini (2005) for [B] and [D] and Atkinson (2002) for [E]. With the
notation used in [A2], we have π1 = 1/2 for all these designs but a central limit
theorem does not exist for all of them. From (5), we conclude that the higher
the value of the design variance, the smaller will be the mean a-posteriori
efficiency for comparing mean treatment differences. In Table 1, the designs
are ranked according to the increasing value of the estimated design variance
when 50 patients have participated in the design.

When the total average loss is plotted for each design as a function of n, the
graph looks virtually the same as Figure 1 in Atkinson (2002). However. our
figure is generated by model (1), which includes dependence among the errors.
The graph also agrees with the Table 1 ranking. Complete randomization is
the least efficient and Efron’s design is the most efficient due to its small
variability.

Table 1. For n = 10, 25, 50 patients: average of allocations to Treatment 1 (n times
sample variance of allocations to Treatment 1).

n = 10 n = 25 n = 50

[A] Efron’s design 0.46 (0.037) 0.49 (0.025) 0.49 (0.010)

[B] Ehrenfest model* (w = 10) 0.50 (0.062) 0.50 (0.025) 0.50 (0.012)

[C] Smith’s design 0.55 (0.034) 0.52 (0.027) 0.51 (0.025)

[D] General Efron 0.54 (0.045) 0.52 (0.047) 0.52 (0.037)

[E] Atkinson design 0.55 (0.067) 0.52 (0.055) 0.51 (0.052)

[F] Wei’s urn (1, 3) 0.55 (0.096) 0.52 (0.090) 0.51 (0.090)

[G] Complete Randomization 0.50 (0.248) 0.50 (0.253) 0.50 (0.247)

* Exact values of nV ar[Nn1/n] following Baldi Antognini (2005)

5 Conclusion

In this paper, we have obtained a relationship between a measure of efficiency
and the variance of the design. This provides the basis for using the variance
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of the design to compare the efficiency of adaptive designs. We consider an
adaptive linear model to relate the patient response with the treatment as-
signed. This model accommodates dependence among errors resulting from
the use of adaptive designs to allocate patients.

For the sake of brevity, the possibilities of the proposed tools have not
been developed to their full extent. First, model (1) can be extended to the
case when covariates are included; see Moler et al (2007). Second, the exam-
plary comparisons are presented for illustrative purposes, but a similar study
could be carried out for any other criterion and for response-adaptive designs.
Finally, composition of criteria could be used to make comparisons among
designs with respect to several targets at the same time.
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Summary. The paper briefly describes results on determining optimal cutpoints
in a survey question. We focus on the case when we offer all respondents a set
of cutpoints: a one point design. Applications in the social sciences will be cited,
including contingent valuation studies, which aim to assess a population’s willingness
to pay for some service or amenity, and in market research studies. The problem will
be formulated as a generalized linear model. The formula for the Fisher information
matrix is constructed. Search methods are used to find optimal solutions. Results
are reported and illustrated pictorially.
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1 Introduction

Suppose that we are concerned about a characteristic of a population such
as income or expenditure on a particular product and a survey is conducted.
Categorical information is to be recommended if respondents are likely to be
reluctant to be very specific or to have poor memory recall. In this case, the
best way to get information from respondents is to offer them consecutive
ranges of values of the response variable with these ranges chosen in advance.
So, the problem arises of how to choose such ranges optimally. This kind
of design could also be applied in surveying general practitioners in respect
of what percentage of patients they assign to a specific drug, or to a new
market expansion in which a company wants to investigate the population’s
expenditure potential for a new product or in a new market. In contingent
valuation studies the primary aim is to assess a population’s willingness to pay
for some ecosystem, environmental services, non-market goods or towards an
increase in charges for some public services. Since respondents may never have
considered such questions it is unrealistic to expect them to state a specific
’willingness to pay value’. In a simple dichotomous choice question they are
offered a single ’bid’ question; e.g. ’are you willing to pay $20.?’ In a double
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bounded approach they would then be offered a second bid, lower, e.g. $10,
if their response to the first ’bid’ is NO and higher, e.g. $30, otherwise. We
would then know into which of the four ranges, below $10, between $10 and
$20, between $20 and $30, above $30, a respondent’s willingness to pay falls.
See Alberini (1995), Kanninen (1996) and Torsney and Gunduz (1999). Our
problem extends further when we consider offering respondents a range of
bid values. A fundamental question is: what bid values should be offered to
respondents?
Put more technically, we denote X , on a continuous scale, as the variable of
interest. In practice, however, we can not measure this variable precisely on
the sample members. An alternative is that we record only to which of a finite
number of categories they belong, possibly determining this by a process of
elimination. Our main task is how to determine these categories optimally.

2 The formal problem

Suppose that we know that X ∈ X = [C,D], so that this is a sample space
(which in theory, but not in practice, could be the real line). Suppose that
we wish to place responses into one of k categories determined by cutpoints
x1, x2, . . . , xk−1, chosen in advance, satisfying C = x0 < x1 < x2 < . . . <
xk−1 < xk = D. Thus we have partitioned X into k sub-intervals.
What sets of values should be chosen for these cut-points? This defines a non-
linear regression design problem, in which the design variable is the vector x =
(x1, x2, . . . , xk−1). The solution should depend on the underlying distribution
of X in the population of interest.
We make the simple but widely used assumption that X (or it could be some
function h(X), e.g. ln(X) when X is positive, as in the case of ’Willingness
to Pay’) has distribution function:

P (X ≤ x) = F ((x− μ)/σ), x ∈ X (1)

where μ and σ are unknown location and scale parameters respectively, and
F (z) is a standardised distribution function. Equivalently:

P (X ≤ x) = F (α + βx), x ∈ X (2)

where α = −(μ/σ), β = 1/σ.
This is a Generalised linear model in the parameters α, β. Let γ = (α, β)T .
We have a two parameter model and our objective is good estimation of some
aspects of these parameters. Often μ is of particular interest.

3 Some design objectives

We wish to choose a design which will ensure good estimation of some aspects
of our model. We could be interested in efficient estimation of either both
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parameters, or , in this context, possibly only of μ. For the latter we then
wish to minimise V ar(μ̂).
Since μ = −α/β, μ̂ = −α̂/β̂; V ar(μ̂) ∼= V ar(cT λ̂), c = ∂μ/∂λ ∝ −(1, μ)T /β
This is an example of the c-optimal criterion. Alternatively, minimizing
V ar(σ̂), (σ = 1/β) corresponds to this criterion with c = −(0, 1)T /β2.
If we want good estimation of both parameters then we wish to make
C = Cov(λ̂) ’small’. Possible targets are to minimise either: det(C) (D-
optimality); tr(C) (A-optimality ); or the maximum eigenvalue of C (E-
optimality).
For the moment we note that for non-linear models optimal designs typi-
cally depend on the unknown parameters of such models. They are locally
optimal designs. Provisional estimates of parameters are needed for these to
be of practical value. We will focus on the construction of such designs. We
can characterise this parameter dependence through a parameter dependent
transformation to a standardised problem.
Let: Z = (X − μ)/σ = α + βX , z = (x − μ)/σ = α + βx, A = (C − μ)/σ =
α + βC, B = (D − μ)/σ = α + βD where α = −(μ/σ), β = 1/σ.
Then

P (X ≤ x) = P (Z ≤ z) = F (z), z ∈ Z = [A,B] (3)

We have in Z a transformed standardised version of X . We can focus on deter-
mining cutpoints z1, z2, . . . , , zk−1 satisfying A = z0 < z1 < z2 < . . . < zk−1 <
zk = B. We have a design problem with design vector z = (z1, z2, . . . , zk−1).
Of course zj = (xj −μ)/σ = α+βxj , j = 0, 1, 2, . . . , k. Ford et al (1992) used
this approach for the two-category case.

4 Two category case

We brieftly review this simplest case where the vector x = x1 is scalar, which
means that only one cut-point is offered to each respondent. Consequently we
have two categories. Let x1 = x ∈ X = [C,D], so that x is a single design
variable.
We focus on construction of design measures ξ, because if both parameters
need to be estimated, at least two support points are needed. That is, we
seek a distribution ξx on X which will identify the optimal proportions of
observations to take at each point in X . This means that respondents will be
split into groups according to these optimal proportions and different groups
will be offered different single cutpoints.
Note that we are assuming that we are free to take x to be any value in
X = [C,D], even if X = R. This can be permissible. However, we could
be restricted to a subset of X , say [c, d]. We denote by M(ξx) the expected
information matrix per observation. We have:

Cov(γ̂) ∝ M−1(ξx), (4)
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where γ̂ = (α̂, β̂) as denoted above.
If the distribution ξx assigns weight ξi to a discrete set of values x1, x2, . . .
and ξi ≥ 0,

∑
ξi = 1, then:

M(ξx) = Eξx(Ix) =
∑

ξiIxi , (5)

where Ix is the expected information matrix of a single observation at x or a
one point design at x. Here:

Ix = w(z)
(

1
x

)
(1 x) (6)

Clearly the function w(.) is playing the role of a weight function. We assume
it is measurable. It has the form:

w(z) =
{f(z)}2

{F (z)[1 − F (z)]} , f(z) = F ′(z) and z = α + βx

We are now considering a standardized problem under the parameter depen-
dent transformation: (

1
z

)
= B

(
1
x

)
; B =

(
1 0
α β

)
(7)

So, we have:

Ix = w(z) (B−1)
(

1
z

)
(1 z)(B−1)T (8)

Hence:
Ix = B−1 Iz (B−1)T , (9)

where
Iz = w(z) (1, z)T (1, z) (10)

Extending these results to the expected per observation information matrix,
we have:

M(ξX) = B−1M(ξZ)(B−1)T , (11)

where ξZ is the distribution induced on Z = [A,B] by ξX on X = [C,D].
Hence we have:

M(ξZ) = Eξz{Iz} =
∑

ξiIzi and det{M(ξX)} ∝ det{M(ξZ)}

cTM(ξx)c = cT
BM(ξz)cB; cB = Bc.

Thus D-optimal and c-optimal criteria, as functions of ξX , transform respec-
tively to the D-optimal and other c-optimal criteria as functions of ξZ .
Thus, we focus on finding the design ξZ which either

maximizes det[M(ξZ)] ⇒ D − optimality

or
minimizes cT

BM
−1(ξZ)cB ⇒ c− optimality.

We consider two cases related to the previous section:
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• If c = −(1, μ)T /β ⇒ cB = Bc = (−1/β, 0)T

So, we minimize cT
BM

−1(ξZ)cB which is equivalent to minimizing
(1, 0)TM−1(ξz)(1, 0) i.e. cB ∝ e1 = (1, 0)T .

• If c = −(0, 1)T /β2 ⇒ cB ∝ e2 = (0, 1)T

So we are interested in the criteria:
ei-optimality: A design is called ei-optimal if it maximizes the value of the
function:

−eT
i M

−1(ξZ)ei; i = 1, 2

where e1 = (1, 0)T ; e2 = (0, 1)T .

5 One point designs: k categories

In the two-category case (one cutpoint), to ensure estimation of both para-
meters in the model, we need at least two support points. This is why we can
not use the same cutpoint for all respondents. We have to use at least two
distinct values for a single cutpoint.
However if we offer each respondent at least two cutpoints, we are free to use
the same set for all respondents since all parameters can be estimated; i.e. we
can settle for a one point design. We now consider this case.
Suppose there are k categories and hence k − 1 cutpoints. Let the origi-
nal cutpoints be x1, x2, . . . , xk−1 and x0 = C, xk = D . The vector x =
(x1, x2, . . . , xk−1) represents our single design point. Let:

θ1 = P (X ≤ x1) = F (α + βx1) = F (z1), θk = 1 − F (zk−1),
θi = P (xi−1 ≤ X ≤ xi) = F (zi) − F (zi−1), i = 2, 3, . . . , k − 1.
Then the Fisher Information matrices at the vector (design point) x =

x1, x2, . . . , xk−1 or at z = z1, z2, . . . , zk−1, zi = α + βxi are:
IX = XQXT , IZ = ZQZT (non-singular for k ≥ 3),
where:
XT = (1k−1|x), ZT = (1k−1|z), 1n = (1, 1, . . . , 1) ∈ R

n

Q = DfHD−1
θ HTDf ; H = (Ik−1|0k−1) − 0k−1|Ik−1);

Df =diag{f(z1), f(z2), . . . , f(zk−1}, f(z) = F ′(z);
Dθ =diag(θ1, θ2, . . . , θk), (θi :Cell probabilities).
0n = (0, 0, . . . , 0)T ∈ R

n; In : Identity matrix of order n.
Then:
Z = BX, IX = B−1IZ(B−1)T .
We can focus on determining an optimal z∗. We first assume that the dis-

tribution of Z is symmetric; for example, logistic, normal, double reciprocal
and double exponential. It is intuitive that any set of cutpoints must be sym-
metrical too (about zero). We consider the following cases:
k = 3 : z∗ = (−z∗, z∗); k = 4 : z∗ = (−z∗, 0, z∗);
k = 5 : z∗ = (−z∗2 ,−z∗1 , z∗1 , z∗2); k = 6 : z∗ = (−z∗2 ,−z∗1 , 0, z∗1 , z∗2).
The criteria considered are :
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- D-Optimality: Maximise {log det(Iz)}.
- A-Optimality: Maximise {−tr(I−1

z )}.
- ei-Optimality: Maximise {−eT

i I
−1
z ei} i = 1, 2.

- E-optimality: Maximize{−λmax}; λmax is maximum eigenvalue of I−1
z

We wish to choose z∗ to maximise φ(z) = ψ(Iz) for ZT = (1k−1|z), ψ(.) being
one of the above criteria.

6 Results

By simple searching through z∗ or (z∗1 , z
∗
2) values, we have the following results

for the logistic distribution.

Table 1. Numerical results for logistic distribution, k=3 and k=4

k=3 k=4

Criterion z∗ F (z∗) φ(z∗) z∗ F (z∗) φ(z∗)
D-optimality 1.4700 0.8131 -1.5567 1.9800 0.8787 -1.2483
A-optimality 1.1600 0.7613 -5.0182 1.7100 0.8468 -4.3789
e1-optimality 0.6900 0.6660 -3.3750 1.1000 0.7503 -3.2000
e2-optimality 2.1700 0.8975 -1.0226 2.1700 0.8975 -1.0226
E-optimality 0.6900 0.6660 -3.3750 1.1000 0.7503 -3.2000

Table 2. Numerical results for logistic distribution, k=5

Criterion z∗
1 z∗

2 F (z∗
1) F (z∗

2) φ(z∗
1 , z∗

2)
D-optimality 0.8500 2.5100 0.7006 0.9248 -1.0709
A-optimality 0.6100 2.1600 0.6479 0.8966 -4.1245
e1-optimality 0.4100 1.3900 0.6011 0.8006 -3.1251
e2-optimality 1.5900 3.1700 0.8306 0.9597 -0.8284
E-optimality 0.4100 1.3900 0.6011 0.8006 -3.1251

Table 3. Numerical results for logistic distribution, k=6

Criterion z∗
1 z∗

2 F (z∗
1) F (z∗

2) φ(z∗
1 , z∗

2)
D-optimality 1.3300 2.9100 0.7908 0.9483 -0.9788
A-optimality 1.0500 2.5400 0.7408 0.9269 -3.9942
e1-optimality 0.6900 1.6100 0.6660 0.8334 -3.0857
e2-optimality 1.5900 3.1700 0.8306 0.9597 -0.8284
E-optimality 0.6900 1.6100 0.6660 0.8334 -3.0857

We note the not surprising conclusion that all criteria increase or do not
change with k the number of categories with virtually no change from k= 5 to
6. This suggests that five categories suffices. The e2-criteria does not change
from k = 3 to k = 4 or from k = 5 to k = 6, i.e. when zero is inserted as an
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extra cutpoint into a symmetric set of non-zero cutpoints. The explanation
of this is that the difference in the Fisher information matrix (between after
and before zero is inserted) is a diagonal matrix with a zero second diagonal
entry. We also investigated the change in the Fisher information matrix when
an arbitrary cutpoint is inserted between two other cutpoints and find that
the difference (with-without extra cutpoint) in the Fisher information matrix
is non-negative definite. This confirms that the criteria increase or do not
change with k. We have similar results for other distributions.
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Fig. 1. Contour plots in 3 and 4 category cases, D-optimality and logistic distribu-
tion
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Fig. 2. Contour plots in 3 category cases, D-optimality, double exponential and
double reciprocal distribution

The above results are partially confirmed for D-optimality in the case of
k=3, 4 by the contour plots in Figures 1 and 2. The triangle simplex is the
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plot of the criterion against the three cell probabilities θ1, θ2, θ3 of the three
category case. The rectangle is a plot of the criterion against θ1 and θ3 in
the four category case but subject to θ1 + θ2 = θ3 + θ4. Similar results are
found for the other symmetric distributions. There are some unusual results
for the three category case when the distribution is double exponential and
double reciprocal. Looking at Figure 2, we can see that there are two optimal
design points in two different positions. These two points are symmetrical
with respect to the perpendicular from the top vertex of the triangular.

7 Future work

Future work will focus on asymmetric distributions, multiple design points,
multivariate responses and the use of a multiplicative algorithm; also the
bivariate approach of Alberini (1995) and Gunduz (1999).
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Summary. This paper is concerned with the search for locally optimal designs
when the observations of the response variable arise from a weighted distribution in
an exponential family. The expression for the information matrices for length-biased
distributions from an exponential family are obtained. Locally D–optimal designs
are derived for regression models whose response variable follows a weighted Poisson
distribution. Two link functions are considered for these models.

Key words: optimal designs, generalized linear model, length-biased response, ex-
ponential family

1 Introduction

In this paper, attention is confined to regression models with a biased response,
i.e. models where the response variable is a weighted distribution. The concept
of weighted distributions can be traced back to the study of the effect of
methods of ascertainment upon estimation of frequencies by Fisher (1934),
although these models were first formulated in an unified way by Rao (1965).
From an original density function f(y) of a variable Y , the weighted density
function f∗(y) with respect to a non-negative real weight function w(.) is
defined as

f∗(y) =
w(y)f(y)
Ef (w(y))

(1)

where 0 < Ef (w(y)) < ∞. The subindices f and f∗ in the expected values
and variances are used to distinguish between the original distribution and
its weighted counterpart. A special case of interest arises when the weight
function is of the form w(y) = yk with k > 0. Such distributions are known
as size-biased distributions of order k and the most common cases, called
length-biased, occur when k = 1. Biased random variables frequently arise in
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biological and epidemiological studies, economics, survey sampling and many
other fields (see Patil (1981), Nanda and Jain (1999) and Navarro et al (2001))
to model unequal sampling probabilities. Some concrete examples are the
time period between two blood donations which contains a seroconversion
(development of detectable antibodies to a virus) (see Satten et al (2004)); or
to explain the famous waiting time paradox, namely that the chance that an
interval between two buses brackets the arrival of an individual at a bus stop
is proportional to the length of the interval, see Feller (1971).

The general form of a linear regression model is

E(y|x) = βT η(x),

where the random variable Y is the response variable, x is the explanatory
variable, chosen in a design space X ⊂ IR, β is a k × 1 vector of unknown
parameters and η(x) is the vector of regression functions.

Optimal design theory has been extensively developed for linear models
where the response variable Y is normally distributed. In this paper, optimal
designs for Poisson regression models with length-biased responses are dis-
cussed. In Section 2 the model under consideration and the notation related
to optimal designs are introduced. Expressions for the information matrices
for weighted distributions are studied in Section 3. Some results for locally
D–optimal designs for Poisson distributions are included in Section 4. Finally,
in Section 5, some concluding remarks are given.

2 Model and notation

The Generalized Linear Model (GLM) is a generalization of the normal linear
model and assumes that

E(y|x) = μ(x, β),

where μ(x, β) is related to a linear predictor α = βT η(x) by means of a
link function. The exponential family of distributions are particularly inter-
esting cases of the GLM. The density function of the distributions in the one-
parameter exponential family considered in Rohatgi (1988), takes the form

f(y|α) = exp{yq(α) − b(α) + c(y)} (2)

for some specific functions q(.), b(.) and c(.). Distributions such as the Normal,
Gamma, Inverse Gaussian, Poisson and Binomial with only one unknown
parameter are included in this family. The characteristics of a variable Y with
a distribution in the exponential family are

E(y) = b′(α)/q′(α),

V ar(y) =
−q′′(α)b′(α) + q′(α)b′′(α)

q′(α)3
,
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where primes denote differentiation with respect to α. In what follows, the
function (2) is denoted as f(y|x, β) since α = βT η(x).

In this paper, we will assume that Y has a weighted distribution or is
a biased response. More specifically, the distribution of Y is obtained as a
weighting distribution in the exponential family (original distribution) as in
(1), from a weight function w(y). Length-biased responses are obtained when
w(y) = y.

For a model from the exponential family the regression model is Ef (y|x) =
b′(α)/q′(α) with α = βT η(x), and for the weighted distribution with w(y) = y,
the regression model will be

Ef∗(y|x) =
b′(α)
q′(α)

+
b′′(α)

q′(α)b′(α)
− q′′(α)

q′(α)
. (3)

In the context of regression models, the optimal design of an experiment
tries to determine an optimal collection of N values {x1, x2, . . . , xN} of a
variable x at which we will observe the response variable Y . It can be re-
written in terms of the n distinct points {x1, x2, . . . , xn} at which observations
are taken (called the support points) and their relative frequencies (masses)
{p1, p2, . . . , pn} with

∑n
i=1 pi = 1. An approximate design ξ can be defined as

any probability measure in X . Optimal designs for GLM’s have been studied in
several papers (see, for instance, Ford et al (1992) or Burridge and Sebastiani
(1992)).

The Fisher information matrix for β, given an observation at design point
x, is

I(x, β) = Ef

(
−∂2 log f(y|x, β)

∂β2

)
(4)

and the Fisher information matrix for a design ξ is M(ξ, β) =
∫
X I(x, β)ξ(dx).

The information matrix becomes the main tool when we look for optimal de-
signs for god estimation of β. Its inverse matrix is proportional to the co-
variance matrix of the estimators of the parameters in the model. The D–
optimal design minimizes the generalized variance of the parameter estimates
or equivalently, maximizes the determinant of the information matrix. When
the information matrix depends on unknown parameters some additional in-
formation to obtain optimal designs is needed. This information can consist
of initial values for the parameters, these designs are called locally optimal
designs, (see Chernoff (1953)). Interest in obtaining locally optimal designs is
summarized in Ford et al (1992).

3 Information matrices for biased response

The Fisher information matrix (4) for β at point x for a density function
f(y|x, β) in the exponential family (2) is
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I(x, β) =
(
b′′(α) − q′′(α)b′(α)

q′(α)

)
η(x)η(x)T .

For a biased response with weight function w(y) which does not depend
on the parameter vector β, the Fisher information matrix I∗(x, β) from (1)
and (4) is

I∗(x, β) = Ef∗

(
−∂2 log f(y|x, β)

∂β2

)
+

gβ2(x, β)
g(x, β)

− gβ(x, β)gT
β (x, β)

g2(x, β)
,

where g(x, β) denotes the mean Ef (w(y)) which can depend on β; also
gβ(x, β) = ∂g(x, β)/∂β and gβ2(x, β) = ∂2g(x, β)/∂β2. If the density func-
tion f(y|x, β) is in the exponential family (2), then

Ef∗

(
−∂2 log f(y|x, β)

∂β2

)
= Ef∗ (b′′(α) − yq′′(α)) η(x)ηT (x) =

= (b′′(α) − q′′(α)Ef∗(y)) η(x)ηT (x)

and therefore

I∗(x, β) = I(x, β) + q′′(α)
(
b′(α)
q′(α)

− Ef∗(y)
)
η(x)ηT (x) +

+
gβ2(x, β)
g(x, β)

− gβ(x, β)gT
β (x, β)

g2(x, β)
.

For a design ξ in X , the information matrix M∗(ξ, β) for the parameter vector
β when the response is biased can be written as

M∗(ξ, β) = M(ξ, β) +
∫
X

[
q′′(α)

(
b′(α)
q′(α)

− Ef∗(y)
)
η(x)ηT (x)+

+
gβ2(x, β)
g(x, β)

− gβ(x, β)gT
β (x, β)

g2(x, β)

]
ξ(dx), (5)

where M(ξ, β) is the information matrix of the design ξ for the original dis-
tribution (non-biased distribution).

