
Lecture Notes in Artificial Intelligence 4687
Edited by J. G. Carbonell and J. Siekmann

Subseries of Lecture Notes in Computer Science

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Paolo Petta Jörg P. Müller
Matthias Klusch Michael Georgeff (Eds.)

Multiagent
System Technologies

5th German Conference, MATES 2007
Leipzig, Germany, September 24-26, 2007
Proceedings

13

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Series Editors

Jaime G. Carbonell, Carnegie Mellon University, Pittsburgh, PA, USA
Jörg Siekmann, University of Saarland, Saarbrücken, Germany

Volume Editors

Paolo Petta
Medizinische Universität Wien
Freyung 6/II, 1010 Vienna, Austria
E-mail: Paolo.Petta@MeduniWien.ac.at

Jörg P. Müller
Technische Universität Clausthal
Julius-Albert-Str. 4, 38678 Clausthal-Zellerfeld, Germany
E-mail: joerg.mueller@tu-clausthal.de

Matthias Klusch
Deutsches Forschungsinstitut für Künstliche Intelligenz (DFKI)
Stuhlsatzenhausweg 3, 66123 Saarbruecken, Germany
E-mail: klusch@dfki.de

Michael Georgeff
Monash University
Locked Bag 29, Clayton, Victoria 3168, Australia
E-mail: michael.georgeff@med.monash.edu.au

Library of Congress Control Number: 2007934801

CR Subject Classification (1998): I.2.11, I.2, C.2.4, D.1.12, D.1.3, J.1

LNCS Sublibrary: SL 7 – Artificial Intelligence

ISSN 0302-9743
ISBN-10 3-540-74948-9 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-74948-6 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2007
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12123544 06/3180 5 4 3 2 1 0

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Preface

The German conference on Multi-Agent System Technologies (MATES) provides
an interdisciplinary forum for researchers, users, and developers to present and
discuss the latest advances in research work as well as prototyped or fielded
systems of intelligent agents and multi-agent systems. The conference aims to
promote theory and applications and covers the whole range of agent- and multi-
agent technologies.

For the fifth time, the German special interest group on Distributed Artificial
Intelligence in cooperation with the Steering Committee of MATES organized
this international conference. Building on the four successful predecessors in
2003, 2004, 2005, and 2006, MATES 2007 took place September 24–26, 2007
under the umbrella of the SABRE (Software, Agents, and Services for Business,
Research, and E-Sciences) event organized by the University of Leipzig.

Situated in the lively scene of agent-based computing in Europe that is ex-
emplified by federated events such as Durham Agents’007; SABRE itself —that
also included the Central and Eastern European Conference on Multi-Agent Sys-
tems (CEEMAS); and the subsequent European Conference on Complex Systems
(ECCS 2007) in Dresden, MATES 2007 not only succeeded in attracting 27 sub-
missions, out of which 17 could be accepted for presentation and discussion, but
also in holding an edition of the doctoral mentoring programme, an important
occasion for both students and established researchers to interact and discuss
scientific and managerial aspects of activities. The programme of MATES 2007
was rounded off with invited presentations by the distinguished speakers Michael
Georgeff and Rafael Bordini.

Our thanks go to the Programme Committee for their diligent, careful, and
constructive work; the local organizers of SABRE for their constant support;
and foremost to all authors of submitted papers: the present selection stands to
testify the important contribution of the MATES conference series to the rich
international agent-oriented systems research landscape.

July 2007 Paolo Petta
Jörg P. Müller

Matthias Klusch
Michael Georgeff

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Organization

General Co-chairs

Matthias Klusch DFKI, Germany
Michael Georgeff Monash University, Australia

Program Co-chairs

Paolo Petta Medical University of Vienna and OFAI,
Austria

Jörg P. Müller TU Clausthal, Germany

Doctoral Consortium Chair

Franziska Klügl Universität Würzburg, Germany

Steering Committee

Hans-Dieter Burkhard Humboldt-Universität zu Berlin, Germany
Stefan Kirn Universität Hohenheim, Germany
Matthias Klusch DFKI, Germany
Jörg P. Müller TU Clausthal, Germany
Rainer Unland Universität Duisburg-Essen, Germany
Gerhard Weiss SCCH Hagenberg, Austria

Program Committee

Bernhard Bauer Universität Augsburg, Germany
Federico Bergenti Università degli Studi di Parma, Italy
Lars Braubach Universität Hamburg, Germany
Hans-Dieter Burkhard Humboldt-Universität zu Berlin, Germany
Cristiano Castelfranchi Università degli Studi di Siena and CNR Roma,

Italy
Rosaria Conte CNR Roma, Italy
Hans Czap Universität Trier, Germany
Mehdi Dastani Universiteit Utrecht, The Netherlands
Jörg Denzinger University of Calgary, Canada
Jürgen Dix TU Clausthal, Germany
Torsten Eymann Universität Bayreuth, Germany
Klaus Fischer DFKI GmbH, Germany

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

VIII Organization

Jean-Pierre Georgé Université Paul Sabatier, France
Paolo Giorgini Università degli Studi di Trento, Italy
Rune Gustavsson Blekinge Institute of Technology, Sweden
Heikki Helin TeliaSonera, Finland
Wiebe van der Hoek University of Liverpool, UK
Stefan Kirn Universität Hohenheim, Germany
Franziska Klügl Universität Würzburg, Germany
Ryszard Kowalczyk Swinburne University of Technology, Australia
Daniel Kudenko University of York, UK
Jürgen Lind iteratec GmbH, Germany
Gabriela Lindemann Humboldt-Universität zu Berlin, Germany
Jiming Liu Baptist University, Hong Kong
Stefano Lodi Università di Bologna, Italy
Beatriz López Universitat de Girona, Spain
Volker Nissen TU Ilmenau, Germany
James Odell Agentis Software, USA
Andrea Omicini Università di Bologna, Italy
Sascha Ossowski Universidad Rey Juan Carlos, Spain
Stefan Poslad Queen Mary University of London, UK
Von-Wun Soo National Tsing-hua University, Taiwan
Steffen Staab Universität Koblenz-Landau, Germany
Ingo Timm Universität Frankfurt am Main, Germany
Robert Tolksdorf Freie Universität Berlin, Germany
Adelinde Uhrmacher Universität Rostock, Germany
Rainer Unland Universität Duisburg-Essen, Germany
Liászló Zsolt Varga MTA SZTAKI, Hungary
Danny Weyns K.U. Leuven, The Netherlands
Cees Witteveen TU Delft, The Netherlands
Michael Wooldridge University of Liverpool, UK

Auxiliary Referees

Tina Balke
Ralf Berger
Javesh Boodnah

Alexander Kubias
Ingo Müller
Michele Piunti

Fernando Silva Parreiras
Diemo Urbig
Jian Feng Zhang

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Table of Contents

Engineering Multi-agent Systems

Multi-Agent System: A Guiding Metaphor for the Organization of
Software Development Projects . 1

Lawrence Cabac

Model Transformation for Model Driven Development of Semantic Web
Enabled Multi-Agent Systems . 13

Geylani Kardas, Arda Goknil, Oguz Dikenelli, and
N. Yasemin Topaloglu

SmartResource Platform and Semantic Agent Programming Language
(S-APL) . 25

Artem Katasonov and Vagan Terziyan

Multi-agent Planning and Learning

Subgoal Identification for Reinforcement Learning and Planning in
Multiagent Problem Solving . 37

Chung-Cheng Chiu and Von-Wun Soo

Medical Image Segmentation by a Multi-Agent System Approach 49
Nacéra Benamrane and Samir Nassane

Using DESs for Temporal Diagnosis of Multi-agent Plan Execution 61
Femke de Jonge, Nico Roos, and Huib Aldewereld

Multi-agent Communication, Interaction, and
Coordination

Agent Communication Using Web Services, a New FIPA Message
Transport Service for Jade . 73

Esteban León Soto

Goal-Oriented Interaction Protocols . 85
Lars Braubach and Alexander Pokahr

Multi-agent Resource Allocation

VWM: An Improvement to Multiagent Coordination in Highly
Dynamic Environments . 98

Seyed Hamid Hamraz, Behrouz Minaei-Bidgoli, and
William F. Punch

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

X Table of Contents

Dynamic Configurable Auctions for Coordinating Industrial Waste
Discharges . 109

Javier Murillo, Vı́ctor Muñoz, Beatriz López, and Dı́dac Busquets

Distributed Clustering of Autonomous Shipping Containers by Concept,
Location, and Time . 121

Arne Schuldt and Sven Werner

Coordinating Competitive Agents in Dynamic Airport Resource
Scheduling . 133

Xiaoyu Mao, Adriaan ter Mors, Nico Roos, and Cees Witteveen

Multi-agent Planning and Simulation

Large-Scale Agent-Based Pedestrian Simulation . 145
Franziska Klügl and Guido Rindsfüser

Diagnosis of Plan Structure Violations . 157
Nico Roos and Cees Witteveen

Team Cooperation for Plan Recovery in Multi-agent Systems 170
Roberto Micalizio and Pietro Torasso

Trust and Reputation

On the Behaviour of the TRSIM Model for Trust and Reputation 182
Alberto Caballero, Juan A. Bot́ıa, and Antonio Gómez-Skarmeta

Implementing ReGreT in a Decentralized Multi-agent Environment 194
Stefan König, Sven Kaffille, and Guido Wirtz

Author Index . 207

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Multi-Agent System: A Guiding Metaphor for the
Organization of Software Development Projects

Lawrence Cabac

University of Hamburg, Dept. of Informatics, Vogt-Kölln-Str. 30, D-22527 Hamburg
http://www.informatik.uni-hamburg.de/TGI

Abstract. In this work we propose the introduction of multi-agent con-
cepts for the organization of software development projects of (especially
multi-agent) application design and implementation. This is expressed
by the guiding metaphor (German: Leitbild) of a multi-agent system of
developers.

Team orientation and concurrent development are two aspects that
are crucial in every large development project. Consequently, the orga-
nizational structure of the programming team has to take account for
both. If the developed application is distributed, concurrent and team-
oriented – e.g. a multi-agent application – one approach is to aim for a
comparable (homomorphic) structure of a developed system and devel-
opment team. We achieve this by reintroducing the multi-agent system
metaphor into the organizational structure of the development team.

Agent attributes such as autonomy, communication, cooperation, self-
organization and the capacity for teamwork are transferred by the guid-
ing metaphor back to team members. Concurrency and distribution of
resources and processes is naturally supported by the guiding metaphor.

This guiding metaphor can be applied to any project organization.
However, it is best suited for the organization of multi-agent application
development, due to the similarity in structure.

Keywords: agents, guiding metaphors, multi-agent system of develop-
ers, Leitbild, metaphor, project management, software development ap-
proach, team organization.

1 Introduction

Multi-agent systems are applications based on encapsulated, autonomous soft-
ware entities that can flexibly achieve their objectives by interacting with one
another in terms of high-level interaction protocols and languages. Agents bal-
ance their reactive behavior in response to influences from the environment with
their proactive behavior towards the achievement of design objectives.

The agent metaphor is highly abstract and it is necessary to develop soft-
ware engineering techniques and methodologies that particularly fit the agent-
oriented paradigm. Traditional software development techniques such as for
example object-oriented analysis and design are inadequate to capture the flex-
ibility and autonomy of an agent’s problem-solving capabilities, the richness

P. Petta et al. (Eds.): MATES 2007, LNAI 4687, pp. 1–12, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

2 L. Cabac

of agent interactions and the (social) organizational structure of a multi-agent
system as a whole. Many agent-oriented software development methodologies
have been brought forward over the last years, many of them already in mature
state.

Agent-oriented development methodologies such as Gaia [1,2], MaSE [3] or
Prometheus [4] are well-established. Similarities can be found in methods and
abstractions such as use cases, system structure (organization) diagrams, role
models, interaction diagrams and interaction protocols. However, it is not a
trivial task to decide on a suitable implementation platform as pointed out by
Sudeikat et al. [5].

Similar claims hold for the management of development processes, the organi-
zation and guidance of a team as well as for project management. As well as for
methodologies and techniques of software development, there also exists a ne-
cessity to develop approaches for the management of projects that particularly
fit the agent-oriented paradigm. As already proposed by Petrie et al. [6] the or-
ganization of projects can be oriented towards the agent concept. The proposal
here is to increase even more the symmetry between the project management
and the software being build.

We present a guiding metaphor that is capable to dynamically adapt to the
needs of the team and development processes. Criteria for a powerful and accept-
able metaphor is its simplicity, flexibility and the range of the commonly known
concepts. It should take account of the main concepts and design objectives of
the developed system; e.g. for a multi-agent application these are concepts such
as distribution, concurrency and dynamical structures.

Section 2 introduces the term guiding metaphor and explains the guiding
metaphor multi-agent system of developers1 for the development of multi-agent-
based projects in detail. Section 3 describes the utilization and our experiences
with this guiding metaphor.

2 Leitbild: MAS

Before we start with our approach we will elaborate on the notion of the guiding
metaphor. Then we will describe the guiding metaphor of a multi-agent system
of developers in regard to three aspects. First, we describe the guiding metaphor
in more detail in its role as a Leitbild [7] regarding orientation, notions, strate-
gies and terminology in the environment of multi-agent application development.
Second, we go into detail of the guiding metaphor’s manifestation in the organi-
zational structure of a (multi-agent application) development project especially
in regard to concurrent and distributed development. Third, we focus on com-
munication, coordination, project organization and team management.

1 We include all participants of a development process, such as programmers, users,
supporting staff, etc. We could thus also call the metaphor multi-agent system of
participants but in the context of system development we regard all participants as
developers of the system.

MAS: A Guiding Metaphor for Software Development Projects 3

2.1 Guiding Metaphor

A guiding metaphor (German: Leitbild [7]) is a strong and well-established con-
cept that can guide the participants of a development team in a general sense.
While the term originated in business management, it is also well established in
software engineering. A guiding metaphor should have four functions. It should
offer orientation and have a strong integrative force. Decision processes should
be supported by the guiding metaphor and it should also be a means of coordi-
nation. Züllighoven et al. define a guiding metaphor as follows.

A guiding metaphor in software development defines a frame of orien-
tation for involved groups in development processes as well as during
utilization. It supports the design, utilization and the evaluation of soft-
ware and is based on values and goals. A guiding metaphor can be used
constructively or analytically [7, from German, p. 73].

An important feature is that the guiding metaphor is so general and common
that every potentially involved person has at least a good idea of the organiza-
tional concepts, structures, notions and rules. A good guiding metaphor comes
with a whole set of other metaphors that do not have to be named explicitly.2
In the context of developing software we can distinguish three different forms
of guiding metaphor. It can be used to characterize the software systems, the
development process and also the team organization (respectively project man-
agement).3 Examples of guiding metaphors are the tools & material approach [7]
or the expert work place [8] for software systems. Guiding metaphors for team
organizations are the factory, the office, the workshop or the (free) jazz band [9].

One interesting approach as to how to define a new guiding metaphor for team
organization has been done by Mack [10]. He proposes the guiding metaphor of
an expedition for the development process and derives some aspects that are
useful in everyday (work) life of a software developer. Here we will not go into
detail of this guiding metaphor but we would like to elaborate on the notions
that are instantly linked to this example to show the potentials of a guiding
metaphor.

For a (development) expedition one will need a team (developers, supporting
users and other staff) and resources (computers, software, rooms, paper, etc.).
There should be a good notion on how much everyone can carry (individual
capabilities of team members) on the way. The organizers need to work out a
plan in advance that is detailed enough to take as many aspects as possible
into account and flexible enough to allow the team members to react to sudden
changes and dangers. In an expedition it seems clear that all members have to
support each other and that conflicts that are left unsolved can lead to difficulties
that can endanger the expedition (software project). A good communication

2 In this way the guiding metaphor can be compared to an extended metaphor or even
a parable as used in literature.

3 In this work we focus on the function of the guiding metaphor for the team’s orga-
nizational structures / project management.

4 L. Cabac

between members of the team is essential in all stages of the expedition. We
know that an expedition is a socially challenging project that can be adventurous
as well as hard work. In addition, the outcome of an expedition is open in the
beginning.

The example shows that a strong guiding metaphor offers many notions (com-
mon in the team) and a multitude of metaphors. These help team members to
find orientation in the project and by this the guiding metaphor succeeds in
guiding a team.

In the following sections we describe a guiding metaphor that is well applicable
to the development of multi-agent application and is also well known in the
multi-agent community. It is the multi-agent system.

2.2 Multi-Agent System of Developers

Our approach of organizing projects for multi-agent application development is
described by the guiding metaphor of multi-agent system of developers . Devel-
oper teams, their members and their actions are characterized by the attributes
usually related to agents [11], multi-agent systems [12] and cooperative work-
flows [13].4 In the team members are acting in a self-organized, autonomous,
independent and cooperative way. They all have individual goals that culminate
in a common vision of the system that is to be developed.

Like agents in a multi-agent system, developers are situated in an environ-
ment, in which they communicate with other developers and other participants
of the development process. Moreover, the environment offers services or restricts
the possibilities of actions for the developers.

teamwork

responsibility

development

autonomy

services

communication

coordination

environment

learning
proactiveness

adaption

self-
organization

negotiation

Multi-Agent System of Developers

Fig. 1. Agent concepts used in the context of team organization (selection)

4 In the following many agent concepts are used to describe behavior or attributes of
members of the development team. These are used for the metaphorical power.

MAS: A Guiding Metaphor for Software Development Projects 5

Figure 1 shows a selection of typical multi-agent concepts and their inter-
relationships that are utilized in the development project context as metaphors.
Lippert et al. [8] identify a selection of key metaphors as shown in the figure as
a metaphor design space.

The agent metaphor leads to dynamic and flexible structures in the team’s
organization. All members can form (sub-)teams with other members during
the development process. This is not only encouraged but also a main aspect
of the self-responsible and autonomous actions of team members. The structure
of a team is not static. Sub-teams are able to decide their own dissolution and
to proactively decide on new alliances. From this point of view concurrent and
distributed work is a natural phenomenon.

According to the multi-agent system of developers metaphor control, project
management and organizational matters in the development process are man-
aged through mechanisms typically owned by social agents [14]. Thus social
norms, conventions and motivation become important forces in the team’s be-
havioral patterns.

At first glance it seems odd to re-transfer the concept (metaphor) of a multi-
agent system, which has been used to define and organize software systems in
the manner of (sociological) organizations, back to an organizational structure
of people. However, the metaphor of a multi-agent system has grown so strong in
recent years that many developers are well acquainted with the notions and key
elements of agent concepts. Therefore, the multi-agent system is a reasonable,
well-established and powerful guiding metaphor. But even for participants of the
team that do not share the concepts of multi-agent systems as paradigm – e.g.
users with no technical background – still all the concepts are well known, since
they are rooted in social organizations.

In the following two sections we elaborate on two main aspects of agent-
oriented development. These are the communication of agents and the con-
currency and distribution. Through the guiding metaphor both aspects take a
leading role in our vision on the project organization.

2.3 Matrix Organization

In a multi-agent application development project the organizational structure
has to be defined, such that responsibilities for certain aspects can be assumed
by team members or sub-teams. The general perspectives in the area of a multi-
agent system and – therefore also here – for the development process are structure,
behavior and terminology. These perspectives are orthogonal with connecting
points at some intersections (compare Fig. 2).

The structure of a multi-agent system is given by the agents, their roles,
knowledge bases and decision components [15,16]. The behavior of a multi-agent
system is given by the interactions of the agents, their communicative acts and
the internal actions related to the interactions [17]. The terminology of a multi-
agent system is given as a domain-specific ontology that enables agents to refer
to the same objects, actions and facts. The agents’ common ontology is crucial
for their successful interactions.

6 L. Cabac

Agent 1 Agent 2

Structure

Behavior

Agent 3

Interaction 1

Interaction 2

Fig. 2. Two dimensional matrix showing perspectives (behavior, structure)

A schematic two dimensional matrix is depicted in Figure 2 showing the inde-
pendence and interconnections of agents and interactions. Neither is there any
direct relationship between any pair of agents, nor between any pair of interac-
tions. Thus these architectural elements are independent and drawn in parallel
to each other. Agents and interactions are orthogonal because each agent is in-
volved in some interactions and the same holds the other way around. When an
agent and an interaction are coupled, a circle marks the interconnection point.

The general case for any two structural and/or behavioral elements is inde-
pendence. In the diagram interconnections are explicitly marked. The ontology,
which is omitted in the diagram, is the third dimension of perspectives. This per-
spective is orthogonal to the other two perspectives, but it tends to have many
interconnection points because each interaction and each agent needs parts of
the ontology definition to fulfill its purpose.

Since the three perspectives are orthogonal and independent within each per-
spective, it is easily possible to divide the tasks of design and implementation
into independent perspectives and independent parts. This means that different
interactions can be developed by independent sub-teams and different agents
can be designed by other independent sub-teams. Between agent teams and in-
teraction teams, coordination is needed for the crucial parts only (circles).

Following this method, the different parts of the system can be developed
independently and concurrently as long as there is enough coordination / syn-
chronization between intersecting groups.

In general it is not a good idea to assign tasks of orthogonal dimensions to the
same sub-team because then the responsibilities of the different dimensions might
become blurred. However, developers are well advised to look for similarities
between independent elements of the same dimension, like for example a set of
similar interactions. In such a situation, code reuse becomes possible if a sub-
team is responsible for multiple parallel elements.

The (agent-based) software system imposes its matrix structure onto the team
organization. In the metaphor of multi-agent system of developers this is natu-
rally supported.

MAS: A Guiding Metaphor for Software Development Projects 7

2.4 Communication, Coordination and Synchronization

We can identify four main phases when applying the guiding metaphor of a multi-
agent system of developers to the time schedule: (1) the requirements analysis,
(2) the (coarse) design of ontology/roles/interactions, (3) the concurrent and
highly interactive implementation of ontology/agents/interactions and (4) an
intense and concurrent integration and testing phase. The time schedule is iter-
ative in all phases, however, in normal settings iterations in phases two to four
would suffice.

start requirements
(coarse)
design

interactions

agents

ontology

integration deployment

m

nn

m

oo

Milestones

Fig. 3. Schematic and coarse Petri net model of the PAOSE development process

Figure 3 shows a schematic Petri net model of the development process. The
design phase results in several independent tasks for interaction, agent and on-
tology implementation.

The synchronizations between concurrent processes during implementation in
the form of communication between the groups have to be supported during de-
velopment, both through synchronous and asynchronous communication. This is
achieved by physical meetings (synchronous), through (web-based) tool support
(synchronous and asynchronous) and implicit communication in documentation
of activities and code (asynchronous). At the end of the implementation phase a
thorough integration phase is necessary to obtain a milestone / running system.
Each phase in itself is a process with its own structure.

While the processes of independent activities are concurrent, some synchro-
nizations are necessary during implementation between orthogonal groups (gray
arrows). Also phase shifts should be coordinated. This is implied in Figure 3 and
explicitly shown at integration, which should be entered synchronously by the
whole team.

All team members are attributed with the sociality of communicating agents.
The team structure is self-organized and controlled through participating devel-
opers by observation, negotiation, rules and norms.

Awareness of participants is an important factor in avoiding problems result-
ing from miscoordination. Unfortunately, the support for user awareness in our
tool-set is not sufficient yet. Thus, we have to compensate with extensive commu-
nication about changes in design and implementation. Nevertheless, some simple
elements in our communication platform exist, which enable us to track recent
changes. Improvements are being discussed.

8 L. Cabac

3 MAS of Developers in the Project Context

The concept of the guiding metaphor has to be backed up with the utilization in
the context of a multi-agent application development project. Here the guiding
metaphor can unveil its usefulness.

3.1 Employing the Guiding Metaphor

Following the guiding metaphor of multi-agent system of developers project or-
ganizers or initiators will be able to anticipate the needs of the team members
during the development. Good equipment, enough resources and an adequate
team composition are essential to any project. Here also the means of com-
munication, coordination, learning, reorganization and the possibility to take
responsibility are important parts in the development process. These processes
have to be supported by adequate means, for example regular meetings for direct
communication and teamwork sessions and/or a (web-based) communication sys-
tem for asynchronous (and synchronous) communication. These communication
means have to be integrated into the environment (platform) of the developers
(agents).

The organizers have a powerful means to guide the actions, the way of
thinking and the general behavior of participants in the context of the project.
Here the main responsibility is that the metaphor is well conveyed to all par-
ticipants. If all participants have a good notion of agent concepts, everyone
will be able to live the metaphor (and the team will profit from that). This
means that all participants are aware of the fact that participation (coordi-
nation, negotiation) in the development process and in the decision processes
of team members as well as the possibility for the team to exercise the so-
ciological prosperity is of importance. The ease of the adaption to the guiding
metaphor – borrowed from sociological theories about organizations – can lead to
higher motivation, integration and identification with the group and the common
goals, which in turn leads to quicker orientation in the project and higher
productivity.

In addition to the metaphor’s inherent organizational powers, the develop-
ers can benefit from a structural organization of the development process that
resembles the structure of the developed system.

3.2 Homomorphic Structure

The advantages to work with a homomorphic – similar – structure in software
organization and project organization are manifold. In general, they are the same
advantages as those of multi-agent systems over conventional paradigms.

The multi-agent system organization of the development team allows for and
supports distributed as well as concurrent development. In this context it is
important that developers act self-responsible and consider self-reorganization

MAS: A Guiding Metaphor for Software Development Projects 9

if necessary. Structures in the team should emerge from the processes during
development. Thus independence and flexibility as well as means for communi-
cation and mobility are supported in this approach as first-order concepts. One
main advantage of the similar structure for the developed software – and a suc-
cessful project – is that the same principles, concepts and organization help the
developers also to design a truly agent-oriented software system. Distribution,
autonomy and concurrency in the organizational structure will automatically
foster the same attributes in the designed system.

Some disadvantages also exist and – not surprising – these are the same dis-
advantages as those of multi-agent systems again. To succeed with the project
by employing the multi-agent system of developers metaphor a strong empha-
sis on communication and adaptive processes has to be made. This leads to a
large communication overhead. Due to the flexible and dynamical organization,
the inherent concurrency and distribution, the complexity of the project orga-
nization is very high. This leads to more management overhead (compared to a
non-distributed and non-concurrent development).

3.3 Experiences

Especially in our teaching projects the guiding metaphor of multi-agent sys-
tem of developers works extremely fine. This results to some extend from the
fact that our students have a well-founded background knowledge of basic and
advanced agent concepts. Usually these concepts are conveyed through concep-
tualized object Petri net models, which have a strong graphical representation
for concurrency, locality and hierarchical nesting.

The main aims of multi-agent system development (concurrent, independent
development) are reached with the support of the guiding metaphor. However,
it is still useful to gather the source code in a central repository even if parts of
the system are run exclusively in disjunct places. This eases the deployment of
system and framework.

In addition, common elements have to be made available to all members.
Many documents like overview diagrams (multi-agent system structure) or on-
tology definitions respectively models are also still designed in a central (non-
distributed) fashion. Here, still more flexibility can be added to the development
process. However, it is not essential to work concurrently (of independently) on
these elements, since the ontology for instance is meant to be common to all
agents as well as common to all developers. Moreover, these central specification
elements (especially ontology) can be used by the project leaders to actively
control the direction of the development. The software MAS ontology becomes
a common language for the developer MAS as well.

Many improvements in support of the development team, communication
means and increase of flexibility are possible and the extend of the guiding
metaphor has not reached its limits, yet. We would like to include direct and
indirect communication, inline documentation and workflow capabilities into
our development environments (Renew [18], Mulan [15,19,16], Eclipse) to

10 L. Cabac

better support the interactive means of the developers in their environment.
Web-based documentation and groupware features can also be more heavily
exploited.

4 Conclusion

In this work we present a guiding metaphor for the organization of (multi-agent)
application development projects. The guiding metaphor itself is taken from
agent technologies. It is the multi-agent system metaphor applied to the team
of developers (and other participants). By this self-reflective view on the organi-
zation of development teams a coherent structure in all parts of the system and
all processes is defined.

Guiding metaphors are well suited to give a common orientation in a devel-
opment team. The multi-agent system is, through its origination from socio-or-
ganizational structures, its generality, its ease of accessibility and its recognition
of distribution, well suited to serve as the guiding metaphor for project organi-
zation. We believe that it is an especially powerful metaphor when it comes to
multi-agent application development. And in the spirit of this guiding metaphor
we believe that the organizational structure and the teams notion of the guiding
metaphor is subject to change, adaption, self-organization and emergence. Thus
the power of the metaphor will improve during the development process.

The principle behind the usage of guiding metaphors can add to the socio-
organizational processes in the development team. Thus, the project managers
have a powerful concept tool5 that enables guidance on an abstract level.

With the organization of the development team as multi-agent system we
have achieved agent-oriented software engineering (AOSE) in two ways. In the
original meaning of the term AOSE the software system is the objective. In
our approach also the development team is oriented (guided) by the multi-agent
system metaphor.

Acknowledgements. I thank my colleagues Till Dörges, Michael Duvigneau,
Michael Köhler, Daniel Moldt, Christine Reese, Heiko Rölke and Matthias
Wester-Ebbinghaus for their participation in our AOSE projects as well as
for the fruitful discussions regarding the multi-agent system of developers
metaphor.

References

1. Wooldridge, M., Jennings, N., Kinny, D.: The Gaia methodology for agent-oriented
analysis and design. The International Journal of Autonomous Agents and Multi-
Agent Systems 3(3), 285–312 (2000)

5 A tool or concept to guide and organize (or even transmit) one’s thoughts. The
artificial German term Denkzeug [20], a mix of denken (to think) and Werkzeug
(tool), fits better.

MAS: A Guiding Metaphor for Software Development Projects 11

2. Zambonelli, F., Jennings, N., Wooldridge, M.: Developing multiagent systems: The
Gaia methodology. ACM Transactions on Software Engineering and Methodol-
ogy 12(3), 317–370 (2003)

3. DeLoach, S.: Engineering organization-based multiagent systems. In: Garcia, A.,
Choren, R., Lucena, C., Giorgini, P., Holvoet, T., Romanovsky, A. (eds.) Software
Engineering for Multi-Agent Systems IV. LNCS, vol. 3914, pp. 109–125. Springer,
Heidelberg (2006)

4. Padgham, L., Winikoff, M.: Prometheus: A pragmatic methodology for engineer-
ing intelligent agents. In: Proceedings of the OOPSLA 2002 Workshop on Agent–
Oriented Methodologies, pp. 97–108 (2002)

5. Sudeikat, J., Braubach, L., Pokahr, A., Lamersdorf, W.: Evaluation of agent–
oriented software methodologies - examination of the gap between modeling and
platform. In: Odell, J.J., Giorgini, P., Müller, J.P. (eds.) AOSE 2004. LNCS,
vol. 3382, pp. 126–141. Springer, Heidelberg (2005)

6. Petrie, C.J., Goldmann, S., Raquet, A.: Agent-based project management. In:
Veloso, M.M., Wooldridge, M.J. (eds.) Artificial Intelligence Today. LNCS (LNAI),
vol. 1600, pp. 339–363. Springer, Heidelberg (1999)

7. Züllighoven, H.: Object-Oriented Construction Handbook. dpunkt Verlag/Co-
publication with Morgan-Kaufmann, San Francisco (2004)

8. Lippert, M., Schmolitzky, A., Züllighoven, H.: Metaphor design spaces. In: March-
esi, M., Succi, G. (eds.) XP 2003. LNCS, vol. 2675, pp. 33–40. Springer, Heidelberg
(2003)

9. Wikström, K., Rehn, A.: Playing the live jazz of project man-
agement (2002), online http://www.reformingprojectmanagement.com/docs/
playing-the-live-jazz-of-Project-management.pdf

10. Mack, J.: Softwareentwicklung als Expedition: Entwicklung eines Leitbildes und
einer Vorgehensweise für die professionelle Softwareentwicklung. PhD thesis, Uni-
versität Hamburg, Fachbereich Informatik (2001)

11. Wooldridge, M., Jennings, N.R.: Intelligent agents: Theory and practice. Knowl-
edge Engineering Review 10(2), 115–152 (1995)

12. Ferber, J.: Multi-agent Systems: An Introduction to Distributed Artificial Intelli-
gence. Addison-Wesley, Harlow [u.a.] (1999)

13. WfMC: Workflow reference model (2005),
http://www.wfmc.org/standards/model.htm

14. Lüde, R.v., Spresny, D., Valk, R.: Sozionik: Modellierung soziologischer Theorie. In:
Lüde, R.v., Moldt, D., Valk, R. (eds.) Sozionik: Modellierung soziologischer The-
orie. Reihe: Wirtschaft—Arbeit—Technik, vol. 2, pp. 9–45. Lit-Verlag, Münster,
Hamburg, London (2003)

15. Köhler, M., Moldt, D., Rölke, H.: Modelling the structure and behaviour of Petri
net agents. In: Colom, J.-M., Koutny, M. (eds.) ICATPN 2001. LNCS, vol. 2075,
pp. 224–241. Springer, Heidelberg (2001)

16. Rölke, H.: Modellierung von Agenten und Multiagentensystemen—Grundlagen und
Anwendungen. Agent Technology—Theory and Applications, vol. 2. Logos Verlag,
Berlin (2004)

17. Cabac, L., Moldt, D., Rölke, H.: A proposal for structuring Petri net-based agent
interaction protocols. In: van der Aalst, W.M.P., Best, E. (eds.) ICATPN 2003.
LNCS, vol. 2679, pp. 102–120. Springer, Heidelberg (2003)

http://www.reformingprojectmanagement.com/docs/playing-the-live-jazz-of-Project-management.pdf
http://www.reformingprojectmanagement.com/docs/playing-the-live-jazz-of-Project-management.pdf
http://www.wfmc.org/standards/model.htm

12 L. Cabac

18. Kummer, O., Wienberg, F., Duvigneau, M.: Renew—The Reference Net Workshop.
Release 2.1. (March 2007), http://www.renew.de

19. Köhler, M., Rölke, H.: Modelling mobility and mobile agents using nets within nets.
In: Moldt, D. (ed.) MOCA’02. Proceedings of the Workshop on Modelling of Ob-
jects, Components, and Agents. Computer Science Department, Aarhus University
(2002)

20. Moldt, D.: Petrinetze als Denkzeug, Vogt-Kölln Str. 30, 22527 Hamburg, Univer-
sität Hamburg, Fachbereich Informatik, pp. 51–70 (August 2005)

http://www.renew.de

P. Petta et al. (Eds.): MATES 2007, LNAI 4687, pp. 13–24, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Model Transformation for Model Driven Development
of Semantic Web Enabled Multi-Agent Systems

Geylani Kardas1, Arda Goknil2, Oguz Dikenelli3, and N. Yasemin Topaloglu3

1 Ege University, International Computer Institute, 35100 Bornova, Izmir, Turkey
geylani.kardas@ege.edu.tr

2 Software Engineering Group, University of Twente, 7500 AE, Enschede, The Netherlands
a.goknil@ewi.utwente.nl

3 Ege University, Department of Computer Engineering, 35100 Bornova, Izmir, Turkey
{oguz.dikenelli, yasemin.topaloglu}@ege.edu.tr

Abstract. Model Driven Development (MDD) provides an infrastructure that
simplifies Multi-agent System (MAS) development by increasing the
abstraction level. In addition to defining models, transformation process for
those models is also crucial in MDD. On the other hand, MAS modeling should
also take care of emerging requirements of MAS deployment on the Semantic
Web environment. Hence, in this paper we propose a model transformation
process for MDD of Semantic Web enabled MASs. We first define source and
target models for the transformation regarding the modeling of interactions
between agents and semantic web services and then grant mappings between
these source and model entities to derive transformation rules and constraints.
Finally we realize the whole transformation for a real MAS framework by using
a well-known model transformation language named ATL.

1 Introduction

The design and implementation of Multi-agent Systems (MAS) becomes more
complex and hard to implement when new requirements and interactions for new
agent environments such as Semantic Web [2] are considered. To work in a higher
abstraction level is of critical importance for the development of MASs since it is
almost impossible to observe code level details of MAS due to their internal
complexity, distributedness and openness.

Model Driven Development (MDD) [20], which aims to change the focus of
software development from code to models, provides an infrastructure that simplifies
the development of future’s MASs. Such MDD application increases the abstraction
level in MAS development. Although there are ongoing efforts in model driven MAS
development, a significant deficiency exists in current studies when we consider
modeling of agent systems working on Semantic Web environment. The main
challenge in here is to provide new entities and define their relations with the
traditional MAS entities for MAS metamodels pertaining to the Semantic Web and
employ those new metamodels in a neatly presented model transformation process
within the scope of MDD.

14 G. Kardas et al.

In our previous work, we first provided a conceptual MAS architecture [13] in
which autonomous agents can also evaluate semantic data and collaborate with
semantically defined entities such as semantic web services by using content
languages and then we derived entities of a MAS metamodel from the introduced
architecture and defined their relations [14]. This new MAS metamodel paves the way
for MDD of Semantic Web enabled agent systems in our studies by presenting an
alternative for platform independent metamodel of such agent systems.

Definition of such a model is a prerequisite to conduct model transformation which
is the key activity in MDD. Hence in this paper, we present a model transformation
process for MDD of agent systems working on Semantic Web. A model conforming
to above MAS metamodel is transformed into another model conforming to model of
a real agent platform within the introduced process. The designed Semantic Web
enabled MAS can be implemented on this real platform by applying the
transformation. To accomplish this, we first define source and target metamodels for
the transformation and then provide mappings between entities of these models to
derive transformation rules and constraints. Finally we realize the whole
transformation by using a pretty known model transformation language.

The paper is organized as follows: In Sect. 2, we briefly discuss how MDD can be
applied for the development of the Semantic Web enabled agent systems. Models for
the related transformation are introduced in Sect. 3. Application of the model
transformation is discussed in Sect. 4. Section 5 covers related work on MDD of
agent systems. Conclusion and future work are given in Sect. 6.

2 MDD for Semantic Web Enabled MAS Development

MDD approach considers the models as the main artifacts of software development.
We use Model Driven Architecture (MDA) [15] which is one of the realizations of
MDD to support the relations between platform independent and various platform
dependent agent artifacts to develop semantic web agents.

MDA defines several model transformations which are based on the Meta-Object-
Facility (MOF) [15] framework. These transformations are structured in a three-
layered architecture: the Computation Independent Model (CIM), the Platform
Independent Model (PIM), and the Platform Specific Model (PSM). A CIM is a view
of a system from the computation independent viewpoint [15]. CIM requirements
should be traceable to the PIM and PSM constructs by marking the proper elements in
CIM. For instance, although the CIM does not have any information about agents and
semantic web services, entities in CIM are marked in an appropriate notation to trace
the agents and semantic web services in the PIM of the Semantic Web enabled MAS.
The PIM specifies a degree of platform independency to be suitable for use with a
number of different platforms of similar type [15]. In our perspective, the PIM of a
Semantic Web enabled MAS should define the main entities and interactions which
are derived from the above mentioned conceptual architecture. Finally, PSM
combines PIM with additional details of the platform implementation. The platform
independent entities in PIM of semantic web agents are transformed to PSM of an
implemented Semantic Web enabled agent framework like SEAGENT [3]. The
flexible part of this approach is that the PIM enables to generate different PSMs of

 Model Transformation for MDD of Semantic Web Enabled MASs 15

Semantic Web enabled agent frameworks automatically. These PSMs can be
considered as the realizations of our conceptual architecture.

The development process and the MOF based transformations between the MDA
models are given in Fig. 1. In the depicted transformation pattern, a source model sm
is transformed into a target model tgm. The transformation is driven by a
transformation definition written in a transformation language [5] [12]. The source
model, the target model and the transformation definition conform to their
metamodels SMM, TgMM and TMM respectively. The transformations defined from
CIM to PIM and PIM to PSM use the metamodels of CIMs, PIMs and PSMs for
source and target metamodels in the transformation pattern.

Fig. 1. Transformation Steps in MDA

We applied the transformation mechanism depicted in Fig. 1 for models
conforming to our Semantic Web enabled agent metamodel [14] and SEAGENT [3]
model respectively. Due to space limitations, the whole transformation process
couldn’t be discussed in this paper. However, we believe that interaction between
semantic agents and semantic web services is crucial for development of such MASs.
Hence, rest of the paper describes modeling of this interaction and whole process of
the related transformation.

3 Models for Agent – Semantic Web Service Interaction

Model transformation requires syntactical and semantic definitions of models which
are provided by metamodels. We introduced a metamodel for Semantic Web enabled
MASs in [14] which extends FIPA Modeling TC’s Agent Class Superstructure
Metamodel (ACSM) [16]. By extending ACSM, we do not need to re-define basic
entities of the agent domain. Also, ACSM models assignment of agents to roles by
taking into consideration of group context. Therefore, extending ACSM clarifies
relatively blurred associations between “Semantic Organization”, “Semantic Agent”
and “Role” concepts in our metamodel by appropriate inclusion of ACSM’s Agent
Role Assignment entity. However, ACSM extension is not sufficient and we provide

16 G. Kardas et al.

new constructs for our metamodel by extending UML 2.0 Superstructure and
Ontology UML Profile [4].

Ontology entities of the metamodel are defined as extensions of the Ontology
element of the Ontology UML Profile (OUP) defined in [4]. OUP captures ontology
concepts with properties and relationships and provides a set of UML elements
available to use as semantic types in our metamodel. By deriving the semantic
concepts from OUP, there will be already-defined UML elements to use as semantic
concepts within the metamodel.

The aim of this study is to present model transformation for developing Semantic
Web enabled MAS by employing our metamodel so full specification of the model is
beyond the scope of this paper. The specification of the complete model can be found
in [14]. In here, we discuss on its zoomed part in which the interaction between agents
and semantic web services is elaborated.

The metamodel given in Fig. 2 is the PIM which will be our source metamodel
during the transformation process. This metamodel provides modeling the agent –
service interaction from the point of entity aspect.

Fig. 2. The metamodel of the interaction between Agents and Semantic Web Services

Semantic Web Agent is an autonomous entity which is capable of interaction with
both other agents and semantic web services within the environment. It is a special
form of the ACSM’s Agent class due to its entity capabilities. It includes new features
in addition to Agent classified instance.

The Role concept in the metamodel is an extension of Agent Role Classifier due to
its classification for roles the semantic agents are capable of playing at a given time.

 Model Transformation for MDD of Semantic Web Enabled MASs 17

This conforms to the Agent – Agent Role Classifier association defined in ACSM
[16]. In here, we also define its one sub-entity called Architectural Role. This role
defines a mandatory Semantic Web enabled MAS role that should be played at least
one agent inside the platform regardless of the organization context.

Semantic Web Agents have Plans to discover and execute Semantic Web Services
dynamically. In order to discover service capabilities, agents need to communicate
with a service registry. For this reason, the model includes a specialized agent entity,
called Semantic Service Matchmaker Agent. This meta-entity represents matchmaker
agents which store capability advertisements of semantic web services within a MAS
and match those capabilities with service requirements sent by the other platform
agents. This agent plays the Registry Role which is a specialized Architectural Role.

A Semantic Web Service represents any service (except agent services) whose
capabilities and interactions are semantically described within a Semantic Web
enabled MAS. Each service may be a web service or another service with predefined
invocation protocol in real-life implementation. But they should have a semantic web
interface to be used by autonomous agents of the platform.

When we consider various semantic web service modeling languages such as
OWL-S [21] and WSMO [22], it is clear that services are represented by three
semantic documents: Service Interface, Process Model and Physical Grounding.
Service Interface is the capability representation of the service in which service
inputs, outputs and any other necessary service descriptions are listed. Process Model
describes internal composition and execution dynamics of the service. Finally
Physical Grounding defines invocation protocol of the web service. These Semantic
Web Service components are given in the metamodel with Interface, Process and
Grounding entities respectively. Semantic input, output and web service definitions
used by those service components are exported from the UML Semantic Web Service
Profile proposed in [8].

Semantic Web Agents have two consecutive plans to interact with Semantic Web
Services. Semantic Service Finder Plan is a Plan in which discovery of candidate
semantic web services takes place. During this plan execution, the agent
communicates with the service matchmaker of the platform to determine proper
semantic services. After service discovery, the agent applies the Semantic Service
Executor Plan in order to execute appropriate semantic web services. Process model
and grounding mechanism of the service are used within the plan.

The input model of our transformation process is an instance model which conforms
to the above mentioned interaction metamodel. This source model for the
transformation is given in Fig. 3. The model depicts the interaction between a Hotel
Client Agent and a Reservation Service within a MAS working in Tourism domain.
The client agent is a Semantic Web Agent which reserves hotel rooms on behalf of its
human users. During its task execution, it needs to interact with a semantic web service
called Reservation Composite Service. Matchmaker Agent is the service matcher of the
related agent platform. Hotel Client Agent determines appropriate semantic service by
asking the Matchmaker Agent and interacts with the determined semantic service by
executing service’s process description and using service’s grounding.

To realize MDD of the MAS defined in Fig. 3, we employ the transformation
between PIM and PSM shown in Fig. 1. We can facilitate implementation of
the specified agent system in various Semantic Web enabled agent development

18 G. Kardas et al.

Fig. 3. An instance model for the agent – service interaction within a MAS working in Tourism
domain. The model is used in the transformation process as the source model.

environments such as SEAGENT [3] if we provide metamodels of the corresponding
frameworks as platform specific metamodels and define transformation rules.

In this study, our target platform for platform specific models is the SEAGENT
framework. SEAGENT is implemented in Java and provides libraries to develop
Semantic Web enabled MASs also in Java. Java classes and objects are concrete
realizations of our PIM entities in the platform specific level and target (output)
model of the transformation will be a Java model (composed of SEAGENT classes
and their associations). This Java model conforms to the metamodel of Java [9].

Table 1. Mappings between the metamodel entities and SEAGENT classes

Metamodel Entity SEAGENT Class Explanation
Role
Semantic Web Agent (SWA)

Agent Both Role and SWA in the
metamodel corresponds to the
Agent in SEAGENT.

Registry Role
Semantic Service Matchmaker
Agent (SSMA)

Semantic_Service_Matcher
(SSM)

Both Registry Role and SSMA
in the metamodel corresponds to
the SSM in SEAGENT.

Semantic Service Finder Plan DiscoverCandidateService
Semantic Service Executor Plan EnactService

Corresponding SEAGENT
entities are Behaviour classes.

Semantic Web Service OWL-S_Service
Interface OWL-S_Profile
Process OWL-S_Process
Grounding OWL-S_Grounding

In SEAGENT, capabilities and
process models of semantic web
services are defined by using
OWL-S markup language.

The crucial part of the transformation process is to define transformation rules in a
predefined transformation language. Those rules are based on the mappings between
source and target model entities. The rules also include formal representation of
mapping constraints which are applied during transformation. In our case, we have to
define mappings between entities of the interaction metamodel and SEAGENT

 Model Transformation for MDD of Semantic Web Enabled MASs 19

framework. In Table 1, some of the entity mappings are listed. After execution of the
whole transformation process, we achieved platform specific model of our MAS. This
output (target) model is given at the end of the following section (in Fig. 4).

4 Application of the Transformation Using ATL

We implemented the whole transformation process discussed in this study by using
ATLAS INRIA & LINA research group’s ATL (Atlas Transformation Language)
[12]. ATL is a widely accepted model transformation language, specified as both a
metamodel and a textual concrete syntax. It also provides a development environment
as a plugin in Eclipse [6]. These advantages cause us to prefer ATL.

Referring to transformation process depicted in Fig. 1, transformation metamodel
(TMM) is ATL and source, target and transformation metamodels conform to Ecore
metametamodel [6] in our case. Our source model (SM) is the platform independent
model given in Fig. 3 which comforms to metamodel given in Fig. 2. Our target
metamodel is the metamodel of the Java language [9].

In order to use ATL engine, we need to prepare Eclipse Modeling Framework
(EMF) encodings -ecore files- of both metamodels (SMM and TgMM). EMF
provides its own file format (.ecore) for model and metamodel encoding. However
manual edition of Ecore metamodels is particularly difficult with EMF. In order to
make this common kind of editions easier, the ATL Development Tools (ADT)
include a simple textual notation dedicated to metamodel edition: the Kernel
MetaMetaModel (KM3) [11]. This textual notation eases the edition of metamodels.
Once edited, KM3 metamodels can be injected into Ecore format using ADT
integrated injectors. More information about such injections can be found in [11].

Due to space limitations, it is impossible to give whole KM3 representations and
ATL rule definitions of our implementation. To give some flavor of the
implementation in here, we describe transformation of the Semantic Web Agent
source entity into its corresponding entity in Java based SEAGENT framework.

Following is the part of the KM3 file in which Semantic Web Agent is represented
with its associations for Role and Plan entities:

class SemanticWebAgent {
attribute name : String;
reference apply[0-*] : Plan oppositeOf appliedBy;
reference play[0-*] : Role oppositeOf playedBy; }

class Role {
attribute name : String;
reference playedBy[0-*] : SemanticWebAgent oppositeOf play; }

class Plan {
attribute name : String;
reference appliedBy [0-*] : SemanticWebAgent oppositeOf apply; }

According to the entity mappings, heuristic rules for the transformation should be

given in ATL. Each ATL rule for the transformation defines a source model element
in its source part and has the full definition of constraints to query the whole source
pattern in the model. For instance, the Semantic Web Agent class in the source part of
SemanticWebAgent2Agent rule needs the full constraint definition of the source
pattern to match in the model because the constraint part requires constraints of other

20 G. Kardas et al.

source pattern elements related to the Semantic Web Agent class to bind the
appropriate model element. The helper rules are required in the constraint part to
define the relationships between the pattern elements. Following is the
SemanticWebAgent2Agent ATL rule:

1 rule SemanticWebAgent2Agent {
2 from ag: Agent!SemanticWebAgent(
3 ag.partofPatternforWebAgent)
4 to c:JAVA!Class (
5 name<- ag.name,
6 associatedClass<-Sequence{ag.executorPlans, ag.finderPlans})
7 }

In rule SemanticWebAgent2Agent, we need to call helper rule for the relations

of the SemanticWebAgent Class with its role and plan attributes. We also use another
rule in order to realize mapping of the SemanticWebAgent class into its
corresponding target model entity (a JAVA class in here). The same helper rules and
constraint repetitions may be required for other rules in the transformation. Hence this
kind of rule decomposition makes the definitions easier. The helper
partofPatternforWebAgent called in line 3 of the rule
SemanticWebAgent2Agent is given below:

1 helper context Agent!SemanticWebAgent def:
2 partofPatternforWebAgent : Boolean =
3 if not self.oclIsTypeOf(Agent!SemanticServiceMatchmakerAgent)
4 and not self.play.oclIsTypeOf(Agent!RegistryRole)
5 and self.apply->
6 select(p|p.oclIsTypeOf(Agent!SemanticServiceExecutorPlan))->
7 forAll(p|p.execute.owner = p.use.owner)
8 and self.apply->
9 select(p|p.oclIsTypeOf(Agent!SemanticServiceFinderPlan))->
10 forAll(p|p.interact.advertise->
11 exists(intfc|intfc=p.discover))
12 then true
13 else false
14 endif;

The helpers correspond to the constraint part of the related rules. There are two

types of helper in our transformations. The first type helpers like
partofPatternforWebAgent are used to check if the model element is the part of
the pattern or not. The second type helpers (e.g. finderPlans and executorPlans)
are used to select the appropriate elements for the associations between target
elements within the transformation. Following is the finderPlans helper which is
called in line 6 of the rule SemanticWebAgent2Agent:

1 helper context Agent!SemanticWebAgent def:
2 finderPlans : Sequence(Agent!SemanticServiceFinderPlan) =
3 self.apply->select(fp|fp.oclIsTypeOf(
4 Agent!SemanticServiceFinderPlan))->select(fndpln|
5 fndpln.appliedBy->forAll(agnt| not
6 agnt.oclIsTypeOf(Agent!SemanticServiceMatchmakerAgent)
7 and not agnt.play.oclIsTypeOf(Agent!RegistryRole))
8 and fndpln.interact.play.oclIsTypeOf(Agent!RegistryRole)
9 and fndpln.interact.advertise->
10 exists(intfc|intfc.discoveredBy=fndpln)
11 and fndpln.discover.advertisedBy.interactedBy=fndpln);

 Model Transformation for MDD of Semantic Web Enabled MASs 21

The ecore model conforming to source metamodel includes the following model
instance in which the Semantic Web Agent called “Hotel Client Agent” is defined.
References to the other instances are omitted.

<xmi:XMI xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI" xmlns="Agent">

<SemanticWebAgent name="Hotel Client Agent" apply="#/2 #/3" play="#/1" />
<Role name="Hotel Client Role" playedBy="#/0" />
<SemanticServiceFinderPlan name="Hotel Client's Service Discovery Plan"
 appliedBy="#/0" interact="..." discover="..." />
<SemanticServiceExecutorPlan name="Hotel Client's Service Invocation Plan"
 appliedBy="#/0" execute="..." use="..." />

</xmi:XMI>

During the transformation process, the ATL engine applies the above rule

(SemanticWebAgent2Agent) in order to transform “Hotel Client Agent” into a
SEAGENT Agent class. The ecore representation of this obtained target instance is
given below. References to the other instances are omitted again:

<xmi:XMI xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI" xmlns="JAVA">
<Class name="Hotel Client Agent" associatedClass="/1 /2"/>
<Class name="Hotel Client's Service Discovery Plan" superClass=".." associatedClass="/0"/>
<Class name="Hotel Client's Service Invocation Plan" superClass=".." associatedClass="/0"/>
</xmi:XMI>

After execution of the whole process in ATL environment, we obtained

the platform specific (SEAGENT) model of the tourism MAS given in Fig. 4.
Each entity of the model is a Java class. Upper part of the model includes the
SEAGENT planner components. In the SEAGENT framework, agents execute
their tasks according to Hierarchical Task Networks (HTN) [23]. As a requirement
of HTN, tasks might be either complex (called behaviors) or primitive
(called actions). Tasks have a name describing what they are supposed to do and
have zero or more provisions (information needs) and outcomes (execution
results). Classes for the tourism MAS take place beneath the agent plan
components. Model includes the Hotel_Client_Agent that discovers hotel
reservation services with semantic capability interfaces according to its
Hotel_Client_Service_Discovery_Plan. It communicates with the
Matchmaker_Agent of the system during execution of this plan. Discovery
plan extends DiscoverCandidateService behavior. This behavior is the
corresponding entity for the “Semantic Service Finder Plan” meta-entity
given in our PIM. Similarly, agent’s service execution plan
(Hotel_Client_Service_Invocation_Plan) is an EnactService behavior
and is the counterpart of our PIM’s “Semantic Service Executor Plan” meta-entity.
Semantic web services are OWL-S services in SEAGENT. Hence, our reservation
service is a subclass of OWL_S_Service class after the transformation as
expected.

22 G. Kardas et al.

Fig. 4. The target MAS model obtained after the transformation between PIM and PSM

5 Related Work

Recently, model driven approaches have been recognized and become one of the
major research topics in agent oriented software engineering (AOSE) community. As
briefly mentioned below, some of the studies intend to apply the whole MDD process
for MAS development while some of them only utilize either metamodels or model
transformation as needed. Conceptual MDA definitions and study on MDA based
MAS research directions are also discussed in some of the studies e.g. [1] [7]. Bauer
and Odell discuss the use of UML 2.0 and MDA for agent-based systems in [1]. They
also discuss which aspects of a MAS could be considered at CIM and PIM. The
Cougaar MDA discussed in [7] provides a higher application composition for agent
systems by elevating the composition level from individual components to domain
level model specifications in order to generate software artifacts. Jayatilleke et al. [10]
provide a toolkit for their conceptual framework of domain independent component
types in order to make their approach consistent with MDD and use agent models to
generate executable codes.

On the other hand, the study defined in [19] is a good example that applies the
transformation process of MDA which is depicted in Fig. 1. In that study, Perini and
Susi [19] use TEFKAT model transformation language [5] to implement the
transformation process in automating conversions from their methodology structures
to UML models. In [17], Pavon and his friends reformulate their agent-oriented
methodology called INGENIAS in terms of the Model Driven Development
paradigm. This reformulation increases the relevance of the model creation,
definition and transformation in the context of multi-agent systems. A similar MAS

 Model Transformation for MDD of Semantic Web Enabled MASs 23

methodology revision is discussed in [18]. Ideas and standards from MDA are
adopted both in refining the modeling process algorithm and building tools within this
study.

Regarding all of the above studies, it can be said that current application of the
MDD on MAS development is in its preliminary phase. Neither a complete MDD
process nor a common MAS metamodel has been developed. On the other hand,
Semantic Web [2] technology and its required constructs on MASs are not supported
within those studies. We believe this shortage in question is crucial when
development of future MASs is considered. Therefore providing a Semantic Web
enabled MDD process for MAS development is the key difference between our study
and those previous studies.

6 Conclusion and Future Work

A model transformation process for the model driven development of Semantic Web
enabled MASs is discussed in this paper. The study in here presents description of a
whole process in which the source and the target metamodels, entity mappings and
the implementation of the transformation for a real MAS framework are all included.

In fact, our aim is to enhance this study by providing code generation (at least in
template level) for Semantic Web enabled MAS implementations. That means a MAS
developer just creates a model of the MAS conforming to the platform independent
model and then chooses the desired physical implementation environment (e.g.
SEAGENT) for the system. Finally, our tool generates template codes for the
developer by using target environment’s metamodel, model and transformations. The
developer completes the software for the full deployment of the system. Therefore, in
addition to improvement studies on model transformation (e.g. elaborating mappings
in entity attribute level, clarifying input/output and precondition/effect representations
of semantic web service entities on the model), we are currently working on code
generation from target models we gained. We intend to employ a source code
generator such as JET (Java Emitter Templates) Engine [6] in order to generate
platform specific MAS software as the final product of our MDD process.

References

[1] Bauer, B., Odell, J.: UML 2.0 and Agents: How to Build Agent-based Systems with the
New UML Standard. Journal of Engineering Applications of Artificial Intelligence 18(2),
141–157 (2005)

[2] Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web. Scientific American 284(5),
34–43 (2001)

[3] Dikenelli, O., Erdur, R.C., Kardas, G., Gümüs, Ö., Seylan, I., Gürcan, Ö., Tiryaki, A.M.,
Ekinci, E.E.: Developing Multi Agent Systems on Semantic Web Environment using
SEAGENT Platform. In: Dikenelli, O., Gleizes, M.-P., Ricci, A. (eds.) ESAW 2005.
LNCS (LNAI), vol. 3963, pp. 1–13. Springer, Heidelberg (2006)

[4] Djuric, D.: MDA-based Ontology Infrastructure. International Journal on Computer
Science and Information Systems 1(1), 91–116 (2004)

24 G. Kardas et al.

[5] Duddy, K., Gerber, A., Lawley, M.: Model Transformation: A declarative, reusable
patterns approach. In: 7th International Enterprise Distributed Object Computing
Conference, pp. 174–185. IEEE Computer Society Press, Los Alamitos (2003)

[6] Eclipse Open Development Platform, http://www.eclipse.org
[7] Gracanin, D., Singh, H.L., Bohner, S.A., Hinchey, M.G.: Model-Driven Architecture for

Agent-Based Systems. In: Hinchey, M.G., Rash, J.L., Truszkowski, W.F., Rouff, C.A.
(eds.) FAABS 2004. LNCS (LNAI), vol. 3228, pp. 249–261. Springer, Heidelberg (2004)

[8] Gronmo, R., Jaeger, M.C., Hoff, H.: Transformations between UML and OWL-S. In:
Hartman, A., Kreische, D. (eds.) ECMDA-FA 2005. LNCS, vol. 3748, pp. 269–283.
Springer, Heidelberg (2005)

[9] Java Metamodel, http://www.eclipse.org/gmt/am3/zoos/atlanticUMLZoo/#JAVA
[10] Jayatilleke, G.B., Padgham, L., Winikoff, M.: A Model Driven Development Toolkit for

Domain Experts to Modify Agent Based Systems. In: Padgham, L., Zambonelli, F. (eds.)
AOSE VII / AOSE 2006. LNCS, vol. 4405, Springer, Heidelberg (2007)

[11] Jouault, F., Bezivin, J.: KM3: A DSL for Metamodel Specification. In: Gorrieri, R.,
Wehrheim, H. (eds.) FMOODS 2006. LNCS, vol. 4037, pp. 171–185. Springer,
Heidelberg (2006)

[12] Jouault, F., Kurtev, I.: Transforming Models with ATL. In: Bruel, J.-M. (ed.) MoDELS
2005. LNCS, vol. 3844, pp. 128–138. Springer, Heidelberg (2006)

[13] Kardas, G., Goknil, A., Dikenelli, O., Topaloglu, N.Y.: Metamodeling of Semantic Web
Enabled Multiagent Systems. In: Weyns, D., Holvoet, T. (eds.) Multiagent Systems and
Software Architecture, Proceedings of the Special Track at Net.ObjectDays, Erfurt,
Germany, September 19, 2006, pp. 79–86. Katholieke Universiteit Leuven, Belgium
(2006)

[14] Kardas, G., Goknil, A., Dikenelli, O., Topaloglu, N.Y.: Modeling the Interaction between
Semantic Agents and Semantic Web Services using MDA Approach. In: O’Hare, G., et
al. (eds.) ESAW 2006. LNCS (LNAI), vol. 4457, pp. 209–228. Springer, Heidelberg
(2007)

[15] OMG Specifications, http://www.omg.org
[16] Odell, J., Levy, R., Nodine M.: FIPA Modeling TC: Agent Class Superstructure

Metamodel, http://www.omg.org/docs/agent/04-12-02.pdf
[17] Pavon, J., Gomez, J., Fuentes, R.: Model Driven Development of Multi-Agent Systems.

