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Preface

At a pragmatic level, there are often no alternatives to mathematical
models to test new industrial designs. Physical prototypes may be too
expensive or too time consuming. In both the design phase and the oper-
ations phase, the direct measurement of important operational variables
may be impossible or uneconomic. The regions of interest may be inac-
cessible because of mechanical barriers, high temperatures or hazardous
chemical environments.

Mathematical modelling is an efficient and relatively inexpensive dev-
ice for testing the effect of changing operating conditions in an industrial
process. It is far easier and less costly to change a small number of
parameters in a mathematical model than to shut down an industrial
plant and modify its large-scale equipment. In most circumstances this
should not be done as a trial-and-error experiment.

In this era of rapidly changing technology, the efficacy of mathemati-
cal modelling in industry should be appreciated more than ever before.
Therefore, it is frustrating to note a recent trend towards reducing the
amount of core mathematics subjects in engineering degree programmes.
It is our expectation that this book could at least be used for an optional
course for the more mathematically-oriented students of engineering.
Such a course is even more important in the education of those with an
interest in the logical design of new technology when the majority of
graduates have insufficient mathematical training for this purpose. This
course would meet one of the needs of a modern industrial mathemat-
ics course, namely that of relevance to real industrial problems. This
would alleviate a common criticism by recent engineering students that

ix



x Preface

little attempt is made to relate mathematics service courses to their
professional practice.

On the other hand, real-world mathematical modelling courses are
good preparation for mathematics students who hope to work in the
industrial environment. In too many mathematics degree programmes,
applied mathematics courses are presented solely as mathematical meth-
ods courses, i.e. solution techniques for various types of equations and
optimisation problems. In typical methods courses, artificial applica-
tions are often added almost as an afterthought following long sessions
of formal theoretical development. Like most mathematicians, we can
understand the power and beauty of mathematical rigour in the develop-
ment of useful mathematical methods. However, without some practice
in real-world mathematical modelling, mathematics graduates do not
have the best preparation for work in industry.

In the industrial context, mathematicians are not presented with a set
of equations ready to be analysed. Instead they are confronted with a
set of practical problems that have not yet been expressed in mathemat-
ical terms. This translation to mathematical terms is a difficult step if
one has had no experience at this activity. From our dealings with many
scientists, engineers and mathematicians, we have found that the most
proficient mathematical modellers are the experienced modellers, who
have learnt to listen to specialists from other non-mathematical back-
grounds. However, we still believe that good mathematical modelling
skills are based on fundamental principles that can be taught in a course
based on case studies.

Good mathematical models must respect accepted scientific laws such
as physical conservation laws. Insight can be gained by idealising a
model so that only the most important factors, processes and parame-
ters are retained. This is also an aim of experimental control. Secondary
effects may be added later as perturbations on the leading terms. Math-
ematical predictions of physical processes (and perhaps of economic and
behavioural activity) should ultimately be expressible in terms of di-
mensionless variables and the key factors must be expressible in terms
of dimensionless parameters.

This text represents a course that has undergone many modifications
since 1986 after the authors have presented it to third year mathematics
students at three Australian universities; La Trobe University, The Aus-
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tralian Defence Force Academy (University College of The University of
New South Wales) and The University of Wollongong.

We will comment on some features of the course. First, industrial
case studies are presented at the outset rather than as add-on examples.
These case studies lead to mathematical models that motivate develop-
ment and reinforcement of mathematical methods. It is our experience
that the students understand the mathematical methods better after
they have applied them to case studies. The level of mathematics used
here is not advanced; some of it will already have been encountered at
second year level. Assumed mathematical techniques include exact so-
lution methods for constant-coefficient ordinary differential equations,
systems of linear algebraic equations, graphical solution of nonlinear
transcendental equations.

Other mathematical techniques, that many students may not have
seen at second year level, are introduced in a rudimentary way. These
include:

• free boundary value problems for partial differential equations (Chap-
ter 2);

• Stretching transformations (Chapter 3);
• perturbation expansions (Chapter 4);
• bifurcation analysis (Chapter 5);
• Fourier series and nonlinear transformations of nonlinear partial dif-

ferential equations (Chapter 6).

These chapters, containing the case studies, are self-contained and may
be studied in any order (after Chapter 1) to suit the backgrounds of
the students. However, the techniques introduced in Chapter 3 are an
extension of those introduced in Chapter 2, so Chapter 3 should ideally
be studied after Chapter 2.

Given the necessity of placing no more than reasonable demands on
students, it has been possible to concentrate on only one illustrative
area of activity in industrial modelling. We have chosen this area to be
continuum modelling involving diffusion and heat conduction. Of course
it would be equally possible to choose another area such as queueing
theory, operations research, number theory or coding theory. In order
to make our course accessible to mathematics students with very little
training in physics, we have had to make brief oversimplified accounts of
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the underlying physical processes. Also, we have not done justice to the
techniques of numerical analysis that are useful tools in mathematical
modelling. Almost all of our students have recently or concurrently
taken courses in numerical methods and we have referenced these in our
lecture classes.

As evidence that this kind of applications-oriented course is uncom-
mon, many of our students have stated that this course is unlike any
other. However, after taking this course, many have felt a greater de-
gree of confidence in their mathematical skills and in applying them to
industrial problems.

We wish to thank our colleagues who have given useful suggestions
for the development and improvement of this course. Among them are
Yvonne Stokes, David Clements, Kerry Landman, Stephen Bedding,
Timothy Marchant, Edgar Smith, Rodney Weber and Havinder Sidhu.
We would also like to thank Bradley Loh and Lance Miller for their
assistance with proof reading the manuscript. We would also like to
thank our editor, Roger Astley.

We have presented this course to several hundred students. Many of
these have inspired improvements through their feedback. Their profes-
sional development has been a source of great pleasure to us.

Glenn Fulford,
University College, ADFA.

Philip Broadbridge,
University of Wollongong.



1

Preliminaries

In this chapter we set the scene by introducing the case studies of the
following chapters. We also introduce the main physical concepts for
diffusion and heat conduction, and show how to formulate the main
partial differential equations that describe these physical processes. Fi-
nally, dimensionless variables are introduced and it is shown how to scale
differential equations and boundary conditions to make them dimension-
less.

1.1 Heat and diffusion — A bird’s eye view

Here we give a basic physical description of mass transport and heat
transport by diffusion. This provides the physical ideas needed to for-
mulate an appropriate differential equation, which is done in the next
chapter.

Diffusion

Diffusion is a physical phenomenon involving the mixing of two dif-
ferent substances. Some examples include salt in water, carbon in steel
and pollution in the atmosphere.

A fundamental quantity is the concentration of one substance in
another. This may be defined in several different ways. For example,
the concentration can be measured as the ratio of the mass of one con-
stituent to the total volume of the mixture (kilograms per litre). Another

1



2 Preliminaries

measure of concentration is the volume of one constituent to the total
volume of the mixture.

Due to the random motion of constituent particles, concentrations
tend to even out. Some molecules in a region of higher concentration
move into a region of lower concentration. (See Figure 1.1.1).

particles diffusing

initial time later time

Fig. 1.1.1. The mechanism of diffusion — due to random motion of particles
a high concentration redistributes towards a region of lower concentration.

Heat and temperature

An important thing to remember about modelling heat transport is that
heat and temperature are not the same thing. Heat is a form of energy
and may be measured in joules (the SI unit of energy). The heat energy
of a rigid body is the kinetic energy due to the internal random motion
of many vibrating constituent molecules. As heat is added to the body,
energetic molecular collisions occur more frequently.

In the kinetic theory, temperature is interpreted as a measure of the
average internal kinetic energy of constituent particles. The total heat
energy is proportional to the temperature of an object and its mass;
the latter being a measure of the number of particles. Temperature
is a property that determines the rate at which heat is transferred to
or from the object. Heat energy flows from hot (high temperature)
to cold (low temperature). The temperature is defined according to a
scale which depends on the expansion properties of certain materials.
Temperature is usually measured in degrees Celsius ( ◦C) or kelvin (K).
Thus 10 ◦C means that mercury in a thermometer will rise to a given
height, representing this temperature. Note that 0 K = −273 ◦C. The
Kelvin scale is designed to mean that 0 K corresponds to zero internal
vibration (absolute zero).
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This bird’s eye view has deliberately been sketchy and incomplete. For
more information on the kinetic theory of gases, the interested reader
may consult almost any general introductory physics texts, such as Hal-
liday and Resnick (1974). For the more general theory of thermodynam-
ics, see for example (Feynman et al., 1977, Chapters 42–44).

1.2 Mathematics in industry

In this section we will briefly discuss general opportunities for applied
mathematics in industry before focusing specifically on mathematical
problems in heat and mass transport in the next section.

Opportunities for mathematicians

Mathematics is a subject that has been studied for several hundreds of
years. Much new mathematics has been motivated by practical prob-
lems. On the other hand, mathematical models have also been used by
industry to improve production, increase profits and generally improve
understanding of complicated processes. There is a clear benefit to both
mathematics and industry arising from the application of mathematics
to industry.

In some countries (for example, Australia and New Zealand) industry
puts less effort into research and development than do most other in-
dustrialised nations. However, this deficiency is now widely recognised
in those countries and some remedial steps have been taken. Recent
governments have provided various taxation incentives and assistance
schemes for private companies to invest in their own research and devel-
opment (although, more recently, this has unfortunately been cut back).
This has opened up more employment opportunities for scientists, in-
cluding applied mathematicians. Universities have made efforts to im-
prove their level of collaboration with industry by setting up Industry
Liaison Committees and forming consulting companies. Another source
of contact between industry and academia throughout the world occurs
through Mathematics and Industry Study Groups, pioneered at Oxford
University in the United Kingdom. These bring together academics and
representatives from industry to apply mathematics to industrially im-
portant problems in problem-solving workshops.
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There are great benefits to be gained from employing applied mathe-
maticians in industry. Optimisation skills are particularly important on
the financial side. For engineering engineering many technical problems
can be formulated as mathematical problems and thereby analysed and
solved more efficiently. Mathematical models can be used to help under-
stand the underlying physics, chemistry and biology of some processes.
This understanding can then help to make the process more efficient.
The financial savings can be considerable.

The applied mathematician working in an engineering or scientific en-
vironment must be a ‘Jack’ (or ‘Jill’) of all trades. That is, she or he
must have good scientific general knowledge and also be skilled at formu-
lating mathematical descriptions of practical problems. One advantage
that an applied mathematician has is that because mathematics is a uni-
versal language he or she is able to communicate with other scientists
from a wide variety of disciplines. The applied mathematician must be
willing to be guided by other scientists in a team as to which physical
variables are important and which directions the research should take
once the initial mathematical model has been set up and validated.

Traditionally, applied mathematics students are taught mathematical
methods and these are practised on standard problems which are already
posed in mathematical form. It is more difficult to train someone to carry
out the important first step of mathematical modelling, which is to take a
practical problem and simplify or express it in a form which is amenable
to mathematical analysis. Proficiency in formulating problems is usually
obtained only after years of practice. However, there are some general
principles which can be applied to some broad classes of problems, and
these may be learnt. For example, heat and mass transport is based
on the principle of conservation of energy and matter. As may be seen
from reports of industrial study groups, there is considerable demand in
industry for skills in this area.
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1.3 Overview of the case studies

In this book we will restrict ourselves to modelling those processes which
involve transport of heat energy or mass. Industry provides many ex-
amples of the use of the standard equations of heat and mass transport
and sometimes suggests interesting modifications to the basic theory.

Our primary aim is to study the industrial case studies that are de-
scribed below. We will along the way, however, consider various other
simpler industrial problems, as we develop sufficient physical and mathe-
matical expertise with the phenomena of heat and mass transport. After
developing skills for formulating appropriate partial differential equa-
tions we consider some analytical techniques for solving them.

Analytical techniques are useful for gaining physical insight. For very
complex problems, numerical approaches are often used. It is often
useful to start with a very simple model of a complex system whose
equations yield an analytic solution. Then a more realistic model can
be solved numerically. Together with the analytical results for the sim-
pler models, the numerical results can yield maximum insight into the
problem.

Continuous casting

One of the cases that we will study (Chapter 2) concerns a proposed
technique of casting steel by pouring molten steel onto a cooled rotating
drum. This is done to produce sheets of steel that are longer (and
thinner) than those produced by pouring molten steel into moulds. The
question we will try to answer is — under what circumstances will the
process work? We will do this by predicting how fast the molten steel
solidifies.

Water filtration

One method of extracting salt from water is to use a process called re-
verse osmosis. This involves water passing through a semi-permeable
membrane and leaving the salt behind. In this process a major problem
is that the salt accumulates at the semi-permeable membrane and re-
stricts the passage of water through it. We will develop a simple diffusion
model (Chapter 3) in an attempt to predict the salt buildup along the
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semi-permeable membrane. To do this we will introduce the method of
stretching transformations as a method for solving the resulting diffusion
equation.

Laser drilling

Another major case study we consider (Chapter 4) is where a high in-
tensity laser or electron beam is focused on a sheet of metal. The laser
drills a hole through the metal and we wish to predict how fast this
occurs. This problem is of great interest in many industries where lasers
are now being used for cutting and welding.

Factory fires

In another case study we will look at the previously unexplained sudden
onset of fires in a New Zealand chipboard factory (Chapter 5) . The aim
here is to determine if ignition can occur due to the heating of dust piling
up on hot presses. Oxidation of the dust creates heat which may cause
the dust to ignite. This is a situation that the factory must prevent from
happening. Thus our aim is to use a mathematical model to determine
for which thicknesses of dust layers ignition occurs.

Irrigation

An important part of primary industry is the production of food on
farms. In arid regions (e.g. in many parts of Australia), irrigation is
often used to provide water for crops. In the case study of Chapter 6
we investigate the optimal size for irrigation furrows. The mathematical
content involves the solution of a partial differential equation for the
unsaturated flow of water in soils by assuming an expansion in trigono-
metric functions to take advantage of the periodicity of the problem.

Mathematical modelling to help understand complex processes

These case study problems involve many processes happening at once.
Mathematical modelling will be used to consider only the most impor-

tant physical processes. This, in turn, will allow us to obtain sufficiently
simple equations on which we can make good mathematical progress.
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This leads to a much better understanding of the more complicated sys-
tem.

The ability to recast real-world problems in mathematical form is a
remarkable fact of history. For a clear account of the steps involved in
the process of mathematical modelling, we refer to Fulford et al. (1997),
Edwards and Hamson (1989) and Fowkes and Mahony (1994). For a
philosophical consideration of the apparently unreasonable effectiveness
of mathematics in the physical sciences, the interested reader is referred
to the classic article Wigner (1960).

1.4 Units and dimensions

In the physical world measured quantities are determined relative to
some standard measurements. It is important that equations developed
as part of our modelling process are consistent no matter which units are
the basis of our measurements. This is called dimensional consistency.

Units

Units of a physical quantity are the reference measurements to which we
make comparisons. Some examples are metres, minutes, joules, miles,
kilograms, etc. The same quantity can be measured in different units
(e.g. 1 km = 1,000 m = 0.6214 miles). In this example, each unit
(kilometre, metre or mile) refers to a quantity described by length.

We call length a primary quantity. Some other primary quanti-
ties are mass, time and temperature. Secondary quantities are those
which are combinations of more than one primary quantity. For exam-
ple, in the SI system velocity is measured in metres per second, which
is a secondary quantity.

A variable which measures length is said to have dimension length,
denoted by the symbol L. Thus a dimension L may take values of kilo-
metre, metre or mile, depending on which system of units is adopted.
Other dimensions, corresponding to some primary quantities, are mass,
time and temperature, denoted by M, T and Θ respectively. The four
primary units relevant to this book are listed below in Table 1.4.1. For
a primary or secondary quantity q, [q] denotes the dimensions of the
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quantity represented by the symbol q. The value of [q] is expressed in
terms of M, L, T and Θ.

Table 1.4.1. Fundamental units of primary quantities.

Primary Quantity Symbol SI Unit cgs Unit

mass M kilogram, kg gram, g
length L metre, m centimetre, cm
time T second, s second, s

temperature Θ kelvin, K degree, ◦C

Other fundamental SI units include the ampere (A), the unit for elec-
tric current; the mole (mol), the unit for amount of a substance (i.e. the
number of atoms or molecules); and the candela (cd), the unit for lumi-
nosity. All other units are derived from these base units and the ones in
Table 1.4.1.

Rules for dimensions

Certain rules must be obeyed by a consistent set of units of measurement.
They are mostly common sense. The rules are as follows:

(a) Two quantities may be added only if they have the same di-

mensions. Quantities of different dimensions may be multiplied
or divided.

(b) Index Laws. If [f ] = Mα1Lα2Tα3Θα4 and [g] = Mβ1Lβ2Tβ3Θβ4 then
[fg] = Mα1+β1Lα2+β2Tα3+β3Θα4+β4 .

(c) Pure numbers are dimensionless, i.e. [1] = 1, [2] = 1, [π] = 1,
[0] = 1. Thus multiplying by a pure number does not change the
dimensions of a physical quantity, i.e. [2m] = 1 × M = M.

(d) The dimensions of a derivative
∂p

∂q
are [p][q]−1. This is because

a derivative is a limiting ratio of two quantities. Thus if u is
temperature and x measures distance then

[
∂u
∂x

]
= ΘL−1. Also[

∂2u
∂x2

]
= ΘL−2, and more generally,[

∂m+nu

∂xm∂tn

]
= ΘL−mT−n.
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(e) The dimensions of an integral
∫ b

a

p dq are given by [p][q].

(f) The arguments of functions having Taylor expansions (of more
than one term) must be dimensionless. This is because this is the
only way we can add different powers of a quantity. For example,
for

ekt = 1 + kt +
1
2!

k2t2 + . . .

where t is time, then [k] = T−1 since kt must be dimensionless.

A useful way of checking equations is to check they are dimension-

ally homogeneous . This means that both sides of an equation must
have the same dimensions. The following example illustrates this.

Example 1: Newton’s second law gives

F = ma (1)

where F is the force on a particle, m is its mass and a is the acceleration of
the particle. Check that equation (1) is dimensionally homogeneous.

Solution: Force is measured in newtons which are kg ms−2. Thus [LHS] =
MLT−2. Now [m] = M and [a] = LT−2. Thus [RHS] = MLT−2 = [LHS]. So (1)
is dimensionally homogeneous.

Checking equations

Dimensions of secondary quantities can easily be obtained from the
above rules. The following example shows how to do this.

Example 2: Fourier’s law is an equation relating heat flux to temperature
gradient (see Section 1.6),

J = −k
∂u

∂x
,

where J is the heat flux, u the temperature, x denotes distance and k is the
conductivity. Hence determine [k].

Solution: The heat flux, J , is heat energy per unit area per unit time. So

[J ] =
[energy]

[area][time]
.
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Now energy has the dimensions of work, which is force times distance, so
[energy] = MLT−2 × L, and [area] = L2. Hence

[J ] =
ML2T−2

L2T

= MT
−3.

Now [u] = Θ, and [x] = L, so [
∂u

∂x

]
= ΘL

−1.

Since [k] = [J ] × [∂u/∂x]−1 then

[k] = MLT
−3Θ−1.

In SI units k is measured in kg m s−3 K−1. This is consistent with the
above. For checking equations, Table 1.4.2 will be a useful reference.

Table 1.4.2. Table of secondary quantities in mechanics and heat transport.

Quantity Dimensions SI Units

density ρ ML−3 kg m−3

velocity v LT−1 m s−1

acceleration a LT−2 m s−2

force F MLT−2 newtons, N
pressure p ML−1T−2 N m−2, pascal, Pa
energy E ML2T−2 joule J

power Ė ML2T−3 watt W
heat flux J MT−3 W m−2

heat conductivity k MLT−3Θ−1 W m−1 K−1

specific heat c L2T−2Θ−1 J kg−1 K−1

heat diffusivity α L2T−1 m2 s−1

Newton cooling coefficient h MT−3Θ−1 W m−2 K−1

1.5 Diffusion equations

The derivation of the one-dimensional diffusion equation is based on the
idea of mass conservation. In this section we give a detailed formulation
of the 1-D diffusion equation.
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Diffusion in a tube

Consider a circular tube. Let A be the cross-sectional area of the hollow
part of the tube. The hollow part is filled with a mixture containing a
solute. We assume the bulk mixture is not moving (but we consider
this later in this section). However, if the solute concentration is higher
at one end than at the other then the solute will diffuse towards the
other end, as shown in Figure 1.5.1. We also assume the walls of the
tube are impermeable to the solute.

x + δxx

xhigh low

Fig. 1.5.1. Diffusion of a solute in a tube from high solute concentration to
low solute concentration.

Let us define the concentration of the solute C(x, t) as the ratio of the
mass of the solute to the volume of the mixture. We can think of the
concentration defined at a single point x by taking a small volume and
then letting that volume tend to zero. Since the walls of the pipe are
impermeable to the solute, the concentration of the solute will depend
only on longitudinal position x and the time t.

We shall consider a small section x to x+δx of the tube. As the solute
diffuses through the tube the net change in the mass of the solute in the
section is determined by the net difference in the mass of solute diffusing
into and out of the tube. We can write this statement of conservation
of mass as {

rate of
change of

solute mass

}
=

{
net rate of

mass diffusing
in and out of section

}
. (1)

The term on the RHS refers to the net difference in rates of solute mass
diffusing into the section and solute mass diffusing out of the section.

In terms of the concentration C(x, t), the LHS of (1) can be written as
the volume multiplied by the rate of change of concentration, evaluated
at some internal point x1, inside the section x to x + δx. Thus we write{

rate of
change of

solute mass

}
= Aδx

∂C

∂t
(x1, t) (2)
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where Aδx is the volume of the section.

Let us define J(x, t) to be the mass flux of the solute, defined as the
net rate of mass of solute diffusing through a cross-section at x, per
unit cross-section area, per unit time. We can now write the diffusion
in terms of the mass flux J .{

net rate of
mass diffusing

in and out of section

}
= J(x, t)A − J(x + δx, t)A.

Hence, the mass balance equation (1) now becomes

Aδx
∂C

∂t
(x1, t) = Aδx[J(x, t) − J(x + δx, t)].

Dividing by Aδx, we obtain

∂C

∂t
(x1, t) = −

[
J(x + δx, t) − J(x, t)

δx

]
.

We now let δx → 0 and we thus obtain
∂C

∂t
= −∂J

∂x
, (3)

using the definition of the partial derivative. Note that, as δx → 0 we
also have x1 → x, where x < x1 < x + δx. Now all quantities are
evaluated at the point x.

To relate the flux to the concentration we need a constitutive equa-

tion (an equation relating material variables, determined from experi-
ments). The simplest one is Fick’s law which states the mass flux is
proportional to the concentration gradient. For 1-D diffusion, Fick’s law
can be written

J(x, t) = −D
∂C

∂x
(x, t) (4)

where D is a positive constant known as the diffusivity. Note the minus
sign is included so that the solute diffuses in the direction of decreasing
concentrations. Fick’s law for diffusion is analogous to Fourier’s law for
heat conduction.

Substituting Fick’s law (4) into the mass conservation equation (3) we
obtain�

�

�

�
∂C

∂t
= D

∂2C

∂x2
(5)
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which is known as the 1-D diffusion equation.

Advection

Advection is where the solute is carried along with the bulk movement
of the fluid. We can think of the mass flux J to be due to both diffusion
and advection, so J = Jd +Ja. The mass flux at position x is the rate of
movement of mass per unit time per unit area through the cross-section
at x.

Let v(x, t) denote the fluid velocity (of the mixture). In the absence of
diffusion the solute particles move at the same speed as the mixture. The
total mass of solute that is transported through the cross-section is the
volume of mixture moving past the cross-section in a time δt multiplied
by the concentration. This volume is vAδt. Thus the mass flux due
solely to advection is given by

Ja(x, t) = v(x, t)C(x, t).

Using Fick’s law for the mass flux due only to diffusion of solute particles
relative to the mean flow of the mixture, the total mass flux is given by

J(x, t) = v(x, t)C(x, t) − D
∂C

∂x
.

Substituting this into the mass conservation equation (3) we obtain the
partial differential equation for the concentration

∂C

∂t
= − ∂

∂x

(
v(x, t)C(x, t) − D

∂C

∂x

)

which may be written as

∂C

∂t
+

∂

∂x
(vC) = D

∂2C

∂x2
. (6)

If the moving mixture is an incompressible fluid then v(x, t) is a con-
stant. This follows from conservation of mass applied to the mixture —
the mass flowing in ρAv, where ρ is the density of the mixture, must be
constant. The previous equation (6) then simplifies to

∂C

∂t
+ v

∂C

∂x
= D

∂2C

∂x2
. (7)
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Turbulent diffusion

So far we have thought about diffusion as due to random motion of
molecules of a solute. However, the diffusion equation can occur in a
wider context. In many air flows, especially on environmental scales, the
velocity is turbulent. This means the velocity has a random component.
Thus air pollution, for example, can be advected with the mean flow
while simultaneously mixing with the air due to the random component
of the air flow. This type of diffusion is called turbulent diffusion.
In general this is a very complicated process that is not fully under-
stood. In the simplest turbulent transport models, an eddy diffusivity is
incorporated to relate turbulent flux to the gradient of mean concentra-
tion. (See Launder and Spalding (1972) for a more detailed discussion
of the theory of eddy diffusivity. Wilcox (1994) and Weil (1988) give
some extensions of this theory.) The value of the eddy diffusivity is
usually several orders of magnitude larger than the diffusivity for molec-
ular diffusion. In many problems it is typical for the diffusivity not to
be constant. For example, the air becomes more turbulent with height
from the ground.

For non-constant diffusivity, say D(x) the governing equation for the
concentration is not

∂C

∂t
= D(x)

∂2C

∂x2
.

A careful consideration of the derivation of the diffusion equation shows
the appropriate form is

∂C

∂t
=

∂

∂x

(
D(x)

∂C

∂x

)
.

The generalised 1-D diffusion equation

We can consider the effects of advection, nonlinear diffusivity, and in-
ternal mass production. Nonlinear diffusivity occurs when the dif-
fusivity depends on the concentration. Internal mass production is
where the solute is created everywhere within the region of consideration
(e.g. by some chemical reaction). Formulations of the modified diffusion
equations for each of these phenomena are explored in the problems at
the end of this chapter (see Question 6).
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The results are summarised in the generalised 1-D diffusion equation�

�

�

�
∂C

∂t
+

∂

∂x
(vC) =

∂

∂x

(
D(C)

∂C

∂x

)
+ M. (8)

Here v is the bulk velocity of fluid flowing through the tube and the
term M is the rate of production of solute, per unit time per unit vol-
ume. When the fluid motion is incompressible (so that the velocity v is
independent of x) then the generalised 1-D diffusion equation simplifies
to

∂C

∂t
+ v

∂C

∂x
=

∂

∂x

(
D(C)

∂C

∂x

)
+ M.

The 3-D diffusion equation

A similar type of argument for mass transport yields the 3-D diffusion
equation for concentration C(x, t),�

�

�

�
∂C

∂t
= D∇2C where ∇2 =

∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
(9)

in cartesian coordinates (x, y, z).

For 3-D problems, the generalised diffusion equation is�

�

�

�
∂C

∂t
+ ∇ · (vC) = ∇ · (D(C)∇C) + M (10)

where D(C) is the concentration dependent diffusivity and M is the rate
of production of mass of solute, per unit time per unit volume. For fluid
flow which is incompressible (∇ · v = 0) the 3-D generalised diffusion
equation simplifies to�

�

�

�
∂C

∂t
+ ∇ · (vC) = v · ∇C + M. (11)

The reader who is familiar with fluid dynamics will recognise the ad-
vection term as coming from the material derivative (differentiation
following the motion), see e.g. Acheson (1990).



16 Preliminaries

1.6 Heat conduction equations

The fundamental equation describing heat conduction is a partial dif-
ferential equation known as the heat conduction equation (or heat
equation, for short). In this section we will see how to derive this equa-
tion for heat conduction along a long thin rod. The basic idea is that
energy is conserved. We consider an infinitesimal section through the
rod and account for the amount of heat energy entering and leaving the
section. This rather simple approach can then be used on more compli-
cated problems involving advection (heat carried along with a moving
fluid), heat generation (e.g. by electrical resistance or chemical reaction),
heterogeneity (different positions have different thermal properties) and
nonlinearity (conductivity is temperature dependent).

Heat balance

Consider the heat flow in a solid rod with circular cross-section A.
Assume that the surface of the rod is perfectly insulated so that no
heat escapes radially. Thus the direction of heat flow is only in the
longitudinal direction (along the axis of symmetry of the rod). Suppose
that the rod is initially at a uniform low temperature. Then one end is
suddenly raised to a higher temperature. Heat flows in the x-direction,
from hot to cold, as shown in Figure 1.6.1.

x + δxx

xhot cold

Fig. 1.6.1. Heat conduction in a rod.

Let δx be the thickness of a section through the rod located at the
point x, where δx is taken to be very small compared to x. As the heat
flows along the rod some of the heat will be absorbed by the rod as it
raises the temperature of the rod. As a result of this, as heat flows into
the cross-section at x a different amount of heat flows out at x+ δx. We
can write {

rate of
change of

heat content

}
=

{
net rate of

heat conducted
in and out of section

}
(1)
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by conservation of energy. This assumes that there is no heat production
inside the rod or heat loss from the surface of the rod.

Formulating the equation

Let us now introduce some notation. Let u(x, t) denote the temperature
of the rod at position x at time t. Because there is no radial flow then
the temperature will be constant over the cross-section provided it was
constant initially.

Let us also define the heat flux J(x, t) as the rate of heat passing
through a cross-section, per unit area, per unit time. In terms of the
heat flux, the term on the RHS of equation (1) becomes{

net rate of
heat conducted

in and out of section

}
= J(x, t)A − J(x + δx, t)A. (2)

We now relate the LHS of equation (1) to the temperature. Some of
the heat energy is absorbed by the rod and causes a change in the tem-
perature of the rod. In a small time δt the temperature at x is changed
by an amount u(x, t+δt)−u(x, t) The amount of heat required to change
the temperature of the entire mass of the section by this amount is pro-
portional to both the mass of the section and the temperature difference.
Thus {

rate of
change of

heat content

}
= cρAδx

∂u

∂t
(x1, t) (3)

where x1 is some internal point x < x1 < x+δx. Here Aδx is the volume
of the section, ρ is the density and c is a proportionality factor called
the specific heat. The specific heat is often taken to be constant, for a
particular material, provided the temperature variation is not too great.

Substituting equations (3) and (2) into equation (1), and dividing by
the product δx, we obtain

ρcA
∂u

∂t
= − [J(x, t) − J(x + δx, t)]

δx
A. (4)

Letting δx tend to zero we obtain, in the limit, (alternatively, take
Taylor series of each of the terms)

ρc
∂u

∂t
= −∂J

∂x
. (5)
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Note the minus sign on the RHS of equation (5). Equation (5) is the basic
transport equation in one dimension. It needs to be supplemented by a
constitutive equation which relates the heat flux J to the temperature
u. For heat conduction we use Fourier’s law.

Fourier’s law

We now relate the RHS of equation (5) to the temperature. To a good
approximation, for many solids, the heat flux is proportional to the
temperature gradient. This is known as Fourier’s law after the French
mathematician and scientist, Fourier, who in 1822 published the first
book on the mathematical theory of heat (and who is also famous for
Fourier series and Fourier transforms).

Fourier’s law may be written

J(x, t) = −k
∂u

∂x
(x, t) (6)

where the proportionality factor k is known as the thermal conduc-

tivity. In some heat flow problems k can be a function of u, x or t.
However, it is usual in mathematical modelling to make the simplest as-
sumption initially; k = constant. Later, we might relax this assumption
if necessary.

Substituting Fourier’s law (6) into the energy conservation equation
(5) we obtain

ρc
∂u

∂t
= k

∂2u

∂x2
,

taking the conductivity k to be constant.

This equation is often written in the form�

�

�

�
∂u

∂t
= α

∂2u

∂x2
, α =

k

ρc
, (7)

known as the heat equation. Note the similarity in form to the diffu-
sion equation from Section 1.5. Here the constant α = k/ρc is called the
heat diffusivity. It characterises the ability of heat energy to diffuse
through a given material. The heat equation (7) is a partial differential
equation in two independent variables, time t, and position x.
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Extensions of the heat equation

Modifications of the basic heat equation include heat sources, advection,
and temperature dependent conductivity. A generalised heat equation,
incorporating all of these is�

�

�

�
ρc

(
∂u

∂t
+

∂

∂x
(vu)

)
=

∂

∂x

(
k(u)

∂u

∂x

)
+ Q (8)

where v(x, t) is the speed of a fluid, Q is the rate of heat produced
internally in the fluid, per unit volume, per unit time and k(u) is the
temperature dependent conductivity. If the fluid flow is incompress-
ible, then v is independent of x, and the generalised 1-D heat equation
simplifies to

ρc

(
∂u

∂t
+ v

∂u

∂x

)
=

∂

∂x

(
k(u)

∂u

∂x

)
+ Q.

A heat source can arise through an exothermic reaction within the
material which generates heat at every point. It can also arise from
an electric current which creates heat within the material as it experi-
ences electrical resistance. Another way heat can be generated within a
material is by nuclear fission in a nuclear fuel rod.

Advection is where heat is transported due to bulk movement of a
fluid. This is sometimes referred to as convection in the context of heat.
(See Section 1.5 for an explanation of advection for mass transport.)
Suppose we have a fluid which is moving with velocity v(x, t). In this case
heat is transported both by conduction and by advection, due to bulk
movement of material and also due to random movement of molecules.
The term ρc∂(vu)/∂x in the above equation arises due to advection.
When the movement of fluid is due to buoyancy (with hot fluid being
less dense than cold fluid and therefore rising), the heat transport is
known as convection.

The conductivity of a material will often vary with temperature, if
the range of temperatures is large. The functional dependence of k on u

will be determined experimentally. Note that, in equation (8), the term
k(u) must stay inside the ∂/∂x term, unless k is constant with respect
to u.
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The 3-D heat conduction equation

If the temperature depends on more than one spatial variable then we
need to account for heat fluxes in different directions. This is accom-
plished by defining a vector valued heat flux.

We can define the vector heat flux J(x, t). The direction of the vector
is the direction of heat flow at the point x, and its magnitude is the rate
of heat flow per unit area, per unit time.

