

Qt for Symbian

Qt for Symbian

Edited by:

Frank H.P. Fitzek

Tony Torp

Tommi Mikkonen

A John Wiley and Sons, Ltd, Publication

This edition first published 2010
© 2010 John Wiley & Sons, Ltd.

Registered office John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex,
PO19 8SQ, United Kingdom.

For details of our global editorial offices, for customer services and for information about how to
apply for permission to reuse the copyright material in this book please see our website at
www.wiley.com.

The right of the author to be identified as the author of this work has been asserted in accordance
with the Copyright, Designs and Patents Act 1988.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or
otherwise, except as permitted by the UK Copyright, Designs and Patents Act 1988, without the
prior permission of the publisher.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print
may not be available in electronic books.

Nokia, the Nokia logo, Qt and the Qt logo are the trademarks of Nokia Corporation and/or its
subsidiaries in Finland and other countries worldwide. © 2010 Nokia Corporation and its
subsidiary(-ies).

Symbian brands are a trademark of © Symbian Foundation 2010.

Microsoft Product screenshots reprinted with permission from Microsoft Corporation.

Designations used by companies to distinguish their products are often claimed as trademarks.
All brand names and product names used in this book are trade names, service marks, trademarks
or registered trademarks of their respective owners. The publisher is not associated with any
product or vendor mentioned in this book. This publication is designed to provide accurate and
authoritative information in regard to the subject matter covered. It is sold on the understanding that
the publisher is not engaged in rendering professional services. If professional advice or other
expert assistance is required, the services of a competent professional should be sought.

ISBN 978-0-470-75010-0

A catalogue record for this book is available from the British Library.

Set in 10/12pt Times by Sunrise Setting Ltd, Torquay, UK.
Printed in the Great Britain by TJ International Ltd, Padstow, Cornwall.

www.wiley.com

CONTENTS

Contributors xi

Foreword xiii

Preface xv

Abbreviations xvii

Acknowledgments xix

Publisher’s Acknowledgments xx

About the Editors xxi

1 Introduction and Motivation 1
Frank H.P. Fitzek, Tony Torp and Tommi Mikkonen

1.1 The Importance of Mobile Developers 1
1.2 Symbian OS 4

1.2.1 Symbian – The Technology 5
1.2.2 Symbian – Evolution to the Leading Smart-Phone Platform 5
1.2.3 Symbian – Casual Application Developer 6

1.3 Qt 7
1.3.1 A Cross-platform Development Environment 7
1.3.2 Qt in the Mobile Domain 7
1.3.3 Qt Licensing 10

Bibliography 11

2 Getting Started 13
Morten V. Pedersen, Janus Heide, Frank H.P. Fitzek and Tony Torp

2.1 Installing the Development Environment 13
2.1.1 Ovi Suite 14
2.1.2 Java 14
2.1.3 Perl 15

vi Contents

2.1.4 Symbian Platform SDK 15
2.1.5 Open C/C++ Plug-in 17
2.1.6 The Carbide.c++ IDE 19
2.1.7 Qt for Symbian 20

2.2 Using Carbide.c++ with Qt for Symbian 21
2.3 Summary 26

3 Qt in General 29
Andreas Jakl

3.1 Hello World 29
3.1.1 Building 30
3.1.2 Packaging 31

3.2 Basics 32
3.2.1 Layouts 32
3.2.2 Object Ownership and Memory Management 34

3.3 Signals and Slots 35
3.3.1 Basic Signals 35
3.3.2 Parameters 36

3.4 Qt Object Model 37
3.4.1 QObject 37
3.4.2 Custom Signals and Slots 38
3.4.3 Implementing Slots and Emitting Signals 39
3.4.4 Meta-object Compiler (moc) 39
3.4.5 Connecting Signals and Slots 40
3.4.6 Properties and Meta-information 42

3.5 User Interface 42
3.5.1 Handling Text through Implicit Sharing 42
3.5.2 Internationalization 43
3.5.3 Widgets, Dialogs and the Main Window 45

3.6 System 47
3.6.1 Events 48
3.6.2 Timers and Painting 49

3.7 Communication 51
3.7.1 Input/Output 52
3.7.2 Files and Streams 52
3.7.3 Networking and XML 56

Bibliography 64

4 Qt Mobility APIs 65
Tommi Mikkonen, Tony Torp and Frank H.P. Fitzek

4.1 Introduction 65
4.2 Bearer Management 66

4.2.1 Creating a Network Session 67

Contents vii

4.3 Contacts 67
4.4 The Contacts API 68

4.4.1 Creating a New Contact 68
4.4.2 Finding a Single Contact Detail 68
4.4.3 Editing a Contact Detail 69

4.5 Location 69
4.5.1 Getting and Following the User’s Location 70

4.6 Messaging 71
4.6.1 Creating and Sending an Email Message 71

4.7 Multimedia 72
4.7.1 Playing an Audio File 72
4.7.2 Creating a Playlist of Videos and Playing Them in a Video Widget 72

4.8 Publish and Subscribe 72
4.9 Service Framework 73
4.10 System Information 73

4.10.1 Accessing Device Information 74
4.10.2 Accessing System Information 74

4.11 Summary 75
Bibliography 76

5 Qt-Like Mobile Extensions 77
Tony Torp and Frank H.P. Fitzek

5.1 Utilizing Platform Features beyond Qt APIs 77
5.2 How to Use the Mobile Extensions in Your Project 78
5.3 Alarms 78

5.3.1 Getting a List of All Alarms 79
5.3.2 Creating a Workday Wakeup Alarm 79
5.3.3 Changing the Time of a Specific Alarm 79
5.3.4 Deleting an Alarm 80

5.4 Calendar 80
5.4.1 Creating a New Calendar Item 81
5.4.2 Deleting Calendar Entries 81

5.5 Camera 82
5.5.1 Camera Initialization 82
5.5.2 Using the Viewfinder Widget 83
5.5.3 Taking a Photo 83

5.6 Installer 84
5.6.1 Installing an Application in the Background without Notifying the User 84
5.6.2 Uninstalling an Application in the Background without Notifying the User 84
5.6.3 Getting a List of all Installed Applications in the Device 85

5.7 Landmarks 85
5.7.1 Creating a Landmark for the Current Location 86
5.7.2 Getting a List of All Landmarks in the Landmark Database 86

viii Contents

5.8 Profile 87
5.8.1 Getting the Current Active Profile 87
5.8.2 Setting the Current Profile to Silent 87
5.8.3 Setting the Ringing Volume of the General Profile to Maximum 88

5.9 Sensors 88
5.9.1 Receiving Notification of Changes in Rotation and Orientation 88

5.10 Telephony 90
5.10.1 Making a Circuit-Switched Telephone Call 90
5.10.2 Receiving Notification of When Phone Call Status Changes 90

5.11 Utils 91
5.11.1 Keeping the Device Backlight Turned On 91
5.11.2 Launching a File with the Default Viewer Application 92
5.11.3 Converting between QString and HBufC* 92

5.12 Vibra 92
5.12.1 Switching on the Vibration Function 92

6 Qt Apps and Native Symbian Extensions 95
Angelo Perkusich, Kyller Costa Gorgônio and Hyggo Oliveira de Almeida

6.1 Data Types and Symbian OS Class Naming Conventions 95
6.1.1 Descriptors 96
6.1.2 Arrays 98

6.2 Memory Management 98
6.2.1 Leaves and Exception Handling 98
6.2.2 The Cleanup Stack 99
6.2.3 Two-Phase Construction 100
6.2.4 Thin Templates 100

6.3 Executable Files 101
6.4 Platform Security 102
6.5 Active Objects 103
6.6 Error Handling 105
6.7 Threads 105
6.8 Qt for Symbian 105

6.8.1 Combining Qt and Native C++ 105
6.8.2 Building Qt Applications in the Symbian Environment 106
6.8.3 Separating Qt and Symbian Implementations 107
6.8.4 Other Issues 115

6.9 Summary 116
Bibliography 116

7 Qt for Symbian Examples 117
Bertalan Forstner, András Berke, Imre Kelényi, Morten V. Pedersen and Hassan Charaf

7.1 Mobility API Examples 117
7.1.1 Displaying Messaging Accounts 117

Contents ix

7.1.2 Displaying Recent Messages 122
7.1.3 Service Framework 129

7.2 Qt for Symbian and Mobile Extension Examples 132
7.2.1 Basic Widgets Example 132
7.2.2 Background Worker Class 137
7.2.3 Bouncing Ball 142
7.2.4 Options Menu 146
7.2.5 Website Downloader 149
7.2.6 Stored Settings 152
7.2.7 FriendsApp 156
7.2.8 Sensor API 169
7.2.9 Messaging API 172
7.2.10 Camera API 175
7.2.11 Location API 178

Index 181

CONTRIBUTORS

Frank H.P. Fitzek
Aalborg University
Niels Jernes Vej 12
DK-9220 Aalborg
Denmark
ff@es.aau.dk

Tony Torp
TAMK University of Applied Sciences
Teiskontie 33
FI-33520 Tampere
Finland
tony.torp@tamk.fi

Tommi Mikkonen
Tampere University of Technology
Korkeakoulunkatu 1
FI-33720 Tampere
Finland
tjm@cs.tut.fi

Morten V. Pedersen
Aalborg University
Mobile Device Group
Niels Jernes Vej 12
DK-9220 Aalborg
Denmark
mvp@es.aau.dk

Janus Heide
Aalborg University
Mobile Device Group
Niels Jernes Vej 12
DK-9220 Aalborg
Denmark
jah@es.aau.dk

Andreas Jakl
Upper Austria University of Applied Sciences,
Campus Hagenberg
Softwarepark 11
4232 Hagenberg
Austria
andreas.jakl@fh-hagenberg.at

Angelo Perkusich
Electrical Engineering Department
Electrical Engineering and Informatics Center
Federal University of Campina Grande
CP 10105
58109-970 Campina Grande, PB
Brazil
perkusic@dee.ufcg.edu.br

Kyller Costa Gorgônio
Signove Technology
58400-565 Campina Grande, PB
Brazil
kyller.gorgonio@signove.com

Hyggo Oliveira de Almeida
Computer Science Department
Electrical Engineering and Informatics Center
Federal University of Campina Grande
CP 10105
58109-970 Campina Grande, PB
Brazil
hyggo@dsc.ufcg.edu.br

Hassan Charaf
Budapest University of Technology and Economics
Magyar Tudósok körútja 2.
1117 Budapest
Hungary
hassan@aut.bme.hu

xii Contributors

Bertalan Forstner
Budapest University of Technology and Economics
Applied Mobile Research Group
Magyar Tudósok körútja 2.
1117 Budapest
Hungary
bertalan.forstner@aut.bme.hu

András Berke
Budapest University of Technology and Economics
Applied Mobile Research Group
Magyar Tudósok körútja 2.
1117 Budapest
Hungary
andras.berke@aut.bme.hu

Imre Kelényi
Budapest University of Technology and Economics
Applied Mobile Research Group
Magyar Tudósok körútja 2.
1117 Budapest
Hungary
Imre.Kelenyi@aut.bme.h

FOREWORD

The world is full of programming languages and development tools. Some languages can be designed
for embedded devices, others for ease of development. Each of them has its own distinct syntax and
its own distinct tools, and is suitable for a distinct purpose. This has been a dilemma for a long
time, especially in the mobile arena. Companies have their own development tools, programming
paradigms and selected programming languages, and the same code can rarely be reused between
different segments, from mobile terminals to desktop environments. Since the beginning of this
century, Nokia has had three active software platforms: S60 (Symbian), S40 (proprietary) and
Maemo (Linux). Each of these platforms has its own set of software components and applications.
No matter what the application was, whether for a calculator or browser, Nokia had at least three
different solutions for it. Each of these applications needed its own localization, tools and testing
teams. Thus, it was self-evident that the overall development model was very expensive How then
could this be reduced? How could a development model be created that the developers would
love? How could a better return on software investments be provided? How could open source
innovations be leveraged? The answer to this last question is very simple, but hard to actualize.
First, you just create an environment or system where you can share code or applications between
software platforms and then you do not implement everything from scratch, but leverage open
source innovations. The implementation plan was also very simple: port the standard C programming
libraries to S60, then find a common application development framework for S60 and Maemo and,
lastly, provide a standard and common way to access platform-level services in the mobile domain.
The work for Open C started in the first half of 2005. Most open source middleware solutions are
developed on top of standard so-called C programming libraries: good old POSIX and other key
C libraries. All together we ported 5000 C-function calls to S60. The commercial name was S60
Open C. Key libraries like libm, libc and libpthreads were delivered to Symbian Ltd. These are
known as PIPS (Posix In Symbian). The next step was to find a good solution for an application UI
development. The starting point was quite complex. Nokia Maemo was based on a GTK+ platform,
S60 relied on Symbian AVKON and S40 had its own proprietary UI library. The whole of 2007 was
spent on figuring out the right path to follow to go forward. The end result was that Nokia selected
Qt as the next application development framework. Qt was also well known for its consistent, stable,
robust and high-quality APIs and world-class documentation, but the most important thing was that
developers loved Qt. As one software engineer stated: ‘Qt gave the joy of programming back to me!’
The way Qt was created, the cleanliness of the APIs and architecture, and the involvement of talented
people created a good starting point. Qt is a powerful technology providing a great performance, a

xiv Foreword

product loved by developers, an open source development model and a way of mixing web and
native technologies. Thus, in January 2008, Nokia tendered a public offer to acquire Trolltech ASA.
The announcement stated for the first time the role of Qt and Open C as part of Nokia’s software
strategy:

The acquisition of Trolltech will enable Nokia to accelerate its cross-platform
software strategy for mobile devices and desktop applications, and develop its Internet
services business. With Trolltech, Nokia and third party developers will be able to
develop applications that work in the Internet, across Nokia’s device portfolio and on
PCs. Nokia’s software strategy for devices is based on cross-platform development
environments, layers of software that run across operating systems, enabling the
development of applications across the Nokia device range. Examples of current cross-
platform layers are Web runtime, Flash, Java and Open C.

The year 2008 was quite busy. Together with the ‘Trolls’, we at Nokia started the R&D integration
project. Together we planned the missing pieces, such as support for multitouch and a common
way to access mobile platform-level services, like bearer management. Today this is known as the
Mobility API. This book is about how to develop Qt applications for Symbian. However, I would
like to encourage developers to develop applications which can be shared between platforms. Qt is
a cross-platform development framework. The same source code can be shared between Linux, Mac
and Windows-hosted PCs and now also with Symbian. Why not make full use of the benefits of Qt?
Just download the latest Qt Creator from the Web and with this book start your journey!

Mika Rytkönen
mika.rytkonen@nokia.com
Helsinki, December, 2009

PREFACE

The function of good software is to make
the complex appear to be simple.

Grady Booch

Motivation for the Book

The main reason why the editors started this book project is based on the fact that Qt on Symbian
will be one of the most important steps in mobile development for years. Qt for Symbian will
enable developers to create appealing mobile applications in a fast and efficient way. Qt has proven
its strength for application developers for decades, while Symbian offers the most flexible mobile
platform due to its openness for a wide range of APIs. Furthermore, Qt will provide cross-platform
capabilities that allow porting of applications over a wide range of mobile devices. Even though the
main focus is on Symbian devices, part of the code presented in the book can be ported to Nokia’s
Maemo platform or Windows Mobile devices.

Scope of the Book

To make it clear from the outset, this book does not serve as a compendium either for Qt or for
Symbian development. The main scope of this book is to explain to the reader how Qt applications
can be created in an easy and efficient way on Symbian devices. The reader will be made familiar
with how to install the development environment and use it. Additionally, the book explains in detail
the Symbian support available for Qt development in terms of APIs and the possibility to extend Qt
applications with native Symbian. Throughout the book the authors link the reader to the appropriate
sources, such as web pages or books.

Targeted Readership

The book is structured to be useful for beginners and professionals in the field of mobile device
development. The book can be used for self-study as well as lecture notes for basic courses.
It has seven chapters. As given below in Figure 1, we expect our readership to fall into three main
groups: namely, total beginners, Symbian experts (but not familiar with Qt) and Qt experts (but not

xvi Preface

Figure 1 The book’s structure and parts that should be read (marked by a bullet) by beginners, Symbian or Qt
developers.

familiar with Symbian). Beginners should read the book chapter by chapter, while Symbian and
Qt developers may skip Chapter 2 and Chapter 3, respectively. These latter two may also skip
the Introduction. For teachers planning to use the book as their main lecture material throughout
a course, we would like to direct them to our complementary web pages, where teaching slides,
exercises and programming examples are presented.

http://mobiledevices.kom.aau.dk/qt4symbian

Note

Snippets of code included in the book are to some extent based on documentation available at
the time of writing, and some of them have not been fully tested in real applications due to the
relative freshness of the available implementations. The reader is referred to the latest available web
documentation for exact details.

Frank H.P. Fitzek, Tony Torp and Tommi Mikkonen
December 2009

ABBREVIATIONS

3G Third Generation

API Application Programming Interface

ASCII American Standard Code for Information Interchange

DOM Document Object Model

DLL Dynamic Link Library

FM Frequency Modulation

FP Feature Pack

FTP File Transfer Protocol

GB Gigabyte

GPL GNU General Public Licence

GPS Global Positioning System

GUI Graphical User Interface

HTTP Hypertext Transfer Protocol

IDE Integrated Development Environment

IM Instant Messaging

IP Internet Protocol

IRDA Infrared Data Association

JRE Java Runtime Environment

LGPL Lesser GNU Public Licence

MHz Megahertz

xviii Abbreviations

MMS Multimedia Messaging Service

MOAP Mobile Oriented Applications Platform

OEM Original Equipment Manufacturer

OS Operating System

PC Personal Computer

RAM Random Access Memory

ROM Read-Only Memory

S60 Series 60

SAX Simple API for XML

SDK Software Development Kit

SIM Subscriber Identity Module

SMS Short Messaging Service

SQL Standard Query Language

STL Standard Template Library

SVG Scalable Vector Graphics

TCP Transmission Control Protocol

UDP User Datagram Protocol

UI User Interface

UIQ User Interface Quartz

URL Uniform Resource Locator

USB Universal Serial Bus

W3C World Wide Web Consortium

WLAN Wireless Local Area Network

XHTML Extensible Hypertext Markup Language

XML Extensible Markup Language

ACKNOWLEDGMENTS

The man who can make hard things easy
is the educator.

Ralph Waldo Emerson

This book is the result of the joint efforts of many people working together over the last few years.
You would not be reading this book were it not for the key contributions of our invited authors as
well as the kind support of Nokia and Qt software. We are deeply grateful to all our co-authors and
industry (or ‘other’) supporters of this book.

We would like to thank Harri Pennanen and Jarmo Rintamaki from Nokia for encouraging us to
start this book project. They have successfully kept up our motivation and enthusiasm over the last
few months. Besides the material support provided, we greatly appreciate their logistical help by
organizing numerous meetings to bring us together with other experts and programmers.

We are also greatly beholden to Knut Yrvin from Trolltech/Qt software. He encouraged us to
incorporate Qt into our teaching environment and supported us with material such as the very first
Greenphone and with travel funds over the years.

We are particularly thankful to Birgit Gruber, Chris Webb, Colleen Goldring, Ellie Scott, Graham
Henry, Juliet Booker and Martin Tribe from Wiley for their help on the book.

The work of Aalborg University has been supported by the Danish government on behalf of the
FTP activities within the CONE Project (grant no. 09-066549). The work of Federal University of
Campina Grande, Campina Grande, Brazil, has been partially supported by the Nokia Institute of
Technology, Manaus, Brazil, within the scope of the Pervasive Computing Project. We would also
like to thank Flavio Fabrício Ventura de Melo Ferreira, from Federal University of Campina Grande.

Frank H.P. Fitzek, Tony Torp and Tommi Mikkonen
December 2009

PUBLISHER’S
ACKNOWLEDGMENTS

Some of the people who helped bring this book to market include the following:

Editorial and Production:
VP Consumer and Technology Publishing Director: Michelle Leete
Associate Director – Book Content Management: Martin Tribe
Associate Publisher: Chris Webb
Executive Commissioning Editor: Birgit Gruber
Assistant Editor: Colleen Goldring
Publishing Assistant: Ellie Scott
Project Editor: Juliet Booker
Content Editor: Nicole Burnett
Copy Editor: Neville Hankins
Technical Reviewer: Antti Svenn

Marketing:
Senior Marketing Manager: Louise Breinholt
Marketing Executive: Kate Batchelor

Composition Services:
Compositor: Sunrise Setting Ltd, Torquay, UK
Indexer: Annette Musker

ABOUT THE EDITORS

Frank H.P. Fitzek is an Associate Professor in the Department of Electronic Systems, University of
Aalborg, Denmark, heading the Mobile Device group. He received his diploma (Dipl.-Ing.) degree
in Electrical Engineering from the University of Technology – Rheinisch-Westfälische Technische
Hochschule (RWTH) – Aachen, Germany, in 1997 and his Ph.D. (Dr.-Ing.) in Electrical Engineering
from the Technical University Berlin, Germany in 2002 and became Adjunct Professor at the
University of Ferrara, Italy. He co-founded the start-up company acticom GmbH in Berlin in 1999.
He has visited various research institutes including Massachusetts Institute of Technology (MIT),
VTT, and Arizona State University. In 2005, he won the YRP award for the work on MIMO MDC
and received the Young Elite Researcher Award of Denmark. He was selected to receive the NOKIA
Champion Award in 2007, 2008 and 2009. In 2008, he was awarded the Nokia Achievement Award
for his work on cooperative networks. His current research interests are in the areas of wireless and
mobile communication networks, mobile phone programming, cross layer as well as energy-efficient
protocol design and cooperative networking.

Tommi Mikkonen is a professor at Department of Software Systems at Tampere University of
Technology. He has held several different positions in academia and industry, and at present his
research interests include mobile devices programming, web development and agile approaches to
software engineering. He is a well-known author and he has pioneered mobile devices programming
in universities in Finland.

Tony Torp is a senior lecturer of software engineering at Tampere University of Applied Sciences
where he is heading mobile systems education and running the smartphone lab of the University. He
has a strong software development background in the industry since the very first Symbian based
smartphone projects in Nokia. During the past decade he has shared his knowledge among several
Universities, companies and developer communities worldwide. Being one of the top developers in
the field, he received the Nokia Champion Award in 2006, 2009 and 2010. He is also running a
company offering training and consultancy services for mobile developers.

1
Introduction and Motivation

Frank H.P. Fitzek, Tony Torp and Tommi Mikkonen

This chapter gives a short introduction to and motivation for the bundling of Qt and the Symbian
platform. It will underline the importance of mobile developers in the mobile communication
ecosystem and why they should choose Qt for Symbian. The chapter also explains the reasoning
why Qt for Symbian is an interesting solution for a wide range of mobile developers – from rookies
to experts – using the full functionality of the Symbian platform and enjoying the easy programming
style of Qt in combination with its cross-platform capabilities.

1.1 The Importance of Mobile Developers

It was at end of the 1990s when mobile phones had become so popular that the question was posed:
what will come after mobile voice services? At this time, only a small number of mobile phones
were programmable and so it was up to the network and service operators to think about the next
killer application – a reflection of the misunderstanding that a single application could attract as
much attention as was gained previously by the mobile voice service. It took a while to appreciate
that, not a single application, but a large number of heterogeneous applications, such as gaming,
utilities, health services and others, would be the only viable solution to attract more customers.
Furthermore, there was a common understanding across mobile manufacturers that the creators of
the new and appealing services might not just be the network or service operators in collaboration
with the mobile manufacturers, but that most of the services could be created by the mobile user. Or,
since not all mobile users might be able to program, at least a subset of them should be able to create
those services. We refer to this subset as mobile developers.

The reason why mobile manufacturers are so interested in increasing their developer base is due
to the fact that the differences in mobile devices across different manufacturers are more in the
design, user interaction as well as user friendliness, and the available services on board, than in the
pure technology. Consequently, the manufacturers will take care of the design and a basic set of the
most desired mobile applications, and the additional services will be provided by the developers. In
order to enable customers to install new applications on their devices, new channels are provided
to promote and market those additional mobile applications, as Nokia is doing with OVI, Apple
with the Apple Store, and as RIM, SAMSUNG as well as Google plan to do in the near future.

2 Qt for Symbian

Figure 1.1 Developer needs.

Such marketplaces are important to allow the user of a mobile phone to install those applications
that are needed and for mobile developers to monetize their work.

Mobile developers have several programming languages and platforms to program for. The
problem is how to provide a programming environment that is easy for mobile developers to access
(accessible), that has enough flexibility to utilize the full functionality of the mobile phone (flexible)
and that allows the produced code to run efficiently on the platform (efficient). At the moment there is
a clear trade-off between accessibility (how fast a developer can learn a language) and functionality
and efficiency (what the platform readily offers). From the developer’s point of view, there is a
further problem when one aims at the mass market. If you want to reach a lot of users, the number of
supported mobile phones should be large. Nowadays, independent of the programming environment,
mobile applications need to be tailored for individual phones or groups of phones. This is true even
for Java, which claims, once coded, to run everywhere. At the moment Java applications need to
be tested on every single mobile phone to make sure they are working. As this costs time, it is
desirable to have a cross-platform approach which would reduce the time wasted by testing for
different devices. Therefore, as given in Figure 1.1, the desired programming environment should be
flexible, accessible, efficient and at the same time cross-platform supportive.

From the perspective of mobile developers, the introduction of programmable mobile phones
meant that the door was open for them to come up with services they always wanted to have or
which they believed the mass market would like to purchase. The very first mobile applications
were in the gaming area, and they were based on Java. Consequently, they were subject to the
restrictions of the early versions of mobile Java, which in essence only provided a sand-box on which
applications could be run and a very limited set of interfaces. Due to the given limitations, not all the
functionalities of mobile phones could be used. For instance, since personal data of the user could
not be accessed in early mobile Java implementations for security reasons, the first applications were
stand-alone applications that could easily be executed in a sand-box, such as games or utilities like
calendars or address books, which needed no connection to the functions of the rest of the phone.

Introduction and Motivation 3

With the introduction of the Symbian platform and its programming language Symbian C++, a
larger degree of freedom became available to developers because more functionality of the phones
could be used. The new degrees of freedom allowed the construction of mobile applications that, for
example, used short-range technologies such as IRDA or Bluetooth to exchange data among mobile
devices, or interfaced with the built-in facilities of the phone. One of the very first applications was
a dating client that checked for matching user profiles, resulting in a notification in the case of a
positive match. Also, IP network connections using the cellular operators’ network were possible.
Besides these, Symbian also had the technological advantage of using native code. Thus applications
built with Symbian C++ consumed less resources and ran faster than other solutions at that time.

On the downside, however, Symbian C++ has one big disadvantage over many other
programming languages and systems. Being a C++ derivative extended with proprietary
conventions and a somewhat complex application framework resulted in difficulties in its adoption
by a large number of mobile developers. Consequently, since the learning curve of Symbian C++
is rather steep, the number of real Symbian C++ developers is quite low compared with, say,
Java developers. A number of attempts have therefore been made to support mobile developers in
approaching Symbian.

To open up the Symbian platform to a larger group of developers, Nokia introduced Python for
S60 (S60 is just a subset of the Symbian platform). Python for S60, released as open source at

http://opensource.nokia.com/projects/pythonfors60/
extends the S60 platform with the Python programming language. With the available infrastructure,
developers are encouraged to undertake rapid application development and prototyping, and are
provided with an option to create stand-alone S60 applications written in Python. Using the easy-
to-learn Python scripting language, even people who have never programmed before are now able
to write their own script and realize their own ideas. However, the Python interpreter is not readily
available in off-the-shelf mobile devices but must be installed later on, which in turn results in
additional installation tasks when using Python. This can be discouraging for some users, who
want simply to experiment with rapidly available applications, not to install additional program
infrastructure. Interested readers are referred to Scheible and Tuulos (2007) and Scheible (2010) for
further information about Python for S60.

Another attempt to ease the developers’ lot was Open C/C++ from Nokia (2010). Open C/C++
delivers an extensive range of standard C and C++ APIs. They are intended to help in porting
desktop applications to Symbian devices. Moreover, they can also be helpful when developing
application engines and middleware based on already existing components. In general, Open C/C++
enables the reuse of already existing software assets and open-source components. Instead of using
a scripting language, Open C/C++ allows the use of real C or C++ code, which can be extended
to phone-related libraries to employ those functionalities too. This approach has solved some of
the problems associated with Symbian development, but there still remain demanding coding issues
regarding the user interface.

The most recent step towards introducing Symbian programming to all mobile developers is the
introduction of Qt for Symbian, which provides exactly those four essential features mentioned
above – it is an accessible, flexible, cross-platform development environment for developing
applications efficiently. The goal of the platform is to allow developers to target a large mobile
developer group. The reason for the marriage of Qt with Symbian is based on the fact that Qt, as
a cross-platform application framework, allows applications to be written once and deploys them

4 Qt for Symbian

across many operating systems without rewriting the source code. Furthermore, the underlying
Symbian platform guarantees the highest possible flexibility in providing all the functionalities of a
mobile phone. Qt development is done in C++. Moreover, Qt APIs have been designed with cross-
platform use in mind, and are commonly considered easy to learn and use. The Qt APIs provide a
higher level of abstraction than the Symbian APIs. From a developer’s perspective the complexity
of Symbian is hidden behind interfaces provided by Qt, which means that development becomes
easier and developers get results much quicker. As a result, the authors of this book believe that it
presents a timely topic and the following chapters should help developers to get started with Qt on
the Symbian platform.

The rest of this chapter offers a short introduction to Symbian and Qt, including their philosophy
in particular. We do not claim completeness for the individual parts. The idea is to create a common
understand among all readers for both technologies. For further reading we will provide links to
other work.

1.2 Symbian OS

Symbian OS is a leading-edge mobile development platform used in widely deployed mobile phones.
Relying on C++, a microkernel, and extensive use of object-oriented design, it has enabled the
development of a number of devices and given birth to Symbian, the most widely used platform in
today’s smart phones. The origins of Symbian OS can be traced back to the 1990s and Psion mobile
devices. Being the state of the art at the time, Psion’s devices were modest in terms of performance
and capabilities by today’s standards, and the ability of Symbian OS to support the introduction of
new features expected of mobile phones can be taken as a tribute to the original designers. The path
from the operating system of Psion devices to the Symbian platform – the most prominent Symbian
environment in use today – has passed through numerous phases, from its origins at Psion to the
newly created Symbian Foundation.

The origins of Symbian OS lie in the designs of Psion PLC, and include in particular SIBO, or
EPOC16, which was based on C, and later EPOC32, which was to be named Symbian in its later
life. The company was also developing associated software development kits to enable third-party
application development, something which turned out to be important when the next steps towards
the current smart-phone platform were taken.

The company Symbian, the original home base of Symbian OS as we know it today, was
established in 1998 to develop a mobile platform for smart phones. Originally owned by a number of
major mobile device companies – Ericsson, Matsushita, Motorola, Nokia and Psion – the goal was
to license Symbian OS to the manufacturers of advanced 2.5G and 3G mobile phones, with much
of the intellectual property originating from Psion PLC. The development mode was such that the
company Symbian focused on the core operating system and main frameworks, whereas licensees
developed different device-specific variations, including Symbian for phone-like devices, at least
originally, and UIQ for communicators relying on a touchscreen.

The creation of the Symbian Foundation was announced on 24 June 2008 by major names in the
mobile industry, including Nokia, Sony Ericsson, Motorola and NTT DOCOMO. The goal of the
foundation is to create the most proven, open and complete mobile software platform in the world.
In terms of technology, the aim is to unify Symbian OS, S60, UIQ and MOAP(S) in an open-source
platform for converged mobile devices.

Introduction and Motivation 5

1.2.1 Symbian – The Technology

The design decisions of Symbian OS closely reflect its origins addressed above. It is an operating
system that is specifically targeted for systems with limited memory and resources in general,
following the state-of-the art design from the 1990s. The most characteristic design decisions are
as follows.

Symbian OS is based on the microkernel architecture. The term microkernel is commonly
associated with a design where all resource managers that have access to the underlying hardware
run in different processes and the operating system kernel only has minimal scheduling and interrupt
handling responsibility. Moreover, it is common for the microkernel to implement a message-passing
mechanism which allows resource managers to communicate using the facilities that the kernel
provides. In the design of Symbian OS, the introduction of a microkernel has been an important
goal.

The use of the microkernel approach has resulted in the definition of special software components,
whose purpose is to manage different types of resources. As is common in microkernel approaches,
such resource managers are referred to as servers. Every resource of the system is encapsulated into
a server, which is responsible for managing the resource. When the resource is used, the client first
contacts the server, and then establishes a session with the server. After establishing the session,
the client can use the resources and services offered by the server. Also, error management is
incorporated into the scheme. If a server is killed, error messages are passed to the clients, and
if a client dies, the server should be able to release the allocated resources.

The design of Symbian OS is based extensively on object orientation. A number of extensive
frameworks are used for different tasks, including application development (application framework)
and generic event handling (active objects), both of which will be addressed in the following.
The latter is also associated with resource management, as servers – that is, resource managers –
communicate with their clients using messages, the reception of which results in the generation of
an event. Moreover, since programming facilities for C++, the language used for implementing
the majority of Symbian OS, were underdeveloped at the time of the design, numerous proprietary
conventions were introduced to cope with corner cases. Over time, the improvement of off-the-shelf
C++ systems has in principle rendered some of these conventions useless, but their removal from
the actual code base can be hard.

1.2.2 Symbian – Evolution to the Leading Smart-Phone Platform

As with any long-lived operating system, assumptions about available hardware have required
redesign and reconsideration of numerous parts of Symbian OS. Since the main context of Symbian
OS is smart phones, it is only natural that the evolution of their assumed facilities has also been the
driving force of Symbian OS evolution. Major changes in Symbian OS include at least the following
issues.

Hardware facilities have changed fundamentally. The original Psion devices relied on RAM disks
that were fast but required a separate backup during writes. However, mobile devices commonly use
flash memory for implementing disks. Due to the physical characteristics of flash memory, a new
file is required in any case.

6 Qt for Symbian

The amount of memory in different mobile devices has increased tremendously. Indeed, it is
not uncommon to find hundreds of megabytes of available memory and gigabytes of disk, which
were major improvements in the state of the art in the early 2000s when the first Symbian-based
mobile phones were introduced. Consequently, many considerations regarding the use of memory
that were a necessity in early mobile phones using Symbian OS are no longer needed, especially
when considering the tasks of an application programmer. For a device manufacturer, however, these
issues remain valid.

In parallel with the increase in the amount of memory, processing capabilities have improved. In
addition to the increase in clock frequency, more and more processing-capable peripherals have been
introduced. In general, Symbian’s microkernel-based approach is well suited for this, but different
extensions obviously require engineering efforts to integrate them into complete Symbian-OS-based
systems.

The number of different subsystems that can be attached to current mobile phones has increased.
At the same time, individual subsystems have become increasingly complex. As a consequence, their
cumulative effect in incorporating support for all of them has added to the complexity of Symbian
OS. For example, the adaptation interface between Symbian OS and underlying hardware resources
which originally consisted of only a few servers has grown into a complex framework, where a
plug-in architecture is used for variability between different hardware components.

The introduction of platform security has required a major redesign of Symbian OS.
Consequently, this phase also marks a major disruption in the evolution of Symbian OS. For an
application developer, this also marks a major breach in the compatibility between different devices
in general, not to mention binary compatibility, which was also breached.

Symbian OS’s ability to sustain the above is a tribute to the original design that still forms the
core of the operating system. In particular, the microkernel architecture has proven to be a flexible
platform for complex applications, and embedding resources in servers has provided a practical
approach for managing the ever-increasing number of new resources associated with mobile phones.
On the downside, the evolution of the platform has led to complications that are visible to a casual
developer, especially in the form of evolving documentation.

1.2.3 Symbian – Casual Application Developer

While the facilities of Symbian OS have been improving under the hood, for a casual programmer
Symbian OS’s facilities have remained somewhat challenging. The challenges can be associated
with two particular design choices: the Symbian application architecture, which is to be used as the
basis for developing applications with a graphical user interface (GUI); and a number of platform-
specific details, which can be considered as superfluous complexities by an application developer.
This is considered frustrating when the development of applications for Symbian OS is performed
only occasionally. Besides Python and Open C/C++, Qt for Symbian is an interesting solution. Qt
is a cross-platform application development framework that is widely used for the development of
GUI programs. Although commonly associated with GUI programming, the system also includes
numerous other components, such as threading and interfacing to subsystems such as SQL database
and XML parsing. Internally Qt is based on C++, but it includes several non-standard extensions
implemented by an additional preprocessor, which, however, generates standard C++ code. Qt runs
on all major platforms and supports internationalization.

Introduction and Motivation 7

Figure 1.2 Qt development process: program once and use multiple platforms.

1.3 Qt

Qt (pronounced cute) is a product of QtSoftware which was originally named Trolltech (founded
in 1994). Based on the initial idea of creating an object-oriented presentation system, the very first
prototype was ready in 1993, and Trolltech was founded one year later in Norway. On 20 May 1995,
the first public release was launched under the name Qt 0.9. The name was a result of the nice-
looking letter Q in the Harvard Emacs editor and the Xt technology, see Yrvin (2010). Over the last
few years Qt has been used by many customers such as Google, Skype, Volvo and many more.

1.3.1 A Cross-platform Development Environment

The main idea behind Qt was the possibility to program an application in C++ or Java once and
deploy it across many desktop and embedded operating systems without changing the code at all
(see Figure 1.2). From the developers’ point of view the supported Qt APIs remain the same across
the supported platforms, provided that the developers are using common APIs only and do not use
device-specific interfaces, such as those offered in mobile devices only. Moreover, the same toolchain
is available for different computing systems to support similar development experiences, which in
turn results in increased productivity over different toolchains targeted for different contexts.

In addition to the same APIs, when using Qt the resulting applications should look like a native
program of the given platform to ensure user friendliness – namely, adaptive look and feel. Figure 1.3
shows the look of Qt buttons for multiple platforms. In contrast to Java’s SWING module where the
application would also possibly run on all different platforms, the user interface would always look
the same, which could cause some irritation to the customer who is used to a given handling of
the applications. Qt comes with an intuitive class library and integrated development tools offering
support for C++ and Java development. In addition to APIs and cross-compilation support, and in
some cases more importantly, tools supporting Qt development were introduced, such as Qt Designer
or Qt Linguist.

1.3.2 Qt in the Mobile Domain

In the beginning Qt was targeted at Windows, Mac OS (starting with Qt 3.0) and Linux systems only.
However, the approach was so appealing that it was quickly expended to embedded systems in 2000.
Finally, in 2006 Trolltech introduced the Greenphone, which is a fully featured mobile phone based

8 Qt for Symbian

Figure 1.3 Qt look and feel for multiple platforms.

(a) The Greenphone (b) User interface of the Greenphone

Figure 1.4 The very first Qt mobile phone.

on Linux (see Figure 1.4a). The Greenphone already had a touchscreen and a number of wireless air
interfaces. Figure 1.4b shows the user interface of the Greenphone.

In 2008 Nokia took over Trolltech and introduced Qt to its platforms starting with the Symbian
and Linux platforms. Together with the technology Nokia achieved access to a large and agile
programming community. But as this is a two-way street, Qt programmers can now access the mobile
domain with millions of new target devices yearly. In addition to the existing programming languages
of Java, Symbian C++, Python or Flash, the introduction of Qt and its toolchain to mobile devices
will reduce the number of hurdles to creating a mobile application.

The vision of Qt has been to introduce it everywhere – covering both the desktop and the mobile
domain. In the mobile domain Qt is available on Linux-enabled devices and Nokia has pushed Qt
onto the Symbian platform. In order to enable Qt to use the full range of mobile functionalities, such

Introduction and Motivation 9

Figure 1.5 The cross-platform capabilities of Qt source code on different mobile platforms.

as those that are not available in the desktop world, new Symbian APIs need to be introduced. These
APIs are responsible for using localization information, mobile messaging such as SMS and MMS,
cameras, inbuilt sensors and many more things. Of course it is possible to create mobile applications
for the Symbian platform without using the newly introduced APIs, but obviously those APIs have
the potential to create real mobile applications for location-based services, social mobile networks
and many others.

Figure 1.5 illustrates the applicability of Qt software for different platforms. As long as pure Qt
language is used, the code should work on any platform, including desktops and laptops, Nokia
ecosystems and third-party mobile devices. On the other hand, Symbian APIs can only be used for
the Symbian platform and may be extendable later for other platforms of the Nokia ecosystem. Such
an approach is similar to the Qt embedded approach, where functionalities such as phone-related
access of calendars and contacts or the use of wireless short-range Bluetooth are limited to the
embedded environment.

10 Qt for Symbian

Table 1.1 License Agreements of Qt.

Commercial LGPL GPL
version version version

Licence cost Licence fee
charged

Free Free

Must provide
source code
changes to Qt

No, modifications
can be closed

Source code must be
provided

Source code must be
provided

Can create
proprietary
applications

Yes – no source
code must be
disclosed

Yes, in accordance
with the LGPL v2.1
terms

No, applications are
subject to the GPL
and source code must
be made available

Updates
provided

Yes, to those
with valid
maintenance

Yes, freely distributed Yes, freely distributed

Support Yes, freely
distributed

Not included but
available for
purchase separately

Not included but
available separately
for purchase

Charge for
runtimes

Yes No No

1.3.3 Qt Licensing

The most important issue for mobile developers is the licence agreement. Qt is offering different
licence models. While the commercial and GPL versions have been present from the beginning,
the LGPL has only been added recently. The latter allows developers to monetize their applications
without making their source codes public. Qt is available under the following licences:

Qt Commercial Version This version is the appropriate one to use for the development of
proprietary and/or commercial software. It is for developers who do not want to share the
source code with others or otherwise comply with the terms of the GNU Lesser General Public
Licence version 2.1 or GNU GPL version 3.0.