In: Rensink, A., Warmer, J. (eds.) ECMDA-FA 2006. LNCS, vol. 4066, pp. 284–298.
Springer, Heidelberg (2006)

[18] Penserini, L., Perini, A., Susi, A., Mylopoulos, J.: From Stakeholder Intentions to
Software Agent Implementations. In: Dubois, E., Pohl, K. (eds.) CAiSE 2006. LNCS,
vol. 4001, pp. 465–479. Springer, Heidelberg (2006)

[19] Perini, A., Susi, A.: Automating Model Transformations in Agent-Oriented Modeling. In:
Müller, J.P., Zambonelli, F. (eds.) AOSE 2005. LNCS, vol. 3950, pp. 167–178. Springer,
Heidelberg (2006)

[20] Selic, B.: The Pragmatics of Model-Driven Development. IEEE Software 20(1), 19–25
(2003)

[21] The Semantic Markup for Web Services (OWL-S), http://www.daml.org/services/owl-s
[22] Web Service Modeling Ontology, http://www.wsmo.org/
[23] Williamson, M., Decker, K., Sycara, K.: Unified Information and Control Flow in

Hierarchical Task Networks. In: Baral, C. (ed.) Theories of Action, Planning, and Robot
Control: Bridging the Gap. Papers from the AAAI Workshop, Technical Report WS-96-
07, pp. 142–150. AAAI Press, Menlo Park CA (1996)

SmartResource Platform and Semantic Agent
Programming Language (S-APL)

Artem Katasonov and Vagan Terziyan

Agora Center, University of Jyväskylä
P.O. Box 35, FIN-40014, Jyväskylä, Finland

artem.katasonov@jyu.fi, vagan@it.jyu.fi

Abstract. Although the flexibility of agent interactions has many advantages
when it comes to engineering a complex system, the downside is that it leads
to certain unpredictability of the run-time system. Literature sketches two major
directions for search for a solution: social-level characterization of agent sys-
tems and ontological approaches to inter-agent coordination. Especially the latter
direction is not yet studied much by the scientific community. This paper de-
scribes our vision and the present state of the SmartResource Platform. The main
distinctive features of the platform are externalization of behavior prescriptions,
i.e. agents access them from organizational repositories, and utilization of the
RDF-based Semantic Agent Programming Language (S-APL), instead of com-
mon Prolog-like languages.

1 Introduction

When it comes to developing complex, distributed software-based systems, the agent-
based approach was advocated to be a well suited one [1]. From the implementation
point of view, agents are a next step in the evolution of software engineering approaches
and programming languages, the step following the trend towards increasing degrees of
localization and encapsulation in the basic building blocks of the programming models
[2]. After the structures, e.g., in C (localizing data), and objects, e.g., in C++ and Java
(localizing, in addition, code, i.e. an entity’s behavior), agents follow by localizing their
purpose, the thread of control and action selection.

The actual benefit of the agent-oriented approach arises from the fact that the no-
tion of an agent is also appropriate as a basis for the analysis of the problem to be
solved by the system. Many processes in the world can be conceptualized using an
agent metaphor; the result is either a single agent (or cognitive) description or a multi-
agent (or social) description [3]. Jennings [1] argued that agent-oriented decompositions
(according to the purpose of elements) are an effective way of partitioning the problem
space of a complex system, that the key abstractions of the agent-oriented mindset are
a natural means of modeling complex systems, and that the agent-oriented philosophy
for modeling and managing organizational relationships is appropriate for dealing with
the dependencies and interactions that exist in complex systems.

The problem of crossing the boundary from the domain (problem) world to the ma-
chine (solution) world is widely recognized as a major issue in software and systems

P. Petta et al. (Eds.): MATES 2007, LNAI 4687, pp. 25–36, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

26 A. Katasonov and V. Terziyan

engineering. Therefore, when it comes to designing software, the most powerful ab-
stractions are those that minimize the semantic distance between the units of analysis
that are intuitively used to conceptualize the problem and the constructs present in the
solution paradigm [2]. A possibility to have the same concept, i.e. agent, as the cen-
tral one in both the problem analysis and the solution design and implementation can
make it much easier to design a good solution and to handle complexity. In contrast,
e.g. the object-oriented approach has its conceptual basis determined by the underlying
machine architecture, i.e. it is founded on implementation-level ontological primitives
such as object, method, invocation, etc. Given that the early stages of software de-
velopment are necessarily based on intentional concepts such as stakeholders, goals,
plans, etc, there is an unavoidable gap that needs to be bridged. [4] even claimed that
the agent-oriented programming paradigm is the only programming paradigm that can
gracefully and seamlessly integrate the intentional models of early development phases
with implementation and run-time phases. In a sense, agent-oriented approach post-
pones the transition from the domain concepts to the machine concepts until the stage
of the design and implementation of individual agents (given that those are still to be
implemented in an object-oriented programming language).

Although the flexibility of agent interactions has many advantages when it comes to
engineering complex systems, the downside is that it leads to unpredictability in the run
time system; as agents are autonomous, the patterns and the effects of their interactions
are uncertain [2]. This raises a need for effective coordination, cooperation, and negoti-
ation mechanisms. (Those are in principle distinct, but the word “coordination” is often
used as a general one encompassing all three; so for the sake of brevity we will use it like
that too.) Jennings [2] discussed that it is common in specific systems and applications
to circumvent these difficulties, i.e. to reduce the system’s unpredictability, by using
interaction protocols whose properties can be formally analyzed, by adopting rigid and
preset organizational structures, and/or by limiting the nature and the scope of the agent
interplay. However, Jennings asserted that these restrictions also limit the power of the
agent-based approach; thus, in order to realize its full potential some longer term solu-
tions are required. Emergence of such a longer term solution that would allow flexible
yet predictable operation of agent systems seems to be a prerequisite for wide-scale
adoption of the agent-oriented approach.

The available literature sketches two major directions of search for such a solution:

– D1: Social level characterization of agent-based systems. E.g. [2] stressed the need
for a better understanding of the impact of sociality and organizational context
on an individual’s behavior and of the symbiotic link between the behavior of the
individual agents and that of the overall system.

– D2: Ontological approaches to coordination. E.g. [5] asserted a need for common
vocabulary for coordination, with a precise semantics, to enable agents to commu-
nicate their intentions with respect to future activities and resource utilization and
get them to reason about coordination at run time. Also [6] put as an issue to resolve
the question about how to enable individual agents to represent and reason about
the actions, plans, and knowledge of other agents to coordinate with them.

Recently, some progress has been made with respect to D1, resulting, e.g., in elab-
oration of the concept of a role that an agent can play in an organization (see Sect. 2).

SmartResource Platform and Semantic Agent Programming Language (S-APL) 27

However, with respect to D2 very little has been done. Bosse and Treur [3] discussed
that the agent perspective entails a distinction between the following different types of
ontologies: an ontology for internal mental properties of the agent A, MentOnt(A), for
properties of the agent’s (physical) body, BodyOnt(A), for properties of the (sensory
or communication) input, InOnt(A), for properties of the (action or communication)
output, OutOnt(A), of the agent, and for properties of the external world, ExtOnt(A).
Using this distinction, we could describe the state of the art as following. The work
on explicitly described ontologies was almost exclusively concerned with ExtOnt(A),
i.e. the domain ontologies. MentOnt(A) comes for free when adopting a certain agent’s
internal architecture, such as Beliefs-Desires-Intentions (BDI) [7]. Also, the communi-
cation parts of InOnt(A) and OutOnt(A) come for free when adopting a certain commu-
nication language, such as FIPA’s ACL. However, BodyOnt(A), i.e. the perceptors and
actuators the agent has, sensory part of InOnt(A), i.e. the agent’s perception patterns,
and action part of OutOnt(A), e.g. the agent’s acting patterns, are not usually treated.
However, sharing these ontologies is a necessary precondition for agents’ awareness of
each other’s actions, i.e. for D2. Already referred to article by [5] is one of the first
endeavors into this direction, which however only introduced and analyzed some of the
relevant concepts, such as resource, activity, etc.

In our work, we attempt to provide a solution advancing into both D1 and (espe-
cially) D2 and somewhat integrating both. This paper describes the present state of our
SmartResource Platform and the central to it Semantic Agent Programming Language
(S-APL). The rest of the paper is structured as follows. Section 2 presents some basic
thinking leading to our approach and comments on the related work. Section 3 describes
the architecture of the SmartResource Platform, while Sect. 4 describes S-APL. Finally,
Sect. 5 concludes the paper.

2 Motivation and Related Work

On the landscape of research in agent-based systems, we can identify two somewhat
independent streams of research, each with its own limitations. The first stream is the
research in multi-agent systems (MAS); the second stream is the research in agents’
internal architectures and approaches to implementation.

Researchers in MAS have contributed with, among others, various methodologies for
designing MAS, such as Gaia [8], TROPOS [4], and OMNI [9]. For example, OMNI
(which seems to be the most advanced with respect to D1) elaborates on the organi-
zational context of a MAS, defines the relationship between organizational roles and
agents enacting those roles, discusses how organizational norms, values and rules are
supposed to govern the organization’s behavior and thus to put restrictions on individual
agents’ behaviors. However, OMNI touches only on a very abstract level the question
about how the individual agents will be implemented or even function; the agents are
treated as rather atoms. One reason is that it is (reasonably) assumed that the agent or-
ganization’s designer may have no direct control over the design of individual agents.
The organization designer develops the rules to be followed and enforcing policies and
entities, such as “police” agents, while development of other agents is done by external
people or companies. One of few concrete implementation requirements mentioned in

28 A. Katasonov and V. Terziyan

OMNI is that a rule interpreter must be created that any agent entering the organization
will incorporate, somehow. The OMNI framework also includes explicitly the ontolog-
ical dimension, which is restricted, however, to a domain ontology only (see Sect. 1),
and thus does not provide much new with respect to D2.

The other stream of research, on individual agents, has contributed e.g. with well-
known BDI architecture, and introduced agent-oriented programming [10] along with
several agent programming languages (APL) such as AGENT-0 [10], AgentSpeak(L)
[11], 3APL [12] and ALPHA [13]. All of those are declarative languages and based
on the first-order logic of n-ary predicates. For example, an agent program in ALPHA
consists of declarations of the beliefs and goals of that agent and declaration of a set
of rules, including belief rules (generating new beliefs based on existing ones), reactive
rules (invoking some actions immediately) and commitment rules (adopting a commit-
ment to invoke an action). Perceptors (perceiving environment and generating new be-
liefs) and actuators (implementing the actions to be invoked) are then pieces of external
code, in Java. As discussed in Sect. 1, agent-oriented approach postpones the transition
from the domain concepts to the machine concepts until the stage of the design and
implementation of individual agents. The advantage of using an APL is that the tran-
sition is postponed even further, until the implementation of particular perceptors and
actuators.

This advantage seems to be, however, the only one that is considered. We did not
encounter in literature approaches that would extend the role of APL code beyond the
development stage. APL code is assumed to be written by the developer of an agent and
either compiled into an executable program or interpreted in run-time but remaining
an agent’s intrinsic and static property. APL code is not assumed to ever come from
outside of the agent in run-time, neither shared with other agents in any way.

Such export and sharing of APL code would, however, probably make sense in the
light of findings from the field of MAS, and also in the light of D2. Methodologies like
OMNI describe an organizational role with a set of rules, and an APL is a rule-based
language. So, using an APL for specifying a role sounds as a natural way to proceed.
The difference is that APL code corresponding to a role should naturally be a property
of and controlled by the organization, and accessed by the agents’ enacting the role
potentially even in the run-time. Run-time access would also enable the organization to
update the role code if needed.

The second natural idea is that the agents may access a role’s APL code not only in
order to enact that role, but also in order to coordinate with the agents playing that role.
As one option, an agent can send to another agent a part of its APL code to communicate
its intentions with respect to future activities (so there is no need for a separate content
language). As another option, if a role’s code is made public inside the organization,
the agents may access it in order to understand how to interact with, or what to expect
from, an agent playing that role.

However, when thinking about using the existing APLs in such a manner, there are
at least two issues:

– The code in an APL is, roughly speaking, a text. However in complex systems, a
description of a role may need to include a huge number of rules and also a great
number of beliefs representing the knowledge needed for playing the role. Also,

SmartResource Platform and Semantic Agent Programming Language (S-APL) 29

in a case of access of the code by agents that are not going to enact this role, it is
likely that they may wish to receive only a relevant part of it, not the whole thing.
Therefore, a more efficient, e.g. a database-centric, solution is probably required.

– When APL code is provided by an organization to an agent, or shared between
agents, mutual understanding of the meaning of the code is obviously required.
While using first-order logic as the basis for an APL assures understanding of the
semantics of the rules, the meaning of predicates used in those rules still needs
to be consistently understood by all the parties involved. On the other hand, we
are unaware of tools allowing unambiguous description of the precise semantics of
n-ary predicates.

As a solution to these two issues, we see creating an APL based on the W3C’s Re-
source Description Framework (RDF). RDF uses binary predicates only, i.e. triples (n-
ary predicates can be represented nevertheless, of course, using several approaches). For
RDF, tools are available for efficient database storage and querying, and also for explicit
description of semantics, e.g. using OWL. Our proposition for such an RDF-based APL
is the Semantic Agent Programming Language (S-APL) that will be described in Sect. 4.

3 SmartResource Platform

The SmartResource Platform is a development framework for creating multi-agent sys-
tems. It is built on the top of the Java Agent Development Framework (JADE, see
http://jade.tilab.com/), which is a Java implementation of IEEE FIPA specifications.
The name of the platform comes from the name of the research project, in which it
was developed. In the SmartResource project (see http://www.cs.jyu.fi/ai/OntoGroup/
SmartResource details.htm), a multi-agent system was seen, first of all, as a middle-
ware providing interoperability of heterogeneous (industrial) resources and making
them proactive and in a way smart.

The central to the SmartResource Platform is the architecture of a SmartResource
agent depicted in Fig. 1. It can be seen as consisting of three layers: Reusable Atomic
Behaviors (RABs), Behavior Models corresponding to different roles the agent plays,
and the Behavior Engine. An additional element is the storage for agent’s beliefs and
goals. The SmartResource Platform uses the RDF data model, i.e. any belief or goal is
a subject-predicate-object triple, e.g. “John Loves Mary”.

A reusable atomic behavior (RAB) is a piece of Java code implementing a reasonably
atomic function. RABs can be seen as the agent’s perceptors and actuators. As the
name implies, RABs are assumed to be reusable across different applications, different
agents, different roles and different interaction scenarios. Obviously, RABs need to be
parameterizable.

In the SmartResource Platform, the behavior of an agent is defined by the roles it
plays in one or several organizations. Some examples of the possible roles: operator’s
agent, feeder agent, agent of the feeder N3056, fault localization service agent, ABB’s
fault localization service agent, etc. Obviously, a general role can be played by several
agents. On the other hand, one agent can (and usually does) play several roles.

A behavior model is a document that is supposed to specify a certain organizational
role, and, therefore, there is one-to-one relation between roles and behavior models. In

30 A. Katasonov and V. Terziyan

Fig. 1. SmartResource Platform

the SmartResource Platform, behavior models are encoded in a high-level rule-based
language, Semantic Agent Programming Language (S-APL). S-APL is based on the
RDF data model, i.e. the whole document can be seen as a set of subject-predicate-
object triples. A behavior model consists of a set of beliefs representing the knowledge
needed for playing the role and a set of behavior rules. Roughly speaking, a behavior
rule specifies conditions of (and parameters for) execution of various RABs.

The behavior engine is the same for all the SmartResource agents (this of course
means that each agent has a copy of it). The behavior engine consists of the agent core
and the two core behaviors that we named “Assign Role” and “Live”.

The AssignRole behavior processes an S-APL document, loads specified initial
beliefs and goals into the beliefs and goals storage, and parses the behavior rules. In
addition, it registers the new role with the system Directory Facilitator agent. It is rec-
ommended that if a behavior model is to specify the need of interaction with another
agent, that agent should be specified by its role, not the name or another unique iden-
tifier of a particular agent. Then, DFLookup atomic behavior, provided with the plat-
form, can find with DirectoryFacilitator names of agents playing a particular role. If
several agents play the role needed, the behavior model is supposed to include some
rules specifying a mechanism of resolving such a situation, e.g. random select, auction,
etc. Different such mechanisms can of course be assigned to resolving conflicts with
respect to different roles. When an agent is created it has to be given at least one be-
havior model to start working. Therefore, the agent’s core needs to directly engage the
AssignRole behavior for the model(s) specified. However, all the later invocations of
AssignRole, i.e. adding new roles, are to be specified in some behavior models. There-
fore, AssignRole has the duality of being a part of the behavior engine and a RAB in
the same time.

SmartResource Platform and Semantic Agent Programming Language (S-APL) 31

The Live behavior implements the run-time cycle of an agent. Roughly speaking, it
iterates through all the behavior rules, checks them against existing beliefs and goals,
and executes the appropriate rules. Execution of a rule normally includes execution of a
RAB and performing a set of additional mental actions, i.e. adding and removing some
beliefs. At least at the present stage, if there are several rules that are executable, all of
them are executed.

As can be seen from Fig. 1, the SmartResource Platform allows agents to access
behavior models from an external repository, which is assumed to be managed by the
organization which “hires” the agents to enact those roles. It is done either upon startup
of an agent, or later on. Such externalization of behavior models has several advantages:

– Increased flexibility for control and coordination. Namely, the organization can re-
motely affect the behavior of the agents through modifying the behavior models.
Another advantage is that the models can always be kept up-to-date.

– An agent may “learn” how to play a new role in run-time; it does not need to be
pre-programmed to do it.

– Inter-agent behavior awareness. How is discussed in Sect. 2, the agents not enacting
a particular role can still make some use of the information encoded in its behavior
model. One reason is to understand how to interact with, or what to expect from,
an agent playing that role.

As can also be seen from Fig. 1, the SmartResource Platform allows agent on-
demand access even of RABs. If an agent plays a role, and that role prescribes it to
execute an atomic behavior that the agent is missing, the agent can download it from
the repository of the organization. In a sense, the organization is able to provide not
only instructions what to do, but also the tools enabling doing that. Physically, a RAB
is delivered as either .class file or a .zip file (in case when the RAB has several .class
files). The obvious additional advantages are:

– An agent may “learn” new behaviors and so enact in a completely new role.
– Agents may have a “light start” with on-demand extension of functionality.

The present version SmartResource Platform provides the behavior model Ontolo-
gyAgent.rdf along with used in it RAB OntologyLookupBehavior. By starting an agent
based on this model, one creates an agent that provides access to both repository of
roles and pool of atomic behaviors.

The SmartResource Platform provides the behavior model startup.rdf, which has to
be loaded by an agent at startup in order to enable it to remotely access behavior mod-
els from an OntologyAgent. For roles specified on startup of the agent, the agent’s core
takes care of it. In addition, startup.rdf includes the rule for engaging DFLookupBe-
havior. This rule is obviously needed for resolving the OntologyAgent role. However,
it is also enough for any future needs of resolving roles, just a specific convention is
to be followed. Figure 2 shows the common process of starting up an agent, when the
behavior models are accessed from an OntologyAgent.

The SmartResource Platform provides also the behavior model RABLoader.rdf,
which has to be loaded by an agent in order to enable it to remotely access atomic
behaviors from an OntologyAgent. It includes rules for requesting, receiving, and (if
needed) unzipping the behavior files.

32 A. Katasonov and V. Terziyan

Fig. 2. An agent’s start-up

Figure 3 depicts a more complex scenario of auction for selection of a service
provider, in this case a fault localization service. The operator’s agent behavior model
prescribes that in case of several localization services, an auction has to be performed
(for other roles, e.g. random select is done). The agent first sends to both localization
agents a special request to load the role “AuctionSeller”, and then a request to make an
offer on, say, price of the service. The agent “Ls1” has loaded the role “AuctionSeller”
from the beginning, but the agent “Ls2” did not. So, “Ls2” contacts the OntologyAgent
and requests the needed behavior model now. This scenario demonstrates that roles can
be loaded also dynamically.

4 Semantic Agent Programming Language (S-APL)

This chapter describes the RDF/XML syntax of the Semantic Agent Programming Lan-
guage (S-APL) through its three constructs: Belief, Goal and Behavior.

As can be noticed, in defining/referring to beliefs and goals, S-APL does not use the
RDF syntax, but has them as literals of the form “subject predicate object”. The main
reason for this is inability of RDF to restrict the scope of a statement. In RDF, every
statement is treated as a global truth. But for describing behavior rules, the statements
are specifications of IF and THEN conditions, not facts. Additional reason is a wish to
keep S-APL documents concise and human-readable/editable.

In S-APL, all beliefs/goals must be triples. However, at least at present stage, we
do not enforce the RDF rule that only the object can be a literal while the subject and
the predicate must be URIs. In other words, in S-APL beliefs/goals, the subject and the
predicate can be literals as well. When using URIs, a convenient way is to utilize XML’s
ENTITY construct to simulate the namespaces mechanism (see example below).

SmartResource Platform and Semantic Agent Programming Language (S-APL) 33

Fig. 3. Scenario: Auction for selection of the service provider

Element <gb:Belief> specifies a belief, with which the agent (in a role) will be
initialized. The statement of the belief is given in the <gb:statement> field in the for-
mat (whitespace-separated) “subject predicate object”. Element <gb:Goal> specifies a
goal, with which the agent (in a role) will be initialized. The statement of the belief is
also given in the <gb:statement> field.

Element <gb:Behavior> specifies a behavioral rule. The fields trueIf, falseIf, trueIf-
GoalAchieved, achievesGoal, and event describe the left side (IF) of the rule, while the
rest describe the right side (THEN) of the rule. None of the fields is mandatory. All can
appear more than once, with exception of gb:class and gb:event.

– <gb:trueIf> Specifies a precondition, i.e. a belief that must be found in the set of
the agent’s beliefs to make the rule applicable. If several trueIf is given, they all
must be found, i.e. they can be seen as connected with AND.

– <gb:falseIf> Specifies a negative condition, i.e. such a belief that, when found in
the set of the agent’s beliefs, makes the rule not applicable. If several falseIf is
given, any of them is enough, i.e. they can be seen as connected with OR.

– <gb:achievesGoal> Specifies a goal that must be found in the set of the agent’s
goals to make the rule applicable. In a sense, it specifies an expected rational effect
of the rule execution and puts a need for it as a precondition. If several achievesGoal
is given, any of them is enough, i.e. they can be seen as connected with OR.

– <gb:event> Specifies an interface event (either from GUI or from HTTP server)
that must be the current event to make the rule applicable. If a rule has event spec-
ified, it will never be executed from the normal Live cycle of the agent, but only
from the interface event handling routine.

– <gb:trueIfGoalAchieved> Specifies a sub-goal that must be achieved before an
applicable rule can be executed. If according to all the other conditions the rule is
applicable and only one or more trueIfGoalAchieved is not fulfilled, the agent will

34 A. Katasonov and V. Terziyan

add those to the set of its goals. In other words, the agent will try to eventually
execute a rule that is applicable. If several trueIfGoalAchieved is given, they all
need to be present in the beliefs to make the rule executable, so they can be seen as
connected with AND. Also, all of them that are not present in the beliefs, will be
added to the set of goals at once.

– <gb:addOn<X>> Specifies a belief that has to be added in the phase <X>. Pos-
sible values for <X> are: Start – add the belief when the rule is executed, before
invoking the actual behavior i.e. RAB, End – add the belief when the behavior has
ended the execution, Success – add when and if the behavior has ended the exe-
cution in success, Fail – add when and if the behavior has ended the execution in
failure.

– <gb:removeOn<X>> Specifies a belief that has to be removed in the phase <X>.
Possible values for <X> are the same as above. If the specified belief contains “*”
and matches several existing beliefs, all matching beliefs will be removed.

– <gb:class> Specifies the Java class implementing the behavior.
– <x:<anything>> A parameter that is to be passed to the instance of behavior, and

has some meaning in the context of that behavior.

Note that explicit adding or removing of goals is not supported. A goal can only
be added if it appears in trueIfGoalAchieved of an applicable rule (and not yet in the
set of goals), and removed only when either (1) a rule is executed having it among its
achievesGoal or (2) in the beginning or a Live cycle, it is found in the set of beliefs.

Note also that an additional implicit condition for whether a rule is executable is
presence of the specified Java class. If it is not found, the rule is considered as not
executable, so neither beliefs are modified nor goals are removed.

In the statements, “*” can be used with the meaning of “anything”, and “*<var>*”
can be used as variable. If variables are used, the rule is applicable/executable if the be-
liefs and goals of the agent provide at least one possible binding of the values. If several
bindings are possible, the first found is taken. The left part of the rule is processed in the
following order: event, trueIf, achievesGoal, trueIfGoalAchieved, falseIf. This defines
the order in which the variables are bind. The possible set of values for a variable is
searched when the variable is first encountered. After that, values from this set can only
get filtered out but no new ones can be added.

All the fields of a rule are passed as the start parameters to the instance of the be-
havior, not only <x:<anything>>. Therefore, if needed, the behavior can have access
to the context of its execution, e.g. trueIf, addOnStart, etc. Note though that, in all the
start parameters, the variables are substituted with their values.

An example of usage follows. Given that the date is 8 of March, if the agent knows a
woman and knows something that she likes, start GiftingBehavior to gift her that thing.
A sub-goal of this is to buy the needed thing (handled in the rule behavior2). FalseIf
statements are used to prevent the behavior to be executed twice. The belief “I Gifting
<X>” is added as soon as the rule is executed (note, this happens after the sub-goal is
achieved), and removed as soon as GiftingBehavior ends (regardless of the result). If
the result is success, belief “I Gifted <X>” is added. This example has only one belief
statement using namespaces and thus referring to an ontology. This is done for the sake
of simplicity.

SmartResource Platform and Semantic Agent Programming Language (S-APL) 35

An Example of the RDF/XML Syntax of the Semantic Agent Programming Language

<?xml version="1.0"?>
<!DOCTYPE rdf:RDF [
<!ENTITY ex "http://www.example.com/ontology#">
]>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:gb="http://www.smartresource.com/rgbdf#"
xmlns:x="http://www.smartresource.com/atomic_behaviors#">

<gb:Belief rdf:about="belief1">
<gb:statement>I Know Alice</gb:statement>

</gb:Belief>
...
<gb:Behavior rdf:about="behavior1">

<gb:class>smartresource.non_existing.GiftingBehavior</gb:class>
<gb:trueIf>&ex;Date &ex;Is 08.03</gb:trueIf>
<gb:trueIf>I Know *X*</gb:trueIf>
<gb:trueIf>*X* Is Woman</gb:trueIf>
<gb:trueIf>*X* Likes *thing*</gb:trueIf>
<gb:falseIf>I Gifting *X*</gb:falseIf>
<gb:falseIf>I Gifted *X*</gb:falseIf>
<gb:trueIfGoalAchieved>I Bought *thing*</gb:trueIfGoalAchieved>
<gb:addOnStart>I Gifting *X*</gb:addOnStart>
<x:receiver>*X*</x:receiver>
<x:object>*thing*</x:object>
<gb:removeOnEnd>I Gifting *X*</gb:removeOnEnd>
<gb:addOnSuccess>I Gifted *X*</gb:addOnSuccess>

</gb:Behavior>
<gb:Behavior rdf:about="behavior2">

<gb:class>smartresource.non_existing.BuyingBehavior</gb:class>
<gb:achievesGoal>I Bought *thing*</gb:achievesGoal>
<x:object>*thing*</x:object>
<gb:addOnSuccess>I Bought *thing*</gb:addOnSuccess>

</gb:Behavior>
</rdf:RDF>

5 Conclusions and Future Work

Although the flexibility of agent interactions has many advantages when it comes to en-
gineering a complex system, the downside is that it leads to certain unpredictability of
the run-time system. Emergence of a solution that would allow flexible yet predictable
operation of agent systems seems to be a prerequisite for wide-scale adoption of the
agent-oriented approach. Literature sketches two major directions for search for a solu-
tion: social-level characterization of agent systems (more or less studied) and ontologi-
cal approaches to inter-agent coordination (not yet studied much).

This paper described our vision and the present state of the SmartResource Platform.
In the architecture of the platform, we attempt to provide a solution advancing into both
directions mentioned and somewhat integrating both. The main distinctive features of
the platform are externalization of behavior prescriptions, i.e. agents access them from
organizational repositories, and utilization of the RDF-based Semantic Agent Program-
ming Language (S-APL), instead of common Prolog-like languages.

In the follow-up project called Smart Semantic Middleware for Ubiquitous Comput-
ing (UBIWARE) 2007-2010, we are going to continue our work on the platform. At
least the following important research questions have to be yet answered:

– Is it important and, if yes, how to implement the separation between a role’s capa-
bilities (individual functionality), and the business processes in which this role can
be involved (complex functionality)?

36 A. Katasonov and V. Terziyan

– How to realize an agent’s roles as higher-level commitments of the agent that re-
strict its behavior, still leaving freedom for learning and adaptation on lower-levels,
instead of totally and rigidly prescribing the behavior?

– What mechanisms are needed for flexibly treating the potential (and likely) conflicts
among the roles played by one agent?

– What would be concrete benefits of and what mechanisms are needed for access-
ing and using a role’s script by agents who are not playing that role but wish to
coordinate or interact with an agent that does?

Acknowledgments

This work was performed in the SmartResource project, which was financially sup-
ported by the National Technology Agency of Finland (TEKES) and industrial partners
ABB, Metso Automation, TeliaSonera, TietoEnator, and Jyväskylä Science Park.

References

1. Jennings, N.: An agent-based approach for building complex software systems. Communi-
cations of the ACM 44(4), 35–41 (2001)

2. Jennings, N.: On agent-based software engineering. Artificial Intelligence 117(2), 277–296
(2000)

3. Bosse, T., Treur, J.: Formal interpretation of a multi-agent society as a single agent. Journal
of Artificial Societies and Social Simulation 9(2) (2000)

4. Bresciani, P., Perini, A., Giorgini, P., Giunchiglia, F., Mylopoulos, J.: Tropos: An agent-
oriented software development methodology. Autonomous Agents and Multi-Agent Sys-
tems 8(3), 203–236 (2004)

5. Tamma, V., Aart, C., Moyaux, T., Paurobally, S., Lithgow-Smith, B., Wooldridge, M.: An
ontological framework for dynamic coordination. In: Gil, Y., Motta, E., Benjamins, V.R.,
Musen, M.A. (eds.) ISWC 2005. LNCS, vol. 3729, pp. 638–652. Springer, Heidelberg (2005)

6. Jennings, N., Sycara, K.P., Wooldridge, M.: A roadmap of agent research and development.
Autonomous Agents and Multi-Agent Systems 1(1), 7–38 (1998)

7. Rao, A., Georgeff, M.: Modeling rational agents within a BDI architecture. In: KR’91. Proc.
2nd International Conference on Principles of Knowledge Representation and Reasoning,
pp. 473–484 (1991)

8. Wooldridge, M., Jennings, N., Kinny, D.: The Gaia methodology for agent-oriented analysis
and design. Autonomous Agents and Multi-Agent Systems 3(3), 285–312 (2000)

9. Vazquez-Salceda, J., Dignum, V., Dignum, F.: Organizing multiagent systems. Autonomous
Agents and Multi-Agent Systems 11(3), 307–360 (2005)

10. Shoham, Y.: Agent-oriented programming. Artificial Intelligence 60(1), 51–92 (1993)
11. Rao, A.: AgentSpeak(L): BDI agents speak out in a logical computable language. In: Per-

ram, J., Van de Velde, W. (eds.) MAAMAW 1996. LNCS, vol. 1038, pp. 42–55. Springer,
Heidelberg (1996)

12. Dastani, M., van Riemsdijk, B., Dignum, F., Meyer, J.J.: A programming language for cog-
nitive agents: Goal directed 3APL. In: Dastani, M., Dix, J., El Fallah-Seghrouchni, A. (eds.)
PROMAS 2003. LNCS (LNAI), vol. 3067, pp. 111–130. Springer, Heidelberg (2004)

13. Collier, R., Ross, R., O’Hare, G.: Realising reusable agent behaviours with ALPHA. In:
Eymann, T., Klügl, F., Lamersdorf, W., Klusch, M., Huhns, M.N. (eds.) MATES 2005. LNCS
(LNAI), vol. 3550, pp. 210–215. Springer, Heidelberg (2005)

P. Petta et al. (Eds.): MATES 2007, LNAI 4687, pp. 37–48, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Subgoal Identification for Reinforcement Learning and
Planning in Multiagent Problem Solving

Chung-Cheng Chiu1 and Von-Wun Soo1,2

1 Department of Computer Science, National Tsing Hua University
101, Section 2 Kuang Fu Road, Hsinchu, Taiwan, R.O.C.

g944345@oz.nthu.edu.tw
2 Department of Computer Science and Information Engineering,

National Kaohsiung University
700, Kaohsiung University Rd, Nan Tzu Dist., 811. Kaohsiung, Taiwan, R.O.C.

soo@cs.nthu.edu.tw

Abstract. We provide a new probability flow analysis algorithm to
automatically identify subgoals in a problem space. Our flow analysis, inspired
by preflow-push algorithms, measures the topological structure of the problem
space to identify states that connect different subset of state space as the
subgoals within linear-time complexity. Then we apply a hybrid approach
known as subgoal-based SMDP (semi-Markov Decision Process) that is
composed of reinforcement learning and planning based on the identified
subgoals to solve the problem in a multiagent environment. The effectiveness of
this new method used in a multiagent system is demonstrated and evaluated
using a capture-the-flag scenario. We showed also that the cooperative
coordination emerged between two agents in the scenario through distributed
policy learning.

1 Introduction

Traditional reinforcement learning and planning in multiagent problem solving have
suffered the difficulty of scaling up the problem state space. One approach to reduce
the multiagent problem solving complexity is to represent the problem state space of
an agent in a hierarchical way in order to decompose a complicated problem into
subproblems [2, 6, 15]. In conventional multiagent policy learning, the policy
structure does not decompose the problem. Thus in problem solving, the tasks of each
agent are overlapping, and learning to avoid redundant problem solving in an
unstructured model is inefficient. This flaw can also be meliorated by decomposing
problem into a hierarchical structure [11]. The hierarchical space is constructed as a
collection of different levels of subtasks for problem solving, and each subtask at
certain levels defines a subset of the state space in order to restrict the action search
within a bounded action policy space. The decomposition not only avoids the overlap
of each subtask, but also constructs the temporal abstraction on decision making [11].

However, defining a subtask and constructing the hierarchical state space often
require domain knowledge to manually construct an optimal model with respect to a
specific problem. For each subtask, the related state space and action space should

38 C.-C. Chiu and V.-W. Soo

also be specified in advance. To relieve such limitation, we propose a method of
automatic subgoal identification for problem decomposition so that each subproblem
can correspond to a subgoal. When the subgoals of a problem are identified, each
subgoal becomes a subproblem that can be solved by a traditional planner. In
hierarchical problem solving a problem can be decomposed into several subproblems
and each subproblem can be solved by an abstract action to reach a specific subgoal.
Furthermore, an abstract action for solving a subproblem can be realized by a set of
primitive actions to reach a subgoal. Therefore, in hierarchal reinforcement learning,
the corresponding action policy can be learned based on the abstract states of
identified subgoals and the abstract actions.

A number of works had been proposed for automatic hierarchy construction both in
reinforcement learning [4, 8, 9, 11, 12, 13] and planning [3, 7]. The common design
philosophy in both fields is to find the abstract actions for the problem. The difference
is that in planning, the automatic abstraction is performed based on a hierarchical
action space while in reinforcement learning, the abstraction is based on a hierarchical
state space. Our method performs decision making based on a learned action policy,
and completes the selection of committed abstract actions via planning. The design of
the abstract actions is in the state space, and is related to works for identifying
subgoals in hierarchical reinforcement learning.

We propose a subgoal-based multiagent framework based on the subgoals that are
identified by our algorithm. Each subgoal is solved by the planner, and the execution
of resulting plan is an abstract action. The policy function of this framework is
formulated by abstract actions. The execution time of an abstract action, or a plan, is
variant, and we extend the semi-Markov Decision Process (SMDP) [15], a framework
for decision making in which the execution time for an action is variant, to allow
temporal abstraction in problem solving. With this extension, our framework
reformulates the original problem into an abstract problem, and the complexity of
problem solving on the abstract layer is greatly reduced. Our multiagent system is
constructed with this abstract policy. The policy function is distributed that each agent
is rational and maintains its own policy. For each agent, its policy function provides
abstract actions according to the current self-state and the observation of other agents’
behaviors. The multiagent abstract policy decomposes the problem into subtasks, and
this decomposition provides coordination structure in multiagent problem solving. We
apply our algorithm to identify subgoals of the problem and construct the policy
structure automatically, thus the coordination structure is emerged without manual
setting. The performance of this framework is demonstrated in our capture-the-flag
scenario.

2 Subgoal Identification

In a hierarchical state space, the entire problem is decomposed into many subproblem
spaces, and solving a subproblem is equivalent to achieving a subgoal. It allows the
problem solver to choose another new subproblem to solve after achieving a subgoal.
From this point of view, the subgoal can be viewed as a critical state for connecting
two subproblem spaces. Each problem state can be represented as a node in the graph,
and each problem solving action as an edge to transit from a state to another. This
results in a state transition graph, in which a subproblem space can be regarded as a

 Subgoal Identification for Reinforcement Learning and Planning 39

set of nodes, and subgoals can be viewed as the nodes that connect these sets of
nodes. Therefore, the subgoal identification method can be viewed as a way of finding
the cut points between two connected node sets in a graph. We propose a flow
analysis algorithm for finding such features in a graph, which the underlying process
is similar to a preflow-push algorithm in the network flow algorithms [1].

2.1 The Probability Flow Analysis Algorithm

The flooding process in the preflow-push algorithm determines the capacity of the
network and finds bottleneck edges. We modify the flooding process to analyze the
topological structure of the problem space and identify the states that connect
different subsets of the state space as subgoals.

When an exploration iteration of an agent is terminated, a state transition graph can
be constructed. A network is a directed graph with flow transition capacity labeled on
all edges, and contains a source and a sink. The state transition graph can be treated as
a network with infinite capacity on all edges, in which the source is the initial state
and the sink is the terminal state. The flow on each node can represent the transition
probability of transferring from the source to the sink. The higher transition
probability of a node tends to indicate a higher density for the node to connect two set
of nodes in the network and therefore these nodes can be identified as a subgoal.
Suppose a flow of one unit is generated from the source to the sink at each iteration.
Then after several iterations, a normalized flow value for each node represents a
relative transition probability that is referred to as a probability flow. Generating
flows in this manner and identifying a state with the highest flow value as a subgoal
seems to be reasonable at first glance, but it is not always admissible. The state with
the highest flow value is not guaranteed to be an ideal subgoal because while it might
be the most frequently traversed state, reaching it does not necessarily by itself
guarantee the ability to transit to the next subproblem easily. For example, imagine a
room with two doors. For the problem of going outside, apparently the subgoal states
should be the two doors. However, generating flows and selecting the most frequently
traversed location might result in finding a location that is near the middle of two
doors instead. Therefore, to find a subgoal, we should identify a critical transition
state between subproblems, namely, a critical transition node between two subsets of
connected nodes (two subspaces of states) in the graph.

Our probability flow analysis algorithm identifies subgoals by modeling the
transition probabilities of the nodes in the network, and is described in Fig. 1. At the
beginning of the algorithm, each node is supplied with one unit flow, and then it is
flooded through the entire network. The accumulated flow value on each node
represents the transition probability from the individual node to the sink. To account
for the transition probability from the source to each individual node, the entire
network is flooded backwards to the source in the same manner. After summing the
two flow values on each node, the normalized accumulated flow value represents the
transition probability of the node from the source to the sink. An example is
illustrated in Fig. 2: the distance labels from the source S to the sink G in (a) are
shown in (b) and (c)-(f) demonstrate the flooding process from the source to the sink
step by step. The final accumulated flow value for each node is shown in (h) where
the shaded nodes represent the identified subgoals.

40 C.-C. Chiu and V.-W. Soo

algorithm probability flow analysis
begin
 obtain the distance labels d(i) from the sink
 fsink = flood process()
 relabel distance labels from the source
 fsource = flood process()
 ftotal = fsink + fsource
for each node i
if ftotal(i) ftotal(j) for all j where (i, j) is an

edge in
 the network then
 mark i as subgoal
end

function flood process();
begin
 provide one unit flow to each node
 l = the highest label value
while l > 0 do
begin
for each node i with d(i) equals l do
 for each child j of i do

 totalflow(j) += totalflow(i)/numchildren(i)
l = l - 1

end
 return totalflow
end

Fig. 1. Probability flow analysis

567

456

567

012

123

234

567

456

567

012

123

234

S GS G

(a) A simple grid world
with source and goal

(b) Distance label to the sink
and transition direction

(c) Initial flow (d) Start from highest label and
transmit to adjacent node

111

111

111

111

111

111

111

111

111

111

111

111

13/21

112

13/21

111

111

111

13/21

112

13/21

111

111

111

(e) Flow forwarding after
label 5 is processed

7/43/21

99/22

7/43/21

111

111

111

7/43/21

99/22

7/43/21

111

111

111

7/43/21

99/22

7/43/21

1843/425/4

25/4721/2

7/43/21

7/43/21

99/22

7/43/21

1843/425/4

25/4721/2

7/43/21

(f) Result flow generated
toward sink

849/419

39/223/233/4

11/4311/4

1949/48

33/423/239/2

11/4311/4

(h) Result of the algorithm
with subgoals marked

25/443/418

21/2725/4

13/27/4

13/27/4

29/29

13/27/4

(g) Result flow generated
toward source

Fig. 2. A grid world example

In the probability flow analysis algorithm, the distance label of a node is the
estimation of its minimum cost to the sink. The flood process floods probability flow
based on distance labels as in a preflow-push algorithm, and the flow value of a node
reflects its transition load in the network topology. To analyze the entire topological
structure of the problem space, the algorithm must generate a flow that traverses all
nodes evenly, instead of only generating a flow from the source to the sink. Without
prior knowledge of the problem, a uniform distribution is applied, thus we give one
unit flow to each node initially as in (c) that sends its accumulated flow evenly to all

 Subgoal Identification for Reinforcement Learning and Planning 41

its outward edges as in (d). The resulting subgoals are identified as nodes whose flow
values are higher than all their neighbors as in (h). Our subgoals identification process
compares the flow value among neighbors within length of 2 to reduce the generation
of noise. If two identified subgoals are connected with a single node, and then based
on Markov property, the crucial bottleneck is the connection node, and the identified
subgoals are replaced by their connection node.

2.2 Comparison to Previous Algorithms

In the works of [4] and [9], the subgoal is determined by randomly generating
sufficient solutions and selecting the state with the highest visited frequency.
Consider this method as a graph algorithm. It can be regarded as generating a
probability flow from the source to the sink arbitrarily and accumulating the results as
described above. However, in this way, the algorithm cannot find the subgoals that
truly match our criterion.

In the works of [11] and [12], the subgoals were identified by finding a graph cut. In
[11], the graph cut method is applied by min-cut algorithm with the capacity on each
edge is defined. In [12], it applies normalized cut which was approximated by using a
spectral clustering algorithm. The complexity of these algorithm is O(n3), where n is the
number of nodes. The execution of the algorithm only finds one cut of the graph, which
corresponds to certain subgoals. To find all the subgoals in the graph, [12] suggested
that after each cut, the Q-Cut algorithm should take the divided components to perform
the algorithm again to find additional subgoals. With this divide-and-conquer approach,
more than one subgoal could be identified. However, how many cuts are sufficient to
find all crucial subgoals without causing an over-cut problem becomes an important
issue. The designer could define a threshold number of cuts, but the threshold can be
problem-dependent and must be readjusted in different state spaces. In L-Cut [11],
subgoals were found from observation graphs. But the observation graph can have noise
that can be minimized by repeated sampling. If the algorithm samples m times, and
observation graphs have h nodes, its total computation complexity becomes O(mh3).
Our algorithm identifies subgoals from an observation graph with h nodes, then if it
samples m times, the total computation complexity is O(mh).

3 Subgoal-Based Multiagent Problem Solving

When subgoals are identified for each agent in the multi-agent problem solving
environment, the designer could use them to implement the algorithm in many ways.
One way is to design a hierarchical reinforcement learning algorithm for each agent.
In the traditional hierarchical reinforcement learning, the hierarchy of a policy
function must be predefined by a designer, and thus it requires the designer to
understand the whole problem solving task before performing such modeling. With
automatic subgoal identification method, the requirement can be relieved, and the
entire algorithm becomes more flexible.

Another problem on designing the framework is how to construct the subtask. One
approach is to apply the option framework [15]. The flaw of this framework is that it
is limited to the originally constructed world states, and as the environment changes,
incremental modification is required to adapt to the new world states. Planning is a

42 C.-C. Chiu and V.-W. Soo

more effective method for adapting to a new environment. As an action sequence is
generated on-line by a planner, the alteration of the environment would in general not
disturb the generation of a new sequence of actions to cope with the change by the
planner. For this reason, we define planning according to a given subgoal as the
subtask in the policy structure.

Our method constructs subgoals as abstract states, and the transition between
abstract states are treated as abstract actions. The decision making for selecting
proper abstract actions to perform can be learned as a subgoal-based policy, and the
primitive actions for execution are derived via planning from available abstract
actions. The actions are generated on-line, so that the policy can tolerate to the
disturbance of possible environmental change. Thus the original global goal is
decomposed into many subgoals. Which subgoal to achieve is decided by a policy and
the planner only needs to solve the subproblem of transferring between the identified
subgoals, and the planning complexity is thus reduced.

3.1 The Subgoal-Based Policy

In reinforcement learning, the expected utility in state s with discount factor γ is the
cumulative discounted reward till the action terminates.

⎥
⎦

⎤
⎢
⎣

⎡= ∑
=

T

t
tsREsV

0

)()(γ (1)

In our subgoal-based policy, if an abstract action a' which terminates after N steps is
executed, the expected utility can be written as:

⎥
⎦

⎤
⎢
⎣

⎡ += ∑∑
=

−

=

T

Nt
t

N

t
t sRsREsV)()()(

1

0

γγ (2)

The first term of right hand side is the cumulative rewards of executing an abstract
action a' at state s which terminates after N steps, and is represented as R(a'). The
termination of a' results in state s', and the second term of right hand side is the
expected utility at state s'. The transition probability of executing a' in state s results
state s' is P(s'|s,a'), then we can rewrite equation 2 as:

)(),|()()(sVassPaRsV ′′′+′= (3)

In our framework, an abstract action is a plan, and the first term on the right hand side
in equation (3) is the expected reward of the plan execution. Represent the reward of
executing plan p as R(p), equation (3) is rewritten as:

)(),|()()(sVassPpRsV ′′′+= (4)

Equation (4) can be re-stated as the state-action value function, with π as the current
policy function:

))(,(),|()(),(ssQassPpRasQ ′′′′+=′ π (5)

This formula can be considered as the similar form of a decomposed value function
defined in [5, 11]. The main feature of value function decomposition is its recursive

 Subgoal Identification for Reinforcement Learning and Planning 43

form. In hierarchical reinforcement learning, the policy function can be constructed as
a directed acyclic graph. The recursive invocations correspond to edges in the directed
acyclic graph and represent the hierarchy structure for learning algorithm. But in the
traditional design of MAXQ value function decomposition algorithm, to compute the
completion function, corresponding to the second term on right hand side in equation
(5), it requires a complete search among its successor nodes in the hierarchical graph,
which is computationally expensive [5]. In our framework, a subtask is a plan resulted
by the planner, which applies only primitive actions. In this design, the inner loop of
each plan will not invoke another subtask, thus relieves the requirement of thorough
search in the graph and reduce the high computation cost in the learning process of
value function decomposition algorithm.

3.2 Subgoal-Based Multiagent SMDP Framework

In our multiagent systems, the policy function extends the semi-Markov Decision
Process (SMDP) to provide temporal abstraction, and is similar to the multi-agent
SMDP (MSMDP) defined in [11].

Definition 1. The multiagent subgoal-based SMDP is composed of six components
(A, S, B, P, R, T).

A is a set of agents in the environment with each agent i ∈A has a set Bi of plans,
where Bi is composed of abstract actions and subgoals of agent i. S is the state space
of environment. B denotes the behaviors of all agents, which is the joint state space of
Bi for i∈A. P is a multi-step transition probability function. R is the function that
maps states to rewards. T is the terminal condition defined in the state space when the
subgoal is achieved or no more plan is available. In the policy structure, the other
agent’s states are considered only at the higher abstract level, the lower level subtasks
are not involved. In this way, the definition of a subtask is the same as an action, and
the planning can be performed based only on environmental states by neglecting the
possible behaviors and effects produced by others.

One major difference of our system is that we do not define coordination
mechanism in advance. The system simulates a real world situation in which each
agent is treated as a rational agent who does not share its knowledge or policy with
others. In this setup, the decision process is distributed, and each agent carries out its
own policy asynchronously to maximize its own expected utility. This kind of design
is to provide the flexibility of application and relieve the requirement of manual
design on coordination. In multiagent learning, the construction of coordination
mechanism is achieved by decomposing the problem into subtasks and by reducing
redundant subtasks for agents based on distributed problem solving. In our system,
the subgoals of the problem are identified automatically, and the framework
constructs the abstract layers on which agent decision process can be based.
The structure of an abstract layer is a decomposition of a problem, thus the maximal
policy learning based on this layer emerges the coordination behavior. In this
way, the subgoal-based multiagent SMDP framework achieves the coordination
automatically.

44 C.-C. Chiu and V.-W. Soo

3.3 Multiagent Learning with Subgoal-Based Policies

In multiagent reinforcement learning environment, since the behaviors of other agents
must be taken into consideration as some parameters for defining a current state for a
multiagent policy function, a subgoal-based multiagent policy function is defined in
definition 2.

Definition 2. The subgoal-based policy function of agent i in the multiagent
framework with n agents is πi(si,p1, p 2,…pi,…, p n)∈Bi, where si∈S is the state of
agent i, pj∈Bj is the plan executed by agent j for 1 ≤ j ≤ n. S is the set of world states,
Bj is a set of plans generated from identified subgoals. With the definition, the policy
function defined in terms of a Q-value function is represented in equation (6).

),...,,...,,,(maxarg 21 nii
p

i ppppsQ
i

=π
(6)

In state si, after executing a plan pi which takes t steps to terminate and results in
state s'i, with learning rate α and discounting factor γ, we apply an update rule for the
“Q-value function in equation (7).

+=+)([),...,,...,,,(21 inii pRppppsQ α

)],...,,...,,,(),...,,...,,,(max 2121 niinii
p

t ppppsQppppsQ
i

−′′′′
′

γ
(7)

4 Experimental Results

We set up a multi-agent capture-the-flag scenario to analyze the performance of
learning subgoal identification method. In our experiment, without losing the main
features in problem solving, we replaced the planner with a simple path finding
algorithm with simple primitive action selection capability. The problem task could be
solved by a single agent, and also could be solved with other agents together. The
scenario is illustrated using a 21 × 21 grid world, which is divided into four rooms, and
there are doors d1, d2, d3 and d4 connecting two neighbored rooms as shown in Fig. 3
(a). There are two flags A and B in the grid world, one is located at the left bottom
corner, and the other is at the right bottom corner. The missions of the agents are to
find and capture the flags at different places, and to plug these flags at the specific
locations. Both agents start at S(0,0). The flag A at (0,20) should be plugged at the
location of A'(9,9), and the flag B at (20,20) should be plugged at the location of
B'(11,9). When both flags are plugged at the correct target location, the agent must go
to the final goal G at the right upper corner (20,0), and the whole task is completed.

There are four primitive actions for the agents: go west, north, east and south, and
each agent must move one grid at a time from one location to the other one. When an
agent goes to the grid where a flag is located, the agent would capture that flag. Each
agent could hold one flag at a time, and when it reaches the specified destination of a
flag, the flag would be plugged onto that location. If an agent holds a flag and goes
back to its origin location, then the flag will be dropped back to the ground. Either
flag could be captured by both agents, and when a flag is held by an agent, the other
agent could not snatch the flag back from it. The flag can be available only when it is

 Subgoal Identification for Reinforcement Learning and Planning 45

(1) (2) (3) (4)

(5) (6) (7) (8)

S G

(0,0) (20,0)

(0,20) (20,20)

A’(9,9) B’(11,9)

A B

d2

d1

d3

d4

(1) (2) (3) (4)

(5) (6) (7) (8)

(1) (2) (3) (4)

(5) (6) (7) (8)

S G

(0,0) (20,0)

(0,20) (20,20)

A’(9,9) B’(11,9)

A B

d2

d1

d3

d4

S G

(0,0) (20,0)

(0,20) (20,20)

A’(9,9) B’(11,9)

A B

d2

d1

d3

d4

 (a) (b)

Fig. 3. (a) Capture-the-flag scenario (b) Identified subgoals

put back to the original location. When a flag is plugged onto its destination, it is
fixed at that location and could no longer be unplugged.

Before the reinforcement learning process begins, subgoals in the state space are
identified in advance, as explained in the Subfigures (1)-(8) in Fig. 3 (b). Each
Subfigure in (1)-(8) shows subgoals identified at different subspaces in problem
solving situations when:

(1) No flag is held or plugged by any agent. The subgoals identified are d2, one grid
west from d1, one grid west from d4, one grid north from d3, and the others are A,
B, and start state.

(2) Flag A is available, and flag B is held by the agent itself. The subgoals identified
are d2, one grid East from d1 and d4, one grid north from d3, B’ and B.

(3) Flag A is available, and flag B is not available. The subgoals are one grid East
from d1 and d4, one grid North from d2 and d3, B’ and A.

(4) Flag A is held by the agent itself, and flag B is available. The subgoals are d3, one
grid East from d1 and d4, one grid North from d2, A and A’.

(5) Flag A is held by agent itself, and flag B is not available. The subgoals are the
same as in (4).

(6) Flag A is not available, and flag B is available. The subgoals are one grid West
from d1, d4 and one grid North from d2, d3, A’ and B.

(7) Flag A is not available, and flag B is held by the agent itself. The subgoals are the
same as in (2).

(8) Neither flag A nor flag B is available. The subgoals are B’, one grid East from d1,
d4 and one grid North from d2, d3 and the final goal.

After the subgoals are identified, the agent takes the achievement of these subgoals
as its abstract actions and performs reinforcement learning to learn the action policy.
To verify the performance, we setup three cases for comparison:

1. Single agent using conventional Q-learning.
2. Single agent using subgoal-based policy learning.
3. Two agents using subgoal based policy learning.

46 C.-C. Chiu and V.-W. Soo

40

60

80

100

120

140

160

180

200

0 100 200 300 400 500 600 700 800 900 1000

Two-Agent Subgoal-Based RL

Single-Agent Q-learning

Single-Agent Subgoal-Based RL

Fig. 4. Mean steps to reach the goal in capture-the-flag scenario

 (a) (b)

Fig. 5. The trend of coordination during distributed policy learning. The horizontal axis shows
the training epochs. The vertical axis shows normalized action values for an agent to pick up
flag B when the other agent decides to pick up flag A (gray line) and flag B (black line),
respectively.

For the case of two agents, we define a cooperative configuration so that rewards
can be shared among cooperating agents. When one flag is plugged to its destination
by the other agent, the flag can be regarded as having been plugged by the agent
itself. In the result of the learning in this configuration, we found that the decision of
an agent depends on another’s behavior. When an agent observes that another agent
has an intention to capture flag A, it will pick up flag B immediately. When an agent
has plugged the flag and observes the other flag has been plugged or has been held by
another agent who is on its way to the destination, then the agent would go toward the
final goal directly.

The results of experiments were averaged over 1000 training cases in which each
training case was measured up to 1000 epochs and the smoothed performance curves
of the mean steps to reach the goal against the training epochs are shown in Fig. 4.
The single agent Q-learning takes over 400 epochs to converge to a near optimal
policy, while single agent subgoal-based reinforcement learning takes less than 10
epochs. And in the case of two agents, although there are additional efforts for an
agent to model the other agent in the state space, it converges only a little bit slower

 Subgoal Identification for Reinforcement Learning and Planning 47

than the single agent case. But it is still more efficient than the case of the single agent
using conventional Q-learning.

The flow analysis algorithm identifies subgoals and decomposes the task in
problem solving. Multiagent policy learning on this level emerges the cooperation and
coordination behaviors. When an agent realizes the other agent is going to capture
flag A, it would decide to capture flag B. This policy coordination is illustrated in
Fig. 5. The policy value is normalized according to the formula: Pick up B/(Pick up A
+ Pick up B). For example, the normalized policy value 0.51 means that the policy
value ratio between picking up flag A and picking up flag B is 0.49:0.51. A point
above 0.5 indicates the policy value for picking up flag B is higher than that of
picking up flag A. Subfigure (a) illustrates the policy function of agent 1, and (b)
illustrates the policy function of agent 2. This figure is the snapshot of policy values
for both agents during learning. The most profitable decision in the starting state is to
pick up flag A and let the other agent to pick up flag B, since the cost of handling the
subgoal of picking up flag A is much smaller than handling the subgoal of picking up
flag B. The policies are distributed, and each agent is rational, thus in the first 100
training epochs, they all compete to pick up flag A as shown in the downshoot below
0.5 of the gray line for about 200 epochs at the beginning. After 100 epochs, the
agents started to realize to coordinate in order to get a higher utility value. Then, as
Fig. 5 illustrates, after 200 epochs of learning, the cooperative coordination policies
between the two agents emerged.

5 Conclusions

This work provides a probability flow analysis algorithm to identify subgoals in the
problem space with linear-time complexity, and constructs a subgoal-based
multiagent SMDP to perform efficient problem solving. The subgoals identified from
the state space decompose the problem and reduce the entire state space drastically.
As in the experiment, the original state space is the set of 404 locations and 8 flag
states (2 flags and each with initial, held, plugged states), a total of 404 × 8 states, and
after subgoal identification, the number of states is reduced to only 39. Therefore, the
training efforts needed for the subgoal-based policy learning is greatly reduced in
comparison to conventional Q-learning. This reduction is especially significant in the
multi-agent case. As in the two-agent case in the grid world, to model the states of the
other agent in conventional Q-learning, the state space grows up to 1,305,728, and the
size of its Q table and its primitive actions becomes roughly 4 times of the size that is
almost intractable. But in two-agent subgoal-based policy learning, the number of
abstract states only grows to about less than 200 that can still be efficiently learned as
shown in our experiments.

The improvement of our framework on multiagent problem solving comes from
the same factors of hierarchical multiagent reinforcement learning, that is, the
problem decomposition. The major different features of our system are the automatic
subgoal identification and its combination with learning and planning. The subgoal-
based problem decomposition provides a basis for further learning of coordination
among agents, and by solving subtasks via planning, it not only reduces the
complexity of learning but also causes a multiagent system to be more adaptive to
alterations of environment.

48 C.-C. Chiu and V.-W. Soo

Acknowledgements. This research is supported in part by National Science Council
of ROC under grant number NSC 93-2213-E-007-061 and also by Ministry of
Economic Affairs of ROC under grant number 93-EC-17-A-05-S1-030.

References

1. Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows: Theory, Algorithms, and
Applications. Prentice-Hall, Englewood Cliffs (1993)

2. Barto, A.G., Mahadevan, S.: Recent Advances in Hierarchical Reinforcement Learning.
Discrete Event Dynamic Systems 13(4), 341–379 (2003)

3. Botea, A., Müller, M., Schaeffer, J.: Using Component Abstraction for Automatic
Generation of Macro-Actions. In: Proceedings of the Fourteenth International Conference
on Automated Planning and Scheduling, pp. 181–190. AAAI Press, Stanford, California,
USA (2004)

4. Digney, B.: Learning Hierarchical Control Structure for Multiple Tasks and Changing
Environments. In: Proceedings of the Fifth Conference on the Simulation of Adaptive
Behavior (1998)

5. Dietterich, T.: Hierarchical reinforcement learning with the MAXQ value function
decomposition. Journal of Artificial Intelligence Research 13, 227–303 (2000)

6. Erol, K., Hendler, J., Nau, D.: Complexity results for HTN planning. Annals of
Mathematics and Artificial Intelligence 18(1), 69–93 (1996)

7. Knoblock, C.A.: Automatically Generating Abstractions for Planning. Artificial
Intelligence 68(2), 243–302 (1994)

8. Mannor, S., Menache, I., Hoze, A., Klein, U.: Dynamic abstraction in reinforcement
learning via clustering. In: Proceedings of the Twenty-First International Conference on
Machine Learning, pp. 560–567. ACM Press, New York (2004)

9. McGovern, A., Barto, A.G.: Automatic discovery of subgoals in reinforcement learning
using diverse density. In: Proceedings of the Eighteenth International Conference on
Machine Learning, pp. 361–368. Morgan Kaufmann, San Francisco (2001)

10. Menache, I., Mannor, S., Shimkin, N.: Q-Cut - Dynamic discovery of sub-goals in
reinforcement learning. In: Elomaa, T., Mannila, H., Toivonen, H. (eds.) ECML 2002.
LNCS (LNAI), vol. 2430, pp. 295–306. Springer, Heidelberg (2002)

11. Ghavamzadeh, M., Mahadevan, S., Makar, R.: Hierarchical multi-agent reinforcement
learning. Journal of Autonomous Agents and Multiagent Systems 13(2), 197–229 (2006)

12. Şimşek, Ö., Wolfe, A.P., Barto, A.G.: Identifying Useful Subgoals in Reinforcement
Learning by Local Graph Partitioning. In: Proceedings of the Twenty-Second International
Conference on Machine Learning, pp. 816–823. ACM Press, New York (2005)

13. Şimşek, Ö., Barto, A.G.: Using relative novelty to identify useful temporal abstractions in
reinforcement learning. In: Proceedings of the Twenty-First International Conference on
Machine Learning, pp. 751–758. ACM Press, New York (2004)

14. Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Transactions on Pattern
Analysis and Machine Intelligence 22(8), 888–905 (2000)

15. Sutton, R.S., Precup, D., Singh, S.P.: Between MDPs and Semi-MDPs: A framework for
temporal abstraction in reinforcement learning. Artificial Intelligence 112(1), 181–211
(1999)

P. Petta et al. (Eds.): MATES 2007, LNAI 4687, pp. 49–60, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Medical Image Segmentation by a Multi-Agent System
Approach

Nacéra Benamrane and Samir Nassane

Vision and Medical Imaging GROUP, SIMPA Laboratory
Department of Computer Science, Faculty of Sciences,

University of Sciences and Technology of Oran “Mohamed BOUDIAF”
B.P 1505 El’Mnaouer 31000, Oran, Algeria

nabenamrane@yahoo.com,
nassan_samir@yahoo.fr

Abstract. In this paper, we propose an approach for medical Image
segmentation based on a FIPA compliant multi-agent system. The idea consists
in merging the regions following several criteria and with a massive population
of situated agents which cooperate, negotiate with the help of interaction
protocols and communicate by passing asynchronous messages. The efficiency
of our approach is shown through some experimental results.

Keywords: medical image segmentation, region growing, multi-agent system,
cooperation, negotiation, interaction protocol, JADE, FIPA.

