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Preface

In 1928 the austrian author Egon Friedell wrote in the introduction to his opus
magnum Kulturgeschichte der Neuzeit [92]:

Alle Dinge haben ihre Philosophie, ja noch mehr: alle Dinge sind Phi-
losophie. Alle Menschen, Gegenstände und Ereignisse sind Verkörpe-
rungen eines bestimmten Naturgedankens, einer eigentümlichen Weltab-
sicht. Der menschliche Geist hat nach der Idee zu forschen, die in jedem
Faktum verborgen liegt, nach dem Gedanken, dessen bloße Form es ist.
Die Dinge pflegen oft erst spät, ihren wahren Sinn zu offenbaren.1

And, a few lines after:

Daß die Dinge geschehen, ist nichts. Daß sie gewusst werden, ist alles.2

Although spoken in the context of cultural history these words may also be applied
towards the interpretation of mathematical thought. Friedell seems to say that
nothing is just a ‘brute fact’ but the form of an idea which is hidden and has to
be discovered in order to be shared by human beings. What really matters is not
the mere fact (which in mathematics would be: the truth of a theorem) but is the
form of our knowledge of it, the way (how) we know things. This means that in
order to obtain substantial understanding (‘revealing its true meaning’) it is not
enough to just state and prove theorems.

This conviction is at the heart of my efforts in writing this book. It came out
of my attempt to deepen (or to establish in the first place) my own understanding
of its subject. But I hope of course that it will also prove useful to others, and
eventually will have its share in the advance of our understanding in general of
the mathematical world.

1All things have their philosophy, even more: all things actually are philosophy. All men,
objects, and events embody a certain thought of nature, a proper intention of the world. The
human mind has to inquire the idea which is hidden in each fact, the thought its mere form it
is. Things tend to reveal their true meaning only after a long time. (Translation by the author)

2That things happen, is nothing. That they are known, is everything. (Translation by the
author)
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Topic of the book

The main theme, as the title indicates, is functional calculus. Shortly phrased it
is about ‘inserting operators into functions’, in order to render meaningful such
expressions as

Aα, e−tA, log A,

where A is an (in general unbounded) operator on a Banach space. The basic
objective is quite old, and in fact the Fourier transform provides an early example
of a method to define f(A), where A = ∆ is the Laplacian, X = L2(R) and f is
an arbitrary measurable function on R. A straightforward generalisation involving
self-adjoint (or normal) operators on Hilbert spaces is provided by the Spectral
Theorem, but to leave the Hilbert space setting requires a different approach.

Suppose that a class of functions on some set Ω has a reproducing kernel,
i.e.,

f(z) =
∫

Ω

f(w)K(z, w)µ(dw) (z ∈ Ω)

for some measure µ, and — for whatever reason — one already ‘knows’ what
operator the expression K(A, w) should yield; then one may try to define

f(A) :=
∫

Ω

f(w)K(A, w)µ(dw).

The simplest reproducing kernel is given by the Cauchy integral formula, so that
K(z, w) = (w − z)−1, and K(A, w) = R(w, A) is just the resolvent of A. This
leads to the ‘ansatz’

f(A) =
1

2πi

∫
∂Ω

f(w)R(w, A) dw,

an idea which goes back already to Riesz and Dunford, with a more recent
extension towards functions which are singular at some points of the boundary
of the spectrum. The latter extension is indeed needed, e.g. to treat fractional
powers Aα, and is one of the reasons why functional calculus methods nowadays
can be found in very different contexts, from abstract operator theory to evolution
equations and numerical analysis of partial differential equations. We invite the
reader to have a look at Chapter 9 in order to obtain some impressions of the
possible applications of functional calculus.

Overview

The Cauchy formula encompasses a great flexibility in that its application requires
only a spectral condition on the operator A. Although we mainly treat sectorial
operators the approach itself is generic, and since we shall need to use it also for
so-called strip-type operators, it seemed reasonable to ask for a more axiomatic
treatment. This is provided in Chapter 1. Sectorial operators are introduced in
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Chapter 2 and we give a full account of the basic functional calculus theory of
these operators. As an application of this theory and as evidence for its elegance,
in Chapter 3 we treat fractional powers and holomorphic semigroups. Chapter 4
is devoted to the interplay between a sectorial operator A and its logarithm log A.
One of the main aspects in the theory, subject to extensive research during the
last two decades, is the boundedness of the H∞-calculus. Chapter 5 provides the
necessary background knowledge including perturbation theory, Chapter 6 inves-
tigates the relation to real interpolation spaces. Here we encounter the suprising
fact that an operator improves its functional calculus properties in certain inter-
polation spaces; this is due to the ‘flexible’ descriptions of these spaces in terms
of the functional calculus.

Hilbert spaces play a special role in analysis in general and in functional
calculus in particular. On the one hand, boundedness of the functional calculus
can be deduced directly from numerical range conditions. On the other hand, there
is an intimate connection with similarity problems. Both aspects are extensively
studied in Chapter 7.

Chapters 8 and 9 account for applications of the theory. We study elliptic
operators with constant coefficients and the relation of the functional calculus to
Fourier multiplier theory. Then we apply functional calculus methods to a prob-
lem from numerical analysis regarding time-discretisation schemes of parabolic
equations. Finally, we discuss the so-called maximal regularity problem and the
functional calculus approach to its solution.

To make the book as self-contained as possible, we have provided an ample ap-
pendix, often also listing the more elementary results, since we thought the reader
might be grateful for a comprehensive and nevertheless surveyable account. The
appendix consists of six parts. Appendix A deals with operators, in particular their
basic spectral theory. Our opinion is that a slight increase of generality, namely
towards multi-valued operators, renders the whole account much easier. (Multi-
valued operators will appear in the main text occasionally, but not indispensably.)
Appendix B provides basics on interpolation spaces. Two more appendices (Ap-
pendix C and D) deal with forms and operators on Hilbert spaces as well as the
Spectral Theorem. Finally, Appendix F quotes two results from complex approx-
imation theory, but giving proofs here would have gone far beyond the scope of
this book.

Instead of giving numbers to definitions I decided to incorporate the defini-
tions into the usual text body, with the defined terms printed in boldface letters.
All these definitions and some other key-words are collected in the index at the
end of the book. There one will find also a list of symbols.

Acknowledgements

This book has been accompanying me for more than three years now. Although
I am the sole author, and therefore take responsibility for all mistakes which
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Chapter 1

Axiomatics for Functional Calculi

We convey the fundamental intuition behind the concept “functional calculus” (Sec-
tion 1.1). Then we present a formalisation of certain ideas common to many functional
calculus constructions. In particular, we introduce a method of extending an elemen-
tary functional calculus to a larger algebra (Section 1.2). In Section 1.3 we introduce
the notion of a meromophic functional calculus for a closed operator A on a Banach
space and specialise the abstract results from Section 1.2. As an important example
we treat multiplication operators (Section 1.4). In Section 1.3.2 we prove an abstract
composition rule for a pair of meromorphic functional calculi.

1.1 The Concept of Functional Calculus

Consider the Banach space X := C[0, 1] of continuous functions on the unit in-
terval with values in the complex numbers C. Each function a ∈ X determines a
bounded linear operator

Ma = (g �−→ ag) : C[0, 1] −→ C[0, 1]

on X called the multiplication operator associated with a. Its spectrum σ(Ma) is
simply the range a[0, 1] of a. Given any other continuous function f : σ(Ma) −→ C

one can consider the multiplication operator Mf◦a associated with f◦a. This yields
an algebra homomorphism

Φ = (f �−→Mf◦a) : C(σ(Ma)) −→ L(X)

into the algebra of bounded linear maps on X . Since one has Φ(z) = Ma
† and

Φ((λ − z)−1) = R(λ, Ma) for λ ∈ �(Ma), and since the operator Φ(f) is simply
multiplication by f(a(z)), one says that Φ(f) is obtained by ‘inserting’ the operator
Ma into the function f and writes f(Ma) := Φ(f). Generalising this example to
the Banach space X = C0(R) and continuous functions a ∈ C(R), one realises
that boundedness of the operators is not an essential requirement.

†We simply write z := (z �−→ z) for the coordinate function on C. Hence the symbols f(z)
and f are used interchangeably.



2 Chapter 1. Axiomatics for Functional Calculi

The intuition of functional calculus now consists, roughly, in the idea that
to every closed operator A on a Banach space X there corresponds an algebra of
complex-valued functions on its spectrum in which the operator A can somehow be
‘inserted’ in a reasonable way. Here ‘reasonable’ means at least that f(A) should
have the expected meaning if one expects something, e.g., if λ ∈ �(A) then one
expects (λ−z)−1(A) = R(λ, A) or if A generates a semigroup T then etz(A) = T (t).
(This is just a minimal requirement. There may be other reasonable criteria.) In
summary we think of a mapping f �−→ f(A) which we (informally) call a functional
calculus for A. Unfortunately, up to now there is no overall formalisation of this
idea. The best thing achieved so far is a case by case construction.

We return to some examples. If one knows that the operator A is ‘essentially’
(i.e., is similar to) a multiplication operator, then it is straightforward to construct
a functional calculus. By one version of the spectral theorem, this is the case if
A is a normal operator on a Hilbert space (cf. Appendix D). As is well known,
the Fourier transform on L2(R) is an instance of this, and hence it provides one
of the earliest examples of a non-trivial functional calculus. (The operator A in
that case is just id/dt.) In general, there is no canonical ‘diagonalisation’ of the
normal operator A, and so the resulting functional calculus depends — at least
a priori — on the chosen unitary equivalence. Hence an additional argument is
needed to ensure independence of the construction (cf. Theorem D.6.1).

Having this in mind as well as for the sake of generality, one looks for intrinsic
definitions. It was the idea of Riesz and Dunford to base the construction of
f(A) on a Cauchy-type integral

f(A) =
1

2πi

∫
Γ

f(z)R(z, A) dz. (1.1)

The idea behind this is readily sketched. Let us assume that we are given a bounded
operator A and an open superset U of the spectrum K := σ(A). The so-called
‘homology version’ of the Cauchy Integral Formula says the following. One can
choose a generalised contour (a ‘cycle’) Γ with the following properties:

1) Γ∗ ⊂ U \K;

2) each point of C \ Γ∗ has index either 0 or 1 with respect to Γ;

3) each point of K has index 1 with respect to Γ.

(The set Γ∗ is the trace of the cycle.) With respect to such a contour Γ, one has

f(a) =
1

2πi

∫
Γ

f(z)
1

z − a
dz (1.2)

for each a ∈ K and for every holomorphic function defined on U . (See [48,
Proposition VIII.1.1] for a proof.) Replacing a by A on both sides in the formula
(1.2) and insisting that ‘1/(z −A)’ should be the same as R(z, A), we obtain (1.1).

The so-defined functional calculus is called the Dunford–Riesz calculus and
it turns out that it is only a special case of a general construction in Banach
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algebras, cf. [79, VII.3 and VII.11], [49, Chapter VII, §4]. Actually it yields an
algebra homomorphism

Φ := (f �−→ f(A)) : A −→ L(X),

where A is the algebra of germs of holomorphic functions on σ(A).

Let us continue with a second example. Consider the Banach space X :=
C[0, 1] again, and thereon the Volterra operator V ∈ L(X) defined by

(V f)(t) :=
∫ t

0

f(s) ds (t ∈ [0, 1]).

As is well known, V is a compact, positive contraction with σ(A) = {0}. Given
a holomorphic function f defined in a neighbourhood of 0, simply choose ε > 0
small enough and define

f(V ) :=
1

2πi

∫
∂Bε(0)

f(z)R(z, V ) dz.

Since ‖V n‖ = 1/n! for all n ∈ N, one can equally replace z by V in the power-series
expansion of f .

Now note that V is injective but not invertible, and that z−1 is not holo-
morphic at 0. Nevertheless it seems reasonable to write V −1 = (z−1)(V ). This
suggests an extension of the functional calculus to a larger algebra (of germs of
holomorphic functions) which contains the function z−1. In the concrete example
of the Volterra operator this extension is easy. (Consider functions holomorphic in
a pointed neighbourhood of 0 and without essential singularity at 0. This means
that the principal part of the Laurent series is a polynomial in z−1. Now insert
V as in Appendix A.7 into the principal part and as above into the remainder.
Finally add the results.)

In more general situations one cannot go back to power or Laurent series,
but has to make use of an abstract extension procedure. This is the topic of the
next section.

1.2 An Abstract Framework

In this section we describe abstractly how to extend a certain basic functional
calculus to a wider class of functions. It is a little ‘Bourbakistic’ in spirit, and the
reader who is not so fond of axiomatic treatment may skip it on first reading and
come back to it when needed.

To have a model in mind, assume that we are given an operator A on a
Banach space X and a basic class of functions E on the spectrum of A. Assume
further that we have a ‘method’

Φ = (f �−→ f(A)) : E −→ L(X)
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of ‘inserting’ the operator into functions from E , i.e., E is an algebra and Φ is a
homomorphism of algebras. Moreover, the mapping Φ should have something to
do with the operator A and so we assume for the moment that for some λ ∈ �(A)
the function (λ − z)−1 is contained in E and Φ((λ − z)−1) = R(λ, A). Then one
can think of defining

f(A) := (λ−A)nΦ[f(z)(λ− z)−n] = Φ[(λ− z)−n]−1Φ[f(z)(λ− z)−n]

for each function f such that f(z)(λ − z)−n is contained in E for some n ∈ N.
This would clearly yield a closed operator and one only has to make sure that the
definition is independent of the chosen n ∈ N. Hence one has defined ‘f(A)’ for f
taken from a larger algebra.

To proceed even further assume now that e is any function from E such that
e(A) is injective, and f is a function with ef ∈ E . Then, as above where we had
e = (λ− z)−n, one can define

f(A) = e(A)−1(ef)(A) = Φ(e)−1Φ(ef).

Of course one has to make sure that the use of different e’s does not lead to
different f(A)’s. This will shortly be proved, after we have cast all this imprecise
reasoning into an abstract, axiomatic framework.

1.2.1 The Extension Procedure

The starting point of what we call the extension procedure is a Banach space X ,
a commutative algebra M with 1 together with a subalgebra E ⊂ M (with 1 /∈ E
in general) and a homomorphism Φ : (e −→ Φ(e)) : E −→ L(X). Let us call the
triple (E ,M, Φ) an abstract functional calculus (in short: afc) over X . Sometimes
we denote this object just by the pair (E ,M) and suppress explicit reference to
the homomorphism Φ : E −→ L(X). We say that the afc is non-degenerate or
proper if the set

Reg(E) := {e ∈ E | Φ(e) is injective}
is not empty. Each member of Reg(E) is called a regulariser. Take f ∈ M. If
there is e ∈ Reg(E) such that also ef ∈ E , we call f regularisable by E and e a
regulariser for f . Note that 1 is regularisable if and only if the afc is proper. In
this case

Mr := {f ∈ M | f is regularisable}
clearly is a subalgebra of M which contains E .

Let (E ,M, Φ) be a proper afc. For f ∈ Mr we define

Φ(f) := Φ(e)−1Φ(ef), (1.3)

where e ∈ Reg(E) is a regulariser for f . We often write f• instead of Φ(f). (So
(1.3) reads f• := e−1

• (ef)• under this convention.) The next lemma shows that
the definition (1.3) is independent of the chosen regulariser e.



1.2. An Abstract Framework 5

Lemma 1.2.1. Let (E ,M, Φ) be a proper afc. Then by (1.3) a closed operator on
X is well defined and the so-defined mapping

Φ = (f �−→ Φ(f)) :Mr −→ {closed operators on X}

extends the original mapping Φ : E −→ L(X).

Proof. Let h ∈ Reg(E) be a second regulariser for f , and define A := (e•)−1(ef)•
and B := (h•)−1(hf)•. Because e•h• = (eh)• = (he)• = h•e•, inverting yields
(e•)−1(h•)−1 = (h•)−1(e•)−1. Now it follows that

A = (e•)−1(ef)• = (e•)−1(h•)−1h•(ef)• = (h•)−1(e•)−1(hef)•
= (h•)−1(e•)−1e•(hf)• = (h•)−1(hf)• = B.

This shows that f• is the same whichever regulariser one chooses.

We are left to show that the new Φ extends the old one. Since the afc is
proper, E ⊂ Mr. If e, f ∈ E with e• injective, one has (e•)−1(ef)• = (e•)−1e•f• =
f•, whence it is shown that the map on Mr is indeed an extension of the original.

�

Sometimes we call the original mapping Φ : E −→ L(X) the primary (func-
tional) calculus (in short: pfc) and the extension defined above the extended
(functional) calculus. The algebra Mr is called the domain of the afc (E ,M, Φ).

1.2.2 Properties of the Extended Calculus

We collect some basic properties.

Proposition 1.2.2. Let (E ,M, Φ) be a proper abstract functional calculus over the
Banach space X. Then the following assertions hold.

a) If T ∈ L(X) commutes with each e•, e ∈ E , then it commutes with each f•,
f ∈ Mr.

b) One has 1 ∈Mr and 1• = I.

c) Given f, g ∈ Mr, one has

f• + g• ⊂ (f + g)•
f• g• ⊂ (fg)•

with D(f•g•) = D((fg)•) ∩D(g•).

d) If f, g ∈ Mr such that fg = 1, then f• is injective with (f•)−1 = g•.

e) Let f ∈ Mr, and let F be a subspace of D(f•). Suppose that there is a
sequence (en)n ⊂ E such that en• → I strongly as n → ∞ and R(en•) ⊂ F
for all n ∈ N. Then F is a core for f•.
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Proof. a) Let T ∈ L(X) commute with every e•, e ∈ E . Take f ∈ Mr and a
regulariser e ∈ E for f . Then we have Tf• = T (e•)−1(ef)• ⊂ (e•)−1T (ef)• =
(e•)−1(ef)•T = f•T .
b) Since the afc is proper, there exists e ∈ E such that e• is injective. Clearly, e
regularises 1. Moreover, we have 1• = e−1

• (e1)• = e−1
• e• = I.

c) Take f, g ∈ Mr and let e1, e2 ∈ E be regularisers for f, g, respectively. Then
e := e1e2 is a regulariser for both f and g, hence for f + g. Also efg = (e1f)(e2g)
is in E , whence e is also a regulariser for fg. We have

f• + g• = e−1
• (ef)• + e−1

• (eg)• ⊂ e−1
• [(ef)• + (eg)•]

= e−1
• (e(f + g))• = (f + g)• and

f•g• = e−1
1• (e1f)•e−1

2• (e2g)• ⊂ e−1
1• e−1

2• (e1f)•(e2g)• = [e2•e1•]−1(efg)•
= e−1

• (efg)• = (fg)•.

To prove the assertions concerning the domains, let x ∈ D((fg)•) ∩D(g•). Since
(e1f)• commutes with e2• it also commutes with e−1

2• . By assumption, y :=
(e2g)•x ∈ D(e−1

2• ), whence also (e1f)•y ∈ D(e−1
2• ) and

(e1f)•g•x = (e1f)•e−1
2• y = e−1

2• (e1f)•y = e−1
2• (efg)•x ∈ D(e−1

1• )

by assumption and the identity e−1
• = e−1

1• e−1
2• . Consequently, g•x ∈ D(f•), and

hence x ∈ D(f•g•).
d) Suppose f, g ∈ Mr with fg = 1. By b) and c) we have g•f• ⊂ (fg)• = 1• = I
and D(g•f•) = D(I)∩D(f•) = D(f•). Interchanging f and g proves the statement.
e) Let x ∈ D(f•) and define y := f•x. With xn := en•x and yn := en•y we have
xn → x, xn ∈ F and f•xn = f•en•x = en•f•x = yn → y. �

In general one cannot expect equality in c) of Proposition 1.2.2. However, if
we define

Mb := {f ∈Mr | f• ∈ L(X)},
we obtain the following.

Corollary 1.2.3. Let E ,M, Φ, X be as above.

a) For f ∈ Mr, g ∈Mb one has f• + g• = (f + g)• and f• g• = (fg)•.

b) The set Mb is a subalgebra with 1 of M, and the map

(f �−→ f•) : Mb −→ L(X)

is a homomorphism of algebras with 1.

c) If f ∈ Mb is such that f• is injective, then

(f•)−1g•f• = g•

holds for all g ∈Mr.



1.2. An Abstract Framework 7

Proof. a) By c) of Proposition 1.2.2 we have f•+g• ⊂ (f +g)• and (f +g)•−g• ⊂
(f + g− g)• = f•. Since g• is bounded, D((f + g)•) = D(f•). This readily implies
f• + g• = (f + g)•. The second assertion is immediate from c) of Proposition 1.2.2
since we have D(g•) = X .

b) This follows from a).

c) We can find e ∈ E which regularises both f and g. Now we compute

f−1
• g•f• = f−1

• e−1
• (eg)•f• = f−1

• e−1
• f•(eg)• = e−1

• f−1
• f•(eg)• = e−1

• (eg)• = g•.

Here we used b) and the identity e−1
• f−1

• = f−1
• e−1

• , which is true since e• and f•
are both bounded and injective. �

Using this new information we can improve d) of Proposition 1.2.2.

Corollary 1.2.4. Let E ,M, Φ, X be as above. Suppose that f ∈ Mr, g ∈ M such
that fg = 1. Then

g ∈Mr ⇐⇒ f• is injective.

In this case, we have g• = f−1
• .

Proof. One direction of the equivalence is simply d) of Proposition 1.2.2. Suppose
that f• is injective and let e ∈ E be a regulariser for f . Then fe ∈ E , (fe)g = e ∈ E
and (fe)• = f•e• is injective. This means that fe is a regulariser for g. �

Although the reader will encounter several examples of the extension pro-
cedure in the following chapters, we illustrate it here in the case of the Volterra
operator. We letM be the algebra of germs of functions holomorphic in a pointed
neighbourhood of 0, and let E be the subalgebra of germs of functions holomorphic
in a whole neighbourhood of 0. The primary calculus is given by the Cauchy inte-
gral (1.1) (or, alternatively, by insertion into the power series). Since (z)(V ) = V ,
this afc is proper and there is a natural extension to Mr. It is easy to see that
Mr is exactly the algebra of germs of meromorphic functions at 0. If f is such a
germ with znf holomorphic at 0, we have f(V ) = V −n(znf)(V ). In particular,
(z−n)(V ) = V −n for each n ∈ N.

1.2.3 Generators and Morphisms

Let us return to the abstract treatment. We start with a proper afc (E ,M, Φ)
over the Banach space X . A subalgebra D ⊂ Mb is called admissible if the set
{f ∈ D | f• is injective} is not empty. In this case (D,M, Φ) is another proper
afc over X . Let us denote by

〈D〉 := {f ∈M | there is d ∈ D such that df ∈ D and d• is injective}

the regularisable elements of this ‘sub-afc’.
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Proposition 1.2.5. Let (E ,M, Φ) be a proper afc over the Banach space X, and let
D be an admissible subalgebra of Mb. If f ∈ M and g ∈ 〈D〉 are such that g• is
injective and gf ∈ 〈D〉, then already f ∈ 〈D〉.

Proof. By assumption there are regularising elements d1, d2 ∈ D for g, fg, re-
spectively. Letting d := d1d2 we see that d regularises both g and fg. Since
(d•)−1(dg)• = g• is injective, the operator (dg)• also is. Hence dg regularises f ,
whence f ∈ 〈D〉. �

The proposition shows in particular that Mr = 〈E〉 = 〈Mb〉. A generator of
the afc is an admissible subalgebra D such that 〈D〉 = Mr. One is interested in
small generators. To check that a given admissible subalgebra is a generator, it
suffices to cover any generator, as the following corollary shows.

Corollary 1.2.6. Let (E ,M, Φ) be a proper afc over the Banach space X. Let
D,D′ be admissible subalgebras of Mb such that D′ ⊂ 〈D〉. Then 〈D′〉 ⊂ 〈D〉. In
particular, an admissible subalgebra D of Mb is a generator of the afc if and only
if E ⊂ 〈D〉.

Proof. This follows immediately from Proposition 1.2.5. �

Abstract functional calculi over the Banach space X are the objects of a cat-
egory. We describe the morphisms of this category. Let (E ,M, Φ) and (E ′,M′, Φ′)
be proper afc1 over the Banach space X . A morphism

θ : (E ,M, Φ) −→ (E ′,M′, Φ′)

between these afc consists of a homomorphism of algebras θ : M −→ M′ with
θ(E) ⊂ E ′ and θ(e)• = e• for all e ∈ E . Not surprisingly, the extension procedure
is functorial, as the next proposition shows.

Proposition 1.2.7. Let θ : (E ,M, Φ) −→ (E ′,M′, Φ′) be a morphism of proper afc
on the Banach space X. Then θ(Mr) ⊂ (M′)r with θ(f)• = f• for every f ∈ Mr.

Proof. Let f ∈ Mr and let e ∈ Reg(E) be a regulariser for f . Since θ(e)• = e• is
injective and θ(e)θ(f) = θ(ef) ∈ θ(E) ⊂ E ′, the element θ(e) is a regulariser for
θ(f). Moreover,

θ(f)• = [θ(e)•]−1[θ(e)θ(f)]• = (e•)−1θ(ef)• = (e•)−1(ef)• = f•. �
The above lemma may seem to be another bit of abstract nonsense at a first

glance. However, it will be applied several times in the sequel, where M′ is in
fact a superalgebra of M and θ is just the inclusion mapping. In such a situation
Proposition 1.2.7 implies that for a consistent extension of an afc one has to take
care only of the primary calculus, whence consistency of the extended calculus is
then automatic.

1The correct plural of the word calculus is calculi, whence the plural of afc should be again
afc
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Remark 1.2.8. The extension procedure actually makes use only of the multi-
plicative structure of M. Except from those statements which explicitly involve
addition — the first part of Proposition 1.2.2 c) and Corollary 1.2.3 a) — every-
thing remains true when we merely assume that M is a multiplicative monoid
extending the multiplicative structure of E ⊂ M. In such a setting the above-
mentioned statements involving addition can be appropriately modified. In fact,
call h ∈ M a sum of f, g ∈ M if ef + eg = eh for all e ∈ E such that ef, eg ∈ E ,
and if such elements e exist. Then all statements remain true, replacing ‘f + g’ by
‘h’. As a matter of fact, one has to adapt the notion of morphism which should be
an algebra homomorphism on the level of E , but only a homomorphism of monoids
on the level of M.

1.3 Meromorphic Functional Calculi

We want to apply the results of the previous section to functional calculi for
operators. Let Ω ⊂ C be an open subset of the complex plane. We denote by

O(Ω) and M(Ω)

the algebras of holomorphic and meromorphic functions on the set Ω. (Note that
if Ω is connected, M(Ω) is in fact a field with respect to the pointwise operations.)

Let E(Ω) be a subalgebra of M(Ω), and let Φ : E(Ω) −→ L(X) be an algebra
homomorphism, where X is a Banach space. Hence we are given an abstract
functional calculus (E(Ω),M(Ω), Φ) in the terminology of the previous section.
Assume that the following hold:

1. The function z := (w �−→ w) ∈ M(Ω) is regularisable by E(Ω) whence the
operator A := Φ(z) is well defined by the extension procedure.

2. An operator T ∈ L(X) which commutes with A also commutes with each
Φ(e), e ∈ E(Ω).

Then we call the afc (E(Ω),M(Ω), Φ) a (meromorphic) functional calculus for A.
We write M(Ω)A := M(Ω)r and

f(A) := Φ(f) (f ∈ M(Ω)A)

in order to use a more common notation. Also we introduce the alternative nota-
tion

H(A) := {f ∈M(Ω)A | f(A) ∈ L(X)}
for the set which was called M(Ω)b in our abstract setting of Section 1.2.

Remark 1.3.1. Note that the terminology M(Ω)A is inaccurate in that this set
heavily depends on the primary functional calculus (E(Ω), Φ). This is even more
true for the notation H(A), where also the reference to the set Ω has to be under-
stood from the context.
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We can now rephrase the properties of afc in terms of meromorphic functional
calculi.

Theorem 1.3.2 (The Fundamental Theorem of the Functional Calculus). Let A be a
closed operator on the Banach space X, and let (E(Ω),M(Ω), Φ) be a meromorphic
functional calculus for A. Let f ∈ M(Ω)A. Then the following assertions hold.

a) If T ∈ L(X) commutes with A, then it also commutes with f(A).
If f(A) ∈ L(X), i.e., f ∈ H(A), then f(A) commutes with A.

b) 1(A) = I and (z)(A) = A.

c) Let also g ∈ M(Ω)A. Then

f(A) + g(A) ⊂ (f + g)(A) and f(A) g(A) ⊂ (fg)(A).

Furthermore, D((fg)(A))∩D(g(A)) = D(f(A)g(A)) and one has equality in
the above relations if g ∈ H(A).

d) The mapping (f �→ f(A)) : H(A) −→ L(X) is a homomorphism of algebras.

e) One has f(A) = g(A)−1f(A)g(A) if g ∈ H(A) and g(A) is injective.

f) Let λ ∈ C such that 1/(λ− z) ∈M(Ω). Then

1
λ− f(z)

∈M(Ω)A ⇐⇒ λ− f(A) is injective.

In this case (λ − f(z))−1(A) = (λ − f(A))−1. In particular, λ ∈ �(f(A)) if
and only if (λ− f(z))−1 ∈ H(A).

Proof. This is more or less a restatement of Proposition 1.2.2 and Corollaries 1.2.3
and 1.2.4. Note that in b) the statement (z)(A) = A is just a reformulation of the
hypothesis that the given meromorphic functional calculus is a calculus for A. �

Our definition of meromorphic functional calculus for an operator A imme-
diately raises the question of uniqueness. Unfortunately we are unable to prove a
positive result at this level of abstraction, knowing too little e.g. about the space
E(Ω). We present a uniqueness result for the functional calculus for sectorial oper-
ators in Section 5.3.5, where additional topological assumptions are needed. The
next results show that for rational functions there is no problem.

1.3.1 Rational Functions

Recall that for any operator A with non-empty resolvent set there is a definition
of ‘r(A)’ where r is a rational function on C with all its poles outside of σ(A) (see
Appendix A.6). Also, for any injective operator A there is a definition of p(A)
where p ∈ C[z, z−1] is a polynomial in the variables z and z−1 (see Appendix
A.7). The following results show that we meet these general definitions with any
meromorphic functional calculus for A.
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Proposition 1.3.3. Let A be a closed operator on the Banach space X such that
�(A) 
= ∅, and let (E(Ω),M(Ω), Φ) be a meromorphic functional calculus for A.
Let r be a rational function with all its poles being contained in �(A). Then
r ∈ M(Ω)A and ‘r(A)’ has its standard meaning as defined in Appendix A.6.

Proof. Let us first deal with polynomials p ∈ C[z]. We prove the statement by
induction on deg p. If deg p = 0 or deg p = 1, the assertion is trivial. So suppose
that deg p = n + 1 and write p = zq + µ where µ is a scalar and deg q = n.
The induction hypothesis implies that q ∈ M(Ω)A and D(q(A)) = D(An). Since
M(Ω)A is an algebra, p ∈ M(Ω)A and we have B := p(A) ⊃ q(A)A + µ. By
Theorem 1.3.2 c) we also have D(B) ∩D(A) = D(q(A)A) = D(An+1). Hence to
prove the assertion we only have to show D(B) ⊂ D(A). So let x ∈ D(B) and
choose λ ∈ �(A). Employing a) and f) of Theorem 1.3.2 we have R(λ, A)B ⊂
BR(λ, A), whence R(λ, A)x ∈ D(A) ∩D(B). This implies R(λ, A)x ∈ D(An+1),
from which we readily infer that x ∈ D(An).

Turning to rational functions we observe that by Theorem 1.3.2, for λ ∈ �(A)
one has (λ − z)−1 ∈ H(A) and (λ− z)−1(A) = R(λ, A). Hence if q ∈ C[z] is such
that all zeros are contained in �(A), we obtain q−1 ∈ H(A) and q−1(A) = q(A)−1.
Then r(A) = (p/q)(A) = p(A)q−1(A) = p(A)q(A)−1, again by Theorem 1.3.2.
The last expression is exactly how r(A) is defined in Appendix A.6. �

Next we turn to injective operators.

Proposition 1.3.4. Let A be an injective, closed operator on the Banach space X
such that �(A) 
= ∅, and let (E(Ω),M(Ω), Φ) be a meromorphic functional calculus
for A. Let p =

∑
k∈Z

akzk ∈ C[z, z−1] be a polynomial in z, z−1. Then p ∈M(Ω)A

and p(A) =
∑

k∈Z
akAk.

Proof. It follows from Theorem 1.3.2 and the assumptions that z, z−1 ∈ M(Ω)A.
Hence C[z, z−1] ⊂ M(Ω)A. Now take p ∈ C[z, z−1] as in the hypothesis of
the statement. We may suppose that p /∈ C[z]. Hence we can write p(z) =∑m

k=−n akzk where a−n 
= 0 and n ≥ 1. It follows from Theorem 1.3.2 that
p(A) = τ(A)−np(A)τ(A)n = Λn(τnp)(A), where τ(z) := z/(λ− z)2 and Λ :=
τ(A)−1. By Theorem 1.3.2 c) we obtain

p(A) = Λn(τnp)(A) = Λn

(
(
m+n∑
k=0

ak−nzk)(λ− z)−2n

)
(A)

= Λn

(
m+n∑
k=0

ak−nzk

)
(A)(λ −A)−2n

= (λ−A)2nA−n

(
m+n∑
k=0

ak−nAk

)
(λ−A)−2n
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and this is contained in (λ − A)2n
(∑m+n

k=0 ak−nAk
)

A−n(λ − A)−2n, by Lemma
A.7.2. Applying Lemma A.7.1 and Lemma A.6.1 together with the previous Propo-
sition 1.3.3, we see that this is equal to(

m+n∑
k=0

ak−nAk

)
(λ −A)2n(λ −A)−2nA−n =

(
m+n∑
k=0

ak−nAk

)
A−n

=
m∑

k=−n

akAk =
m∑

k=−n

(akzk)(A) ⊂
(

m∑
k=−n

akzk

)
(A) = p(A).

�
Taking into account also other points λ ∈ C such that λ−A is injective leads

us to the following.

Theorem 1.3.5. Let A be a closed operator on the Banach space X with �(A) 
= ∅.
Let r be any rational function on C with no pole of r being an eigenvalue of A.
Then r(A) is uniquely defined by any meromorphic functional calculus for A.

Proof. Let (E(Ω),M(Ω), Φ) be a meromorphic functional calculus for A. Then
r ∈ M(Ω)A since M(Ω)A is an algebra and z,1, (λ − z)−1 ∈ M(A)A for all
λ /∈ Pσ(A) (cf. Theorem 1.3.2 b) and f)). Let r = p/q, and fix λ ∈ �(A). Take
n > deg p, deg q. Then

r(A) =
p

q
(A) =

(
(λ− z)n

q

p

(λ− z)n

)
(A) =

(
(λ − z)n

q

)
(A)

(
p

(λ− z)n

)
(A)

=
(

q

(λ− z)n

)
(A)−1

(
p

(λ− z)n

)
(A),

where we have again used Theorem 1.3.2. Now Proposition 1.3.3 shows that r(A)
is independent of the chosen functional calculus. �

The previous result has to be complemented by the following remark. The
discussion of Appendix A.6 shows that any operator A with �(A) 
= ∅ has a
meromorphic functional calculus on the whole of C, with

E(C) =
{

p

q

∣∣∣ p, q ∈ C[z], deg(p) ≤ deg(q), {q = 0} ⊂ �(A)
}

as the domain of the primary calculus. The domain of the extended calculus con-
sists exactly of the rational functions r on C with no pole of r being an eigenvalue
of A. Theorem 1.3.5 shows that this calculus is minimal in a sense.

1.3.2 An Abstract Composition Rule

The intention behind using a functional calculus consists not only in generating
new operators from old ones but also to be able to perform computations with
them. Beside the basic rules given in Theorem 1.3.2 it is also very important to
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have at one’s disposal the so-called composition rule by which we mean an identity
of the form

f(g(A)) = (f ◦ g)(A). (1.4)

Examples are formulae like

elog A = A, (Aα)β = Aαβ , log(Aα) = α log(A) etc.

To make sense of (1.4), one does need not only a functional calculus for A but also
one for g(A), and (f ◦ g) should be meaningful. As with the uniqueness question
above, we are unable to prove (1.4) in full generality without knowing more about
the involved functional calculi. In concrete cases, as for sectorial and strip-type
operators, we are in a much better situation (see Theorem 2.4.2 and Theorem
4.2.4). All we can say in general is that the problem — if there is one — occurs
already at the level of the primary functional calculus.

Proposition 1.3.6. Let Ω, Ω′ ⊂ C be two open subsets of the plane. Suppose that
A is a closed operator on the Banach space X and that (E(Ω),M(Ω), Φ) is a
meromorphic functional calculus for A. Suppose further that g : Ω −→ Ω′ is
meromorphic, g ∈ M(Ω)A, and (E(Ω′),M(Ω′), Φ′) is a meromorphic functional
calculus for g(A). Then the statement

f ◦ g ∈M(Ω)A and (f ◦ g)(A) = f(g(A))

holds for all f ∈M(Ω′)g(A) provided it holds for all f ∈ E(Ω′).

Note that since g(Ω) ⊂ Ω′, the function g is actually holomorphic on Ω.

Proof. Define B := g(A). Let f ∈ M(Ω′)g(A) and e ∈ E(Ω′) be a regulariser for
f . Then ef ∈ E(Ω′) and e(B) is injective. By assumption e ◦ g, (ef) ◦ g ∈M(Ω)A

and (e ◦ g)(A) = e(B) as well as

[(e ◦ g)(f ◦ g)](A) = [(ef) ◦ g](A) = (ef)(B).

This shows that e ◦ g ∈ H(A) is a regulariser for f ◦ g. Employing Proposition
1.2.5 we conclude that f ◦ g ∈M(Ω)A and (f ◦ g)(A) = f(B). �

The previous proposition is important in that it shows that for nice compo-
sition rules one only has to look at the primary functional calculi. Nevertheless,
this still may be a tedious task, cf. Theorem 2.4.2.

1.4 Multiplication Operators

In this section we make sure that the axiomatics developed in Section 1.2 meet
our intuition in the case of multiplication operators.

Consider a σ-finite measure space (Ω, Σ, µ) and thereon the scale of spaces
Lp(Ω, µ), where 1 ≤ p ≤ ∞. We usually omit reference to the underlying σ-
algebra Σ. Let M(Ω, µ; C) be the space of (µ-equivalence classes of) measurable
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complex-valued functions. Each a ∈M(Ω, µ; C) determines a multiplication oper-
ator

Ma := (f �→ af)

on each space Lp(Ω, µ), with the maximal domain

D(Ma) = {f ∈ Lp | af ∈ Lp(Ω, µ)}.

It is easy to see that Ma is closed.

Lemma 1.4.1. The operator Ma is bounded if and only if a ∈ L∞(Ω, µ). The
operator Ma is injective if and only if µ(a = 0) = 0. If 1 ≤ p < ∞, the operator
Ma is densely defined.

Proof. We restrict to the case that p < ∞. If a ∈ L∞ then clearly Ma is bounded
with ‖Ma‖ ≤ ‖a‖L∞ . Conversely, suppose that Ma is bounded, and let c > 0
such that Ac := {|a| > c} is not a null set. Then we can find A ⊂ Ac such
that 0 < µ(A) < ∞. Let f := µ(A)−1/p1A. (Here, 1A denotes the characteristic
function of the set A, i.e. 1A(ω) = 1 if ω ∈ A and 1A(ω) = 0 if ω /∈ A.) Then
‖f‖p = 1 and

‖Ma‖p ≥ ‖af‖p
p = µ(A)−1

∫
A

|a|p dµ ≥ cp.

Hence c ≤ ‖Ma‖. Taking the supremum over c yields ‖a‖L∞ ≤ ‖Ma‖.
If µ(a = 0) > 0 one can find a set A such that 0 < µ(A) < ∞ and a = 0

on A. Clearly Ma1A = 0 and 1A 
= 0 in Lp. On the other hand, if Ma is not
injective, one finds that 0 
= f ∈ Lp such that af = 0. Then {f 
= 0} ⊂ {a = 0}.
Now let 1 ≤ p < ∞ and f ∈ Lp(Ω, µ). Then f1{|a|≤n} → f pointwise as n → ∞,
whence in Lp by Lebesgue’s theorem. But it is clear that f1{|a|≤n} ∈ D(Ma) for
all n ∈ N. �

We set up a proper abstract functional calculus for Ma on X := Lp(Ω, µ).
Let

K := essrana := {λ ∈ C | µ(a ∈ U) > 0 for each
neighbourhood U of λ in C}

be the essential range of the function a. Then K is a closed subset of C with
a(ω) ∈ K for µ-almost all ω ∈ Ω. On K we consider the measure a[µ] defined by
a[µ](B) = µ(a ∈ B) for all Borel subsets B ⊂ K. For e ∈ L∞(K, a[µ]) we define
Φ(e) := Me◦a. This determines an algebra homomorphism

Φ : L∞(K, a[µ]) −→ L(X)

with Φ(1) = I. Let C∞ denote the Riemann sphere. We embed L∞(K, a[µ]) into
the set M(K, a[µ]; C∞) := {f : K −→ C∞ | f is a[µ]-measurable}. This set is not
an algebra, but certainly a multiplicative monoid. Taking into account Remark
1.2.8 we obtain a proper abstract functional calculus

(L∞(K, a[µ]), M(K, a[µ]; C∞), Φ) . (1.5)
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Theorem 1.4.2. Let (Ω, µ), a ∈ M(Ω, µ; C), and K be as above. Then the set K
equals the spectrum σ(Ma) of the operator Ma (cf. Appendix A.3). For λ ∈ C \K
one has

‖R(λ, Ma)‖ =
1

dist(λ, K)
.

A function f ∈M(K, a[µ]; C∞) is regularisable within the abstract functional cal-
culus (1.5) if and only if µ(a ∈ {f =∞}) = 0. In this case we have

f(Ma) = Mf◦a.

Proof. The first assertion follows from the equivalence

λ /∈ K ⇐⇒ (λ− a)−1 ∈ L∞

and Lemma 1.4.1. The second assertion follows from the identity

‖f‖L∞ = sup{|λ| | λ ∈ essran f},

which is straightforward to prove. Now take f ∈ M(K, a[µ]; C∞) such that f is
regularisable. By definition, there is e : K −→ C measurable and bounded such
that also ef is bounded and e(A) = Me◦a is injective. Hence {f = ∞} ⊂ {e = 0}
and, by Lemma 1.4.1, µ(a ∈ {e = 0}) = µ{e ◦ a = 0} = 0. This implies that
µ(a ∈ {f = ∞}) = 0. If conversely this condition holds, define e := min(1, 1/ |f |).
Clearly, e is measurable and bounded and one has |ef | ≤ 1. Now, it is clear that
{e = 0} = {f = ∞}, whence from the hypothesis and Lemma 1.4.1 it follows that
e(A) = Me◦a is injective. Hence e is a regulariser for f . �

Note that if λ ∈ K \ Pσ(A) then, by Lemma 1.4.1, the operator f(Ma) is
independent of the value of f at the point λ.

1.5 Concluding Remarks

The considerations of the previous sections lead to a somewhat surprising result:
Once one has the primary calculus, the extension to a larger class of functions is
easy or at least straightforward. The crucial point in constructing a functional
calculus for an operator A on a Banach space X lies in setting up the primary
calculus. This sometimes requires a good knowledge of the operator in question
and often is not at all obvious. If one favours the approach via Cauchy integrals
(as we do in this treatment), this knowledge consists mostly of insight into the
growth behaviour of the resolvent near the spectrum.

To illustrate this, let us turn back to the Volterra operator V introduced
above. On first sight one may think that the functional calculus for V obtained so
far is the end of the story. However, this is false. The reason is that the resolvent
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R(λ, V ) behaves nicely for λ → 0 when λ is restricted to the left half-plane. In
fact, the inverse operator V −1 is just d/dt with domain

D(V −1) = {f ∈ C1[0, 1] | f(0) = 0},

and one can show that both operators A = V, V −1 satisfy a resolvent estimate of
the form

‖R(λ, A)‖ ≤ C

|Re λ| (Re λ < 0)

(cf. Section 8.5). Consequently, V −1 and V are both sectorial operators of angle
π/2 (cf. Section 2.1). This means that in approaching the spectral point 0 on a
straight line with an angle ϕ such that π ≥ |arg ϕ| > π/2 the growth behaviour of
the resolvent of V is optimal, i.e. ‖λR(λ, V )‖ remains bounded. (One can show
that the growth is like 1/ |λ|2 when approaching 0 on the imaginary axis, and is
more or less exponential when coming from the right.)

Now suppose that one is given a function f , holomorphic on some open
sector Sϕ := {z ∈ C \ {0} | 0 < |arg z| < ϕ}, where ϕ ∈ (π/2, π) and such that
|f(z)| = O(|z|α) as z → 0, for some α > 0. Then the Cauchy integral (1.1) still
makes sense, Γ being a contour as in Figure 1 below.

As we shall see in Chapter 2, in this way a primary calculus is set up which
contains (germs of) functions holomorphic at 0 as well as (germs of) functions
holomorphic on some sector Sϕ and with a good behaviour at 0. In particular, the
fractional powers V α (Re α > 0) and the logarithm log V can be defined (cf. Chap-
ter 3) via this functional calculus.

It seems hard to judge if this is now the end of the story for the Volterra
operator. Although there is a basic intuition of a kind of a ‘maximal functional
calculus’ for each individual operator, this has not been made precise yet. The best
achieved so far is a bundle of constructions of primary calculi for certain classes of
operators, like bounded operators, operators described by certain resolvent growth
conditions, or semigroup generators.

1.6 Comments

The contents of this chapter mainly rest on [107] where the notion of abstract
functional calculus was introduced. As already said, this approach axiomatises the
constructions prevalent in the literature. The Fundamental Theorem 1.3.2 thus
contains the essence of what an unbounded functional calculus should satisfy.

We remark that our treatment here is ‘purely commutative’ since we think of
algebras of scalar functions. However, with some more-or-less obvious modifica-
tions one can also give an abstract setting for ‘operator-valued’ functional calculi,
where non-commutativity must (and can) be allowed to a certain extent. Let us
sketch the necessary abstract framework. Suppose again that Φ : E −→ L(X) is
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sup ‖λR(λ, V )‖ < ∞

ϕ

Γ

Figure 1: The contour Γ surrounds the region of rapid growth of R(., V ).

a homomorphism of algebras and that E ⊂ M as before, but E (and hence M)
need not be commutative. Define the centre of E to be

Z(E) := {s ∈ E | es = se for all e ∈ E}.

An element f ∈M is now called regularisable if there is e ∈ Z(E) such that e• is
injective and ef ∈ E . Hence the only change to the commutative situation is that
the regularisers have to be taken from Z(E). Then practically all results remain
true, apart from the very obvious ones where it is then necessary to incorporate
the commutativity into the assumptions (e.g. in Corollary 1.2.4).

The reader will find two more paragraphs on abstract functional calculi in
later chapters, namely on dual functional calculi in Section 2.6.1 and on approxi-
mations of functional calculi in Section 2.6.3.

A more detailed historical account of roots and development of the idea of
functional calculus is deferred to the end of the next chapter (see Section 2.8)
when the construction of the functional calculus for sectorial operators has been
carried out.



Chapter 2

The Functional Calculus for Sectorial
Operators

In Section 2.1 the basic theory of sectorial operators is developed, including examples
and the concept of sectorial approximation. In Section 2.2 we introduce some notation
for certain spaces of holomorphic functions on sectors. A functional calculus for secto-
rial operators is constructed in Section 2.3 along the lines of the abstract framework
of Chapter 1. Fundamental properties like the composition rule are proved. In Section
2.5 we give natural extensions of the functional calculus to larger function spaces in the
case where the given operator is bounded and/or invertible. In this way a panorama
of functional calculi is developed. In Section 2.6 some mixed topics are discussed, e.g.,
adjoints and restrictions of sectorial operators and some fundamental boundedness and
some first approximation results. Section 2.7 contains a spectral mapping theorem.

2.1 Sectorial Operators

In the following, X always denotes a (non-trivial) Banach space and A a (single-
valued, linear) operator on X . (Note the ‘agreement’ on page 279 in Appendix
A.) For 0 ≤ ω ≤ π let

Sω :=

{
{z ∈ C | z 
= 0 and |arg z| < ω} if ω ∈ (0, π],
(0,∞) if ω = 0.

Hence if ω > 0, Sω denotes the open sector symmetric about the positive real axis
with opening angle 2ω.

Let ω ∈ [0, π). An operator A on X is called sectorial of angle ω — in short:
A ∈ Sect(ω) — if

1) σ(A) ⊂ Sω and

2) M(A, ω′) := sup
{
‖λR(λ, A)‖

∣∣ λ ∈ C \ Sω′
}

< ∞ for all ω′ ∈ (ω, π).

Figure 2 illustrates this notion. An operator A is called quasi-sectorial (of angle
ω) if there exists λ ∈ R such that λ+A is sectorial (of angle ω). Given a sectorial
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sup ‖λR(λ, A)‖ <∞

π − ω′
σ(A)

∂Sω

Figure 2: Spectrum of a sectorial operator.

operator A, we call

ωA := min{0 ≤ ω < π | A ∈ Sect(ω)}

the spectral angle (or sectoriality angle) of A.
A family of operators (Aι)ι is called uniformly sectorial of angle ω ∈ [0, π) if

Aι ∈ Sect(ω) for each ι, and supι M(Aι, ω
′) < ∞ for all ω′ ∈ (ω, π).

Proposition 2.1.1. Let A be a closed operator on a Banach space X.

a) If (−∞, 0) ⊂ �(A) and

M(A) := M(A, π) := sup
t>0

∥∥t(t + A)−1
∥∥ < ∞,

then M(A) ≥ 1 and A ∈ Sect
(
π − arcsin(M(A)−1)

)
.

Let A ∈ Sect(ω) for some ω ∈ [0, π).

b) If A is injective, then A−1 ∈ Sect(ω) and the fundamental identity

λ
(
λ + A−1

)−1
= I − 1

λ

(
1
λ

+ A

)−1

(2.1)
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holds for all 0 
= λ ∈ C. In particular, M(A−1, ω′) ≤ 1 + M(A, ω′) for all
ω′ ∈ (ω, π).

c) Let n ∈ N and x ∈ X. Then one has

x ∈ D(A) ⇐⇒ limt→∞ tn(t + A)−nx = x
⇐⇒ limt→∞ An(t + A)−nx = 0, and

x ∈ R(A) ⇐⇒ limt→0 An(t + A)−nx = x
⇐⇒ limt→0 tn(t + A)−nx = 0.

d) We have N(A) ∩ R(A) = 0. If R(A) = X, then A is injective.

e) The identity N(An) = N(A) holds for all n ∈ N.

f) The family of operators (A + δ)δ≥0 is uniformly sectorial of angle ω. Indeed,

M(A + δ, ω′) ≤ c(ω′)M(A, ω′) (δ > 0, ω′ ∈ (ω, π))

where c(ω′) = (sinω′)−1 if ω′ ∈ (0, π/2] and c(ω′) = 1 if ω′ ∈ [π/2, π).

The family of operators (εA)ε≥0 is uniformly sectorial of angle ω. Indeed,
M(εA, ω′) = M(A, ω′) for all ω′ ∈ (ω, π) and all ε > 0.

The family of operators {(A + δ)(A + ε + δ)−1 | ε > 0, δ ≥ 0} is uniformly
sectorial of angle ω.

g) Let ε > 0, n, m ∈ N, and x ∈ X. Then we have(
A(A + ε)−1

)n
x ∈ D(Am) ⇐⇒ x ∈ D(Am).

h) If the Banach space X is reflexive, one has D(A) = X and

X = N(A) ⊕ R(A).

i) If 0 
= λ ∈ C with |argλ| + ω < π, then λA ∈ Sect(ω + |argλ|) and
M(λA, ω′) ≤ M(A, ω′ − |arg λ|) for each ω′ ∈ (|argλ|+ ω, π].

j) If D(A) = X then A′ ∈ Sect(ω, X ′) with M(ω′, A′) = M(ω, A) for all ω′ ∈
(ω, π].

Proof. a) Set M := M(A). For each x ∈ D(A) and λ > 0 we have

‖x‖ ≤ 1
λ

M ‖Ax‖+ M ‖x‖ .

This implies that ‖x‖ ≤ M ‖x‖ for all x ∈ D(A). If M < 1, then D(A) = 0, but
this is impossible, since X 
= 0 and �(A) 
= ∅.

Let λ0 < 0 and M ′ > M . For each µ ∈ C with |µ− λ0| ≤ |λ0| /M ′ we
have that µ ∈ �(A) and R(µ, A) =

∑
n(µ−λ0)nR(λ0, A)n+1 (Neumann series, see
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Proposition A.2.3). Hence it follows that

|µ| ‖R(µ, A)‖ ≤ |µ|
|λ0|

∑
n

|µ− λ0|n

|λ0|n
Mn+1 ≤ M

|µ|
|λ0|

∑
n

(
M

M ′

)n

≤
(

1 +
|µ− λ0|
|λ0|

)
M

1− M
M ′

≤
(

1 +
1

M ′

)
MM ′

M ′ −M
=

(M ′ + 1)M
M ′ −M

.

Now, if we choose ω′ > π − arcsin(1/M) and define M ′ := 1/ sin(π − ω′), then
clearly M ′ > M . Choose µ ∈ C such that π ≥ |argµ| ≥ ω′ and define λ0 := Re µ.
Then λ0 < 0 and |µ− λ0| ≤ |λ0| /M ′, whence ‖µR(µ, A)‖ ≤ (M ′+1)M/(M ′−M).

b) The identity (2.1) is true for all operators and all λ 
= 0, cf. Lemma A.2.1. The
second statement follows readily.
c) Consider the stated equivalence x ∈ D(A) ⇐⇒ limt→∞ tn(t+A)−nx = x. One
implication is clear. For the other implication, let first x ∈ D(A) and consider the
identity x = t(t + A)−1x + (1/t)[t(t + A)−1]Ax. After repeatedly inserting this
identity into itself one arrives at

x = [t(t + A)−1]nx +
1
t

n∑
k=1

[t(t + A)−1]kAx.

This shows limt→∞[t(t+A)−1]nx = x for x ∈ D(A). By the uniform boundedness
of the operators ([t(t + A)−1]n)t>0 this is then true for all x ∈ D(A). The other
equivalences are treated similarly.
d) is an immediate consequence of c).
e) Evidently N(A) ⊂ N(An). But if x ∈ N(An) and n ≥ 2, then in particular
x ∈ D(An−1) and one has 0 = (t + A)−1Anx = A(t + A)−1An−1x for all t > 0.
Because An−1x ∈ R(A), one may apply c) to obtain An−1x = 0. By repeating
this argument one finally arrives at Ax = 0.
f) Define (for the moment) Aδ := A + δ, and let ω′ ∈ (ω, π). From λ ∈ Sπ−ω′ it
follows that λ + δ ∈ Sπ−ω′ , and because

λ(λ + Aδ)−1 =
λ

δ + λ
(δ + λ)(A + δ + λ)−1,

we obtain M(Aδ, ω
′) ≤ M(A, ω′) supλ∈Sπ−ω′ |λ/λ + δ|. Hence the family (Aδ)δ≥0

is uniformly sectorial of angle ω and M(Aδ, ω
′) ≤ c(ω′)M(A, ω′) with c(ω′) as

described.
The uniform sectoriality of the family (εA)ε≥0 is clear from the fact that

sectors are invariant under dilations with positive factors.
Finally, let ε > 0 . Because λ ∈ Sπ−ω′ , we have λ(1 + λ)−1ε + δ ∈ Sπ−ω′ ,

and so

λ+Aδ(Aδ +ε)−1=(λ(Aδ +ε)+Aδ)(Aδ +ε)−1=(λ+1) (Aδ + ελ/(1 + λ)) (Aδ +ε)−1
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for these λ. Hence the operator λ + Aδ(Aδ + ε)−1 is invertible, and

λ[λ + Aδ(Aδ + ε)−1]−1 =
λ

1 + λ
(Aδ + ε)[Aδ +

λ

1 + λ
ε]−1

=
λ

1 + λ
(Aδ +

λ

1 + λ
ε +

ε

1 + λ
)[Aδ +

λ

1 + λ
ε]−1

=
λ

1 + λ
I +

1
1 + λ

[
λε

1 + λ

(
Aδ +

λε

1 + λ

)−1
]

.

The uniform sectoriality of the family (Aδ)δ now gives the first statement of f).

g) We consider first the reverse implication. To prove it we select x ∈ D(Am).
Then A(A+ ε)−1x = x− ε(A+ ε)−1x ∈ D(Am), and an iteration of this argument
yields (A(A + ε)−1)nx ∈ D(Am). The proof of the direction ‘⇒’ can also be
reduced to the case n = 1, which is proved by induction on m.

h) Let x ∈ X , and suppose that X is reflexive. The sequence (n(n+A)−1x)n∈N is
bounded and hence it has a weakly convergent subsequence nk(nk + A)−1x ⇀ y.
This means that A(nk + A)−1x ⇀ x − y. Now, (nk + A)−1x → 0 even strongly.
Because the graph of A is closed and a linear subspace of X ⊕ X , it is weakly
closed, whence x− y = 0. This means that x lies in the weak closure of D(A), but
the weak and the strong closure of D(A) coincide, by the Hahn–Banach theorem.
Hence it follows that x ∈ D(A).

If x ∈ N(A)∩R(A), then 0 = Ax = limt→0(t+A)−1Ax = limt→0 A(t+A)−1x = x
by c). Therefore the sum is direct. For arbitrary x ∈ X , by the reflexivity of X
one can find numbers tn ↘ 0 and a y ∈ X such that tn(tn + A)−1x ⇀ y. But
we have tnA(tn + A)−1x → 0. The graph of A is weakly closed, hence y ∈ N(A).
This implies that A(tn + A)−1x ⇀ x − y. Therefore x − y is in the weak closure
of R(A), but the weak and the strong closure of R(A) coincide. It follows that
x ∈ N(A) + R(A).

i) If µ /∈ Sω′ , then µλ−1 /∈ Sω′−|arg λ|. Hence µR(µ, λA) = (µλ−1)R(µλ−1, A) is
uniformly bounded by M(A, ω′ − |argλ|) for such µ.

k) This follows since �(A) = �(A′) and ‖R(λ, A)‖ = ‖R(λ, A)′‖ = ‖R(λ, A′)‖ for
all λ ∈ �(A), cf. Proposition A.4.2 and Corollary A.4.3. �

Remark 2.1.2. Let A ∈ Sect(ω) be a sectorial operator. Then

M(A, ϕ) = inf
ω′∈(ω,ϕ)

M(A, ω′)

for each ϕ ∈ (ω, π]. This follows from the proof of Proposition 2.1.1 a). Actually,
the function

(ϕ �−→M(A, ϕ)) : (ω, π] −→ [1,∞)

is continuous, see [161, Proposition 1.2.2].
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Let A ∈ Sect(ω) on the Banach space X . We define Y := R(A) and denote
by B the part of A in Y , i.e.,

D(B) := D(A) ∩ R(A) with By := Ay (y ∈ D(B)).

It is easy to see that B ∈ Sect(ω) on Y with M(ω′, B) ≤ M(ω′, A) for all ω′ ∈
(ω, π]. Moreover, B is injective, so we call B the injective part of A. The identity

D(Bn) = D(An) ∩ Y (n ∈ N)

is easily proved by induction. Proposition 2.1.1 yields the fact that N(A)∩R(A) =
N(A) ∩ Y = 0, and by a short argument one obtains

R(λ, A)(x ⊕ y) =
1
λ

x⊕R(λ, B)y

for all x ∈ N(A) and y ∈ Y .

2.1.1 Examples

Let us browse through a list of examples.

Multiplication Operators

Let (Ω, Σ, µ) be a σ-finite measure space, and let a ∈ Mes(Ω, µ; C) be as in Section
1.4. Define A := Ma to be the multiplication operator on Lp(Ω, µ). Theorem 1.4.2
shows that K = essrana equals the spectrum σ(A). We claim that A is sectorial
of angle ω ∈ [0, π) if and only if K ⊂ Sω. This clearly is a necessary condition,
but we also have

‖R(λ, A)‖ =
1

dist(λ, K)
≤ 1

dist(λ, Sω)

for all λ ∈ C \Sω by Theorem 1.4.2. So the pure location of the spectrum already
implies the resolvent growth condition. (This is not true for general operators.)

Generators of Semigroups

Let −A generate a bounded semigroup (T (t))t>0 in the sense of Appendix A.8.
Then with M := supt>0 ‖T (t)‖ one has∥∥(λ + A)−1

∥∥ = ‖R(λ,−A)‖ ≤ M

Re λ
(Re λ > 0) (2.2)

by (the easy part of) the Hille–Yosida theorem (Theorem A.8.6). This shows that
A is sectorial of angle π/2.

An estimate of the form (2.2) does not suffice to ensure that −A generates a
semigroup, neither if M = 1 (e.g. the Volterra operator on C[0, 1], cf. Section 8.5),
nor if A is densely defined (see [233]). However, there is a perfect correspondence
between generators of bounded analytic semigroups and sectorial operators of angle
strictly less than π/2. See Section 3.4 for more information.
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Normal Operators and Numerical Range Conditions

Let X = H be a Hilbert space, and let A be a normal operator on H . By the
Spectral Theorem D.5.1 the operator A is similar to a multiplication operator on
some L2-space. Hence by our first example, A is sectorial of angle ω if and only if
σ(A) ⊂ Sω.

If A is not normal but has its numerical range W (A) contained in Sω for some
ω ∈ [0, π/2] then A is sectorial of angle ω if and only if A has some resolvent point
outside the sector. This follows from Appendix C.3. The Hilbert space theory is
dealt with more deeply in Chapter 7.

For more concrete examples see Chapter 8.

2.1.2 Sectorial Approximation

The present section formalises an important approximation tool in the theory of
sectorial operators.

A uniformly sectorial sequence (An)n∈N of angle ω is called a sectorial ap-
proximation on Sω for the operator A if

λ ∈ �(A) and R(λ, An)→ R(λ, A) in L(X) (2.3)

for some λ /∈ Sω.1 From Proposition A.5.3 it follows that in this case (2.3) is true
for all λ /∈ Sω. Moreover, A itself is sectorial of angle ω.

If (An)n is a sectorial approximation for A on Sω, we write An → A (Sω)
and speak of sectorial convergence.

Proposition 2.1.3. a) If An → A (Sω) and all An as well as A are injective,
then A−1 → A−1 (Sω).

b) If An → A (Sω) and A ∈ L(X), then An ∈ L(X) for large n ∈ N, and
An → A in norm.

c) If An → A (Sω) and 0 ∈ �(A), then 0 ∈ �(An) for large n.

d) If (An)n ⊂ L(X) is uniformly sectorial of angle ω, and if An → A in norm,
then An → A (Sω).

e) If A ∈ Sect(Sω), then (A + ε)ε>0 is a sectorial approximation for A on Sω.

f) If A ∈ Sect(Sω), then (Aε)0<ε≤1, where

Aε := (A + ε) (1 + εA)−1,

is a sectorial approximation for A on Sω.

1Obviously this concept extends to nets. However, in all relevant situations in this book
everything can be reduced to sequences.
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Proof. a) This follows from b) in Proposition 2.1.1.
b) If An → A (Sω) and A ∈ L(X), then (1+An)−1 → (1+A)−1 in norm. But the
set of bounded invertible operators on X is open with the inversion mapping being
continuous, hence eventually (1 + An)−1 is invertible, and (1 + An) → (1 + A) in
norm.

c) Define Bn := A−1
n and B := A−1. Then Bn and B are possibly multi-valued

operators. However, by the Spectral Mapping Theorem for the resolvent (Propo-
sition A.3.1) and Lemma A.2.1 we have (1 + B)−1, (1 + Bn)−1 ∈ L(X) and
(1 + Bn)−1 → (1 + B)−1 in norm. With the same argument as in the proof
of b) we conclude that Bn ∈ L(X) for large n ∈ N .

d) Suppose that (An)n is uniformly sectorial with An → A in norm. Then
(1 + An) → (1 + A) in norm and supn

∥∥(1 + An)−1
∥∥ < ∞. This implies that

(1 + A)−1 ∈ L(X) and that (1 + An)−1 → (1 + A)−1 in norm.

e) Let A be sectorial. The uniform sectoriality of (A + ε)ε>0 has been shown in
the proof of Proposition 2.1.1 f). But it is clear that (1 + ε + A)−1 → (1 + A)−1

in norm.

f) This is a consequence of Proposition 2.1.1 f) and the identity

(A + ε)(1 + εA)−1 = ε−1(A + ε)
(

A + ε +
1− ε2

ε

)−1

.
�

Remark 2.1.4. Although we have assumed throughout the present section that A
is single-valued, the definition of sectoriality makes perfect sense even if A is multi-
valued. Admittedly, we deal mostly with single-valued operators, but sometimes
it is quite illuminating to have the multi-valued case in mind. Therefore, we speak
of a ‘multi-valued, sectorial operator’ whenever it is convenient. Note that the
fundamental identity (2.1) still holds in the multi-valued case and readily implies
that the inverse of a sectorial operator is sectorial, with the same angle. One has
x ∈ D(A) ⇔ limt→∞ t(t + A)−1x = x in the multi-valued case as well (cf. c) of
Proposition 2.1.1). This shows A0 ∩ D(A) = 0. Most statements of this section
remain true in the multi-valued case, at least after adapting notation a little. As
a rule, one has to replace expressions of the form B(B + λ)−1 by I − λ(B + λ)−1.
For example we obtain that Aε = 1/ε −

(
(1− ε2)/ε

)
(1 + εA)−1 is a sectorial

approximation of A by bounded and invertible operators (cf. Proposition 2.1.3 f)).
Note also that part k) of Proposition 2.1.1 holds even without the assumption that
A is densely defined. In this case the adjoint A′ is a multi-valued sectorial operator.

2.2 Spaces of Holomorphic Functions

In the next section we construct a functional calculus for sectorial operators. This
is done by proceeding along the lines of Chapter 1 with the primary calculus
constructed by means of a Cauchy integral. Since the spectrum of a sectorial



2.2. Spaces of Holomorphic Functions 27

operator is in general unbounded, one has to integrate along infinite lines (here:
the boundary of a sector). As a matter of fact, this is only possible for a restricted
collection of functions. Dealing with these functions requires some notation, which
we now introduce.

As in Chapter 1 we write O(Ω) for the space of all holomorphic functions
and M(Ω) for the space of all meromorphic functions on the open set Ω ⊂ C.
Suppose that A denotes a sectorial operator of angle ω on a Banach space X . We
wish to define operators of the form

f(A) :=
1

2πi

∫
Γ

f(z)R(z, A) dz, (2.4)

where f ∈ O(Sϕ), ϕ ∈ (ω, π], and the path Γ ‘surrounds’ the sector Sω in the
positive sense. This means in particular that — considered as a curve on the
Riemann sphere — Γ passes through the point ∞. To give meaning to the above
integral, the function f should have a rapid decay at ∞. We therefore introduce
the notion of a polynomial limit.

Polynomial Limits

Let ϕ ∈ (0, π], and let f ∈ M(Sϕ). We say that f has polynomial limit c ∈ C

at 0 if there is α > 0 such that f(z)− c = O(|z|α) as z → 0. We say that f has
polynomial limit ∞ at 0 if 1/f has polynomial limit 0 at 0. Similarly, we say that
f has polynomial limit d ∈ C∞ at ∞ if f(z−1) has polynomial limit d at 0.

We say that f has a finite polynomial limit at 0 (at ∞) if there is c ∈ C such
that f has polynomial limit c at 0 (at ∞). If f has polynomial limit 0 at 0 (at
∞), we call f regularly decaying at 0 (at ∞).

Clearly, if f, g both have finite polynomial limits at 0 (at ∞) also fg and
f + g do so.

Remarks 2.2.1. 1) For a function f to have a polynomial limit at∞ means that
f has a limit (within C∞) and this limit is approached at least polynomially
fast. Note that if this limit is ∞ this does not imply that f is polynomially
bounded at ∞. Indeed, considered as a function on Sϕ with ϕ ∈ [0, π/2), the
function ez has polynomial limit ∞ at ∞ but is far from being polynomially
bounded.

2) If f is meromorphic at 0, then f has a polynomial limit at 0 and this limit
is finite if and only if f is holomorphic at 0. The same remark applies to the
point ∞.

Now look again at the Cauchy integral (2.4). By the sectoriality of A, the
function f being regularly decaying at ∞ guarantees integrability at infinity, at
least if Γ is eventually straight. The same holds if f is regularly decaying at ∞. It
is therefore natural to consider the so-called Dunford–Riesz class on Sϕ, defined
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by

H∞
0 (Sϕ) := {f ∈ H∞(Sϕ) | f is regularly decaying at 0 and at ∞},

where
H∞(Sϕ) := {f ∈ O(Sϕ) | f is bounded}

is the Banach algebra of all bounded, holomorphic functions on Sϕ, endowed with
the norm

‖f‖∞ = ‖f‖∞,Sϕ
= sup{|f(z)| | z ∈ Sϕ}.

Obviously H∞
0 (Sϕ) is an algebra ideal in the algebra H∞(Sϕ). With each f(z)

also the function f(1/z) is contained in H∞
0 (Sϕ). The following description is

often helpful.

Lemma 2.2.2. Let ϕ ∈ (0, π], and let f : Sϕ −→ C be holomorphic. The following
assertions are equivalent:

(i) The function f belongs to H∞
0 (Sϕ).

(ii) There is C≥0 and s>0 such that |f(z)| ≤ C min
{
|z|s , |z|−s

}
for all z ∈ Sϕ.

(iii) There is C≥0 and s>0 such that |f(z)| ≤ C |z|s
1+|z|2s for all z ∈ Sϕ.

(iv) There is C≥0 and s>0 such that |f(z)| ≤ C
(

|z|
1+|z|2

)s

for all z ∈ Sϕ.

Proof. The proof is easy and we omit it. �

It is obvious that neither the rational function (1 + z)−1 nor the constant
function 1 is contained in H∞

0 (Sϕ). We therefore define

E(Sϕ) := H∞
0 (Sϕ)⊕

〈
(1 + z)−1

〉
⊕ 〈1〉

called the extended Dunford–Riesz class. This set is in fact a subalgebra of
H∞(Sϕ), due to the identity

1
(1 + z)2

=
1

1 + z
− z

(1 + z)2
.

Lemma 2.2.3. Let ϕ ∈ (0, π], and let f : Sϕ −→ C be holomorphic. The following
assertions are equivalent:

(i) The function f belongs to E(Sϕ).

(ii) The function f is bounded and has finite polynomial limits at 0 and ∞.

Proof. The implication (i)⇒(ii) is obvious. To prove the converse, suppose that
f ∈ H∞(Sϕ) has finite polynomial limits at 0 and ∞. Then the function g(z) :=
f(z)− f(∞)− [f(0)− f(∞)]/(1 + z) is contained in H∞

0 (Sϕ). �
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We remark that both algebras H∞
0 (Sϕ) and E(Sϕ) are invariant under inver-

sion, i.e., with f(z) also f(z−1) belongs to the set. This is clear for H∞
0 (Sϕ). For

the larger algebra it follows from

1
1 + z−1

=
z

1 + z
= 1− 1

1 + z
.

If the precise sector Sϕ is understood from the context or unimportant, we
simply write H∞

0 instead of H∞
0 (Sϕ) in the sequel. The same applies to the other

function spaces.

Example 2.2.4. Let f ∈ H∞(Sϕ) such that f is regularly decaying at ∞ and has
a holomorphic extension to a neighbourhood of 0. Then f ∈ E(Sϕ). Indeed, by
holomorphy there is a constant C such that |f(z)− f(0)| ≤ C |z| for z near 0.
Hence f has a finite polynomial limit at 0.
An important special case is the function e−z, provided one takes ϕ ∈ (0, π/2).

Example 2.2.5. Let 0 < Re β < Re α. Then for all ϕ ∈ (0, π)

zβ

(1 + z)α
∈ H∞

0 (Sϕ),
1

(1 + z)α
∈ E(Sϕ), and

zα

(1 + z)α
∈ E(Sϕ).

Proof. The function (1 + z)−α clearly is regularly decaying at ∞ and has a holo-
morphic extension to a neighbourhood of 0. Hence by Example 2.2.4 it lies in
E . This implies that zβ(1 + z)−α ∈ H∞

0 . Since (zw)α = zαwα whenever | arg z|,
| argw|, | arg z + argw| < π, we have

1
(1 + z−1)α

=
(

1
1 + z−1

)α

=
(

z

1 + z

)α

=
zα

(1 + z)α
. �

Next, we consider an important construction.

Example 2.2.6. Let ψ ∈ H∞
0 (Sϕ), and define

h(z) :=
∫ 1

0

ψ(sz)
ds

s
and g(z) :=

∫ ∞

1

ψ(sz)
ds

s

for z ∈ Sϕ. Then h, g ∈ E(Sϕ), h(0) = g(∞) = 0, and

h(z) + g(z) =
∫ ∞

0

ψ(s)
ds

s
(z ∈ Sϕ)

is constant.

Proof. Choose C, α > 0 such that |ψ(z)| ≤ C min
{
|z|α , |z|−α

}
. Then

|h(z)| ≤ C

∫ 1

0

|sz|α ds

s
= (C/α) |z|α .
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Analogously, |g(z)| ≤ (C/α) |z|−α. This shows not only that g, h are well defined,
but also that h behaves well at 0 and g behaves well at ∞. By Morera’s theorem,
g and h are holomorphic. The function

c(z) :=
∫ ∞

0

ψ(sz)
ds

s

is constant on (0,∞) (by change of variables) hence on the whole sector Sϕ (by
holomorphy). Thus we can write h − c = −g thereby showing that g, h ∈ E(Sϕ)
and g(0) = h(∞) = c. �

2.3 The Natural Functional Calculus

In this section A denotes always a sectorial operator of angle ω on a Banach space
X . We pursue our idea of defining a functional calculus by means of a Cauchy
integral. Following the abstract setting of Section 1.2 and Section 1.3 we start
with the primary calculus.

2.3.1 Primary Functional Calculus via Cauchy Integrals

Fix ϕ ∈ (0, π) and δ > 0. We denote by Γϕ := ∂Sϕ the boundary of the sector
Sϕ, oriented in the positive sense, i.e.,

Γϕ := −R+eiϕ ⊕ R+e−iϕ.

For ϕ ∈ (ω, π) and f ∈ H∞
0 (Sϕ) we define

f(A) :=
1

2πi

∫
Γω′

f(z)R(z, A) dz, (2.5)

where ω′ ∈ (ω, ϕ) is arbitrary. A standard argument using Cauchy’s integral
theorem shows that this definition is actually independent of ω′. (Figure 3 below
illustrates the definition of f(A).)

Lemma 2.3.1. Let A ∈ Sect(ω), and let ϕ ∈ (ω, π). Then the following assertions
hold.

a) The mapping (h �→ h(A)) : H∞
0 (Sϕ) −→ L(X) is a homomorphism of alge-

bras.

b) If B is a closed operator commuting with the resolvents of A, then B com-
mutes with f(A). In particular, f(A) commutes with A and with R(λ, A) for
all λ ∈ �(A).

c) We have R(λ, A)f(A) = ((λ − z)−1f)(A) for each λ /∈ Sϕ.
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Proof. a) is a simple application of Fubini’s theorem and the resolvent identity.

b) is trivial.

c) Define g := (λ− z)−1f and Γ := Γω′ . Then

(λ−A)−1g(A) =
1

2πi

∫
Γ

g(z)(λ−A)R(z, A) dz

=
1

2πi

∫
Γ

g(z)
[
(λ − z)R(z, A) + I

]
dz

=
1

2πi

∫
Γ

f(z)R(z, A) dz +
1

2πi

∫
Γ

g(z) dz = f(A)

since the latter summand equals 0 by Cauchy’s theorem. �

Γ = Γω′

f(A) =
1

2πi

Z
Γ

f(z)R(z, A) dz

σ(A)

∂Sϕ

∂Sω

Figure 3: Integration into 0 is possible due to rapid decay of f .

We extend the definition of f(A) from f ∈ H∞
0 (Sϕ) to all f ∈ E(Sϕ). This

can be done by defining

g(A) := f(A) + c(1 + A)−1 + d (2.6)
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whenever g = f + c(1 + z)−1 + d with f ∈ H∞
0 (Sϕ) and c, d ∈ C. We will show

that this yields an algebra homomorphism

ΦA := (g �−→ g(A)) : E(Sϕ) −→ L(X)

which gives rise to a meromorphic functional calculus (E(Sϕ),M(Sϕ), Φ) in the
sense of Section 1.3. To establish this fact, there is still some work to do.

Let us (for the moment) introduce the notation

H∞
(0)(Sϕ) := {f ∈ H∞(Sϕ) | f is regularly decaying at ∞

and holomorphic at 0}.

We saw in Example 2.2.4 that H∞
(0)(Sϕ) ⊂ E(Sϕ). The next lemma shows that for

f ∈ H∞
(0)(Sϕ) the value of f(A) can also be computed by a Cauchy integral.

Lemma 2.3.2. Let f ∈ H∞
(0)(Sϕ), ω′ ∈ (ω, ϕ), and let δ > 0 be small enough so

that f is holomorphic in a neighbourhood of Bδ(0). Then

f(A) =
1

2πi

∫
Γ

f(z)R(z, A) dz

where Γ = Γω′,δ is the positively oriented boundary of Sω′ ∪Bδ(0).

Figure 4 below gives an impression of what is going on.

Proof. If f ∈ H∞
(0)(Sϕ) ∩H∞

0 (Sϕ) then the statement is true since one can shrink
the path around the point 0 to 0 without changing the value of the integral. As a
general f ∈ H∞

(0) may be written as f = g+ c(1+z)−1 with g ∈ H∞
(0)∩H∞

0 , we are
left to show the claim for f(z) = (1 + z)−1. The idea is to introduce the contour
Γ′ := −Γω′,R with R > 1. Cauchy’s theorem shows that

∫
Γ′(1 + z)−1R(z, A) dz =

0. Indeed, without changing the value of this integral the path may be shifted
to the left, whereupon the value of the integral tends to 0. However, if we add
the integral over Γ′ and the initial integral over Γ, some parts cancel and there
remains only a simple closed curve around the singularity −1. So by Cauchy’s
theorem one obtains −R(−1, A) = (1 + A)−1 as its final value. �

Now we can put the pieces together.

Theorem 2.3.3. Let A ∈ Sect(ω) on X, and let ϕ ∈ (ω, π). The mapping

ΦA := (g �−→ g(A)) : E(Sϕ) −→ L(X)

defined by (2.6) is a homomorphism of algebras. Moreover, it has the following
properties:

a)
(
z(1 + z)−1

)
(A) = A(1 + A)−1.
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Γ = Γω′,δ

f(A) =
1

2πi

Z
Γ

f(z)R(z, A) dz

σ(A)

∂Sω

Figure 4: The contour of integration avoids 0 with f being analytic there.

b) If B is a closed operator commuting with the resolvents of A, then B also
commutes with f(A) for each f ∈ E(Sϕ). In particular, each f(A) commutes
with A.

c) If x ∈ N(A) and f ∈ E(Sϕ), then f(A)x = f(0)x.

d) Let B denote the injective part of A. Then Y := R(A) is invariant under the
action of each f(A), and one has f(B) = f(A)|Y .

Proof. Take two functions gi = fi + ci(1 + z)−1 + di (i = 1, 2) in E with fi ∈ H∞
0

and ci, di ∈ C. Since Φ is linear one has to take care of all mixed products.
When a constant di is involved there is nothing to show; the products f1f2 and
fi(1 + z)−1 are dealt with using Lemma 2.3.1. The assertion for the remaining
product (1+z)−1(1+z)−1 = (1+z)−2 follow from Lemma 2.3.2, Fubini’s theorem
and the resolvent identity.

a) By what we have already proved, (z(1 + z)−1)(A) = 1(A) − (1 + z)−1(A) =
I − (1 + A)−1A(1 + A)−1.

b) is trivial.
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c) For x ∈ N(A) and z ∈ �(A) one has R(z, A)x = (1/z)x. Hence one has

f(A)x =
1

2πi

∫
Γ

f(z)
z

dz x = 0 · x = 0

for f ∈ H∞
0 , by Cauchy’s theorem. The rest follows.

d) follows from the fact that Y is R(λ, A)-invariant, with R(λ, A)|Y = R(λ, B) for
all λ ∈ �(A). �

We call the algebra homomorphism

ΦA = (f �−→ f(A)) : E(Sϕ) −→ L(X) (2.7)

the primary functional calculus (in short: pfc) on Sϕ for A as a sectorial operator.

Remark 2.3.4. Note that the definition of this primary calculus is perfectly mean-
ingful even if A is multi-valued. Theorem 2.3.3 holds true (after reformulating
part a) appropriately) even in this more general case. We shall not use this fact
except for Section 3.4 when we treat holomorphic semigroups.

We close this section with a result similar to Lemma 2.3.2.

Corollary 2.3.5. Let A ∈ Sect(ω), ϕ ∈ (ω, π), and let f ∈ O(Sϕ) be holomorphic
at both points 0 and ∞. Then f ∈ E(Sϕ) and f(A) is given by

f(A) = f(∞) +
1

2πi

∫
Γ

f(z)R(z, A) dz

where the contour Γ = Γω′,δ,R is as is shown in Figure 5 (with ω′ ∈ (ω, ϕ), δ > 0
small and R > 0 large enough).

Proof. Define g(z) = f(z) − f(∞) ∈ H∞
(0). Then f(A) = f(∞) + g(A) and we

use Lemma 2.3.2 to compute g(A) = 1
2πi

∫
Γω′,δ

g(z)R(z, A) dz. Applying Cauchy’s
theorem we may replace the (infinite) path of integration Γω′,δ by the finite path
Γω′,δ,R, with R large enough. After another application of Cauchy’s theorem the
constant f(∞) cancels and we are done. �

2.3.2 The Natural Functional Calculus

As before, let A ∈ Sect(ω) and ϕ ∈ (ω, π). By Theorem 2.3.3 we have established
an abstract functional calculus

(E(Sϕ),M(Sϕ), ΦA),

which is proper since (1 + z)−1(A) = (1 + A)−1 is injective. In fact, by Theorem
2.3.3 a) the function (1 + z)−1 regularises z and

z(A) = (1 + A)(z(1 + z)−1)(A) = (1 + A)A(1 + A)−1 = A.
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Sω

−R −δ

Γ

Figure 5: The function f is holomorphic outside the dashed line, including the point ∞.

Hence in the terminology of Section 1.3 our abstract functional calculus is even a
meromorphic functional calculus for A on Sϕ. We write

M(Sϕ)A :=
{
f ∈M(Sϕ)

∣∣ ∃ e ∈ E(Sϕ) : e(A) is injective and ef ∈ E(Sϕ)
}

to denote the class of functions which are regularisable within this abstract func-
tional calculus. For f ∈M(Sϕ), the operator f(A) is defined by

f(A) := e(A)−1(ef)(A)

with e ∈ E(Sϕ) being an arbitrary regulariser of f . The next lemma is quite useful.

Lemma 2.3.6. Let A ∈ Sect(ω), ϕ ∈ (ω, π), and f ∈ M(Sϕ)A. Then one can find
a regulariser e ∈ E(Sϕ) for f with e(∞) = 0. If A is injective, one can even find
a regulariser e ∈ H∞

0 (Sϕ).

Proof. If d is any regulariser for f then e := (1 + z)−1d is a regulariser as well
which moreover satisfies e(∞) = 0. If A is injective, then e := z(1 + z)−2d is a
regulariser for f with e ∈ H∞

0 . �
Since we have a meromorphic functional calculus for A, it follows from The-

orem 1.3.2 that

(µ− z)(A) = µ−A, (λ− z)−1(A) = R(λ, A) (2.8)

for all µ ∈ C and λ ∈ �(A). More generally, r(A) has its usual meaning (as ex-
plained in Appendix A.6) for every rational function r with poles in �(A) (Propo-
sition 1.3.3).
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Now note that we can choose ϕ arbitrarily close to ω. For ϕ1 > ϕ2 > ω we
may regard M(Sϕ1) in a natural way as a subalgebra of M(Sϕ2) and we have
likewise E(Sϕ1) ⊂ E(Sϕ2). The corresponding functional calculi are consistent,
which means that these inclusions give rise to a morphism (cf. Proposition 1.2.7)

(E(Sϕ1),M(Sϕ1), ΦA) ↪→ (E(Sϕ2),M(Sϕ2), ΦA).

Writing E [Sω] :=
⋃

ϕ∈(ω,π) E(Sϕ) and M[Sω] :=
⋃

ϕ∈(ω,π)M(Sϕ) we thus (as an
‘inductive limit’) obtain a meromorphic functional calculus

(E [Sω],M[Sω], Φ)

which we call the natural functional calculus for A as a sectorial operator on
Sω. Note that again we may view M[Sω] as a subalgebra of M(Sω) so that this
calculus is even a meromorphic functional calculus for A on Sω (in the terminology
of Section 1.3). The set

M[Sω]A :=
⋃

ϕ∈(ω,π)

M(Sϕ)A

is called the domain of this calculus. As in Chapter 1 we write

H(A) := {f ∈ M[Sω]A | f(A) ∈ L(X)}

as an abreviation.
For simplicity, we frequently omit explicit reference to the sector and simply

write ‘MA’ instead of ‘M[Sω]A’, provided that no ambiguities occur. Also we
use the abbreviation O[Sω]A := O[Sω ] ∩MA and similar ones for other function
classes.

Remarks 2.3.7. 1) One should keep in mind that a function f belonging to E [Sω]
or M[Sω]A, is actually defined on a larger sector Sϕ for some ϕ ∈ (ω, π].

2) As in Section 1.3 we warn the reader not to forget that our notationsM(Sϕ)A,
M[Sω]A and H(A) are somewhat inaccurate. In fact, these sets do not only
depend on A but also on the domain of the primary calculus. Since we are
going to encounter other primary calculi in later sections, this remark should
always be recalled.

3) To distinguish different functional calculi which may be defined for the same
operator A (even on the same set Ω) we may add the words ‘as a sectorial
operator’ to the notion of ‘natural functional calculus’. If for example the
operator A is also bounded, then one has in addition the usual Dunford
calculus at hand (see the Preface). This calculus could be named the ‘natural
functional calculus for A as a bounded operator’. If A is not invertible then
z1/2 is in the domain of the natural funcional calculus for A as a sectorial,
but not as a bounded operator. Similarly, the function e1/(r−z) for r > r(A)
is in the domain of the natural functional calculus for A as a bounded, but
not as a sectorial operator.
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The general properties of the so-defined ‘natural functional calculus’ for A as
a sectorial operator are summarised in Theorem 1.3.2 with Ω := Sω (and, in fact,
M[Sω]A instead of M(Sω)A). We often shall use them without further mention.

Which functions f are contained in MA? The next lemma shows that a limit
behaviour at 0 is necessary if A is not injective.

Lemma 2.3.8. Let A ∈ Sect(ω), f ∈ MA, and λ ∈ Sω. Then at least one of the
following assertions holds.

1) There is c ∈ C and α > 0 such that f(z)− c = O(|z|α) as z → λ.

2) The operator λ−A is injective.

If A is not injective, then f(A)x = f(0)x for all x ∈ N(A).

Proof. Let e ∈ E be a regulariser for f . Then also ef ∈ E . Suppose that f
fails 1), and that λ 
= 0. Then λ is a pole of f , whence e(λ) = 0. Hence also
h(z) := e(z)/(z − λ) ∈ E and e(A) ⊃ h(A)(A − λ). Since e(A) is injective and
h(A) ∈ L(X), A− λ must be injective.

To complete the proof, suppose λ = 0 and A is not injective. Since e(A)x =
e(0)x for every x ∈ N(A) (Theorem 2.3.3) and e(A) is injective, e(0) 
= 0. Hence

f(z)− f(0) =
[e(z)f(z)− e(0)f(0)]− f(0)[e(z)− e(0)]

e(z)

for z near 0, thereby showing the assertion. �
Corollary 2.3.9. Let X be reflexive, and let A ∈ Sect(ω) with N(A) 
= 0. Denote
by B the injective part of A. If f ∈MA, then also f ∈MB with

D(f(A)) = N(A)⊕D(f(B)) and f(A)(x ⊕ y) = f(0)x⊕ f(B)y

for all x⊕ y ∈ N(A) ⊕D(f(B)).

Proof. Note first that f(0) makes sense since A is not injective. Let e be a reg-
ulariser for f in the functional calculus for A. Then e, ef ∈ E with e(0) 
= 0
(since A is not injective) and e(A) is injective. By Theorem 2.3.3, e(A)(x ⊕ y) =
e(0)x ⊕ e(B)y for all x ⊕ y ∈ N(A) ⊕ R(A), whence e(B) is also injective. This
shows that f ∈ MB and

f(A) = e(A)−1(ef)(A) = e(0)−1 ⊕ e(B)−1[(ef)(0)⊕ (ef)(B)] = f(0)⊕ f(B)

in suggestive notation. �

2.3.3 Functions of Polynomial Growth

To determine subclasses of MA, one looks for natural regularisers. Taking ele-
mentary rational functions leads to the definition

A(Sϕ) :=
{
f : Sϕ −→ C | ∃n ∈ N : f(z)(1 + z)−n ∈ E(Sϕ)

}
.
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and A[Sω] :=
⋃

ϕ∈(ω,π)A(Sϕ). If ϕ is understood or not important, we write
simply A instead of A(Sϕ).

Lemma 2.3.10. For f ∈ O[Sω] the following assertions are equivalent:

(i) The function f belongs to A.

(ii) The function f has the following two properties:

1) f(z) = O(|z|α) (z →∞) for some α ∈ R, and

2) f has a finite polynomial limit at 0.

(iii) There is c ∈ C, n ∈ N, and F ∈ H∞
0 such that f(z) = c + (1 + z)nF (z).

If f is bounded, one can take n = 1 in (iii).

In particular, A[Sω] is an algebra of functions containing every rational func-
tion with poles outside of Sω.

Proof. (i)⇒(ii). If g(z) := f(z)(1+z)−n ∈ E , then clearly condition 1) is satisfied.
Because g has a finite polynomial limit at 0, also f = (1 + z)ng has a finite
polynomial limit at 0.
(ii)⇒(iii). Choose α as in (ii), and let n > α. Then (f(z)− f(0))(1+ z)−n ∈ H∞

0 .

(iii)⇒(i). This is trivial. �

Proposition 2.3.11. Let A ∈ Sect(ω). Then A[Sω] ⊂ MA. For f ∈ A[Sω] the
following assertions hold.

a) If A is bounded, so is f(A).

b) One has [(z − µ)f(z)](A) = (A− µ)f(A) for all µ ∈ C.

c) If D(A) = X and f(z)(1 + z)−n ∈ E, then D(An) is a core for f(A).

Proof. a) It is immediate that A[Sω] ⊂ MA. Let f ∈ A, and choose n such that
F := f(1 + z)−n ∈ E . If A is bounded, then f(A) = (1 + A)nF (A) ∈ L(X).
b) By (2.8) and Lemma A.6.1 we have

((z − µ)f(z))(A) = (1 + A)n+1

(
f(z)(z − µ)
(1 + z)n+1

)
(A)

= (1 + A)n+1[(A− µ)(1 + A)−1]F (A) = (A− µ)(1 + A)n+1(1 + A)−1F (A)
= (A− µ)(1 + A)nF (A) = (A− µ)f(A).

c) Note that the operator F (A) commutes with (1 + A)−n, whence D(An) is
F (A)-invariant. This gives D(An) ⊂ D(f(A)). For arbitrary x ∈ D(f(A)) we
have Tt(x) := (t(t + A)−1)nx → x as t →∞. As a matter of fact, Tt(x) ∈ D(An)
and — by Proposition 2.1.1 c) — also f(A)Ttx = Ttf(A)x → f(A)x. �
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Remark 2.3.12. Interestingly enough, polynomial growth at ∞ is not the best one
can achieve for an arbitrary sectorial operator. In fact, we shall see in Section 3.4
that if ωA < π/2 then e−A := e−z(A) is injective (cf. Proposition 3.4.4.) Hence e−z

is a regulariser which compensates even exponential growth at ∞. If ωA happens
to be larger than π/2, one can use the functions e−zα

with suitable α ∈ (0, 1).
Therefore we see that O[Sω]A is much larger than A[Sω]. However, a property
like b) of the last proposition cannot be expected for more general functions since
its proof rests on the fact that the regulariser is the inverse of a polynomial.

2.3.4 Injective Operators

Throughout this section we consider an injective, sectorial operator A ∈ Sect(ω)
on the Banach space X . (If X is reflexive, then automatically D(A) = R(A) = X .)
With A being injective also the function τ(z) := z(1 + z)−2 ∈ H∞

0 (and each of
its powers) is a regulariser since τ(A) = A(1 + A)−2 is injective. Let us denote its
inverse by

ΛA := τ(A)−1 = (1 + A)2A−1 = (1 + A)A−1(1 + A) = (2 + A + A−1),

with D(ΛA) = D(A) ∩ R(A). The class of functions regularised by powers of τ is

B(Sϕ) := {f : Sϕ −→ C | there is n ∈ N : τ(z)nf(z) ∈ H∞
0 (Sϕ)},

where ϕ ∈ (0, π]. As usual, we write B := B[Sω ] :=
⋃

ϕ∈(ω,π) B(Sϕ). Obviously,
B(Sϕ) is an algebra of functions and A(Sϕ) ⊂ B(Sϕ). A holomorphic function f
on Sϕ belongs to B if and only if f has at most polynomial growth at 0 and at ∞
(and is bounded in between). In particular, H∞(Sϕ) is a subalgebra of B(Sϕ).

Proposition 2.3.13. Let A ∈ Sect(ω) be injective. Then B[Sω] ⊂ MA. Moreover,
the following assertions hold.

a) If X is reflexive, then D(A) = R(A) = D(An) ∩ R(An) for every n ∈ N.

b) If D(A) = X = R(A) and f(z)τn ∈ H∞
0 , then D(An) ∩ R(An) is a core for

f(A).

Proof. a) Let x ∈ X . Then An(t + A)−n(1 + tA)−nx ∈ D(An) ∩ R(An). By
Proposition 2.1.1 we have limt→0 An(t+A)−n(1+ tA)−nx = x if x ∈ D(A)∩R(A).

b) is proved in the same way as c) of Proposition 2.3.11. �

Remark 2.3.14. A law of the form (zf(z))(A) = Af(A) cannot hold in general
for all f ∈ B (cf. Proposition 2.3.11 b)). Indeed, by Theorem 1.3.2 f) we have
(z−1)(A) = A−1, but (zz−1)(A) = (1)(A) = I 
= AA−1 = A[(z−1)(A)] in general.
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We conclude this section with an important example.

Example 2.3.15. Let (Ω, Σ, µ) be a σ-finite measure space, and let a ∈M(Ω, µ; C)
be as in Sections 1.4 and 2.1.1. Let A := Ma be the multiplication operator on
Lp(Ω, µ) and K := essrana = σ(A) its spectrum. We suppose that A ∈ Sect(ψ),
i.e., K ⊂ Sψ. For simplicity we also suppose that A is injective, i.e., µ(a = 0) = 0
(Lemma 1.4.1). Take ϕ ∈ (ψ, π). Then we have defined two abstract functional
calculi

(L∞(K, a[µ]), M(K, a[µ]; C∞), Φ1) and (E(Sϕ),M(Sϕ), Φ2)

where Φ1(f) = Mf◦a and Φ2(f) = f(A). Since the set {a = 0} is a µ-null set by
assumption, M(Sϕ) ‘embeds’ naturally into M(K, a[µ]; C∞). More precisely, one
considers the mapping

θ :=
(
f �−→ [f

∣∣
K

]
)

:M(Sϕ) −→M(K, a[µ]; C∞).

We claim that this mapping is a morphism of abstract functional calculi in the
sense of Section 1.2.3.

Proof. The only thing to show is that f(A) = Mf◦a for f ∈ H∞
0 (Sϕ). Take

x ∈ Lp(Ω, µ) and x′ ∈ Lp′
(Ω, µ), where p′ is the dual exponent. Using Fubini’s

and Cauchy’s theorem we compute

〈x′, f(A)x〉 =
1

2πi

∫
Γ

f(z) 〈x′, R(z, A)x〉 dz

=
1

2πi

∫
Γ

f(z)
∫

Ω

x′(ω)
x(ω)

z − a(ω)
µ(dω) dz

=
∫

Ω

x′(ω)x(ω)
1

2πi

∫
Γ

f(z)
z − a(ω)

dz µ(dω)

=
∫

Ω

x′(ω)x(ω)f(a(ω))µ(dω) = 〈x′, Mf◦ax〉 .

Since x′ was arbitrary, we obtain f(A) = Mf◦a as desired. �

The consequence of this fact is that also for the extended calculi one has
compatibility, i.e., f(A) = Mf◦a holds for all f ∈M(Sϕ)A.

If A is not injective, all the above statements remain true, for the formal
argument one however has to replace M(Sϕ) by its subalgebra of functions with
limits at 0.
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2.4 The Composition Rule

Let A ∈ Sect(ω) be injective. Then also A−1 is sectorial, of same angle (Proposi-
tion 2.1.1). A straightforward conjecture now would be the validity of an identity

f(z−1)(A) = f(A−1)

for f ∈M[Sω]A−1 , at least if also the left-hand side is defined. In fact, even more
is true.

Proposition 2.4.1. Let A ∈ Sect(ω) be injective, and let f ∈ M(Sϕ) for some
ϕ ∈ (ω, π). Then

f ∈ M(Sϕ)A−1 ⇐⇒ f(z−1) ∈ M(Sϕ)A

and in this case f(A−1) = f(z−1)(A).

Proof. We employ Proposition 1.3.6. Namely, we have meromorphic functional
calculi (H∞

0 (Sϕ),M(Sϕ), ΦA) and (H∞
0 (Sϕ),M(Sϕ), ΦA−1) and g(z) := z−1 maps

Sϕ to itself. By Proposition 1.3.6 one only has to prove the assertion for all
f ∈ H∞

0 (Sϕ). But this follows from an easy change of variables in the defining
Cauchy integral, using the fundamental identity (2.1). �

The foregoing was an instance of the so-called composition rule

(f ◦ g)(A) = f(g(A)).

(see Section 1.3). As a matter of fact, the rule as it stands does not make sense
unless we require some additional hypotheses. Basically, we need that A is secto-
rial, g(A) is defined and also sectorial, and g maps a sector into another sector.
More precisely, we require the following:

1) A ∈ Sect(ω).

2) g ∈ M[Sω]A and g(A) ∈ Sect(ω′).

3) For every ϕ′ ∈ (ω′, π) there is ϕ ∈ (ω, π) with g ∈M(Sϕ) and g(Sϕ) ⊂ Sϕ′ .

Under these requirements obviously g(Sω) ⊂ Sω′ .

Theorem 2.4.2. (Composition Rule) Let the operator A and the function g satisfy
the conditions 1), 2), and 3) above. Then f ◦ g ∈ M[Sω]A and

(f ◦ g)(A) = f(g(A)) (2.9)

for every f ∈ M[Sω′ ]g(A).

Let us first discuss the case that g = c is a constant. Then g(A) = c, and
if c 
= 0, everything is easy by Cauchy’s theorem. If c = 0, i.e., g(A) = 0, then
f ∈ M[Sω′ ]g(A) need to have a ‘nice’ behaviour at 0 (Lemma 2.3.8). So f ◦ g is in
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fact defined (it is the constant f(0)) and again by Lemma 2.3.8 the composition
rule holds.

Hence in the following we may suppose without loss of generality that g is
not a constant. Given this, by the Open Mapping Theorem one has g(Sω) ⊂ Sω′

and the stronger property

3)′ For every ϕ′ ∈ (ω′, π) there is ϕ ∈ (ω, π) with g ∈M(Sϕ) and g(Sϕ) ⊂ Sϕ′ .

We now appeal to the abstract composition rule Proposition 1.3.6 from Chap-
ter 1 with the data

(E [Sω],M(Sω), ΦA) (meromorphic f.c. for A on Sω),
(E [Sω′ ],M(Sω′), Φg(A)) (meromorphic f.c. for g(A) on Sω′),
g : Sω −→ Sω′ .

Hence it suffices to prove the assertions of Theorem 2.4.2 only for f ∈ E [Sω]A.

Lemma 2.4.3. Let A and g be as in Theorem 2.4.2, and let f ∈ E [Sω′ ]. Then
f ◦ g ∈ H∞[Sω]A.

Proof. We may suppose that g is not a constant. Clearly f ◦ g ∈ H∞[Sω]. If A is
injective, nothing is to prove. If A is not injective, g has a finite polynomial limit
g(0) at 0 (Lemma 2.3.8). But f has a finite polynomial limit at f(0). (If g(0) 
= 0
this follows from the holomorphy of f at c). So also f ◦ g has a finite polynomial
limit at 0, and therefore (f ◦ g)(A) is defined. �

Lemma 2.4.4. Let A and g be as above, and let f ∈ E [Sω′ ]. Then the composition
rule f(g(A)) = (f ◦ g)(A) holds.

Proof. Again we suppose that g is not a constant. Let f ∈ E [Sω′ ]. Then there
are constants c, d ∈ C and f1 ∈ H∞

0 [Sω′ ] such that f = c1 + d/(1 + z) + f1.
Now for f = c1 there is nothing to prove. If f = d/(1 + z) then the assertion is
contained in Theorem 1.3.2 f). Hence without loss of generality we may suppose
that f ∈ H∞

0 . For λ /∈ Sω′ the function (λ − g(z))−1 certainly is bounded and
holomorphic on Sϕ. Now

f(g(A)) =
1

2πi

∫
Γ′

f(λ)R(λ, g(A)) dλ =
1

2πi

∫
Γ′

f(λ)
(

1
λ− g(z)

)
(A) dλ

where Γ′ = ∂Sω′
1

for suitable ω′
1 ∈ (ω′, π). We choose ϕ′ ∈ (ω′, ω′

1) and according
to 3)′ we find ϕ ∈ (ω, π) such that g(Sϕ) ⊂ Sϕ′ . We consider two cases:

1) A is injective.

2) A is not injective.

The first case is easier to handle. If A is injective we can use τ(z) := z(1 + z)−2
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as a regulariser, let Γ surround Sω within Sϕ, and compute

f(g(A)) = ΛAτ(A)f(g(A)) = ΛA
1

2πi

∫
Γ′

f(λ)τ(A)R(λ, g(A)) dλ

= ΛA
1

2πi

∫
Γ′

f(λ)
(

z

(1 + z)2(λ− g(z))

)
(A) dλ

= ΛA
1

(2πi)2

∫
Γ′

∫
Γ

f(λ)
z

(1 + z)2(λ− g(z))
R(z, A) dz dλ

(1)
= ΛA

1
2πi

∫
Γ

f(g(z)) z

(1 + z)2
R(z, A) dz

= ΛA (f(g(z)) τ(z)) (A) = (f ◦ g)(A).

(Recall the definition ΛA := τ(A)−1.) Equality (1) is an application of Cauchy’s
integral theorem. Before, one has to interchange the order of integration. To
justify this, note that the function

f(λ)
(λ− g(z))(1 + z)2

=
λ

λ− g(z)
f(λ)

λ

1
(1 + z)2

is product integrable on Γ× Γ′ since the first factor is uniformly bounded.

To cover the second case, suppose that A is not injective. Then g has a finite
polynomial limit c := g(0) at 0 (Lemma 2.3.8). Define g1(z) := g(z) − g(0) and
choose a regulariser e ∈ E for g1 with e(∞) = 0. Then eg1 ∈ H∞

0 . Furthermore,
for λ /∈ Sϕ′ the function [(λ − g(z))−1 − (λ − c)−1] is also regularised by e. Thus
we compute

f(g(A)) = e(A)−1e(A)f(g(A)) = e(A)−1 1
2πi

∫
Γ′

f(λ)e(A)R(λ, g(A)) dλ

= e(A)−1 1
2πi

∫
Γ′

f(λ)
(

e(z)
λ− g(z)

)
(A) dλ

= e(A)−1 1
2πi

∫
Γ′

f(λ)
(

g1(z)e(z)
(λ− g(z))(λ− g(0))

+
e(z)
λ− c

)
(A) dλ

= e(A)−1 1
2πi

∫
Γ′

f(λ)
(

(g1e)(z)
(λ− g(z))(λ− c)

)
(A) +

f(λ)
λ− c

e(A) dλ

= e(A)−1 1
2πi

∫
Γ′

f(λ)
(

(g1e)(z)
(λ− g(z))(λ− c)

)
(A) dλ

+ e(A)−1 1
2πi

∫
Γ′

f(λ)
λ− c

dλ e(A).
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The second summand equals f(c) by Cauchy’s theorem. The first satisfies

e(A)−1 1
2πi

∫
Γ′

f(λ)
(

(g1e)(z)
(λ− c)(λ − g(z))

)
(A) dλ

= e(A)−1 1
2πi

∫
Γ′

f(λ)
1

2πi

∫
Γ

(g1e)(z)
(λ− c)(λ− g(z))

R(z, A) dz dλ

(1)
= e(A)−1 1

2πi

∫
Γ

(
1

2πi

∫
Γ′

f(λ)
[

1
λ− g(z)

− 1
λ− c

]
dλ

)
e(z)R(z, A) dz

(2)
= e(A)−1 1

2πi

∫
Γ

(f(g(z))− f(c)) e(z)R(z, A) dz

(3)
= e(A)−1 [(f(g(z))− f(c))e(z)] (A)

= e(A)−1 ((f ◦ g)(A)− f(c)) e(A) = (f ◦ g)(A) − f(c)

where we used Fubini’s theorem in (1) and Cauchy’s theorem in (2). To justify
the application of Fubini’s theorem in (1) one has, after estimating the resolvent,
to consider the function

F (λ, z) :=
f(λ)(g1e)(z)

(λ− c)(λ − g(z))z

and prove its product integrability. The representation

F (λ, z) =
(

f(λ)
λ

)(
λ

(λ− c)(λ− g(z))

)(
(g1e)(z)

z

)
shows that c 
= 0 is harmless since λ/(λ − g(z)) is uniformly bounded because of
the conditions g(z) ∈ Sϕ′ and λ ∈ Γ′. (Recall that (eg1) ∈ H∞

0 .) If c = 0 (hence
g1 = g) we write

F (λ, z) =
(

f(λ)
λ

)(
1

λ− g(z)

)(
(ge)(z)

z

)
=
(

f(λ)
λ1+α

)(
λαg(z)1−α

λ− g(z)

)(
g(z)αe(z)

z

)
.

(Recall that g has no poles within Sϕ.) Here α ∈ (0, 1) is chosen in such a way
that the first factor remains integrable. Then the middle term is still uniformly
bounded. It is easily seen that also egα ∈ H∞

0 , whence F is integrable. �

This concludes the proof of Theorem 2.4.2. We shall encounter several ap-
plications of the composition rule throughout the remaining parts of this book, in
particular in Chapter 3.
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2.5 Extensions According to Spectral Conditions

In this section we treat sectorial operators which are invertible and/or bounded.
The additional hypothesis makes it possible to set up a new primary functional
calculus extending the E-calculus. Strictly speaking this leads to completely new
abstract functional calculi extending the one from the previous section.

2.5.1 Invertible Operators

Let A ∈ Sect(ω) be invertible. Then Br(0) ⊂ �(A), where 1/r = rA−1 is the
spectral radius of A−1. It should be clear that in setting up a functional calculus
for A on a sector Sϕ with ϕ ∈ (ω, π], the behaviour of the functions at 0 does not
matter. Define

E∞(Sϕ) :=
{
f ∈ O(Sϕ)

∣∣ f = O(|z|−α) (z →∞) for some α > 0
}
.

For A ∈ Sect(ω) satisfying 0 ∈ �(A) and f ∈ E∞(Sϕ) (ϕ ∈ (ω, π]) we define as
usual

Φ(f) := f(A) :=
1

2πi

∫
Γ

f(z)R(z, A) dz,

where the path Γ bounds a sector Sω′ (with ω′ ∈ (ω, ϕ)), except for the region
near 0 where it avoids 0 at small distance, cf. Figure 6 below.

As a matter of fact, one can prove in a similar way a theorem analogous to
Theorem 2.3.3. Hence a meromorphic functional calculus (E∞(Sϕ),M(Sϕ), Φ) for
A on Sϕ is defined. As in Section 2.3 one can form the inductive limit as ϕ → ω
and obtains a meromorphic functional calculus

(E∞[Sω],M[Sω], Φ)

on Ω := Sω. We call it the natural functional calculus on Sω for A as an invertible,
sectorial operator. It clearly forms a consistent extension of the natural functional
calculus for A as a sectorial operator (defined in Section 2.3).

Remark 2.5.1. The construction of the calculus for invertible sectorial operators
can of course be refined. Indeed, one can pass to functions f which are not even
defined near the origin. Since this would make necessary a lot more notation we
omit it.

In order to prove a composition rule as in Theorem 2.4.2, we have to face
several cases, namely the combinations

1) A sectorial, g(A) invertible and sectorial;

2) A invertible and sectorial, g(A) sectorial;

3) Both A, g(A) invertible and sectorial.

The proofs are similar to the proof of Theorem 2.4.2. However, in cases 1) and 3)
one needs the additional assumption 0 /∈ g(Sϕ) on the function g.
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Γ

f(A) =
1

2πi

Z
Γ

f(z) R(z, A) dz

σ(A)

∂Sϕ

∂Sω

Figure 6: Cauchy integral in the case of invertibility of A.

2.5.2 Bounded Operators

Now we are concerned with the ‘dual’ situation, namely with a bounded operator
A ∈ Sect(ω). It is then clear that for the expression f(A) to make sense, the limit
behaviour of f at ∞ is irrelevant. Define

E0(Sϕ) := {f ∈ O(Sϕ) | f = O(|z|α) (z → 0) for some α > 0}.

For A ∈ Sect(ω) ∩ L(X) and f ∈ E0(Sϕ) (ϕ ∈ (ω, π]) we define as usual

Φ(f) := f(A) :=
1

2πi

∫
Γ

f(z)R(z, A) dz,

where the contour Γ bounds a sector Sω′ (with ω′ ∈ (ω, ϕ)), except for the region
near ∞ where it avoids ∞ and stays away from σ(A). If A is injective we may
leave it at this and obtain a meromorphic functional calculus (E0(Sϕ),M(Sϕ), Φ)
for A on Sω. If A is not injective — as in the case of a general sectorial operator
— we have to include also functions which are holomorphic at 0. The easiest way
to do this is to pass to the algebra Ẽ0(Sϕ) := E0(Sϕ)⊕C(1 + z)−1 and define the
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primary calculus by

Φ
(

f +
c

1 + z

)
:= f(A) + c(1 + A)−1,

where f ∈ E0(Sϕ). In any case, one ends up with a meromorphic functional
calculus for A on Sϕ and by forming the inductive limit as ϕ → ω one obtains a
meromorphic functional calculus

(Ẽ0[Sω],M[Sω], Φ)

for A on Sω; this we call the natural functional calculus on Sω for A as a bounded,
sectorial operator. It clearly forms a consistent extension of the natural functional
calculus for A as a sectorial operator (defined in Section 2.3).

Remark 2.5.2. Also in this case the so-obtained calculus is not the most general.
In fact, one can extend it to functions f which are not even defined near ∞.

As above, to prove a composition rule as in Theorem 2.4.2, we have to face
the following cases:

1) A sectorial, g(A) bounded and sectorial.

2) A invertible and sectorial, g(A) bounded and sectorial.

3) Both A, g(A) bounded and sectorial.

4) A bounded and sectorial, g(A) sectorial.

5) A bounded and sectorial, g(A) invertible and sectorial.

Again, the proofs are similar to the proof of Theorem 2.4.2, but sometimes one
needs an additional assumption on the mapping behaviour of g: In cases 1)–3)
one needs ∞ /∈ g(Sω) and in case 5) one needs 0 /∈ g(Sω).

2.5.3 Bounded and Invertible Operators

If A ∈ Sect(ω) is bounded and invertible, then for a primary calculus no assump-
tions on the behaviour of f at 0 or ∞ are needed. In fact, one may use the usual
Dunford calculus for A. Easy arguments show that this yields a consistent ex-
tension of either the natural functional calculus for A as an invertible, sectorial
operator or the natural functional calculus for A as a bounded, sectorial operator.
Again, composition rules (under suitable assumptions on the function g) could be
proved linking all calculi introduced up to now.