Qt GNU LGPL v2.1 This version of Qt is appropriate for the development of Qt applications
(proprietary or open source) provided developers can comply with the terms and conditions
contained in GNU LGPL version 2.1.

Qt GNU GPL v3.0 This version of Qt is appropriate for the development of Qt applications where
developers wish to use such applications in combination with software subject to the terms
of GNU GPL version 3.0 or are otherwise willing to comply with the terms of GNU GPL
version 3.0.

Introduction and Motivation 11

In Table 1.1 the licence agreements are compared with each other.

Bibliography
Nokia F 2010 Open C and C++. http://www.forum.nokia.com/Resources_and_Information/Explore/

Runtime_Platforms/Open_C_and_C++/.
Scheible J 2010 Python for S60 tutorials. http://www.mobilenin.com/pys60/menu.htm.
Scheible J and Tuulos V 2007 Mobile Python: Rapid prototyping of applications on the mobile platform. John Wiley & Sons,

Inc.
Yrvin K 2010 Qt introduction. Oral Presentation Material.

2
Getting Started

Morten V. Pedersen, Janus Heide, Frank H.P. Fitzek and Tony Torp

This chapter gives an overview of the tools used for Qt development for the Symbian platform. The
early sections will serve as an entry point for developers who are new to the Symbian platform
by providing a step-by-step introduction and installation guide to the tools needed. The sections
following will go through the process of creating and running a ‘Hello World’ application using
Qt for Symbian both in the emulator and on a mobile phone. If you already have a working
Symbian development environment and are familiar with the tools and application build process,
it is recommended that you scan through the first part of the chapter as some SDK versions
require patching or similar, before proceeding to Section 2.1.7 which focuses on the installation
and introduction of the Qt for Symbian SDK. Note that throughout the chapter some long download
links have been shortened using a URL shortener service. If a shortened link does not work, a table
containing the original links can be found at the end of the chapter.

2.1 Installing the Development Environment

Figure 2.1 shows an overview of the components that comprise a typical Qt for Symbian
development environment.

As indicated in the figure, the only currently supported development platform is Windows and
it is recommended that users run either Windows XP or Windows Vista. This restriction is due to
the fact that some tools in the Symbian platform SDK are only available on the Windows platform.
There is, however, an ongoing effort to add official support for other development host environments,
e.g. Linux or Mac, so this requirement will therefore most likely be removed in future versions of
the Symbian platform SDK. In addition to the current Windows requirement, it is recommended that
a reasonably fast development PC is used, i.e. an 1800 MHz processor, 2 GB RAM and enough free
hard drive space for the tools, IDE and SDK. During the installation you will need to download
approximately 1 GB of tools and updates. All tools take up approximately 2.3 GB installed. This
installation process may take several hours depending on which components you install.

Assuming that we already have a working Windows development machine, the first tool we need
to install and set up is a working Symbian development environment. Once this is installed we can
extend it also to support Qt for Symbian development. In the following we will go through the
installation of the individual components.

14 Qt for Symbian

Figure 2.1 Overview of the tools comprising a Qt for Symbian development environment.

2.1.1 Ovi Suite

As shown in Figure 2.1, the Ovi Suite is an optional component. However, it is recommended that
it is installed as it enables easy transfer and installation of applications to the phone. If you already
have the Nokia PC Suite application installed, you may skip this installation, as the PC Suite software
provides similar functionality. After installing the Ovi Suite you can connect your Symbian device
to your development machine using either Bluetooth of a USB cable.

Download: http://www.nokiausa.com/exploreservices/ovi/ovisuite

2.1.2 Java

In order to utilize the phone emulator fully, a working installation of the Java Runtime Environment
is necessary. The phone emulator is a valuable tool in the development and testing of our
applications. Here you may install the latest available Java version. If you do not intend to use the
device emulator, this step can be skipped. Note that installing a JRE above version 5 may cause the
error ‘Cannot start ECMT manager’ to appear when trying to access the preferences of the Symbian
emulator; to resolve this problem see: http://bit.ly/7WCpIf.

Download: http://www.java.com/en/download/

Getting Started 15

2.1.3 Perl

Several of the build scripts in the Symbian platform SDK rely on Perl. The officially supported
version is ActiveState Perl version 5.6.1 build 635. During the installation of ActiveState Perl ensure
that the ‘Add Perl to the PATH environment variable’ option is checked. Note that if you install a
different version of Perl the Symbian build toolchain may not function properly.

Download: http://bit.ly/4vOXGX

Note: The ActivePerl package should be installed before installing a Symbian SDK, otherwise the
installation might fail.

2.1.4 Symbian Platform SDK

The Symbian platform SDK includes the documentation, compiler, headers, libraries and additional
tools that are needed to build applications for a Symbian device. You will find that there are a
number of different SDK versions, each targeting different Symbian platforms. Historically Symbian
delivered the core operation system, which was then extended by different vendors using their
own UI platforms. Of these the two most well-known UI platforms were the S60 platform used
mainly by Nokia and the UIQ platform used mainly by Sony Ericsson and Motorola. However,
since the Symbian Foundation was formed in 2008 these have now been merged into one platform
maintained by the foundation. This change is so new that we still use the vendor-specific SDKs
during development. The following table shows the platforms that currently support Qt for Symbian
development:

Platform Symbian OS version Example devices

S60 3rd Edition Feature Pack 1 v9.2 5700, 6120, E63, E71, N82, N95
S60 3rd Edition Feature Pack 2 v9.3 5730, 6650, E55, E75, N85, N96
S60 5th Edition (Symbian^1) v9.4 5800, N97

Note that in this table the first Symbian Foundation SDK (Symbian^1) is a copy of the S60
5th Edition SDK. However, future versions of the Symbian Foundation SDKs will replace vendor-
specific SDKs. These will be named Symbian^2, Symbian^3, and so forth. When developing
applications using native Symbian C++ APIs, you have to use an appropriate SDK determined
by which version of the Symbian and UI platform your target device uses. This is, however, not
necessary with Qt for Symbian, since with Qt we may use any of the mentioned SDKs for application
development and deployment. Should you need to access features of the Symbian platform not yet
available through the Qt libraries, you can determine which SDK you need, for a specific target
device, in the device specification section on Forum Nokia (http://www.forum.nokia.com/
devices/). Note that platforms prior to the 3rd Edition Feature Pack 1 do not support Qt for
Symbian.

If you do not have a suitable device available, you may select any of the above-listed
SDKs. Without a physical device you will still be able to test and run your applications in the

16 Qt for Symbian

device emulator. If you wish to target several different S60 platforms, it is perfectly acceptable to
install several different SDKs.

Note: If you choose to use Symbian C++ native code/extensions the different platform SDK
versions are to some extent backward binary compatible. This means that applications built with,
for example, a 3rd Edition SDK in most cases also run on a 5th Edition device. However, there
are exceptions, so it is recommended to install multiple SDKs and build the application for each
platform.

Installing the Symbian SDK

In order to download the SDK you will need a valid Forum Nokia account which can be obtained
at http://www.forum.nokia.com/Sign_Up.xhtml free of charge. After completing the
registration and logging in to the Forum Nokia website, you may download the SDK from the
following location:

Download: http://bit.ly/4qdgTk

If you are installing the 3rd Edition Feature Pack 2 or 5th Edition SDK the installation files can
be found by pressing the ‘Download all-in-one S60 SDKs’ button.

If you are installing the 3rd Edition Feature Pack 1 SDK you will find the installation files by
pressing the ‘Download S60 SDKs for C++’ button.

After downloading, the installation can be completed in the following three steps:

1. The SDK is delivered in one zip file. Unzip the contents to a temporary directory.

2. Run the setup.exe file in the temporary directory.

3. Follow the installer, choose the default options, i.e. accept the licence agreement, choose a
‘Typical’ installation, and install the ‘CSL ARM Toolchain’.

Patching the 3rd Edition Feature Pack 1 SDK

In order for Qt for Symbian to function properly with the 3rd Edition Feature Pack 1 SDK we need
to apply one additional patch to the installation:

1. A new version of the getexports.exe file needs to copied to the epoc32\tools sub-directory,
e.g. C:\Symbian\9.2\S60_3rd_FP1\epos32\tools. The updated getexports.exe
file can be downloaded from: http://bit.ly/8KMG9K.

Overview of the Symbian SDK

This section provides a brief overview of the SDK and the contents, e.g. where to find Symbian-
specific documentation. If you are installing more than one of the SDKs supported by Qt for Symbian
and are using the default suggested installation paths, you will notice that the SDK root directory
since 3rd Edition Feature Pack 2 is installed under S60\devices\SDKversion and older SDKs

Getting Started 17

are installed under Symbian\OSversion\SDKversion. In addition, several SDK sub-folders
have changed names. The following table gives an overview of selected folders in the SDKs and
their contents:

3rdFP1 Edition 3rdFP2 and 5th Editions Description

Epoc32 Epoc32 Contains cross-compiler, emulator and
system headers and libraries

Examples Examples Non-S60 specific Symbian OS code
examples

Series60Doc docs The SDK documentation files,
including API descriptions

Series60Ex S60CppExamples Code examples, typically S60 platform
specific

Series60Tools S60tools Development tools, e.g. SVG to SVG-T
converter

The epoc32 folder containing the emulator also contains the drive mapping used when testing
applications in the emulator. Note that on the target device the z: drive is used for the ROM and
contains the operating system files and standard applications. The c: drive provides both memory
for running processes and storage for new applications. During building for the emulator the drives
are mapped into the following directories:

c: is mapped to \epoc32\winscw\c.

z: is mapped to \epoc32\release\winscw\variant\z.1

When building for the emulator, the build tools assume that we are building system applications
and therefore place them in z:. However, files created while the application is running in the
emulator will be placed in the c: directory. Another important folder is the documentation folder,
which contains various help files. The SDK documentation can also be accessed via the Windows
Start menu under ‘S60 Developer Tools’. Here you will also find the Symbian Developer Library
containing searchable guides and API documentation, see Figure 2.2. Later, when we create our first
Qt for Symbian application, you will see a number of Symbian-specific files being generated; the
purpose of these is described in the Symbian Developer Library. This library may also be accessed
from the Carbide.c++ help menu.

2.1.5 Open C/C++ Plug-in

We now have the Symbian platform SDK installed and ready for use. However, the SDK does not
include the Open C/C++ version 1.6 plug-in required by Qt for Symbian. The Open C/C++ plug-in
provides developers with standard C and C++ libraries, e.g. support for the C++ Standard Library.
We therefore have to install the plug-in into our installed Symbian SDK:

Download: http://bit.ly/R1C2q

1Variant refers to the build variant, and should be replaced with udeb for debug builds and urel for release builds.

18 Qt for Symbian

Figure 2.2 SDK documentation containing essential information about the Symbian APIs, Symbian OS
architecture, development tools and programming idioms.

Installation of the Open C/C++ plug-in can be done in the following steps:

1. The plug-in is contained in a single zip file. Unzip the contents to a temporary folder.

2. Run the setup.exe file in the temporary directory.

3. The installer will automatically detect our installed SDKs. Select the SDKs that you wish to
use for Qt development, and continue the installation, accepting any further default values.

4. The Open C/C++ libraries also need to be installed onto our target device. We will do this
when installing the Qt for Symbian libraries.

Note: For new users it is recommended that all software is installed into the suggested default
directories, as some applications have special requirements for the installation paths. Furthermore,
if you have a default installation you can more easily find useful ‘how-tos’ and similar advice on
the Internet.

Note: Both the Open C/C++ plug-in and the S60/Symbian SDK will require that you register
your usage of them online. The Open C/C++ plug-in must be registered the first time you use it;
the SDK, however, gives you a 14-day trail before requiring registration. The registration process
is done via a registration wizard which requires that you can access your Forum Nokia web page
account.

Getting Started 19

2.1.6 The Carbide.c++ IDE

The recommended IDE by Symbian and Nokia is currently the Eclipse-based Carbide.c++. The
Carbide.c++ IDE provides support for creating, managing and building applications developed for
the Symbian OS and S60 platform devices. Carbide.c++ is available for free in three different
variants:

Variant Features

Developer Contains the tools needed to develop applications for S60/Symbian,
including additional features such as on-device debugging

Pro Extends the features of the Developer Edition with tools for performance
analysis and extends the on-device debugging capabilities with system-
level and crash debugging

OEM Extends the features of the Pro version with tools needed by manufacturers
when creating phones using Symbian OS

All three variants can be used for Qt for Symbian development, and all three are included in
the Carbide.c++ installer which may be downloaded from Forum Nokia (you select your preferred
version during the installation). The following steps will take you through the installation process:

Download: http://bit.ly/6Rzaba

1. Go to download URL and press the ‘Download Carbide.c++’ button.

2. Run the downloaded .exe file and choose the default options, i.e. accept the licence
agreements, choose the Carbide.c++ variant to install and select the installation directory.

3. Currently the latest version of Carbide.c++ available from Forum Nokia’s webpage is
version 2.0. However, since Qt for Symbian currently requires Carbide.c++ version 2.0.2,
you must perform an update, which is done from within the IDE. If this is your first time
starting Carbide.c++ you will be prompted to select a workspace where Carbide.c++ will
store new projects. If you have no specific reason to change it, select the default directory
suggested by Carbide.c++. The update option can be found in Help → Software Update
→ Find And Install. As the update dialog appears, select Search for update of the currently
installed features and click Finish. Once the update manager has found the updates available,
you will be prompted to select an update mirror; if you are unsure which is the closest, select
Automatically select mirrors and press OK. Select all updates and accept the licence agreement
and the update process should start. Note that this process may take in excess of 20 minutes.

4. Qt for Symbian requires building projects to be enabled from the command prompt. This
can be done by locating Carbide.c++ → Configure environment for WINSCW command line
under the Windows Start menu.

20 Qt for Symbian

Note: If you are behind a proxy you will need to configure Carbide.c++ to use a proxy server:

1. From the menu bar select Window → Preferences.

2. Expand the General tab and select Network Connections. Select Manual proxy configuration
and enter your proxy settings.

Patching the Carbide Compiler

To make the environment work properly we need to apply one patch to the Carbide.c++ installation;
this is necessary as the Carbide compiler needs to be at least version 3.2.5, build 482 to be able
to build Qt for Symbian properly. The compiler version number can be checked by executing
the file mwccsym2.exe from the command line, e.g. C:\ProgramFiles\Nokia\Carbide.
c++v2.0\x86Build\Symbian_Tools\Command_Line_Tools\mwccsym2.exe. If the
compiler version is older than what was specified above, you should update your installation using
the following steps:

1. A new version of the compiler needs to copied to the x86Build sub-directory of
your Carbide.c++ installation, e.g. C:\ProgramFiles\Nokia\Carbide.c++v2.0\
x86Build. The updated can be downloaded from: http://bit.ly/5fQEj4.

Note: If you also plan to do native Symbian C++ programming the patch should not, but might,
interfere with your Symbian builds. To ensure that you can always revoke the changes, you should
create a backup of the x86Build directory before applying the patch.

After applying this last patch we now have completed the installation of the common tools used
in a standard S60/Symbian development environment. In the following we install the Qt for Symbian
libraries which will allow us to start developing Qt applications for our S60 devices.

2.1.7 Qt for Symbian

The latest version for Qt for Symbian is, at the time of writing, Qt 4.6; it contains the documentation,
headers and libraries needed for Qt for Symbian development. This section will guide you through
the installation:

Download: http://qt.nokia.com/downloads

1. Download the Qt for Symbian package from the URL above. On the download page you can
choose which licence you wish to use – in this case choose the LGPL tab, which will show
the available LGPL downloads. Here we select ‘Qt libraries 4.6 for Symbian’.

2. The Qt for Symbian distribution is delivered in one .exe file. Download this .exe file to your
hard drive and double-click it to start the installation.

Getting Started 21

3. The Qt installer will detect our installed Symbian SDKs and ask which one we want to use for
Qt development. Here we can simply add support for all Symbian SDKs by selecting all the
SDKs currently installed and pressing Next.

4. Then we have to choose the destination folder for the Qt libraries. Note that we must select a
folder on the same drive as where we installed the Symbian SDK. Also, if you wish to use other
versions of Qt, e.g. for Windows application development, you should change the destination
folder to, say, C:\Qt\4.6.0-symbian to allow other Qt versions to be installed in the
same folder.

Installing Qt on the Device

Before we can run Qt applications on our mobile device we need to install the Qt for Symbian
libraries on to our device. This can be done in the following steps:

1. Uninstall any previously installed Qt or Open C/C++ libraries that may be on the device. This
is done from the application manager found on the device.

2. Navigate to the Qt folder where we just installed the Qt libraries and tools (in our case,
C:\Qt\4.6.0-symbian). In the folder locate the file called qt_installer.sis – this file
contains the Qt libraries for the phone packed in a Symbian installation package (.sis file).
Assuming you have installed the Ovi Suite and connected your mobile device through either
USB or Bluetooth, you can now double-click the file and Ovi Suite will start the application
installer on your device.

In the next step we need to set up Carbide.c++ to use the Qt for Symbian distribution.

Configuring Qt Support in Carbide.c++
Open Carbide.c++, go to Window → Preferences and select Qt. Under the Qt preferences click Add
and in the Add new Qt version dialog enter the Qt version name, the path to the bin and include
directories in the Qt installation folder as shown in Figure 2.3.

We are now ready to start building applications using Qt for Symbian.

2.2 Using Carbide.c++ with Qt for Symbian

This section provides an overview of the Carbide.c++ IDE. The first time you start Carbide.c++
you will be greeted with the Carbide.c++ welcome screen. The welcome screen contains a number
of shortcuts to tutorials, release notes, etc. Specifically for Qt for Symbian, you may access Overview
→ Qt Development. The Qt development guide may also be accessed via Help → Help Contents.
Development and project management are done in the workbench window, which can be accessed
by pressing the Workbench icon in the top right corner of the welcome screen. You may revisit the
welcome screen at a later stage by pressing Help → Welcome. The workbench window shown in
Figure 2.4 can be broken down into the following main elements:

Project explorer This shows the folder structure of the current projects and allows for navigating
the files.

22 Qt for Symbian

Figure 2.3 Qt properties must be updated in Carbide.c++.

Editor Used for viewing and editing source files.

Output window This window allows for several different views, e.g. the Problems view that display
problems encountered during the build process of a project and the Console view which
displays the output from the build process (compiler, linker, etc.).

Toolbar: Among other things this contains the ‘Build’ button which allows for building the current
project, the ‘Debug’ button which launches the application in debug mode, and the ‘Run’
button which launches the application for functional testing.

This collection of views/windows is called a perspective in Carbide.c++ terminology. There
are other useful perspectives such as the Debug perspective that contains the windows/views useful
during a debug session, e.g. allowing for inspection of variables and breakpoints, and the Qt C++
perspective which we will use during Qt development. The perspective can be changed using the
Window → Open Perspective menu item. If you switch to the Qt C++ perspective you will notice
that some additional windows appear in the workbench, e.g. the Qt C++ Widget Box, the Qt C++
Property Editor and other Qt-related windows. We will use these in the following when working
with new Qt for Symbian applications. Also in the following we will go through the basic steps of
creating a ‘Hello World’ application using Qt for Symbian.

Creating a ‘Hello World’ Application

Now we can create our first project using the Carbide.c++ Project Wizard. The project wizard can
be found under File → New → Qt Project. The application wizard will show the following available
project templates for Qt projects:

Getting Started 23

Build Button
Select the build configuration

and build project.

Run Button
Starts emulator and runs

application.

File Editor
Modify files in the

project.

Switch perspective

shortcuts

Output window
Collection of views useful during application

development e.g.

: Shows warnings and errors issued during

compilation.

Problems

Console: Shows output from compiler and if

configured correctly output from emulator.

Project Explorer
Shows active projects

Qt C++ Widget Box

tab

Qt C++ Property

Editor

Figure 2.4 Carbide.c++ workbench screen.

Template Purpose

Qt Console Used for applications not requiring a GUI and provides the Qt
event loop where network, timer events, etc., are processed

Qt GUI Dialog Simple GUI application base on QDialog, which provides the
basic functionality used in a dialog

Qt GUI Main Window GUI application based on the QMainWindow class which
provides a more sophisticated user interface option

Qt GUI Widget Simple GUI application based on the QWidget class

24 Qt for Symbian

Select the Qt GUI Dialog template and press Next. In the following dialog specify the name of
the new Qt for Symbian project, in this case choose helloworld, and press Next. The application
wizard will show a dialog containing a list of SDKs and build configurations that you can use for
the project. The list depends on the SDKs installed; select the SDK you wish to use and press
Finish. Carbide.c++ now creates the project and switches to the Qt C++ development perspective.
Say ‘OK’ to adding headers and sources to the .pro file. The .pro file contains information about
our application that is needed for the Qt build tools when building our application. In the Project
Explorer view observe that the application wizard has created a number of files for the new project:

*_reg.rss The *_reg.rss file is a special Symbian resource file containing information about the
application; it is needed by the Symbian application launcher or system shell.

.h/.cpp These are the standard C++ source files containing the code used in the project.

*.loc The .loc file can be used for localization if the application must support multiple languages.

*.rss A standard Symbian resource file. A resource file is used for defining a number of UI elements
such as menus, dialogs, application icons and captions.

.inf/.mmp The component definition (bld.inf) file and the project definition (*.mmp) file are
used to describe the files contained in a Symbian project; they are used, for example, when
building the project from the command prompt. Using Qt for Symbian these files are generated
automatically from the .pro file and we should therefore use the .pro file when changing project
settings.

*.pkg A Symbian package file, used when creating Symbian installation files .sis.

*.pro The Qt project file, which serves the same purpose as the bld.inf and *.mmp files.

*.ui The Qt .ui file is used by the GUI design tools to describe the components and properties of a
GUI application.

Makefile Automatically generated makefile for project compilation.

To edit one of the automatically generated files, double-click it and it will open in the Editor
window. The project is now ready and we can build and run it in the emulator. However, since the
application wizard created an empty project we should first add some functionality to the application.
To add GUI components we may use the Qt Designer Editor. This can be done by double-clicking the
.ui file, which should automatically open the design editor. To add a component switch to the Widget
Editor view, press Qt C++ Widget Box in the upper left corner next to the Project Explorer tab. Select
the Label widget and drag it to the Editor window. Changing the label text can be done by either
right-clicking the label and selecting Change plain text or by selecting Qt C++ Property Editor and
locating the text property for the label widget. Using the Property Editor we can manipulate a wide
range of additional parameters controlling the appearance and functionality of the widgets. Change
the label’s text to ‘helloworld’, as shown in Figure 2.5.

To see how the application looks, build the project and run it in the S60 emulator by first pressing
the ‘Build’ button to build the project and thereafter the ‘Run’ button as previously shown in

Getting Started 25

Figure 2.5 Using the Qt C++ perspective to design the UI of the application.

Figure 2.4. If all goes well you should see the emulator start and launch the application. This can
take some time, so be patient.

Note: If something unexpectedly does not work, you can find valuable information by inspecting
the debugging output from the emulator. For the S60 3rd Edition this first needs to be
enabled. There are two ways to achieve this: either edit the \epoc32\data\epoc.ini
file where the line LogToFile 0 must be changed to LogToFile 1, or control the same setting
through the emulator’s preferences menu. Select Tools → Preferences and choose the Enable
EPOCWIND.OUT logging option. The log file named epocwind.out can be found in the Windows
temporary directory, which may be accessed from the Run command in the Windows Start menu,
by typing %temp%.

You can read more about using the emulator by searching for the keyword ‘emulator’ in the Help
→ Help Contents menu. Now that the application runs in the emulator we will configure the build
process for a physical device.

26 Qt for Symbian

Figure 2.6 Selecting an active build configuration.

Building for a Target Device

In order to deploy the application on a phone we need to change the build configuration. This can
be done in several ways, but we will do it by selecting the project from the Project Explorer tab and
then using the Project → Build Configuration → Set Active → Phone Debug (GCCE) menu option.
The new active build configuration is now marked as shown in Figure 2.6.

As when building for the emulator, we can use the Project → Build Project menu option,
which will create a new file in Project Explorer, namely the helloworld_gcce_udeb.sisx (Symbian
installation file). The easiest way to install the application on a phone is to use the Nokia Ovi Suite
application installer and a Bluetooth dongle or USB cable. Make sure the Ovi Suite is connected
to your phone and then simply double-click the .sisx file in the Project Explorer view so that the
Ovi Suite application installer will be activated and allow you to begin the installation on the phone.
Complete the installation on your phone. You should be able to find and run the application from the
phone menu. Note that if Carbide.c++ does not build the .sisx file, we have to add the .pkg file to
the SIS build property. This can be done through Project → Properties → Build Configurations and
selecting the ‘Phone Debug (GCCE)’ configuration. Under the ‘SIS Builder’ tab add the .pkg file.
You can leave all other options as they are. Press ‘OK’ to accept the changes and go to the Qt C++
perspective. Rebuild the project and the .sisx file should be created.

2.3 Summary

In this chapter we installed and tested our Qt for Symbian development environment. You should
now be able to create new applications, run them in the emulator and on a physical device. The
following table summarizes a number of good Internet resources where additional information or
help may be obtained:

Forum Nokia Discussion Boards http://discussion.forum.nokia.com
Forum Nokia Wiki http://wiki.forum.nokia.com
Forum Nokia Developer’s Library http://library.forum.nokia.com/
Qt Developer Zone http://qt.nokia.com/developer

Getting Started 27

Links

The following table shows the mapping or URLs used throughout the chapter:

Short URL Original URL

http://bit.ly/4qdgTk http://www.forum.nokia.com/Resources_
and_Information/Tools/Platforms/S60_
Platform_SDKs/

http://bit.ly/7WCpIf http://wiki.forum.nokia.com/index.
php/KIS001066_-_’Cannot_start_ECMT_
Manager’_error_message_in_emulator

http://bit.ly/4vOXGX http://downloads.activestate.com/
ActivePerl/Windows/5.6/

http://bit.ly/6Rzaba http://www.forum.nokia.com/Resources_
and_Information/Tools/IDEs/Carbide.
c++/

http://bit.ly/R1C2q http://www.forum.nokia.
com/info/sw.nokia.com/id/
91d89929-fb8c-4d66-bea0-227e42df9053/
Open_C_SDK_Plug-In.html

http://bit.ly/5fQEj4 http://pepper.troll.no/
s60prereleases/patches/x86Tools_
3.2.5_Symbian_b482_qt.zip

http://bit.ly/8KMG9K http://pepper.troll.no/
s60prereleases/patches/getexports.
exe

In the following chapter the cross-platform Qt API is introduced, upon which most of our Qt for
Symbian applications will be built.

3
Qt in General

Andreas Jakl

One of the major reasons for the success of Qt is that it is designed to be cross-platform. As a
result, almost no in-depth knowledge is required about the specific platforms you want to target. The
generic Qt code works everywhere; getting it on different platforms is just a matter of recompiling.
Therefore, this chapter will introduce you to the general principles behind Qt. While not providing
detailed in-depth explanations of every concept, the major areas are introduced to give you a quick
overview of the way Qt works and how you can use it for your own purposes.

3.1 Hello World

In the previous chapter, you saw how to use the Qt Designer to create a user interface quickly. Now,
we will take a look behind the scenes and develop the UI manually.

Of course, you could argue that it would be easier to use the Qt Designer instead of manually
creating the necessary source code. While this argument is valid in many situations, it is still
important to know how the user interface elements work, before outsourcing this task to the designer
tool. Additionally, you will often have to modify or extend existing components to suit the exact
needs of your application. This also requires directly working with the Qt classes.

As a first step, let us create the typical Hello World application. Of course, the aim of this
application is to show the text ‘Hello World’ on the screen. See Figure 3.1 for a screenshot on
Windows 7 and Symbian. Usually, you will use Qt Creator, Carbide.c++, Visual Studio or another
IDE to create and manage your Qt projects. To understand how the multi-platform build chain works,
let us do it manually this time.

First, create a file called main.cpp in an empty directory called HelloWorld. When working
with the Symbian toolchain, make sure that the full path to your project directory does not contain
any space characters and that it is on the same drive as the Symbian SDK.

1 #include <QApplication>
2 #include <QLabel>
3

4 int main(int argc, char *argv[])
5 {
6 QApplication app(argc, argv);
7 QLabel label("Hello World!");

30 Qt for Symbian

(a) Windows 7 (b) Symbian

Figure 3.1 The Hello World application, featuring a label with the famous piece of text.

8 label.show();
9 return app.exec();

10 }

The first two lines include the required header files for our application. As you can see by quickly
scanning the source code, we use two classes, QApplication and QLabel. Conveniently, the
corresponding header files have been given exactly the same name.

Next, the QApplication object is created. It takes care of managing application-wide
resources and handles the main event loop. The command-line parameters are passed to the
constructor, as Qt also supports some command-line arguments of its own.

Afterwards, we create a QLabel object with the text ‘Hello World!’ In Qt terms, this is called
a widget, a visual element of the user interface. Initially, it is invisible. By calling its show()
method, it will appear on the screen. As the label has no parent widget, it is automatically embedded
in a window on the operating system’s desktop.

In the last source code line, the exec() function passes control to Qt. The application enters its
event loop and waits for user actions like mouse clicks, touch events or keyboard presses. If the user
closes the application window, the exec() call returns and the application terminates.

3.1.1 Building

Now it is time to try the application. Open a command prompt, go to the directory where you have
created your project and type:

Qt in General 31

qmake -project

This command generates a platform-independent project file (HelloWorld.pro), which contains
information about the type of application to create (app or lib), the included source and header
files (here, main.cpp) and other settings. If you get an error message, make sure the path to the
/bin/ folder of your Qt installation is part of the PATH system environment variable. The .pro
file should look like this:

1 TEMPLATE = app
2 TARGET =
3 DEPENDPATH += .
4 INCLUDEPATH += .
5

6 # Input
7 SOURCES += main.cpp

Typing the following creates the platform-specific makefile from the project file. Depending on
the target platform, different files will be created. On Symbian OS, this includes the resource file
needed to show the application on the phone’s menu and a Symbian-specific project file (.mmp):

qmake

The next step is to start the compiler for your current target platform. By default, make creates
a release version. If you add the parameter debug, it accordingly creates a debug version. Use
Carbide.c++ for on-device debugging on Symbian phones.

make

3.1.2 Packaging

In Windows, you can now directly start the .exe file and enjoy your ‘Hello World’ application. If
you are using the Symbian SDK, there is one more step to go. Due to the security model on Symbian
phones, you can no longer directly start .exe files. Instead, the system’s installer component has
to install all applications, so that it can check the validity of the certificate plus the requested
permissions, and then copy the executable file into protected directories where hardly any other
component has read/write access.

To package the application and to install it on your phone, first connect your phone to the PC and
start the PC Suite. Then type:

createpackage -i HelloWorld_gcce_urel.pkg

This will package the executable and the generated resources files for the phone menu into
an installable and self-signed .sis file. The -i parameter automatically installs it on the phone
afterwards. Alternatively, you can use over-the-air delivery or simply send the .sis file to your
phone via Bluetooth or a USB connection to install it manually. Follow the installation process on
your phone to complete the installation.

32 Qt for Symbian

3.2 Basics

A good way to start learning Qt is to work through an example. Initially, it demonstrates how to
define the layout for multiple widgets and then deals with questions about memory management.
Afterwards, the example is further expanded with a communication concept that dynamically
connects multiple class instances.

3.2.1 Layouts

The previous section demonstrated the use of a single widget (called control in Symbian) as a
window itself – essentially, it was made full screen on the Symbian device. In most situations, an
application user interface is made of multiple widgets that are arranged on the screen according to
some rules.

In Qt, this is done through various types of layout managers, which automatically align and resize
the widgets they are in charge of. Managed layouts are especially important on mobile devices. A
simple application on a desktop PC might very well have a fixed size that cannot be changed by
the user – think of the simple calculator that comes with Windows. On the other hand, most mobile
phones support screen rotation (e.g. using acceleration sensors). To maintain usability, applications
typically have to adapt to the new screen orientation and scale the user interface on-the-fly. Consult
the Qt documentation for a visual overview of the available layout managers.

The following example demonstrates the use of a vertical layout manager for three widgets – the
resulting window is shown in Figure 3.2, for the platforms Windows 7 and Symbian:

1 #include <QApplication>
2 #include <QVBoxLayout>
3 #include <QSpinBox>
4 #include <QSlider>
5

6 int main(int argc, char *argv[])
7 {
8 QApplication app(argc, argv);
9 QWidget window;

10

11 QVBoxLayout* layout = new QVBoxLayout(&window);
12

13 QSpinBox* spinBox = new QSpinBox;
14 QSlider* slider = new QSlider(Qt::Horizontal);
15 QPushButton* exitButton = new QPushButton("Exit");
16

17 layout->addWidget(spinBox);
18 layout->addWidget(slider);
19 layout->addWidget(exitButton);
20

21 window.show();
22 return app.exec();
23 }

Qt in General 33

(a) Windows 7 (b) Symbian

Figure 3.2 A widget containing a spinbox, a slider and an exit button and using a vertical layout manager.
(a) Application running on Windows 7. (b) Same application on Symbian.

The most obvious additions are three widgets – a slider, a spinbox and a push button – which are
now arranged by the layout manager (QVBoxLayout). If we resize the window, the layout manager
automatically makes sure that the widgets adapt to the available space. Of course, it is also possible
to define the behaviour of widgets in more detail: for example, if you want the push button to stay
sleek and small instead of occupying a large area of the screen. If developing native C++ code for
Symbian, developers have manually to set positions and dimensions of all controls because no layout
managers are available. For developers with previous experience in UIQ3, layout managers will be
familiar.

In the previous section, we directly used the label widget as a window. This time, a simple
QWidget class instance called window is created. QWidget is often use as a container for other
widgets or sub-classed to create its own widgets. When it is constructed, no argument is supplied
– this turns the object into the root of an object hierarchy (see Section 3.2.2). At the end of the
main() method, the widget is turned into a window of its own through the show() method.

Next, the layout manager is created. The QWidget object is passed as an argument in the
constructor to inform the QVBoxLayout that it is responsible for the layout of window.

The three widgets (spinBox, slider and exitButton) are constructed similarly to the label
object in the first example. Both are added to the QVBoxLayout, which is going to manage those
objects. As children of the window object, the three widgets automatically become visible when the
parent object is shown on the screen. No extra calls of the show() method are necessary.

34 Qt for Symbian

Figure 3.3 Classes inherited from QObject can be stored in a tree structure.

Finally, calling the exec() method of the QApplication object in the last line of the small
application starts the event loop. As mentioned when discussing the ‘Hello World’ example (see
Section 3.1), it will wait for application events (e.g. keyboard or touchscreen events) and will
forward them to the appropriate class in our application. Even though we did not set up any event
handlers, the quit() method of QApplication is automatically called when the user closes
the application through the red X in Windows or the red button on a phone, thus exiting it. If we
were not to call a.exec(), but instead return 0, the application would terminate immediately
without becoming visible on the screen. Of course, the button labelled ‘Exit’ does not yet have any
functionality.

3.2.2 Object Ownership and Memory Management

Especially if your background is in mobile development, you might wonder why the previous
example did not delete the allocated objects. The window object is created on the stack using
QWidget window. When it goes out of scope at the end of the main() method, the memory
allocated for the object is automatically released. However, the other objects are created on the heap
and not explicitly deleted by our application. The reason is that Qt takes over some of the memory
management.

All of the classes we have been using in the example are ultimately derived from the QObject
base class. One of the resulting advantages is that QObject can store object hierarchies. In our
case, window is used as the parent object and the four other objects are its children – see Figure 3.3
for the resulting object tree. The QObject base class provides various methods to query or change
the object tree manually.

When the parent object is deleted, it automatically deletes its children as well. For this to work,
the objects have to lie on the heap – which is why they were created using new. Only the parent
object should be created on the stack. In our example, the window object deletes the other objects
(layout manager, slider, spinbox and the button) when it goes out of scope at the end of the main()
method and is itself destroyed.

While the source code suggests that the user interface widgets are children of the layout manager
instance, Qt automatically assigns the widget that owns the layout manager as the parent of the child

Qt in General 35

widgets. This is because a widget can only have another widget as a parent, but no layout. However,
it is possible to nest layouts.

3.3 Signals and Slots

After our first steps with the visuals, it is time to take a look behind the scenes to understand how
to make the application interactive. The QObject base class, which we have just introduced for
handling object hierarchies, defines additional functionality and metaphors. The most important of
these is the concept of ‘signals and slots’ for flexible but safe communication between objects.

Most toolkits use call-back functions or event listeners for informing other parts of an application
about events or status updates. For example, developing an audio player in Symbian OS usually
involves deriving a class from an interface. The pointer to this instance is then sent to the
external service provider (music player library), which uses call-backs when the file is loaded or
when playback has finished. This concept has several disadvantages – the listening class needs to
implement a specific interface, the sender has to store and manage pointers to each registered call-
back listener and has to check manually if the listener still exists before executing the call-back.
Additionally, when storing function pointers, type safety is not checked by C++ for parameters.
These drawbacks are addressed by the signals and slots concept of Qt.

3.3.1 Basic Signals

To demonstrate the use of signals and slots, we extend the example from the previous section and
add interactivity. The first step equips the ‘Exit’ button with the expected functionality of closing the
application. This is accomplished with the following additional line of code, which should be added
after the button has been created:

QObject::connect(exitButton, SIGNAL(clicked()),
&app, SLOT(quit()));

Whenever a specific event occurs – in this case when the button has been clicked – the button
object emits a signal. Qt widgets have many predefined signals, but you can also add your own
signals. The call to QObject::connect() creates a connection between the signal and the
slot of another object (see Figure 3.4). A slot is a normal C++ method that matches the signature
(parameters) of the signal and that will now be called whenever the signal is emitted. Again, there
are many predefined slots in Qt widgets, but you can also add additional slots by sub-classing from
Qt classes, including QObject.

The first two arguments of connect() specify the sender of the signal: the emitting class
instance and the specific signal that should be bound to a slot. The last two arguments identify
the receiving object as well as the slot (method) that should be executed in response to the signal. As
the connect()method expects addresses of the objects, the reference operator (&) is not necessary
for the exitButton, which is already a pointer.

Flexibility is a big advantage of this scheme. A signal can be connected to multiple slots; each
slot can receive signals from multiple source objects. Whenever a signal is emitted, all connected
slots are called one after another in arbitrary order (multi-threaded variants are available, see the Qt

36 Qt for Symbian

Figure 3.4 Signals are emitted by an object whenever an interesting event occurs. Qt delivers signals to objects
interested in these events and calls the connected slots.

documentation). If a signal is emitted, but no matching link to a slot has been established, nothing
happens.

The emitter does not know or need to know if anyone in the system is currently waiting for
its signals. On the other hand, slots need not be concerned with where the signal originates. These
characteristics are vital for information encapsulation and ease development of independent modules
that can be dynamically connected at runtime.

In the connect() call, both the signal and slot are enclosed by the macros SIGNAL() and
SLOT(). These are necessary because Qt expects string values to be passed to the function. These
have to comply with Qt internal standards and dynamically reference the corresponding slots. The
macros ensure that these strings are generated correctly based on the specified method names; we
do not need to be concerned about this. A visible advantage is that Qt can check when establishing
the connection at runtime if the signatures are compatible – thus, it is not possible to connect signals
with incompatible slots, which becomes relevant when you want to pass parameters.

3.3.2 Parameters

In many cases, additional information about the event has to be transmitted with the signal. Our
example contains a spinbox and a slider widget. What if we want to synchronize those widgets?
Changing the value in the spinbox should also update the slider widget and vice versa. Obviously,
the receiving widget needs to be informed of the new value whenever the other widget is modified.
Only two additional connect() statements are necessary to achieve this:

QObject::connect(slider, SIGNAL(valueChanged(int)),
spinBox, SLOT(setValue(int)));

QObject::connect(spinBox, SIGNAL(valueChanged(int)),
slider, SLOT(setValue(int)));

Whenever the user changes the value of the slider, this widget emits a valueChanged(int)
signal. Because of the connect() statement, the setValue(int) slot of the spinBox is
then immediately executed. The same thing happens in the reverse direction whenever the value

Qt in General 37

of slider is changed. In both cases, the int keyword indicates the integer argument that is
transmitted to the slot and which specifies the new value.

Of course, this connection in both directions would lead to an infinite ‘dialog’ between both
widgets, where the slider and the spinbox send updated values back and forth. This is prevented
by the implementation of setValue(int), which only emits a valueChanged(int) signal
when the new value is actually different from the previous one.

Note that the argument types are not automatically cast by Qt. For example, if the slot of
an own Internet transmission class only offers a slot that accepts values as strings, you cannot
directly connect the signal from the slider that transmits an int parameter. Neither the compiler
nor the linker will notice this; however, a warning will be issued to the terminal window when the
connect() statement is executed and fails, e.g. when using a different signal of the spinbox:

QObject::connect: Incompatible sender/receiver arguments
QSpinBox::valueChanged(QString) --> QSlider::setValue(int)

Therefore, signals and slots are type safe. A failed connection can occur if either the sender or
receiver does not exist, or if the signatures of the signal and the slot do not match; connect()
returns a Boolean value that indicates if the connection was successfully established.