1 Introduction

We are witnessing a continuing evolution of medical imaging techniques. However,
produced images generally contain several artefacts that render its subsequent visual
interpretation a very delicate task. Image processing, which is in progressive advance,
offers efficient solutions for noise elimination and the detection of objects contained
in the image, such as by filtering and segmentation methods, helping clinicians in
their diagnosis aimed for example at detecting a tumor or studying its evolution. The
segmentation phase is the most crucial step of a diagnosis aid system, because it
strongly affects the quality of interpretation. Image segmentation consists of
extracting symbolic entities which are the regions and the contours. Several
segmentation algorithms are proposed in the literature, based on one of two
principles; discontinuity and similarity [1]. The approach based on the first principle
allows detection of contours. The other approach subdivides the image into regions
determined by verifying homogeneity criteria. In addition, several methods based on
neural networks [2] or Markov fields [3] have also proved their efficiency for medical
images segmentation.

For several years, segmentation applications employed a monolithic, sequential
system to perform complex tasks. Some of these operations can be done in parallel, or
in a distributed fashion. Therefore, new approaches for tackling image segmentation
from other angles are needed. One of these approaches, which is getting more and

50 N. Benamrane and S. Nassane

more popular, is represented by multi-agent systems. These are distributed
applications consisting of relatively independent modules, called agents, which
cooperate for undertaking complex operations. Usually, agents are used in places
where superior behaviours and complex interactions are needed, and where
modularity, flexibility and scalability represent important issues [4].

In this paper, we propose a massive multi-agent system approach for the medical
images segmentation. A multi-agent system no doubt allows a better exploitation of
the local and heterogeneous information distributed in the image, with the help of
very efficient services such as: communication, negotiation, cooperation, local
adaptation, control distribution and parallelism.

The present paper is organized as follows: section 2 describes briefly the
segmentation related works, recently proposed. In section 3, the multi-agent platform
used for implementing is presented. In section 4, the proposed multi-agent system
approach is described in detail. In section 5, some experimental results are presented.
Finally, a conclusion and some prospects are given in the last section.

2 Related Work

Different multi-agent approaches have been proposed recently for the segmentation of
medical images.

In the approach proposed by Liu et al. [5], several agents are anchored each one
over one pixel of the image and collaborate in order to extract fine and homogeneous
structures. They have different behaviours; such as perception, tagging, reproduction,
diffusion and disappearance. The pixel tagging takes place according to an intensity
criterion applied on the neighbouring pixels. Reproduction and diffusion behaviours
are operated in preferential directions which depend on the agents previous
displacements.

Duchesnay [6] proposes to organize agents population according to an irregular
pyramid where region and contour agents cooperate to segment a mammography
image. The region agents represent areas of the image whereas the contour agents are
joined to contour chains. The region agents have different behaviours; neighbours
identification, preparation of fusion with the neighbouring region agents,
collaboration with the contour agents to decide on the fusion, and destruction /
reproduction to create new region agents in higher levels of the pyramid.

Porquet et al. [7] propose a multi-agent platform for brain MRI (Magnetic
Resonance Images) images segmentation, it permits to implement several contour-
region cooperation strategies in order to achieve region fusion/division and contour
extension/adjusting operations.

Haroun et al. [8] proposes a multi-agent approach permitting to segment brain MRI
image in three tissue classes: White Matter (WM), Grey Matter (GM) and the
Cerebral Spinal Fluid (CSF). The multi-agent system consists of one image agent and
several region agents anchored each one initially over a germ pixel selected with the
help of the FCM algorithm [9]. The image agent possesses the control behaviour
(creation / destruction, activation / deactivation of region agents), whereas the region
agent has the growing, negotiation and fusion behaviours.

 Medical Image Segmentation by a Multi-Agent System Approach 51

In the approach by Richard et al. [10], situated and cooperative agents operate in an
alternating manner to segment a 3D brain MRI image. Several types of agents are
defined; global agent, local control agent and three other agents specialized for brain
tissue detection. The image is divided by the global agent in several 3D zones
containing each one the three specialized agents (slaves) and one local control agent
(master). The specialized agents collaborate with their neighbours situated in the
adjacent partitions in order to serve their masters and to progress ultimately toward
the global objective.

3 Multi-Agent Platform

Unlike the multi-agent approaches described above which are implemented within
private and minimal platforms, our multi-agent system functions in an effective and
promising execution environment: the free platform JADE which implements the
basic specifications of the FIPA organization (Foundation for Intelligent Physical
Agents) [11].

3.1 JADE (Java Agent DEvelopment Framework)

JADE is a free and open platform which is developed in Java and distributed by the
Italian laboratory TILAB (Telecom Italian Laboratory) [12]. It aims to simplify the
multi-agent systems development by offering a complete set of services and agents in
accordance with the FIPA specifications.

JADE provides the three basic agents specified by FIPA: AMS (Agent
Management System) which supervises the registration of the agents with a unique
identifier, their authentification, their access and use of the system, ACC (Agent
Communication Canal) which manages the messages routing between the agents, DF
(Directory Facilitor) which provides a service of yellow pages to the platform. These
agents are created and activated at every start of the platform, see Fig. 1.

JADE uses the Behaviour abstraction for modelling the tasks that an agent can
execute, and the agents can instantiate dynamically their behaviours according to their
needs and their capacities.

JADE is an agent development environment easy to manipulate and it is provided
with a very interesting theoretical and technical documentation [13].

3.2 Agent Communication Language

JADE uses a high-level communication language based on the speech-act theory [14];
FIPA-ACL (Agent Communication language) [15].

A FIPA-ACL message is constituted of three layers: content, message,
communication. The content is an information to communicate. This last is
encapsulated in a message indicating the performative that the sender attaches to the
content (such as affirmation, question or orders), the interaction protocol to respect
and some features describing the information transported in the content. The message
is also included in a communication packet which permits to specify some
information necessary to the communication (such as sender and receiver).

52 N. Benamrane and S. Nassane

A FIPA-ACL message has the following important fields:

– Sender: The emitter of the message.
– Receiver: The receiver of the message.
– Performative: type of the communicative act, such as: request, inform, and

agree.
– Protocol of interaction: such as FIPA-Request, FIPA-contract-Net [17, 18].
– Content: Information to exchange.

Fig. 1. The JADE Software Architecture

3.3 Interaction Protocols

An interaction protocol is a message sequence that two agents must exchange in order
to converse in an optimal and efficient manner. The agents participating in dialogue
session must therefore react to the received messages according to the interaction
protocol adopted [16]. FIPA specifies a set of interaction protocols that the agents
must adopt. Let's mention only those that we use in our segmentation approach:
FIPA-request, FIPA-contract-net [17] [18]. These protocols are based on the FIPA-
ACL communication language.

4 The Proposed Multi-Agent System Approach

4.1 Criteria Segmentation

The proposed segmentation method is based on three steps:

1. Initial segmentation of the image by region growing algorithm based on the
following amplitude criterion:

Agent
Management

System

White pages
Service

Directory
Facilitator

Yellow pages
Service

Agent Communication Channel

Agent Agent Agent

Cache of agent
addresses

 Medical Image Segmentation by a Multi-Agent System Approach 53

 C1 (Ri) = [Maxi - Mini]< S1 (1)

Maxi, Mini are the maximal and minimal grey level of the region Ri, and S1 is
a parameter.

2. Intermediate segmentation of the initial image by iterative merging of the
initial regions using the following fusion criterion:

 C2 (Ri,Rj) = [µi - µj]< S2 (2)

µi, µj are the grey level averages of regions Ri and Rj, and S2 is a
parameter.

3. Final segmentation of the intermediate image by iterative merging of the
intermediate regions using the following fusion criterion:

 C3 (Ri,Rj) = α. Contij + β.(1-Crij) < S3 (3)

α and β are coefficients, and S3 is parameter (α, β and S3 ∈ [0, 1]); Crij is the
normalized histograms interrelationship of regions Ri and Rj, (Crij ∈ [0, 1]).

i j
i j

i j

h .h
C r =

h . h
 (4)

hi, hj are the histograms of regions Ri and Rj; Contij is the normalized contrast
between regions Ri and Rj.

 i j i j
i i j j ii j

1
C o n t = x -x

p F p V 4 (p)L (F)
∑ ∑
∈ ∈

 (5)

L(Fij) is the Ri frontier length with Rj, pi are Ri frontier pixels with Rj, pj
are Rj frontier pixels with Ri, V4(pi) is the four-connected neighbouring
pixels of pi, xi and xj are respectively grey levels of pixels pi and pj.

4.2 Multi-Agent System

The proposed massive multi-agent system consists of one global agent and several
region agents (see Fig. 2). They operate in cooperative, synchronous and parallel
manner, and communicate with FIPA-ACL messages. The region agents interact
between themselves according to the interaction protocols: FIPA-Request and FIPA-
Contract-Net.

4.2.1 Global Agent
The global agent possesses two main behaviours:

– The system initialization: which permits to achieve sequentially the
following operations:
• Initial segmentation of the image to get a set of regions.

54 N. Benamrane and S. Nassane

• Creating and launching the region agents which are going to function
in a parallel manner and cooperate in order to do the required fusions.
The initial region agents are anchored each one over an initial area
whose label is the identifier of the owner agent.

This behaviour is executed only once when the system starts.
– Coordination of the region agents: During this behaviour, the global agent

reacts only to the task-end messages (reactive aspect) coming from the
region agents in order to coordinate their actions. When a global agent
perceives that all region agents have finished their current behaviour, it gives
them the authorization to trigger other behaviours according to their plan. On
the one hand, this centralized social control influences the autonomy of the
agents, and on the other hand, it permits to guarantee the system consistency
where all region agents share the same behaviour. The passage from the
step 2 to the step 3 (see section 4.1) is also assured by this behaviour. If the
segmentation is accomplished, an information message is sent to all current
region agents.

The global agent needs the following information:

– The source image.
– The fusion criteria.
– List of all current region agents.

Region
Agents

Global
Agent

agree

requestrefuse

inform

informinform
request

Image = environment

Fig. 2. The proposed multi-agent system

4.2.2 Region Agent
The region agent needs the following information:

 Medical Image Segmentation by a Multi-Agent System Approach 55

– Unique identifier;
– List of neighbouring agents (L1) which includes their identifiers;
– List of neighbouring agents which verify the current fusion criterion (L2);
– List of pixels (LP);
– Lists of border pixels (spatial coordinates) with each neighbour (LF);
– Histogram of the region.

A region agent possesses two methods permitting to calculate respectively:

– Crij: the normalized histograms interrelationship of the two region agents Ri
and its neighbour Rj.

– Contij: the normalized contrast between both region agents Ri and its
neighbour Rj.

The region agent executes the following behaviours (see Fig. 3):

– Discovering the neighbour agents: During which time, the agent perceives its
neighbourhood (at the border) and adapts its neighbour agents list L1, pixels
list LP and LFs lists;

– Selection of the best neighbours verifying the current fusion criterion: during
this behaviour, the agent must adapt its neighbours list L2;

– Search of the fusion neighbour with which the agent merges;
– Growing (fusion): during which time, the current agent aggregates to its

pixels those of fusion neighbour whose surface is smallest, and labels them
with its unique identifier;

– Disappearance: designate the death of the fusion neighbour agent or all
agents in case of a segmentation end. This latter is only discovered by the
global agent which sends to all agents a death message when it perceives that
no fusion has taken place and all fusion criteria have been used.

At every behaviour end, the region agent sends an information message to the
global agent in order to ensure a good control of the system.

In fact, the best neighbours selection behaviour and fusion neighbour search
behaviour implement respectively the interaction protocols; FIPA-Request and FIPA-
Contract-net (see section 3.3). Therefore, they are composed each one by two sub
behaviours which are executed in a parallel manner; Initiator permitting to trigger the
dialogue with the neighbours (proactive aspect) and Responder to react to the
messages received from them (reactive aspect).

4.2.2.1 Best Neighbours Selection Behaviour (Step 2)
A region agent sends a REQUEST message containing its grey level average to its
neighbour agents requesting them to verify C2.

– If C2 is verified, a neighbour agent returns an AGREE message, then a
INFORM message containing the grey level difference value, otherwise it
returns REFUSE message.

56 N. Benamrane and S. Nassane

– The agent receiving AGREE will wait the INFORM message to recover the
grey level difference and the neighbour agent identifier, then it inserts this
identifier, according to the corresponding difference, in its neighbours list
(L2) sorted out in the ascending order of the grey level differences.

During the third step, the neighbour agents exchange their identifiers and
histograms in order to be able to verify the C3 criterion.

No

Best
neighbours?

Largest
surface?

End?

Begin

End

Discovering

Selection

Search

Fusion
neighbour?

Death

Growing

Yes
No

Yes

Yes

Yes

No

Fig. 3. Region agent behaviours

4.2.2.2 Fusion Neighbour Search Behaviour (Steps 2 and 3)

– A region agent (called initiator agent) sends a CFP message (call for fusion
proposal) to its neighbours previously selected.

– Each neighbour returns a PROPOSE message containing initiator agent
position in their corresponding neighbours list L2.

 Medical Image Segmentation by a Multi-Agent System Approach 57

– The initiator agent chooses the offer which has the best position. If two
offers have the same position, it chooses that whose owner agent has the best
position in his list L2. Then, he sends an ACCEPT-PROPOSAL message to
the corresponding agent called fusion neighbour and REJECT-PROPOSAL
to the others.

– The neighbour agent receiving ACCEPT-PROPOSAL recovers the identifier
of the agent initiator, compares it with the fusion neighbour selected by his
initiator behaviour. If they are the same, it sends him an INFORM message
containing its surface and pixels list, otherwise a FAILURE message is sent.

– The initiator agent recovers the surface and the associated pixels list from
received INFORM, if it possesses the largest surface it goes to the growing
state, otherwise it disappears. If it receives FAILURE message, it goes to the
neighbours discovering state or it disappears if a segmentation end is reached
(see Fig. 3).

5 Experimental Results and Discussion

The proposed multi-agent system approach has been tested on brain MRI images
containing some types of brain tumours (see Fig. 4). These images have been obtained
from medical school of Harvard University (USA) [19].

The parameters used are S1=25, S2=25, α=0.7, β=0.3 and S3=0.15.

 (a) (b) (c)

(d) (e)

Fig. 4. Original images: brain MRI

In the following images, we present segmentation results obtained with Canny’s
algorithm [20] based on edge detection (see Fig. 5) and those obtained with our multi-
agent system (see Fig. 6).

58 N. Benamrane and S. Nassane

 (a) (b) (c)

 (d) (e)

Fig. 5. Results of the segmentation by Canny’s algorithm

 (a) (b) (c)

 (d) (e)

Fig. 6. Results of the segmentation by our multi-agent system approach

In the above images, we clearly notice that our multi-agent system approach has
had acceptable results; each region presents clear cut limits, particularly the tumour
regions which are correctly detected as opposed with Canny’s algorithm which failed

 Medical Image Segmentation by a Multi-Agent System Approach 59

to completely locate the tumours borders and other wholesome regions. Indeed, such
a right segmentation is plainly due to negotiations (interaction) done between region
agents so as to select the best fusion neighbours and ultimately realize the necessary
fusions.

6 Conclusion

In this paper, we have presented an approach of medical image segmentation based
on multi-agent system. A multi-agent system offers new services which are well
adapted to this type of problem such as communication, cooperation, negotiation and
treatments distribution, especially as the image includes heterogeneous, local and
repartee information. Nevertheless, it is unfortunately achieved to the prejudice of the
execution time which grows due to the communications and negotiations done
between the agents.

The proposed system consists of one global agent and several region agents which
are distributed on the image. The global agent permits to segment the original image
in several initial regions to which it attaches the initial region agents, and also ensure
a good control of the system. The region agent has the following behaviours;
neighbour discovery, best neighbours selection, fusion neighbour search and growing.
The agents communicate between them according to specific interaction protocols
which permit a better negotiation and cooperation.

The multi-agent system goes through two segmentation phases, and each one has
its own region fusion criterion. Besides, the agents work in JADE platform which is
conforming to the FIPA norms.

To improve our approach, an optimization of the multi-agent system is feasible; it
consists in returning the region agents capable of changing alone their states without
calling the global agent which will have the system initialization as a unique role.
Other agents can also be added such as the interpretation agents by artificial
intelligence techniques for tumour detection. We propose also to implement this
approach on multi-processor platform in order to decrease the execution time.

References

1. Coquerez, J.-P., Philipp, S.: Analyse d’images: filtrage et segmentation. Masson (1995)
2. Benamrane, N., Fekir, A.: Medical Images Segmentation by Neuro-Genetic Approach.

International Journal of Pattern Recognition and Machine Intelligence 1(4), 95–102 (2005)
3. Held, K., Kops, E.R., Krause, B.J., Wells III, W.M., Kikinis, R., Müller-Gartner, H.-W.:

Markov Random Field Segmentation of Brain MR Images. IEEE Transactions on Medical
Imaging 16(6), 878–886 (1995)

4. Chaib-Draa, B., Jarras, I., Moulin, B.: Systèmes multi-agents: principes généraux et
applications. Edition Hermès (2001)

5. Liu, J., Tang, Y.Y, Cao, Y.C.: An evolutionary autonomous agents approach to image
feature extraction. IEEE Transactions on Evolutionary Computation 1(2), 141–158 (1997)

6. Duchesnay, E.: Agents situés dans l’image et organisés en pyramide irrégulière:
contribution à la segmentation par une approche d’agrégation coopérative et adaptative.
Ph.D. thesis. Université Rennes-1 (2001)

60 N. Benamrane and S. Nassane

7. Porquet, C., Settache, H., Ruan, S., Revenu, M.: Une plate-forme multi-agent pour la
segmentation d’images. Etude des stratégies de coopération contour-région. ORASIS
Géradmer, 413–422 (2003)

8. Haroun, R., Hamami, L., Boumghar, F.: Segmentation d’images médicales IRM par un
système hybride flou – croissance de régions, dans un système multi agents. Journées
d’Etudes algéro-françaises en Imagerie Médicale, 21–30 (2004)

9. Bezdek, J.C.: Pattern Recognition with Fuzzy Objective Functions Algorithms. Plenum
Press, New York (1981)

10. Richard, N., Dojat, M., Garbay, C.: Multi-Agent approach for image processing: A Case
Study for MRI human brain scans interpretation. In: Dojat, M., Keravnou, E.T., Barahona,
P. (eds.) AIME 2003. LNCS (LNAI), vol. 2780, pp. 91–100. Springer, Heidelberg (2003)

11. FIPA specifications website, http://www.fipa.org/specs
12. Bellifemine, F., Poggi, A., Rimassa, G.: JADE: A FIPA-compliant agent framework. In:

PAAM’99. Proceedings of the 4th International Conference and Exhibition on The
Practical Application of Intelligent Agents and Multi-Agent System, pp. 97–108 (1999)

13. Bellifemine, F., Caire, G., Trucco, T., Rimassa, G.: Jade Programmer’s Guide. Jade
version 3.3 (November 2005)

14. Austin, J.L.: How to do things with words. Clarendon Press, Oxford, UK (1962)
15. FIPA 97 Specification. Part 2, Agent Communication Language
16. FIPA Interaction Protocol Library Specification, http://www.fipa.org/specs/fipa00025
17. FIPA Request Interaction Protocol Library Specification, http://www.fipa.org/specs/

fipa00026
18. FIPA Contract Net Interaction Protocol Library Specification, http://www.fipa.org/specs/

fipa00029
19. Harvard University Medical School, http://www.med.harvard.edu/AANLIB/home.html
20. Canny, J.: A Computational Approach To Edge Detection. IEEE Transactions on Pattern

Analysis and Machine Intelligence 8(6), 679–689 (1986)

Using DESs for Temporal Diagnosis of
Multi-agent Plan Execution�

Femke de Jonge, Nico Roos, and Huib Aldewereld

Dept. of Computer Science, Universiteit Maastricht
P.O. Box 616, NL-6200 MD Maastricht

{f.dejonge,roos,h.aldewereld}@micc.unimaas.nl

Abstract. The most common reason for plan repair are the violation of a plan’s
temporal constraints. Air Traffic Control is an example of an area in which viola-
tions of the plan’s temporal constraints is rather a rule than an exception. In such
domains there is a need for identifying the underlying causes of the constraint
violations in order to improve plan repairs and to anticipate future constraint vi-
olations. This paper presents a model for identifying the causes of the temporal
constraint violations.

1 Introduction

Violation of a plan’s temporal constraints is one of the most common problems dur-
ing plan execution. In air traffic control, for instance, violation of a plan’s temporal
constraints is rather a rule than an exception requiring constant adaptions of aircraft’s
plans. Common causes are problems in luggage handling, security issues, no-shows of
passengers, unforseen changes in the weather conditions, and so on and so forth. In
order to repair plans, accurate information about the cause of the problem is important.
It enables planners to come up with better plan repairs, thereby avoiding fire fighting
tactics. This requires that we not only identify primary cause, that is, failing plan step(s)
causing constraint violations, but also the secondary cause, that is, failing equipment,
unforseen changes in the environment and malfunctioning agents that are responsible
for plan step failures.

In order to make a diagnosis of temporal constraint violations, we need a model of
a plan’s temporal execution. In this paper we will investigate the use of discrete event
systems (DES) [1] for this purpose. Section 3 discusses how discrete event systems can
be adapted for this purpose, and Sect. 4 discusses how the resulting model of a plan can
be used to make predictions. Section 5 defines plan-execution diagnosis for temporal
constraint violations. We will argue that diagnosis of temporal constraint violations
differs from standard diagnosis using DESs [2,3,4]. Section 6 presents a small example
and Sect. 7 concludes the paper. First, to place our approach into perspective, we discuss
some some related work.

� This research is supported by the Technology Foundation STW, applied science division of
NWO and the technology programme of the Ministry of Economic Affairs (the Netherlands).
Project DIT5780: Distributed Model Based Diagnosis and Repair.

P. Petta et al. (Eds.): MATES 2007, LNAI 4687, pp. 61–72, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

62 F. de Jonge, N. Roos, and H. Aldewereld

2 Related Work

In this section we briefly discuss some other approaches to plan diagnosis and subse-
quently some approaches to diagnosis using discrete event systems.

Plan Diagnosis. There are several papers addressing different aspects of plan diagnosis.
These papers discuss diagnosis of the planning agent [5], diagnosis of a plan consisting
of a hierarchy of behaviors [6,7], diagnosis of the execution of a single task of a plan
[8,9], and diagnosis of plans consisting of several plan steps (task) [10,11,12,13,14].
None of the papers, however, address the violation of a plan’s temporal constraints.
This also holds for the approach of de Jonge et al. [15,16], which is closely related
to the approach proposed in this paper. de Jonge et al. apply discrete event systems to
describe linear plans of individual agents. However, temporal aspects of the agents’ plan
cannot be modeled. The agents’ plans may interact through constraints over the states
of plan steps (representing for instance resource constraints). Diagnosis is subsequently
applied to identify disruption events causing constraint violations. If disruption events
are observable future constraint violations can be predicted and diagnosis is used to
propose repair events to avoid these future constraint violations. This paper extends the
approach of de Jonge et al. by enabling diagnosis of temporal constraint violations.

Discrete Event Systems. Discrete Event Systems (DES) are a modeling method of real
world systems based on finite state machines (FSM) [1]. In a DES a finite set of states
describes at some abstraction level the state of a real world system. State changes are
caused by events and a transition function specifies the changes triggered by the events.
The events are usually observable control events. However, unobservable failure events
mays also cause state changes. Diagnosis of a DES aims at identifying the unobserved
failure events based on a trace of observable events [2]. Essentially, this is a form of
abductive diagnosis. Note that the trace of observable events depends on the state of the
system and the transition function. Therefore, a DES is sometimes viewed as a machine
accepting a language of observable and unobservable events.

To model a system, usually one starts modeling individual components using Dis-
crete Event Systems. Interactions between the components are described by exchang-
ing events between the components. For diagnosis, these DESs may be combined into
a global DES [17]. More recently, methods for diagnosing coupled DESs without first
creating a global DES have been proposed [3,4].

3 Modeling Plan Execution

This section formalizes the description of the plan execution to be diagnosed.

The Environment. In a domain such as air traffic control, the environment has an im-
portant influence on the intended execution of a plan. Unforseen changes in the state
of the environment such as snow on runways or strong headwinds, may influence the
temporal execution of a plan. In order to identify this type of influences using diagnosis,
we first need to model them.

Using DESs for Temporal Diagnosis of Multi-agent Plan Execution 63

The deviations in the strength of the aircraft’s headwind is a continuous function over
time. Obviously, we will never have enough information to identify this function in our
diagnostic process. Therefore, we should abstract from the continuous function and
use abstract values such as strong-tailwind, tailwind, no-wind, headwind and strong-
headwind instead. These values hold for certain time intervals. Hence, we define the
environment by a set of objects Oenv where with each object o ∈ Oenv a finite set of
possible states So is associated.

A state change of one object may cause a state change in another object. For instance
heavy snowfall may influence the state of the runway on an airport. If a state change of,
for instance, the weather immediately influences the state of the runway, Discrete Event
Systems (DES) [1] would be an obvious choice to describe the causal dependencies
between objects. However, heavy snow fall does not immediately causes the closure of
a runway. Therefore, we introduce Discrete Event Systems that can generate an event
after an object has been in a certain state for some period of time. Using such a time
delayed event we may change the state of the runway after it has been snowing for
a specified period of time. Unfortunately, this does not solve the problem completely.
How long it will have to snow before snowfall changes the state of the runway, may
depend on the condition of the runway such as the presence of salt, and on other events
such as snow removal activities. Therefore, in this example the time delayed event must
be generated by runway and not by the weather. Figure 1 gives an illustration.

good snowfall

clean/open snow buildup closedsnow buildup

runway cleaning

good

Events

Runway

Weather

Delayed Events

Fig. 1. An application of delayed events

Note that the event generated by the weather causes the state change of the runway
from ‘clean/open’ to ‘snow buildup’. The event ‘runway cleaning’ indicating the re-
moval of snow from the runway, causes a state change from ‘snow buildup’ to ‘snow
buildup’. The latter event may seem odd. The effect of a reflexive state transition is that
all timers of the time delayed events are reset. Also note that in a more refined model
one may also distinguish levels of snow that have been buildup on the runway.

Summarizing the above, an environment object o ∈ Oenv is modeled as a Discrete
Event System in which output events can be generated after the object o has been in
some state for some specified period of time. This is described by rules of the form:

(So × (R × R) ⇒ Eout
o × 2O)

These rules specify the state to which the rule applies and the time the object must be
in this state. Note that for the latter we use an interval [tmin, tmax] ⊆ (R × R). The

64 F. de Jonge, N. Roos, and H. Aldewereld

reason for using a time interval is the following. Since an object’s state in the model
is an abstract representation of the actual state, we cannot know exactly how long the
object must be in a state before the event will occur. We can model this uncertainty
using intervals.

Also note that these rules specify the output event that is generated and a set of ob-
jects Odes ⊆ O to which the event is sent. The set of objects O contains the environment
objects as well as objects for describing plan steps, equipment and agents.

Plans. Since the execution of a step (action) of a plan may depend on the state of the
environment objects and since the state of environment objects may change during the
execution, we cannot use a representation in which plan steps are treated as atoms.
Therefore, most representations are not suited for our purpose. What we need is a rep-
resentation that enables us to state that a plan step finishes too late because it started too
late or because a delay occurred during execution as a result of unforseen changes in
the environment. Hence, we should be able to assign states to plan steps and these states
may change during the execution of a plan step. This suggests that we should also use
Discrete Event Systems to model plan steps [16]. We therefore introduce a special set
of objects Oplan to represent plan steps. Figure 2 gives an illustration.

p1

p2

p3

nalp)laitrap(A
lp3htiw spetsna

s0

s6

e1∨e2

’e 1∨ ’e 2

e3

s9

s8

’e 3

e5e4

e1∨e2

s7

e6

’e 1∨ ’e 2

’e 1∨ ’e 2

e1∨e2

’e 1∨ ’e 2

’e 1∨ ’e 2

e1∨e2

e5e4

e5e4 ”e 3

s1

s2

s3

s4

s5

snoitisnartetatS
lpfo ppetsna 3

setatS :
s0: evitcani lamron
s1: evitcani pudliubyaled
s2: ts tra up lamron
s3: ts tra up pudliubyaled
s4: ts tra up deyaled
s5: evitca lamron
s6: evitca pudliubyaled
s7: evitca deyaled
s8: hsinif lamron
s9: hsinif deyaled

detarenegstnevE :
e1: pfohsiniflamron 1

’e 1: pfohsinifdeyaled 1
e2: pfohsiniflamron 2

’e 2: pfohsinifdeyaled 2
e3 ’e, 3 ”e, 3:f pfognihsini 3
e4 e, 5: e segnahctnemnorivn
e6: d dlohserhtsdeecxepudliubyale

Fig. 2. Modeling a plan step

Summarizing the above, a plan step p is modeled as a Discrete Event System in
which the set of state Sp contains:

– a special initial state representing the expected initial situation before the start of
executing the plan step,

Using DESs for Temporal Diagnosis of Multi-agent Plan Execution 65

– A set of inactive states representing environment changes that may influence the
execution of the plan step,

– a set of startup states representing (i) that some but not all preceding plan steps have
finished as well as how they have finished, and (ii) environment changes that may
influence the execution of the plan step,

– a set of active state representing how the plan step is executed, and
– a set of finish states of the plan step.

These special states are all disjunct. Note that no startup states are needed in a linear
plan.

Based on the state of a plan step p, at a certain time point an event must be generated
that brings the plan step into a finishing state. (One of the events e3, e

′
3, e

′′
3 in the ex-

ample of Fig. 2.) We therefore need rules for generating events based on the scheduled
finishing times and the current state of plan steps.

(S × (R × R) → Eout × 2O)

So, somewhere in the interval [tmin, tmax] ⊆ (R × R) an output event e ∈ Eout is
generated and is sent to the objects O ⊆ O. If the object is not in the state specified by
the rule during the interval [tmin, tmax], the rule will not generate an event. In this way
we can, for instance, specify the finish events of an plan step, as illustrated in Fig. 3.
Finally, if the object is in the state specified by a rule and subsequently changes to
another state during the interval specified by the rule, then the event is either generated
by this rule or is generated by another object or is an external event. In the latter two
cases the rule will not generate an event because the state of the object has changed.

lamron lamron

e2 e3

ppetsnalP lamron

e1

lamron
deyaled deyaled:hsinif

e sinif-lamron h e aled y if-de sin h

seluR :
t1 lamron, → e -lamron hsinif }p{,
t2 deyaled, → e aled y sinif-de h }p{,

t1 t2

Fig. 3. An application of time generated events

The Discrete Event System. Based on the above described requirements we can give a
specification of the objects we will use to describe plan executions by a group of agents
in some environment. We assume that the set of objects O can be partitions into plan
steps Oplan, agents Oag , equipment Oeq and environment objects Oenv . Each object
o ∈ O is described by a Discrete Event System [1].

Definition 1. An object o ∈ O is a Discrete Event System (So, so, E
in
o , Eout

o , τo, ρo)
where

– So is a set of states,
– so ∈ So is the initial state at time point 0,
– Ein

o is the set of events the object may react to,

66 F. de Jonge, N. Roos, and H. Aldewereld

– Eout
o is the set of events the object may generate,

– τo is a set of state transition rules of the form (So × Ein
o → So), and

– ρo is a set consisting of duration generated event rules of the form:

((So × (R × R) ⇒ Eout
o × 2O))

and time generated event rules of the form:

(So × (R × R) → Eout
o × 2O).

Above we did not discuss agent and equipment objects explicitly. Equipment objects
do not differ much from environment objects. For equipment we distinguish a special
state ‘normal’ and possibly several states for describing malfunctions. Also for agents
we distinguish a state ‘normal’. Agents may also have several other health state as well
as states indicate beliefs about the environment, which might be incorrect.

Timed Events. To describe the (expected) occurrence of events, we introduce so called
timed events. A timed event is a couple (e, [t, t′]) where e ∈ E is an event and [t, t′] ⊆
(R × R) is a time interval in which e occurs. A set of timed events will be denoted
by: Π .

Constraints. A plan description normally consists of a set of plan steps with prece-
dence relations between the plan steps. We can distinguish two types of precedence
relation, namely those that describe the order of plan steps needed to guarantee the de-
sired effect of a plan and precedence relations that have been added to avoid resource
conflicts. Although all precedence relations can be modeled using the above described
events, we will use a different description for precedence relations that are added for
avoiding resource conflicts. When, for instance, an aircraft is delayed, it may be better
to change the planned landing sequence of aircraft so that other aircraft can still arrive
as scheduled. Therefore, we will model resource constraints separately as constraints
over the states of plan steps requiring the same resource. These constraints can be used
to specify for instance that a combination of plane a being delayed and plane b being
early is not allowed because both planes are scheduled on the same gate.

Definition 2. A constraint ctr over n objects (Soi , soi , E
in
oi

, Eout
oi

, τoi , ρoi) is a tuple:

〈o1, ..., on, AS〉

with AS ⊆ So1 × ... × Son , describing states of objects that are allowed at the same
time.

A set of constraints will be denoted by C.

Constraints can be observed to hold or to be violated during the execution of a plan.
Timed constraints are used to denote the time interval in which the constraint is ob-
served to hold or to be violated: (ctr, [t, t′]) and (¬ctr, [t, t′]), respectively, where
ctr ∈ C is a constraint and [t, t′] ⊆ (R × R) is a time interval in which ctr is ob-
served to hold or to be violated. A set of timed constraints will be denoted by C.

The Model. Using the discrete event systems introduced in this section and applying the
modeling method discussed, we can now build a model of possible ways of executing a
plan. To summarize, we have to:

Using DESs for Temporal Diagnosis of Multi-agent Plan Execution 67

– describe the environment objects Oenv , their state transitions, their states at time
point 0, and the rules generating events;

– describe the states of each plan step Oplan, their state transitions, states of the plan
steps at time point 0, and, using information about the schedule of each plan step,
the rules generating (finishing) events;

– if necessary, also describe the equipment Oeq and the agents Oag; and
– describe the constraints C that must hold between states of different agents’ plan

steps.

Any model has a boundary of what is and what is not modeled. For instance, we may
model the state of the weather but not the processes that determine the changes of the
weather. Still, based on the weather forecasts we wish to be able to adapt state of the
weather object. External events can be used for this purpose. An external event is an
input event of an object that is not generated by some object; i.e., it is not an output event
of some object and there is no rule generating it. So, Eext =

⋃
o∈O Ein

o −
⋃

o∈O Eout
o .

The expected external timed-events are external events occurring within specific time
intervals. We use the set Πexp to denote expected external timed-event.

The objects O, the expected external timed-events Πexp and the constraints C gives
us the execution model M = (O, Πexp, C) with O = Oenv ∪ Oplan ∪ Oeq ∪ Oag .

4 Making Predictions

The model proposed in the previous section enables us to simulate, at an abstract level,
the normal and the abnormal execution of a plan. Deviations with observations made
enables us to formulate the diagnostic problem.

Simulation. An execution model (O, Π) consisting of objects O and external timed
events Π can be used to simulate a multi-agent plan execution starting from the initial
state of the plan at time point 0. The history of an object o ∈ O describes for each
object a sequence of timed events that generate state changes in the object o. Together
with each state change of o, the history also describes the timed events generated by the
rules of the object o during the current state of o.

Definition 3. Let o ∈ O be an object with DES (So, so, E
in
o , Eout

o , τo, ρo).
A history Ho of the object o ∈ O is a sequence of the form:

Ho = 〈 (e0, t0, s0, 〈(e0,0, t0,0, O
des
0,0), ..., (e0,m, t0,m0 , O

des
0,m0

)〉), ... ,

(en, tn, sn, 〈(en,0, tn,0, O
des
n,0), ..., (en,mn , tn,mn , Odes

n,mn
)〉) 〉

where

– e0 = nill, t0 = 0 and s0 = so;
– ti−1 < ti and (si−1, ei → si) ∈ τo for each 0 < i ≤ n;
– for each timed event (ei,j , ti,j) there is either a rule:

• (si, [t, t′] → ei,j , O
des
i,j) ∈ ρo such that ti,j ∈ [t, t′] ∩ [ti, ti+1] �= ∅, or

• (si, [t, t′] ⇒ ei,j , O
des
i,j) ∈ ρo such that ti,j ∈ [ti + t, ti + t′] ∩ [ti, ti+1] �= ∅

generating this timed event.

68 F. de Jonge, N. Roos, and H. Aldewereld

The history of the whole model consists of the history of all the objects. Of course, the
history of the objects are not independent of each other. Every event that causes a state
transition of an object is an external event, or an event that is generated by a rule of a
possibly different object. Moreover, an event generated by a rule of an object must be
sent to every object in the corresponding set Odes.

Definition 4. A history H is the set of histories of all objects in O:

H = {Ho | o ∈ O}

where for each object o ∈ O and for each element

(ei, ti, si, 〈(ei,0, ti,0, O
des
i,0), ..., (ei,mi , ti,mi , O

des
i,mi

)〉) ∈ Ho,

(ei is generated) ei ∈ Eext, or there is a (ej , tj , sj, 〈..., (ej,k, tj,k, Odes
j,k), ...〉) ∈ Ho′

such that ei = ej,k, ti = tj,k and o ∈ Odes
j,k , and

(ei,j is sent) for each (ei,j , ti,j , O
des
i,j) and for each object o′ ∈ Odes

i,j , either ei,j is not
applicable in the state of o′ at ti,j , or there is a (ek, tk, sk, 〈...〉) ∈ Ho′ such that
ei,j = ek and ti,j = tk.

An event e is applicable in the state s of an object o iff (s, e → s′) ∈ τo.

Satisfiability and Consistency of Timed Constraints and Events. Since a history H
of the objects O specifies all the occurring events, we can check whether an (observed)
timed event (e, [t, t′]) is satisfied by the history H . That is, whether there exists an
object o ∈ O and a history of that object Ho such that (ej , tj , sj , 〈...〉) ∈ Ho, e = ej

and tj ∈ [t, t′]. Since we can view a history H as a possible description of the world
and since we can view a timed event (e, [t, t′]) as a proposition, we say that the history
satisfies the timed event: H |= (e, [t, t′]).

Similarly we can check whether the timed constraints (ctr, [t, t′]) and (¬ctr, [t, t′])
with ctr = 〈o1, ..., on, AS〉 ∈ C are satisfied by a history H , denoted by H |=
(ctr, [t, t′]) and H |= (¬ctr, [t, t′]), respectively. So, also the timed constraints are
viewed as propositions.

An execution model (O, Π) specifies a set of histories because of the uncertainty that
results from the use of time intervals. Some of the histories may satisfy a proposition ϕ;
i.e. a timed constraint or a timed event, while others do not. If the propositions describe
observations, then as long as there is one history H satisfying the propositions, there is
no conflict between the observations and the execution model (O, Π). In other words,
the observations are consistent with the execution model. If one or more observations are
inconsistent with the execution model (O, Π), we know that the current set of external
timed events Π needs revision. Diagnosis will give us a revised set of external events.

5 Diagnosis and Explanation

Some of the observed timed constraints C and some of the observed timed events Πobs

may not be consistent with the execution model M = (O, Πexp, C). These inconsis-
tencies indicate that the expected external events did not occur as specified by Πexp.1

1 We assume the absence of errors in the description of the objects O.

Using DESs for Temporal Diagnosis of Multi-agent Plan Execution 69

Hence, we can formulate a plan execution diagnosis problem: (M, Πobs, Cobs). This sec-
tion defines a diagnosis and an explanation given a plan execution diagnosis problem.

Diagnosis. Diagnosis of plan execution differs from traditional diagnosis of discrete
event systems [2,3,4]. Traditional diagnosis of discrete event systems is abductive diag-
nosis. In abductive diagnosis, the model of the plan execution extended with a diagnosis
must satisfy all observed events and all constraints. As we saw in the previous section,
because of the uncertainty in the model of the plan execution, this requirement is too
strong. What we need is consistency-based diagnosis. Consistency-based diagnosis en-
ables us to identify the set of external timed events that resolve the inconsistencies be-
tween the execution model M , the observed timed events Πobs and the observed timed
constraints Cobs.

Definition 5. Let (M, Πobs, Cobs) be a plan execution diagnosis problem where M =
(O, Πexp, C) is a model of the intended plan execution. Moreover, let Δ with Δ ⊆
{(e, [t, t′]) | e ∈ Eext, 0 ≤ t ≤ t′} be a candidate diagnosis.

Δ is a diagnosis of a plan execution iff ((O, Δ), Πobs, Cobs) is consistent; i.e., there
is a history H for (O, Δ) such that H |= Πobs ∪ Cobs.

Preference Criteria. There may be several diagnoses Δ according to Definition 5. The
quality of these diagnoses need not be the same. Preference criteria are used to select
the subset of the diagnoses. Usually, the preference criteria select the most probable
diagnoses. A criterium that is often used for diagnoses is preferring diagnoses that min-
imize the difference with the normal state of affairs. In plan diagnosis this would be the
external timed events Πexp.

A difficulty in comparing Πexp and Δ is that there are transitions to the same state
s starting from different states that are triggered by different events. For instance, two
events causing a transition to a state representing strong winds, one from a state repre-
senting no wind and one from the state representing a light breeze. If the expected light
breeze did not occur, we should still be able to infer that the change to strong winds
did occur. Therefore we will restrict the external events to so called absolute events.
An absolute event causes a transition to a new state independent of the previous state
thereby simplifying comparison of external events.

Definition 6. An external event e ∈ Eext of an object o ∈ O is an absolute event iff for
every s, s′ ∈ So: τo(s, e) = τo(s′, e).

The use of absolute events enables us to determine the difference between the expected
timed events Πexp and a diagnosis Δ. The difference consists of two aspects, (i) the
unexpected timed events that occurred according to the diagnosis: Δ � Πexp, and (ii)
the expected timed events that did not occur according to the diagnosis: Πexp � Δ.
Here, the function � is defined as:

(X � Y) = {(e, [t, t′]) ∈ X | ∀(e, [t′′, t′′′]) ∈ Y : [t, t′] ∩ [t′′, t′′′] = ∅}.

We prefer diagnoses Δ that minimize the differences with Πexp if the probability that
differences with Πexp occur is sufficiently small.

70 F. de Jonge, N. Roos, and H. Aldewereld

Explanation. In our application domain of air traffic control one often claims that dur-
ing normal daily operation all relevant events, including the external events, are ob-
servable. This does not imply that no constraint violation will occur when agents ex-
ecute their plans. On the contrary, air traffic controllers are working around the clock
to avoid incidents. Clearly, if all external events that have occurred, are observed, then
{(e, [t, t′]) | (e, [t, t′]) ∈ Πobs, e ∈ Eext} is a diagnosis. However, such a diagnosis
does not give an adequate explanation of an observed constraint violation.

For the purpose of plan repair, distributing cost of a plan repair, improvements of
future plans, and so on and so forth, we would like to know which external events are
accountable of the observed constrain violation during some time interval. A diagnosis
does not provide this information. It only specifies the expected and unexpected external
events that occurred without linking them to a specific observed constraint violation. So,
given a diagnosis, an explanation of an observed constraint violation must specify the
presence of unexpected external timed events and the absence of expected timed events
causing the constraint violation.2

Determining an explanation for a constraint violation is not straight forward. To il-
lustrate this, consider the following example. An aircraft that has a delayed departure
may still arrive on time at its destination because of the absence of strong headwinds.
However, because no gate is available after landing, the aircraft has a delayed arrival re-
sulting in a constraint violation. The constraint violation could be explained by consid-
ering the external event causing the delayed departure while ignoring in the explanation
the absence of strong headwinds and the unavailability of a gate after landing. Clearly,
this is not a proper explanation of the delayed arrival because the plane landed on time.

How do we determine the external events that explain a proposition (an observed
timed event or an observed timed constraint)? First, observe that for every proposition,
there is a non-empty set of objects the history of which determine the satisfiability of
the proposition. Second, the use of absolute external events implies that we do not have
to consider any event changing the state of an object o that occurs before an absolute
external event e changing the state of o. We do have to consider every event e′ generated
by and event rule of an object o′ changing the state of o after e. We also have to consider
the absent absolute events that where expected to occur after e.

Definition 7. Let (M, Πobs, Cobs) be a plan diagnosis problem and let Δ be a diagno-
sis. Moreover, let ϕ = (ε, [tε, t′ε]) be a proposition for which we seek an explanation.
Finally, let us view an observation of a timed constraint as a timed event to which we
can extend precedence relation ≺H induced by a history H .

(X a, X p) with X p ⊆ (Δ � Πexp) and X a ⊆ (Πexp � Δ) is an explanation of ϕ iff

1. X p ∪(Πexp �X a) is a preferred diagnosis of the plan execution diagnosis problem
(M, {ϕ}),

2. for no (Yp, Ya) with Yp ⊆ (Δ � Πexp) and Ya ⊆ (Πexp � Δ):
X p ∪ Yp ∪ (Πexp − X a − Ya) is not a diagnosis of the plan execution diagnosis
problem (M, {ϕ}).

Note that X p denotes the unexpected external events are present in the diagnosis Δ, and
X a denotes the expected external events that absent in the diagnosis Δ. Also note that

2 Here, we use a pragmatic interpretation of the concept ‘causes’.

Using DESs for Temporal Diagnosis of Multi-agent Plan Execution 71

the second requirement in the above definition is needed because of non-monotonicity
of explanations.

6 Example

This section illustrates the relevance of the model in our application domain, the field
of air traffic control, using a small example.

Flight KL1243 to DeGaulle Paris, which is docked at gate E11, is delayed because it
has to wait for passengers (the expected off-block event after which the aircraft is to taxi
to the runway does not occur at the planned time, but occurs 15 minutes later). After
further investigation it becomes apparent that the passengers that KL1243 is waiting for
are transfers from flight D845. Flight D845, from Heathrow London, was delayed due
to strong headwinds, and only just began de-boarding at gate D21.

Fig. 4. Example diagnosis

Figure 4 shows the model of the schedule for flights KL1243 and D845. As can
be seen, the expected in-block time of D845, which is the start of the de-boarding, was
expected before the off-block time of KL1243, but due to (unexpected) weather changes
has been delayed. This delay causes a delay in the boarding of KL1243, which is noted
by the delay in the occurrence of it’s off-block event.

Clearly, diagnosis identifies the explanation: ‘strong headwinds: London to Amster-
dam’. Note that this diagnosis can be used to predict that other flights from the same
direction will probably be delayed as well (until the weather changes).

7 Conclusion

Identifying causes of temporal constraint violations during plan execution is an impor-
tant issue in many domains, especially in our application domain of air traffic control.
Identifying causes of these constraint violations support plan repair and can help improv-
ing new plans. In this paper we have investigated whether a plan can be modeled using
Discrete Event Systems for the purpose of diagnosing cause of temporal constraint viola-
tions. We have shown that plan execution can be modeled using DESs and that a diagnosis
can be defined in terms of the presence or absence of external events. Such a diagnosis

72 F. de Jonge, N. Roos, and H. Aldewereld

describes the unforseen state changes in agents executing the plan, equipment used to
execute the plan and the environment in which the plan is executed. Finally, we have
shown that explanations for individual constraint violations can be determined.

In future work we will investigate whether we can abstract from time information of
events and of event generation rules. Moreover, we will investigate efficient distributed
implementations of the model based on approaches proposed in [16] and [4].

References

1. Cassandras, C.G., Lafortune, S.: Introduction to Discrete Event Systems. Kluwer Academic
Publishers, Boston, MA (1999)

2. Sampath, M., Sengupta, R., Lafortune, S., Sinnamohideen, K., Teneketzis, D.: Diagnosibility
of discrete event systems. IEEE Transactions on Automatic Control 40, 1555–1575 (1995)

3. Baroni, P., Lamperti, G., Pogliano, P., Zanella, M.: Diagnosis of large active systems. Artifi-
cial Intelligence 110(1), 135–183 (1999)

4. Pencolé, Y., Cordier, M.: A formal framework for the decentralised diagnosis of large scale
discrete event systems and its application to telecommunication networks. Artificial Intelli-
gence 164(1–2), 121–170 (2005)

5. Birnbaum, L., Collins, G., Freed, M., Krulwich, B.: Model-based diagnosis of planning fail-
ures. In: AAAI 90, pp. 318–323 (1990)

6. Kalech, M., Kaminka, G.A.: On the design of social diagnosis algorithms for multi-agent
teams. In: IJCAI-03, pp. 370–375 (2003)

7. Kalech, M., Kaminka, G.A.: Diagnosing a team of agents: Scaling-up. In: AAMAS 2005,
pp. 249–255 (2005)

8. Carver, N., Lesser, V.: Domain monotonicity and the performance of local solutions strate-
gies for CDPS-based distributed sensor interpretation and distributed diagnosis. Autonomous
Agents and Multi-Agent Systems 6(1), 35–76 (2003)

9. Horling, B., Benyo, B., Lesser, V.: Using self-diagnosis to adapt organizational structures. In:
Proc. 5th Int’l Conf. on Autonomous Agents, pp. 529–536. ACM Press, New York (2001)

10. de Jonge, F., Roos, N., Witteveen, C.: Primary and secondary plan diagnosis. In: DX’06. 17th

International Workshop on Principles of Diagnosis, pp. 133–140. Universidad de Valladolid
(2006)

11. Jonge, F., Roos, N., Witteveen, C.: Diagnosis of multi-agent plan execution. In: Fischer, K.,
Timm, I.J., André, E., Zhong, N. (eds.) MATES 2006. LNCS (LNAI), vol. 4196, pp. 86–97.
Springer, Heidelberg (2006)

12. Roos, N., Witteveen, C.: Diagnosis of plans and agents. In: Pěchouček, M., Petta, P., Varga,
L.Z. (eds.) CEEMAS 2005. LNCS (LNAI), vol. 3690, pp. 357–366. Springer, Heidelberg
(2005)

13. Roos, N., Witteveen, C.: Models and methods for plan diagnosis. In: Formal Approaches to
Multi-Agent Systems (FAMAS’06), ECAI 2006, Workshop Notes (2006)

14. Witteveen, C., Roos, N., van der Krogt, R., de Weerdt, M.: Diagnosis of single and multi-
agent plans. In: AAMAS 2005, pp. 805–812 (2005)

15. de Jonge, F., Roos, N.: Plan-execution health repair in a multi-agent system. In: PlanSIG
2004. Proc. 23rd Annual Workshop of the UK Planning and Scheduling SIG (2004)

16. de Jonge, F., Roos, N., van den Herik, H.: Keeping plan execution healthy. In: Pěchouček,
M., Petta, P., Varga, L.Z. (eds.) CEEMAS 2005. LNCS (LNAI), vol. 3690, pp. 377–387.
Springer, Heidelberg (2005)

17. Sampath, M., Sengupta, R., Lafortune, S., Sinnamohideen, K., Teneketzis, D.: Failure di-
agnosis using discrete event models. IEEE Transactions on Control Systems Technology 4,
105–124 (1996)

Agent Communication Using Web Services, a

New FIPA Message Transport Service for Jade

Esteban León Soto

German Research Center for Artificial Intelligence (DFKI)
Multiagents Systems Group
Esteban.Leon@dfki.de

Abstract. Integration of agents and Web Services has been target of
much interest and significant work in the last few years. In this paper
an openly available implementation of a FIPA compliant Jade Message
Transport System for Web Services is presented and evaluated. It pro-
vides a mechanism to integrate Jade agents transparently with Web Ser-
vices, The proposed message representation is compliant with FIPA and
modern Web Services standards and is part of FIPA’s initiative to cre-
ate specifications for Web Services integration. Agent implementations
do not require to be changed to interact with Web Services or to pro-
vide services using this tool. It also can be used to implement complex
conversations as choreographies of Web Services.

1 Introduction

For a long time there has been interest by the agent community to integrate
agent technologies with Web Services. The main reason being that Web Services
became one of the preferred ways for integrating distributed systems. The inte-
gration of Web Services and agents provides agents the accessibility to services
they can use and at the same time, agents can provide their services to other
interested parties that are not necessarily agents. Initial work in this area started
a few years ago in the form of gateways [1] [2]. Their features have improved
over time, but in general they base their concept on simple request-response
interactions.

The intention in the Web Services community has always been to produce
architectures that are service-oriented and that enable the interaction of mul-
tiple systems in a business process. There is a strong interest for Web Services
platforms to be capable of performing complex interactions between autonomous
entities. These processes normally are more complex than the a request-respond
interaction between only two parties. Web Services standards covering this area,
like Web Services Addressing (WS-Addressing), are making Web Services to be
more agent-like. At the same time the main task of multiagent systems’ middle-
ware, particularly those based on FIPA standards, has always been to support
complex interactions [3]. Therefore to perform complex interactions between
FIPA compliant agents using Web Service standards would provide a very solid
framework for creating Web Services complex conversations.

P. Petta et al. (Eds.): MATES 2007, LNAI 4687, pp. 73–84, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

74 E. León Soto

The present work is about a Message Transport Service (MTS) implementa-
tion for Jade agent platform called Jade WSMTS. The implementation provides
a middle-ware grounded on Web Services. The next section describes briefly Jade
and Web Services. In Sect. 3 the objectives of Jade WSMTS are stated. After
that, in Sect. 4 the implementation is described. A brief example of a message is
provided in Sect. 5. Following up is Sect. 6 where the results are discussed and
analysed against related work. Also several new tasks which are enabled by this
implementation are discussed in this section, before the conclusion.

2 Underlying Technologies

2.1 Jade

Jade[4] is a FIPA [5] compliant multiagent system middle-ware which also serves
as agent platform and provides basic services like directories and messaging. Its
framework supports the implementation of ontologies for the contents of messages
and knowledge of agents. Its http Message Transport Protocol (MTP) and XML
encoding specifications do not suffice for true Web Services interoperability: the
http MTP and the XML schema for the codec do not follow widely used Web
Services standards like Simple Object Access Protocol (SOAP), WS-Addressing,
etc. The majority of agent developers have used FIPA’s string representation,
mainly because it is ready to use and set as default in Jade. Jade is also one of the
preferred platforms to implement complex conversations between autonomous
agents, because it provides a library of behaviours for performing FIPA interac-
tion protocols. New complex conversations and their corresponding behaviours
can be produced from scratch or by combining protocols. This makes Jade a very
suitable tool for implementing business processes using agent systems.

2.2 Web Services

Web Services, as defined by the World Wide Web Consortium (W3C)[6], are one
of the most accepted mechanisms used for integration of distributed systems and
interoperability. They are intended to be used through search, discovery and
usage, promoting decoupling of system modules. Web Services are one of the
development techniques that have been moving faster towards [7] a level closer
to a Service Oriented Architecture (SOA). It provides standards for different as-
pects, one of them being dynamic messaging: WS-Addressing [8] states the basic
properties a Message Envelope must have. This is part of the emerging effort
in the Web Services community to perform complex conversations in business
processes, which go beyond simple request-response interactions.

3 Objectives

The main objective is to produce a Web Services based MTS that enables agents
to interact through the web with other Web Services and agents. The FIPA com-
pliant communication framework must remain the same, with the only difference

Agent Communication Using Web Services 75

that the grounding of the messages must use Web Services standards. Agents
that can communicate using the infrastructure provided by Jade without using
the add-on, should be able to communicate using the add-on on Jade, it should
not require changes in their implementation.

Other objectives are:

Accessibility. Agents must be capable of connecting to Web Services using the
same mechanisms for communicating with other agents. Agents must also be
accessible by conventional Web Services. Accessibility must be possible not only
with WS-Addressing compliant Web Services, but also with simple or REST
services.

Web Services Compliance. Jade should, with this add-on, use conventional
Web Services standards, particularly SOAP and WS-Addressing. This is impor-
tant to ensure that any contribution achieved with this tool works appropriately
in any Web Services scenario.

Enable Complex Interaction Patterns for Web Services. Web Services
are used dominantly in interaction patterns similar to RPC. An increasing in-
terest exists on supporting more complex interaction patterns, specially in areas
like Business Process or Workflows enactment. This tool should enable the im-
plementation of such conversations: using Jade to implement FIPA interaction
patterns but grounding them using Web Services standards.

Integrate Jade in a Web Services Infrastructure. Jade should not be
used for development only, but also for performing as any other system in a Web
Services environment. Therefore it must be integrated as any other conventional
java Web application.

XML Content Description. Jade provides mechanisms for creating ontolo-
gies, that can be used in the contents of agents’ knowledge and also for the
contents of messages. Jade will be extended with a XML grammar for the SL
language (a XML schema).

4 Jade WSMTS Implementation

For the implementation of the proposed system, the framework chosen for cre-
ating the Web Services interface is Axis2 [9] as it is one of the most updated
implementations of the aforementioned Web Services standards. This way, it del-
egates the following up of Web Services standards, isolating the implementation
of Jade WSMTS from these constant changes, unburdening the maintenance of
Jade WSMTS. Architecturally an Axis2 message Receiver that implements the
transformation is registered in Jade as any other MTS, together with Jade and
the agent implementations, it constitutes the Axis2 Web Application. Agents can
instruct this MTS to transform, where applicable, the asynchronous communi-
cation of agents in Jade to synchronous communication in Web Services. Apart

76 E. León Soto

Fig. 1. Jade WSMTS Architectural stack

of that, there is a feature available for agents to register addresses specific for
them, in case agents are to be published as REST services instead of the normal
mechanism of this tool: a single address for the platform and header annotations
with the agent ID of the targeted agent. Figure 1 shows how Jade is integrated
into a Web Services environment the same way any other application of this kind
is integrated, ready to run over any standard message transport infrastructure.

4.1 Endpoint References (EPR)

The first data information type defined in this implementation, shown in Fig. 2,
is the merge of an Endpoint Reference (EPR) [8] and a Agent ID (AID) [10].
EPRs, as its name states, are intended to refer to endpoints. This is not sufficient
to identify entities lying behind the endpoints, the normal practice with agents.
This resembles the difference between agents (sateful) and services (stateless).
To solve this, EPRs are enriched with the information items that compose an
AID in such a way that properties with matching semantics stay as specified
for EPRs, making EPRs a subset of the properties defined by an AID. On one
hand, FIPA properties are transparent for entities that cannot process them, like
conventional Web Service consumers which need only to know how to reach the
service. On the other hand EPRs from conventional Web Services are treated as
AIDs of agents that prefer to stay anonymous.

4.2 Messaging

The primary contribution of this implementation is the specification of a message
envelope for SOAP that merges both properties from FIPA and WS-Addressing
standards [11]. The envelope follows a structure defined in [12] which is de-
scribed in Fig. 3. The structure of the envelope shows how the envelope spec-
ification of WS-Addressing is augmented with FIPA specific properties [13] to

Agent Communication Using Web Services 77

wsa: To
wsa: ReferenceParameters:

fipa: agent-name
fipa: additional-Addresss (N)

fipa: resolvers (N)

wsa: MetaData
wsa: WS-Addressing

fipa: FIPA Management Specification [10]

Fig. 2. FIPA AID–WS-Addressing Endpoint Reference

support FIPA standardized communication. The four messaging properties writ-
ten in slanted letters are containers for extra Endpoint References, since the
FIPA envelope specification gives these properties plural cardinality in opposite
to WS-Addressing which gives them singular cardinality. The value in wsa:To
will be used as default target address for the message, the extra headers are
expected to be processed only by FIPA entities. Some properties belonging to
WS-Addressing have taken the roles of analogous properties in FIPA: action,
messageID, inReplyTo and message body. Apart of these, other FIPA messag-
ing properties were added, related to the description of the message contents:
encoding, language, ontology, protocol, date and details about payload. Agents
are free to decide which mechanism to use for a message: to send a message
through Jade WSMTS the value identifying SOAP representation is to be set
in the aclRepresentation envelope property, Jade will automatically choose the
corresponding mechanism for delivering the message.

Transport. Message transportation is delegated to Axis2 whenever SOAP mes-
sages go outside the agent platform. Axis2 allows also to use other transport
protocols, implementations for http and smtp are already provided, others can
be implemented which is very useful, because there is interest also in using com-
munication based on other transport mechanisms [14].

Contents. Web Services and FIPA standards leave content metamodel defini-
tion open. Even so, it is important to remark the dominance of XML as content
representation mechanism, a tendency well supported by Web Services and par-
tially adopted by FIPA standards. FIPA provides also a Semantic Language (SL)
[15] for the representation of contents. Being this the representation most fre-
quently used for messages that refer to FIPA ontologies, it was also convenient to
provide SL representation in XML, to allow other participants that do not share
the capability of processing traditional FIPA String representation, to interact
with agents that use SL as a grounding for their contents. For that reason, an
XML-based codec is provided. It produces contents based on the schema speci-
fication provided in [16]. This schema can be used for content type definition in
a WSDL description.

78 E. León Soto

wsa: Action (fipa performative)

wsa: To fipaEnv: IntendedReceivers
fipaACL: ExtraReceivers

wsa: From fipaEnv: From
wsa: ReplyTo fipaACL: ReplyTo

wsa: MessageID (fipa ReplyWith)

fipaACL: ConversationID
wsa: Relationships (includes fipaACL:InReplyTo)

fipaACL: Encoding fipaACL: Language

fipaACL: Ontology fipaACL: Protocol

fipaEnv: Date fipaEnv: aclRepresentation
fipaEnv: payloadLength fipaEnv: payloadEncoding

soap: Body (Message content)

wsa: WS-Addressing

fipaEnv: FIPA Envelope

fipaACL: FIPA ACL specification

Fig. 3. FIPA–WS-Addressing message envelope

4.3 Publication and Discovery

From the perspective of message transportation, the concepts of publication and
discovery are a specific kind of content specification [11].

FIPA architectures provide two registry services [10], the Agent Management
Service (AMS), and the Directory facilitator (DF). Publication and discovery,
are performed using FIPA SL language. Web Services interaction with these
services is enabled using the FIPA-XML-SL codec presented previously, to enable
an easier integration with other entities and not only agents.

Agents in the Jade platform are as well capable of using registries outside the
agent platform, for instance: UDDI. The contents for both registries is repre-
sented differently but the interaction is in principle the same. An integration of
the DF and UDDI concepts will not be approached in this implementation since
these are considered different solutions for similar problems. Both possibilities
are enabled as well as any other facility accessible through Web Services, like
semantic matchmakers.