Final Remarks

Our systematic introduction of functional calculi for sectorial operators has now
come to an end. Depending on how ‘good’ the operator A is in terms of cer-
tain spectral conditions, we have given meaning to the symbol ‘f(A)’ where ‘f ’
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denotes a meromorphic function on a sector. As introduced above, the result-
ing mapping (f �−→ f(A)) is called the natural functional calculus or nfc for A
as a (bounded, invertible, bounded and invertible) sectorial operator A. The set
of functions f such that ‘f(A)’ is defined depends heavily on the used primary
calculus. Hence the assertions ‘f(A) is defined by the nfc for sectorial operators’
and ‘f(A) is defined by the nfc for bounded, sectorial operators’ have different
meanings. However, in the following chapters we use mostly the nfc for sectorial
operators.

2.6 Miscellanies

In this section we examine the relation between the functional calculi for A and its
adjoint A′. Then we look at the part AY of A in a continuously embedded Banach
space Y ⊂ X . After this we examine the behaviour of the functional calculus with
respect to sectorial approximation and prove a fundamental boundedness result.

2.6.1 Adjoints

Let A be a multi-valued, sectorial operator on the Banach space X . Then its
adjoint is again a multi-valued, sectorial operator, see Proposition 2.1.1 k) and
Remark 2.1.4. How do the functional calculi of A and A′ relate? We begin with
an abstract consideration.

Let (E ,M, Φ) be a proper abstract functional calculus over the Banach space
X . Then by e∗ := Φ(e)′ = (e•)′ a homomorphism

Φ∗ : (e �−→ e∗) : E −→ L(X ′)

is defined. Hence (E ,F , Φ∗) is an abstract functional calculus over X ′, the so-
called dual (functional) calculus. This afc is proper if and only if there is e ∈ E
such that R(e•) = X . It is now natural to ask, for which f ∈ M the identity
f∗ = (f•)′ holds. We obtain the following result.

Proposition 2.6.1. Let (E ,M, Φ) be an afc with dual calculus (E ,M, Φ∗), and let
f ∈ M. Suppose that there is a Φ-regulariser e ∈ E for f with the following
property: There exists (fn)n ⊂Mb such that

1) fn• → I strongly on X;

2) R(fn•) ⊂ R(e•).

Then the space R(e•) is dense in X, it is a core for f•, and f∗ = (f•)′.

Proof. It is immediately clear from 1) and 2) that R(e•) is dense in X . Hence e
is a regulariser for f in the dual calculus. Let x ∈ D(f•) and y := f•x. Then
xn := fn•x → x and xn ∈ R(e•) ⊂ D(f•). Moreover f•xn = f•fn•x = fn•y → y.
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Since x ∈ D(f•) was arbitrary, we see that R(e•) is a core for f•. This means that
(ef)•e−1

• = f•. Using this we compute

f∗ = (e∗)−1(ef)∗ = [(e•)′]−1[(ef)•]′
(1)
= [e−1

• ]′[(ef)•]′

(2)
=

[
(ef)•e−1

•
]′ (3)

=
[
(ef)•e−1

•
]′

= (f•)′.

We used b), k) and a) of Proposition A.4.2 for (1), (2), and (3), respectively. �

Let us return to sectorial operators. Suppose A ∈ Sect(ω) and D(A) = X .
This extra condition ensures that A′ is again single-valued, whence also A′ ∈
Sect(ω). Note that if A is in addition bounded or invertible, the same is true for
A′. Hence the primary functional calculi for A and A′ have the same domain.

Lemma 2.6.2. Let A ∈ Sect(ω) with D(A) = X. Then the pfc for A′ is the dual
of the pfc for A, i.e., f(A′) = f(A)′, whenever f(A) is defined by the primary
functional calculus for A.

Recall that the hypothesis on f means: f ∈ E [Sω ] if A is neither bounded nor
invertible, f ∈ E∞[Sω] if A ∈ Sect(ω) is invertible and f ∈ Ẽ0[Sω] if A ∈ Sect(ω)
is bounded.

Proof. Let f be as required. Then we may write f(A) = 1
2πi

∫
Γ f(z)R(z, A) dz for

some contour Γ. Hence

f(A)′ =
(

1
2πi

∫
Γ

f(z)R(z, A) dz

)′
=

1
2πi

∫
Γ

f(z)R(z, A)′ dz

=
1

2πi

∫
Γ

f(z)R(z, A′) dz = f(A′).
�

Combining this result with Proposition 2.6.1 we can prove the identity
f(A)′ = f(A′) for certain classes of functions f .

Proposition 2.6.3. Let A ∈ Sect(ω) with D(A) = X, and let f ∈M[Sω]. Then the
identity

f(A)′ = f(A′)

holds in the following cases:

a) f ∈ A;

b) R(A) = X and f ∈ B.

Proof. In the case a) f is regularisable by e := (1 + z)−m for some m. Since
D(A) is dense, the functions fn := [n(n + z)−1]m satisfy conditions 1) and 2) of
Proposition 2.6.1, whence the statement follows. The case b) is treated similarly,
with e = zm/(1 + z)2m for some m ∈ N. Note that the additional condition
R(A) = X ensures that both A and A′ are injective. �
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Remarks 2.6.4. 1) As a matter of course similar results hold for bounded sec-
torial and for invertible sectorial operators A.

2) Even if nothing more than the sectoriality of A is required, the theorem holds
for a much larger class than A. Indeed, suppose ωA < π/2 for simplicity.
Then, since D(A) is dense, e−(1/n)A → I strongly (cf. Proposition 3.4.1).
Therefore even subexponential growth is admissible.

2.6.2 Restrictions

Let A be a sectorial operator on the Banach space X , and let Y be another Banach
space, continuously embedded into X . Let AY := A

∣∣
Y

be the part of A in Y , i.e.,

D(AY ) := {x ∈ Y ∩D(A) | Ax ∈ Y }, AY y = Ay (y ∈ D(AY )).

(cf. Proposition A.2.8). In general, AY is not necessarily sectorial. However, if it
is, one may ask how f(AY ) is computed from f(A). The answer, given in the next
proposition, is not surprising.

Proposition 2.6.5. Let A ∈ Sect(ω) on the Banach space X, and let Y ⊂ X be
another Banach space, continuously included in X. If AY ∈ Sect(ω) then the
following assertions hold:

a) If e ∈ E [Sω], then Y is invariant under e(A) and e(AY ) = e(A)
∣∣
Y
.

b) If f ∈ M[Sω]A, then f ∈M[Sω]AY and f(AY ) = f(A)Y .

Proof. a) Since AY is sectorial of angle ω on Y , the space Y must be invariant
under all resolvents R(λ, A), λ /∈ Sω, with R(λ, AY ) = R(λ, A)

∣∣
Y

for these λ. If
e ∈ E [Sω], then by Proposition A.2.8 we have e(AY ) = e(A)

∣∣
Y

. In fact, e can be
decomposed as f(z) = d + c(1 + z)−1 + h(z) where h(A) is defined by a Cauchy
integral, i.e., as an integral over resolvents.

b) Take a general f and find a regulariser e, i.e., e, (ef) are elementary and e(A)
is injective. But then also e(AY ) = e(A)Y = e(A)

∣∣
Y

is injective. Furthermore,
(x, y) ∈ f(A) ∩ Y ⊕ Y ⇔ x, y ∈ Y, (ef)(A)x = e(A)y ⇔ x, y ∈ Y, (ef)(AY )x =
e(AY )y ⇔ (x, y) ∈ f(AY ). �

Remark 2.6.6. Proposition 2.6.5 has an obvious analogue for the class of invertible
(bounded, bounded and invertible) sectorial operators.

2.6.3 Sectorial Approximation

Suppose that A ∈ Sect(ω) on X and that (An)n is a sectorial approximation of
A on Sω. By Proposition 2.1.3, if A is bounded and/or invertible, the same is
true for eventually all An. Hence A and the An eventually have the same primary
functional calculus.
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Lemma 2.6.7. Let A ∈ Sect(ω), and let (An)n be a sectorial approximation of A
on Sω. Then f(An) → f(A) in norm whenever f(A) is defined by the primary
functional calculus for A.

Proof. Let f be as required. Then we can write f(A) = 1
2πi

∫
Γ f(z)R(z, A) dz for

a certain contour Γ. Hence

lim
n

f(An) = lim
n

(
1

2πi

∫
Γ

f(z)R(z, An) dz

)
=

1
2πi

∫
Γ

f(z) lim
n

R(z, An) dz

=
1

2πi

∫
Γ

f(z)R(z, A) dz = f(A)

by an easy application of Lebesgue’s Dominated Convergence theorem. �
It is certainly interesting whether f(An) → f(A) (in some sense) for more

general functions f . However, this is a delicate matter since it is not even clear
that f(An) is defined for large n whenever f(A) is. And even if one assumes
this, the regulariser for f might depend on n. Let us quickly skip to the abstract
setting.

Let (E ,M, Φ), (E ,M, Φn), n ∈ N, be a family of proper afc over the Banach
space X . We call the sequence [(E ,M, Φn)]n convergent to the afc (E ,M, Φ) if
Φn(e)→ Φ(e) in norm for every e ∈ E .

Proposition 2.6.8. Let [(E ,M, Φn)]n be a sequence of proper afc converging to the
proper afc (E ,M, Φ). Let f ∈ M, and let e be a uniform regulariser for f , i.e.,
e, ef ∈ E and all e•, e•n are injective. If xn ∈ D(f•n) such that xn → x and
f•nxn → y, then (x, y) ∈ f•.
In particular, if all f•n ∈ L(X) and f•n → T ∈ L(X) strongly, then f• = T .

Proof. Let f, e, xn, x, y be as in the hypothesis. We have (ef)•x = limn(ef)•nxn =
limn e•nf•nxn = e•y. This yields (x, y) ∈ f•. �

Coming back to sectorial operators, Proposition 2.6.8 shows that for a general
convergence result one needs uniform regularisers. The next proposition provides
an example.

Proposition 2.6.9. Let A ∈ Sect(ω), and let (An)n be a sectorial approximation of
A on Sω. Take f ∈ M[Sω] and suppose either

1) f ∈ A, or

2) f ∈ B and all operators A, An are injective.

If xn ∈ D(f(An)) with xn → x and f(An)xn → y, then also x ∈ D(f(A)) and
y = f(A)x. In particular, if f(An) ∈ L(X) with f(An) → T ∈ L(X) strongly,
then f(A) = T .

Proof. In case 1) a uniform regulariser is (1+z)−m for some m, in case 2) a power
of z/(1+z)2 can be used. The rest is only the application of Proposition 2.6.8. �
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2.6.4 Boundedness

In the theory of functional calculus it is of ultimate importance to know which
families of functions lead to uniformly bounded families of operators. The whole
Chapter 5 is dedicated to that question. At the present point we provide only
some simple although useful results.

Lemma 2.6.10. Let A ∈ Sect(ω), ϕ ∈ (ω, π), and (fα)α ⊂ H∞
0 (Sϕ). Let there be

numbers C, s, cα > 0 such that

|fα(z)| ≤ C min
{
|cαz|s , |cαz|−s

}
(2.10)

for all z ∈ Sϕ and all indices α. Then

sup
α
‖fα(A)‖ ≤ (2C/sπ)M(A, ϕ).

Proof. Choose ω′ ∈ (ω, ϕ). Then, by a simple change of variables in the integral,
one obtains the estimate

‖fα(A)‖ ≤ M(A, ω′)
C

2π

∫
Γω′

min
{
|z|s , |z|−s

} |dz|
|z| = (2C/sπ)M(A, ω′).

Now let ω′ tend to ϕ, cf. Remark 2.1.2. �

Proposition 2.6.11. Let ϕ ∈ (0, π], and let f ∈ E(Sϕ). Then there is a constant
Cf > 0 such that

sup
t>0

‖f(tA)‖ ≤ CfM(A, ϕ)

for each sectorial operator A ∈ Sect(ω), ω ∈ (0, ϕ), on a Banach space X.
Moreover, given θ ∈ [0, ϕ− ω) one has

‖f(λA)‖ ≤ CfM(A, ϕ− θ)

for all λ ∈ C, |argλ| ≤ θ.

Proof. Write f = ψ + a/(1 + z) + b with ψ ∈ H∞
0 (Sϕ), a, b ∈ C. We can choose

C, s > 0 such that

|ψ(z)| ≤ C min
{
|z|s , |z|−s

}
(z ∈ Sϕ).

By a change of variable in the defining Cauchy integral (or, if you wish, an appli-
cation of the composition rule), we obtain ψ(tA) = ψ(tz)(A) for all t > 0. Hence
by Lemma 2.6.10 we have

‖ψ(tA)‖ ≤ 2C

sπ
M(A, ϕ).
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This implies that

‖f(tA)‖ ≤ 2C

sπ
M(A, ϕ) + |a| M(A) + |b| ≤

[
2C

sπ
+ |a|+ |b|

]
M(A, ϕ)

since 1 ≤ M(A) ≤M(A, ϕ), cf. Proposition 2.1.1 a).
To prove the second assertion, write λ = te−iµ with |µ| ≤ θ. Note that

eiµA ∈ Sect(ω + θ). Since ω + θ < ϕ, we may apply the (already proved) first part
of the Proposition and obtain

‖f(λA)‖ =
∥∥f(teiµA)

∥∥ ≤ CfM(eiµA, ϕ) ≤ CfM(A, ϕ− θ). �
Remark 2.6.12. Proposition 2.6.11 remains meaningful and true if A is a multi-
valued operator (cf. Remark 2.3.4). This will play a role in Section 3.4. For more
results on boundedness and on approximation we refer to Section 5.2 and Theorem
9.2.4.

2.7 The Spectral Mapping Theorem

In this section we prove a spectral mapping theorem for the natural functional
calculus for sectorial operators. The first step is a spectral inclusion theorem.

2.7.1 The Spectral Inclusion Theorem

We begin with two auxiliary results.

Lemma 2.7.1. Let A ∈ Sect(ω), and let λ ∈ C be such that λ−A is injective. Let
e ∈ H(A), and let 0 
= c ∈ C be such that

f(z) :=
e(z)− c

λ− z
∈ H(A).

Then e(A)(λ −A)−1 = (λ−A)−1e(A).

Proof. By Theorem 1.3.2, the inclusion e(A)(λ−A)−1 ⊂ (λ−A)−1e(A) is always
true. To prove the converse, take x ∈ X such that e(A)x ∈ D((λ − A)−1). Then
there is z ∈ D(A) with e(A)x = (λ − A)z. Since e = (λ − z)f + c we have
(λ−A)z = cx + (λ −A)f(A)x, whence cx = (λ−A)(z − f(A)x). Now, c 
= 0 by
assumption, hence x ∈ R(λ−A) = D((λ−A)−1). �
Lemma 2.7.2. Let A ∈ Sect(ω), and let f ∈ M[Sω]A. Given 0 
= λ ∈ Sω there is
a regulariser e for f satisfying e(λ) 
= 0.

Proof. Let g be any regulariser for f , i.e., g, fg ∈ E , and g(A) is injective. Define
e := g/(λ − z)n where n ∈ N is the order of the zero λ of g. (This order n may
be zero.) Then e(λ) 
= 0. Furthermore, e ∈ E and g(A) = (λ − A)ne(A), whence
e(A) is injective. Clearly, also ef = fg/(λ− z)n ∈ E . Hence e is a regulariser for
f with e(λ) 
= 0. �
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We now come to the main part.

Proposition 2.7.3. Let A ∈ Sect(ω), f ∈ M[Sω]A, and 0 
= λ ∈ Sω. If f(λ) = 0
and f(A) is invertible, then λ ∈ �(A).

Proof. Choose a regulariser e ∈ E for f with c := e(λ) 
= 0. Then (ef) ∈ E and
(ef)(λ) = 0. This implies that also h := ef/(λ− z) ∈ E , whence

h(A)(λ −A) ⊂ (ef)(A) = f(A)e(A).

Because e(A) and f(A) are both injective, this shows that λ−A must be injective.
Also, e is a regulariser for f/(z − λ).

It is obvious that g := (e− c)/(λ− z) ∈ E . By Lemma 2.7.1, e(A)(λ−A)−1 =
(λ − A)−1e(A). Inverting both sides of this equation yields (λ − A)e(A)−1 =
e(A)−1(λ−A). Hence

f(A) =
(

(λ− z)
f

λ− z

)
(A) = e(A)−1

(
(λ− z)

ef

λ− z

)
(A)

= e(A)−1(λ−A)
(

ef

λ− z

)
(A) = (λ−A)e(A)−1

(
ef

λ− z

)
(A)

= (λ−A)
(

f

λ− z

)
(A).

Since f(A) is surjective, λ−A must also be surjective, hence λ ∈ �(A). �
Theorem 2.7.4 (Spectral Inclusion Theorem). Let A ∈ Sect(ω), and let f ∈
M[Sω]A. Then f(σ(A) \ {0}) ⊂ σ̃(f(A)).

Proof. Let 0 
= λ ∈ σ(A), and define µ := f(λ). If µ 
= ∞, Proposition 2.7.3
applied to the function µ − f shows that µ − f(A) cannot be invertible. Hence
µ ∈ σ(f(A)).

Suppose that µ = ∞ /∈ σ̃(f(A)). Then f(A) ∈ L(X) and there is λ0 ∈ C

such that f(A) − λ0 is invertible. Hence g := 1/(f − λ0) ∈ M[Sω]A with g(A)
being invertible and g(λ) = 0. Another application of Proposition 2.7.3 yields
λ ∈ �(A), contradicting the assumption made on λ. �

It is natural to ask what happens at the ‘critical’ points 0 and ∞. Since
σ̃(f(A)) is a compact subset of the Riemann sphere, we immediately obtain

f(σ(A) \ {0})C∞ ⊂ σ̃(f(A)). (2.11)

However, consider the Volterra operator V on C[0, 1] (cf. Chapter 1). We know
that σ(V ) = {0}, whence the above inclusion is trivial. The next result gives a
sufficient condition, involving the notion of polynomial limit (see page 27).

Theorem 2.7.5. Let A ∈ Sect(ω), and let λ0 ∈ {0,∞}. If f ∈ M[Sω]A has
polynomial limit µ at λ0 and λ0 ∈ σ̃(A), then µ ∈ σ̃(f(A)).
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Proof. For µ ∈ C we can consider f − µ instead of f and in this way reduce the
problem to the cases µ = 0 and µ = ∞.

Let us start with the case µ = 0, λ0 = ∞. That is, we suppose that f(A) is

invertible and f has polynomial limit 0 at λ0 = ∞. If ∞ ∈ σ(A) \ {0}C∞ then the
assertion follows from (2.11). Otherwise there is R > 0 such that σ(A) ⊂ BR(0).
Define

Q :=
1

2πi

∫
Γ

R(z, A) dz,

where Γ = ∂Bδ(0) for (any) R < δ. It is easy to see that Q is a bounded projection.
Let P := I −Q be the complementary projection, and let Y := R(P ) be its range
space. Since P commutes with A, Ay ∈ Y for every y ∈ Y ∩D(A). It is also easy
to see that B := A|Y is a sectorial operator of angle ω on Y with �(A) ⊂ �(B)
and R(λ, B) = R(λ, A)|Y for all λ ∈ �(A).

Moreover, σ̃(B) ⊂ {∞}. Indeed, it is easily verified that for each µ ∈ σ(A)
one has

R(µ, B) =
1

2πi

∫
Γ

1
µ− z

R(z, A) dz

on Y . Clearly e(B) = e(A)|Y for each e ∈ E [Sω]. This implies that D(f(B)) =
D(f(A)) ∩ Y and f(B)x = f(A)x ∈ Y for all x ∈ D(f(A)) ∩ Y . Since f(A) is
invertible by assumption, also f(B) is invertible with f(B)−1 = f(A)−1|Y .

Since f has polynomial limit 0 at∞, clearly f is in the domain of the primary
functional calculus for B! Moreover, for large n ∈ N the function g := zfn still
has this property. This gives g(B) = Bf(B)n ∈ L(X). But f(B) is invertible,
whence B must be bounded. Since σ̃(B) ⊂ {∞}, we conclude that σ̃(B) = ∅,
hence Y = 0. This shows that A is bounded, i.e., ∞ 
∈ σ̃(A).

We now consider the case µ = 0, λ0 = 0. Suppose again that f(A) is invertible
and f has polynomial limit 0 at 0. Let e ∈ E be a regulariser for f . Then
ef ∈ E , (ef)(A) is injective and (ef)(0) = 0. Lemma 2.3.8 now shows that A must
be injective. Let B := A−1, and define g(z) := f(z−1). By Proposition 2.4.1,
g ∈ M[Sω]B, g(B) = f(A) is invertible and g has polynomial limit 0 at ∞. By
what we have shown above, B is bounded, whence A is invertible.

Finally, we deal with the case µ = ∞. Suppose that ∞ = µ /∈ σ̃(f(A)). By
definition, f(A) must be bounded. Hence we can find λ ∈ C such that λ− f(A) is
invertible. By Theorem 1.3.2, g := 1/(λ− f) ∈ M[Sω]A, g(A) is invertible and g
has polynomial limit 0 at λ0. By the results achieved so far we can conclude that
λ0 /∈ σ̃(A). �

Cf. [108] for a slightly stronger result.

2.7.2 The Spectral Mapping Theorem

We are heading towards the final goal. As usual, we start with an auxiliary result.
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Lemma 2.7.6. Let A ∈ Sect(ω) and f ∈ M[Sω]. Suppose that f has finite polyno-
mial limits at σ̃(A) ∩ {0,∞} and all poles of f are contained in �(A). Then the
following assertions are true.

a) If {0,∞} ⊂ σ̃(A), f(A) is defined by the nfc for sectorial operators.

b) If A is invertible, f(A) is defined by the nfc for invertible sectorial operators.

c) If A is bounded, f(A) is defined by the nfc for bounded sectorial operators.

In either case, f(A) ∈ L(X).

Proof. Let f be as required, and let λ0 be a pole of f . Then, for suitably large
n0 ∈ N, the function

f1 :=
(λ0 − z)n0

(1 + z)n0
f(z)

also has finite polynomial limits at σ̃(A)∩{0,∞}, but one pole less than f . More-
over, letting r0 := (λ0 − z)n0/(1 + z)n0 , we see that r0(A) is bounded and invert-
ible.

Suppose that we are in the situation of a). Then f can have only finitely
many poles. By induction we find a bounded rational function r such that r(A)
is bounded and invertible and rf ∈ E . Hence r regularises f to E and f(A) =
r(A)−1(rf)(A) ∈ L(X). (Cf. also Proposition 1.2.5.)

A similar reasoning applies in the other cases. Namely, only finitely many
poles of f are situated in the ‘relevant’ part of the domain of f . For example, if A
is invertible, the poles of f may accumulate at 0, but for the nfc for A, behaviour
of f near 0 is irrelevant (cf. Remark 2.5.1). �

Proposition 2.7.7. Let A ∈ Sect(ω), and let f ∈ M[Sω]A have polynomial limits
at the points σ̃(A) ∩ {0,∞}. Then σ̃(f(A)) ⊂ f(σ̃(A)).

Proof. Note that by assumption f(λ) is defined for each λ ∈ σ̃(A). Take µ ∈ C

such that µ /∈ f(σ̃(A)). Then the function (µ−f)−1 ∈ M[Sω] has finite polynomial
limits at {0,∞}∩ σ̃(A) and all of its poles (namely, the points λ ∈ Sω \ {0} where
f(λ) = µ) are contained in the resolvent set of A. Hence one may apply Lemma
2.7.6 to conclude that (µ− f)−1(A) is defined and bounded. But this implies that
µ− f(A) is invertible, whence µ /∈ σ̃(f(A)).

Now suppose µ = ∞ /∈ f(σ̃(A)). This implies that the poles of f are con-
tained in the resolvent of A. An application of Lemma 2.7.6 yields that f(A) is a
bounded operator, whence ∞ /∈ σ̃(f(A)). �

Theorem 2.7.8 (Spectral Mapping Theorem). Let A ∈ Sect(ω), and let f ∈
M[Sω]A have polynomial limits at {0,∞}∩ σ̃(A). Then

f(σ̃(A)) = σ̃(f(A)).

Proof. Combine Proposition 2.7.7 and Theorem 2.7.5. �



2.8. Comments 57

2.8 Comments

2.1 Sectorial Operators. Sectorial operators in our sense were introduced by
Kato in [126] who however used the name ‘sectorial’ for something different
(see below). At the same time Balakrishnan in [24] considered operators A
satisfying a resolvent estimate supt>0

∥∥t(t + A)−1
∥∥ < ∞. These operators were

later called non-negative operators by Komatsu. On Banach spaces the concepts
of non-negative and sectorial operators coincide (Theorem 2.1.1), but this is no
longer true when one passes to more general locally convex spaces, cf. [161].

Many articles follow Kato’s definition of the name ‘sectorial’ to denote oper-
ators on Hilbert spaces associated with sectorial forms (cf. [130]). We have decided
to call them Kato-sectorial instead, see Chapter 7. Other texts reserve the name
‘sectorial operator’ for generators of holomorphic semigroups, like [85] or [157].
Up to a minus sign these operators conform to our sectorial operators of angle
strictly less than π/2. Finally, a sectorial operator is often required to have dense
domain and range. However, we felt it more convenient to drop this additional
density assumption.

Most of the material of this section is adapted from [161, Section 1.2], where
also the standard examples are presented. The notions ‘uniform sectoriality’ and
‘sectorial approximation’ unify methods well known in the literature. E.g., the
family of operators Aε = (A + ε)(1 + εA)−1 is used in [192, Section 8.1] and [145,
Section 2] and is called ‘Nollau approximation’ in [179]. Basics on multi-valued
sectorial operators can be found in [160, Section 2].

2.2 Spaces of Holomorphic Functions. The name ‘Dunford–Riesz class’ is taken
from [216, Section 1.3.3.1 ] and [218, Section 2] (where the symbol DR is used).
In [51] this class is denoted by Ψ(Sϕ) but meanwhile the notation H∞

0 is prevalent.
Example 2.2.6 is from McIntosh’s seminal paper [167].

2.3 The Natural Functional Calculus. As for the historical roots of the func-
tional calculus developed here, we have already given a short account in Chapter
1. The ‘mother of all functional calculi’, so to speak, is provided by the Fourier
transform or, more generally, by the spectral theorem for bounded normal oper-
ators on a Hilbert space (see Appendix D). The aim to obtain a similar tool for
general bounded operators on a Banach space lead to the so called Dunford–Riesz
calculus, see [79, Section VII.3] for the mathematics and [79, Section VII.11] for
some historical remarks. This turned out to be only a special case of a general
construction in Banach algebras; an account of it can be found in [49, Chapter
VII, §4], cf. also Chapter 1. However, in the Banach space situation only bounded
operators were considered so far.

The first approach to a (Banach space) calculus for unbounded operators
was to reduce it to the bounded case by an application of a resolvent/elementary
rational function, cf. [79, Section VII.9] or [3, Lecture 2]. This functional calculus
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is sometimes called Taylor calculus. Here as in the bounded case, only functions
are used which are holomorphic in a neighbourhood of the spectrum, where∞ has
to be considered a member of the spectrum if A is unbounded (see Section A.2).
Transforming back to the original operator one obtains a formula of the form

f(A) = f(∞) +
1

2πi

∫
Γ

f(z)R(z, A) dz

where Γ is a suitable finite cycle that avoids σ(A), cf. Corollary 2.3.5.
With the Hilbert space (i.e. multiplication operator) examples in mind it

became clear that boundedness of operators should not play an essential role in
a general framework, neither as a requirement for the original operator A nor
as a restriction for the result f(A). That f(A) is always bounded in the Taylor
setting can be regarded as a mere coincidence due to the particular functions
used. The decisive step to abandon boundedness was to realise how to involve
functions which are singular in certain boundary points of the spectrum. Despite
later development this was first done for strip-type operators (see Section 4.1) by
Bade [21]. He introduced the ‘regularisation trick’ which we have formalised in
the extension procedure of Section 1.2. However, since ∞ is somehow a ‘hidden’
spectral point, it was not obvious what was going on and in fact became fully
clear only after McIntosh [167] constructed the setup for sectorial operators.
de Laubenfels [65] constructs primary functional calculi for several classes of
operators and uses regularisation by resolvents.

More or less systematic accounts of the natural functional calculus for sec-
torial operators can be found, e.g., in [3], [216] or [222]. Our presentation differs
from these approaches in two decisive points. First, they mostly consider only in-
jective operators, with the obvious disadvantage that the usual fractional powers
of a non-injective sectorial operator (which may even be bounded) is not covered
by their methods. The second main difference between our and other treatments
lies in that we do not make any density assumptions on either the domain or the
range of the operator. This is due to the fact that there are important examples
of operators which are not densely defined, like the Dirichlet Laplacian on C(Ω)
where Ω is some open and bounded subset of Rn, cf. [10, Section 6.1]. More-
over, it seems to be advantageous to discard density assumptions in a systematic
treatment because then one is not tempted to prove things by approximation and
closure arguments (which usually are a tedious matter).

The focus on injective operators (with dense range and dense domain) in the
literature is of course not due to unawareness but a matter of convenience. As one
can see, e.g., in the proof of Lemma 2.4.4, working only with injective operators
often makes life easier. And McIntosh [167] outlines how to treat the matter
without the injectivity assumption.

2.4 The Composition Rule. Most of the main properties of the natural functional
calculus as enumerated, e.g., in Theorem 1.3.2 are folklore (even if e) and f)
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appeared quite late in printed form (in [107]). The composition rule (Theorem
2.4.2) however has been underestimated for a long time. Our account is based on
[107], cf. [142]. We believe that only the composition rule opens the door for a
fruitful use of the natural functional calculus beyond the mere definition.

2.5 & 2.6 Extensions According to Spectral Conditions and Miscellanies. These
sections supplement the two previous ones. To sum up, we have defined four
compatible ‘natural’ functional calculi for certain classes of (sectorial) operators.
This is by far not the end of the story. For example, suppose that A is sectorial
but there is ε > 0 such that the vertical line {Re z = ε} separates the spectrum
of A. Then by using appropriate contours a new primary calculus can be defined,
leading to a natural functional calculus for such operators. Obviously one can
think of infinitely many modifications which all show the same pattern.

The results on adjoints may also be found in [107]. Lemma 2.6.10 and as
Proposition 2.6.11 are folklore results. The very Proposition 2.6.11 plays a decisive
role in practically all non-trivial boundedness results in connection with functional
calculus, cf. Theorem 9.2.4.

2.7 The Spectral Mapping Theorem. Spectral mapping theorems (SMTs) have
a long tradition and are ultimately important. In semigroup theory for example a
spectral mapping theorem σ(etA) = etσ(A) has a wealth of consequences regarding
the asymptotics of the semigroup. (One can find a thorough discussion in [85,
Chapter IV, Section 3].) It is well known that the SMT holds for the Dunford–
Riesz calculus, see [79, Section VII.3] or [49, Chapter VII, §4]. Also, there is a
SMT for the Hirsch functional calculus, see below and [161, Chapter 4]. Dore
[74] has obtained partial results for our functional calculus, with the key notion
of polynomial limits, although implicit. Our presentation is based on [108] where
even more general results are presented. The proofs are generic, whence similar
results hold for other types of holomorphic functional calculi, cf. Remark 4.2.7.

Other Functional Calculi. Although not particularly important for our purposes,
we mention that there is a wealth of other functional calculi in the literature.
The common pattern is this: Suppose that you are given an operator A and a
function f for which you would like to define f(A). Take some (usually: integral)
representation of f in terms of other functions g for which you already ‘know’
g(A). Then plug in A into the known parts and hope that the formulas still make
sense. Obviously, our Cauchy integral-based natural calculus is of this type (the
known parts are resolvents). Other examples are:

1) The Hirsch functional calculus, based on a representation

f(z) = a +
∫

R+

z

1 + tz
µ(dt)
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where µ is a suitable complex measure on R+. Details can be found in [161,
Chapter 4]. In [107] it is shown that if A fails to be injective, there exist
functions f which allow a representation as above but are not in the domain
of the natural functional calculus. This can be remedied by extending the
natural functional calculus by topological means, see [107, Section 5].

2) The Phillips calculus, based on the Laplace transform

f(z) =
∫

R+

e−zt µ(dt)

where µ is a finite complex measure on R+. (Here, the ‘known’ part is
e−zt(A) = e−tA, i.e., −A is assumed to generate a bounded C0-semigroup.)
We shall encounter this calculus in Section 3.3.

3) The Mellin transform calculus as developed in [193] and [218].

4) A functional calculus based on the Poisson integral formula, see [36] and [64].

Of course, each of these calculi can be extended by the ‘regularisation trick’. For
the Phillips calculus, this is done in [216, Section 1.3.4].

Let us mention that there are first attempts to define a functional calculus
for multi-valued sectorial operators, see [1] and [160].
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Fractional Powers and Semigroups

In this chapter we present the basic theory of fractional powers Aα of a sectorial
operator A, making efficient use of the functional calculus developed in Chapter 2.
In Section 3.1 we introduce fractional powers with positive real part and give proofs
for the scaling property, the laws of exponents, the spectral mapping theorem, and the
Balakrishnan representation. Furthermore, we examine for variable ε > 0 the behaviour
of (A + ε)α, and the behaviour of Aαx for variable α. In Section 3.2 we generalise
the results from Section 3.1 to fractional powers with arbitrary real part. (Here, the
operator A has to be injective.) In Section 3.3 we introduce the Phillips calculus for
generators of bounded semigroups. Then the definition and the fundamental properties
of holomorphic semigroups are presented in Section 3.4. The usual generator/semigroup
correspondence is extended to the case of multi-valued operators. In Section 3.5 the
logarithm of an injective sectorial operator A is defined and Nollau’s theorem is proved.
Finally, the connection of log A with the family of imaginary powers (Ais)s∈R of A.

3.1 Fractional Powers with Positive Real Part

In this section X always denotes a Banach space and A a sectorial operator of
angle ω on X . (Recall the general agreement on terminology on page 279.)

Fix α ∈ C with Reα > 0 and consider the function f(z) = zα. It obviously
has polynomial limit 0 at 0 and polynomial limit ∞ at ∞ (cf. Section 2.7). Hence
it belongs to the class A(Sϕ), for every ϕ ∈ (0, π]. Therefore f(A) is defined by
the natural functional calculus for sectorial operators. Being more specific, choose
n ∈ N such that n > Re α. Then zα(1 + z)−n ∈ H∞

0 (Sϕ) and

Aα := (zα)(A) = (1 + A)n

(
zα

(1 + z)n

)
(A) (0 < Re α < n).

We call Aα the fractional power with exponent α of A.

Proposition 3.1.1. Let A be a sectorial operator on the Banach space X. Then the
following assertions hold.

a) If A is bounded, then also Aα is bounded, and the mapping

(α �−→ Aα) : {α ∈ C | Re α > 0} −→ L(X)

is holomorphic.
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b) Let n ∈ N and Re α ∈ (0, n). Then D(An) ⊂ D(Aα), and the mapping

(α �−→ Aαx) : {α ∈ C | 0 < Re α < n} −→ X

is holomorphic for each x ∈ D(An).

c) (First Law of Exponents) For all Re α, Re β > 0 the identity

Aα+β = Aα Aβ

holds. In particular, D(Aγ) ⊂ D(Aα) for 0 < Re α < Re γ.

d) One has N(Aα) = N(A) for all Re α > 0.

e) If is A injective, then (A−1)α = (Aα)−1. If 0 ∈ �(A), then also 0 ∈ �(Aα).

f) If T ∈ L(X) commutes with A, then it also commutes with Aα.

g) Let Re α, Re β > 0, let x ∈ X and ε > 0. Then(
A(A + ε)−1

)α
x ∈ D(Aβ) ⇐⇒ x ∈ D(Aβ).

h) If A is densely defined, n ∈ N, and Re α ∈ (0, n), then the space D(An) is a
core for Aα.

i) If the Banach space X is reflexive, then

Aα(x⊕ y) = 0⊕Bαy

for all x ∈ N(A), y ∈ R(A), where B := A|
R(A)

is the injective part of A.

j) (Spectral Mapping Theorem)

σ(Aα) = {µα | µ ∈ σ(A)}

for all Re α > 0.

Proof. a) This follows easily from the definition and the Dominated Convergence
Theorem. The same applies to b) since Aαx = (zα/(1 + z)n)(A)(1 + A)nx for
x ∈ D(An) and 0 < Re α < n.
c) From the general statements on the functional calculus (Theorem 1.3.2) we know
that AαAβ ⊂ Aα+β , with D(AαAβ) = D(Aα+β) ∩D(Aβ). Let n > Re α, Re β be
fixed. We define Φα := (zα/(1 + z)n)(A) ∈ L(X) and Φβ analogously. Let
x ∈ D(Aα+β). Then ΦαΦβx = [zα+β/(1 + z)2n](A)x ∈ D(A2n). From this it
follows that

An(1 + A)−2nΦβx =
zn+β

(1 + z)3n
(A)x =

zn−α

(1 + z)n
(A)ΦαΦβx ∈ D(A2n).

Applying g) of Proposition 2.1.1 we obtain (1 + A)−nΦβx ∈ D(A2n). But this
gives Φβx ∈ D(An), hence x ∈ D(Aβ).
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d) follows from Anx = An−αAαx and Proposition 2.1.1 e).

e) Note that f(z) := z−α ∈ B. Hence by Proposition 2.4.1 we have

(A−1)α = f(z−1)(A−1) = f(A) = (f−1(A))−1 = (Aα)−1.

The second assertion follows from the first by using a).

f) is a special case of Theorem 1.3.2 a).

g) Recall that A(A + ε)−1 is bounded and sectorial and commutes with A. Hence
by f), (A(A + ε)−1)α commutes with A, whence it commutes with Aβ by another
application of f). This yields one implication. Let (A(A + ε)−1)αx ∈ D(Aβ), and
fix a natural number n > Re α, Re β. Applying the implication just proved with
α replaced by n− α, we obtain (A(A + ε)−1)nx ∈ D(Aβ). From this we conclude
that (A(A + ε)−1)nΦβx ∈ D(An), where Φβ := (zβ/(1 + z)n)(A). By part g) of
Proposition 2.1.1 this implies that Φβx ∈ D(An), hence x ∈ D(Aβ).

h) follows from Proposition 2.3.11, and i) is obvious.

j) Consider the function f(z) = zα. Since f has polynomial limits both at 0 and
at ∞ one can apply Theorem 2.7.8 to obtain f(σ̃(A)) = σ̃(f(A)) = σ̃(Aα). But
µα = ∞ if and only if µ = ∞. �

Consider an operator A ∈ Sect(ω) and α ∈ (0, π/ω). Then by part j) of the
previous proposition σ(Aα) = σ(A)α ⊂ Sαω. But there is more to say in this case.

Proposition 3.1.2 (Scaling Property). Let A ∈ Sect(ω) for some ω ∈ (0, π), and let
[ε, δ] ⊂ (0, π/ω) be a compact interval. Then the family (Aα)ε≤α≤δ is uniformly
sectorial of angle δω.

In particular, for every α ∈ (0, π/ωA) the operator Aα is sectorial with ωAα = αωA.

Proof. Clearly, the second statement follows from the first (by taking ε = δ = 1).
So let J := [ε, δ] ⊂ (0, π/ω) be a compact interval, and fix ϕ ∈ (δω, π). For
α ∈ J, |arg λ| ∈ [ϕ, π] we define

ψλ,α(z) :=
λ

λ− zα
− |λ|

1
α

z + |λ|
1
α

=
λz + |λ|

1
α zα

(λ− zα)(z + |λ|
1
α )

.

Since obviously ψλ,α ∈ H∞
0 (Sδω) (see 3.1 below), we have

1
λ− zα

=
1

λ− zα
=

1
λ

(
|λ|

1
α

z + |λ|
1
α

+ ψλ,α(z)

)
∈ H(A).

So we have shown that λ ∈ �(Aα) and

λR(λ, Aα) = |λ|
1
α
(
|λ|

1
α + A

)−1 + ψλ,α(A).
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Using the scaling property ψtαλ,α(tz) = ψλ(z) for t > 0 we see that

‖λR(λ, Aα)‖ ≤M(A) +
∥∥∥ψλ/|λ|,α(|λ|

−1
α A)

∥∥∥
≤M(A) +

M(A, ω′)
2π

∫
∂Sω′

∣∣ψλ/|λ|,α(z)
∣∣ |dz|
|z|

for ω′ ∈ (ω, ϕ). So what we actually have to prove is that

sup

{∫
∂Sω′

|ψλ,α(z)| |dz|
|z|

∣∣∣∣ |λ| = 1, |argλ| ∈ [ϕ, π], α ∈ J

}
< ∞.

Now for |λ| = 1, |arg λ| ∈ [ϕ, π], α ∈ J , and z ∈ Sω′ we have

|ψλ,α(z)| =
∣∣∣∣ λz + zα

(λ− zα)(1 + z)

∣∣∣∣ ≤ ∣∣∣∣ zε

λ− zα

∣∣∣∣ |z|1−ε

|1 + z| +
∣∣∣∣ zα−ε

λ− zα

∣∣∣∣ |z|ε

|1 + z| , (3.1)

and the factors |zε/(λ− zα)| , |zα−ε/(λ− zα)| are uniformly bounded in our pa-
rameters λ, α, and z. This concludes the proof. �
Corollary 3.1.3. Let (Aι)ι∈I ⊂ Sect(ω) be uniformly sectorial for some ω ∈ (0, π),
and let J := [ε, δ] ⊂ (0, π/ω) be a compact interval. Then the family (Aα

ι )ι∈I,α∈J

is uniformly sectorial of angle δω. Furthermore, if Aι → A (Sω), then one has
Aα

ι → Aα (Sδω) for each α ∈ J .

Proof. This follows from the proof of Proposition 3.1.2. �
The next result is an immediate consequence of Proposition 3.1.2 and the

general composition rule (Theorem 2.4.2).

Proposition 3.1.4. Let A ∈ Sect(ω) for some ω, and let α ∈ (0, π/ω) and ϕ ∈
(ω, π/α). If f ∈ H∞

0 (Sαϕ) (f ∈ A(Sαϕ), f ∈M[Sαω]Aα), then the function f(zα)
is in H∞

0 (Sϕ) (A(Sϕ), M[Sω]A), and the identity

f(Aα) =
(
f(zα)

)
(A).

holds.

Corollary 3.1.5. (Second Law of Exponents) Let A ∈ Sect(ω) with ω ∈ (0, π), and
let α ∈ (0, π/ω). Then

(Aα)β = Aαβ

for all Re β > 0.

Corollary 3.1.6. Let A ∈ Sect(ω), Re γ > 0, and let x ∈ D(Aγ). Then the mapping

(α �−→ Aαx) : {α ∈ C | 0 < Reα < Re γ} −→ X

is holomorphic.
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Proof. Without loss of generality we may suppose γ > 0. Choose n ∈ N, n > γ.
Then Aαx = Bαn/γx and x ∈ D(Bn) where B := Aγ/n. Now the claim follows
from Proposition 3.1.1, b). �

We now compare the operators Aα and (A + ε)α for ε > 0.

Proposition 3.1.7. Let Re α ∈ (0, 1) and ε > 0. Then

Tε := ((z + ε)α − zα)(A) ∈ L(X) and Aα + Tε = (A + ε)α.

Moreover, we have ‖Tε‖ ≤ CεRe α, where C = C(α, ϕ, M(A, ϕ)) for ϕ ∈ (ω, π).

Proof. Let ψ1(z) := (z + 1)α − zα − (z + 1)−1. A short computation shows that
ψ1 ∈ H∞

0 . Hence ψε(z) := εαψ1(z/ε) = (z + ε)α − zα − εα(ε−1z + 1)−1 is also
contained in H∞

0 . This shows that (z + ε)α − zα ∈ E(Sϕ). By part c) of Theorem
1.3.2 and the composition rule we obtain Aα + Tε = (A + ε)α. Furthermore, we
have

ε−αTε = ε−αψε(A)− (1 + ε−1A)−1 = ψ1(ε−1A)− (1 + ε−1A)−1.

The claim now follows from

sup
ε>0

∥∥(1 + ε−1A)−1
∥∥ = M(A) and

∥∥ψ1(ε−1A)
∥∥ ≤ M(A, ϕ)C(ψ1, ϕ)

for ϕ ∈ (ω, π) (apply Proposition 2.6.11 with ψ = 0). �
Remark 3.1.8. With the help of the Balakrishnan representation (see below) the
last proposition can be improved with respect to the constant C. Namely, one can
explicitly determine a constant which depends only on M(A), Re α, and |sin απ|,
see [161, Proposition 5.1.14].

The last proposition implies in particular that D((A + ε)α) = D(Aα) for
ε > 0 and 0 < Re α < 1. However, this is true for all Re α > 0 as it is shown by
the next result.

Proposition 3.1.9. Let Re α > 0 and ε > 0. Then the following assertions hold.

a) D(Aα) = D((A + ε)α).

b) Aα ((A + ε)−1)α =
(
A(A + ε)−1

)α.

c) limε→0(A + ε)αx = Aαx for each x ∈ D(Aα).

Proof. Apply the composition rule to the functions f(z) := (z + ε)−1 and g(z) :=
zα to obtain (z + ε)−α(A) =

(
(A + ε)−1

)α ∈ L(X). Hence (z + ε)−α ∈ H(A) and

(A(A + ε)−1)α =
(

zα

(z + ε)α

)
(A) = zα(A)(z + ε)−α(A) = Aα((A + ε)−1)α

by the composition rule again, whence b) is proved. Furthermore, we have(
(A + ε)−1

)α
= (z + ε)−α(A) = ((z + ε)α(A))−1 = ((A + ε)α)−1
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by the composition rule and Theorem 1.3.2 f). Together with b) this shows that

D((A + ε)α) = R(((A + ε)−1)α) ⊂ D(Aα).

To prove the other inclusion of a), choose x ∈ D(Aα) and n > Re α. Applying the
first law of exponents and b) we obtain

D(An) � (A + ε)−nAαx = Aα(A + ε)−nx = Aα((A + ε)−1)α((A + ε)−1)n−αx

= (A(A + ε)−1)α((A + ε)−1)n−αx.

This yields ((A + ε)−1)n−αx ∈ D(An) by Proposition 3.1.1 g). Hence it follows
that x = (A + ε)n−α((A + ε)−1)n−αx ∈ D((A + ε)α).

We are left to show c). The family of operators (A+ε)(A+1)−1 is a sectorial
approximation of A(A+1)−1 (apply Proposition 2.1.3 c) together with Proposition
2.1.1 f)). Lemma 2.6.7 together with b) implies that

(A + ε)α((A + 1)−1)α = ((A + ε)(A + 1)−1)α → (A(A + 1)−1)α = Aα((A + 1)α)−1

in norm. In particular we have limε↘0(A + ε)αx = Aαx for all x ∈ D((A + 1)α).
However, D((A + 1)α) = D(Aα). �

Remark 3.1.10. The last result together with the rule (Aα)−1 = (A−1)α (in the
case where A is injective) reduces the definition of Aα for (general) sectorial oper-
ators A to the one for operators A ∈ L(X) with 0 ∈ �(A) where the usual Dunford
calculus is at hand. Therefore, the last result may be viewed as an ‘interface’ to
the literature where often the fractional powers are defined in a different way.

Instead of proving a statement for fractional powers directly with recourse
to the definition one can proceed in three steps:

1) The validity of the statement is proved for A ∈ L(X) with 0 ∈ �(A).

2) One shows that in the case where A is injective the statement for A follows
from the statement for A−1.

3) One shows that the statement is true for A if it is true for all A + ε (with
small ε > 0).

In fact, many proofs follow this scheme.

Corollary 3.1.11. One has D(Aα) ⊂ D(A) and R(Aα) ⊂ R(A) for each Re α > 0
and each sectorial operator A.

Proof. Suppose first that A is bounded, i.e., A ∈ L(X). Then with Γ being an
appropriate finite path, we have

Aα =
1

2πi

∫
Γ

zαR(z, A) dz =
1

2πi

∫
Γ

zα−1AR(z, A) dz
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by Cauchy’s theorem. This gives R(Aα) ⊂ R(A) if A ∈ L(X). For arbitrary A we
apply this to the operator A(A + 1)−1 and obtain

R(Aα) = R[Aα((A + 1)α)−1] = R[(A(A + 1)−1)α] ⊂ R(A(A + 1)−1) = R(A).

(Here we used b) of the last proposition.) Finally we conclude from this and
Proposition 3.1.9 a) that

D(Aα) = D[(A + 1)α] = R[((A + 1)−1)α] ⊂ R((A + 1)−1) = D(A). �
We now turn to an integral representation which historically was one of the

first approaches to fractional powers.

Proposition 3.1.12 (Balakrishnan Representation). Let A ∈ Sect(ω) on the Banach
space X, and let 0 < Reα < 1. Then

Aαx =
sinαπ

π

∫ ∞

0

tα−1 (t + A)−1Axdt (3.2)

for all x ∈ D(A). More generally, we have

Aαx =
Γ(m)

Γ(α)Γ(m− α)

∫ ∞

0

tα−1[A(t + A)−1]mxdt (3.3)

where 0 < Re α < n ≤ m and x ∈ D(An).

Proof. Suppose first that 0 < Re α < 1. For x ∈ D(A) we have

Aαx =
1

2πi

∫
Γϕ

zα−1R(z, A)Axdz, (3.4)

where ϕ ∈ (ω, π). In fact, we can compute

Aαx =
(

zα

z + ε

)
(A)(ε + A)x

=
(

zα

z + ε

)
(A)Ax + ε

(
zα

(z + ε)(z + 1)

)
(A)(1 + A)x

=
1

2πi

∫
Γϕ

zα−1

(
z

z + ε

)
R(z, A)Axdz

+
ε

2πi

∫
Γϕ

(
zα

(z + ε)(z + 1)

)
R(z, A)(1 + A)xdz,

where ε > 0. As ε ↘ 0 the second summand vanishes and we obtain (3.4). Note
that the function z �−→ zα−1R(z, A)Ax is integrable on the boundary Γϕ = ∂Sϕ.
Indeed, R(z, A)Ax is bounded at 0 and O(|z|−1) as z →∞. The functions (z/z+ε)
are bounded on Γϕ uniformly in ε, hence Lebesgue’s theorem is applicable.
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Starting from (3.4) we ‘deform’ the path Γϕ onto the negative real axis. This
means that the opening angle ϕ of Γϕ is enlarged until the angle π is reached.
Cauchy’s theorem ensures that the integral does not change its value during this
deforming procedure. Lebesgue’s theorem shows that the limit is exactly the
right-hand side of (3.2).

So we have proved the first part of the Proposition. For the second we
suppose m = n and n− 1 < Re α < n. Then for x ∈ D(An) we write

Aαx = Aα−(n−1)An−1x =
sin(α − n + 1)π

π

∫ ∞

0

tα−n (t + A)−1Anxdt

Int.b.p.
=

sin((α− n + 1)π)(n− 1)!
π(α− n + 1)(α− n + 2) . . . (α− 1)

∫ ∞

0

tα−1(t + A)−nAnxdt

=
Γ(n)

Γ(α)Γ(n− α)

∫ ∞

0

tα−1(t + A)−nAnxdt.

Here we used the standard formulae sin(πz)/π = 1/(Γ(z)Γ(1 − z)) and zΓ(z) =
Γ(z + 1) for the Gamma function. An holomorphy argument allows us to replace
the assumption n − 1 < Re α by 0 < Reα < n = m. Thus we have proved that
(3.3) holds for n = m.

To prove the general statement we use induction on m. The assertion is
already known for n = m. Define

cm :=
Γ(m)

Γ(m− α)Γ(α)
and Im :=

∫ ∞

0

tα−1[A(t + A)−1]mxdt.

Then we have

Im
I.b.p.
=

tα

α
[A(t + A)−1]mx|∞0 +

m

α

∫ ∞

0

tα[A(t + A)−1]m(t + A)−1xdt

=
m

α

∫ ∞

0

tα[A(t + A)−1]m(t + A)−1xdt

=
m

α

∫ ∞

0

tα−1([A(t + A)−1]mx− [A(t + A)−1]m+1)xdt

=
m

α
(Im − Im+1).

This means that m/(m − α)Im+1 = Im. Since cm(m/(m − α)) = cm+1, the
induction is complete. �

Corollary 3.1.13. Let n ∈ N and α ∈ (0, n). Then

sup
t>0

∥∥(t(t + A)−1)α
∥∥ ≤ M(A)n and sup

t>0

∥∥(A(t + A)−1)α
∥∥ ≤ (M(A) + 1)n.
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Proof. Let α ∈ (0, 1). Then we have

(
(t + A)−1

)α
=

sin πα

π

∫ ∞

0

sα−1(t + A)−1[s + (t + A)−1]−1 ds

=
sin πα

π

∫ ∞

0

sα−1(st + 1 + A)−1 ds, whence∥∥∥((t + A)−1
)α
∥∥∥ ≤ sin πα

π

∫ ∞

0

sα−1(st + 1)−1 dtM(A) = t−αM(A).

The general statement follows with the help of an easy induction argument. The
proof of the second assertion is similar, see [161, Remark 5.1.2]. �

Corollary 3.1.14. Let A ∈ Sect(ω) and Re α ∈ (0, 1). Then

Aαx =
sinπα

π

∫ ∞

0

t−α(t + A−1)−1xdt

for x ∈ D(A). (The operator A−1 may be multi-valued, see Remark 2.1.4.)

Proof. Starting from the Balakrishnan representation (3.2) we obtain

Aαx =
sinπα

π

∫ ∞

0

sα(s + A)−1Ax
ds

s

t=1/s
=

sinπα

π

∫ ∞

0

t−α(
1
t

+ A)−1Ax
dt

t

=
sinπα

π

∫ ∞

0

t−α(I − 1
t
(
1
t

+ A)−1)x
dt

t
=

sin πα

π

∫ ∞

0

t−αt(t + A−1)−1x
dt

t

=
sinπα

π

∫ ∞

0

t−α(t + A−1)−1xdt

by the fundamental identity (2.1). �

Proposition 3.1.15. Let A ∈ Sect(ω), x ∈ D(A), and ϕ ∈ [0, π/2). Then the
following assertions hold.

a) x ∈ R(A) ⇐⇒ limα→0, α∈Sϕ Aαx = x.

b) Ax ∈ D(A) ⇐⇒ limα→1, α∈1−Sϕ Aαx = Ax.

Proof. a) The implication ‘⇐’ is immediate from Corollary 3.1.11. To prove the
reverse direction we use the Balakrishnan representation (3.2) and write
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‖Aαx−Ax‖ =
∥∥∥∥ sin απ

π

∫ ∞

0

tα−1((t + A)−1Ax − 1
t + 1

x)dt

∥∥∥∥
≤
∣∣∣∣sin απ

π

∣∣∣∣ ∫ L

0

tRe α−1
∥∥(t + A)−1Ax− x

∥∥ + tRe α ‖x‖ dt

+
∣∣∣∣sin απ

π

∣∣∣∣ ∫ ∞

L

tRe α−2

∥∥∥∥t(t + A)−1Ax− t

1 + t
x

∥∥∥∥ dt

≤
∣∣∣∣sin απ

απ

∣∣∣∣ |α|Re α

(
LRe α sup

t≤L

∥∥(t + A)−1Ax− x
∥∥ +

Re α

Re α + 1
LRe α+1 ‖x‖

+
Re α

1− Reα
LRe α−1(M ‖Ax‖ + ‖x‖)

)
.

Note that sin απ/απ is continuous at 0 and that |α| / Reα is bounded by (cosϕ)−1.
Since x ∈ R(A) we may choose the number L such that

∥∥(t + A)−1Ax− x
∥∥ is small

for t ≤ L. For a fixed L the other summands tend to zero as Re α→ 0.

The proof of b) requires similar arguments, see [161, p.62]. �

Remark 3.1.16. Let A ∈ Sect(ω) and α ∈ (0, 1). Then Aα ∈ Sect(αω) as we
know from Proposition 3.1.2. By applying the same technique as in the proof of
Proposition 3.1.12 one obtains a Balakrishnan-type representation for the resolvent
of Aα, i.e.,

R(λ, Aα) =
− sin απ

π

∫ ∞

0

tα

(λ− tαeiπα)(λ− tαe−iπα)
(t + A)−1 dt

for |arg λ| > απ. One can deduce M(Aα) ≤ M(A) from this, see [161, (5.24) and
(5.25)] and [210, (2.23)].

3.2 Fractional Powers with Arbitrary Real Part

To introduce fractional powers with arbitrary real part, i.e., in order to render the
definition

Aα := (zα)(A) (α ∈ C)

meaningful we have to suppose that the sectorial operator A is injective. (Note
that zα ∈ B(Sϕ) for all α ∈ C and all ϕ ∈ (0, π).)

Proposition 3.2.1. Let A ∈ Sect(ω) be injective, and let α, β ∈ C. Then the
following assertions hold.

a) The operator Aα is injective with (Aα)−1 = A−α = (A−1)α.

b) We have AαAβ ⊂ Aα+β with D(Aβ) ∩D(Aα+β) = D(AαAβ).

c) If D(A) = X = R(A), then Aα+β = AαAβ.
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d) If 0 < Re α < 1, then

A−αx =
sin πα

π

∫ ∞

0

t−α(t + A)−1xdt (x ∈ R(A)).

e) If α ∈ R satisfies |α| < π/ω, then Aα ∈ Sect(|α|ω) and one has

(Aα)β = Aαβ (β ∈ C).

f) Let Re α0, Reα1 > 0. Then D(Aα1 ) ∩ R(Aα0) ⊂ D(Aα) for each α with
−Re α0 < Re α < Re α1. The mapping

(α �−→ Aαx) : {α ∈ C | − Re α0 < Re α < Re α1} −→ X

is holomorphic for each x ∈ D(Aα1) ∩ R(Aα0).

Proof. a) follows from Theorem 1.3.2 f), cf. the proof of Proposition 3.1.1 e).

b) is immediate from c) of Theorem 1.3.2.

c) For 1 < n ∈ N we define

τn(A) := n(n + A)−1 − 1
n

(
1
n

+ A

)−1

= (n + A)−1

(
n− 1

n

)
A

(
1
n

+ A

)−1

.

Then it is easy to see that for k ∈ N the following assertions hold.

a) supn

∥∥τn(A)k
∥∥ < ∞.

b) limn→∞ τn(A)kx = x for x ∈ D(A) ∩ R(A).

c) R(τn(A)k) ⊂ D(Ak) ∩ R(Ak), and D(Ak) ∩ R(Ak) = D(A) ∩ R(A).

We now choose k ∈ N such that D(Ak)∩R(Ak) ⊂ D(Aβ). Let x ∈ D(Aα+β), and
define xn := τn(A)kx. Then xn ∈ D(Aα+β) ∩ D(Aβ) ⊂ D(AαAβ) and xn → x.
Furthermore, AαAβxn = τn(A)kAα+βx → Aα+βx. This shows the claim.

d) follows from Corollary 3.1.14 by replacing A by A−1.

e) follows from a) and Proposition 3.1.2 together with the composition rule (The-
orem 2.4.2).

To prove f), let Re α0, Re α1 > 0, x ∈ D(Aα1)∩R(Aα0 ), and −Reα0 < α < Reα1.
If α /∈ iR, then it is clear from Proposition 3.1.1 that x ∈ D(Aα). Let α = is ∈ iR.
Choose n ∈ N such that Re α0, Re α1 < n and define B := A1/n. Then x ∈
D(B)∩R(B), hence x ∈ D(Bins) = D(Ais) = D(Aα). Since Aαx = Aα+α0A−α0x
the second statement follows from Corollary 3.1.6. �

For actual computations the following integral representations are of great
importance.



72 Chapter 3. Fractional Powers and Semigroups

Proposition 3.2.2 (Komatsu Representation)). Let A ∈ Sect(ω) be injective. The
identities

Aαx =
sin πα

π

[
1
α

x− 1
1 + α

A−1x +
∫ 1

0

tα+1(t + A)−1A−1xdt

+
∫ ∞

1

tα−1(t + A)−1Axdt

] (3.5)

=
sin πα

π

[
1
α

x +
∫ 1

0

t−α(1 + tA)−1Axdt

−
∫ 1

0

tα(1 + tA−1)−1A−1xdt

] (3.6)

hold for |Re α| < 1 and x ∈ D(A) ∩ R(A).

Note that the second formula is symmetric with respect to A and A−1, whence
it can again be seen that A−αx = (A−1)αx for x ∈ D(A) ∩R(A).

Proof. We suppose first that 0 < Reα < 1. Starting from the Balakrishnan
representation (3.2) we obtain

π

sinαπ
Aαx =

∫ ∞

0

tα−1(t + A)−1Axdt

=
∫ 1

0

tα−1(t + A)−1Axdt +
∫ ∞

1

tα−1(t + A)−1Axdt

=
∫ 1

0

tα−1(1 + tA−1)−1xdt +
∫ ∞

1

tα−1(t + A)−1Axdt

=
∫ 1

0

tα−1(1 − (1 + tA−1)−1tA−1)xdt +
∫ ∞

1

tα−1(t + A)−1Axdt

=
1
α

x−
∫ 1

0

tα(1 + tA−1)−1A−1xdt +
∫ ∞

1

tα−1(t + A)−1Axdt (∗)

=
1
α

x−
∫ 1

0

tα(1 + tA−1)−1A−1xdt +
∫ 1

0

t−α(1 + tA)−1Axdt

for x ∈ D(A) ∩ R(A), where in the last step we have replaced t by t−1 in the
second integral. This last formula makes sense even for −1 < Re α < 1. Hence by
holomorphy we obtain (3.6) for |Reα| < 1. The representation (3.5) now follows
from (∗) with the help of the identity t−1(t+A)−1 = t−1A−1− (t+A)−1A−1. �

A particularly important subclass of the injective sectorial operators are the
invertible ones.

Proposition 3.2.3. Let A ∈ Sect(ω) such that 0 ∈ �(A). Then the mapping

(α �−→ A−α) : {α ∈ C | Re α > 0} −→ L(X)



3.3. The Phillips Calculus for Semigroup Generators 73

is holomorphic. For every ϕ ∈ (0, π/2) one has

sup
{∥∥A−α

∥∥ ∣∣ Re α ∈ (0, 1), |argα| ≤ ϕ
}

< ∞ (3.7)

and the equivalence x ∈ D(A) ⇐⇒ lim
α→0,|arg α|≤ϕ

A−αx = x.

Proof. The first assertion follows from A−α = (A−1)α and Proposition 3.1.1 a).
To prove (3.7) we employ Proposition 3.2.1 d) and obtain∥∥A−αx

∥∥ ≤ K
|sin πα|

π

∫ ∞

0

t−Re α(t + 1)−1 dt ‖x‖ = K
|sinπα|

sin(π Re α)
‖x‖ ,

where K := supt>0 ‖(t + 1)(t + A)−1‖ < ∞. Hence∥∥A−α
∥∥ ≤ K

∣∣∣∣ sin πα

πα

∣∣∣∣ π Re α

sin(π Re α)
|α|

Reα
.

If A−αx→ x, then x ∈ D(A) by Corollary 3.1.11. The converse implication follows
from Proposition 3.1.15 a). �

3.3 The Phillips Calculus for Semigroup Generators

In this section we wish to give a formula for the fractional powers in the case
that −A generates a bounded semigroup (T (t))t≥0. This is actually part of a more
general construction.

For µ ∈M[0,∞) we define its Laplace transform L(µ) by

L(µ)(z) :=
∫

[0,∞)

e−zt µ(dt) (Re z ≥ 0)

It is well known (or easy to see) that L(µ) is a bounded holomorphic function on
C+ and continuous on C+. Moreover,

L(µ)(is) = (Fµ)(s) (s ∈ R)

is the Fourier transform of µ (see Appendix E.1). From this follows that µ is
uniquely determined by L(µ). A simple computation involving Fubini’s theorem
yields the product law

L(µ) · L(ν) = L(µ ∗ ν) (µ, ν ∈M[0,∞)).

Now take ϕ ∈ (π/2, π) and f ∈ E(Sϕ). Obviously f ∈ H∞(C+) ∩C(C+), so
we may ask whether f = L(µ) for some µ ∈ M[0,∞). Clearly L(δ0) = 1, where
δ0 denotes the Dirac measure at 0, and

L(eλt dt) =
1

z − λ
(Re λ < 0),

hence L(e−t dt) = (1 + z)−1. The following lemma deals with the case f ∈ H∞
0 .
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Lemma 3.3.1. Let ϕ ∈ (π/2, π) and ψ ∈ H∞
0 (Sϕ). Then there is (a unique)

g ∈ L1(0,∞) such that ψ = L[g(t) dt]. More precisely, g is given by

g(t) :=
−1
2πi

∫
Γ

ψ(z)ezt dz (3.8)

where Γ = ∂Sω′ , and ω′ ∈ (π/2, ϕ) is arbitrary.

From the representation (3.8) one can see that g has a holomorphic extension
to a sector Sη for some η > 0 and that |λg(λ)| is bounded on Sη. We will not use
these facts in the sequel.

Proof. Take z0 ∈ C+. Then ψ(z0) is given by the Cauchy integral

ψ(z0) =
1

2πi

∫
Γ

ψ(z)
z − z0

dz =
−1
2πi

∫
Γ

ψ(z)
∫ ∞

0

e(z−z0)t dt dz

=
∫ ∞

0

ez0t −1
2πi

∫
Γ

ψ(z)ezt dz dt.

Note that for z ∈ Γ we have Re(z − z0) < 0. The application of Fubini’s theorem
is justified since with c := sup0
=z∈Γ |z| / |Re z| < ∞ we have∫

Γ

∫ ∞

0

|ψ(z)| eRe(z−z0)t dt |dz| ≤
∫

Γ

∣∣∣∣ψ(z)
z

∣∣∣∣ |z|
|Re z| |dz| ≤ c

∫
Γ

∣∣∣∣ψ(z)
z

∣∣∣∣ dz < ∞.

Hence with g defined by (3.8), ψ(z0) = L(g)(z0). �

To sum up, given f ∈ E(Sϕ) we find a uniquely determined g ∈ L1(0,∞)
such that

f = L(µ), where µ := g dt ⊕ ce−t dt ⊕ dδ0

and d = f(∞), c = f(0)− f(∞). Now, if −A generates a bounded semigroup on
X , we expect the identity

f(A)x =
∫

[0,∞)

T (t)xµ(dt)

to hold for all x ∈ X . This is true, and we have an even more general result.

Proposition 3.3.2. Let −A be the generator of a bounded semigroup (T (t))t>0 on
the Banach space X. If µ ∈ M[0,∞) is such that f := L(µ) is contained in
M[Sπ/2]A, then f(A) ∈ L(X) and

f(A)x = L(µ)(A)x =
∫ ∞

0

T (t)xµ(dt) (x ∈ X).
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Proof. Take ϕ ∈ (π/2, π), and let f ∈ O(Sϕ). First one proves the assertion for
f ∈ E(Sϕ). For f = 1 the assertion is trivially true. The case f = (1 + z)−1 is
immediate from Proposition A.8.1. The case f = ψ ∈ H∞

0 is dealt with by means
of Lemma 3.3.1:

ψ(A)x =
1

2πi

∫
Γ

ψ(z)R(z, A)xdz =
−1
2πi

∫
Γ

ψ(z)R(−z,−A)xdz

=
−1
2πi

∫
Γ

ψ(z)
∫ ∞

0

eztT (t)xdt dz =
∫ ∞

0

g(t)T (t)xdt.

(We have used again Proposition A.8.1 and Fubini’s theorem.)

In the general case we take e ∈ E(Sϕ) a regulariser of f . Let ν ∈M[0,∞) be
such that L(ν) = e. Then L(µ ∗ ν) = ef , and since ef ∈ E , we may write

(ef)(A)x =
∫ ∞

0

T (t)x (µ ∗ ν)(dt) =
∫ ∞

0

∫ ∞

0

T (t + s)x ν(ds)µ(dt)

=
∫ ∞

0

T (t)
∫ ∞

0

T (s)x ν(ds)µ(dt) =
∫ ∞

0

T (t)e(A)xµ(dt)

= e(A)
∫ ∞

0

T (t)xµ(dt),

and this proves the claim. �

Remark 3.3.3. Actually, one can define

f(A)x :=
∫

[0,∞)

T (t)xµ(dt) (x ∈ X)

if f = L(µ) and µ ∈ M[0,∞). The class E := {L(µ) | µ ∈ M[0,∞)} is a
subalgebra of H∞(C+) ∩ C(C+) and the mapping (f �−→ f(A)) : E −→ L(X)
is an algebra homomorphism. This mapping is called the Phillips calculus for A.
Proposition 3.3.2 shows that this calculus is in fact an extension of the natural
functional calculus for A as defined in Chapter 2.

Let us apply these results to fractional powers.

Lemma 3.3.4. Let Re α > 0. Then

z−α =
1

Γ(α)

∫ ∞

0

tα−1e−tz dt (Re z > 0).

Proof. Define ψ(z) := zαe−z, which is in H∞
0 (Sϕ) for each ϕ ∈ (0, π/2). As

in Example 2.2.6 we see that c :=
∫∞
0

ψ(tz) dt/t is constant, and by the very
definition of the Gamma function, letting z = 1 we find c = Γ(α). The rest is
some trivial algebra. �
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Proposition 3.3.5. Let −A be the generator of a bounded semigroup (T (t))t≥0.
Then

(ε + A)−α =
1

Γ(α)

∫ ∞

0

tα−1e−εtT (t) dt (3.9)

in the strong sense, for all ε > 0, Re α > 0.

Proof. Replacing z by z + ε, Lemma 3.3.4 shows that the function (z + ε)−α is
the Laplace transform of Γ(α)−1tα−1e−εt dt. Hence the assertion follows from
Proposition 3.3.2. (We use the composition rule here.) �
Corollary 3.3.6. Let −A be the generator of an exponentially stable semigroup
T = (T (t))t≥0. Then

A−α =
1

Γ(α)

∫ ∞

0

tα−1T (t) dt (3.10)

in the strong sense, for all Re α > 0.

Proof. We find ε > 0 such that the semigroup eεtT (t) is still bounded. If we apply
Proposition 3.3.5 to this semigroup (which has generator −(A− ε)) we obtain the
assertion. �

Note that in no result of this section did we assume that the semigroup is
strongly continuous at 0.

3.4 Holomorphic Semigroups

In this section we survey the basic properties of (bounded) holomorphic semi-
groups. In contrast to general semigroups, the holomorphic ones are accessible
via the natural functional calculus. This is one reason why the natural functional
calculus is so important in the framework of parabolic problems (where the semi-
groups are holomorphic) but is of minor relevance in a hyperbolic setting.

Let A be a sectorial operator of angle ω ∈ [0, π/2). In contrast to other
sections we allow the operator A to be multi-valued. For 0 
= λ ∈ C with |arg λ| <
π/2 − ω the function e−λz is in E(Sϕ) for each ϕ ∈ (ω, π/2 − |arg λ|) (it decays
fast at ∞ and is holomorphic at 0, cf. Example 2.2.4 and Lemma 2.3.2).

By Remark 2.3.4, this allows us to define

e−λA := (e−λz)(A) ∈ L(X). (3.11)

The family (e−λA)|arg λ|<π/2−ω is called the holomorphic semigroup generated by
−A (see below for a general introduction of this terminology). We summarise
some basic properties.

Proposition 3.4.1. Let A be a multi-valued sectorial operator of angle ω ∈ [0, π/2).
Then the following assertions hold.

a) e−λAe−µA = e−(λ+µ)A for all λ, µ ∈ Sπ/2−ω.
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b) The mapping
(λ �−→ e−λA) : Sπ

2 −ω −→ L(X)

is holomorphic.

c) Let θ ∈ (0, π/2− ω). Then

sup
{
‖e−λA‖

∣∣ |argλ| ≤ θ
}

< ∞.

More precisely, for each choice of ω′ ∈ (ω, π/2 − θ) there exists a constant
C = C(e−z , ω′ + θ) with ‖e−λA‖ ≤ CM(A, ω′) for all |arg λ| ≤ θ.

d) The identity

(µ + A)−1 =
∫ ∞

0

e−µte−tA dt

holds true for all Re µ > 0.

e) For all λ ∈ Sπ/2−ω we have R(e−λA) ⊂
⋂

n∈N
D(An).

f) If x ∈ D(A), then
lim

λ→0,|arg λ|≤ϕ
e−λAx = x

for each ϕ ∈ (0, π/2− ω).

g) Suppose that A is single-valued. Then

σ(e−tA) = e−tσ̃(A) (t ≥ 0).

Proof. a) is immediate from Theorem 2.3.3.
b) is easily proved in writing e−λA as a Cauchy integral (Lemma 2.3.2) and ap-
plying the Dominated Convergence Theorem. We obtain

dn

dλn
(e−λA) = ((−z)ne−λz)(A).

c) is a special case of Proposition 2.6.11 (writing ϕ := ω′ + θ) in noting that we
have e−λA = (e−z)(λA) (an instance of the composition rule).
d) Given Re µ > 0 we compute∫ ∞

0

e−µte−tA dt =
∫ ∞

0

e−µt 1
2πi

∫
Γ

e−tzR(z, A) dz

=
1

2πi

∫
Γ

∫ ∞

0

e−µte−tz dt R(z, A) dz =
1

2πi

∫
Γ

1
µ + z

R(z, A) dz = (µ + A)−1

by Lemma 2.3.2. (Here, Γ is an appropriate contour avoiding 0, see Section 2.3.)
e) Take n ∈ N and λ ∈ Sπ/2−ω. Since both functions (1+z)−n and (1+z)ne−λz are
contained in E we obtain e−λA = (1 + A)−n((1 + z)ne−λz)(A) by multiplicativity.
f) Choose ϕ ∈ (0, π/2 − ω). Then (e−λz(1 + z)−1)(A) → (1 + A)−1 in norm as
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Sϕ � λ → 0, by Lebesgue’s theorem. Hence e−λAx = (e−λz(1 + z)−1)(A)z → x
for x ∈ D(A) and z ∈ (1 + A)x. By the uniform boundedness proved in c), we
obtain e−λAx→ x even for all x ∈ D(A).

g) follows from the Spectral Mapping Theorem (Theorem 2.7.8). �

Remark 3.4.2. We remark that by a)–d) of the previous proposition the operator
family T := (e−tA)t≥0 is a bounded semigroup with generator −A (cf. Appendix
A.8). Part g) implies in particular that r(e−tA) = ets(−A) for each t ≥ 0, where
s(−A) := sup{Reλ | λ ∈ σ(−A)} is the spectral bound of the generator. Since
always etω0(T ) = r(e−tA) (see [85, Proposition IV.2.2]), this in turn yields ω0(T ) =
s(−A). Such an identity fails for general semigroups, see [85, IV.2.7].

Proposition 3.4.3. Let ω ∈ [0, π/2), and let A ∈ Sect(ω) be single-valued. Then
f(A)e−λA ∈ L(X) for all λ ∈ Sπ/2−ω and all f ∈ A[Sω]. Let ϕ ∈ (0, π/2−ω) and
Reα > 0. Then

sup
{
|λ|Re α ‖Aαe−λA‖

∣∣∣ |arg λ| ≤ ϕ
}

< ∞.

More precisely, for each choice of ω′ ∈ (ω, π/2− θ) there is C = C(zαe−z, ω′ + θ)
such that

‖Aαe−λA‖ ≤ C M(A, ω′)e(Im α arg λ) |λ|−Re α (|arg λ| ≤ θ).

Proof. Take f ∈ A[Sω]. Then f(z)e−λz is (super)polynomially decaying at∞ and
f(z)e−λz − f(0) is polynomially decaying at 0, hence f(z)e−λz ∈ E . By a stan-
dard functional calculus argument we obtain f(A)e−λA = (f(z)e−λz)(A) ∈ L(X).
The last statement follows from Proposition 2.6.11 in noting that λαAαe−λA =
(zαe−z)(λA) (composition rule). �

Let θ ∈ (0, π/2]. A mapping T : Sθ −→ L(X) is called a bounded holomor-
phic (degenerate) semigroup (of angle θ) if it has the following properties:

1) The semigroup law T (λ)T (µ) = T (λ + µ) holds for all λ, µ ∈ Sθ.

2) The mapping T : Sθ −→ L(X) is holomorphic.

3) The mapping T satisfies supλ∈Sϕ
‖T (λ)‖ < ∞ for each ϕ ∈ (0, θ).

(By a), b) and c) of Proposition 3.4.1, (e−λA)λ∈Sθ
is a bounded holomorphic

semigroup of angle θ = π/2 − ω, whenever A ∈ Sect(ω) with ω ∈ [0, π/2).)
By holomorphy, T is uniquely determined by its values on (0,∞). Moreover, if
the semigroup law holds for real values, then it holds for all λ (see the proof of
[10, Proposition 3.7.2]). Also by holomorphy and the semigroup law, the space
NT := N(T (λ)) is independent of λ ∈ Sθ. Hence either each or none of the
operators T (λ) is injective.

If we are given a bounded holomorphic semigroup T and restrict it to the
positive real axis (0,∞), we obtain a bounded semigroup as defined in Section A.8.
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This semigroup has a generator B, defined via its resolvent by

R(λ, B) :=
∫ ∞

0

e−λtT (t) dt (Re λ > 0).

Let A := −B. Then we have A0 = NT by (A.1) on page 298. Hence A is single-
valued if and only if T (w) is injective for one/all w ∈ Sθ.

The multi-valued operator A is sectorial (at least of angle π/2), since

∥∥λ(λ + A)−1
∥∥ = ‖λR(λ, B)‖ ≤ (sup

t>0
‖T (t)‖) |λ|

Re λ

for all Re λ > 0. But even more is true: The multi-valued operator A is sectorial
of angle π/2− θ, and we have T (λ) = e−λA for all λ ∈ Sθ.

Proof. Let ϕ ∈ (−θ, θ), and consider the bounded holomorphic semigroup T (eiϕ·)
on Sθ−|ϕ|. We know already that there is a multi-valued operator Aϕ ∈ Sect(π/2)
such that (λ + Aϕ)−1 =

∫∞
0

e−λtT (teiϕ) dt for all Re λ > 0. Let Γ = (0,∞)eiϕ.
By Cauchy’s theorem,

(s + A)−1 =
∫ ∞

0

e−stT (t) dt =
∫

Γ

e−szT (z) dz = eiϕ

∫ ∞

0

e−seiϕtT (teiϕ) dt

= eiϕ(seiϕ + Aϕ)−1 = (s + e−iϕAϕ)−1

for all s > 0. This yields eiϕA = Aϕ. Since ϕ ranges between −θ and θ and
each Aϕ is sectorial of angle π/2 we obtain that A is sectorial of angle π/2 − θ.
Employing d) of Proposition 3.4.1 and the injectivity of the Laplace transform
we conclude that T (t) = e−tA for all t > 0. By holomorphy, this implies that
T (λ) = e−λA, λ ∈ Sθ. �

Combining the above considerations with Proposition 3.4.1 we obtain the
following.

Proposition 3.4.4. There is a one-one correspondence between multi-valued secto-
rial operators A of angle ω ∈ [0, π/2) and bounded holomorphic semigroups T on
Sπ/2−ω, given by the relations

T (z) = e−zA (z ∈ Sπ
2 −ω), (λ + A)−1 =

∫ ∞

0

e−λtT (t) dt (Re λ > 0).

The operator A is single-valued if and only if T (z) is injective for all z ∈ Sπ/2−ω.

The last result establishes a fact pointed at in Remark 2.3.12. Namely, if A
is sectorial and single-valued and ωA < π/2, then e−tz for t > 0 is a regulariser
which compensates exponential growth at ∞.
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Remark 3.4.5. Fix θ ∈ (0, π/2]. An exponentially bounded holomorphic semi-
group of angle θ is a holomorphic mapping T : Sθ −→ L(X) satisfying the semi-
group law and such that {T (λ) | λ ∈ Sϕ, |λ| ≤ 1} is bounded for each ϕ ∈ (0, θ).
Given such a semigroup, for each ϕ ∈ (0, θ) one can find numbers Mϕ ≥ 1, wϕ ≥ 0
such that

‖T (λ)‖ ≤ Mϕewϕ Re λ (λ ∈ Sϕ).

In particular, T |(0,∞) is an exponentially bounded semigroup in the sense of Section
A.8. Thus it has a generator −A, which is characterised by

(λ + A)−1 =
∫ ∞

0

e−λtT (t) dt

for sufficiently large Re λ. Given ϕ ∈ (0, θ) and wϕ as above, we have

e−wϕλ T (λ) = e−λ(A+wϕ) (λ ∈ Sϕ).

Hence all statements on exponentially bounded holomorphic semigroups can be
reduced to statements on bounded holomorphic semigroups. For example, given
ϕ ∈ (−θ, θ), the mapping (t �−→ T (eiϕt)) is an exponentially bounded semigroup
with generator −eiϕA. (See the proof before Proposition 3.4.4.)

From Corollary A.8.3 we know that the space of strong continuity of T |(0,∞)

is exactly D(A). Employing Proposition 3.4.4 and part f) of Proposition 3.4.1 we
see that even

lim
Sϕ�λ→0

T (λ)x = x

for x ∈ D(A) and each ϕ ∈ [0, θ).

Let us describe two situations where holomorphic semigroups appear in a
natural way.

Example 3.4.6 (Subordinated Semigroups). Let −A generate a bounded semi-
group, and let α ∈ (0, 1). By scaling (Proposition 3.1.2) Aα ∈ Sect(απ/2) and
since α < 1 the operator −Aα generates a bounded holomorphic semigroup of
angle at least (1 − α)π/2. For t > 0, the function e−tzα

belongs to E [Sπ/2] and
vanishes at ∞, so there must be a function ft,α ∈ L1(0,∞) such that

e−tzα

= L(ft,α) =
∫ ∞

0

e−szft,α(s) ds.

One then has e−tAα

x =
∫∞
0 ft,α(s)T (s)xds for all x ∈ X , by the Phillips calculus

(Proposition 3.3.2). Since ft,α is the inverse Fourier transform of the function
r �→ e−t(ir)α

, one has

ft,α(s) =
1

2πi

∫
iR

esz−tzα

dz (s, t > 0, α ∈ (0, 1)).
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Deforming the path yields the explicit formula

ft,α(s) =
1
π

∫ ∞

0

esr cos θ−trα cos αθ sin(sr sin θ − trα sinαθ + θ) dr,

where θ ∈ [π/2, π] is arbitrary, see [230, p.263]. In the case α = 1/2 this reduces
to the particularly nice form

ft, 12
(s) =

t√
4πs3

e−
t2
4s ,

see [230, p.268] or [10, Thm.3.8.3]. One can show that for all α ∈ (0, 1), t > 0
the function ft,α is positive [230, p.261]. The semigroups (etAα

)t>0 for α ∈ (0, 1)
play an important role in the theory of Markov diffusion processes, and are called
subordinated semigroups.

Example 3.4.7. Let A be a sectorial operator on a Banach space X , and let
α ∈ (0, 1/2]. Then Aα ∈ Sect(αωA) (Proposition 3.1.2), hence (−Aα) gener-
ates a holomorphic semigroup. One can derive Balakrishnan-type representation
formulae for these semigroups, namely

e−tAα

=
1
π

∫ ∞

0

e−trα cos πα sin(trα sin πα) (A + r)−1 dr (t > 0)

where the integral is absolutely convergent in the case where α ∈ (0, 1/2) and is
convergent in the improper sense when α = 1/2. See [161, Section 5.5] for details.

Let A ∈ Sect(ω) on the Banach space X , and suppose that 0 ∈ �(A). We
know from Proposition 3.2.3 that (A−z)Re z>0 is an exponentially bounded holo-
morphic semigroup of angle π/2, with D(A) as its space of strong continuity. In
the next section we identify its generator.

3.5 The Logarithm and the Imaginary Powers

We return to our terminological agreement that ‘operator’ always is to be read as
‘single-valued operator’ (see p. 279). In fact, we work with an injective, single-
valued, sectorial operator A. The function log z has subpolynomial growth at 0
and at ∞, whence it belongs to the class B(Sϕ) for each ϕ ∈ (0, π]. Since A is
assumed to be injective, the operator

log A := (log z)(A)

is defined and is called the logarithm of the operator A. Because of the identity
log(z−1) = − log z we have log(A−1) = − log A. The next result is fundamental.
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Lemma 3.5.1 (Nollau). Let A ∈ Sect(ω) be injective. If |Im λ| > π, then λ ∈
�(log A) and

R(λ, log A) =
∫ ∞

0

−1
(λ− log t)2 + π2

(t + A)−1 dt. (3.12)

Hence ‖R(λ, log A)‖ ≤ π M(A) (|Im λ| − π)−1.

We call the formula (3.12) the Nollau representation of the resolvent of log A.

Proof. Suppose first that A, A−1 ∈ L(X). We choose ϕ ∈ (ω, π), a > 0 small
and b > 0 large enough and denote by Γ the positively oriented boundary of the
bounded sector Sϕ(a, b). Then

(λ− log z)−1(A)

=
1

2πi

∫
Γ

1
λ− log z

R(z, A) dz

=
1

2πi

∫ b

a

e−iϕ

λ− log t + iϕ
R(te−iϕ, A) dt +

1
2π

∫ ϕ

−ϕ

beis

λ + log b − is
R(beis, A) ds

− 1
2πi

∫ b

a

eiϕ

λ− log t− iϕ
R(teiϕ, A) dt− 1

2π

∫ ϕ

−ϕ

aeis

λ + log a− is
R(aeis, A) ds

(1)
=

∫ b

a

−1
(λ − log t)2 + π2

(t + A)−1 dt +
1
2π

∫ π

−π

beis

λ + log b− is
R(beis, A) ds

− 1
2π

∫ π

−π

aeis

λ + log a− is
R(aeis, A) ds

(2)
=

∫ ∞

0

−1
(λ − log t)2 + π2

(t + A)−1 dt =: J(A),

where we have let ϕ → π in (1) and a → 0, b → ∞ in (2). Hence we have proved
the claim in the special case where A and A−1 are both bounded. In the general
case define Aε := (A + ε)(1 + εA)−1. Then (Aε)ε>0 is a sectorial approximation
of A (see Proposition 2.1.3). Let f(z) := (λ − log z)−1. Obviously f ∈ H∞(Sϕ)
for ϕ > ω. We have already shown that f(Aε) = J(Aε) ∈ L(X). It follows from
the Dominated Convergence Theorem that

f(Aε) → J(A) =
∫ ∞

0

−1
(λ − log t)2 + π2

(t + A)−1 dt.

in norm. Applying Proposition 2.6.9 we obtain f(A) = J(A). From Theorem
1.3.2 f) we conclude that in fact f(A) = (λ − log A)−1. Having shown this we
compute



3.5. The Logarithm and the Imaginary Powers 83

‖R(λ, log A)‖ ≤
∫ ∞

0

M(A)
|(λ− log t)2 + π2|

dt

t
=
∫

R

M(A)
|(i Imλ− s)2 + π2| ds

=
∫

R

M(A)√
(s2 − ((Im λ)2 − π2)2 + 4s2(Im λ)2

ds

≤
∫

R

M(A)
(s2 + ((Im λ)2 − π2)

ds =
M(A)π√

(Im λ)2 − π2
≤ M(A)π
|Im λ| − π

,

where we have used the (easily verified) inequalities

(s2 − ((Im λ)2 − π2))2 + 4s2(Im λ)2 ≥ (s2 − ((Im λ)2 − π2))2 + 4s2((Im λ)2 − π2)

= (s2 + ((Im λ)2 − π2))2, and√
(Im λ)2 − π2 ≥ |Im λ| − π. �

Proposition 3.5.2. Let A ∈ Sect(ω) be injective. If |Im λ| > ω, then λ ∈ �(log A)
and for each ϕ > ω there is a constant Mϕ such that

‖R(λ, log A)‖ ≤ Mϕ

|Im λ| − ϕ
(|Im λ| > ϕ).

In fact Mϕ = πM(Aπ/ϕ). Furthermore, D(log A) ⊂ D(A) ∩ R(A).

Proof. Let α := π/ϕ. Then Aα ∈ Sect(αω) is injective. The composition rule
yields log(Aα) = α log(A). Applying Nollau’s Lemma 3.5.1 we obtain

‖R(µ, α log A)‖ ≤M(Aα)π/(|Im µ| − π) (|Im µ| > π).

Letting λ = µ/α and ϕ = π/α we arrive at

‖R(λ, log A)‖ ≤ M(Aα)π/(|Im λ| − ϕ) (|Im λ| > ϕ).

From the Nollau representation (3.12) for R(·, log A) it follows that D(log A) ⊂
D(A). But − log A = log A−1, hence also D(log A) ⊂ D(A−1) = R(A). �

As promised, we can now identify the generator of the holomorphic semigroup
(A−z)Re z>0, where A is a sectorial and invertible operator.

Proposition 3.5.3. Let A ∈ Sect(ω) with 0 ∈ �(A). Then − log A is the generator
of the holomorphic semigroup (A−z)Re z>0. In particular, D(log A) = D(A).

Proof. By semigroup theory, there is c > 0 such that (e−ctA−t)t>0 is a bounded
semigroup. Clearly it suffices to show that

(λ + log A)−1 =
∫ ∞

0

e−λtA−t dt
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for some λ ∈ C with Re λ > c and |Im λ > π|. So choose such a λ and let
0 < a < b < ∞. Then∫ b

a

e−λtA−t dt =
∫ b

a

e−λt 1
2πi

∫
Γ

z−tR(z, A) dz dt

=
1

2πi

∫
Γ

∫ b

a

e−λtz−t dtR(z, A) dz =
1

2πi

∫
Γ

e−λaz−a − e−λbz−b

λ + log z
R(z, A) dz

= e−λaA−a(λ + log A)−1 − e−λb(λ + log A)−1,

where Γ is an appropriate path avoiding 0 (see Section 2.5). The last equality is
due to the fact that (λ + log z)−1(A) = (λ + log A)−1 ∈ L(X) by Nollau’s Lemma
3.5.1. Since Re λ > c we have

∥∥e−λbA−b
∥∥→ 0 as b→∞. From D(log A) ⊂ D(A)

and Proposition 3.2.3 we see that e−λaA−a(λ+log A)−1 → (λ+log A)−1 strongly.
This concludes the proof. �
Remark 3.5.4. Suppose that A is a bounded sectorial operator. As a matter of
fact, the fractional powers (Az)Re z>0 of A form a quasi-bounded holomorphic
semigroup as well. What is its generator? If A is injective, the answer is of
course log A. But if A is not injective, the generator is not single-valued and
cannot be obtained by the natural functional calculus. Since also in this case
the generator should be log A in a sense, we feel the necessity of a sophisticated
functional calculus for multi-valued operators. However, we do not further pursue
this matter here.

We conclude our investigation of the logarithm with the following nice ob-
servation. Consider the function f(z) := log z − log(z + ε) = log(z(z + ε)−1). A
short computation reveals that f is holomorphic at ∞ with f(∞) = 0. Hence if
A is sectorial and invertible, then f(A) ∈ L(X), i.e., f ∈ H(A). From the usual
rules of functional calculus we see that log(A + ε) is a bounded perturbation of
log A. In particular, D(log A) = D(log(A + ε)).

Let us turn to the imaginary powers Ais of an injective operator A ∈ Sect(ω).

Proposition 3.5.5. Let A ∈ Sect(ω) be injective, and let 0 
= s ∈ R. Then the
following assertions hold.

a) If Ais ∈ L(X), then D(Aα) ⊂ D(Aα+is) for all α ∈ C. Conversely, if
D(Aα) ⊂ D(Aα+is) for α ∈ {−1, 1}, then Ais ∈ L(X).

b) If 0 ∈ �(A) and ε > 0, then

(A + ε)is = (1 + εA−1)isAis.

In particular, D((A+ε)is) = D(Ais). Moreover, (A+ε)isx → Aisx as ε → 0,
whenever x ∈ D(Ais).

c) The space D := D((A + ε)is) is independent of ε > 0. If x ∈ D and
limε→0(A + ε)isx =: y exists, then x ∈ D(Ais) with y = Aisx.
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d) If Ais ∈ L(X), then also (A + ε)is ∈ L(X) for all ε > 0. Moreover,
sup0≤ε≤1 ‖(A + ε)is‖ < ∞ and limε→0(A + ε)isx = Aisx for all x ∈ R(A).

e) Let 0 ∈ �(A). If Ais ∈ L(X), then sup0<α<1 ‖A−α+is‖ < ∞ and

lim
α↘0

A−α+isx = Aisx (x ∈ D(A)).

Conversely, if sup0<α<1 ‖A−α+is‖ < ∞ and D(A) = X, then Ais ∈ L(X).

Proof. a) Suppose Ais ∈ L(X), and let α ∈ C. Then AisAα ⊂ Aα+is, hence
D(Aα) = D(AisAα) ⊂ D(Aα+is). Conversely, suppose D(A) ⊂ D(A1+is) and
R(A) ⊂ D(A−1+is). Since always D(A1+is) ∩D(A) = D(AisA), we have D(A) =
D(AisA). Hence R(A) ⊂ D(Ais). Similarly we obtain D(A) = R(A−1) ⊂ D(Ais).
But D(A) + R(A) = X , whence Ais ∈ L(X).
b) Since A(A + ε)−1 is bounded and invertible, we have (A(A + ε)−1)is ∈ L(X).
But

(1 + εA−1)−is = (A(A + ε)−1)is =
(

z

z + ε

)is

(A)

by the composition rule. Hence (z(z + ε)−1)is ∈ H(A). Therefore,

(A + ε)is(1 + εA−1)−is =

[
(z + ε)is

(
z

z + ε

)is
]

(A) = (zis)(A) = Ais

(see Theorem 1.3.2). From this we conclude that

(A + ε)is = (1 + εA−1)is(A + ε)is(1 + εA−1)−is = (1 + εA−1)isAis

by Theorem 1.3.2 e). The last statement follows from the fact that (1+εA−1)is →
I in norm as ε → 0 (apply Lemma 2.6.7).
c) The first statement is immediate from b). Now take x ∈ D and suppose that
the limit limε↘0(A + ε)isx =: y exists. Then

(τ(z)zis)(A) =

((
z

z + ε

)is

τ(z)

)
(A + ε)isx → τ(A)y (ε ↘ 0)

where we use Lemma 5.1.2 below. (The reader will surely realise that although
we have postponed that lemma, there is no hidden logical circle in this reasoning.)
But this is just to say that Aisx = y.
d) Suppose that Ais ∈ L(X). Then

D(A + ε) = D(A) ⊂ D(A1+is) = D((A + ε)1+is)

by a) and Proposition 3.1.9. Hence

(A + ε)is = (zis)(A + ε) = (z1+isz−1)(A + ε) = (A + ε)1+is(A + ε)−1 ∈ L(X).



86 Chapter 3. Fractional Powers and Semigroups

From Proposition 3.1.7 and Corollary 3.1.13 and

(A + ε)isx =
[
(A + ε)

1
2+is −A

1
2 +is

]
(A + ε)−

1
2 x + Ais

[
A(A + ε)−1

] 1
2 x

we conclude that sup0≤ε≤1 ‖(A + ε)is‖ < ∞. Now, let x = A1/2y ∈ R(A1/2).
Then the first summand is O(ε1/2). The second summand may be written as
(A(A + ε)−1)Ais(A + ε)1/2y and this tends to AisA1/2y = Aisx as ε ↘ 0 since
Ais ∈ L(X), (A + ε)1/2y → A1/2y (by Proposition 3.1.9), and A(A + ε)−1 → I
strongly on R(A) (by Proposition 2.1.1).

e) The statements follow almost immediately from Proposition 3.2.3. �

In [161, Example 7.3.3] (which goes back to Komatsu) one can find a bounded
sectorial operator A on a Banach space X such that Ais /∈ L(X) for all 0 
= s ∈ R.
This shows in particular that in general D(Ais) 
= D((A + ε)is).

The next result shows that — in a way — the operator i logA may be
considered the ‘generator’ of the operator family (Ais)s∈R. Recall the notation
Λ−1

A = A(1+A)−2 for an injective sectorial operator A and note that (AisΛ−1
A )s∈R

is a strongly continuous family of bounded operators on X .

Proposition 3.5.6. Let A ∈ Sect(ω) be injective. For each θ ∈ (ω, π] there is a
constant Cθ ≥ 0 such that ∥∥AisΛ−1

A

∥∥ ≤M(A, θ)Cθe
|s|θ

for all s ∈ R. Moreover, for all Re λ > ω,

(λ − i logA)−1 = ΛA

∫ ∞

0

e−λsAisΛ−1
A ds. (3.13)

Proof. Choose θ > ω. Writing τ(z) = z(1 + z)−2 we have AisΛ−1
A = (z−isτ)(A),

whence

∥∥AisΛ−1
A (A)

∥∥ ≤ M(A, θ)
2π

∫
Γθ

∣∣zis
∣∣ 1
|1 + z|2

|dz| ≤ e|s|θ
M(A, θ)

2π

∫
Γθ

1
|1 + z|2

|dz| .

Let 0 < a < b. Then∫ b

a

e−λsAisΛ−1
A ds =

∫ b

a

e−λs 1
2πi

∫
Γ

zisz

(1 + z)2
R(z, A) dz

=
1

2πi

∫
Γ

z

(1 + z)2

(∫ b

a

zise−λs ds

)
R(z, A) dz
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by Fubini’s theorem. Evaluating the inner integral yields

1
2πi

∫
Γ

z

(1 + z)2
e−(λ−i log z)a − e−(λ−i log z)b

λ− i log z
R(z, A) dz

=
e−λa

2πi

∫
Γ

ziaz

(1 + z)2(λ− i log z)
R(z, A) dz−

e−λb

2πi

∫
Γ

zibz

(1 + z)2(λ− i log z)
R(z, A) dz

= e−λaAiaΛ−1
A R(λ, i log A)− e−λbAibΛ−1

A R(λ, i log A).

The second summand tends to 0 in norm as b → ∞ since Reλ > ω. The first
summand tends to Λ−1

A R(λ, i log A) strongly as a → 0, by Proposition 3.2.1 f).
Hence we obtain ∫ ∞

0

e−λsAisΛ−1
A ds = Λ−1

A R(λ, i log A),

which immediately implies (3.13). �

Corollary 3.5.7. Let A ∈ Sect(ω) be injective. The following assertions are equiv-
alent.

(i) D(A) ∩ R(A) = X and Ais ∈ L(X) for all s ∈ R.

(ii) The operators (Ais)s∈R form a C0-group of bounded operators on X.

(iii) The operator i log A generates a C0-group (T (s))s∈R of bounded operators on
X.

In this case we have T (s) = Ais for all s ∈ R.

Proof. (i)⇒(ii). Define T (s) := Ais for s ∈ R. Obviously, (T (s))s∈R is a group.
For every x ∈ D(A) ∩ R(A), T (·)x is continuous. This follows from Proposition
3.2.1. Since D(A) ∩ R(A) = X , we have that for each x ∈ X the trajectory
T (·)x is at least strongly measurable. From [119, Theorem 10.2.3] we infer that
T is strongly continuous on (0,∞), but this implies readily that T is strongly
continuous on the whole real line.
(ii)⇒(iii). This follows from Proposition 3.5.6 since the hypothesis allows us to
put the operator Λ−1

A in front of the integral.

(iii)⇒(i). Suppose that i logA generates the C0-group T . In particular, D(log A)
must be dense in X . Now, D(log A) ⊂ D(A)∩R(A) = D(A) ∩R(A) by Proposition
3.5.2. Thus, we are left to show that T (s) = Ais for all s ∈ R. Employing
Proposition 3.5.6 we obtain∫ ∞

0

e−λsAisΛ−1
A ds = Λ−1

A R(λ, i log A) =
∫ ∞

0

e−λsΛ−1
A T (s) ds
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for Re λ large. Since the Laplace transform is injective, AisΛ−1
A = Λ−1

A T (s) for all
s > 0. Multipying both sides of this equation with ΛA yields Ais = T (s) for s > 0.
From this we infer that A−is = (Ais)−1 = T (s)−1 = T (−s) for all s > 0. �

If A satisfies the equivalent conditions in Corollary 3.5.7 we say that A has
bounded imaginary powers and write A ∈ BIP(X). Note that D(A) ∩ R(A) = X
is included in this definition; there exist operators A such that Ais ∈ L(X) for
all s and even sups∈R ‖Ais‖ < ∞, but D(A) ∩R(A) 
= X (see Example 7.3.1 in
[161]). If A ∈ BIP(X), by semigroup theory, we know that

θA := inf
{
θ ≥ 0

∣∣ ∃C :
∥∥Ais

∥∥ ≤ C e|s|θ (s ∈ R)
}

< ∞. (3.14)

We write A ∈ BIP(X, θ) if A ∈ BIP(X) and θ ≥ θA. This notation slightly
differs from the terminology used in [161, Definition 8.1.1]. The first part of the
celebrated Prüss–Sohr theorem states that θA ≥ ωA if A ∈ BIP(X). We shall
reprove and generalise this result in Section 4.3, see Corollary 4.3.4.

Remark 3.5.8. Suppose that (Ais)s>0 ⊂ L(X) is strongly continuous and norm
bounded as s → 0. This implies that T (s) := Ais is an exponentially bounded
semigroup in the terminology of Section A.8. It follows from Proposition 3.5.6 that
the operator i log A is the generator of T even in this situation. The same conclu-
sion holds (with an appropriate notion of ‘generator’) in the case where (s �−→ Ais)
is continuous only with respect to a ‘very weak’ topology, like those considered
in [140] and [88]. In any case, Proposition 3.5.6 implies that (AisΛ−1

A )s∈R is an
exponentially bounded Λ−1

A -regularised group with generator i log A, see [66] and
cf. also [179, Addendum] and [178].

3.6 Comments

Literature on Fractional Powers, past and present. Beginning with the seminal
papers by Krasnoselskii and Sobolevski [137], Balakrishnan [24], Yosida
[229], Kato [126], around 1960, fractional powers have been the subject of exten-
sive research. A first attempt to exhaustively present the theory was undertaken
by Komatsu in a series of papers [131, 132, 134, 133, 135] in the years from 1965
to 1970. Since then they appeared — at least in the special case of invertible op-
erators — in practically every book on semigroup theory or evolution equations,
beginning with Krein’s book [139] up to [186], [85] and [10], just to mention a few.
Besides, several articles underlined the importance of fractional — in particular
purely imaginary — powers for the regularity theory of evolution equations, see
[200, 75, 76, 227, 228].

The first monograph to appear on the theory of fractional powers was [161]
by Martinez and Sanz. There the construction of the fractional powers is based
on the Balakrishnan representation, which is a real integral. As a consequence, the
authors are forced to give a definition of fractional powers ‘by cases’ as is sketched
in Remark 3.1.10.
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3.1 Fractional Powers with Positive Real Part. The results presented in this sec-
tion are standard and in fact all included in [161, Chapter V]. The proof of Propo-
sition 3.1.2 is from [19, Proposition 3.5]. Proposition 3.1.7 and its proof are also
in [150, Lemma 3.3]. The proof of the Balakrishnan representation and its corol-
laries is from [161]. The Spectral Mapping Theorem for fractional powers (part j)
of Proposition 3.1.1) was originally proved by Balakrishnan in [24], reprinted in
[161, p. 121]. Martinez and Sanz [161, Thm. 5.2.1] give also their own proof,
based on the Spectral Mapping Theorem for the Hirsch functional calculus.

3.2 Fractional Powers with Arbitrary Real Part. As in Section 3.1, the results are
well known. Proposition 3.2.3 and Proposition 3.3.5 are from [5, Section III.4.6].

3.4 Holomorphic Semigroups. This section is inspired by [157]. The generalisa-
tion to the multi-valued case seems to be new as it stands. However, there are
similar results in [89, Chapter III]. Holomorphic semigroups abound within the
field of evolution equations of parabolic type, see e.g. [157] and the references
therein.

3.5 The Logarithm and the Imaginary Powers. The logarithm of an injective
sectorial operator was introduced by Nollau [176], where Lemma 3.5.1 is proved.
Then for a long time the operator logarithm was out of focus but reappeared
finally during the 1990’s in works of Boyadzhiev [35] and Okazawa [177, 179].
The monograph [161] mentions them only in the Hilbert space case. From [103]
it finally became clear that logarithms play a fundamental rule in the theory of
sectorial operators. (This is the topic of Chapter 4 below.)

Without question, the imaginary powers of a sectorial operator are the most
misterious objects in the field. Venni [219] has constructed examples of sectorial
operators A where Ais is bounded for some values of s ∈ R and unbounded for
others, see also [161, Example 7.3.4]. The boundedness of all imaginary powers has
surprising consequences in regularity theory (the celebrated Dore–Venni theorem,
see Theorem 9.3.11) and in interpolation theory (Theorem 6.6.9) as well as for
functional calculus on Hilbert spaces (Theorem 7.3.1).

Lemma 3.5.1 was first proved by Nollau [176]. Our proof is an adaptation of
[161, Lemma 10.1.5] and [179, Lemma 5.1] (for the norm estimate). Proposition
3.5.2 is stated and proved in the Hilbert space case in [161, Theorem 10.1.6]
(though without using facts particular to Hilbert spaces). Our proof is slightly
different. The basic facts on the imaginary powers collected in Proposition 3.5.5
are extracted from [161, Chapter 7]. Part d) is a perturbation result, see also
Section 5.5.2. Corollary 3.5.7 is essentially in [161, Theorem 10.1.3 and Theorem
10.1.4]. An earlier account can be found in [179, Addendum] and [178]. From
Uiterdijk [216, Proposition 2.2.31] we learned the argument in the proof of the
implication (i)⇒(ii).



Chapter 4

Strip-type Operators and the
Logarithm

As a straightforward abstraction of the logarithm of an injective sectorial operator
we introduce the notion of a strip-type operator (Section 4.1). Since the resolvent of
a strip-type operator by definition is bounded outside a horizontal strip, a functional
calculus based on Cauchy integrals can be set up (Section 4.2). Section 4.3 is devoted to
prove the main result, which states equality between the spectral angle of an injective
sectorial operator A and the spectral height of the strip-type operator log A. As a
corollary one obtains an important theorem of Prüss and Sohr, saying that in the
case where A ∈ BIP, the group type of (Ais)s∈R is always larger than the spectral
angle of A. In Section 4.4 the problem of ‘inversion’ is discussed, namely the question,
which strip-type operators are actually logarithms of sectorial operators. Here we
present a theorem of Monniaux, slightly generalised. In Section 4.5 we construct the
example of an injective sectorial operator A ∈ BIP on a UMD space with the property
that the group type of (Ais)s∈R is larger than π.

4.1 Strip-type Operators

We are going to introduce a new class of operators, in order to have an abstract
concept at hand when dealing with logarithms of sectorial operators. For ω > 0
we denote by

Hω := {z ∈ C | |Im z| < ω}

the horizontal strip of height 2ω which is symmetric with respect to the real axis.
In the case where ω = 0 we define H0 := R. An operator B on a Banach space X
is said to be a strip-type operator of height ω — in short: B ∈ Strip(ω)) — if

1) σ(B) ⊂ Hω and

2) L(B, ω′) := sup
{
‖R(λ, B)‖

∣∣ |Im λ| ≥ ω′} < ∞ for all ω′ > ω′.

It is clear that B ∈ Strip(ω) if and only if −B ∈ Strip(ω), and in this case one has
L(B, ω′) = L(−B, ω′) for each ω′ > ω. We call

ωst(B) := min{ω ≥ 0 | B ∈ Strip(ω)}
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sup ‖R(λ, B)‖ < ∞

iω′

σ(B)

−iω′

sup ‖R(λ, B)‖ < ∞

Figure 7: Spectrum of a strip-type operator.

the spectral height of B. Figure 7 illustrates the notion of a strip-type operator.
Let us say that an operator B is a strong strip-type operator of height ω if

for each ω′ > ω there is Lω′ such that

‖R(λ, B)‖ ≤ Lω′

|Im λ| − ω′ (|Im λ| > ω′).

Such operators obviously have the property that for each ω′ > ω both operators
ω′ − iB and ω′ + iB are sectorial of angle π/2.

Examples 4.1.1. We describe three classes of strip-type operators that arise in a
natural manner.

1) Let ω ∈ [0, π), and let A ∈ Sect(ω) be injective. Then B := log A is a
strong strip-type operator of height ω, as we learn from Nollau’s theorem
(Proposition 3.5.2). We shall prove in Section 4.3 that ωA = ωst(log A).

2) Let iB generate a C0-group T . Then B is a strong strip-type operator of
height θ(T ), where θ(T ) is the group type of T . In general, it may occur that
ωst(B) < θ(T ). However, Gearhart’s Theorem C.8.2 implies that we have
ωst(B) = θ(T ) in the case where X is a Hilbert space.

3) Let H be a Hilbert space, and let B be a self-adjoint operator on H . Then
σ(B) ⊂ R and

‖R(λ, B)‖ ≤ 1
|Im λ| (λ /∈ R)

(see Proposition C.4.2). In particular, B is a strong strip-type operator of
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height 0. Of course this is a special case of 2) since iB generates a unitary
group on H , by Stone’s Theorem C.7.4.

Remark 4.1.2. As a matter of fact, instead of dealing with horizontal strips we
could have defined all notions for vertical strips. (The strip-type operators in the
horizontal and vertical case correspond to each other via the mapping (B �−→ iB).)
This in fact seems more natural for generators of groups and therefore was done in
[101] and [105]. Since the logarithm of a sectorial operator is our guiding example,
we have chosen horizontal strips for this exposition.

4.2 The Natural Functional Calculus

We wish to define a functional calculus for a strip-type operator B ∈ Strip(ω)
analogously to the sectorial case. Given ϕ > 0, we let

F(Hϕ) :=
{

f ∈ O(Hϕ)
∣∣ f(z) = O(|Re z|−α) (|z| → ∞) for some α > 1

}
and γϕ := ∂Hϕ (oriented in the positive sense). Then for B ∈ Strip(ω), ω′ ∈
(ω, ϕ), and f ∈ F(Hϕ), the Cauchy integral

f(B) :=
1

2πi

∫
γω′

f(z)R(z, B) dz

is absolutely convergent in L(X) since R(·, B) is bounded on the path γω′ , see
Figure 8 below. By Cauchy’s theorem the definition of f(B) is independent of the
actual choice of ω′. The following result is not surprising.

Proposition 4.2.1. a) The mapping (f �−→ f(B)) : F(Hϕ) −→ L(X) is a homo-
morphism of algebras.

b) For λ, µ /∈ Hϕ the identity ((λ − z)(µ− z))−1 (B) = R(λ, B)R(µ, B) holds.

c) We have (f(z)(λ− z)−1)(B) = R(λ, B)f(B) = f(B)R(λ, B) for λ /∈ Hϕ.

d) If C is a closed operator commuting with the resolvents of B, then C also
commutes with f(B). In particular, f(B) commutes with B and with R(λ, B)
for all λ ∈ �(B).

Proof. a), c) and d) are proved analogously to the corresponding statements in
Lemma 2.3.1. The only difficulty is in b). We give a sketch of the proof but leave
the details to the reader. Let f(z) := (λ − z)−1(µ − z)−1 with λ, µ /∈ Hϕ. Let
us suppose that λ, µ lie on the same side of Hϕ, say above. f(B) is given by a
Cauchy integral on the contour (R − iδ1) � (R + iδ2) where δ1, δ2 ∈ (ϕ,∞) are
close to ϕ. Since the integrand has no singularity within the lower half-plane, we
shift the lower path (as δ1 →∞) towards Im z = −∞ without changing its value.
This value must therefore be equal to 0. As δ2 increases, nothing happens in the
beginning, but when crossing λ we obtain a residue, which is (µ − λ)−1R(λ, B),
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iϕ

γω′

σ(B)

−iω

γω′

Figure 8: Cauchy integral for strip-type operators.

and when crossing µ we obtain in addition (λ− µ)−1R(µ, B). After this the path
wanders off to Im z = +∞ without changing the value any more. So this value is
equal to 0. Summing up, we obtain

f(B) =
R(λ, B)
µ− λ

+
R(µ, B)
λ− µ

= R(λ, B)R(µ, B)

by the resolvent identity. (When λ = µ a similar reasoning applies, also in the
case that λ, µ are situated on different sides of the strip.) �

We define F [Hω ] :=
⋃

ϕ>ω F(Hϕ) and M[Hω] :=
⋃

ϕ>ωM(Hϕ), and call
the mapping

ΦB := (f �−→ f(B)) : F [Hω] −→ L(X)

the primary functional calculus (in short: pfc) for the strip-type operator B. Ob-
viously, F [Hω] is a subalgebra of M[Hω] ⊂M(Hω). Hence an abstract functional
calculus

(F [Hω ],M(Hω), ΦB)

in the sense of Chapter 1 is established; this is proper, by Proposition 4.2.1 b).
Employing the abstract results of Section 1.2, the primary functional calculus has
a natural extension to a map M[Hω ]B −→ {closed operators}, where

M[Hω]B :=
{
f ∈M[Hω]

∣∣ ∃e ∈ F(Hω) : e(B) is injective and ef ∈ F [Hω]
}

is the set of regularisable elements of M[Hω]. The operator f(B) is then defined
as

f(B) = e(B)−1(ef)(B)
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whenenver f ∈ M[Hω]B and e ∈ F [Hω] is such that e(B) is injective and
ef ∈ F [Hω]. The so-obtained abstract functional calculus (F [Hω],M(Hω), ΦB) is
called the natural functional calculus for the strip-type operator B and it is even a
meromorphic functional calculus for B (see Section 1.3), as the following Lemma
shows.