Now that we have seen how to connect two existing classes, the next step is to create your own
signals and slots for communicating between different classes in your applications.

3.4 Qt Object Model

Qt extends the functionality of C++ classes to provide more flexibility while still preserving the
efficiency of plain C++. The Qt object model mainly offers the following benefits, which we will
examine in the sections below in more detail:

• Support with memory management (see Section 3.2.2)

• Signals and slots

• Properties and meta-information.

3.4.1 QObject

The QObject class is at the heart of the Qt object model. For a class to take advantage of the
additional functionality, it has to be derived from QObject and use the Q_OBJECT macro in its
definition in the header file.

The following example demonstrates a custom class called SimpleMultiplier that receives
a value through a slot, multiplies it by 2 and emits the result through a signal. Obviously, you would
not implement a simple calculation like this with signals and slots in a real-life scenario; however,
imagine that the calculation takes a long time or the result needs to be fetched from a web service.
In these cases, broadcasting the finished result of the operation through a custom signal is indeed
useful.

38 Qt for Symbian

3.4.2 Custom Signals and Slots

Our new SimpleMultiplier class is using signals and slots. As described above, it therefore
has to be derived from QObject. As the class does not display anything on the screen, it is not a
widget:

1 #ifndef SIMPLEMULTIPLIER_H
2 #define SIMPLEMULTIPLIER_H
3

4 #include <QObject>
5

6 class SimpleMultiplier : public QObject
7 {
8 Q_OBJECT
9

10 public:
11 SimpleMultiplier(QObject* = 0);
12

13 public slots:
14 void startCalculation(const QString value);
15

16 signals:
17 void resultReady(int result);
18 };
19

20 #endif // SIMPLEMULTIPLIER_H

The include guards in the first two (#ifdef ...) as well as the last line of the header file are
common in C++. They are used to avoid problems that could otherwise occur if multiple files in a
larger project include the same header file, resulting in a redefinition of a class that is already known
to the compiler.

The Q_OBJECT macro is inserted right at the beginning of the class declaration. This macro
defines several functions that are required for the Qt object model. If you forget to add the macro,
this will usually be noticed during the build process:

simplemultiplier.h:16: Error: Class declarations lacks Q_OBJECT macro.
mingw32-make[1]: *** [debug/moc_simplemultiplier.cpp] Error 1

Through the SimpleMultiplier constructor, it is possible to specify a parent object. If
defined, this object will get the parent in an object hierarchy through its QObject base class.
Otherwise, the default value of 0 leads to a zero pointer, resulting in the class not having a parent.

The next block in the class declaration contains the definition of the single custom slot that is
offered by SimpleMultiplier instances. The accessibility is set to public to make them
accessible from outside the class – it would also be possible to use the protected or private
access levels, depending on the access requirements.

In contrast to the slots, the signals: designator does not need an access control mode. Signals
are always public to make communication between different classes useful. Within a single class, it
is usually sufficient to use direct function calls. Signals can never have return values, therefore they
always use void.

Qt in General 39

3.4.3 Implementing Slots and Emitting Signals

The implementation of the SimpleMultiplier class described in the previous section is simple
and short:

1 #include "simplemultiplier.h"
2

3 SimpleMultiplier::SimpleMultiplier(QObject* parent) :
4 QObject(parent)
5 {}
6

7 void SimpleMultiplier::startCalculation(const QString value)
8 {
9 bool ok;

10 int num = value.toInt(&ok);
11 if (ok) {
12 emit resultReady(num * 2);
13 }
14 }

The constructor passes the pointer of the parent object (or 0) to the QObject base class.
Notice that the slot startCalculation(QString) is implemented as a normal C++

method. Indeed, it is a normal method that you can also call directly from your source code, without
the use of signals and slots. However, because of the public slots: designator in the header
file, it is additionally available as a slot.

In the method implementation, the argument is first converted to an integer through QString
(see Section 3.5.1). If the conversion is successful, the result of the multiplication by 2 is emitted as
a signal.

The argument of the slot is a const QString, so that the slot can directly process the output
of a standard QLineEdit widget. Using call-by-value instead of passing a reference to the string
does not generate the overhead you would expect, due to Qt employing implicit sharing – see
Section 3.5.1.

In contrast to the slot, the signal is only defined in the header file but not implemented in the .cpp
file. Qt automatically adds the code to make the signal work through the meta-object compiler.

3.4.4 Meta-object Compiler (moc)

The extended concepts provided by the Qt meta-object model are not defined in C++. Sending
Qt-style source code directly to a standard C++ compiler would not work – for example, the
signals: and slots: designators in the header files would not be recognized and result in an
error. Two solutions are possible: using a custom C++ compiler, or creating a tool that automatically
rewrites the source code.

Qt opted for the second alternative to maintain the flexibility of Qt and to ensure that the Qt code
works with every C++ compiler on all supported platforms. Therefore, the source code is extended
by the meta-object compiler tool called moc before being submitted to a standard compiler. It
converts signals and slot constructs to standard C++ by generating additional source code. However,

40 Qt for Symbian

your own source files are never modified – instead, moc creates additional files that are included in
the build process (moc_myclass.cpp).

If qmake is used to create the makefiles (as done by Qt Creator and Carbide.c++), build rules
that call moc when required are included automatically. This is done for all classes that include the
Q_OBJECT macro. In general, the process works without problems. A few limitations are listed in
the official Qt documentation (accessible through the help in Qt Creator) under the topic ‘Using the
Meta-Object Compiler (moc)’. The same article also lists reasons why C++ templates were not
suitable for this task.

3.4.5 Connecting Signals and Slots

To demonstrate the use of the SimpleMultiplier class defined in Section 3.4.2, we use a
minimal user interface. Similar to the first example from Section 3.2.1, the main() method creates
a widget called window which contains two predefined Qt widgets: a text box (QLineEdit)
and a label (QLabel) – see Figure 3.5. This time, a horizontal layout manager (QHBoxLayout)
is responsible for distributing the available space of the window to the widgets. The include
statements are omitted in the following source code; the required header file names correspond to
the class names used in the example:

1 int main(int argc, char *argv[])
2 {
3 QApplication app(argc, argv);
4 QWidget window;
5 QHBoxLayout* layout = new QHBoxLayout(&window);
6

7 QLineEdit* input = new QLineEdit();
8 QIntValidator* validateRange =
9 new QIntValidator(0, 255, input);

10 input->setValidator(validateRange);
11 layout->addWidget(input);
12

13 QLabel* result = new QLabel();
14 layout->addWidget(result);
15

16 SimpleMultiplier mult;
17

18 QObject::connect(input, SIGNAL(textEdited(QString)),
19 &mult, SLOT(startCalculation(QString)));
20 QObject::connect(&mult, SIGNAL(resultReady(int)),
21 result, SLOT(setNum(int)));
22

23 window.show();
24 return app.exec();
25 }

After the construction of the QLineEdit object, a validator is assigned to it. Validators can
restrict the input of an editor widget. In this case, a predefined integer validator (QIntValidator)

Qt in General 41

Figure 3.5 A custom class multiplies the input received through a custom slot by 2 and emits the result through
a signal.

Figure 3.6 The calculation of the custom SimpleMultiplier class is triggered by the startCalcula-
tion(QString) slot. Afterwards, it publishes the results through the resultReady(int) signal.

is used, whose first two parameters specify the minimum and maximum value respectively. Own
validators can easily be developed; the use of regular expressions is possible as well.

Two signals and slots connections are responsible for responding to the user typing into the
text box (see Figure 3.6). The first connects the textEdited signal emitted by the QLineEdit
widget whenever its contents are modified with the startCalculation(QString) slot
of our own SimpleMultiplier class instance. As already described in Section 3.3.2, no
automatic type conversion is performed. Because of this, we use a QString parameter for the
startCalculation() slot, as this is the same as the parameter emitted by the textEdited()
signal.

With the second connection, the result of the calculation is relayed to the label widget. Through
these two connections, the result is always updated as soon as the user types in the line edit widget.
The beauty of this solution lies in its flexibility. If you wanted to display the result in a second label
or transmit it over the Internet, you would simply create another connection that binds the signal to
a second slot.

42 Qt for Symbian

3.4.6 Properties and Meta-information

Properties are another Qt extension to the standard C++ object system. They can be added to classes
or class instances and behave like member variables, the main difference being that these can not
only be declared in the class header file (through a specific Q_PROPERTY() macro), but even be
added dynamically at runtime. This concept is extensively used for the user interface components.
The following code discovers and queries the properties of a standard QPushButton instance
named but:

1 QPushButton but("Hello Property");
2 // Get meta object of target object
3 const QMetaObject *metaobject = but.metaObject();
4 // Number of properties
5 int count = metaobject->propertyCount();
6 for (int i=0; i<count; ++i) {
7 // Retrieve current property
8 QMetaProperty metaproperty = metaobject->property(i);
9 // Print name and value to debug out

10 const char *name = metaproperty.name();
11 QVariant value = but.property(name);
12 qDebug() << "Name:" << name << ", value:" << value;
13 }

The result will be 71 defined properties. These range from layout parameters like the position and
size, through visibility and button text, up to the locale being used.

Additionally, the QMetaObject instance created for each QObject sub-class provides
information about the class name of your object, its super-class or the available meta-methods
(signals, slots). While this is usually not required for standard application development, it can be
useful for meta-applications like scripting engines.

3.5 User Interface

Qt is often considered as a UI toolkit that allows the creation of a UI that works on multiple platforms.
That is only a tiny part of the truth, as Qt is much more than this and provides many other helpful
services and modules to application developers. In later sections, we will take a look at some of
those, like network or XML support (see Section 3.7). Of course, the UI is still an essential part of
almost all Qt applications, so we will start with that.

3.5.1 Handling Text through Implicit Sharing

Almost every application requires text in some form. Therefore, we first take an in-depth look at how
to work with text and strings.

UI classes especially are usually derived from QObject as described in the previous sections.
However, many other classes do not require signals, slots or automatic memory management. As a
result, they are not derived from QObject. A prime example is QString, which stores text on the
heap in Unicode format. It can be compared with the new LString class or the RBuf descriptor

Qt in General 43

Figure 3.7 For QString objects, data is automatically only copied when needed (implicit sharing).

in Symbian OS. QString comes with plenty of overloads and functions, making it easy to use. For
example, during initialization, it automatically converts the const char* data to Unicode in the
following scenario:

QString str1 = "Hello world";
QString str2 = str1;
str2.replace("world", "Qt");

After executing this short segment of code, str1 will still contain its original ‘Hello world’
text, whereas str2 now reads ‘Hello Qt’. This is exactly what you would expect and all that you
usually need to care about. Especially when working on mobile devices where memory is limited, it
is interesting to know that Qt automatically applies the concept of implicit sharing.

While the second line of the code above actually assigns the value of str1 to str2, Qt does
not copy it right away (see Figure 3.7). Instead, only the pointer is passed and both variables still
reference the same text buffer on the heap (shallow copy). To make this mechanism safe, (atomic)
reference counting is used for the data. Only when the contents of str2 are modified does Qt have
to make both strings separate in memory and perform a deep copy. This happens behind the scenes,
without intervention from you as a developer. As a result, both the speed and memory usage are
optimized.

Additionally, it is therefore usually not necessary to pass pointers to strings for parameters,
as call-by-value does not actually copy the contents of the string. The same mechanism is also
employed by other classes, e.g. the QImage class for loading and saving images. Using the
QSharedDataPointer class, you can easily use implicit sharing for your own classes.

3.5.2 Internationalization

While internationalization might not be important for your first steps with desktop applications, it
is usually vital for mobile applications. Users commonly expect localized content on their mobile
device.

As a result, native C++ applications for Symbian OS tightly integrate internationalization. For
the UI, C++ resource files are used. All strings are externalized to an additional file. Different
language variants can then easily be created by including the corresponding file. All localized
resource files are shipped with the .sis installation file, whereas usually only the one corresponding

44 Qt for Symbian

to the current phone language is installed. Only if your application does not include the required
language will the user get the choice of which other language is preferred. In the application source
code, utility classes like StringLoader are responsible for loading text from resource files into
memory (descriptors).

The process of translating text is different in Qt. The aim is not to kick all text out of the
source code, but instead to embed the default language directly into the code (usually English) and
if necessary to replace the text through external translation files at runtime. This makes the code
easier to write, maintaining at the same time the advantages of having extra translation files. Specific
Qt tools help with generating and working with these files. Additionally, the QObject base class
enables easy integration of translated text even in special cases (e.g., plurals), whereas the resource
file approach of Symbian OS mostly requires manual solutions.

Translating Text

For basic translation, all you need to do is to enclose the string in the source code with tr(), a
method provided by QObject. The following example demonstrates the initialization of a label
widget with localizable text:

QLabel* label = new QLabel(tr("Hello World"));

Of course, translation is often not this straightforward. The word order of languages especially
has an effect on dynamic text – when inserting for example a file name into a status message, it
might have to be placed at a different position for different languages. Additionally, numbers might
require different text for singular and plural, depending on their value. If the context is relevant for
correct translation, you can provide a textual description of the situation, which will then be visible
only to the translator. Take a look at the help section of Qt Creator for instructions on how to handle
those situations.

Text written in the source code is the default language. Add any additional translations to the
project file, in this case for German and French:

TRANSLATIONS = demo_de.ts \
demo_fr.ts

To extract all translatable strings from your source code and to generate the translation files (.ts
– translation source), call the tool lupdate <.pro-filename>. It parses all files registered in
the project file under SOURCES, HEADERS and FORMS and generates the .ts files, which are based
on an XML format. If you add additional text later on, further calls to the same tool will update the
existing .ts files.

While it is possible to work directly on the .ts files, a more convenient way is to use Qt Linguist.
This application provides a convenient UI for the translation process, which can easily be used by
external translators without technical proficiency. The tool also provides a preview (if Qt Designer
was used for generating the UI) and validation features.

After all strings have been translated and are marked as ‘finished’, run lrelease <.pro-
filename>. The tool generates compact binary .qm files out of the XML-based .ts files, which
you can ship with your applications or embed into the executable file.

The only remaining task is to load the translation files accordingly. Usually, the QTranslator
class is initialized at the beginning of the main() method:

Qt in General 45

Figure 3.8 If needed, Qt will automatically try to find more generic versions of the translation file.

1 // Get locale of the system
2 QString filename = QString("demo_%1").arg(QLocale::system().name());
3 // Load the correct translation file (if available)
4 QTranslator translator;
5 translator.load(filename.toLower(), qApp->applicationDirPath());
6 // Adds the loaded file to list of active translation files
7 app.installTranslator(&translator);

The first line retrieves the current system locale, which is returned as a string consisting of a
language code and a country code (e.g. de_AT for Austrian German). QTranslator first tries to
load the specific translation file. If this is not available, it will go through more generic variants step
by step to find a suitable translation (see Figure 3.8). For example, if you only provided a generic
German translation, the class would automatically load the de file if you did not provide specific
translations for Austria (de_AT) or Switzerland (de_CH).

If a suitable file has been found, the work is done and your application is translated. Adding
additional languages is just a matter of creating more translation files and adding them to the project
file.

3.5.3 Widgets, Dialogs and the Main Window

When developing bigger applications, the approach of simply creating various widgets in the
main() method will soon reveal its limits. Of course, Qt offers more flexible and powerful
approaches. These include sub-classing widgets, dialogs or using the main window.

Sub-classing Widgets

A common approach for creating a UI is to derive a custom class from the generic QWidget base
class. Next, add individual UI widgets like labels, buttons, etc., as member variables and create
them in the constructor. That way, UI elements that belong together are encapsulated in a single
class, which also happens to be a widget. Modifications or additions do not influence the rest of the

46 Qt for Symbian

(a) Windows 7 (b) Symbian

Figure 3.9 Predefined dialogs for common usage scenarios are provided by Qt – this example shows the
warning dialog. (a) Application running on Windows 7. (b) Same application on Symbian.

application. This can be compared with the containers in the traditional Symbian architecture, which
are controls themselves, but only serve to manage sub-controls that are the visible UI elements.

Dialogs

In addition to sub-classing widgets, it is also possible to use dialogs. These are intended to be used for
in-between information, like asking the user if an Internet connection is to be established (yes/no).
If a dialog window is closed, the whole application is usually not terminated.

Similar to widgets, it is common to sub-class QDialog, which is itself derived from QWidget.
Therefore, the basic concept is the same – the QDialog class just adds additional methods that
are useful for dialogs. Qt already comes with different predefined dialogs, e.g. for entering text or
numbers, selecting a colour, a file or a font, and many others.

Using predefined dialogs is easy. The following code demonstrates this using a simple message
box, which is fundamental for most applications. The box shows a warning message, asking if the
user really wants to exit (see Figure 3.9). Two options are offered, the resulting choice being reflected
in the integer return value:

int ret = QMessageBox::warning(this, "Exit?",
"Do you really want to exit the application?",
QMessageBox::Yes | QMessageBox::No);

Qt in General 47

Figure 3.10 The standard layout of a main window on a desktop platform.

By default, this dialog is modal. This means that the dialog window is always in front of the parent
window. Additionally, the parent is blocked until the dialog returns – interaction is only possible with
the dialog as long as it is possible. Of course, you can also create non-modal dialogs. This can be
useful, for example, for a search dialog in a text editor application. Such a dialog should stay in the
foreground so that the user can search for the next word, but still allow interaction with the editor.

Main Window

Essentially, the QMainWindow represents a predefined layout for the application window, which
already defines several components that standard UI applications commonly need. This includes
toolbars, dock widgets, a menu and a status bar (see Figure 3.10). The central widget represents the
main window content (= the workspace for the user).

Of course, creating a layout like that is also possible with dialogs and widgets; however, using the
main window is more comfortable and ensures a consistent appearance across multiple platforms.
For example, menu commands are automatically mapped to the Options menu of the left softkey on
Symbian. To create your own main window, derive it from the QMainWindow class. See Section
3.7.3 for an example.

3.6 System

Usually, UI-based applications are event based. They wait for the user to interact in order to start
working on the requested task. Compared with continuously polling for status changes (‘is the user
currently pressing a button?’), sending events to a sleeping application saves a considerable amount
of processing time and thus battery life. This section takes a look at how to work with events and
timers in Qt.

48 Qt for Symbian

Figure 3.11 This diagram demonstrates in a simplified way how an actual hardware event is translated into a
QEvent and then a signal that is handled by your own custom slot.

3.6.1 Events

Events are generated in response to user actions (touch events, keyboard presses, etc.) or by the
system (e.g. when a window is shown for the first time). Up to now, we have only been concerned
with using predefined widgets. Usually, you will not be in touch with events in this case. Widgets
like the QPushButton already include event handlers that emit corresponding signals in response
to events, e.g. the clicked() signal when an appropriate mouse or keyboard event is received.
Therefore, events are mostly important when implementing a widget of your own or if you require
to modify the behaviour of an existing Qt widget. Signals on the other hand are important when
using a widget or for internal communication within your own application.

Figure 3.11 shows a schematic overview of the relation between events and signals and slots
through the example of a mouse release event being delivered to a button. First, the hardware event
is delivered to the event loop of QCoreApplication::exec(). Through an event dispatcher,
the QEvent is then sent to the virtual event()method of the appropriateQObject – in this case,
it is a QPushButton. The generic event() method then calls a specific event handling method
suitable for this kind of event (mouseReleasedEvent()). This also leads to a clicked()
signal that is emitted by the QPushButton. The signal is finally delivered to your own custom slot
that starts the appropriate action for the mouse click on the button.

Event Delivery

Events can be generated in two different ways. The first event is concerned with native system
window events, like queries to redraw the screen. QCoreApplication::exec(), the main
event loop, fetches those events from the event queue. System events are then translated into
QEvents and sent to relevant QObjects.

Qt in General 49

Secondly, a QEvent can also be generated by Qt itself. These events are then processed by the
same event loop. The QTimerEvent is an example of a self-generated event, which is triggered
after a specific time has passed.

The basic QEvent only stores the event type plus a flag where a receiving QObject can indicate
if it accepted this event (otherwise, it might be propagated to its parent). Specific sub-classes like
QMouseEvent or QPaintEvent extend the QEvent class to store specific information, like the
mouse cursor position or the area to redraw.

The QCoreApplication dispatches events to the event() method of the target QObject,
with the QEvent object as parameter. In this method, the class usually examines the event and
decides whether to handle or to ignore it – therefore, this method can be referred to as event
handler. The implementation of event() in the QWidget class distributes common events to
specific handler methods like mouseMoveEvent() or paintEvent(). Therefore, you do not
have to write your own event handler function for taking care of common events – you only need
to override the corresponding predefined handler method from the QWidget base class. Due to the
object hierarchy, events are distributed automatically and you do not have to register explicitly for
events in standard usage scenarios. For more control, you can write custom event filters and register
for events of other QObjects.

3.6.2 Timers and Painting

Among the most common events are timer events. In contrast to a user-generated mouse button click
as in the scenario described earlier, this event is generated by Qt itself. It is mainly used to perform
processing at regular intervals. Blinking cursors or other animations are good examples of the use of
the timer. Support for timers is built into the QObject base class.

To introduce timers as well as repaint events and the basics of low-level painting, the following
example draws a slowly rotating square (see Figure 3.12). Regular call-backs of the timer cause the
graphics to redraw. The rotation angle of the quad depends on the current system time.

The main() method simply creates an instance of the custom RotateWidget class and calls
show() on it, before using QCoreApplication::exec() to start the event loop. As this is
similar to the previous examples, the code is omitted here. However, the full source code is available
online.

A timer can be started in multiple ways. This example directly creates an object of type QTimer.
Then, it connects its timeout() signal to the update() slot of the widget. This results in regular
subsequent calls to paintEvent(), which is in turn called as part of the widget redraw process.

The header file of the RotateWidget class is short and simple. Our class is a widget and thus
also indirectly derived from QObject, which is required for event and timer support. To support
low-level drawing, it overrides the paintEvent(QPaintEvent*)method from the QWidget
base class. The method is an event handler that is called in response to paint events:

1 class RotateWidget : public QWidget
2 {
3 public:
4 RotateWidget(QWidget* parent = 0);
5

6 protected:

50 Qt for Symbian

Figure 3.12 A screenshot of the timer example. The quad rotates with the speed of the clock.

7 void paintEvent(QPaintEvent* event);
8 };

The constructor of the RotateWidget class first creates a new timer. As specified above, this
example demonstrates the creation of an instance of the QTimer object. The supplied parameter
specifies the parent of the timer (this). It turns the timer into a child of the widget, so that it will
be deleted when the parent RotateWidget is deleted:

1 RotateWidget::RotateWidget(QWidget* parent)
2 : QWidget(parent)
3 {
4 QTimer* timer = new QTimer(this);
5 connect(timer, SIGNAL(timeout()), this, SLOT(update()));
6 timer->start(50);
7

8 setWindowTitle(tr("Rotating Quad"));
9 resize(360, 360);

10 }

The paintEvent() method is called in response to paint events, which can occur if
repaint() or update() is invoked on the widget (as in our case) or if the widget was obscured
and is now uncovered. Qt automatically takes care of double buffering the output. This means that
the changes caused by the individual drawing operations are only copied to the screen when the
paintEvent() method is finished, thus preventing flickering.

The parameter of type QPaintEvent contains event parameters for paint events. Most
importantly, it contains the region that needs to be updated. Only redrawing a certain region

Qt in General 51

instead of the whole widget can lead to significant performance improvements, especially on mobile
platforms. In our case, it is easier to redraw the whole widget contents. The parameter is therefore
unused:

1 void RotateWidget::paintEvent(QPaintEvent*)
2 {
3 QPainter painter(this);
4 painter.setRenderHint(QPainter::Antialiasing);
5 QColor quadColor(0, 0, 255);
6 painter.setBrush(quadColor);
7

8 QTime time = QTime::currentTime();
9 painter.translate(width() / 2, height() / 2);

10 painter.rotate((time.second() + (time.msec() / 1000.0)) * 6.0);
11

12 painter.drawRect(QRect(-50, -50, 100, 100));
13 }

In the paintEvent() method, we first create a QPainter object. This class is used to
perform low-level painting on widgets or other paint devices, like bitmaps or a printer. It offers
many convenient methods for drawing simple or more complex shapes, as well as text and pixmaps.

In the next few lines of the source code, we adapt the settings of QPainter. The first activated
configuration is to prefer using anti-aliasing, which results in less jagged edges of the rectangle due
to the use of transparencies. Next, the brush is configured to use a blue colour. The brush defines the
fill colour and pattern of an object, whereas the pen defines the outline style.

The next three source code lines ensure the correct position and rotation of the square. Its rotation
is directly related to the current seconds and milliseconds – it would be easy to extend the application
to create a full analogue clock (see the Qt documentation for such an example). First, the coordinate
system of the painter is translated to the centre of the available size of the widget. Next, a rotate
command applies a rotation of the coordinate system depending on the current number of seconds.

In the end, a square with a size of 100 × 100 is drawn at the coordinates −50/−50, in order to
centre it around the origin of the translated (and rotated) coordinate system.

When you execute the application, you should see the blue square slowly turning clockwise.
Figure 3.12 shows a screenshot of this application running on Symbian.

Alternatively, it would be possible to start a timer using the startTimer() method of the
QObject base class instead of using QTimer directly. This method returns an ID, which is
used to identify and further control the timer. In contrast to using a dedicated QTimer object,
no direct connections to the slot can be made with the startTimer() method. Instead, the
timerEvent() method of your class will be called at regular intervals. Also, only QTimer
supports single-shot timers, which were not required in this example but are often useful.

3.7 Communication

Especially on a mobile phone, communication is a vital aspect of almost every application. Much like
Java ME with the Generic Connection Framework, Qt features streamlined interfaces that simplify
communicating over various ‘devices’ like sockets, files or even processes. Not only is it easy to

52 Qt for Symbian

Figure 3.13 Class hierarchy of QIODevice and its sub-classes.

replace the employed device using a common base class, but also, when developing distributed or
client/server applications, the same code can be used on the Symbian mobile phone as well as on the
PC/server side with, for example, a Linux-based operating system.

3.7.1 Input/Output

Figure 3.13 illustrates the classes that inherit from the abstract base class QIODevice. These
include various socket-related classes, QBuffer for reading from and writing to a QByteArray,
file-related classes for accessing files in the local file system, embedded resources and temporary
files, and finally QProcess for inter-process communication. Obviously, all these devices behave
differently, so QIODevice implements the lowest common denominator of all input and output
operations.

The most important distinction that still remains is the way of reading data. Sockets and processes
are sequential devices; data must be read in one pass. On the other hand, files and QBuffer are
random access devices, which allow reading at arbitrary positions using seek().

Comparable with Java, Qt provides additional higher level stream classes that simplify reading
and writing Qt data types to byte-based streams. QDataStream provides serialization of binary
data and already includes implementations for C++’s basic data types as well as many Qt data
types. By overloading the << and >> operators, you can add support for custom data types. For
text-based data, the class QTextStream helps with reading and writing words, lines and numbers.

These two stream classes take care of lower level necessities like byte ordering and text encoding
and therefore help in developing international cross-platform applications.

3.7.2 Files and Streams

To demonstrate the use of files and data streams, we will use a console application without a GUI.
In contrast to the previous examples, this type of application only requires QtCore. Adding the
configuration console to the project file (.pro) enables console output on Windows. For Mac
OS X, the project settings also tell qmake not to put the executable inside a bundle:

Qt in General 53

1 TEMPLATE = app
2 QT = core
3 CONFIG += console
4 CONFIG -= app_bundle
5 SOURCES += main.cpp

This application does not use a QCoreApplication object, as QFile does not need the event
loop – our example is finished after sequentially working through the source code in main(). First,
the example creates a file and then serializes three different variables. In the second part, these
variables are read back in again:

1 #include <QtCore>
2 #include <QDebug>
3 #include <iostream>
4 #include <stdio.h>
5

6 int main(int argc, char* argv[])
7 {
8 // Writing a file
9 QFile outFile("data.dat");

10 if (!outFile.open(QIODevice::WriteOnly)) {
11 std::cerr << "Cannot open file for writing: " <<
12 outFile.errorString().toStdString() << std::endl;
13 return 1;
14 }
15

16 QDataStream out(&outFile);
17 out.setVersion(QDataStream::Qt_4_5);
18

19 quint32 outValue = 12345678;
20 QTime outTime = QTime::currentTime();
21 QVariant outVar("Some text");
22

23 out << outValue << outTime << outVar;
24 outFile.close();
25

26 // (continued in next listing)

At first, our application tries to open the file data.dat for writing. If this operation fails, an
error message is printed. This is done using the standard error stream (std::cerr), which is by
default directed to the console. The QString returned by outFile.errorString() needs
to be converted to a std::string using toStdString(), for which <iostream> has a <<
overload.

If the file was opened correctly, a QDataStream is constructed using the QFile object
(based on QIODevice). In our example, the task of the stream class is to write three different
variable types to the file using operator«(), which is overloaded to handle various data
types. QDataStream’s binary representation of objects has changed in the many years since
Qt 1.0 was released, and will continue to do so in the future. In order to maintain forward and

54 Qt for Symbian

Figure 3.14 Properties of the QDataStream in the debug view of Qt Creator.

backward compatibility, it is helpful to hard-code the version number in the application (e.g.
QDataStream::Qt_4_5). This ensures that the data is written and read in exactly the same
way.

Additionally, the data format is platform independent. You can transfer data via a network
connection from an ARM-based mobile device to an Intel-based PC without problems. In
Figure 3.14 you can see that Big Endian data encoding is used by default (see the byte-order
property of the out class instance). The data format version of Qt_4_5 equals decimal 11.

Especially for settings files, it is a good idea to extend the example to include a brief file header.
This should contain a magic string that allows you to check if the file is really from your application.
A version number helps to import correctly old versions of settings files if you decide to expand the
file in future versions. See the documentation of QDataStream for an example.

Qt in General 55

The QVariant data type used for the third variable is a powerful data type. It acts like a union
of the most common Qt data types. It stores one type of data and can additionally convert between
different types. In our case, the QVariant contains a QString. In addition to serializing the actual
content, QVariant additionally saves the type of the variable to the stream, so that it can be read
back using a QVariant.

As the outFile object was created on the stack, it will close the file automatically when the
variable goes out of scope. However, to be on the safe side and to save resources, it is still a good
idea to close resources as soon as you no longer need them.

Reading the file back in works in a similar way to writing the data. After opening the file
and creating a QDataStream, we set the stream version to ensure compatibility. Next, the three
variables are read back in exactly the same order:

1 // Reading a file (continued from previous listing)
2 QFile inFile("data.dat");
3 if (!inFile.open(QIODevice::ReadOnly)) {
4 std::cerr << "Cannot open file for reading: " <<
5 inFile.errorString().toStdString() << std::endl;
6 return 1;
7 }
8

9 QDataStream in(&inFile);
10 in.setVersion(QDataStream::Qt_4_5);
11

12 quint32 inValue;
13 QTime inTime;
14 QVariant inVar;
15

16 // Read values in same order as they were written
17 in >> inValue >> inTime >> inVar;
18

19 qDebug() << "Variant type:" << inVar.typeName() <<
20 ", contents:" << inVar.toString();
21

22 inFile.close();
23 return 0;
24 }

The variable inVar of type QVariant recognized the type that was previously written to the
file. The debug output line prints the type of the variable (as text) and then returns the variant as a
QString:

Variant type: QString , contents: "Some text"

Instead of using the standard streams provided by <iostream>, the qDebug() global function
(available when including <QDebug>) is used as the output stream. By default, this prints the text
to stderr output under Unix/X11 and Mac OS X and to the console (for console apps) or the
debugger under Windows. An additional advantage is that Qt data types like QString can be
directly serialized, without conversion to a std::string or char*.

56 Qt for Symbian

You can store data in a very compact way using binary data formats, as demonstrated in this
example. Usage is easy through the convenient QDataStream class. As mentioned above, the
QTextStream class is specialized on serializing text and can take care of different character
encodings. If you prefer a lower level way of handling data, you can use the QIODevice’s
write() and readAll() functions directly without using higher level stream classes.

3.7.3 Networking and XML

While the QFile class is part of the QtCore package that is part of every Qt project, using classes
related to communication with the network requires the additional QtNetwork extension module.
Insert the following declaration into your qmake project file:

QT += network

In the source code, simply include the appropriate header files of the Qt classes in use, as we
did before. Alternatively, you can use the directive #include <QtNetwork>, which is a meta-
include that contains all the include files for the classes offered by the QtNetwork module.

The module provides classes that enable working with both the TCP and UDP protocols, as well
as for resolving host names and working with network proxies. Additionally, convenience classes
for the higher level protocols HTTP (through the network manager) and FTP are included.

TCP and UDP

The stream-oriented TCP communication protocol is implemented by QTcpSocket. Especially in
the mobile context, low-level TCP connections are often preferable to HTTP connections, as they
involve less overhead and therefore result in less data to be transferred over often slow wireless
connections.

You can use an instance of the QTcpSocket class in your application to handle the network
communication. Another option is to derive from the class to customize the behaviour. The
operations are performed asynchronously. Status changes and errors are emitted via signals.

As QTcpSocket is indirectly derived from QIODevice, you can use the classes of
QDataStream and QTextStream introduced earlier on a socket (see Section 3.7.2). Instead of
working with higher level data types, you can directly transmit byte arrays through the read() and
write() methods of the socket.

The QTcpServer class makes it possible to accept incoming TCP connections. Depending on
the expected number of simultaneously served clients, you can easily implement a server that creates
individual threads to serve each incoming client. To compare a simple single-threaded server with the
more powerful multi-threaded variant, take a look at the Fortune Server example from the Qt SDK.

Due to the nature of the connectionless UDP, no extra server class is required for implementing
a UDP server. Instead, the bind() method of the QUdpSocket is used to bind a socket to the
specified address and port. Transferring data is done through (usually smaller) datagrams, where each
one contains the target address as well as the data. Apart from these differences, the QUdpSocket
behaves mostly like its TCP counterpart.

Qt in General 57

High-Level Network Operations

Qt also provides several high-level classes to perform network operations using common
protocols. The QNetworkAccessManager class is responsible for coordinating multiple network
requests, which are represented by instances of QNetworkRequest. The request contains
information like the request header and the URL. When the request is sent over the network, the
QNetworkAccessManager creates a QNetworkReply. The status can then be monitored
either through the individual QNetworkReply objects, or through signals of the network manager.

Currently, the network manager allows the use of HTTP, FTP and file access. It supports
authentication, encryption, cookies and proxies. QFtp and QFile can be used as dedicated classes
for handling the corresponding protocols. The QHttp class has now been superseded by the network
request classes mentioned above, which are more powerful.

HTTP is a higher level protocol that is based on TCP. It is a stateless protocol, where requests
and responses are always self-contained. The protocol is well known from web browsers, where a
request for a website is sent to the server, which then responds with the page contents.

Especially in the mobile world, HTTP-based web services can be even more interesting than
downloading whole web pages. The client only requests specific data from the server. The response
is usually formatted as an XML file, which can be easily parsed to extract the required information.
This concept is also used by the AJAX (Asynchronous JavaScript and XML) requests that made Web
2.0 popular.

XML

Qt provides three ways to parse data formatted in XML. These are encapsulated by the xml module,
which has to be added to the qmake project file in a similar way to the network module.

The most flexible approach that allows both reading and writing XML files is the DOM
(Document Object Model), a standard of the W3C. When parsing an XML file, the class
QDomeDocument builds a hierarchal tree that contains all the nodes of the XML file. This is
convenient for applications like web browsers, as they require non-consecutive access to the elements
of the XML/XHTML file. The DOM tree can easily be transferred back into an XML file. The
obvious disadvantage is the amount of memory required for storing the contents of the whole file –
especially on a mobile device.

The Simple API for XML (SAX) is more lightweight. While parsing an XML document, the SAX
parser (QXmlSimpleReader) triggers various events, e.g. every time it encounters an opening or
closing tag. By overriding the virtual event handler methods, you can merge your own application
logic with the parser. SAX resembles a simpler approach compared with the DOM, but makes it
more difficult to manipulate the structure of the data, as the data already handled is not stored but
discarded instead. Another disadvantage is that parsing source code can easily get confusing, as the
logic is distributed over various functions according to the tag type, instead of the currently parsed
contents.

The QXmlStreamReader class of Qt improves this aspect. Your application does not have to
provide handlers (call-back functions) for the events which are encountered while parsing the XML
file. Instead, the application controls the process of parsing the file and navigates by methods that

58 Qt for Symbian

Figure 3.15 Through parsing the output of the Geocoding web service from Google Maps, the example
demonstrates the use of HTTP and XML parsing.

pull tokens from the reader one after another. This is comparable with an iterator with embedded
intelligence specifically tailored for XML files.

Especially for tasks that require searching and transforming XML files, the XQuery/XPath
language is very suitable. It is defined by the W3C1 to address the need for intelligently querying
XML data sources. The main advantage is that it does not require manual procedural programming
in C++, but instead directly provides the result of a query formatted in plain text. In Qt, an
implementation is provided in the QtXmlPatterns module.

Example: Geocoding Web Service

To demonstrate the use of the HTTP and XML APIs as well as the main window, the following
example provides a UI for Google’s Geocoding web service.2 See Figure 3.15 for a screenshot of
the example application.

Enter the name or address into the upper text box of a location that you want to look up. Clicking
the ‘Ok’ button sends an HTTP request to the Geocoding web service. The response is encoded as
an XML file, which contains the longitude and latitude. It is parsed by the QXmlStreamReader.
Finally, the extracted coordinates of the placemark are converted to numeric values and shown in the
second text box.

When searching for the location ‘FH Hagenberg, Austria’, the Geocoding API will return the
resulting XML which is shown below in a truncated version – the full XML file contains some
additional details. The Keyhole Markup Language (kml) data provides information about the full
address of the placemark, the region that it occupies on the map, as well as a point in the centre of
this area; this element is called <coordinates> and contains the longitude, latitude and altitude
(if available, otherwise set to 0):

1 <kml>
2 <Response>
3 <name>FH Hagenberg, Austria</name>
4 <Placemark id="p1">
5 <address>
6 Fachhochschule Hagenberg, 4232 Hagenberg im Mühlkreis,

1http://www.w3.org/TR/xquery/.
2http://code.google.com/intl/en/apis/maps/documentation/index.html.

Qt in General 59

7 Österreich
8 </address>
9 <ExtendedData>

10 <LatLonBox north="48.3760743" south="48.3612490"
11 east="14.5310893" west="14.4990745"/>
12 </ExtendedData>
13 <Point>
14 <coordinates>14.5150819,48.3686622,0</coordinates>
15 </Point>
16 </Placemark>
17 </Response>
18 </kml>

As mentioned above, using Qt’s networking and XML classes requires adding the corresponding
modules to the qmake project file. When targeting the Symbian platform, you also have to take
Platform Security into account. In this concept, access to certain security-relevant parts of the
system is only allowed if the corresponding Capabilities are specified at compile-time. For example,
accessing the network is only allowed if you specify in the project file that your application might
require it (the capability is called NetworkServices).

Additionally, the certificate that is used to sign the packaged application has to be sufficient for
the requested capabilities. By default, the IDEs create a self-signed certificate on your PC when you
first build an application. While this certificate is sufficient for using basic capabilities like network
access, a security warning will be shown during installation, informing the user what the application
might do and that it does not originate from a trusted supplier. For commercial distribution, or if
you want to access more restricted areas of the phone (e.g. if you want to simulate key presses for
the whole system), the self-signed certificate is no longer ‘mighty’ enough. See the Symbian Signed
website3 for more details on how to use these capabilities for development and on how to obtain a
trusted certificate for commercial release.

For our web service example, the standard self-signed certificate is sufficient if we can live with
the security warning during installation on a Symbian device. However, do not forget to add the
capability to the project file to indicate that your application will want to use the network – if you
forget to do so, connection attempts will fail at runtime:

1 HEADERS += xmldataview.h
2 SOURCES += xmldataview.cpp \
3 main.cpp
4 QT += network xml
5 symbian:TARGET.CAPABILITY = NetworkServices

Setup
As usual, the main.cpp file simply creates an instance of the UI class, which is called
XmlDataView in this example. If the application is executed on a Symbian OS device, it is shown
full screen (non-full-screen applications are not common on Symbian). In a desktop environment,
the window is shown using the default size. This distinction is executed by a preprocessor directive.

3http://www.symbiansigned.com/

60 Qt for Symbian

1 int main(int argc, char* argv[])
2 {
3 QApplication app(argc, argv);
4 XmlDataView geoWindow;
5 #if defined(Q_OS_SYMBIAN)
6 geoWindow.showMaximized();
7 #else
8 geoWindow.show();
9 #endif

10 return app.exec();
11 }

The class declaration reveals that XmlDataView is derived from QMainWindow, which was
described in Section 3.5.3:

1 class XmlDataView : public QMainWindow
2 {
3 Q_OBJECT
4 public:
5 XmlDataView(QWidget* parent = 0);
6

7 public slots:
8 // Send the HTTP request to retrieve the resulting XML file
9 void retrieveXml();

10 // Handle the network response, which contains the XML file
11 void handleNetworkData(QNetworkReply *networkReply);
12

13 private:
14 // Private function that parses the XML returned from the web service.
15 void parseXml(const QString &data);
16

17 private:
18 QNetworkAccessManager networkManager;
19

20 // Ui-Elements
21 QLineEdit* locationEdit;
22 QLineEdit* resultEdit;
23

24 // Parsed coordinates from the XML file
25 QString coordinates;
26 };

Our class provides two slots, which are executed in response to signals emitted by the UI and the
network connection. Two QLineEdit objects are stored as instance variables, as the application
needs to interact with the text content. It is not required to keep a pointer to the ‘Ok’ button, as
we will just connect its clicked() signal to the slot that starts the lookup process. All three UI
widgets are defined as children of the main window’s central widget, so they will be automatically
deleted when the main window is deleted due to Qt’s object hierarchy (see Section 3.2.2).