5 Example

The example in Listing 1 shows a message sent using Jade WSMTS. This
message is sent by agent TestAgent1 of Jade-WebServices-Platform1 (lines 4-
13) to agent df (the directory facilitator) of Jade-WebServices-Platform2 (lines
14-19). Some message annotations are added (lines 20 - 30). Note the value for
the acl-representation (line 26) which identifies the codec used by Jade for pro-
cessing the envelope. The last header for the message is the action identifying

Agent Communication Using Web Services 79

Listing 1. WS-FIPA message example

�
1 <soapenv:Envelope xmls l : soapenv=” . . . ” xmls l :wsa=” . . . ”
2 xmls l : f ipaEnv=” . . . ” xmlsl:am=” . . . ” xm l s l : a c l=” . . . ”>
3 <soapenv:Header>
4 <wsa:From>
5 <wsa:Address>
6 h t tp : // l o c a l ho s t : 8 0 8 5 / ax i s2 / s e r v i c e s /MTS
7 </wsa:Address>
8 <wsa:Re fe renceParameters>
9 <ax i s2n s4 : agent−name>

10 TestAgent1@Jade−WebServices−Platform1
11 </ ax i s 2n s4 : agen t−name>
12 </wsa :Re fe renceParameters>
13 </wsa:From>
14 <wsa:To>
15 h t tp : // l o c a l ho s t : 8 1 9 5 / ax i s2 / s e r v i c e s /MTS
16 </wsa:To>
17 <ax i s2n s3 : agent−name wsa : I sRe fe renceParameter=” true ”>
18 df@Jade−WebServices−Platform2
19 </ ax i s 2n s3 : agent−name>
20 <wsa:MessageID>12356671570200906 −0</wsa:MessageID>
21 <ac l : c onve r sa t i on ID>11176570200906</ ac l : c onve r sa t i on ID>
22 <ac l : l anguage>f ipa−xml−s l</ ac l : l anguage>
23 <a c l : o n t o l o g y>FIPA−Agent−Management</ a c l : o n t o l o g y>
24 <a c l : p r o t o c o l>f ipa−r e que s t</ a c l : p r o t o c o l>
25 <f i p aEnv : ac l−r ep r e s en ta t i on>
26 f i pa . a c l . rep . soap . d f k i . v . 0 . 1
27 </ f i paEnv : ac l−r ep r e s en ta t i on>
28 <wsa:Action>
29 h t tp : // d f k i . de/ f i p a / spe e chac t s/ r eque s t
30 </wsa:Action>
31 </ soapenv:Header>
32 <soapenv:Body>
33 <s l : a c t i o n −exp r e s s i on xml s l : n s=” . . . ”>
34 <s l : a c t o r funct ionSymbol=”agent− i d e n t i f i e r ”>
35 <s l : p a rame te r name=”name”>
36 <s l : v a l u e> <s l : s t r i n gV a l u e>
37 df@Jade−WebServices−Platform2
38 </ s l : s t r i n gV a l u e> </ s l : v a l u e>
39 </ s l : p a rame te r>
40 <s l : p a rame te r name=” add re s s e s”>
41 <s l : v a l u e> . . .
42 h t tp : // l o c a l h o s t : 8 0 8 5 / ax i s2 / s e r v i c e s /MTS
43 . . .</ s l : v a l u e>
44 </ s l : p a rame te r>
45 </ s l : a c t o r>
46 <s l : a c t i o n funct ionSymbol=” r e g i s t e r ”>
47 <s l : op e rand funct ionSymbol=”df−agent−de s c r i p t i o n ”>
48 <s l : p a rame te r name=”name”>
49 <s l : v a l u e funct ionSymbol=”agent− i d e n t i f i e r ”>
50 . . .
51 </ s l : v a l u e>
52 </ s l : p a rame te r>
53 <s l : p a rame te r name=” pro toco l ”>
54 <s l : v a l u e> <s l : e l emen t>
55 <s l : s t r i n gV a l u e>f ipa−r e que s t</ s l : s t r i n gVa l u e>
56 </ s l : e l emen t> </ s l : v a l u e>
57 </ s l : p a rame te r>
58 </ s l : op e r and>
59 </ s l : a c t i o n>
60 </ s l : a c t i o n −exp r e s s i on>
61 </soapenv:Body>
62 </ soapenv:Envelope>

� �

which speech act is being performed (lines 28-30). Then comes the message
contents, as mentioned in line 22, it is represented using FIPA-XML-SL lan-
guage presented in Sect. 4.2. As stated in line 29, it is a request described using

80 E. León Soto

FIPA-Agent-Management ontology (line 23) for the actor (lines 34-45) to per-
form the action (lines 46-60) of register ing (line 46) the agent description of the
agent sending the message (lines 47-58).

6 Discussion

The most important advantage of this proposal is that it merges, as it can be seen
in Fig. 3 and in the example provided, information items from WS-Addressing
as well as from FIPA Envelope Specification in a single level. This at the same
time enables both technologies to connect transparently and their messages to be
processed appropriately by endpoints of any of both technologies. The usage of
message addressing properties make it possible to perform complex conversations
as proposed by FIPA. Agents not only take advantage of the accessibility to Web
Services, as it happens with other proposals, but this implementation provides
the possibility to perform complex interaction patterns using SOAP between
agents and other agents or Web Services.

For achieving integration, some gaps had to be covered like the sateful nature
of agents vs. stateless nature of services or the possible difference in reasoning
power between participants. The first one manifests clearly in the definition
of the augmented EPR, service-implementing instances are not required to be
identifiable. In this implementation Web Services are presented to agents as
other agents which are or desire to be anonymous. Agents should therefore be
prepared to interact with anonymous agents and to distinguish between them
by means other than its name, normally its address. This at least covers the first
and most urgent issue, still some others stay open for future study, as discussed
in Sect. 6.2 .

6.1 Related Work

The FIPA Agents and Web Services Integration (AWSI) group, dedicated to
the creation of new specifications in this area, gathers different approaches for
integrating agents and Web Services [17] including the one presented here. The
different strategies share in principle the same idea of a wrapper or adapter mod-
ule. This is the recommended way to integrate heterogeneous systems to a Web
Services architecture [18]. Web Services used to lack support for complex con-
versations and accordingly, integration with agents was done using wrappers[19].
The experience gained in the Agentcities project [20] proposed to enable interop-
erability using a gateway [21] for the interaction of services and agents. Several
solutions have adopted the Gateway approach [22], [7], [23]. Most of them fo-
cused on simple Web services request-responses conversations not enabling more
complex interactions. Even so, significant results were achieved in the mapping
of description [22] and the complex semantics [2], [1] which are areas where
approaches tend to be different to those proposed by FIPA.

Jade WSMTS is similar to most of these gateways in the sense that it trans-
lates messages, even so, the implementation provides some advantages like the

Agent Communication Using Web Services 81

delegation of message transport to Axis2, allowing Jade WSMTS to stay up-
to-date with less effort and simplifying Web Services compliance. In fact, Jade
WSMTS provides at the moment the most modern FIPA ACL message repre-
sentation using Web Services standards, which allows to take better advantage
of Web Services messaging infrastructure, something useful when implementing
agents that should work in a SOA like, for instance: in [24] specific SOAP headers
were created to implement a service mediator in charge of forwarding requests
to agents performing the actual task, Jade WSMTS would have simplified this
significantly: WS-Addressing already provides the headers required which are
used accordingly, based on the information in the FIPA ACLMessages.

Jade WSMTS is implemented as any other MTS inside Jade, which is a cleaner
integration technique than using an agent for providing such a service. Having
such a natural integration in the platform allows a very straightforward and
little intrusive integration of agents not originally implemented to use Web Ser-
vices. The transparent communicational integration in this tool allows agents to
use UDDI or services outside of the platform to use the DF, which avoids the
overhead of replications and extra translations used in some of the gateways.
Even though the DF can provide a Web Service interface to the outside, this
feature is not expected to be used frequently by conventional Web Services. The
opposite alternative, usage of UDDI by agents, requires additional development,
since agent implementations using Jade WSMTS need to process UDDI mes-
sage contents directly, a codec for this content type is not provided. Most of the
gateways provide a translation of WSDL descriptions and UDDI entries to and
from their FIPA.

One approach for supporting complex conversations with partners that possess
little reasoning power was proposed in [25], an orchestrator services that performs
the reasoning about the dialog and guides the participants with the speech acts
available to proceed in the dialog, hindering the autonomy of agents. EPRs allow
inside their Metamodel field to describe the service interface of an Endpoint. This
is a feature an agent can use to provide a detailed description of how an answer
is expected, an alternative that lets agents interact with entities of less reasoning
power, but without compromising autonomy.

Agents can enact complex conversations using Jade .This does not change
when using Jade WSMTS: the execution of complex conversations works the
same way agents perform in FIPA interaction protocols.

6.2 Future Work

Jade WSMTS clears barriers at the levels of message transportation and rep-
resentation. Still the difference between natures of both technologies remains,
opening new questions and problems. Agents in a multiagent system interact
with the assumption that the other agents can understand the meaning of their
messages and are capable of reasoning about it. Interaction between parties
with different reasoning capabilities tend to reduce the overall communication
capacity to levels that can be as low as that of the lowest capable participant,
as it happens in some gateways. There can be different scenarios and decisions

82 E. León Soto

concerning this aspect: in the case of P2P, the notion of peer implies that all
participants share the same level, in some multiagent systems with agents of
heterogeneous complexity, the description of agents and the ACLMessage anno-
tations allow to be aware of the communicative capabilities of the agent, like
what protocols or ontologies it can process. Another option to cope with this
is to provide a taxonomy for participants of a conversation, which takes into
account special features the other parties should know about and define the
kind of participant and the assumptions that can be made about them to facili-
tate interaction, after all, the pure communicative capabilities do not define the
reasoning power of a participant.

Other open issues are those related to the stateful nature of agents and also
the identification mechanisms. The concept of anonymity can be a challenge for
agent implementations, because agents will require other mechanisms to differ-
entiate the anonymous parties in a conversation. The traditional stateless nature
of services can have bigger repercussions at the time of performing complex con-
versations, since it relies some times on the concept of commitments which nor-
mally implies that parties manage different states during the conversation. Some
Web Services support this, at least in certain sense, by using sessions or similar
concepts. It is relevant to study the relationship between stateful entities, com-
mitments and complex conversations, also to compare messaging mechanisms
like REST and robust messaging like in FIPA or WS-Addressing.

7 Conclusion

Jade WSMTS, a message transport system for Jade agent platform, has been
presented. It transports messages using Web Services messaging based on WS-
Addressing using Axis2. Agents using Jade WSMTS interact with Web Services
using the same mechanism used to interact with other agents. Web Services can
interact with agents, they are presented as anonymous agents that provide only
an address to reach them. Some considerations have to be taken into account
when interacting with Web Services counter-parts, like their reasoning capabil-
ities and communicative flexibility. Entries in the ACLMessage like protocols,
language and ontologies give agents an idea of the capabilities of the entities
participating in the conversation. At the same time, this tool enables the enact-
ment of complex conversations based on, but not limited to, the FIPA interaction
protocols specifications.

The implementation is available as a Jade add-on [26], it provides more com-
prenhensive examples of synchronous and asynchronous communication, com-
plex conversations and interaction with simple services, also how agents can be
reached as REST Service. Apart of that it provides a codec for representing
FIPA ontology contents using XML. This proposal is part of the initiative to
create a new FIPA specifications for Web Services integration [17].

This implementation opens new doors for experimenting with agent technolo-
gies and theories in areas of Web Services like interoperability [27], Web Services,
interaction patterns, business processes [28], service composition, etc. One of the

Agent Communication Using Web Services 83

main subjects will be to compare REST services vs. robust messaging, stateful
vs. stateless peers in a conversation, the necessity or advantages of commitments
and also the interaction of entities with different processing power. Ontology con-
tents represented using XML allows for better integration and to compare and
study better the effects of ontologies in scenarios of heterogeneous participants,
in context, commitments and collective knowledge in a complex conversation.

References

1. Greenwood, D., Nagy, J., Calisti, M.: Semantic Enhancement of a Web Service
Integration Gateway. In: Workshop on Services-Oriented Computing and Agent-
Based Engineering at AAMAS 05 (2005)

2. Nguyen, X.T., Kowalczyk, R.: WS2JADE: Integrating Web Services with Jade
Agents. In: Workshop on Services-Oriented Computing and Agent-Based Engi-
neering at AAMAS 05 (2005)

3. León Soto, E., Fischer, K.: FIPA Agents Platform Integration in an Architecture
based on Web Services. In: Agent-based Technologies and applications for Enter-
prise Interoperability, ATOP Workshop at AAMAS 05 (2005)

4. JADE: Java Agent Development Framework (2001), On line
http://jade.tilab.com

5. FIPA: Foundation for Intelligent Physical Agents (2002), On line
http://www.fipa.org

6. W3C: World Wide Web Consortium, http://www.w3.org
7. Curbera, F., Khalaf, R., Mukhi, N., Tai, S., Weerawarana, S.: The next step in

web services. Communications of the ACM 46(10), 29–34 (2003)

8. W3C: Web services addressing (2006), http://www.w3.org/2002/ws/addr/
9. AXIS2: Axis2 SOAP Stack implementation (2006),

http://ws.apache.org/axis2/
10. FIPA: FIPA Agent Management Specification (2002)
11. León Soto, E.: FIPA Agents Messaging grounded on Web Services. In: Grid Services

Engineering and Management (GSEM) P-88 of LNI (2006)

12. DFKI: FIPA Message Envelope representation for Web Services (2007),
http://www.dfki.de/∼estebanl/JadeWSMTS/fipaEnvSchema.xsd

13. FIPA: FIPA Agent Message Transport Envelope Representation in XML Specifica-
tion. Technical report, Foundation For Intelligent Physical Agents (FIPA) (2002),
http://www.fipa.org/specs/fipa00071/

14. Palanca, J., Escrivá, M., Aranda, G., Garćıa-Fornes, A., Julian, V., Botti, V.:
Adding New Communication Services to the FIPA Message Transport System. In:
Fischer, K., Timm, I.J., André, E., Zhong, N. (eds.) MATES 2006. LNCS (LNAI),
vol. 4196, pp. 1–11. Springer, Heidelberg (2006)

15. FIPA: FIPA SL Content Language Specification (2002)

16. DFKI: FIPA SL representation in XML (2007),
http://www.dfki.de/∼estebanl/JadeWSMTS/FIPA-XML-SL.xsd

17. Greenwood, D., Lyell, M., Mallya, A., Suguri, H.: The IEEE FIPA Approach to
Integrating Software Agents and Web Services. In: Sixth International Conference
on Autonomous Agents and Multiagent Systems, Industrial Track (2007)

18. Barry, D.K.: Web Services and Service-Oriented Architectures. Morgan Kaufmann,
San Francisco (2003)

http://jade.tilab.com
http://www.fipa.org
http://www.w3.org
http://www.w3.org/2002/ws/addr/
http://ws.apache.org/axis2/
http://www.dfki.de/~estebanl/JadeWSMTS/fipaEnvSchema.xsd
http://www.fipa.org/specs/fipa00071/
http://www.dfki.de/~estebanl/JadeWSMTS/FIPA-XML-SL.xsd

84 E. León Soto

19. Jennings, N.R.: An agent-based approach for building complex software systems.
Commun. ACM 44(4), 35–41 (2001)

20. Agentcities: Agentcities (2002), http://www.agentcities.org
21. Agentcities Web Services Working Group: Integrating Web Services into Agentci-

ties (2002), http://www.agentcities.org/Activities/WG/WebServices/
22. Greenwood, D., Calisti, M.: Engineering web service - agent integration. In: Pro-

ceedings of the IEEE International Conference on Systems, Man & Conference,
Whitestein, vol. 2, pp. 1918–1925. IEEE, Los Alamitos (2004)

23. Singh, M.P., Huns, M.N.: Service-Oriented Computing Semantics, Processes and
Agents. Wiley, Chichester (2005)

24. Sonntag, M.: Agents as Web Service providers: Single agents or MAS? Applied
Artificial Intelligence 20, 203–227 (2006)

25. Ardissono, L., Goy, A., Petrone, G.: Enabling conversations with web services.
In: AAMAS ’03: Proceedings of the second international joint conference on Au-
tonomous agents and multiagent systems, pp. 819–826. ACM Press, New York
(2003)

26. León Soto, E.: Jade WS-MTS Add-on,
http://jade.tilab.com/community-addons.php

27. Hahn, C., Madrigal-Mora, C., Fischer, K., Elvesæter, B., Berre, A.J., Zinnikus, I.:
Meta-models, Models, and Model Transformations: Towards Interoperable Agents.
In: Fischer, K., Timm, I.J., André, E., Zhong, N. (eds.) MATES 2006. LNCS
(LNAI), vol. 4196, pp. 123–134. Springer, Heidelberg (2006)

28. Zinnikus, I., Elguezabal, G.B., Elvesæter, B., Fischer, K., Vayssière, J.: A model
driven approach to agent-based service-oriented architectures. In: Fischer, K.,
Timm, I.J., André, E., Zhong, N. (eds.) MATES 2006. LNCS (LNAI), vol. 4196,
pp. 110–122. Springer, Heidelberg (2006)

http://www.agentcities.org
http://www.agentcities.org/Activities/WG/WebServices/
http://jade.tilab.com/community-addons.php

Goal-Oriented Interaction Protocols

Lars Braubach and Alexander Pokahr

Distributed Systems and Information Systems
Computer Science Department, University of Hamburg
{braubach, pokahr}@informatik.uni-hamburg.de

Abstract. Developing agent applications is a complex and difficult task
due to a variety of reasons. One key aspect making multi-agent systems
more complicated than traditional applications is that interaction be-
havior is based on elaborate communication forms such as negotiations
instead of simple method calls. Aimed at facilitating the specification and
usage of agent communication, agent research resulted e.g. in the defini-
tion and standardization of several general purpose interaction protocols
such as contract-net or English auction. Nevertheless, the usage of these
valuable interaction patterns currently forces developers to concentrate
on the details of message passing instead of thinking in terms of the ap-
plication domain. To alleviate this problem in this paper a goal-oriented
approach is proposed, which hides message passing details allowing de-
velopers to concentrate on the domain aspects of protocols. The new
approach is based on the BDI agent model and is implemented within
the Jadex agent framework. The advantages of the goal-based interaction
handling are further illustrated by an example application.

1 Introduction

The ability to interact with each other is generally accepted as one of the im-
portant properties of software agents [1]. Interaction is required as a means to
coordinate the actions of the individual agents of a multi-agent system (MAS)
in order to achieve overall system goals and to improve the effectiveness of the
system [2]. Despite the importance of interacting agents, realizing the necessary
interactions is one main source of difficulties during the development of a multi-
agent system. These difficulties stem from the fact that, unlike traditional sys-
tems, multi-agent systems are usually inherently distributed and asynchronous
without any central control. Regarding the design and implementation of in-
teractions in a multi-agent system, developers are therefore confronted with a
multitude of conceptual and implementation related questions such as:

1. What are the objectives behind the interaction?
Macro Level 2. What are the characteristic properties of the interaction?

3. How can the interaction be described and analyzed?

4. What are the objectives of the interacting agents?
Micro Level 5. How is the interaction related to the agent architecture?

6. How is the interaction related to domain-specific behavior?

P. Petta et al. (Eds.): MATES 2007, LNAI 4687, pp. 85–97, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

86 L. Braubach and A. Pokahr

According to Ferber [2], interaction can be viewed from a macro level perspec-
tive (i.e., for the MAS as a whole) as well as on the micro level (i.e., considering
the individual agents). In the macro level perspective, the objectives of the sys-
tem as a whole (question 1) need to be considered that aim at coordinating
the behavior of individual agents towards establishing some global properties
of the system (e.g. using market-based coordination mechanisms to achieve fair
pricing of traded goods). Properties of interactions (question 2) can be classi-
fied according to different criteria related to the dialog structure, which can be
defined in advance as a fixed sequence of messages with only a limited number
of alternatives (called interaction protocols) or evolve dynamically according to
loose regulations allowing flexible reactions of the participants. To support a sys-
tematic construction of interactions adequate macro level description means are
necessary (question 3) that contain information about the interaction objective
as well as the specific properties. Restricting the topic to interaction protocols a
variety of techniques has been proposed in the field of multi-agent systems, such
as the well known AUML sequence diagrams [3]. Besides the description also the
analysis is important for the validation of the system, where approaches range
from formal verification to runtime monitoring of agent behavior.

The micro level perspective deals with questions regarding the implementation
of the individual agents. To implement the local decision processes of the individ-
ual agents, the developer has to lay down the individual objectives (question 4)
that apply to the steps of the interaction. After deciding on the agents objectives,
the developer is confronted with numerous implementation choices. Nowadays,
there exists a vast number of more or less mature software frameworks support-
ing developers in building complex multi-agent systems [4]. These frameworks
employ different agent architectures used to define the behavior of the agents,
which are commonly based on abstract mentalistic notions (e.g. the BDI model
[5]) or on simple task-centric concepts derived from software engineering needs.
Therefore, the question arises, how these internal agent architectures relate to
separately designed interactions (question 5). Finally, the developer has to solve
the problem of how to integrate the domain-specific application logic with the
previously designed interaction flow (question 6).

Despite the importance of all these questions and also of the link between both
levels this paper focuses on micro level questions (4-6) and is organized as follows:
In Sect. 2, related work regarding the support for interactions in multi-agent sys-
tems is presented. Section 3 describes a new approach to the implementation of
protocols for BDI-style agents, employing goals as a central concept for estab-
lishing the connection between (external) interactions and (internal) reasoning.
In Sect. 4, the realization of this approach within the Jadex agent framework is
explained and demonstrated with an illustrative example in Sect. 5. The paper
concludes with a summary and an outlook in Sect. 6.

2 Related Work

Research that aims at improving the agent interaction realization can be
coarsely divided in protocol-based interactions and flexible interactions, whereby

Goal-Oriented Interaction Protocols 87

protocol-based interactions can be subdivided in generator- and interpreter-
oriented approaches. Generally, generator approaches allow transforming proto-
col descriptions into executable code specifications. E.g. in [6] a tool is presented
for the automatic transition of AUML protocol descriptions into JADE behav-
iors. Further work supports other agent platforms such as Mulan or AgentFac-
tory as well [7,8]. Most generator approaches produce initial code skeletons and
leave the connection with the domain logic to the developer (question 6), lead-
ing to code maintenance problems as generic protocol code and domain-specific
code are highly intertwined. As those approaches are mostly targeted towards
simple task-centric agent platforms, the connection of protocols with the target
agent architecture is currently also neglected (question 5). The alternative are
interpreter-oriented approaches that process protocol descriptions at runtime,
requiring a mechanism for integrating protocol execution with domain-specific
behavior (question 6). E.g. in [9] and [10] interpreters based on (different) for-
malizations of AUML are proposed, whereby the domain-dependent parts are
connected via method invocations whenever a message is received or has to be
sent. These approaches still focus on message sequences and do not provide do-
main level abstractions. Interpreter approaches are also architecture-independent
and do not exploit the full potential of a specific agent architecture (question 5).

Flexibility of interactions is achieved by relaxing the constraints that exist
in using predefined protocols, leading to more fault-tolerant and hence robust
communications, which are driven by the interests of the communication par-
ticipants and not by predefined sequences of message patterns. E.g. in Hermes
[11] a goal-oriented approach is proposed that focuses on the macro level ques-
tions (1-3) and aims at decomposing interactions into a hierarchy of interaction
goals, where each leaf goal represents a partial interaction. These goals enable
failure recovery and rollbacks in case of unexpected communication outcomes.
Other approaches exploit the message semantics, i.e., performative and content,
to determine how to react to a message (see e.g. the JADE semantic agent [12]
and the LS/TS SemCom architecture [13]) or use separate artifacts for medi-
ated interactions between agents (e.g. CArtAgO [14]). These approaches focus
on the openness of interactions, targeting question 5 and to some extend also 4
and 6, but usually employ custom control structures instead of established agent
architectures such as BDI. As standardized interaction protocols have proven
their value also for design and implementation of open systems, flexible interac-
tion approaches should be regarded as augmentation and not as a replacement
for protocol-based interaction. While Hermes does not focus on how the partial
interactions represented by leaf interaction goals should be implemented, the
semantic communication approaches currently do not allow the use of protocols.

An ideal approach should address all the questions posed in the introduc-
tion. Specifically, we think that a unified perspective is required that considers
protocols with respect to their objectives, agent architecture and domain con-
nection. Only such a holistic view, that is achieved by none of the presented re-
search efforts, will enable an abstract domain-centered perception of interaction
protocols. The approach presented in this paper can be regarded as one step in
this direction and is motivated by the interpreter-based perspective.

88 L. Braubach and A. Pokahr

3 Goal-Oriented Protocols Approach

Interaction protocols have gained high attention in the context of multi-agent
communication, as they capture established best-practices that facilitate the re-
alization of interaction-based application scenarios. Standardized protocols con-
cretize abstract mechanisms specifically designed for generic domain-independent
use-cases. Mechanism-dependent properties help deciding which protocols to use
in a concrete project setting. E.g. Wooldridge [1] proposes several general criteria
such as social welfare, guaranteed success or individual rationality that can be
used for comparing candidate mechanisms. When implementing the correspond-
ing protocols, developers should be enabled to concentrate on the domain-aspects
of protocols abstracting away from their realization via message passing. From
the micro level questions further requirements on protocol support are deduced.

Agent objectives (question 4) that have been settled during design should be
conserved within the implementation, providing an intentional stance [15] with
respect to the conversational behavior of agents, which facilitates explainabil-
ity and predictability of communication. Moreover, agent developers should be
enabled to use the same concepts offered by the agent architecture also for the
implementation of agent conversations (question 5). A seamless integration al-
lows exploiting the full potential of the architecture and requires the protocol
support to be specifically tailored towards a suitable target architecture. Finally,
the integration of domain logic with the generic protocols (question 6) should
allow a clear separation of both aspects, facilitating the independent further
development of both aspects and e.g. understandability and maintainability of
application code. The integration should be done on an abstract level promoting
the domain-view and hiding message level details.

Starting point for the approach presented in this paper is the belief-desire-
intention model of agency (BDI-model) [5]. Interaction goals are introduced for
expressing the objectives that the individual communication partners exhibit,
serving as the connectives between a generic interaction protocol and the BDI
architecture. Goals are advantageous, because they represent the motivations
of an agent in an abstract manner, intentionally leaving open the means that
could be used for their pursuit, thereby abstracting away from low-level message
handling. In addition, goals also facilitate the handling of exceptional situations
(e.g. cancelling an interaction by automatically using a separate protocol, when
an interaction goal has been dropped). Details regarding the deduction of inter-
action goals from protocol descriptions and the integration of domain specific
behavior by the application developer are presented next.

3.1 Domain Interaction Analysis

In this section, a process is proposed allowing to deduce descriptions of goal-
oriented interaction protocols by analyzing normal AUML protocol representa-
tions [3]. In Fig. 1 a schematic view of an AUML-based goal-oriented interaction
protocol is depicted. It is assumed here that on each side of the protocol a desig-
nated protocol goal is defined that exists for the whole lifetime of the role during

Goal-Oriented Interaction Protocols 89

performative

Protocol-Name

goal processing start (1)

goal processing end (4)

goal processing start (2)

goal processing end (3)
performative

Protocol handling

…

Role 1
Protocol Layer

Role 1
Domain Layer

goal
<protocol>_receiver_interaction start

Role 2
Protocol Layer

Role 2
Domain Layer

goaltype goalname
(in param1, in param2, …, out

param1, out param2, …)

Fig. 1. Protocol analysis with AUML interaction diagrams

protocol execution. This provides an explicit notion of an ongoing conversation
on both sides and allows for e.g. querying which conversations are currently
pursued, which states they are in and additionally aborting an unwanted inter-
action by dropping the corresponding goal. In contrast to the original AUML
representation each role is divided into two distinct parts. The original protocol
layer (middle) is domain-independent and responsible solely for dialog control
and execution of protocol specific actions. The protocol layer is augmented by
the newly introduced domain layer (left resp. right) which encapsulates domain-
relevant actions. The separation of protocols into these distinct parts helps to
make explicit the interfaces between the domain and protocol parts. The first
task now consists in finding out at which positions in each role of the protocol
domain-specific activities are necessary, who initiates these activities and when
they will be finished. In the diagram for each such action a goal description
needs to be defined. This description consists of a pair of arrows indicating the
beginning and ending of the domain activity and which part of a role initiates
the activity within the other part. E.g. in the schematic view one can see that
the domain layer of role 1 initiates the protocol execution via activity activation
within the protocol layer of role 1 and finally fetches the results of its execution
(arrows 1 and 4). Similarly, during protocol execution the protocol layer of role 2
needs a domain activity being executed and delegates it to the domain layer of
role 2 (arrows 2 and 3). In a second step the goal descriptions need to be refined
by specifying the more concrete goal signatures. This means it has to be ana-
lyzed what kind of domain activity is needed and which information needs to be
transferred forth and back between the domain and protocol part of a role. The
kind of activity determines the general goal type to be used, e.g. query for infor-
mation retrieval or achieve for task execution. A definition of useful goal types
can be found in [16] and is supported by influential methodologies and modeling
approaches such as KAOS [17] and Tropos [18]. In the last step the signatures
will be completed by adding detailed in- and out-parameter descriptions which
have to be deduced from the informal activity descriptions.

3.2 Integration of Domain Behavior

The domain interaction analysis process results in the specification of the indi-
vidual interaction goals of the participating agents. Interaction goals solve the

90 L. Braubach and A. Pokahr

problem of connecting protocol execution and agent architecture (question 5) as
the agent applies its general reasoning strategies to handle these goals. From the
viewpoint of the protocol execution, these goals are abstract, i.e., the behavior
triggered by these goals is transparent. For the application developer, the in-
teraction goals represent the access point for supplying the domain-dependent
behavior (question 6), capturing the activities to be performed for each interac-
tion goal. Goal parameters provide access to the relevant domain and communi-
cation data (e.g. the subject-matter of a negotiation), which can be used while
executing arbitrary domain tasks. After finishing the domain tasks, the results
are made available in the out-parameters of a goal. The goal specification there-
fore provides a clean interface, allowing the domain behavior accessing necessary
information and making results of domain tasks available.

4 Realization Within Jadex

The goal-oriented protocols approach is realized within the Jadex BDI
agent system [19]. Jadex aims at facilitating the development of multi-agent
systems by introducing abstract notions such as beliefs, goals and plans. It pro-
vides a sound architecture and framework for programming goal-oriented agents
using established technologies like XML and Java. Goal-oriented protocols are a
further step towards this aim, allowing to abstract away from low-level message
passing.

4.1 Realization Approach

The domain interaction analysis process allows deriving generic interaction
points from AUML protocol descriptions, which are described in terms of goals.
During protocol execution, these goals have to be handled or posted from
protocol-specific but domain-independent agent behavior. In BDI agent systems
such as Jadex, JACK or Jason (see [4]) such behavior can be captured in generic
plans which have to be written once, and can be reused in different applications
employing the same protocols. A problem with this approach is that plans are
not sufficiently expressive for representing self-contained functionalities.

Hence, Jadex implements the extended capability concept [20], which allows
to capture BDI-specific agent functionality as a reusable module. Capabilities
group together functionally related beliefs, goals, and plans and exhibit a clearly
defined interface of accessible beliefs or goals. To support the development of
agents based on goal-oriented protocols, a so called Protocols capability has
been realized as part of the current Jadex release. Based on the derived in-
teraction goals generic plans for standardized FIPA protocols1 such as Request,
(Iterated)ContractNet, as well as English- and Dutch-Auctions have been imple-
mented. While those plans are encapsulated inside the capability, the capability
exposes the necessary goals needed to control the protocol execution.

1 See http://www.fipa.org

http://www.fipa.org

Goal-Oriented Interaction Protocols 91

achieve
cnp_execute_request

(in proposal, in proposal_info,
in initiator, out result)

cfp

refuse

propose

alt

achieve
cnp_initiate start

(in cfp, in receivers, inout cfp_info,
out result, out interaction_state)

alt reject-proposal

accept-proposal

failure

inform

alt

query
cnp_make_proposal

(in cfp, in initiator, out proposal,
out proposal_info)

cnp_initiate end

query
cnp_evaluate_proposals

(in cfp, in proposals,
inout cfp_info, out acceptables)

cnp_receiver_interaction end

perform
cnp_receiver_interaction start
(out interaction_description,

out interaction_state, out result)

Initiator
Protocol Layer

Participant
Protocol Layer

Initiator
Domain Layer

Participant
Domain Layer

FIPA-ContractNet-Protocol

Fig. 2. Goal-oriented AUML contract-net specification (based on [21])

4.2 Example Protocol: Goal-Oriented Contract-Net

Figure 2 shows the result of the domain interaction analysis for the contract-
net protocol [21]. On the initiator side the achieve cnp_initiate goal states that
a task should be delegated using a contract-net negotiation. It has mandatory
in-parameters for the call-for-proposal description (in-parameter cfp) and the
potential participants (in-parameter receivers) and an optional parameter for
additional local information (inout-parameter cfp_info). When the cfp message
is received by the participant, a cnp_receiver_interaction goal is automatically
created for managing the interaction at the receiver side. The termination of
these goals (cnp_initiate resp. cnp_receiver_interaction end) denotes the end
of the interaction and can be observed by the domain layer.

During the automatic protocol execution three interaction points have been
identified at which the protocol layers need to initiate domain activities. First the
initiator side sends the cfp-description to all potential participants and waits for
their replies. On the participant side the query cnp_make_proposal goal is used
to retrieve a proposal (out-parameter proposal) for the received cfp-description
(in-parameter cfp). Additional information to the proposal itself can be stored in
the optional out-parameter proposal_info. The proposal (or a refuse message in
case no proposal was retrieved) will be automatically sent back to the initiator
side. The initiator side uses the query cnp_evaluate_proposals goal to let the
domain layer determine which of the received proposals (in-parameter proposals)
should be accepted (out-parameter acceptables). For this decision it may use the
original cfp and cfp_info values. The gained information is used to automat-
ically send accept resp. reject messages to the participant side. Every partici-
pant whose proposal has been accepted utilizes the achieve cnp_execute_request
goal instructing the domain layer to execute the proposed action (in-parameter

92 L. Braubach and A. Pokahr

proposal). The result of the execution (out-parameter result) will be transferred
back to the initiator side and will be stored in the original cnp_initiate goal.

4.3 Goal-Oriented Contract-Net Implementation

Relevant parts of the contract-net implementation are shown in Fig. 3. The in-
terface of the capability mainly consists of the goals derived from the interaction
analysis discussed beforehand (lines 7-17). The protocol layer is realized by the
plans encapsulated within the capability (lines 18-23). Exemplarily, the specifi-
cation of the cnp_receiver_plan is shown. This plan will be created in response
to the receipt of a call-for-proposal message (cnp_cfp, line 21) and implements
the participant role of the protocol. The actual code of the plan is contained in
the Java CNPReceiverPlan class (cf. line 20) and not shown here. For message han-
dling the plans make use of predefined message types (lines 24-32) derived from
the FIPA protocol specifications. As an example, the call-for-proposal message
(cnp_cfp, lines 25-31) is further illustrated. Besides some parameter specifica-
tions, e.g. for performative and protocol type (lines 26-29), this message contains
a match expression (line 30), for configuration purposes as described below.

Agents might contain several protocol capabilities for different purposes and
need to decide in which capability an incoming message should be processed.

1 <capability name="Protocols" package="jadex.planlib">
2 <beliefs>
3 <belief name="cnp_filter" class="IFilter " exported="true">
4 <fact>IFilter . NEVER</fact>
5 </belief> <!−− Other beliefs omitted for brevity . −−>
6 </beliefs>
7 <goals>
8 <achievegoal name="cnp_initiate" exported="true">
9 <parameter name="cfp" class="Object"/>

10 <parameter name="cfp_info" class="Object"/>
11 <parameterset name="receivers" class="AgentIdentifier"/>
12 <parameterset name="result" class="Object" direction="out"/>
13 </achievegoal>
14 <querygoal name="cnp_evaluate_proposals" exported="true">...</querygoal>
15 <querygoal name="cnp_make_proposal" exported="true">...</querygoal>
16 <achievegoal name="cnp_execute_task" exported="true">...</achievegoal>
17 </goals>
18 <plans>
19 <plan name="cnp_receiver_plan">
20 <body>new CNPReceiverPlan()</body>
21 <trigger><messageevent ref="cnp_cfp"/></trigger>
22 </plan> <!−− Other plans omitted for brevity. −−>
23 <plans>
24 <events>
25 <messageevent name="cnp_cfp" type="fipa" exported="true">
26 <parameter name="protocol" class="String" direction="fixed">...</parameter>
27 <parameter name="performative" class="String" direction="fixed">
28 <value>SFipa.CFP</value>
29 </parameter> <!−− Other parameters omitted for brevity. −−>
30 <match>$beliefbase.cnp_filter.filter ($messagemap)</match>
31 </messageevent> <!−− Other events omitted for brevity. −−>
32 </events>
33 </capability>

Fig. 3. Cutout of the Protocols.capability.xml

Goal-Oriented Interaction Protocols 93

Therefore, the cnp_filter belief (lines 3-5) provides a filter used within the match
expression. The belief (which turns off the participant role using IFilter.NEVER)
can be overridden for specifying which calls for proposals should be handled.

5 Example Application

To illustrate how the goal-oriented approach can be used in practice the book-
trading scenario from [12] is used, where personal buyer and seller agents are
responsible for trading books according to instructions given by their princi-
pals. The market-based coordination strategy follows the contract-net protocol,
equally respecting the goals of buyer and seller agents. It is assumed that buyers
take the initiator role of the protocol while sellers play the responder role. The
goal-oriented implementation of the booktrading example is part of the Jadex
distribution and is divided into files specific to the buyer resp. seller agent, as
well as common files (e.g. ontology and GUI classes). Both agents store Order
objects in their beliefbase, which represent the current buy or sell orders entered
by the agents principals through the user interface of each agent.

5.1 Buyer Agent Implementation

In Jadex, an agent type is described by a so called agent definition file (ADF).
Important parts of the buyer agent ADF are shown in Fig. 4. Instances of the

1 <agent name="Buyer" ...>
2 <goals>
3 <achievegoal name="purchase_book" recur="true" recurdelay="10000">
4 <parameter name="order" class="Order"/>
5 <targetcondition>Order.DONE.equals($goal.order.getState())</targetcondition>
6 <failurecondition >$beliefbase. time > $goal.order. getDeadline(). getTime()</failurecondition>
7 </achievegoal>
8 <achievegoalref name="df_search"><concrete ref="dfcap.df_search"/></achievegoalref>
9 <achievegoalref name="cnp_initiate"><concrete ref="procap.cnp_initiate"/></achievegoalref>

10 <querygoal name="cnp_evaluate_proposals">
11 <assignto ref="procap.cnp_evaluate_proposals"/>
12 <parameterset name="winners" class="Object" direction="out">
13 <values evaluationmode="dynamic">
14 new Object[]{ select one Integer $price from $goal.proposals
15 where ((Order)$goal.cfp_info). getAcceptablePrice () >= $price.intValue()
16 order by $price }
17 </values>
18 </parameterset> <!−− Other parameters omitted for brevity. −−>
19 </querygoal>
20 </goals>
21 <plans>
22 <plan name="purchase_book_plan">
23 <parameter name="order" class="Order">
24 <goalmapping ref="purchase_book.order"/></parameter>
25 <body>new PurchaseBookPlan()</body>
26 <trigger><goal ref="purchase_book"/></trigger>
27 </plan>
28 </plans>
29 </agent> <!−− Other elements omitted for brevity. −−>

Fig. 4. ADF excerpt of the buyer agent

94 L. Braubach and A. Pokahr

1 public void body() {
2 IGoal df_search = createGoal("df_search");
3 df_search. getParameter("description "). setValue(getPropertybase(). getProperty("service_seller "));
4 dispatchSubgoalAndWait(df_search);
5 AgentDescription[] result = (AgentDescription[]) df_search. getParameterSet("result "). getValues();
6 if (result . length == 0) fail ();
7 AgentIdentifier [] sellers = new AgentIdentifier [result . length];
8 for (int i = 0; i < result . length ; i ++)
9 sellers [i] = result [i]. getName();

10

11 Order order = (Order)getParameter("order").getValue();
12 IGoal cnp = createGoal("cnp_initiate ");
13 cnp.getParameter("content"). setValue(order . getTitle ());
14 cnp.getParameterSet("receivers "). addValues(sellers);
15 dispatchSubgoalAndWait(cnp);
16

17 order . setExecutionPrice ((Integer)(cnp.getParameterSet("result "). getValues()[0]));
18 order . setExecutionDate(new Date());
19 }

Fig. 5. The purchase book plan of the buyer

purchase_book goal (lines 3-7) are created when new orders are added through
the user interface. To be continuously retried whenever it fails, the goal has a
recurdelay of 10 seconds (line 3). For holding the Order object entered through
the GUI, the goal has one parameter order (line 4). In the target condition, the
goal is considered to be reached, when the order is done, i.e., the desired book
was successfully bought (line 5). When the book could not be obtained before
the order deadline, the goal fails (line 6). To search for agents providing specific
services and to initiate a contract-net interaction, the df_search goal (line 8) and
the cnp_initiate goal (line 9) are included. During the execution of the contract-
net interaction, which is performed inside the generic protocols capability, an
instance of the cnp_evaluate_proposals goal (lines 10-19) is posted, when all
proposals have been collected and need to be rated against each other. In the
booktrading domain, the buyer agent compares the prices of the proposals to
the acceptable price as given in the order from the user (lines 14-16). When
no acceptable proposal is present, the query goal automatically fails due to an
empty winners parameter set, otherwise the interaction will terminate with the
buyer accepting the cheapest proposal (due to ordering defined in line 16). In
the plans section (lines 21-28), the purchase_book_plan is defined (line 22-27),
which is triggered by the purchase_book goal (line 26). The order parameter
from the goal is mapped to a plan parameter (lines 23-24), while the body tag
(line 25) refers to the Java class implementing the plan.

The body of the purchase_book_plan is shown in Fig. 5. It contains two main
parts: First, it has to determine negotiation partners using a df_search subgoal
(lines 2-9). In a second step a parallel negotiation with all suitable sellers is
performed represented by the cnp_initiate subgoal (lines 11-15). When no error
occurs during the negotiation (in which case the plan would immediately fail and
exit), the result is finally stored in the Order object (lines 17-18) making the goal
succeed due to its target condition. When the goal is aborted before the plan
finishes (e.g. if the deadline passes during an ongoing interaction), the plan and

Goal-Oriented Interaction Protocols 95

its subgoals will also be aborted, in which case the interaction is automatically
terminated using the standardized FIPA-Cancel-Meta-Protocol (cf. [21]).

5.2 Seller Agent Implementation

Domain activities of the seller are triggered by the generic goals of the proto-
cols capability, which are included as shown in Fig. 6. When a call-for-proposal
message is received, the cnp_make_proposal goal (lines 3-19) is created auto-
matically, allowing the agent to decide about making an offer. This query goal is
defined declaratively by specifying directly the out-parameter values (lines 6-18),
hence no plan is necessary to handle the goal. Instead, the current beliefs of the
agent are checked, and if the agent currently whishes to sell the requested book
(identified by the title in line 9), the acceptable price (line 16) is returned as a
proposal. When the buyer accepts the proposal, a cnp_execute_task goal is cre-
ated to complete the transaction. This goal is handled by an execute_order_plan
(not shown), which may handle delivery and payment issues.

1 <agent name="Seller" ...>
2 <goals>
3 <querygoal name="cnp_make_proposal">
4 <assignto ref="procap.cnp_make_proposal"/>
5 <parameter name="cfp" class="Object">...</parameter>
6 <parameter name="proposal_info" class="Object" direction="out" optional="true">
7 <value evaluationmode="dynamic">
8 select one Order $order from $beliefbase . orders
9 where $order.getTitle (). equals ($cfp) && $order.getState(). equals (Order.OPEN)

10 order by ($beliefbase . time − $order.getStartTime())
11 / ($order. getDeadline(). getTime()−$order.getStartTime())
12 </value>
13 </parameter>
14 <parameter name="proposal" class="Object" direction="out">
15 <value evaluationmode="dynamic">
16 ((Order)$goal. proposal_info). getAcceptablePrice ()
17 </value>
18 </parameter>
19 </querygoal>
20 <achievegoalref name="cnp_execute_task">
21 <concrete ref="procap.cnp_execute_task"/></achievegoalref>
22 </goals> <!−− Plans and other elements omitted for brevity. −−>
23 </agent>

Fig. 6. ADF excerpt of the seller agent

The example shows the clean separation of protocol execution and domain
activities, letting application developers focus on domain behavior. Moreover,
architectural concepts such as goals and plans can be used as usual also for
implementing interaction behavior. Finally, the code is more simple compared
to a functionally equivalent implementation of the booktrading scenario in JADE
as described in [12]. Although the JADE implementation uses generic classes as
well for the contract-net implementation, the buyer and seller implementations
are 30-50% larger than the corresponding Jadex implementations presented here.

96 L. Braubach and A. Pokahr

6 Summary and Outlook

This paper tackles questions concerning the interaction of agents in a multi-
agent system, and focuses on the mirco level of interactions, i.e., how to describe
and implement interaction protocols from the viewpoint of single agents. Central
questions are how to derive and accurately represent the individual objectives
in the course of an interaction and how to relate interactions to the agent ar-
chitecture and to domain-specific behavior. A review of related work reveals
that existing approaches do not offer a unified domain-centric view to all these
questions, and instead mostly focus on concrete message sequences.

Based on these findings, a new approach is proposed, which brings together
an abstract BDI-centered view on domain activities with predefined interaction
protocols. As result goal-oriented interaction protocols are derived leading to a
reduced effort for realizing agent communications. Advantages of the approach
are that interaction objectives are conserved in the implementation and a tight
integration into the internal agent architecture is achieved. Moreover, the do-
main layer is separated from the protocol layer facilitating understandability,
maintainability and reusability of code. A generic realization and an example
application have been presented, demonstrating the feasibility of the approach.
Future work can be undertaken in areas such as dynamic protocol selection or
execution. E.g., a protocol engine would allow executing abstract user defined
protocols additionally to the standardized protocols of the Protocols capability.

References

1. Wooldridge, M.: An Introduction to MultiAgent Systems. John Wiley & Sons,
Chichester (2001)

2. Ferber, J.: Multi-Agents Systems. Addison-Wesley, Reading (1999)
3. Bauer, B., Müller, J., Odell, J.: Agent UML: A formalism for specifying multiagent

software systems. Software Eng. and Knowledge Eng. 11(3), 207–230 (2001)
4. Bordini, R., Dastani, M., Dix, J., El Fallah-Seghrouchni, A.: Multi-Agent Program-

ming: Languages, Platforms and Applications. Springer, Heidelberg (2005)
5. Bratman, M.: Intention, Plans, and Practical Reason. Harvard Press (1987)
6. Dinkloh, M., Nimis, J.: A tool for integrated design and implementation of conver-

sations in multiagent systems. In: Bordini, R.H., Dastani, M., Dix, J., Seghrouchni,
A.E.F. (eds.) Programming Multi-Agent Systems. LNCS (LNAI), vol. 3346, pp.
187–200. Springer, Heidelberg (2005)

7. Cabac, L., Moldt, D.: Formal semantics for AUML agent interaction protocol dia-
grams. In: Odell, J.J., Giorgini, P., Müller, J.P. (eds.) AOSE 2004. LNCS, vol. 3382,
pp. 47–61. Springer, Heidelberg (2005)

8. Rooney, C., Collier, R.W., O’Hare, G.M.P.: VIPER: A VIsual Protocol EditoR. In:
De Nicola, R., Ferrari, G.L., Meredith, G. (eds.) COORDINATION 2004. LNCS,
vol. 2949, pp. 279–293. Springer, Heidelberg (2004)

9. Ehrler, L., Cranefield, S.: Executing agent UML diagrams. In: Autonomous Agents
and Multi-Agent Systems (AAMAS 2004), pp. 906–913. IEEE, Los Alamitos (2005)

10. Scheibe, A.: Ausführungsumgebung für FIPA Interaktionsprotokolle am Beispiel
von Jadex (in German). Diplomarbeit, University of Hamburg (2003)

Goal-Oriented Interaction Protocols 97

11. Cheong, C., Winikoff, M.: Hermes: Designing goal-oriented agent interactions. In:
Müller, J.P., Zambonelli, F. (eds.) AOSE 2005. LNCS, vol. 3950, Springer, Heidel-
berg (2006)

12. Bellifemine, F., Caire, G., Greenwood, D.: Developing Multi-Agent systems with
JADE. John Wiley & Sons, Chichester (2007)

13. Whitestein Technologies: Semantic Communication User Manual, 2.0.0 (2006)
14. Ricci, A., Viroli, M., Omicini, A.: CArtAgO: An infrastructure for engineering

computational environments in MAS. In: Weyns, D., Parunak, H.V.D., Michel, F.
(eds.) E4MAS. LNCS, vol. 4389, pp. 102–119. Springer, Heidelberg (2006)

15. McCarthy, J.: Ascribing mental qualities to machines. In: Philosophical Perspec-
tives in Artificial Intelligence. Humanities Press, pp. 161–195 (1979)

16. Braubach, L., Pokahr, A., Moldt, D., Lamersdorf, W.: Goal Representation for BDI
Agent Systems. In: Bordini, R.H., Dastani, M., Dix, J., Seghrouchni, A.E.F. (eds.)
Programming Multi-Agent Systems. LNCS (LNAI), vol. 3346, pp. 44–65. Springer,
Heidelberg (2005)

17. van Lamsweerde, A.: Goal-Oriented Requirements Engineering: A Guided Tour.
In: Requirements Engineering (RE 2001), pp. 249–263. IEEE Press, Los Alamitos
(2001)

18. Giorgini, P., Kolp, M., Mylopoulos, J., Pistore, M.: The Tropos Methodology. In:
Methodologies and Software Engineering for Agent Systems, Kluwer, Dordrecht
(2004)

19. Pokahr, A., Braubach, L., Lamersdorf, W.: Jadex: A BDI Reasoning Engine [4]
20. Braubach, L., Pokahr, A., Lamersdorf, W.: Extending the Capability Concept

for Flexible BDI Agent Modularization. In: Bordini, R.H., Dastani, M., Dix, J.,
Seghrouchni, A.E.F. (eds.) Programming Multi-Agent Systems. LNCS (LNAI),
vol. 3862, pp. 139–155. Springer, Heidelberg (2006)

21. Foundation for Intelligent Physical Agents (FIPA): FIPA Contract Net Interaction
Protocol Specification, Document no. FIPA00029 (December 2002)

P. Petta et al. (Eds.): MATES 2007, LNAI 4687, pp. 98–108, 2007.
© Springer-Verlag Berlin Heidelberg 2007

VWM: An Improvement to Multiagent Coordination in
Highly Dynamic Environments

Seyed Hamid Hamraz1, Behrouz Minaei-Bidgoli1, and William F. Punch2

1 Department of Computer Engineering,
Iran University of Science and Technology, Tehran, Iran

hamid_hamraz@comp.iust.ac.ir, b_minaei@iust.ac.ir
2 Department of Computer Science & Engineering, East Lansing,

Michigan State University, MI, USA
punch@cse.msu.edu

Abstract. This paper is aimed to describe a general improvement over the pre-
vious work on the cooperative multiagent coordination. The focus is on highly
dynamic environments where the message transfer delay is not negligible.
Therefore, the agents shall not count on communicating their intentions along
the time they are making the decisions, because this will directly add the com-
munication latencies to the decision making phase. The only way for the agents
to be in touch is to communicate and share their beliefs, asynchronously with
the decision making procedure. Consequently, they can share similar knowl-
edge and make coordinated decisions based on it. However, in a very dynamic
environment, the shared knowledge may not remain similar due to the commu-
nication limitations and latencies. This may lead to some inconsistencies in the
team coordination performance. Addressing this issue, we propose to hold an-
other abstraction of the environment, called Virtual World Model (VWM), for
each agent in addition to its primary internal world state. The primary world
state is updated as soon as a new piece of information is received while the in-
formation affects the VWM through a synchronization mechanism. The pro-
posed idea has been implemented and tested for Iran University of Science and
Technology (IUST) RoboCupRescue simulation team, the 3rd winner of the
2006 worldcup competitions.

1 Introduction

A multiagent system (MAS) consists of a group of agents that interact with each other
[1, 2]. The research on MAS aims to provide methods and structures for better man-
agement of the agents’ behavior. The present work is focused on cooperative MAS in
which the agents coexist in a highly dynamic environment, such as the test beds pro-
vided by RoboCup [3]. The key point in such systems is coordination since the agents
share a common goal and have to perform optimal joint actions in order to maximize
a global payoff function.

 VWM: An Improvement to Multiagent Coordination 99

1.1 Previous Work on Coordination

Addressing the above problem, previous research focuses on the use of game theoretic
techniques [4], communication [5, 6], social conventions [7] and learning [8, 9]. Nev-
ertheless, all these approaches call for exhausting the whole joint action space whose
size grows exponentially with the number of agents. A more recent work is a coordi-
nation graph (CG) [10], in which the global payoff is decomposed to local ones, and
consequently, each agent should only coordinate with its directly connected agents in
the CG rather than the whole team. The agents can then apply the Variable Elimina-
tion algorithm (VE) [10] or other approximate alternatives such as Max-Plus [11, 12]
or Simulated Annealing [13] in order to coordinate with each other.

The mentioned approaches offer coordination mechanisms from the perspective of
the decision making procedure rather than the form of implementation; most of the
methods can be implemented centralized or distributed, with or without utilization of
explicit communication - depending on the MAS infrastructure and the features of the
environment. For example, in [12] the Max-Plus algorithm has been presented both in
the formats of centralized and distributed implementations while the procedure of the
decision making has remained similar for both forms of the implementations. The
only difference is that in the centralized implementation, one agent decides and in-
forms others whereas in the distributed implementation, all of the agents individually
make the same decision. Another example is what is reported in [14]; while the VE
algorithm inherently calls for communication among the agents, it has been applied in
a distributed manner without any kind of communication due to almost full percepti-
bility of the environment.

1.2 Explicit and Implicit Communication for Coordination

Communication is ordinarily an essential part for developing coordination in a MAS.
From the perspective of the present research, the communication can be realized in
two manners:

1. Explicit Communication: Transferring the intentions (decisions) between the
agents along the time they are making the decisions.

2. Implicit Communication: Transferring the beliefs (knowledge of the environment)
asynchronously with the decision making procedure.

It is generally argued that communication can add unacceptable delays in informa-
tion gathering and should be kept minimal [15]. Fortunately, one important benefit
that coordination with the implicit communication has over the explicit one is that
the delay of message passing is not directly added to the time required for decision
making.

Centralized implementations call for explicit communication which is an unwanted
feature while the environment is so dynamic that the delay of message passing sub-
stantially degrades the team performance. Therefore, we are interested in distributed
methods that do not exploit explicit communication; they may utilize implicit com-
munication or even no communication. However, for completely removing communi-
cations, the environment should be considerably observable like what is reported in

100 S.H. Hamraz, B. Minaei-Bidgoli, and W.F. Punch

[14], or it should be so simple that the local perception and the locker-room agree-
ments1 [16] suffice for coordination. To sum up, the domain of discussion here is
situations where the infrastructure of the MAS and also the context-specific restric-
tions in the MAS environment obligate the designer to implement the coordination
mechanism in a distributed format without the utilization of explicit communication.

There are various papers reporting an implementation of a coordination mechanism
without explicit communication, e.g. [14, 17]. These approaches exploit the locker-
room agreements and the implicit communication format for coordination. Put an-
other way, the agents perceive the environment and communicate their observations
and beliefs (if applicable) to construct rich conceptualizations the same as the outer
environment, and consequently, the same as each other. Both the agents’ internal
illustrations and their locker-room agreements are the source of knowledge for their
decisions. Hence, the agents can make coordinated and complementary decisions
since they hold rather similar illustrations of the environment.

1.3 Problem Statement

Nonetheless, there is a subtle point which has not been clearly addressed in the previ-
ous work. Although the agents try to keep their internal world states up-to-date, they
may encounter some inconsistencies in their states with respect to each other. The
reason is the differences in the knowledge they acquire, i.e. each agent has its own
point of view to the environment. For instance, an agent may perceive a new phe-
nomenon in the world and broadcast it to other agents. During the time required for
transferring the message, the agent holds a different illustration of the environment
with respect to its teammates and this may generate an inconsistency in the team co-
ordination. One may think that the inconsistency is just a temporal noise which is
brushed off after the message transmission is accomplished. It’s correct, but in a very
dynamic environment, such temporal inconsistencies are generated (and overlapped)
again and again, and therefore, the agents always experience some noise while they
are trying to coordinate their actions.

What is the solution? A simple one is to avoid the inconsistencies! For example, in
the above mentioned scenario, the agent who has transmitted the message can simply
ignore the new perceived data until it ensures (with a rate of probability) that the mes-
sage is received by its teammates. In this way, the agents can avoid the inconsisten-
cies as much as possible while coordinating with each other. However, on the other
hand, the newly perceived data is missed for a period of time, and so the agent is
always a little behind of its changing environment even in its local domain of percep-
tion. In general, the agents for diminishing the inconsistencies should apply a syn-
chronization mechanism. Instead, the mechanism may prevent the agents’ internal
world states from being real-time2 in order to synchronize the agents’ views. Thus,
there is a tradeoff between avoiding the inconsistencies and holding real-time world
models.

1 Predetermined multiagent protocols accessible to the entire team, e.g. the instructions that a

coach gives to the players prior to the game.
2 Real-time internal world state means that the state holds whatever information the agent has

received from its environment up to the time - while the synchronization mechanism may not
let the received information immediately affect the state.

 VWM: An Improvement to Multiagent Coordination 101

1.4 Present Paper

This paper aims to provide a structure that appropriately exploits the encountered
tradeoff. The main idea is to maintain two world views for each agent. The primary
one is being intrinsically updated as the agent receives the information via local
perceptions and communications. The other view, called Virtual World Model
(VWM), is updated through a synchronization mechanism which tries to diminish
the inconsistencies with respect to the other agents’ VWMs. Therefore, as pointed
before, VWM is rather the consistent view, and so it is a good source for making
high-level coordination decisions while the primary world view holds the real-time
knowledge of the environment and is suitable for making individual low-level
decisions.

The paper is structured as follows: In Sect. 2, the VWM from a general perspective
is discussed. High- and low-level decision making is defined, and the agent architec-
ture bearing VWM is presented. Section 3 discusses the VWM in the domain of Ro-
boCupRescue Simulation System (RCRSS) as a case study, where an implementation
of VWM for the IUST team, the third winner of the world cup 2006 competitions is
presented. We will demonstrate the experimental results in Sect. 4, and finally, Sect. 5
summarizes and concludes the work.

2 VWM in General

The problem was described in the previous section. In this section we describe the
general approach for resolving the problem.

2.1 High-Level and Low-Level Decision Making

Decision making in a MAS includes the following general, yet simplified, steps (as
depicted in Fig.1):

1. Extracting a global task from the MAS aim.
2. Decomposing the global task into simpler subtasks.
3. Assigning the subtasks to the agents.
4. Accomplishment of the subtasks by the agents and consequently conquering the

global task.

Agents, after realizing step 3, should achieve consistent results on what the team’s
current global task and the contribution of each agent to the task are3. Therefore,
realization of the first three steps calls for a coordination plan in the team. On the
other hand, the last step is completely agent-dependent, i.e. the agents are not required
to concern about other team members while realizing this step. We will refer to the
first three steps as the high-level (coordination) and the last as the low-level (agent-
dependant) decision makings.

3 Remember that we are talking about distributed implementation of the coordination algo-

rithms, i.e. each agent shall realize all the four steps locally.

102 S.H. Hamraz, B. Minaei-Bidgoli, and W.F. Punch

A2

A3 A4

A1
MAS
Aim

Global
Task

2

3 4

1 A1

Extracting the
Global Task

Division into
Subtasks

Assignment to
the Agents

A3

A2

A4

Accomplishment
of the Subtasks

Fig. 1. Decision making phases in a MAS. The three steps surrounded by the dotted rectangle
represent the coordination (high-level) part of decision making.

2.2 Agent Architecture

Figure 2 shows an overall architecture of an agent bearing the VWM. The local sen-
sory and the communication information directly affect the primary world model of
the agent, while the synchronizer symbolizes a mechanism which tries to update the
VWM in a way that all the team members (at least the members who are connected in
the corresponding coordination graph) hold similar knowledge in their VWMs. In
other words, the synchronizer tries to filter the inconsistencies in the agents’ VWMs
as much as possible.

The decision making part of the agent is divided into two major units. The high-
level decision making unit, which utilizes the VWM, is responsible for the high-level
part of the decision, and the low-level unit exploits the high-level coordination deci-
sion and the real-time knowledge in the primary world model for producing the final
low-level action decisions. As an example, consider a soccer team and two players: P1
and P2. P1 utilizes its VWM and determines that it should pass the ball to P2 in area A
of the field. On the other hand, P2 utilizes its VWM and understands that it is the
receiver of a pass and will receive the ball in A. By now, both agents have made the

Fig. 2. Overall architecture of an agent bearing the VWM. Note that the agent has two main
parts: Belief representation and Decision Making. The parts work completely asynchronously,
i.e. the communication latencies never interfere with the time required for decision making.

 VWM: An Improvement to Multiagent Coordination 103

high-level decision, and since both of them have exploited their VWMs, the decisions
are consistent with each other. In the next step, as the agent-specific low-level actions,
P1 decides how it should kick the ball in order to send it to A, and P2 will also decide
how to intercept the ball while it is coming closer - both exploiting their real-time
acquired knowledge in their primary world models. In this way, both agents can
make consistent coordination decisions and submit real-time low-level actions to the
environment.

3 Case Study: VWM in RCRSS

The critical part of the above architecture is the synchronizer mechanism, which
guaranties a consistent coordination if it is realized well. However, the design and
implementation of this part is an ad-hoc procedure, i.e. depending on the MAS infra-
structure and the features and restrictions of the environment, the mechanism should
be devised. In this section, we step through implementation of such architecture in the
RCRSS as a case study.

3.1 RCRSS in Brief

RCRSS is a real-time distributed simulation system that is constructed from several
modules connected through a network [18, 19]. The system totally simulates the phe-
nomena after an earthquake. Rescue team acts as several independent agents in the
simulated environment. There are three modules of rescue agents in RCRSS: ambu-
lance, fire and police. Each module consists of two types of agents: platoon and cen-
ter (Fig.3). There usually exists at most one center and 0-15 platoons in each module.
Agents perceive the environment within a radius of 10m once a cycle4. They can also
communicate with other rescue agents; that is the agents can utter natural voice or
telecommunicate. Natural voice can be heard by humanoids (i.e. rescue agents and
civilians) within a radius of 30m. Telecommunication network is shown in Fig.3.
Agents can broadcast message to their directly connected nodes in the graph.

Fig. 3. Telecommunication Network

In order to make the communication sessions more realistic, some limitations have
been applied. First, agents can not transmit a message more than 256 bytes in length.
Second, platoon agents are not supposed to utter more than 4 messages per cycle.