Lemma 4.2.2. Let B ∈ Strip(ω). Then (z)(B) = B.

Proof. Let λ /∈ Hω. Then (λ − z)−3(B) = R(λ, B)3, by Proposition 4.2.1 b) and
c). Hence (λ − z)−3 regularises z. Now, z(λ − z)−3 = λ(λ − z)−3 − (λ − z)−2,
whence z(λ− z)−3(B) = λR(λ, B)3 −R(λ, B)2 = BR(λ, B)3. This yields z(B) =
(λ−B)3(z(λ− z)−3)(B) = (λ −B)3BR(λ, B)3 = B(λ−B)3R(λ, B)3 = B. �

As a consequence, we have at hand all the results on meromorphic functional
calculi from Section 1.3, in particular Theorem 1.3.2. It is now natural to ask
which meromorphic functions can be guaranteed to be contained in M[Hω]B .

Lemma 4.2.3. Let B ∈ Strip(ω).

a) If f ∈ O[Hω] is polynomially bounded at∞, then f ∈ M[Hω]B . In particular,
f(B) is defined for every f ∈ H∞[Sω].

b) Let ω ∈ [0, π), and let λ ∈ C \ {0} such that |argλ| ∈ (ω, π]. Then one has
(λ − ez)−1 ∈ H∞[Hω], and the operator (λ− ez)−1(B) is injective.

c) Let ω ∈ [0, π), and let λ, µ ∈ C \ {0} such that |argλ| , |arg µ| ∈ (ω, π]. Then
the operator

T (λ, µ) :=
ez

(λ − ez)(µ− ez)
(B)

is injective.

Note that the function f(z) := ez/(λ− ez)(µ− ez) is indeed a member of
F [Hω ].

Proof. a) For µ > ω one may use powers of eµ(z) := (µ2 + z2)−1 ∈ F [Hω ] as
regularisers for polynomially bounded holomorphic functions. (Note that eµ(B) =
−R(iµ, B)R(−iµ, B) by Proposition 4.2.1 b), and this is injective.)

b) and c) Let f ∈ F [Hω] be such that f(B) is injective. Then, for every H∞-
function g, f is a regulariser for g and ker g(B) = ker(fg)(B). Let ω < |argλ|,
|argµ| ≤ π. Since

λf(z)
λ− ez

=
µf(z)
µ− ez

+
(µ− λ)ez

µ(λ− ez)
µf(z)
µ− ez

it follows that ker(µ−ez)−1(B) ⊂ ker(λ−ez)−1(B), whence equality by symmetry.
Now, as λ → −∞ we have [λf(z)/(λ− ez)](B) → f(B) in norm (use the definition
by Cauchy integrals). Hence ker(λ− ez)−1(B) = ker f(B) = 0, and this proves b).
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In a totally analogous way one can prove that the operator (1/µ− e−z)−1(B) is
injective. Then c) follows from b) and

−f(B)2T (λ, µ) =
f(z)

λ− ez
(B)

ezf(z)
ez − µ

(B) =
f(z)

λ− ez
(B)

(1/µ)f(z)
(1/µ)− e−z

(B).
�

From the last result it is clear that f(B) is defined whenever B ∈ Strip(ω)
and f ∈ O[Hω] is such that f = O(eα|Re z|) as |Re z| → ∞ for some α ∈ (0, π/ω).
In particular

eB := (ez)(B)

is defined for any strip-type operator B. This operator is injective and satisfies
C \ Sω ∩ Pσ(eB) = ∅.

Proof. Let λ ∈ C \ Sω. Then 1/(λ− ez) ∈ H∞[Hω] ⊂ M[Hω]B, whence λ − eB

is injective by Theorem 1.3.2 f). Since (λ − eB)−1(µ − eB)−1eB ⊂ T (λ, µ), the
operator eB is injective. �

By Proposition 3.5.2 we know that log A ∈ Strip(ω) if A ∈ Sect(ω) is in-
jective. So we expect elog A = A in this case. In fact, this is an instance of the
following composition rule.

Theorem 4.2.4 (Composition Rule). Let A ∈ Sect(ω), and let g ∈ M[Sω]A such
that g(A) ∈ Strip(ω′). Suppose in addition that for every ϕ′ ∈ (ω′,∞) there is
ϕ ∈ (ω, π) such that g(Sϕ) ⊂ Hϕ′ . Then f ◦ g ∈M[Sω]A and

(f ◦ g)(A) = f(g(A))

for every f ∈ M[Hω′ ]g(A).

Analogous statements hold if A is strip-type and g(A) is sectorial or also strip-type.

Proof. We prove only the first statement of the theorem. Its proof is totally
analogous to the sectorial situation (Section 2.4). Obviously we may suppose
that g is not a constant. By the Open Mapping Theorem one then has g(Sω) ⊂
Hω′ . Next, an appeal to the abstract composition rule (Proposition 1.3.6) reduces
everything to f ∈ F [Hω′ ]. Since we are mainly interested in the case g(z) = log(z)
we suppose for simplicity that A is injective. Choose ω′ < ϕ′ < ω′

1 such that f is
defined on a strip larger than Hω′

1
, and take Γ′ = ∂Hω′

1
. Then choose ϕ ∈ (ω, π)

such that g(Sϕ) ⊂ Hϕ′ . Set Γ := ∂Sω1 for some ω1 ∈ (ω, ϕ). Using the convention
τ(z) := z(1 + z)−2 and ΛA := τ(A)−1 we have

f(g(A)) =
1

2πi

∫
Γ′

f(λ)R(λ, g(A)) dλ

= ΛA
1

2πi

∫
Γ′

f(λ)
1

2πi

∫
Γ

τ(z)
λ− g(z)

R(z, A) dz dλ.
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Since the function f(λ)(λ− g(z))−1τ(z)/z is clearly product integrable on Γ′×Γ,
we can apply Fubini’s theorem to obtain

. . . = ΛA
1

2πi

∫
Γ

[
1

2πi

∫
Γ′

f(λ)
λ− g(z)

dλ

]
τ(z)R(z, A) dz

= ΛA
1

2πi

∫
Γ

τ(z)(f ◦ g)(z)R(z, A) dz = ΛA (τ(f ◦ g)) (A) = (f ◦ g)(A).

If A is not injective, modifications as in the proof of Lemma 2.4.4 are needed. �
Here is an immediate application.

Corollary 4.2.5. Let ω ∈ [0, π), and let A ∈ Sect(ω) be injective. Then

elog A = A and f(log A) = (f(log z))(A)

for all f ∈ H∞(Sϕ) and all ϕ ∈ (ω, π). In particular we have(
1

λ− ez

)
(log A) = R(λ, A) and(

ez

(λ− ez)(µ− ez)

)
(log A) = AR(λ, A)R(µ, A)

for all λ, µ ∈ C \ Sω.

Corollary 4.2.6. An injective, sectorial operator on a Banach space X is uniquely
determined by its logarithm, i.e., if A and B are injective, sectorial operators on
X such that log A = log B, then A = B.

Remark 4.2.7. 1) Suppose B ∈ Strip(ω) is bounded. Then one can set up the
usual Dunford calculus for B. It is easy to see that if f ∈ O[Hω]B, then
f(B) (defined by the natural functional calculus for strip-type operators) is
bounded and coincides with f(B) defined by the Dunford calculus. Hence
the Dunford calculus is an extension of the natural functional calculus in this
case.

2) By methods analogous to those developed in Section 2.7 one can prove a
spectral inclusion theorem and a spectral mapping theorem for the natural
functional calculus for strip-type operators.

Theorem 4.2.8 (Spectral Mapping Theorem). Let A ∈ Sect(ω) be injective. Then
the identity

σ̃(log A) = log (σ̃(A)) (4.1)

holds.

Proof. Theorem 2.7.4 (spectral inclusion) yields that log (σ(A) \ {0}) ⊂ σ(log A).
Now, by Remark 4.2.7 one has also a spectral inclusion theorem for strip-type
operators. Hence we may infer that eσ(log A) ⊂ σ(elog A) \ {0} = σ(A) \ {0},
whence σ(log A) ⊂ log(σ(A))\{0}. On the other hand, it is obvious that log(A) is
bounded if and only if A is bounded and invertible. This concludes the proof. �
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4.3 The Spectral Height of the Logarithm

Let A be an injective, sectorial operator on the Banach space X . Recall that
Nollau’s theorem (Proposition 3.5.2) says that logA is a strip-type operator with
ωst(log A) ≤ ωA. The purpose of this section is to prove the following.

Theorem 4.3.1. Let X be a Banach space, and let A ∈ Sect(ω) be injective. If
log A ∈ Strip(ω′) for some ω′ ≥ 0, then A ∈ Sect(ω′). In particular, we have

ωst(log A) = ωA.

We let B := log A. Without loss of generality we may suppose that ω′ < ω.
Let us consider the operator family

T (λ, µ) :=
(

ez

(λ− ez)(µ− ez)

)
(B) ∈ L(X)

defined for λ, µ /∈ Sω′ , cf. Lemma 4.2.3. From Corollary 4.2.5 we obtain

T (λ, µ) = AR(λ, A)R(µ, A) (4.2)

for |argλ| , |arg µ| ∈ (ω, π].

Lemma 4.3.2. Fix µ with |argµ| > ω′. Then the mapping

(λ �−→ T (λ, µ)) : C \ Sω′ −→ L(X)

is holomorphic.

Proof. It suffices to show that the function

z �−→ ez

(λ− ez)(µ− ez)
R(z, B)

is integrable on horizontal lines uniformly in λ ∈ K, for each compact K ⊂ C\Sω′ .

Choose ϕ ∈ (ω′, |argµ|) and define Cν := dist(ν, Sϕ) for |arg ν| > ϕ. Let |arg λ| ∈
(ϕ, π], and define fλ(z) := ez(λ− ez)−1(µ− ez)−1. Then

|fλ(z)| ≤ eRe z

CµCλ
and |fλ(z)| ≤ e−Re z

|λ| |µ|C 1
λ
C 1

µ

for z ∈ Hϕ. Hence there is C(λ), locally bounded in λ, such that |fλ(z)| ≤
C(λ)e−|Re z|. This proves the claim. �

We need another lemma.
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Lemma 4.3.3. Let ϕ ∈ (ω′, π). Then the set{
‖(µ− λ)T (λ, µ)‖

∣∣ |arg λ| ≥ ϕ, µ = − |λ|
}

is bounded.

Proof. Choose ω1 ∈ (ω′, ϕ). We write (µ − λ)T (λ, µ) as a Cauchy integral along
the path γ := ∂Hω1 and obtain

‖(µ− λ)T (λ, µ)‖ =
∥∥∥∥ 1

2πi

∫
γ

(µ− λ)ez

(λ− ez)(µ− ez)
R(z, B) dz

∥∥∥∥
≤ L(B, ω1)

2π

∫
γ

|(µ− λ)ez| |dz|
|λ− ez)| |(µ− ez)| .

The integral over the path R + iω1 is estimated by∫ ∞

−∞

|µ− λ|
∣∣er+iω1

∣∣
|λ− er+iω1 | |µ− er+iω1 | dr

t=er

=
∫ ∞

0

|µ− λ|
|λ− teiω1 | |µ− teiω1 | dt

=
∫ ∞

0

|µ− λ| |λ|
|λ− |λ| teiω1 | |µ− |λ| teiω1 | dt

µ=−|λ|
=

∫ ∞

0

∣∣∣1 + λ
|λ|

∣∣∣∣∣∣ λ
|λ| − teiω1

∣∣∣ |1 + teiω1 |
dt

≤
∫ ∞

0

2∣∣∣ λ
|λ| − teiω1

∣∣∣ |1 + teiω1 |
dt.

The last term is uniformly bounded since ϕ ≤ |argλ| ≤ π. Needless to say that
the second integral can be treated analogously. �

We are now able to complete the proof of Theorem 4.3.1. By elementary
calculations we obtain from (4.2) the identity

λR(λ, A) = (µ− λ)T (λ, µ) + µR(µ, A), (4.3)

which holds for all λ, µ with |arg λ| , |arg µ| ∈ (ω, π]. Keeping µ fixed we see that
the right-hand side of this equation is defined even for |argλ| ∈ (ω′, π] and is
in fact holomorphic as a function of λ (Lemma 4.3.2). Since the norm of the
resolvent blows up if one approaches a spectral value (Proposition A.2.3), no λ
with |argλ| ∈ (ω′, π] can belong to σ(A). Furthermore, if we choose ϕ ∈ (ω′, π)
and let µ = µλ := − |λ| in (4.3), we arrive at

‖λR(λ, A)‖ ≤ ‖(µλ − λ)T (λ, µλ)‖+
∥∥|λ| (|λ|+ A)−1

∥∥ .

This is bounded uniformly for |arg λ| ≥ ϕ, by Lemma 4.3.3 and sectoriality. �
Let us state two important corollaries. Recall that, if iB generates a group

T on a Banach space X , one always has θ(T ) ≥ ωst(B) by the Hille–Yosida
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Theorem A.8.6. If X = H is a Hilbert space, even θ(T ) = ωst(B) holds, by
Gearhart’s Theorem C.8.2. Now, if A is sectorial and A ∈ BIP(X), we know that
i logA generates the group (Ais)s∈R (Proposition 3.5.6). Employing the identity
ωA = ωst(log A) we obtain the following two results.

Corollary 4.3.4 (Prüss–Sohr). Let X be a Banach space, and let A be an injective,
sectorial operator on X such that A ∈ BIP(X). Then ωA ≤ θA, i.e., the group
type of the group (Ais)s∈R is always larger than the spectral angle of A.

Corollary 4.3.5 (McIntosh). Let H be a Hilbert space, and let A be an injective,
sectorial operator on H such that A ∈ BIP. Then θA = ωA, i.e., the group type of
(Ais)s∈R equals the spectral angle of A.

We shall see in Section 7.3.3 that even more is true in the Hilbert space
situation.

4.4 Monniaux’s Theorem and the Inversion Problem

The logarithm of an injective, sectorial operator A is a strip-type operator, and
in fact we have elog A = A by the composition rule (Corollary 4.2.5). So it is
natural to ask whether eB is sectorial whenever B ∈ Strip(ω), ω ∈ [0, π). Let
us give a name to that question and call it the inversion problem for strip-type
operators. Unfortunately, the answer is ‘not always’, even if we allow B to be a
strong strip-type operator.

Example 4.4.1. Let X := L1(R), and let B := −id/dt, where d/dt denotes the
usual derivative with domain D(d/dt) = W1,1(R). Then iB generates a strongly
continuous isometric group. In particular, B is a strong strip-type operator of
angle 0. However, eB has empty resolvent set, whence it is not sectorial, see
Corollary 8.4.6.

So one may ask for additional sufficient conditions to ensure that A := eB is
sectorial. The following lemma is obviously only a small step.

Lemma 4.4.2. Let B ∈ Strip(ω) such that ω < π, and let A := eB. If λ ∈ �(A) for
some λ with |arg λ| > ω, then this is true for all such λ.

Proof. This follows from λ/(λ− ez) = (µ−λ)ez/(λ− ez)(µ− ez)+µ/(µ− ez). �

Unfortunately this lemma does not give estimates for ‖t(t + A)−1‖ as λ→ 0
and λ→∞. In fact, it is an open problem whether the existence of the resolvent
already implies the sectoriality of eB. However, there is a remarkable result by
Monniaux from [172]. See Appendix E.6 for the definition of UMD spaces.

Theorem 4.4.3 (Monniaux). Let X be a Banach space with the UMD property,
and let iB be the generator of a strongly continuous group on X. If ωst(B) < π,
then eB is sectorial.



4.5. A Counterexample 101

Proof. In [172, Theorem 4.3] the theorem is proved under the additional assump-
tion that θ(U) < π, where U denotes the group generated by iB and θ(U) is its
group type, cf. page 302. Using this result, we deal with the general case.
If θ := θ(U) ≥ π, then one can choose α ∈ (0, 1) such that θα < π. Then
iαB generates the group (U(αs))s∈R, which has group type αθ. Furthermore,
αB ∈ Strip(αω). Applying [172, Theorem 4.3] we can find an injective, sectorial
operator C on X such that Cis = U(αs) for all s ∈ R. Theorem 4.3.1 yields that
ωC ≤ αω. If we define A := C1/α we know from Proposition 3.1.2 and Proposition
3.2.1 that also A is an injective, sectorial operator and Ais = U(s) for all s ∈ R.
Hence i log A generates U , whence log A = B. �

It would lead us too far astray to give a complete proof of Monniaux’s original
result from [172, Theorem 4.3].

4.5 A Counterexample

Theorem 4.3.1 allows us to answer in the positive the following

Question: Is there a Banach space X and a sectorial operator A ∈ BIP(X) such
that θA ≥ π?

On UMD spaces, the question stated above is intimately connected with the
failing of Gearhart’s theorem (Theorem C.8.2) for C0-groups. We state this as a
proposition.

Proposition 4.5.1. Let X be a Banach space with the UMD property. Then the
following assertions are equivalent.

(i) There is a sectorial operator A ∈ BIP(X) such that θA ≥ π.

(ii) There is a sectorial operator A ∈ BIP(X) such that ωA < θA.

(iii) There is an operator B which generates a C0-semigroup T on X such that
s0(B) < ω0(T ) and T is a group.

Recall the definition (C.7) of s0(B) on page 329.

Proof. The implication (i)⇒(ii) is trivial.
(ii)⇒(i). We may suppose that θA < π. Then consider the scaled operator Aα

with α being defined as α := π/θA.
(ii)⇒(iii). Let A ∈ BIP(X) with ωA < θA. Then i logA generates T1 := (Ais)s≥0

and −i logA generates T2 := (A−is)s≥0. But

max{s0(i log A), s0(−i logA)} = ωst(log A) = ωA < θA = max{ω0(T1), ω0(T2)}.

Hence we can take B := i log A or B := −i logA.
(iii)⇒(ii). Let (U(s))s∈R be a C0-group on X , let B be the generator of the
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semigroup T := (U(s))s≥0, and suppose that s0(B) < ω0(T ). Changing B to
α(B + λ) with suitable λ, α > 0 we may suppose that sups≤0 ‖U(s)‖ < ∞ and
0 ≤ s0(B) < ω0(T ) < π. By Monniaux’s Theorem 4.4.3 there is a sectorial
operator A ∈ BIP(X) such that Ais = U(s) for all s ∈ R. Hence i logA = B by
the uniqueness of generators. Obviously,

ωst(log A) = s0(B) < ω0(T ) = θ(U) = θA.

Since ωA = ωst(log A) by Theorem 4.3.1, assertion (ii) follows readily. �
We are now going to give an example of a Banach space X with the UMD

property such that (iii) of Proposition 4.5.1 holds. Let 1 < p < 2 < q < ∞, and
let a > q such that 2/p < a/q. We define the weight w : R → [0,∞) by

w(x) :=
{

eax x ≤ 0,
1 x ≥ 0.

Now we let X := Lp(R, e2xdx) ∩ Lq(R, w(x)dx) with its natural (sum) norm. It
can be shown that X has in fact the UMD property. The space Cc(R) of compactly
supported continuous functions is dense in X.

Proof. Let f ∈ X . Then 1[−n,n]f → f in X as n → ∞. Hence we may suppose
that f is compactly supported. Now we approximate f in Lq(R) by functions
fn ∈ Cc(R) such that supp(fn) ⊂ [a, b], where a < b and a, b do not depend on n.
Since

Lq((a, b), w(x)dx) ∼= Lq(a, b) ↪→ Lp(a, b) ∼= Lp((a, b), e2xdx)

the sequence fn tends to f in the norm of X . �
On X we consider the left shift group (T (t))t∈R defined by

[T (t)f ](x) := f(x + t) (x ∈ R, t ∈ R).

Then we have the norm inequalities

‖T (t)f‖X ≤ e−
2
p t ‖f‖p + ‖f‖q ≤ ‖f‖X ,

‖T (−t)f‖X ≤ e
2
p t ‖f‖p + e

a
q t ‖f‖q (f ∈ X, t ≥ 0).

Proof. Obviously, ‖T (t)f‖p = e−(2/p)t ‖f‖p for t ∈ R. If t ≥ 0, we have

‖T (t)f‖q
q =

∫ ∞

−∞
|f(x)|q w(x − t) dt

= e−at

∫
−∞

|f(x)|q eax dx + e−at

∫ t

0

|f(x)|q eax dx +
∫ ∞

t

|f(x)|q dx

≤ e−at

∫
−∞

|f(x)|q eax dx +
∫ ∞

0

|f(x)|q dx ≤ ‖f‖q
q .

The computation for ‖T (−t)f‖qq is similar. �
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In particular, it follows that ‖T (t)‖ ≤ 1 for all t ≥ 0 and that T is a group.
Since Cc(R) is dense in X and (t �−→ T (t)f) : R −→ X is continuous for each
f ∈ Cc(R), we conclude that T is in fact a C0-group.

Claim. We have ‖T (t)‖ = 1 for all t ≥ 1.

Proof. Let t0 ≥ 0. Choose t1 > t0 arbitrary. Since Lp((t0, t1), e2xdx) ∼= Lp(t0, t1)
and this is not embedded into Lq(t0, t1), there is no inequality of the form ‖f‖q ≤
C ‖f‖p with f ∈ Cc(t0, t1). Hence there is a sequence gn ∈ Cc(t0, t1) such that
‖gn‖q ≥ n ‖gn‖p for all n. Letting fn := gn/ ‖gn‖q we have ‖fn‖q = 1, ‖fn‖ ≤ 1/n,
and fn ≡ 0 on (−∞, t0]. Thus, ‖T (t0)fn‖X = e−(2/p)t0 ‖fn‖p + ‖fn‖q ≥ 1 and
‖fn‖X ≤ 1/n + 1. Hence 1 ≥ ‖T (t0)‖ ≥ 1/(1 + 1/n) for all n ∈ N. �
Claim. The operator A given by

D(A) = {f ∈ X | f ′ ∈ X} and Af = f ′

(where f ′ denotes the distributional derivative of f) is the generator A of T .

Proof. Let us denote the derivative operator on distributions by ∂. If f ∈ D(A)
there is a g ∈ X such that t−1(T (t)f − f) → g in X as t ↘ 0. Since X ↪→ D(R)′

we see that g = f ′. Hence, D(A) ⊂ D := {f ∈ X | f ′ ∈ X} and Af = f ′

for f ∈ D(A). Now, 1 − A is bijective (since T is a contraction semigroup) and
1 − ∂ : D −→ X is injective (since f ′ = f ∈ X implies that f is more or less the
exponential function). This implies the claim. �
Claim. We have s(A) := sup{Re λ | λ ∈ σ(A)} ≤ −2/p.

Proof. Let Xp := Lp(R, e2xdx) with the norm ‖f‖p defined above, and denote by
Ap the generator of the left shift group on Xp. Since ‖T (t)f‖p = e−(2/p)t ‖f‖p

for all t ∈ R and all f ∈ Xp, we have s0(Ap) ≤ −2/p. By the same reasoning as
above one can show that D(Ap) = {f ∈ Xp | f ′ ∈ Xp} with Apf = f ′ for f ∈ Ap.
Next, we claim that D(Ap) ↪→ X . Actually, by the Closed Graph Theorem, only
inclusion has to be shown. If f ∈ D(Ap) we let g := e(2/p)·f and note that
g ∈ Lp(R, dx) and g′ = (2/p)g + e(2/p)·f ′ ∈ Lp(R, dx). Hence g ∈ W1,p(R), and
since W1,p(R) ↪→ C0(R), there is a constant C > 0 such that |f(x)| ≤ Ce−(2/p)x

for x ∈ R. This immediately implies that f ∈ Lq((0,∞), dx). Moreover, we have
|f(x)| e(a/q)x ≤ Ce(a/q−2/p)x for all x ∈ R, and since a/q > 2/p we conclude that
f ∈ Lq((−∞, 0), eaxdx). Altogether we obtain f ∈ X .

Now take λ ∈ C with −2/p < Re λ. Since (λ − A)f = (λ − Ap)f for
f ∈ D(A) ⊂ D(Ap) we see that λ−A is injective. If f ∈ X , then f ∈ Xp and g :=
R(λ, Ap)f ∈ D(Ap) ⊂ X . But this implies that g ∈ D(A) since g′ = λg − f ∈ X .
Hence λ−A is also surjective. This proves that λ ∈ �(A). �

We take the last step. Obviously, the space X is not only a Banach space
but even a Banach lattice and the semigroup T is positive, i.e., T (t)f ≥ 0 for all
0 ≤ f ∈ X and all t ≥ 0. By [10, Theorem 5.3.1] we conclude that s0(A) = s(A) ≤
−2/p < 0 = ω0(T ), whence we are done.



104 Chapter 4. Strip-type Operators and the Logarithm

Corollary 4.5.2. There is a Banach space X with the UMD property and an injec-
tive, sectorial operator A on X such that A ∈ BIP(X) and θA > π.

4.6 Comments

4.1 and 4.2. Strip-type Operators and their Natural Functional Calculus. The
natural functional calculus for strip-type operators appears first in [21]. It is
discussed in [65] in a general setting and used in [34] and companion papers. Our
presentation here follows the lines of [103].

Assume that one is given an operator B with spectrum in a horizontal strip
Hω and such that the resolvent is bounded on some horizontal lines R± iϕ with
ϕ > ω. Then one can construct the ‘functional calculus’ as we did in Section
4.2, since the basic Cauchy integrals converge. However, it may happen that this
‘functional calculus’ is the zero mapping. If one requires that the calculus behaves
well for rational functions, i.e., is really a functional calculus for B, then B is
forced to be strip-type. This was shown in [101].

4.3 The Spectral Height of the Logarithm. Theorem 4.3.1 is due to the author
[101]. The Prüss–Sohr result (Corollary 4.3.4) is part of a celebrated theorem of
Prüss and Sohr [193, Theorem 3.3]. (See Corollary 5.5.12 for the second part.)
Its original proof rests on the Mellin transform calculus for C0-groups, cf. also
[216, Proposition 3.19], [218], and [161, Chapter 9]. Corollary 4.3.5 is originally
due to McIntosh [167].

4.4 Monniaux’s Theorem and the Inversion Problem. For the proof of Theorem
4.4.3 Monniaux [172] utilises the theory of analytic generators of C0-groups. In
the same paper she constructs Example 4.4.1 to show that the conclusion may fail
when one discards the UMD assumption. This example also shows that (strong)
strip-type operators are more general than sectorial operators. Up to now, Mon-
niaux’s theorem seems to be the only positive result on the inversion problem.

4.5 A Counterexample. The example of a group with differing growth bound and
abszissa of uniform boundedness of the resolvent is due to the author [103] and is
an adaptation of an example given by Wolff [225]. We are indebted to Batty
for bringing this result to our attention. Although we do not know it for sure, we
expect that in our example the operator does not have a bounded natural H∞-
calculus on some strip (cf. Section 5.3.3 for terminology). The derivative on Lp(R),
p 
= 2 does not have bounded H∞-calculus on strips, see Section 8.4. Kalton
[123] has given an example of a sectorial operator with bounded H∞-calculus
whose sectoriality angle differs from the H∞-angle, cf. Section 5.4.



Chapter 5

The Boundedness of the H∞-Calculus

This chapter mainly provides technical background information. We start with the
so-called Convergence Lemma (Section 5.1) and some fundamental boundedness and
approximation results (Section 5.2). Then we prove equivalence of boundedness of F-
functional calculi for different subalgebras F of H∞ (Section 5.3). We also introduce
and study the H∞-angle (Section 5.4) and present permanence results with respect
to additive perturbations (Section 5.5). Finally, we prove a technical lemma which
indicates the connections with Harmonic Analysis (Section 5.6).

One of the main issues in the theory of functional calculus of sectorial oper-
ators is the question for which operators A and functions f ∈ H∞ the resulting
operator f(A) is bounded. Without exaggerating one may say that Chapters 6–8
are devoted to this question or at least have it as a leitmotif. The present chapter
collects the general and more technical aspects of the matter, serving as a main
source for later reference.

5.1 Convergence Lemma

In this section we prove a basic approximation result, called the Convergence
Lemma. Whereas in Section 2.6.3 we treated only approximation of the operators,
we now consider the approximation of functions. More precisely, our hypothesis
is pointwise convergence of holomorphic functions, thereby bringing us in need of
the following fact.

Proposition 5.1.1 (Vitali). Let Ω ⊂ C be open and connected, and let (fα)α be a lo-
cally bounded net of holomorphic functions on Ω. If the set {z ∈ Ω | (fα(z))α con-
verges} has a limit point in Ω, then fα converges to a holomorphic function uni-
formly on compact subsets of Ω.

Proof. See [14, Theorem 2.1] for an elegant proof. (For sequences instead of nets
this proof can also be found in [10, Theorem A.5].) �

5.1.1 Convergence Lemma for Sectorial Operators.

The next lemma, although very elementary, is fundamental.
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Lemma 5.1.2. Let A ∈ Sect(ω), and let ϕ ∈ (ω, π). Let (fα)α ⊂ H∞
0 (Sϕ) be a net

of functions converging pointwise to a function f . Suppose that there are C, s > 0
such that

|fα(z)| ≤ C min
{
|z|s , |z|−s

}
(z ∈ Sϕ) (5.1)

independent of α. Then f ∈ H∞
0 (Sϕ) and ‖fα(A)− f(A)‖ → 0.

Proof. Because of (5.1) the family (fα)α is locally bounded. Vitali’s theorem
implies that f is holomorphic, hence f ∈ H∞

0 (Sϕ). Moreover, fα → f uniformly on
compact sets. Now the claim follows from a version of the Dominated Convergence
Theorem. �
Example 5.1.3. Let A ∈ Sect(ω). Then Aα → A (Sω) as α↗ 1 (sectorial approxi-
mation). Indeed, by Proposition 3.1.2 the family (Aα)ε≤α≤1 is uniformly sectorial,
for fixed ε ∈ (0, 1). The proof of Proposition 3.1.2 yields that

(1 + Aα)−1 − (1 + A)−1 = ψ−1,α(A)

with ψ−1,α → 0 as α↗ 1. Moreover, the estimate (3.1) given in that proof shows
that the family (ψ−1,α)ε≤α≤1 meets the conditions of Lemma 5.1.2.

Proposition 5.1.4 (Convergence Lemma). Let A ∈ Sect(ω), ϕ ∈ (ω, π), and
(fα)α ⊂ H∞(Sϕ). Suppose that supα ‖fα‖∞ < ∞ and that the limit f(z) :=
limα fα(z) exists pointwise on Sϕ. Suppose furthermore that fα(A) and f(A) are
defined by the natural functional calculus for sectorial operators. Then

fα(A)x → f(A)x

for all x ∈ D(A) ∩ R(A). Moreover the following assertions hold:

a) If A is injective, fα(A) ∈ L(X) for all α, and fα(A) → T ∈ L(X) strongly,
then f(A) = T .

b) If A is densely defined with dense range and supα ‖fα(A)‖ <∞, then f(A) ∈
L(X) and fα(A)→ f(A) strongly.

Proof. Vitali’s theorem implies that f ∈ H∞(Sϕ). Let τ(z) := z(1+z)−2, g := fτ ,
and gα := fατ . The net (gα)α ⊂ H∞

0 (Sϕ) obviously satisfies the hypotheses of
Lemma 5.1.2. Hence

fα(A)τ(A) = gα(A) → g(A) = f(A)τ(A)

in norm. Therefore fα(A)x → f(A)x for all x ∈ R(τ(A)) = D(A) ∩ R(A).
a) Suppose that A is injective, fα(A) ∈ L(X) for all α, and fα(A) → T ∈ L(X)
strongly. We write (as usual) ΛA := τ(A)−1. Let x ∈ X . Then gα(A)x =: yα ∈
D(ΛA) for each α and yα → y := g(A)x. However, ΛAyα = fα(A)x → Tx by
assumption. Since the operator ΛA is closed, we have y ∈ D(ΛA) and ΛAy = Tx.
But this means x ∈ D(f(A)) with f(A)x = Tx.
b) follows from a). �
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Remark 5.1.5. One may wonder whether part a) of Proposition 5.1.4 remains true
if we drop the hypothesis that A is injective. Of course in this case we cannot
allow arbitrary H∞-functions fα, but have to require a finite polynomial limit at
0, see Lemma 2.3.8. So we suppose that f, fα ∈ H∞ ∩A, cf. Lemma 2.3.10. Then
we can still conclude that f(A) ∈ L(X), and we have

T = f(A) on R(A) and R(T − f(A)) ⊂ N(A).

This is the best one can expect, cf. Example 5.1.6 below.

Proof. Let h ∈ H∞∩A be arbitrary. Then by definition of A and Lemma 2.2.3 we
have h(1 + z)−1 ∈ E , whence D(A) ⊂ D(h(A)). Therefore, as X = D(A) + R(A),
to prove that f(A) ∈ L(X) it suffices to show that R(A) ⊂ D(f(A)).

Take x ∈ R(A). Then (1 + A)−1x ∈ D(A) ∩ R(A) and

yα :=
(

fα(z)
1 + z

)
(A)x = fα(A)(1+A)−1x → f(A)(1+A)−1x =

(
f(z)
1 + z

)
(A)x =: y

by Proposition 5.1.4. Since fα(A) ∈ L(X), yα ∈ D(A) and (1+A)yα = fα(A)x →
Tx. Because (1 +A) is closed, we have y ∈ D(A) and (1 +A)y = Tx. This means
that x ∈ D(f(A)) and f(A)x = Tx.

So indeed f(A) ∈ L(X) and f(A) = T on R(A), whence on R(A), by bound-
edness. Let x ∈ D(A). Then f(A)x, Tx ∈ D(A) as well and

A(f(A)x − Tx) = f(A)Ax − TAx = 0. �

Example 5.1.6. Let A be a sectorial operator on a reflexive space X such that
N(A) 
= 0, and let P : X −→ R(A) be the projection along N(A), cf. Proposition
2.1.1 h). With f := 1 and fn(z) := z(1/n + z)−1 we have fn(A) → P strongly,
but f(A) = I 
= P .

5.1.2 Convergence Lemma for Strip-type Operators.

It should be clear that in the case of a strip-type operator B ∈ Strip(ω) a result
similar to Proposition 5.1.4 holds.

Proposition 5.1.7 (Convergence Lemma on the Strip). Let X be a Banach space,
and let B ∈ Strip(ω) on X. Let ϕ > ω, and let (fα)α be a net of holomorphic
functions on Hϕ that converges pointwise to a function f on Hϕ.

a) If β > 1 and
sup

α
sup

z∈Hϕ

|fα(z)| (1 + |Re z|β) < ∞,

then f ∈ F(Hϕ) and fα(B) → f(B) in norm.
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b) If fα ∈ H∞(Hϕ), fα(B) ∈ L(X) for all α,

sup
α

sup
z∈Hϕ

|f(z)| < ∞, and sup
α
‖fα(B)‖ < ∞,

then fα(B)x → f(B)x for all x ∈ D(B2). If in addition fα(B) → T ∈ L(X)
strongly, then T = f(B).

Note that if B ∈ Strip(ω) is densely defined, then D(B2) = D(B) = X .

Proof. The proof is analogous to the proof of Proposition 5.1.4. �

5.2 A Fundamental Approximation Technique

In this section we provide auxiliary results which will not be used until the next
chapter, so the reader may skip this section on first reading. The main part is
an approximation method that has been used extensively by McIntosh and his
collaborators.

Lemma 5.2.1. Let [a, b] ⊂ R, and let F : [a, b]× Sϕ −→ C be continuous and such
that F (t, .) : Sϕ −→ C is holomorphic for each t ∈ [a, b]. Suppose that there are
C, s > 0 such that

|F (t, z)| ≤ C min
{
|z|s , |z|−s

}
for all t ∈ [a, b], z ∈ Sϕ. Define f(z) :=

∫ b

a

F (t, z) dt. Then the following asser-

tions hold.

a) f ∈ H∞
0 (Sϕ);

b) (t �−→ F (t, A)) : [a, b] −→ L(X) is continuous.

c) f(A) =
∫ b

a

F (t, A) dt.

Proof. Assertion a) is clear and b) is an immediate consequence of Lemma 5.1.2.
To prove c) we compute

(2πi)
∫ b

a

F (t, A) =
∫ b

a

∫
Γ

F (t, z)R(z, A) dz dt

Fub.=
∫

Γ

(∫ b

a

F (t, z) dt

)
R(z, A) dz =

∫
Γ

f(z)R(z, A) dz

= (2πi)f(A). �
Let us introduce the following notation. For ψ ∈ E(Sϕ) and t > 0 we write

ψt := (z �−→ ψ(tz)) (z ∈ Sϕ). (5.2)

It is then clear that ψt ∈ E(Sϕ) again, and ψ(tA) = ψt(A) for all t > 0.
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Theorem 5.2.2. Let A ∈ Sect(ω), ϕ ∈ (ω, π), and ψ, θ ∈ H∞
0 (Sϕ). Then the

following statements hold.

a) For each f ∈ H∞(Sϕ) the mapping (t �−→ (fψt)(A)) : (0,∞) −→ L(X) is
continuous. Moreover, there is a constant C = C(ψ) such that

sup
t>0

‖(fψt)(A)‖ ≤ C M(A, ϕ) ‖f‖∞,ϕ (f ∈ H∞(Sϕ)).

b) One has

sup
t>0

∫ ∞

0

‖θ(tA)ψ(rA)‖ dr

r
< ∞.

Proof. a) Choose C, s > 0 with |ψ(z)| ≤ C min{|z|s , |z|−s}. Let [a, b] ⊂ (0,∞),
and define F (t, z) := f(z)ψ(tz) on [a, b]× Sϕ. Then we have

|F (t, z)| ≤ ‖f‖∞ C min
{
|z|s , |z|−s } max

{
ts, t−s

}
.

This shows that F satisfies the hypothesis of Lemma 5.2.1, whence continuity
is established. To prove the boundedness simply apply Lemma 2.6.10. This is
possible since we have

|(fψt)(z)| ≤ C ‖f‖∞,ϕ min
{
|tz|s , |tz|−s }

for all t > 0, z ∈ Sϕ.
b) Choose ω′ ∈ (ω, ϕ) and define Γ := ∂Sω′ . Then∫ ∞

0

‖θ(tA)ψ(rA)‖ dr

r
�
∫ ∞

0

∫
Γ

|θ(tz)ψ(rz)| |dz|
|z|

dr

r

=
∫ ∞

0

∫
Γ

∣∣θ(z)ψ(rt−1z)
∣∣ |dz|
|z|

dr

r
≤
∫

Γ

∫ ∞

0

∣∣ψ(rei arg z)
∣∣ dr

r
|θ(z)| |dz|

|z|

≤
∫

Γ

|θ(z)|
|z| |dz| max

ε=±1

(∫ ∞

0

∣∣∣ψ(reεiω′
)
∣∣∣ dr

r

)
.

The constant hidden in the symbol ‘�’ is of course M(A, ω′)/2π. �
Let A ∈ Sect(ω), ϕ ∈ (ω, π], ψ ∈ H∞

0 (Sϕ), and define

ψa,b(z) :=
∫ b

a

ψ(tz)
dt

t
(0 < a < b <∞, z ∈ Sϕ). (5.3)

One knows from Example 2.2.6 that ψa,b(z) → c pointwise as (a, b) → (0,∞),
where c is the constant

c :=
∫ ∞

0

ψ(t)
dt

t
. (5.4)

The interesting question now is, for which x ∈ X one has

ψa,b(A)x → cx as (a, b)→ (0,∞).

The first step towards a general result is the following.
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Lemma 5.2.3. Let A ∈ Sect(ω), ϕ ∈ (ω, π], and ψ ∈ H∞
0 (Sϕ). Define ψa,b and c

as in (5.3) and (5.4). Then the following assertions hold.

a) ψa,b ∈ H∞
0 (Sϕ).

b) supa,b ‖ψa,b‖∞ < ∞.

c) ψa,b(z)→ c as (a, b)→ (0,∞) uniformly on compact sets of Sϕ.

d) ψa,b(A) =
∫ b

a

ψ(tA)
dt

t
.

e) supa,b ‖ψa,b(A)‖ < ∞.

Proof. We write

ψa,b(z) =
∫ b

0

ψ(tz)
dt

t
−

∫ a

0

ψ(tz)
dt

t

=
∫ 1

0

ψ(tbz)
dt

t
−

∫ 1

0

ψ(taz)
dt

t
= h(bz)− h(az),

where h(z) =
∫ 1

0
ψ(tz) dt/t as in Example 2.2.6. Using the results shown there, a)–

c) follow immediately. To prove assertion d) we apply Lemma 5.2.1 to the function
F (t, z) := ψ(tz). Assertion e) is immediate from ψa,b(A) = h(bA) − h(aA) and
Proposition 2.6.11. �
Proposition 5.2.4. Let A ∈ Sect(ω), ϕ ∈ (ω, π], and ψ ∈ H∞

0 (Sϕ). Define

h(z) :=
∫ 1

0

ψ(tz)
dt

t
, g(z) :=

∫ ∞

1

ψ(tz)
dt

t
, c :=

∫ ∞

0

ψ(t)
dt

t

as in Example 2.2.6. Let also ψa,b(z) :=
∫ b

a

ψ(tz)
dt

t
as above. Then for x ∈ X

the following assertions hold.

a) If
∫ 1

0

‖ψ(tA)x‖ dt

t
< ∞, then h(A)x = lim

a↘0
ψa,1(A)x =

∫ 1

0

ψ(tA)x
dt

t
.

b) If
∫ ∞

1

‖ψ(tA)x‖ dt

t
< ∞ and A is injective, then

g(A)x = lim
b↗∞

ψ1,b(A)x =
∫ ∞

1

ψ(tA)x
dt

t
.

c) If x ∈ R(θ(A)) for some θ ∈ H∞
0 (Sϕ), then

∫ ∞

0

‖ψ(tA)x‖ dt

t
< ∞ and

lim
a→0,b→∞

ψa,b(A)x = lim
a→0,b→∞

∫ b

a

ψ(tA)x
dt

t
=

∫ ∞

0

ψ(tA)x
dt

t
= c x.
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Proof. Find C, s > 0 such that |ψ(z)| ≤ C min{|z|s , |z|−s}.
a) It is clear that ψa,1(z)→ h(z) pointwise, with

|ψa,1(z)| ≤
∫ ∞

0

|ψ(tz)| dt

t
≤ C

∫ ∞

0

min{ts, t−s} dt

t
=

2C

s
.

Also,

|ψa,1(z)| ≤
∫ 1

0

|ψ(tz)| dt

t
≤ C

s
|z|s .

Hence one can apply Lemma 5.1.2 to the functions ψa,1/(1 + z) and obtains the
convergence (1 + A)−1ψa,1(A) → (1 + A)−1h(A) in norm as a → 0. On the other
hand, by assumption and Lemma 5.2.3 d) one has

(1 + A)−1ψa,1(A)x = (1 + A)−1

∫ 1

a

ψ(tA)x
dt

t
→ (1 + A)−1

∫ 1

0

ψ(tA)
dt

t

as a ↘ 0. Since (1 + A)−1 is injective, it follows that h(A) =
∫ 1

0 ψ(tA) dt/t.
b) is proved in the same way as a), where one has to regularise at 0 with the
function z(1 + z)−1. Note that one needs A(1 + A)−1 to be injective in the end of
the argument.
c) The first assertion is straightforward from Theorem 5.2.2 b). For the second, let
x = θ(A)y and consider the functions ψa,b(z)θ(z), which converge to the function
cθ(z). Since supa,b ‖ψa,b‖∞ < ∞ by Lemma 5.2.3, one can apply Lemma 5.1.2
and obtains ψa,b(A)x = ψa,b(A)θ(A)y → cθ(A)y = cx. �
Remark 5.2.5. Part b) of Proposition 5.2.4 is false in general if A is not injective.
More precisely, if c =

∫∞
0 ψ(t) dt/t 
= 0 and 0 
= x ∈ N(A), then ψ(tA)x = 0 for

all t > 0 but g(A)x = cx 
= 0.

The final result of this section is just a corollary of the above considerations.

Theorem 5.2.6 (McIntosh Approximation). Let A ∈ Sect(ω), and let ψ ∈ H∞
0 [Sω]

such that
∫∞
0 ψ(t) dt/t = 1. Then∫ b

a

ψ(tA)x
dt

t
=

(∫ b

a

ψ(tz)
dt

t

)
(A)x

a→0,b→∞−→
∫ ∞

0

ψ(tA)x
dt

t
= x

for all x ∈ D(A) ∩ R(A).

5.3 Equivalent Descriptions and Uniqueness

Let A ∈ Sect(ω) be a sectorial operator on the Banach space X and let ϕ ∈ (ω, π).
Suppose we are given a subalgebra F ⊂ H∞(Sϕ) such that f(A) is defined by the
natural functional calculus for each f ∈ F . (This is a restriction only if A is not
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injective.) We say that the natural F -calculus for A is bounded if f(A) ∈ L(X)
for all f ∈ F and

‖f(A)‖ ≤ C ‖f‖ϕ (f ∈ F) (5.5)

for some constant C ≥ 0. Here, ‖f‖ϕ is shorthand for

‖f‖ϕ := ‖f‖∞,Sϕ
= sup{|f(z)| | z ∈ Sϕ} (5.6)

We call
inf{C ≥ 0 | (5.5) holds}

the bound of the natural F -calculus.

If F is a closed subalgebra of H∞(Sϕ) and A is injective, the Closed Graph
Theorem together with part a) of the Convergence Lemma (Proposition 5.1.4)
yields the existence of a constant C satisfying (5.5) if only f(A) ∈ L(X) for all
f ∈ F .

5.3.1 Subspaces

We first consider restrictions to subspaces.

Proposition 5.3.1. Let A ∈ Sect(ω) be an injective sectorial operator on the Banach
space X. Let Y := D(A) ∩ R(A) and AY be the part of A in Y (see Section 2.1).
Then AY is a densely defined sectorial operator of angle ω with dense range.
Moreover, if f ∈ H∞(Sϕ), ϕ ∈ (ω, π) and f(A) ∈ L(X), then f(AY ) ∈ L(Y ) and
‖f(AY )‖L(Y ) ≤ ‖f(A)‖L(X).

In particular, if the natural H∞(Sϕ)-calculus for A is bounded with bound C, then
also the natural H∞(Sϕ)-calculus for AY is bounded with bound C.

Proof. The space Y is obviously invariant under the resolvent of A. Hence by
Proposition A.2.8, �(A) ⊂ �(AY ), and since the norm of X on Y agrees with the
norm of Y , the sectoriality of AY follows. We have to show dense domain and
dense range. Obviously, D(A2)∩R(A) ⊂ D(AY ), so to have D(AY ) = Y it suffices
to show that

D(A) ∩ R(A) ⊂ D(A2) ∩ R(A).

Now, for x ∈ D(A) ∩R(A) we have t(t + A)−1x → x as t→∞ and t(t + A)−1x ∈
D(A2) ∩ R(A). If we apply this to the operator A−1 we obtain that [A−1]Y has
dense domain. But D([A−1]Y ) = D([AY ]−1) = R(AY ) and so AY has dense range.

Suppose now that f(A) ∈ L(X) for some f ∈ H∞. Then one has ‖f(A)x‖ ≤
‖f(A)‖ ‖x‖ for all x ∈ X , in particular for all x ∈ D(AY ) ∩ R(AY ). But on
this space the operators f(A) and f(AY ) agree (see also Section 2.6.2). Hence
‖f(AY )x‖ ≤ ‖f(A)‖ ‖x‖ for all x from a dense subspace of Y . Since f(AY ) is
closed, this proves the claim. �
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Clearly Proposition 5.3.1 is only relevant in the case where X is not reflexive.
Although we do not know of an example, there may exist an injective sectorial
operator (on a non-reflexive space, of course) such that AY has a bounded H∞-
calculus but A does not.

5.3.2 Adjoints

The next, in no way surprising, result shows that boundedness is preserved when
taking adjoints.

Proposition 5.3.2. Let A ∈ Sect(ω) have dense domain and dense range, and let
ϕ ∈ (ω, π). Then

f(A) ∈ L(X) ⇐⇒ f(A′) ∈ L(X ′)

for every f ∈ H∞(Sϕ). Moreover, the natural H∞(Sϕ)-calculus for A is bounded
with bound C if, and only if, the natural H∞(Sϕ)-calculus for A′ is bounded with
bound C.

Proof. By Proposition 2.6.3 we have f(A)′ = f(A′). If f(A) is bounded, then also
f(A)′ is, by Proposition A.4.2. Moreover, the norms are the same. If f(A′) =
f(A)′ is bounded, then the same reasoning shows that f(A)′′ ∈ L(X ′′). However,
the hypotheses imply that f(A) is densely defined in X . By Lemma A.1.2 and
f(A) = f(A)′′ ∩ (X ⊕X), it follows that f(A) ∈ L(X). The rest is clear. �

5.3.3 Logarithms

It is clear that the definition of boundedness of the natural H∞-calculus applies
as well in the case of strip-type operators. The next result shows in a way that
via the logarithm one may switch back and forth from the sectorial to the strip
case.

Proposition 5.3.3. Let A ∈ Sect(ω) be injective, let B := log A, and let ϕ ∈ (ω, π].
If the natural H∞(Sϕ)-calculus for A is bounded with bound C, i.e., one has

f(A) ∈ L(X) and ‖f(A)‖ ≤ C ‖f‖Sϕ
for all f ∈ H∞(Sϕ), (5.7)

then also

g(B) ∈ L(X) and ‖g(B)‖ ≤ C ‖g‖Hϕ
for all g ∈ H∞(Hϕ). (5.8)

Conversely, if B ∈ Strip(ω) such that (5.8) holds for some ϕ ∈ (ω, π], then A := eB

is sectorial and (5.7) holds.

Proof. The first statement is clear from the composition rule (Theorem 4.2.4)
since z �−→ log z : Sϕ −→ Hϕ is biholomorphic with inverse z �−→ ez. Suppose
that B ∈ Strip(ω) and that (5.8) holds with ω < ϕ ≤ π. Then (t + ez)−1(B) is
bounded by M/t for some constant M and all t > 0. Hence A := eB is sectorial.
By Theorem 4.3.1, ωA = ωst(B) ≤ ω. The rest follows again from the composition
rule. �
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5.3.4 Boundedness on Subalgebras of H∞

In the remaining part of this section we examine how — for different subalgebras
F ⊂ H∞ — the boundedness of the natural F -calculus and the corresponding
bounds interrelate. Here is the ‘omnibus theorem’ in the case where the operator
has dense domain and range.

Proposition 5.3.4. Let A ∈ Sect(ω) have dense domain and dense range. Let
ϕ ∈ (ω, π) and C ≥ 0. The following assertions are equivalent.

(i) The natural H∞
0 (Sϕ)-calculus for A is bounded with bound C.

(ii) The natural H∞(Sϕ)-calculus for A is bounded with bound C.

(iii) The natural H∞(Sϕ) ∩C0(Sϕ)-calculus for A is bounded with bound C.

(iv) The natural R∞
0 (Sϕ)-calculus for A is bounded with bound C.

(v) The natural R∞(Sϕ)-calculus for A is bounded with bound C.

Note that in a reflexive space an injective sectorial operator automatically has
dense domain and dense range. Cf. Appendix F for the definition of the spaces
R∞(Sϕ) and R∞

0 (Sϕ).

Proof. The implications (ii)⇒(i) and (ii)⇒(v)⇒(iv) are trivial.
(iv)⇒(iii). By Proposition F.3 the space R∞

0 (Sϕ) is uniformly dense in the space
H∞(Sϕ) ∩C0(Sϕ). Now apply part a) of the Convergence Lemma (Proposition
5.1.4). (Note that here only injectivity of A is needed.)
(iii)⇒(i). Let f ∈ H∞

0 (Sϕ), and define fn(z) := f(z + 1/n). One has the estimate
‖fn‖ϕ ≤ ‖f‖ϕ, fn ∈ H∞(Sϕ) ∩ C0(Sϕ), and fn → f pointwise on Sϕ. Now (i)
follows from another application of the Convergence Lemma.
(i)⇒(ii). Let f ∈ H∞(Sϕ), and define ψs(z) := zs/(1 + z)2s for s > 0. Then
ψs, fψs ∈ H∞

0 (Sϕ). Moreover,

‖fψs‖ϕ ≤ ‖f‖ϕ Ks

where K := ‖ψ1‖ϕ. Employing (i) yields ‖(fψs)(A)‖ ≤ C ‖f‖∞ Ks. Now we
apply the Convergence Lemma (Proposition 5.1.4) and infer f(A) ∈ L(X) with
(fψs)(A) → f(A) strongly as s ↘ 0. Since lims→0 Ks = 1, ‖f(A)‖ ≤ C ‖f‖∞. �

The questions become more difficult if we drop the density assumptions. Re-
call that for a sectorial operator A we can always construct the uniformly sectorial
family

Aε := (ε + A)(1 + εA)−1;

this forms a sectorial approximation of A consisting of bounded and invertible
operators (see Proposition 2.1.3).

Lemma 5.3.5. Let A ∈ Sect(ω), ϕ ∈ [ω, π), and C ≥ 0. The following assertions
are equivalent.
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(i) The natural R∞(Sϕ)-calculus for A is bounded with bound C.

(ii) The natural R∞(Sϕ)-calculus for Aε is bounded with bound C, for each ε > 0.

Proof. Let rε(z) = (ε+z)(1+εz)−1 ∈ R∞(Sϕ). Then Aε = rε(A). If r ∈ R∞(Sϕ),
then r ◦ rε ∈ R∞(Sϕ) with ‖r ◦ rε‖ϕ ≤ ‖r‖ϕ since rε maps Sϕ into Sϕ. The
composition rule yields r(Aε) = (r◦rε)(A), whence we have proved the implication
(i)⇒(ii).

The reverse implication follows from the fact that r(Aε)→ r(A) in norm, by
Lemma 2.6.7. (Note that R∞(Sϕ) ⊂ E(Sϕ).) �

One should note that ϕ = ω is allowed in Lemma 5.3.5.

Proposition 5.3.6. Let A ∈ Sect(ω), ϕ ∈ (ω, π) and C ≥ 0. We define K to be the
closure of Sϕ in C∞. The following assertions are equivalent.

(i) The natural A(Sϕ) ∩C(K)-calculus for A is bounded with bound C.

(ii) The natural R∞(Sϕ)-calculus for A is bounded with bound C.

If A is injective, one may replace A(Sϕ) by H∞(Sϕ) in a).

Proof. (i)⇒(ii). This is obviously true.
(ii)⇒(i). Take f ∈ A(Sϕ)∩C(K). By Proposition F.3 there is a sequence (rn)n ⊂
R∞(Sϕ) such that ‖rn − f‖ϕ → 0. By Lemma 5.3.5, the hypothesis (ii) implies
that the natural R∞(Sϕ)-calculus for Aε is bounded with bound C, for each
ε > 0. Since each Aε is bounded and invertible, we can apply Proposition 5.3.4 to
conclude that the natural H∞(Sϕ)-calculus for Aε is bounded with bound C for
each ε > 0. This implies that rn(Aε) → f(Aε) uniformly in ε > 0. From Lemma
2.6.7 we see that rn(Aε) → rn(A) as ε ↘ 0 for each n. A standard argument
from functional analysis now implies that there is T ∈ L(X) with f(Aε)→ T . An
application of Proposition 2.6.9 yields T = f(A).

The same proof applies in the case where A is injective and f ∈ H∞(Sϕ) ∩
C(K). �

Proposition 5.3.7. Let A ∈ Sect(ω), ϕ ∈ [ω, π), and C ≥ 0. Suppose that the
natural R∞

0 (Sϕ)-calculus for A is bounded with bound C. If A is densely defined
and ϕ ≤ π/2, then the natural R∞(Sϕ)-calculus for A is bounded with bound C.

Proof. Let rn := n/(n + z). Then ‖rn‖ϕ = 1 since ϕ ≤ π/2. Moreover, rn(A)x →
x as n →∞ (by Proposition 2.1.1) since D(A) is dense in X . Thus for a function
r ∈ R∞(Sϕ) we have for all x ∈ X

‖r(A)x‖ = lim
n
‖r(A)rn(A)x‖ = lim

n
‖(rrn)(A)x‖ ≤ C ‖rrn‖ϕ ‖x‖ ≤ C ‖r‖ϕ ‖x‖ .

�

We do not know whether in the second part of Proposition 5.3.7 one can omit
either the assumption D(A) = X or ϕ ≤ π/2.



116 Chapter 5. The Boundedness of the H∞-calculus

5.3.5 Uniqueness

Let us turn (for the moment) to a more general situation. Let A be a closed
operator on a Banach space X , let Ω ⊂ C be open, and let F ⊂ H∞(Ω) be a
subalgebra containing the rationals rλ(z) = (λ − z)−1 for λ /∈ Ω. We say that a
mapping Φ : F → L(X) is a bounded F -calculus for A if the following conditions
are satisfied:

1) The mapping Φ is a homomorphism of algebras.

2) We have Φ(rλ) = R(λ, A) for all λ /∈ Ω.

3) If 1 ∈ F , then Φ(1) = I.

4) There is C ≥ 0 such that ‖Φ(f)‖ ≤ C ‖f‖Ω for all f ∈ F .

Here, ‖f‖Ω denotes the supremum norm of f on Ω. We say that a sequence
(fn)n ⊂ F converges boundedly and pointwise on Ω to a function f if fn → f
pointwise on Ω and supn ‖fn‖Ω < ∞. We say that Φ is continuous with respect
to boundedly and pointwise convergence (in short: b.p.-continuous) if it has the
following property.

5) If fn, f ∈ F such that fn → f boundedly and pointwise on Ω as n → ∞,
then Φ(fn)→ Φ(f) strongly on X .

Note that if 1 /∈ F we may always extend Φ to F ′ = F ⊕C1 satisfying 3)
and keeping all other properties.

Lemma 5.3.8. Let A be a closed operator on the Banach space X. Let ω ∈ (0, π),
and let Φ be a bounded H∞(Sω)-calculus for A with bound C ≥ 0. Then A is
sectorial with ωA ≤ ω.
Take a sector Sϕ with ωA < ϕ and ω ≤ ϕ, and denote by K the closure of Sϕ in
C∞. Then the following assertions hold.

a) Φ(f) = f(A) for all f ∈ A(Sϕ) ∩C(K).

b) If A is injective, then Φ(f) = f(A) for f ∈ H∞(Sϕ) ∩C(K).

c) If A has dense domain and dense range, then the natural H∞(Sϕ)-calculus
for A is bounded with bound C.

Proof. The sectoriality of A follows by applying Φ to the rationals λ/(λ− z). By
Proposition F.3, we have Φ(f) = f(A) for f ∈ R∞(Sω). The assertions a) and b)
now follow from Proposition 5.3.6, and c) from Proposition 5.3.4. �
Proposition 5.3.9. Let ω ∈ (0, π), and let A be a closed operator on a Banach space
X. Then there is at most one bounded and b.p.-continuous H∞(Sω)-calculus Φ
for A. If such a Φ exists, the operator A is sectorial with ωA ≤ ω and has
dense domain and dense range. Moreover, Φ coincides with the natural functional
calculus on H∞(Sϕ), where ϕ > ωA with ϕ ≥ ω.

Proof. Uniqueness follows from Proposition F.4. Define fn(z) := n(n + z)−1.
Then fn → 1 pointwise on Sω as n → ∞ and supn ‖fn‖ω < ∞. Since Φ is
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b.p.-continuous, n(n + A)−1 = Φ(fn) → Φ(1) = I strongly, whence A is densely
defined. The same argument with fn(z) = z(1/n + z)−1 yields that A has dense
range. Take ϕ > ωA with ϕ ≥ ω. From Lemma 5.3.8 it follows that the natural
H∞(Sϕ)-calculus for A is bounded. By uniqueness, the natural calculus must
coincide with Φ. �

Remark 5.3.10. Let A ∈ Sect(ω) have dense domain and range, and let ϕ ∈ (ω, π].
Proposition 5.3.4 implies that if A has some bounded H∞(Sϕ)-calculus with bound
C, then the natural H∞(Sϕ)-calculus for A is bounded with bound C. However,
the question remains if there really can exist two different bounded H∞-calculi
for the same operator.

5.4 The Minimal Angle

Suppose we are given an injective sectorial operator A such that the natural
H∞(Sϕ)-calculus for A is bounded for some ϕ ∈ (ωA, π]. Then we may ask for
the minimal angle ϕ such that this is true. In fact, such a minimal angle does not
necessarily exist but we can define the H∞-angle

ωH∞(A) := inf{ϕ > ωA | the natural H∞(Sϕ)-calculus for A is bounded},

in which it is understood that ωH∞ = ∞ if the set on the right-hand side is empty.
It is clear that if ωH∞(A) < ∞, then the imaginary powers Ais of A are

bounded operators and for each µ ∈ (ωH∞(A), π) there is a constant Cµ such that∥∥Ais
∥∥ ≤ Cµeµ|s| (s ∈ R).

Although the imaginary powers do not need to form a C0-group (since the space
D(A)∩R(A) need not be dense in X), the definition of the type θA from (3.14) is
still meaningful:

θA = inf
{

θ > 0
∣∣ ∃M ≥ 1 :

∥∥Ais
∥∥ ≤Meθ|s| (s ∈ R)

}
.

So with this notation we obtain θA ≤ ωH∞(A). We shall see below (Corollary
5.4.3) that one actually has θA = ωH∞(A) if ωH∞(A) < ∞. Since the proof
anyway works with strips instead of sectors, we first formulate the result in the
strip version.

Theorem 5.4.1 (Cowling, Doust, McIntosh, Yagi). Let B ∈ Strip(ω), and let α > ω
such that the natural H∞(Hα)-calculus for B is bounded. Let 0 < µ < θ < α and
suppose that there is a constant C with∥∥eisB

∥∥ ≤ Ceµ|s| (s ∈ R).

Then the natural H∞(Hθ)-calculus for B is bounded.
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For the proof we utilise the following auxiliary result.

Lemma 5.4.2. Let α > 0. Then there is a constant cα ≥ 0 such that the following
holds. Given θ ∈ (0, α) and f ∈ H∞(Hθ) there exists (fn)n∈Z ⊂ H∞(Hα) with

1)
∑

n∈Z
eµ|n| ‖fn‖Hα

≤ cα

1− eµ−θ
‖f‖Hθ

.

2) f(z) =
∑

n∈Z
einzfn(z) uniformly for z ∈ Hµ

for every µ ∈ (0, θ).

Proof. Choose ϕ ∈ D(R) with the following properties:

supp ϕ ⊂ [−1, 1], 0 ≤ ϕ ≤ 1, and
∑

n∈Z
ϕ(x − n) = 1 (x ∈ R).

By the Paley–Wiener theorem [197, Theorem 7.22] one knows that the inverse
Fourier transform ϕ̌ of ϕ is an entire function which decreases rapidly along hor-
izontal lines, uniformly within bounded horizontal strips. Hence for n ∈ Z the
function

fn(z) :=
∫

R

ϕ̌(z − t)f(t)e−int dt

is entire. Choose ε ∈ (−1, 1) such that εn ≤ 0. We can shift the contour of
integration to obtain

fn(z) =
∫

R

ϕ̌(z − t− iεθ)f(t + iεθ)e−inteεnθ dt.

This (with |ε| → 1 ) yields the estimate |ϕ̌n(z)| ≤ Cαe−|n|θ ‖f‖Hθ
for z ∈ Hα,

where Cα = sup|y|≤2α

∫
R
|ϕ̌(t + iy)| dt. Hence for µ ∈ (0, θ) we obtain

∑
n∈Z

eµ|n| ‖fn‖Hα
≤ Cα

(∑
n∈Z

e(µ−θ)|n|

)
‖f‖Hθ

≤ 2Cα

1− eµ−θ
‖f‖Hθ

.

So we know that the sum
∑

n∈Z
einzfn(z) converges uniformly within the strip Hµ

to a bounded function g. However, in the distributional sense, we have

f = δ0 ∗ f =
∑
n∈Z

(ϕ(· − n))∨ ∗ f =
∑
n∈Z

(
ein·ϕ̌

)
∗ f =

∑
n∈Z

ein·fn(·)

on R. Hence we have g = f on R and therefore on the whole of Hµ. �
Let us now turn to the proof of Theorem 5.4.1.

Proof of Theorem 5.4.1. Choose f ∈ H∞(Hθ) and employ Lemma 5.4.2 to find
(fn)n∈Z in H∞(Hα) with properties 1) and 2). Denote by C′ the bound of the
H∞(Hα)-calculus for B. Then we have∑

n∈Z

∥∥(einzfn(z)
)
(B)

∥∥ =
∑
n∈Z

∥∥einBfn(B)
∥∥ ≤ C C′

∑
n∈Z

eµ|n| ‖fn‖Hα

≤ C C′ cµ,θ,α ‖f‖Hθ
.
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Hence the sum
∑

n∈Z

(
einzfn(z)

)
(B) converges uniformly in L(X) towards an

operator T , say. By the Convergence Lemma for strip-type operators (Proposition
5.1.7) we see that T = f(B) and, in fact, ‖f(B)‖ ≤ CC′cµ,θ,α ‖f‖Hθ

. �

Corollary 5.4.3. Let A ∈ Sect(ω) be injective with ωH∞(A) < ∞. Then

ωH∞(A) = θA.

Note that we do not suppose A to be densely defined or to have dense range.

Proof. We already know that the inequality θA ≤ ωH∞(A) holds. Choose param-
eters µ, θ, α with θA < µ < θ < α ≤ π and such that the natural H∞(Sα)-calculus
for A is bounded. Let B := log(A). By Proposition 5.3.3, the operator B satisfies
the hypotheses of Theorem 5.4.1. Applying again Proposition 5.3.3 we obtain that
the natural H∞(Sθ)-calculus for A is bounded. Since θ can be arbitrarily close to
θA, we are done. �

Remark 5.4.4. In Section 9.1.3 we present an example of an injective sectorial
operator A on X := Lp(T) (1 < p < ∞, p 
= 2) such that A ∈ BIP(X, 0) but
ωH∞(A) =∞.

5.5 Perturbation Results

In this section we examine permanence properties of the functional calculus for
sectorial operators under additive perturbations, i.e., we start with a sectorial op-
erator A and a linear operator B : D(A) −→ X and consider the operator A + B
with domain D(A + B) = D(A). We first remark that in order that A + B is
quasi-sectorial it is necessary that B ∈ L(D(A), X).

Proof. If λ0 + A + B is sectorial, then A + B is closed. Hence also A(1 + A)−1 +
B(1 + A)−1 = (A + B)(1 + A)−1 is closed. From this it follows that B(1 + A)−1

is closed and fully defined, whence bounded. �

5.5.1 Resolvent Growth Conditions

We consider conditions under which an additive perturbation A→ A+B preserves
(quasi)-sectoriality and boundedness of the H∞-calculus.

A Domain Condition

The next lemma describes a class of ‘well behaving’ perturbation operators.

Lemma 5.5.1. Let A ∈ Sect(ω), B ∈ L(D(A), X), and θ > 0. Then the following
assertions are equivalent.

(i) supt≥1

∥∥tθB(t + A)−1
∥∥ < ∞.
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(ii)

sup
{
|λ|θ ‖BR(λ, A)‖

∣∣ |λ| ≥ 1, |arg λ| ∈ [ω′, π]
}

<∞

for each ω′ ∈ (ω, π).

In this case there is λ0 ∈ R such that λ0 + A + B ∈ Sect(ω).

Proof. The implication (ii)⇒(i) is trivial.
Suppose that (i) holds, and set d := supt≥1

∥∥tθB(t + A)−1
∥∥. Let ω′ ∈ (ω, π), and

take λ ∈ C such that arg λ ∈ [ω′, π] and |λ| ≥ 1. Then

|λ|θ ‖BR(λ, A)‖ ≤ |λ|θ
∥∥BR(λ, A) + B(|λ|+ A)−1

∥∥+ |λ|θ
∥∥B(|λ|+ A)−1

∥∥
≤ |λ|θ ‖B (R(λ, A)−R(− |λ| , A))‖+ d

= |λ|θ ‖−B(|λ|+ λ)R(− |λ| , A)R(λ, A)‖ + d

≤ 2dM(A, ω′) + d.

To prove the additional assertion, we write

(λ − (A + B)) = (I −BR(λ, A))(λ −A)

for λ /∈ Sω′ . Since lim|λ|→∞ ‖BR(λ, A)‖ = 0 by (ii) we see that λ − (A + B) is
invertible for large |λ| and R(λ, A + B) = R(λ, A)(I − BR(λ, A))−1. The rest
follows. �

Remark 5.5.2. We shall prove in Section 6.7 that B : D(A) −→ X satisfies the
equivalent conditions (i), (ii) from Lemma 5.5.1 with θ ∈ (0, 1] if, and only if B
extends to a bounded operator B : (X, D(A))1−θ,1 −→ X (see Proposition 6.7.3).
So the condition (i) is more or less a condition on the domain of the perturbing
operator B. This accounts for the headline of the present section.

Let us formulate the main result.

Proposition 5.5.3. Let A ∈ Sect(ω) be injective, and let ϕ ∈ (ω, π). Let B be an
operator satisfying the equivalent conditions (i), (ii) from Lemma 5.5.1, for some
θ > 0. Suppose in addition that A + B ∈ Sect(ω) and A + B is invertible. Then
there are constants K1, K2 such that

‖f(A + B)‖ ≤ K1 ‖f(A)‖ + K2 ‖f‖ϕ

for all f ∈ H∞(Sϕ) such that f(A) ∈ L(X).

Proof. Take f ∈ H∞(Sϕ) such that f(A) ∈ L(X) and a contour Γ = Γω′ for some
ω′ ∈ (ω′, ϕ). By definition,

f(A + B) = (2 + (A + B) + (A + B)−1)
1

2πi

∫
Γ

f(z)z
(1 + z)2

R(z, A + B) dz.
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Since 2 + (A + B)−1 is a bounded operator, we can estimate∥∥∥∥(2 + (A + B)−1)
1

2πi

∫
Γ

f(z)z
(1 + z)2

R(z, A + B) dz

∥∥∥∥
≤ ‖f‖ϕ M(A + B, ω′)

∥∥2 + (A + B)−1
∥∥ 1

2π

∫
Γ

|dz|
|1 + z|2

.

As to the remaining part, writing R(z, A + B) = R(z, A + B)BR(z, A) + R(z, A)
within the integral we have to estimate the two summands

(1) (A + B)
1

2πi

∫
Γ

f(z)z
(1 + z)2

R(z, A) dz,

(2) (A + B)
1

2πi

∫
Γ

f(z)z
(1 + z)2

R(z, A + B)BR(z, A) dz.

Since f(A) is a bounded operator we can write (A + B)A(1 + A)−2f(A) for the
first term and estimate∥∥(A + B)A(1 + A)−2

∥∥ ≤ (M + 1)2 + (M + 1)
∥∥B(1 + A)−1

∥∥ ,

where M := M(A). The second summand is split into two parts by decomposing
the contour Γ into [Γ ∩ {|z| ≤ 1}]⊕ [Γ ∩ {|z| ≥ 1}]; thus we obtain∥∥∥∥(A + B)

1
2πi

∫
Γ

f(z)z
(1 + z)2

R(z, A + B)BR(z, A) dz

∥∥∥∥
≤
∫

Γ,|z|≤1

|f(z)|
|1 + z|2

‖(A + B)R(z, A + B)‖
∥∥B(1 + A)−1

∥∥ ‖z(A + 1)R(z, A)‖ |dz|
2π

+
∫

Γ,|z|≥1

|f(z)| |z|1−θ

|1 + z|2
‖(A + B)R(z, A + B)‖ |z|θ ‖BR(z, A)‖ |dz|

2π

≤ ‖f‖ϕ (M(A + B, ω′) + 1)(2M(A, ω′) + 1)
∥∥B(1 + A)−1

∥∥ 1
2π

∫
Γ,|z|≤1

|dz|
|1 + z|2

+ ‖f‖ϕ (M(A + B, ω′) + 1)C
1
2π

∫
Γ,|z|≥1

|z|1−θ |dz|
|1 + z|2

with C :=
(
sup|arg z|=ω′,|z|≥1 |z|

θ ‖BR(z, A‖
)
. �

Remark 5.5.4. The statement is false without the assumption that A + B is in-
vertible. This follows from the fact that there is a bounded, injective operator A
(on a Hilbert space) with unbounded natural H∞-calculus (see Corollary 9.1.8)
However, A may be written as A = (A+1)+(−1), and A+1 does have a bounded
H∞-calculus since it is bounded and invertible.

In passing by we note the following corollary.
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Corollary 5.5.5. Let A be an injective operator on a Banach space X, and let
B ∈ L(X). Suppose that A, A + B ∈ Sect(ω) and 0 ∈ �(A + B). If for some
ϕ ∈ (ω, π) the natural H∞(Sϕ)-calculus for A is bounded, then this also holds for
A + B.

A Range Condition

The next lemma introduces another class of perturbations. Essentially, the re-
quired property is a condition on the range of the perturbing operator (see Remark
5.5.7 below).

Lemma 5.5.6. Let A ∈ Sect(ω), B ∈ L(D(A), X) and θ > 0. Then the following
assertions are equivalent.

(i) supt≥1

∥∥tθA(t + A)−1B
∥∥
L(D(A),X)

<∞.

(ii) sup
{
|λ|θ ‖AR(λ, A)B‖L(D(A),X)

∣∣ |λ| ≥ 1, |argλ| ∈ [ω′, π]
}

< ∞ for each
ω′ ∈ (ω, π).

In this case there is λ0 ∈ R such that λ0 + A + B ∈ Sect(ω).

Proof. The implication (ii)⇒(i) is trivial.
Suppose that (i) holds, and set d := supt≥1

∥∥tθA(t + A)−1B
∥∥. Let ω′ ∈ (ω, π),

and take λ ∈ C such that arg λ ∈ [ω′, π], |λ| ≥ 1. Then

|λ|θ ‖AR(λ, A)B‖ ≤ |λ|θ
∥∥AR(λ, A)B + A(|λ|+ A)−1B

∥∥ + |λ|θ
∥∥A(|λ|+ A)−1B

∥∥
≤ |λ|θ ‖A (R(λ, A)−R(− |λ| , A))B‖ + d

= |λ|θ ‖−(|λ|+ λ)R(λ, A)AR(− |λ| , A)B‖+ d

≤ 2dM(A, ω′) + d

(all the norms in L(D(A), X)). To prove the additional assertion, we write

(λ − (A + B)) = (λ−A)(I −R(λ, A)B)

for λ /∈ Sω′ . Choose σ ∈ (0, θ] with σ < 1. Then our assumptions and (ii)
imply actually that sup|λ|≥1 |λ|

σ ∥∥(λ + A)−1B
∥∥

D(A)−→D(A)
< ∞. (Note that B ∈

L(D(A), X)). Hence lim|λ|→∞
∥∥(λ + A)−1B

∥∥
L(D(A))

= 0, and so (I−(λ+A)−1B)
is an isomorphism on D(A) for large |λ|. Therefore, for |λ| large enough, we see
that λ− (A + B) is invertible and R(λ, A + B) = (I −BR(λ, A))−1R(λ, A). The
rest follows. �
Remark 5.5.7. We shall prove in Section 6.7 that B : D(A) −→ X satisfies the
equivalent conditions (i), (ii) from Lemma 5.5.1 with θ ∈ (0, 1] if, and only if
B : D(A) −→ X is bounded and R(B) ⊂ (X, D(A))θ,∞ (see Proposition 6.7.1).
This accounts for the headline of the present section.
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Proposition 5.5.8. Let A ∈ Sect(ω) be injective, and let ϕ ∈ (ω, π). Let B satisfy
the equivalent properties (i), (ii) from Lemma 5.5.6, for some θ > 0. Suppose in
addition that A + B ∈ Sect(ω) and A + B is invertible. Then there are constants
K1, K2 such that

‖f(A + B)‖ ≤ K1 ‖f(A)‖ + K2 ‖f‖ϕ

for all f ∈ H∞(Sϕ) such that f(A) ∈ L(X).

Proof. The proof follows the same lines as the proof of Proposition 5.5.3. The
main difference is in writing

R(z, A + B) = R(z, A)−R(z, A)BR(z, A + B)

instead of R(z, A + B) = R(z, A) + R(z, A + B)BR(z, A). �

A Degenerate Case

We turn to a different class of operators, somehow ‘dual’ to the first one. Suppose
that A ∈ Sect(ω) has dense domain. Let B : D(A) −→ X be an operator such
that

sup
t≥1

∥∥tθ(t + A)−1B
∥∥ < ∞ (5.9)

for some θ ∈ (0, 1). If we replace A by ε + A for ε > 0, condition (5.9) still holds.
So in the following we take A to be invertible.

The problem is now that in general the operator A+B with D(A+B) := D(A)
is not quasi-sectorial, and not even a closed operator. However, it always has a
quasi-sectorial extension. To prove this we introduce a suitable extrapolation space
of X . Namely, let

Y := (X,
∥∥A−1·

∥∥)∼,

i.e., Y is the completion of X with respect to the norm ‖x‖Y :=
∥∥A−1x

∥∥
X

. Then,
by density of D(A) in X , the operator A extends in a unique way to an isometric
isomorphism AY : X −→ Y . Moreover, by (5.9) one has

‖Bx‖Y =
∥∥A−1Bx

∥∥
X
≤
∥∥(A + 1)A−1

∥∥
L(X)

∥∥(1 + A)−1Bx
∥∥

X

≤ c
∥∥(A + 1)A−1

∥∥
L(X)

‖x‖X (x ∈ D(A))

for some c > 0. This implies that B extends uniquely to a bounded operator
BY : X −→ Y . Using these extensions condition (5.9) becomes

sup
t≥1

∥∥tθAY (t + AY )−1BY

∥∥
L(X,Y )

< ∞. (5.10)

Considering the operator AY as an operator on Y with domain D(AY ) = X , we
realise that AY is sectorial of angle ω, isometrically similar to the operator A on
X . Moreover, BY : D(AY ) −→ Y is a perturbation of AY of the type which we
considered in Lemma 5.5.6. Hence we conclude that for some λ0 > 0 the operator
λ0 + AY + BY is also sectorial (of angle ω) and invertible (on the Banach space
Y ). If we take the part in X of this operator we have our sectorial extension.
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Proposition 5.5.9. Let A, B, λ0 be as above, and let C := (AY +BY )
∣∣
X

be the part
of AY + BY in X. Then the following assertions hold.

a) The operator λ0 + C is an invertible sectorial operator of angle ω in X, and
C extends A + B.

b) The following two assertions are equivalent:

(i) C = A + B;

(ii) λ0 + A + B has dense range.

c) For each ϕ ∈ (ω, π) there exist constants K1, K2 such that for every function
f ∈ H∞(Sϕ) such that f(A) ∈ L(X) one has f(λ0 + C) ∈ L(X) and

‖f(λ0 + C)‖ ≤ K1 ‖f(A)‖ + K2 ‖f‖ϕ .

Proof. a) Since D(AY +BY ) = X , the space X is invariant under the resolvent of
AY +BY . Also it is clear that R(λ, C) = R(λ, AY +BY )

∣∣
X

for all λ ∈ �(AY +BY ).
This proves that σ(λ0 + C) ⊂ Sω. To prove the sectoriality estimate we simply
write

(λ + AY + BY )−1 = (I + (λ + AY )−1BY )−1(λ + AY )−1.

By restriction this gives (λ + C)−1 = (I + (λ + AY )−1BY )−1(λ + A)−1. Now one
combines the sectoriality of A with condition (5.10) (and the resolvent identity)
to obtain the sectoriality of λ0 + C.
b) If C = A + B we have

X = R(λ0 + C) = R
(
λ0 + A + B

)
⊂ R(λ0 + A + B),

whence λ0 + A + B has dense range. On the other hand, if this is so, then from
A + B ⊂ C it follows that (λ0 + C)′ ⊂ (λ0 + A + B)′ = (λ0 + A + B)′. The latter
is injective, by hypothesis. However, (λ0 + C)′ is even invertible (since λ0 + C is),
and this is only possible if one has equality (λ0 + C)′ = (λ0 + A + B)′. Taking
adjoints and intersecting with X ⊕X yields λ0 + C = λ0 + A + B.
c) Take ϕ ∈ (ω, π) and f ∈ H∞(Sϕ) such that f(A) ∈ L(X). Then clearly
f(AY ) ∈ L(Y ) with ‖f(AY )‖L(Y ) = ‖f(A)‖L(X). By Proposition 5.5.8 we have
f(λ0 + AY + BY ) ∈ L(Y ) with

‖f(λ0 + AY + BY )‖L(Y ) ≤ K1 ‖f(AY )‖L(Y ) + K2 ‖f‖ϕ

for some constants K1, K2. Now note that, by Proposition 2.6.5, we have

f(λ0 + C) = f((λ0 + AY + BY )X) = f(λ0 + AY + BY )X .

Moreover, X = D(λ0+AY +BY ), which means that ‖(λ0 + AY + BY )x‖Y provides
an equivalent norm on X . On the other hand, the space X is invariant under
f(λ0 + AY + BY ) with

‖f(λ0 + C)‖L(X) = ‖f(λ0 + AY + BY )X‖L(X) � ‖f(λ0 + AY + BY )‖L(Y ) .

This concludes the proof. �
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One can show that each of the two equivalent conditions appearing in Propo-
sition 5.5.9 is also equivalent to the identity (A + B)′ = A′ + B′. More on extra-
polation spaces can be found in Section 6.3.

5.5.2 A Theorem of Prüss and Sohr

Recall that, by Proposition 3.5.5, one has

Ais ∈ L(X) ⇒ (A + ε)is ∈ L(X)

for each injective, sectorial operator A and all s ∈ R, ε > 0. The reverse implication
is valid if A is invertible. Unfortunately, this perturbation result does not say
anything about the group types θA and θA+ε. In this section we wish to prove the
following theorem.

Theorem 5.5.10 (Prüss–Sohr). Let A be an injective, sectorial operator on the
Banach space X. Suppose that there is a constant K such that

∥∥Ais
∥∥ ≤ Keθ|s| (s ∈

R) for some θ > ωA. Then there is K ′ such that∥∥(A + ε)is
∥∥ ≤ K ′eθ|s| (s ∈ R)

uniformly in ε > 0.

To achieve this we have to study in more detail a special case of Corollary
5.5.5.

Proposition 5.5.11. Let A ∈ Sect(ω) be injective. Let ϕ ∈ (ω, π) and f ∈ H∞(Sϕ).
If f(A) ∈ L(X), then f(A + 1) ∈ L(X) and

‖f(A + 1)‖ ≤ K1 ‖f(A)‖+ K2 ‖f‖ϕ ,

where K1 = 1 + M(A) and

K2 = (2 + M(A) + M(A, ϕ))M(A, ϕ)C(ϕ),

where C(ϕ) only depends on ϕ.

Proof. Take ω′ ∈ (ω, ϕ) and let Γ = ∂Sω′ . One has to estimate

f(A + 1) = (2 + (A + 1) + (A + 1)−1)
1
2π

∫
Γ

f(z)z
(1 + z)2

R(z, A + 1) dz.

As in the proof of Proposition 5.5.3 we split this expression into two summands,
namely

f(A + 1) = (2 + (A + 1)−1)
1

2πi

∫
Γ

f(z)z
(1 + z)2

R(z, A + 1) dz

+ (A + 1)
1

2πi

∫
Γ

f(z)z
(1 + z)2

R(z, A + 1) dz.
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The first summand is estimated by

‖f‖ϕ (2 + M(A))M(A + 1, ω′)
1
2π

∫
Γ

|dz|
|1 + z|2

.

The second is written as the difference

(A + 1)
∫

Γ

f(z)z
(1 + z)2

R(z, A + 1)
dz

2πi

= (A + 1)
∫

Γ

f(z)z
(1 + z)2

R(z, A)
dz

2πi
− (A + 1)

∫
Γ

f(z)z
(1 + z)2

R(z, A)R(z, A + 1)
dz

2πi

= A(1 + A)−1f(A) − (A + 1)
∫

Γ

f(z)z
(1 + z)2

R(z, A)R(z, A + 1)
dz

2πi
.

Here we obtain the bounds (1 + M(A)) ‖f(A)‖ and

‖f‖ϕ M(A, ω′)M(A + 1, ω′)
1
2π

∫
Γ

|dz|
|1 + z|2

.

We now let ω′ → ϕ and apply Proposition 2.1.1 f) to obtain a constant C(ϕ)
depending only on ϕ such that

‖f(A + 1)‖ ≤ (1 + M(A)) ‖f(A)‖
+ [(2 + M(A) + M(A, ϕ))M(A, ϕ)C(ϕ)] ‖f‖ϕ . �

We now prove Theorem 5.5.10. Let A be sectorial and injective, and let
θ > ωA. Choose ϕ ∈ (ω, min(θ, π)), and suppose that ‖Ais‖ ≤ Keθ|s| (s ∈ R).
Given ε > 0 and s ∈ R we apply Proposition 5.5.11 to the operator ε−1A and the
function f(z) = zis and obtain∥∥(ε−1A + 1)is

∥∥ ≤ K1

∥∥(ε−1A)is
∥∥ + K2

∥∥zis
∥∥

ϕ

for all s ∈ R. A closer look at the shape of the constants K1, K2 in Proposition
5.5.11 reveals that they do not depend on ε (due to i) of Proposition 2.1.1). Now
|ε−is| = 1, ‖zis‖ϕ = eϕ|s|, and (ε−1A + 1)is = (ε−1(A + ε))is = ε−is(A + ε)is

by a (trivial) application of the composition rule. Similarly, (ε−1A)is = ε−isAis.
Altogether this yields∥∥(A + ε)is

∥∥ ≤ K1

∥∥Ais
∥∥ + K2e

ϕ|s| ≤ (K1K + K2)eθ|s| (s ∈ R)

uniformly in ε ≥ 0, whence Theorem 5.5.10 is proved. �
We state a corollary which summarises our considerations.

Corollary 5.5.12. Let A be sectorial and have dense domain and dense range, and
let θ ≥ 0. If A ∈ BIP(X, θ), then A + ε ∈ BIP(X, θ) for all ε > 0. In fact, if
θ > ωA, there is K ′ such that

∥∥(A + ε)is
∥∥ ≤ K ′eθ|s| (s ∈ R) uniformly in ε ≥ 0.
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5.6 A Characterisation

The next result, well known in Harmonic Analysis, is of great importance and
shows that a bounded H∞

0 -calculus implies a large ‘amount of unconditionality’.

Lemma 5.6.1 (Unconditionality Lemma). Let 0 ≤ ω < ϕ < π and f ∈ H∞
0 (Sϕ).

Then there is a constant D > 0 such that the following holds. If A ∈ Sect(ω) on
some Banach space X such that the natural H∞

0 (Sϕ)-calculus for A is bounded
with bound C, then ∥∥∥∑

k∈Z
ak f(t2kA)

∥∥∥ ≤ CD ‖a‖∞ (5.11)

for all t > 0 and all finite sequences a = (ak)k∈Z ⊂ C.

Proof. Choose C′ > 0 and s > 0 such that |f(z)| ≤ C′ min
(
|z|s , |z|−s

)
for all

z ∈ Sϕ. Let a = (ak)k∈Z be a finite sequence of complex numbers such that
‖a‖∞ ≤ 1, and let t > 0. We estimate∥∥∥∑

k
akf(t2kA)

∥∥∥ =
∥∥∥(∑

k
akf(t2kz)

)
(A)

∥∥∥ ≤ C sup
z∈Sϕ

∣∣∣∑
k
akf(t2kz)

∣∣∣
≤ C sup

z∈Sϕ

∑
k

∣∣f(2kz)
∣∣ ≤ CC′ sup

z∈Sϕ

∑
k
min

(
|2kz|s, |2kz|−s

)
= CC′ sup

1≤t≤2

∑
k
min

(
2ksts, 2−kst−s

)
≤ CC′

∑
k
min

(
2(k+1)s, 2−ks

)
≤ CC′2

∑
k≥0

2−ks = CC′ 2s+1

2s − 1
. �

The Unconditionality Lemma is in fact part of a general characterisation of
the boundedness of the H∞-calculus. We cite the following theorem from [141,
Theorem 12.2] without proof.

Theorem 5.6.2. Let A ∈ Sect(ω) be a sectorial operator on a Banach space X
such that A has dense domain and dense range. For ϕ, θ ∈ (ωA, π) let ψ±θ(z) :=
z1/2(e±iθ − z)−1 and consider the following statements:

(i) The natural H∞(Sϕ)-calculus is bounded;

(ii) sup
N∈N,t>0,ε∈{−1,1}N

∥∥∥∥∑N

k=−N
εkψ±θ(2ktA)

∥∥∥∥ < ∞.

Then (i)⇒(ii) for θ < ϕ and (ii)⇒(i) for ϕ < θ.

5.7 Comments

5.1 Convergence Lemma. It is an open controversy if continuity properties should
be incorporated into a general notion of functional calculus. As the reader might
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have already guessed we champion a purely algebraic concept and regard con-
tinuity properties as being accidental. Nevertheless, they may have important
consequences. This is the case with the Convergence Lemma, which is crucial if
one is interested in the boundedness of the H∞-calculus. Lemma 5.1.2 is a re-
finement of [167, Section 4, Theorem, a)]. Part b) of the Convergence Lemma
(Proposition 5.1.4) is [167, Section 5, Theorem] or [51, Lemma 2.1] or [3, Theorem
D] and practically contained in all other papers on H∞-calculus. Part a) is our
contribution to the matter, see also Remark 5.1.5.

5.2 A Fundamental Approximation Technique. Lemma 5.2.1 was invented to pave
the ground for McIntosh’s approximation technique (Theorem 5.2.6), which was
introduced by McIntosh [167] and often employed in the subsequent works [169,
3, 19]. Theorem 5.2.2, Lemma 5.2.3 and Proposition 5.2.4 give, more or less, a
systematised account of results of [3].

5.3 Equivalent Descriptions and Uniqueness. Proposition 5.3.4 covers results
from the literature. The proof of the implication (i)⇒(ii) is from [51], the one
of (iv)⇒(iii) is inspired by [145] and [146], where Runge’s theorem is invoked.

Discussing uniqueness of the functional calculus seems to be a delicate matter
(see also the ‘Concluding Remarks’ in Section 2.8). Since usually the only thing
linking the functional calculus to the operator is its behaviour on rational func-
tions, a continuity assumption with respect to bounded and pointwise convergence
of functions seems necessary to obtain uniqueness, at least if the function algebra
is large. This is reflected in Proposition 5.3.9. Lemma 5.3.8 is the best we could
achieve if such a continuity property is missing.

The reason why we included a section on uniqueness is that in the litera-
ture reference is often made to ‘operators which have a bounded H∞-functional
calculus’ where it is obviously meant that the natural (as we call it) H∞-calculus
is bounded. The cited phrase automatically raises the uniqueness question since
it presupposes a general definition of an H∞-calculus. It is this context which
accounts for our Proposition 5.3.9. However, Proposition 5.3.4 shows that with a
reasonable definition of ‘bounded H∞-calculus’ the following assertions are equiv-
alent:

(i) A has a (= some) bounded H∞(Sϕ)-calculus.

(ii) The natural H∞-calculus for A is bounded.

This justifies in retrospect the quoted manner of speaking.

5.4 The Minimal Angle. Theorem 5.4.1 and its proof via Lemma 5.4.2 is taken
from [51, Theorem 5.4].
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5.5 Perturbation Results. One of the first perturbation results in connection with
functional calculus is Corollary 5.5.12 by Prüss and Sohr [193]. (Actually, they
proved a slighly different result, allowing θ = ωA but requiring θ ∈ (0, π). In all
relevant applications this difference is immaterial.)

A different proof being more or less in the same vein as ours was given by
Monniaux [171] and subsequently by Uiterdijk [217]. The need to consider a
perturbation A− ε instead of A+ ε leads to a result for bounded perturbations in
[12]. There it was remarked that weaker conditions than boundedness suffice, and
Propositions 5.5.3 and 5.5.8 are elaborations of this remark, due to the author.
In the same spirit are the perturbation results from [6] and [141, Proposition
13.1]. More intricate perturbation theorems were proved by Hieber, Kalton,
Kunstmann, Prüss and Weis, see [141] and the references therein.

5.6 A Characterisation. A first characterisation of the boundednes of the H∞-
calculus was given by Boyadzhiev and deLaubenfels [33]. Cowling et al.
[51] investigated more deeply the connection with so-called quadratic estimates
that had appeared naturally in McIntosh’s work on Hilbert spaces. Finally
Kalton and Weis in [125] and subsequent work stressed the importance and
fruitfulness of randomisation techniques, see e.g. [141].
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Interpolation Spaces

In the present chapter we examine the connections between functional calculus and
interpolation spaces. As an ‘appetiser’, in Section 6.1 we present two central ideas: a
model describing the real interpolation spaces (X, D(A))θ,p using the functional cal-
culus and a theorem of Dore. In Section 6.2 we examine the first of these ideas,
proving several representation results for the spaces (X, D(Aα))θ,p. Then we intro-
duce extrapolation spaces for injective operators (Section 6.3). With the help of these
spaces in Section 6.4 we derive two fundamental results (Theorem 6.4.2 and Theorem
6.4.5) that lead to more characterisations of interpolation spaces by functional calculus
(Section 6.5.1) and a generalisation of Dore’s theorem (Section 6.5.3). In Section 6.6
we establish all the common properties of fractional domain spaces as intermediate
spaces: density, the moment inequality, reiteration. Moreover, we prove the intriguing
fact that for an operator A ∈ BIP(X) the fractional domain spaces equal the complex
interpolation spaces (Theorem 6.6.9). Finally we characterise growth conditions like
supt≥1

‚‚tθB(t + A)−1
‚‚ < ∞ in terms of interpolation spaces (Section 6.7).

6.1 Real Interpolation Spaces

We assume that the reader is familiar with the basic theory of real interpolation
spaces. A short account and references can be found in Appendix B. For conve-
nience we recall our notation Lp

∗((a, b); X) for the Bochner space of (equivalence
classes of) measurable functions f : (a, b) −→ X which are p-integrable with re-
spect to the measure dt/t. In the case where (a, b) = (0,∞) we write simply
Lp

∗(X). Also, we define Λ ⊂ [0, 1]× [1,∞] by

(θ, p) ∈ Λ :⇐⇒ p ∈ [1,∞), θ ∈ (0, 1) or p =∞, θ ∈ [0, 1].

The present section should be viewed as an ‘appetiser’ for a deeper study of the
connections of functional calculus with real interpolation spaces.

Let A ∈ Sect(ω) on the Banach space X . We use the common notation

DA(θ, p) := (X, D(A))θ,p

for (θ, p) ∈ Λ; the respective norm is denoted by ‖·‖θ,p. Employing only elementary
arguments (see [158, Proposition 3.1.1]) one can derive the following description.
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Lemma 6.1.1. Let A ∈ Sect(ω) on the Banach space X. Then

DA(θ, p) :=
{
x ∈ X

∣∣ tθA(t + A)−1x ∈ Lp
∗((0,∞); X)

}
(6.1)

with equivalence of norms

‖x‖θ,p ∼ ‖x‖X +
∥∥tθA(t + A)−1x

∥∥
Lp

∗((0,∞);X)
.

If A is invertible, one can even drop the ‖·‖X-part and then has the norm equiva-
lence

‖x‖θ,p ∼
∥∥tθA(t + A)−1x

∥∥
Lp

∗((0,∞);X)
.

We do not prove the lemma here since it follows from more general descrip-
tions we give in the next section. However, we point out that the result is in
fact a characterisation of DA(θ, p) in terms of functional calculus. Indeed, letting
ψ(z) := z(1 + z)−1 after a change of parameter t �→ t−1, the description (6.1)
becomes

(X, D(A))θ,p = {x ∈ X | t−θψ(tA)x ∈ Lp
∗((0,∞); X)}.

This provides us with a basic intuition that will be made precise in Theorems
6.2.1, 6.2.9 and 6.5.3 below.

One of the central features of real interpolation spaces is that the operator
A when restricted to DA(θ, p) improves some of its functional calculus properties.
This heuristic statement is made precise by a result of Dore from [72]. In order
to prove it, we need some preliminaries.

Let again A ∈ Sect(ω) on X . Clearly, the spaces DA(θ, p) are invariant under
application of the resolvent of A, i.e., R(λ, A)DA(θ, p) ⊂ DA(θ, p) with

‖R(λ, A)x‖θ,p ≤ ‖R(λ, A)‖L(X) ‖x‖θ,p (6.2)

for all λ ∈ �(A), (θ, p) ∈ Λ, and x ∈ DA(θ, p). Restricting the operator A to the
space DA(θ, p) therefore yields again a sectorial operator. The following propo-
sition is stated for the sake of convenience. Its proof follows from Proposition
2.6.5.

Proposition 6.1.2. Let A ∈ Sect(ω), θ ∈ (0, 1) and p ∈ [1,∞]. Denote by Aθ,p the
part of A in DA(θ, p), i.e.,

(x, y) ∈ Aθ,p ⇐⇒ x ∈ D(A) and y = Ax ∈ DA(θ, p)

for all x, y ∈ X. Then the following assertions hold.

a) �(A) ⊂ �(Aθ,p) with

R(λ, Aθ,p) = R(λ, A)
∣∣
DA(θ,p)

(λ ∈ �(A)).

b) Aθ,p ∈ Sect(ω) in the Banach space DA(θ, p).
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c) If A is injective or invertible, so is Aθ,p.

d) If f ∈ M[Sω]A, then f ∈ M[Sω]Aθ,p
with f(Aθ,p) being the part of f(A) in

DA(θ, p), i.e.,

(x, y) ∈ f(Aθ,p) ⇐⇒
{

x ∈ D(f(A)) ∩DA(θ, p),

y = f(A)x ∈ DA(θ, p)

for all x, y ∈ X.

Now we can state Dore’s theorem. Note that that there are sectorial operators
without a bounded H∞-calculus (Remark 5.4.4).

Theorem 6.1.3 (Dore). Let A be an invertible sectorial operator on the Banach
space X, and let θ ∈ (0, 1) and p ∈ [1,∞]. Then for each ϕ ∈ (ωA, π) the natural
H∞(Sϕ)-calculus for Aθ,p is bounded. In particular, DA(θ, p) ⊂ D(f(A)) for all
f ∈ H∞[Sω].

Proof. We first treat the case p = ∞. Employing the resolvent identity and the
second part of Lemma 6.1.1, one sees that for each ω′ ∈ (ωA, π) there is a constant
c(ω′) such that

sup
z∈∂Sω′

∥∥zθAR(z, A)x
∥∥ ≤ c(ω′) ‖x‖θ,∞

for all x ∈ DA(θ,∞). Take ϕ ∈ (ωA, π), f ∈ H∞(Sϕ) and x ∈ DA(θ, p). Then(
f(z)
1 + z

)
(A)x =

1
2πi

∫
Γ

f(z)
1 + z

R(z, A)xdz

= A−1 1
2πi

∫
Γ

f(z)
(1 + z)zθ

[zθAR(z, A)x] dz,

where Γ = ∂Sω′ for some ω′ ∈ (ω, ϕ). This shows that (f/(1 + z))(A)x ∈ D(A),
whence x ∈ D(f(A)). Moreover, for each t > 0 one has

∥∥tθA(t + A)−1f(A)x
∥∥

X
=

1
2π

∥∥∥∥∫
Γ

f(z)tθ

(t + z)zθ
zθAR(z, A)xdz

∥∥∥∥
X

≤ 1
2π

∫
Γ

|f(z)| tθ |dz|
|t + z| |z|θ

c(ω′) ‖x‖θ,∞ =
1
2π

∫
Γ

|f(tz)| |dz|
|1 + z| |z|θ

c(ω′) ‖x‖θ,∞

≤ ‖f‖ϕ

1
2π

∫
Γ

|dz|
|1 + z| |z|θ

c(ω′) ‖x‖θ,∞ .

Hence f(A)x ∈ DA(θ,∞) with ‖f(A)x‖θ,∞ ≤ C ‖f‖ϕ ‖x‖θ,∞ for some constant C
independent of x.

Let us turn to the case 1 ≤ p < ∞. By the Reiteration Theorem B.2.9 one
can view DA(θ, p) as a real interpolation space between DA(θ,∞) and DA(β,∞),
where θ < β < 1. Combining this with Proposition 6.1.2 concludes the proof. �
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Example 6.1.4. The hypothesis of invertibility cannot be dropped from Theo-
rem 6.1.3. Let A be an unbounded, invertible, sectorial operator on a Hilbert
space H such that the natural H∞-calculus for A is not bounded (see Corollary
9.1.8). From the composition rule it is clear that A−1 cannot have a bounded
H∞-calculus. Form the diagonal operator

A := diag(A, A−1) :=
(

A 0
0 A−1

)
on the space H ⊕H . Then it is clear that DA(θ, p) = DA(θ, A) ⊕H with the in-
duced operator Aθ,p being the diagonal operator diag(Aθ,p, A

−1). Since obviously
f(A) = diag(f(A), f(A−1)), A cannot have a bounded H∞-calculus on DA(θ, p),
for any pair (θ, p).

Corollary 6.1.5. Let A ∈ Sect(ω) such that D(Aα) = DA(Re α, p) (with equivalent
norms) for some Re α ∈ (0, 1) and some p ∈ [1,∞]. Then for each ε > 0 and each
ϕ ∈ (ω, π] the natural H∞(Sϕ)-calculus for A + ε is bounded.

Proof. Since (A + ε)−α : X −→ D(Aα) is an isomorphism, the assertion follows
from Theorem 6.1.3. �

We shall prove below that the identity D(Aα) = DA(α, p) for one α implies
already that it holds for all α. Also we shall prove a much more general form of
Dore’s theorem without employing the Reiteration Theorem.

6.2 Characterisations

In the present section we use the functional calculus to give several descriptions of
the real interpolation spaces associated with a sectorial operator A on a Banach
space X . Given Re α > 0 the space D(Aα) will be considered endowed with the
norm ‖x‖X +‖Aαx‖X , which turns it into a Banach space continuously embedded
in X . Hence the pair (D(Aα), D(Aβ)) is an interpolation couple whenever α, β ∈
{z | Re z > 0} ∪ {0}. Note that, since Aα(A + 1)−α = (A(A + 1)−1)α is bounded,
one has D(Aα) = D((A + 1)α) not only as sets but also with equivalent norms.
(Apply the Closed Graph Theorem.) Therefore, in considerations involving only
the space D(Aα) one may always suppose that A is invertible. In that case the
homogeneous norm ‖x‖Aα := ‖Aαx‖X is an equivalent norm on D(Aα).

6.2.1 A First Characterisation

In this section we consider a description of the real interpolation spaces as follows.

Theorem 6.2.1. Let A ∈ Sect(ω), ϕ ∈ (ω, π), and Re α > 0. Furthermore, let
ψ ∈ O(Sϕ) be a function with the following properties:

a) ψ, ψz−α ∈ E(Sϕ);
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b) limz→0 ψ(z)z−α 
= 0;

c) ψ(z) 
= 0 for all z ∈ Sϕ;

d)

sup
z∈Sϕ,s≥1

∣∣∣∣ ψ(sz)
sαψ(z)

∣∣∣∣ <∞. (6.3)

Then for all (θ, p) ∈ Λ one has the identity

(X, D(Aα))θ,p =
{
x ∈ X

∣∣ t−θ Re αψ(tA)x ∈ Lp
∗((0,∞); X)

}
(6.4)

with the equivalence of norms

‖x‖(X,D(Aα))θ,p
∼ ‖x‖X +

∥∥t−θ Re αψ(tA)x
∥∥
Lp

∗((0,∞);X)
.

If one is willing to do without the extremal case θ = 1, p = ∞, the assump-
tions on ψ can be weakened, cf. Theorem 6.2.9.

Remarks 6.2.2. 1) By Proposition 2.6.11, the function t �−→ ψ(tA) is bounded,
whence t−θ Re αψ(tA) ∈ Lp

∗((1,∞);L(X)) for all (θ, p) ∈ Λ. Hence one may
replace (6.4) by

(X, D(Aα))θ,p =
{
x ∈ X | t−θ Re αψ(tA)x ∈ Lp

∗((0, 1); X)
}

(6.5)

with the equivalence of norms

‖x‖(X,D(Aα))θ,p
∼ ‖x‖X +

∥∥t−θ Re αψ(tA)x
∥∥
Lp

∗((0,1);X)

for each (θ, p) ∈ Λ.

2) If A is invertible, one may discard the ‖·‖X -part and has the simpler norm
equivalence

‖x‖(X,D(Aα))θ,p
∼

∥∥t−θ Re αψ(tA)x
∥∥
Lp

∗((0,∞);X)
.

This is proved in Section 6.5.2, see Corollary 6.5.5.

Before we give the proof of Theorem 6.2.1, we formulate an important special
case.

Corollary 6.2.3. Let A ∈ Sect(ω), ϕ ∈ (ω, π), and Re α > 0. Let ψ ∈ O(Sϕ) be a
function satisfying the following conditions:

a) ψ, ψz−α ∈ E(Sϕ);

b) limz→0 ψ(z)z−α 
= 0;

c) ψ(z) 
= 0 for all z ∈ Sϕ;

d) ψ(∞) 
= 0.

Then the conclusion of Theorem 6.2.1 holds.
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Proof. One only has to show that also (6.3) is satisfied, at least on a slightly
smaller sector. Choose ϕ′ ∈ (ω, ϕ). Then for s ≥ 1,∣∣∣∣ ψ(sz)

sαψ(z)

∣∣∣∣ =
∣∣∣∣ψ(sz)(sz)−α

ψ(z)z−α

∣∣∣∣ ≤ ∥∥ψz−α
∥∥

ϕ

∣∣∣∣ 1
ψ(z)z−α

∣∣∣∣
and ∣∣∣∣ ψ(sz)

sαψ(z)

∣∣∣∣ ≤ ‖ψ‖ϕ

∣∣∣∣ 1
ψ(z)

∣∣∣∣ .
The first is bounded for z ∈ Sϕ′ , |z| ≤ 1, the second for z ∈ Sϕ′ , |z| ≥ 1. �

Let us now turn to the proof of Theorem 6.2.1. We begin by noticing that
one of the desired inclusions is easy and in fact requires only condition a).

Lemma 6.2.4. Let A ∈ Sect(ω), ϕ ∈ (ω, π), and Re α > 0. Let ψ ∈ E(Sϕ) such
that γ := ψz−α ∈ E(Sϕ). Then

‖ψ(tA)x‖ ≤ C K(tRe α, x, X,D(Aα)) (x ∈ X, t > 0),

where C = max(Cψ , Cγ), cf. Proposition 2.6.11. Consequently, there is a contin-
uous inclusion

(X, D(Aα))θ,p ⊂
{
x ∈ X

∣∣ t−θ Re αψ(tA)x ∈ Lp
∗((0,∞); X)

}
for each (θ, p) ∈ Λ.

Proof. Let x = a + b, where a ∈ X and b ∈ D(Aα). Then one has ψ(tA)x =
ψ(tA)a + tαγ(tA)Aαb, and this yields

‖ψ(tA)x‖ ≤ Cψ ‖a‖X + tRe αCγ ‖Aαb‖X ≤ C
(
‖a‖X + tRe α ‖b‖D(Aα)

)
.

Taking the infimum yields the first statement. The second follows readily. �
The other inclusion is not as easy to establish. In fact, we need several

auxiliary results.

Lemma 6.2.5. Let 0 
= ψ ∈ E(Sϕ) and Re α > 0. Then there is f ∈ H∞
0 (Sϕ) such

that ∫ ∞

0

(fψ)(sz)
ds

s
= 1 (z ∈ Sϕ)

and zαf ∈ H∞
0 (Sϕ).

Proof. Let ψ(z) := ψ(z) and τ(z) := z/(1 + z)2. Then ψ(t)ψ(t) = |ψ(t)|2 for all
t > 0. Choose m > Re α. Since 0 
= ψ,

c :=
∫ ∞

0

τ(s)mψ(s)ψ(s)
ds

s
> 0.

Then f := c−1τmψ is a possible choice. �
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The next lemma states the classical Hardy–Young inequality.

Lemma 6.2.6 (Hardy–Young Inequality). Let σ > 0, p ∈ [1,∞], and f : (0,∞) −→
[0,∞).

a) If t−σf ∈ Lp
∗(0,∞) then f ∈ L1

∗(0, T ) for every T ∈ (0,∞) and with

g(t) :=
∫ t

0

f(s)
ds

s

one has t−σg ∈ Lp
∗(0,∞) and ‖t−σg‖Lp

∗(0,∞) ≤ (1/σ) ‖t−σf‖Lp
∗(0,∞).

b) If tσf ∈ Lp
∗(0,∞), then f ∈ L1

∗(T,∞) for every T ∈ (0,∞) and with

g(t) :=
∫ ∞

t

f(s)
ds

s

one has tσg ∈ Lp
∗(0,∞) and ‖tσg‖Lp

∗(0,∞) ≤ (1/σ) ‖tσf‖Lp
∗(0,∞).

Note that the constant appearing in the norm inequality is independent of
the length of the interval (0, T ) and of the parameter p.

Proof. The second assertion follows from the first by a change of parameter t �→
t−1. The first assertion can be proved easily by Riesz–Thorin interpolation since
the case p = ∞ is trivial and the case p = 1 is just the Fubini theorem. (Only
positive operators are involved here, so interpolation is elementary, cf. [104].) Of
course one may also look into a book, e.g., in [115, p.245-246]. �

Returning to the proof of Theorem 6.2.1 we look for a possibility to write
the constant 1 as a sum of appropriate functions in E . This will be accomplished
by the next lemma.

Lemma 6.2.7. Let A ∈ Sect(ω), ϕ ∈ (ω, π), and Re α > 0, and let ψ ∈ E(Sϕ)
satisfy all the hypotheses of Theorem 6.2.1. Then there are functions f ∈ H∞

0 (Sϕ)
and g ∈ E(Sϕ) such that∫ 1

0

(fψ)(sz)
ds

s
+ g(z)ψ(z)z−α = 1 (z ∈ Sϕ). (6.6)

Proof. We apply Lemma 6.2.5 to find a function f ∈ H∞
0 such that f̃ := zαf ∈

H∞
0 and

∫∞
0 (fψ)(sz) ds/s = 1 for all z ∈ Sϕ. Let h(z) :=

∫∞
1 (fψ)(sz) ds/s. From

Example 2.2.6 it follows that h ∈ E and h(0) = 1. Define g(z) := h(z)/ψ(z)z−α.
Since by assumption ψ(z)z−α

∣∣
z=0


= 0, g is ‘good’ at 0. To see that g is also ‘good’
at ∞, we use condition (6.3) and write

|g(z)| =
∣∣∣∣ h(z)
ψ(z)z−α

∣∣∣∣ =
∣∣∣∣∫ ∞

1

(sz)αf(sz)
ψ(sz)
sαψ(z)

ds

s

∣∣∣∣ ≤ C

∫ ∞

1

∣∣∣f̃(sz)
∣∣∣ ds

s

the latter being ‘good’ at ∞, cf. Example 2.2.6. �
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Now we take the last step.

Proposition 6.2.8. Let A ∈ Sect(ω), ϕ ∈ (ω, π), and Re α > 0, and let ψ ∈ O(Sϕ)
such that ψ, ψz−α ∈ E(Sϕ). Suppose that there exist functions f, g ∈ E(Sϕ) with
(fψ) ∈ H∞

0 (Sϕ) and∫ 1

0

(fψ)(sz)
ds

s
+ g(z)ψ(z)z−α = 1 (z ∈ Sϕ).