We must generalise Fourier’s law to three dimensions. Recall that the
1-D version of Fourier’s law stated that the heat flux was proportional
to the temperature gradient. Thus in three dimensions

J(x, t) = −k∇u (9)

where k is the thermal conductivity. This gives the direction of heat
flow as the direction of maximum rate of decrease of temperature (since
from vector calculus the gradient gives the direction of maximum rate
of increase). Also, we have assumed that the material is isotropic

which means that there is no preferred direction of heat flow within the
material itself. If a material were non-isotropic then (9) would need to
be generalised to a linear combination of the partial derivatives of the
temperature.

By assuming conservation of heat energy for an arbitrary region, and
using the divergence theorem, it is possible to derive the 3-D heat equa-
tion (details are left to the exercises, see Question 8 for the mass diffusion
case)

ρc
∂u

∂t
+ ∇ · J = 0. (10)

Substituting Fourier’s law (9) into the transport equation (10) we obtain

ρc
∂u

∂t
= k∇2u where ∇2 =

∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
.

Dividing by ρc gives�

�

�

�
∂u

∂t
= α∇2u, where α =

k

ρc
. (11)

This is the three-dimensional generalisation of the linear heat equation.
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Note that for one-dimensional problems, where u is a function of only x

and t then equation (11) reduces to the one dimensional heat equation.

Just as we generalised the 1-D heat equation to account for nonlinear
conduction, heat sources, advection and heterogeneity, we can do the
same for the 3-D heat equation. The generalised version is�

�

�

�
ρc

(
∂u

∂t
+ ∇ · (vu)

)
= ∇ · (k(u)∇u) + Q, (12)

where v is the bulk velocity of the material, k(u) is the temperature
dependent conductivity and Q is the rate of production of heat per unit
time per unit volume. For an incompressible fluid (∇ · v = 0) the
equation simplifies to�

�

�

�
ρc

(
∂u

∂t
+ v · ∇u

)
= ∇ · (k(u)∇u) + Q. (13)

1.7 Boundary conditions

We investigate some of the common boundary conditions for heat con-
duction problems. There are analogous boundary conditions for mass-
diffusion problems.

Number of boundary and initial conditions

The classical heat-diffusion equation for heat flow in a rod is

∂u

∂t
= α

∂2u

∂x2
(1)

which is a second-order partial differential equation in space and a first-
order partial differential equation in time.

We require one initial condition (e.g. an initial distribution of temper-
ature) and two boundary conditions — one at each end of the rod. For
the three-dimensional heat equation

∂u

∂t
= α∇2u
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we require an initial condition plus data specified on the boundary of the
domain of the problem. There are several common forms of boundary
conditions which occur in practical problems. We list some of these
below.

A. Prescribed temperature boundary condition

This is probably the simplest type of boundary condition. Here the
temperature on some boundary is a specified function of time — usually
a constant, although it may be a given function of time. An example is

u(L, t) = u1 (2)

where u1 is a constant. This might occur when one end of a heated
pipe is immersed in a large bath of ice water at temperature say 0 ◦C,
so u1 = 0 in (1). In the mathematics literature, this is referred to as a
Dirichlet boundary condition.

B. Prescribed heat flux boundary condition

Another boundary condition is that in which the rate of heat flow at a
boundary is known. This is usually given in terms of a prescribed heat
flux, e.g.

J(L, t) = −k
∂u

∂x
(L, t) = J1 (3)

where k is the conductivity. Note that J1 describes the prescribed heat
flux density through a cross-section in the x-direction. As an example,
consider a solar hot-water heater. Suppose there is an inflow of 10
watt/square metre, (in the opposite direction to the x-axis). Then the
boundary condition at x = L is given by

J(L, t) = −k
∂u

∂x
(L, t) = −10 watt

where the minus sign indicates that the flow of heat is in the negative
x direction. In the mathematics literature, this is referred to as a Neu-

mann boundary condition.

A special case of the prescribed flux boundary condition occurs for
perfect insulation where no heat can get through the boundary. Then
equation (3) takes the form

J(L, t) = 0.
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Using Fourier’s law, J = −k∂u/∂x, this can also be written as

∂u

∂x
(L, t) = 0. (4)

C. Newton cooling boundary condition

Another boundary condition, which accounts for imperfect insulation,
is Newton’s law of cooling, also called convective cooling. This is
an empirical model rather than a law and states that the rate of heat
loss flux density is proportional to the difference in temperature of the
material and its surroundings.

This is expressed as

J(L, t) = ±h[u(L, t)− us]

where the proportionality factor h is called the heat transfer coefficient
and us is the temperature of the surroundings. The appropriate sign is
chosen to give the correct sign of J in any given problem. Using Fourier’s
law

−k
∂u

∂x
(L, t) = ±h[u(L, t) − us].

In the mathematics literature, this is sometimes referred to as a Robin

boundary condition.

The value of h depends on the material, the type of material of the
surroundings and on the velocity of the fluid flowing past in the sur-
roundings. Thus strong cold winds lead to more rapid heat loss and
consequently higher values of h. This is called a “wind chill” factor.

In the case h = 0 we recover the perfect insulation condition (4). Also
as (1/h) → 0 we recover the prescribed temperature condition (2).

D. Radiation boundary condition

Heat transfer by radiation involves transfer of energy by electromagnetic
waves, the interaction of these waves with a body causing it to be heated.
Here, the boundary condition is given by

J(L, t) = −k
∂u

∂x
= εσ[u4(L, t) − u4

s] (5)
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where σ = 5.6697 × 10−8 W m−2 K4 is the Stefan–Boltzmann constant,
ε, (0 < ε < 1), is a proportionality factor called the emissivity and us is
the background temperature of the surroundings. Here the temperatures
u(x, t) and us must be measured in kelvin, not degrees Celsius. For
further information on radiative transfer, the interested reader is referred
to Holman (1992).

Note that equation (5) is a nonlinear boundary condition. Because of
this it is only used in numerical work. In environmental applications u

may be considered close to us (e.g. in a typical winter u may vary by
only 6% from 273 K to 290 K) and the boundary condition (5) may be
approximated by the first linear term of the Taylor series

f(u) = f ′(us)(u − us) = 4εσu3
s(u − us).

This is mathematically equivalent to Newton’s Law of cooling with con-
vective heat transfer coefficient h = 4εσu3

s.

E. Continuity boundary condition

Another type of boundary condition that occurs in heat conduction prob-
lems is the thermal contact between two different media. We say that
the media are in perfect contact if they are welded tightly so that
heat flows smoothly between them. We then assume that the tempera-
ture u(x, t) and the heat flux density J(x, t) are continuous across the
boundary, i.e.

u1(L, t) = u2(L, t),

J1(L, t) = J2(L, t),

where u1 and J1 correspond to the temperature and heat flux on one
side of the boundary x = L and u2 and J2 are the temperature and heat
flux on the other.

F. Moving boundaries

Moving boundaries occur in problems involving melting and solidifica-
tion. These are more complicated since we do not know the actual
location of the boundary before solving the problem. We will see how
to formulate these types of boundary condition in Chapter 2.
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An example

As an example of determining appropriate boundary conditions consider
a blast furnace wall consisting of a layer of brick (conductivity k1) and
an outer layer of asbestos (conductivity k2 < k1). This is shown in
Figure 1.7.1. Suppose that the outside of the outer wall radiates heat,
modelled by Newton’s law of cooling into the surrounding air, at temper-
ature U3 and the inside of the inner wall is maintained at temperature
U0.

x = 0

x = L1

x = L2

x

Fig. 1.7.1. A composite blast furnace wall, comprising a brick wall and an
asbestos wall. The temperature on the inner wall x = 0 is U0 and heat is
lost to the air (at temperature U3) from the other wall x = L2 according to
Newton’s law of cooling.

The governing equations for one-dimensional flow are the heat equa-
tions for the two regions,

ρ1c1
∂u1

∂t
= k1

∂2u1

∂x2
, 0 < x < L1,

ρ2c2
∂u2

∂t
= k2

∂2u2

∂x2
, L1 < x < L2.

Example 1: Give a reasonable set of boundary conditions for the tempera-
tures u1 and u2, corresponding to Figure 1.7.1.

Solution: The appropriate system of boundary conditions is

u1(0, t) = U0,

u1(L1, t) = u2(L1, t),
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which expresses continuity of temperature across x = L1,

−k1
∂u1

∂x
(L1, t) = −k2

∂u2

∂x
(L1, t),

which expresses continuity of heat flux across x = L1, and on x = L2 we have
the Newton cooling condition

−k2
∂u2

∂x
= h[u2(L2, t) − U3].

Boundary conditions for 3-D transport

Generalising boundary conditions to three dimensions is quite straight
forward. The main thing to remember is that the heat flux into a surface
is given by −J · n̂ where n̂ is the unit outward normal to the bounding
surface.

For example, for the problem of heat flux J1 into a solid sphere, then
the appropriate boundary condition on the sphere surface r = a is

−J · n̂ = J1

which reduces to

k
∂u

∂r
= J1

after expressing the radial component of J in spherical coordinates with
radial symmetry (see, for example, Spiegel (1968)), noting that ∇u =
(∂u/∂r)êr with êr as the unit outward normal vector).

Diffusion boundary conditions

The boundary conditions for diffusion problems take the same form as
some of the boundary conditions for heat conduction. For example, if the
concentration is prescribed on a boundary then the boundary condition
is given by (2) (with u replaced by C). If the boundary is impermeable
(no solute or solution can cross it) then the boundary condition is the
zero-flux condition, describing zero mass transport, J(L, t) = 0.
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1.8 Solving the heat/diffusion equation

We look at finding equilibrium solutions for the 1-D heat and diffusion
equations. This leads us to solve an ordinary differential equation. We
then review briefly the techniques that will be introduced in the following
chapters for solving time-dependent partial differential equations.

Equilibrium solution

With an appropriate set of boundary conditions and an initial condi-
tion we can, in principle, solve the diffusion equation. In practice it is
necessary to choose the appropriate technique.

If we are not interested in the time dependence of the solution then
it is usually not difficult to obtain a steady-state solution, where we
neglect the time derivative. For 1-D diffusion equations this results in
an ordinary differential equation.

Example 1: Find the equilibrium solution for the partial differential equation

∂C

∂t
= D

∂2C

∂x2
− C

with the boundary conditions

∂C

∂x
= 0, C(1, t) = 1.

Solution: For the equilibrium solution we neglect the time dependence, writ-
ing the concentration C(x, t) as C(x) and setting ∂C/∂t = 0. The equilibrium
solution then satisfies

d2C

dx2
− C = 0,

with boundary conditions

dC

dx
(0) = 0, C(1) = 0.

The general solution is C(x) = A sinh(x)+B cosh(x). Applying the boundary
conditions gives A = 0 and B = 1/ cosh(1) = sech(1). Hence the equilibrium
solution is

C(x) =
cosh(x)

cosh(1)
.
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Overview of techniques

Equilibrium solutions to time-dependent partial differential equations
are useful in that they tell us what the long term behaviour of the solu-
tion is (the steady-state). However, information about how the solution
evolves into the steady-state is usually obtained by solving the full time-
dependent partial differential equation. This can sometimes be difficult.

In the following chapters we introduce the reader to a number of
techniques for solving (or approximately solving) the 1-D heat/diffusion
equation. Each of these techniques is motivated by a relevant case study
from industry. The techniques are:

• The Boltzmann similarity solution. (Chapter 2). Here we use the
substitution u = f(x/

√
t) to reduce the standard 1-D heat/diffusion

equation to an ordinary differential equation. It is applicable to the
basic heat or diffusion equation on a semi-infinite domain. We also see
how to use this method to solve a problem with a moving boundary.
and show how to obtain a pseudo-steady-state approximate solution.

• The method of stretching transformations. (Chapter 3). This
is an extension of the technique use in Chapter 2, where we make a
substitution corresponding to a stretching of each of the variables and
use this to come up with a similarity substitution which reduces the
partial differential equation to an ordinary differential equation.

• The method of perturbations. (Chapter 4). Sometimes a problem
that is difficult to solve in general may be close, in some sense, to a
problem which is easier to solve. We develop the method of regular
perturbations which gives a systematic way of obtaining a sequence of
approximate equations. The technique involves substituting a power
series expanded about some small parameter.

• Bifurcation analysis. (Chapter 5). Solutions to problems will in-
volve parameters. For some nonlinear problems the solution can ex-
hibit sudden changes (or jumps) as those parameters change. Bifurca-
tion analysis, as introduced here, is essentially a graphical technique,
where the equilibrium solution is plotted with respect to a parameter.

• The method of Fourier expansions. (Chapter 6). For some prob-
lems there is a natural periodic structure to the problem. Provided
the governing equations are linear, we can sometimes take advantage
of the periodic structure and look for solutions as a series of trigono-
metric functions. This is called a Fourier series. (It can also be used
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for problems on finite domains by pretending the problem is replicated
over space.)

1.9 Scaling equations

When modelling a complicated physical system, in the early stages of
model development, it is desirable to neglect the least important factors
in the problem. This enables us to develop a less ambiguous causal
relationship between the most important parameters of a system and
the outcome of an experiment.

Uses of scaling

Using dimensional analysis (see Section 1.10) tells us which dimension-
less parameters are important in a problem. It is also useful to see how
these dimensionless parameters manifest themselves in the governing
differential equations and boundary conditions. The process of making
differential equations and boundary conditions dimensionless is called
scaling.

Thus if the value of the dimensionless parameter is very small (or very
large) we may be able to neglect one or more terms in the equations,
perhaps obtaining significant simplification of the problem.

Example problem

As an example of the technique of scaling equations we consider the
one dimensional heat equation for a rod of length ` with a prescribed
temperature at one end (x = 0) and Newton cooling at the other end
(x = `) into surroundings at zero temperature.

The governing equation is the heat equation

∂u

∂t
= α

∂2u

∂x2
(1)

where α is the heat diffusivity.

At one end of the rod we have the prescribed temperature boundary
condition,

u(0, t) = u1, (2)
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and, at the other end, the Newton cooling boundary condition,

−k
∂u

∂x
= hu(`, t) (3)

where k is the conductivity and h is the convective heat transfer coeffi-
cient.

Dimensionless variables

The basic idea is to choose constants which have the same dimensions
as the variables in the equations (we call these scales). We then obtain
dimensionless variables by dividing the original variables by the scales.
These are then substituted into the governing equations, the boundary
conditions and the initial conditions.

The parameters of the problem are `, α, u1, k and h. We use these
to find the scales for the variables u, x and t. Scales for x and u are
easy to find. In both these cases constants exist which have the same
dimensions as the variables x and u. We can use ` for x and u1 for u.
There is no single parameter with dimensions of time to use as a scale
for t so we need to construct one from the available parameters. One
possibility is the combination `2/α which has dimensions [`2/α] = T.

We now introduce dimensionless ratios of the variables. We define
the dimensionless length X , dimensionless time T , and dimensionless
temperature U by�

�

�

�
X =

x

`
, T =

αt

`2
, U =

u

u1
. (4)

Example 1: Using the chain rule and the change of variables (4), express
∂u

∂x

and
∂2u

∂x2
in terms of the dimensionless variables U and X.

Solution: From equation (4)

x = `X, t =
`2

α
T, u = u1U. (5)

By the chain rule,

∂u

∂x
=

∂

∂X
(u1U) × dX

dx
=

(u1

`

) ∂U

∂X
.
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Hence, using the chain rule again,

∂2u

∂x2
=

∂

∂x

(
∂u

∂x

)
=

∂

∂X

(
u1

`

∂U

∂X

)
× dX

dx
=

(u1

`2

) ∂2U

∂X2
.

Let us look at the pattern of what is happening. The effect on the
dependent variable u is to multiply by its scale u0. The effect on
the independent variable x is to divide by its scale `, for each order of
differentiation. In general, if

U = u0u, X = x0x, T = t0t

then
∂m+nu

∂xm∂tn
=

(
u0

xm
0 tn0

)
∂m+nU

∂Xm∂T n
. (6)

Example 2: Use the formula (6) to express the derivatives ∂u/∂t and
∂2u/∂x2 in terms of the dimensionless variables U , X and T .

Solution: By the formula, letting t0 = `2/α, x0 = `, u0 = u1 and taking
m = 0, n = 1,

∂u

∂t
=

u0

`2/α

∂U

∂T
.

With m = 2, n = 0 and x0 = `,

∂2u

∂x2
=

u0

`2
∂2U

∂X2
.

With practice, you should be able to apply the formula (6) very quickly
and not have to use the chain rule to scale derivatives.

Scaling the partial differential equation

We now use the change of variable (5) to replace the dimensional vari-
ables in (1) with non-dimensional ones. In principle, we use the chain
rule, but in practice we use the formula (6). Since the relationship
between variables is simply multiplying by a constant, the change of
variables is simple.

Example 3: Using (4) scale the partial differential equation (PDE), equa-
tion (1). That is, express this PDE in dimensionless variables U , X and T .
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Solution: From Example 1 or Example 2 the PDE (1) becomes(
u1

`2/α

)
∂U

∂T
= α

(u1

`2

) ∂2U

∂X2
.

This simplifies to

∂U

∂T
=

∂2U

∂X2
.

Scaling boundary conditions

We now turn our attention towards scaling the boundary conditions . It
is useful to first write out exactly what the boundary condition means.
For example, the boundary condition u(0, t) = u1 can be written

u = u1 when x = 0.

Then we simply replace the lower case variables with the upper case
variables, using (4).

Example 4: Scale both the boundary conditions

u(0, t) = u1, −k
∂u

∂x
(`, t) = hu(`, t).

using the change of variable (5).

Solution: The two boundary condition can be written out as

u = u1 when x = 0, −k
∂u

∂x
= hu when x = `.

Using (4) these become

u1U = u1 when `X = 0, −ku1

`

∂U

∂X
= hu1 U when `X = `.

These simplify to

U = 1 when X = 0, − ∂U

∂X
= εU when X = 1

where

ε =
h`

k
.
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Since U is defined to be a function of the dimensionless variables X and T ,
we can hence write the scaled boundary conditions as†

U(0, T ) = 1, − ∂U

∂X
(1, T ) = εU(1, T ).

Summary: the scaled problem

In summary, we have taken the problem

∂u

∂t
= α

∂2u

∂x2
, u(0, t) = u1, −k

∂u

∂x
(`, t) = hu(`, t)

and written it in terms of dimensionless variables as

∂U

∂T
=

∂2U

∂X2
, U(0, T ) = 1, − ∂U

∂X
(1, T ) = εU(1, T ).

The scaled problem is simpler to work with — it only involves one

dimensionless parameter ε, whereas the original equations involved five

parameters, α, h, k, ` and u1. Note that each term in each equation is
itself dimensionless.

A quick check of the dimensions shows that the parameter

ε =
h`

k

is dimensionless. Physically, it gives us a measure of the relative impor-
tance of heat lost from the boundary. In the literature, this parameter
is called the Biot number.

1.10 Dimensional analysis

Dimensional analysis is a technique used to reduce a problem to a mini-
mal set of dimensionless variables. It is a useful technique for simplifying
a problem. The general theory of dimensional analysis may be found in
the classic texts by Barenblatt (1987) and Birkhoff (1950) with a good
introduction given by Lin and Segel (1974). Here we give the basic idea,
apply the technique to some examples and then summarise the general
principles.

† Note that it is not correct to write U(0, `2t/α) = 1.



34 Preliminaries

The basic idea

Before any serious modelling with differential equations begins it is often
useful to get a feel for the important variables in a problem by using the
technique of dimensional analysis. This technique involves finding the
simplest possible functional relationships between the important vari-
ables of the problem. The following example illustrates this type of
problem.

Any given problem will depend on a number of variables and param-
eters. The variables will often be quantities representing position and
time. Parameters are physical constants in a problem. For example,
in problems involving heat conduction, parameters may include ther-
mal material constants such as conductivity and specific heat, and also
constants referring to the size of an object, such as its overall length.

An example problem

Let us consider a simple problem involving heat conduction.

Consider a semi-infinite rod defined on 0 < x < ∞ as a model for a very long
rod which is heated at one end. The initial temperature of the rod is 0 ◦C and
one end of the rod (x = 0) is subsequently exposed to a constant temperature
u1. We assume that there is no heat loss from the surface of the rod. Hence
we have a one-dimensional heat conduction problem.

The temperature u will depend on the distance x from the end of the
rod and also on the time t. Since the rod is of infinite length there is
no length scale for the problem. The temperature also will depend on
thermal properties. A single constant, called the thermal diffusivity, α,
characterises the material. The dimensions of α are L2T−1. We express
the dependence of the temperature on these variables and parameters
by writing

u = f(x, t, α, u1). (1)

Applying dimensional analysis

Our aim is to express (1) as a relationship among dimensionless quan-

tities. We start by taking the dimensions of (1):

[u] = [f(x, t, α, u1)]. (2)
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In general, for a function of several variables, the dimensions of the
value of a function f will be the product of all the variables, each raised to
some arbitrary power. Thus, for example, equation (2) can be expressed
as

[u] = [x]a[t]b[α]c[u1]d (3)

where a, b, c and d are arbitrary constants to be determined. In general,
if we have a function f(p1, p2, p3, . . .) then

[f(p1, p2, p3, . . .)] = [p1]a[p2]b[p3]c . . . .

We can now determine these constants by requiring the dimensions of
both sides of the equation to be the same. The following example shows
how to do this.

Example 1: Express equation (3) in terms of dimensions L, T and Θ. Hence
reduce the problem to the minimal number of variables.

Solution: Now [x] = L, [t] = T, and [u] = [u1] = Θ and [α] = L2T−1. Hence,
equating dimensions in (1) gives

Θ = L
a
T

b(L2
T
−1)cΘd

= L
a+2cT b−cΘd.

Equating the exponents of each fundamental dimension gives a set of simul-
taneous linear equations

a + 2c = 0, b − c = 0, d = 1.

Solving this system we obtain

b = −1

2
a, c = −1

2
a, d = 1.

The system is underdetermined and we have expressed the solution in terms
of one unknown a. Hence

[u] = [u1][x]a[t]−a/2[α]−a/2

which simplifies to

[u] = [u1]

[
x√
αt

]a

. (4)

We now go back to expressing u as a functional relationship — this
time of the dimensionless variables. Since there is only one arbitrary
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constant a, then the function will be of only one variable. Equation (4)
is consistent with the the functional relationship

u = u1F (
x√
αt

) (5)

for some function F of one variable.

In fact what (5) says is that the dimensionless combination u/u1 only
depends on one dimensionless combination x/

√
αt. This idea can be

very useful in solving certain partial differential equations. It allows
us to effectively reduce the number of independent variables by one,
converting a partial differential equation in two variables to an ordinary
differential equation in one variable (see Section 2.2 for how this works
with the 1-D heat conduction equation).

Summary of the technique

In dimensional analysis the main idea is to start with a general functional
relationship between various physical variables and then to obtain a
simplified relationship based on dimensionless variables. The main skill
lies in deciding which variables are important in a problem, the rest is
routine.

Given a functional relationship of the form

φ = f(x1, x2, . . . , xn)

first take the dimensions of both sides. This yields something of the
form

[φ] = [x1]a1 [x2]a2 . . . [xn]an .

By reducing each of the quantities [xi], i = 1 . . . n to fundamental di-
mensions L, M, T, and Θ and equating with the LHS, a linear system of
equations should be obtained for the unknowns a1, . . . , an.

Solving the linear system yields several possibilities.

• Unique solution: Solve for the unknowns. Then φ is given by a di-
mensionless constant multiplied by the variables raised to the powers
corresponding to the unique solutions obtained for a1, . . . , an.
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• More (independent) equations than unknowns: Solve for some of the
variables in terms of the others, reduced as far as possible. The num-
ber of free parameters gives the number of independent dimensionless
variables that the solution depends on.

• Fewer (independent) equations than unknowns: This shows that there
are not enough variables in the original functional relationship. Think
about the problem again and come up with some additional variables.

The following examples illustrate the last two situations.

Example 2: Consider the same problem of the rod heated at one end at
temperature u1 and at the other end, x = `, no heat escapes. Use dimen-
sional analysis to express the temperature in terms of a minimal number of
dimensionless quantities.

Solution: The temperature is now a function of the variables x and t and
the constants ` and α. So we can write

u = f(x, t, α, `).

Taking dimensions of the equation, we have

[u] = [x]a[t]b[α]c[`]d[u1]
e (6)

where a, b, c, d and e are constants.

Evaluating the dimensions of each of the quantities u, x, t, α and `, we
obtain

Θ = L
a
T

b(L2
T
−1)c

L
dΘe

which simplifies to

Θ = L
a+2c+d

T
b−cΘe.

We thus obtain the equations

a + 2c + d = 0, b − c = 0, e = 1.

So c = b and d = −a − 2b and we still have a and b undetermined.

Putting this back into equation (6) we obtain

[u] = [x]a[t]b[α]b[`]−a−2b[u1],

which we can also write as

u = [u1]
[x

`

]a
[

αt

`2

]b

.

Since there are two terms with arbitrary constants a and b this tells us that
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the functional form must involve a function of two variables. Thus we can
write

u = u1F

(
x

`
,
αt

`2

)
.

Suppose we had forgotten to include a variable. Dimensional analysis
can tell us we have made an error — we have left something important
out. The following example shows how this comes about.

Example 3: Consider an infinite rod with no heat loss from the curved
surface. Use dimensional analysis on this problem where the temperature u1

of the end of the rod has not been included.

Solution: We have

u = f(x, t, α).

Taking dimensions gives

[u] = [x]a[t]b[α]c.

Expression in terms of fundamental quantities L, T, and Θ,

Θ = L
a
T

b(L2
T
−1)c.

Equating like terms gives

a + 2c = 0, b − c = 0, 1 = 0.

This is not consistent. The original assumption regarding the functional de-
pendence of variables must have been wrong.

1.11 Problems for Chapter 1

1. For the following determine the dimensions of the required variable.

(a) Given [k] = MLT−3Θ−1, [ρ] = ML−3 and [c] = L2T−2Θ−1 find [α] where
α = k/(ρc).

(b) Verify that the quantity hL/k is dimensionless. You are given [h] =
MT−3Θ−1, [k] = MLT−3Θ−1 and L is a length scale.

2. For the following find the dimensions of the required variable.

(a) Find [h] from

−k
∂u

∂x
(L, t) = h (u(L, t) − ue)

given [u] = Θ, [ue] = Θ, [k] = MLT−3Θ−1 and [x] = L.
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(b) Find [α] from

∂u

∂t
= α

∂2u

∂x2

given [u] = Θ, [t] = T and [x] = L.

3. Consider the equation

s = s0 + v0t − 1

2
gt2.

Here s is the position (measured vertically from a fixed reference point) of a
body at time t, s0 is the position at time t = 0 and g is the acceleration due
to gravity. Is this equation dimensionally correct?

4. Determine whether the equation

dE

dt
=

[
mr2

(
d2θ

dt2

)
+ mgr sin(θ)

]
dθ

dt

for the time rate change of total energy E in a pendulum system is dimen-
sionally correct.

5. Consider a solid metal rod with cross-sectional area A. Suppose that the
heat flow is along the axis of the rod and that no heat can escape from the
surface of the rod. Further, suppose that due to an electric current, heat is
produced at a rate Q joules per unit time per unit volume within the rod. By
considering a thin section of thickness δx derive the heat equation

ρc
∂u

∂t
= k

∂2u

∂x2
+ Q

where ρ, c, and k are the (constant) density, specific heat and conductivity of
the material. (This requires a slight modification of the argument used in the
notes to derive the one-dimensional heat equation.)

6. Suppose that in a hollow pipe (cross-section A) a fluid is moving with
constant velocity V . Within the fluid heat is being conducted according to
Fourier’s law with conductivity constant k. The velocity of the fluid and
direction of heat conduction may be assumed to be in the same direction as
the x-axis which coincides with the axis of symmetry of the pipe.

Consider a section of the pipe between x and x+δx. Given the temperature
U(x, t) derive the advection-conduction equation

ρc

(
∂U

∂t
+ V

∂U

∂x

)
= k

∂2U

∂x2
.

[Hint: This is a modification of the argument that is used to derive the one-
dimensional heat conduction equation. There will be an additional flux of
heat through the section due to the heat energy which is carried along with
the fluid.]
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7. Suppose that the conductivity k(u) is a function of temperature u. By
modifying the derivation of the one-dimensional heat equation in the notes
obtain the nonlinear heat conduction equation

ρc
∂u

∂t
=

∂

∂x

(
k(u)

∂u

∂x

)
.

8. A solute is diffusing in a mixture in three spatial dimensions. A mass
balance equation for the solute is

∂

∂t

∫
V

C(x, t) dV = −
∮

S

J(x, t) · n dS.

(a) Describe what each of the two terms in the equation mean physically.

(b) Use Fick’s law and the divergence theorem to show that the concentra-
tion C(x, t) satisfies the 3-D diffusion equation

∂C

∂t
= D∇2C.

9. By considering an arbitrary volume V formulate the 3-D heat equation

∂u

∂t
= α∇2u

where u(x, t) is the temperature at a point x and at time t, and α is a positive
constant. [Hint: See previous question.]

10. Consider the equilibrium heat conduction problem with conductivity,
k(u), depending on the temperature u,

d

dx

(
k(u)

du

dx

)
= 0, u(0) = 0, u(1) = 10.

The next simplest choice for k(u) after the constant case is to assume that the
conductivity depends linearly on temperature, i.e. k(u) = k0(1 − bu) where
b and k0 are positive constants. This corresponds to a substance where the
conductivity decreases as the temperature increases.

(a) Show, by solving the equilibrium 1-D heat equation, that

u(x) =
1

b

[
1 −

√
1 − 2b(10 − 50b)x

]
, if b ≤ 1

10
.

(Make certain discarding the positive sign solution of the quadratic
equation is justified.)

(b) Sketch the graph of the equilibrium temperature. Also sketch the con-
stant conductivity case on the same diagram.

(c) Discuss the physical significance of the condition b ≤ 1
10

.
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11. We consider a problem involving diffusion with a chemical reaction.
A gas dissolves into a film of liquid on a surface (see Figure 1.11.1). Inside
the film a chemical reaction is going on which causes the gas molecules to
disappear thus setting up a concentration gradient which causes more gas
molecules to be absorbed into the film. We wish to set up a mathematical
model which predicts the rate of absorption of the gas molecules.

film

gas

solid surface

C(x, t)

x = L

x = 0

x

Fig. 1.11.1. Diagram for Question 11. Diffusion with chemical reaction in a
thin liquid film on a surface.

Suppose the gas-liquid interface is at x = L, where the concentration of gas
molecules is always a fixed amount c0. The bottom of the film is at x = 0 where
there is no movement of molecules (i.e. the mass flux is zero at x = 0). The
concentration of gas molecules satisfies the diffusion equation with a negative
source term which accounts for the loss of gas molecules due to the chemical
reaction. We assume that the rate of loss of molecules is proportional to the
concentration. The equation for the concentration is therefore

∂C

∂t
= D

∂2C

∂x2
− µC

where µ is a positive constant, called the rate constant.

(a) Show, by solving the appropriate differential equation, that the equi-
librium concentration is given by

C(x) =
c0 cosh(bx)

cosh(bL)
where b =

√
µ/D.

(b) Sketch the equilibrium concentration against x.

(c) Calculate the equilibrium mass flux at the liquid-gas interface. Does
this have the correct sign?

12. Consider a rectangular cooling fin, as shown in Figure 1.11.2. Its
function is to increase the transport of heat from a wall to the air. We wish to
calculate the equilibrium temperature distribution along x and the heat lost
to the environment.

The end of the fin is at the ambient air temperature, which we take as 0 ◦C.
Heat flows along the fin from the wall to the air. Heat is also lost from the top
and bottom surfaces of the strip according to Newton’s law of cooling (heat
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b w

L

Fig. 1.11.2. A rectangular heat fin. See Question 12 and Question 13.

flux from the surface is proportional to the temperature difference). Assume
that the heat loss from the end and the sides is negligible.

(a) Using a one-dimensional approach consider a thin section of thickness
δx at x. Let u be the average cross-sectional temperature in the rod
at a distance x from the wall. By accounting for the change of heat
in the section in a time δt derive the equation for the equilibrium
temperature

d2u

dx2
=

2h

kb
u.

(b) The temperature at x = 0 is u0. The boundary condition at x = L
is obtained from the above assumptions. Solve this boundary value
problem and obtain an expression for the equilibrium temperature as
a function of x.

(c) Calculate the total rate of heat lost from the top surface.

13. This is an alternative derivation for the differential equation in Ques-
tion 12. Suppose v(x, y) is the two-dimensional equilibrium temperature. De-
fine

u(x) =
1

b

∫ b/2

−b/2

v(x, y) dy

as the average equilibrium temperature over a cross-section. Integrate the
equilibrium heat equation

∂2v

∂x2
+

∂2v

∂y2
= 0

and obtain the ordinary differential equation in the previous question.

14. A thin wire (radius a) is extruded at fixed velocity V0 through a die
(see Figure 1.11.3) and the wire temperature at the die is a fixed value u0.
The wire then passes through the air having temperature ua for some distance
before it is rolled onto large spools at a large distance from the die nozzle.
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We wish to investigate the relationship between the wire velocity and the
distance between the extrusion nozzle and roll for specific values of V0.

wire

die

x

V0

Fig. 1.11.3. Diagram for Question 14. A thin wire being extruded through a
die.

(a) Show the temperature u(x, t) in the wire satisfies the partial differential
equation (

∂u

∂t
+ V0

∂u

∂x

)
= α

∂2u

∂x2
− 2h

a
(u − ua).

Define any additional symbols introduced. [Hint: Neglect any radial
heat flow. Consider a section between x and x + δx. The heat bal-
ance then includes heat lost to the surroundings at temperature ua by
Newton’s law of cooling.]

(b) For our model let us consider the semi-infinite wire 0 < x < ∞ and
attempt to obtain the equilibrium temperature u(x). State the bound-
ary conditions and solve the appropriate ordinary differential equation
to obtain

u(x) − ua

u0 − ua
= exp(σx), σ =

V0

2α
−

√
V 2

0

4α2
+

2h

ka

(You must be careful to justify the choice of the minus sign when solving
the quadratic equation.)

(c) Consider the limiting cases V0 → 0 and V0 → ∞.

15. Consider a long nuclear fuel rod which is surrounded by an annular
layer of aluminium “cladding” as shown in Figure 1.11.4. Within the fuel rod
heat is being produced by fission; this heat source is dependent on position
with a source strength varying approximately as

Q(r) = Q0

[
1 + b

( r

R

)2
]

where r is the radial coordinate and Q0 and b are constants which are measured
by experiment.

In cylindrical polar coordinates, the differential equation for the equilibrium
temperature in the fuel rod is

k
1

r

∂

∂r

(
r
∂u1

∂r

)
+ Q(r) = 0

where k is the conductivity.