4 Time quantum of the simulation, during which only one action can be performed by each

agent.

104 S.H. Hamraz, B. Minaei-Bidgoli, and W.F. Punch

Utterance limit for center agents is twice as much as the number of platoons of the
same type of the center agent. The third limitation is for hearing capability. Each time
a message is received by an agent, it just reads who the sender is, and then it can use
or discard the content of the message, depending only on who the sender is. The num-
ber of used messages per cycle must not exceed the hearing limit, which holds the
same value as utterance limit for both platoons and centers.

3.2 Communication and World Modeling in the IUST Team

Since the RCRSS is a partially-observable environment, agents communicate their
sensory inputs every cycle. We implemented the following strategy regarding the
communication limitations.

When a platoon agent receives sensory information (i.e. at the start of cycle), it
broadcasts the new useful information. The broadcast message is heard by all the
connected nodes in the telecommunication graph, i.e. all the platoons and the center
of the same type. Suppose that there are 10 platoon agents in a module - each of
which transmitting the newly sensed information at the beginning of cycles. Conse-
quently, each of them receives others’ 9 messages per cycle while it can not consider
more than 4 of them. Therefore, it misses a big fraction of the discovered information
by the module members. Avoiding this problem, the platoon agents will not listen to
any of the 9 messages; they discard the messages coming from other platoons. In-
stead, their center will listen to all of the 9 messages as it has the capability of hearing
them. It gathers all of the new information, adds into it its own sensory information
and the new data coming from other center agents, and rebroadcasts it. If the gathered
information is too much to be fitted in one message, the center can split it into two or
more messages. In this way, the redundant data can be omitted during information
gathering phase by the center, and the 9 short messages are converted to one or more
longer messages. Therefore, the platoons can receive almost all the discovered infor-
mation from their center.

Using the new data coming from other centers, when the center is going to re-
broadcast the gathered information, creates the link between modules, i.e. platoons
will also get aware of discoveries by the other modules’ platoons. For example, when
a police broadcasts its recently perceived information, the police office will catch it.
The office will then rebroadcast the information and its message will be caught by the
fire station (ambulance center). The station (ambulance center) will also broadcast the
information, and therefore fire brigades (ambulances) will finally receive the new
piece of data.

Up to this point, the rescue agents communicate their beliefs of the environment
and they can hold rich world models. Note that the communication of beliefs is
accomplished in a centralized manner. However, the decision making procedure is
realized completely distributed. Implementing any specific strategy which requires
coordination among the team members can now be done, i.e. the agents utilize their
world models for making both high- and low-level part of their decisions. However,
as we exemplified before, there are always some inconsistencies in the agents’ world
models with respect to each other due to the message propagation latencies, and this
may lead to some coordination inconsistencies. In order to filter the inconsistencies
and to implement the proposed architecture, we did as follows.

 VWM: An Improvement to Multiagent Coordination 105

3.3 IUST VWM Structure and the Synchronization Mechanism

The VWM structure is composed of all the variables in the environment that are re-
quired for making coordination decisions. In other words, it consists of the data which
should be synchronized for the team members.

In the previous part, it is mentioned that each center agent gathers the received
information and rebroadcasts it. Keep in mind that the center agent’s broadcasts are
heard by all of the homogeneous platoons (Fig. 3), e.g. the police office messages
are heard by all polices. Therefore, if we forget about the network problems and
assume that a transmitted message will certainly reach the targets5, it can be indi-
cated that all homogeneous platoons receive exactly the same messages from their
center.

Hence, the key point for designing the synchronizer mechanism for our special
case is that all the homogeneous platoons receive similar knowledge from their cen-
ter. The mechanism is to only let the data receiving from the center agent affect the
VWM, rather than the data obtained from other channels, e.g. local perception. As an
example, when a police receives its local sensory information, it only updates its pri-
mary world model. Also, this information is looped back to all of polices via the
police office in a cycle. At this point, the police can update its VWM, because it
knows that other polices have also received the same data and they update their
VWMs. In this manner, all the platoon agents from the same type can hold consistent
knowledge in their VWMs6.

4 Experimental Results

We utilized the VWM for various coordination tasks in our team such as coordination
in searching the city for buried civilians, in how to collectively extinguish a fire
block, in how to get distributed among buried civilians for rescuing them and in etc
(remember that all of the tasks were implemented in a distributed manner). As a re-
sult, we experienced a gentle coordination without any noise in most cases. Moreover,
we were exempt of changing the communication mechanism or adding a new protocol
while trying to implement a new strategy which demands coordination; all we re-
quired to do was to implement the new decision making routines regarding that the
knowledge required for the high-level (low-level) decision making routines should be
supplied by the VWM (primary world model). In this section, the extract result of
coordination in a specific task for both cases of absence and presence of VWM is
presented.

5 The issue of message loss is considered in the experimental results.
6 For instance, all fire brigades have the same VWMs that are different from those of ambu-

lances and polices. Therefore, we can exploit VWM only for intra-module coordination jobs,
e.g. among police agents rather than between, for example, polices and fire brigades. Al-
though we might be able to apply a synchronizer mechanism which led to similar VWMs for
the whole rescue team, it was sufficient for our purpose to coordinate homogeneous agents
using VWM, and implement inter-module coordination jobs using the agents’ primary world
models.

106 S.H. Hamraz, B. Minaei-Bidgoli, and W.F. Punch

4.1 Searching Buried Civilians

Police platoons are assigned to clear debris from the roads. After accomplishing the
task and opening the main routes, they are assigned to search the city in order to find
buried civilians to help the ambulance module. We decided to implement the follow-
ing strategy for this issue.

1. The number of living polices is calculated.
2. The city is divided into a few pie pieces equal to the number of the living polices.
3. The police agents should be distributed among pieces in a way that their total

movement in order to reach their pieces becomes minimal.
4. Each police agent should perform the local search in its piece.

Because of highly dynamic environment, this process should be done dynamically
(i.e. at the beginning of each cycle). For instance, a police may die, and therefore its
piece may not be searched if the pieces are not assigned dynamically. The first three
steps are the coordination and the last one is the final agent-dependent decision mak-
ing phase. Evaluating the effect of VWM on the quality of coordination, we imple-
mented the above algorithm utilizing once the VWM and once the primary world
model for the high-level decision (The first three steps above).

All polices at cycle c perform the steps above, i.e. each police carries out the above
listed steps locally. Each of them generates a police-to-piece allocation model, i.e. who
should search which piece. Therefore, a pool of the models, generated by different
police agents, is held for c. Among the pool, the one which is more frequent (has more
identical7 models) is said to be the base decision for c. Each police, who has generated
a model rather than the base one in a cycle, is said to be deviated at that cycle.

Figure 4 shows the average results over 10 different simulations. The horizontal
axis in the diagram represents the message loss percentile8 while the vertical axis
shows the percentage of agents who were deviated. Agents make the above coordina-
tion decision almost 300 times per simulation. Hence, the total average is extracted
from near 3000 cycles of decision making by the police platoons.

It is clear that how VWM can decrease the rate of deviation in the team; the rate for
VWM is always below the one for primary world model. Situations where there exists
some message loss show that even with an incomplete synchronizer mechanism9 the
VWM idea is able to improve the quality of coordination. Another noticeable point is
that although the deviation for the VWM disappears completely when the message
loss shrinks to zero, the value for the primary world model never disappears and is
leveled off in a greater-than-zero point. This value of deviation percentage represents
the pure impact of the message delay, which is completely vanished by the utilization
of VWM.

7 Two models are said to be identical if they represent exactly similar allocations of polices to

pieces, i.e. the number of pieces are the same and the same polices are allocated to the same
pieces for both of them.

8 We programmed the agents to randomly ignore messages. Due to TCP implementation of
RCRSS networking, the situation of no message loss could also be tested.

9 A complete synchronizer mechanism lead into exactly similar VWMs, however, an incom-
plete one is just able to decrease the inconsistencies. The incompleteness in our case is initi-
ated from the loss of messages.

 VWM: An Improvement to Multiagent Coordination 107

0

20

40

60

80

100

Deviation
Percentage (%)

50% 40% 30% 20% 10% 5% 2% 0%

Message Loss Percentage

Primary W M

V W M

Fig. 4. Percentage of agents who were deviated from the base decision (what made by majority
of the agents) is shown both for the primary world model and the VWM

5 Summary and Concluding Remarks

In this paper, we concentrated on highly dynamic environments where the designer of
the MAS has decided to implement the coordination mechanism in a distributed for-
mat without using any explicit communication. The agents in such systems try to
exploit a shared knowledge, which is present in their independent world models, in
order to coordinate their decisions and produce an optimal joint action. It is discussed
that the agents may suffer from some inconsistencies in their world models with
respect to each other. The reason is the difference in the agents’ viewpoints to the
environment. Resolving the inconsistencies, we propose another abstraction of the
environment, the VWM, for each agent, which is tried to be kept consistent to others’
through a synchronization mechanism. It is also declared that the synchronization
policy may defect the VWM from being real-time, and that is why we haven’t omitted
the primary world model in our proposed architecture. The decision making proce-
dure in the agents is divided into two major parts: the coordination part which should
produce consistent result for all the team members, and the agent-dependant part.
Therefore, for the coordination part, agents exploit the synchronized knowledge in
their VWMs, and for the other part, the agents exploit their real-time primary world
models.

Finally, we applied our proposed architecture in the RCRSS, which was utilized for
different tasks demanding coordination. As a result, we experienced gentle coordina-
tion without noise in most cases. As a specific experience, we described how the
police agents collectively search the city for buried civilians. The algorithm was im-
plemented once with and once without utilization of the VWM and the result was
compared, for different rates of message loss. The VWM was able to diminish the
inconsistencies and improve the quality of coordination even when there was a con-
siderable amount of message loss.

108 S.H. Hamraz, B. Minaei-Bidgoli, and W.F. Punch

References

1. Weiss, G. (ed.): Multiagent Systems: a Modern Approach to Distributed Artificial Intelli-
gence. MIT Press, Cambridge, MA (1999)

2. Vlassis, N.: A concise introduction to multiagent systems and distributed AI. Informatics
Institute, University of Amsterdam (2003)

3. Kitano, H., Asada, M., Kuniyoshi, Y., Noda, I., Osawa, E.: Robocup: The robot world cup
initiative. In: AGENTS ’97: Proceedings of the first international conference on Autono-
mous agents, pp. 340–347. ACM Press, New York (1997)

4. Osborne, M.J., Rubinstein, A.: A Course in Game Theory. MIT Press, Cambridge (1994)
5. Carriero, N., Gelernter, D.: Linda in context. Communications of the ACM 32(4), 444–458

(1989)
6. Gelernter, D.: Generative communication in Linda. ACM Transactions on Programming

Languages and Systems 7(1), 80–112 (1985)
7. Boutilier, C.: Planning, learning and coordination in multiagent decision processes. In:

TARK ’96: Proceedings of the 6th conference on Theoretical aspects of rationality and
knowledge, pp. 195–210. Morgan Kaufmann Publishers Inc, San Francisco, CA (1996)

8. Tan, M.: Multi-agent reinforcement learning: Independent vs. cooperative learning. In:
Huhns, M.N., Singh, M.P. (eds.) Readings in Agents, pp. 487–494. Morgan Kaufmann,
San Francisco, CA (1997)

9. Claus, C., Boutilier, C.: The dynamics of reinforcement learning in cooperative multiagent
systems. In: AAAI/IAAI, pp. 746–752 (1998)

10. Guestrin, C., Koller, D., Parr, R.: Multiagent planning with factored MDPs. In: Advances
in Neural Information Processing Systems, vol. 14, The MIT Press, Cambridge (2002)

11. Vlassis, N., Elhorst, R., Kok, J.R.: Anytime algorithms for multiagent decision making us-
ing coordination graphs. In: Proc. of the International Conference on Systems, Man and
Cybernetics, The Hague, The Netherlands (2004)

12. Kok, J.R., Vlassis, N.: Using the max-plus algorithm for multiagent decision making in
coordination graphs. In: Bredenfeld, A., Jacoff, A., Noda, I., Takahashi, Y. (eds.) Ro-
boCup 2005. LNCS (LNAI), vol. 4020, pp. 1–12. Springer, Heidelberg (2006)

13. Dawei, J., Shiyuan, W.: Using the simulated annealing algorithm for multiagent decision
making. In: Proceedings of RoboCup International Symposium, Bremen, Germany.
LNCS, vol. 4434, Springer, Heidelberg (to appear, 2007)

14. Kok, J.R., Spaan, M.T.J., Vlassis, N.: Non-communicative multi-robot coordination in dy-
namic environments. Robotics and Autonomous Systems 50, 99–114 (2005)

15. Tews, A., Wyeth, G.: Thinking as one: Coordination of multiple mobile robots by shared
representations. In: Intl. Conf. on Robotics and Systems (IROS) (2000)

16. Stone, P., Veloso, M.: Task decomposition, dynamic role assignment, and lowbandwidth
communication for real-time strategic teamwork. Artificial Intelligence 110, 241–273
(1999)

17. Isik, M., Stulp, F., Mayer, G., Utz, H.: Coordination without negotiation in teams of het-
erogeneous robots. In: Proceedings of RoboCup International Symposium, Bremen, Ger-
many (2006)

18. Morimoto, T.: How to develop a RoboCupRescue agent (for RoboCupRescue Simulation
System version 0) (last visited 20070702) (2002),
http://ne.cs.uec.ac.jp/~morimoto/rescue/manual/index.html

19. RoboCupRescue Simulation League, TC and OC: RoboCup 2006 Rescue Simulation
League Rules (2006)

Dynamic Configurable Auctions for

Coordinating Industrial Waste Discharges

Javier Murillo, Vı́ctor Muñoz, Beatriz López, and Dı́dac Busquets

Institut d’Informàtica i Aplicacions
Campus Montilivi, edifice P4, 17071 Girona

{jmurillo,vmunozs,blopez,busquets}@eia.udg.es
http://iiia.udg.es/

Abstract. The use of auctions for distributing resources in competing
environments has produced a large variety of auctions types and algo-
rithms to treat them. However, auctions have some problems when faced
with some real-world applications containing renewable and perishable
resources. In this paper we present a mechanism to deal with such issues
by dynamically configuring some of the auction parameters taking into
account the past experience. The mechanism has been used to coordinate
industrial discharges and a Waste Water Treatment Plant, so that the
treatment thresholds of the plant are never exceeded. We have performed
some simulations to evaluate the system, and the results show that with
this mechanism the coordination between the industries improves the
treatment of the water.

1 Introduction

Auctions are becoming popular to coordinate agents that share resources [1].
There are two major actors in an auction: bidders and auctioneers. The bidder
demands the resources, while the auctioneer provides them and decides which
bidder should be assigned each resource, in what is called the winner determi-
nation or clearing market algorithm.

There is a myriad of different mechanisms to implement auctions, depend-
ing on many parameters [2]. However, recent works, such as [3], point out that
current auction mechanisms may have some problems in the emerging e-service
markets. The reasons for that are the renewable and perishable nature of the
resources being auctioned. On one hand, renewability requires that the auction-
eer offers the resources every time they become free. Thus, auctions should be
repeated (recurrent auctions). On the other hand, a perishable resource cannot
be stored or left unused if we are trying to optimize the resource utility.

In the scenario in which the auctioneer is repeating the auction process with
the same consumers, it seems appropriate to think on using the auctioneer’s
experience to improve its decision (clearing the market). Such improvements
involve avoiding the same winner each time (dominant bidder) [3] in order to
incentivize participation. In addition, such experience can also be used to prevent
failures, that is, to build robust solutions. This issue is specially important in

P. Petta et al. (Eds.): MATES 2007, LNAI 4687, pp. 109–120, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

http://iiia.udg.es/

110 J. Murillo et al.

industrial environments, as the one we are working on: waste water treatment
management.

A waste water treatment plant (WWTP) accepts the contaminant waste dis-
charges of different industries. The sum of all contaminants arriving at the
WWTP should be under its design parameters, otherwise the water cannot be
fully treated and the river can be contaminated. Currently, this goal is achieved
by assigning a fixed amount of authorized discharges to each industry. As an
alternative and more flexible coordination mechanism, we propose the use of
an auction process in which the capacity of the WWTP is sold. However, the
uncertainty of the application domain, due to uncontrolled discharges, or even
the rainfall, can cause some incidences, leading to the failure of the solution
established in the auction process, and causing terrible ecological consequences
to the river basin. For this reason, the use of past experience that improves the
decision process is crucial.

In this paper we present a multiagent framework in which industrial agents
coordinate their discharge activities thanks to a recurrent auction mechanism
that is dynamically configured according to the experience of the system. The
paper is organized as follows. First we describe the multiagent system deployed,
based on the waste water treatment system. Then, the auction and the methods
to configure it are described. Next, some implementation details are provided.
We continue by giving some results and we end with some conclusions.

2 Waste Water Discharge System and Agent Technology

The treatment of the waste water discharged from industries is vital to assure the
quality level of the river. For this purpose, the water is treated in a waste water
treatment plant (WWTP) [4]. Each plant has several hydraulic and contaminants
capacity constraints that are defined according to its expected use (industries
and cities in the surroundings that generate the waste). For example, a plant
for a city of 128,000 equivalent inhabitants would have the following capacities:
maximum flow allowed of 40,000 m3/d, with at most 100 g/m3 of Nitrogen,
650 gO/m3 of Biological Demand of Oxygen (DBO) and 550 g/m3 of Solids in
Suspension (SST).

Discharges come from industries, as well as from cities. In our first approach
to the problem, we concentrate on industries, assuming that the city discharges
can be aggregated to the closest industry.

Laws regulate the amount of waste water each industry can discharge, as well
as the maximum levels of the contaminant components. Moreover, each industry
has to pay a given amount per unit of treated water. In addition, the industry
can be billed if it discharges some non authorized waste water.

In this distributed scenario, there is a single resource (the flow entering the
WWTP) and several consumers that wish to use the resources (the industries).
In order to support resource coordination, we have proposed to replicate the
scenario in a multiagent system, in which each industry is represented by an
industry agent and the WWTP by the WWTP agent (see Fig. 1). The WWTP

Dynamic Configurable Auctions 111

Industry
Agent 1
(bidder)

(learner)
Agent

Offer manager

Sensor
Information

Agent
(auctioneer)

WWTP

Ranking
Agent
(learner)

Industry
Agent 2
(bidder)

Industry
Agent 3
(bidder)

Industry
Agent 4
(bidder)

Fig. 1. Multiagent system for WWTP

agent uses an auction process to assign discharge authorizations to the industries.
Each time a conflict between industry discharges is detected, the authorization
to discharge in the conflicting period is auctioned.

The multiagent approach allows to keep information of each consumer (in-
dustry) in privacy, an important issue since discharges are related to the manu-
facturing activity of industries. For collaboration purposes, each industry agent
provides the WTTP agent in advance with a scheduling of the discharges it
plans to perform for a given day. With this information, the WWTP agent can
detect any overflow situation and coordinate the different industry discharges.
If an industry is not allowed to discharge, it could derive the waste water to
a buffer that allows the temporary retention of it up to a certain limit. If the
buffer is full, the industry can either change its manufacturing activity to avoid
the discharge or to discharge the waste water even if it is not authorized to do so.
This is an internal decision of the industry agent that, among other issues, takes
into account company policies and economic incentives (billing, cost of stopping
production, etc.). The multiagent system, however, has been designed with the
aim to avoid arriving to such extreme situations.

3 Dynamic Auction Configuration Through Autonomous
Agents

The flow is a perishable resource: it cannot be stored and leaving it unused
decreases its utilization. So at some extend, the flow behaves as a e-service,
inhering the problems of such kind of goods. However, the benefits of auctioning
the maximum flow capacity should be balanced with the risk of other factors as
the rain and agent behavior that are out of the scope of the auctioneer.

112 J. Murillo et al.

In order to deal with such factors, the auctioneer can dynamically change the
amount of flow to be auctioned. For doing so, each auction is configured by means
of several parameters that are set up with the help of other additional agents
that take care of the previous experience of the system, namely, the priority
agent and the offer-manager agent.

Finally, note that we are dealing with a recurrent auction since the process is
repeated each time a conflict arises among the different industry agents schedules
(see Fig. 2). In this section we describe the mechanism of the recurrent auction
and the agents that are used to set up its configuration

Receive
schedules

Conflict?

Auction
(conflicting
discharges)

yes

no

Start

End

Fig. 2. Recurrent auction flow

3.1 Recurrent Auction of Perishable Resources

For a given day, each industry provides the WWTP agent with its discharges
schedule. The WWTP agent analyzes them, trying to find conflicting situations
regarding its design constraints. A conflict arises when, for example, the addition
of the flows scheduled by the industries exceeds the hydraulic capacity of the
WWTP. It could also happen that although the flow is not above the maximum
WWTP capacity, one or more of the components (Nitrogen, Biological Demand
of Oxygen, etc.) exceed the permissible levels.

Even though there could be more than one conflict for a given day, they are
being treated sequentially, resulting in a recurrent auction process. The param-
eters that set up the auction are the following:

– Agent priority list
– WWTP capacities
– Time interval
– Winner determination algorithm

First, the agent priority parameter is included to deal with the bidder drop
problem of recurrent auctions [3]. This problem is related to an uneven wealth

Dynamic Configurable Auctions 113

distribution of winners, so that poor bidders may starve. Dominants agents,
which have been the winners on the latest auctions, have a low priority, while
loser agents have a high priority. The agent priority list is computed by the
ranking agent based on the previous auction outcomes, as shown below.

Second, the WWTP capacities refers to the resources thresholds to be auc-
tioned. These thresholds are being set by the offer-manager agent based on the
previous experiences of the rainfall and the trust on the agents involved in the
auction, as detailed at the end of this section.

Third, the time interval is set by the WWTP agent and corresponds to the
period in which industry agents have conflicting discharges.

Finally, the winner determination parameter establishes the algorithm used
to clean the market. There are several algorithms in the literature, whose perfor-
mance depends on the problem dimensionality, among other issues. For example,
we are using a linear programming algorithm [5] since it outperforms other algo-
rithms when dealing with low scale problems; however, with large scale problems,
genetic algorithms may be more appropriate.

Once the auction is configured, it can be started. The WWTP agent sends
a call for bids to all the industry agents involved in the conflict. The WWTP
agent provides information on the interval to be auctioned. Then, each agent
answers with its bid. Each bid is composed by the features of the discharge to
be performed during the interval and the price they would pay for the discharge.
The price is related to the industry’s retention capacity. If it has enough buffer
capacity to keep the discharge, the bid price is low; otherwise it is high since the
industry has no way to retain that discharge.

The bids received from the industry agents are modified by the WWTP agent
according to its priorization. For doing so, we are currently multiplying the price
by the agent priority. So bids with high priority (that corresponds to agents which
have lost the latest auctions) increase their chances of being the winners. In this
sense, we are trying to achieve a fair behavior of the overall process, trying to
avoid extreme situations in which an agent that continuously loses is forced to
perform the discharges without authorization. Finally, the WWTP agent cleans
the auction by providing the list of winners.

If an industry agent loses an auction, it reschedules the discharge and sends
its new schedule to the WWTP agent. When the WWTP agent has all the new
discharge schedules, it checks again for conflicts. This process is iterated, until
a complete schedule without any conflict is obtained (see Fig. 2).

3.2 Bidder Ranking

The ranking agent is in charge of providing a ranking of all the bidders involved
in an auction process. It takes into account the outcomes of the bidders in past
auctions. The ranking is expressed as a priority value p in [0, 1]. The ranking
agent keeps a list of successes and failures for each bidder. A success is considered
when the bidder wins the auction, while a failure is considered when the industry
agent loses. Let succi be the number of successes of agent i, and faili the number
of failures. Then, the priority of agent i is computed as follows [6]:

114 J. Murillo et al.

pi =
faili + 1

succi + faili + 2
(1)

Thus, all agents have an initial priority of 0.5. If an agent loses an auction,
its priority is increased; otherwise, it is decreased.

3.3 Preventing Failures

The offer-manager agent is in charge of computing the thresholds of the WWTP’s
capacities according to the context of the auction so that possible failures can be
avoided. This context include the trust on the bidders involved in the auction,
and other external factors such as the weather forecast.

On one hand, the offer-manager agent keeps a trust list of all industry agents.
This trust value is computed according to the information provided by the in-
dustry sensors. These sensors are in the industry pipes in order to bill industries,
and can also be used to check whether the amount of discharges produced by
the industry corresponds to the contracted ones.

For each agent, the number of uncomplied-contracts (uncomp) is being kept,
as well as the number of complied-contracts (comp). An uncomplied-contract is
the one in which the industry agent has lost the auction, but it has performed
the discharge anyway. Conversely, if the agent fulfills the auction contract it is
considered a complied-contract. Then, using the following equation, the trust ti
of the industry agent i is computed as follows [6]:

ti =
compi + 1

uncompi + compi + 2
(2)

All agents have the same neutral trust at the beginning. As the experience of
the system evolves, the trust on the agents is modified, becoming a trustworthy
(trust close to 1) or untrustworthy (t � 0) agent.

When an untrustworthy agent participates in an auction, it means that there
is a risk that the agent performs a discharge even if it does not get the contract.
Since this situation is very dangerous for the ecology of the river basin, the offer-
manager agent reserves part of the current WWTP capacities for dealing with
possible inappropriate discharges. For each WWTP capacity (flow and contam-
inants) the offer-manager agent computes a trust reduction ΔCtrust

i . Let be U
the set of untrustworthy agents involved in the auction, that is, agents with a
trust level under 0.5. Then, ΔCtrust

i is computed as follows:

ΔCtrust
i = g(f(c1

i , t
1), . . . , f(c|U|

i , t|U|)) (3)

where tj is the trust degree of the j-th untrustworthy agent in the conflict, cj
i is

the amount requested by this agent for the i-th capacity of the WWTP, and f
and g are functions that compute the individual and collective reduction caused
by all the agents in U .

On the other hand, a second factor related to prevention is the rain. In order
to take into account this factor we use the information of the weather forecast.

Dynamic Configurable Auctions 115

When the weather forecast informs about possible rainfall, the WWTP capacities
are also modified. Rain could affect in several ways the WWTP behavior. As a
first approach, we decrease the WWTP capacities according to the following
equation:

ΔCrain
i = pr(rain) · rainfall (4)

where pr(rain) is the probability of rain in the weather forecast, and rainfall is
the expected amount of rain.

Once the trust and rain reductions have been computed, the auction is set up
with the following capacity thresholds:

C′
i = Ci − ΔCtrust

i − ΔCrain
i (5)

where Ci is the design threshold of capacity i of the WWTP.
It is important to note that decreasing the WWTP capacities could be under-

stood as a resource waste. However, wasting the resource could be better than
causing an ecological disaster in the river basin. The goal of the above equations
is to establish a tradeoff between both factors.

4 Implementation

We have implemented a prototype of the system to evaluate the coordination
mechanism. We have used the Repast environment [7], a free open source soft-
ware framework for creating agent based simulations using the Java language.
The simulation reproduces the process and the communication between the
WWTP and the industries performing waste discharges. We have created an
agent that represents the WWTP, another one for each of the industries and the
ranking agent. The offer-manager agent is not yet implemented.

The bid with which the industry agent participates in an auction is computed
taking into account the urgency for performing the discharge, based on the buffer
occupation of the industry:

bid =
buffer occupation

total buffer capacity
(6)

In case an industry agent has to reschedule its discharges, its behavior is
the following: it first tries to store the rejected discharge into the buffer. The
discharge of the buffer is then scheduled as the first activity of the agent after the
conflict finishes. The rest of discharges are shifted so that they do not overlap. If
the buffer cannot contain the current discharge, the industry performs it anyway.

As a first evaluation of the system, we have supposed that the industries
always obey the WWTP decisions, as long as they have enough buffer capacity.
We will introduce different industry behaviors in future experiments to have
more realistic scenarios.

Figure 3 shows the application user interface. The graphical representation
shows the buffer occupation levels of the industries and the occupation degree
of the WWTP.

116 J. Murillo et al.

Fig. 3. User interface

5 Results

In order to perform the simulation, we have used a set of real data in a period of
24 hours with 4 industries. So far we have only considered the hydraulic capacity.
In the near future we will consider different contaminant components.

Figure 4 shows an example of the behavior of the system without any coor-
dination, while Fig. 5 shows the behavior of the system with the same example
when using the recurrent auction mechanism with priorities. In the first figure
we can see that the WWTP capacity is being exceeded seven times, while in
the second the maximum capacity is never exceeded. When using coordination,
there have been some losers in the auctions, but even though some industries
had to reschedule their discharges, they have never caused unauthorized dis-
charges. This shows that the priority mechanism favours the industries with
high urgency to perform their discharges, so that their buffers do not overflow.
However, the overall discharge plan when using coordination is almost 6 hours
longer due to rescheduling. This could cause some problems with the scheduling
of the following day.

In Fig. 5 we can observe that sometimes the WWTP flow is underused. If
industries were allowed to perform multiple discharges (from the buffer and
from the production process) at the same time, the reschedule delays could be
shortened. We need to deal with this possibility in future work.

Dynamic Configurable Auctions 117

Fig. 4. Behavior without coordination

Fig. 5. Behavior with coordination

118 J. Murillo et al.

6 Discussion

The results shown that auctions could be an adequate mechanism for dealing
with the flow resource in our waste water domain. Auctions allow to keep in
privacy agents information, allowing the combination of the different schedules.
Other classical approaches (as for example linear or constraint programming)
could take the different discharges and built a global schedule, by imposing the
individual schedules to the industries. Even that a negotiation process could
be established in this classical scenario, from our understanding it is easier
to deal with a conflict at a time (in which at most one discharge by indus-
try is involved) that with a set of discharges (schedules imposed by a central
authority).

In addition, we think that the recurrent auctions presented here, with the
dynamic configuration of its parameters, can also be extended to share other
perishable resources as, for example, communication bandwidth. The use of our
priorization model could be used in this kind of environments to get the maxi-
mum utility for an auction while providing a fair solution over time.

We also know that the proposed models of priority and trust are quite simple
(equations 3 and 4), but they are sufficient to show the validity of our approach
on finding such fair solutions over time. Our future work, however, includes
the study of better computations, as for example to include the length of the
interactions in the trust computation following [6].

7 Related Work

Recurrent auctions have been addressed in recent works in e-service markets. For
example, in [8] auctions are used to assign advertising time in a public display. In
this work, an heuristic strategy for bidders is implemented based on the history
observation and the detected audience. The displaying period is divided in cycles
and each agent keeps information about the number of cycles it has won in the
past. So agents are using its experience for learning its bidding policy. In our
system, however, we focus on the use of the experience in order to improve the
clearing market process.

The work presented in [3] also uses recurrent auctions in order to deal with the
e-service networking markets. The authors present a novel auction mechanism,
called the Optimal Recurring Auction, which tries to overcome the problems
arisen when dealing with perishable resources, as the e-service ones: the bidder
drop problem and the resource waste problem. We are also tackling the bidder
drop problem but with a different strategy: the use of priorities. Regarding the
resource waste, we are not so much interested on the maximum utility of the
resource, as [3], but on assuring that the resource will never be overused. So our
strategy focus on building robust solutions more than optimal ones.

Regarding auctions, it is also important to distinguish between recurring,
continuous and iterative auctions. Recurring auctions, as the one described in

Dynamic Configurable Auctions 119

this paper, are related to auctions that are repeated over time, getting a solution
in each execution. Continuous auctions [2] are auctions that accept bids anytime,
and clear the market as soon as offers arrive. Finally, iterative auctions are
the ones that are repeated, but in each round, the solution is considered an
approximation. The auction ends whenever the agents repeat the bids or each
agent wins some bid [9].

Concerning waste water treatment, there is recent interest on developing dis-
tributed approaches. For example, in [10] a negotiation approach to deal with the
coordination of different WWTPs of the same river basin is proposed in order to
improve the contaminants discharges. Even that our work could be extended to
n WWTP (using, for example, a distributed auction mechanism such as the one
proposed in [11]), we are currently focusing on the coordination of the industries
governed by a single WWTP.

Finally, we would like to point out that our offer-manager mechanism has been
influenced by the research work on resource management of broadband networks.
In this field, some logical paths are reserved for backup purposes providing more
flexibility to the dynamic management of the network when an incidence occurs
[12]. The offer manager agent of our architecture tries to capture this room
capacity of the WTTP for backup purposes.

8 Conclusions

In this paper we have presented a recurrent auction mechanism that has been
applied to a waste water treatment system. The auction is used to coordinate
the contaminant discharge plans of the industries in a global plan that does not
exceed any WWTP capacity. Auction configuration is set up according to the
past system experience. First, a priority mechanism tries to avoid starvation of
poor bidders by feeding the auction process with a prioritized list of agents.
And second, an offer-management mechanism is used to set up the resource
capacities in order to prevent possible incidences during the execution of the
contract auctions.

Results show that our approach achieves the goal of keeping the incoming flow
below the WWTP capacity, ensuring that the water is completely treated before
going to the river. Although the results are promising, we need to study in more
detail the delay consequences of our current solution. However, we believe that
auction technology could be more flexible with the industries discharges while
taking more profit of the perishable resource involved.

Acknowledgments. Many thanks to the LEQUIA research group for providing
the opportunity to work with them in this problem.

This research project has been partially funded by the Spanish MEC project
TIN2004-06354-C02-02 and DURSI AGAUR SGR 00296 (AEDS).

120 J. Murillo et al.

References

1. Chevaleyre, Y., Dunne, P., Endriss, U., Lang, J., Lemâıtre, M., Maudet, N., Pad-
get, J., Phelps, S., Rodŕıguez-Aguilar, J., Sousa, P.: Issues in multiagent resource
allocation. Informatica 30(1), 3–31 (2006)

2. Kalagnanam, J., Parkes, D.: Auctions, bidding and exchange design. In: Simchi-
Levi, D., Wu, S., Shen, Z. (eds.) Handbook of Quantitative Supply Chain Analysis:
Modeling in the E-Business Era, pp. 143–212. Springer, Heidelberg (2004)

3. Lee, J.S., Szymanski, B.: Auctions as a dynamic pricing mechanism for e-services.
In: Hsu, C. (ed.) Service Enterprise Integration, pp. 131–156. Springer, New York
(2006)

4. Tchobanoglous, G., Burton, F., Stensel, H.: Wastewater Engineering. Treatment
and Reuse, Metcalf and Eddy, Inc., 4th edn. McGraw-Hill, New York (2003)

5. GLPK: GLPK (GNU Linear Programming Kit),
http://www.gnu.org/software/glpk/

6. Patel, J., Teacy, W., Jennings, N., Luck, M.: A probabilistic trust model for han-
dling inaccurate reputation sources. In: Herrmann, P., Issarny, V., Shiu, S.C.K.
(eds.) iTrust 2005. LNCS, vol. 3477, pp. 193–209. Springer, Heidelberg (2005)

7. REPAST: Recursive agents simulation toolkit, http://repast.sourceforge.net/
8. Payne, T.R., David, E., Jennings, N.R., Sharifi, M.: Auction mechanisms for ef-

ficient advertisement selection on public displays. In: Brewka, G., Coradeschi, S.,
Perini, A., Traverso, P. (eds.) ECAI, pp. 285–289. IOS Press, Amsterdam (2006)

9. Parkes, D.: Iterative Combinatorial Auctions: Achieving Economic and Computa-
tional Efficiency. Dissertation proposal, University of Pennsylvania (2000)

10. Rendón-Sallard, T., Sánchez-Marré, M., Aulinas, M., Comas, J.: Designing a multi-
agent system to simulate scenarios for decision-making in river basin systems. In:
Polit, M., Talbert, T., López, B., Meléndez, J. (eds.) Artificial Intelligence Research
and Development. Frontiers in Artificial Intelligence and Applications, vol. 146, pp.
291–298. IOS Press, Amsterdam (2006)

11. Gradwell, P., Padget, J.: Markets vs. auctions: approaches to distributed combina-
torial resource scheduling. In: Gleizes, M.P., Kaminka, G., Nowé, A., Ossowski, S.,
Tuyls, K., Verbeeck, K. (eds.) EUMAS, Koninklijke Vlaamse Academie van Belie
voor Wetenschappen en Kunsten, pp. 487–488 (2005)

12. Vilá, P.: Dynamic Management and Restoration of Virtual Paths in Broadband
Networks based on Distributed Software Agents. PhD thesis, University of Girona
(2004)

http://www.gnu.org/software/glpk/
http://repast.sourceforge.net/

Distributed Clustering

of Autonomous Shipping Containers
by Concept, Location, and Time

Arne Schuldt and Sven Werner

Centre for Computing Technologies (TZI)
University of Bremen, Am Fallturm 1, D-28359 Bremen

{as, sw}@tzi.de

Abstract. Recent developments in logistics show an increasing trend
towards autonomous control. Intelligent software agents, that represent
logistic objects like shipping containers, plan and schedule their way
through a logistic network. This paper addresses the aspect of cooper-
ation. A special focus lies on the second step of the model for coopera-
tion, namely team formation. The question is by which criteria shipping
containers, or logistic objects and agents in general, can form clusters.
Starting from the particular demands of the logistics domain this paper
argues in favour of conceptual, spatial, and temporal properties. A frame-
work that takes concept, location, and time into account is introduced
and demonstrated by an example application.

1 Introduction

Logistics plays an important role in a globalised economy. Trade between differ-
ent parts of the world demands reliable transport networks. The challenge when
dealing with logistic processes is to cope with the complexity and the dynamics
that are inherent in these processes. Thus, recent developments show an increas-
ing trend towards autonomous logistics. From the artificial intelligence point of
view, such processes can be modelled by software agents which act on behalf of
the represented logistic entities in a multiagent system [1].

Today, shipping containers form one of the most important logistic objects
as they handle most of the intercontinental transport of packaged goods [2]. In
the history of logistics, the concept of containerisation as a medium for inter-
modal transport is a relatively new one. It has been established since 1956 when
Malcom Purcell McLean (1913 – 2001) started to employ containers on a large
scale [3]. Containers revolutionised the area of transport logistics as they allow
the transfer of goods between different means of transport without the necessity
for repacking. In particular, this massively decreases the time required for load-
ing goods onto ships. An important property of shipping containers is that they
exhibit standardised sizes which makes them highly interchangeable. Hence, they
provide a high degree of abstraction from the concrete goods carried.

P. Petta et al. (Eds.): MATES 2007, LNAI 4687, pp. 121–132, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

122 A. Schuldt and S. Werner

Represented by software agents, containers are capable of autonomously plan-
ning the transport from their source to a sink. In some situations it might be
useful or even necessary to cooperate with other containers in order to meet this
objective. A common approach addressing this purpose is the model for coopera-
tion [4]. The question remains what are the criteria by which shipping containers
can be grouped together. This paper argues in favour of conceptual, spatial, and
temporal properties. The same properties have, for instance, also been applied
for information retrieval from the semantic web (e. g. [5,6]).

The remainder of this paper is structured as follows: Section 2 discusses the
addressed scenario and Sect. 3 presents related work. The identified clustering
criteria are introduced in Sect. 4. A compatible clustering protocol is presented
in Sect. 5 and its implementation is dealt with in Sect. 6. As a case study, it is
subsequently applied to an example problem in Sect. 7. Eventually, a conclusion
follows in Sect. 8.

2 Scenario

This paper addresses the area of forward logistics which deals with procuring
products from all over the world. These goods are packed into shipping containers
in order to be loaded onto container vessels. The particular focus of this paper
lies in an onward carriage scenario, that begins as soon as the containers arrive at
their scheduled port of discharge (Fig. 1). The task is then to find an appropriate
warehouse in which the contained goods can be received. This is challenging due
to the underlying complexity and dynamics. The complexity is caused by the high
throughput of containers as well as the parameters influencing the decision, e. g.,
date of arrival, port of discharge, properties of the goods, and capacities, just to
name a few. Containers are sometimes delayed or even lost. This prevents static
planning and leads to highly dynamic processes. Approaching this challenge with
centralised methods (such as [7]) is, therefore, only efficient to a minor degree.

As discussed in Sect. 1 the idea is therefore to apply an autonomous approach
in which the planning and scheduling is carried out locally by the containers
themselves. In the process of solving this task the containers’ content plays an
important role. With regard to the subsequent distribution it is desirable for a
company to concentrate similar goods as early as possible. As an example, mul-
tiple containers with T-shirts that are scheduled to be sold together should be
jointly received in the same warehouse. Proceeding this way allows similar prod-
ucts to be delivered together by truck to the distribution centres. Otherwise, the
goods would have to be shipped from multiple warehouses which increases the
probability of empty space on the trucks. While this is an argument for the coor-
dination of multiple containers of the same company, there exist also reasons for
preventing containers from being clustered. Consider, for instance, fresh fruits.
Due to their perishability, they can only be received in a refrigerated warehouse.
A second example is that of jewellery which can only be stored in secured ware-
houses. Furthermore, damaged goods cannot be received in any conventional
warehouse; they have to be delivered to a selector who repairs them. These ex-
amples illustrate that some goods cannot be received arbitrarily together with

Distributed Clustering of Autonomous Shipping Containers 123

Container Terminal
1...n

... ...

Warehouse
1...m

Transport Network
Truck, Train, Barge

Fig. 1. Containers arriving at a container terminal have to find an appropriate ware-
house. Thereby, they also have to choose an available transport network.

others in the same warehouse. The above considerations on the content of con-
tainers shall be summarised as their concept.

It is clear that the content of containers alone is not sufficient to decide
whether they should be clustered. Furthermore, the location of containers is
relevant. As an example, transporting containers by train is much cheaper than
loading them onto trucks. Nevertheless, this is only the case if a certain number of
containers is transported together on the same train. Thus, a shipping container
has to find partners that share a common location and destination. This directly
leads to the third criterion, namely time. The containers should additionally be
scheduled for a similar date of delivery. Otherwise, some of them are forced to
wait for the others; possibly longer than their own scheduled date of delivery.

The above applications indicate the necessity for the clustering of similar
shipping containers belonging to the same company. The clustering criteria that
can be derived from these examples are concept, location, and time.

3 Related Work

As discussed above, the task is to establish meaningful groups of shipping con-
tainers. Clustering algorithms partition a given set of objects into distinct groups.
The objective is to achieve a maximal distance between different clusters and
a minimal distance between the members of each cluster. Previous algorithms
such as k-means [8] generally have a centralised perspective on the data to be
clustered. Hence, they cannot be applied to the distributed problem at hand.

Distributed clustering approaches can be found in the area of wireless sensor
networks [9]. Like the logistics domain, the application of sensor networks is
highly distributed. In general, sensors are spread within a certain area in order

124 A. Schuldt and S. Werner

to observe specific phenomena. Their primary tasks are acquiring data from
the environment as well as transmitting the collected data to a base station.
Since the individual sensors act independently of a central power supply, saving
energy resources is a crucial task. Therefore, clustering algorithms for sensor
networks aim at optimising energy consumption and communication costs. A
common approach is to cluster sensors by spatial proximity. The routing of data
messages is then organised in a hierarchical way [10]. Each cluster collects the
sensor data of its region, aggregates it, and transmits it to the base station. A
prominent approach is LEACH, which stands for low-energy adaptive clustering
hierarchy [11]. In this method some sensor nodes choose to be cluster-heads. The
remaining nodes join the cluster that requires minimum communication energy
(generally the spatially closest cluster-head). In order to equally distribute the
power consumption for long-range communication the cluster-heads are regularly
changed, which also leads to a new cluster partitioning.

In order to judge an application to logistic object agents, it is necessary to
discuss differences between sensor networks and the logistics domain. While it
seems suitable for sensor networks to form clusters just by spatial proximity
and residual energy, this is not the case for shipping containers. By contrast, as
described in Sect. 2, further criteria apart from location have to be taken into
account. Even w. r. t. location, it is not always reasonable to consider only quan-
titative spatial distances. In contrast, qualitative relationships between shipping
containers (e. g., same destination) are of particular interest. Moreover, the con-
tinuous re-clustering in order to distribute power consumption conflicts with the
objective of long-term cooperation. Finally, in a sensor network, generally all
nodes exist right from the start. In the logistics domain, such a predetermined
date does not exist as shipping containers might also join the network later on.

4 Clustering Criteria

The approach presented in this paper is based on the so-called model for coop-
eration [4]. This model defines a formalisation for cooperative problem solving
(CPS) approaches. The CPS process is divided into four steps: recognition of po-
tential for cooperation, team formation, plan formation, and team action. The
particular focus of this paper is on forming a distinct team that is capable of
realising a certain goal, i. e., the second step. The detection of a potential for
cooperation is considered to be agreed upon in the first step in which an agent
concludes that some of its goals could be reached by a group of agents. Fur-
thermore, the third and fourth step are carried out after applying the presented
method and are also out of the scope of this paper.

In order to address the task of team formation, it is necessary to compare
the properties of the respective agents. As described in Sect. 2 the presented
approach takes concept, location, and time constraints of agent properties into
account. These properties are considered relevant to agents that have to deal
with transport problems and that may take advantage of forming clusters. After
applying the proposed team formation step in terms of the model for cooperation,

Distributed Clustering of Autonomous Shipping Containers 125

the formed cluster of agents is supposed to be adequate for realising the desired
goal. However, it is also possible that this phase may not succeed, since failure
is also a possible outcome of the model for cooperation.

4.1 Conceptual and Spatial Constraints

The knowledge concerning the content of shipping containers is represented by
an ontological approach based on description logics [12]. Description logic is a
decidable fragment of first-order logic. The modelling consists of concepts repre-
senting sets of objects and roles as relationships between these objects. Figure 2
shows an example ontology that consists of three major parts: article, property,
and location. The first part arranges the transported goods by their type into
a taxonomical hierarchy. The taxonomy allows the recognition of more general
classes of goods; for instance, it can be concluded that T-shirts are textiles. A
second part of the ontology comprises properties that goods may have. By in-
troducing further roles it is possible to model that, say, fruits are perishable or
jewellery is valuable. In contrast to the type of goods, which generally never
changes, the properties may change (although rather seldom). As an example,
goods might be damaged during transport. Furthermore, the location of goods
can be integrated as an ontological concept, which is the third part. Thus, further
restrictions can be realised, e. g., a class comprising all containers with valuable
jewellery that are currently at a container terminal. Changes in this part of the
description are most likely as goods are transported between different locations.

Thing

Article

Textile

T-shirt

Jewellery

Fruit Perishable

Valuable

Damaged

Property

Container
Terminal

Transport
Network

Warehouse

Location

Fig. 2. An example ontology for goods with three major parts: article, property, and
location. The lines connecting concepts indicate taxonomical relations.

As discussed above, the ontological descriptions of logistic objects change over
time. The time-span in which an ontological concept holds can be characterised
with the help of the following definition of temporal intervals:

Definition 1 (Temporal Interval). A temporal interval τ is defined by a start
point ts and an end point te, where ts < te:

τ = (ts, te); ts, te ∈ N, ts < te

126 A. Schuldt and S. Werner

Based on this definition, the ontological concept of a container agent during a
given time-span can be defined as a subclass of the universal concept �:

Definition 2 (Agent Concept). Let α be an agent. The ontological concept
of α during τ is represented by

c(α, τ) � �

4.2 Agent Clusters

In order to achieve a common goal, container agents are capable of clustering.
The lifetime of the whole cluster can thereby exceed the membership of a single
agent. Furthermore, each agent can leave a cluster and rejoin later. Therefore, the
membership of an agent cannot be characterised by a single temporal interval.
By contrast, a set of intervals has to be applied (which might also be empty):

Definition 3 (Cluster Membership). Let α be an agent, let γ be a cluster.
The membership of α in γ is defined by a set of temporal intervals:

m(α, γ) = {τ1, . . . , τn}, n ∈ N

Before joining a cluster, a container has to determine its similarity to the cluster.
This procedure is a special case of the so-called matchmaking problem [13]. It de-
notes the decision whether advertisements offered by business entities or agents
match requests issued by other agents. An approach proposed by [14] addresses
this task by considering the formal semantics of ontology-based knowledge rep-
resentation techniques. They propose five different degrees of match between two
concepts c1 and c2: exact c1 ≡ c2, plug-in c1 � c2, subsume c1 � c2, intersection
¬(c1 � c2 � ⊥), and disjoint c1 � c2 � ⊥.

Like agents, clusters are also characterised by concepts that hold within given
temporal intervals. During its membership, the concept of each agent is supposed
to be subsumed by the cluster concept:

Definition 4 (Cluster Concept). Let γ be a cluster. The ontological concept
of γ during τ is represented by

∀α∈γ∀τi∈int(τ,m(α,γ))c(α, τi) � c(γ, τ) � �

Apart from subsumption, Definition 4 also uses the auxiliary function int, that
computes for a given set of temporal intervals their intersection with a reference
interval. This ensures that the concept of the cluster members is only compared
for those times that are covered by τ :

int(τ, {τ1, . . . , τn}) = {(τ ∩ τi) | i ∈ {1, . . . , n} ∧ (τ ∩ τi) �= ∅} (1)

Besides matching containers and clusters, the approach can also be applied in
order to find appropriate warehouses. As an example, it can be deduced from the
ontology that a cluster of containers carrying damaged T-shirts can be received
in a warehouse that is capable of receiving damaged textiles.

Distributed Clustering of Autonomous Shipping Containers 127

4.3 Temporal Constraints

As discussed in the previous section, the concept (including location) of container
agents plays an important role during cluster formation. So far, the application
of time has been limited to checking whether agents meet a cluster concept dur-
ing a given temporal interval. Besides, some applications also demand certain
temporal relationships between the agents within a cluster. Figure 3 illustrates
three shipping container examples. First, if containers plan to be transported by
the same truck, one after another, their temporal intervals have to be discon-
nected (i. e., without overlap). Second, if one container conducts the planning
for the whole group, its membership has to subsume the memberships of all
other agents. Finally, if containers plan to share a train, their expected dates of
arrival at the station should correspond, i. e., the respective intervals must share
a common end.

τ1 τ2 τ3

τ1 = > >

τ2 < = >

τ3 < < =

τ1 τ2 τ3

τ1 = d d

τ2 di = o

τ3 di oi =

τ1 τ2 τ3

τ1 = f f

τ2 fi = f

τ3 fi fi =
t

10

τ1

τ3

τ2

t
10

τ1

τ3

τ2

t
10

τ1

τ3

τ2

Fig. 3. Three examples for relations between sets of temporal intervals within an agent
cluster and the respective temporal matrices

A classical approach for temporal reasoning is formed by Allen’s qualitative
relational system [15] (qualitative in the sense that it abstracts quantitative data
to a semantically defined representation) which is depicted in Fig. 4:

Definition 5 (Temporal Relation). Let τi, τj be temporal intervals. The po-
sition τi τj of τj w. r. t. τi is then characterised as

τi τj ∈ {<, >, m, mi, o, oi, s, si, d, di, f, fi, =}

However, these 13 relations characterise pairs of temporal intervals. Hence, this
paper proposes a generalised approach of predicates about arbitrary sets of tem-
poral intervals in order to meet the above requirements.

overlaps

o
meets

m
before

<
Relation:

Inverse:

Example:

starts

s
during

d
finishes

f
equal

=

oi
overlapped by

mi
met by

>
after

si
started by

di
contains

fi
finished by

=
equal

τi

τi τj

τj τi

τj

Fig. 4. The 13 relations that have been proposed by Allen [15] in order to characterise
the qualitative relationship between two temporal intervals

128 A. Schuldt and S. Werner

In order to reason about temporal intervals within a cluster, it is first necessary
to obtain all these intervals. This is achieved by the following auxiliary function:

allIntervals(γ) =
⋃

α∈γ

m(α, γ) (2)

Since the above set is not necessarily sorted (accordingly to start and end points),
it is transferred into an ordered list by a further auxiliary function:

orderedIntervals(γ) = 〈τ1, . . . , τn〉, τi ∈ allIntervals(γ),

∀τi=(tsi
,tei

)

{
tei ≤ tei+1 iff tsi = tsi+1

tsi < tsi+1 else
(3)

Based on these auxiliary functions, it is then possible to define the matrix Mγ

that comprises the relations for all pairs of temporal intervals of a cluster:

Definition 6 (Temporal Matrix). Let γ be an agent cluster. The matrix

Mγ = 〈τ1, . . . , τn〉 × 〈τ1, . . . , τn〉, τi ∈ orderedIntervals(γ)

characterises the relations τi τj between all temporal intervals in γ with τi τj being
the entry in row τi and column τj.

Figure 3 gives these matrices for the depicted configurations. Restrictions like
those discussed in the introductory paragraph of this section can be defined as
predicates on the temporal matrices. For instance, in the first example the only
relations that are allowed to occur in the whole matrix are {<, >}. Thereby,
the matrix’ main diagonal is excluded as it relates each interval to itself, which
always results in =. For the second example, it has to be ensured that there exists
one row comprising at most the relations {s, d, f, =}. In order to determine the
third example it is sufficient to examine pairs of subsequent intervals (which is
a diagonal of the matrix). The occurring relations are restricted to {f, =}. The
general definition for these three types of predicates is as follows:

Definition 7 (Temporal Matrix Restriction). Let γ be an agent cluster.
Restrictions on its temporal matrix Mγ can be described by a set ρ of temporal
relations and one of the following predicates:

wholeMatrix(Mγ , ρ) = ∀i ∀j (τi τj ∈ Mγ ∧ i �= j) → τi τj ∈ ρ

matrixRow(Mγ , ρ) = ∃i ∀j (τi τj ∈ Mγ ∧ i �= j) → τi τj ∈ ρ

matrixDiagonal(Mγ , ρ) = ∀i τi τi+1 ∈ Mγ → τi τi+1 ∈ ρ

5 Clustering Protocol

The clustering criteria presented in Sect. 4 are based on semantic knowledge
and qualitative relations. Although they are not restricted to specific clustering

Distributed Clustering of Autonomous Shipping Containers 129

:Agent

:CatalogueService :ClusterHead

n

n

m

l

n

n

m

l

request-cluster-match

failure-cluster-match

inform-cluster-match

request-register

inform-registered

request-search-clusters

inform-cluster-list

request-cluster-match

inform-cluster-match

failure-cluster-match

request-deregister

inform-deregistered

request-join-cluster

inform-cluster-joined

request-join-cluster

inform-cluster-joined

request-search-clusters

inform-cluster-list

Fig. 5. The protocol flow of the distributed clustering approach for autonomous agents
described by an AUML sequence diagram (exceptional messages are omitted for the
sake of readability)

algorithms, they cannot be applied with arbitrary methods. As an example, the
algorithms discussed in Sect. 3 are not applicable since they demand quantitative
distances. This section presents a clustering protocol (Fig. 5) for autonomous
agents that is capable of considering the criteria introduced.

As soon as an agent is created, it queries a catalogue service for existing clus-
ters. Subsequently, it communicates its properties to all cluster-heads. Clusters
matching the properties of the agent send positive answers. If the requesting
agent receives a positive answer, it joins the respective cluster. Otherwise, the
agent chooses to register as a cluster-head itself.

The above method suffers from a potential problem: concurrency. Querying
the catalogue and registering oneself as a cluster-head is not an atomic operation.
Hence, other agents with the same properties can register in between. In order
to address this issue, the agent has to send its properties to all cluster-heads
that have been registered in between as soon as its registration is finished. If the

130 A. Schuldt and S. Werner

agent finds another cluster-head exhibiting the same properties and an earlier
registration time-stamp, it deregisters and joins the earliest cluster found.

The asymptotic communication complexity of the protocol is O(mn). This
can be explained by the fact that all n agents contact at most all m clusters,
whereby m ≤ n. For most applications, m is considered to be even much smaller
than n, which means m � n. The main benefit of this protocol, however, is the
high degree of autonomy that is left to the individual agent, since the catalogue
service does not make any decisions for the agents.

6 Implementation

The protocol is implemented within the Java-based agent-framework JADE [16].
The simulation is synchronised; it is based on time-slots of one day each. The
implementation contains three types of agents. The first one is the shipping con-
tainer creator agent. It uses real-world data from existing containers and defines
agents representing the containers accordingly. The creation is conducted at the
respective time-slots. The second agent type represents the shipping container
itself. Having determined its respective values for concept, location, and time,
this agent type proceeds following the protocol presented in Sect. 5. All com-
municative actions are conducted according to the FIPA request protocol. They
apply the standardised achieve rational effect classes offered by the JADE frame-
work. Due to long response delays of JADE’s standard directory facilitator (DF)
implementation, a third agent type is defined. This agent administers a list of
existing clusters and is called a catalogue service agent: the agent holds a list
comprising the agent ids of all cluster-heads. Additionally, it features three basic
operations: adding clusters, removing clusters, and questioning the cluster list.

7 Case Study

In order to test the clustering criteria introduced and the performance of the
proposed algorithm, a case study is conducted. The goal is to demonstrate that
the approach can overcome the limitations of other approaches regarding dis-
tribution and semantic knowledge. Furthermore, its applicability to real-world
problems has to be examined. As an example application, similar containers
located anywhere are expected to form clusters in order to be jointly received
in a common warehouse. The purpose is to reduce the subsequent distribution
costs as discussed in Sect. 2. The lifetimes of the agents are thereby expected to
overlap pairwise without a gap in between.

The case study is carried out with real-world data from about 2,400 containers
that were actually in operation during three months in 2006. The containers join
the network distributed over this time-span. A manual data inspection reveals
that there exist 215 clusters; so this is the expected outcome of the experiment.
Due to the asymptotic complexity, it is expected that the number of conversa-
tions and the computation time will develop almost quadratically.

Distributed Clustering of Autonomous Shipping Containers 131

number of
clusters

0 1000 2000

215
number of
conversations

0 1000 2000

341285
computation
time in s

0
number of containers

1000 2000

284

number of containersnumber of containers

Fig. 6. The number of clusters (left) and conversations (centre) and the time needed
for computing the simulation (right) in relation to the number of containers

The average results of 50 test runs are given in Fig. 6. The number of clusters
in relation to the total number of agents is depicted on the left hand side. The
exact shape of the curve strongly depends on the underlying data. As a result it
can, however, be discovered that the final number of clusters is 215 for all test
runs, i. e., the algorithm is capable of solving the addressed problem. The total
number of conversations (Fig. 6 centre) is 341,285. This is below the expected
asymptotic complexity. This result can be explained by the fact that not all
clusters exist right from the start. Nevertheless, the plotted part of the curve
indicates the expected quadratic shape. This observation also corresponds with
the computation time that is depicted on the right hand side of Fig. 6. On a
computer with Windows XP and an Intel Centrino Duo processor with 2.16
Gigahertz, the total time for clustering is 284 seconds.

8 Conclusion

This paper introduces a framework that allows agents representing autonomous
shipping containers to form clusters by concept, location, and time. The con-
ceptual, spatial, and temporal properties are thereby represented as semantic
knowledge and qualitative relations. The case study conducted demonstrates
the applicability to problems in the shipping container domain. The method
presented does not make special assumptions about the objects represented.
Hence, it is not limited to containers and can also be applied in order to realise
clustering of other logistic objects (e. g., autonomous packages). As concept, lo-
cation, and time are general properties, it is also possible to apply the approach
in multiagent systems that model domains not related to logistics.

The clustering algorithm presented exhibits two main features. First, it is
capable of handling the above semantic features. Second, it is highly distributed
and leaves all decision-making to the autonomous agents. A question for future
research is how to further reduce communication efforts. Shipping containers
are often located within greater logistic entities, such as container vessels or
terminals. Therefore, it seems promising to install them as proxies that cache
and bundle communication with the catalogue service and the clusters.

132 A. Schuldt and S. Werner

References

1. Weiss, G. (ed.): Multiagent Systems. A Modern Approach to Distributed Artificial
Intelligence. MIT Press, Cambridge, MA (1999)

2. Günther, H.O., Kim, K.H. (eds.): Container Terminals and Automated Transport
Systems. Springer, Heidelberg (2005)

3. Levinson, M.: The Box: How the Shipping Container Made the World Smaller and
the World Economy Bigger. Princeton University Press, Princeton, NJ (2006)

4. Wooldridge, M., Jennings, N.R.: The Cooperative Problem Solving Process. Jour-
nal of Logic & Computation 9(4), 563–592 (1999)

5. Hübner, S., Spittel, R., Visser, U., Vögele, T.J.: Ontology-Based Search for Inter-
active Digital Maps. IEEE Intelligent Systems 19(3), 80–86 (2004)

6. Visser, U.: Intelligent Information Integration for the Semantic Web. LNCS,
vol. 3159. Springer, Heidelberg (2004)

7. Dantzig, G.B.: Application of the Simplex Method to a Transportation Problem.
In: Koopmans, T.C. (ed.) Activity Analysis of Production and Allocation, pp. 359–
373. John Wiley & Sons, New York (1951)

8. MacQueen, J.: Some Methods for Classification and Analysis of Multivariate Obser-
vations. In: Fifth Berkeley Symposium on Mathematical Statistics and Probability,
pp. 281–296 (1967)

9. Akyildiz, I.F., Su, W., Sankarasubramaniam, Y., Cayirci, E.: Wireless Sensor Net-
works: A Survey. Computer Networks 38, 393–422 (2002)

10. Al-Karaki, J.N., Kamal, A.E.: Routing Techniques in Wireless Sensor Networks: A
Survey. IEEE Wireless Communications 11(6), 6–28 (2004)

11. Heinzelman, W.R., Chandrakasan, A., Balakrishnan, H.: Energy-Efficient Commu-
nication Protocol for Wireless Microsensor Networks. In: 33rd Hawaii International
Conference on System Sciences. vol. 8, pp. 8020–8029 (2000)

12. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.F. (eds.):
The Description Logic Handbook. Cambridge University Press, Cambridge (2003)

13. Shvaiko, P., Euzenat, J.: A Survey of Schema-Based Matching Approaches. Journal
on Data Semantics 4, 146–171 (2005)

14. Li, L., Horrocks, I.: A Software Framework for Matchmaking Based on Semantic
Web Technology. International Jounal of Electronic Commerce 8(4), 39–60 (2004)

15. Allen, J.F.: Maintaining Knowledge about Temporal Intervals. Communications of
the ACM 26(11), 832–843 (1983)

16. Bellifemine, F., Caire, G., Greenwood, D.: Developing Multi-Agent Systems with
JADE. John Wiley & Sons, Chichester (2007)

Coordinating Competitive Agents in Dynamic

Airport Resource Scheduling

Xiaoyu Mao1,2, Adriaan ter Mors1,3, Nico Roos2, and Cees Witteveen3

1 Almende B.V, 3016 DJ Rotterdam, The Netherlands
2 MICC/IKAT, Universiteit Maastricht, The Netherlands

3 EWI, Technische Universiteit Delft, The Netherlands
{xiaoyu,adriaan}@almende.com

Abstract. In real-life multi-agent planning problems, long-term plans
will often be invalidated by changes in the environment during or after
the planning process. When this happens, short-term operational plan-
ning and scheduling methods have to be applied in order to deal with
these changed situations. In addition to the dynamic environment, in
such planning systems we also have to be aware of sometimes conflict-
ing interests of different parties, which render a centralized approach
undesirable. In this paper we investigate two agent-based scheduling ar-
chitectures where stakeholders are modelled as autonomous agents. We
discuss this approach in the context of an interesting airport planning
problem: the planning and scheduling of deicing and anti-icing activities.
To coordinate the competition between agents over scarce resources, we
have developed two mechanisms: one mechanism based on decommit-
ment penalties, and one based on a more traditional (Vickrey) auction.
Experiments show that the auction-based mechanism best respects the
preferences of the individual agents, whereas the decommitment mecha-
nism ensures a fairer distribution of delay over the agents.