Qt in General 61

Now, let us take a look at the implementation of this class:

1 XmlDataView::XmlDataView(QWidget* parent)
2 : QMainWindow(parent)
3 {
4 setWindowTitle(tr("Geocoder"));
5 statusBar()->showMessage(tr("Welcome"));
6

7 QWidget* cw = new QWidget();
8 QVBoxLayout* lay = new QVBoxLayout(cw);
9 locationEdit = new QLineEdit();

10 lay->addWidget(locationEdit);
11 QPushButton* okButton = new QPushButton(tr("Ok"));
12 lay->addWidget(okButton);
13 resultEdit = new QLineEdit();
14 lay->addWidget(resultEdit);
15 setCentralWidget(cw);
16

17 connect(locationEdit, SIGNAL(returnPressed()),
18 this, SLOT(retrieveXml()));
19 connect(okButton, SIGNAL(clicked()),
20 this, SLOT(retrieveXml()));
21 connect(&networkManager, SIGNAL(finished(QNetworkReply*)),
22 this, SLOT(handleNetworkData(QNetworkReply*)));
23 }

The constructor contains relatively few surprises. First, it configures the UI. The main window’s
status bar is used to inform the user of the current state. A central widget of the basic type QWidget
is used as the parent object, which stores the layout and the three UI elements and is then handed
over to the main window through setCentralWidget().

The last part of the constructor deals with the signals and slots connections. The first two
connections ensure that both methods create a network request: clicking on the Ok button as well as
pressing the Enter key while the locationEdit element has keyboard focus.

Instead of tracking the progress of individual requests we simply connect the finished()
signal of the network manager to the handleNetworkData() slot. As the name already implies,
the signal will be executed when processing of the network request has finished.

Submitting the HTTP request
Next up in the logical application structure is the slot called retrieveXml():

1 void XmlDataView::retrieveXml()
2 {
3 QString query = locationEdit->text();
4 if (query.isEmpty())
5 return;
6 query.replace(’ ’, ’+’);
7

8 QUrl url("http://maps.google.com/maps/geo");
9 url.addEncodedQueryItem("q", query.toUtf8());

62 Qt for Symbian

10 url.addEncodedQueryItem("output", "xml");
11 url.addEncodedQueryItem("oe", "utf8");
12 url.addEncodedQueryItem("sensor", "false");
13 url.addEncodedQueryItem("key", "abcdefg");
14

15 networkManager.get(QNetworkRequest(url));
16 }

This method first retrieves the text from the locationEdit widget. Space characters are then
transformed into + signs and the final location string is embedded into the full query URL. This is
achieved through the QUrl class, which provides a convenient interface for working with URLs. The
addEncodedQueryItem() method is used to add the parameters to the network request. The
automatically applied encoding replaces all non-ASCII and control characters with a percentage-
encoded format. The maps key (abcdefg) is for demo purposes only; you will have to request your
own free key from Google. Finally, the request is submitted. The method returns immediately and
the request is queued and executed asynchronously in Qt’s event loop.

Parsing the XML response
As soon as the network response is available, Qt will call our handleNetworkData() slot as a
result of the connection that we set up in the constructor:

1 void XmlDataView::handleNetworkData(QNetworkReply *networkReply)
2 {
3 if (!networkReply->error())
4 parseXml(networkReply->readAll());
5 else
6 statusBar()->showMessage(tr("Network error: %1").arg(networkReply

->errorString()));
7 networkReply->deleteLater();
8 }

The private parseXml()method (see below) is only executed if the network request completed
successfully. Otherwise, we print the error message to the status bar of the main window. After the
response has been processed, calling deleteLater() schedules the object for deletion. This will
happen as soon as the control returns to the event loop:

1 void XmlDataView::parseXml(const QString &data)
2 {
3 QXmlStreamReader xml(data);
4 coordinates.clear();
5 while (!xml.atEnd()) {
6 xml.readNext();
7 if (xml.tokenType() == QXmlStreamReader::StartElement)
8 {
9 if (xml.name() == "coordinates")

10 {
11 coordinates = xml.readElementText();
12 QStringList l = coordinates.split(’,’);
13 if (l.count() == 3) {

Qt in General 63

14 statusBar()->showMessage(tr("Successfully received
XML data"));

15 double longitude = l.at(0).toDouble();
16 double latitude = l.at(1).toDouble();
17 resultEdit->setText("Lat: " + QString::number(

latitude)
18 + ", Long: " + QString::number(

longitude));
19 }
20 }
21 }
22 }
23 if (coordinates.isEmpty())
24 {
25 statusBar()->showMessage(tr("No valid coordinates found in

network reply"));
26 }
27 if (xml.error()) {
28 qWarning() << "XML ERROR:" << xml.error() << ": " << xml.

errorString() << " (line " << xml.lineNumber() << ")";
29 }
30 }

The QXmlStreamReader class in parseXml() behaves like an iterator. Through the
xml.atEnd() call, the while loop checks whether the parser has reached the end of the currently
available data. This might also be the case if there was an error while parsing the XML document
(e.g. if it is not well formed, meaning that it does not comply with XML syntax rules).

In case the XML reader has not yet reached the end of the available data, readNext() jumps
to the next token. We are only interested in the local name of the XML tag start elements. More
specifically, we are waiting for the coordinates tag. Once this tag is found, readElementText()
continues reading the stream up to the corresponding XML tag end element and returns all text in
between, which is appended to our coordinates string variable.

If the Geocoding API was happy with the request, the QString coordinates member
variable now contains the longitude, latitude and altitude of the placemark. The three values are
separated by commas. This character is used to split the string into a QStringList, a list of
strings (inherited from QList<QString>). In case the string actually contains the expected three
values, we set them as the new text for the resultEdit widget.

This completes the implementation of the Geocoding example, which incorporates many of the
concepts introduced in this chapter. You should now have a solid basic knowledge of Qt and be
prepared for your first steps in writing your own Qt applications. Of course, Qt provides many more
interesting features and modules like data models, SQL, threading and more advanced graphics.
These are well worth taking a look at – but, for now, you should dive deeper into the mobile world
and learn more about using Qt on your Symbian handset.

64 Qt for Symbian

Bibliography
Blanchette J and Summerfield M 2006 C++ GUI Programming with Qt 4. Prentice Hall PTR, Upper Saddle River, NJ.
Ezust A and Ezust P 2006 An Introduction to Design Patterns in C++ with Qt 4 (Bruce Perens Open Source). Prentice Hall

PTR, Upper Saddle River, NJ.
Jakl A 2009 Symbian course materials: http://www.symbianresources.com/.
Molkentin D 2007 The Book of Qt 4: The Art of Building Qt Applications. No Starch Press, San Francisco.
Qt Development Frameworks 2009 Qt reference documentation: http://qt.nokia.com/doc/.
Thelin J 2004 The independent Qt tutorial:

http://www.digitalfanatics.org/projects/qt_tutorial/chapter02.html.

4
Qt Mobility APIs

Tommi Mikkonen, Tony Torp and Frank H.P. Fitzek

This chapter introduces the very first Qt Mobility APIs. The goal of these APIs is to enable the use
of mobile phone functionalities in Qt applications. The APIs are easy to use and are designed for
cross-platform usage.

4.1 Introduction

In the previous chapters, we introduced the main concepts of general cross-platform Qt.
As demonstrated, the Qt framework introduces a powerful way to create cross-platform user
interface applications. Moreover, the general cross-platform portion of Qt also provides APIs for
implementing the most important system features, including facilities such as example networking,
file-related functionality and multi-threading, to name but a few. By their nature, these system
features exist on all platforms – including both the portable and desktop environments. Consequently,
it is only natural that they are provided for cross-platform development as an integral part of the
general Qt.

However, portable devices like smart phones have many special features. These escape the
common cross-platform Qt libraries. For example, location information and mobile messaging
systems are some features that are typically applicable to portable systems only. Since Qt is now
supported by a number of mobile platforms, a new set of APIs for utilizing mobile features in a
cross-platform fashion is becoming a practical necessity. The Qt Mobility package implements a
set of APIs that grants access to the most commonly needed mobility features without forcing the
developer to implement platform-dependent native code like Symbian C++.

The Qt Mobility project v1.0 (http://qt.gitorious.org/qt-mobility) delivers a set
of new APIs to Qt. These APIs provide access to features that are well known from other mobile
programming systems, such as Python or Mobile Java. Furthermore, as in any other mobility library,
these APIs allow the developer to use mobility-related features with ease from a single framework
and apply them to phones, netbooks and desktop computers, assuming of course that the associated
facilities are available in the device in the first place.

The APIs of the Qt Mobility project are real cross-platform APIs. Therefore, the framework not
only improves many aspects of a mobile development experience by simplifying the use of associated

66 Qt for Symbian

Figure 4.1 Qt Mobility APIs.

technologies, but also has applicability beyond the mobile device arena. Consequently, source code
can be reused over the Symbian border (which is covered in this book).

In the following we will briefly explain the different parts of the Qt Mobility API (Figure 4.1).

4.2 Bearer Management

The fundamental goal of bearer management is to reduce developers’ concerns when locating the
best available connection from a list of possible IP bearers and 3G connections. The user can select
the best connection, or the connection can be selected transparently so that WLAN roaming can
occur seamlessly.

The bearer management API controls the connectivity state of the system. With the bearer
management API, the user can start or stop communication interfaces and roam between access
points in a transparent fashion.

Some examples of the bearer management functionality are listed below:

• On-demand use of an appropriate access point. When a user starts to use a browser,
the appropriate access point is selected from available ones and a connection is made
transparently.

• Always-on applications – such as email or IM – roam automatically between cellular packet
data and WLANs. The application developer is in control and if needed the application can

Qt Mobility APIs 67

gracefully close TCP connections over the old bearer after setting up new TCP connections
over the new bearer, for example.

• The application developer can create a settings user interface, where the user can select a
certain connection to be used with the application.

• A connection manager application can be implemented with Qt. This application enumerates
available connections, shows counters and allows the user to connect or disconnect.

4.2.1 Creating a Network Session

QNetworkConfigurationManager is a class that manages the network configurations
provided by the system. Class QNetworkConfiguration provides an abstraction of access
point configurations. The following code example illustrates how a network session can be
established without any user interaction:

1 QNetworkConfigurationManager configurationManager;
2 const bool canStartAccessPoint = (configurationManager.capabilities()

& QNetworkConfigurationManager::BearerManagement);
3 QNetworkConfiguration configuration = manager.defaultConfiguration();
4 if (configuration.isValid() || !canStartAccessPoint)
5 return;
6 switch(configuration.type()) {
7 case QNetworkConfiguration::InternetAccessPoint:
8 // System starts the IAP immediately
9 break;

10 case QNetworkConfiguration::ServiceNetwork:
11 // System determines the best IAP available and starts it

immediately
12 break;
13 case QNetworkConfiguration::UserChoice:
14 // The access point is resolved by asking the user
15 break;
16 }
17 QNetworkSession* session = new QNetworkSession(configuration);
18 session->open();

4.3 Contacts

The fundamental use case for a mobile phone is establishing communications. Most commonly this
takes place with an already existing contact. Consequently, one of the special use cases of a mobile
device is the management of contacts. Therefore, this is one of the most essential mobility extensions
for Qt from the developer’s viewpoint.

68 Qt for Symbian

4.4 The Contacts API

This API defines the structure and retrieval of contact data from local or remote backends. The
API offers operations such as create, edit, list, delete and lookup contact information, regardless of
whether the data is stored locally or remotely.

4.4.1 Creating a New Contact

A contact can be created by creating an instance of the QContact object, adding contact details
and saving it to the contact database via the QContactManager class. This is carried out in the
following code snippet:

1 QContactManager* contactManager = new QContactManager(this);
2 QContact homer;
3

4 // Create name detail
5 QContactName name;
6 name.setFirst("Homer");
7 name.setLast("Simpson");
8 name.setCustomLabel("Homie");
9 homer.saveDetail(&name);

10

11 // Create phone number detail
12 QContactPhoneNumber number;
13 number.setContexts(QContactDetail::ContextHome);
14 number.setSubTypes(QContactPhoneNumber::SubTypeMobile);
15 number.setNumber("555112233");
16 homer.saveDetail(&number);
17 homer.setPreferredDetail("DialAction", number);
18

19 // Create address detail
20 QContactAddress address;
21 address.setCountry("USA");
22 address.setRegion("Springfield);
23 address.setPostCode("33220");
24 homer.saveDetail(&address);
25

26 // Save the contact to the contacts database
27 contactManager->saveContact(&homer);
28 }

4.4.2 Finding a Single Contact Detail

The next code example illustrates how to get the phone number of a specified contact. The IDs of
contacts are first fetched as a QList of contact IDs. The example takes the first contact in the contact
database and gets the phone number for it:

Qt Mobility APIs 69

1 QContactManager* contactManager = new QContactManager(this);
2 QList<QContactLocalId> contactIds = contactManager->contacts();
3 QContact firstContact = contactManager->contact(contactIds.first());
4 QString phoneNumber = firstContact.detail(QContactPhoneNumber::

DefinitionName).value(QContactPhoneNumber::FieldNumber);

4.4.3 Editing a Contact Detail

Contacts can be edited by first fetching the contact, changing or adding the required details and then
storing the updated contact in the contacts database. This can be achieved with the following piece
of code:

1 QContactManager* contactManager = new QContactManager(this);
2 QList<QContactLocalId> contactIds = contactManager->contacts();
3 QContact firstContact = contactManager->contact(contactIds.first());
4

5 // Change the phone number
6 QList<QContactDetail> numbers = firstContact.details(QContactPhoneNumber

::DefinitionName);
7 QContactPhoneNumber phoneNumber = numbers.value(0);
8 phoneNumber.setNumber("555123321");
9

10 // Add an email address
11 QContactEmailAddress email;
12 email.setEmailAddress("homer.simpson@email.org");
13 email.setContexts(QContactDetail::ContextWork);
14 email.setValue("Label", "Homer’s work email");
15

16 // Save the details
17 firstContact.saveDetail(&phone);
18 firstContact.saveDetail(&email);
19

20 // Save the updated contact to the database
21 contactManager->saveContact(&firstContact);

4.5 Location

One of the promises of mobile computing is context sensitivity. Since location is an increasingly
important piece of context for many applications, numerous mobile devices offer access to location
information. In the case of Qt, the location API is also an important mobile extension.

The location API encapsulates basic geographical information about the user obtained from
satellite or other sources, including latitude and longitude, bearing, speed and altitude. It enables
a range of geographical applications such as maps. Information provided includes the following:

• The date and time at which the position was reported.

• The velocity of the device that reported the position.

70 Qt for Symbian

• The altitude of the reported position (height above sea level).

• The bearing of the device in degrees, relative to true north.

Location data sources are created by creating a sub-class of QGeoPositionInfoSource
and providing QGeoPositionInfo objects through the QGeoPositionInfoSource::
positionUpdated() signal. Clients that require location data can connect to the
positionUpdated() signal and call startUpdates() or requestUpdate() to trigger
the distribution of location data. The main classes of the location API are as follows:

• QGeoAreaMonitor – Enables the detection of proximity changes for a specified set of
coordinates.

• QGeoCoordinate – Defines a geographical position on the surface of the Earth.

• QGeoPositionInfo – Contains information gathered on a global position, direction and
velocity at a particular point in time.

• QGeoPositionInfoSource – Abstract base class for the distribution of positional
updates.

• QGeoSatelliteInfo – Contains basic information about a satellite.

• QGeoSatelliteInfoSource – Abstract base class for the distribution of satellite
information updates.

4.5.1 Getting and Following the User’s Location

The code example below gets registers for getting notifications on changes in user location. The
QGeoPositionInfoSource class is used to get the default positioning source of the device.
If the source exists, it can use either satellite data or some other positioning method. The user
class must create the source and request updates by calling the startUpdates() method. The
positioning info is then eventually passed through the positioningUpdated() signal with a
parameter containing latitude, longitude, altitude, etc., as location information. This is realized with
the following code:

1 // Get the default positioning source. If exists, then request updates.
2 QGeoPositionInfoSource *source = QGeoPositionInfoSource::

createDefaultSource();
3 if (source) {
4 connect(source, SIGNAL(positionUpdated(QGeoPositionInfo)), this, SLOT

(handlePositionUpdated(QGeoPositionInfo)));
5 source->startUpdates();
6 }
7

8 // Custom slot for getting the updates
9 void handlePositionUpdated(const QGeoPositionInfo &info)

10 {
11 double latitude = info.coordinate().latitude();
12 double longitude = info.coordinate().longitude();

Qt Mobility APIs 71

13 double altitude = info.coordinate().altitude();
14 };

4.6 Messaging

A common interface for handling SMS, MMS and email messages is given by the messaging API.
The API provides access to numerous operations associated with messaging. It enables messaging
services to search and sort messages, notify changes to messages stored, send messages with or
without attachments, retrieve message data and launch the preferred messaging client either to
display an existing message, or to compose a message.

4.6.1 Creating and Sending an Email Message

Creating messages is quite straightforward. QMessage represents a message object, which can
be of various types, such as an email, MMS or SMS message. The required message fields, body,
attachments and other data that can be added depend on the message type. The following code
snippet creates a new email message and sends it to a specified email address. This is done by the
class QMessageServiceAction, which can also be used for retrieving messages and message
data and other appropriate messaging-related actions:

1 QMessageServiceAction* serviceAction = new QMessageServiceAction(this);
2

3 // Create a new email message
4 QMessage message;
5 message.setType(QMessage::Email);
6

7 // Add required fields
8 message.setTo(QMessageAddress("myfriend.bestis@emailaddress",

QMessageAddress::Email));
9 message.setSubject("Pictures from our holidays :)");

10

11 // Set message body
12 message.setBody("Here you go!");
13

14 // Add attachments
15 QStringList attachments;
16 attachments.append("Picture1.jpg");
17 attachments.append("Picture2.jpg");
18 message.appendAttachments(paths);
19

20 // Send the message
21 serviceAction->send(message);

72 Qt for Symbian

4.7 Multimedia

Multimedia has become a standard feature in mobile phones. The Qt Mobility API provides access
to a multimedia library, which offers an easy way to play and record audio and video in various
formats.

In addition to playing and recording, other features can also be accessed using the API. For
instance, FM radio can be used through this API. Moreover, slide shows can be invoked using this
API.

4.7.1 Playing an Audio File

The following code snippet plays an MP3 song in a remote website. The API sends signals of the
progress of the media file playback. The signal positionChanged() is emitted with a parameter
specifying the audio playback position in milliseconds from the beginning of the audio file. The
method duration() returns the total playback time of the object media file:

1 QMediaPlayer* mediaPlayer = new QMediaPlayer;
2 connect(mediaPlayer, SIGNAL(positionChanged(qint64)), this, SLOT(

myPositionChangedHandler(qint64)));
3 mediaPlayer->setMedia(QUrl::fromLocalFile("http://music.com/song.mp3"

));
4 mediaPlayer->setVolume(50);
5 mediaPlayer->play();

4.7.2 Creating a Playlist of Videos and Playing Them in a Video Widget

The class QMediaPlaylist can be used to create playlists for media types. QVideoWidget is
a special widget for video playback. This example creates a video playlist and uses the media player
to play back the videos on a video widget:

1 QMediaPlayer* mediaPlayer = new QMediaPlayer(this);
2 QMediaPlaylist* playlist = new QMediaPlaylist(player);
3 playlist->append(QUrl("/MyVideos/video1.mp4"));
4 playlist->append(QUrl("/MyVideos/video2.mp4"));
5 playlist->append(QUrl("/MyVideos/video3.mp4"));
6

7 QVideoWidget* widget = new QVideoWidget(mediaPlayer, parentWindow);
8 widget->show();
9 player->play();

4.8 Publish and Subscribe

Publish and subscribe is a widely used messaging paradigm, where communication is decoupled
from both producers (publishers) and consumers (subscribers) of data. The communication takes
place asynchronously, most commonly using an additional data object.

Qt Mobility APIs 73

The publish and subscribe API will enable context-sensitive access to information in future
releases. The passed data is organized as a tree, with data being able to ‘shadow’ other data with
the ‘same key’, a string specifying the leaf or node. The context is an example of a context ontology,
a defined set of relationships. As the context changes, the values of the objects change but the
relationships remain the same. It is intended to be an enabling technology, the basis of a range
of future applications.

4.9 Service Framework

It is common for mobile devices to provide device-specific services. Therefore, one of the most
interesting mobile Qt extensions is a platform-independent method to discover services.

Within the scope of Qt Mobility APIs, the service framework API defines a unified way of finding,
implementing and accessing services across multiple platforms. In terms of the framework, service
is an independent component that allows a client to perform a well-defined operation. The services
are implemented as plug-ins installed on the device and can look for supporting external services
running on a central server. Moreover, because the service framework essentially is an abstraction
layer, the application does not need to be concerned with the underlying protocol, where the servers
are, the hardware peculiarities with networking and other low-level details.

4.10 System Information

Inside every mobile device, there is a lot of information regarding itself. For example, such
information may include details of different pieces of included software, connectivity, hardware
characteristics, and so forth. For a software developer, this information is important, since
applications may need certain hardware features in order to be useful, or require information on
the system in order to customize themselves.

The system information API offers access to discover system-related information and capabilities.
They are addressed in the following:

Version contains information for a range of supporting software on the device. For example,
information is available from the operating system and firmware to the version of WebKit,
Qt and the service framework.

Features lists the supported hardware on the device. Features include subsystems such as the
camera, Bluetooth, GPS, FM radio, and so forth.

Network keeps information about the network connection (e.g. MAC address) and type of network
such as GSM, CDMA, WCDMA, WiFi, Ethernet and others.

Display information provides access to display information (brightness/colour depth) from the
system.

Storage information details the presence of various storage devices such as internal, removable,
CD-ROM or even if there no devices.

Device information provides access to device information from the system.

74 Qt for Symbian

Battery status gives the energy status of the battery at certain levels.

Power state details how the phone is currently powered up and whether it is charged or not.

Profile enables the developer to check on the profile settings of this API for silent, vibrating,
normal and others.

SIM indicates the presence of a SIM card, dual SIM card or locked SIM card that can be
retrieved.

Input method determines the type of input method such as keys/buttons, keypad, qwerty,
single touchscreen, or multi-touch.

Screensaver provides access to the screen saver and blanking.

4.10.1 Accessing Device Information

The following code snippet illustrates how to get information synchronously from QSystem
DeviceInfo about the underlying system and then request notifications when the state changes.
The example snippet here fetches battery status information and then connects to get updates on
battery status. Other similar signals can be connected for the Bluetooth state, current profile and
power state of the device:

1 QSystemDeviceInfo* deviceInfo = new QSystemDeviceInfo(this);
2 QSystemDeviceInfo::BatteryStatus batteryStatus = deviceInfo->

batteryStatus();
3 connect(deviceInfo,SIGNAL(batteryStatusChanged(QSystemDeviceInfo::

BatteryStatus)),
4 this,SLOT(handleBatteryStatusChanged(QSystemDeviceInfo::

BatteryStatus)));
5

6 void MyClass::handleBatteryStatusChanged(QSystemDeviceInfo::
BatteryStatus batteryStatus)

7 {
8 if(batteryStatus == QSystemDeviceInfo::BatteryCritical)
9 {

10 // Do something
11 }
12 }

4.10.2 Accessing System Information

The next code snippet demonstrates the simple usage of QSystemInfo. The example code
demonstrates how to check which features are supported by the device:

1 QSystemInfo* systemInfo = new QSystemInfo(this);
2 // Getting the current language and country code of the device
3 QString language = systemInfo->currentLanguage();
4 QString countryCode = systemInfo->currentCountryCode();

Qt Mobility APIs 75

5 // Check if the device has a camera
6 if(systemInfo->hasFeatureSupported(QSystemInfo::CameraFeature)
7 {
8 // Take a picture...
9 }

4.11 Summary

The motivation of the Qt Mobility APIs is that they can be used on any system as illustrated in
Figure 4.2. Other systems such as Windows Mobile or Maemo might not fully support the individual
APIs as given in Table 4.1, but over time the holes will be closed and more APIs will be added.

Figure 4.2 Qt Mobility APIs.

Table 4.1 Platform compatibility.

S60 3rdE FP1 Maemo Maemo Windows Linux MAC
S60 3rdE FP2 5 6 Mobile

S60 5thE

Service framework Yes Yes Yes Yes Yes Yes
Messaging Yes No Yes Yes Yes No
Bearer management Yes No Yes Yes Yes Yes
Publish and subscribe Yes No Yes Yes Yes Yes
Contacts Yes No Yes Yes No No
Location Yes No No Yes No No
Multimedia No No No No Yes No
System information Yes No No Yes Yes Yes

In this chapter, we introduced the Qt Mobility API and the features that can be accessed through
it. However, Symbian devices have many other features beyond the cross-platform Qt and Qt

76 Qt for Symbian

Mobility package. Acceleration sensors and a camera are examples of features that exist in almost
all the latest Symbian devices. If you want to utilize those features, you would normally need to
implement your application against native interfaces. Forum Nokia Wiki provides a wide set of
Qt-like wrappers that hide native Symbian C++ under APIs that provide Qt-like interfaces for
utilizing Symbian-specific features. We will cover Symbian-specific mobile extension APIs in the
next chapter.

Bibliography
Fitzek HF and Katz M (eds) 2006 Cooperation in Wireless Networks: Principles and Applications – Real Egoistic Behavior

is to Cooperate! Springer.

5
Qt-Like Mobile Extensions

Tony Torp and Frank H.P. Fitzek

This chapter gives an overview of native Symbian APIs. In contrast to Qt Mobility APIs, these
APIs are not that easy to integrate without knowledge of Symbian, but on the other hand new
functionalities or flexibility are introduced.

5.1 Utilizing Platform Features beyond Qt APIs

In the previous chapter we introduced Qt Mobility APIs for cross-platform development across
various device types. As richly featured smart phones, Symbian devices still have many platform-
specific features that Qt libraries or Qt Mobility APIs do not reach. A camera and sensors are
examples of those features that exist in every latest Symbian device but are not yet covered
by standard Qt APIs. When implementing mobile applications, we are typically willing to take
advantage of those features. We basically have two alternative approaches to utilize them from our
Qt applications. The first alternative is the native choice. We extend our application with native
Symbian C++ using those native Symbian APIs that the platform offers. The drawback with this
approach is that then we have to do programming on native Symbian C++, which is known to have
a very steep learning curve. The other approach is to make use of prefabricated wrappers offered by
Forum Nokia Wiki. They are Qt-like API extensions provided for Qt on Symbian developers for easy
utilization of the most important platform features beyond Qt APIs. We can use a Qt-like approach
for implementing the functionalities of sensors, a camera, etc., in our applications and we do not
need to go too far beyond Qt-like programming.

In the following sections we will introduce the current set of API extensions available for Symbian
smart phone development. We call them Qt-like APIs because they are not cross-platform Qt APIs
(see Figure 1.5) but they are extensions offering Qt-like interfaces for application developers to
utilize easily the key features of Symbian devices. Mobile extensions give developers Qt-like access
to Symbian smart phone platform-specific features without the need to learn how to program in
native Symbian C++. The goal of the APIs is to provide a high enough abstraction level for easy
and simple usage for developers.

The extensions introduced in this chapter and given in Table 5.1 do not cover the whole set of
extensions offered. Some of them overlap with Qt Mobility APIs and these are excluded from the
list.

78 Qt for Symbian

Table 5.1 List of extensions described in this chapter.

API name Description

Alarms API Set an alarm to go on at a particular time
Calendar API Access appointments in the device’s calendar database
Camera API Take pictures with the device’s on-board camera
Installer API Install a Symbian application from an install package
Landmarks API List the available landmarks and add new landmarks
Profile API Read profile information and set the active profile
Sensor API Detect the acceleration and orientation of the device
Telephony API Make circuit-switched phone calls, receive call status notifications
Utils API Launching viewer applications for file types, backlight control
Vibra API Use the vibra on the device to give physical feedback to the user

Qt libraries, Qt Mobility APIs and the current mobile extensions cover the most important features
of Symbian smart phones. If you need to use platform features beyond these and possibly want to
implement your own Qt-like Symbian extensions, then you need to utilize native Symbian APIs and
learn Symbian C++ concepts. Chapter 6 introduces the main concepts needed for native Symbian
development with an example on how to implement Qt-like wrapper APIs.

5.2 How to Use the Mobile Extensions in Your Project

The extensions are API wrappers typically consisting of an object that implements the Symbian
C++ API calls and a wrapper class providing Qt-like APIs for your application to use. In
order to use an extension you need to add the source files of that extension to your project in
your IDE and build them together as part of your application source codes. Using an extension
might require certain capabilities to be added to your application project. For example, using
the Alarms API typically requires capabilities ReadDeviceData, ReadUserData, WriteDeviceData
and WriteUserData depending on the method used. The capabilities are listed in the extension
documentation together with the API descriptions. In the next chapter we give an overview of
Symbian C++ with an example on how these wrappers are really implemented.

5.3 Alarms

The Alarms API can be used for setting alarms, viewing current alarms and removing alarms on the
device. The API allows you to set an alarm that goes on or off at a particular time of the day. A list
of alarms set on the device can also be retrieved with the API. The main API is class XQAlarms,
which can be used to set, modify and remove alarms. Class XQAlarm is used to store alarm data
such as category, expire time and message attached to the alarm.

Using the API requires capabilities ReadDeviceData, ReadUserData, WriteDeviceData and
WriteUserData.

Qt-Like Mobile Extensions 79

5.3.1 Getting a List of All Alarms

The following snippet creates a list of alarm IDs of all alarms that have been set.

1 // Create an XQAlarms instance and fetch ids
2 XQAlarms* alarms = new XQAlarms(this);
3 QList<int> ids = alarms->alarmIds();

5.3.2 Creating a Workday Wakeup Alarm

Alarms can be created by creating an XQAlarm object and then adding the alarm with the
XQAlarms instance. The following code example creates a weekly repeated alarm for a weekly
report from the current day onwards:

1 // Creating a workday wakeup alarm
2 XQAlarms* alarms = new XQAlarms(this);
3 QDateTime alarmDateTime = alarmDateTime.currentDateTime();
4 alarmDateTime.setTime(QTime(15, 0));
5 // Create XQAlarm data object
6 XQAlarm weeklyReport;
7 weeklyReport.setExpiryTime(alarmDateTime);
8 weeklyReport.setMessage("Do weekly report");
9 weeklyReport.setRepeatDefinition(XQAlarm::RepeatWeekly);

10 alarms->addAlarm(weeklyReport);

5.3.3 Changing the Time of a Specific Alarm

Existing alarms can be modified. This code example shows how to change the time of a first alarm
on the alarms ID list:

1

2

3 XQAlarms* alarms = new XQAlarms(this);
4 QList<int> ids = alarms->alarmIds();
5

6 // Create XQAlarm data object to get the data of the existing alarm.
7 XQAlarm alarmToChange = alarms->alarm(ids.value(0));
8

9 QString alarmMessage = alarmToChange.message();
10 int alarmDay;
11 QDateTime dateTime = alarmToChange.expiryTime();
12 if (alarmToChange.repeatDefinition() == XQAlarm::RepeatOnce ||
13 alarmToChange.repeatDefinition() == XQAlarm::RepeatWeekly

)
14 {
15

16 alarmDay = dateTime.date().dayOfWeek();

80 Qt for Symbian

17 }
18

19 int oldAlarmDefinition = alarmToChange.repeatDefinition();
20

21 // Delete the old alarm
22 alarms->deleteAlarm(ids[0]);
23

24 QDateTime alarmDateTime = alarmDateTime.currentDateTime();
25

26 // Set new alarm time to 15.00
27 QTime newTime = QTime(15, 00);
28 alarmDateTime.setTime(newTime);
29

30 // If the time has passed, we add one day to the alarm time
31 if (alarmDateTime.time() < QDateTime::currentDateTime().time())
32 {
33 alarmDateTime = alarmDateTime.addDays(1);
34 }
35

36 // Create a new alarm based on the alarm data
37 XQAlarm updatedAlarm;
38 updatedAlarm.setExpiryTime(alarmDateTime);
39 updatedAlarm.setMessage(alarmMessage);
40 updatedAlarm.setRepeatDefinition(
41 static_cast<XQAlarm::RepeatDefinition>(oldAlarmDefinition));
42

43 alarms->addAlarm(updatedAlarm);

5.3.4 Deleting an Alarm

Alarms can be deleted by the alarm ID. The following code snippet deletes the first alarm from the
alarm ID list:

1 XQAlarms* alarms = new XQAlarms(this);
2 // Get the list of all alarm ids and delete the first one (index 0)
3 QList<int> ids = alarms->alrmIds();
4 alarms->deleteAlarm(ids[0]);

5.4 Calendar

The Calendar API provides access to items in the calendar database of the device. Appointments,
‘ToDo’ notes, anniversaries and other time-specific events are stored in the calendar database. The
Calendar API can be used for application access to the calendar database for retrieving, changing and
adding items. The main class of the API is XQCalendar, which represents the calendar database.
The other classes are as follows:

• XQCalendar – the calendar database

Qt-Like Mobile Extensions 81

• XQCalendarEntry – an entry in the database

• XQCalendarCategory – an entry category

• XQCalendarAttendee – name, role, etc., of appointment attendee

• XQCalendarAlarm – alarm for a calendar entry

• XQCalendarRepeatRule – for repeating calendar entries

• XQCalendarWidget – widget for showing a month at a time.

Using the API requires capabilities ReadDeviceData, ReadUserData, WriteDeviceData and
WriteUserData.

5.4.1 Creating a New Calendar Item

Adding new items to a calendar is fairly straightforward. The XQCalendarEntry instance is
created with specified data and then added to the calendar database by using XQCalendar. The
following code snippet creates a ‘ToDo’ note with an alarm attached:

1 // Create a calendar object
2 XQCalendar* calendar = new XQCalendar(this);
3 // Create a new ToDo entry
4 XQCalendarEntry entry(XQCalendarEntry::TypeTodo);
5 entry.setStartAndEndTime(QDateTime(...), QDateTime(...));
6 entry.setSummary(QString("Find and buy a new tie"));
7 // Setting an alarm 60 mins prior to the entry
8 XQCalendarAlarm alarm;
9 alarm.setTimeOffset(60);

10 entry.setAlarm(alarm);
11 // Add the entry to the calendar database
12 calendar->addEntry(entry);

5.4.2 Deleting Calendar Entries

Deleting a calendar entry requires an entry ID for the entry. The entry IDs can be fetched as a list by
method entryIds()which returns the complete list of entry IDs. Single calendar entries can then
be fetched and data can be checked. The following code snippet deletes all calendar entries after a
specified date:

1 // Create a calendar object
2 XQCalendar* calendar = new XQCalendar(this);
3 QDate dayOfDoom(2009, 12, 7);
4

5 // Get the list of all entry IDs in calendar database
6 // and delete entries after the specified date
7 QList<ulong> entryIds = calendar->entryIds();
8 for (int i = 0; i < entryIds.count(); i++)
9 {

82 Qt for Symbian

10 XQCalendarEntry entry = calendar->fetchById(entryIds[i]);
11 if (entry.startTime().date() > dayOfDoom)
12 {
13 calendar->deleteEntry(entryIds[i]);
14 }
15 }

5.5 Camera

Most Symbian smart phones come with a built-in camera. The Camera API can be used for taking
photos. With the API you can first see a preview of the image you might take, then focus the
camera and then actually take the photo. The main API class is XQCamera, which provides slots
for focusing and capturing a picture. The desired picture size can also be reset from the default of
640 × 480 pixels. Signals are emitted when the camera is ready, the camera focusing is ready or
image capture is completed. The other class of the API, XQViewFinderWidget, is a widget that
can be used for previewing an image.

Taking a picture with the Camera API involves a number of steps: first the camera class is
initialized, then the viewfinder is started, then the user clicks the capture button to take the photo,
then the image is available and can be saved. The following code snippets demonstrate the usage.

Capturing images typically consumes a lot of memory, so this should be considered when several
images are open at any one time.

The API indicates an error on possible error situations during opening, focusing or capturing.
If the operation fails, the corresponding method returns false and the error code can be fetched by
XQCamera::error(). Similarly, starting a viewfinder widget might end up in an error, which
can then fetched by XQViewFinderWidget::error().

Using the API requires capabilities MultimediaDD and UserEnvironment.

5.5.1 Camera Initialization

The next code snippet initializes the camera and connects the camera signals to slots in our
application. The user class is MyXQCameraUser. The default image capturing size is 640 ×
480 pixels which can be changed by using the setCaptureSize() method:

1 class MyXQCameraUser : public QObject
2 {
3 Q_OBJECT
4

5 protected slots:
6 void imageCaptured(QByteArray imageData);
7

8 private:
9 XQCamera* camera;

10 XQViewFinderWidget* viewFinder;
11 };
12

Qt-Like Mobile Extensions 83

13

14 // Create a camera object and set the capture size
15 camera = new XQCamera(this);
16 camera->setCaptureSize(QSize(1280,960));
17

18 // Create a capture button and connect it to the camera’s capture
slot

19 QPushButton* captureButton = new QPushButton("CaptureImage");
20 connect(captureButton, SIGNAL(clicked()), camera, SLOT(capture));
21

22 // Connect to the captureCompleted signal
23 connect(camera, SIGNAL(captureCompleted(QByteArray)), this, SLOT(

imageCaptured(QByteArray)));

5.5.2 Using the Viewfinder Widget

The viewfinder is started when the camera is ready. We connect the cameraReady() signal
straight to the start() slot of the viewfinder:

1 // Initialize the viewfinder, set the source camera and the size of the
image

2 viewFinder = new XQViewFinderWidget;
3 viewFinder->setCamera(*camera);
4 viewFinder->setViewfinderSize(QSize(256, 192));
5

6 // Start the viewfinder when the camera signals it is ready
7 connect(camera, SIGNAL(cameraReady()), viewFinder, SLOT(start()));

5.5.3 Taking a Photo

Clicking the ‘CaptureImage’ button initializes the image capture process. The button’s clicked()
signal is connected to the camera’s capture() slot. The camera class will emit a
captureCompleted() signal when the image capture is completed. You can connect this to a
slot in your application that will handle the captured image. The following code stops the viewfinder
and the captured image is shown for 5 seconds in the viewfinder widget. Then the viewfinder is
started again:

1 void MyXQCameraUser::imageCaptured(QByteArray imageData)
2 {
3 // Stop the viewfinder and show the captured image in the viewfinder
4 viewFinder->stop();
5

6 // Get the image data into an image class
7 QImage capturedImage = QImage::fromData(imageData);
8 viewFinder->setImage(capturedImage);
9 camera->releaseImageBuffer();

84 Qt for Symbian

10

11 // Restart the viewfinder after 10 seconds
12 QTimer::singleShot(10000, viewFinder, SLOT(start()));
13 }

5.6 Installer

The Installer API can be used to install and uninstall applications without notifying the user through
the standard installation dialogs. So you can use this API silently to install applications or you can
create for example your own installation user interface. The Installer API can also be used to get
a list of all the applications that are installed on the device. Each Symbian application is identified
by the system through a unique application identifier, UID3. The Installer API provides a method
for fetching the list of UIDs or names of all applications currently in the system. Installing new
applications is done by specifying the full path of the SIS file of the application.

Using the API requires capability TrustedUI from the application.

5.6.1 Installing an Application in the Background without Notifying the User

The following code snippet shows how to install an application from an installation file. On the
Symbian platform, the installation package is referred to as a SIS file and has a .sisx extension. After
installation is completed, either an applicationInstalled() or error() signal is emitted
depending on whether the installation was successful or not:

1 XQInstaller* installer = new XQInstaller(this);
2

3 // Connect the signals and slots
4 connect(installer, SIGNAL(applicationInstalled()), this, SLOT(

installationSucceeded()));
5 connect(installer, SIGNAL(error()), this, SLOT(installationFailed()));
6

7 // Install an example package from the installs folder
8 bool result = installer->install("c:\\Data\\exampleapplication.sisx");
9

10 // Check that the installation started
11 if (!result)
12 {
13 // Installation start failed
14 XQInstaller::Error error = installer->error();
15 // Add possible error handling code here
16 }

5.6.2 Uninstalling an Application in the Background without Notifying the User

The snippet below shows how to uninstall an application without informing the user. Each
application has a unique identifier, so this is how you specify which application to uninstall. After

Qt-Like Mobile Extensions 85

the process is completed, either an applicationRemoved() or error() signal is emitted
depending on whether the uninstalling was successful or not:

1 XQInstaller* installer = new XQInstaller(this);
2

3 // Connect to the applicationRemoved() signal
4 connect(installer, SIGNAL(applicationRemoved()), this, SLOT(

uninstallationSucceeded()));
5 connect(installer, SIGNAL(error()), this, SLOT(uninstallationFailed()

));
6

7 // UID3 of the application
8 uint appId = 0x12345678;
9

10 // Uninstall the application with the given ID
11 bool result = installer->remove(appId);
12

13 // Check that the uninstall started
14 if (!result)
15 {
16 // Uninstall failed
17 XQInstaller::Error error = installer->error();
18 // Add possible error handling code here
19 }

Possible error situations can arise from the system, e.g. not enough memory, security failure,
package not supported or installer busy.