44 Preliminaries

R

Rc
fuel rod

cladding

Fig. 1.11.4. Diagram for Question 15. A nuclear fuel rod surrounded by
cladding.

(a) Sketch Q(r).

(b) What is the differential equation for the equilibrium temperature u2(r)
in the cladding? What is the general solution of this differential equa-
tion?

(c) Assuming that the outer surface of the cladding, r = Rc, is always
at the temperature uc and the conductivities of the fuel rod and the
cladding are k and kc respectively, show that the equilibrium temper-
ature of the inner surface of the cladding is given by the expression

uc +
Q0R

2

2kc

(
1 +

b

2

)
log

(
Rc

R

)
.

(d) Where does the maximum temperature in the fuel rod occur?

16. Consider the heat conduction equation

ρc
∂u

∂t
= k

∂2u

∂x2
+ qu

with a volumetric source term Q = qu (q is a constant), where the source term
is proportional to the temperature u(x, t). Show that the change of dependent
variable

u(x, t) = v(x, t)eqt/ρc

results in a heat equation for v(x, t) without a source term.

17. The heat conduction equation in spherical coordinates (with spherical
symmetry) is

∂u

∂t
= α

1

r2

∂

∂r

(
r2 ∂u

∂r

)
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where α is the (constant) heat diffusivity. Show that the substitution for the
dependent variable,

v(r, t) = ru(r, t),

reduces this equation to the standard cartesian form of the heat/diffusion
equation

∂v

∂t
= α

∂2v

∂r2
.

18. Consider the transformation of the independent variable x,

ξ = x − V t τ = t.

(a) Show, that under this transformation, the one-dimensional advection-
diffusion equation (with V a constant)

∂C

∂t
+ V

∂C

∂x
= D

∂2C

∂x2

transforms to the one-dimensional diffusion equation

∂C

∂τ
= D

∂2C

∂ξ2
.

(This is simply a change of reference frame.)

(b) Suppose that V is a function of time t. What should the transformation
be in this case in order to get the same equation?

19. The equations describing a convection-diffusion problem in heat trans-
port are

∂u

∂t
+ v

∂u

∂x
= α

∂2u

∂x2
, u(0, t) = u0, u(x, 0) = 0, u(`, t) = u1,

where u(x, t) is the temperature, v is the (constant) velocity and α is the
thermal diffusivity. Consider the following scaling,

X =
x

`
, T =

αt

`2
, U =

u

u1
, V =

`v

α
.

Show that the above equations may be expressed in the dimensionless form

∂U

∂T
+ ε1

∂U

∂X
=

∂2U

∂X2
, U(0, T ) = ε2 U(X, 0) = 0, U(1, T ) = 1,

giving formulae for the dimensionless constants ε1 and ε2.
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20. A missile, which has mass m, is projected upwards from the Earth’s
surface with initial speed v0. The missile is subject to a gravitational field
which varies with the inverse square distance from the Earth’s centre. Let a
denote the radius of the Earth, let g denote the gravitational acceleration at
the Earth’s surface, and let r(t) be the radial distance of the missile from the
Earth’s surface at time t. If we neglect air resistance the governing equations
of motion of the missile are

d2r

dt2
= − ga2

(r + a)2
, r(0) = 0,

dr

dt
(0) = v0.

(a) Consider the following scales: v2
0/g for r and v0/g for t. We define the

new variables

R =
r

v2
0/g

, T =
t

v0/g
.

Check that R and T are dimensionless.

(b) Substitute these into the equations of motion and obtain

d2R

dT 2
= − 1

(εR + 1)2
, R(0) = 0,

dR

dT
(0) = 1.

Give the parameter ε.

(c) How do the equations simplify for ε � 1? What do the simplified
equations correspond to physically?

(d) Suppose we use a different set of scales for the previous problem:

R = r/a, T = v0t/a.

Write down the dimensionless differential equation and initial condi-
tions. Explain why this scaling is inappropriate for small values of
V 2/(ga). (You can give a mathematical and a physical reason here.)

21. A pendulum is executing small vibrations.

(a) Use dimensional analysis to show that it is impossible on purely dimen-
sional grounds for the period τ to depend only on the length ` of the
pendulum and the mass m of the bob.

(b) Suppose you now assume the period also depends on g the acceleration
due to gravity. What does dimensional analysis say about this?

22. Consider the (incompressible) flow of a liquid in a circular pipe. Assume
the pressure difference between the two ends of the pipe, ∆P , depends only
on the pipe length `, radius R, the maximum speed of the fluid U , the fluid
viscosity µ (where [µ] = ML−1T−1) and density ρ. Use dimensional analysis to
express ∆P as a function of dimensionless variables.
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One answer is

∆P

ρU2
= F

(
ρUR

µ
,
ρU`

µ

)

but there are others.

23. A windmill is being rotated by air flow to produce power to pump
water. It is desired to find the power output P of the windmill. Assume that
P is a function of the density of air ρ, the viscosity of air µ, diameter of the
windmill d, wind speed v, and the rotational speed ω (measured in radians
per second).

(a) Argue why [ω] = T−1.

(b) Using dimensional analysis, find a dimensionless relationship for P .

24. The thrust (force) T developed by a ship’s propeller in deep water
depends on the radius a of the propeller, the number of revolutions per minute
n, the velocity V with which the ship advances, the gravitational constant g
and the density ρ of the water.

Show that
T

ρa2V 2
= Φ

(an

V
,

ag

V 2

)
for some function Φ of two variables. [Hint: First argue [n] = T−1.]

25. Many cookbooks say that a roast should be cooked for x minutes per
kilogram. Carry out the following dimensional analysis. Assume that (for a
given cooking temperature) the time τ for the centre of the roast to reach the
required temperature depends only on the mass of the roast m, the density of
the meat ρ and the thermal diffusivity of the meat α.

(a) Show that

τ is proportional to m2/3.

(b) Discuss whether the cookbooks are correct in assuming that the roast
should be cooked for a certain number of minutes per kilogram.

26. Use dimensional analysis to predict the crater volume V produced by
an explosion on the surface of the earth. Assume that the size of the crater
depends on the mass of the explosive and the density of the soil. Hence explain
whether a higher soil density will produce a larger or smaller crater.
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27. The lift force F on a missile depends on the length of the missile `, its
velocity v and diameter d; it also depends on the air density ρ, viscosity µ,
gravity g, and the speed of sound in air, c.

Show that

F = ρv2`2 f̂

(
d

r
,

µ

ρvr
,
c

v
,
`g

v2

)

where f̂ is some function of four variables.

28. Suppose (p1, p2) and (q1, q2) denote two sets of measurements of primary
quantities (i.e. quantities whose dimensions are fundamental dimensions). Let
f(p1, p2) and f(q1, q2) be two measurements of the same secondary quantity.
We are going to show that f(p1, p2) = Cpa1

1 pa2
2 .

(a) Give reasons why we can postulate

f(x1p1, x2p2)

f(p1, p2)
=

f(x1q1, x2q2)

f(q1, q2)
. (∗)

(b) By taking
∂

∂x1
of (∗) and then setting x1 = 1, deduce that

f(p1, p2) = g(p2)p
a1
1 ,

where a1 is a constant (with respect to p1 and p2) and g is an arbitrary
function.

(c) Hence deduce that

f(p1, p2) = Cpa1
1 pa2

2

where C is a constant (with respect to p1 and p2).

This result may be extended to f(p1, p2, p3, . . . , pn) for any n. (See Lin and
Segel (1974)).
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Case Study: Continuous Casting

The case study in this chapter involves finding the puddle length in a
continuous casting operation. This involves calculating how fast molten
steel solidifies. We introduce the Boltzmann similarity transformation
as a way of solving the 1-D heat equation with a moving boundary (the
boundary between molten and solidified steel, which changes with time).
This technique reduces the PDE into an ordinary differential equation
(ODE) and a parameter describing the moving boundary position is
obtained as the solution of a transcendental equation.

2.1 Introduction to the case study problem

Of great interest in many industrial applications are those problems
which involve a change of phase — from solid to liquid or liquid to solid,
for example. These are also interesting mathematically because few
exact solutions are known. Hence the ones for which analytic solutions
are known give considerable insight into the physical processes involved.
We develop a mathematical model to examine the feasibility of casting
steel sheets by pouring molten metal onto a cooled rotating drum. This
model involves the concept of a moving solidification boundary. The
problem was brought to the 1985 Australian Mathematics in Industry
Workshop by the Research Laboratories of BHP in Melbourne. It was
reported in Barton (1985).

49
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Background

A conventional method of producing steel sheets involves rolling steel bil-
lets down to the required thickness. This can be costly in both resources
and time. Also it is difficult to produce very long sheets of steel by this
method. One alternative is to pour molten steel onto a rotating drum
which is cooled by water flowing through it (see Figure 2.1.1). Provided
the molten steel solidifies quickly enough then the steel sheet can be
removed from the drum. The Australian steel manufacturing company
BHP were interested in using this method to cast sheet steel between
1 mm and 10 mm thick. The drum speed was to be about 1 m s−1.

V
solid steel

molten steel

rotating drum

`

liquid

solid

drum

Fig. 2.1.1. Schematic diagrams of continuous casting on a water cooled drum.

The thickness of the steel sheet is controlled by varying the flow rate
of molten steel from the container. Thus to make the sheet thicker you
would increase the flow rate of the molten steel onto the drum.

As the molten steel is poured onto the drum it begins to solidify as
heat passes from the molten steel into the water cooled drum. In doing
so a “puddle” of molten steel exists above the solidified steel. For this
process to work effectively we do not want the liquid metal to run off
as the drum rotates. Thus the molten steel must solidify before it gets
too far around the drum.

We need to undertake a feasibility study of the solidification process.
To do this we formulate a mathematical model of the important phys-
ical aspects of the problem. The model does not have to be an exact
representation of the problem, however, we hope to use it to perform cal-
culations that are accurate at least to an order of magnitude. Further
refinements of the model (with possible computer calculations) would
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then be justified if the initial calculations indicated whether the process
was feasible.

A mathematical model

The aim of our mathematical model, then, is to determine the “puddle
length”. This is the distance from the point where the molten steel is
poured onto the drum (and begins to solidify) to the point where the
whole layer has solidified. For a drum whose surface rotates with speed
V , the puddle length ` is simply given by

` = V th (1)

where th is the time for the metal to solidify through the full thickness
h of the metal sheet, and V is the speed of the surface of the rotating
drum.

Thus what we really need to calculate is the quantity th, the time
taken for the molten steel to solidify a distance h. We try to do that by
modelling the heat transfer and solidification of the molten metal by a
one-dimensional approach. We first observe that if we fix our frame of
reference (co-ordinate system) on the surface of the drum then we have
a moving boundary which moves from the surface of the drum to the
liquid-air interface, as in Figure 2.1.2.

drum liquidsolid

x = s(t)
u1(x, t) u2(x, t) uf

x = 0

x

Fig. 2.1.2. 1-D model for the solidification and heat transport processes in the
molten steel and water cooled drum.

The temperature of the molten metal is very close to the solidification
temperature, uf ' 1400 ◦C for steel. We will neglect radiative heat
transfer† from the liquid-air interface, assuming that all the heat flows
towards the cooled drum. Thus we can assume that the temperature
in the liquid phase is a constant, uf . We take the temperature in the

† Neglecting radiative transfer, for this problem, can be justified by a simple model
of one-dimensional heat conduction with radiative transfer from the liquid-air in-
terface and ignoring solidification. The calculations in Barton (1985) showed the
radiative transfer term was small and that the solidification occurs from the drum.
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solidified metal, u2, and the temperature in the cooled rotating drum,
u1, to be functions of x and t.

The radius of the drum is large compared to the thickness of the metal.
Thus, in our one-dimensional model we take the drum to be the semi-
infinite region −∞ < x < 0. The temperature of the drum at a large
distance from the surface is U ' 150 ◦C.

Governing equations

Let us define u2(x, t) to be the temperature of the solidified metal at
time t and at distance x from the drum surface. Let us also denote the
position of the moving interface between the liquid and the solid to be
at x = s(t), for some function s to be determined. We also let u1(x, t)
denote the temperature in the drum. Our aim is to solve for u1(x, t),
u2(x, t) and s(t).

Both u1 and u2 satisfy the 1-D heat conduction equations

∂u1

∂t
= α1

∂2u1

∂x2
,

∂u2

∂t
= α2

∂2u2

∂x2
.

(2)

Note that each equation has a different thermal diffusivity α1 and α2

since the solidified steel and the copper drum are different materials.

We require two boundary conditions for each of the above partial
differential equations since they are both second-order in x. We need
one boundary condition at x = −∞, two at x = 0 and one at the moving
boundary between solid and liquid.

The temperature at the core of the copper drum was provided as ud.
At x = 0 the temperature and heat flux must be continuous. On the
solid-liquid boundary the temperature must also be continuous. We
shall let x = s(t) denote the position of this moving boundary. So
x < s(t) denotes the solid steel and x > s(t) denotes the molten steel.
We let ud denote the temperature of the core of the copper drum, and
uf the solidifying (freezing) temperature of molten steel. The boundary
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conditions are

u1(−∞, t) = ud,

u1(0, t) = u2(0, t),

−k1
∂u1

∂x
(0, t) = −k2

∂u2

∂x
(0, t),

u2(s(t), t) = uf ,

(3)

where k1 and k2 are the conductivities of copper and solid steel.

Although, in principle, we can solve for both u1 and u2, we need an
extra boundary condition. This will let us also solve for the position of
the moving boundary s(t). This extra boundary condition comes from
considering the latent heat released when the molten steel solidifies. We
shall determine this boundary condition (known as a Stefan condition)
after investigating some basic physical concepts regarding latent heat.

Latent heat

At certain temperatures, heat energy added to a material can alter the
physical structure of the material. For example, at 0 ◦C with additional
heat ice breaks its intermolecular bonds and changes into liquid water if
a sufficient amount of heat is added to it. Similarly, if we remove heat
from water at 0 ◦C then the water freezes and becomes ice. This is called
a phase change.

The amount of heat required to do this is called the latent heat.
More specifically, the latent heat of fusion for a given material is
the amount of heat required to convert a mass of solid, at its melting
temperature, into a liquid at the same temperature. In the reverse
process of solidification, the latent heat of fusion is the amount of heat
released when molten material solidifies.

The latent heat for a phase change is usually expressed per unit mass,
and here we give it the symbol λ. We call this quantity the specific

latent heat . The SI units are joules kg−1. Some typical values of λ are
given in Table 2.1.1.

A similar description can be given for the process of boiling a liquid,
or the reverse process of condensation. Here, we refer to the specific
latent heat of vaporisation. As a comparison, some values for specific
latent heats for vaporisation of liquids are given in Table 2.1.2.
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Table 2.1.1. Melting temperature uf and specific latent heat of fusion λ for
water and various metals. Source: Science Data Handbook (1971).

uf
◦C λ J kg−1

Ice 0 33 × 104

Solder 217 190 × 104

Lead 327 2.6 × 104

Aluminium 659 38 × 104

Copper 1 083 21 × 104

Gold 1 067 7.0 × 104

Iron 1 537 27 × 104

Steel 1 440 27 × 104

Table 2.1.2. Boiling temperature uv and specific latent heat of vaporisation λ.

uv
◦C λ J kg−1

Water 100 2.26
Ethyl alcohol 79 8.5 × 10−1

Helium −269 2.5 × 10−2

The Stefan condition

We now derive the boundary condition on the moving boundary x = s(t).
To do this we assume the moving boundary advances a distance δs in a
time δt. This is illustrated in Figure 2.1.3.

δs

x = s(t + δt)

x = s(t)

liquidsolid

Fig. 2.1.3. The solid-liquid interface advancing a distance δs in time δt.

For the region of thickness δs, we equate the heat released by solid-
ification (latent heat) to the amount of heat removed by conduction.
The following example shows how to use conservation of energy (heat
balance) to obtain an additional boundary condition at x = s(t).
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Example 1: Obtain the boundary condition representing the absorption of
latent heat.

Solution: A word equation which expresses conservation of heat for the
region s(t) to s(t + δt) is{

latent heat
liberated by

solidifying mass

}
=

{
heat conducted
back through

cross-section at x = s(t)

}
.

Let λ be the specific latent heat (per unit mass) of the metal. The total
mass of the material which has solidified in the given time interval is ρAδs =
ρA(s(t+ δt)− s(t)). Here ρ is the density of the material (assumed the same,
here, for solid and liquid phases) and A is some cross-sectional area. Thus{

latent heat
liberated by

solidifying mass

}
= λρAδs. (4)

Since the liquid metal is assumed to be at a uniform temperature there is no
temperature gradient in the direction of the liquid metal. All the heat flows
through the boundary x = s(t) back into the solid, towards the drum surface.
The amount of heat conducted through x = s(t) is obtained by multiplying
the heat flux by the cross-sectional area A and the time interval δt. Using
Fourier’s law, J = −k∂u/∂x is the heat flux in the positive x-direction. Thus,
we have {

heat conducted
back through

cross section at x = s(t)

}
= −JAδt = k

∂u

∂x

∣∣∣∣
x=s(t)

Aδt. (5)

(The minus sign indicates that heat is conducted in the negative x-direction,
towards the solid.)

We now equate (4) and (5). We divide through by Aδt and then let δt → 0
(corresponding to δs → 0). We thus obtain, in the limit,�

�

�

�
k

∂u

∂x
(s(t), t) = λρ

ds

dt
. (6)

This boundary condition (6) is known as the Stefan condition after
J. Stefan who derived it around the turn of the 19th century to study
the freezing of water in the ground in order to calculate the thickness
of the polar ice caps. There is a more complicated version of the Stefan
condition when the liquid phase is at a different temperature to the freez-
ing temperature. There is also a Stefan condition for melting problems.
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These are explored in the problems at the end of this chapter. Various
Stefan-type problems are reviewed in Carslaw and Jaeger (1959).

Looking at some simpler problems

We now need to develop the techniques to solve the partial differential
equations (2) with the boundary conditions (3) and the Stefan condition
(6). This will give us the time for the moving boundary to solidify a
distance h and hence we can calculate the puddle length ` using (1).

In the next two sections we shall look at two simpler problems. The
first problem is that of heat conduction in a semi-infinite region, where
we introduce the approach of using a similarity solution. In the following
section, we look at a simpler phase-change problem, using the same
approach. Finally, we shall solve the equations formulated here and use
the solution to estimate the puddle length.

2.2 The Boltzmann similarity solution

One useful method for finding solutions of partial differential equations
is to use a transformation that changes the governing equations into
a different form that is easier to handle. This leads to Boltzmann’s
similarity solution of the heat equation.

An example problem

Let us consider the problem of heat conduction in a semi-infinite region
0 < x < ∞. Suppose the region is initially at zero temperature and
the end of the region is suddenly set and maintained at some constant
temperature u1. We wish to determine how the temperature changes
with time at various points along the x-axis.

The governing partial differential equation is the standard 1-D heat
equation�

�

�

�
∂u

∂t
= α

∂2u

∂x2
(1)
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The initial condition and two boundary conditions are

u(x, 0) = 0, (2)

u(0, t) = u1, (3)

u(∞, t) = 0. (4)

The Boltzmann transformation

Suppose we wanted to express the solution of this problem in dimension-
less variables. The combination u/u1 is dimensionless. In this problem
there is no natural length scale (as there would be if we were solving
for a finite region of length `). Given the parameter α has dimensions
L2T−1 then only the combination

√
αt has dimensions of length. This

suggests the dimensionless temperature can only be a function of x/
√

αt

if we are to be able to express the solution in dimensionless terms. This
situation has a tremendous advantage for solving the partial differential
equation, since it suggests the solution can only depend on one vari-
able, u = f(x/

√
αt). You might like to go back and read the section on

dimensional analysis (Section 1.10) to show this formally.

Let us write�

�

�

�
u(x, t) = f(η), where η =

x√
αt

. (5)

where f is some function of one variable. This transfomation is known
as the Boltzmann transformation and η is the Boltzmann simi-

larity variable.

Because the temperature is a function of the single similarity vari-
able x/

√
αt, we aim to reduce the partial differential equation (1) and

boundary conditions into an ordinary differential equation for f , with
matching boundary conditions for f .

Reduction of variables

We now substitute the Boltzmann transformation (5) into the partial
differential equation (1) to obtain an ordinary differential equation. This
involves using the chain rule. The following example shows how to do
this.
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Example 1: Use the transformation

u(x, t) = f(η), η =
x√
αt

to reduce the partial differential equation (1) to an ordinary differential equa-
tion.

Solution: For ∂u/∂t we obtain, using the chain rule,

∂u

∂t
=

df

dη

∂η

∂t
.

Since η = α−1/2xt−1/2 then

∂u

∂t
= −1

2
xα−1/2t−3/2 df

dη
.

We can now eliminate x using x = α1/2t1/2 to obtain

∂u

∂t
= −1

2
t−1η

df

dη
. (6)

First, let us consider the first derivative with respect to x. We obtain

∂u

∂x
=

df

dη

∂η

∂x
= α−1/2t−1/2 df

dη
.

For the second derivative we must use the chain rule twice,

∂2u

∂x2
=

∂

∂x

(
∂u

∂x

)
=

d

dη

(
df

dη

∂η

∂x

)
× ∂η

∂x
.

Substituting η = α−1/2xt−1/2 we obtain

∂2u

∂x2
= α−1/2t−1/2 d

dη

(
df

dη

)
∂η

∂x
= α−1/2t−1/2 d2f

dη2
α−1/2t−1/2.

This simplifies to

∂2u

∂x2
= α−1t−1 d2f

dη2
. (7)

We now substitute the expressions for each derivative, (6) and (7) back into
the partial differential equation (1). We thus obtain

−1

2
t−1η

df

dη
= α

(
α−1t−1 d2f

dη2

)
.
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Dividing through by t−1 we now obtain the ordinary differential equation�

�

�

�
−1

2
η

df

dη
=

d2f

dη2
. (8)

Note that there is no x or t left in the differential equation. The
differential equation is only in terms of the single similarity variable η.
This is what we wanted to obtain — a reduction of the partial differential
equation to an ordinary differential equation.

Solving the ordinary differential equation

We can solve this differential equation by recognising that the second-
order differential equation in f is also a first-order differential equation
in f ′ since f does not appear explicitly. The following example shows
how to solve this ordinary differential equation.

Example 2: Find the general solution of the ordinary differential equation
(ODE) (8).

Solution: Writing f ′ for df/dη the ODE (8) becomes

df ′

dη
= −1

2
ηf ′

which is a first-order separable differential equation. Solving this we obtain a
general solution

f ′(η) = c1e
−η2/4

where c1 is a constant of integration.

Integrating f ′ to obtain f , we obtain

f(η) = c1

∫ η

0

e−η2
1/4 dη1 + c2

where c2 is another integration constant. Letting v = η1/
√

4 we can write this
as

f(η) = 2c1

∫ η/2

0

e−v2
dv + c2. (9)
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The error function

Unfortunately we cannot evaluate the integral in (9) in terms of elemen-
tary functions. However, an integral similar to that in (9) frequently
occurs in mathematical applications, especially statistics and probabil-
ity. This integral defines a function, known as the error function,
denoted by erf, and given by�

�

�

�
erf(z) =

2√
π

∫ z

0

e−v2
dv. (10)

Our aim is to express the solution (9) in terms of the error function
since this gives a simpler form of the solution that is quite useful once
the error function and its properties are familiar. The general solution
(9) may thus be written as

f(η) = C1 erf(η/2) + C2 (11)

where C1 =
√

πc1 and C2 = c2 are a convenient relabelling of the arbi-
trary constants.

We now explore briefly some properties of the error function, defined
by equation (10). Some useful properties of the error function are as
follows:

• erf(0) = 0.
• erf(∞) = 1.

• d

dz
erf(z) =

2√
π

e−z2
.

• erf is monotonic increasing.
• erf(−z) = − erf(z), (i.e. erf is antisymmetric).

These are all very easy to prove (with the exception of the second prop-
erty, which requires multiple integrals). A sketch of the graph of the
error function is given below in Figure 2.2.1.
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Fig. 2.2.1. Graph of the error function, erf.

Boltzmann similarity solution

Going back to the substitution u(x, t) = f(η), where η = x/
√

αt, we can
write the solution (11) as�
�

�
�u(x, t) = C1 erf(x/

√
4αt) + C2. (12)

This is known as the Boltzmann similarity solution of the heat
equation. It is applicable for problems defined on semi-infinite regions
(which do not have a natural length scale).

Applying boundary conditions

We now solve the problem described by the partial differential equation
(1) with the initial and boundary conditions (2), (3) and (4). We start
with the Boltzmann similarity solution (12), which is a two-parameter
solution of the heat equation. The following example shows how to do
this.

Example 3: Using the Boltzmann similarity solution

u(x, t) = C1 erf(x/
√

4αt) + C2 (13)

apply the boundary conditions (3) and (4)

u(0, t) = u1, u(∞, t) = 0.
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Solution: Using the boundary condition u(0, t) = u1, when x = 0, then we
obtain

C1 erf(0) + C2 = u1.

Since erf(0) = 0, then we obtain C2 = u1.

Similarly, u(∞, t) = 0 gives the equation

C1 erf(∞) + C2 = 0.

Since erf(∞) = 1, and substituting C2 = u1, we obtain C1 + u1 = 0. The
solution (13) is therefore�

�

�

�
u(x, t) = u1

{
1 − erf

(
x√
4αt

)}
. (14)

Note that we could have used the initial condition (2) instead of the
boundary condition (4), and would have come up with the same equation
(since t = 0 gives erf(∞), just as x = ∞). This is because the initial
condition is linked to the boundary condition at infinity through the
Boltzmann similarity variable. Physically, this means that the point
x = ∞ remains at the initial temperature in finite time. In terms of the
similarity variables the boundary condition (3) becomes f(0) = 0 and
the boundary condition (2) and the initial condition (2) both become
f(∞) = 0.

A sketch is given below in Figure 2.2.2 of the temperature distribution
for different times, for u1 = 600 ◦C and where α = 2 × 10−4. The tem-
perature distribution is slowly moving towards a uniform distribution.

Applicability of Boltzmann’s similarity solution

The Boltzmann transformation will not work for all problems involving
the heat equation. It is usually restricted to problems of infinite or semi-
infinite domains. It won’t work for problems involving finite domains,
since the width of the domain introduces a natural length scale into the
problem, which then means that the temperature does not have to be
only a function of the combination x/

√
αt. An exception is the moving

boundary problem of Section 2.3, where the region is finite, but the
length is not fixed — it changes as solidification occurs. The following
example illustrates this.
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Fig. 2.2.2. Temperature distribution for different times (in seconds) for heat
conduction in a semi-infinite region with prescribed temperature u1 = 600 ◦C
at x = 0. We have also set α = 2 × 10−4.

Example 4: Show the Boltzmann similarity solution will not work for the
boundary condition u(1, t) = 100.

Solution: Substituting x = 1 into the Boltzmann similarity solution gives

100 = C1 erf

(
1√
4t

)
+ C2.

Clearly, C1 and C2 cannot both be constant if this equation is to be satisfied,
so we cannot apply this boundary condition.

It can also be shown that problems that introduce a length scale in
some other way also cannot use Boltzmann’s similarity solution. An
example is the Newton cooling condition where the combination k/h

has dimensions of length. Nevertheless, when Boltzmann’s similarity
solution can be applied, it is a useful method for obtaining a solution of
the heat and diffusion equations.

Summary

A two-parameter solution of the heat equation

∂u

∂t
= α

∂2u

∂x2

is the Boltzmann similarity solution

u(x, t) = C1 erf(x/
√

4αt) + C2
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where C1 and C2 are arbitrary constants. This solution is useful for
semi-infinite problems, where there is no natural length scale.

2.3 A moving boundary problem

We use the Boltzmann similarity solution to solve a simple moving
boundary problem. We see how the Stefan condition is used to de-
termine the position of an advancing solidification front. An alternative
approximate technique is also presented — finding the pseudo-steady-
state solution.

Example problem

Let us consider a semi-infinite region 0 < x < ∞ consisting of a material
which is solid for 0 < x < s(t) and liquid for x > s(t). We assume the
initial temperature of the liquid is the freezing temperature, at 0 ◦C. We
also assume the end x = 0 is maintained at temperature −1 ◦C.

u(x, t)

solid liquid

u = 0

u = −1

x = s(t)x = 0

x

Fig. 2.3.1. One-dimensional model for freezing of a liquid.

Let u(x, t) denote the temperature of the solid phase. The governing
partial differential equation is the 1-D heat conduction equation�

�

�

�
∂u

∂t
=

∂2u

∂x2
0 < x < s(t). (1)

We have the boundary conditions

u(0, t) = −1, (2)

u(s(t), t) = 0. (3)



2.3 A moving boundary problem 65

Here x = s(t) denotes the (unknown) position of the moving boundary
at time t. We also have a Stefan condition

∂u

∂x
(s(t), t) =

ds

dt
. (4)

These equations correspond to the solidification of a material where the
units have been chosen so that all the physical constants (e.g. α, ρ, k

and λ) have the value 1. (This is equivalent to scaling the variables.)
We did not specify an initial condition for u(x, t). This is because there
is no solid at t = 0, i.e. u does not exist at t = 0. However, we do
have an initial condition for s(t), namely s(0) = 0, which states that the
solidification boundary starts from x = 0.

Solution using the Boltzmann transformation

We shall see if the Boltzmann similarity solution can be used here. From
the previous section, the Boltzmann similarity solution of the heat equa-
tion (with α = 1) is

u(x, t) = C1 erf
(

x√
4t

)
+ C2, (5)

where C1 and C2 are arbitrary constants. (Recall that this was derived
using the Boltzmann transformation u(x, t) = f(η) with η = x/

√
t,

which reduced the heat equation to an ordinary differential equation.)

Form of the moving boundary

To solve this problem we need to find both the temperature u(x, t) and
the moving boundary s(t). The following example shows how to deter-
mine the form of s(t) in terms of an unknown proportionality constant.
It can be obtained from the boundary condition expressing the temper-
ature at the moving boundary.

Example 1: Find the form of s(t) using the boundary condition u(s(t), t) = 0
and the Boltzmann similarity solution.

Solution: On applying boundary condition (3), u(s(t), t) = 0, we obtain

C1 erf

(
s(t)√

4t

)
+ C2 = 0. (6)
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Since C1 and C2 are constants, the only way this can be satisfied is if s(t)/
√

4t
is a constant. We denote this constant by m. This requires�
�

ÿ
þs(t) = m

√
4t (7)

where m is some constant that is yet to be determined.

Once we have a value for m we will know the position of the moving
boundary at any time t. We can now find the temperature, in terms of
the unknown constant m. This is done in the following example.

Example 2: Given the general solution (5) and the form of the moving
boundary (7) determine the constants C1 and C2.

Applying the boundary condition u(0, t) = −1 to the general solution (5)
we obtain (C1 × 0) + C2 = −1, since erf(0) = 0. Hence C2 = −1. Applying
the boundary condition u(s(t), t) = 0, and using (7) we obtain the equation

C1 erf

(
m
√

4t√
4t

)
+ C2 = 0

and hence

C1 erf(m) + C2 = 0.

Since we have already shown C2 = −1 then this determines C1 as C1 =
1/ erf(m).

Substituting back for C1 and C2, the solution for the temperature is�

�

�

�
u(x, t) =

erf
(
x/

√
4t

)
erf(m)

− 1. (8)

This is not yet a complete solution since we still have to determine the
unknown constant m.

Applying the Stefan condition

We need to substitute the solution for the temperature, (8), into the
Stefan condition (4). The procedure is carried out in the following ex-
ample.

Example 3: Apply the Stefan condition and hence obtain an equation for
the constant m.
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Solution: We first calculate

∂u

∂x
(x, t) =

1

erf(m)

∂

∂x

{
erf(x/

√
4t)

}
. (9)

From the definition of the error function we obtain

d

dz
erf(z) =

2√
π

e−z2
.

Now using the chain rule we have

∂

∂x
erf(x/

√
4t) =

2√
π
× 1√

4t
e−x2/(4t).

Hence
∂u

∂x
=

1

erf(m)

2√
π
× 1√

4t
e−x2/(4t).

Evaluating at x = s(t) = m
√

4t, we obtain

∂u

∂x
(s(t), t) =

1

erf(m)

1√
4t

2√
π

e−m2
.

Also substituting x = m
√

4t into the RHS of the Stefan condition gives

1

erf(m)

1√
4t

2√
π

e−m2
=

1

2

√
4mt−1/2.

Note that the t−1/2 terms cancel and rearranging the equation, so that the
unknown m is on one side, we have

m erf(m)em2
=

1√
π

(10)

Equation (10) is a transcendental equation as it cannot be solved in
terms of elementary functions. A common transcendental equation that
students often meet first is x = sin(x). Usually, we obtain solutions of
transcendental equations graphically (or numerically, using the bisection
method or Newton’s method, for example). Thus, given the value of σ,
we solve (10) for m.

Interpretation of results

To find the root graphically we plot both sides of the equation (10),

y = m erf(m)em2
and y = π−1/2.

From Figure 2.3.2 the intersection point gives the solution approximately
as m ' 0.6.
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Fig. 2.3.2. Graph showing the root of the transcendental equation.

We can also get a more accurate value by finding a numerical solution
(for example, using Newton’s method). This is easily done using the
software package Maple, with the Maple command fsolve. To five
decimal places, the solution is

m = 0.62006. (11)

Of course, using graphics software only tells us that there is one root
of the equation on the interval in which we looked. For this problem,
proving the uniqueness of a root is done by showing that the function
corresponding to the RHS is monotonic increasing — i.e. its derivative
is always positive.

Summary

We have seen one technique for solving moving boundary problems in-
volving freezing (or melting): the Boltzmann similarity solution. The
Boltzmann similarity solution leads to a transcendental equation that
needs to be solved graphically (or using numerical methods). However, it
only works for problems without a natural length scale. An approximate
technique, that of finding the pseudo-steady-state solution is discussed
in the next section.
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2.4 The pseudo-steady-state approximate solution

A technique is introduced for finding an approximate solution for a
moving boundary problem when heat conduction dominates latent heat.
(This section may be optionally omitted: the case study does not depend
on it.)

The use of the Boltzmann transformation worked well here, and works
well for some other problems (see exercises, Question 14, Question 15
and Question 16). It won’t work when we introduce a length scale into
the problem. Also, it doesn’t work in other geometries, such as for
cylinders and spheres, where the heat equation takes a different form
(so the Boltzmann similarity solution is not valid)†.

One approach for these problems is to find a pseudo-steady-state

solution, which is an approximate solution obtained by assuming that
latent heat release (freezing) is slow compared to conduction of heat.
It is obtained by neglecting the time derivative in the heat equation,
leaving a simple ordinary differential equation to solve. The following
example shows how to do this.