1 Introduction

Aircraft deicing and anti-icing is required in winter time when frost, snow, and
ice form on the wings and fuselage of an aircraft. Such a layer of frost or ice
on aircraft surfaces influences the aircraft’s aerodynamic properties which may
cause a loss of lift that could result in a crash. Deicing refers to the removal of
frost, snow, or ice from aircraft surfaces, while anti-icing is the application of a
layer of viscous fluid onto aircraft surfaces that should prevent snow or ice from
accumulating. Since the deicing and anti-icing operations are always performed
together, in the remainder of this paper we will not distinguish them and will
use the term deicing to refer to both deicing and anti-icing.

The planning and scheduling of deicing activities at airports is an important
and challenging part of airport departure planning. Like other real-life planning
problems, long term planning can be invalidated by the dynamic changes in
the environment during or after the planning process. In these cases, short-term
operational planning and scheduling methods have to be applied. In addition to

P. Petta et al. (Eds.): MATES 2007, LNAI 4687, pp. 133–144, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

134 X. Mao et al.

the dynamic environment, in such planning systems we also have multiple self-
interested parties that often have conflicting interests, which makes a centralized
approach less appropriate.

The dynamic nature of the aircraft deicing problem stems from the fact that in
many temperate climate zones as found in Western Europe, the process of deicing
is not part of the original flight plan, and thus it has to be scheduled as part
of operational (i.e., short-term) planning. Moreover, during wintry conditions
involving snow and ice, airport capacities will be greatly reduced — again, in
temperate climate zones, this is not taken into account in the flight schedules
— putting a great strain on the re-planning capabilities of all parties involved.
These parties are self-interested and often have conflicting interests. For instance,
airlines and pilots will be concerned with the effects of deicing on their flight
schedules, air traffic control will be responsible for safe flight movements, the
airport itself will strive for a maximum utilization of its facilities (runways,
gates, etc.), and the ground servicing companies performing the deicing will
want to operate as efficiently as possible. To resolve the dependencies between
self-interested parties, we need some form of coordination.

In this paper, we investigate two coordination mechanisms: i) coordination
based on decommitment penalties and ii) a Vickrey auction mechanism. The
decommitment-penalties mechanism aims at minimizing the total delay on
the airport, and distributing this delay evenly over the agents in the system.
The auction mechanism aims to find an allocation of slots that matches the
preferences or priorities of the agents (for instance, a fully-loaded Airbus 380
aircraft with many passengers on board may value its punctual departure higher
than a half-empty Fokker 50).

This paper is organized as follows. In Sect. 2, we will describe the background
of the airport deicing scheduling problem, and we link it to the problem of
multi-agent scheduling. In Sect. 3 we will give a formal model of the deicing
scheduling problem and we will introduce a simple solution scheme. The agent
coordination mechanisms will be discussed in Sect. 4; in Sect. 5 we will show
the experimental comparison of the auction and decommitment coordination
mechanisms. Section 6 concludes with a look to the future.

2 Background and Related Work

Like many real world problems, the problem of managing deicing resources ex-
hibits characteristics of both planning and scheduling. It is a scheduling problem
in the sense that aircraft tasks have to be allocated to resources over time, and
it is a planning problem in the sense that an aircraft has a number of choices
with regard to which deicing resource to make use of — and this choice of de-
icing resource has implications for other airport planning problems like arrival
planning, departure planning, and taxiway planning. Nevertheless, the manage-
ment of deicing resources can best be characterized as a scheduling problem as
it involves only a small, fixed number of choices, and because the focus is more
on time and resource constraints, rather than on ordering of actions (cf. [1]).

Coordinating Competitive Agents in Dynamic Airport Resource Scheduling 135

If agents were to schedule completely independently of each other, the union
of their plans would show many conflicts. In the airport deicing domain, these
conflicts will concern the simultaneous use of scarce resources. We therefore
define the problem of multi-agent scheduling as follows:

Definition 1 (Multi-Agent Scheduling). Given a set of agents each with a
set of tasks to schedule, and a set of resources to schedule them on, each agent
should find an individual schedule for its tasks in such a way that none of the
resource capacity constraints are violated.

Obviously, satisfying all resource constraints will not happen by magic; the
agents will need some coordination mechanism that will safeguard these con-
straints. Therefore, we can summarize the multi-agent scheduling problem as
follows:

Multi-Agent Scheduling = Distributed Scheduling + Coordination

Within multi-agent scheduling research, two main tracks can be identified: co-
operative agent scheduling and competitive agent scheduling (or selfish schedul-
ing). The scheduling of deicing resources has characteristics of both cooperative
and competitive scheduling, as the aircraft/airline agents are competing for ac-
cess to scarce resources, whereas deicing-resource agents are collaborating in
order to maximize resource utilization. In this paper, we will focus our attention
on mechanism design for selfish agents.

Since the work of Nisan and Ronen [2] on mechanism design, in 1999, selfish
scheduling has recently been studied by many researchers. Some researchers
consider the machines to be the selfish agents machines [3,4,5], while others
associate an agent with a single task or job [6,7]. However, all these works differ
from our paper since they dealt with scheduling problems in a static environment.

Related work on dynamic selfish scheduling is by Vermeulen et al. [8], who
developed a Pareto-optimal appointment exchanging algorithm in a patient-
scheduling problem. The objective is to improve upon the initial schedule, con-
structed using first come, first served, by letting patient-agents exchange their
slots. It is quite similar to the work of Paulussen et al. [9] where the agent coordi-
nation mechanism is a dynamic schedule-repair affair that can be classified as an
after-scheduling coordination mechanism. Although Vermeulen’s slot swapping
mechanism may be a valuable optimization tool in a dynamic schedule repair
context, there is still a need for a coordination mechanism that finds a satisfying
initial schedule.

In this paper we present and compare two coordination mechanisms for ob-
taining an initial schedule: the first is based on an auction for selling deicing slots,
the second is based on decommitment penalties. In previous research, auction-
based scheduling methods have been well studied since they respect the natural
autonomy and private information in decentralized systems [10,11,12]. In con-
trast to these previous approaches, we investigate the auction-based scheduling
scheme in a dynamic scheduling environment. Decommitment research has been
primarily used to enable agents to explore new opportunities from the domain

136 X. Mao et al.

or from other agents [13,14]; an example is a package-delivery agent that decom-
mits the contract for one package so that it is able to accept a more profitable
package to deliver [13]. Another use of decommitment penalties is to allow agents
to speculate on future events [15]. We propose that the concept of decommit-
ment penalties can also be used to coordinate agents, by associating a penalty
with the occurrence of an agent decommitting from a slot because it could not
make the agreed time. In this sense, the decommitment mechanism curbs the
greedy tendency of agents to grab the deicing station resource as early as pos-
sible, before other agents have a chance to take it. Now, every agent gets that
chance, but it has to suffer the consequences if it miscalculated its ability to make
its slot.

3 Modelling the Aircraft Deicing Scheduling Problem

In this section we will present a formal model of the aircraft deicing scheduling
problem and discuss how uncertainty in the environment influences the schedul-
ing process.

Definition 2 (Aircraft Deicing Scheduling Problem). The aircraft deicing
scheduling problem is a tuple 〈A, D, c, τ, p, P, l〉 where

– A is a set of n aircraft agents,
– D is a set of m deicing station resources,
– c : D → N is a capacity function specifying the number of aircraft that can

simultaneously be serviced at the deicing station (i.e., the number of bays),
– τ : A → R is a function associating a Target Off-block Time with every

agent, which is in fact the time aircraft is able to leave the gate for deicing,
– p : A → R is function that specifies the deicing process duration for a certain

aircraft,
– P : R × A → R is a function that gives the the probability that an incident

will happen to a certain agent,
– l : R × A → R is a function that assigns a cost to the delay of an aircraft.

The incident probability P (t, ai) indicates the probability that an incident will
occur in the interval [t, τ(ai)], i.e., the time during which the aircraft agent will
receive ground services at the gate. The occurrence of such an incident may
delay the Target Off-block Time, and rescheduling will therefore be needed for
an aircraft having a deicing slot right after τ . The aircraft delay cost function
l : R × A → R maps delay in minutes to cost, reflecting the fact that different
agents may have different value systems.

A solution to an instance 〈A, D, c, τ, p, P, l〉 is a multi-agent schedule given by
the vector S = 〈(d1, I1), . . . , (dn, In)〉 where (di, Ii) is a tuple in which di ∈ D is
the deicing station assigned to agent ai during interval Ii such that

Ii = [si, si + p(ai)] ∧ si ≥ τ(ai) (1)

Coordinating Competitive Agents in Dynamic Airport Resource Scheduling 137

where si is the deicing start time of ai. A feasible schedule satisfies the following
resource constraints: at every point in time t, the deicing resource utilization for
every resource does not exceed its capacity:

∀t∀d ∈ D|{aj ∈ A | (d, Ij) ∈ S ∧ t ∈ Ij}| ≤ c(d) (2)

Given a Target Off-block Time for each aircraft agent ai, an individual agent
tries to minimize its delay dli = si + p(ai) − τ(ai). For the set of all agent
schedules, we can define two optimization criteria: the first is to minimize the
total delay cost of all aircraft: min

∑
ai∈A l(dli, ai) as a measure of social welfare;

another criterion is to minimize the sum of standard deviations in individual
aircraft delay, which reflects the fairness of resource allocation at the airport.

Although the list of things that can go wrong in airport deicing operations is
too extensive to fit into an elegant model of agent reasoning with uncertainty,
observations from real and simulated deicing operations lead us to conclude
that many incidents are concentrated in the ground servicing of the aircraft.
For example, if the apron in front of an aircraft accumulates too much snow,
it becomes difficult for ground servicing vehicles like baggage carts to reach the
aircraft, and push-back vehicles cannot find the grip required to tow an aircraft
away from the gate. Hence, there is a great deal of uncertainty surrounding the
Target Off-block Times of aircraft.

If an aircraft agent is considering at time t whether to reserve (or bid for) the
deicing slot starting at time ts (ts ≥ t), then two factors are relevant:

1. δ1 = τ(a) − t: If δ1 is large, then there are many ground servicing tasks that
still need to be performed, in which case the probability that something will
cause a delay is considerable.

2. δ2 = ts − τ(a): If the reserved slot is very far away from the Target Off-block
Time, then a small delay during ground handling will not necessarily mean
that the deicing slot will be missed.

In this paper, we assume that the probability-of-decommitment only depends
on δ1 and no incidents will occur after ground services are finished. Hence, we
assume that the probability-of-decommitment function has the following form:

P (t, a) =

{
0 τ(a) < t

min(c, α · (τ(a) − t)) otherwise
(3)

where c and α are constant values between 0 and 1. The constant c provides an
upper bound on the probability of having an incident, even if t is an arbitrarily
early time of requesting the de-icing slot. The constant α regulates the rate of
incident-occurence. If α is very large, then even when a de-icing slot is requested
close to the off-block time, there is a high probability of suffering an incident.

4 Coordination Mechanisms

In this section we will describe two coordination mechanisms: coordination using
a Vickrey auction to sell deicing slots to the highest bidder and coordination
through decommitment penalties.

138 X. Mao et al.

A simplifying assumption we will make for both coordination settings is that
there is only a single deicing station having a single deicing bay. Having mul-
tiple deicing stations makes the problem more interesting from a combinatorial
optimization point of view, but it is not especially relevant to our investigation
into the relative merits of auctioning and decommitment.

4.1 Vickrey Auction Mechanism

Bidding for a (deicing) slot is a straightforward way of distributing the scarce
deicing slots over the self-interested aircraft agents1. Our idea is that the aircraft
agents with the highest need get the best slots. In the airport scheduling case, the
different preferences of the aircraft agents can be the result of, for example, the
number of passengers aboard an aircraft, or the level-of-service that an airline
wishes to maintain. If we assume that an agent may not sell a slot to another
agent in case it has to decommit, then the value of the slot is a private value.
In private value auctions all auction types give the same result according to
the revenue equivalence theorem. Therefore, we choose the Vickrey auction (a
closed-bid, second price auction), because of its property that (rational) agents
are encouraged to bid their true value. Hence, deicing of aircraft should occur in
the order of agents who are willing to pay the most. We will now describe how
we set up the auction.

The deicing station will initiate a new auction when the start of next free
deicing slot (starting at tnextslot) is approaching, e.g. half an hour before tnextslot.
In each auction, the deicing station auctions off the next available deicing slot
(alternative auction schemes like accepting bids for multiple deicing slots are less
appropriate given the dynamic nature of the setting). To determine its value for
a certain slot, an aircraft agent a should first check whether the start time of
this slot tnextslot is greater than its Target Off-block Time τ(a); if it is not, then
the agent can’t make use of this slot. In case τ(a) < tnextslot, an agent needs
to estimate the delay it will incur by not obtaining the current slot. If there
are m other aircraft in the system that also need deicing, then the value of the
(m+1)-th slot is 0, because all competing agents can be served before this time.
Then, the private value for agent a of the slot starting at tnextslot is:

pv(a) = l(tm+1 − tnextslot, a) (4)

However, not all aircraft agents in the system will be able to compete for
the next slot, in case their Target Off-block Times are greater than tnextslot.
Therefore, the number m may be smaller than the total number of agents (left)
A∗ in the system. At the same time, we cannot simply equate m to the number
k of direct competitors —agents having a τ < tnextslot— because after the first
1 Note that in the General Motors paint station problem [11], the roles of the agents

are reversed: there, the resource agents have needs due to e.g. switching costs from
one colour of paint to another. In our deicing problem, the jobs (aircraft agents)
have needs, based on their flight schedules and other considerations such as service
levels that must be maintained towards their customers.

Coordinating Competitive Agents in Dynamic Airport Resource Scheduling 139

k aircraft have been serviced, more agents will be ready for deicing. Finding the
set Ac of competing agents can be done simply by extending, agent by agent,
the set of direct competitors for a slot (see Algorithm 1). Note that in case of
insufficient deicing capacity, the set Ac will quickly equal the set of all agents
that have not yet received deicing.

Algorithm 1. Calculate the set Ac of agents competing for slot tnextslot

tnext := tnextslot; Ac := φ
boolean isDone := false
while !isDone do

A′ := {a ∈ (A∗)|τ (a) ≤ tnext}
A∗ := A∗ \ A′

Ac := Ac ∪ A′

tnext := tnext + |A′| · p(n)
if A′ = φ then

isDone := true
end if

end while
return Ac

Having described how to determine the number of competitors for a slot, we
now return to the definition of an agent’s private value for a slot.

Formula 4 ignores the possibility that incidents can occur during other ground
services that will cause an agent to miss its reserved slot. Taking into account
the incident probability P (t, a), we get the following private value:

pv(a) = l(tm+1 − tnextslot, a) · (1 − P (t, a)) (5)

Equation 5 thus expresses that an agent’s private value of a slot decreases as
the probability increases that it will not make that slot. In the next subsection,
we will introduce an alternative coordination mechanism that focuses not so
much on agent preferences, but more on the effects of decommitting on the
schedule of an agent.

4.2 Decommitment Penalty Mechanism

When an aircraft agent reserves a particular time slot at a resource such as a
deicing station, it will commit to turn up at that deicing station at the specified
time. If the aircraft fails to show up, it has to pay a decommitment penalty to
the deicing station. Hence, with the introduction of decommitment penalties,
agents have an incentive to reserve as late as possible; after all, if it reserves a
slot five minutes from now, it will be fairly certain it can make this slot. On
the other hand, if an agent waits too long to reserve the next available free slot,
another aircraft might reserve it. Therefore, the agent will also have an incentive
to reserve a slot as early as possible.

140 X. Mao et al.

Our approach to coordination using decommitment penalties can be described
as follows. An agent can reserve any free slot at a deicing station, as the deicing
station will accept all requests. However, with a certain probability incidents
occur that make it impossible for the aircraft to be present at the deicing station
at the agreed time. When such an event occurs, it must decommit and pay a
decommitment penalty, which we assume to be an airport-wide constant δ. We
assume that the availability of the deicing resource is known to all aircraft agents.
Therefore, an aircraft agent a can see when the first available slot starts, and it
has to solve the following decision problem:

Do I reserve the currently first available slot, or do I reserve a slot at a
later time?

To judge whether the decision to reserve now has any merit, the agent needs to
estimate the probability it will have to decommit from the slot. For this, we can
make use of Equation 3. Judging the option of reserving a slot at a later time is
more difficult, as it needs to predict the availability of deicing slots in the future.
This availability depends on at least the following factors:

1. the passage of time; if a slot is available 10 minutes from now, then, if no-one
else takes it, there will be a slot 5 minutes in the future 5 minute from now,

2. other agents can reserve slots while an agent is waiting to decide.

Trying to incorporate all these factors into a realistic model is a formidable
task, especially as the slot-reserving behaviour of agents may be subject to their
perception (and prediction) of other agents’ behaviour. Therefore, we will make
the following simplifying assumptions to make the task of foretelling the future
a more tractable one:

– If an agent has to decommit from a slot, then it will have to find a new slot.
Apart from the time lost in decommitment, we assume that the number of
aircraft needing deicing per hour stays constant throughout the day. Hence,
an agent will not suddenly find itself in a departure peak, after having to
decommit.

– When an aircraft opts to postpone its decision to reserve a slot until the
next round, and it turns out that another agent has reserved the previously
earliest slot, then the start time of the new earliest slot is simply the start
time of the old slot plus the deicing time, which we assumed to be equal for
all aircraft.

Armed with these simplifications, we can develop a strategy for an aircraft agent.

Strategy (Deicing Slot Reserving Strategy). Reserve the earliest available
slot if the expected cost of reserving this slot is less than the expected cost of
reserving a slot the next round2; otherwise, postpone the reservation decision
until the next round.
2 We assume a short and constant period of time in between two rounds of the agent’s

decision process.

Coordinating Competitive Agents in Dynamic Airport Resource Scheduling 141

We will now introduce a number of functions to be able to define the expected
cost of reserving the earliest available slot, which takes into account the results of
having to decommit. First of all, an agent has to pay the decommitment penalty
δ; second, if td stands for the time decommitment occurs (td < τ), then the
aircraft has wasted (td − t) minutes (where t is the time at which the slot was
reserved). We assume that this quantity (td − t) will in fact delay deicing by
(td − t) minutes. As the delay cost l(dl, a) defined in Def. 2 is a linear function,
we can calculate the expected cost of decommitment for agent a as:

Edcp(t , a) = δ +
l(τ(a) − t, a)

2
(6)

Using the above definitions, an aircraft agent a can calculate the expected cost
of reserving a slot at time t with earliest available slot time ts:

Eres(t, ts, a) = P (t, a) · Edcp(t , a) + (1 − P (t, a)) · l(ts + p(a) − τ(a), a) (7)

Note that a more realistic model for the cost of reserving a slot would be forward
recursive: in case an aircraft has to decommit, it will have to try to get a slot
again in subsequent rounds, again with the possibility of having to decommit,
adding to its cost. Equation 7 effectively cuts off this forward recursion after one
step, by taking into account only the immediate cost for decommitment.

To determine the expected cost Ewait(t, ts, a) of reserving a slot in the next
round, we need the current time t, the time of the next reservation decision t+,
the start time of the first available deicing slot ts, and the start time of the
second available slot (in our case ts plus the standard deicing time), then the
expected cost of waiting until the next round is given by the following function:

Ewait(t, ts, a) = PT (t) · Eres(t+, ts + p(a), a) + (1 − PT (t)) · Eres(t+, ts, a) (8)

in which PT (t) stands for the probability of another agent having reserved the
next available slot between time t and t+. This probability function is based on
the number of aircraft in the system, and the scarcity of the deicing resources. We
assume aircraft take-off times are independent of each other and are uniformly
distributed over time, and so we model the probability PT (t) with a Poisson
distribution f(k; λ) = e−λλk

k! where:

PT (t) = 1 − f(0,
t+ − t

|D| · T) = 1 − e−
|A|·(t+−t)

|D|·T (9)

and T is the time in minutes over which these aircraft are distributed (e.g., we
could have a simulation run of T = 300 minutes in which |A| = 100 aircraft have
to be deiced using |D| = 4 deicing stations).

Equation 8 basically expresses that by not reserving a slot this round, there
is a chance that another agent reserves the previously earliest available slot,
and you consequently have to schedule a later slot, which will result in more
delay; on the other hand, if no agent has reserved the slot starting from ts, then
this possibility is still open to you at time t+. By this time, the probability of

142 X. Mao et al.

decommitment will have lowered (i.e., P (t+, a) < P (t, a)), and thus reserving
this slot at time t+ will have a lower expected cost.

The agent strategy we propose in this section is simple: in case Eres < Ewait,
the agent will reserve at time t the slot starting at ts, otherwise it will wait until
the next round. In the next section, we will investigate whether reasoning about
decommitment in this way results in improved performance.

5 Experimental Results

In this section, we will compare the two coordination mechanisms of Sect. 4 with
each other, and also with a naive, baseline scheduling strategy, which we have
termed the Naive Scheduling Strategy (NSS). This strategy schedules deicing
slots on a first come, first served basis. When an aircraft arrives at the airport,
NSS assigns to this aircraft the first available slot after its target off-block time.

We judge the algorithms on two criteria: the first one is the total delay cost of
all aircraft, given by the sum of the delay costs of all agents. Recall that the delay
cost of one agent a is given by l(dl, a), where dl is the agent’s delay in minutes
— this means that we do not take auction fees and decommitment penalties
into account when calculating the global cost. Hence, this criterion measures
the efficiency of the coordination mechanisms. As a second criterion, we also
record the standard deviation of delay in minutes, summed over all agents. The
standard deviation can be interpreted as a measure of fairness: if it is low, then
all agents suffer a comparable amount of delay.

We conducted these experiments using only a single deicing station with a
single deicing bay, and a deicing time of 5 minutes. Target Off-block Times (τ)
are randomly distributed over 5 simulation hours. Deicing slots may be allocated
after the initial five hours; in fact, the simulation continues until all aircraft have
received a deicing slot. For these parameters, the number of aircraft n that can
maximally be serviced without any delay equals n = 5×60

5 = 60, assuming a
maximally convenient distribution of τ . This means that with a random distri-
bution of τ , we can expect some delays regardless of the scheduling strategy in
case we have more than 60 aircraft. Some further parameter values include: the
delay cost per time unit in the function l for agent a is randomly distributed over
[0.5, 1.0]; a fixed value for the decommitment penalty δ = 50; and the maximum
decommitment probability c = 1.0; In the auction setting, slots are auctioned
half an hour in advance; and the time in between two rounds in decommitment
penalties is set to 5 minutes. The number of aircraft in the experiment ranges
from 10 to 90. The results of the experiments are displayed in Figure 1.

The first thing that catches the eye in Figure 1 is that the NSS strategy is
outperformed by the two other mechanisms on all counts, except for runs having
a very small number of aircraft, in which the auction setting does not perform
very well. The reason for this is that in the auction setting we sell slots starting
from specific times, such as 10:00, 10:05, etc. In case there is a mismatch with
aircraft Target Off-block Times, for example if τ(ai) = 10:03 for some aircraft
ai, then small delays will be incurred by the aircraft. As competition for the
deicing resources increases, these small delays become less significant.

Coordinating Competitive Agents in Dynamic Airport Resource Scheduling 143

Fig. 1. Total delay cost and standard deviation in NSS, Decommitment Penalty (DP)
and Auction

Another observation is that as soon as the airport starts getting congested
—from around 70 aircraft— the standard deviation for the auction mechanism
shoots up, leaving the decommitment mechanism ‘behind’. Note that Figure 1
shows that for the less efficient NSS strategy, airport congestion starts from
around 60 aircraft.

As a final remark, we can conclude that the auction mechanism is the most
efficient choice for congested airports in terms of total delay cost. However, when
there are relatively few aircraft that need to be deiced, the auction mechanism
(at least in its current implementation) is not as efficient. The increased efficiency
of the auction mechanism does come with a price, however, namely that delay
is distributed more unevenly over the aircraft.

6 Conclusion and Future Work

In this paper we have proposed an agent-based model for the scheduling of
aircraft deicing services. We introduced two agent coordination mechanisms — a
Vickrey auction and a mechanism based on decommitment penalties. The former
best caters to the preferences and relative priorities of the agents, the latter
one ensures the fairest distribution of delay over the agents. Both mechanisms
outperform a naive coordination mechanism based on first come, first served.

Options for future work are too numerous to list exhaustively. We would like
to investigate other scheduling strategies in conjunction with the mechanisms
presented in this paper. Also, our results currently rely on some simplifying
assumptions, and it would be interesting to see whether the conclusions of this
paper hold up if we relax some of these assumptions. Another extension is to
look at the relation with other airport planning and scheduling problems. In
itself, the deicing problem as formulated in the formal model of Sect. 3 is not
that exceptional. What makes the problem interesting to look into is its relation
to other planning problems, possibly involving other planning agents.

144 X. Mao et al.

References

1. Smith, D.E., Frank, J., Jónsson, A.K.: Bridging the gap between planning and
scheduling. Knowl. Eng. Rev. 15(1), 47–83 (2000)

2. Nisan, N., Ronen, A.: Algorithmic mechanism design. In: Proceedings of the Thirty-
First Annual ACM Symposium on Theory of Computing (STOC’99), pp. 129–140.
ACM Press, New York (1999)

3. Andelman, N., Azar, Y., Sorani, M.: Truthful approximation mechanisms for
scheduling selfish related machines. In: Diekert, V., Durand, B. (eds.) STACS 2005.
LNCS, vol. 3404, pp. 69–82. Springer, Heidelberg (2005)

4. Auletta, V., Prisco, R.D., Penna, P., Persiano, G.: Deterministic truthful approx-
imation mechanisms for scheduling related machines. In: Diekert, V., Habib, M.
(eds.) STACS 2004. LNCS, vol. 2996, pp. 608–619. Springer, Heidelberg (2004)

5. Kovács, A.: Fast monotone 3-approximation algorithm for scheduling related ma-
chines. In: Brodal, G.S., Leonardi, S. (eds.) ESA 2005. LNCS, vol. 3669, pp. 616–
627. Springer, Heidelberg (2005)

6. Angel, E., Bampis, E., Pascual, F.: Truthful algorithms for scheduling selfish tasks
on parallel machines. Theor. Comput. Sci 369(1-3), 157–168 (2006)

7. Immorlica, N., Li, L., Mirrokni, V.S., Schulz, A.: Coordination mechanisms for
selfish scheduling. In: Deng, X., Ye, Y. (eds.) WINE 2005. LNCS, vol. 3828, pp.
55–69. Springer, Heidelberg (2005)

8. Vermeulen, I., Bohte, S., Somefun, D., Poutré, J.L.: Improving patient schedules by
multi-agent pareto appointment exchanging. In: Proceedings of 2006 IEEE Inter-
national Conference on E-Commerce Technology (CEC/EEE 2006), San Francisco,
California, June 26-29, p. 9 (2006)

9. Paulussen, T.O., Jennings, N.R., Decker, K.S., Heinzl, A.: Distributed patient
scheduling in hospitals. In: IJCIA-03, pp. 1224–1232. Morgan Kaufmann, San Fran-
cisco (2003)

10. Attanasio, A., Ghiani, G., Grandinetti, L., Guerriero, F.: Auction algorithms for
decentralized parallel machine scheduling. Parallel Comput. 32(9), 701–709 (2006)

11. Lewin, R.: Embracing Complexity: Exploring the Application of Complex Adaptive
Systems to Business. Ernst & Young (1996)

12. Parkes, D.C., Ungar, L.H.: An auction-based method for decentralized train
scheduling. In: Proceedings of the Fifth International Conference on Autonomous
Agents, Montreal, Canada, pp. 43–50. ACM Press, New York (2001)

13. ’t Hoen, P.J., Poutre, J.A.L.: A decommitment strategy in a competitive multi-
agent transportation setting. In: AAMAS ’03, pp. 1010–1011. ACM Press, New
York (2003)

14. Sandholm, T., Lesser, V.: Leveled commitment contracts and strategic breach.
Games and Economic Behaviour 25, 212–270 (2001)

15. Collins, J., Tsvetovas, M., Sundareswara, R., van Tonder, J., Gini, M., Mobasher,
B.: Evaluating risk: flexibility and feasibility in multi-agent contracting. In: Pro-
ceedings of the Third International Conference on Autonomous Agents (Agents’99),
Seattle, WA, USA, pp. 350–351. ACM Press, Seattle, WA (1999)

Large-Scale Agent-Based Pedestrian Simulation

Franziska Klügl1 and Guido Rindsfüser2

1 Dep. of Artificial Intelligence, University of Würzburg
Am Hubland, 97074 Würzburg, Germany
kluegl@informatik.uni-wuerzburg.de

2 Emch & Berger Bern AG
Gartenstr. 1

CH-3008 Bern
guido.rindsfueser@emchberger.ch

Abstract. Pedestrian simulation is a challenging and fruitful applica-
tion area for agent-based modeling and simulation in the traffic and
transportation domain. In this paper we will present the concepts and
results of a particular project study: an agent-based simulation of pedes-
trian traffic of the complete railway station of Bern during the most busy
morning hours. Overall more than 40 000 agents are passing through
during 1,5 virtual hours. Going beyond traditional approaches for mi-
croscopic pedestrian simulation, our simulated pedestrians are not only
capable of moving without collisions between two pre-defined locations,
but are able to flexibly plan and re-plan their way through the railway
station. A short glance and some discussion about the potential of agent-
based pedestrian simulation closes this contribution.

1 Introduction

Pedestrian simulation is a challenging and fruitful application area for agent-
based modeling and simulation in the traffic and transportation domain: on one
side design and implementation involve interesting issues especially related to
scalability and individual realism. On the other side, agent-based modeling pro-
vides the foundation for simulations on a interesting and relevant level of detail
and complexity for a variety of applications of pedestrian simulations: Avail-
ability of information, location of direction signs, consequences of orientation
behavior, etc.

In this paper, we want to describe a successful application example of agent-
based pedestrian simulation: The growing amount of travelers using the SBB
railway station Bern and the wish to offer better services, shorter connections and
higher frequencies led to the idea of a pedestrian simulation for testing different
layout options or new train schedules. A simulation model was developed at the
chair of Artificial Intelligence at the University of Würzburg together with traffic
engineers from one of the leading Swiss traffic engineering companies, Emch &
Berger AG, Bern. The simulation had to cover the busiest morning hours. During
this time, an overall amount of about 80 trains with more than 40 000 traveler is

P. Petta et al. (Eds.): MATES 2007, LNAI 4687, pp. 145–156, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

146 F. Klügl and G. Rindsfüser

passing through the station heading to different destinations. Several thousand
pedestrians are populating the railway station concurrently.

A multi-agent-simulation promised to be a good solution for two reasons: It al-
lows for integrating higher-level decision making for realistic simulations beyond
collision-free smooth movement. On the micro-level autonomous decision making
entities are existing enabling validation or at least testing for plausible behavior
on the level of individual agents. Secondly – in contrast to other paradigms for
simulating pedestrians like cellular automata or force-based approaches – it can
be designed in a way that both memory consumption and computational time is
feasible for large number of pedestrians. However, design, implementation and
simulation are still quite demanding.

The remainder of this contribution is structured as follows: We start by a short
review of microscopic pedestrian simulation in general. After that we discuss
issues of agent-based simulation and why we think that an agent-based approach
is particularly apt for large-scale pedestrian simulations. Section 4.1 introduces
the problem that was tackled by the SBBPedis project, followed by a short
description of the agents and environmental model. Section 5 gives a short glance
on the results of the project. The last sections summarizes the paper and gives
some concluding thoughts.

2 Pedestrian Simulation

Traditionally, pedestrian simulation has been done using techniques such as flow-
speed-density equations, which aggregate pedestrian movement into flows, aver-
age speed or density. This approach, derived from vehicular traffic simulation,
may be simple and lead to feasible solutions, but it is not capable of taking into
account the basic behaviors and interactions between the pedestrians [1]. Due
to improvements in computing power, microscopic models became feasible for
generating pedestrian flows and crowd behavior based on low-level behavior of
pedestrians, including their interactions during movement as well as higher level
cognitive abilities for flexible routing in detailed environments.

From beginning of the 90ies, there has been a remarkable progress in modeling
pedestrian behavior on a microscopic level. Basically three types of microscopic
models have been proposed:

1. Force-based models, like the social force model [2] are based on the assump-
tion that the direction and speed of a pedestrian can be computed based on
the combination of different forces that attract the pedestrian towards their
goals but repel them from moving and static obstacles. These force-based
models are quite brittle as the weights for the different forces have to be
thoroughly balanced for producing reasonable behavior. An additional prob-
lem is that these models are quite slow when the density of pedestrians is
high as many entities have to be considered for computing the final move-
ment. There are additional problems when forces are exactly opposite, then
pedestrians are trapped. For this reason, also for moving around obstacles
sub-goals have to be introduced.

Large-Scale Agent-Based Pedestrian Simulation 147

2. Cellular automata [3], [4], [5] are based on discrete spatial representations.
The state of a cell captures static and dynamic potential fields that represent
the local effect of obstacles or of other moving pedestrians. Additionally, as
in the force-based approach, an additional potential field towards the goal of
the pedestrian on a cell is integrated into the status of the cell. As the size of
a cell is according to the space taken by a pedestrian (e.g. 40x40 cm), a huge
amount of cells is necessary even for small size environments. This results
in quite extensive memory requirements for such simulations. Using lazy
evaluation and hybrid simulation, it is possible to improve this problem [6].
However, it seems to be problematic to tackle individual and heterogeneous
goals in the simulated pedestrians movement. Thus, Cellular automata based
approaches are mostly used for simulating evacuation dynamics where all
pedestrians are heading towards the emergency exits or for simulating hiking
on defined paths.

3. Sometimes also the above approaches are called “agent-based”, due to their
micro-scopic nature (see e.g. in [1]). True agent-based simulations use the
idea of a simulated pedestrian based on the paradigm of an autonomously
acting and interacting entity. Although it is in principle possible to in-
tegrate complex details of higher level information processing, most ap-
proaches for agent-based pedestrian simulation just deal with collision-free
goal-oriented movement, not much more intelligent than the other micro-
scopic approaches. Examples for agent-based pedestrian simulations are [7],
[8], [1], [9], [10]. For a detailed overview in relation to public transport
facilities see [11].

In [12], three microscopic models - representatives of the three categories -
were compared in three situations (evacuation, public transport and shopping
center) on implementation level for their capability of representing higher level
decision making, efficiency and for technical aspects like simulation time and
memory consumption. This study supported our hypothesis that agent-based
approaches were best apt for large scale pedestrian simulations also including
flexible planning and heterogenous destinations of pedestrians.

3 Agent-Based Pedestrian Simulation

Agent-based simulation of pedestrian behavior is an attractive way of reproduc-
ing pedestrian dynamics for several reasons. The most important advantage is
that it is possible to integrate higher-level cognitive behavior for path planning,
flexible information processing and orientation. Modeling the low-level move-
ment in an agent-based manner is also attractive as it can be done in an efficient
way in terms of memory and computational time. Another important advan-
tage is that an agent-based simulation allows separating pedestrian behavior
from particular spatial layout. This is due to the concept of a pedestrian as
a self-contained, autonomous entity that is situated in its environment. Thus,

148 F. Klügl and G. Rindsfüser

environmental changes - basically modifications of the layout or train schedules -
can be done without manipulations in the pedestrian model. The agent is adapt-
ing itself due to its perceptions. Therefore, such layout changes are rather cheap
in modeling cost. Last, but not least, an agent-based model facilitates commu-
nication as the agent concept is intuitively clear to traffic engineers dealing with
self-determined travelers.

Given the goal of our effort - simulating the pedestrian dynamics during the
morning rush hours in the complete SBB railway station in Bern, we must take
care for technical details affecting the feasibility of large scale pedestrian simula-
tions. Against this background, the following issues for designing an appropriate
agent model have to be considered:

– The basic question concerns how much information should be processed by
each of the agents itself, and on what level granularity. An example is the
path planning in world populated by dynamic and static obstacles. Should
every agent construct a mental map with a detailed sequence of locations
that it has to pass? This would result in smooth and realistic movement.
The alternative would be that the agent plans its path on a very coarse
level with only a few sub-goal positions and flexibly adapts its movement
without long-distance sight. Obstacle avoidance can then result in unrealistic
almost-bouncing. However, it is quite clear that realism is traded against
computational time and memory consumption.

– Should the agents be capable of re-planing their path due to congestions,
information signs etc. Such a behavior would be realistic, yet expensive.
However, these replanning capabilities form one of the essential advantages
of an agent-based approach in comparison to existing microscopic modeling
paradigms (see Sect. 6.1).

– Environmental pre-processing versus computations done by the agent. This is
similar to one of the basic differences between cellular automata approaches
and social force models: In a cellular automata model the environment pre-
computes the influences of all obstacles, the agent may only access this in-
formation instead of relying on its own perceptions. On the other side, in a
force-based model, the particle - or here agent - would be responsible for all
information processing itself. There is no environment capable of carrying
such information. Thus, again computational time is traded against memory
consumption.

– Another, more technical issue refers to the basic spatial representation: dis-
crete or continuous space, three-dimensional space or multi-layer layout that
is basically two-dimensional but has areas/points like stairways or elevators
that connect the different areas without influencing pedestrian dynamics in
a artificial way. At least for the latter, the solution is quite obvious: three-
dimensional layout makes no sense if the simulated pedestrians just move in
two dimensions and do not incorporate cognitive models of orientation e.g.
related to visibility of signs on different heights, etc. The first issue - discrete
or continuous map influences the options that a simulated agent has to move
around obstacles.

Large-Scale Agent-Based Pedestrian Simulation 149

4 SBBPedis

4.1 Questions Addressed by the Study

While thinking about infrastructure, facilities and operation for the year 2030,
questions concerning the pedestrian flows within the SBB railway station in
Bern arose. An assumed increase of plus 20-25% passengers using the station in
the future, a higher frequency of train departures and arrivals and the limited
possibilities in space for infrastructural development cause the need to undertake
in-depth analysis.

The task was to set up a model of pedestrian behavior and to use it to simu-
late the pedestrian flow within the morning peak hour in the entire SBB railway
station Bern. A special interest was to get detailed information (hints) about bot-
tlenecks to be expected, pedestrian travel times and the needed time to change
trains.

The situation for the year 2006 was build as reference scenario and also as the
first application: There are two variants of this situation. Currently, a second
traverse (“Passerelle”) is closed for reasons of dilapidation. Should this overpass
be renovated (2006Pa) or completely be demolished (2006Re), was one of the
questions which’s decision should be supported by simulation.

A second scenario is the situation 2030Ra, which is based on assumptions of
the increasing amount of passengers, an additional track, another timetable and
some other operational items.

The simulated railway station area was chosen to include all train tracks, the
main pedestrian movement areas, and the main static obstacles (e.g. elevators).
3 (5 in the 2006Pa Scenario) areas were defined as pedestrian sources and targets
(entrances and exits to the simulation system) in addition to the trains. All trains
arriving and departing within the time from 6:30 to 8:30am are simulated based
on the original timetables without any assumptions on delays. All passengers are
simulated during the given time period based on observation data from the public
transport provider SBB. Additionally, observation data from the public transport
providers SBB and BLS were prepared to serve as basis for the amount of train
changes for each individual train and passenger. In total, in every scenario more
than 40’000 pedestrians are simulated within the given virtual time period.

For reproducing the pedestrian dynamics in the SBB railway station Bern
during the morning rush hour, we used an agent-based model that combines
simple, but flexible individual path planning with collision avoidance in contin-
uous space and (virtual) multi-level layout. Details about the model are given
in the following subsections.

4.2 Environmental Model

It is quite clear that the most important agents in our scenario are the simu-
lated pedestrians. However, before giving details on their behavior and decision
making, the environmental model will be discussed as it frames the pedestrian
model:

150 F. Klügl and G. Rindsfüser

In general, there is continuous space consisting of areas like the platforms,
all stairways and ramps, the overpass as well as the underpass. Two important
simplifications were made for the model:

– The curved geometry of the railway station was straightened, simplifying ge-
ometric representation and computations involving layout. However, this is
quite a hard abstraction, as it influences orientation times especially for sim-
ulated pedestrians that are not familiar with the station. There are positions
where hardly any exit, nor even a exit sign is visible.

– The multi-level property was resolved by arranging the different areas side
by side with transfer areas between them. When an agent moves on such
an area, it is transported automatically to the corresponding area without
distorting movement. Thus, a 3D station representation is avoided.

Figure 1 shows the simulated layout of the scenario 2006Re, i.e. the situation
with the layout of 2006, yet the overpass under question has been completely
removed.

Fig. 1. Scenario 2006Re: Layout of 2006, without renovated overpass. Larger dark areas
represent the entries/exits of the railway station, smaller dark areas are the transfer
areas connecting areas that should be on the same level. Tracks are light gray; platforms
are framed by thin black lines.

In addition to the simulated pedestrians, three kinds of environmental entities
are treated as sufficiently active so that they are modeled as agents: Sensors for
data gathering, rail tracks and the doors of trains or of the overall station.
Sensors are trivially counting pedestrians passing through their measurement
areas. Tracks are also quite simple: They manage trains that arrive and depart on
them. When a train arrives, the track generates the doors of the train that then
generate new pedestrians leaving the trains through them. Thus, a train object

Large-Scale Agent-Based Pedestrian Simulation 151

is only a passive data structure; its existence during its stay-time on a track is
represented by a number of temporary existing door-agents distributed along
the edge of the platform. At the scheduled departure time the track closes and
deletes the doors independently on how many simulated travelers are still waiting
to enter. The track also sums up relevant statistical data for the departing train
including the number of passengers that were not able to enter the train. Thus,
there is no delay in departure.

As mentioned before, the third category of environmental agents are the doors
of trains or the general exits of the railway station. Whereas the former are dy-
namic as they execute the schedule of train arrival and departure, the latter are
permanent. Basically, these agents produce all pedestrian agents: At the initial-
ization phase of the simulation, the arrival of every simulated pedestrian that
will head towards a train, is scheduled by one of the doors of the railway station.
It is computed based on a probability distribution determining how long before
train departure pedestrians arrive at the train. Later at the appropriate time
step, the simulated travelers are generated. On the other side, travelers passing
the doors heading outside the railway station or entering a train are deleted from
the simulation after storing relevant individual values like, walking time, etc.

4.3 Simulated Pedestrians

Figure 2 gives a short glance on the general architecture of a simulated
pedestrian.

As mentioned before, simulated pedestrian agents are generated either by one
of the main entries of the railway station or by one of the dynamic train door
agents. At the beginning, they randomly determine an individual optimal veloc-
ity and select their final goal, e.g. a certain exit and determine their high-level
path plan on the level of areas: they select which stairways to take, pass through
overpass or underpass and head towards the selected exit. As the different areas
of the railway station construct some hierarchic structure, an agent uses it for
path planning and also for re-planning, from its entry point to the platform from
where its goal train will depart, etc. The procedure is similar to the model of
scene spaces [13] in spatial cognition.

Fig. 2. Short overview over the architecture of a simulated pedestrian

152 F. Klügl and G. Rindsfüser

When entering the station (or in the case of connecting train travelers leaving
their train) heading towards the goal train, the simulated pedestrian analogously
determines its path plan on the area level. However, the situation is a little bit
more complex, as the final destination is just selectable, when the agent has
reached the platform and the goal train is already there. If the pedestrian agent
has to wait on the platform, a waiting position is randomly adopted. As we
mainly simulate commuters, we assume that the agents know where the train
will stop and restrict possible waiting positions accordingly. When the train
arrives, all waiting agents select one of the near doors as their immediate desti-
nation. However, before being allowed to enter, all exiting agents are generated;
thereafter simulated pedestrians may enter one of the doors. We assume that
only one agent may enter or leave the door per second, however, when too many
agents block the area before the door, this frequency may decrease. A small share
of simulated pedestrians is not familiar with the layout of the railway station and
has to invest some time into orientation. The share is higher for long-distance
trains (30%) than for short-distance ones (1%). In this model, they move some
time with reduced velocity when entering a platform.

Independently from whether they want to enter a train or leave the station, dur-
ing their way through the railway station, the simulated pedestrians continuously
evaluate whether their current planned path still is reasonable. They perceive not
only local density around them - adopting side step behavior (with 80% probability
to the right) or slowing down (depending on perceived density) - but also the di-
rection of pedestrians near them. Thus, they can gather information that triggers
them to re-plan their way through the railway station, e.g. taking another stairway
than planned, when there is too much oncoming traffic or going to another door of
the train when the queue in front of the previously selected is too long.

This restricted form of planing refers only to the level of areas, yet actual
movement happens on a lower level of spatial resolution: Collision-free movement
on platforms, stairways, etc. is realized quite simply using a set of rules which
determine the directions and distances that are tested for determining a new
direction and speed for avoiding collision with static and moving obstacles. Every
simulated pedestrian moves with an individual desired speed that is determined
at generation time. However, speed is influenced by the walking ground, so it is
reduced when the agents enters a stairway heading upstairs, etc. It also tries to
maintain an individual distance from other pedestrians or obstacles, edges, etc.

4.4 Implementation and Validation

The agent-based pedestrian simulation was implemented using SeSAm 2.1. (Shell
for Simulated Agent Systems) that is a high-level modeling and simulation envi-
ronment for agent-based simulation. Due to its visual programming environment
it allows for rapid prototyping testing a variety of model variants; Simulation is
quite efficient despite of explicit model interpretation due to the usage of code
optimization techniques from compiler construction. SeSAm uses a time-stepped
simulator, a time step corresponded here to 1 second real time, one position on
the map corresponds to 10 cm. A simulated pedestrian is set to 40 × 40cm.

Large-Scale Agent-Based Pedestrian Simulation 153

SeSAm emulates parallelism by sequential agent updates with random shuffles.
The basic system is open source and available via www.simsesam.de.

For model validation, data from a PDA-based observation at several stairways
and all exits within the railway station in Bern were used. SBB provided numbers
of travelers entering and leaving trains from counts. These number were used
for generating simulated travelers. However, it turned out that the number of
simulated traveler were much higher than the overall numbers of counted traveler
at different positions within the station.

In addition to individual stay times that could be gathered due to the
individual-based simulation, we also integrated sensors comparable to real world:
Some kind of virtual photo sensors that counts all passing pedestrian agents or
some form of mat noticing the number of agents moving over it.

Due to the discrepancies in overall traveler numbers, we could not find a
satisfying resemblance, but saw that the peaks of travelers passing the “sen-
sors” had some noticeable deviation. Assuming that trains were in time during
measurement, we charged this problem to the low-level movement model. Thus,
we calibrated its parameters using the automatic calibration tool described in
[14] which improved the situation. However, a small delay of the peaks of pass-
ing pedestrians after train arrival remained. However, the simulated pedestrians
movement was acknowledged as plausible by the experts of SBB.

5 Short Glance on Simulation Results

An agent-based simulation in principle offers a variety of possibilities to gather
data that can be used for analysis – this is simply due to the explicit treatment
of every actor in the simulation. Each attribute of each agent in every single
time step may be stored during simulation.

One of the most interesting questions was to see how the new infrastructure
and operation influence travel times and train changing times. The simulation
showed some concentration results from modified operation. A significant in-
crease (concentration) on short train changing times results from changing tracks
for train arrival and departure (as one could expect).

In Fig. 3 the distribution of stay times for simulated dropout travelers is
displayed for the scenario 2006Re and 2030Ra showing the result of changed
train schedules.

Here, some unexpected effects can be seen. The expected and wanted shift to
shorter travel times from scenario 2006Re to situation 2030 can be seen for the
“short” times, whereas some 7% of the pedestrians will need really longer times.
It turned out that the tense schedule in 2030Ra in combination with the increase
of agent numbers did not allow the station to be almost emptied between train
arrivals. In the simulation, this builds up a more and more populated station
worsening the possibility to get through due to increased overall density. This
is illustrated in Fig. 4. As to expect, densities where generally high at the entry
areal of stairways. In the 2030 scenario, the complete underpass was jammed at
around 9 a.m., leading to higher overall stay times.

154 F. Klügl and G. Rindsfüser

Fig. 3. Mean time that a simulated traveler needed to go from its train to one of the
main exits

Fig. 4. Dynamics of overall number of pedestrian agents in the simulated railway station

Additional to all data analysis, the simulation system allows the researcher
to save the complete simulation run as a video. Animation is in general not only
useful for visualization and presentation, but also for face validation. Observing
the pedestrian flows supports defining bottlenecks or leads to further questions
or ideas of situations (scenarios) to be investigated.

6 Conclusion

6.1 Agent-Based Pedestrian Simulation Revisited

Simulating pedestrians did not start with the advent of agent-based simulation,
but has been done before also microscopically in a quite successful manner. As
in traffic simulation in general, one has to argue why and what questions can be

Large-Scale Agent-Based Pedestrian Simulation 155

answered better by agent-based simulation for justifying that well-understood
ways of analysis are not used.

Although applied quite successfully in different application domains involving
human decision making, one must not ignore that agent-based simulation raises
problems beyond its technical feasibility. The formal basis of agent-based simu-
lations is much weaker than e.g. in modeling using partial differential equations,
cellular automata, or other microscopic modeling paradigms. This has conse-
quences on the trustworthiness of simulation results as a complex agent-based
model is hardly fully documentable for enabling others to reproduce the results
or as most formal specification remain very abstract. Another disadvantage of an
agent-based simulation in addition to the need for data on a very detailed level
that is hardly available, is the effort in computational time and space. When a
single simulation run needs several days (2-3 days in our study), experimentation
becomes painful, reasonable calibration becomes impractical, etc.

However, to our opinion traffic simulation in general, and pedestrian simu-
lation in particular has the potential to become the great success story for the
application of agent-based simulation. Travelers are moving through space and
time, simulated agents have all decision-making capabilities available at every
point of time during simulation. Thus, agent-based simulation seems to be the
best, if not the only modeling paradigm for reproducing the reaction of travelers
to locally displayed or dynamic information, in our case to unforeseeable agent
densities. Together with the simulation of true heterogeneity in equipment, pref-
erences, this forms a good basis for analysis of future traffic situations involving
Advanced Traveler Information Systems and sophisticated control measures in
the network infrastructure. This project is a step further to show that agent-
based simulations can be successfully used in real-world applications

6.2 Future Work

This project showed that it is conceptually and technically feasible to design and
execute such large agent-based pedestrian simulations that can provide valuable
data for analysts and offer a useful tool for planning pedestrian facilities. The
project finally was terminated in February, 2007. Currently, a successor project
is prepared by a further optimization of simulation speed based on some model
refactoring. This successor project will integrate new movement areas as well
as an extension by urban areas near the station to include the access ways to
the station and the connection to a new planned underground station. This may
result in a better representation of travel demand and distribution beyond the
originally simulated railway station.

References

1. Teknomo, K.: Microscopic Pedestrian Flow Characteristics: Development of an
Image Processing Data Collection and Simulation Model. PhD thesis, Department
of Human Social Information Sciences, Graduate School of Information Sciences,
Tohoku University, Japan (2002)

156 F. Klügl and G. Rindsfüser

2. Helbing, D., Molnar, P.: Social force model for pedestrian dynamics. Physical Re-
view E 51(5), 4282–4286 (1995)

3. Schadschneider, A.: Cellular automaton approach to pedestrian dynamics - theory.
In: Schreckenberg, M., Sharma, S.D. (eds.) Pedestrian and Evacuation Dynamics,
pp. 75–85. Springer, New York (2002)

4. Adler, J.L., Blue, V.J.: Cellular automata model of emergent collective bidirectional
pedestrian dynamics. In: McCaskill, J.S., Packard, N.H., Rasmussen, S. (eds.) Ar-
tifcial Life VII, pp. 437–445. MIT Press, Cambridge (2000)

5. Burstedde, A., Kirchner, A., Klauck, K., Schadschneider, A., Zittartz, J.: Cellular
automaton approach to pedestrian dynamics - applications. In: Schreckenberg, M.,
Sharma, S.D. (eds.) Pedestrian and Evacuation Dynamics, pp. 87–97. Springer,
New York (2002)

6. Gloor, C., Stucki, P., Nagel, K.: Hybrid techniques for pedestrian simulations. In:
Sloot, P.M.A., Chopard, B., Hoekstra, A.G. (eds.) ACRI 2004. LNCS, vol. 3305,
pp. 581–590. Springer, Heidelberg (2004)

7. Osaragi, T.: Modeling of pedestrian behavior and its applications to spatial eval-
uation. In: AAMAS ’04, pp. 836–843. IEEE Computer Society, Washington, DC
(2004)

8. Willis, A., Kukla, R., Hine, J., Kerridge, J.M.: Developing the behavioural rules for
an agent-based model of pedestrian movement. In: Proceedings of the European
Transport Conference, pp. 69–80 (2000)

9. Toyama, M.C., Bazzan, A.L.C., da Silva, R.: An agent-based simulation of pedes-
trian dynamics: from lane formation to auditorium evacuation. In: AAMAS ’06,
pp. 108–110. ACM Press, New York (2006)

10. Dijkstra, J., Jessurun, J., de Vries, B., Timmermans, H.: Agent architecture for
simulating pedestrians in the built environment. In: Bazzan, A.L.C., Chaib-Draa,
B., Klügl, F., Ossowski, S. (eds.) 4th International Workshop on Agents in Traffic
and Transportation at AAMAS-06, Hakodate Japan, pp. 8–16 (2006)

11. Daamen, W.: Modelling Passenger Flows in Public Transport Facilities. PhD thesis,
Technische Universiteit Delft (2004)

12. Scherger, K.: Evaluation verschiedener Ansätze zur Simulation von Fußgängerver-
halten. Master’s thesis, Institut für Informatik, Universität Würzburg (2006)

13. Rüetschi, U.J., Timpf, S.: Modelling wayfinding in public transport: Network
space and scene space. In: Freksa, C., Knauff, M., Krieg-Brückner, B., Nebel, B.,
Barkowsky, T. (eds.) Spatial Cognition IV: Reasoning, Action, Interaction; Interna-
tional Conference Frauenchiemsee. LNCS (LNAI), vol. 3343, pp. 24–41. Springer,
Heidelberg (2005)

14. Fehler, M., Klügl, F., Puppe, F.: Techniques for analysis and calibration of mul-
tiagent simulations. In: Gleizes, M.-P., Omicini, A., Zambonelli, F. (eds.) ESAW
2004. LNCS (LNAI), vol. 3451, pp. 305–321. Springer, Heidelberg (2005)

Diagnosis of Plan Structure Violations

Nico Roos1 and Cees Witteveen2

1 Dept. of Computer Science, Universiteit Maastricht
P.O. Box 616, NL-6200 MD Maastricht

roos@micc.unimaas.nl
2 Faculty EWI, Delft University of Technology

P.O. Box 5031, NL-2600 GA Delft
C.Witteveen@tudelft.nl

Abstract. Failures in plan execution can be attributed to errors in the execution
of plan steps or violations of the plan structure. The structure of a plan prescribes
which actions have to be performed and which precedence constraints between
them have to be respected. Especially in multi-agent environments violations of
plan structure might easily occur as the consequence of synchronization errors.
While in previous work we have concentrated on the first type of failures, in
this paper we introduce the idea of diagnosing plan structure violations. Using a
formal framework for plan diagnosis, we describe how Model-Based Diagnosis
can applied to identify these violations of plan structure specifications and we
analyze their computational complexity.

Keywords: Model-Based Diagnosis, Plan execution, Coordination errors.

1 Introduction

Plan diagnosis deals with the identification of errors occurring during the execution of a
plan. In previous work, we have presented methods for identifying such errors as failed
executions of plan steps in multi-agent plans [1,2], equipment failures and malfunction-
ing agents causing the execution of plan steps to fail [3,4], and methods for assigning
responsibility to agents in case plan execution failed [4]. In all these papers, however,
we tacitly assumed that during plan execution the plan structure is not violated, i.e., all
plan steps as specified in the plan are executed (correctly or incorrectly) and the order
in which they are executed does not violate any precedence constraint.

In reality, however, violations of the plan structure may easily occur and might result
in plan failure. For instance, consider a plan for loading a truck that has to visit several
places to deliver cargo. Often, such a plan contains a specific ordering of loading actions
guaranteeing that items are loaded in such a way that they can be unloaded in an efficient
way. If, however, the structure of such a loading plan is violated, upon the delivery
location it may force to unload other items in order to get the right item that must be
unloaded, causing unnecessary delay and even violation of time constraints. Another
example would be a plan for loading a ship that ensures a correct weight distribution by
carefully ordering the items that have to be loaded. In this case, an incorrectly loaded
ship may even disturb the stability of the ship in rough seas causing a total transport
plan failure.

P. Petta et al. (Eds.): MATES 2007, LNAI 4687, pp. 157–169, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

158 N. Roos and C .Witteveen

Multi-agent systems are particularly susceptible to such violations of plan structure
occurring as a consequence of synchronization problems between agents. In such a
multi-agent system a joint plan has to be executed by several agents each perform-
ing a subset of actions. Correct execution of the plan requires synchronization of their
activities. Often, planning agents need not use special synchronization actions to syn-
chronize their activities during plan-execution. Instead, synchronization is achieved by
relying on specific starting times of actions specified in the plan itself or by relying on
observations that indicate the completion of tasks performed by other agents. If, how-
ever, the execution of some crucial action is delayed or if observation errors lead to
incorrect beliefs about the state of the world, violations of precedence constraints may
easily occur. Also other failures of plan structure, as omitting or duplicating plan steps,
might easily occur in multi-agent environments. For example, suppose that the set of
plan steps to be executed by an agent overlaps with the set of plan steps to be executed
by another agent. The first agent that is able to perform such a plan step will do so,
enabling the other agent to skip the plan step. In such cases, without special synchro-
nization actions, an agent might erroneously conclude that an action has already been
performed (or not performed) by the other agent, taking the wrong action and causing
the plan to fail. In any case, plan diagnosis should be able to identify such violations if
they occur during the execution of a plan.

Remark. Identifying violations of precedence constraints is closely related to diagnosis
of coordination errors. Kalech and Kaminka [5] apply classical model-based diagno-
sis [6,7] to identify coordination errors between reactive agents. Each reactive agent
executes some behavior that may need to be coordinated with other agents. The coordi-
nation must ensure that certain constraints on behaviors are satisfied. Violation of these
constraints implies that some agents behave abnormally in the sense that they fail to
coordinate their behaviors.

The main difference with the work of Kalech and Kaminka is that here we have
a (traditional non-behavior-based) plan in which coordination errors lead to violations
of the plan’s structure. Diagnosing plan structure violations also differs from other ap-
proaches to plan diagnosis proposed in the literature: [8,9,10,11,12,2,4].

In this paper, we extend the framework for plan diagnosis as described in [1,2]. In this
model the state of the world is modeled by set of variables (objects) the values of which
are changed by plan steps executed. This representation makes it possible to apply clas-
sical Model-Based Diagnosis (MBD) [6]) to identify anomalies in the execution of the
plan. To simplify the presentation of diagnosis of violations of precedence constraints,
we do not used the extension of the above mentioned model1 presented in [3,4].

The remainder of this paper is organized as follows: Section 2 introduces the basic
framework for plan-based diagnosis. Section 3 extends plan diagnosis to enable diag-
nosis of plan structure failures and Sect. 4 concludes the paper.

1 In this extension we showed how our plan diagnosis approach can be conceived as a Discrete
Event System (DES) [13,14,15,16]) of which the state is changed by unknown events causing
anomalies in the plan execution. The here presented extensions of the former model that enable
diagnosis of violations with respect to the structure of the plan can easily be incorporated in
the latter, more elaborate, model.

Diagnosis of Plan Structure Violations 159

2 Plans and Plan Execution

Before we discuss the idea of diagnosing plan structure failures, we start with a brief
introduction to plan-based diagnosis.

2.1 Plans as Systems

We consider plan-based diagnosis as a simple extension of the model-based diagnosis
approach, where the model is not a description of an underlying physical system but a
plan of one or more agents. By executing the plan we change a part of the world.

To keep representational issues as simple as possible, we assume that for the planning
problem at hand, the world can be simply described by a set Var = {v1, v2, . . . , vn} of
variables and their respective value domains Di. A state of the world σ then is a value
assignment σ : V ar →

⋃n
i=1 Di to the variables. We will denote such a state simply

by an element of D1 × D2 × . . . × Dn, i.e. an n-tuple of values.
We also introduce a partial state as an element π ∈ Di1 × Di2 × . . . × Dik

, where
1 ≤ k ≤ n and 1 ≤ i1 < . . . < ik ≤ n. We use V ar(π) to denote the set of
variables {vi1 , vi2 , . . . , vik

} ⊆ Var specified in such a partial state π. The value σ(vj)
of variable vj ∈ V ar(π) will be denoted by π(vj). The value of a variable vj ∈ Var
not occurring in a partial state π is said to be undefined (or unpredictable) in π, denoted
by ⊥. Including ⊥ in every value domain Di allows us to consider every partial state π
as an element of D1 × D2 × . . . × Dn.

An important notion in plan diagnosis is the notion of compatibility between partial
states. Two states π and π′ are said to be compatible, denoted by π ≈ π′, if there is no
essential disagreement about the values assigned to variables in the two states and they
could be extended to the same complete state. That is,

π ≈ π′ if ∀v ∈ V ar [(π(v) = ⊥) ∨ (π′(v) = ⊥) ∨ (π′(v) = π(v))].

Actions, Plan Operators and Plan Steps. In the preceding section we used the term
‘actions’ in a rather informal way. From now on we will distinguish plan operators and
plan steps, which are both covered by the term ‘actions’.