Then the conclusion of Theorem 6.2.1 holds.

Proof. As already noted, one inclusion is clear from Lemma 6.2.4. Let

h1(z) :=
∫ 1

0

(fψ)(sz)
ds

s
and h2(z) := g(z)ψ(z)z−α.

Clearly, h1, h2 ∈ E(Sϕ), cf. Example 2.2.6. Moreover, for every x ∈ X, t > 0 we
have h2(tA)x ∈ D(Aα) with

Aαh2(tA)x = t−αg(tA)ψ(tA)x,

hence ‖h2(tA)x‖D(Aα) ≤ t−Re αCg ‖ψ(tA)x‖ + Ch2 ‖x‖. (See Proposition 2.6.11
for the meaning of Cg, Ch2 .) This yields

K(tRe α, x, X,D(Aα)) ≤ ‖h1(tA)x‖ + Cg ‖ψ(tA)x‖ + tRe αCh2 ‖x‖ .

Since also K(tRe α, x, X,D(Aα)) ≤ ‖x‖, we can enlarge the constants to obtain

K(tRe α, x, X,D(Aα)) ≤ C
(
‖h1(tA)x‖ + ‖ψ(tA)x‖ + min

(
tRe α, 1

)
‖x‖

)
. (6.7)

Now fix (θ, p) ∈ Λ, θ 
= 0 and x ∈ X . Suppose that t−θ Re α ‖ψ(tA)x‖ ∈ Lp
∗(0,∞).

Then also t−θ Re α ‖(fψ)(tA)x‖ ∈ Lp
∗(0,∞) since ‖(fψ)(tA)x‖ ≤ Cf ‖ψ(tA)x‖. By

Hölder’s inequality and θ Re α > 0, one has

[s �→ (fψ)(stA)x] ∈ L1
∗((0, 1); X)

for each t > 0. An application of Proposition 5.2.4 a) yields

‖h1(tA)x‖ =
∥∥∥∥∫ 1

0

(fψ)(stA)x
ds

s

∥∥∥∥ ≤ ∫ t

0

‖(fψ)(sA)x‖ ds

s
=: σ(t).

Employing the Hardy–Young inequality (Lemma 6.2.6), we obtain t−θ Re ασ(t) ∈
Lp

∗(0,∞) with∥∥t−θ Re ασ(t)
∥∥
Lp

∗
≤ 1

θ Re α
Cf

∥∥t−θ Re αψ(tA)x
∥∥
Lp

∗(0,∞)
.

From (6.7) we can now infer that

t−θ Re αK(tRe α, x, X,D(Aα)) ∈ Lp
∗(0,∞)

and estimate the Lp
∗-norm of this function in terms of ‖x‖ and

∥∥t−θ Re αψ(tA)x
∥∥
Lp

∗
.

�
Combining Lemma 6.2.7 and Proposition 6.2.8 completes the proof of Theo-

rem 6.2.1.
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6.2.2 A Second Characterisation

In this section we formulate and prove a result which is more general than Theorem
6.2.1, at least when the interpolation parameter θ is restricted to the open interval
(0, 1).

Theorem 6.2.9. Let A ∈ Sect(ω), ϕ ∈ (ω, π) and Re α > 0. Take any function
0 
= ψ ∈ O(Sϕ) such that ψ, ψz−α ∈ E(Sϕ). Then one has

(X, D(Aα))θ,p =
{
x ∈ X | t−θ Re αψ(tA)x ∈ Lp

∗((0,∞); X)
}

with the equivalence of norms

‖x‖(X,D(Aα))θ,p
∼ ‖x‖X +

∥∥t−θ Re αψ(tA)x
∥∥
Lp

∗((0,∞);X)

for all θ ∈ (0, 1), p ∈ [1,∞].

(We shall give an even more general result for the case of an injective operator
A in Section 6.5.1 below.) As before, it follows from Lemma 6.2.4 that we only
have to take care of the inclusion{

x
∣∣ t−θ Re α ‖ψ(tA)x‖ ∈ Lp

∗(0,∞)
}
⊂ (X, D(Aα))θ,p.

The main ingredients of the proof are already known. There are just some further
technicalities.

Lemma 6.2.10. Let A ∈ Sect(ω), ϕ ∈ (ω, π), f ∈ H∞
0 (Sϕ) and Re α > 0. Define

h(z) :=
∫ ∞

1

s−α f(sz)
ds

s
.

Then h ∈ H∞
0 (Sϕ) and h(A) =

∫ ∞

1

s−αf(sA)
ds

s
.

Proof. If one chooses 0 < ε < Re α small enough such that z±εf ∈ H∞, one also
has z±εh ∈ H∞. This shows that h ∈ H∞

0 . The rest is simply Fubini’s theorem
and the definition the H∞

0 -functional calculus by the Cauchy integral. Note that
the function s �−→ s−αf(sA) is in L1

∗((1,∞);L(X)). �

We return to our main objective.

Proof of Theorem 6.2.9. As in the proof of Theorem 6.2.1 we try to write the
constant function 1 as a sum of appropriate functions. Hence we start as before
and choose a function f ∈ H∞

0 (Sϕ) such that f̃ := zαf ∈ H∞
0 (Sϕ) and∫ ∞

0

(fψ)(s)
ds

s
= 1
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(Lemma 6.2.5). Then we define

h1(z) :=
∫ 1

0

(fψ)(sz)
ds

s
and h2(z) :=

∫ ∞

1

(fψ)(sz)
ds

s
.

By Example 2.2.6, h1, h2 ∈ E(Sϕ) and h1 + h2 = 1. Moreover,

zαh2(z) =
∫ ∞

1

zαf(sz)ψ(sz)
ds

s
=
∫ ∞

1

s−α(f̃ψ)(sz)
ds

s

is — by Lemma 6.2.10 — a function in H∞(Sϕ). Moreover, Lemma 6.2.10 yields

Aαh2(tA) = t−α(zαh2)(tA) = t−α

∫ ∞

1

s−α(f̃ψ)(sz)
ds

s
(tA)

=
∫ ∞

1

(st)−α(f̃ψ)(stA)
ds

s
=
∫ ∞

t

s−α(f̃ψ)(sA)
ds

s

for all t > 0. In particular, h2(tA) maps X into D(Aα).

Now fix θ ∈ (0, 1), p ∈ [1,∞], and x ∈ X such that t−θ Re α ‖ψ(tA)x‖ ∈
Lp

∗(0,∞). By the above, x = h1(tA)x + h2(tA)x and h2(tA)x ∈ D(Aα), hence

K(tRe α, x, X,D(Aα)) ≤ ‖h1(tA)x‖ + tRe α ‖h2(tA)x‖ + tRe α ‖Aαh2(tA)x‖

for t > 0. In the middle term we estimate ‖h2(tA)x‖ ≤ Ch2 ‖x‖ and — enlarging
the constant — arrive at the inequality

K(tRe α, x, X,D(Aα)) ≤

C

[
‖h1(tA)x‖+ min

(
tRe α, 1

)
‖x‖ + tRe α

∫ ∞

t

s−Re α ‖ψ(sA)x‖ ds

s

]
.

Since we would like to have t−θ Re αK(tRe α, x, X,D(Aα)) ∈ Lp
∗(0,∞), the middle

term is obviously good. The first term is dealt with exactly as in the proof of
Proposition 6.2.8. For the third we define g(s) := s−Re α ‖ψ(sA)x‖ and observe
that

s(1−θ)Re αg(s) = sθ Re α ‖ψ(sA)x‖ ∈ Lp
∗(0,∞)

by assumption. Hence we can apply part b) of the Hardy–Young inequality
(Lemma 6.2.6), and we are done. �

6.2.3 Examples

Theorem 6.2.9 allows us to obtain various concrete descriptions of the real inter-
polation spaces.
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The ‘Komatsu Spaces’

Let A be a sectorial operator on the Banach space X and let Re α > 0. We
consider the function

ψ(z) :=
zα

(1 + z)α
,

which, by Example 2.2.5, satisfies the hypotheses of Corollary 6.2.3. Applying
that result yields, after a change of variable t �→ t−1, the description

(X, D(Aα))θ,p =
{
x ∈ X

∣∣ tθ Re α[A(t + A)−1]αx ∈ Lp
∗(0,∞)

}
(6.8)

for all (θ, p) ∈ Λ. If θ ∈ (0, 1), this description is connected with the name of
Komatsu, see [132], [136] and cf. also [161, Chapter 11]. The case where α = 1 is
the description

(X, D(A))θ,p =
{

x ∈ X
∣∣ tθ[A(t + A)−1]x ∈ Lp

∗(0,∞)
}

that we encountered in the beginning, cf. Lemma 6.1.1.

Description by Holomorphic Semigroups

Let A be a sectorial operator on the Banach space X with ωA < π/2. Choose
ϕ ∈ (ωA, π/2). The function f(z) := e−z belongs to E(Sϕ) and f(tA) = e−tA

is the bounded holomorphic semigroup generated by −A, see Section 3.4. Let
Reα > 0. The function

ψ(z) := zαe−z

does not satisfy the conditions of Corollary 6.2.3. However, it satisfies the more
general condition (6.3) since

ψ(sz)
sαψ(z)

=
e−sz

e−z
= e−(s−1)z,

and this is uniformly bounded for z ∈ Sϕ, s ≥ 1. Hence Theorem 6.2.1 applies and
yields the description

(X, D(Aα))θ,p =
{
x ∈ X

∣∣ t(1−θ)Re αAαe−tAx ∈ Lp
∗(0,∞)

}
(6.9)

for all (θ, p) ∈ Λ.

Another Characterisation

Let again A be a sectorial operator on the Banach space X and consider the
function

ψ(z) :=
zα

(1 + z)β
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where 0 < Re α < Re β. Then ψ satisfies the conditions of Theorem 6.2.9 (but not
those of Theorem 6.2.1). Hence after a change of variables we obtain

(X, D(Aα))θ,p =
{
x ∈ X

∣∣ tRe β−(1−θ)Re α[Aα(t + A)−β ]x ∈ Lp
∗(0,∞)

}
for all (θ, p) ∈ Λ. Specialising, e.g., α = 1, β = 2 yields

(X, D(A))θ,p =
{
x ∈ X

∣∣ t1+θA(t + A)−2x ∈ Lp
∗(0,∞)

}
.

6.3 Extrapolation Spaces

From now on we only consider injective sectorial operators. We shall see in Theo-
rem 6.5.3 that they allow a much more flexible description of interpolation spaces
and we shall shed new light on Dore’s theorem (Section 6.5.3). In order to do this
we need what is called extrapolation spaces.

6.3.1 An Abstract Method

Assume that one is given a Banach space X and a bounded, linear, and injective
operator T ∈ L(X). The space R(T ) is then a Banach space endowed with the
norm

∥∥T−1x
∥∥

X
, and T : X −→ R(T ) is an isometric isomorphism. Now we

consider the commuting diagram

X
id �� X

X

T

��

T �� R(T )

and rename some of its components:

X−1
T−1 �� X

X

ι

��

T �� R(T )

The map ι is bounded and injective, i.e., it is an embedding, and after some set-
theoretical work we may view X−1 as a proper superspace of X . We arrive at the
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commuting diagram

X−1
T−1 �� X

X
T �� R(T )

R(T ) T �� R(T 2)

which shows that T−1

∣∣
X

= T . Hence no confusion can arise in renaming T−1 by
T . When we define X1 := R(T ), X2 := R(T 2) . . . we obtain

X−1
T �� X

X
T �� X1

X1
T �� X2

with T being an isometric isomorphism at every stage. Iterating this procedure
yields an upwards directed series of new spaces (X−n)n∈N, i.e.,

X = X0
� � �� X−1

� � �� X−2
� � �� . . . � � �� X−n

� � �� . . .

where as before we may always view the embeddings as proper inclusions. More-
over, we have (compatible) isometric isomorphisms T : X−n −→ X−n−1.

As a last extension we finally construct the algebraic inductive limit of the
directed family (X−n)n∈N,

U := X−∞ := lim−→n∈N X−n =
⋃
n∈N

X−n.

The space U may be called the universal extrapolation space corresponding to T .
On U we define the following notion of convergence. Let (xα)α∈P ⊂ U be a net
and x ∈ U . Then

xα → x in U :⇐⇒
∃n ∈ N, α0 ∈ P : x, xα ∈ X−n (α ≥ α0) and ‖xα − x‖X−n

→ 0.

(This does not give a proper topology on U but is well adapted to our purposes,
cf. the comments in Section 6.8 below.) One easily sees that the limit of a net in
U is unique, and that sum and scalar multiplication are ‘continuous’ with respect
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to the so-defined notion of convergence. Finally, since the operator T is defined
on each space X−n, n ∈ N, it is a fortiori defined on the whole of U . The so-
defined mapping T : U −→ U is obviously surjective, whence it is an algebraic
isomorphism, continuous with respect to the notion of convergence defined above.

6.3.2 Extrapolation for Injective Sectorial Operators

We now apply this abstract procedure to the case of an injective sectorial operator
A on X . The operator T — which is constitutive for the extrapolation method —
is defined by

T := A(1 + A)−2 = (1 + A)−1(1 + A−1)−1.

Then T is injective since A is. Moreover, R(T ) = D(A) ∩ R(A). By the abstract
method described above, we obtain a sequence of nested spaces

X = X0 ⊂ X−1 ⊂ X−2 ⊂ · · · ⊂ X−n ⊂ . . . U

with U being the ‘universal’ space. Recall that T extends to a ‘topological’ iso-
morphism on U .

Let us now extend the operator A to the whole of U . Using the isometric
isomorphism T : X−1 −→ X one can just transfer the operator A to X−1 by
defining

A−1 := T−1AT with D(A−1) := T−1D(A).

By construction, A−1 is an injective sectorial operator on X−1, isometrically sim-
ilar to A. Clearly, X ⊂ D(A−1). Moreover, A is the part of A−1 in X , i.e.,

D(A) = {x ∈ X | A−1x ∈ X} and A−1x = Ax (x ∈ D(A)).

(This is due to the fact that the operator T — considered as an operator on X —
commutes with A.) The inverse of A−1 is given by [A−1]−1 = T−1A−1T with the
appropriate domain D(A−1

−1) = R(A−1) = T−1R(A).
Iterating this procedure we obtain a sequence of isometrically similar sectorial

operators A−n on X−n, with each A−n being the part of A−(n+1) in X−n. Since
X−n ⊂ D(A−(n+1)), we obtain an extension of A to the whole of U . This extension,
by abuse of notation, is again denoted by A. It has the pleasant feature that it
is invertible, i.e., A : U −→ U is an isomorphism, continuous with respect to the
notion of convergence we introduced above.

Within the space U we can define an array of spaces as follows. Already
within X we have the following natural spaces:

• D := D1 := D(A) with norm ‖x‖D := ‖(1 + A)x‖.
• R := R1 := R(A) with norm ‖x‖R :=

∥∥(1 + A−1)x
∥∥.

• D ∩R := D(A) ∩ R(A) with the norm
‖x‖D∩R =

∥∥(2 + A + A−1)x
∥∥ =

∥∥T−1x
∥∥.
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• D2 := D(A2) with the norm ‖x‖D2
=
∥∥(1 + A)2x

∥∥.

• R2 := R(A2) = D(A−2) with the norm ‖x‖R2
=
∥∥(1 + A−1)2x

∥∥.

These can be arranged into a diagram.

X

D

���������
R

���������

D2

��������
D ∩R

���������

���������
R2

�������

1+A
��������� A ��

Here a downward meeting of two lines means intersection and an upward meeting
of two lines means sum of the spaces. E.g., X = D + R and D = D2 + (D ∩ R).
The operator A + 1 acts as an isometric isomorphism in the ↗-direction, i.e.

D2
A+1 ��D

A+1 ��X or D ∩R
A+1 ��R . (One may replace A + 1 by A + λ for

each λ > 0, but then the isomorphisms cease to be isometric.) Furthermore, the

operator A acts as an isometric isomorphism in the →-direction, e.g., D
A ��R

or D2
A ��D ∩R .

Via the isometric ismorphism T : X−1 −→ X this diagram can be transported
to X−1. That is, we form the spaces

• D−1 := T−1(D) with the norm ‖u‖D−1
= ‖Tu‖D and

• R−1 := T−1(R) with the norm ‖u‖R−1
= ‖Tu‖R

and obtain a situation as shown in Figure 9.
Note that we already know D−1 = D(A−1), R−1 = R(A−1). By applying

T−1 again and again, we generate the spaces D−2, D−3, . . . and R−2, R−3, . . . .
Since A is an isomorphism on U , we define

X(n) := A−n(X) with norm ‖x‖X(n) :=
∥∥A−nx

∥∥
X

.

We frequently write

D(n) := X(n) and R(n) := X(−n)

for n ∈ N, and Ḋ := D(1) and Ṙ := R(1) in the case n = 1. These spaces are
called the homogeneous spaces associated with the injective sectorial operator A.
Figure 10 illustrates the situation. As before, T , A, (A + 1) and (A−1 + 1) act
as isometric isomorphisms in the directions ↓,→,↗,↖, respectively. If D(A) is
dense in X , then all inclusions in the ↗-direction are dense. If R(A) is dense then
all inclusions in the ↖-direction are dense.
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X−1

D−1

���������
R−1

���������

T

��
X

���������

									

D












R

����������

D2

��������
D ∩R

����������

										
R2











Figure 9: The first extrapolation space.

6.3.3 The Homogeneous Fractional Domain Spaces

Having constructed the universal space U we look at the behaviour of the func-
tional calculus. Let A ∈ Sect(ω) and ϕ ∈ (ω, π]. Recall the definition of the
function algebra

B(Sϕ) :=
{
f ∈ O(Sϕ)

∣∣ ∃C, s > 0 : |f(z)| ≤ C max(|z|s , |z|−s)
}
.

Since A is injective, B(Sϕ) ⊂ M(Sϕ)A in the notation of Chapter 2, and in fact
f(A) is defined for f ∈ B(Sϕ) in each of the spaces X−n. These definitions are
consistent, i.e.,

f(A−(n+1))
∣∣
X−n

= f(A−n) (n ∈ N).

By definition of the class B, for each f ∈ B(Sϕ) there is m ∈ N such that τmf ∈
E(Sϕ), where τ(z) = z/(1 + z)2. This implies that actually

f(A) : X−n → X−(n+m)

is bounded for each n ∈ N. To sum up, one may say that f(A) is actually a
‘continuous’ fully-defined operator on the whole of U . Thus, with a slight abuse of
notation, we have turned our unbounded functional calculus into a proper algebra
homomorphism

(f �−→ f(A)) : B(Sϕ) −→ L(U).

The following lemma is important and straightforward to prove.

Lemma 6.3.1. Let f ∈ B(Sϕ). Then

D(f(A)) = {x ∈ X | f(A)x ∈ X},
i.e., the operator f(A) considered as an operator in X is the part in X of f(A)
considered as an operator on U .
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Now note that the function zα is contained in B for each α ∈ C. The resulting
operators Aα are isomorphisms on U , and in fact

(α �−→ Aα) : C −→ L(U)

is a representation of the abelian group (C, +) on U . Consequently, we can gen-
eralise the definition of the homogeneous spaces:

X(α) := A−α(X) with norm ‖x‖X(α) = ‖Aαx‖X (α ∈ C).

These are the homogeneous fractional domain spaces. Similar to the last section
we write D(α) := X(α) and R(α) := X(−α) for Re α > 0. Obviously we have
X(α) ⊂ X−1 whenever |Re α| < 1.

Lemma 6.3.2. Let A be an injective sectorial operator on the Banach space X.
Then for Reα > 0 the following assertions hold:

a) D(α) ∩X = D(Aα) and ‖Aαx‖ + ‖x‖ ∼ ‖(1 + A)αx‖.
b) R(α) ∩X = R(Aα) and ‖A−αx‖+ ‖x‖ ∼ ‖(1 + A)αA−αx‖.
c) D(α) ∩R(α) = D(Aα) ∩ R(Aα) with ‖Aαx‖ + ‖A−αx‖ ∼

∥∥(1 + A)2αA−αx
∥∥.

d) D(Aα) + R(Aα) = X.

Proof. a) The identity D(α) ∩ X = D(Aα) follows from Lemma 6.3.1, and the
equivalence of norms is just the well-known fact D(Aα) = D((A+1)α) (Proposition
3.1.9).

b) is the same as a) with A replaced by A−1, in using the identity (A+1)αA−α =
(1 + A−1)α, which follows from the composition rule.

c) Let x ∈ D(α) ∩R(α). Then y := A−αx, Aαx = A2αx ∈ X , whence y ∈ D(A2α).
But A2α = AαAα even as operators in X , and so x = Aαy ∈ X . This shows
D(α) ∩R(α) ⊂ X and together with a) and b) this implies the stated set equality.
From a) we obtain the norm equivalence∥∥A2αx

∥∥ + ‖x‖ ∼
∥∥(1 + A)2αx

∥∥
(which holds for x ∈ D(A2α)). Now we replace x by A−αx, x ∈ D(Aα) ∩ R(Aα)
and we are done.

d) Take n > Re α and expand I = [A(1 + A)−1 + (1 + A)−1]2n. �

In many concrete situations extrapolation spaces can be explicitly identified
with spaces of well-known objects. In Section 8.3 we shall exemplify this for the
negative Laplace operator −∆ on Lp(Rd), p ∈ [1,∞), identifying the universal
extrapolation space with a space of distributions.
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6.4 Homogeneous Interpolation

We make the overall assumption that A ∈ Sect(ω) is an injective sectorial oper-
ator on the Banach space X . In this section we characterise the real interpola-
tion spaces (D(α), R(β))θ,p between the homogeneous fractional domain spaces by
means of functional calculus. To achieve this we freely use the extrapolation space
U constructed in Section 6.3.

6.4.1 Some Intermediate Spaces

Fix p ∈ [1,∞], θ ∈ R, and 0 
= ψ ∈ O[Sω] with z−θψ ∈ H∞
0 [Sω]. Then we define

Xθ,ψ,p :=
{
x ∈ U

∣∣ t−θψ(tA)x ∈ Lp
∗((0,∞); X)

}
.

For x ∈ Xθ,ψ,p we let
‖x‖θ,ψ,p :=

∥∥t−θψ(tA)x
∥∥
Lp

∗
.

(Note that it may well be that x ∈ Xθ,ψ,p but x /∈ X .)

Proposition 6.4.1. Let p ∈ [1,∞], θ ∈ R, and ψ as above. Then the following
statements hold.

a) The operator Aθ (defined on U) induces an isometric isomorphism

Aθ : Xθ,ψ,p −→ X0,z−θψ,p.

b) The space Xθ,ψ,p is continuously included in A−θX−1.

c) The space Xθ,ψ,p is a Banach space.

Proof. a) is clear from the identity

t−θψ(tA)x = (tA)−θψ(tA)Aθx = (z−θψ)(tA)Aθx

for each x ∈ U . To prove b) it suffices to consider the case that θ = 0 (by a)).
Therefore ψ ∈ H∞

0 , by assumption. Take x ∈ X0,ψ,p, i.e., x ∈ U such that
ψ(tA)x ∈ Lp

∗(X). Apply Lemma 6.2.5 with α = 0 to find a function f ∈ H∞
0 with∫∞

0 (fψ)(t) dt/t = 1. By Theorem 5.2.2 the function t �→ τ(A)f(tA) is bounded
and absolutely integrable in L(X). (We use the abbreviation τ(z) := z(1+z)−2 as
usual.) In particular, by Hölder’s inequality it is contained in Lp′

∗ (L(X)), where p′

is the conjugated exponent to p. Hence we obtain τ(A)(ψ̃ψ)(tA)x ∈ L1
∗(X) with∫ ∞

0

∥∥∥τ(A)(ψ̃ψ)(tA)x
∥∥∥

X

dt

t
≤ ‖x‖X0,ψ,p

·
∥∥∥τ(A)ψ̃(tA)

∥∥∥
Lp′

∗ (L(X))
.

Applying Proposition 5.2.4 we obtain
∫∞
0 (fψ)(tA)xdt/t = x in U (or, if you wish,

in some space X−m). Consequently τ(A)x ∈ X , i.e., x ∈ X−1, with

‖x‖X−1
= ‖τ(A)x‖X ≤ ‖x‖X0,ψ,p

·
∥∥∥τ(A)ψ̃(tA)

∥∥∥
Lp′

∗ (L(X))
.
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The proof of c) is now easy. Again, it suffices to consider the case that θ = 0. Let
(xn)n ⊂ X0,ψ,p be a Cauchy sequence. By b) there is x ∈ X−1 with xn → x in
X−1. Then ψ(tA)xn → ψ(tA)x in X−1 uniformly in t. On the other hand there
is f ∈ Lp

∗(X) with ψ(tA)xn → f(t) in the Lp
∗(X)-norm, hence a fortiori in the

Lp
∗(X−1)-norm. This shows that f(t) = ψ(tA)x almost everywhere, whence we

are done. �
We can now prove the main result.

Theorem 6.4.2. The spaces (Xθ,ψ,p, ‖.‖θ,ψ,p) are independent of the chosen ψ.

Proof. By a) of Proposition 6.4.1 it suffices to prove the theorem in the case that
θ = 0. We choose ϕ ∈ (ω, π), 0 
= ψ, γ ∈ H∞

0 (Sϕ), and x ∈ X0,γ,p. Then we apply
Lemma 6.2.5 (with α = 0) to find f ∈ H∞

0 (Sϕ) such that
∫∞
0

(γf)(s) ds/s = 1.
By Theorem 5.2.2, the numbers

E := sup
s>0

∫ ∞

0

‖ψ(sA)f(tA)‖L(X)

dt

t
and

F := sup
t>0

∫ ∞

0

‖ψ(sA)f(tA)‖L(X)

ds

s

are both finite. Also, Proposition 5.2.4 shows that for each s > 0,

ψ(sA)x =
∫ ∞

0

(γf)(tA)ψ(sA)x
dt

t
(6.10)

as a convergent integral in some space X−m. Now, for s, t > 0 we have

(γf)(tA)ψ(sA)x = [ψ(sA)f(tA)] [γ(tA)x],

and considered as a product of functions in t this is integrable within X since

ψ(sA)f(tA) ∈ L∞
∗ (L(X)) ∩ L1

∗(L(X)) ⊂ Lp′
∗ (L(X))

and γ(tA)x ∈ Lp
∗(X),

by Proposition 5.2.4 and the choice of x. Hence we actually have

ψ(sA)x =
∫ ∞

0

(γf)(tA)ψ(sA)x
dt

t
∈ X with

‖ψ(sA)x‖X ≤
∫ ∞

0

‖ψ(sA)f(tA) γ(tA)x‖X

dt

t
≤ ‖ψ(sA)f(·A)‖

Lp′
∗ (L(X))

‖x‖0,γ,p .

By (6.10) and Hölder’s inequality, h(s) := (s �−→ ψ(sA)x) : (0,∞) −→ X is
bounded. Moreover, similar estimates show that the continuous(!) functions

ha,b(s) :=
∫ b

a

(fγ)(tA)ψ(sA)x
dt

t
= ψ(sA)

[∫ b

a

f(tA)γ(tA)x
dt

t

]
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converge uniformly to h as a ↘ 0, b ↗ ∞. Hence the function h is in fact
continuous. In particular, it is measurable.

Now, in the case p = ∞ we are already done, obtaining x ∈ X0,ψ,∞ with

‖x‖0,ψ,∞ ≤ E ‖x‖0,γ,∞ .

In the case p <∞ we compute

‖ψ(sA)x‖X ≤
∫ ∞

0

‖ψ(sA)f(tA)γ(tA)x‖ dt

t

≤
(∫ ∞

0

‖ψ(sA)f(tA)‖ dt

t

) 1
p′ (∫ ∞

0

‖ψ(sA)f(tA)‖ ‖γ(tA)x‖p dt

t

) 1
p

≤ E
1
p′
(∫ ∞

0

‖ψ(sA)f(tA)‖ ‖γ(tA)x‖p dt

t

) 1
p

.

The last factor considered as a function in s is contained in Lp
∗(0,∞) since∫ ∞

0

∫ ∞

0

‖ψ(sA)f(tA)‖ ‖γ(tA)x‖p dt

t

ds

s

=
∫ ∞

0

∫ ∞

0

‖ψ(sA)f(tA)‖ ds

s
‖γ(tA)x‖p dt

t

≤
(

sup
t>0

∫ ∞

0

‖ψ(sA)f(tA)‖ ds

s

) ∫ ∞

0

‖γ(tA)x‖p dt

t
= F ‖x‖p

0,γ,p .

Therefore we end up with

‖x‖0,ψ,p ≤ E
1
p′ F

1
p ‖x‖0,γ,p ,

and the theorem is completely proved. �
In the following we will simply write Xθ,p instead of Xθ,ψ,p. (This is justified

by Theorem 6.4.2.) Note that one always has the (continuous) inclusions

Xθ,1 ⊂ X(θ) ⊂ Xθ,∞.

Proof. By Proposition 5.2.4 the inclusion Xθ,1 ⊂ Xθ,p is immediate. The proof of
Theorem 6.4.2 shows that Xθ,p ⊂ Xθ,∞. In fact it was proved that for x ∈ Xθ,ψ,p

the function (t �→ t−θψ(tA)x) : (0,∞) −→ X is actually continuous and uniformly
bounded. �
Corollary 6.4.3. The operators Ais, s ∈ R, act as topological isomorphisms on each
of the spaces Xθ,p, θ ∈ R, p ∈ [1,∞].

Proof. It suffices to prove the statement for θ = 0. But if 0 
= ψ ∈ H∞
0 (Sϕ) also

0 
= zisψ ∈ H∞
0 (Sϕ), and since ψ(tA)Aisx = t−is(zisψ)(tA)x and |t−is| = 1, we

have x ∈ X0,(zisψ),p if and only if Aisx ∈ X0,ψ,p. �
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6.4.2 . . . Are Actually Real Interpolation Spaces

We are now going to show that the spaces Xθ,p are nothing else than real inter-
polation spaces between homogeneous fractional domain spaces.

Proposition 6.4.4. Let Re α, Re β > 0, and let p ∈ [1,∞]. Then

(D(α), R(β))θ,p = X0,p

with equivalent norms, where θ := Reα/(Re α + Re β) ∈ (0, 1).

Proof. Choose ϕ ∈ (ωA, π) and ψ ∈ H∞
0 (Sϕ) with z−αψ, zβψ ∈ E(Sϕ). For x ∈ U ,

x = a + b with a ∈ D(α), b ∈ R(β) we have

ψ(tA)x = tα(tA)−αψ(tA)Aαa + tβ(tA)−βψ(tA)A−βb,

which yields

‖ψ(tA)x‖X ≤ tRe αM1 ‖a‖D(α) + t−Re βM2 ‖b‖R(β)

for all t > 0 and some constants M1, M2. Taking the infimum with respect to the
representations x = a + b yields

‖ψ(tA)x‖ ≤M tRe α K(t−(Re α+Re β), x, D(α), R(β)) (t > 0)

for some constant M . This proves the continuous inclusion (D(α), R(β))θ,p ⊂ X0,p.
For the converse inclusion choose a function ψ∈H∞

0 (Sϕ) with
∫∞
0

ψ(t) dt/t =
1 and define

h(z) :=
∫ 1

0

ψ(tz)
dt

t
, g(z) :=

∫ ∞

1

ψ(tz)
dt

t

as in Example 2.2.6 and Proposition 5.2.4. Without loss of generality one may
suppose that the decay of ψ at 0 and at ∞ is rapid enough to ensure that both
functions ψ1 := zαg and ψ2 := z−βh are contained in H∞

0 (Sϕ). Take x ∈ X0,p

and write
x = g(tA)x + h(tA)x (t > 0).

Now observe that g(tA)x ∈ D(α), because

Aαg(tA)x = t−α(tA)αg(tA)x = t−αψ1(tA)x ∈ X.

Analogously, h(tA)x ∈ R(β) with

A−βh(tA)x = tβ(tA)−βh(tA)x = tβψ2(tA)x.

Therefore, for each s > 0 one obtains

K(s, x, D(α), R(β)) ≤ t−Re α ‖ψ1(tA)x‖X + stRe β ‖ψ2(tA)x‖X .

Letting s := t−(Re α+Re β) yields

tRe αK(t−(Re α+Re β), x, D(α), R(β)) ≤ ‖ψ1(tA)x‖ + ‖ψ2(tA)x‖ (t > 0).

The right-hand side (as a function of t) is in Lp
∗. This concludes the proof. �
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We remark that in the proof we made essential use of Theorem 6.4.2. Indeed,
it was important that one can choose every H∞

0 -function to describe the space
X0,p. With the help of Proposition 6.4.4 we are now able to show that each real
interpolation space between homogeneous spaces is in fact a space Xθ,p.

Theorem 6.4.5 (Homogeneous Interpolation). Let A be an injective, sectorial op-
erator on the Banach space X, and let α, β ∈ C with Re α 
= Re β. Then, for all
θ ∈ (0, 1), p ∈ [1,∞], (

X(α), X(β)
)

θ,p
= X(1−θ)Re α+θ Re β,p

with equivalent norms.

Proof. Without loss of generality we may suppose that Re α > Re β (replace θ by
1− θ if necessary). Define δ := (1 − θ)α + θβ. Then α′ := α − δ = θ(α − β) and
β′ := δ−β = (1−θ)(α−β). Hence Re α′, Reβ′ > 0 and θ = Reα′/(Re α′ + Re β′).
By Proposition 6.4.4 we have(

X(α−δ), X(β−δ)
)

θ,p
=
(
X(α′), X(−β′)

)
θ,p

=
(
D(α′), R(β′)

)
θ,p

= X0,p.

Applying A−δ = A−Re δA−i Im δ to this identity concludes the proof. (Note that
by Corollary 6.4.3 the operator A−i Im δ is an isomorphism on X0,p.) �

Corollary 6.4.6. Let θ ∈ (0, 1), p ∈ [1,∞]. Then (Ḋ, Ṙ)θ,p = X1−2θ,p.

6.5 More Characterisations and Dore’s Theorem

In this section we revisit Dore’s theorem and give evidence to the heuristic state-
ment that the functional calculus properties of an injective sectorial operator A
improve in its interpolation spaces. But first, we complement the characterisations
of the interpolation spaces obtained in Section 6.2.

6.5.1 A Third Characterisation (Injective Operators)

With Theorem 6.4.5 we have established a powerful description of real interpola-
tion spaces in terms of functional calculus. However, the spaces (X(α), X(β))θ,p

are quite uncommon and we look for spaces which are naturally included in the
original space X .

Lemma 6.5.1. Let A be an injective sectorial operator on the Banach space X.
Then

(X, D(Aα) ∩ R(Aα))θ,p = (X, D(α))θ,p ∩ (X, R(α))θ,p,

(X, D(Aα))θ,p = (X, D(α))θ,p ∩X,

(D(Aα), R(Aα))θ,p = Aα(1 + A)−α(D(α), X)θ,p
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for all Re α > 0, θ ∈ [0, 1], p ∈ [1,∞].

Proof. The last assertion follows from the fact that the isomorphism A−α(1+A)α

sends D(Aα) to D(α) and R(Aα) to X , see Lemma 6.3.2. For the first two assertions
we use Proposition B.2.7. Indeed, the second assertion follows directly from (B.4)
and D(α) ∩X = D(Aα) (see Lemma 6.3.2).

To prove the first, let us denote for the moment Y := D(α), Z := R(α). Then
we have Y ∩ Z = D(α) ∩ R(α) = D(Aα) ∩ R(Aα) ⊂ X and

(X ∩ Y ) + (X ∩ Z) = (D(α) ∩X) + (R(α) ∩X) = D(Aα) + R(Aα) = X,

by Lemma 6.3.2. Hence we obtain (X, Y )θ,p∩(X, Z)θ,p ⊂ (X +Y )∩(X +Z) = X .
This yields

(X, Y )θ,p ∩ (X, Z)θ,p = [(X, Y )θ,p ∩X ] ∩ [(X, Z)θ,p ∩X ]
= (X, X ∩ Y )θ,p ∩ (X, X ∩ Z)θ,p = (X, X ∩ Y ∩X ∩ Z)θ,p

= (X, Y ∩ Z)θ,p. �
Remark 6.5.2. In the first statement of the last lemma one writes ‘vertical’ inter-
polation spaces as intersections of ‘horizontal’ ones. As a matter of fact, one can
also go in the reverse direction. E.g., one has the equality

(D, R)θ,p = (D−1, D)1−θ,p ∩ (R−1, R)θ,p,

which can be deduced from an interpolation identity that is in the spirit of Propo-
sition B.2.7 (see [111, Theorem 1]).

Combining Lemma 6.5.1 with Theorem 6.4.5 we arrive at a third represen-
tation theorem.

Theorem 6.5.3. Let A be an injective sectorial operator on a Banach space X, let
ϕ ∈ (ωA, π), Re α > 0, θ ∈ (0, 1), and p ∈ [1,∞].

a) One has

(X, D(Aα))θ,p =
{
x ∈ X

∣∣ t−θ Re αψ(tA)x ∈ Lp
∗((0,∞); X)

}
with equivalence of norms

‖x‖(X,D(Aα))θ,p
∼ ‖x‖X +

∥∥t−θ Re αψ(tA)x
∥∥
Lp

∗((0,∞);X)

whenever ψ ∈ O(Sϕ) \ {0} such that z−θαψ ∈ H∞
0 (Sϕ).

b) One has

(X,D(Aα) ∩ R(Aα))θ,p

=
{
x ∈ X

∣∣ t−θ Re αψ1(tA)x, tθ Re αψ2(tA)x ∈ Lp
∗((0,∞); X)

}
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with equivalence of norms

‖x‖(X,D(Aα)∩R(Aα))θ,p
∼
∥∥t−θ Re αψ1(tA)x

∥∥
Lp

∗
+
∥∥tθ Re αψ2(tA)x

∥∥
Lp

∗

whenever ψ1, ψ2 ∈ O(Sϕ) \ {0} such that z−θαψ1, z
θαψ2 ∈ H∞

0 (Sϕ).

Proof. a) Let us specialise β = 0 and Re α > 0 in Theorem 6.4.5. Thus we obtain
(X, X(α))θ,p = Xθ Re α,p. Now we intersect both sides of this identity with X and
employing Lemma 6.5.1 we arrive at (X, D(Aα))θ,p = Xθ Re α,p ∩ X . The rest
follows from Theorem 6.4.2.
The proof of b) is similar. �

When A is invertible, some simplifications apply. This is the content of the
next section.

6.5.2 A Fourth Characterisation (Invertible Operators)

Let us specialise the given characterisations to the case of an invertible sectorial
operator A. If A is invertible, the array of extrapolation spaces becomes ‘half-
trivial’ since we obtain

D(α) = D(Aα), R(Aα) = X (Re α > 0).

Moreover, D−1 = X and R−1 = X−1. Consequently, one has

(X, D(Aα))θ,p = Xθ Re α,p

by Theorem 6.4.5. Comparing this with the Characterisation Theorem 6.5.3 a)
this means that in the case where A is invertible one may leave out the ‖·‖X -part
and simply has a norm equivalence

‖x‖(X,D(Aα))θ,p
∼
∥∥t−θ Re αψ(tA)x

∥∥
Lp

∗((0,∞);X)
.

The next proposition reproves this fact and moreover shows that it holds even in
the extremal case θ = 1, p = ∞, with ψ as in Theorem 6.2.9.

Proposition 6.5.4. Let A be an invertible sectorial operator on X, ϕ ∈ (ωA, π) and
0 
= ψ ∈ B(Sϕ). Given Re α > 0, θ ∈ (0, 1], p ∈ [1,∞] there is a constant c such
that

‖x‖X ≤ c
∥∥t−θ Re αψ(tA)x

∥∥
Lp

∗((0,∞);X)
(x ∈ X).

Note that ψ(tA)x ∈ U is always defined but the right-hand side might be
infinite, in which case the inequality holds trivially.

Proof. Without harm we can replace α by θα and suppose that θ = 1. Choose
f ∈ H∞

0 (Sϕ) such that f1 := zα+1f, ψf ∈ H∞
0 (Sϕ) and

∫∞
0

(fψ)(t) dt/t = 1
(Lemma 6.2.5). Define as usual

h(z) :=
∫ 1

0

(fψ)(tz)
dt

t
, and g(z) :=

∫ ∞

1

(fψ)(tz)
dt

t
.
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Then h+g = 1 (Example 2.2.6). Take x ∈ X with t−θ Re αψ(tA)x ∈ Lp
∗((0,∞); X).

Then

(fψ)(tA)x = A−(α+1) [t−1f1(tA)] [t−αψ(tA)x] ∈ L1
∗((1,∞); X)

since by assumption the last factor is in Lp
∗, the first factor is bounded, and the

second factor is in Lp′
∗ . Hence by Proposition 5.2.4 we obtain

‖g(A)x‖ =
∥∥∥∥∫ ∞

1

(fψ)(tA)x
dt

t

∥∥∥∥ ≤ c1

∥∥t−Re αψ(tA)x
∥∥
Lp

∗((1,∞);X)
,

with c1 = ‖t−1‖
Lp′

∗ (1,∞)
‖A−(α+1)‖ supt>1 ‖f1(tA)‖. On the other hand we have

(fψ)(tA)x = [tαf(tA)][t−αψ(tA)x] ∈ L1
∗((0, 1); X)

since the first factor is in Lp′
∗ ((0, 1), X). Again by Proposition 5.2.4 we obtain

‖h(A)x‖ =
∥∥∥∥∫ 1

0

(fψ)(tA)
dt

t

∥∥∥∥ ≤ c2

∥∥t−Re αψ(tA)x
∥∥
Lp

∗((0,1);X)
,

with c2 = ‖tRe α‖
Lp′

∗ (0,1)
supt<1 ‖f(tA)‖. Thus, the proof is complete. �

Corollary 6.5.5. Let A be an invertible sectorial operator on a Banach space X.
Then one has equivalence of norms

‖x‖(X,D(Aα))θ,p
∼

∥∥t−θ Re αψ(tA)x
∥∥
Lp

∗((0,∞);X)

in Theorem 6.2.1 and Theorem 6.5.3.

6.5.3 Dore’s Theorem Revisited

Dore’s theorem (Theorem 6.1.3) says that an invertible operator has a bounded
H∞-calculus in each of its real interpolation spaces (X, D(A))θ,p, θ ∈ (0, 1). We
have seen in Example 6.1.4 that the assumption of invertibility cannot be dropped.
This phenomenon can now be fully understood, since by the results of the last
section we have the following theorem.

Theorem 6.5.6. Let A be an injective sectorial operator on the Banach space X,
and let α, β ∈ C with Re α 
= Re β. Then for each ϕ ∈ (ωA, π), the operator A has
a bounded H∞(Sϕ)-calculus in each of the spaces(

X(α), X(β)
)

θ,p
(θ ∈ (0, 1), p ∈ [1,∞]).

Proof. Employing Theorem 6.4.5 and Proposition 6.4.1 we are reduced to the
spaces X0,p. Let x ∈ X0,p and choose two functions 0 
= ψ, γ ∈ H∞

0 (Sϕ). By
Theorem 6.4.2 we have X0,p = X0,γ,p = X0,(ψγ),p. Now

(ψγ)(tA)f(A)x = (ψtf)(A)γ(tA)x (t > 0).

But supt>0 ‖(fψt)(A)‖L(X) ≤ C(ψ)M(A, ϕ) ‖f‖Sϕ
by Theorem 5.2.2. �
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We obtain an immediate corollary.

Corollary 6.5.7. Let A be an injective sectorial operator on the Banach space X,
and let ϕ ∈ (ωA, π). Then A has a bounded H∞(Sϕ)-calculus in each of the spaces(

D(Aα), R(Aα)
)
θ,p

(Re α > 0, θ ∈ (0, 1), p ∈ [1,∞]).

Proof. By Lemma 6.5.1,

A−α(1 + A)α : (D(Aα), R(Aα))θ,p −→ (X(α), X(0))θ,p

is an isomorphism which commutes with A. Hence the assertion follows from
Theorem 6.5.6. �

We may apply Lemma 6.5.1 to pass from the ‘horizontal’ interpolation spaces
to the ‘vertical’ ones.

Corollary 6.5.8 (Dore). Let A be an injective sectorial operator on the Banach
space X, and let ϕ ∈ (ωA, π). Then A has a bounded H∞(Sϕ)-calculus in each of
the spaces (

X, D(Aα) ∩ R(Aα)
)
θ,p

(Re α > 0, θ ∈ (0, 1), p ∈ [1,∞]).

(For the special case α = 1 and under density assumptions, this corollary
was proved by Dore [73].) Assuming A to be invertible and taking α = 1 gives
back Dore’s Theorem 6.1.3. Note that this new proof does not use the Reiteration
Theorem.

6.6 Fractional Powers as Intermediate Spaces

In this section we examine the domains D(Aα) as intermediate spaces. Here A is
any sectorial operator on a Banach space X , not necessarily injective.

6.6.1 Density of Fractional Domain Spaces

If A is a sectorial operator with non-dense domain, then for no pair α, β with
0 < Re α < Reβ is the space D(Aβ) dense in D(Aα). However, within the real
interpolation spaces we have a quite different behaviour.

Theorem 6.6.1 (Density). Let A be a sectorial operator on the Banach space X
and let 0 < Re α < Re β, θ ∈ (0, 1), p ∈ [1,∞). Then the space D(Aβ) is dense in
(X, D(Aα))θ,p.

Proof. Without loss of generality one may suppose that A is invertible. Choose
ϕ ∈ (ωA, π) and 0 
= ψ ∈ O(Sϕ) such that z−θαψ ∈ H∞

0 (Sϕ). Choose 0 
= τ ∈
H∞

0 (Sϕ) such that (τψ) ∈ H∞
0 (Sϕ). Then also z−θα(τψ) ∈ H∞

0 (Sϕ) and either
function ψ, τψ may be used to describe (X, D(Aα))θ,p (Corollary 6.5.5). We choose
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f ∈ H∞
0 (Sϕ) in such a way that fψ, zβfψ ∈ H∞

0 (Sϕ) and
∫∞
0 (fψ)(s) ds/s = 1

(Lemma 6.2.5). Define

gn(z) :=
∫ ∞

1
n

(fψ)(sz)
ds

s
.

Then gn ∈ E(Sϕ) as was shown in Example 2.2.6. We claim that (i) gn(A)(X) ⊂
D(Aβ) and (ii) gn(A)x → x within (X, D(Aα))θ,p for x ∈ (X, D(Aα))θ,p.

Claim (i) follows from the identity

zβgn(z) =
∫ ∞

1
n

(zβfψ)(sz)s−β ds

s
,

which is a function in H∞
0 (Sϕ).

To prove Claim (ii) we take x ∈ (X, D(Aα))θ,p. We have to show

t−θ Re α(τψ)(tA)gn(A)x → t−θ Re α(τψ)(tA)x

in Lp
∗((0,∞); X). The Convergence Lemma (Proposition 5.1.4, see also c) of

Proposition 5.2.4) shows that the convergence is at least pointwise. Employing
the Dominated Convergence Theorem we have to prove domination. Now

t−θ Re α(τψ)(tA)gn(A)x =
∫ ∞

1
n

(fψ)(sz)τ(tz)
ds

s
(A) t−θ Re αψ(tA)x

and, by Proposition 5.2.4 and Theorem 5.2.2,

sup
t>0

∥∥∥∥∥
∫ ∞

1
n

(fψ)(sz)τ(tz)
ds

s
(A)

∥∥∥∥∥ = sup
t>0

∥∥∥∥∥
∫ ∞

1
n

(fψ)(sA)τ(tA)
ds

s

∥∥∥∥∥
≤ sup

t>0

∫ ∞

0

‖(fψ)(sA)τ(tA)‖ ds

s
=: c < ∞.

This yields
∥∥t−θ Re α(τψ)(tA)gn(A)x

∥∥
X

≤ c
∥∥t−θ Re αψ(tA)x

∥∥
X

, which is in
Lp

∗(0,∞) by assumption. �

6.6.2 The Moment Inequality

We first establish that — in the language of interpolation theory — the space
D(Aβ) is always of class Jθ∩Kθ between X and D(Aα), provided 0 < Reβ < Reα
and θ is defined as θ := Re β/ Re α. The following result is of auxiliary nature.

Proposition 6.6.2. Let A ∈ Sect(ω), ϕ ∈ (ω, π), and ψ ∈ E(Sϕ). Then the following
assertions hold.

a) Let Re α > 0, and suppose that also z−αψ ∈ E(Sϕ). Then

x ∈ D(Aβ) =⇒ sup
t>0

∥∥t−Re βψ(tA)x
∥∥

X
<∞

for every β ∈ C with Re β ∈ (0, Re α) or β ∈ {0, α}.
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b) Let Re α > 0. Then
∫ 1

0

t−Re α ‖ψ(tA)x‖X

dt

t
< ∞ =⇒ x ∈ D(Aα).

Proof. a) Suppose that x ∈ D(Aβ) where β is in the given range. From the
hypotheses it is clear that ψ̃ := ψz−β ∈ E . Now, ψ(tA)x = tβψ̃(tA)Aβx, whence
the assertion follows from Proposition 2.6.11.

b) Choose δ > Reα and f ∈ H∞
0 such that zδf ∈ H∞

0 and
∫∞
0

(fψ)(t) dt/t = 1,
cf. Lemma 6.2.5. Define

h(z) :=
∫ 1

0

(fψ)(tz)
dt

t
and g(z) :=

∫ ∞

1

(fψ)(tz)
dt

t

as in Example 2.2.6. Then 1 = h + g, and zαg ∈ H∞
0 since gzδ is still bounded.

Hence g(A)X ⊂ D(Aα). Take x ∈ X such that
∫ 1

0 t−Re α ‖ψ(tA)x‖ dt/t < ∞. Let
f̃ := zαf ∈ H∞

0 . Then clearly∫ 1

0

∥∥∥f(tA)ψ(tA)x
∥∥∥ dt

t
<∞ and

∫ 1

0

∥∥∥f̃(tA)t−αψ(tA)x
∥∥∥ dt

t
< ∞.

Proposition 5.2.4 implies that in fact

h(A)x =
∫ 1

0

f(tA)ψ(tA)x
dt

t
,

and since f(tA)ψ(tA)x ∈ D(Aα) for all t ∈ (0, 1) and the operator Aα is closed,
we have h(A)x ∈ D(Aα) with

Aαh(A)x =
∫ 1

0

t−αf̃(tA)ψ(tA)x
dt

t
.

Thus we arrive at x = h(A)x + g(A)x ∈ D(Aα). �

Specialising ψ to a function which describes the real interpolation spaces as
in Theorem 6.2.9 yields the following.

Corollary 6.6.3. Let Re γ < Re β < Re α with Re γ > 0 or γ = 0. Then(
D(Aγ), D(Aα)

)
θ,1
⊂ D(Aβ) ⊂

(
D(Aγ), D(Aα)

)
θ,∞ (6.11)

where θ ∈ (0, 1) is such that Reβ = (1 − θ)Re γ + θ Re α.

Proof. Since (1 + A)−γ : X −→ D(Aγ) is an isomorphism which carries D(Aβ−γ)
to D(Aβ) and D(Aα−γ) to D(Aα), we may suppose that γ = 0. Then the state-
ment follows from the characterisation in Theorem 6.2.9 by taking an appropriate
function ψ. �
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It is well known that the left-hand inclusion in (6.11) implies (and is in fact
equivalent to) an inequality of the form

∥∥Aβx
∥∥ ≤ C ‖Aγx‖1−θ ‖Aαx‖θ. The usual

interpolation-theoretic proof requires a description of the interpolation spaces dif-
ferent from the K-method, cf. [29, Theorem 3.5.2] or [157, Theorem 1.2.15]. How-
ever, our methods allow also a direct proof.

Proposition 6.6.4 (Moment Inequality). Let A be a sectorial operator on the Ba-
nach space X. Let α, β, γ ∈ C such that Re γ < Re β < Re α and Re γ > 0 or
γ = 0. Then there is a constant C such that∥∥Aβx

∥∥ ≤ C

θ(1− θ)
‖Aγx‖1−θ ‖Aαx‖θ (x ∈ D(Aα)),

where θ is defined as θ := (Re β − Re γ)/(Re α− Re γ).

Proof. Choose any ψ ∈ H∞
0 such that ψzα, ψz−α are still bounded functions.

Define h(z) :=
∫ 1

0 ψ(sz) ds/s, g(z) :=
∫∞
1 ψ(sz) ds/s as in Example 2.2.6. Then

z−αh and zαg are bounded functions, whence ĥ := z−(α−β)h and ĝ := zβ−γg are
both in H∞

0 . For x ∈ D(Aα) we have

Aβx = h(tA)Aβx + g(tA)Aβx = tα−β ĥ(tA)Aαx + t−(β−γ)ĝ(tA)x.

This yields ∥∥Aβx
∥∥ ≤ tRe α(1−θCĥ ‖A

αx‖+ t−Re αθCĝ ‖Aγx‖

(see Proposition 2.6.11). Taking the infimum with respect to t > 0 we arrive at

∥∥Aβx
∥∥ ≤ C

[(
1− θ

θ

)θ

+
(

θ

1− θ

)1−θ
]
‖Aγx‖1−θ ‖Aαx‖θ

,

where C := max{Cĝ, Cĥ}. The term in brackets is less than (θ(1− θ))−1. �

Remark 6.6.5. A more detailed analysis would reveal the kind of dependence of
the constant C on A and on α, β, γ. The classical estimate is [161, Lemma 3.1.7].

Corollary 6.6.6. Let A ∈ Sect(ω) and 0 ≤ Re γ < Re β < Re α, where either γ = 0
or Re γ > 0. Then

D(Aβ) ∈ Jθ(D(Aγ), D(Aα)) and D(Aβ) ∈ Kθ(D(Aγ), D(Aα)),

where θ ∈ (0, 1) is such that Reβ = (1 − θ)Re γ + θ Re α.

6.6.3 Reiteration and Komatsu’s Theorem

The next result could be obtained from Corollary 6.6.6 by means of the Reiteration
Theorem B.2.9. However we can give a direct proof.
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Proposition 6.6.7 (Reiteration). Let A be a sectorial operator on a Banach space
X. Then the following assertions hold.

a) If 0 < Re β ≤ Re α, then

(X, D(Aα))θ Re β
Re α ,p = (X, D(Aβ))θ,p

for all θ ∈ (0, 1), p ∈ [1,∞].

b) If 0 < Re γ < Re β ≤ Re α, σ ∈ (0, 1), p ∈ [1,∞], and x ∈ X, then

x ∈ (X, D(Aα))θ,p ⇐⇒ x ∈ D(Aγ) and Aγx ∈ (X, D(Aβ−γ))σ,p,

where θ := (1− σ)(Re γ/ Reα) + σ(Re β/ Reα).

c) If α, β, γ, p, σ, θ are as in b), then

(X, D(Aα))θ,p = (D(Aγ), D(Aβ))σ,p.

Proof. a) Choose a function ψ ∈ E such that z−αψ ∈ H∞
0 . Then also ψz−β ∈ H∞

0

and one can apply Theorem 6.2.9 twice.
b) Choose ψ̃ ∈ E such that z−αψ̃ ∈ E and use it to describe (X, D(Aα))θ,p.
Observe that also ψ := z−γψ̃ ∈ E and z−(β−γ)ψ = z−βψ̃ ∈ E . Hence we may use
ψ to describe (X, D(Aβ−γ))σ,p. (Note that θ, σ ∈ (0, 1), whence Theorem 6.2.9 is
applicable.) Now, since θ Re α− Re γ > 0, we have∫ 1

0

s−Re γ
∥∥∥ψ̃(sA)x

∥∥∥ ds

s
=
∫ 1

0

sθ Re α−Re γ
∥∥∥s−θ Re αψ̃(sA)x

∥∥∥ ds

s
< ∞

if x ∈ (X, D(Aα))θ,p. Applying b) of Proposition 6.6.2 yields (X, D(Aα))θ,p ⊂
D(Aγ). Moreover,

t−σ Re(β−γ)ψ(tA)Aγx = t−θ Re αψ̃(tA)x

for all t > 0. This concludes the proof of the stated equivalence.
c) follows immediately from b) since here one may suppose without loss of gener-
ality that A is invertible. �
Theorem 6.6.8 (Komatsu). Let A be a sectorial operator on a Banach space X,
and let θ ∈ (0, 1), p ∈ [1,∞]. Suppose that the identity

(X, D(Aα))θ,p = D(Aθα) (6.12)

holds for some α ∈ C with Re α > 0. Then it holds for all such α. Moreover, if A
is invertible, its natural H∞(Sϕ)-calculus is bounded on X for each ϕ ∈ (ωA, π).

Proof. Without loss of generality we may suppose that A is invertible (replace A
by A+1). Then by Dore’s theorem, A has bounded H∞-calculus on D(Aθα), hence
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on X since A−θα maps X isomorphically onto D(Aθα). In particular, A ∈ BIP
and the spaces D(Aβ) depend only on Reβ (see Proposition 3.5.5).

We show first that for fixed θ we have D(Aβθ) = (X, D(Aβ))θ,p for arbitrary
Reβ > 0. To obtain this we may suppose that Re α 
= Re β. Suppose that
Reβ > Re α. Then we let γ := β − α and θ1 := θ(Re β − Re γ)/(Reβ − θ Re γ)
and find by Proposition 6.6.7 the identities

(X, D(Aβ))θ,p = (D(Aθγ), D(Aβ))θ1,p, (X, D(Aβ−γ))θ,p = (X, D(Aβ−θγ))θ1,p.

Now A−θγ : (X, D(Aβ−θγ))θ1,p −→ (D(Aθγ), D(Aβ))θ1,p is an isomorphism. Em-
ploying the assumption we obtain

(X, D(Aβ))θ,p = A−θγ(X, D(Aα))θ,p = A−θγD(Aθα) = D(Aθβ).

The case Re β < Re α is proved analogously.
To complete the proof, let Re γ > 0 and 0 < θ1 < 1 with θ 
= θ1. Find

Reβ > 0 such that θ/θ1 = Re γ/ Reβ. Then by Proposition 6.6.7 we have

(X, D(Aγ))θ1,p = (X, D(Aβ))θ,p = D(Aθβ) = D(Aθ1γ). �

6.6.4 The Complex Interpolation Spaces and BIP

So far we have encountered real interpolation spaces only. We have seen that these
spaces allow characterisations in terms of the functional calculus and that the
operator improves when restricted to these spaces. However, Komatsu’s Theorem
6.6.8 shows that an identity of the form (X, D(Aα))θ,p = D(Aθα) can hold only
if the operator A (or a translate of it) has bounded H∞-calculus in the orginal
space X .

On the other hand, using complex interpolation spaces we have the following
intriguing result.

Theorem 6.6.9. Let A be sectorial and densely defined such that A + 1 ∈ BIP(X).
Then, for θ ∈ (0, 1), we have

[D(Aα), D(Aβ)]θ = D(A(1−θ)α+θβ)

for all 0 ≤ Re α < Re β with either Re α > 0 or α = 0.

(The reader may consult Appendix B.3 for background information on the
complex interpolation spaces.)

Proof. Replacing A by A + 1 we may suppose without loss of generality that A is
invertible. Moreover, applying the isomorphism Aα on both sides of the identity,
reduces the whole statement to the identity

[X, D(Aα)]θ = D(Aθα) (Re α > 0, θ ∈ (0, 1)).
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From A ∈ BIP also follows that D(Aα) depends only on the real part Re α, whence
we may suppose that α > 0.

By assumption, D(A) is dense in X and (A−is)s∈R is a C0-group on X ,
whence one can find M ≥ 1, η ≥ 0 such that

‖Ais‖ ≤ Meη|s| (s ∈ R).

Now, two inclusions have to be shown. To prove the first, we take x ∈ D(Aαθ)
and consider the function

f(z) := e(z−θ)2A−αzAθαx (z ∈ S).

Clearly f(θ) = x and f : S −→ X is holomorphic. Since the norms
∥∥Ais

∥∥ of the
imaginary powers grow at most exponentially as s → ∞, supz∈S ‖f(z)‖X < ∞.
From Proposition 3.5.5 it follows that f : S −→ X is continuous and

‖f(1 + is)‖D(Aα) = ‖Aαf(1 + is)‖X ≤ M e(1−θ)2e−s2
eηα|s|‖Aθαx‖X .

So in fact f ∈ F(X, D(Aα)), and this implies that x ∈ [X, D(Aα)]θ.
The converse inclusion [X, D(Aα)]θ ⊂ D(Aα) is shown by using the fact that

D(Aα) is dense in [X, D(Aα)]θ (see Theorem B.3.3). Take x ∈ D(Aα), and let
f ∈ V(X, D(Aα)) be such that f(θ) = x (cf. Proposition B.3.4). Then f is of the
form f(z) =

∑n
j=1 ϕj(z)aj for certain ϕj ∈ F0(C, C) and aj ∈ D(Aα). Define

g(z) := e(z−θ)2Aαzf(z) = e(z−θ)2
∑n

j=1
ϕj(z)Aαzaj (z ∈ S).

Then g ∈ F0(X, X) with g(θ) = Aθαx. Now we apply the Three Lines Lemma
B.3.1:

‖x‖D(Aθα) = ‖Aθαx‖X = ‖f(θ)‖X ≤ sup
s∈R

{‖g(is)‖X , ‖g(1 + is)‖X} ,

but for each s ∈ R we have

‖g(is)‖X ≤ eθ2
e−s2‖Aiαsf(is)‖X ≤Meθ2

e−s2
eηα|s| ‖f(is)‖X ,

‖g(1 + is)‖X ≤ e(1−θ)2e−s2‖AαAiαsf(1 + is)‖X

≤Me(1−θ)2e−s2
eηα|s| ‖f(1 + is)‖D(Aα) .

Hence we can find a constant c > 0 (not depending on f and x of course) such
that ‖x‖D(Aθα) ≤ c ‖f‖F . Taking the infimum with respect to f (and applying
Proposition B.3.4) we find ‖x‖D(Aθα) ≤ c ‖x‖[X,D(Aα)]θ

. Now density accounts for
the rest. �
Remark 6.6.10. It is unknown in general whether the equality [X, D(A)]θ = D(Aθ)
for some θ ∈ (0, 1) is sufficient to have A+1 ∈ BIP. It is true on Hilbert spaces due
to the fact that (X, D(A))θ,2 = [X, D(A)]θ for all θ ∈ (0, 1) (see [158, Corollary
4.3.12]).
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Example 6.6.11. Consider the negative Laplacian −∆p on X := Lp(Rd), where
p ∈ (1,∞) and p 
= 2. It has domain D(−∆p) = W2,p(Rd) and is an injective,
sectorial operator with spectral angle 0 and bounded H∞-calculus. However,

(X, D(A))θ,p 
= D(Aθ)

for all θ ∈ (0, 1), p ∈ [1,∞]. See Section 8.3, in particular Remark 8.3.6.

It should be clear from these considerations that an identity of the form

(X, D(A))θ,p = D(Aθ)

is — apart from the Hilbert space case — extremely rare.

6.7 Characterising Growth Conditions

When we examined perturbations B of a sectorial operator A in Section 5.5, an
important condition proved to be an estimate of the form

sup
t>0

∥∥tθB(t + A)−1
∥∥ < ∞

(cf. Lemma 5.5.1 and Proposition 5.5.3). We remarked (in Remark 5.5.2) that
one can describe such a condition in terms of interpolation spaces. The present
section is to give evidence to this assertion.

Proposition 6.7.1. Let A be an arbitrary sectorial operator on the Banach space
X, let B : Y −→ X be a bounded operator, where Y is another Banach space, and
let θ ∈ [0, 1]. Then the equivalences

R(B) ⊂ (X, D(A))θ,∞ ⇐⇒ sup
t>1

∥∥tθ(t + A)−1B
∥∥

Y →D(A)
<∞

⇐⇒ sup
t>1

∥∥tθ(t + A)−1B
∥∥

Y →Ḋ
<∞

hold, with the latter applying only in the case where A is injective. Furthermore,
if A is injective, then also the equivalences

R(B) ⊂ (X, R(A))1−θ,∞ ⇐⇒ sup
0<t<1

∥∥tθ(t + A)−1B
∥∥

Y →X
<∞

⇐⇒ sup
0<t<1

∥∥tθ(t + A)−1B
∥∥

Y →D(A)
<∞

hold true.

Proof. Let us consider the first assertion with its two equivalences. The case
θ = 0 is trivial, so let θ ∈ (0, 1]. We observe that, by the sectoriality of A, the
second equivalence holds trivially. The first is derived immediately from Lemma
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6.1.1 (see also the Komatsu representation in Section 6.2.3) and the Closed Graph
Theorem. The second statement is obtained from the first by substituting s := 1/t
and replacing A by A−1:

tθ(t + A)−1 = s1−θ 1
s

(
1
s

+ A

)−1

= s1−θA−1(s + A−1)−1. �
Combining both statements yields the following.

Corollary 6.7.2. Let A be an injective sectorial operator on the Banach space X,
let B : Y −→ X be a bounded operator, where Y is another Banach space, and let
θ ∈ [0, 1]. Then the condition

sup
0<t<∞

∥∥tθ(t + A)−1B
∥∥

Y →D(A)
< ∞

is equivalent to R(B) ⊂ (D(A), R(A))1−θ,∞.

Proof. Combining both conditions from Proposition 6.7.1 yields the inclusion
R(B) ⊂ (X, D(A))θ,∞ ∩ (X, R(A))1−θ,∞. Now observe that X = D(A) + R(A)
and apply (B.7) from Proposition B.2.7. �

Let us turn to the ‘dual’ conditions.

Proposition 6.7.3. Let A be an arbitrary sectorial operator on the Banach space
X, let C : D(A) −→ Y be a bounded operator, where Y is a second Banach space,
and let θ ∈ [0, 1]. Then the condition

sup
t>1

∥∥t1−θC(t + A)−1
∥∥

X→Y
<∞ (6.13)

is trivially satisfied if θ = 1. In the case where θ ∈ (0, 1), (6.13) is equivalent to
the boundedness of

C : (X, D(A))θ,1 −→ Y

on the space D(A). In the case where θ = 0 it is equivalent to the fact that C
(defined on D(A)) is bounded for the norm ‖·‖X .

Proof. Let us start with the case θ ∈ (0, 1). We use again the representation of
the space (X, D(A))θ,1 from Lemma 6.1.1. If C : (X, D(A))θ,1 −→ X is bounded,
we can estimate∥∥t1−θC(t + A)−1x

∥∥ ≤ ct1−θ
∥∥(t + A)−1x

∥∥
(X,D(A))θ,1

≤ ct1−θ
∥∥(t + A)−1x

∥∥ + ct1−θ

∫ ∞

0

∥∥sθA(s + A)−1(t + A)−1x
∥∥ ds

s

≤ ct−θM(A) + c

∫ ∞

0

∥∥sθ−1A1−θ(1 + s−1A)−1t−θAθ(1 + t−1A)−1x
∥∥ ds

s

= ct−θM(A) + c

∫ ∞

0

∥∥ϕ1/s(A)ψ1/t(A)x
∥∥ ds

s
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for x ∈ X , t > 0 and some constant c, where we have used the notation ϕ(z) :=
z1−θ/(1 + z) and ψ(z) := zθ/(1 + z). By Theorem 5.2.2 b) the second summand
is uniformly bounded in t > 0.

Suppose now that (6.13) holds, again under the assumption θ ∈ (0, 1). We
want to show the boundedness of C : (X, D(A))θ,1 −→ Y , and since D(A) =
D(A + 1), we may without loss of generality suppose that A is invertible and

c′ := sup
t>0

∥∥t1−θC(t + A)−1
∥∥ < ∞.

Theorem 6.6.1 yields that D(A2) is dense in (X, D(A))θ,1. Let τ(z) := z(1 + z)−2

and c :=
∫∞
0 τ(s−1) ds/s > 0. Then we have x = c−1

∫∞
0 τ(s−1A)xds/s for all

x ∈ D(A) (Proposition 5.2.4). So, for x ∈ D(A2) this integral converges in D(A),
whence

‖Cx‖ ≤ c−1

∫ ∞

0

∥∥Cτ(s−1A)x
∥∥ ds

s

= c−1

∫ ∞

0

∥∥C(1 + s−1A)−1s−1A(1 + s−1A)−1x
∥∥ ds

s

= c−1

∫ ∞

0

∥∥s1−θC(s + A)−1sθA(s + A)−1x
∥∥ ds

s

≤ c′c−1

∫ ∞

0

∥∥sθA(s + A)−1x
∥∥ ds

s
≤ c′c−1 ‖x‖(X,D(A))θ,1

for x ∈ D(A2). Since D(A2) is dense in (X, D(A))θ,1, we obtain the desired result.
We are left to deal with the cases θ = 0, 1. It is easily seen that condition

(6.13) with θ = 1 is equivalent to ‖C‖D(A)→Y < ∞. So let θ = 0. If C is bounded
for the norm ‖·‖X , then clearly (6.13) holds, by sectoriality of A. For the converse
suppose that

∥∥tC(t + A)−1x
∥∥

Y
≤ γ ‖x‖ for each x ∈ X and t > 1. Let x ∈ D(A).

Then

‖Cx‖ =
∥∥tC(t + A)−1x

∥∥ +
∥∥C(t + A)−1Ax

∥∥ ≤ γ ‖x‖ + t−1 ‖Ax‖

for all t > 1. As t→∞ we obtain ‖Cx‖ ≤ γ ‖x‖ for all x ∈ D(A). �
Proposition 6.7.4. Let A be an injective sectorial operator on the Banach space X,
let C : D(A) −→ Y a bounded operator, where Y is a second Banach space, and
let θ ∈ [0, 1]. Then the condition

sup
0<t<1

∥∥t1−θC(t + A)−1
∥∥

X→Y
(6.14)

is trivially satisfied for θ = 0. In the case where θ ∈ (0, 1), (6.14) is equivalent to
the boundedness of

CA−1 : (X, R(A))1−θ,1 −→ Y

on R(A). In the case where θ = 1 it is equivalent to the boundedness on D(A) of
C : Ḋ −→ Y .



6.7. Characterising Growth Conditions 167

Proof. Suppose first that θ ∈ (0, 1). Writing s = 1/t yields

t1−θC(t+A)−1 = t−θCt(t+A)−1 = sθC[I−s(s+A−1)−1 = sθ[CA−1](s+A−1)−1.

Now one can apply Proposition 6.7.3 with A replaced by A−1 and θ replaced by
1− θ.

The case θ = 0 being easy, suppose now that θ = 1. If C : Ḋ −→ Y is
bounded, one has∥∥C(t + A)−1x

∥∥
Y
≤ ‖C‖Ḋ→Y

∥∥A(t + A)−1x
∥∥ ≤ ‖C‖Ḋ→Y (M(A) + 1),

hence (6.14). Conversely, suppose that
∥∥C(t + A)−1x

∥∥ ≤ γ ‖x‖ for all x ∈ X and
all 0 < t < 1. Then

‖Cx‖ ≤ t
∥∥C(t + A)−1x

∥∥ +
∥∥C(t + A)−1Ax

∥∥ ≤ tγ ‖x‖+ γ ‖Ax‖

for x ∈ D(A). Hence if we let t→ 0, we obtain ‖Cx‖ ≤ γ ‖x‖Ḋ. �

Again, we combine the last two propositions.

Corollary 6.7.5. Let A be an injective sectorial operator on the Banach space X,
let C : D(A) −→ Y be a bounded operator, where Y is another Banach space, and
let θ ∈ [0, 1]. Then the condition

sup
0<t<∞

∥∥t1−θC(t + A)−1
∥∥

X→Y
< ∞

is equivalent to the boundedness on D(A) of⎧⎪⎨⎪⎩
C : X −→ Y, if θ = 0,

C : (X, Ḋ)θ,1 −→ Y, if θ ∈ (0, 1),
C : Ḋ −→ Y, if θ = 1.

Proof. In the cases θ = 0, 1 this is just a combination of Propositions 6.7.3 and
6.7.4. Suppose that θ ∈ (0, 1). Since A is injective, it induces a topological
isomorphism

A : (Ḋ, D(A)) −→ (X, R(A))

of Banach couples. Hence the boundedness of CA−1 : (X, R(A))1−θ,1 −→ Y is
then equivalent to the boundedness of C : (Ḋ, D(A))1−θ,1 −→ Y . This yields the
boundedness of C : (X, D(A))θ,1 + (Ḋ, D(A))1−θ,1 −→ Y as a characterisation.
However, (B.6) of Proposition B.2.7 applies and we obtain the identity

(X, D(A))θ,1 + (Ḋ, D(A))1−θ,1 = (X, Ḋ)θ,1. �
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6.8 Comments

6.2 and 6.5. Characterisations of Real Interpolation Spaces. Komatsu was prob-
ably the first who studied thoroughly the possible descriptions of real (i.e., Lions–
Peetre) interpolation spaces for sectorial operators. The description by holomor-
phic semigroups (6.9) and (for α ∈ N) the proper ’Komatsu description’ (6.8) can
be found already in [132]. At least for the case α = 1 (Lemma 6.1.1) they are now
folklore and reproduced in many texts on parabolic equations, e.g. in [157]. The-
orem 6.5.3 and the general characterisations in Section 6.2 are due to the author
[106, 110]. Dore [73] proves a special case of Theorem 6.5.3 b).

6.1, 6.4, and 6.5. Dore’s Theorem and Homogeneous Interpolation. Dore’s re-
sults Theorem 6.1.3 from [72] and Corollary 6.5.8 (in the special case α = 1) from
[73] are by far not the first accounts of the fact that a sectorial operator improves
some properties when restricted to its real interpolation spaces. Indeed, in 1975
Da Prato and Grisvard [58] discovered that an invertible sectorial operator al-
ways has maximal regularity in its interpolation spaces (cf. Section 9.3 below). And
Auscher, McIntosh and Nahmod [19] pointed out that McIntosh’s theorem on
Hilbert spaces (Theorem 7.3.1) may also be read in this way (cf. Remark 7.3.2).
Around the same time it turned out that an operator-valued version of Dore’s
theorem yields back the original results of Da Prato and Grisvard (cf. Section
9.3).

The crucial point lies in the fact that one has at hand a functional calculus
description for the interpolation space where one is allowed to vary the auxiliary
function (cf. the proof of Theorem 6.5.6). This idea is from [167] and [19], and in
fact the whole Section 6.4 is a generalisation of Hilbert space results from (parts
of) [19] to general Banach spaces. The central Theorem 6.1.3 is due to the author
[110] and is itself only a special case of a far more general result which allows the
functional calculus to be operator-valued and asserts even R-boundedness of the
functional calculus in the case where p ∈ (1,∞). See [110] for more details.

6.3 Extrapolation Spaces. The concept of extrapolation space has proved quite
useful in semigroup theory, in particular in the context of perturbations (see [85,
Section III.3]). In the ‘classical’ approach one considers the norm of the (de-
sired) extrapolation space X−1 on the original space X and takes the (abstract)
completion. This embeds X densely into the new space X−1. For example the
homogeneous spaces X(α) would be the completion of X with respect to the norm
‖Aαx‖. In the case where A is densely defined this works well, but unfortunately
breaks down otherwise. (The completion is then simply too small.) A one-step ex-
trapolation without density was first given by Haak, Kunstmann and the author
[100] in the context of perturbation theory.

Section 6.3 with its ‘universal’ extrapolation space goes back to the author’s
article [110, Appendix]. The construction can be considerably generalised. Let
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X be a Banach space and T ⊂ L(X) a set of pairwise commuting, injective,
bounded linear operators on X , closed under multiplication. To each T ∈ T one
can trivially construct a one-step extrapolation space XT ⊃ X together with an
extension of T to an isometric isomorphism T : XT −→ T . For two elements
S, T ∈ T the space XST may be regarded as a common superspace of XT and
XS since ST = TS. Hence the set of spaces (XT )T∈T is upward directed, and
the inductive limit U := lim−→T XT is an extrapolation space on which all operators
T ∈ T become isomorphisms.

To identify extrapolation spaces in concrete situations with known spaces
it is highly desirable to have a categorical definition of extrapolation spaces by
means of a universal property. A first attempt can be found in [109].

Our notion of convergence on the universal space U is adapted to our pur-
poses but is very unlikely to be induced by a proper vector space topology on
U . Of course one thinks of the inductive limit topology as an alternative, but
apart from very special cases (e.g., where one has weakly compact embeddings
X−n ↪→ X−(n+1)) one cannot guarantee that this topology is Hausdorff. This is
so unpleasant a feature that we wanted to avoid it at any cost.

6.6 Intermediate Spaces and 6.7 Growth Conditions. The moment inequality
(Proposition 6.6.4) and the Reiteration Theorem (Proposition 6.6.7) are well
known, see e.g. [210], [211], [158], or [161, Chapter 11] and the references therein.
We treat the matter for the sake of completeness, but also since it shows how the
functional calculus descriptions of the interpolation spaces can be used. Theo-
rem 6.6.9 on BIP and the complex interpolation spaces seems to go back to the
paper [200] of Seeley for differential operators. Formulated and proved in full
generality it may be found in [215, Theorem 1.15.3] or [161, Theorem 11.6.1].

Growth conditions as treated in Section 6.7 are common in perturbation
theory. The characterisations given here in their full generality go back to the
paper [100] by Haak, Kunstmann and the author.



Chapter 7

The Functional Calculus on Hilbert
Spaces

We start with providing necessary background information on the functional calculus
on Hilbert spaces. In Section 7.1 we show how numerical range conditions account
for the boundedness of the H∞-calculus. In the sector case this is essentially von
Neumann’s inequality (Section 7.1.3), in the strip case it is a result by Crouzeix and
Delyon (Section 7.1.5). From von Neumann’s inequality we obtain certain ‘mapping
theorems for the numerical range’ (Section 7.1.4). Section 7.2 is devoted to C0-groups
on Hilbert spaces. We discuss Liapunov’s direct method (Section 7.2.1) from Linear
Systems Theory and apply it to obtain a remarkable decomposition and similarity
result for group generators (Section 7.2.2). This allows us to prove a theorem of de
Laubenfels and Boyadzhiev on the boundedness of the H∞-calculus on strips for such
operators. This result can be approached also in a different way, yielding in addition
a characterisation of group generators (Section 7.2.3). Section 7.3 is devoted mainly
to the connection of the functional calculus with similarity theorems. The main tool
is McIntosh’s fundamental result on the boundedness of the H∞-calculus (Section
7.3.1). The similarity questions we are interested in deal with operators defined by
sesquilinear forms. We introduce these operators in Section 7.3.2 and obtain in Section
7.3.3 a characterisation of such operators up to similarity. Afterwards, several theorems
on similarity are proved, related also to the so-called square root problem. We give an
example of a C0-semigroup which is not similar even to a quasi-contractive semigroup
(Section 7.3.4). Finally, we present applications to generators of cosine functions,
showing in particular that after a similarity transformation those operators always
have numerical range in a horizontal parabola (Section 7.4).

Preliminaries on Functional Calculus

Before we can come to more substantial things we have to do some preliminary
work.

Let U ⊂ C be open and invariant under complex conjugation, e.g., U = Sω

or U = Hω for some ω. Let f : U −→ C∞ be meromorphic. Then the function
f∗, defined by

f∗ :=
(
z �−→ f(z)

)
: U −→ C∞

is called the conjugate of the function f . Obviously, f∗ is meromorphic again.
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Moreover, the spaces H∞
0 (Sω), H∞(Sω), . . . and F(Hω), H∞(Hω), . . . are invari-

ant under conjugation.
The following proposition gives some background information on the func-

tional calculus for sectorial operators on Hilbert spaces.

Proposition 7.0.1. Let A ∈ Sect(ω) be a sectorial operator on a Hilbert space H.
Then the following assertions hold.

a) The operator A is densely defined and H = N(A) ⊕ R(A). In particular, A
is injective if and only if R(A) is dense in H.

b) The operator A∗ is also sectorial of angle ω with M(A, ω′) = M(A∗, ω′) for
all ω′ ∈ (ω, π]. In particular, we have ωA = ωA∗.

c) The operator A is injective (invertible, bounded) if and only if A∗ is injective
(invertible, bounded).

d) The identity f(A∗) = [f∗(A)]∗ holds whenever f ∈ A[Sω]. If A is injective,
it holds for all f ∈ B[Sω].

e) The identity
(Aα)∗ = (A∗)α (7.1)

is true for all Re α > 0, and even for all α ∈ C in the case that A is injective.

f) If A ∈ BIP(H) then also A∗ ∈ BIP(H) with θA = θA∗ .

g) Let ϕ ∈ (ω, π]. If the natural H∞
0 (Sϕ)-calculus for A is bounded, the same is

true for A∗ and the bounds are the same.

Proof. a) follows from Proposition 2.1.1 since a Hilbert space is reflexive.
b) follows from Corollary C.2.2.
c) If A is injective, then R(A) is dense. By Proposition C.2.1 e) this implies that
N(A∗) = 0. The converse implication follows from A∗∗ = A.
d) Let f ∈ H∞

0 (Sϕ). Then

[f∗(A)]∗ =
(

1
2πi

∫
Γ

f∗(z)R(z, A) dz

)∗
=
−1
2πi

∫
Γ

f(z)R(z, A)∗ dz

=
−1
2πi

∫
Γ

f(z)R(z, A∗) dz
!=

1
2πi

∫
Γ

f(z)R(z, A∗) dz = f(A∗),

since Γ is such that (z �−→ z) just reverses the orientation of Γ. Since g∗ = g if
g(z) = (1 + z)−1 we thus obtain f∗(A)∗ = f(A∗) for all f ∈ E(Sϕ). Now, if f ∈ A
such that F (z) := (1 + z)−nf(z) ∈ E we have

f(A∗) = (1 + A∗)nF (A∗)
(1)
= [(1 + A)n]∗[F ∗(A)]∗

(2)
= [F ∗(A)(1 + A)n]∗

(3)
= [f∗(A)]∗.

Here we have used Proposition C.2.3 in (1) and Proposition C.2.1 in (2). Equation
(3) is justified by Proposition C.2.1 and the fact that D(An) is a core for f∗(A)
by Proposition 2.3.11 c).
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The proof of the statement in the case that A is injective and f ∈ B is similar.
One has to use the identity [Λn

A]∗ = Λn
A∗ , which holds for each n ∈ N.

e), f) and g) are consequences of d). �

Of course, there is an analogous result for strip-type operators, but we refrain
from stating it explicitly.

7.1 Numerical Range Conditions

In this section we examine sectorial and strip-type operators A on a Hilbert space
H , with the additional property that the numerical range W (A) is contained in
the relevant set (sector or strip). The ultimate goal is to obtain boundedness of
the natural H∞-calculus for such operators.

7.1.1 Accretive and ω-accretive Operators

Let us recall that an operator A on a Hilbert space is called accretive if its nu-
merical range

W (A) := {(Ax | x) | x ∈ D(A), ‖x‖ = 1}

(see Appendix C.3) is contained in the closed right half-plane Sπ/2. Since any
restriction of an accretive operator is likewise accretive, an accretive operator
need not be closed. However, if we assume in addition that −1 ∈ �(A) we obtain
a so-called m-accretive operator, cf. Appendix C.7. By Proposition C.7.2 and
Theorem C.7.3 the following assertions are equivalent for a closed operator A on
H .

(i) A is m-accretive, i.e., W (A) ⊂ Sπ/2 and R(A + 1) is dense in H .

(ii) −A generates a C0-semigroup (T (t))t≥0 with ‖T (t)‖ ≤ 1 for all t ≥ 0.

(iii) {Re z < 0} ⊂ �(A) and
∥∥(λ + A)−1

∥∥ ≤ (Re λ)−1 for all Re λ > 0.

In particular, A ∈ Sect(π/2).

As a matter of fact, one can consider also operators whose numerical range is
contained in a smaller sector. Let ω ∈ [0, π/2]. An operator A on a Hilbert space
H is called ω-accretive if W (A) ⊂ Sω. Note that this means

|Im (Au |u)| ≤ (tan ω) Re (Au |u) (u ∈ D(A)).

The operator A is called m-ω-accretive if it is ω-accretive and R(A + 1) is dense
in H . Hence an operator is (m-)accretive if and only if it is (m-)π/2-accretive.
Furthermore, each m-ω-accretive operator is m-accretive. A 0-accretive operator
is symmetric (since our Hilbert spaces are complex). An operator is positive if and
only if it is m-0-accretive. The following proposition gives a useful characterisation.
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Proposition 7.1.1. Let A be an operator on the Hilbert space H, let ω ∈ [0, π/2),
and define θ := π/2− ω. The following assertions are equivalent.

(i) The operator A is m-ω-accretive.

(ii) The operators e±iθA are m-accretive.

(iii) The operator −A generates a holomorphic C0-semigroup (T (z))z∈Sθ
on Sθ

such that ‖T (z)‖ ≤ 1 for all z ∈ Sθ.

If one of these equivalent conditions is satisfied then A ∈ Sect(ω).

Note that (ii) does not imply (i) if ω = 0. For the meaning of (iii) cf. Section
3.4.

Proof. (i)⇔(ii). This is clear from Corollary C.3.2.
(i)⇒(iii). From (i) and Proposition C.3.1 we infer that A ∈ Sect(ω). Since
ω < π/2 we conclude that −A generates a bounded holomorphic semigroup
T : Sθ −→ L(H). For each ϕ ∈ (−θ, θ) the operator −eiϕA generates the semi-
group (T (eiϕt))t>0 (see Remark 3.4.5). Since eiϕA is m-accretive,

∥∥T (eiϕt)
∥∥ ≤ 1

for all t > 0, and this proves (iii).
(iii)⇒(i). As above, the operator −eiϕA generates the semigroup (T (eiϕt))t>0, for
each ϕ ∈ (−θ, θ). Since this is a contraction semigroup we conclude that eiϕA is
m-accretive. Letting ϕ tend to ±θ yields that e±θA is m-accretive.
The final statement follows from Proposition C.3.1. �

Parallel to sectorial operators we wish to study strip-type operators. Here
we can say the following.

Proposition 7.1.2. Let A be an operator on a Hilbert space H and let ω > 0. Then
the following assertions are equivalent.

(i) W (A) ⊂ Hω and R(A± i(ω + 1)) are dense in H.

(ii) The operators ω ± iA are both m-accretive.

(iii) iA generates a C0-group (T (s))s∈R such that

‖T (s)‖ ≤ eω|s| (s ∈ R).

(iv) σ(A) ⊂ Hω and

‖R(λ, A)‖ ≤ 1
|Im λ| − ω

(λ /∈ Hω).

(v) There are self-adjoint operators B and C such that −ω ≤ C ≤ ω and A =
B + iC.

(Note that the operator C in (v) is necessarily bounded.) If these equivalent con-
ditions are satisfied, A ∈ SST(ω), D(A) = D(A∗) and A∗ = B − iC.
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Proof. The equivalence (i)⇔(ii) readily follows from the definition of ‘m-accretive’,
while (ii)⇔ (iii) is due to the Lumer–Philips theorem C.7.3 and Proposition A.8.9.
Assertions (iv) and (ii) are equivalent by Proposition C.7.2.
(v)⇒(i). Clearly the hypothesis implies that W (A) ⊂ Hω. Moreover, iA is a
bounded perturbation of the generator of a C0-group, whence itself generates a
C0-group (Proposition A.8.8). In particular, A has some resolvent point outside
the strip Hω, and so (ii) follows.

Finally, assume that (i)–(iv) are satisfied. Applying the generalised Cauchy–
Schwarz inequality (Proposition C.1.2) to the form

c(u, v) := Im[(A · | ·)](u, v) =
1
2i

((Au | v ) − (u |Av )) (u, v ∈ D(A))

on V := D(A) we obtain |(Au | v )− (u |Av )| ≤ 2ω ‖u‖ ‖v‖ for u, v ∈ D(A).
Since D(A) is dense in H , the form c extends to a continuous symmetric form
on H . Hence there exists a bounded symmetric operator C ∈ L(H) such that
(Cx | y ) = ((Ax | y ) − (x |Ay ))/2i. Obviously we have −ω ≤ C ≤ ω. Now we
define B := A− iC. Then (Bu |u) = (Au |u)− i Im (Au |u) = Re (Au |u) for all
u ∈ D(A) = D(B), whence W (B) ⊂ R. Since A generates a C0-group by (iii), also
B does so (Proposition A.8.8), and this implies that B is skew-adjoint by Stone’s
theorem C.7.4.

The remaining assertions are clear since A∗ = (B+iC)∗ = B∗−iC∗ = B−iC,
by Proposition C.2.1 j). �

An operator A on H is called m-Hω-accretive if it satisfies the equivalent
conditions of Proposition 7.1.2. Note that in Proposition 7.1.2, ω = 0 is allowed,
in which case the operator A is self-adjoint.

7.1.2 Normal Operators

Let us start with a discussion of normal operators. By the Spectral Theorem (see
Appendix D) normal operators are unitarily equivalent to multiplication operators
on L2-spaces over standard measure spaces.

Proposition 7.1.3. Let (Ω, µ) be a standard measure space, let ω ∈ [0, π), and let
a : Ω → C be a continuous function such that a(Ω) ⊂ Sω. Denote by A := Ma the
multiplication operator on H := L2(Ω, µ). Then A is m-ω-accretive and f(A) =
Mf◦a whenever f ∈ O[Sω]A.

Proof. Let ψ ∈ D(A). Then

(Aψ |ψ )L2 =
∫

Ω

aψψ dµ =
∫

Ω

a |ψ|2 dµ.

Now a(s) |ψ(s)|2 ∈ Sω for every s ∈ Ω by hypothesis and Sω is closed and convex.
Hence also

∫
Ω a |ψ|2 ∈ Sω. This shows that W (A) ⊂ Sω.
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To prove the second assertion, suppose first that f ∈ H∞
0 [Sω]. Then f(A)

is given by the integral f(A) = (2πi)−1
∫
Γ

f(z)R(z, A) dz, which converges in the
operator norm topology. By Proposition D.1.1, R(z, A) = M(z−a)−1 for each
z /∈ Sω. Moreover, the mapping (g �−→ Mg) : Cb(Ω) −→ L(L2(Ω, µ)) is an
isometric embedding. Therefore, f(A) = Mg for some bounded and continuous
function on Ω. Since evaluation at a point s ∈ Ω is a continuous functional on
Cb(Ω), we obtain

g(s) =
[

1
2πi

∫
Γ

f(z)(z − a(·))−1 dz

]
(s) =

1
2πi

∫
Γ

f(z)(z − a(s))−1 dz = f(a(s))

by Cauchy’s theorem. Hence f(A) = Mf◦a. Since this is obviously true for
f(z) = (1 + z)−1 and for f = 1, it is true for all f ∈ E [Sω].

Let f ∈ O[Sω]A and let e ∈ E [Sω] be a regulariser for f , i.e., ef ∈ E and e(A)
is injective. Since e(A) = Me◦a, the set {e ◦ a = 0} is locally µ-null. Therefore,

(x, y) ∈ f(A) ⇐⇒ (ef)(A)x = e(A)y ⇐⇒ (e ◦ a)(f ◦ a)x = (e ◦ a)y µ− a.e.

⇐⇒ (f ◦ a)x = y µ− a.e.

This yields f(A) = Mf◦a. �
Remark 7.1.4. Proposition 7.1.3 might look like a repetition of Example 2.3.15.
But note that there we supposed the measure space to be σ-finite and applied
Fubini’s theorem. One could in fact justify this reasoning also in the case of a
standard measure space (which in general is not σ-finite) but it is also instructive
to see how continuity helps to avoid Fubini’s theorem.

In the strip case we obtain the analogous result (with almost the same proof).

Proposition 7.1.5. Let (Ω, µ) be a standard measure space, let ω ≥ 0, and let
a : Ω → C be a continuous function such that a(Ω) ⊂ Hω. Denote by A := Ma the
multiplication operator on H := L2(Ω, µ). Then W (A) ⊂ Hω, A ∈ Strip(ω) and
f(A) = Mf◦a whenever f ∈ O[Hω]A.

Corollary 7.1.6. Let A be a self-adjoint operator on a Hilbert space H.

a) If A ≥ 0, then A ∈ Sect(0) and for each ϕ > 0 the natural H∞
0 (Sϕ)-calculus

is bounded. In fact ‖f(A)‖ ≤ ‖f‖(0,∞) for all f ∈ E [S0]. If in addition A

is injective, then for each ϕ ∈ (0, π] the natural H∞(Sϕ)-calculus for A is
bounded (with bound 1).

b) We have iA ∈ Sect(π/2) and ‖f(iA)‖ ≤ ‖f‖iR for all f ∈ E [Sπ/2].

c) A ∈ Strip(0) and for each ϕ > 0 the natural H∞(Hϕ)-calculus for A is
bounded (with bound 1).

Proof. By the Spectral Theorem D.5.1 there is a standard measure space (Ω, µ)
and a continuous, real-valued function a ∈ C(Ω) such that (H, A) is unitarily
equivalent to (L2(Ω, µ), Ma). Now the assertions follow from Proposition 7.1.3,
Proposition 7.1.5 and Proposition D.1.1. �
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Corollary 7.1.6 shows that self-adjoint operators behave well with respect to
the functional calculus. Moreover, our restriction to self-adjoint operators is only
for the sake of simplicity. Clearly the same proof works for normal operators.
However, these results were obtained using the Spectral Theorem, which actually
gives a much stronger result, namely a bounded Borel functional calculus (cf. The-
orem D.6.1). It is interesting that in the context of holomorphic functional calculi
sole conditions on the numerical range of A suffice. This will be shown in the next
subsection.

7.1.3 Functional Calculus for m-accretive Operators

Here is the main result of this section.

Theorem 7.1.7. Let A ∈ Sect(π/2) on the Hilbert space H. Then A is m-accretive
if and only if

‖f(A)‖ ≤ ‖f‖π
2

(7.2)

for all f ∈ E [Sπ/2].

Before we give a proof of Theorem 7.1.7, let us draw an instant corollary.

Corollary 7.1.8. Let A be a m-accretive operator on a Hilbert space H, and let
f ∈ H∞[Sπ/2]A. Then f(A) is bounded and ‖f(A)‖ ≤ ‖f‖π/2.

In particular, if A is injective then A ∈ BIP(H) and ‖A−is‖ ≤ eπ|s|/2, s ∈ R.

Proof. If A is injective, the claim follows from Theorem 7.1.7 and Proposition
5.3.4; if A is not injective, approximate f by fn(z) := nf(z)(z + n)−1. Note that
A is densely defined and f(1 + z)−1 ∈ E . (Cf. Lemma 2.3.8 and the proof of the
Convergence Lemma (Proposition 5.1.4.)) �

Remark 7.1.9. 1) Theorem 7.1.7 is essentially equivalent to von Neumann’s in-
equality for contractions T on a Hilbert space. Indeed, if A is m-accretive
then its Cayley transform T := (A−1)(A+1)−1 is a contraction, and von Neu-
mann’s inequality states that ‖p(T )‖ ≤ ‖p‖

D
for every polynomial p ∈ C[z],

where D := {z | |z| ≤ 1} is the unit disc. This readily yields ‖r(T )‖ ≤ ‖r‖
D

for every rational function r with poles outside of D. Hence we can conclude
that the natural R∞(Sπ/2)-calculus for A is bounded with bound 1. Finally
we apply Proposition 5.3.6. (Conversely, one can derive von Neumann’s in-
equality from Theorem 7.1.7.)

2) Again, let A be an m-accretive operator on a Hilbert space. Our formulation
of Theorem 7.1.7 seems artificial in that we take into account only functions
f defined on sectors slightly larger than the half-plane Sπ/2. This is of course
due to the fact that we consider A as a sectorial operator. Clearly, one may
ask for a functional calculus for A that incorporates functions just defined on
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the half-plane {Re z ≥ 0}. Employing Proposition F.3 we can — by uniform
approximation — extend the elementary functional calculus to the algebra

A(C+) :=
{
f ∈ H∞(Sπ

2
) ∩C(Sπ

2
)
∣∣ lim

z→∞
f(z) exists

}
such that the estimate (7.2) still holds. Whether one can go further, e.g. up
to the whole of H∞(Sπ/2), depends on particular properties of the operator
A. In the analogous situation on the unit disc D, these questions lead to the
notion of absolutely continuous contractions, cf. [42].

We now give two proofs of Theorem 7.1.7. The first relies on the following
theorem, which we state without proof. Recall that A is m-accretive if and only
if −A generates a contraction semigroup on H (Theorem C.7.3).

Theorem 7.1.10 (Szökefalvi-Nagy). Let (T (t))t≥0 be a contraction semigroup on
a Hilbert space H. Then there exists a Hilbert space K, an isometric embedding
ι : H −→ K and a unitary C0-group (U(t))t∈R on K such that

P ◦ U(t) ◦ ι = ι ◦ T (t)

for all t ≥ 0. Here, P : K −→ ι(H) denotes the orthogonal projection on the
closed subspace ι(H) of K.

The triple (K, U, ι) is called a dilation of the contraction semigroup T . For a
proof see [61, Chapter 6, Section 3]. We now give our first proof of Theorem 7.1.7.

First Proof of Theorem 7.1.7. If we take f(z) = (z−1)(z+1)−1 in (7.2) we obtain∥∥(A− 1)(A + 1)−1
∥∥ ≤ 1. So A is m-accretive by Proposition C.7.2, (iv).

The converse is proved by means of the Sz.-Nagy theorem. Suppose that
A is m-accretive. Then −A generates a contraction semigroup T . By Theorem
7.1.10 there is a dilation (K, U, ι) of T . By Stone’s theorem (Theorem C.7.4) the
generator of U is of the form −iB where B is a self-adjoint operator on K. We
claim that PR(λ, iB)ι = ιR(λ, A) for each Re λ < 0. In fact,

PR(λ, iB)ι = −P (−λ,−iB)ι = −
∫ ∞

0

eλsPU(s)ι ds = −
∫ ∞

0

eλsιT (s) ds

= −ιR(−λ,−A) = ιR(λ, A).

Now choose ϕ ∈ (π/2, π] and f ∈ H∞
0 (Sϕ). Then

Pf(iB)ι =
1

2πi

∫
Γ

f(z)PR(z, iB)ι dz =
1

2πi

∫
Γ

f(z)ιR(z, A) dz

= ι
1

2πi

∫
Γ

f(z)R(z, A) dz = ιf(A).
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Hence we obtain Pf(iB)ι = ιf(A) for all f ∈ E . Since ι is isometric, by b) of
Corollary 7.1.6 we have

‖f(A)x‖H = ‖ιf(A)x‖K = ‖Pf(iB)ιx‖K ≤ ‖f(iB)ιx‖K

≤ ‖f‖π
2
‖ιx‖K = ‖f‖π

2
‖x‖H

for every x ∈ H . This finishes the proof. �
This proof appears to be nice but does not really illuminate how the numerical

range condition comes into play. We therefore give a second proof.

Second Proof of Theorem 7.1.7. By Propositions 5.3.6 and 5.3.7 combined with
Lemma 5.3.5 it suffices to show (7.2) for f ∈ R0(Sϕ) for ϕ ∈ (π/2, π) and A
replaced by its sectorial approximation Aε := (ε + A)(1 + εA)−1. Note that if A
is m-accretive, Aε is bounded and strictly accretive, i.e.,

Re (Aεx | x) ≥ ε ‖x‖2 (x ∈ H).

Hence in the following we may suppose that A is bounded and strictly accretive.
Given f ∈ R0(Sϕ) one can compute f(A) by the usual Cauchy integral, but
since A is bounded and invertible, one can shift the path of integration onto
the imaginary axis (from +i∞ to −i∞). Now, on iR we have z = −z, whence
R(z, A)∗ = R(−z, A∗). We therefore can compute

f(A) =
1

2πi

∫
−iR

f(z)R(z, A) dz

=
1

2πi

∫
−iR

f(z) (R(z, A) + R(z, A)∗) dz − 1
2πi

∫
−iR

f(z)R(z, A)∗ dz

=
−1
2πi

∫
−iR

f(z)R(z, A)∗(A + A∗)R(z, A) dz − 1
2πi

∫
−iR

f(z)R(−z, A∗) dz.

The latter integral equals zero since f(z)R(−z, A∗) is holomorphic in the right
half-plane and we can shift the path of integration to Re z = +∞. Hence we
obtain

f(A) =
1

2πi

∫
iR

f(z)S(z) dz

with S(z) := R(z, A)∗(A + A∗)R(z, A). Note that each S(z) is a strictly positive
self-adjoint operator. By inserting f(z) := n/(n + z) and letting n tend to ∞, we
obtain

I =
1

2πi

∫
iR

S(z) dz.

Thus, employing Corollary C.6.4 yields

‖f(A)‖ =
∥∥∥∥ 1

2π

∫
R

f(it)S(it) dt

∥∥∥∥ ≤ ‖f‖∞ ∥∥∥∥ 1
2π

∫
R

S(it) dt

∥∥∥∥ = ‖f‖∞ . �
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Remark 7.1.11. Specialising H = C and A = a in the above proof yields the
Poisson formula

f(a) =
1
π

∫ ∞

−∞
f(is)

Re a

(Rea)2 + (Im a− s)2
ds (Re a > 0)

for rational functions f bounded on the half-plane {Re z ≥ 0}.

Our second proof reveals a basic scheme: The numerical range condition
implies positivity of certain self-adjoint operators; the integral over this family
has a norm independent of the individual operator A; then, Proposition C.6.3
furnishes the final estimate. We shall encounter the same scheme in the proof of
Theorem 7.1.16.

7.1.4 Mapping Theorems for the Numerical Range

As an application of Theorem 7.1.7 we prove what is called ‘mapping theorems for
the numerical range’, a name somewhat inaccurate but not totally inappropriate.
Here is the main result.

Theorem 7.1.12. Let A be an m-accretive operator on the Hilbert space H, and let
f ∈ M[Sπ/2]A. Then

W (f(A)) ⊂
⋂

ϕ> π
2

convf(Sϕ).

Proof. Fix ϕ ∈ (π/2, π) such that f ∈ O(Sϕ)A. Without loss of generality we
may suppose that the set conv(f(Sϕ) is not the whole plane, so there must be a
proper closed half-plane containing it, and it is in fact the intersection of all such
half-planes. Let P be any closed half-plane which contains f(Sϕ). Then there
are numbers a, b ∈ C such that a + bP equals the right half-plane {Re z ≥ 0}.
Therefore, ∣∣∣∣a + bf − 1

a + bf + 1

∣∣∣∣ ≤ 1 (z ∈ Sϕ).

Hence Theorem 7.1.7 (or rather the succeeding corollary) and some general func-
tional calculus arguments yield that the operator a + bf(A) + 1 is invertible and∥∥(a + bf(A) + 1)(a + f(A) + 1)−1

∥∥ ≤ 1.

So a+bf(A) is m-accretive, and this means that a+bW (f(A)) = W (a+bf(A)) ⊂
{Re z ≥ 0}, whence W (f(A)) ⊂ P . �

Corollary 7.1.13. Let A be m-accretive, and let α ∈ (0, 1). Then the operator Aα

is m-απ/2-accretive, i.e., one has

|Im (Aαx |x)| ≤ tan
απ

2
Re (Aαx |x) (x ∈ D(Aα)).
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Proof. Let f(z) := zα. Then f(Sϕ) = Sαϕ for every ϕ ∈ (π/2, π), and the assertion
follows from Theorem 7.1.12. �

We remark that the converse of Corollary 7.1.13 is not true, as Simard has
shown. In fact there is α ∈ (0, 1) and an operator A on the two-dimensional
Hilbert space such that A is not accretive but Aα is απ/2-accretive (see [203,
Proposition 6]). (Surprisingly, the converse does hold modulo similarity; this was
proved by Le Merdy [149].) Thus it becomes clear that Theorem 7.1.12 is of
restricted value when the original operator is not m-accretive but satisfies other
numerical range conditions. Sometimes however one is lucky, like in the following
example.

Corollary 7.1.14. Let ω ∈ [0, π/2], and let A be an injective m-ω-accretive operator.
Then log A is m-Hω-accretive.

Proof. Theorem 7.1.12 shows that log A is m-Hπ/2-accretive whenever A is m-
accretive. Define θ := π/2−ω and apply the foregoing to e±iθ. Since log(e±iθA) =
±iθ + log(A) we obtain

±iθ + W (log(A)) = W (log(e±iθA)) ⊂ Hπ
2
. �

For completeness, we state another mapping theorem for the numerical range.

Corollary 7.1.15. Let δ > 0 and A−δ be m-accretive. Then Aα−δα is m-accretive
for each α ∈ (0, 1).

Proof. We reproduce the proof from [210, Lemma 2.3.6]. The assumption implies
that t

∥∥(A− δ + t)−1
∥∥ ≤ 1 for t > 0. Replacing t by t + δ we obtain

Re
(
A(t + A)−1x

∣∣ x) = ‖x‖2 − t Re
(
(t + A)−1x

∣∣x)
≥ ‖x‖2 − t

t + δ
‖x‖2 =

δ

t + δ
‖x‖2 .

Now the Balakrishnan representation (3.2) yields for x ∈ D(A)

Re (Aαx |x) =
sin απ

α

∫ ∞

0

tα−1 Re
(
(t + A)−1Ax

∣∣ x) dt

≥ sin απ

α

∫ ∞

0

tα−1 δ

t + δ
dt ‖x‖2 = δα ‖x‖2 .

Since D(A) is dense in H , it is a core for Aα. Thus by approximation we obtain
Re (Aαx |x) ≥ δα ‖x‖2 for all x ∈ D(Aα), i.e., Aα − δα is m-accretive. �

7.1.5 The Crouzeix–Delyon Theorem

We now turn to the strip case, i.e., to the case of an m-Hω-accretive operator for
ω > 0. (The case ω = 0 has been treated in Corollary 7.1.6 c).) The following
result was originally published in [55].
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Theorem 7.1.16 (Crouzeix–Delyon). Let ω > 0 and let A be a m-Hω-accretive
operator on the Hilbert space H. Then

‖f(A)‖ ≤
(
2 + 2/

√
3
)
‖f‖Hω

(f ∈ H∞[Hω]).

Proof. We begin with some reducing steps. First, we may suppose that f ∈ F [Hω].
(Use Proposition 5.1.7 and approximate f by fn(z) := f(z) (n/(n + ω + iz))2.)
Next we reduce the theorem to bounded operators being Hεω-accretive for some
0 < ε < 1. To this aim, consider the operator An := (1 − 1/n)[n(n + ω +
iA)−1]∗A[n(n + ω + iA)−1]. Clearly, An is bounded and H(1−1/n)ω-accretive and
Anx → Ax for all x ∈ D(A). Using Proposition 7.1.2 we see that ‖R(λ, An)‖ is
bounded uniformly in n ∈ N and λ on horizontal lines. This implies that

R(λ, An)x−R(λ, A)x = R(λ, An)[An −A]R(λ, A)x → 0

for each x ∈ H . Hence f(An)→ f(A) strongly for every f ∈ F [Hω].

We thus may suppose that A is bounded and Hω′-accretive for some 0 <
ω′ < ω. Write A = B + iC with B, C bounded and self-adjoint and −ω′ ≤ C ≤ ω′.
For f ∈ F [Hω ] we can shift the path of integration to ∂Hω to obtain

f(A) =
1

2πi

∫
∂Hω

f(z)R(z, A) dz

=
1

2πi

∫
∂Hω

f(z) (R(z, A)−R(z, A)∗) dz +
1

2πi

∫
∂Hω

f(z)R(z, A∗) dz

=
∫

∂Hω

f(z)T (z) dz +
1

2πi

∫
∂Hω

f(z)R(z, A∗) dz, (7.3)

with

T (z) :=
1

2πi
(R(z, A)−R(z, A)∗) =

1
π

R(z, A)∗(C − Im z)R(z, A).

Note that T (z) ≥ 0 when Im z ≤ −ω and T (z) ≤ 0 when Im z ≥ ω. Let us

deal with the first summand. We define S(z) :=
{
−T (z) Im z ≥ ω
T (z) Im z ≤ −ω

. Then

T (z) dz = S(z) |dz| on ∂Hω. Hence

S :=
∫

∂Hω

T (z) dz =
∫

∂Hω

S(z) |dz|

is a positive operator. Moreover, by Corollary C.6.4 we can estimate∥∥∥∥∫
∂Hω

f(z)T (z) dz

∥∥∥∥ ≤ ‖f‖Hω
‖S‖ , (7.4)
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so we have to specify ‖S‖. To this end we write

T (z) =
1

2πi

(
R(z, A)− 1

z

)
+

1
2πi

(
1
z
− 1

z

)
+

1
2πi

(
1
z
−R(z, A∗)

)
=

1
2πi

R(z, A)A
z

+
− Im z

π |z|2
− 1

2πi

R(z, A∗)A∗

z
.

When we form S =
∫

∂Hω
T (z) dz the first and the last summand vanish by

Cauchy’s theorem (deform the path according to ω →∞). Hence we arrive at

S =
∫

∂Hω

− Im z

π |z|2
dz =

∫
R

ω

π |r − iω|2
dr −

∫
R

−ω

π |r + iω|2
dr = 2. (7.5)

We now treat the second summand, namely

1
2πi

∫
∂Hω

f(z)R(z, A∗) dz

=
1

2πi

∫
R

f(r − iω)R(r + iω, A∗) dz − 1
2πi

∫
R

f(r + iω)R(r − iω, A∗) dz

=
1

2πi

∫
Im z=−ω

f(z)R(z + 2iω, A∗) dz − 1
2πi

∫
Im z=ω

f(z)R(z − 2iω, A∗) dz

(∗)
=

1
2πi

∫
R

f(z)R(z + 2iω, A∗) dz − 1
2πi

∫
R

f(z)R(z − 2iω, A∗) dz

=
1

2πi

∫
R

f(z) [R(z + 2iω, A∗)−R(z − 2iω, A∗)] dz

=
−2ω

π

∫
R

f(t)R(t + 2iω, A∗)R(t− 2iω, A∗) dt,

where in (∗) we have used Cauchy’s theorem. Write

R(t+2iω, A∗)R(t− 2iω, A∗) =
(
(t−A∗)2 + 4ω2

)−1
=
(
(t−B + iC)2 + 4ω2

)−1

=
(
(t−B)2 + 4ω2 − C2 + i[2tC − CB −BC]

)−1

= (Mt + iNt)−1 = M
− 1

2
t (I + iRt)−1M

− 1
2

t

with Mt := (t−B)2+4ω2−C2, Nt := 2tC−BC−CB and Rt := M
−1/2
t NtM

−1/2
t .

Note that all operators Mt, Nt, Rt are self-adjoint and one has Mt ≥ 3ω2. Now∥∥(I + iRt)−1
∥∥ ≤ 1 for all t since Rt is self-adjoint. Employing Proposition C.6.3

we obtain∥∥∥∥ 1
2πi

∫
∂Hω

f(z)R(z, A∗) dz

∥∥∥∥ =
2ω

π

∥∥∥∥∫
R

f(t)M− 1
2

t (I + iRt)−1M
− 1

2
t dt

∥∥∥∥
≤ ‖f‖Hω

2ω

π

∥∥∥∥∫
R

M−1
t dt

∥∥∥∥ . (7.6)
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Now, Mt ≥ (t − B)2 + 3ω2 whence M−1
t ≤

(
(t−B)2 + 3ω2

)−1 by Proposition
C.4.7. This gives ∫

R

M−1
t dt ≤

∫
R

(
(t−B)2 + 3ω2

)−1
dt. (7.7)

Claim:

∫
R

(
(t−B)2 + 3ω2

)−1
dt =

π√
3ω

.

Proof of Claim. The assertion is readily seen to be true by using the Spectral
Theorem. Without this powerful tool one can argue as follows (with η :=

√
3ω):∫

R

(
(t−B)2 + η2

)−1
dt =

1
2iη

∫
R

(R(t− iη, B)−R(t + iη, B)) dt

=
1

2iη

∫
R

(
R(t− iη, B)− 1

t− iη

)
+
(

1
t− iη

− 1
t + iη

)
−
(
R(t + iη, B)− 1

t + iη

)
dt

=
1

2iη

∫
R

R(t− iη, B)B
t− iη

− R(t + iη, B)B
t + iη

dt +
∫

R

dt

t2 + η2

=
1

2iη

∫
∂Hη

R(z, B)B
z

dz +
π

η
=

π

η
,

by Cauchy’s theorem (make a change of variable w := z−1 in the integral and note
that w−1R(w−1, B) is holomorphic at 0).