Example 1: Find the pseudo-steady-state approximation for the heat equa-
tion

∂u

∂t
=

∂2u

∂x2
(1)

and the boundary conditions

u(0, t) = −1, u(s(t), t) = 0,

with the Stefan condition

∂u

∂x
(s(t), t) =

ds

dt
.

(This is the example problem of Section 2.3.)

Solution: For the pseudo-steady-state solution we neglect the time derivative
in the heat equation, so we solve

∂2u

∂x2
= 0.

Integrating twice gives

u(x, t) = c1(t)x + c2(t)

† While the spherical heat equation can be easily changed into the standard heat
equation by a simple transformation (see Question 17 of the problems in Chap-
ter 1), this transformation doesn’t work with the boundary conditions we would
apply on the moving boundary.
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where c1 and c2 are arbitrary functions of time.

Applying the boundary conditions gives the equations

c2(t) = −1, c1(t)s(t) + c2(t) = 0.

Hence,

u(x, t) =
x

s(t)
.

Substituting this into the Stefan condition gives

ds

dt
=

1

s(t)

which is a separable first-order differential equation. The solution, satisfying
s(0) = 0, is

s(t) =
√

2t.

The pseudo-steady-state solution is applicable when the term ∂u/∂t in
the heat equation is small compared to the α∂2u/∂x2 term. Physically,
this says that latent heat released (for a freezing substance) is mostly
conducted away, rather than going to raising the temperature. Scaling
arguments can be used (see Question 22) to show this approximation is
valid provided the ratio of specific latent heat λ to the heat capacity cu0

is small, i.e. the dimensionless ratio λ/(ρc) is small.

The pseudo-steady-state approach involves neglecting the time deriva-
tive in the heat equation. It is useful for problems where the spe-
cific latent heat λ is large compared to the overall heat capacity c∆u.
Some more sophisticated approximate methods, related to the pseudo-
steady-state approach are discussed in Hill and Dewynne (1990) and Hill
(1987).

2.5 Solving the continuous casting case study

We now use the techniques developed earlier to solve the case-study
problem. We use the Boltzmann similarity solution, which leads to the
requirement of solving a transcendental equation.
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Review of the problem

Our aim is to predict the time that it takes molten steel to solidify a
distance h = 10 mm when it is poured onto a rotating drum which is
rotating so that its surface moves with speed V = 1 m/s, see Figure 2.1.1.
We do not know the temperature of the surface of the copper drum but
we know that the temperature at the core is ud = 150 ◦C. The puddle
length is given by V th where V is the speed of the copper drum surface
and th is the time it takes the molten steel to solidify the thickness h of
the steel sheet.

The temperature in the copper drum u1 and the temperature of the
solidified steel u2 satisfy�

�

�

�

∂u1

∂t
= α1

∂2u1

∂x2
, −∞ < x < 0,

∂u2

∂t
= α2

∂2u2

∂x2
, 0 < x < s(t).

(1)

The boundary conditions are�

�

�

�

u(−∞, t) = ud,

u1(0, t) = u2(0, t),

u2(s(t), t) = uf .

(2)

Here ud is the temperature of the copper a long way from the drum
surface, uf is the solidification temperature of molten steel. We have
the continuity of flux condition at x = 0,�

�

�

�
−k1

∂u1

∂x
(0, t) = −k2

∂u2

∂x
(0, t), (3)

where k1 and k2 are the conductivities of copper and solid steel, respec-
tively. We also have the Stefan condition,�

�

�

�
k2

∂u2

∂x
(s(t), t) = ρ2λ

ds

dt
, (4)
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where ρ2 is the density of the solidified steel and λ is the specific latent
heat (latent heat per unit mass) released when the molten steel solidifies.

Equivalent boundary conditions

For problems with two regions where the temperature is continuous at
the boundary, a useful way to proceed is to decouple the two regions.
This is done by introducing an extra unknown, the temperature of the
join, U , where

u1(0, t) = u2(0, t) = U. (5)

We can then obtain u1(x, t) and u2(x, t) in terms of the unknown U and
later use the continuity of flux condition to find the value of U .

It is not immediately obvious that such a solution with constant tem-
perature at the copper-steel interface exists. However, it follows from
Sections 2.2 and 2.3 that, with this boundary condition, the heat equa-
tion in each of the two materials reduces to a second order ordinary
differential equation. We shall see that the four coefficients in the gen-
eral solution, plus the unknown temperature, U , and the position of the
moving boundary, may be uniquely determined from the six boundary
conditions.

We now have two sets of equations, defined for each region and linked
by the variable U . For the copper drum, −∞ < x < 0, we have

∂u1

∂t
= α1

∂2u1

∂x2
, u1(−∞, t) = ud, u1(0, t) = U. (6)

For the solidified steel, 0 < x < s(t), we have

∂u2

∂t
= α2

∂2u2

∂x2
, u2(0, t) = U, u2(s(t), t) = uf . (7)

The remaining two boundary conditions we need are the continuity of
flux condition (3) which is used to determine U , and the Stefan condition
(4) which is used to determine the position of the moving boundary.
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Using the Boltzmann similarity solution

The Boltzmann similarity solution for both partial differential equations
is

u1(x, t) = C1 erf(x/
√

4α1t) + C2, (8)

u2(x, t) = C3 erf(x/
√

4α2t) + C4, (9)

where C1, C2, C3 and C4 are arbitrary constants. These constants will
be determined by applying the boundary conditions. Note that we have
different values of the thermal diffusivity α1 and α2, corresponding to
the copper and the steel.

The boundary condition u2 = uf on x = s(t) determines the general
form of the moving boundary. Applying this condition forces s(t) to be
proportional to t1/2 so that erf(s(t)/

√
4t) is a constant. We write

s(t) = m
√

4α2t

where m is a constant.

We now apply the prescribed temperature boundary conditions at
x = −∞, x = 0 and x = s(t) given in (6) and (7). Applying these (the
calculations are left as an exercise, see Question 19), we obtain

u1(x, t) = U + (U − ud) erf(x/
√

4α1t),

u2(x, t) = U + (uf − U)
erf(x/

√
4α2t)

erf(m)
.

It is easy to quickly check that this satisfies the appropriate boundary
conditions. However, these solutions are still in terms of two unknown
constants, U and m, which we need to determine.

Applying the remaining boundary conditions

To find U we apply the continuity of flux condition (3) (see exercises,
Question 19, for details), and the following equation is obtained for U :�

�

�

�
U =

ud erf(m) + βuf

erf(m) + β
where β =

k2

k1

√
α1

α2
. (10)
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Applying the Stefan condition (4) gives a transcendental equation for
m (the details are left to the exercises, see question Question 20)�

�

�

�
mem2

(erf(m) + β) = σ where σ =
k2(uf − ud)
ρ2λα2

√
π

. (11)

Calculating the puddle length

For this problem we are given the data in Table 2.5.1. Copper is the
material of choice for the drum because of its high thermal conductivity
k1, 20 times that of steel. From this data we obtain β = 0.25 and
σ = 1.718 from equations (10) and (11).

Table 2.5.1. Data for continuous casting of steel on a copper drum, from
Barton (1985).

h 10 mm = 0.01 m α1 10−4 m2 s−1

V 1 ms−1 α2 4 × 10−6 m2 s−1

uf 1400 ◦C k1 400 W m−1 ◦C−1

ud 150 ◦C k2 20 W m−1 ◦C−1

λ 2.7 × 105 J kg−1 ρ2 7.6 × 103 kg m−3

Solving the transcendental equation (11) numerically we come up with
the value of the root m ' 0.839. Using equation (10) we subsequently
obtain the value U ' 460 ◦C for the temperature of the surface of the
drum. This explains why the copper does not melt, even though its
melting point is lower than that of steel.

To calculate the time th for the molten metal to solidify a distance h

we need to determine the time t = T for the moving boundary to be at
x = h. Using s(t) = m

√
4α2t we obtain

th =
h2

4α2m2
.

This is the time for the molten material to solidify a distance h. The
puddle length ` is

` = V th =
V h2

4α2m2
.
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The above data thus gives an estimate† for the puddle length ` as

` ' 9 metres.

This value is very large compared to the size of the drum, meaning the
molten steel will drain off the drum before solidifying. Thus for this
method of casting metal to be effective a drum of an impractical size
would be needed so that the metal strip can be removed from the drum
only after it has completely solidified. This calculation indicates that it
is not feasible to cast sheet-steel strips of this thickness by the method
of pouring the molten steel onto a cooled rotating drum.

However, the same mathematical model applies to continuous casting
of steel slabs between curved channels. Since the case study problem of
this Chapter was considered at the 1985 Mathematics-in-Industry work-
shop, many steel manufacturers, including BHP, have set up continuous
slab casters. based on rotating drums. The slabs are thicker (around 10
cm) and the rotation speeds are much slower (around 1 m/min) but the
curved channels are indeed of the order of 10 m in length. In fact, a flux
powder separates the solidifying steel from the copper channels and this
generates additional mathematical modelling tasks.

Further reading

This case study was sourced from Barton (1985). Another quite com-
prehensive treatment of this problem is given in Fowkes and Mahony
(1994). This study also presents some additional calculations, including
an analysis of the thickness of the drum and a calculation of the benefit
of enhancing cooling by direct water contact. They also briefly discuss an
alternative continuous casting arrangement, with two rotating drums (to
increase the heat removal and thus speed up the solidification). Shamsi
and Mehrotra (1993) use computational techniques to analyse a single
drum continuous caster.

A good general reference on moving boundary problems in heat con-
duction is Hill and Dewynne (1990) which also gives detailed analysis
of the pseudo-steady-state approximate method, as discussed in Sec-
tion 2.4, and introduces some further analytical approximation methods,

† The original article Barton (1985) used a slightly higher value of α2, α2 = 5 ×
10−6 m2 s−1, and obtained an estimate for the puddle length of 7.7m. However,
other calculations developed in this report used the value α2 = 5 × 10−6 m2 s−1,
which we have also used here to obtain the puddle length estimate of 9m.



76 Case Study: Continuous Casting

as does Hill (1987). Tayler (1986) and Fowler (1997) contain advanced
treatments of melting and solidification problems which consider “mushy
zones” of both liquid and solid phases, simultaneously, for alloy solidifi-
cation. The authoritative reference for solutions of the heat equation, in-
cluding problems with moving boundaries, is Carslaw and Jaeger (1959).
For diffusion problems, with moving boundaries, see Crank (1975).

Geiger and Poirier (1980) give a metallurgical perspective to melting
and solidification problems, including continuous casting. They also
treat problems in mass transport, with a moving boundary, including the
carbonisation of steel (involving the diffusion of carbon into iron) and
the formation of tarnish layers (oxygen diffusing into a metal). Moving
boundary problems also occur in the food industry (freezing of food,
cooking). See McGowan and McGuinness (1996) for an application to
the gelatinisation of cereal starch. Moving boundary problems, of a
different form, occur in mathematical finance, such as the valuation of
American style options on shares. These are discussed, and compared
with the Stefan problem, by Wilmott et al. (1995) and Wilmott (1998).

2.6 Problems for Chapter 2

1. Suppose the region x > 0 is initially liquid at constant temperature u0.
Here u0 is greater than the freezing temperature uf . The surface x = 0 is then
maintained at constant temperature u1, which is less than the solidification
temperature.

(a) In which direction does the heat flow?

(b) If uS(x, t) denotes the temperature in the solid phase, and uL(x, t)
denotes the temperature in the liquid phase, then deduce the Stefan
condition

−kL

∂uL

∂x
(s(t), t) + kS

∂uS

∂x
(s(t), t) = ρλ

ds

dt

where kS and kL are the respective conductivities.

(c) What are the other boundary conditions for this problem?

2. A solid is initially everywhere at the melting temperature um. One
end, x = 0, is such that the temperature at that end is always at a constant
temperature u1 > um. The solid then melts from left to right.

(a) In which direction does the heat flow?
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(b) Derive the Stefan condition for this problem,

−k
∂u

∂x
(s(t), t) = ρλ

ds

dt
,

where u(x, t) is the temperature of the liquid phase.

3. A super-cooled liquid occurs when the liquid phase exists at below the
freezing point uf .

Suppose that the region x > 0 initially contains liquid at temperature u1 <
uf and that solidification starts at x = 0 and moves to the right, no heat
being removed from the solidified material whose temperature will thus have
constant value uf throughout.

Derive the Stefan condition,

−k
∂u

∂x
(s(t), t) = ρλ

ds

dt
.

4. Consider the problem of the freezing of a sphere (e.g. in the food indus-
try, the freezing of the water content of a pea or orange). The govering partial
differential equation is the radially symmetric heat equation in spherical co-
ordinates

∂u

∂t
=

α

r2

∂

∂r

(
r2 ∂u

∂r

)

where u(r, t) is the temperature at time t and at a distance r from the centre
of the sphere and α is the thermal diffusivity.

If the solidification front is at r = s(t), determine the Stefan condition for
this problem. [Hint: Consider the case of the sphere freezing from r = s(t) to
r = s(t + δt).]

5. Using the Boltzmann similarity solution, solve the following problem:

∂u

∂t
= 4

∂2u

∂x2
x ≥ 0

with the boundary conditions

u(0, t) = 0, u(∞, t) = 10.

6. A field of crops has been sprayed with a pesticide. The wind picks
up some of the pesticide and carries it along. There is also diffusion of the
pesticide caused by turbulent fluctuations, mainly in the y direction. Assume

V
∂c

∂x
= D

∂2c

∂y2

where c(x, y) is the steady state concentration at a height y and a distance x
from the start of the field (see Figure 2.6.1). Also, V is the (constant) velocity
of the wind and D is the diffusivity. Assume the domain of the problem is a
quarter plane (x > 0, y > 0).
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crops

= 0

V

y

y

x

Fig. 2.6.1. Diagram for Question 6.

(a) Given that the concentration of the pesticide at ground level remains
constant, solve for c(x, y) in terms of error functions. [Hint: Use the
Boltzmann similarity solution written in terms of the variables in this
problem.]

(b) Give a sketch of the concentration at different times.

7. Show that the substitution

u(x, t) = f(η), η = xt−1/2

reduces the partial differential equation

∂u

∂t
= α

∂2u

∂x2

to an ordinary differential equation. (Just obtain the differential equation,
don’t solve it.)

8. Show that the substitution

u(x, t) = f(η), η = xt−1/2

does not reduce the wave equation

∂2u

∂t2
=

∂2u

∂x2

to an ordinary differential equation. What about the substitution

u(x, t) = f(η), η = xt−1?

9. We showed that the Boltzmann similarity transformation u(x, t) =

f(η), η = x/
√

αt reduces the heat equation to an ordinary differential equa-
tion. Suppose we have the heat equation on a finite domain, 0 < x < 1,
subject to the boundary conditions

u(0, t) = 100, u(1, t) = 200.

Explain why the Boltzmann similarity transformation will not work on this
problem.
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10. Show that the only substitution of the form η = xtβ which reduces the
heat conduction equation

∂u

∂t
= α

∂2u

∂x2

to an ordinary differential equation is when β = −1/2. (i.e. substitute u(x, t) =
f(xtβ) into the heat equation and hence deduce that β = −1/2 is the only
possibility for eliminating t and x.)

11. Tarnishing. The metal zirconium absorbs a significant amount of
oxygen during the process of oxidation. Once the oxide layer has formed its
thickness h(t) increases according to

h(t) =
M1

M2

√
4k′t

where k′ is a positive constant, t is time and M1 and M2 are the molar volumes
of Zr and Zr O2 respectively; Geiger and Poirier (1980).

x = 0 x = h(t)

x

oxide layer

Fig. 2.6.2. Tarnishing of metal by an oxidised layer. See Question 11.

The oxygen ions diffuse from the air into the oxidised layer according to the
diffusion equation

∂C

∂t
= D

∂2C

∂x2

where C(x, t) is the concentration of oxygen ions (mols/cm3).

(a) Given the concentration at the interface x = h(t) is the equilibrium
concentration Ce, and the initial concentration is zero, with C(∞, t) =
0, use the Boltzmann similarity solution to deduce

C(x, t) = Ce
1 − erf(x/

√
4Dt)

1 − erf

(
M1

M2

√
k′

D

) .

(b) Where is the oxygen concentration a maximum?
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12. A transcendental equation is an equation which does not have an alge-
braic solution. One example is the equation

sin(m) =
1

2
m.

Discuss how many solutions exist and find these solutions graphically.

13. Prove that the transcendental equation

m erf(m)em2
= σ,

where σ is a positive constant, always has a unique solution, for σ > 0. [Hint:
think graphically! Show that the LHS is a monotonic increasing function of
m. What else is needed?]

14. The region x > 0 is initially liquid just at the solidification temperature
uf . The end x = 0 is maintained at a temperature u1 where u1 < uf . The
liquid then freezes from x = 0 to the right.

The temperature u(x, t) of the solid part satisfies the heat equation

∂u

∂t
= α

∂2u

∂x2

with the boundary conditions

u(0, t) = u1, u(s(t), t) = uf

and the Stefan condition

k
∂u

∂x
= ρλ

ds

dt
.

(a) Explain why we assume s(t) = m
√

4αt.

(b) Hence find the temperature and also show that m satisfies the equation

m erf(m)em2
= σ, σ =

k(uf − u1)

ρλα
√

π
.

(c) Hence determine how long it takes to freeze water a distance of 10 cm,
if u1 = −10 ◦C.

15. Suppose the region x > 0 is initially liquid at constant temperature u0.
The surface x = 0 is then maintained at constant temperature u1 (which is
less than the melting temperature um).

The temperature of the solid and liquid phases, uS(x, t) and uL(x, t), satisfy

∂uS

∂t
= αS

∂2uS

∂x2
,

∂uL

∂t
= αL

∂2uL

∂x2
,
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= s(t)= 0

solid liquid

x x

x

Fig. 2.6.3. Diagram for Question 15.

with uS(0, t) = u1 and uL(x, 0) = u0. On the moving boundary uL = uS = uf ,
where uf is the freezing temperature. We also have the Stefan condition

−kL

∂uL

∂x
(s(t), t) + kS

∂uS

∂x
(s(t), t) = ρλ

ds

dt
.

(a) Show that the solution may be written as

uS(x, t) = u1 +
uf − u1

erf(m)
erf(x/

√
4αSt),

uL(x, t) = u0 − (u0 − uf )

1 − erf(m
√

αS/αL)

(
1 − erf(x/

√
4αLt)

)
.

(b) Give the transcendental equation satisfied by m.

16. A super-cooled liquid occurs when the liquid phase exists at below the
freezing point uf .

Suppose that the region x > 0 initially contains liquid at temperature u1 <
uf and that solidification starts at x = 0 and moves to the right, no heat being
removed from the solidified material the temperature of which will thus have
constant value uf throughout.

= s(t)= 0

solid liquid

x x

x

Fig. 2.6.4. Diagram for Question 16.

(a) Find the temperature distribution in the liquid phase and show that it
depends on the solution of the transcendental equation

mem2
(1 − erf(m)) = σ

where m is a parameter related to the position of the moving boundary
and σ is a constant which depends on the thermal properties of the
material.
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(b) Show, that for large values of m the left hand side of the transcendental
equation approaches an asymptote. [Hint: use a mathematical hand-
book (e.g. Spiegel (1968)) to find a suitable expansion for erf for large
values of its argument.] Hence discuss the existence of a solution of the
super-cooling problem for different values of the right hand side of the
transcendental equation.

17. Consider the problem of a solidifying semi-infinite liquid which is ini-
tially at the melting temperature um. Suppose that instead of the boundary
x = 0 having a prescribed temperature, instead it satisfies a Newton cooling
condition.

(a) Write down all the appropriate governing equations.

(b) Show that the Boltzmann transformation will not work here.

(c) Find a pseudo-steady-state approximate solution (see Section 2.4), by
neglecting the time derivative in the heat equation.

18. A cylindrical pipe, of radius b = 5 cm, contains water which is initially
at the freezing temperature uf = 0 ◦C. The metal surface of the cylinder is
held at a temperature u1 = −10 ◦C, which is below the freezing temperature.
A moving front starts from the metal surface and moves inward.

r = s(t)

water

ice

u = uf
b r

Fig. 2.6.5. Freezing inside a cylindrical pipe. Diagram for Question 18.

(a) Find a pseudo-steady-state solution (by neglecting the time derivative
in the heat equation — see Section 2.4).

(b) Hence calculate the time taken for all the water inside the cylinder to
freeze.

19. For the continuous casting problem in Section 2.5 the temperature in
the drum u1 and the temperature in the solid part of the metal being cast u2

are given by

u1(x, t) = U + (U − ud) erf(x/
√

4α1t), x ≤ 0,

u2(x, t) = U + (uf − U)
erf(x/

√
4α2t)

erf(m)
, 0 ≤ x ≤ m

√
4α2t.
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Apply the continuity of flux condition to determine the constant U .

20. (Continuation of previous question.) Apply the Stefan condition to the
temperatures to obtain a transcendental equation for the constant m. Show
that this equation may be written in the form

mem2
(β + erf(m)) =

k2(uf − ud)

ρ2λα2
√

π

where β = k2
√

α1/(k1
√

α2).

21. Under high temperatures steel can undergo a process of decarburisation
where the carbon in the steel diffuses out of the steel (see Geiger and Poirier
(1980)). It does this in such a way that an interface is formed where the
carbon concentration is discontinuous across the interface. Over time the
interface moves further into the material, causing a layer of weaker strength
steel. A typical concentration profile is shown in Figure 2.6.6.

0

C∗
C0

x = s(t)

x

Fig. 2.6.6. Carbon concentration profile in steel during the process of decar-
burising. See Question 21.

The problem is to calculate the depth of decarburisation of initially C0 =
0.2% carbon steel after 1 year of exposure to severe decarburising conditions at
900 ◦C. At this temperature the diffusivity of carbon in steel is 10−9 cm2/sec.
In the decarburised region the carbon concentration at the interface is always
C∗ = 0.02% whereas the carbon concentration at the surface is zero.

This problem has similarities to the solidification problems discussed in this
chapter although we are considering mass transport (of carbon atoms) rather
than heat transport. In the decarburised region, the carbon concentration
C(x, t) satisfies the diffusion equation

∂C

∂t
= D

∂2C

∂x2
.

(a) Consider a small time interval where the interface advances and apply
a mass balance over that time interval to deduce that

(C0 − C∗)
ds

dt
= D

∂C

∂x
(s(t), t), (1)
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a condition at the moving boundary analogous to the Stefan condition
in heat transport.

(b) Hence calculate the concentration profile for x < s(t), assuming s(t) =

m
√

4Dt. (Why can you assume this?)

(c) Apply the condition (1) to obtain a transcendental equation for m,

m erf(m)em2
=

1√
π

(
C∗

C0 − C∗

)
.

(d) Using the data given above, obtain the thickness of the decarburised
layer after one year.

22. For the simplest Stefan problem, as considered in Section 2.3, the
temperature u(x, t) satisfies the heat equation

∂u

∂t
= α

∂2u

∂x2
,

and the moving boundary condition

ds

dt
= k

∂u

∂x
on x = s(t)

(a) Using the scaling

U =
u

u0
, X =

x

`
, T =

t

`2/α
, S =

s

`

show that the equations become

∂U

∂T
=

∂2U

∂X2
, with

dS

dT
= ε

∂U

∂X
on X = S(T )

and define the dimensionless constant ε.

(b) For small ε the boundary moves very slowly. We can define a new time
τ by T = ετ . Write the equations in terms of τ , and then let ε → 0.
Show that the resulting equations correspond to the pseudo-steady-
state approximation.

(c) In a couple of lines, explain what physical quantity in the governing
equations is being neglected by the approximation ε → 0.
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Case Study: Water Filtration

We consider a problem involving filtration of water where the aim is to
determine the salt concentration build up in a water filter after it has
been operating for some time. To solve the PDE for the model we de-
velop we extend the technique of Chapter 2 by introducing the method of
stretching transformations, which is a technique for obtaining similarity
solutions of PDEs. The basic idea is to look for stretching symmetries
of the PDEs and boundary conditions which allow the construction of
variable combinations which reduce the PDE into an ODE.

3.1 Introduction to the case study problem

In this section we explore a simple model which describes the removal of
salt from solution through a semi-permeable membrane. The process is
called reverse osmosis. This case study is based on material in Probstein
(1989).

Problem background

It is vitally important to many industries to be able to effectively fil-
ter impurities from liquids. One example of a filtration process is the
purification of water by removal of salt (see, for example, James et al.
(1993)).

One method for effecting filtration is to pass the water along a semi-
permeable membrane which allows the passage of water but not the salt
ions. In practice a filtering mechanism is constructed by stacking parallel

85
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Fig. 3.1.1. A filter designed to extract pure water from contaminated water
or salt water. Salt water passes parallel to a semi-permeable membrane with
pure water passing through the membrane.

flat semi-permeable membranes separated by narrow gaps or by using
bundles of hollow fibre circular tubes. The pressure forces pure water
through the semi-permeable membrane.

Without pressure driving the flow there would be a tendency for wa-
ter to flow in the opposite direction to cause the concentrated mixture
to become diluted. This process is called osmosis. The application
of pressure drives pure water through the semi-permeable membrane;
this process is called reverse osmosis. Pressure also forces the salt-water
mixture along the duct. The water flux through the membrane is pro-
portional to the difference between the pressure in the solution and the
osmotic pressure difference.

The osmotic pressure difference is proportional to the salt concentra-
tion, so that any build-up of salt near the semi-permeable membrane
will reduce the efficiency of the filtering system. This means the filter
will have to be shut down occasionally and back flushed to remove the
salt build-up on the membrane before the filter can operate again.

It is therefore desirable to create a mathematical model which can
predict the salt concentration on the membrane as a function of the
distance along the membrane. This gives the designers information on
how long the filter can be.

Model problem

We are interested in the salt concentration very close to the semi-
permeable membrane, since this is where salt build-up occurs. A simple
model of this is shown below in Figure 3.1.2. We consider a semi-infinite
region x > 0, y > 0 with the semi-permeable membrane at y = 0. Fluid
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flows through the duct with speed v(y), parallel to the x-axis. At the
membrane, pressure forces the water out at a known flow rate q.

cxy

v(y)

c0

x

y

q

Fig. 3.1.2. Diffusion and advection near a semi-permeable membrane.

The mathematical model must account for diffusion and advection. If
we define a concentration C(x, y, t) then the advection-diffusion equation
is

∂C

∂t
+ v1(y)

∂C

∂x
= D

(
∂2C

∂x2
+

∂2C

∂y2

)
. (1)

Here v1(y) is the horizontal component of velocity, which is dependent
on distance from the membrane — it is zero on the membrane surface.

Since the salt concentration varies rapidly in the y-direction we would
expect the diffusion of salt to be mainly in the y-direction and thus
neglect diffusion in the x-direction. If we also restrict attention to equi-
librium concentrations, setting ∂C/∂t = 0, the governing equation (1)
reduces to

v1(y)
∂C

∂x
= D

∂2C

∂y2
. (2)

On the membrane, the tangential velocity of the saline mixture will
be zero. Above the membrane the velocity will increase to some typical
velocity v0 through the duct. We model the velocity in the duct, near
the semi-permeable membrane, by

v(y) =
v0y

h
(3)

where h is the distance from the semi-permeable boundary to the centre
of the duct. Note that this horizontal velocity is zero on the semi-
permeable membrane. The variation of velocity with distance from the
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membrane is important for suitable vertical concentration gradients to
be set up. The governing differential equation for the salt concentration
is thus

y
∂C

∂x
= α

∂2C

∂y2
, where α =

Dh

v0
. (4)

Since we are interested in the salt concentration very close to the
semi-permeable membrane we can consider a semi-infinite region y > 0
where the concentration far from the membrane is the concentration of
the solution before it flows into the filter, c0. Thus

C(0, y) = c0 and C(x,∞) = c0. (5)

We also need a boundary condition on y = 0.

Since no salt flows through the semi-permeable membrane then there
is no mass flux of salt at y = 0. However, since there is a vertical velocity
at y = 0 then we have two components to the salt mass flux — the flux
due to diffusion Jdiff and the flux due to advection Jadv,

J = Jdiff + Jadv. (6)

The flux due to diffusion is given by Fick’s law

Jdiff = −D
∂C

∂y
. (7)

The flux due to advection is

Jadv = −qC(x, 0) (8)

where q is the flow rate of water through the membrane. There is a
minus sign because the water flow is in the opposite direction to the
y-axis. Since J(x, 0) = 0 on the membrane surface, y = 0, then the
boundary condition on the membrane surface is

−D
∂C

∂y
(x, 0) − qC(x, 0) = 0. (9)

Excess concentration

We anticipate the overall concentration will not vary much from the inlet
concentration c0. Let us therefore define the excess concentration

c(x, y) by

c(x, y) = C(x, y) − c0.
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Substituting this into the governing equations, we obtain�

�

�

�
y

∂c

∂x
= α

∂2c

∂y2
, α =

Dh

v0
(10)

with the homogeneous boundary conditions,�
�

�
�c(0, y) = 0, c(x,∞) = 0. (11)

We also have, from (9), the boundary condition on the membrane sur-
face,

−D
∂c

∂y
(x, 0) = q(c(x, 0) + c0). (12)

We can further simplify the governing equations by assuming the con-
centration does not vary by much from the concentration c0. We thus
assume c(x, 0) � c0 and the boundary condition (12) may therefore be
approximated by�

�

�

�
−D

∂c

∂y
(x, 0) = qc0. (13)

Discussion

To solve this problem we aim to reduce the partial differential equation
to an ordinary differential equation. We need some transformation, like
the Boltzmann transformation used in the previous chapter. For this,
we will introduce the method of stretching transformations. The basic
idea is to look for a family of simple changes of variable which leave the
governing equations invariant (i.e. in exactly the same form in the new
variables as in the old). Since the solution of the governing equations
must share this property, we can construct similarity variables which
transform the PDE into a single ODE in a similarity variable.

In the following two sections, we look at some other problems which
will allow us to develop the appropriate technique. The first problem
revisits the Boltzmann transformation, using the generalised technique
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to obtain it. The second shows how to use the technique to come up
with a new similarity transformation for the heat equation but with
boundary conditions that are incompatible with the usual Boltzmann
transformation.

3.2 Stretching transformations

Here we introduce a more general procedure, known as the method of
stretching transformations, which gives the appropriate functional form
to reduce the given partial differential equation to an ordinary differ-
ential equation. The basic idea of the method is to apply a family of
stretching transformations of the independent and dependent variables
and determine which transformations leave the equations unchanged (or
invariant).

Introduction

In Section 2.2 we saw how the Boltzmann transformation expressed the
temperature as a function of a single composite variable x/

√
αt. This

transformation reduced the heat conduction equation to an ordinary
differential equation. What we would like to be able to do is to generalise
the Boltzmann similarity solution for the heat equation so that it can
be used to solve different partial differential equations.

The way we go about generalising the Boltzmann similarity solution
is to consider the effect of transforming the variables on the governing
equations. We define a general family of stretching transformations and
determine particular stretchings for which the governing equations are
the same in the new variables as in the old variables. The fact that the
solution must have this same property allows us to construct similarity
variables, such as the Boltzmann similarity variable, which reduce a
PDE to an ODE.
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The general stretching transformation

Let us consider a family of transformations of the variables x, t, C to
some new variables x∗, t∗, C∗ given by

x = eax∗, t = ebt∗, C = eγC∗, (1)

where a, b and γ are three parameters, to be determined. Transfor-
mations of the form (1) are called stretching transformations since
the transformation corresponds to a rescaling, or magnification, of each
variable, where ea, eb and eγ are the magnification factors.

The set of transformations (1) forms a 3-parameter family of trans-
formations. Our aim is to find a subset of transformations which have
the property of not changing the governing equations. This is called
invariance.

In the following we go through three steps:

• Step 1: Substitute the 3-parameter family into the PDE and obtain a
condition on the constants.

• Step 2: Obtain the 1-parameter family of transformations for which
the governing equations are invariant.

• Step 3: Obtain combinations of variables which are invariant under
the 1-parameter family.

Example problem

The governing equations for an example diffusion problem are�

�

�

�
∂C

∂t
=

∂2C

∂x2
(2)

with boundary conditions�
�

�
�C(0, t) = 1, C(∞, t) = 0 (3)

and initial condition�
�

�
�C(x, 0) = 0. (4)
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Step 1: invariance of governing equations

We look for the subset of the 3-parameter set of transformations which
leave the governing equations invariant. This is illustrated by the follow-
ing two examples, the first for the PDE and the second for the boundary
conditions.

Example 1: Find conditions on a, b and c for the PDE (2) to be invariant
under the general stretching transformation (1).

Solution: We now substitute the general stretching transformation (1) into

the partial differential equation (2). Now, since ea, eb and eγ are constants,
then†

∂C

∂t
=

eγ

eb

∂C∗
∂t∗

,
∂2C

∂x2
=

eγ

e2a

∂2C∗
∂x2∗

.

Substituting into the PDE, equation (2), we obtain

eγ−b ∂C∗
∂t∗

= eγ−2a ∂2C∗
∂x2∗

. (5)

Dividing throughout by the factor eγ−2a we obtain

e2a−b ∂C∗
∂t∗

=
∂2C∗
∂x2∗

. (6)

Whenever 2a−b = 0 we see that (6) is of the same form as (2). We then say
that the partial differential equation (2) is invariant under the the stretching
transformation (1) if

2a − b = 0. (7)

This is the most general condition for invariance of the PDE. Now we
examine invariance of the boundary and initial conditions. This further
narrows the possible choice of invariant combinations of variables.

Example 2: Determine conditions on the constants a, b and c so that the
boundary conditions (3) are invariant under the general stretching transfor-
mation (1).

† Formally, we use the chain rule,
∂C

∂t
=

∂(eγC∗)

∂t∗
∂t∗
∂t

.
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Solution: The boundary condition (3) can be written as

C = 1 when x = 0.

Substituting the general 3-parameter stretching transformation (1) this be-
comes

eγC∗ = 1 when eax∗ = 0.

While ea cancels, this boundary condition will only be invariant if

γ = 0. (8)

For the initial condition (4),

C = 0 when t = 0.

We substitute the general stretching transformation (1) obtaining

eγC∗ = 0 when eat∗ = 0

which simplifies to

C∗ = 0 when t∗ = 0 ⇒ C∗(x∗, 0) = 0.

Thus this boundary condition (4) is always invariant under the general 3-
parameter stretching transformation (1). It gives no extra information about
the constants a, b or γ.