5.6.3 Getting a List of all Installed Applications in the Device

The Installer API can be used to get a list of the applications that are currently installed on the device.
The list can be fetched as application names or application UIDs:

1 XQInstaller* installer = new XQInstaller(this);
2

3 // Get a list of applications by UID
4 QList<uint> uids = installer->applications().values();
5

6 // Get a list of applications by name
7 QList<QString> applications = installer->applications().keys();

5.7 Landmarks

A landmark is a location tag with a name and possible other data such as description, icon, address
details. Landmarks are organized in landmark databases, which might be maintained locally on
your device or, for example, on a remote server that your device can access over the Internet.
The Landmarks API provides methods for adding landmarks and listing available landmarks.

86 Qt for Symbian

The main API class is XQLandmarkManager, which gives you access to the landmark database.
It provides methods for adding landmarks and getting the list of currently available landmarks. The
class XQLandmark describes a landmark, which can consist of a name, position information, a
description and other possible details. Adding a new landmark can typically be related to the current
location information, which can be obtained through the Qt Location Mobility API.

Applications using the API require capabilities ReadUserData and WriteUserData.

5.7.1 Creating a Landmark for the Current Location

The Landmarks API enables you to store details about a particular location and the Location API can
used to supply the coordinates of your current location. A common use case will be to get current
location, query a description from the user and add the newly created landmark to the database. The
following code snippet creates a new landmark object with a name and coordinates and adds it to the
landmarks database:

1 // Create a new landmark and set the name and location information
2 XQLandmark landmark;
3 landmark.setName("Wonderland");
4 landmark.addCategory("Amusement");
5 landmark.setPosition(40.123, 20.321);
6

7 // Add the landmark to the landmark database
8 XQLandmarksManager* landmarksManager = new XQLandmarksManager(this);
9 landmarksManager->addLandmark(landmark);

5.7.2 Getting a List of All Landmarks in the Landmark Database

The next code snippet shows how to use the Landmarks API to get a list of all landmarks in the
landmarks database. The landmarks can be fetched in one list containing landmark IDs. A single
XQLandmark can then be accessed by the ID:

1 XQLandmarksManager* landmarksManager = new XQLandmarksManager(this);
2

3 // Get list of all landmark IDs from the database
4 QList<int> ids = landmarksManager->landmarkIds();
5

6 // Go through all the landmark items in the list
7 for (int i = 0; i < ids.count(); ++i)
8 {
9 XQLandmark landmark = landmarksManager->landmark(ids.value(i));

10 qreal latitude = landmark.latitude();
11 qreal longitude landmark.longitude();
12 QString name = landmark.name();
13 QString description = landmark.description();
14 //...
15 }

Qt-Like Mobile Extensions 87

5.8 Profile

A profile defines the sound scheme of when various events like incoming messages or phone calls
are received. When the silent profile is active, the phone will not play any sounds when such an event
occurs. When the meeting profile is active, a small beep will play in the case of an incoming call or
message. The General profile is the usual profile with user-selected ringing tones and message alert
tones.

The Profile API can be used for changing between different profiles and also for fetching the
current active profile. The main class of the API is XQProfile. The method isFlightMode()
can be used to check if the phone is in an offline state and the network connectivity is disabled. The
profiles API only works for the predefined profiles so custom profiles are not supported. The API
contains methods for modifying predefined profiles. For example, ringing tone, message alert tone
or ringing volume can be set by simple API calls. The API does not provide methods for creating
new profiles or modifying profiles that are not predefined.

Using the API requires capability WriteDeviceData.

5.8.1 Getting the Current Active Profile

The following code snippet shows how to use the Profile API to get the profile that is currently active
on the device:

1 XQProfile* profile = new XQProfile(this);
2

3 // Get the current profile
4 XQProfile::Profile activeProfile = profile->activeProfile();

The active profile is enumerated as:

1 enum Profile {
2 ProfileGeneralId,
3 ProfileSilentId,
4 ProfileMeetingId,
5 ProfileOutdoorId,
6 ProfilePagerId,
7 ProfileOffLineId,
8 ProfileDriveId
9 }

5.8.2 Setting the Current Profile to Silent

The following code snippet shows how to use the Profile API to set the current profile to flight mode;
the network connectivity is then set off:

1 XQProfile* profile = new XQProfile(this);
2

3 // Set the profile to Silent
4 bool result = profile->setActiveProfile(XQProfile::OffLineId);

88 Qt for Symbian

5.8.3 Setting the Ringing Volume of the General Profile to Maximum

The following example modifies the general profile by setting the ringing volume to maximum; the
vibrating alert to the general profile is also set to ‘no vibra’:

1 XQProfile* profile = new XQProfile(this);
2

3 // Set ringing profile to maximum, i.e. volume level 10
4 bool volume = profile->setRingingVolume(XQProfile::RingingVolumeLevel10,

XQProfile::ProfileGeneralId);
5 bool vibra = profile->setVibratingAlert(false, XQProfile::

ProfileGeneralId);

5.9 Sensors

There are two types of sensors available through the Sensor API extension, namely orientation
(Figure 5.1) and acceleration sensors. Orientation sensors can be used for getting the display
orientation or, more accurately, the rotation angle of the device. Rotation is defined by the X, Y and Z

dimensions, each varying between 0 and 359 degrees (Figure 5.2). The display orientation describes
the current orientation in a rough way, specifying the direction in which the device’s display is
heading. The API for accessing the orientation sensor is XQDeviceOrientation.

You can use the acceleration sensor extension to determine the acceleration of the device. This
is useful for detecting movement gestures, such as moving the device up or down. The orientation
of the device affects the acceleration sensors due to the acceleration caused by the Earth’s gravity.
Therefore you cannot assume that the axis values are zero when the device is still. In fact, if the
device is in free fall then the value of each axis is zero.

5.9.1 Receiving Notification of Changes in Rotation and Orientation

The following code snippet uses the orientation sensor to receive notification of when the device is
rotated in the X direction by at least 15 degrees and when the device orientation changes. The API
notifies the client by sending signals orientationChanged() and xRotationChanged().
The latter applies to all coordinates X, Y and Z. The new rotation angle is sent as a signal parameter:

1 XQDeviceOrientation* orientation = new XQDeviceOrientation(this);
2

3 // Opens orientation sensor data flow
4 orientation->open();
5

6 // Set the number of degrees the device must rotate
7 // before you are notified. The resolution is set here to 15 degrees
8 orientation->setResolution(15);
9

10 // Start listening X-rotation updates with the resolution set
11 connect(orientation, SIGNAL(xRotationChanged(int)),
12 this, SLOT(rotationUpdated(int)));

Qt-Like Mobile Extensions 89

(a)

(b)

(c)

Figure 5.1 Orientation.

13

14 // Start listening changes in display orientation
15 connect(orientation, SIGNAL(orientationChanged(XQDeviceOrientation::

DisplayOrientation)),
16 this, SLOT(orientationUpdated(XQDeviceOrientation::DisplayOrientation

)));

The current rotation angle can also be fetched synchronously using the following simple
query API:

1 // We read the current rotation (synchronous)
2 int xRotation = orientation->xRotation();
3 int yRotation = orientation->yRotation();
4 int zRotation = orientation->zRotation();

90 Qt for Symbian

Figure 5.2 The device’s own coordinate system.

5.10 Telephony

The Telephony API extension brings voice telephony dialling and line monitoring functionality to
our applications. The main API class XQTelephony provides methods for making circuit-switched
telephone calls and monitoring the call line status (idle, ringing, dialling, connected, hold, etc.). This
API can only be used for traditional circuit-switched telephony calls. No packet-switched telephony
is supported.

You can also use the Telephony API to inform you when the call line status changes, e.g. when
a phone call starts or ends. You can do this by creating an XQTelephony instance and connecting
the lineStatusChanged() signal to a slot method in your application.

5.10.1 Making a Circuit-Switched Telephone Call

This simple API opens a voice telephony call to a telephone number specified by parameter:

1 XQTelephony* telephony = new XQTelephony(this);
2 telephony->call("+358301234567");

5.10.2 Receiving Notification of When Phone Call Status Changes

The call line status can be monitored by using a signal and slot mechanism. The following
code shows the connection of the lineStatusChanged() signal to the application’s
handleStatusChange() slot:

1

2 XQTelephony* telephony = new XQTelephony(this);
3 connect(telephony, SIGNAL(lineStatusChanged(XQTelephony::LineStatus,

QString)),

Qt-Like Mobile Extensions 91

4 this, SLOT(handleStatusChange(XQTelephony::LineStatus, QString)));
5

6 // Our slot for handling telephone line status changes
7 void MyTelephoneLineListener::handleLineStatusChange(XQTelephony::

LineStatus status, QString number)
8 {
9 switch(status)

10 {
11 case XQTelephony::StatusRinging:
12 {
13 // Incoming call. Take action
14 }
15 }
16 }

5.11 Utils

The Utils API provides assorted platform-specific utilities. The API XQUtils can be used to launch
a default viewer application for certain file types. The Utils API also offers a method for applications
to reset the system inactivity timer to keep the backlights on. Symbian devices have a background
process running and detect user activity on the device. The timer is reset whenever there is some
user activity, e.g. key or pen presses or slider movements. If there is no activity for a few seconds the
timer expires and the backlight is switched off. The API also provides methods for fetching the file
paths of certain stored items such as images, videos or pictures:

1 static QString videosPath()
2 static QString imagesPath()
3 static QString picturesPath()

The Utils API also has another class, XQConversions, which is very useful when mixing
Symbian C++ and Qt code. It provides methods for converting Symbian descriptors and QString
and vice versa. The next chapter covers the most important Symbian coding concepts.

5.11.1 Keeping the Device Backlight Turned On

The following code has a timer that goes off once every second and uses the method
XQUtils::resetInactivityTimer() to reset the system inactivity timer. So this code
keeps the background lights of the device on. This API could be useful, e.g. in game applications
where the user has to see the board for a while when thinking about the next move:

1 XQUtils* utils = new XQUtils(this);
2

3 // Create a timer that goes off once every second and start it
4 QTimer* timer = new QTimer(this);
5 timer->setInterval(1000);
6 timer->start();
7

92 Qt for Symbian

8 // Connect the timer’s timeout() signal to XQUtils::resetInactivityTime()
9 connect(timer, SIGNAL(timeout()), utils, SLOT(resetInactivityTime()));

5.11.2 Launching a File with the Default Viewer Application

The code snippet below launches a system default viewer application for JPEG files:

1 XQUtils* utils = new XQUtils(this);
2 utils->launchFile("MyPicture.jpg");

5.11.3 Converting between QString and HBufC*

The following simple code snippet allows conversion from QString to HBufC and back again:

1 // Allocate the QString
2 QString bookNameString("Qt for Symbian");
3 // Convert to a descriptor
4 HBufC* bookNameDescriptor = XQConversions::qStringToS60Desc(

bookNameString);
5 // Convert the descriptor back into another QString
6 QString anotherBookName = XQConversions::s60DescToQString(*

bookNameDescriptor);

5.12 Vibra

The Vibra API can be used to vibrate the device. The main class of the API is XQVibra, which
can also be used for getting the vibration settings from the current profile. Vibration can be started
and stopped by invoking methods start() and stop(). The vibration intensity can be set by the
method setIntensity(). The intensity value can be between −100 and 100. Intensity value 0
stops the vibration. The actual intensity depends on the hardware.

It is possible that the user has set the vibration off, e.g. in silent mode, so that can easily
be checked by the API. The API has an access method currentStatus() which returns the
status. The signal statusChanged() is also emitted when the vibration status changes between
vibration not allowed, vibration off and vibration on. The status can be fetched by invoking the
currentStatus() method.

5.12.1 Switching on the Vibration Function

The code here uses the Vibra API to switch on the vibration function for 2 seconds at 80% intensity:

1 XQVibra* vibra = new XQVibra(this);
2

3 // Set the vibration intensity to 50$\%$. Possible values are between
-100$\%$ and 100$\%$.

4 vibra->setIntensity(80);

Qt-Like Mobile Extensions 93

5

6 // Activate the vibra function for 3 seconds
7 vibra->start(2000);
8

9 //...
10

11 // Vibra can be stopped explicitly before the timer by calling
12 vibra->stop();

6
Qt Apps and Native Symbian
Extensions

Angelo Perkusich, Kyller Costa Gorgônio and Hyggo Oliveira de Almeida

Symbian OS is an open, mobile operating system that is embedded in a large diversity of smart
phones today. Symbian OS offers a fully featured framework for developing applications in the
C++ language, including modules for networking, concurrency and accessing native smart-phone
features. With the increasing power and dissemination of smart phones, the demand for software is
also growing. This requires higher level tools to speed up the development and increase software
quality. In this context, Qt is the most promising solution for achieving massive and high-quality
application development. Developers can use the Qt framework to create new applications and port
existing Qt applications to devices running Symbian OS with 5th Edition v1.0, as well as 3rd Edition
FP1 and later devices. In this chapter we present an overview of the Symbian OS main features as
well as Qt Native Symbian Extensions.

6.1 Data Types and Symbian OS Class Naming Conventions

Instead of using native C++ types, Symbian OS has its own fundamental types defined as a
set of typedefs in the Symbian header file e32def.h. This is necessary to keep compiler
independence. Symbian OS types should always be used instead of the native ones. Developers
should use void when a function or method has no return type, instead of TAny.

By convention, there are several class types on Symbian OS, with different characteristics, such as
where objects may be created (on the heap, on the stack, or on either) and how those objects should
later be cleaned up. When Symbian C++ was created, a native exception handling mechanism,
named leaving, was used instead of the standard C++ exception handling. Closely related to leaving
is the use of the cleanup stack and two-phase construction (see Sections 6.2.2 and 6.2.3). As a
consequence of this approach, class conventions were defined and named with a prefix according
to the type, as described in the following:

T classes behave in the same way as the fundamental built-in data types. T stands for Type.
These classes have an explicit destructor and, hence, must not contain any member data
implementing destructors. T classes contain all their data internally and have no pointers,

96 Qt for Symbian

references or handles to data, unless that data is owned by another object responsible for its
cleanup (see Section 6.2.2). Since Symbian v9.1, this is no longer the case. It is now possible
for a T class to have a destructor to be called when the object goes out of scope.

C class objects must always be created on the heap and may contain their own pointers, as opposed
to T classes. Also, they derive from the CBase class (see e32base.h). The mains of this
class, which are inherited by every C class, are (i) safe destruction: CBase has a virtual
destructor, so a CBase-derived object is destroyed properly by deletion through a base class
pointer; (ii) zero initialization: CBase overloads operatornew to zero-initialize an object when
it is first allocated on the heap, and thus all member data in a CBase-derived object will
be zero filled when it is first created, and there is no need for this to be done explicitly in
the constructor; and (iii) private copy constructor and assignment operators: CBase classes
declare these to prevent calling code from accidentally performing invalid copy operations.
When instantiated, a C class typically needs to call code which may fail, and to avoid memory
leaks you should use an idiom named two-phase construction, see Section 6.2.3.

R classes own an external resource handle, for instance a handle to a server session. They are often
small and usually contain no other member data besides the resource handle. R classes may
exist as class members or as local stack-based variables. Whenever you use them on the heap,
for which they are intended, you must guarantee that the memory allocated is released properly
(see Section 6.2.2). R objects must be made leave safe, if used in functions that may leave, by
using the cleanup stack.

M classes or ‘mixin’ are often used in call-backs or observer classes. Thus, the M class is an abstract
interface class which declares pure virtual functions and has no member data. Note that in most
cases only pure virtual functions are defined for an M class.

Static classes have no prefix letter and contain only static member functions. They are used
for utility classes that cannot be instantiated, e.g., User and Math. You can call their
functions using the scope-resolution operator, such as User::After(200), resulting in the
suspension of the currently running thread for 200 microseconds. A static class is sometimes
implemented to act as a factory class.

At this point you can observe that the use of the naming convention for classes helps the creation,
use and destruction of objects, and the behaviour of a user-defined class can always be matched
against the Symbian OS class characteristics. Such a style ensures that even if you are not familiar
with a class, you can be sure of how to instantiate an object, use it and destroy it, avoiding memory
leaks.

6.1.1 Descriptors

Descriptors encapsulate strings and binary data in Symbian OS and are used to manipulate and to
provide access to data. Descriptors allow efficient and secure string and binary data manipulation for
memory-limited devices. They are safe since buffers can be controlled and the programmer can keep
control of memory usage. Each descriptor object holds the length of the string of data it represents
as well as its ‘type’, which identifies the underlying memory layout of the data. As descriptors hold

Qt Apps and Native Symbian Extensions 97

Figure 6.1 Descriptor class hierarchy.

length information, they do not need to be null terminated and can thus be used to store binary data
as well as text. Descriptors can also exist in either 8-bit ASCII or 16-bit Unicode format. There
are separate descriptor classes for data stored in the descriptor, named ‘buffer’ descriptors, or in a
separate area of memory, named ‘pointer’ descriptors. Also, there is a further distinction between
those which are stack based and those created on the heap. Further, there are descriptor types which
may be accessed but not modified. These descriptor types are used for lookup and comparison, and
those which may be changed by formatting, replacing or appending to the data.

As illustrated in Figure 6.1, there are a number of descriptor classes sharing the same base classes.
The base classes provide common APIs for modifiable and non-modifiable descriptor operations,
which are invariant to the implementation type. There are three types of descriptors:

Buffer descriptors store the data as part of the descriptor object, which typically lives on the
program stack. They are used for smaller amounts of data with a fixed maximum size.
TBuf<n> and TBufC<n> are buffer descriptors.

Heap descriptors store the data as part of the descriptor object, which lives on the program heap.
They are used for larger amounts of data and are resizable. An example of a heap descriptor is
HBufC.

Pointer descriptors contain a pointer to data, which lives elsewhere in memory. TPtr<n> and
TPtrC<n> are pointer descriptors.

Observe that the trailing C indicates that the descriptor is non-modifiable. Descriptors are defined
by fundamental classes TDesC and TDes implementing constant functions such as Length(),
Size() and Find(). The descriptors TPtrC, TBufC and HBufC are directly derived from
the TDesC class. The concrete classes add only initialization data during construction time, such
as function Set(). The TDes class is derived from TDesC and implements functionalities to

98 Qt for Symbian

change data, such as Copy(), Append(), Format(), Replace() and Trim(), among others.
Member data is used to store the maximum length for the descriptor.

6.1.2 Arrays

Symbian OS does not include an implementation for collections found in the Standard Template
Library. Instead, it offers various classes than can be used to define static and dynamic arrays. This
section describes these classes. The most basic class is TFixedArray, which is a static array class,
to be used when you know at build time how many data items the array will contain.

6.2 Memory Management

As mentioned earlier, when Symbian OS was developed there was no mechanism for handling
exceptions in C++. Thus, a native, lightweight exception handling mechanism, named ‘leave’, was
introduced. Whenever an error condition or abnormal event happens, e.g. due to the lack of either
main or mass memory space, leaves may occur. A leave propagates the error to a point in the calling
code to be properly handled, named a TRAP harness. The developer must take into account that
local resources, such as memory allocated on the heap, will be ‘orphaned’, therefore resulting in
either memory or handle leaks. Developers working on Symbian OS must use the cleanup stack to
keep track of resources to which the only pointer is an automatic variable. When a leave occurs, the
cleanup stack destroys each of the resources allocated dynamically.

Note that porting standard C++ code to Symbian OS is now easier because it supports C++
standard exceptions, since Symbian OS v9. On the other hand, error handling based on leaves is
still a fundamental part of Symbian OS. Thus, even though only standard C++ exceptions are used,
you have to know how to mix leaves and exceptions in such a way that the ported code behaves as
expected.

6.2.1 Leaves and Exception Handling

In Symbian OS the use of conventions for names is very strong, and this is also the case for leaving
methods. A function name ending with L means that this function may leave, or throw an exception,
such as ConstructL, for example. A function name ending with LC means that this function may
leave and it will also push one item on the cleanup stack. Finally, a function name ending with LD
means that this function may leave and the item that has been pushed on the stack can be released.
A leave causes the execution of the active function to terminate, and the leave is propagated back
through all calling functions until the first function containing a Trap() or Trapd() macro is
found. An example of a leaving function is as follows:

1 void ProcessL() {
2 //...
3 if(error)
4 User::Leave();
5 }

The User::Leave() method is a static method that invokes the leave mechanism. Whenever
you want to capture the exception, a catching function must be defined, for example:

Qt Apps and Native Symbian Extensions 99

1 void CatchingL() {
2 //...
3 ProcessL();
4 //
5 }

And you must set up a trap such as:

1 TRAPD(error, CatchingL());
2 if(error) {
3 }

Note that when the function leaves, it immediately returns, thus leaving currently allocated objects
on the heap and leading to a memory leak. To avoid this situation you must ensure that when
you leave, you clean the memory. So the leaving mechanism is strictly connected to the resource
management and cleanup system, which is discussed next.

6.2.2 The Cleanup Stack

To ensure that objects allocated on the heap are properly deallocated, there is a stack, named ‘cleanup
stack’, where objects that need to be deallocated later are pushed on. Consider the code snippet:

1 CDemo* demo = new CDemo;
2 OperationThatCanLeaveL();
3 delete demo;

If the OperationThatCanLeaveL() leaves, delete demo will never be reached, thus
leaving the demo object on the heap. You must use the cleanup stack as follows:

1 CDemo* demo = new CDemo();
2 CleanupStack:: PushL(demo);
3 OperationThatCanLeaveL();
4 CleanupStack:: PopAndDestroy()

As you can see, the object that must be deallocated is pushed on a deallocation stack, the cleanup
stack. If the execution is performed normally, objects are popped from the stack and destroyed
automatically. In the case when the execution leaves, the cleanup is also performed in the context of
leaving. The most important issue is the cleanup stack, required to recover any byte of data that can
become orphaned by leaving. When an object is created by new or NewL, you have to push it on
the cleanup stack if any action that follows can leave. On the other hand, if an object is created with
NewLC, it will already be pushed on the cleanup stack at creation. When you no longer need the
object, it should be destroyed. When the object is already on the cleanup stack, you should remove it
from the stack with Pop and then delete it. You can also call PopAndDestroy to do both actions
in a single step. Sometimes, an object may change ownership: if you put it in an array, for example,
the array will take ownership and the array cleanup routine will be in charge of deleting it. In such
a case, you have to pop the object from the cleanup stack to avoid double deletion. This is done
through a Pop(object) statement. The object parameter is not required; it is provided only in
order to check that you pop the expected object. It is not necessary to specify the object but it is
useful to catch errors in debug build (the application panics if the popped object does not match with

100 Qt for Symbian

the parameter). In release builds, the check will be disabled. Note that the cleanup stack can be used
in other ways. For instance, an R type, defining an external resource, must be closed after use. It can
be pushed on the stack with CleanupClosePushL and when you execute PopAndDestroy(),
the resource is closed.

6.2.3 Two-Phase Construction

Two-phase construction ensures that all objects being constructed and initialized do not leave before
being stored in the cleanup. Whenever an object is constructed on the heap, the constructor is called
to initialize it. Consider the case when the constructor leaves: the memory already allocated for the
object as well as any additional memory the constructor may have allocated will be orphaned. In
order to avoid this situation, a code within a constructor should never leave. Note that objects of C
classes should be initialized using an object constructed in two phases:

1. The first phase is the standard C++ constructor which is called by the new operator. To
avoid memory leaks the code called by this constructor should not be able to leave.

2. The second phase of the construction is where the code that is called may leave. The second-
phase constructor is typically named ConstructL. Before it is called, the object is placed
on the cleanup stack so the memory allocated for the object is leave safe. If a leave occurs,
the cleanup stack calls the destructor to deallocate any resources which have already been
successfully allocated and frees the memory allocated for the object itself.

A class typically provides a public static function which wraps both phases of construction,
providing a simple and easy way to identify means to instantiate it (the two construction methods
can then be made private or protected to avoid accidental usage). The factory function is typically
called NewL() and it is static, so it can be called without first having an existing instance of the
class.

Note that there is also a NewLC() function in the class CExample. This method is also a factory
function, but its implementation leaves a pointer on the cleanup stack when it returns.

The NewL() factory function is implemented in terms of the NewLC() function rather than the
other way around. This could be slightly less efficient since this would require an extra PushL()
call to put a pointer back on the cleanup stack. Each factory function returns a fully constructed
object, or leaves, either if there is insufficient memory to allocate the object (i.e. if operator
new(ELeave) leaves) or if the second-phase ConstructL() function leaves for any reason.
This means that, if an object is initialized entirely by two-phase construction, the class can be
implemented without the need to test each member variable to see if it is valid before using it. That
is, if an object exists, it has been fully constructed. Since it is not necessary to test each member
variable before using it, the result is an efficient implementation.

6.2.4 Thin Templates

A thin template allows code reuse in Symbian OS to avoid code duplication. According to the thin
template pattern, all functionality is provided in a non-typed base class:

Qt Apps and Native Symbian Extensions 101

1 class CArrayFixBase
2 {
3 IMPORT_C const TAny* At(TInt aIndex) const;
4 }

This base class has the real code, so it exists only once. This code is exported from its Dynamic Link
Library (DLL). The base class may contain an arbitrary amount of code. A derived template class is
implemented as follows:

1 class CArrayFix<T> : public CArrayFixBase
2 {
3 inline const T& At(TInt aIndex) const
4 {
5 return(*((const T *)CArrayFixBase::At(anIndex)));
6 }
7 }

Because this class uses only inline functions, it generates no extra code. However, since casting is
encapsulated in the inline function, the class is type safe to its users. The derived template class is
thin: it generates no new code at all. The user uses the thin templates as normal template classes.
Symbian OS uses thin templates, e.g. in containers. The details of the idiom are hidden from the
application programmer so they can be used like normal C++ STL (Standard Template Library)
containers. An example of Symbian OS container usage is described below:

1 CArrayPtrSeg<TInt> avararray(16);
2 CArrayPtrSeg<TBool> anotherarray(32);
3 avararray.Insert(TInt(20)); // works fine
4 anotherarray.Insert(TInt(-1)); // does not compile
5 // go to Boolean array

In this example, normal templates would generate separate code for the integer array and Boolean
array. With thin template patterns, program code exists only once, but still there is type safety for all
array types, like integer and Boolean.

6.3 Executable Files

The most commonly used Symbian OS target types are DLL, EXE and PLUGIN. An EXE runs
separately and a DLL is dynamically linked into the program that loads it. DLLs are further divided
into separate types. Two of the most important DLL types are shared library DLLs and polymorphic
DLLs. Shared library DLLs provide a fixed API that has several entry points potentially called by
the user. When used in a program, such DLLs are automatically loaded by the system. Polymorphic
DLLs implement an abstract API such as a device driver or a GUI application. Other supported types
are: physical and logical device drives, PDD and LDD, respectively; a static library with binary code
that is included in compilation time, named LIB; and an executable which exports functions that can
be used by other applications or DLLs, named EXEXP. An ECOM plug-in allows you to encapsulate
functionality in a DLL and access it from multiple clients through an interface class. ECom is a
client/server framework in Symbian OS that provides a service to instantiate, resolve and destroy
plug-ins. UID is a 32-bit value that uniquely identifies a binary and can be as follows:

102 Qt for Symbian

UID1 is the system-level identifier that distinguishes between EXEs and DLLs and is built into the
binary by the build tools depending on the target type.

UID2 is used to differentiate between shared library and polymorphic interface DLLs. For instance,
for shared libraries, UID2 is KSharedLibraryUid(0x1000008d). For polymorphic
DLLs, the value varies depending on their plug-in type.

UID3 uniquely identifies a file. Two executables cannot have the same UID3 value. Values must
be requested from Symbian, which allocates them from a central database to ensure that each
binary has a different value.

An executable program has three types of binary data: program data, read-only static data and
read/write static data. EXE programs in Symbian OS are not shared. Thus, every time the program
runs it gets new areas of memory allocated for all those three types of data. The only exceptions are
EXEs residing in ROM. ROM-based EXEs allocate RAM only for read/write program data. In this
case, the program code and read-only data are read directly from ROM. This is an optimization to
save expensive RAM and improve efficiency. ROM-based code is executed in place so no copying
is required.

Dynamically loaded link libraries are shared. When a DLL is loaded for the first time, it is
reallocated to a particular address. When a second thread requires the same DLL, it is attached
to the same copy of the code. So, no loading is required. A DLL resides in the same memory address
in all threads that are using it. Symbian OS maintains reference counts, so that the DLL is unloaded
when no threads are using it. Because Symbian OS DLLs are shared, they cannot have writable static
data. Refer to www.symbiansigned.com as well as the Symbian Developer Library documentation
in your SDK for detailed information about UIDs.

6.4 Platform Security

Symbian OS v9.1 is said to be a secure platform because of changes to the operating system to extend
its security model and ensure more protection against malware or badly implemented software. The
security model operates at the software level to detect and prevent unauthorized access to hardware,
software and system or user data. This avoids, for example, problems with locking up the phone,
compromising user data, or affecting other software or the network. The secure platform prevents
programs from acting in unacceptable ways, irrespective of whether these actions are intentional or
unintentional.

Whenever an application is installed, the Symbian OS installer verifies whether the application
has the proper capabilities by means of a digital signature issued by a trusted authority. A capability
is a privilege level assigned to every Symbian OS process, held by the kernel, that grants the trust that
it will not abuse the services associated with the associated privilege. Such a signing approach avoids
applications assigning to themselves capabilities prior to installation. A total of 20 capabilities are
provided in Symbian OS, and must be included in the MMP file of any application. Refer to the SDK
help to get more detailed information about them.

Qt Apps and Native Symbian Extensions 103

6.5 Active Objects

Symbian OS uses active objects to provide lightweight event-driven multitasking and simplify
programming based on asynchronous tasks within a single thread. Therefore, active objects provide
ways to make asynchronous requests, detect the completion of any task and process the results. They
are used in preference to threads to reduce the overhead whenever context switches occur, as well as
to use system resources efficiently. In what follows you will find details on what active objects are
and how to use them.

The base class for active objects is CActive. You must create a class derived from CActive,
define the method that represents the asynchronous call, and implement some base class methods
that are required for the operation of active objects.

The active scheduler is a component of the system that manages the implementation of active
objects and determines which active object is associated with a given event. Also, it performs the
call to the active object to handle the event. Basically, there is a loop running that checks if any
event of any active object ends. In this case, the scheduler invokes a method of the active object to
warn about this event. This method corresponds to a RunL() of CActive that each derived class
must implement. The scheduler returns to standby mode after the active object performs the response
to the event. The scheduler is executed in non-pre-emptive mode. Thus, an active object cannot be
interrupted in order to switch to another active object. Active objects must run to completion.

To create an active object, you must create a class derived from CActive, defined in
e32base.h. CActive is an abstract class with two pure virtual functions, RunL() and
DoCancel(). The following snippet defines an active object:

1 CMyActive class: public CActive
2 {
3 public:
4 static CMyActive * NewL ();
5 CMyActive ();
6 ~ CMyActive ();
7 InvokeAnyService void (); / / Asynchronous call
8 public:
9 // Declared in CActive

10 // It is executed when the asynchronous call is completed (mandatory)
11 RunL void ();
12 // Define what to do to cancel a call in progress (required)
13 DoCancel void ();
14 // Call to treat leaves that may occur in RunL (optional)
15 TInt RunError (TInt err);
16 private:
17 void ConstructL ();
18 TRequestStatus iStatus;
19 }

In order to create an active object you must execute the following steps:

1. Define functions to create the active object (ConstructL(),NewL()).

2. Register the active object to the active scheduler.

104 Qt for Symbian

3. Define and implement the functions that represent the asynchronous calls.

4. Reset RunL(), which will be executed upon processing of the asynchronous call.

5. Reset DoCancel(), to be able to cancel an asynchronous call that is still in progress.

6. Define the destructor, which should call the Cancel() class CActive, so that all calls may
be cancelled if the object is destroyed.

7. Handle exceptions and leaves, redefining the method RunError(). Note that this step is
optional.

Active objects may have priorities for implementation. This property can be used if there are
several active objects to be executed. The enumerated type TPriority, a member of the class
CActive, defines the standard values for active objects. The class constructor CActive requires
that a priority is determined so that derived classes must meet this requirement:

1 CMyActive: CMyActive ()
2 : CActive (CActive: EPriorityStandard)
3 {}

The method NewL() is responsible for constructing an instance of this object, by calling
ConstructL.

The scheduler of active objects is represented by the class CActiveScheduler, and objects
are registered when you call the static method Add() of this class:

1 CMyActive:CMyActive()
2 : CActive (CActive: EPriorityStandard)
3 {
4 CActiveScheduler::Add(this);
5 }

This call could also be done in ConstructL() or in NewL(). The active object is removed from
the scheduler when it is destroyed, so that you do not need to do so explicitly.

Public methods provided in an active object class are used to perform calls that initiate the request
to asynchronous service providers. The standard behaviour is as follows:

1. Before making the call, it is important to check whether there exists some outstanding request,
because in practice each active object can have only one request in progress.

2. Submit the request, passing the iStatus member variable of TRequestStatus for the
service provider asynchronously, to set this value to KRequestPending before initiating
the asynchronous request.

3. If the request is successful, the method SetActive() must be called to indicate that a
request is pending and the object is waiting. A call to CActive::SetActive() indicates
that a request has been submitted and is currently outstanding.

When the processing related to the request finishes, the scheduler calls the RunL()method of the
active object. Note that an active object class always implements the pure virtual RunL() method
that is inherited from the CActive base class. The current status of the asynchronous request can

Qt Apps and Native Symbian Extensions 105

be monitored through the field iStatus in the TRequestStatus object of the active object, the
same that was passed to the function in the asynchronous call.

Any active object must implement the pure virtual DoCancel() method of the base class in
order to terminate a request. This implementation should call the appropriate method that cancels a
request to the asynchronous service. The CActive::Cancel() calls DoCancel() and waits
for notification that the request has terminated. This method cannot leave since it can be called in
the destructor of the active object. You should be aware that whenever an active object is cancelled,
the method RunL() is not executed. Thus, the method DoCancel() releases resources being used
when a cancellation is issued.

6.6 Error Handling

Leaves that occur in RunL() are treated by the methodRunError(). The parameter represents the
error code of the exception. The method should return KErrorNone if the error has been handled.
If another value is returned, the active scheduler will be responsible for handling the error.

Note that possible errors (panics) might occur when using active objects. Such exceptions
are generated by the active scheduler when a request ends but cannot identify the active object
responsible to process it. Refer to the literature, such as Aubert (2008), for more details on such a
situation as well as on active scheduler behaviour.

6.7 Threads

Instead of using active objects, you can use threads for multitasking – more specifically, when
you are porting code from other platforms or writing code with real-time requirements. In order
to manipulate threads, Symbian OS provides the class RThread, defining a handle to a thread.
Note that the thread itself is a kernel object.

A thread is created in the suspended state and its execution initiated by calling
RThread::Resume(). Threads are scheduled based on a pre-emptive decision mode and threads
with the same priority are selected based on a round-robin policy. Threads can be suspended, and
therefore no longer scheduled, by calling RThread::Suspend(), and can be restarted by calling
Resume(). A call to Kill() or Terminate() normally finishes a thread and you can call
Panic() to announce a programming error.

6.8 Qt for Symbian

6.8.1 Combining Qt and Native C++
The Qt port for Symbian was designed to provide the same level of performance as Avkon on
Symbian devices. The Qt port was put on top of native Symbian and Open C libraries. As illustrated
in Figure 6.2, a Symbian Qt application may access Qt libraries, Open C libraries or even native
Symbian libraries. Also, the Qt libraries may access Open C libraries or native Symbian libraries.

The standard entry point of Qt application is the main() function. On Qt/Symbian applications
the S60Main method implements the E32Main() that initializes the Symbian application UI
framework, including instantiation of objects of the CAknApplication, CAknDocument and

106 Qt for Symbian

Figure 6.2 Qt/Symbian port.

CAknAppUI classes, and the creation of the control environment and active scheduler for the main
thread. Finally, the S60Main method also calls the Qt main() function.

At the time of writing, the libraries ported to Symbian in the Qt 4.6 release include: QtCore,
QtGui (partially), QtNetwork, QtScript, QtSvg, QtTest, QtWebKit and QtXml.

6.8.2 Building Qt Applications in the Symbian Environment

Qt/Symbian projects use the underlying Symbian toolchain, though the projects are built in a
different way. First of all, the standard Qt build tools are used as a wrapper around the Symbian tools.
This means that the standard Qt project files, such as .prj and .pro, are used instead of Symbian
project files. Furthermore, those files are built in the same way as a non-Symbian Qt application,
using make and qmake. This integration between Symbian and Qt tool chains is illustrated in
Figure 6.3.

Developers must first generate project files using the command qmake -project. As occurs
for standard Qt applications, this command finds a source code file such as .h, .cpp and .ui in
the current directory and builds a .pro file. Then the developer can generate the Makefile from
the .pro file using the qmake command. This also generates standard Symbian build items, such
as the bld.inf file, .mmp file, _reg.rss default registration file, .mk extension makefiles and
.pkg package files.

The well-known Makefile also generated by qmake works as a wrapper around the standard
Symbian toolchain. When the make command is executed, it calls bldmake and abld to build the
Qt application. After executing the make command, and if no compilation errors were found, the
binaries files are generated.

Using command-line tools may add extra levels of difficulties for some developers. An alternative
to those tools is the Carbide.c++ environment. Carbide provides support for project creation,
compilation, debug and UI design. To create a new Qt project, click File→New→Qt Project and
follow the wizard.

Qt Apps and Native Symbian Extensions 107

Figure 6.3 Integration of Symbian and Qt toolchain.

6.8.3 Separating Qt and Symbian Implementations

Besides Nokia’s efforts to provide full Qt support on its devices, there are still some situations in
which it is necessary to use Symbian code in order to access some functionalities of the device.
One example is access to the Sensor API, such as the magnetometer API which is not yet directly
supported in Qt. The main drawback is that it is necessary to separate the Symbian code explicitly
from the Qt code. This is particularly true when the application can be ported to other platforms. In
this way, the specific Symbian code can be easily replaced by another platform-specific code through
the use of the private implementation (pimpl) pattern. The private implementations can be achieved
through wrapper classes.

In what follows, we will describe how to access Symbian APIs from Qt using the pimpl pattern.
The example program reads data from a magnetometer using an active object and updates the data
on the device display using a QLabel data type. The following files are required to execute this
simple task:

1. MagnetoWidget.pro – this is the Qt project file that qmake uses to generate the Makefile
in order to compile the project.

2. main.cpp – this is the entry point of the Qt application.

108 Qt for Symbian

3. MagnetoWidget.h and MagnetoWidget.cpp – these are the header and source files of
the Qt widget that shows the magnetometer data on the display.

4. AOWrapper.h and AOWrapper.cpp – these are the header and source files of the Qt
wrapper that will access platform-specific, in our case Symbian, classes.

5. AOWrapperPrivate.h and AOWrapperPrivate.cpp – these are the header and
source files of the Symbian-specific classes that access the Sensor API.

The Project File

Let us start by showing the MagnetoWidget.pro file which should be modified to specify which
are the Qt file classes and the platform-specific file classes. A typical Qt project file looks like the
following:

1 TARGET = MagnetoWidget
2 QT += core \
3 gui
4 HEADERS += AOWrapper.h \
5 MagnetoWidget.h
6 SOURCES += AOWrapper.cpp \
7 MagnetoWidget_reg.rss \
8 main.cpp \
9 MagnetoWidget.cpp

The TARGET variable indicates the target application that will be generated. QT is used to
specify the Qt libraries that should be compiled with the project. In our case, QtCore and
QtGui have been added. Finally, HEADERS is used to specify the headers files and SOURCES is
used to specify the source files of the project. In order to support platform-specific classes, the
MagnetoWidget.pro file above should be modified by adding a section for the platform files. In
our case, MagnetoWidget.pro looks like the following:

1 TARGET = MagnetoWidget
2 QT += core \
3 gui
4 HEADERS += AOWrapper.h \
5 MagnetoWidget.h
6 SOURCES += AOWrapper.cpp \
7 MagnetoWidget_reg.rss \
8 main.cpp \
9 MagnetoWidget.cpp

10 symbian {
11 TARGET.UID3 = 0xE5D4CBCC
12 HEADERS += AOWrapperPrivate.h
13 SOURCES += AOWrapperPrivate.cpp
14 LIBS += -lsensrvclient \
15 -lsensrvutil
16 }

Qt Apps and Native Symbian Extensions 109

Note that the last seven lines have been added. These lines specify which are the Symbian-
specific files. Here LIBS specifies which Symbian libraries are required to compile the classes
while HEADERS and SOURCES specify the header and source code files. There may be more than
one platform-specific section. In this case, the compiler will decide which files should be compiled
depending on the target.