The Claim together with (7.7) shows that
∥∥∫

R
M−1

t dt
∥∥ ≤ π/(

√
3ω). Com-

bining this with (7.3), (7.4), (7.5), and (7.6) yields

‖f(A)‖ ≤ ‖f‖Hω
2 + ‖f‖Hω

2ω

π

π√
3ω

=
(
2 + 2/

√
3
)
‖f‖Hω

. �
As a corollary we obtain a statement for ω-accretive operators.

Corollary 7.1.17. Let A be m-ω-accretive for some ω ∈ [0, π/2]. Then

‖f(A)‖ ≤
(

2 +
2√
3

)
‖f‖Sω

(7.8)

for all f ∈ R(Sω). If A is injective, then (7.8) holds for all f ∈ H∞[Sω].

Proof. Let B := log A and c := 2 + 2/
√

3. Then B is Hω-accretive by Corollary
7.1.14. Hence

‖f(A)‖ = ‖f(ez)(B)‖ ≤ c ‖f(ez)‖Hω
= c ‖f‖Sω

by the composition rule. �
Remark 7.1.18. A different (and easier) proof can be given for the following, con-
siderably weaker, statement: If A is Hω-accretive and ϕ ∈ (ω, π), then the natural
H∞(Hϕ)-calculus for A is bounded. Indeed, one can view A = B + iC as a
bounded perturbation of a self-adjoint operator and use an argument similar to
the proof of Proposition 5.5.3. This has been done in [105].
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7.2 Group Generators on Hilbert Spaces

We have seen in the previous section that an m-Hω-accretive operator A on a
Hilbert space H has bounded natural H∞(Hϕ)-calculi for all ϕ > ω. Due to the
numerical range condition, the bounds are even independent of ϕ. In this section
we weaken the assumptions made on A and nevertheless retain the conclusion
(with bounds now being dependent on ϕ.) More precisely, we shall prove the
following theorem result from [34].

Theorem 7.2.1 (Boyadzhiev–de Laubenfels). Let iA generate a C0-group T on the
Hilbert space H. Then, for each α > θ(T ), the natural H∞(Hα)-calculus for A is
bounded.

Remark 7.2.2. Let us remark that Monniaux’s Theorem 4.4.3 in the Hilbert space
case is an immediate corollary of Theorem 7.2.1. Indeed, if iB generates the group
T , then ωst(B) = θ(T ) by Gearhart’s theorem. If this is smaller than π, eB must
be sectorial by Proposition 5.3.3 and Theorem 7.2.1.

We shall prove Theorem 7.2.1 in two different ways. The first employs Theo-
rem 7.1.16 (or Remark 7.1.18) by an elegant similarity result. The second approach
yields even a characterisation of group generators on Hilbert spaces.

The key idea for our first proof of Theorem 7.2.1 is that the conclusion is
not dependent on any particular scalar product on H . So if we can find, for fixed
α > θ(T ), an equivalent scalar product ( . | .)◦ with respect to which the operator
A is Hα-accretive, we are done by the Crouzeix–Delyon Theorem 7.1.16. This
method indeed works, see Theorem 7.2.8 below. However, we have to make a
little detour before.

7.2.1 Liapunov’s Direct Method for Groups

Recall the classical Liapunov theorem for linear dynamical systems in Cn.

Theorem 7.2.3 (Liapunov). Let A ∈Mat(n, C) with σ(A) ⊂ {z | Re z > 0}. Then
there is a Hilbert norm ‖·‖◦ on Cn and ε > 0 such that∥∥e−tA

∥∥
◦ ≤ e−εt (t ≥ 0).

The theorem has two components. First it states that the spectral condition

s(−A) := sup{Reλ | λ ∈ σ(−A)} < 0

for the generator −A of a semigroup T (t) = e−tA on the Hilbert space Cn implies
the exponential stability of the semigroup. Second it states that an exponentially
stable semigroup on (Cn, ‖·‖2) is similar to a contraction semigroup.

One can wonder about infinite-dimensional analogues. Concerning the first
part, it is well known that a sole condition on the position of the spectrum does
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not imply exponential stability of the semigroup on a general Hilbert space. (See
[10, Example 5.3.2] or [57, Example 5.1.4].) Concerning the second part, we shall
see in Section 7.3.4 below that there is a Hilbert space H and a C0-semigroup T
on H that is not similar to a quasi-contractive semigroup, i.e., for no ω ∈ R one
can find an equivalent Hilbert norm ‖·‖◦ on H such that ‖T (t)‖◦ ≤ eωt for all
t ≥ 0.

So if one is interested in infinite-dimensional versions of Liapunov’s theorem,
one has to impose further conditions. One guiding principle is to look at the
proof in finite dimensions. The central point is to find a Liapunov function for the
dynamical system given by

u̇ + (A− ε)u = 0,

i.e., a function which decreases along the orbits (t �−→ eεtT (t)x). In the finite-
dimensional situation such a Liapunov function is given by

‖x‖2◦ :=
∫ ∞

0

∥∥eεtT (t)x
∥∥2

dt (7.9)

for x ∈ H . (Note that (eεtT (t))t≥0 is still exponentially stable.) This is sometimes
called Liapunov’s direct method. It is easily seen that by (7.9) a continuous norm
is defined. In general, this norm may not be equivalent to the orginal one (see the
remark after Proposition 7.2.7 below), but in the special case where T is a group,
everything works.

Proposition 7.2.4. Let A be the generator of an exponentially stable C0-semigroup
T on H. Then the operator Q defined by

Q :=
∫ ∞

0

T (t)∗T (t) dt

is a bounded, positive, and injective operator on H. By

(x | y )◦ := (Qx | y ) =
∫ ∞

0

(T (t)x |T (t)y ) dt

a continuous scalar product is defined on H. The semigroup T is contractive with
respect to ‖·‖◦, and Q satisfies the Liapunov inclusion

QA ⊂ −I −A∗Q. (7.10)

Equivalently, QD(A) ⊂ D(A∗) and QAx + A∗Qx = −x for all x ∈ D(A). If T
is a group, then Q is invertible and ( · | ·)◦ is an equivalent scalar product on H.
Moreover, one has

QA = −I −A∗Q and A = −Q−1 −A◦, (7.11)

where A◦ denotes the adjoint of A with respect to the scalar product ( · | ·)◦.
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Proof. Boundedness and positivity of Q are clear from the definition. Since we
have (Qx |x) =

∫∞
0
‖T (t)x‖2 dt, the operator Q is injective and ( · | ·)◦ is in fact

a scalar product (not just a semi-scalar product, see Proposition C.5.1). A simple
change of variable yields the formula ‖T (t0)x‖◦ ≤ ‖x‖◦ for all x ∈ H and t0 ≥ 0.
If T is a group, we find M ≥ 1 and ω > 0 such that ‖T (t)‖ ≤Meω|t| for all t ∈ R.
Thus,

‖x‖2◦ = (Qx |x) =
∫ ∞

0

‖T (t)x‖2 dt ≥
∫ ∞

0

M−2e−2ωt dt ‖x‖2 =
1

2ωM2
‖x‖2

for all x ∈ H . Hence in this case the new scalar product is equivalent to the
old one and Q is invertible (Proposition C.5.1). For the proof of the Liapunov
inclusion note that since T is exponentially stable, the resolvent of its generator
A is given by

−A−1 = R(0, A) =
∫ ∞

0

T (s) ds

(see Proposition A.8.1). Therefore,

Q(−A−1) =
∫ ∞

0

T (t)∗T (t)
∫ ∞

0

T (s) ds dt =
∫ ∞

0

T ∗(t)
∫ ∞

t

T (s) ds dt

=
∫ ∞

0

(∫ s

0

T (t)∗ dt

)
T (s) ds.

Similarly,

−(A∗)−1Q =
∫ ∞

0

T (t)∗
∫ ∞

0

T (s)∗T (s) ds dt =
∫ ∞

0

(∫ ∞

s

T (t)∗ dt

)
T (s) ds.

Adding the two identities we obtain

−(QA−1 + (A∗)−1Q) =
∫ ∞

0

∫ ∞

0

T (t)∗ dt T (s) ds = (A∗)−1A−1.

This yields QA−1 = −(A∗)−1(A−1 + Q), whence (7.10) holds. Suppose T is a
group. Then Q is invertible and A◦ = Q−1A∗Q is the adjoint with respect to
the new scalar product (see Lemma C.5.2). Multiplying the Liapunov inclusion
from the left by Q−1 yields A ⊂ −A◦ − Q−1. But −A◦ − Q−1 is a bounded
perturbation of a C0-semigroup generator, whence it is also a generator of a C0-
semigroup. This implies readily that A = −A◦−Q−1. Multiplying by Q from the
left yields (7.11). �
Corollary 7.2.5 (Liapunov’s theorem for groups). Let T be an exponentially stable
C0-semigroup on the Hilbert space H. Suppose that T is a group. Then for each
ε ∈ (0,−ω0(T )) there is an equivalent Hilbert norm ‖·‖◦ on H such that

‖T (t)‖◦ ≤ e−εt (t ≥ 0).
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Remarks 7.2.6. 1) Since the ‘Liapunov inclusion’ QA ⊂ −I − A∗Q is not an
equation in general, we do not want to call it a ‘Liapunov equation’ (which
is the name in the finite-dimensional setting). However, one can reformulate
the inclusion as a system of equations

(Ax |Qy ) + (Qx |Ay ) = − (x | y ) (x, y ∈ D(A)).

In [57, p.160 and p.217] this system is called ‘Liapunov equation’.

2) We shall prove an infinite-dimensional Liapunov theorem for holomorphic
semigroups in Corollary 7.3.8.

The next proposition shows in which cases the ‘direct method’ works. Consult
[105] for a proof.

Proposition 7.2.7. Let A be the generator of an exponentially stable C0-semigroup
T on H, and define Q :=

∫∞
0

T (t)∗T (t) dt. Then the following assertions are
equivalent.

(i) The semigroup T is a group.

(ii) The operator Q is invertible and T (t) has dense range for some t > 0.

(iii) The operator Q is invertible and T ∗(t) is injective for some t > 0.

(iv) Both operators Q and Q̃ :=
∫∞
0 T (t)T ∗(t) dt are invertible.

(v) The operator Q is invertible and no left half-plane is contained in the residual
spectrum of A.

As a consequence we obtain that the direct method works in the case of
holomorphic semigroups if and only if the generator is bounded.

7.2.2 A Decomposition Theorem for Group Generators

We come back to our original goal. Let A be the generator of a C0-group T on
the Hilbert space H . Recall the definition of the group type θ(T ) in Appendix A
on page 302. We fix ω > θ(T ) and define

(x | y )◦ :=
∫

R

(T (t)x |T (t)y ) e−2ω|t| dt

=
∫ ∞

0

(T (t)x |T (t)y ) e−2ωt dt +
∫ ∞

0

(T (−t)x |T (−t)y ) e−2ωt dt (7.12)

for x, y ∈ H , i.e., we apply the Liapunov method simultaneously to the rescaled
’forward’ and ’backward’ semigroups obtained from the group T . From Proposi-
tion 7.2.4 it is immediate that ( · | ·)◦ is an equivalent scalar product on H . The
following theorem summarises its properties.
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Theorem 7.2.8 (Decomposition Theorem). Let iA be the generator of a C0-group
T on a Hilbert space H and let ω > θ(T ). With respect to the (equivalent) scalar
product ( · | ·)◦ defined by (7.12) the operator A is m-Hω-accretive.

If one writes A = B + iC with B, C self-adjoint and −ω ≤ C ≤ ω with respect
to ( . | .)◦, then D(A) = D(A◦) is C-invariant, and [B, C] = BC − CB has an
extension to a bounded operator which is skew-adjoint with respect to ( . | .)◦.

Note that by Proposition 7.1.2 the decomposition A = B + iC exists.

Proof. For s ∈ R, x ∈ H one has

‖T (s)x‖2◦ =
∫

R

‖T (t)T (s)x‖2 e−2ω|t| dt =
∫

R

‖T (t + s)x‖2 e−2ω|t| dt

=
∫

R

‖T (t)x‖2 e−2ω|t−s| dt =
∫

R

‖T (t)x‖2 e−2ω|t|e2ω(|t|−|t−s|) dt

≤ e2ω|s| ‖x‖2◦

since |t| − |t− s| ≤ |s| for all s, t ∈ R by the triangle inequality. This gives
‖T (t)‖◦ ≤ eω|t| for all t ∈ R, whence iA is m-Hω-accretive by Proposition 7.1.2.
Now, let

Q⊕ :=
∫ ∞

0

T (t)∗T (t)e−2ωt dt, Q� :=
∫ ∞

0

T (−t)∗T (−t)e−2ωt dt,

and

Q := Q⊕ + Q� =
∫

R

T (t)∗T (t)e−2ω|t| dt.

Then (x | y )◦ = (Qx | y ) for all x, y ∈ H . The Liapunov equations for Q⊕ and Q�
read

Q⊕(iA− ω) = −I − (−iA∗ − ω)Q⊕ (7.13)
Q�(−iA− ω) = −I − (iA∗ − ω)Q�. (7.14)

Subtracting the second from the first yields

QA ⊂ A∗Q + 2iω(Q⊕ −Q�).

If we multiply by Q−1 we arrive at A ⊂ A◦ + 2iωQ−1(Q⊕ −Q�). Since D(A) =
D(A◦) by Proposition 7.1.2, we actually have equality and

C = ωQ−1(Q⊕ −Q�).

The C-invariance of D(A) is clear from the formulae (7.13) and (7.14) and the
identity D(A) = D(A◦) = Q−1D(A∗). Furthermore, employing again (7.13) and
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(7.14) as well as A◦ = A− 2iC, we compute

iCA = ωQ−1(Q⊕iA−Q�iA)

= ωQ−1(−1 + 2ωQ⊕ + iA∗Q⊕ − 1 + 2ωQ� − iA∗Q�)

= ωQ−1(−2 + 2ωQ + iA∗(Q⊕ −Q�))

= −2ωQ−1 + 2ω2 + iωA◦Q−1(Q⊕ −Q�)

= −2ωQ−1 + 2ω2 + iA◦C

= −2ωQ−1 + 2ω2I + i(A− 2iC)C

= −2ωQ−1 + 2ω2 + 2C2 + iAC.

This shows that [B, C] = [A, C] has an extension to a bounded operator which is
skew-adjoint with respect to ( · | ·)◦. �

A simple renaming of terms and forgetting the new scalar product yields the
following stunning corollary.

Corollary 7.2.9. Let A generate a C0-group T on a Hilbert space H. Then there
exists a bounded operator C such that B := A−C generates a bounded C0-group.
Moreover, the operator C can be chosen in such a way that D(A) is C-invariant
and the commutator [A, C] = AC − CA has an extension to a bounded operator
on H.

Remark 7.2.10. Let A be an Hω-accretive operator on H . By Proposition 7.1.2,
A = B + iC with B, C self-adjoint and −ω ≤ C ≤ ω. In general, however, D(A)
is not C-invariant. In fact, let H := L2(R) and B = d/dt be the generator of
the shift group. Furthermore, let C := (f �→ ωmf) where m(x) = sgnx is the
sign function. Then C is bounded and self-adjoint, and A := B + C generates
a C0-group T with ‖T (t)‖ ≤ eω|t|. Obviously, D(A) = D(B) = W1,2(R) is
not invariant with respect to multiplication by m. This example shows that the
additional statement in Theorem 7.2.8 is not a matter of course and is due to the
particular way of renorming.

Theorem 7.2.8 together with the Crouzeix–Delyon Theorem 7.1.16 immedi-
ately imply Theorem 7.2.1.

7.2.3 A Characterisation of Group Generators

We now turn to a second proof of Theorem 7.2.1. In fact, we prove a more general
result, characterising generators of C0-groups on Hilbert spaces.

In this section we consider a strip-type operator A ∈ Strip(ω) on the Hilbert
space H . Let ϕ1, ϕ2 ∈ R \ [−ω, ω]. Then we have

(t �→ R(t + iϕ1, A)x) ∈ L2(R, H) ⇐⇒ (t �→ R(t + iϕ2, A)x) ∈ L2(R, H)
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for each x ∈ H . (Use the resolvent identity and the fact, that the resolvent is
uniformly bounded on the horizontal lines R + iϕ1 and R + iϕ2).

We say that A admits quadratic estimates if for every ϕ ∈ R \ [−ω, ω] there
exists c = c(A, ϕ) such that∫

R

‖R(t + iϕ, A)x‖2 dt ≤ c(A, ϕ) ‖x‖2 (x ∈ H).

From the remarks above and the Closed Graph Theorem it follows that A admits
quadratic estimates if and only if there exists ϕ ∈ R \ [−ω, ω] such that

(t �−→ R(t + iϕ, A)x) ∈ L2(R, H)

for all x ∈ H . If A admits quadratic estimates then also −A and A + λ do so, for
each λ ∈ C.

Example 7.2.11. Let A ∈ Strip(ω), and suppose that iA is the generator of a C0-
semigroup T on H . We claim that A admits quadratic estimates. In fact, we can
find constants M, ω0 such that ‖T (t)‖ ≤ Meω0t for all t ≥ 0. Then

R(λ, A)x =
∫ ∞

0

e−λtT (t)xdt

for all Re λ > ω0. An application of the Plancherel Theorem C.8.1 now yields∫
R

‖R(t− iϕ, A)x‖2 dt =
∫

R

‖R(it, A− ϕ)x‖2 dt = 2π

∫ ∞

0

∥∥e−ϕsT (s)x
∥∥2

ds

≤ πM2

ϕ− ω0
‖x‖2

for all ϕ > ω, ω0 and all x ∈ H . Since also iA∗ = −(iA)∗ generates a C0-semigroup,
the operator A∗ admits quadratic estimates as well.

We can now state the main result.

Theorem 7.2.12 (Characterisation Theorem). Let H be a Hilbert space, let ω ≥ 0,
and let A ∈ Strip(ω) on H such that A is densely defined. Then the following
assertions are equivalent.

(i) The natural H∞(Hα)-calculus for A is bounded, for one / all α > ω.

(ii) The operator iA generates a C0-group.

(iii) The operator iA generates a C0-semigroup.

(iv) The operators A and A∗ both admit quadratic estimates.

If iA generates the C0-group T , then ω(T ) ≤ ω.
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Proof. The implication (ii)⇒(iii) is obvious, and (iii)⇒(iv) is in Example 7.2.11.
To prove (i)⇒(ii) one only has to note that the boundedness of the H∞-functional
calculus for A on some horizontal strip Hα implies the Hille–Yosida conditions for
iA and −iA (see Theorem A.8.6). Hence iA generates a C0-group T . Futhermore,
we see that in this case the group type of T is at most as large as α.

To establish the implication (iv)⇒(i) needs a little more effort. We fix α ∈
(ω, µ) and define the auxiliary function ψ by

ψ(z) :=
c

(µ2 + z2)2
(z ∈ Hα),

where c is chosen such that∫
R

ψ(t) dt =
∫

R

c

(µ2 + t2)2
dt = 1.

(One can easily compute c = 4µ3/π). For a given f ∈ H∞(Hα) we now define the
approximants fn by

fn(z) :=
∫ n

−n

(fψt)(z) dt = f(z)
∫ n

−n

ψ(z + t) dt (z ∈ Hα), (7.15)

where here and in the following for a function g on the strip Hα we denote by gt

the function gt := (z �−→ g(t + z)) : Hα −→ C. We collect the properties of these
approximants in a lemma. (Recall the definition of F(Hα) in Section 4.2.)

Lemma 7.2.13. Let f ∈ H∞(Sα) and let the sequence (fn)n be defined by (7.15).
Then the following holds.

a) fn ∈ F(Hα) for all n.

b) supn ‖fn‖∞ <∞.

c) fn → f pointwise on Sα.

d) The function (t �→ (fψt)(A)) : R −→ L(H) is continuous and

fn(A) =
∫ n

−n

(fψt)(A) dt ∈ L(H).

e) supn ‖fn(A)‖ < ∞.

Proof. a) By elementary Complex Analysis it is clear that fn is holomorphic on
Hα for each n. We can choose d > 0 such that

|ψ(z)| = c

|µ2 + z2|2
≤ d

(1 + |Re z|2)2
(z ∈ Hα).

For fixed n ∈ N one can find dn > 0 such that

1
1 + |Re z + t|2

≤ dn

1 + |Re z|2
(z ∈ Hα, |t| ≤ n).
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With the help of this we can compute

|fn(z)| ≤ ‖f‖∞
∫ n

−n

|ψ(z + it)| dt ≤ ‖f‖∞
∫ n

−n

d

(1 + |Re z + t|2)2
dt

≤ ‖f‖∞
dn

1 + |Re z|2
(∫

R

d

1 + t2
dt

)
= ‖f‖∞

ddnπ

1 + |Re z|2

for z ∈ Hα. This proves a). To establish b), let n ∈ N and z ∈ Hα. Then

|fn(z)| ≤ ‖f‖∞
∫

R

|ψ(z + t)| dt

≤ ‖f‖∞
∫

R

d

(1 + |Re z + t|2)2
dt = ‖f‖∞

∫
R

d

(1 + t2)2
dt.

Part c) follows easily, since by b) and Vitali’s theorem it suffices to show that
fn(z) → f(z) for all z ∈ R. But this is obvious from (7.15). The statement d) is
immediate from the Convergence Lemma (Proposition 5.1.7). To prove e) we let
η(z) := 1/(µ2 +z2). Hence ψ = cη2. Choose ω1 ∈ (ω, α) and let γ := γω1 = ∂Hω1 .
Now we fix t ∈ R and compute∫

γ

1
|µ2 + (z + t)2| d |z| = 2

∫
R

ds

|µ2 + (s + iω1)2|

= 2
∫

R

ds

|(s + iω1 + iµ)(s + iω1 − iµ)|

≤ 2

(∫
R

ds

|s + iω1 + iµ|2

) 1
2
(∫

R

ds

|s + iω1 − iµ|2

) 1
2

= 2
(∫

R

ds

(µ + ω1)2 + s2

) 1
2
(∫

R

ds

(µ− ω1)2 + s2

) 1
2

=
2π√

µ2 − ω2
1

.

Using this we can estimate ‖(fηt)(A)‖ for each t ∈ R by

‖(fηt)(A)‖ =
∥∥∥∥ 1

2πi

∫
γ

f(z)
µ2 + (z + t)2

R(z, A) dz

∥∥∥∥
≤ L(A, ω1)

2π
‖f‖∞

∫
γ

1
|µ2 + (z + t)2| d |z|

≤ L(A, ω1)
2π

‖f‖∞
2π√

µ2 − ω2
1

=
L(A, ω1)√

µ2 − ω2
1

‖f‖∞ .
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Thus, for arbitrary x, y ∈ H one has

|(fn(A)x | y )| =
∣∣∣∣∫ n

−n

( (fψt)(A)x | y ) dt

∣∣∣∣
= c

∣∣∣∣∫ n

−n

(ηt(A)(fηt)(A)x | y ) dt

∣∣∣∣
= c

∣∣∣∣∫ n

−n

( (fηt)(A)R(iµ − t, A)x |R(iµ− t, A∗)y ) dt

∣∣∣∣
≤ c L(A, ω1)√

µ2 − ω2
1

‖f‖∞
∫

R

‖R(t + iµ, A)x‖ ‖R(t + iµ, A∗)y‖ dt

≤ c√
µ2 − ω2

1

L(A, ω1) ‖f‖∞(∫
R

‖R(t + iµ, A)x‖2 dt

) 1
2
(∫

R

‖R(t + iµ, A∗)y‖2 dt

) 1
2

≤ c√
µ2 − ω2

1

L(A, ω1) c(A, µ) c(A∗, µ) ‖f‖∞ ‖x‖ ‖y‖ .

In particular, this shows that

‖fn(A)‖ ≤ ‖f‖∞
c√

µ2 − ω2
1

L(A, ω1) c(A, µ) c(A∗, µ)

for each n. Thus e) is completely proved. �

It is now easy to complete the proof of Theorem 7.2.12. We simply apply
the Convergence Lemma (Proposition 5.1.7) to the sequence (fn(A))n∈N. Hence
we obtain the boundedness of the functional calculus and, more explicitly,

‖f(A)‖ ≤ ‖f‖∞
4µ3

π
√

µ2 − ω2
1

L(A, ω1) c(A, µ) c(A∗, µ) (7.16)

for all f ∈ H∞(Hα). �

Corollary 7.2.14 (Liu). Let A be the generator of a C0-semigroup T on the Hilbert
space H. If the resolvent of A exists and is uniformly bounded on a left half-plane,
then T is a group.

7.3 Similarity Theorems for Sectorial Operators

In the last section we have seen how the boundedness of an H∞-calculus could be
proved by first changing the scalar product appropriately. In the current section
we do it the other way round. Indeed, we shall see how the boundedness of the
H∞-calculus for a sectorial operator leads to an interesting similarity theorem.
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7.3.1 The Theorem of McIntosh

The objective of the present section is among the most important results in the
theory of functional calculus.

Theorem 7.3.1 (McIntosh). Let A be an injective sectorial operator on the Hilbert
space H. Then the following assertions are equivalent:

(i) For some/each 0 
= f ∈ H∞
0 [SωA ] there are constants C1(f), C2(f) > 0 such

that

C1(f) ‖x‖2 ≤
∫ ∞

0

‖f(tA)x‖2 dt

t
≤ C2(f) ‖x‖2 (7.17)

for all x ∈ H.

(ii) For one/all ϕ ∈ (ωA, π), the natural H∞(Sϕ)-calculus for A is bounded.

(iii) A ∈ BIP(H).

Proof. (ii)⇒(iii) is obvious. To prove the converse, we pass to B := log A. If
A ∈ BIP(H), iB generates the C0-group T := (Ais)s∈R. By the Boyadzhiev–de
Laubenfels Theorem 7.2.1, B has bounded H∞-calculus on every strip Hα, where
α > θ(T ) = θA. But θA = ωA (Corollary 4.3.5), and therefore (ii) follows from
Proposition 5.3.3.

(i)⇒(ii). Reformulating statement (i) we obtain

H =
{
x ∈ H

∣∣ t−1/2f(tA)x ∈ L2
∗((0,∞); H)

}
with equivalent norms ‖x‖H ∼ ‖t−1/2f(tA)x‖L2∗((0,∞);H) (we use the terminology
of Chapter 6). Employing Theorem 6.4.5 and some density arguments, this is
equivalent to the statement

H = (Ḋ, Ṙ) 1
2 ,2 (7.18)

where Ḋ is the homogeneous domain and Ṙ is the homogeneous range space (see
Section 6.3.3). Hence (ii) follows from Theorem 6.5.6.

(ii)⇒(i). Let C be such that ‖g(A)‖ ≤ C ‖g‖Sϕ
for all g ∈ H∞

0 (Sϕ) and let
f ∈ H∞

0 (Sϕ). Employing the Rademacher functions (see Appendix E.7)

∫ 2N

2−N

‖f(tA)x‖2 dt

t
=

N∑
k=−N

∫ 2k+1

2k

‖f(tA)x‖2 dt

t
=

N∑
k=−N

∫ 2

1

∥∥f(t2kA)x
∥∥2 dt

t

=
∫ 2

1

N∑
k=−N

∥∥f(t2kA)x
∥∥2 dt

t
=
∫ 2

1

∥∥∥∥∑N

−N
rk ⊗ f(t2kA)x

∥∥∥∥2

Rad(H)

dt

t

≤
∫ 2

1

∥∥∥∥∑N

−N
rk ⊗ f(t2kA)

∥∥∥∥2

Rad(L(H))

dt

t
‖x‖2 .
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At this point we use the Unconditionality Lemma 5.6.1 to conclude that∥∥∥∥∑N

−N
rk(g)f(t2kA)

∥∥∥∥
L(H)

≤ DC

for all g ∈ G, t > 0, and N ∈ N, where D is a constant which does only depend
on f and ϕ. This implies that∫ ∞

0

‖f(tA)x‖2 dt

t
≤ C2D2(log 2) ‖x‖2 (x ∈ H).

So we are left to show the second inequality. For this we observe that by Propo-
sition 7.0.1 the operator A∗ also satisfies the hypothesis (ii), even with the same
constant C. By what we have already shown,∫ ∞

0

‖f(tA∗)x‖2 dt

t
≤ (log 2)C2D2 ‖x‖2 (x ∈ H).

Consider the function g := f∗f . Obviously, g ∈ H∞
0 (Sϕ) and g(t) := |f(t)|2 for

t > 0. Since f 
= 0 and f is holomorphic, we have

α :=
∫ ∞

0

|f(t)|2 dt

t
> 0.

By Theorem 5.2.6 we can compute, for all x ∈ D(A) ∩R(A) = H ,

α ‖x‖2 = (αx | x) =
(∫ ∞

0

g(tA)x
dt

t

∣∣∣∣x)
=
∫ ∞

0

(f∗(tA)f(tA)x | x)
dt

t
=
∫ ∞

0

(f(tA)x | f(tA∗)x)
dt

t

≤
(∫ ∞

0

‖f(tA)x‖2 dt

t

) 1
2
(∫ ∞

0

‖f(tA∗)x‖2 dt

t

) 1
2

≤ CD(log 2)
1
2 ‖x‖

(∫ ∞

0

‖f(tA)x‖2 dt

t

) 1
2

.

Dividing by (log 2)1/2CD ‖x‖ concludes the proof. �

Remark 7.3.2. Let us sketch a second proof of the implication (iii)⇒(i) using in-
terpolation spaces. Namely, since A, A−1 ∈ BIP, one has D(A1/2) = [H, D(A)]1/2

and R(A1/2) = [H, R(A)]1/2 by Theorem 6.6.9. On the other hand, it is known
that on Hilbert spaces real interpolation spaces (with p = 2) and complex inter-
polation spaces are equal (see [158, Corollary 4.3.12]). Hence we have

(H, D(A)) 1
2 ,2 = D(A

1
2 ) and (H, D(A−1)) 1

2 ,2 = R(A
1
2 ).
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Now we can compute

A
1
2 (1 + A)−1(H) = D(A

1
2 ) ∩ R(A

1
2 ) = (H, D) 1

2 ,2 ∩ (H, R) 1
2 ,2

= (D, R) 1
2 ,2 = (1 + A)−1(X, Ṙ) 1

2 ,2 = A
1
2 (1 + A)−1

(
X( 1

2 ), X(− 1
2 )
)

1
2 ,2

.

This yields H =
(
D(1/2), R(1/2)

)
1/2,2

, and by Theorem 6.4.5 this is exactly what
we intended to prove.

7.3.2 Interlude: Operators Defined by Sesquilinear Forms

This section has a preparatory character. We briefly review the construction
of operators by means of elliptic forms. This construction provides us with two
interesting questions concerning similarity that will be answered in the subsequent
section with the help of McIntosh’s theorem.

Let d ∈ N and Ω ⊂ Rd an open set, and let H := L2(Ω). Suppose that we
are given a set of coefficients aij ∈ L∞(Ω) (i, j = 1 . . . , d) satisfying a uniform
strict ellipticity condition, i.e.,

Re
d∑

i,j=1

ai,j(x)ξiξj ≥ δ |ξ|2 (ξ ∈ Cd, x ∈ Rd)

for some δ > 0. Given bi, ci ∈ L∞(Ω), i = 1, . . . , d, and m ∈ L∞(Ω) one considers
the operator

A := −
∑d

i,j=1
Dj(ai,j Di) +

∑d

i=1

(
biDi −Dici

)
+ m,

which acts (in the distributional sense) from W1,2(Ω) to D(Ω). Taking the part of
this operator in L2(Ω) yields the so called maximal L2-realisation of the differential
operator.

In general, only a further restriction of this operator (which amounts to in-
corporating boundary conditions) leads to an operator with reasonable properties.
Such restrictions are furnished by considering a closed subspace V ⊂ W1,2(Ω)
containing D(Ω) and thereon the sesquilinear form

a(u, v) :=
∫

Ω

{ d∑
i,j=1

ai,j(Diu)Djv +
d∑
i

bi(Diu)v + ciuDiv + muv

}
dx.

The operator A is then defined by

(u, y) ∈ A : ⇐⇒ u ∈ V, y ∈ H, and a(u, v) = (y | v )H ∀ v ∈ V.

It is easily seen that D(Ω) ⊂ D(A) and Au = Au for all u ∈ V , whence A
is a restriction of A. The choice V = W1,2

0 (Ω) yields Dirichlet and the choice
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V = W1,2 yields Neumann boundary conditions. Other choices of V lead to so-
called Robin or mixed boundary conditions, cf. [16, 17]. By a standard argument
(see [210, Sec.2.2, Ex.1] or [87, Chapter 6]) one establishes the so-called G̊arding
inequality, i.e.,

Re a(u, u) + λ0 ‖u‖2L2 ≥ δ ‖u‖2W1,2 (u ∈ V )

for some constants λ0 ∈ R and δ > 0. As we shall see below, this inequality implies
that the operator A + λ0 is m-ω-accretive for some ω ∈ [0, π/2).

We now turn to the abstract description. Let H be a Hilbert space, V ⊂ H
a dense subspace and a ∈ Ses(V ) a sesquilinear form on V . For λ ∈ C we define
the form aλ ∈ Ses(V ) by

aλ(u, v) := a(u, v) + λ (u | v )H

for u, v ∈ V . The form a is called elliptic if there is λ0 ≥ 0 such that the following
two conditions hold.

1) The form Re aλ0 = (Re a) + λ0 ( . | .)H is a scalar product on V ; this turns V
into a Hilbert space such that the inclusion mapping V ⊂ H is continuous.

2) The form a is continuous with respect to this scalar product on V .

(A moment’s reflection shows that in our example above indeed the two conditions
are satisfied, see Remark 7.3.3 below.)

With an elliptic form a on V ⊂ H we associate an operator A in the following
way. We define a norm on V by

‖u‖2V := Re a(u) + λ0 ‖u‖2H

for u ∈ V . Condition 1) then implies that V is a Hilbert space. Since V is con-
tinuously embedded in H (also by condition 1)), there is a continuous embedding
of H∗ into V ∗ (injectivity follows since V is dense in H). If we identify H with
its antidual by means of the scalar product ( · | ·)H of H (Riesz–Fréchet theorem),
we obtain a sequence of continuous embeddings

V ⊂ H(∼= H∗) ⊂ V ∗.

In doing this, H becomes a dense subspace of V ∗. Now we define the mapping
A : V −→ V ∗ by

A := (u �−→ a(u, .)) : V −→ V ∗.

By means of the identifications above we obtain (A+λ0)(u) = a(u, .)+λ0 (u | .)H .
The operator B := A+λ0 : V −→ V ∗ is an isomorphism.

Proof. Consider the form aλ0 . Then Re aλ0 is the scalar product of V , hence a
is coercive (see (C.5) on page 324). By condition 1), a is also continuous, hence
satisfies the hypotheses of the Lax–Milgram theorem (Theorem C.5.3). �
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Employing the embedding H ⊂ V ∗ we define

D(A) := {u ∈ V | there is y ∈ H s.t. a(u, ·) = (y | ·)H}
= {u ∈ V | Au ∈ H}

and Au := Au regarded as an element of H . Then the two fundamental identities

a(u, v) = 〈Au, v〉 (u ∈ V ) (7.19)
a(u, v) = (Au | v )H (u ∈ D(A)) (7.20)

hold for v ∈ V . The operator A is called associated with the form a (notation:
A ∼ a). Note that the definition of A is actually independent of the chosen λ0. An
operator A on H is called Kato-sectorial if there is a dense subspace V ⊂ H and
an elliptic form a ∈ Ses(V ) on V such that a ∼ A. Clearly, if A is Kato-sectorial,
then A+λ is Kato-sectorial for each λ ∈ C. Furthermore, also A∗ is Kato-sectorial
(if A ∼ a then A∗ ∼ a).

Remarks 7.3.3. 1) We use the name ‘Kato-sectorial’ because these operators
were treated extensively by Kato. In [130] he called them just ‘sectorial’
but nowadays this very name is used as we have defined it in Chapter 1.

2) In our introductory example of an elliptic differential operator with boundary
conditions the starting point is a little different in that the space V already
carries a (natural) Hilbert space structure such that V is densely and contin-
uously embedded in H . We denote this given scalar product on V by ( · | ·)V .
Instead of the conditions 1) and 2) one rather has

3) Re aλ(u) ≥ δ ‖u‖2V for some δ > 0 and all u ∈ V .

4) |a(u, v)| ≤M ‖u‖V ‖v‖V for some M ≥ 0 and all u, v ∈ V .

Here, condition 4) says that a is continuous on V , and this together with
condition 3) implies that Re aλ is an equivalent scalar product on V . So
indeed conditions 1) and 2) are satisfied.

The following characterisation of Kato-sectorial operators is well known.

Proposition 7.3.4. Let A ∼ a where a : V × V −→ H is an elliptic form. Then
there is ω ∈ [0, π/2) such that A + λ0 is an invertible m-ω-accretive operator on
H. (Here, λ0 is such that the conditions 1) and 2) above hold.)
Conversely, let A be an m-ω-accretive operator on H for some ω ∈ [0, π/2). Then
A is Kato-sectorial. More precisely, there is a dense subspace V ⊂ H and an
elliptic form a ∈ Ses(V ) such that A ∼ a and Re a is positive.

Proof. Suppose that A ∼ a and a : V ×V −→ H is elliptic, and let λ0 be as above.
Then the operator B := A + λ0 : D(A) −→ H is bijective and B−1 is a bounded
operator on H since B is the restriction of B : V −→ V ∗ to the range H . Because
H is dense in V ∗, D(A) = D(B) is dense in V , hence a fortiori in H . This means
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that B is a densely defined closed operator in H with 0 ∈ �(B).
Claim: The form aλ0 is continuous with respect to the scalar product Re aλ0 .
Proof of Claim. Since the embedding V ⊂ H is continuous, there is a constant M1

such that ‖u‖2H ≤ M1 ‖u‖2V for all u ∈ V . The continuity of the form a (condition
2) yields the existence of a constant M2 such that |a(u, v)| ≤ M2 ‖u‖V ‖v‖V .
Putting the two inequalities together we obtain |aλ0(u, v)| ≤ (M2 + λ0M1) ‖u‖2V .

A short glance at Proposition C.1.3 shows that the form aλ0 is sectorial of
some angle ω which depends on the continuity constants of aλ0 with respect to
Reaλ0 . Since (Bu |u)H = aλ0(u, u) for u ∈ D(B) the operator B is m-ω-accretive.

Conversely, let A be m-ω-accretive. On D(A) we define the sesquilinear form
a by

a(u, v) := (Au | v )H

and a scalar product (!) by

(u | v )V := (Re a)(u, v) + (u | v )H .

The form a is continuous with respect to this scalar product. In fact, since a is
sectorial of angle ω, by Proposition C.1.3 we have

|a(u, v)| ≤ (1 + tan ω)
√

Re a(u)
√

Rea(v) ≤ (1 + tan ω) ‖u‖V ‖v‖V

for all u, v ∈ D(A). Obviously, the embedding (D(A), ‖.‖V ) ⊂ H is continuous.
Hence it has a continuous extension ι : V −→ H , where V is the (abstract)
completion of D(A) with respect to ‖.‖V

Claim: The mapping ι is injective.
Proof of Claim. Let x ∈ V and ιx = 0. This means that there is (un)n ⊂ D(A)
such that ‖un − um‖V → 0 and ‖un‖H → 0. Hence for all n, m ∈ N we have

Re a(un) = Re (Aun |un )H = Re (Aun |un − um )H + Re (Aun |um )H

= Re[a(un, un − um)] + Re (Aun |um )H

≤ |a(un, un − um)|+ |(Aun |um )H |
≤ M ‖un‖V ‖un − um‖V + ‖Aun‖H ‖um‖H .

Since (un) is V -Cauchy, C := supn ‖un‖V < ∞. Hence

Re a(un) ≤ MC lim sup
m

‖un − um‖V → 0 as n →∞.

This shows that ‖un‖V → 0, whence x = 0.
We therefore can regard V as being continuously and densely embedded into

H . The form a has a unique extension to a continuous sesquilinear form on V
(again denoted by a). Clearly, the form a is elliptic (with λ0 = 1). Hence it
remains to show that A is associated with a.
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We denote by B the operator which is associated with a and choose u ∈ D(A).
The equation a(u, v) = (Au | v )H holds for all v ∈ V since it holds for all v ∈ D(A),
D(A) is dense in V , a is continuous on V , and V is continuously embedded in H .
This shows u ∈ D(B) and Bu = Au, whence A ⊂ B. On the other hand, we have
−1 ∈ �(B) by construction and −1 ∈ �(A) since A is m-ω-accretive. This implies
that A = B. �

Combining Proposition 7.3.4 with Proposition 7.1.1 yields the following corol-
lary.

Corollary 7.3.5. An operator A on H is Kato-sectorial if and only if there is λ ∈ R

such that A + λ is m-ω-accretive for some ω < π/2 if and only if −A generates a
holomorphic semigroup T on some sector Sθ such that

‖T (z)‖ ≤ eλ Re z (z ∈ Sθ)

for some λ ∈ R.

Note that the corollary says that A is Kato-sectorial if and only if A is ‘quasi-
m-ω-accretive’ for some ω ∈ [0, π/2).

The construction of operators by means of sesquilinear forms, though quite
powerful, raises two highly non-trivial questions. The first is due to the fact that,
in contrast to many other concepts, the notion of ‘Kato-sectoriality’ relies heavily
on the particular chosen scalar product. That is, an operator may be Kato-
sectorial with respect to the original but not Kato-sectorial with respect to some
new (although equivalent) scalar product on H . (A concrete example is given in
[12].) In fact, a result of Matolcsi says that if A is not a bounded operator, one
always can find a scalar product on H such that A is not Kato-sectorial (not even
quasi-m-accretive, see [162]). It is therefore reasonable to ask for a characterisation
of Kato-sectorial operators modulo similarity. Such a characterisation can indeed
be given with the help of the functional calculus (see Corollary 7.3.10 below.)

To understand the second problem, we have to cite a stunning theorem from
[127].

Theorem 7.3.6 (Kato). Let A be m-accretive and α ∈ [0, 1/2). Then the following
assertions hold:

1) D(Aα) = D(A∗α) =: Dα.

2) ‖A∗αu‖ ≤ tan
(
π(1 + 2α)/4

)
‖Aαu‖ for all u ∈ Dα.

3) Re (Aαu |A∗αu) ≥ (cosπα) ‖Aαu‖ ‖A∗αu‖ for all u ∈ Dα.

Proof. See [127, Theorem 1.1]. The proof proceeds in two steps. First the
statements are proved under the additional hypothesis of A being bounded with
Re (Au |u) ≥ δ ‖u‖2 for all u ∈ H and some δ > 0. (This is the difficult part of the
proof.). The second (easy) step uses ‘sectorial approximation’ (in our language)
and Proposition 3.1.9. �



202 Chapter 7. The Functional Calculus on Hilbert Spaces

Kato’s theorem is remarkable also in that it fails for α = 1/2. Kato was not
aware of this when he wrote the article [127] but only shortly afterwards, Lions
in [154] produced a counterexample. For some time it had been an open question
whether at least for m-ω-accretive operators A it is true that

D(A
1
2 ) = D(A

1
2 ∗). (7.21)

If A is associated with the form a ∈ Ses(V ) and, say, we have λ0 = 0, then (7.21)
is equivalent to V = D(A1/2), as Lions in [154] and Kato in [128] have shown.
Finally, McIntosh gave a counterexample in [163]. However, this was not the
end of the story. In fact, even if the statement is false in general it might be
true for particular operators such as second order elliptic operators on L2(Rn)
in divergence form. For these operators the problem became famous under the
name Kato’s Square Root Problem and has stimulated a considerable amount of
research which led to the discovery of deep connections between Operator Theory
and Harmonic Analysis (see also the comments in Section 7.5).

Let us call an operator A on the Hilbert space H square root regular if A+λ
is sectorial and D((A + λ)1/2) = D((A + λ)1/2 ∗) for large λ ∈ R.

Whether an operator is square root regular does depend on the particular
chosen scalar product. (If the scalar product changes, A stays the same while the
adjoint A∗ changes.) Hence it is reasonable to ask the following: Suppose that A
is Kato-sectorial with respect to some scalar product. Is there an equivalent scalar
product on H such that A is Kato-sectorial and square root regular with respect
to the new scalar product? This is indeed the case (see Corollary 7.3.10 below).

7.3.3 Similarity Theorems

After so much propedeutical work we can now bring in the harvest. The first
similarity result has an interesting historical background (see the comments in
Section 7.5 of this chapter).

Theorem 7.3.7 (Callier–Grabowski–Le Merdy). Let −A be the generator of a
bounded holomorphic C0-semigroup T on the Hilbert space H. Let B be the injec-
tive part of A on K := R(A). Then T is similar to a contraction semigroup if and
only if B ∈ BIP(K).

Recall that the injective part of A is the part of A in R(A). Clearly, A is
m-ω-accretive if and only if B is.

Proof. Suppose that T is similar to a contraction semigroup. Changing the scalar
product we may suppose that A is m-accretive. Therefore, B ∈ BIP(K) by The-
orem 7.1.7.

To prove the converse, let B ∈ BIP(K). Since −A generates a bounded
holomorphic semigroup, A is sectorial with ωA < π/2. By Theorem 7.3.1 we can
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change the norm on K to (
∫∞
0 ‖f(tA)x‖2 dt/t)1/2 where f ∈ H∞

0 [SωA ] is arbitrary.
If we choose f(z) := z1/2e−z we obtain the new norm

‖x‖2new =
∫ ∞

0

∥∥∥(tA)
1
2 e−tAx

∥∥∥2 dt

t
=
∫ ∞

0

∥∥∥A
1
2 T (t)x

∥∥∥2

dt

on K. Employing the semigroup property it is easy to see that each T (t) is
contractive on K with respect to this new norm.

However, on N(A) each operator T (t) acts as the identity. Since H = N(A)⊕
K we can choose the new scalar product on H in such a way that it is the old one
on N(A), the one just constructed on K and N(A) ⊥ K. With respect to this new
scalar product, the semigroup T is contractive. �

For a different proof of Theorem 7.3.7 using interpolation theory, see the
comments in Section 7.5. As an immediate corollary we obtain the announced
Liapunov theorem for holomorphic semigroups.

Corollary 7.3.8 (Liapunov’s theorem for holomorphic semigroups). Let A be an
operator on a Hilbert space H such that −A generates a holomorphic C0-semigroup
T and s(−A) < 0. If A + λ ∈ BIP(H) for some λ > 0 then, for every ε ∈
(0,−s(−A)) there is an equivalent Hilbert norm ‖·‖◦ on H such that

‖T (t)‖◦ ≤ e−εt (t ≥ 0).

Proof. Choose 0 < ε < δ := −s(−A) and consider the operator B := A − ε.
We claim that B is still sectorial with ωB < π/2. To establish this it suffices
to show that {λ | Re λ < 0} ⊂ �(B) with ‖λR(λ, B)‖ being uniformly bounded
for Re λ < 0. Since 0 ∈ �(B) we only have to consider |λ| ≥ R for some radius
R > 0. We choose ω′ ∈ (ωA, π/2) and let R :=

√
ε2(1 + tan2 ω′). Now λR(λ, B) =

λ(λ + ε)−1[(λ + ε)R(λ + ε, A)] and the factor λ/(λ + ε) is uniformly bounded for
|λ| ≥ R. The second factor is uniformly bounded for Re λ ≤ −ε hence we have to
check that

sup{‖(λ + ε)R(λ + ε, A)‖ | − ε ≤ Re λ ≤ 0, |λ| ≥ R} <∞.

But |λ| ≥ R together with −ε ≤ Re λ ≤ 0 implies that |Im(λ + ε)| = |Im λ| ≥√
R2 − ε2 = ε tan ω′, whence |arg(λ + ε)| ≥ ω′. Since ω′ > ωA, the claim is

proved.
So −B generates a bounded holomorphic C0-semigroup. Moreover, B + λ ∈

BIP(H) for some λ > 0. By b) of Proposition 3.5.5, Bis ∈ L(H) for all s ∈ R.
Applying Corollary 3.5.7 we obtain B ∈ BIP(H). We can now apply the Callier–
Grabowski–Le Merdy Theorem 7.3.7. This yields an equivalent scalar product
such that (eεtT (t))t≥0 becomes contractive. �

Recall that one can explicitly write down the new scalar product in Propo-
sition 7.3.8. In fact, it follows from the argument in the proof of Theorem 7.3.7
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that
‖x‖2◦ =

∫ ∞

0

∥∥∥(A− ε)
1
2 eεtT (t)x

∥∥∥2

dt (x ∈ H).

The function ‖·‖2◦ is a Liapunov function for the dynamical system given by

u̇ + (A− ε)u = 0.

Now we can state the main result of this section.

Theorem 7.3.9 (Similarity Theorem). Let A be a sectorial operator on the Hilbert
space H with ωA < π/2. Suppose that A satisfies the equivalent properties (i)–
(iv) of Theorem 7.3.1. Then for each ϕ ∈ (ωA, π/2) there is an equivalent scalar
product ( · | ·)◦ on H with the following properties.

1) N(A) ⊥ R(A) with respect to ( · | ·)◦.
2) The operator A is m-ϕ-accretive with respect to ( · | ·)◦.
3) One has D(Aα) = D(A◦α) for 0 ≤ α ≤ π/(4ϕ). Here, A◦ denotes the adjoint

of A with respect to ( · | ·)◦.
4) One has ‖f(A)‖◦ ≤ ‖f‖ϕ for all f ∈ E(Sϕ).

Note that π/(4ϕ) > 1/2. Hence in particular D(A1/2) = D(A◦(1/2)).

Proof. We choose ωA =: ω < ϕ′ < ϕ, and define β := π/(2ϕ′) and B := Aβ .
Then B ∈ Sect(ω′), where ω′ = βω = (ω/ϕ′)(π/2) < π/2. Hence −B generates
a bounded holomorphic C0-semigroup. By hypothesis, A satisfies condition (i) of
Theorem 7.3.1. Applying Proposition 3.1.4 we see that B has the same property.
By Theorem 7.3.7 there is an equivalent scalar product ( · | ·)◦ that makes B m-
accretive and such that N(A) ⊥ R(A). Now, A = B1/β , whence by Corollary
7.1.13, A is m-π/2β-accretive with respect to the new scalar product. Moreover,
Kato’s Theorem 7.3.6 says that D(Aαβ) = D(Bα) = D(B◦α) = D(A◦αβ) for all
0 ≤ α < 1/2. Thus, assertion 3) follows since

0 < αβ <
β

2
=

π

4ϕ′ and
π

4ϕ′ >
π

4ϕ
.

If we take f ∈ E(Sϕ) then

‖f(A)‖◦ = ‖f(z1/β)(B)‖◦ ≤ ‖f(z1/β)‖ π
2

= ‖f‖ π
2β

= ‖f‖ϕ′ ≤ ‖f‖ϕ

by Proposition 3.1.4 and Theorem 7.1.7. �
As a corollary, we obtain a simultaneous solution to the similarity problems

posed in Section 7.3.2 (see page 201).

Corollary 7.3.10. Let A be a closed operator on a Hilbert space. Then A is Kato-
sectorial with respect to some equivalent scalar product if and only if −A generates
a holomorphic C0-semigroup and A+λ ∈ BIP(H) for large λ ∈ R. In this case the
scalar product can be chosen such that A is Kato-sectorial and square root regular.
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Corollary 7.3.11 (Franks–Le Merdy). Let A be an injective sectorial operator on
the Hilbert space H such that A ∈ BIP(H). Then for each ϕ ∈ (ωA, π) there is an
equivalent scalar product on H with respect to which the natural H∞(Sϕ)-calculus
for A is contractive.

Proof. If ωA < π/2 one can apply the Similarity Theorem 7.3.9 in combination
with Proposition 5.3.4. In the case that ωA ≥ π/2 we apply this to the operator
A1/2 and use Proposition 3.1.4. �

Finally we give an application of the Similarity Theorem to derive a dilation
theorem for groups on Hilbert spaces.

Corollary 7.3.12 (Dilation theorem for groups). Let T be a C0-group on the Hilbert
space H. For each ω > θ(T ) there is a Hilbert space K, a (not necessarily isomet-
ric) embedding ι : H −→ K onto a closed subspace of K, and a normal C0-group
U on K with ‖U(s)‖ ≤ eω|s| for all s ∈ R such that

P ◦ U(s) ◦ ι = ι ◦ T (s) (s ∈ R).

Here, P : K −→ ι(H) denotes the orthogonal projection of K onto ι(H).

Proof. Choose α > 0 such that αω = π/2. We consider the group T (α·), which
has group type αθ(T ). By Monniaux’s Theorem 4.4.3 (cf. also Remark 7.2.2)
we find an injective sectorial operator A on H such that Ais = T (αs) for all
s ∈ R. Then ωA = αθ(T ) < π/2 by Gearhart’s Theorem C.8.2 and Theorem
4.3.1. By the Callier–Grabowski–Le Merdy Theorem 7.3.7 we can change the
scalar product on H in order to have −A generating a contraction semigroup
(e−tA)t≥0. The Sz.-Nagy Theorem 7.1.10 yields a new Hilbert space K and an
isomorphic embedding ι : H −→ K (which is isometric with respect to the new
scalar product) and a unitary group (W (t))t∈R on K such that PW (t)ι = ιe−tA

for all t ≥ 0. Let −B be the generator of W . In the proof of Proposition 7.1.7 we
showed that Pf(B)ι = ιf(A) for all f ∈ E [Sπ/2]. By applying the Convergence
Lemma (Proposition 5.1.4) to the sequence fn(z) := ziszn(z + 1/n)−1(n + z)−1

we obtain PBisι = ιAis = ιT (αs) for s ∈ R. Thus we have arrived at the desired
dilation when we define U(s) := Bis/α. Since

∥∥Bis
∥∥ ≤ e|s|π/2 and ω = π/2α we

clearly have ‖U(s)‖ ≤ eω|s| for all s ∈ R. �

7.3.4 A Counterexample

Let −A generate a bounded C0-semigroup T and suppose that A is injective. The
Callier–Grabowski–Le Merdy Theorem 7.3.7 states that if A ∈ BIP(H) and T is
even bounded holomorphic, T is similar to a contraction semigroup. What if we
drop the assumption on holomorphy? This question is answered by the following
theorem.

Theorem 7.3.13. There exists a Hilbert space H and an operator A on H such that
the following conditions hold.
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1) The operator −A generates a bounded C0-semigroup T on H.

2) The operator A is invertible and A ∈ BIP(H).

3) The semigroup T is not similar to a quasi-contractive semigroup.

Here, a C0-semigroup T on H is called quasi-contractive, if there is ω ∈ R

such that
‖T (t)‖ ≤ eωt (t ≥ 0).

We combine a counterexample given by Le Merdy with a technique due to
Chernoff. Based on an example given by Pisier in [188], Le Merdy showed in
[146, Proposition 4.8] that there exists a Hilbert space H , a bounded C0-semigroup
T on H with injective generator −A ∈ BIP(H) such that T is not similar to a
contraction semigroup. Let α = (αn)n be a scalar sequence with αn > 0 for all n.
We consider the space H := �2(H) and the operator A defined on H by

D(A) := {x = (xn)n ∈ H | xn ∈ D(A) ∀n ∈ N}, Ax := (αnAxn)n.

Denote by ‖| ·‖| the (Hilbert)-norm on H.

Lemma 7.3.14. The following assertions hold.

a) The operator −A generates the bounded C0-semigroup T defined by

T(t)x := (T (αnt))n (x = (xn)n ∈ H, t ≥ 0).

b) We have

�(A) = {λ | λα−1
n ∈ �(A) and sup

n

∥∥(λ− αnA)−1
∥∥ < ∞},

with R(λ, A)x = ((λ− αnA)−1xn)n for x = (xn)n ∈ H.

c) The operator A is injective.

d) Let ϕ ∈ (π/2, π) and f ∈ H∞
0 (Sϕ). Then f(A)x = (f(αnA)xn)n for each

x = (xn) ∈ H. Moreover ‖| f(A)‖| ≤ supn ‖f(αnA)‖

Proof. Since T is a bounded semigroup, all operators T(t) are well defined bounded
operators on H, and even uniformly bounded in t. Obviously, the semigroup
law holds. Since the space of finite H-sequences is dense in H and each T (αn·)
is strongly continuous on H , T is a C0-semigroup on H. Denote its generator
by B and let x = (xn)n ∈ D(B). Then limt↘0 t−1(T(t)x − x) → Bx. This
implies that limt↘0 t−1(T (αnt)x − x) → [Bx]n for each n, whence xn ∈ D(A)
and [Bx]n = −αnAxn for each n. Hence we have B ⊂ −A. Thus, by a resolvent
argument, a) will be proved as soon as we will have established b).

Obviously, the inclusion ‘⊃’ holds in b). Let λ ∈ �(A). Then

((xn) �−→ ((λ− αnA)xn)) : D(A) −→ H
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is bijective. By composing this mapping with suitable injections and projec-
tions we see that (λ − αnA) : D(A) −→ H is bijective for each n and that
supn

∥∥(λ− αnA)−1
∥∥ < ∞.

The assertion c) follows from the fact that A is injective and each αn >
0. Part d) is immediate from b) and the representation of f(A) as a Cauchy
integral. �

Since A ∈ BIP(H) we know from McIntosh’s Theorem 7.3.1 that the natural
H∞(Sϕ)-calculus is bounded for each ϕ > π/2. Fix ϕ > π/2 and C ≥ 0 such that
‖f(A)‖ ≤ C ‖f‖ϕ for all f ∈ H∞(Sϕ). If f ∈ H∞

0 (Sϕ), Lemma 7.3.14 d) yields
‖f(A)‖L(H) ≤ C supn ‖f(αn·)‖ϕ = C ‖f‖ϕ. Hence also A has a bounded H∞(Sϕ)-
calculus (see Proposition 5.3.4), whence A ∈ BIP(H). We turn to Chernoff’s
observation from [43] and specialise αn := 1/n in the above construction.

Lemma 7.3.15 (Chernoff). If T is similar to a quasi-contractive semigroup, then
T is similar to a contractive semigroup.

Proof. We denote by ( · | ·) and 〈·, ·〉 the scalar products on H and H, respectively.
Suppose that there is an equivalent scalar product 〈·, ·〉new on H and a scalar ω ≥ 0
such that ‖|T(t)x‖| new ≤ eωt ‖|x‖| new for all x ∈ H and all t ≥ 0. Define (x | y )n :=
〈ιnx, ιny〉new for x, y ∈ H and n ∈ N, where ιn : H −→ H is the natural inclusion
mapping onto the n-th coordinate. Obviously, each ( · | ·)n is an equivalent scalar
product on H . More precisely, if c > 0 such that c−1 ‖|x‖| 2 ≤ ‖|x‖| new ≤ c ‖|x‖| for
all x ∈ H then c−1 ‖x‖2 ≤ (x |x)n ≤ c ‖x‖2 for all n ∈ N and all x ∈ H . In
particular, for each pair of vectors x, y ∈ H , the sequence ((x | y )n)n is bounded
by c ‖x‖ ‖y‖. Now, choose some free ultrafilter U on N and define

(x | y )new := U − lim (x | y )n

for x, y ∈ H . Obviously, this yields a positive sesquilinear form on H . Moreover,
we have

c−1 ‖x‖2 ≤ (x | x)new ≤ c ‖x‖2

for all x ∈ H , whence ( · | ·)new is an equivalent scalar product on H . Since

‖T (t)x‖2n = ‖| ιnT (t)x‖| 2new = ‖|T(t/n)ιnx‖| 2new ≤ e2ω t
n ‖| ιn‖| 2new = e2ω t

n ‖x‖2n ,

we obtain ‖T (t)x‖2new ≤ ‖x‖
2
new for all x ∈ H, t ≥ 0. Hence T is contractive with

respect to ( · | ·)new. �

Since we started with a bounded semigroup that is not similar to a contrac-
tion semigroup, T is not similar to a quasi-contraction semigroup. Obviously this
remains true also for each rescaled semigroup (e−εtT(t))t≥0. Hence for each ε > 0
the operator A+ ε on the Hilbert space H has the properties required in Theorem
7.3.13.
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Remark 7.3.16. Actually a statement slightly stronger than Theorem 7.3.13 is
valid. In Le Merdy’s example the operator A even has a bounded R∞(Sπ/2)-
calculus. By construction, this immediately carries over to the operator A, and
this is strictly stronger than to say that A ∈ BIP(H).

7.4 Cosine Function Generators

A cosine function on a Banach space X is a strongly continuous mapping

Cos : R+ −→ L(X)

such that

Cos(0) = I,

2 Cos(t) Cos(s) = Cos(t + s) + Cos(t− s) (t, s ∈ R).

In the following we cite some basic results of the theory of cosine functions from [10,
Sections 3.14-3.16]. Given a cosine function, one can take its Laplace transform
and define its generator B by

λR(λ2, B)x =
∫ ∞

0

e−λt Cos(t)xdt

for x ∈ X and Re λ sufficiently large. Then, for each pair (x, y) ∈ X2 the function

u(t) := Cos(t)x +
∫ t

0

Cos(s)y ds

is the unique mild solution of the second order abstract Cauchy problem⎧⎪⎨⎪⎩
u′′(t) = B u(t) (t ≥ 0),
u(0) = x,

u′(0) = y

(cf. [10, Corollary 3.14.8]). If B generates a cosine function, then it also generates
an exponentially bounded holomorphic semigroup of angle π/2 (cf. [10, Theorem
3.14.17]).

Proposition 7.4.1. Let A generate a cosine function on the Banach space X. Let
the operator A on X ×X be defined by

D(A) := D(A)×X, A

(
x
y

)
=
(

0 I
A 0

)(
x
y

)
=
(

y
Ax

)
.

Then there exists a unique Banach space V such that D(A) ↪→ V ↪→ X and the
part B of A in V ×X generates a C0-semigroup.
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A proof is in [10, Theorem 3.14.11]. The space V × H is called the phase
space associated with A. If A generates a cosine function and λ ∈ C, then A + λ
generates a cosine function with the same phase space (cf. [10, Corollary 3.14.13]).

The connection with the theory of C0-groups is given by the following: If
an operator A generates a C0-group (U(t))t∈R on the Banach space X , then A2

generates a cosine function Cos with phase space D(A) × X , where Cos(t) =
(U(t) + U(−t))/2 (t ≥ 0) (cf. [10], Example 3.14.15). Moreover, a remarkable
theorem of Fattorini states the (partial) converse.

Theorem 7.4.2 (Fattorini). Let A be the generator of a cosine function on an UMD-
space X. If −A is sectorial, then C := i(−A)1/2 generates a strongly continuous
group and C2 = A.

A proof can be found in [10, Theorem 3.16.7]. Altogether this suggests that
we consider squares of group generators.

Theorem 7.4.3. Let A be m-Hω-accretive for some ω ≥ 0. Then for every angle
0 ≤ |ϕ| < π/2 the operator

eiϕ

((
ω

cosϕ

)2

+ A2

)
(7.22)

is m-accretive. The operator −A2 generates a holomorphic semigroup (S(z))Re z>0

of angle π/2 such that

‖S(z)‖ ≤ e(
ω

cos ϕ )2
Re z (|arg z| ≤ ϕ < π/2).

Moreover, one has

D
(
(ω2 + A2)

1
2

)
= D(A).

Proof. The case where ω = 0 is trivial since then the group is unitary and iA is
skew-adjoint. This implies that A2 is self-adjoint with −A2 ≤ 0, and the assertions
of the theorem are immediate.

So suppose that ω > 0, let 0 ≤ |ϕ| < π/2 and fix ε > 0. Define α = ω tanϕ,
i.e., z := ω − iα = (ω/ cosϕ)e−iϕ. By assumption and Proposition C.7.2 (ii), the
operators z − iA and z + iA are m-accretive. Applying (iv) of Proposition C.7.2
we obtain ∥∥∥∥ iA− (z − ε)

iA− (z + ε)

∥∥∥∥ ,

∥∥∥∥ iA + (z − ε)
iA + (z + ε)

∥∥∥∥ ≤ 1.

(Here and in the following we write (iA + λ)/(iA + µ) instead of (iA+λ)(iA+µ)−1

to make the computations more perspicious.) Hence∥∥∥∥A2 + (z − ε)2

A2 + (z + ε)2

∥∥∥∥ =
∥∥∥∥( iA− (z − ε)

iA− (z + ε)

)(
iA + (z − ε)
iA + (z + ε)

)∥∥∥∥ ≤ 1.
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Now,

A2 + (z − ε)2

A2 + (z + ε)2
=

A2 + (z2 + ε2)− 2zε

A2 + (z2 + ε2) + 2zε
=

eiϕ[A2 + (z2 + ε2)]− 2ε |z|
eiϕ[A2 + (z2 + ε2)] + 2ε |z| .

We can apply Proposition C.7.2 again (note that 2ε |z| > 0) to conclude that

eiϕ[(z2 + ε2) + A2] =
( ω

cosϕ

)2
e−iϕ + ε2eiϕ + eiϕA2

is m-accretive. Letting ε ↘ 0 we see that (ω/ cosϕ)2e−iϕ + eiϕA2 and finally that

eiϕ

(( ω

cosϕ

)2 + A2

)
=
( ω

cosϕ

)2
eiϕ + eiϕA2

is m-accretive. (Note that eiϕ differs from e−iϕ only by a purely imaginary number
and this does not affect m-accretivity by (ii) of Proposition C.7.2.) This finishes
the proof of the first part of the theorem. The second part follows from Proposition
7.1.1, cf. also [10, Chapter 3.4 and Chapter 3.9].

To prove the last assertion, note first that the operator ω2+A2 is m-accretive,
hence sectorial. Thus the square root is well defined. Since iA generates a group,
−A2 generates a cosine function with phase space D(A) ×H . By general cosine
function theory (see the remarks at the beginning of this section), −(A2 +ω2) also
generates a cosine function with the same phase space. Fattorini’s Theorem 7.4.2
implies that B := i(ω2 + A2)1/2 generates a group and B2 = −(A2 + ω2). Then
D(B) = D(A) follows from the uniqueness of the phase space (see Proposition
7.4.1). �

Combining this result with the Similarity Theorem 7.2.8 for groups yields
the following corollary:

Corollary 7.4.4. Let −B be the generator of a cosine function on a Hilbert space H.
Then B is Kato-sectorial and square root regular with respect to some equivalent
scalar product. In particular, λ + B ∈ BIP(H) for large λ ∈ R.

Proof. First, one can find β such that B +β is sectorial. Since −(B +β) generates
a cosine function as well, we can apply Fattorini’s Theorem 7.4.2. Thus, the
operator iA := i(β+B)1/2 generates a strongly continuous group T on H . Choose
ω > θ(T ). By Theorem 7.2.8 we can find a new scalar product ( · | ·)◦ that renders
A m-Hω-accretive and is such that D(A) = D(A◦). Apply now Theorem 7.4.3
together with Corollary 7.3.5 to conclude that A2 = B +β is Kato-sectorial. This
implies that B is Kato-sectorial. Finally, we apply Theorem 7.4.3 to the operators
A and A◦ and obtain

D((ω2 + β + B)
1
2 ) = D((ω2 + A2)

1
2 ) = D(A) = D(A◦)

= D((ω2 + A◦2)
1
2 ) = D((ω2 + β + B)◦

1
2 ).

This completes the proof. �
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Let us turn to a second corollary. Namely, Theorem 7.4.3 can be seen as a
mapping theorem for the numerical range (cf. also Section 7.1.4). We define the
horizontal parabola

Πω = {z | (Im z)2 < 4ω2 Re z}
for ω > 0, and Π0 := [0,∞).

Corollary 7.4.5. Let A be an Hω-accretive operator on the Hilbert space H for
some ω ∈ [0, π/2]. Then W (A2) ⊂ {z2 | z ∈ Hω}, i.e., the numerical range of
B := ω2 + A2 is contained in the horizontal parabola

Πω = {z ∈ C | Re z ≥ 0 and |Im z| ≤ 2ω
√

Re z}.

This is equivalent to saying that B is m-accretive and

|Im (Bu |u)| ≤ 2ω Re (Bu |u)
1
2 ‖u‖ (7.23)

for all u ∈ D(B) = D(A2).

Proof. By Theorem 7.4.3 we obtain that eiϕ((ω/ cosϕ)2 + A2) is m-acccretive for
every 0 ≤ |ϕ| < π/2. Specialising ϕ = 0 yields that B = ω2 + A2 is m-accretive.
Now we write

eiϕ

(
ω2

cos2 ϕ
+ A2

)
= eiϕ

(
B +

(
ω2

cos2 ϕ
− ω2

))
= eiϕ

(
B + ω2 tan2 ϕ

)
.

Since this operator is m-accretive and tan2 ϕ = tan2(−ϕ), by Proposition 7.1.1 we
obtain W (B + ω2 tan2 ϕ) ⊂ Sπ/2−ϕ, i.e.,

|Im (Bu |u)| ≤ tan
(π

2
− ϕ

)
(Re (Bu |u) + ω2 tan2 ϕ ‖u‖2) (u ∈ D(B))

for 0 < ϕ < π/2. Now tan(π/2,−ϕ) = (tan ϕ)−1 and if we parametrise τ := tanϕ

with 0 < τ < ∞ we obtain |Im (Bu |u)| ≤ τ−1 Re (Bu |u) + ω2τ ‖u‖2 for every

u ∈ D(B). The right-hand side has 2
√

Re (Bu |u)ω2 ‖u‖2 as its minimum value,
whence we arrive at (7.23). �
Corollary 7.4.6. Let −B be the generator of a cosine function on the Hilbert space
H. Then, with respect to an equivalent scalar product, B has numerical range in
a horizontal parabola λ + Πω for some λ ∈ R, ω > 0.

Proof. Apply Fattorini’s Theorem 7.4.2, change the scalar product according to
Theorem 7.2.8, then apply Corollary 7.4.5. �

Let us call an operator m-Πω-accretive if its numerical range is contained in
Πω and C \ Πω is contained in its resolvent set. The last corollary immediately
raises the following question. Suppose −B is m-Πω-accretive for some ω > 0.
Does it follow that B already generates a cosine function? This is in fact true
since Crouzeix has proved in [54] the following result, which we quote without
proof.
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Theorem 7.4.7 (Crouzeix). There is an absolute constant c > 0 such that

‖f(A)‖ ≤ c ‖f‖Πω

for all f ∈ R∞(Πω) and every m-Πω-accretive operator on a Hilbert space H.

The proof follows in principle the lines of the proof of Theorem 7.1.16. How-
ever, it is much harder in detail.

Corollary 7.4.8. Let B be an operator on a Hilbert space H. Then −B generates
a cosine function if and only if there is λ ∈ R and an equivalent scalar product on
H with respect to which λ + B is m-Πω-accretive.

Proof. One direction is Corollary 7.4.6. For the converse, suppose that λ+B is m-
Πω-accretive. Without loss of generality we may suppose that B is m-Πω-accretive
and invertible. Then we can set up a holomorphic functional calculus for B on
horizontal parabolas Πα for α > ω. Using Crouzeix’ Theorem 7.4.7 together with
similar arguments as in Section 5.3 we conclude that the natural H∞(Πα)-calculus
is bounded for every α > ω. Inserting into this calculus the functions etiz(1/2) for
t ∈ R we obtain the C0-group generated by −B1/2. (The density of D(B) in H
follows from sectoriality.) Hence −B = (iB1/2)2 generates a cosine function. �

At the end of this section we would like to illustrate Crouzeix’s result with
an example. In Section 7.3.2 we considered operators A defined by means of an
elliptic form a : V × V −→ H . Suppose that condition 1) of page 198 is satisfied,
i.e., we find λ0 ∈ R such that Re a + λ0 ( · | ·)H is a scalar product on V which
turns V into a Hilbert space, continuously embedded into H . Instead of condition
2) (which, by some trivial equivalences, merely postulates continuity of Im a with
respect to this scalar product) we require the stronger condition

|Im a(u, u)| ≤M ‖u‖H ‖u‖V (u ∈ V ). (7.24)

Then the numerical range of A + λ0 is contained in Πω for some ω ≥ 0. Using
approximation by rational functions, one can conlcude that −(A + λ0) and hence
−A generates a cosine function.

In the concrete case of an elliptic form with L∞-coefficients

a(u, v) =
∫

Ω

{∑
i,j

ai,jDiuDjv +
∑

i

biDiuv + ciuDiv + duv

}
dx (u ∈ V )

on H = L2(Ω) and with V being some closed subspace of W1,2(Ω) containing
D(Ω), condition (7.24) is satisfied if ai,j = aj,i for all i, j.

7.5 Comments

7.1 Numerical Range Conditions. The material on normal or self-adjoint opera-
tors is standard. The proof is usually given via a spectral measure respresentation,
cf. [158, Section 4.3.1].
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7.1.3 Functional Calculus for m-accretive Operators. The fundamental Theorem
7.1.7 has been folklore for a long time, due to its connection with von Neumann’s
inequality (cf. Remark 7.1.9 and below). The classical reference for the dilation
theorem is the book [209] by Sz.-Nagy and Foias. Therein one can find also the
construction of a functional calculus for so-called completely non-unitary contrac-
tions. The proof of Theorem 7.1.7 via the dilation theorem can also be found in
[145, Theorem 4.5]. Our second proof is taken from [3], where it is attributed to
Franks. This proof is in the spirit of Bernard and François Delyon’s proof of
the von Neumann inequality in [68]. Other proofs of von Neumann’s inequality
can be found in [185, Corollary 2.7] and [190, Chapter 1].

7.1.4 Numerical Range Mapping Theorems. To establish ‘mapping theorems for
the numerical range’ Theorem 7.1.7 seems to be at the core of the theory since it
ties closely contractivity and m-accretivity to the functional calculus. Kato [129]
uses this connection to prove more general results. Based on that, Crouzeix
and Delyon [55] essentially prove Corollary 7.1.14. Kato [127] gives a proof
of Corollary 7.1.13 different from ours, see also [210, Lemma 2.3.6]. In general,
‘mapping theorems for the numerical range’ are a delicate matter. For example,
Simard in [203] constructed an example of an m-Hπ/2-accretive operator on the
space H = C2 such that eA is not m-accretive.

7.1.5 The Crouzeix–Delyon Theorem. The Crouzeix–Delyon Theorem 7.1.16
from [55] can be considered a major breakthrough in deriving boundedness of
functional calculi from numerical range conditions. For a long time, the case of
m-accretive operators was more or less the only example of this connection. The
new insights came when a new proof of von Neumann’s inequality was found by
directly manipulating the corresponding Cauchy integrals (see above). This has
been developed further by Crouzeix [53, 54] to obtain similar results for oper-
ators with numerical range in a parabola (see Theorem 7.4.7) and more general
convex domains.

7.2 Group Generators on Hilbert Spaces. Theorem 7.2.1 is due to Boyadzhiev
and de Laubenfels [34, Theorem 3.2], although in a little different form. The
original proof proceeds in two steps. First, assuming ω < π/2 without loss of
generality, the authors construct the operator eB (see Chapter 4; their construction
however relies on the theory of regularised semigroups). Then they show that this
operator is sectorial and has a bounded H∞-functional calculus on a sector. The
statement then follows by means of some special case of the composition rule.

Our first proof for Theorem 7.2.1 is just a combination of the Decomposition
Theorem 7.2.8 and the Crouzeix–Delyon Theorem 7.1.16. Since the proof of the
latter is quite involved, this proof cannot be regarded as simple. However, there
is no need of the full power of the Crouzeix–Delyon theorem. In fact, the weaker
version mentioned in Remark 7.1.18 suffices. Regarding the Spectral Theorem as
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known, this can be proved by a simple perturbation argument, as was done by the
author [105].

7.2.1 Liapunov’s Direct Method. In the case where A is bounded the Liapunov
method is used in Chapter I of the book [59]. There the operator equation QA +
A∗Q = −I is directly linked to the problem of finding a Liapunov function for
the semigroup. (This is sometimes called ‘Liapunov’s direct method’.) For the
unbounded case the relevant facts are included in [57, Theorem 5.1.3], where a
characterisation of exponential stability of the semigroup is given in terms of the
existence of an operator Q satisfying the Liapunov equation(s). (Extensions of
this result can be found in [98], [15] and [2].) It is shown in [232] that this method
in fact gives an equivalent scalar product if the semigroup is a group. In the paper
[156] on exact controllability Liu and Russell establish almost the same results
(and others).

The Liapunov theorem for holomorphic semigroups (Proposition 7.3.8) is
due to Arendt, Bu, and the author [12, Theorem 4.1]. In that paper, Liapunov
type theorems are established also for hyperbolic holomorphic semigroups and
quasi-compact holomorphic semigroups. Moreover, Proposition 7.3.8 is applied to
semilinear equations.

7.2.2 The Decomposition Theorem. Theorem 7.2.8 is due to the author [105].
The following well-known theorem by Sz.-Nagy [207] can be regarded as the
‘limit case’: Every generator of a bounded group is similar to a skew-adjoint
operator. This result cannot be deduced directly from Theorem 7.2.8. However,
Zwart [232] gives a proof using the Liapunov renorming and some approximation
argument.

De Laubenfels [67, Theorem 2.4] proves that, given a C0-group T on a
Hilbert space, one has ‖T (t)‖◦ ≤ eω|t| for some equivalent scalar product ( · | ·)◦
and some ω strictly larger than the group type θ(T ). (This is covered by Theorem
7.2.8 a).) However, this proof is based on the boundedness of the H∞-calculus
and on Paulsen’s theorem (see below), so the new scalar product cannot easily be
made explicit.

One can wonder whether, given a group T such that ‖T (s)‖ ≤ Keθ|s| (s ∈ R),
one may always take ω = θ in Theorem 7.2.8. However, Simard [203] has shown
that this is not possible in general.

7.2.3 A Characterisation of Group Generators. Theorem 7.2.12 is due to the au-
thor [101]. The rough idea behind the proof of the crucial implication (iv)⇒(i)
consists in adapting McIntosh’s methods from [167] (in particular his use of
quadratic estimates) to strip-type operators. Corollary 7.2.14 is a result by Liu
[155, Theorem 1]. One may consult [101] for other characterisations of groups on
Hilbert spaces, including results of Liu [155, Theorem 2] and Zwart [232, The-
orem 2.2]. Further results on quadratic estimates in connection with semigroups
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can be found in [96, 202, 122, 27].

7.3.1 McIntosh’s Theorem. Theorem 7.3.1 is due to McIntosh [167], based on
ideas of Yagi [226], see also [169]. Norm inequalities such as (i) of McIntosh’s
theorem are called quadratic estimates or square function estimates in the termi-
nology of these authors. The importance of quadratic estimates pertains when
studying boundedness of H∞-functional calculus on Lp-spaces, see [51], [151] and
[141, Section 11]. Auscher, Nahmod and McIntosh [19] have made explicit the
connection with interpolation theory (cf. also Chapter 6 and the comments there).
The proof given in Remark 7.3.2 is taken from the author’s paper [110].

The proof of the implication (ii)⇒(i) in Theorem 7.3.1 via the Uncondition-
ality Lemma 5.6.1 is taken from [150, Theorem 4.2]. Let us point out that in
Theorem 7.3.1 the equivalence of (iii) and the other statements is proved without
making use of interpolation theory (cf. Remark 7.3.2).

One can add further equivalences to McIntosh’s Theorem 7.3.1, e.g.

(iv) There is equivalence of norms

‖x‖2H ∼
∫

Sα

‖ψ(zA)x‖2H
dz

z2

where 0 
= ψ ∈ H∞
0 (Sϕ) and ϕ ∈ (ωA + α, π).

This is done by Kunstmann and Weis [141, Theorem 11.13]. One can easily
deduce this from the fact that in any Banach space the homogeneous interpolation
space (D(α), R(α))1/2,p can be described as

(D(α), R(α)) 1
2 ,p =

{
x ∈ U

∣∣ ψ(zA)x ∈ Lp(Sα, dz/z2; X)
}

,

which in turn follows from the results of Section 6.4. (One has to note that the
embedding constants associated with the family of sectorial operators (eiθA)|θ|≤α

are uniformly bounded. We do not go into details.)

7.3.2 Sesquilinear Forms. The classical reference for operators constructed via
sesquilinear forms is Kato’s early paper [127] as well as his book [130]. This is the
reason why we called this operator ‘Kato-sectorial’. Proposition 7.1.1 essentially
is Kato’s ‘First Representation Theorem’ [130, Chapter VI, Theorem 2.1]. It is
also included as Theorem 1.2 in [12]. The applications to PDE in the literature
are numerous, see the recent book [180] by Ouhabaz and the references therein.
In [12, Example 3.2] an example of two similar operators on a Hilbert space is
given, one variational but not the other. As mentioned already, by Matolcsi’s
result [162] this is not a pathological case.

It would be interesting if there is a proof for Kato’s Theorem 7.3.6 that differs
essentially from Kato’s original one. Apart from [210, Lemma 2.3.8] and [158,
Theorem 4.3.4], which more or less copy Kato’s arguments, we do not know of
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any other account. The Square Root Problem (cf. Remark 7.3.2) has been solved
by Auscher, Hoffman, Lacey, Lewis, McIntosh, and Tchamitchian [18].
Surveys and a deeper introduction to these matters as well as the connection with
Calderón’s conjecture for Cauchy integrals on Lipschitz curves are in [165, 166, 168]
and [20]. The first counterexample to Kato’s original question was given by
McIntosh [163]. A different one can be obtained from [20, Section 0, Theorem
6] employing an additional direct sum argument.

7.3.3 Similarity Theorems and 7.3.4 A Counterexample. Similarity problems
have a long tradition in operator theory. In 1947 Sz.-Nagy [207] had observed
that a bounded and invertible operator T on a Hilbert space H is similar to a
unitary operator if and only if the discrete group (T n)n∈Z is uniformly bounded.
His question was whether the same is true if one discards the invertibility of T . In
[208] he showed that the answer is yes if T is compact, but Foguel [90] disproved
the general conjecture by giving a counterexample. By von Neumann’s inequality,
if T is a contraction, then T is not only power-bounded but even polynomially
bounded, i.e.,

sup{‖p(T )‖ | p ∈ C[z], ‖p‖∞ ≤ 1} < ∞,

where ‖p‖∞ denotes the uniform norm on the unit disc. So Halmos [113] asked
whether polynomial boundedness in fact characterises the bounded operators on H
that are similar to a contraction. This question remained open only until recently
when Pisier [188] found a counterexample, see also [60]. Meanwhile, Paulsen
[184] had shown that T is similar to a contraction if and only if T is completely
polynomially bounded. His characterisation is a special case of a general similarity
result [185, Theorem 8.1] for completely bounded homomorphisms of operator
algebras (see [185] for definitions and further results). We address this result as
Paulsen’s theorem in the following.

One can set up a semigroup analogue of Sz.-Nagy’s question (see above)
namely whether every bounded C0-semigroup on a Hilbert space is similar to a
contraction semigroup. The corresponding result for groups is true as was also
proved by Sz.-Nagy in the very same article [207]. (The question is a little
more special than the original one since not every power-bounded operator is the
Cayley transform of a C0-semigroup generator.) It was answered in the negative
by Packel [181]. By using this result, Chernoff [43] provided an example
of a bounded operator with the generated C0-semigroup being bounded but not
similar to a contraction one. Furthermore, via Lemma 7.3.15 he constructed a
C0-semigroup which is not even similar to a quasi-contractive semigroup. (Our
setting up this historical panorama is mainly based on [146, Introduction]. More
on similarity problems and their connection with the theory of operator algebras
can be found in [189].)

Being probably unaware of the history of this problem, Callier and Gra-
bowski in an unpublished research report [97] proved Theorem 7.3.7 in the case
where the semigroup is exponentially stable. Their arguments are based on two
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facts from interpolation theory: first, both the (complex) interpolation space
[H, D(A)]1/2 and the (real) interpolation space (H, D(A))1/2,2 are equal to D(A1/2)
if A ∈ BIP(H) (see Theorem 6.6.9) and, second, this real interpolation space is
given by

(H, D(A)) 1
2 ,2 =

{
x ∈ H

∣∣∣∣ ∫ ∞

0

∥∥∥t 1
2 A

1
2 e−tAx

∥∥∥2 dt

t
< ∞

}
(cf. (6.9) in Section 6.2.3). It was Le Merdy [150, Theorem 4.2] who observed
that the result follows from McIntosh’s theorem.

Theorem 7.3.7 as it stands is also a consequence of Corollary 7.3.11 and is
stated as such in [146, Theorem 4.3]. Le Merdy proves Corollary 7.3.11 with
the help of Paulsen’s theorem (see above). The same is done by Franks in
[91, Section 4]. Note that — by using the scaling technique and the results of
Kato on accretive operators — the Franks-Le Merdy theorem and the Callier–
Grabowski–Le Merdy theorem are actually equivalent, and that Paulsen’s theorem
is not necessary to prove the Similarity Theorem 7.3.9. However, Le Merdy [148]
proved with the help of Paulsen’s theorem that the exponential eA of an m-Hπ/2-
accretive operator A is always similar to an m-accretive operator. (As mentioned
above, Simard has shown that eA need not be m-accretive itself.) Up to now it
is unknown whether one can avoid Paulsen’s theorem here.

It has been noted in [12, Theorem 3.3] that the Franks–Le Merdy result
solved the first similarity problem posed (see page 201). However, from their
proof it was not clear whether also the second problem concerning the square
roots can be solved. That it actually can is an observation due to the author
[102, Theorem 4.26] and sheds an interesting light on the orginal square root
problem. It also complements a result of Yagi [226, Theorem B] which says
that a sectorial invertible operator A on a Hilbert space has bounded imaginary
powers if D(Aα) = D(A∗α) for all α contained in a small interval [0, ε). It is
a consequence of Theorem 7.3.9 combined with the scaling technique that the
converse holds modulo similarity. The following problem seems to be open until
now.

Problem: Is there an m-accretive operator A on a Hilbert space H such that

D(A
1
2 ) 
= D(A◦ 1

2 )

for every equivalent scalar product ( · | ·)◦? (Note that, by Theorem 7.3.9, such an
operator necessarily has to satisfy the relation ωA = π/2.)

Returning to the semigroup version of Sz.-Nagy’s question (see above), by
Theorem 7.1.7 (which is essentially von Neumann’s inequality) one obtains that a
bounded H∞-calculus (or equivalently BIP) is as necessary a condition for simi-
larity to a contraction semigroup as it was polynomial boundedness in the discrete
case. Moreover, the Callier–Grabowski–Le Merdy Theorem 7.3.7 implies that for
bounded holomorphic semigroups in fact the condition BIP already suffices. Using
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Pisier’s counterexample to Halmos’s problem Le Merdy [145, Proposition 4.8]
succeeded in showing that in general BIP is not sufficient. Theorem 7.3.13, based
on Chernoff’s ideas from [43] and due to the author [102, Theorem 4.31], states
that one can even exclude similarity to a quasi-contraction semigroup.

7.4 Cosine Function Generators. The mapping theorem for the numerical range
established in Theorem 7.4.3 and Corollary 7.4.5 is from [102, Corollary 5.17]. Its
proof is based on Theorem 7.4.3, also due to the author [105]. McIntosh [164]
shows that an operator B satisfying the conclusion of Corollary 7.4.5 also has
the square root property D(B1/2) = D(B∗1/2). Employing this one can eliminate
the cosine function theory from the proof of Corollary 7.4.4. Crouzeix’ result
Theorem 7.4.7 from [54] is a milestone. This author is about to prove a general
theorem on bounded H∞-calculus for operators with numerical range in a convex
subset of the plane, cf. [53]. For more information on cosine functions in general
consult [10] and the references therein.



Chapter 8

Differential Operators

We treat constant coefficient elliptic operators on the euclidean space Rd. The main
focus lies on the connection of functional calculus with Fourier multiplier theory. The
L1-theory is the subject of Section 8.1 while the Lp-case is presented in Section 8.2.
Then we apply the obtained results to the negative Laplace operator (Section 8.3).
The universal extrapolation space for the Laplace operator is identified with a space
of certain (equivalence classes) of tempered distributions. In Sections 8.4 and 8.5 we
treat the derivative operator on the line, the half-line and finite intervals. The UMD
property of a Banach space X is characterised by functional calculus properties of the
derivative operator on X-valued functions.

Preliminaries

In this chapter we discuss a fairly concrete class of operators, namely (elliptic)
differential operators with constant coefficients. We shall work on the whole space
Rd and only sketch generalisations to differential operators on domains, cf. Section
8.6. In our discussion we will make extensive use of Fourier theory, and we refer
the reader to Appendix E for notation and background information.

For a scalar function of tempered growth a ∈ P(Rd) we define the associated
operator

A :=
(
u �−→ F−1a(Fu)

)
: TD(Rd; X) −→ TD(Rd; X).

Given any Banach space X ⊂ TD(Rd; X) the operator AX is defined as the part
of A in X, i.e.,

D(AX) := {u ∈ TD(Rd; X) | Au ∈ X}.

As the embedding X ↪→ TD(Rd; X) is continuous, AX is a closed operator on X.
For the special choices Xp := Lp(Rd; X), p ∈ [1,∞] we use the abbreviation Ap.
This setting covers in particular differential operators with constant coefficients
since they are induced by proper polynomials. E.g., the polynomial

a(s) =
∑

|α|≤m

aα(is)α (aα ∈ C) (8.1)
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yields the operator
Au :=

∑
|α|≤m

aαDαu (8.2)

on TD(Rd; X).

Lemma 8.0.1. Let a ∈ P(Rd), let A = F−1aF as in (8.1) and (8.2) above, and let
λ ∈ C. If λ /∈ a(Rd), then (λ− a)−1 ∈ P(Rd), (λ−A) is injective, and

(λ−A)−1 = F−1(λ− a)−1F .

Let X be a Banach space continuously embedded into TD(Rd; X). Then λ ∈ �(AX)
if and only if X is invariant under λ−A. In this case R(λ, AX) = [(λ−A)−1]X.

Proof. Suppose that λ /∈ a(Rd). Then (λ −A)−1 ∈ P(Rd) follows from a general
result about derivatives of quotients. Indeed, one proves by induction that, given
f, g functions of d variables, for each multiindex α ∈ Nd one has

Dα

(
f

g

)
=

fα

g|α|+1
,

where fα is a polynomial in the derivatives Dβg, Dβf , (0 ≤ β ≤ α) and with
integer coefficients. Applying this fact to the case f = 1 and g = λ − a, one
sees easily that each derivative Dα(λ− a)−1 must be polynomially bounded. The
remaining statements are then straightforward to prove. �

In general, very little may be said about such differential operators. This
changes drastically when we restrict to the class of homogeneous elliptic operators.
These arise from homogeneous polynomials

a(s) =
∑

|α|=m

aα(is)α (8.3)

satisfying the condition
s 
= 0 =⇒ a(s) 
= 0 (8.4)

and a non-triviality postulate
−1 /∈ a(Rd). (8.5)

If one requires the even stronger condition

0 
= s =⇒ Re a(s) > 0, (8.6)

the polynomial a and the corresponding operator A are called strongly elliptic.
For our further investigations we are in need of some auxiliary information.

Lemma 8.0.2. Let a : Rd −→ C satisfy (8.3)–(8.5). Then the following assertions
hold.
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a) There are constants c1, c2 > 0 such that

c1 |s|m ≤ |a(s)| ≤ c2 |s|m (s ∈ Rd).

b) There is ω ∈ [0, π) such that a(Rd) = a(Rd) ⊂ Sω. Let ωa be the least of
these ω. If a is strongly elliptic, i.e., if (8.6) holds, then ωa < π/2.

c) With c3 := c2/2 and L := (c3)−m one has

|a(s) + λ| ≥ c3 |s|m (|s| ≥ L, |λ| = 1) .

d) If λ /∈ a(Rd), then (λ − a)−1 ∈ P(Rd) and

Dα(λ− a)−1 =
pα

(λ− a)|α|+1
(α ∈ Nd),

where pα is a polynomial of degree deg pα ≤ (m− 1) |α|.

Proof. a) The existence of c2 follows from the inequality |sα| ≤ |s||α|. By (8.4)
and the compactness of the unit sphere c2 := inf |s|=1 |a(s)| > 0. The rest follows
from the homogeneity.

b) Since by a) one has lim|s|→∞ |a(s)| = ∞, a(Rd) = a(Rd) is obvious. Condition
(8.5) then insures that a small neighbourhood U of −1 does not intersect the image
of a, whence by the homogeneity the whole cone generated by U does not intersect
the image of a. If a is strongly elliptic, then {z | |z| = 1, |arg z| ∈ [π/2, π]} does
not intersect a(Rd). Hence this is true also for {z | |z| = 1, |arg z| ∈ [ω, π]}, with
some ω ∈ (0, π/2).

c) is a simple computation and d) is proved by induction on |α|. �

In the following we look at the part Ap in Lp(Rd; X) of a constant-coefficient
elliptic operator A. By Lemma 8.0.1, the attempt to determine the resolvent leads
to the question whether a certain function — here: (λ− a)−1 — is an Lp(Rd; X)-
Fourier multiplier. Moreover, general functional calculus philosophy lets us expect
the formula

f(A)u = F−1(f ◦ a)û,

at least for certain u. Boundedness of f(A) is therefore somehow linked to f ◦ a
being an Lp(Rd; X)-Fourier multiplier. The next two sections will render more
precise this intuitive reasoning.

8.1 Elliptic Operators: L1-Theory

Let a : Rd −→ C satisfy (8.3)–(8.5), let A be the corresponding operator with
symbol a , and let c1, c2, c3, L, ωa as in Lemma 8.0.2.
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Proposition 8.1.1. For each λ /∈ a(Rd) there is a unique rλ ∈ L1(Rd) such that
r̂λ = (λ− a)−1. The mapping

(λ �−→ rλ) : C \ a(Rd) −→ L1(Rd)

is holomorphic, and ‖λrλ‖1 =
∥∥rλ/|λ|

∥∥
1
.

Proof. First of all, the homogeneity of a implies that λ /∈ a(Rd) if and only if µ :=
λ/ |λ| /∈ a(Rd). We claim that there is an rµ ∈ L1(Rd) such that r̂µ = (µ− a)−1.
To establish this, let vµ := (µ − a)−1. Then Dαvµ = pα/(µ − a)|α|+1 for some
polynomial pα of degree deg pα ≤ (m− 1) |α| (Lemma 8.0.2). Hence

|s||α|+m |Dαvµ(s)| ≤ |s||α|+m |pα(s)|
|µ− a(s)||α|+1

≤ (c3)−|α|+1 |pα(s)|
|s|(m−1)|α| ≤ (c3)−|α|+1 cα

for |s| ≥ L. This gives vµ ∈ Mm (defined in Theorem E.4.2), hence vµ = r̂λ for
some rλ ∈ L1(Rd). Now let ε := |λ|−1/m and use the formulae from Appendix E.2
and the homogeneity of a to compute

(λ− a)−1 = εm(µ− εma)−1 = εmUε(µ− a)−1 = εmUεFrµ

= εm−dFU−1
ε rµ = εmFU ′

εrµ.

Hence (λ − a)−1 = Frλ with rλ = |λ|−1 U ′
|λ|−1/mrµ. Since U ′

ε is isometric on L1,
we have ‖λrλ‖1 = ‖rµ‖1. It is now clear that R(λ, A1) is convolution with rλ, and
so the holomorphy follows from Lemma E.3.1. �

With this result at hand we are in a position to prove the main theorem on
homogeneous elliptic constant-coefficient operators.

Theorem 8.1.2. Let a : Rd −→ C satisfy (8.3)–(8.5), and let A =
∑

|α|=m aαDα

be the corresponding operator on TD(R; X), with A1 being its part in L1(Rd; X).
Then the following assertions hold.

a) R(λ, A1)u = rλ ∗ u for all u ∈ L1(Rd; X) and λ /∈ a(Rd).

b) ‖R(λ, A1)‖ = ‖rλ‖1 for λ /∈ a(Rd).

c) A1 is an injective, densely defined, sectorial operator of angle ωA1 = ωa.

d) σ(A1) = a(Rd).

Proof. a) is clear from Lemma 8.0.1 and Proposition 8.1.1.
b) follows from a) and Lemma E.3.1.
c) Proposition 8.1.1 shows that ‖λrλ‖1 is constant on rays originating at 0. Since
‖λR(λ, A1)‖ ≤ ‖λrλ‖1 and (λ �−→ rλ) is continuous, the sectoriality of A1 is
immediate. Since ‖(λ − a)−1‖∞ ≤ ‖rλ‖1 = ‖R(λ, A1)‖, the sectoriality angle of
A1 must in fact be equal to ωa. Clearly S(Rd; X) ⊂ D(A1), so A1 is also densely
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defined. Let us prove that A1 is injective. If u ∈ L1(Rd; X) such that A1u = 0,
then 0 = FA1u = aû. But û ∈ C0 and a(s) 
= 0 whenever s 
= 0. So û(s) = 0 for
all s 
= 0, whence also û(0) = 0 by continuity. This implies that u = 0 since the
Fourier transform is injective.
d) Fix λ ∈ �(A1). For each u ∈ L1(Rd; X) we have u = (λ−A)R(λ, A1)u. Taking
Fourier transforms yields

û = (λ− a)FR(λ, A1)u, (u ∈ L1(Rd; X)).

Since for given s ∈ Rd we can find a function u such that û(s) 
= 0, it follows that
a(s) 
= λ for all s ∈ Rd, i.e., λ /∈ a(Rd). �

We also can say something about the domain D(A1).

Proposition 8.1.3. Let a and A be as above, and let 1 ≤ k ≤ m− 1. Then

Wm,1(Rd; X) ⊂ D(A1) ⊂ (L1(Rd; X), D(A1)) k
m ,1 ⊂ Wk,1(Rd; X).

Proof. It is clear from the definition that W1,m(Rd; X) ⊂ D(A1). We claim that
for β ∈ Nd, |β| ≤ m − 1 the function sβ(1 + a(s))−1 is an L1(Rd; X)-multiplier.
This implies in particular that the operator Dβ(1 + A)−1 restricts to a bounded
operator on the space L1(Rd; X). In order to prove the claim, we use Theorem
E.4.2. By induction on |α| one proves that for any α ∈ Nd there exists a polynomial
pα,β such that

Dα

(
sβ

1 + a(s)

)
=

pα,β

(1 + a(s))|α|+1

and deg pα,β ≤ (m− 1) |α|+ |β|. Hence one can estimate∣∣∣∣Dα

(
sβ

1 + a(s)

)∣∣∣∣ ≤ cα,β |s||β|−m−|α| (|s| ≥ L)

(see Lemma 8.0.2), with constants cα,β > 0 not depending on s. This implies that
sβ(1 + a)−1 ∈Mm−|β| ⊂ FL1 by Theorem E.4.2, as long as |β| ≤ m− 1.

Now, fix β ∈ Nd with |β| ≤ m − 1, and choose v ∈ L1 such that v̂ =
(is)β(1 + a)−1. Let t > 0, and define ε := t−1/m. Then

(is)β(t + a)−1 = εm(is)βUε(1 + a)−1 = εm−|β|UεFv

= εm−|β|FU ′
εv = t

|β|
m −1FU ′

εv.

Hence t1−|β|/mDβ(t + A1)−1 is induced by convolution with U ′
εv, whence∥∥∥t1− |β|

m Dβ(t + A1)−1
∥∥∥
L1→L1

= ‖U ′
εv‖1 = ‖v‖1

is constant. By Corollary 6.7.5 this means

Dβ :
(
L1(Rd; X), D(A1)•

)
|β|
m ,1

−→ L1(Rd; X),
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where D(A1)• = Ḋ is the homogeneous domain as defined in Chapter 6. Hence

(L1(Rd; X), D(A1))k,1 ⊂Wk,1(Rd; X)

for all 1 ≤ k ≤ m− 1. �
Let us now turn to the functional calculus. For f ∈ H∞

0 (Sϕ), ϕ ∈ (ωa, π) we
may define

g :=
1

2πi

∫
Γ

f(z)rz dz ∈ L1(Rd), (8.7)

where Γ = ∂Sω1 for some ω1 ∈ (ωa, ϕ). (The integral converges in L1(Rd) by
Proposition 8.1.1.) Then clearly

f(A1)u = g ∗ u (u ∈ L1(Rd; X)).

Since (1 + A1)−1 is convolution with −r−1 and I is convolution with the Dirac
measure δ0, for every f ∈ E(Sϕ) there exists µf ∈ L1(Rd)⊕ 〈δ0〉 such that

f(A1)u = µf ∗ u (u ∈ L1(Rd; X)). (8.8)

The Dirac part of µf is exactly f(∞)δ0, i.e., µf ∈ L1 if and only if f vanishes at
∞. In particular, if ωa < π/2, the holomorphic semigroup generated by −A1 is
given by convolution with L1-functions.

Corollary 8.1.4. Suppose that ωa < π/2. Then for each |arg λ| < π/2 − ωa there
is Fλ ∈ L1(Rd) such that

e−λAu = Fλ ∗ u (u ∈ L1(Rd; X)).

The mapping
(λ �−→ Fλ) : Sπ

2 −ωa −→ L1(Rd)

is holomorphic.

The identity (8.8) shows that one has f(A1)u = F−1
(
(f ◦ a)û

)
for all ele-

mentary functions f ∈ E(Sϕ). To proceed towards more general functions f we
are in need of a lemma that is also of independent interest.

Lemma 8.1.5. Let q ∈ C[x1, . . . xd]be a polynomial in d variables. Then the follow-
ing two assertions hold.

a) If q 
= 0 then {q = 0} is a Rd-null set.

b) If q ∈ Lp(Rd) for some p ∈ [1,∞), then q = 0.

c) If q ∈ L∞(Rd), then q is a constant.

Proof. We prove assertions a) and b) by induction on d, the case d = 1 being
trivial. So suppose that d ≥ 1 and 0 
= q ∈ C[x1, . . . , xd, t]. Write

q(x, t) = q0(x) + q1(x)t + · · ·+ qm(x)tm



8.1. Elliptic Operators: L1-Theory 225

for certain qj ∈ C[x1, . . . , xd], qm 
= 0. By induction hypothesis, {qm = 0} is a
Rd-null set and whenever x ∈ Rd \ {qm = 0}, the set {t ∈ R | q(x, t) = 0} is
finite, hence an R-null set. By general (product) measure theory, this implies that
{q = 0} is an Rd+1-null set.

To prove b) we fix p ∈ [1,∞) and suppose that ‖q‖p < ∞. This means∫
R

∫
Rd

|q(x, t)|p dx dt <∞.

Hence q(·, t) ∈ Lp(Rd) for almost all t ∈ R. By induction hypothesis, q(·, t) = 0
for these t ∈ R. Hence {q = 0} is a set of infinite Rd+1-measure; this by a) implies
that q = 0.

The proof of c) is trivial. �

Now, take again ϕ ∈ (ωa, π) and f ∈ O(Sϕ). The function f ◦ a is defined
on Rd except for the point 0. In fact, we have f ◦ a ∈ C∞(Rd \ {0}).

Proposition 8.1.6. Let a A be as above, let ϕ ∈ (ωa, π), and let f ∈ O(Sϕ)A1 .
Then

u ∈ D(f(A1)) ⇐⇒ ∃ v ∈ L1(Rd; X) : (f ◦ a) û = v̂ on Rd \ {0}.

In this case f(A1)u = v = F−1[(f ◦ a)û]. In particular, W (X) ⊂ D(f(A1)).
Moreover, the following statements are equivalent.

(i) There is c > 0 such that ‖f(A1)u‖1 ≤ c ‖u‖1 for all u ∈ W (X).

(ii) f ◦ a is an L1(Rd; X)-Fourier multiplier.

(iii) f ◦ a is an L1(Rd)-Fourier multiplier.

(iv) f(A1) is a bounded operator on L1(Rd; X).

(The definition of W (X) can be found in Appendix E.5.) The stated equiva-
lence is surprising on first glance since the space W (X) is not dense in L1(Rd; X).

Proof. Let e be any regulariser for f . Then u ∈ D(f(A1)) if and only if there is
v ∈ L1(Rd; X) such that (ef)(A1)u = e(A1)v. By taking Fourier transforms, this
identity is equivalent to [(ef) ◦ a]û = v̂. This already proves the implication ‘⇐’.
To prove the converse, suppose that there is such a v. Then (f ◦ a)û = v̂ except
possibly on the set {0} ∪ {e ◦ a = 0}. However, e has at most countably many
zeroes, so by Lemma 8.1.5 a) and the fact that a is a polynomial, {e ◦ a} is an
Rd-null set. Since both û, v̂ are continuous functions and f ◦ a is continuous apart
from 0, one has v̂ = (f ◦ a)û on Rd \ {0}.

Within the stated equivalence the implication (iv)⇒(i) is obvious, and so is
the equivalence (ii)⇔(iii) since f ◦a is a scalar function. The implication (i)⇒(iii)
follows easily from Theorem E.5.4. Suppose that (iii) holds, i.e., that f ◦ a is an
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L1-Fourier multiplier. This means that there is a bounded measure µ ∈ M(Rd)
with µ̂ = f ◦a. Now, with e ∈ H∞

0 (Sϕ) being a regulariser for f as above, we have

F(ef)(A1)u = [(ef) ◦ a]û = (e ◦ a)(f ◦ a)û = Fe(A1)(µ ∗ u),

whence (ef)(A1)u = e(A1)(µ ∗ u), for every u ∈ L1(Rd; X). This proves the
claim. �

The homogeneity of the polynomial a has an interesting consequence. (See
Appendix E.2 for the definition of the operator Uε.)

Corollary 8.1.7. Let a, A be as above, let ϕ ∈ (ωa, π) and f ∈ O(Sϕ)A1 , and let
t > 0. Then f ∈ O(Sϕ)tA1 and

f(tA1) = U−1
ε f(A1)Uε

where ε := t1/m. In particular, f(A1) is bounded if and only if f(tA1) is bounded,
and in this case ‖f(A1)‖ = ‖f(tA1)‖.

Proof. The operator tA is induced by the polynomial ta(s) = a(εs). If e ∈ E(Sϕ)
then the proof of Lemma E.4.1 shows that e(tA1) = U−1

ε e(A1)Uε. Hence e(A1) is
injective if and only if e(tA1) is injective. Thus if e regularises f in the functional
calculus of A1, it does so also in the functional calculus for tA1, and

f(tA1) = e(tA1)−1(ef)(tA) = [U−1
ε e(A1)Uε]−1U−1

ε (ef)(A1)Uε

= U−1
ε e(A1)−1UεU

−1
ε (ef)(A1)Uε = U−1

ε f(A1)U−1
ε . �

The next lemma is just transitory in the L1-context (but cf. Corollary 8.2.5).

Lemma 8.1.8. Let a be a homogeneous elliptic polynomial, and let A be its associ-
ated operator. For all 0 
= r ∈ R and ε > 0 one has the equivalence

(A1)ir is bounded ⇐⇒ (ε + A1)ir is bounded.

In this case one has
∥∥Air

1

∥∥ ≤ ∥∥(ε + A1)ir
∥∥ =

∥∥(δ + A1)ir
∥∥ for all ε, δ > 0.

Proof. If Air
1 is bounded, also (ε+A1)ir must be bounded, by Proposition 3.5.5. If

on the other hand (ε+A1)ir is bounded, by Corollary 8.1.7, also t−ir(ε+ tA1)ir =
(t−1ε + A1)ir is bounded for each t > 0, and the norm is independent of t. Hence
by Proposition 8.1.6, all the functions mn(s) := (1/n + a(s))ir are L1-Fourier
multipliers, with uniform bound on the multiplier norm. Lemma E.4.1 b) shows
that also a(s)ir must be an L1-multiplier. Applying Proposition 8.1.6 again proves
the claim. �

Corollary 8.1.9. Let a be a homogeneous elliptic polynomial of degreee m ≥ 1, and
let A be its associated operator. Then each operator (ε + A1)ir, r 
= 0 , ε ≥ 0, is
unbounded.
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Proof. Lemma 8.1.8 shows that it suffices to prove the assertion for ε = 0. If Air
1 is

bounded, the function air must be a Fourier multiplier on L1, by Proposition 8.1.6.
This implies in particular that this function is continuous at 0. Take 0 
= s0 ∈ Rd.
Then a(s0) 
= 0 by ellipticity and a(ts0)ir = tirma(s0)ir must be continuous in
t ≥ 0. But this is impossible since limt↘0 tirm does not exist. �

8.2 Elliptic Operators: Lp-Theory

We continue our study of operators A, given by a homogeneous elliptic polynomial
a of degree m ≥ 1. In this section we focus on the part Ap of A in the spaces
Lp(Rd; X), p ∈ (1,∞). The case p =∞ will be treated later.

Theorem 8.2.1. Let a : Rd −→ C satisfy (8.3)–(8.5), and let A =
∑

|α|=m aαDα be
the corresponding operator. Let 1 < p < ∞. Then the part Ap of A in Lp(Rd; X)
is a densely defined, injective, sectorial operator of angle ωAp = ωa with spectrum
σ(Ap) ⊂ a(Rd). Its resolvent is given by

R(λ, Ap)u = rλ ∗ u (u ∈ Lp(Rd; X), λ /∈ a(Rd)),

where (rλ)λ is as in Proposition 8.1.1. For 1 ≤ k ≤ m− 1 one has

Wm,p(Rd; X) ⊂ D(Ap) ⊂ (Lp(Rd; X), D(Ap)) k
m ,1 ⊂ Wk,p(Rd; X).

If X is a UMD space, then D(Ap) = Wm,p(Rd; X).

Proof. As in the case p = 1 the assertions about the resolvent set, the representa-
tion of the resolvent as convolution with rλ and hence the sectoriality of Ap follow
from Proposition 8.1.1 and Young’s inequality. It is also clear that Ap is densely
defined since D(Rd; X) is contained in D(Ap).

Let us prove injectivity. If Apu = 0, then u ∈ Lp and aû = 0. Since a 
= 0
away from the origin, supp û ⊂ {0}, whence by Lemma E.2.1 the distribution û is
a linear combination of derivatives of δ0. Hence its inverse Fourier transform v is
a polynomial which, by Lemma 8.1.5, must then be equal to 0. Thus u is weakly
zero, hence 0.

The proof of the embedding D(Ap) ⊂ (Lp(Rd; X), D(Ap))k/m,1 ⊂
Wk,p(Rd; X) works exactly as in the L1-case. In fact, in the proof of Propo-
sition 8.1.3 we have shown that the operator t1−|β|/mDβ(t + A)−1 is induced by
convolution with a function U ′

εv, for ε = t−1/m and a fixed function v ∈ L1. So
the rest is just an application of Young’s inequality.

Now, let X be a UMD Banach space. Then the vector-valued Mikhlin theo-
rem (Theorem E.6.2) is at hand to show that the functions sβ(1+ a)−1 are in fact
Lp(Rd; X)-Fourier multipliers for all |β| ≤ m. Cf. the computation in the proof of
Proposition 8.1.3. �
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Remark 8.2.2. One can show that actually σ(Ap) = a(Rd), see [10, Lemma 8.1.1]
and its use in the proof of [10, Lemma 8.3.2].

As to the functional calculus, if f ∈ E(Sϕ), ϕ ∈ (ωA, π), we find as before
µf ∈ L1(Rd) ⊕ 〈δ0〉 such that f(Ap) is convolution with µf . In particular, if
ωa < π/2, the holomorphic semigroup e−λAp is given by convolution with the
L1-kernels Fλ as in Corollary 8.1.4. For more general functions f we have a result
similar to Proposition 8.1.6.

Proposition 8.2.3. Let a and A be as above, p ∈ (1,∞), ϕ ∈ (ωa, π), f ∈ O(Sϕ)Ap ,
and u ∈ Lp(Rd; X). Then

u ∈ D(f(Ap)) ⇐⇒ ∃ v ∈ Lp(Rd; X) : (f ◦ a) û = v̂ on Rd \ {0}.

In this case f(Ap)u = v. In particular, W (X) ⊂ D(f(Ap)). Moreover, the follow-
ing assertions are equivalent:

(i) f(Ap) is bounded.

(ii) f ◦ a is an Lp(Rd; X)-Fourier multiplier.

Note that the product (f ◦a)û is a well-defined distribution on Rd \{0} since
f ◦ a ∈ C∞(Rd \ {0}).

Proof. The proof slightly differs from the L1-case since Fourier transforms of Lp-
functions need not be proper functions any more. We first make sure that the
stated first equivalence holds for elementary functions f ∈ E . Let µf := F−1(f ◦a)
be the corresponding measure (see (8.8)). Take any test function ψ ∈ D(Rd \ {0})
and compute

〈F(f(Ap)u), ψ〉 =
〈
µf ∗ u, ψ̂

〉
=
〈
u, (Sµf ) ∗ ψ̂

〉
= 〈u,F((f ◦ a)ψ)〉

= 〈û, (f ◦ a)ψ〉 .