Lemma 1. The information matrix for a model from the exponential family
with length-biased response is

M∗(ξ, β) = M(ξ, β) +
∫
X

b′′′(α)b′(α) − b′′(α)2

b′(α)2
η(x)η(x)T ξ(dx) +

+
∫
X

(
q′′(α)b′′(α)
q′(α)b′(α)

− Q′′′(α)
q′(α)

)
η(x)η(x)T ξ(dx).

Proof. For length-biased responses w(y) = y and we have
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g(x, β) = b′(α)/q′(α),
gβ(x, β) = (b′′(α)q′(α) − b′(α)q′′(α))η(x)/q′(α)2,
gβ2(x, β) = (b′′′(α)q′(α)2 − 2b′′(α)q′(α)q′′(α) − b′(α)Q′′′(α)q′(α)

+ 2b′(α)q′′(α)2)η(x)η(x)T /q′(α)3.

From (3) and substituting in (5) we obtain the asserted expression of the
information matrix.

4 Locally D-optimal designs for length-biased Poisson
response

A locally D–optimal design ξ∗ maximizes the logarithm of the determinant of
the information matrix for some best guess for the unknown parameters in the
regression model. It is equivalent to minimizing the volume of the confidence
ellipsoid of the estimators of the parameters in the model.

We consider the following case: the regression function vector η(x) =
(1, x)T , the vector of unknown parameters β = (β0, β1)T and the design space
X = [xmin, xmax]. Since there are two parameters in the regression model,
it follows from Carathéodory’s Theorem that the locally D–optimal design is
supported at two or three different points. By a standard argument (see Sil-
vey (1980)) the two–point D–optimal designs put equal masses at both points.
The notation β0 = (β0

0 , β
0
1)T is used as the best guess for the parameters.

Following Ford et al (1992), a canonical form is used to find D–optimal
designs. The local D–optimal criterion is invariant under transformations of
the regression function η(x) of the form Bη(x) where B is a non-singular

2 × 2 matrix, depending on β0. If η(x) = (1, x)T and B =
(

1 0
β0

0 β0
1

)
then the

variable x is mapped to z = β0
0 + β0

1x, resulting in an induced design space Z
which varies with β0. This leads to a canonical version of the design problem
which can be solved independently of β0. Hence, solving the transformed
problem for any Z yields the solution in X for the best guess β0.

The information matrix for the model with length-biased response can be
written in the form

M∗(ξ, β) =
∫
X
h(α)η(x)η(x)T ξ(dx),

for α = βT η(x) and a given h(.). Then the equivalent problem in the space Z
will consist of finding the D–optimal design given the information matrix

Mz(ξz) =
∫

Z

h(z)
(

1
z

)(
1 z

)
ξz(dz). (6)

A geometrical method based on the set
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S =
{
s = (s1, s2)T /s1 =

√
h(z), s2 = zs1 and z ∈ Z = [a, b]

}
, (7)

can be used to construct D–optimal designs in the space Z. The information
matrix (6) will be

Mz(ξz) =
∫

Z

ssT ξz(dz). (8)

and the points of Z in the support of the D–optimal design for the transformed
model can be determined geometrically: at these points, the set S is in contact
with the smallest ellipsoid centered on the origin and containing S.

Hence D–optimal designs will be determined in two steps. Firstly we look
for the best two–point equally supported design in Z. If this design is not the
D–optimal design, we will find the points and the masses of the three–point
D–optimal design. Kiefer and Wolfowitz’s Equivalence Theorem will be used
to check the optimality of a design. In the next step, the optimal support
points from Z are transformed to the design space X .

Poisson distribution

The above method is applied to Poisson distribution for two different link
functions, as a particular case in the exponential family. Let Y be a Pois-
son distribution with mean λ. Its probability function is f(y) = e−λλy

y! =
exp {y logλ− λ− log y!}. It is a model of the exponential family (2).

Two link functions are considered. A first case is λ = eα, then log(Ef (y)) =
α = βT η(x). This is the usual link function. And a second case is when λ = αr ,
0 < |r| < ∞, α > 0 with λ1/r = (Ef (y))1/r = α = βT η(x).

For λ = eα, the probability function is f(y|α) = exp{yα−eα−log(y!)} with
q(α) = α, b(α) = eα and c(y) = − log y!. In this case, the Fisher information
matrix for β at point x for the original distribution and for the length-biased
response, from Lemma 1, are the same

I(x, β) = I∗(x, β) = eαη(x)η(x)T .

So for all design ξ we have that M(ξ, β) = M∗(ξ, β) and the optimal designs
are the same for both models. For η(x) = (1, x)T , z = α = β0 + β1x the
D–optimal design in Z = [a, b] is equally supported at max{a, b − 2} and b
Ford et al (1992).

For the second link function λ = αr, the probability function is f(y|α) =
exp{yr logα− eα − log y!} with q(α) = r logα, b(α) = αr and c(y) = − log y!.
The Fisher information matrix for β at point x is

I(x, β) = r2αr−2η(x)ηT (x).

The D–optimal design for η(x) = (1, x)T , z = α = β0 + β1x and z ∈ [a, b]
is equally supported at a and min{b, ra/(r + 2)} if r < −2; at a and b if
−2 ≤ r ≤ 0 and at max{a, rb/(r + 2)} and b if r > 0 Ford et al (1992).
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The information matrix at point x when the response is length-biased is

I∗(x, β) = I(x, β) − 2rα−2η(x)ηT (x).

Particular cases are:

r = 1 I(x, β) = α−1η(x)ηT (x) I∗(x, β) = I(x, β) − 2α−2η(x)ηT (x);
r = 2 I(x, β) = 4η(x)ηT (x) I∗(x, β) = I(x, β) − 4α−2η(x)ηT (x).

In this case, the D–optimal design for η(x) = (1, x)T , with z = α = β0 + β1x
in the design space [a, b] is equally supported at two points, which are, the
endpoints of the design interval when r < 0 and max{a, z1} and b when r ≥ 1,
z1 being a solution of the equation

r2zr+1
1 − br(r − 2)zr

1 − 4b = 0. (9)

For example, if r = 1 the solution is z1 = 1
2 (−b +

√
b(16 + b), for r = 2 the

solution is z1 = b1/3.
When 0 < r ≤ 1 the D-optimal support points are the endpoints of the

design interval, provided the lower endpoint of the interval (a) is greater that
(2/r)1/r. Otherwise the support points are the upper endpoint (b) and the
solution z1 to equation (9). For example, suppose the design space is [20, 110].
Then if r = 0.8 the support points of the D-optimal design are the endpoints,
20 and 110. In contrast, if r = 0.5, the points are the upper endpoint, 110,
and the solution of equation (9), namely z1 = 24.6305. The critical limit for r
is r = 0.4779.

The efficiency study allows us to evaluate the performance of a D–optimal
design for the model with Poisson response when it is used to fit the model
with length-biased Poisson response. The usual definition of D–efficiency for
any design ξ and the D–optimal design ξ∗ is

effD(ξ, β) =
(

detM(ξ, β)
detM(ξ∗, β)

) 1
/

k

,

where k is the number of unknown parameters in the model.
For r = 0.8 the D–optimal design for the original model is equally sup-

ported at 31.4286 and 110. Its D–efficiency is 0.6948. For r = 0.5 the D–
optimal design support points are 22 and 110, with a higher efficiency of
0.9859.

5 Concluding remarks

The results of this paper extend optimal design theory to Generalized Linear
models from the exponential family in which there is a biased structure in the
response. The search for optimal designs is more difficult when a model with
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a weighted distribution for the response is considered. In this paper, expres-
sions for the information matrices have been derived assuming length-biased
distributions for the response of the regression model. These expressions are
used to search for optimal designs.

Finally, we add to previous results for the Poisson distribution. The local
D–optimal designs for this distribution are characterized for two link func-
tions. When λ = eα the optimal designs for any criterion for the length-biased
response are the same as those for a ’standard’ regression model with a basic
Poisson distribution for the response. In these cases both information matrices
coincide. If λ = αr , the information matrices for the basic and length-biased
models are different, and then local D-optimal designs can be very different,
as has been shown in several examples.
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Efficient Sampling Windows for Parameter
Estimation in Mixed Effects Models
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Summary. In the paper we present a method of calculating an efficient window
design for parameter estimation in a non-linear mixed effects model. We define a
window population design on the basis of a continuous design for such a model. The
support points of the design belong to intervals whose boundaries are determined in
a way which ensures that the efficiency of the design is high; also the width of the
intervals is related to the dynamic system’s behaviour.

Key words: mixed effects non-linear model, population experimental design, equiv-
alence theorem

1 Introduction

Optimum experimental design for parameter estimation in mixed effects phar-
macokinetic models has gained considerable attention in the statistical litera-
ture (cf. Mentré et al (1997) and Mentré et al (2001)). The advantage of high
precision of estimation of the population parameters is clear. However, in
advanced phases of clinical trials when a drug is tested in a population of pa-
tients, it may be impossible to maintain accurate timing of blood sampling for
every patient. This may discourage a practitioner from applying a suggested
optimum sampling schedule and may result in an inefficient experiment and so
loss of resources. Sampling windows, that is time intervals assuring some min-
imum required efficiency, are a good solution to this problem. Several authors
have proposed various methods for deriving such windows, based on a design
efficiency factor, see Green and Duffull (2003); Pronzato (2002); Graham and
Aarons (2006).

The main objective of this paper is to give a method of calculating sam-
pling windows for mixed effects non-linear models which would not only assure
a required minimum efficiency of population parameter estimation but would
also give a window size reflecting parameter sensitivity, as in Bogacka et al
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(2006) who derived such a method for calculating sampling windows for a
fixed non-linear model. The method is based on a condition of the Equiva-
lence Theorem for D-optimality. It gives less flexibility (narrower windows)
when it is important to obtain an observation at a time close to the optimum
schedule and more flexibility (wider windows) when it is less important. In
Section 4 we show how the method can be applied to our considered class of
non-linear models. First, however, in Section 2 we introduce the notion of a
population design, as given in Patan and Bogacka (2006), and in Section 3 we
briefly present how to calculate such designs. Section 5 explains the theory
behind the method through an example of a mixed effects PK model. Some
concluding remarks are given in Section 6.

2 Population experimental design

2.1 Class of considered models

In what follows, we suppose that there is a population of N individuals (pa-
tients, units, systems etc.) for each of which nk measurements are gathered,
possibly according to different time schedules, that is, the model for each
observation can be written as

yk
i = η(tki ; θk

i ) + εk
i , i = 1, . . . , nk, k = 1, . . . , N, (1)

where yk
i is an observation at time tki ∈ T = [0, tmax], εk

i are i.i.d. random
measurement errors with a known (including the error variance) density g,
yk

i |θk
i ∼ g(yk

i |θk
i , t

k
i ), and η is a known possibly nonlinear function.

The p-dimensional vectors θk
i ∈ Θ are assumed to be independent real-

izations of a random vector θ with probability density h(θk
i ;ψ). The func-

tion h depends on the 2p-dimensional population parameter vector ψ =
(E(θ), var(θ))T = (ψ1, . . . , ψ�p)T, where p̃ = 2p, E(θ) and var(θ) denote the
vectors of expectations and variances of θ, respectively. We also assume that
the elements of θ are uncorrelated. Accurate estimation of ψ, the vector of
constant parameters ψi, is of primary interest.

Note the difference between model (1) and a typical population model,
where it is assumed that each subject is represented by a single parameter
value, say θk. Here, θk

i varies with each observation and it allows us to assume
independence of all the observations, which is very useful in deriving the
information matrix for the population design.

2.2 Experimental design

We assume that a population of N patients consists of G groups of sizes
Nj , j = 1, 2, ..., G, and the individuals in the same group follow the same
schedule of measurements (design). We define the population experimental
design ζ as in Patan and Bogacka (2006):
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ζ =
{

(ξ1, n1) . . . (ξG, nG)
α1 . . . αG

}
;

G∑
j=1

αj = 1, (2)

where αj ∈ (0, 1] represents the proportion of N subjects in group j,

ξj =

{
tj1 . . . tjsj

wj
1 . . . wj

sj

}
; wj

i ∈ (0, 1],
sj∑

i=1

wj
i = 1. (3)

The design ξj ∈ Ξ, where Ξ denotes a set of admissible designs defined by
(3), is a continuous measure on a set of sj distinct (support) points in a design
region T . Note that the individual design ξj does not preserve the information
about the number of measurements nj . Hence, the whole experimental system
per individual is described by the pair (ξj , nj).

3 Optimum population design

The purpose of the considered optimal design problem is to determine the
population sampling scheme which guarantees accurate estimation. As a quan-
titative measure of the precision of estimation we use a function defined on
the Fisher Information Matrix (FIM) as is commonly done in the optimum
experimental design theory (cf. Atkinson and Donev (1992)). We denote by

M(tji ) = E
{
− ∂2%(ψ|yj

i , t
j
i )

∂ψ∂ψT

}
(4)

the elementary FIM for the observation made at time instant tji , where

%(ψ|yj
i ) = log

∫
Θ

g(yj
i |θ, tji )h(θ;ψ) dθ (5)

is the loglikelihood function for ψ. The randomness of θ is accounted for in
the form of %.

The assumption of independent observations allows us to sum the FIMs
for all single observations. Normalizing the sum by the limit, in practice, on
the total number of measurements N0, we obtain the average FIM for the
population design ζ

M(ζ,N) =
N

N0

G∑
j=1

αjnj

sj∑
i=1

wj
iM(tji ). (6)

Since for nonlinear response models, in general, integral (5) is analytically
intractable, in order to evaluate the FIM, some approximation procedures are
required. In the statistical literature there exist a variety of methods such as
numerical integration, stochastic approximation (Retout and Mentré (2003))
or linearisation of the model around the expected value of the random-effect
(Retout et al (2001, 2002)). In the context of this work the first mentioned
techniques was exploited in our simulations.
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In this paper we further consider the most commonly used D-optimal
criterion, Ψ(M) = − log detM ; that is the log-determinant of FIM, which in
a linear case and under normality of random effects, minimizes the volume
of the confidence ellipsoid for the parameter vector. In non-linear models this
property holds asymptotically.

We formulate the optimum observation strategy in terms of the following
optimization problem:

Ψ
[
M(ζ,N)

]→ min subject to N

G∑
j=1

αjnj ≤ N0. (7)

If the number of all individuals in the population is not predetermined a priori
and has to be estimated, it is convenient to relax the restriction of N being
an integer and allow it to take any positive real value. Then, as we show in
Patan and Bogacka (2006), the optimal solution to (7) is on the boundary
of the constraint and the inequality becomes an equality. Therefore, in the
following, N is allowed to take positive real values.

Although the formulation of this problem seems quite simple, the neces-
sity of simultaneous calculation of the numerous coefficients of a two-level
population design quickly leads to a very cumbersome task. ζ ’carries’ a large
number of unknowns and there is no unique parsimonious solution to (7).
Here we suggest a solution based on ’folding’ ζ into a simple form design ω̃
belonging to Ξ, and then, having found an optimum ω̃, ’unfolding’ it to the
original form of ζ. Note that the FIM does not change if we replace ζ defined
in (2) by a simpler notation

υ =
{
ξ1 . . . ξG

β1 . . . βG

}
; βj =

N

N0
αjnj ;

G∑
j=1

βj = 1. (8)

That is M(ζ,N) = M(υ). Furthermore, introducing

ω =
{
t11 . . . t1sj

. . . tG1 . . . tGsG

q1
1 . . . q1

sj
. . . qG

1 . . . qG
sG

}
; qj

i = βjw
j
i ;

G∑
j=1

sj∑
i=1

qj
i = 1 (9)

we have M(υ) = M(ω). Different groups do not have to have completely
different sets of support points; that is, some points tji may be the same for
different j’s. Consequently, it is sensible to further introduce weights q1, . . . , qs,
which are the sums of qj

i ’s for the repeated time instants. This allows us to
rewrite ω in the more compact form

ω̃ =
{
t1 . . . ts
q1 . . . qs

}
;

s∑
k=1

qk = 1. (10)

Such reformulation makes it possible to solve the problem of finding the two
level hierarchical optimal population design in terms of finding the equivalent
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one level design, since instead of (7) we have the minimization of Ψ(M(ω̃))
subject to

∑s
k=1 qk = 1, a classical design problem studied thoroughly in the

literature. Note, that ω̃ ∈ Ξ and we call it a global design. Obviously,

M(ζ,N) = M(ω̃). (11)

The information about groups is included in qj
i and so in qk. This informa-

tion is later recovered after an optimum design ω̃� has been found. Then, the
weights βj are determined as a solution of the system of nonlinear equations in
(9), and finally the parameters αj , nj and N are recovered via solution of the
system of the equations defined in (8). Since such a solution is not necessarily
unique we need to assume that we know some of these values. For example,
if we assume a priori the number of groups G and the numbers of observa-
tions per individual nj ’s, then an optimum population design ζ� consists of G
subsets of the support points of ω̃� with the optimally recovered values of all
weights α�

j and an optimum number N� of all individuals in the experiment.

4 Efficient sampling windows

As was mentioned before, specific optimum time points for taking measure-
ments are not always feasible in practice. For example, in pharmacokinetic
studies there are possible delays in seeing patients by medical personnel. Ad-
ditionally, individuals are often non-compliant with respect to taking the pre-
scribed dose of a drug at a specified time. Then the sampling times lead to a
suboptimal design and there is no information on the loss of efficiency. To con-
trol the loss it may be better to design sampling times within some intervals
(windows), i.e. tji ∈ [aj

i , b
j
i ]. The question is how to determine the boundaries

aj
i and bj

i to obtain the required accuracy of parameter estimation. Here we
follow the idea of Bogacka et al (2006), where they use the Equivalence The-
orem for the choice of the windows in a way which ensures some minimum
efficiency. We apply the efficiency factor as defined in Atkinson and Donev
(1992):

EffD(ζ,N ;ψ) =
(

det(M(ζ,N ;ψ))
det(M(ζ�, N�;ψ))

)(1/�p)

, (12)

and we define an efficient sampling window population design as a design ζW

which assures some minimal level of efficiency (12) while keeping fixed the
D-optimal individual design weights wj

i and the numbers of observations nj
i

as well as the D-optimum group proportions αj .
Due to (11), we have EffD(ζ,N ;ψ) = EffD(ω̃;ψ). This allows us to ap-

ply the windows calculated for the optimum global design ω̃� to an optimum
design ζ�. According to the Equivalence Theorem (in fixed models) the mini-
mization of the function Ψ is equivalent to the minimization of the maximum
variance of the response prediction, which is bounded from above by the num-
ber of the model parameters and it achieves this bound at the optimum points.
A corresponding interpretation in our case is not so clear and requires further
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investigation. Cutting the function along a constant slightly smaller than p̃
will give intervals [aj

i , b
j
i ] including the optimum points, as shown in Figure 1.

Based on this observation we can derive a general scheme of calculating the
sampling windows:

Step 1. Calculate a locally D-optimum global population design ω̃�.
Step 2. Choose the minimum efficiency cmin of the window design and a small

λ ∈ (0, 1).
Step 3. Calculate time windows Tk = [ak, bk] solving the equation

d(t, ω̃�, ψ0) = λp̃, where d(t, ω̃�, ψ0) = trace [M(ω̃�, ψ0)−1M(t)] and ψ0 is
some initial estimate of the population parameters.

Step. 4. If minimum efficiency is assured (i.e. min
�ω

EffD(ω̃) ≥ cmin, where ω̃

denotes any design with support points tk ∈ Tk, k = 1, . . . , s, and weights
equal to the weights of ω̃�) then STOP, else increase λ and repeat Step
3.

Then, having found the efficient sampling windows for the support points of
ω̃� we can directly apply them to obtain an efficient ζW . The most cumber-
some part of the proposed scheme is the execution of the global optimization
problem over a hypercube present in Step 4. In order to solve this task, the
stochastic procedure based on the Adaptive Random Search strategy (Walter
and Pronzato (1997)) was successfully applied.

5 Example

As an illustrative example we use the one-compartment model with first-order
drug absorption (Jonsson et al (1996)):

y =
Dka

V (ka − ke)
(
e−ket − e−kat

)
+ ε, (13)

where ka and ke are the first-order absorption and elimination rates, respec-
tively, V is the apparent volume of distribution, D is a known dose and ε is an
additive zero-mean uncorrelated Gaussian measurement noise with a constant
variance. (It is assumed that such additive noise will be a good approxima-
tion of the real random process.) The regression parameters θ = (V, ka, ke)T

are independent and normally distributed. The prior values of the population
parameters are:

ψ0 =
(
E(θ), var(θ)

)T = (100, 2.08, 0.1155, 0.3, 0.3, 0.03)T and var(ε) = 0.15.

We are looking for a D-optimum population design to estimate the population
parameters as precisely as possible. We assume that the concentration of the
drug can be measured within the design space T = [0.25, 12] scaled in hours
after administration and the total number of measurements is assumed to be
N0 = 900. The global D-optimum design obtained for these priors is a set of
three equally distributed points:
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ω̃� =
{

0.45 1.86 9.90
0.33 0.33 0.33

}
.

Unfolding it back to an optimum population design ζ� gives non-unique solu-
tions which depend on what is assumed to be known. Three possible optimum
population designs are given below.

Identical design (one group design); G = 1,n1 = 9 is assumed:

ζ� =

{��
0.45 1.86 9.90
0.33 0.33 0.33

�
, 9

�

1

}
; N� = 100.

This means that for each patient, out of the optimum number of a hundred
patients, we have to conduct exactly three measurements at each time instant.

One-point population design; G = 3, n1 = n2 = n3 = 10 is assumed:

ζ� =
{� { 0.45

1 } , 10
� � { 1.86

1 } , 10
� � { 9.90

1 } , 10
�

0.33 0.33 0.33

}
; N� = 90.

Here, each group consist of 30 patients; each patient in a group should have
10 replications at the same time point.

Arbitrarily structured design; G = 3, n1 = n2 = n3 = 10 is assumed:

ζ� =
{� { 0.45 9.90

0.57 0.43 } , 10
� � { 0.45 1.86 9.90

0.26 0.52 0.22 } , 10
� � { 1.86 9.90

0.62 0.38 } , 10
�

0.40 0.40 0.20

}
; N� = 90.

After rounding of the weights there are 36 patients in groups 1 and 2 and 18
patients in group 3. Patients in group 1 have two sampling times replicated
6 and 4 times respectively; in group 2 three sampling times are replicated
3, 5 and 2 times, and in group 3 two sampling times are replicated 6 and 4
times, respectively. Rounding will lower the efficiency, but with N0 = 900 this
is negligible. (The efficiency of the rounded design is equal 0.999.) In Fig. 1
we see the way of generating sampling windows for various efficiency levels
and also for various minimal window lengths. The latter are calculated with
a different objective, namely minimising the length of a sampling window
while keeping efficiency as high as possible. This may be important when,
for practical reasons, the former gives intervals which are too narrow. The
function d(t, ω�, ψ0) reflects the behaviour of the model function: it has sharp
peaks when the concentration changes fast and a flat peak at the area of
slow drug elimination. It gives narrower windows when it is important to
take measurements close to the optimum times and wider windows when it is
less important. Table 1 shows the windows for the three optimum sampling
times, both for some chosen minimum levels of efficiency and for some chosen
minimal window lengths.

An efficient window population design ζW follows the form of the pop-
ulation continuous design with its time points belonging to the respective
windows.
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Fig. 1. The Equivalence Theorem condition and time windows generated by differ-
ent thresholds with guaranteed efficiency (a) and with guaranteed minimal length
(b).