Finally, the condition at x = ∞ is also invariant under the general family
of transformations. So this gives no further information about the constants
a, b and γ.

Step 2: obtain 1-parameter family of transformations

The overall problem, defined by (2) with (3) and (4), is invariant under
the general stretching transformation (1) if

2a − b = 0 and γ = 0.

This gives two simultaneous equations in three unknowns. We can solve
in terms of one† of the variables, a, so that

b = 2a and γ = 0. (9)

† As a rule of thumb, it is usually best to solve in terms of the constant corresponding
to the highest derivative. For this example, it is the constant a, corresponding to
the variable x.
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Substituting this back into the original family of transformations gives
the 1-parameter family of transformations�
�

�
�x = eax∗, t = e2at∗, C = C∗. (10)

All the governing equations are now invariant under this 1-parameter
family of transformations.

Step 3: Obtaining invariant combinations

The overall objective here is to obtain two invariant combinations of the
variables, one of which involves the dependent variable u, allowing us to
relate the solution to another invariant combination.

Example 3: Construct combinations of the variables x, t and u, which are
invariant under the 1-parameter family of transformations (10).

Solution: Eliminating the parameter a, by solving for ea we obtain

ea =
x

x∗
=

(
t

t∗

)1/2

. (11)

We can use this to find invariant combinations of the variables.

By cross-multiplying, we obtain an invariant combination of variables

xt−1/2 = x∗t
−1/2
∗ . (12)

The dependent variable u, here, is itself an invariant, since it is unchanged
by the transformation (10). This will not always be the case, however, as we
see in the next section. We introduce η1 and η2 to denote the two invariant
combinations

η1 = xt−1/2 = x∗t
−1/2
∗ , η2 = C = C∗. (13)

Since the partial differential equation and its boundary conditions are
invariant under the transformation (10) the unique solution must also
have this property. In other words, we must be able to write η2 = f(η1),
where f is some function to be determined. This gives�
�

�
�C(x, t) = f(xt−1/2). (14)
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A common error is to forget to divide through by the coefficient of one
of the sides of the equation. In equation (5) if we forgot to divide through
by eγ−2a then invariance of the partial differential equation could be
obtained by setting both γ − b = 0 and γ − 2a = 0. However, this does
not lead to a sufficiently general set of transformations to construct the
invariant combinations.

Reducing the PDE to an ODE

This change of variables (14) can now be substituted back into the PDE.
For this we use the chain rule. These details were carried out previously
in Section 2.2 (but set α = 1). The PDE (2) reduces to the ODE

−1
2
η

df

dη
=

d2f

dη2
. (15)

We also saw, in Section 2.2, that this ODE had the general solution

f(η) = C1 erf
(η

2

)
+ C2

where C1 and C2 are arbitrary constants. These constants can be eval-
uated by applying the boundary conditions.

The reader may have noticed that the procedure adopted above can
lead to other similarity transformations. For example, instead of the
invariant combinations (13), we could have come up with

η1 = t/x2, η2 = C.

This leads to the similarity transformation C = g(t/x2) and the trans-
formation C = f(φ), φ = t/x2. This transformation reduces the partial
differential (2) to the ordinary differential equation

4φ
d

dφ

(
φ

dg

dφ

)
+ 2φ

dg

dφ
=

dg

dφ
.

However, this differential equation can be transformed into the differen-
tial equation (15) by the change of variables φ = 1/

√
η.
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Further generalisations

Although, in these notes, we will use only stretching transformations, it
is interesting to know how the approach can be generalised. One may
investigate invariance under any 1-parameter transformation group, for
example, rotations and translations,[

x

t

]
=

[
cos(a) − sin(a)
sin(a) cos(a)

] [
x∗
t∗

]
,

[
x

t

]
=

[
x∗
t∗

]
+

[
a

b

]
.

The idea is to see if the partial differential equation (and initial and
boundary conditions) is invariant under the transformation and if so,
to then form invariant combinations of the variables by eliminating the
parameters a and b.

Generalising further, a 1-parameter family of transformations is

x = G1(x∗, y∗, C∗; a),

t = G2(x∗, y∗, C∗; a),

C = G3(x∗, y∗, C∗; a),

(16)

for arbitrary functions G1, G2, G3. It is especially convenient if the
parameter value a = 0 corresponds to the identity transformation. The
basic idea is then to look at an infinitesimal transformation which can
be obtained by expanding (16) in a Taylor series and neglecting O(a2)
terms. Invariance of the partial differential equation (and boundary and
initial conditions) is then sought under this infinitesimal transformation.
This approach is known as the infinitesimal method of Lie groups. This
technique, and further generalisations, are useful for finding exact solu-
tions of complicated nonlinear partial differential equations. Elementary
accounts of Lie symmetry group methods are found in Dresner (1983)
and Hill (1992).

3.3 Diffusion from a point source

We use the stretching transformation method to obtain another physi-
cally important solution of the diffusion equation. This solution corres-
ponds to supplying a mass M0 of a substance to a single point, in an
instant of time. This type of solution is called a point source solution.
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The problem

Suppose that a mass M0 of some pollutant is suddenly released into the
sea, concentrated at a point. Our aim is to determine the subsequent
concentration of the pollutant at various distances from where it was
released. By symmetry, the pollutant diffuses in the radial direction, as
in Figure 3.3.1.

C(r, t)

Fig. 3.3.1. A mass source applied to r = 0 at time t = 0.

Governing equations

The governing partial differential equation is the diffusion equation in
spherical coordinates

∂C

∂t
= D

(
1
r2

∂

∂r

(
r2 ∂C

∂r

))

where C(r, t) is the pollutant concentration and D is the diffusivity of
the pollutant in water. The right-hand side of this equation is ∇2C

expressed in spherical coordinates and neglecting any dependence on
any variable other than radial distance r.

We would expect that the concentration a long distance from where
the pollution was released would be zero, hence one boundary condition
is

C(∞, t) → 0.

To obtain an initial condition we make use of the information that a
mass M0 of the pollutant is released initially. Since the concentration
is the ratio of the mass of the pollutant to the overall volume of the



98 Case Study: Water Filtration

mixture, the total mass of pollutant, for time t > 0, is given by

M0 = 4π

∫ ∞

0

C(r, 0) r2 dr.

For mathematical simplicity we shall set D = 1, M0 = 1. (This is
equivalent to scaling the equations.) The governing equations are now�

�

�

�
∂C

∂t
=

1
r2

∂

∂r

(
r2 ∂C

∂r

)
(1)

with the boundary condition�
�

�
�C(∞, t) = 0 (2)

and the initial condition�

�

�

�
∫ ∞

0

C(r, 0) r2 dr =
1
4π

. (3)

We now seek a suitable similarity transformation which reduces the
partial differential equation to an ordinary differential equation, which
we can hopefully solve.

Stretching transformation

Let us consider the general, 3-parameter, stretching transformation

r = ear∗, t = ebt∗, C = eγC∗, (4)

where a, b and γ are constants to be determined. We substitute (4) into
the partial differential equation (1) and boundary initial conditions (2)
and (3) to determine a particular stretching transformation for which
(1), (2) and (3) are invariant. The following example shows the effect of
requiring the PDE and the initial condition to be invariant.

Example 1: Find a similarity variable that reduces the governing equations
to an ODE.
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Solution: Substituting (4) into the partial differential equation (1) we obtain

eγ−b ∂C∗
∂t∗

= eγ−2a 1

r2∗

∂

∂r∗

(
r2
∗
∂C∗
∂r∗

)
.

Dividing through by eγ−2a gives

e2a−b ∂C∗
∂t∗

=
1

r2∗

∂

∂r∗

(
r2
∗
∂C∗
∂r∗

)
.

Hence the partial differential equation is invariant if and only if

2a − b = 0. (5)

Finally we substitute the stretching transformation (4) into the initial con-
dition (3). In the integral, we use a change of variable, r = ear∗ so that
dr = eadr∗, and thus (3) becomes

eγ+3a

∫ ∞

0

C∗ r2
∗ dr∗ =

1

4π
when t∗ = 0.

This condition is invariant if

γ + 3a = 0. (6)

We now solve for the constants in terms of a (which corresponds to the
variable r). For the entire problem to be invariant, γ = −3a and b = 2a.
Thus the general 3-parameter stretching transformation (4) reduces to the
1-parameter stretching transformation

r = ear∗, t = e2at∗, C = e−3aC∗. (7)

By eliminating a we find invariant combinations of the variables, i.e.

ea =
r

r∗
=

(
t

t∗

)1/2

=

(
C

C∗

)−1/3

.

Hence, we can form invariant combinations. From the two independent vari-
ables, cross-multiplying, we obtain

η1 = rt−1/2 = r∗t
−1/2
∗ and η2 = t3/2C = t3/2

∗ C∗. (8)

For the solution to have the same invariance properties as the partial dif-
ferential equation and the boundary and initial conditions then the solution
must also be invariant under the stretching transformation (7). This can be
achieved by functionally relating the two invariant combinations in (8) by
writing η2 = f(η1). This gives�
�

ÿ
þC(r, t) = t−3/2f(η) where η = rt−1/2. (9)
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Reduction of the PDE to an ODE

In (9) we have a similarity transformation which is guaranteed to reduce
the partial differential equation (1) to an ordinary differential equation
in the similarity variable η. The following example does this.

Example 2: Use the chain rule to reduce the PDE to an ODE.

Solution: Using the product rule and then the chain rule, we obtain

∂C

∂t
=

∂

∂t
(t−3/2f(η))

=
−3

2
t−5/2f(η) + t−3/2 df

dη

∂η

∂t

=
−3

2
t−5/2f +

[
t−3/2 df

dη
×

(
−1

2
rt−3/2

)]
.

Substituting r = ηt1/2, we obtain

∂C

∂t
= −1

2
t−5/2

(
3f + η

df

dη

)
. (10)

Using the chain rule on the r-derivative gives

∂C

∂r
=

∂

∂r

(
t−3/2f(η)

)
= t−3/2 df

dη
× ∂η

∂r
= t−3/2 df

dη
× t−1/2 = t−2 df

dη
.

Multiplying by r2, and using r = t1/2η to eliminate r, we obtain

r2 ∂C

∂r
= t−2 × tη2 df

dη
.

Using the chain rule again, gives

∂

∂r

(
r2 ∂C

∂r

)
= t−3/2 d

dη

(
η2 ∂f

∂η

)
.

Hence, dividing by r2 and again letting r = t1/2η,

1

r2

∂

∂r

(
r2 ∂C

∂r

)
= t−5/2 1

η2

d

dη

(
η2 df

dη

)
. (11)

Equating (10) and (11), dividing through by t−5/2 and multiplying through
by η2, the partial differential equation (1) reduces to the ordinary differential
equation�

�

�

�
−1

2

(
3η2f + η3 df

dη

)
=

d

dη

(
η2 df

dη

)
. (12)
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Solving the ODE

The solution of this differential equation is fairly involved. The details
are left for the problems at the end of this chapter, with an overview
given here. The method of solution involves recognising that (η3f)′ =
3η2f + η3f ′ which allows an integration of the differential equation (see
exercises, Questions 10 and 11 or Question 12). A family of solutions is

f(η) = c2e
−η2/4 (13)

where c2 is an arbitrary constant. Using C(r, t) = t−3/2f(η), η = rt−1/2,
from (9), the concentration is given by�
�

�
�C(r, t) = c2t

−3/2e−r2/4t. (14)

Condition (13) allows us to evaluate the constant c2. We can’t apply
this condition directly, since the solution is singular at t = 0. However,
by conservation of mass, the total mass M0 = (4π)−1 distributed over
all space remains constant, so that∫ ∞

0

r2C(r, t) dr =
1
4π

,

or in terms of the similarity variables∫ ∞

0

η2f(η) dη =
1
4π

which can then be used to find c2 (see Question 13). This gives c2 =
(4π)−3/2 and so�

�

�

�
C(r, t) =

(
1

4πt

)3/2

e−r2/4t. (15)

Interpretation

At r = 0 we have the concentration proportional to t−3/2. This shows
that the concentration becomes unbounded as t → 0. Of course, in
practice, the concentration cannot be infinite, but this model reflects
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that the pollutant is very concentrated initially compared to what it is
later on. For large times we see that the concentration tends to zero.

Now let us consider the spatial variation of concentration at differ-
ent times. For very small t the argument of the exponential is large
and negative provided r is not small. Hence, except for very close to
the origin, the concentration is very close to zero. For large times the
argument of the exponential is small hence the concentration does not
depend strongly on r for large t (i.e. the concentration is approximately
uniform). In Figure 3.3.2 we sketch the concentration distributions at
different times.
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Fig. 3.3.2. Distribution of concentrations at various times (t = 1, black; t = 2,
dots; and t = 3 grey) due to an injection of mass concentrated at r = 0 at
time t = 0.

Now, let us describe what is happening in this problem. Initially,
an “injection” of mass is put into the fluid. Because the mass is con-
centrated at a single point the concentration is infinite. Immediately
diffusion begins. This tends to smooth out the initial distribution of
concentration as mass diffuses away from the origin. Shortly after t = 0
the concentration is sharply peaked at the origin. Subsequently as the
pollutant diffuses away from the source, the concentration distribution
flattens out.

3.4 Solving the water filtration case study

In this section we apply the stretching transformation approach devel-
oped in the previous two sections. This is used to derive an appropriate
similarity solution for the case study problem discussed in Section 3.1.
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Review of the problem

In Section 3.1 we developed governing equations for the process of reverse
osmosis near a semi-permeable boundary (see Figure 3.1.2). In this
problem a saline solution flows along a semi-permeable boundary. Pure
water passes through the boundary since salt molecules are prevented
from passing through. Thus the salt concentration builds up on the
boundary. Our task is to predict the long term salt concentration on the
boundary as a function of distance along the semi-permeable boundary.

The equilibrium concentration satisfies an advection-diffusion equa-
tion (see Section 1.5). If we define the excess equilibrium concentration
c(x, y) by

c(x, y) = C(x, y) − c0 (1)

where c0 is the salt concentration at the entrance to the filter, then we
obtained, in Section 3.1, the approximate governing equations for the
excess concentration�

�

�

�
y

∂c

∂x
= α

∂2c

∂y2
, α =

Dv0

h
(2)

where v0 is the velocity of the fluid at a distance h above the semi-
permeable plate. The boundary conditions were�
�

�
�c(0, y) = 0, c(x,∞) = 0. (3)

We also have the boundary condition on the membrane surface�

�

�

�
−D

∂c

∂y
(x, 0) = qc0. (4)

Using stretching transformations

We can now apply the method of stretching transformations developed
in the previous two sections to find a transformation which reduces the
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partial differential equation to an ordinary differential equation. A gen-
eral stretching transformation of the variables x, y and c is given by

x = eax∗, y = eby∗, c = eγc∗.

If we substitute this into the partial differential equation and boundary
conditions and require invariance we obtain (see problems, Question 15)
the similarity transformation�
�

�
�c(x, y) = x1/3f(η), η = yx−1/3. (5)

Substituting (5) into the partial differential equation (2) then we ob-
tain the ordinary differential equation (see problems, Question 15)�

�

�

�
η

3

(
f − η

df

dη

)
= α

d2f

dη2
. (6)

This is a linear second-order differential equation.

Solving the ODE

The solution of this linear second-order differential equation and applica-
tion of the boundary conditions is somewhat lengthy so only an overview
is given here, with the details explored in the problems at the end of this
chapter. By inspection, we can see that f(η) = η is one solution. To ob-
tain the general solution the method of reduction of order can be used,
where we assume a second solution of the form f2(η) = ηg(η). The de-
tails are carried out in the problems (see Question 16 and Question 17).
Alternatively, we may be able to use a computer algebra package, such
as Maple. The general solution of the differential equation, using the
boundary condition f(∞) = 0 is

f(η) = C2η

∫ ∞

η

e−η3
1/(9α)

η2
1

dη1 (7)

and applying the boundary condition at y = 0 it is possible to obtain,
after some algebra (see problems Question 17), the solution on y = 0
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expressed as

c(x, 0) =
3αqc0

DI1
x1/3, I1 = (9α)2/3

∫ ∞

0

ve−v3
dv. (8)

Discussion of the solution

The definite integral I1 may be obtained approximately by numerical
integration. Using numerical integration (e.g. Simpson’s rule, or Maple)
its value is given, to 2 decimal places, as

I1 ' 1.09(9α)2/3. (9)

Note that α = Dh/v0, where D is the diffusivity of salt in water,
v0 is the horizontal velocity measured at a distance h from the semi-
permeable boundary. Using this, (1) and (9), the concentration C(x, 0)
of salt on the semi-permeable boundary is given by�

�

�

�
C(x, 0) = c0 + 0.64

qc0

D

(
Dh

v0

)1/3

x1/3. (10)

The concentration increases with distance along the plate, but this
increase occurs slowly due to the presence of the x1/3 factor. With
the parameter values chosen, in Figure 3.4.1, the proportional increase
is quite modest (only 0.2% in 200 cm), however, this increases if we
increase the flow rate q through the semi-permeable membrane.
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Fig. 3.4.1. Concentration ratio C/c0 along the plate. The parameter values
h = 10−3, D = 10−9, v0 = 10−3 and q = 10−3 have been used.
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Further reading

This case study was based on a problem considered in Probstein (1989).
A discussion of a practical device for water filtration using this technol-
ogy is given in James et al. (1993) and also Merten (1966).

Some further discussion of the mathematics of filtration can be found
in Probstein (1989) and Lightfoot (1974). A good introduction to the
theory of stretching transformations and similarity solutions can be
found in Dresner (1983). For those wishing to explore how the theory
can be extended to more general transformations (the method of Lie
symmetries), Logan (1987) gives an introduction, as does Hill (1992). A
more advanced exposition is given in Bluman and Kumei (1989).

3.5 Problems for Chapter 3

1. Given the stretching transformation

x = eax∗, t = ebt∗, u = eγu∗,

express
∂3u

∂x∂t2
and

∂u

∂x

∂u

∂t
in the starred variables.

2. Identify which of the following functions are not invariant under the
stretching transformation x = eax∗, t = e2at∗, u = eau∗.

(a) u = xt−1 (b) u =
√

tex2/t (c) u = t sin xt.

3. Consider a general similarity transformation of the form,

u(x, t) = tγf

(
x√
t

)

where f is some function and γ is a constant. Substitute this into the partial
differential equation

∂u

pt
= α

∂2u

∂x2

and show that f satisfies the ordinary differential equation

γf(η) − 1

2
ηf(η) = αf ′′(η).
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4. Consider the heat conduction problem

∂u

∂t
= α

∂2u

∂x2

with a prescribed heat flux on the boundary x = 0,

−k
∂u

∂x
(0, t) = 1,

and zero temperature initially.

(a) Use the stretching transformation method to find a similarity variable
for the problem.

(b) Obtain an ordinary differential equation for f . What are the boundary
conditions for f?

5. Consider 1-D nonlinear diffusion in a semi-infinite tube where the diffu-
sivity is proportional to the concentration. The appropriate diffusion equation
is the nonlinear PDE

∂C

∂t
=

∂

∂x

(
C

∂C

∂x

)

Suppose, also, that C(0, t) = 1 and the initial concentration is zero.

(a) Find the group of stretching transformations that leave the partial dif-
ferential equation, boundary condition and initial condition simultane-
ously invariant.

(b) Hence find an appropriate similarity substitution.

(c) Hence reduce the partial differential equation to an ordinary differ-
ential equation. What are the boundary conditions for the ordinary
differential equation?

6. Consider the partial differential equation

u
∂u

∂t
=

∂2u

∂x2
.

with the boundary and initial conditions

u(x, 0) = 0, u(∞, t) = 0,
∂u

∂x
(0, t) = −1.

(a) Using the method of stretching transformations show that

u(x, t) = t1/3f(xt−1/3).

(b) Hence obtain the ordinary differential equation satisfied by f and write
down the boundary conditions satisfied by f .
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7. Consider the partial differential equation, for a semi-infinite region
(0,∞),

u
∂u

∂t
+

(
∂u

∂x

)2

= 0

with temperature at x = 0 given by u0

√
t.

(a) Using the method of stretching transformations show that

u(x, t) =
√

tf(x/
√

t).

(b) Hence obtain the ordinary differential equation satisfied by f .

8. The partial differential equation

∂C

∂t
=

∂

∂x

(√
x

∂C

∂x

)

arises from diffusion with the diffusivity proportional to the square root of the
distance from the origin. The initial and boundary conditions are

C(0, t) = 0, C(∞, t) = 1, C(x, 0) = 1.

(a) Use the stretching transformation method to show C(x, t) = f(η) where

η = x/t2/3.

(b) Hence show that f satisfies

d

dη
(
√

ηf ′(η)) +
2

3
ηf ′(η) = 0

9. For the previous question, obtain a solution in terms of an integral.
[Hint: Try the substitution v =

√
η.]

10. Consider the differential equation

−1

2

(
3η2f + η3 df

dη

)
=

d

dη

(
η2 df

dη

)
(1)

which arose in the point source problem in Section 3.3.

Using (η3f)′ = 3η2f + η3f ′, solve the differential equation to obtain the
general solution

f(η) = −c1e
−η2/4

∫ η

a

eη2
1/4

η2
1

dη1 + c2e
−η2/4

where c1 and c2 are arbitrary constants and a is an arbitrary positive number.
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11. Consider the general solution to the point source problem obtained in
Question 10, which may be written as

f(η) = c1f1(η) + c2f2(η)

where

f1(η) = −e−η2/4

∫ η

a

eη2
1/4

η2
1

dη1, f2(η) = e−η2/4.

(a) L’Hôpital’s rule states:

lim
x→∞

g(x)

h(x)
= lim

x→∞
g′(x)

h′(x)

if both

lim
x→∞

g(x) = ∞ and lim
x→∞

h(x) = ∞.

Use this to show that f(∞) = 0 for all values of c1 and c2 and hence
this boundary condition cannot be used to determine either arbitrary
constant.

(b) The integral condition ∫ ∞

0

η2f(η) dη =
1

4π

sets some conditions on the rate of decay of the function f as η → ∞;
for the integral to converge then the integrand must decay more rapidly
than η−1 as η → ∞ for the integral to converge, which requires that f
must decay faster than η−3.

By considering the limit as η → ∞ of η3f1 and η3f2 deduce that
c1 = 0. (You can do this by plotting the appropriate functions, or
more rigorously by repeatedly using L’Hopital’s rule.)

12. Consider the differential equation

−1

2

(
η3f

)′
=

(
η2f ′)′

which arises in the solution for the point source in Section 3.3.

(a) Integrate the differential equation to obtain

−1

2
η3f = η2f ′ + c1

where c1 is an arbitrary constant.

(b) Given that f decays faster than η−3 deduce that c1 = 0. Hence solve
the resulting differential equation to obtain

f(η) = c2e
−η2/4

where c2 is an arbitrary constant.
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13. For the point source problem in Section 3.3, a family of possible solu-
tions for f is (see Question 11 or Question 12)

f(η) = c2e
−η2/4.

Apply the integral condition∫ ∞

0

η2f(η) dη =
1

4π

to obtain the arbitrary constant c2.

14. Consider 1-D diffusion on −∞ < x < ∞ with diffusivity proportional
to concentration,

∂C

∂t
=

∂

∂x

(
C

∂C

∂x

)
.

A source of unit mass is injected at x = 0 at t = 0.

(a) Given unit cross-sectional area, explain why∫ ∞

−∞
C(x, t) dx = 1.

Write down the boundary conditions.

(b) Use the stretching transformation method to find a suitable transfor-
mation.

(c) Hence find an ordinary differential equation (but do not solve).

15. For a concentration c(x, y), consider the partial differential equation

y
∂c

∂x
= α

∂2c

∂y2

where α is a constant, and the boundary conditions are

c(0, y) = 0, c(x,∞) = 0,
∂c

∂y
(x, 0) = − q0c0

D
.

(a) Use the method of stretching transformations to find a similarity trans-
formation which reduces the PDE to an ODE.

(b) Hence find the ODE obtained by applying the similarity transforma-
tion.

(c) Express the boundary conditions for the PDE in terms of the boundary
conditions for the ODE.



3.5 Problems for Chapter 3 111

16. In Section 3.4 we obtained the differential equation

η

3

(
f − η

df

dη

)
= α

d2f

dη2
. (2)

(a) Verify that f(η) = η is a solution and look for a second solution by
substituting f(η) = ηg(η) obtaining a first-order differential equation
for g′. Hence obtain the general solution

f(η) = C1η + C2η

∫ ∞

η

e−η3
1/(9α)

η2
1

dη1

where C1 and C2 are arbitrary constants.

17. Given the general solution (7) for the case study problem in Section 3.4

f(η) = C2

[
−e−η3/(9α) − η

3α

∫ ∞

η

ηe−η3
1/(9α) dη1

]

apply the boundary condition

f ′(0) =
−q0

D

to obtain

C2 =
3−1/3α1/3qc0

DI1
where I1 =

∫ ∞

0

ve−v3
dv.

18. Given

lim
η→∞

∫ ∞

η

e−η3
1/(9α) dη1 = 0

use L’Hôpital’s rule (see Question 10) to prove that f(∞) = 0 implies that
C1 = 0 in (7) (alternatively, you can prove the above limit using a squeeze
principal, i.e. find simpler functions which bound the given function above and
below).

19. Use integration by parts to prove∫ ∞

η

η−2
1 e−η3

1/(9α) dη1 = −η−1e−η3/(9α) − η

3α

∫ ∞

η

ηe−η3
1/(9α) dη1.
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Case Study: Laser Drilling

In this chapter we develop a mathematical model to calculate the drilling
speed of a laser through a thick sheet of metal. We can easily find an
expression for the drilling speed if we neglect heat conduction into the
metal. To include heat conduction, we introduce the method of regular
perturbations. This allows us to develop equations for a “correction”
due to a small term (in this case due to conduction) which otherwise
makes the the equations too difficult to solve.

4.1 Introduction to the case study problem

There is considerable interest in industry in the use of high power lasers
and electron beams for both cutting and welding of sheet metal. The
essential idea is to focus a large amount of energy onto a small area of
the surface of the metal. This intense heating causes vaporisation of the
metal, forming a hole. The following case study is based on a chapter of
Andrews and McLone (1976).

The problem

There are a number of mathematical questions associated with this prob-
lem. The one we try to answer is that of determining how rapidly the
hole is formed for a given value of the power per unit area of the irra-
diating beam. This is a heat conduction problem with a phase change
(solid to gas) and a moving boundary.

As energy from the laser is absorbed by the surface, the temperature of

112
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laser

sheet steel

Fig. 4.1.1. Schematic diagram of laser drilling. A laser of power Q0 drills
through metal by vaporising the metal.

the metal rises and heat is conducted through the metal. The tempera-
ture cannot rise indefinitely. At a certain temperature (the vaporisation
temperature, uv) energy is absorbed by the material as it changes from
solid to vapour (we will ignore the liquid phase — the heat supplied by
the laser is so intense that the metal appears to boil at once). We will
denote the amount of heat (per unit mass) required for the metal to
vaporise by λ, the specific latent heat of vaporisation.

We will further ignore any hydrodynamic effects, assuming the metal
vapour is drawn off before it can turn back to liquid, and we ignore the
thermal expansion of the metal.

There are several calculations to be done. One involves calculating the
time for the boundary x = 0 to heat to the vaporisation temperature. It
turns out that this happens very quickly. Another calculation justifies
that it is reasonable to neglect heat flow in the x and y directions. These
calculations are described in detail in Andrews and McLone (1976).

A 1-D model

Let us assume that the moving boundary advances a distance δs in a
time interval t to t+δt (see Figure 4.1.2). In doing so, some energy from
the laser is used in changing the metal from solid to vapour. We will
neglect any heat energy used to raise the temperature of the mass ρAδs

of metal to the vaporisation temperature, expecting this to be small



114 Case Study: Laser Drilling

compared to the heat required to vaporise a mass ρAδs of metal. Thus
the heat energy not used to vaporize the metal is conducted away.

Q0

x = s(t)x = 0

x

Fig. 4.1.2. A one-dimensional, semi-infinite model of the hole formation pro-
cess.

We do an overall heat balance. In a time δt conservation of energy
requires{

latent heat used
to vaporize
material

}
+

{
amount of heat

conducted
away

}
=

{
heat supplied

by laser
to surface

}
. (1)

Let λ be the latent heat per unit mass of the metal required to vaporise
the metal. Then {

latent heat required
to vaporize material

}
' λρA δs,

where ρ is the density of the material and A the area on which the laser
is focused. The amount of heat conducted away is given, in terms of the
heat flux J , by {

amount of heat
conducted

away

}
= AJ(s(t + δt), t)δt.

If the power supplied by the laser is Q0 watts then{
heat supplied

by laser
to surface

}
' Q0 δt.

Putting this together, we obtain

λρAδs + AJ(s(t + δt), t)δt = Q0δt.

Dividing through by δt and A and then letting δt → 0 gives

ρλ
ds

dt
=

Q0

A
− J(s(t), t).
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Using Fourier’s law of heat conduction, we have�

�

�

�
ρλ

ds

dt
=

Q0

A
+ k

∂u

∂x
(s(t), t). (2)

This is an equation for the drilling speed ds/dt.

We also need equations for the temperature u(x, t) in the metal. Now
let us write down the complete set of governing equations for the simple
one-dimensional, semi-infinite model of the hole forming process. We
assume that the temperature in the metal satisfies the classical heat
equation

∂u

∂t
= α

∂2u

∂x2
, for x > s(t). (3)

Let us assume the initial temperature is zero but the surface of the
boundary has been pre-heated to the vaporisation temperature. The
initial temperature distribution is

u(x, 0) = 0, (4)

and the boundary conditions are

u(s(t), t) = uv (5)

and

u(∞, t) → 0. (6)

With this set of governing equations, bearing in mind the similarity
to those used in Chapter 2, we might be tempted to seek a Boltzmann
similarity solution of the form u = f(φ) where φ = x/

√
αt. Unfortu-

nately the presence of the Q0/A term in the modified Stefan condition
means that the classical similarity approach as used in Chapter 2 will
not work here. Thus it appears that we might eventually have to re-
sort to a numerical solution. First, however, we can try to simplify the
problem and find an approximate solution to the equations.

A first estimate for the drilling speed

One possible simplification is to neglect heat conduction. The reason
for trying to neglect heat conduction is an expectation that most of the
heat is used up in vaporising the metal. If we can neglect the conduction
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of heat in the metal we can easily obtain an expression for the speed of
drilling. Setting k = 0 in (2) gives a drilling speed estimate, v0, as�

�

�

�
v0 =

ds

dt
=

Q0

ρλA
. (7)

Let us consider a 1 kW laser focused on an area 1 mm2 drilling through
a thick sheet of aluminium. For aluminium ρ = 2.7 × 103 kg m−3, λ =
1.08× 107 J kg−1. This estimate gives a drilling speed of v0 = 34 mm/s.

Scaled equations

We shall make the governing equations for the 1-D conduction model
dimensionless so that we can see when terms in these equation are small,
compared to other terms. First we need to choose suitable scales for the
variables.

The variables we have to scale are

x, t, s and u.

In the problem the constants available to scale them with are

uv, k, α, ρ, λ, Q0 and A.

Obviously, we can scale the temperature u with respect to the vaporisa-
tion temperature uv. There are no obvious length scales or time scales,
however, so we must construct them from the available variables. It is
natural to use the previous estimate for the drilling speed v0.

Let us introduce the symbols x0 and t0 for the yet to be determined
length and time scales. Now, since v0 is a velocity, a length scale is
given by x0 = v0t0. A time scale for heat conduction is t0 = x2

0/α.
Substituting t0 into the expression for x0 we obtain

x0 =
α

v0
and t0 =

α

v2
0

.

Note that these have the correct dimensions of length and time respec-
tively.
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We now define the dimensionless variables U , S, X and T correspond-
ing to u, s, x and t by

U =
u

uv
, S =

s

x0
=

v0

α
s, X =

x

x0
=

v0

α
x and T =

t

t0
=

v2
0

α
t.

Substituting this into the governing equations (2)–(6) we obtain (see
exercises, Question 2) the following dimensionless equations:

dS

dT
= 1 + ε

∂U

∂X
on X = S(T ),

with the dimensionless governing equation for temperature

∂U

∂T
=

∂2U

∂X2

and with the initial and boundary conditions

U(X, 0) = 0, U(S(T ), T ) = 1, U(∞, T ) = 0.

The dimensionless parameter ε is given by

ε =
kuv

ραλ
=

cuv

λ
. (8)

Physically the parameter ε represents the ratio of the heat used to
vaporise the metal to the heat used in raising the temperature to the
vaporisation temperature. Looking over the table below, we see that for
most common metals ε may be regarded as a small parameter.

Table 4.1.1. Thermal properties for some common materials. Here c is the
specific heat, uv is the vaporisation temperature and λ is the specific latent

heat of vaporisation.

Material uv λ c ε
◦C Jkg−1 J kg−1 ◦C

Aluminium 2 727 1.080 × 107 913 0.23
Copper 2 499 4.770 × 107 385 0.20
Gold 2 788 1.740 × 107 132 0.21
Iron 12 170 6.070 × 107 106 0.21
Lead 1 722 0.861 × 107 126 0.25
Nickel 2 739 6.361 × 107 460 0.20
Zinc 885 1.780 × 107 385 0.19
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Discussion

So that we can investigate the effect of conduction on the drilling speed
we need to develop an approximate solution which somehow takes ad-
vantage of the parameter ε being small. To do this we introduce the
method of perturbation expansions.

Since {T, X, U, ε} is a complete set of dimensionless variables and pa-
rameters for this problem, the solution U(X, T ) must also be a function
of ε. We consider a power series in ε. Essentially we look for a solution
U(X, T ) and S(T ) of the form

U = U0 + εU1 + ε2U2 + . . . , S = S0 + εS2 + ε2S2 + . . . ,

where U0 and S0 correspond to the approximate solution when ε =
0. The terms U1 and S1 represent a correction to the original U0, S0

solutions. The terms U2, S2 are higher order corrections.

To develop familiarity with the technique we will first look at some
simpler problems. First, in Section 4.2, we will look at a simple ordinary
differential equation where one of the terms in the boundary conditions
is multiplied by a small parameter. Second, in Section 4.3 we will look
at a two-dimensional, steady-state heat conduction problem where the
small parameter occurs inside the boundary condition.

4.2 Method of perturbations

Here we develop a procedure for obtaining a sequence of approximations
where each successive term is a small correction to the previously ob-
tained term. It is known as the method of perturbations. We introduce
a simple example problem on which to illustrate the method.