Hence indeed F(f(Ap)u) = (f ◦ a)û as distributions on Rd \ {0}.
Now, take a general f and let e be any regulariser for f . Then u ∈ D(f(Ap))

if and only if there is v ∈ Lp(Rd; X) such that e(Ap)v = (ef)(Ap)u. If this is
the case, taking Fourier transforms yields (e ◦ a)v̂ = (e ◦ a)(f ◦ a)û on Rd \ {0}.
Hence v̂ = (f ◦ a)û on Rd \ Ae, where Ae = {0} ∪ {e ◦ a = 0}. The function e
can have at most countably many zeroes, with 0,∞ being the only possibilities for
accumulation. For any given compact set K ⊂ Rd\{0} we can choose a regulariser
e such that e has no zeroes on a(K). (Cf. the proof of Lemma 2.7.2.) Since K
was arbitrary, we conclude that v̂ = (f ◦ a)û on Rd \ {0}.

To prove the converse implication, suppose that there is v ∈ Lp(Rd; X) with
v̂ = (f ◦ a)û on Rd \ {0}. Then clearly F(e(Ap)v) = (e ◦ a)v̂ = ((fe) ◦ a)û =
F((ef)(Ap)u) on Rd \ {0}. Hence w := e(Ap)v − (ef)(Ap)u is an Lp-function
whose Fourier transform has support in {0}. As in the proof of Theorem 8.2.1
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(injectivity of Ap), employing Lemma 8.1.5 we conclude that w = 0. But this
means that v = f(Ap)u, by definition.

Let us turn to the second equivalence. Since W (X) is dense in Lp(Rd; X)
and f(Ap) is always a closed operator, the boundedness of f(Ap) is equivalent to
its boundedness on W (X). This is equivalent to (ii) by Corollary E.5.5. �

Analogous to Corollary 8.1.7 and Lemma 8.1.8 we can prove the following.

Corollary 8.2.4. Let a and A be as above, and let p ∈ (1,∞), ϕ ∈ (ωa, π), and
f ∈ O(Sϕ)Ap . Then for each t > 0, f ∈ O(Sϕ)tAp and

f(tAp) = U−1
ε f(Ap)Uε

where ε := t1/m. In particular, f(Ap) is bounded if and only if f(tAp) is bounded,
and if this is the case, then ‖f(Ap)‖ = ‖f(tAp)‖.

Corollary 8.2.5. Let a be a homogeneous elliptic polynomial, let A be its associated
operator, and let p ∈ (1,∞). For each 0 
= r ∈ R, ε > 0 one has the equivalence

(Ap)ir ∈ L(Lp(Rd; X)) ⇐⇒ (ε + Ap)ir ∈ L(Lp(Rd; X)).

In this case one has
∥∥Air

p

∥∥ ≤ ∥∥(ε + Ap)ir
∥∥ =

∥∥(δ + Ap)ir
∥∥ for all ε, δ > 0.

Now we are going to show that much more can be said about the functional
calculus in the case where the Banach space X is an UMD space. For this, we need
information about the growth behaviour of the derivatives of an H∞-function.

Lemma 8.2.6. Let f ∈ H∞(Sϕ) for some ϕ ∈ (0, π]. Then

sup
λ∈Sω

∣∣∣λnf (n)(λ)
∣∣∣ <∞ (n ∈ N, ω ∈ (0, ϕ)).

Proof. Let n ≥ 1. The Cauchy integral formula yields

λnf (n)(λ) =
1

2πi

∫
Γ

f(z)λn

(z − λ)n+1
dz =

1
2πi

∫
Γ

f(|λ| z)λn |λ|
(|λ| z − λ)n+1

dz

with Γ = ∂Sω′ , ω′ ∈ (ω, ϕ) and λ ∈ Sω′ . Setting µ := λ/ |λ| we obtain∣∣∣λnf (n)(λ)
∣∣∣ ≤ ‖f‖∞ 1

2π

∫
Γ

|dz|
|z − µ|n+1 .

�

Theorem 8.2.7. Let p ∈ (1,∞), and let Ap be the part of A in Lp(Rd; X) where A
is given by a homogeneous elliptic polynomial a as before. If X is a UMD space,
then the natural H∞(Sϕ)-calculus for Ap is bounded, for each ϕ ∈ (ωa, π).
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Proof. We apply the multi-dimensional vector-valued Mikhlin theorem (Theorem
E.6.2). By induction on |α| one can prove easily an identity of the form

Dα(f ◦ a) =
|α|∑
j=0

(f (j) ◦ a) pα,j

where the pα,j are polynomials with |α|+ deg pj ≤ mj. This yields the estimate

|s||α| |Dα(f ◦ a)(s)| ≤
|α|∑
j=0

|s||α|
∣∣∣f (j)(a(s))

∣∣∣ |pα,j(s)| ≤
|α|∑
j=0

cα,j
|s|jm

|a(s)|j
≤

|α|∑
j=0

cα,jc
−j
1

where α ∈ Nd is arbitrary and c1 is as in Lemma 8.0.2. (We used Lemma 8.2.6
in the estimation.) So the conditions of the Mikhlin theorem are satisfied and we
conclude that f ◦a is an Lp(Rd; X)-Fourier multiplier. A look at Proposition 8.2.3
concludes the proof. �

L∞-Theory and Closed Subspaces

We conclude this section with a brief summary of the L∞- or C0-theory. Let
as before A be an elliptic operator induced by an elliptic polynomial a. Since
convolutions with L1-functions are bounded operators on L∞, the part A∞ of A
in L∞(Rd; X) is a sectorial operator of angle ωa. Its kernel consists of the constant
functions and its domain satisfies

D(A∞) ⊂ BUC(Rd; X)

in the case where m = 1 and

Wm,∞(Rd; X) ⊂ D(A∞) ⊂ (L∞(Rd; X), D(A∞)) k
m ,1 ⊂ Wk,∞(Rd; X)

for all 1 ≤ k ≤ m− 1 in the case where m ≥ 2.
The space L∞ is somehow inconvenient with regard to the functional calcu-

lus. This is due to the constant functions, whose Fourier images are multiples of
the Dirac measure. Thus Fourier multiplier representations shall fail in general.
However, one can restrict to subspaces, and in fact the next theorem works for
arbitrary p ∈ [1,∞].

Theorem 8.2.8. Let A be an elliptic operator, induced by an elliptic polynomial a.
Fix p ∈ [1,∞] and a closed subspace X ⊂ Lp(Rd; X) not containing the constant
functions. Suppose that X is invariant with respect to the operators R(λ, Ap),
λ /∈ Sωa . Then A restricts to an injective sectorial operator AX on X of angle ωa.
Let ϕ ∈ (ωa, π), and let f ∈ O(Sϕ)AX

. Then for u ∈ X one has

u ∈ D(f(AX)) ⇐⇒ ∃ v ∈ X : v̂ = (f ◦ a) û on Rd \ {0}.

In this case v = f(AX)u.
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Proof. That AX ∈ Sect(ωa) is clear by general theory. Injectivity follows as in the
proof of Theorem 8.2.1. To prove the statement about the functional calculus, one
repeats word by word the arguments of the proof of Proposition 8.2.3, replacing
the space Lp(Rd; X) by the space X. In the case where p = ∞ one uses Lemma
8.1.5 c) and the fact that, by assumption, the constants are not contained in X. �

In the case where p =∞, one particular example is the space X = C0(Rd; X).
It is indeed invariant under the resolvent of A∞ since one has L1 ∗C0 ⊂ C0. The
domain of the induced operator — let us call it A0 — satisfies

Cm
0 (Rd; X) ⊂ D(A0) ⊂ (C0(Rd; X), D(A0)) k

m ,1 ⊂ Ck
0(Rd; X)

for all 1 ≤ k ≤ m− 1.

Corollary 8.2.9. Let a, A0, ϕ, f be as above. Then W (X) ⊂ D(f(A0)), and the
following assertions are equivalent:

(i) There is a c > 0 such that ‖f(A0)u‖∞ ≤ c ‖u‖∞ for all u ∈ W (X).

(ii) f ◦ a is an L∞(Rd; X)-Fourier multiplier.

(iii) f ◦ a is an L∞(Rd)-Fourier multiplier.

(iv) f(A0) is a bounded operator on C0(Rd; X).

In particular, for each 0 
= r ∈ R and ε ≥ 0 the operator (ε + A0)ir is unbounded.

Proof. That W (X) ⊂ D(f(A0)) follows directly from Theorem 8.2.8. The proof of
the stated equivalence is practically the same as in Proposition 8.1.6. Since scalar
L∞-multipliers and L1-multipliers coincide, the remaining statement follows from
Corollary 8.1.9. �

8.3 The Laplace Operator

In this section we apply the general results to a very particular and prominent
example. The negative Laplace operator −∆ is induced by the polynomial

a(s) := |s|2 =
d∑

j=1

s2
j (s ∈ Rd),

so that

Au = −∆u := −
d∑

j=1

DjDju.

As above we denote by −∆p its part in Lp(Rd; X).
We note some obvious facts. The polynomial a is homogeneous of degree

m = 2, its range a(Rd) = [0,∞) is the positive real line, and in fact, if s 
= 0,
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then a(s) > 0. Hence −∆ is strongly elliptic. So for each Banach space X and
each p ∈ [1,∞] the operator −∆p is a sectorial operator on Lp(Rd; X) of angle 0.
It is injective and densely defined in the case where p 
= ∞. If p = ∞, its kernel
consists of the constant functions. Its domain satisfies

W2,p(Rd; X) ⊂ D(∆p) ⊂
(
Lp(Rd; X), D(∆p)

)
1
2 ,1
⊂W1,p(Rd; X).

If p ∈ (1,∞) and X is a UMD space, −∆p has a bounded H∞(Sϕ)-calculus, for
any ϕ ∈ (0, π), and one has the identity

D(∆p) = W2,p(Rd; X).

All imaginary powers (ε −∆1)ir with ε ≥ 0, r 
= 0, are unbounded, as well as all
operators (ε−∆∞)ir or their parts in C0(Rd; X).

Since the sectorial operator −∆p has angle 0, its negative ∆p generates a
holomorphic semigroup of angle π/2, given by convolution with L1-kernels. This
semigroup is the well-known Gauss–Weierstrass semigroup.

Proposition 8.3.1. For any p ∈ [1,∞] and u ∈ Lp(Rd; X) one has

eλ∆pu = Gλ ∗ u (Re λ > 0),

where
Gλ(t) = (4πλ)−

d
2 e−

|t|2
4λ (Re λ > 0).

Moreover, (λ �−→ Gλ) : {Reλ > 0} −→ C0(Rd) ∩ L1(Rd) is holomorphic.

Proof. Essentially one has to show that

Gλ := F−1e−λ|s|2 = (4πλ)−
d
2 e−

|t|2
4λ

for all Re λ > 0. This is done in two steps. If λ > 0, one uses the formula for the
inverse Fourier transform and the well-known identity∫

Rd

e−π|t|2e−2πis·t dt = e−π|s|2 (s ∈ Rd)

employing some simple change of variables. Next, one shows that the function(
λ �−→ e−λ|·|2

)
: {Re λ > 0} −→ L1(Rd)

is holomorphic. For this it suffices to show that the derivative − |·|2 e−λ|·|2 is
majorised by an integrable function, locally uniformly in λ. (This is obviously the
case.) The inverse Fourier transform is a bounded linear operator from L1 to C0,
whence it follows that in fact Gλ(t) is holomorphic in λ for each t ∈ Rd. So we
obtain the final result by uniqueness of analytic continuation. �



8.3. The Laplace Operator 233

Corollary 8.3.2. One has

∥∥eλ∆p
∥∥ ≤ ‖Gλ‖1 =

(
|λ|

Re λ

) d
2

(Re λ > 0).

From the concrete representation of the semigroup we can derive a formula
for the operators (ε−∆)−α, Re α > 0.

Proposition 8.3.3. Let ε > 0, Re α > 0, and p ∈ [1,∞]. Then

(ε−∆p)−αu = Bε,α ∗ u (u ∈ Lp(Rd; X)),

where Bε,α ∈ L1(Rd) is given by

Bε,α(x) =
1

(4π)
d
2 Γ(α)

∫ ∞

0

tα− d
2−1e−tεe−

|x|2
4t dt (x 
= 0).

Proof. We apply Proposition 3.3.5 to the operator −∆1. Here, kernel represen-
tations and operators are two sides of the same coin (isometrically). Hence the
integral

Bε,α :=
1

Γ(α)

∫ ∞

0

tα−1e−εtGt dt

converges in L1(Rd) yielding the convolution kernel for (ε−∆1)−α. It is clear that
this carries over to the Lp-setting. The only remaining thing to check is the given
pointwise respresentation of Bε,α on Rd \ {0}. But if K ⊂ Rd \ {0} is compact,
the integral above is absolutely convergent within L1(K) ∩ C(K), whence the
pointwise representation follows. �

The convolution kernel Bε,α is called a Bessel potential of degree α.

Proposition 8.3.4. Let X be a UMD space, and let p ∈ (1,∞) and ϕ ∈ (0, π).
Then the operator −∆p has a bounded H∞(Sϕ)-calculus on Lp(Rd; X).

On L1(Rd), each of the operators (ε−∆1)ir, r 
= 0, ε ≥ 0, is unbounded.

Proof. Just apply Theorem 8.2.7 and Corollary 8.1.9. �

We now describe briefly a concrete realisation of the extrapolation spaces
(as constructed abstractly in Section 6.3.2) associated with the Laplace operator.
For simplicity let us restrict to the case p < ∞, so the operator A := −∆ on
X = Lp(Rd) is injective. Loosely speaking, on the universal extrapolation space
U , which is a superspace of X , both operators A and (1+A) are bijective. To find
a natural example of such a superspace we have to leave the setting of tempered
distributions and pass to the factor space

[S ′(Rd)] := S ′(Rd)
/
P
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where P := C[t1, . . . , td] is the space of all polynomials. By Lemma 8.1.5, the nat-
ural embedding Lp(Rd) −→ [S ′(Rd)] is injective. By the Hahn–Banach theorem,
one may identify S′(Rd)

/
P ∼= Φ′(Rd) with

Φ(Rd) := {f ∈ S(Rd) | 〈p, f〉 = 0 ∀ p ∈ P}.

The Fourier transform restricts to an isomorphism

FΦ(Rd) −→ Ψ(Rd) := {f ∈ S(Rd) | Dαf(0) = 0 ∀α ∈ Nd}.

By adjoint action, one defines the Fourier transform as an isomorphism

F : Φ′(Rd) −→ Ψ′(Rd)

and it is clear that this corresponds to the induced operator

S ′(Rd)
/
P [F ]−→ S′(Rd)

/
F P .

The space Φ′(Rd) allows for a much greater variety of Fourier multiplier operators
as S ′(Rd), namely with singularities at 0. In particular, for each α ∈ C not only
the operator

(1−∆)α =
(
u �−→ F−1((1 + |s|)2αFu)

)
: Ψ′ −→ Ψ′

is an isomorphism (it is already on S ′), but also

(−∆)α =
(
u �−→ F−1(|s|2αFu)

)
: Φ′ −→ Φ′.

(Use Taylor’s formula.) The operator

T := (−∆)(1 −∆)−2 = F−1
(
|s|2 (1 + |s|2)−2F

)
is an isomorphism on Φ′(Rd) and restricts to A(1 + A)−2 on X = Lp(Rd). The
universal space U may then be identified with

U =
⋃
n∈N

T−nX =
⋃
n∈N

(2−∆−∆−1)nLp(Rd).

Within this space one finds the Bessel potential spaces

H2α
p (Rd) = (1 + ∆)−αLp(Rd) = {u ∈ Φ′ | (1 + |s|2)2αû ∈ FLp}

(which may be identified with subspaces of S ′(Rd)). The homogeneous fractional
domain spaces

X(α) = (−∆)−αLp(Rd) = {u ∈ Φ′ | |s|2α
û ∈ FLp}

are the well-known Riesz potential spaces.
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Remark 8.3.5. Let a be any homogeneous elliptic polynomial, and let A be the
associated operator on Lp(Rd). Then as for the Laplace operator one can find the
universal space of A within Ψ′(Rd). The homogeneous fractional domain spaces
are

X(α) = (−A)−αLp(Rd) = {u ∈ Φ′ | (a(s))αû ∈ FLp}.
A proof of this fact requires us to show that any function f ∈ C∞(Rd \ {0}) such
that each derivative Dαf has at most polynomial growth at 0 and at ∞, is a
continuous multiplier on the space Φ(Rd).

Remark 8.3.6. Let 2 
= p ∈ (1,∞). The Laplacian A = −∆p on X = Lp(Rd) has
dense domain D(−∆p) = W2,p(Rd) and dense range (X is reflexive). Since the
natural H∞-calculus for A is bounded (Proposition 8.3.4), one has in particular
−∆p ∈ BIP(X), whence

[Lp(Rd),W2,p(Rd)]θ = D((−∆p)θ) = H2θ,p(Rd)

is the Bessel potential space for all θ ∈ (0, 1), by Theorem 6.6.9. Real interpolation
yields

(Lp(Rd),W2,p(Rd))θ,q = (H0
p , H2

p )θ,q = B2θ
pq(Rd),

which is a so-called Besov space, see [29, Theorem 6.4.2] and cf. [158, Example
1.3.10]. However, it is known that Hs

p = Bs
p,q if and only if p = q = 2, see [215,

Section 2.3.3, Remark 4] or [214]. As a consequence we obtain an example of a
sectorial operator A on a UMD Banach space X , with bounded H∞-calculus and
such that D(Aθ) 
= (X, D(A))θ,q for all θ ∈ (0, 1), q ∈ [1,∞].

The Laplace Operator as a Strip-type Operator

Finally, let us specialise to dimension d = 1, considering −∆ on Lp(R), 1 ≤ p < ∞.

Lemma 8.3.7. Let λ ∈ C \ [0,∞) and µ ∈ C such that µ2 = −λ and Re µ > 0, i.e.,
µ = (−λ)1/2. Then

F
(
−1
2µ

e−µ|·|
)

(s) =
1

λ− s2
(s ∈ R).

Proof. We compute∫
R

−1
2µ

e−µ|t|e−ist dt =
∫ ∞

0

−1
2µ

e−µte−ist dt +
∫ ∞

0

1
2µ

e−µteist dt

=
−1
2µ

[
−1

µ + is
+

−1
µ− is

]
=

1
λ− s2

. �
From the previous lemma it follows that the resolvent of the Laplacian is

given by the convolution

R(λ,−∆p)u =
(
−1
2µ

e−µ|·|
)
∗ u (u ∈ Lp(R; X)),
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independent of p ∈ [1,∞]. As always, the L1-norm of the kernel yields a bound
for the operator norm. Thus

‖R(λ, Ap)‖ ≤ ‖R(λ, ∆1)‖ =
∫

R

1
2 |µ|e

−Re µ|t| dt =
1

|µ|Re µ
=

2
∣∣sin θ

2

∣∣
|Im λ| ,

where θ = arg(−λ) ∈ (−π, π). Since |sin(θ/2)| ≤ 1, −∆p is a (strong) strip-
type operator of height 0 on Lp(R; X). If X = H is a Hilbert space, then by
Plancherel’s theorem i∆2 generates a unitary group on L2(R; H). However, for
p 
= 2 things are quite different.

Proposition 8.3.8. If p 
= 2 and 0 
= r ∈ R, the operator eir∆p is unbounded on
Lp(R).

Proof. Fix p 
= 2 and r 
= 0. By the mere definition of D(∆p) we see that S(R) ⊂⋂
n≥0 D(∆n

p ). Using the representation of the resolvent by convolution operators
(Lemma 8.3.7) we obtain easily that Feir∆u = e−irs2

û(s) for any u ∈ S(R).
So the boundedness of eir∆ is equivalent to the function e−irs2

being a bounded
Lp(R)-Fourier multiplier. Hence in the following we may suppose that 1 ≤ p < 2.
Fix a > 0, let u ∈ S(R) such that û(s) = e−as2

, and set v := eir∆pu. Then
v̂(s) = e−(ir+a)s2

. Note that u and v can be determined explicitly, namely u = Ga

and v = Ga+ir (see Proposition 8.3.1). Computing Lp-norms yields∥∥eir∆pu
∥∥

p

‖u‖p

=
(

r2 + a2

a2

) 2−p
4p

→∞ as a ↘ 0.
�

From Proposition 8.3.8 one derives easily that in the case where p 
= 2 the
operator i∆p does not generate an exponentially bounded semigroup.

Theorem 8.3.9. If p ∈ (1,∞) and X is a UMD space, then Ap := e∆p is a bounded,
injective, sectorial operator of angle 0 on Lp(R; X). One has Ap ∈ BIP(Lp(R)) if
and only if p = 2.

Proof. We have Ap = T (1) where T (λ) = eλ∆p is the holomorphic semigroup
generated by ∆p. So Ap is bounded and injective. To prove sectoriality, one
must bound the operator family

[
t(t + e∆p)−1

]
t>0

. The operator t(t + e∆p)−1 is
a Fourier-multiplier, with symbol

mt(s) :=
t

t + e−s2 ,

which is a function of bounded variation Var∞−∞(mt)x = 2(t + 1)−1 ≤ 2. We may
apply Bourgain’s version of the Marcinciewicz theorem (Theorem E.6.2 a)) — or
rather a simpler version sometimes called Stečkin’s theorem — and conclude that
mt is an Lp-multiplier with ‖mt‖Mp

≤ 2cp for some constant cp > 0 independent
of t > 0. The second assertion follows from Proposition 8.3.8. �
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Theorem 8.3.9 shows in particular that the familiar one-dimensional heat
semigroup on Lp(R), p ∈ (1,∞), is the semigroup of fractional powers of a sectorial
operator.

8.4 The Derivative on the Line

We fix any Banach space X and consider the operator A = d/dt on TD(R; X)
and its restrictions Ap to the spaces Lp(R; X) for p ∈ [1,∞]. The symbol of this
operator is

a(s) = is (s ∈ R),

which is a homogeneous elliptic polynomial of degree 1. Hence we may in principle
employ the results of the previous sections. However, since we can write down the
resolvent explicitly, we prefer to give direct arguments wherever possible.

Proposition 8.4.1. Let p ∈ [1,∞]. The derivative operator Ap = d/dt on the
space Lp(R; X) is sectorial of angle π/2 with domain D(Ap) = W1,p(R; X) and
spectrum σ(Ap) = iR. It is injective and densely defined if p ∈ [1,∞). It has
dense range if p ∈ (1,∞). Its resolvent is given by

R(λ, A)u = rλ ∗ u, where rλ =

{
−eλt1(0,∞) (Re λ < 0),
eλt1(−∞,0) (Re λ > 0).

One has R(A1) = {u ∈ L1(R; X) | û(0) = 0}, and A∞ restricts to a densely de-
fined sectorial operator with dense range A0 on C0(R; X), with domain C1

0(R; X).

Proof. The operator Ap is defined by Apu = u′ with

D(Ap) = {u ∈ Lp(R; X) | u′ ∈ Lp(R; X)} = W1,p(R; X)

by definition of the latter space. Given Reλ < 0 it is easily proved that

F
(
−eλt1(0,∞)

)
(s) =

1
λ− is

(s ∈ R).

Hence λ ∈ �(Ap) and R(λ, Ap) is just convolution with the kernel −eλt1(0,∞).
Young’s inequality shows that ‖R(λ, Ap)‖ ≤ ‖−eλt1(0,∞)‖1 = |Re λ|−1. Analogous
arguments apply in the case that Re λ > 0. The estimate for the resolvent implies
readily the sectoriality of the operator Ap. Injectivity (in the case p < ∞ and of
the operator A0) is clear since a distribution u satisfying u′ = 0 must be a constant
function.

We determine the spectrum of Ap. Let ϕ be any test function with ϕ(0) = 1,
and consider the sequence

fn(t) := ϕ

(
t

n

)
·
(
n

1
p ‖ϕ‖Lp

)−1

.
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Then it is easy to see that ‖fn‖Lp = 1 but f ′
n → 0. This shows that 0 is an

approximate eigenvalue of Ap for any p ∈ [1,∞] and of A0. (If p = ∞, the
constants are in the kernel of A∞, whence here 0 is in fact an eigenvalue.) To deal
with the other purely imaginary numbers, just observe that the operators A and
A + ir are similar via the isometric isomorphism (Uf)(s) := e−irsf(s).

As to the dense range, observe that if ϕ ∈ D(R; X) with
∫

ϕ = 0 the function
ψ(t) :=

∫ t

−∞ ϕ(r) dr is a primitive of ϕ and also contained in D(R; X). Hence the
inclusion {

ϕ ∈ D(R; X) |
∫

ϕ = 0
}

⊂ R(Ap)

holds. The space on the left is dense in Lp(R; X) if p ∈ (1,∞), and in C0(R; X).
Indeed, let ψ be any test function. Then ψn(t) := ψ(t) − (1/n)ψ(t/n) defines a
test function ψn with

∫
ψn = 0 and ψn → ψ in Lp if 1 < p ≤ ∞. In the L1-

case we note that
∫

ϕ′ = 0 for each ϕ ∈ D(R; X). Since test functions are dense
within W1,1(R; X), we have

∫
f ′ = 0 for all f ∈ D(A1) = W1,1(R; X), whence

R(A1) = {f ∈ L1(R; X)) |
∫

f = 0}. �
From the explicit formula for the resolvent we derive the norm estimate

‖R(λ, Ap)‖ ≤ ‖R(λ, A1)‖ = |Re λ|−1
.

Hence by the Hille–Yosida theorem (Theorem A.8.6) the operator −Ap generates
a strongly continuous isometric group on Lp(R; X) if p ∈ [1,∞). However, we do
not have to employ this theorem.

Proposition 8.4.2. Let p ∈ [1,∞). Then −Ap = −d/dt generates the right shift
group on Lp(R; X) defined by

[S(t)u] (s) := u(s− t) (s, t ∈ R, u ∈ Lp(R; X)).

The same is true for −A0 on C0(R; X).

Proof. Clearly (S(t))t∈R is a strongly continuous group of isometries on the men-
tioned spaces. Let B denote its generator as defined in Appendix A.8. Then for
Reλ > 0 and u ∈ D(R) we have

R(λ, B)u =
∫ ∞

0

e−λtS(t)u dt =
∫ ∞

0

e−λtu(· − t) dt =
[
e−λt1(0,∞)

]
∗ u

= −R(−λ, A)u = R(λ,−A)u.

Hence R(λ, B) = R(λ,−A), i.e. B = −A. �
Let us turn to the functional calculus. The general results of Sections 8.1

and 8.2 show that for ϕ ∈ (π/2, π) and f ∈ H∞
0 (Sϕ) the operator f(Ap) is given

by the Fourier multiplier operator with symbol f(is), i.e.,

f(Ap)u = F−1 (f(is)û(s)) = g ∗ u (u ∈ Lp(R, X)),
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where g = F−1(f(is)). However, there is another way to see this: by Lemma
3.3.1 the function f is the Laplace transform of some function h ∈ L1(0,∞), and
extending h by 0 to the negative real line one sees that Fh = f(is), i.e., h = g.
By the Phillips calculus (Proposition 3.3.2) one has

f(Ap)u =
∫ ∞

0

g(t)S(t)u dt =
∫ ∞

0

g(t)u(· − t) dt = g ∗ u

for all u ∈ Lp(R; X) since g vanishes on (−∞, 0). Note that this agrees with the
formulae we have for the function g. In fact, writing rz = −ezt1(0,∞) in (8.7) we
obtain

g(t) =
1

2πi

∫
Γ

f(z)rz dz (t) =
−1
2πi

∫
Γ

f(z)ezt dz (t > 0),

which is exactly (3.8). (The contour of course is Γ = ∂Sω′ for some ω′ ∈ (π/2, ϕ).)
For further results on the functional calculus we refer to the general approach in
Propositions 8.1.6 and 8.2.3. More interesting is the following theorem.

Theorem 8.4.3. Let X be any Banach space, and let p ∈ (1,∞). Then the following
assertions are equivalent.

(i) X is a UMD space.

(ii) For one/any r > 0 the operators (d/dt)±ir are bounded on Lp(R; X).

(iii) The operator d/dt on Lp(R; X) is in BIP.

(iv) The natural H∞(Sϕ)-calculus for the operator d/dt on Lp(R; X) is bounded,
for one/any ϕ ∈ (π/2, π).

Proof. The implication (i)⇒(iv) is a consequence of Theorem 8.2.7. The implica-
tions (iv)⇒(iii)→(ii) are trivial since A is densely defined and has dense range.

Suppose that (ii) holds. Then by Proposition 8.2.3 the functions (is)ir and
(is)−ir are both Lp(R; X)-Fourier multipliers. Hence also (−is)ir is an Lp(R; X)-
Fourier multiplier (see Section E.1). Since the Fourier multipliers form an algebra,
we have that (−is)ir(is)−ir = eπ sgn s is an Lp(R; X)-Fourier multiplier. But then
also

−i sgn s = −i
eπ sgn s − e−π

eπ − e−π

is an Lp(R; X)- Fourier multiplier. This is (i), by definition. �

Corollary 8.4.4. Let X 
= 0 be any Banach space, and let 0 
= r ∈ R and ε ≥ 0.
Then the operator (ε + d/dt)ir is unbounded on C0(R; X) and on L1(R; X).

Proof. The function m(s) := (is)ir = eir ln|s|+(π/2) sgn s is not continuous at 0,
whence it cannot be an L∞-(resp., L1-)Fourier multiplier (cf. Corollary 8.1.9 and
its proof). �
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The Derivative as a Strip-type Operator

Let us write B := −id/dt for the moment. Since iB generates a strongly con-
tinuous isometric group, B is a strong strip-type operator of height ωst(B) = 0.
Hence we may ask whether eB is sectorial or, even more, whether the natural
H∞-calculus of B (on strips) is bounded, cf. also Theorem 5.4.1.

We begin with the case p = 1, i.e., we consider B as an operator on L1(R).
By Proposition 8.4.1 the resolvent is given by a convolution R(λ, B)u = sλ ∗ u for
a certain function sλ ∈ L1(R). Since the mapping[

µ �−→ (u �−→ µ ∗ u)
]

: M(R) −→ L(L1(R))

is isometric, one sees that for every f ∈ F(Hϕ), ϕ > 0, the operator f(B) is given
by convolution with some L1-function gf . Clearly Fgf = f

∣∣
R
. From this it is easy

to derive the following lemma.

Lemma 8.4.5. Let ϕ > 0, and let f ∈ H∞(Hϕ). Then f(B) is bounded on L1(R)
if and only if there is µ ∈M(R) such that Fµ = f

∣∣
R
.

Proof. By using a regulariser one sees that Ff(B)u = f(s)û(s) for all u ∈ D(B2).
Hence boundedness of f(B) is equivalent to f being a bounded L1(R)-Fourier
multiplier. An appeal to Appendix E.4 concludes the proof. �

Corollary 8.4.6. Let B := −id/dt on the space L1(R). Then eB has empty resol-
vent set. In particular, eB is not sectorial.

Proof. Consider the function f(z) = (λ− ez)−1 for λ /∈ [0,∞). Then f ∈ H∞(Sϕ)
for some small ϕ > 0. If f(B) is bounded, by Lemma 8.4.5 there is µ ∈ M(R)
with Fµf

∣∣
R
. But then lims→∞ µ̂(s) = 0 
= λ−1 = lims→−∞ µ̂(s), contradicting

Proposition E.4.3. �

Let us turn to the case where p ∈ (1,∞). Here Monniaux’s Theorem 4.4.3
shows that A := eB is sectorial of angle 0 and A ∈ BIP(0). One can show, however,
that B cannot have a bounded H∞-calculus on strips. Indeed, using a theorem
of deLeeuw [63] and the interpolation Theorem 9.1.5 in Section 9.1.2 below, one
would obtain that every bounded double sequence is a bounded Fourier multiplier
on Lp(T). This amounts to the fact that the trigonometric system (ein·)n∈Z is an
unconditional basis of Lp(T); but this is false, cf. Section 9.1.3 below.

8.5 The Derivative on a Finite Interval

We now examine the restriction of the derivative operator A = d/dt to finite
intervals. First, we have to say a few words on the half-line case.
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The Derivative on the Half-line

We fix a Banach space X and a parameter p ∈ [1,∞], and consider A = d/dt as
an operator on Lp(R; X) as in the previous section. Then we form the space

Y :=

{
Lp((0,∞); X) if p ∈ [1,∞),
C0((0,∞); X) if p = ∞,

which may be regarded in a natural way as a subspace of TD(R; X) each member
of which vanishes on D(−∞, 0), i.e., has support in [0,∞). (We omit reference to
the parameter p as often as possible.)

Clearly, the space Y is invariant under all shift operators S(t), t ≥ 0, hence
this operator family forms a strongly continuous semigroup on Y , called the right
shift semigroup semigroup. Its generator is the part −AY of −A in Y , so for the
domain of AY we obtain

D(AY ) =

{
W1,p

0 ((0,∞); X) = {f ∈W1,p((0,∞); X) | f(0) = 0},
C1

0((0,∞); X) = {f ∈ C1((0,∞); X) | f, f ′ ∈ C0((0,∞); X)}.

(Note that W1,p(R; X) ↪→ C0(R; X) if p ∈ [1,∞).) The space Y is invariant
under the operators R(λ, A), Re λ < 0 (see the representation in Proposition
8.4.1), hence their restrictions to Y form the resolvent of AY .

Lemma 8.5.1. One has σ(AY ) = C+.

Proof. Fix λ with Re λ > 0. We show that λ − AY cannot have dense range. In
fact, let u ∈ D(AY ); then using integration by parts we compute∫ ∞

0

[(λ−AY )u](t) e−λt dt =
∫ ∞

0

λe−λtu(t)− u′(t)e−λt dt = u(t)e−λt
∣∣∞
0

= 0.

Writing eλ(t) = e−λt this implies that
∫∞
0

veλ = 0 for all v ∈ R(AY ). If 0 
= x ∈ X

and 0 
= ψ is any positive test function on (0,∞) such that
∫∞
0

ψeλ 
= 0, we have
ψ ⊗ x /∈ R(AY ). �

As to the elementary functional calculus, given ϕ ∈ (π/2, π) and e ∈ H∞
0 (Sϕ),

the space Y is invariant under e(A), whence e(AY ) = e(A)
∣∣
Y

. This means

e(AY )u = g ∗ u =
∫ t

0

g(t− s)u(s) (u ∈ Y ),

where g ∈ L1(0,∞) is such that ĝ(s) = e(is). For more general functions f we
obtain the following.

Proposition 8.5.2. Let p ∈ [1,∞] and Y, AY be as above, let ϕ ∈ (π/2, π), and
let f ∈ B(Sϕ), i.e., f ∈ O(Sϕ) is polynomially bounded at 0 and at ∞. Then the
following assertions hold.
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a) D(f(AY )) = D(f(A)) ∩ Y , i.e. f(A)u ∈ Y whenever u ∈ D(f(A)) ∩ Y .

b) f(AY ) is bounded if and only if f(A) is bounded if and only if f(is) is a
bounded Lp(R; X)-Fourier multiplier. In this case ‖f(AY )‖ = ‖f(A)‖.

Proof. a) The function f is regularised by a power of τ(z) = z(1 + z)−2, say
h := τnf ∈ H∞

0 . Let u ∈ D(f(A)) ∩ Y , and define v := f(A)u. Then τ(A)nv =
h(A)u =: w ∈ Y . This means that τ(A)n−1v = 2w + Aw + A−1w. But clearly
2w + Aw = 2w + w′ vanishes on (−∞, 0) since w does. Moreover, A−1w must be
a constant c on (−∞, 0) since w = AA−1w = (A−1w)′ vanishes there. However,
we are on Lp with p < ∞ or on C0, and this forces c = 0. Hence τ(A)n−1v ∈ Y ,
and inductively we arrive at v ∈ Y .

b) Suppose first that f(is) is a bounded Lp(R; X)-Fourier multiplier. By Propo-
sitions 8.1.6, 8.2.3 and Corollary 8.2.9, we conclude that f(A) is bounded. Hence
by a), D(f(AY )) = Y ∩ D(f(A)) = Y , whence f(AY ) is bounded. Suppose
conversely that f(AY ) is a bounded operator on Y . Let u ∈ D(R; X) be any
test function. Find a ∈ R such that τau = u(· − a) is supported in (0,∞),
i.e., τau ∈ Y . By assumption, there is v ∈ Y such that v = f(A)(τau) and
one has ‖v‖p ≤ ‖f(AY )‖ ‖τau‖p. This implies that v̂ = f(is)τ̂au = f(is)e−isaû

on R \ {0}. This yields τ̂−av = f(is)û on R \ {0}, whence u ∈ D(f(A)) with
f(A)u = τ−av. Since the Lp-norm is translation invariant, ‖f(A)u‖p = ‖v‖p ≤
‖f(AY )‖ ‖τau‖p = ‖f(AY )‖ ‖u‖p. Now, f(A) is a closed operator and D(R; X)
is dense, so we may conclude that f(A) is a bounded operator, and this again
implies that f(is) is a bounded Lp(R; X)-Fourier multiplier. The equality of the
norms ‖f(A)‖ = ‖f(AY )‖ is implicit in the above considerations. �

From Proposition 8.5.2 and the result about the derivative on the whole axis
we immediately obtain the following.

Corollary 8.5.3. Let X 
= 0 be a Banach space.

a) Let p ∈ (1,∞). The space X is UMD if and only if for some 0 
= r ∈
R the operators (d/dt)±ir are bounded on Lp((0,∞); X). In this case the
operator d/dt has a bounded H∞(Sϕ)-calculus on Lp((0,∞); X), for each
ϕ ∈ (π/2, π).

b) On C0((0,∞); X) and on L1((0,∞); X) the operator (ε + d/dt)ir is un-
bounded for all 0 
= r ∈ R, ε ≥ 0.

The Derivative on a Finite Interval

We keep the notation X, A, Y from the previous section and turn to the derivative
operator on a finite interval. Let us fix τ > 0 and consider the spaces

Yτ :=

{
Lp((0, τ); X) if p ∈ [1,∞),
C0((0, τ ]; X) if p =∞.



8.5. The Derivative on a Finite Interval 243

One could describe Yτ as a factor space of Y , but we refrain from doing so. By

Rτ :=
(
u �−→ u

∣∣
(0,τ ]

)
: Y −→ Yτ

we denote the restriction mapping. For u ∈ Yτ we denote by v = u∼ any extension
of u to the half-line, i.e., v ∈ Y with Rτv = u. The right shift semigroup on Yτ is
defined by

Sτ (t)u := Rτ [S(t)u∼] (t ≥ 0)

(which of course does not depend on the actual choice of u∼). It is easy to see
that Sτ is a strongly continuous semigroup on Yτ and Sτ (t) = 0 whenever t ≥ τ .
The negative generator of this semigroup is denoted by Aτ . In order to describe
its domain we define

W1,p
0 ((0, τ); X) := {u ∈W1,p((0, τ); X) | u(0) = 0} (8.9)

for p ∈ [1,∞] and also

C1
0((0, τ ]; X) := {u ∈ C1([0, τ ]; X) | u(0) = u′(0) = 0}.

Then we can assert the following facts.

Lemma 8.5.4. One has Aτ = d/dt (in the distributional sense) with

D(Aτ ) =

{
W1,p

0 ((0, τ); X) if p ∈ [1,∞),
C1

0((0, τ ]; X) if p = ∞.

For Re λ < 0 one has

R(λ, Aτ )u = Rτ [R(λ, AY )u∼] (u ∈ Yτ )

or — equivalently — R(λ, Aτ )Rτ = RτR(λ, AY ). Moreover, �(Aτ ) = C and

R(λ, Aτ )u (s) = −eλs

∫ s

0

e−λt u(t) dt (s ∈ [0, τ ])

for all λ ∈ C, u ∈ Yτ .

Proof. Suppose that Re λ < 0, and let u ∈ Yτ . Then

R(λ, Aτ )u = −
∫ ∞

0

eλtSτ (t)u dt = −
∫ ∞

0

eλtRτ [Sτ (t)u∼] dt

= Rτ

(
−
∫ ∞

0

eλtS(t)u∼ dt

)
= Rτ [R(λ, AY )u∼]

by the definition of a generator. Since Rτ is surjective, it follows that D(Aτ ) =
RτD(AY ), and this amounts to the characterisation given in the theorem. It also
shows that Aτ = d/dt. Now observe that the shift on Yτ is nilpotent, i.e., Sτ (t) = 0
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for all t ≥ τ . Hence actually R(λ, Aτ )u = −
∫ τ

0 eλtSτ (t)u dt for all Re λ < 0 and
this has an obvious holomorphic extension to the entire complex plane. Thus in
fact �(Aτ ) = C and

R(λ, Aτ )u = −Rτ

∫ τ

0

eλtS(t)u∼ dt = −
∫ τ

0

eλtu∼(s− t) dt = −eλs

∫ s

0

e−λt u(t) dt

for all λ ∈ C, u ∈ Yτ , s ∈ [0, τ ]. �
The operator Aτ = d/dt on Yτ is called the Riemann–Liouville operator. Its

inverse V = A−1
τ = −R(0, Aτ ) is given by

(V u)(s) =
∫ s

0

u(t) dt (s ∈ [0, τ ], u ∈ Yτ )

and is called the Volterra operator. Since Aτ is invertible, the operators V α = A−α
τ

are bounded for Reα > 0. In fact, one has a nice formula for them.

Proposition 8.5.5. Let τ, Yτ , Aτ , V be as above. Then

V αu (s) = A−α
τ u (s) =

1
Γ(α)

∫ s

0

(s− t)α−1u(t) dt (s ∈ [0, τ ])

for all Re α > 0. The operator family (V α)Re α>0 forms a strongly continuous,
exponentially bounded, holomorphic semigroup of angle π/2 on Yτ .

Proof. As −Aτ generates the nilpotent semigroup Sτ , we may apply Proposition
3.3.5. This yields

V αu (s) =
1

Γ(α)

∫ ∞

0

tα−1Sτ (t)u dt(s) =
1

Γ(α)

∫ ∞

0

tα−1u(· − t) dt(s)

=
1

Γ(α)

∫ s

0

tα−1u(s− t) dt =
1

Γ(α)

∫ s

0

(s− t)α−1u(t) dt.

The second assertion follows from the general theory in Chapter 3. �
The operators V α are called Riemann–Liouville fractional integrals and the

semigroup (V α)Re α>0 is called the Riemann–Liouville semigroup on (0, τ).
We now prove an analogue of Theorem 8.4.3 and Corollary 8.5.3. This re-

quires several steps.

Lemma 8.5.6. Let τ, Yτ , Aτ , V be as above, and let ϕ ∈ (π/2, π).

a) One has f(Aτ )Rτu = Rτf(AY )u for all f ∈ E(Sϕ), u ∈ Y .

b) If f ∈ B(Sϕ)AY , then Rτf(AY ) ⊂ f(Aτ )Rτ (as operators on Y ).

Proof. a) follows immediately from the relation R(λ, Aτ )Rτ = RτR(λ, AY ) (es-
tablished in Lemma 8.5.4). Let enf ∈ E(Sϕ), where e(z) = z(1 + z)−2. Let
u ∈ D(f(AY )), so (fen)(AY )u = e(AY )nf(AY )v. Applying Rτ on both sides of
this equation we obtain by a) (fen)(Aτ )Rτu = e(Aτ )nRτf(AY )u. This shows
that Rτu ∈ D(f(Aτ ) and f(Aτ )Rτu = Rτf(AY )u. �
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Part b) of the previous lemma shows that the boundedness of f(AY ) implies
the boundedness of f(Aτ ), and in this case we have ‖f(Aτ )‖ ≤ ‖f(AY )‖. In
particular if X is UMD and p ∈ (1,∞), then since AY has a bounded H∞(Sϕ)-
calculus, so does Aτ . There is no reason to believe that for a general function f
the boundedness of f(Aτ ) should imply the boundedness of f(AY ). However, we
shall see in the following that it is in fact true for the purely imaginary powers.

Lemma 8.5.7. Let σ, τ > 0 and 0 
= r ∈ R. Then Air
τ ∈ L(Yτ ) if and only if

Air
σ ∈ L(Yσ), and in this case one has equality of norms ‖Air

τ ‖L(Yτ ) = ‖Air
σ ‖L(Yσ).

Moreover, (AY )ir ∈ L(Y ), and ‖(AY )ir‖ = ‖Air
τ ‖.

Proof. We first prove the independence of the length τ of the interval. Consider
the mapping

Φ := (f �−→ f(τ ·)) : Yτ −→ Y1,

which clearly is an isomorphism with ‖Φu‖Y1
= τ−1/p ‖u‖Yτ

for all u ∈ Yτ . This
yields ‖Φ‖

∥∥Φ−1
∥∥ = 1. Via Φ the operator A1 is similar to Aτ , i.e. Φ−1A1Φ =

τAτ . Hence all the operators τAτ (τ > 0) are mutually similar. But clearly
(τAτ )ir = τ ir(Aτ )ir , for example by the composition rule. So Air

τ is bounded if
and only if (τAτ )ir is bounded and by similarity this holds either for all τ > 0 or
for none of them. Suppose that it holds for all. Then we must have∥∥Air

τ

∥∥ =
∥∥τ irAir

τ

∥∥ =
∥∥(τAτ )ir

∥∥ =
∥∥Φ−1Air

1 Φ
∥∥ ≤ ∥∥Φ−1

∥∥ ‖Φ‖∥∥Air
1

∥∥ =
∥∥Air

1

∥∥
and the reverse inequality in a similar fashion. We are left to show that this implies
also that Air

Y ∈ L(Y ). To this aim, let u ∈ Y . We claim that for 0 < σ < τ < ∞
we have

Air
τ Rτu

∣∣
(0,σ)

= Air
σ Rσu.

To prove this claim we multiply the left side with the operator e(Aσ) and obtain

e(Aσ)
[
Air

τ Rτu
∣∣
(0,σ)

]
= e(Aσ)Rσ

[
Air

τ Rτu
]∼

= Rσe(AY )
[
Air

τ Rτu
]∼

= Rσ

[
e(Aτ )Air

τ Rτu
]∼

= Rσ

[
(zire)(Aτ )Rτu

]∼
= Rσ(zire)(AY )u

= (zire)(Aσ)Rσu = e(Aσ)Air
σ Rσu.

Since e(Aσ) is injective, the claim is proved. We define v : (0,∞) −→ X by

v
∣∣
(0,τ)

:= Air
τ Rτu (τ > 0),

which is a valid definition by the claim above. Since the number c := ‖Air
τ ‖L(Yτ )

is independent of τ , we may conclude that v ∈ Y and ‖v‖Y ≤ c ‖u‖Y at least
in the case where p < ∞. One easily shows that e(AY )v = (zire)(AY )u by
simply multiplying Rτ on both sides, τ > 0 being arbitrary. Hence we have
shown D(Air

Y ) = Y in the case where p < ∞. In the remaining case p = ∞, i.e.,
Y = C0(R; X), we cannot conclude that v ∈ Y , but only that v : [0,∞) −→
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X is continuous and bounded (by c ‖u‖∞) and satisfies v(0) = 0. However, if
u ∈ R(e(AY )) = D(AY ) ∩ R(AY ) (which obviously is contained in D(Air

Y )) the
argument shows v = Air

Y u and therefore
∥∥Air

Y u
∥∥

Y
≤ c ‖u‖Y . Now, having Y =

C0((0,∞); X), the operator AY = d/dt has dense domain and dense range, and
since Air

Y is closed, we may finally conclude that Air
Y ∈ L(Y ) and ‖(AY )ir‖ ≤∥∥Air

τ

∥∥. The converse inequality has already been proved. �
Let us summarise our considerations.

Theorem 8.5.8. Let 0 
= X be any Banach space, let τ > 0, p ∈ [1,∞], and consider
the operator d/dt on Lp((0, τ); X) (p < ∞) or C0((0, τ ]; X) (p = ∞) with domain
as specified in Lemma 8.5.4. Then the following assertions hold.

a) If p = 1 or p = ∞, then the operator (ε + d/dt)ir is unbounded for any
0 
= r, ε ≥ 0.

b) If p ∈ (1,∞), the following assertions are equivalent:
(i) X is a UMD space.

(ii) The operators (d/dt)±ir are bounded operators on Lp((0, τ); X) for some
r > 0.

(iii) The operator d/dt has bounded H∞(Sϕ)-calculus on Lp((0, τ); X) for
every ϕ ∈ (π/2, π).

Proof. Simply combine Lemmas 8.5.6 and 8.5.7 with the analogous results for the
operator AY on the half-line (Corollary 8.5.3). �
Remark 8.5.9. Let us point out that our operator Aτ is only one possible realisation
of the derivative operator on the finite interval (0, τ). It is determined by the fact
that−Aτ generates the right shift semigroup. In a similar manner one can consider
periodic boundary conditions, i.e., change the domain to

W1,p
per((0, τ); X) := {f ∈W1,p((0, τ); X) | f(0) = f(τ)},

with analogous results. Some authors prefer this approach because the Fourier
transform arguments become much easier and the situation still shows all relevant
features, cf. [11].

The Volterra operator on C[0, τ ]

Already in the introduction we considered the Volterra operator

V u(s) :=
∫ s

0

u(t) dt, s ∈ [0, τ ], u ∈ C([0, τ ]; X)

as a bounded operator on C([0, τ ]; X), where X is a Banach space. It is injective
and its inverse is the derivative operator A := V −1 = d/dt, but with the domain

D(A) = R(V ) = {x ∈ C1([0, τ ]; X) | x(0) = 0}.

With this domain, −A does not generate a semigroup.
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Proof. Note that Z := C([0, τ ]; X) = C0((0, τ ]; X) ⊕ X the second summand
consisting of all constant functions. Suppose that −A generates an (exponentially
bounded) semigroup S on Z. By Proposition A.8.5 the space Yτ = D(A) =
C0((0, τ ]; X) is invariant under the semigroup S and the restricted semigroup on
Yτ has the part −Aτ of −A as its generator. But D(Aτ ) = C1

0(0, τ ] and since
we already know that −A1 generates the right shift semigroup on Yτ , it follows
that the original semigroup S coincides with the right shift on C0(0, 1]. Since
D(A) is invariant under the semigroup S, S(τ/2)u ∈ D(A) ⊂ C1[0, τ ], where
u = (s �−→ s). But this is obviously false. �

In spite of this result, we can estimate the resolvent of A directly, because a
short computation yields the formula

R(λ, A)u (s) = −eλs

∫ s

0

e−λtu(t) dt = −
∫ s

0

eλtu(s− t) dt (s ∈ [0, τ ])

for all λ ∈ C and all u ∈ C([0, τ ]; X). This implies readily the estimate

‖R(λ, A)‖ ≤ 1
|Re λ| (Re λ < 0).

In particular, −A is a Hille–Yosida operator in the sense of [10, p.144]. So A is
sectorial of angle π/2 (with M(A) = 1) and by general theory (Proposition 2.1.1)
also V = A−1 ∈ Sect(π/2). By embedding C([0, τ ]); X) ⊂ L2((0, τ); X) we see
that the formula for the fractional powers

V αu (s) =
1

Γ(α)

∫ s

0

(s− t)α−1u(t) dt (s ∈ [0, τ ])

(with Re α > 0, u ∈ C([0, 1]; X)) still holds. The next result is not surprising.

Proposition 8.5.10. Let 0 
= X, 0 
= r ∈ R, and ε > 0. Then either operator V ir,[
V (ε + V )−1

]ir is unbounded on C([0, τ ]; X).

Proof. Note that D(A)) ∩ R(A) = D(A) = C0((0, τ ]; X) = Yτ . Obviously, AYτ =
Aτ and we may apply Proposition 5.3.1. Namely, if A−ir = V ir ∈ L(C[0, τ ])
this proposition shows that also (A1)−ir ∈ L(Yτ ), and this by Theorem 8.5.8
is not the case for r 
= 0. If we assume that (V (ε + V )−1)ir is bounded, by
εV (ε + V )−1 = (ε + V −1)−1 we see that also (ε + V −1)ir is bounded. But V −1

is invertible, and the perturbation theorem Proposition 5.5.3 implies that also
V −ir = (V −1)ir is bounded, contradicting what we have proved before. �

8.6 Comments

8.1 and 8.2. Elliptic Operators. For these sections we used [10, Chapter 8] and
[161, Chapter 12] as a basis together with a hand-written manuscript [8] from
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which we learned essentially how to prove Theorems 8.1.2 and Theorems 8.2.1.
The characterisation of D(f(Ap)) given in Propositions 8.1.6 and 8.2.3 are due to
the author, but the characterisation of the boundedness of f(Ap) is well known,
as well as Theorem 8.2.7, cf. [141, Proposition 13.11]. Corollaries 8.1.7, 8.1.9 and
their Lp-versions unify the single results in [161, Chapter 12].

8.3 The Laplace Operator. Most of the results of this section are well known,
cf. [10, Example 3.7.6 and Remark 3.7.7] for the semigroup aspects and [141, Ex-
ample 10.2] for the functional calculus aspects. The identification of the universal
extrapolation space for the Laplacian is inspired by [198, §25], where the space
Φ(Rd) is called the Lizorkin space of test functions. There [198, §26, §27] one
can find also many formulae employing Riesz potentials, Bessel potentials, Gauss-
and Poisson semigroups, as well as the connections with the theory of hypersin-
gular integrals. Proposition 8.3.8 (in a slightly different form) is a classical result
due to Hörmander [120], and our proof follows the original. The result was re-
proved and extended by Arendt, El-Mennaoui and Hieber [13] making use of
boundary values of holomorphic semigroups, cf. [10, Theorem 3.9.4]. The proof
of the fact that e∆p is a sectorial operator is due to the author. It answers in
the negative a question of Arendt in [9, 7.2.2 (j)], namely whether the property
BIP ‘extrapolates’ from L2 to Lp with p 
= 2. We remark that some natural
questions remain open here. First, we do not know whether the operator e∆1 is
sectorial on L1(R). Second it seems to be unknown whether the assumption that
i∆2 generates a semigroup on L2(R; X) already forces X to be a Hilbert space.

More General Elliptic Operators. We focussed our presentation on constant-
coefficient homogeneous elliptic operators because on the one hand this theory is
fundamental for all the results about more general operators, on the other hand
the connection with Fourier multiplier operators is particularly nice.

Already from our results we may easily pass to operators of the form

Au =
∑

|α|=m

aαDαu +
∑

|α|<m

aα(t)Dαu (u ∈ Lp(Rd; X)),

where a(s) =
∑

|α|=m aα(is)α is a homogeneous polynomial with constant coef-
ficients and aα ∈ L∞(Rd;L(X)) for |α| < m. Indeed, the domain inclusion of
Theorem 8.2.1 applied to the so-called principal part Am induced by the polyno-
mial a yields that the second part

B :=
∑

|α|<m

aα(t)Dα

comprising the ‘lower-order terms’ is a ‘good’ perturbation of the principal part.
This is to say that one may apply Lemma 5.5.1 to see that A = Am +B is — after
translation by a constant — an invertible sectorial operator, and the functional
calculus properties are governed by Am in the sense of Proposition 5.5.3.
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Of course, one may pass from constant (scalar) coefficients in the principal
part to variable (operator) coefficients and from the whole space Rd to some open
subset Ω ⊂ Rd adding suitable boundary conditions. The general scheme is to
reduce everything to the constant-coefficient case by perturbation results and a
localisation procedure. We do not go into details here but refer to [69, Chap-
ter II] and [9, Section 8] for a general introduction and further references. The
localisation procedure is detailed in [141, Section 6], see also [141, Theorem 13.13].

Whereas in the above procedure some regularity is needed for the coefficients
in the principal part, there is an approach where only L∞-coefficients are required.
Namely, for open Ω ⊂ Rd and aij ∈ L∞(Ω) such that

Re
d∑

i,j=1

aij(t)sisj ≥ c |s|2 (s ∈ Cd)

for some c > 0, we define the quadratic form

a(u, v) :=
∫

Ω

d∑
i,j=1

aij(t)Diu(t)Djv(t) dt

for u, v ∈ V , where V is some closed subspace of W1,2(Ω) containing W1,2
0 (Ω).

As in Section 7.3.2 we see that a is an elliptic form, and in fact for each λ > 0
the form aλ is coercive. Under certain conditions on V and the form one can —
via the so-called Beurling–Deny criteria — establish that the associated operator
A2 on L2(Ω) extrapolates to a sectorial operator Ap on all Lp-spaces, p ∈ [1,∞].
Moreover, one obtains kernel estimates which, with the help of Calderón–Zygmund
theory, allow one to transfer from L2 to Lp the boundedness of the H∞-calculus
and other properties related to the functional calculus, see [3, Section 7] for the
basic ideas, as well as [9, Section 8] and [141, Chapter 8] and the references therein.

8.4 and 8.5. The Derivative and the Volterra Operator. Results on the spectral
theory of the derivative and on the shift semigroup are standard, see [85]. Theorem
8.4.3 — which characterises UMD spaces by the derivative on the line — is due
to Prüsss [192, Section 8.2]. For its counterparts Corollary 8.5.3 a) (half-line)
and Theorem 8.5.8 b) (finite interval) we do not know of a reference. With the
appropriate definitions one can prove easily that the derivative on Lp(R; X) has
bounded H∞-calculus even on double sectors of the form Σω := Sω ∩ −Sω, (ω ∈
(π/2, π). Hieber and Prüss [118] use this and a transference principle to show
that every generator of a bounded group on a UMD space has a bounded H∞-
calculus on such double sectors.

Guerre-Delabriére [99] shows that a space X is UMD if and only if
(−∆p) ∈ BIP(Lp(R; X)) for some/each p ∈ (1,∞). Martinez and Sanz [161,
Theorem 12.1.11] show by using concrete functions that the derivative on L1[0, 1]
does not have any non-trivial bounded imaginary power. We do not know of a
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direct reference for Proposition 8.5.10. The Riemann–Liouville fractional integrals
have been studied thoroughly by Samko, Kilbas and Marichev [198], cf. also
[161, Chapter 2]. When one takes the left shift instead of the right shift, one
is lead to the so-called Weyl fractional integrals, also treated in [161] and [198].
Galé and Pytlik [93] construct a certain functional calculus for holomorphic
semigroups, based on the Weyl fractional calculus.



Chapter 9

Mixed Topics

In this chapter we present three different topics related to the functional calculus. The
first (Section 9.1) is a review of some counterexamples; the common feature here is
the use of spaces with bases that are not unconditional. The second (Section 9.2) is
an application of functional calculus methods in theoretical numerical analysis, namely
stability and convergence results for rational approximation schemes. The final Section
9.3 is devoted to regularity questions of solutions of inhomogeneous Cauchy problems,
in particular to the so-called maximal regularity problem.

9.1 Operators Without Bounded H∞-Calculus

We present a general method for constructing sectorial operators without bounded
H∞-calculus. The construction uses Schauder bases.

9.1.1 Multiplication Operators for Schauder Bases

Suppose that X is a Banach space and B = (en)n∈N is a Schauder basis for X (see
Appendix E.6 for a definition). One can then define the projections

Pm :
∑∞

n=1
xnen �−→

∑m

n=1
xnen

and finds that Pm ∈ L(X) for each m ∈ N, and that M0 := supm ‖Pm‖ is finite.
The number M0 is called the basis constant of the basis (en)n. Given a scalar
sequence a = (an)n ⊂ C we define

‖| a‖| := lim sup
n

|an|+
∑

n≥1
|an+1 − an| ,

which may be infinite. With a we associate a multiplication operator A on X by

D(A) :=
{

x =
∑

n
xnen ∈ X

∣∣ ∑
n

anxnen converges
}

,

Ax :=
∑

n
anxnen (x ∈ D(A)).
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Since the coordinate projections (x �→ xn) = Pn+1 − Pn are continuous, the
operator A is easily seen to be closed. Moreover, the operator A is injective if and
only if an 
= 0 for all n ∈ N. We call the sequence a a multiplier for the basis
(en)n if A is a bounded operator.

Lemma 9.1.1. Let a = (an)n∈N ∈ C such that ‖| a‖| < ∞. Then a is a multiplier,
i.e., A ∈ L(X), and one has ‖A‖ ≤ M0 ‖| a‖| . If in addition an → 0 as n → ∞, A
is a compact operator.

Proof. Take x ∈ X and write s1 := 0 and sn :=
∑n−1

k=1 xnen = Pn−1x for n ≥ 2.
Then partial summation yields∑m

n=1
anxnen =

∑m

n=1
an(sn+1 − sn) = amsm+1 +

∑m−1

n=1
(an − an+1)sn+1.

Since ‖| a‖| < ∞, a0 := limm am exists, so the first summand tends to a0x as
m→∞. The second can be estimated by∥∥∥∥∑m−1

n=1
(an − an+1)sn+1

∥∥∥∥ ≤ ∑m−1

n=1
|an − an+1| ‖Pnx‖ ≤ M0 ‖| a‖| ‖x‖ ,

whence the series converges absolutely. The remaining arguments are straightfor-
ward, the compactness following from ‖PnA−A‖ → 0. �

If the sequence a = (an)n is positive and strictly increasing, we obtain a
sectorial operator.

Lemma 9.1.2. Let a = (an)n ⊂ (0,∞) be a strictly increasing sequence with
limn an = ∞, and let A be the associated operator. Then A is sectorial of an-
gle ωA = 0, σ(A) ⊂ [a1,∞), and A has compact resolvent. The holomorphic
semigroup generated by −A is immediately compact, i.e., e−tA is compact for each
t > 0.

Proof. Given λ /∈ [a1,∞), we form the sequence rλ := (1/(λ− an))n and compute

‖| rλ‖| =
∑

k≥1

∣∣∣∣ 1
λ− ak+1

− 1
λ− ak

∣∣∣∣ =
∑

k≥1

∣∣∣∣∫ ak+1

ak

dt

(λ− t)2

∣∣∣∣ ≤ ∫ ∞

a1

dt

|λ− t|2
.

By Lemma 9.1.1 the operator associated to rλ is bounded (even compact) and it
is easily seen that this operator equals R(λ, A). In particular, σ(A) ⊂ [a1,∞). For
λ = |λ| eiϕ, 0 < |ϕ| ≤ π, we obtain

‖λR(λ, A)‖ ≤ M0 |λ| ‖| rλ‖| ≤M0

∫ ∞

0

|λ| dt

|λ− t|2
= M0

∫ ∞

0

dt

|eiϕ − t|2
.

This shows that A ∈ Sect(0). Since each semigroup operator e−tA is obtained by a
norm-convergent integral of resolvents (which are known to be compact), it must
be compact. �



9.1. Operators Without Bounded H∞-Calculus 253

Remark 9.1.3. Using the estimate ‖| rλ‖| ≤
∫∞
0 |λ− t|−2

dt, one sees easily that A
is also a strong strip-type operator with ωst(A) = 0 and R(λ, A) ≤ πM0/ |Im λ|
for λ /∈ R.

The functional calculus for a so-obtained sectorial/strip-type operator A is
straightforward.

Proposition 9.1.4. Let a = (an)n ⊂ (0,∞) be a strictly increasing sequence with
limn an = ∞, and let A be the associated multiplication operator on X. Let
ω ∈ (0, π) and f ∈ H∞(Sω). Then f(A) is the multiplication operator associated
with the sequence (f(an))n.
The same conclusion holds true if one regards A as a strip-type operator and takes
a bounded function on a strip f ∈ H∞(Hω), ω > 0.

Proof. Take e ∈ H∞
0 (Sω) first. Then e(A) is defined by the Cauchy integral, and

a straightforward application of Cauchy’s theorem yields [e(A)x]n = e(an)xn for
all n. Hence e(A) is the multiplication operator associated with (e(an))n. The
operator e(A) is injective if and only if e(an) 
= 0 for all n. For general f ∈ H∞

take a regulariser e for f . Then

x ∈ D(f(A)) ⇐⇒ ∃y ∈ X : (ef)(A)x = e(A)y
⇐⇒ ∃y ∈ X ∀n : e(an)f(an)xn = (ef)(an)x = e(an)yn

⇐⇒ ∃y ∈ X ∀n : f(an)xn = yn,

since e(an) 
= 0 for all n. This proves the claim. In the strip case the arguments
are analogous. �

If the basis is unconditional, every bounded sequence is a multiplier. Hence in
this case a sectorial multiplication operator A always has a bounded H∞-calculus.
If the basis is conditional, one always finds a bounded sequence b such that the
corresponding operator is not bounded, cf. [224, Theorem II.D.2]. The whole
problem is now to ensure that this sequence is of the form b = (f(an))n. This is
the subject of the next section.

9.1.2 Interpolating Sequences

In this section we deal with the problem to find a bounded holomorphic function
f which coincides on certain predefined points zn with certain previously fixed
numbers an.

Denote for the moment by Z the space of all entire functions f ∈ O(C) such
that

‖f‖Z := sup
z∈C

e−|Im z|2 |f(z)| < ∞.

Then ‖f‖Z is a norm on Z which turns it into a Banach space. Moreover, Z
embeds canonically in to each space H∞(Hω), ω > 0. Let us denote by

R := (f �−→ f
∣∣
Z
) : Z −→ �∞(Z)
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the restriction mapping.

Theorem 9.1.5 (Interpolating Sequences). There exists a bounded linear operator
T : �∞(Z) −→ Z with R ◦ T = I on �∞(Z).

Proof. For a given sequence a ∈ �∞(Z) we define Sa(z) :=
∑

n∈Z
a(n)e−(z−n)2 for

z ∈ C. It is easily seen that the series converges uniformly on compacta and one
has the estimate

|S(z)| ≤ ‖a‖∞ e|Im z|2
∑

n∈Z
e−(Re z−n)2 (z ∈ C).

The function g(x) :=
∑

n∈Z
e−(x−n)2 is continuous and 1-periodic, hence bounded.

Thus we have proved that S : �∞(Z) → Z continuously. Next, we claim that
RS = I +H where the operator H ∈ L(�∞(Z)) is given by the convolution (on Z)
Ha = h ∗ a with

h(n) =

{
e−n2

n 
= 0,

0 n = 0.

Indeed,

Sa(k) =
∑

n
a(n)e−(k−n)2 =

∑
n

a(k − n)e−n2
= a(k) +

∑
n
=0

a(k − n)e−n2
.

Now, ‖H‖ ≤ ‖h‖1 = 2
∑

n≥1
e−n2

< 1. Therefore the operator I +H is invertible

and we can define T := S(I + H)−1. �
As a consequence of the theorem, one says that the integers Z form an inter-

polating sequence for strips. That means, given any bounded (double-)sequence
a ∈ �∞(Z) there is an entire function f , bounded on every strip Hω, ω > 0,
such that f(n) = an for all n ∈ Z. Using the sector-strip correspondence via the
exponential function, one immediately obtains a result for the sector.

Corollary 9.1.6. Let c > 0 be fixed. Then there is a bounded linear operator
Tc : �∞(Z) −→ H∞(Sπ) such that (Tca)(cn) = an for all n ∈ Z.

Proof. Define Tca(z) := (Ta) (log z/ log c) for |arg z| < π, where T is the operator
from Theorem 9.1.5 above. �

A common choice is c = 2, so that the corollary says that the sequence
(2n)n∈Z is an interpolating sequence for sectors.

9.1.3 Two Examples

Being prepared by the previous paragraphs, we state the main result.

Theorem 9.1.7. Let B := (en)n∈N be a Schauder basis for the Banach space X, and
let A be the multiplication operator on X associated with the sequence (2n)n∈N.
Suppose that the basis B is not unconditional. Then the natural H∞(Sπ)-calculus
for A is not bounded.
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Proof. Since the Schauder basis is conditional, there exists a sequence b = (bn)n∈N

such that the corresponding multiplication operator B is not bounded. By Corol-
lary 9.1.6 there is a function f ∈ H∞(Sπ) with f(2n) = bn for all n ∈ N. Propo-
sition 9.1.4 yields f(A) = B. �

The previous result becomes even more interesting as it is known that every
Banach space with an unconditional basis also has a conditional one (see [204,
Theorem 23.2]). Since most of the classical separable Banach spaces have un-
conditional bases, they all admit ‘nice’ operators without bounded H∞-calculus.
In particular, every separable Hilbert space has an unconditional (and therefore
also a conditional) basis. When we combine what we have proved so far with
McIntosh’s theorem (Theorem 7.3.1) we obtain the following.

Corollary 9.1.8 (Le Merdy). Let H be a separable Hilbert space. Then there exists
an operator A on H such that the following statements hold.

1) The operator A is invertible and sectorial of angle 0.

2) The semigroup generated by −A is immediately compact.

3) A /∈ BIP(H).

Leaving Hilbert spaces, one can ask for an example of an operator without
bounded H∞-calculus but such that it nevertheless has bounded imaginary powers.
In order to construct such an operator, we turn to a prominent example of a
conditional Schauder basis.

Fix p ∈ (1,∞) and consider the space Lp(T), where T := {z ∈ C | |z| = 1}
is the unit circle group, endowed with the normalised Haar measure µ. For n ∈ Z

we let
en := (z �−→ zn) = eint

be the n-th character of T. As is well known, (en)n∈Z is an orthonormal basis of
L2(T). For u ∈ L1(T) its n-th Fourier coefficient is given by û(n) :=

∫
T

ue−n dµ.
Let

Hp(T) := {u ∈ Lp(T) | û(n) = 0 for all n < 0}
be usual the Hardy space. As is well known, the Riesz projection

R :=
(∑

n∈Z
anen �−→

∑
n≥0

anen

)
originally defined on the space T := span{en | n ∈ Z} of trigonometric polynomi-
als extends to a bounded projection on Lp(T) with range Hp(T). As a consequence
of this, for each u ∈ Lp(T) its Fourier series

DN ∗ u =
∑N

−N
û(n)en

converges to u in Lp-norm as N → ∞. (Here DN denotes the Dirichlet ker-
nel.) Hence (en)n≥0 is a Schauder basis of Hp(T). If p 
= 2, this basis is not
unconditional, as follows from [224, Proposition II.D.9].
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Let us now consider the multiplication operator A on X = Hp(T) correspond-
ing to the sequence (2n)n≥0. It follows from Lemma 9.1.2 that A is invertible and
sectorial of angle 0, and from Theorem 9.1.7 that the natural H∞(Sπ)-calculus
for A is not bounded. However, A ∈ BIP(X, 0), since Ais is the multiplication
operator associated with the sequence (2ins)n≥0 and

Aisu =
∑

n≥0
2insû(n)en =

∑
n≥0

û(n)ein(·+s log 2) = U(s log 2)u,

where (U(t))t∈R is the (isometric) rotation group on Lp(T).
Write Xp := kerR for the kernel of the Riesz projection. Then Lp(T) =

Xp ⊕Hp(T) and the operator I ⊕ A is an invertible sectorial operator of angle 0
on Lp(T) with bounded (even isometric) imaginary powers but without bounded
H∞-calculus.

9.1.4 Comments

The first example of a sectorial operator without bounded imaginary powers was
given by Komatsu [131, Section 14, Examples 6 & 8] (reproduced in [161, Example
7.3.3]), modelled on the space c0. McIntosh and Yagi [169, Theorem 4] gave
an example of an invertible operator A on a Hilbert space without bounded H∞-
calculus. The method is to construct A as a direct sum of a sequence of finite-
dimensional operators with certain special properties.

The idea of using conditional bases for constructing counterexamples was
introduced by Baillon and Clément [23]. Venni [219] subsequently used it to
give an example of an operator A with Ais being bounded for some but not all
s ∈ R. The method was elaborated further by Lancien, Le Merdy and Simard,
cf. [143, 145, 203, 147].

In those papers it is usually referred to Carleson’s theorem to obtain that the
sequence of powers (2n)n≥1 is an interpolating sequence for the halfplane. Our
proof of this fact, i.e., essentially Theorem 9.1.5, was abstracted from [51, Lemma
5.3], where an example is given of an operator A on Lp(R) (p 
= 1, 2,∞) that
has bounded imaginary powers but not a bounded H∞-calculus. Actually, this
example is more or less the analogue of our second example in Section 9.1.3, due
to Lancien [143], cf. [9, Section 4.5.3].

Although the construction is elegant, the examples are artificial in a sense
and in fact the natural differential operators on the natural reflexive spaces all do
have a bounded H∞-calculus, cf. Section 8.6. However, if one passes to pseudo-
differential operators, things are different, as Hieber [117] has pointed out.

9.2 Rational Approximation Schemes

In this section we turn to an application of functional calculus to questions of
numerical analysis.



9.2. Rational Approximation Schemes 257

9.2.1 Time-Discretisation of First-Order Equations

Assume that one is given an autonomous first-order initial-value problem

x′ = F (x), x(0) = x0

in a state Banach space X . An exact solution is a differentiable curve (u(t))t≥0

starting at x0 and satisfying

d

dt
u(t) = F (u(t)) (t > 0),

i.e., at any time t > 0 the velocity of u at t coincides with the value of the vector
field F at the point u(t). In simulating the dynamical system numerically one
tends to work with piecewise affine curves instead of exact solutions. So given
a fixed t > 0 one might think of dividing the interval [0, t] into n ∈ N equal
parts 0 = t0 < t1 < · · · < tn = t, each of length h := tk+1 − tk = t/n, and
consider a continuous curve u : [0, t] −→ X starting at u(0) = x0 and being
affine on each interval [tj−1, tj ]. Using the notation uk = u(tk), the vector δuk :=
h−1 (uk+1 − uk) is the constant velocity vector of u on [tk, tk+1].

In order that u can count as an approximate solution to our original problem,
this velocity vector should have something to do with the vector field F . One —
certainly natural — choice is to require

δuk = h−1 (uk+1 − uk) = F (uk),

that means, at each tk the curve u starts off with velocity F (u(tk)). This method
is commonly called the forward (or explicit) Euler method. When instead we
require δuk = F (uk+1), i.e., we want u to arrive at tk+1 with the right velocity, it
is called the backward (or implicit) Euler method.

Let us now look at the case that F (x) = −Ax, where A is a sectorial operator
of angle ωA < π/2. The forward Euler method leads to the equation

uk+1 = uk − hAuk = (1− hA)uk

for all k ≤ n − 1. Hence un = (1 − hA)nx0. Obviously, if we want to apply this
method in an infinite-dimensional setting where the operator A is unbounded, this
has some drawbacks since the approximation u will only be defined if the initial
value is sufficiently smooth, i.e., is contained in D(AN ) for some (high) power
N ∈ N. Using instead the backward Euler method yields

uk+1 − uk = −hAuk+1,

which amounts to uk+1 = (1+hA)−1uk and there are no restrictions for the initial
value x0. (Note that our assumptions on A ensure that (1 + hA)−1 ∈ L(X).) So
we are lead to consider

un =
(
1 +

t

n
A
)−n

x0 = r

(
t

n
A

)n

x0
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(with r(z) = rbe(z) := (1 + z)−1) as an approximation of e−tAx0.
Of course, apart from the backward Euler scheme there are other methods

which work well in the infinite-dimensional setting. We might, for example, require

δuk = h−1 (uk+1 − uk) = F

(
uk+1 + uk

2

)
= −1

2
A(uk+1 + uk),

which amounts to the fact that the straight curve u
∣∣
[tk,tk+1]

has its velocity coin-
ciding with the vector field F exactly at the midpoint between its beginning uk

and its end uk+1. A short computation then yields

un =

[(
1− t

2n
A

)(
1 +

t

2n
A

)−1
]n

x0 = r

(
t

n
A

)n

x0

with

r(z) = rcn(z) :=
1− 1

2z

1 + 1
2z

.

This method is called the Crank–Nicolson scheme.
We cast these examples into a proper definition. A rational approximation

scheme for the operator A is given by some rational function r with poles outside
the spectral sector SωA . It consists in computing

un = r(hA)nu0, nh = t

for n ∈ N, t > 0. We call the scheme accurate of order p (p ∈ N) if

r(z)− e−z = O(zp+1) as z → 0.

While the backward Euler scheme is accurate of order 1, the Crank–Nicolson
scheme is accurate of order 2.

In the following we consider rational functions r and examine the properties
of the corresponding approximation schemes, i.e., of the operator family

r(hA)n (h > 0, n ∈ N).

Of course one may ask for convergence r(tA/n)nx → e−tAx in general or, more
precisely, for convergence rates depending on the smoothness of x. Apart from
that, one may ask for the stability of the approximation scheme determined by r
with respect to the operator A. By this we mean simply the uniform boundedness

K := sup
h>0,n∈N

‖r(hA)n‖ < ∞, (9.1)

which is of ultimate importance: if in the computation of the initial value x0

one makes an additive error e0, the total error after computing u is not larger
than K ‖e0‖, independent of the smallness of the time-step h and the number of
performed iterations n.
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9.2.2 Convergence for Smooth Initial Data

We fix an angle ϕ ∈ (0, π/2] and a rational function r satisfying

|r(z)| ≤ 1 (z ∈ Sϕ). (9.2)

This condition is sometimes called the A(ϕ)-stability of the function r. We call
a set of paramaters (p, q, a) adapted to the function r if it satisfies the following
conditions:

1) p, q ∈ N, 0 
= a ∈ C and |arg a|+ pϕ ≤ π/2.

2) r(z) − r(0)e−azp

= O(zq) as z → 0.

3) p < q in the case that |r(0)| = 1.

If (p, q, a) is adapted to r, we set

sr :=

{
q−p

p if |r(0)| = 1,

∞ if |r(0)| < 1.
(9.3)

(This last concept will not be used until Proposition 9.2.5.) The next lemma tells
us that adapted triples exist.

Lemma 9.2.1. Let ϕ ∈ (0, π/2], and let r be an A(ϕ)-stable rational function. In
the case where |r(0)| < 1 the triple (1, 1, 1) is adapted. In the case where |r(0)| = 1
there is exactly one adapted triple (p, q, a). In particular, if r is accurate of order
s ∈ N, then (1, s + 1, 1) is adapted.

Proof. By holomorphy one has r(z) − r(0)e−z = O(z), so (1, 1, 1) is adapted if
|r(0)| < 1 since in this case we do not require q > p. Suppose that |r(0)| = 1.
Then for (p, q, a) to be adapted it is necessary that r(z) = r(0)−r(0)azp+O(zp+1)
near z = 0. This determines p, a, and finally q. The inequality |arg a|+ pϕ ≤ π/2
is now easily deduced from the fact that |r(0)| = 1 and |r(z)| ≤ 1 for z ∈ Sϕ. �

The next lemma describes the asymptotic behaviour of the rational function
r(z)n at 0.

Lemma 9.2.2. Let ϕ ∈ (0, π/2], let r be an A(ϕ)-stable rational function, and let
(p, q, a) be adapted to r. Then the following assertions hold.

a) If |r(0)| < 1, then for each θ ∈ (0, ϕ) there are constants C ≥ 0, c ∈ [0, 1)
such that∣∣∣r(z)n − r(0)ne−nazp

∣∣∣ ≤ Ccn |z|q (z ∈ Sθ, |z| ≤ 1, n ∈ N).

b) If |r(0)| = 1, then for each θ ∈ (0, ϕ) there are constants C ≥ 0, c > 0 such
that∣∣∣r(z)n − r(0)ne−nazp

∣∣∣ ≤ C |z|q ne−nc|z|p (z ∈ Sθ, |z| ≤ 1, n ∈ N).
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Proof. Fix a constant C′ ≥ 0 with |r(z) − r(0)e−azp | ≤ C′ |z|q for z ∈ Sϕ, |z| ≤ 1,
and let θ ∈ (0, ϕ)

a) Suppose that |r(0)| < 1. By the Maximum Principle one has |r| < 1 in the
interior of Sϕ. Hence 0 < d := sup{|r(z)| | z ∈ Sθ, |z| ≤ 1} < 1. Choose c ∈ (d, 1).
Then∣∣∣r(z)n − r(0)ne−nazp

∣∣∣ =
∣∣∣r(z)− r(0)e−azp

∣∣∣ ∣∣∣∣∑n−1

j=0
r(z)jr(0)n−j−1e−a(n−j−1)zp

∣∣∣∣
≤ C′ |z|q

∑n−1

j=0
dn−1e−(n−j−1)Re(azp) ≤ C′ndn−1 |z|q = Ccn |z|q

for all n ∈ N, |z| ≤ 1 and some other constant C ≥ 0. This proves a).

In the case |r(0)| = 1 we define c1 := inf{Reazp | z ∈ Sθ, |z| = 1} > 0 and
obtain |e−azp | ≤ e−c1|z|p for all z ∈ Sθ. Next, we claim that there exists c2 > 0
such that

|r(z)| ≤ e−c2|z|p (z ∈ Sθ, |z| ≤ 1). (9.4)

Assume the contrary. Then for some sequence (zn)n we have |r(zn)| > e−|zn|p/n.
After passing to a subsequence we may suppose that (zn)n converges to some
z0 ∈ Sθ with |z0| ≤ 1. Hence |r(z0)| ≥ 1. The Maximum Principle and (9.2) now
imply that z0 = 0. Writing tn := |zn| and using that (p, q, a) is adapted it follows
that

e−
1
n tp

n < C1t
q
n + e−c1tp

n (n ∈ N),

but this is impossible, since tn → 0 and q > p. Having thus established (9.4), we
define c := min{c1, c2} and estimate∣∣∣r(z)n − r(0)ne−nazp

∣∣∣ =
∣∣∣r(z)− e−azp

∣∣∣ ∣∣∣∣∑n−1

j=0
r(z)jr(0)n−j−1e−a(n−j−1)zp

∣∣∣∣
≤ C′ |z|q

∑n−1

j=0
e−jc2|z|pe−c1(n−j−1)|z|p

≤ C′ |z|q ne−(n−1)c|z|p ≤ (C′ec) |z|q ne−nc|z|p . �

We now use Lemma 9.2.2 in the special case of accurate functions r to obtain
optimal approximation results for smooth initial data.

Theorem 9.2.3 (Convergence Theorem). Let r be a rational function accurate of
order p ∈ N and satisfying (9.2). Then for every α ∈ (0, p] and θ ∈ (0, ϕ) there
is a constant C = C(r, θ, α) such that for every sectorial operator A on a Banach
space X such that ωA ∈ [0, θ) one has an estimate∥∥r(hA)nx− e−nhAx

∥∥ ≤ C M(A, θ)hα ‖Aαx‖

for all x ∈ D(Aα) and all h > 0, n ∈ N.
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Proof. Fix θ ∈ (0, ϕ). The triple (1, p + 1, 1) is adapted and r(0) = 1, hence by
Lemma 9.2.2 we find constants C, c > 0 such that∣∣r(z)n − e−nz

∣∣ ≤ C |z|p+1
ne−cn|z| (z ∈ Sθ, |z| ≤ 1, n ∈ N).

Also, by using the A(ϕ)-stability, we find |r(z)n − e−nz| ≤ 2 for all z ∈ Sϕ, n ∈ N.
Define fn(z) := z−α(r(z)n − e−nz). Since fn(z) ∈ H∞

0 — using the definition of
fn(hA) by means of a Cauchy-integral — we can compute

‖fn(hA)‖ ≤ 1
2π

∫
∂Sθ

|fn(z)| ‖R(z, hA)‖ |dz|

≤ M(hA, θ)
2π

(
C

∫
∂Sθ,|z|≤1

|z|p+1−α
ne−cn|z| |dz|

|z| + 2
∫

∂Sθ,|z|≥1

|z|−α |dz|
|z|

)

≤ M(A, θ)
2π

(
2C

∫ 1

0

ne−ncttp−α+1 dt

t
+ 4

∫ ∞

1

dt

tα+1

)
≤ M(A, θ)

2π

(
2C

∫ ∞

0

tp−αe−ct dt + 4
∫ ∞

1

t−(α+1) dt

)
= C′ M(A, θ)

for a certain constant C′ ≥ 0. Hence for x ∈ D(Aα), we have∥∥r(hA)nx− e−nhAx
∥∥ = ‖(hA)αfn(hA)x‖ ≤ C′M(A, θ)hα ‖Aαx‖ .

This concludes the proof. �

9.2.3 Stability

We recall that in Theorem 9.2.3 the case that α = 0 is excluded. We shall see in
a moment that in fact a norm convergence statement like∥∥r (tA/n)n − e−tA

∥∥ → 0

in general is only true if |r(∞)| < 1. However, we are going to show the stability
of the appproximation scheme, requiring nothing else than A(ϕ)-stability of r.

Theorem 9.2.4 (Stability Theorem). Let ϕ ∈ (0, π/2], and let r be an A(ϕ)-stable
rational function. Then for every θ ∈ (0, ϕ) there is a constant C = C(θ, r) ≥ 0
such that

sup
n∈N,h>0

‖r(hA)n‖ ≤ CM(A, θ)

for every sectorial operator A with ωA ∈ [0, θ).

As in the previous section, the proof of this theorem rests on a careful asymp-
totic analysis of the rational function r. The crucial fact is the following.



262 Chapter 9. Mixed Topics

Proposition 9.2.5. Let ϕ ∈ (0, π/2], let r be an A(ϕ)-stable rational function, and
let (p, q, a) be adapted to r. Then for gn defined by

gn(z) := r(z)n − r(0)ne−anzp

and θ ∈ (0, ϕ) there is ε ∈ [0, 1) such that∫
∂Sθ,|z|≤1

|gn(z)| |dz|
|z| =

{
O(εn) if |r(0)| < 1,

O(n−s) if |r(0)| = 1.

(where s = sr = (q − p)/p is as defined in (9.3)) and∫
∂Sθ,|z|≥1

∣∣∣r(0)ne−nazp
∣∣∣ |dz|
|z| = O(εn).

Proof. Given an A(ϕ)-stable rational function r and an angle θ ∈ (0, ϕ) according
to Lemma 9.2.2 one can write∣∣∣r(z)n − r(0)ne−azp

∣∣∣ ≤ {
C cn |z|
C |z|q ne−cn|z|p (n ∈ N, z ∈ Sθ, |z| ≤ 1)

(where c ∈ [0, 1) in the first and p < q, c > 0 in the second case). If |r(0)| < 1,∫
∂Sθ,|z|≤1

|gn(z)| |dz|
|z| =

∫
∂Sθ,|z|≤1

∣∣∣r(z)n − r(0)ne−anzp
∣∣∣ |dz|
|z| ≤ 2Ccn.

If however |r(0)| = 1, one has∫
∂Sθ,|z|≤1

∣∣∣r(z)n − r(0)ne−anzp
∣∣∣ |dz|
|z| ≤ C

∫
∂Sθ,|z|≤1

|z|q ne−cn|z|p |dz|
|z|

≤ 2C

∫ 1

0

tqne−cntp dt

t
≤ 2C

p
n1− q

p

∫ ∞

0

t
q
p−1e−ct dt.

This proves the first statement. To prove the second, choose c > 0 in such a
manner that

∣∣e−azp∣∣ ≤ e−c|z|p for all z ∈ Sθ (cf. the proof of Lemma 9.2.2). Then∫
∂Sθ,|z|≥1

∣∣∣r(0)ne−anzp
∣∣∣ |dz|
|z| ≤ 2

∫ ∞

1

e−cntp dt

t
≤ 2e−cn

cnp
. �

The strategy for the proof of Theorem 9.2.4 is to apply Proposition 9.2.5
not only to the function r(z) but as well to r(z−1) (which is also an A(ϕ) stable
rational function). We choose (p, q, a) adapted to r and (p′, q′, b) adapted to r(z−1)
and consider the functions

fn(z) := r(z)n − r(0)ne−nazp

− r(∞)ne−nbz−p′
. (9.5)

(Note that fn ∈ H∞
0 (Sθ) for every θ ∈ (0, ϕ).) We thus can write

r(hA)n = fn(A) + r(0)n
(
e−anzp

)
(hA) + r(∞)n

(
e−nbz−p′)

(hA).

The two last summands are unproblematic, as the following lemma shows.
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Lemma 9.2.6. Let ϕ ∈ (0, π/2], and let p, p′ ∈ N and a, b ∈ C \ {0} such that
|arg a| + pϕ, |arg b| + p′ϕ ≤ π/2. Then for any θ ∈ (0, ϕ) there is a constant C
such that

sup
h>0,n∈N

∥∥∥e−anzp

(hA)
∥∥∥ + sup

h>0,n∈N

∥∥∥e−bnz−p′
(hA)

∥∥∥ ≤ C M(A, θ)

for every sectorial operator A with ωA ∈ [0, θ).

Proof. This follows immediately from Proposition 2.6.11, since by hypothesis we
have e−azp

, e−bz−p′
∈ E(Sϕ′) for every ϕ′ ∈ (0, ϕ). �

To prove Theorem 9.2.4 it therefore suffices to show the uniform boundedness
of the operators fn(hA). However, even more is true, as the following proposition
shows.

Proposition 9.2.7. Let ϕ ∈ (0, π/2], let r be an A(ϕ)-stable rational function, and
let (p, q, a) be adapted to r(z) and (p′, q′, b) be adapted to w := r(z−1). Let s :=
sr, s

′ := sw be attached to these adapted triples as in (9.3). Define σ := min{s, s′}.
Then for every θ ∈ (0, ϕ) there are constants C ≥ 0, ε ∈ [0, 1) such that

‖fn(hA)‖ ≤
{

C εn M(A, θ) if |r(0)| < 1 and |r(∞)| < 1,
C n−σ M(A, θ) if |r(0)| = 1 or |r(∞)| = 1,

for every h > 0, n ∈ N and every sectorial operator A such that ωA ∈ [0, θ).

Proof. After pulling out the usual factor M(hA, θ)/(2π) = M(A, θ)/(2π) we are
reduced to estimating∫

∂Sθ,|z|≤1

∣∣∣r(z)n − r(0)ne−nazp
∣∣∣ |dz|
|z| +

∫
∂Sθ,|z|≥1

∣∣∣r(0)ne−nazp
∣∣∣ |dz|
|z|

+
∫

∂Sθ,|z|≥1

∣∣∣r(z)n − r(∞)ne−nbz−p′ ∣∣∣ |dz|
|z| +

∫
∂Sθ,|z|≤1

∣∣∣r(∞)ne−nbz−p′ ∣∣∣ |dz|
|z| .

The first two summands are estimated by means of Proposition 9.2.5 applied to
r, the last two summands by applying Proposition 9.2.5 to r(z−1) instead. If
both numbers |r(0)| and |r(∞)| are strictly less than 1, all terms converge to
0 exponentially fast. If one of these numbers is equal to 1, then the slowest
convergence rate is exactly n−σ. �

Let us state a nice corollary.

Corollary 9.2.8. Let ϕ ∈ (0, π/2], and let r be an A(ϕ)-stable rational function such
that |r(0)| < 1 and |r(∞)| < 1. Then for every θ ∈ (0, ϕ) there exist constants
C ≥ and ε ∈ (0, 1) such that

‖r(hA)n‖ ≤ C εn M(A, θ) (h > 0, n ∈ N)

for every sectorial operator A with ωA ∈ [0, θ).
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Proof. Write r(hA)n = fn(A)+ r(0)ne−nazp

(hA)+ r(∞)ne−nbz−p′
(hA) and apply

Lemma 9.2.6 and Proposition 9.2.7. �

Having proved the Stability Theorem 9.2.4, we return to the question of norm
convergence r(t/nA)n → e−tA in the case where r is accurate of some order p. If
|r(∞)| < 1, there is no problem.

Corollary 9.2.9. Let ϕ ∈ (0, π/2], and let r be an A(ϕ)-stable rational function,
accurate of order p ∈ N. Suppose that |r(∞)| < 1. Then for every θ ∈ (0, ϕ) there
is a constant C ≥ 0 such that∥∥∥∥r( t

n
A

)n

− etA

∥∥∥∥ ≤ C n−p M(A, θ) (t > 0, n ∈ N)

for every sectorial operator A with ωA ∈ [0, θ).

Proof. By hypothesis, r(0) = 1 and the triple (1, p + 1, 1) is adapted to r, with
s = p. Since ε := |r(∞)| < 1, we have s′ = ∞, whence σ = min{s, s′} = p. Now
we write∥∥r(hA)n − e−tA

∥∥ ≤ ‖fn(hA)‖+ εn
∥∥∥e−nbz−p′

(hA)
∥∥∥ ≤ (

Cn−p + C′εn
)

M(A, θ)

for n ∈ N, h > 0 by Lemma 9.2.6 and Proposition 9.2.7. Writing h = t/n concludes
the proof. �

Example 9.2.10. Consider r(z) = (1 + z)−1, i.e., the backward Euler scheme. It
is A(π/2)-stable and accurate of order 1, with r(∞) = 0. So given a sectorial
operator A on a Banach space X with ωA < π/2 one obtains

(
t/nR(t/n,−A)

)n =
(

1 +
t

n
A

)−n

= e−tA + O(n−1)

uniformly in t > 0. This approximation of the semigroup is called the Post–
Widder Inversion Formula.

Example 9.2.11. Consider r(z) = (1 − z/2)(1 + z/2)−1, i.e., the Crank–Nicolson
scheme. Then r(z−1) = (2z − 1)(2z + 1)−1 and r(∞) = −1. Hence r(z) =
−e−4z−1

+O(z−2) as z →∞. The obstacle against a convergence r(tA/n)n → e−tA

in norm is therefore e−(4n2/t)z−1
(A). If for example A = −∆ on Lp(Rd), then by

Corollary 8.2.4 the norm of the operator e−(4n2/t)z−1
(A) is independent of n ∈ N.

Since at the same time this operator must be injective (its kernel equals the space
A−10 = N(A) = 0), this norm is different from 0 and so norm convergence of
the Crank–Nicholson scheme fails. However, since A is densely defined, strong
convergence holds, as follows from the Stability Theorem 9.2.4 and the convergence
for smooth initial data (Theorem 9.2.3).
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9.2.4 Comments

The use of functional calculus methods in order to obtain bounds for time-dis-
cretizations of infinite-dimensional Cauchy problems goes back at least to the
1970’s. Hersh and Kato [116] and afterwards Brenner and Thomeé [37] use
the Phillips calculus, while Le Roux [152] (in a parabolic context) uses the holo-
morphic (Dunford–Riesz) calculus. The convergence theorem for smooth initial
data (Theorem 9.2.3) apparently was known in the 1970’s (see [38]), as well as the
stability theorem (Theorem 9.2.4) in the case |r(∞)| < 1. In 1993, Crouzeix,
Larsson, Piskarev and Thomée [56] gave a proof of Theorem 9.2.4, and our
presentation follows its lines. Thomée [212, Chapter 11] instead of integrals over
sectors uses the formula for the Taylor functional calculus (Corollary 2.3.5) as does
Hansbo in [114] where some modified results are obtained.

Independent of the abovementioned proof for the stability theorem, a differ-
ent one was given by Palencia [182]. His result is actually a little more general
and it allowed him the application of his methods also to so-called multistep meth-
ods [183]. As a matter of fact, he also uses the holomorphic functional calculus,
but via a Möbius transformation he transforms everything to the circle and into
a question on bounded operators.

Obviously related to the topics discussed so far is the question for conditions
on a bounded operator T on a Banach space X that ensure uniform boundedness
of its iterates (T n)n≥1, i.e., the power-boundedness of T . The Stability Theorem
9.2.4 shows how to generate power-bounded operators, but this seems a little
unwieldy when actually the operator T is given. In fact, one looks for mere
spectral conditions on T .

It is easily seen that for a power-bounded operator T one necessarily has
σ(T ) ⊂ D, where D is the interior of the unit circle. With a little more work one
can also establish an inequality of the form

‖R(λ, T )‖ ≤ C

|λ| − 1
(|λ| > 1)

for some constant C. This inequality is called the Kreiss condition. It was Kreiss
who proved that on finite-dimensional spaces, this condition is actually equivalent
to the power-boundedness of T . In infinite dimensions a growth of the powers of
T as O(n) is the best one can achieve. (See [206] for proofs of these facts and a
nice survey.) In recent years, the stronger condition

‖R(λ, T )‖ ≤ C

|λ− 1| (|λ| > 1),

called the Ritt or Tadmor–Ritt condition, has been extensively studied. By some
basic results from Chapter 2 we see that with A := I − T the Ritt condition is
equivalent to:

A ∈ L(X), σ(A) ⊂ {λ | |λ− 1| < 1} ∪ {0} and A is sectorial with ωA < π/2.
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The last condition is equivalent to −A generating a bounded holomorphic semi-
group, as we know from Section 3.4. Nevanlinna [175] showed that T being a
Ritt-type operator is equivalent to the following two facts:

(i) T is power-bounded.

(ii) The family
(
n(T n − T n+1)

)
n≥1

is uniformly bounded.

It is fairly elementary to show that (i), (ii) imply the Ritt condition, see [30,
Theorem 2.3]. We sketch a proof for the converse implication, using the methods
developed in this section. To see that T = I − A is power-bounded, one com-
pares the function (1 − z)n with the exponential e−nz as in Proposition 9.2.5,
employing an analogue of Lemma 9.2.2. The uniform boundedness of the fam-
ily ((1− z)n − e−nz) (A) is then proved as in Proposition 9.2.7, and the uniform
boundedness of (e−nA)n≥1 is already known.

An alternative proof consists in showing that the Cayley transform B :=
(1 + T )(1 − T )−1 is a (possibly multi-valued) sectorial operator of angle strictly
less than π/2, and — writing T = r(A) for r = (z − 1)(z + 1)−1 — applying the
stability theorem.

The proof of (ii) relies on a nice trick that we have learned from Tomilov,
cf. [213]. Instead of A consider the operator matrix

A :=
(

A A
0 A

)
, D(A) = D(A)⊕D(A),

on the product space X = X ⊕X . It is easy to show that �(A) ⊂ �(A) with

R(λ,A) =
(

R(λ, A) −AR(λ, A)2

0 R(λ, A)

)
(λ ∈ �(A)).

In particular, A is ‘of the same type’ as A, i.e., also I −A is a Ritt operator. For
the functional calculus one establishes easily the identity

f(A) =
(

f(A) (zf ′)(A)
0 f(A)

)
.

Since for f(z) = (1−z)n+1 one has zf ′ = (n+1)z(1−z)n, the power-boundedness
of I−A implies the uniform boundedness of (n+1)A(1−A)n = (n+1)(1−T )T n,
and this was to prove. (This method obviously leads to the following nice result:
if F ⊂ H∞ is a collection of functions such that {f(A) | f ∈ F} is uniformly
bounded for every sectorial operator, then also the collection {zf ′ | f ∈ F} has
this property.)

Recently, El-Fallah and Ransford [83, 84] have determined extremal
growth of the iterates of T under generalised Ritt conditions. Vitse [220] es-
tablishes bounded Besov class functional calculi for Ritt operators and generators
of holomorphic semigroups.
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9.3 Maximal Regularity

The study of the functional calculus for sectorial operators has two major roots.
One is the Kato square root problem (connected with the Calderón problem on
Cauchy kernels on Lipschitz curves); this was the reason for McIntosh to de-
velop the functional calculus in the first place. (See Chapter 7, especially the
comments in Section 7.5.) The second root is the maximal regularity problem for
inhomogeneous Cauchy problems.

9.3.1 The Inhomogeneous Cauchy Problem

In this section, A always denotes a sectorial operator on a Banach space with
ωA < π/2. Fix τ ∈ (0,∞] (a ‘time-horizon’) and consider for f ∈ L1

loc
([0, τ); X)

and x ∈ X the following inhomogeneous problem on [0, τ):

u′ + Au = f, u(0) = x. (9.6)

A mild solution of this problem is a function u ∈ C([0, τ); X) with u(0) = x and∫ t

0

u(s) ds ∈ D(A), u(t) + A

∫ t

0

u(s) ds =
∫ t

0

f(s) ds

for all t ∈ [0, τ). Mild solutions are unique.

Proof. Let u1, u2 be mild solutions, and let v(t) := (1+A)−1(u1(t)−u2(t)). Then
v(0) = 0, v ∈ C([0, τ), D(A)) and v(t) +

∫ t

0 Av(s) ds = 0. Hence v ∈ C1([0, τ); X)
and v′ = −Av. Thus for 0 < s < t < τ we let w(s) := e−(t−s)Av(s) and obtain
(d/ds)w(s) = Ae−(t−s)Av(s)+e−(t−s)Av′(s) = 0. So the function w is constant on
(0, t), and since v ∈ C([0, τ); D(A)), w is actually continuous up to the endpoints
s = 0, t. This yields v(t) = e−tAv(0) = 0. Consequently, u = 0. �

On the other hand, it is easy to show that by the Variation of Constants
formula (also called Duhamel’s principle)

u(t) = e−sAx +
∫ t

0

e−(t−s)Af(s) ds (t ∈ [0, τ))

a mild solution is defined. This is therefore the unique mild solution of (9.6).
As one can imagine, the question of additional regularity of mild solutions

is a central topic in the theory of evolution equations. Obviously, the regularity
of the solution u will depend on regularity of the initial value x ∈ X and the
regularity of the inhomogeneity f . For the sake of simplicity we confine ourselves
to the situation when x = 0.

Thus in the following we consider the problem

u′ + Au = f, u(0) = 0 (9.7)
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on [0, τ) whose (mild) solution is given by

S(t)f := u(t) =
∫ t

0

e−(t−s)Af(s) ds = (e−sA ∗ f)(t). (9.8)

We choose a Banach space X ⊂ L1
loc([0, τ); X) as a reservoir for our inhomogeneities

and look for regularity of the solution u. Classically, one chooses X := Lp((0, τ); X)
for some p ∈ [1,∞) or X = C0((0, τ ]; X) (in case τ < ∞) but other choices are
possible. On X we let B := d/dt be the derivative operator as in Section 8.5, i.e.,
−B generates the right shift semigroup on X. Moreover, A induces an operator
A = I ⊗A on X. In case X = Lp((0, τ); X) the operator A is given by

D(A) := Lp((0, τ); D(A)), (A u)(t) := A[u(t)] (u ∈ D(A)),

with an analogous definition in the case X = C0((0, τ ]; X). It is easy to see that
spectral and functional calculus properties of A carry over to A. In particular, A
is a sectorial operator on X of angle ωA = ωA < π/2 and B is a sectorial operator
on X of angle ωB = π/2. Hence the two operators A,B satisfy the so-called
parabolicity condition

ωA + ωB < π. (9.9)

Moreover, the operators A and B commute in the resolvent sense:

R(λ,A)R(µ,B) = R(µ,B)R(λ,A) (λ ∈ �(A), µ ∈ �(B)).

Our mild solution u is — philosophically — a solution to the equation

Au + B u = f.

It is not literally a solution since we do not know whether u ∈ D(A) ∩ D(B).
However, the solution operator f �−→ u is a kind of an inverse of the sum A+B.
Hence it is reasonable to define an appropriate notion of the sum of A and B as an
extension C ⊃ A+B of the algebraic sum. (The solution operator is then nothing
else than C−1.) The idea how to do this stems from functional calculus and is
elaborated in the following.

9.3.2 Sums of Sectorial Operators

We pass to a more abstract setting, changing notation towards a more common
style. Let X be a Banach space, and let A, B be two sectorial operators on X ,
commuting in the resolvent sense:

R(λ, A)R(µ, B) = R(µ, B)R(λ, A) (λ ∈ �(A), µ ∈ �(B)).

(Have a look at Proposition A.2.6 to find equivalent formulations.) In general
the algebraic sum A + B with the domain D(A) ∩ D(B) may be a very poor
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operator since D(A) ∩ D(B) can reduce to 0. However, one can try to set up a
joint functional calculus for the pair (A, B) and then define C := (z +w)(A, B) as
the actual ‘sum’.

The construction is rather simple. Take ϕ ∈ (ωA, π) and ψ ∈ (ωB, π). By
purely algebraic methods one constructs a homomorphism of algebras

Φ : E(Sϕ)⊗ E(Sψ) −→ L(X)

such that Φ(f⊗g) = f(A)g(B). Note that in a natural way one has an embedding

E(Sϕ)⊗ E(Sψ) ⊂ O(Sϕ × Sψ).

This yields a proper abstract functional calculus and the function f(z, w) = z +w
is regularisable since

z + w

(1 + z)(1 + w)
=
(

1− 1
1 + z

)
⊗ 1

1 + w
+

1
1 + z

⊗
(

1− 1
1 + z

)
belongs to E(Sϕ) ⊗ E(Sψ). One can extend this primary functional calculus to
larger algebras. For example, let H∞

0 (Sϕ × Sψ) be the algebra of functions f ∈
O(Sϕ × Sψ) such that there exist C, s > 0 such that

|f(z, w)| ≤ C min(|z|s , |z|−s) ·min(|w|s , |w|−s) (z ∈ Sϕ, w ∈ Sψ).

For f ∈ H∞
0 (Sϕ × Sψ) one defines

Φ(f) = f(A, B) =
1

(2πi)2

∫
Γ1

∫
Γ2

f(z, w)R(z, A)R(w, B) dz dw,

where Γ1, Γ2 are obvious sector boundaries. Since

H∞
0 (Sϕ × Sψ) ∩

(
E(Sϕ)⊗ E(Sψ)

)
= H∞

0 (Sϕ)⊗H∞
0 (Sψ)

(as a little argument reveals), the extension of Φ to the algebra

E(Sϕ × Sψ) := H∞
0 (Sϕ × Sψ) + E(Sϕ)⊗ E(Sψ)

is well defined. This primary calculus can then be extended as usual to unbounded
functions (see Chapter 1 and Section 2.3). Having at hand this joint functional
calculus we can finally define C := (z + w)(A, B) as a closed operator. Without
further assumptions, however, almost nothing can be proved about C, but it turns
out that the parabolicity condition ωA + ωB < π (see (9.9)) is sufficient to render
C a nice operator.

Theorem 9.3.1. Let A, B be two resolvent-commuting sectorial operators on the
Banach space X such that ωA + ωB < π, and let C := (z + w)(A, B) be defined by
the joint functional calculus. Then the following statements hold.
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a) A + B ⊂ C and D(A) ∩D(C) = D(A) ∩D(B) = D(C) ∩D(B).

b) C is a sectorial operator with angle ωC ≤ max{ωA, ωB}.
c) N(C) = N(A) ∩N(B).

d) D(A) ∩D(B) ⊂ D(C) ⊂
⋂

α∈(0,1)
D(Aα) ∩D(Bα).

e)
⋃

α>0
R(A1+α) + R(B1+α) ⊂ R(C) ⊂ R(A) + R(B).

Proof. a) We have A + B = (z)(A, B) + (w)(A, B) ⊂ (z + w)(A, B) = C, by
general functional calculus rules. Analogously C − A ⊂ B and C − B ⊂ A. This
completely proves a).
b) Fix π > ω > max{ωA, ωB} and ϕ ∈ (ωA, π), ψ ∈ (ωB, π) with max{ϕ, ψ} < ω
and ϕ + ψ < π. Then Sϕ + Sψ = Smax{ϕ,ψ}. For λ ∈ C such that |argλ| ∈ [ω, π]
we write

λ

λ− (z + w)
=

λ2

(λ − z)(λ− w)
+

λzw

(λ− z − w)(λ − w)(λ − z)
,

and all functions are in O(Sϕ×Sψ). The second summand — let us call it fλ(z, w)
— is even in H∞

0 (Sϕ × Sψ), as a moment’s reflection shows. This yields directly

λR(λ, C) =
[

1
λ− (z + w)

]
(A, B) = λR(λ, A)λR(λ, B) + fλ(A, B) ∈ L(X).

Moreover, for µ = λ/ |λ| we have

‖fλ(A, B)‖ �
∫

Γ1

∫
Γ2

|λ| |dz| |dw|
|λ− (z + w)| |λ− z| |λ− w|

=
∫

Γ1

∫
Γ2

|dz| |dw|
|µ− (z + w)| |µ− z| |µ− w| .

c) Let α ∈ (0, 1). Then

z1+α

(z + w)(1 + z)(1 + w)
=

zα

(1 + z)(1 + w)
− zαw

(z + w)(1 + z)(1 + w)
,

and the second summand is in H∞
0 (Sϕ×Sψ) since zεw1−ε/(z + w) is bounded for

each ε ∈ [0, 1]. Note further that(
zαw

(z + w)(1 + z)(1 + w)

)
(A, B)

=
1

(2πi)2

∫
Γ1

∫
Γ2

zαw

(z + w)(1 + z)(1 + w)
R(w, B) dw R(z, A) dz

= (1 + B)−1 −1
2πi

∫
Γ1

zα

(1 + z)
[BR(−z, B)]R(z, A) dz.
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It follows that fα(A, B) ∈ L(X), where fα(z, w) := z1+α(z + w)−1(1 + z)−1.
Therefore,

A1+α(1 + A)−(1+α) = Cfα(A, B)(1 + A)−α ⊃ (1 + A)−αfα(A, B)C, (9.10)

hence N(C) ⊂ N(A1+α(1 + A)−(1+α)) = N(A), cf. Proposition 3.1.1 d). By sym-
metry, N(C) ⊂ N(B) as well. But N(A) ∩ N(B) ⊂ N(C) is clear by a), so c) is
proved.
d) For x ∈ D(C), formula (9.10) shows that A1+α(1+A)−(1+α)x ∈ D(Aα), whence
necessarily x ∈ D(Aα) (cf. Proposition 3.1.1 g)). By symmetry and a), this proves
d).
e) Another look on (9.10) yields R(A1+α) = R(A1+α(1 + A)−(1+α)) ⊂ R(C). Em-
ploying symmetry again establishes the left-hand inclusion in e). To complete the
proof take x ∈ D(C). We have to prove y := Cx ∈ R(A) + R(B). By definition
we have

A(1 + A)−1(1 + B)−1x + B(1 + B)−1(1 + A)−1x = (1 + A)−1(1 + B)−1y,

and this is obviously contained in R(A) + R(B). Hence

y = (1 + B)−1(1 + A)−1y + B(1 + B)−1(1 + A)−1y + A(1 + A)−1y

∈ R(A) + R(B) + R(B) + R(A) = R(A) + R(B). �
Let us state some immediate but important consequences.

Corollary 9.3.2. Let A, B, C as in Theorem 9.3.1. Then the following assertions
hold.

a) If A or B is injective/invertible, so is C.

b) If A or B has dense range, so has C.

c) C is densely defined if and only if both A and B are densely defined. If this
is the case, then C = A + B.

Proof. Employing some standard facts about fractional powers (Proposition 3.1.1,
Corollary 3.1.11) the statements are more or less direct consequences of Theorem
9.3.1. Suppose that A, B, C are densely defined, and let (x, y) ∈ C. Then

xn := n2(n + A)−1(n + B)−1x→ x and yn := n2(n + A)−1(n + B)−1y → y.

But (xn, yn) ∈ C and xn, yn ∈ D(A) ∩D(B), hence (xn, yn) ∈ A + B. �
Remark 9.3.3. Let A, B, C be as in Theorem 9.3.1. An elementary but fairly
tedious discussion yields that for ω ∈ (max{ωA, ωB}, π) and f ∈ E(Sω) one has
f(z + w) ∈ E(Sϕ × Sψ), where the angles ϕ, ψ have to be close to ωA, ωB respec-
tively. Moreover, one can prove the composition rule f(C) = [f(z + w)](A, B)
for those f . By an equivalent of Proposition 1.3.6 such a composition rule then
extends to more general functions f .
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We now introduce a concept which in the special context of inhomogeneous
equations is of fundamental importance (see Section 9.3.3 below.) Let A, B, C be
as above. A Banach space E ⊂ X (with continuous inclusion) is called a space of
maximal regularity for the pair (A, B) if the following holds:

∀ x ∈ E ∃! u ∈ D(A) ∩D(B) : Au + Bu = x and Au ∈ E.

Note that one does not require u ∈ E. The pair (A, B) is said to have (abstract)
maximal regularity if E = X is a space of maximal regularity.

Lemma 9.3.4. Let A, B, C be as above, and suppose that A is injective. Define

f(A, B) :=
(

z

z + w

)
(A, B).

For a Banach space E ⊂ X the following assertions are equivalent:

(i) E ⊂ X is a space of maximal regularity for (A, B).

(ii) E ⊂ R(C) ∩D(f(A, B)) and f(A, B)E ⊂ E.

(iii) E ⊂ R(C) and f(A, B) restricts to a bounded operator on E.

In particular, (A, B) has maximal regularity if C is invertible and f(A, B) ∈ L(X).

Proof. The equivalence of (ii)⇔(iii) is an easy consequence of the continuity of
the embedding E ⊂ X and the Closed Graph Theorem. By general functional
calculus and Theorem 9.3.1 a) one has

AC−1 ⊂ f(A, B) and R(C) ∩D(f(A, B)) = D(AC−1) = R(A + B).