Table 1. Sampling windows assuring minimal efficiency or minimal window length

Min. efficiency Windows λ�p

0.9 [0.3545, 0.5635], [1.4755, 2.3505], [8.0275, 11.9915] 5.61

0.8 [0.3215, 0.6235], [1.3325, 2.6085], [7.2965, 12.0000] 5.25

0.7 [0.3015, 0.6705], [1.2395, 2.8055], [6.8225, 12.0000] 4.97

Min. length Windows λ�p

0.5 [0.2725, 0.7735], [1.0765, 3.1805], [6.0625, 12.0000] 4.49

0.4 [0.2925, 0.6945], [1.1975, 2.8995], [6.6145, 12.0000] 4.84

0.3 [0.3215, 0.6235], [1.3325, 2.6085], [7.2965, 12.0000] 5.25

6 Conclusions

In the paper we present the definition of a population design and briefly dis-
cuss a way of dealing with the optimization problem of a large dimension
which the definition creates. We then follow the idea of Bogacka et al (2006)
to calculate efficient window designs. The way we define the population design
allows us to use the Equivalence Theorem not only for finding the optimum de-
sign but also for the purpose of determining efficient windows. The technique
for generating efficient sampling windows for population designs is relatively
simple, assures satisfactory efficiency and indicates the importance of accurate
timing of the sampling. However, the results are based on the assumption of
independent observations and so further work is needed to solve this problem
when this assumption can be relaxed.
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Summary. We consider optimal experimental design for parameter estimation in
nonlinear situations where the optimal experiment depends on the value of the
parameters to be estimated. Setting a prior distribution for these parameters, we
construct criteria based on quantiles and probability levels of classical design cri-
teria and show how their derivatives can easily be approximated, so that classical
algorithms for local optimal design can be used for their optimisation.

Key words: robust design, minimax optimal design, average optimal design, quan-
tiles, nonlinear models

1 Introduction

Classical criteria for optimum experimental design for parameter estimation
are functions of a normalized information matrix, which generally takes the
form

M(ξ, θ) =
∫
X
M(x, θ) ξ(dx) (1)

with θ ∈ R
p the parameters of interest and ξ the design, that is, a probability

measure on some given region X of R
q. Typically, in nonlinear situations,

the p× p matrix M(x, θ) depends on θ, the parameters to be estimated. For
instance, a design ξD is D-optimal for LS estimation in the nonlinear regression
∗ The research of the first author has been supported by the VEGA grant No.

1/3016/06. The work of the second author was partially supported by the IST
Programme of the European Community, under the PASCAL Network of Excel-
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model with scalar observations Yk = η(xk, θ)+εk and i.i.d. errors εk with zero
mean and finite variance (k = 1, 2 . . .) when it maximizes log detM(ξ, θ) with
M(x, θ) the rank-one matrix

M(x, θ) =
∂η(x, θ)

∂θ

∂η(x, θ)
∂θ


. (2)

Classically, a prior guess θ̂0 for θ is used to design the experiment, with the
hope that the local optimal design for θ̂0 will be close to the optimal one for
the unknown θ. When the alternation of estimation and design phases is pos-
sible, sequential design permits progressively adapting the experiment to an
estimated value of θ that (hopefully) converges to its unknown true value, see
e.g. Wu (1985); Chaudhuri and Mykland (1993) for maximum-likelihood and
Spokoinyi (1992) for Bayesian estimation. In many circumstances, however,
the repetition of experimentation phases is impossible, and a single design
ξ∗ must be determined, based on the prior information available. Two types
of approaches have been suggested to achieve some robustness with respect
to a misspecification of θ. Let Φ(ξ, θ) denote the criterion to be maximized
with respect to ξ, for instance, Φ(ξ, θ) = Ψ [M(ξ, θ)] with M(ξ, θ) the infor-
mation matrix (1) and Ψ(·) a concave function on the space of non-negative
definite p × p matrices, with p = dim(θ). An average optimal design puts a
prior probability measure π on θ and maximizes

ΦA(ξ) = IEπ{Φ(ξ, θ)} =
∫

Θ

Φ(ξ, θ)π(dθ)

with Θ ⊂ R
p the support of π, see, e.g., Fedorov (1980); Chaloner and Larntz

(1989); Chaloner and Verdinelli (1995). In maximin-optimal design Φ(ξ, θ)
is replaced by its worst possible value for θ in Θ and the criterion to be
maximized is

ΦM (ξ) = min
θ∈Θ

Φ(ξ, θ) ,

see, e.g., Melas (1978); Fedorov (1980); Müller and Pázman (1998). Compared
to local designs, average and maximim optimal designs do not create any spe-
cial difficulties (other than heavier computations) for discrete designs of the
form ξ = (1/n)

∑n
i=1 δxi , with δx the delta measure which puts mass 1 at x

and with n fixed (usually, algorithms for discrete design do not exploit any
special property of the design criterion, but only yield local optima). For com-
putational reasons, the situation is simpler when π is a discrete measure and
Θ is a finite set (however, a relaxation algorithm is suggested in (Pronzato
and Walter, 1988) for maximin-optimal designs when Θ is a compact set, and
stochastic approximation can be used for average-optimal designs in general
situations, see, e.g., Pronzato and Walter (1985)). When optimizing a design
measure (approximate design theory), the concavity of Φ is preserved, which
yields Equivalence Theorems, and globally convergent algorithms can be con-
structed, see, e.g., Fedorov and Hackl (1997). Although attractive, average



Quantile and Probability-level Criteria 159

and maximim optimal designs nevertheless raise several important difficulties
among which are the following:

(i) A design ξ∗A optimal for ΦA can perform poorly for “many” values of θ,
in the sense that π{Φ(ξ∗A, θ) < u} may be larger than α for some unacceptably
low value for u and high level α.

(ii) For g(·) an increasing real function, the maximization of g[Φ(ξ, θ)] is
equivalent to that of Φ(ξ, θ), but maximizing IEπ{g[Φ(ξ, θ)]} is not equivalent
to maximizing IEπ{Φ(ξ, θ)} in general, so that a single design criterion for
local optimality yields infinitely many criteria for average optimality.

(iii) Quite often an optimal design ξ∗M for ΦM is such that minθ∈Θ Φ(ξ∗M , θ)
is reached for θ on the boundary of Θ, which makes ξ∗M very sensitive to the
choice of Θ. Also, if Θ is taken too large, it may contain values of θ such that
M(ξ, θ) is singular for all ξ and an optimal design may not exist.

(iv) The maximin criterion ΦM is not differentiable everywhere, which
induces some difficulties for its optimisation; in particular, the steepest-ascent
direction does not necessarily correspond to a one-point delta measure.

This paper suggests new stochastic design criteria based on the distribution
of Φ(ξ, θ) when θ is distributed with some prior probability measure π on
Θ ⊂ R

p. In particular, we shall consider the probability levels

Pu(ξ) = π{Φ(ξ, θ) ≥ u} (3)

and the quantiles

Qα(ξ) = max{u : Pu(ξ) ≥ 1 − α} , α ∈ [0, 1] , (4)

with u and α considered as free parameters, to be chosen by the user. When
the range of possible values for Φ is known (which is the case for instance
when Φ is an efficiency criterion with values in [0, 1]), one can specify a target
level u and then maximize the probability Pu(ξ) that the target is reached (or
equivalently minimize the risk 1 − Pu(ξ) that it is not). In other situations,
one can specify a probability level α which defines an acceptable risk, and
maximize the value of u such that the probability that Φ(ξ, θ) is smaller than
u is less than α, which corresponds to maximizing Qα(ξ). We shall assume
that Φ[(1 − γ)μ + γν, θ] is continuously differentiable in γ ∈ [0, 1) for any θ
and any probability measures μ, ν on X such that M(μ, θ) is non degenerate.
We also assume that Φ(ξ, θ) is continuous in θ and that the measure π has a
positive density on every open subset of Θ. This implies that Qα(ξ) is defined
as the solution in u of the equation 1 − Pu(ξ) = α, see Figure 1.

One may notice that the difficulties (i-iv) mentioned above for average
and maximin optimal design are explicitly taken into account by the pro-
posed approach: the probability indicated in (i) is precisely 1 − Pu(ξ) which
is minimized; (ii) substituting g[Φ(ξ, θ)] for Φ(ξ, θ) with g(·) increasing leaves
(3) and (4) unchanged; (iii) the role of the boundary of Θ is negligible when
a small probability is attached to it (and for instance probability measures
with infinite support are allowed); (iv) kernel smoothing makes Pu and Qα
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Fig. 1. Probability levels and quantiles for a design criterion Φ(ξ, θ).

differentiable, see Sect. 2. When Φ(ξ, θ) is concave in ξ for any θ, ΦA and
ΦM are concave. Unfortunately, Pu and Qα are generally not, which is prob-
ably the main drawback of the approach. However, Qα obviously satisfies the
following: let Θ denote the support of π, and suppose it is compact; then,
Qα(ξ) → ΦM (ξ) when α → 0, and a design optimal for Qα will tend to be op-
timal for ΦM and vice versa. In the next section we show how the directional
derivatives of Pu(ξ) and Qα(ξ) can be computed, to be used in steepest-ascent
optimization algorithms which converge to a local optimum (at least). An il-
lustrative example is presented in Sect. 3 and Sect. 4 gives some conclusions
and perspectives.

2 Evaluations of criteria and their derivatives

Computation of derivatives. Let ξ = (1 − γ)μ + γν and consider the deriva-
tives ∂Pu(ξ)/∂γ and ∂Qα(ξ)/∂γ at γ = 0. Since Qα(ξ) satisfies the implicit
equation PQα(ξ)(ξ) = 1 − α, we can write

{∂Pu(ξ)/∂γ + [∂Pu(ξ)/∂u][∂Qα(ξ)/∂γ]}|u=Qα(ξ) = 0 ,

which gives
∂Qα(ξ)
∂γ

= −
(
∂Pu(ξ)
∂γ

/
∂Pu(ξ)
∂u

)
|u=Qα(ξ)

. (5)

To compute the derivatives ∂Pu(ξ)/∂γ and ∂Pu(ξ)/∂u we write Pu(ξ) as

Pu(ξ) =
∫

Θ

I[u,∞)[Φ(ξ, θ)]π(dθ) =
∫

Θ

I(−∞,Φ(ξ,θ)](u)π(dθ)

with IA(·) the indicator function of the set A. When approximating the indi-
cator step-function by a normal distribution function with small variance σ2,
the two expressions above become respectively
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Pu(ξ) ≈
∫

Θ

IFu,σ2 [Φ(ξ, θ)]π(dθ) =
∫

Θ

[1 − IFΦ(ξ,θ),σ2(u)]π(dθ)

with IFa,σ2 the distribution function of the normal N (a, σ2). Differentiating
these approximations respectively with respect to γ and u, we get

∂Pu(ξ)
∂γ |γ=0

≈
∫

Θ

ϕu,σ2 [Φ(μ, θ)]
∂Φ(ξ, θ)

∂γ |γ=0

π(dθ) , (6)

∂Pu(ξ)
∂u |γ=0

≈ −
∫

Θ

ϕΦ(μ,θ),σ2(u)π(dθ) , (7)

with ϕa,σ2 the density of IFa,σ2 , which can be substituted in (5) to form an
approximation of ∂Qα(ξ)/∂γ|γ=0. As shown below, this type of approximation
can be related to another one, namely kernel smoothing.

Kernel smoothing. In order to estimate Pu(ξ), Qα(ξ) and their derivatives,
one can also approximate the probability density function (p.d.f.) of Φ(ξ, θ) by
a standard kernel estimator φn,ξ(z) = 1/(nhn)

∑n
i=1 K

{
[z − Φ(ξ, θ̂i)]/hn

}
.

Here K is a symmetric kernel function (the p.d.f. of a probability measure
on R with K(z) = K(−z), e.g. ϕ0,1(·)) and θ̂i (i = 1, . . . , n) is a sample of
possible values for θ (e.g. independently randomly generated with the prior
measure π). The bandwidth hn tends to zero as n → ∞. From this we obtain
directly

Pu(ξ) ≈ P̂n
u (ξ) =

∫ ∞

−∞
I[u,∞)(z)φn,ξ(z) dz ,

which is easily computed when
∫∞

u
K(z)dz has a simple form. The value of

Qα(ξ) can then be estimated by Q̂n
α(ξ) = {u : P̂n

u (ξ) = 1 − α}, which is
easily computed numerically. Consider now the computation of derivatives,
with again ξ = (1 − γ)μ+ γν. Direct calculations give

∂P̂n
u (ξ)
∂γ |γ=0

=
1

nhn

n∑
i=1

∂Φ(ξ, θ̂i)
∂γ |γ=0

K

(
u− Φ(μ, θ̂i)

hn

)
, (8)

∂P̂n
u (ξ)
∂u |γ=0

= − 1
nhn

n∑
i=1

K

(
u− Φ(μ, θ̂i)

hn

)
. (9)

Notice that taking σ2 = hn and π the discrete measure with mass 1/n at
each θ̂i in (6, 7) respectively gives (8) and (9) with K = ϕ0,1, the density of
the standard normal. Obviously, the accuracy of these kernel approximations
improves as n increases (with the only limitation due to the computational
cost that increases with n).

3 Example

To illustrate the feasibility of the approach we consider D-optimal designing
for the nonlinear regression model η(x, θ) = βe−λx, with θ = (β , λ)
 the
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vector of parameters to be estimated. The information matrix M(ξ, θ) for a
design measure ξ then takes the form (1, 2). We suppose that β > 0 and
take X = [0,∞). The local D-optimal experiment ξD(θ) which maximizes
detM(ξ, θ) puts mass 1/2 at x = 0 and x = 1/λ, and the associated value
of detM(ξ, θ) is detM[ξD(θ), θ)] = β2/(4e2λ2). We consider the D-efficiency
criterion defined by Φ(ξ, θ) = {detM(ξ, θ)/ detM[ξD(θ), θ]}1/2, with Φ(ξ, θ) ∈
[0, 1]. Due to the linear dependency of η(x, θ) in β, ξD(θ) and Φ(ξ, θ) only
depend on λ and we shall simply write ξD(λ), Φ(ξ, λ). Supposing that λ =
2 when designing the experiment, the efficiency Φ[ξD(2), λ] is the solid line
depicted in Figure 2.
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Fig. 2. D-efficiencies as function of λ for different designs; solid line: local D-optimal
ξD(2); dashed line: optimal for P0.75; dash-dotted line optimal for Q0.10.

Suppose now that we only know that λ ∈ [1/2, 7/2] and we put a uniform
prior for λ on that interval; ξD(2) is then optimal for the midpoint, but its
efficiency is less than 53% for the endpoint λ = 1/2. We approximate Pu(ξ)
and Qα(ξ) by kernel smoothing with K = ϕ0,1 for n = 100 values λ̂i equally
spaced in [0.5, 3.5]. No special care is taken for the choice of hn, and we simply
use the rule hn = σ̂n(Φ)n−1/5 with σ̂n(Φ) the empirical standard deviation
of the values Φ(ξ, λi), i = 1, . . . , n. Figure 3 shows the estimated values P̂n

u

(left) and Q̂n
α (right), in dashed lines, as functions of u and α respectively,

for ξ = ξD(2). One can check the reasonably good agreement with the exact
values of Pu and Qα, plotted in solid lines (increasing n to 1 000 makes the
curves almost indistinguishable).

The optimisation of P̂n
0.75 and Q̂n

0.10 with a vertex-direction (steepest-
ascent) algorithm on the finite design space {0, 0.1, 0.2, . . .5} respectively gives
the four-point designs
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Fig. 3. Left: P̂ n
u (ξ) (dashed line) and Pu(ξ) (solid line) as functions of u; right:

Q̂n
α(ξ) (dashed line) and Qα(ξ) (solid line) as functions of α; ξ = ξD(2), n = 100.

ξ∗(P0.75) ≈
{

0 0.3 0.4 1.7
0.4523 0.0977 0.2532 0.1968

}
,

ξ∗(Q0.10) ≈
{

0 0.3 0.4 1.3
0.4688 0.1008 0.2634 0.1670

}
,

where the first row indicates the support points and the second one their
respective weights. They satisfy P̂n

0.75[ξ
∗(P0.75)] ≈ 0.9999 and Q̂n

α[ξ∗(Q0.10)] ≈
0.783. The efficiencies of these designs are plotted in Figure 2. The exact value
Pu[ξ∗(P0.75)] equals one, indicating that the efficiency is larger than 75% for
all possible values of λ. The optimisation of Q̂n

0.01 gives a design very close
to ξ∗(P0.75) which, together with the shape of the dashed curve in Figure 2,
suggests that ξ∗(P0.75) is almost maximin optimal. Accepting a small loss of
efficiency for about 10% of the values of λ produces a significant increase of
efficiency on most of the interval, see the curve in dash-dotted line.

4 Conclusions and further developments

The paper shows the feasibility of optimal design based on quantiles and
probability level criteria in the situations where the local optimal experiment
depends on the unknown parameters to be estimated. In particular, kernel
smoothing permits optimisation of design measures with classical algorithms
borrowed from local optimal design theory. Adapting the sample size n, the
kernel K and the bandwidth hn to a particular problem, and maybe a partic-
ular algorithm, may deserve further studies. In particular, one might think of
letting n grow with the number of iterations of the algorithm, as in stochastic
approximation methods, see, e.g., Chapter 4 of (Kibzun and Kan, 1996).

Notice, finally that the ideas presented in this paper are very general and
could also be applied to discrete designs based on more accurate descriptions
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of parameter uncertainty than functions of information matrices, such as the
volumes of confidence regions (Hamilton and Watts, 1985), mean-squared er-
ror (Pázman and Pronzato, 1992; Gauchi and Pázman, 2006) or the entropy
of the distribution of the LS estimator (Pronzato and Pázman, 1994).
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Summary. In the exponential regression model with an autoregressive error struc-
ture exact D-optimal designs for weighted least squares analysis are investigated. It
is shown that support points of a locally D-optimal design are discontinuous with
respect to the correlation parameter. Also equidistant designs are proved to be con-
siderably less efficient than maximin efficient D-optimal designs. A tool used in the
study is the functional approach described in a recent book Melas (2006).
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1 Introduction

The present paper is devoted to constructing exact optimal designs for
weighted least squares estimation in the exponential model with correlated
observations. The exponential model is widely used in chemistry, pharmacoki-
netics, and microbiology. In microbiology, for example, this model is applied to
describing growth and death of microorganisms, dose-response analysis and
risk assessment; see Coleman and Marks (1998). Other applications can be
found in Dette et al (2006b); Ucinski and Atkinson (2004). The exponen-
tial model with uncorrelated observations has been investigated in a num-
ber of papers Mukhopadhyay and Haines (1995); Han and Chaloner (2003);
Dette and Neugebauer (1997), and Dette et al (2006b). In those papers lo-
cally, Bayesian and maximin D-, c- and ek-optimal designs were constructed.
However, constructing optimal designs for correlated observations is a more
difficult problem. Hoel (1958) investigated the efficiency of equally spaced de-
signs for the linear model. Abt et al. (1997,1998) studied optimal designs for
linear and quadratic regression models with an autocorrelated error structure
and a large number of support points. Dette et al (2006a) investigated exact
D-optimal designs for the same models with a small number of points. Stehĺık
(2005) studied D-optimal designs for the linear model with several types of
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covariance function and a small number of points. A numerical algorithm for
finding optimal designs is proposed in Fedorov and Hackl (1997); Müller and
Pazman (2003); Ucinski and Atkinson (2004).

The present paper considers the problem of determining exact D-optimal
designs for the exponential regression model and an autoregressive error struc-
ture and a small number of points.

In Section 2 the model is introduced. In Section 3 exact locally D-optimal
designs are studied. It is shown that optimal points are discontinuous with
respect to the level of correlation. This result is in agreement with the results
obtained in Stehĺık (2005); Dette et al (2006a). In Section 4 we study maximin
D-optimal designs. We also investigate the efficiency of equally spaced designs.

2 Statement of problem

Consider the exponential regression model

Yti = η(ti) + εti , η(t) = ae−bt, i = 1, . . . , n,

where ti ∈ [c,∞) are chosen by an experimenter, the parameters a and b
are unknown and have to be estimated. Assume that the errors εti have zero
expectation and the covariance of two measurements depends on the distance
between the experimental conditions, that is

Cov(Yti , Ytj ) = σ2e−λ|ti−tj |, λ > 0,

where λ is some constant, which characterizes the level of correlation. We can
assume without loss of generality that σ = 1 and c = 0.

An exact design ξ = {t1, . . . , tn} is a vector of n experimental conditions,
0 ≤ t1 ≤ . . . ≤ tn.

The weighted least squares estimate of β = (a, b)T is given by

β̂ = (XTΣ−1X)−1XTΣ−1Y

with covariance matrix Cov(β̂) = (XTΣ−1X)−1 (see Fedorov and Hackl
(1997)), where

Y = (Yt1 , . . . , Ytn)T ,

XT = XT
ξ = (f(t1), . . . , f(tn)),

f(t) = (∂η/∂a, ∂η/∂b)T ,

Σ = Σξ =
(
e−λ|ti−tj |

)
i,j=1,...,n

.

An exact locally D-optimal design maximizes detM(ξ) where the infor-
mation matrix is given by

M(ξ) = M(ξ, a, b, λ) = XT
ξ Σ

−1
ξ Xξ.
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3 Locally D-optimal designs

As is shown in Dette et al (2006a), the information matrix can be presented
in the form M(ξ) = XT

ξ V
T
ξ VξXξ where Vξ is a 2-diagonal matrix given by

Vξ = (vi,j), vi,i = ri, vi,i−1 = −si, r1 = 1, s1 = 0,

ri = 1
/√

1 − e−2λ(ti−ti−1), si = e−λ(ti−ti−1)ri,

i = 2, . . . , n. From the Cauchy-Binet formula we obtain the following expres-
sion for the determinant of the information matrix

detM(ξ, a, b, λ) = a2
∑

1≤i<j≤n

e−2b(ti+tj)ψ2(ti, ti−1, tj , tj−1), (1)

where

ψ(ti, ti−1, tj, tj−1) =

=
(1−e−(λ−b)di)(tj−tj−1e

−(λ−b)dj )−(1−e−(λ−b)dj)(ti−ti−1e
−(λ−b)di)

(1 − e−2λdi)(1 − e−2λdj )
,

di = ti − ti−1, dj = tj − tj−1.
Analytical results on locally D-optimal designs are given in Lemma 1.

Lemma 1. Let ξ∗ = ξ∗(a, b, λ) = {t∗1, . . . , t∗n} be a locally D-optimal design
for the exponential model with correlated observations. Then
1) The design ξ∗ does not depend on a.
2) The first point of the design is equal to zero, that is t∗1 = 0.
3) Points of the design ξ∗ satisfy

t∗i (γb, γλ) =
1
γ
t∗i (b, λ)

for any γ > 0.

Proof. The first statement simply follows from (1). Let ξh = {t1 +
h, . . . , tn + h} where h > 0. Then

detM(ξh) = e−4bh detM(ξ0).

Thus, the second statement is proved. Observing (1) we note that

detM(t2, . . . , tn, γb, γλ) =
1
γ2

detM(γt2, . . . , γtn, b, λ).

The last equality implies the third statement.

�
In view of Lemma 1, without loss of generality we can set a = 1.
Since it is impossible to obtain the design explicitly further analysis will be

based on the functional approach developed in Melas (2006). This approach
allows one to construct a Taylor series for points of exact locally D-optimal
designs as functions of some parameters.
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3.1 The case n = 2

In this subsection we investigate 2-point locally D-optimal designs.
For the 2-point design {0, t2} the determinant of the information matrix

has the form

detM(t2) = detM(t2, b, λ) =
t22e

−2bt2

1 − e−2λt2
.

It is easy to see that detM(t2) has a unique maximum for all fixed b and λ.
Let u∗ be a unique solution of the equation

1
1 − e−u

=
b

λ
+

2
u

on u ∈ (−∞, 0). A direct calculation shows that the second point of the D-
optimal design equals

t∗(b, λ) =
−u∗

2λ
.

Now we will investigate the behavior of optimal designs for slightly and
highly correlated observations.

As λ → ∞, we obtain u∗ → ∞ and 2/u∗ → −b/λ. Consequently, t∗2(b, λ) →
1/b as λ → ∞. This means that the locally D-optimal designs for correlated
observations tend to the locallyD-optimal design for independent observations
since correlation is decreasing (as λ → ∞) for n = 2. It is shown below, that
this is true for n > 2.

For highly correlated observations we have u∗ → 0 as λ → 0 and the
equation for u∗ can be rewritten in the following form − 1

u + o(λ) = b
λ + 2

u .
Thus, t∗2(b, λ) → 1/(2b) as λ → 0.