Example problem

The dimensionless equations for an equilibrium heat conduction problem
are�

�

�

�
d2U

dX2
− εU4 = 0 (1)
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with boundary conditions�
�

�
�U(0) = 1 and U(1) = 0 (2)

where ε � 1. In this problem there is a heat source term which arises
from radiation (which contributes the U4 term).

For small ε we want to develop a sequence of approximate solutions
for the dimensionless temperature U where the zeroth-order term corre-
sponds to ε = 0 and where we can obtain a first-order correction to this,
and then a second-order correction and so on.

The general procedure is to assume an expansion of the form�
�

�
�U = U0 + εU1 + ε2U2 + . . . (3)

for the dependent variable, U . Here U0, U1, U2 are functions to be
determined, where U0 is the principal term (or zeroth-order term), U1

is a correction to the principal term, and U2 is a further correction, and
so on.

Approximate equations

We now substitute this expansion into the governing equations and re-
tain terms up to ε2. The details are shown in the following example.

Example 1: Find the differential equations for U0, U1 and U2.

Solution: Substituting (3) into the differential equation (1) gives

d2U0

dX2
+ ε

d2U1

dX2
+ ε2

d2U2

dX2
= ε(U0 + εU1 + . . .)4.

Since we are only retaining terms of order ε2† then, in the term εU4, we only
need to retain terms of order ε1 within the expansion for U4. Expanding
(U0 + εU1 + . . .)4 we obtain

ε(U0 + εU1 + . . .)4 = ε(U2
0 + 2εU0U1 + . . .)2 = εU4

0 + 4ε2U3
0 U1 + . . . .

† A notation O(ε3) is often adopted to represent all those terms involving ε3 and
higher powers that are neglected.
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The differential equation now becomes

d2U0

dX2
+ ε

d2U1

dX2
+ ε2

d2U2

dX2
= εU4

0 + 4ε2U3
0 U1 + . . . .

Any terms involving ε3 or smaller have been neglected.

We can now extract equations for each of the terms U0, U1 and U2 by
equating coefficients of powers of ε. This is called “collecting terms of like
order”. The coefficient of ε0 gives

d2U0

dX2
= 0. (4)

Similarly, the coefficient of ε1 gives

d2U1

dX2
= U4

0 (5)

and, for ε2, we get

d2U2

dX2
= 4U3

0 U1. (6)

We also have to find appropriate sets of boundary conditions for the
functions U0, U1 and U2. This is done in the following example.

Example 2: Find the appropriate boundary conditions for U0, U1 and U2.

Solution: Substituting (3) into the boundary conditions (2), we obtain

U0(0) + εU1(0) + ε2U2(0) + . . . = 1,

U0(1) + εU1(1) + ε2U2(1) + . . . = 0.

We equate coefficients of powers of ε. Thus, the zeroth-order, first-order and
second-order boundary conditions are

U0(0) = 1, U1(0) = 0, U2(0) = 0,

U0(1) = 0, U1(1) = 0, U2(1) = 0.
(7)

Note the first-order and second-order terms are zero since there are no
order ε or order ε2 terms on the right-hand side. If the boundary condi-
tions are linear and do not involve ε then we expect the non-homogeneous
part of the boundary conditions to appear in the U0 terms where the
higher-order terms will be homogeneous.
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The solutions

Now we can solve for the various approximations. The zeroth-order
equations are (4) with the boundary conditions for U0 from (7)

d2U0

dX2
= 0, U0(0) = 1, U(1) = 0. (8)

The solution is given in the following example.

Example 3: Solve the boundary value problem (8).

Solution: The solution of this very simple differential equation can be ob-
tained by integrating both sides with respect to X twice, yielding

U0(X) = c1X + c2

where c1 and c2 are two arbitrary constants. Applying the two boundary
conditions for U0 gives the equations 1 = c2 and 0 = c1 + c2 and hence
c1 = −1 and c2 = 1. We thus obtain the solution

U0(X) = 1 − X (9)

for the zeroth-order term of the perturbation.

Using the solution for U0, and substituting into (5) the equations for
the first-order correction (with appropriate boundary conditions from
(7)) are

d2U1

dX2
= U4

0 = (1 − X)4, U1(0) = 0, U1(1) = 0. (10)

Note that the first-order correction term U1 depends on knowing the
solution for the zeroth-order term U0.

Example 4: Solve the boundary value problem (10).

Solution: Again the differential equation is of such a simple type that we
can integrate both sides twice with respect to X. We obtain

U1(X) =
1

30
(1 − X)6 + c3X + c4

where c3 and c4 are two arbitrary constants. Applying the two boundary
conditions U1(0) = 0 and U1(1) = 0 gives (1/30) + c4 = 0 and c3 + c4 = 0.
Hence c4 = −1/30 and c3 = 1/30. Thus

U1(X) =
1

30
(1 − X)6 − 1

30
(1 − X).
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The first-order perturbation approximation is given by

U(X) = U0(X) + εU1(X) + O(ε2).

We also call this the perturbation approximation correct to O(ε). Sub-
stituting for U0 and U1 from above we obtain

U(X) = (1 − X) + ε

{
1
30

(1 − X)6 − 1
30

(1 − X)
}

+ O(ε2).

The graphs of the two perturbation approximations U0 and U0 + εU1

are plotted in Figure 4.2.1, for ε = 3. There is not much difference
between the two solutions. For smaller values of ε the solutions are even
closer (normally ε < 1).
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Fig. 4.2.1. Graphs of the two perturbation approximations, U0 (black line)
and U0 + εU1 (grey line) plotted against X, for ε = 3.

Higher-order approximations

We can continue this process to whatever order is required. However, the
work involved usually becomes greater with each order of approximation.
It can be shown that the second-order term satisfies

d2U2

dX2
= 4U3

0 U1 =
2
15

(
(1 − X)9 − (1 − X)4

)
with the boundary conditions U2(0) = 0 and U2(1) = 0. The solution
is straight-forward and can be done by hand (or by using a computer
algebra package such as Maple).
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Further discussion

There are some subtle difficulties with this approach to finding approxi-
mate solutions, for some problems. These are explored in the exercises.
We describe two such difficulties briefly.

One such difficulty is for initial-value problems, where the independent
variable (usually time) ranges from 0 to ∞. It can happen that the
term multiplied by the small parameter can become large so that it is
no longer reasonable to neglect that term compared to others in the
equation. Thus the perturbation approximation may be valid only for
small times (see exercises, Question 9, for an example).

Another complication arises when the small parameter multiplies the
highest derivative in the differential equation. These are called singu-

lar perturbations . The zeroth-order solution cannot then satisfy all
the boundary conditions. This is because the order of the differential
equation for the zeroth-order term is less than that for the original differ-
ential equation. The perturbation approximation will thus not be valid
over the entire domain of the problem. (See exercises, Question 10, for
an example of a singular perturbation problem.) Since the boundary
condition must be satisfied on the boundary there will be a region near
the boundary where the true solution changes very rapidly from the
value on the boundary to the approximate perturbation solution. This
region is called a boundary layer. Analysis of boundary layers is very
important in fluid dynamics and other fields of study.

Methods have been devised to deal with singular perturbation prob-
lems. These involve rescaling the independent variable inside the bound-
ary layer and satisfying just the one boundary condition. The ‘inner’
perturbation approximation is then patched on to the other ‘outer’ per-
turbation solution. This is called the method of matched asymptotic ex-
pansions. (See any reasonable book on perturbations or advanced math-
ematical methods for further details and examples, e.g. Logan (1987);
Holmes (1995).)

4.3 Boundary perturbations

In this section an approximate solution is found for a problem where a
boundary is perturbed from a simpler boundary. This will develop the
necessary skills needed to handle the case study problem, since there
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the moving boundary is perturbed. The basic idea is to use a Taylor
expansion. The method is illustrated on an example problem.

Example problem

When electric current runs through metal some of the energy of the
drifting charged particles is converted to heat energy. For a wire of
perfectly circular cross-section it is not difficult to obtain an expression
for the temperature in the wire. The maximum temperature in the wire
occurs at the centre of the cross-section. No manufacturing process is
perfect, so the cross-section may not be perfectly circular. Our aim is to
investigate the effect of a non-circular cross-section on the temperature
in the wire.

Consider a wire where the cross-section of the wire has radius given
by

R = 1 + ε cos(θ)

where ε � 1 is a small parameter. The cross-section is shown in Fig-
ure 4.3.1. If ε = 0 the cross-section would be perfectly circular. The
ε cos(θ) term represents a small variation from the circular cross-section.

R = 1 + ε cos(θ)

R = 1

θ

Fig. 4.3.1. A cross-section of an electrical wire which is almost circular.

We suppose the non-dimensional equilibrium temperature of the wire,
U(R, θ, t), satisfies the 2-D Laplace equation with heat source,

∇2U + 1 = 0.
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In cylindrical polar coordinates (R, θ) this takes the form

1
R

∂

∂R

(
R

∂U

∂R

)
+

1
R2

∂2U

∂θ2
= −1. (1)

This problem corresponds physically to equilibrium heat conduction
with a volumetric heat source within the wire due to electrical resis-
tance.

For boundary conditions let us assume that the temperature at R = 0
is finite. On the surface of the wire R = 1 + ε cos(θ) we assume that the
temperature is held fixed at a temperature 1 ◦C,

U(1 + ε cos(θ), θ) = 1. (2)

We also have an implicit boundary condition

U is finite at R = 0. (3)

To solve this problem we might need to use numerical methods due to
the complicated boundary conditions. However, for small values of the
parameter ε we can find useful approximate solutions using the method
of perturbations.

Perturbation of the governing equations

Let us look for a perturbation approximate solution for the temperature
involving a zeroth-order term and a first-order correction. This means
we assume a solution of the form�
�

�
�U = U0 + εU1 + . . . . (4)

The zeroth-order term U0 will correspond to the problem of a perfectly
circular cross-section, corresponding to ε = 0. The first-order term
represents a first correction to that solution to take account of the non-
circular cross-section.

An outline of the procedure is:

• Substitute (4) into the governing equations.
• Collect terms for coefficients of ε0 and ε1.
• Solve the zeroth-order equations.
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• Using the zeroth-order solution, solve for the first-order correction.

The following example shows how to do the first two steps.

Example 1: Substitute the form of the perturbation series (4) into the partial
differential equation (1) to obtain the zeroth-order and first-order equations.

Solution: Carrying out the substitution we obtain

1

R

∂

∂R

(
R

∂

∂R
(U0 + εU1 + . . .)

)
+

1

R2

∂2

∂θ2
(U0 + εU1 + . . .) = −1.

This simplifies to

1

R

∂

∂R

(
R

∂U0

∂R

)
+ ε

1

R

∂

∂R

(
R

∂U1

∂R

)
+ . . .

+
1

R2

∂2U0

∂θ2
+ ε

1

R2

∂2U1

∂θ2
+ . . . = −1. (5)

Collecting all the coefficients of the ε0 terms gives�

�

�

�
1

R

∂

∂R

(
R

∂U0

∂R

)
+

1

R2

∂2U0

∂θ2
= −1. (6)

Similarly, for the coefficients of the ε1 terms,�

�

�

�
1

R

∂

∂R

(
R

∂U1

∂R

)
+

1

R2

∂2U1

∂θ2
= 0. (7)

We now deduce the zeroth-order and first-order boundary conditions
from (2). The perturbation parameter ε appears inside the boundary
condition. We call this a boundary perturbation. If ε were identically
zero the boundary condition would be a simple one to apply, U(1, θ) = 1.
To use the method of perturbations we must first expand U as a Taylor
series in the perturbation parameter ε. This will enable us to express
the boundary condition at R = 1 rather than R = 1 + ε cos(θ). This
procedure is shown in the following example.

Example 2: Using a Taylor expansion, find the zeroth-order and first-order
boundary conditions.
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Solution: First, we expand the boundary condition in a Taylor series. Recall
the formula for a Taylor series

U(R + h, θ) = U(R) + h
∂U

∂R
(R, θ) +

h2

2!

∂2U

∂R2
(R, θ) + O(h3).

Putting R = 1 and h = ε cos(θ) and going only to terms of order ε1, we obtain

U(1, θ) + ε cos(θ)
∂U

∂R
(1, θ) + . . . = 0. (8)

Now we can substitute the form of the perturbation series (4) into each
term of (8) to obtain

U0(1, θ) + εU1(1, θ) + . . .

+ ε cos(θ)

(
∂U0

∂R
(1, θ) + ε

∂U1

∂R
(1, θ) + . . .

)
+ . . . = 1.

We now collect terms of each power of ε. For ε0 we obtain�
�

ÿ
þU0(1, θ) = 1 (9)

and, for ε1 we obtain�

�

�

�
U1(1, θ) = − cos(θ)

∂U0

∂R
(1, θ). (10)

Solving the zeroth-order equations

From (6) and (9) we have the governing equations for the zeroth-order
term U0,

1
R

∂

∂R

(
R

∂U0

∂R

)
+

1
R2

∂2U0

∂θ2
= −1, U0(1, θ) = 1.

We also have an implicit boundary condition that U0 is finite at R = 0.

The symmetry of this problem suggests that U0 is independent of
θ. The problem then reduces to solving a simple ordinary differential
equation for U0.
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Example 3: Assuming a form of the solution U0(R, θ) = f(R), obtain the
zeroth-order solution.

Solution: Substituting U(R, θ) = F (R) into (6) gives

1

R

d

dR

(
R

dF

dR

)
= −1.

We can obtain the general solution here by integrating twice. Multiplying
through by R and integrating once gives

R
dF

dR
=

R2

2
+ c1

where c1 is an arbitrary constant. Dividing through by R and then integrating
gives

f(R) = −R2

4
+ c1 log R + c2

where c2 is also an arbitrary constant. Hence

U0(R, θ) = −R2

4
+ c1 log R + c2.

We now apply the boundary conditions.

We apply, first, the implicit boundary condition at R = 0, which states that
the temperature is finite at R = 0. We thus see that c1 = 0 since log(R) →
−∞ as R → 0. Second, applying the boundary condition U0(1, θ) = 1 gives
−(1/4) + c2 = 1, hence c2 = 5/4.

The solution for U0(R, θ) is thus

U0(R, θ) = −R2

4
+

5

4
. (11)

Solving the first-order equations

The first-order equations are the partial differential equation (7) and
boundary condition (10). We substitute the zeroth-order solution (11)
into the boundary condition (10). This gives the governing equations

1
R

∂

∂R

(
R

∂U1

∂R

)
+

1
R2

∂2U1

∂θ2
= 0, U1(1, θ) =

1
2

cos(θ). (12)

We also have the implicit condition that U1 is finite at R = 0.

The form of the boundary conditions suggests we seek a solution of
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the form U1(R, θ) = F (R) cos θ, where F is some function of only one
variable. Substituting this into the partial differential equation yields the
ordinary differential equation for F (R). The details are worked through
in the following example.

Example 4: Solve the PDE and boundary condition (12) by assuming the
form of the solution to be U1(R, θ) = F (R) cos(θ).

Solution: Substituting U1(R, θ) = f(R) cos(θ) into the partial differential
equation (12) gives the ordinary differential equation for f(R),

1

R

d

dR

(
R

dF

dR

)
− 1

R2
F = 0.

We cannot integrate this so we expand the derivative, using the product rule,
to obtain

R2 d2F

dR2
+ R

dF

dR
− F = 0.

This is an Euler–Cauchy equation.

We now look for a solution of the form F (R) = Rλ. Substituting this into
the differential equation yields λ = ±1. A general solution is therefore

F (R) = c3R + c4R
−1

where c3 and c4 are arbitrary constants. Since U1(R, θ) = F (R) cos(θ) then
the general solution for U1(R, θ) is

U1(R, θ) =
(
c3R +

c4

R

)
cos(θ).

Applying the boundary condition that U1 is finite at R = 0 means that
c4 = 0 identically. Applying U1(1, θ) = (1/2) cos(θ) yields c3 = 1/2. Hence,
we obtain

U1(R, θ) =
1

2
R cos(θ). (13)

Discussion

Putting together the zeroth-order solution and the first-order correction
we obtain�

�

�

�
U(R, θ) = −R2

4
+

5
4

+ ε
1
2
R cos(θ). (14)
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We note that the small perturbation in the shape of the surface does
not change the temperature of the centre (R = 0). In Figure 4.3.1 the
temperature on the surface R = 1 + ε cos(θ) is plotted, as a function of
θ.
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Fig. 4.3.2. Approximate temperature of the centre of a slightly elliptical cylin-
der given by equation (14). The grey line corresponds to ε = 0 and the dark
line to ε = 0.2.

4.4 Solving the laser drilling case study

We apply the method of perturbations to find an approximate solution
to the case study problem of finding the drilling speed of a laser through
a thick sheet of metal.

The governing equations

In Section 4.1 we obtained the governing equations and introduced a
scaling so that they could be expressed in dimensionless form. From
Section 4.1, the scaled governing equations were: the scaled heat con-
duction equation�

�

�

�
∂U

∂T
=

∂2U

∂X2
(1)
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with the initial and boundary conditions�
�

�
�U(X, 0) = 0, U(S(T ), T ) = 1, U(∞, T ) = 0 (2)

and the moving boundary condition (modified Stefan condition)�

�

�

�
dS

dT
= 1 + ε

∂U

∂X
(S(T ), T ). (3)

The dimensionless parameter ε is given by

ε =
kuv

ραλ
=

cuv

λ
. (4)

We found ε � 1 for common metals to be in the range 0.19—0.25. These
relatively small (but not too small) values suggest that heat conduction
is not the main factor governing the drilling speed, but its presence may
still have an effect on the speed.

Perturbation scheme

Let us assume that each of the dependent variables in the problem, U

and S, can be expanded in a series of terms involving powers of ε. Thus
we assume

U = U0 + εU1 + ε2U2 + . . . , (5)

S = S0 + εS1 + ε2S2 + . . . , (6)

where the functions U0, U1, S0, S1, etc., are still to be determined.

We substitute (5) and (6) into the governing equations (1-3) and keep
terms to O(ε). One difficulty here is that we have to apply boundary
conditions on X = S, but S(T ) is unknown. Since we have assumed that
S(T ) is a zeroth-order term plus corrections we can use Taylor series to
expand the boundary conditions about the zeroth-order solution for the
moving boundary S0. The details of doing this are carried out in the
exercises — it follows the method introduced in Section 4.3. We are left
with

U0 + εU1 + εS1
∂U0

∂X
+ . . . = 1 on X = S0(T ) (7)
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and
dS0

dT
+ ε

dS1

dT
= 1 + ε

∂U0

∂X
on X = S0(T ). (8)

Zeroth-order equations

Collecting the terms of order ε0 (see exercises, Question 15) produces
the equations for the zeroth-order terms, U0 and S0,

∂U0

∂T
=

∂2U0

∂X2
(9)

with initial and boundary condition

U0(X, 0) = 0, U0(∞, T ) = 0. (10)

We also have

U0 = 1 on X = S0, (11)

and
dS0

dT
= 1. (12)

Zeroth-order quasi-equilibrium solution

From equation (12) we can easily integrate to obtain S0 = T + c1 where
c1 is an arbitrary constant. Since the moving boundary starts from x = 0
at t = 0 then s(0) = 0 and so S0(0) = 0. Consequently c1 = 0 and hence

S0 = T.

Thus we know explicitly the position of the moving boundary to zeroth-
order. The equations we now have to solve, for the zeroth-order tem-
perature, are the partial differential equation (9) with the initial and
boundary conditions (10) and (11), with S0 = T .

This is still a moving boundary problem, but we know the position
of the moving boundary at all times. Thus we change the reference
frame so that the origin is fixed on the known moving boundary thus
turning the problem into a fixed boundary problem. Let us define the
new coordinates ξ and τ by

ξ = X − T, τ = T. (13)
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Using the chain rule (see exercises, Question 16) the partial differential
equation (9) is transformed to

∂U0

∂τ
− ∂U0

∂ξ
=

∂2U0

∂ξ2
. (14)

The initial and boundary conditions (10) and (11) are transformed to

U0(ξ, 0) = 0, (15)

U0(0, τ) = 1, (16)

U0(∞, τ) → 0. (17)

This set of equations can be solved using the method of Laplace trans-
forms†. However, some insight can be gained by examining large time
behaviour. Thus we look for the “quasi-equilibrium” solution, obtained
by setting the derivative with respect to τ to zero. This corresponds
to the large time solution in the moving coordinate system (ξ, τ). Set-
ting ∂U0/∂τ = 0 in (14) gives a simple constant-coefficient differential
equation to solve. The solution (see exercises, Question 16), which also
satisfies the boundary conditions (16) and (17) is�
�

�
�U0(ξ) = e−ξ (18)

Reverting to our original coordinates (X, T ), using (13), the zeroth-
order solution can be written as

U0 = e−(X−T ).

This quasi-equilibrium solution has neglected transients relative to the
moving boundary (to zeroth-order).

The solution predicts that the dimensionless temperature dies off very
quickly a short distance from the moving boundary. This is expected
since we are supplying a large amount of energy to the moving boundary

† It is also possible to obtain the time dependent solution using the method of
Laplace transforms, see Andrews and McLone (1976) and Bedding (1994). This
solution is

U0(ξ, τ) =
1

2
e−ξ

[
1 − erf

(
ξ − τ√

4τ

)]
+

1

2

[
1 − erf

(
ξ + τ√

4τ

)]
.

Note that the limit τ → ∞ corresponds to the quasi-equilibrium solution.
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from the laser but, in the zeroth-order approximation, we are neglect-
ing conduction of heat away from the moving boundary. The quasi-
equilibrium temperature is shown in Figure 4.4.1, for some different
times. The temperature shows an exponential decay from the moving
boundary into the material.
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Fig. 4.4.1. Graph showing the zeroth-order, quasi-equilibrium temperature as
a function of dimensionless distance X for various values of dimensionless time
T ; T = 1, T = 2, T = 3 and T = 4.

For further interpretation, one should use the fully time-dependent
solution, obtained by Laplace transforms, from Andrews and McLone
(1976).

First-order correction for the moving boundary

Now let us consider the equations for the first-order correction, which
incorporates the effect of conduction. These are obtained from the per-
turbation expansion of equations (2a–d) (see exercises, Question 15) and
collecting terms of order ε1. The first-order terms from the Stefan con-
dition yield

dS1

dT
=

∂U0

∂X
(S0(T ), T ).

Using the solution for U0 just obtained, and using S0 = T this reduces
to

dS1

dt
= −1.

Hence

S1 = −T + c2
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where c2 is an arbitrary constant. But S1(0) = 0 here so

S1 = −T.

Thus, since S = S0 + εS1, then

S(T ) = T − εT.

Further insight is obtained by expressing this approximate solution in
terms of the original dimensional variables (see Section 4.1). Restoring
original variables, using

S =
v0

α
s, T =

v2
0

α
t,

we have

s(t) = (1 − ε)v0t.

In original variables (see Section 4.1) the position of the moving bound-
ary is

s(t) =
(
1 − cuv

λ

)
v0t =

(
1 − cuv

λ

) Q0

ρλA
t.

Our new estimate for the drilling speed is�

�

�

�
v1 =

ds

dt
=

(
1 − cuv

λ

)
v0 =

(
1 − cuv

λ

) Q0

ρλA
. (19)

Discussion

We note that both the zeroth-order term and the first-order correction
lead to a moving boundary which is proportional to time, rather than
to the square root of time, as was the case for the moving boundary
problems in Chapter 2. The effect of an increase in the latent heat means
that the moving boundary moves more slowly — i.e. the hole is drilled
more slowly. This is what we would expect physically. The slower speed
comes from a small amount of the power of the laser being conducted
away from the moving boundary rather than going towards vaporising
the metal. We can also reduce the speed of the moving boundary by
increasing the conductivity.

Actually, the speed is not exactly constant — this result was obtained
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by using the quasi-equilibrium zeroth-order temperature. A slow varia-
tion in time is obtained by using the fully time dependent zeroth-order
solution obtained using Laplace transforms.

Further reading

This case study was sourced from Andrews and McLone (1976). They
also go into more depth in the problem, coming up with a more accu-
rate solution for small times (using the method of matched asymptotic
expansions for a singular perturbation). See also Bedding (1994) for de-
tails of the solution using Laplace transforms of the fully time dependent
problem.

Good references for the method of perturbations (including singu-
lar perturbations) are Logan (1987), Holmes (1995) and Nayfeh (1981).
Also Aziz and Na (1984) consider perturbations for a number of exam-
ples in heat conduction.

4.5 Problems for Chapter 4

1. A simple extension of the no-conduction model is to include a term for
the heat lost due to raising the temperature of the metal.

(a) Modify the no-conduction model of section 4.1 and hence obtain the
drilling speed estimate v1 as given by

v1 =
Q0

ρA(λ + cuv)
.

(b) Given cuv = 2.49 × 106 J kg−1 compare the two estimates v0 and v1,
where v0 is the estimate for the drilling speed obtained in Section 4.1.
Use the same values for Q0, ρ and λ as used in Section 4.1.

(c) From the formulae for v1 and v0 verify that v1 is always smaller than
v0. Give a physical reason for this.

2. Substitute the dimensionless variables

U =
u

uv
, T =

v2
0

α
t, X =

v0

α
x and S =

v0

α
s,
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into the equations

∂u

∂t
= α

∂2u

∂x2
,

u(x, 0) = 0,

u(s(t), t) = uv,

ρλ
ds

dt
=

Q

A
+ k

∂u

∂x
(s(t), t),

and hence express them in dimensionless form.

3. Consider the initial value problem

dy

dx
= 1 + (1 + ε)y2, y(0) = 0

where ε is a small parameter. Substitute

y(x) = y0(x) + εy1(x) + · · ·
into the differential equation and boundary conditions and collect terms of
like order. Solve the resulting linear differential equations and hence obtain
the approximate solution

y(x) = tan(x) +
1

2
ε(x sec2(x) − tan(x)) + · · · .

4. The dimensionless, steady-state concentration C(X) satisfies the differ-
ential equation

d2C

dX2
= εC2 + C,

with C(0) = 1 and C(∞) = 0.

(a) Use the method of perturbations to find a solution to O(ε).

(b) Suppose the boundary condition at X = 0 is replaced by C(0) = 1− ε.
Will this change C0 or C1?

5. For each of the following, use the method of perturbations to find an
approximate solution, correct to order ε:

(a)
du

dt
= 1 − εu2, u(0) = 2.

(b)
du

dt
= u − εu2, u(0) = 2.
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6. Consider the differential equation

dx

dt
= 2ε(x2 − x) + 1, x(0) = 0.

Given ε � 1, use the method of perturbations to find the zeroth-order, first-
order and second-order terms.

7. Consider the differential equation

d2U

dx2
− εU4, U(0) = 1, U(1) = 0.

For ε � 1 and assuming U = U1(x) + εU1(x) + ε2U2(x) + . . . find the second-
order term U2(x). (The zeroth-order and first-order terms have already been
found in Section 4.2.)

8. Consider the initial value problem

dy

dt
+ 2y = εy2, y(0) = 3.

Solve the initial value problem, for ε = 0, to obtain

y(t) = 3e−2t.

Using the method of perturbations, setting y = y0 + εy1, find the first-order
correction, y1(t), for the initial value problem in (a), with ε 6= 0 and ε � 1.

9. The equation for a nonlinear oscillator (the Duffing equation) is given
by

d2x

dt2
+ x − εx3 = 0,

with the initial conditions x(0) = 1, ẋ(0) = 0.

(a) Find the zeroth-order perturbation solution.

(b) Find the solution for the O(ε) term.

(c) Write down (but do not solve) the differential equations and initial
conditions for the O(ε2) term.

(d) Given the solution for x1 in (b) is

x1(t) = − 1

32
cos(3t) +

1

32
cos(t) +

3

8
t sin(t),

comment on the validity of the approximation for large t.
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10. Attempt to apply the method of perturbations (to O(ε)) to the differ-
ential equation

ε
d2U

dX2
+ (1 + ε)

dU

dX
+ U = 0, U(0) = 0, U(1) = 1,

where ε is a small parameter. What goes wrong? Find the exact solution
and sketch this for ε = 0.01. Comment on the size of the term εu′′ as X gets
smaller.

[Note: This type of problem is called a singular perturbation problem. Spe-
cial methods involving matching inner and outer expansions must be employed
to properly handle such problems.]

11. In the problems for Chapter 1, Question 20, the scaled equations for a
missile in an inverse-square gravitational field were

Ẍ =
−1

(1 + εX)2
, X(0) = 0, Ẋ(0) = 1

where ε is a small parameter. Find, correct to O(ε), an approximate solution
using the method of perturbations.

12. Consider the partial differential equation

1

r

∂

∂r

(
r
∂u

∂r

)
= −2

with boundary condition

u(1 + ε, θ) = 10.

(a) Assuming the solution is also finite at r = 0 use the method of pertur-
bations to find the zeroth-order and first-order approximate solutions.

(b) Give a physical interpretation for the PDE and boundary conditions.

13. In fluid mechanics, plane water waves satisfy Laplace’s equation ∇2φ =
0 for the velocity potential φ where the horizontal and vertical velocity com-
ponents are given by v1 = ∂φ/∂x and v2 = ∂φ/∂y. On the surface of the wave
y = h(x, t) (see Figure 4.5.1) the boundary conditions are

∂φ

∂t
+ v1

∂φ

∂x
= v2 and

∂φ

∂t
+

1

2
v2 = gh.

The first equation is the kinematic condition and the second comes from ap-
plying Bernoulli’s equation.

In dimensionless variables X, T , H and Φ, corresponding to x, t, h and φ,
these equations may be expressed as ∇2Φ = 0 with the boundary conditions

∂H

∂T
+ ε

∂Φ

∂X

∂H

∂X
=

∂Φ

∂Y
on Y = εH(X, T )
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h

y

x

Fig. 4.5.1. Diagram for Question 13. Coordinate system for a water wave.
The mean position is located at y = 0.

and

∂Φ

∂T
+

ε

2

((
∂Φ

∂X

)2

+

(
∂Φ

∂Y

)2
)

= βH, on Y = εH(X,T )

where ε = h0/λ is the (small) ratio of the amplitude to the wavelength and β
is a dimensionless constant called the Froude number.

(a) Assume perturbation expansions H = H0 + εH1 + . . . and Φ = Φ0 +
εΦ1 + . . . and deduce that the zeroth-order terms satisfy

∂H0

∂T
=

∂Φ0

∂Y
,

∂Φ0

∂T
= βH0 on Y = 0.

[Note: In dimensional variables these equations correspond to

∂h

∂t
=

∂φ

∂y
and

∂φ

∂t
= gh on y = 0

which are the well-known equations for linear wave theory.]

14. (Continuation of Question 13.) Write down (but do not solve) the
equations for the the first-order perturbation for the wave height H1. [These
equations give a means for studying nonlinear effects on wave shape.]

15. In the case study problem of Section 4.4 the dimensionless equations
are

∂U

∂T
=

∂2U

∂X2
,

with

U(S(T ), T ) = 1

and
dS

dT
= 1 + ε

∂U

∂X
(S(T ), T ),

where ε is a small parameter. Make the substitutions

U = U0 + εU1 + ε2U2 + . . . and S = S0 + εS1 + ε2S2 + . . . .
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(a) Collecting terms, obtain the zeroth-order equations and the first-order
equations and solve both of them.

(b) Write down the second-order equations (but do not solve).

16. The zeroth-order perturbation in Question 15 satisfies

∂U0

∂T
=

∂2U0

∂X2

with U0(X, 0) = 0, U0(T, T ) = 1 and U0(∞, T ) = 0.

(a) Using a change of variables, ξ = X−T , τ = T , show that the governing
equation becomes

∂U0

∂τ
− ∂U0

∂ξ
=

∂2U0

∂ξ2
,

and express the initial and boundary conditions in terms of the new
variables.

(b) Obtain a quasi-steady-state solution by neglecting the derivative with
respect to τ . Express this back in terms of the variables X and T . Using
sketches, explain what this tells us about the long-term behaviour of
the temperature.



5

Case Study: Factory Fires

We consider the spontaneous ignition of sawdust layers in a particle
board factory. We introduce bifurcation analysis as a technique for de-
termining the critical value of a parameter (in this case the thickness
of the sawdust layer) where the solution suddenly jumps to a different
branch (corresponding to ignition).

5.1 Introduction to the case study problem

We introduce here a case study about fires in a chipboard factory. Our
aim is to develop equations which can be used to determine conditions
for spontaneous ignition to occur. This leads to critical dimensionless
combustion parameters that can be evaluated from real reactivity and
thermal transport data. The outcome is a criterion for safe storage of
mildly combustible materials. The case study is based on an article by
Sisson (1993).

Problem background

A chipboard factory has had several unexplained fires. The question
arises whether these may have started from spontaneous ignition of saw-
dust piling up on top of the hot presses (see Figure 5.1.1).

If the heat cannot diffuse fast enough through the sawdust then dan-
gerously high temperatures may result. The thicker the pile of sawdust,

142
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wood fibre

sawdust

hot press

hot press

Fig. 5.1.1. Diagram showing a wood press. Fires may be caused by sponta-
neous ignition of the sawdust piled on top of the hot presses.

the more likely ignition will occur. The essential question is to deter-
mine the critical thickness of the sawdust where spontaneous ignition
will occur.

The chemical reaction of oxygen with the sawdust and machinery lu-
bricant produces heat internally. The rate of heat produced will depend
on the chemical reaction and on the temperature — the higher the tem-
perature, the more heat is produced.

Mathematical model

To investigate this problem we try to simplify it. We consider a one-
dimensional heat flow model for a pile of sawdust of height `. This is
shown in Figure 5.1.2.

Newton cooling

x = `

x = 0
u1 = 200

us = 30

x

Fig. 5.1.2. One-dimensional heat flow model for pile of sawdust.

The governing equation for this problem is the heat equation with a
volumetric heat source term Q, for the chemical reaction. This equation
is�

�

�

�
ρc

∂u

∂t
= k

∂2u

∂x2
+ Q (1)
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where k is the heat conductivity, ρ the density and c the specific heat
of the sawdust.

The boundary x = 0 corresponds to where the sawdust sits on the hot
metal press. A suitable boundary condition specifies the temperature of
the sawdust to be the same as the temperature of the press, which is at
u1 = 200 ◦C. We will thus write�
�

�
�u(0, t) = u1. (2)

The top surface of the sawdust is exposed to air. We shall assume
this surface loses heat to the air according to Newton’s law of cooling.
(Recall that Newton’s law of cooling gives the heat flux as proportional
to the temperature difference between the surface and the surroundings.)
We thus write�

�

�

�
−k

∂u

∂x
(`, t) = h(u(`, t) − us) (3)

where k is the conductivity of sawdust, h is the Newton cooling coeffi-
cient and us is the air temperature. We shall investigate several different
air temperatures, from ua = 20 ◦C to ua = 40 ◦C.