The Qt Classes

The first Qt class is MagnetoWidget, which specifies the widget that will show the magnetometer
date on the display. This class inherits from QtWidget and has all the UI elements of our example.
Since our example is very simple, and our main purpose is to show how to separate Qt classes from
Symbian-specific classes, the UI can be implemented only in the constructor of theMagnetWidget
class:

1 MagnetoWidget::MagnetoWidget(QWidget *parent) : QWidget(parent)
2 {
3 wrapper = new AOWrapper(this);
4

5 QGridLayout *layout = new QGridLayout;
6

7 QLabel *aLabel = new QLabel(this);
8 aLabel->setAlignment(Qt::AlignHCenter);
9 aLabel->setText("Angle From Magnetic North:");

10 layout->addWidget(aLabel, 0, 0);
11

12 angle = new QLabel(this);
13 angle->setAlignment(Qt::AlignHCenter);
14 angle->setText("");
15 layout->addWidget(aLabel, 1, 0);
16

17 setLayout(layout);
18

19 connect(wrapper, SIGNAL(angle_changed(int)), angle, SLOT(setText(
QInt)));

20 }

On line 3 the active object wrapper is instantiated. The AOWrapper class provides an abstraction
of all platform-specific classes for accessing the Sensor API. In this way, if we are developing a
program that should run on many platforms, only the AOWrapper class will be referred to by
the Qt classes. On line 19, the signal angle_changed is connected to the setText slot of the
Qlabel angle in which the value read from the magnetometer is shown. In short, every time the
value read from the sensor changes, a signal is sent to the angle QLabel and its text is updated.
The rest of the code is usual Qt:

1 class AOWrapper : public QObject
2 {
3 Q_OBJECT
4

110 Qt for Symbian

5 public: // Class constructor and destructor
6 AOWrapper(QObject *parent = 0);
7 virtual ~AOWrapper();
8

9 signals: // Signals to connect with private classes with UI
10 void angle_changed (int angle);
11

12 private: // Pointer to private classes
13 CAOWrapperPrivate *d_ptr;
14

15 private: // Friend class definitions
16 friend class CAOWrapperPrivate;
17 };

The AOWrapper class, which is used by MagnetoWidget, is the wrapper used to access
the Symbian-specific code. It has a constructor, a destructor and a pointer to the platform-specific
classes. In our case we have only one platform-specific class: d_ptr allows referring to the private
class from the public class.

The public class constructor instantiates the private class object passing itself, using the this
operator, to allow the private class to access its methods. Note that in the class definition above, the
private classes are declared to be friend classes. This is necessary to allow the platform-specific
classes to access the methods of the public Qt class. More specifically, the private classes need to
access the signals defined in the public class:

1 /*
2 * AOWrapper constructor
3 */
4 AOWrapper::AOWrapper(QObject *parent) : QObject(parent)
5 {
6 d_ptr = CAOWrapperPrivate::NewL(this);
7 }
8

9 /*
10 * AOWrapper destructor
11 */
12 AOWrapper::~AOWrapper()
13 {
14 delete d_ptr;
15 }

The Symbian-Specific Classes

The public class is responsible for providing a unique way to access platform resources from the Qt
source code. Now we discuss how to implement the Symbian-specific classes to access the platform
resources. Our example uses the Sensor API to get data from the magnetometer. This data can be
used to implement a number of interesting applications – from a simple compass to a complete

Qt Apps and Native Symbian Extensions 111

navigation system in which the map rotates on the display depending on the direction the user is
moving in.

All Symbian-specific code should be implemented in the private class. If the application is being
built for more than one platform, it is necessary to have specific private classes for each target
platform. To allow cross-platform implementation, the source and header files for private class
implementations are added to the project based on the platform.

The specific class, called CAOWrapperPrivate, accesses the Sensor API and it should
be an active object that inherits from CActive. This is necessary to allow a constant update
of the data read from the sensors. CAOWrapperPrivate uses the two-phase constructor of
Symbian, and all objects are instantiated using the NewL method. The complete definition of the
CAOWrapperPrivate class is shown below:

1 class CAOWrapperPrivate : public CActive
2 {
3 public: // Magnetometer data
4 TInt iMagnetometerCalibrationLevel;
5 TInt iAngleFromMagneticNorth;
6 TTime iAngleFromMagneticNorthTimeStamp;
7

8 public:
9 // C++ constructor

10 CAOWrapperPrivate(AOWrapper *aPublicAPI = 0);
11

12 // Cancel and destroy
13 ~CAOWrapperPrivate();
14

15 // Two-phase constructor
16 static CAOWrapperPrivate* NewL(AOWrapper *aPublicAPI = 0);
17

18 // Two-phase constructor
19 static CAOWrapperPrivate* NewLC(AOWrapper *aPublicAPI = 0);
20

21 public:
22 // Function for making the initial request
23 void StartL(TTimeIntervalMicroSeconds32 aDelay);
24

25 private:
26 // Second-phase constructor
27 void ConstructL();
28

29 private:
30 // Handle completion
31 void RunL();
32

33 // How to cancel me
34 void DoCancel();
35

112 Qt for Symbian

36 // Override to handle leaves from RunL(). Default implementation
causes

37 // the active scheduler to panic.
38 TInt RunError(TInt aError);
39

40 // Find magnetometer sensor channel and open it
41 void CAOWrapperPrivate::FindAndOpenChannel();
42

43 // Get angle from north pole
44 void CAOWrapperPrivate::getAngleFromMagneticNorth();
45

46 // Get the calibration level
47 void CAOWrapperPrivate::getCalibrationLevel();
48

49 // Set calibration level to on/off
50 void CAOWrapperPrivate::setAutoCalibration(bool val);
51

52 private:
53 enum TAOWrapperPrivateState
54 {
55 EUninitialized, // Uninitialized
56 EInitialized, // Initialized
57 EError
58 // Error condition
59 };
60

61 private:
62 TInt iState; // State of the active object
63 RTimer iTimer; // Provides async timing service
64

65 AOWrapper *q_ptr; // Pointer to public implementation
66

67 // Channels to access magnetometer sensor data
68 CSensrvChannel* iMagnetometerSensor;
69 CSensrvChannel* iMagneticNorthSensor;
70 };

In order to access the Sensor API the sensrvchannel.h, sensrvchannelinfo.h,
sensrvtypes.h, sensrvchannelfinder.h and sensrvdatalistener.h headers
are required. The magnetometer API requires sensrvmagneticnorthsensor.h and
sensrvmagnetometersensor.h also.

The CAOWrapperPrivate constructor receives a pointer to the CAOWrapper public
implementation. This pointer is used later to emit a signal indicating that the data read from
the sensors has changed. The constructor also initializes the public attributes. NewL and NewLC
constructors are implemented as usual and are omitted here. This is also the same for some of the
other active object methods:

Qt Apps and Native Symbian Extensions 113

1 CAOWrapperPrivate::CAOWrapperPrivate(AOWrapper *wrapper)
2 : CActive(EPriorityStandard), q_ptr(wrapper) // Standard priority
3 {
4 iMagnetometerCalibrationLevel = 0;
5 iAngleFromMagneticNorth = 0;
6 iAngleFromMagneticNorthTimeStamp = 0;
7 }

In an active object, the RunL method is executed periodically. The frequency it invokes is set
by the developer. In our example, RunL opens the sensor channels on its first execution using the
method FindAndOpenChannel(). From that point on, it always checks the calibration level of
the sensor, and if it is too low, automatic calibration is set. When the calibration level is good, the
data is recovered from the sensor and a signal is emitted (emit q_ptr->angle_changed()):

1 void CAOWrapperPrivate::RunL()
2 {
3 if (iState == EUninitialized) {
4

5 // In the first run should find and open sensor channels
6 FindAndOpenChannel();
7 iState = EInitialized;
8 } else if (iState != EError) {
9

10 getCalibrationLevel();
11

12 if (iMagnetometerCalibrationLevel >= 2) {
13

14 TSensrvMagneticNorthData magNorthData;
15 TPckg<TSensrvMagneticNorthData> magNorthPackage(

magNorthData);
16 iMagneticNorthSensor->GetData(magNorthPackage);
17

18 iAngleFromMagneticNorth = magNorthData.
iAngleFromMagneticNorth;

19 iAngleFromMagneticNorthTimeStamp = magNorthData.
iTimeStamp;

20

21 emit q_ptr->angle_changed(iAngleFromMagneticNorth
);

22 } else {
23

24 // If calibration level is too low, set auto calibration ON
again

25 setAutoCalibration(true);
26 }
27 }
28

114 Qt for Symbian

29 iTimer.After(iStatus, 1000000); // Set for 1 sec later
30 SetActive(); // Tell scheduler a request is active
31 }

Opening a channel requires execution of the following steps:

1. Instantiate a channel finder object.

2. Find the channel according to a search criterion.

3. Open the sensor channel.

In this way, it is necessary to instantiate a CSensrvChannelFinder object that is
used to search for a channel using a criterion specified by a TSensrvChannelInfo
object. To search for the magnetometer sensor the channel type should be set to
KSensrvChannelTypeIdMagnetometerXYZAxisData, and to search for the compass
sensor the channel type should be set to KSensrvChannelTypeIdMagneticNorthData.
Once the desired channel is found, it can be opened using the OpenChannelL() method:

1 void CAOWrapperPrivate::FindAndOpenChannel()
2 {
3 // First: construct a channel finder
4 CSensrvChannelFinder* channelFinder;
5 channelFinder = CSensrvChannelFinder::NewL();
6 CleanupStack::PushL(channelFinder);
7

8 // Second: list of found channels
9 RSensrvChannelInfoList channelInfoList;

10

11 // Third: create and fill channel search criteria
12 TSensrvChannelInfo channelInfo;
13

14 // Fourth: find the channel
15 // here we look for the magnetometer channel
16 channelInfo.iChannelType =

KSensrvChannelTypeIdMagnetometerXYZAxisData;
17 channelFinder->FindChannelsL(channelInfoList, channelInfo);
18

19 // Fifty: open the sensor channel
20 // When the channel object is created the channel info object
21 // must be an object returned by CSensrvChannelFinder::FindChannelsL

().
22 iMagnetometerSensor = CSensrvChannel::NewL(channelInfoList[0]);
23 CleanupStack::PushL(iMagnetometerSensor);
24 iMagnetometerSensor->OpenChannelL();
25

26 setAutoCalibration(true);
27

28 // Repeat steps 4 and 5 for the compass channel
29 channelInfo.iChannelType = KSensrvChannelTypeIdMagneticNorthData;

Qt Apps and Native Symbian Extensions 115

30 channelFinder->FindChannelsL(channelInfoList, channelInfo);
31 iMagneticNorthSensor = CSensrvChannel::NewL(channelInfoList[0]);
32 CleanupStack::PushL(iMagneticNorthSensor);
33 iMagneticNorthSensor->OpenChannelL();
34

35 CleanupStack::PopAndDestroy(channelFinder); // finder not needed any
more

36 }

The Sensor API allows automatic calibration of the digital compass. However, the developer
should enable it. The channel should already be open. The calibration is required to obtain
more precise data from the sensors. Automatic calibration can be set on/off using the method
setAutoCalibration():

1 void CAOWrapperPrivate::setAutoCalibration(bool val)
2 {
3 TSensrvProperty property;
4 iMagnetometerSensor->GetPropertyL(

KSensrvPropAutoCalibrationActive,
5 KSensrvItemIndexNone, property);
6

7 // set auto-calibration on/off. 1 to enable, 0 to disable auto-
calibration

8 property.SetValue(val);
9

10 iMagnetometerSensor->SetProperty(property);
11 }

Finally, the calibration level can be easily retrieved as shown below in the method
getCalibrationLevel():

1 void CAOWrapperPrivate::getCalibrationLevel()
2 {
3 TSensrvProperty property;
4 iMagnetometerSensor->GetPropertyL(KSensrvPropCalibrationLevel,

KSensrvItemIndexNone, property);
5 property.GetValue(iMagnetometerCalibrationLevel);
6 }

Proceeding as explained above, you can see that it is possible to separate the Symbian-specific
classes, or any other platform-specific classes, from the Qt code. This isolates the platform-specific
issues from the private classes, keeping the code multi-platform. Consequently, less effort is required
to port it to new targets.

6.8.4 Other Issues
Error Codes

Another issue that developers should handle when building Qt/Symbian applications is the
impossibility of mapping Qt error codes to Symbian error codes. This is mainly because Qt provides
only class-specific error codes, but not system-wide error codes.

116 Qt for Symbian

When an error occurs in the application, the private implementation can be used to trap a leaving
method and to return such an error code to a pure Qt method that will handle the error. This can be
implemented with a code such as:

1 int CAOWrapperPrivate::private_method (<list of args>)
2 {
3 ...
4 TRAPD (error, private_methodL (<list of args>););
5 return error;
6 }

If something goes wrong when executing private_methodL(), then the error code will be
trapped and handled somewhere else by showing an error message or by some other action that the
developer considers more appropriate.

Allocating Memory

Developing applications for mobile devices requires some caution that is not needed when
developing desktop applications. For instance, memory for personal computers is so cheap that most
of the programs are not concerned with how it is used, and this is also true for most Qt applications.
If the application attempts to allocate some memory and there is none available, the application is
simply closed. However, this is not the scenario in developing for mobile devices, in which memory
is still a limited resource.

For this reason, Symbian applications should make use of the cleanup stack to deallocate objects
in the heap when an exception occurs. This is also true when building Qt/Symbian applications.
When objects are created in Qt, they are stored in an object tree, making possible the automatic
deletion of objects that have a parent. When an object is created, it is added to the object tree as a
child of its parent. If the object is deleted, it is also removed from the tree. If its parent is deleted, then
the object is automatically deleted and both are removed from the tree. This behaviour applies for
objects on the heap and for objects on the stack. The only case in which an object is not automatically
deleted is if it was created with new and has no parent. In this case the object should be explicitly
deleted.

6.9 Summary

In this chapter we presented basic concepts related to Symbian OS as well as how to access
the Symbian API from Qt using the pimpl pattern. The example program reads data from a
magnetometer using an active object and updates the data on the device display.

Bibliography
Aubert M 2008 Quick Recipes on Symbian OS: Mastering C++ Smartphone Development. John Wiley & Sons, Ltd.

7
Qt for Symbian Examples

Bertalan Forstner, András Berke, Imre Kelényi, Morten V. Pedersen and
Hassan Charaf

This chapter presents some examples of Qt program code for the Qt Mobility API and Qt Mobile
Extensions, including a brief summary of their functionalities. The purpose of these examples is to
demonstrate the features of Qt and to introduce Qt programming techniques. Developers will be able
to take a closer look at the available code libraries of Qt and mobile extensions of Qt for Symbian,
and obtain design ideas concerning mobile software development using the Qt for Symbian SDK.
All examples can be directly downloaded from the book’s web page.

7.1 Mobility API Examples

In the following we will present some examples for the use of Qt Mobility APIs. As stated above,
the reader should check with our book’s homepage for recent updates and extensions.

7.1.1 Displaying Messaging Accounts

The Messaging API allows the listing and manipulation of messaging accounts. If we want to send
a message via a specific account, we must first acquire the account’s ID. The following example
widget displays a combo box with a list of the messaging accounts available on the device and
emits a signal if the selected account is changed. One of the best things about messaging is that all
the different types of messages can be handled via the same API, so selecting an account which is
assigned to SMS and sending a text message is practically performed in the same way as selecting
an email account and sending an email.

The definition of the class is as follows. There is an inner class definition for Loader, which
encapsulates a thread responsible for querying the list of messaging accounts. This could be
performed in the same thread in which the widget’s methods run, but having a separate thread for
the operation results in increased performance and helps prevent an unresponsive UI. The list of
accounts is stored in the member variable QMessageAccountIdList m_ids:

1 class AccountsWidget : public QWidget
2 {
3 Q_OBJECT

118 Qt for Symbian

4

5 private:
6 class Loader : public QThread
7 {
8 public:
9 Loader(AccountsWidget* parent);

10 void run();
11

12 private:
13 AccountsWidget* m_parent;
14 };
15

16 public:
17 AccountsWidget(QWidget* parent = 0);
18 QMessageAccountId currentAccount() const;
19 QString currentAccountName() const;
20 bool isEmpty() const { return m_accountsCombo->count() == 0; }
21

22 signals:
23 void accountChanged();
24

25 protected:
26 void showEvent(QShowEvent* e);
27 void hideEvent(QHideEvent* e);
28

29 private slots:
30 void load();
31 void loadStarted();
32 void loadFinished();
33

34 private:
35 void setupUi();
36 void setIds(const QMessageAccountIdList& ids);
37 QMessageAccountIdList ids() const;
38

39 private:
40 QStackedLayout* m_stackedLayout;
41 QComboBox* m_accountsCombo;
42 QLabel* m_busyLabel;
43

44 Loader m_loader;
45 mutable QMutex m_loadMutex;
46 QMessageAccountIdList m_ids;
47 };

The Loader overrides QThread’s default run() implementation and queries the available
accounts via the QMessageStore singleton. The list of accounts is then passed to the

Qt for Symbian Examples 119

AccountsWidget parent. A mutex is used in the setter and getter for the account IDs to prevent
any undesired behaviour due to the multi-threaded execution:

1 AccountsWidget::Loader::Loader(AccountsWidget* parent)
2 : QThread(parent), m_parent(parent)
3 {
4 }
5

6 void AccountsWidget::Loader::run()
7 {
8 QMessageAccountIdList ids = QMessageStore::instance()->

queryAccounts();
9 m_parent->setIds(ids);

10 }
11

12 void AccountsWidget::setIds(const QMessageAccountIdList& ids)
13 {
14 QMutexLocker mutex(&m_loadMutex);
15 m_ids = ids;
16 }
17

18 QMessageAccountIdList AccountsWidget::ids() const
19 {
20 QMutexLocker mutex(&m_loadMutex);
21 return m_ids;
22 }

The initialization of the class AccountsWidget is carried out by the constructor and the
setupUi() method. The UI uses a QStackedLayout and QLabel to hide the combo box
and display ‘busy text’ while the accounts are being loaded. The loader thread’s started() and
finished() signals are connected to the loadStarted() and loadFinished() slots:

1 AccountsWidget::AccountsWidget(QWidget* parent)
2 :
3 QWidget(parent),
4 m_stackedLayout(0),
5 m_accountsCombo(0),
6 m_busyLabel(0),
7 m_loader(this)
8 {
9 setupUi();

10

11 connect(&m_loader,SIGNAL(started()),this,SLOT(loadStarted()));
12 connect(&m_loader,SIGNAL(finished()),this,SLOT(loadFinished()));
13 }
14

15 void AccountsWidget::setupUi()
16 {
17 m_stackedLayout = new QStackedLayout(this);

120 Qt for Symbian

18

19 m_accountsCombo = new QComboBox(this);
20 m_stackedLayout->addWidget(m_accountsCombo);
21 connect(m_accountsCombo,SIGNAL(currentIndexChanged(int)),this,

SIGNAL(accountChanged()));
22

23 m_busyLabel = new QLabel("Loading...");
24 m_stackedLayout->addWidget(m_busyLabel);
25 }

When loading the accounts is started, QStackedLayout switches to the busy label to hide the
combo box while loading is in progress.

When the loading process has finished, the list of accounts is processed by a loop, and each
account name is added to the combo box:

1 void AccountsWidget::loadStarted()
2 {
3 #ifndef _WIN32_WCE
4 setCursor(Qt::BusyCursor);
5 #endif
6 m_stackedLayout->setCurrentWidget(m_busyLabel);
7 }
8

9 void AccountsWidget::loadFinished()
10 {
11 m_accountsCombo->clear();
12

13 QMessageAccountIdList accountIds = ids();
14

15 if(!accountIds.isEmpty())
16 {
17 for(int i = 0; i < accountIds.count(); ++i)
18 {
19 QMessageAccount account(accountIds[i]);
20 m_accountsCombo->addItem(QString("%1 - %2").arg(i

+1).arg(account.name()),account.name());
21 }
22

23 m_stackedLayout->setCurrentWidget(m_accountsCombo);
24 }
25 else
26 m_busyLabel->setText("No accounts!");
27

28 #ifndef _WIN32_WCE
29 setCursor(Qt::ArrowCursor);
30 #endif
31 }

Qt for Symbian Examples 121

The account loading process is started by calling the load()method, which uses a static variable
to ensure that querying the accounts is performed only once:

1 void AccountsWidget::load()
2 {
3 static bool runonce = false;
4 if(!runonce)
5 m_loader.start();
6 runonce = true;
7 }

Methods are also provided for getting the selected account’s ID and name:

1 QMessageAccountId AccountsWidget::currentAccount() const
2 {
3 QMessageAccountId result;
4 if(m_loader.isFinished() && m_accountsCombo->count())
5 {
6 int index = m_accountsCombo->currentIndex();
7 return ids().at(index);
8 }
9

10 return result;
11 }
12

13 QString AccountsWidget::currentAccountName() const
14 {
15 if(m_loader.isFinished() && m_accountsCombo->count())
16 return m_accountsCombo->itemData(m_accountsCombo->

currentIndex()).toString();
17 return QString();
18 }

By overriding the show event handler, the widget can automatically start loading the account list
when it is shown. When the widget becomes hidden, the loader is also disabled if it is running:

1 void AccountsWidget::showEvent(QShowEvent* e)
2 {
3 load();
4 QWidget::showEvent(e);
5 }
6

7 void AccountsWidget::hideEvent(QHideEvent* e)
8 {
9 if(m_loader.isRunning())

10 m_loader.exit();
11 QWidget::hideEvent(e);
12 }

122 Qt for Symbian

7.1.2 Displaying Recent Messages

The following example shows how to create a widget that displays a list of recent messages. It
demonstrates how to query messages from the system, how to get notifications of when messages are
removed or updated, and how to use QMessageServiceAction to perform messaging-related
tasks in general. The list widget shows the subject of the messages and if they are partial messages
or not.

The class definition of the example widget RecentMessagesWidget is as follows.
The current state of the message loading process is stored in an instance of the State
enum called m_state. The displayed list items and the message IDs are tied together
via QMap<QMessageId,QListWidgetItem*> m_indexMap and data is stored in each
QListWidgetItemwith the role MessageIdRole. This ensures that if either the list item or the
message ID is present, the other can also be obtained. The class emits the signal selected(const
QMessageId& messageId) when a message is selected:

1 class RecentMessagesWidget : public QWidget
2 {
3 Q_OBJECT
4

5 public:
6 RecentMessagesWidget(QWidget* parent = 0, unsigned int maxRecent

= 10);
7 ~RecentMessagesWidget();
8 QMessageId currentMessage() const;
9

10 signals:
11 void selected(const QMessageId& messageId);
12

13 protected:
14 void showEvent(QShowEvent* e);
15 void hideEvent(QHideEvent* e);
16

17 private slots:
18 void currentItemChanged(QListWidgetItem* current, QListWidgetItem

* previous);
19 void messagesFound(const QMessageIdList& result);
20 void stateChanged(QMessageServiceAction::State s);
21 void messageUpdated(const QMessageId& id, const QMessageStore::

NotificationFilterIdSet& filter);
22 void messageRemoved(const QMessageId& id, const QMessageStore::

NotificationFilterIdSet& filter);
23 void processResults();
24

25 private:
26 void setupUi();
27 void updateState();
28 void load();
29

Qt for Symbian Examples 123

30 private:
31 enum State { Unloaded, Loading, LoadFinished, Processing,

LoadFailed, Done };
32 static const int MessageIdRole = Qt::UserRole + 1;
33

34 private:
35 QListWidget* m_messageListWidget;
36 QLabel* m_statusLabel;
37 QStackedLayout* m_layout;
38 QMessageIdList m_ids;
39 QMap<QMessageId,QListWidgetItem*> m_indexMap;
40 unsigned int m_maxRecent;
41 QMessageServiceAction* m_service;
42 State m_state;
43 QMessageStore::NotificationFilterId m_storeFilterId;
44 };

After setting up the UI, the constructor connects the signals of the messaging objects to the
handler slots. We are going to use a message service to get the list of messages. Message services
can be accessed via QMessageServiceAction instances, in our case the member variable
m_service. The messagesFound signal is emitted when a message is found by the query action
and the stateChanged signal is emitted when the state of the action changes. Two signals of the
QMessageStore singleton are also connected to get a notification when one of the messages is
removed or updated after they have been added to the UI list.

The last line of the constructor creates and registers a filter for querying the messages. This would
allow us to get only a subset of all available messages from the messaging store, but in this example
the filter has no parameters, so it allows all messages. The filter must be unregistered by the widget’s
destructor:

1 RecentMessagesWidget::RecentMessagesWidget(QWidget* parent, unsigned int
maxRecent)

2 : QWidget(parent), m_messageListWidget(0), m_statusLabel(0), m_layout(0)
, m_maxRecent(maxRecent), m_service(new QMessageServiceAction(this)),
m_state(Unloaded)

3 {
4 setupUi();
5 connect(m_service,SIGNAL(messagesFound(const QMessageIdList&)),

this,SLOT(messagesFound(const QMessageIdList&)));
6 connect(m_service,SIGNAL(stateChanged(QMessageServiceAction::

State)),this,SLOT(stateChanged(QMessageServiceAction::State))
);

7

8 //register for message update notifications
9

10 connect(QMessageStore::instance(),SIGNAL(messageUpdated(const
QMessageId&, const QMessageStore::NotificationFilterIdSet&)),

11 this, SLOT(messageUpdated(const QMessageId&, const
QMessageStore::NotificationFilterIdSet&)));

124 Qt for Symbian

12 connect(QMessageStore::instance(),SIGNAL(messageRemoved(const
QMessageId&, const QMessageStore::NotificationFilterIdSet&)),

13 this, SLOT(messageRemoved(const QMessageId&, const
QMessageStore::NotificationFilterIdSet&)));

14

15 m_storeFilterId = QMessageStore::instance()->
registerNotificationFilter(QMessageFilter());

16 }
17

18 void RecentMessagesWidget::setupUi()
19 {
20 m_layout = new QStackedLayout(this);
21

22 m_messageListWidget = new QListWidget(this);
23 m_layout->addWidget(m_messageListWidget);
24 connect(m_messageListWidget,SIGNAL(currentItemChanged(

QListWidgetItem*,QListWidgetItem*)),
25 this,SLOT(currentItemChanged(QListWidgetItem*,

QListWidgetItem*)));
26

27 m_statusLabel = new QLabel(this);
28 m_statusLabel->setAlignment(Qt::AlignHCenter | Qt::AlignVCenter);
29 m_statusLabel->setFrameStyle(QFrame::Box);
30 m_layout->addWidget(m_statusLabel);
31 }
32

33 RecentMessagesWidget::~RecentMessagesWidget()
34 {
35 QMessageStore::instance()->unregisterNotificationFilter(

m_storeFilterId);
36 }

Querying the messages is started by the load() method, which issues the service action. The
passed QMessageOrdering::byReceptionTimeStamp(Qt::DescendingOrder)
ensures that the messages are returned, ordered by their timestamp.

When a message is found, the messagesFound() slot stores the message’s ID in an array.
The slot stateChanged() allows us to check if the service action fails or if it has completed
successfully and all messages have been processed. These events are handled by the method
updateState():

1 void RecentMessagesWidget::load()
2 {
3 m_ids.clear();
4

5 if(!m_service->queryMessages(QMessageFilter(),QMessageOrdering::
byReceptionTimeStamp(Qt::DescendingOrder),m_maxRecent))

6 m_state = LoadFailed;
7 else

Qt for Symbian Examples 125

8 m_state = Loading;
9 }

10

11 void RecentMessagesWidget::messagesFound(const QMessageIdList& ids)
12 {
13 m_ids.append(ids);
14 }
15

16 void RecentMessagesWidget::stateChanged(QMessageServiceAction::State s)
17 {
18 if(s == QMessageServiceAction::Failed)
19 m_state = LoadFailed;
20 else if(s == QMessageServiceAction::Successful && m_state !=

LoadFailed)
21 m_state = LoadFinished;
22

23 updateState();
24 }

The updateState() method is responsible for updating the child widgets according to the
state of the messaging query action. When loading the messages has been completed, it starts
processing them by calling processResults()), which puts the messages into the list widget.
Only the subject of the messages is displayed, but the font of the list entry also indicates if the
message is a partially or fully downloaded message.

Note that newItem->setData(MessageIdRole, id.toString()) is used to store
the message ID in the list item’s data model so that it can be obtained when the widget is selected in
the UI:

1 void RecentMessagesWidget::updateState()
2 {
3 switch(m_state)
4 {
5 case Unloaded:
6 {
7 m_statusLabel->setText(QString());
8 m_layout->setCurrentWidget(m_statusLabel);
9 }

10 break;
11 case Loading:
12 {
13 m_statusLabel->setText("Loading...");
14 m_layout->setCurrentWidget(m_statusLabel);
15 }
16 break;
17 case LoadFinished:
18 {
19 if(m_ids.isEmpty())
20 {

126 Qt for Symbian

21 m_statusLabel->setText("Finished. No
messages.");

22 m_layout->setCurrentWidget(m_statusLabel)
;

23 }
24 else
25 {
26 m_state = Processing;
27 updateState();
28 processResults();
29 }
30 }
31 break;
32 case Processing:
33 m_layout->setCurrentWidget(m_messageListWidget);
34 break;
35 case LoadFailed:
36 {
37 m_statusLabel->setText("Load failed!");
38 m_layout->setCurrentWidget(m_statusLabel);
39 }
40 break;
41 }
42

43 #ifndef _WIN32_WCE
44 if(m_state == Loading || m_state == Processing)
45 setCursor(Qt::BusyCursor);
46 else
47 setCursor(Qt::ArrowCursor);
48 #endif
49 }
50

51 void RecentMessagesWidget::processResults()
52 {
53 if(!m_ids.isEmpty())
54 {
55 QMessageId id = m_ids.takeFirst();
56 QMessage message(id);
57

58 QListWidgetItem* newItem = new QListWidgetItem(message.
subject());

59 newItem->setData(MessageIdRole,id.toString());
60 QFont itemFont = newItem->font();
61 bool isPartialMessage = !message.find(message.bodyId()).

isContentAvailable();
62 itemFont.setItalic(isPartialMessage);
63 newItem->setFont(itemFont);
64 m_messageListWidget->addItem(newItem);

Qt for Symbian Examples 127

65 m_indexMap.insert(id,newItem);
66 m_messageListWidget->update();
67 QTimer::singleShot(100,this,SLOT(processResults()));
68 }
69 else
70 {
71 m_state = Done;
72 updateState();
73 }
74 }

After querying the messages has been done and listing them in the list widget, it is still
possible that one of them is updated or removed. This is why the messageUpdated() and
messageRemoved() slots were connected in the constructor. These update the list by either
removing or updating the list entry for the given message:

1 void RecentMessagesWidget::messageUpdated(const QMessageId& id, const
QMessageStore::NotificationFilterIdSet& filter)

2 {
3 if(!filter.contains(m_storeFilterId) || m_state == Loading || !id

.isValid() || !m_indexMap.contains(id))
4 return;
5

6 //update the pertinent entry to reflect completeness
7

8 QListWidgetItem* item = m_indexMap.value(id);
9 if(item)

10 {
11 QMessage message(id);
12 bool partialMessage = !message.find(message.bodyId()).

isContentAvailable();
13 QFont itemFont = item->font();
14 itemFont.setItalic(partialMessage);
15 item->setFont(itemFont);
16 }
17 }
18

19 void RecentMessagesWidget::messageRemoved(const QMessageId& id, const
QMessageStore::NotificationFilterIdSet& filter)

20 {
21 if(!filter.contains(m_storeFilterId) || m_state == Loading || !id

.isValid() || !m_indexMap.contains(id))
22 return;
23

24 QListWidgetItem* item = m_indexMap.value(id);
25 if(item)
26 {
27 int row = m_messageListWidget->row(item);

128 Qt for Symbian

28 QListWidgetItem* item = m_messageListWidget->takeItem(row
);

29 m_indexMap.remove(id);
30 delete item;
31 }
32 m_ids.removeAll(id);
33 }

To allow further use of the widget besides displaying a list of the subjects of the most recent
messages, a signal is emitted when one of them is selected. Another widget can connect to the signal
and, for instance, display the body of the selected message.

The ID of the selected message can also be accessed by currentMessage():

1 void RecentMessagesWidget::currentItemChanged(QListWidgetItem*,
QListWidgetItem*)

2 {
3 if(m_state != Processing || m_state != Loading)
4 emit selected(currentMessage());
5 }
6

7 QMessageId RecentMessagesWidget::currentMessage() const
8 {
9 QMessageId result;

10

11 if(QListWidgetItem* currentItem = m_messageListWidget->
currentItem())

12 result = QMessageId(currentItem->data(MessageIdRole).
toString());

13

14 return result;
15 }

The widget’s load and hide event handlers ensure that loading of the messages is started when the
widget becomes visible and stopped when it goes out of sight:

1 void RecentMessagesWidget::showEvent(QShowEvent* e)
2 {
3 if(m_state == Unloaded)
4 load();
5

6 updateState();
7

8 QWidget::showEvent(e);
9 }

10

11 void RecentMessagesWidget::hideEvent(QHideEvent* e)
12 {
13 if(m_state == Loading || m_state == Processing)
14 {

Qt for Symbian Examples 129

15 m_service->cancelOperation();
16 m_state = Unloaded;
17 m_ids.clear();
18 }
19

20 QWidget::hideEvent(e);
21 }

7.1.3 Service Framework

In this section we will demonstrate the functionality of the service framework by developing a simple
‘helloworld’ service example. We will also show how we can use the service framework to register
and discover our new service on the Symbian device. To demonstrate that our new service can be
found on the device, you can use the ServiceBrowser example found in the Mobility API examples
folder. The example shown here will only cover a small part of the functionalities available in the
service framework. However, it demonstrates the most fundamental functionality needed to develop
new service plug-ins. For more information on the service framework you should consult the Qt
Mobility documentation.

Creating a Service Plug-in

The first step we need to perform is to create our service plug-in code. First we must define a plug-
in interface using the QServicePluginInterface class. The service framework will interact
with our service though the plug-in interface. The listing below shows the interface declaration from
helloworldplugin.h:

1

2 #include <QObject>
3 #include <QServicePluginInterface.h>
4

5 using namespace QtMobility;
6

7 class HelloWorldPlugin : public QObject,
8 public QServicePluginInterface
9 {

10 Q_OBJECT
11 Q_INTERFACES(QtMobility::QServicePluginInterface)
12 public:
13 QObject* createInstance(const QServiceInterfaceDescriptor& descriptor

,
14 QServiceContext* context,
15 QAbstractSecuritySession* session);
16 };

As seen in the above listing, we must implement the pure virtual factory function
createInstance() from QServicePluginInterface. This function is called by the

130 Qt for Symbian

service framework to instantiate our plug-in. The parameters of the createInstance() function
will allow us to support, for example, multiple service implementations in a single plug-in and to
check whether the client has sufficient permissions to load the plug-in. However, in this example we
ignore the parameters passed and simply return a new instance of our ‘helloworld’ plug-in as shown
in the listing below (defined in helloworldplugin.cpp):

1 #include <QServiceInterfaceDescriptor.h>
2 #include <QAbstractSecuritySession.h>
3 #include <QServiceContext.h>
4

5 #include "helloworldplugin.h"
6 #include "helloworld.h"
7

8 QObject* HelloWorldPlugin::createInstance(const
QServiceInterfaceDescriptor& /*descriptor*/,

9 QServiceContext* /*context*/,
10 QAbstractSecuritySession* /*

session*/)
11 {
12 return new HelloWorld(this);
13 }
14

15 Q_EXPORT_PLUGIN2(serviceframework_helloworldplugin, HelloWorldPlugin)

The Q_EXPORT_PLUGIN2(targetname, pluginname) macro exports the plug-in class
targetname for the plug-in specified by pluginname. The value of pluginname should
correspond to the TARGET specified in the service plug-in’s project file as we will see later.

We have now implemented the necessary plug-in handling code. The next step is to define the
actual plug-in behaviour in the HelloWorld class. The following listings show the implementation
of the class declaration and definition:

1 #include <QObject>
2

3 class HelloWorld : public QObject
4 {
5 Q_OBJECT
6 public:
7 HelloWorld(QObject *parent = 0);
8

9 public slots:
10 void sayHello();
11 };

1 #include <QtCore>
2

3 #include "helloworld.h"
4

5 HelloWorld::HelloWorld(QObject *parent)
6 : QObject(parent)

Qt for Symbian Examples 131

7 {
8 }
9

10 void HelloWorld::sayHello()
11 {
12 qDebug() << "Hello World :)";
13 }

As seen above, the actual plug-in code is very simple and for it to work we only have to fulfil a
few rules. Our plug-in code must be derived from QObject and we must implement the functions
invoked by the service framework using the Qt signal and slot mechanism. This allows the service
framework to use the Qt meta-system to detect which function can be invoked in our plug-in, in this
case the sayHello() function.

Now we define the project file, which will tell the Qt build system how to build our plug-in. The
.pro file is shown in the Listing below:

1 TEMPLATE = lib
2 CONFIG += plugin
3

4 INCLUDEPATH += C:\Qt\qt-mobility-src-1.0.0-tp\src\serviceframework
5

6 HEADERS += helloworldplugin.h
7 SOURCES += helloworldplugin.cpp
8

9 HEADERS += helloworld.h
10 SOURCES += helloworld.cpp
11

12 TARGET = serviceframework_helloworldplugin
13

14 CONFIG += mobility
15 MOBILITY = serviceframework
16

17 LIBS += -lQtServiceFramework_tp
18

19 symbian {
20

21 load(data_caging_paths)
22 pluginDep.sources = serviceframework_helloworldplugin.dll
23 pluginDep.path = $$QT_PLUGINS_BASE_DIR
24 DEPLOYMENT += pluginDep
25

26 TARGET.EPOCALLOWDLLDATA = 1
27 }

Note that we are linking against QtServiceFramework_tp, where _tp is appended, since
we are using the technology preview of the service framework. You should now be able to build
the plug-in using your preferred Qt for Symbian IDE. Also note that you first have to make sure
that you have a built version of the Service Framework Library supplied in the Qt Mobility API

132 Qt for Symbian

source package. On Symbian the service framework will run as a server, therefore you first need
to build and install the service framework server before you can use the application on a device.
After installing this server and our new service plug-in on our device, we still need to make
the service framework discover our new plug-in. This is done by adding a service description
file in XML to the service manager running on our device. The XML file for the ‘helloworld’
plug-in can be found in the service_installer_helloworld folder of the example source code. This
folder also contains a small Symbian application needed to register the our ‘helloworld’ service
on the device. The registration phase is a little different on the Symbian platform than for other
platforms and is documented here: http://doc.trolltech.com/qtmobility-1.0-tp/
service-framework-on-symbian.html.

7.2 Qt for Symbian and Mobile Extension Examples

Now we look at the mobile extension examples. The examples cover the basics of Qt, networking,
XML and Symbian-specific features such as sensors, audio, messaging, a camera and localization.
Even though there are Mobility APIs available, developers might want to use the extensions in order
to be more flexible. All of these small demonstration programs were implemented and tested using
the Carbide.c++ 2.0.2 IDE and Qt for Symbian release 4.6.0.

7.2.1 Basic Widgets Example

The first example demonstrates how the standard Qt widgets can be arranged on a simple GUI to
realize some basic input functionality. Let us assume that our task is to create a simple form named
MyMoviesForm, on which the user could provide information about recently seen movies. This
could be useful, e.g. when we are working on a mobile client application of a movie ranking site.
Our form will contain some simple input fields; a line edit widget for entering the title of the movie;
a group of radio buttons to let the user specify the language of the movie; and a checkbox, which the
user could use to recommend watching the film. Further, we need a list of the movies already added,
a button to add a new movie with the given details, and another one to remove any of the previously
added list items. To build an input form as described, we could just use the Qt Designer Editor in
Carbide.c++. In that case, we just have to drag and drop the widget items from the widgets box and
arrange them in a layout. As you might have read in a previous chapter, it is also possible to create
the form manually in program code, by instantiating widget and layout items and linking them in
the desired way. However, in all the examples of this chapter we will follow the first way. The main
advantage of creating the UI in this way is that in this case we can focus the source code on program
functionality.

After adding all the necessary widget items, we can just simply right-click on the form and select
the option Lay out/Lay out in a grid. Using this command simplifies the arrangement of form items
(see Figure 7.1). Our next task is to customize some of the widgets’ properties like the shown text,
the title of the window or the C++ name of the widget instance. We can easily perform this using
the Qt C++ Property Editor.