3.2 The case n = 3

In this subsection we study locally 3-point D-optimal designs. Due to Theorem
1 it is sufficient to investigate locally optimal designs for fixed b. Let b = 1. For
other values of b the optimal design can be obtained by rescaling the points.

Numerical calculations based on a routine fminsearch in MATLAB show
that the function detM(t2, t3) = detM(t2, t3, λ) has two local maxima for
some values of λ. Let λ∗ be the value of λ such that the function detM(t2, t3)
has equal maxima. A direct computation shows that λ∗ ≈ 0.22367. Thus,
points of a locally optimal design are discontinuous at λ = λ∗.

In order to study a locally optimal design for small λ, we note that

detM(t2, t3, λ) =
∞∑

j=−2

M(j)(t2, t3)λj .
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Table 1. Locally D-optimal design {0, t∗2(λ), t∗3(λ)} for some values of λ with b = 1.

λ 0 λ∗− 0 λ∗+ 0 ∞
t∗2(λ) 0.5395 0.5703 0.3401 1
t∗3(λ) 3.3560 3.2386 0.8870 1

Thus, nonzero points of locally D-optimal designs tend to points which max-
imize M(−2)(t2, t3) as λ → 0.

Table 1 contains locally D-optimal designs for some special values of λ
with b = 1.

The implementation of the functional approach in Maple (see Melas
(2006)) gives the following expansions. The expansions
t∗2(λ) = 0.5395 + 0.1096λ+ 0.1156λ2 + 0.1077λ3 + . . .
t∗3(λ) = 3.3560− 0.6662λ+ 1.8098λ2 − 2.2812λ3 + . . .
converge for λ ∈ (0, λ∗). Expansions
t∗2(λ) = 0.5087 + 0.2687(λ− 1) − 0.0541(λ− 1)2 − 0.0813(λ− 1)3 + . . .
t∗3(λ) = 1.3056− 0.4326(λ− 1) + 0.4930(λ− 1)2 − 0.0819(λ− 1)3 + . . .
converge for λ ∈ (λ∗, 2). Expansions
t∗2(λ) = 0.6911− 0.3836(ν − 1/2)− 0.3161(ν − 1/2)2 + 1.14(ν − 1/2)3 + . . .
t∗3(λ) = 1.5177− 0.0556(ν − 1/2)− 1.4224(ν − 1/2)2 + 1.74(ν − 1/2)3 + . . . ,
where ν = 1/λ, converge for λ ∈ (1,∞).

The 3-point D-optimal designs with b = 1 are depicted in Figure 1.

3.3 The case n = 4

Numerical calculations show that points of a locally D-optimal design are
discontinuous at two points, say λ∗ and λ∗∗. Table 2 contains locally D-
optimal designs for some special values of λ with b = 1.

Table 2. Locally D-optimal designs {0, t∗2(λ), t∗3(λ), t∗4(λ)} for some values of λ with
b = 1.

λ 0 λ∗− 0 λ∗+ 0 λ∗∗− 0 λ∗∗+ 0 ∞
t∗2(λ) 0.3288 0.3462 0.2491 0.6966 0.2030 0
t∗3(λ) 0.8669 0.8919 0.5841 1.0074 0.9250 1
t∗4(λ) 3.4058 3.3611 1.1180 1.3133 1.2490 1

The behavior of the 4-point D-optimal design with b = 1 is depicted in
Figure 1.

The case n = 5 can be similarly studied. The behavior of the 5-point locally
D-optimal design with b = 1 is depicted in Figure 1. Numerical calculations
allow us to state the conjuncture that the number of points of discontinuity
is increasing with n.
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Fig. 1. Exact n-point locally D-optimal design {0, t∗2(λ), . . . , t∗n(λ)} with b = 1 for
n = 2 (top left), n = 3 (top right), n = 4 (bottom left) and n = 5 (bottom right).

4 Maximin efficient D-optimal designs

Note that the implementation of locally optimal designs in practice requires a
prior guess for the unknown parameters. This can raise confusion for an exper-
imenter. The notion of maximin efficient designs seems to be more attractive
and useful in practice; see Müller (1995).

The D-efficiency of a design ξ is given by

effD(ξ) = effD(ξ, a, b, λ) =
[

detM(ξ, β̄)
detM(ξ∗loc(β̄), β̄)

]1/2

where β̄ = (a, b, λ) and ξ∗loc is a locally D-optimal design. It is easy to see that
the efficiency does not depend on a.

A design ξ∗ is called a maximin (efficient) D-optimal design if it maximizes
the worst D-efficiency over some set of the parameters Ω.

Analytical results about maximin D-optimal designs are given in Lemma 2.

Lemma 2. Let ξ∗ = ξ∗(Ω) = {t∗1, . . . , t∗n} be a maximin D-optimal design for
the exponential model with correlated observations. Then
1) The first point of the design equals zero, that is t∗1 = 0.
2) The points of the design ξ∗ satisfy

t∗i (γΩ) =
1
γ
t∗i (Ω),
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for any γ > 0.

The proof of Lemma 2 is similar to that of Lemma 1.
Consider a set Ω of the form

Ω = Ω(z) =
{
β̄ = (a, b, λ) : a = 1, (1 − z)b0 ≤ b ≤ (1 + z)b0,

(1 − z)λ0 ≤ λ ≤ (1 + z)λ0

}
,

which seems appealing from a practical point of view. Values a0 and λ are the
initial guess and z can be interpreted as a relative error for the guess.

To study maximin designs ξ∗(z) we implemented a special case of the
functional approach introduced in Melas and Pepelyshev (2005). For example,
suppose that b0 = 1 and λ0 = 1. Following this approach we obtain the
expansions
x2(z) = 0.5088− 0.1887z2 − 0.0263z4 − 0.4340z6 + 12.7721z8 + . . .,
x3(z) = 1.3056 + 1.8505z2 + 5.7658z4 + 18.438z6 + 89.7939z8 + . . .
which converge for z ∈ [0, 0.4). These points are depicted in Figure 2, which
also shows the dependence of the minimal efficiency of maximin designs and
the equidistant design {0, 0.65, 1.3} on z. We see that the maximin designs
are more efficient than the equidistant design.

Fig. 2. Exact 3-point maximin D-optimal design ξ∗(z) = {0, t∗2(z), t∗3(z)} with b = 1
for n = 3 (left), and the minimal efficiencies of the maximin design ξ∗(z) and the
equidistant design {0, 0.65, 1.3} over Ω(z) (right).

Now we compare locally D-optimal designs supported on different numbers
of points. Let b = 1, λ = 1. We use the efficiency defined by effn(ξp) =√

detM(ξp)/detM(ξn). We obtain that eff2(ξp) equals 1.125, 1.173, 1.196,
1.210, 1.218 for p = 3, 4, 5, 6 and 7. We see that the quantity of information
is increasing very slowly with the number of design points.
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Summary. The aim of the paper is to present a method of sample size determi-
nation for the Kruskal – Wallis test. The method is based on the concept of the
relative effect between the two extreme distributions of those sampled and on the
maxi-min size for the usual F -test.
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1 Introduction

In this paper we combine ideas of Brunner and Munzel (2002) to describe
the distance between distributions with results for determining the size of
experiments as discussed in Herrendörfer et al (1997). We consider the one-
way ANOVA model with a fixed factor. We assume that this fixed factor A
has a ≥ 2 levels. The null hypothesis to be tested is that the distribution of a
random variable3 y in all these levels is the same against the alternative that
this is not the case.

Clearly the special case of the Wilcoxon two-sample test is covered also.
Therefore our results could be compared with those from Chakraborti et al
(2006) based on another approach.

In testing statistical hypotheses about a means of normal distributions the
experimenter fixes a lower bound δ for the difference of practical interest (or
importance; in application called the effect size). Further, the type-I-risk α of
the test and its power 1−β is fixed. If δ is given we also need prior information
about the residual variance, σ2, inside the groups. Even this is not needed, if

3 Random variables are in bold print
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the experimenter fixes the relative effect size4 δ
σ ; in this paper this approach

is used and w.l.o.g. put σ = 1.

2 The ANOVA model

2.1 Quantitative variables: the parametric F -test

The balanced model equation for a continuously distributed random variable
y is written in the form:

yij = E(yij) + eij = μ+ ai + eij (i = 1, . . . , a; j = 1, . . . , n). (1)

The main effects ai of the factor A are real numbers, i.e. not random. The
random errors eij are mutually independent with E(eij) = 0, var(eij) = σ2

and
∑a

i=1 ai = 0. Equal subclass numbers n are used because it is known that
this is the optimal design for a given total sample size.

We want to design the experiment for testing the null hypothesis H0: “All
the ai are equal” against the alternative hypothesis HA: “At least two of the
ai’s are different”. If y has a normal distribution, the test statistic for testing
the null hypothesis above is equal to

F =
MSA

MSR
, (2)

with MSA and MSR as the mean squares of factor A and residual, respec-
tively. Under the null hypothesis F follows a (central) F -distribution with
f1 = a− 1 and f2 = a(n− 1) degrees of freedom. Otherwise it follows a non-
central F -distribution with the same degrees of freedom but a non-centrality
parameter λ. If the realization of F in (2) exceeds the (1−α)-quantile of the
central F -distribution with f1 and f2 degrees of freedom the null hypothesis
is rejected.

It was shown in Rasch and Guiard (2004) that the F -test is very robust
against non-normality of continuous distributions and that we can use it for
any continuous random variable. Therefore the following method for determin-
ing the minimal sample size can be used for any continuous random variable.

The power of the F -test depends on the non-centrality parameter λ of the
F -distribution. It is proportional to the function of main effects

a∑
i=1

(ai − ā)2 , (3)

where ā = 1
a

∑a
i=1 ai. Of course if H0 is true the expression (3) is equal to

zero. If the ai’s are not all equal the value of λ depends on their values.
4 In agricultural sciences δ/σ is often chosen from 1 up to 1.75 together with α =

0.05 and β = 0.2.
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The least favorable case from the point of view of the required sample size
(leading to the maximal minimum number n for each factor level) is the case
with the smallest possible value of λ if at least two of the ai’s are different.
Let amax = max(ai) be the largest and amin = min(ai) be the smallest of the
a effects ai of the levels of A. Then (3) is minimized if the a − 2 remaining
effects are equal to (amin + amax) /2.

Using the triple {(amax − amin)/σ;α;β} as the precision requirement for
calculating of the minimal sample size we are always on the safe side. We
call the corresponding minimal sample size the maxi-min size and denote it
by nmax.

2.2 Categorical variables: nonparametric Kruskal – Wallis test

The F -test for testing the hypothesis about the equality of means discussed
in the previous section is based on the assumption that the observed variables
are normally distributed and their distributions in different groups differ only
in expected values. The Kruskal – Wallis test, which is considered here, can
(but need not due to the above stated robustness) be used in cases when the
normality assumption is questionable.

Let y1, . . . ,ya be random variables with distribution functions F1, . . . , Fa;
yi corresponds to the observed variable in the i-th level of the factor A. We
will test a more complex hypothesis “H0: F1 = F2 = · · · = Fa” against the
alternative “H0: Fi �= Fj for at least one pair of i, j”.

The basic version of the Kruskal – Wallis test assumes that the distribution
functions Fi’s are continuous. In our case of categorical variables yi this is
not true and a corrected (for ties) Kruskal – Wallis tests is used.

More information about this test can be found e.g. in Lehmann (1975).

3 Ordered categorical variables and the relative effect

In the case of the ordered categorical variables the random variable y takes
realizations belonging to r ordered categories C1 ≺ C2 ≺ · · · ≺ Cr with
r > 1. We used the symbol ≺ to denote the order relation. We need a measure
for the distance between two distributions. For this we use the approach of
BrunnerMunzel2002.

Definition 1. For two random variables y1 and y2 with distribution functions
F1(y) and F2(y) respectively, the probability

p = P (y1 < y2) +
1
2
P (y1 = y2) =

∫
F1dF2

is called the relative effect of y2 with respect to y1. If p = 1
2 we say that both

distributions have equal tendency.
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The relative effect of ymax = μ + amax with respect to ymin = μ + amin is
used to characterize the properties of the observed ordinal variables, together
with the number of their categories r.

In our simulation experiment we generate ordered categorical variables by
decomposition of the real line, on which a special continuous random variable
takes its values, as described in the following definition.

Definition 2. Assume a random variable x is continuously distributed. From
it a new ordered categorical random variable y with r categories is derived,
using a decomposition of the real line based on a set of values {ξ1, ξ2, . . . , ξr−1},
−∞ = ξ0 < ξ1 < ξ2 < · · · < ξr−1 < ξr = +∞. Then y = i when x lies in the
interval (ξi−1, ξi], i = 1, . . . , r.

Call the set {ξ1, ξ2, . . . , ξr−1} the support of the decomposition.

If F is the distribution function of a random variable x, then (for each de-
composition {ξ1, ξ2, . . . , ξr−1}) it is the case that P (y = i) = F (ξi)−F (ξi−1).

4 Relation between sample sizes for normally distributed
variables and categorical variables

Let us assume a (a ≥ 2) continuously distributed random variables x1, . . . ,xa.
We want to test whether their means are equal or there is at least one pair of
these variables with different means.

Instead of these continuous variables, only the ordinal categorical variables
y1, . . . ,ya are observed. They are derived from the variables x1, . . . ,xa using
the decomposition based on the support {ξ1, ξ2, . . . , ξr−1}, as is described in
Definition 2 in Section 3.

The Kruskal – Wallis test is used to test the hypothesis of equal means.
For assuring the appropriate type-II-risk β in the test, it is necessary to plan
the experiment, i.e. determine the sample size (for the given significance level
α). The explicit formula for the categorical variables is not known. In this
section, the simulation to determine the type-II-risk β for a given sample size
is described. Then some estimated formula is stated.

4.1 Discussed data

It is supposed that only the categorical variables are observed in the experi-
ment. For the simulation experiment it is important to choose the mechanism
of generating several distributions of the random variables of interest. We used
six different distributions of the underlying continuous variable and, for each
of them, two different supports of decompositions.

The variables of interest have in all a treatment groups the same type of
distribution; they differ only in location (their expected values).
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All the assumed underlying distributions are taken to have standard devi-
ation equal to 1, this means that δ

σ = δ. They differ in the values of skewness
and kurtosis. The first distribution is the normal distribution, i.e. both the
skewness and the kurtosis are equal to 0. The second distribution is the uni-
form distribution in the interval (−√

3,
√

3); its skewness is equal to 0, kurtosis
to −1.2.

The other distributions arise from the Fleishman system, described in
Rasch and Guiard (2004). This means that a random variable has the form a+
bx+cx2+dx3, where the x is a standard normally distributed random variable
and a, b, c, d some given parameters. Information about the parameters and
properties of the distribution used in our paper can be found in Table 1. For

Table 1. The parameters and properties of the used distributions.

No. of distr. Skewness Kurtosis c = −a b d

1 0 3.75 0 0.748020807992 0.077872716101
2 0 7 0 0.630446727840 0.110696742040
3 1 1.5 0.163194276264 0.953076897706 0.006597369744
4 2 7 0.260022598940 0.761585274860 0.053072273491
5 (Normal) 0 0 0 1 0
6 (Uniform) 0 −1.2

each of these distributions two different decompositions are explored. They
are computed for distributions with zero expected values. First, the support
points are equally distributed over the area in which 99% of observations lie.
Second, equal percentages of observations lie in all categories. For the uniform
distribution, these two versions are identical.

4.2 Simulation

Consider one of the distributions described in the previous paragraph. Let us
assume the expected value of the variable in the first group is μ1 = −δ/2,
in the second group is μ2 = +δ/2, and in the (possible) remaining groups is
zero.

The test was performed at the significance level α = 0.05.
Let us assume a given underlying distribution, a given support of decom-

position, a given number of groups a, and a given difference between the
minimal and the maximal expected values of δ. Then the type-II-risk β was
evaluated for each “reasonable” sample size n. “Reasonable” means that the
largest assumed n is the maxi-min size for normally distributed variables and
with β equal to 0.40; and the smallest is the first n for which the type-II-risk
is smaller than 0.05. For subsequent analyses only β smaller than 0.40 was
used.

For a fixed sample size n the first two steps of the simulation were:
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1. The continuous random samples of size n were generated for each group
with the appropriate expected value. Then they were transformed to the
categorical variables, using the given support of decomposition.

2. The Kruskal – Wallis test was performed and the result was recorded.

These two steps were repeated 10, 000 times. The actual (estimated) type-II-
risk β is for sample size n equal to the proportion of the non-significant tests
in these repetitions. The simulation was performed using the environment R
developed by R Development Core Team (2005).

The values for the number of groups a were chosen to be 2, 3, . . . , 10
for the normal distribution and 2, 3, 4, 6, 8, 10 for the others. The difference
between the minimal and the maximal expected values δ were chosen as
1.67, 1.25, 1.11 and 1 (i.e. the standard deviation inside the groups σ was
equal to (0.6, 0.8, 0.9, 1) times δ). The number of categories of the ordinal
variables were 3, 4, 5, 10, 50 with two different types of decomposition (i.e. two
different values of relative effects) described at the end of Section 4.1.

4.3 Formula

It was found that the required sample size depends on the maxi-min sam-
ple size computed for the ANOVA F -test and normally distributed variables
almost linearly, for the given a, σ

δ , the relative effect p, and the number of
categories r. Fits of many linear models were explored for estimation of the
required sample size. The model below was chosen as the most acceptable
(good fit and not too many parameters).

Given the type-I-risk α = 0.05, the maxi-min sample size for the Kruskal
– Wallis test can be computed as

n(β) = 3.054 · n0(β) − 47.737 · δ
σ

+ 51.288 · p2 + 82.050 · 1
r

+

+2.336 · n0(β) · δ
σ
− 7.428 · n0(β) · p2 − 0.535 · n0(β) · 1

r
+

+29.708 · δ
σ
· p2 + 56.102 · δ

σ
· 1
r
− 223.770 · p2 · 1

r
, (4)

where the n0(β) = n0(β, a, δ, σ) is the maxi-min sample size for the F -test.
Formula (4) fits the sample size very well; only 4.8% of the residuals are

larger than 20% of the relevant fitted value. Further, 9.0% percent are higher
than 15% of the fitted value, 16.6% percent are higher than 10% and 30.8%
percent of the residuals are higher than 5% of the fitted value.

Negative residuals are not so dangerous because it follows that the actual
type-II-risk would be lower than that required. Using formula (4) 48% of the
residuals are negative.

In Table 2, are listed the actual sample sizes and the sample sizes estimated
using relation (4) for β = 0.20 and for some chosen values of the parameters. In
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Table 2. Comparison of required sample sizes both simulated and calculated by (4)
for β = 0.2 and some values of the other parameters. The columns record consecu-
tively the number of groups, δ

σ
, identification of underlying distribution, the relative

effect of the distribution of thecategorical variables and their number of categories,
maxi-min sample size of the F -test for normal variables and the maxi-min sam-
ple sizes for the Kruskal – Wallis test based on the simulation and calculated by
formula (4).

Groups δ
σ

Distribution Rel. effect Categories n0(β) nSIM nFIT

2 1 1 0.66 3 16.71 31 35
2 1 1 0.78 5 16.71 14 15
2 1.67 1 0.77 3 6.76 11 11
2 1.67 1 0.89 5 6.76 7 7
6 1 1 0.66 3 26.59 47 55
6 1 1 0.78 5 26.59 22 22
6 1.67 1 0.77 3 10.2 16 19
6 1.67 1 0.89 5 10.2 10 10
2 1 3 0.69 3 16.71 28 30
2 1 3 0.77 5 16.71 17 17
2 1.67 3 0.8 3 6.76 11 10
2 1.67 3 0.88 5 6.76 7 7
6 1 3 0.69 3 26.59 44 46
6 1 3 0.77 5 26.59 27 26
6 1.67 3 0.8 3 10.2 16 16
6 1.67 3 0.88 5 10.2 11 10

Figure 1 the properties of residuals in model (4) can be seen. The residuals in-
crease with increasing (simulated and estimated) sample size. The proportion
of residuals in the estimated sample size is almost constant with increasing
estimated sample size, if the sample size is larger than approximately 25.

4.4 Discussion

The formula for determination of the required sample size, given in the previ-
ous paragraph, was derived for some specific cases. The question about legiti-
macy of its generalization arises. The categorical variables were generated by
decomposition of several continuous variables. From a practical point of view
this does imply a loss ofgenerality, because usually a continuous property is
measured on an ordinal scale and the six continuous distributions used, with
different shapes and two decompositions, provide eleven different distributions
for categorical variables.

It should be remembered that the formula has been checked for four values
of δ/σ between 1 and 1.7. It is hoped that the formula can be interpolated for
all values in this interval, which is that usually used in applications. Similarly,
it is assumed that the number of categories r can be interpolated for all integer
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Fig. 1. Relation between the residuals of model (4) and the required sample size
estimated from this model. The ratio of the residuals and the estimated sample sizes
is plotted on the y-axis, the estimated sample sizes are plotted on the x-axis.

values between 3 and 50. With r → ∞ there is decreasing influence of r on
the required size of an experiment (the distribution tends to a continuous one
which is reflected by the presence of 1

r in the formula). Therefore for r larger
than 50 the formula can also be used.

To summarize, the required size of an experiment with categorical variables
can, for given type-I-risk α = 0.05, type-II-risk β from the interval [0.05, 0.4],
and δ

σ in an interesting range of practical values, be calculated by formula (4)
for numbers of compared groups ranging between 2 and 10. There are no
restrictions on the other parameters.

References

Brunner E, Munzel U (2002) Nichtparametrische Datenanalyse - unverbundene
Stichproben. Springer, Berlin

Chakraborti S, Hong B, van de Wiel M (2006) A note on sample size determination
for a nonparametric test of location. Technometrics 48:88–94

Herrendörfer G, Rasch D, Schmidt K, Wang M (1997) Determination of the size
of an experiment for the F-test in the analysis of variance – mixed model. In:
Wegman, E. J. and Azen, P. A.: Computing Science and Statistics, Pasadena,
vol 29, 2, pp 547–550

Lehmann EL (1975) Nonparametrics: Statistical Methods Based on Ranks. Holden-
Day, INC., San Francisco

R Development Core Team (2005) R: A language and environment for statistical
computing. R Foundation for Statistical Computing, Vienna, Austria

Rasch D, Guiard V (2004) The robustness of parametric statistical methods. Psy-
chology Science 46:175–208



Bayesian Ds-Optimal Designs for Generalized
Linear Models with Varying Dispersion

Parameter

Edmilson Rodrigues Pinto1 and Antonio Ponce de Leon2

1 Department of Mathematics, Federal University of Uberlândia, Av. João Naves
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Summary. In this article we extend the theory of optimum designs for generalized
linear models, addressing the optimality of designs for parameter estimation in a
location-dispersion model when either not all p parameters in the mean model or
not all q parameters in the dispersion model are of interest. The criterion of Bayesian
Ds-optimality is adopted and its properties are derived. The theory is illustrated
with an example from the coffee industry.

Key words: Ds-optimum designs, Bayesian designs, extended quasi-likelihood

1 Introduction

Sometimes not all parameters in a statistical model are required to estimate
precisely. Rather the focus may be on estimating a given number of parame-
ters very precisely, while the remaining are treated as nuisance parameters.
Alternatively one can think of two competing models: the first in which all
model parameters are regarded to be important, the full model, whereas un-
der the rival model some of these parameters are set to zero, so that the latter
model becomes nested within the former. In order to discriminate between
the rival nested models, the researcher seeks a design for which the sets of
expected responses under the competing models lie as far apart from each
other as possible. This criterion of optimality is known in the literature of
optimum designs as T-optimality, however for the case of nested models, it is
equivalent to the criterion of Ds-optimality.

The joint modeling of mean and dispersion (JMMD) in generalized lin-
ear models (GLMs) consists of regarding a full model specification for the
response variance, in parallel to the usual specification, i.e. a link function, a
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linear predictor, and an error distribution assumption for the response. This is
important when the response shows some degree of over or under dispersion.
In the complete joint model p parameters are regarded to describe the mean
response and q parameters to account for the dispersion, thus the parametric
space consists of p + q parameters.