From these identities the equivalence (i)⇔(ii) readily follows. �
Theorem 9.3.5 (Da Prato–Grisvard). Let A, B be resolvent-commuting, sectorial
operators on the Banach space X satisfying the parabolicity condition ωA+ωB < π.
If A or B is invertible, then each space E := (X, D(Aα))θ,p, θ ∈ (0, 1), p ∈ [1,∞],
is a space of maximal regularity for (A, B).

Proof. By hypothesis and Corollary 9.3.2 the operator C is invertible, hence the
inclusion E := (X, D(Aα))θ,p ⊂ R(C) is trivial. So one is left to show that E ⊂
D(f(A, B)) and f(A, B)E ⊂ E. By Theorem 9.3.1 d) we have R(C−1) = D(C) ⊂
D(A1−ε) for each ε ∈ (0, 1). On the other hand, E = (X, D(Aα))θ,p ⊂ D(Aε) for
some (small) ε ∈ (0, 1), see Corollary 6.6.3. Hence

f(A, B) ⊃ [A1−εC−1] Aε

and A1−εC−1 ∈ L(X). This shows D(Aε) ⊂ D(f(A, B)), hence E ⊂ D(f(A, B)).

We now prove the invariance of E under f(A, B). Choose a function ψ1 ∈ E(Sϕ)
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satisfying the conditions of the Characterisation Theorem 6.2.9 for the interpola-
tion space E. Let 0 
= ψ ∈ H∞

0 (Sϕ). Then also ψ2 := ψψ1 satisfies the hypotheses
of that theorem. For x ∈ E we have

t−θ Re αψ2(tA)f(A, B)x = (ψ(tz)f(z, w))(A, B) [t−θ Re αψ1(tA)x],

hence it suffices to prove that the operator family (ψ(tz)f(z, w))(A, B), t > 0, is
uniformly bounded. By the same kind of manipulations as in the proof of Theorem
9.3.1 one sees that in fact

(ψ(tz)f(z, w))(A, B) =
1

2πi

∫
Γ

ψ(tz)[zR(−z, B)]R(z, A) dz (t > 0).

So the desired uniform boundedness follows by the ususal estimates and change
of variables. �

Remark 9.3.6. The above proof still works when neither A nor B is invertible, as
long as C is. (This is the case when, e.g., N(A) ∩N(B) = 0 and, for some ε > 0,
R(A1+ε)+R(B1+ε) = X .) However, it is unclear if there are reasonable situations
where one can apply the resulting more general version of Theorem 9.3.5.

9.3.3 (Maximal) Regularity

Let us come back to our starting point, namely the inhomogeneous equation (9.7)

u′ + Au = f, u(0) = 0.

Recall the definition of the operatorsA,B in Section 9.3.1. As we already remarked
there, A,B are resolvent-commuting sectorial operators satisfying the parabolicity
condition. So C := (z +w)(A,B) is defined and Theorem 9.3.1 as well as Corollary
9.3.2 are applicable. In particular, when τ < ∞ then B is invertible and hence C is
invertible. As we intended, u := C−1 f is indeed the unique mild solution of (9.7).

Proof. Let v := (1 + A)−1u = (1 + A)−1 C−1 f = C−1(1 + A)−1f . Then v ∈
D(C) ∩ D(A), i.e., v ∈ D(A) ∩ D(B) and A v + B v = (1 + A)−1f . This means
v′+Av = (1+A)−1f , and integrating yields v(t)+

∫ t

0 Av(s) ds =
∫ t

0 (1+A)−1f(s) ds
for t ∈ [0, τ ]. Going back to u yields

(1 + A)−1u(t) + A(1 + A)−1

∫ t

0

u(s) ds = (1 + A)−1

∫ t

0

f(s) ds.

Since A(1 + A)−1 = I − (1 + A)−1, this shows first that
∫ t

0
u(s) ds ∈ D(A) and

then that u(t) + A
∫ t

0
u(s) ds =

∫ t

0
f(s) ds, i.e., u is a (the) mild solution. �

Part d) of Theorem 9.3.1 yields regularity results as the following.
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Proposition 9.3.7. Let p ∈ [1,∞), τ < ∞, and f ∈ Lp((0, τ); X). Let u be the
unique mild solution of (9.7). Then

u ∈ Lp((0, τ); (X, D(A))θ,p) ∩ Wθ,p
0 ((0, τ); X)

for all θ ∈ (0, 1).

Here Wθ,p
0 ((0, τ); X) = (Lp((0, τ); X),W1,p

0 ((0, τ); X))θ,p is a fractional Sobolev
space.

Proof. This follows from Theorem 9.3.1 d) in noting that for any sectorial operator
A on a Banach space one has

⋂
α∈(0,1) D(Aα) =

⋂
θ∈(0,1)(X, D(A))θ,p. �

Remark 9.3.8. Proposition 9.3.7 is designed to be just an example of what can be
done with Theorem 9.3.1. In particular, one can choose a different interpolation
parameter q instead of p, and one obtains a similar result on the space of continuous
functions.

In the case that τ = ∞, the operator C is not surjective in general. In fact
it can be shown that if we work on X = Lp((0,∞); X), and C is invertible, then
already A must be invertible, i.e., the semigroup (e−tA)t≥0 is exponentially stable.
This is known as Datko’s theorem, see [10, Theorem 5.1.2].

Let us turn to the so-called maximal regularity problem. We call a Banach
space E ⊂ L1

loc([0, τ); X) (continuous inclusion) a space of maximal regularity for
A if for every f ∈ E the corresponding mild solution u of (9.7) satisfies:

u ∈W1
loc

([0, τ); X) ∩ L1
loc

([0, τ); D(A)) and Au, u′ ∈ E.

(Note that we do not require u ∈ E, although in many cases this is automatically
satisfied.) This means that the solution should have the best regularity properties
one can expect, with respect to both operators A and d/dt, and the space E
is invariant under the mappings (f �−→ Au), (f �−→ u′). (It is this invariance
property that renders the whole concept ultimately important for applications,
see the comments in Section 9.3.4.)

Theorem 9.3.9 (Da Prato–Grisvard). Let τ < ∞, p ∈ [1,∞), q ∈ [1,∞], θ ∈ (0, 1),
and Reα > 0. Let A be a sectorial operator on the Banach space X with ωA < π/2.
Then the spaces

E = Lp
(
(0, τ); (X, D(Aα))θ,q

)
, C0

(
(0, τ ]; (X, D(Aα))θ,q

)
and

E = Wθ,p
0 ((0, τ); X), Cθ

0((0, τ ]; X)

are spaces of maximal regularity for A.
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Proof. Fix p ∈ [1,∞) and consider the usual operators A and B = d/dt on X =
Lp((0, τ); X). By Theorem 9.3.5, E = Lp((0, τ); (X, D(Aα))θ,q) = (X, D(Aα))θ,q

is a space of abstract maximal regularity for the pair (A,B); this means that E is in
fact a space of maximal regularity for A. Interchanging the roles of A and B yields
that E = Wθ,p

0 ((0, τ); X) is a space of maximal regularity for A. The remaining
statements are proved analogously by working on X = C0((0, τ ]; X). �

Let τ be finite, for the time being. A theorem of Baillon [22] states that
E = C0((0, τ ]; X) is a space of maximal regularity for A if and only if either A
is bounded or X contains a copy of c0, cf. [81]. In reasonable concrete situations,
e.g. on reflexive spaces, this is never the case, whence continuous maximal regu-
larity is not a promising property to study. Things change when we pass to the
so-called Lp-maximal regularity for p ∈ (1,∞). More precisely, we say that the op-
erator has the MRp,τ -property, where p ∈ (1,∞), τ ∈ (0,∞], if E = Lp((0, τ); X)
is a space of maximal regularity for A. It turns out that many common operators
on common Banach spaces do indeed possess this property, but this fact is far
from being trivial.

We digress a little on that property. From the Variation of Constants formula
(9.8) it follows readily that for finite τ and λ ∈ R one has A ∈MRτ,p if and only if
A + λ ∈ MRτ,p. Hence as far as maximal regularity is concerned, one can always
suppose that A is invertible. One can further show that the MRτ,p-property is
independent of τ ∈ (0,∞) [71, Theorem 2.5]. If A is invertible, i.e., if the semigroup
is even exponentially stable, one can include τ = ∞ in this statement. Therefore,
we can omit the reference to τ and write just A ∈ MRp. (It turns out that it is
even independent of p, see below.)

The problem of maximal regularity is essentially a question of operator-valued
Fourier multipliers, i.e., vector-valued singular integrals. To see this, let for sim-
plicity A be invertible and τ = ∞. Loosely speaking, A ∈ MRp is equivalent
to

f ∈ Lp((0,∞); X) =⇒ Ae−sA ∗ f ∈ Lp((0,∞); X),

i.e., (f �−→ Ae−sA ∗ f) (originally defined on the dense set D((0,∞); D(A))) is a
bounded operator on the space Lp((0,∞); X). Since the norm of the kernel Ae−sA

grows like s−1 as s → 0, this is a singular integral operator.

Lemma 9.3.10. Let A be a densely defined, invertible, sectorial operator on the
Banach space X such that ωA < π/2. Then for p ∈ (1,∞) the following assertions
are equivalent:

(i) A ∈MRp.

(ii) The function A(is + A)−1 ∈ L∞(R;L(X)) is a bounded Lp(R; X)-Fourier
multiplier.

Proof. Denote by S = (f �−→ u = e− ·A ∗ f) the solution operator as in (9.8), and
define Y := Lp((0,∞); D(A)) ∩W1,p

0 ((0,∞); X). Set m(s) := A(is + A)−1.
(i)⇒(ii). Take any f ∈ D((0,∞); D(A)). Then ASf = SAf and F(ASf)(s) =
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m(s)f̂(s). By hypothesis, ‖ASf‖p ≤ c ‖f‖p for some constant c independent of f .
Hence ∥∥∥F−1(mf̂)

∥∥∥
p
≤ c ‖f‖p . (9.11)

By shifting functions this inequality extends to all f ∈ D(R; D(A)), and then even
to all f ∈ S(R; X), because D(A) is dense in X . Thus (ii) follows, by definition
(see Appendix E.4).
(i)⇒(ii). Fix a constant c > 0 such that (9.11) is satisfied for all f ∈ S(R; X), and
take f ∈ D((0,∞); D(A)). Then (Sf)′ = f −ASf , whence Sf ∈ Y and

‖Sf‖Y ∼ ‖(Sf)′‖p + ‖ASf‖p + ‖Sf‖p � ‖ASf‖p + ‖Sf‖p � ‖ASf‖p + ‖f‖p

since the semigroup is exponentially stable. However, ASf = F(mf̂) as above,
whence ‖ASf‖p ≤ c ‖f‖p. Since D((0,∞); D(A)) is dense in Lp((0,∞); X), we
see that in fact S maps Lp((0,∞); X) boundedly into Y , hence A ∈ MRp. �

Using an important result of Benedek, Calderón and Panzone from [28]
one can prove that if A ∈ MRp for some p ∈ (1,∞) this actually holds for all
p ∈ (1,∞), see [71, Theorem 4.2.]. Thus we can omit even the reference to p and
write A ∈ MR instead of A ∈MRp.

From Lemma 9.3.10 and Plancherel’s theorem it follows readily that on a
Hilbert space X = H every sectorial operator A with ωA < π/2 satisfies A ∈MR2.
It was proved by Coulhon and Lamberton in [50] that the Poisson semigroup
on X = L2(R; Y ) has maximal regularity if and only if Y is a UMD space. (See
Appendix E.6 for the definition of UMD spaces.) This not only showed that there
exist operators without Lp-maximal regularity, but at the same time stressed the
importance of UMD spaces for possible positive results. In 1987 Dore and Venni
[75] found the following abstract result which was a milestone at the time.

Theorem 9.3.11 (Dore–Venni). Let X be a UMD space, and let A, B be resolvent-
commuting, sectorial operators on X such that A, B ∈ BIP(X) and θA + θB < π.
Then C := (z + w)(A, B) = A + B, C ∈ BIP(X) with θC ≤ max{θA, θB}, and
f(A, B) ∈ L(X), where f(z, w) = z/(z + w). In particular, if C is surjective then
the pair (A, B) has abstract maximal regularity.

The Dore–Venni theorem can be used to prove maximal Lp-regularity of
operators with bounded imaginary powers on UMD spaces.

Corollary 9.3.12. Let X be a UMD space, and let A ∈ BIP(X). Then A ∈ MRp

for each p ∈ (1,∞).

Proof. We define as usual the operators A,B on X := Lp((0, τ); X). Since X is
a UMD space, the space X is also a UMD space, and the derivative operator B
has bounded imaginary powers on X, see Theorem 8.5.8. Hence we can apply the
Dore–Venni theorem to conclude that C = A+B, i.e., D(C) ⊂ D(A), whence the
assertion follows. �
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So far, one still could believe that on UMD spaces every sectorial operator
A with ωA < π/2 has maximal Lp-regularity. However, this hope is in vain,
as Kalton and Lancien [124] showed that among a very large class of Banach
spaces, a space X with the property that every negative generator of a holomorphic
semigroup on X has maximal regularity, must be isomorphic to a Hilbert space.
Around the same time Weis finally succeeded to give a characterisation which
more or less settled the question.

Theorem 9.3.13 (Weis). Let X be a UMD Banach space, and let A be a densely
defined, sectorial operator on X with ωA < π/2. Then A ∈ MR if and only if the
set {A(is + A)−1 | s 
= 0} is R-bounded.

(See Appendix E.7 for the definition of R-boundedness.) The proof is a com-
bination of Lemma 9.3.10 and Weis’ operator-valued Mikhlin multiplier theorem
(Theorem E.7.4) together with some simple facts about R-boundedness, cf. [141].

9.3.4 Comments

Basic facts on the inhomogeneous Cauchy problem can be found in practically
every book on evolution equations. In [85, Section VI.7.a] one can find a rigorous
derivation of Duhamel’s principle, including a discussion of regularity. Lunardi
[157] extensively treats the Hölder-regularity theory.

The seminal paper for regularity of solutions is [58] by Da Prato and Gris-
vard who introduced the sum-of-operators point of view. Theorems 9.3.1, 9.3.5,
and 9.3.9 are already in their paper. They do not talk explicitly about functional
calculus but the basic Cauchy-type integrals are already there. A functional cal-
culus for more than one sectorial operator was introduced for the first time by
Albrecht in his 1994 thesis and subsequently studied by Lancien, Lancien
and Le Merdy [142] and Albrecht, Franks and McIntosh [4]. (However,
injectivity of at least one of the operators was a crucial assumption.) Sums of
commuting operators can also be dealt with by a functional calculus for a sin-
gle operator, but this calculus then has to involve also operator-valued functions,
cf. [142], [46]. The material of Chapter 1 can be easily modified to cover this,
cf. the comments in Section 1.6. However, the sum operator C is not as eas-
ily obtained as by means of the joint functional calculus. Our proof of the Da
Prato–Grisvard Theorem 9.3.5 is inspired by [110], cf. also [46].

Maximal Lp-regularity has been an issue so important in the last twenty years
that there are numerous texts treating the topic. As an outstanding instruction
we recommend Dore’s survey [71]. The importance of the concept of maximal
regularity lies in the fact that its validity allows to obtain solutions to non-linear
equations via the Banach fixed point theorem, see [9, 6.2.10] for the rough structure
and [45, 47, 86] for ‘real’ applications.

Theorem 9.3.11 and its corollary is basically due to Dore and Venni [75],
with slight generalisations due to Prüss and Sohr [193]. Its original proof is in
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the spirit of functional calculus, and in fact Monniaux [172] and finally Uiter-
dijk [218] brought to light the underlying functional calculus ideas, see also [161,
Chapter 9]. After important work of Clément, de Pagter, Sukochev and
Witviliet [44] (see Proposition E.7.3) Weis [223] finally gave the long desired
characterisation, a detailed account of which is now in [141]. A discrete approach
to Weis’ theorem was given by Arendt and Bu [11].

There is also a functional calculus approach to Weis’ theorem. Indeed,
Kalton and Weis [125] proved the following result, see also [141, Theorem 12.13].

Theorem 9.3.14 (Kalton–Weis). Let A, B be two resolvent-commuting, sectorial
operators with dense domain and range on a Banach space X. Let ϕ ∈ (ωA, π)
and ψ ∈ (ωB, π) such that ϕ+ψ < π, and suppose that the following two conditions
are satisfied.

1) A has a bounded H∞(Sϕ) calculus.

2) The set {λR(λ, B) | λ /∈ Sψ} is R-bounded.

Then C = (z + w)(A) = A + B and f(A, B) ∈ L(X), where f(z, w) = z/(z + w).

One way to prove this theorem is to show that an operator with bounded scalar-
valued H∞-calculus always has a bounded operator-valued H∞-calculus when one
restricts to functions with R-bounded range (see [77] for a proof). Theorem 9.3.14
is not a generalisation of the Dore–Venni theorem, but it can replace it as long as
only maximal regularity is concerned.

Finally, we remark that there are maximal regularity results for non-com-
muting operators [173, 221, 159]. In view of the prospective applications this
seems a promising field for further research. A functional calculus approach in the
non-commutative setting — if there is any — is still to be developed.



Appendix A

Linear Operators

This chapter is supposed to be a ‘reminder’ of some operator theory, including
elementary spectral theory and approximation results, rational functional calculus
and semigroup theory. There is a slight deviation from the standard literature on
operator theory in that we deal with multi-valued operators right from the start.

A.1 The Algebra of Multi-valued Operators

Let X, Y, Z be Banach spaces. A linear operator from X to Y is a linear subspace
of the direct sum space X ⊕ Y .

A linear operator may fail to be the graph of a mapping. The subspace

A0 := {x ∈ X | (0, x) ∈ A} ⊂ X

is a measure for this failure. If A0 = 0, the relation A ⊂ X ⊕ Y is functional, i.e.,
the operator A is the graph of a mapping, and it is called single-valued. Since in
the main text we deal with single-valued linear operators almost exclusively (not
without significant exceptions, of course), we make the following

Agreement: Unless otherwise stated, the term ‘operator’ always is to be under-
stood as ‘single-valued linear operator’. We call an operator multi-valued if we
wish to stress that it is not necessarily single-valued (but it may be).

The image of a point x under the multi-valued operator A is the set

Ax := {y ∈ Y | (x, y) ∈ A}.

This set is either empty (this means, the multi-valued operator A is ‘undefined’
at x) or it is an affine subspace of Y in the ‘direction’ of the space A0.

With a multi-valued operator A ⊂ X ⊕ Y we associate the spaces

kernel N(A) := {x ∈ X | (x, 0) ∈ A},
domain D(A) := {x ∈ X | there is y ∈ Y such that (x, y) ∈ A},
range R(A) := {y ∈ Y | there is x ∈ X such that (x, y) ∈ A}.
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The multi-valued operator A is called injective if N(A) = 0, and surjective if
R(A) = Y . If D(A) = X , then A is called fully defined.

Let A, B ⊂ X ⊕ Y and C ⊂ Y ⊕ Z be multi-valued operators, and let λ ∈ C

be a scalar. We define the sum A + B, the scalar multiple λA, the inverse A−1,
and the composite CA by

A + B := {(x, y + z) ∈ X ⊕ Y | (x, y) ∈ A, (x, z) ∈ B},
λA := {(x, λy) ∈ X ⊕ Y | (x, y) ∈ A},

A−1 := {(y, x) ∈ Y ⊕X | (x, y) ∈ A},
CA := {(x, z) ∈ X ⊕ Z | ∃ y ∈ Y : (x, y) ∈ A ∧ (y, z) ∈ C}.

Then we have the following identities:

D(A + B) = D(A) ∩D(B),

D(A−1) = R(A),
D(λA) = D(A),

D(CA) = {x ∈ D(A) | ∃ y ∈ D(C) : (x, y) ∈ A}.

The zero operator is 0 := {(x, 0) | x ∈ X} and I := {(x, x) | x ∈ X} is
the identity operator. (This means that in general we have only 0A ⊂ 0 but not
0A = 0.) Scalar multiples of the identity operator λI are abbreviated as λ, in
particular we write λ + A instead of λI + A.

Proposition A.1.1. Let X be a Banach space, and let A, B, C ⊂ X ⊕X be multi-
valued linear operators on X.

a) The set of multi-valued operators on X is a semigroup with respect to com-
position, i.e., the associative law A(BC) = (AB)C holds. The identity oper-
ator I is the neutral element in this semigroup. Moreover, the inversion law
(AB)−1 = B−1A−1 holds.

b) The set of multi-valued operators on X is an abelian semigroup with respect
to sum, with the zero operator 0 as its neutral element.

c) For λ 
= 0 one has
λA = (λI)A = A(λI).

d) The multi-valued operators A, B, C satisfy the following monotonicity laws:

A ⊂ B =⇒ AC ⊂ BC, CA ⊂ CB,

A ⊂ B =⇒ A + C ⊂ B + C, λA ⊂ λB.



A.1. The Algebra of Multi-valued Operators 281

e) The following distributivity inclusions hold:

(A + B)C ⊂ AC + BC, with equality if C is single-valued;
CA + CB ⊂ C(A + B), with equality if R(A) ⊂ D(C).

In particular, there is equality in both cases if C ∈ L(X) (see below).

A multi-valued operator A ⊂ X ⊕ Y is called closed if it is closed in the
natural topology on X ⊕ Y . If A is closed, then the multi-valued operators λA
(for λ 
= 0) and A−1 are closed as well. Furthermore, the spaces N(A) and A0 are
closed. Sum and composition of closed multi-valued operators are not necessarily
closed.

For each multi-valued operator A one can consider its closure A in X ⊕ Y .
A single-valued operator is called closable if A is again single-valued.

If a multi-valued operator A is closed, then every subspace V ⊂ D(A) such
that

{(x, y) ∈ A | x ∈ V } = A

is called a core for A.

A single-valued operator A is called continuous if there is c ≥ 0 such that

‖Ax‖ ≤ c ‖x‖ (x ∈ D(A)).

Every continuous operator is closable. An operator is called bounded if it is
continuous and fully defined. We let

L(X, Y ) := {A ⊂ X ⊕ Y | A is a bounded operator}

be the set of all bounded operators from X to Y . If X = Y we write just L(X)
in place of L(X, X).

For a single-valued operator A there is a natural norm on D(A), namely the
graph norm

‖x‖A := ‖x‖ + ‖Ax‖ (x ∈ D(A)).

Then A is closed if and only if (D(A), ‖.‖A) is complete.

Lemma A.1.2. Let X and Y be Banach spaces. A single-valued operator A ⊂ X⊕Y
is continuous if and only if D(A) is a closed subspace of X.

Proof. The continuity of the operator is equivalent to the fact that the graph
norm is equivalent to the original norm. Closedness of the operator is equivalent
to the fact that D(A) is complete with respect to the graph norm. Therefore the
assertion follows from the Open Mapping Theorem. �

Lemma A.1.3. Let A be a closed multi-valued operator on the Banach space X,
and let T ∈ L(X). Then AT is closed.
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Proof. Let (xk, yk) ∈ AT with xk → x and yk → y. Then there is zk such that
Txk = zk and (zk, yk) ∈ A. Since T ∈ L(X), one has zk = Txk → Tx. The
closedness of A implies that z ∈ D(A) and (z, y) ∈ A, hence (x, z) ∈ AT . �

A multi-valued operator A ⊂ X ⊕ Y is called invertible if A−1 ∈ L(Y, X).
We denote by

L(X)× := {T | T, T−1 ∈ L(X)}
the set of bounded invertible operators on X .

Lemma A.1.4. Let A be a closed multi-valued operator on the Banach space X,
and let T be an invertible multi-valued operator. Then TA is closed.

Proof. Suppose that (xn, yn) ∈ TA with xn → x and yn → y. Then there are zn

such that (xn, zn) ∈ A and (zn, yn) ∈ T . Since T−1 ∈ L(X), zn = T−1yn → T−1y.
The closedness of A implies that (x, T−1y) ∈ A, whence (x, y) ∈ TA. �

Note that the last result in general is false without the assumption that T is
invertible.

A.2 Resolvents

In this section A denotes a multi-valued linear operator on the Banach space X .
The starting point for the spectral theory is the following lemma.

Lemma A.2.1. The identity

I − [I + λA−1]−1 = λ(λ + A)−1

holds for all λ ∈ C.

Proof. For λ = 0 the assertion is (almost) trivial. Therefore, let λ 
= 0. If x, y ∈ X
and z := (1/λ)y, one obtains

(x, y) ∈ λ(λ + A)−1 ⇔ (x, z) ∈ (λ + A)−1 ⇔ (z, x) ∈ (λ + A)

⇔ (z, x− λz) ∈ A ⇔ (x− λz, z) ∈ A−1 ⇔ (x− λz, λz) ∈ λA−1

⇔ (x− λz, x) ∈ I + λA−1 ⇔ (x, x − λz) ∈ [I + λA−1]−1

⇔ (x, λz) ∈ I − [I + λA−1]−1 ⇔ (x, y) ∈ I − [I + λA−1]−1. �
We call the mapping(
λ �−→ R(λ, A) := (λ −A)−1

)
: C −→ {multi-valued operators on X}

the resolvent of A. The set

�(A) := {λ ∈ C | R(λ, A) ∈ L(X)}

is called the resolvent set, and σ(A) := C \ �(A) is called the spectrum of A.
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Corollary A.2.2. For all λ, µ ∈ C the identity

I − [I + (λ− µ)R(µ, A)]−1 = (λ − µ)R(λ, A)

holds true.

Proof. Just replace λ by (λ− µ) and A by µ−A in Lemma A.2.1. �

Proposition A.2.3. Let A be a closed multi-valued linear operator on the Banach
space X. The resolvent set �(A) is an open subset of C. More precisely, for
µ ∈ �(A) one has dist(µ, σ(A)) ≥ ‖R(µ, A)‖−1 and

R(λ, A) =
∞∑

k=0

(µ− λ)kR(µ, A)k+1 for |λ− µ| < ‖R(µ, A)‖−1 .

The resolvent mapping R(., A) : �(A) −→ L(X) is holomorphic and the resolvent
identity

R(λ, A)−R(µ, A) = (µ− λ)R(µ, A)R(λ, A)

holds for all λ, µ ∈ �(A).
If A ∈ L(X) one has ∅ 
= σ(A) ⊂ {z ∈ C | |z| ≤ ‖A‖} and

R(λ, A) =
∞∑

k=0

λ−(k+1)Ak (|λ| > ‖A‖).

Proof. As an abbreviation we write R(λ) instead of R(λ, A). Take µ ∈ �(A) and
λ ∈ C such that |λ− µ| < ‖R(µ)‖−1. Then a well-known result from the theory
of bounded operators states that I + (λ− µ)R(µ) is invertible with

(I + (λ− µ)R(µ))−1 =
∑
k≥0

(µ− λ)kR(µ)k ∈ L(X)

being its inverse. Combined with Corollary A.2.2 this gives R(λ) ∈ L(X) and

R(λ) =
1

λ− µ
(I −

∑
k≥0

(µ− λ)kR(µ)k) =
1

µ− λ

∑
k≥1

(µ− λ)kR(µ)k

=
∑
k≥0

(µ− λ)kR(µ)k+1.

Let λ, µ ∈ �(A), and let a ∈ X . Set x := R(λ)a. Then (x, a) ∈ (λ−A) and hence
(x, a + (µ− λ)x) ∈ (µ−A). This implies that

R(λ)a = x = R(µ)(a + (µ− λ)x) = (R(µ) + (µ− λ)R(µ)R(λ))a.

The proofs of the remaining statements are well known. �
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If A ∈ L(X) we call

rA := r(A) := inf{r > 0 | σ(A) ⊂ Br(0)}

the spectral radius of A.

Each mapping R : Ω −→ L(X) with ∅ 
= Ω ⊂ C such that the resolvent
identity

R(λ)−R(µ) = (µ− λ)R(λ)R(µ) (λ, µ ∈ Ω)

holds, is called a pseudo-resolvent. Since we allow multi-valued operators, we
obtain the following proposition, which fails to be true for single-valued operators.

Proposition A.2.4. Let R : Ω −→ L(X) be a pseudo-resolvent. Then there is
one and only one multi-valued operator A on X such that Ω ⊂ �(A) and R(λ) =
R(λ, A) for all λ ∈ Ω.

Proof. If R(λ) = R(λ, A), then A = λ−R(λ)−1. This shows that the operator A
is uniquely determined by each single R(λ). Thus we define Aλ := λ − R(λ)−1.
What we have to show is that all the Aλ are equal, i.e., that

λ + R(µ)−1 = µ + R(λ)−1 (λ, µ ∈ Ω).

By interchanging the roles of µ and λ it is clear that we are done as soon as we
know one inclusion. Let (x, y) ∈ µ + R(λ)−1. This means that x = R(λ)a where
a := y − µx. Then

R(µ)(y − λx) = R(µ)(a + (µ− λ)x) = R(µ)(I + (µ− λ)R(λ))a
= R(λ)a = x.

But this gives (x, y − λx) ∈ R(µ)−1, whence (x, y) ∈ λ + R(µ)−1. �
Corollary A.2.5. Let R1 : Ω1 −→ L(X) and R2 : Ω2 −→ L(X) be pseudo-
resolvents. If R1(z) = R2(z) for some z ∈ Ω1 ∩ Ω2, then R1(z) = R2(z) for
all such z.

Let T ∈ L(X). We say that the operator T commutes with the multi-valued
operator A if

(x, y) ∈ A =⇒ (Tx, T y) ∈ A

for all x, y ∈ X . This is equivalent to the condition TA ⊂ AT . Obviously, T
commutes with A if and only if T commutes with A−1. An immediate consequence
of this fact is the following proposition.

Proposition A.2.6. Let T ∈ L(X), and suppose that �(A) 
= ∅. Then the following
assertions are equivalent.

(i) [T, R(λ, A)] := TR(λ, A)−R(λ, A)T = 0 for some λ ∈ �(A).

(ii) [T, R(λ, A)] = 0 for all λ ∈ �(A).
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(iii) TA ⊂ AT .

Let A, B be closed multi-valued operators, and suppose that �(A) 
= ∅. We
say that B commutes with the resolvents of A if B commutes with R(λ, A) for
each λ ∈ �(A). If �(B) 
= ∅, it is sufficient that this is the case for a single λ.
Moreover, it follows that A commutes with the resolvents of B.

One should note that each single-valued operator A with �(A) 
= ∅ commutes
with its own resolvents. (This is due to the identity B−1Bx = x + N(B) for
x ∈ D(B) which is true for all operators B.)

Proposition A.2.7. Let A be a multi-valued operator such that �(A) 
= ∅, and let
T ∈ L(X) be injective. If T commutes with A, then T−1AT = A.

Proof. Because of AT ⊃ TA we have T−1AT ⊃ T−1TA = A. The converse
inclusion T−1AT ⊂ A is equivalent to the following statement: If (Tx, T y) ∈ A,
then (x, y) ∈ A, for all x, y ∈ X . Let λ ∈ �(A). From (Tx, T y) ∈ A it follows that
(Tx, T (y− λx)) = (Tx, T y− λTx) ∈ (A− λ). This gives R(λ, A)T (λx− y) = Tx.
Now, T commutes with R(λ, A), hence TR(λ, A)(λx−y) = Tx. By injectivity of T
we obtain R(λ, A)(λx− y) = x, whence (x, y) ∈ A. This completes the proof. �

Let A be a multi-valued operator on the Banach space X , and let Y be
another Banach space, continuously embedded in X . We denote by AY := A

∣∣
Y

the part of A in Y , i.e.,
AY := A ∩ (Y ⊕ Y ).

In the case where A is single-valued this means

D(AY ) = {x ∈ Y ∩D(A) | Ax ∈ Y } and AY y = Ay (y ∈ D(AY )).

Proposition A.2.8. Let A be any operator on X, and let Y ⊂ X be another Banach
space with continuous inclusion. Then the following assertions hold.

a) If A is closed, then also AY is closed.

b) [A−1]Y = [AY ]−1.

c) λ−AY = (λ−A)Y holds for all λ ∈ C.

d) If λ ∈ �(A), then the two assertions
(i) λ ∈ �(AY );

(ii) Y is R(λ, A)-invariant;
are equivalent. In this case R(λ, AY ) = R(λ, A)Y .

Proof. a) Suppose that A is closed. Let (yn, zn) ∈ AY , (yn, zn) → (y, z) within
Y ⊕ Y . Since the inclusion Y ⊂ X is continuous, (yn, zn)→ (y, z) within X ⊕X ,
and since A is closed, it follows that (y, z) ∈ A ∩ Y ⊕ Y = AY . b) and c) are
trivial, and d) follows from a), b) and c). �
Corollary A.2.9. Let X, Y, A be as above. If D(A) ⊂ Y , then �(A) ⊂ �(AY ).
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A.3 The Spectral Mapping Theorem for the Resolvent

We define C∞ := C ∪ {∞} to be the one-point compactification of C (Riemann
sphere) with the usual conventions for computation 1. For a multi-valued operator
A we call the set

σ̃(A) :=
{

σ(A) if A ∈ L(X),
σ(A) ∪ {∞} if A /∈ L(X),

the extended spectrum of A.

Proposition A.3.1 (Spectral Mapping Theorem). Let A be a closed multi-valued
operator on the Banach space X. We have

σ̃(λA) = λσ̃(A), σ̃(A + λ) = σ̃(A) + λ, and σ̃(A−1) = [σ̃(A)]−1

for all λ ∈ C. In particular, σ̃(R(λ, A)) = [λ− σ̃(A)]−1 for all λ ∈ C.

This follows from Corollary A.3.3 below. Let λ ∈ C∞. The eigenspace of A
at λ is defined as

N(λ, A) :=
{

N(A− λ) for λ ∈ C,
A0 for λ =∞.

Similarly, we define the range space of A at λ as

R(λ, A) :=
{

R(A− λ) for λ ∈ C,
D(A) for λ = ∞.

Using this notation we define the extended point spectrum, approximate point
spectrum, residual spectrum, and surjectivity spectrum by

P σ̃(A) := {λ ∈ C∞ | N(λ, A) 
= 0},
Aσ̃(A) := {λ ∈ C∞ | N(λ, A) 
= 0 or R(λ, A) is not closed},
Rσ̃(A) := {λ ∈ C∞ | R(λ, A) 
= X},
Sσ̃(A) := {λ ∈ C∞ | R(λ, A) 
= X}.

Clearly we have σ̃(A) = P σ̃(A) ∪ Sσ̃(A) = Aσ̃(A) ∪Rσ̃(A). The classical spectra
are obtained by intersecting the extended spectra with the complex plane, i.e.,

Pσ(A) = C ∩ P σ̃(A), Aσ(A) = C ∩Aσ̃(A), . . . .

Using the extended spectra allows one to think of ‘single-valuedness’ of an operator
as a spectral condition.

1such as, e.g., ∞ + λ = ∞, λ · ∞ = ∞ for 0 �= λ ∈ C, and 0 = 0 · ∞ = 1/∞.
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Lemma A.3.2. Let µ ∈ C and λ ∈ C∞. Then

N(λ, µ −A) = N(µ− λ, A) and N(λ, A−1) = N(λ−1, A), as well as

R(λ, µ−A) = R(µ− λ, A) and R(λ, A−1) = R(λ−1, A).

Proof. We only show the first and the last equality. The other two are proved
similarly. Let y ∈ X . In the case where λ =∞, one has

y ∈ N(λ, µ−A) ⇔ (0, y) ∈ µ−A ⇔ (0, y) ∈ A ⇔ y ∈ N(µ− λ, A),

y ∈ R(λ, A−1) ⇔ ∃x : (y, x) ∈ A−1 ⇔ ∃x : (x, y) ∈ A ⇔ y ∈ R(1/λ, A),

since µ− λ = ∞ and 1/λ = 0. In the case where λ 
= ∞, we have

y ∈ N(λ, µ− A) ⇔ (y, 0) ∈ (µ−A)− λ ⇔ (y, 0) ∈ A− (µ− λ)
⇔ y ∈ N(µ− λ, A).

Note further that R(0, A−1) = R(A−1) = D(A) = R(1/0, A). Hence to finish the
proof of R(λ, A−1) = R(λ−1, A) we may suppose that λ 
= 0. Then

y ∈ R(λ, A−1) ⇔ ∃x : (x, y) ∈ A−1 − λ ⇔ ∃x : (y + λx, x) ∈ A

⇔ ∃x : (y + λx,−λ−1y) ∈ A− λ−1 ⇔ y ∈ R(λ−1, A). �
Corollary A.3.3. Let µ ∈ C. Then

Xσ̃(µ−A) = µ−Xσ̃(A) and Xσ̃(A−1) = [Xσ̃(A)]−1

for X ∈ {P, A, R, S}.
The following is a characterisation of the approximate point spectrum in

terms of approximate eigenvectors.

Proposition A.3.4. Let A be a closed multi-valued operator on X, and let λ ∈ C.
The following assertions are equivalent.

(i) λ ∈ Aσ(A).

(ii) There is (xn, yn) ∈ λ−A such that ‖xn‖ = 1 for all n and yn → 0 as n →∞.

Proof. Without loss of generality we may suppose that B := λ − A is injec-
tive. Since B is closed, one can consider the induced (single-valued) operator
B̃ : D(B) −→ X/B0. Clearly B has a closed range if and only if B̃ has closed
range. Now, 0 ⊕ B0 ⊂ B̃, whence B̃ is a closed operator B̃ ⊂ X ⊕ (X/B0). The
inverse B̃−1 : X/B0 −→ X is therefore a single-valued closed operator. By Lemma
A.1.2 this operator is continuous if and only if its domain — which is R(B̃) — is
closed. This means that B has a closed range if and only if there is a constant
c such that ‖B̃x‖X/B0 ≥ c ‖x‖ for all x ∈ D(B). From this readily follows the
stated equivalence. �
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Corollary A.3.5. Let A be a closed multi-valued operator on the Banach space X.
Then ∂σ̃(A) ⊂ Aσ̃(A).

The boundary ∂σ̃(A) has to be regarded as a boundary in C∞.

Proof. Let λ ∈ ∂σ̃(A). Suppose first that λ ∈ C. Then there is a conver-
gent sequence λn → λ with λn ∈ �(A). Since σ̃(A) is closed, λ ∈ σ(A). By
Proposition A.2.3 one has ‖R(λn, A)‖ → ∞. From this follows that there is
a sequence (zn)n such that ‖zn‖ = 1 and ‖R(λn, A)zn‖ → ∞. Let xn :=
‖R(λn, A)zn‖−1

R(λn, A)zn and wn := ‖R(λn, A)zn‖−1
zn. Then ‖xn‖ = 1, wn →

0, and (xn, wn) ∈ λn−A. Defining yn := wn+(λ−λn)xn we obtain (xn, yn) ∈ λ−A
and yn → 0. Hence λ ∈ Aσ(A), by Proposition A.3.4.

If λ = ∞, we use the Spectral Mapping Theorem to apply the above to
0 ∈ ∂σ̃(A−1). Then we use Corollary A.3.3. �

A.4 Adjoints

We denote the dual space of a Banach space X by X ′. Note that there is a
canonical identification of (X ⊕ X)′ and X ′ ⊕ X ′ that we often employ without
explicitly mentioning it. The canonical duality between X and X ′ is denoted by

〈·, ·〉 : X ×X ′ −→ C.

Given A ⊂ X and B ⊂ X ′ we define

M⊥ := {x′ ∈ X ′ | 〈x, x′〉 = 0 ∀x ∈M},
N� := { x ∈ X | 〈x, x′〉 = 0 ∀x′ ∈ N}.

Identifying X with a closed subspace of X ′′ we therefore have N⊥ ∩X = N�.
Let A ⊂ X ⊕ X be a multi-valued operator. The adjoint of A — usually

denoted by A′ — is defined by

(x′, y′) ∈ A′ :⇔ 〈v, x′〉 = 〈u, y′〉 for all (u, v) ∈ A.

If we let J := [(u, v) �−→ (−v, u)] : X ⊕X −→ X ⊕X , we may write

A′ = [JA]⊥.

It is clear from the definition that A′ is always a closed operator. The following
lemma is an easy consequence of the Hahn–Banach theorem.

Lemma A.4.1. Let A be a multi-valued operator on the Banach space X. Then

D(A′) = {x′ ∈ X ′ | x′A is single-valued and continuous},
A′x = {y′ ∈ X ′ | y′ ⊃ x′A} (x ∈ D(A′)).
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We collect the basic properties of adjoints.

Proposition A.4.2. Let A, B be multi-valued linear operators on X. Then the
following statements hold.

a) A′ = (A)′ is w∗-closed.

b) (A−1)′ = (A′)−1.

c) (λA)′ = λA′, for 0 
= λ ∈ C.

d) A′′∩(X⊕X) = A, where we identify X⊕X canonically with a closed subspace
of X ′′ ⊕X ′′.

e) N(A′) = R(A)⊥ and N(A) = R(A′)�.

f) A′0 = D(A)⊥ and A0 = D(A′)�.

g) D(A′) ⊂ (A0)⊥ and R(A′) ⊂ N(A)⊥.

h) If A ∈ L(X), then A′ ∈ L(X ′) and ‖A′‖ = ‖A‖.
i) A ⊂ B ⇒ B′ ⊂ A′.

j) A′ + B′ ⊂ (A + B)′ with equality if A ∈ L(X).

k) A′B′ ⊂ (BA)′ with equality if B ∈ L(X). If A ∈ L(X) and B is closed, one
has A′B′w

∗
= (BA)′.

Proof. a) Since J is a topological isomorphism, A
′
= (JA)⊥ = JA

⊥
= (JA)⊥.

b) This follows from (JA)−1 = J(A−1) and (A−1)⊥ = (A⊥)−1.

c) We have (x′, y′) ∈ (λA)′ ⇔ 〈−λv, x〉+(u | y′ ) = 0 ∀(u, v) ∈ A ⇔ 〈−v, λx′〉+
〈u, y′〉 = 0 ∀(u, v) ∈ A ⇔ (λx′, y′) ∈ A′ ⇔ (λx′, λy′) ∈ λA′ ⇔ (x′, y′) ∈ A′.

d) A′′ ∩ (X ⊕X) = (J(JA)⊥)� = (JJA)⊥� = A⊥� = A.

e) We have x′ ∈ N(A′) ⇔ (x′, 0) ∈ A′ ⇔ 〈−v, x′〉 = 0 ∀v ∈ R(A) ⇔ x′ ∈
R(A)⊥. Using this and d), we obtain

N(A) = N(A′′ ∩ (X ⊕X)) = N(A′′) ∩X = R(A′)⊥ ∩X = R(A′)�.

f) follows from e) and b).

g) If (x′, y′) ∈ A′ and v ∈ A0 then (0, v) ∈ A and 〈v, x′〉 = 〈0, y′〉 = 0, whence
x ∈ (A0)⊥. The second statement follows from this and b).

h) Let A ∈ L(H). Then A∗ is closed and single-valued by f). If x′ ∈ X ′, one
easily sees that (x′, x′ ◦ A) ∈ A′, whence A′x = x′ ◦ A. Hence D(A′) = X ′ and
A′ ∈ L(X ′). By the Hahn–Banach theorem,

‖A′‖ = sup
‖x′‖≤1

‖A′x′‖ = sup
‖x′‖≤1, ‖x‖≤1

|〈x, A′x′〉| = sup
‖x′‖≤1, ‖x‖≤1

|〈Ax, x′〉|

= sup
‖x‖≤1

‖Ax‖ = ‖A‖ .
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i) Suppose that A ⊂ B. Hence JA ⊂ JB and this implies that (JB)⊥ ⊂ (JA)⊥.
j) Let (x′, y′) ∈ A′, (x′, z′) ∈ B∗. The generic element of J(A + B) is (−v−w, u),
where (u, v) ∈ A and (u, w) ∈ B. So (x′, y′) ⊥ (−v, u) and (x′, z′) ⊥ (−w, u),
hence (x′, y′ + z′) ⊥ (−v − w, u). If A ∈ L(X), we write B = (A + B) − A and
note that A′ ∈ L(X ′) by h).
k) Let (x′, y′) ∈ A′B′. Then there is z′ such that (x′, z′) ∈ B′ and (z′, y′) ∈
A′. If (u, v) ∈ BA, one has (u, w) ∈ A and (w, v) ∈ B for some w. Hence
〈v, x′〉 = 〈w, z′〉 = 〈u, y′〉. Since (u, v) ∈ BA was arbitrary, we conclude that
(x′, y′) ∈ (BA)∗.

Suppose now that B ∈ L(X) and (x′, y′) ∈ (BA)′. Define z′ := B′x′. It
suffices to show that (z′, y′) ∈ A′. Take (u, w) ∈ A and define v := Bw. Hence
(u, v) ∈ BA. Therefore

〈u, y′〉 = 〈v, x′〉 = 〈Bw, x′〉 = 〈w, B′x′〉 = 〈w, z′〉 ,

whence (z′, y′) ∈ A′.
Finally, suppose that B is closed and A ∈ L(X). Since (BA)′ is w∗-closed

and A′B′ ⊂ (BA)′ we have A′B′w
∗
⊂ (BA)′. To prove the converse inclusion, by

the Hahn–Banach theorem it suffices to show (A′B′)� ⊂ (BA)′�. Now, (BA)′� =
J(BA)⊥� = J(BA) = J(BA) since BA is closed. Let (u, v) ∈ (A′B′)�, i.e.,
〈u, x′〉+ 〈v, y′〉 = 0 for all (x′, y′) ∈ A′B′. This is equivalent to 〈u, x′〉+ 〈Av, z′〉 =
0 ∀(x′, z′) ∈ B′. This yields (−Av, u) ∈ B′′ ∩ (X ⊕X) = B = B since B is closed.
Hence J(u, v) ∈ BA and the statement is proved. �

Corollary A.4.3. Let A be a multi-valued linear operator on X. Then

(λ−A)′ = (λ −A)′ and R(λ, A)′ = R(λ, A′)

for every λ ∈ C. For each λ ∈ C∞ we have N(λ, A′) = R(λ, A)⊥. In particular,
P σ̃(A′) = Rσ̃(A). If A is closed, one has �(A) = �(A′).

Let A be a single-valued operator on X . From Proposition A.4.2 f) we see
that A′ is densely defined if and only if A is closable, i.e., A is still single-valued;
and A′ is single-valued if and only if A is densely defined.

Remark A.4.4. Using [39, Theorem II.15] one can prove the Closed Range Theorem
for multi-valued operators in the same way as for single-valued operators, cf. also
[52, Theorem III.4.4].

A.5 Convergence of Operators

In this section we consider the following situation: Let (An)n be a sequence of
multi-valued operators on X , and let λ0 ∈ C such that λ0 ∈

⋂
n �(An) for all n.

Suppose further that the sequence (R(λ0, An))n converges to a bounded operator
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Rλ0 ∈ L(X) (in norm or in the strong sense). We know from Proposition A.2.4
that there is a unique multi-valued operator A with Rλ0 = (λ0 − A)−1. Since
Rλ0 ∈ L(X), we have λ0 ∈ �(A). We are interested in the question, whether there
is convergence of the resolvents at other common resolvent points of the operators
An. To answer this question, we let

Ω :=
{
λ ∈ C

∣∣ ∃N ∈ N : λ ∈ �(An) ∀n ≥ N, and sup
n≥N

‖R(λ, An)‖ < ∞
}
.

It is immediate from the proof of Proposition A.2.3 that Ω is an open subset of
C and that the mapping n(λ) := min{n ∈ N | λ ∈ �(Ak) ∀ k ≥ n} defined on Ω
locally can only decrease.

Lemma A.5.1. Let λ ∈ C.

a) If λ ∈ �(An) for almost all n and if R(λ, An)x → y, then (x, y) ∈ R(λ, A).

b) If λ ∈ Ω and (x, y) ∈ R(λ, A), then R(λ, An)x → y.

Proof. a) Define Qn := (λ − λ0)R(λ0, An) and Q := (λ − λ0)R(λ0, A). The
resolvent identity implies that (I + Qn)R(λ, An) = R(λ0, An). But R(λ0, An) →
R(λ0, A) strongly, hence Qn → Q strongly as well. Thus, we have (I + Q)y =
R(λ0, A)x. This implies readily that (x, y) ∈ R(λ, A).
b) Let λ ∈ Ω and (x, y) ∈ R(λ, A). By Corollary A.2.2 one has I − (I + Qn)−1 =
(λ − λ0)R(λ, An). From λ ∈ Ω it follows that (I + Qn)−1 ∈ L(X) (n ≥ n0) and
supn≥n0

∥∥(I + Qn)−1
∥∥ < ∞ for some n0 ∈ N. From (x, y) ∈ R(λ, A) it follows

that (I + Q)y = R(λ0, A)x. Therefore,

(I + Qn)(R(λ, An)x− y) = R(λ0, An)x− (I + Qn)y
→ R(λ0, A)x− (I + Q)y = 0.

Applying (I + Qn)−1 yields R(λ, An)x− y → 0. �

Corollary A.5.2. For λ ∈ Ω the multi-valued operator (λ − A) is injective and it
has a closed range, i.e., λ /∈ Aσ(A). In particular, σ(A) ∩ Ω is an open subset of
C. Furthermore, we have

Ω ∩ �(A) = {λ | λ ∈ �(An) almost all n, (R(λ, An))n strongly convergent}.

Proof. Let λ ∈ Ω and K ≥ 0 such that ‖R(λ, An)‖ ≤ K for almost all n. By
the last lemma, if (x, y) ∈ R(λ, A), then R(λ, An)x → y. Hence ‖y‖ ≤ K ‖x‖.
This shows that R(λ, A) is single-valued and has a closed domain. From Corollary
A.3.5 we know that ∂σ(A) ⊂ Aσ(A). Hence ∂σ(A) ∩ Ω = ∅. For λ ∈ Ω we have
λ ∈ �(A) if and only if R(λ, A) is fully defined, and this is the case if and only if
(R(λ, An))n is strongly convergent by Lemma A.5.1 �

The interesting question now is whether Ω = �(A). It holds true for the norm
topology, as the following proposition shows.
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Proposition A.5.3. Let An, A and Ω be as above. Suppose that R(λ0, An) →
R(λ0, A) in norm as n → ∞. Then Ω = �(A) and R(λ, An) → R(λ, A) in norm
for all λ ∈ �(A).

Proof. Let λ ∈ �(A), and let Q, Qn be defined as in the proof of Lemma A.5.1.
Then (I + Q)−1 ∈ L(X). Because (I + Qn) → (I + Q) in norm, eventually we
have (I + Qn)−1 ∈ L(X), and (I + Qn)−1 → (I + Q)−1 in norm. This yields
R(λ, An) → R(λ, A) in norm. In particular, λ ∈ Ω.

Conversely, let λ ∈ Ω. Then Tn := I + Qn is invertible for all large n with
K := supn≥n0

∥∥T−1
n

∥∥ <∞. But Tn → T := I + Q in norm. Thus∥∥T−1
n − T−1

m

∥∥ ≤ ∥∥T−1
n

∥∥ ‖Tm − Tn‖
∥∥T−1

m

∥∥ ≤ K2 ‖Tm − Tn‖ ,

hence (T−1
n )n is a norm-Cauchy sequence. Obviously, this implies that T is in-

vertible, whence λ ∈ �(A). �

A.6 Polynomials and Rational Functions of an Operator

In this section A denotes a single-valued operator on X .
The sequence of natural powers (An)n∈N is defined recursively by

A0 := I, An+1 := AnA (n ≥ 0).

A simple induction argument shows the validity of the law of exponents An+m =
AnAm for all n, m ∈ N. In particular, An+1 = AAn, implying that the sequence
of domains D(An) is decreasing, i.e., D(An+1) ⊂ D(An). Another consequence is
the inclusion

An(D(Am)) ⊂ D(Am−n) (m ≥ n).

Let p(z) =
∑

k≥0 akzk ∈ C[z] be a polynomial and deg(p) := max{k | ak 
= 0} its
degree. The operator

p(A) :=
∑
k≥0

akAk

is well defined (by associativity of operator sums) with domain D(p(A)) = D(An),
where n = deg(p) if p 
= 0, and n = 0 if p = 0. (Note that this is not a definition
but a conclusion.)

Lemma A.6.1. Let p, q ∈ C[z]. The following statements hold.

a) If p 
= 0, then p(A)q(A) = (pq)(A). In particular, if p 
= 0 and x ∈ X, then

x ∈ D(Adeg(p)) and p(A)x ∈ D(An) ⇐⇒ x ∈ D(An+deg(p)).

b) If p(A) is injective and q 
= 0, then

D(p(A)−1) ∩D(q(A)) ⊂ D(p(A)−1q(A)) ∩D(q(A)p(A)−1)

and p(A)−1q(A)x = q(A)p(A)−1x for each x ∈ D(p(A)−1) ∩D(q(A)).
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c) One has p(A)+q(A) ⊂ (p+q)(A), and equality holds in the case that deg(p+
q) = max(deg(p), deg(q)).

d) If T ∈ L(X) commutes with A, then it also commutes with p(A).

In particular we have p(A)q(A) = q(A)p(A) for p, q 
= 0, and p(A) commutes with
the resolvents of A.

Proof. We prove a). The assertion is obviously true if p or q are just scalars.
Hence by the Fundamental Theorem of Algebra and the associativity of operator
multiplication, we can reduce the problem to the case that deg(p) = deg(q) = 1.
This means that we have to establish the identity

A2 − (µ + λ)A + µλ = (A− λ)(A − µ)

for µ, λ ∈ C. Let y ∈ X be arbitrary. Because D(A2) ⊂ D(A) we have y ∈ D(A)
and (A − µ)y ∈ D(A) if and only if y ∈ D(A2). Thus, a) is proved. From a)
it follows that p(A)q(A) = q(A)p(A) whenever p, q 
= 0. Now, a short argument
gives b). The statement in c) is trivial. To prove d) one first shows TAn ⊂ AnT
for n ∈ N by induction. (Step: Because TA ⊂ AT , one has TAn+1 ⊂ ATAn ⊂
AAnT = An+1T ). This yields Tp(A) ⊂ p(A)T almost immediately. �
Proposition A.6.2. Let A be an operator on a Banach spaces X such that �(A) 
= ∅.
Then p(A) is a closed operator for each polynomial p ∈ C[z]. Furthermore, the
spectral mapping theorem σ(p(A)) = p(σ(A)) holds.

Proof. We prove the first statement by induction on n := deg p. The case n =
1 follows from the fact that the norms ‖x‖ + ‖Ax‖ and ‖x‖ + ‖(A− µ)x‖ are
equivalent norms on D(A). Now let n ≥ 1, deg p = n + 1, and λ ∈ �(A). Defining
µ := p(λ), there is r ∈ C[z] such that deg r = n and p = (x−λ)r+µ. Let (xk)k be
a sequence in D(An+1) converging to x (in X) and such that p(A)xk → y (in X as
well). Then we have r(A)xk → (A − λ)−1(y − µx). By the induction hypothesis,
r(A) is closed, hence x ∈ D(An) with r(A) = (A−λ)−1(y−µx) ∈ D(A). From a)
and c) in Lemma A.6.1 it follows that x ∈ D(An+1) and y−µx = (A−λ)r(A)x =
(p− µ)(A)x = p(A)x − µx.

To prove the spectral mapping theorem it suffices to show that p(A) is invert-
ible if and only if the roots of p are contained in the resolvent set of A. Therefore,
let λ1, . . . , λn ∈ C, and let

T := (A− λ1)(A− λ2) . . . (A− λn) : D(An) −→ X

be invertible. Then clearly A−λ1 is surjective and A−λn is injective. But all the
A−λj commute with each other, by Lemma A.6.1 a). Hence all A−λj are bijective.
On the other hand, if λj ∈ �(A) for all j, then obviously T is invertible. �

We denote by

RA :=
{
p/q

∣∣ p, q ∈ C[z] and {λ : q(λ) = 0} ⊂ �(A)
}
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the set of all rational functions having their poles contained in �(A). For a rational
function r = p/q ∈ RA we define

r(A) := p(A)q(A)−1.

(This is independent of the special choice of p and q by Lemma A.6.1.) Note
that there is some arbitrariness in this definition. For example, one could have
equally defined r(A) := q(A)−1p(A) (this is essentially the same operator but with
a smaller domain). With our definition, the domain of r(A) is

D(r(A)) = D(Am) where m =
{

deg(p)− deg(q) if deg(p) ≥ deg(q),
0 else.

Proposition A.6.3. Let A be an operator on a Banach space X such that �(A) 
= ∅.
For 0 
= r = p/q, r̃ = p̃/q̃ ∈ RA the following assertions hold.

a) r(A) is a closed operator.

b) r(σ̃(A)) ⊂ σ̃(r(A)).

c) r(A)r̃(A) ⊂ (rr̃)(A), and equality holds, e.g., if

(deg(p)− deg(q))(deg(p̃)− deg(q̃) ≥ 0.

d) r(A) + r̃(A) ⊂ (r + r̃)(A), and equality holds, e.g., if

deg(pq̃ + p̃q) = max{deg(pq̃), deg(p̃q)}.

e) If T ∈ L(X) commutes with A, then it commutes also with r(A).

Proof. Assertion a) is trivial, and assertions c) and d) follow from Lemma A.6.1.
To prove b) we note first that r(A)−λI = [(p−λq)/q](A) for λ ∈ C. Hence we are
left to show that r(A) is invertible if {z : p(z) = 0} ⊂ �(A). Since q(A)−1p(A) ⊂
r(A) = p(A)q(A)−1, the operator r(A) is invertible if and only if p(A) is. As-
sertion e) is a consequence of Lemma A.6.1 and of Tr(A) = Tp(A)q(A)−1 ⊂
p(A)Tq(A)−1 = p(A)q(A)−1T = r(A)T . �

Here is an interesting corollary.

Corollary A.6.4. Let A be a closed operator on a Banach space X. Let the rational
function r̃ = p̃/q̃ ∈ RA be such that deg(p̃) = deg(q̃). Then r(A)r̃(A) = r̃(A)r(A)
for every r ∈ RA.

Proof. Just apply c) of Proposition A.6.3 twice. Another proof rests on the fact
that r̃ may be written as a product of operators of the form α−βR(λ, A) for some
numbers λ ∈ �(A), α, β ∈ C such that α 
= 0. For such operators we have

x ∈ D(An) ⇐⇒ (α− βR(λ, A))x ∈ D(An)

for all n and all x ∈ X . �
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We conclude the section with a result for adjoints.

Proposition A.6.5. Let A be a densely defined (single-valued) operator on X with
�(A) 
= ∅. For each polynomial p ∈ C[z] we have

p(A)′ = p(A′).

The same statement holds if p is a rational function with poles inside �(A) = �(A′).

Proof. Let r = p/q be a rational function with poles inside the set �(A′). Suppose
first that deg p ≤ deg q. Hence r(A′) and r(A) are bounded operators. The
function r may be written as a product r =

∏
j rj where each rj is either of

the form α(λ − z)−1 or of the form α(λ − z)−1 + β. Now the claimed formula
[r(A)]′ = r(A′) follows from Proposition A.4.2 k) and Corollary A.4.3. From this
and Proposition A.4.2 b) we may infer that p(A)′ = p(A′) holds for all polynomials
p having their roots inside �(A′). Now suppose that deg p > deg q. Since �(A) 
= ∅
we can find a polynomial q1 having its roots inside �(A′) with deg q+deg q1 = deg p.
Define r̃ := p/(q1q). Then

r(A′) = q1(A′)r̃(A′) = q1(A)′r̃(A)′
(1)
= [r̃(A)q1(A)]′

(2)
= [q1(A)r̃(A)]′ = [r(A)]′,

where we have used Proposition A.4.2 k) in (1) and Proposition A.6.3 in (2). �

A.7 Injective Operators

In this section we consider an injective single-valued operator A on a Banach space
X . The injectivity enables us to extend the insertion mapping p �−→ p(A) to the
set of polynomials in z and z−1. We begin with a surprising fact.

Lemma A.7.1. Let A be injective with �(A) 
= 0. Then

p(A−1)R(λ, A) = R(λ, A)p(A−1)

for all λ ∈ �(A) and all polynomials p ∈ C[z].

Proof. Since R(λ, A)∈L(X), both distributivity inclusions (see Proposition A.1.1)
are actually equalities, hence we can reduce the proof to the case p(z) = z. We have
R(λ, A)A−1 ⊂ A−1R(λ, A) since R(λ, A) commutes with A, hence with A−1. Let
x ∈ D(A−1R(λ, A)). Then R(λ, A)x = Ay for some y ∈ D(A). But R(λ, A)x ∈
D(A), whence y ∈ D(A2), and we may apply λ−A on both sides to obtain x = (λ−
A)Ay = A(λ−A)y ∈ R(A). This implies that x ∈ D(A−1) = D(R(λ, A)A−1). �

Let p(z) =
∑

k∈Z
akzk ∈ C[z, z−1] a polynomial. The operator

p(A) :=
∑
k∈Z

akAk
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is well defined (associativity for operator sums and injectivity of A), with domain

D(p(A)) = D(Am) ∩ R(An),

where

n = min{k ∈ N0 | (zkp(z))|z=0 
=∞},
m = min{k ∈ N0 | (z−kp(z))|z=∞ 
=∞}.

One can write p ∈ C[z, z−1] in a unique way as

p(z) = q(z)z−n n ∈ Z, q ∈ C[z], q(0) 
= 0.

Then we have p(A) = q(A)A−n. (This is clear for n ≤ 0. In the other case only
equality of domains is to be shown; this is easy.) Note that a nice product law as
in a) of Lemma A.6.1 for polynomials cannot hold in this situation. Simply look
at

A−1A ⊂ I ⊃ AA−1,

where the inclusions are strict in general. This example also shows that a general
commutative law cannot be expected. However, this is not the end of the story.

Lemma A.7.2. Let p, q ∈ C[z] with q(0) 
= 0. Then

p(A−1)q(A) ⊂ q(A)p(A−1).

Proof. We may suppose without loss of generality that p(A−1) = A−n. If x ∈
D(q(A)) with q(A)x ∈ D(A−n), then there is y ∈ D(An) such that q(A)x = Any.
Since q(0) 
= 0, this implies that x ∈ R(A), say, x = Ax1. But then Aq(A)x1 =
Any, and this yields q(A)x1 = An−1y by injectivity of A. Inductively, it follows
that x ∈ R(An), say, x = Anx0. Hence we finally arrive at

q(A)A−nx = q(A)x0 = y = A−nq(A)x.

This proves the statement. �

The simple example A−1(1 + A) 
= (1 + A)A−1 shows that the inclusion in
the last lemma is strict in general.

Corollary A.7.3. Let p, q ∈ C[z] with p(0)q(0) 
= 0. Then

p(A−1)q(A) = (p(z−1)q(z))(A) = q(A)p(A−1).

Proof. The first equality is immediate from Lemma A.7.2. To prove the second,
we may suppose that deg(p) = deg(q) = 1, employing the Fundamental Theorem
of Algebra and Proposition A.6.3. The operator identity (A−1 + µ)(A + λ) =
(1+µλ)+µA+λA−1 then reduces to an almost trivial comparison of domains. �
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Proposition A.7.4. Let A be an injective operator, and let p, q ∈ C[z, z−1]. Then
the following inclusions hold.

p(A)q(A) ⊂ (pq)(A) and p(A) + q(A) ⊂ (p + q)(A).

If T ∈ L(X) commutes with A, then it also commutes with p(A). If �(A) 
= ∅,
p(A) is a closed operator.

Proof. We leave the proof to the reader. �

A.8 Semigroups and Generators

In this section we review the basic facts of semigroup theory. Our exposition is
different from others in that we do not restrict the approach to strongly continuous
semigroups.

Let X be a Banach space. A (degenerate) semigroup on X is a strongly
continuous mapping

T : (0,∞) −→ L(X)

that possesses the semigroup property

T (t)T (s) = T (t + s) (t, s > 0).

The semigroup T is called bounded if

sup
0<t<∞

‖T (t)‖ <∞.

If the semigroup is just bounded at 0, i.e., if supt≤1 ‖T (t)‖ < ∞, then there are
constants M ≥ 1, ω ∈ R such that ‖T (t)‖ ≤ Meωt for all t > 0, cf. [85, Chapter I,
Proposition 5.5]. Hence such a semigroup is called exponentially bounded. Given
an exponentially bounded semigroup T , the number

ω0(T ) := inf{ω ∈ R | ∃M : ‖T (t))‖ ≤ Meωt (t > 0) }

is called the growth bound of T . The semigroup T is said to be exponentially
stable if ω0(T ) < 0. A semigroup T satisfying ‖T (t)‖ ≤ 1 for all t > 0 is called
contractive or a contraction semigroup. It is called quasi-contractive if there is
ω ≥ 0 such that the semigroup eω·T (·) is contractive.

The space
{x ∈ X | lim

t↘0
T (t)x = x}

is called the space of strong continuity of the semigroup T . If it is the whole space
X , the semigroup is called strongly continuous or a C0-semigroup.



298 Appendix A. Linear Operators

Let T be an exponentially bounded semigroup, and choose constants ω, M
such that ‖T (t)‖ ≤ Meωt for t > 0. Then the Laplace transform of T exists at
least in the half-plane {Reλ > ω}, i.e.,

T̂ (λ)x :=
∫ ∞

0

e−λtT (t)xdt (x ∈ X)

defines a bounded operator on X for every λ with Re λ > ω. One can show that in
fact T̂ (·) is a pseudo-resolvent, cf. [10, p.114]. Hence there is a unique multi-valued
operator A such that

(λ −A)−1 =
∫ ∞

0

e−λtT (t) dt.

We call A the generator of the semigroup T . By the injectivity of the Laplace
transform the semigroup is uniquely determined by its generator. The semigroup
T is said to be non-degenerate if A is single-valued. We obtain

A0 =
⋂
t>0

N(T (t)) = N(R(λ, A)) (λ ∈ �(A)) (A.1)

again by the injectivity of the Laplace transform. Obviously, a C0-semigroup is
non-degenerate. If µ ∈ C, then A + µ generates the semigroup t �−→ eµtT (t).
Hence an operator generates an exponentially bounded semigroup if and only if
there is ω ∈ R such that A− ω generates a bounded semigroup.

Proposition A.8.1. Let T be a semigroup on the Banach space X satisfying an
estimate ‖T (t)‖ ≤ Meωt for all t > 0. Then for all n ∈ N and all Re λ > ω,

R(λ, A)n =
1

(n− 1)!

∫ ∞

0

tn−1e−λtT (t) dt and (A.2)

‖R(λ, A)n‖ ≤ M

(Re λ− ω)n
. (A.3)

Proof. The proof is the same as in the strongly continuous case, cf. [85, Corollary
I.1.11]. �

Note that each operator T (t) commutes with the resolvent of A, whence D(A)
is invariant under the semigroup T .

Proposition A.8.2 (Fundamental Identity for Semigroups). Let T be an exponen-
tially bounded semigroup with generator A on the Banach space X. Define

Dt :=
1
t
(T (t)− I) and Vt :=

1
t

∫ t

0

T (s) ds

for t > 0. Then

(λR(λ, A) − I)Vε = DεR(λ, A) and (Vεx, Dεx) ∈ A

for all ε > 0, Re λ > ω0(T ), and all x ∈ X.
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Proof. We compute

(λR(λ) − I)
∫ ε

0

T (s) ds =
∫ ∞

0

λe−λtT (t)
∫ ε

0

T (s) ds dt−
∫ ε

0

T (s) ds

=
∫ ∞

0

(
λe−λt

∫ ε

0

T (t + s) ds− λe−λt

∫ ε

0

T (s) ds

)
dt

=
∫ ∞

0

λe−λt

(∫ t+ε

t

· · · −
∫ ε

0

. . .

)
dt

=
∫ ∞

0

λe−λt

(∫ ε+t

ε

· · · −
∫ t

0

. . .

)
dt

I.p.
=

∫ ∞

0

e−λt(T (t + ε)− T (t)) dt = (T (ε)− I)R(λ).

Dividing by ε completes the proof of the first statement. Using this we obtain
Vε = R(λ)(λVε − Dε). This shows that (Vεx, λVεx − Dεx) ∈ (λ − A) for every
x ∈ X . �

Corollary A.8.3. Let T be an exponentially bounded semigroup on the Banach space
X, and let x ∈ X. The following assertions are equivalent.

(i) x ∈ D(A).

(ii) T (t)x → x as t↘ 0.

(iii) 1
ε

∫ ε

0 T (s)xds → x as ε ↘ 0.

(iv) λR(λ, A)x → x as λ→∞.

In particular, D(A) is the space of strong continuity of T . One has the inclusion
T (t)X ⊂ D(A) for each t > 0.

Proof. (iv)⇒(i) and (ii)⇒(iii) are obvious.
(iii)⇒(i) follows, since R(Vε) ⊂ D(A) by Proposition A.8.2.
(i)⇒(ii). Let x ∈ D(A), and pick y ∈ (λ−A)x, where λ > ω0(T ). Then

T (ε)x− x = (T (ε)− I)R(λ)y = εVε(λR(λ) − I)y → 0

as ε → 0. Now supt≤1 ‖T (t)‖ <∞, and the stated implication follows.
(i)⇒(iv). Note first that ‖λR(λ)‖ is uniformly bounded for λ > ω where ω >
ω0(T ). This follows from Proposition A.8.1. Given x ∈ D(A) we choose µ ∈ �(A)
and y ∈ (µ−A)x to obtain

λR(λ)x = λR(λ)R(µ)y =
λ

λ− µ
(R(µ)y −R(λ)y) → R(µ)y = x

as λ →∞. �
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Corollary A.8.4. Let x ∈ X. Then we have

x ∈ D(A), Ax ∩D(A) 
= ∅ ⇔ lim
t↘0

1
t
(T (t)x− x) =: y exists,

and in this case {y} = Ax∩D(A). In particular, A0∩D(A) = 0, whence the space
XT := A0 ⊕D(A) is a closed subspace of X.

It follows from Corollary A.8.4 that the part B := A ∩ (D(A) ⊕D(A)) of A
in D(A) is single-valued.

Proposition A.8.5. Let T be an exponentially bounded semigroup with generator
A on the Banach space X. Let Y := D(A). The space Y is invariant under the
semigroup T . The semigroup T restricts to a strongly continuous semigroup on
Y , with generator B = A ∩ (Y ⊕ Y ).

The following result is one of the cornerstones of the theory of C0-semigroups.
(See [85, Section II.3] or [10, Theorem 3.3.4] for proofs.)

Theorem A.8.6 (Hille–Yosida). Let A be a (single-valued) linear operator on the
Banach space X. Suppose that A has dense domain and there are M ≥ 1, ω ∈ R

such that (ω, A) ⊂ �(A) and

‖R(λ, A)n‖ ≤ M

(λ − ω)n
(A.4)

for all n ∈ N and all λ > ω. Then A generates a C0-semigroup satisfying the
estimate ‖T (t)‖ ≤ Meωt for t ≥ 0.

Remark A.8.7. Unfortunately there is no similar characterisation for generators
of general exponentially bounded semigroups. The resolvent condition (A.3) guar-
antees that A generates a so-called integrated semigroup S(·), see [10, Theorem
3.3.1]. For x ∈ D(A) one has S(t)x =

∫ t

0
T (s)xds, where T is the semigroup gen-

erated by the part B of A in D(A). Then A generates an exponentially bounded
semigroup if and only if S(·)x ∈ C1((0,∞), X) for each x ∈ X . Employing [7,
Theorem 6.2] one can show that this is always true if the Banach space X has the
Radon-Nikodym property.

Let us note an important result on bounded perturbations. For a proof see
[85, Theorem III.1.3].

Proposition A.8.8. Let A be the generator of a C0-semigroup on the Banach space
X, and let B ∈ L(X) be a bounded operator. Then A+B generates a C0-semigroup
on X.

Finally we deal with the important case of groups.

Proposition A.8.9. Let T be an exponentially bounded semigroup with generator
A. The following assertions are equivalent:
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(i) There exists t0 > 0 such that T (t0) is invertible.

(ii) Each T (t) is invertible and the mapping T̃ : R → L(X)×, defined by

T̃ (t) :=

⎧⎨⎩
T (t) (t > 0),
I (t = 0),
T (−t)−1 (t < 0)

is a strongly continuous group homomorphism.

(iii) The operator −A generates an exponentially bounded semigroup and A is
single-valued.

Proof. (i)⇒(ii)⇒(iii). Let T (t0) be invertible. Then the semigroup property read-
ily implies that each T (t) is invertible. Moreover, since R(T (t)) ⊂ D(A) for each
t > 0, we have that A is densely defined. Hence A is single-valued and we are in
the standard (C0-) case. So we can refer to [85, Subsection 3.11], or [186, Section
1.6] for the remaining arguments.

(iii)⇒(i). We denote by S the semigroup generated by −A. Choose a number
ω > max(ω0(T ), ω0(S)). Let Y := D(A), and let B := A ∩ (Y ⊕ Y ) the part
of A in Y . From Proposition A.8.5 we know that B generates the C0-semigroup
obtained by restricting T to Y . Analogously, −B generates the C0-semigroup ob-
tained by restricting S to Y . (Note that D(−A) = D(A).) The theorem from [85,
Section 3.11] now yields that T (t)S(t)y = S(t)T (t)y = y for all y ∈ Y . Let t0 > 0,
and suppose that T (t0)x = 0 for some x ∈ X . Then

R(λ, A)x =
∫ t0

0

e−λtT (t)xdt =: f(λ)

for Re λ > ω. Obviously f has a holomorphic continuation to an entire function
which is bounded on every right half-plane.

Claim: f(λ) = R(λ, A) for all Re λ < −ω.

Proof of Claim. Consider the function F : C → X ⊕ X/A defined by F (λ) :=
(f(λ), λf(λ)−x)+A. Then F is entire and F (λ) = 0 for Re λ > ω, since (f(λ), x) ∈
λ−A for these λ. By the uniqueness theorem for holomorphic functions, F (λ) = 0
for all λ ∈ C. Hence (f(λ), x) ∈ λ−A even for Reλ < −ω. However, these λ are
contained in the resolvent set of A, whence the claim is proved.

From the claim we conclude that f is in fact bounded also on some left half-
plane, hence it is constant. However, f(λ) → 0 as Re λ →∞. Thus, f(λ) = 0 for
all λ ∈ C. This implies that R(λ, A)x = 0 for all λ in some left halfplane. Since
A is single-valued, x = 0.

So we have shown that T (t0) is injective. We obtain that T (t0) : X −→ Y is
an isomorphism. But since T (t0) : Y −→ Y is also an isomorphism, we must have
X = Y . �
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One usually writes T again instead of T̃ and calls it a C0-group. In general
one cannot omit the assumption ‘A is single-valued’ from (iii). Indeed, let S be a
C0-group on a Banach space Y and let X := Y ⊕ C with T (t)(y, λ) := (S(t), 0)
for all t ∈ R. If B generates S, then

A = {((y, 0), (By, λ)) | y ∈ D(B), λ ∈ C}

generates (T (t))t≥0 and −A generates (T (−t))t≥0.
Given a C0-group (T (t))t∈R we call

θ(T ) := inf{θ > 0 | ∃M ≥ 1 : ‖T (t)‖ ≤Meθ|t| (t ∈ R) }

the group type of T . Let us call the semigroups T⊕ and T�, defined by

T⊕(t) := T (t) and T�(t) := T (−t) (t ≥ 0),

the forward semigroup and the backward semigroup corresponding to the group
T . Then we obviously have θ(T ) = max{ω0(T⊕), ω0(T�)}.

References

The basic results on multi-valued operators, covered by Section A.1 and Section
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may be new. The same is true for Propositions A.2.7 and parts of Section A.3.
An exhaustive treatment of adjoints of multi-valued operators can be found in [52,
Chapter III]. The results on convergence in Section A.5 are generalisations of well-
known facts for single-valued operators that can be found, e.g., in [130, Theorem
IV.2.23 and Chapter VIII,§1]. Polynomials of operators (Section A.6) are studied
in [79, Chapter VII.9] including the spectral mapping theorem (Proposition A.6.2).
By [52, Theorem VI.5.4], the spectral mapping theorem for polynomials remains
valid for multi-valued operators. We provided the results for rational functions
and on injective operators (Section A.7) without direct reference, but it is quite
likely that these facts have been published somewhere. The results of [52, Chapter
6] let us expect that there is a generalisation of Sections A.6 and A.7 to multi-
valued operators. Section A.8 is an adaptation from the standard monographs
in semigroup theory, like [186], [85], and [10]. However, if multi-valued operators
are involved (as in Proposition A.8.2 and Proposition A.8.9), we do not know
of a direct reference. Semigroups in connection with multi-valued operators are
studied in [26] and [25].



Appendix B

Interpolation Spaces

In this appendix we present a short survey of basic definitions and results from
the interpolation theory of Banach spaces.

B.1 Interpolation Couples

Let X, Y be two normed spaces. A closed linear (single-valued) and injective
operator ι ⊂ X ⊕ Y is called an (interpolation) coupling between X and Y . A
pair of normed spaces (X, Y ) together with an interpolation coupling ι is called
an interpolation couple. If (X, Y ) is an interpolation couple and both X, Y are
Banach spaces, then (X, Y ) is called a Banach couple.

Lemma B.1.1. Let X, Y be normed spaces. If there is a Hausdorff topological vector
space Z and continuous linear injections ιX : X −→ Z and ιY : Y −→ Z, then
(X, Y ) is an interpolation couple with respect to the coupling ι defined by

(x, y) ∈ ι ⇐⇒ ιX(x) = ιY (y) (B.1)

for x ∈ X, y ∈ Y . Conversely, if ι is some coupling between X and Y , then there
is a normed space Z and continuous injections ιX : X −→ Z and ιY : Y −→ Z
such that (B.1) holds.

Proof. The first assertion is straightforward to prove. Suppose that ι is some
coupling between X and Y . Then the operator −ι is a closed subspace of the
normed space X ⊕ Y . Define the normed space Z as the quotient space Z :=
X ⊕Y/− ι and denote by [x, y] the image of (x, y) under the canonical projection
of X⊕Y onto Z. Then let ιX := (x �−→ [x, 0]) : X −→ Z and ιY := (y �−→ [0, y]) :
Y −→ Z. Clearly, ιX and ιY are linear and continuous. Moreover, they are
injective. To see this, consider x ∈ X such that ιX(x) = 0. This means that
(x, 0) ∈ (−ι). Since ι is injective, x = 0. The injectivity of ιY follows similarly from
the single-valuedness of ι. Now, for x ∈ X, y ∈ Y , we have ιX(x) = ιY (y) ⇐⇒
[x, 0] = [0, y] ⇐⇒ (x,−y) ∈ (−ι) ⇐⇒ (x, y) ∈ ι. This proves (B.1). �
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Given an interpolation couple (X, Y ) (with coupling ι) the normed space

X + Y := (X ⊕ Y ) /(−ι)

defined in the proof of Lemma B.1.1 is called the sum of the couple (X, Y ). Fur-
thermore, the space

X ∩ Y := D(ι)

with the norm ‖x‖X +‖ι(x)‖Y is called the intersection of the couple (X, Y ). If the
coupling ι is obtained by (B.1) based on imbeddings ιX , ιY into some Hausdorff
topological vector space Z, then X ∩ Y and X + Y embed canonically in Z.

In fact, the most common situation is when X and Y are already subspaces
of some space Z with continuous inclusion mappings. Then the coupling is natural
and reference to it is often omitted. Also, the spaces X ∩ Y and X + Y appear
naturally as subspaces of Z. Viewing X and Y as subspaces of X + Y , one has

‖x‖X+Y = inf{‖a‖X + ‖b‖Y | a ∈ X, b ∈ Y, a + b = x}, (B.2)

‖z‖X∩Y = ‖z‖X + ‖z‖Y (B.3)

for the norms on X + Y and X ∩ Y , respectively.
If both X and Y are complete, i.e., if (X, Y ) is a Banach couple, then X +Y

and X ∩ Y are also complete.

The interpolation couples form the objects of a category whose morphisms
are the pairs (T1, T2) of continuous linear mappings

T1 : X −→ X̃ and T2 : Y −→ Ỹ

such that ι̃◦T1 = T2◦ι. This condition ensures that one can unambiguously define
an operator

T : X + Y −→ X̃ + Ỹ

with T |X = T1 and T |Y = T2. One then has T ∈ L(X + Y, X̃ + Ỹ ) and T |X∩Y ∈
L(X ∩ Y, X̃ ∩ Ỹ ). Hence sum and intersection are (covariant) functors from the
category of interpolation couples into the category of normed spaces. Usually
notation is abused a little and one simply writes T instead of T1, T2.

Lemma B.1.2. Let Y ⊂ X, Ỹ ⊂ X̃, and let T ∈ L(X, X̃). If T (Y ) ⊂ Ỹ , then
T ∈ L(Y, Ỹ ).

Proof. This is an easy application of the Closed Graph Theorem. �

By Lemma B.1.2, a morphism T : (X, Y ) −→ (X̃, Ỹ ) is already characterised
by the following properties.

a) T ∈ L(X + Y, X ′ + Y ′) and

b) T (X) ⊂ X ′, T (Y ) ⊂ Y ′.
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A functor F from the category of interpolation couples into the category of
normed spaces is called an interpolation functor if the following assertions hold.

1) X ∩ Y ⊂ F(X, Y ) ⊂ X + Y for all interpolation couples (X, Y ).

2) F(T ) = T |F(X,Y ) for every morphism T : (X, Y ) −→ (X̃, Ỹ ) of interpolation
couples.

3) If (X, Y ) is a Banach couple, then also F(X, Y ) is a Banach space.

B.2 Real Interpolation by the K-Method

Let (X, Y ) be an interpolation couple. We define

K(t, x) := K(t, x, X, Y ) := inf{‖a‖X + t ‖b‖Y | x = a + b, a ∈ X, b ∈ Y }

for x ∈ X + Y and t > 0.

Lemma B.2.1. The following assertions hold true.

a) For every t > 0 the mapping x �−→ K(t, x) is an equivalent norm on X + Y .
More precisely,

min(t, 1) ‖x‖X+Y ≤ K(t, x) ≤ max(t, 1) ‖x‖X+Y

for all x ∈ X + Y .

b) For fixed x ∈ X+Y the mapping t �−→ K(t, x) is non-decreasing and concave;
in particular, it is continuous.

c) K(t, x, X, Y ) = tK(1/t, x, Y, X) for all x ∈ X + Y, t > 0.

d) K(t, x) ≤ (t/s)K(s, x) for 0 < s < t, i.e., for fixed x the mapping t �−→
(1/t)K(t, x) is non-increasing.

e) For x ∈ X ∩ Y one has K(t, x) ≤ min(1, t) ‖x‖X∩Y .

f) If Y ⊂ X, then K(t, x) ≤ ‖x‖X for all t > 0, x ∈ X.

Proof. The proofs are elementary. �
Let us denote by Lp

∗(a, b) the space of p-integrable functions on the interval
(a, b) ⊂ (0,∞) with respect to the measure dt/t. We abbreviate the positive real
coordinate (t �→ t) simply by t. Now we define

(X, Y )θ,p := {x ∈ X + Y | (t �−→ t−θK(t, x)) ∈ Lp
∗(0,∞)}

for θ ∈ [0, 1] and p ∈ [1,∞], and endow this space with the norm

‖x‖θ,p =
∥∥t−θK(t, x)

∥∥
Lp

∗(0,∞)
.

The space (X, Y )θ,p is called the real interpolation space with parameters θ, p.
Here are basic properties.
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Proposition B.2.2. Let (X, Y ) be an interpolation couple, θ ∈ [0, 1], and p ∈ [1,∞].
Then the following statements hold.

a) (X, Y )θ,p = (Y, X)1−θ,p with equality of norms.

b) (X, Y )θ,p = 0 if p < ∞ and θ ∈ {0, 1}.
c) There is c = c(θ, p) such that K(t, x) ≤ c tθ ‖x‖θ,p for all t > 0 and all

x ∈ (X, Y )θ,p. In particular, (X, Y )θ,p ⊂ (X, Y )θ,∞.

d) One has X ∩ Y ⊂ (X, Y )θ,p ⊂ X + Y , except for p <∞ and θ ∈ {0, 1}.
e) For x ∈ X + Y the following assertions are equivalent:

(i) x ∈ (X, Y )0,∞;

(ii) there is (xn)n ⊂ X with supn ‖xn‖X <∞ and ‖xn − x‖X+Y → 0.
In particular, (X, Y )0,∞ ⊂ X.

f) Let θ ∈ (0, 1) and x ∈ (X, Y )θ,∞. Then there are sequences (xn)n ⊂ X and
(yn)n ⊂ Y with the following properties:

a) ‖x− xn‖X+Y , ‖x− yn‖X+Y → 0 and

b) ‖xn‖X = O(nθ), ‖yn‖Y = O(n1−θ).

In particular, (X, Y )θ,∞ ⊂ X ∩ Y .

Proof. a) follows from the equality K(t, x, X, Y ) = tK(1/t, x, Y, X), which holds
for all x ∈ X + Y and t > 0.
b) By a) it suffices to consider the case θ = 0. So suppose that K(., x) ∈ Lp

∗ .
Because ‖x‖X+Y ≤ K(t, x) for t ≥ 1, we have

∫∞
1
‖x‖p

X+Y dt/t <∞. This implies
that ‖x‖X+Y = 0.
c) In the case where p = ∞ one can choose c = 1, by definition. Now suppose
1 ≤ p < ∞. If θ ∈ {0, 1}, then by b) every c does the job. Hence we can suppose
θ ∈ (0, 1) and estimate

t−θK(t, x) = (θp)
1
p

(∫ ∞

t

s−θp ds

s

) 1
p

K(t, x) ≤ (θp)
1
p

(∫ ∞

t

s−θpK(s, x)p ds

s

) 1
p

≤ (θp)
1
p ‖x‖θ,p

for x ∈ (X, Y )θ,p.
d) We let t = 1 in c) and obtain ‖x‖X+Y ≤ c(θ, p) ‖x‖θ,p. For x ∈ X ∩ Y we have
K(t, x) ≤ min(1, t) ‖x‖X∩Y . Now the assertion follows from the implication

p = ∞∨ θ ∈ (0, 1) =⇒ t−θ min(1, t) ∈ Lp
∗(0,∞).

e) Suppose first that x ∈ (X, Y )0,∞, i.e., that there is c > 0 such that K(t, x) < c
for all t > 0. For each n ∈ N choose x = xn+yn ∈ X+Y with ‖xn‖X+n ‖yn‖Y < c.
Then supn ‖xn‖X < c and ‖x− xn‖X+Y ≤ ‖y‖Y ≤ cn → 0. On the other hand, if
(ii) holds, then K(t, x)n ≤ ‖xn‖X and K(t, xn) → K(t, x), since each K(t, ·) is a
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norm on X + Y . Hence (i) follows.

f) is similar to the proof of part e). �

The next result shows in particular that the mapping

(X, Y ) �−→ (X, Y )θ,p

is an interpolation functor whenever p ∈ [1,∞], θ ∈ [0, 1], except for the case
where p < ∞ and θ ∈ {0, 1}.

Theorem B.2.3. Let (X, Y ) and (X̃, Ỹ ) be interpolation couples. The following
assertions hold.

a) If (X, Y ) is a Banach couple, then (X, Y )θ,p is a Banach space for all p ∈
[1,∞], θ ∈ [0, 1].

b) One has always
(X, Y )θ,p ⊂ (X, Y )θ,q

for 1 ≤ p ≤ q ≤ ∞ and θ ∈ [0, 1].

c) Let T : (X, Y ) −→ (X̃, Ỹ ) be a morphism of interpolation couples. Then it
restricts to a bounded linear mapping T : (X, Y )θ,p −→ (X̃, Ỹ )θ,p such that

‖T ‖(X,Y )θ,p→(X̃,Ỹ )θ,p
≤ ‖T ‖1−θ

X→X̃
‖T ‖θ

Y →Ỹ

for all p ∈ [1,∞] and θ ∈ [0, 1].

Proof. a) is [157, p. 9/10].

b) By Proposition B.2.2 c) we have (X, Y )θ,p ⊂ (X, Y )θ,∞, whence ‖x‖θ,∞ ≤
c ‖x‖θ,p for all x ∈ (X, Y )θ,p. If p < q < ∞, then

‖x‖θ,q =
(∫ ∞

0

t−θqK(t, x)q dt

t

) 1
q

=
(∫ ∞

0

t−θpK(t, x)p(t−θK(t, x))(q−p) dt

t

) 1
q

≤
(∫ ∞

0

t−θpK(t, x)p dt

t

) 1
q

sup
t>0

(t−θK(t, x))
q−p

q = ‖x‖
p
q

θ,p ‖x‖
q−p

q

θ,∞ ≤ c ‖x‖θ,p .

c) is [157, p. 10]. �

Corollary B.2.4. Let (X, Y ) be an interpolation couple, p ∈ [1,∞] and θ ∈ (0, 1).
Then there is c = c(p, θ) such that

‖x‖θ,p ≤ c ‖x‖1−θ
X ‖x‖θ

Y (x ∈ X ∩ Y ).

Proof. Take X = X̃, Y = Ỹ and T = I in Theorem B.2.3 c). �



308 Appendix B. Interpolation Spaces

Remark B.2.5. Let us briefly consider the special case Y ⊂ X . Then clearly (X, Y )
is an interpolation couple. Since in this case K(t, x) is bounded, we certainly have

t−θK(t, x) ∈ Lp
∗(1,∞)

for all θ ∈ (0, 1] and all p ∈ [1,∞] (and also for θ = 0 and p = ∞). Hence one
only has to check the condition at 0, and∥∥t−θK(t, x)

∥∥
Lp

∗(0,1)

is an equivalent norm on (X, Y )θ,p (in the relevant cases). A similar remark holds
in the case that X ⊂ Y , where only the behaviour of K(t, x) at ∞ is relevant, and
so ‖t−θK(t, x)‖Lp

∗(1,∞) is an equivalent norm on (X, Y )θ,p (in the relevant cases).

Proposition B.2.6. Let Y ⊂ X, and let 0 < θ < σ < 1. Then

Y ⊂ (X, Y )1,∞ ⊂ (X, Y )σ,∞ ⊂ (X, Y )θ,1 ⊂ (X, Y )0,∞ = X.

Proof. This is [157, p. 9]. �

The following result is often useful.

Proposition B.2.7. Let (X, Y ) be a Banach couple, and let θ ∈ [0, 1], p ∈ [1,∞].
Then the following identities hold.

(X + Y, Y )θ,p ∩X = (X, Y )θ,p ∩X = (X, X ∩ Y )θ,p, (B.4)
(X + Y, X)θ,p ∩ (X + Y, Y )θ,p = (X + Y, X ∩ Y )θ,p, (B.5)
(X, X ∩ Y )θ,p + (Y, X ∩ Y )θ,p = (X + Y, X ∩ Y )θ,p, (B.6)

(X + Y, X)1−θ,p ∩ (X + Y, Y )θ,p = (X, Y )θ,p, (B.7)
(X, X ∩ Y )θ,p + (Y, X ∩ Y )1−θ,p = (X, Y )θ,p. (B.8)

Proof. In (B.4) the chain of inclusions ‘⊃’ holds trivially. Let x ∈ (X+Y, Y )θ,p∩X .
Then K(t, x, X, X∩Y ) ≤ ‖x‖X , and we only have to account for the case 0 < t ≤ 1.
Let x = a + b + c, where a ∈ X and b, c ∈ Y . Then b + c = x− a ∈ X ∩Y , whence

K(t, x, X, X ∩ Y ) ≤ ‖a‖X + t ‖b + c‖X∩Y = ‖a‖X + t ‖b + c‖Y + t ‖x− a‖X

≤ ‖a‖X + ‖b‖Y + t ‖x‖Y + t ‖x‖X + ‖a‖X

≤ 2 [‖a‖X + ‖b‖Y + t ‖c‖Y ] + t ‖x‖X .

Taking the infimum first with respect to a, b (with c fixed) and afterwards with
respect to c yields K(t, x, X, X ∩ Y ) ≤ 2K(t, x, X + Y, Y ) + t ‖x‖X .

For the remaining arguments we are in need of the so-called ‘modular law’:

B ⊂ C =⇒ (A + B) ∩ C = (A ∩ C) + B,
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which holds for all subspaces A, B, C of a common superspace. The two identities
(B.5) and (B.6) are proved by using (B.4) and the modular law (several times):

(X + Y,X ∩ Y )θ,p ⊂ (X + Y, X)θ,p ∩ (X + Y, Y )θ,p

= [(X + Y, X)θ,p ∩ (X + Y )] ∩ [(X + Y, Y )θ,p ∩ (X + Y )]
= {X + [(X + Y, X)θ,p ∩ Y ]} ∩ {Y + [(X + Y, Y )θ,p ∩X ]}
= {X + (Y, X ∩ Y )θ,p} ∩ {Y + (X, X ∩ Y )θ,p}
= {X ∩ [Y + (X, X ∩ Y )θ,p]}+ (Y, X ∩ Y )θ,p

= (X ∩ Y ) + (X, X ∩ Y )θ,p + (Y, X ∩ Y )θ,p

= (X, X ∩ Y )θ,p + (Y, X ∩ Y )θ,p ⊂ (X + Y, X ∩ Y )θ,p.

This kind of proof also works for the last two identities (B.7) and (B.8):

(X,Y )θ,p ⊂ (X, X + Y )θ,p ∩ (X + Y, Y )θ,p

= [(X, X + Y )θ,p ∩ (X + Y )] ∩ [(X + Y, Y )θ,p ∩ (X + Y )]
= [X + ((X, X + Y )θ,p ∩ Y )] ∩ [Y + ((X + Y, Y )θ,p ∩X)]
= [X + (X ∩ Y, Y )θ,p] ∩ [Y + (X, X ∩ Y )θ,p]
= (X ∩ Y, Y )θ,p + [X ∩ (Y + (X, X ∩ Y )θ,p)]
= (X ∩ Y, Y )θ,p + [(X ∩ Y )θ,p + (X, X ∩ Y )θ,p]
⊂ (X ∩ Y, Y )θ,p + (X, X ∩ Y )θ,p ⊂ (X, Y )θ,p. �

The Reiteration Theorem

Reiteration is one of the most important techniques, making interpolation theory
the powerful tool that it is.

Let (X, Y ) be a Banach couple, and let E be an intermediate space, i.e.,
a space for which the continuous embeddings X ∩ Y ⊂ E ⊂ X + Y hold. Fix
θ ∈ (0, 1). We say that E is of class Jθ in (X, Y ) if there is c ≥ 0 such that

‖x‖E ≤ c ‖x‖1−θ
X ‖x‖θ

Y (x ∈ X ∩ Y ).

We write E ∈ Jθ(X, Y ) if this holds.

Lemma B.2.8. Let X ∩ Y ⊂ E ⊂ X + Y , and let θ ∈ [0, 1]. Then the following
assertions are equivalent.

(i) E ∈ Jθ(X, Y ).

(ii) (X, Y )θ,1 ⊂ E.

Proof. See [158, p. 28]. �
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Note that for θ ∈ {0, 1} the characterisation given in Lemma B.2.8 must fail,
since in this case (X, Y )θ,1 = 0.

Fix θ ∈ [0, 1]. We say that E is of class Kθ in (X, Y ) if there is a k ≥ 0 such
that

K(t, x) ≤ ktθ ‖x‖E (x ∈ E, t > 0).

One writes E ∈ Kθ(X, Y ) if this holds. In the case where 0 < θ < 1 one has
E ∈ Kθ(X, Y ) if, and only if E ⊂ (X, Y )θ,∞.

Let (X, Y ) be a Banach couple, and let X ∩ Y ⊂ E1, E2 ⊂ X + Y be
two intermediate spaces. Then (E0, E1) is another interpolation couple. The
reiteration theorem deals with this situation.

Theorem B.2.9 (Reiteration Theorem). Let (X, Y ) be a Banach couple, 0 ≤ θ0 <
θ1 ≤ 1, and θ ∈ [0, 1].

a) If Ei ∈ Kθi(X, Y ) for i = 0, 1, then

(E0, E1)θ,p ⊂ (X, Y )ω,p (p ∈ [1,∞]).

b) If Ei ∈ Jθi(X, Y ) and Ei is complete for i = 0, 1, then

(X, Y )ω,p ⊂ (E0, E1)θ,p (p ∈ [1,∞]).

Here, ω := (1− θ)θ0 + θθ1 ∈ (0, 1).

A proof can be found in [158], [215] or [29]. It uses at least one method of
constructing the real interpolation spaces ‘from below’, e.g., the so-called L-method
or the trace method.

B.3 Complex Interpolation

The complex method of interpolation is an abstraction of Thorin’s proof of the
classical Riesz Interpolation Theorem.

Let us denote (for the moment) by S the vertical strip

S := {z ∈ C | 0 < Re z < 1}.

We consider vector-valued functions f : S −→ X , where X is some Banach space.
For θ ∈ [0, 1] we denote by fθ the function

fθ : R −→ X, fθ(t) := f(θ + it) (t ∈ R),

i.e., the restriction of f to the vertical line {Re z = θ}. The following lemma is at
the heart of the whole construction.
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Lemma B.3.1 (Three Lines Lemma). Let X be a Banach space, and let f : S −→ X
be continuous, uniformly bounded, and holomorphic on S. Then

‖f(θ)‖X ≤ ‖f0‖1−θ
∞ ‖f1‖θ

∞ (θ ∈ [0, 1]).

In particular, ‖f‖∞,S ≤ max(‖f0‖∞ , ‖f1‖∞) (Maximum Modulus Principle).

Proof. See [196, Theorem 12.8]. �
Let (X, Y ) be an interpolation couple. We define

F(X, Y ) := {f ∈ Cb(S; X + Y ) ∩ O(S; X + Y ) | f0 ∈ Cb(R; X), f1 ∈ Cb(R; Y )}

and a subspace

F0(X, Y ) := {f ∈ F(X, Y ) | f0 ∈ C0(R; X), f1 ∈ C0(R; Y )}.

On F(X, Y ) a norm(!) is defined by

‖f‖F := max{‖f0‖X,∞ ‖f1‖Y,∞} (f ∈ F(X, Y )).

It is easy to see that F(X, Y ) is a Banach space if (X, Y ) is a Banach couple.
Furthermore, F0(X, Y ) is a closed subspace of F(X, Y ). The following technical
lemma is quite important.

Lemma B.3.2. The set

M := {eδz2+λz ⊗ a | δ > 0, λ ∈ R, a ∈ X ∩ Y }

is total in F0(X, Y ).

Proof. This in fact needs an intricate argument a more detailed account of which
can be found in [138, Theorem IV.1.1] or [29, Lemma 4.2.3]. We only sketch the
proof. Note that |eδz2+λz | ≤ ce−δ|Im z|2 for c = eδ+|λ|. Hence the considered set
is in fact contained in F0(X, Y ) and consists of very rapidly decreasing functions.
Let f ∈ F0 be arbitrary. One has to approximate f by finite sums of elements of
M . The proof of this fact consists of several steps.
1) One has eεz2

f → f in F0 as ε↘ 0 for each f ∈ F0.
2) By Step 1) one may suppose without loss of generality that f decays rapidly.
For such f consider fn(z) :=

∑
k∈Z

f(z+i(2πkn)). (The sum converges absolutely,
uniformly for z in compacts of S.) This yields a 2πni-periodic function fn ∈ F .
3) Let bnk(s) be the k-th Fourier coefficient of the 2πn-periodic function fn(s+i · ).
An intricate argument using Cauchy’s theorem shows that ank(s) := e−sk/nbnk(s)
is independent of s ∈ (0, 1). By continuity, ank(0) = ank(1) ∈ X ∩ Y .
4) Fejér’s theorem yields that fn(z) can be (uniformly in z) approximated by sums
of terms of the form ankekz/n. Multiplying by eδz2

shows that each function eδz2
fn

is in the closed span of M .
5) Finally, fn → f uniformly on compacts, hence with δ > 0, n ∈ N to be chosen
appropriately, ‖eδz2

fn − f‖F can be made arbitrarly small. �
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We are now in a position to define the complex interpolation spaces. Let
(X, Y ) be an interpolation couple, and let θ ∈ [0, 1]. We define

[X, Y ]θ := {f(θ) | f ∈ F(X, Y )}

with the norm

‖x‖θ := inf{‖f‖F | f ∈ F(X, Y ), f(θ) = x}.

In passing to functions of the form eδ(z−θ)2f one can see that in the definition of
[X, Y ]θ one can replace the space F by the space F0. We obtain the following
theorem.

Theorem B.3.3. Let (X, Y ) and (X̃, Ỹ ) be interpolation couples. The following
assertions hold.

a) The space [X, Y ]θ is an intermediate space, i.e.,

X ∩ Y ⊂ [X, Y ]θ ⊂ X + Y.

b) The space X ∩ Y is dense in [X, Y ]θ for each θ ∈ (0, 1).

c) If (X, Y ) is a Banach couple, then [X, Y ]θ is a Banach space for all θ ∈ [0, 1].

d) Let T : (X, Y ) −→ (X̃, Ỹ ) be a morphism of interpolation couples. Then it
restricts to a bounded linear mapping T : [X, Y ]θ −→ [X̃, Ỹ ]θ such that

‖T ‖[X,Y ]θ→[X̃,Ỹ ]θ
≤ ‖T ‖1−θ

X→X̃
‖T ‖θ

Y →Ỹ

for all θ ∈ (0, 1).

Proof. a) The first inclusion is clear by considering constant functions. The second
follows from the Maximum Modulus Principle.

b) is immediate from Lemma B.3.2.

c) follows from abstract nonsense, since [X, Y ]θ can be written as the factor space
F(X, Y )/N , where N is the kernel of the evaluation mapping f �−→ f(θ).

d) is straightforward. �

Proposition B.3.4. Let (X, Y ) be a Banach couple. Define

V(X, Y ) := span{ϕ⊗ x | ϕ ∈ F0(C, C), x ∈ X ∩ Y }

Then
‖a‖[X,Y ]θ

= inf{‖f‖F(X,Y ) | f ∈ V(X, Y )}

for any a ∈ X ∩ Y, θ ∈ (0, 1).
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Proof. We reproduce the proof from [158, Remark 2.1.5]. Take any g ∈ F0(X, Y )
such that f(θ) = a. Then define

r(z) :=
z − θ

z + θ
, and h(z) :=

g(z)− e(z−θ)2a

r(z)
.

Then |r(z)| ≤ 1 for z ∈ S with |r(z)| → 1 as |z| → ∞. Hence h ∈ F0(X, Y ). By
Lemma B.3.2 one can find a function k ∈M such that ‖k − h‖F(X,Y ) is arbitrarily
small. Now define

f(z) := e(z−θ)2a + r(z)k(z),

which is obviously contained in V(X, Y ) and satisfies f(θ) = a. Moreover,

‖g − f‖F(X,Y ) =
∥∥∥rh + e(z−θ)2a− f

∥∥∥
F(X,Y )

= ‖r(h− k)‖F(X,Y )

≤ ‖h− k‖F(X,Y ) .

Now the statement follows. �
An important feature of the complex interpolation spaces is their connection

with the real interpolation spaces.

Proposition B.3.5. Let (X, Y ) be an interpolation couple, and let θ ∈ [0, 1]. Then
[X, Y ]θ is of the class K(θ) and of the class J(θ), i.e., the inclusion

(X, Y )θ,1 ⊂ [X, Y ]θ ⊂ (X, Y )θ,∞

holds true.

Proof. Choose X = X̃, Y = Ỹ and T = I in c) of Theorem B.3.3. By definition,
this gives [X, Y ]θ ∈ Jθ(X, Y ). For the proof of the second inclusion we refer to
[158, Proposition 2.1.10]. The key step is, by applying the conformal mapping
eπiz and the Poisson kernel for the half-plane, to write each f ∈ F(X, Y ) can
be written on the open strip S as a sum f = f0 + f1, where f0, f1 are given by
integrals of f on the axes Re z = 0 and Re z = 1, respectively (see [158, Lemma
2.1.9] or [138, Ch. IV.1.2]). �

Let us remark that there is also a reiteration theorem for the complex method,
see [29] or [138].

References

Our main references are [157] and [158]. Other expositions are [29], [138] and
[215]. We included proofs for the convenience of the reader, omitting those which
seem simple or at least straightforward. The Reiteration Theorem B.2.9 is used in
the proof of Dore’s Theorem 6.1.3, but later we give an alternative proof without
employing the Reiteration Theorem (see Corollary 6.5.8). Proposition B.2.7 may
be new for some readers, and in fact it is not contained in the mentioned textbooks.
However, one can find more results of this kind in [111].



Appendix C

Operator Theory on Hilbert Spaces

This chapter provides some facts on linear operators on Hilbert spaces, including
adjoints (of multi-valued operators), numerical range, symmetric and accretive op-
erators, and the Lax–Milgram theorem. The main difference from standard texts
lies in the fact that we have avoided employing the Spectral Theorem in deal-
ing with spectral theory of self-adjoint operators (Proposition C.4.3 – Corollary
C.4.6).

We take for granted the basic Hilbert space theory as can be found in [49,
Chapter I], [194, Chapter II], or [196, Chapter 4]. During the whole chapter the
letter H denotes some complex Hilbert space. The scalar product on H is denoted
by ( · | ·).

C.1 Sesquilinear Forms

Let V be a vector space over the field of complex numbers. We denote by

Ses(V ) := {a | a : V × V −→ C sesquilinear}

the space of sesquilinear forms on V . Given a ∈ Ses(V ), the adjoint form a is
defined by

a(u, v) := a(v, u) (u, v ∈ V ).

The real part and the imaginary part of the form a ∈ Ses(V ) are defined by

Re a :=
1
2
(a + a) and Im a :=

1
2i

(a− a),

respectively. Hence a = (Re a)+i(Im a) for every a ∈ Ses(V ). Using the shorthand
notation

a(u) := a(u, u)

for a ∈ Ses(V ) and u ∈ V , we obtain

(Re a)(u) = Re(a(u)) (u ∈ V ).
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Given a ∈ Ses(V ) one has the equations

1
2
(a(u + v) + a(u− v)) = a(u) + a(v), (C.1)

a(u, v) =
1
4
(a(u + v)− a(u− v) + i(a(u + iv)− a(u− iv))); (C.2)

these are called parallelogram law and polarisation identity, respectively. (The im-
portance of the polarisation identity lies in the consequence that each sesquilinear
form a is already determined by the associated quadratic form a(·).)

A form a is called real if a(u) ∈ R for all u ∈ V . It is called symmetric if
a = a. Note that Re a and Im a are always symmetric forms. A sesquilinear form
a ∈ Ses(V ) is called positive (or monotone) if Re a(u) ≥ 0 for all u ∈ V .

Lemma C.1.1. A form a ∈ Ses(V ) is real if and only if it is symmetric.

Proof. Obviously, a symmetric form is real. Let a be a real form. We have

a(u, v) + a(v, u) =
1
2
(a(u + v)− a(u− v)) ∈ R

for all u, v ∈ V . Replacing u and v by iu and iv, respectively, we obtain also

ia(u, v)− ia(v, u) ∈ R

for all u, v ∈ V . Combining these facts yields Im(a(u, v)) = − Im(a(v, u)) and
Re(a(u, v)) = Re(a(v, u)). But this is nothing else than a(u, v) = a(v, u). �

Proposition C.1.2 (Generalised Cauchy–Schwarz Inequality). Let a, b ∈ Ses(V ) be
symmetric, and let c ≥ 0 such that

|a(u)| ≤ c b(u) (u ∈ V ).

(Note that this implies that b is positive.) Then

|a(u, v)| ≤ c
√

b(u)
√

b(v)

for all u, v ∈ V .

Proof. The simple proof can be found in [199, Chapter XII, Lemma 3.1]. �

A positive form a is sometimes called a semi-scalar product. It is called a
scalar product if it is even positive definite, i.e., if it is positive and if a(u) = 0
implies that u = 0 for each u ∈ V . If a ∈ Ses(V ) is a semi-scalar product on V ,
then by

‖x‖a :=
√

a(u)

a seminorm on V is defined. The form a is continuous with respect to this semi-
norm. (This follows from the Cauchy–Schwarz inequality.)
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Let ω ∈ [0, π/2). A form a ∈ Ses(V ) is called sectorial of angle ω if

a(u) 
= 0 ⇒ |arg a(u)| ≤ ω (u ∈ V ).

The form a is called sectorial if it is sectorial of some angle ω < π/2. Obviously,
if a is sectorial, then Re a is positive.

Proposition C.1.3. Let a ∈ Ses(V ) such that Re a ≥ 0. The following assertions
are equivalent.

(i) The form a is sectorial.

(ii) The form a is continuous with respect to the seminorm induced by the semi-
scalar product Re a.

More precisely: If |a(u, v)| ≤ M
√

Rea(u)
√

Re a(v) for all u, v ∈ V , then a is
sectorial of angle arccosM−1. Conversely, if a is sectorial of angle ω, then

|a(u, v)| ≤ (1 + tan ω)
√

Re a(u)
√

Rea(v)

for all u, v ∈ V .

Proof. Suppose that |a(u, v)| ≤ M
√

Re a(u)
√

Rea(v) for all u, v ∈ V . Then,
letting u = v, we have |a(u)| ≤ M Re a(u), whence M ≥ 1 and a(u) 
= 0 ⇒
|arg a(u)| ≤ arccosM−1. for all u ∈ V .

Conversely, if a is sectorial of angle ω < π/2, then |Im a(u)| ≤ (tan ω)Re a(u)
for all u ∈ V . The generalised Cauchy–Schwarz inequality, applied to Re a and
Im a, yields

|a(u, v)| ≤ |(Re a)(u, v)|+ |(Im a)(u, v)| ≤ (1 + tan ω)
√

Re a(u)
√

Re a(v)

for all u, v ∈ V . �

C.2 Adjoint Operators

In this section we provide the theory of Hilbert space adjoints of multi-valued
linear operators. The results are more or less the same as for Banach space adjoints
(cf. Section A.4). We use different notations to distinguish between Banach space
adjoints (A′) and Hilbert space adjoints (A∗).

Let A ⊂ H ⊕H be a multi-valued linear operator on H . The Hilbert space
adjoint of A, usually denoted by A∗, is defined by

(x, y) ∈ A∗ :⇐⇒ (v |x) = (u | y ) for all (u, v) ∈ A. (C.3)

If for the moment we define J := ((u, v) �−→ (−v, u)) : H ⊕H −→ H ⊕H , then
we may write

A∗ = [JA]⊥

where the orthogonal complement is taken in the Hilbert space H ⊕H . Hence A∗

is always a closed operator. We list the basic properties.
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Proposition C.2.1. Let A, B be multi-valued linear operators on H. Then the
following statements hold.

a) A∗ = (A)∗.

b) (A−1)∗ = (A∗)−1.

c) (λA)∗ = λA∗, for 0 
= λ ∈ C.

d) A∗∗ = A.

e) N(A∗) = R(A)⊥ and N(A) = R(A∗)⊥.

f) A∗0 = D(A)⊥ and A0 = D(A∗)⊥.

g) D(A∗) ⊂ (A0)⊥ and R(A∗) ⊂ N(A)⊥.

h) If A ∈ L(H), then A∗ ∈ L(H) and ‖A∗‖ = ‖A‖ =
√
‖A∗A‖.

i) A ⊂ B ⇒ B∗ ⊂ A∗.

j) A∗ + B∗ ⊂ (A + B)∗ with equality if A ∈ L(H).

k) A∗B∗ ⊂ (BA)∗ with equality if B ∈ L(H). If A ∈ L(H) and B is closed, one
has A∗B∗ = (BA)∗.

Proof. a) Since J is a topological isomorphism, A
∗

= (JA)⊥ = JA
⊥

= (JA)⊥.
b) follows from (JA)−1 = J(A−1) and (A−1)⊥ = (A⊥)−1.
c) We have

(x, y) ∈ (λA)∗ ⇔ (−λv |x) + (u | y ) = 0 ∀(u, v) ∈ A

⇔ (−v |λx) + (u | y ) = 0 ∀(u, v) ∈ A

⇔ (λx, y) ∈ A∗ ⇔ (λx, λy) ∈ λA∗ ⇔ (x, y) ∈ A∗.

d) A∗∗ = (J(JA)⊥)⊥ = (JJA)⊥⊥ = A⊥⊥ = A.
e) We have

x ∈ N(A∗) ⇔ (x, 0) ∈ A∗ ⇔ (−v |x) = 0 ∀v ∈ R(A) ⇔ x ∈ R(A)⊥.