A plan operator refers to a description of an action in a plan. In our model, plan
operators are functions mapping partial states to partial states. More exactly, a plan
operator o is a function that replaces the values in its range ranV ar(o) ⊆ Var by other
values (dependent upon the values of the variables in its domain domV ar(o) ⊆ V ar).
Hence, every plan operator o can be modeled as a (partial) function fo : Di1 × . . . ×
Dik

→ Dj1 × . . . × Djl
, where 1 ≤ i1 < . . . < ik ≤ n and 1 ≤ j1 < . . . <

jl ≤ n. Note that the set of variables in a plan operator’s range ranV ar(o) may differ
from the variables in its domain domV ar(o). This property ensures that most planning
formalisms, such as STRIPS, can be modeled using our plan operators. Also note that
if a variable occurs in a plan operator’s range but not in its domain, its value will be set
by the application of the plan operator independently of its previous value.

A plan operator o may be used at several places in a plan. A specific occurrence s
of o is called a plan step mapping a specific partial state into another partial state. A
plan step s as an occurrence of o then describes a specific function application of the
function fo at a specific place in the plan. Therefore, given a set O of plan operators,

160 N. Roos and C .Witteveen

we consider a set S = inst(O) of instances of plan operators in O, called the set of
plan steps. A plan step will be denoted by a small roman letter si. We use type(s) to
denote plan operator o of which the plan step s is an instance: s ∈ inst(o). Moreover,
we use domV ar(s) for domV ar(type(s)) and ranV ar(s) for ranV ar(type(s)).

Example 1. Figure 1(a) depicts two states σ0 and σ1 (the white boxes) each character-
ized by the values of four variables v1, v2, v3 and v4. The partial states π0 and π1 (the
gray boxes) characterize a subset of values in a (complete) state. The plan steps s1 and
s2 are instances of the plan operators o1 and o2, respectively. Plan operators are used to
model state changes. The domain of the plan operator o1 is the subset {v1, v2}, denoted
by the arrows pointing to s1. The range of o1 is the subset {v1}, which is denoted by
the arrow pointing from s1. Finally, the dashed arrow denotes that the value of variable
v2 is not changed by the plan step s1 causing the state change.

v1 v2 v3

1

v4

s2

0

s1

1

0

(a) Plan operators, states and
partial states

s1 s2

3

s3 s4

s5 s6

2

1

0

v1 v2 v3 v4

(b) Plans and plan steps

Fig. 1. Plans, plan states and plan steps

Plans and Plan Execution. An executable plan is a tuple P = 〈O, S, ≺〉 where S ⊆
Inst(O) is a set of plan steps occurring in O and (S, ≺) is a partial order. The partial
order relation ≺ specifies an execution relation between these instances: for each s ∈ S
it holds that s is executed immediately after all plan steps s′ such that s′ ≺ s have been
finished. We will denote the transitive reduction2 of ≺ by .

Without loss of generality, we assume that every plan step s ∈ S takes one unit of
time to execute and the execution of the first plan step starts at time t = 0. Using this
assumption and the definition of the execution ordering ≺, the time t at which a plan
step s will be executed is uniquely determined: Let depthP (s) be the depth of plan
step s in plan P = 〈O, S, ≺〉. Here, depthP (s) = 0 if {s′ ∈ S |s′ s} = ∅ and
depthP (s) = 1 + max{depthP (s′) | s′ s}, else. 3 Then the time ts at which the
plan step s is executed is ts = depthP (s) and s will be completed at time ts + 1. Let

2 So � is the smallest subrelation of ≺ such that the transitive closure �+ of � equals ≺.
3 If the context is clear, we often will omit the subscript P .

Diagnosis of Plan Structure Violations 161

Pt denote the set of plan steps s with depthP (s) = t, let P>t =
⋃

t′>t Pt′ , P<t =
⋃

t′<t Pt′ and finally, let P[t,t′] =
⋃t′

k=t Pk.

Example 2. Figure 1(b) illustrates a plan with precedence relations: s1 s3, s2 s4,
s4 s5 and s4 s6. In this plan, the depth of s1 and s2 is 0, the depth of s3 and
s4 is 1, and the depth of s5 and s6 is 2. Therefore, P0 = {s1, s2}, P1 = {s3, s4} and
P2 = {s5, s6}.

Given a state σ at some time t and the set Pt of plan steps to be executed at time t we
want to be sure that the next state σ′ at time t + 1 is uniquely defined. If Pt contains
two plan steps s and s′ with overlapping ranges, i.e., if ranV ar(s) ∩ ranV ar(s′) �= ∅,
the final result of a variable v occurring in this intersection is not uniquely defined in
σ′. We therefore assume the following condition to hold:

Determinism. If P is a plan and s, s′ are plan steps in P such that ranV ar(s) ∩
ranV ar(s′) �= ∅ then depthP (s) �= depthP (s′).

It is not difficult to see that Determinism guarantees that a future plan state can be
defined uniquely given a plan, the current time t and a partial state at time t.

2.2 Qualifications

As we already noted in the introduction, several types of failure can be distinguished:
the execution of a plan step might fail, a plan step might be omitted, a plan step might be
executed more than once (duplicated) or the precedence order between plan steps might
be violated. If such a failure occurs, we say that a plan step is qualified as failed, missing
or duplicated, or a precedence constraint is qualified as violated. Below we specify these
qualifications in detail. In the next subsection we specify their consequence for plan
execution. This will enable us to diagnose such failures.

Failing Plan Steps. The correct execution of a plan step may fail either because of
an inherent malfunctioning, or because of a malfunctioning of an agent responsible for
executing the action, or because of unknown external circumstances. In all these cases,
we model the effects of a failed execution of a plan-operator by introducing a set of
health modes Hs for each plan step s ∈ S. This set Hs contains at least the normal
mode nor, the mode ab indicating the most general abnormal behavior, and possibly
several other specific fault modes. The most general abnormal behavior of plan operator
o is specified by the function fab

o , where fab
o (di1 , di2 , . . . , dik

) = (⊥, ⊥, . . . , ⊥) for
every partial state (di1 , di2 , . . . , dik

) ∈ dom(fo).4 To keep the discussion simple, we
distinguish only the health modes nor and ab.

We will use the set of plan steps F ⊆ S to denote the plan steps that are qualified
as abnormal (failed). The behavior of each plan step s ∈ F is specified by the function
fab

o where s ∈ inst(o). The plan steps S − F are qualified as normal and the behavior
of the of each plan step s ∈ (S − F) is specified by the function fnor

o .

Omitted and Duplicated Plan Steps. At first sight it may seem that omitted (miss-
ing) and duplicated plan steps could be treated as special cases of failing plan steps.

4 This definition implies that the behavior of abnormal actions is essentially unpredictable.

162 N. Roos and C .Witteveen

For example, an omitted plan step s ∈ inst(o) could be qualified as omitted by as-
suming a special health mode omit such that fomit

o equals the identity function, while
a plan step could be qualified as duplicated by assuming a health mode dup such that
fdup

o = fnor ◦ fnor. The problem with this solution is that the execution of an omitted
plan step still would take time and duplicating a plan steps would not increase execu-
tion time. Therefore, instead of assigning health modes, we propose another approach,
where duplicated and omitted plan steps are indicated as the result of an explicit plan
transformation. We specify this transformation using a special set D indicating the set
of plan steps duplicated and M denoting the set of plan steps omitted (missing). The
existing plan P then is transformed into a new plan PM,D reflecting the omitted and
duplicated plan steps. This plan PM,D = 〈O, S(M,D), ≺(M,D)〉 consists of the set of
plan steps S(M,D) = S − M ∪ {sdup | s ∈ D}, and the set of precedence constraints
≺(M,D)= ≺ −{(s, s′), (s′, s) | s ∈ M} ∪ {(s, sdup), (sdup, s

′) | s ∈ D, (s, s′) ∈≺}.
Here, the idea is that the duplicating plan step sdup will be executed immediately
after the original plan step s. Moreover, sdup and s have the same behavior, since
type(s) = type(sdup).

Precedence Constraint Violations. A precedence violation occurs if a plan P specifies
that some plan step s′ is dependent upon a plan step s (i.e. (s, s′) ∈ ≺) and the execution
order of s and s′ is reversed.5 Instances of ⊆ ≺ that are reversed are denoted by the
set C. We have to take care that C is a closed set of violations. For example, if s ≺ s′,
s′ ≺ s′′ then a violation of s ≺ s′′ not only implies that (s, s′′) ∈ C, but also that
(s′, s′′) ∈ C.6 The plan PC = (O, S, ≺ † C) is plan transformation from P where
≺ † C is the updated set of precedence constraints generated by ≺ and the set of
violations C: ≺ † C = (≺ − C) ∪ {(s, s′) | (s′, s) ∈ C}.

Total Qualification. Having defined the plan steps that are qualifies as failed F , as
missing M and as duplicated D, and the constraints that are qualified as violated by
C, we define a total qualification of plan failures as: Q = (F, M, D, C) and we denote
a plan P with these qualifications by PQ = 〈O, S, ≺, Q〉. We keep in mind, however,
that such a plan PQ also implicitly defines a (complex) transformation of the original
plan P .

2.3 Plan Execution

In general, a plan P executed in a given initial state π0 will induce a sequence of states
π0, π1, . . . , πk , where πt+1 is generated from πt by applying the set of plan steps Pt

to σt. To define this relation between partial states at different time points we denote a
partial state π at a given time t by a tuple, also called a timed state, denoted by (π, t).

5 Strictly speaking, a violation of s ≺ s′ could also imply that s and s′ are executed concur-
rently. Such a violation, however, leads to unpredictable outcomes because the determinism
requirement is violated. This implies that we cannot distinguish between unplanned concur-
rent execution of plan steps and plan step execution failures. Therefore, this type of constraint
violations will not be distinguished explicitly.

6 In general, if (s, s′′) ∈ C then for all s′ ∈ S such that s ≺ s′ ≺ s′′ it holds that (s′, s′′) ∈ C.

Diagnosis of Plan Structure Violations 163

This execution relation will be defined incrementally. We will start with a plan where
the only failures that are allowed are plan step failures. Then the relation for plans with
plan structure failures is defined by reducing them to the first case.

Execution of Failing Plan Steps. First, let us assume that M , D and C are empty sets,
that is, we have a plan P(F,∅,∅,∅). We will first specify how the derivability relation
can be specified taking into account the set F of plan steps that might have failed [2].

We define the execution of a plan step as follows:

Definition 1. We say that (π′, t + 1) is (directly) generated by execution of the F -
qualified plan P(F,∅,∅,∅) from (π, t), abbreviated by (π, t) →(F,∅,∅,∅);P (π′, t + 1),
iff for every v ∈ V ar the following conditions hold:

1. if v �∈ ranV ar(Pt) then π′(v) = π(v);
Here, ranV ar(Pt) is a shorthand for the union of the sets ranV ar(s) with s ∈ Pt.

2. if v ∈ ranV ar(s) for some plan step s ∈ Pt − F enabled in π (i.e., domV ar(s) ⊆
V ar(π)), then π′(v) = fnor

o (π)(v);
3. else π′(v) = ⊥.

Omitted and Duplicated Plan Steps. We now extend the direct derivability relation
→(F,∅,∅,∅);P for normal and failing plan steps with missing and duplicated plan steps.
As was pointed out in the previous subsection, the idea is that missing and duplicated
plan steps transform the original plan P into an new plan P ′. Hence, the direct deriv-
ability relation of the original plan P with qualification (F, M, D, ∅) can be simply
defined as follows:

Definition 2. The timed state (π′, t + 1) is (directly) generated from (π, t) by execu-
tion of the plan P = 〈O, S, ≺〉 given the qualification (F, M, D, ∅), abbreviated by
(π, t) →(F,M,D,∅,);P (π′, t + 1), iff (π′, t + 1) is (directly) generated from (π, t) by

execution of the plan F -qualified plan PM,D
(F,∅,∅,∅) = 〈O, S(M,D), ≺(M,D)〉.

That is, (π, t) →(F,M,D,∅,);P (π′, t + 1) iff (π, t) →(F,∅,∅,∅);P M,D (π′, t + 1)

Precedence Constraint Violations. Finally, we extend the direct derivability relation
with a non empty set of violated precedence constraints. Constraint violations also mod-
ify the original plan P by eliminating constraints and by adding the reverse of the elim-
inated constraints. Hence, we define the execution relation analogous to the previous
case:

Definition 3. The timed state (π′, t+1) is (directly) generated from (π, t) by execution
of the plan P = 〈O, S, ≺〉 given the qualification Q = (F, M, D, C), abbreviated by
(π, t) →(F,M,D,C);P (π′, t + 1), iff (π′, t + 1) is (directly) generated from (π, t) by
execution of the plan PM,D,C = 〈O, S(M,D), (≺ † C)(M,D)〉 given the qualification
(F, ∅, ∅, ∅).

That is, (π, t) →(F,M,D,C);P (π′, t + 1) iff (π, t) →(F,∅,∅,∅);P M,D,C (π′, t + 1).

General Derivability. We extend the direct derivability relation to a general derivability
relation in a straightforward way:

164 N. Roos and C .Witteveen

Definition 4. For arbitrary values of t ≤ t′ we say that (π′, t′) is (directly or indi-
rectly) generated by execution of PQ from (π, t), denoted by (π, t) →∗

Q;P (π′, t′), iff
the following conditions hold:

1. if t = t′ then π′ = π;
2. if t′ = t + 1 then (π, t) →Q;P (π′, t′);
3. if t′ > t + 1 then there must exist a unique state (π′′, t′ − 1) such that (π, t) →∗

Q;P
(π′′, t′ − 1) and (π′′, t′ − 1) →Q;P (π′, t′).

Note that (π, t) →∗
(∅,∅,∅,∅);P (π′, t′) denotes the normal execution of a normal plan

P∅. Such a normal plan execution will also be denoted by (π, t) →∗
P (π′, t′).

3 Plan Diagnosis

In our framework, a diagnosis is a qualification that resolves conflicts between the ob-
served and predicted values of variables. To establish plan diagnosis in our framework
we need to make observations. Our framework provides a natural candidate for repre-
senting such observations: an observation obs(t) at time t can easily be represented by
a timed state (π, t). Note that this implies that we do not require observations to specify
a complete state. Suppose that during the execution of a plan P we have an observation
obs(t) = (π, t) and an observation obs(t′) = (π′, t′) at some later time t′ > t ≥ 0.
We would like to use these observations to infer a qualification Q = (F, D, M, C) for
the plan. First, assuming a normal execution of P , we can predict the partial state of the
world at a time point t′ given the observation obs(t): if all plan steps behave normally,
no plan steps are omitted or duplicated and no constraint is violated, we predict the
timed state (π′

∅
, t′) such that obs(t)→∗

(∅,∅,∅,∅);P (π′
∅

, t′).
Such a prediction has to be compared with the actual observation obs(t′) = (π′, t′)

made at time t′. It is easy to see if the predicted state and the observed state match: in
that case we should be able to find a state σ such that both the observed state π′ and the
predicted state π′

∅
are contained in σ, that is, π′ � σ and π′

∅
� σ. Hence, π′

∅
and π′

are compatible states, i.e. π′ ≈ π′
∅

holds.
If this is not the case, the execution of some plan steps must have gone wrong, some

plan steps might have been omitted or duplicated, or some precedence constraint might
have been violated. Therefore, we have to determine a qualification Q = (F, M, D, C)
such that the predicted state π′

Q derived using Q is compatible with π′. Hence, we
have the following straight-forward extension of the diagnosis concept in MBD to plan
diagnosis (cf. [6]):

Definition 5. Let P = 〈O, S, ≺〉 be a plan with observations obs(t) = (π, t) and
obs(t′) = (π′, t′), where t < t′ ≤ depth(P) and let obs(t)→∗

Q;P (π′
Q, t′) be a deriva-

tion using the qualification Q.
Then Q is said to be a qualification diagnosis of 〈P, obs(t), obs(t′)〉 iff π′ ≈ π′

Q.

It is easy to show that such a diagnosis can always be proven to exist if for every variable
v there exists at least some plan step s and some time t ≤ t′′ ≤ t′ such that s ∈ Pt′′

and v ∈ ranV ar(s).

Diagnosis of Plan Structure Violations 165

Example 3. Consider the plan depicted in Fig. 2.a. Let obs(0) = (π0, 0), obs(3) =
(π′

3, 3) and let π′
3 be equal to π3 except that there is a deviation in the value of v1, v2

and v4 at time t = 3 (as indicated by the black dots).
Suppose that changing the execution order of plan steps s4 and s7 enables us to cor-

rectly predict the value of variable v4, and omitting plan step s6 enables us to predict the
value of variable v2. Then Q = ({s5}, {s6}, ∅, {(s7, s4)}) is a qualification diagnosis
as depicted in Fig. 2.b.

3 3

s4

s5 s7s6

s4

s5

s7

s6

t=3 t=3

1

3

1

3

2

v1 v2 v3 v4

2

t=1

t=2

s2

0t=0

s3

s1

a b
v1 v2 v3 v4

t=1

t=2

s2

0

s3

s1

t=0

Fig. 2. Plan execution before and after a qualification diagnosis together with an observation
deviating from the expected observation, as indicated by the black dot

3.1 Identifying Diagnoses

Let the size ||Q|| of a qualitative diagnosis Q = (F, D, M, C) be equal to the sum of
the cardinalities of the sets involved, i.e. ||Q|| = |F | + |D| + |M | + |C|. Intuitively,
we should aim at finding diagnoses of minimum size. In general, finding such minimum
diagnoses is an NP-hard problem, and it turns out that the same holds for plan diagnosis,
too, even if we restrict our attention to the diagnosis of failing plan steps. In this section,
therefore, we will restrict our attention to the complexity of finding pure F , D, M or C
diagnoses.

Identifying F -diagnoses. Identifying an arbitrary F -diagnosis is trivial: qualify ev-
ery plan step as abnormal. This will constitute a diagnosis. Finding a subset-minimal
F -diagnosis is also easy, but finding a minimum (cardinality-minimal) F -diagnosis is
NP-hard [17].7

Minimizing the size of a diagnosis, however, is only one option in finding a suitable
diagnosis. It is usually preferred if the normal health state of a plan step is more likely
than an abnormal one. Another criterion that is useful is the information content of a
diagnosis. We say that a qualification diagnosis Q is more informative than another one

7 It is not difficult to show that for every qualification diagnosis of size m there exists an F -
diagnosis (where every component except the F -component is empty) with size less than or
equal to m, explaining the same set of observations.

166 N. Roos and C .Witteveen

Q′ iff V ar(π′
Q′) ⊂ V ar(π′

Q), where obs(t)→∗
Q;P (π′

Q, t′). A diagnosis Q is maximally
informative (maxi-diagnosis) if no diagnosis Q′ is more informative than Q.8 Likewise,
we can define a minimal maximal informative diagnosis (mini-maxi diagnosis):

Definition 6. Let 〈P, obs(t), obs(t′)〉 be a diagnostic problem with observations
obs(t) = (π, t) and obs(t′) = (π′, t′), and let obs(t)→∗

Q;P (π′
Q, t′), given a qualifica-

tion Q. Then Q is said to be a maximally informative diagnosis of 〈P, obs(t), obs(t′)〉
iff (i) π′ ≈ π′

Q, and (ii) V ar(πQ) is maximal among all diagnoses.
Q is said to be a minimal maximally informative diagnosis (mini-maxi diagnosis) iff

the qualification Q is a minimal diagnosis among the maximally informative diagnoses.

Mini-maxi diagnoses should be preferred if it is unlikely that a faulty plan step produces
correct results. Quite surprisingly, as we have shown in a recent paper (see [17]), mini-
maxi diagnoses can be found in polynomial time (polynomial in the size of the plan).

The following example gives an illustration:

Example 4. Reconsider the plan depicted in Fig. 2.a. If we only consider failing plan
steps, then there are seven qualifications that are minimal diagnoses according to Def-
inition 5. Among these seven diagnoses Q = ({s2}, ∅, ∅, ∅) is a minimum diagnosis,
and Q′ = ({s3, s7}∅, ∅, ∅) is a mini-maxi diagnosis. Let π′

Q denote the state derived
at time t = 3 by using Q as a qualification. Then V ar(π′

Q) = ∅, V ar(π′
Q′) = {v3}.

Consider a diagnosis Q of a plan with observations. Suppose that the qualification Q
only consists of missing or duplicated actions and of violated constraints; i.e., Q =
(∅, M, D, C). Then all plan steps are executed normally and the set of variables for
which known values are predicted is maximal. Moreover, since the qualification Q is a
diagnosis, these predicted values are compatible with the observations. Since coinciden-
tal compatibility of values is unlikely, this diagnosis must be preferred to any diagnosis
in which less known values are predicted. Only plan steps that are qualified as failed
reduce the predicted set of variables with known values. Hence, we can determine the
missing and duplicated plan steps and the violated constraints by preferring mini-maxi
diagnoses.

Example 5. Reconsider the plan depicted in Fig. 2.a. Suppose that changing the exe-
cution order of plan steps s4 and s7 enables us to correctly predict the value of vari-
able v4, and omitting plan step s6 enables us to predict the value of variable v2. Then
Q = ({s5}, {s6}, ∅, {(s7, s4)}) is a qualification diagnosis. Figure 2.b depicts this di-
agnosis. Let π′

Q denote the state derived at time t = 3 by using the diagnosis Q. Then
the set of correctly predicted variables given this diagnosis is: V ar(π′

Q) = {v2, v3, v4}.

Identifying Omitted and Duplicated Plan Steps. A plan step omitting diagnosis (M-
diagnosis) and a plan step duplicating diagnosis (D-diagnosis) are defined by qualifi-
cation diagnoses Q = (∅, M, ∅, ∅) and Q = (∅, ∅, D, ∅), respectively. It is easy to
see that both M- and D-diagnosis are maximal informative diagnoses. They are both, in
general, hard to compute:

8 Note that a maximal informative diagnosis is also maximum informative diagnosis. Q is a
maximum informative diagnosis if for no diagnosis Q′: |V ar(πQ′)| > |V ar(πQ)|.

Diagnosis of Plan Structure Violations 167

Proposition 1. Let P = 〈O, S, ≺〉 be a plan with observations obs(t) = (π, t) and
obs(t′) = (π′, t′), where t < t′ ≤ depth(P). Deciding whether an M-diagnosis exists
as well as deciding whether a D-diagnosis exist is NP-hard.

Proof. Easy reduction of KNAPSACK to an M- and to a D-diagnosis problem.9

Identifying Constraint Diagnoses. A constraint diagnosis is a qualification diagno-
sis Q = (∅, ∅, ∅, C). It is easy to see that every constraint diagnosis is a maximal
informative diagnosis. It turns out that also these maxi-diagnoses are hard to compute:

Proposition 2. Let P = 〈O, S, ≺〉 be a plan with observations obs(t) = (π, t) and
obs(t′) = (π′, t′), where t < t′ ≤ depth(P). Deciding whether a constraint diagnosis
Q exists is NP-hard.

Proof. Reduction of TSP to a C-diagnosis problem.11

3.2 Approximations

The above results are of course rather disappointing. However, assuming that the omit-
ted or duplicated plan steps and constraint violations occur in unrelated parts of a plan
(or occur only once), diagnoses can be determined efficiently. Given a diagnostic prob-
lem 〈P, obs(t), obs(t′)〉 with observations obs(t) = (π, t) and obs(t′) = (π′, t′), for
each observed variable v ∈ V ar(π′) at time point t′ we can determine the set of plan
steps and the set of precedence constraints on the value of the variable v at time point t′

depends. Let Depsteps(v, t′) ⊆ S and Depconstr(v, t′) ⊆ be the set of plan steps and
the set of precedence constraints between pairs of plan steps, respectively, on which the
value of the variable v at time point t′ depends. The dependency sets Depsteps(v, t′)
of the observed variables in V ar(π′) can be used to determine mini-maxi diagnoses in
polynomial time.

A missing or duplicated plan step can also be determined using the dependency sets
Depsteps(v, t′). For each dependency set Depsteps(v, t′) of an observed variable v ∈
V ar(π′) of which the predicted value π′

∅
(v) is incompatible with the observed value

π′(v), we can perform the following tests. Check for every plan step s ∈
Depsteps(v, t′) whether omitting s or duplicating s enables us to predict compatible
values for every observed variable v′ ∈ V ar(π′) such that s ∈ Depsteps

P M,D (v′, t′). Here
PM,D denotes either the modified plan P {s},∅ or the modified plan P ∅,{s} depending
on whether we check for the omission or duplication of the plan step s. Similarly we
can use the constraints s s′ ∈ Depconstr(v, t′) to check for constraint violations.

Note that a group of agents can efficiently determine the dependency sets
Depsteps(v, t′) and Depconstr(v, t′). A multi-agent protocol for determining depen-
dency sets in general diagnostic problems has been presented in [19].

4 Conclusion and Further Work

We have extended previous work on plan diagnosis in order to incorporate the identi-
fication of violations of the plan structure. This extension is particularly important for

9 The proof is omitted due to lack of space. It can be found in [18].

168 N. Roos and C .Witteveen

multi-agent plan execution where such constraint violations can easily be caused by
coordination errors. We have pointed out that, like maximally informative diagnosis of
failing actions, constraint diagnosis and diagnosis of missing plan steps and duplicated
plan steps also try to establish a maximally informative explanation of the observations
made. Unlike a maximally informative diagnosis, however, identifying these M-, D- and
C-diagnoses turns out to be an NP-hard problem. A heuristic that enables an efficient
search for constraint diagnoses in some restricted cases has been presented.

In future work we intend to take the diagnosis one step further: By looking at the
constraint violations an agent is responsible for, we may identify a pattern that indicates
a flaw in the behavior of the agent.

References

1. Roos, N., Witteveen, C.: Diagnosis of plans and agents. In: Pěchouček, M., Petta, P., Varga,
L.Z. (eds.) CEEMAS 2005. LNCS (LNAI), vol. 3690, pp. 357–366. Springer, Heidelberg
(2005)

2. Witteveen, C., Roos, N., van der Krogt, R., de Weerdt, M.: Diagnosis of single and multi-
agent plans. In: AAMAS 2005, pp. 805–812 (2005)

3. de Jonge, F., Roos, N., Witteveen, C.: Primary and secondary plan diagnosis. In: 17th Interna-
tional Workshop on Principles of Diagnosis, DX’06, Universidad de Valladolid, pp. 133–140
(2006)

4. de Jonge, F., Roos, N., Witteveen, C.: Diagnosis of multi-agent plan execution. In: Fischer,
K., Timm, I.J., André, E., Zhong, N. (eds.) MATES 2006. LNCS (LNAI), vol. 4196, pp.
86–97. Springer, Heidelberg (2006)

5. Kalech, M., Kaminka, G.A.: Towards model-based diagnosis of coordination failures. In:
AAAI 2005, pp. 102–107 (2005)

6. Reiter, R.: A theory of diagnosis from first principles. Artificial Intelligence 32(1), 57–95
(1987)

7. Kleer, J.d., Williams, B.C.: Diagnosing multiple faults. Artificial Intelligence 32(1), 97–130
(1987)

8. Kalech, M., Kaminka, G.A.: On the design of social diagnosis algorithms for multi-agent
teams. In: IJCAI-03, pp. 370–375 (2003)

9. Kalech, M., Kaminka, G.A.: Diagnosing a team of agents: Scaling-up. In: AAMAS 2005,
pp. 249–255 (2005)

10. de Jonge, F., Roos, N.: Plan-execution health repair in a multi-agent system. In: Proc. 23rd
Annual Workshop of the UK Planning and Scheduling SIG (PlanSIG 2004) (2004)

11. Carver, N., Lesser, V.: Domain monotonicity and the performance of local solutions strate-
gies for CDPS-based distributed sensor interpretation and distributed diagnosis. Autonomous
Agents and Multi-Agent Systems 6(1), 35–76 (2003)

12. Horling, B., Benyo, B., Lesser, V.: Using self-diagnosis to adapt organizational structures. In:
Proc. 5th Int’l. Conf. on Autonomous Agents, pp. 529–536. ACM Press, New York (2001)

13. Baroni, P., Lamperti, G., Pogliano, P., Zanella, M.: Diagnosis of large active systems. Artifi-
cial Intelligence 110(1), 135–183 (1999)

14. Cassandras, C.G., Lafortune, S.: Introduction to Discrete Event Systems. Kluwer Academic
Publishers, Dordrecht (1999)

15. Debouk, R., Lafortune, S., Teneketzis, D.: Coordinated decentralized protocols for failure
diagnosis of discrete-event systems. Journal of Discrete Event Dynamical Systems: Theory
and Application 10, 33–86 (2000)

Diagnosis of Plan Structure Violations 169

16. Pencolé, Y., Cordier, M.: A formal framework for the decentralised diagnosis of large scale
discrete event systems and its application to telecommunication networks. Artificial Intelli-
gence 164(1-2), 121–170 (2005)

17. Roos, N., Witteveen, C.: Models and methods for plan diagnosis. In: Formal Approaches to
Multi-Agent Systems (FAMAS’06), ECAI 2006, Workshop Notes (2006)

18. Roos, N., Witteveen, C.: Diagnosis of plan structure violations. Technical Report MICC 07-
05, Universiteit Maastricht (2007)

19. Roos, N., ten Teije, A., Witteveen, C.: A protocol for multi-agent diagnosis with spatially
distributed knowledge. In: AAMAS 2003, pp. 655–661 (2003)

Team Cooperation for Plan Recovery in
Multi-agent Systems

Roberto Micalizio and Pietro Torasso

Università di Torino, corso Svizzera 187, Torino, Italy
{micalizio,torasso}@di.unito.it

Abstract. The paper addresses the problem of recovering the execution of a
multi-agent plan when the occurrence of unexpected events (e.g. faults) may
cause the failure of some actions. In our scenario actions are executed concur-
rently by a group of agents organized in teams and each agent performs a local
control loop on the progress of the sub-plan it is responsible for. When an agent
detects an action failure, the agent itself tries to repair (if possible) its own sub-
plan and if this local recovery fails, , a more powerful recovery strategy at team
level is invoked. Such a strategy is based on the cooperation of agents within the
same team: the agent in trouble asks another teammate, properly selected, to co-
operate for recovering from a particular action failure. The cooperation is aimed
at achieving the goal assigned to the agents’ team despite the action failure and
to this end the agents exchange sub-goals and synthesize new plans.

1 Introduction

Within the AI community there is a growing interest in the development of autonomous
systems; i.e., systems which are able to react to unexpected events. In general the auton-
omy is achieved by establishing a closed loop of control feedback (control loop in short),
which involves many activities such as (re-)planning, (re-)scheduling, on-line monitor-
ing and diagnosis and (re-) configuration. While the issues for establishing a control
loop have found appropriate solutions when a single agent behaves as supervisor of a
system (a significant example in the field is the Livingstone architecture proposed in
the Remote Agent Experiment [1]), only recently there is a growing interest for estab-
lishing a control loop in a multi-agent scenario, where agents, organized in one or more
teams, execute actions concurrently in a partially observable environment. Since the ac-
tual execution of a plan may be threatened [2] by the occurrence of unexpected events
(e.g., faults in the functionalities of the agents), the task of executing a plan is critical
and different Model-Based solutions for monitoring and diagnosing multi-agent plans
have been proposed (see e.g., [3,4,5]). While these approaches provide solutions to the
problems of detecting and explaining action failures, they do not explicitly address the
problem of how these pieces of information can be exploited to overcome such failures.

The problem of recovering from an action failure is very complex and requires co-
operation among agents and the ability of planning (and re-planning) under uncertainty.
In fact, in most cases an action failure may have a huge impact on the whole plan, and
not only on the specific sub-plan where the action failure has occurred. This propagation

P. Petta et al. (Eds.): MATES 2007, LNAI 4687, pp. 170–181, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Team Cooperation for Plan Recovery in Multi-agent Systems 171

of negative effects of an action failure makes unrealistic (in most cases) the invocation
of a recovery procedure predefined for each type of action failure.

In [6] we have proposed a control architecture where each agent is responsible for es-
tablishing a closed loop of control over the execution of the actions it performs. Within
this local control loop each agent has to detect the failure of its actions, and to recover
(if possible) from these action failures. We now extend this architecture by exploiting
the organization of the agents in teams1 and by defining a more general level of control
based on the notion of teammates. In particular, we discuss a plan recovery strategy at
the team level, where an agent in trouble calls for the cooperation of another teammate
for recovering from an action failure. During the process of plan recovery at team level,
the two teammates cooperate for achieving the goal assigned to their team despite the
occurrence of the action failure; to this end the two agents exchange each other their
sub-goals and revise their sub-plans through a re-planning process.

The paper is organized as follows. In Sect. 2 the high-level architecture of the con-
trol loop is discussed; in Sect. 3 we describe the main characteristics of the multi-agent
plans we deal with, while in Sect. 4 we briefly introduce the results inferred during the
process of on-line supervision (monitoring + diagnosis) of a plan execution. In Sect. 5
we discuss the process of plan recovery at team level. Finally, in Sect. 6 we make some
concluding remarks.

2 Control Loop Architecture

The architecture proposed in this paper is shown in Figure 1. We assume that a human
user, possibly by exploiting different planning tools, synthesizes a global plan P , which
achieves some desired, complex goal G. More precisely, the plan P is a completely
instantiated multi-agent plan; the formal definition of P is given in the next section,
for the time being it is sufficient to consider P as a classical Partial-Order-Plan (POP)
where actions are expressed in a STRIPS-like language.

As soon as the global plan P has been constructed, the Dispatcher module decom-
poses P in as many sub-plans as agents available, assigning each sub-plan Pi to agent
i. According to the plan P the Dispatcher organizes the agents in teams taking into ac-
count the sub-goals assigned to each agent and the resources allocated to them. For the
sake of simplicity we assume that teams cannot change during execution of the plan. In
the following, given the agent i, team(i) denotes the subset of agents in the same team
of i. After this initial phase, each agent starts execution of its own local plan, therefore
at each time instant multiple actions are executed concurrently. During the execution of
their actions, agents receive observations about changes occurring in the environment;
however each agent i receives just observations about its own status, hence the agents
have a limited view of these changes occurred in the environment.

Observe that the agents may need the use of resources available in the environment.
In principle, a subset of resources may be assigned to a specific team, however there
may be resources that are shared among different teams. It follows that, even though
each team considers just a portion of the global goal, the teams are not completely

1 As discussed in [7], a multi-agent system represents an effective solution when it is structured
so that just a small number of agents need to cooperate.

172 R. Micalizio and P. Torasso

...

AGENT1’s observations

propagate action successful completion or failure

assign plan P1 to AGENT1

REAL WORLD

assign plan PN to AGENT N

PLAN EXECUTION
MONITORING

FAULT RECO
VERY

COORDINATION

RE-PLANNER

P2

STATUS

action outcome

AGENT 2

invoke
re-planner

LOCAL
RECOVERY

TEAM
RECOVERY

PLAN EXECUTION
MONITORING

FAULT RECOVE
RY

COORDINATION

RE-PLANNER

P1

STATUS

action outcome

AGENT 1

invoke
re-plannerLOCAL

RECOVERY

TEAM
RECOVERY

AGENT N

DISPATCHER

...

P

assign plan P2 to AGENT 2

AGENT2’s observations
AGENT N’s observations

team cooperation/local plans commitment

PLAN EXECUTION
MONITORING

FAULT RECO
VERY

COORDINATION

RE-PLANNER

PN

STATUS

action outcome
invoke

re-planner
LOCAL

RECOVERY

TEAM
RECOVERY

AGENT N...

TEAM-1 TEAM-K

PLANNING
TOOLS

PLAN EXECUTION
MONITORING

PLAN EXECUTION
MONITORING

PLAN EXECUTION
MONITORING

LOCAL
RECOVERY

LOCAL
RECOVERY

LOCAL
RECOVERY

TEAM
RECOVERY

TEAM
RECOVERY

TEAM
RECOVERY

REPLANNER REPLANNER REPLANNER

PLANNING
TOOLS

DISPATCHER

FAULT RECOVERY
COORDINATION

FAULT RECOVERY
COORDINATION

FAULT RECOVERY
COORDINATION

Fig. 1. The architecture of the control loop at the agent level and at the global level

independent of one another and cooperation or interaction among teams is possible (or
even needed). The cooperation among agents, of the same or different teams, is achieved
by means of services an agent provides to others. More precisely, a service is one of the
effects of an action which results to be a precondition for other action(s).

Not only the execution of P , but also control of the plan is distributed among the
agents, as each agent i performs a local control loop on the progress of its actions. This
control loop at agent level involves a number of modules. The Plan Execution Monitor-
ing module (PEM) estimates the current status of the agent and detects the outcome of
the action the agent is executing on the basis of the observations from the environment.
Every time an action outcome is determined, the Fault Recovery Coordination module
(FRC) evaluates whether the outcome is nominal: if not, the FRC has to coordinate the
recovery process: it invokes the Local Recovery (LR) module in order to repair (if pos-
sible) the failure by means of a new local plan (to do this, the LR module invokes the
local Re-Planning module). Unfortunately such a local plan may not exist, i.e., single
agents may not be able to autonomously overcome an action failure. When recovery
at the local level fails, the FRC is responsible for activating the recovery at team level.
To this end, the FRC invokes the Team Recovery (TR) module which establishes a
cooperation with another agent in the same team (Figure 1 shows the communication
channel between the TR modules of the agents A1 and A2, both in team-1, through
which the cooperation is established). During plan recovery at team level, the involved
agents exchange their sub-goals, synthesize new recovery plans and integrate them in
their original plans in order to overcome, if possible, the action failure.

For the sake of simplicity we assume that in case plan recovery fails both at local and
at team level, the FRC module of the agent in trouble informs the human user about the
action failure. The user is responsible for adapting the global plan P and/or for revising
the global goal G, by taking into account the actual health status of the agents in the
systems; e.g., the global plan P could be revised by excluding the agent in trouble.

Team Cooperation for Plan Recovery in Multi-agent Systems 173

3 The Global Plan and the Local Plans

Global Plan. The global plan to be monitored is represented as partial order plan (POP),
defined (e.g., [8]) as a directed acyclic graph, POP=〈A, <, C〉, with: A the set of nodes
representing the action instances the agents have to execute; < a set of precedence
links between actions (a precedence link a ≺ a′ in < indicates action a must precede
execution of action a′); C a set of causal links of the form l : a

q→ a′, the link l indicates
that action a provides action a′ with the service q, where q is an atom occurring in the
preconditions of a′. The class of multi-agent plans we deal with here is a subclass of
the POP defined above. As in the POP case, we define P as the DAG 〈A, <, C〉, where
A, < and C have the same meanings, but we introduce the following requirements:

– Every action instance a ∈ A is assigned to a specific agent i ∈ T .
– All the actions assigned to the same agent i are totally ordered, i.e., for any pair of

actions a and a′ assigned to i, either a precedes a′ or a′ precedes a must hold.
– Access to critical resources is ruled by means of causal links. If both the actions,

a assigned to agent i, and a′ assigned to agent j, require the same critical resource

res, the causal link l : a
free(res)→ a′ imposes that a′ must be executed after a; the

link l states that action a provides a′ with the service of freeing resource res.

A multi-agent plan instance P satisfying the previous requirements can be synthe-
sized by exploiting the POMP planner proposed by Boutilier et al. in [9].

Local Plans. Given the global plan P , the Dispatcher module decomposes P into as
many sub-plans as the number of the agents in the system. The decomposition is easy,
involving the selection from P of all the actions an agent has to execute. Formally, the
sub-plan for agent i is the tuple Pi=〈 Ai, <i, Ci, T

in
i , T out

i , X in
i , Xout

i 〉 where: Ai is
the subset of actions in P agent i has to execute; <i is a total order relation defined
over the actions in Ai; Ci is a set of causal links a

q→ a′ where both a and a′ belong to
Ai; T in

i is a set of incoming causal links where a′ belongs to Ai and a is assigned to
another agent j in the same team of i (i.e., team(i)=team(j)); T out

i is a set of outgoing
causal links where a belongs to Ai and a′ is assigned to another agent j ∈ team(i);
finally, X in

i and Xout
i are analogous to T in

i and T out
i , respectively, but agent j belongs

to another team (j /∈ team(i)).

Primary Goals and Target Actions. Given an action a ∈ Ai, primary(a) denotes
the set of effects of a such that every atom q ∈ primary(a) satisfies at least one of the
following conditions:

– q ∈ G, i.e., q is an atom which appears in the global goal G of P
– q is a service that agent i provides to another agent j, that is, there exists a causal

link l : a
q→ a′, where a ∈ Ai and a′ ∈ Aj .

An action a such that primary(a) �= ∅ is said a target action, otherwise it is said
simple. We assume every simple action in the plan to provide (directly or indirectly) a
target action with a service. The notion of target action plays a critical role in the process
of plan recovery at team level; in fact when agent i detects a fault in its functionality
preventing the execution of a target action a, the effects of a are the sub-goals that the
agents i can send to another agent j (j ∈ team(i)) to recover from the failure of a.

174 R. Micalizio and P. Torasso

LOAD_S(A1, B1, S1) MOVE(A1,S1,T1)

LOADED(A1, B1)

LOAD_L(A2, B3, S1) MOVE(A2, S1, T1)

sub-plan P2

sub-plan P1

LOAD_S(A1, B2, S1)

AT(A1, T1)

PUT_ON_S(A1,B1,B3,T1) PUT_ON_S(A1,B2,B3,T1)

LOADED(A1, B2)

AT(A1, T1)

MOVE(A1, PRK, S1)

PUT_DOWN_L(A2, B3, T1)

AT(A2, T1)

LOADED(A1, B3)

LOAD_L(A3, B4, S2) MOVE(A3, S2, T2)

LOADED(A3, B4)

sub-plan P3

LOAD_L(A3, B5, S2)

AT(A3, T2)

PUT_DOWN_L(A3, B4, T2) PUT_ON_L(A3, B5, B4)MOVE(A3, T2, S2)MOVE(A3, T2, S2)

AT(A3, S2) AT(A3, T2)

LOADED(A3, B5)UNLOADED(A3)

l1: FREE(S1) l4: FREE(T1)
l2: AT(B3, T1) l3: AT(B3, T1)

T2

B5

B4

21 3

TEAM-1

TEAM-2

98 10

T1

B3

B1 B2
MOVE(A2, T1, PRK)

4 5 6

AT(A1, S1)

7

11 12 13 14 15 16 17

AT(A2, S1)
~FREE(S1)
UNLOADED(A2)

AT(A1, PRK)
UNLOADED(A1)

AT(A3, S2)
UNLOADED(A3)

SYSTEM
INITIAL STATE

Fig. 2. The plan built by a POMP-like planner

Running Example. We will use a simple blocks world example to illustrate the basic
concepts of the proposal. Consider three agents A1, A2 and A3: A1 and A2, belonging
to the same team team-1, have to move three blocks B1, B2, B3 from a source S1 to
a target T 1. They have to cooperate to achieve a specific configuration where the large
block B3 is put on the small blocks B1 and B2. Agent A3, the only member of team-2,
has to do a similar job moving blocks B4 and B5 from source S2 to destination T 2
(B5 must be placed on top of B4). We distinguish between two types of blocks: small
and large. Nominally, each agent can carry at most two small blocks or a large one.
The access to the source and target locations is constrained: just one agent at a time can
take (release) a block within them. A further location, PRK , is not constrained: this is
where the agents are positioned when they complete their sub-plans.

Figure 2 shows an instance of a multi-agent plan achieving the target configuration
of blocks. The global goal is decomposed into two sub-goals, G1 achieved by the agents
in team-1, and G2 assigned to team-2. The plan is a DAG: nodes correspond to actions,
edges to precedence (dashed) or causal (solid) links. Causal links are labeled with the
services an action provides to another; e.g., the causal link from action 2 to action 5 is
labeled with the service LOADED(A1,B1), which is both one of the effects of action
2 and one of the preconditions for the execution of action 5. The grey dashed rectangles
highlight the sub-plans the Dispatcher produces and assigns to the three agents. Sub-
plans P1 and P2 have causal dependent actions (causal links l1 . . . l4), while plan P3 is
completely independent from P1 and P2. It follows that a failure in P1 (P2) may affect
some actions in P2 (P1) and therefore may threaten achievement of the sub-goal G1.

4 Plan Execution Monitoring and Diagnosis

Due to space limitations, in this section we just introduce the basic concepts of the on-
line supervision task (monitoring + diagnosis), that each agent i has to perform over the
execution of the actions it is responsible for. A formal and detailed description of the
problem of supervising the plan execution has been addressed in [6,10].

Team Cooperation for Plan Recovery in Multi-agent Systems 175

Action Outcome. As discussed in [2], the actual execution of an action is threatened
by the occurrence of unexpected events (e.g., faults). To supervise execution of a multi-
agent plan, the PEM module thus has to be able to deal with not nominal action out-
comes. In this paper, we assume that the outcome of an action consists of two sets:
achievedEffects and missedEffects; the former maintains all the actions effects achieved
by the agent, while the latter maintains all the missed action effects. An action is con-
sidered completed successfully only when outcome(a).missedEffects=∅.

Extended Action Model. To keep track of the (possibly not nominal) outcome of
actions an agent executes, we need an action model which represents both the nominal
and the anomalous behavior of the action itself. For such a modeling task, in [10] we
have proposed a relational representation to deal with the non deterministic effects of
the actions caused by the possible occurrence of faults. In short, the extended model of
an action a is a transition relation Δa, where every tuple d ∈ Δa models a possible
change in the status of agent i, which may occur while i is executing a. Each tuple d
has the form d = 〈st−1, fault, obs, st〉. In particular, st−1 and st represent two agent
states at time t − 1 and t respectively, each state is a complete assignment of values to
the status variables of agent i. f ault indicates which fault must occur in order to cause a
change of status from st−1 to st; of course, in the transitions which model the nominal
behavior fault is empty. Finally, obs is a set of observations received by i after the
execution of a. For example, in our blocks world example the MOVE action can fail as
a consequence of two types of faults: f-BRY and f-MOB. f-BRY affects the battery
by reducing the level of power from the nominal high to the degraded low. An agent
can complete a move action with power low iff the agent is empty or half loaded (i.e.
the agent is carrying a small object only), the action fails otherwise. f-MOB affects the
health status of the mobility functionality, which changes from the nominal OK to the
anomalous broken; under this health status there is no way to complete the move action.

Agent Status. The status of agent i is represented by a set of status variables concerning
for example the position of agent i and the health status of the functionalities of i (e.g.,
mobility and power). In [10] we have pointed out that the status of an agent can be
predicted, at each time instant t, by exploiting the model of the action a the agent
executes. However, since the action models are not deterministic and the system is only
partially observable, the status of agent i cannot be precisely predicted; in general,
instead, the agent status is just estimated by means of a set of alternative states assumed
by i at time t; this set is known in literature as belief state and will be denoted as Bi

t. As
a consequence, in many cases, determining the health status of an agent is an hard task
which requires diagnostic inferences (see [10]).

5 Plan Recovery at Team Level

5.1 The Basic Strategy

In the previous section we have sketched how an agent i can determine the outcome
of actions it executes and how it can infer a diagnosis about the health status of its
functionalities. We now show how these pieces of information can be used by agent i

176 R. Micalizio and P. Torasso

to recover (if possible) from a detected action failure. In the control loop two different
levels of recovery are considered: the one at the local level and the one at the team level.

Plan recovery at local level. When the occurrence of a fault f causes the failure of
an action a executed by agent i, agent i has first to detect this failure and then try to
synthesize a new local plan NewPi to achieve the same goals of the original local plan
Pi independently of the actual health status of functionalities of agent i. Synthesis of
the recovery plan NewPi is performed by invoking the Re-Planner module of agent i.
Note that building NewPi is hard: in many cases such a plan NewPi may not exist,
since the occurred fault may prevent the execution of some types of action ([6]).

Plan Recovery at Team Level. A more general recovery strategy consists in repairing
the failure of action a, executed by agent i, by means of the help of another agent j,
where the agents i and j are in the same team. This alternative strategy is referred to
as plan recovery at team level (team recovery for short). Team recovery involves two
cooperating agents: the first is said requesting agent since it sends a “request of help”;
the second is said cooperating agent as it changes its own local plan to satisfy the
incoming requests. For simplicity, we impose that at each time instant: 1) a requesting
agent i cannot send multiple requests to different agents but can send only one request
to a specific agent j and 2) a cooperating agent j can accept just a cooperation request
per time; if an agent receives more cooperation requests at the same time we assume that
the agent accepts only one request2 and rejects all the others. However, the described
solution can be extended to the more general case where these assumptions are relaxed.
As it is reasonable, an agent cannot behave both as requesting and as cooperating agent
at the same time. After these premises, in the following we discuss which pieces of
information the requesting and the cooperation agents need to exchange and how an
action failure can be recovered from.

For clarity, when introducing new concepts we exemplify them by referring to the
plan in the blocks world introduced in Figure 2. In particular, assume action 8 fails as
a consequence of the occurrence of fault f-BRY, thereby the move action cannot be
completed, since agent A2 is fully loaded. It is then easy to see there is no way for
agent A2 to move the block B3 from S1 to T 1, i.e., recovery of plan P2 at the local
level fails.

Composing a Cooperation Request. We first discuss how a requesting agent i com-
poses a cooperation request R; essentially this task requires three steps: 1) selecting
a cooperating agent in team(i); 2) determining a set Q of services the cooperating
agent has to obtain in lieu of agent i; and 3) synthesizing a new local plan NewPi for
achieving a safe status where the resources currently used by agent i are released.

Selecting the Cooperating Agent. When agent i has to choose a cooperating agent
in team(i), the following policy is adopted. If the failed action a provides, directly or
indirectly, a service to an action a′ ∈ Aj and team(i) = team(j), then j is selected as
cooperating agent; the cooperating agent is chosen randomly in team(i) otherwise. The
basic idea of this policy is that, if agent i can no longer provide agent j with a service q,

2 In particular, the agent could choose the request that represents the closest threat in time.

Team Cooperation for Plan Recovery in Multi-agent Systems 177

agent j is called for achieving the service q on its own. In fact, without the availability
of the service q, agent j cannot complete its local plan Pj , as q is a precondition of
at least one action in Pj . On the contrary, when the effects of action a do not impact
on the execution of other sub-plans (i.e., the effects of a are part of the global goal
of the plan), the cooperating agent is chosen non deterministically3 in team(i). In our
example, action 9 indirectly provides the actions 4 and 5 (both assigned to agent A1)
with some services, therefore agent A2 chooses A1 as cooperating agent.

Determining the Set Q of Services. Once the cooperating agent j has been selected,
the requesting agent i has to determine the set Q of services to be included in the coop-
eration request. It is important to note that the set Q must be inferred taking into account
the notion of target action. In fact, the effects of a simple action are relevant just for the
responsible agent, while the effects of target actions are meaningful for all agents in
team(i). In general, the request agent i determines the set Q of primary services to
submit to the cooperating agent j as follows: agent i first selects the set affectedTar-
getActions containing all the target actions in Ai directly or indirectly affected by the
failure of action a. The set Q is obtained as

⋃
act∈affectedTargetActions primary(act).

Given the failure of action 9, we have that affectedTargetActions={9} and as a conse-
quence Q={AT(B3,T1)}.

Achieving a Safe Status. As a last step before the invocation of the cooperating agent
j, the requesting agent i has to assess whether its current health status allows it to lead
the system in a safe status, where all the resources and objects currently acquired by i
are released and made available to other agents (in particular to agent j). Note that in
order to get such a safe status, the agent i has to synthesize a new local plan NewPi,
which may undo some of the actions the agent i has already executed. Synthesis of
NewPi may fail when some of the actions previously executed are not reversible or
when the current health status of i prevents i to execute some particular action types; in
both these situations team recovery fails immediately. In our example, the safeStatus
the agent A2 has to get is the set of the atoms {AT(B3, S1); FREE(S1)}. Since
a large block can be unloaded even when the power of an agent is low, the NewPA2
achieving safeStatus exists (Figure 5.a): it consists of unloading block B3 in position
S1 and leaving the location S1.

Processing a cooperation request. Assuming that NewPi exists, the requesting agent
i then sends a cooperation request R=〈j, safeStatus , Q〉 to the cooperating agent j.
Note that the request R conveys two important pieces of information for the cooperating
agent j; while Q represents the set of services j has to get for accomplishing the request,
safeStatus indicates which resources and objects can be used to achieve Q. When agent
j receives the request R, it decides whether to serve R or not. In case it accepts to satisfy
R, agent j has to adjust its local plan Pj in two ways: 1) find a new plan that achieves
safeStatus and 2) find a new plan that from safeStatus achieves Q. In other words,

3 Currently the cooperating agent is randomly chosen. However, it is possible to devise more
sophisticated solutions where the agent in trouble chooses the cooperating agent by reasoning
about the current status of its teammates and of the resources. These solutions may be very
computationally expensive since the agent has just a limited view of the system status and it
may need to exchange a huge amount of information with each teammate.

178 R. Micalizio and P. Torasso

Fault-Detection-Recovery(outcome(a), Bi
t, Pi) {

01 if (outcome(a).missedEffects �= ∅) {
02 NewPi= LocalRecovery(outcome(a), Bi

t, Pi);
03 if (NewPi �= ∅) { Pi = NewPi; mark a as re-planned; }
04 else { NewPi=TeamRecovery-Request(outcome(a), Bi

t, Pi);
05 if (NewPi �= ∅) { Pi = NewPi; mark a as re-planned; }
06 else mark a as failed; }}
07 else { mark a as successfully-completed
08 if (a request R has been received){
09 NewPi=TeamRecovery-Cooperation(Bi

t, Pi, R);
10 if (NewPi �= ∅) Pi = NewPi; }}
11 if (a is marked as failed) {
12 Propagate-Harmful-Effects-In-Global-Plan(a, Pi);
13 〈 notify the user of the failure of action a〉; } }

Fig. 3. The algorithm for detection and recovery of a local plan failure

agent j first acquires the resources agent i has set in safeStatus, and it then plans for
achieving the primary goals in Q.

Note that agent j may be itself impaired and therefore also not be able to perform
some types of actions. Thus, a recovery plan may not exist; in this case, agent j notifies
agent i about the failure of the team recovery process. In our simple example, since the
health status of the cooperating agent A1 is OK (A1 behaves nominally), there exists a
new local plan NewPA1, shown in Figure 5.b: A1 first moves from its current position
in PRK to the source S1; A1 then loads the block B3 and moves it to the desired
position T 1. With these steps, agent A1 has achieved the primary goal AT(B3,T1)
the agent A2 was not able to. The plan NewPA1 also includes the actions previously
assigned to A1 in order to move both B1 and B2 from S1 to T 1.

Plans Commitment. In case both NewPi and NewPj exist, team recovery ends with
a commitment phase. In this phase, the two agents exchange their new local plans in
order to properly set the causal links between the actions they have to execute. In our
example, the actions agent A2 has to perform for leading the system to a safeStatus
must precede those assigned to agent A1, which instead achieve the services in Q.
Figure 5.c shows how the two agents set the causal links during the commitment phase:
the plans are the new local plans the two agents A1 and A2 execute to achieve the
sub-goal assigned them despite the occurrence of a fault in the battery of agent A2.

5.2 High-Level Algorithms

We now briefly describe the high-level algorithms of the two main modules involved in
team level recovery: the Fault Recovery Coordination (FRC) and the Team Recovery
(TR) modules (see the control loop architecture in Figure 3).

The Fault Recovery Coordination Module. The process of plan recovery is coordi-
nated by the FRC module of each agent i. Given the outcome of the action a agent i has
just executed, the FRC has the following tasks:

Team Cooperation for Plan Recovery in Multi-agent Systems 179

TeamRecovery-Request(outcome(a), Bi
t, Pi){

01 affectedTargetActions = FindTargetActions(a, Pi);
02 Q =

⋃
act∈affectedTargetActions

primary(targetAct);
03 j = chooseCooperatingAgent(team(i), Pi);
04 safeStatus = FindSafeStatusForAcquiredResources(a, Bi

t);
05 NewPi=Replanner(Bi

t, Pi, safeStatus);
06 if NewPi �= ∅{
07 〈 send the cooperation request R = 〈 j, safeStatus, Q〉 to j〉;
08 〈 wait for the replay〉;
09 if (replay is ok) { Plan-Commitment(); return NewPi; }
10 else return ∅; }

TeamRecovery-Cooperation(Bj
t , Pj){

01 get the cooperation request R = 〈 j, safeStatus, Q〉
02 TempP=Replanner(Bj

t , Pj , safeStatus);
03 NewPj=Replanner(safeStatus, TempP , Q);
04 if (NewPj �= ∅){ 〈 send ok to sender(R)〉; Plan-Commitment(); return NewPj ; }
05 else { 〈send failure to sender(R)〉; return ∅; } }

Fig. 4. The algorithms for the team-level recovery

– Activate plan recovery at local/team level (lines 01-06): if the outcome of action a
is not nominal (outcome(a).missedEffects �= ∅), the FRC first invokes the Local-
Recovery module [6] to recover from this failure via a local recovery plan NewPi.
If local recovery fails (NewPi is empty), the FRC activates team level recovery
by invoking the TeamRecovery-Request function (Figure 4): agent i behaves as a
requesting agent. Also in this case the recovery consists of a new local plan NewPi

which overcomes the failure of a; if team recovery fails, NewPi is empty.
– Accept a cooperation request (07-10): If the current action a has been successfully

completed, agent i can accept a cooperation request (function TeamRecovery-
Cooperation in Figure 4). In this case, agent i behaves as a cooperating agent.
When team recovery succeeds, the new local plan NewPi becomes the current
plan of agent i, the plan Pi is not modified otherwise.

– Propagate action failure (11-13): if plan recovery fails both at local and at team
level, the FRC module first propagates the failure of action a in the global plan (line
12): agent i informs the other agents that a subset of services cannot be achieved,
and then notifies the human user of the failure of action a (line 13).

The Team Recovery Module. The behavior of the requesting agent i outlined in the
algorithm TeamRecovery-Request of Figure 4 consists of the following main steps:

– Preliminaries(lines 01-05): Agent i first determines the cooperating agent j, the
set Q of primary goals and the status safeStatus, as described previously. The
agent then tries to synthesize a new local plan NewPi with the goal to achieve
safeStatus : the Replanner module is invoked on the current agent status Bi

t, the
current local plan Pi, and the desired status safeStatus ; the returned plan NewPi

(if it exists) is a revised version of Pi including both the actions for getting
safeStatus and the actions, previously included in Pi, not yet executed.

180 R. Micalizio and P. Torasso

a.
MOVE(A2, S1, PRK)

recovery sub-plan P2

PUT_DOWN_L(A2,B3,S1)

b.

LOAD_S(A1, B1, S1)LOAD_L(A1, B3, S1) MOVE(A1, S1, T1)

 NewP1

MOVE(A1, T1, S1)PUT_DOWN_L(A1, B3, T1)

AT(A1, T1)

T1

B3

B1 B2
AT(A1, S1)

MOVE(A1, PRK, S1)

AT(A1, S1)
UNLOADED(A1)

...

LOADED(A1, B3)

c.

AT(A2, S1)
~FREE(S1)
FULL-LOADED(A2)

AT(A1, PRK)
UNLOADED(A1)

SYSTEM STATE
WHEN ACTION 8
FAILS

MOVE(A2, S1, PRK)

 NewP2

PUT_DOWN_L(A2,B3,S1)

FREE(S1)AT(B3, S1)

LOAD_S(A1, B1, S1)LOAD_L(A1, B3, S1) MOVE(A1, S1, T1)

 NewP1

MOVE(A1, T1, S1)PUT_DOWN_L(A1, B3, T1)

AT(A1, T1)

T1

B3

B1 B2
AT(A1, S1)

MOVE(A1, PRK, S1)

AT(A1, S1)
UNLOADED(A1)

...

LOADED(A1, B3)

Fig. 5. The team recovery plan built to repair the failure of action MOVE(A2, S1, T1)

– Team cooperation(06-11): If NewPi exists, agent i sends a request to the cooperat-
ing agent j (line 07). Agent i awaits a reply from the cooperating agent j; if it is ok,
recovery at team level succeeded, and agents i and j activate the plan commitment
phase. Otherwise, team recovery failed and the function TeamRecovery-Request
returns an empty recovery plan.

The behavior of the cooperating agent j outlined in the algorithm TeamRecovery-
Cooperation of Figure 4 includes the following steps:

– Accept a cooperation request (line 01): j receives the request R. item Adjust the
local plan(02-03): to satisfy the request R, agent j adjusts its current plan Pj in
two ways: 1) j builds a new plan to get safeStatus (included in R) from its current
status Bj

t and 2) build another plan from safeStatus to a state where the services in
Q are satisfied.

– Sends a reply(04-05): in the last part of the algorithm, the cooperating agent j
sends the result of the cooperation to agent i and, if required, activates the plan
commitment phase.

6 Discussion and Conclusions

We have discussed a strategy aimed at recovering the execution of a multi-agent plan
from the occurrence of an action failure. Since the strategy is based on the cooperation
between agents within the same team, we have referred to it as plan recovery at team
level. The control architecture discussed in the paper represents an improvement over
other approaches presented in the literature for multi-agent systems [3,4,10], as it does
not only cover the detection of an action failure but addresses also the recovery step.
While in [6] a local recovery strategy is discussed, (where each agent is responsible for
recovering from the failure of the actions it executes), the introduction of team level
recovery makes the process of plan repair more flexible and robust, since the team level

Team Cooperation for Plan Recovery in Multi-agent Systems 181

recovery is able to overcome some failures which cannot be solved at the local level;
as a consequence the amount of failures that the human user has to manage may be
reduced considerably.

Given the complexity of the task, the work represents just a first step, as many prob-
lems remain open; e.g., the choice of the agent to be involved in team recovery could
take into consideration its work load or the resources it is using. However, the present
work has pointed out the essential role played by complex re-planning techniques as
the basis for recovery.

Due to space limitations, the focus of this paper is on the methodological aspects
of plan recovery at team level. As for implementation and performance issues, on-line
monitoring and diagnosis of a multi-agent plan are addressed in [10] with a centralized
approach, and in [5] with a distributed solution. In both these approaches we have ad-
vocated the use of the symbolic formalism of Ordered Binary Decision Diagrams (OB-
DDs) to efficiently encode action models and agent states. As concerns the re-planning
task, we have implemented a solution similar to the one discussed in [11], which ex-
ploits an encoding of the actions via OBDD. The main difference to [11] is the use of
extended action models during the re-planning phase. The adoption of OBDD plays a
critical role for the efficiency of both, on-line monitoring and diagnosis as well as the
re-planning step.