However, in what follows the focus is on estimating sm and sd parameters,
respectively to the mean and the dispersion models, where either sm < p or
sd < q. To be more specific in this article the problem of finding Bayesian Ds-
optimum designs for GLMs with a varying dispersion parameter is discussed
and an illustration is provided. This work extends that of Pinto and Ponce de
Leon (2004) in which they used extended quasi likelihood in order to build
a theory that allows searching for Bayesian D-optimum designs for GLMs
with overdispersion. Under that approach, the likelihood is supposed to be
unknown, however the specification of the first two moments is known.

2 The experimental matrix and the standardized
variance for the JMMD

Let yi be the ith response of interest, let f i(xi) be the p×1 vector representing
the ith setting of the covariates presumed to influence the expected value of
the response, and let gi(zi) be the q × 1 vector representing the ith setting
of the factors presumed to influence the response variance. We allow zi to
contain some or all of the components of xi as well as others.

Suppose the distribution of the response is unknown, nevertheless suppose
E(Yi) = μi and V ar(Yi) = φiV (μi) and that full expressions can be specified
for the mean and variance functions as follows. Let k be the link function
for the mean model, i.e. ηi = k(μi) = f t

iβ, where β is a p × 1 vector of
unknown parameters; and let h be the link function for the dispersion model,
i.e. τi = h(φi) = gt

iγ, where γ is a q × 1 vector of the unknown parameters.
We regard the Extended Quasi Likelihood (EQL), proposed by Nelder and

Pregibon (1987) as a criterion to fit the joint model, since the distribution of
the response vector is unknown and φ is allowed to vary.

The notation used in the models is the following. For i = 1, . . . , n,
Xt = (f1(x1), . . . ,fn(xn)) and Zt = (g1(z1), . . . , gn(zn)), with
f i

t(xi) = (fi1(xi), . . . , fip(xi)) and gi
t(zi) = (gi1(zi), . . . , giq(zi))

where fi1(xi) = gi1(zi) = 1 ∀i.
Using EQL as the estimation criterion and assuming a gamma distribu-

tion for the dispersion (see McCullagh and Nelder (1989)), the pseudo Fisher
information matrix is as follows.

I(X,Z|β,γ) =
[

XtWX 0
0 ZtV Z

]
(1)
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where W = diag(wi), V = diag(vi), wi =
(

∂μi

∂ηi

)2
1

φiV (μi)
, and vi =(

∂φi

∂τi

)2
1

2φi
2 . Here diag(.) represents the diagonal matrix.

The experimental matrix M(θ|ξ) is the expectation w.r.t. the design mea-
sure ξ on X of the information per observation,

M (θ|ξ) =
∫
X

I(u|θ)dξ(u) (2)

Regard the pseudo Fisher information, given in (3), and the following
discrete design.

ξ =
{

x1 . . . xn

p1 . . . pn

}
(3)

where (x1, . . . ,xn) are the design points and (p1, . . . , pn) are the associated
design weights. Then the experimental matrix is as follows.

M (θ|ξ) =
[

XtWPX 0
0 ZtV PZ

]
, (4)

where P = diag(pi) for i = 1, . . . , n.
Regarding the joint model and a discrete design like (3) the standardized

variance related to the ithdesign point, corresponding to the ith row of matrices
X and Z is given as follows.

di = wif
t
i(xi)(XtWPX)−1f i(xi) + vig

t
i(zi)(ZtV PZ)−1gi(zi) . (5)

For more details about the construction of the experimental matrix and
the standardized variance for the JMMD, see Pinto and Ponce de Leon (2004).

3 Ds-optimality

Ds-optimality concerns maximizing precision of parameter estimates for only
a reduced number of the complete set of unknown model parameters. As
stated previously an equivalent criterion is that of T-optimality to discriminate
between two nested models. For more about the Ds-optimality criterion, see
Atkinson and Donev (1992).

The aim of this paper is to develop the required theory so as Bayesian
Ds-optimum designs for GLMs with a varying dispersion parameter can be
obtained.

In the JMMD two GLMs are proposed, the first for the mean and the
second for the dispersion. Let the linear predictor for the mean model be
η(β,x) = f t(x)β, let τ(γ, z) = gt(z)γ be the linear predictor for the disper-
sion model, where β and γ are vectors of unknown parameters. The vectors
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f t(x) and gt(z) are of dimension 1 × p and 1 × q, respectively. Thus, the ex-
perimental matrix for the JMMD, denoted by MC is represented as follows.

MC =
[

M 0
0 D

]
=

⎡⎢⎢⎣
M11 M 12 0 0
M21 M 22 0 0
0 0 D11 D12

0 0 D21 D22

⎤⎥⎥⎦ (6)

where Mp×p is the experimental matrix for the mean and Dq×q is the ex-
perimental matrix for the dispersion, whereas the partitions are explained
below.

Provided that the main interest lies in estimating sm parameters related
to the mean and sd parameters related to the dispersion, and that 1 ≤ sm < p
and 1 ≤ sd < q, the dimensions of M 11,M12,M21 and M 22 are, respectively,
sm×sm, sm×(p−sm), (p−sm)×sm and (p−sm)×(p−sm); and the dimensions
of D11,D12,D21 and those of D22 are, respectively, sd × sd, sd × (q − sd),
(q − sd) × sd and (q − sd) × (q − sd).

In addition to the above other possible configurations for the number of
parameters are: (i)sm = p and sd = q, (ii)sm = p and sd < q, and (iii)sm < p
and sd = q. The first is the case of D-optimality, as for the second and third
cases, either M12,M21, and M22 or D12, D21, and D22 do not exist, thus in
the following expressions some adjustments must be made. Thus, bearing in
mind the restrictions imposed by the matrices dimensions, matrix M−1

C can
be written as follows.

M−1
C =

⎡⎢⎢⎣
M11 M12 0 0
M21 M22 0 0
0 0 D11 D12

0 0 D21 D22

⎤⎥⎥⎦ (7)

where, for i = j = 1, 2, M ij and Dij have the same dimensions as M ij

and Dij , respectively. Since we are interested in sm parameters in the model
for the mean and in sd parameters in the dispersion model, we consider the
matrix At, whose dimensions are (sm + sd) × (p + q), i.e.

At =
[

Ism 0 0 0
0 0 Isd

0

]
(8)

With a bit of algebra, we find that AtM−1
C A, with dimensions (sm +sd)×

(sm + sd), is expressed as follows.

AtM−1
C A =

[
M 11 0
0 D11

]
(9)

Thus, based on well-known results from linear algebra, |AtM−1
C A| =

|M11||D11| = |(M 11−M 12M
−1
22 M21)−1||(D11−D12D

−1
22 D21)−1| = |M11−
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M12M
−1
22 M21|−1|D11 − D12D

−1
22 D21|−1. Therefore, the criterion function

has the form:

ϕs(MC) = ln
{ |M |
|M22|

}
+ ln

{ |D|
|D22|

}
(10)

In order to compute the criterion function, besides M and D, we only
need to obtain M22 and D22, i.e. the matrices related to the covariates which
we do not have interest.

Let the function ϕs : M −→ R, where M = {MC(θ|ξ) : θ ∈ Θ; ξ ∈ Ξ},
Θ is the parametric space, and Ξ is the class of all probability measures on the
experimental region X . Under JMMD, the Fréchet derivative of ϕs at MC1

in the direction of MC2, where MC1 = MC(θ|ξ1), MC2 = MC(θ|ξ2) and
ξ1, ξ2 ∈ Ξ, is as follows.

Fϕs(MC1,MC2) = Tr(M 2M
−1
1 ) − Tr(M2,22M

−1
1,22)

+Tr(D2D
−1
1 ) − Tr(D2,22D

−1
1,22) − s (11)

with s = sm + sd.
The information matrix for the ith observation is: Ii(ui|θ) =

∑2
j=1 hijh

t
ij ,

with ht
i1 = (f t

i(xi)(wi)1/2,0t), ht
i2 = (0t, (vi)1/2gt

i(zi)), ut
i = (f t

i(xi), gt
i(zi))

and θt = (βt,γt). The Fréchet derivative for the ith observation, taking
M2 = f i(xi)wif

t
i(xi), M2,22 = f2i(xi)wif

t
2i(xi), D2 = gi(zi)vig

t
i(zi),

D2,22 = g2i(zi)vig
t
2i(zi), M−1

1 = M−1, M−1
1,22 = M−1

22 , D−1
1 = D−1 and

D−1
1,22 = D−1

22 is given by:

Fϕsi(M C1, M C2) = Tr(f i(xi)wif
t
i(xi)M

−1) + Tr(gi(zi)vig
t
i(zi)D

−1)

−Tr(f2i(xi)wif
t
2i(xi)M

−1
22 ) − Tr(g2i(zi)vig

t
2i(zi)D

−1
22 ) − s =

= wif
t
i(xi)M

−1f i(xi) + vig
t
i(zi)D

−1gi(zi)

−wif
t
2i(xi)M

−1
22 f 2i(xi) − vig

t
2i(zi)D

−1
22 g2i(zi) − s. (12)

Thus, the standardized variance for the ith observation is the following.

dsi(xi, ξ) = wi[f t
i(xi)M−1f i(xi) − f t

2i(xi)M−1
22 f2i(xi)]

+vi[gt
i(zi)D−1gi(zi) − gt

2i(zi)D−1
22 g2i(zi)]. (13)

For the Ds-optimum design ξ∗, with s = sm+sd, we must have ds(x, ξ∗) ≤
s, ∀x ∈ X , where equality occurs at the optimal design support points. In
order to compute the standardized variance for the DS-optimality criterion
we need only find the matrices M22 and D22 of the partitions of M and
D, where M22 and D22 are generated by the columns corresponding to the
parameters of no interest. This result eases the computation burden of the
problem.
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4 Example: application to the coffee industry

This example was taken from Pinto (2005), when applying JMMD to data
rising from a experiment based on a complete 23 factorial, for which the
objective was to identify factors affecting the response and factors affecting
the dispersion, in a problem related with the coffee industry. The response
variable is the amount of trigoneline found in the coffee and the factors were:
temperature of drying (x1), temperature of toasting (x2), and air speed in the
drying of the coffee (x3). The levels considered for x1 were 300oC (high level)
and 100oC (low level); for x2 were 600oC (high level) and 300oC (low level);
and for x3 were 1850 rpm (high level) and 1300 rpm (low level). The data are
shown in Table 1.

Table 1. Factorial 23 for trigoneline response

x1 x2 x3 Y

1 1 1 0.38 0.45 0.40
1 1 -1 0.63 0.59 0.65
1 -1 1 0.73 0.68 0.66
1 -1 -1 0.69 0.68 0.70
-1 1 1 0.39 0.37 0.40
-1 1 -1 0.65 0.65 0.64
-1 -1 1 0.70 0.71 0.75
-1 -1 -1 0.67 0.68 0.79

Pinto (2005) tackles the problem of selecting the covariates that suppos-
edly affect the response and those affecting the dispersion, using JMMD. The
identity link function together with the variance function V (μ) = 1 were con-
sidered for the mean. As for the dispersion a GLM from the gamma family of
distributions and a logarithmic link function were considered.

The final models estimated for the mean and dispersion were as follows.

μ̂ = 2.374 − 0.374x2 − 0.167x3 − 0.261x2x3 (14)

φ̂ = σ̂2 = exp{−6.240− 1.106x2x3}. (15)

Now suppose that the central interest lies in testing whether the covariates
x2, x3 and their interaction term x2x3 are indeed significant for the response
and whether the interaction x2x3 is significant for the dispersion.

The systematic components for the mean and dispersion models are
η(x,β) = β0 + β1x2 + β2x3 + β3x2x3 and τ(x,γ) = γ0 + γ1x2x3. However
we are only interested in the parameters β1, β2 and β3 in the mean model
(sm = 3) and γ1 in the dispersion model (sd = 1), hence the matrix M22

is formed by the parameters of no interest in the mean model, namely, only
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β0 whereas D22 is formed by the parameters of no interest in the dispersion
model, namely, only γ0. Further, there are four parameters in the mean model
and two parameters in the dispersion model, hence M has dimension 4 × 4
and D, 2 × 2.

A prior distribution for the parameters related to the mean and dispersion
models was constructed based on the estimates found in the JMMD, as shown
in equations (14) and (15). We use a uniform discrete prior distribution for
both models. The process of construction of a prior distribution was the same
as in Pinto and Ponce de Leon (2004) in which α is deducted and added to the
(estimated) parameter values related to the mean, and δ to the (estimated)
parameter values related to the dispersion. The values for α and δ were 0.25.

The Bayesian DS-optimal design was:

ξ
∗
S =

�
(1.0, 1.0) (1.0, 0.7) (−1.0, −1.0) (−1.0, 1.0) (−1.0, 0.7) (1.0, −1.0) (−0.7, −1.0) (0.7, 1.0)

0.15 0.08 0.15 0.19 0.08 0.19 0.08 0.08

�

Fig. 1. Graph of standardized variance

Figure 1 shows the the standardized variance as a function of the covariates
x2 and x3. Notice that at the optimum design points (full points in Figure 1)
the standardized variance attains 4.0, the number of parameters that we are
interested in estimating in the models for the mean and dispersion, and that
nowhere in the design region is the standardized variance greater than 4.0.

5 Final considerations

We discussed and implemented the criterion of Bayesian DS-optimality when
there are two interlinked GLMs, one for the response and one for the disper-
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sion. The main interest lies in estimating only sm parameters in the model for
the mean and sd parameters in the dispersion model. In case all parameters of
the mean and dispersion models are of interest, then Bayesian D-optimality
could be applied, as shown in Pinto and Ponce de Leon (2004). From the re-
sults in this paper, local DS-optimal designs are obtained in a straightforward
manner.

Appendix: Fréchet derivative for the Ds-optimality

In order to prove result (11), we must calculate the Fréchet derivative for
the DS-optimal criterion applied to the JMMD. Using ϕS as the criterion
function, its Fréchet derivative is obtained in the following.
FϕS (M C1, M C2) = lim

ε→0+

1

ε
{ϕS {(1 − ε)M C1 + εM C2} − ϕS(M C1)} =

lim
ε→0+

1

ε
{ψp{(1 − ε)M 1 + εM 2} − ψp−sm{(1 − ε)M 1,22 + εM 2,22}+ ψq{(1 − ε)D1

+εD2} − ψq−sd{(1 − ε)D1,22 + εD2,22}− [ψp(M 1) − ψp−sm(M 1,22) + ψq(D1) −
ψq−sd(D1,22)]} =

lim
ε→0+

1

ε
{ψp{(1−ε)M 1+εM 2}−ψp(M 1)}− lim

ε→0+

1

ε
{ψp−sm{(1−ε)M 1,22+εM 2,22}−

ψp−sm (M 1,22)}+ lim
ε→0+

1

ε
{ψq{(1 − ε)D1 + εD2} − ψq(D1)}− lim

ε→0+

1

ε
{ψq−sd{(1 −

ε)D1,22 + εD2,22} − ψq−sd (D1,22)} = Fψp(M 1, M 2)− Fψp−sm
(M 1,22, M 2,22)+

Fψq (D1, D2)− Fψq−sd
(D1,22, D2,22) = Tr(M 2M

−1
1 ) − p+ Tr(D2D−1

1 ) − q−
[Tr(M 2,22M−1

1,22) − (p − sm)]− [Tr(D2,22D−1
1,22) − (q − sd)] = Tr(M 2M−1

1 )+

Tr(D2D−1
1 )− Tr(M 2,22M−1

1,22)− Tr(D2,22D−1
1,22)− (sm + sd) = Tr(M 2M−1

1 )+

Tr(D2D−1
1 )− Tr(M 2,22M−1

1,22) − Tr(D2,22D−1
1,22) − s.
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Summary. The purpose of this note is to show by a simple example that some of
the favourite results in optimal design theory do not necessarily carry over if random
effects are involved. In particular, the usage of the popular D-criterion appears to
be doubtful.

Key words: optimal design, mixed linear model, random coefficient regression

1 Introduction

Mixed models have attracted growing interest in the biosciences, when repli-
cated measurements are available from different individuals. While the corre-
sponding statistical analysis is well-developed, only a few results are available
on optimal designs for such experiments. For a recent survey on the particular
setting of random coefficient regression see Entholzner et al (2005).

The most popular criterion in applications is the D-criterion in analo-
gous fixed-effects models, where it has some nice properties, but which do
not necessarily carry over to mixed models. Fedorov and Hackl (1997) p. 75,
provide an equivalence theorem for this situation, which has been extended by
Schmelter (2006). While results are quite obvious for random intercept mod-
els (Schwabe and Schmelter (2006)), the optimisation may lead to apparently
counter-intuitive solutions, if there is randomness in the treatment effects (see
e. g. Fedorov and Leonov (2004)).

In the present note we will indicate how various standard criteria are
influenced by the presence of random individual effects.
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2 The model

To keep notation as simple as possible we discuss a straight line regression
model on the unit interval, in which only the slopes are affected by random
effects. More specifically, we consider n individuals with m observations each,
and the jth observation Yij of individual i is described by

Yij = μ+ bi xij + εij ,

where xij is the corresponding experimental setting, 0 ≤ xij ≤ 1 , i =
1, . . . , n, j = 1, . . . ,m. The individual random slopes bi are assumed to be
iid with unknown population mean β and known variance σ2

β . A typical ex-
ample for a bunch of the conditional individual mean response lines μ + bix
is given in the spaghetti plot of Figure 1. Our interest will be only in the
population parameters μ and β or, equivalently, the mean response μ + βx
across the individuals, rather than in prediction.

0.0 0.2 0.4 0.6 0.8 1.0

x

Fig. 1. Population (dashed line) and individual mean response curves (solid lines)

Furthermore the observational errors εij are assumed to be homoscedastic
(iid) with zero mean and known variance σ2 and to be independent of the
random slope parameters bi. We define the dispersion factor d = σ2

β/σ
2 as the

variance ratio of the slope compared to the observational error.
Denote by Yi = (Yi1, . . . , Yim)
 and xi = (xi1, . . . , xim)
 the vector of

observations and corresponding experimental settings, respectively, and by
Fi = (1m |xi) the associated design matrix for individual i. Here 1m is a
vector of length m with all entries equal to one. The covariance matrix Vi of
the observations Yi is given by Vi = σ2(Im +Fi

(
0 0
0 d

)
F


i ) = σ2(Im +dxi x

i ),

where Im is the m-dimensional identity matrix. For simplicity we will assume
from now on, without loss of generality, that σ2 is equal to 1.

Then the weighted least squares estimator, which is the best linear unbi-
ased estimator for (μ, β)
, is given by (

∑n
i=1 F


i V−1
i Fi)−1

∑n
i=1 F


i V−1
i Yi.
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The corresponding covariance matrix is equal to the inverse of the informa-
tion matrix Md =

∑n
i=1 F


i V−1
i Fi, which depends on the variance ratio d

through the inverse V−1
i = Im− d

1+dx�
i xi

xi x

i of the observational covariance

matrix as well as on the experimental settings x1, . . . ,xn. Note that the indi-

vidual information F

i V−1

i Fi is equal to m
1+md νi2

(
1 + md(νi2 − ν2

i1) νi1

νi1 νi2

)
,

where νik = 1
m

∑m
j=1 xk

ij denotes the kth moment of the experimental setting
xi.

For estimating the mean response μ+βx over the design region (0 ≤ x ≤ 1)
the variance function is given by vd(x) = var (μ̂ + β̂x) = (1, x)M−1

d

(
1
x

)
.

3 Optimal design

Design optimality aims at finding the best experimental settings xi to max-
imise the information Md = Md(x1, . . . ,xn) or, equivalently, to minimise
the covariance matrix M−1

d . As uniform matrix optimisation is not possible,
there are various competing optimality criteria, which are real-valued func-
tionals of the information Md. One of the most popular is the D-criterion,
which aims at maximising the determinant of Md. For fixed-effects models
without individual slopes (i. e. d = 0) D-optimality is equivalent to optimisa-
tion with respect to the G-criterion, which aims at minimising the maximum
max0≤x≤1 vd(x) of the variance function over the design region, according
to the Kiefer-Wolfowitz equivalence theorem (Kiefer and Wolfowitz (1960))
within the setup of approximate designs. To avoid discretisations we will deal
with such a generalised setup throughout this section. According to Schmelter
(2006) optimal designs can be found among those, which are uniform across
the individuals, i. e. xi = x and, hence, Fi = F for all i. Then the covari-
ance matrix simplifies to M−1

d = 1
n

(
(F
 F)−1 +

(
0 0
0 d

))
(see Entholzner et al

(2005)). Due to majorisation (see e. g. Pukelsheim (1993) p. 101) we can con-
fine the search for optimal designs to those with observations at the extreme
settings x = 0 and x = 1. Candidates for an optimal design are, thus, char-
acterised by the number m1 or, equivalently, by the proportion w = m1/m of
observations at the experimental setting x = 1, while m0 = (1−w)m observa-
tions are made at the baseline, x = 0, for each individual. The corresponding
covariance matrix can be calculated as

M−1
d =

1
nm

1
w(1 − w)

(
w −w

−w 1 + mdw(1 − w)

)
.

For the optimisation we also allow generalised proportions w, which are not
necessarily multiples of 1/m.

Theorem 1. The D-optimal proportion w∗
D at x = 1 equals (1+

√
md+ 1)−1.

Proof. The determinant of M−1
d is proportional to (1 + mdw)/(w(1 − w)),

which is minimised by w∗
D. �
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The optimal proportion w∗
D varies continuously with the variance ratio d, and

w∗
D tends to zero as d tends to infinity (see Figure 2).

0 20 40 60 80 100

0.0

0.2

0.4

0.6

0.8

1.0

m*d

w

Fig. 2. Optimal proportions of observations in x = 1 : D-optimal (solid line), G-
optimal (dashed line), β- and IMSE-optimal (upper horizontal dotted line), and
A-optimal (lower horizontal dotted line)

It has to be noted that all optimal designs depend on the number m of
replications and the variance ratio d only through their product m · d as does
the standardised information matrix 1

nmMd.

Theorem 2. The G-optimal proportion w∗
G at x = 1 equals 1

2 (1− 2(md)−1 +√
1 + 4(md)−2) if d > 0, and w∗

G = 1/2 for d = 0.

Proof. As the variance function vd(x) = 1
nm

1
w(1−w) (w−2wx+(1+mdw(1−

w))x2) is a polynomial of degree 2 with positive leading term (0 < w < 1), its
maximum is attained either at x = 0 or x = 1, or both, i. e. max0≤x≤1 vd(x) =
max (vd(0), vd(1)). Now, the standardised variance nmvd(0) = (1 − w)−1 is
strictly increasing in w while nmvd(1) = w−1 + md is strictly decreasing in
w. Thus, min0<w<1 max(vd(0), vd(1)) is attained when vd(0) = vd(1), i. e.
(1 − w)−1 = w−1 + md, which is solved by w∗

G. �

The optimal proportion w∗
G varies continuously in d, but, in contrast to the

D-optimal proportion, it tends to 1 as d tends to infinity (see Figure 2). Thus
D- and G-optimal proportions are very sensitive to the variance ratio d and
differ essentially if d is large.

Linear criteria, however, which are of the form tr(AM−1
d ) for some fixed

positive semidefinite matrix A are not affected by the variance ratio d, because
n−1tr(AM−1

d ) = tr(A(F
 F)−1) + da22 decomposes into the corresponding
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criterion tr(A(F
F)−1) of the fixed-effects model without individual slopes
and a design independent constant da22, where a22 is the lower right entry
in A. Hence, for such criteria the optimal design is independent of d. Typical
examples are the c-criterion for the slope β, c
 M−1

d c, where c = (0, 1)
,
the integrated mean squared error (IMSE) criterion,

∫ 1

0
vd(x) dx or the A-

criterion, tr(M−1
d ).

Theorem 3. The β- and IMSE-optimal proportions w∗
β = w∗

IMSE are equal to
1/2. The A-optimal proportion w∗

A is equal to
√

2 − 1.