The second satement follows from the first together with d).
f) We have y ∈ A∗0 ⇔ (0, y) ∈ A∗ ⇔ (u | y ) = 0 ∀u ∈ D(A) ⇔ y ∈ D(A)⊥.
The second statement follows from the first together with d).
g) If (x, y) ∈ A∗, v ∈ A0, and u ∈ N(A), then (−v |x) = 0 and (u | y ) = 0 by
(C.3).
h) Let A ∈ L(H). Then A∗ is closed and single-valued by f). We show that
D(A∗) = H . In fact, let x ∈ H . Then (u �−→ (Au |x)) is a continuous linear
functional on H . By the Riesz–Fréchet theorem [196, Theorem 4.12] there is
y ∈ H such that (Au |x) = (u | y ) for all u ∈ H . But this means exactly that
(x, y) ∈ A∗. The equation ‖A‖ = ‖A∗‖ is easily proved by using the identity
‖T ‖ = sup{|(Tu | v )| | ‖u‖ = ‖v‖ = 1}, which holds for every bounded operator
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on H . This implies that ‖A∗A‖ ≤ ‖A∗‖ ‖A‖ = ‖A‖2. But if x ∈ H is arbitrary,
we have ‖Ax‖2 = (Ax |Ax) = (A∗Ax |x) ≤ ‖A∗A‖ ‖x‖2 by the Cauchy–Schwarz
inequality. Hence ‖A‖2 ≤ ‖A∗A‖.
i). We have A ⊂ B ⇒ JA ⊂ JB ⇒ (JB)⊥ ⊂ (JA)⊥.

j) Let (x, y) ∈ A∗, (x, z) ∈ B∗. The generic element of J(A + B) is (−v − w, u),
where (u, v) ∈ A and (u, w) ∈ B. So (x, y) ⊥ (−v, u) and (x, z) ⊥ (−w, u), hence
(x, y + z) ⊥ (−v − w, u).
If A ∈ L(H), we write B = (A + B)−A and note that A∗ ∈ L(H) by h).

k) Let (x, y) ∈ A∗B∗. Then there is z such that (x, z) ∈ B∗ and (z, y) ∈ A∗. If
(u, v) ∈ BA, one has (u, w) ∈ A and (w, v) ∈ B for some w. Hence (v |x) =
(w | z ) = (u | y ). Since (u, v) ∈ BA was arbitrary, (x, y) ∈ (BA)∗. Suppose now
that B ∈ L(H) and (x, y) ∈ (BA)∗. Define z := B∗x. It suffices to show that
(z, y) ∈ A∗. Take (u, w) ∈ A and define v := Bw. Hence (u, v) ∈ BA. Therefore

(u | y ) = (v |x) = (Bw |x) = (w |B∗x) = (w | z ) ,

whence (z, y) ∈ A∗ by (C.3). Finally, suppose that B is closed and A ∈ L(H).
The assertions already proved yield (A∗B∗)∗ = B∗∗A∗∗ = (B)(A) = BA. Hence
A∗B∗ = (BA)∗. �

Corollary C.2.2. Let A be a multi-valued linear operator on H. Then

(λ−A)∗ = (λ −A∗) and R(λ, A)∗ = R(λ, A∗)

for every λ ∈ C. In particular, we have �(A∗) = {λ | λ ∈ �(A)} = �(A).

Let A be a single-valued operator on H . From Proposition C.2.1 f) we see
that A∗ is densely defined if and only if A is closable, i.e., A is still single-valued;
and A∗ is single-valued if and only if A is densely defined.

Proposition C.2.3. Let A be a densely defined (single-valued) operator on H with
�(A) 
= ∅. For a polynomial p ∈ C[z] define p∗(z) := p(z). (Hence p∗ is obtained
from p by conjugating all coefficients.) Then we have

[p∗(A)]∗ = p(A∗).

The same statement holds if p is a rational function with poles inside �(A∗).

Proof. Let r = p/q be a rational function with poles inside the set �(A∗). Suppose
first that deg p ≤ deg q. Hence r(A∗) and r∗(A) are bounded operators. The
function r may be written as a product r =

∏
j rj where each rj is either of

the form α(λ − z)−1 or of the form α(λ − z)−1 + β. Now the claimed formula
[r∗(A)]∗ = r(A∗) follows from Proposition C.2.1 k) and Corollary C.2.2. From
this and Proposition C.2.1 b) we can infer that p∗(A)∗ = p(A∗) holds for all
polynomials p having their roots inside �(A∗). Now suppose that deg p > deg q.
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Since �(A) 
= ∅, we can find a polynomial q1 having its roots inside �(A∗) with
deg q + deg q1 = deg p. Define r̃ := p/(q1q). Then

r(A∗) = q1(A∗)r̃(A∗) = [q∗1(A)]∗[r̃∗(A)]∗
(1)
= [r̃∗(A)q∗1(A)]∗

(2)
= [q∗1(A)r̃∗(A)]∗ = [r∗(A)]∗,

where we have used Proposition C.2.1 k) in (1) and Proposition A.6.3 in (2). �

C.3 The Numerical Range

From now on, all considered operators are single-valued (cf. the terminological
agreement on page 279.)

Given an operator A on H we call

W (A) := {(Au |u) | u ∈ D(A), ‖u‖ = 1} ⊂ C

the numerical range of A. By [199, Chapter XII, Theorem 5.2] the numerical
range W (A) is always a convex subset of the plane.

Proposition C.3.1. Let A be a closed operator on H. Then Pσ(A) ⊂ W (A) and
Aσ(A) ⊂ W (A). Furthermore, one has

‖R(λ, A)‖ ≤ 1
dist(λ, W (A))

for λ ∈ �(A) \W (A). If A ∈ L(H), we have σ(A) ⊂W (A).

Proof. If λ ∈ Pσ(A), there is u ∈ D(A), ‖u‖ = 1, such that Au = λu. This yields
(Au |u) = (λu |u) = λ ‖u‖2 = λ. Hence λ ∈ W (A).

Suppose that λ /∈ W (A) and define δ := dist(λ, W (A)). By definition, one
has |(Ax |x) − λ| ≥ δ for all x ∈ D(A) with ‖x‖ = 1. Hence

|( (A− λ)x |x)| =
∣∣∣(Ax | x)− λ ‖x‖2

∣∣∣ ≥ δ ‖x‖2

for all x ∈ D(A). But |( (A− λ)x | x)| ≤ ‖(A− λ)x‖ ‖x‖, whence

‖(λ−A)x‖ ≥ δ ‖x‖
for all x ∈ D(A). Since A is closed, this implies that (λ − A) is injective and
has closed range, i.e., λ /∈ Aσ(A). Moreover, it shows that ‖R(λ, A)‖ ≤ δ−1 if
λ ∈ �(A).
If A ∈ L(X), then W (A∗) = {λ | λ ∈ W (A)}. Now, if λ ∈ Rσ(A), then clearly
λ ∈ Pσ(A∗), whence λ ∈ W (A). �
Corollary C.3.2. Let A be a single-valued, closed operator on H, and let the set
U ⊂ C \W (A) be open and connected. If U ∩ �(A) 
= 0, then U ⊂ �(A).

Proof. The statement follows from Proposition C.3.1 and the fact that ‖R(λ, A)‖
blows up as λ approaches a spectral value (cf. Proposition A.2.3). �



C.4. Symmetric Operators 321

C.4 Symmetric Operators

We begin with a lemma.

Lemma C.4.1. For an operator A on H the following assertions are equivalent:

(i) W (A) ⊂ R.

(ii) (Au | v ) = (u |Av ) for all u, v ∈ D(A).

(iii) A ⊂ A∗.

If this is the case, the operator A is called symmetric.

Proof. Define the form a on V := D(A) by a(u, v) := (Au | v ). The proof is
now an easy consequence of Lemma C.1.1 and the definition of the adjoint (see
(C.3)). �

An operator A on H is called self-adjoint if A∗ = A. If A is symmetric/self-
adjoint and injective, then A−1 is symmetric/self-adjoint, by Proposition C.2.1 b).

Proposition C.4.2. Let A be an operator on H. Then A is self-adjoint if and only
if A is symmetric, closed, and densely defined, and R(A± i) is dense. In this case
we have σ(A) ⊂ R and

‖R(λ, A)‖ ≤ 1
|Im λ|

for all λ ∈ C \ R.

Proof. Suppose that A = A∗. Then A is closed since A∗ is. Moreover, A∗ is
single-valued since A is, and this implies that A is densely defined, by Proposition
C.2.1 f). Since A = A∗ we have W (A∗) = W (A) ⊂ R. Hence N(A∗ ± i) = 0 by
Proposition C.3.1. This yields R(A± i) = H by Proposition C.2.1 e).

Now suppose that A is symmetric, closed, and densely defined with R(A± i)
being dense. By Proposition C.3.1 and its corollary we conclude that σ(A) ⊂ R

and N(A∗± i) = 0. But A− i : D(A) −→ H is bijective and A− i ⊂ A∗− i, whence
A− i = A∗− i. This proves A = A∗. The norm inequality for the resolvent follows
from Proposition C.3.1. �

Let A be an operator on H , and let α ∈ R. We write α ≤ A if A is self-adjoint
and W (A) ⊂ [α,∞), and we write A ≤ α if −α ≤ −A. The operator A is called
positive if 0 ≤ A. We obtain the following characterisation.

Proposition C.4.3. A closed and densely defined operator A on H is positive if and
only if W (A) ⊂ [0,∞) and A + λ is surjective for some/each λ > 0. In this case,
{Reλ < 0} ⊂ �(A) and ∥∥(λ + A)−1

∥∥ ≤ 1
Re λ

for all Re λ > 0. Moreover, 0 ≤ t(t + A)−1 ≤ 1 and 0 ≤ A(t + A)−1 ≤ 1 for all
t > 0.
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Proof. Let A be a single-valued, closed, and densely defined operator such that
W (A) ⊂ [0,∞). Since C \ [0,∞) is open and connected, the stated equivalence is
a consequence of Proposition C.3.1 and its corollary. Moreover it follows that in
this case {Reλ < 0} ⊂ �(A), and the stated norm inequality holds. Since t + A is
self-adjoint, we know that (t+A)−1 also is. Furthermore 0 ≤ A(t+A)−1 ≤ 1 ⇔
0 ≤ t(t + A)−1 ≤ 1 ⇔ ( tu | (t + A)u) ≤ ( (t + A)u | (t + A)u) ∀u ∈ D(A).
However, this is true if and only if ‖Au‖2 + t (Au |u) ≥ 0, which is always the
case. �
Lemma C.4.4. Let A be a closed and densely defined operator on H.

a) If −α ≤ A ≤ α for some α ≥ 0, then A ∈ L(H) and ‖A‖ ≤ α.

b) If A ∈ L(H) is self-adjoint, then ‖A‖ = sup{|λ| | λ ∈W (A)}. In particular,
W (A) is a bounded subset of R.

c) If 0 ≤ A ≤ 1, then 0 ≤ A2 ≤ A.

Proof. a) Define a(u, v) := (Au | v ) and b(u, v) := (u | v ) on V := D(A). The
hypothesis implies that |a(u)| ≤ αb(u) for all u ∈ H . Moreover, a is symmetric.
An application of the generalised Cauchy–Schwarz inequality (Proposition C.1.2)
yields |(Au | v )| ≤ α ‖u‖ ‖v‖ for all u, v ∈ D(A). Since A is densely defined, this
inequality holds for all v ∈ H , whence we have ‖Au‖ ≤ α ‖u‖ for all u ∈ D(A).
Since A is closed, this implies that D(A) is closed. Hence A ∈ L(H) and ‖A‖ ≤ α.

b) Let A ∈ L(H) be self-adjoint. Then |(Au |u)| ≤ ‖A‖ ‖u‖2 for all u ∈ H . Hence
sup |W (A)| ≤ ‖A‖. If sup |W (A)| ≤ α, then |(Au |u)| ≤ α ‖u‖2 for all u. Since
W (A) ⊂ R, this is equivalent to −α ≤ A ≤ α. Now a) implies that ‖A‖ ≤ α.
c) We have A − A2 = A2(1 − A) + A(1 − A)2, and both summands are positive
since A and 1−A are. �

The following result is usually proved with the help of the spectral theorem.

Proposition C.4.5. Let A ≥ α for some α ∈ R, and define α0 := inf W (A). Then
α0 ∈ σ(A). If α0 ∈W (A), then even α0 ∈ Pσ(A).

Proof. Without loss of generality we may suppose that α0 = 0. Hence A ≥ 0. Let
Q := A(1 + A)−1. Then 0 ≤ Q ≤ 1. Moreover, Q ≤ A in the obvious sense since
for x ∈ D(A) we have(

A(A + 1)−1x
∣∣x) − (Ax |x) =

(
A((A + 1)−1 − I)x

∣∣ x)
= −

(
A(A + 1)−1Ax

∣∣ x) = −
(
(A + 1)−1Ax

∣∣Ax
)
≤ 0.

Applying c) of Lemma C.4.4 we obtain

0 ≤ ‖Qx‖2 ≤ (Qx |x) ≤ (Ax |x)

for all x ∈ D(A). Now if there is x ∈ D(A) such that ‖x‖ = 1 and (Ax |x) = 0 it
follows that 0 = Qx = A(A+1)−1x. But this implies that 0 
= (A+1)−1x ∈ N(A),
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whence 0 ∈ Pσ(A). Similarly, if xn ∈ D(A) such that ‖xn‖ = 1 and (Axn |xn ) →
0, then Qxn → 0. Hence (xn)n is a generalised eigenvector for Q and 0 ∈ σ(Q).
But this immediately implies that 0 ∈ σ(A). �
Corollary C.4.6. Let A be a bounded and self-adjoint operator on A. Then

sup W (A), inf W (A) ∈ σ(A).

In particular, ‖A‖ = r(A), where r(A) denotes the spectral radius of A.

Proof. Let α := inf W (A) and β := sup W (A). Then 0 = inf W (A − α) =
inf W (β − A), whence 0 ∈ σ(A − α) ∩ σ(β − A) by Proposition C.4.5. From
Lemma C.4.4 b) we know that r(A) ≤ ‖A‖ = max{|α| , |β|} ≤ r(A). �

Note that positive operators are special cases of m-accretive operators (see
Section C.7 below).

Proposition C.4.7. Let S, T ∈ L(H) be self-adjoint, and let 0 ≤ S ≤ T in the sense
that (Sx |x) ≤ (Tx |x) for all x ∈ H. If S is invertible, then T is invertible and
T−1 ≤ S−1.

Proof. By Corollary C.4.6, if S is invertible, there is 0 < α ∈ R such that α ≤ S.
Hence α ≤ T , whence T is invertible. Let x ∈ H , and define y := T−1x, z := S−1x.
Then (

T−1x
∣∣ x)2 = (y |Sz )2 ≤ (y |Sy ) (z |Sz ) ≤ (y |Ty ) (z |Sz )

=
(
T−1x

∣∣ x) (S−1x
∣∣ x)

by Cauchy–Schwarz. Consequently,
(
T−1x

∣∣ x) ≤ (
S−1x

∣∣ x). �

C.5 Equivalent Scalar Products and the Lax–Milgram

Theorem

Let H be a Hilbert space. We denote by H∗ the antidual of H , i.e., the space of
continuous conjugate-linear functionals on H , endowed with the norm

‖ϕ‖H∗ := sup{|ϕ(x)| | x ∈ H, ‖x‖ = 1} (ϕ ∈ H∗).

One sometimes writes 〈ϕ, x〉 instead of ϕ(x), where x ∈ H, ϕ ∈ H∗.
Let a be a continuous sesquilinear form on H . Then we have an induced

linear mapping
La := (u �−→ a(u, ·)) : H −→ H∗, (C.4)

which is continuous. The Riesz–Fréchet theorem [196, Theorem 4.12] implies that
for each u ∈ H there is a unique Qu ∈ H such that

a(u, ·) = La(u) = (Qu | ·) .
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Obviously, Q is a linear and bounded operator (‖Q‖ = ‖La‖) and a is uniquely
determined by Q. On the other hand, given Q ∈ L(H), the form aQ defined by
aQ(u, v) := (Qu | v ) is sesquilinear and continuous. Hence the mapping

(Q �−→ aQ) : L(H) −→ {continuous, sesquilinear forms on H}

is an isomorphism. We have aQ = aQ∗ , whence the form a is symmetric if and
only if Q is self-adjoint, and the form is positive if and only if Q ≥ 0.

Proposition C.5.1. Let Q ∈ L(H). Then the form aQ is a scalar product on H if
and only if Q is positive and injective. The norm induced by this scalar product is
equivalent to the original one if and only if Q is invertible.

Proof. The form aQ is positive semi-definite if and only if Q ≥ 0. This is clear
from the definitions. If Q is not injective, then obviously aQ is not definite. Let
Q be injective and positive. By Proposition C.4.5 we conclude that 0 /∈ W (Q).
But this means that aQ is definite. Since aQ is continuous, equivalence of the
induced norm is the same as the existence of a δ > 0 such that δ ≤ Q. But this is
equivalent to Q being invertible by Proposition C.4.5. �

A scalar product on H that induces a norm equivalent to the original one is
simply called an equivalent scalar product.

Lemma C.5.2. Let A be a multi-valued linear operator on H, and let ( · | ·)◦ := aQ

be an equivalent scalar product on H. Denote by A◦ the adjoint of A with respect
to the new scalar product. Then

(x, y) ∈ A◦ ⇐⇒ (Qx, Qy) ∈ A∗

for all x, y ∈ H. In particular, A◦ = Q−1A∗Q if A∗ is single-valued.

Proof. Fix x, y ∈ H . Since Q is positive, (x, y) ∈ A◦ ⇔ (v |x)◦ = (u | y )◦ ∀(u, v) ∈
A ⇔ (v |Qx) = (u |Qy )∀(u, v) ∈ A ⇔ (Qx, Qy) ∈ A∗. The rest is straightfor-
ward. �

The next theorem states a sufficient condition for the mapping La to be an
isomorphism.

Theorem C.5.3 (Lax–Milgram). Let a be a continuous sesquilinear form on H.
Suppose that there is a δ > 0 such that

Re a(u) ≥ δ ‖u‖2 (C.5)

for all u ∈ H. Then the mapping La : H −→ H∗ defined by (C.4) is an isomor-
phism.

The inequality (C.5) is called a coercivity condition, and a form which sat-
isfies (C.5) for some δ > 0 is called coercive.
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Proof. Take u ∈ H with ‖u‖ = 1. Then

‖La(u)‖ ≥ |La(u)(u)| = |a(u)| ≥ Re a(u) ≥ δ.

Hence δ ‖u‖ ≤ ‖La(u)‖ for all u, whence La is injective and has a closed range. So
it remains to show that E := R(La) is dense in H∗. The Riesz–Fréchet theorem
implies that

Φ := (x �−→ (x | ·)) : H −→ H∗

is an isomorphism. Hence E is dense in H∗ if and only if Φ−1(E) is dense in H if
and only if Φ−1(E)⊥ = 0. Now

y ∈ Φ−1(E)⊥ ⇔ (x | y ) = 0 ∀x ∈ Φ−1(E) ⇔ ϕ(y) = 0 ∀ ϕ ∈ E

⇔ a(x, y) = 0 ∀ x ∈ H

for each y ∈ H . In particular, we have y ∈ Φ−1(E)⊥ ⇒ a(y, y) = 0, but this
implies that y = 0 by coercivity. Thus, the proposition is proved. �
Remark C.5.4. The coercivity condition in the Lax–Milgram theorem can be weak-
ened to |a(u)| ≥ δ ‖u‖2 for all u ∈ H . This is easily seen from the proof.

C.6 Weak Integration

Let (Ω, µ) be a measure space. A µ-measurable map F : Ω −→ L(H) is called
weakly integrable if ∫

Ω

|(F (ω)x | y )| µ(dω) <∞

for all x, y ∈ H . (By the polarisation identity it suffices to know this for all
x = y ∈ H .)

Lemma C.6.1. Let F : Ω −→ L(H) be weakly integrable. Then there is a unique
operator Q ∈ L(H) such that

(Qx | y ) =
∫

Ω

(F (ω)x | y ) µ(dω).

One usually writes
∫
Ω F (ω)µ(dω) := Q.

Proof. Fix x ∈ H . Then the mapping y �−→ (F (·)x | y ) is linear from H to
L1(Ω, µ) by hypothesis, and by the closed graph theorem it must be continuous.
The Riesz–Fréchet theorem [196, Theorem 4.12] shows that there is a unique
Qx ∈ H such that (Qx | y ) =

∫
(F (ω)x | y ) µ(dω) for all y ∈ H . Obviously

Q : H −→ H is linear. The same argument as before shows that if y is fixed,
the mapping (x �−→ (F (·)x | y )) : H −→ L1(Ω, µ) is continuous. Therefore, Q is
weakly continuous, whence continuous. �

The following lemma is almost trivial.
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Lemma C.6.2. Let F : Ω −→ L(H) be weakly integrable. Then also the function
F ∗ := (ω �−→ F (ω)∗) is weakly integrable with(∫

F (ω)µ(dω)
)∗

=
∫

F (ω)∗ µ(dω).

In particular, if F (ω) is self-adjoint for µ-almost all ω, then also
∫

F dµ is self-
adjoint. If F (ω) ≥ 0 for µ-almost all ω, then

∫
F dµ ≥ 0.

The next result is of fundamental importance in the theory of functional
calculus on Hilbert spaces.

Proposition C.6.3. Let (Ω, µ) be a measure space, and let S : Ω −→ L(H) be µ-
measurable such that the mapping (ω �−→ S(ω)∗S(ω)) is weakly integrable. Then
for each F ∈ L∞(Ω, µ;L(H)) the mapping (ω �−→ S(ω)∗F (ω)S(ω)) is weakly
integrable and∥∥∥∥∫ S(ω)∗ F (ω)S(ω)µ(dω)

∥∥∥∥ ≤ ‖F‖∞ ∥∥∥∥∫ S(ω)∗S(ω)µ(dω)
∥∥∥∥ .

Proof. Define T :=
∫

S∗S dµ. Then for all x, y ∈ H ,∫
Ω

|(S(ω)∗F (ω)S(ω)x | y )| µ(dω) =
∫
|(F (ω)S(ω)x |S(ω)y )| µ(dω)

≤ ‖F‖∞
∫
‖S(ω)x‖ ‖S(ω)y‖ µ(dω)

≤ ‖F‖∞
(∫

‖S(ω)x‖2 µ(dω)
) 1

2
(∫

‖S(ω)y‖2 µ(dω)
) 1

2

= ‖F‖∞
(∫

(S(ω)∗S(ω)x |x) µ(dω)
) 1

2
(∫

(S(ω)∗S(ω)y | y ) µ(dω)
) 1

2

≤ ‖F‖∞ (Tx |x)
1
2 (Ty | y )

1
2 ≤ ‖F‖∞ ‖T ‖ ‖x‖ ‖y‖ .

This shows that S∗FS is weakly integrable. The norm estimate follows readily. �

Corollary C.6.4. Let T : Ω −→ L(H) be weakly integrable such that T (ω) ≥ 0 for
µ-almost all ω. Then∥∥∥∥∫ f(ω)T (ω)µ(dω)

∥∥∥∥ ≤ ‖f‖∞ ∥∥∥∥∫ T (ω)µ(dω)
∥∥∥∥

for all f ∈ L∞(Ω, µ).
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Proof. Apply Proposition C.6.3 with F := f and S(ω) := T (ω)1/2. There is also
a direct proof avoiding square roots: Define Q :=

∫
T dµ, and let x, y ∈ H . Then∫

|(f(ω)T (ω)x | y )| µ(dω) ≤ ‖f‖∞
∫
|(T (ω)x | y )| µ(dω)

≤ ‖f‖∞
∫

(T (ω)x |x)
1
2 (T (ω)y | y )

1
2 µ(dω)

≤ ‖f‖∞
(∫

(T (ω)x |x) µ(dω)
) 1

2
(∫

(T (ω)y | y ) µ(dω)
) 1

2

= ‖f‖∞ (Qx |x)
1
2 (Qy | y )

1
2 ≤ ‖f‖∞ ‖Q‖ ‖x‖ ‖y‖ . �

C.7 Accretive Operators

Here are the defining properties of accretive operators.

Lemma C.7.1. Let A be an operator on the Hilbert space H, and let µ > 0. The
following assertions are equivalent.

(i) Re (Au |u) ≥ 0 for all u ∈ D(A), i.e., W (A) ⊂ {Re z ≥ 0}.

(ii) ‖(A + µ)u‖ ≥ ‖(A− µ)u‖ for all u ∈ D(A).

(iii) ‖(A + λ)u‖ ≥ (Re λ) ‖u‖ for all u ∈ D(A), Re λ ≥ 0.

(iv) ‖(A + λ)u‖ ≥ λ ‖u‖ for all u ∈ D(A) and all λ ≥ 0.

An operator A that satisfies the equivalent conditions (i)–(iv) is called ac-
cretive. An operator A is called dissipative if −A is accretive.

Proof. We have ‖(A + µ)u‖2−‖(A− µ)u‖2 = 4 Re (Au |u) for all u ∈ D(A). This
proves (i)⇔(ii). For λ > 0 we have ‖(A + λ)u‖2 − λ2 ‖u‖2 = ‖Au‖2 + 2λ (Au |u)
for all u ∈ D(A). This shows (i)⇒(iv). Dividing by λ and letting λ → ∞ yields
the reverse implication.

The implication (iii)⇒(iv) is obvious. Suppose that (i) holds, and let Reλ ≥
0. Define α := Im λ. Then (i) holds with A replaced by A + iα. Since we have al-
ready established the implication (i)⇒(iv), we know that ‖((A + iα) + Reλ)u‖ ≥
(Re λ) ‖u‖ for all u ∈ D(A). But this is (iii). �

Note that an operator A is symmetric if and only if ±iA both are accretive.
An operator A is called m-accretive if A is accretive and closed and R(A + 1) is
dense in H .

Proposition C.7.2. Let A be an operator on H, α ∈ R and λ > 0. The following
assertions are equivalent.

(i) A is m-accretive.
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(ii) A + iα is m-accretive.

(iii) A + ε is m-accretive for all ε > 0.

(iv) −λ ∈ �(A) and
∥∥(A− λ)(A + λ)−1

∥∥ ≤ 1.

(v) {Re λ < 0} ⊂ �(A) and

‖R(λ, A)‖ ≤ 1
|Re λ| (Re λ < 0).

(vi) (−∞, 0) ⊂ �(A) and supt>0

∥∥t(t + A)−1
∥∥ ≤ 1.

(vii) A is closed and densely defined, and A∗ is m-accretive.

The operator (A− 1)(A + 1)−1 is called the Cayley transform of A.

Proof. Let B be a closed accretive operator on H . By Proposition C.3.1 and its
corollary, if R(B +µ) is dense for some µ with Re µ > 0, then {Re µ < 0} ⊂ �(B).
This consideration is of fundamental importance and is used several times in the
sequel. In particular, it shows (i)⇔(ii)⇔(iii).

The equivalence (iv)⇔(i) holds by (ii) of Lemma C.7.1. Similarly, (v)⇔(i)
and (vi)⇔(i) hold by (iii) and (iv) of Lemma C.7.1.

From (vi) it follows that an m-accretive operator is sectorial (see Section
2.1), and as such is densely defined since H is reflexive (see Proposition 2.1.1 h)).
Moreover, (vi) implies (vi) with A replaced by A∗, whence (vi)⇒(vii) follows.

Finally, suppose that (vii) holds. Since we already have established the im-
plication (i)⇒(vii), we conclude that A = A = A∗∗ is m-accretive. �
Theorem C.7.3 (Lumer–Phillips). An operator A is m-accretive if and only if −A
generates a strongly continuous contraction semigroup.

Proof. If A is m-accretive, parts (vi) and (vii) of Proposition C.7.2 show that the
Hille–Yosida theorem (Theorem A.8.6) (with ω = 0 and M = 1) is applicable
to the operator −A. Conversely, suppose that −A generates the C0-semigroup
T such that ‖T (t)‖ ≤ 1 for all t ≥ 0. Take x ∈ D(A). Then the function
t �−→ T (t)x is differentiable with derivative t �−→ −AT (t)x. Thus, t −→ ‖T (t)x‖2
is differentiable with

d

dt

∣∣∣∣
t=0

‖T (t)x‖2 = (T (0)x | −AT (0)x) + (−AT (0)x |T (0)x) = −2 Re (Ax | x) .

Since T is a contraction semigroup, the mapping t �−→ ‖T (t)x‖2 is decreasing. This
implies that d/dt|t=0 ‖T (t)x‖2 ≤ 0. Hence, Re (Ax | x) ≥ 0, i.e., A is accretive.
Since 1 ∈ �(−A) we conclude that A is in fact m-accretive. �
Theorem C.7.4 (Stone). An operator B on the Hilbert space H generates a C0 −
group (U(t))t∈R of unitary operators if and only if B = iA for some self-adjoint
operator A.
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Proof. If B = iA, then B and −B are both m-accretive. By the Lumer–Phillips
theorem both operators generate C0-contraction semigroups. Hence B generates
a unitary C0-group. This proof also works in the reverse direction. �

C.8 The Theorems of Plancherel and Gearhart

We state without proof two theorems which are ‘responsible’ for the fact that life
is so much more comfortable in Hilbert spaces.

Theorem C.8.1 (Plancherel). Let f ∈ L1(R, H) ∩ L2(R, H), and define F(f) :
R −→ H by

F(f)(t) :=
∫

R

f(s)e−ist ds (t ∈ R).

Then F(f) ∈ C0(R, H) ∩ L2(R, H) with ‖F(f)‖L2 =
√

2π ‖f‖L2 .

A proof can be found in [10, page 46]. More about the Fourier transform is
contained in Appendix E.

Let X be a Banach space, and let T be a C0-semigroup on X with generator
A. From Proposition A.8.1 we know that

{Re z ≥ ω} ⊂ �(A) and sup{‖R(z, A)‖ | Re z ≥ ω} (C.6)

for every ω > ω0(T ). (Recall that ω0(T ) is the growth bound of T , see Appendix
A, Section A.8.) Let us define the abszissa of uniform boundedness of A as

s0(A) := inf{ω ∈ R | (C.6) holds}. (C.7)

Hence in general we obtain that s0(A) ≤ ω0(T ). However, on Hilbert spaces one
can say more.

Theorem C.8.2 (Gearhart). Let A be the generator of a C0-semigroup on a Hilbert
space H. Then

s0(A) = ω0(T ).

One of the many proofs of this theorem uses the Plancherel theorem and
Datko’s theorem, which states that ω0(T ) < 0 if and only if T (·)x ∈ L2(R+, H)
for every x ∈ H . It can be found in [10, page 347].
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The idea how to establish part c) of Lemma C.4.4 is from [144, Chapter
XVIII, §4].

Theorem C.8.2 goes back to Gearhart [95], but its present form is due to
Prüss [191] and Greiner [174, A-III.7].



Appendix D

The Spectral Theorem

The Spectral Theorem for normal operators exists in many versions. Basically one
can distinguish the ‘spectral measure approach’ and the ‘multiplicator approach’.
Following Halmos’s article [112] we give a consequent ‘multiplicator’ account of
the subject matter.

In this form, the Spectral Theorem essentially says that a given self-adjoint
operator on a Hilbert space acts ‘like’ the multiplication of a real function on an L2-
space. In contrast to usual expositions we stress that the underlying measure space
can be chosen locally compact and the real function can be chosen continuous.

D.1 Multiplication Operators

A Radon measure space is a pair (Ω, µ) where Ω is a locally compact Hausdorff
space and µ is a positive functional on Cc(Ω). By the Riesz Representation The-
orem [196, Theorem 2.14] we can identify µ with a σ-regular Borel measure on Ω.
If the measure µ has the property

ϕ ∈ Cc(Ω), 0 ≤ ϕ 
= 0 ⇒
∫

ϕdµ > 0, (D.1)

then the Radon measure space is called a standard measure space. Property (D.1)
is equivalent to the fact that a non-empty open subset of Ω has positive µ-measure.
If this is the case, the natural mapping C(Ω) −→ L1

loc(Ω, µ) is injective.
Let f ∈ C(Ω) be a continuous function on Ω. The multiplication operator

Mf on L2(Ω, µ) is defined by

D(Mf) := {g ∈ L2(Ω, µ) | gf ∈ L2(Ω, µ)}, Mfg := fg (g ∈ D(Mf )).

The following proposition summarises the properties of this operator.

Proposition D.1.1. Let f ∈ C(Ω), where (Ω, µ) is a standard measure space. Then
the following assertions hold.
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a) The operator (Mf , D(Mf )) is closed.

b) The space Cc(Ω) is a core for Mf .

c) One has (Mf )∗ = Mf .

d) One has Mf ∈ L(L2) if and only if f is bounded. If this is the case, one has
‖Mf‖L(L2) = ‖f‖∞.

e) The operator Mf is injective if and only if µ({f = 0} ∩ K) = 0 for every
compact K ⊂ Ω, i.e., {f = 0} is locally µ-null.

f) One has σ(Mf ) = f(Ω). Furthermore, R(λ, Mf) = M(λ−f)−1 for all λ ∈
�(Mf ).

g) If Mf ⊂ 0, then f = 0.

h) Let also g ∈ C(Ω). Then MfMg ⊂Mfg. One has equality if g is bounded or
if Mf is invertible.

Proof. a) Suppose that gn ∈ D(Mf ) such that gn → g and fgn → h in L2. For
ϕ ∈ Cc(Ω) we have ϕgn → ϕg and ϕfgn → ϕh in L2, whence ϕfg = ϕh. Since ϕ
was arbitrary it follows that fg = h.
b) Let g ∈ D(Mf ). Since g ∈ L2, it vanishes outside a set L =

⋃
n Kn, where

Kn ⊂ Kn+1 and each Kn is compact. Then 1Kng → g and 1Knfg → fg. Hence
without loss of generality we may suppose that g vanishes outside a compact set K.
By Urysohn’s lemma [196, Lemma 2.12] one can find a function ψ ∈ Cc(Ω) such
that 1K ≤ ψ ≤ 1. Since Cc(Ω) is dense in L2, there is a sequence ϕn ∈ Cc(Ω)
such that ϕn → g in L2. Then ϕnψ → ψg = g and fϕnψg → ψfg = fg.

c) Let x, y ∈ L2. Then

(x, y) ∈ (Mf )∗ ⇐⇒
∫

Ω

uy dµ =
∫

Ω

ufx dµ ∀u ∈ D(Mf ).

Since Cc(Ω) ⊂ D(Mf ), this is the case if and only if fx ∈ L2.
d) Let f ∈ Cb(Ω). Then ‖fg‖2 ≤ ‖f‖∞ ‖g‖2 for each g ∈ L2. Hence Mf ∈ L(L2)
and ‖Mf‖ ≤ ‖f‖∞. Suppose that Mf is bounded and choose ω ∈ Ω. For every
neighborhood U of ω we define ϕU := µ(U)−1/21U . (Note that µ(U) 
= 0 since
(Ω, µ) is standard.) Then∣∣∣∣µ(U)−1

∫
U

f dµ

∣∣∣∣ = |(fϕU |ϕU )L2 | ≤ ‖Mf‖ ‖ϕU‖22 = ‖Mf‖ .

Since f is continuous, µ(U)−1
∫

U
f dµ → f(ω) if U shrinks to {ω}. Thus, f is

bounded and ‖f‖∞ ≤ ‖Mf‖.
e) Suppose there is K such that µ(A) > 0 where A := {f = 0} ∩ K. Then
0 
= 1A ∈ L2 and Mf (1A) = f1A = 0. Hence Mf is not injective. Suppose that
µ({f = 0} ∩K) = 0 for every compact K. Let g ∈ L2 such that fg = 0, and fix
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a compact set K. Then fg1K = 0, whence K = ({f = 0} ∩K) ∪ ({g = 0} ∩K).
From the hypothesis it follows that µ({g = 0}∩K) = µ(K). Since K was arbitrary
and g ∈ L2, we conclude that g = 0 µ-a.e..

f) Obviously we have λ − Mf = Mλ−f for every λ ∈ C. Thus it suffices to
consider the case λ = 0. If 0 /∈ f(Ω), then f−1 ∈ Cb(Ω) and it is easy to see
that in this case (Mf )−1 = Mf−1 . Let 0 ∈ f(Ω), say f(ω) = 0. Consider the
functions ϕU defined as in the proof of d). Then ‖ϕU‖2 = 1 and ‖MfϕU‖2 =
‖fϕU‖ = µ(U)−1

∫
U |f |

2 → |f(ω)|2 = 0 if U shrinks to {ω}. Hence (ϕU )U is an
approximate eigenvector for 0.

g) Suppose that Mf ⊂ 0. Since Cc(Ω) is a core for Mf , we conclude that Mf = 0.
Hence we have f = 0 by d).

h) It is straightforward to prove MfMg ⊂ Mfg. Suppose that g is bounded.
Then MfMg is closed by Lemma A.1.3. Since obviously Cc(Ω) ⊂ D(MfMg) and
Cc(Ω) is a core for Mfg we obtain Mfg ⊂ MfMg. If Mf is invertible, then f is
injective and f−1 is bounded (by f)). If ψ ∈ D(Mfg), i.e., fgψ ∈ L2, we have also
gψ = f−1fgψ ∈ L2, whence ψ ∈ D(MfMg). �

Corollary D.1.2. a) Mf is symmetric if and only if Mf is self-adjoint if and
only if f is real-valued.

b) Mf is accretive if and only if Mf is m-accretive if and only if Re f ≥ 0.

c) Mf is positive if and only if f(Ω) ⊂ [0,∞).

Proof. Just apply the definitions and Proposition D.1.1. �

D.2 Commutative C∗-Algebras. The Cyclic Case

In this section we start with a Hilbert space H and a commutative sub-C∗-algebra
with unit A of L(H). We assume that the reader is familiar with the basic notions
and results of Gelfand theory, as can be found for example in [197, Chapter 11] or
[78, Chapters 3 and 4].

Let H ′ be another Hilbert space, and letA′ be a commutative sub-C∗-algebra
with unit of L(H ′). We say that (A, H) and (A′, H ′) are unitarily equivalent, if
there is an unitary isomorphism U : H −→ H ′ such that the mapping

(T �−→ UTU−1) : A −→ A′

is bijective.
Suppose there is a cyclic vector v, i.e., we have {Tv | T ∈ A} = H . Then the

mapping (T �−→ Tv) : A −→ H is injective with dense range A v := {Tv | T ∈ A}.

Proof. To prove injectivity, let Tv = 0 for some T ∈ A. Then TSv = STv = S0 =
0 for every S ∈ A. Hence T = 0 on the dense subspace A v. �
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Let Ω denote the spectrum (Gelfand space) of A. Then Ω is compact. On
Ω we wish to find a Radon measure µ which turns (Ω, µ) into a standard measure
space, and a sub-C∗-algebra B of C(Ω) such that (A, H) is unitarily equivalent to
(B,L2(Ω, µ)).

By the Gelfand–Naimark theorem [197, Theorem 11.18], the canonical em-
bedding Φ : A −→ C(Ω) is an isomorphism of C∗-algebras. Define the functional
µ on C(Ω) by

µ(f) =
∫

f dµ :=
(
Φ−1(f)v

∣∣ v)
H

(f ∈ C(Ω)).

If f ≥ 0, there is a g such that g∗g = f . This implies that µ(f) = µ(g∗g) =(
Φ−1(g)v

∣∣Φ−1(g)v
)

H
=

∥∥Φ−1(g)v
∥∥2 ≥ 0. Hence µ is positive. If in addition

µ(f) = 0, we must have Φ−1(g)v = 0. But v is cyclic, so Φ−1(g) = 0. This implies
that g = 0, whence f = 0. Thus we have shown that (Ω, µ) is a standard measure
space.

We now construct the unitary operator U : H −→ L2(Ω, µ) as follows. For
w = Tv ∈ A v we define

U(w) = U(Tv) := Φ(T ) ∈ C(Ω) ⊂ L2(Ω, µ).

Because v is a cyclic vector, U is well defined and of course linear. The computation

(Tv |Sv )H = (S∗Tv | v ) =
∫

Φ(S∗T ) dµ =
∫

Φ(S)Φ(T ) dµ

= (U(Tv) |U(Sv))L2(Ω,µ) ,

where T, S ∈ A, shows that U is isometric. The range of U is clearly all of C(Ω),
which is a dense subspace of L2(Ω, µ). Hence U has a unique extension to an
isometric isomorphism from H to L2(Ω, µ).

It remains to show that in fact U induces a unitary equivalence of (A, H)
and (C(Ω),L2(Ω, µ)). Let T ∈ A. It suffices to show that UTU−1 = MΦ(T ). To
prove this it is enough to check the action of both operators on the dense subspace
C(Ω) of L2(Ω, µ). If f ∈ C(Ω), there is a unique S ∈ A such that Φ(S) = f .
Hence we have

UTU−1(f) = UTU−1Φ(S) = U(TSv) = Φ(TS) = Φ(T )Φ(S) = MΦ(T )(f).

Thus we have proved the following theorem.

Proposition D.2.1. Let H be a Hilbert space, and let A be a commutative sub-C∗-
algebra with unit of L(H). Suppose that H has a cyclic vector with respect to A.
Let Ω be the Gelfand space of A. Then there is a standard Radon measure µ on
Ω such that (A, H) and (C(Ω),L2(Ω, µ)) are unitarily equivalent.
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Remark D.2.2. If H is separable and A is a maximal commutative sub-W ∗-algebra
of L(H), then there is a cyclic vector, see [78, Theorem 4.65]. Of course, by an
application of Zorn’s lemma one can show that each commutative self-adjoint
subalgebra of L(H) is contained in a maximal commutative one (which a fortiori
must be a W ∗-algebra). Hence a bounded normal operator on a separable Hilbert
space is unitarily equivalent to multiplication by a continuous function on an
L2-space over a compact space. This is one version of the Spectral Theorem
(cf. Corollary D.3.3).

D.3 Commutative C∗-Algebras. The General Case

Suppose we are given a Hilbert space H and a commutative sub-C∗-algebra with
unit A of L(H), but such that there is no cyclic vector. We then choose any
vector 0 
= v ∈ H and consider the closed subspace Hv := A v of H . This space
Hv reduces A, in the sense that it is A-invariant (clear) and even its orthogonal
complement H⊥

v is A-invariant.

Proof. Let w ⊥ Hv, S ∈ T , and x ∈ Hv. Then (Sw |x) = (w |S∗x) = 0, because
S∗x ∈ Hv again. �

If we restrict the operators from A to the space Hv we obtain a self-adjoint
subalgebra with unit Av of L(Hv). Moreover, v is a cyclic vector with respect
to Av. Clearly, the whole procedure can be repeated on the Hilbert space H⊥

v .
Therefore, a standard application of Zorn’s lemma yields the following lemma.

Lemma D.3.1. Let H be a Hilbert space, and let A ⊂ L(H) be a commutative sub-
C∗-algebra with unit. Then there is a decomposition H =

⊕
α∈I Hα as a Hilbert

space direct sum such that each Hα is A-invariant and has a cyclic vector with
respect to A.

Note that if H is separable, the decomposition in Lemma D.3.1 is actually
countable.

Theorem D.3.2. Let H be a Hilbert space, and let A ⊂ L(H) be a commutative self-
adjoint subalgebra. Then there is a standard measure space (Ω, µ) and a subalgebra
B of Cb(Ω) such that (A, H) is unitarily equivalent to (B,L2(Ω, µ)).

Proof. Without loss of generality we may suppose that A is a sub-C∗-algebra with
unit of L(H). By Lemma D.3.1 we can decompose H =

⊕
α∈I Hα, where the Hα

are A-invariant and have cyclic vectors vα, say. We let Aα := A |Hα ⊂ L(Hα),
and define Ωα to be the spectrum of Aα. Proposition D.2.1 (cyclic case) yields an
unitary isomorphism

Uα : (Aα, Hα) −→ (C(Ωα),L2(Ωα, µα))
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where µα is a standard measure on Ωα. In fact, Uα(Tαvα) = Φα(Tα) for each
Tα ∈ Aα, where Φα : Aα −→ C(Ωα) is the Gelfand isomorphism (cf. the proof of
Proposition D.2.1).

We now let Ω :=
⋃

Ωα the (disjoint) topological direct sum of the Ωα.
Clearly, Ω is a locally compact Hausdorff space, and each Ωα is an open sub-
set of Ω.

If f ∈ C(Ωα0) for some particular α0, we can extend f continuously to the whole
of Ω by letting f |Xα = 0 for every other α. Hence we can identify the continuous
functions on Ωα0 with the continuous functions on Ω having support within Ωα0 .

Note that for each ϕ ∈ Cc(Ω) there are only finitely many α such that
ϕ|Ωα 
= 0. Hence by

µ(ϕ) =
∫

Ω

ϕdµ :=
∑
α

µα(ϕ|Ωα)

a positive functional on Cc(Ω) is defined. Obviously, (Ω, µ) is a standard measure
space, since each (Ωα, µα) is one.

We now construct the unitary operator U . The subspace

H0 := span{Tαvα | α ∈ I, Tα ∈ Aα}

is dense in H . We define

U := (
∑
α∈F

Tαvα) �−→
∑
α∈F

Φα(Tα) : H0 −→ Cc(Ω),

where F ⊂ I is a finite subset, and Tα ∈ Aα for all α. Note that Φα(Tα) is a
continuous function on Ωα, hence can be viewed as a continuous function on Ω. It
is clear that U is linear and surjective. Take x, y ∈ H0, say x =

∑
α∈F Tαvα and

y =
∑

β∈G Sβvβ . Then

(x | y )H =
( ∑

α∈F
Tαvα

∣∣∣ ∑
β∈G

Sβvβ

)
=

∑
α∈F∩G

(TαVα |SαVα )

=
∑

α∈F∩G

∫
Xα

Φ(Tα)Φ(Sα) dµα =
∫

Ω

( ∑
α∈F

Φα(Tα)
)(∑

β∈G

Φβ(Sβ)
)

dµ

= (Ux |Uy )L2(Ω,µ) ,

and this shows that U is isometric. Since H0 is dense in H , U extends to a unitary
isomorphism U : H −→ L2(Ω, µ). To conclude the proof we show that UTU−1 =
Mf , where T ∈ A and f ∈ C(Ω) is defined by f |Xα = Φα(T |Hα) ∈ C(Ωα) for
all α. Note that, if this is true, it follows that f ∈ Cb(Ω) because the operator
Mf is bounded on L2(Ω, µ) (cf. Proposition D.1.1 d)). To show the claim, we
only have to check the action of both operators on the dense subspace Cc(Ω) of
L2(Ω, µ). Therefore, let ϕ ∈ Cc(Ω) and define ϕα := ϕ|Ωα . Then ϕ =

∑
α ϕα,



D.4. The Spectral Theorem: Bounded Normal Operators 337

where the sum is actually finite. We let Sα := Φ−1(ϕα). Then we have ϕ = Ux
with x =

∑
α Sαvα ∈ H0, and so

UTU−1(ϕ) = UTx = UT (
∑
α

Sαvα) = U(
∑

α

TαSαvα) =
∑
α

Φα(TαSα)

=
∑
α

Φα(Tα)Φα(Sα) =
∑

α

f |XαΦα(Sα) = f(
∑
α

Φα(Sα)) = fϕ = Mf (ϕ).
�

Corollary D.3.3 (Spectral Theorem I). Let H be a Hilbert space, and let (Tj)j∈J be
a family of commuting bounded normal operators on H. Then there is a standard
measure space (Ω, µ) and a family of bounded continuous functions (fj)j∈J on Ω
such that ((Tj)j∈J , H) is unitarily equivalent to ((fj)j∈J ,L2(Ω, µ)).

Proof. By Fugledge’s theorem [49, Chapter IX, Theorem 6.7] T ∗
k Tj = TjT

∗
k for

all indices j, k ∈ J . Hence the ∗-algebra A generated by (Tj)j∈J is commutative.
Now we can apply Theorem D.3.2. �

Remark D.3.4. In the case of a single operator T , Fugledge’s theorem is not needed
for the proof of Corollary D.3.3 (see also Section D.4 below).

D.4 The Spectral Theorem: Bounded Normal
Operators

Let H be a Hilbert space, and let T ∈ L(H) be a bounded normal operator on
H . Denote by A the sub-C∗-algebra of L(H) that is generated by T . Because
T is normal, A is commutative. We have σ(A) = σ(T ) and T̂ (i.e. the Gelfand
transform of T ) is just the coordinate function (z �−→ z). Moreover, R(λ, T ) ∈ A
for every λ ∈ �(T ).

Proof. From elementary Gelfand theory it follows that T̂ : σ(A) −→ σ(T ) is surjec-
tive. But it is also injective, since T generates A. Hence T̂ is a homeomorphism,
identifying σ(A) and σ(T ). With this identification T̂ becomes the coordinate
function (z �−→ z). If λ ∈ �(T ), rλ := (λ− z)−1 is a continuous function on σ(T ),
and the Gelfand–Naimark theorem implies that there is an operator Rλ ∈ A that
corresponds to rλ. But obviously we have Rλ = R(λ, T ). �

In the following we review the construction of the proof of Theorem D.3.2.
For this we need a lemma the proof of which is straightforward.

Lemma D.4.1. Let H0 be a closed subspace of H, with orthogonal projection P :
H −→ H0. The subspace H0 is A-invariant if and only if TP = PT . In this case
one has σ(T |H0) ⊂ σ(T ) and R(λ, T |H0) = R(λ, T )|H0 for each λ ∈ �(T ). The
C∗-closure A0 of {S|H0 | S ∈ A} is generated by T |H0 and σ(A0) = σ(T |H0).
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Proceeding along the lines of the proof of Theorem D.3.2, we decompose the
Hilbert space H =

⊕
α∈I Hα into A-invariant and cyclic subspaces Hα. Define

Tα := T |Hα and Ωα := σ(Aα) = σ(Tα). Each Ωα carries a standard measure µα

such that (Tα, Hα) is unitarily equivalent to (Mz,L2(Ωα, µα)), where Mz is mul-
tiplication by the coordinate function (see above). The locally compact Hausdorff
space Ω is the disjoint union of the σ(Tα), and the standard measure µ on Ω is
defined by µ|Ωα = µα. Finally, (T, H) and (Mf ,L2(Ω, µ)) are unitarily equivalent,
where f ∈ Cb(Ω) is the coordinate function on each σ(Tα).

By Lemma D.4.1, σ(Tα) is a closed subset of σ(T ) for each α. Therefore Ω can
be viewed as a closed subset of σ(T )× I. The measure µ on Ω extends canonically
to a measure on σ(T ) × I with support Ω. We denote this extension again by
µ, but we remark that it might not be a standard measure any more. However,
there is clearly a unitary equivalence of (Mf ,L2(Ω, µ)) and (Mh,L2(σ(T )×I, µ)),
where f : σ(T )× I −→ C is defined by h(z, α) = z for (z, α) ∈ σ(T )× I. Thus we
have proved the following theorem.

Theorem D.4.2 (Spectral Theorem II). Let H be a Hilbert space, and let T ∈ L(H)
be a bounded normal operator on H. Then there is a discrete set I and a (not
necessarily standard) Radon measure µ on σ(T ) × I such that (T, H) is unitarily
equivalent to (Mh,L2(σ(T )× I, µ)), where h is defined by

h = ((z, α) �−→ z) : σ(T )× I −→ C.

If H is separable, I = N.

D.5 The Spectral Theorem: Unbounded Self-adjoint
Operators

Let H be a Hilbert space, and let A be a (not necessarily bounded) self-adjoint
operator on H . Then σ(A) ⊂ R. The Spectral Theorem for A states that one can
find a standard measure space (Ω, µ) and a real-valued continuous function f on
Ω such that (A, H) and (Mf ,L2(Ω, µ)) are unitarily equivalent. This means that
there is a unitary isomorphism U : H −→ L2(Ω, µ) which takes the graph of A
bijectively onto the graph of Mf , i.e., it holds

(x, y) ∈ A if and only if (Ux, Uy) ∈ Mf .

The situation can be reduced to the bounded case by taking resolvents. Indeed,
let T := (i − A)−1. Then T clearly is a bounded normal operator on H . By
Corollary D.3.3 we find a standard measure space (Ω1, µ1) and a bounded con-
tinuous function g1 on Ω such that (T, H) and (Mg1 ,L

2(Ω1, µ1)) are unitarily
equivalent. Now T is injective, hence (g1 = 0) is a closed subset of Ω1, locally
µ1-null (see Proposition D.1.1 e)). If we set Ω := Ω1 \ (g1 = 0) and µ := µ1|Ω, we
obtain a standard measure space (Ω, µ). It is easy to see that (Mg1 ,L

2(Ω1, µ1))
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is unitarily equivalent to (Mg,L2(Ω, µ)), where g := g1|Ω. But g does not vanish,
hence f := i− g−1 defines a continuous function on Ω. Clearly, (A, H) is unitarily
equivalent to (Mf ,L2(Ω, µ)).

If we use Theorem D.4.2 instead of Corollary D.3.3, we obtain a discrete set
I and a Radon measure ν on σ(T ) × I such that (T, H) is unitarily equivalent
to (h,L2(σ(T ) × I, ν)), where h : σ(T ) × I −→ C is the projection onto the first
coordinate. Thanks to the spectral mapping theorem for resolvents (Proposition
A.3.1) we have σ(T ) = ϕ(σ(A)), with ϕ(w) = (i − w)−1. We define the Radon
measure µ on σ(A) × I by∫

σ(A)×I

f(w, α) dµ(w, α) :=
∫

σ(T )×I

f(ϕ−1(z), α) dν(z, α)

for f ∈ Cc(σ(A)× I). Then it is immediate that (A, H) is unitarily equivalent to
(Mf ,L2(σ(A) × I, µ)) where f : σ(A) × I −→ R is the projection onto the first
coordinate.

We summarise our considerations in the next theorem.

Theorem D.5.1 (Spectral Theorem III). Let H be a Hilbert space, and let A be a
self-adjoint operator on H.

a) There is a standard measure space (Ω, µ) and a function f ∈ C(Ω, R) such
that (A, H) is unitarily equivalent to (Mf ,L2(Ω, µ)).

b) There is a discrete set I and a positive Radon measure µ on σ(A) × I such
that (A, H) is unitarily equivalent to (Mf ,L2(σ(A)× I, µ)), where f is given
by

f = ((z, α) �−→ z) : σ(A) × I −→ R.

If H is separable, I = N.

Remark D.5.2. Our considerations are focussed on self-adjoint operators but with
the same proofs one can obtain similar results for unbounded, normal operators.

D.6 The Functional Calculus

The Spectral Theorem allows us to define a functional calculus for a normal op-
erator on a Hilbert space. Let Ω be a locally compact space, µ a positive Radon
measure on Ω, and f ∈ C(Ω) a continuous function on Ω. We let X := f(Ω) ⊂ C.
Denote by B(X) the bounded Borel measurable functions on X . If g ∈ B(X),
then g ◦ f ∈ B(Ω), hence Mg◦f is a bounded operator on L2(Ω, µ) satisfying
‖Mg◦f‖L(L2) ≤ ‖g ◦ f‖∞ ≤ ‖g‖∞. Obviously, the mapping

(g �−→ g(Mf ) := Mg◦f ) : B(X) −→ L(L2(Ω, µ))

is a homomorphism of C∗-algebras. Moreover, if gn is a unifomly bounded se-
quence in B(X) converging pointwise to g ∈ B(X), then Lebesgue’s theorem
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yields that gn(Mf ) → g(Mf ) strongly. If we put this together with the Spectral
Theorem(s), we obtain the following result.

Theorem D.6.1. Let A be a self-adjoint operator on a Hilbert space H. Then there
exists a unique mapping Ψ : B(σ(A)) −→ L(H) with the following properties.

1) Ψ is a ∗-homomorphism.

2) Ψ((λ − z)−1) = R(λ, A) for all λ /∈ R.

3) If (gn)n ⊂ B(σ(A)) is uniformly bounded and gn → g pointwise, then
Ψ(gn)→ Ψ(g) strongly.

Proof. Existence is clear from the remarks above and the Spectral Theorem D.5.1.
We show uniqueness. Observe that the (self-adjoint) algebra which is generated by
the set {(λ− z)−1 | λ /∈ R} is uniformly dense in C0(R) by the Stone–Weierstrass
theorem. The sequence of functions gn(z) := in(in− z)−1 is uniformly bounded
on R and converges pointwise to the constant 1. On the other hand it is clear
that inR(in, A)→ I strongly. Hence Ψ(1) = I, and so Ψ is determined on Cb(R).
By Tietze’s theorem we know that each bounded continuous function on σ(A) is
the restriction of a bounded continuous function on R. Hence Ψ is determined on
Cb(σ(A)). Therefore, Ψ is determined on the smallest class M of functions that
contains the bounded continuous ones and is closed under bounded and pointwise
convergence. Now, σ(A) is a metric, separable, locally compact space, whence by
Urysohn’s lemma [196, Lemma 2.12] the characteristic functions of compact sets
are contained in M. The class A := {M ⊂ σ(A) | 1M ∈ M} is easily seen to be
a σ-algebra on σ(A) that contains the compact subsets. Hence A = B(σ(A)), the
Borel σ-algebra on σ(A). But a standard result from measure theory says that each
bounded Borel measurable function can be approximated uniformly by a sequence
of Borel simple functions. Altogether this implies that B(σ(A)) = M. �
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D.4.2 in the separable case is [62, Theorem 2.5.1], but it is proved with different
methods. For historical remarks on the Spectral Theorem see Ricker [195].



Appendix E

Fourier Multipliers

Here we provide some definitions and results from Harmonic Analysis. As general
background we recommend the books [197] for distributions and [80] and [205] for
the multiplier theory.

E.1 The Fourier Transform on the Schwartz Space

Let X be any Banach space, and fix d ∈ N. For an open subset Ω ⊂ Rd the space
of test functions on Ω is

D(Ω; X) := {f ∈ C∞(Ω; X) | supp f is compact}.

Convergence of sequences within D(Ω; X) is defined as in the scalar case, cf. [197,
Chapter 6]. For each k ∈ N we define

Ck
0(Ω; X) :=

{
f ∈ Ck(Ω; X)

∣∣ Dαf ∈ C0(Ω; X), ∀ |α| ≤ k
}

where as usual Dα =
∏d

j=1 D
αj

j , and Dj = d/dtj is the partial derivative operator
in the tj-direction. Each Ck

0(Ω; X) is a Banach space under the norm

‖f‖Ck
0

:= max
|α|≤k

‖Dαf‖∞ .

The Schwartz space S(Rd; X) of rapidly decreasing X-valued functions on Rd is
defined by

S(Rd; X) :=
{
f ∈ C∞(Rd; X)

∣∣ tαDβf ∈ L∞(Rd; X) for all α, β ∈ Nd
}
.

Here tα :=
∏d

j=1 t
αj

j for α ∈ Nd. Convergence of sequences within S(Rd; X) is
defined as in the scalar case by the family of norms

|f |m := max
|α|≤m

‖(1 + |t|)mDαf‖∞ (m ∈ N).
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In addition we define the space of functions of tempered growth as

P(Rd; X) :=
{
f ∈ C∞(Rd; X)

∣∣ ∀α ∈ Nd ∃n ∈ N : (1 + |t|)−nDαf ∈ L∞}
.

The following facts are well known:

1. D(Rd; X) is sequentially dense in S(Rd; X).

2. D(Rd) ⊗X is a dense subspace of each space Lp(Rd; X), p ∈ [1,∞), and of
each space Ck

0(Rd; X), k ∈ N.

3. Multiplication (g, f) �−→ gf is a bilinear mapping

P(Rd;L(X, Y ))× S(Rd; X) −→ S(Rd, Y )

with (f �−→ gf) being continuous for each fixed g.

Let us denote by M(Rd; X) the set of all X-valued Borel-measures µ on Rd

of bounded variation, endowed with the total variation norm ‖µ‖M. For such a
measure µ ∈M(Rd; X) we define its Fourier transform by

(Fµ)(s) := µ̂(s) :=
∫

Rd

e−it·s µ(dt).

Then F : M(Rd; X) −→ BUC(Rd; X) is linear with ‖Fµ‖∞ ≤ ‖µ‖M. The map
(f �−→ f(t)dt) takes L1(Rd; X) isometrically onto a closed subspace of M(Rd; X).
Restricting F to this space yields the formula

(F f)(s) := f̂(s) :=
∫

Rd

f(t)e−it·s dt (s ∈ Rd).

The Riemann–Lebesgue lemma asserts that actually F :L1(Rd; X)−→C0(Rd; X).
Restricting even further, the Fourier transform is a topological isomorphism

F : S(Rd; X) −→ S(Rd; X)

with inverse

(F−1 f)(t) :=
1

(2π)d

∫
Rd

f(s) eis·t ds (t ∈ Rd).

If X is a Hilbert space, then the Fourier transform extends to an isomorphism on
L2(Rd; X) with ‖Ff‖L2 = (2π)d/2 ‖f‖L2 . (This is Plancherel’s theorem, cf. The-
orem C.8.1.)
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E.2 Tempered Distributions

Let Ω ⊂ Rd be open. The space of X-valued distributions on Ω is defined by

D(Ω; X) := {u | u : D(Ω) −→ X, linear and (sequentially) continuous}.

For any multiindex α ∈ Nd and any distribution u ∈ D(Ω; X) one defines the
derivative Dαu ∈ D(Ω; X) by

〈Dαu, ϕ〉 = (−1)|α| 〈u, Dαϕ〉 (ϕ ∈ D(Ω)).

The space of X-valued tempered distributions is given by

TD(Rd; X) := {u | u : S(Rd) −→ X, linear and continuous}.

Since D(Rd) ⊂ S(Rd) is dense, one can view TD(Rd; X) in a natural way as a
subspace of D(Rd; X). The equation

〈Dαu, f〉 = (−1)|α| 〈u, Dαf〉

remains true for u ∈ TD(Rd; X), f ∈ S(Rd). The support of a distribution
T ∈ D(Rd; X) is the set

supp(T ) := Rd \
⋃
{Ω ⊂ Rd | Ω is open and D(Ω) ⊂ kerT }.

Lemma E.2.1. Let T ∈ TD(Rd; X). Then supp T ⊂ {0} if, and only if there exist
m ∈ N and (aα)α∈Nd,|α|≤m such that T =

∑
|α|≤m aαDαδ0.

Proof. In the case where X = C, this is [197, Theorem 6.25]. The vector-valued
case is proved from the scalar-valued case by using linear functionals. �

As in the scalar-valued case one has a natural embedding

L1
loc

(Ω; X) ↪→ D(Ω; X).

Its image is the space of so-called regular distributions. For each p ∈ [1,∞] and
k ∈ N one defines the Sobolev space

Wk,p(Ω; X) =
{
f ∈ D(Ω; X)

∣∣ Dαf ∈ Lp(Ω; X), |α| ≤ k
}
⊂ Lp(Ω; X),

which is a Banach space with respect to the norm

‖f‖Wk,p := max
|α|≤k

‖Dαf‖p .

If a regular distribution on Rd extends to a tempered one, it is called tempered
regular. Clearly, any L1

loc
-function of tempered growth at ∞ is tempered regular.

In particular one has an embedding

L1(Rd; X) + L∞(Rd; X) ↪→ TD(Rd; X).
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Many natural operations on functions can be induced on tempered distribution
via adjoint action. For example, let Sf(t) := f(−t) be the reflection mapping,
defined on L1

loc(Rd; X). Then S restricts to a topological isomorphism on S(Rd; X)
and one defines

〈Su, f〉 = 〈u,Sf〉 (f ∈ S(Rd))

for any tempered distribution u ∈ TD(Rd; X). In this way an isomorphism

S : TD(Rd; X) −→ TD(Rd; X)

is defined, coherent with the orginal definition on L1
loc(R

d; X). In a similar manner,
the Fourier transform extends to an isomorphism

F : TD(Rd; X) −→ TD(Rd; X),

defined by:

〈Fu, f〉 = 〈u,Ff〉 (f ∈ S(Rd), u ∈ TD(Rd; X)).

This definition is coherent with the embedding M(Rd; X) ⊂ TD(Rd; X), by Fu-
bini’s theorem. Combining both reflection and Fourier transform we obtain

FSu = SFu = (2π)
d
2F−1u = (2π)−

d
2F3u.

By adjoint operation 〈gu, f〉 = 〈u, gf〉 we obtain also a multiplication

P(Rd)×TD(Rd; X) −→ TD(Rd; X).

Fourier transform, multiplication and derivatives fit nicely together, as the formu-
lae

FDαu = (is)αFu and DαFu = F((−it)αu)

show. For ε > 0 we define the dilation operator Uε on functions by

(Uεf)(t) = f(εt) (t ∈ Rd).

Then Uε : S(Rd; X) −→ S(Rd; X) is an isomorphism with inverse U−1
ε = Uε−1 .

One has
‖Uεf‖p = ε−

d
p ‖f‖p (f ∈ Lp(Rd; X), p ∈ [1,∞]),

as well as

FUεf = ε−dU−1
ε Ff and F−1Uεf = ε−dU−1

ε F−1f,

whenever f ∈ L1(Rd; X). The adjoint operator of Uε is

U ′
ε : TD(Rd; X) −→ TD(Rd; X),
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defined by

〈U ′
εu, f〉 = 〈u, Uεf〉 (u ∈ TD(Rd; X), f ∈ S(Rd)).

Then U ′
εu = ε−dUε−1u whenever u is a regular distribution, i.e., is induced by a

function. Moreover, we have

‖U ′
εg‖p = ε

− d
p′ ‖g‖p (g ∈ Lp(Rd; X)),

i.e., U ′
ε is almost isometric on Lp and isometric on L1. We have the formulae

εdU ′
εF = FU ′−1

ε and εdU ′
εF−1 = F−1U ′−1

ε .

E.3 Convolution

Let µ ∈M(Rd;L(X, Y )). Then for each f ∈ C0(Rd; X) we define the convolution

µ ∗ f(s) :=
∫

f(s− t)µ(dt).

Since f is uniformly continuous and µ is more or less concentrated on a compact
set, µ ∗ f ∈ C0(Rd; Y ) with ‖µ ∗ f‖∞ ≤ ‖µ‖M ‖f‖∞. Fubini’s theorem implies
that

‖µ ∗ f‖1 ≤ ‖µ‖M ‖f‖1
for all f ∈ C0(Rd; X) ∩ L1(Rd; X). Hence the mapping (f �−→ µ ∗ f) can be
extended to all of L1(Rd; X), obtaining

(f �−→ µ ∗ f) : L1(Rd; X) −→ L1(Rd; Y ).

More generally, let p ∈ [1,∞). Then Minkowski’s inequality for integrals yields

‖µ ∗ f‖p ≤ ‖µ‖M ‖f‖p (f ∈ C0(Rd; X) ∩ Lp(Rd; X)),

i.e., Young’s inequality. Hence an extension of the convolution to all of Lp(Rd; X)
is defined, and Young’s inequality is then true for all f ∈ Lp(Rd; X).

Lemma E.3.1. The mapping

(f �−→ (g �−→ f ∗ g)) : L1(Rd) −→ L(L1(Rd))

is an isometric homomorphism of Banach algebras.

Proof. The homomorphism property is nothing else than associativity of convolu-
tion, i.e., f ∗(g∗h) = (f ∗g)∗h. This follows from Fubini’s theorem. Contractivity
is Young’s inequality above, and isometry is proved using an approximate identity
of norm 1. �



346 Appendix E. Fourier Multipliers

Given µ ∈M(Rd;L(X, Y )) and f ∈ L1(Rd; X) we have

F(µ ∗ f) = µ̂ · f̂ ∈ C0(Rd; Y )

by an easy computation. Defining m := µ̂ and Tm := (f �−→ µ ∗ f) we have

Tmf = F−1(mf̂)

for all Schwartz functions f ∈ S(Rd). Hence the operator Tm acts as multipli-
cation on the Fourier transform side and is therefore an example of a so-called
Fourier multiplier operator. It is practically impossible to give this term a precise
mathematical meaning covering all cases where intuitively it should apply. In the
next section we give a definition which is enough for our purposes.

E.4 Bounded Fourier Multiplier Operators

Let X, Y be Banach spaces, and let d ∈ N. Let m ∈ L∞(Rd;L(X, Y )). We
consider the map

Tm :=
(
f �−→ F−1[mf̂ ]

)
: S(Rd; X) −→ C0(Rd; Y ),

write Tm ∼ m, and call Tm a Fourier multiplier operator and m the symbol of
Tm.

The function m is called a (bounded) Lp(X, Y )-Fourier multiplier if there is
a constant c = cp such that

‖Tmf‖Lp ≤ cp ‖f‖Lp (f ∈ S(Rd; X)).

(It suffices to have such an estimate for f taken from a dense subspace of S, e.g.
from D(Rd; X).) In this case, Tm extends uniquely to a bounded (translation-
invariant) operator

Tm :

{
Lp(Rd; X) −→ Lp(Rd; Y ) in the case where p ∈ [1,∞),
C0(Rd; X) −→ C0(Rd; Y ) in the case where p = ∞.

Let us define

Mp(Rd; X, Y ) := {m ∈ L∞(Rd;L(X, Y )) | m is a Lp(X, Y )-Fourier multiplier}

together with the norm

‖m‖Mp(X,Y ) := ‖Tm‖L(Lp(Rd;X),Lp(Rd;Y )) .

We list some properties without giving proofs.
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1. If m(s) is an Lp(X, Y )-multiplier, then for all x ∈ X, y ∈ Y ′, 〈y′, m(s)x〉 is
an Lp(Rd)-multiplier with ‖〈y′, m(s)x〉‖Mp

≤ ‖m‖Mp(X,Y ) ‖x‖ ‖y′‖.

2. If m(s) is an Lp(X, Y )-multiplier, then the identity

FTmf = mf̂

holds for all functions f ∈ L1(Rd; X)∩Lp(Rd; X) (in the case where p <∞)
and for all functions f ∈ L1(Rd; X)∩C0(Rd; X) (in the case where p =∞).

3. The space Mp(X, Y ) is a Banach algebra.

4. If X, Y are Hilbert spaces, then

M2(Rd; X, Y ) = L∞(Rd;L(X, Y )) with ‖m‖M2(X,Y ) = ‖m‖L∞

due to Plancherel’s theorem. If p 
= 1, 2 or if p = 2 and Y is not a Hilbert
space, there exists no nice characterisation.

5. If m(s) is a scalar-valued Lp(Rd)-Fourier multiplier, then also m(s) is one.

6. If a scalar-valued function m ∈ L∞(Rd) is an Lp(Rd)-Fourier multiplier, then
it is also an Lp′

(Rd)-Fourier multiplier, where p′ is the conjugated exponent.
(See the proof of Theorem E.5.4 below.) Moreover, ‖m‖Mp

= ‖m‖Mp′ . This
means

M1(Rd) =M∞(Rd) ⊂Mp(Rd) =Mp′(Rd) ⊂M2(Rd) = L∞(Rd)

for p ∈ [1,∞], with contractive inclusions.

7. Mp(Rd; X, Y ) ⊂ L∞(Rd;L(X, Y )) with contractive inclusion. (See the proof
of Corollary E.5.5 below.)

8. The Fourier transform yields an isometric isomorphism F : M(Rd) −→
M1(Rd). In particular, m ∈ L∞(Rd) is an L1(Rd)-multiplier if, and only if
there is µ ∈M(Rd) such that Tmf = µ∗ f for all f ∈ L1(Rd). (See the proof
of Theorem E.5.4 below.)

9. A scalar function m ∈ L∞ is an L1(Rd)-multiplier if, and only if it is an
L1(Rd; X)-multiplier.

The following lemma is often useful.

Lemma E.4.1. Let p ∈ [1,∞], and let X, Y be Banach spaces.

a) If m = m(s) ∈Mp(Rd; X, Y ), then for all ε > 0, a ∈ Rd one has

m(−s), m(εs), eia·sm(s) ∈ Mp(Rd; X, Y )

and ‖m(−s)‖Mp
= ‖m(εs)‖Mp

=
∥∥eia·sm(s)

∥∥
Mp

= ‖m‖Mp
.
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b) If (mn)n ⊂ Mp(Rd; X, Y ) such that mn → m pointwise almost everywhere
and supn∈N ‖mn‖Mp

< ∞, then also m ∈ Mp(Rd; X, Y ), and one has the
estimate ‖m‖Mp

≤ supn∈N ‖mn‖Mp
.

Proof. a) For f ∈ S(Rd; X) we compute

F−1[(Sm)f̂ ] = F−1S (m · F(Sf)) = SF−1 (m · F(Sf)) ,

whence
∥∥∥F−1[(Sm)f̂ ]

∥∥∥
p

=
∥∥F−1 (m · F(Sf))

∥∥
p
≤ ‖m‖Mp

‖Sf‖p = ‖m‖Mp
‖f‖p.

Similarly

F−1[m(εs)f̂ ] = F−1[(Uεm)f̂ ] = F−1Uε[mU−1
ε f̂)] = ε−dU−1

ε F−1[mεdF(Uεf)]

= U−1
ε F−1[mF(Uεf)].

This implies that∥∥∥F−1[m(εs)f̂ ]
∥∥∥

p
= ε

d
p

∥∥F−1[mF(Uεf)]
∥∥

p
≤ ε

d
p ‖m‖Mp

‖Uεf‖p = ‖m‖Mp
‖f‖p .

Finally, F−1(eia·sg(s)) = F−1(g)(·+ a) and the translations are isometric on Lp.
Hence the assertion for eia·sm(s) follows.
b) The hypotheses imply in particular that supn ‖mn‖∞ < ∞. Hence m ∈ L∞

and F−1(mnf̂) → F−1(mf̂) in C0, for any f ∈ S(Rd; X). If p = ∞, there is
nothing more to do. If p <∞ one employs Fatou’s theorem to conclude that∥∥∥F−1(mf̂)

∥∥∥p

p
≤ lim inf

n

∥∥∥F−1(mnf̂)
∥∥∥p

p
≤ [sup

n
‖mn‖Mp

]p ‖f‖p
p . �

Although we have the nice characterisation M1(Rd) = FM(Rd), it is often
very difficult to establish that a given continuous function m is in fact an L1-
multiplier. The next theorem is very useful in this context. It is based on the
so-called Bernstein lemma [10, Lemma 8.2.1].

Theorem E.4.2. Let d ∈ N, and define k := min{j ∈ N | j > d/2}. For δ > 0
define

Mδ := {m ∈ Ck(Rd) | |m|Mδ < ∞},
where

|m|Mδ := max
|α|≤k

sup
t∈Rd

|t||α|+δ |Dαm(t)| .

Then Mδ ↪→ FL1 ⊂M1(Rd).

Proof. The proof can be found in [10, Proposition 8.2.3]. �
Finally, let us turn to a result which often helps to see that a given function m

cannot be an L1-Fourier multiplier. We restrict ourselves to the one-dimensional
case.
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Proposition E.4.3. Let m = µ̂ for some µ ∈ M(R). Then m is uniformly contin-
uous and bounded, and the Cesaro-limits

lim
T→∞

1
T

∫ T

0

m(s) ds and lim
T→∞

1
T

∫ 0

−T

m(s) ds

both exist and are equal to µ{0}. In particular, if both limits lims→∞ m(s) and
lims→−∞ m(s) exist, these limits are the same.

Proof. We use Fubini’s theorem to compute

1
T

∫ T

0

m(s) ds =
∫

R

1
T

∫ T

0

e−ist ds µ(dt) =
∫

t
=0

1
T

∫ T

0

e−ist ds µ(dt) + µ{0}

= µ{0}+
∫

t
=0

1− e−itT

itT
µ(dt).

The second summand tends to 0 as T → ∞, by the Dominated Convergence
Theorem. �

E.5 Some Pseudo-singular Multipliers

Very often one is given an operator T which can be represented as Tf = F−1mf̂
only for a very small subset of functions f . What is more, it may be unknown in
the beginning whether m is bounded or not, and m may be allowed to have certain
singularities, at least in principle. We examine such a situation in the following,
namely allowing m to have a singularity at 0. We start with the appropriate ‘small
set’ of functions and define

W (X) := {f ∈ S(Rd; X) | supp f̂ is compact and 0 /∈ supp f̂}.

If we intend X = C we simply write W in the following. It is clear that W (X) is
a subspace of

L1
0(Rd; X) := {f ∈ L1(Rd; X) | f̂(0) = 0},

which in turn is a closed (translation invariant) subspace of L1(Rd; X). To be
able to prove that W (X) is dense in L1

0(Rd; X), we need the following preparatory
lemma.

Lemma E.5.1. Let f ∈ S(Rd; X). Then f̂(0) = 0 if, and only if there exist
(fj)d

j=1 ⊂ S(Rd; X) such that f =
∑d

j=1 Djfj.

Proof. If f =
∑

j Djfj one has f̂(s) =
∑

j isj f̂j(s), implying f̂(0) = 0. To prove
the reverse implication, let g := f̂ ∈ S(Rd; X). Then g(0) = 0 and

g(s) =
∫ 1

0

d

dr
f(rs) dr =

∑
j

sj

∫ 1

0

(Djg)(rs) dt =
∑

j

sjgj(s)
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with bounded C∞-functions gj. Choose ϕ ∈ D(Rd) with ϕ ≡ 1 near 0. Then

g = ϕg + (1− ϕ)g =
∑

j

sjϕgj +
∑

j

sj

{
sj(1− ϕ)
|s|2

g

}
.

The functions sj(1− ϕ)/ |s|2 are easily seen to be of tempered growth, whence
we have found hj ∈ S(Rd; X) such that g =

∑
j isjhj . Taking inverse Fourier

transforms and writing fj = F−1hj yields f =
∑

j Djfj . �

We can now construct an approximate identity in L1
0(Rd) as follows. Choose

ψ ∈ S(Rd) with ψ̂ ∈ D(Rd) and ψ̂ ≡ 1 near 0, and define ψε(t) := ε−dψ(t/ε) for
ε > 0. It is well known that (ψε)ε is an approximate identity in L1(Rd), as ε → 0.
We define

ϕn := ψ1/n − ψn.

Then ϕ̂n(s) = ψ̂(s/n)− ψ̂(ns), hence ϕn ∈W .

Lemma E.5.2. Let f ∈ S(Rd; X) and fn := ϕn ∗ f ∈ W (X). Then

‖fn − f‖p → 0 (1 < p ≤ ∞) and ‖f̂n − f̂‖p → 0 (1 ≤ p < ∞).

If moreover f̂(0) = 0, one has in addition

‖fn − f‖1 → 0 and ‖f̂n − f̂‖∞ → 0.

Hence the space W (X) is dense in L1
0(Rd; X), in Lp(Rd; X) for each p ∈ (1,∞),

and in C0(Rd; X).

Proof. We examine the behaviour of ψε ∗ f and of F(ψε ∗ f) = ψ̂εf̂ as ε → 0 and
as ε →∞.

As ε → 0, ‖ψε∗f−f‖p → 0 for all p ∈ [1,∞]. (This is a well known fact about
approximate identities in L1.) On the Fourier side we obtain ψ̂ε(s) = ψ̂(εs) → 1
uniformly on compact subsets of Rd; this implies that ‖ψ̂εf̂ − f̂‖p → 0 for all
p ∈ [1,∞].

What happens as ε →∞? On the Fourier side we see that ψ̂ε(s) = ψ̂(εs)→ 0
uniformly on compact subsets of Rd \ {0}. This yields ‖ψ̂εf̂‖p → 0 whenever
1 ≤ p <∞. However, if f̂(0) = 0, then the convergence holds also for p = ∞.

Considering as before the case that ε→∞, we have

‖ψε ∗ f‖p ≤ ‖ψε‖p ‖f‖1 = ε−d/p′
‖ψ‖p ‖f‖1 → 0
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in the case where 1 < p ≤ ∞. If f̂(0) = 0, by Lemma E.5.1 we can find (fj)d
j=1 ⊂

S(Rd; X) such that f =
∑

j Djfj . Hence

‖ψε ∗ f‖1 ≤
∑

j

‖ψε ∗Djfj‖1 =
∑

j

‖Djψε ∗ fj‖1

≤
∑

‖Djψε‖1 ‖fj‖1 = ε−1
∑

j

‖Djψ‖1 ‖f‖1 → 0.

The remaining statements follow from the density of S(Rd; X) in Lp(Rd; X), p ∈
(1,∞), and in C0(Rd; X), and the fact that S(Rd; X) ∩ L1

0(Rd; X) is dense in
L1

0(Rd; X). This may not be clear on first glance, so we give a reason. Let f ∈ L1
0,

and take any sequence (fn) ⊂ S such that ‖f − fn‖1 → 0. Then xn :=
∫

fn →∫
f = 0. Choose h ∈ S(Rd) such that

∫
h = 1. Then gn := fn − h⊗ xn → f and

obviously gn ∈ S(Rd; X) with
∫

gn = 0. �
Corollary E.5.3. The sequence (ϕn)n constructed above is an approximate identity
in L1

0(Rd). Moreover, ‖ϕ ∗ f − f‖p → 0 whenever f ∈ Lp(Rd; X), p ∈ (1,∞), or
f ∈ C0(Rd; X), p =∞.

We return to the main theme. Each function m ∈ L1
loc

(Rd \ {0};L(X, Y ))
determines an operator Tm : W (X) −→ C0(Rd; X) by

Tmf := F−1(mf̂) (f ∈ W (X)).

The next results show what happens if Tm is Lp-bounded. We begin with the
scalar-valued case.

Theorem E.5.4. Let m ∈ L1
loc

(Rd \ {0}), and let p ∈ [1,∞]. Suppose that for some
constant c > 0 we have

‖F−1mf̂‖p ≤ c ‖f‖p (E.1)

for all f ∈ W . Then m ∈ L∞ and m ∈Mp(Rd). In the case where p > 1 one has
‖m‖L∞ ≤ c and (E.1) holds for all f ∈ S(Rd).

Proof. For f, g ∈W a short computation yields
〈
F−1(mĝ), f

〉
=
〈
Sg,F−1(mSf)

〉
.

This implies that ∣∣〈F−1(mĝ), f
〉∣∣ ≤ c ‖g‖p′ ‖f‖p′ .

In the case where 1 < p ≤ ∞, by the density of W in the corresponding space, we
obtain ∥∥F−1(mĝ)

∥∥
p′ ≤ c ‖g‖p′ (g ∈W ).

Let us consider now the case where 1 < p < ∞. Since W is simultaneously dense
in Lp and Lp′

, the operator Tm := F−1mF extends to bounded operators on Lp

and on Lp′
in such a way that these extensions coincide on the intersection. By

the Riesz–Thorin interpolation theorem, one then has also a bound on L2, i.e.∥∥∥F−1mf̂
∥∥∥

2
≤ c ‖f‖2 (f ∈ W ).
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However, since the Fourier transform is an almost isometric isomorphism on L2,
one obtains

‖mϕ‖2 ≤ c ‖ϕ‖2
for all ϕ ∈ D(Rd \ {0}). This shows that the (usual) multiplier operator induced
by m on L2 is bounded, whence ‖m‖∞ ≤ c. With this information one can now
use Lemma E.5.2 to prove that (E.1) holds actually for all f ∈ S(Rd).

Let p = 1, and consider the sequence gn := Tm(ϕn), n ∈ N , where (ϕn) is
the approximate identity in W that has been constructed above. Clearly (gn)n

is a bounded sequence in L1(Rd) ⊂ M(Rd). Since M(Rd) is the dual of C0(Rd),
which is a separable Banach space, the closed unit ball of M(Rd) with the weak∗-
topology is compact and metrisable. Hence there is subsequence (nk)k and some
measure µ ∈M(Rd) such that gnk

→ µ (weak∗). It is easily seen by taking Fourier
transforms that for every f ∈ W we have Tm(ϕnk

∗ f) = gnk
∗ f → µ ∗ f in some

weak sense. But ϕn ∗ f = f for large n, hence Tmf = µ ∗ f . By choosing different
f ∈ W we conclude that m = µ̂, i.e. m is an L1-Fourier multiplier.

Only the case where p = ∞ is left to prove. We have seen in the beginning
of this proof that the inequality (E.1) for p = ∞ implies the same inequality for
p = 1. However, we have proved above that this implies that m = µ̂ for some
µ ∈ M(Rd). Employing Lemma E.5.2 once more yields that (E.1) actually holds
for all f ∈ S(Rd), i.e., m ∈ M∞(Rd). �
Corollary E.5.5. Let m ∈ L1

loc
(Rd \ {0};L(X, Y )), and let p ∈ (1,∞]. Suppose that

for some constant c > 0 we have∥∥∥F−1mf̂
∥∥∥

p
≤ c ‖f‖p (E.2)

for all f ∈W (X). Then m ∈ L∞ and m ∈Mp(Rd; X, Y ).

Proof. Apply Theorem E.5.4 to the scalar multipliers of the form 〈y′, m(·)x〉 to
obtain the estimate |〈y′, m(·)x〉| ≤ c ‖x‖ ‖y′‖ for all x ∈ X, y′ ∈ Y ′. This shows
‖m‖L∞ ≤ c. Now use Lemma E.5.2 to obtain the estimate ‖F−1(mf̂)‖p ≤ c ‖f‖p

for all f ∈ S(Rd; X). �

E.6 The Hilbert Transform and UMD Spaces

One of the ‘simplest’ non-trivial symbols is given by the function

h(s) := −i sgn(s) (t ∈ R).

The associated operator H := Th : S(R; X) −→ C0(R; X) is called the Hilbert
transform. It can be computed as

Hf(s) = lim
ε↘0

1
π

∫
|t|≥ε

f(s− t)
t

dt (f ∈ S(R; X))
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(see [80, Chapter 3]). Since the symbol h is not continuous, it cannot be neither
an L1- nor an L∞-Fourier multiplier. However, a classical result states that it is
an Lp(R)-Fourier multiplier for all 1 < p < ∞ (cf. [80, Chapter 4]). If X is an
arbitrary Banach space, then in general the functon h is not an Lp(R, X)-Fourier
multiplier for any p ∈ (1,∞). However, if it is an Lp(R; X)-Fourier multiplier for
some p ∈ (1,∞), then even for all p ∈ (1,∞). In this case we call the space X a
UMD space (or an HT space).

The name ‘UMD’ derives from an equivalent characterisation involving so-
called unconditional martingale differences in X . The independence of p is a
consequence of the fact that there is another equivalent characterisation which is
‘purely geometric’ and does not make reference to p. These results are due to
Burkholder [40, 41] and Bourgain [31].

By the Plancherel theorem, each Hilbert space is UMD. Each UMD space X
is reflexive (see [187]) and also its dual Y ′ is UMD. Moreover, if X is UMD, then
also Lp(Ω, µ; X) is UMD whenever (Ω, µ) is a measure space and p ∈ (1,∞). In
particular, each scalar Lp-space is UMD.

Let X be a Banach space. A Schauder decomposition of X is a sequence
(∆n)n∈Z of bounded operators on X such that

1) ∆n∆m = δnm∆n for all n, m ∈ Z;

2) x =
∑

n∈Z
∆nx for every x ∈ X .

If R(∆n) =< en > is one dimensional for each n ∈ Z, then (en)n∈Z is called a
Schauder basis of X . If the convergence in 2) is unconditional for every x ∈ X ,
then the Schauder decomposition/basis is called unconditional.

One of the most important properties of a UMD space X is that the spaces
Lp(R; X) admit of a nice Schauder decomposition, a result which goes back to
Bourgain [32].

Theorem E.6.1 (Bourgain). Let X be a UMD space, and let p ∈ (1,∞). Define
In := {t | 2n < |x| ≤ 2n+1} and ∆n ∼ 1In for all n ∈ Z. Then (∆n)n∈Z is an
unconditional Schauder decomposition of Lp(R; X).

The decomposition from Theorem E.6.1 is called the dyadic or the Paley–
Littlewood decomposition. This is due to the fact that the case where X = C is
contained in a classical result in Harmonic Analysis due to Paley and Little-
wood. Bourgain [32] used the dyadic decomposition to obtain vector-valued
multiplier results.

Theorem E.6.2. Let X be a UMD Banach space.

a) (Marcinkiewicz) Let m ∈ L∞(R) such that supn∈Z Var(In, m) < ∞. Then
for all p ∈ (1,∞) the function m is an Lp(R; X)-Fourier multiplier such that
‖m‖Mp

≤ supn∈Z Var(In, m).
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b) (Mikhlin) Let m ∈ C1(R \ {0}) such that

cm := sup
s∈R\{0}

|m(s)|+ sup
s∈R\{0}

|sm′(s)| < ∞.

Then for all p ∈ (1,∞) the function m is an Lp(R; X)-Fourier multiplier
such that ‖m‖Mp

≤ cm.

c) (Mikhlin, multidimensional) Let d ∈ N, and let k = min{l ∈ N ⊂ k > d/2}.
Let m ∈ Ck(Rd \ {0}) such that

cm := max
|α|≤k

sup
s∈Rd\{0}

|s||α| |Dαm(s)| < ∞.

Then for all p ∈ (1,∞) the function m is an Lp(R; X)-Fourier multiplier
such that ‖m‖Mp

≤ cm.

For X = C, part a) is due to Marcinkiewicz, cf. [82], and parts b), c)
to Mikhlin, cf. [170]. The UMD-version of c) was proved by Zimmermann
[231]. For many years it was an open question how to generalise this theorem
to operator-valued symbols. This was finally done by Weis using the concept of
R-boundedness.

E.7 R-Boundedness and Weis’ Theorem

The Cantor group is the set G := {−1, 1}Z, i.e., the Z-fold direct product of
the multiplicative discrete group Z2

∼= {−1, 1}. By Tychonoff’s theorem, G is a
compact topological group. We denote by µ the normalised Haar measure on G.
The projections

rk := ((gn)n �−→ gk) : G −→ {−1, 1} (k ∈ Z)

are called Rademacher functions. As the Rademachers obviously are continuous
characters of the compact group G, they form an orthonormal set in L2(G, µ), i.e.,∫

G

rnrm dµ = δnm

for all n, m ∈ Z. (One can show that the set of Rademachers actually generates the
character group of G.) Given any Banach space X , the space Rad(X) is defined
by

Rad(X) := span{rn ⊗ x | n ∈ Z, x ∈ X} ⊂ L2(G; X).

The so-called Khintchine–Kahane inequality asserts, that the norms on Rad(X)
induced by the different embeddings 〈rn | n ∈ Z〉 ⊗X ⊂ Lp(G, X) for 1 ≤ p < ∞
are all equivalent, see [153, Part I, Theorem 1.e.13] or [70, 11.1]. We endow
Rad(X) with the Lp-norm which suits best the respective context. If X = H is a
Hilbert space we may take p = 2 of course.
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Lemma E.7.1. Let X = H be a Hilbert space. Then the identity∑
n
‖xn‖2H =

∥∥∥∑
n

rn ⊗ xn

∥∥∥2

Rad(H)
(E.3)

holds for every finite two-sided sequence (xn)n∈Z ⊂ H.

Proof. In fact,∥∥∥∑
n

rn ⊗ xn

∥∥∥2

Rad(H)
=
∫

G

∥∥∥∑
n

rn(g)xn

∥∥∥2

H
µ(dg)

=
∑

n,m

∫
G

rn(g)rm(g) (xn |xm ) µ(dg)

=
∑

n,m
δnm (xn |xm ) =

∑
n
‖xn‖2H . �

The space (G, µ) is a probability space and the Rademachers (rn)n∈Z form a
sequence of independent, symmetric, {−1, 1}-valued random variables on G. The
notion of R-boundedness introduced below uses only this feature of the Rademach-
ers, and the actual underlying probability space is irrelevant. One therefore often
writes

E

∥∥∥∑
j
rj ⊗ xj

∥∥∥ instead of
∫

G

∥∥∥∑
j
rj ⊗ xj

∥∥∥ dµ.

Let X, Y be Banach spaces, and let T be a set of operators in L(X, Y ). The set
T is called R–bounded if there is a constant C such that for all finite sets J ⊂ N

and sequences (Tj)j∈J ⊂ T and (xj)j∈J ⊂ X one has

E

∥∥∥∑
j∈J

rjTjxj

∥∥∥
Y
≤ C E

∥∥∥∑
j∈J

rjxj

∥∥∥
X

. (E.4)

The infimum of all such constants C is called the R–bound of the set T , and is
denoted by

[[
T
]]R

X→Y
. If the reference to the spaces is clear, one simply writes[[

T
]]R for the R-bound.

Remarks E.7.2. 1) By Kahane’s inequality [70, 11.1] one obtains an equivalent
definition when instead of (E.4) one requires the inequality(

E

∥∥∥∑
j∈J

rjTjxj

∥∥∥p

Y

) 1
p

≤ C

(
E

∥∥∥∑
j∈J

rjxj

∥∥∥p

X

) 1
p

for a fixed p ∈ (1,∞) (cf., e.g., [141]). Of course, the actual R-bound changes
with different values of p.

2) The so-called Kahane’s contraction principle states that for each c > 0 the
set {zI | |z| ≤ c} is R-bounded in L(X) with R-bound ≤ 2c. (One can
remove the 2 if only real scalars are considered, see [141, Proposition 2.5].)
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3) The R–boundedness of T in L(X) implies the uniform boundedness of T
in L(X), but the converse holds only in Hilbert spaces. However, if X has
cotype 2 and Y has type 2, then the R–boundedness and boundedness of T
in L(X, Y ) are equivalent.

One of the main features of R-bounded sets of operators is the following
result, due to de Pagter, Clément, Sukochev and Witvliet [44].

Proposition E.7.3. Let (∆n)n∈Z ⊂ L(X) be an unconditional Schauder decompo-
sition of the Banach space X, and let T ⊂ L(X) be R-bounded with T∆n = ∆nT
for all n ∈ Z, T ∈ T . Then each sequence (Tn)n∈Z ⊂ T induces via

x �−→
∑

n∈Z
Tn∆nx

a bounded operator on X.

If one combines Proposition E.7.3 with the dyadic Schauder decomposition
one can prove the following result, due to Weis [223].

Theorem E.7.4 (Weis). Let X, Y be UMD Banach spaces, and let p ∈ (1,∞). Then
there is constant C with the following property. Whenever m ∈ C1(R \ {0}) is
such that

c1 :=
[[

m(t), | 0 
= t ∈ R
]]R

X→Y
< ∞ and

c2 :=
[[

tm′(t), | 0 
= t ∈ R
]]R

X→Y
< ∞,

then m is an Lp-Fourier multiplier for all p ∈ (1,∞) with ‖m‖Mp
≤ C max(c1, c2).

Note that part b) of Theorem E.6.2 is a consequence of Theorem E.7.4, by
the contraction principle.

References

The theory of scalar-valued symbols on scalar Lp-spaces is classical. One can
consult the article [120] of Hörmander (or his books) or [205]. See also [10,
Appendix E] for a survey.

More details and also higher dimensional results on the recent work on
operator-valued symbols can be found in [141]. An exposition with complete
proofs is Hytönens Master’s thesis [121].



Appendix F

Approximation by Rational Functions

In this appendix we provide some results from approximation theory. The objec-
tive is to approximate a given continuous function f on a compact subset K of
the Riemann sphere C∞ in some sense by rational functions. Unfortunately, there
is not enough room to develop the necessary complex function theory. Hence we
have to refer to the literature. However, we could not find any account of the
topic that served our purposes perfectly. Therefore, we shall take two results from
the book [94] of Gamelin as a starting point and modify them according to our
needs.

Note that a subset K ⊂ C∞ is called finitely connected if C∞ \K has a finite
number of connected components. If K ⊂ C∞ is compact, we consider

A(K) := {f ∈ C(K) | f is holomorphic on K̊}.

The set of all rational functions is denoted by C(z). We view a rational function
r ∈ C(z) as a continuous (or holomorphic) function from C∞ to C∞. A point
λ ∈ C∞ is called a pole of r if r(λ) =∞. Given any subset K ⊂ C∞ we define

R(K) := {r ∈ C(z) | r(K) ⊂ C}

to be the set of rational functions with poles lying outside M . If K is compact, we
denote by R(K) the closure of R(K) in C(K). Then A(K) is a closed subalgebra
of C(K) with R(K) ⊂ A(K).

Proposition F.1. [94, Chapter II, Theorem 10.4] Let K ⊂ C be compact and finitely
connected. Then A(K) = R(K), i.e., each function f ∈ C(K) that is holomorphic
on K̊ can be approximated uniformly on K by rational functions rn which have
poles outside K.

The other result we need is concerned with pointwise bounded approximation.
We say that a sequence fn of functions on a set Ω ⊂ C∞ converges boundedly and
pointwise on Ω to a function f , if supn supz∈Ω |fn(z)| < ∞ and fn(z) → f(z) for
all z ∈ Ω. For Ω ⊂ C∞ open we let

H∞(Ω) := {f : Ω → C | f is bounded and holomorophic}
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be the Banach algebra of bounded holomorphic functions on Ω. We occasionally
write ‖f‖Ω = ‖f‖∞,Ω to denote the supremum norm of f ∈ H∞(Ω).

Proposition F.2. [94, Chapter VI, Theorem 5.3] Let K ⊂ C be compact and finitely
connected. Then for every f ∈ H∞(K̊) there is a sequence of rational functions
rn with poles outside K such that ‖rn‖K ≤ ‖f‖K̊ and rn → f pointwise on K̊. In
particular, rn → f pointwise boundedly.

Propositions F.1 and F.2 refer only to subsets K of the plane C. But one
can easily extend these results to (strict) subsets K ⊂ C∞ of the Riemann sphere
by a rational change of coordinates, a so-called Möbius transformation. These are
the mappings

m(a, b, c, d) :=
(

z �−→ az + b

cz + d

)
: C∞ −→ C∞

with complex numbers a, b, c, d ∈ C, ad−bc 
= 0. It is well known that each Möbius
transformation is invertible, its inverse being again a Möbius tranformation. In
particular, they are homeomorphisms of C∞.

Let K ⊂ C∞ be compact. If ∞ ∈ K ⊂ C∞ and K is not the whole sphere,
there is some p ∈ C \K. The transformation ϕ := m(0, 1, 1,−p) has the property
that ϕ(K) is a compact subset of C. Because ϕ is a homeomorphism, ϕ(K̊) =
ϕ(K)◦. Moreover, K is finitely connected if, and only if ϕ(K) is. If r is a rational
function with poles outside ϕ(K), r ◦ ϕ is a rational function with poles outside
K, and one has ‖r‖ϕ(K) = ‖r ◦ ϕ‖K . Finally, if f : K → C, then f ∈ A(K) if, and
only if f ◦ ϕ−1 ∈ A(ϕ(K)) and f ∈ H∞(K̊) if, and only if f ◦ ϕ−1 ∈ H∞(ϕ(K)◦).

These considerations show that Propositions F.1 and F.2 remain true for
subsets K ⊂ C∞ with K 
= C∞.

We now deal with some special sets K. Let Ω ⊂ C be open. We denote by
K the closure of Ω in C∞, while we keep the notation Ω for the closure of Ω in C.
We suppose that

K 
= C∞, ∞ ∈ K, Ω = K̊, and K is finitely connected.

For example, Ω can be anything from the following list.

• Sω = {z | z 
= 0, |arg z| < ω}.

• Hω = {z | |Im z| < ω} the horizontal strip of height 2ω, symmetric about
the real line, where ω > 0 is arbitrary.

• Σω = Sω ∪−Sω a double sector, where ω < π/2.

• Πω = {z | (Im z)2 < 4ω2 Re z} a horizontal parabola, where ω > 0 is arbi-
trary.
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We define R∞(Ω) := R(Ω) ∩ H∞(Ω) and R∞
0 (Ω) := {r ∈ R∞(Ω) | r(∞) = 0}.

Then it is clear that R(K) = R∞(Ω) and

R∞
0 (Ω) =R∞(Ω) ∩C0(Ω) ⊂ R∞(Ω)

⊂ A(K) = {f ∈ H∞(Ω) ∩C(Ω) | lim
z→∞

f(z) ex.}

⊂ {f ∈ C(Ω) | lim
z→∞

f(z) ex.} = C(K).

Proposition F.3. We have

R∞(Ω) = {p

q
| p, q ∈ C[z], (q = 0) ∩ Ω = ∅, deg(p) ≤ deg(q)} (F.1)

and

R∞
0 (Ω) = {p

q
| p, q ∈ C[z], (q = 0) ∩ Ω = ∅, deg(p) < deg(q)}. (F.2)

The algebra R∞
0 (Ω) is generated by the elementary rationals (λ − z)−1 (λ /∈ Ω).

The algebra R∞(Ω) is generated by the elementary rationals (λ − z)−1 (λ /∈ Ω)
together with the constant 1 function. The closure of R∞

0 (Ω) with respect to ‖·‖Ω
is H∞(Ω) ∩C0(Ω). The closure of R∞(Ω) with respect to ‖·‖Ω is A(K).

Proof. Let r = p/q ∈ C(z) be a rational function. Then r is bounded on Ω if, and
only if it is bounded on K (view r as a continuous function from C∞ to itself). So
its poles lie outside K and r(∞) ∈ C. This implies that deg p ≤ deg q. If r(∞) = 0
it follows that deg p < deg q. The other inclusions are clear.

Obviously, every elementary rational (λ − z)−1 with λ /∈ Ω is contained in
R∞

0 (Ω). Since we can write

α
µ− z

λ− z
= α(

µ − λ

λ − z
+ 1) (α, µ, λ ∈ C, λ /∈ Ω)

it follows from (F.2) and the Fundamental Theorem of Algebra that the elementary
rationals generate R∞

0 (Ω). From (F.1) it is clear that R∞(Ω) = R∞
0 (Ω)⊕ 1.

From Proposition F.1 we know that R(K) = A(K). Let f ∈ A(K) such
that f(∞) = 0. We can find rn ∈ R∞(Ω) such that ‖rn − f‖Ω → 0. Since
∞ is in the closure of Ω in C∞, this implies that rn(∞) → f(∞) = 0. Hence
‖(rn − rn(∞))− f‖Ω → 0 and rn − rn(∞) ∈ R∞

0 (Ω). �
Proposition F.4. Let Ω and K be as above, and let f ∈ H∞(Ω). Then there is a
sequence of rational functions rn ∈ R∞(Ω) such that ‖rn‖Ω ≤ ‖f‖Ω for all n and
rn → f pointwise on Ω.

Proof. The statement is just a reformulation of Proposition F.2 combined with
the remarks immediately after. �
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abstract functional calculus, 4
dual, 48
extended, 5
non-degenerate, 4
primary, 5
proper, 4

abszissa of uniform boundedness, 329
adapted (parameters (p, q, r)), 259
adjoint

form, 315
operator, 288

admissible subalgebra of an afc, 7
afc, see abstract functional calculus
antidual, 323
approximate eigenvector, 287
approximation scheme, see scheme
associative law, 280

b.p.-continuous, 116
Balakrishnan representation, 67, 70
Banach couple, 303
basis

constant, 251
Schauder, 353
unconditional, 353

Bessel potential, 233
BIP, see bounded imaginary powers
bound

of the natural F -calculus, 112
bounded imaginary powers, 88

Cantor group, 354
Cayley transform, 328
centre (of an algebra), 17
closure of an operator, 281
coercivity condition, 324

composite of operators, 280
composition rule, 13, 41
conjugate of a function, 171
contraction semigroup, 297
convergence

boundedly and pointwise, 116,
357

of abstract functional calculi, 51
sectorial, 25

Convergence Lemma, see theorem
convolution, 345
core (for an operator), 281
cosine function, 208
coupling between two spaces, 303
cyclic vector, 333

decomposition
dyadic, 353
Paley–Littlewood, 353
Schauder, 353
unconditional, 353

degree (of a polynomial), 292
dilation, 344

for groups, 205
of a contraction semigroup, 178

Dirac measure, 73
Dirichlet kernel, 255
distribution, 342

regular, 343
tempered regular, 343

distributivity inclusions, 280
domain

of an afc, 5
of an operator, 279
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of the nfc for a sectorial opera-
tor, 36

double sector, 249
dual

functional calculus, 48
space, 288

duality
canonical, 288

Duhamel’s principle, 267
Dunford–Riesz class, 27

extended, 28

eigenspace, 286
essential range, 14
Euler method, see scheme
extension procedure (for an afc), 4
extrapolation space (universal), 143

finitely connected set, 357
form

adjoint, 315
coercive, 324
elliptic, 198
imaginary part of, 315
monotone, 316
positive, 316
positive definite, 316
real, 316
real part of, 315
sectorial, 317
sectorial of angle ω, 317
sesquilinear, 315
symmetric, 316

Fourier multiplier, 346
Fourier transform

of bounded measures, 342
of tempered distributions, 344

fractional integrals
Riemann–Liouville, 244
Weyl, 250

fractional powers (of a sectorial op-
erator), 61

function
of tempered growth, 342

rapidly decreasing, 341
regularly decaying, 27
test function, 341

functional calculus
abstract, 4
based on the Poisson integral

formula, 60
bounded F -calculus, 116
bounded naturalF -calculus, 112
dual, 48
extended, 5
for multiplication operators, 14
for rational functions, 10, 294
Hirsch, 59
joint functional calculus, 269
Mellin transform, 60
meromorphic, 9
natural

for invertible sectorial opera-
tors, 45

for sectorial operators, 36
for strip-type operators, 95

non-commutative, 16
operator-valued, 16, 277
Phillips, 60, 75
primary, 5

for sectorial operators, 34
for strip-type operators, 94

Taylor, 58
fundamental identity

for semigroups, 298
for sectorial operators, 20

generator
of a cosine function, 208
of a holomorphic semigroup, 79
of a semigroup, 298
of an afc, 8

graph norm, 281
group

C0-, 302
type of, 302

growth bound (of a semigroup), 297
G̊arding inequality, 198
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H∞-angle, 117
Hilbert transform, 352
HT space, see UMD space

identity operator, 280
imaginary powers (of a sectorial op-

erator), 84
injective part (of a sectorial opera-

tor), 24
interpolating sequence, 254
interpolation

couple, 303
coupling, 303
functor, 305

interpolation space
complex, 312
real, 305

intersection of an interpolation cou-
ple, 304

inverse of an operator, 280
inversion law, 280
inversion problem (for strip-type op-

erators), 100

kernel of an operator, 279
Komatsu representation, 72
Kreiss condition, 265

Laplace operator, 231
Laplace transform, 73
law

associative, 280
inversion, 280
monotonicity, 280
of exponents, 292

first, 62
second, 64

semigroup, 78
Liapunov

direct method, 186
equation, 188
function, 186
inclusion, 186
theorem

classical, 185
for groups, 187
for holomorphic semigroups,

203
logarithm of a sectorial operator, 81

Möbius transformation, 358
maximal regularity

for non-commuting operators,
278

for a pair (A, B), 272
problem, 274
space of, 272, 274

McIntosh approximation, 111
measure space

standard, 331
meromorphic functional calculus, 9
mild solution (of a Cauchy problem),

267
monotonicity laws, 280
morphism

of abstract functional calculi, 8

natural functional calculus
for sectorial operators, 36
for strip-type operators, 95

Nollau representation, 82
numerical range, 173, 320

operator, 279
ω-accretive, 173
accretive, 173, 327
adjoint, 288, 317
associated with a form, 199
Bessel potential, 233
bounded, 281
closable, 281
closed, 281
commutes with another, 284
commutes with the resolvent of

another, 284
continuous, 281
core for, 281
dissipative, 327
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domain of, 279
Fourier multiplier, 346
fractional powers of, 61
fully defined, 280
Hilbert adjoint, 317
homogeneous elliptic, 220
image of, 279
imaginary powers of, 84
injective, 280
inverse of, 280
invertible, 282
Kato-sectorial, 199
kernel of, 279
Kreiss, 265
Laplace, 231
linear, 279
m-ω-accretive, 173
m-Πω-accretive, 211
m-Hω-accretive, 175
m-accretive, 173, 327
multi-valued, 279
multiplication, 331

on a function space, 14
with respect to a basis, 251

multiplier, 252
natural powers of, 292
part of, 285
positive, 321
power-bounded, 265
quasi-sectorial, 19
range of, 279
resolvent of, 282
Riemann–Liouville, 244
Ritt, 265
sectorial, 19
self-adjoint, 321
single-valued, 279
square root regular, 202
strip-type, 91
strong strip-type, 92
strongly elliptic, 220
surjective, 280
symmetric, 321
Volterra, 3, 244

zero, 280

parabola (horizontal), 211
parabolicity condition, 268
parallelogram law, 316
part of an operator, 285
pfc, see primary functional calculus
phase space, 209
Phillips calculus, 75
Poisson formula, 180
polarisation identity, 316
pole (of a rational function), 357
polynomial

one variable, 292
polynomial limit, 27

finite, 27
power-boundedness, 265
primary functional calculus

abstract, 5
for sectorial operators, 34
for strip-type operators, 94

principal part (of an elliptic opera-
tor), 248

pseudo-resolvent, 284

quadratic estimates, 129, 215
on a strip, 191

Rademacher functions, 354
Radon measure space, 331
range of an operator, 279
range space, 286
reducing subspace, 335
reflection mapping, 343
regularisable element (in an afc), 4
regulariser, 4

uniform, 51
resolvent

identity, 283
of an operator, 282
pseudo-, 284
set, 282

Riemann sphere, 14, 286
Riesz projection, 255
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Ritt condition, 265

scalar product, 316
equivalent, 324

scaling property, 63
Schauder

basis, 353
decomposition, 353

scheme
accurate of order p, 258
backward Euler, 257
Crank–Nicolson, 258
forward Euler, 257
rational approximation, 258

sector, 19
sectorial

approximation, 25
convergence, 25
operator, 19

sectoriality angle, see spectral angle
semi-scalar product, 316
semigroup, 297

C0-, 297
backward, 302
bounded, 297
bounded holomorphic, 78
contractive, 297
degenerate, 297
exponentially bounded, 297
exponentially bounded holomor-

phic, 80
exponentially stable, 297
forward, 302
Gauss–Weierstrass, 232
generated by a sectorial opera-

tor, 76
growth bound of, 297
integrated, 300
law, 78
non-degenerate, 298
property, 78, 297
quasi-contractive, 206, 297
Riemann–Liouville, 244
right shift, 241, 243

strongly continuous, 297
subordinated, 81

shift group
left, 102
right, 238

space
Besov, 235
Bessel potential, 234
fractional Sobolev, 274
Hardy, 255
homogeneous (associated with a

sectorial operator), 145
homogeneous fractional domain,

148
intermediate, 309
of all holomorphic functions, 9,

27
of all meromorphic functions, 9,

27
of class Jθ, 309
of class Kθ, 310
of distributions, 342
of maximal regularity, 272
of regularly decaying functions

on sectors, 27
on strips, 93

of strong continuity, 80, 297
of tempered distributions, 343
Riesz potential, 234
Schwartz, 341
Sobolev, 343
with the UMD property, 353

spectral angle (of a sectorial opera-
tor), 20

spectral bound, 78
spectral height, 92
spectral mapping theorem

for fractional powers, 62
for logarithms, 97
for polynomials, 293
for sectorial operators, 56
for the resolvent, 286

spectral radius (of a bounded opera-
tor), 283
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spectrum
approximate point, 286
extended, 286
of an operator, 282
point, 286
residual, 286
surjectivity, 286

Square Root Problem, 202, 216
stability (of an approximation scheme),

258
stability of a function (A(ϕ)-stability),

259
strip (horizontal), 91
sum

of an interpolation couple, 304
of operators, 280

support of a distribution, 343
symbol (of a Fourier multiplier), 346

Tadmor–Ritt condition, see Ritt con-
dition

theorem
Bourgain, 353
Boyadzhiev–de Laubenfels, 185
Callier–Grabowski–Le Merdy, 202
Cauchy–Schwarz inequality, 316
Characterisation Theorem

(for groups), 191
Chernoff Lemma, 207
Composition Rule

on sectors, 41
on strips, 96

Convergence Lemma
sectorial case, 106
strip case, 107

Convergence Theorem (for ratio-
nal approximation schemes),
260

Cowling, Doust, McIntosh, Yagi,
117

Crouzeix, 212
Crouzeix–Delyon, 182
Da Prato–Grisvard, 274
Datko, 274

Decomposition Theorem
(for groups), 189

Density (of interpolation spaces),
157

Dore, 133, 157
Dore–Venni, 276
Fattorini, 209
Franks–Le Merdy, 205
Fundamental Theorem of the

functional calculus, 10
Gearhart, 329
Hardy–Young inequality, 137
Hille–Yosida, 300
Homogeneous Interpolation, 153
Interpolating Sequences, 254
Kalton–Weis, 278
Kato, 201
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