After all the necessary modifications, we can use the Build Project command from
the Project menu to generate the code that describes the form’s UI exactly as designed

Qt for Symbian Examples 133

Figure 7.1 Illustration of Qt Designer’s auto layout function.

with the Qt tool. The listing of the source code for the generated class (naming schema:
Ui_<name_of_the_main_widget>Class.cpp) is as follows:

1

2 QT_BEGIN_NAMESPACE
3

4 class Ui_MyMoviesFormClass
5 {
6 public:
7 QWidget *centralwidget;
8 QGridLayout *gridLayout;
9 QLabel *lblTitle;

10 QLineEdit *editTitle;
11 QRadioButton *radioEng;
12 QRadioButton *radioHun;
13 QCheckBox *chkRecommend;
14 QPushButton *btnAdd;
15 QPushButton *btnClear;
16 QListWidget *listMovies;
17 QMenuBar *menubar;
18 QStatusBar *statusbar;
19

20 void setupUi(QMainWindow *MyMoviesFormClass)
21 {
22 if (MyMoviesFormClass->objectName().isEmpty())
23 MyMoviesFormClass->setObjectName(
24 QString::fromUtf8("MyMoviesFormClass"));
25

26 centralwidget = new QWidget(MyMoviesFormClass);

134 Qt for Symbian

27 centralwidget->setObjectName(
28 QString::fromUtf8("centralwidget"));
29

30 gridLayout = new QGridLayout(centralwidget);
31 gridLayout->setObjectName(QString::fromUtf8("gridLayout"));
32

33 lblTitle = new QLabel(centralwidget);
34 lblTitle->setObjectName(QString::fromUtf8("lblTitle"));
35 gridLayout->addWidget(lblTitle, 0, 0, 1, 2);
36

37 editTitle = new QLineEdit(centralwidget);
38 editTitle->setObjectName(QString::fromUtf8("editTitle"));
39 gridLayout->addWidget(editTitle, 1, 0, 1, 2);
40

41 radioEng = new QRadioButton(centralwidget);
42 radioEng->setObjectName(QString::fromUtf8("radioEng"));
43 radioEng->setChecked(true);
44 gridLayout->addWidget(radioEng, 2, 0, 1, 1);
45

46 radioHun = new QRadioButton(centralwidget);
47 radioHun->setObjectName(QString::fromUtf8("radioHun"));
48 gridLayout->addWidget(radioHun, 2, 1, 1, 1);
49

50 chkRecommend = new QCheckBox(centralwidget);
51 chkRecommend->setObjectName(QString::fromUtf8("chkRecommend"));
52 gridLayout->addWidget(chkRecommend, 3, 0, 1, 2);
53

54 btnAdd = new QPushButton(centralwidget);
55 btnAdd->setObjectName(QString::fromUtf8("btnAdd"));
56 gridLayout->addWidget(btnAdd, 4, 0, 1, 2);
57

58 btnClear = new QPushButton(centralwidget);
59 btnClear->setObjectName(QString::fromUtf8("btnClear"));
60 gridLayout->addWidget(btnClear, 5, 0, 1, 2);
61

62 listMovies = new QListWidget(centralwidget);
63 listMovies->setObjectName(QString::fromUtf8("listMovies"));
64 gridLayout->addWidget(listMovies, 6, 0, 1, 2);
65

66 MyMoviesFormClass->setCentralWidget(centralwidget);
67 menubar = new QMenuBar(MyMoviesFormClass);
68 menubar->setObjectName(QString::fromUtf8("menubar"));
69 menubar->setGeometry(QRect(0, 0, 262, 21));
70 MyMoviesFormClass->setMenuBar(menubar);
71 statusbar = new QStatusBar(MyMoviesFormClass);
72 statusbar->setObjectName(QString::fromUtf8("statusbar"));
73 MyMoviesFormClass->setStatusBar(statusbar);
74

Qt for Symbian Examples 135

75 retranslateUi(MyMoviesFormClass);
76

77 QMetaObject::connectSlotsByName(MyMoviesFormClass);
78 } // setupUi
79

80 void retranslateUi(QMainWindow *MyMoviesFormClass)
81 {
82 MyMoviesFormClass->setWindowTitle(
83 QApplication::translate(
84 "MyMoviesFormClass", "My Movies", 0,
85 QApplication::UnicodeUTF8));
86

87 lblTitle->setText(QApplication::translate("MyMoviesFormClass", "
Title:", 0, QApplication::UnicodeUTF8));

88 radioEng->setText(QApplication::translate("MyMoviesFormClass", "
English", 0, QApplication::UnicodeUTF8));

89 radioHun->setText(QApplication::translate("MyMoviesFormClass", "
Hungarian", 0, QApplication::UnicodeUTF8));

90 chkRecommend->setText(
91 QApplication::translate("MyMoviesFormClass",
92 "Recommended for watching", 0, QApplication::UnicodeUTF8));
93 btnAdd->setText(QApplication::translate("MyMoviesFormClass", "Add

to list", 0, QApplication::UnicodeUTF8));
94 btnClear->setText(QApplication::translate("MyMoviesFormClass", "

Clear list", 0, QApplication::UnicodeUTF8));
95 Q_UNUSED(MyMoviesFormClass);
96 } // retranslateUi
97

98 };
99

100 namespace Ui {
101 class MyMoviesFormClass: public Ui_MyMoviesFormClass {};
102 } // namespace Ui
103

104 QT_END_NAMESPACE

As you may have noticed, the UI class consists of two functions, one named setupUi (called
by the MyMoviesForm widget’s constructor in order to lay out the enclosed widget items) and the
other retranslateUi (called by the UI class itself).

Note that in the rest of the examples of this chapter we will dispense with listing the generated
UI header source code. However, in most cases we will assume that such a header file exists.

After studying the UI source code, we can look at the declaration of the MyMoviesFormwidget:

MyMoviesForm.h

1 #include <QtGui/QMainWindow>
2

3 //including the generated layout header
4 #include "ui_MyMoviesForm.h"

136 Qt for Symbian

5

6 class MyMoviesForm : public QMainWindow
7 {
8 Q_OBJECT
9

10 public:
11 MyMoviesForm(QWidget *parent = 0);
12 ~MyMoviesForm();
13

14 private:
15 Ui::MyMoviesFormClass ui;
16

17 private slots:
18 void on_btnAdd_clicked();
19

20 };

The class MyMoviesForm is derived from QMainWindow, which means that it is responsible
for providing a framework for building the application’s UI. Its declaration consists of the standard
constructor/destructor methods, the previously mentioned UI class, and the declaration of a private
slot called on_btnAdd_clicked(), which we are going to use for implementing the click event
handler function for the Add button. The reason for this naming method is that Qt can detect the
slot declaration named on_<widget_name>_<widget_signal_name>() and it connects
the particular signal automatically to this specially named slot. Hence, there is no need to call Qt’s
connect() method in source code.

Finally, here is the implementation of MyMoviesForm:

1 #include "MyMoviesForm.h"
2

3 MyMoviesForm::MyMoviesForm(QWidget *parent)
4 : QMainWindow(parent)
5 {
6 //calling the previously mentioned setupUi() function
7 ui.setupUi(this);
8

9 //connecting: btnClear pressed -> clear list
10 connect(ui.btnClear, SIGNAL(clicked()),
11 ui.listMovies, SLOT(clear()));
12

13 //No need for connecting Add button’s clicked() signal to
14 //on_btnAdd_clicked() private slot explicitly.
15 //Qmake will do that automatically.
16 }
17

18 void MyMoviesForm::on_btnAdd_clicked()
19 {
20 //btnAdd clicked.
21 //adding new item to the listwidget if there’s any

Qt for Symbian Examples 137

22 if(!ui.editTitle->text().isEmpty()) {
23 QString title = ui.editTitle->text();
24

25 QString lang = ui.radioEng->isChecked() ?
26 QString("ENG") :
27 QString("HUN");
28

29 QString recommend = ui.chkRecommend->isChecked() ?
30 QString(" *") :
31 QString("");
32

33 ui.listMovies->addItem(
34 title + " (" + lang + ")" + recommend);
35

36 ui.editTitle->setText("");
37 }
38 }
39

40 MyMoviesForm::~MyMoviesForm()
41 {
42

43 }

In the source code above we have implemented the window’s constructor function, in which we
call the UI arranger function, and connect the ‘Clear list’ button’s clicked() signal to the list’s
clear() slot. By connecting these entities, we achieve our aim that all the list items will be deleted
on the button click event.

Below the constructor method, you can find the implementation of the click event handler slot.
Its functionality is quite simple: it gathers the information that the user has provided using the input
widget items, creates its string representation and adds the string to the list as a new item.

In Figure 7.2 you can see what the layout of the widget example application would look like when
running on a mobile device.

7.2.2 Background Worker Class

The following example will demonstrate how to use Qt’s signals and slots mechanism to design
and implement a communication interface between your UI widgets and business logic classes.
The source code basically consist of two classes: a QMainWindow object, which is responsible
for building the UI and handling user input, and an additional Qt object called MyWorkerClass,
which will implement the business method of this demo application.

In consideration of the purpose of this demonstration, the worker class will implement only a
very simple functionality: it takes an integer as an input parameter and raises it to the second, third
and fourth power, and then makes the result available to its caller as a QString object:

1 #ifndef MYWORKERCLASS_H_
2 #define MYWORKERCLASS_H_
3

138 Qt for Symbian

Figure 7.2 The widget example running on the Symbian emulator.

4 #include <QObject>
5 #include <QString>
6

7 class MyWorkerClass : public QObject
8 {
9 Q_OBJECT

10

11 public:
12 MyWorkerClass(QObject* = 0);
13 virtual ~MyWorkerClass();
14 const static int ERROR_NOT_A_POSITIVE_NUMBER=1;
15

16 public slots:
17 void doWork(int param);
18

19 signals:
20 void onFinished(const QString& result);
21 void onError(int errCode);
22 };
23

24 #endif /* MYWORKERCLASS_H_ */

The MyWorkerClass declaration consists of standard constructor/destructor functions, an
integer constant used as an error code value, and a public slot named doWork() which may be
attached to a signal or simply called directly by the UI class, in order to start the processing of the
given input value.

Qt for Symbian Examples 139

Further, this class also declares two signals, one named onFinished(), emitted when the
processing is over, and the second named onError(), emitted only in the case of a processing
error. Following this design, the worker class can notify its caller if any exception occurs during
processing (which, in this case, could only be an error caused by an invalid input parameter). Note
that the accessibility of signals as opposed to slots cannot be controlled by the developer; all the
signals are public and therefore available for connecting to any QObject’s slot.

It is important to declare the class as a QObject class, and to use the Q_OBJECT directive as
well, in order take advantage of using Qt’s signals and slots mechanism.

The implementation of the worker class follows:

1 #include "MyWorkerClass.h"
2 #include <math.h>
3

4 MyWorkerClass::MyWorkerClass(QObject* parent)
5 : QObject(parent) {}
6

7 MyWorkerClass::~MyWorkerClass() {}
8

9 void MyWorkerClass::doWork(int param)
10 {
11 //class business functionality
12

13 if(param<1) {
14 //input is 0 or negative --> emitting error signal
15 emit onError(ERROR_NOT_A_POSITIVE_NUMBER);
16 }
17

18 else {
19 //processing input
20 QString retval=QString::number(param);
21 for(int i=2;i<5;i++) {
22 retval+=", "+QString::number(pow(param,i));
23 }
24

25 //finished, passing the result string
26 emit onFinished(retval);
27 }
28 }

As previously mentioned, the doWork() method implements the processing of the input
parameter, and in the case of success it emits the onFinished() signal, passing the string value
as a result. If an invalid parameter was given, it emits the onError() signal without calculating
the result or emitting any other signal.

After implementing the background working class, the next step is to design a QMainWindow
UI class consisting of Qt widgets able to offer a testing environment for the previously presented
calculator functionality. The UI design of this class might look like that described in Table 7.1.

140 Qt for Symbian

Table 7.1 UI design of the worker class example.

QLabel Shows ‘Value:’ string
QLineEdit editValue Input value
QPushButton btnGet Starts calculation
QLabel Shows ‘Results:’ string
QLabel lblResults Shows result value
Spacer For layout alignment purposes

outcome

As mentioned in the first example of this chapter, the source code describing the UI is always
generated by the IDE, so there is no need to construct the desired layout by writing its source code.
It is only necessary to include the generated UI header file and declare an instance of it as a variable,
as listed above in the source code for the Qt window of this example:

1

2 #ifndef WORKERCLASSEXAMPLE_H
3 #define WORKERCLASSEXAMPLE_H
4

5 #include <QtGui/QMainWindow>
6 #include "MyWorkerClass.h"
7

8 //including the generated layout header
9 #include "ui_WorkerClassExample.h"

10

11 class WorkerClassExample : public QMainWindow
12 {
13 Q_OBJECT
14

15 public:
16 WorkerClassExample(QWidget *parent = 0);
17 ~WorkerClassExample();
18

19 private:
20 Ui::WorkerClassExampleClass ui;
21

22 //worker class instance
23 MyWorkerClass *workerClass;

Qt for Symbian Examples 141

24

25 private slots:
26 void onWorkerError(int error);
27 void on_btnGet_clicked();
28

29 };
30

31 #endif // WORKERCLASSEXAMPLE_H

Apart from the standard constructor/destructor methods, the WorkerClassExample window
declares two slots: onWorkerError(), which will be connected to the worker class onError()
signal; and on_btnGet_clicked(), which – as previously mentioned – will be connected
automatically by Qt to the btnGet button widget’s clicked signal. Note that no slot is declared
in the window class for the worker class onFinished() signal. The reason for this is because the
signal will be connected directly to the label widget’s setText() slot.

Finally, here is the implementation of the WorkerClassExamplewindow:

1 #include "WorkerClassExample.h"
2

3 WorkerClassExample::WorkerClassExample(QWidget *parent)
4 : QMainWindow(parent)
5 {
6 ui.setupUi(this);
7

8 //instantiate workerclass
9 workerClass = new MyWorkerClass(this);

10

11 //connecting the workerclass signals
12 connect(workerClass, SIGNAL(onError(int)),
13 this , SLOT(onWorkerError(int)));
14

15 connect(workerClass, SIGNAL(onFinished(const QString&)),
16 ui.lblResults , SLOT(setText(const QString&)));
17 }
18

19 void WorkerClassExample::on_btnGet_clicked()
20 {
21 //slot direct method call
22 workerClass->doWork(ui.editValue->text().toInt());
23 }
24

25 void WorkerClassExample::onWorkerError(int error)
26 {
27

28 //showing error message instead of the result value
29 QString errStr("Unknown");
30

31 if(error==MyWorkerClass::ERROR_NOT_A_POSITIVE_NUMBER)

142 Qt for Symbian

Figure 7.3 The worker class example running on the Symbian emulator.

32 errStr=QString("Not a positive number.");
33

34 ui.lblResults->setText("Error: "+errStr);
35 }
36

37 WorkerClassExample::~WorkerClassExample() {}

Figure 7.3 shows how the worker class example application would behave when running on a
mobile device.

7.2.3 Bouncing Ball

The following ‘bouncing ball’ example will introduce to you the Qt Graphics Library and use of the
QTime class. It also demonstrates how overriding some of the QWidget’s functions can be used to
get notifications about key events.

You might already be familiar with the ‘bouncing ball’ demo application. It displays a filled circle
moving constantly within the bounds of a window, which is actually a single QWidget descendant.
To implement such behaviour, we override the QWidget::paintEvent() protected method,
which will be called when the framework asks the widget to repaint itself. When this event occurs, the
contents of the widget have already been erased, so we can draw on the blank surface of the widget
itself. To draw the desired shapes, we can use the services of the QPainter class. This object is
responsible for implementing all the low-level drawing functions, including drawing different kinds
of shapes, manipulating the drawing parameters and setting up matrix transformations.

To paint a moving ball, we modify the drawn shape’s position and repaint the container
widget repetitively. We can easily achieve this using Qt’s QTimer class. By connecting a timer’s
timeout() signal – which will be emitted at constant intervals – to the widget’s update() slot,
we can ensure that the window will be repainted periodically.

In the following example we will realize the bouncing ball application in the way explained above;
in addition to implementing some supplementary user input handling functions, to demonstrate Qt’s
key event handling approach, we will make the ball movable by pressing the direction keys as well.

Qt for Symbian Examples 143

Figure 7.4 Screenshot of the bouncing ball example.

We can accomplish this by overriding the QWidget::keyPressEvent()method and changing
the position of the ball by a constant distance depending on the direction key chosen.

The header file and the implementation of the described Qt application called BallExample
are listed below; the ball painted on the widget’s surface is shown in Figure 7.4:

BallExample.h:

1 #ifndef BALL_H
2 #define BALL_H
3

4 #include <QtGui/QWidget>
5 #include <QTimer>
6 #include <QPaintEvent>
7 #include <QPainter>
8 #include <QColor>
9 #include <QTime>

10 #include <QRect>
11 #include <QPoint>
12 #include <QString>
13

144 Qt for Symbian

14 //including the generated layout header
15 //the UI consists of a single full-screen QWidget
16 #include "ui_Ball.h"
17

18 class BallExample : public QWidget
19 {
20 Q_OBJECT
21

22 public:
23 BallExample(QWidget *parent = 0);
24 ~BallExample();
25

26 protected:
27 void paintEvent(QPaintEvent* event);
28 void keyPressEvent (QKeyEvent * event);
29

30 private:
31 Ui::BallClass ui;
32 QTimer* timer;
33

34 //the ball’s properties
35 QPoint r; //position
36 QPoint v; //velocity
37 const int D; //diameter
38 };
39

40 #endif // BALL_H

BallExample.cpp:

1 #include "BallExample.h"
2

3 BallExample::BallExample(QWidget *parent)
4 : QWidget(parent), D(100)
5 {
6 ui.setupUi(this);
7

8 //initialize timer, and connect it to the widget’s update slot
9 //calling update forces the widget to repaint itself

10 timer = new QTimer(this);
11 connect(timer, SIGNAL(timeout()), this, SLOT(update()));
12

13 //start emitting
14 timer->start(50);
15

16 //initialize the ball’s properties
17 r.setX(this->width() / 2);
18 r.setY(this->height() / 2);
19 v.setX(10);

Qt for Symbian Examples 145

20 v.setY(10);
21

22 }
23

24 BallExample::~BallExample()
25 {
26

27 }
28

29 void BallExample::paintEvent(QPaintEvent* event)
30 {
31

32 //move ball
33 r+=v;
34 if(r.x() < 0) {
35 r.setX(0);
36 v.setX(-v.x());
37 }
38 else if(r.x() > width()-D) {
39 r.setX(width()-D);
40 v.setX(-v.x());
41 }
42

43 if(r.y() < 0) {
44 r.setY(0);
45 v.setY(-v.y());
46 }
47 else if(r.y() > height()-D) {
48 r.setY(height()-D);
49 v.setY(-v.y());
50 }
51

52 //draw ball in its new position
53 QPainter painter(this);
54 QColor color(255, 0, 0);
55 painter.setBrush(color);
56 painter.setPen(color);
57 painter.setRenderHint(QPainter::Antialiasing);
58 painter.translate(r.x(),r.y());
59 painter.drawEllipse(0,0,D,D);
60

61 }
62

63 void BallExample::keyPressEvent(QKeyEvent * event)
64 {
65 //handling keypress event
66 //the direction keys move the ball in addition to
67 //moving caused by timer events

146 Qt for Symbian

Table 7.2 UI design of the softkey example.

QLabel Shows ‘Cut . . . ’ string
QLineEdit editCut Source text box
QLabel Shows ‘And . . . ’ string
QLineEdit editPaste Destination text box
Spacer For layout alignment purposes

outcome

68 int key=event->key();
69 if(key == Qt::Key_Left) r+=QPoint(-40,0);
70 else if(key == Qt::Key_Right) r+=QPoint(40,0);
71 else if(key == Qt::Key_Down) r+=QPoint(0,40);
72 else if(key == Qt::Key_Up) r+=QPoint(0,-40);
73 }

7.2.4 Options Menu

Mobile applications often have to deal with a complex UI containing many input widgets and
command buttons. However, it might not be the best idea to display all the necessary fields on
the tiny screen that mobile devices often have. In order to realize a more user friendly environment,
applications could use the device’s softkey menu to display command actions as simple menu items.

In the following demonstration we take a brief look at the method of creating softkey menu items
and change their behaviour dynamically. The example itself is a Qt form consisting of two line
editors. The menu items will implement some basic cut and paste functionality. Selecting the ‘cut’
menu item will result in clearing the first text box’s content and copying it to a private string variable.
The ‘paste’ menu item will be responsible for inserting the stored string value into the second text
editor. The UI design of the example is presented in Table 7.2.

Note that the widget itself does not contain any command buttons; all the program functionality
can be reached, as the following program code demonstrates.

At first, you might look at the declaration file of the softkey demo application. There menu items
are represented as instances of the QAction class, which provides a general UI action handled by
menus and toolbars. In our case, it will be added to the menu bar of the Qt window, which is actually
shown as the softkey menu on the Symbian mobile platform. In our demo application the softkey
menu will be made context sensitive. This means that the menu items will be displayed only if the
corresponding line editor focuses on the input. The Qt approach for handing various sets of input

Qt for Symbian Examples 147

events (including focus changes) is the use of the filter pattern. This means that programmers can
handle certain events by overriding the parent widget’s eventFilter(QObject*, QEvent*)
method and implement the desired functionality based on the received parameters, which identify
the event type occurring and the object that triggered it. If your reimplementation of the event filter
method returns true, the handled event will be ‘filtered out’, i.e. will not be passed to any other
registered event filter. Otherwise, if you were not going to handle a certain event, you could just pass
it to the filter method of the parent class.

In our case, the event filter method will handle only the FocusIn event of the two line editors,
in order to decide which item will be shown in the options menu bar of the device. This behaviour
can be achieved by setting the corresponding QAction’s enabled Boolean property to ‘true’ and
the other ones to ‘false’.

After this brief summary of Qt’s input handling, we list below the header file and the
implementation of the Qt application that realizes the previously described cut and paste
functionality:

Softkeys.h:

1 #ifndef SOFTKEYS_H
2 #define SOFTKEYS_H
3

4 #include <QtGui/QMainWindow>
5 #include <QAction>
6 #include "ui_Softkeys.h"
7

8 class Softkeys : public QMainWindow
9 {

10 Q_OBJECT
11

12 public:
13 Softkeys(QWidget *parent = 0);
14 ~Softkeys();
15

16 private:
17 Ui::SoftkeysClass ui;
18

19 //menu actions
20 QAction* cutAction;
21 QAction* pasteAction;
22

23 //represents the clipboard
24 QString clipboard;
25 //focus handling filter
26 bool eventFilter(QObject *obj, QEvent *event);
27

28 //cut & paste functionality
29 void cutEditor();
30 void pasteEditor();
31 };

148 Qt for Symbian

32

33 #endif // SOFTKEYS_H

Softkeys.cpp:

1 #include "Softkeys.h"
2

3 Softkeys::Softkeys(QWidget *parent)
4 : QMainWindow(parent)
5 {
6 ui.setupUi(this);
7

8 //register actions on the menu
9 cutAction=menuBar()->addAction(

10 "Cut", this, SLOT(cutEditor()));
11 cutAction->setEnabled(false);
12

13 pasteAction=menuBar()->addAction(
14 "Paste", this, SLOT(pasteEditor()));
15 pasteAction->setEnabled(false);
16

17 //register event filters for focus event notifications
18 ui.editCut->installEventFilter(this);
19 ui.editPaste->installEventFilter(this);
20

21 //clear clipboard
22 clipboard="";
23

24 }
25

26 bool Softkeys::eventFilter(QObject *obj, QEvent *event)
27 {
28

29 if (event->type() == QEvent::FocusIn) {
30 //focus in event received
31 if(obj->objectName()=="editCut") {
32 cutAction->setEnabled(true);
33 pasteAction->setEnabled(false);
34 return true;
35 }
36 else if(obj->objectName()=="editPaste") {
37 cutAction->setEnabled(false);
38 pasteAction->setEnabled(true);
39 return true;
40 }
41 return true;
42

43 } else {
44 //passing the event to the parent

Qt for Symbian Examples 149

45 return QMainWindow::eventFilter(obj, event);
46 }
47 }
48 void Softkeys::cutEditor()
49 {
50 //cut functionality
51 clipboard=ui.editCut->text();
52 ui.editCut->setText("");
53 }
54

55 void Softkeys::pasteEditor()
56 {
57 //paste functionality
58 ui.editPaste->setText(clipboard);
59 }
60

61 Softkeys::~Softkeys(){}

Figure 7.5 shows what the context-sensitive softkey menu would look like on a Symbian mobile
device.

7.2.5 Website Downloader

In this section one of the most commonly used classes in the QtNetwork module,
called QNetworkAccessManager, is introduced. The network class library offers various
classes that allow the developer to write low-level networking applications, (encrypted)
socket servers/clients, and high-level protocol-specific clients like FTP or HTTP. Generally,
QNetworkAccessManager is responsible for posting requests and receiving replies. It offers
a simple and useful interface, so – after an instance of this class has been created – the developer
could use its methods to launch requests over the network (represented as QNetworkRequest
objects) without a huge effort. The returned object is a QNetworkReply instance, which class
might be useful in order to obtain all the downloaded data and metadata.

Our application that demonstrates the QNetworkAccessManager functionality will be a
simple website downloader. Its user interface (see Table 7.3) will consist of an input field for
providing the URL, a button for starting the request, a progress bar that allows the user to monitor
the download process, and a QLabel widget on which the response will be displayed.

In the case of implementing a website downloader application, we should use a simple HTTP
get request. The easiest way to do this is by using the QNetworkAccessManager::get()
function. The request runs asynchronously, which means that all the important events (successfully
downloaded fragment, error detected in processing, etc.) are reported via signals, which are
offered by the QNetworkReply object. In the following example, we connect two of
these to our QMainWindows slots: finished() (emitted when a request is finished); and
downloadProgress() (emitted to indicate the current progress of the download, which can
be very useful if we want to show a progress bar on our window). When the get request is finished,
we can use the QNetworkReply::readAll() method to access the downloaded content and
place it on the surface of a widget, e.g. a QLabel.

150 Qt for Symbian

Figure 7.5 The softkeys example running on the Symbian emulator.

The header file and the implementation of the website downloader application are listed
below. Note that, before compiling and running an application that uses a class from the
QtNetwork module, it is important to add the network to the project descriptor (usually called
<MainWindowName>.pro) file:

Downloader.h:

1

2 #ifndef DOWNLOADER_H
3 #define DOWNLOADER_H
4

5 #include <QtGui/QMainWindow>
6 #include <QNetworkAccessManager>
7 #include <QNetworkRequest>
8 #include <QNetworkReply>
9 #include "ui_Downloader.h"

10

11 class Downloader : public QMainWindow
12 {
13 Q_OBJECT

Qt for Symbian Examples 151

Table 7.3 UI design of the website downloader example.

QLineEdit editUrl Input value
QPushButton btnDownload Starts downloading
QProgressBar prgDownload Progress bar
QLabel lblContent Displays result
Spacer For layout alignment purposes

outcome

14

15 public:
16 Downloader(QWidget *parent = 0);
17 ~Downloader();
18

19 private:
20 Ui::DownloaderClass ui;
21 QNetworkAccessManager netManager;
22

23 private slots:
24 void on_btnDownload_clicked();
25 void on_download_finished();
26 void on_receivingProgress(qint64 done, qint64 total);
27

28 };
29

30 #endif // DOWNLOADER_H

Downloader.cpp:

1 #include "Downloader.h"
2 #include <QUrl>
3

4 Downloader::Downloader(QWidget *parent)
5 : QMainWindow(parent)
6 {
7 ui.setupUi(this);
8 }
9

152 Qt for Symbian

10 void Downloader::on_btnDownload_clicked()
11 {
12 ui.progressDownload->setValue(0);
13

14 //sets the requested url
15 QUrl url("http://" + ui.editUrl->text());
16 QString hostname = url.encodedHost();
17 QString file = url.encodedPath();
18

19 //init request
20 QNetworkRequest request;
21 request.setUrl(url);
22

23 QNetworkReply *reply = manager->get(request);
24 connect(reply, SIGNAL(finished()), this, SLOT(on_download_finished())

);
25 connect(reply, SIGNAL(downloadProgress(qint64, qint64)),
26 this, SLOT(on_receivingProgress(qint64, qint64)));
27 }
28

29 void Downloader::on_download_finished()
30 {
31 QByteArray resp=http->readAll();
32 ui.lblContent->setText(QString(resp.data()));
33 }
34

35 void Downloader::on_receivingProgress(qint64 done, qint64 total)
36 {
37 ui.progressDownload->setMaximum(total);
38 ui.progressDownload->setValue(done);
39 }
40

41 Downloader::~Downloader()
42 {
43

44 }

In Figure 7.6 you can see how the HTTP client could be used to download and display simple
HTML pages.

7.2.6 Stored Settings

In the following example, the XML processing library of the Qt platform is introduced. Our demo
application’s source code will explain how the QXmlStreamReader class can be used for parsing
an input configuration written in XML. This reader class handles the input XML document as a
stream of tokens, just like the standard SAX parser. As you will see, the difference is that, while
the SAX parsing is based on asynchronous call-back functions, QXmlStreamReader supports

Qt for Symbian Examples 153

Figure 7.6 Downloading a simple website using the demo application.

loop-based reading, which can be helpful, for example, in implementing recursive processing by
splitting the parsing logic of different types of elements into different methods (demonstrated in the
FriendsApp example below).

Our very first XML parser function will be responsible for processing the following XML file
input:

<?xml version="1.0"?>
<settings>

<label>
<red value="255" />
<green value="0" />
<blue value="0" />

</label>
<slider value="22" />
<time value="02:02:22" />

</settings>

As you may have guessed, this structure describes the predefined set values of a few widget
items: the background colour of a QLabel, the value of a QSlider, and the displayed time of a
QTimeEdit, respectively. The parsing function parseSettings() will be called immediately
after setting up the UI, and then the read values will be applied by calling the applySettings()
function. Therefore, if the input document is well formed, after launching the application a set of
widgets (presented in Table 7.4) containing the read values will be shown.

The header file and the implementation of the stored settings example are listed as follows:

154 Qt for Symbian

Table 7.4 UI design of the stored settings example.

QLabel lblHeader Will change its background colour
QSlider horizontalSlider Will change its value
QTimeEdit timeEdit Will change its displayed time
Spacer For layout alignment purposes

outcome

StoredSettings.h:

1

2 #ifndef STOREDSETTINGS_H
3 #define STOREDSETTINGS_H
4

5 #include <QtGui/QMainWindow>
6 #include <QFile>
7 #include <QXmlStreamReader>
8 #include "ui_StoredSettings.h"
9

10 class StoredSettings : public QMainWindow
11 {
12 Q_OBJECT
13

14 public:
15 StoredSettings(QWidget *parent = 0);
16 ~StoredSettings();
17

18 private:
19 Ui::StoredSettingsClass ui;
20 //variables storing processed input
21 QColor settingsColor;
22 int settingsSlider;
23 QTime settingsTime;
24

25 void parseSettings(const QString& data);
26 void applySettings();
27 };
28

29 #endif // STOREDSETTINGS_H

Qt for Symbian Examples 155

StoredSettings.cpp:

1 #include "StoredSettings.h"
2

3 StoredSettings::StoredSettings(QWidget *parent)
4 : QMainWindow(parent)
5 {
6 ui.setupUi(this);
7

8 // Open input file
9 QFile settingsFile("stored_settings.xml");

10

11 if (settingsFile.open(QIODevice::ReadOnly)) {
12 parseSettings(settingsFile.readAll().data()); //parse input file
13 settingsFile.close();
14 applySettings();
15 }
16

17 }
18

19 void StoredSettings::parseSettings(const QString& data)
20 {
21 QXmlStreamReader reader(data);
22 bool inSettingsTag=false;
23 bool inLabelTag=false;
24

25 while (!reader.atEnd()) {
26 reader.readNext(); //read next token
27

28 if (reader.tokenType() == QXmlStreamReader::StartElement) {
29

30 if (reader.name() == "settings") {
31 inSettingsTag=true;
32 }
33 else if(reader.name() == "label" && inSettingsTag) {
34 inLabelTag=true;
35 }
36 else if(reader.name() == "red" && inLabelTag) {
37 int value= reader.attributes()
38 .value("value").toString().toInt();
39 settingsColor.setRed(value);
40 }
41 else if(reader.name() == "green" && inLabelTag) {
42 int value= reader.attributes()
43 .value("value").toString().toInt();
44 settingsColor.setGreen(value);
45 }
46 else if(reader.name() == "blue" && inLabelTag) {

156 Qt for Symbian

47 int value= reader.attributes()
48 .value("value").toString().toInt();
49 settingsColor.setBlue(value);
50 }
51 else if(reader.name() == "slider" && inSettingsTag) {
52 settingsSlider= reader.attributes()
53 .value("value").toString().toInt();
54 }
55 else if(reader.name() == "time" && inSettingsTag) {
56 QString timeString= reader.attributes()
57 .value("value").toString();
58 settingsTime=QTime::fromString(timeString);
59 }
60 } //startElement
61

62 else if (reader.tokenType() == QXmlStreamReader::EndElement) {
63

64 if(reader.name() == "settings")
65 inSettingsTag=false;
66

67 else if(reader.name() == "label")
68 inLabelTag=false;
69

70 }
71

72 } //while !reader.atEnd()
73

74 }
75

76 void StoredSettings::applySettings()
77 {
78

79 ui.lblHeader->setStyleSheet("QLabel { background-color: "+
80 settingsColor.name()+"; }");
81

82 ui.horizontalSlider->setValue(settingsSlider);
83 ui.timeEdit->setTime(settingsTime);
84

85 }
86 StoredSettings::~StoredSettings() {}

In Figure 7.7 you can see what the Qt form looks like after parsing and processing the input XML
file.

7.2.7 FriendsApp

Our very last example application concerning Qt XML and networking functions might seem a little
more complex, since it uses most of the previously introduced modules of the Qt framework in order

Qt for Symbian Examples 157

Figure 7.7 The stored settings example running on the Symbian emulator.

to realize a mobile client application of a basic social networking site. FriendsApp was meant to be
created only for demonstration purposes, so its functionality will cover just the simplest use cases of
such an application, which are the login process and the downloading of a user’s friend list.

The communication process between the server and the mobile client is realized via HTTP
get requests completed with the proper query parameters describing the requested operation. The
server’s response is always an XML document, thus QXmlStreamReader will be used in order
the process the pulled data bundle.

First, we take a closer look at the communication process. The login query looks as follows (note
that in our demonstration the password is transmitted as plain text; advanced authentication methods
or ciphering are not included):

http://<server_address>/?function=login&email=
<user_login_email>&password=<password>

The server’s response for a login request in which valid credentials are provided is as follows:

<friendsapp>
<login>
<id>user_id</id>
<sid>session_id</sid>
<email>user_login_email</email>
<nick>user_nick</nick>

</login>
</friendsapp>

The most important node of this login response is the session ID (tagged <sid>), since all the
FriendsApp functions provided by the server – fetching or managing friends, searching, sending text
messages, etc. – require (sometimes among others) a valid sid as an input parameter.

If the given username or password is incorrect, an error message will be transmitted as a login
response. The scheme of such a message is as follows:

<friendsapp>
<message code="error_code"/>

<friendsapp>

158 Qt for Symbian

After a successful login procedure, our client application can request any of the server’s functions.
Since the FriendsApp Qt example will cover the function of downloading and displaying current
friends and friend request, we can examine the request format and the response of the friend fetching
function. The request’s URL is:

http://<server_address>/?function=get_friends&sid
=<session_id>

The response XML document consists of several <friend> nodes (which represent the actual
friends of the user) and <friend_request> nodes (which supply information about incoming
friend requests). The scheme of this list is as follows:

<friendsapp>
[<friend>

<userid>friend_user_id</userid>
<nick>friend_nick</nick>
<email>friend_login_email</email>
<lastlogin>time_of_last_login</lastlogin>

</friend> *]
[<friend_request>

<userid> user_id</userid>
<nick>nick</nick>
<email> login_email</email>
<lastlogin>time_of_last_login</lastlogin>

</friend_request> *]
</friendsapp>

In case of any processing error (wrong sid supplied by the client, server application cannot
connect to database, etc.), the previously mentioned error message will be transmitted, containing
the exact cause of the error.

After examining the communication process between the server and the client application,
finally we can implement the network client class of our application which will be responsible
for managing the active session, handling network requests and processing responses using the
previously introduced SAX parser. This class, called FriendClient, offers two public methods
in order to launch the previously described request: login(QString username, QString
password) and fetchFriendList(). Note in the source code of these functions that
the network requests use http://www.example.com/friendsapp/ as the address of the
FriendsApp server. Note also that implementing and running the application with this address will
result in a login error as the site example.com does not really exist. This means that in order to
test the functionality of an application based on the following demonstration, you will have to create
and a run a server that will respond to the requests sent from the mobile client of FriendsApp.

The implementation of the class utilizes the singleton design pattern. As you will see, the UI of
our client application consists of more Qt windows, so we could use the singleton pattern in order to
reach exactly the same instance of the FriendClient class from every Qt window.

The communication process between the FriendClient and the widget classes can be realized
by connecting the client’s signals to the corresponding slots of widget objects. Some of these signals

Qt for Symbian Examples 159

relate to the login procedure (loginSuccess() and loginFailed(int errorcode)) and
some to the significant events of the friend list downloading process:

• fetchStarted() – Emitted at the start of the parsing process.

• friendFetched(QString) – Emitted after successfully parsed friend or friend request
element. The string parameter represents the downloaded friend.

• fetchError() – Emitted in case an error has been raised during the downloading or parsing
process.

• fetchFinished(int numberOfFriendsFetched) – Emitted at the end of parsing.

The header file and the implementation of the FriendClient class based on the described
behaviour are listed below:
FriendClient.h:

1 #ifndef FRIENDSCLIENT_H_
2 #define FRIENDSCLIENT_H_
3

4 #include <QObject>
5 #include <QNetworkAccessManager>
6 #include <QNetworkReply>
7 #include <QUrl>
8 #include <QString>
9 #include <QXmlStreamReader>

10 #include <QDateTime>
11

12

13 class FriendsClient : public QObject
14 {
15 Q_OBJECT
16

17 public:
18 virtual ~FriendsClient();
19

20 static FriendsClient* getInstance(); //singleton instance
21 void login(QString, QString); //starts the login procedure
22 void fetchFriendList(); //starts friend list fetching
23

24

25 private:
26 FriendsClient();
27 static FriendsClient* instance;
28

29 //access managers for network requests
30 QNetworkAccessManager loginAccessManager;
31 QNetworkAccessManager downloadAccessManager;
32

33 //stores sid after a successful login

160 Qt for Symbian

34 QString sessionId;
35

36 //XML parser functions
37 void parseLoginReply(const QString &);
38 void parseFetchReply(const QString &);
39 QString parseFriend(QXmlStreamReader &reader,
40 QString elementName, bool showLastSeen);
41

42 private slots:
43 //callback for finished network request
44 void on_loginRequestFinished(QNetworkReply*);
45 void on_fetchRequestFinished(QNetworkReply*);
46

47 signals:
48

49 //signals emitted to notify the login UI class
50 void loginSuccess();
51 void loginFailed(int);
52 //signals emitted to notify the friend list UI class
53 void fetchStarted();
54 void friendFetched(QString);
55 void fetchError();
56 void fetchFinished(int);
57

58 };
59

60 #endif /* FRIENDSCLIENT_H_ */

FriendClient.cpp:

1 #include "FriendsClient.h"
2

3 FriendsClient* FriendsClient::instance=0;
4

5 FriendsClient::FriendsClient()
6 {
7 //connecting network signals to private slots
8 connect(&loginAccessManager, SIGNAL(finished(QNetworkReply*)),
9 this, SLOT(on_loginRequestFinished(QNetworkReply*)));

10 connect(&downloadAccessManager, SIGNAL(finished(QNetworkReply*)),
11 this, SLOT(on_fetchRequestFinished(QNetworkReply*)));
12 }
13

14 FriendsClient::~FriendsClient() {}
15

16 FriendsClient* FriendsClient::getInstance()
17 {
18 //static functions, provides the singleton instance
19 if(!instance) instance=new FriendsClient();

Qt for Symbian Examples 161

20 return instance;
21 }
22

23 void FriendsClient::login(QString username, QString password)
24 {
25 //starts a login request with the supplied parameters
26 QUrl url("http://www.example.com/friendsapp/");
27 url.addEncodedQueryItem("function", "login");
28 url.addEncodedQueryItem("email", username.toUtf8());
29 url.addEncodedQueryItem("password", password.toUtf8());
30 loginAccessManager.get(QNetworkRequest(url));
31 }
32

33 void FriendsClient::fetchFriendList()
34 {
35 //starts a fetch request with the supplied parameters
36 QUrl url("http://www.example.com/friendsapp/");
37 url.addEncodedQueryItem("function", "get_friends");
38 url.addEncodedQueryItem("sid", sessionId.toUtf8());
39 downloadAccessManager.get(QNetworkRequest(url));
40 }
41

42

43

44 void FriendsClient::on_loginRequestFinished(QNetworkReply* reply)
45 {
46 //reads the login response
47 if (!reply->error()) {
48 QByteArray resp=reply->readAll();
49 parseLoginReply(resp.data());
50 }
51 else {
52 emit loginFailed(0);
53 }
54

55 }
56

57 void FriendsClient::on_fetchRequestFinished(QNetworkReply* reply)
58 {
59 //reads the login response
60 if (!reply->error()) {
61 QByteArray resp=reply->readAll();
62 parseFetchReply(resp.data());
63 }
64 else {
65 emit fetchError();
66 }
67

162 Qt for Symbian

68 }
69

70 void FriendsClient::parseLoginReply(const QString &respString)
71 {
72

73 QXmlStreamReader reader(respString);
74

75 while (!reader.atEnd()) {
76 reader.readNext();
77 if (reader.tokenType() == QXmlStreamReader::StartElement) {
78 if (reader.name() == "message") {
79 //got a message answer
80 //login failed for some reason
81 //(wrong username, password, etc.)
82 QString param=reader.attributes().value("code").toString();
83 emit loginFailed(param.toInt());
84 return;
85 }
86 else if(reader.name() == "sid") {
87 //got a valid sessionId
88 sessionId=reader.readElementText();
89 emit on_loginSuccess();
90 return;
91 }
92 }
93 } //while !reader.atEnd()
94

95 emit loginFailed(1);
96

97 }
98

99 void FriendsClient::parseFetchReply(const QString &respString)
100 {
101 QXmlStreamReader reader(respString);
102

103 int fetchedItemCount=0;
104 emit fetchStarted();
105

106 while (!reader.atEnd()) {
107 reader.readNext();
108 if (reader.tokenType() == QXmlStreamReader::StartElement) {
109 if (reader.name() == "friend") {
110 QString text=parseFriend(reader, QString("friend"), true);
111 emit friendFetched(text);
112 fetchedItemCount++;
113 }
114 else if (reader.name() == "friend_request") {
115 QString text=parseFriend(reader, QString("friend_request"),

Qt for Symbian Examples 163

116 false);
117 emit friendFetched(text+" wants to be your friend");
118 fetchedItemCount++;
119 }
120 }
121 }
122

123 emit fetchFinished(fetchedItemCount);
124

125 }
126

127

128 QString FriendsClient::parseFriend(QXmlStreamReader &reader, QString
elementName, bool showLastSeen)

129 {
130 QString nick("");
131 QDateTime lastSeen;
132

133 reader.readNext();
134 while(!(reader.tokenType() == QXmlStreamReader::EndElement &&
135 reader.name() == elementName)) {
136

137 if(reader.tokenType() == QXmlStreamReader::StartElement) {
138 if(reader.name() == "nick") {
139 nick=reader.readElementText();
140 }
141 else if(reader.name() == "lastlogin") {
142 int seconds=reader.readElementText().toInt();
143 lastSeen=QDateTime::fromTime_t(seconds);
144 }
145 }
146 reader.readNext();
147 }
148

149 return showLastSeen ?
150 nick+ " (last seen "+lastSeen.toString("hh:mm dd.MM.yy")+")" :
151 nick;
152 }

After implementing the background worker class, the next step is to design the two necessary
Qt forms. The first one is to provide a conventional login surface, consisting of widgets such as
username and password editor. After a successful login, the second form should appear on the screen,
on which the user can download the friend list and examine the results.