The Arrhenius law

We need to determine the form of the heat production term Q in (1).
This term represents the rate of heat produced per unit time per unit
mass of sawdust. This will be given by the product of the sawdust
concentration multiplied by the rate of reaction, K (which is strongly
temperature dependent). Heat is released at a rate proportional to the
rate of reaction. We have defined the quantity Q as the rate of heat
released per unit mass of reactant per unit time. We can write

Q = CQ0K

where C is concentration of the reactant, and Q0 is a positive constant
called the heat of reaction.

The Arrhenius law in chemistry (after Arrhenius, circa 1900) gives
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the reaction rate K as a function of temperature. The form of the
Arrhenius law is

K = Ae−E/(Ru)

where u is the temperature, measured in kelvin, E is the activation
energy for the reaction, R is the universal gas constant and the constant
A is called the pre-exponential factor. Note that A has dimensions
[A] = T−1, so that 1/A is a time scale. The quantity E/R has dimensions
of temperature. This is a temperature at which a fraction 1/e of reactant
particles will react. In practice, this temperature will not be reached
before unstable generation of heat results in ignition.

We will assume that the concentration of reactants remains constant
over the time interval we are interested in. Thus, if C0 is the initial
concentration of reactant, we obtain

Q(u) = C0Q0Ae−E/(Ru). (4)

The Arrhenius law takes the same form as the Boltzmann–Gibbs prob-
ability for a particle having sufficient energy to overcome the single re-
action energy barrier E, at temperature u.

As we can see in Figure 5.1.3 the rate of heat produced is zero if the
temperature is absolute zero — there is no reaction at this tempera-
ture. The rate of heat production increases with temperature, rapidly
at first. Eventually there is a saturation effect as the rate of heat pro-
duced asymptotes to a constant value Q0 for very large temperatures.
There is a point of inflection at u = 2E/R.

For many problems in combustion the value of the constant E/R is
typically of the order 104 K or higher. For sawdust, E/R ' 16, 220 K.

The Frank-Kamenetskii approximation

The 1/u term in the Arrhenius law causes some mathematical difficul-
ties due to the difficulty in integrating e−1/u. Frank-Kamenetskii’s aim
was to produce an approximation to the Arrhenius term which is based
around a temperature u1 but still had the exponential characteristic
of the original Arrhenius term. The approximation is essentially tak-
ing a Taylor-series expansion of the argument of the exponential in the
Arrhenius term.

To approximate e−E/(Ru) about some temperature u1 we can use a



146 Case Study: Factory Fires

Q(u)

u

2E/R

Fig. 5.1.3. Rate of heat produced, Q(u), per unit time per unit mass, in
an exothermic chemical reaction according to the Arrhenius law. This is a
schematic diagram, not drawn to scale.

two-term Taylor expansion of 1/u about u = u1. Recall the Taylor-series
formula, for some function f ,

f(u) = f(u1) + f ′(u1)(u − u1) + . . . +
1
n!

f (n)(u1)(u − u1)n + . . . .

Hence, for f(u) = u−1, and retaining only two terms, we obtain

1
u
' 1

u1
− 1

u2
1

(u − u1).

Hence
E

Ru
' 2E

Ru1
− E

Ru2
1

u.

Substituting this into the expression for Q(u) we obtain

Q(u) ' γebu (5)

where

b =
E

Ru2
1

and γ = C0Q0e
−2bu1 . (6)

This is a closely fitting model for the exponentially rising part of the
curve in Figure 5.1.3, where u � 2E/R. As remarked earlier in this
section, this is a very high temperature which is not likely to occur
before a criterion for ignition has already been established. Hence, for
our purposes, it is not important that (5) does not closely approximate
the Arrhenius relationship in the region u ≥ 2E/R.
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Summary of governing equations

Using the Frank-Kamenetskii approximation for the Arrhenius reaction
rate, the governing partial differential equation for the temperature in-
side the sawdust is

ρc
∂u

∂t
= k

∂2u

∂x2
+ γebu (7)

where the constants b and γ are defined by (6). We also have the two
boundary conditions

u(0, t) = u1, −k
∂u

∂x
(L, t) = h(u(L, t) − us). (8)

Our aim here is to determine conditions where ignition occurs. We
will interpret ignition as a sudden change in temperature as we vary
some parameter (e.g. the length ` or the air temperature ua).

Two simpler problems

Before we attempt to solve this we will look at two simpler problems.
In each problem we will investigate how the equilibrium temperature
changes as we vary some parameter λ. This will give us the necessary
skills to study the case study problem defined by the above governing
equations.

In the first problem we will look at a problem without any heat con-
duction. To mimic the physical processes for the case study we will
assume that heat is produced by a reaction term and that there is also
a loss term, according to Newton’s law of cooling. The temperature is
now independent of x and we have an ordinary differential equation for
the temperature.

In the second problem we will study the simplest heat conduction
problem with spontaneous ignition. This problem has one advantage
where, by symmetry, we know the maximum temperature occurs at x =
0.
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5.2 Bifurcations and spontaneous ignition

We investigate the basic phenomenon of spontaneous ignition by study-
ing the mathematics of bifurcation of solutions in an ordinary differen-
tial equation. We consider the equilibrium (steady-state) solutions and
determine a condition for spontaneous ignition when the equilibrium
solutions undergo a sudden jump as some parameter is varied smoothly.

Example problem

A simple example which mimics ignition phenomena is�

�

�

�
du

dt
= −u + λeu. (1)

Here λ is a positive constant, u is absolute temperature and t is time.
This is similar to the governing equation obtained in Section 5.1, equa-
tion (7), with the heat conduction term missing.

We are interested in how the solution varies as the parameter λ is
changed. Physically, changing λ might correspond to changing some
physical quantity, such as the amount of the reactant or the ambient air
temperature. In the case study problem, the parameter we shall vary is
the thickness of the sawdust pile.

As well as being a crude model for the case study problem (neglecting
conduction), this differential equation also arises from the study of a
stirred chemical reactor, see Figure 5.2.1. In a stirred chemical reac-
tor, chemicals are mixed together in a vat and heat is produced by the
reaction. Because the mixture is stirred the temperature is homogeneous
in space and therefore heat conduction is neglected. However, heat is
lost from the surface of the vat to the surrounding air. Spontaneous
ignition can occur when the volume of the mixture exceeds a critical
value. In the exercises (see Question 1) the derivation of the governing
differential equation is worked through and using scaling, equation (1)
is obtained.
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cin

C(t)

Fig. 5.2.1. A stirred chemical reactor. The stirring means that heat conduc-
tion can be neglected. Reactants enter at concentration cin.

Numerical investigation

Let us start by comparing numerical solutions of this equation, for some
different values of the parameter λ. This is done using the computer
package Maple (using the dsolve command). The results are shown in
Figure 5.2.2.
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Fig. 5.2.2. Numerical solution of the differential equation (1) for some differ-
ent values of the parameter λ. Some solutions (λ = 0.1, 0.2, 0.3) tend to an
equilibrium while others (λ = 0.5, 0.5) do not.

Under some conditions the temperature u will reach an equilibrium,
but sometimes this may not occur. It all depends on the value of the
parameter λ. In this example, it appears from Figure 5.2.2 that the
temperature tends to an equilibrium value for values of λ less or equal
than 0.3 but not for values of λ greater than or equal to 0.4. Between 0.3
and 0.4 a critical change in behaviour is occuring. The sudden change



150 Case Study: Factory Fires

in the equilibrium behaviour as a parameter is varied comes from a phe-
nomenon known as a bifurcation. In a bifurcation, it is possible to
have more than one equilibrium solution, where the solution can sud-
denly change from one equilibrium branch to another as the parameter
is changed slightly. In the above example, we see a reduction (to zero)
of the possible number of equilibrium solutions as λ increases (there is
no equilibrium as the temperature tends to infinity).

Equilibrium temperature

In some circumstances the system may approach an equilibrium (steady-
state). It means physically that heat is lost from the surface at exactly
the same rate as that produced by the chemical reaction. To find the
equilibrium temperature we substitute du/dt = 0 into the differential
equation (1).

Example 1: Determine graphically the number of equilibrium solutions of
(1) as the parameter λ is changed.

Solution: Setting du/dt = 0 in (1) gives

u = λeu (2)

which can be thought of as an equation for determining the equilibrium values
of the temperature u as a function of the parameter λ. First we write the
equation in the form

u

λ
= eu

so we can easily sketch both sides of the equation. Equilibrium solutions
correspond graphically to intersection points of the two curves

y =
u

λ
and y = eu.

The intersection points are shown graphically in Figure 5.2.3.

The curve y = eu is monotonic increasing and for large u increases much
more rapidly than the curve y = λ−1u. This proves there will either be two
solutions (see Figure 5.2.3) for certain values of λ, or no solutions for other
values (and one solution when the two curves intersect with the same tangent).

Starting with “small” values of λ (large values of λ−1), Figure 5.2.3
demonstrates there are always two intersection points. For “small” λ
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y = u
λ

y = eu

u(1) u(2)

u

y

Fig. 5.2.3. Intersection points corresponding to equilibrium temperatures. If
the parameter λ is sufficiently large, there are no intersection points.

we can think of these solutions as corresponding to a “cool” equilib-
rium temperature, which we denote by u(1), and a “hot” equilibrium
temperature u(2).

As the parameter λ increases (and the straight line slope λ−1 de-
creases) then we progress to a state where there are no longer any solu-
tions of equation (2) (as shown in Figure 5.2.3).

There is a critical value of the parameter λ where we go from two
solutions to no solutions. We shall denote this value by λcr and the cor-
responding critical equilibrium temperature by ucr. We see, graphically,
that at λcr the curves intersect and the tangents of the two curves are
the same.

Example 2: By solving the appropriate equations, determine analytically
ucr and λcr.

Solution: From the original equation for the intersection of the two graphs,
putting u = ucr and λ = λcr gives

ucr

λcr
= eucr . (3)

Differentiating both sides with respect to ucr gives the equation for the tan-
gents to coincide,

1

λcr
= eucr . (4)
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We can solve (3) and (4) simultaneously, to obtain ucr = 1. Substituting this
back into one of the equations yields

ucr = 1, λcr = e−1 ' 0.36788. (5)

This gives the exact analytic values for the critical values of λ and
u. In more complicated examples we would probably have to solve the
equations graphically or numerically. The critical value λcr corresponds
to when spontaneous ignition occurs. But to see why, we need to first
understand which of the two equilibrium solutions the temperature tends
to, in different circumstances. This is known as determining the stabil-

ity of the equilibrium temperatures.

Stability of equilibria

We now determine which of these equilibrium solutions the temperature
tends towards. We can do this by examining the sign of the du/dt term
in the differential equation (1). This indicates what happens to the
temperature for a single given value of λ. The following example shows
how to determine the stability of the equilibrium solutions illustrated in
Figure 5.2.3.

Example 3: Suppose the value of λ is such that there are two equilibrium
solutions. Determine, graphically, which of them are stable and which are
unstable. Assume the initial temperature is such that it is below both equi-
librium temperatures.

Solution: We are somewhere in region I in Figure 5.2.4. Everywhere in this
region, du/dt > 0 because heat production is always greater than heat loss.
This implies that the temperature must increase in this region. It increases
towards the “cool” equilibrium temperature.

Now let us suppose that the initial temperature is such that u is in region
II in Figure 5.2.4. Here heat loss is greater than heat production so the
temperature will decrease towards the “cool” steady-state.

Now suppose that the initial temperature u is greater than the “hot” steady-
state (corresponding to region III in Figure 5.2.4). Here heat production is
always greater than heat loss so that the temperature increases without bound.

A stable equilibrium point ue is one for which the solution u(t) can
be made to remain as close to ue as we please by taking the initial value
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I II III

u(1) u(2)

u

y
heat production heat loss

Fig. 5.2.4. For equation (1) with “high” values of λ. There is one “cool”
equilibrium temperature and one “hot” equilibrium temperature. However,
the temperature always tends towards the “cool” equilibrium temperature, as
explained in the text.

u(0) sufficiently close to ue. An equilibrium point ue that is not stable
is said to be unstable.

A stable equilibrium point is asymptotically stable if every solution
u(t) approaches ue as t → ∞ provided the initial value u(0) is sufficiently
close to ue. Since the lower-temperature equilibrium point is approached
from either side as t increases, it is asymptotically stable. The higher-
temperature equilibrium point is unstable because solutions with initial
temperature higher than u(2) show a further increase beyond u(2).

Bifurcation diagrams

For a fixed value of λ, such that λ is large, the temperature tends here
to the “cool” equilibrium for all initial temperatures greater than 0 and
less than u(2). When λ is in the range such that there are no steady
solutions for u we easily deduce that du/dT > 0. Thus, for these values
of λ the temperature increases without bound.

Let us now plot the equilibrium solutions as the parameter λ increases.
This is called a bifurcation diagram. This is done in Figure 5.2.5. A
bifurcation diagram is a convenient way of summarising the information
about how the equilibrium solutions change as a parameter changes. In
the bifurcation diagram in Figure 5.2.5 ignition occurs where the two
solutions become one solution and then zero.
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λ

Fig. 5.2.5. Constructing a bifurcation diagram. The bifurcation diagram (b)
is a graph of the equilibrium solutions plotted as a function of the parameter
λ.

Imagine that the value of λ is such that we are just about to jump
from two steady-state solutions to no steady-state solution. A sudden
change in the number of steady-state solutions as we vary a parameter
slightly is called a bifurcation. As λ is increased slightly past λcr, we
have established that the temperature can suddenly go from approaching
a “cool” steady-state to where the temperature increases indefinitely.
This sudden rise is interpreted physically as the mixture undergoing
spontaneous ignition when the volume of the tank is increased past some
critical value.

Further discussion

Spontaneous ignition occurs when the equilibrium temperature suddenly
changes from a cool steady-state to a much hotter one (or to where the
temperature increases without bound). This can happen if the initial
temperature is sufficiently high. However, ignition can, in some cases,
also occur spontaneously even for all initial temperatures.

In real life, the temperature cannot actually become infinite. This
is an artefact of the model, caused by using the Frank-Kamenetskii
approximation of the heat produced by the reaction. Recall that the
Arrhenius term has a saturation effect as the temperature becomes
larger, i.e. Q(u) = C0Q0e

E/(Ru). In the exercises (see Question 10),
an example with a full Arrhenius term will be investigated. In the ex-
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ample, the temperature jumps from one stable “cool” equilibrium to a
much hotter stable equilibrium, as some parameter λ changes slowly.

In general, a change in the number, or stability, of equilibrium solu-
tions is said to be a bifurcation. This change may be effected when
some system parameter (for example, λ) reaches some critical value. The
system parameters are usually expressed as dimensionless quantities so
that critical values of the system parameters are independent of the sys-
tem of units used. A bifurcation diagram is often useful for identifying
where bifurcations occur, and for determining whether they correspond
physically to spontaneous ignition.

5.3 Ignition with conduction

In the previous section we looked at a problem where conduction of heat
was not important because the temperature was homogeneous in space.
A problem where conduction is important is solved here as a precursor
to the case study problem.

Example problem

Let us consider a reacting material between two surfaces which are both
maintained at temperature u1. We place the origin at the centre of the
reacting material with the two surfaces at x = ±1 (see Figure 5.3.1).
As the material between the two surfaces reacts with oxygen, heat is
released, which causes the reaction to accelerate. However, heat is also
conducted through the material and escapes to the surroundings. With
more material between the surfaces, it will be more difficult for heat to
escape by conduction through the material.

Due to the symmetry of the problem, the maximum temperature will
occur at the origin. To find conditions under which spontaneous igni-
tion can occur we develop equations for the maximum temperature and
use these to construct a bifurcation diagram which shows how the maxi-
mum temperature inside the material varies as the distance between the
surfaces changes.
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u = 0

u = 0

x = 0

x = 1

x = −1

x

Fig. 5.3.1. Combustible material between two surfaces x = ±1, both held at
temperature u = 0.

Governing equations

The governing equation for this problem is then the heat equation with
a source term given by the Arrhenius law with the Frank-Kamenetskii
approximation. This equation is

ρc
∂u

∂t
= k

∂2u

∂x2
+ γebu

where γ and b are positive constants. Here k is the heat conductivity, ρ

the density and c the specific heat of the material.

For equilibrium temperature ∂u/∂t = 0 and u is then a function of x

alone. Hence an equilibrium temperature u(x) satisfies

k
d2u

dx2
+ γebu = 0. (1)

We also assume that the boundaries of the medium are at x = ±` and
at these boundaries the temperature is kept constant at some value u1.
However, the symmetry of this problem allows us to work with only half
the region.

For mathematical simplicity, we let u1 = 0, b = 1, ` = 1, and let
λ = γ/k, which gives the differential equation�

�

�

�
d2u

dx2
+ λeu = 0, (2)
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with the boundary conditions�

�

�

�
du

dx
(0) = 0, u(1) = 0. (3)

We show in the exercises (see Question 12) that this is equivalent to a
certain scaling to make the equations dimensionless.

Our aim is to determine a condition on λ for spontaneous ignition
to occur. For this we will examine how the maximum equilibrium
temperature changes with the parameter λ.

For this problem, by symmetry, the maximum temperature must occur
at x = 0, where we have�
�

�
�u(0) = um. (4)

Solving the differential equation

The differential equation (2) is nonlinear. However, because the differ-
ential equation doesn’t depend on the x-variable explicitly this suggests
we proceed by eliminating x using the chain rule. The following example
shows how to obtain the general solution.

Example 1: Use the chain rule to solve the differential equation (2).

Solution: Letting u′ = du/dx, and using the chain rule,

d2u

dx2
=

du′

dx
=

du′

du

du

dx
= u′ du′

du
,

the differential equation (2) becomes

u′ du′

du
= −λeu.

Solving this first-order separable differential equation we obtain

1

2
(u′)2 = −λeu + C1



158 Case Study: Factory Fires

where C1 is an arbitrary constant of integration. Taking the square root of
both sides, we obtain

1√
2

du

dx
= ±√

C1 − λeu.

We discard the positive sign for the following reason. The highest
temperature will be in the middle at x = 0 so the temperature must
decrease with increasing x. This implies that du/dx < 0 and so we can
discard the positive case. Thus we have

1√
2

du

dx
= −

√
C1 − λeu.

We can now apply the remaining boundary conditions and then obtain
u(x) by solving the remaining first-order differential equation. The fol-
lowing example shows how to do this.

Example 2: Apply the boundary conditions and complete the solution of
the differential equation.

Solution: Applying the condition (3), we can evaluate the arbitrary constant
C1. Substituting u = um gives C1 = λeum . We thus obtain

du

dx
= −

√
(2λ(eum − eu)).

This is a first-order separable differential equation.

The solution of this differential equation may be written as∫
1√

eum − eu
du = −

√
2λx + C2 (5)

where C2 is an arbitrary constant of integration. The integral can be evaluated
in closed form (see Question 13 in the exercises). We obtain†

−2

eum/2
sech−1

(
eu/2

eum/2

)
= −

√
2λ x + C2. (6)

With some algebraic manipulation, and applying the boundary condition
u(0) = um, we can solve for u to get

u(x) = um − 2 log

[
cosh

(√
λ

2
eum/2x

)]
. (7)

† Note that sech(z) = 1/ cosh(z). The function sech−1 is the inverse of the sech
function. It may also be denoted arcsech.
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We still have one undetermined constant in the solution, um, which is
the temperature at the centre x = 0. To determine um we can apply the
remaining boundary condition (3), u(1) = 0. This gives the equation

um − 2 log

(
cosh

(√
λ

2
eum/2

))
= 0. (8)

We can, in principle, solve this equation for um, where we think of um

as depending on the parameter λ.

Ignition

We can now solve equation (8), either graphically or numerically, to
determine um as a function of the parameter λ. The software package
Maple is a useful tool for this task. In Figure 5.3.2 a graph of the LHS
of this equation is given, for some different values of λ. For the lower
values of λ there appear to be two solutions. For the larger value there
is no longer any solution. A bifurcation has occurred. We can see the
critical value of λ occurs at just over 0.8. This behaviour mimics that
of the simple example in the previous section.
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Fig. 5.3.2. Graph of the LHS of equation (8) versus um for some different
values of λ. The solutions of equation (8) occur where the curve crosses the
horizontal axis.

In this simple example, we can carry out some algebraic manipulation
of (8) to put the unknown um on one side of the equation,�

�

�

�
e−um/2 cosh−1(eum/2) =

√
λ

2
(9)
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This form allows us to prove there are at most two equilibrium solutions.
A graph of the LHS is given in Figure 5.3.3.
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Fig. 5.3.3. Graphs of both sides of equation (9). The intersection points are
the solutions, corresponding to equilibrium temperatures.

It is also possible to obtain the critical value of λ more accurately.
The critical value of λ occurs where the two intersection points with
y = constant suddenly become one, i.e. where the curve in Figure 5.3.3
is a maximum, giving√

λcr

2
' 0.663, ⇒ λcr ' 0.88. (10)

Bifurcation diagram

Using Maple we can also construct the bifurcation diagram by plotting
the two solutions for um as we vary the parameter λ. This is done with
the implicitplot command. This result is shown in Figure 5.3.4. From
this we can also read off the critical value of λ as approximately 0.88.

An examination of the stability of the two equilibrium solutions is
beyond the scope of this book — it is more difficult for partial differential
equations. However, it has been shown (see, for example, Weber and
Renkema (1995)) that the upper branch is unstable whereas the lower
branch is stable. This is as we might expect from the physically similar
example in the previous section in which the conduction term of the
current model was replaced by a simpler loss term.
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Fig. 5.3.4. Bifurcation diagram. This was obtained using the Maple function
implicitplot.

Extensions

This problem, in scaled variables, is instructive, but needs to be gen-
eralised to where we can apply more complicated boundary conditions,
such as for the case study problem. We also need to consider what to
do when the temperatures of the top and the bottom are not the same.
When they are the same, then symmetry allows us to assume that the
maximum temperature occurs at x = 0.

To handle these more complicated problems, one can introduce a new
variable xmax denoting the position where the maximum temperature
occurs. Then, solving the problem as before, we use one boundary con-
dition to determine the critical λ and use the other to find the value of
xmax. This is what we have to do in the next section.

Also, it is possible to solve similar problems to (2) in cylindrical and
spherical geometries,

1
r

d

dr

(
r
du

dr

)
+ λeu = 0, u(1) = 0, (11)

1
r2

d

dr

(
r2 du

dr

)
+ λeu = 0, u(1) = 0. (12)

For these it is possible to obtain the critical values

λcr = 2.0, λcr ' 3.32

respectively, see Jones (1993).
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5.4 Solving the factory fire case study

In this section we provide a solution for the case study problem. This
solution follows a similar approach to that developed in the previous
two sections, that of creating a bifurcation diagram, with spontaneous
combustion occurring when the sawdust layer is too large.

Review of case study problem

Sawdust piling up on the surfaces of hot presses is thought to be the
cause of fires in a chipboard factory. In Section 5.1 we developed the
equations for a one-dimensional model for the temperature in a pile of
sawdust. The model is shown in Figure 5.4.1.

u = um

Newton cooling

x = `

x = 0

x = xm

u1 = 200

us = 30

x

Fig. 5.4.1. One-dimensional model for the temperature in a pile of sawdust.

The temperature u(x, t) satisfies the heat equation with a volumetric
heat source due to the oxidation reaction with the sawdust. With the
Frank-Kamenetskii approximation of the Arrhenius expression for the
rate of heat production we obtained the partial differential equation

ρc
∂u

∂t
= k

∂2u

∂x2
+ γebu (1)

where b and γ are positive constants. These constants are given by (see
Section 5.1)

γ = C0Q0e
−2bu1 b =

E

Ru2
1

. (2)
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For the equilibrium temperature we set ∂u/∂t = 0 to obtain�

�

�

�
k

d2u

dx2
+ γebu = 0. (3)

On the metal surface x = 0 we have a prescribed temperature u1 =
200 ◦C and we apply Newton cooling on the top surface x = `2. Thus
we write�

�

�

�
u(0) = u1, −k

du

dx
(`) = h(u(`) − us) (4)

where us = 30 ◦C is the temperature of the surroundings, k is the
conductivity and h the Newton cooling coefficient.

Solution for temperature

In the problem studied in the previous section we knew the maximum
temperature occurred at the line of symmetry. In this problem we do
not know, in advance, where the maximum temperature occurs. Let us
assume that it occurs at the point x = xm, to be determined. Defining
the maximum temperature as um we have

du

dx
= 0 when u = um at x = xm. (5)

Solving (3) for the equilibrium temperature follows the same proce-
dure as in Section 5.3. The details are left to the exercises. The solution,
satisfying (5) is�

�

�

�
u(x) = um − 2

b
log

[
cosh

(
σebum/2(x − xm)

)]
(6)

where the positive constant σ is defined by

σ =

√
bγ

2k
. (7)

This solution has two unknown constants, um and xm, which need to be
determined by applying the boundary conditions at x = 0 and x = `.
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Applying the boundary conditions

Using the boundary condition (4), u = u1 at x = 0, on (6) gives the
equation

u1 = um − 2
b

log
[
cosh

(
σebum/2xm

)]
(8)

since cosh is an even function. This gives an equation for um but we
still need an additional equation for xm.

This second equation comes from applying the Newton cooling condi-
tion on x = `, given in (4). This gives (see exercises, Question 17) the
equation

k

h
ebum/2σ tanh

(
σebum/2(` − xm)

)
=

b

2
(um − us) − log

[
cosh

(
σebum/2(` − xm)

)]
. (9)

This now gives us two equations for the two unknowns um and xm both
of which depend on the parameter `.

Bifurcation diagram

We need to substitute values for the constants b and σ, defined by equa-
tions (2) and (7). Appropriate data for sawdust is:

E

R
= 16, 220 K, k = 0.103 Wm−1 K−1,

C0Q0 = 7.1 × 1017 J m−3,
h

k
= 80 m−1.

With u1 = 200 ◦C = 473 K we thus calculate b ' 0.072 K−1 and σ '
6.4 × 10−7 m−1.

Equations (8) and (9), solved simultaneously, define um and xm as a
function of `. Maple can be used to find possible solutions of the pair of
equations (8) and (9), for various values of `. We can now use the Maple
function implicitplot to sketch the solutions for um as ` varies. This is
the bifurcation diagram for um. This is shown in Figure 5.4.2. In the
diagram on the left there appears to be only one solution for um (with
a corresponding solution for xm) with these values of the parameters,
but for sufficiently large ` there are no solutions. Note that we have
only captured one branch of the bifurcation diagram. We need to refine
the diagram to see the other branch. This is also shown in Figure 5.4.2
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where we have “zoomed in” and plotted the bifurcation diagram over a
smaller temperature range.
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Fig. 5.4.2. Two views of the bifurcation diagram obtained using the Maple
function implicitplot (i.e. solution of equations (8) and (9) for um and xm,
at various values of `). In the diagram on the left we have searched for temper-
ature values 473 K = 200 ◦C to 573 K = 300 ◦C which showed only the upper
branch of the bifurcation diagram. In the diagram on the right a more refined
search was made which yielded both branches. The critical value can now be
read off as `cr ' 0.378 from the diagram on the right as the value of ` where
the curve begins to turn back towards the vertical axis.

The critical value of `, where the equilibrium solutions cease to exist,
occurs at approximately

`cr ' 0.38 m = 38 cm.

This suggests that, for the values of the parameters used here, ignition
will occur if the dust layer exceeds 38 cm.

Alternatively, the bifurcation diagram can also be obtained by first
solving (8) explicitly for xm, yielding

xm = σ−1e−bum/2 cosh−1
(
eb(um−u1)/2

)
. (10)

Substituting the result back into (9) gives an equation of the general
form

F (um, `) = 0

which now defines um implicitly as a function of `. Again the Maple
function implicitplot can be used to obtain the bifurcation diagram.

Further reading

This case study was sourced from Sisson (1993). A good introduction to
the mathematics of spontaneous ignition is given in Logan (1987) with
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a more advanced discussion of chemical reactors in Fowler (1997). Jones
(1993) gives a broader view of the area of combustion science, as does
Drysdale (1985). The original development of the theory of spontaneous
ignition with conduction is given in Frank-Kamenetskii (1972).

For a further application of the theory of spontaneous combustion to
industry see Gray (1988) which discusses possible spontaneous ignition
of dust on cylindrical power cables. An extension of this to banks of
cables is treated in Weber and Renkema (1995). Also, McNabb et al.
(1999) considers spontaneous combustion in coal pillars. A problem
involving microwave heating, with some mathematical similarities to
the spontaneous combustion equations is discussed in Hill and Smyth
(1990).

5.5 Problems for Chapter 5

1. In a stirred chemical reactor the reactants are continually stirred together
so that the temperature within is uniform. There is heat loss from the surface
of the container, given by Newton’s law of cooling (see Figure 5.2.1).

(a) Deduce the differential equation

V cρ
du

dt
= V Q(u) − hA(u − ua)

from a suitable “word equation” expressing conservation of heat. Here
the temperature of the mixture is u, V is the volume of the mixture and
c is the specific heat, Q(u) denotes the rate of heat produced per unit
volume per unit time and ua is the temperature of the surroundings.

(b) Let Q(u) = γebu, corresponding to a Frank-Kamenetskii approximation
of an Arrhenius heat production term. Using the scaling

U = b(u − ua), T =
hA

ρcV
t

deduce that the scaled temperature U satisfies

dU

dT
= λeU − U,

where λ is a positive constant (give λ in terms of the other physical
constants).
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2. An exothermic reaction takes place in a tank of volume V and is fed by
a stream of constant flow rate q (volume per unit time) of constant reactant
concentration cin and constant temperature uin. The mixture is removed from
the tank with the same flow velocity q (see Figure 5.2.1).

Assume that the reactant is used up at the rate KQ0Ce−B/u where C(t)
is the concentration of the reactant and u(t) is the temperature, and where
B = E/R and Q0 and K are positive constants. The heat, per unit volume of

mixture, released is CQ0e
−B/u.

(a) By carrying out both a heat and mass balance, derive ordinary differ-
ential equations for C and u.

(b) Introduce the dimensionless concentration z and dimensionless temper-
ature θ and dimensionless time T defined by

T =
t

V/q
, z =

C

cin
, θ =

u

uin

and hence show that the equations obtained in (a) become

dz

dT
= 1 − z − λze−γ/θ,

dθ

dT
= 1 − θ + λbze−γ/θ.

Identify the dimensionless constants λ, µ and b.

3. Consider the two differential equations obtained in Question 2 for the
dimensionless temperature θ and dimensionless concentration z in a continuous
stirred reactor with consumption of reactant.

(a) By eliminating e−γ/θ from the differential equations and using the ini-
tial conditions deduce that

d

dT
(θ + bz) = 1 + b − (θ + bz).

(b) Given the initial conditions θ(0) = 1 and z(0) = 1 deduce that θ+ bz =
1 + b for all T . Explain where the initial conditions come from.

(c) Hence deduce that θ satisfies

dθ

dT
= 1 − θ + λ(1 + b − θ)e−γ/θ = 0.

4. Consider the ordinary differential equation

du

dt
= λe3u − (u − 1),

where λ is a positive constant and u > 0.

(a) Deduce that there exist two equilibrium solutions provided the value
of λ is sufficiently small, and there are no equilibrium solutions if λ is
above some critical value. What is this critical value?
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(b) What happens to the temperature if λ is small?

(c) If λ is large, deduce that the temperature u tends to the lower equilib-
rium temperature [Hint: Consider the stability.]

5. Consider the ordinary differential equation

du

dt
= λ(u2 + 1) − u.

(a) Deduce that there exist two equilibrium solutions provided the value
of λ is sufficiently small, and there are no equilibrium solutions if λ is
above some critical value. What is this critical value?

(b) What happens to the temperature if λ is small?

(c) If λ is large, deduce that the temperature u tends to the lower steady-
state temperature.

6. Sketch a bifurcation diagram for equilibrium solutions of

du

dt
= eu − λu.

Determine which branches are unstable.

7. Consider the differential equation

du

dt
= λu2 − u

where λ is a positive constant and u > 0.

(a) Determine graphically the number of equilibrium solutions as λ varies
from 0 to ∞.

(b) Give a rough sketch of the bifurcation diagram. Determine which
branches are unstable.

(c) Obtain, analytically, an expression for λcr.

8. Consider the differential equation

du

dt
= λu − u.

Are there any bifurcations of the equilibrium solutions?

9. Consider
du

dt
= λe−u/(u+1) − u

where λ is a positive constant. If u denotes a dimensionless temperature,
determine the critical value of λ such that spontaneous ignition occurs.



5.5 Problems for Chapter 5 169

10. If we choose not to approximate the Arrhenius term with the Frank-
Kamenetskii approximation, the differential equation is (in certain dimension-
less variables)

du

dt
= λe−β/u − (u − 1)

where β is a positive dimensionless constant and u > 0.

(a) Sketch e−β/u as a function of u. [Hint: Show there is a point of inflec-
tion at u = β/2.]

(b) Graphically, determine the number of equilibrium solutions as λ in-
creases from 0 to ∞.

(c) Hence, give a rough sketch of the bifurcation diagram. Determine which
branches are unstable.

(d) For β = 10, find the numerical value of λcr where spontaneous ignition
first occurs as we vary λ.

11. Consider the equilibrium expression

1 − θ + λ(1 + b − θ)e−γ/θ = 0

from the differential equation for θ derived in Question 3.

(a) Defining the function f(θ) = (1+b−θ)e−γ/θ show that f has a turning
point and a point of inflection. Hence sketch the graph on (0,∞).

(b) Determine the number of equilibrium solutions as the parameter λ
ranges from 0 to ∞.

(c) Hence sketch the bifurcation diagram.

(d) The phenomenon of quenching is where the temperature of a reac-
tion is decreased suddenly when the flow rate of reactants q is slowly
increased past some critical value. Discuss whether this model incor-
porates quenching. [Note: λ is inversely proportional to q. Refer to
Question 2 for background.]

12. Consider the differential equation

k
d2u

dx2
+ γebu = 0, u(±`) = u1.

Define the dimensionless variables U = b(u − u1) and X = x/`. Show the
problem may be written in the dimensionless form

d2U

dx2
+ λeU = 0, U(±1) = 0.

Give the dimensionless constant λ in terms of the other physical constants in
the problem.
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13. From the integral in equation (5), in Section 5.3, show that∫
1√

eum − eu
du =

−2

eum/2
sech−1

(
eu/2

eum/2

)
.

[Hint: Make the substitutions eu = v2 then v = a sech(y) where a2 = eum .]