References

1. Muscettola, N., Nayak, P., Williams, B.: Remote agent: to boldly go where no AI system has
gone before. Artificial Intelligence 103(1), 5–47 (1998)

2. Birnbaum, L., Collins, G., Freed, M., Krulwich, B.: Model-based diagnosis of planning fail-
ures. In: Proc. AAAI90, pp. 318–323. AAAI Press, Stanford (1990)

3. Witteveen, C., Roos, N., van der Krogt, R., de Weerdt, M.: Diagnosis of single and multi-
agent plans. In: Proc. AAMAS05, pp. 805–812. ACM Press, New York (2005)

4. Kalech, M., Kaminka, G.: Towards model-based diagnosis of coordination failures. In: Proc.
AAAI05, pp. 102–107. AAAI Press, Stanford (2005)

5. Micalizio, R., Torasso, P.: On-line monitoring of plan execution: A distributed approach.
Knowledge-Based Systems 20(2), 134–142 (2007)

6. Micalizio, R., Torasso, P., Torta, G.: Intelligent supervision of plan execution in multi-agent
systems. Internat. Transactions on Systems Science and Applications 1(3), 259–267 (2006)

7. Carver, N., Lesser, V.: Domain monotonicity and the performance of local solutions strate-
gies for CDPS-based distributed sensor interpretation and distributed diagnosis. Journal of
Autonomous Agents and Multi-Agent Systems 6(1), 35–76 (2003)

8. Kambhampati, S.: Refinement planning as a unifying framework for plan synthesis. AI Mag-
azine 18(2), 67–97 (1997)

9. Boutilier, C., Brafman, R.I.: Partial-order planning with concurrent interacting actions. Jour-
nal of Artificial Intelligence Research 14, 105–136 (2001)

10. Micalizio, R., Torasso, P.: Diagnosis of multi-agent plans under partial observability. In: Proc.
18th Internat. Workshop on Principles of Diagnosis (DX07), pp. 346–353 (2007)

11. Jensen, R.M., Veloso, M.M.: Obdd-based universal planning for synchronized agents in non-
deterministic domains. Journal of Artificial Intelligence Research 13, 189–226 (2000)

On the Behaviour of the TRSIM Model for

Trust and Reputation�

Alberto Caballero, Juan A. Bot́ıa, and Antonio Gómez-Skarmeta

Universidad de Murcia. Campus Espinardo. Murcia. España
albe cu@yahoo.com,{juanbot,skarmeta}@um.es

Abstract. We study here the behaviour of a trust and reputation model
for agents in P2P environment, where agents act as providers or con-
sumers of resources. We present partial results of the refinement process
of our model in order to identify the suitable structure, functions, and
parameters to correctly manage trust and reputation. We show some ex-
perimental results comparing several alternatives to obtain the quality of
the response given the requirements, and the increase of the satisfaction
of the recommended response when it uses a right way to estimate trust
and reputation values using stored information about similar tasks.

1 Introduction

In previous works we define a trust and reputation model in a MAS to propose a
suitable response for a consumer requirement in a P2P environment where agents
can be consumer or provider of resources [1,2]. This model considers trust and
reputation as emergent properties of direct interactions between agents, based
on multiple interactions between two parties. In this model, trust is a belief
an agent has about the performance of the other party to solve a given task,
according to own knowledge. In other hand, reputation is related to the same
belief but based on the opinions of other agents in the community.

Contrary to other models [3,4,5], where trust and reputation values are ob-
tained as global values only associated to a peer, our model associates trust and
reputation to the specification of the task that agents need to delegate. The per-
formance of a given agent can be very different, according to the specification of
the task that he executes or the requirements of the user that he represents.

Griffiths proposes a based-experience mechanism to model the trustworthiness
of agents according to various criteria [6]. This work presents the notion of multi-
dimensional trust to manage several facets of trust and combines them into a
unique value, according to the preferences of the agent.

� This paper is supported by the Programme Alban scholarship No.E05D049799CU
and also by the Spanish Ministry of Education and Science by the Research Project
TIN-2005-08501-C03-02. Also, part of this work has been funded by the POPEYE
Project, http://www.istpopeye.eu/. Contract No. IST-2006-034241.

P. Petta et al. (Eds.): MATES 2007, LNAI 4687, pp. 182–193, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

On the Behaviour of the TRSIM Model for Trust and Reputation 183

Our model manages trust as a multidimensional concept too, depending on
some predefined features related to the trust. However, it does not manages a
unique value for each trust feature for a given agent, but it manages this values
according to the preference of the user that agent represents. For instance, agent
can provide very different download speeds for a given multimedia resource when
the user preference is restricted by the deliver time or by the quality of the
resource.

Also, it proposes to estimate trust values for tasks that the agent did not
perform before, using knowledge about some similar one. For example, if a given
agent needs to obtain the trust in another agent, it considers only the experiences
related with the specification of this task (user requirements). If the agent does
not have any information about the previous behaviour of its partner performing
the specified task, the model gives the way to approximate trust and reputation
values from the previous behaviour of agent performing similar tasks. Here, based
on experimental results, we propose some ways to estimate trust and reputation
from similar tasks.

Our model uses WSMO, a W3C standard proposal, as the base for definition
of knowledge structures needed by the model: service requests and Web service
response, basically [7,8]. Also, others domain-dependent elements, such as satis-
faction of the task given the response, and similarity between two tasks (when
the trust values for unknown tasks are obtained from trust values for similar
tasks), are described by means of WSMO.

At present, the model is in a refinement and adjusting process, in order to
find the most suitable definition for some of its functions and knowledge repre-
sentations. The main objective of this paper is to propose and experimentally
compare several alternatives for two functions of the model: satisfaction of the
responses obtained after the execution of the contracted task; and the way to
estimate trust and reputation values for unknown tasks.

The rest of the paper is organized as follows: Section 2 introduces the main
characteristics of the model structure and general functionality, the approach
used to estimate trust and reputation from similar tasks (Subsect. 2.1), and the
definitions of domain-dependent functions (Subsect. 2.2). Section 3 compares
experimental results to select a suitable way to obtain the satisfaction of a solu-
tion, and the way to estimate trust and reputation for unknown requested tasks
using similarity between semantically specified tasks. Finally, in Sect. 4 we draw
conclusions and discuss open issues.

2 Trust and Reputation Model Structure

Our model is composed by two information bases that each agent stores about
the behaviour of the others, and a set of functions to operate with these bases.
Following a distributed approach imposed by P2P environments, each agent
manages its own bases of experiences. Functions produce values to guide the
interactions between agents, based on trust and reputation concepts. Basically,
the model is structured following the schema given in Fig. 1.

184 A. Caballero, J.A. Bot́ıa, and A. Gómez-Skarmeta

There are two bases of experiences to obtain trust and reputation values for a
given task: base of experiences for trust (IET) and for reputation (IER). These
values are produced by means of the right combination of some functions. First,
by introspection of the bases of experiences, the model calculates direct trust
(DT), reputation (R) and reliability of direct trust (DTRL), combined (like in
REGRET [5]) to produce a unique value of trust, using the function T . This
value, aggregated from direct trust and reputation, is used to select the partners
in the interaction, to ask about the solution.

If the bases of experiences do not have information for a given task, the model
obtain the values of trust (by means of function DT) and reputation (by means
of function R) for a similar task and combines these values with the similarity
degree between two tasks, given by function D. For that, the model uses functions
IT and IR to select the partners in the interaction for both purposes.

Fig. 1. Relationship between different parts of the model

The initiator agent interacts with the selected agent and solves his task with
the response offered by the partner. In this moment, when interaction is finalized,
the initiator agent evaluates the interaction, taking into account the solution wj

as response of the task sk and the quality promised by the responder, at the
beginning of the interaction, eci,j,k. This information may be used to update the
base of experiences for trust. For that, our model gives two functions: fulfilment
of the promised quality (P) and quality of the response (Q). (The definitions of
functions P and Q are given in Sect. 2.2. The satisfaction degree, assigned to
the responder agent, must be the combination of real quality of the solution (Q)
and the fulfilment of the promised quality (P). This way, the proposed model

On the Behaviour of the TRSIM Model for Trust and Reputation 185

avoids that an agent aj , with a low promised quality eci,j,k and a medium-quality
solution for task sk, may obtain a high satisfaction degree eti,j,k.

Also, the model updates the base of experiences for reputation. This base has
a unique value of reputation eri,j,k to indicate, according to experience of agent
ai, the reliability of agent aj to give reputation information about other agents
performing task sk. The confidence of an agent aj as recommender of others is
increased or decreased following the variation of trust values on recommended
agents (produced during the interaction). The value of the reputation at the end
of the interaction eri,j,k will be better than the value at the beginning when the
trust on recommended agents is improved during the interaction.

2.1 Obtaining Trust and Reputation from Previous Experiences on
Similar Tasks

It is possible that an agent does not have information about performance of other
agents for a given task. In this case, we propose to approximate the trust and
reputation values using a similar task whose accomplishment has been previously
done by known agents and requested by ai. The model obtains this approxima-
tion using a similarity degree between the most similar well-known task and
the unknown one. If there are not exist any similar task, the model assigns a
predefined default value.

Our model defines the function D to obtain the similarity degree between two
tasks from the comparison of the tasks attributes (please, see Sect. 2.2).

This way, combining the trust or reputation in the most similar task (sp)
with the similarity degree between the two tasks D(sk, sp), we define indirect
trust (IT) and indirect reputation (IR) functions to approximate direct trust or
reputation values, respectively:

IT (ai, aj, sk, sp, IETi)) = DT (ai, aj , sp, IETi) ⊕ D(sk, sp),

IR(ai, aj, sk, sp, CRsup(ai, sk)) = R(ai, aj, sk, CRsup(ai, sk)) ⊕ D(sk, sp)

There are several ways to combine trust and reputation values with similarity.
To simplify the notation, we use:

– IT to refer to IT (ai, aj , sk, sp, IETi)),
– IR to refer to IR(ai, aj, sk, sp, CRsup(ai, sk)),
– DT to refer to DT (ai, aj , sp, IETi),
– R to refer to R(ai, aj, sk, CRsup(ai, sk)), and
– D to refer to D(sk, sp)

We may consider the following alternatives for the operator ⊕ to combine
trust and reputation with similarity. They are defined in order to compare the
performance because they seem the most trivial options according to the con-
siderations and characteristics of our model:

186 A. Caballero, J.A. Bot́ıa, and A. Gómez-Skarmeta

ITa : IT = DT · D IR = R · D

ITb : IT = sin
(

π
2 DT · D

)
IR = sin

(
π
2 R · D

)

ITc : IT = DT · sin
(

π
2 D

)
IR = R · sin

(
π
2 D

)

ITd : IT = sin
(

π
2 DT

)
· sin

(
π
2 D

)
IR = sin

(
π
2 R

)
· sin

(
π
2 D

)

ITe : IT = DT+D
2 IR = R+D

2

ITf : does not consider any estimation

The alternatives ITa and ITe combine trust/reputation with similarity fol-
lowing the multiplication and the arithmetic mean of these values, respectively.
In spite of bearing them in mind, we think that these variants do not improve
the satisfaction that produces the alternative ITf (does not consider any esti-
mation). ITa produces smaller values than the factors, as both are in [0, 1]. For
very high values of trust/reputation and similarity, it can obtain average values
of estimation. Hence, it is necessary a previous transformation of the values to
combine. Alternative ITe does not seem to be suitable either; is not viable to talk
about the middle point between two values that represent different magnitudes.

The model must consider the estimation of the trust and reputation when
there is a high degree of similarity between the tasks. The rest of the alterna-
tives that we propose incorporate the function sin to amplify the value of the
similarity, the trust/reputation, or their combination. The value of estimation
must be as similar as possible to the original value for those cases where the
similarity is very high. From the light of the experiments that we will introduce
the most suitable variant seems to be ITc.

Section 3.2 shows some experimental results comparing these alternatives.

2.2 Domain-Dependent Functions: Quality and Similarity

There are two functions in our model whose definition depends on the representa-
tions of tasks and responses: quality and similarity. The definition of these func-
tions is based on the representation of domain concepts by means of WSMO. Each
task request sk and response wj are described by the set of non-functional WSMO
properties, and others added by the user, depending on the application domain [1].

For each property of request or response, the model must define a normal-
ization function to make independent the domain of the real world values from
model-managed values. The model uses values in the range [0,1] to represent
the convenience of the property, independent of the original property domain. A
value near to 0 indicates a non-desired value in the original property, and values
near to 1 indicate high-desired values in the original properties.

Quality of the Solution Given a Task. Our model uses two functions to
evaluate the satisfaction of the initiator agent through the fulfilment of the
promised quality and the quality of the solution according to the task.

On the Behaviour of the TRSIM Model for Trust and Reputation 187

The fulfilment of the promised quality indicates to what extent, the responder
agent fulfils his agreement. Basically, the value of this function results from a
comparison between the agreement quality eci,j,k and the real quality of the given
solution, denoted by Q(wj , sk). To determine the fulfilment of the satisfaction
agreement, we may define a function P :

P (eci,j,k, Q(wj , sk)) =
{

1 : Q(wj , sk) ≥ eci,j,k

1 − (eci,j,k − Q(wj , sk)) : Q(wj , sk) < eci,j,k

The quality of the solution, denoted by Q(wj , sk), indicates how much the
response wj satisfies the requirements specified in the task sk. Calculation of
this value is based on the comparison of both concepts.

According to the convenience of the value of each property, and following
some ideas given by WSMO [8,7] we can to define a set of the most relevance
attributes of a given concept. For each task (sk) or response (wj), we can split
the good-valued attributes into the sets Rg and Rw, respectively.

If Ru is the set of properties used to define a task or response, then Rg ⊂
Ru and Rw ⊂ Ru consist of the most prominent attributes for each concept,
according to the value of each attribute. To construct these sets, we consider
that the attribute bi of sk (we denote with sk.bi) is a good-valued attribute and
hence bi ∈ Rg if sk.bi ≥ λi (λi is a domain-dependent threshold value). In the
same way, an attribute bi of wj is a good-valued and bi ∈ Rw if wj .bi ≥ λi.

Using these sets we can define three alternatives to obtain the quality of the
response wj to satisfy the task sk:

Qa: following the WSMO Web service discovery process

Q(wj , sk) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1 : Rg = Rw Match
0.75 : Rg ⊆ Rw Match
0.5 : Rg ⊇ Rw PartialMatch
0.5 : Rg ∩ Rw 	= ∅ PartialMatch

0 : Rg ∩ Rw = ∅ NoMatch

According to this definition, maximum satisfaction degree is obtained when
all important (good-valued) attributes desired in goal sk are important
(good-valued) attributes in Web services wj . Contrary, the worst satisfac-
tion is obtained when no prominent attributes of goal sk are satisfied by
important attributes of Web service wj .

Qb: considering how many task attributes are satisfied by response

Q(wj , sk) = sin

(
π

2
·
|Q′

wj ,sk
|

|Ru|

)

where Ru is the set of all properties of tasks and responses, Q
′

wj ,sk
⊂ Ru

is the set of these properties such that its values in the task sk are less
restrictive than the values in the response wj :

Q′
wj ,sk

= {bi|bi ∈ Ru, vsk
(bi) ≤ vwj (bi)}

188 A. Caballero, J.A. Bot́ıa, and A. Gómez-Skarmeta

Satisfaction degree function is like a ratio between the satisfied sk at-
tributes and the total number of attributes Ru of any task or response. The
maximum satisfaction degree is obtained when all (not only good-valued)
attributes desired in goal sk are satisfied by Web services wj . Contrary,
the worst satisfaction is obtained when none of them is satisfied.

Qc: considering how many good-valued task attributes are satisfied

Q(wj , sk) = sin

(
π

2
·
|Q′′

wj ,sk
|

|Rg|

)

where Rg is the set of good-valued attributes of task sk, Q′′
wj ,sk

⊂ Rg

is the set of these properties such that its values in the task sk are less
restrictive than the values in the response wj , if the property is consider a
good-valued for the response wj :

Q′′
wj ,sk

= {bi|bi ∈ Rg, bi ∈ Rw, vsk
(bi) ≤ vwj (bi)}

This alternative is similar to previous one. But, in this case, satisfaction is
like a ratio between the satisfied sk important attributes and the number
of important attributes Rg of the task sk. This is an intermediate case
between the previous alternatives Qa and Qb.

A priori, we expect that Qa does not produce the better values of satisfaction
because it does consider only a few range of values of satisfaction (0, 0.5, 0.75, 1).
It considers the satisfaction of groups of important attributes as a whole, but
not the satisfaction of attributes independently.

In front of limitations of approach given by Qa, we propose an alternative
where the satisfaction produces a wider spectrum of values. Qb considers the
amount of task attributes that are satisfied by response, without taking into
account the relevance of the attributes. This alternative should offer better values
of satisfaction, because it is capable to represent in a better way the multitude
of cases that occur.

On the other hand, Qc is an intermediate case between Qa and Qb that takes
into account the satisfaction of each attribute (like Qb) but only of good-valued
attributes (like Qa).

Section 3.1 shows an experimental comparative between these alternatives.

Similarity Between Tasks (D). The similarity between two tasks sk and sp

is obtained from the comparison of the task attributes.

D(sk, sp) = 1 − 1
n

·
n∑

i=1

|ski − spi |

where n is the number of task attributes, ski is the i-th attribute of task sk, and
spi is the i-th attribute of task sp.

The values produced by this function are real values between 0 and 1, where
0 indicates the lowest similarity (entirely different tasks) and 1 the highest sim-
ilarity (equal tasks).

On the Behaviour of the TRSIM Model for Trust and Reputation 189

3 Experiments

We carried out some experiments in order to designate the best alternative for
functions of the model. In the following we present most relevant results related
with the way to obtain the quality of the response given a task, and the way to
approximate trust and reputation using knowledge related with similar tasks.

These experiments took place over the same general conditions, using our own
simulations in Java. We created 10 instances of agents, populating a community
of agents with different responses. There were agents of several qualities, depend-
ing on the quality of its responses. Agents interacted during t=450 time steps.
In each time step, one of them was selected to act as initiator in a negotiation
with the rest. The WSMO goal of the initiator in the negotiation was a task
selected from a predefined set of 10 different tasks. This task represented the
requirement of the selected agent in the given time step.

The experiments were repeated 20 times and results averaged after that.

3.1 Alternatives to Measure the Quality

The experiment compares the evolution of the satisfaction for the solution rec-
ommended by the model (the response offered by the most reliable agent), for
three different alternatives to obtain the satisfaction degree. In this case, we
do not consider similarity between tasks, this means that the model does not
estimate trust and reputation values for unknown tasks.

Figure 2 shows the satisfaction value of the responses given by the most reli-
able agent for each alternative. In each considered alternative, the satisfaction of
recommended solution has stabilized after a small number of experiences. Best
satisfaction values are obtained using Qb, where the quality measure considers

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300 350 400 450

S
at

is
fa

ct
io

n

interactions

Satisfaction of recommended solution

following WSMO Web service discovery process (Qa)
considering how many attributes are satisfied (Qb)

considering how many good-value attributes are satisfied (Qc)

Fig. 2. Comparison of satisfaction degree of recommended solutions, for each alterna-
tive to obtain the quality of the response given the task

190 A. Caballero, J.A. Bot́ıa, and A. Gómez-Skarmeta

the amount of task attributes that are satisfied by the response. This alternative
improves the satisfaction of the solution offered by the most reliable agents. It
is the most suitable situation because the trust in the recommended agent is
determined by the satisfaction degree stored in the bases of experiences. We use
this alternative in the next experiments in order to adjust the model.

3.2 Alternatives to Estimate Trust and Reputation

When agents do not have any direct or indirect experience about the performance
of other agents for a given task, they need to estimate trust and reputation values.
In this way, the model proposes to use trust and reputation values associated
with other task. For that, it gives a similarity function to determine which is the
most similar task, in order to use it to approximate these values. Besides, the
model needs to give the way to obtain the estimated values from similarity degree
and the values for the most similar task. Section 2.1 gives some alternatives. This
experiment compares them in order to determine the best way to estimate trust
and reputation from a similar task. Here, the quality of the response is obtained
using the best alternative proposed in the previous experiment (given by Qb).

Figure 3 shows the satisfaction value of the responses given by the most re-
liable agent for each alternative. The satisfaction of the recommended solution,
offered by the most reliable agent, using the alternative ITc, is greater than the
satisfaction produced by other alternatives. It is greater than values obtained
without consider any approximation using similar tasks. Hence, we demonstrate
that using similarity between tasks improves the selection process.

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 50 100 150 200 250 300 350 400 450

S
at

is
fa

ct
io

n

interactions

Satisfaction of recommended solution estimating trust/reputation from similar tasks

ITa: IT = DT . D and IR = R . D
ITb: IT = sin (π/2 . DT . D) and IR = sin (π/2 . R . D)
ITc: IT = DT . sin (π/2 . D) and IR = R . sin (π/2 . D)

ITd: IT = sin (π/2 . DT) . sin (π/2 . D) and IR = sin (π/2 . R) . sin (π/2 . D)
ITe: IT = DT /2 + D/2 and IR = R/2 + D/2)

Itf: does not consider any estimation

Fig. 3. Comparison of satisfaction degree of recommended solutions, for several alter-
natives to combine trust / reputation and similarity between task in order to estimate
trust/reputation for unknown task

On the Behaviour of the TRSIM Model for Trust and Reputation 191

3.3 Evolution of Trust

The main objective of the trust and reputation model is to guide the response
selection process. The model must select the response offered by high-reliable
agent, but not in the response by itself because it is unknown.

It is important to know how trust values change when the model estimates
trust and reputation from similar tasks. We analyze the evolution of trust values
when the model uses these alternatives to combine trust and reputation with
similarity. In this case, we study the evolution of trust of three types of agents.
We classify the agents in accordance with the quality of the offered responses:

– |Rw| near to |Ru| → HIGH
– |Rw| near to 1

2 |Ru| → MEDIUM
– |Rw| near to 0 → LOW

Figure 4 shows trust evolution for three types of quality of the response that
agents give, for each alternative to estimate trust/reputation for unknown task.
All the alternatives behave of the same way: trust in high-quality agents is in-
creased; trust in medium-quality agents do not shows a significative variation;
and trust in low-quality agents is lightly decreased. This indicates that the es-
timation of trust and reputation values does not affect the evolution of trust
values for any type of agent. The variation of trust values associated to a given
agent is determined by the quality of the solution that it offers, but not in the
way that model uses to estimate this value for unknown tasks.

Also, Fig. 4 give evidence about the capability of the model to represent the
quality of agents using trust values. The model shows a differentiated behaviour
in front of different types of agents. It increases trust in agents with response of
appreciated quality, to keep the values in medium-quality agents and to penalize
the low-quality agents.

In high-quality agent figure (Fig. 4.a), trust evolves from a default value (given
by model at the beginning of simulation) to a value near to 1. It means that
this type of agent offers good responses and, consequently, agents increase their
associated trust value. Figure 4.b shows how that model keeps the trust around
an average value for agents with a medium-quality response. Trust in low-quality
agents (4.c) behaves in a similar way, but with a little decrease. The model
penalizes the bad solutions decreasing the trust for agent that gives it.

Concluding, these experiments show that satisfaction in the response is in-
creased when the model estimates trust and reputation for unknown tasks in a
suitable way. The combination of trust and reputation with similarity between
task using the alternative ITc (please, see Sect. 2.1) enhances the satisfaction
of recommended response. This alternative produces greater satisfaction values
than the alternative when system does not use any approximation of trust and
reputation. Also, this way to estimate trust and reputation has a desired differ-
entiated behaviour according to the quality of the response given by each agent.
Agents with a high-quality response increase its trust.

192 A. Caballero, J.A. Bot́ıa, and A. Gómez-Skarmeta

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300 350 400 450

T
ru

st

interactions

(a) Trust evolution of high-quality agents

ITa: IT = DT . D and IR = R . D
ITb: IT = sin (π/2 . DT . D) and IR = sin (π/2 . R . D)
ITc: IT = DT . sin (π/2 . D) and IR = R . sin (π/2 . D)

ITd: IT = sin (π/2 . DT) . sin (π/2 . D) and IR = sin (π/2 . R) . sin (π/2 . D)
ITe: IT = DT /2 + D/2 - IR = R/2 + D/2)

Itf: does not consider any estimation

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300 350 400 450

T
ru

st

interactions

(b) Trust evolution of medium-quality agents

ITa: IT = DT . D and IR = R . D
ITb: IT = sin (π/2 . DT . D) and IR = sin (π/2 . R . D)
ITc: IT = DT . sin (π/2 . D) and IR = R . sin (π/2 . D)

ITd: IT = sin (π/2 . DT) . sin (π/2 . D) and IR = sin (π/2 . R) . sin (π/2 . D)
ITe: IT = DT /2 + D/2 - IR = R/2 + D/2)

Itf: does not consider any estimation

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300 350 400 450

T
ru

st

interactions

(c) Trust evolution of low-quality agents

ITa: IT = DT . D and IR = R . D
ITb: IT = sin (π/2 . DT . D) and IR = sin (π/2 . R . D)
ITc: IT = DT . sin (π/2 . D) and IR = R . sin (π/2 . D)

ITd: IT = sin (π/2 . DT) . sin (π/2 . D) and IR = sin (π/2 . R) . sin (π/2 . D)
ITe: IT = DT /2 + D/2 - IR = R/2 + D/2)

Itf: does not consider any estimation

Fig. 4. Trust evolution of different types of agents (a: high-quality, b: medium-quality,
c: low-quality), using several alternatives to combine trust/reputation and similarity
between task in order to estimate trust/reputation for unknown task

On the Behaviour of the TRSIM Model for Trust and Reputation 193

4 Conclusions and Future Work

Trust and reputation information can be different depending on the specified task
or requirement. Nevertheless, if the model ignores the behaviour of the service
for a given task, the values of trust can be approximated using the similarity
degree between this and a well known task. Our proposed model increases the
satisfaction of the recommended response when it uses a suitable way to combine
trust and reputation with similarity, with respect to cases in which it does not
use any estimation. The proposed way is capable to show different behaviours
according to the quality of the response offered by agents. Nevertheless, we need
to do some experiments where the quality of the agent response changes during
the experiment, in order to prove the adaptability of the model.

We intend to define and prove some alternatives for other functions of the
system (i.e. an array of agents for asking them about trust and reputation,
bases of experience updating process, etc.), in order to identify the parameters
that affect the system performance and their high-recommended values.

References

1. Caballero, A., Bot́ıa, J., Skarmeta, A.: Trust and Reputation Model based on
WSMO. In: Falcone, R., Barber, S., Sabater-Mir, J., Singh, M. (eds.) Proc. Ninth
Workshop on Trust in Agent Societies at AAMAS, pp. 9–18 (May 2006)

2. Caballero, A., Bot́ıa, J., Skarmeta, A.: A New Model for Trust and Reputation
Management with an Ontology Based Approach for Similarity Between Tasks. In:
Fischer, K., Timm, I.J., André, E., Zhong, N. (eds.) MATES 2006. LNCS (LNAI),
vol. 4196, pp. 172–183. Springer, Heidelberg (2006)

3. Golbeck, J., Hendler, J.: Filmtrust: Movie recommendations using trust in web-
based social networks. In: Proc. of the IEEE Consumer Communications and Net-
working Conference, January 2006, vol. 1, pp. 282–286. IEEE Computer Society
Press, Los Alamitos (2006)

4. Marti, S.: Trust and Reputation in Peer-to-Peer Networks. PhD thesis, Stanford
University (2005)

5. Sabater, J., Sierra, C.: REGRET: reputation in gregarious societies. In: Müller,
J.P., André, E., Sen, S., Frasson, C. (eds.) Proceedings of the Fifth International
Conference on Autonomous Agents, Montreal, Canada, pp. 194–195. ACM Press,
New York (2001)

6. Griffiths, N.: Task Delegation Using Experience-Based Multi-Dimensional Trust.
In: AAMAS ’05: Proceedings of the Fourth International Joint Conference on Au-
tonomous Agents and Multiagent Systems, pp. 489–496. ACM Press, New York
(2005)

7. WSMO Team: Web Service Modeling Ontology (WSMO). W3C (2005),
http://www.w3.org/Submission/WSMO/

8. de Bruijn, J., Lausen, H., Krummenacher, R., Polleres, A., Predoiu, L., Kifer, M.,
Fensel, D.: D16.1v0.2 The Web Service Modeling Language WSML. WSML Final
Draft March 20, 2005. W3C (2005), http://www.wsmo.org/TR/d16/d16.1/v0.2

http://www.w3.org/Submission/WSMO/
http://www.wsmo.org/TR/d16/d16.1/v0.2

Implementing ReGreT in a Decentralized

Multi-agent Environment

Stefan König1, Sven Kaffille2, and Guido Wirtz2

1 University of Bayreuth
Chair of Information Systems Management

stefan.koenig@uni-bayreuth.de
2 University of Bamberg

Distributed and Mobile Systems Group
{sven.kaffille,guido.wirtz}@wiai.uni-bamberg.de

Abstract. Since the last decade reputation management has been ex-
amined as a possible foundation for trust establishment and trust dis-
semination in distributed artificial intelligence. While the systems are
distributed the reputation management systems are in most cases cen-
tralized. This paper describes the implementation of the ReGreT ap-
proach to trust and reputation management in Multi-Agent Systems in
a decentralized environment, where the services which provide reputation
management are also distributed.

1 Introduction

Since the last decade the concept of trust has received much attention by com-
puter scientists. Especially in distributed artificial intelligence (DAI) many re-
searchers have discovered trust as a concept to deal with probably malicious
interaction partners.

One goal of DAI is to provide autonomous and flexible open Multi-Agent Sys-
tems (MAS). In MAS autonomous agents interact, while there exists no central
global control. This fact requires that agents are able to choose partners by se-
lecting a trustworthy partner (which nevertheless may be harmful), as harmful
agents cannot be generally excluded from a MAS.

Trust is a highly vague concept [1] that has no single common definition agreed
on yet, but there are many definitions available. Most of the definitions agree
that trust is highly subjective and context-dependent. In this paper we do not
try to create a new definition of trust, but base our work on already available
definitions, namely the ones provided in the work about ReGreT [2]. A concept
closely related to trust is reputation which is used in ReGreT, as well. Reputation
can be used as one source of information to estimate the trustworthiness of an
agent. While trust is a subjective concept, reputation is a measure of an agent’s
trustworthiness a group of other agents shares [3].

In order to allow fast dissemination of reputation a central entity is often em-
ployed for reputation management, which stores reputation of agents as records

P. Petta et al. (Eds.): MATES 2007, LNAI 4687, pp. 194–205, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Implementing ReGreT in a Decentralized Multi-agent Environment 195

of recommendations. In fast growing MAS a central (physical) entity may be-
come a performance bottleneck, as its resources are limited, and also a single
point to compromise reputation management. In order to ensure that resources
for reputation management grow with the number of parties that participate in
the MAS, we proposed in [4] a physically decentralized reputation management
based on peer-to-peer concepts which is provided in cooperation by all agent
platforms, that are part of the MAS. Logically all agents and agent platforms
can use this reputation management like a centralized entity. The peer-to-peer
foundations of our reputation management account for data consistency and
integrity and provide a distributed authentication mechanism based on PGP-
like [5] mechanisms. They provide security facilities for reputation management
which operates on top of these.

The initial implementation of this reputation management employed only a
simple reputation metric and understanding of reputation. Therefore we adopted
a well known approach to trust and reputation management [2] to our implemen-
tation. This also adds a feature, that allows collection of subjective information
by single agents, to ease implementation of trust. This paper describes how this
approach can be implemented using our decentralized infrastructure.

For this purpose the next section relates our work to other reputation man-
agement systems. The following Sect. 3 sketches ReGreT and concepts that
have been incorporated into our work. Section 4 describes how ReGreT can be
implemented based on our proposed infrastructure. The last Sect. 5 discusses
limitations and advantages of our reputation management scheme, as well as
directions for future research.

2 Related Work

There are two approaches we see in close relation to our approach. The first ap-
proach is described in [6]. Instead of Chord [7] which is used in our approach it
uses the decentralized storage method P-Grid. In this approach only information
on dishonest interactions is considered as relevant and the result of a reputation
calculation yields only a result that indicates if an agent is untrustworthy (0) or
trustworthy (1). In our system all interactions are considered relevant to be able
to get a more concise impression of agent behavior. In our approach the metric to
calculate reputation of an agent is not an integral part of the system, but can be
exchanged as required by the application using our system. But [6] reveals also
some facts in common with our system. The reputation data is globally available
and also scalability issues are addressed similar to our approach using Chord.

The second approach, called AVALANCHE, is based on ideas of the Insti-
tute for Computer Science and Social Studies of Freiburg, Germany (see e.g.
[8]). One part of this project is a reputation mechanism. This approach has a
sanction component that prevents contacting agents with low reputation like our
system does with platforms. However, in AVALANCHE the metrics are hard-
wired where in our work the metrics are exchangeable. But the main difference
is that AVALANCHE uses a physical central trusted entity, while our approach

196 S. König, S. Kaffille, and G. Wirtz

employs a logical central entity, which is physically distributed and therefore
our approach has no single point, that can be attacked to disrupt reputation
management. An approach, which is very simular to our approach can be found
in the PACE architecture [9]. This implementation differs in some details of the
trust- and reputation mechanism’s implementation.

While many approaches rely only on a single kind of information to estimate
trustworthiness of other agents, we decided to elaborate our work ([4]) in direc-
tion of ReGreT, which incorporates different information sources. We chose the
ReGreT framework, as it has been developed by examining (see [10]) other trust
and reputation management systems and incorporating the best practices from
the examined approaches.

3 The ReGreT Approach

This section will introduce the ReGreT approach as it is proposed by Sabater and
Sierra in [10], [2] and [11]. In order to decide on the trustworthiness of an inter-
action partner, ReGreT relies on direct experiences an agent can gain, witness,
and social information. These information sources are described in this section
in line with how they are stored (data bases) and how they are processed by the
different modules of ReGreT to determine trust. At the end of this section we
justify, why we decided to extend our previous work by the ReGreT approach.
Figure 1 provides an overview of ReGreT and its components, which are ex-
plained in the following. Direct experiences are, without any doubt, the most
reliable and relevant information about other agents. This kind of information
arises after a interaction between two agents. Depending on the metrics used

Fig. 1. The ReGreT Approach (see also [10], p. 42)

Implementing ReGreT in a Decentralized Multi-agent Environment 197

in the specific reputation model, this can be either positive, negative or both
types of information. Thus ReGreT uses a continuous metric between 0 and 1,
all kinds of experiences can be represented within this interval. Some reputation
models also mention the observation of transactions between other agents.

Witness or word-of-mouth information comes from other agents. This infor-
mation is based on their direct experiences and information received from others.
This kind of information is not as trustworthy as the direct information men-
tioned above. Every piece of witness information has some uncertainty around
itself. More detailed and extensive approaches, like the advancement of ReGreT,
called Repage [12], have different modules to specify these two sources of witness
reputation. ReGreT does not differentiate between these two sources.

The third and last information source of ReGreT is the social information.
The knowledge used here is generated from the relations between the system
members or the roles, which they play in the (artificial) society. This kind of
information is based on the adoption that agents’ behavior is influenced by the
role or roles the agents play within the society. This information is available and
meaningful only after a couple of transactions. Before that no social structure
of the system members can be identified. Sabater and Sierra [13] suppose that
this kind of information source will become more and more important because
of the increasing complexity of Multi-Agent-Systems.

Following the three information sources, the ReGreT model employs three
data bases, the ”outcomes data base”(ODB) for own experiences with other
agents, the ”information data base”(IDB) for storage of witness information,
and the ”sociograms data base”(SDB) to represent social structures.

For simplicity the ODB does not distinguish between direct interaction and
direct observation in terms of reliability of information. Direct trust is context
dependent, so ReGreT stores ”the direct trust agent a has in agent b in a specific
context to perform a specific action” [10]. The outcome of an interaction is
defined as a tuple including the trusting agent, the trusted agent and the issues
of the contract between the agents. Furthermore the tuple contains the fulfillment
level, which has been achieved, and the interaction time stamp. The context is
defined by the issues of the contract, that are used to determine the behavioral
aspects that are relevant in the context.

The IDB is very similar to the ODB, but contains the outcomes observed by
other agents. It contains tuples which have the same structure as the tuples in
ODB, but they are annotated with the identifier of the agent, that provided the
information.

The information included in the SDB is also stored with the help of tuples.
These tuples consist of the relation type, the two agents and the intensity of this
relation. The data of SDB are the basis of three ReGreT modules, which are
described in the following subsection.

Orthogonal to the information and data bases described so far, another kind
of information is considered. This information specifies the relation between
different contexts of the domain, in which ReGreT is applied. Therefore it is
called ontological dimension. It allows to transfer trust and reputation values
from one context to a more complex context.

198 S. König, S. Kaffille, and G. Wirtz

For data processing of the different information sources, the ReGreT model
provides modules. The direct trust (DTa→b(ϕ)) module processes the direct ex-
periences of an agent. The problem with solely relying on direct trust is that it is
not always available, as the trusting agent may never have had an interaction or
too few interactions with the trusted agent (i.e. the reliability of direct trust is
low). Therefore ReGreT also relies on reputation (Ra→b(ϕ)). As the calculation
of the reputation value is more complex than the calculation of the trust value
from the ODB, the reputation model is divided in three parts: ”If the reputation
is calculated from the information coming from witness we talk about the wit-
ness reputation, if the reputation is calculated using the information extracted
from the social relations between partners we are talking about the neighborhood
reputation. Finally, reputation based on roles and general properties is modeled
by the system reputation.” ([10] p. 43) Each of these modules delivers two val-
ues: The trust/reputation value and the reliability of this value. The modular
architecture allows the agents to choose what kind of trust and reputation val-
ues they want to focus on. Furthermore the model provides information about
almost new agents in the system, and new agents, in return, can use the model
to get information about the system’s social structure.

The direct trust module of ReGreT focuses on the direct interactions, in con-
trast to the complete trust module, which also depends on opinions and obser-
vations of third party agents. The information regarding direct interactions is
always context-dependent and is linked to a certain behavioral aspect. Direct
trust DTa→b(ϕ) can be calculated by weighted mean, whereas a and b being
agents and ϕ being the context the information is based on. More formally the
calculation of direct trust is formulated as

DTa→b(ϕ) =
∑

oi∈ODBa,b
gr(ϕ)

ρ(t, ti) ∗ Imp(oi, ϕ) (1)

whereas ODBa,b
gr(ϕ) ensures selection of all outcomes that are relevant for context

ϕ, ρ(t, ti) is a weight, which increases with interactions closer to the current time
t, and Imp(oi, ϕ) is a function, which calculates the trust value regarding infor-
mation about the related context. The implementation of this function depends
on the agent. Furthermore ReGreT employs reliability of these values. Reliabil-
ity of ratings is calculated dependent on the quantity and the variability of the
different rating values (see [10] p. 46 et seq.) provided. Witness reputation is esti-
mated from information provided by other agents, which gained experience with
the target agent in the past. Neighborhood reputation accounts for the social en-
vironment of the target agent. It is a kind of prejudice as it is not directly based
on earlier interactions. System reputation is based on objective observations like
the role the agent fulfills in the society or company. To calculate the reliability of
witness reputation values, the model provides a credibility module. These values
have to be evaluated together with information about the witnessing agent as
its social relations. This module provides a kind of meta-belief about a given
reputation value and eases its interpretation.

Implementing ReGreT in a Decentralized Multi-agent Environment 199

System reputation is, compared to the other reputation modules, the easiest
one to calculate, as ReGreT assumes that this information is known or directly
observable by all members of the system or its groups. Therefore this is an
available data source even for new agents in the society, whereas e.g. the neigh-
borhood reputation requires a deep knowledge of the system, as its calculation
is based on fuzzy rules. Witness reputation (value and reliability), is calculated
from the trust values the witnesses assigned to the target agent for a certain con-
text, the credibility of the witness. From a sociological point of view this model
is not complete, but it seems to provide a good compromise between the com-
plexity and the requirements needed in artificial societies. For a more detailed
description and discussion of the reputation model see [10, pp 47-60].

Based on the three reputation types mentioned and default reputation, which
is always available even if the other reputation types cannot provide meaningful
values, an overall reputation value can be calculated. If all reputation types are
available, witness reputation is weighted stronger than the neighborhood which
is weighted stronger than the system reputation which again is weighted stronger
than default reputation. The next step of consolidation is the integration of knowl-
edge from the trust module with the knowledge from the reputation module. If an
agent has more reliable value based on its own direct interactions, it uses that value
to generate its image. If not, it falls back to the reputation values (see [10, p. 60]).

The ontological dimension of a domain completes the model. Any module can
use this information. This module allows agents to calculate trust and reputation
values from information of related contexts. With this module all modules can
combine single trust and reputation values from one specific context to values of
a more complex context, which is related to the specific contexts by a weighted
ontological relationship. Each related context has to be considered while aggre-
gating the trust and reputation values with help of a weighted mean.

In this section we had a closer look at the ReGreT approach. Now it is neces-
sary to justify, why this approach is worth implementing in our environment. Re-
garding trust it respects subjectivity, as the implementation of the Imp-function
is dependent on the agent, and dependency on context, as each context can be
described by certain properties, that become part of the contract between in-
teraction partners. These properties constitute a kind of objective part of the
context. The properties that are relevant in a context are known by all agents in-
terested in that context. Subjectivity is created by how individual agents weigh
these properties. This allows a more meaningful creation of reputation values
than just communicating plain reputation values. Furthermore the ontological
dimension allows (partial) transfer of trust and reputation from one context
to another, so that eventually trust and reputation information can be created
faster for contexts, in which no interactions have occurred, so far.

4 Implementing ReGreT as a Decentralized Mechanism

In this section we describe how the ReGreT concepts have been implemented into
our proposed decentralized reputation management system. For this purpose we
first summarize our earlier work and its properties.

200 S. König, S. Kaffille, and G. Wirtz

4.1 Foundations for ReGreT Implementation

To support really open MAS, in [4] we developed a physically decentralized
architecture, that facilitates the provision of logically centralized services. The
central goal is to distribute the load for agent management services as e.g. direc-
tory services [14], agent authentication, and also reputation management among
the participating hosts, which constitute a platform for an open MAS. These
hosts provide an execution environment to software agents, which can use the
provided services. The distribution of services among all participants is based
on Peer-to-Peer (P2P) technologies. At the core of our reputation management
service a Java implementation [15] of the distributed hash table (DHT) Chord
[7] is employed.

Our distributed reputation management service was designed to store ratings
which agents can provide for other agents. Each single agent can use these ratings
to estimate trustworthiness of other agents. All agents of the open MAS have
shared access to all ratings stored by our system. As a context for the ratings we
just considered the roles an agent can play in a MAS e.g. in cooperate problem
solving [16] processes.

In order to achieve this goal we identified a set of requirements, which have
to be met in a physically completely decentralized environment with no global
control. A distributed authentication mechanism has to be implemented to en-
able the unique identification of hosts and agents, to facilitate attribution of
ratings to the right agent(s). Distributing the data within a DHT may lead to
data consistency problems, that have to be addressed. Agents must be enabled
to rate each other only in case they really interacted. Different attacks on the
system by hosts and agents have to be counter-measured, as e.g. denial of service
or manipulation of ratings by hosts, and faking of ratings by agents.

The authentication mechanism has been implemented by means of a PGP-
like key infrastructure, which is provided and also used by our modified Chord
DHT implementation, that has an authentication-based join protocol. The data
consistency and manipulation problems have also been addressed by adaptation
of the DHT and implementing different subsystems on each host, that counter-
measure different attacks. In order to meet all requirements we developed an
architecture with four layers, that has to be implemented on each host (Fig. 2).
Each layer performs different kinds of tasks and provides its functionality to
the layer above or directly below. The top layer just provides a facade of the
reputation management system to the agents executed by a host. The lowest
layer provides communication facilities for the DHT and subsystems on higher
layers. On the layer above the communication facilities a service providing com-
munication services to other services and a service managing data stored in and
retrieved from the DHT is located. These are used by another layer of services,
which are responsible for cryptographic concerns (security service) like authen-
tication and data integrity, data consistency (platform service), interaction and
agent tracking (lease service), and reputation calculation.

Agents executed on a host are enabled to retrieve the ratings on a per agent
and role (context) basis. The reputation service provides means to calculate a

Implementing ReGreT in a Decentralized Multi-agent Environment 201

Fig. 2. Architecture of local services on each host

reputation value from these ratings. Our architecture was designed to facilitate
the exchange of this reputation service and the representation of the rating values
as different application domains may require different values and representation
of reputation.

The focus of this paper lies on the reputation service, that is exchanged by
a reputation service that implements the ReGreT approach. For this purpose
different problems have to be addressed, which are discussed along with the im-
plementation of ReGreT in our architecture. The main modifications of ReGreT
to implement it as a completely decentralized mechanism can be subsumed to
the following topics: the missing direct observation possibility, the missing infor-
mation about the society and the different way to manage credibility.

Figure 3 presents an overview of our reputation service implementation and
how the information sources have been changed. The ODB, and the data base
for the ontological relations become part of a so called local data manager, that
is instantiated for each single agent and provided to it by our reputation man-
agement service. As it may not be possible or too expensive in a P2P system to
observe interactions between other agents for relevant trust contexts, the ODB
stores only information about direct interactions and no information about ob-
served interactions of a target agent in a certain context. This information is
the source of the credibility module. In contrast to ReGreT, not the number of
interactions it has processed or observed influences the reliability of direct trust,
but the deviation of an agent’s estimation of trust before an interaction from the
outcome of the interaction. This seems to be useful as in our ODB fewer entries
exist than in the original one. The data manager also stores the experiences
with other agents in their role as evaluators (meta-belief) into the ODB, which
becomes relevant for evaluating witness’ credibility.

202 S. König, S. Kaffille, and G. Wirtz

Fig. 3. Architecture of ReGreT implementation

The ontological dimension is provided by the local data manager as well. Our
implementation allows to define associations between and composition of roles
agents can play in the relevant domain. We distinguish between association and
composition, as for a composition reputation values for all roles that take part in
a composition must be present to allow calculation of meaningful values, but for
associations only one role of all known associations to the target role must have
reputation values assigned to allow a meaningful transfer of reputation values.
The associations and compositions are annotated with weights that are used
to transfer a trust value and its reliability from one context to another. These
weights have usually to be defined by a domain expert. Our reputation manage-
ment service allows adjustment of these weights at runtime, so that agents can
eventually adapt these values to a changing environment.

The IDB, in the original approach responsible for importing other agents’ be-
liefs, is replaced by an interface to adapt the DHT. In contrast to the ideas of Sierra
and Sabater, no other agent is contacted to collect its experiences, as they can be
requested from the underlying DHT. A big advantage of a logically centralized data
management is the ubiquitous availability of data on the one hand and the data
security through distribution on the other hand. No agent has a local IDB and it is
logically shared among all agents, while being physically decentralized. Therefore
an agent must not reason about which witnesses to contact in order to obtain rel-
evant ratings. All ratings relevant for the context can be obtained from the DHT
by a single request. The original ReGreT approach proposes analyzing the devi-
ation of the witness’ ratings to determine the witness’ credibility. Weighted with
this credibility the agents’ beliefs are aggregated. But this proceeding cannot be
realized with the current version of the plugin. The data sets needed for this cal-
culation cannot be retrieved from the DHT. Instead of that, agent credibility is
implemented as a personal belief about another agent and held in the ODB. The
agent’s evaluation of the target before interaction takes place is compared with

Implementing ReGreT in a Decentralized Multi-agent Environment 203

Fig. 4. Implementing Neighborhood Reputation

the own experience gained through interaction. After this comparison the agent
rates the evaluator in its role as evaluator.

The information contained in the SDB cannot be provided to an agent when
it enters the system as the system is completely distributed and open. The social
relations may be not directly observable and may constantly change. Implement-
ing neighborhood reputation is a more difficult challenge, because our reputation
management service provides no possibility to generate information about the
society and there is no central unit to analyze all social interactions between the
society members. To generate the information, another way has to be found (see
also figure 4): The requesting agent tries to get information about the former
interaction partners of the target. So it requests the ratings of others about the
target agent in the target context from the P2P system and the contexts with an
ontological correlation (line with question mark in Fig. 4). Based on these data
structures, the requesting agent can identify the agents which have interacted
with the target agent (solid lines). Then the personal experiences with these
identified agents (dotted lines) are used to calculate a neighborhood-reputation
value. Only a subset of possible relationships can be identified in this manner,
more precisely, only the interactions that concern the target agent in the target
contexts. To complete the proceeding, the ratings the target agent has evalu-
ated other agents with in the target context should be examined, as well. This
information is not directly available in the DHT and therefore currently not ac-
counted for. It could be retrieved by examining all ratings of all agents in the
target context, but this proceeding is expensive as these data have not been
stored explicitly (e.g. with a unique identifier assigned) in our DHT.

In order to calculate a trust value the target agent and the target context
has to be provided to our reputation management system. First of all, contexts
with an ontological relation are identified. Thus, the following procedure is exe-
cuted for all identified contexts. If there are many direct experiences available and
they are reliable, the reputation values are less important in the aggregation of di-
rect experiences with reputation beliefs at the end. Therefore if direct experiences
are highly reliable, the evaluation of agent reputation is omitted, as the retrieval
of ratings from the underlying DHT is expensive. To calculate the reputation
value the witness reputation can be requested directly from the underlying P2P
network. While the neighborhood reputation is calculated as shown above, the

204 S. König, S. Kaffille, and G. Wirtz

system reputation includes information about the agent’s behavior in the past.
This includes e.g. his willingness to renew its leases. All different elements of rep-
utation are weighted regarding the reliability (respectively credibility) of the sin-
gle values. The final aggregation of values is performed according to ReGreT. The
reputation service has been implemented in Java to be easily integrated in our
previous work. Classes corresponding to each module of ReGreT have been im-
plemented, as well as for the local data manager and the ontology representation.

5 Conclusion and Future Work

In this paper we investigated and presented how the ReGreT approach, one
of the most matured trust and reputation mechanisms, can be implemented in
our decentralized multi-agent environment. Some minor modifications had to be
made regarding the collection of social information, as it cannot be assumed
that all relationships between agents are observable in a distributed computing
environment. We also adjusted the understanding and implementation of the
ontological dimensions. We were able to provide a Java implementation, which
has been successfully tested with a simple example application.

The future directions for extension and research we see are twofold. One di-
rection is to further evaluate and refine the trust and reputation mechanism on
the agent level. Therefore the next step is to evaluate the impact of our mod-
ifications to the original ReGreT approach with help of simulations similar to
the simulations in [10]. There are also discussions if a plain mathematical ap-
proach to trust and reputation can really model it (see e.g. [17]) or if a cognitive
approach is needed. Currently there is a successor of ReGreT, called Repage
[12]. It uses a cognitive approach using the latest results from psychology. For
our architecture and implementation it has to be evaluated how a cognitive ap-
proach can complement our framework, as we assume that in a computational
environment a cognitive approach will depend on the mathematical approaches
used to estimate how far the required beliefs can be attributed to an agent under
consideration for being trusted.

Another direction of extension regards the DHT layer of our reputation man-
agement service. As we already have reputation for single hosts, regarding the
performance of the host for storage reliability, this can be further advanced,
as we also need reputation regarding routing in the DHT. Therefore it has to
be tested, if an approach using social links as suggested by Marti et al.[18] is
applicable for our DHT layer.

References

1. Marsh, S.P.: Formalising Trust as a Computational Concept. PhD thesis, University
of Stirling (April 1994)

2. Sabater, J., Sierra, C.: REGRET: Reputation in gregarious societies. In: Müller,
J.P., Andre, E., Sen, S., Frasson, C. (eds.) Proceedings of the Fifth International
Conference on Autonomous Agents, Montreal, Canada, pp. 194–195. ACM Press,
New York (2001)

Implementing ReGreT in a Decentralized Multi-agent Environment 205

3. Conte, R., Paolucci, M.: Reputation in Artificial Societies: Social Beliefs for Social
Order. Kluwer Academic Publishers, Norwell, MA (2002)

4. Grünert, A., Hudert, S., König, S., Kaffille, S., Wirtz, G.: Decentralized Reputation
Management for cooperating Software Agents in open Multi-Agent Systems. Inter-
national Transactions on Systems Science and Applications 1(4), 363–368 (2006)

5. Garfinkel, S.: PGP: Pretty Good Privacy. O’Reilly (1994)
6. Aberer, K., Despotovic, Z.: Managing Trust in a Peer-2-Peer Information System.

In: Paques, H., Liu, L., Grossman, D. (eds.) Proceedings of the Tenth International
Conference on Information and Knowledge Management (CIKM01), pp. 310–317.
ACM Press, New York (2001)

7. Stoica, I., Morris, R., Karger, D., Kaashoek, M.F., Balakrishnan, H.: Chord: A
Scalable Peer-to-Peer Lookup Service for Internet Applications. In: Proceedings of
the 2001 conference on applications, technologies, architectures, and protocols for
computer communications, pp. 149–160. ACM Press, New York (2001)

8. Padovan, B., Sackmann, S., Eymann, T., Pippow, I.: A Prototype for an Agent
based Secure Electronic Marketplace Including Reputation Tracking Mechanisms.
In: Proceedings of the 34th Annual Hawaii International Conference on System
Sciences (HICSS-34), vol. 7, p. 7008. IEEE Computer Society, Washington, DC
(2001)

9. Suryanarayana, G., Diallo, M.H., Erenkrantz, J.R., Taylor, R.N.: Architectural
Support for Trust Models in Decentralized Applications. In: ICSE ’06: Proceedings
of the 28th international conference on Software engineering, pp. 52–61. ACM
Press, New York (2006)

10. Sabater, J.: Trust and Reputation for Agent Societies. PhD thesis, Institut
d’Investigacio en Intelligencia Artificial (IIIA) (2003)

11. Sabater, J., Sierra, C.: Social ReGreT, a reputation model based on social relations.
SIGecom Exch. 3(1), 44–56 (2002)

12. Sabater, J., Paolucci, M., Conte, R.: Repage: REPutation and ImAGE Among
Limited Autonomous Partners. Journal of Artificial Societies and Social Simula-
tion 9(2), 3 (2006)

13. Sabater, J., Sierra, C.: Review on Computational Trust and Reputation Models.
Artif. Intell. Rev. 24(1), 33–60 (2005)

14. Kaffille, S., Loesing, K., Wirtz, G.: Distributed Service Discovery with Guaran-
tees in Peer-to-Peer Networks Using Distributed Hashtables. In: Arabnia, H.R.
(ed.) The 2005 International Conference on Parallel and Distributed Processing
Techniques and Applications, CSREA Press, pp. 578–584 (2005)

15. Kaffille, S., Loesing, K.: Open Chord version 1.0.2 - User’s Manual. Lehrstuhl
für Praktische Informatik, Fakultät WIAI, Otto-Friedrich Universität Bamberg,
Feldkirchenstraße 21, 96047 Bamberg (2006)

16. Wooldridge, M.J., Jennings, N.R.: Cooperative Problem Solving. Journal of Logic
and Computation 9(4), 563–592 (1999)

17. Castelfranchi, C., Falcone, R.: Principles of Trust for MAS: Cognitive Anatomy,
Social Importance, and Quantification. In: Demazeau, Y. (ed.) Proceedings of the
Third International Conference on Multiagent Systems, ICMAS 1998, pp. 72–79.
IEEE Computer Society, Los Alamitos (1998)

18. Marti, S., Ganesan, P., Garcia-Molina, H.: DHT Routing Using Social Links. In:
3rd International Workshop on Peer-to-Peer Systems, pp. 100–111 (2004)

Author Index

Aldewereld, Huib 61

Benamrane, Nacéra 49
Bot́ıa, Juan A. 182
Braubach, Lars 85
Busquets, Dı́dac 109

Cabac, Lawrence 1
Caballero, Alberto 182
Chiu, Chung-Cheng 37

de Jonge, Femke 61
Dikenelli, Oguz 13

Goknil, Arda 13
Gómez-Skarmeta, Antonio 182

Hamraz, Seyed Hamid 98

Kaffille, Sven 194
Kardas, Geylani 13
Katasonov, Artem 25
Klügl, Franziska 145
König, Stefan 194

León Soto, Esteban 73
López, Beatriz 109

Mao, Xiaoyu 133
Micalizio, Roberto 170
Minaei-Bidgoli, Behrouz 98
Muñoz, Vı́ctor 109
Murillo, Javier 109

Nassane, Samir 49

Pokahr, Alexander 85
Punch, William F. 98

Rindsfüser, Guido 145
Roos, Nico 61, 133, 157

Schuldt, Arne 121
Soo, Von-Wun 37

ter Mors, Adriaan 133
Terziyan, Vagan 25
Topaloglu, N. Yasemin 13
Torasso, Pietro 170

Werner, Sven 121
Wirtz, Guido 194
Witteveen, Cees 133, 157

	MultiagentSystem Technologies
	Preface
	Table of Contents
	Multi-Agent System: A Guiding Metaphor for the Organization of Software Development Projects
	Introduction
	Leitbild: MAS
	Guiding Metaphor
	Multi-Agent System of Developers
	Matrix Organization
	Communication, Coordination and Synchronization

	MAS of Developers in the Project Context
	Employing the Guiding Metaphor
	Homomorphic Structure
	Experiences

	Conclusion
	References

	Model Transformation for Model Driven Development of Semantic Web Enabled Multi-Agent Systems
	Introduction
	MDD for Semantic Web Enabled MAS Development
	Models for Agent – Semantic Web Service Interaction
	Application of the Transformation Using ATL
	Related Work
	Conclusion and Future Work
	References

	SmartResource Platform and Semantic Agent Programming Language (S-APL)
	Introduction
	Motivation and Related Work
	SmartResource Platform
	Semantic Agent Programming Language (S-APL)
	Conclusions and Future Work
	References

	Subgoal Identification for Reinforcement Learning and Planning in Multiagent Problem Solving
	Introduction
	Subgoal Identification
	The Probability Flow Analysis Algorithm
	Comparison to Previous Algorithms

	Subgoal-Based Multiagent Problem Solving
	The Subgoal-Based Policy
	Subgoal-Based Multiagent SMDP Framework
	Multiagent Learning with Subgoal-Based Policies

	Experimental Results
	Conclusions
	References

	Medical Image Segmentation by a Multi-Agent System Approach
	Introduction
	Related Work
	Multi-Agent Platform
	JADE (Java Agent DEvelopment Framework)
	Agent Communication Language
	Interaction Protocols

	The Proposed Multi-Agent System Approach
	Criteria Segmentation
	Multi-Agent System

	Experimental Results and Discussion
	Conclusion
	References

	Using DESs for Temporal Diagnosis of Multi-agent Plan Execution
	Introduction
	Related Work
	Modeling Plan Execution
	Making Predictions
	Diagnosis and Explanation
	Example
	Conclusion
	References

	Agent Communication Using Web Services, a New FIPA Message Transport Service for Jade
	Introduction
	Underlying Technologies
	Jade
	Web Services

	Objectives
	Jade WSMTS Implementation
	Endpoint References (EPR)
	Messaging
	Publication and Discovery

	Example
	Discussion
	Related Work
	Future Work

	Conclusion
	References

	Goal-Oriented Interaction Protocols
	Introduction
	Related Work
	Goal-Oriented Protocols Approach
	Domain Interaction Analysis
	Integration of Domain Behavior

	Realization Within Jadex
	Realization Approach
	Example Protocol: Goal-Oriented Contract-Net
	Goal-Oriented Contract-Net Implementation

	Example Application
	Buyer Agent Implementation
	Seller Agent Implementation

	Summary and Outlook
	References

	VWM: An Improvement to Multiagent Coordination in Highly Dynamic Environments
	Introduction
	Previous Work on Coordination
	Explicit and Implicit Communication for Coordination
	Problem Statement
	Present Paper

	VWM in General
	High-Level and Low-Level Decision Making
	Agent Architecture

	Case Study: VWM in RCRSS
	RCRSS in Brief
	Communication and World Modeling in the IUST Team
	IUST VWM Structure and the Synchronization Mechanism

	Experimental Results
	Searching Buried Civilians

	Summary and Concluding Remarks
	References

	Dynamic Configurable Auctions for Coordinating Industrial Waste Discharges
	Introduction
	Waste Water Discharge System and Agent Technology
	Dynamic Auction Configuration Through Autonomous Agents
	Recurrent Auction of Perishable Resources
	Bidder Ranking
	Preventing Failures

	Implementation
	Results
	Discussion
	Related Work
	Conclusions
	References

	Distributed Clustering of Autonomous Shipping Containers by Concept, Location, and Time
	Introduction
	Scenario
	Related Work
	Clustering Criteria
	Conceptual and Spatial Constraints
	Agent Clusters
	Temporal Constraints

	Clustering Protocol
	Implementation
	Case Study
	Conclusion
	References

	Coordinating Competitive Agents in Dynamic Airport Resource Scheduling
	Introduction
	Background and Related Work
	Modelling the Aircraft Deicing Scheduling Problem
	Coordination Mechanisms
	Vickrey Auction Mechanism
	Decommitment Penalty Mechanism

	Experimental Results
	Conclusion and Future Work
	References

	Large-Scale Agent-Based Pedestrian Simulation
	Introduction
	Pedestrian Simulation
	Agent-Based Pedestrian Simulation
	SBBPedis
	Questions Addressed by the Study
	Environmental Model
	Simulated Pedestrians
	Implementation and Validation

	Short Glance on Simulation Results
	Conclusion
	Agent-Based Pedestrian Simulation Revisited
	Future Work

	References

	Diagnosis of Plan Structure Violations
	Introduction
	Plans and Plan Execution
	Plans as Systems
	Qualifications
	Plan Execution

	Plan Diagnosis
	Identifying Diagnoses
	Approximations

	Conclusion and Further Work
	References

	Team Cooperation for Plan Recovery in Multi-agent Systems
	Introduction
	Control Loop Architecture
	The Global Plan and the Local Plans
	Plan Execution Monitoring and Diagnosis
	Plan Recovery at Team Level
	The Basic Strategy
	High-Level Algorithms

	Discussion and Conclusions
	References

	On the Behaviour of the TRSIM Model for Trust and Reputation
	Introduction
	Trust and Reputation Model Structure
	Obtaining Trust and Reputation from Previous Experiences on Similar Tasks
	Domain-Dependent Functions: Quality and Similarity

	Experiments
	Alternatives to Measure the Quality
	Alternatives to Estimate Trust and Reputation
	Evolution of Trust

	Conclusions and Future Work
	References

	Implementing ReGreT in a Decentralized Multi-agent Environment
	Introduction
	Related Work
	The ReGreT Approach
	Implementing ReGreT as a Decentralized Mechanism
	Foundations for ReGreT Implementation

	Conclusion and Future Work
	References

	Back Matter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