To judge the impact of design optimisation one is tempted to calculate the effi-
ciency of the proportion w0 = 1/2, which is simultaneously D- and G-optimal
for the fixed-effects model without individual slopes (i. e. d = 0), when the
variance ratio increases. The D-efficiency (det Md(w0)/ det Md (w∗

D))1/2 =
(1+

√
md+ 1)/

√
4 + 2md decreases slowly to 1/

√
2 > 0.70 if the variance ratio

d becomes large. But the G-efficiency, which is equal to (w∗−1
G +md)/(2+md),

shows a strange behaviour. If d increases the G-efficiency drops very quickly
to about 0.86 and, then, increases again and tends ultimately to 1 for d tend-
ing to infinity. This strange limiting behaviour may be explained by the fact
that the G-efficiency for w0 is bounded by (1 + md)/(2 + md) from below.
The efficiencies are plotted in Figure 3.
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Fig. 3. Efficiency of the equireplicated design (w = 0.5) : D-criterion (solid line)
and G-criterion (dashed line)
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4 Discretisation

For applications it must be required that the proportion w is a multiple of
1/m, i. e. that the number m1 = w ·m of observations at x = 1 is an integer.
In general, optimal numbers m∗

1 can be found by rounding w∗m to the next
smaller or larger integer [w∗m] or [w∗m] + 1, respectively, where w∗ is the
optimal generalised proportion obtained in the previous section and [·] denotes
the integer part.

For example, in the case m = 2 the optimal value m∗
1 for the number of

observations at x = 1 is equal to 1 independently of d for every reasonable
criterion considered in section 3 due to estimability requirements. In the case
m = 4 the D-optimal number m∗

1 is equal to 2 for small variance ratios d ≤ 1/2
and has to be chosen as 1 for larger values, d ≥ 1/2. Note that in this case
the generalised solution w∗

D m yields the integer value 1 for d = 2.
In the situation of non-integer w∗m it may additionally turn out that it is

more favourable to apply non-uniform designs, in which experimental settings
may differ from individual to individual. It seems reasonable that for a certain
proportion α of individuals m1 is chosen to be equal to [w∗m] + 1 while for
the remaining (1−α) ·n individuals m1 equals [w∗m] in order to improve the
performance of the design. For example, in the case m = 4 it is D-optimal
to have a proportion of 1 − d individuals with m1 = 2 observations at 1 and
a proportion of d individuals with m1 = 1 as long as the variance ratio d is
smaller than 1. For larger d, d ≥ 1, the uniform design becomes D-optimal
with m1 = 1 for all individuals.

For m = 2 it can be shown by the multivariate version of the equivalence
theorem (see Fedorov (1972) p. 212) that the uniform design with m1 = 1 is
simultaneously D-optimal for all values of the variance ratio d.

Analogous findings can be obtained for the G-criterion.

5 Discussion

In the present simple model of straight line regression with random slopes
neither the commonly used D-criterion nor its pretended counterpart the G-
criterion seem to show a reasonable behaviour, particularly, if the variability
is large. While the D-criterion yields solutions, which are lightweight in the
sense that most observations are made where it is ’easy’, i. e. where the vari-
ance is small, the G-criterion overemphasises ’difficult’ observations, where
the variation is large and cannot be substantially reduced by increasing the
number of intra-individual replications. Moreover, the G-criterion exhibits a
strange non-monotonic efficiency behaviour. In fact, it can be shown that for
every regular design its G-efficiency tends to 1 if the variance ratio tends to
infinity. This indicates that, with respect to the G-criterion, all designs are
equally good - or equally bad - if d is large.
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Although this last statement also applies to linear criteria like the IMSE-
criterion they seem to be a reasonable compromise and, in particular, have
the advantage of resulting in optimal designs, which are independent of the
magnitude of the variance ratio.
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Summary. cDNA microarrays are a powerful tool in gene expression analysis Speed
(2003). Landgrebe et al (2006) proposed a special 3-factor model to estimate various
effects on the log ratios of measured fluorescence intensities. We demonstrate in this
paper that the Within-B-Swap (BS) design introduced by Landgrebe et al (2006) is
A- and D-optimal for estimating the linear contrast for the treatment effect in the
general case of l treatments and k cell lines.

Key words: A-optimality, BS design, cDNA microarray experiment, D- optimality,
equivalence theorem, fixed effects linear model, treatment effect

1 Introduction

In a 3-factorial cDNA microarray experiment, two measurements of fluores-
cence intensity are carried out using two different fluorescent dyes (green and
red) in order to determine the response (i.e the log ratio of the two fluorescence
intensity measurements) of a particular gene on a specific array. Moreover, the
two dyes (factor C) can be chosen independently from the treatments (factor
A) and cell lines (factor B) investigated. It is well-known that, using the same
combination of treatment and cell line, the two different dyes can be associ-
ated with quite different fluorescence intensity values. However, the primary
interest is in an efficient estimation of the treatment-, cell line- as well as
treatment×cell line interaction effects, while the two different dyes serve as a
block effect. So, keeping the levels of treatment and cell line factor fixed for
both dyes used on a particular array would be a useless experimental setup.

Thus, the nature of the experiment is such that on a particular array we
either can compare two different treatments (keeping the cell line fixed) or
two different cell lines (using the same treatment), or two different treatments
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in combination with two different cell lines. To further extract the variation
due to dyes, we have to carry out another experiment on a different array,
switching the dyes used for the same two combinations of treatments and cell
lines.

We discuss optimal designs for estimating the parameters of interest in the
fixed effects gene-specific linear model for log ratios of measured fluorescence
intensities introduced by Landgrebe et al (2006). To estimate special linear
contrasts for subsets of these parameters in an efficient manner, we will search
for A- and D-optimal designs (Pukelsheim, 1993, p. 135ff). In this paper only
linear contrasts for estimating all pairwise treatment differences are of interest.
We will make use of the equivalence theorem for matrix means proposed by
Pukelsheim (1993) to prove optimality.

In section 2, we will introduce some notation and a special type of design
called Within-B-Swap (BS) design. A- and D-optimality of the BS design will
be shown in section 3. The results will be summarized and discussed in section
4.

2 Notations and examples

As introduced by Landgrebe et al (2006), due to the connection of dye labelling
and treatment allocation, specified in the form xi· = 1 (treatment i, green dye
labelling) or xi· = −1 (treatment i, red dye labelling), and the restriction that
one has to change either treatment or cell line or both when switching from
the green to the red dye channel (or vice versa) on a specific array, the most
relevant information (i.e. the most relevant parameters) of the experimental
setup is obtained, if the Landgrebe model is written in usual matrix form,

Z = Xθ + ε. (1)

In model (1), Z denotes the vector of observed log ratios for a single gene on
N arrays; ε is the corresponding vector of i.i.d. error terms with E(ε) = 0 and
V ar(ε) = σ2IN . The ordered set of all relevant parameters in the experiment
is given by the parameter vector θ = [δg, δr, τ11, ..., τlk]T of dimension (lk+2),
where δg and δr are the fixed dye effects respectively of the green the red
fluorescent dye and τij is the fixed combination effect of treatment i
(i = 1, ..., l) and cell line j (j = 1, ..., k). The N × (lk + 2) design matrix X of
a concrete experiment using N arrays contains all relevant design information
about the Landgrebe model. Corresponding to the parameter vector θ, the
first two columns in X describe the dye effects of the two fluorescent dyes,
the remaining columns characterize the lk combination effects of treatments
and cell lines (see example 2.1). Landgrebe et al (2006)

Because of the nature of 3-factorial microarray experiments only balanced
incomplete block designs (BIBD) can be realized for estimating the parame-
ters specified in model (1). A special type of these designs was introduced
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by Landgrebe et al (2006) and is called Within-B-Swap (BS) design. In this
design, all pairwise comparisons between the levels (treatments) of factor A
are conducted twice within the same level (cell line) of factor B; dyes are al-
ways swapped in the second of these two repetitions of the same experimental
condition.

Due to the restrictions explained in section 1, only m = 2
(
kl
2

)
different

discrete design points x are possible for this design. Thus, the discrete design
space is given as χ = {x1, ..., xm}. Each of the m design points x is of the
form
x = [g, r, x11, ..., xlk]T , where g and r correspond to the green and red fluores-
cent dye while xij indicates whether the combination of treatment i and cell
line j on a particular array is labelled with the green dye (xij = +1), the red
dye (xij = −1) or not at all (xij = 0). By convention, g is always set to ’+1’
and r to ’-1’; dye swaps, i.e. switching the dyes used for the two combinations
compared, are obtained by switching the signs of the two combinations (see
example 2.1).

The 2k
(

l
2

)
support points of the BS design comprise all

(
l
2

)
different pair-

wise comparisons of two treatments used in combination with each of the
k cell lines in each of the two dye constellations. Using model (1), the dye
swap character of the BS design, i.e. that the support points are such that
each treatment comparison is repeated with the two dyes switched, guarantees
the estimability of the BS design with respect to the linear contrast for the
treatment effect Landgrebe et al (2006).

Table 1. SP of BS design for l = 3,k = 2 [left] and l = 2,k = 3 [right]

SP a1 a2 a3 b1 b2 b3

1 1 -1 0 0 0 0
2 1 0 -1 0 0 0
3 0 1 -1 0 0 0
4 -1 1 0 0 0 0
5 -1 0 1 0 0 0
6 0 -1 1 0 0 0
7 0 0 0 1 -1 0
8 0 0 0 1 0 -1
9 0 0 0 0 1 -1
10 0 0 0 -1 1 0
11 0 0 0 -1 0 1
12 0 0 0 0 -1 1

SP a1 a2 b1 b2 c1 c2

1 1 -1 0 0 0 0
2 -1 1 0 0 0 0
3 0 0 1 -1 0 0
4 0 0 -1 1 0 0
5 0 0 0 0 1 -1
6 0 0 0 0 -1 1
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Example 2.1
The respective support points (SP) of the BS designs for, l = 3 treatments

(1,2,3) and k = 2 cell lines (a,b), and for, l = 2 treatments (1,2) and k = 3 cell
lines (a,b,c), are displayed in table 1. The fixed dye codings (g = 1 , r = −1)
are non-informative and thus ignored.

Since all pairwise treatment comparisons are considered equally impor-
tant in estimating the linear contrast for the treatment effect, the support
points of the BS design are uniformly weighted (pt = 1/2k

(
l
2

)
). This yields

the symmetric moment matrix

M =
1

2k
(

l
2

)
⎡⎢⎢⎢⎢⎣

2k
(

l
2

) −2k
(

l
2

)
0T

kl

−2k
(

l
2

)
2k
(

l
2

)
0T

kl

0kl 0kl Ik ⊗ (AT
l Al)

⎤⎥⎥⎥⎥⎦ (2)

with corresponding g-inverse

G = 2k
(
l

2

)
⎡⎢⎢⎢⎢⎢⎣

1

8k(l
2)

− 1

8k(l
2)

0T
kl

− 1

8k(l
2)

1

8k(l
2)

0T
kl

0kl 0kl Ik ⊗ ( 1
4l2A

T
l Al)

⎤⎥⎥⎥⎥⎥⎦ (3)

of dimension (lk + 2) under the BS design applied to the general situation
of l treatments and k cell lines. From this point on, the symbol ⊗ denotes
the Kronecker product of two matrices (Searle, 1982, p. 265) and Ik the k-
dimensional identity matrix, Ik = diag {1, ..., 1} ∈ Rk. Moreover, the matrix
Al can be partitioned into

Al =
[

Ãl

−Ãl

]
, (4)

where the
(

l
2

) × l matrix Ãl specifies all
(

l
2

)
possible pairwise comparisons

between two out of the l treatments. By convention, in each row of the matrix
Ãl the first of the two treatments compared is indicated by ’+1’, the other
treatment accordingly by ’-1’; the remaining entries of the corresponding row
are zero. Thus, the matrix Ãl has the following general structure:

Ãl =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1l−1 −Il−1

0l−2 1l−2 −Il−2

0l−3 0l−3 1l−3 −Il−3

...
. . .

. . .
. . .

02 · · · 02 11 −I1
01 · · · 01 11 −I1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (5)
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The treatment effect will be tested by means of the linear contrast KT θ,
where θ is the vector of the (lk+ 2) interesting parameters specified in model
(1) and

K =
[
0(l

2) 0(l
2) 1T

k ⊗ Ãl

]T

(6)

is the (lk + 2)× (l
2

)
contrast matrix for estimating all possible pairwise differ-

ences between the l treatments of interest. Thus, it can be seen that even in
the definition of the matrix K the matrix Ãl given in (5) has a role to play.

Example 2.2
For l = 2 treatments and k = 3 cell lines the contrast matrix of the linear

contrast for the treatment effect is given as

K23 = [0, 0, 1,−1, 1,−1, 1,−1]T,

for l = 3 treatments and k = 2 cell lines it is

K32 =

⎡⎣ 0 0 1 −1 0 1 −1 0
0 0 1 0 −1 1 0 −1
0 0 0 1 −1 0 1 −1

⎤⎦T

.

3 A- and D-optimality of the BS design

The equivalence theorem for matrix means introduced by Pukelsheim
(Pukelsheim, 1993, p. 180) can be used to prove A- and D-optimality of the
BS design. To avoid problems that might appear due to singular covariance
matrices KTGK, we had to modify the normality inequality of this theorem
in such a way that it can be used for both, regular and singular, covariance
matrices. This can be achieved by replacing the matrix means φp by their
corresponding rank deficient matrix means φ

′
p and was also demonstrated by

Pukelsheim (Pukelsheim, 1993, p. 205).
A-optimality of the BS design with respect to the linear contrast for the

treatment effect can be obtained from theorem 1:

Theorem 1 (A-optimality of the BS design).
The Within-B-Swap (BS) design is A-optimal for estimating the linear

contrast KT θ for the treatment effect in model (1).

Proof.
To prove A-optimality , we use the equivalence theorem for matrix means

with singularity modification (p = −1). Thus, we have to show

xTGK[KTGK]+[KTGK]2[KTGK]+KTGTx ≤ tr
{
[KTGK]+[KTGK]2

}
(7)
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for all x, where strict equality holds true for all support points of the BS
design. Here K is the (lk + 2) × 2 contrast matrix for estimating all pairwise
treatment differences (see (6)), G denotes the g-inverse of the moment matrix
M corresponding to the BS design given respectively in (3), (2), and[

KTGK
]+

=
1

k2l
(

l
2

) ÃlÃ
T
l (8)

is the Moore-Penrose inverse of the covariance matrix

KTGK =
k2

l

(
l

2

)
ÃlÃ

T
l . (9)

With the notation and definitions outlined in section 2 it can be shown by
extensive use of some rules and theorems already known from the theory of
matrix algebra Searle (1982); Harville (1997) that

xTGKÃlÃ
T
l K

TGTx = k2

(
l

2

)2 l∑
q=1

k∑
r=1

[
xqr

k∑
s=1

(xqs − x̄·s)

]
, (10)

where x̄·s = 1
l

∑l
q=1 xqs. Using the results given in (8)-(10), it can be derived

by straightforward computation that inequality (7) is equivalent to

l∑
q=1

k∑
r=1

[
xqr

k∑
s=1

(xqs − x̄·s)

]
≤ 2. (11)

To show (11), we have to distinguish three cases with respect to the pos-
sible design points x:

Case 1: Support points of BS
All 2k

(
l
2

)
design points comparing two treatments i �= i′; i, i′ ∈ {1, ..., l}

within the same cell line j ∈ {1, ..., k}.
Let, without loss of generality, xij := +1 , xi′j := −1 , xqr := 0 otherwise.
Then, x̄·j = 0 and (11) holds true because∑l

q=1

∑k
r=1

[
xqr

∑k
s=1 (xqs − x̄·s)

]
= xij (xij) + xi′j (xi′j) = 2.

Case 2:
All non-support points comparing two treatments i �= i′; i, i′ ∈ {1, ..., l}

for two different cell lines j �= j′; j, j′ ∈ {1, ..., k}.
Let xij := +1 , xi′j′ := −1 , xqr := 0 otherwise. Then, x̄·j = 1/l, x̄·j′ =

−1/l, and∑l
q=1

∑k
r=1

[
xqr

∑k
s=1 (xqs − x̄·s)

]
= xij

[(
xij − 1

l

)
+
(
xij′ + 1

l

)]
+
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xi′j′
[(
xi′j − 1

l

)
+
(
xi′j′ + 1

l

)]
= xij (xij) + xi′j′ (xi′j′) = 2.

Case 3:
All non-support points comparing the same treatment i ∈ {1, ..., l} in two

different cell lines j �= j′; j, j′ ∈ {1, ..., k}.
Let xij := +1 , xij′ := −1 , xqr := 0 otherwise. Then, x̄·j = 1/l, x̄·j′ =

−1/l, and∑l
q=1

∑k
r=1

[
xqr

∑k
s=1 (xqs − x̄·s)

]
= xij

[(
xij − 1

l

)
+
(
xij′ + 1

l

)]
+

xij′
[(
xij − 1

l

)
+
(
xij′ + 1

l

)]
= (xij + xij′ ) (xij + xij′ ) = 0.

�

The next theorem states the D-optimality of the BS design with respect
to the linear contrast for the treatment effect:

Theorem 2 (D-optimality of the BS design).
The Within-B-Swap (BS) design is D-optimal for estimating the linear

contrast KT θ for the treatment effect in model (1).

Proof.
Using p = 0 in the equivalence theorem for matrix means (with the singu-

larity modification again), we have to show

xT GK[KT GK]+[KT GK][KT GK]+KT GT x ≤ tr
�
[KT GK]+[KT GK]

�
(12)

for all x, where strict equality holds true for all support points of the BS
design. The proof is analogous to the first part of the previous proof in that we
find that (12) is equivalent to (11) so that D-optimality holds true according
to the second part of that proof.

�

4 Conclusions and discussion

We considered the fixed effects gene-specific linear model for log ratios of fluo-
rescence intensities to show global A- and D-optimality of the Within-B-Swap
(BS) design for estimating the treatment effect in 3-factorial cDNA microarray
experiments by means of the linear contrast KT θ, using a modified version of
the equivalence theorem for matrix means. Extending these results to different
optimality criteria (E-optimality, T-optimality) and linear contrasts (for cell
line effects as well as interaction effects) is straightforward.

The independence of the solution from the optimality criterion chosen
can be interpreted as a robustness property of the BS design. We further
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emphasize that in most scenarios this solution does not depend on the number
of treatments and cell lines.

It might be of interest to examine whether the solution is also robust
against the model selected by taking different fixed and random effects linear
models proposed in the microarray literature into account as well.

For practical situations, the results can be transferred into direct recom-
mendations for the choice of an effective concrete cDNA microarray design,
depending on the actual interest of the biologist or physician. Consequently,
the results obtained might save a large amount of financial resources normally
required for these expensive experiments.
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D-optimal Designs and Equidistant Designs for
Stationary Processes

Milan Stehĺık
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315, 4040 Linz, Austria Milan.Stehlik@jku.at

Summary. In this paper we discuss the structure of the information matrices of
D-optimal experimental designs for the parameters in a stationary process when
the parametrized correlation structure satisfies mild conditions. Such conditions are
easily fulfilled by many correlation structures, e.g. structures from power exponen-
tial family and some members of the Matérn class. We provide a lower bound for
information on the mean parameter and prove it to be an increasing function of dis-
tances of design points. The design points can collapse under the presence of some
covariance structures and a so called nugget effect can be employed in a natural
way. We also show that the information of equidistant designs (designs with equally
spaced design points) on the covariance parameter is increasing with the number
of design points under our conditions on correlations. If only trend parameters are
of interest, the designs covering the whole design space non-uniformly are rather
efficient.

Key words: correlated errors, regression experiment, power exponential family,
Matérn class

1 Introduction

Here we consider the isotropic stationary process

Y (x) = θ + ε (x)

with the design points x1, ..., xN are taken from a compact design space
X . The mean parameter E(Y (x)) := θ ∈ Θ is unknown, the variance-
covariance structure C (d, r) depends on another unknown parameter r and d
is the distance between (neighbouring) design points. Let us define 2γ(h) =
var (Y (s + h) − Y (s)) . The function 2γ(h) is called the variogram and γ(h)
is called the semivariogram (for more details see Banerjee et al (2004)). In
other words, we study a weak stationary process (also called second-order
stationary); see (Cressie (1993),p. 53). In such a model we have the Fisher
information matrices:
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Mθ(n) = 1TC−1 (r) 1

and (see Pázman (2004) and Xia et al (2006))

Mr(n) =
1
2
tr

{
C−1 (r)

∂C (r)
∂r

C−1 (r)
∂C (r)
∂rT

}
.

So for both parameters of interest we have M(n) (θ, r) =
(
Mθ(n) 0

0 Mr(n)

)
.

From now on, by ’information’ we mean the Fisher information on the
parameter of interest of the isotropic random field. In this paper we study
the structure of the Fisher information matrices Mθ(n) and Mr(n) with some
regularity assumptions on covariance structures. We assume that

a) C (d, r) > 0 for all r and 0 < d < +∞,
b) for all r the mapping d → C (d, r) is continuous and strictly decreasing

on (0,+∞)
c) limd→+∞C (d, r) = 0.
These assumptions are fulfilled by many covariance structures. The exam-

ple of a family satisfying a),b),c) is the power exponential correlation family,
with the variogram

γ(d) =
{

0, for d = 0,
τ2 + σ2(1 − exp(−rdp)), otherwise, 0 < p ≤ 2, r > 0,

where τ2 is the nugget effect and d is distance. This family is by far the
most popular family of correlation models in the computer experiments li-
terature (see Santner et al (2003) and Currin et al (1991)). The exponential
exp(−rd) and Gaussian correlation functions exp(−rd2) are special cases of
the power exponential correlation family. Gaussian correlation is appropriate
if the process is smooth (the realizations of Y are infinitely differentiable with
probability 1, see Parzen (1967)). Such a situation occurs e.g. when responses
are solutions to a system of differential equations and depend smoothly on the
rate constants x which form the inputs (see Sacks et al (1989) for more de-
tails). For applications with more erratic responses, we would employ different
correlation structures; for instance the exponential correlation. The process
with exponential correlation can be thought of as a model for functions only
required to have one-sided first-order derivatives (see Sacks and Ylvisaker
(1966)). Integrating this process yields one that is smoother but less smooth
than a Gaussian process and which may be useful for applications in which
some differentiability is present but full analyticity may be too strong an
assumption.

The second widely used class (within which we can find desirable covari-
ance functions) is the Matérn class of covariance functions

C(d, φ, v) =
1

2v−1Γ (v)

(
2
√
vd

φ

)v

Kv

(
2
√
vd

φ

)
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(see e.g. Handcock and Wallis (1994)). Here φ and v are the parameters and
Kv is the modified Bessel function of the third kind and of order v (see
Abramowitz and Stegun (1965)).The class is motivated by the smoothness
of the spectral density, the wide range of behaviours covered and the inter-
pretability of the parameters. It includes the exponential correlation function
as a special case with v = 0.5 and the Gaussian correlation function as a
limiting case with v → ∞.

Knowledge of information matrix structures could assist in finding a better
design. We can find applications of various criteria of design optimality for
second-order spatial models in the literature. Here we consider D-optimality,
which corresponds to the maximization of the determinant of a standard
Fisher information matrix. This method, ”plugged” from the widely devel-
oped uncorrelated setup, offers considerable potential for automatic imple-
mentation, although further development is needed before it can be applied
routinely in practice. Theoretical justifications for using the Fisher informa-
tion for D-optimal designing under a correlation structure can be found in
Abt and Welch (1998); Pázman (2004). Zhu and Stein (2005) use simulations
(under a Gaussian random field and a Matérn covariance) to study whether
the inverse Fisher information matrix is a reasonable approximation to the
covariance matrix of maximum likelihood (ML) estimators as well as a rea-
sonable design criterion. They have observed that when the sample size is
small, inverse Fisher information matrices underestimate the variance of ML
estimators. As sample size increases, the relative error becomes smaller and
smaller. They have already observed that the Fisher information matrix does
give good estimates of the variance of ML estimators when the sample size
is large enough. Although some simulation and theoretical studies shows that
the inverse Fisher information matrix is not a good approximation of the co-
variance matrix of the ML estimates it can still be used as a design criterion
if the relationship between these two are monotone, since for the purpose of
optimal designing only the correct ordering is important. For instance, Zhu
and Stein (2005) observe a monotone relationship between them.