14. Given the general solution (6) from Section 5.3

−2

eum/2
sech−1

(
eu/2

eum/2

)
= −

√
2λx + C2

apply the boundary condition and obtain

u = um − 2 log

[
cosh

(√
λ

2
eum/2x

)]
.

15. Solve the differential equation, arising from the case study in Sec-
tion 4.4,

k
d2u

dx2
+ γebu = 0

with the appropriate boundary conditions, to obtain

u(x) = um − 2

b
log

[
cosh

(
σebum/2(x − xm)

)]
, σ =

√
bγ

2k
.

You may assume the integral∫
1√

a2 − eu
du =

−2

a
sech−1

(
eu/2

a

)
.

16. In Section 5.3 we obtained the equation

um = 2 log

[
cosh

(√
λ

2
eum/2

)]
.

(a) Show that this can be written as

e−um/2 cosh−1(eum/2) =

√
λ

2
.

(b) By graphing the LHS find the critical value of λ.



5.5 Problems for Chapter 5 171

17. Consider

∂u

∂t
=

∂2u

∂x2
+ λeu

with the boundary conditions

u(0, t) = 0, u(1, t) = 10.

(a) Assuming the maximum temperature um occurs at x = xmax, obtain
two simultaneous equations for xmax and um, both of which depend on
the parameter λ.

(b) By plotting, find the approximate critical value of λ where spontaneous
ignition occurs.
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Case Study: Irrigation

We consider a problem from the agricultural industry which involves cal-
culating the optimal irrigation furrow width to enable the soil moisture
content to be sufficiently high where a crop is planted. We introduce two
mathematical techniques needed to solve this problem — the first uses
the Kirchoff transformation to transform a nonlinear PDE into a linear
one; the second uses a Fourier-series expansion which takes advantage
of the periodic nature of the problem to solve the linear PDE.

6.1 Introduction to the case study problem

We introduce the case study problem of designing optimal spacing of
irrigation furrows. We also develop the relevant equations for the water
content in the soil. This case study is based on consulting experiences
of one of the authors.

Background

In many countries irrigation systems are used to raise crops in areas
with low rainfall. To irrigate rows of crops, shallow furrows are placed
between the crops along which water is supplied.

In this case study, we will set up a model whose aim is to predict
optimal spacing of irrigation furrows. We can control the water flow-
rate and would like this to be as small as possible. The problem is to
determine the maximum distance between the furrows and the width of
the furrows such that there is sufficient water available for the crops.

172
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Fig. 6.1.1. Syphon irrigation of onion crops in the Murrumbidgee Irrigation
Area near Griffith, NSW, Australia. Photography by Bill van Aken, c© CSIRO
Land and Water.

This requires water to be available at sufficient concentration and also
requires that the water is not so tightly bound into the pores that it
cannot be extracted by the plant roots.

In dry soils a pressure must be applied to extract the water from small
pores. This pressure, the suction pressure, is caused by capillary forces.
A tensiometer is a device used to measure the suction pressure. It is a
tube filled with water with a semi-permeable cap which passes water but
not air. This is inserted into the soil and it causes a drop in the water
level due to the suction pressure. This drop in water level is called
the suction potential (or sometimes the capillary potential) and we
denote it here by the symbol Ψ. The suction potential is related to the
suction pressure p by p = ρgΨ, where ρ is density of water and g is the
acceleration due to gravity. Note that Ψ is negative, corresponding to a
suction pressure, with Ψ = 0 when the soil is saturated. Plants are able
to raise water to their full height H through capillary action. Similarly,
they are able to extract water that is held in the soil with a suction
potential of the order of −H . In this case study we consider a crop
plant that can extract water from soils provided the suction potential is
greater than −150 cm, see, for example Rowell (1994).
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The model

We consider an array of equally spaced irrigation furrows, each of width
2w. We suppose that water is supplied at a rate of R units of volume
per unit furrow length per unit time. The furrows are spaced a distance
2` apart. This is shown in Figure 6.1.2 below. We let z denote distance
down into the soil and choose x = ±` to be lines of symmetry.

z
water

x

2`

2w

Fig. 6.1.2. A periodic array of rows of crops, spaced a distance 2` apart. At
the centre of each row is an irrigation furrow of width 2w.

We assume that there is a large number of furrows. Near a central fur-
row, the outer furrows will have negligible influence. Hence, the number
of furrows can be assumed to be infinite. We also assume the furrows
are very long, effectively infinite in length. Then the flow pattern will
be two-dimensional (in the x and z directions).

The moisture content (volume of water to total volume) is denoted by
θ which will be a function of x, z and time t. By symmetry, we need only
consider the semi-infinite strip defined by −` < x < ` and 0 < z < ∞.
This is shown in Figure 6.1.3.

x = w

x = `
z

water x

Fig. 6.1.3. Diagram showing coordinate system for model.
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Governing equations

Flow in porous media is governed by Darcy’s law. Darcy’s law states that
the water volume flux v is proportional to the gradient of the pressure,

v = −Ks

ρg
∇(p − ρgz), (1)

where ρ is the density of water, g is the acceleration due to gravity
and Ks is a constant, for each soil, called the hydraulic conductivity.
The term ρgz represents the gravitational contribution to the overall
pressure.

For unsaturated flow, the hydraulic conductivity is a function of the
moisture content θ. Writing p = ρgΨ, Darcy’s law is extended to

v = −K(θ)∇(Ψ − z). (2)

The hydraulic conductivity K(θ) is a strongly increasing function of the
moisture content θ. Typically, K(θ) can decrease by several orders of
magnitude for only a 40% decrease in θ. This reflects how it is much
harder to drive water through smaller pores.

The starting point for developing a governing equation for the mois-
ture content in the soil is conservation of mass applied to a small arbi-
trary volume of width δx, height δz and depth L. The rate of change of
mass (or volume, since density is constant) is equated to the net mass
flux (or volume flux) into and out of the volume. This yields the equation
(see exercises, Question 1)

∂θ

∂t
= −

(
∂v1

∂x
+

∂v2

∂z

)
. (3)

Substituting the modified form of Darcy’s law (2) into the conservation
of mass equation (3) we obtain

∂θ

∂t
=

∂

∂x

(
K(θ)

∂Ψ
∂x

)
+

∂

∂z

(
K(θ)

∂Ψ
∂z

)
− ∂

∂z
(K(θ)) . (4)

Let us define D(θ) = K(θ) dΨ/dθ. Then using the chain rule, we
obtain

∂θ

∂t
=

∂

∂x

(
D(θ)

∂θ

∂x

)
+

∂

∂z

(
D(θ)

∂θ

∂z

)
− K ′(θ)

∂θ

∂z
. (5)
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This equation is known as Richards’ equation. We shall neglect tran-
sients and consider the equilibrium moisture content θ(x, z). Richards’
equation now becomes�

�

�

�
∂

∂x

(
D(θ)

∂θ

∂x

)
+

∂

∂z

(
D(θ)

∂θ

∂z

)
− K ′(θ)

∂θ

∂z
= 0. (6)

This PDE is nonlinear. One of the first approximations a mathematician
might think about making, here, is to set D(θ) and K ′(θ) to be constants,
resulting in a linear, constant coefficient PDE. However, K(θ), and hence
D(θ), varies by several orders of magnitude for a small variation in θ, so
this approach is inappropriate. There is another way to obtain a linear,
constant coefficient equation from the equilibrium Richards’ equation.

Boundary conditions

We need to specify boundary conditions on the boundaries z = 0, z →
∞. On z = 0 we specify the water input. This is in the form of a given
water flux in the irrigated part of the furrow, from x = 0 to x = w.
Defining v3(x, z) as the vertical water flux, then�

�

�

�
v3(x, 0) =

{
R, 0 < |x| < w,

0, w < |x| < `,
(7)

where R is the infiltration rate. We also expect the water concentration
to tend to zero as we go deeper into the soil. Thus

θ(x,∞) is finite.

We also require the moisture content θ(x, z) to be periodic in the x

direction, with period 2`.

6.2 The Kirchhoff transformation

We introduce the Kirchhoff transformation as a method for transforming
the nonlinear Richards’ equation, from Section 6.1, into a linear partial
differential equation.
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Definition of the Kirchhoff variable

In the previous section, we obtained the equilibrium Richards equation
for the moisture content in a soil. This equation was

∂

∂x

(
D(θ)

∂θ

∂x

)
+

∂

∂z

(
D(θ)

∂θ

∂z

)
− K ′(θ)

∂θ

∂z
= 0. (1)

Here D(θ) = K(θ)Ψ′(θ) where θ is the moisture content, K is the hy-
draulic conductivity and Ψ is the suction potential (capillary potential).

To take advantage of techniques for solving linear partial differential
equations it is desirable to transform (6) into a linear partial differential
equation. We introduce the new variable µ(x, z) defined by

∂µ

∂x
= D(θ)

∂θ

∂x
,

∂µ

∂z
= D(θ)

∂θ

∂z
(2)

This is equivalent to

µ(x, z) =
∫ θ

θ0

D(θ) dθ

where θ0 is some reference value of the moisture content θ.

Transforming Richards’ equation

By the chain rule
dK

dθ
=

dK

dθ

∂θ

∂z
=

dK

dµ

∂µ

∂z
. (3)

Hence Richards equation now becomes

∂2µ

∂x2
+

∂2µ

∂z2
− K ′(µ)

∂µ

∂z
= 0. (4)

If we now choose

K ′(µ) = α

then�

�

�

�
∂2µ

∂x2
+

∂2µ

∂z2
− α

∂µ

∂z
= 0 (5)

which is a linear partial differential equation (with constant coefficients).
This is much easier to solve!
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We can also show (see exercises, Question 3) that the assumption
K ′(µ) = α is equivalent to�
�

�
�K = Kse

αΨ = αµ (6)

where Ks is the saturated hydraulic conductivity, with K = Ks when
Ψ = 0. This is, fortunately, reasonably consistent with experimental
measurements of hydraulic conductivity verses suction potential. This
equation can be used to convert from the artificial variable back to the
suction potential Ψ.

Transformed boundary conditions

We need to specify boundary conditions on the boundaries z = 0, z →
∞. On z = 0 we specify the water input

v3(x, 0) =

{
R, 0 < |x| < w,

0, w < |x| < `,
(7)

where R is the infiltration rate.

We can also write the boundary conditions in terms of the Kirchhoff
variable µ(x, z). Using the definition of µ, (2), Darcy’s law (Section 6.1,
equation 1) and (6), the boundary condition (7) now becomes�

�

�

�
−∂µ

∂z
(x, 0) + αµ(x, 0) =

{
R, 0 < |x| < w,

0, w < |x| < `.
(8)

We also require µ(x,∞) to be finite and µ(x, z) to be periodic in x with
period `.

6.3 Fourier series solutions

Now we see how to use a Fourier series to solve a linear partial differential
equation. The problem chosen to illustrate the method is a simplified
version of the linear partial differential equation from Section 6.2.
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Example problem

Before solving the case study problem in the next section, we consider
a simpler problem. Consider the partial differential equation

∂2µ

∂x2
+

∂2µ

∂z2
= 0 (1)

with the boundary conditions

µ(x, 0) =

{
0, 0 < |x| < 1,

3, 1 < |x| < 2.
(2)

We also assume µ(x, z) remains finite as z → ∞. We similarly assume
the function is periodic in the x-direction, with period 4.

The solution involves assuming a suitable form of µ(x, z). We shall
assume a form which accounts for the periodic variation in the x-variable.
For this we use a Fourier series.

Fourier series

Fourier series are used to represent functions that are periodic on some
interval. The functions sin(ax) and cos(ax) both have period 2π/a,
hence sin(πx/L) and cos(πx/L) have period 2L. Also, the functions
sin(nπx/L) and cos(nπx/L), where n is an integer, both have period
2L (as well as period 2L/n). In fact we can represent any function of
period 2L by an infinite linear combination of these functions (see, for
example, Mei (1997) for further details).

The general Fourier-series expansion of a function f on an interval
[−L, L], and with period 2L, is defined by

f(x) =
a0

2
+

∞∑
n=1

an cos
(nπx

L

)
+ bn sin

(nπx

L

)
. (3)

The coefficients an and bn are given by†

an =
1
L

∫ L

−L

f(x) cos
(nπx

L

)
dx, bn =

1
L

∫ L

−L

f(x) sin
(nπx

L

)
dx. (4)

† More generally, a periodic function defined on the interval [c, c+2L] has coefficients
given by

an =
1

L

∫ c+2L

c
f(x) cos

( nπx

L

)
dx, bn =

1

L

∫ c+2L

c
f(x) sin

( nπx

L

)
dx.

The case c = −L gives the same formulae as above.
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The formulae for the bn Fourier coefficients are easily obtained by
multiplying (3) through by sin(mπx/L) and then integrating over the
interval [−L, L]. Note that, when integrated over this interval, all the
terms in the sum become zero except when m = n. Similarly the an coef-
ficients, including a0, are obtained by integrating over the same interval,
after multiplying through by cos(mπx/L) (see exercises, Question 5).

Solution of example problem

We assume at each depth z the variable µ can be expanded as a Fourier
cosine-series where the coefficients are functions of z. Thus, we write

µ(x, z) =
A0(z)

2
+

∞∑
n=1

An(z) cos
(nπx

2

)
+ Bn sin

(nπx

2

)
(5)

where A0(z) and An(z) are functions of z to be determined. The fol-
lowing example shows how to use this assumed form to solve the partial
differential equation.

Example 1: Solve the PDE (1) by substituting the variable-coefficient
Fourier series (5) into the PDE.

Solution: The functional form for the coefficients, A0(z) and An(z), is ob-
tained by requiring µ(x, z) to satisfy the partial differential equation. We sub-
stitute this back into the PDE. If we now equate all the coefficients sin(nπx)
and cos(nπx) we obtain equations for the coefficients A0(z) and An(z). These
are

A′′
n − n2π2

4
An = 0, B′′

n − n2π2

4
Bn = 0, A′′

0 = 0.

Solving these differential equations gives

A0(z) = a0 + c0z, (6)

An(z) = ane−nπz/2 + cnenπz/2, (7)

Bn(z) = bne−nπz/2 + dnenπz/2, (8)

where a0, c0, an, bn, cn, dn are arbitrary constants.

We also impose the condition that µ be finite as z → ∞. This means that
we must choose the constants b0 = 0, cn = 0 and dn = 0. Hence we have

A0(z) = a0, (9)

An(z) = ane−nπz/2, (10)

Bn(z) = bne−nπz/2. (11)



6.3 Fourier series solutions 181

Substituting for A0(z) and An(z) back into (5) we obtain�

�

�

�
µ(x, z) =

a0

2
+

∞∑
n=1

an cos
(nπx

2

)
e−nπz/2. (12)

We could also have obtained this solution by looking for separable
solutions of the form µ(x, z) = X(x)Z(z). Substitution into the PDE
and application of the separable (homogeneous) boundary conditions
yields an infinite number of solutions. The general separated solution
(12) is then obtained as a linear combination of these separated solutions
(see exercises, Question 4).

Applying the boundary condition (2), and substituting z = 0, yields
the equation

a0

2
+

∞∑
n=1

an cos
(nπx

2

)
+ bn sin

(nπx

2

)
= g(x),

where

g(x) =

{
0, 0 < |x| < 1,

3, 1 < |x| < 2.

This is equivalent to finding the Fourier series for the RHS.

Example 2: Find the Fourier series for

g(x) =

{
0, 0 < |x| < 1,

3, 1 < |x| < 2.

Solution: The function has period 2L = 4. Hence equation (4) gives

an =
1

2

∫ 2

−2

g(x) cos(nπx/2) dx.

Splitting the integral from 0 to 1 and from 1 to 2, and also using symmetry,
we obtain

an =
2

2

∫ 2

1

3 × sin(nπx/2) dx =
−6

nπ
(sin(nπ/2))

since sin(nπ) = 0 for all integer values of n. Similarly we can show a0 = 3
and bn = 0.
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We can now substitute the expressions for the coefficients a0 and an

back into (12). This gives the solution to the PDE (1) and the boundary
condition (2),�

�

�

�
µ(x, z) =

3
2

+
∞∑

n=1

−6 sin(nπ/2)
nπ

cos
(nπx

2

)
e−nπz/2. (13)

6.4 Solving the crop irrigation case study

We solve the case study problem of determining the optimal spacing of
irrigation furrows. Some of the details are carried out as exercises in the
problems at the end of the chapter.

Review of problem

Rows of crops are irrigated by shallow channels. The water seeps through
the soil and moves towards the drier soil where crops are planted. We
wish to predict values of moisture content θ(x, z) and suction potential
Ψ(x, z) in the soil, see Figure 6.1.3.

Recall from Section 6.1 that the governing partial differential equation
for the moisture content was the equilibrium Richards’ equation. In
Section 6.2 we saw how to use the Kirchoff transformation to transform
the partial differential equation into the constant-coefficient equation

∂2µ

∂x2
+

∂2µ

∂z2
− α

∂µ

∂z
= 0. (1)

We also obtained

K = αµ = Kse
αΨ, v3 = −∂µ

∂z
+ αµ. (2)

The boundary conditions were

v3 = −∂µ

∂z
(x, 0) + αµ(x, 0) =

{
R, 0 < |x| < w,

0, w < |x| < `,
(3)

and

µ(x,∞) = 0. (4)

We also require µ(x, z) to be periodic in x, with period 2`.
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Overview of solution

In Section 6.3 we looked at solving a partial differential equation similar
to (1). We use the same approach here. We start by assuming a Fourier-
series form of the solution

µ(x, z) =
A0(z)

2
+

∞∑
n=1

(
An(z) cos

(nπx

`

)
+ Bn(z) sin

(nπx

`

))
(5)

where the functions An(z), Bn(z) are to be determined. This gives a
periodic solution in the x-direction. Furthermore, symmetry of θ(x, z)
about x = 0 also implies symmetry of µ(x, z) about x = 0. This requires
Bn(z) = 0. Hence

µ(x, z) =
A0(z)

2
+

∞∑
n=1

An(z) cos
(nπx

`

)
. (6)

We substitute (6) into the PDE (1) to obtain equations for the Fourier
coefficients An(z), Bn(z). The details are given in the exercises. We then
obtain

µ(x, z) =
a0

2
+

∞∑
n=1

an cos
(nπx

`

)
eβnz (7)

where an and bn are constants, and

βn =
1
2

(
α −

√
α2 + 4n2π2/`2

)
. (8)

Note that all the βn are negative for all values of n = 1, 2, . . ..

The constants an are determined by applying the remaining boundary
condition at z = 0, given by equation (3). Using the Fourier-coefficients
formulae (equation (4) in the previous section) we obtain (see Question 8
in the exercises)

an =
2R sin

(
nπw

`

)
nπ(α − βn)

, a0 =
2Rw

α`
.

Substituting these back into (7), we obtain the solution for µ(x, z),

µ(x, z) =
Rw

α`
+ 2R

∞∑
n=1

sin
(

nπw
`

)
nπ(α − βn)

cos
(nπx

`

)
eβnz , (9)

where the constants βn are defined above. This solution was first ob-
tained by Batu (1978).
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Interpretation of the solution

Typical data for loam is

α = 0.05 cm−1.

(This comes from α−1 = 20 cm which is a typical scale for the capillary
rise in a soil.)

We also assume the spacing between rows of crops as 4 metres apart,
so

` = 200 cm.

The vertical flux of water into the soil, R, can be easily measured. We
shall take a value of the vertical flux R as

R = Ks = 5 cm/day.

This quantity is also called the infiltration rate.

In practice, it is found that many crop plants cannot extract water
from the soil whenever the suction potential Ψ is more negative than
−150 cm. Let us assume a seed is planted at a depth of 3 cm. Then
we require the suction potential to be greater than −150 cm at z =
3 cm. Using this value, we will now use the solution (9) to calculate the
minimum value w (the irrigation furrow width) so that the seedling can
get enough water to grow. For a seedling planted directly between two
irrigation furrows we require

Ψ(`, 3) > −150 cm.

From equation (2), αµ = Kse
αΨ, which enables us to calculate the

suction potential Ψ, given µ, as

Ψ(x, z) =
1
α

log
(

αµ(x, z)
Ks

)
.

Typically, for a clay loam,

R = Ks = 5 cm/day.

Using the above values, we plot in Figure 6.4.1 values of the suction
potential at a depth of 3 cm into the soil, Ψ(`, 3), for different values of
the irrigation furrow width w.
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Fig. 6.4.1. Graph of the suction potential Ψ, at depth 3 cm, verses the half
width w of the irrigation furrow, with infiltration rate of R = Ks = 5 cm/day.
The horizontal line is the critical suction potential that seedling roots are
capable of overcoming.

Discussion

Referring to Figure 6.4.1, we note that −Ψ increases as w increases.
This simply means the suction potential becomes less negative as we
make the irrigation furrows wider (and therefore increase the amount
of water available) and the plants find it easier to extract water. From
Figure 6.4.1 we see that we can maintain a sufficient suction potential of
greater than −150 cm at depth 3 cm provided the irrigation furrow width
is greater than approximately 28 cm (i.e. w ' 14 from Figure 6.4.1).

The above analysis is appropriate for seedlings with a low water con-
sumption. For well developed crops, a sink term, representing plant root
water extraction, would need to be appended to the RHS of Richards’
equation (4) of Section 6.1. The consequences of this are yet to be fully
investigated.

Further reading

For a practical discussion of irrigation the reader is referred to Hillel
(1982).

A classic reference for hydrology is Bear (1972). Fowler (1997) gives
brief treatments of different aspects of porous media flow, concentrat-
ing on saturated flows, in particularly the dam seepage problem and
pollution leakage. Noble (1967) also contains an elementary discussion
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of the dam seepage problem. Good references for the mathematics of
unsaturated flow in soils are Philip (1970) and Philip (1988).

For a recent discussion of the effect of plant roots on the water flow
in unsaturated soils, see Chang and Corapcioglu (1997). For an exten-
sion to flow in soils with layers of different hydraulic conductivities, see
Stormont and Morris (1997). An application of unsaturated flow in the
mining industry is the drainage of coal and iron-ore stockpiles which is
discussed in McElwain and Fulford (1995).

6.5 Problems for Chapter 6

1. Suppose water is flowing in a soil where the velocity of the water at a
point (x, z) is v(x, z), where we have assumed symmetry in the y-direction.
Consider the liquid flowing through an arbitrary small box with sides of width
δx and δy and depth L. Assume constant density of water ρ.

(a) Argue the rate of mass of liquid flowing into the bottom of the box
z = constant at z is ρv3(x, z)δxL. Hence determine the total net flux
out of the box by considering the flow into or out of the other three
sides.

(b) Denoting the volume content of the box as θ(x, z, t) (ratio of volume
of water to total volume) determine the rate of change of mass of the
liquid.

(c) By letting δx and δz both tend to zero hence deduce the equation

∂θ

∂t
= −

(
∂v1

∂x
+

∂v3

∂z

)
.

2. Consider the nonlinear diffusion equation

∂C

∂t
=

∂

∂x

(
D(C)

∂C

∂x

)

where the diffusivity D(C) depends on the concentration C(x, t). Define the
change of dependent variable

h(C) =

∫ C

0

D(C) dC.

Show that the nonlinear diffusion equation above is equivalent to

∂h

∂t
= D(C(h))

∂2h

∂x2
.
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3. Assuming Darcy’s law, and the Kirchhoff transformation, show that the
assumption K′(µ) = α, where α is a constant, is equivalent to

αµ = Kse
αΨ.

[Hint: First show µ =

∫ Ψ

Ψ0

K(Ψ) dΨ using the definition of D(θ).]

4. Consider the partial differential equation

∂2µ

∂x2
+

∂2µ

∂z2
= 0

with the boundary conditions

∂µ

∂x
(0, z) = 0,

∂µ

∂x
(1, z) = 0.

(a) Assuming a solution of the form µ(x, z) = X(x)Z(z) deduce that

X′′ = λX, X ′(0) = 0, X ′(1) = 0, Z′′ = −λZ,

where λ is a separation constant.

(b) By solving the equations for X find values of λ which lead to non-zero
solutions.

(c) Hence solve for Z(z), assuming that µ remains finite as z → ∞, and
obtain

µ(x, z) = c0 +
∞∑

n=1

cn cos(nπx)e−nπz.

5. Consider the Fourier series

f(x) =
A0

2
+

∞∑
n=1

An cos
(nπx

L

)
+ Bn sin

(nπx

L

)
,

where An, Bn, n = 1, 2, . . . and A0 are constants. By multiplying this expres-
sion through by cos(mπx/L) and integrating over [−L, L] deduce that

An =
1

L

∫ L

−L

f(x) cos
(nπx

L

)
dx.

Similarly, find an expression for Bn.

6. Solve Laplace’s equation

∂2µ

∂x2
+

∂2µ

∂z2
= 0

on −1 < x < 1, 0 < z < ∞, with periodic boundary conditions on x = −1
and x = 1 and with µ(x, 0) = 1− x2. Assume the solution is finite as z → ∞.
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7. Consider the partial differential equation

∂2µ

∂x2
+

∂2µ

∂z2
− α

∂µ

∂z
= 0.

Assuming a form of the solution

µ(x, z) =
A0(z)

2
+

∞∑
n=1

An(z) cos
(nπx

`

)

and assuming µ remains finite as z → ∞ show that

µ(x, z) =
a0

2
+

∞∑
n=1

an cos
(nπx

`

)
eβnz

where a0, an, βn, n = 1, 2, 3, . . ., are constants to be determined.

8. Apply the following boundary condition to the solution obtained in
Question 7:

−∂µ

∂z
(x, 0) + αµ(x, 0) = g(x),

where

g(x) =

{
R, 0 < |x| < w,

0, w < |x| < `.
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Conclusions

In this final chapter we review the case studies examined in this book.
We also explore (very briefly) some other areas of industry in which
mathematics has been extensively used and mention some other math-
ematical techniques which commonly find application in industry.

7.1 Introduction

In the previous chapters we have explored several case studies from in-
dustry. All of these case studies have involved problems which use some
variant of the diffusion equation. The case studies were deliberately
chosen to use similar mathematics and physical backgrounds to make it
easier for the reader and to allow the reader to see the links between the
various case studies through mathematics.

In Chapter 2 we considered the problem of continuous casting. This
problem introduced the mathematics of moving boundary problems and
of similarity solutions using the Boltzmann similarity solution. The
problem illustrated how a simplified model involving one dimensional
heat flow yielded an exact solution in terms of error functions. Using
this exact solution we were able to estimate the size of the puddle of
molten steel, and showed that it was of the order of the size of the
rotating drum, which meant that the process was not feasible.

Next, in Chapter 3, the case study was from the area of water filtra-
tion involving a process known as reverse osmosis. This was a diffusion
problem with a non-constant advection coefficient. Here we continued
with the idea of a similarity solution, and developed a technique (the

189
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method of stretching transformations) as a means for constructing sim-
ilarity transformations which reduce the dimensionality of a partial dif-
ferential equation. We were able to construct a solution expressed in
terms of an integral which was evaluated numerically. However, the rest
of the solution was analytic, giving useful insight into the structure of
the solution. This is valuable information to have even if we have avail-
able a numerical solution to equations with less restrictive assumptions
than those applied here.

In Chapter 4 we considered a problem from manufacturing industry
involving the use of lasers to drill holes through metal. We introduced
the method of perturbations to obtain a correction to a simple solution
for the drilling speed. The correction incorporated the effect of conduc-
tivity of the material.

In Chapter 5 the case study involved the spontaneous ignition of wood
dust, as found in a particle board factory. The aim of the problem was
to determine if spontaneous ignition of the wood dust on top of hot
metal presses was possible. The problem was described by a simple heat
conduction equation. The mathematics introduced to solve this problem
was that of bifurcation of equilibrium solutions.

Finally, in Chapter 6 we considered a problem from agriculture: de-
termining the optimal width of irrigation furrows. The major difficulty
with this problem, which involves flows in unsaturated soils, is that the
governing equation (Richards’ equation) is a highly nonlinear diffusion
equation. However, we were able to overcome this by applying a trans-
formation which converted Richards’ equation into a standard linear
diffusion equation. We also made use of the periodic structure of the
problem and used Fourier series to obtain a solution which could be
expressed as a sum of terms.

We do not wish the reader to get a false impression that heat or diffu-
sion problems are the only types of problems that involve mathematics
in industry. Thus the purpose of this chapter is to expose the reader to
the greater variety of mathematical ideas that has been used in indus-
try. As such, we do not intend to explore the topics in nearly the same
depth as in the previous chapters, nor do we claim the exposition is a
complete coverage of all the areas of mathematics that have been ap-
plied in industry. We do hope, however, that the reader will get a good
idea of the scope and variety of areas of applications in industry and of
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the potential use of mathematics as an aid to solving the problems of
various industries.

7.2 A survey of mathematical techniques

Mathematics as a discipline has been around since the time of the ancient
Greeks and before. Therefore there has been a lot of time to accumulate
a huge body of knowledge. It is difficult to imagine how any one person
could possibly have sufficient working knowledge of all the techniques
available to be able to apply them to a given problem arising in industry.
However, this should not deter us from attempting to at least have an
awareness of as many techniques as possible. Then, if a given problem
demands the use of a technique one is unfamiliar with, if it is important
enough to solve the problem, then the technique can be learned.

Within the area of solving diffusion problems, and also other prob-
lems involving partial differential equations, there are important tech-
niques we have not used in this book, such as integral transforms and
Greens functions. It is also useful to be aware of extensions of tech-
niques that follow on as extensions of the techniques developed here.
These include Sturm–Liouville methods (these are an extension to
Fourier series), Lie group methods and Bäckland transformations

(extensions of stretching transformations) and various extensions of per-
turbation methods (e.g. matched asymptotic expansions), many of
which are covered in more advanced mathematical techniques books,
such as Logan (1987).

Three related areas of modelling that are worth becoming acquainted
with, for solving many problems in industry, are fluid dynamics, the
modelling of fluid flows, important in a huge number of industries, elas-
ticity theory , the modelling of solid structures, and electromagnetic

theory , the modelling of electromagnetic fields, useful for modelling in
telecommunications, including optical fibre communication.

Three mathematical areas we have not really touched on in this book,
but which are of crucial importance to many, if not all, industries are:
scientific computation, statistics, and operations research.

Scientific computation involves obtaining approximate numerical
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solutions to equations using a computer. An associated area of mathe-
matics is numerical analysis which examines issues of efficiency, ac-
curacy and stability of the algorithms used in scientific computation.
Modern developments in software design and faster, parallel computers
have meant that problems that were previously too difficult to solve nu-
merically are now feasible. For anyone seriously contemplating a career
in applying mathematics in industry a working knowledge of scientific
computation is essential, as is some ability in computer programming.
However, it is the authors’ opinion that, sometimes, it is all too tempt-
ing to rush off and try to solve a problem numerically without trying to
get analytic solutions (to possibly simpler models). We hope we have
demonstrated in this book how analytic solutions can be of great value.

Statistics is another very important area. Statistical inference is the
natural companion to experiment. It uses ideas from probability theory
to test if results are significant or can be attributed to random variation.

Operations research encompasses a variety of techniques which are
usually aimed at solving some sort of optimisation problem. Problems
with constraints involve linear and nonlinear programming and many
problems can be cast into this framework, such as scheduling, analysis
of distribution networks. Typically these problems have a large number
of variables.

A few other mathematical areas, important for many industrial prob-
lems, are described very briefly in the following.

• Probability theory: This includes the theory of probability distri-
butions and the use of it for dealing with problems where random
variation is significant. Techniques include Markov models (which
use matrices), queueing models and stochastic differential equations
(where the solutions are probability distributions).

• Integral equations: Some problems are more naturally formulated
as integral equations (equations involving integrals) rather than differ-
ential equations. Special techniques are available for solving integral
equations.

• Signal and image processing: This involves the analysis of signals
(think of a signal as an time dependent quantity with some random
component). An important tool for this is Fourier analysis, where a
signal is decomposed into periodic components corresponding to sine
and cosine functions and therefore extract patterns from noise. (Note
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that Fourier series were also used in a different context in Chapter 6.)
Similar mathematics is used for manipulating inmages (such as satal-
lite images).

• Control theory: Control theory is about systems with feedback
where the aim is to drive the system to a certain state. In opti-
mal control theory the aim is to optimise a quantity determined from
a set of equations to determine some variable which characterises the
feedback. A typical problem in control theory is to find fuel rate (the
control variable) so that a car maintains a constant speed.

• Discrete mathematics: This includes various techniques for han-
dling problems where the outputs are discrete quantities. These tech-
niques include graph theory, set theory and number theory.

If, after reading this section, the reader feels a little daunted it is good
to know that very few people in the world, if any, would claim expert
knowledge in all these fields. We are only suggesting that a passing
awareness of them is important to be able to recognise the possibilities
that might occur when an appropriate problem from industry presents
itself.

An excellent overview of many of the techniques mentioned briefly
here can be found in Gershenfield (1999).

7.3 Mathematics in some other industries

Because of our focus on heat and mass transfer problems in this book
it is natural that our case studies will have come predominantly from
manufacturing industries (the main exception being the irrigation
case study of Chapter 6 which was from agriculture).

Based upon the authors’ experiences, some other important industries
in which mathematics is extensively used include the following.

• the food industry: Heat and diffusion theory for problems with
cooking and freezing, elasticity and fluid dynamics (e.g. making bread
dough), dynamical systems for problems involving biochemical reac-
tions involved with cooking, probability theory and population dy-
namics for deciding food safety issues, such as growth of bacteria.
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• finance: This includes banking and insurance. Common problems
involve quantifying risk and optimising investment portfolios. Math-
ematical techniques employed include probability theory, stochastic
differential equations and operations research.

• biomedical engineering: Signal processing is used for artificial hear-
ing devices. Fluid dynamics is used for the design of valves and arti-
ficial hearts.

• telecommunications: Queueing theory is used for the design of effi-
cient communication networks and electromagnetic theory is used for
the design of optical fibres and devices used to connect optical fibres.

• mining: This industry has problems involving blasting, scheduling
and distribution. Mathematical techniques often used include statis-
tics, dynamics, optimisation, elasticity.

• transport: This includes road, rail, air and sea. Problems include
scheduling as well as solving structural problems (e.g. design of railway
tracks).

• environmental: This is not really regarded as an industry in itself,
however, many industry participants are seeing environmental issues
to be of increasing importance for the solution of questions of sustain-
ability, and there are many interesting mathematical problems that
arise from environmental problems.

This chapter was designed to provide the reader with a taste of the
possibilities of the use of mathematics in industry. The opportunities
may only be limited by the reader’s imagination!
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