The UI design and the implementation of these form widgets called LoginForm (see Table 7.5)
and FriendListForm (see Table 7.6) follow. The source code does not contain any unfamiliar
code snippet, after studying the preceding examples of this chapter, hence we will dispense with a
detailed description of the following classes. After studying the implementation of the FriendsApp

164 Qt for Symbian

Table 7.5 UI design of the FriendsApp login window.

QLabel lblLogin Status report
QLineEdit editEmail Login username
QLineEdit editPassword Login password
QPushButton btnLogin Start login
Spacer For layout alignment purposes

outcome

Table 7.6 UI design of the FriendsApp friend list window.

QLabel lblStatus Status report
QPushButton btnRefresh Starts fetching
QListView listFriends Displays fetched items
Spacer For layout alignment purposes

outcome

UI classes, you might take a look at the screenshots of the running application. Figure 7.8 shows an
unsuccessful login attempt on the login form, while in Figure 7.9 you can see how the downloaded
XML representation of the contact data will be transformed into a friend list on the GUI:

LoginForm.h:

1 #ifndef LOGINFORM_H
2 #define LOGINFORM_H
3

4 #include <QtGui/QMainWindow>
5 #include "ui_LoginForm.h"
6 #include "FriendsClient.h"
7

Qt for Symbian Examples 165

Figure 7.8 Unsuccessful login attempt in the FriendsApp login form.

Figure 7.9 The XML representation of a downloaded friend list and the corresponding screenshot.

8 class LoginForm : public QMainWindow
9 {

10 Q_OBJECT
11

12 public:
13 LoginForm(QWidget *parent = 0);
14 ~LoginForm();
15

16

17 private slots:
18 void on_btnLogin_clicked();
19

20 public slots:

166 Qt for Symbian

21 void on_loginSuccess();
22 void on_loginFailed(int);
23

24 private:
25 FriendsClient *friendsClient;
26 Ui::LoginFormClass ui;
27

28 };
29

30 #endif // LOGINFORM_H

LoginForm.cpp:

1 #include "LoginForm.h"
2 #include <QByteArray>
3 #include <QString>
4 #include "FriendListForm.h"
5

6 LoginForm::LoginForm(QWidget *parent)
7 : QMainWindow(parent)
8 {
9 ui.setupUi(this);

10

11 friendsClient=FriendsClient::getInstance();
12

13 connect(friendsClient, SIGNAL(on_loginSuccess()),
14 this, SLOT(on_loginSuccess()));
15 connect(friendsClient, SIGNAL(on_loginFailed(int)),
16 this, SLOT(on_loginFailed(int)));
17

18 }
19

20 LoginForm::~LoginForm () {}
21

22

23 void LoginForm::on_btnLogin_clicked()
24 {
25 friendsClient->login(ui.editEmail->text(),ui.editPassword->text());
26 }
27

28 void LoginForm::on_loginSuccess()
29 {
30 FriendListForm* fl=new FriendList();
31 fl->showMaximized();
32 }
33

34 void LoginForm::on_loginFailed(int messageCode)
35 {
36 ui.lblLogin->setText("Login failed: " +

Qt for Symbian Examples 167

37 QString::number(messageCode));
38 }

FriendListForm.h:

1 #ifndef FRIENDLISTFORM_H
2 #define FRIENDLISTFORM_H
3

4 #include <QtGui/QWidget>
5 #include <QString>
6 #include "ui_FriendListForm.h"
7 #include "FriendsClient.h"
8

9 class FriendListForm : public QWidget
10 {
11 Q_OBJECT
12

13 public:
14 FriendListForm(QWidget *parent = 0);
15 ~FriendListForm();
16

17 private:
18 Ui::FriendListFormClass ui;
19 FriendsClient* friendsClient;
20

21 private slots:
22 void on_btnRefresh_clicked();
23

24 public slots:
25 void on_fetchError();
26 void on_fetchFinished(int);
27 void on_friendFetched(QString);
28

29 };
30

31 #endif // FRIENDLISTFORM_H

FriendListForm.cpp:

1 #include "FriendListForm.h"
2

3 FriendListForm::FriendListForm(QWidget *parent)
4 : QWidget(parent)
5 {
6 ui.setupUi(this);
7

8 friendsClient=FriendsClient::getInstance();
9

10 connect(friendsClient, SIGNAL(fetchStarted()),
11 ui.listFriends, SLOT(clear()));

168 Qt for Symbian

12 connect(friendsClient, SIGNAL(fetchFinished(int)),
13 this, SLOT(on_fetchFinished(int)));
14 connect(friendsClient, SIGNAL(fetchError()),
15 this, SLOT(on_fetchError()));
16 connect(friendsClient, SIGNAL(friendFetched(QString)),
17 this, SLOT(on_friendFetched(QString)));
18

19 }
20

21 FriendListForm::~FriendListForm() {}
22

23 void FriendListForm::on_btnRefresh_clicked()
24 {
25 friendsClient->fetchFriendList();
26 }
27

28

29 void FriendListForm::on_fetchFinished(int itemcount)
30 {
31 ui.lblStatus->setText("Fetched "+QString::number(itemcount)+
32 " item(s)");
33 if(!itemcount) {
34 ui.listFriends->addItem("You have no friends.");
35 }
36 }
37

38 void FriendListForm::on_friendFetched(QString friendStr)
39 {
40 ui.listFriends->addItem(friendStr);
41 }
42

43 void FriendListForm::on_fetchError()
44 {
45 ui.lblStatus->setText("Error while fetching");
46 }

<friendsapp>
<friend>
<userid>54</userid>
<nick>Elemer</nick>
<email>me2@abc</email>
<lastlogin>1250416017</lastlogin>

</friend>
<friend>
<userid>55</userid>
<nick>Joseph</nick>
<email>me3@abc</email>

Qt for Symbian Examples 169

<lastlogin>1250416040</lastlogin>
</friend>
<friend>
<userid>56</userid>
<nick>Cornelius</nick>
<email>me4@abc</email>
<lastlogin>1250425144</lastlogin>

</friend>
<friend_request>
<userid>57</userid>
<nick>Paula</nick>
<email>me5@abc</email>
<lastlogin>1251483051</lastlogin>

</friend_request>
</friendsapp>

7.2.8 Sensor API

In addition to standard Qt class libraries – which were developed originally for use in a desktop
environment – mobile extensions for Qt for Symbian offer you a varied set of APIs in order to provide
native support for technologies that are available for mobile devices. These technologies include
messaging, location-based services, a camera, an acceleration meter, and so on. The interfaces allow
developers to reach the Symbian mobile technologies without a huge effort, since, with the extension
pack, they can implement the whole application in Qt program code. Note that the extension classes
are not part of the Qt for Symbian SDK. In order to access their services, you have to obtain the
Mobile Extensions for Qt for Symbian pack, and install it on your development environment. Check
the documentation on mobile extensions for more details.

The following short examples will demonstrate the functionality of one of these extension
libraries, the Sensor API. Mobile devices are often crafted with built-in sensor hardware.
Symbian OS provides a programming interface that gives developers access to the sensor
services, and with the mobile extensions these sensors are also available in Qt. The first example
program code demonstrates how easy it is to register an orientation change listener with the
XQDeviceOrientation class. The second example covers the topic of the acceleration meter
API (accessible through the XQAccelerationSensor class), which is trickier to use, since
instead of the Qt signals and slots mechanism it uses the filter pattern. The reason for this is because
acceleration sensor events are triggered so often that they cannot be handled using the standard
signals and slots interface.

After a short introduction, we present the basics of device orientation notifications. To
demonstrate the functionality of the XQDeviceOrientation class, we implement a simple
application that displays a QWidget. The rotationChanged() signal emitted by the device
orientation object will be connected to the update signal to the widget in order to draw an arrow on
its surface. The arrow – due to the orientation information – will always point downwards on the Y

axis of the device’s coordinate system (i.e. the downward direction of the screen, as you can see in
Figure 5.2). The implementation of this demonstration app is as follows:

170 Qt for Symbian

1 #include "OrientationDemo.h"
2 #include "xqdeviceorientation.h"
3

4

5 OrientationDemo::OrientationDemo(QWidget *parent)
6 : QWidget(parent)
7 {
8 ui.setupUi(this);
9

10 // Create the orientation sensor object
11 XQDeviceOrientation* orientation = new XQDeviceOrientation(this);
12 orientation->open();
13 //specify the angle of the change to notify after
14 orientation->setResolution(5);
15

16 connect(orientation, SIGNAL(rotationChanged(int, int, int)),
17 this, SLOT(updateRotation(int, int, int)));
18

19 // Read the current orientation
20 rotation = orientation->xRotation();
21 }
22

23 void OrientationDemo::updateRotation(int rotx, int roty, int rotz) {
24

25 rotation=roty;
26 update();
27 }
28

29 void OrientationDemo::paintEvent(QPaintEvent* event)
30 {
31 //converting rotation into qreal value
32 qreal rotReal= 3.14 * rotation / 180;
33

34 QPainter painter(this);
35 QColor color(255, 255, 0);
36 painter.setBrush(color);
37 painter.setPen(color);
38 painter.translate(this->width()/2,this->height()/2);
39 painter.rotate(- rotReal);
40 painter.drawLine(0,-30,0,30);
41 painter.drawLine(-5,-30,5,-30);
42 }
43

44 OrientationDemo::~OrientationDemo() {}

After this short example, we now look at a demonstration of the second sensor class called
XQAccelerationSensor, which offers an interface to access the device’s acceleration sensor
data. The sensor provides the calculated gravity values measured on the axis of the phone’s own

Qt for Symbian Examples 171

coordinate system (Figure 5.2). As you may recall, this sensor data can be accessed by registering
filters rather than by the Qt signals and slots mechanism. The registered filters are stored in a stack
and their filter() methods are called one after the other when a sensor event has been triggered.
The filter method takes all the measured gravity values as integer parameters, which can be used
by implementing the filter. It also has a return value, which indicates whether the received sensor
data needs to be filtered out or not. This pattern can be used, for example, to filter rapidly triggered
sensor events and pass the received gravity values to the application at a lower rate. Filters can let
their parent application know about the filtered data by emitting signals or calling methods directly.

Note that the device orientation class introduced previously is actually a filter on the
acceleration sensor, which calculates the actual rotation from the measured gravity values.
Naturally, programmers can develop an acceleration filter of their own, in order to implement the
special program functionality based on the accessed acceleration data. This can be accomplished
by implementing the filter class based on the XQAbstractAccelerationSensorFilter
interface and registering it using the sensor’s addFilter()method. A filter can be any QObject
sub-class, e.g. a simple form widget, just as the following code snippet demonstrates:

1

2 #include "AccelerationDemo.h"
3

4 AccelerationDemo::AccelerationDemo(QWidget *parent)
5 : QWidget(parent)
6 {
7 ui.setupUi(this);
8

9 XQAccelerationSensor* accSensor= new XQAccelerationSensor(this);
10 XQAccelerationDataPostFilter* postFilter =
11 new XQAccelerationDataPostFilter();
12

13 //init filter stack and start monitoring
14 accSensor->open();
15 accSensor->addFilter(*this);
16 accSensor->addFilter(*postFilter);
17

18 accSensor->startReceiving();
19 }
20

21 bool AccelerationDemo::filter(int& xAcceleration, int& yAcceleration, int
& zAcceleration)

22 {
23 //acceleration information received
24 //you could use the received values for your own purposes
25 //in this demo, we just simply show the values on a QLabel
26 ui.lblAccelerationData->setText(
27 "accX: "+QString::number(xAcceleration)+"\n"+
28 "accY: "+QString::number(yAcceleration)+"\n"+
29 "accZ: "+QString::number(zAcceleration));
30

172 Qt for Symbian

31 //passing data through the filter
32 return false;
33 }
34

35 AccelerationDemo::~AccelerationDemo() {}

Note that, in addition to the widget, a second filter is added to the sensor. This filter is actually
an XQAccelerationDataPostFilter instance, which is responsible for converting the raw
acceleration values – which could be represented on a different scale by varying the version of the
Symbian platform – to a standard range of −100 to +100, and modifying the sensor data so that the
orientation of each acceleration axis is the same for all devices. Therefore, you should add a post-
filter to the stack before your own filter instance in order to facilitate dealing with different types of
devices.

7.2.9 Messaging API

Using the Qt programming framework in a mobile environment like Symbian requires access to those
functionalities concerning wireless communication that any conventional mobile phone provides,
such as telephony, contact data manipulation, messaging services, and so on. Many of these functions
are already available in Qt from the previously introduced Mobile Extensions Library pack. The main
advantage of this extension set is that developers can easily access the mobile device’s services by
writing Qt-style code, without knowing anything about any native Symbian API. To illustrate how
a minimal effort is necessary to take advantage of these mobile services, we will demonstrate the
functionality of one of these interfaces, the Messaging API.

The two main use cases regarding messaging are the following:

• Sending messages from your application.

• Registering a receiver slot in order to receive notification about incoming messages.

Currently three types of messages are supported by the API: short text messages (SMS), multimedia
messages (MMS) and emails. All of these are handled consistently by the wrapper class called
XQMessage, which provides an interface for querying and/or manipulating the attributes of a
message, such as the receiver(s), message body, attachments, message type, etc. Therefore, this class
allows you to construct your own custom message and send it using the XQMessaging class.
Further, this class can also be used for connecting message receiver slots to its signals in order to
process the contents of incoming messages. The received data is accessible through an instance of
the XQMessage class.

After this brief summary, we will create a demo application that will provide a UI for sending
short text messages. Its main form (as you can see in Table 7.7) will consist of text editors for
providing the message body and the receiver’s phone number, a button for sending a message and a
QLabel item for displaying notifications about the status of the sending process.

We can realize the text message sending functionality by using the previously introduced classes.
In the implementation of the click event handler we simply create a message object based on
the provided properties, and send it using an instance of the XQMessaging class. The class
implementation of the SMS text sending application is as follows:

Qt for Symbian Examples 173

Table 7.7 UI design of messaging example application.

QPlainTextEdit editBody Message body
QLineEdit editReceiver Message receiver
QPushButton btnSend Sending the text
QLabel lblStatus Status reporting

outcome

1

2 #include "MessagingExample.h"
3

4 MessagingExample::MessagingExample(QWidget *parent)
5 : QMainWindow(parent)
6 {
7

8 ui.setupUi(this);
9 ui.lblStatus->setText("Status: (not sent yet)");

10

11 //init XQMessaging
12 messaging = new XQMessaging(this);
13

14 connect(messaging, SIGNAL(error(XQMessaging::Error)),
15 this, SLOT(sendingError(XQMessaging::Error)));
16

17

18 }
19

20 void MessagingExample::on_btnSend_clicked()
21 {
22 //send button click event handler
23

24 //creating the message
25 QString body=ui.editBody->toPlainText();
26 QStringList receivers;
27 receivers.append(ui.editReceiver->text());
28 XQMessage message(receivers, body);
29

30 //and sending the new XQMessage instance

174 Qt for Symbian

31 messaging->send(message);
32

33 ui.lblStatus->setText("Status: (sent)");
34 }
35

36 void MessagingExample::sendingError(XQMessaging::Error err)
37 {
38 //called in case an error has been raised during sending
39

40 ui.lblStatus->setText(
41 "Status: (error "+QString::number(err)+")");
42 }
43

44 MessagingExample::~MessagingExample() {}

To conclude this section on messaging services, consider the following code snippet, which will
demonstrate the method of registering a listener for incoming text messages. As described above,
reception of the message is provided by the XQMessaging class. After setting up an instance,
you have to connect the messageReceived(const XQMessage*) signal to your own slot
implementation, in which you can process the received text message:

1

2 MessagingExample::MessagingExample(QWidget *parent)
3 : QMainWindow(parent)
4 {
5

6 messaging = new XQMessaging(this);
7

8 // connect slot for incoming message notification
9 connect(messaging, SIGNAL(messageReceived(const XQMessage&)),

10 this, SLOT(messageReceived(const XQMessage&)));
11

12 connect(messaging, SIGNAL(error(XQMessaging::Error)),
13 this, SLOT(receivingError(XQMessaging::Error)));
14

15 // start receiving notifications
16 // the supplied parameters are for filtering the incoming

messages
17 // and receive only SMS notifications
18 messaging->startReceiving(XQMessaging::MsgTypeSMS);
19

20 }
21

22 void MessagingExample::messageReceived(const XQMessage& message) {
23

24 //processing the incoming message
25 QString body=message.body();
26

Qt for Symbian Examples 175

27 // ...
28 }
29

30 void MessagingExample::receivingError(XQMessaging::Error err)
31 {
32 //called in case an error has been raised during receiving
33 ui.lblStatus->setText(
34 "Status: (error "+QString::number(err)+")");
35 }

Note that the XQMessaging class – in addition to startReceiving() – also has a method
called stopReceiving(), which must be called if no further notifications are needed. The
example above does not use this method; therefore, notifications will be received until termination
of the application.

7.2.10 Camera API

Nowadays many mobile devices come with a built-in camera, and mobile application developers
might want to use it in their Qt programs. Naturally, such functionality cannot be implemented in
any of the standard cross-platform Qt modules. To access the device functionality of the camera,
developers can use the extension classes which are available in the Camera API. The classes are
called XQViewFinderWidget and XQCamera. The first one is for displaying a camera preview
image on the UI, while the second one provides a programming interface for taking photos and
getting the resulting JPEG image.

The procedure for obtaining the camera image is as follows. First, you have to initialize
the camera device and connect its slots and signals to your application. Picture taking is
accessible through the corresponding capture() slot of the camera class; the processed
image can be reached by connecting a slot to the captureCompleted(QByteArray) or
captureCompleted(QImage*) signal of the class. In order to show the camera preview
image on the UI, you also need to initialize the viewfinder widget and connect the camera’s
cameraReady() signal to the start() slot of the viewfinder. Following these steps provides
a basic camera application with capabilities for displaying the preview image and receiving the data
of the captured photo. After obtaining the resulting image as a byte array or a QImage object, you
may use it for your own purposes.

The following Qt program, called CameraDemo, demonstrates how you can create a simple
photo taker application. Its UI (as you can see in Table 7.8) consists of the camera preview widget
mentioned above and a button which could be used for taking a picture based on the current preview
frame. The free space on the widget’s surface will be used for drawing the captured image. In order
to do this, we will simply store the image in the implementation of the slot that handles the captured
picture and request a widget repaint. The reimplementation of the form’s paintEvent() method
will be responsible for drawing the last stored image – if there is any – on the surface of the form:
CameraDemo.h:

1 #ifndef CAMERADEMO_H
2 #define CAMERADEMO_H
3

176 Qt for Symbian

Table 7.8 UI design of camera example.

XQViewFinderWidget viewFinder Displays camera preview picture
QPushButton btnCapture Triggers picture taking
Place for drawing captured image

outcome

4 #include <QtGui/QMainWindow>
5 #include <QPaintEvent>
6 #include <QPainter>
7 #include <QColor>
8 #include <QImage>
9 #include "ui_CameraDemo.h"

10 #include "xqcamera.h"
11

12 class CameraDemo : public QMainWindow
13 {
14 Q_OBJECT
15

16 public:
17 CameraDemo(QWidget *parent = 0);
18 ~CameraDemo();
19

20 private:
21 //variables for image drawing
22 int IMAGE_VIEW_WIDTH;
23 int IMAGE_VIEW_HEIGHT;
24 QPoint drawTo;
25

26 //hold the captured image
27 QImage* capturedImage;
28

29 //camera device
30 XQCamera* camera;
31

32 Ui::CameraDemoClass ui;

Qt for Symbian Examples 177

33

34 protected:
35 void paintEvent(QPaintEvent * event);
36

37 private slots:
38 void imageCaptured(QImage * image);
39

40 };
41

42 #endif // CAMERADEMO_H

CameraDemo.cpp:

1 #include "CameraDemo.h"
2

3 CameraDemo::CameraDemo(QWidget *parent)
4 : QMainWindow(parent)
5 {
6 ui.setupUi(this);
7

8 //initialize variables for image drawing
9 IMAGE_VIEW_WIDTH = this->width() - 10;

10 IMAGE_VIEW_HEIGHT = IMAGE_VIEW_WIDTH * 3 / 4;
11 drawTo.setX(5);
12 drawTo.setY(this->height() - 5 - IMAGE_VIEW_HEIGHT);
13

14 //initialize camera device
15 camera=new XQCamera(this);
16 camera->setCaptureSize(QSize(640,480));
17

18 //connect the button’s clicked signal to the capture slot
19 connect(ui.btnCapture, SIGNAL(clicked()),
20 camera, SLOT(capture()));
21

22 //connect the camera’s captureCompleted signal
23 connect(camera, SIGNAL(captureCompleted(QImage*)),
24 this, SLOT(imageCaptured(QImage*)));
25

26 //initialize the view finder widget
27 ui.viewFinder->setCamera(*camera);
28 ui.viewFinder->setViewfinderSize(QSize(128,96));
29

30 //starting preview when camera is ready
31 connect(camera, SIGNAL(cameraReady()),
32 ui.viewFinder, SLOT(start()));
33

34 }
35

36 void CameraDemo::paintEvent(QPaintEvent* event)

178 Qt for Symbian

37 {
38 //main window repaint
39 //if we have a captured image,
40 //we draw it on the surface of the form
41 if(capturedImage) {
42

43 QPainter painter(this);
44 painter.translate(drawTo);
45 painter.scale(
46 1.0 * IMAGE_VIEW_WIDTH / capturedImage->width() ,
47 1.0 * IMAGE_VIEW_HEIGHT / capturedImage->height());
48 painter.drawImage(QPoint(0,0),*capturedImage);
49

50 }
51

52 }
53

54

55 void CameraDemo::imageCaptured(QImage * image)
56 {
57 //called by camera device, when capture is completed
58

59 capturedImage=image; //storing the captured image
60 update(); //requesting repaint in order to draw the image
61 }
62

63 CameraDemo::~CameraDemo() {}

7.2.11 Location API

Since mobile services based on location information are becoming more widely used, accessing
position data on mobile devices has become a more important issue. With the Location API extension
of the Qt Application Framework, developers are able to access the location information provided by
various sets of technologies like the built-in or attached GPS receiver, or the network-based location
provider. The wrapper class called XQLocation hides the details of the technology actually used
and provides the data in a standard format: the location information is represented as coordinate
values of the current latitude, longitude and altitude.

The standard way to access location information in Qt for Symbian is to instantiate the
XQLocation class, call its open() method to initialize the underlying provider, and finally
to listen for location change notifications in a corresponding slot connected to the location class
locationChanged() signal. If you are interested only in certain location values (e.g. elevation
or speed), alternatively you can connect to the slots specialized for emitting the required information,
such as speedChanged(), altitudeChanged(), etc. It might also be useful to connect a slot
to the signal of the location provider onStatusChanged(XQLocation::DeviceStatus)
in order to be informed about the current availability of the provider and change the behaviour of the
application if necessary.

Qt for Symbian Examples 179

The following code snippet demonstrates the procedure for requesting location information in
practice. The demo application is a simple form, the UI of which consists of a single QLabel called
lblLocation, which will be used for displaying the coordinate values obtained. As you can see,
we initialize the XQLocation class in the constructor of our form and connect our slot called
updateLocation() to the location changed signal. Finally, in the implementation of the slot we
simply refresh the displayed text of the label based on the received parameters after converting the
double values to a displayable form with four-digit precision:

1 #include "LocationDemo.h"
2 #include "xqlocation.h"
3

4 LocationDemo::LocationDemo(QWidget *parent)
5 : QMainWindow(parent)
6 {
7 ui.setupUi(this);
8

9 //initialize provider
10 XQLocation* location=new XQLocation(this);
11

12 //connecting the location changed slot
13 connect(location,
14 SIGNAL(locationChanged(double, double, double, float)), this,
15 SLOT(updateLocation(double, double, double, float)));
16

17

18

19 //opening the provider
20 if (location->open() != XQLocation::NoError) {
21 ui.lblLocation->setText("Error opening location provider.");
22 return;
23 }
24

25 //requesting updates when location changes
26 //note that calling startUpdates(int) instead causes
27 //requesting location information periodically
28 location->startUpdates();
29

30 }
31

32 void LocationDemo::updateLocation(double latitude, double longitude,
33 double altitude, float speed)
34 {
35

36 ui.lblLocation->setText(
37 "Latitude: "+QString::number(latitude, ’f’, 4)+"\n"+
38 "Longitude: "+QString::number(longitude, ’f’, 4)+"\n"+
39 "Altitude: "+QString::number(altitude, ’f’, 4)+"\n"+
40 "Speed: "+QString::number(speed, ’f’, 4));

180 Qt for Symbian

41 }
42

43 LocationDemo::~LocationDemo() {}

Note that it is also possible to request updated location data only once (as a single request).
In this case, you should use a singe call of the requestUpdate() method instead of
startUpdates().

INDEX

.prj, 106

.pro, 106

.sis installation file, 21, 24, 31, 43

.ts files, 44, 45

a.exec(), 34
AccountsWidget, 117–19, 120, 121
active objects, 103–5
ActiveState Perl, 15
AJAX, 57
Alarms API, 78–80
AOWrapper, 110
AOWrapper.cpp, 108
AOWrapper.h, 108
AOWrapperPrivate.cpp, 108
AOWrapperPrivate.h, 108
Apple Store, 1
arrays, 98

BallExample, 143–5
Bluetooth, 3, 9, 14, 21, 26, 31
bouncing ball example, 142–6
buffer descriptors, 97
byte-order property, 54

C, 4
C class, 96
CActive, 103, 104
CActiveScheduler, 104
Calendar API, 78, 80–2
call-back functions, 35
Camera API, 78, 82–4, 175–8
CameraDemo, 175–8
CAOWrapperPrivate, 111–14
Capabilities, 59
Carbide.c++, 106, 132

Carbide.c++ IDE, 19–20, 29
configuring QT support in, 21
using, with Qt for Symbian, 21–6
patching, 20

CBase class, 96
central widget, 47
CExample, 100
classes, 109–10

Symbian-specific, 110–15
cleanup stack, 99–100
clicked() signal, 48
communication, 51–63
connect(), 35, 36, 37
ConstructL, 98, 100

data types, 95–8
Debug perspective, 22
deep copy, 43
descriptors, 96–8
development of Qt, 7–10
dialogs, 46–7
displaying recent messages, 122–9
Document Object Model (DOM), 57
Dynamic Link Library (DLL), 101, 102

email, 71
EPOC16, 4
EPOC32, 4
Ericsson, 4
error codes, 115–16
error handling, 105
event listeners, 35
events, 48–9

delivery, 48–9
exception handling, 98–9
EXE, 101, 102
executable files, 101–2

182 Index

EXEXP, 101
exitButton, 33, 35

files, 52–6
Flash, 8
Forum Nokia Wiki, 77
FriendClient, 158–63
FriendListForm, 163
FriendsApp, 156–69
FTP, 56, 57, 149

Google, 1, 7, 58, 62
graphical user interface (GUI), 6, 101, 164
Greenphone, 7–8

heap descriptors, 97
‘Hello World’ application, 13, 22–5, 29–31
HTTP, 56, 57, 58, 61–2, 149, 157

implicit sharing, 43
Input/Output, 52
installation of Qt for Symbian, 20–1
Installer API, 78, 84–5
internationalization, 43–5
IRDA, 3

Java, 2, 3, 8
SWING module, 7

Java Runtime Environment, 14

Keyhole Markup Language, 58
Landmarks API, 78, 85–6
layouts, 32–4
leaves, 98–9
licensing, 10
Loader, 117
Location API, 178–80
LoginForm, 163, 164
LString, 42

M classes, 96
Maemo, 75
MagnetoWidget.cpp, 108
MagnetoWidget.h, 108
MagnetoWidget.pro, 107, 108–10
main(), 34
Markfile, 106
Matsushita, 4

memory, 5–6
allocation, 116
management, 34–5, 98–101

Messaging API, 117–21, 172–5
meta-information, 42
meta-object compiler (moc), 39–40
microkernel architecture, 5
MMS, 9, 71, 172
MOAP(S), 4
mobile developers, 1–4
mobile domain, 7–9
Mobile Java, 65
Motorola, 4, 15
MyWorkerClass, 137–42

naming conventions, 95–8
networking, 56–63
NetworkServices, 59
Novia Ovi Suite, 1, 14, 21, 26
NTT DOCOMO, 4

object model, 37–8
object ownership, 34–5
Open C/C++, 3, 6

plug-in, 17–18
options menu, 146–9

painting, 49–51
Perl, 15
perspective, 22
platform security, 102
PLUGIN, 101
pointer descriptors, 97
private implementation (pimp) pattern, 107
Profile API, 78, 87–8
properties, 42
Psion, 4, 5
public slots:, 38, 39, 60, 130, 138, 165, 167
Python, 6, 8, 65
Python for S60, 3

Q_OBJECT macro, 40
QAction, 146, 147
QApplication, 30, 34
QBuffer, 52
QByteArray, 52
QContact, 68
QContactManager, 68

Index 183

QCoreApplication, 48, 49, 53
QDataStream, 52, 53, 54, 56
QDialog, 46
QEvent, 48–9
QFile, 53, 57
QFtp, 57
QGeoAreaMonitor, 70
QGeoCoordinate, 70
QGeoPositionInfo, 70
QGeoPositionInfoSource, 70
QGeoSatelliteInfo, 70
QGeoSatelliteInfoSource, 70
QHBoxLayout, 40
QHttp, 57
QIntValidator, 40
QIODevice, 52, 53, 56
QLabel, 30, 40, 107, 119, 149, 153, 172, 179
QLineEdit, 39, 40, 41, 60
QMainWindow, 47, 60, 136, 137, 140
qmake, 43
QMediaPlaylist, 72
QMessageServiceAction, 71, 122, 123
QMessageStore, 118, 119, 123
QMetaObject, 42
QMouseEvent, 49
QNetworkAccessManager, 57, 149
QNetworkConfigurationManager, 67
QNetworkReply, 57, 149
QNetworkRequest, 57
QObject, 34, 35, 37, 38, 42, 44, 49, 131
QPainter, 51, 142
QPaintEvent, 49, 50, 51
QProcess, 52
QPushButton, 42, 48
QServicePluginInterface, 129
QSlider, 153
QStackedLayout, 119, 120
QString, 41, 42, 43, 53, 55
QSystemDeviceInfo, 74
QSystemInfo, 74
Qt C++, 22, 24, 25, 26

Property Editor, 22, 24, 132
Widget Box, 22, 24

Qt Commercial Version, 10
Qt Designer, 7, 29, 44
Qt Designer Editor, 24, 132
Qt GNU GPL v3.0, 10
Qt GNU LGPL v2.1, 10

Qt-like API extensions, 77–93
Qt Linguist, 7, 45
QT Mobility APIs, 65–76

audio file, 72
Battery status, 74
bearer management, 65–6
contacts, 67, 68–9
Device information, 73
device information, 74
Display information, 73
features, 73
Input method, 74
location, 69–71
messaging, 71
multimedia, 72
Network, 73
network session, 67
Power state, 74
Profile, 74
publish and subscribe, 72–3
service framework, 73
SIM, 74
Storage information, 73
system information, 73–5
Version, 73
videos, 72

QtCore, 52, 106
QTcpServer, 56
QTcpSocket, 56
QTextStream, 52, 56
QtGui, 106, 108
QThread, 119
QTimer, 142
QTimerEvent, 49
QtNetwork, 106
QTranslator, 45, 46
QtScript, 106
QtServiceFramework, 131
QtSoftware, 7
QtSvg, 106
QtTest, 106
QtWebKit, 106
QtXml, 106
QtXmlPatterns, 58
quit(), 34
QVariant, 55
QVBoxLayout, 33

184 Index

QWidget, 33, 34, 46, 61, 142, 169
QXmlStreamReader, 57, 58, 63, 157

R classes, 96
RBuf descriptor, 42
RecentMessagesWidget, 122–8
RIM, 1
RotateWidget, 49, 50
RThread, 105

S60, 4
SAMSUNG, 1
SAX parser, 153, 158
Sensor API, 78, 88–9, 107, 110, 115, 169–72
Series 40 (S40), 8
service framework, 129–32
Service Framework Library, 131
service plug-in, 129–32
setValue(int), 36, 37
shallow copy, 43
show(), 33
SIBO, 4
SIGNAL(), 36
‘signals and slots’, 35–7

basic, 35–6
connecting, 40–1
custom, 38
implementation, 39

Simple API for XML (SAX), 57
SimpleMultiplier, 37, 38, 39, 41
Skype, 7
slider, 33
SLOT(), 36
SMS, 9, 71, 117, 172
Sony Ericsson, 4, 15
spinBox, 33
SQL, 6
startTimer(), method 51
static classes, 96
streams, 52–6
StringLoader, 44
Symbian C++, 3, 8, 15, 16
Symbian Developer Library, 17
Symbian OS, 4–6

class naming conventions, 95–8
Symbian Platform SDK, 13, 15–17

documentation folder, 17
epoc32, 17

installation, 16
patching 3rd Edition feature Pack 1, 16

T classes, 95–6
TCP, 56, 57
TDes, 97
TDesC, 97
Telephony API, 78, 90–1
TFixedArray, 98
thin templates, 101–2
threads, 105
timers, 49–51
TPriority, 104
translation of text, 44–5
TRAP harness, 98
Trolltech, 7–8
two-phase construction, 100

U1D1, 102
U1D2, 102
U1D3, 102
UDP, 56
UIQ, 4, 15
UIQ3, 33
User Interface (UI), 42–7
Utils API, 78, 91–2

validators, 40–1
valueChanged(int), 36, 37
Vibra API, 78, 92–3
Visual Studio, 29
Volvo, 7

Web 2.0, 57
website downloader, 149–52
widgets, 132–7

implementation, 48
sub-classing, 45–6
using, 48

Windows, 13
Windows Mobile, 75
worker class example, 137–42

XML, 6, 42, 44, 56–63, 132, 152–3, 156, 157, 158
XMlDataView, 59–60
XQAccelerationDataPostFilter, 172
XQAccelerationSensor, 169, 170
XQAlarms, 78, 79
XQCalendar, 81–2
XQCamera, 82–3, 175

Index 185

XQConversions, 91
XQDeviceOrientation, 88–9, 169
XQLandmark, 86
XQLandmarkManager, 86
XQLocation, 178, 179
XQMessaging, 172, 174, 175

XQProfile, 87–8

XQTelephony, 90–1

XQUtils, 91–2

XQVibra, 92–3

XQViewFinderWidget , 175

	CONTENTS
	CONTRIBUTORS
	FOREWORD
	PREFACE
	ABBREVIATIONS
	ACKNOWLEDGMENTS
	PUBLISHER’S ACKNOWLEDGMENTS
	ABOUT THE EDITORS
	1 Introduction and Motivation
	1.1 The Importance of Mobile Developers
	1.2 Symbian OS
	1.2.1 Symbian – The Technology
	1.2.2 Symbian – Evolution to the Leading Smart-Phone Platform
	1.2.3 Symbian – Casual Application Developer

	1.3 Qt
	1.3.1 A Cross-platform Development Environment
	1.3.2 Qt in the Mobile Domain
	1.3.3 Qt Licensing

	Bibliography

	2 Getting Started
	2.1 Installing the Development Environment
	2.1.1 Ovi Suite
	2.1.2 Java
	2.1.3 Perl
	2.1.4 Symbian Platform SDK
	2.1.5 Open C/C++ Plug-in
	2.1.6 The Carbide.c++ IDE
	2.1.7 Qt for Symbian

	2.2 Using Carbide.c++ with Qt for Symbian
	2.3 Summary

	3 Qt in General
	3.1 HelloWorld
	3.1.1 Building
	3.1.2 Packaging

	3.2 Basics
	3.2.1 Layouts
	3.2.2 Object Ownership and Memory Management

	3.3 Signals and Slots
	3.3.1 Basic Signals
	3.3.2 Parameters

	3.4 Qt Object Model
	3.4.1 QObject
	3.4.2 Custom Signals and Slots
	3.4.3 Implementing Slots and Emitting Signals
	3.4.4 Meta-object Compiler (moc)
	3.4.5 Connecting Signals and Slots
	3.4.6 Properties and Meta-information

	3.5 User Interface
	3.5.1 Handling Text through Implicit Sharing
	3.5.2 Internationalization
	3.5.3 Widgets, Dialogs and the Main Window

	3.6 System
	3.6.1 Events
	3.6.2 Timers and Painting

	3.7 Communication
	3.7.1 Input/Output
	3.7.2 Files and Streams
	3.7.3 Networking and XML

	Bibliography

	4 Qt Mobility APIs
	4.1 Introduction
	4.2 Bearer Management
	4.2.1 Creating a Network Session

	4.3 Contacts
	4.4 The Contacts API
	4.4.1 Creating a New Contact
	4.4.2 Finding a Single Contact Detail
	4.4.3 Editing a Contact Detail

	4.5 Location
	4.5.1 Getting and Following the User’s Location

	4.6 Messaging
	4.6.1 Creating and Sending an Email Message

	4.7 Multimedia
	4.7.1 Playing an Audio File
	4.7.2 Creating a Playlist of Videos and Playing Them in a Video Widget

	4.8 Publish and Subscribe
	4.9 Service Framework
	4.10 System Information
	4.10.1 Accessing Device Information
	4.10.2 Accessing System Information

	4.11 Summary
	Bibliography

	5 Qt-Like Mobile Extensions
	5.1 Utilizing Platform Features beyond Qt APIs
	5.2 How to Use the Mobile Extensions in Your Project
	5.3 Alarms
	5.3.1 Getting a List of All Alarms
	5.3.2 Creating a Workday Wakeup Alarm
	5.3.3 Changing the Time of a Specific Alarm
	5.3.4 Deleting an Alarm

	5.4 Calendar
	5.4.1 Creating a New Calendar Item
	5.4.2 Deleting Calendar Entries

	5.5 Camera
	5.5.1 Camera Initialization
	5.5.2 Using the Viewfinder Widget
	5.5.3 Taking a Photo

	5.6 Installer
	5.6.1 Installing an Application in the Background without Notifying the User
	5.6.2 Uninstalling an Application in the Background without Notifying the User
	5.6.3 Getting a List of all Installed Applications in the Device

	5.7 Landmarks
	5.7.1 Creating a Landmark for the Current Location
	5.7.2 Getting a List of All Landmarks in the Landmark Database

	5.8 Profile
	5.8.1 Getting the Current Active Profile
	5.8.2 Setting the Current Profile to Silent
	5.8.3 Setting the Ringing Volume of the General Profile to Maximum

	5.9 Sensors
	5.9.1 Receiving Notification of Changes in Rotation and Orientation

	5.10 Telephony
	5.10.1 Making a Circuit-Switched Telephone Call
	5.10.2 Receiving Notification of When Phone Call Status Changes

	5.11 Utils
	5.11.1 Keeping the Device Backlight Turned On
	5.11.2 Launching a File with the Default Viewer Application
	5.11.3 Converting between QString and HBufC*

	5.12 Vibra
	5.12.1 Switching on the Vibration Function

	6 Qt Apps and Native Symbian Extensions
	6.1 Data Types and Symbian OS Class Naming Conventions
	6.1.1 Descriptors
	6.1.2 Arrays

	6.2 Memory Management
	6.2.1 Leaves and Exception Handling
	6.2.2 The Cleanup Stack
	6.2.3 Two-Phase Construction
	6.2.4 Thin Templates

	6.3 Executable Files
	6.4 Platform Security
	6.5 Active Objects
	6.6 Error Handling
	6.7 Threads
	6.8 Qt for Symbian
	6.8.1 Combining Qt and Native C++
	6.8.2 Building Qt Applications in the Symbian Environment
	6.8.3 Separating Qt and Symbian Implementations
	6.8.4 Other Issues

	6.9 Summary
	Bibliography

	7 Qt for Symbian Examples
	7.1 Mobility API Examples
	7.1.1 Displaying Messaging Accounts
	7.1.2 Displaying Recent Messages
	7.1.3 Service Framework

	7.2 Qt for Symbian and Mobile Extension Examples
	7.2.1 Basic Widgets Example
	7.2.2 Background Worker Class
	7.2.3 Bouncing Ball
	7.2.4 Options Menu
	7.2.5 Website Downloader
	7.2.6 Stored Settings
	7.2.7 FriendsApp
	7.2.8 Sensor API
	7.2.9 Messaging API
	7.2.10 Camera API
	7.2.11 Location API

	INDEX