Currently there are two main asymptotical frameworks, increasing domain
asymptotics and infill asymptotics, for obtaining limiting distributions of max-
imum likelihood estimators of covariance parameters in Gaussian spatial mod-
els with or without a nugget effect. These limiting distributions differ in some
cases. Zhang and Zimmerman (2005) have investigated the quality of these
approximations both theoretically and empirically. They have found, that for
certain consistently estimable parameters of exponential covariograms, ap-
proximations corresponding to these two frameworks perform roughly equally
well. For those parameters that cannot be estimated consistently, however, the
infill asymptotics is preferable. They have also observed, that the Fisher in-
formation appears to be a compromise between the infill asymptotic variance
and the increasing domain asymptotic variance. For exponential variograms
some infill asymptotic justification can be found in Zhang and Zimmerman
(2005).
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2 Mθ(n) structure

2.1 Exponential covariance structure

In this section we are concerned with the exponential semivariogram structure
γ(d) = 1− e−rd, the special case of Matérn semivariograms with a zero value
for the nugget parameter (obtained when v = 0.5) and introduce a new range
parameter r =

√
2

φ . For the sake of simplicity we fix r = 1, although formulae
are still rather complex for this simplification. Without loss of generality we
consider a design space X = [−1, 1]. All formulae for Mθ(n) hold for a general
design space.

The information matrix Mθ(2) has the form 2ed

1+ed and this is an increasing
function of d. Thus the optimal design is the maximally distant one (the design
space is compact). For more details see Stehĺık (2004).

If we consider a three-point-design with distances di = xi+1 − xi, i = 1, 2
then information Mθ(3) has form

1 +
2 + 2e−d1−2d2 − 2e−d1 + 2e−2d1−d2 − 2e−2(d1+d2) − 2e−d2

e−2(d1+d2) − e−2d1 − e−2d2 + 1
.

In Stehĺık (2004) it is proved, that the design {−1, 0, 1} is D-optimal.
Consider now a 4-point design with distances di = xi+1 − xi, i = 1, 2, 3.

Then information has the form

Mθ(4) = 2(−2 + e−d3 + e−d1 + e−d2 + e−2d2−d1−2d3 + e−2d1 + e−2d2 + e−2d3

−e−2d1−2d2−2d3 − e−d1−2d3 + e−2d1−2d2−d3 − e−d3−2d1 − e−d2−2d3

−e−2d1−d2 − e−2d2−d3 + e−2d3−2d1−d2 − e−2d2−d1)/

(−1 + e−2d3 + e−2d2 − e−2d2−2d3 + e−2d1 − e−2d1−2d3 − e−2d1−2d2 + e−2d1−2d2−2d3).

Employing the exchange algorithm we have checked numerically that the
D-optimum design is the equidistant one with d1 = d2 = d3 = 2/3 and the
D-optimum design information is M = 1.964538.

Due to the knowledge of the analytical form of the information one can
employ also Lipschitz and continuous optimization techniques (see Horst and
Tuy (1996)), which can be implemented like a net-searching algorithm. The
only problem with such an algorithm is the time required. The Fisher infor-
mation in the case of a 5-point design has much more complicated form and
can be found in Stehĺık (2006). Therein we have computationally obtained
that the D-optimal design is equidistant with d1 = d2 = d3 = d4 = 1/2 and
has information M = 1.979674635 (note, that the information is increasing
with number of design points).

From these results we are motivated to study an equidistant designs. Let
us consider an equidistant design with d = xi+1 − xi. We have

Mθ(2) =
2ed

1 + ed
, Mθ(3) =

−1 + 3ed

1 + ed
, Mθ(4) =

−2 + 4ed

1 + ed
.
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Denote by a(k, k − 1) the ratio Mθ(k)/Mθ(k − 1). In Kisělák and Stehĺık
(2007) the relation Mθ(k) = 2−k+ked

1+ed is proved for arbitrary k. The limit
a(k, k−1)(+∞) = k

k−1 is proved in Theorem 1 for arbitrary k ≥ 3 in the class
of covariance functions satisfying a),b) and c).

2.2 A lower bound for Mθ(n)

Consider the lower-bound for Mθ(n) of the form

LB(d) := n inf
x

xTC−1 (d, r) x
xTx

.

Then the following theorem holds.

Theorem 1. Let C (d, r) be a covariance structure satisfying a),b) and c).
Then

1) For any design {x, x + d1, x + d1 + d2, ..., x + d1 + ... + dn−1} given by
distances di, i = 1, ..., n − 1 and for any subset of distances dij , j = 1, ...,m
the lower bound function (di1 , ..., dim) → LB(d) is increasing in the d’s. In
particular, for any equidistant design (∀i : di = d) the function d → LB(d) is
increasing in d.

2) Denote by a(n, n − 1) the ratio Mθ(n)/Mθ(n − 1). Then
lim∀i:di→+∞ a(n, n− 1) = n

n−1 .

Proof First, let us recall the Frobenius theorem (see Rao (1973), p.46). An
irreducible positive matrix always has a positive characteristic value λ0(A)
which is a simple root of the characteristic equation and not smaller than the
moduli of other characteristic values. Moreover, if A ≥ B ≥ 0 then λ0(A) ≥
λ0(B).

Now let +∞ > d1 > d2 ≥ 0. Then Ci,j (d1, r) ≤ Ci,j (d1, r) for all i, j =
1, .., n and thus C (d2, r) ≥ C (d1, r) ≥ 0. Employing the Frobenius theorem we
have λ0(C (d2, r)) ≥ λ0(C (d1, r)). Our matrix is symmetric and real. Thus
we have λmin(C−1 (d2, r)) ≤ λmin(C−1 (d1, r)), where λmin(A) denotes the
minimal eigenvalue of matrix A.

Now,

Mθ(n) = 1TC−1 (d, r) 1 ≥ n inf
x

xTC−1 (d, r) x
xTx

= nλmin(C−1 (d, r))

and thus we have proved that for an equidistant design the lower bound func-
tion d → n infx

xT C−1(d,r)x
xT x

is increasing in d. We can prove the rest of 1) in
a similar manner.

To prove 2) let us consider the open set U of all covariance matrices C (d, r)
with bounded inverse in a Banach space of real matrices n × n. Then the
identity I(n) = lim∀i:di→+∞C(d, r) ∈ U and map C(n) → C(n)−1 is smooth.
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This implies1

a(n, n− 1)(+∞) = lim
∀i:di→+∞

1TC(n)−1(d, r)1
1TC(n− 1)−1(d, r)1

=
1T I(n)1

1T I(n− 1)1
=

n

n− 1
.

�

To illustrate the previous result let us consider a power exponential co-
variance family with zero nugget. For the sake of simplicity let us consider
equidistant designs. We have

Mθ(2) =
2erdp

1 + erdp , Mθ(3) =
edpr

(
edpr − 4e2

pdpr + 3e(1+2p)dpr
)

e2dpr − 2e2pdpr + e(2+2p)dpr
.

Denote by a(k, k−1) the ratio Mθ(k)/Mθ(k−1). Then a(3, 2)(+∞) = 3
2 holds.

3 Mr(n) structure

The Fisher information Mr for the covariance parameter r is much more
complex than Mθ. Therefore we consider only the exponential correlation
structure.

First let us consider a 2-point design. We have

Mr(2) =
d2 exp(−2rd)(1 + exp(−2rd))

(1 − exp(−2rd))2
.

The maximal Fisher information is obtained for d = 0. In other words, a
2-point design collapses to a 1-point design. The collapsing behaviour of an
equidistant design is related to the behaviour of the maximum likelihood es-
timator (MLE) of the covariance parameter r in a Gaussian field with an ex-
ponential covariance structure. These properties are easily verified e.g. from
the analytical study of the log-likelihood limit for rd → 0.

To avoid such ’inconvenient’ behavior we suggest decreasing the non-
diagonal elements through multiplication by a factor α, 0 < α < 1. We can
thereby include a nugget effect (micro-scale variation effect) of the form

γ(d, r) =
{

0, for d = 0,
1 − α + α(1 − exp(−rd)), otherwise.

Then we obtain Mr,1−α(2) = α2d2 exp(−2dr)(α2 exp(−2dr)+1)
(1−α2 exp(−2dr))2 .

In Stehĺık et al (2007) it is proved, that the distance d of the optimal
design is an increasing function of the nugget effect, namely 1 − α.

1 The open question is, whether the supremum of the ratio Mθ(n)/Mθ(n − 1) is
n

n−1
, i.e. whether Mθ(n) ≤ n

n−1
Mθ(n−1) holds, as it seems to for some particular

correlation functions.
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Now let us consider a 3-point design. Mr(3) has the form

(d2
1e

−2rd1 −2e−2r(d1+d2)d2
1−2e−2r(2d1+d2)d2

1 +e−2r(2d2+d1)d2
1−2e−2r(d1+d2)d2

2

+d2
2e

−2rd2 + d2
2e

−2r(2d1+d2) + d2
1e

−4r(d1+d2) + d2
2e

−4r(d1+d2) + d2
2e

−4rd2

+d2
1e

−4rd1 − 2d2
2e

−2r(2d2+d1))/(−1 + e−2rd1 + e−2rd2 − e−2r(d1+d2))2.

We have observed many numerical obstacles arising from collapsing of designs
based on Mr(n), n > 3 without a nugget effect, caused by 0/0 expressions
among other numerical difficulties. For more details see Stehĺık (2006).

Let us consider a 5-point equidistant design d = d1 = d2 = d3 = d4 when
the correlation structure is exponential with a zero nugget effect. Then we have
Mr(5) = 4d2 exp(−2rd) exp(−2rd)+1

exp(−4rd)−2 exp(−2rd)+1 and limd→0+ Mr(5) = 2/r2.
Note that for an equidistant design we have 4Mr(2) = Mr(5) and

2Mr(2) = Mr(3). In Kisělák and Stehĺık (2007) the relation (n − 1)Mr(2) =
Mr(n) is proved for arbitrary n.

However, if the exponential correlation with a positive nugget effect is
considered, there is no such nice relation between Mr,1−α(n) and Mr,1−α(2),
as can be seen by computing Mr,1−α(3). The latter has the form

2α2d2
�
6α4 − 5αe4dr + e4dr

�
2 + e2dr

�− α3
�
7 + 4e2dr

�
+ α2

�
2 + 3e2dr + 2e4dr

��

(2α3 + e4dr − α2 (1 + 2e2dr))2

One finds that limα→1 Mr,1−α(3)/Mr,1−α(2) = 2 = Mr(3)/Mr(2).

4 Discussion

In this paper we study the structure of the Fisher information matrices for
stationary processes. We show that, under mild conditions on covariance struc-
tures, the lower bound for Mθ(k) is an increasing function of the distances
between the design points. If only trend parameters are of interest, the designs
uniformly covering the whole design space are very efficient. The nugget effect
is also discussed.
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Optimal Designs for Discriminating among
Several Non-Normal Models
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Summary. Typically T-optimality is used to discriminate among several models
with Normal errors. In order to discriminate between two non-Normal models, a
criterion based on the Kullback-Liebler distance has been proposed, the so called
KL-criterion . In this paper, a generalization of the KL-criterion is proposed to deal
with discrimination among several non-Normal models. An example where three
logistic regression models are compared is provided.

Key words: Kullback-Leibler distance, T-optimality, KL-optimality

1 Introduction

Many results on optimal experimental designs are derived under the assump-
tion that the statistical model is known at the design stage. Thus, the purpose
of the experiment is to estimate a specific aspect of that model. However,
rarely is the researcher confident that a particular model underlies the data.
More often than not he may be confident that one of several models will be
adequate, but does not know which. Thus, in the present paper several rival
models are assumed to be available. The purpose of the experiment is to de-
termine which of the models is the more adequate. The rival models may be
linear or non-linear and its underlying error distribution is not limited to the
Normal.

In order to check the adequacy of a linear regression model, Atkinson
(1972) proposes to embed the model in a more general model and to design to
estimate the additional parameters in the best way. Atkinson and Cox (1974)
generalize this approach to the case of comparing several linear models. An-
other method for discriminating between two or more regression models (linear
or not) is the T-criterion proposed by Atkinson and Fedorov (1975a,b). How-
ever, this criterion is based on the assumption that the random errors of the
model are Gaussian and homoscedastic. A generalization of the T-optimality
criterion for heteroscedastic models is provided by Uciński and Bogacka (2004)
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but again there is the assumption of Normal random errors. A generalization
of the T-criterion for discriminating between two generalized linear models is
provided by Ponce de Leon and Atkinson (1992). This new criterion is called
generalized T–optimality criterion and consists of maximizing the deviance
arising from the fit of model 2 when data are generated by model 1. In order
to deal with any distribution for the random errors, López-Fidalgo et al (2005,
2007) propose a new criterion based on the Kullback-Liebler distance. This
new criterion is called the KL-criterion and a design which maximizes it is
called a KL-optimal design.

There are many measures of distance between probability distributions.
Here, the Kullback-Liebler distance is considered because it is the logical basis
for model selection as defined by Akaike, i.e. it is the basis for the derivation
of the well known Akaike’s information criterion (AIC). For more details see,
for instance, Burnham and Anderson (1998). Furthermore, the KL-criterion
is a very general criterion, which includes as special cases both the T-criterion
(in the homoscedastic case) and the generalization provided by Uciński and
Bogacka (2004) (in the heteroscedastic case), whenever the error distribution
is Normal (the details are given in López-Fidalgo et al (2007)). In addition,
López-Fidalgo et al (2007) prove that when the discrimination is between two
binary response models then the KL–optimality criterion coincides with the
generalized T–optimality criterion proposed by Ponce de Leon and Atkinson
(1992).

The main aim of this paper is to generalize the KL–criterion to the case
of more than two rival models. In Section 2 the generalized KL-criterion is
defined. In Section 3 an illustrative example is given where three logistic re-
gression models are considered.

2 The generalized KL–criterion

In a more general context than regression models, from now on a statistical
model is a family of probability density functions. Let the i-th statistical
model, i = 1, . . . , k, be denoted by fi(y, x, θi), where y is the response variable,
x is a vector of experimental conditions and θi ∈ Ωi ⊂ IRmi is the unknown
parameter vector.

Following the same idea of Atkinson and Cox (1974), in order to com-
pare these k rival models an extended model which includes them is consid-
ered. In other words the k models are embedded in a more general model,
fk+1(y, x, θk+1). To detect departures from the i-th model in the direction of
the other models the KL-criterion for discriminating between the i-th model
and fk+1(y, x, θk+1) is used. In this paper the parameters of the extended
model are assumed to be known. Thus local optimal designs are computed.
Other interesting possibilities are Bayesian optimal designs and maximin op-
timal designs that could be derived from the ideas proposed in this paper.

The i-th KL–optimality criterion function is
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Ii,k+1(ξ) = min
θi∈Ωi

∫
X
I [fk+1(y, x, θk+1), fi(y, x, θi)] ξ(dx), (1)

where

I [fk+1(y, x, θk+1), fi(y, x, θi)] =
∫

fk+1(y, x, θk+1) log
[
fk+1(y, x, θk+1)

fi(y, x, θi)

]
dy

is the Kullback–Leibler distance between the true model fk+1(y, x, θk+1) and
the alternative model fi(y, x, θi).

If ξ is any design, a measure of the efficiency of ξ for detecting depar-
tures from the i-th model is the ratio of the criterion function (1) at ξ to its
maximum value, i.e.

Effi,k+1(ξ) =
Ii,k+1(ξ)
Ii,k+1(ξ∗i )

, i = 1, . . . , k

where
ξ∗i = arg max

ξ
Ii,k+1(ξ)

is the KL–optimum design for discriminating model i from the general model.
Let the following linear combination of efficiencies

Iα(ξ) =
k∑

i=1

αi · Effi,k+1(ξ) (2)

be the generalized KL–criterion function which is useful for comparing several
models. The subscript α is the k × 1 vector whose items are the coefficients
αi, which are such that 0 ≤ αi ≤ 1 for i = 1, . . . , k and

∑k
i=1 αi = 1.

These coefficients measure the relative importance of departures from the k
models. If no information about this relative importance is available then the
KL–criterion function (2) becomes the arithmetic mean of the k efficiencies.
Another possibility could be to impose the constraint of equal efficiencies and
then to maximize this common value. But a design which is equally efficient
for all the KL–criterion functions (1) may not exist or equality may occur
where the efficiency is low. For this reason the KL–criterion function (2) with
αi = 1/k may be preferred when there is no information about the relative
importance of the k models.

Instead of using the linear combination (2) the geometric mean of efficien-
cies could be used, defining the following criterion function,

IGM
α (ξ) =

k∏
i=1

[Effi,k+1(ξ)]
αi .

The corresponding optimum design, ξ∗GM = argmaxξ I
GM
α (ξ), could be found

by maximizing
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log IGM
α (ξ)=

k∑
i=1

αi·log[Effi,k+1(ξ)]=
k∑

i=1

αi·log[Ii,k+1(ξ)]−
k∑

i=1

αi·log[Ii,k+1(ξ∗i )].

Thus, ξ∗GM actually maximizes the geometric mean of the criterion functions
Ii,k+1(ξ), i = 1, . . . , k, without regard for their possibly different magnitudes.
For this reason a linear combination of efficiencies is preferred here.

Another interesting criterion function would be

Im(ξ) = min
i=1,...,k

Effi,k+1(ξ).

It seems very appropriate for discriminating purposes since it naturally gives
equal efficiencies to the models between which it is most difficult to discrimi-
nate. Its properties will be studied in depth in a future paper.

Let ξ∗α be the generalized KL–optimum design for discriminating among
the k models, i.e.

ξ∗α = argmax
ξ

Iα(ξ).

Theoretical results are given for known values of αi in (2). In the numerical
example both the cases of constant αi and equal efficiencies will be considered.

A design for which the sets

Ωi(ξ) =
{
θ̂i : θ̂i(ξ) = arg min

θi∈Ωi

∫
X
I [fk+1(y, x, θk+1), fi(y, x, θi)] ξ(dx)

}
,

i = 1, . . . , k (3)

are singletons is called a regular design, otherwise it is called singular design.
From now on the generalized KL–optimum design ξ∗α is assumed to be regular.

Let ξ and ξ̄ be any two designs, then the directional derivatives of Ii,k+1(ξ)
at ξ in the direction ξ̄ − ξ is

∂Ii,k+1(ξ, ξ̄) = lim
β→0+

Ii,k+1[(1 − β)ξ + βξ̄] − Ii,k+1(ξ)
β

.

Let ξx be a design which puts the whole mass at point x. Assuming that ξ is
regular, then

∂Ii,k+1(ξ, ξ̄) =
∫
X
ψi,k+1(x, ξ) ξ̄(dx)

where the function

ψi,k+1(x, ξ) = I [fk+1(y, x, θk+1), fi(y, x, θ̂i)]

−
∫
X
I [fk+1(y, x, θk+1), fi(y, x, θ̂i)] ξ(dx)

is the directional derivative of Ii,k+1(ξ) at ξ in the direction ξx − ξ and θ̂i is
the unique element of Ωi(ξ) defined by (3). With this notation the directional
derivative of Iα(ξ) at ξ in the direction ξ̄ − ξ is
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∂Iα(ξ, ξ̄) =
k∑

i=1

αi
∂Ii,k+1(ξ, ξ̄)
Ii,k+1(ξ∗i )

=
∫
X
ψα(x, ξ) ξ̄(dx),

where

ψα(x, ξ) =
k∑

i=1

αi
ψi,k+1(x, ξ)
Ii,k+1(ξ∗i )

is the directional derivative of Iα(ξ) at ξ in the direction ξx − ξ.

Theorem 1. Let ξ∗α be a regular design for discriminating among k models.
Then a necessary and sufficient condition for the design ξ∗α to be a generalized
KL–optimum is ψα(x, ξ∗α) ≤ 0, x ∈ X .

The proof is a straightforward generalization of the proof of Theorem 1 in
López-Fidalgo et al (2007).

The analytical construction of generalized KL–optimal designs is intractable.
For this reason numerical procedures must be adopted in practice. In this
paper the classical steepest ascent algorithm described by Wynn (1970) and
Fedorov (1972) is used.

Remark 1. In order to prove Theorem 1, the concavity of the criterion func-
tion (2) is required. Let ξ1 and ξ2 be any two designs and 0 < λ < 1 be a
constant. From the definition of the KL-criterion function it follows that

Ii,k+1[λ ξ1 + (1 − λ) ξ2] = min
θi∈Ωi

{
λ

∫
X
I [fk+1(y, x, θk+1), fi(y, x, θi)] ξ1(dx)

+ (1 − λ)
∫
X
I [fk+1(y, x, θk+1), fi(y, x, θi)] ξ2(dx)

}
≥ λ Ii,k+1(ξ1) + (1 − λ) Ii,k+1(ξ2),

where the last inequality follows immediately by replacing each term∫
X
I [fk+1(y, x, θk+1), fi(y, x, θi)] ξj(dx), j = 1, 2

with its minimum Ii,k+1(ξj), j = 1, 2. Criterion function (2) is a linear com-
bination of KL-criterion functions thus, it is also concave.

3 An example

In this section a classical example given by Atkinson and Cox (1974) in the
context of linear regression models is generalized in order to apply the above
theoretical results. More specifically, Atkinson and Cox (1974) consider the
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following rival models for the expected response: η1 = β1x, η2 = β0 + β1x,
η3 = β1x + β2x

2 and the combined model η4 = β0 + β1x + β2x
2.

In this paper, the experimental conditions are assumed to vary in the
interval [0, 1] and logistic regression models are considered instead of linear
regression models. In other words, y is a binary response variable such that

P (y = 1, x, θi) = F (ηi) =
eηi

1 + eηi
.

For the parameters of the combined model the following nominal values have
been used, β0 = β1 = β2 = 1.

For this problem the criterion function (2) becomes

Iα(ξ) = α1
I1,4(ξ)
0.1098

+ α2
I2,4(ξ)
0.0026

+ (1 − α1 − α2)
I3,4(ξ)
0.1102

.

Generalized KL–optimal designs for different values of the coefficients αi are
listed in Table 1. The efficiencies of each design for detecting departures from
the i-th model are given in the last three columns.

Table 1. Generalized KL–optimal designs and efficiencies

α1 α2 Generalized KL–optimal design Eff1,4(ξ
∗
α) Eff2,4(ξ

∗
α) Eff3,4(ξ

∗
α)

1 0

�
0 0.5 1

0.9993 0.0003 0.0003

�
0.99934 0.00040 0.99933

0 1

�
0 0.4160 1

0.2201 0.4655 0.3144

�
0.23853 1 0.22009

0 0

�
0 0.5 1

0.9993 0.0003 0.0003

�
0.99934 0.00040 0.99933

1/3 1/3

�
0 0.4 1

0.9360 0.0400 0.0240

�
0.93835 0.10710 0.93662

0.3 0.4

�
0 0.368 1

0.6162 0.2391 0.1446

�
0.63075 0.62131 0.61665

The first three rows of Table 1 list the generalized KL–optimal designs
for discriminating between each one of the three competing models and the
combined model. Thus these generalized KL-optimal designs in reality are
KL-optimal designs. For both the first and the third models the KL–optimal
design, ξ∗i (i = 1, 3), is the singular design with measure concentrated at the
point zero. Let us denote this singular design by ξ0, then ξ∗i = ξ0 with i = 1, 3.
Since, with a singular design, no unique parameter estimation is possible, a
regularization procedure is used; see for instance Fedorov and Hackl (1997,
§3.2). In more detail, instead of using the KL–optimality criterion (1), the
following criterion function
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Iγ
i,k+1(ξ) = Ii,k+1[(1 − γ) ξ + γ ξ̃]

is used, where ξ̃ is a regular design and 0 < γ < 1. Let ξ∗iγ be the optimal
design for Iγ

i,k+1(ξ). Then, from the concavity of the KL-criterion function
(1),

0 ≤ Ii,k+1(ξ∗i ) − Ii,k+1[(1 − γ) ξ∗iγ + γ ξ̃] ≤ γ [Ii,k+1(ξ∗i ) − Ii,k+1(ξ̃)]. (4)

From inequality (4) it follows that ξ∗in = (1 − γ) ξ∗iγ + γ ξ̃ is a “nearly” KL-
optimal design and in particular the smaller γ the better this design.

For both the first and the third models, ξ∗iγ = ξ∗i = ξ0. Thus, using the
same regular design

ξ̃ =
{

0 0.5 1
1/3 1/3 1/3

}
and γ = 0.001, the regularization procedure leads to the following nearly
KL–optimal design,

ξ∗in =
{

0 0.5 1
0.9993 0.0003 0.0003

}
, i = 1, 3.

This nearly KL-optimal design puts almost the whole mass at zero since both
models do not have intercepts while the combined model has. Thus, zero
is the point where there is the best discrimination. The other two support
points make unique estimation of the parameters possible, whichever the cho-
sen model is.

In the forth row of Table 1 there is the optimal design corresponding to
constant weights αi = 1/3, i = 1, 2, 3. In this example the generalized KL–
optimal design corresponding to the arithmetic mean of the efficiencies is
very efficient for detecting departures from the first and the third models but
absolutely inefficient for detecting departures from the second model. On the
other hand, an almost equally efficient design for all the KL–optimal criterion
functions is given in the fifth row and the common efficiency is about 60%.
Let this almost equally efficient optimal design be denoted by ξ∗(0.3,0.4).

Table 2 lists the KL-optimal designs for discriminating between pairs of
models. The last column of Table 2 provides the efficiency of ξ∗(0.3,0.4) with
respect to these KL-optimal designs.

Comparing ξ∗(0.3,0.4) with the optimal designs given in Table 2, it seems
that the support point zero essentially allows us to discriminate between the
first (and the third) model and the second one, while the other two support
points allow us to discriminate between the first and the third models, admit-
tedly with a low efficiency in the last case.

Acknowledgement. The author is very grateful to both the anonymous referees for

the useful comments and suggestions which have improved an earlier version of this

paper.
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Table 2. KL–optimal designs for discriminating between two models

Comparisons KL–optimal design Eff
�
ξ∗(0.3,0.4)

�
η1 versus η2 ξ0 0.6695

η3 versus η2 ξ0 0.6166

η2 versus η3

�
0 0.4538 1

0.2396 0.4667 0.2937

�
0.6357

η1 versus η3

�
0.3683 1
0.6599 0.3401

�
0.3815
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López-Fidalgo J, Tommasi C, Trandafir P (2005) Optimal designs for discriminat-
ing between heteroscedastic models. In: Proceedings of the 5th St.Petersburg
Workshop on Simulation, NII Chemestry Saint Petersburg University Publish-
ers, Saint Petersburg, pp 429–436
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Summary. Three-level factorial designs can be used to perform factor screening
and subsequently response surface exploration on its projections in a single stage
experiment. Here we select optimal designs for this approach from 18-run and 27-run
orthogonal designs. Our choices are based on two types of design criteria. Besides
commonly used model estimation criteria, we also consider model discrimination
criteria.

Key words: model estimation, model discrimination, orthogonal arrays, geometric
isomorphism, average optimal scale

1 Background

Traditionally, response surface methodology takes two stages of experiments, a
factor screening experiment to screen out unimportant factors, usually using
an orthogonal two-level factorial design, followed by an experiment to fit a
second order model on a smaller set of factors, with the central composite
design as a common choice. Cheng and Wu (2001) proposed a new approach
for response surface studies with a single-stage three-level factorial experiment
that facilitates the two-stage data analysis. The first stage of the data analysis
uses established methods for factor screening. At the second stage, a second-
order model

y = β0 +
k∑

i=1

βixi +
k∑

i=1

βiix
2
i +

∑
1≤i<j≤k

βijxixj + ε (1)
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is fitted on a projection of the three-level factorial design.

Projection Properties and Geometric Isomorphism

The key of this new approach is the projection properties of three-level factor-
ial designs. As pointed out by Box and Wilson (1951), in general, regular 3k−p

type of factorial designs do not facilitate the estimation of second-order models
on their projections well. However, Cheng and Wu (2001) showed that non-
regular three-level factorial designs usually have good projection properties
to facilitate the estimation of second-order models. They also noted that level
permutations of an orthogonal array may result in changes of estimability and
estimation efficiencies of the second-order model on its projections. This ob-
servation led to the work by Cheng and Ye (2004), which defined the geometric
isomorphism of three-level factorial designs. They argued that two geometri-
cally isomorphic designs have the same geometric structures, and therefore
share the same design properties. They also developed an indicator function
representation of factorial designs and showed that the coefficients of the in-
dicator functions of two geometrically non-isomorphic designs have different
patterns. From the indicator functions, they derived a measure called β-Word
Length Pattern(β-WLP) as a simple way of classifying factorial designs. Two
designs with different β-WLPs must be geometrically non-isomorphic, but the
reverse is not necessarily true.

Data Analysis for Factor Screening

At the first stage of a data analysis of a response surface study, one can
simply perform a main-effect analysis for factor screening. However, ignoring
interaction effects may lead to the false exclusion of some important factors. A
more comprehensive Bayesian approach was given by Box and Meyer (1993).
Their main idea is to evaluate the posterior probability of 2p models, each of
which corresponds to a subset of the p candidate factors and includes all main
effects and interaction effects of these factors. That is,

p(Mi|y) =
p(Mi)f(y|Mi)∑

Mj∈M
p(Mj)f(y|Mj)

(2)

where f(y|Mi) is the likelihood of observed response y under model Mi and
M is the collection of 2p models. The importance of the factors are evaluated
by their marginal posterior probability, which is the sum of posterior proba-
bilities of all models with thejth factor being active. This idea was originally
introduced to analyze two-level designs, but can be easily modified to analyze
three-level designs as proposed by Ye et al (2006). They use a model space
of
(

p
k

)
models, each of which is a second-order model of k factors. They also

suggest that k should be chosen so that models are estimable.
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Selection of optimal three-level designs

Selection of the optimal three-level factorial designs for response surface stud-
ies has been discussed by several papers. Cheng and Wu (2001) considered
the estimability of the second-order model on all projections of a design and
used average D-efficiency as the criterion. They studied regular 27-run orthog-
onal designs, projections of a non-regular OA(27, 313), an OA(18, 37) and an
OA(36, 312). Xu et al (2004) slightly revised the selection procedure and con-
sidered projections of three combinatorially non-isomorphic OA(18, 37)s and
three combinatorially non-isomorphic OA(27, 313)s. They first screened out
poor OAs using the generalized minimum aberration criterion, proposed by
Xu and Wu (2001), and a new projection aberration criterion, then considered
designs obtained by level permutations from the remaining OAs using the
same projection efficiency criterion used by Cheng and Wu (2001). A similar
study by Tsai et al (2000) used average A-efficiency of second-order models
to select optimal 18-run orthogonal designs. They also used a different strat-
egy to generate the candidate designs. Instead of taking projections of known
OAs, they generated designs by augmenting columns to non-isomorphic de-
signs with fewer factors. Moreover, Cheng and Ye (2004) used β-WLP to rank
the designs that are projections of an OA(18,2137), including the mixed-level
designs. The work we present here differs from previous contributions mainly
in that we consider the model discrimination properties, in addition to the
projection estimability and estimation efficiency.

The remainder of the paper is organized as following. Section 2 presents
the criteria used to compare the designs. The procedures for selecting opti-
mal designs and the results are presented in Section 3. Section 4 gives some
concluding remarks.

2 Design criteria

We consider two sets of design criteria, model estimation criteria and model
discrimination criteria. For each 18-run design, we consider all second-order
models of 2, 3 and 4 factors. For each 27-run design, we consider all second-
order models of 2, 3, 4 and 5 factors. For models of a given number of factors k,
we consider the following two model estimation criteria, Estimation Capacity
(EC) and Information Capacity (IC). The first is the proportion of estimable
models, and the second is the average D-efficiency of all models. That is,∑

i |XT
i Xi|/

(
p
k

)
, where Xi is the model matrix of the second-order model of

the ith subset of k factors. Information Capacity was proposed by Sun (1993),
and was then modified by Li and Nachtsheim (2000) to construct efficient two-
level designs. The definition of IC given here is the same as the one used by
the latter paper. We should note here that for mixed-level 18-run designs, we
average the models with and without the two-level factor separately as the
quantities

∑
i |XT

i Xi| of the two groups are not directly comparable as their
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model sizes differ. The second-order model with a two-level factor has one less
parameter.

Although model discrimination, as a property, has been largely ignored in
the recent literature of optimal designs for factor screening and model selec-
tion, this topic received considerable attention in 1960s and 1970s. See Hill
(1978) for a comprehensive review on these early works. Two very recent pa-
pers, Bingham and Chipman (2007) and Jones et al (2007), revisited this
topic when investigating optimal factorial designs for model selection. Both
focused on the prediction difference between two models. The former devel-
oped a Bayesian criterion and the latter proposed six non-Bayesian criteria.
Here we use two criteria proposed in the latter, which are Average Expected
Prediction Differences

AEPD =
1(
n
2

) ∑
1≤i<j≤n

E(‖ŷi − ŷj‖|‖y = 1‖) (3)

and Minimum Maximum Prediction Differences

MMPD = min
1≤i<j≤n

max
‖y=1‖

‖ŷi − ŷj‖ (4)

where n is the number of candidate models, y is the response vector, and ŷi

is the fitted value of the ith model. The expectation in (3) is over y uniformly
distributed on a unit ball. Both criteria can be very efficiently computed com-
pared to the Bayesian criterion proposed by Bingham and Chipman (2007).
Details about these two criteria can be found in Jones et al (2007). For each
design, we evaluate these criteria for each number of factors k separately, while
n equals the number of estimable k-factor second-order models.

Since different design criteria do not always agree with each other, here
we propose an overall measure of design optimality, Average Optimal Scale
(AOS), defined as

AOS = (
q∏

i=1

Ci/Ci
max)

1/q, (5)

where q is the total number of criteria to be considered, and Ci
max is the

maximum value of the ith criterion over all candidate designs. To select opti-
mal designs for factor screening, we use AOS which combines the IC and the
AEPD criteria values of different model sizes.

3 Optimal 18-run and 27-run orthogonal designs

3.1 Select 18-run orthogonal arrays

A complete catalog of geometrically non-isomorphic 18-run orthogonal designs
is constructed by Tsai (2005). Therefore, we only need to examine all designs
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in this catalog. The number of designs and the number of designs with full
EC (i.e., EC = 100%) are listed in Table 1. Note that there is no OA(18,37)
and no OA(18,2137) design with full estimation capacity. Therefore, we do not
recommend them for factor screening in response surface studies. If a seventh
three-level factor has to be included in the study, one might want to consider
non-orthogonal designs.

Table 1. Number of OA18s with full estimation capacity

OA(18, 3s) OA(18, 213s)
s 3 4 5 6 7 3 4 5 6 7

Distinct Designs 13 133 332 478 284 119 1836 1332 1617 762
EC4 = 1 NA 98 132 67 0 109 979 369 67 0
EC3 = 1 11 122 276 224 0 116 1253 1008 649 0

Table 2. Some optimal 18-run orthogonal designs

33 34 35 36 2133 2134 2135 2136

v1 v2 v3 v3 v4 v3 v4 v5 v3 v4 v5 v6 v0 v3 v0 v3 v4 v0 v3 v4 v5 v0 v3 v4 v5 v6
0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 0 0 0 1 0 0 0 0
0 0 1 1 1 1 1 1 1 1 2 2 -1 1 -1 1 1 -1 0 1 2 -1 0 1 2 2
0 1 1 0 2 0 1 2 0 2 1 2 -1 0 -1 0 2 -1 1 0 1 -1 1 0 1 1
0 1 2 2 2 2 2 2 2 0 2 1 1 2 1 2 2 -1 2 2 2 1 2 2 0 2
0 2 0 1 1 1 2 0 1 2 0 1 1 1 1 1 1 1 1 2 0 -1 1 2 2 0
0 2 2 2 0 2 0 1 2 1 1 0 -1 2 -1 2 0 1 2 1 1 1 2 1 1 1
1 0 2 1 2 0 2 2 0 2 2 1 -1 0 1 1 2 1 1 2 1 1 1 1 0 1
1 0 2 2 0 2 1 1 2 0 1 2 1 2 1 2 0 1 2 0 2 -1 2 2 2 1
1 1 0 0 1 1 2 1 1 1 1 1 1 1 1 0 1 -1 0 2 0 -1 0 1 1 0
1 1 0 2 1 2 0 0 2 2 0 0 -1 2 -1 2 1 1 2 1 0 1 1 0 2 2
1 2 1 0 0 0 1 0 0 1 0 2 1 0 -1 0 0 -1 0 1 1 1 0 2 1 2
1 2 1 1 2 1 0 2 1 0 2 0 -1 1 -1 1 2 -1 1 0 2 -1 2 0 0 0
2 0 0 0 1 1 0 2 1 2 1 0 1 1 -1 0 1 -1 1 1 0 1 1 2 1 0
2 0 1 2 2 2 2 0 2 1 0 1 -1 2 -1 2 2 -1 2 2 1 -1 2 0 1 2
2 1 1 1 0 0 0 1 0 1 2 0 1 0 1 1 0 1 0 0 1 -1 0 2 0 1
2 1 2 1 0 1 1 0 1 0 0 2 -1 1 -1 1 0 1 1 1 2 1 2 1 2 0
2 2 0 0 2 0 2 1 0 0 1 1 -1 0 1 0 2 1 0 2 2 1 0 0 2 1
2 2 2 2 1 2 1 2 2 2 2 2 1 2 1 2 1 -1 2 0 0 -1 1 1 0 2

Design criteria IC, AEPD and MMPD are evaluated only on those designs
with full estimation capacity. The designs with the best AOS values are listed
in Table 2 and their properties are given in Table 3. Note in Table 3 the IC and
MMPD values for models having two factors are not given because they are
both equal to 1 for all candidate designs. The IC-criterion values of the mixed-
level designs are listed separately for models with and without the two-level
factor (by the first and the second numbers in the parenthesis respectively).
For example, the best OA(18,2133) design gives the average D-efficiency of
three 3-factor models with 1 two-level and 2 three-level factors at the value
1 and the D-efficiency of the 3-factor models with all 3 three-level factors at
the value 0.63. In Table 2, columns v1 and v2 are shared by all listed designs,
and hence are listed only once.
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Table 3. Properties of optimal OA(18, 3s) designs

IC AEPD MMPD
3f 4f 2f 3f 4f 3f 4f

AOS

OA(18, 33) 0.82 NA 0.32 NA NA NA NA 1.000
OA(18, 34) 0.66 0.13 0.35 0.38 NA 1 NA 0.964
OA(18, 35) .63 0.058 0.36 0.49 0.22 .99 1 0.945
OA(18, 36) .63 0.058 0.38 0.43 0.26 .99 1 0.990

OA(18, 2133) (1,.63) 0.44 0.33 0.38 NA 1 NA 0.942
OA(18, 2134) (.78,.66) (.16,.13) 0.35 0.41 0.30 0.95 0.98 0.851
OA(18, 2135) (.68,.60) (.087,.054) 0.36 0.42 0.29 .88 .86 0.884
OA(18, 2136) (.63,.60) (.079,.044) 0.37 0.44 0.29 .82 .76 0.894

3.2 Select optimal 27-run orthogonal designs

To find the optimal OA27 designs, we examine the projections of three
OA(27, 313)s considered by Xu et al (2004), and listed in Table 4. Design III is
the regular design. For each of the three OA(27, 313)s, we first consider all its
projections and apply all possible level permutations to each projection, and
obtain a set of designs with distinct β-WLP. We then evaluate design prop-
erties of these designs, which are geometrically non-isomorphic. Note that
we may miss many geometrically non-isomorphic designs since some of them
share the same β-WLPs.

Table 4. Non-regular OA(27, 313) chosen from Xu et al (2004)

I II III (Regular)
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 2 0 1 1 2 0 1 1 2 0 0 1 1 2 2 2 2 2 2 2 1 0 0 0 0 1 0 1 1 1 2 2 2 0 1 2
0 2 2 1 0 2 2 1 0 2 2 1 0 0 2 2 2 1 2 1 0 0 0 1 2 1 0 0 2 0 2 2 2 1 1 1 0 2 1
1 0 1 1 1 0 1 1 1 0 1 1 0 0 0 1 1 2 1 0 1 1 0 1 1 1 0 1 0 1 0 1 1 0 1 1 2 2 2
1 1 2 0 1 1 2 0 1 1 2 0 0 0 1 2 2 0 1 1 1 1 1 2 0 2 0 1 1 1 1 2 2 2 0 0 2 0 1
1 2 0 2 1 2 0 2 1 2 0 2 0 0 2 0 0 2 2 0 2 1 1 0 2 2 0 1 2 1 2 0 0 1 2 2 2 1 0
2 0 2 2 2 0 2 2 2 0 2 2 0 0 0 0 1 0 0 1 2 2 2 2 2 1 0 2 0 2 0 2 2 0 2 2 1 1 1
2 1 0 1 2 1 0 1 2 1 0 1 0 0 1 2 1 1 0 0 0 2 1 0 1 0 0 2 1 2 1 0 0 2 1 1 1 2 0
2 2 1 0 2 2 1 0 2 2 1 0 0 0 2 1 0 1 0 2 1 0 2 2 1 2 0 2 2 2 2 1 1 1 0 0 1 0 2
0 0 2 1 1 1 0 2 2 2 1 0 1 1 0 1 2 1 1 0 2 0 1 2 2 0 1 0 0 1 1 0 1 1 0 1 1 1 1
0 1 1 0 1 2 2 1 2 0 0 2 1 1 1 0 0 1 2 0 1 2 0 2 0 1 1 0 1 1 2 1 2 0 2 0 1 2 0
0 2 0 2 1 0 1 0 2 1 2 1 1 1 2 1 2 0 0 0 0 1 2 0 0 1 1 0 2 1 0 2 0 2 1 2 1 0 2
1 0 1 2 2 1 2 0 0 2 0 1 1 1 0 2 2 2 0 2 1 2 0 0 2 2 1 1 0 2 1 1 2 1 1 2 0 0 0
1 1 0 1 2 2 1 2 0 0 2 0 1 1 1 0 1 1 1 2 0 1 2 1 2 2 1 1 1 2 2 2 0 0 0 1 0 1 2
1 2 2 0 2 0 0 1 0 1 1 2 1 1 2 0 1 2 0 1 1 0 1 1 0 0 1 1 2 2 0 0 1 2 2 0 0 2 1
2 0 0 0 0 1 1 1 1 2 2 2 1 1 0 1 0 0 2 1 0 2 1 1 1 2 1 2 0 0 1 2 0 1 2 0 2 2 2
2 1 2 2 0 2 0 0 1 0 1 1 1 1 1 2 0 2 1 1 2 0 2 0 1 1 1 2 1 0 2 0 1 0 1 2 2 0 1
2 2 1 1 0 0 2 2 1 1 0 0 1 1 2 2 1 0 2 2 2 1 0 2 1 0 1 2 2 0 0 1 2 2 0 1 2 1 0
0 0 0 0 2 2 2 2 1 1 1 1 2 2 0 0 2 1 2 1 1 1 2 0 1 0 2 0 0 2 2 0 2 2 0 2 2 2 2
0 1 1 2 2 0 0 1 1 2 2 0 2 2 1 1 0 2 0 1 0 1 0 2 2 0 2 0 1 2 0 1 0 1 2 1 2 0 1
0 2 2 1 2 1 1 0 1 0 0 2 2 2 2 2 0 0 1 0 1 2 2 1 2 0 2 0 2 2 1 2 1 0 1 0 2 1 0
1 0 1 1 0 2 0 0 2 1 2 2 2 2 0 2 1 2 2 0 0 0 2 2 0 2 2 1 0 0 2 1 0 2 1 0 1 1 1
1 1 2 0 0 0 1 2 2 2 0 1 2 2 1 1 1 0 2 2 1 0 1 0 2 1 2 1 1 0 0 2 1 1 0 2 1 2 0
1 2 0 2 0 1 2 1 2 0 1 0 2 2 2 0 2 2 1 2 0 2 1 2 1 1 2 1 2 0 1 0 2 0 2 1 1 0 2
2 0 2 2 1 2 1 1 0 1 0 0 2 2 0 2 0 1 0 2 2 1 1 1 0 1 2 2 0 1 2 2 1 2 2 1 0 0 0
2 1 0 1 1 0 2 0 0 2 1 2 2 2 1 0 2 0 0 0 2 0 0 1 1 2 2 2 1 1 0 0 2 1 1 0 0 1 2
2 2 1 0 1 1 0 2 0 0 2 1 2 2 2 1 1 1 1 1 2 2 0 0 0 2 2 2 2 1 1 1 0 0 0 2 0 2 1

Table 5 lists the number of designs with distinct β-WLP and the number
of designs with full EC. Note that the regular designs have EC=0 when the
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number of factors exceeds four, explained by Cheng and Wu (2001) as curse
of three-letter words. Since evaluating AEPD and MMPD is much more time
consuming than evaluating estimation efficiency, we only evaluate the model
discrimination criteria of OA(27,3p)s with top 10% IC-criterion values when
p ≥ 8. The best designs and their properties are listed in Table 6. The designs
are presented as projections of OA(27,313)s with level permutations applied
to some of its factors. The superscripts 1, 2, and 3 in Table 6 correspond to
no permutation, (0 1 2) → (1 2 0), and (0 1 2) → (2 0 1), respectively.

Table 5. Number of designs with different β-WLP and number of geometrically
non-isomorphic designs with full estimation capacity of 5-factor second order models

OA27 I OA27 II OA27 III Overall

3 Factor 12/14 11/11 1/3 17/19

4 Factor 102/106 310/310 2/6 373/377

5 Factor 367/602 3858/3894 0/9 4206/4475

6 Factor 974/2884 15695/16065 0/21 16669/18953

7 Factor 1262/9659 46028/48181 0/41 47290/57852

8 Factor 437/23083 92972/108265 0/59 93409/131407

9 Factor 0/39809 135401/180442 0/91 135401/220343

10 Factor 0/47910 132456/216548 0/102 132456/264560

11 Factor 0/37642 80740/176984 0/73 80740/214699

12 Factor 0/17645 26922/88275 0/50 26922/105970

13 Factor 0/3442 3520/19829 0/25 3520/23296

Table 6. Optimal orthogonal 27-run designs

IC AEPD MMPD
factors Design

3f 4f 5f 3f 4f 5f 3f 4f 5f
AOS

4 II(12227381) 1 .82 NA .29 NA NA 1 NA NA 0.995

5 II(1321324193) .83 .47 .065 .33 .31 NA .99 .99 NA 0.853

6 II(1321325293112) .82 .34 .021 .36 .38 .28 .97 .97 .91 0.804

7 II(112131427282112) .77 .25 .0098 .38 .40 .30 .91 .94 .90 0.846

8 II(1121324353728291) .75 .23 .0063 .39 .42 .30 .86 .86 .89 0.840

9 II(1122324251617282121) .74 .22 .0048 .40 .43 .31 .91 .88 0.75 0.914

10 II(1122314152627181111133) .75 .20 .0034 .41 .44 .32 .92 .81 .74 0.988

11 II(112233415262718391103122) .74 .19 .0032 .42 .45 .33 .92 .80 .73 0.990

12 II(112131415262718192103112123) .74 .19 .0030 .43 .46 .33 .92 .80 .71 0.977

13 II(112131415162728391102111122132) .73 .19 .0029 .43 .47 .34 .92 .80 .73 1.000
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4 Concluding remarks

We are the first to consider both model estimation and model discrimination
criteria for selecting optimal three-level factorial designs for factor screening
and response surface studies. Although the discussion in this paper is based
on the two-stage analysis strategy, the consideration of both types of criteria
applies to any perceivable methods for model selection and factor screening.
For 18-run designs, the recently constructed catalog allows us to examine all
possible orthogonal designs. Since none of the OA(18,37) designs have full EC,
non-orthogonal designs might be considered to accommodate 7 three-level fac-
tors. For 27-run designs, we examined projections of three OA(27,313)s, which
only represent a small fraction of a total of 68 combinatoric non-isomorphic
OA(27,313)s, as given by Lam and Tonchev (1996). More elaborative compu-
tation can be used to select better OA27 designs.
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Edificio CITE-III
Cra. Sacramento s/n
La Cañada de San Urbano
04120 Almeŕıa, Spain
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